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Slant range velocity of a moving object vr
Speed of light c
Subaperture SA
Swath length in azimuth direction ∆Y
Swath length in ground range direction ∆X
Incidence angle θ
Time bandwidth product TBP
Transmitted bandwidth Bt
Transmitted pulse p(t)
Transmitted time t
Transmitted wavenumber with carrier wavenumber k
Transmitted wavenumber without carrier wavenumber ∆k
Triple bounce reflection mechanism TB
Widebeamwidth Wbw



Introduction

Remote sensing consists of data acquisition by means of imaging sensors and has many
important applications, e.g., imaging of the Earth surface, imaging of ocean floors, assess-
ment of crop conditions, etc. Imaging sensor systems, that may be airborne or satellite
borne are classified in two categories: The first one is passive sensors, which make use of
the natural radiation emitted or reflected by the surface of the object being observed. The
second category is that of active sensors, which have a transmitter.

Spatial resolution is an important feature of the imaging systems, which can be described
as the minimum distance at which two different objects can be differentiated. The passive
sensors have the resolutions ranging from a few meters to tens of meters [1]. However,
their main limitation is the inability to operate in the presence of clouds or fog. This can
be overcome by the active sensors operating in the microwave range of the electromagnetic
spectrum. This reduces the effects of clouds and fog and allows them to be independent
of external sources for imaging, i.e., having a day and night, and all-weather imaging
capability. These active sensors are represented by radars. However, they also have a
disadvantage in the form of poor resolution to antenna dimension (aperture) relationship,
e.g., an active transmitter operating at a wavelength of 1 m and having a physical aperture
of 1 m placed at a distance of 1000 m from an observation point results in a resolution of
1000 m, that is insufficient. In order to achieve a higher resolution, e.g., 1 m, the antenna
aperture should be increased to 1000 m [2]. Due to physical limitations, it is not possi-
ble to manufacture an antenna of such a long length and mount it on an airborne platform.

A solution to this problem can be obtained by artificially creating the effect of a long
antenna, by moving a smaller one along a certain path, which emits electromagnetic pulses
perpendicular to the flight path and downward to the Earth surface. The received signals
at the different positions on the path are stored and then processed afterwards. Synthetic
Aperture Radar (SAR) is based on this concept.

The signals received by SAR depend on the energy reflected from a point target spread in
across-flight and along-flight directions. The purpose of SAR focusing/processing/image
formation is to collect (compress) this dispersed energy into a single pixel in the output
image. In early SAR systems, optical processing was used for processing the received
data, however, presently, digital processing techniques are the preferred methods [1]. The
traditional SAR processing technique is Range-Doppler Algorithm [3] whereas newer tech-
niques are Chirp Scaling Algorithm [4] and Omega-K Algorithm, either borrowed from
geophysics [5] or considered from a signal processing point of view [2], [6] . Each of these
algorithms are suited for different configurations/parameters, although the latter one may
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Spotlight Mode Stripmap Mode Scan Mode

Figure 1: SAR Operating Modes

be the exact form.

There are three operating modes for a SAR system: Spotlight, stripmap and scan, as shown
in figure 1. In the spotlight mode, the antenna beam is steered to continuously illuminate
the terrain patch being imaged. In the stripmap mode, the radar antenna points along a
fixed direction with respect to the flight path, thus covering a strip of terrain parallel to
the path of motion. The stripmap mode involves either a broadside geometry, in which
the antenna beam points perpendicular to the flight direction, or a squint geometry, where
the antenna is pointed at some angle to the normal of the flight path. In the scanmode,
the antenna is steered to illuminate a strip of terrain at any angle to the flight path. This
thesis is concerned with the airborne stripmap mode and broadside geometry.

This thesis is carried out in the framework of the Brittany region project MOSISMAR
in collaboration with ENST Bretagne. The project is concerned with the development of
a simulator that may eventually be applied to model different sea states. As a first step,
different SAR processing algorithms are studied and simulations of raw data are carried
out for realistic, static and anisotropic scenes, as well as a moving object.

The objectives of this thesis are to study the SAR imaging process and suggest efficient
techniques to model it, i.e., SAR raw data generation. This may be necessary to test
different focusing procedures, to study the interaction of an electromagnetic wave with a
surface, effects of different parameters on the focused image quality, simulation of different
errors, mission simulation tool [7], [8] etc. Moreover, space agencies can have access to
different types of raw data in a short period of time, but in case of other research envi-
ronments, this is quite limited. Raw data for new configurations are not easy to obtain
and with the help of simulation, it may be possible to simulate new SAR configurations [9].

This thesis initiates with the presentation of the basics of SAR geometry and different
mathematical expression are presented that describe the relation of along-flight and across-
flight resolutions to different parameters. It is shown that the use of a linear frequency
modulated signal called a chirp signal leads to a high resolution in the across-flight di-
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rection. The range frequency varying nature of the azimuth frequency is demonstrated
as well. It is also shown that the movement of a sensor leads to a high resolution in
the along-flight direction due to creation of a chirp in this direction at the expense of a
phenomenon called range migration due to a changing radar-object distance. This effect
complicates the processing as it should be compensated to compress the raw data. The
image formation process is introduced for a single point, followed by time-domain process-
ing in case of multiple points known as the Backprojection algorithm [2]. The basics of
interferometry that enables height calculation from phase difference of two images are also
discussed, alongwith an example for a single point. The corresponding relations between
the measured phase and height are described. Polarimetry is discussed briefly, alongwith
important parameters, used later on in the thesis.

Processing in time-domain is computationally very intensive and may require heavy com-
putational resources. As a result, different alternatives have to be considered, that consist
of processing in the frequency domain. In chapter 2, the corresponding expressions of the
raw data in one dimensional and two dimensional frequency domains calculated using the
principle of stationary phase (itself an approximation) are explained. The possibility of
image formation in each one of these domains is discussed and it is shown that a single
point can be focused in the two dimensional frequency domain using a matched filter.
This matched filter, however, changes for each point and using an approximate approach
of subpatches [10], it is possible to focus images in the two dimensional frequency domain
using a matched filter tuned for each subpatch center. However, there is a tradeoff between
computational efficiency and accuracy and the phase error, that may arise due to the lack
of adaptivity within a subpatch, is calculated and other alternatives are proposed. The
first one is the Omega-k algorithm, that achieves the focusing in the two dimensional fre-
quency domain, using a reference matched filtering and an interpolation. This is the exact
form of image formation and can cater for wide aperture focusing. The second approach
is the Chirp Scaling algorithm, that consists of equalizing the range migration trajectories
in the one dimensional frequency domain by using a reference chirp signal. After equal-
ization, range migration can be compensated by a fixed range shift. The approximations
involved in the Chirp Scaling algorithms are also briefly mentioned. The steps involved
in these two algorithms are summarized alongwith the block diagrams and examples with
simulated raw data and images. The differences between the two dimensional spectra of
raw data and of a focused image are also demonstrated. The original form of the Omega-k
algorithm, borrowed from seismic processing is also detailed.

Raw data simulation in its simplest form, i.e., in time-domain is explained. It is clear
that this approach consists of calculating a delayed chirp signal for each point in the
image and for all the trajectory positions. Thus, it is a summation process in both along-
flight and across-flight direction and requires high computational resources that may not
be always available. Consequently, in chapter 3, this process is explored in the frequency
domain. It is shown that, similar to the case for processing, the computational efficiency
for this process can be improved using expressions in the two dimensional frequency do-
main. An improvement of this simulation technique using Fast Fourier Transforms in one
dimension, is introduced to increase the efficiency as the summation process is reduced to
one dimension only. The accuracy of this method is estimated by comparing the simulated
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raw data to those obtained using a time-domain simulator. Subsequently, phase differences
between both two raw data are compared in the along-flight and across-flight direction. It
is shown that with some further manipulations, the simulation process can be realized ef-
ficiently in the two dimensional frequency domain. A relationship between the reflectivity
map and the corresponding image is shown, that is actually the two dimensional convolu-
tion of the reflectivity map and a SAR image for a reference range and azimuth position.
It is concluded that raw data can be simulated using inverse processing algorithms, and
the inverse Omega-k algorithm (involving the least number of approximations) is a good
candidate for this purpose. The inverse Chirp Scaling algorithm is also examined, and
the approximations involved are studied analytically to find a validity domain in terms
of system parameters. It is also shown that a simulation method proposed in [11] has
a much smaller validity domain compared to the approach presented in this thesis. The
influence of approximations in case of the inverse Chirp Scaling is demonstrated by means
of a relevant example and compared to the results obtained with the inverse Omega-k.
A moving point/object raw data simulator is described and it is demonstrated that this
process can be efficiently carried out using the previously described methods by means of
a rotation and a scaling operation.

It is the sensor movement that gives rise to high resolution in azimuth at the expense
of range migration that can be compensated. Similarly, sensor motion errors (especially in
the airborne case) arising due to different factors have to be compensated in order to obtain
high-quality focused images. These motion errors cause defocusing and a position shift in
the processed image. Error corrections are achieved by motion compensation algorithms
that can be divided into two categories: Narrow-beamwidth and Wide-beamwidth. The
former assumes that the aperture in the along-flight direction is narrow enough [12], so
that motion errors within the azimuth beam are the same as those at the beam center and
can be approximated to be along-flight position invariant. This process can be integrated
very easily with the Chirp Scaling processing [13] or with a modified Omega-k algorithm
[14] that can also take into account wide-beamwidth errors. Algorithms belonging to both
the categories are described in chapter 4, alongwith some examples. The effects of motion
errors on a processed image are also presented. The case of motion error simulation is
subsequently discussed, and it is shown that unlike raw data simulation in the absence of
motion errors, there is no direct method to achieve this. The only option is to combine
frequency simulation, alongwith summation operation. This involves certain approxima-
tions, that are described in detail, alongwith some simulation examples and the phase
error as a result of these approximations.

In order to analyze the accuracy of the proposed simulation schemes, examples with
point scatterers were presented in chapters 3 and 4. In chapter 5, the simulation pro-
cess is applied to an extended scene, consisting of a rough ground and single or multiple
buildings. The concept of roughness and the different parameters that define roughness are
explained. Speckle, that causes fluctuations of intensity in an image is described alongwith
the building geometry and the corresponding features that can be observed in an image.
The backscattering coefficients are subsequently explained. These coefficients, present in
a reflectivity map, give the electromagnetic properties of a scene and are calculated using
an electromagnetic model. These can be divided into a coherent and incoherent part that
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can be seen as the mean and variance of a gaussian distribution, respectively. This gaus-
sian distribution, infact represents the speckle. Expressions, calculated using an already
existing model [15] are presented. The coherent part of the reflectivity that leads to an
along-flight varying response, is also introduced and included in the simulation to make it
more realistic compared to the already existing simulations. A subaperture analysis [16]
is also carried out that shows the expected along-flight behavior of a scene consisting of
buildings oriented at different angles. An example is also presented for raw data simula-
tion in case of motion errors for a scene consisting of a single building. Interferometric
SAR simulation is introduced, alongwith different types of decorrelation and simulation is
carried out taking into account the geometric decorrelation only. However, the possibility
of including other types of decorrelation such as misregistration, system noise, topogra-
phy, etc are also discussed. With the presented approach, it is possible to generate not
only raw data, but directly the interferometric image pairs as well. This process may be
better than simulating just the interferogram as in [17], as the correct geometric decor-
relation is taken into account using range spectral shift, and may be used for studying
range resolution improvement. In the case of simple interferogram simulation, the decor-
relation is achieved using correlated gaussian variables, which, although correct, cannot
be used for studying the previously mentioned phenomenon. Examples are given in the
case of a plane surface and a scene, consisting of a building, and the height estimations
using the simulated interferometric image pairs are shown to match with the actual height.

Summarizing the previous discussion, the manuscript is organized as follows:

• Chapter 1 presents the SAR basics, and gives as well an introduction to image
formation.

• Chapter 2 describes the Omega-k and Chirp Scaling algorithms.

• Chapter 3 examines different simulation strategies, their computational complexity
and their accuracy for simple point scatterers as well as a moving point scatterer or
an object.

• Chapter 4 describes the possibility to simulate raw data in the presence of sensor
motion errors, alongwith the approximations involved and their limits of validity .

• Chapter 5 applies results of the previous chapters to an extended scene and presents
an introduction to interferometric SAR simulation.

At the end of this manuscript, conclusions are summarized and future directions for this
work are presented.





Chapter 1

Basics of SAR

1.1 Outline of the Chapter

This chapter starts with the geometric configuration of a Synthetic Aperture Radar (SAR)
system and presents its different characteristics. It discusses the main concepts behind the
functioning by describing a chirp signal as well as demonstrating the data storage for
the synthetic aperture. The relationships of the achieved resolution to various system
parameters are calculated, as well as compared to those obtained by a conventional radar,
in both along-flight and across-flight directions. The SAR image formation process(1) is
introduced by two examples and the basic concepts of polarimetry and interferometry are
discussed.

