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UNIVERSITÉ PARIS DESCARTES
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Mila NIKOLOVA ENS Cachan Rapporteur





3

Remerciements

En tout premier lieu je voudrais remercier très chaleureusement Lionel Moisan pour ces
quelques années passées sous sa direction. Je l’ai toujours admiré, pour ses compétences scien-
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qualités humaines remarquables dont j’ai vraiment profité ! Tout en me laissant une grande li-
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Pour tout cela, je le remercie du fond du cœur, ainsi que pour toutes les marques de confiance
qu’il m’a accordées et la relation amicale que nous avons construite.

Je voudrais remercier les membres du jury. Tout d’abord, Antonin Chambolle et Mila Niko-
lova m’ont fait grand honneur en acceptant de rapporter ma thèse. Ils ont non seulement passé
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labo : Amandine, Béatrice, Olivier, Claire L., Gwendoline, Claire J., Bénédicte, Javiera, Sylvain,
qui ont su m’accueillir au MAP5 très amicalement, ainsi que Mohamed, Gaëlle, Neus, Makrem,
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du temps au CMLA (Cachan) en début de thèse. Au CMLA comme au MAP5, le groupe des
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Enfin, un merci tout spécial à ma famille que j’aime, et qui m’a toujours soutenue. En parti-
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Table des matières

Introduction 3

I Total Variation denoising using posterior expectation 15

1 Motivation and definition of the TV-LSE denoiser 17
1.1 Total Variation minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 TV minimization and Maximum a Posteriori . . . . . . . . . . . . . . . . . . . . 20

1.2.1 A statistical framework for TV minimization . . . . . . . . . . . . . . . . 20
1.2.2 Loss functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.3 Distortions of MAP estimation in image denoising . . . . . . . . . . . . . 24

Distortion due to high dimension . . . . . . . . . . . . . . . . . . . . . . . 24
Distortions in simple cases of MAP estimation . . . . . . . . . . . . . . . 25
Staircasing for TV-denoising . . . . . . . . . . . . . . . . . . . . . . . . . 27
Temperature problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.3 Definition of TV-LSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.3.1 Constrained TV-LSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.3.2 TV-LSE as a diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.3.3 Link to Wiener filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 MCMC algorithm for TV-LSE denoising 37

2.1 MCMC and Hastings-Metropolis algorithms . . . . . . . . . . . . . . . . . . . . . 38
2.2 A Hastings-Metropolis algorithm for TV-LSE . . . . . . . . . . . . . . . . . . . . 41

2.2.1 Subsampled chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.2 Consistency of Algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Convergence control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.1 Central limit theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.2 Bias-variance decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.3 Introduction of another chain, and stopping criterion . . . . . . . . . . . . 53

2.4 Burn-in selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.5 Optimal scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.6 Numerical variants – why we won’t run several chains . . . . . . . . . . . . . . . 61

2.6.1 Several independent MCMCs . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.6.2 Interacting MCMCs – Sampling Importance Resampling . . . . . . . . . . 63

1



2 Table des matières

3 Theoretical properties 67

3.1 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.1 Average preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.2 Invariances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.1.3 Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1.4 Explicit solution for a 2-pixel clique . . . . . . . . . . . . . . . . . . . . . 73

3.2 Asymptotic behavior of TV-LSE . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3 No staircasing in TV-LSE denoised images . . . . . . . . . . . . . . . . . . . . . . 81

3.4 Brief analysis of the assumptions on discrete TV . . . . . . . . . . . . . . . . . . 85

3.5 Global analysis of LSE denoisers built on a more general prior . . . . . . . . . . . 87

4 Numerical experiments 99

4.1 Discussion on the stopping criterion . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 Influence of parameters σ, λ and β . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Denoising normalization and comparisons to other methods . . . . . . . . . . . . 120

4.4 Experiments on synthetic signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.5 Staircasing and isolated pixels artefacts . . . . . . . . . . . . . . . . . . . . . . . 141

4.6 Other examples, and natural noise . . . . . . . . . . . . . . . . . . . . . . . . . . 145

II Locality and prior 151

5 Locality in Total Variation denoising 153

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.2 Total variation minimization is global . . . . . . . . . . . . . . . . . . . . . . . . 154

5.3 Lagrangian local TV-MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.3.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.3.3 Stability properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.3.4 PDE associated to local TV-MAP . . . . . . . . . . . . . . . . . . . . . . 168

5.3.5 Local versus global TV-MAP . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.3.6 Bias-variance trade-off for window optimizing . . . . . . . . . . . . . . . . 176

5.3.7 Adaptive locality as a function of the gradient norm . . . . . . . . . . . . 183

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Estimation of the optimal window by the local scale . . . . . . . . . . . . 183

Definition of a locally optimal window . . . . . . . . . . . . . . . . . . . . 184

Optimal locality and gradient norm . . . . . . . . . . . . . . . . . . . . . 184

Adaptive denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.4 Constrained local TV-MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.4.2 Minimum size of windows? . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.5 Towards a quadratic risk as in the Non-Local means . . . . . . . . . . . . . . . . 198



Introduction 3

6 Total Variation prior model, and the Non-Local means 201
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.2 Prior in Total Variation denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.2.1 Gradient norm is a good measure of small patch distribution . . . . . . . 202
6.2.2 Optimizing the total variation prior . . . . . . . . . . . . . . . . . . . . . 206

6.3 Bias-variance trade-off in the prior complexity . . . . . . . . . . . . . . . . . . . . 211
6.3.1 Bayesian framework for NL-means . . . . . . . . . . . . . . . . . . . . . . 211
6.3.2 Bias and variance for TV-denoising and for NL-means . . . . . . . . . . . 212
6.3.3 Argument for the existence of a non-trivial optimum . . . . . . . . . . . . 213

Conclusion 216

Bibliographie 221



4 Introduction



Introduction

Dans cette thèse, nous nous intéressons à la réduction du bruit dans les images. Le bruit n’est
pas qu’un phénomène acoustique, on peut aussi en trouver dans le domaine visuel. Par exemple
quand l’antenne d’un poste de télévision est mal orientée, l’image à l’écran est de très mauvaise
qualité et contient des parasites, très désagréables à l’oeil, que l’on appelle du bruit. Le bruit
peut donc être naturellement présent dans la vidéo, mais aussi dans les images fixes, prises par
exemple avec un appareil photographique. De fait une image peut contenir des dégradations de
toutes sortes par rapport à la réalité d’une scène qu’elle est censée représenter. Citons quelques-
unes de ces dégradations.

Tout d’abord, une image peut être floue par mise au point, soit parce que le réglage de
l’appareil est mal fait, soit parce que la scène contient des objets à des profondeurs différentes,
ce qui rend impossible la mise au point. Une autre source possible de flou provient du bougé,
quand le temps d’obturation est long et que la scène ou la caméra est mobile.

Une autre source de détérioration est liée aux défauts de réalisation de l’optique, qui est tou-
jours le résultat d’un compromis difficile. Certaines aberrations (comma, astigmatisme) affectent
la netteté de l’image ; d’autres aberrations concernent la géométrie ou la radiométrie, comme le
vignetage (réduction de l’ouverture relative en périphérie de l’image) ou les réflexions internes
parasites. De plus, la miniaturisation des matrices de capteurs limite la qualité des images à
cause du phénomène de diffraction.

Si le réglage de la lumière est mal fait ou si la scène est trop contrastée par rapport à la
dynamique du capteur (ou à la dynamique imposée par le codage numérique choisi), la réponse du
capteur peut devenir fortement non-linéaire, et on peut avoir sous-exposition ou sur-exposition.
Alors il peut arriver que des niveaux de gris saturent dans le noir ou le blanc ; ainsi, dans les
zones saturées, l’information présente dans la scène est perdue dans la photographie.

Le passage d’une scène définie dans un espace continu à une grille discrète peut générer
des déformations importantes, dues à la perte d’information, comme par exemple des effets de
moirés (aliasing) ou d’écho (ringing). Enfin, des déformations dues à la compression des images
numériques, par exemple les blocs JPEG, altèrent aussi la qualité de l’image quand le taux de
compression est poussé.

Dans cette thèse, nous nous intéressons au bruit radiométrique. Une source importante de
bruit trouve son origine dans le capteur. On connâıt bien le « grain photographique » présent
dans les capteurs argentiques traditionnels, surtout avec les sensibilités élevées ; les capteurs
électroniques ne sont pas exempts de ce genre de défaut. Les capteurs électroniques ont une
précision limitée dans le comptage de photons, et introduisent ainsi un bruit de quantification,
particulièrement présent lorsque de faibles éclairements sont en jeu. Un trop grand contraste de
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6 Introduction

la scène (contre-jour, par exemple) peut entrâıner des difficultés dans le transfert des charges
électroniques et un éblouissement du capteur, donnant lieu à un bruit. Scanner une image ana-
logique ajoute du bruit ; rehausser le contraste d’une photo mal exposée augmente l’intensité
du bruit ; des cellules déficientes dans un capteur électronique, inévitables y compris dans le
matériel haut de gamme, introduisent un bruit systématique, malgré la tenue d’une liste des
pixels défectueux ; et ce n’est pas exhaustif.

Dans cette thèse, nous nous intéressons aux images en niveaux de gris, et numériques. La
figure 1 montre de telles images contenant des bruits de plusieurs sortes.

↓ ↓ ↓ ↓

(a) (b) (c) (d)

Fig. 1 – Bruit naturel dans des images numériques. (a) bruit de sensibilité pour un appareil photo
numérique. (b) bruit de scan. (c) bruit de sensibilité + scan. (d) échographie.

Le bruit dans les images est gênant pour plusieurs raisons. Tout d’abord, l’aspect visuel est
altéré, la qualité esthétique diminue dans la plupart des cas, et l’œil humain fatigue vite face à des
images bruitées. Les logiciels publics de traitement d’images contiennent de plus en plus souvent
des fonctions de débruitage ; une perspective industrielle est donc en jeu. De plus l’information
apportée par une image bruitée est réduite ; dans un contexte d’imagerie satellitaire, aérienne
ou astronomique où le matériel d’acquisition d’image est cher, chaque donnée est précieuse, et
perdre de l’information revient donc à perdre de l’argent. Un autre enjeu est l’amélioration des
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algorithmes de détection. En effet, une réduction contrôlée du bruit est un préliminaire important
à un algorithme de détection, pour éviter les faux positifs en imagerie médicale par exemple.

Débruiter les images est donc un enjeu important. L’œil humain sait très bien débruiter les
images représentant des scènes naturelles, au sens où un bruit d’intensité raisonnable n’empêche
pas le système visuel de comprendre une scène, jusqu’à un degré de détail assez fin. Des médecins
entrâınés arrivent aussi à faire abstraction du bruit quand ils analysent des images médicales.
Mais l’automatisation d’une telle tâche n’est pas aisée, parce qu’il s’agit de reconstituer une
information perdue pendant le processus de bruitage, sur des données extrêmement variées.

Nous nous intéresserons à un certain type de bruit : nous le supposerons additif (c’est-à-dire
qu’il se rajoute aux niveaux de gris), et nous le modéliserons comme la réalisation d’un champ
aléatoire blanc et i.i.d. (indépendant et identiquement distribué, c’est-à-dire que le bruit en un
pixel est indépendant et a la même loi de probabilité que le bruit en n’importe quel autre pixel),
gaussien (la loi du bruit en chaque pixel est gaussienne), et indépendant de l’image originale.
Quitte à faire un changement de contraste affine, nous supposerons aussi que la moyenne du
bruit est nulle. Autrement dit, si u est l’image originale et ε est un bruit, l’image bruitée v
s’écrit

v = u+ ε avec ε ∼ N (0, σ2Id).

σ2 représente la variance du bruit, donc en quelque sorte sa puissance. Ce bruit modélise assez
bien le bruit de sensibilité ou de scan, même si ce dernier n’est pas exactement i.i.d. La figure 2
montre une image bruitée artificiellement par un bruit blanc gaussien.

+ =

Fig. 2 – Ajout artificiel de bruit blanc gaussien (un changement de contraste affine a été appliqué dans
l’image de bruit pour le rendre plus visible).

La première méthode historique de débruitage consistait à flouer un peu l’image bruitée,
de manière à réduire l’intensité du bruit. Cela peut être exécuté en appliquant une convolution
avec un noyau régularisant, ou en faisant évoluer l’image bruitée selon l’équation de la chaleur.
Cette méthode permet en effet d’atténuer le bruit, mais a tendance à détruire du même coup de
nombreux détails présents dans l’image bruitée. En particulier, les frontières d’objets, qui sont
souvent des lieux de discontinuité dans les images naturelles originales, sont lissées, et l’image
perd en précision (figure 3 gauche).

Pour éviter de rendre les images floues, [Perona and Malik 1990] ont proposé de lisser l’image
bruitée, mais seulement le long des lignes de niveau, de manière à préserver les contours contras-
tés. Cela s’est traduit par l’introduction d’une équation aux dérivées partielles de diffusion
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équation de la chaleur diffusion anisotrope

Fig. 3 – L’image bruitée montrée sur la figure 2 est régularisée par l’équation de la chaleur (gauche) et
par une diffusion anisotrope (droite). L’évolution a été arrêtée quand la différence de l’image qui évolue
avec l’image initiale bruitée avait la même norme que le bruit, dont la variance était supposée connue.

anisotrope, qui réduit le bruit tout en respectant les contours (figure 3 droite).
Ces techniques reposent sur l’idée que l’image originale est plus régulière que l’image bruitée.

Il s’agit donc de rendre l’image la plus régulière possible, mais sans en arriver à effacer des détails
importants. Une mesure de régularité d’image peut être un bon outil pour débruiter : il suffirait
de minimiser cette quantité, tout en restant suffisamment proche de la donnée.

En 1992, [Rudin et al. 1992] ont proposé une telle mesure de régularité sur les images, la
variation totale, qui s’est révélée être un outil particulièrement adapté à de nombreuses thé-
matiques en traitement d’image (réduction du flou, interpolation, désocclusion, réduction des
artefacts JPEG, décomposition d’images en structure + texture). La variation totale d’une
image numérique u est définie par

TV (u) =
∑

x

|∇u(x)|,

où |∇u(x)|, la norme du gradient de l’image au pixel x, reflète une certaine régularité locale de
u au pixel x. La variation totale, somme de ces mesures de régularité locale, estime une certaine
forme de régularité globale qui est tout à fait adaptée aux images : elle pénalise fortement
les oscillations et les fluctuations aléatoires, tout en autorisant des discontinuités le long de
contours suffisamment réguliers. Elle peut de plus s’interpréter comme la longueur cumulée des
lignes de niveau de l’image. La minimisation d’une fonctionnelle combinant variation totale et
terme d’attache aux données, nommément

λTV (u) +
∑

x

|v(x) − u(x)|2 (pour u définie sur le même domaine que v), (1)

donne lieu à un débruitage par « minimisation de la variation totale » (minimisation TV),
méthode à laquelle nous nous raccrocherons tout au long de cette thèse (cf. figure 4 gauche).

Depuis, la littérature a abondé, à la fois dans l’expansion de méthodes pratiques ou théo-
riques basées sur la variation totale, et aussi dans la découverte de méthodes de débruitage
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bien différentes. Citons notamment les méthodes de seuillage dans la transformée en ondelettes
[Mallat 1998], les filtres de voisinage [Yaroslavsky and Eden 1996], et plus récemment, un nou-
veau filtre non-local [Buades et al. 2006a], appelé « moyennes non-locales » (NL-means). Ces
moyennes non-locales sont basées sur des comparaisons de petits bouts d’images (patches), et
reconstituent l’information présente dans l’image originale directement à partir de l’information
présente dans le contexte bruité (cf. figure 4).

minimisation TV NL-means

Fig. 4 – L’image bruitée montrée sur la figure 2 est régularisée par une minimisation de la variation
totale (gauche) et par les moyennes non-locales (droite). Les paramètres de ces méthodes ont été réglés
afin d’avoir, comme en figure 3, une distance quadratique entre l’image bruitée et l’image débruitée égale
à la norme du bruit.

Ces méthodes de débruitage ont toutes leurs spécificités. En particulier la minimisation TV
et les NL-means sont basées sur des concepts très différents et ont des propriétés bien complé-
mentaires. L’objet de cette thèse est de les mettre en correspondance, malgré leurs différences,
grâce à un cadre commun d’estimation statistique bayésienne. C’est dans ce cadre que nous nous
plaçons pour former des modèles hybrides : ils sont issus de la minimisation TV, et l’une de leurs
caractéristiques est remplacée par ce qu’elle vaut dans le modèle des NL-means.

Trois points principaux séparent la minimisation TV et les NL-means. Tout d’abord le risque
bayésien est différent. Dans la première partie de cette thèse nous analysons le débruitage ob-
tenu en adaptant la minimisation TV au risque quadratique des NL-means. Une autre grande
différence entre les deux méthodes vient du fait que le critère de régularité dans la minimisation
TV est global, tandis que les NL-means n’utilisent que l’information contenue dans un voisinage
d’un pixel pour débruiter ce pixel. La localisation du modèle TV est l’objet du premier chapitre
de la partie II. Le dernier aspect est le choix du modèle a priori. Dans la minimisation TV, ce
modèle est uniquement basé sur la régularité TV, alors que les NL-means exploitent des statis-
tiques exhaustives sur des patches de l’image bruitée. Le choix d’un bon modèle a priori est une
question difficile, et nous n’en abordons qu’un petit aspect dans le dernier chapitre.

Le reste de cette introduction est destiné à présenter les chapitres qui suivront.
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Partie I : Débruitage TV et moyenne a posteriori

Dans une approche bayésienne, les NL-means sont associées à un risque quadratique, et la
minimisation TV à un maximum a posteriori (MAP). Dans la première partie de cette thèse, nous
considérons l’adaptation du débruitage par minimisation TV à un risque quadratique. L’image
débruitée est alors estimée par la moyenne de la loi a posteriori.

Chapitre 1 : Motivation et définition du débruitage TV-LSE

Le premier chapitre explique les motivations qui sous-tendent ce choix de risque quadratique
dans un débruitage par variation totale.

Tout d’abord, la variation totale étant une quantité convexe, la loi a posteriori déduite du
modèle est une distribution log-concave, et admet de ce fait une certaine régularité globale.
Le point qui réalise le maximum de cette loi indique le lieu de son mode, mais ne tient pas
compte d’éventuelles asymétries. L’espérance de la loi a posteriori, elle, est une perturbation du
MAP vers les régions de haute densité, qui d’une certaine manière caractérisent mieux la loi a
posteriori que le lieu de son mode.

Si la minimisation TV, basée donc sur une estimation MAP, réduit notoirement le bruit et
préserve les contours, elle subit un artefact bien gênant, l’effet de staircasing (marches d’escalier),
qui donne aux images débruitées cet aspect constant par morceaux. La présence du phénomène
de staircasing en débruitage, démontrée par [Ring 2000; Nikolova 1997, 2000, 2004; Malgouyres
2007] dans différents contextes, semble être intimement liée à l’estimation MAP. Très grossière-
ment, les à-plats dans l’image débruitée correspondent à une norme de gradient nulle, et donc
à une variation totale minimale, ce qui les rend très probables. En changeant de risque nous
pouvons espérer réduire cet effet de staircasing.

L’adaptation à un risque quadratique peut être menée de plusieurs manières. En effet, la
minimisation de la variation totale (TV-MAP) peut se faire sous une contrainte égalité de la
forme ‖u−v‖ = σ ou une contrainte inégalité ‖u−v‖ ≤ σ, ou encore sans contrainte à condition
d’introduire un multiplicateur de Lagrange (1). Sous des hypothèses peu restrictives, ces trois
approches sont équivalentes pour l’estimation MAP, mais se déclinent en trois estimateurs diffé-
rents pour un risque quadratique. Nous discutons quant à l’équivalence de ces trois estimateurs,
notamment en fonction de la dimension de l’image.

Dans la suite de la partie I, nous nous intéressons au débruitage par variation totale avec
un risque quadratique, noté TV-LSE (comme Total-Variation denoising with Least Square Error
criterion), décliné sous sa forme lagrangienne, c’est-à-dire sans contrainte.

Chapitre 2 : Algorithme MCMC pour le débruitage TV-LSE

Une image débruitée par TV-LSE s’écrit comme une certaine intégrale, portant sur l’espace
de toutes les images définies sur le même domaine que l’image initiale ; cet espace a une dimension
potentiellement très élevée, typiquement de l’ordre de 105. Dans le chapitre 2, nous décrivons
un algorithme MCMC (Monte-Carlo Markov Chain), ajusté grâce à des travaux récents en
statistiques, capable d’approximer efficacement l’estimation TV-LSE.

Grossièrement, il consiste en la réalisation d’une châıne de Markov d’images dont la loi
stationnaire est la loi a posteriori de notre problème. Un théorème ergodique nous fournit la
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convergence de la moyenne de Cesàro de la châıne vers l’image débruitée. Les transitions sont
choisies le plus simplement possible, comme un cas de marche aléatoire sur chaque niveau de
gris avec acceptation de la transition ou bien rejet, et avec balayage aléatoire des pixels.

La convergence ergodique de la châıne étant plutôt lente (en O(
√

N/n) où n est le nombre
de transitions et N le nombre de pixels dans l’image [Kipnis and Varadhan 1986]), un critère de
convergence efficace s’impose. Pour cela nous introduisons une deuxième châıne de Markov, de
même loi mais indépendante de la première. L’écart moyen entre les deux châınes nous permet
de contrôler de manière fine l’erreur commise dans notre approximation.

De plus, pour accélérer la convergence, nous introduisons un paramètre de rodage de la
châıne : on ne commence à moyenner les itérations de la châıne qu’à partir d’un certain rang,
pour que notre estimation de la moyenne a posteriori ne soit pas trop biaisée par la loi initiale
de la châıne. Le réglage de ce paramètre de rodage, pour un nombre total d’itérations fixé, peut
se comprendre comme un compromis biais-variance dans l’estimation de l’image débruitée. Nous
décrivons un algorithme simple d’optimisation de ce paramètre.

Un dernier paramètre important pour la vitesse de convergence est le paramètre d’échelle de
la marche aléatoire qui est à la base des transitions. L’application de travaux récents de statis-
tiques [Breyer and Roberts 2000; Neal and Roberts 2006] nous permet d’optimiser ce paramètre
de manière très simple.

Chapitre 3 : Résultats théoriques

Maintenant que le calcul d’images débruitées par TV-LSE est possible, nous pouvons nous
intéresser aux propriétés théoriques attendues de ces images. C’est l’objet du chapitre 3.

Tout d’abord nous nous intéressons à des propriétés élémentaires d’invariance de TV-LSE. Le
débruitage TV-LSE hérite des propriétés d’invariance et de symétrie de la variation totale, tout
comme la minimisation TV (TV-MAP) : invariance par translation, par rotation du domaine de
l’image, mais aussi conservation de la moyenne des niveaux de gris, conservation des propriétés
de symétrie de l’image initiale, etc.

La régularité du risque quadratique se transporte aussi sur le débruitage TV-LSE : nous
prouvons que l’opérateur de débruitage TV-LSE est continûment différentiable sur l’ensemble des
images. C’est la première propriété qui différencie le débruitage TV-LSE de TV-MAP, puisque
le débruitage TV-MAP n’est pas partout différentiable.

Nous nous intéressons aussi aux propriétés asymptotiques de TV-LSE, quand les paramètres
sont poussés dans un sens ou dans l’autre. Ceci nous permet de situer géométriquement une image
débruitée par TV-LSE dans une bande d’espace entre l’image de départ et l’image débruitée par
TV-MAP.

Puis nous nous concentrons sur le phénomène de staircasing. Nous démontrons que le dé-
bruitage TV-LSE n’engendre pas de staircasing, contrairement au débruitage TV-MAP. Plus
précisément nous prouvons que les zones constantes dans l’image débruitée ont une probabilité
nulle. Ce résultat est sans doute l’apport majeur de TV-LSE par rapport au débruitage classique
TV-MAP.

La fin du chapitre est consacrée à une étude analytique des débruiteurs basés sur un risque
quadratique. Nous considérerons qu’ils sont construits à partir d’une loi a priori plus générale
que le modèle TV : nous supposerons la loi a priori seulement log-concave. Des résultats sont
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donnés quant à la régularité, la stabilité, et la bijectivité de tels débruiteurs. Ces résultats font
pendant aux travaux de [Combettes and Wajs 2004] qui discutent ce genre de propriétés pour
les débruiteurs MAP (appelés couramment opérateurs proximaux). Nous démontrons ensuite
que sous certaines hypothèses, un débruiteur LSE peut s’écrire sous la forme d’un opérateur
proximal, à condition de considérer une loi a priori plus régulière. Ce résultat vient en écho au
résultat portant sur l’absence de staircasing, puisque [Nikolova 2004] démontre qu’un débruiteur
MAP construit sur une loi a priori lisse (C∞) ne peut générer de staircasing. Les conditions d’ap-
plication de ce résultat ne sont pas totalement réunies dans notre cas puisque nous démontrons
seulement que la loi a priori est C2, mais cette étude est une première brique de généralisation
du résultat d’absence de staircasing.

Chapitre 4 : Expériences numériques

Le chapitre 4 regroupe les expériences numériques menées sur le débruitage TV-LSE, utilisant
l’algorithme décrit au chapitre 2.

Tout d’abord, nous testons la validité du critère d’arrêt introduit au chapitre 2, basé sur
la comparaison de deux châınes MCMC (Monte-Carlo Markov Chains), qui se révèle valide et
efficace pour une très large gamme de paramètres, et donne lieu à des temps de calcul raisonnables
pour une bonne précision (typiquement 8 minutes pour une image 512× 512 pour une précision
moyenne de 0.5 niveau de gris sur 255).

Après cela, une discussion sur les deux paramètres principaux du modèle est menée. En
particulier, nous montrons que si l’on fait varier l’un de ces paramètres, en réglant l’autre de
manière à avoir un niveau de débruitage constant, nous obtenons des images se conformant à
un certain compromis entre quantité de staircasing et quantité de flou. Le débruitage TV-LSE
semble donc remplacer le staircasing par un léger flou.

Puis des comparaisons sont menées avec d’autres méthodes classiques de débruitage d’image.
Les qualités visuelles de TV-LSE concernent à la fois l’absence de staircasing, l’aspect naturel
des images débruitées, et le fait que presque aucune structure n’est créée dans du bruit.

Nous considérons aussi une adaptation immédiate du débruitage TV-LSE aux signaux uni-
dimensionnels. Quelques caractéristiques géométriques des signaux originaux, comme leur régu-
larité ou la monotonie, sont beaucoup mieux conservées dans le débruitage TV-LSE que dans le
débruitage TV-MAP.

D’autres expériences sur des images montrent que TV-LSE évite aussi le rehaussement de
pixels isolés, qui est un autre artefact de TV-MAP ayant lieu pour des faibles niveaux de dé-
bruitage, et que TV-LSE reste efficace sur des bruits naturels, ce qui montre que la méthode
proposée est plutôt robuste à la modélisation du bruit.

Partie II : Localité et modèle a priori

La première partie de la thèse concerne l’adaptation du débruitage TV au risque interve-
nant dans les NL-means ; nous nous intéressons dans la seconde partie à l’intégration d’autres
caractéristiques des NL-means dans le débruitage TV. La première particularité des NL-means
(moyennes non-locales) à laquelle nous nous attachons, paradoxalement, est son caractère local.
En effet, il a été remarqué notamment par leurs auteurs que le débruitage était beaucoup plus
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efficace s’il était localisé, c’est-à-dire si le débruitage d’un pixel ne dépendait que de l’information
de l’image contenue dans une certaine fenêtre autour de lui. L’efficacité est double : il diminue
beaucoup le temps de calcul, mais surtout, et c’est ce qui nous intéresse ici, donne lieu à un
débruitage bien plus homogène, ce qui est visuellement crucial. L’adaptation à un modèle local
du débruitage TV est l’objet du chapitre 5. La seconde caractéristique des NL-means est son
modèle a priori très riche, basé sur les patches de l’image bruitée. Le chapitre 6 amorce une
discussion sur le choix du modèle a priori.

Chapitre 5 : Etude de la localité du débruitage TV

Dans le chapitre 5, nous nous intéressons à la transformation du débruitage TV en un dé-
bruiteur local. À la manière des NL-means, le débruitage d’un pixel se fait en débruitant une
fenêtre autour de ce pixel selon un certain critère, puis en gardant comme valeur le niveau de
gris au centre de la fenêtre. Le débruitage TV devient ainsi un filtre à voisinage. Pour des raisons
de temps de calcul, nous nous concentrons sur une version MAP, donnant lieu à un débruitage
appelé TV-MAP local, bien qu’une version quadratique semble bien intéressante aussi.

Nous considérons d’abord le cas où chaque fenêtre est débruitée en lui appliquant la ver-
sion lagrangienne de la minimisation TV. L’adaptation d’un algorithme rapide de minimisation
TV [Chambolle 2004] permet des premières simulations, qui se révèlent très mauvaises sur des
signaux unidimensionnels. En effet, sur ces signaux, un artefact important intervient, qui res-
semble à un effet d’aliasing (repliement de spectre). Cet artefact est presque invisible sur les
images. Néanmoins, nous proposons une version de TV-MAP local pour les signaux et les images,
qui utilise des fenêtres lissées : le terme d’attache aux données est pondéré par la distance au
centre de la fenêtre. Certes, ce choix trouve peu de justification en terme de modélisation bayé-
sienne, mais il permet de résoudre totalement ce problème d’« aliasing », et de plus l’idée des
fenêtres lissées est aussi utilisée dans les moyennes non-locales, ce qui rapproche un peu plus le
débruitage des NL-means. Un algorithme, calqué sur celui de Chambolle, est proposé.

En tant que filtre à voisinage, TV-MAP local devait certainement être associé à une équation
aux dérivées partielles. Nous montrons qu’effectivement, sous certaines hypothèses et lorsque la
fenêtre est petite, TV-MAP local est équivalent à l’application de l’équation de la chaleur sur
un temps très court.

La taille des fenêtres dans le filtre à voisinage est discutée comme un compromis biais-
variance. Le lien entre l’optimum de ce compromis et l’échelle caractéristique locale de l’image
est discuté, et une tentative d’application, peu concluante, en débruitage adaptatif est présentée.

C’est pourquoi nous proposons une autre version de TV-MAP local capable d’atteindre auto-
matiquement une certaine adaptabilité aux conditions locales. Elle s’appuie sur la minimisation
de la variation totale sous contrainte. Ainsi chaque fenêtre débruitée est astreinte à être au plus
à une distance donnée de la fenêtre de l’image bruitée correspondante. Cette approche ressemble
à celle de [Almansa et al. 2008], où la variation totale est minimisée sous une multitude de
contraintes sur le method noise local, mais notre méthode est beaucoup plus simple à réaliser,
même si elle n’offre pas autant de garanties théoriques.
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Chapitre 6 : Variation totale et statistiques locales

Le dernier chapitre est une ébauche de discussion sur le modèle a priori utilisé dans les
débruitages par variation totale : le modèle TV.

Dans un premier temps nous construisons une loi a priori sur les images, légèrement différente
de la loi de la variation totale, plus cohérente avec les statistiques locales des images naturelles
que le modèle TV. Cette loi est déduite des statistiques de la norme du gradient des images
naturelles, et est construite grâce à l’algorithme FRAME de [Zhu et al. 1998]. Elle n’est pas sans
lien avec des versions régularisées de la variation totale qui donnent des résultats légèrement
meilleurs en débruitage. L’existence de cette loi est un élément de réponse à la question suivante :
le débruitage TV marche-t-il à cause des propriétés géométriques de la variation totale (formule
de la coaire, ...) ou plutôt à cause de ses propriétés statistiques ? En effet, une légère modification
de la variation totale la rend plus efficace pour débruiter, alors même qu’elle perd ses propriétés
géométriques.

Une autre section est consacrée à l’interprétation du modèle TV et du modèle des NL-means
comme les extrêmes d’une décomposition biais-variance dans l’estimation de la distribution a
priori, par rapport à la complexité du modèle : la loi de la variation totale est pauvre et induit de
gros biais mais de faibles variances, tandis que la loi a priori qui intervient dans les NL-means est
basée sur des statistiques exhaustives sur les patches, et donc donne lieu à de faibles biais mais
de grandes variances. Ceci laisse à penser qu’un modèle de complexité intermédiaire pourrait
atteindre une erreur minimale dans l’estimation de cette loi.
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Chapter 1

Motivation and definition of the

TV-LSE denoiser

Résumé Dans ce chapitre nous proposons un opérateur basé sur la variation totale, pour
enlever le bruit additif, blanc et gaussien des images. Il est la transposition de l’opérateur
de minimisation de la variation totale, pouvant se voir comme un Maximum A Posteriori
(MAP), à un risque quadratique. Nous l’introduisons pour deux raisons. D’abord, les
estimées MAP ont tendance à contenir de sérieuses déformations en grande dimension
(la dimension est le nombre de pixels dans les images considérées et peut donc être très
grande). De plus, la combinaison de la variation totale avec un MAP donne lieu à un
effet de staircasing (marches d’escalier), et ce dans plusieurs cadres. La méthode proposée
s’appuie sur la variation totale (TV) et sur un risque aux moindres carrés (LSE pour least
square error), nous l’appelerons donc TV-LSE.

Abstract In this chapter, an operator based on Total Variation is proposed to remove additive
white Gaussian noise from images. It is a transcription of the Total Variation minimization
[Rudin et al. 1992], interpreted as a Maximum A Posteriori (MAP) Bayesian estimation,
into a Least Square Error (LSE) risk. It is motivated by two facts. First, MAP estimates
are known to behave poorly in high dimension (the dimension, that is the number of pixels
in the considered images, can be large). Second, Total Variation combined with MAP gives
rise to a staircasing phenomenon in several frameworks. The proposed denoising operator
based on both Total Variation and LSE risk, is called TV-LSE.

1.1 Total Variation minimization

When an image has been corrupted by noise, its recovery is not easy, since many images could
have lead to the same noisy image. One then needs some kind of regularity criterion to restrict
the set of plausible solutions. The Total Variation (TV) is such a regularity measurement,
which has proven very efficient in image reconstruction problems. It is well adapted to piecewise
constant images (cartoon images), because it allows discontinuities along edges, provided that
the edges are located on regular enough curves. Moreover, Total Variation has a nice geometrical
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explanation in terms of cumulated length of level lines [Federer 1969; Evans and Gariepy 1992;
Ambrosio et al. 2000].

Total variation was first applied to image enhancement by Rudin, Osher and Fatemi [Rudin
et al. 1992] (see also [Besag 1989] where the median pixel prior is proposed, but with no reference
to total variation), and then many authors came to use it as an efficient image regularity criterion
in variety of topics, such as image recovery [Blomgren et al. 1997; Chambolle and Lions 1997;
Chan and Wong 1998; Malgouyres 2002; Combettes and Pesquet 2004], image interpolation
[Guichard and Malgouyres 1998], image decompositions [Aujol et al. 2005; Aujol and Chambolle
2005; Aujol et al. 2006; Meyer 2001; Osher et al. 2003], characteristic scale estimation [Luo et al.
2007], JPEG artefacts removing [Alter et al. 2005b]; and this is certainly not exhaustive. This
variety of applications shows the power of Total Variation in its ability to model images.

Let us briefly describe how Total Variation broke up in the world of image denoising. Let us
begin with an image v, assumed to be a noisy version of an original image u, corrupted by an
additive white Gaussian noise ε, i.e.

v = u+ ε

where u, ε and v are gray level images defined on some measurable subset Ω of R2. We assume
v in L2(Ω). Our aim is to get u back from v, only assuming that the variance σ2 of the noise ε is
known. Then if the images have large enough dimension, we can expect the empirical variance
of the noise to be close to σ2 (thanks to the weak law of large numbers), and the original image
u to lie at a L2 distance σ from the datum v. We consider then all the images lying in a sphere
centered on v with radius σ2, and we wonder which one is the best approximation of the original
image. We will choose the image which minimizes a certain criterion, a norm for example. The
L2 norm is clearly not adapted to images, because it does not favor any structure or spatial
dependence between neighbor pixels, and contrary to human vision, is very sensitive to shifts on
the gray levels. We rather take a L2 norm over the gradient norm of images, which fits human
vision more accurately. For this Ω needs to be either an open subset of R2 (and we consider
images in the Sobolev W 1,1), either a discrete grid we will assume square, for which the gradient
norm is defined by any consistent scheme [Moisan 2007]. Then our estimate for u will be the
image which minimizes

∫

Ω
|∇u(x)|2dx subject to

1

|Ω|

∫

Ω
(v(x) − u(x))2dx = σ2,

(where |Ω| =
∫

Ω dx). The results are numerically disappointing, because the obtained image
is blurry. Actually this denoising method is equivalent to a certain thresholding in the Fourier
domain, which flattens high frequencies and seriously destroys edges and details.

Rudin, Osher and Fatemi in their seminal paper [Rudin et al. 1992] propose to replace the
L2 norm of the gradient norm by a L1 norm of the gradient norm, thus retrieving the total
variation, defined on the space BV of functions of bounded variation

BV (Ω) =

{

u ∈ L1(Ω)

∣
∣
∣
∣
∣

sup
ϕ∈C1

c ,|ϕ|≤1

(∫

u div ϕ

)

< +∞
}

,

by

TV (u) = sup

{∫

u div ϕ, ϕ ∈ C1
c , |ϕ| ≤ 1

}

.
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When u lies in BV (Ω) ∩ C1(Ω), then TV (u) reduces to

TV (u) =

∫

Ω
|∇u|(x) dx.

In practice the domain Ω will always have finite mass, and we normalize TV as well as the L2

norm with respect to |Ω| the following way

TV (u) =
1

|Ω|

∫

Ω
|∇u|(x) dx and ‖u‖2 =

1

|Ω|

∫

Ω
(u(x))2 dx.

The denoised image is then chosen to solve the optimization problem

minimize TV (u) subject to ‖v − u‖2 = σ2. (1.1)

This is a constrained formulation of TV minimization with equality constraint. Note that TV
is a convex functional but the constraint is not convex. Let us consider the corresponding
formulation with inequality constraint

minimize TV (u) subject to ‖v − u‖2 ≤ σ2. (1.2)

Here both the functional and the constraint are convex. Let us assume that ‖v−
∫
v(x) dx‖2 > σ2.

This is very often true if u and ε are independent random images, and if the image domain is
large enough, because then

E‖v −
∫

v(x) dx‖2 = E‖u−
∫

u(x) dx‖2 + E‖ε−
∫

ε(x) dx‖2 > var ε = σ2.

Under this assumption, the optimum of (1.2) can be shown to necessarily lie on the boundary
of the constraint [Chambolle and Lions 1997], and under this assumption Problems (1.1) and
(1.2) are equivalent. A Lagrange formulation for TV minimization will be the most widely used
throughout the thesis. It amounts to

minimize ‖v − u‖2 + λTV (u), (1.3)

where the parameter λ balances the two terms of the energy, and is an unknown function of σ2.
Karush-Kuhn-Tucker conditions prove that (1.2) and (1.3) are equivalent for a particular choice
of λ.

Let us recall the coarea formula, which is a very nice characterization of TV in terms of
cumulated length of level lines. If u is in BV (Ω), then [Federer 1969; Evans and Gariepy 1992;
Ambrosio et al. 2000])

TV (u) =
1

|Ω|

∫ +∞

−∞
H1(∂uλ) dλ,

where uλ denotes the lower level set of u with level λ, ∂uλ denotes its boundary, and H1 denotes
the 1-dimensional Hausdorff measure. This means that if u is in BV , then its level lines should
not be too twisted.
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TV minimization has become very popular especially since fast algorithms were found [Hochbaum
2001; Chambolle 2004; Darbon and Sigelle 2005; Goldfarb and Yin 2005; Fu et al. 2006]. It is
very efficient when denoising cartoon-like images, i.e. images mainly containing constant regions
separated by regular edges. Textures may be erased, because they are regarded as noise. How-
ever, flat zones are preserved, and regular edges are well reconstructed. Contrasted and isolated
pixels tend to be maintained by the method, often leading to a somehow unnatural aspect.
Worse, smooth regions corrupted by noise often suffer from the so-called staircasing effect : some
gradient intensities are preserved and some others are set down to zero, so that the resulting
image is piecewise constant, with artificial boundaries inside a zone which should be smooth.

Methods avoiding texture destruction and staircasing have been the object of recent progress
(see [Chan et al. 2000, 2007; Nikolova 2005; Osher et al. 2003] for instance). Essentially their
philosophy is to split the image into a texture part and a structure part, to process the texture
separately thanks to an appropriate method, and to denoise the structure part with methods
derived from TV minimization sometimes with a smoothened version of the total variation,
which then loses its geometrical interpretation in terms of level lines.

However it seems that the staircasing artefact is not caused by the image model itself defined
by Total Variation, but precisely by the variational framework in which it lies.

1.2 TV minimization and Maximum a Posteriori

1.2.1 A statistical framework for TV minimization

It is a well-known fact that TV minimization can be understood as a Maximum a Posteriori
(MAP) estimation. Let us explain why here.

First let us assume that the considered images are defined on a finite domain Ω ⊂ R2. For a
given noisy datum v, let Eλ denote the Rudin-Osher-Fatemi (ROF) energy [Rudin et al. 1992]

Eλ(u) = ‖u− v‖2 + λTV (u)

which must be minimized when solving Problem (1.3). Let now û denote the solution of this
variational formulation, that is

û = arg min
u
Eλ.

Let us explain why û can be viewed as a Maximum a Posteriori (MAP) estimate of the original
image u. Let β > 0 and pβ the prior probability density function (TV prior) defined by

pβ(u) =
1

Z
e−βTV (u)

where Z is a universal normalizing constant (see the remark below concerning the well-posedness
of pβ). This prior distribution models the gradient norms on each pixel as independent and
identically distributed random variables following a Laplace distribution. This model does not
exactly fit the reality, because very often the high gradient norms are concentrated along curves
for instance, and hence are not independent. Furthermore it assumes that realistic images have
finite total variation, which was found to be untrue [Gousseau and Morel 2001]: in a multiscale
approach, the total variation is expected to blow up to infinity when the image resolution
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increases. However, this model is convenient and efficient for our tasks, and in the sequel we
shall see that it is even better than could be expected.

We assumed the noise to be Gaussian, white and additive. Then the conditional density of
v given u, i.e. the degradation density, is given by

p(v|u) =
1

Z
e−

‖v−u‖2
2σ2 .

Now that a prior density and degradation density have been defined, Bayes’ rule can be applied
to the denoising of image v, and then the posterior density of u given v is

pβ(u|v) =
p(v|u)pβ(u)

∫
p(v|u′)pβ(u′)du′

=
1

Z
exp

[

−
(‖v − u‖2

2σ2
+ βTV (u)

)]

,

where Z only depends on v. The maximization of the posterior density is equivalent to the
minimization of the Rudin-Osher-Fatemi energy, i.e.

maximize pβ(u|v) ⇐⇒ minimize Eλ,

provided that λ = 2σ2β. Then, image denoising by TV minimization is merely a Bayes estima-
tion, associated to a Maximum A Posteriori (MAP).

Remark 1: Actually the prior pβ is not well defined, because for any fixed positive value r,

TV (u) = r ⇒ ∀c ∈ R, TV (u+ c) = r,

and this implies that e−βTV (u) is not integrable on the whole space of images RΩ. The prior pβ

is referred to as an improper prior [Besag 1989]. To overcome this problem, we can reduce the
space of integration. We briefly present two ways to achieve this. First of all let us introduce
for all m ∈ R the subspace

Em =

{

u ∈ RΩ

∣
∣
∣
∣
∣

1

|Ω|
∑

x∈Ω

u(x) = m

}

,

which is the hyperplane of images whose gray level average is m. If pβ is restricted on the images
of Ev̄ (where v̄ is the average of v), then pβ is properly defined as soon as it is integrable on Ev̄

(the integrability may depend on the numerical scheme for TV ). It is consistent to consider such
a restriction in high dimension since with high probability the original image u has an average v̄
thanks to the weak law of large numbers. This defines a first prior (this restriction was applied
in the original paper [Rudin et al. 1992], although there was no reference to MAP estimation).

Now we can come closer to the primitive definition of pβ by introducing a prior on the image’s
average. Let π(m) be a probability density function modeling such a prior on the images’ average.
Then a second consistent total variation prior density on images could be

pβ(u) =
1

Z
e−βTV (u) π(ū).
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For example, letting πM (m) = 1
2M

�
−M<m<M (which amounts to consider a uniform measure

on ∪−M<m<MEm), one has

pβ(u) =
1

Z
e−βTV (u) �

−M<ū<M .

Taking M large enough consistently approximates the total variation distribution, and the pos-
terior distribution with density

1

Z
exp

(

−‖v − u‖
2
2

2σ2

)

e−βTV (u)πM (ū)

converges towards the well-defined distribution with density

1

Z
exp

(

−‖v − u‖
2
2

2σ2

)

e−βTV (u)

when M goes to +∞.

Remark 2: A probability density function p is said to be logarithmically concave (log-concave)
if its potential − log p is convex (a more general definition of log-concavity can be found in
[Prékopa 1973]). Here pβ is log-concave because its potential βTV is convex. The posterior
distribution pβ(u|v) is also log-concave. Log-concavity implies a certain global regularity for the
probability density function (p.d.f.). In particular, it implies unimodality (a unique maximum).

In the sequel we shall omit the index β in the prior pβ(u) and in the posterior pβ(u|v).

1.2.2 Loss functions

From a general posterior distribution p(u|v), not necessarily derived from Total Variation, the
MAP estimate is the maximizer of p(u|v). This choice is natural, but of course most information
on p(u|v) is being lost. For example the reliability of this estimate is lost, although p(u|v) gives
some information about it, via the existence of other local maxima or the posterior’s curvature
at the global maximum for instance. The integration of posterior information into the estimate
can be considered via the introduction of loss functions.

Let L be a loss function, i.e. a mapping L : RΩ×RΩ → R, where L(u, u′) measures the cost
of estimating u′ by u instead of the true data u′. Three typical examples of loss functions are
the following (see Figure 1.1)







L0(u, u
′) =

{

0 if u = u′

1 otherwise

L1(u, u
′) = ‖u− u′‖2

L2(u, u
′) = ‖u− u′‖22

The L0 loss is a “hit-or-miss” loss which equally penalizes any wrong estimate, whereas L1 and
L2 are more regular costs which penalize distant estimates more than closer ones. Other loss
functions have been considered in the context of image processing (see for instance [Rue and
Hurn 1997]), but here we only focus on the simplest ones.
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Figure 1.1: Classical loss functions on R. (a) “Hit-or-miss” loss function: f0 is plotted, where L0(u, u
′) =

δu6=u′ = f0(u−u′). (b) Homogeneous loss function: f1 is plotted, where L1(u, u
′) = f1(u−u′) = ‖u−u′‖2.

(c) Quadratic loss function: L2(u, u
′) = f2(u− u′) = ‖u− u′‖22.

Let p(u) be a prior distribution on RΩ, and p(v|u) be the degradation distribution; then
the posterior distribution p(u|v) is known. The risk R associated to a loss L is defined as the
expectation of the loss function with respect to u′ following the posterior distribution

R(u) = Eu′|v[L(u, u′)] =̇

∫

Rn

L(u, u′)p(u′|v) du′.

A general framework in Bayes estimation is to consider as an estimate û the image which
minimizes this risk, which is

û = arg min
u

Eu′|v[L(u, u′)].

Let us derive this model with the three particular losses mentioned above.
The L0 loss gives rise to the risk

R0(u) = Eu′|v[1− δu=u′ ] =
1

Z

∫
�

u6=u′ dpu′|v = 1− 1

Z

∫
�

u=u′ dpu′|v.

Minimizing this risk is selecting the image u which will be equal to u′ when pu′|v is maximal.
This exactly corresponds to MAP estimation. Indeed,

arg minR0(u) = arg max
u′

pu′|v = ûMAP .

The estimate ûMAP is the most probable image given v, i.e. the image which maximizes the
posterior distribution. Hence TV minimization corresponds to Bayes estimation with a “hit-or-
miss” loss function.

Now the risk derived from the L1 loss is

R1(u) = Eu′|v‖u− u′‖.

The minimum of this function of u is reached at the median of the posterior distribution

arg min Eu′|v[L1(u, u
′)] = medpu′|v = ûmed.
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Last but not least, the minimal risk derived from the L2 loss is reached at the expectation
of the posterior distribution. We will speak of it as the Least-Square Error (LSE) estimate of u

arg minEu′|v[L2(u, u
′)] = E[u|v] = ûLSE.

To our knowledge, posterior expectation has never been applied jointly with a TV prior
distribution to image denoising. The next subsection is devoted to several problems encountered
in MAP estimation combined with image denoising. This will motivate us to transpose the TV
minimization into a LSE framework.

1.2.3 Distortions of MAP estimation in image denoising

Distortion due to high dimension

The MAP estimate is a biased summary of the posterior. In particular, typical images drawn
from a high-dimensional distribution are far from maximizing the density. Moreover, according
to [Rue and Hurn 1997], the MAP estimate only depends on the location of the mode, but
not on the probability mass this mode contains; and this difference becomes potentially huge
when working in high dimension. This is still true for log-concave densities considering the
mass contained in a neighborhood of the mode’s maximizer. This is illustrated by the following
proposition.

Proposition 1.1 Let n ∈ N∗. Let X be a random vector distributed as N (0, σ2In) (normal
centered distribution with covariance matrix σ2In). Let ‖X‖ be its dimension-standardized norm,
i.e. such that ‖X‖2 = 1

n

∑n
i=1X

2
i . Then

∀ε > 0, P(
∣
∣‖X‖2 − σ2

∣
∣ > ε) ≤ 2σ4

nε2

which tends towards 0 when the dimension n goes to infinity.

Proof : This is merely a consequence of Bienaymé-Tchebychev inequality

∀ε > 0, P(
∣
∣‖X‖2 − E[‖X‖2]

∣
∣ > ε) ≤ var‖X‖2

ε2
.

As n‖X‖2 follows a sigma2χ2(n) distribution, ‖X‖2’s mean is σ2 and its variance is 2σ4

n . This
yields the result. �

In this proposition, the mode of X is located at 0, but when n goes to +∞ all the mass of
the distribution “concentrates” onto the sphere centered at 0 with radius nσ, and therefore goes
away from the mode. Estimation where the optimization is based on pointwise densities (which
is done by MAP estimation) therefore seems questionable in high dimension.