1.2 Geometric Configuration

The broadside geometric configuration of a SAR operating in the stripmap mode is shown
in figures 1.1 and 1.2. The radar is situated at a height h and moves with a velocity vsar.
The along-flight axis is referred to as azimuth (y), while the across-flight axis is referred to
as ground-range (x). The altitude is represented by z. The radar transmits in the direction
normal to the flight direction following the radial axis and with an angle of incidence θi
(θc at the center of the imaged scene), and the distance in the line of sight direction is
known as slant-range (r)(2). The relation between x and r is given as (assuming a point
at ground range x and zero azimuth and altitude)

r2 = x2 + h2 (1.1)

Furthermore, the azimuth varying radar-target distance is

d(y)2 = x2 + y2 + h2 (1.2)

Note that d(y = 0) = r.

(1)In this thesis, the terms SAR image formation, SAR processing and SAR data processing are used
interchangeably

(2)In this thesis, the terms slant-range and range are used interchangeably

15
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Figure 1.2: Broadside Geometry in Slant-Range Azimuth Domain



1.3 Resolution in Range 17

The area covered by the radar waves in the ground-range and azimuth directions is shown
in figures 1.1 and 1.2. It is proportional to the apertures of the physical antenna having
dimensions of lx and ly in the ground-range and azimuth directions, respectively. These
apertures can be approximated in radians using the following relations:

θx =
λc
lx

(1.3)

θy =
λc
ly

(1.4)

where c is the speed of light, λc = c/fc is the wavelength and fc is the carrier frequency
of the transmitted signal.

1.2.1 Calculation of Ground Range Swath

Making use of the following relation between the incidence angle and the slant range at the
center of the area covered by the antenna footprint, and the approximation tan(θc) ≈ θc
for small θc, an expression for range swath ∆X can be obtained as follows:

cos(θc) ≈
rc tan(θx/2)

∆X/2
(1.5)

∆X =
rcθx

cos(θc)
(1.6)

1.2.2 Calculation of Azimuth Swath

From figure 1.2, the following expression can be obtained:

tan(θy/2) =
∆Y
2rc

(1.7)

Using again the small-angle approximation, ∆Y can be written as

∆Y ≈ rcθy (1.8)

1.3 Resolution in Range

1.3.1 Conventional Radar

Let a and b be two fixed targets placed at slant-range distances of ra and rb, respectively
from the radar. The time taken for the waves to travel back and forth is 2ra

c and 2rb
c for

a and b, respectively and the two echoes are shifted in time by the duration given as follows:∣∣∣∣2rac − 2rb
c

∣∣∣∣ (1.9)

|ra − rb| is the distance that separates the two targets. The radar system can distinguish
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between the two pulses if they are separated by a time delay of Tp, where Tp is the dura-
tion of the transmitted pulse. This is known as the resolution of a radar and is given in
slant-range as

δr =
cTp
2

(1.10)

while the resolution in ground-range is

δx =
δr

sin(θi)
(1.11)

where θi is the incidence angle corresponding to a slant-range distance of ri.

1.3.2 Synthetic Aperture Radar

It can be remarked from equation 1.10 that in order to obtain a high slant-range resolution,
the transmitted pulses must be of short duration. However, practically it is difficult to
emit short pulses which have energy high enough to allow for the detection of the received
echoes. A technique to emit a high average power without having a high peak power is the
linear modulation of frequency. It consists of emitting pulses that are linearly modulated
in frequency for a duration of time Tp in a frequency band Bt. The frequency of this signal
"sweeps" this band centered on carrier frequency fc at a chirp rate Kr. Such a signal is
called a chirp because an audio signal of rising (or falling frequency) over time is similar
to a bird’s chirp [6] and has the following form:

p(t) = rect(t/Tp) exp(j2πfct+ jπKrt
2) (1.12)

where t represents the across-track time (also known as fast-time) and ranges from −Tp

2 to
Tp

2 .

The time-varying frequency can be written as

fr(t) = fc +Krt (1.13)

and the bandwidth is

Bt = KrTp (1.14)

The chirp signal can be called an up chirp or a down chirp when the slope Kr is positive
or negative, respectively. This signal after reflection from a point scatterer, is sampled at
the receiver, and in order to fulfil the Nyquist criterion, the sampling frequency fst must
be greater than twice the highest transmitted frequency, from where the following limit
for the sampling rate Tst is obtained:

Tst <
1
Bt

(1.15)
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Figure 1.3: Chirp Signal and its Frequency

The sampled received data is stored in different bins or pixels and the bin/pixel size in
slant-range is given as

δbr =
cTst

2
(1.16)

Figure 1.3 shows an up chirp signal and its frequency evolution with respect to time. At
the receiver, a matched filtering operation is performed, which consists of correlating the
received chirp signal from a target located at distance ra with the complex conjugate of
the replica of the transmitted signal. This operation can be written as follows:

pc(t) =
∫ ∞
−∞

p

(
t− 2ra

c

)
p∗(t− u)du (1.17)

The result of this integration is a sinc pulse, given by [3]

pc(t) ≈ Tpsinc
{
KrTp

(
t− 2ra

c

)}
(1.18)

Its mainlobe width is inversely proportional to the bandwidth of the transmitted signal.
Since this width is less than that of the received signal, it is known as the compressed
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Figure 1.4: Compressed Signal after Matched Filtering Operation

signal (3). Note that after compression, the time axis can be replaced by range (as the
compressed pulse is localized in distance) and the compressed pulse can be expressed as

pc(r) ≈ Tpsinc
{

2KrTp
(r − ra)

c

}
(1.19)

From equation 1.19, the slant-range resolution can be calculated as

δr =
c

2KrTp
=

c

2Bt
(1.20)

Figure 1.4 shows the sinc pulse as a result of the operation described by equation 1.17.
By observing it and taking into account equations 1.12 - 1.14 and 1.20, the advantages of
the chirp signal can be summarized as:

• The transmitted signal at the radar has a high bandwidth but longer pulse duration,
therefore, a satisfactory level of average power can be maintained without transmit-
ting a very high peak power signal.

• After the matched filtering operation, the output signal is narrow, thus resulting in
good range resolution.

Another parameter concerned with the chirp signal is the time bandwidth product defined
as the product of the bandwidth of the chirp signal and its duration. It is given by

(3)Also known as focused signal
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TBP = BrTp = KT 2
p and can be seen as a measure of the number of zero crossings of the

signal [3].

1.4 Resolution in Azimuth

1.4.1 Conventional Radar

For a traditional radar, the azimuth resolution at the center of the antenna beampattern is

δyc =
λcrc
ly

(1.21)

In this case, the larger the size of the antenna, the better the resolution. For a good
resolution, the antenna becomes too large to be physically realizable, and a solution is to
"artificially" create a large antenna.

1.4.2 Synthetic Aperture Radar

A large antenna can be synthesized by moving a smaller antenna and collecting the data
received at all the along-flight positions. The received signal for a point located at a beam
center slant-range distance of ra (it is the shortest distance between the radar and the
point illuminated and is reached when the radar is directly in front of the target) and an
azimuth position ya is

sa(t, y) = p

(
t− 2da(y)

c
, y

)
= rect

{
(t− 2da(y)/c)

Tp

}
exp

{
j2πfc

(
t− 2da(y)

c

)
+ jπKr

(
t− 2da(y)

c

)2
}

(1.22)

where ra =
√
x2
a + h2 and da(y) =

√
r2
a + (y − ya)2 for −∆Y/2 ≤ y ≤ ∆Y/2 , as the

target is illuminated for a total azimuth distance of ∆Y . xa is the ground-range position
of the target. The evolution of the radar-target distance da(y) is shown in figure 1.5 for
ra = 2611m and ya = 0m. This hyperbolic form causes the received signal to shift in the
range directions, and is known as range migration. The received signal is stored for each
along-flight position as shown in the figure 1.6. It shows that besides the transmitted chirp
in range direction, a chirp exists in azimuth direction as well due to the movement of the
sensor and the subsequent storage of the received pulses, that can be seen on the right
hand side of the figure. The shifting of the received pulses due to range migration is also
indicated. The presence of the azimuth chirp in the received signal can be demonstrated
analytically by considering the received signal after demodulation given by equation 1.23.

sa(t, y) = Et

(
t− 2da(y)

c

)
exp

{
−j4πfc

da(y)
c

+ jπKr

(
t− 2da(y)

c

)2
}

(1.23)

where Et(t) = rect( t
Tp

) is called the range envelope representing the chirp duration. For
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the moment, range migration is ignored by assuming ra � y.

The expression given by equation 1.23 can be divided in two parts: The first exponen-
tial term representing the azimuth part say(t, y), whereas the second one representing the
range part sar(t, y) (as it contains the term t). Using the Taylor series approximation and
parabolic approximation for the radar-target distance [3], ignoring the range envelope and
considering a target at the centre of the scene, i.e., ya = 0, we obtain

da(y) ≈ ra +
y2

2ra
(1.24)

say(t, y) = exp
{
−j4πfc

c

(
ra +

y2

2ra

)}
(1.25)

The exponential term exp
(
−j2π fcy2

cra

)
represents a frequency modulated signal in azimuth

direction, with a rate given by Ky = 2fc/cra . Note that this rate is dependant on the
shortest slant-range distance, and is thus different for each slant-range position. From
equation 1.25 it is clear that due to the movement of the radar, a chirp has been generated
in azimuth direction as well.

Azimuth resolution can be obtained by calculating the chirp signal bandwidth in the
azimuth direction that can be achieved by multiplying the total aperture length with the
above mentioned chirp rate. Using the relations given by equations 1.4 and 1.8, the band-
width By comes out to be

By = Ky∆Y '
2
ly

(1.26)

From this, the azimuth resolution can be approximated to be

δy =
ly
2

(1.27)

This resolution is much higher than that of a traditional radar having the equivalent di-
mensions.

The sampling frequency in azimuth is known as Pulse Repetition Frequency (fPRF ). To
meet the Nyquist criterion, it should be greater than twice the highest azimuth frequency
and thus the sampling time Tsy should satisfy the following constraint:

Tsy <
1
By

(1.28)

The bin/pixel size for the received data in terms of azimuth distance is given by

δby = vSARTsy (1.29)
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Figure 1.7: Simulated Raw Data in Time Azimuth Domain and its One Dimensional
Spectrum in Azimuth Direction for a Single Point

1.4.3 Example with Simulated Data

Figure 1.7 shows an example of simulated data for a simple point target, as well as its
spectrum in azimuth-frequency time domain. One interesting observation is that the az-
imuth bandwidth increases with time, shown by the trapezium like shape of the spectrum.
This cannot be explained by equation 1.25. In order to explain it, sar(y, t) is also taken
into consideration and equation 1.23 is rewritten using the parabolic approximation:

sa(t, y) ≈ exp
{
−j4πfc

c
(ra +

y2

2ra
) + jπKrt

2

}
exp

{
j4πKr

(ra + y2/2ra)2

c2
− j4πKr

(ra + y2/2ra)t
c

}
(1.30)

By simple observation or taking a double derivative of the above expression with respect to
y and ignoring the term containing c2 in the denominator as it is very small, the modified
azimuth rate is calculated (assuming the azimuth aperture to be small and range migration
to be negligible) as

Kym(t) =
2fc
cra

+
2Kr(t− 2da(y)/c)

cra
− 4Kry

2

c2r2
a

(1.31)

Thus in addition to the rate Ky, there is an extra term that varies with the across-flight
time t. Defining θas(y) ≈ (y − ya)/ra , where θas(.)(4) is called the aspect angle, the
azimuth bandwidth is given as

By(t) ≈
4fcθas(∆Y/2) + 4Kr{θas(∆Y/2)}t

c
(1.32)

or
By(t) ≈

2fr(t)θas(∆Y )
c

(1.33)

(4)Also known as instantaneous squint angle
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Thus, it can be seen that the azimuth chirp rate changes with time. Consequently, it can
be stated that the bandwidth increases as a function of across-flight time, which explains
the trapezium-like shape of the spectrum.

1.5 Introduction to Image Formation

The received data consists of information from the imaged scene spread over a certain
interval. The purpose of image formation is to extract this information by compressing
the data and thus reducing the spread resulting in a synthesized/compressed image. This
process, known as SAR image formation/SAR data processing, will be discussed in the
following subsections.

1.5.1 Focusing a Single Point Response

As discussed in the preceding sections, there are two chirps in the received signal: One in
the range direction and the other in the azimuth direction. These chirps can be compressed
by using one dimensional matched filtering in both directions. However, the presence of
range migration hampers this direct process and involves another step, which consists of
range migration compensation. This is necessary as the received pulses are shifted in
range due to the hyperbolic form of the radar-target distance. Note that this is the price
paid for having a higher resolution, as this effect arises due to the changing radar-target
distance. The received data can be compressed in the range direction without range mi-
gration compensation, however, in order to achieve azimuth compression, this should first
be compensated.

The demodulated received data for a single point at slant-range and azimuth position
of ra and ya, respectively is given as
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sa(t, y) = Et(t− 2da(y)/c)Ey(y − ya)σ(ra, ya)

exp

{
−j4πfc

da(y)
c

+ jπKr

(
t− 2da(y)

c

)2
}

(1.34)

where σ(ra, ya) is the reflectivity describing the electromagnetic properties of the target
(at slant-range and azimuth position of ra and ya, respectively) and Ey(y) is the envelope
in the azimuth direction (due to the antenna beam pattern) defined as Ey(y) = rect( y

∆Y ).
As a first step, range compression is carried out by means of matched filtering in the range
direction as follows:

sad(t, y) =
∫ ∞
−∞

p

(
t− 2da

c

)
p∗(t− u)du = Et(t− 2da(y)/c)Ey(y − ya)σ(ra, ya)

exp

{
−j4πfc

(
ra + y2/2ra

)
c

}
Tpsinc

{
KrTp

(
t−

2
√
r2
a + (y − ya)2

c

)}
(1.35)

In the second step, range migration is compensated using shifts in the range directions.
These shifts change the location of the sinc function in equation 1.35 from

√
r2
a + (y − ya)2

to a fixed position ra resulting in(5)

sad(r, y) = Er(r − ra)Ey(y − ya)σ(ra, ya) exp
{
−j4πfc

(ra + y2/2ra)
c

}
Tpsinc

{
2KrTp
c

(r − ra)
}

(1.36)

where Er(r) = rect( r
cTp

). Finally, azimuth compression is carried out to obtain the corre-
sponding image given by equation 1.37.

i(r, y) =
∫ ∞
−∞

sad(r, y)) exp
{
j2π

fc(y − u)2

cra

}
du = Er(r − ra)Ey(y − ya)σ(ra, ya)

exp
{
−j4πfcra

c

}
Tpsinc

{
2KrTp
c

(r − ra)
}

∆Y sinc{Ky∆Y (y − ya)} (1.37)

This processing chain is summarized in figure 1.9.

1.5.2 Focusing Multiple Points Response

A complex scene can be considered to be made up of a number of targets/point scatterers.
The received signal can be described as the superposition of the signal received from all

(5)In the final synthesized image, point scatterers are represented by their fixed nearest slant-range
position r, hence t is replaced by r and not the time-varying d(y)
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Figure 1.9: Example of Data Processing for a Single Point

these points and is given by the following expression:

s(t, y) =
∑
m,n

Ey(y − yn)σ(rm, yn)p

(
t−

2
√
r2
m + (y − yn)2

c

)
(1.38)

Note that in this case, the process described in the previous section cannot be applied as
range migration changes with scatterer positions, and each trajectory cannot be compen-
sated individually without affecting the others.

The most straightforward and accurate technique to achieve image formation is the ex-
tension of matched filtering in two dimensions [2]. This can be carried out by filtering the
received signal with the transmitted signal for each position. For a point given by position
(ra, ya)(6), this is given as

i(ra, ya) =
∫ ∞
−∞

∫ ∞
−∞

s(t, y)p∗
(
t−

2
√
r2
a + (y − ya)2

c

)
dtdy (1.39)

Thus, this process is a two-dimensional integration, and takes care of all the three pro-
cessing steps described in the preceding section. Note that for a fixed aperture position y,

(6)In this thesis, the position of a point scatterer is given by shortest slant-range position, azimuth
position
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Raw Data Range Compression Integration

Figure 1.10: Example of Data Processing for Multiple Points

the above expression can be rewritten as

i(ra, ya) =
∫ ∞
−∞

Et

(
t−

2
√
r2
a + (y − ya)2

c

)
Ey(y − ya) exp

(
−j4πfc

2
√
r2
a + (y − ya)2

c

)

σ(ra, ya)Tpsinc

{
KrTp

(
t−

2
√
r2
a + (y − ya)2

c

)}
dy (1.40)

that can be recognized as the integral of range-compressed signal along the aperture po-
sitions. Thus, the above expression may be modified as

i(ra, ya) =
∫ ∞
−∞

scd

(
t−

2
√
r2
a + (y − ya)2

c
, y

)
dy (1.41)

where scd
(
t− 2

√
r2a+(y−ya)2

c , y

)
is the range-compressed signal. By inspecting equation

1.41, it can be concluded that image at a certain point can be obtained by summing the
range-compressed data along all the azimuth positions corresponding to that point. This
process is known as the Backprojection algorithm [2] and is a standard time-domain image
formation algorithm. Figure 1.10 shows an example of processing of data received from
four point scatterers. The range compressed data illustrate the problem of range migration
compensation. Even when there is not much difference in the range migration trajectories,
each of them is centered at a different range and azimuth positions, which hampers the
compensation procedure. Note that this image synthesis is exact and straightforward to
implement. It constructs the final image gradually, for each sensor position [6]. Thus,
there is a gradual improvement of resolution that can be useful for certain applications
[6]. However, it suffers from two disadvantages:

• The integration is carried out in the discrete domain: In order to maintain accuracy,
the range compressed signal should be upsampled, which increases the number of
computations.
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Figure 1.11: Block diagram of the Backprojection Algorithm (rm and yn represent the mth

range and nth azimuth bin, respectively)

• The process has to be repeated for every range and azimuth position in the image.
Thus, this process is computationally very intensive.

These disadvantages can be overcome by either dividing the data in subpatches and pro-
cessing them in parallel (backprojection algorithm is suitable for parallel processing [6])
or carrying out the process in frequency domain. These frequency domain image forma-
tion/processing algorithms will be described in the next chapter.

Note
A realistic scene may be modeled as a collection of scatterers having a size comparable to
the wavelength. The reflected field from each cell is the result of a "random walk", and
provided the number of scatterers in each resolution cell is large, has real and imaginary
parts that are independent, zero-mean, identically distributed gaussian variables [26]. This
is called speckle and due to its presence, a SAR image can be considered to be composed
of a random process.
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1.6 Introduction to Polarimetry

An electromagnetic (EM) plane wave emitted by a sensor has time-varying Electric (
−→
E )

and Magnetic (
−→
H ) field components in a plane perpendicular to the direction of propaga-

tion. The two fields are orthogonal to one another, and described by Maxwell’s equations
using dielectric constant (or permittivity)-ε′, permeability-µ′ and conductivity-σ′:

∇2−→E + k2−→E = 0 (1.42)

where k = ωc
√
ε′µ′ is the wavenumber.

∇×
−→
E = jωcµ

′−→H. (1.43)

For a plane wave propagating in the direction
−→
k = kk̂, the values of

−→
E and

−→
H at a position

vector −→r are given as [18]

−→
E (−→r ) = Ê0 exp(j

−→
k · −→r ) (1.44)

−→
H (−→r ) = Ĥ0 exp(j

−→
k · −→r ) (1.45)

with

Ĥ0 =
1
η
k̂ × Ê0 (1.46)

and η =
√
µ′/ε′. Thus, the magnetic field component can be calculated from the electric

field.

Polarization is a property of the EM waves that refers to the locus of the tip of the
electric (or magnetic) field component of the wave "traced out" in a plane perpendicular
to the direction of propagation. The two most common polarization basis are horizontal
(H), and vertical (V) that can be used to create a wave with an arbitrary polarization,
i.e.,

−→
Et(−→r ) = Eth

−→
h + Etv

−→v (1.47)

Due to the backscattering properties of a scatterer, the polarization of the reflected wave
can be different from the polarization of the incident wave and there can be four different
combinations:

• HH - horizontal transmit and horizontal receive.

• VV - vertical transmit and vertical receive.

• VH - horizontal transmit and vertical receive.

• HV - vertical transmit and horizontal receive.
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The first two combinations are known as co-polarized and the last two are known as
cross-polarized channels. The backscattering properties can be completely described by
a scattering matrix, S, which describes the transformation of the incident electrical field
into the backscattered one as follows:(

Erh
Erv

)
=
(
Shh Shv
Svh Svv

)(
Eth
Etv

)
(1.48)

Normally, Shv = Svh, known as reciprocity that means the scattering matrix is symmetrical
and has only 3 independent elements. The scattering properties may also be represented
by a coherency vector using the Pauli spin elements as follows [34]:

kT =
1√
2

 Shh + Svv
Shh − Svv

2Shv

 (1.49)

Each element of this vector represents a particular scattering mechanism:

• Shh + Svv - odd bounce scattering.

• Shh − Svv - even bounce scattering.

• Shv - even bounce with π/4 orientation or random volume scattering.

It is convenient to construct a power-domain representation of the scattering properties,
which is done by forming the product of this vector with itself that results in the covariance
matrix that also fully describes the scattering properties of a target [34].

T = E[kTk∗T ](7) (1.51)

In order to analyze the received data, a number of parameters may be computed for phys-
ical interpretation. One of these parameters is the co-polarized correlation coefficient. It
is the average of the product between the complex amplitude of the HH channel and the
conjugate of the complex amplitude of the VV channel. It is further normalized by the
square root of the product of the powers in the HH and VV channels.

γp =
E[ShhS∗vv]√

E[|Shh|2]E[|Svv|2]
(1.52)

Its magnitude and phase may be useful in classifying the scatterers as odd-bounce, even
bounce, etc. Owing to the random nature of SAR images, and the reason that the correla-
tion cannot be estimated from a single pixel [27], [28], the operation E[.] should be carried
out in a small subpatch/estimation area [27].

(7)

T =
1

2
E

 |Shh|2 + 2<|ShhS∗vv|+ |Svv|2 |Shh|2− 2j=|ShhS∗vv| − |Svv|2 2ShhS∗hv + 2SvvS∗hv

|Shh|2 + 2j=|ShhS∗vv| − |Svv|2 |Shh|2− 2<|ShhS∗vv|+ |Svv|2 2ShhS∗hv − 2SvvS∗hv

2ShvS∗hh + 2ShvS∗vv 2ShvS∗hh + 2ShvS∗vv 4|Shv|2


(1.51)
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Figure 1.12: Interferometric Imaging Geometry

1.7 Introduction to Interferometry

Interferometric SAR (InSAR) is a technique used to calculate heights in an observed scene
by acquiring data from two different sensor incidence angles. This can be carried out in
two ways: Single-pass, which consists of two sensors mounted on the same platform thus
gathering data from two angles in parallel, and dual-pass, which consists of a single sensor
making acquisitions at two different times along two different trajectories. The difference
between the sensor positions in both these cases is known as baseline (b), shown in figure
1.12. The acquired raw data (RD) is processed separately resulting in two focused images
that are called master and slave images.

Considering a scene consisting of a single point at range and azimuth position of ra and
ya, respectively, and having a height ha, the corresponding data are given as:

s1(t, y) = σ(ra, ya)p

(
t−

2
√
r2
a + (y − ya)2

c

)
(1.53)

s2(t, y) = σ(ra, ya)p

(
t−

2
√

(ra −∆ra)2 + (y − ya)2

c

)
(1.54)

The subscripts 1 and 2 represent master and slave configuration, respectively and ∆ra
represents the difference of the location of the point in the master and slave images. This
difference in case of dual-pass is [1]

∆ra = b sin θa (1.55)
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whereas in case of single pass, it is halved [1]. If its value is known, the incidence angle θa
can be calculated using equation 1.55 that may be used for calculation of height according
to

ha = h− ra cos θa (1.56)

∆ra itself can be estimated by measuring the phase difference of the master and slave im-
ages. For demonstrating this, the corresponding focused images are described as follows:

i1(r, y) = σ(ra, ya) exp
{
−j4πfcra

c

}
Tpsinc

{
2KrTp
c

(r − ra)
}

∆Y sinc {Ky∆Y (y − ya)}

(1.57)

i2(r −∆ra, y) = σ(ra, ya) exp
{
−j4πfc(ra −∆ra)

c

}
Tpsinc

{
2KrTp
c

(r − ra + ∆ra)
}

∆Y sinc {Ky∆Y (y − ya)} (1.58)

It is clear that the same point is located at a different location in both the images. In a
complex scene, there is misalignment throughout whole of the master and slave images,
and to rectify this, subpatches in the slave image are shifted such that they are at the same
position compared to their counterparts in the master image. This is a very important step
called coregistration [19], [20] and in order to measure the phase difference correctly, it
should be carried out with sub-pixel precision [1]. After registration, the next step consists
of multiplying the master image by the complex conjugate of the slave image that results
in an interferogram that is written as (the bandwidth is assumed to be infinite and thus
sinc functions are replaced by dirac pulses).

i12(ra, ya) = i1(ra, ya)i∗2(ra −∆ra, ya) (1.59)

The third step is to measure the phase of the product that is given as follows:

φw(ra, ya) = arg i12(ra, ya) = 4π
fc∆ra
c

(1.60)

This phase difference is called wrapped phase as it is in the range of −π to π, while the
actual phase difference may be beyond this limit. Phase unwrapping techniques [1] may be
used to recover the complete phase. However, before this step, a phase term correspond-
ing to the flat earth is removed by multiplying equation 1.59 by exp(j4π fc∆rm

c )|hm=0 that
facilitates the phase unwrapping process. The unwrapped phase φ(ra, ya) may be used to
calculate the range difference ∆ra, and hence the height using equations 1.55 and 1.56.
Figure 1.13 shows the ideal interferometric "fringes", as well as the phase for an azimuth
position, before and after flat earth phase removal.