We give here another simple proposition illustrating the fact that in high dimension the
major part of the probability mass concentrates on the border of the probability support.
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Proposition 1.2 Let n ∈ N∗. Let X ∼ UBn(0,1) be a random image uniformly distributed on
the unit ball of Rn. Let ε > 0 and X ′

ε ∼ UBn(0,1)\Bn(0,1−ε) uniformly distributed on the centered
crown with radii 1− ε and 1. Then the probability distributions pX and pX′

ε
of X and X ′

ε satisfy

dTV (pX , pX′
ε
) := sup

A Borel set

|pX(A)− pX′
ε
(A)| −−−→

n→∞
0

Proof : The supremum is attained for A = Bn(0, 1− ε), which yields

dTV (pX , pX′
ε
) =
|Bn(1− ε)|
|Bn(1)| = (1− ε)n |Bn(1)|

|Bn(1)| = (1− ε)n −−−→
n→∞

0,

where |A| denotes the volume of A. �

Again all the mass of the distribution escapes to the outskirts of the support space, essentially
because in high dimension the volume of the unit ball is “concentrated” on its border. This
corroborates the fact that the MAP estimate is a very special image, whose features really differ
from those of typical samples of the posterior. The following paragraphs demonstrate that MAP
estimation can lead to serious artefacts when applied to image denoising.

Distortions in simple cases of MAP estimation

The Bayesian approach consists in modeling parameters (in our case the true image u) as random
variables following a prior distribution, before using the posterior distribution in the estimation.

The modeling of the parameter distribution can be thought of as a prior design problem.
The prior is often built from experimental considerations and translates u’s natural behavior as
faithfully as possible into a probability language.

In particular, one could expect that the estimate û, for instance, should be a typical simu-
lation of the prior distribution pu. One could additionally expect that the noise estimate v − û
should ideally look like a simulation of a white Gaussian noise. This last idea is common in image
denoising: people find it nice when the noises induced by the method is white (i.e. contains no
structure in practice). Actually the two requirements are dual thanks to the symmetry between
the prior distribution and the noise distribution, described in Proposition 1.3.

Proposition 1.3 Let pU and pε be distributions on U and ε respectively. Let L be a radially
symmetric risk, h i.e. such that

∃f : R→ R, L(u, u′) = f(‖u− u′‖).

Then the two estimates of u
{

û = arg minu Eu′|v[L(u, u′)]

û′ = v − arg minε Eε′|v[L(ε, ε′)]

are identically equal, as well as the two estimates of ε
{

ε̂ = v − arg minu Eu′|v[L(u, u′)]

ε̂′ = arg minε Eε′|v[L(ε, ε′)].
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Proof : Making the change of variable u = v − ε and u′ = v − ε′ leads to

û′ = v − arg min
ε

Eε′|v[L(ε, ε′)]

= v −
[

v − arg min
u

Eu′|v[L(v − u, v − u′)]
]

= arg min
u

Eu′|v[L(u, u′)],

which proves û = û′. Now the equalities ε̂ = v − û and ε̂′ = v − û′ imply ε̂ = ε̂′. �

Unfortunately such priors seldom occur, if ever. Nikolova [2007] gives theoretical explanations
and numerous examples for which the MAP estimate deviates from the prior distribution, in the
case of single parameter estimation and discrete signals. Indeed, in the models studied, both
the object estimate and noise estimate follow a strongly biased distribution, which give them
properties the simulations from the prior seldom have.

For example, let the prior pu defined on scalar random variables (for images this amounts
to consider independently distributed pixels, which more or less occurs after a wavelet transfor-
mation e.g. [Buccigrossi and Simoncelli 1999]), by pu(u) = 1

Z e
−λ|u|α , and let us still consider a

Gaussian noise pε(ε) = 1
Z e

−ε2/(2σ2). As shown by [Nikolova 2007], for α ≥ 1, the distribution of
the estimate û is more strongly peaked than the prior in the numerical experiments. The distri-
bution of the noise estimate v − û is supported by a bounded interval, and is strongly peaked
on the bounds of this interval: this is very far from a Gaussian distribution. For 0 < α < 1, the
distribution of û is essentially concentrated on zero, while v − û again is bounded.

Another mentionable example of such a distortion is also developed in [Nikolova 2007] and
illustrated on Figure 1.2. A discrete signal u is modeled as a random walk on R with Laplacian
transition, i.e. the shifts (ui+1−ui)i are independent and identically distriuted (i.i.d.) and follow
a distribution of the form λ

2 e
−λ|ui+1−ui| (for short, the resulting signal is a Markov chain with

Laplace increments). A white Gaussian noise is again assumed. Note that the MAP denoising
of u with such assumptions is the minimization of the total variation of u transposed to signals
with the particular numerical scheme for total variation

TV (u) =
∑

i

|ui+1 − ui|.

It is proven that the probability of having (ûi+1 − ûi) = 0 for a fixed i is non zero. Numerical
experiments amplify this reality: the distribution of (ûi+1 − ûi) is mainly a huge peak at zero,
with 92% of mass inside this peak, unlike the Laplacian prior which emphasizes to the non-zero
values. It results in a piecewise constant estimate û, which is visually very far from a simulation
of the signal according to the prior.

[Nikolova 2007] concludes by this striking remark: this model is much better to denoise
signals from impulse noise than from Gaussian noise. Then a prior design (of noise model, but
also of u thanks to the duality) based on natural behavior seems to be a rough approimation only
of the best prior, in these cases of MAP estimation. Indeed, Bayesian estimation is relevant in a
modeling point of view, but offers little guarantee about the quality of the result. One could think
of modifying the prior and the degradation models until the MAP estimate becomes relevant
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Figure 1.2: Illustration for 1-D staircasing. (a) (un) is a random walk (solid curve) with Laplacian
transition (i.e. (un+1 − un) i.i.d. ∼ λ

2 e
−λ|x| with λ = 8) (bold), and its noisy version (dashed curve)

(un + εn) with εn i.i.d. ∼ N (0, σ2) where σ = 0.5 is assumed to be known. (b) The MAP estimate (ûn)
(bold) and again the original (un). Many regions are estimated as constant regions when it should not
be the case. This illustrates the 1-D staircasing effect. (c) Histogram of the transitions (un+1 − un).
It follows a Laplacian distribution. (d) Histogram of the estimated transitions (ûn+1 − ûn) with same
scale as in (c). The distribution is impressively peaked at zero, and this peak contains more than 80% of
the total mass. This peak is due to the ubiquitous staircasing effect in the estimated chain (ûn). These
graphs were simulated back from [Nikolova 2007].

(somehow this approach is the object of L1 and L0 minimization problems [Fu et al. 2005; Tropp
2006], u+ v decompositions using G or E spaces [Aujol et al. 2005; Aujol and Chambolle 2005;
Aujol et al. 2006]). But another approach would simply be to try loss functions other than the
“hit-or-miss”.

Staircasing for TV-denoising

The previous example where the estimates are mostly piecewise constant exhibits the staircasing
artefact induced by TV-denoising on discrete signals. An archetype of staircasing effect can easily
be rendered only by taking a linear signal defined on a discrete segment, by adding noise to it
and to denoise it by total variation minimization. Results are shown on Figure 1.3. This artefact
can also be found in images denoised by TV minimization, as in Figures 1.4 and 1.5 .

The word staircasing intuitively means two things: first the existence of constant regions,
but also the existence of discontinuities. Now, discontinuities were already analyzed in detail
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Figure 1.3: Staircasing on signals. (a) A non-noised affine ramp (dashed curve) denoised by TV minimization
(solid curve): apart from the borders, the denoised signal is faithful to the datum. (b) An affine ramp modulated
by a sine curve (dashed), and its denoised version (solid): the singularities occur at the maximal derivative of
the datum. There is staircasing but no discontinuity. (c) A noised affine ramp (dashed) and its denoised version
(solid): discontinuities occur at many locations together with creation of constant zones. These three graphs have
been simulated back from [Caselles et al. 2007].

in [Caselles et al. 2007]. Furthermore, Figure 1.3 (b) shows a signal with no discontinuity, but
visually containing serious staircasing artefact. This means that the discontinuities may be
less crucial for human vision than the existence of constant zones. This justifies the following
definition for staircasing.

We define the connectedness of a set Ω1 ⊂ Ω by the 4-pixel neighborhoods. We will speak of
staircasing effect in the denoised version û of a noisy image if there exists at least one connected
region Ω1 ⊂ Ω containing at least two pixels, such that

∀x ∈ Ω1, ∀x′ ∈ Nx, x′ ∈ Ω1 ⇒ û(x) = û(x′),

where Nx denotes a neighborhood of pixel x (both in the discrete and continuous settings). Of
course, staircasing becomes visually unpleasant when the sets Ω1 are big and many. Figures 1.4
and 1.5 show this artefact on images denoised by TV minimization. It becomes more and more
visible when λ is large.

Staircasing effect was first pointed out by [Dobson and Santosa 1996]. They made use of
this artefact to reconstruct “blocky” images. Afterwards, [Blomgren et al. 1997; Chan et al.
2000, 2007] proposed to avoid staircasing effect in natural images by different methods. Namely
several authors [Bouman and Sauer 1993; Blomgren et al. 1997] propose to replace the total
variation by a functional of the form

∑

x

f(|Du|(x)) where f(t) ∼
{

t2 near 0

t near +∞.

Let us also cite [Buades et al. 2006b; Savage and Chen 2006] for a short overview of staircasing
reduction methods in image processing.

In the meantime authors mathematically proved the existence of this staircasing effect, in
the one-dimensional continuous case [Ring 2000] as well as for the two-dimensional discrete case
[Nikolova 1997, 2000, 2004, 2005]. Namely in [Nikolova 2004] the total variation is viewed as a
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Figure 1.4: Staircasing on images (I). (a) noisy image of Lena (standard deviation of the noise σ = 10).
(b) the image denoised by TV minimization (λ = 30). (c) and (d): details. Constant regions are
created, separated with spurious edges, when the original image is smooth. This artefact is known as the
staircasing effect. (e) and (f): the level lines (bilinear interpolation) concentrate on spurious edges.

particular case of operators with the form

J : u 7→
r∑

x=1

ϕ(Gx(u)),

where Gx are linear operators, and ϕ is a non-differentiable at zero function, not necessarily
convex. [Nikolova 2004] states the following result under quite loose conditions.

Proposition 1.4 [Nikolova 2004] If X (v) = arg minu ‖u−v‖2+λJ(u) where J(u) =
∑r

i=1 ϕi(Giu),
with Gi linear and ϕ a non-differentiable at 0 potential function, then there exists a neighborhood
VL of v for which

∀v′ ∈ VL, {i | Gi(X (v′)) = 0} = {i | Gi(X (v)) = 0}. (1.4)
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(b) (d) (f)

Figure 1.5: Staircasing on images (II). (a) noisy image of Barbara (standard deviation of the noise
σ = 10). (b) the image denoised by TV minimization (λ = 30). (c) and (d): details. Again we can see
staircasing effect. (e) and (f): corresponding level lines (bilinear interpolation).

In particular, the case where J is a Total Variation operator such as

TV (u) = C
∑

x∈Ω

∑

‖y−x‖=1

|u(y)− u(x)|

fulfills the conditions of Proposition 1.4, where the (Gx) stand for first-order differences between
pixel x and its neighboring pixels, and ϕ stands for the absolute value function, which is not
differentiable at 0. In this case, the set {i | Gi(X (v)) = 0} contains the regions where the
denoised image is constant. The proposition tells that the constant regions of denoised images
have a certain stability with respect to the noise. This gives a first theoretical explanation of
the staircasing effect.

Let us cite the recent work of Caselles, Chambolle and Novaga in [Caselles et al. 2007] where
the point of view on staircasing does not concern constant regions here but rather discontinuities.
An interesting property concerning the jump set of the reconstructed image in the continuous
framework is proven, which could suggest that staircasing is only due to a bad quantization of
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the total variation. The (approximate) jump set of a continuous image u is defined as the set of
points x satisfying

∃u+(x) 6= u−(x),∃νu(x) ∈ R,







|νu(x)| = 1,

limρ↓0

R

B+
ρ (x,νu(x))

|u(y)−u+(x)|dy
R

B+
ρ (x,νu(x))

dy
= 0,

limρ↓0

R

B−
ρ (x,νu(x))

|u(y)−u−(x)|dy
R

B−
ρ (x,νu(x))

dy
= 0,

where

B+
ρ (x, νu(x)) = {y | ‖y − x‖ < ρ , 〈y − x, νu(x)〉 > 0}

and B−
ρ (x, νu(x)) is the same with a negative scalar product. Intuitively it is the set of points

where the image u can be locally described as a two-dimensional Heaviside function. This
corresponds to regular edges. It is shown that if the datum image v has bounded variation, then
the jump set of the solution û to the TV minimization problem is contained within the jump set
of v. In other words, TV minimization does not create edges which did not already exist in v.
This would contradict some kind of staircasing effect (the discontinuity part), if we forgot that
v is generally noisy and then the jump set contains almost every point of the domain.

Temperature problem

Consider the following temperature problem (it can be transposed to any scalar estimation
problem). Imagine that meteorological services provide a probability distribution of tomorrow’s
temperature, which is not a Dirac, because there is uncertainty about it. The question is:
what temperature would you bet for? In other words, what is the best way to compress the
information brought by a complete probability distribution into a single real value? Here we
discuss this question, but do not pretend to solve it.

If the temperature distribution is symmetric and unimodal (see Figure 1.6 left) then a nat-
ural choice would be the maximizer of the distribution, and this exactly corresponds to the
expectation (LSE) and to the median estimates.

Now if the temperature distribution has two peaked modes (see Figure 1.6 center), what
would be the best estimate? A temperature corresponding to one of the peaks, or the point in
the center? Actually, none is satisfying: choosing one peak among the two is an arbitrary choice
which is not satisfactory, while the center between the two peaks is very unlikely to occur.

Last but not least, consider the case where the temperature is unimodal but asymmetrical
(see Figure 1.6 right). The MAP estimate corresponds to the maximizer of the temperature
distribution, while the LSE estimate as well as the median estimate correspond to a shift of
the MAP estimate towards the heavier side of the distribution. The median as well as the LSE
estimates seem to be good trade-offs in terms of “compression” of the temperature distribution.

The case of TV minimization corresponds to the third case, in the sense that the posterior
distribution is log-concave (i.e. − log p(u|v) = 1

2σ2Eλ(u) − logZ is convex) and thus unimodal,
and asymmetrical. That is why a median and a LSE estimates are likely to better compress the
information given by the posterior, by shifting the MAP into the direction of greater mass of
the posterior.
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Figure 1.6: 3 particular cases of scalar posterior (temperature) distribution. Left: the distribution is
symmetric and unimodal; then the MAP equals the median and the mean. Any other estimate would
not correspond to the regularity properties of the posterior. Center: the distribution is bimodal and
symmetric; the MAP will fetch arbitrarily one of the two maxima, whereas the median and the mean
correspond to the local minimum (the symmetry center). None of these choices is satisfying, because a
MAP estimate would not respect the symmetry property of the posterior, and both the mean and the
median would correspond to a risky choice. Right: the distribution is unimodal but asymmetrical. The
median and the mean correspond to a shift of the MAP towards the heavier tail of the distribution. Shifted
versions (as mean and median) have the property to have maximum total mass inside a neighborhood of
the estimate, for a certain size of neighborhood (= 0 for the MAP, > 0 for mean and median). These
shifted estimates can be of interest depending on the application, in image denoising in particular.

1.3 Definition of TV-LSE

In this section at last, we introduce a denoising estimation based on the TV prior and the
posterior expectation. Compared to TV minimization, only the loss function has been changed
from the “hit-or-miss” loss function L0 into the quadratic (“least-square error”) loss function L2.
Such an estimator is given by the expectation of the posterior (also known as posterior mean
[Besag 1989])

ûLSE =

∫

RΩ

up(u|v) du =

∫

RΩ

ue−
‖u−v‖2+λTV (u)

2σ2 du

∫

RΩ

e−
‖u−v‖2+λTV (u)

2σ2 du

.

Proposition 1.5 ûLSE is well defined.

Proof : The denominator satisfies

0 <

∫

e−
‖u−v‖2+λTV (u)

2σ2 du ≤
∫

e−
‖u−v‖2

2σ2 du =
∏

i∈Ω

∫

R

e−
(ui−vi)

2

2σ2 dui < +∞,

and the numerator at pixel i satisfies

∫

|ui|e−
‖u−v‖2+λTV (u)

2σ2 du ≤
∫

|ui|e−
‖u−v‖2

2σ2 du =

∫

|ui|e−
(ui−vi)

2

2σ2 dui

∏

j∈Ω,j 6=i

∫

R

e−
(uj−vj )2

2σ2 duj < +∞.

The integrals are absolutely convergent, hence ûLSE is well defined. �
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Remark: ûLSE depends on two parameters λ and σ (or equivalently on β = λ
2σ2 and σ) while

ûMAP only depends on λ. In other words, ûMAP merges the desired regularity β and the
presumed quantity of noise σ into a single parameter λ = 2σ2β, while ûLSE allows the
distinction of these two parameters.

1.3.1 Constrained TV-LSE

Let us denote B(v, σ) the L2 ball centered at v with radius σ. The constrained formulation of
TV minimization

ûMAP = arg min
u

TV (u) s. t. ‖u− v‖ ≤ σ

= arg min
u

TV (u) + χB(v,σ)(u) where χB(v,σ)(u) =

{

0 if ‖u− v‖ ≤ σ
+∞ otherwise,

can also be adapted to the LSE risk, yielding a new formulation of TV-LSE

û
(B)
LSE =

1

Z

∫

ue−β[TV (u) + χB(v,σ)(u)]du

=

∫

B(v,σ) ue
−βTV (u)du

∫

B(v,σ) e
−βTV (u)du

.

Likewise, letting S(v, σ) the sphere centered at v with radius σ, the other constrained for-
mulation of TV minimization

ûMAP = arg min
u

TV (u) s. t. ‖u− v‖ = σ

= arg min
u

TV (u) + χS(v,σ)(u) where χS(v,σ)(u) =

{

0 if ‖u− v‖ = σ

+∞ otherwise,

can be transposed to LSE risk, yielding

û
(S)
LSE =

∫

S(v,σ) ue
−βTV (u)du

∫

S(v,σ) e
−βTV (u)du

.

We conjecture that the three formulations of ûLSE (Lagrangian, ball-constrained and sphere-
constrained formulations) are asymptotically equivalent when the image dimensions are large
enough. This conjecture comes from several remarks.

• Propositions 1.1 and 1.2 prove a certain form of equivalence between the normal distri-
bution and the uniform distribution on the sphere, and between the uniform distribution
on the sphere and the uniform distribution on the ball, respectively, in high dimension.
Moreover Hida and Nomoto [1964] proved that the uniform distribution on the unit sphere
of Rn converges in distribution towards an infinite dimensional standard normal distribu-
tion when n→∞. It means that in high dimension, the uniform distribution on the unit
sphere, the uniform distribution on the unit ball and the normal distribution are practically
equivalent.
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• It is true that for every positive sequence (εn) → 0, the normal distribution N (v, σ2In)
and the uniform distribution on B(v, σ + εn) satisfy

dTV (N (v, σ2In),UB(v,σ+εn)) −−−→
n→∞

0

where dTV (µ1, µ2) = supA |µ1(A) − µ2(A)| denotes the total variation distance between
measures µ1 and µ2. If the mappings u 7→ e−βTV (u) and u 7→ ue−βTV (u) were both bounded
then we would get







R

e−βTV (u)e
−‖u−v‖2

2σ2 du

R

e
−‖u−v‖2

2σ2 du

−
R

B(v,σ+εn)
e−βTV (u)du

R

B(v,σ+εn) du
−−−→
n→∞

0,

R

ue−βTV (u)e
−‖u−v‖2

2σ2 du

R

e
−‖u−v‖2

2σ2 du

−
R

B(v,σ+εn) ue−βTV (u)du
R

B(v,σ+εn)
du

−−−→
n→∞

0,

which would yield an equivalence between the Lagrangian ûLSE and the ball-constrained
formulation in B(v, σ+εn) with εn → 0. Now the mapping u 7→ ue−βTV (u) is not bounded,
and so this argument is not accurate.

In the sequel we shall keep the Lagrangian formulation of TV-LSE.

1.3.2 TV-LSE as a diffusion

Let us write ûLSE into the following form

ûLSE =
1

Z

∫

ue−
‖u−v‖2

2σ2 dpβ(u).

This is the convolution of the noisy image v with a Gaussian kernel. The convolution is carried
out on the whole space of images, against the prior measure dpβ(u), which favors rare but sharp
edges. This can be considered as a diffusion of v with privileged features enhanced.

This writing is linked to the Non-Local Means algorithm proposed by [Buades et al. 2005].
Indeed, the Non-Local means can be interpreted as a diffusion in the space of patches, because it
approximates the Laplace-Beltrami operator on this space equipped with the Euclidean distance
[Lafon et al. 2006; Peyré 2008; Buades et al. 2007].

Chapter 6 will tackle the link between TV-LSE and NL-means more precisely.

1.3.3 Link to Wiener filter

The Wiener filter is also a denoising scheme based on mean square error minimization. It is
then worth driving a comparison between TV-LSE and Wiener filter.

The Wiener filter assumes both the original image and the noise to be drawn from a weakly
stationary stochastic process, i.e. a stationary processes whose autocovariance functions

cU (t, s) = cov(U(t), U(s)) and cε(t, s) = cov(ε(t), ε(s)) (t, s ∈ Ω)
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are functions of s− t only. When the autocovariance functions cU and cε are known, the Wiener
filter v 7→ û is defined as the linear and translation invariant operator which minimizes the mean
square error ∫

Ω
(û(t)− u(t))2dt.

When the noise is white and Gaussian, the Wiener filter can be written as a convolution by a
bandpass kernel k depending on cU and cε, namely

k(x, y) =
PU (x, y)

PU (x, y) + σ2
,

where PU is the power spectrum of the image process, i.e. the Fourier transform of cU .
If the model for the original image is the Total Variation distribution, then u is considered

to be the realization of the Gibbs field U ∼ 1
Z e

−βTV (U). But a Gibbs field is a special case of
weakly stationary process [Grimmett and Stirzaker 2001]. Besides, the model for the noise ε is
white and Gaussian, which is clearly a weakly stationary process. The autocovariance functions
of U and ε allow to build a Wiener filter, which is a weaker denoiser than TV-LSE for several
reasons. First, the Wiener filter, unlike TV-LSE, is linear. In particular the denoising of any
image can be deduced from the denoising of a Dirac image. This means that the model behind it
is poor. Wiener filter acts like a bandpass filter; this is not very well adapted to image purpose
because it creates blur. Furthermore, knowing all the autocovariance functions is weaker than
knowing the entire prior distribution. This means that the model underlying the Wiener filter
is much poorer than TV-LSE. In Wiener filtering, the good properties of total variation are
forgotten and the contours in images get blurry.
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Chapter 2

MCMC algorithm for TV-LSE

denoising

Résumé Dans ce chapitre un algorithme complet pour le calcul d’images débruitées par TV-
LSE est détaillé. Il s’agit d’un cas particulier de l’algorithme de Hastings-Metropolis à
marche aléatoire avec balayage aléatoire des pixels. La vitesse de convergence de cet algo-
rithme est prévue lente. C’est pourquoi nous donnons un critère précis de convergence, basé
sur une décomposition biais-variance de l’erreur quadratique moyenne. Nous discutons le
réglage de chacun des paramètres intervenant dans la méthode, et donnons des algorithmes
spécifiques à l’estimation de ces paramètres, ainsi que des justifications théoriques.

Abstract In this chapter a complete algorithm for the computation of TV-LSE denoised im-
ages is detailed. It is a particular case of the Hastings-Metropolis algorithm based on
random walks with a random scan of the pixels. The convergence rate of this algorithm is
expected to be quite slow. That is why an accurate convergence criterion is given, based
on a bias-variance decomposition of the squared error expectation. The tuning of all the
parameters of the method apart from the hyperparameters is discussed, and specific algo-
rithms estimating each of these parameters are given along with theoretical background.

Let us consider a noisy image v again, defined on a discrete domain Ω ⊂ Z2. As the real-life
images are very big (up to several millions pixels), the computation of

ûLSE =

∫

RΩ

ue−
‖u−v‖2+λTV (u)

2σ2 du

∫

RΩ

e−
‖u−v‖2+λTV (u)

2σ2 du

(2.1)

requires integrations on high-dimensional spaces. We focus on methods able to approximate these
integrals. Approximation by regular sampling is not feasible because an exhaustive summation
over a grid in such a large dimension would require huge computation times. We would rather
use the global regularity of our problem, in particular the fact that many images have negligible
weight in the integral, which tells that a complete exploration of the image space is useless.
Stochastic methods are able to tackle such high-dimensional integrals. In this chapter we focus
on Markov Chain Monte-Carlo (MCMC) algorithms, which fit our problem particularly well.

37
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2.1 MCMC and Hastings-Metropolis algorithms

We now recall some theoretical principles underlying the MCMC algorithms [Hastings 1970;
Durrett 1996; Robert 1996; Grimmett and Stirzaker 2001]. A MCMC algorithm is any method
producing an ergodic Markov chain with given stationary distribution π. The next two theorems
explain the link to high-dimensional integrals.

Theorem 2.1 (Discrete ergodic theorem) [Grimmett and Stirzaker 2001; Ouvrard 2000]
Let (Υn) be an irreducible Markov chain defined on a countable set. If (Υn) has stationary
distribution π, then for any function g ∈ L1(dπ), i.e. such that

∑

u

|g(u)|π(u) <∞,

the convergence holds

1

n

n∑

k=1

g(Υk) −−−→
n→∞

∑

u

g(u)π(u) a.s.

Hence a high-dimensional sum
∑

u g(u)π(u) can be approximated by the Cesàro average
1
n

∑n
k=1 g(Υk) of the sequence (g(Υn)), where (Υn) is a Markov chain with stationary distribution

π. Intuitively, the convergence holds because in its stationary behavior the chain visits each site
u according to a frequency which is proportional to π(u).

Theorem 2.1 concerns Markov chains defined on countable state spaces. It has also been gen-
eralized to Markov chains defined on uncountable state spaces. In this continuous framework
too, the Cesàro average converges to a high-dimensional integral

∫
g(u)dπ(u). This is what we

need for the computation of ûLSE (Equation (2.1)). However as soon as the algorithm is imple-
mented, the state space becomes discrete (and thus countable). That is why we will maintain
both aspects (discrete/continuous setting), in order to justify our method both theoretically and
practically.

The adaptation of Theorem 2.1 to the continuous setting (i.e. to the case of an uncountable
state space) needs to generalize the concepts of irreducibility and recurrence to Markov chains
defined on uncountable state spaces. Let us introduce φ-irreducibility and Harris-recurrence.

Definition 2.1 [Meyn and Tweedie 1993] If φ is a measure, the chain (Υn) is said to be φ-
irreducible if for any Borel set A,

φ(A) > 0 ⇒ ∀x, P(∃n ≥ 1,Υn ∈ A | Υ0 = x) > 0.

(i.e. (Υn) visits A within finite time with non-null probability, whatever the initialization). More
classically, if π is σ-finite, π is said to be a stationary measure for (Υn) (whose transition kernel
is P ) if

∀A Borel set, π(A) =

∫

P (u,A)dπ(u).

Last, a chain (Υn) is said to be Harris-recurrent if (Υn) has a stationary measure π, (Υn) is
π-irreducible and for each B with π(B) > 0

∀u0 ∈ RΩ P

(
∑

n

�
Υn∈B =∞

∣
∣
∣
∣
∣

Υ0 = u0

)

= 1
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(i.e. the chain visits B infinitely often, whatever the initialization).

Theorem 2.2 (Continuous ergodic theorem) [Meyn and Tweedie 1993] If (Υn) is Harris-
recurrent and admits a stationary measure π with total mass 1, then for any function g ∈ L1(dπ),
the convergence holds

1

n

n∑

k=1

g(Υk) −−−→
n→∞

∫

g(u)dπ(u) a.s.

In order to approximate the integral
∫
g(u)dπ(u), we need a method to simulate an irreducible

Markov chain with given stationary distribution π. One way to build such a Markov Chain is
known as Hastings-Metropolis algorithm, and described in the following propositions.

Proposition 2.1 (Discrete Hastings-Metropolis) [Grimmett and Stirzaker 2001] Let π a
discrete probability distribution, let q(·|·) a conditional distribution (called increment distribu-
tion). Let (Υn) be the Markov chain defined by any initial measure whose support is inside the
one of π, and the transition matrix

P (u, u′) =

{

ρ(u, u′)q(u′|u) if u′ 6= u,
∑

v(1− ρ(u, v))q(v|u) if u = u′,

where

ρ(u, u′) =

{

min
(

π(u′)
π(u)

q(u|u′)
q(u′|u) , 1

)

if π(u)q(u′|u) > 0,

1 if π(u)q(u′|u) = 0.
(2.2)

Then π is a stationary distribution for (Υn).

Proof : The proof can be found in [Ouvrard 2000; Grimmett and Stirzaker 2001], but is
simple and short enough to be written here. It suffices to prove that π is reversible with respect
to P , i.e. that

∀u, u′, π(u)P (u, u′) = π(u′)P (u′, u). (2.3)

Indeed, if π is reversible, then

∑

u

π(u)P (u, u′) =
∑

u

π(u′)P (u′, u) = π(u′)

which proves that π is stationary.

Equation (2.3) clearly holds for u = u′. Now if u 6= u′ and π(u′)q(u|u′) ≤ π(u)q(u′|u), then

P (u, u′) = q(u′|u) · π(u′)
π(u)

q(u|u′)
q(u′|u) ,

and thus π(u)P (u, u′) = π(u′)q(u|u′) which equals π(u′)P (u′, u) since π(u)q(u′|u) ≥ π(u′)q(u|u′).
The same proof can be made if π(u′)q(u|u′) ≥ π(u)q(u′|u). Consequently, π is reversible with
respect to P , thus stationary for the chain (Υn). �
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In the continuous setting [Tierney 1994] provides the same kind of result. The distributions
we need will all be measurable with respect to Lebesgue’s measure. For convenience and in
order to make the link to the discrete setting clearer, their density will be denoted by the same
letter than the distribution. For instance π will denote both the probability distribution and its
probability density function (p.d.f.).

Proposition 2.2 (Continuous Hastings-Metropolis) [Tierney 1994] Let π a probability dis-
tribution. Let q(·|·) a transition distribution. Let (Υn) be the Markov chain defined by any initial
measure and the transition kernel

P (u, u′) =

{

ρ(u, u′)q(u′|u) if u′ 6= u,
∫

v[1− ρ(u, v)]q(v|u)dv if u = u′,

where ρ is defined as in Equation (2.2). Then π is a stationary distribution for (Υn).

The proof is an adaptation of the one of the discrete case, and can be found in [Tierney
1994].

Both in the discrete and the continuous case, a transition Υk → Υk+1 following kernel P is
equivalent to an acceptance/rejection procedure:

draw Υk+1/2 ∼ q(Υk+1/2|Υk)

if π(Υk+1/2)q(Υk|Υk+1/2) > π(Υk)q(Υk+1/2|Υk) Υk+1 = Υk+1/2

otherwise Υk+1 =







Υk+1/2 with probability
π(Υk+1/2)

π(Υk)

q(Υk |Υk+1/2)

q(Υk+1/2|Υk) ,

Υk with probability 1− π(Υk+1/2)

π(Υk)

q(Υk|Υk+1/2)

q(Υk+1/2|Υk) .

To sum things up, if π is a discrete probability distribution, the approximation of a high-
dimensional sum

∑
g(u)dπ(u) by Hastings-Metropolis algorithm can be made by Algorithm 1,

provided the chain is irreducible. In the continuous case, the approximation of
∫

u g(u)dπ(u) can
also be made by Algorithm 1, provided that the chain is Harris-recurrent.

To be efficient, this algorithm needs to satisfy several requirements:

• q, called the increment distribution, should be fast and easy to simulate,

• the case where q is symmetric (i.e. ∀x, y, q(x|y) = q(y|x)) is appreciated because it simpli-

fies the computation of the ratio
π(Υk+1/2)

π(Υk)

q(Υk |Υk+1/2)

q(Υk+1/2|Υk) into
π(Υk+1/2)

π(Υk) ,

• n should be large enough for the returned value to be independent enough from the initial
measure µ and for the Cesàro average to converge,

• it is not necessary to know the normalizing factor of π, since the Hastings-Metropolis

algorithm only requires the computation of π through ratios π(u′)
π(u) .
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Algorithm 1 Hastings-Metropolis algorithm

choose an initial measure µ,
choose an increment distribution q easy to simulate,
choose a maximal number of iterations n,
draw Υ0 from initial measure µ,
set k = 0
repeat

draw Υk+1/2 ∼ q(Υk+1/2|Υk),
if π(Υk+1/2)q(Υk|Υk+1/2) > π(Υk)q(Υk+1/2|Υk) set Υk+1 = Υk+1/2

else set Υk+1 =







Υk+1/2 with probability
π(Υk+1/2)

π(Υk)

q(Υk|Υk+1/2)

q(Υk+1/2|Υk) ,

Υk with probability 1− π(Υk+1/2)

π(Υk)

q(Υk|Υk+1/2)

q(Υk+1/2|Υk)

k ← k + 1
until k = n+ 1
return 1

n

∑n
i=1 g(Υi).

2.2 A Hastings-Metropolis algorithm for TV-LSE

Let us make the distributions π and q(·|·) explicit in the continuous Hastings-Metropolis algo-
rithm for the computation of ûLSE given by Equation (2.1). This can also be done in the discrete
setting; for details see the proof of Proposition 2.4.

• The Markov chain (Υn) is a sequence of images defined on Ω.

• The stationary density will be the posterior density

π(u) =
1

Z
e−

‖u−v‖2+λTV (u)

2σ2 , (2.4)

which is known to a constant multiple. In this section the operator TV can be very general,
its only restriction is that π should be well defined, i.e. positive and integrable.

• The coordinate functions gx : u 7→ u(x) defined for each pixel x ∈ Ω are all π-integrable
(see Proposition 1.5). If (Υn) is Harris-recurrent, then the gray level ûLSE(x) can then be
approximated by 1

n

∑n
k=1 gx(Υk).

• The density of the increment distribution q(u′|u) will be chosen as follows. Let α > 0,
then q(·|·) is defined by

q(u′|u) =
1

|Ω|
∑

x∈Ω




∏

y 6=x

δu(y)(u
′(y))




1

2α

�

[u(x)−α,u(x)+α](u
′(x)) (2.5)

It is equivalent to drawing a pixel x ∼ UΩ uniformly on the set of pixels, and to allow a
uniform random walk U[u(x)−α,u(x)+α] on this pixel alone. This is a simple way to have
q both symmetric and fast to simulate. Notice that q(u′|u) is a function of u′ − u, so
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that this algorithm can be classified into the random walk -based Hastings-Metropolis al-
gorithms. As the transition kernel allows one pixel at most to be modified, and as this
pixel is uniformly drawn from Ω, this algorithm enters the category of the variable-at-a-
time Hastings-Metropolis with random scan [Fort et al. 2003; Roberts and Rosenthal 1997,
1998].

The procedure is summed up in Algorithm 2.

Algorithm 2 Continuous Hastings-Metropolis algorithm for ûLSE

let π(u) = exp[− ‖u−v‖2+λTV (u)
2σ2 ]

choose a maximal number of iterations n,
choose a subsampling rate R,
draw Υ0 at random from an initial distribution µ,
set k = 0
repeat

draw x ∼ UΩ

draw

{

Υk+1/2(x) ∼ U[Υk(x)−α,Υk(x)+α]

Υk+1/2(y) = Υk(y) ∀y 6= x

if π(Υk+1/2) > π(Υk) set Υk+1 = Υk+1/2

else set Υk+1 =







Υk+1/2 with probability
π(Υk+1/2)

π(Υk)

Υk with probability 1− π(Υk+1/2)

π(Υk)

k ← k + 1
until k = Rn+ 1
return 1

n

∑n
i=1 ΥRi.

The determination of good values for parameter n in Algorithm 2 will be the object of Section
2.3, where a precise and efficient stopping criterion will be given. The selection of parameter R
has smaller impact, and is discussed now.

2.2.1 Subsampled chain

As two successive images Υn and Υn+1 differ on one pixel at most, the evolution of the chain
(Υn) is very slow. In the following we will consider the chain subsampled by a factor R, that is
(ΥRn). This subsampled chain presents the following advantages:

• When R is large the correlation between the iterations is much smaller and may allow a
faster convergence. Of course, using the subsampled chain requires the computation of all
the intermediate states (ΥRn+k)1≤k≤R−1. Therefore the gain in practical convergence rate
cannot be that meaningful.

• When R = |Ω| (|Ω| is the number of pixels in the datum image), the convergence rate of
the subsampled chain is “normalized” by the number of pixels |Ω|.
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• The subsampled chain (ΥRn) converges to ûLSE the same way as the complete chain (Υn),
for any R ∈ N∗ (see Proposition 2.4 below).

From now on we shall call “iteration” the run of R loops in Algorithm 2. When R = |Ω|,
this corresponds to a random scan of |Ω| pixels, i.e. to an approximate image scan. In practice
the chain has got the same convergence rate for a large range of subsampling parameters R > 0.
The main advantage then is to have this “normalization” with respect to |Ω|.

2.2.2 Consistency of Algorithm 2

Let us first recall a proposition from [Tierney 1994] which will simplify the proof of Proposition
2.4.

Proposition 2.3 [Tierney 1994, Corollary 2] Suppose P is a π-irreducible Hastings-Metropolis
kernel. Then P is Harris-recurrent.

Now we come to the main result of this section.

Proposition 2.4 (Algorithm 2 converges) Let (Υn) be the Markov chain constructed by Al-
gorithm 2. Then for any R ∈ N∗ its subsampled chain (ΥRn) satisfies

1

n

n∑

k=1

ΥRk −−−→
n→∞

ûLSE a.s.

both in the discrete and the continuous cases.

Proof : Discrete framework: Let l be a positive real number (standing for a quantization
step). The increment distribution is the discrete version of Eq. (2.5), that is

q(u′|u) =
1

|Ω|
∑

x∈Ω




∏

y 6=x

δu(y)(u
′(y))




1

(2l + 1)

∑

−l≤k≤l

δu(x)+αk/l(u
′(x)),

where α > 0 is the increment parameter of the chain. The chain (Υn) defined by Hastings-
Metropolis algorithm associated to increment distribution q is irreducible. Indeed if u and u ′

are two images in E = (αZ/l)Ω, then

∀n ≥ |Ω|
α
· ‖u− u′‖∞, P(Υn = u′|Υ0 = u) > 0.

In particular, if n ≥
⌈
|Ω|
αR · ‖u− u′‖∞

⌉

, then P(ΥRn = u′|Υ0 = u) > 0, so that u and u′

communicate in the subsampled chain.

The chain (Υn) has stationary distribution

π(u) =
1

Z
e−

‖u−v‖2+λTV (u)

2σ2
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u0

2ε

u = u m

2ε

A

Figure 2.1: Construction of the sequence (u1, . . . , um) in the proof of the π-irreducibility of (Υn) in
the continuous framework. We start from an initializing image u0 and a Borel set A containing an open
ball B(u, ε). We then build a sequence of balls beginning from B(u0, ε) until B(u, ε) whose successive
intersections are non-empty, and for which the centers of two successive balls differ by only one pixel at
most.

defined on E because its transition kernel is reversible with respect to π (Proposition 2.1). π
is also stationary for (ΥRn), because (ΥRn) has transition matrix PR, and πP = π implies
πPR = π.

Then thanks to Theorem 2.1 the first convergence holds.
Continuous framework: Let us prove that (Υn) is π-irreducible. Let us first introduce

cP (B1|B0) = inf
u∈B0

∫

B1

P (u′|u)du′

for B1 any Borel subset, and B0 any subset of E = RΩ. The quantity cP (B1|B0) represents the
minimum connectivity from B0 to B1 for transition P .

Let A be a Borel subset of E = RΩ, such that π(A) > 0. Then A contains an open ball
B(u, ε) of radius ε and centered at u; we can assume ε ≤ α/4 (α is the increment parameter of
the chain, see Eq. (2.5)). Let u0 be an initial image. As E is connected, there exists a sequence
(u1, . . . , um, . . . , um+R) of images such that







∀k ∈ {0, . . . ,m− 1}, uk and uk+1 differ on 1 pixel at most, denoted xk

∀k ∈ {0, . . . ,m− 1}, |uk+1(xk)− uk(xk)| ≤ 2ε

um = um+1 = . . . = um+R = u ∈ A
(see Figure 2.1). Then each step B(uk, ε) → B(uk+1, ε) has a non-zero probability for the

increment distribution, i.e.

∀k ∈ {0, . . . ,m+R− 1}, inf
u∈B(uk ,ε)

∫

B(uk+1,ε)
q(u′|u) du′ > 0.

Furthermore, as π(B(uk+1, ε)) > 0 and π(B(uk, ε)) > 0, all the transitions have a positive
probability to be accepted under P , i.e.

∀k ∈ {0, . . . ,m+R− 1}, cP (B(uk+1, ε) | B(uk, ε)) > 0.
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Finally the probability that the chain (ΥRn) initiated at u0 will be visiting A in finite time
satisfies

P(∃n ≥ 1,ΥRn ∈ A|Υ0 = u0) ≥ P(ΥRbm+R
R

c ∈ A|Υ0 = u0) ≥ P(ΥRbm+R
R

c ∈ B(u, ε)|Υ0 = u0)

≥
∫

B(um ,ε)
P (θm|θm−1)dθm

∫

B(um−1,ε)
P (θm−1|θm−2)dθm−1 . . .

∫

B(u1,ε)
P (θ1|u0)dθ1

≥





Rbm+R
R

c−1
∏

k=1

cP (B(uk+1, ε)|B(uk, ε))



 · cP (B(u1, ε)|{u0}) > 0.

Then (ΥRn) is π-irreducible.

Besides π is stationary for (Υn) because of Proposition 2.2.

Now thanks to Proposition 2.3 the subsampled chain is Harris-recurrent. Consequently,
thanks to Theorem 2.2 the convergence holds. �

The random walk-based Hastings-Metropolis method described in Algorithm 2 is now proven
to converge towards ûLSE . The method has several parameters whose tuning can be crucial for
the convergence speed. Namely,

• the subsampling factor R will be chosen as R = |Ω| in practice, so that the convergence
rate of the chain studied in Section 2.3 is normalized by the number of pixels |Ω|. In the
sequel

Un = Υ|Ω|n (2.6)

will denote the subsampled chain,

• the total number of iterations n required for the convergence of the process will be treated
in Section 2.3, relative to the convergence control of the process,

• the choice of the initial distribution µ will be discussed in Section 2.4 through the viewpoint
of burn-in of the chain,

• the increment distribution depends on parameter α, whose tuning is discussed in Section
2.5.

2.3 Convergence control

This section is devoted to the construction of an accurate convergence criterion of the chain. The
results given are rather technical and relie on recent Statistics papers. Let us briefly summarize
the section. First, we give arguments in favor of a rather slow convergence of the chain, which
comes from a generalization of a Central Limit Theorem. This motivates us to build an efficient
convergence criterion. Then the approximation error made by the chain is decomposed through
bias and variance terms. Both terms are carefully bounded thanks to state-of-the-art results
of Statistics. Last, we introduce a second chain, independent from the first one and identically
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distributed (i.i.d.). A comparison between the two chains is then used to make an efficient
stopping criterion.

In this section we only maintain the continuous point of view. A numerical scheme for total
variation (TV) does not need to be specified exactly, but the operator TV is assumed to satisfy
the following requirements.

Requirements for TV operator: If Ω is a finite subset of Z2, a TV operator is an operator
RΩ → R such that

1. the posterior distribution π(u) = 1
Z e

− ‖u−v‖2+λTV (u)

2σ2 is absolutely continuous with re-
spect to Lebesgue’s measure on RΩ, with positive and continuous density on RΩ.
This regularity condition is quite natural to fit the classical framework for MCMC
algorithms, and will be useful for Lemma 2.1.

2. the posterior distribution π admits finite second order moments. This will be useful
to measure the speed of the MCMC algorithm, thanks to a Central Limit Theorem
(Theorem 2.3).

3. TV is Lipschitz continuous, i.e. there exists β > 0 such that

∀u ∈ RΩ, ∀h ∈ RΩ, |TV (u+ h)− TV (u)| ≤ β‖h‖ (2.7)

(for Lemma 2.2).

4. for any s ∈ (0, 1), π−s is “superlinear”, i.e. there exists a > 0 such that

∀u ∈ RΩ, π−s(u) ≥ a‖u‖. (2.8)

This condition forbids π(u) to converge to 0 too slowly when ‖u‖ → ∞, and will be
required for Proposition 2.5.

The most common numerical schemes for TV , such as
∑

x,y

(|u(x+ 1, y)− u(x, y)| + |u(x, y + 1)− u(x, y)|)

or ∑

x,y

√

|u(x+ 1, y) − u(x, y)|2 + |u(x, y + 1)− u(x, y)|2,

satisfy these requirements. More generally, the requirements are satisfied as soon as TV is
convex and Lipschitz continuous (2.7) (see Chapter 3, Section 3.4 for more details).

2.3.1 Central limit theorem

Now that the convergence of the subsampled chain average 1
n

∑n
k=1 Uk towards ûLSE has been

proven, one can wonder about the convergence rate of such a method. If the random variables
(Un) were independent and identically distributed, then the Central Limit Theorem could apply
and give a convergence rate in 1/

√
n. As here (Un) is a Markov chain, we need a generalization

of the Central Limit Theorem to non i.i.d. random variables to check if the rate is in 1/
√
n.

Kipnis and Varadhan [1986]; Roberts and Tweedie [1996] provide this kind of result. Before
calling back one of their results, let us give the following definition.
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Definition 2.2 The Markov chain (Un) is said to satisfy the Central Limit Theorem for g :
Rn → R, if there exists γg such that

1√
n

(
n∑

k=1

[

g(Uk)−
∫

g(u) dπ(u)

])

D−−−→
n→∞

N (0, γ2
g ).

(
D−→ means a convergence in distribution).

Kipnis and Varadhan [1986] state a Central Limit Theorem in the case where the chain is
stationary (i.e. initialized by U0 ∼ π) and reversible. More precisely,

Theorem 2.3 [Kipnis and Varadhan 1986] Assume that the chain (Un) is stationary (i.e. ini-
tialized by U0 ∼ π), π-irreducible and reversible. Let g be a square integrable with respect to π,
and let γg be defined by

γ2
g = lim

n→∞
nE





(

1

n

n∑

k=1

ḡ(Uk)

)2


 (2.9)

= E[ḡ2(U0)] + 2
+∞∑

k=1

E[ḡ(U0)ḡ(Uk)],

where ḡ is the centered version of g, i.e. ḡ = g −
∫
g(u) dπ(u). Then when 0 < γg < ∞, the

chain (Un) satisfies the Central Limit Theorem for g.

The application of Theorem 2.3 is not straightforward:

• The theorem is stated is the case where the chain is initialized from π. Now, [Geyer 1992,
Remark 1.1] tells that if the chain is Harris recurrent, the convergence does not depend on
the starting measure of the chain. As in our case the chain is Harris recurrent, the chain
need not be stationary to satisfy Theorem 2.3.

• In our case, the considered functions g will be the coordinate functions gx : u 7→ u(x) for
each pixel x. The coordinate functions (gx)x∈Ω are square integrable with respect to π.

• One needs to check whether 0 < γg <∞ or not. This is a tough problem which in practice
requires to estimate γg [Geyer 1992]. In the following we will assume that 0 < γg <∞ for
every coordinate function gx : u 7→ u(x) (x ∈ Ω).

Under this last assumption, we can apply Theorem 2.3, and the convergence

1

n

n∑

k=1

Uk −−−→
n→∞

ûLSE

occurs at rate γ/
√
n for the normalized L2-norm, where

γ2 =
1

|Ω|
∑

x∈Ω

γ2
gx
.

Let us introduce the notion of span, which we shall need in the sequel. It is a very natural
generalization of the variance for random vectors.
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Definition 2.3 Let U be a random vector defined on Rn. Its span is defined by

Span(U) = Tr(Cov(U)),

i.e. by the trace of its covariance matrix.

Remark: Both ergodic theorem and central limit theorem hold for any initializing distribution,
upon condition that γ is defined on the stationary regime of (Un)

γ = lim
b→∞

lim
n→∞

(n− b) Span

(

1

n− b
n∑

k=b+1

Uk

)

.

However in practice the convergence rate highly depends on this initialization. Indeed, as
π is continuous and log-concave, if the chain is badly initialized (i.e. π(U0) is very low),
then the random walk-based Hastings-Metropolis algorithm will take many iterations for
the chain to get into regions where π is high enough. All these iterations will be in the
Cesàro average and will pollute the estimation for a very long time before they become
negligible. Now this problem can be overcome by forgetting the first iterations of the chain
in the average, as described in the next paragraph.

Note that parameters γ close to zero yield faster convergence large γ. The subsampled chain
(Un) (Eq. (2.6)) is expected to have correlations Eπ[ḡx(U0)ḡx(Uk)] closer to zero than the whole
chain (Υn). It should then converge faster with respect to the number n of large iterations (each
containing R runs in the loop of Algorithm 2), but not necessarily faster when considering the
total number of runs Rn.

2.3.2 Bias-variance decomposition

A convergence rate in 1/
√
n is quite slow; moreover dealing with large images (e.g. 512 × 512,

which is very small yet for real-life images) makes an algorithm work very slowly in practice.
That is why an accurate convergence control is needed.