A measure for the quality of the interferogram is the correlation between the two images:
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Figure 1.13: Interferometric Phase (before and after Flat Earth Phase Removal)
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γi(rm, yn) =
E[i1(rm, yn)i∗2(rm −∆rm −∆rr, yn)]√

E[|i1(rm, yn)|2]E[|i2(rm, yn)|2]
(1.61)

∆rr represents the misregistration error in the range direction. The amplitude of γi(., .)
is between 0 and 1, where 0 means complete decorrelation (rendering any information
retrieval impossible) and 1 means complete correlation, and its phase gives the interfero-
metric phase. As mentioned previously, E[.] should be carried out in a small subpatch.





Chapter 2

Frequency Domain SAR Image
Formation

2.1 Outline of the Chapter

As described in the previous chapter, time domain processing represents the exact form of
SAR image formation. However, it involves a very high calculation time and an alternative
may be to perform the processing in the frequency (1) domain, which is described in this
chapter. As a first step, expressions for the received SAR signal in different domains are
presented, followed by an introduction to the principle of stationary phase. The Omega-k
and the Chirp Scaling processing algorithms are also described alongwith examples using
simulated data for a few points.

2.2 Introduction to Frequency Domain Processing

For the sake of convenience, the following substitutions will be used:

• Carrier Wavenumber
kc = wc

c , where wc = 2πfc.

• Transmitted Wavenumber
k = kc + ∆k, or ∆k = k − kc where ∆k = ∆w

c and ∆w = [−πBt,+πBt]. Bt is the
total bandwidth of the transmitted chirp signal in the across-flight direction.

• Azimuth Wavenumber
ky = [−2k sin θas(∆Y/2),+2k sin θas(∆Y/2)], where ∆Y is the aperture length/azimuth
swath and θas(∆Y/2) is the maximum aspect angle, which is equivalent to half of
the azimuth aperture angle θy.

The expressions in the transmitted wavenumber-azimuth/-azimuth wavenumber domain
and 2D wavenumber domain for the received RD calculated using the Principle of Station-
ary Phase (POSP) (details are given in Appendix A) are given as

(1)The terms frequency and wavenumber are used interchangeably

37
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S(k, y) = C1P (∆k)
∑
m,n

σ(rm, yn) exp(−j2k
√
r2
m + (y − yn)2) (2.1)

where P (∆k) is given by the Fast Fourier Transform (FFT) of the transmitted chirp signal
in the transmitted time direction and is described as

P (∆k) = exp
(
−j∆k2c2

4πKr

)
(2.2)

S(k, ky) = C2P (∆k)
∑
m,n

σ(rm, yn) exp
(
−jrm

√
4k2 − k2

y − jynky
)

(2.3)

S(t, ky) = C3

∑
m,n

σ(rm, yn) exp

{
jπK(rm, ky)

(
t− 2d(rm, ky)

c

)2
}

exp{−j2kcrma(ky)}

exp(−jkyyn) (2.4)

where

d(rm, ky) = rm(1 + b(ky)) (2.5)

is the radar-target distance in the azimuth-frequency domain and

K(rm, ky) =
Kr

1− {k2
yKrπrm)/(k3

ca
3(ky)c2}

(2.6)

with b(ky) = 1/a(ky) − 1 and a2(ky) = 1 − (ky/2kc)2. C1, C2 and C3 are all constant
terms. Note that all these Fourier transforms are summation terms of n = nrny unique
exponential functions, where nr and ny are the number of scatterer position in slant-range
and azimuth directions, respectively. In order to process the data, a matched filter for
each point in the frequency domain can be generated, which is the complex conjugate of
the each of the above equations. The compressed image for each point can be obtained by
multiplying the RD with a matched filter and taking an Inverse Fast Fourier Transform
(IFFT-1D or 2D, depending on the equation) of the matched filtering operation result. In
the following, image formation in different domains for every point in the imaged scene,
using equations 2.1, 2.3 and 2.4 is discussed:

For the first equation, a matched filter has to be generated for each and every point
consisting of different range and/or azimuth positions, e.g., a matched filter needed to
focus a point at a position of ra, ya is

Fa(k, y) = P (∆k)∗ exp(j2k
√
r2
a + (y − ya)2) (2.7)

The computational complexity for this equation can be decreased by dividing the RD in
subpatches and generating a matched filter only for the center position of this subpatch.
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The same applies to the remaining two equations. However, they show the presence of
a linear phase in azimuth direction, which reveals an important characteristic useful for
image formation: The matched filter will vary only with range position, as the linear phase
in azimuth position enables focusing by means of a simple IFFT, thus increasing the com-
putational efficiency. Equation 2.4 makes use of certain approximations, thus equation 2.3
will be considered further as it is more accurate. The matched filter for a position (rm, yn)
is given as

Fm(k, ky) = P (∆k)∗ exp
(
jrm

√
4k2 − k2

y + jynky

)
(2.8)

Equation 2.8 has to be changed for every range position in the image. As stated above,
a subpatch approach can be used for processing [10]. It consists of dividing the RD in
subpatches, and applying the matched filter for the center of each subpatch. Note that
this method is approximate as the matched filter corresponds only to the center range
position of each subpatch. A range mismatch of δr in the matched filter will lead to a
phase error in the final processed image. In order to find an approximate limit of the size
of the subpatch in the range direction, it is necessary to have an expression for the phase
error that can be calculated by approximating the first exponential part in equation 2.8
as follows:

exp
(
jrm

√
4k2 − k2

y

)
' exp

{
j2krm −

(
k2
y

4kc

)
rm

}
(2.9)

The first part of the above exponential term will generate simply a linear phase in case of
a mismatch, leading to a position shift, whereas the second part will generate a quadratic
phase error in case of a range mismatch of δr leading to defocusing of the compressed
image. A limit on the maximum allowed range mismatch (∆r) can be obtained by using
the following relation:

k2
y

4kc
|∆r| � 1 (2.10)

|∆r| � 8πfc/c
(2πfcθy/c)2

|∆r| � 8δy2

λcπ
(2.11)

and assuming kymax ≈ 2kc sin(θy/2) and sin(θy/2) ≈ θy/2.

The subpatch size is 2|∆r| and decreases with an increase in azimuth resolution (δy)
and carrier wavelength. The condition given by equation 2.10 is very restrictive and can
be relaxed in order to gain computational efficiency at the expense of increased phase error.

In the following subsections, more accurate frequency domain processing algorithms will
be presented, along with examples using the scene layout for nine point scatterers as shown
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Figure 2.1: Scene Layout

in figure 2.1. Figure 2.2 shows the corresponding RD (generated using a time-domain sim-
ulator) that will be used to present the processing results.

2.3 The Omega-k Algorithm

The Omega-k algorithm (OKA) is the most exact form of frequency domain processing
algorithms. It is carried out in the 2D wavenumber domain and allows the processing of
very large azimuth aperture data [3], [5]. It is also known as wavefront reconstruction
algorithm [2] or range migration algorithm [6]. [23] presents an approximate form of this
algorithm that uses a parabolic approximation [24]. This approach can be derived using
directly equation 1.4 or making an analogy with seismic signal processing (considering the
exploding reflector’s model as in [5]).

As a first step, the received RD is converted into 2D frequency domain(2). A matched
filter is generated for a reference position (rref , yref ), which is given as follows:

Fref (k, ky) = P (∆k)∗ exp
(
jrref

√
4k2 − k2

y + jyrefky

)
(3) (2.12)

The reference position is normally chosen to be at the center of the scene and thus yref = 0.
This matched filter is multiplied with the 2D FT of the received data that focuses the points
correctly for a reference range (on the left hand side). All the other points are partially
focused and this defocusing increases with the distance from the reference range towards
the right hand direction. The result of this operation is shown in range azimuth domain

(2)See subsection A.2.1
(3)In case of range compressed data, Fref (k, ky) = exp

(
jrref

√
4k2 − k2

y + jyrefky

)
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Figure 2.2: Simulated Raw Data used for Processing

Figure 2.3: Data after Filtering matched to a Reference Position
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Figure 2.4: Stolt Interpolation

in figure 2.3 and given in equation 2.13.

S1(k, ky) = S(k, ky)Fref (k, ky)

= C2|P (∆k)|2
∑
m,n

σ(rm, yn) exp
(
−j
√

4k2 − k2
y(rm − rref )− jkyyn

)
(2.13)

It can be seen that point scatterers at the reference range are well focused, while for the
other range positions, defocusing is evident. The next step is to interpolate S1(k, ky) in
the transmitted wavenumber direction, in order to focus the remaining points. This step
is known as Stolt interpolation and converts the signal into a linear phase grating for
scatterers at all ranges [6]. It is described as

kr =
√

4k2 − k2
y (2.14)
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Figure 2.5: Focused Image

Thus, the signal is interpolated from unequally spaced
√

4k2 − k2
y values to equally spaced

kr values as demonstrated in figure 2.4 resulting in

S2(kr, ky) = C2|P (∆k)|2
∑
m,n

σ(rm, yn) exp (−jkr(rm − rref )− jkyyn) (2.15)

The data are non uniformly arranged in the horizontal direction as shown by the semi-
circles and after the interpolation, they are arranged on the uniformly spaced vertical
lines. The interpolated kr values can be written as kr = 2kc+2∆kr and a 2D IFT (Inverse
Fourier Transform) gives the compressed SAR image that is shown in figure 2.5.

i(r, y) = C4

∑
m,n

σ(rm, yn) exp{−j2kc(rm−rref )}sinc
{

2Br
(r − rm + rref )

c

}
sinc{By(y−yn)}

(2.16)

where C4 is a constant. The process is summarized by the block diagram shown in figure
2.6. Note that the interpolation (called Stolt interpolation) is a very important step that
impacts the quality of the processed image. Moreover, for a correct inclusion of the inter-
ferometric phase in the image, the data should be multiplied by exp{−j2kcrref}.

There is another version of OKA that has been borrowed from seismic processing. It
can be understood by considering the phenomenon of transmission and reception of an
electromagnetic pulse, which is emitted from the radar, travels with a speed c to a scat-
terer and is reflected back. The same scenario can also be interpreted as the "explosion" of
the scatterer after which the pulse travels from the exploded scatterer to the radar, travel-
ing only one-way distance from the scatterer to the radar with half the speed c/2. This is
known as the exploding reflectors model. It is widely used in seismic migration for remov-
ing distortions from reflection records by moving events to their actual spatial locations.
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Figure 2.8: SAR Acquisition Geometry as a Network of Antennas

Considering the exploding reflectors model, the system can be considered as a network of
antennas, which are situated along the flight path at a distance of ∆y = vSAR/fPRF .

However, there are differences between this model and the actual situation. The first
difference is that sensor motion during the pulse time of the flight has been neglected, i.e.,
it has been assumed that there is no movement during the transmission and reception. In
reality, the transmitter travels a short distance during the pulse travel time and it also
moves during the transmission and reception. The second difference is that the received
signal amplitude in the case of the model is proportional to 1/r due to one-way propaga-
tion path, while in the actual case, it is proportional to 1/r2, where r is the sensor-target
distance.

In the following, it is assumed that the RD is already compressed in the time direction.
Its expression (assuming r = 0 at the sensor)is given as follows:

sc(t, y) =
1

(2π)2

∫ ∫
Sc(∆ω, ky) exp{j(∆ωt+ kyy)}d∆ωdt (2.17)

where Sc(∆ω, ky) is the 2D FT of the range compressed signal and ∆ω is given as:

∆ω =
c

2

√
k2
r + k2

y (2.18)

In order to find the source values, we have to backpropagate the received signal to its loca-
tion. This can be achieved by using phase shifts. For example, in order to backpropagate
a signal to range r0, the required phase shift (φ) is given by
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φ = krr0 =
2ω
c

√
1−

k2
y

(2∆ω)2
r0 (2.19)

With the help of this expression, the signal at range r can be expressed as

Sc(∆w, ky)r = Sc(∆w, ky) exp(jkrr) (2.20)

The corresponding signal in the time-azimuth domain for time t = −t0 (The origin of time
is taken as the time when the data collection starts, therefore, the time for the source
explosion can be taken as the time corresponding to the minimum distance of the sensor
from the scene) is given by

s(t = −t0, y)r =
1

(2π)2

∫
d(∆ω)

∫
Sc(∆w, ky) exp{j(−∆ωt0 + kyy)} exp{jkrr}dky

(2.21)

The above equation can be given the form of a 2D FT by the following change of variables:

∆ω =
c

2

√
(2kc + 2∆kr)2 + k2

y (2.22)

that leads to

s(t = −t0, y)r =
1

(2π)2

∫
d(∆kr)

∫
Sc

( c
2

√
(2kc + 2∆kr)2 + k2

y, ky

) c|2kc + 2∆kr|
(2kc + 2∆kr)2 + k2

y

exp
{
j
(
− c

2

√
(2kc + 2∆kr)2 + k2

yt0

)}
exp{jkrr + jkyy}dky

(2.23)

As a final step, the origin of the variable r is changed to the minimum sensor-target dis-
tance r0 by means of the substitution r′ = r − r0 , because it is useless to search for
scatterers at a distance smaller than that due to their absence. The final expression is
given as follows:

s(t = −t0, y)r′ =
exp(j2kcr′)

(2π)2

∫
d(∆kr)

∫
Sc

( c
2

√
(2kc + 2∆kr)2 + k2

y, ky

)
C(∆kr, ky)

exp
{
j(−ct0

2

√
(2kc + 2∆kr)2 + k2

y − (2kc + 2∆kr)r0)
}

exp{jkrr′ + jkyy}dky
(2.24)

where c(∆kr, ky) = c|2kc+2∆kr|
(2kc+2∆kr)2+k2

y
. The main steps of this process are shown in figure 2.9.

Even though there are slight differences in processing steps for both these forms, they are
shown to be more or less equivalent [24].
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Figure 2.9: Block Diagram of the Alternative Form of Omega-k Algorithm

2.4 The Chirp Scaling Algorithm

Range Cell Migration (RCM) Compensation is an important and a complicated step in
SAR image formation as the migration effect varies with the range position of each scat-
terer. If it can be equalized for all the possible range values, a single shift in the range
direction is enough to compensate it. The Chirp Scaling algorithm (CSA) [4] achieves this
by multiplying the SAR data in the azimuth-frequency time domain by a quadratic phase
function (a chirp function), which changes the RCM to that of a reference range, thus
equalizing the range cell migration.

The basic idea of CSA is curvature equalization, so that all of the RCM trajectories
have the same curvature as that of a scatterer at a reference range. As this curvature
is known at the reference range, it can be compensated by a phase multiplication. This
curvature equalization is carried out in azimuth wavenumber time domain as, in this do-
main, range curvature depends only on the range position of the individual scatterers and
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Figure 2.10: Range Migration Trajectory in Time Azimuth and Time Azimuth-Frequency
Domains

is centered around the same frequency for different azimuth positions. This is elaborated
in figure 2.10, where four RCM trajectories for scatterers at two different range positions
are shown. In the time azimuth domain, they are centered at different positions, however,
in 1D frequency domain, the trajectories of the scatterers at the same range position are
overlapping, irrespective of their azimuth positions.

RCM for different nearest slant-range positions is depicted in figure 2.11. The solid lines
show the actual range migration for three different range positions while the dotted lines
show the modified range migration after curvature equalization. In order to equalize the
trajectory curvature, it should be equal to rref (rm, fc) at all the range positions.

This trajectory equalization can be achieved by considering the multiplication of two chirp
signals of different chirp rates and different phase centers as described by equations 2.25
and 2.26. Note that the two chirps have phase centers of t1 and t2, respectively.

chirp1 = exp{jπk(t− t1)2} (2.25)

chirp2 = exp{jπak(t− t2)2} (2.26)

chirp1chirp2 = exp{jπk(t− t1)2} exp{jπak(t− t2)2}

= exp
{
jπk(1 + a)(t− t1 + at2

1 + a
)2

}
exp

{
jπk

(1 + a)(t21 + at22)− (t1 + at2)2

1 + a

}
(2.27)

Thus it can be seen from the first term in equation 2.27 that the chirp rate and the phase
center of the resulting signal have been modified to k(1 + a) and t1+at2

1+a , respectively. The
second term is a residual phase that can be eliminated by simple multiplication. This
concept can be used to equalize RCM by using a chirp signal to scale the signal in the
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Figure 2.11: Equalization of Range Migration

slant-range direction.

Taking into account figure 2.11, it can be seen that the total trajectory after RCM com-
pensation is given as r + rrefb(ky). Using this concept, the phase multiplier required for
trajectory equalization at a range position r1 can be calculated as

t1 + at2
1 + a

=
2
c
{r1 + rrefb(ky)} (2.28)

Substituting t1 = 2
c {r1 + r1b(ky)} and after some simple manipulations, the following ex-

pression for t2 can be obtained:

t2 =
2
c

{
rref

b(ky)
a

+ rrefb(ky) + r1 − r1
b(ky)
a

}
(2.29)

By choosing a = b(ky), the above expression can be simplified to

t2 =
2
c
{rref + rrefb(ky)} (2.30)

Using the above value, making use of the assumption K(r, ky) ≈ K(rref , ky), the required
phase multiplier to achieve trajectory equalization for a reference range is given by

Fsc(t, ky) = exp

{
−jπK(rref , ky)b(ky)

(
t−

2d(rref , ky)
c

)2
}

(2.31)

Multiplying S(t, ky) in equation 2.4 by this function causes a time and azimuth-frequency
dependent deformation of each range chirp phase structure so that all the signals follow
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Figure 2.12: Data after Range Migration Compensation and Range Compression

the same reference trajectory. The next step is to take a FT in the range direction. The
resulting expression in 2D frequency domain is

S1(k, ky) = C5

∑
m,n

σ(rm, yn) exp{−j2kcrma(ky)− jφ(rm, ky)}

exp
{
j
c2b(rm, ky)∆k2

4πK(rref , ky)

}
exp [−j2∆k {rm + rrefb(ky)}] (2.32)

where

φ(r, ky) =
4π
c2
K(rref , ky)(1− a(ky)

(
r − rref
a(ky)

)2

(2.33)

The third exponential term in equation 2.32 represents the range cell migration. It can
be seen that due to chirp scaling, the curvature is rrefb(ky), which has the same value for
all ranges. Thus RCM can be compensated by applying a bulk shift to the scaled signal
using the function given in equation 2.34.

Frcm(k, ky) = exp{j2∆krrefb(ky)} (2.34)

The second exponential term in equation 2.32 represents the effective range chirp modu-
lation with a modified chirp rate of K(rref )

by
. The range compression can be implemented

by multiplying 2.32 by the function given by

Frc(k, ky) = exp
{
−j c2b(ky)∆k2

4πK(rref , ky)

}
(2.35)

An IFT (in the range direction as after RCM removal and range compression, time can be
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Figure 2.13: Focused Image

substituted by range positions) of the range migration compensated and range compressed
data is shown in figure 2.12 and given as

S2(r, ky) = C6

∑
m,n

σ(rm, yn) exp(−j2kcrma(ky)− jφ(rm, ky))sinc
{

2Br
(r − rm)

c

}
(2.36)

The first exponential term represents the azimuth chirp and the residual phase arising
due to the scaling operation. The term required for azimuth compression and the phase
correction is given as

Facpc(r, ky) = exp[+j2kcrm{a(ky)− 1)}+ jφ(rm, ky)] (2.37)

There is an extra term exp(−j2kcrm) in equation 2.37, needed because this phase term
has been canceled during the processing operation [3]. Its "reinsertion" may be necessary
for interferometric applications. The use of IFT in azimuth direction gives the required
image shown in figure 2.13.

i(r, y) = C7

∑
m,n

exp(−j2kcrm)σ(rm, yn)sinc
{

2Br
r − rm
c

}
sinc{By(y − yn)} (2.38)

The whole process is summarized by the block diagram given in figure 2.14. Note that
the CSA requires the presence of chirp in the time direction, i.e., data without any range
compression.

CSA is faster than OKA as the interpolation operation is carried out by exponential
multiplications. However, this is at the cost of two approximations:
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• Taylor series approximation in order to find the expression of the received signal in
time azimuth-frequency domain. However, this approximation does not introduce
considerable phase error in case of low resolutions [6].

• The second approximation is ignoring the dependence of range r on K(r, ky) for
the scaling operation as well as range compression. The use of this approximation
for range compression is one of the major sources of phase error. This phase error
remains small if the scene size is small, as in this case, there is not a lot of variation of
range values from the selected reference range. However, in the case of a large scene,
this approximation is a major source of phase error and has to be compensated by
using the Extended Chirp Scaling method [25].

Comments

The 2D spectrum for RD and for the focused image (produced using OKA or CSA) is
shown in figure 2.15. It can be seen that the 2D spectrum is shifted in the range frequency
direction. In order to take this shifting into account correctly avoiding any wrap around er-
rors, the RD must be upsampled in the range direction. A typical upsampling factor is 1.1.

This shift is necessary in order to focus all the points in a scene. If there were a sin-
gle scatterer in a scene, RD could have been focused using a matched filter for that point
without any interpolation. In OKA, this shift is caused by Stolt interpolation given by
equation 2.14, whereas, in CSA, this shift is approximated by a linear scaling and shift
operation given by equations 2.31 and 2.37 [6].
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Figure 2.14: Block Diagram of the Chirp Scaling Algorithm

Figure 2.15: 2D Spectrum, before and after Interpolation





Chapter 3

SAR Raw Data Generation for Ideal
Sensor Trajectories

3.1 Outline of the Chapter

This chapter concerns SAR RD simulation corresponding to ideal sensor trajectories, i.e.,
having no deviations from a straight path, for a scene containing single or multiple point
scatterers. Two cases are considered: Static and moving points. In both cases, time
domain simulation is described followed by the proposed efficient simulation schemes,
that consist of a partial summation or 2D frequency domain multiplication, followed by
interpolation. Different examples are presented, that compare the results of the proposed
schemes with those of the reference time domain simulation. Analysis are also made to
determine the computational complexity and accuracy of the proposed schemes, in cases
where approximations are used.

3.2 Static Point Scatterers

3.2.1 Time Domain Raw Data Simulation

A scene can be divided into cells comprising a finite number of scatterers whose properties
are given by an electromagnetic model [18] and described in a reflectivity map. SAR RD
simulation can be carried out in a straightforward manner by using this reflectivity map
and considering the following equation(1):

s(t, y) =
∑
m,n

σ(rm, yn)p

(
t−

2
√
r2
m + (y − yn)2

c

)
(3.1)

In words, the above equation can be described as the coherent summation of the trans-
mitted chirp pulse delayed by the time corresponding to the position of each scatterer in
a scene. The amplitude and phase of the scatterer are given by σ(rm, yn) and multiplied
by each pulse. This process is carried out for all the scatterers in the scene and for all the
along-flight positions. In literature, this type of simulator has been presented by [29].

(1)Ignoring multipath effects

55



56 SAR Raw Data Generation for Ideal Sensor Trajectories

Table 3.1: Simulation Parameters (Stripmap SAR without any Squint)

Carrier Frequency 1.3 GHz Center Slant Range 2611 m

Bandwidth 100 MHz Sensor Velocity 100 ms−1

Azimuth Aperture 4◦ Sensor Height 2000 m

Scene Size (Ground Range) 400 m Pulse Repetition Frequency 200 Hz

Scene Size (Azimuth) 400 m Pulse Duration 5 µs

This simulation can be used for a few point scatterers as it is not difficult to deduce
that it becomes computationally complex for a realistic scene consisting of a large number
of scatterers. In order to quantify this complexity, a scene comprising of nr and ny pixels
in the range and azimuth directions, respectively, is considered. From equation 3.1, it can
be seen that RD computation consists of nrny summations of the transmitted pulses for
one scatterer over all the aperture length. These pulses consist of nt and na pixels in the
time and azimuth directions, respectively, thus giving a computational complexity of ntna
per scatterer, whence the total number of multiplications is given by nrnyntna. The block
diagram of this time domain simulator is shown by figure 3.1.

In the next subsection, efficient frequency domain simulation schemes are described for
a scene consisting of multiple point scatterers imaged with an ideal trajectory, i.e., having
no platform deviations. Examples are also given by comparing the phases of RD generated
by the proposed simulation schemes, and the time domain simulator ([31] uses the quality
of final images for comparison, which can also be considered). The simulated RD is judged
to be accurate enough, if this phase difference is less than π/4 radians (a coarse criterion
based on the discussion in [3], [6]). The simulation parameters are shown in table 3.1.