Let

Sb
n =

1

n− b
n∑

k=b+1

Uk (2.10)

be the Cesàro average of the subsampled chain where the b first terms have been deleted.
The parameter b is a burn-in parameter, and allows the chain to take the time to reach more
or less the stationary regime before the averaging process begins. It is classically used by
MCMC practitioners because it reduces the impact of the first values of the chain when the
stationary distribution π is not easy to simulate (see remark above). Taking b too small runs the
risk of slowing down the practical convergence rate, when the chain is not properly initialized.
Conversely, taking b too large reduces the number of terms in the Cesàro average and makes the
approximation less precise. So there must exist a middle b attaining optimality. Such a trade-off
can be explained as a bias-variance trade-off.
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Indeed the expected distance from our estimate Sb
n to the target image ûLSE satisfies the

following bias-variance decomposition

E‖Sb
n − ûLSE‖2 = E‖Sb

n − ESb
n‖2 + E‖ESb

n − ûLSE‖2 + 2E〈Sb
n − ESb

n,ES
b
n − ûLSE〉

= E‖Sb
n − ESb

n‖2 + ‖ESb
n − ûLSE‖2, (2.11)

where the first term E‖Sb
n − ESb

n‖2 is the span of Sb
n, and the rightmost term ‖ESb

n − ûLSE‖2
stands for its squared bias. Let us derive both terms separately.

First a more precise central limit theorem applied to (S b
n) would allow to control the span

term. Indeed a central limit theorem would state a convergence

√
n− b

[

Sb
n − ESb

n

] D−−−−−→
n−b→∞

N (0,diag(γ2
x)),

where here the variance coefficients (γx) would be defined on the subsampled chain by

γ2
x = lim

n→∞,n−b→∞
nE[Sb

n(x)− ûLSE(x)]2.

Unfortunately, to our knowledge no statistical result was brought about it. In the sequel we
assume that it is true.

Assuming the images Sb
n to have large dimensions and to be drawn from a stationary process,

we have ‖Sb
n − ESb

n‖2 ≈ E‖Sb
n − ESb

n‖2 = Span(Sb
n) thanks to Bienaymé-Chebyshev inequality

for instance. Now with high probability the span term can be bounded from above for a certain
A > 0 by

Span(Sb
n) ≤ A

n− b . (2.12)

Let us now concentrate on the bias term ‖ESb
n − ûLSE‖. We can prove that the chain (Υn)

is geometrically ergodic, i.e. that there exists a function V ≥ 1 a.e. such that π(V ) < ∞, and
there exist constants r > 1 and R <∞ such that for π-almost all u,

∀n ∈ N, ‖P n(u, .) − π‖V ≤ RV (u)r−n,

where, P denotes the transition kernel of (Υn), and, for any signed measure µ,

‖µ‖V := sup
|f |≤V

|µ(f)|.

To proceed, we apply the result from [Fort et al. 2003] which gives conditions to the chain to
be geometrically ergodic. These conditions fit our framework particularly well. Indeed, there is
no requirement for π to be regular, contrary to most results [Jarner and Hansen 2000; Roberts
and Tweedie 1996; Roberts and Rosenthal 1997, 1998] which require differentiability of π and
conditions on its curvature. We recall this result as a lemma.

Lemma 2.1 [Fort et al. 2003, Theorem 2] Let (Υn) be a symmetric random walk-based Hastings-
Metropolis chain defined on Rd, where the increment distribution is a “variable-at-a-time” dis-
tribution with “random scan” (the pixels are visited through a random uniform order). Three
conditions need to be satisfied:
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1. Assume that the target distribution π is absolutely continuous with respect to Lebesgue’s
measure on Rd, with positive and continuous density on Rd.

2. Let {qx}1≤x≤d be the increment distribution family of symmetric densities absolutely con-
tinuous with respect to Lebesgue’s measure on R (qx denotes the increment distribution
related to pixel x). Assume that there exist constants ηx and δx <∞ (1 ≤ x ≤ d) with the
property that qx(y) ≥ ηx whenever |y| ≤ δx.

3. Assume that there are δ and ∆ with 0 ≤ δ < ∆ ≤ +∞ such that

ξ := inf
1≤x≤d

∫ ∆

δ
qx(y)dy > 0,

and there exist functions φk ∈ Φ for 1 ≤ k ≤ d, such that, for all 1 ≤ x ≤ d and all
y ∈ [δ,∆],







lim
|ux|→∞

sup
φz(|uz|)≤φx(|ux|), z 6=y

π(u)

π(u− sign(ux)yex)
= 0

lim
|ux|→∞

sup
φz(|uz|)≤φx(|ux|), z 6=y

π(u+ sign(ux)yex)

π(u)
= 0,

with ex the coordinate unit vector associated to the x-th pixel, and Φ defined as the set of
functions φ : R+ → R+ such that

lim
n→∞

φ(tn) = +∞ if and only if tn → +∞.

Let r : (0, 1)→ R+ defined as

r(s) = 1 + s(1− s)1/s−1.

Let s ∈ (0, 1) such that

r(s) < 1 +
ξ

d− 2ξ
, (2.13)

and set

Vs(u) = π(u)−s. (2.14)

Then the chain is Vs-geometrically ergodic, i.e. there exists R <∞ such that for any initializa-
tion u,

∀n ∈ N∗, ‖P n(u, ·)− π‖Vs ≤ Rr(s)−nVs(u).

Let us apply this lemma to our TV framework.

Lemma 2.2 There exist values of s for which the assumptions of Lemma 2.1 are satisfied by
our chain (Υn), and then for which (Υn) is Vs-geometrically ergodic.

Proof : Let us check the 3 items of the assumptions of Lemma 2.1.

1. π = 1
Z e

− Eλ
2σ2 is clearly a positive and continuous density on Rd with d = |Ω|.



2.3. Convergence control 51

2. Here the qx are all equal to 1
2α

�

[−α,α]. Then taking δx = α and ηx = 1
2α validates the

second assumption.

3. Let δ = α/2 and ∆ = +∞; then ξ = 1/4 which is positive. Afterwards, let (φx) all equal to
identity. Then for any 1 ≤ x ≤ d and any y ≥ α/2 > 0, thanks to the Lipschitz continuity
of operator TV (2.7),

π(u)

π(u− sign(ux)yex)
= exp

(

−Eλ(u)−Eλ(u− sign(ux)yex)

2σ2

)

≤ exp

(

−2sign(ux)y(ux − vx)− y2 − λβ‖ex‖|y|
2σ2

)

−−−−−→
|ux|→∞

0

(β is the Lipschitz parameter of TV ) and similarly

π(u+ sign(ux)yex)

π(u)
= exp

(

−Eλ(u+ sign(ux)yex)−Eλ(u)

2σ2

)

≤ exp

(

−2sign(ux)y(ux − vx) + y2 − λβ‖ex‖|y|
2σ2

)

−−−−−→
|ux|→∞

0.

Then the third condition is satisfied.

Function r is increasing from 1 to 2, and 1 + ξ
d−2ξ = 1 + 1

4d−2 is larger than but close to 1 (d is
large). Then condition (2.13) is satisfied for any

s ∈ (0, r−1(1 +
1

4d− 2
)). (2.15)

As Vs is π-integrable for any s ∈ (0, 1), the chain is then geometrically ergodic with Vs = π−s

as soon as (2.15) is satisfied. �

The chain is then geometrically ergodic, which allows to control the convergence speed of the
chain expectations (EUn) towards ûLSE, as shows the following proposition. This will provide a
bound for the bias term in the bias-variance decomposition.

Proposition 2.5 Let s as in Eq. (2.15) (where d = |Ω|). Suppose that the chain (Un) is
initialized by an initial distribution µ0 such that µ0(π

−s) < ∞. Then there exist δ ∈ (0, 1) and
B > 0 such that

∀n ∈ N, ‖EUn − ûLSE‖ ≤ Bδ|Ω|n.

Proof : Let s as in (2.15) (where d = |Ω|). Then thanks to Lemma 2.2, (Υn) is Vs-
geometrically ergodic with Vs = π−s. Let (gx)x∈Ω be the coordinate functions

gx : u 7→ u(x).

As s > 0, Vs is “superlinear” (2.8), and there exists a independent from x ∈ Ω such that

∀u ∈ RΩ, |gx(u)| ≤ aVs(u).
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Then for any n ∈ N∗, if the chain is initialized by distribution µ0, we have

‖EΥn − ûLSE‖2 =
∑

x∈Ω

∣
∣
∣
∣

∫

P n(u0, gx)dµ0(u0)− ûLSE(x)

∣
∣
∣
∣

2

≤
∑

x∈Ω

(∫

|P n(u0, gx)− ûLSE(x)|dµ0(u0)

)2

≤
∑

x∈Ω

(∫

aRr(s)−nVs(u0)dµ0(u0)

)2

because the chain is geometrically ergodic, and |gx/a| ≤ Vs. Now letting

B =
√

|Ω|aR ·
∫

Vs dµ0 <∞ and δ = r(s)−1 ∈ (0, 1),

we get
‖EΥn − ûLSE‖ ≤ Bδn,

and letting n = |Ω|n′, we get the desired result. �

Remark: In Proposition 2.5, the assumption about the initial distribution requiring that

µ0(π
−s) <∞

is true in practical cases. Indeed in our experiments we use either deterministic initializa-
tions (u0 = v or u0 = ûMAP ) for which µ0(π

−s) = π−s(u0) < ∞, or pure noise initializa-
tions, where the gray levels are independent and uniformly drawn from interval [0, 255].
Then µ0 has bounded support, and as π−s(u0) is everywhere finite, µ0(π

−s) < ∞ holds.
However if µ0 is a normal distribution N (u′, τ2Id), then the condition holds iff τ 2 < σ2/s.
We need to remain watchful in the choice of the initializing measure.

From the inequality of Proposition 2.5 we can deduce an upper bound for the bias term
thanks to the triangle inequality

∥
∥
∥ESb

n − ûLSE

∥
∥
∥ =

∥
∥
∥
∥
∥

1

n− b
n∑

k=b+1

(EUk − ûLSE)

∥
∥
∥
∥
∥

≤ 1

n− b
n∑

k=b+1

‖EUk − ûLSE‖

≤ 1

n− b
n∑

k=b+1

Bδ|Ω|k =
B

n− bδ
|Ω|(b+1) 1− δ|Ω|(n−b)

1− δ|Ω| .

Denoting B ′ =
(

Bδ|Ω|

1−δ|Ω|

)2
, we obtain the following upper bound for the squared bias

∥
∥
∥ESb

n − ûLSE

∥
∥
∥

2
≤ B′ δ2|Ω|b

(n− b)2 . (2.16)

Last, thanks to (2.11) and (2.16), we obtain the main result of this subsection.
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Theorem 2.4 The expected distance from our estimate S b
n to ûLSE in the bias-variance decom-

position is bounded by

E‖Sb
n − ûLSE‖2 ≤ SpanSb

n +B′ δ2|Ω|b

(n− b)2 .

Assuming (2.12), we conclude that

E‖Sb
n − ûLSE‖2 ≤

A

n− b +B′ δ2|Ω|b

(n− b)2 . (2.17)

We can note the following facts:

• The convergence rate when b→∞ and n− b→∞ is in
√
n− b, due to the variance term.

We find back the Central limit theorem stated at the beginning of this section.

• For large n, the variance term prevails, while for small n, the bias can be dominating.

• For a given n, there exists a value of b in [0, n) minimizing the error. The optimal value
of b can be either 0 or a non-trivial value, depending on the values of A, B and δ. The
optimal b may be very large, and may even exceed n/2, which means that more than half
of the iterations may pollute the Cesàro average and should be kept aside.

2.3.3 Introduction of another chain, and stopping criterion

Our aim here is to build a reliable stopping criterion to S b
n. The tuning of parameter b will be

treated in the next subsection. Now we wish to know for which n the average S b
n has reached

ûLSE with a given precision, say ε. In other words we wish to

stop when ‖Sb
n − ûLSE‖ ≤ ε holds.

To this end, let us consider another Markov chain (Ũn) defined as (Un) and independent from
it. Define S̃b

n naturally by

S̃b
n =

1

n− b
n∑

k=b+1

Ũk.

Both (Sb
n) and (S̃b

n) converge towards ûLSE with the same convergence rate. The comparison
between (S̃b

n) and (Sb
n) can help us measure the convergence of our approximation, as it will be

seen in this paragraph. The expected distance between the two sequences (S b
n) and (S̃b

n) satisfies

E‖S̃b
n − Sb

n‖2 = E‖S̃b
n − E[S̃b

n]‖2 + E‖Sb
n − E[Sb

n]‖2

= 2 Span(Sb
n),

i.e. the distance between (Sb
n) and (S̃b

n) is twice the span of the estimator. This is because the
chains (Un) and (Ũn) are independent with the same distribution.
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Let us assume that the burn-in b is large enough to have a negligible bias ‖ES b
n − ûLSE‖

compared to the span term (2.11). Then the error of the estimator S b
n is controlled by the

distance between (Sb
n) and (S̃b

n)

E‖Sb
n − ûLSE‖2 ≈ Span(Sb

n) =
1

2
E‖S̃b

n − Sb
n‖2.

Once again, the images are supposed to be large and stationary in space, such that E‖S b
n −

ûLSE‖2 ≈ ‖Sb
n − ûLSE‖2 and E‖S̃b

n − Sb
n‖2 ≈ ‖S̃b

n − Sb
n‖. Then

‖Sb
n − ûLSE‖ ≈

1√
2
‖S̃b

n − Sb
n‖. (2.18)

Moreover, notice that the mean Sb
n+S̃b

n
2 is a better estimator than Sb

n or S̃b
n taken separately,

because it satisfies
∥
∥
∥
∥
∥

Sb
n + S̃b

n

2
− ûLSE

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥

Sb
n − ûLSE

2
+
S̃b

n − ûLSE

2

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥

Sb
n − ûLSE

2

∥
∥
∥
∥

2

+

∥
∥
∥
∥
∥

S̃b
n − ûLSE

2

∥
∥
∥
∥
∥

2

=
1

2
‖Sb

n − ûLSE‖2, (2.19)

such that, combining with Equation (2.18), we get the main result of this subsection:

Theorem 2.5 Under the assumptions mentioned above (Central Limit Theorem for the chain,
negligible bias, large and stationary images), we have

∥
∥
∥
∥
∥

Sb
n + S̃b

n

2
− ûLSE

∥
∥
∥
∥
∥
≈ 1

2

∥
∥
∥S̃b

n − Sb
n

∥
∥
∥ . (2.20)

That is, the mean Sb
n+S̃b

n
2 is twice closer to ûLSE than Sb

n or S̃b
n alone. This allows us to

speed up the convergence for free. The two equations (2.18) and (2.20) are satisfied in practice
as illustrated on Figure 2.2, provided the bias is negligible (i.e. the burn-in parameter b is large
enough).

Our stopping criterion will then be the following

stop when
∥
∥
∥S̃b

n − Sb
n

∥
∥
∥ ≤ 2ε, and return

Sb
n + S̃b

n

2
,

because Sb
n+S̃b

n
2 is expected to lie at a distance ε at most from ûLSE.

2.4 Burn-in selection

As evoked in previous section, the number of iterations b being kept out from the average S b
n

(Equation (2.10)) is a determining factor for the convergence of the algorithm. An efficient
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Figure 2.2: Convergence control. The target precision ‖Sb
n − ûLSE‖ is plotted against ‖S̃b

n − Sb
n‖ (thin

line) for a fixed value of b, each little cross standing for a value of n. The relation is linear, which suggests
that Eq. (2.18) holds quite precisely, and that the bias of the estimator Sb

n is negligible compared to its

span, i.e. the chain has reached its stationary regime. The thick line represents ‖ Sb

n
+S̃b

n

2 − ûLSE‖ as a

function of ‖S̃b
n − Sb

n‖. Again the relation is linear and is consistent with Eq. (2.20). Moreover the slope
is smaller by a factor close to 1/

√
2 than the one of the thin curve, as predicted by (2.19). This indicates

that for a given number of iterations n,
Sb

n
+S̃b

n

2 achieves a faster convergence towards ûLSE than Sb
n alone.

(Experiment made with λ = 30 and σ = 10 on a noisy image).

tuning of this burn-in parameter b can therefore be crucial. As the bias-variance decomposition
(2.17) makes explicit, taking b too small make the average S0

n deviate from its target value ûLSE

for practical values of n (large bias, small variance). Conversely when b is very large then there
may remain a too small number of terms in Sb

n which will spend more time to converge towards
ûLSE (small bias, large variance). This trade-off phenomenon is illustrated on Figure 2.3. We
propose here a practical method for the tuning of b such that an optimum in the bias-variance
decomposition is reached.

We look for a parameter b minimizing the error ‖ Sb
n+S̃b

n
2 − ûLSE‖. However this quantity is

not practically computable because ûLSE is unknown. Hopefully as Equation (2.20) tells, it is
equivalent to minimizing the distance between the average of the chains ‖S b

n − S̃b
n‖, which is

computable. Figure 2.3 demonstrates that the approximation

arg min
b∈{1,...,n}

∥
∥
∥
∥
∥

Sb
n + S̃b

n

2
− ûLSE

∥
∥
∥
∥
∥
≈ arg min

b∈{1,...,n}
‖Sb

n − S̃b
n‖

holds in practice.
However for a given number of iterations n, finding the optimal burn-in b requires the knowl-

edge of all the distances (‖Sb
n − S̃b

n‖) for 1 ≤ b ≤ n, and in practice the knowledge of all the
images (U|Ω|b) and (Ũ|Ω|b) for 1 ≤ b ≤ n. For large values of n, it may not be possible to store
all these images. That is why we design an efficient algorithm which only uses a limited number
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Figure 2.3: Burn-in selection. The left graph illustrates the selection of the burn-in parameter b. For a

fixed number of iterations n, the quantities ‖Sb

n
+S̃b

n

2 − ûLSE‖ (thin curve) and ‖Sb
n− S̃b

n‖ (thick curve) are
plotted against b ∈ {1, . . . , n}. The curves reflect the bias-variance trade-off: for small b, the convergence
is not optimal because of a big bias, and for large b, the convergence is again suboptimal because of a

large variance. The best burn-in given by arg minb ‖Sb

n
+S̃b

n

2 − ûLSE‖ can be well approximated by the b̄

that minimizes the other quantity ‖Sb
n − S̃b

n‖, because both quantities reach the optimum at the same

value approximately. The right graph is about the proportionality of ‖ Sb

n
+S̃b

n

2 − ûLSE‖ and ‖Sb
n − S̃b

n‖.
The ratio between the curves of the left graph is plotted. When the bias is negligible, this ratio should
be 2 according to Eq. (2.20). We can see that for b larger than b̄, the ratio is practically 2. This gives
another clue to the fact that the bias is avoided when taking a burn-in equal to b̄. (Experiment made
with λ = 30 and σ = 10 on a noisy image).

of stored images, which approximately minimizes ‖S b
n − S̃b

n‖.
Instead of taking

b̄ = arg min
b∈{1,...,n}

‖Sb
n − S̃b

n‖

where the minimization holds on all {1, . . . , n}, and returning

S b̄
n + S̃ b̄

n

2

which would require the knowledge of all the images (S b
n)b∈{1,...,n} and (S̃b

n)b∈{1,...,n}, we restrict
b to live inside a geometric grid of N of the form

bλNc = {bλkc, k ∈ N},

with λ > 1, and to be larger than a proportion p of n. Hence for a fixed n, we only store (S b
n)

and (S̃b
n) with b ∈ bλNc ∩ {1, . . . , n}, and b ≥ pn, which yields a maximum of −2 log p

log λ images,
which is independent of n.

We select b minimizing ‖Sb
n − S̃b

n‖ among the available data

b̂ = arg min
b∈bλNc∩{1,...,n},b≥pn

‖Sb
n − S̃b

n‖
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and we return

S b̂
n + S̃ b̂

n

2
.

The distance between the optimal burn-in b̄ and its estimate b̂ can be bounded from above
by

|b̄− b̂| / n ·max

(

p,
λ− 1

λ

)

(p when b̄ = 0, and (λ − 1)/λ when b̄ = n − 1 and n ∈ bλNc). This bound measures the
maximum number of additional iterations which should be computed when mistaking b̄ for b̂. It
is proportional to n, and the linear coefficient is close to 0 when p ≈ 0 and λ ≈ 1, which suggests
that this method requires a small percentage at worst of extra iterations to be run.

In practice we take λ = 1.2 and p = 1/6. Then −2 log p
log λ ≈ 19.7 and this yields at most

20 images (10 images Sb
n and 10 images S̃b

n) to be stored, and a maximum of n/6 additional
iterations to be computed (i.e. at most 17% extra iterations).

The interaction between the tuning of n and b is summed up in the Algorithm 3.

Algorithm 3 Burn-in algorithm

choose λ = 1.2, p = 1/6, ε = 1.
start from initializations U0 and Ũ0

S0 = 0, S̃0 = 0
n = 0
repeat
n← n+ 1
compute Un from Un−1 as in Algorithm 2
compute Ũn from Ũn−1 as in Algorithm 2
form Sn = Sn−1 + Un and S̃n = S̃n−1 + Ũn

if n ∈ bλNc,







store Sn and S̃n

erase the Sk and S̃k with k < pn

set b̂ = arg minb∈bλNc ‖Sn−Sb
n−b −

S̃n−S̃b
n−b ‖

until ‖Sn−S
b̂

n−b̂
− S̃n−S̃

b̂

n−b̂
‖ ≤ 2ε

return
(Sn−S

b̂
)+(S̃n−S̃

b̂
)

2(n−b̂)
.

2.5 Optimal scaling

Our model depends on the scaling α of the increment distribution q of (Υn), which we recall to
be

q(u′|u) =

{

0 if u′ and u differ on 2 pixels or more,
1

2α|Ω|
�

[u(x)−α,u(x)+α](u
′(x)) if ∃x ∈ Ω,∀y 6= x, u′(y) = u(y).
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The selection of this parameter α can be crucial, and a poor choice of α can lead to an ex-
tremely inefficient algorithm. Indeed for very small values of α, the increment distribution q
proposes small jumps, most of which will be accepted, because the continuity of π implies that
π(u′)/π(u) ≈ 1 when u and u′ are nearby. But the size of the jumps is too small for the space to
be rapidly explored. This is most true in higher dimensions. The Markov chain will then be slow
to converge to the stationary distribution. Conversely for very large values of α the increment
distribution q proposes very large jumps onto images u of very low probability π(u) (because π
is log-concave). These jumps will practically always be rejected, and the chain shall not move
during a great number of iterations, slowing down the algorithm. This situation discloses the
need for a correct tuning of α, and is illustrated on Figure 2.4.
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Figure 2.4: Illustration for optimal scaling in a 2-D framework. (a) Target distribution π ∼ N (0,Γ)
with Γ = (2, 1; 1, 1) (Sp(Γ) ≈ {2.6, 0.4}). We consider the case where the increment distribution is an
increment Υn + αU[−1,1] on the random coordinate i ∈ {1, 2}. (b) Simulation of a MCMC with 10000
points with α = 0.02. The chain is very slow to reach the stationary regime, and τaccept = 99.6%. (c)
Simulation of a MCMC with 10000 points with α = 200. Only 68 iterations are accepted, and the chain
does not manage to explore the stationary distribution; τaccept = 0.68%. (d) Simulation of a MCMC with
10000 points with α = 2. The stationary distribution is correctly explored by the chain; τaccept = 57.2%.

As explained by G.O. Roberts and J.S. Rosenthal in [Roberts and Rosenthal 2001], the
optimization of the scaling parameter α in random walk-based Hastings Metropolis algorithms
can be considered in two possible ways. The first point of view is the minimization of the
variance γ implied in the Central Limit Theorem, leading to an efficiency criterion

eg =

(

lim
n→∞

var

(

1

n

n∑

k=1

g(Uk)

))−1

which has to be maximized for all component functions g = gx. However this measure of
efficiency highly depends on the function g chosen: for two different Markov chains, different
functions g can order their efficiency differently. As [Roberts and Rosenthal 2001] demonstrates,
the high-dimensional limit case make the efficiency coefficients eg less dependent from function
g, and merge into a unique quantity independent from g, which is related to the acceptance rate

τaccept = lim
n→∞

1

n
#{accepted moves}
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measuring the proportion of iterations where the proposal Uk+1/2 has been accepted (Algorithm
1). This is the second point of view which we will focus on here. Several theoretical results
[Bédard 2007; Breyer and Roberts 2000; Neal and Roberts 2006; Roberts and Rosenthal 2001]
developed in several frameworks in high dimension tend to prove that an optimal scaling α is
reached when the acceptance rate reaches a universal constant

τaccept ≈ 0.234.

The result which comes closest to our framework is probably given by [Breyer and Roberts 2000],
where the stationary distribution π is assumed to be a Gibbs field defined on Z2 not subject to
phase transition phenomenon. We transcribe it here informally; we do not aim at completeness
and omit technical assumptions.

Theorem 2.6 [Breyer and Roberts 2000] Take (Ai) a sequence of rectangular grids increasing
to Z2 as i→∞. Consider the random walk-based Hastings-Metropolis algorithm run where the
increment distribution is Gaussian with variance α2

i = l2/|Ai|. Consider the subsampled chain

Zt(i) = Υbt|Ai|c(i),

i.e. the i-th component of the chain speeded up by a factor |Ai|. Then under certain conditions,
the most important one being that the field’s correlations must decrease exponentially fast as
a function of distance (which insures the absence of phase transition in π), Z(i) converges in
distribution to a limiting infinite-dimensional diffusion process on RZ2

. Moreover, the speed of
this limiting diffusion can be written as a function of τaccept and is proportional to

τaccept

[

φ−1
(τaccept

2

)]2

and thus is maximal when τaccept = 0.234 (up to 3 decimal places).

[Neal and Roberts 2006] consider more general increment distributions such as partially
updating distributions, but i.i.d. or Gaussian target distributions. [Bédard 2007] as well as
[Breyer and Roberts 2000] considers non-i.i.d. target distributions but restricts the increment
distribution to be Gaussian and i.i.d. Until now we found no result perfectly adapting to our
case.

Theorem 2.6 means that in high dimension α should be tuned in order to reach the acceptance
rate 0.234. This optimal acceptance rate seems low: more than 3 proposals out of 4 are rejected.
But a smaller acceptance rate means a larger scale and a faster exploration of the support of π.
Besides, a scaling factor α should be chosen proportional to 1/

√

|Ω| where |Ω| is the number of
pixels in the considered images, i.e. the problem’s dimension.

Remark 1: An insight study of the convergence rate in function of τaccept shows that τaccept in
[0.1, 0.5] suffices to have a correct convergence rate (the efficiency curve is smooth at its
maximum τaccept = 0.234) [Roberts and Rosenthal 2001].

Remark 2: In low dimension spaces [Gelman et al. 1996], better rates of convergence are
achieved for τaccept ≈ 0.5. Hence in the illustrating example given in Figure 2.4 the
scaling value α = 2 is almost optimal.
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In our experiments the scale α is initialized by the gradient average of the datum image v

α0 =
1

|Ω|
∑

x∈Ω

|∇v|(x) (2.21)

(typical deviation between neighbor pixels) and is adjusted throughout the iterations by a simple
dichotomous procedure summed up in Algorithm 4.

Algorithm 4 Optimal scaling algorithm

set α = α0, αmin = 0, αmax = maxx v(x) −minx v(x)
n = 0
repeat

run the chain from Υ|Ω|n+1 to Υ|Ω|(n+1)

compute τaccept = 1
|Ω|#{accepted moves between iterations |Ω|n+ 1 and |Ω|(n+ 1)}

until τaccept is stabilized.
repeat

run the chain from Υ|Ω|n+1 to Υ|Ω|(n+1)

compute τaccept = 1
|Ω|#{accepted moves between iterations |Ω|n+ 1 and |Ω|(n+ 1)}

if τaccept < 0.23 set

{

αmax ← α

α← α+αmin
2

if τaccept > 0.25 set

{

αmin ← α

α← α+αmax
2

n← n+ 1
until τaccept ∈ [0.23, 0.25]
return α.

Remark 3: The chain must be in its stationary regime, i.e. Algorithm 4 should be run after a
preliminary burn-in phase. Moreover the algorithm should be run before the first iterations
are taken inside the sum Sb

n. Indeed if α is still varying during the burn-in period, then
the Markov chain is heterogeneous (the transition distribution depends on the iteration
number), and the convergence theorems cannot be applied. However some recent papers
such as [Andrieu and Moulines 2006] prove Ergodic and Central Limit Theorems for some
cases of scaling adaptive Markov chains.

Remark 4: The optimal scaling factor α obviously depends on the parameters λ and σ of π
(2.4). When σ is large (i.e. π has a large bandwidth), the chain needs to be more mobile
to explore a larger support of π, and α is then large. Similarly,







σ ↗ ⇒ α↗ when λ is fixed,

λ↗ ⇒ α↘ when σ is fixed,

σ ↗ ⇒ α↗ when λ
σ2 is fixed.

Hence the Algorithm 4 is usually necessary to refine the initialization α0 (2.21) and to take
λ and σ into consideration.
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Figure 2.5: Convergence speed as a function of the scale parameter α of q. For α too small or too large
the quantity log ‖S̃b

n − Sb
n‖ decreases to −∞ quite slowly, while for middle values of α the convergence

rate is optimal (here for α = 80). The proposed method returns α ≈ 40, which is quite far away from
the value 80; but the convergence rate is almost the same, which matters here. (Experiments made with
a 64× 64 noisy image and λ = 20 and σ = 10).

Algorithm 4 has been tested, and the output α̂ (such that τaccept ≈ 0.234, and supposed
to maximize the convergence speed of the MCMC algorithm) is compared with other scaling
factors. As it can be seen on Figure 2.5, the algorithm returns a value of α which has the
same order of magnitude as the one optimizing the speed of convergence (α̂ = 40 instead of
αopt = 80). Its relative lack of precision is balanced by the fact that the rate of convergence is
not very sensitive to α at its maximum. In other words, any α ∈ (40, 160) achieves a correct
convergence rate, and the estimate α̂ is enough for our task.

2.6 Numerical variants – why we won’t run several chains

2.6.1 Several independent MCMCs

A few pages before, we introduced a second MCMC to control the convergence of the algorithm.
We noticed that averaging the two MCMCs gave a better precision, because when neglecting
the bias term we got

∥
∥
∥
∥
∥

Sb
n + S̃b

n

2
− ûLSE

∥
∥
∥
∥
∥
≈ 1√

2
‖Sb

n − ûLSE‖.

We could believe that using other chains would again improve the result. If we run N chains
(U (1), . . . , U (N)), then still omitting the bias term, the average of all the chains is much better
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than one chain alone, i.e. with obvious notations

∥
∥
∥
∥
∥

1

N

N∑

k=1

Sb,k
n − ûLSE

∥
∥
∥
∥
∥
≈ 1√

N
‖Sb

n − ûLSE‖.

Besides the proximity of all the chains (Sb,k
n )1≤k≤N could be used as a more precise convergence

criterion than ‖Sb
n − S̃b

n‖ only. But it should be kept in mind that running N chains costs N
times the price of one chain. In other words, for a given time complexity, the N chains should
be N times shorter. As empirically commented by [Geyer 1992], running several chains which
are too short cannot be used as a convergence criterion; conversely, when the chains are long
enough, one run suffices. Several short chains are then less efficient than a unique long chain,
as will illustrate Propositions 2.6 and 2.7.

The quadratic error related the estimation of ûLSE by N chains of length n with uniform
burn-in b can be computed and bounded by

E

∥
∥
∥
∥
∥

1

N

N∑

k=1

Sb,k
n − ûLSE

∥
∥
∥
∥
∥

2

= E

∥
∥
∥
∥
∥

1

N

N∑

k=1

Sb,k
n − E

1

N

N∑

k=1

Sb,k
n

∥
∥
∥
∥
∥

2

+

∥
∥
∥
∥
∥
E

[

1

N

N∑

k=1

Sb,k
n

]

− ûLSE

∥
∥
∥
∥
∥

2

(2.22)

= Span

(

1

N

N∑

k=1

Sb,k
n

)

+
∥
∥
∥ESb,1

n − ûLSE

∥
∥
∥

2

=
1

N
Span(Sb,1

n ) +
∥
∥
∥ESb,1

n − ûLSE

∥
∥
∥

2
(2.23)

≤ A

N(n− b) +
Bδ2|Ω|b

(n− b)2 . (2.24)

Indeed, (2.22) is the bias-variance decomposition of the estimator 1
N

∑N
k=1 S

b,k
n , (2.23) holds

because the (Sb,k
n )k are i.i.d., and (2.24) is a consequence of the central limit theorem and of the

geometric ergodicity of the chains (see Equation (2.17)).
Next proposition shows that for a given burn-in b, a unique long chain with size Nn performs

better than N chains with size n. Let

e(n,N, b) =
A

N(n− b) +
Bδ2|Ω|b

(n− b)2

denote the upper bound of the quadratic error related to the running of N chains with length n
with burn-in b (uniform over the N chains).

Proposition 2.6 For any A, B > 0, any δ ∈ (0, 1), any N,n ∈ N∗, and any b ∈ {0, . . . , n− 1}
we get

e(Nn, 1, b) ≤ e(n,N, b).

In other words, the error bound is tighter for one chain with size Nn than for N chains with
size n, when the burn-in parameter is fixed.
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Proof : As
A

Nn− b ≤
A

N(n− b) and
Bδ2|Ω|b

(Nn− b)2 ≤
Bδ2|Ω|b

(n− b)2 ,

the inequality holds. �

This result can be refined to the case where the burn-in minimizes the error e(n,N, b).
Indeed, one expects the optimal burn-in of a long chain to be larger than for many short chains.
Next result states that the error bound minimized with respect to b is still smaller for the long
chain than for N short chains.

Proposition 2.7 For any A, B > 0, any δ ∈ (0, 1) and any N,n ∈ N∗, we get

min
0≤b<Nn

e(Nn, 1, b) ≤ min
0≤b<n

e(n,N, b).

Proof : Fix δ ∈ (0, 1), N and n in N∗. Proposition 2.6 proves that for all b ∈ {0, . . . , n− 1},
e(Nn, 1, b) ≤ e(n,N, b).

This inequality can be minimizes with respect to b ∈ {0, . . . , n− 1} on both sides, which yields

min
0≤b<n

e(Nn, 1, b) ≤ min
0≤b<n

e(n,N, b).

Now, as
min

0≤b<Nn
e(Nn, 1, b) ≤ min

0≤b<n
e(Nn, 1, b),

we get the desired result. �

Both bias and variance are worse when considering more than one chain, even if the burn-in
is optimized: we lose on both counts.

2.6.2 Interacting MCMCs – Sampling Importance Resampling

We consider a more complex procedure than independent Hastings-Metropolis chains, known as
Sampling Importance Resampling (SIR) [Gordon et al. 1993] (see [Arulampalam et al. 2002] for
an overview). Instead of running N chains independently, we make them interact from times
to times. The resampling step allows the low-energy chains to be duplicated and high-energy
chains to be killed, in order to conquer the support of π faster.

More precisely, one iteration of the SIR algorithm is as follows:

• run one iteration on all the chains (U (1), . . . , U (N)).

• compute the vector of pointwise densities (π(U (1)), . . . , π(U (N))) and normalize it, to obtain
a vector of normalized weights, here called empirical weights

πemp(U
(k)) =

1
∑N

l=1 π(U (l))
π(U (k)).

(There is no need to know the normalizing factor in π). The weight vector πemp is a
discrete approximation of the posterior distribution.
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• compute the effective number of chains

Neff =
1

∑N
k=1

(
πemp(U (k))

)2 .

• if Neff is less than a given threshold Nthr, then resample the chains (U (1), . . . , U (N)) with
respect to the discrete distribution given by the weights πemp(U

(k)) (this step is known as
resampling). Chains U (k) with large weight are expected to be duplicated while the chains
with small weight are likely to be killed.

• At the end of the procedure return the global average of the iterations on all the chains

1

N(n− b)
N∑

k=1

n∑

i=b+1

U
(k)
i .

In practice the resampling step is crucial because it circumvents a current degeneracy prob-
lem, where the empirical weight vector often converges to a Dirac. When one chain has a much
higher posterior probability than all the others, then the effective number of chains is close to
zero and resampling is desirable.

However in our TV-LSE framework, we believe that resampling would bring poor (if any)
improvement on the convergence speed of the algorithm, due to the high dimensionality of the
problem and to the unimodality of the target distribution. Numerical experiments show that
the degeneracy problem does not occur in our case, because the empirical weight vector quickly
converges to a uniform weight vector. If resampling yet occurred (if Nthre is very close to N for
instance), it would be very close to a uniform resampling, and the SIR algorithm would then be
almost equivalent to running several independent MCMCs.

Indeed, as shows Figure 2.6 (left), a MCMC started with a uniform white random noise
on [0, 255] has an energy which practically does not depend on its initialization and on the

realization of the chain. In other words, for a given iteration n, the energy Eλ(U
(k)
n ) is almost

independent of k, and the discrete importance distribution πemp is not far from being uniform.
In order to quantify the closeness of πemp to a uniform weight πunif(U (k)) = 1

N , we used the
entropy of πemp, given by

H(πemp) = −
N∑

k=1

log2(π(U (k)))π(U (k)).

The entropy is maximal and equals log2(N) if and only if πemp = πunif . We plotted H(πemp)
against the number of iterations on Figure 2.6 (right). When n increases, the curve rapidly
converges towards log2(N). This indicates that the importance resampling step is essentially a
uniform sampling on the N chains, certainly because of the high dimensionality. The procedure
is thus almost equivalent to running N independent MCMCs and summing them together. But
this is suboptimal, because of Proposition 2.7). That is why in our experiments (Chapter 4) we
run the minimal number of chains, i.e. 2 chains, to be able to apply our stopping criterion (see
Section 2.3).
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Figure 2.6: Resampling in SIR on several chains is almost uniform resampling. (a) Some features
of πemp computed on a i.i.d. sample of 50 MCMCs are plotted against the number n of iteration (1
iteration means |Ω| runs in the Hastings-Metropolis algorithm). First the average weight πemp(U

(k))
of the 50 chains (U (k)) is of course constant and equal to 1/50. The standard deviation has also been
computed against n, and occurs to be very small compared to the average as soon as a small number
of iterations have been run. Indeed, the sum of the average line with the s.d. (2nd curve) and the
difference of the two (3rd curve) happen to be very close to the average line as soon as 4 or 5 iterations
are reached. Moreover the minimum and the maximum of πemp(U

(k)) converge to 1/50 within very few
(5 or 6) iterations. This graph demonstrates that πemp is not far from being uniform. The values have
been computed from a sample of 50 i.i.d. chains with size 64× 64 started with a uniform white random
noise on [0, 255]. (b) To make the closeness of πemp to a uniform weight more accurate, the entropy
of the empirical weight distribution is plotted against the number n of iteration. This entropy rapidly
converges to log2(50) ≈ 5.64, which corresponds to the maximum entropy attained by a uniform weight
distribution. Note that the y-scale which is very concentrated around log2(50). This means that after 4
iterations importance resampling is almost uniform and the interaction between chains is non-existent.
The empirical distribution has been computed on the 50 i.i.d. chains of (a).
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Chapter 3

Theoretical properties

Résumé Dans ce chapitre, nous présentons quelques résultats théoriques concernant l’opérateur
de débruitage TV-LSE. Tout d’abord, de petites propriétés d’invariance et de différentia-
bilité sont données. Puis nous donnons des résultats asymptotiques sur le comportement
d’une image lorsque les paramètres du modèle sont poussés vers des valeurs limites. En-
suite, un théorème sur l’absence de staircasing dans le débruitage TV-LSE est démontré;
il justifie a posteriori l’approche menée dans le chapitre 1. Ces résultats sont vrais pour de
nombreux schémas numériques consistants avec la variation totale. Enfin, nous étudions
le débruitage LSE d’un point de vue analytique, dans un cadre un peu plus général que
TV. Nous montrons qu’il vérifie quelques propriétés de stabilité, et que sous certaines con-
ditions, il est exactement équivalent à un débruitage MAP, à condition de considérer une
loi a priori plus régulière pour le MAP. Cela laisse à penser que le résultat d’absence de
staircasing pourrait se généraliser à d’autres modèles que le cadre TV.

Abstract In this chapter we present several theoretical results concerning the TV-LSE denois-
ing operator. First, basic properties are given, among which invariance and differentiability
results. Then we give asymptotic results on the denoised image when the parameters go
to extreme values. Afterwards a theorem stating the absence of staircasing in TV-LSE
denoised images is proven. This theorem justifies the construction of TV-LSE a posteriori
and answers to our expectations raised in Chapter 1. All these results hold under quite
loose conditions on the numerical scheme for the total variation. Last, we set up an ana-
lytic framework in which LSE denoising is proven to satisfy several stability results. LSE
and MAP denoisings are then compared. Under some conditions upon the prior which are
satisfied by the TV prior, it is established that a LSE denoiser is equivalent to a MAP
denoiser built on a smoother prior. This gives another clue for the absence of staircasing.

Notations and assumptions We consider images defined on a finite set Ω ⊂ Z2. The
cardinality of Ω is denoted |Ω|. For convenience let SLSE denote the LSE denoising operator

67
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and SMAP the MAP denoising operator, i.e.

SLSE : RΩ −→ RΩ

v 7→

∫

RΩ

ue−
‖u−v‖2+λTV (u)

2σ2 du
∫

RΩ

e−
‖u−v‖2+λTV (u)

2σ2 du

(3.1)

and
SMAP : RΩ −→ RΩ

v 7→ arg min
u∈RΩ

‖u− v‖2 + λTV (u). (3.2)

Therefore SLSE(v) = ûLSE, and SMAP (v) = ûMAP .

The gray level of an image u at pixel x will be equivalently denoted u(x) or ux, as convenient.
We assume the space of images RΩ to be equipped with the inner product

〈u, v〉 =
1

|Ω|
∑

x∈Ω

u(x)v(x).

The norm ‖ · ‖ over RΩ will always denote the norm derived from this inner product, i.e. the
classical Euclidean norm divided by the size of the image domain.

For a given v, Eλ will denote the Rudin-Osher-Fatemi energy

Eλ(u) = ‖u− v‖2 + λTV (u).

The TV operator need not be specified in all the results of this chapter. That is why we simply
assume that it is a non-negative mapping from RΩ → R+. Extra assumptions will be made
explicit when needed.

3.1 Basic properties

Let us state several basic properties of the TV-LSE denoiser that could predict some behavior
of the denoiser. We start by giving properties that LSE and MAP denoising have in common,
and keep going on properties that are specific to LSE denoising.

3.1.1 Average preservation

In this subsection we assume TV shift-invariant, i.e. such that

∀c ∈ R, ∀u ∈ RΩ, TV (u+ c) = TV (u).

Proposition 3.1 For any image u let ū = 1
|Ω|
∑

x∈Ω u(x) denote the average gray level of u.

Then for every v ∈ RΩ ,

SLSE(v) = v.
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Proof : Let
E0 = {u ∈ RΩ : ū = 0}

denote the subspace of images with mean zero. Splitting up the variable u = u0 + t
�

into a
zero-mean image u0 ∈ E0 and a shift t (note that ū = t = 〈u, � 〉), the LSE-denoised image writes

ûLSE =
1

Z

∫

u0∈E0

∫

t∈R

u0 e
−Eλ(u0+t � )

2σ2 dtdu0 +
1

Z

∫

u0∈E0

∫

t∈R

te−
Eλ(u0+t � )

2σ2 dtdu0
�
. (3.3)

The first integral in Equation (3.3) has mean zero since it is a weighted average of zero-mean
images. Let us focus on the second integral. The energy may be written

Eλ(u0 + t
�
) = ‖ � ‖2

(

t− 〈v − u0,
� 〉

‖ � ‖2
)2

+ ‖u0 − v‖2 −
〈 �
, u0 − v〉2
‖ � ‖2 + λTV (u),

with ‖ � ‖ = 1. Then integrating along t yields
∫

R

te−
(t−〈v−u0, � 〉)2

2σ2 dt =
√

2πσ 〈v − u0,
� 〉.

Hence the second integral in Equation (3.3) derives into

1

Z

∫

u0∈E0

∫

t∈R

te−
Eλ(u0+t � )

2σ2 dtdu0 =
1

Z ′

∫

u0∈E0

〈v − u0,
� 〉 e−

‖u0−v‖2−〈 � ,u0−v〉2+λTV (u)

2σ2 du0

= 〈v, � 〉 −
〈

1

Z ′

∫

u0∈E0

u0 e
− ‖u0−v‖2−〈 � ,u0−v〉2+λTV (u)

2σ2 du0,
�
〉

= v̄,

for the integral inside the inner product is again a weighted average of zero-mean images. Finally
ûLSE is a zero-mean image shifted by v̄, therefore ûLSE and v have equal average. �

MAP denoising is also average preserving, because the addition of a constant to an image
does not change the total variation, while C 7→ ‖(v +C)− u‖2 is minimum when v̄ +C = ū for
any images u and v [Aubert and Kornprobst 2006].

3.1.2 Invariances

In this subsection several invariance properties of SLSE are given. These properties are shared
with MAP denoising.

Proposition 3.2 Let s : RΩ → RΩ be a linear isometry such that for all u ∈ RΩ, TV ◦ s(u) =
TV (u) holds. Then

∀v ∈ RΩ, SLSE ◦ s(v) = s ◦ SLSE(v).

Proof : The change of variable u′ = s−1(u) in the numerator and the denominator of (3.1)
yields

SLSE(s(v)) =

∫
s(u′)e

‖s(u′)−s(v)‖2+λTV (s(u′))
2σ2 du′

∫
e

‖s(u′)−s(v)‖2+λTV (s(u′))
2σ2 du′

,



70 Chapter 3. Theoretical properties

because s being an isometry implies ds(u′) = du′. Furthermore s is isometric, so we have
‖s(u′)− s(v)‖2 = ‖u′ − v‖2, and TV (s(u′)) = TV (u′) thus

SLSE ◦ s(v) =

∫
s(u′)e

‖u′−v‖2+λTV (u′)
2σ2 du′

∫
e

‖u′−v‖2+λTV (u′)
2σ2 du′

= s(SLSE(v)).

because s is linear. �

Corollary 3.1 1. (shift invariance) If TV satisfies

∀c ∈ R, ∀u ∈ RΩ, TV (u+ c) = TV (u),

then
∀u ∈ RΩ, ∀c ∈ R, SLSE(u+ c) = SLSE(u) + c.

2. (translation invariance) Assume here that Ω is a torus. Let t ∈ Z2. If τt is a translation
operator defined by τt ◦ u(x) = u(x− t) for all u ∈ RΩ, and if TV satisfies

TV ◦ τt = TV,

then
SLSE ◦ τt = τt ◦ SLSE.

3. (π/2-rotation invariance) If ρ is a π/2-rotation sending Ω onto itself, and if TV satisfies

TV ◦ ρ = TV (u),

then
SLSE ◦ ρ = ρ ◦ SLSE.

4. (“involution invariance”) If s : RΩ → RΩ, a linear isometry, and v ∈ Rn are such that







s2 = Id,

∀u ∈ RΩ, TV (s(u)) = TV (u),

s(v) = v

then s(ûLSE) = ûLSE.

Proof : The operators s involved in the four examples are all linear and isometric, and satisfy
TV (s(u)) = TV (u) for all u ∈ RΩ. Then Proposition 3.2 applies. �

These properties can help find the structure of the LSE denoised version of images containing
lots of redundancies and structure. For example if TV is translation invariant, and if v is a
constant image, then SLSE(v) = v. Indeed, v is invariant under the translations of vector (1, 0)
and (0, 1), and so is SLSE(v); moreover the average gray level of SLSE(v) is the same as v.
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Finally SLSE(v) is a constant equal to v. Another example is given by the checkerboard, defined
by

∃x, y ∈ R, v(i, j) =

{

x if i+ j even

y if i+ j odd.

It is quite easy to see that SLSE(v) is also a checkerboard (use the invariance by translations
of vectors (1, 1) and (1,−1)) (but it seems difficult to get the parameters (x, y) of the denoised
image). It means that SLSE is likely to preserve the strong geometric features of images.

3.1.3 Regularity

Until now the properties of the LSE denoiser were common with the MAP denoiser. We now
come to the first result that distinguishes LSE from MAP, and concerns the regularity of SLSE.

Proposition 3.3 The TV-LSE denoiser SLSE is continuously differentiable.

Note that the MAP denoiser is continuous and even Lipschitz continuous, but not differen-
tiable. This can be seen by considering the family of input images

vx(i, j) =

{

x if i+ j even

−x if i+ j odd

(dilated centered checkerboards), for which the MAP denoised image is the checkerboard

SMAP (vx)(i, j) =

{

max(x− λ, 0) if i+ j even

−max(x− λ, 0) if i+ j odd.

The mapping x 7→ SMAP (vx)(i, j) is not differentiable everywhere. Hence SMAP is not differen-
tiable.

Proof of Proposition 3.3 : First, note that if h is a unit vector of RΩ then

|t| < ε ⇒ ‖u− v − th‖2 ≥ 1

2
‖u− v‖2 − ε2. (3.4)

Let us first prove the continuity of SLSE. Let v ∈ RΩ and ε > 0, and let us prove that SLSE is
continuous on the ball B(v, ε). Let v ′ ∈ B(v, ε). Then for both mappings g(u) = 1 and g(u) = u,

the functions v′ 7→ g(u) exp(− ‖u−v′‖2+λTV (u)
2σ2 ) are continuous, and have a uniform upper bound

thanks to (3.4) given by

∣
∣
∣
∣
g(u)e−

‖u−v′‖2+λTV (u)

2σ2

∣
∣
∣
∣
≤ |g(u)|e−

1
2 ‖u−v‖2−ε2+λTV (u)

2σ2 ∈ L1(RΩ),

which is an upper bound independent of v ′ ∈ B(v, ε). Hence the continuity theorem under the
integral sign can be applied, and both the numerator and denominator of SLSE are continuous
on B(v, ε). Since the denominator cannot vanish, we deduce that SLSE is continuous on RΩ.
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To prove the differentiability of SLSE, let h be a unit vector of RΩ and ε > 0. The functions

t ∈ (−ε, ε) 7→ g(u)e−
‖u−v−th‖2+λTV (u)

2σ2 ,

where g(u) = 1 or u, are C1, with derivative

t ∈ (−ε, ε) 7→ g(u)(−2t − 2〈u− v, h〉
2σ2

)e−
‖u−v−th‖2+λTV (u)

2σ2 ,

and satisfy thanks to (3.4)

∣
∣
∣
∣
g(u)

(

−2t− 2〈u− v, h〉
2σ2

)

e−
‖u−v−th‖2+λTV (u)

2σ2

∣
∣
∣
∣
≤ |g(u)|ε + ‖u− v‖

σ2
e−

1
2 ‖u−v‖2+λTV (u)

2σ2 e
ε2

2σ2 .

This bound is independent of t (provided that |t| < ε) and h ∈ B(0, 1), and is integrable with
respect to u ∈ RΩ since the Gaussian distribution admits moments of order 1 and 2. Now
thanks to the derivation theorem under the integral sign, the denominator and the numerator
of SLSE(v + th) satisfy







∂
∂t

∫
e−

‖u−v−th‖2+λTV (u)

2σ2 du

∣
∣
∣
∣
t=0

=
∫ 〈u−v,h〉

σ2 e−
‖u−v‖2+λTV (u)

2σ2 du

∂
∂t

∫
ue−

‖u−v−th‖2+λTV (u)

2σ2 du

∣
∣
∣
∣
t=0

=
∫
u 〈u−v,h〉

σ2 e−
‖u−v‖2+λTV (u)

2σ2 du.

Therefore the differential of SLSE writes

dSLSE(v)(h) =

∫
u〈u− v, h〉e−

Eλ(u)

2σ2 du
∫
e−

Eλ(u)

2σ2 du
−
∫
ue−

Eλ(u)

2σ2 du
∫
e−

Eλ(u)

2σ2 du

∫
〈u− v, h〉e−

Eλ(u)

2σ2 du
∫
e−

Eλ(u)

2σ2 du

=

∫
u〈u, h〉e−

Eλ(u)

2σ2 du
∫
e−

Eλ(u)

2σ2 du
−
∫
ue−

Eλ(u)

2σ2 du
∫
e−

Eλ(u)

2σ2 du

∫
〈u, h〉e−

Eλ(u)

2σ2 du
∫
e−

Eλ(u)

2σ2 du
.

Thus

(dSLSE(v))i,j =

∫
uiuje

− ‖u−v‖2+λTV (u)

2σ2 du
∫
e−

‖u−v‖2+λTV (u)

2σ2 du

−
∫
uie

− ‖u−v‖2+λTV (u)

2σ2 du
∫
e−

‖u−v‖2+λTV (u)

2σ2 du

∫
uje

− ‖u−v‖2+λTV (u)

2σ2 du
∫
e−

‖u−v‖2+λTV (u)

2σ2 du

.

Let us prove the continuity of dSLSE again by dominated convergence theorem. Let i and
j in Ω. For g(u) = uiuj as for g(u) = ui or g(u) = uj or g(u) = 1, the functions v 7→
g(u) exp(− ‖u−v‖2+λTV (u)

2σ2 ) are continuous with respect to v, and satisfy, for all h such that
‖h‖ ≤ ε,

∣
∣
∣
∣
g(u)e−

‖u−v−h‖2+λTV (u)

2σ2

∣
∣
∣
∣
≤ |g(u)|e−

1
2 ‖u−v‖2+λTV (u)

2σ2 e
ε2

2σ2 ,

which are integrable with respect to u, and now thanks to the dominated convergence theorem
every term involved in dSLSE is continuous, and thus dSLSE is continuous. �
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3.1.4 Explicit solution for a 2-pixel clique

Contrary to MAP denoising where explicit solutions are computable for some kinds of images
[Strong and Chan 1996, 2003; Steidl et al. 2004; Alter et al. 2005a], it seems much more difficult
to find explicit solutions of TV-LSE, even for very simple images (except from constant images).
Indeed, for an image as simple as a checkerboard or a white Dirac on one pixel, the LSE denoiser
requires the integration over every image u ∈ RΩ, and despite simplicity of the input and the
multiple symmetry invariances the multi-dimensional integration is hard to handle.

A crucial parameter for explicit computation seems to be the size of the image. Explicit
computation is feasible for very small images, which we will call cliques for this purpose, referring
to the elementary interaction windows in Gibbs fields.

Let v = (v1, v2) a 2-pixel clique. Then ûLSE, here defined by

ûLSE =

∫
(u1, u2) e

− (u1−v1)2+(u2−v2)2+λ|u1−u2|
2σ2 du1du2

∫
e−

(u1−v1)2+(u2−v2)2+λ|u1−u2|
2σ2 du1du2

, (3.5)

with the particular TV operator

TV (u1, u2) = |u1 − u2|

can be explicitly derived, as described in the next proposition. The proof (which is quite a long
proof for such a simple case) repels any generalization to large images.

Proposition 3.4 Let v be a 2-pixel clique, with gray values (v1, v2). Then the gray level of the
right pixel of ûLSE is given by

ûLSE(2) = v2 −
λ

2

e
−λδ
2σ2 φ

(
δ−λ
σ
√

2

)

− e
λδ
2σ2 φ

(

− δ+λ
σ
√

2

)

e
−λδ
2σ2 φ

(
δ−λ
σ
√

2

)

+ e
λδ
2σ2 φ

(

− δ+λ
σ
√

2

) , (3.6)

where δ = v2 − v1 and φ(x) = 1√
2π

∫ x
−∞ e−

t2

2 dt is the cumulative distribution function of the

normal distribution N (0, 1). The denoised left pixel ûLSE(1) can be deduced by symmetry.

The proof of Proposition 3.4 begins with the following lemma.

Lemma 3.1 Let J : τ 7→ 1√
2π

∫

R

e−
(z−τ)2

2 φ(z)dz. Then for any τ ∈ R,

J(τ) = φ

(
τ√
2

)

Proof of Lemma 3.1: J writes

J(τ) =
1

2π

∫

z

∫

t<z
e−

(z−τ)2

2 e−
t2

2 dtdz.
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The 2-D change of variable x = z−t√
2

and y = z+t√
2

yields a separable integral

J(τ) =
1

2π

∫

y

∫

x>0
e−

(
x+y√

2
−τ)2

2 e−
(y−x)2

4 dxdy

= e−
τ2

2
1

2π

∫

y
e−

y2−
√

2τy
2 dy

∫

x>0
e−

x2−
√

2τx
2 dx

=
e−

τ2

2

2π
· e τ2

4

√
2π · e τ2

4

√
2πφ

(
τ√
2

)

= φ

(
τ√
2

)

,

which proves Lemma 3.1. �

Proof of Proposition 3.4: The denominator of ûLSE(2) in (3.5)

D =

∫

R2

exp

[

− 1

2σ2

(
(u1 − v1)2 + (u2 − v2)2 + λ|u1 − u2|

)
]

du1du2

can be first integrated against u2 ∈ R, separating the cases {u2 < u1} from {u2 > u1}. We have

D = σ

∫

u1

e−
(u1−v1)2

2σ2

[

φ

(

u1 − v2 + λ
2

σ

)

e
(v2−λ

2 )2−λu1

2σ2 + φ

(

−u1 + v2 + λ
2

σ

)

e
(v2+ λ

2 )2+λu1

2σ2

]

du1.

Let us make the change of variable z =
u1−v2+

λ
2

σ in the first term and z =
u1−v2−λ

2
σ in the second

one. We obtain

D =
√

2πσ2e
λ2

4σ2

[

e
λδ
2σ2 J

(

−δ + λ

σ

)

+ e
−λδ
2σ2 J

(
δ − λ
σ

)]

= 2πσ2e
λ2

4σ2

[

e
λδ
2σ2 φ

(

−δ + λ

σ
√

2

)

+ e
−λδ

2σ2 φ

(
δ − λ
σ
√

2

)]

,

thanks to Lemma 3.1.
Now, let us focus on the computation of the numerator N2 of ûLSE(2) in (3.5), that is on

N2 =

∫

u2 e
− (u1−v1)2+(u2−v2)2+λ|u1−u2|

2σ2 du1du2.

We would like to link N2 to the partial differential of D with respect to v2. To this end, let us
first check that the theorem of differentiation under the integral sign applies for ∂D

∂v2
. It suffices

to check that for any compact interval I ⊂ R, the function

|v2 − u2| e−
(u1−v1)2+(u2−v2)2+λ|u1−u2|

2σ2

can be bounded by an integrable function independently from v2 ∈ I. Let I = [a, b]. Then for
any v2 ∈ [a, b], we have, thanks to a triangle inequality,

∀u2 ∈ R,

∣
∣
∣
∣
u2 −

a+ b

2

∣
∣
∣
∣
− b− a

2
≤ |u2 − v2| ≤

∣
∣
∣
∣
u2 −

a+ b

2

∣
∣
∣
∣
+
b− a

2
,
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which implies that

|v2 − u2|e−
(u1−v1)2+(u2−v2)2+λ|u1−u2|

2σ2 ≤
(∣
∣
∣
∣
u2 −

a+ b

2

∣
∣
∣
∣
+
b− a

2

)

e−
(|u2−a+b

2 |− b−a
2 )2

2σ2 e−
(u1−v1)2

2σ2 ,

which is integrable with respect to (u1, u2) ∈ R2. Then D is differentiable with respect to v2,
and the partial differential of D with respect to v2 satisfies

∂D

∂v2
= −

∫
v2 − u2

σ2
e−

(u1−v1)2+(u2−v2)2+λ|u1−u2|
2σ2 du1du2 = − 1

σ2
[Dv2 −N2],

which implies that it is enough to compute ∂D
∂v2

to obtain

ûLSE(2) =
N2

D
= v2 + σ2 1

D

∂D

∂v2
. (3.7)

Now, we have

∂D

∂v2
=

2πλσ2

2σ2
e

λ2

2σ2

[

e
λ(v2−v1)

2σ2 φ

(

−v2 − v1 + λ

σ
√

2

)

− e−
λ(v2−v1)

2σ2 φ

(

−v2 − v1 − λ
σ
√

2

)]

,

which implies, by denoting δ = v2 − v1, and by putting this together with (3.7), the desired
equality (3.6). �

Denoting v̄ = v1+v2
2 , and using the classical equivalent

φ(x) ∼
x→−∞

1

|x|
√

2π
e−

x2

2 ,

we can find an equivalent for ûLSE(2) when |δ| is large

{

ûLSE(2) ∼ v̄ + δ
2 − λ

2 when δ → +∞,
ûLSE(2) ∼ v̄ + δ

2 + λ
2 when δ → −∞.

The LSE denoising of 2-pixel clique should be compared to MAP denoising, for which the
right gray level satisfies

ûMAP (2) =







v̄ + δ
2 − λ

2 if δ > λ

v̄ if |δ| ≤ λ
v̄ + δ

2 + λ
2 if δ < −λ.

We find out that when |δ| > λ, the asymptotes of ûLSE are exactly the affine lines of ûMAP .
This asymptotic behavior as well as the regularity of SLSE (Proposition 3.3) can be seen on
Figure 3.1, where ûLSE(2) is plotted against δ.
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-30

-20

-10

 0

 10

 20

 30

-40 -20  0  20  40

TV-LSE
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Figure 3.1: The LSE-denoised right pixel of a 2-pixel clique with gray levels (−δ/2, δ/2) is plotted
against δ (solid bold line) (see (3.6) with v̄ = (v1 + v2)/2 = 0, λ = 20, σ = 10), as well as its asymptotes
(dashed lines). The MAP-denoised right pixel is also plotted against δ (solid thin line) and has the shape
of a typical soft-thresholding. The outer branches of the MAP denoising are equal to the asymptotes
of the LSE denoising. The LSE curve is more regular than the MAP curve, which agrees with the
differentiability of SLSE .

3.2 Asymptotic behavior of TV-LSE

Unlike MAP denoising, LSE denoising makes use of 2 distinct parameters λ and σ. If σ is fixed,
we expect the regularity of the LSE denoised image to increase when λ increases as in MAP
denoising. The impact of σ is less clear. The next theorem sums up several asymptotic behaviors
of ûLSE , when one of the parameter is fixed and the other goes to 0 or +∞. The operator TV
will only be assumed to be non-negative, except from the following cases for which we need other
assumptions.

Assumption 1 (λ is fixed and σ → 0) The TV operator is assumed to be convex and coercive.

Assumption 2 (λ is fixed and σ →∞) The TV operator is assumed to be Lipschitz continuous,
i.e. there exists α > 0 such that

∀u, u′ ∈ RΩ, |TV (u)− TV (u′)| ≤ α‖u′ − u‖.

Assumption 3 (σ is fixed and λ→ +∞) The TV operator is assumed to be defined on a finite
rectangular grid Ω = {1, . . . , n1} × {1, . . . , n2}, and to satisfy

∃C > 0 / ∀u ∈ RΩ, ∀k, k′ ∈ Ω, |k − k′| = 1⇒ TV (u) ≥ C|uk′ − uk|.

Furthermore TV is assumed to be shift-invariant, i.e.

∀c ∈ R, ∀u ∈ RΩ, TV (u+ c) = TV (u).
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Theorem 3.1 Let v the noisy image. For all fixed λ > 0, we have

(i) ûLSE(λ, σ) −−−→
σ→0

ûMAP (λ),

(ii) ûLSE(λ, σ) −−−−−→
σ→+∞

v,

and for all σ > 0, we have

(iii) ûLSE(λ, σ) −−−→
λ→0

v,

(iv) ûLSE(λ, σ) −−−−→
λ→+∞

v̄
�
,

where v̄
�

is the image which is constant and equal to the average of v. Assumption 1 is necessary
for item (i) only, Assumption 2 for item (ii) only, Assumption 3 for item (iv) only.

We summarize these limits, together with some others, in Figure 3.2.

Proof : When σ goes to 0, thanks to Assumption 1, the probability distribution 1
Z exp

(

− Eλ
2σ2

)

is log-concave, hence unimodal (Z is a normalizing constant depending on σ). Therefore it con-
verges to the Dirac distribution in ûMAP (λ) = arg minuEλ(u), whose expectation is ûMAP (λ),
which proves (i).

For (ii), let us consider the change of variable w = (u− v)/σ. Then

ûLSE(λ, σ) = v +

∫

RΩ

σwe−
1
2
(‖w‖2+λ

σ
TV (w+ v

σ
))dw

∫

RΩ

e−
1
2
(‖w‖2+λ

σ
TV (w+ v

σ
))dw

= v +
N

D
.

When σ → ∞, the function inside the denominator D converges almost everywhere (a.e.) to
e−‖w‖2/2, ans is uniformly bounded by e−‖w‖2/2, thus thanks to Lebesgue’s dominated conver-
gence theorem, D converges towards

∫
e−‖w‖2/2dw.

For the numerator, notice that the mean value theorem applied to x 7→ e−x implies the
existence of a real number cw,σ ∈ [0, λ

2σTV (w + v
σ )] such that

e−
λ
2σ

TV (w+ v
σ

) = 1− λ

2σ
TV (w +

v

σ
)e−cw,σ .

Hence N can be split into

N = σ

∫

we−
‖w‖2

2 dw − λ

2

∫

we−
‖w‖2

2 TV (w +
v

σ
)e−cw,σ

︸ ︷︷ ︸

fσ(w)

dw.

The first integral is equal to zero. Concerning the second integral, when σ →∞, cw,σ goes to 0,
and fσ satisfies for every σ ≥ 1,







fσ(w) −−−→
σ→∞

we−
‖w‖2

2 TV (w) a.e.

‖fσ(w)‖ ≤ ‖w‖e− ‖w‖2
2 (TV (w) + α‖v‖) ∈ L1(RΩ)
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ûLSE(λ, σ) −→ . . .

when... σ → 0 σ fixed σ →∞

λ→ 0 v if λ
σ2 →∞ v if λ

σ2 → 0 v v

λ fixed ûMAP (λ) ûLSE(λ, σ) v

λ→∞ v̄
�

v̄
�

v̄
�

if λ
σ2 →∞ v if λ

σ2 → 0

ûLSE(2σ2β, σ) −→ . . .

when... σ → 0 σ fixed σ →∞

β → 0 v v v if σ2β → 0 v̄
�

if σ2β →∞

β fixed v ûLSE(2σ2β, σ) v̄
�

β →∞ v if σ2β → 0 v̄
�

if σ2β →∞ v̄
�

v̄
�

Figure 3.2: Top table: behavior of ûLSE(λ, σ) for extreme values of λ and σ. Notice that the case
where λ and σ simultaneously go to 0 or ∞ splits into several subcases, each concerning a behavior of

λ
2σ2 = β (see Subsection 1.2.1 for the interpretation of β as the inverse of the temperature coefficient

in the Gibbs field given by the prior 1
Z e

−βTV (u)). In these cases we only give the limit of ûLSE when
β → 0 and β → ∞. Bottom table: parameters (β, σ) are also suitable parameters for ûLSE. Letting
the parameters fixed or go to 0 or ∞ leads to the second table. A dichotomy is also needed in the cases
(β → 0, σ → ∞) and (β → ∞, σ → 0), between the cases λ → 0 and λ → ∞. These tables will be
experimentally confirmed in Chapter 4 Section 4.2.

where α is the Lipschitz-continuity coefficient of TV (Assumption 2). Again Lebesgue’s domi-
nated convergence theorem applies, and

∫

fσ(w)dw −−−→
σ→∞

∫

we−
‖w‖2

2 TV (w)dw = 0

because the function inside the integral is odd, and then N goes to 0, which implies the conver-
gence of ûLSE(λ, σ) towards v, and proves (ii).

For (iii), the numerator and the denominator of ûLSE(k) satisfy

uke
− ‖u−v‖2+λTV (u)

2σ2 −−−→
λ→0

uke
− ‖u−v‖2

2σ2 and e−
‖u−v‖2+λTV (u)

2σ2 −−−→
λ→0

e−
‖u−v‖2

2σ2
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and the uniform bounds
∣
∣
∣
∣
uke

− ‖u−v‖2+λTV (u)

2σ2

∣
∣
∣
∣
≤ |uk|e−

‖u−v‖2
2σ2 ∈ L1(RΩ) and

∣
∣
∣
∣
e−

‖u−v‖2+λTV (u)

2σ2

∣
∣
∣
∣
≤ e−

‖u−v‖2
2σ2 ∈ L1(RΩ)

give the result thanks again to Lebesgue’s dominated convergence theorem.

For (iv), the dominated convergence theorem cannot be directly applied because ue−
1

2σ2 TV (u)

is not L1(RΩ). We need to come down to a space of constant mean images where it becomes
L1. Let v̄ denote the average of v on Ω. Then thanks to Assumption 3, the change of variable
x = u− v̄ yields

ûLSE(λ, σ) = v̄ +

∫
xe−

1
2σ2 (‖x+v̄−v‖2+λTV (x))dx

∫
e−

1
2σ2 (‖x+v̄−v‖2+λTV (x))dx

,

and denoting E0 the space of zero-mean images, splitting x into x = x̄+ ε with ε ∈ E0 yields

ûLSE(λ, σ) = v̄ +

∫

ε∈E0
e−

1
2σ2 (‖ε−v‖2+λTV (ε)) ∫

x̄(x̄+ ε)e−
1

2σ2 (x̄2−v̄2)dx̄dε
∫

ε∈E0
e−

1
2σ2 (‖ε−v‖2+λTV (ε)) ∫

x̄ e
− 1

2σ2 (x̄2−v̄2)dx̄dε

= v̄ +

∫

ε∈E0
e−

1
2σ2 (‖ε−v‖2+λTV (ε))(0 +

√
2πσε)e

v̄2

2σ2 dε
∫

ε∈E0
e−

1
2σ2 (‖ε−v‖2+λTV (ε))√2πσe

v̄2

2σ2 dε

= v̄ +

∫

ε∈E0
εe−

1
2σ2 (‖ε−v‖2+λTV (ε))dε

∫

ε∈E0
e−

1
2σ2 (‖ε−v‖2+λTV (ε))dε

.

Now the change of variable y = λε leads to

ûLSE(λ, σ) = v̄ +
1

λ

∫

y∈E0
ye−

1
2σ2 (‖ y

λ
−v‖2+TV (y))dy

∫

y∈E0
e−

1
2σ2 (‖ y

λ
−v‖2+TV (y))dy

. (3.8)

For both functions g(y) = 1 and g(y) = y, we have







g(y)e−
1

2σ2 (‖ y
λ
−v‖2+TV (y)) −−−→

λ→∞
g(y)e−

1
2σ2 (‖v‖2+TV (y)),

∥
∥
∥g(y)e

− 1
2σ2 (‖ y

λ
−v‖2+TV (y))

∥
∥
∥ ≤ ‖g(y)‖e−

1
2σ2 TV (y) which is L1(E0) as we check now.

First, for g(y) = 1, Assumption 3 implies the existence of a constant C1 > 0 such that

TV (y) ≥ C1





n1∑

i=1

n2−1∑

j=0

|yi,j+1 − yi,j|+
n2−1∑

j=1

|yi+1,1 − yi,1|



 .

Thus we get
∣
∣
∣e

− 1
2σ2 TV (y)

∣
∣
∣ ≤ e−

C1
2σ2

h

Pn1
i=1

Pn2−1
j=1 |yi,j+1−yi,j |+

Pn2−1
j=1 |yi+1,1−yi,1|

i

,
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and the change of variables y ∈ E0 7→ ((ηi,j)1≤i≤n1,1≤j≤n2−1, (ξi)1≤i≤n1−1) with ηi,j = yi,j+1−yi,j

and ξi = yi+1,1 − yi,1 leads to

∣
∣
∣
∣

∫

e−
1

2σ2 TV (y)dy

∣
∣
∣
∣
≤

n1∏

i=1

n2−1∏

j=1

∫

e−
C1
2σ2 |ηi,j |dηi,j ·

n1−1∏

i=1

∫

e−
C1
2σ2 |ξi|dξi

which is finite because |Ω| is finite. Now for g(y) = y, we have the equivalence of norms on E0

‖y‖2 � ‖y‖1 �
n1∑

i=1

n2−1∑

j=1

|yi,j+1 − yi,j|+
n2−1∑

j=1

|yi+1,1 − yi,1|.

(The notation f1 � f2 means that there exist two positive constants A and B such that Af1 ≤
f2 ≤ Bf1). Then there exists C2 > 0 such that

∀y ∈ E0, ‖y‖2 ≤ C2





n1∑

i=1

n2−1∑

j=1

|yi,j+1 − yi,j|+
n2−1∑

j=1

|yi+1,1 − yi,1|



 .

Now, with the same change of variables as in the case g(y) = 1, i.e.

y ∈ E0 7→ ((ηi,j)1≤i≤n1,1≤j≤n2−1, (ξi)1≤i≤n1−1) ,

we get
∫

E0

‖y‖2 e−
1

2σ2 TV (y)dy

≤ C2

∫

E0





n1∑

i=1

n2−1∑

j=1

|yi,j+1 − yi,j|+
n2−1∑

j=1

|yi+1,1 − yi,1|



 e−
1

2σ2 TV (y)dy

≤ C2





n1∑

i=1

n2−1∑

j=1

∫

|ηi,j|e−
C1
2σ2

h

Pn1
i′=1

Pn2−1

j′=1
|ηi′,j′ |+

Pn1−1

i′=1
|ξ′i|

i

dηi,jdξi

+

n2−1∑

j=1

∫

|ξi|e−
C1
2σ2

h

Pn1
i′=1

Pn2−1

j′=1
|ηi′,j′ |+

Pn1−1

i′=1
|ξ′i|

i

dηi,jdξi





= C2





n1∑

i=1

n2−1∑

j=1

∫

|ηi,j|e−
C1|ηi,j |

2σ2 dηi,j

∏

{i′,j′}6={i,j}

∫

e−
C1|ηi′,j′ |

2σ2 dηi′,j′

n1−1∏

i′=1

∫

e−
C1|ξi′ |

2σ2 dξi′

+

n1−1∑

i=1

n1∏

i′=1

n2−1∏

j′=0

∫

e−
C1|ηi′,j′ |

2σ2 dηi′,j′

∫

|ξi|e−
C1|ξi|
2σ2 dξi

∏

i′ 6=i

∫

e−
C1|ξi′ |

2σ2 dξi′





which is finite. Then thanks again to Lebesgue’s dominated convergence theorem, the fraction
of integrals in (3.8) is bounded uniformly in λ and dividing by λ leads to the desired convergence

ûLSE(λ, σ) −−−→
λ→∞

v̄.

�
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3.3 No staircasing in TV-LSE denoised images

Now we come to the main improvement of TV-LSE denoising compared to TV-MAP denoising:
there is no staircasing in TV-LSE denoised images. Here again, the domain Ω is a finite subset
of Z2, and does not need to be a rectangle. The noisy input image is assumed to be a random
image, which will be denoted V . We need the two following assumptions.

Assumptions

(A1) The distribution of the random image V is absolutely continuous with respect to Lebesgue’s
measure on RΩ.

(A2) The TV operator is any mapping RΩ → R such that, for every image u,







∀c ∈ R, ∀u ∈ RΩ, TV (u+ c) = TV (u)

∃α > 0 / ∀u ∈ RΩ, ∀h ∈ R, ∀k ∈ Ω, TV (u)− α|h| ≤ TV (uk,h) ≤ TV (u) + α|h|
∃C > 0 / ∀k, k′ ∈ Ω, |k − k′| = 1⇒ TV (u) ≥ C|uk′ − uk|

where uk,h is equal to u except at pixel k where the value is uk,h
k = uk + h.

We now come to the statement of the main theorem.

Theorem 3.2 Let V be a random image satisfying Assumption (A1). Let SLSE(V ) denote the
output of V through the TV-LSE denoiser, where the TV operator satisfies (A2). Let k and k ′

be neighbor pixels of Ω, i.e. such that |k ′ − k| = 1. Then SLSE(V ) satisfies

P(SLSE(V )k′ = SLSE(V )k) = 0.

In other words, for almost every realization v of V , ûLSE contains no region with 2 pixels or
more where it is constant: there is no staircasing, in the sense of [Nikolova 2004] (no constant
region, but perhaps discontinuities, see Chapter 1).

Examples and interpretation

• If V writes V = u+N with u a fixed image and N a white Gaussian noise, i.e. a realization
of V is a noisy image, then V satisfies Assumption (A1), and thanks to the Theorem, ûLSE

almost surely contains no staircasing.

• If V is drawn from the total variation distribution (i.e. V ∼ 1
Z e

−λTV (V )), then it satisfies
Assumption (A1), and ûLSE almost surely contains no staircasing.

• Most of the commonly used TV operators satisfy Assumption (A2), as Proposition 3.5
will precise at Section 3.4.
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Proof of Theorem 3.2: Let v ∈ RΩ be an input image. Let g : R→ R the function defined
by

g : z 7→
∫

RΩ

(uk′ − uk) exp

(

−
(uk − z)2 +

∑

l 6=k(ul − vl)
2 + λTV (u)

2σ2

)

du. (3.9)

We have

SLSE(v)k′ = SLSE(v)k ⇐⇒ g(vk) = 0.

We need the following lemma which we shall prove later.

Lemma 3.2 g is analytic and non-identically null.

Assume Lemma 3.2 proven. Then g−1({0}) cannot contain any accumulation point (other-
wise g would be constant thanks to the isolated zero theorem for analytic functions), and in
particular the event (g(z) = 0) has a zero probability under the density distribution of the gray
level Vk of V because of Assumption (A1)

PVk
(g(Vk) = 0) = 0.

Now let f be the probability density function of V . We have

P(g(Vk) = 0) =

∫

(vl)l6=k

∫

vk

�

g(vk)=0f(v)dvkd(vl)l 6=k

with
�

g(vk)=0 = 0 almost everywhere. The notation d(vl)l 6=k means an integration over all the
gray levels of v, except from vk. Therefore

P(g(Vk) = 0) =

∫

(vl)l6=k

∫

vk

0.f(v)dvkd(vl)l 6=k = 0.

Finally we get

P(SLSE(V )(k) = SLSE(V )(k′)) = P(g(Vk) = 0) = 0,

which ends the proof. �

Proof of Lemma 3.2: Let z ∈ C generalize the gray level vk to complex values. With (3.9),
g can naturally be extended to a C→ C function. Let us prove that g is holomorphic. To this
end, let f : RΩ × C→ C denote the function inside the integral defining g. We have

f(u, z) = (uk′ − uk) exp

(

−
(uk − z)2 +

∑

l 6=k(ul − vl)
2 + λTV (u)

2σ2

)

.

For any A > 0, let KA denote the compact set [−A,A] + i[−A,A].

• for all z ∈ KA, u 7→ f(u, z) is integrable;

• for every u ∈ RΩ, z 7→ f(u, z) is Gaussian, hence holomorphic;
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• for every z = x+ iy ∈ KA (x, y ∈ R), f can be bounded from above as follows

|f(u, z)| ≤ |uk′ − uk|
∣
∣
∣
∣
∣
exp

(

−
∑

l 6=k(ul − vl)
2 + (uk − z)2

2σ2

)∣
∣
∣
∣
∣

= |uk′ − uk| exp

(

−
∑

l 6=k(ul − vl)
2 + (uk − x)2 − y2

2σ2

)

≤ |uk′ − uk| exp

(

−
∑

l 6=k(ul − vl)
2 + (u2

k − 2A|uk| −A2)

2σ2

)

≤ (|uk′ |+ |uk|) exp

(

−
∑

l 6=k(ul − vl)
2 + (|uk| −A)2

2σ2

)

e
A2

σ2 ,

which is integrable with respect to u ∈ RΩ.

Thus, applying the theorem of differentiation of holomorphic functions under Lebesgue integral,
g : z 7→

∫
f(u, z)du is holomorphic on KA, for every A, thus is holomorphic on C. It comes that

g is an analytic function on C.
Now we must prove that g is not the constant null function. Let us assume that g is null

everywhere. Then

g(z) =

∫

u
(uk′ − uk) exp

(

−
(uk − z)2 +

∑

l 6=k(ul − vl)
2 + λTV (u)

2σ2

)

du

=

∫

uk

e−
(z−uk)2

2σ2 ϕ(uk)duk

= Gσ ∗ ϕ(z)

where Gσ is the Gaussian kernel with bandwidth σ, and ϕ is given by

ϕ(uk) =

∫

(ul)l6=k

(uk′ − uk) exp

(

−
∑

l 6=k(ul − vl)
2 + λTV (u)

2σ2

)

d(ul)l 6=k (3.10)

Let us first prove that ϕ is identically null. To this end, let us check that ϕ is in L1, using
Assumption (A2). We have

∫

|ϕ(uk)|duk =

∫

RΩ

|uk′ − uk| exp

(

−
∑

l 6=k(ul − vl)
2 + λTV (u)

2σ2

)

du

≤
∫

RΩ

|uk′ − uk| exp

(

−
∑

l 6=k(ul − vl)
2 + λC|uk′ − uk|
2σ2

)

du

≤
∫

R

|z| exp

(

−C|z|
2σ2

)

dz ·
∏

l 6=k

∫

R

exp

(

−(ul − vl)
2

2σ2

)

dul

< +∞.
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Hence ϕ is in L1 and satisfies
∀z ∈ R Gσ ∗ ϕ(z) = 0.

Considering Fourier transforms (written ·̂) we get

∀ξ ∈ R Ĝσ(ξ).ϕ̂(ξ) = 0.

As Ĝσ(z) = G2π/σ never vanishes, ϕ̂ necessarily is identically null. Injectivity of Fourier trans-
form implies that ϕ is identically null.

Now we shall find a contradiction by proving that ϕ(z) is negative for a large enough z ∈ R.
The change of variable ul ← ul − z for every l 6= k in Equation (3.10) yields, using Assumption
(A2),

ϕ(z) =

∫

(ul)l6=k

uk′ exp

(

−
∑

l 6=k(ul + z − vl)
2 + λTV (u)

2σ2

)

d(ul)l 6=k

where u in TV (u) is composed of the gray levels ul if l 6= k and 0 if l = k. Let h = uk′ . Then

ϕ(z) =

∫

(ul)l6=k,k′

∫

h∈R

h exp

(

−
∑

l 6=k,k′(ul + z − vl)
2 + (h+ z − vk′)2 + λTV (uk′,h)

2σ2

)

dhd(ul)l 6=k,k′,

where uk′,h is defined by

uk′,h
l =







0 if l = k

h if l = k′

ul otherwise.

Now, coupling positive and negative values of h in the integral, we get

ϕ(z) =

∫

(ul)l6=k,k′
exp

(

−
∑

l 6=k,k′(ul + z − vl)
2

2σ2

)
∫

h>0
hφz(h, (ul)l 6=k,k′)dhd(ul)l 6=k,k′ (3.11)

with

φz(h, (ul)l 6=k,k′) = exp

(

−(h+ z − vk′)2 + λTV (uk′,h)

2σ2

)

−exp

(

−(−h+ z − vk′)2 + λTV (uk′,−h)

2σ2

)

.

Let us prove the strict negativity of φz when z is large enough. The assumption (A2) is needed
to bound φz above by 0. We have

φz(h, (ul)l 6=k,k′) ≤ exp

(

−h
2 + (z − vk′)2 + λTV (uk′,0)

2σ2

)

· A,

with

A = exp

(−2h(z − vk′) + λαh

2σ2

)

− exp

(
2h(z − vk′)− λαh

2σ2

)

= (−2) sinh

(

h(z − vk′ − λα
2 )

σ2

)

.
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Assume z > vk′ + λα
2 . Then A < 0, and therefore φz < 0. As ϕ(z) is the integral of the product

of negative functions on a non-negligible set (3.11), it is negative. This contradicts the nullity
of ϕ(z) for large enough z ∈ R. Finally g is non identically null. This concludes the proof of
Lemma 3.2. �

The Assumption (A2) about the total variation is satisfied by the most common discretiza-
tions of TV . For example, TV operators defined by

TV (u) =
∑

x,y

(|u(x+ 1, y)− u(x, y)|+ |u(x, y + 1)− u(x, y)|)

or

TV (u) =
∑

x,y

√

|u(x+ 1, y)− u(x, y)|2 + |u(x, y + 1)− u(x, y)|2

satisfy Assumption (A2). These schemes are particular cases of more general schemes, which
are proven in Section 3.4, Proposition 3.5, to all satisfy Assumption (A2), as well as all the
assumptions which were needed throughout the thesis.

3.4 Brief analysis of the assumptions on discrete TV

In this section we briefly compile all the assumptions that have been made on the TV operator
both in Chapter 2 and in this chapter, and prove that they are satisfied by the most commonly
used discretizations of the continuous total variation in finite dimension.

Proposition 3.5 Let N be a neighborhood shape, i.e. a finite subset of Z2 containing 0, such
that (0, 1) ∈ N and (1, 0) ∈ N . Let |N | denote the cardinality of N . For each k ∈ Ω let Nk

denote the neighborhood N centered at pixel k defined by

Nk = k +N .

Ṅk will denote the enucleated neighborhood Nk \ {k}. Let 1 ≤ p ≤ ∞ and let ε be an image of
RΩ satisfying

∀k ∈ RΩ, εk ≥ 0

(the case ε = 0 is possible indeed). If A ⊂ Ω and u ∈ RΩ, u(A) will denote the image u restricted
to the set A. For all pixel k ∈ Ω, let ‖ · ‖k denote any norm over Ṅk ∩Ω. Let us define the TV
operator by

TVε,p(u) =
∑

k∈Ω

(

εpk + ‖u(Ṅk ∩ Ω)− uk‖pk
)1/p

and let πε,p(u) = 1
Z e

− ‖u−v‖2+λTVε,p(u)

2σ2 be the associate posterior distribution. Then TVε,p and πε,p
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satisfy the following assertions

(i) πε,p admits finite second order moments

(ii) πε,p is absolutely continuous w.r.t. Lebesgue’s measure

with positive and continuous density on RΩ

(iii) ∃α,∀u, h ∈ RΩ, |TVε,p(u+ h)− TVε,p(u)| ≤ α‖h‖
(iv) ∀s ∈ (0, 1),∃a > 0,∀u ∈ RΩ, π−s

ε,p(u) ≥ a‖u‖
(v) ∀u ∈ RΩ, TVε,p(u) ≥ 0

(vi) ∀c ∈ R,∀u ∈ RΩ, TVε,p(u+ c) = TV (u)

(vii) TVε,p is convex

(viii) ∃C > 0,∀u ∈ RΩ,∀k, k′ ∈ Ω, |k − k′| = 1⇒ TVε,p(u) ≥ C|uk′ − uk|.

Items (i) − (iv) are required in the theoretical results of Chapter 2. Item (v) is a general
assumption for all the result of this chapter. (iii), (vi), (vii) and (viii) are required for the proof
of Theorem 3.1 about the asymptotic behavior of ûLSE . Last, items (iii), (vi) and (viii) are
required in the proof of Theorem 3.2 stating the absence of staircasing.

Proof : Items (ii), (iv), (v), (vi) are straightforward. We focus on the other items.
Now (i) holds because TVε,p is non-negative.
To prove (vii), notice that for each k ∈ Ω,

(εk, u(Ṅk ∩Ω)) 7→
(

εpk + ‖u(Ṅk ∩ Ω)‖pk
)1/p

is a norm over R× (Ṅk ∩Ω), which will be denoted ‖ · ‖k+. Therefore ‖ · ‖k+ is convex for each
k ∈ Ω. Their restriction to {εk} × (Ṅk ∩ Ω) remains convex. TVε,p is a positive combination of
these convex functions, and hence is convex.

We use the norms ‖ · ‖k+ to prove (iii). Let u ∈ RΩ, k ∈ Ω and h ∈ R. Let uk,h be the

image equal to u except at pixel k where its value is uk,h
k = uk + h. Then there exists ck > 0

independent of u such that

‖(εk, uk,h(Ṅk ∩ Ω))− uk‖k+ = ‖(εk, u(Ṅk ∩ Ω))− uk − h‖k+

≤ ‖(εk, u(Ṅk ∩ Ω))− uk‖k+ + ‖(0, h �

Ṅk∩Ω))‖k+

≤ ‖(εk, u(Ṅk ∩ Ω))− uk‖k+ + ck|h|

thanks to the triangle inequality and because ‖ · ‖k+ is equivalent to ‖ · ‖1 in finite dimension.
Likewise

‖(εk, uk,h(Ṅk ∩ Ω))− uk‖k+ ≥ ‖(εk, u(Ṅk ∩ Ω))− uk‖k+ − ck|h|.
Now let l ∈ Ṅk. Then there exists cl > 0 independent of u such that

‖(εl, uk,h(Ṅl ∩ Ω))− ul‖l+ ≤ ‖(εl, u(Ṅl ∩ Ω))− ul‖l+ + ‖(0, 0k,h(Ṅl ∩ Ω))‖l+
≤ ‖(εl, u(Ṅl ∩ Ω))− ul‖l+ + cl|h|
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and
‖(εl, uk,h(Ṅl ∩ Ω))− ul‖l+ ≥ ‖(εl, u(Ṅl ∩ Ω))− ul‖l+ − cl|h|

Thus, as TVε,p(u
k,h) satisfies

TVε,p(u
k,h) =

∑

l∈Ω

‖(εl, uk,h(Ṅl ∩ Ω))− ul‖l+,

gathering the obtained equalities, we get

TVε,p(u)− (
∑

l∈Ω

cl)|h| ≤ TVε,p(u
k,h) ≤ TVε,p(u) + (

∑

l∈Ω

cl)|h|

which proves (iii) since α =
∑

l∈Ω cl does not depend on u nor h.
To prove (viii), let k and k′ such that |k′ − k| = 1. Exchanging k and k′ if necessary we can

assume k′ ∈ Nk. Then there exists Ck > 0 depending on the norm ‖ · ‖k+ only such that

TVε,p(u) ≥ ‖(εk, u
k,h(Ṅk ∩ Ω))− uk‖k+

≥ Ck‖(εk, uk,h(Ṅk ∩ Ω))− uk‖1
≥ Ck|uk′ − uk|

because in finite dimension, ‖ · ‖k+ is equivalent to ‖ · ‖1. Now letting

C = min
l∈Ω

Cl,

we obtain a constant C > 0 independent of k such that

TVε,p(u) ≥ C|uk′ − uk|

holds, which proves (viii). �

3.5 Global analysis of LSE denoisers built on a more general

prior

In this section we take an analytic point of view on the TV-LSE denoiser. We consider general
prior distributions satisfying basic requirements only, and we prove that LSE denoisers are
invertible and regular, and satisfy stability properties, among other things.

Afterwards, the TV-LSE denoiser is proven to be a Maximum A Posteriori denoiser with
a regular associated prior. Again the result is stated for more general priors than TV prior.
This proves that TV-LSE is a kind of regularization of TV-MAP denoiser, and would give
another reason why staircasing effect cannot occur with a LSE risk [Nikolova 2004]. No closed
formulation was found for the obtained smooth prior, but numerical experiments of Chapter 4
will prove that it is different from classical regularization of TV-MAP and has more interesting
denoising properties.

Let p be a probability distribution defined on Rn, satisfying the following assumption.
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Assumption 4 p is absolutely continuous with respect to Lebesgue’s measure and logarithmically
concave (written shortly log-concave), i.e. there exists a convex and coercive mapping f from Rn

to R+ ∪ {+∞} (called potential) such that p has density 1
Z e

−f .

Notice that if p has a density 1
Z e

−f , where Z is, as usual, a normalizing constant, and if p
satisfies Assumption 4, then its potential is such that {y | f(y) < ∞} has a non-empty interior
(otherwise

∫

Rn dp = 0).
Let SLSE denote the LSE-denoiser associated to the prior p. It is defined by

SLSE :







Rn → Rn

y 7→
R

x exp(− ‖x−y‖2
2σ2 )p(x)dx

R

exp(− ‖x−y‖2
2σ2 )p(x)dx

.

Remark We can assume σ = 1 by the following change of variables ȳ = y/σ, x̄ = x/σ,
p̄(t) = p(σt), S̄LSE : y 7→ SLSE(σy)/σ, and rewrite

SLSE :







Rn → Rn

y 7→
R

x exp(− ‖x−y‖2
2

)p(x)dx
R

exp(− ‖x−y‖2
2

)p(x)dx
.

In the sequel σ is set to 1.

Theorem 3.3 The following properties hold:

1. SLSE is continuously differentiable on Rn. Its differential dSLSE at every point y is a
symmetric definite positive matrix.

2. SLSE is monotone in the sense of Brezis [1966], i.e.

∀y1, y2 ∈ Rn, 〈SLSE(y2)− SLSE(y1), y2 − y1〉 ≥ 0.

3. SLSE is non-expansive, i.e.

∀y1, y2 ∈ Rn, ‖SLSE(y2)− SLSE(y1)‖ ≤ ‖y2 − y1‖

4. SLSE is injective.

Proof : 1. The proof for SLSE ∈ C1 is the same as in the TV-case. In the proof of Proposition
3.3, replace TV by f and everything works because f is assumed to be non-negative. The
differential of SLSE at point y satisfies, for each h ∈ Rn

dSLSE(y)(h) =

∫
〈h, x− y〉xe− ‖x−y‖2

2 p(x)dx
∫

exp(−‖x−y‖2

2 )p(x)dx
−
∫
〈h, x− y〉e− ‖x−y‖2

2 p(x)dx
∫
e−

‖x−y‖2
2 p(x)dx

∫
xe−

‖x−y‖2
2 p(x)dx

∫
e−

‖x−y‖2
2 p(x)dx

=

∫
〈h, x〉xe− ‖x−y‖2

2 p(x)dx
∫

exp(−‖x−y‖2

2 )p(x)dx
−
∫
〈h, x〉e− ‖x−y‖2

2 p(x)dx
∫
e−

‖x−y‖2
2 p(x)dx

∫
xe−

‖x−y‖2
2 p(x)dx

∫
e−

‖x−y‖2
2 p(x)dx

.
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The differential dSLSE(y) can be interpreted as a covariance matrix

dSLSE(y) = E[Ξy
tΞy]− EΞy EtΞy = CovΞy with Ξy ∼ qy,

where qy has density 1
Z e

− ‖x−y‖2
2 p(x). Indeed, for each h ∈ Rn,

(CovΞy)h = E[Ξy
tΞyh]− EΞyE[tΞyh]

= E[〈h,Ξy〉Ξy]− E〈h,Ξy〉EΞy,

where we can recognize dSLSE(y)(h). In particular, dSLSE(y) is symmetric with non-negative
eigenvalues. Let us prove now that dSLSE(y) is positive-definite. Let us assume that there exists
a vector h 6= 0 in the kernel of dSLSE(y), i.e. such that

(CovΞy)h = 0.

Then multiplying on the left by th yields

th(CovΞy)h = var〈h,Ξy〉 = 0.

But the support of distribution qy satisfies

Supp(qy) = Supp(p) = {y ∈ Rn|f(y) <∞},

which has non-empty interior. Then 〈h,Ξy〉 cannot have a zero variance. We obtain a contra-
diction. Finally dSLSE(y) is a symmetric positive-definite matrix.

2. (adaptation of the proof of [Brezis 1966, Prop. 2]). Let y1 and y2 in Rn, and let

ϕ(t) = SLSE((1− t)y1 + ty2).

Then the derivative of ϕ satisfies

ϕ′(t) = dSLSE((1 − t)y1 + ty2)(y2 − y1).

As dSLSE((1− t)y1 + ty2) is a positive matrix, we get

〈ϕ′(t), y2 − y1〉 = 〈dSLSE((1 − t)y1 + ty2)(y2 − y1), y2 − y1〉 ≥ 0,

and the mapping ψ(t) = 〈ϕ(t), y2 − y1〉 having derivative 〈ϕ′(t), y2 − y1〉 is non-decreasing. In
particular ψ(1) ≥ ψ(0), which writes

〈SLSE(y2)− SLSE(y1), y2 − y1〉 ≥ 0.

3. As SLSE is differentiable, it suffices to prove that for any y ∈ Rn, all the eigenvalues
of dSLSE(y) are in the interval [0, 1]. We already proved (first part of the proposition) that
the eigenvalues of dSLSE(y) are all positive. To complete the proof, we need the two following
lemmas. Their proof will be given after the current proof.



90 Chapter 3. Theoretical properties

Lemma 3.3 Let G denote the centered Gaussian kernel with standard deviation (s.d.) 1. Let
g = − log(p ∗G). Then for all y ∈ Rn,

dSLSE(y) = In −H(g)(y). (3.12)

where In is the identity matrix of Rn, and H(g)(y) is the Hessian matrix of g.

Lemma 3.4 g = − log(p ∗G) is convex.

Assume that Lemma 3.3 and Lemma 3.4 hold. As g is convex, H(g) contains non-negative
eigenvalues only. This proves that the eigenvalues of dSLSE(y) are less than 1.

4. Assume that SLSE(y1) = SLSE(y2). Then considering again the mapping

ψ(t) = 〈SLSE((1 − t)y1 + ty2), y2 − y1〉
satisfying ψ(0) = ψ(1), its derivative

ψ′(t) = 〈dSLSE((1− t)y1 + ty2)(y2 − y1), y2 − y1〉
must vanish at a certain point t0 ∈ [0, 1]. But dSLSE((1 − t0)y1 + t0y2) is a positive-definite
matrix, and consequently ψ′(t) > 0 provides a contradiction. �

Proof of Lemma 3.3 : The LSE denoiser can be written using convolution products

SLSE(y) =
(Xp) ∗G
p ∗G , (3.13)

where G denote the centered Gaussian kernel with s.d. 1, and X : x 7→ x is the monomial
function with degree 1, i.e. the identity of Rn (we use this notation because we shall need
polynomials with higher degree in the sequel, it should not be confused with a random vector).
For i ∈ {1, . . . , n}, Xi will denote the mapping x 7→ xi. As both G and p ∗G are differentiable,
and as ∂G

∂xi
= −XiG, the equality

p ∗ ∂G
∂xi

=
∂(p ∗G)

∂xi

can be derived into

∀y ∈ Rn, (Xip) ∗G(y) = yi(p ∗G)(y) +
∂(p ∗G)

∂xi
(y). (3.14)

Now let i 6= j. As ∂2G
∂xi∂xj

= XiXjG, the expression
∫

(xi − yi)(xj − yj)p(x)G(y − x)dx can be

derived into

(XiXjp) ∗G(y)− yi(Xjp) ∗G(y)− yj(Xip) ∗G(y) + yiyj(p ∗G)(y)

=

∫

(xi − yi)(xj − yj)p(x)G(y − x)dx

=

∫

p(x)
∂2G

∂xi∂xj
(y − x)dx

=
∂2(p ∗G)

∂xi∂xj
(y). (3.15)
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Combining Equations (3.14) and (3.15) yields for Ξ ∼ qy

cov(Ξi,Ξj) =
(XiXjp) ∗G

p ∗G (y)− (Xip) ∗G
p ∗G (y)

(Xjp) ∗G
p ∗G (y)

=

∂2(p∗G)
∂xi∂xj

p ∗G (y)−
∂(p∗G)

∂xi

p ∗G (y)

∂(p∗G)
∂xj

p ∗G (y)

= − ∂2g

∂xi∂xj
(y) where g = − log(p ∗G).

If i = j, we must add another term because ∂2G
∂x2

i
= (X2

i − 1)G, which implies

(X2
i p) ∗G(y)− 2yi(Xip) ∗G(y) + y2

i (p ∗G)(y)

=

∫

(xi − yi)
2p(x)G(y − x)dx

=

∫

p(x)

[
∂2G

∂x2
i

(y − x) +G(y − x)
]

dx

= (p ∗G)(y) +
∂2(p ∗G)

∂x2
i

(y), (3.16)

and then, combining Equations (3.14) and (3.16), for Ξ ∼ qy

var(Ξi) =
(X2

i p) ∗G
p ∗G (y)−

(
(Xip) ∗G
p ∗G

)2

(y)

= 1 +

∂2(p∗G)
∂x2

i

p ∗G (y)−
∂(p∗G)

∂xi

p ∗G (y)

∂(p∗G)
∂xi

p ∗G (y)

= 1− ∂2g

∂x2
i

(y) where g = − log(p ∗G).

We get dSLSE(y) = Id−H(g)(y), where

H(g)(y) =

(
∂2g

∂xi∂xj
(y)

)

ij

is the Hessian matrix of g at point y. �

Proof of Lemma 3.4 : This is a direct consequence of [Prékopa 1973, Theorem 7], stating
that the distribution given by the convolution product of two log-concave distributions is log-
concave. �

Theorem 3.3 (items 2. and 3., i.e. monotony and non-expansiveness) are properties which
could be required in the generalization of thresholding operators to high dimensional spaces.
Moreover the theorem proves that SLSE has a certain regularity and stability, and is injective:
from a denoised image ûLSE, it is theoretically possible to retrieve the noisy image v such that
ûLSE = SLSE(v).