3.2.2 Wavenumber Domain Raw Data Simulation

In order to carry out simulation in the wavenumber/frequency domain, the equations for
RD in different wavenumber domains are recalled ignoring constant terms as well as range
and azimuth envelopes:

S(k, y) = P (∆k)
∑
m,n

σ(rm, yn) exp
{
−j2k

√
r2
m + (y − yn)2

}
(3.2)

S(k, ky) = P (∆k)
∑
m,n

σ(rm, yn) exp
(
−j
√

4k2 − k2
yrm − jkyyn

)
(3.3)

S(t, ky) =
∑
m,n

σ(rm, yn) exp

{
jπK(rm, ky)

(
t− 2d(rm, ky)

c

)2
}

exp{−j2kcrma(ky)}

exp(−jkyyn) (3.4)
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Figure 3.1: Block Diagram of the Time Domain Simulator (rm and yn represent the mth

range and nth azimuth bin, respectively)

Equation 3.2 shows that in the transmitted wavenumber-azimuth domain, the RD genera-
tion consists of summation of nrny exponential terms. In any realistic configuration, there
is no particular computational efficiency gain as compared to the time domain simulation.

Equations 3.3 and 3.4 have a similar feature related to the presence of an exponential
term in the azimuth direction. The latter equation involves approximations, and hence it
will no longer be considered.

3.2.2.1 Simulation with Partial Summation

The exponential term in equation 3.3 can be manipulated so that the summation process
has to be carried out only for range positions. The summation process for all the azimuth
positions at each range position can be replaced by a convolution operation that can be
done efficiently using FFTs. This approach has been modified by [32], [33] for RD simula-
tion in case of non-linear trajectories. [30], [31] also uses an approach of partial summation
called a "hybrid" approach for spotlight SAR RD simulation. The formulation for this
type of simulation is described by the next expressions.

The summation process in equation 3.3 can be rewritten by dividing the exponential in
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two parts, i.e., a range position dependant part and an azimuth position dependant part.

S(k, ky) = P (∆k)
∑
m

exp(−j
√

4k2 − k2
yrm)

∑
n

σ(rm, yn)δ(r − rm) exp(−jkyyn) (3.5)

where δ(.) represents a Dirac pulse. The reflectivity map or an ideal target function [2]
can be considered as

σ(r, y) =
∑
m,n

σ(rm, yn)δ(r − rm, y − yn) (3.6)

For a single range position rm, equation 3.6 may be rewritten in azimuth wavenumber
domain as

Γ(rm, ky) =
∑
n

σ(rm, yn) exp(−jkyyn)δ(r − rm) (3.7)

where Γ(rm, ky) is the 1D FT of the reflectivity map in azimuth direction. Thus equation
3.5 becomes

S(k, ky) = P (∆k)
∑
m

exp
(
−j
√

4k2 − k2
yrm

)
Γ(rm, ky) (3.8)

It is evident that ny summations (carried out by the second summation term in equation
3.5) have been replaced by an FFT resulting in computational savings. Figure 3.2 shows
the block diagram for this simulation scheme. Its computational complexity(2) can be
calculated by considering its main steps:

• 1D FFT of the reflectivity map for a range position rm consisting of nylog2(ny)
computations.

• Multiplication by P (∆k) exp
(
−j
√

4k2 − k2
yrm

)
leading to nrny computations.

• Summation for all the range positions nr giving a total number of nr{nrny+ny log2(ny)}
computations

• A 2D IFFT of the result of the summation taking nrny log2(nrny) operations.

The approximate number of total multiplication operations is given by n2
rny, instead of

nrnyntna for a time domain simulator [33]. Since nt is usually the same size or even
greater than nr, it is straightforward to observe that the computational savings are of the
order of na. One point that should not be ignored is to consider the azimuth bandwidth
to be limited as ky = [−2k sin θas(∆Y/2),+2k sin θas(∆Y/2)]. This can be taken into ac-
count easily by multiplying exp

(
−j
√

4k2 − k2
yrm

)
with an envelope function in the 2D

(2)Unless mentioned otherwise, the computations needed for the reflectivity map calculations are not
considered, as this step is common for both time and frequency domain RD simulation



3.2 Static Point Scatterers 59

Reflectivity Map
(rm, y)

Azimuth FFTAzimuth FFT

rm dependent 
Phase Function

2D IFFT2D IFFT

For each rmFor each rm

Raw Data

Figure 3.2: Block Diagram of the Partial Summation Simulator (rm represents the mth

range bin)

wavenumber domain that is given as

fe(k, ky) = rect
(

ky
4k sin(θy/2)

)
(3.9)

for kc − πBt/c ≤ k ≤ kc + πBt/c. It has the form of a trapezium due to the transmitted
wavenumber varying nature of the azimuth wavenumber. In order to compare the accuracy
of the simulation, RD is generated for a point at the edge of the scene in range and azimuth
by this method and the time domain simulator according to the parameters given in the
preceding table. The resulting phase difference between the two RDs in the time and
azimuth directions for selected bins are shown in figures 3.3 and 3.4. It can be seen that
the error in time direction is very small, as an exact expression for the RD in the 2D
wavenumber domain has been used. In the azimuth direction, the phase error is larger as
the POSP is less exact at low TBP, which in this case is about 100. The phase error in
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Figure 3.3: Phase Error in Time Direction

the azimuth direction for a higher aperture angle of 10◦, and thus a higher TBP is shown
in figure 3.5 that is overall much smaller (excluding the edges) than that in figure 3.4.

3.2.2.2 2D Wavenumber Domain Simulation

The above simulation improves the computational efficiency due to the use of 1D FFTs. If
the summation operation can be further changed into a 2D FT formulation, the efficiency
will be improved even further. This can be carried out by writing equation 3.3 as

S(k, ky) = Sref (k, ky)∆S(k, ky) (3.10)

where

Sref (k, ky) = P (∆k) exp(−j
√

4k2 − k2
yrref ) (3.11)

is a reference function and

∆S(k, ky) =
∑
m,n

σ(rm, yn) exp{−j
√

4k2 − k2
y(rm − rref )− jkyyn} (3.12)

yref is assumed to be zero. By means of a change of variables, or Stolt interpolation
described in the previous chapter, the preceding expression can be written as

∆S(kr, ky) =
∑
m,n

σ(rm, yn) exp{−jkr(rm − rref )− jkyyn} (3.13)

that can be seen as a 2D FT of the reflectivity map (equation 3.6), multiplied by extra
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Figure 3.4: Phase Error in Azimuth Direction
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Figure 3.5: Phase Error in Azimuth Direction (10◦ Aperture)
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term of exp{j2kcrref} and the origin in the range axis shifted to the reference range shown
below.

Γ(kr, ky) =
∑
m,n

exp{−j2kc(rm− rref )}σ(rm, yn) exp{−j2∆kr(rm− rref )− jkyyn} (3.14)

Thus, RD simulation can be made more efficient by taking 2D FT of this modified reflectiv-
ity map, then interpolating it so that it is non-linearly sampled in the range wavenumber
domain. This interpolation can also be seen as inverse Stolt interpolation. The resulting
expression is multiplied with a reference function to generate RD(3) in 2D wavenumber
domain as shown in equation 3.15.

S(k, ky) = Sref (k, ky){Γ(kr, ky)}kr→k (3.15)

As mentioned earlier, the bandlimiting effect of a SAR system should also be taken into
account, by using an envelope in the 2D frequency domain. This is equivalent to mul-
tiplying equation 3.15 with the 2D FT of a reference image at the reference range and
azimuth positions (this reference image can be generated either in the frequency domain
by directly using equation 2.13 or in the time domain using a time domain simulator fol-
lowed by processing with OKA) ,i.e.,

Γ′(kr, ky) = Γ(kr, ky)S2(kr, ky)|rm=rref ,yn=yref =0 (3.16)

where S2(kr, ky) given by equation 2.15, is the 2D FT of an image at positions (rref , yref ).
In fact this process(4) is more convenient and accurate as it already contains the effects
of processing,and resembling the actual physical phenomenon of band-limiting in the time
azimuth distance domain. Comparing equations 2.13 and 3.15, it can be seen that equation
3.15 actually describes Inverse Omega-k algorithm (IOKA), that leads to some comments:
SAR image formation process performs compression of RD giving an image, and thus
their inversion can generate RD from this image [86],[87] and [88]. [35], [36] present a
space borne RD generator also based on this reasoning. However, a simulator’s input is
a reflectivity map, which cannot be used directly for RD generation by the inverse image
formation algorithms. Bandlimiting effects have to be included in this reflectivity map and
the process may be called phase inclusion (actually it is equivalent to the conversion of the
reflectivity map to an image), carried out by equation 3.16. Moreover, this process gives
the option of generating SAR images from a reflectivity map (besides RD simulation), that
may be useful for certain applications.

The relationship between a reflectivity map and an image can also be seen by rewrit-
ing equation 2.38 as (ignoring the constant term)

i(r, y) = exp(−j2kcr)σ(r, y)⊗r sinc
{

2Br
r

c

}
⊗y sinc{Byy} (3.17)

that is a convolution of the reflectivity map with the bandlimiting factors given by the

(3)See subsection A.2.1
(4)Γ′(kr, ky) should be used in place of Γ(kr, ky) in equation 3.15
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two sinc functions. Equation 3.17 is accurate as long as By is assumed to be constant for
all the transmitted wavenumbers, otherwise, there is no equivalent convenient form in the
distance domain. Due to this reason, it is not preferable to generate an expression for the
reference image using this time domain representation.

This simulation scheme is shown in figure 3.6. Its computational complexity can be cal-
culated by considering the steps involved in the above process:

• 2D FFT of the reflectivity map, the image and their multiplications consisting of
2nrny log2(nrny) + nrny computations.

• Interpolation in the 2D frequency domain requiring 2(2Mker − 1)nrny operations,
where Mker is the length of a sinc interpolation kernel [3].

• Multiplication by Sref (k, ky) that involves nrny operations.

• A 2D IFFT of the result taking nrny log2(nrny) operations.

The total number of multiplications involved is given as nrny(3 log2(nrny) + 2(2Mker −
1) + 2) giving a computational gain as compared to the time domain RD and partial
summation approach. Examples are shown for the phase errors for a point at the center of
the imaged scene (figures 3.7 and 3.8), as well as for a point at the edge of the scene (figures
3.9 and 3.10). It can be observed that although the phase errors are acceptable in both
time and azimuth directions, for the former, the error increases at the edges compared to
figure 3.3. This is mainly due to the phase inclusion process, followed by reference function
multiplication (Sref (k, ky)). However, in azimuth direction, the error is smaller compared
to figures 3.4 and 3.5, as, thanks to the phase inclusion operation, the effects of processing
have been included (besides the bandlimiting operation), and IOKA simply reverses these
effects. If this bandlimiting operation is carried out by an envelope (equation 3.9), some
extra error may arise due to IOKA.

3.2.2.3 Approximate 2D Wavenumber Domain Simulation

Inverse Chirp Scaling algorithm (ICSA) may also be used for RD generation. [37] mentions
the use of the scaling operation to replace the interpolation stage as it can be much faster.
However, this operation requires a change in the whole formulation, and it is not possible
to replace only the interpolation stage with a scaling process. Figure 3.11 shows the
block diagram for this process, which consists of addition of range migration, as well as
addition of range and azimuth chirps. Its computational complexity can be calculated by
considering the steps involved in the above process:

• 2D FFT of the reflectivity map, the reference image, and their multiplication con-
sisting of 2nrny log2(nrny) + nrny computations.

• IFFT in the range direction, and azimuth decompression taking nrny log2(nr)+nrny
computations.
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Figure 3.8: Phase Error in Azimuth Direction (Center Point)
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Figure 3.9: Phase Error in Time Direction (Edge Point)
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Figure 3.10: Phase Error in Azimuth Direction (Edge Point)
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• Range FFT and range decompression taking nrny log2(nr) + nrny computations.

• Time IFFT, followed by inverse scaling operation and finally azimuth IFFT resulting
in nrny + 2nrny log2(nr) operations.

The total number of multiplications are nrny(2 log2(nrny)+4+3 log2(nr)+log2(ny)) that
are less than those by the IOKA simulator. However, it should not be ignored that this is
due to two main approximations:

1. Ignoring the dependance of distance on the modified chirp rate K(r, ky).

2. Approximating the Stolt interpolation.

These approximations affect the "quality" of the simulated RD (Note that IOKA does
not involve any of these approximations and thus gives a very accurate form of RD). The
effects due to these approximation should be quantized in order to find the validity domain
of ICSA for RD simulation. For that purpose, the phase error effects arising as a result of
these approximations will be expressed in terms of the scene and system parameters.