A more restrictive condition on the prior allows SLSE to be onto, as next proposition states.
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Proposition 3.6 If the potential f = − log p− logZ of the prior is Lipschitz continuous, i.e.

∃k > 0, ∀x, y ∈ Rn, |f(y)− f(x)| ≤ k‖y − x‖,

then SLSE − In is bounded. Furthermore, SLSE is onto, and SLSE is a C1-diffeomorphism of
Rn.

Proof : We first prove that SLSE − In is bounded. Let Sn−1 denote the unit sphere of Rn.
Then let us prove that

∃c > 0 / ∀u ∈ Sn−1,∀y ∈ Rn, 〈SLSE(y)− y, u〉 ≤ c. (3.17)

Let u ∈ Sn−1 and y ∈ Rn. Then

〈SLSE(y)− y, u〉 =

∫
〈x− y, u〉e− ‖x−y‖2

2 p(x) dx
∫
e−

‖x−y‖2
2 p(x) dx

=

∫
〈x, u〉e− ‖x‖2

2 p(x+ y) dx
∫
e−

‖x‖2
2 p(x+ y) dx

=

∫

t∈R
te−

t2

2

∫

ε∈u⊥ e
− ‖ε‖2

2 p(y + tu+ ε) dε dt
∫

t∈R
e−

t2

2

∫

ε∈u⊥ e
− ‖ε‖2

2 p(y + tu+ ε) dε dt
with x = tu+ ε

≤
∫

t∈R
|t|e− t2

2

∫

ε∈u⊥ e
− ‖ε‖2

2 p(y + tu+ ε) dε dt
∫

t∈R
e−

t2

2

∫

ε∈u⊥ e
− ‖ε‖2

2 p(y + tu+ ε) dε dt

Now as − log p = f + logZ is Lipschitz continuous, we can use the inequalities

p(y + tu)e−k‖ε‖ ≤ p(y + tu+ ε) ≤ p(y + tu)ek‖ε‖

to bound the inner integral
∫

ε∈u⊥ e
− ‖ε‖2

2 p(y + tu+ ε)dε from above and below

p(y + tu)

∫

ε∈u⊥
e−

‖ε‖2+2k‖ε‖
2 dε ≤

∫

ε∈u⊥
e−

‖ε‖2
2 p(y + tu+ ε) dε ≤ p(y + tu)

∫

ε∈u⊥
e−

‖ε‖2−2k‖ε‖
2 dε,

which writes

bkp(y + tu) ≤
∫

ε∈u⊥
e−

‖ε‖2
2 p(y + tu+ ε) dε ≤ akp(y + tu)

where ak and bk are positive numbers, independent from u and y. Then we have

〈SLSE(y)− y, u〉 ≤ ak

bk

∫
|t|e− t2

2 p(y + tu) dt
∫
e−

t2

2 p(y + tu) dt
.

Now, using again the fact that − log p is Lipschitz continuous, we have

p(y)e−kt ≤ p(y + tu) ≤ p(y)ekt
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since u is a unit vector. Hence we get

〈SLSE(y)− y, u〉 ≤ ak

bk

∫
|t|e− t2

2 p(y)ekt dt
∫
e−

t2

2 p(y)e−kt dt
=
ak

bk

∫
|t|e− t2−2kt

2 dt
∫
e−

t2+2kt
2 dt

Letting c = ak
bk

R

|t|e−
t2−2kt

2 dt
R

e−
t2+2kt

2 dt
<∞ proves (3.17).

Now as SLSE − In is bounded, it is straightforward that

lim
‖y‖→∞

|〈SLSE(y), y〉|
‖y‖ = +∞. (3.18)

If the dimension n is equal to 1, then SLSE is continuous and SLSE − In is bounded, and
thanks to the intermediate value theorem, SLSE is onto. Now if the dimension n satisfies n ≤ 2,
we can use [Brezis 1966, Corollary 16], implying that if E is a vector space with finite dimension
≥ 2, if SLSE is a monotone and continuous mapping from E to E and if (3.18) holds, then SLSE

is onto. This concludes the first part of the proof.
To prove that SLSE is a C1-diffeomorphism, one only needs to check that S−1

LSE is C1. But
Theorem 3.3 (1) claimed that for every y ∈ Rn, dSLSE(y) is a positive-definite matrix. Then
S−1

LSE is continuous and differentiable with differential

dS−1
LSE(y) = (dSLSE(S−1

LSE(y))−1

which is continuous because y 7→ dSLSE(S−1
LSE(y)) is continuous. �

Proposition 3.6 has consequences over TV-LSE denoising in practice. Indeed, TV-LSE de-
noising satisfies the assumptions of the proposition (see Section 3.4), and thus we expect the
TV-LSE denoised images to contain more noise than the TV-MAP denoised images. Let us
explain this. As SLSE is a diffeomorphism, it should be possible to retrieve the noisy image from
the denoised one alone, and this implies that some information about the noise is kept in the
denoised image one way or another. Most probably this information lies in residual noise in the
denoised image. Actually numerical experiments held in Chapter 4 generally show some residual
noise. This gives to the denoised images a much more natural aspect than the ones denoised by
TV-MAP.

Now that some general properties concerning LSE denoisers have been settled, a comparison
to MAP denoisers

SMAP :

{

Rn → Rn

y 7→ arg minx
‖x−y‖2

2 + f(x)

called proximity operators in the literature (see [Moreau 1962; Combettes and Wajs 2004, 2005])
can be held. SMAP can be proven to be non-expansive [Moreau 1965; Combettes and Wajs 2004]
and monotone, but is not always continuously differentiable nor injective, as the TV case proves.
Function f can be viewed as the potential associated to a certain prior distribution pMAP .

We shall prove that there exists a log-concave prior pMAP , such that the MAP-denoiser asso-
ciated to pMAP is identically equal to the LSE-denoiser SLSE associated to p. The next theorem
expounds this fact with potentials instead of priors. We first need an additional assumption.
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Assumption 5 The set SLSE(Rn) is convex.

Thanks to Proposition 3.6, Assumption 5 is satisfied by the TV prior, because in this case
SLSE(Rn) = Rn is convex. Assumption 5 is probably satisfied for any log-concave prior distri-
bution p.

Theorem 3.4 Let f satisfy Assumptions 4 and 5. Then there exists fMAP convex on SLSE(Rn)
and C2, such that

∀y ∈ Rn, SLSE(y) = arg min
x

‖x− y‖2
2

+ fMAP (x).

If an explicit formulation of potential fMAP was reachable, faster algorithms than the one
developed in Chapter 2, such as forward-backward algorithms [Combettes and Wajs 2005], would
be possible. Besides this may give clues for the design of new image priors. Now we only have
a very rough approximation of it (see the very end of the section). Therefore the real impact
of the theorem lies in the regularity of fMAP : even if the initial potential f is not regular, the
MAP potential fMAP will always be regular. Therefore the main “morality” of the theorem is
that the notion of prior is vague, and that the choice of the MAP or LSE risk can be crucial
in a large class of estimation problems. Besides, more specifically, this result gives another clue
for the absence of staircasing in TV-LSE denoised images. Indeed, a result from [Nikolova 2004]
which is the converse of Theorem 1.4 cited in Chapter 1 Subsection 1.2.3 states that if fMAP

is C∞, then (1.4) can almost never occur. Our framework only proves fMAP to be C2, which
prevents us to directly apply this result. However this work can be viewed as a first attempt to
generalize the result stating the absence of staircasing, to more general prior distributions than
p.

Before proving Theorem 3.4, let us consider the following lemma.

Lemma 3.5 Let C = SLSE(Rn). The mapping S−1
LSE − In defined on C can be identified to an

exact differential form.

Proof of Lemma 3.5: Let y ∈ C. Then (S−1
LSE−In)(y) is in Rn, and denoting ω the differential

form
ω(y) = ((S−1

LSE − In)(y))1dx1 + . . .+ ((S−1
LSE − In)(y))ndxn

(where xi denotes the i-th component of a vector x), (S−1
LSE − In) can be identified to the

differential form ω. Furthermore, thanks to Assumption 5, C is convex hence simply connected.
Now, thanks to Poincaré’s theorem, this differential form is exact iff it is closed, i.e. iff

∀i 6= j,
∂(S−1

LSE − In)(y)i

∂yj
=
∂(S−1

LSE − In)(y)j

∂yi
,

i.e. iff the differential dS−1
LSE(y) is a symmetric matrix. But Theorem 3.3 already stated that

dSLSE(y) was a symmetric positive definite matrix. Thus the inverse matrix is also symmetric.
But as dS−1

LSE(SLSE(x)) = dSLSE(x)−1, choosing x = S−1
LSE(y), we get the closedness of (S−1

LSE−
In). �

Proof of Theorem 3.4: Thanks to Lemma 3.5, S−1
LSE − In can be interpreted as the gradient

of a certain function. fMAP will be that function, whose construction is as follows:
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• Outside C, set fMAP (y) = +∞.

• Fix y0 ∈ C, and set fMAP (y0) = 0.

• For every y ∈ C, let γ be a curve linking y0 to y, i.e. a C1 mapping

γ : [0, 1]→ C such that γ(0) = y0 and γ(1) = y.

Then fMAP (y) is defined by

fMAP (y) = fMAP (y0) +

∫ 1

0
〈(S−1

LSE − In)(γ(t)), γ ′(t)〉dt

and does not depend on the choice of γ.

Now let us check that fMAP is such that

∀y ∈ Rn, SLSE(y) = arg min
x

‖x− y‖2
2

+ fMAP (x).

By construction we have

∀y ∈ C, ∇fMAP (y) = S−1
LSE(y)− y. (3.19)

Therefore the minimizer x of ‖x−y‖2

2 + fMAP (x) makes the gradient of this energy equal to 0,
and hence satisfies

x− y + S−1
LSE(x)− x = 0,

i.e. x = SLSE(y).
Now let us check that fMAP is C2. SLSE is a C1-diffeomorphism from Rn to C. Then

∇fMAP (y) = S−1
LSE(y)− y is C1. Hence fMAP is C2.

Now let us check that fMAP is convex. Let us show that the Hessian matrix of fMAP is
definite positive at all points. Let y ∈ C. Thanks to Equation (3.19), the Hessian matrix of
fMAP satisfies

∀i, j, (H(fMAP ))i,j (y) =
∂

∂xi
(S−1

LSE − In)j(y) =
∂S−1

LSE,j

∂xi
(y)− yj.

But denoting x = S−1
LSE(y), we have

(

∂S−1
LSE

∂xi
(y)

)

1≤i,j≤n

= dS−1
LSE(y) = (dSLSE(x))−1,

and it follows that dSLSE(x) is a symmetric positive-definite matrix with eigenvalues in (0, 1] (see
Theorem 3.3). Then (dSLSE(x))−1 is symmetric positive-definite with eigenvalues in [1,+∞).
We get

H(fMAP )(y) = (dSLSE(x))−1 − In
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where (dSLSE(x))−1−In is a symmetric non-negative matrix. HenceH(fMAP )(y) is non-negative
for every y ∈ C. That is why fMAP is convex on C.

By the way, Equations (3.17) and (3.19) put together yield the fact that if f is Lipschitz
continuous, then ∇fMAP is bounded. It means that fMAP is also Lipschitz continuous. �

fMAP is now proven to be convex, but also needs to be coercive, i.e. to satisfy

fMAP (x) −−−−−→
‖x‖→∞

+∞,

to be regarded as the potential of a probability distribution (i.e. for e−fMAP to be integrable).
The proof for coercivity requires another assumption.

Assumption 6 p ∗G is strictly log-concave.

Remark about Assumption 6 A result from [Prékopa 1973] states that the convolution of
two log-concave probability density functions is log-concave. This result is deduced from
Brunn-Minkowski inequality [Prékopa 1973; Maurey 2003]. However we found no paper in
the literature about log-concave measures concerning strict log-concavity. In our case, a
result like “the convolution of a log-concave p.d.f. defined on Rn with a strictly log-concave
p.d.f. (a Gaussian function) is strictly log-concave” would be enough for Assumption 6 to
always be true. This result holds in the case where both density functions are continuous,
positive and defined on R (courtesy of Gilles Pagès). A generalization to higher dimensions
could be the object of future investigation.

Proposition 3.7 Under Assumption 6, fMAP is coercive.

The proof for Proposition 3.7 begins with a fixed point lemma.

Lemma 3.6 SLSE has a fixed point, i.e.

∃x0 ∈ Rn, SLSE(x0) = x0.

Proof of Lemma 3.6 : Equations (3.13) and (3.14) put together imply that SLSE can be
written as a gradient

∀y ∈ Rn, SLSE(y) = ∇(In − g)(y) = y −∇g(y),

with g = − log(p ∗G) being differentiable. The existence of a fixed point for SLSE is equivalent
to the existence of x0 ∈ Rn such that

∇g(x0) = 0.

As g is convex (Lemma 3.4), such a x0 corresponds to a minimum for g. Now, in order to prove
that this minimum is reached in Rn, let us prove that g is coercive, i.e. that

p ∗G(y) −−−−−→
‖y‖→∞

0.
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This result is very natural since p ∗G is both L1 and very regular, but we detail the proof. Let
ε > 0 be a positive real number. As p is integrable and non-negative, there exists R > 0 such
that ∫

B(0,R)c

p(t) dt ≤ ε,

where B(0, R) denotes the ball centered at 0 with radius R, and B(0, R)c its complement. Then
for all y ∈ Rn, the convolution p ∗G(y) can be decomposed into

p ∗G(y) =

∫

B(0,R)
p(t)G(y − t) dt+

∫

B(0,R)c

p(t)G(y − t) dt. (3.20)

The first term goes to 0 when ‖y‖ → ∞. Indeed,

∫

B(0,R)
p(t)G(y − t) dt ≤

∫

B(0,R)
p(t) dt max

B(y,R)
G ≤ max

B(y,R)
G,

and the Gaussian function G satisfies maxB(y,R) G → 0 when ‖y‖ → 0. The second term of
(3.20) satisfies

∫

B(0,R)c

p(t)G(y − t) dt ≤
∫

B(0,R)c

p(t) dt max
B(y,R)c

G ≤ ε ·G(0).

Now putting things in a nutshell, let M > 0 be such that

‖y‖ > M ⇒ max
B(y,R)

G ≤ ε.

Then for any y with ‖y‖ > M , p ∗G(y) is bounded by

p ∗G(y) ≤ max
B(y,R)

G+ ε ·G(0) ≤ (1 +G(0)) ε,

which proves the convergence of p ∗G(y) towards 0 when ‖y‖ → ∞, i.e. the coercivity of g.

As g is convex, coercive and differentiable, its minimum is reached at some point x0 ∈ Rn,
which is a fixed point for the operator SLSE. �

Proof of Proposition 3.7 : Assumption 6 strengthens Lemma 3.4 by assuming that the
mapping g defined by g = − log(p∗G) is strictly convex and not only convex. Let us recall from
Lemma 3.3 that

∀y ∈ Rn, dSLSE(y) = In −H(g)(y).

As g is C2 and strictly convex, the spectrum of H(g)(y) is inside (0,+∞). Now as SLSE is mono-
tone and one-to-one, the spectrum of dSLSE(y) is inside (0, 1), and the spectrum of dS−1

LSE(y)
is inside (1,+∞) for any y ∈ Rn. These facts imply

∀y ∈ Rn, Sp(d(S−1
LSE − In)(y)) ⊂ (0,+∞).



98 Chapter 3. Theoretical properties

Let x0 be a fixed point for SLSE (Lemma 3.6), and u a unit vector. Then for each T > 0, we
have

〈∇fMAP (x0 + Tu), u〉 = 〈(S−1
LSE − In)(x0 + Tu), u〉

= 〈(S−1
LSE − In)(x0 + Tu)− (S−1

LSE − In)(x0), u〉

=

∫ T

0
〈d(S−1

LSE − In)(x0 + tu)(u), u〉 dt,

where d(S−1
LSE − In)(x0 + tu) is a definite positive matrix, and therefore 〈∇fMAP (x0 + Tu), u〉

is > 0, which implies the coercivity of fMAP . �

Under Assumption 6, Proposition 3.7 holds, and e−fMAP is integrable. Therefore there exists
a distribution pMAP whose potential is fMAP , and such that SMAP associated to pMAP equals
SLSE associated to p = pLSE.

Let us go back to the case of an arbitrary noise variance σ2. The previous results can be
adapted, and it is mentionable that when σ is small, the distribution pMAP satisfies

∇pMAP

pMAP
=
∇(pLSE ∗Gσ)

pLSE ∗Gσ
+O(σ2). (3.21)

Indeed, Equation (3.14) yields

SLSE = In + σ2∇(pLSE ∗Gσ)

pLSE ∗Gσ
.

In the meantime, as fMAP is C2, pMAP is differentiable, and SMAP satisfies

(In − σ2∇pMAP

pMAP
) ◦ SMAP = In

which is the Euler equation attached to the minimization of x 7→ ‖x− y‖2 + 2σ2fMAP (x). For
σ small enough, the function (In − σ2∇pMAP

pMAP
) can be inverted thanks to the global inversion

theorem, and SMAP writes

SMAP = (In − σ2∇pMAP

pMAP
)−1.

Making SLSE and SMAP equal yields

(In − σ2∇pMAP

pMAP
) ◦ (In + σ2∇(pLSE ∗Gσ)

pLSE ∗Gσ
) = In

and then
∇(pLSE ∗Gσ)

pLSE ∗Gσ
− ∇pMAP

pMAP
= σ2∇pMAP

pMAP
◦ ∇(pLSE ∗Gσ)

pLSE ∗Gσ
.

In particular, when σ2 goes to 0, we have (3.21), and pMAP can be roughly approximated by

pMAP ≈ pLSE ∗Gσ.



Chapter 4

Numerical experiments

Résumé Ce chapitre regroupe des images débruitées par la méthode TV-LSE, calculées par
l’algorithme décrit dans le chapitre 2. Nous discutons le critère de convergence dans sa
pratique, et nous montrons que la convergence visuelle pour une image de taille 512× 512
est atteinte en un temps raisonnable. L’influence des deux paramètres du modèle est
étudiée, et s’avère compatible avec les résultats asymptotiques prouvés au chapitre 3. Le
débruitage TV-LSE est aussi comparé à d’autres méthodes de débruitage, parmi lesquels
la minimisation TV (TV-MAP) et les moyennes non-locales. En plus de l’absence effective
du phénomène de staircasing, les images débruitées par TV-LSE combinent les qualités
d’un débruitage homogène et une bonne préservation de la géométrie, ce qui leur confère
un rendu très naturel. D’autres expériences sont menées sur des signaux synthétiques et
sur des images naturellement bruitées.

Abstract In this chapter, images denoised by TV-LSE are shown, where TV-LSE has been
implemented as described in Chapter 2. The practical convergence criterion is discussed,
and it is shown that visual convergence can be achieved for 512 × 512 images within
reasonable computation time. The influence of the 2 parameters of TV-LSE is shown,
and is consistent with the asymptotic results of Chapter 3. TV-LSE is also compared to
several other denoising methods, among which TV-minimization and Non-Local means.
The resulting images combine homogeneous noise reduction and geometry preservation,
still avoiding staircasing effect and leading to very natural rendering. Experiments are
also shown on synthetic signals and on images degraded by natural noise.

In this chapter, numerical experiments about TV-LSE denoising are presented. The algo-
rithms presented in Chapter 2 have been implemented in C under Megawave2 (free software for
image processing 1) on a laptop with a processor at 2.0 GHz. We give some details here about
the implementation.

• The numerical scheme for TV was chosen as the one of [Chambolle 2004] allowing a fast al-
gorithm for TV-MAP, since the comparison between TV-LSE and TV-MAP is compulsory.

1http://megawave.cmla.ens-cachan.fr/
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If the domain Ω is the rectangle {1, . . . , n1} × {1, . . . , n2}, then for any pixel (x, y) ∈ Ω,
the two components of the gradient of an image u is defined by

∇u1(x, y) =

{

u(x+ 1, y)− u(x, y) if x < n1

0 if x = n1

∇u2(x, y) =

{

u(x, y + 1)− u(x, y) if y < n2

0 if y = n2.

This scheme for the gradient offers a good compromise between isotropy and stability. The
total variation of an image u is then defined by

TV (u) =
1

n1n2

n1∑

x=1

n2∑

y=1

√

|∇u1(x, y)|2 + |∇u2(x, y)|2.

This standard scheme for total variation is a special case of TVε,p defined in Chapter 3
Section 3.4 with ε = 0, N(x,y) = {(x, y), (x + 1, y), (x, y + 1)} and the norms

{

‖ · ‖k = L2-norm on Ṅk if Nk ⊂ Ω

‖ · ‖k = L1-norm on Ṅk if Nk ∩ Ωc 6= ∅.

Hence it satisfies all the assumptions needed for both the algorithm convergence (results
of Chapter 2) and the theoretical results of Chapter 3, i.e. essentially non-negativity,
convexity, finiteness, shift invariance and Lipschitz continuity.

• The MCMC algorithm is run after a scaling tuning step (Algorithm 4). First Algorithm
4 is run with 2 chains initialized by a random uniform noise on [0, 255]. The last state of
both chains is recovered and used as the initialization of (U0) and (Ũ0) for Algorithm 3.
Although Algorithm 4 already contains a burn-in step, in practice the burn-in optimization
procedure in Algorithm 3 is essential to allow better convergence rate, because the optimal
burn-in parameter depends on the total number of iterations and rises above the initial
burn-in, in practice.

4.1 Discussion on the stopping criterion

At first sight numerical experiments on TV-LSE denoising seem prohibitive in terms of compu-
tation time. We will try here to show that for a large range of parameters (λ, σ) a relatively
small number of iterations is enough to make the algorithm converge. A 512 × 512 image can
then be denoised by TV-LSE within a few minutes or even a few seconds sometimes.

We shall use |Ω|-subsampled MCMCs and the stopping criterion described in Chapter 2
Section 2.3. One iteration will then refer to |Ω| small iterations of the complete chain (Υn).
After choosing a positive parameter ε, we run the two MCMCs Un and Ũn and stop when their
respective averages satisfy

‖Sb
n − S̃b

n‖ ≤ 2ε
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for which we expect the estimate Sb
n+S̃b

n
2 of ûLSE to satisfy

∥
∥
∥
∥
∥

Sb
n + S̃b

n

2
− ûLSE

∥
∥
∥
∥
∥
≤ ε.

ε should be chosen as little as possible, but taking it too small yields high computation time
because of the larger number of iterations then required. As Figure 4.1 shows, the choice
ε = 1 for images with gray values in [0, 255] seems sufficient for a good visual quality while
maintaining reasonable computation time. Indeed, smaller ε yield denoised images which visually
are absolutely similar (zoomed details are shown on Figure 4.2). The precision ε = 1 is reached
here within 8 minutes for this 512 × 512 image, while much more time would be necessary to
reach fractions of 1. A parallelization in the programming seems possible: first the two chains
could be computed separately and compared every R iterations; secondly a local processing
of the image could yield a task splitting into many local tasks. Hence one could manage to
have much shorter computation times with a graphic card using GPU (Graphic Processor Unit)
techniques for instance [Owens et al. 2007; Borghi et al. 2008].

The graph of Figure 4.3 represents ‖Sb
n − S̃b

n‖/2 (i.e. ε if we stopped at iteration n) as a
function of n. It converges to zero when n → ∞ as C · n−0.66 approximately. The rate of
convergence is then quite slow, but small n can be enough to reach reasonable values of ε.

Of course the number of iterations needed to reach the stopping criterion depends on the
parameters λ and σ. Briefly speaking it is linked to the spread of the posterior distribution
1
Z e

−Eλ/(2σ2). If the posterior distribution has a large spread (large σ, small λ) then the explo-
ration of the posterior distribution will take a long time and a large number of iterations will be
necessary to reach the wanted ε. Conversely when the posterior distribution is very concentrated
around its maximum (small σ, large λ) then the exploration can be done within few iterations
thanks to an efficient burn-in. But we must bear in mind the fact that our stopping criterion is
only valid for negligible bias situations. When the posterior distribution is very concentrated,
the bias can be preponderant over the variance in the bias-variance decomposition of the risk (see
Equation (2.11)), and even an efficient burn-in procedure cannot always prevent the algorithm
from stopping before convergence.

In practice we never encountered convergence problems with the algorithm of Chapter 2 as
soon as σ ≥ λ/10. As σ ≈ 0 corresponds to the case where TV-LSE behaves like TV-MAP (i.e.
TV-minimization of [Rudin et al. 1992]), a good initialization in the algorithm allows a correct
convergence control even in the case σ ≤ λ/10.
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noisy image ûLSE(300) (ε ≈ 1 with n = 300)

ûLSE(800) (ε ≈ 0.5 with n = 800) ûLSE(5000) (ε ≈ 0.2 with n = 5000)

Figure 4.1: Influence of ε in the stopping criterion (I). The Lena image (with gray levels inside [0, 255])
noised by a Gaussian white noise with standard deviation (s.d.) σ = 10 (top-left image) is denoised using
TV-LSE with the algorithm explained in Chapter 2. The three other images are the partial averages
(Sb

n + S̃b
n)/2 of a unique run of the algorithm, for three values of n. The parameters are all fixed (σ = 10,

W = 30, α = 27, no burn-in) except from the number of iterations n. The top-right image, named
ûLSE(300), obtained by a 300-iteration run, is such that the distance between the 2 chains of the algorithm
‖S0

300− S̃0
300‖ is closest to 2, so that we expect the image to be at a distance ε ≈ ‖S0

300− S̃0
300‖/2 ≈ 1 from

the true TV-LSE denoised image ûLSE (actually n = 300 corresponds to the multiple of 50 reaching the
distance closest to 2, because the images of the MCMCs were saved only every 50 images). Waiting for
some more iterations yields the bottom-left image ûLSE(800) (ε ≈ 0.5 with n = 800), and the bottom-
right image ûLSE(5000) (ε ≈ 0.2 with n = 5000). The three images look the same, it is difficult to
make them apart, even on the zooms presented on next figure. For this 512× 512 image, one must count
166 seconds, i.e. almost 3 minutes to run 100 iterations of the algorithm (for the two 5122-subsampled
chains).
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noisy crops from ûLSE(300) crops from ûLSE(800) crops from ûLSE(5000)

Figure 4.2: Influence of ε in the stopping criterion (II). Details of the noisy Lena image (first column),
and TV-LSE denoised images with n = 300 (ε ≈ 1, second column), n = 800 (ε ≈ 0.5, third column),
and n = 5000 (ε ≈ 0.2, last column). The contrast has been enhanced in order to make the comparison
easier. On the first row is shown the 50×50 window which maximizes the L2-distance between ûLSE(300)
cropped and ûLSE(5000) cropped. The second row shows the 50× 50 window which maximizes the L2-
distance between ûLSE(800) cropped and ûLSE(5000) cropped. The third row shows a window containing
contrasted edges, the last row shows another window containing texture. In all cases, eye inspection
reveals almost no difference. Consequently keeping ε ≈ 1 is visually enough for our denoising tasks, and
allows reasonable computation times (on the whole 512 × 512 image 8 minutes instead of 2h20min for
ε = 0.2).
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Figure 4.3: Influence of ε in the stopping criterion (III). Half of the L2-distance between the 2 MCMCs
of TV-LSE (i.e. ε) is plotted against the number n of iterations. The curve behaves like C · n−0.66.
n = 300 results in a convergence with precision ε ≈ 1: visually the image will not be different from the
one found with a much higher n.
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4.2 Influence of parameters σ, λ and β

Contrary to TV-MAP (TV-minimization of [Rudin et al. 1992]) which depends on parameter λ
only, our algorithm deals with 2 parameters λ and σ. σ2 stands for the noise variance, and λ is
selected in such a way that 1

Z e
−λTV/(2σ2) is a correct prior for images.

In most experimental purposes the noise variance is known, or at least can be estimated
[Rousseeuw and Leroy 1987; Kervrann and Boulanger 2006]. It seems reasonable then to choose
this known or estimated value for σ2. However as Theorem 3.1 states, TV-MAP corresponds to
the limit case where σ2 = 0, and this scheme does denoise images, even if the noise is statistically
modeled as zero. Furthermore real denoising applications do not necessarily require a complete
noise removal but only need to sweep out part of the noise, to make sure that the information
contained in the image is not distorted. Hence it does not look absurd to consider σ as a free
parameter of the model.

Consequently λ and σ are considered as two regularizing parameters of the denoiser, where
σ controls the amount of noise and λ balances the regularity term versus the data-fidelity term
in the energy Eλ. Instead of considering (λ, σ) one could equivalently consider (β, σ) as the set
of parameter of the denoiser, where

β =
λ

2σ2

is the inverse of the temperature in the Gibbs field defined by the prior

π(u) =
1

Z
e−βTV (u).

β is probably a better regularity parameter than λ, and is more coherent with the constrained
version of TV-LSE (see Chapter 1 Subsection 1.3.1), but taking (β, σ) for parameter set makes
comparison between TV-LSE and TV-MAP harder for a given shape of energy. This is why we
will maintain both parameter sets (λ, σ) or (β, σ) in our experiments.

In the following figures (Figures 4.4 to 4.13) the aim is to get an intuitive comprehension of
the parameters λ, σ and β.

• Figure 4.4 shows TV-LSE denoised images for different parameters λ and σ. The regularity
of the denoised image increases when λ increases or σ decreases. Therefore both λ and
σ appear as regularizing parameters. But λ acts more like a TV-regularizing parameter
(when λ increases, texture is removed, but edges remain sharp) whereas σ controls the
distance to the noisy image v and to the MAP-denoised image ûMAP (λ), because thanks
to Theorem 3.1, 





ûLSE(λ, σ) −−−→
σ→0

ûMAP (λ)

ûLSE(λ, σ) −−−−−→
σ→+∞

v.

• Figure 4.5 also shows TV-LSE denoised images for different parameters λ and σ, applied on
a noisy image containing thin stripes (a detail of Barbara image). It illustrates the fact that
TV-LSE denoising manages to remove noise while maintaining the oscillating pattern, yet
reducing the contrast. Even if staircasing theoretically cannot occur in TV-LSE denoised
images (see Section 3.3), some staircasing effect is visible yet for small enough σ, because
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human eyes can interpret close gray level pixels as one constant region. Taking a larger σ
gives visually staircasing-free images.

• The other set of parameters (β, σ) is used in Figure 4.6, where TV-LSE denoised images are
shown for different values of the parameters β and σ. The image contains more noise when
σ and β are small, and its regularity increases when one of the parameters increases. β acts
as a TV-regularizing parameter when σ is small (first small and contrasted details such
as cars are preserved and the the image becomes practically constant), and as a blurring
parameter when σ is large (the constrasted details shrink, and the edges are smoothed).
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Figure 4.4: Influence of the parameters λ and σ on ûLSE(λ, σ). The Lena image was corrupted by a
Gaussian white noise with s.d. 10 (see Figure 4.1, top-left image), and denoised using the fully automatic
TV-LSE algorithm (optimal scaling, automatic burn-in, and ε = 1). A column considered alone (σ
fixed) starts on top with a rather noisy image, and is more regular as we get down (as λ increases),
with preserved boundaries, regularized smooth regions (no staircasing visible) and erased texture. A
row considered alone (λ fixed) starts on the left with a regularized image which is not far from ûMAP (λ)
(because ûLSE(λ, σ) converges to ûMAP (λ) when σ → 0), and details of the texture and then noise appear
when scrolling to the right, hence coming closer to the noisy image (the input). These observations are
consistent with the table of Figure 3.2. SNR are given Figure 4.7.
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Figure 4.5: Influence of (λ, σ) on ûLSE(λ, σ). The same experiment as in Figure 4.4 is presented on
Barbara. The first column, corresponding to σ = 2, is very close to TV-MAP denoised images (because
ûLSE(λ, σ) converges to ûMAP (λ) when σ → 0), and the stripes get brutally erased, beginning with the
thinner stripes, when scrolling down the column, giving space to constant regions. Conversely, for the
other columns, the stripes are progressively erased, with intermediary states where the stripes’ contrast is
reduced. The artificial-looking constant regions are avoided when taking σ large enough. SNR are given
Figure 4.7.



4.2. Influence of parameters σ, λ and β 109

σ = 2 σ = 10 σ = 50

P
S
fr

ag
re

p
la

ce
m

en
ts
β

=
0.

01
P

S
fr

ag
re

p
la

ce
m

en
ts
β

=
0.

1
P

S
fr

ag
re

p
la

ce
m

en
ts
β

=
1

P
S
fr

ag
re

p
la

ce
m

en
ts
β

=
10

Figure 4.6: Influence of (β, σ) on ûLSE. A detail of the Nı̂mes image from the CNES was noised by
a 10-s.d. Gaussian white noise (the obtained image is visually equivalent to the top-left image), and
denoised using the fully automatic algorithm (optimal scaling, automatic burn-in, and ε = 1). A column
considered alone (σ fixed) starts on top (β small) with a noisy image, and the image gets more regular as
β increases. But this regularity is more TV-regularity when σ is small (i.e. sharp edges separate constant
regions and contrasted details such as cars are preserved), whereas it is more a blur-regularity when σ is
large (i.e. the contrasted details shrink, the edges become blurry, and the image gets smooth). Contrast
has been linearly enhanced to make details more visible. SNR are given Figure 4.7.



110 Chapter 4. Numerical experiments

σ = 0 σ = 2 σ = 10 σ = 50

λ = 2 14.93 14.84 14.49 13.82

λ = 8 18.50 18.17 17.01 14.64

λ = 32 17.57 16.46 18.52 17.11

λ = 128 12.47 9.30 10.27 16.57

images of Fig. 4.4
σ = 0 σ = 2 σ = 10 σ = 50

λ = 2 14.57 14.46 14.45 14.31

λ = 8 13.71 13.78 13.93 14.52

λ = 32 6.85 7.00 7.70 11.68

λ = 128 4.62 4.46 4.56 6.28

images of Fig. 4.5
σ = 0 σ = 2 σ = 10 σ = 50

β = 0.01 9.38 9.40 10.23 12.17

β = 0.1 9.38 9.82 13.08 3.91

β = 1 9.38 13.24 3.24 0.20

β = 10 9.38 3.97 0.25 0.005

images of Fig. 4.6

Figure 4.7: Tables of SNR for images of Figures 4.4, 4.5 and 4.6, with SNR = 10 log10
σ2

u

‖ûLSE−u‖2 , where

σ2
u is the empirical variance of the original image u. The columns corresponding to σ = 0 were computed

via Chambolle’s algorithm for TV-MAP for the 2 first tables, and via the convergence ûLSE(λ, σ) → v
when (λ, σ)→ 0 concerning the third table.
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Now it seems useful to consider TV-LSE denoising when all the parameters are fixed but
one, and to appreciate the evolution of the denoised image when the last parameter changes.

• First of all on Figure 4.8 we consider σ fixed, and λ free. It equivalent to considering σ
fixed and β free. According to the first table of Figure 3.2, when σ is fixed







ûLSE −−−→
λ→0

v

ûLSE −−−→
λ→∞

v̄
�
,

where v is the noisy image, v̄ its gray level average, and
�

the constant image equal to
1 on each pixel. Between these extreme attitudes ûLSE(λ, σ) goes through images where
noise is reduced, edges are preserved and smooth regions are preserved (no staircasing).

• Now on Figure 4.9 we consider the case where λ, i.e. the ratio between the data-fidelity
term and the regularity term in the energy Eλ, is fixed, and σ takes all positive values.
Again according to the table of Figure 3.2, we have, when λ is fixed,







ûLSE −−−→
σ→0

ûMAP (λ)

ûLSE −−−→
σ→∞

v,

and indeed for small values of σ the denoised image contains practically no noise, the edges
are well contrasted, the texture is somewhat erased, and staircasing is visible. Therefore
when σ increases, edges remain well contrasted, and the image remains noise-free, while
staircasing disappears: the images look more natural than for small values of σ. Finally
for large values of σ noise appears together with some thin texture: the images are close
to the noisy input v.

• Figure 4.10 deals with the case where β = λ
2σ2 is fixed and σ is free. Theory (Figure 3.2)

forecasts the following convergences







ûLSE(β, σ) −−−→
σ→0

v

ûLSE(β, σ) −−−→
σ→∞

v̄
�
.

Indeed in practice a very small σ yields an image close to the noisy input v. When σ
increases the image becomes more regular: noise is reduced, edges are preserved, then
small details in the texture disappear. When σ is large, the texture is erased, the edges
become blurry; the image is then smooth and melts down into a constant image.

• The previous situations all make the image go from a noisy image to a regularized image.
The nature of regularization is particular to each case, but the comparison of the denoised
images is a biased comparison between more or less noisy images. A more interesting case
is when the level of denoising, or method noise

‖ûLSE(λ, σ) − v‖,
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is fixed, and a parameter is free. The mapping λ 7→ ‖ûLSE(λ, σ) − v‖ is increasing for a
fixed σ with values in (0, ‖v− v̄ � ‖). This is why when ‖ûLSE(λ, σ)−v‖ and σ are fixed with
‖ûLSE(λ, σ)− v‖ inside the interval (0, ‖v− v̄ � ‖), there exists exactly one value λ(σ) such
that ûLSE(λ(σ), σ) reaches the desired level of denoising. In Figure 4.11 we chose a level of
denoising in (0, ‖v − v̄ � ‖), and for several values of σ, we displayed the TV-LSE denoised
images ûLSE(λ(σ), σ), where λ(σ) attains the required denoising level. When σ is small
the image is close to a TV-MAP denoised image, and contains many staircasing artefacts.
When σ is large the image is a bit blurry and still contains noise. Then for a given level of
denoising, the parameter σ tunes an equilibrium between staircasing artefacts reduction
and blur control.

The table in Figure 4.12 gives the SNR of the images displayed on Figures 4.8 to 4.11. It
confirms the fact that medium values of σ, λ, β achieve a better image reconstruction, and that
TV-LSE is worth being compared to other denoising methods.
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fixedσ

λ

Figure 4.8: σ = 10 is fixed, and TV-LSE denoising is run for different values of λ (λ ∈
{2, 4, 8, 16, 32, 64, 128}, and σ = 10 corresponds to the s.d. of the noise). It is equivalent to fixing σ
and letting β = λ

2σ2 take values in R+. When λ (or β) is small, the denoised image ûLSE starts by being
very close to the noisy image v. Then when λ (or β) increases the noise disappears, the homogeneous
regions are smoothed out with no staircasing. Then the texture is erased, and the last image is not far
from being a piecewise smooth image.
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fixedλ

σ

Figure 4.9: λ = 30 is fixed, and TV-LSE denoising is run for different values of σ (σ ∈
{1.25, 2.5, 5, 10, 20, 40, 80} and the noise has s.d. 10). When σ is small, the denoised image ûLSE is
practically noisefree, but some texture is erased and some staircasing is visible: Lena’s cheek and hat
contain boundaries which do not exist in the original Lena image. This image is very close to the MAP-
denoised image ûMAP (λ), to which ûLSE(λ, σ) converges when σ → 0. Then when σ increases, staircasing
effect disappears, texture comes back together with noise, and ûLSE looks more and more like the noisy
image. This is consistent with the convergence ûLSE(λ, σ)→ v when σ →∞.
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Figure 4.10: β = λ
2σ2 = 0.15 is fixed, and TV-LSE denoising is run for different values of σ (σ ∈

{1.25, 2.5, 5, 10, 20, 40, 80} and the noise has s.d. 10). For small values of σ, the denoised image is close
to the noisy image. When σ increases the image is regularized, the edges are preserved while texture is
erased, and then the denoised image blurs and becomes completely smooth. σ then acts as a blurring
parameter when β is fixed, for large enough values of σ.
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‖ûLSE(λ, σ)− v‖2
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Figure 4.11: The level of denoising ‖ûLSE(λ, σ) − v‖ = 9 is fixed, and TV-LSE denoising is run for
different values of σ (σ ∈ {0, 1.25, 2.5, 5, 10, 20, 40} and the noise has s.d. 10). For a given σ there exists
at most one value of λ or β such that the level of denoising is reached. When σ increases, when they
exist, the λ corresponding to the level of denoising increases too, while β decreases. σ = 0 gives rise
to a TV-MAP denoised image: the image is free from noise, but some texture is erased, and staircasing
is flagrant on the cheek for instance. When σ increases, staircasing disappears and the denoised image
becomes blurry. Then for a given level of denoising, the parameters σ, λ and β tune a compromise
between blurring and staircasing.
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λ = 2 λ = 4 λ = 8 λ = 16 λ = 32 λ = 64 λ = 128

SNR 14.50 15.41 17.02 18.87 18.53 14.97 10.32
‖ûLSE − u‖ 9.02 8.12 6.75 5.45 5.67 8.54 14.59
‖ûLSE − v‖ 1.63 2.63 4.44 6.96 9.55 12.48 17.52

images of Fig. 4.8 (σ = 10)
σ = 1.25 σ = 2.5 σ = 5 σ = 10 σ = 20 σ = 40 σ = 80

SNR 16.72 16.88 17.55 18.70 18.67 17.48 15.94
‖ûLSE − u‖ 6.98 6.86 6.34 5.56 5.58 6.40 7.64
‖ûLSE − v‖ 11.01 10.93 10.48 9.33 7.58 5.34 3.35

images of Fig. 4.9 (λ = 30)
σ = 1.25 σ = 2.5 σ = 5 σ = 10 σ = 20 σ = 40 σ = 80

SNR 13.85 14.75 17.65 18.70 14.18 9.60 6.20
‖ûLSE − u‖ 9.71 8.76 6.27 5.56 9.36 15.85 23.44
‖ûLSE − v‖ 0.98 1.96 5.20 9.33 13.17 18.66 25.49

images of Fig. 4.10 (β = 0.15)
σ = 0.625 σ = 1.25 σ = 2.5 σ = 5 σ = 10 σ = 20 σ = 40

SNR 19.38 19.59 19.49 19.41 18.94 18.38 17.77
‖ûLSE − u‖ 5.13 5.02 5.07 5.12 5.41 5.77 6.18
‖ûLSE − v‖ 9.06 9.00 9.08 8.94 9.05 9.01 9.07

images of Fig. 4.11 (‖v − ûLSE‖2 ≈ 9)

Figure 4.12: Tables with the SNR and the denoising level of the denoised images whose details were
shown in Figures 4.8 to 4.11. The 3 first tables correspond to images going from the noisy image to an
over-regularized version of the image; it seems natural that the optimal SNR be obtained for medium
values of parameters. The last table corresponds to the case where the level of denoising is fixed, the
parameter σ takes different positive values, and λ is tuned to get the desired level of denoising with
precision 1% (see the last row). Here again the optimal SNR is reached by a medium-valued σ, achieving
a trade-off between staircasing and blur.
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Before coming to comparisons between TV-LSE and other classical denoising techniques,
Figure 4.13 gives an illustration about the location of ûLSE(λ, σ) relatively to the noisy image
v and the TV-MAP denoised images ûMAP (λ). For each value of λ, the images (ûLSE(λ, σ))σ>0

run inside an arch put up between v and ûMAP (λ). Several conjectures can be deduced from this
figure. First, the curves never cross the x-axis, which shows that TV-LSE denoised images are not
aligned with the original image and their corresponding TV-MAP denoised images: ûLSE(λ, σ)
is not a simple deviation from ûMAP (λ) in the direction of the noisy input v. Furthermore
ûLSE(λ, σ) seems to live inside the ball having diameter [v, ûMAP (λ)], property which happened
to be too hard to prove. Last it can be noticed that the ends of the curves badly approximate
v or ûMAP (λ): the deviation is constantly orthogonal to the x-axis. This is most probably due
to the stopping criterion of our algorithm and to the high dimensionality of the framework.
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Figure 4.13: This graph represents a projection in a 2-D space of the images (ûLSE(λ, σ)). The
original noisy image v was placed at the origin of the graph. On the x-axis, some TV-MAP denoised
images ûMAP (λ) were placed according to their distance to v (small discs). The thin curves are each
associated to a particular value of λ, and represent the denoised images (ûLSE(λ, σ)) for several values
of σ > 0, according to their distance d1 to the original noisy image v, and their distance d2 to ûMAP (λ).
When σ is small ûLSE(λ, σ) is close to ûMAP (λ), while when σ is large ûLSE(λ, σ) is close to v. The
convergences are not perfect on the graph because the precision ε of the estimation of ûLSE was taken
positive in the algorithm. The errors of the limit images (e.g. extremal points of the (λ = 4)-curve)
seem to be orthogonal to the (v, ûMAP (λ))-axis, which can be explained by the high dimension of the
framework: almost every vector taken in a ball centered at v or ûMAP (λ) is orthogonal to (v, ûMAP (λ)).
The bold curve is an arc of circle centered at v with radius 9, representing the set of images satisfying
‖ûLSE − v‖ = 9, i.e. corresponding to a level of denoising equal to 9. For λ large enough, there always
exists some σ such that ûLSE(λ, σ) attains some given level of denoising.
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4.3 Denoising normalization and comparisons to other methods

The TV-LSE denoiser has to be compared to classical denoising methods. Every method depends
on one or several parameters tuning the level of denoising. In order to obtain quantitative
comparability of images we must tune the parameters of the methods to achieve equal levels
of denoising. For a TV-LSE denoised image ûLSE(λ, σ) and some level of denoising, or method
noise

d = ‖ûLSE(λ, σ)− v‖,
we shall keep for comparison the methods below, with the tuning of parameters explained:

• TV-MAP denoising (our main benchmark), i.e. Total Variation minimization of Rudin
et al. [1992], from which TV-LSE has been constructed. The algorithm used for the
minimization of the energy

EλMAP
(u) = ‖u− v‖2 + λMAPTV (u)

is Chambolle’s [Chambolle 2004]. The parameter λMAP controls regularity of the image,
and is tuned in such a way that the denoised image achieves the required level of denoising:

‖ûMAP (λMAP )− v‖ = d.

We expect to have λMAP < λ, because when taking λMAP = λ, ûLSE(λ, σ) seems to be
inside the ball centered at v with radius ‖ûMAP (λ)−v‖ (see Figure 4.13), then the distance
‖ûMAP (λ)− v‖ seems to be always larger than ‖ûLSE(λ, σ) − v‖.

• TV-barycentre To be able to compare ûLSE(λ, σ) and ûMAP (λ) with the same λ (i.e. the
same balance between regularity and data-fidelity term in Eλ), ûMAP (λ) will be linearly
combined with the noisy image v via

ûbary = t ûMAP (λ) + (1− t) v with t =
‖ûMAP (λ)− v‖

d

and we obtain a barycentre of ûMAP (λ) and v which is at distance d from v. This choice
is also motivated by the observation that the quality of denoising often increases both
visually and in SNR when deviating the TV-MAP estimate towards v. Visual quality is
better when the noise is not completely removed.

• TV-ε Before the paper of Chambolle [2004] which solved the exact TV-minimization prob-
lem iteratively but fastly, people used gradient descents of the energy Eλ, which required
the introduction of an artificial smoothing parameter ε into the gradient norm’s scheme,
defined by

|∇u|2ε (x) =
ε2 + (a− b)2 + (b− c)2 + (c− d)2 + (d− a)2 + (a+b−c−d)2+(a−b−c+d)2

2

(2 +
√

2)2

for instance. Taking ε > 0 makes the energy

‖u− v‖2 + λε

∑

x

|∇u|ε(x)
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differentiable and the gradient descent feasible, and avoids staircasing [Nikolova 2004]. But
there are many drawbacks to this method: taking ε too small makes the algorithm run very
slowly, and for any ε > 0 the minimized energy is not the true total variation energy and
loses its geometric interpretation (coarea formula and Cheeger sets [Alter et al. 2005a]).

The TV-LSE denoiser avoids staircasing while maintaining an exact formulation of total
variation. Moreover in Section 3.5, LSE denoisers are proven to be MAP denoisers for
a smoother prior distribution. We would like to check that this prior is not a simple ε-
regularized TV prior. This is why ûLSE is compared to the TV-ε denoised image ûε. ε will
be frozen equal to 1 while the λε will be tuned in order to have

λε such that ‖ûε − v‖ = d.

• Wiener filter In the same vein as TV-ε, we consider the Wiener filter (in its simplest
version) which consists in minimizing the energy

‖u− v‖2 + λWiener

∑

x

|∇u|2(x). (4.1)

The Total variation has been replaced by the Sobolev H 1-norm which gives infinite energy
to discontinuous images: the filter tends to blur images. The underlying prior distribution
1
Z e

−β
P

x |∇u|2(x) is even smoother than the prior of TV-ε. The Wiener filter is linear and
translation invariant, so it can be computed by a Fast Fourier Transform. Again the
parameter λWiener will tuned in such a way that the minimizer ûWiener of (4.1) satisfies

λWiener such that ‖ûWiener − v‖ = d.

• MCM The Euler equation associated to the minimization of Eλ is the PDE

∂u

∂t
= curv(u) where curv(u) = div

∇u
|∇u|

where the variable λ is changed into the stopping time T of the PDE. Changing this PDE
into

∂u

∂t
= |∇u|curv(u)

results in the well-known Mean Curvature Motion, which has the property of being mul-
tiscale analysis invariant, morphological invariant, translation invariant and rotation in-
variant [Alvarez et al. 1993; Guichard and Morel 2001]. Even if this PDE was originally
built as a multiscale analysis tool, it can used as an image denoiser. The stopping time T
is linked to the scale of study, i.e. to the required quantity of simplification of the image.
Let ûMCM denote the denoised image. Once again the stopping time will be chosen as a

T such that ‖ûMCM − v‖ = d.

The numerical method used here is taken from Megawave2. It is a consistent scheme
achieving isometric and scale invariance for a variety of transforms leaving the grid invari-
ant, and experimentally stable.
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• Gaussian convolution The oldest denoising method is to make an image evolve with the
heat equation, whose solution is a Gaussian convolution. A fast implementation can be
done using Fast Fourier Transform, and the Gaussian kernel bandwidth is

g such that ‖ûGauss − v‖ = d.

• Non-Local means (NL-means) In the general goal of this thesis where we aim at linking
Non-Local means (NL-means) [Buades et al. 2005] and TV-minimization, comparison of
TV-LSE to NL-means seems compulsory. The link between the two is that the TV-LSE
denoiser in its construction (Chapter 1 Subsection 1.3.2) can be interpreted as a diffusion
as well as NL-means (Buades et al. [2007]; Lafon et al. [2006]; Peyré [2008]).

In the NL-means, each pixel x of an image v is denoised by estimating the true gray level
u(x) by an average of the gray values of pixels y belonging to a large window centered
at x (hence the word Non-Local). For a given patch shape, this average is weighted by
the similarity of the patch centered at x and the patch centered at each pixel y. More
specifically, let Ny denote a generic square patch centered at pixel y (here we shall take a
5× 5 square as advised by Buades et al. [2005]), and Wx a large square window centered
at pixel x (here we shall consider a 21 × 21 window). Then the denoised image ûNL is
given by its gray levels

ûNL(x) =

∑

y∈Wx

v(y)e−
‖v(Ny)−v(Nx)‖22

2h2

∑

y∈Wx

e−
‖v(Ny)−v(Nx)‖22

2h2

,

where the distance between patches is chosen to be a classical normalized Euclidean dis-
tance

‖v(Ny)− v(Nx)‖22 =
1

|N0|
∑

k∈N0

(v(y + k)− v(x+ k))2.

(N0 denotes an artificial patch centered at the origin). At this point the NL-means now
only depends on parameter h, acting as the bandwidth of the Gaussian kernel on the
distance between patches. h controls the level of denoising, since taking h large allows
many patches v(Ny) to participate to the average added to the central patch v(Nx), which
makes ûNL move away from v.

The complete NL-means actually depends on 4 parameters: the bandwidth h, the patch
size, the window size, and a parameter a in the distance between patches which can be
smoothed by a factor e−|k|2/(2a2) to be less dependent on the borders of the patch. We are
conscious that letting only one parameter free instead of 4 does not behave in favor of NL-
means in our experiments. However h remains the most crucial parameter of NL-means
and allows a precise control of the denoising level.

Despite its popularity, denoising by wavelet coefficient thresholding will not be taken into
account in our experiments, because the method is considered too far from TV-LSE.
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noisy TV-LSE TV-MAP

Figure 4.14: (I) Small level of denoising (‖û− v‖ = 5.94 for the Lena image noised by a Gaussian noise
with s.d. = 10). Only part of the noise can be removed. First column: details of the noisy image. An
affine contrast change (unique for each line) has been applied on all the images of Figures 4.14 to 4.16 in
order to improve the visibility of details. This is why the gray levels are saturated on the noisy images.
Second column: TV-LSE denoising with parameters (λ, σ) = (20, 20). Noise remains but the global
aspect is natural. Third column: TV-MAP denoising with parameter λMAP = 7.46. The remaining noise
is mainly concentrated on isolated pixels. Staircasing is barely visible.
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TV-barycentre TV-ε Wiener filter

Figure 4.15: (II) Small level of denoising (‖û − v‖ = 5.94) (sequel of Figure 4.14). First column: TV-
barycentre denoising with parameters (λ, t) = (20, 0.61). The noise is reduced while a natural aspect
is preserved. This shows that in this case TV-MAP is worth being noised again by the original noise.
Second column: TV-ε denoising with (ε, λε) = (1, 8.28). Despite a positive ε the images are similar to the
TV-MAP denoised images: contrasted isolated pixels with a starting staircasing effect. Third column:
denoising by Wiener filter with λWiener = 0.74. Noise is correctly reduced but the edges are blurred.
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MCM Gaussian conv. NL-means

Figure 4.16: (III) Small level of denoising (‖û − v‖ = 5.94) (sequel of Figure 4.15). First column:
denoising by Mean Curvature Motion, with parameter T = 0.45. Second column: denoising by Gaussian
convolution with g = 0.56. As in Wiener denoising, noise is correctly reduced but the edges are blurred.
Third column: NL-means, with parameter h = 5.23. The noise reduction is extremely heterogeneous.
This results in unnatural looking images, despite excellent values of SNR (Figure 4.23).
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noisy TV-LSE TV-MAP

Figure 4.17: (I) Middle level of denoising (‖û − v‖ = 9.33 for the Lena image noised by a Gaussian
noise with s.d. = 10). An affine contrast change (unique for each line) has been applied on all the images
of Figures 4.17 to 4.19 in order to improve the visibility of details. This is why some gray levels are
saturated. First column: details of the noisy image. Second column: TV-LSE denoising with parameters
(λ, σ) = (30, 10). Texture is quite well recovered, as well as edges and homogeneous regions which
really look natural. Some noisy texture remains. Third column: TV-MAP denoising with parameter
λMAP = 17.3. A few contrasted isolated pixels are still visible, whereas staircasing becomes significant.
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TV-barycentre TV-ε Wiener filter

Figure 4.18: (II) Middle level of denoising (‖û − v‖ = 5.94) (sequel of Figure 4.17). First column:
TV-barycentre denoising with (λ, t) = (30, 0.87). The correction with the noisy image is not enough to
conceal the staircasing effect due to MAP estimation. Besides the images still contain much noise. Second
column: TV-ε with parameters (ε, λε) = (1, 19.32). The contrasted isolated pixels are attenuated, but
the regularization by ε does not imply a drastic reduction of staircasing effect. Third column: denoising
by Wiener filter with λWiener = 2.65. Blur increases while a particular noisy texture covers all the
homogeneous regions.
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MCM Gaussian conv. NL-means

Figure 4.19: (III) Middle level of denoising (‖û − v‖ = 5.94) (sequel of Figure 4.18). First column:
denoising by Mean Curvature Motion, with T = 1.15. The edges are well recovered but an embarrassing
turbulent texture covers all the homogeneous regions. Second column: denoising by Gaussian convolution
with g = 0.83. Noise is removed but all the details have vanished because of the blur. Third column:
denoising by NL-means with h = 8.47. Edges and details are very well recovered. Still one can criticize
the lack of homogeneity in the denoising which gives some artificial aspect to the detail images.
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noisy TV-LSE TV-MAP

Figure 4.20: (I) High level of denoising (‖û− v‖ = 13.06 for the Lena image noised by a Gaussian noise
with s.d. = 10). An affine contrast change (unique for each line) has been applied on all the images of
Figures 4.20 to 4.22 in order to improve the visibility of details. First column: details of the noisy image.
Second column: TV-LSE denoising with parameters (λ, σ) = (100, 20). The noise has been removed.
A very slight blur has erased some fine textures, but the global aspect is nice. Third column: TV-
MAP denoising with parameter λMAP = 73.1. The noise has been removed while the edges remain well
localized. However the ubiquitous staircasing effect over-simplifies the images and maintain an artificial
aspect to these (the bottom image for instance is definitely damaged).
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TV-barycentre TV-ε Wiener filter

Figure 4.21: (II) High level of denoising (‖û− v‖ = 13.06) (sequel of Figure 4.17). First column: TV-
barycentre denoising with (λ, t) = (100, 0.93). As in Figure 4.18 the addition of noise does not suffice to
hide the staircasing effect. However the global aspect is better than for TV-MAP: more details are visible
and the global quality is somewhat better. Second column: TV-ε with parameters (ε, λε) = (1, 76.5).
Compared to TV-MAP denoised images, staircasing is greatly reduced. Some fine details are erased.
Third column: denoising by Wiener filter with λWiener = 11.160714. Edges are blurry while noise
persists.
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MCM Gaussian conv. NL-means

Figure 4.22: (III) High level of denoising (‖û − v‖ = 13.06) (sequel of Figure 4.18). First column:
denoising by Mean Curvature Motion, with T = 6.8. Noise is removed, but geometry of the images is
highly distorted. Second column: denoising by Gaussian convolution with g = 1.75. The blur has erased
all the fine structures.Third column: denoising by NL-means with h = 25.2. Quite a perfect denoising
for the required level of denoising, but some details (eyelashes, large stripes of the hat) have vanished.
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First the experiments are conducted on a single image (Lena) denoised with 3 different
denoising levels (Figures 4.14 to 4.22). For a small level of denoising, noise is expected to be
partially removed while maintaining the details of the image, while for a large level of denoising,
noise is expected to be fully removed, and the precision of the remaining image is observed.

For a low level of denoising (Figures 4.14 to 4.16), TV-LSE achieves a good compromise
between noise removal, preservation of the geometry of the image and homogeneity of denoising.
Indeed, other TV-based denoising methods have spurious contrasted isolated pixels and stair-
casing starts being visible. NL-means denoising is terribly heterogeneous. For a medium level of
denoising (Figures 4.17 to 4.19), TV-LSE greatly reduces the noise while no staircasing (unlike
TV-MAP, TV-bary and TV-ε) nor blur (unlike Wiener and Gaussian convolution) is visible.
TV-LSE does not create artificial texture, contrary to MCM and even NL-means. For a high
level of denoising (Figures 4.20 to 4.22), the TV-LSE denoised image is a bit blurry but much
lesser than Gaussian convolution and Wiener, and still avoids staircasing effect (unlike TV-MAP,
TV-bary and TV-ε) and creation of spurious texture (unlike MCM). In all the denoised images,
the TV-LSE denoised images have the particularity to look really natural, compared to most
others.

For completeness a table of SNR is given in Figure 4.23. TV-LSE do not outperform the
other methods in terms of SNR; anyway the SNR values are clearly decorrelated from visual
quality (in these experiments for instance), and supervised comparisons of the zoomed denoised
images are developed rather than extensive SNR tables.
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TV-LSE TV-MAP TV-bary TV-ε Wiener MCM Gauss. NL-means

global 18.77 19.39 18.36 19.35 17.80 18.37 14.42 19.91
1st window 16.41 16.82 15.81 16.80 15.82 15.48 12.28 17.03
2nd window 14.54 15.16 14.00 15.07 13.64 14.57 9.52 15.48
3rd window 21.20 21.75 21.07 22.05 17.47 19.41 13.78 22.44
4th window 9.31 9.08 8.58 9.12 9.36 8.43 8.21 8.38

small level of denoising (Fig. 4.14 to 4.16)
TV-LSE TV-MAP TV-bary TV-ε Wiener MCM Gauss. NL-means

global 18.18 18.26 18.30 18.45 17.88 17.33 17.93 17.81
1st window 16.00 15.87 15.63 16.03 15.87 15.04 15.93 14.64
2nd window 15.31 15.29 15.19 15.47 15.17 14.81 15.25 14.04
3rd window 17.40 17.87 17.97 18.17 16.78 16.28 16.83 18.82
4th window 7.54 7.59 7.79 7.83 7.18 6.35 7.18 8.04

middle level of denoising (Fig. 4.17 to 4.19)
TV-LSE TV-MAP TV-bary TV-ε Wiener MCM Gauss. NL-means

global 15.08 14.42 13.88 14.47 14.27 14.68 14.45 14.82
1st window 12.50 12.01 11.14 11.83 11.82 10.24 12.32 12.10
2nd window 10.58 9.78 9.51 10.03 9.39 10.08 9.55 10.29
3rd window 18.52 18.97 18.10 19.52 13.23 20.52 13.82 21.58
4th window 8.10 6.75 6.95 6.78 8.56 7.37 8.23 6.41

large level of denoising (Fig. 4.20 to 4.22)

Figure 4.23: Table of SNR for images of Figures 4.14 to 4.22. NL-means, TV-ε and TV-LSE share the
largest SNR values. Now visually NL-means is better for large level of denoising whereas SNR values
pretend otherwise; TV-LSE is visually better than TV-ε for middle level of denoising. SNR is far from
being a perfect indicator of image quality.
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Experiments were also carried out on a pure noise image. Pure noise images imitate regions
of originally smooth images. A good denoising method is expected to reduce the noise without
creating structure. This a fundamental requirement in applications such as satellite image
interpretation, and more generally when denoising is a prior step to feature detection. Figure
4.24 shows the denoised images obtained by each of the previous methods, for a given level of
denoising. The results can be classified into 4 main behaviors:

• images with turbulent texture created: information has been created and this leads to
highly unnatural images (Mean Curvature Motion and Gaussian convolution);

• images which are not far from being piecewise constant: this is the staircasing effect with
spurious contrasted edges (TV-MAP and TV-ε);

• images with a cloudy texture, like a colored noise (TV-LSE and Wiener filter);

• images containing a much reduced noise linearly combined with low-frequency texture
(TV-barycentre and NL-means).

It is clear that the last two cases are more desirable than the two first because the corresponding
images are far less informative and contain no significant features.
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noise TV-LSE TV-MAP

TV-bary TV-ε Wiener filter

MCM Gaussian conv. NL-means

Figure 4.24: An i.i.d. white noise uniformly drawn on [0, 255] (top-left image) is denoised by different
methods, maintaining a constant level of denoising ‖û− v‖ = 68.5. A unique affine contrast change has
been processed on all the images of the figure in order to improve the visibility of details. This is why some
gray levels are saturated. The TV-LSE denoised image (top-center, with parameters (λ, σ) = (150, 20))
is more regular than the original but few structure is created. TV-MAP denoising (top-right, with
λMAP = 104) creates big artificial structures due to staircasing effect. In the TV-barycentre denoised
image (center-left, with (λ, t) = (150, 0.943)), the added noise hides the TV-MAP staircasing effect,
structure is replaced by some noise. The TV-ε denoised image (center, with (ε, λε) = (1, 109.5)) looks
quite the same as TV-MAP. The Wiener filter (center right, with λWiener = 17.53) looks like i.i.d. colored
noise. No particular structure is created. The result is similar to TV-LSE. The Mean Curvature Motion
(bottom-left, with T = 2.33) gives rise to a structured turbulent texture. A Gaussian convolution (bottom
center, with g = 1.38) creates smooth structures. The NL-means (bottom-right, with h = 61.75) is an
almost perfect white noise with reduced s.d., although low frequency texture appears.
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4.4 Experiments on synthetic signals

In this section experiments are carried out on synthetic signals. The transposition of the algo-
rithm from images to signals is straightforward, with the standard numerical scheme for total
variation

TV (u) =
n∑

x=1

|u(x+ 1)− u(x)|

where n is the size of the signal. The precision parameter ε in the stopping criterion should be
taken less than 1 because the error made by ε ≈ 1 is still visible. In practice ε ≈ 0.3 is enough
to have a good visual quality.

Figures 4.25 and 4.26 come back to the synthetic signals of Figure 1.3 in Chapter 1, and
compare TV-MAP and TV-LSE behavior on a Sine curve borne by an affine ramp and on a
noisy ramp. In the two cases, TV-LSE shrinks the noise amplitude and preserves the global Sine
shape. In other words, TV-LSE respects the geometry of the signal while TV-MAP introduces
staircasing and breaks the regularity of the original signal.

Figure 4.27 compares a chirp (oscillating signal with increasing frequency) denoised by TV-
LSE and TV-MAP. In the two cases the oscillations are shrunk with respect to their frequencies,
but the Sine shape is only preserved by TV-LSE while TV-MAP decimates the signal’s extrema
(again a staircasing effect) and creates singularities.

Figure 4.28 shows the denoising of an isolated peak on a null signal degraded by a Gaussian
white noise. For TV-MAP as well as for TV-LSE, the peak’s amplitude shrinks when the level of
denoising increases, and the peak contaminates its neighborhood with positive values. The TV-
LSE signal contains noise even in high levels of denoising (this is compatible with the invertibility
of the LSE operator (see Chapter 3 Subsection 3.1.3)), but contrary to TV-MAP no particular
feature (such as edges) is created.
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Figure 4.25: Experiments on a synthetic signal – ramp modulated by a Sine function. In the TV-LSE
denoised signals (left column, from top to bottom: (λ, σ) = (80, 20), (λ, σ) = (200, 20), (λ, σ) = (2000, 20))
the amplitude of the oscillations decreases when the level of denoising increases, but the Sine shape
is preserved. On the other hand the TV-MAP denoised signals (right column, from top to bottom:
λMAP = 10.4, λMAP = 38.8, λMAP = 2000, tuned to have a level of denoising equal to the one of the
TV-LSE denoised signal it faces, except for the bottom image for which the level of denoising cannot be
reached because the total variation cannot be decreased anymore) start by having their local maxima
and minima saturated; then for high level of denoising the Sine shape of the input totally disappears
and staircasing effect is ubiquitous. The algorithms have been run on a much longer signal (three times
longer) and the outputs have been cropped, in order to attenuate the boundary conditions effects.



138 Chapter 4. Numerical experiments

-50

 0

 50

 100

 150

 200

 250

 300

 50  100  150  200  250

input signal

input signal

-50

 0

 50

 100

 150

 200

 250

 300

 50  100  150  200  250

LSE-denoised signal

-50

 0

 50

 100

 150

 200

 250

 300

 50  100  150  200  250

MAP-denoised signal

-50

 0

 50

 100

 150

 200

 250

 300

 50  100  150  200  250

LSE-denoised signal

-50

 0

 50

 100

 150

 200

 250

 300

 50  100  150  200  250

MAP-denoised signal

-50

 0

 50

 100

 150

 200

 250

 300

 50  100  150  200  250

LSE-denoised signal

-50

 0

 50

 100

 150

 200

 250

 300

 50  100  150  200  250

MAP-denoised signal

TV-LSE TV-MAP

Figure 4.26: Experiments on a synthetic signal – the noisy ramp (σ = 20). In the TV-LSE denoised
signals (left column, from top to bottom: (λ, σ) = (80, 20), (λ, σ) = (150, 20), (λ, σ) = (2000, 20)) the
signal keeps looking like a noisy ramp, whose noise’s variance decreases when the level of denoising
increases. Conversely the TV-MAP denoised signals (right column, from top to bottom: λMAP = 37.9,
λMAP = 60.8, λMAP = 2000, tuned to have a level of denoising equal to the one of the TV-LSE denoised
signal it faces, except for the bottom image for which the level of denoising cannot be reached because the
total variation cannot be decreased anymore) present some structural artefacts, with constant intervals
separated by sharp discontinuities. This staircasing artefact is emphasized for high levels of denoising: the
signal becomes increasing and has longer constant intervals combined with sharper edges. The algorithms
have been run on a much longer signal (three times longer) and the outputs have been cropped, in order
to attenuate the boundary conditions effects.
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Figure 4.27: Experiments on a synthetic signal – the chirp (sin t3). In the TV-LSE denoised signals (left
column, from top to bottom: (λ, σ) = (20, 10), (λ, σ) = (200, 15), (λ, σ) = (2000, 20)) the amplitude of
oscillations goes down when the frequency increases and when the level of denoising increases, but the
global Sine shape is preserved, until oscillations are totally flattened. In the TV-MAP denoised signals
(right column, from top to bottom: λ = 17.49, λ = 188.8, λ = 1514, tuned to have a level of denoising
equal to the one of the TV-LSE denoised signal it faces) the amplitude of oscillations also goes down
when the frequency increases and when the level of denoising increases, but contrary to TV-LSE denoised
signals, staircasing appears again at any frequency, thus breaking the smoothness of the input signal and
creating artificial structure.
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Figure 4.28: Experiments on a synthetic signal – the noisy peak. In the TV-LSE denoised signals (left
column, from top to bottom: (λ, σ) = (100, 10), (λ, σ) = (200, 10), (λ, σ) = (800, 10)) In the TV-MAP
denoised signals (right column, from top to bottom: λ = 83.5, λ = 198.0, λ = 261.4, tuned to have a
level of denoising equal to the one of the TV-LSE denoised signal it faces)
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4.5 Staircasing and isolated pixels artefacts

In this section we focus on the particular artefacts encountered by TV-MAP denoising, namely
the staircasing effect and the emergence of contrasted isolated pixels.

First, concerning the staircasing effect, Figure 4.29 comes back to the images of Figures 1.4
and 1.5 (from Chapter 1) and compares TV-MAP and TV-LSE denoising with equal level of
denoising. Experiments agree with the theorem stating the absence of staircasing in TV-LSE
denoised images. In TV-MAP denoising, staircasing effect mostly occurs on regions where the
noise or small scale texture dominates the geometry of the image, and corrupts smooth zones
into piecewise constant zones with spurious contrasted edges. In TV-LSE denoising such an
artefact does not appear, sometimes at the expense of a noisier aspect.

As seen in previous experiments, taking a very small σ can lead to visual staircasing effect,
for the image is very close to the TV-MAP denoised image. In all the experiments of this section
σ was chosen equal to the standard deviation of the noise, and this value appeared to be large
enough to avoid a visual staircasing effect.

Figures 4.30 and 4.31 deal with the isolated pixels generated by TV-MAP denoising. This
isolated pixel artefact occurs when the noise dominates the geometry of the image, and when the
level of denoising is weak. In this case a good denoising operator is expected to shrink amplitude
of the noise with no creation of artificial features, which is not the case with TV-MAP. The ideal
case is when a constant original image is degraded by noise. Figure 4.30 shows the denoising of
such a synthetic Gaussian noise image. We check that the isolated pixels generated by TV-MAP
vanish when denoising via TV-LSE. Figure 4.31 shows the same behavior on a natural image
(Barbara image). Several sets of parameters (λ, σ) achieving some desired level of denoising
make TV-LSE greatly reduce the visual impact of the isolated pixels generated by TV-MAP.
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noisy TV-LSE TV-MAP

Figure 4.29: Reduction of the staircasing effect. We take the images of Figures 1.4 and 1.5, and
experimentally check that TV-LSE does not create staircasing artefacts. The left column shows zooms
of Lena and Barbara images with Gaussian white noise added (s.d. 10). The middle column shows the
corresponding TV-LSE denoised images ((λ, σ) = (40, 10)), while the right column shows the TV-MAP
denoised images corresponding to equivalent level of denoising (from top to bottom: λMAP = 25.6,
λMAP = 20.3, λMAP = 29.0, λMAP = 26.9). Staircasing effect is huge in TV-MAP but does not occur
in TV-LSE.
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noisy TV-LSE TV-MAP

Figure 4.30: Isolated pixels on noise. A Gaussian white noise (with s.d. 40, left image) is denoised
using TV-LSE (with (λ, σ) = (80, 40), center image) and TV-MAP (with λMAP = 35.9, right image). The
parameters have been chosen to give equal levels of denoising. TV-LSE yields in a correlated noise-like
image, with hardly no structure created, while TV-MAP creates highly contrasted isolated pixels and
staircasing. Contrast has been enhanced (a unique affine contrast change for the 3 images) in order to
improve the visualization of the denoised images.
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noisy TV-MAP

TV-LSE (σ = 10) TV-LSE (σ = 25)

Figure 4.31: Isolated pixels on a natural image. A detail of Barbara has been noised by a Gaussian
white noise with s.d. 10 (top-left image). TV-MAP denoising (top-right image, with λMAP = 8) is
applied to the noisy image, as well as TV-LSE denoising (bottom-left image with (λ, σ) = (13.1, 10),
bottom-right image with (λ, σ) = (25.5, 25), attaining the same level of denoising as TV-MAP). Many
contrasted isolated pixels corrupt the TV-MAP denoised image, while the remaining noise of the TV-LSE
denoised images is much more homogeneous. This isolated pixel artefact occurs as soon as TV-MAP is
applied with a small level of denoising on an homogeneous region.
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4.6 Other examples, and natural noise

In this section miscellaneous images denoised by TV-LSE are shown, with a comparison to
TV-MAP.

In Figures 4.32 and 4.33, details of the classical images Goldhill and Barbara where Gaussian
noise has been added are denoised. TV-LSE always gives more natural and pleasant images.

In Figures 4.34 and 4.35, experiments on natural noise are held. We chose images from
traditional photography and digitized by a professional (Figure 4.34) or home-made (Figure
4.35) scan. The noise the scan induces is not far from being white and Gaussian. Actually its
distribution seems to be more peaked than a Gaussian distribution. Moreover there is no reason
for the noise to be independent of the image. Although the noise model does not fit perfectly
well to the framework, the TV-LSE denoised images have a correct and natural aspect. In both
TV-LSE and TV-MAP, most noise is removed, but in TV-MAP, thin structures as the chain
in the top images of Figure 4.34 are erased and staircasing spoils again the image, while in
TV-LSE, some noise remains but staircasing is avoided.
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noisy TV-LSE TV-MAP

Figure 4.32: Examples on Goldhill. On the first column, details of the degraded Goldhill image are
shown (Gaussian white noise with s.d. 10). The corresponding TV-LSE denoised images are shown on
the second column ((λ, σ) = (25, 10)), and the TV-MAP denoised images on the third column (λMAP =
14.45, 18.61, 17.55, 16.55 corresponding to the level of denoising reached by the LSE images). On the
first row the isolated pixels of TV-MAP vanish in TV-LSE, and the bushes texture is more natural in
TV-LSE. On the second row contrast is a bit more preserved in TV-MAP but the texture of the wall is
more credible on TV-LSE. The roofs’ stripes of the third row have a better rendering in TV-LSE. The
last row is not that clear: a careful observation shows that TV-MAP contains more contrast and more
staircasing, while TV-LSE is more blurry.
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noisy TV-LSE TV-MAP

Figure 4.33: Examples on Barbara. On the first column, details of the degraded Barbara image are
shown (Gaussian white noise with s.d. 10). The corresponding TV-LSE denoised images are shown on
the second column ((λ, σ) = (20, 10)), and the TV-MAP denoised images on the third column (λMAP =
corresponding to the level of denoising of the LSE images).
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noisy TV-LSE TV-MAP

Figure 4.34: Denoising of naturally noisy images (scanned silver-based photograph). On the first column
details of naturally noisy images are shown. On the second column the corresponding TV-LSE denoised
images ((λ, σ) = (20, 10)), and on the third column the TV-MAP denoised images with equal level
of denoising (λMAP = 15.8, 13.35, 11.23). Here again TV-MAP images are nearly piecewise constant,
whereas TV-LSE achieves a more natural rendering.
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noisy TV-LSE TV-MAP

Figure 4.35: Denoising of naturally noisy images (scanned silver-based photograph). On the first column
details of naturally noisy images are shown. On the second column the corresponding TV-LSE denoised
images ((λ, σ) = (20, 10)), and on the third column the TV-MAP denoised images with equal level of
denoising (λMAP = 15.56, 14.10).
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Chapter 5

Locality in Total Variation denoising

Résumé Dans ce chapitre nous proposons des versions localisées du débruitage par varia-
tion totale. Nous en analysons quelques aspects: compromis biais-variance, EDP limite,
pondération des voisinages, etc.

Abstract In this chapter we discuss localized versions of Total Variation denoising. Several
aspects are analyzed: bias-variance trade-off, limiting PDE, neighborhood weighting, etc.

5.1 Introduction

Total variation is a penalizing quantity which has proven to be quite well adapted to variational
image denoising [Rudin et al. 1992]. This model brings into play short-range as well as long-
range interactions between the pixels. Indeed, the Total Variation is quantity which gives a
measurement of global regularity of images, and in the denoising model the denoised gray level
assigned to a pixel generally depends on the whole image. In this global framework, denoising
cannot commute with image cropping, because when the image is cropped, the information
formerly brought by far away pixel is lost and the denoising may lead to a different output. For
natural images where two regions of the image may come from very different scene situations,
it can sound weird that the denoising of one pixel needs the contribution of remote pixels. One
should rather expect that the denoising of a pixel only needs the information brought by its
neighbors, provided that the neighborhood is large enough.

This idea of localization of denoising has already been exploited in a completely different
framework, that is in the Non-Local means (NL-means) algorithm [Buades et al. 2006a]. The
principle of this algorithm is to make all the pixels contribute to the denoising of one of them, by
assigning to it a weighted average of all the gray values which occur in the image. The weights
must be subtly selected, but under a stationary assumption this method is mathematically
proven to converge towards the conditional expectation of the original image, when the image’s
size goes to infinity. However it has been noticed that in practice, the denoising performances
were better when considering smaller images. This amounts to constrain the denoising of a pixel
to depend on the pixels lying in a certain neighborhood of it only. This localization procedure
has been interpreted as [Kervrann and Boulanger 2006] as a bias-variance trade-off.
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Despite huge differences separating the NL-means and Total Variation (TV) denoising, lo-
calization can be transposed to TV denoising. This chapter is devoted to an (uncomplete)
exploration of localized versions of the TV minimization denoising model. The most straight-
forward local version is simply defined by the minimization of the energy of [Rudin et al. 1992]
where the data is “cropped” along the boundary of a window. If discrete images are used, and
if this window is denoted W, this amounts to minimizing

∑

x∈W
(u(x) − v(x))2 + λ

∑

x∈W
|∇u(x)|,

where λ is the regularity parameter of the model, which controls the amount of denoising. The
summations are taken over the window W instead of the whole domain, and the associated
denoising becomes an instance of a neighborhood filter.

In this chapter two local models deduced from this local energy minimization are developed.
First, Section 5.2 gives precision about the global character of the TV denoising. Then in Section
5.3, properties of the local denoising model where the regularity parameter λ is not window-
dependent are derived. A model justification is provided by a Bayesian interpretation. Several
regularity results are given; in particular a link to the heat equation is heuristically driven. The
window size is discussed in terms of bias-variance trade-off. Then in Section 5.4 this regularity
parameter λ is madeW-dependent. It is tuned in such a way that the quantity of noise removed
from a window W is a user-given constant. This approach is linked to the constrained Total
Variation model originally proposed by Rudin et al. [1992], formerly to the Lagrangian approach:
the noise’s standard deviation (s.d.) σ is known, and the Total Variation is minimized over the
ball with radius σ centered on the noisy image. In both sections numerical experiments are
carried out. Concluding remarks end the chapter at Section 5.5.

5.2 Total variation minimization is global

The Total Variation minimization proposed by [Rudin et al. 1992], takes a noisy image v and
gives back the image which minimizes an energy written

E(u) = ‖u− v‖2 + λTV (u).

As seen in Chapter 1, the image which minimizes E can be interpreted as a Maximum A Posteriori
estimate of the original image, assuming a white Gaussian model for the noise

pn(n) =
1

Z
e−

‖n‖2
2σ2

and the Total variation distribution

p(u) =
1

Z
e−βTV (u)

as a prior on images, provided that λ = 2σ2β (Z is a “universal” normalizing constant which
makes the equations simpler).
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This Total Variation prior distribution is a Gibbs model for images. Indeed a scheme for
the gradient norm needs the selection of a neighborhood shape N which will be interpreted as
a clique in the Gibbs field

1

Z
e−β

P

x∈Ω f(u(Nx))

where f is the potential function associated to the clique N . For example, the gradient scheme
defined by

|∇u(i, j)| =
√

(u(i+ 1, j) − u(i, j))2 + (u(i, j + 1)− u(i, j))2

is associated to a neighborhood Nx containing the pixel x, its top and its right neighbors. As
in any Gibbs field (Hammersley-Clifford theorem [Hammersley and Clifford 1971; Besag 1974;
Chalmond 2003]), the gray level at a pixel of a random image distributed as the TV prior only
depends on the gray levels located in a slightly larger neighborhood, as is shown by

p(u(x)|(u(y))y 6=x) =
1

Z
e−β

P

y∈Ω(f(u(Ny))−f(u/x(Ny)))

=
1

Z
e−β

P

y∈Nx
(f(u(Ny))−f(u/x(Ny)))

= p(u(x)|u(N 2
x \ {x}))

where

u/x(y) =

{

u(y) if y 6= x

0 if y = x,
and N 2

x = {y | ∃x0 ∈ Nx, y ∈ Nx0}.

Despite the assumption of a white Gaussian noise model, still, it is well known the local interac-
tions propagate step by step and the posterior distribution of the gray level of one pixel x alone
depends on the whole image v [Besag 1986]. Let us give the example of a Dirac image, which
shows that the denoising is global indeed. Let v be an image defined on a discrete domain Ω by

v(x) =

{

A if x = x0

0 else.

Then there exists α > 0 (depending on λ and on the position of x0 in the domain Ω) such that
the globally denoised version of v satisfies

Tv(x) =







{

A− α if x = x0

α
|Ω|−1 else,

when A > α,

Tv(x) = A
|Ω| for all x otherwise.

This proves that any pixel in Ω is influenced by the gray level at x0, even if x and x0 are
separated by a large distance. Examples of global denoising for images defined on a continuous
domain are given in Strong and Chan [1996].
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5.3 Lagrangian local TV-MAP

5.3.1 Construction

In this section the total variation denoising is compelled to become local. For a given window
shape W ⊂ Z2 containing 0, generally larger than the neighborhood N of the gradient norm
scheme, we define the window Wx defined by the translation of W with vector x

Wx = (x+W) ∩ Ω,

where Ω stands for the domain where the images are defined. Let x ∈ Ω be a pixel. A local
prior on images defined on Wx is defined by

p(u(Wx)) =
1

Z
e−βTV (u(Wx)),

together with a local Gaussian model on the noise

pn(Wx)(n(Wx)) =
1

Z
e−

‖n(Wx)‖2
2σ2 .

Such distributions lead to the posterior distribution of the window u(Wx) conditionally to v(Wx)

p(u(Wx)|v(Wx)) =
1

Z
e−

‖u(Wx)−v(Wx)‖2
2σ2 · e−βTV (u(Wx)).

Any estimate of u(Wx) based on this posterior distribution p(u(Wx)|v(Wx)) is compelled to
depend on the noisy window v(Wx) only. In this section we focus on the Maximum A Posteriori
estimate of the window u(Wx), which is given by

û(Wx) = arg min
w∈RW

‖w − v(Wx)‖2 + λTV (w).

The superimposition of windows implies that each pixel has several estimators, one for each
window which it belongs to. Namely, for every h ∈ W, we can get an estimate ûh(x) of the gray
level u(x), given by

ûh(x) = w(h) where w = arg min
w∈RW

‖w − v(Wx−h)‖2 + λTV (w).

A smart aggregation of these estimators would probably lead to a more powerful estimator, but
we choose here to consider the simplest aggregate, i.e. the estimate corresponding to h = 0,
writing

TWv(x) = w(0) where w = arg min
w∈RW

‖w − v(Wx)‖2 + λTV (w). (5.1)

This model where the regularity parameter λ does not depend on the location x is consistent
with a prior independent of x too. In the following the shape W is either a square or a disc,
and a pixel x denoised by TW depends on v(y) with |y − x|∞ or |y − x|2 less than a constant
characterizing the size of W.
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5.3.2 Algorithm

A very simple algorithm consists in applying Chambolle’s dual algorithm [Chambolle 2004] on
every window v(Wx) of the noisy image to minimize the corresponding local energy (5.1).

However several tests of this algorithm running on signals and images reveal an annoying
artefact: structures with a given frequency can be shrunk to zero while others with higher
frequency can come out again. That is why it can be considered as an aliasing artefact. It
occurs when the signal or image contains structure with very high frequencies and when the
window and the parameter λ are very large. It is illustrated on Figure 5.1 with the chirp. It can
also be detected on images but it is much harder to see.
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Figure 5.1: The effect of local denoising on the chirp. The chirp (left) is denoised using the local TV-
MAP denoising with first a 21× 21 window (center), and then a 61× 61 window (right), with the same
λ = 2000). We would expect to obtain the same shape, with decreasing amplitude in the oscillations
(high frequencies would be considered as noise). However severe aliasing artefacts are visible in the two
signals. For instance, on the central signal, rebounds of the signal can be seen in the high frequencies,
and in the signal on the right even the shape of the first arch is ruined.

This phenomenon is due to the boundary conditions which induce distortions on the denois-
ing, even though we chose free boundary conditions on the windows (as Chambolle’s algorithm
tells). Thus we try to “smooth” the window as in the NL-means algorithm [Buades et al. 2005].
Namely, instead of considering a space-homogeneous data-fidelity term, we introduce a weighted
norm ‖ · ‖2,ω defined on RW by

‖u‖22,ω =
∑

(i,j)∈W
ωij|uij |2, where ∀(i, j) ∈ W, ωij > 0 and

∑

(i,j)∈W
ωij = |W|.

Typically the weights (ωk) can be taken Gaussian, i.e.

ωij =
|W|

∑

(i,j)∈W e−
i2+j2

2a2

e−
i2+j2

2a2 . (5.2)

Notice that the limiting case where a → +∞ reduces to the classical Euclidean norm on the
window. The algorithm described hereafter is suitable for any positive weights, but is useful in
reducing the artefacts only if the outer pixels have lower weights than inner pixels.
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Let x ∈ Ω. When considering the minimization of the smoothed energy

Eω(p) = ‖p− v(Wx)‖22,ω + λTV (p) (5.3)

on a window Wx, the norm ‖ · ‖2,ω reduces the impact of the border pixels, and hence makes
the boundary effects less effective.

Let us derive the ideas of Chambolle’s algorithm to this energy. For that, let us introduce
the invertible diagonal operator D such that

∀u ∈ RW , ∀k ∈ W, (Du)k = ωkuk

(D is always invertible since ωk > 0, and converges to the identity when a → ∞ for Gaussian
weights (5.2)). Notice that for any image u, we have ‖u‖2,ω = ‖D1/2u‖.

We also assume as in [Chambolle 2004] that the domain of the windowW is a square N×N ,
and that the total variation is computed from the gradient discretized as follows

(∇u)1i,j =

{

ui+1,j − ui,j if i < N

0 if i = N
and (∇u)2i,j =

{

ui,j+1 − ui,j if j < N

0 if i = N,

and that the norm of the gradient is L2 on its two components. The divergence operator dual
to the gradient is then defined on (RW)2 by

(div p)i,j =







p1
i,j − p1

i−1,j if 1 < i < N

p1
i,j if i = 1

−p1
i−1,j if i = N

+







p2
i,j − p1

i,j−1 if 1 < j < N

p2
i,j if j = 1

−p2
i,j−1 if j = N.

Then the next proposition holds.

Proposition 5.1 Under the above conditions, the minimizer of the smoothed energy Eω (5.3)
writes

Tωv(Wx) = v(Wx)− πλ
2
K(v(Wx))

where

K = {D−1(div p) | p ∈ RW , ∀(i, j) ∈ W, |pi,j | ≤ 1}
is closed and convex, and π λ

2
K denotes the projection operator on λ

2K. Furthermore, letting

πλ
2
K(v(Wx)) = λ

2D
−1(div p), p satisfies

∀(i, j) ∈ W, |(∇(
λ

2
D−1(div p)− v(Wx)))i,j | pi,j = (∇(

λ

2
D−1(div p)− v(Wx)))i,j .

Proof : We follow the proof of Chambolle and generalize it to the weighted case. Considering
the subgradient of Eω (in (5.3)), we obtain that the image u ∈ RW minimizing Eω is such that

2D(u− v(Wx)) + λ∂TV (u) 3 0,
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i.e.
Dv(Wx)−Du

λ/2
∈ ∂TV (u).

Now denoting TV ∗ the Legendre-Fenchel transform of TV , we get thanks to the Moreau decom-
position (see [Moreau 1962] or [Hiriart-Urruty and Lemaréchal 1993])

u ∈ ∂TV ∗(
Dv(Wx)−Du

λ/2
).

Now denoting w = v(Wx)−u
λ/2 , we get

w − v(Wx)

λ/2
+

2

λ
∂TV ∗(Dw) 3 0,

whose left-hand term is the subgradient of the energy 1
2‖w−

v(Wx)
λ/2 ‖2+ 2

λTV
∗(Dw). It means that

w minimizes the latter energy. But TV ∗ is the characteristic function of a convex set [Chambolle
2004], and in particular

TV ∗(Dw) =

{

0 if w ∈ K
+∞ else,

where K = {w = D−1div p | ∀(i, j) ∈ W, |pi,j| ≤ 1},

sinceD is invertible. K is closed and convex because p 7→ D−1p is linear. Hence the minimization
of the energy 1

2‖w −
v(Wx)

λ/2 ‖2 + TV ∗(Dw) amounts to project v(Wx) onto λ
2K. In other words,

w = arg min{‖v(Wx)− λ

2
D−1div p‖2 | w = D−1div p, ∀(i, j) ∈ W, |pi,j| ≤ 1}. (5.4)

The necessary and sufficient Karush-Kuhn-Tucker conditions hold and there exists α ∈ RW such
that

∀(i, j) ∈ W, −∇(
λ

2
D−1div p− v(Wx))i,j = αi,jpi,j (5.5)

with αi,j ≥ 0 and αi,j(p
2
i,j − 1) = 0 for all (i, j) ∈ W. Then either αi,j > 0 and |pi,j| = 1, or

|pi,j| < 1 and αi,j = 0. In both cases αi,j = |∇(λ
2D

−1div p− v(Wx))|i,j , and replacing this value
of αi,j in (5.5) concludes the proof. �

Now following Chambolle [2004], a semi-implicit gradient descent with step τ > 0 given by

pn+1
i,j = pn

i,j + τ(∇(D−1div pn − v(Wx)

λ/2
))i,j − |∇(D−1div pn − v(Wx)

λ/2
))i,j |pn+1

i,j ) (5.6)

leads to the iterative scheme

pn+1
i,j =

pn
i,j + τ(∇(D−1div pn − v(Wx)

λ/2 ))i,j

1 + τ |∇(D−1div pn − v(Wx)
λ/2 )i,j|

. (5.7)
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In the unweighted case where D = Id, the iterative scheme (5.7) was proven to converge to
πλ

2
K(v(Wx)) as soon as τ ≤ 1/8 [Chambolle 2004]. Now in the weighted case, the theoretical

maximum step size is smaller than 1/8 and depends on the weights. The following proposition
gives an explicit maximum step size for which the iterative scheme converges, thus generalizing
Chambolle’s result.

Proposition 5.2 Let τ ≤ τmax, with τmax defined by

τmax =
1

4max
{

maxi,j

(
1

ωi,j
+ 1

ωi+1,j

)

,maxi,j

(
1

ωi,j
+ 1

ωi,j+1

)} . (5.8)

Let (pn) defined recursively by (5.7). Then λ
2D

−1(div pn) converges to π λ
2
K(v(Wx)).

Proof : We follow the proof of [Chambolle 2004, Theorem 3.1]. For convenience, let L denote
the linear operator L = D−1/2div , and L∗ = −∇D−1/2 the dual operator. First, notice that
by induction on n in (5.7), it is straightforward that |pn

i,j| ≤ 1 for all n. Now let us prove

that the sequence ‖Lpn − v(Wx)
λ/2 ‖2 is decreasing for a certain range of values for τ . Let us set

η = (pn+1 − pn)/τ . Then the difference of norms

‖Lpn+1 − v(Wx)

λ/2
‖2 − ‖Lpn − v(Wx)

λ/2
‖2 (5.9)

= 2τ〈Lη,Lpn − v(Wx)

λ/2
〉+ τ2‖Lη‖2

= −τ
[

2〈η,−L∗(Lpn − v(Wx)

λ/2
)〉 − τ‖Lη‖2

]

(5.10)

should be negative. Denoting κ the operator norm of L, the last term ‖Lη‖2 can be bounded
from above by κ2‖η‖2. An overestimation of κ will be given at the end of the proof.

In order to process the first term 2〈η,−L∗(Lpn − v(Wx)
λ/2 )〉 in (5.10), first notice that η =

(pn+1 − pn)/τ satisfies, thanks to (5.6),

η = −L∗(Lpn − v(Wx)

λ/2
)− |L∗(Lpn − v(Wx)

λ/2
)|pn+1,

and consequently, for any pixel (i, j), the splitting

2ηi,j · (−L∗(Lpn − v(Wx)

λ/2
))i,j = |ηi,j|2 + |(L∗(Lpn − v(Wx)

λ/2
))i,j |2 − |ηi,j + (L∗(Lpn − v(Wx)

λ/2
))i,j |2

= |ηi,j|2 + |(L∗(Lpn − v(Wx)

λ/2
))i,j |2 − |(L∗(Lpn − v(Wx)

λ/2
))i,j |2|pn+1

i,j |2,

allows to state that

2〈η,−L∗(Lpn − v(Wx)

λ/2
)〉 ≥ ‖η‖2, (5.11)

because |pn+1
i,j | ≤ 1 for any (i, j) ∈ Wx.
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Now gathering (5.10) and (5.11) yields

‖Lpn+1 − v(Wx)

λ/2
‖2 − ‖Lpn − v(Wx)

λ/2
‖2 ≤ −τ

[
(1− τκ2)‖η‖2

]

which is negative as soon as τ < 1/κ2. This proves that the sequence ‖Lpn − v(Wx)
λ/2 ‖2 is

decreasing, unless η = 0, which anyway ensures that pn+1 = pn. When τ = 1/κ2, the result

remains true, because assuming ‖Lpn+1 − v(Wx)
λ/2 ‖ = ‖Lpn − v(Wx)

λ/2 ‖, we deduce that

|(L∗(Lpn − v(Wx)

λ/2
))i,j ||pn+1

i,j | = |(L∗(Lpn − v(Wx)

λ/2
))i,j |,

so that either |pn+1
i,j | = 1 or L∗(Lpn − v(Wx)

λ/2 ) = 0. In any case, it means that pn+1 = pn, thanks

to (5.7).

From the decrease of ‖Lpn − v(Wx)
λ/2 ‖2, the convergence of pn towards the minimizer of (5.4)

can directly proven by adapting Chambolle’s proof. Indeed, let m be the limit of ‖Lpn− v(Wx)
λ/2 ‖,

and p̄ be the limit of a converging subsequence (pnk) of (pn). Letting p̄′ denote the limit of
(pnk+1), we have

p̄′i,j =
p̄i,j + τ(L∗(Lp̄− v(Wx)

λ/2 ))i,j

1 + τ |L∗(Lp̄− v(Wx)
λ/2 )i,j |

,

and repeating the former computations, as m = ‖Lp̄− v(Wx)
λ/2 ‖ = ‖Lp̄′ − v(Wx)

λ/2 ‖, we can see that

η̄i,j = (p̄′ − p̄)/τ = 0 for every (i, j), i.e. p̄ = p̄′. Thus

−L∗(Lp̄− v(Wx)

λ/2
))i,j = |L∗(Lp̄− v(Wx)

λ/2
))i,j | p̄i,j

which is the Euler formulation of a solution of the minimization problem (5.4). Hence [Chambolle
2004], λ

2D
−1div p̄ is the projection π λ

2
K(v(Wx)) required in Proposition 5.1. Since this projection

is unique, we deduce that the whole sequence λ
2D

−1div pn goes to the desired projection.

Now let us give an overestimate (as tight as possible) of the norm κ of the operator L. For
any η, we have

‖Lη‖2 = ‖D−1/2div η‖2 =
∑

i,j

1

ωi,j
(η1

i,j − η1
i−1,j + η2

i,j − η2
i,j−1)

2

≤
∑

i,j

4

ωi,j
((η1

i,j)
2 + (η1

i−1,j)
2 + (η2

i,j)
2 + (η2

i,j−1)
2)

≤ 4
∑

i,j

(
1

ωi,j
+

1

ωi+1,j

)

(η1
i,j)

2 + 4
∑

i,j

(
1

ωi,j
+

1

ωi,j+1

)

(η2
i,j)

2

≤ 4max

{

max
i,j

(
1

ωi,j
+

1

ωi+1,j

)

,max
i,j

(
1

ωi,j
+

1

ωi,j+1

)}

‖η‖2. (5.12)
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This provides the upper bound on κ2

κ2 ≤ 4max

{

max
i,j

(
1

ωi,j
+

1

ωi+1,j

)

,max
i,j

(
1

ωi,j
+

1

ωi,j+1

)}

.

This bound is probably not optimal, but the example of

η1
i,j = η2

i,j =
�

(i,j)/ωi,j minimum and (i+1,j+1)∈Ω

shows that the order of magnitude is correct, since for this η

‖Lη‖2 ≈ max

{

max
i,j

(
1

ωi,j
+

1

ωi+1,j

)

,max
i,j

(
1

ωi,j
+

1

ωi,j+1

)}

‖η‖2.

Finally, taking τ ≤ τmax with τmax as in (5.8) yields the desired result. �

Figure 5.2 shows the chirp denoised with smooth versions of TV-MAP local using the algo-
rithm (the weights are chosen Gaussian as in (5.2)). Attention should be paid to the fact that
the weighted version achieves lower levels of denoising than the unweighted one when based on
the same window size. Indeed Proposition 5.5 in Subsection 5.3.3 will prove that the weighted
denoiser with λω is asymptotically equivalent to the unweighted one with λ (when λ → 0)
provided that

λω =
|Ω|
|W| maxωi,j λ,

which tells that we need to take λω > λ if we desire an equivalent level of denoising. This is why
Figure 5.2 shows two solutions: one with the same window size than for the non-smooth local
TV-MAP denoising (with window radius ≈ 3a, the Gaussian bandwidth, for which the Gaussian
becomes negligible), and the other with a larger window able to achieve equal denoising level.
In both cases the “aliasing” artefact is perfectly removed.

Let us say a word about the suboptimality of τmax (5.8). First note that

1

8
minωi,j ≤ τmax ≤

1

4
minωi,j

and that τmax ≤ 1/8, which tells that admissible step sizes are smaller than in the unweighted
case. In the unweighted case, Chambolle [2004] noticed that the practical maximum step size
τpr
max was twice the τmax found in the proof. In the case of Gaussian weights, it seems that

τpr
max ∈ [2τmax, 4τmax]

The left bound 2τmax corresponds to the case where the Gaussian bandwidth a is much larger
than the window size (then the weights are virtually constant), and the right bound 4τmax

corresponds to the case where a is much smaller than the window size (the Gaussian is virtually
not truncated). An experiment concerning this gap between τmax and τpr

max is illustrated on
Figure 5.3.
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Figure 5.2: On the left column a “hard” window is used in the local TV-MAP denoising of the chirp,
with two different window sizes (21 × 21 on the top, 61 × 61 below, with the same λ = 2000). Severe
aliasing artefacts are visible in the two signals. For instance, on the top signal, rebounds of the signal can
be seen in the high frequencies, and in the bottom signal even the shape of the first arch is ruined. The
second and third columns show the chirp denoised by a local TV-MAP using a smooth window with still
λ = 2000. In the second column the coefficient a of the smooth window (see Equation (5.2)) was tuned
such that the weights become negligible on the borders of the hard window of the first column. The level
of denoising (i.e. the L2-distance between the input and the denoised signals) obtained by this denoising
is much smaller than for the first column, which makes it difficult to compare to the “hard-window”
denoising. This is why a third column is shown, where this coefficient a is taken such that the denoised
signal achieves the same level of denoising than in the first column. The smooth-window algorithm here
allows complete removal of the aliasing artefacts.

Remarks Even if the ratio τ pr
max/τmax is bounded, both of them go to 0 when minωi,j goes

to 0. Indeed, when the weights are far from being uniform (for instance in the case of Gaussian
weights with a parameter a much smaller than the window size), the maximal step size τmax

given in (5.8) becomes extremely small. In practice in this case, the convergence rate of (pn) is
very slow, and the algorithm becomes untractable.