Approximation 1

The modified chirp rate for a range position rm is described in an approximate but con-
venient form as

K(rm, ky) =
Kr

1− (k2
yKrπrm/k3

ca
3(ky)c2)

≈ Kr +
K2
rk

2
yπrm

k3
ca

3(ky)c2
(3.18)

This rate is assumed to be constant for all range positions. The range phase error that
can arise due to ignoring the dependence of K(rm, ky) on a change of range position of
∆r is given by the product of ∆r with the derivative of equation 3.18 (with respect to r)
and the transmitted time. The maximum phase error ∆φr arises over half the transmitted
pulse length Tp [3] and is given as

∆φr =
∣∣∣∣dK(rm, ky)

dr
∆r
∣∣∣∣ (Tp2 )2

=

∣∣∣∣∣ K2
rk

2
yπ

k3
ca

3(ky)c2
∆r

∣∣∣∣∣ (Tp2 )2 (3.19)

In order for the phase error to be negligible, i.e. ∆φr � 1, the limit on ∆r is

∆r � 4k3
cc

2a3(ky)
T 2
pK

2
rk

2
yπ

(3.20)
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Considering only the maximum value of ky that is approximated by 2kc sin θy/2, a(ky) ≈ 1
and Kr = Bt

Tp
, the limit comes out to be

|∆r| � kcc
2

T 2
pK

2
r sin2(θy/2)π

� kcc
2

B2
t sin2(θy/2)π

(3.21)

Approximation 2

The Stolt interpolation can be approximated by expanding the square root term in the
exponential function exp

(
−j
√

4k2 − k2
yrm

)
till second order terms. After some manipu-

lations given as√
4k2 − k2

y =
√

4k2
c − k2

y

√
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4∆k2

4k2
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y

+
8kc∆k

4k2
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y
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}
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the result is √
4k2 − k2

y ≈
√

4k2
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y +
4kc∆k√
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c − k2
y

−
2k2

y∆k
2

(4k2
c − k2

y)3/2
(3.22)

In case of ICSA, all the terms after the first order term are ignored (similar to CSA). Note
that the interpolation serves to correctly defocus all the points away from the reference
point, thus any approximation in this process will lead to a phase error in the simulated
RD. This phase error increases with the distance ∆r from the reference range and can be
expressed as

∆φs =

∣∣∣∣∣2 k2
y∆k

2

(4k2
c − k2

y)3/2
∆r

∣∣∣∣∣ (3.23)

In order for the effects of this defocusing to be small, one needs ∆φs � 1 and thus

2
k2
y∆k

2

(4k2
c − k2

y)3/2
|∆r| � 1 (3.24)

This leads to an expression on the limit of ∆r given by

|∆r| �
(4k2

c − k2
y)

3/2

2k2
y∆k2

(3.25)
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Figure 3.12: Comparison of Phase Errors in Time Direction

Using 4k2
c − k2

y ≈ 4k2
c , ky = 2kc sin(θy/2) and maximum value of ∆k = πBt/c, the preced-

ing expression changes to

|∆r| � kcc
2

sin2(θy/2)π2B2
t

(3.26)

Figures 3.12 and 3.13 present the difference between the phase errors for simulated RD
for a point placed at a distance of 1350 m from the scene center for the IOKA and ICSA
based simulators. It is clear that in the azimuth direction, the latter simulator does not
generate accurate RD, as the quadratic phase errors shown in equations 3.21 and 3.26
increase with respect to the azimuth bins. Note that this error varies with the position of
a point in the scene.

An efficient frequency domain RD simulator is presented in [11], however, it ignores the
first order term and thus there is an additional phase error in this case given by

∆φs =

∣∣∣∣∣∣ 4kc∆k√
4k2

c − k2
y

∆r

∣∣∣∣∣∣ (3.27)

Using the constraint ∣∣∣∣∣∣ 4kc∆k√
4k2

c − k2
y

∆r

∣∣∣∣∣∣� 1 (3.28)

leads to the following limit on ∆r:
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Figure 3.13: Comparison of Phase Errors in Azimuth Direction

|∆r| � c

2πBt
(3.29)

that is very restrictive and cannot be used for large scene sizes.

3.3 Moving Point Scatterers

3.3.1 Time Domain Raw Data Simulation

In case of a moving point target, the acquired RD for a single point a at a position (rm, yn),
moving with a slant-range velocity vrm and an azimuth velocity of vyn can be written in
time, azimuth-time (τ) as

sa(t, τ) = σ(rm, yn)p

(
t−

2
√

(rm − vrmτ)2 + (vsarτ − yn − vynτ)2

c

)
(3.30)

For time domain simulation, there is no difference as compared to simulation for static
point scatterers as it is simply a summation process shown by the next equation.

s(t, τ) =
∑
m,n

σ(rm, yn)p

(
t−

2
√

(rm − vrmτ)2 + (vsarτ − yn − vynτ)2

c

)
(3.31)

As in the preceding section, time domain simulation is used as a reference for comparing
the RD simulated by the proposed scheme that follows.



72 SAR Raw Data Generation for Ideal Sensor Trajectories

3.3.2 Wavenumber Domain Raw Data Simulation

Equation 3.30 can be rewritten in time azimuth domain as

sa(t, y) = σ(rm, yn)p

(
t−

2
√

(rm − vrmy)2 + (y − yn − vyny)2

c

)
(3.32)

where y = vsarτ , vrm = vrm/vsar and vyn = vyn/vsar are the normalized velocities in
range and azimuth directions, respectively.

The case of RD simulation for moving point scatterers in frequency domain can be ex-
amined by considering equation 3.32 in transmitted wavenumber azimuth domain, given by

S(k, y) = C1P (∆k)
∑
m,n

exp
[
−j2k

√
{rm − vrm(y − yn)}2 + {y − yn − vyn(y − yn)}2

]
σ(rm, yn) (3.33)

The radar-target distance dmov(y) in this case can be approximated by [39], [40]

dmov(y) ≈ rm − vrm(y − yn) +
{

(1− vyn)(y − yn)2

2rm

}
(3.34)

that leads to two main effects:

• A change in location of the scatterer in the azimuth direction of ∆y = ravrm due to
the exponential term

exp(j2kvrmy) (3.35)

that creates a shift in azimuth wavenumber of ∆ky = 2kvrm

• A defocusing due to the exponential term

exp
{
−j2k (1− vyn)y2

2rm

}
(3.36)

There may be an extra defocusing in range direction due to a changed range cell migration.
These effects are demonstrated in figure 3.15 for RD corresponding to the scene layout
shown in figure 3.14. There are four scatterers at the same azimuth but different range
positions. One of them is static, whereas others are moving in range, azimuth or both
range-azimuth directions, shown by a vertical, horizontal or both vertical and horizontal
arrows, respectively. The scatterer having a range velocity is displaced from its position in
the synthesized image with small defocusing, whereas the one having an azimuth velocity
is completely defocused. The 4th scatterer having both range and azimuth velocities is
displaced as well as defocused. Note that the difference between radar target distance
for a moving point target and a static one can be written as:

∆d(y) = dmov(y)− d(y) (3.37)
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Thus, RD of a single moving point scatterer can be generated from that of a static point
scatterer by multiplying the latter by

ψ(k, y) = exp {−j2k∆d(y)} (3.38)

However, in case of multiple moving point targets, RD for each individual point scatterer
have to be multiplied by an individual phase term and then added together. This holds
no advantage as compared to time domain simulation.

By using some constraints, it may be possible to generate RD for multiple moving points
in the frequency domain. As a first step, only points in the azimuth direction but at one
range position having the same slant-range and azimuth velocity are considered. In this
case, RD for moving or static points can be interrelated to one another by means of re-
sampling and a change of axes [38]. This change of axes can be formulated by considering
that a moving target and a straight sensor trajectory can be considered equivalent to a
static target and a sensor having a velocity component of vrm and vyn, in the slant-range
and azimuth directions, respectively. By considering a further rotation by an angle Θ of
the axes, the new configuration is shown in figure 3.16. This operation rotates and scales
different components as

rms = rm cos Θ + yn sin Θ (3.39)
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yns = −rm sin Θ + yn cos Θ (3.40)

Θ = arctan
{

vrm

1− vyn

}
(3.41)

ys = y
√

vrm
2 + (1− vyn)2 (3.42)

kys =
ky√

vrm
2 + (1− vyn)2

(3.43)

Equation 3.33 can be rewritten as

S(k, y) = C1P (∆k)σ(rm, yn) exp
{
−j2k

√
r2
ms + (yr − yns)2

}
(3.44)

whereas, in 2D frequency domain, the expression is

S(k, kys) = C2P (∆k)σ(rm, yn) exp
(
jrms

√
4k2 − k2

ys + jynskys

)
(3.45)

The modified range wavenumber is given as

krs =
√

4k2 − k2
ys (3.46)

This can be seen as a squint-mode geometry that causes an azimuth phase shift of 2k sin Θ
[38], besides modifications given by equations 3.39-3.43 and 3.46,that can be carried out
by interpolations. IOKA can be used for this process by employing the modified reference
function given by

Srref (k, kys) = P (∆k) exp
(
−jrrefs

√
4k2 − k2

ys − jyrefskys
)

(3.47)

where rrefs and yrefs are given by equations 3.39 and 3.40. The block diagram in figure
3.17 shows this process. Its computational complexity is the same for an IOKA simulator,
except for two extra interpolations, resulting in a total number of nrny(3 log2(nrny) +
6(2Mker − 1) + 2) multiplications, that may be less than the time domain simulator, de-
pending on the number of simulated points.

This technique can be used for simulating RD for an object moving with a linear velocity
and having a small size in the range direction. All the points in the object are considered
to have the same velocity, however, the same ground velocity for points at different range
position is mapped to different slant-range velocity for each point, thus limiting the size in
the range direction. To find out this limit on the size, consider the geometry in figure 3.18
that shows a point (part of an object) moving with a velocity vxm in the ground range
direction. The relationship between vrm and vxm is given as

vrm = vxm sin θ (3.48)

Consider another point (on the same object) at a ground range distance of x + ∆x (and
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a corresponding incidence angle of θ + ∆θ), moving with the same ground range velocity,
but having a different slant range velocity of

v(r+∆r)m = vxm sin(θ + ∆θ) (3.49)

Thus, a change of distance ∆x leads to a change of slant-range velocity, even though the
ground-range velocity may be the same. Therefore, an object size in ground-range direc-
tion needs to be smaller than a certain limit for the simulator proposed in figure 3.17 to be
applicable. This limit on the object size can be calculated by considering two constraints:

Constraint 1
The difference in slant-range velocities due to a displacement ∆x (∆r) in ground (slant)
range should be small that is expressed as

| vr − v(r+∆r) |� 1 (3.50)

Using equation 3.48, equation 3.50 can be rewritten as

| vx sin θ − vx sin(θ + ∆θ) |� 1 (3.51)

Expanding sin(θ + ∆θ) and using small angle approximation, the limit on ∆θ is

| ∆θ |� 1
vx cos θ

(3.52)
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Figure 3.19: Phase Error in Time Direction

The relationship given by equation 1.6 can be used to calculate the maximum allowed
object size of 2 | ∆x |, where

| ∆x |� r

vx cos2 θ
(3.53)

Constraint 2
Equation 3.35 shows the presence of an azimuth shift that varies with the range position,
even though the range velocity may be constant. Thus, another limit on the object size
may be obtained by considering the difference in shift due to a different range positions
to be less than the azimuth resolution, i.e.

∣∣∣∣ vrrvsar
− vr(r + ∆r)

vsar

∣∣∣∣ < δy

| ∆r | <
δyvsar
vr

(3.54)

Here, it is assumed that constraint 1 is satisfied. Using the relationship between ground
range and slant range, the limit is

| ∆x |< vsarδy

vx sin2 θ
(3.55)

that is more restrictive than the one given by equation 3.53.
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Figure 3.20: Phase Error in Azimuth Direction

Figures 3.19 and 3.20 show the time and azimuth phase errors for the RD simulated by
the approach shown in figure 3.17 and a time domain simulator for a point (in order to
compare phase errors). The point is at the center of the scene and its range and azimuth
velocities are 1.5 ms−1 and 2 ms−1, respectively.

The advantage offered by the proposed approach is that RD can be simulated for a moving
object having a certain velocity in the range and azimuth directions, if a reference image of
a static object is available (unlike time-domain simulator that always requires a reflectivity
map). In this case, the input to the simulator will be this image and there will no phase
inclusion stage. [41] presents a simulator resembling the one presented here, however it
has three major drawbacks:

• It uses approximations to find the scaling and rotation factors (mainly√
vrm

2 + (1− vyn)2 ≈ 1− vyn).

• It does not include the azimuth frequency shift arising due to the motion.

• No calculations regarding the object size in ground-range directions have been made.