Another drawback of these smooth windows comes from the model. A Bayesian interpreta-
tion of the smoothed energy (5.3) would be that the outer pixels of the window contain more
noise than the inner pixels. The distribution of the noise does certainly not reflect the physical
reality of the noise.

This is why in our experiments on images the “non-smooth” version of local TV-MAP de-
noising is used, unless the opposite is explicitly specified. The artefacts which may occur are
barely visible in the images, while the smooth version is crucial when dealing with signals, for
which the artefact is really shocking.
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Figure 5.3: Determination of the practical step τ pr
max in the smooth-window local TV-MAP scheme.

The theoretical bound τmax (5.8) is actually not optimal. In practice much larger step sizes are able to
guarantee convergence of the algorithm (5.7). Chambolle [2004] already noticed that in the non-smooth
case, the practical maximal step τpr

max = 1/4 was twice the theoretical τmax = 1/8 given in the convergence
proof. Here for truncated Gaussian weights, the relative gap between τ pr

max and τmax seems to lie in the
interval [2, 4]. Each graph corresponds to a certain level of window smoothing, and shows the practical
τpr
max (bold line) and the theoretical τmax (thin line) with respect to the regularity parameter λ for a given

image. The first graph (a) is relative to a case where the weights (ωi,j) are practically constant on the
window (minωi,j ≈ 0.998, maxωi,j ≈ 1.002, which means that the window is virtually unweighted); it
comes that a λ-independent τpr

max is approximately twice the theoretical bound (Chambolle’s case). The
graph (b) shows a case where the window is a bit smoother (minωi,j ≈ 0.98, maxωi,j ≈ 1.02); the relative
gap is larger than 2. The graph (c) is relative to a smoother window (minωi,j ≈ 0.794, maxωi,j ≈ 1.24),
the graph (d) to a smoother window (minωi,j ≈ 0.369, maxωi,j ≈ 2.13), and the last graph (e) to a
practically Gaussian window (minωi,j ≈ 0.00231, maxωi,j ≈ 8.12). The relative gap between τmax and
τpr
max increases when the “smoothness” (say maxωi,j/minωi,j) increases, but never exceeds 4. (These

graphs were obtained from the denoising of the same noisy image, by observing the convergence of the
ROF energy).
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5.3.3 Stability properties

In this subsection we gather several results about local TV-MAP denoising. Unfortunately
the assumptions about the discretization of total variation are not the same in the different
propositions. Each proposition then comes with its assumptions.

First in Proposition 5.3, which is a typical property from neighborhood filters, the total
variation is assumed to be writable as in Proposition 3.5 in Chapter 3

TV (u) =
∑

k∈Ω

(

εpk + ‖u(Ṅk ∩ Ω)− uk‖pk
)1/p

, (5.13)

with ε ≥ 0 and p ∈ [0,∞], but the proposition also holds in the continuous framework.

Proposition 5.3 (Local comparison principle) For any pixel x, the denoising operator de-
noted T applied on the image v satisfies

min
y∈Wx

v(y) ≤ Tv(x) ≤ max
y∈Wx

v(y).

Proof : Let x ∈ Ω. Let m = miny∈Wx v(y) and M = maxy∈Wx v(y). Let q be the patch
associated to the denoising of v(Wx) i.e. such that

q = arg min
q
‖p− v(Wx)‖2 + λTV (q)

Assume that û(x) = q(0) is not inside [m,M ]. Let then q ′ be the thresholded patch associated
to q defined by

q′(k) =







q(k) if q(k) ∈ [m,M ],

M if q(k) > M,

m if q(k) < m.

Then ‖q′ − v(Wx)‖2 < ‖q − v(Wx)‖2 since the gray levels of q outside [m,M ] are set nearer to
the noised value v(y). Besides TV (q ′) ≤ TV (q) holds under the condition (5.13) because

∀k ∈ Ω,∀l ∈ Nk, |q′l − q′k| ≤ |ql − qk|

which implies

∀k ∈ Ω, ‖q′(Ṅk ∩ Ω)− q′k‖pk ≤ ‖q(Ṅk ∩ Ω)− qk‖pk
and TV (q′) ≤ TV (q). The inequality also holds when the images are defined on a continuous
domain because the coarea formula [Evans and Gariepy 1992] implies

TV (q′) =

∫ M

m
H1(∂{q′ ≤ λ}) dλ =

∫ M

m
H1(∂{q ≤ λ}) dλ ≤

∫

R

H1(∂{q ≤ λ}) dλ = TV (q),

where H1(∂A) denotes the Hausdorff measure of the boundary of A. Hence in any of the two
cases, E(q′) < E(q), which contradicts the minimality of E(q). �
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The next proposition is a monotony property, and needs a very restrictive condition about
TV’s discretization. We assume for Proposition 5.4 that it writes

TV (u) =
∑

i,j

|ui+1,j − ui,j |+ |ui,j+1 − ui,j| (5.14)

or that it is defined in the continuous domain. It amounts to assume that TV satisfies the coarea
formula [Evans and Gariepy 1992; Darbon and Sigelle 2006a]

TV (u) =

∫ M

m
H1(∂{u ≤ λ}) dλ

where H1(∂{u ≤ λ}) denotes the Hausdorff measure of the boundary of the λ-level set of u. In
the discrete case, H1(∂{u ≤ λ}) is the perimeter of {u ≤ λ}, and is measured thanks to cliques
of order 2 [Darbon and Sigelle 2006a].

Proposition 5.4 (Global comparison principle) Assume that the total variation writes as
in (5.14) or that the image domain is continuous. Let v1 < v2 (i.e. for any pixel x, v1(x) <
v2(x)). Then the local TV-MAP denoised images Tv1 and Tv2 satisfy Tv1 ≤ Tv2.

Proof : Let v1 < v2 and let x ∈ Ω. Let p1 and p2 the patches which minimize the local
energies Ev1(Wx) and Ev2(Wx). We can apply the monotony property of the global TV-MAP
denoiser ([Chambolle 2005] or [Darbon and Sigelle 2005] for the discrete case, and [Alter et al.
2005a] for the continuous case) on v1(Wx) < v2(Wx) to prove that p1 ≤ p2. Hence Tv1(y) =
p1(0) ≤ p2(0) = Tv2(y). �

This result is a stability property. Indeed, if a noisy image v2 is squeezed between two regular
images v1 and v3, with v1 < v2 < v3 for instance, then the denoising of the the 3 images will
preserve the order Tv1 ≤ Tv2 ≤ Tv3. If v1 and v3 are regular, we can expect to have Tv1 ≈ v1
and Tv3 ≈ v3. Then Tv2 is expected to be squeezed between v1 and v3.

As noticed in Subsection 5.3.2, the level of denoising of a patch decreases when considering
weighted windows instead of unweighted windows. In order to reach equal levels of denoising,
one should take a larger regularizing factor λ in the weighted case. We then raise the question:
which λ should we take to reach the denoising level of the denoising with unweighted windows
and a parameter λ′? Next proposition states an asymptotic normalization result of λ with
respect to the window’s smoothness, in a special case. In particular, we need to assume that the
domain is discrete and that the total variation is regularized, to be differentiable.

Proposition 5.5 (λ normalizing for smooth windows) Let (ωx) denote positive weights
associated to the finite window W, ω0 being the central weight, and let Tλ,(ωx) be the local TV-
MAP denoiser with parameter λ and weights (ωx). Assume that the Total Variation is regularized
into

TV (u) =
∑

x∈W

√

ε2 + |∇u(x)|2
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Let Tλ,(ωx) denote the local TV-MAP denoising operator associated to the regularizing parameter
λ and the weights (ωx). When λ goes to 0, then

Tλ,(ωx) = Tλ′,(1) + o(λ) where λ′ =
λ

ω0

∑

x ωx

|Ω| .

This means that when the central weight ω0 is the maximum weight, and when λ → 0,
the denoising operator Tλ,(ωx) is equivalent to the local TV-MAP denoiser with constant weights
(non-smooth window), associated to the regularization parameter λ′. Notice that in the Gaussian
case, ω0 is the maximum weight, and hence λ′ < λ. We find back that the smooth windows
imply lesser denoising.

Proof : Assume that the weights are normalized such that

∑

x∈W
ωx = |Ω|.

Let v ∈ RΩ. Then Tλ,(ωx)(v)(x) is the central gray level of the u ∈ RWx which minimizes

∑

y∈Wx

ωy(u(y)− v(y))2 + λTV (u), (5.15)

and hence satisfies

∀y ∈ Wx, ωy(u(y)− v(y))−
λ

2
div

∇u
√

ε2 + |∇u|2
(y) = 0,

which writes

(Id− λ

2
D−1J)u = v, (5.16)

where D is the diagonal operator defined on RWx by

∀y ∈ Wx, Du(y) = ωyu(y),

and J is the linear operator defined on the finite dimensional space RWx such that

∀u ∈ RWx , Ju = div
∇u

√

ε2 + |∇u|2
.

The operator Id− λ
2D

−1J is invertible because the variational formulation (5.15) has a unique
solution. Notice that the solution u of (5.16) depends on λ. For any λ > 0, let us denote

wλ =
u− v
λ

.

As u → v when λ → 0, we get the convergence λwλ → 0 when λ → 0. Besides, replacing u by
v + λwλ in Equation (5.16) yields

v + λwλ −
λ

2
D−1J(v + λwλ) = v
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i.e.

wλ =
1

2
D−1J(v + λwλ).

As λwλ → 0 when λ→ 0, and as D−1J is continuous at point v, we get

wλ =
u− v
λ
−−−→
λ→0

1

2
D−1J(v).

Fetching the central point of the patch yields

u(x) = v(x) +
λ

2
ω−1

0 J(v)(x) + o(λ).

Denoting λ′ = ω−1
0 λ, we obtain

Tλ,(ωx)(v)(x) = Tλ′,(1)(v)(x) + o(λ).

because when the (ωx) are all equal and normalized, they all equal 1, and ω−1
0 = 1. This

concludes the proof. �

5.3.4 PDE associated to local TV-MAP

In this subsection we assume that the images are defined on a continuous domain. The Total
Variation energy is regularized and minimized on each disc B(x, h), where x ∈ Ω and h > 0.
The induced denoiser can be considered as a neighborhood filter. Next proposition is about
the behavior of the solution of TV-MAP when the radius h of the window goes to zero (with
a regularity parameter λ constant, independent on h). We show that the partial differential
equation (PDE) associated to this neighborhood filter is the heat equation.

Proposition 5.6 (PDE associated to local TV-MAP) Let Ω be an open and connected
subset of R2. Let x ∈ Ω and h > 0. Let us assume also that the total variation on RB(x,h)

is regularized and defined by

TVε(u) =

∫

B(x,h)∩Ω

√

ε2 + |∇u(y)|2 dy.

Let v ∈ RΩ be a C2 image defined on Ω, and let us consider its denoising thanks to the local
TV-MAP defined on disks with radius h, denoted Th(v), i.e. such that Th(v)(x) minimizes

Ex,h(u) =

∫

B(x,h)
(u(y)− v(y))2 dy + λ

∫

B(x,h)

√

ε2 + |∇u(y)|2 dy.

Let us also assume that there exists h0 > 0 such that B(x, h0) ⊂ Ω and

sup
0<h<h0

sup
y∈B(x,h)

‖∇5Th(v)(y)5‖ < +∞. (5.17)

Then, when h goes to 0, the denoised image Th(v) satisfies

Th(v)(x) = v(x) +
h2

6
∆v(x) + o(h2),

where ∆v denotes the Laplacian of v.
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The proposition implies that the PDE associated to iterations of the local TV-MAP when
the window shrinks to a point is the heat equation

∂u

∂t
= ∆u.

Iterating n times the local TV-MAP with nh2

6 = t is equivalent to applying the heat equation
during a time t to the input image v, when h→ 0 and n→∞.

The assumption (5.17) abound the uniform boundedness of ∇5Th(v) will be discussed after
the proof.

Proof : With no loss of generality we can assume x = 0. Let then h > 0 such that B(0, h) ⊂
Ω. The solution of the local TV-MAP denoising at 0 comes from the image u ∈ RB(0,h) which
minimizes

Eh(u) =

∫

B(0,h)
(u(x)− v(x))2dx+ λ

∫

B(0,h)

√

ε2 + |∇u(x)|2dx.

The differential of this energy writes thanks to Stokes’ theorem

dE(u)(w) = 2

∫

B(0,h)
w(x)(u(x) − v(x)) dx − λ

∫

B(0,h)
w div

∇u
√

ε2 + |∇u|2
dx

+ λ

∮

S(0,h)
w

(

∇u
√

ε2 + |∇u|2
· ~n
)

dx,

where ∇u and div (∇u/
√

ε2 + |∇u|2) are well defined when h < h0, because of Assumption
(5.17). The image u which minimizes E satisfies the Euler-Lagrange equation attached to E ,
which is

u(x)− v(x) =
λ

2
div

∇u
√

ε2 + |∇u|2
(x) (5.18)

with the boundary conditions

∇u(x) · ~n(x) = 0 ∀x ∈ S(0, h). (5.19)

(S(0, h) denotes the centered circle with radius h). Attention must be paid to the fact that the
solution u to the minimizing problem depends on h. A correct notation for the solution would
be uh but we omit the index h to make them lighter.

Let x ∈ B(0, h). Then x can be written x = h~n with ~n ∈ S(0, 1). A Taylor expansion of
∇u(x) writes

∇u(x).~n = ∇u(0).~n+h∇2u(0)(~n)2+
h2

2
∇3u(0)(~n)3+

h3

6
∇4u(0)(~n)4+h4

∫ 1

0

(1− t)4
6

∇5u(tx)(~n)5dt.

Thanks to Assumption (5.17), the integral in the equation can be uniformly bounded in h ∈
(0, h0). A similar expansion applied on ∇u(−x) yields, thanks to the boundary condition (5.19),

{

0 = ∇u(x).~n = ∇u(0).~n+ h∇2u(0)(~n)2 + h2

2 ∇3u(0)(~n)3 + h3

6 ∇4u(0)(~n)4 +O(h4),

0 = ∇u(−x).~n = ∇u(0).~n− h∇2u(0)(~n)2 + h2

2 ∇3u(0)(~n)3 − h3

6 ∇4u(0)(~n)4 +O(h4),
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whereO(h4) means a domination byCh4, with C independent from h, which holds for h ∈ (0, h0).
First summing the two equations and then subtracting them we obtain

{

∇u(0).~n+ h2

2 ∇3u(0)(~n)3 = O(h4),

∇2u(0)(~n)2 + h2

6 ∇4u(0)(~n)4 = O(h3),
(5.20)

which holds for any ~n in the circle S(0, 1). In particular, as (5.17) implies that ∇3u(0) and
∇4u(0) are bounded on S(0, h) uniformly in h, we have

∇u(0) = O(h2) and ∇2u(0)(~n)2 = O(h2) ∀~n ∈ S(0, 1). (5.21)

Furthermore, applying (5.20) to ~n = (1, 0) and ~n = (0, 1) and summing up yields

u′′xx(0) + u′′yy(0) +
h2

6
(u′′′′xxxx(0) + u′′′′yyyy(0)) = O(h3), (5.22)

which comes as a link between the second and the fourth derivatives of u. Now coming back to
the Euler-Lagrange equation (5.18) and applying it at x = 0, we obtain

u(0) − v(0) =
λ

2

ε2(u′′xx + u′′yy) + u′2x u
′′
yy + u′2y u

′′
xx

(ε2 + u′2x + u′2y )3/2
(0)

=
λ

2ε
(u′′xx + u′′yy)(0) + o(h2) (5.23)

thanks to (5.21). To be able to compute u′′xx(0) and u′′yy(0) with respect to v in (5.23), let us
take the derivatives of the Euler-Lagrange equation (5.18). For instance, differentiating with
respect to the first variable leads to

u′x − v′x =
λ

2

[

−
3u′xu

′′
xx(ε

2(u′′xx + u′′yy) + u′2x u
′′
yy + u′2y u

′′
xx)

(ε2 + u′2x + u′2y )5/2
+
ε2u′′′xxx + 2u′xu

′′
xxu

′′
yy + u′2y u

′′′
xxx

(ε2 + u′2x + u′2y )3/2

]

(the equality holds on B(0, h)), which, again differentiated with respect to the first variable,
yields, when taking the value at 0 and taking h ∈ (0, h0),

−v′′xx(0) =
λ

2ε
u′′′′xxxx(0) + o(h).

Similarly,

−v′′yy(0) =
λ

2ε
u′′′′yyyy(0) + o(h).

The two last equations put together yield

(u′′′′xxxx + u′′′′yyyy)(0) = −2ε

λ
(v′′xx + v′′yy)(0) + o(h). (5.24)

Now combining (5.22) to (5.24) gives

(u′′xx + u′′yy)(0) =
h2

6

2ε

λ
(v′′xx + v′′yy)(0) +O(h3).
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This approximation of the Laplacian of u can be used in (5.23), and we obtain

Tv(0) = u(0) = v(0) +
h2

6
∆v(0) + o(h2).

This equation is also true for pixel x instead of 0, and the proposition is proven. �

Remark 1 The final PDE does not depend on ε, so one could believe that it still holds for
the non-regularized Total Variation (where ε = 0). However we have got no evidence for
such a result, and the regularizing parameter ε is crucial in the proof. It is likely that the
total variation being smooth at 0 is responsible for this blurring behavior. Furthermore,
it is noticeable that in the case where ε > 0 the first term in the Taylor expansion does
not depend on λ either. Most probably the asymptotic behavior should depend on λ when
ε = 0.

Remark 2 The condition (5.17) about the uniform boundedness of∇5Th(v)(y) is quite unattrac-
tive but is necessary in our proof for technical reasons. Now literature on PDEs [Caffarelli
and Cabré 1995] shows that under several conditions, the viscosity solution u of an elliptic
PDE very often gains two orders of regularity with respect to the datum v. In particular, if
v is C3,α then it is likely that Th(v) is C5,α for a certain α (Hölder regularity). The uniform
boundedness of the derivatives seems to be more difficult to obtain in full generality.

Proposition 5.6 tells that for each t > 0,

T n
h (v) −−−−−→

n→∞
nh2/6=t

Gt ∗ v

where T n
h denotes the local TV-MAP computed on discs with radius h iterated n times, and Gt

is a Gaussian kernel with bandwidth t, which is equivalent to applying the heat equation during
a time interval t. Figure 5.4 shows experiments on the iterated local TV-MAP denoiser. Each
row of the figure corresponds to a certain time interval t in the heat equation, and going to the
right means increasing n and decreasing h, with nh2

6 ≈ t. As in the experiments the domain

is discrete, the radius h cannot take any values, that is why the equality nh2

6 = t can only be
approximated. Going to the right makes the image look blurry, as if it were convolved by a
Gaussian kernel. This means that the limiting PDE most probably remains the heat equation
when ε = 0.
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Figure 5.4: Iterated local TV-MAP. The window with radius h and the number n of iterations are such
that nh2/6 is approximately constant on each row. Going to the right means increasing values of n and
decreasing values of h.



5.3. Lagrangian local TV-MAP 173

5.3.5 Local versus global TV-MAP

Here we aim at comparing locally denoised images for different window sizes. In particular the
regularity parameter λ may depend on the window, and should be carefully chained.

λ chaining The most natural way of normalizing λ through the different window sizes is to
come back to the Bayesian interpretation of the TV minimization.

If the prior on the whole images is 1
Z exp

[

−β
P

x∈Ω |∇u(x)|
|Ω|

]

, then the prior on the small images

restricted to W is given by

p(u(W)) =
1

Z

∫

u(Ω\W)
exp

[

− β

|Ω|

(
∑

x∈W
|∇u(x)|+

∑

x/∈W
|∇u(x)|

)]

du(Ω \W)

=
1

Z ′ exp

[

− β

|Ω|
∑

x∈W
|∇u(x)|

]

.

Likewise, if the noise is Gaussian with variance σ2 on every pixel, the distribution on the noise
restricted to a window W is

p(v(W)|u(W)) =
1

Z

∫

u(Ω\W)
exp

[

−
∑

x∈W(u− v)2(x) +
∑

x/∈W(u− v)2(x)
2|Ω|σ2

]

du(Ω \W)

=
1

Z ′ exp

[

−
∑

x∈W(u− v)2(x)
2|Ω|σ2

]

Hence the MAP estimator deduced from this model is the minimizer of

‖u(W) − v(W)‖2 + λTV (u(W)) with λ = 2σ2β,

and λ does not depend on W. Hence, provided that the L2-norm and the total variation are
well normalized, λ only needs to be taken constant. This allows extensive comparisons between
local and global denoising.

Figure 5.5 shows the denoising of an image for a sequence of windows with growing sizes,
and constant λ. For W = 15 × 15 the obtained image is almost equal to the globally denoised
one.

The size of the window as a regularity parameter It is noticeable that the images
denoised with a small window contain more noise than the images denoised with a large window
(see Figure 5.5).

The size of the window then acts like a regularizing parameter. When the window is very
small, the local TV-MAP denoising is practically non effective. Indeed for the extreme case
where the window contains one pixel only (i.e. Wx = {x}), then the local TV-MAP denoiser
is the identity, and does not modify the input image. When the window is very large, with a
constant parameter λ, the local TV-MAP denoiser acts more and more like the global TV-MAP
denoiser, as shows Figure 5.7.
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noisy W = 3× 3 W = 5× 5

W = 9× 9 W = 15× 15 W = Ω

Figure 5.5: From local to global denoising. Here is shown a noisy image (top left) together with its
denoised versions using the local TV-MAP local with different window sizes (hard windows) (with λ = 20
everywhere). The chain is ended up with the classical global TV-MAP denoising. We can see that the
regularity of the denoised image increases when the window size |W| increases. Furthermore the images
denoised with windows as small as 9 × 9 or 15 × 15 are very similar to the globally denoised image. It
shows that in the denoising of a certain pixel the impact of far away pixels is limited.

This interpretation of |W| as a regularity parameter can be partially and heuristically ex-
plained as follows. Let v ∈ RW denote a noisy patch. The denoised patch is denoted Tv and
satisfies

Tv = arg min
u∈RW

∑

x∈W
(ux − vx)2 + λ

∑

x∈W

∑

y∼x
y∈W

|ux − uy|,

(with x ∼ y ⇔ |x− y| = 1). In particular, when subdifferentiating the energy, we get

∀x ∈ W, (Tv)x ∈ vx −
∑

y∼x
y∈W

sign((Tv)x − (Tv)y),

where the set-valued function sign is defined by

sign(y) =







{1} if y > 0,

{−1} if y < 0,

[−1, 1] if y = 0.
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noisy W = 3× 3 W = 5× 5

W = 9× 9 W = 15× 15 W = Ω

Figure 5.6: From local to global denoising with constant denoising level. The top-left image is denoised
using the local TV-MAP local with different window sizes (hard windows). The regularity parameter λ
was tuned in each case to reach a desired denoising level (L2-distance between the denoised and the noisy
image) (λ = 22.47 for W = 3 × 3, λ = 19.93 for W = 5 × 5, λ = 19.92 for W = 9 × 9, λ = 19.97 for
W = 15× 15, and λ = 20.00 forW = Ω, yielding a denoising level ≈ 9.32, whereas the noise’s s.d. = 10).

In particular,

∀x ∈ W \ {0}, (Tv)x ∈







[vx − 2λ, vx + 2λ] if x is in the interior of W,

[vx − 3
2λ, vx + 3

2λ] if x is on a border of W (but not a corner),

[vx − λ, vx + λ] if x is on a corner of W,

while the central gray level (Tv)0 satisfies Tv ∈ v − λ
2

∑

x∼0 sign((Tv)0 − (Tv)x). When the
window W is large, then the interior of W contains lots of pixels and the corresponding gray
levels (Tv)x have a broader constraint interval [vx − 2λ, vx + 2λ]. Then the neighbors (Tv)x

may become equal more easily, and propagating towards the center, this allows more (Tv)x

with x ∼ 0 to be equal. Hence the constraint interval for Tv0 is more likely to be large, and
the difference |v0 − (Tv)0| is more likely to be high too. The denoising can therefore be more
effective, even for a fixed value of λ. Of course there should be better theoretical explanations
for W to be a regularizing parameter.

Now as we saw in the first part of this thesis, the global TV-MAP has the characteristics of a
denoiser which denoises too much, as the staircasing shows. For instance, a barycenter between
the global TV-MAP and the noisy input generally behaves better than TV-MAP alone, both
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Figure 5.7: From local to global denoising. For each of the 4 classical images Cameraman, Lena, Barbara
and Goldhill, degraded by Gaussian white noises, the graph shows the decrease of the L2-distance between
the globally denoised image and the locally denoised one using increasing window sizes (hard window,
and constant λ = 20). Despite the fact that the images are very different (miscellaneous textures with
different scales), the decreasing rate seems be be independent of the image. Besides, as this distance
converges to zero quite fast, it is clear that even visually the locally denoised image are very similar to
the globally denoised image as soon as the window size is large enough, say larger than 13 × 13 (the
plotted values are the average of L2-distance values over a sample of 5 noises).

visually and with SNR quality criteria. TV-LSE, the denoising method developed in the first
part achieves a better compromise between the TV-MAP and the noisy input than the simple
barycenter. Now the localization of TV-MAP is another way to achieve such a compromise.
This is why medium-sized windows may be valuable in image denoising. The next subsection
deals with the choice of the best window size.

5.3.6 Bias-variance trade-off for window optimizing

Bias-variance decomposition Here we consider the quality of denoising through the ex-
pected Euclidean distance between the denoised image and the original image, i.e. the mean
squared error. We aim at finding the window size which minimizes this error.

Let u be the original image, and ε a noise. Then v = u+ ε is denoised into TWv, the locally
denoised image with window W. The mean squared error, denoted e(u,W), can be classically
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split into a bias and a variance term through

e(u,W) = Eε‖u− TWv‖2 = ‖u− EεTWv‖2 + Eε‖TWv − EεTWv‖2.

The bias term ‖u − EεTWv‖2 is increasing when the size of the window increases. Indeed,
when the window W is small, as seen in the previous subsection, TWv is close to the noisy
image v, whose expectation EεTWv equals u. This makes a small bias. Its value is 0 when the
window only contains one pixel (but the denoising is ineffective). Conversely the bias is large
when the window W is large; more precisely it converges to the bias obtained with the global
TV-MAP denoiser, which is positive for natural images. We expect it to be increasing with a
slope governed by the proximity of the original image u to the TV model.

The variance term Eε‖TWv−EεTWv‖2 has an opposite behavior: when W is small, TWv(x)
depends on the few pixels of v(x +W), and then the variance is large. Conversely, when W is
large, many pixels contribute to the denoising of v(x), what reduces the impact of the noise.
The variance is then small. We expect it to be decreasing like 1/

√

|W| as in the central limit
theorem.
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Figure 5.8: Bias-variance decomposition of the risk, with respect to the window size. The bias and the
variance were computed on a sample of 50 noises added to a 100× 100 crop of Lena.

This is consistent with the classical bias-variance decompositions which occur in estimation
or classification: |W| indicates a measure of the model’s complexity, and the bias increases and
the variance decreases when this complexity gets larger. For every image there must exist a
window size which minimizes the mean squared error. We refer at it as the “optimal window”
W.
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Optimal window and characteristic scale We now conduct experiments showing that the
optimal window size is linked to a “characteristic scale” of the original image u. We mean by a
characteristic scale a scale such that in scale-space representation, at a finer scale the structure
interferes with spurious texture or noise, and at a coarser scale the salient structure is blurred
and vanishes (see [Luo et al. 2007] and references therein). This is a perceptual definition, and
in practice the characteristic scale of a natural image is most of the time quite difficult to decide.

This is why we start with synthetic images, defined by

uω(x) = 128 (1 + sin(ωx1) sin(ωx2))

for several values of the frequency ω (Figure 5.9), brought back to the interval [0, 255]. The
scale of uω is a decreasing function of ω. For each value of ω, we draw a set of 20 noisy versions
(vi

ω) of uω, and we estimate the expected squared error by the average of the error on these 20
images

e(u,W) = Eε‖uω − TW(uω + ε)‖2 ≈ 1

20

20∑

i=1

‖uω − TWvi
ω‖2.

The values are plotted for several windows W on Figure 5.10. It comes that the window size
which minimizes the error is a decreasing function of the frequency ω. In other words, the greater
the scale, the larger the optimal window, which sounds quite natural.

More precisely, the optimal window size |W| seems to be linearly linked to 1/ω, as shows
Figure 5.11. It indicates that the optimal window size can be predicted from the image.

ω = 0.2 ω = 0.5 ω = 1

ω = 2 ω = 5 ω = 10

Figure 5.9: Synthetic images assumed to have homogeneous scale. For different values of frequency ω,
the gray level of a pixel x is given by uω(x) = 128 (1+sin(ωx1) sin(ωx2)) (the images uω have normalized
gray levels in [0, 256], and contain 128× 128 pixels).

Switching to natural images is difficult because very often the characteristic scale is highly
location-dependent. For instance an image where fine texture and coarser texture are side to
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Figure 5.10: The synthetic images of Figure 5.9 are added with Gaussian white noise and denoised
via local TV-MAP denoiser with different window sizes (constant λ = 20). The graph represents the
L2-distance between the locally denoised images and the original image uω along the different window
sizes. For each ω the curve reaches a minimum, defining the optimal window size. This optimal window
size is intimately correlated to the frequency ω. In particular it decreases when ω increases (the values
on the graph are averages over a sample of 20 experiments).

side intuitively has two main scales: the small scale at the location of the fine texture and the
larger scale at the location of the coarser texture. For the moment we consider pieces of images
for which the scale is more or less homogeneous, and give experimental evidence for the fact
that the optimal window is an increasing function of the scale. The case of heterogeneous scale
will be tackled in the next subsection.

First a smooth zone of a natural image was cropped (corresponding to very large scale); then
a region composed of quite large smooth zones separated by contrasted edges; then two textures
with two different small scales. Noisy versions of these images are shown on Figure 5.12 (top
row), together with their denoised versions for different windows W. The best visual quality is
obtained for larger W for the smooth image, while smaller W become better for thin texture.
In other words, the window achieving the best visual quality is smaller when the scale is finer.
This also holds for the mean squared error e(u,W): the window minimizing e(u,W) is small
when the scale is small and vice versa (Figure 5.13) (e(u,W) was approximated by the average
over a sample of 20 noisy versions of u).

Assuming that the scale is proportional to the optimal |W|, we obtain for the smooth image
a scale proportional to 441 for the smooth image, 25 for the piecewise constant image, 9 for the
coarse texture and 1 for the fine texture. These values counted in pixels are a good intuitive
measure of the scale of the related images.

For arbitrary images containing several characteristic scales, we can expect that the choice
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Figure 5.11: Fit between the optimal window size |Ω| obtained in the denoising of the synthetic images
uω shown on Figure 5.9 and the frequency inverse 1/ω. The inverse of ω represents the scale of the
original uω, and the graph shows that the optimal window size (measured by the number of pixels it
contains) is approximately a linear function of this scale. The fit error is very large in the small scales
because in this case the pixel size requires a very rough quantization of the window size.

of a window corresponding to one of these scales will properly denoise certain parts of the image
and others will be really damaged. This is why a locally defined scale gets necessary. From
these local scales a location-dependent optimal window can be derived, and a new denoiser is
defined by denoising each pixel thanks to the optimal window attached to this pixel. In the next
subsection we give details about the estimation of the local scale, and derive window-adaptive
local TV denoising.
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Figure 5.12: Local TV-MAP denoising with different window sizes on natural images. The selected
images are such that the scale is approximately homogeneous. The top row shows noisy versions of them
(60× 60 crops of Lena, Peppers, again Lena and Barbara, and noise’s s.d. σ = 10), sorted by decreasing
“intuitive characteristic scale”. Each following row shows the local denoising of the noisy image using
a particular window size (3 × 3 for the 2nd row, 7 × 7 for the third row, and 21 × 21 for the last one,
with always λ = 20). Considering each column separately, which image is visually the best? For the
first column, as the original is perfectly smooth, the greatest level of denoising is preferable, i.e. a large
window; however the staircasing effect even in the local denoising makes it difficult to maintain the largest
window as the optimal one. We would rather choose the 7×7 window. In the second column, the objects
are big and well contrasted, and again the 7× 7 window seems best. The texture in the third column is
too much erased by large windows, but the noise is clearly visible in the noisy image; the best window is
probably the 3× 3. Last but no least, the thin texture from the 4th column is severely damaged in any
denoised version, and contrast is shrunk; no doubt the best image is the noisy one, corresponding to a
1× 1 optimal window.
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Figure 5.13: The 4 original images shown on the top row are noised (σ = 10) and then denoised via
the local TV-MAP denoiser for several window sizes (λ = 20). The graph shows the L2-error between
the locally denoised image and the original against the window size. The optimal window related to the
smooth image is very large; it is smaller for the second image made of large objects. The third image
representing a texture has a 3× 3 optimal window, while the thin stripes of the 4th image have a 1× 1
optimal window, which means that the best is to operate no denoising at all). This graph comes as a
confirmation of the intuitive optimal windows commented on Figure 5.12, except for the smooth image.
This exception can be understood by the fact that the L2-error, as well as SNR quantities, do not take
visual artefacts such as staircasing effect into account. Furthermore it seems again that the “scale” of the
images is negatively correlated with the optimal window size.
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5.3.7 Adaptive locality as a function of the gradient norm

Introduction

In this subsection we aim at finding a practical estimator for the window size which achieves
the best denoising, and to use it in the local TV-MAP denoiser. This optimal window size
needs to be locally adapted because usually the images contain objects with different sizes, and
structures with different characteristic scales, which determine different sizes for the optimal
windows. This means that the corresponding local TV-MAP denoiser needs to be necessarily
locally adaptive.

This idea of locally adaptive TV-based denoising has already been explored by several au-
thors, namely [Almansa et al. 2008; Bertalmio et al. 2003; Gilboa et al. 2003; Moisan 2001;
Strong et al. 1997], particularly through the local adaptation of the regularity parameter λ. For
instance in [Strong et al. 1997], the global energy

‖u− v‖2 +
∑

x

λ(x)|∇u(x)|

is minimized, where λ depends on x and is chosen as

λ(x) ∝ 1

|∇u(x)| where u is a rough estimate of the original image.

This choice for λ(x) is such that it will be small when the image oscillates much and then it
will operate little denoising, while it will be large when u is smooth, which will allow maximum
denoising.

In [Almansa et al. 2008] a Mumford-Shah segmentation of the noisy image is run. λ is
assumed to be constant on each region of the partition, and is tuned in order to get the desired
level of denoising.

Here a similar procedure can be done on the window size |W| also considered as a regularity
parameter. As seen in Subsection 5.3.6, the optimal window is deeply linked to the local scale,
so the choice for |W| is a problem of local scale estimation. This subsection is organized as
follows: first we briefly comment the local scale estimation, and show that the inverse of the
gradient norm, as λ(x) in [Strong et al. 1997] can be a very handy (but limited) estimate of it.

Then a space-adaptive local TV-MAP denoiser is derived from the locally optimal windows,
and discussed. In particular this denoiser is able to achieve good denoising on heterogeneous but
simple images while assuming a constant Bayesian model. However this approach shows severe
visual artefacts on natural images.

Estimation of the optimal window by the local scale

As seen in the previous subsection, the window which achieves the best local denoising is a
function of the characteristic scale. Then a scale estimator is enough to make the optimal
window size available.

The scale of an image can be mathematically defined in several ways. For images drawn from
Gibbs fields, the scale can be thought of as the maximal size of the cliques. In a Markov random
field interpretation, it is about the same to consider the basic neighborhood of the field. [Csiszar
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and Talata 2006] builds an estimator of the size of this basic neighborhood, based on a penalized
likelihood maximization. But this estimator does not apply for non-stationary processes such as
natural images. And even a scale estimate computed on a small part of an image is expected to
be very bad due to the small sample size. Hence an efficient local scale estimate seems difficult
to get with such a method.

[Luo et al. 2007] propose a reliable resolution-independent estimate for the characteristic
scale. The characteristic scale is estimated by the one which maximizes a normalized total
variation over the scale space of the image. Localization is possible. We also mention [Brox
and Weickert 2006] where the local scale is measured from the evolution speed of the gray levels
submitted to a TV flow.

Now we rather quit the scale interpretation of the optimal window and try to estimate it
directly.

Definition of a locally optimal window

Let us try a definition of a locally optimal window. Let then x denote a pixel. The optimal
window W(x) centered at x is requested to reach the smallest possible error in the denoising of
pixel x. It radius ρ(u, x) is defined by

ρ(u, x) = arg
ρ>0

min
W=B(x,ρ)

En|u(x)− TW(u+ n)(x)|,

where the expectation is over the noise n. Then ρ(u, x) does not depend on the noise, and
achieves the minimal error in average.

The image x 7→ ρ(u, x) is called here the locality map of u. Figures 5.14 and 5.15 show the
locality map of images computed on a sample of one noise, and then on 50 noises (top rows).

Optimal locality and gradient norm

The locality map (Figure 5.15) looks very much like a decreasing function of the gradient norm
of the image: when the image is smooth ρ is large, and vice versa. Next proposition proves that
the unique function correlating the optimal window size to the gradient norm compatible with
scale invariance is the inverse function.

Proposition 5.7 (Continuous framework) Assume the domain Ω is continuous and equals
R2, and let u be an image defined on Ω. Assume there exists a function f : R+ → R+ such that
ρ(u, x) = f(|∇u(x)|) for every u and x. If ρ is scale invariant, i.e.

∀λ > 0, ρ(u(λ ·), λx) = λρ(u, x),

then there exists a ∈ R such that

∀y ∈ R∗
+, f(y) =

a

y
.

Proof : Let u ∈ RΩ and x ∈ Ω, such that |∇u(x)| exists and is positive. For every λ > 0 let
uλ the image u dilated by a factor λ, i.e.

∀x ∈ Ω, uλ(x) = u(λx).
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Then for all λ > 0,

ρ(u, x)

λ
= ρ(uλ,

x

λ
) = f

(

|∇uλ|(
x

λ
)
)

= f(λ|∇u|(x)).

For u and x fixed, the expression λf(λ|∇u|(x)) does not depend on λ. Let a(u, x) = 1
|∇u|(x) .

Then f(y) = a(u, x)/y for every y > 0. As assumed in the proposition f does not depend on u
or x. Then a(u, x) = a, and we obtain the desired result. �

Therefore the simplest approximation of ρ(u, x) from the gradient norm is given by

ρ̂(u, x) ∝ 1

|∇u(x)| . (5.25)

In Figure 5.14 and 5.15 (bottom row) we compare the locality map to an estimate of the
gradient norm’s inverse. We choose the following scheme proposed by Moisan [2007]

wµ(u, x) = sup

{

r

∣
∣
∣
∣
∣
µ ≥ inf

|y−x|≤r
sup

|z−y|≤r
|u(z)− u(x)|

}

which is a non-local estimate of µ/|∇u(x)| when∇u(x) 6= 0, more convincing than (ε+|∇u(x)|)−1

or |∇u∗Gσ(x)|−1. The main features of the locality map can be retrieved in the gradient norm’s
inverse. When blurring a little the locality map (which is noisy because the expectation in
the locality map was computed on a finite sample) and considering the gradient norm’s inverse
computed on the original noise-free image, the correlation is slightly larger than 0.85 (Figure
5.14). This correlation decreases a lot (≈ 0.64) when computing the gradient norm’s inverse
directly on the noisy image.

Notice that a good scale estimate should be contrast invariant, while here the inverse gradient
norm is highly contrast dependent. This could be considered as a major drawback of the method.
However contrast invariance is not completely true when dealing with optimal window rather
than scale, because in a denoising issue the noise’s intensity is of course contrast dependent,
which compels the true optimal window to depend a little on the contrast.

Now this optimal window estimation by inverse gradient norm contains a severe limitation.
Namely in our approach the original image is needed to provide a correct estimate for ρ, because
when replacing u with its noisy version really spoils the quality of estimation (see Figures 5.14
and 5.15, bottom rows). We could circumvent this problem by post-processing the locality map,
e.g. by convolving the noisy locality map by a Gaussian kernel

ρ̂(u, x) = Gg ∗ wµ(v, ·)(x).

for instance. Even sophisticated methods, such as pre-estimations of the original image before
computing its inverse gradient norm, could lead to more powerful estimates.

Yet these additional processings may introduce extra parameters. Here we do not aim at
providing a complete recipe for adaptive denoising. Therefore we limit ourself to the simplest
but unrealistic condition: we assume that the original image u can be used in the locality
computation.
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Adaptive denoising

Now we propose to adaptively denoise an image v according to the local context. Namely, a
pixel x is denoised by

T (v)(x) = u(0) where

{

u ∈ RB(0,ρ̂(v,x)) minimizes ‖u− v(B(x, ρ̂(v, x)))‖2 + λTV (u),

ρ̂(v, x) = wµ(u, .)(x).

Each pixel is then denoised with its “personal” optimal window. The pixels belonging to high
gradient regions, probably corresponding to thin and contrasted textures, will naturally be
less denoised than the pixels belonging to a smooth region. The amount of local denoising is
controlled by the window size rather than by the regularity parameter λ. This is quite natural,
because the information brought by a large homogeneous region is useful for the denoising of
each of its pixels, while in more random configurations information provided by far away pixels
is virtually useless.

We show experiments conducted on natural images, over non-smooth windows (see Subsec-
tion 5.3.2). As the window size needs to be discretized into 1× 1, 3× 3 windows and so on, the
denoising level is quantified, and the denoising is necessarily very heterogeneous. For example
two neighbor pixels, even with close gradient norm values, can be denoised with very different
window sizes, and yield highly inhomogeneous denoising. This means that the method noise, i.e.
the noise remaining from the difference v−T (v), is far from satisfying the statistical features of
a white noise.

Even a regularization of the inverse gradient norm estimate does not manage to circumvent
this heterogeneity. Some results are shown on Figure 5.16, and focus on the artefacts of such a
method.

To put things in a nutshell, we identify two main artefacts. The first one is a serious problem
of denoising heterogeneity. This issue can probably be solved by using a smooth-window version
of this adaptive denoising, since then this quantization effect no longer occurs. Another artefact
is the leak of thin texture’s average through their boundaries, as in Figure 5.16 (third row). This
is explained by the fact that pixels belonging to a smooth part of the image are associated to a
large optimal window, even if the pixels lie near the boundary separating the smooth part from
a finely textured region. Then the denoising of these pixels depends on pixels belonging to the
textured region, and its gray level is necessary attracted by the texture’s average value. This
artefact could certainly be avoided by using windows which would be moved away from their
center, at the price of an increased complexity in the optimal window model.

In the following section we propose another framework which automatically achieves a kind
of adaptive denoising.
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(a) (b) (c)

(d) (e)

Figure 5.14: Locality map of a heterogeneous natural image (I). (a) Input image, taken from Lena. It
can be partitioned into mainly two or three regions with different scales. (b) The locality map, i.e. the
image for which each gray level corresponds to the size of the optimal window. It was computed from
a sample of 50 experiments (50 noises). Bright gray level means large optimal window. A brighter zone
appears on the left of the image, and dark pixels located on the stripes (contrast is enhanced and some
gray levels are then saturated). (c) Two main regions really appear when the average locality map (b)
is a bit smoothed (Gaussian kernel with s.d. g = 2): a bright region for large scale and a dark region
for small scale. (d) A correct estimate of this locality map can be given by the inverse of gradient norm,
here computed on the original image. Correlation to (c) ≈ 0.85. (e) However using the original image is
cheating, and here is shown the inverse of gradient norm computed on the noisy image. The correlation
to (c) is ≈ 0.64. A slight smoothing by a Gaussian convolution makes the correlation increase, and is
usable for adaptive denoising.
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(a) (b) (c)

(d) (e)

Figure 5.15: Locality map of a heterogeneous natural image (II). (a) Input image, taken from Barbara.
It can be partitioned into two main regions with different scales. (b) The locality map, i.e. the image
where gray levels correspond to the size of the optimal window. It was computed out of a sample of size
50 (50 noises). A light zone appears on the north-east of the image, as well as dark pixels located on
the stripes (same contrast as in (b)). (c) Convolution of (b) with a Gaussian kernel with s.d. g = 2. (d)
Inverse of gradient norm computed on the original input. The correlation to (c) is ≈ 0.90. Notice than
the dark side of the stripes are darker than in the locality maps, which means that the gradient norm
inverse can sometimes be inconsistent. (e) Inverse of gradient norm computed on the noisy image. The
correlation to (c) falls to ≈ 0.84, but a slight smoothing of it is able to give a correct estimate of the
locality map.
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noisy locality map adaptive denoising

Figure 5.16: Adaptive Lagrangian local TV-MAP. On the left column, crops of noisy images are shown.
On the central column the inverse gradient norm estimate wµ is plotted. On the last column, the image
obtained by the adaptive denoising of the noisy image (1st column) using a quantified version of the
locality map (2nd column) is shown. Many artefacts are visually very annoying. The top image is quite
well denoised, and both regions have homogeneous denoising. The result is quite good except from the
small region lying on bottom-right, where the texture is abruptly destroyed. On the second row, the lips
suffer from the window size quantification, and the denoising is not homogeneous. The third row shows
an artefact coming on a contrasted boundary. Both regions are quite well denoised, but the textured
part leaks through the contour and makes a whiter zone. This is due to the fact that in the flat region
the optimal window size is estimated as very wide, even at the proximity of the boundary. Then pixels
near the boundary depend on the other region, and become whiter. The last row is another example of
heterogeneous denoising.
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5.4 Constrained local TV-MAP

In the previous section the local prior

P(u(Wx)) =
1

Z
exp(−βTV (u(Wx)))

was frozen over all the windows of the image. In particular, the parameter β was chosen constant
all over the image, even in the adaptive case where the size of the window was changing. Now
as the natural images are heterogeneous, the regularity of the image is not uniform, which can
be derived into the prior distribution as a TV prior where β is spatially dependent.

It is arguable that the Total Variation is somewhat already multiscale, as shown by the
inclusions in the Besov spaces B1

1,∞ ⊂ BV ⊂ B1
1,1 [Mallat 1998], and hence should be intrinsically

able to deal with multiple regularity. Nevertheless experiments on both TV minimization and
TV-LSE show that a small λ in

E(u) = ‖u− v‖2 + λTV (u)

is more efficient on thin structures while large λ is better on smooth regions associated with
large scales.

More precisely, the selection of a spatially varying λ can be explained by the constrained
formulation of the TV minimization. Namely, the Bayesian denoising of a window v(Wx) must
also be consistent with the noise’s distribution. In particular, if the noise is white and Gaussian
with s.d. σ, the denoised image T (v)(Wx) is expected to satisfy

‖T (v)(Wx)− v(Wx)‖2 ≈ σ2

provided that the window is large enough to be able to apply the Law of Large Numbers on
the variables (T (v)(x)− v(x))2. This can be considered as a local constraint added on the local
Total Variation minimization problem, and this constraint results in a Lagrange multiplier λ(x)
depending on the location x in the optimization problem

minimize ‖u(Wx)− v(Wx)‖2 + λ(x)TV (u(Wx)).

To sum things up a local TV-MAP denoising associated to the constrained formulation of TV
minimization leads to the denoiser T defined by

T (v)(x) = w(0) where w = arg min
w∈RW

TV (w) s.t. ‖w − v(Wx)‖2 = σ2. (5.26)

when the locality is based on non-smooth windows, and

T (v)(x) = w(0) where w = arg min
w∈RW

TV (w) s.t. ‖w − v(Wx)‖22,ω = σ2. (5.27)

in the case of smooth windows. This approach is not far from the one of [Almansa et al. 2008]
where the total variation of the whole image is minimized under a large set of constraints

‖u(x+ ·)− v(x+ ·)‖22,a ≤ σ2, ∀x ∈ Ω. (5.28)

The main difference is that our approach is strictly local with a single constraint at a time (and
hence much simpler to handle). Our denoiser cannot bring the reliability of a global optimum
as in [Almansa et al. 2008]: for example in full generality the local constraints (5.28) may not
be satisfied by the denoised image T (v).
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5.4.1 Algorithm

The numerical computation of T is again deduced from [Chambolle 2004]. Namely, to solve
the problem (5.26) in the case of non-smooth windows, Chambolle’s algorithm adapted to the
constrained TV minimization can directly be applied on every patch. It simply consists in
alternately solving the unconstrained problem with a given λ and then readjusting λ thanks
to a linear interpolation between the previous value and the level of denoising ‖u − v(Wx)‖2
which we want to equal σ2. The iterations are stopped when the constraint is reached within a
precision of 1% or so, and resume the procedure with another pixel. The algorithm can be quite
fast when selecting correct initializations:

• First, between 2 iterations of the algorithm over the same window Wx, the current image
u is not reinitialized arbitrarily when coming back to the unconstrained problem solving:
the denoised image obtained with the previous λ is a good initializing image, and allows
convergence within few iterations.

• Secondly, the pixels are scanned in a lexicographic order, or in any order preserving some
kind of continuity in the image. When incrementing the pixel index, the initialization of λ
is selected as its last value when the algorithm was computing the previous pixel. As the
images have a certain local coherence along their columns (or rows), very often this value
is a very good initialization, and a little number of linear interpolations of λ are enough
to get a good precision.

Under these conditions, the constrained version of local TV-MAP is almost as fast as the un-
constrained version. The procedure is summed up in Algorithm 5.

Algorithm 5 Constrained local TV-MAP algorithm

choose an initial precision p = 0.01,
choose an initial value for λ (λ = σ2),
choose an initial patch u ∈ RW (u = 0),
r = 1,
for all x ∈ Ω (lexicographical order) do

repeat
λ← r · λ
u← arg minu∈RW ‖u− v(Wx)‖2 + λTV (u) (Chambolle’s algorithm initialized with u),
r ← σ

‖u−v(Wx)‖ ,
until |r − 1| < p.
T (v)(x) = u(0)

end for
return (T (v)(x))x∈Ω.

In the case of smooth windows, Chambolle’s algorithm is expected to converge provided that
a restriction over the step size is satisfied (see Subsection 5.3.2). Besides, the linear interpolation
for λ at each iteration can be proven to yield convergence towards the desired image, because
[Chambolle 2004, Theorem 4.2] holds for smooth windows too. Finally Algorithm 5 converges
to the required denoised image T (v).
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5.4.2 Minimum size of windows?

The window size cannot be arbitrary as in the unconstrained formulation. Indeed, when the
window W contains very few pixels, the approximation

‖n(W)‖2 ≈ σ2,

n being a Gaussian white noise with s.d. σ, does not hold any more. The same computation
as in [Almansa et al. 2008], based on the Central Limit Theorem, shows that the radius of W
should be larger than 10 pixels at least for the constraint to be realistic, when σ ≈ 10. In
practice the condition

var v(Wx) ≥ σ2, (5.29)

telling that the image is not overwhelmed with noise, which is necessary to the uniqueness of
the solution in (5.26) and is also necessary to apply Chambolle’s algorithm, does not necessarily
hold when the window is too small. The condition 5.29 is even more often violated when the
window is small.

In spite of these remarks, in our experiments we investigated windows as small as 3 × 3.
Indeed the condition (5.29) is not always true, and when it is false for a window Wx in the
image, we chose to assign to T (v)(x) the value

T (v)(x) =
1

|W|
∑

y∈Wx

v(y).

It corresponds to the central gray level of the most realistic solution of the local problem with
the inequality constraint

minimize TV (w) s.t. ‖w − v(Wx)‖2 ≤ σ2,

whose solutions w are constant patches, but the most likely is 1
|W|
∑

y∈Wx
v(y) because it respects

v’s average.

5.4.3 Experiments

The denoising induced by this constrained local TV-MAP algorithm is expected to be somehow
adaptive to the local image configurations. For example a thin texture can easily be totally
erased by applying TV minimization with a certain λ. The constraint compels the method noise
to remain below the threshold σ2, and hence enforces the corresponding Lagrange multiplier λ
to be small. This can be linked to a property of the Total Variation flow

∂u

∂t
= div

∇u
|∇u| ,

which is the partial differential equation associated to TV minimization when λ→ 0, and shares
several properties with TV minimization [Andreu et al. 2000]. [Brox and Weickert 2006] notices
that the pixel of an image submitted to the TV flow has a moving speed depending on whether
the pixel is extremal or not. In a sophisticated texture many pixels have extremal gray levels and
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are then associated to high speed of extinction. This would explain why λ in TV minimization,
corresponding to a stopping time in the TV flow, should be small. Conversely pixels lying
on smooth zones are associated to low extinction speeds and hence to high values of λ. This
property gives some adaptivity to this denoising method.

Figures 5.17 to 5.20 show results of this constrained denoising on classical images, with
increasing window sizes. The noise added has s.d. σ = 10, and this value is kept in the
constraint (5.26). The denoising is performed with non-smooth windows. Each denoised image
(odd rows) is shown with its corresponding mapping x 7→ λ(x) (even rows). When the condition
(5.29) is not satisfied, the associated value of λ is set to the maximum value of λ occurring
on the other pixels. For very small window sizes, the image λ(x) contains many fluctuations,
probably due to the fact that the window is not large enough for the Law of Large Number to
apply everywhere. However the regions where λ is high approximately corresponds to smooth
zones, while lower values of λ correspond to edges of turbulent zones. When the window size is
increased, the mapping x 7→ λ(x) gets smoother, until the size is infinite (classical TV denoising)
for which the mapping is constant.

The denoised images are interesting to observe. For small window sizes the denoising is not
very homogeneous: this is due to the fact that the mapping λ is very noisy. Therefore nearby
pixels are not associated to close values of λ, and spurious noise remains. For large window
sizes the denoising is satisfying. Staircasing effect is present, even though each pixel optimizes
a different criterion. The locally denoised images slightly outperform the globally denoised one
(classical TV minimization, with λ constant). The boundaries and exceptional features are
well treated, and the global aspect is satisfying. When the original image is approximately
homogeneous, local and global denoising act similarly.

A table of SNR is given on Figure 5.21. It shows that on our examples local denoising
outperforms the global TV denoising.

Finally this denoising operator achieves quite good results compared to classical TV denois-
ing. Nevertheless it is not completely satisfactory. For example staircasing effect is still present
as though each pixel optimizes a different criterion from its neighbor. The localized denoiser
does not prevent either from the isolated pixel artefact which occurs with global TV denoising.
Next section concludes by proposing another local and TV-based denoiser which is expected to
avoid these artefacts.
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noisy ↑ W = 3× 3 ↓ ↑ W = 7× 7 ↓ ↑ W = 11× 11 ↓

↑ W = 15× 15 ↓ ↑ W = 21× 21 ↓ ↑ W = Ω ↓

Figure 5.17: Constrained local TV-MAP denoising (I). A noisy detail of Barbara (top left) is denoised
using the constrained local TV-MAP operator with σ = 10 and different window sizes. Under each
denoised image, the corresponding mapping x 7→ λ(x) used in Chambolle’s algorithm is shown (white
values mean high values of λ(x)). On these mappings contrast has been enhanced, giving rise to saturation.
Note that when the condition (5.29) is not satisfied, the associated λ was set to maxλ(x). For small
windows, the condition is very often violated, and this explains why the image of λ is very saturated.
Then the denoising lacks homogeneity. When the window size increases, the image of λ gets smoother,
and the denoised image is more satisfying. For global denoising of this detail of Barbara image, the λ
image is constant (λ ≈ 12.8), and yields a more irregular elbow, with contrasted isolated pixels.
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noisy ↑ W = 3× 3 ↓ ↑ W = 7× 7 ↓ ↑ W = 11× 11 ↓

↑ W = 15× 15 ↓ ↑ W = 21× 21 ↓ ↑ W = Ω ↓

Figure 5.18: Constrained local TV-MAP denoising (II). A noisy detail of House (top left) is denoised
using the constrained local TV-MAP operator with σ = 10 and different window sizes. For each denoised
image, the related x 7→ λ(x) is plotted below. In the local denoising, the wall is less denoised than the
sky, contrary to the global denoising. This is a good point since the wall contains texture whereas the
sky is almost constant, but it leads to contrasted isolated pixels which do not really fit to the original
texture.
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noisy ↑ W = 3× 3 ↓ ↑ W = 7× 7 ↓ ↑ W = 11× 11 ↓

↑ W = 15× 15 ↓ ↑ W = 21× 21 ↓ ↑ W = Ω ↓

Figure 5.19: Constrained local TV-MAP denoising (III). A noisy detail of Lena (top left) is denoised
using the constrained local TV-MAP operator with σ = 10 and different window sizes. For each denoised
image, the related x 7→ λ(x) is plotted below. For small window sizes, the separation of textures is
significant, but it vanishes when the window is too large, yielding virtually constant λ. However for
small windows, the textured region contains little artefacts (isolated pixels again). The results are not
significantly different from global TV-denoising.
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noisy ↑ W = 3× 3 ↓ ↑ W = 7× 7 ↓ ↑ W = 11× 11 ↓

↑ W = 15× 15 ↓ ↑ W = 21× 21 ↓ ↑ W = Ω ↓

Figure 5.20: Constrained local TV-MAP denoising (IV). A noisy detail of Lena (top left) is denoised using
the constrained local TV-MAP operator with σ = 10 and different window sizes. The eye corresponds
to lower values of λ, while the cheek to higher values of λ. An insight comparison between the images
shows that staircasing is a bit less marked in locally denoised images than the globally denoised one.
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crop of Fig. 5.17 crop of Fig. 5.18 crop of Fig. 5.19 crop of Fig. 5.20

W = 1× 1 13.43 15.74 12.05 11.45

W = 3× 3 13.09 20.96 18.48 17.17

W = 7× 7 13.58 20.99 18.53 16.89

W = 11× 11 13.68 20.72 18.34 16.59

W = 15× 15 13.70 20.65 18.27 16.46

W = 21× 21 13.71 20.61 18.25 16.38

W = Ω 13.17 20.73 18.37 16.21

Figure 5.21: SNR values for Figures 5.17 to 5.20. The SNR values were computed on the cropped images
only. The window W = 1 × 1 corresponds to the raw noisy images. For each original image, the “best”
denoising is related to a local denoising. It seems then on these examples that constrained local denoising
achieves quite good performances, as well visually and on a L2 criterion.

5.5 Towards a quadratic risk as in the Non-Local means

These TV-based local denoisers can be adapted to a least square error (LSE) criterion, as in the
first part of the thesis. In the Lagrangian formulation for instance, an image v is denoised into
T (v) satisfying

T (v)(x) = arg min E[‖T (v)− u‖2|v(Wx)] with

{

u ∼ 1
Z e

−βTV (u)

v − u ∼ 1
Z′ e−‖v−u‖2/(2σ2).

The conditional expectation assumes that only the neighborhood v(Wx) of v is known. This is
the locality condition. This leads to the explicit formula defining the local TV-LSE denoising
operator

T (v)(x) =

∫

RW
p(0)e−

‖p−v(Wx)‖2+λTV (p)

2σ2 dp

∫

RW
e−

‖p−v(Wx)‖2+λTV (p)

2σ2 dp

,

where the local posterior distribution is averaged over the patches p ∈ RW . This denoising
operator seems quite interesting for two reasons mainly:

• As seen in Chapter 1, the LSE criterion seems pretty much more adapted to image de-
noising than a MAP criterion. It is likely to avoid troublesome artefacts and statistical
distortions.

• The link to the Non-Local means (NL-means) is obvious if T is written

T (v)(x) =
1

Z

∫

RW
P (p)e−

‖p−v(Wx)‖2
2σ2 p(0)dp.

Let P (p) = 1
Z e

− λ
2σ2 TV (p), i.e. a TV prior on the patches. Then we get the local TV-LSE

denoiser. Or else, letting P (p) = 1
Z

∑

y∈Ω

�

v(Wy)(p), i.e. associated to an empirical prior on
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patches, T exactly becomes the Non-Local means denoising operator. The only difference
between this local TV-LSE denoiser and the NL-means lies in the definition of the prior
distribution. A comparison would be most valuable.

However to be able to be computed, this denoising operator requires adapted numerical
methods. Indeed, the MCMC method described in Chapter 2, which was very well adapted to
global denoising, is not necessarily a good choice for local denoising since the approximations we
made in high dimension do not hold any more on small patches. In particular, MCMC methods
are especially adapted to high dimension, and switching to low dimension means efficiency
reduction; the stopping criterion described in Chapter 2 Section 2.3 is probably no longer reliable.
A constrained formulation for local TV-LSE raises the same issues.

This point has not been studied in the thesis. Hopefully for very low dimensions (i.e. 3× 3
patches or even smaller) direct computations could be achieved, and for intermediate dimensions
adapted numerical schemes can be found. It would be interesting then to study the denoising
properties of this operator. This could the object of future work.

Anyway the only difference left between the local TV-LSE denoiser and the NL-means lies
in the definition of a prior on patches. This naturally introduces next chapter, where the design
of a prior distribution is discussed.
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Chapter 6

Total Variation prior model, and the

Non-Local means

Résumé Dans ce chapitre nous discutons le choix de la variation totale (TV) comme modèle a
priori. Dans un premier temps nous analysons le rapport entre ce modèle et les statistiques
locales des images. Nous montrons que la restriction du modèle TV à de petits patches 2×2
est une bonne approximation de la loi de ces patches. En revanche le choix du schéma
numérique pour la norme du gradient se révèle assez crucial, et justement les schémas
compatibles avec des propriétés géométriques de la variation totale (formule de la coaire,
ou bien existence d’une divergence duale du gradient) ne sont pas ceux qui maximisent
l’adéquation avec la loi des patches, ce qui fait s’opposer le point de vue géométrique
et le point de vue statistique. Puis nous replaçons le modèle TV dans une perspective
d’estimation de loi des patches, où les moyennes non-locales et le modèle TV sont perçus
comme des extrêmes dans une décomposition biais-variance de l’erreur. Le chapitre conclut
sur quelques considérations sur la loi sur les patches qui atteint l’optimum dans cette
décomposition.

Abstract In this chapter we reconsider the Total Variation (TV) prior as a model for images.
First we analyze the link between this model and empirical local statistics of images.
We show that the restriction of the TV model on patches as little as 2 × 2 is a good
approximation for the empirical distribution of those patches. However the choice of the
numerical scheme for the gradient norm turns out to be significant, and the schemes
compatible with geometrical properties of total variation (coarea formula, or gradient
associated to a divergence operator) do not achieve the maximal adequacy to the patch
distribution, which makes statistical and geometrical points of view conflicting. Then in a
framework of patch distribution estimation, the Non-Local means and the TV model are
viewed as extreme situations in a bias-variance decomposition of the error. The chapter
ends with considerations about the patch distribution which achieves the optimal trade-off
of this decomposition.

201
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6.1 Introduction

The point of view over Total Variation (TV) minimization has been Bayesian until now. The
first chapter can be considered as a discussion on the risk, while Chapter 5 discusses the locality
of the model underlying TV minimization. Here in this chapter we discuss the prior model
relative to TV-minimization.

The chapter contains two main sections. First Section 6.2 argues in favor of the flexibility of
this TV prior. In particular, the geometrical properties of Total Variation, such as its interpre-
tation in terms of cumulated length of level lines (coarea formula), do not hold any more when
we change it slightly, whereas its statistical properties can be improved. This gives justification
to the following Section 6.3 where the Non-Local means (NL-means) and the TV-denoising are
viewed as extreme situations in a bias-variance decomposition of the L2-error, the NL-means
being associated with a high complexity prior and the TV-denoising with a low complexity prior.
We briefly discuss the existence and the complexity of a statistical prior model which achieves
the bias-variance trade-off.

6.2 Prior in Total Variation denoising

6.2.1 Gradient norm is a good measure of small patch distribution

Total-variation based denoising methods such as TV minimization [Rudin et al. 1992] or TV-LSE
suggest that the images are drawn from the distribution

P (u) =
1

Z
exp(−βTV (u)).

This prior model has several good denoising qualities which have been enumerated previously
in the thesis. Now one can legitimately wonder whether this prior is relevant with the natural
images.

In a local framework the TV prior is a model for the distribution of patches. Let us begin
with the smallest possible patches, i.e. 2× 2 patches, and derive from natural images a prior on
these patches. Let us assume that we have a large database B of such patches taken from natural
images. An estimate of the 2× 2 patches distribution is given by a 4-dimensional histogram of
B, which writes for p = (p1, p2, p3, p4)

P̂ (p) =
1

|B|
∑

k1,k2,k3,k4

∑

q∈B

�

kiQi≤qi<(ki+1)Qi,1≤ki≤4 ·
�

kiQi≤pi<(ki+1)Qi,1≤ki≤4

where (Q1, Q2, Q3, Q4) denote the dimensions of the hyper-bins. State-of-the-art density esti-
mation allows much richer estimates than histograms, thanks to kernels or wavelets for instance.
However the histogram techniques are mature and user-friendly; this is why we confine ourself
to these. The tuning of the bins size (Qi) is crucial in the estimation of the patches density (see
[Birgé and Rozenholc 2006] and references therein). A bias-variance decomposition shows that
it should be selected neither too small (the variance would be very high) neither too large (the
bias would be large). Considering the 4 components of the patches as equivalent (the 4 gray
levels should approximately have the same marginal distribution in the interval [0, 256)), the Q i
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Figure 6.1: AIC criterion (6.1) plotted against the bins size. First the Akaike criterion is directly
computed on the 2× 2 patches of Lena (512× 512) (solid curve). The maximum is reached for a bin size
of 17, which is quite high compared to the 256 gray levels of the image, but compatible with the fact that
Lena’s patches are points in a 4-D space, and do not manage to fill it densely. Then the Akaike criterion
was computed on the patches of Lena, assuming rotation and axial symmetry invariance (dashed curve).
In other words, each patch of the database is duplicated 8 times, each of the duplicate being a rotated
or/and symmetrized version of the original patch. Under these conditions, the maximum is reached for
a bin size equal to 15. It could be predicted that it was less than 17 because the 4-D space contains 8
times more points, and a good bin size decreases when the number of points increases (but it decreases
slowly).

are taken all equal to Q. This parameter Q is optimized via the AIC criterion of Akaike [1974]
which is suitable in dimension more than 1. The AIC criterion consists in assigning to Q the
maximizer of

∑

k∈Z4

Nk log

(

Nk

|B|

(
256

Q

)4
)

−
[(

256

Q

)4

− 1

]

(6.1)

where

Nk =
∑

q∈B

�

kiQ≤qi<(ki+1)Q, 1≤i≤4

denotes the number of patches in B belonging to the bin indexed by k = (k1, k2, k3, k4). The
function which should be maximized is the log-likelihood of the histogram whose bins have size
Q4, penalized by the number (256/Q)4 of bins in the space [0, 256)4.

Figure 6.1 shows the AIC criterion with respect to Q. The solid curve is obtained when
the database B is the set of all the 2 × 2 patches of the Lena image, and the dashed curve
corresponds to the same database plus their kπ/2-rotated patches and symmetrized patches, in
order to achieve rotation and symmetry invariance (hence it contains 8 times more patches than
the previous database). The optimal Q is 17 for the raw database containing 511× 511 patches,
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Figure 6.2: Correlation between Tα(p) (gradient norm scheme) and − log(P̂ (p)) with respect to α. Left
(Lena’s patches): the maximum correlation (corr ≈ 0.92) is reached for α ≈ −0.24. Right (Barbara’s
patches): the maximum correlation (corr ≈ 0.94) is reached for α ≈ −0.43. The same experiment carried
out on other images always make Tα with a certain −1 < α < 0 reach the best correlation. This is a
hint in favor of some particular gradient norm schemes which should be more adapted to image modeling
than others.

and 15 for the invariant case, which is not so much when dealing with dimension 4. The optimal
Q is a slowly decreasing function of the number of patches in B.

A 4-dimensional histogram which is less dependent of the bins boundaries can be obtained
by averaging histograms shifted by all the possible (t1, t2, t3, t4) ∈ [0, Q − 1]4. Finally a patch
distribution estimate is obtained. Let us compare it with the Total Variation prior on the 2× 2
patches

P (p) =
1

Z
exp(−βTα(p)), (6.2)

where Tα(p), defined by

Tα(a, b, c, d) =

√

(a− b)2 + (b− c)2 + (c− d)2 + (d− a)2 + α[(a− c)2 + (b− d)2]
2 + 2α

,

is a consistent scheme for the gradient norm |∇p| depending on a parameter α.

p =
a d

b c

(a, b, c, d) denotes p’s components in the counterclockwise order beginning, say, with the top-left
corner. Tα is defined for α > −1, otherwise the expression inside the square-root can become
negative.

Figure 6.2 shows the correlation between Tα(p) and − log P̂ (p) with respect to α, and Figure
6.3 the corresponding cloud of points. A correlation equal to 1 would mean that Tα(p) and
− log P̂ (p) are perfectly proportional, and that the Total Variation distribution (6.2) on patches
would be exact on the database. In the experiments we held, the correlation between Tα(p)
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Figure 6.3: Clouds of points representing − log P̂ (p) with respect to the gradient norm. Top: the scheme
for the gradient norm is Tα, with the α achieving maximal correlation (α = −0.25, corr ≈ 0.92 for Lena,
left, and α = −0.43, corr ≈ 0.94 for Barbara, right). Second row: the scheme for the gradient norm
is
√

(a− b)2 + (a− d)2; it is related to a divergence operator, but the direct dependence is less clear
than with Tα (corr ≈ 0.85 for Lena, corr ≈ 0.88 for Barbara). Bottom row: the scheme for the gradient
norm is |a − b| + |a − d|; it is compatible with the coarea formula, but the direct dependence between
the two quantities is not clearer either (corr ≈ 0.85 for Lena, corr ≈ 0.88 for Barbara again). (These 2-D
histograms were passed through a logarithm to have visible contrast).
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and − log P̂ (p) finds a maximum for a certain α, and the corresponding correlation is more
than 0.9 (corr ≈ 0.92 for Lena, corr ≈ 0.95 for Barbara). This means that the Total Variation
distribution (with α not too far from the optimum in Tα) is a good approximation of the patches’
distribution.

The simpler gradient norm schemes

T (p) =
√

(a− b)2 + (a− d)2, (6.3)

adopted in Chambolle [2004] for instance, and the anisotropic scheme

T (p) = |a− b|+ |a− d|, (6.4)

considered in [Darbon and Sigelle 2005; Chambolle 2005], yield smaller correlations (see Figure
6.3).

Numerical experiments have been carried out on several images and it comes that the scheme
Tα always reaches a better correlation than T given on (6.3) and (6.4). Furthermore the param-
eter α which maximizes this correlation has always been found inside the interval (−1, 0). This
gives a track for designing a scheme for images gradient norms adapted to image local statistics.

For instance the Total Variation minimization of [Rudin et al. 1992] or TV-LSE (Part 1)
carried out with Tα (with α ∈ (0, 1)) is probably slightly better than other schemes, because the
prior distribution is more faithful to the real image statistics. The drawback of these schemes is
that they do not seem to be associated to any dual divergence operator, contrary to T in (6.3)
and (6.4) which allows fast algorithms for Total Variation minimization [Chambolle 2004], unless
α =∞. Besides they do not satisfy exactly the coarea formula [Ambrosio et al. 2000], hence the
fast graph-cut based algorithm for TV minimization [Darbon and Sigelle 2005] cannot apply.
Nevertheless our algorithm for LSE denoising, presented in Chapter 2, works for any scheme for
TV satisfying the assumptions stated at the beginning of Chapter 2, and could be run with a
scheme consistent with image statistics.

6.2.2 Optimizing the total variation prior

Deriving a global distribution on images from a distribution on its patches is a difficult task
even if long-range interactions are neglected, because the patches are not independent. However
some information about local features in the images, such as typically the gradient norm, can
be assembled thanks to the FRAME algorithm [Zhu et al. 1998] (FRAME standing for Filters,
Random fields And Maximum Entropy) and a global distribution can be derived. The idea is
the following. The global distribution is selected as the one which maximizes the entropy among
the distributions matching the available information. The entropy is maximized to make sure
no spurious information is brought inside the model.

More precisely, let (φn(u))1≤n≤N be any real functions on images. These functions can be
either linear or non-linear. They can typically be local and translation invariant, and can be
designed to catch the local features of images. For example, they can be Gabor filters, wavelet
coefficients, or any feature testing. Then the FRAME algorithm is based on the maximization
of the entropy

H(p) = −
∑

u∈RΩ

p(u) log p(u)
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under constraints of the type

∀n ∈ {1, . . . , N}, Ep[φn(u)] =
∑

u∈RΩ

φn(u)p(u) = µn,

where µn is the supposedly known expectation of φn(u), not forgetting that
∑

u∈RΩ p(u) = 1.
The Euler-Lagrange equation related to the optimization problem writes

∃ν ∈ R, ∃λn ∈ R, ∀u ∈ RΩ, log p(u) + 1 +

N∑

n=1

λnφn(u) + ν = 0,

which yields

∀u ∈ RΩ, p(u) =
1

Z
exp(−

N∑

n=1

λnφn(u))

Zhu et al. [1998] prove that if (φ1(u), . . . , φN (u)) has a positive definite covariance matrix (which
holds when they are independent), then there exists at most one solution, which can be computed
by solving

dλn

dt
= Ep[φn(u)]− µn ∀n ∈ {1, . . . , N}.

In our case more information is available than simple expectations Ep[φn(u)] alone. In the
previous subsection we saw that the gradient norm of a patch is a good indicator of its probability.
Assume that the distribution of |∇u| is known. We denote it p|∇u|. We seek a global distribution
p which is translation invariant and compatible with the marginal distribution p |∇u|. As in
FRAME, a good choice for p is the one which maximizes the entropy, subject to the constraints

∀x ∈ Ω,∀y ∈ R,
∑

u

�

|∇u(x)|=y p(u) = p|∇u|(y) and
∑

u

p(u) = 1.

The Lagrangian formulation for this maximization problem amounts to the minimization of
∑

u∈RΩ

p(u) log p(u) +
∑

x

∑

y

λx(y)
∑

u

�

|∇u(x)|=yp(u) + ν
∑

u

p(u).

The minimizer then satisfies

∀u, p(u) =
1

Z
exp

(

−
∑

x∈Ω

λx(|∇u(x)|)
)

.

If p is translation invariant, the values (λx) do not depend on x, and then there exists a mapping
λ, called potential (in relation to Gibbs fields), such that

∀u, p(u) =
1

Z
exp

(

−
∑

x∈Ω

λ(|∇u(x)|)
)

.

It can be iteratively computed by the gradient descent

dλ(y)

dt
=

1

Ω

∑

x∈Ω

Ep[
�

|∇u(x)|=y]− p|∇u|(y).
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Figure 6.4: Distribution of gradient norm for different images. Here the opposite of logarithm of the
histograms are plotted. Apart from a particular behavior for small gradient norms, the curves can be
practically fitted with affine lines. It means that the histograms are not far from approximating an
exponential distribution. The scheme for gradient norm was chosen to be T−1/2, which is a good generic
value for high dependence between gradient norm and − logP (patch). The last two images from which
the histograms are computed (Martin and Paris) are shown on Figure 6.5.

Notice that when λ is linear the distribution p is the total variation distribution. However this
case do not seem to be strictly compatible with the gradient norm distribution estimated on
natural images.

Experiments The gradient norm distribution p|∇u| on natural images is not far from being
exponential. Indeed, Figure 6.4 plots the opposite logarithm of gradient norm histograms of
several images and shows that the curves are approximately affine. However it can be refined
into a distribution written

p|∇u|(y) =
1

Z
exp(−µ(y))

where µ is a smooth function which is approximately linear except for small values of the gradient
norm, for which µ generally twists along an inflection point and attains a strict minimum. The
behavior of µ for high values of gradient norms is difficult to examine because the samples
contains few of these.

Our adaptation of FRAME algorithm was first run in the case where p|∇u| is approximated
by an exponential distribution

p|∇u|(y) = le−ly �
y>0.
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Martin Paris

Figure 6.5: Data images used in Figure 6.4. Martin is 800× 533, it comes from the scan of a traditional
silver-based photograph, and contains important natural noise. Paris is 2592× 1944 and comes from an
amateur digital camera.

The algorithm is quite heavy to run because at each iteration of the gradient descent we need
to simulate images drawn from distribution p. It comes that the potential λ in the global
distribution, shown on Figure 6.6 (left) is a smooth and concave function which mainly contains
two affine parts. The smaller gradient norms correspond to a large slope, while larger gradient
norm correspond to a small slope in λ.
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Figure 6.6: (a) Potential λ obtained by FRAME algorithm for exponential target distribution. (b)
Potential λ obtained by FRAME algorithm for Lena’s gradient norm statistics target (the histogram was
regularized by a Gaussian kernel with s.d. 1 to get convergence more easily).

Afterwards the adapted FRAME algorithm was run on an empirical histogram of gradi-
ent norms, computed on image Lena. The histogram is very irregular and the convergence of
FRAME algorithm was difficult to obtain, so the choice was made to regularize a little bit the
histogram, thanks to convolution by a Gaussian kernel with s.d. 1. The potential λ is shown on
Figure 6.6 (right) and has a minimum in the small gradient norms, much more contrasted as in
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the histograms shown on Figure 6.4, and becomes almost flat for larger gradient norms.

The potentials λ obtained in our experiments are not exactly linear, even if a linear function
could be a very rough approximation of the exponential distribution case (left). This implies
that the Total Variation may be improved with respect to the gradient statistics of images.

It seems then that the prior

p(u) =
1

Z
exp(−

∑

x

λ(|∇u(x)|))

with λ looking as one of the curves of Figure 6.6 should then be more realistic than the Total
Variation prior. Several authors [Blake and Zisserman 1987; Bouman and Sauer 1993; Nikolova
2005] already noticed that the minimization of

‖u− v‖2 + 2σ2
∑

x

λ(|∇u(x)|) with λ(y) = min{αy2, β} (α, β > 0)

was a denoiser with some very interesting properties, such as the possible recovery of edges and
smooth regions together. This corresponds to the MAP denoising using the potential λ in the
prior.

The obtained potential can also be linked to the “regularized Total Variation” techniques,
where authors such as [Blomgren et al. 1997] propose to minimize energies of the form

‖u− v‖2 + 2σ2
∑

x

λ(|∇u(x)|) with λ(y) = yg(y)

where g is decreasing and satisfies







g(y) −−−→
y→0

2

g(y) −−−−→
y→+∞

1.

The corresponding potential λ(y) is non-convex, and can be understood as a more realistic
potential for natural images.

Of course all these potentials are non-convex. Several methods for the minimization of possi-
bly non-convex energies are available, such as Metropolis sampler, simulated annealing [Geman
and Geman 1987], graduated non-convexity [Blake and Zisserman 1987] or more recently stochas-
tic continuation [Robini et al. 2007], but yet the MAP estimates are more difficult to obtain in
the non-convex case. Nevertheless this study gives arguments for the fact that Total Variation
denoising mainly works because of its statistical interpretation. The geometric properties of
Total Variation, such as its interpretation in terms of cumulated length of the image’s level
lines (coarea formula), are not enough to explain the denoising performances; the associated
statistical model is a good approximation of image prior.

This gives motivation to make the prior model move away from the TV model.
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6.3 Bias-variance trade-off in the prior complexity

6.3.1 Bayesian framework for NL-means

As the TV minimization, the Non-Local means (NL-means) algorithm, proposed recently by
Buades, Coll and Morel in their seminal paper [Buades et al. 2005] can be seen as a statistical
denoising method. The risk is L2 and gives a Least Square Error estimate. Besides the prior
model is built from the patches of the noisy image.

Indeed, the denoising operator NL, applied on an image v ∈ RΩ, is defined by

∀x ∈ Ω, NL(v)(x) =
1

Zx

∑

y∈Ω

e−
‖v(Nx)−v(Ny)‖22

2σ2 v(y), where Zx =
∑

y∈Ω

e−
‖v(Nx)−v(Ny)‖22

2σ2

as described in [Buades et al. 2005] (the only subtlety we omit here is the choice of a weighted
Euclidean norm over the patches, which is the equivalent to the smooth windows for local TV-
MAP in Chapter 5 Section 5.3.2). Zx is the normalizing factor, σ2 is the noise’s variance and
N is a neighborhood shape with Nx = x+N . The gray level assigned to pixel x is a weighted
average of all the gray levels v(y) of the image, and the weights measure a certain similarity
between the neighborhood of x and the neighborhood of the other pixels y.

Let us define a prior on the patches p ∈ RN from those of the image v. A simple histogram
is given by

P (p) =
1

|Ω|
∑

y∈Ω

�

v(Ny)(p).

Assume that the image v is a noisy version of an image u, that is v = u+n with n being a white
Gaussian noise. The Bayesian estimate û(x) of u(x) with L2-risk and prior P on the patches is
given by the posterior expectation

û(x) = EP [u(x)|v(Nx)]

which develops into

û(x) =
1

Z

∑

p∈RN

P (p)e−
‖v(Nx)−p‖22

2σ2 p(0)

where p(0) denotes the central gray value of the patch p. Now using our definition for the prior
P , and switching the sums, we get

û(x) =
1

Z ′
∑

y∈Ω

∑

p∈RN

�

v(Ny)(p)e
− ‖v(Nx)−p‖22

2σ2 v(y).

For a given y, a p ∈ RN yielding a non-zero term can only be p = v(Ny), and finally,

û(x) = NL(v)(x).

NL-means is therefore a LSE Bayesian estimation, and the prior model for NL-means is hence
based on the histogram of the noisy patches taken on the image.
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6.3.2 Bias and variance for TV-denoising and for NL-means

The prior distribution in Total variation denoising

PTV (u) =
1

Z
e−βTV (u)

is global, but a localization procedure as is Chapter 5 shows that PTV is also a prior on patches.
This prior is based on a very poor statistics. Indeed only one quantity computed on an image or
a patch (the total variation) determines its probability; longer range interactions are omitted,
and two images having possibly very different geometrical properties can have the same total
variation. Conversely the prior distribution used in the Non-Local means denoising

PNL(p) =
1

|Ω|
∑

y∈Ω

�

v(Ny)(p)

is a local model on patches, and is based on the exhaustive statistics of the patches, and the
patches contain noise. The prior distributions PTV and PNL, related to these two denoising
methods, have therefore a complexity lying at the antipodes each other, the first one with an
extremely low complexity, and the other with large complexity. They can be interpreted as
extreme situations in a bias-variance decomposition. Indeed, let P be a prior and ûP a Bayes
estimate of u based on the prior P . Then the expected L2-error with respect to the noise n can
be decomposed into a bias and a variance, following

En‖ûP − u‖2 = En‖(EnûP − u) + (ûP − EnûP )‖2

= ‖EnûP − u‖2 + En‖ûP − EnûP‖2,

where the first term stands for the squared bias of the estimate ûP , and the second term for
its variance. High complexity priors usually achieve low bias rates but the variance can be high
because the estimate is very sensitive to the noise. Instead, low complexity priors usually imply
large bias because the model cannot fit the data enough while the variance is small. Here for
the NL-means, it should be all the more true that the prior is based on the statistics of noisy
patches: the variance of the estimator should be quite high.

Even if the TV-MAP denoising and the NL-means are not associated to the same risk, their
bias and variance are compared in Figure 6.7. Bias and variance were approximated thanks
to averages over 50 noise samples. They were computed on two details of Lena and Barbara.
The detail from Lena (around the eyes) is typically an image that is not very well treated by
NL-means because the patches of the eyes have very few similar patches around them, and the
denoising is much less efficient there than on the cheek for instance. The estimate is then much
more dependent of the noise. This is an archetype for a locally large variance in NL-means.
Conversely, the detail from Barbara (the thin stripes) is a typical image where TV denoising
is not efficient, because the oscillating patterns have high frequency and are viewed by Total
Variation as noise. This is essentially due to the non-adaptability in the TV model, leading to
a large bias.

Is it then possible to find a prior which achieves a bias-variance trade-off? This is briefly
and partially discussed in the following subsection.
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Figure 6.7: Bias-variance decomposition of the estimation error in TV-MAP denoising and in NL-means.
Two pieces of images are selected. On the 4 left images, the bias (u − EnûP ) is plotted in the case of
TV denoising and NL-means (the expectation was approximated thanks to an average over 50 noises).
In the first image (Lena’s eyes), the bias is concentrated on the edges. For TV denoising virtually all
the structure of the image can be found in the bias. For NL-means the bias is more uniform. In the
second image (striped fabric in Barbara), again, the bias contains lesser structure in NL-means than in
TV-denoising. On the 4 right images, the variance En|ûP − EnûP |2 is plotted (again the expectation
was approximated thanks to an average over 50 noises). In the case of NL-means denoising, the variance
is concentrated on the eyes of Lena, and on the turbulent parts of the striped fabric, whereas in TV
denoising, the variance is more uniform. In that sense we can say that TV denoising is more biased, and
that NL-means leads to higher variances.

6.3.3 Argument for the existence of a non-trivial optimum

Several small hints indicate that there should exist a non-trivial optimum in the bias-variance
decomposition, i.e. that should be different from the TV prior and from the NL-means prior.

A first argument is pointed out in [Azzabou et al. 2007], which can be interpreted as an
attempt for complexity reduction in the NL-means prior. Namely the similarity weights in the
NL-means

ωx,y =
1

Zx
e−

‖v(Nx)−v(Ny)‖2
2σ2

were found too much dependent on the noise. The authors propose a principal component
analysis on the patches of the noisy image, in order to select the components having the largest
associated eigenvalues. It happens that these components are much more robust to the noise than
the ones associated to low eigenvalues. New weights are then proposed, based on the components
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of the patches with large eigenvalues only. This leads to an estimate which is expected to be
more robust to the noise. Some denoising examples are shown where this technique is better
than NL-means.

A second argument is the following. Assume that the patches of natural images can be de-
composed into independent components (for instance after an independent component analysis),
such that their global distribution writes as a product of marginal distributions

∀p = (p1, . . . , pN ) ∈ XN , f(p) =
N∏

k=1

fk(pk)

with fk probability distribution over a finite set X . Here we aim at estimating f as precisely as
possible from simple histograms of patches sampled from f . We allow the histograms f̂ to inject
only some components k ∈ {1, . . . , N}, that is, for a sample of patches P = {p1, . . . , p|P|},

∀x ∈ XN , f̂A,P(x) =
1

|X |N−|A|
∏

k∈A

1

|P|

|P|
∑

i=1

�

pi
k
(xk),

where A ⊂ {1, . . . , N}. A represents the indices of components which are taken into account in
the histogram. It amounts to consider that the fk with k /∈ A are approximated by a uniform
distribution. Its cardinality |A| reflects the model complexity in the estimate. Intuitively, in
average, a histogram f̂A,P will correctly estimate f if A captures the most informative compo-
nents of the patches. Conversely, if A contains too many non-informative components, and if
|P| is quite small, then the histogram f̂A,P will deviate from f , because a uniform distribution is
harder to approximate with histograms on finite samples than informative distributions, such as
very peaked distributions. Besides, if the sample size |P| is assumed to be very large, but if the
sample is noisy, then similarly, the components containing little information will be overwhelmed
with noise and should be thrown away (as in [Azzabou et al. 2007]) and the more informative
components should be kept, to yield an efficient estimation for f . In both cases (small sample
size, or noisy samples), it seems that an optimal A can be reached, with 1 < |A| < N , containing
the indices of the most informative fk. A can be viewed as the set which achieves a bias-variance
trade-off in the estimation error.

Of course this program is feasible if we are able to predict or guess through the sample which
components are informative.

What we meant by informative distribution was not defined on purpose. It is highly depen-
dent on the distance we consider between f and f̂A,P . For example, if we aim at minimizing

‖f̂A,P − f‖2 in average, it is provable and logical that the information criterion over fk is its L2

squared norm, which satisfies

‖fk‖22 =
∑

x∈X
fk(x)

2 = Px,y∼fk
(x = y).

‖fk‖22 measures some information in a distribution, in the sense that uniform distribution has
lowest ‖fk‖22 and Dirac the highest. We do not doubt that another criterion of proximity between
f and f̂A,P should lead to other information measures. For instance the Kullback-Leibler distance

D(f̂A,P‖f) should probably lead to a classical entropy-based information measure.
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We have no general result proving the existence of a non-trivial complexity prior reaching an
optimal error, either in the model prior estimation or directly in the denoising task. However we
believe that recent works on patch statistics such as [Lee et al. 2003; Huang and Mumford 1999b;
Huang et al. 2000] could help finding “informative” components on patches of natural images,
able to increase the complexity of the TV prior and to reach less biased models. Simultaneously,
applying invariance of patch statistics under simple geometric operations, such as symmetry or
rotation, could decrease the complexity of NL-means prior.
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Conclusion

In this thesis we focused on several image denoising models based on the total variation (TV),
derived from transpositions to some aspects of the Non-Local means (NL-means) algorithm. This
was made possible thanks to a common Bayesian framework for Total Variation minimization
and for the Non-Local means.

The first aspect we were interested in was the choice of the Bayesian risk. The adaptation
of TV minimization to a least square error risk as in the NL-means has led us to a denoising
method which was analyzed in the first part of the thesis. Motivations for this change of risk were
given in the first chapter: the new risk was expected to imply fewer distortions in the output
local statistics than with the “hit-or-miss” risk attached to TV minimization. A stochastic
algorithm based on MCMCs was found especially well suited to the implementation of the
method. Convergence was proven, but a precise convergence criterion was needed because the
high dimensionality of the images implied quite slow convergence. Subject to the introduction
of other parameters, all being justified and automatically tuned thanks to simple algorithms
derived from recent Statistics papers, we elaborated an efficient stopping criterion. Thanks to
it, the unpleasant impacts of a slow convergence were contained, and the denoising method
could then be computable. Several interesting properties of the denoising method were proven.
In particular it was shown to induce no staircasing effect; this is the main contribution of this
method compared to the TV minimization, and it confirms that the least square error risk leads
to fewer distortions than the “hit-or-miss” risk. Numerous tests were carried out; the results
were very satisfying for several reasons: first the staircasing is indeed absent from the denoised
images; secondly the contrast of some isolated pixels, very often enhanced by TV minimization,
is reduced with our method; last but not least, the visual aspect of the denoised images is much
more natural with our method than with TV minimization.

The second area of interest which was examined in this thesis deals with the locality in the
denoising. Namely the NL-means had been noticed to be more efficient when “localizing” it, i.e.
when disregarding far away pixels in the denoising of a pixel. This localization procedure was
carried out in the TV minimization framework, leading to a TV-based neighborhood filter. An
algorithm was provided as well as the partial differential equation associated to a regularized
version of this neighborhood filter, which happens to be simply the heat equation. The local
denoising is necessarily associated to a certain size of neighborhood; the optimal size may be
understood as a bias-variance trade-off. Two versions of this local TV-based denoising were
explored; the first one was associated to a Lagrangian formulation, and the other to a constrained
formulation, the latter giving rise to a somewhat automatically adaptive denoising. No serious
attempt was made to “localize” the TV denoising operator defined with a least square error risk
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because of its numerical complexity, but it seems that it should be a very nice hybrid denoiser
between TV-minimization and NL-means.

The last missing link between TV denoising and NL-means lies in the definition of an image
prior model. The last chapter questions the total variation model as a suitable model for discrete
images. In particular the selection of the numerical scheme for the gradient norm happens to be
crucial for the model’s adequacy to local statistics of natural images. Besides, a global model is
derived from the local statistics of the gradient norm, and experiments show that this model is
a slight deviation from the Total Variation model. This allows us to consider modified versions
of the TV model. Actually the TV model has a very low “complexity” compared to the model
underlying the NL-means which has high complexity, and a bias-variance decomposition argues
in favor of some optimal prior model with a complexity lying in between those of TV model and
NL-means.

However a prior model that fits reality as perfectly as possible is not necessarily a good prior
in practice. Indeed in a general Bayesian estimation framework, a prior model is always combined
with some risk that has to be minimized. The minimization of this risk leads to an estimate
that may induce some distortions. These distortions really bias the estimation accuracy, and
even perfect priors may induce imperfect estimation. They occur with Maximum A Posteriori
(MAP) estimation but also for other risks, such as the L2-risk.

We would like to point out here that conversely, prior models could be distorted with respect
to the risk in order to reduce the bias of estimates. For example a feature which gets swelled in
the estimation can be voluntarily squeezed in the model, in order to obtain unbiased estimates.
Several facts hint at a distortion of the prior model in favor of the rare configurations, i.e.
the model used in estimation should probably give higher probability to events having low
probability in the reality-sticking model, at the expense of frequent events whose probability
should be reduced.

A first argument for this is the example of [Nikolova 2007] where a signal simulated from the
1-dimensional TV model is corrupted with an impulse noise or Laplace noise. A Laplace model
for the noise is used in the MAP denoising procedure in both cases. Results are much more
convincing on the effective impulse noise than on the Laplace noise. The Laplace distribution
has a wider “spread” than the impulse noise distribution, and the distribution with its Dirac at
zero is shrunk down to a Lebesgue measurable density, while the probability of other events gets
swelled.

Another argument comes from the results of Chapter 3, Section 3.5, where a Least-Square-
Error (LSE) estimate is shown under some conditions to be equivalent to a MAP estimate,
provided that the prior distributions pLSE (resp. pMAP ) in the LSE denoiser (resp. MAP
denoiser) satisfy

pMAP ≈ pLSE ∗Gσ,

where Gσ is a Gaussian kernel. Under the assumption that the LSE estimate induces lesser
distortions than the MAP estimate, we can deduce that a prior model should rather be smoother
than the realistic one in the context of a MAP estimation. Again rare events are enhanced and
frequent ones are reduced.

This does not hold for MAP estimation only. Indeed a very simple case shows that the same



Conclusion 219

phenomenon can also occur in LSE estimation. Let us describe it here. Let us assume that
samples are drawn from a real distribution

Pτ (x) = τδx1(x) + (1− τ)δx2(x), x ∈ Rn

where n is assumed to be a “large” integer, 0 < τ < 1/2, and x1 6= x2. Pτ is very similar to a
Bernoulli distribution, except from the space dimension. Let us assume too that we only have
one sample of Pτ which is corrupted by a white Gaussian noise, namely

y = x+ n, where x ∼ Pτ and n ∼ Gσ.

Let us assume that we estimate x via a LSE risk based on another “Bernoulli” prior model Pt,
the denoising prior, with 0 < t < 1. Then

x̂1 + n =
e−

‖n‖2
2σ2 tx1 + e−

‖x1+n−x2‖2
2σ2 (1− t)x2

e−
‖n‖2
2σ2 t+ e−

‖x1+n−x2‖2
2σ2 (1− t)

and x̂2 + n =
e−

‖x2+n−x1‖2
2σ2 tx1 + e−

‖n‖2
2σ2 (1− t)x2

e−
‖x2+n−x1‖2

2σ2 t+ e−
‖n‖2
2σ2 (1− t)

.

As the space has high dimensionality we make the following approximation

‖x2 + n− x1‖2 ≈ ‖x1 − x2‖2 + ‖n‖2

which is a valid approximation for most n ∼ Gσ . Then denoting

α = e−
‖x1−x2‖2

2σ2 ,

the estimates x̂1 + n and x̂2 + n get simpler, and the average error writes

En,x‖x̂+ n− x‖22 ≈
[

τ(1− t)2
(t+ α(1− t))2 +

(1− τ)t2
(αt+ (1− t))2

]

· α2‖p2 − p1‖2 =: E(t)

This function E of t ∈ (0, 1) can be optimized. Actually E can be proven to be convex, and its
derivative E ′ to satisfy

E ′(τ) < 0 and E ′(1/2) > 0.

Then there exists a denoising prior Pt that minimizes the average error, and such that the
corresponding t satisfies

τ < t <
1

2

(recall that Pτ is the real prior model from which the samples are drawn, and Pt is the artificial
prior used in the denoising procedure). The best prior associated to the LSE risk, here selected
among “Bernoulli” priors, again enhances the rarer event and decreases the importance of the
other one.

No result was found yet proving that this phenomenon can be generalized. In particular
an example with log-concave prior and L2-risk would be welcome. Of course in realistic cases
the rare event should probably not be all equally enhanced. The information brought by the
denoising prior would then be lost, and the denoising quality would decrease. In image denoising,
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certain configurations should probably be enhanced, such as visually important features, like T-
junctions, corners, and so on, whereas other rare events should probably be reduced. In any
case it seems that the prior should be designed in connection to the risk used in the estimation,
and that it is generally not equal to the realistic model.

These considerations on the model prior can also be transposed to the noise prior. Indeed, in
most denoising methods, in TV minimization e.g., the method noise contains structures stolen
from the image, even if the noise is modeled as white and Gaussian noise. It means that
the method noise seriously deviates from the noise model, which initially allows no significant
structure.

The duality between image estimation and noise estimation, when dealing with symmetric
risks (Proposition 1.3), implies that the noise prior should also be designed relatively to the risk
and the expected distortions. In this case, avoiding the distortions is probably easier to model.
This is the idea of a contrario methods [Desolneux et al. 2008] which assume that the noise is
easier to model than real-life features. Indeed if the noise is really white and Gaussian, then
the probability of a n-uple of pixels should not depend on the relative locations of these pixels.
This property could be inserted in the denoising prior in the form of constraints or not. It could
lead to method noises containing lesser structure. In the same time, the denoised image is likely
to be of better quality because information does not go away from the image in favor of the
method noise.

Another point is the link between the locality and the selection of the risk. [Rue 1995; Rue
and Hurn 1997] propose risk functions associated to more or less localized estimates. Besides,
image quality measures closer to human vision criterions than SNR or PSNR (see [Wang et al.
2004] for instance) can probably be associated to a risk. These non-conventional risks used with
Total Variation or the prior implied in the NL-means may yield lesser visual distortions.

These remarks hold for image denoising, but may also apply to other image-based estimation
tasks, such as interpolation, dequantization and other restoration issues.
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Résumé: Le modèle ROF (Rudin, Osher, Fatemi), introduit en 1992 en utilisant la variation
totale comme terme de régularisation pour la restauration d’images, a fait l’objet de nombreuses
recherches théoriques et numériques depuis. Dans cette thèse, nous présentons de nouveaux mod-
èles inspirés de la variation totale mais construits par analogie avec une méthode de débruitage
beaucoup plus récente et radicalement différente : les moyennes non locales (NL-means). Dans
une première partie, nous transposons le modèle ROF dans un cadre bayésien, et montrons que
l’estimateur associé à un risque quadratique (moyenne a posteriori) peut être calculé numérique-
ment à l’aide d’un algorithme de type MCMC (Monte Carlo Markov Chain), dont la convergence
est soigneusement contrôlée compte tenu de la dimension élevée de l’espace des images. Nous
montrons que le débruiteur associé permet notamment d’éviter le phénomène de staircasing,
défaut bien connu du modèle ROF. Dans la deuxième partie, nous proposons tout d’abord une
version localisée du modèle ROF et en analysons certains aspects : compromis biais-variance,
EDP limite, pondération du voisinage, etc. Enfin, nous discutons le choix de la variation totale
en tant que modèle a priori, en confrontant le point de vue géométrique (modèle ROF) au cadre
statistique (modélisation bayésienne).

Mots-clés: Débruitage d’images, variation totale, modèles bayésiens, maximum a posteriori,
moyenne a posteriori, effet de staircasing, algorithme de Monte-Carlo Markov Chains, filtre à
voisinage, moyennes non-locales, compromis biais-variance.

Abstract: The ROF (Rudin, Osher, Fatemi, 1992) model, introducing the total variation
as regularizing term for image restoration, has since been dealt with intense numerical and
theoretical research. In this thesis we present new models inspired by the total variation but
built by analogy with a much more recent method and diametrically opposed to it: the non-local
means. In the first part we transpose the ROF model into a Bayesian framework, and show that
the estimator associated to a quadratic risk (posterior expectation) can be numerically computed
thanks to a MCMC (Monte Carlo Markov Chain) algorithm, whose convergence is carefully
controlled, considering the high dimensionality of the image space. We notably prove that the
associated denoiser avoids the staircasing effect, a well-known artefact that frequently occurs
in ROF denoising. In the second part of the thesis we first propose a localized version of the
ROF model, and analyze several aspects: bias-variance trade-off, limiting PDE, neighborhood
weighting, etc. Last but not least we reconsider the choice of total variation as prior image
model, by setting the geometrical point of view (ROF model) against the statistical framework
(Bayesian modeling).

Keywords: Image denoising, total variation, Bayesian models, maximum a posteriori, poste-
rior expectation, staircasing effect, Monte-Carlo Markov Chains, neighborhood filter, non-local
means, bias-variance trade-off.