An example for this case is demonstrated in figures 3.21-3.23. Figure 3.21 shows the input
image of a static object that is used to simulate RD corresponding to range and azimuth
velocities of 2.5 ms−1 and 2 ms−1. The simulated RD is used for image formation and
the result is shown in figure 3.22. A position shift, as well as defocusing in the azimuth
direction can be observed, which are the effects arising due to movement. Figure 3.23
shows the image synthesized by taking into account the movement, that can be achieved
by modifying the matched filter and the interpolation stage of the OKA, as described in
[2].
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Figure 3.21: Input Image of a Static Object
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Figure 3.23: Focused Image

Comments

• In this chapter, the reflectivity map is assumed to consist of isotropic points. This
may not always be so for a complex object, as its response may vary during the raw
data acquisition process. Moreover, the reflectivity map is sampled uniformly.

• The quality of data simulated by IOKA depends on the quality of the interpolator
employed. For the examples given here, the interpolator cubic "spline" given in
MATLAB has been used, as this type of interpolator is known to perform better
even with low degree polynomials, besides being simple to calculate.

3.4 Conclusions

This chapter examined raw data simulation in different domains. It was shown that the
two dimensional frequency domain is the best one in terms of accuracy and computational
efficiency. Two variants were proposed: The first one uses partial summation, while the
second one replaces this summation by an interpolation. A relationship between the re-
flectivity map and the corresponding SAR image was shown, that actually leads to the
conclusion that image formation algorithms can be reversed to generate raw data. Simula-
tion examples using inverse Omega-k and inverse Chirp Scaling algorithms were presented.
It was also shown that RD for a moving object can be generated in the wavenumber do-
main by a geometric transformation and interpolations.





Chapter 4

SAR Raw Data Simulation in case of
Sensor Trajectory Deviations

4.1 Outline of the Chapter

This chapter presents SAR raw data simulation in the case where the sensor may undergo
trajectory deviations, which is common in airborne SAR systems. It first presents the
expressions for the raw data in case of motion errors, followed by image formation that
consists of an additional step called motion compensation. Two different raw data simula-
tion schemes are proposed that make use of certain approximations. These approximations
are analyzed to estimate their respective validity domains and illustrated by simulation
examples.

4.2 Basic Expressions

In the preceding chapter, it was assumed that the RD have been acquired using an ideal
flight path, i.e., constant velocity and a linear trajectory. However, in reality, the flight
path can be non-linear due to atmospheric disturbance. The 3D geometric configuration
of a SAR operating in such a case is shown in figure 4.1. Here, a single point at ground
range, azimuth and height positions of xa, ya and za, respectively is considered. The plat-
form deviates from an ideal straight trajectory by an error of xe(y), ye(y) and ze(y). The
radar-target distance in this case as a function of along-flight position is given as:

da(y) =
√
{xa − xe(y)}2 + {y − ya − ye(y)}2 + {h− za − ze(y)}2 (4.1)

For the moment, the above expression is written as

da(y) =
√
{ra − rea(y)}2 + {y − ya − ye(y)}2 (4.2)

where ra is the shortest slant-range distance, and rea(y) is the effective trajectory error
in slant-range (for the point a), to be calculated later. The acquired RD can be described as

83



84 SAR Raw Data Simulation in case of Sensor Trajectory Deviations
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Figure 4.1: 3D Geometry showing Data Acquisition Geometry in case of Motion Errors

sa(t, y) = σ(ra, ya)p

(
t−

2
√
{ra − rea(y)}2 + {y − ya − ye(y)}2

c

)
(4.3)

ye(y) represents the distance error (resulting from velocity variation) in the azimuth di-
rection. These variations are usually compensated by an on-line adjustment of the PRF
or by resampling of the raw data in the azimuth direction [1]. Thus, it is neglected in the
following calculations.

The 1D FT of equation 4.3 in the time direction can be written as

Sa(k, y) = P (∆k)σ(ra, ya) exp
(
−j2k

√
{ra − rea(y)}2 + (y − ya)2

)
(4.4)

or

Sa(k, y) = P (∆k)σ(ra, ya) exp(−j2k
√
r2
a + (y − ya)2)∆Sea(k, y) (4.5)

where

∆Sea(k, y) = exp{j2k∆rea(y)} (4.6)

and

∆rea(y) = −
√
{ra − rea(y)}2 + (y − ya)2 +

√
r2
a + (y − ya)2 (4.7)
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is the effective along-flight position-varying error. Note that this error depends on the
range and azimuth position of the imaged point in a scene.

The 2D FT of equation 4.3 gives

Sa(k, ky) = P (∆k)σ(ra, ya) exp
(
−jra

√
4k2 − k2

y − jyaky
)

∆Sea(k, ky) (4.8)

where ∆Sea(k, ky) is a spatially-varying error that is related to ∆Sea(k, y) via a scale
transformation [2] fa(to be detailed in the next section).

fa : ∆Sea(k, ky)→ ∆Sea(k, y) (4.9)

or

fa : ∆Sea(kr, ky)→ ∆Sea(k, y) (4.10)

4.3 Image Formation

4.3.1 Time Domain Image Formation

In case of time-domain image formation, Motion Compensation (MoCo) can be easily ac-
commodated according to the following equation:

i(rm, yn) =
∫ ∞
−∞

scd

(
t−

2
√

(rm − rem)2 + (y − ya)2

c
, y

)
dy (4.11)

Thus, the only change compared to motion-error free case is a change in the along-flight
summation.

4.3.2 Frequency Domain Image Formation

For frequency domain image formation such as CSA and OKA, MoCo procedures have
been presented by [2], [12], [14], [42] and [44]. These procedures can be divided into
two main categories: Narrowbeamwidth MoCo and Widebeamwidth MoCo described as
follows:

4.3.2.1 Narrowbeamwidth Motion Compensation

By examining equations 4.5 and 4.8, it can be inferred that MoCo consists of canceling
the terms ∆Sea(k, y) or ∆Sea(k, ky), depending on whether it is carried out in 1D or
2D wavenumber domain, respectively. For this purpose, one option is to make narrow-
beamwidth (Nbw) approximation, which considers the motion errors as depending only
on the range position of a point scatterer or the same for the whole azimuth beam as the
beam center. Effects of this approximation are studied in [43]. Using this approximation,
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Figure 4.2: Narrowbeamwidth Motion Errors

the motion error in the slant-range ∆rea(k, y) can be written as

∆rea(y) ≈ rea(y) (4.12)

where rea(y) is given as [1]

rea(y) = xe(y) sin θa + ze(y) cos θa (4.13)

By considering figure 4.2, where θa = arccos
(
h−za
ra

)
, (assuming a flat earth), equation 4.6

can be rewritten as

∆Sea(k, y) = exp{j2(kc + ∆k)rea(y)} (4.14)

It is clear that motion errors cause a phase error due to the term exp{j2kc∆rea(y)} as
well as a displacement in the time direction due to the shift given by exp{j2∆k∆rea(y)}.
In the case of a single scatterer, these terms can be canceled easily by multiplying the RD
and the complex conjugate of equation 4.14.

For a real scene consisting of nrny scatterers, this may not be possible because the range
position required for calculating the incidence angle θ is not known at the RD stage (as
the chirps are spread in the time and azimuth directions). The expression for RD in trans-
mitted wavenumber domain for a scene in this case is given as

S(k, y) = P (∆k)
∑
m,n

σ(rm, yn) exp
(
−j2k

√
r2
m + (y − yn)2

)
∆Sem(k, y) (4.15)

where
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∆Sem(k, y) = exp{j2krem(y)} (4.16)

and

rem(y) = xe(y) sin θm + ze(y) cos θm (4.17)

In order to circumvent this problem, MoCo is divided in two stages: 1st Order MoCo and
2nd Order MoCo. The former, shown in equation 4.18, corrects the motion errors (both
phase and position correction) corresponding to a reference range rref . Subsequently, range
migration compensation and range compression is carried out using CSA. It is assumed
that the range-dependent component of motion errors does not effect the range migration
process [1].

∆S∗eref (k, y) = exp{−j2kreref (y)} (4.18)

Before the remaining step of azimuth compression, the azimuth chirps are roughly local-
ized at their respective range positions, and the 2nd Order MoCo consisting of only the
phase correction term can be applied for each range position.

∆S∗em(rm, y) = exp[−j2kc{rem(y)− reref (y)}] (4.19)

The resulting data can then be compressed in the azimuth direction. The block diagram for
this process is shown in figure 4.3. This procedure, though quite suitable for use with CSA,
cannot be applied to OKA, as in this case, the data is range and azimuth compressed in a
single step. [14] has proposed a modified OKA to integrate the two-step MoCo procedure.

4.3.2.2 Widebeamwidth Motion Compensation

[2], [14], [42] propose widebeamwidth (Wbm) MoCo, operated in the 2D wavenumber do-
main that are quite similar to one another. In the following, the method given in [2] will
be described as it presents the analytical form for the motion error correction terms. The
expression for motion error affected RD in 2D frequency domain is given as

S(k, ky) = P (∆k)
∑
m,n

σ(rm, yn) exp
(
−jrm

√
4k2 − k2

y − jynky
)

∆Semn(k, ky) (4.20)

The motion error for each point at position (m,n) after processing by OKA (or CSA) is

∆Semn(kr, ky) = exp{j2k∆remn(y)} (4.21)

where

∆remn(y) = −
√
{rm − rem(y)}2 + (y − yn)2 +

√
r2
m + (y − yn)2 (4.22)
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Figure 4.3: Narrowbeamwidth Motion Compensation Procedure

The following transformations map the motion errors from (k, y) domain to (kr, ky) do-
main:

Transformation 1
2k =

√
k2
r + k2

y (4.23)

Transformation 2
y = yn −

ky
kr
rm (4.24)

Transformation 1 is quite straightforward and can be derived by using equation 2.14.
Transformation 2 can be calculated by considering the fact that the radar wavelength λc
can be divided into two components: The wavelength in the range direction λcr and the
wavelength in the azimuth direction λcy. These two wavelengths can be related to the
radar wavelength and the aspect angle as
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Figure 4.4: Tranmitted Wavelength and its Relationship with Azimuth and Range Wave-
lengths

λcr(y) =
λc

cos θas(y)
(4.25)

λcy(y) =
λc

sin θas(y)
(4.26)

tan θas(y) =
y − yn
rm

(4.27)

The relation between the wavenumber and the wavelength gives

kr(y) = 2k cos θas(y) (4.28)

ky(y) = 2k sin θas(y) (4.29)

leading to

ky(y)
kr(y)

= tan θas(y) =
y − yn
rm

(4.30)

that results in transformation 2. If the fluctuations of this motion error phase function are
much smaller than those of the SAR signal without motion errors, it can be modeled as a
filter in the spatial frequency domain for each point scatterer [2]. This may not be so in
realistic cases, but these fluctuations can be reduced by carrying out 1st order MoCo as in
Nbw approximation for a reference position, processing the RD by OKA or CSA, followed
by dividing the resulting images in subpatches and applying the following spatially-varying
error compensation to the center of each subpatch in 2D frequency domain using the two
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Figure 4.5: Widebeamwidth Motion Compensation Procedure

preceding transformations.

∆S∗emn(kr, ky) = exp[−j2k{∆remn(y)−∆reref (y)}] (4.31)

4.3.2.3 Example of Motion Compensation

For demonstrating the MoCo procedure, RD for four points imaged with a sensor having
ground range and altitude trajectory errors shown in figure 4.6 are simulated. The sensor
parameters are the same as given in table 3.1.The corresponding RD is processed without
any MoCo and the result is shown in figure 4.7. It is clear that all the points are defocused
and spread in the azimuth direction. Figure 4.8 shows the data after processing by CSA
and 1st order MoCo corresponding to the range at the scene center as the reference range.
The point at the center is focused but the other points are still partially defocused. Figure
4.9 shows the focused image after 1st and 2nd order MoCo where all the points are focused.
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Figure 4.6: Simulated Motion Errors in Ground-Range and Altitude Directions
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Figure 4.7: Defocused Image in the absence of MoCo
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Figure 4.8: Raw Data Processing with 1st order MoCo
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Figure 4.9: Raw Data Processing with 1st and 2nd order MoCo
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Figure 4.10: Raw Data Processing with 1st and 2nd order MoCo (16◦ Aperture Angle)

In the second example, a single point at the scene center with an azimuth aperture angle
of 16◦ is simulated to show the utility of Wbw MoCo. Figure 4.10 shows that in case of
Nbw 1st and 2nd order MoCo, the image is not completely focused, whereas figure 4.11
shows the image after Nbw 1st order and Wbw MoCo, which is completely focused.

4.4 Motion Error Effects

Motion effects in case of a sinusoidal error have been described in [12] with the help of
Nbw approximation and Bessel functions. It is stated that such an error results in spec-
tral replication. Details concerning the loss of image quality are given in [45]. However,
these effects can be studied in a more meaningful physical manner, without using a Nbw
approximation, by considering a single point as in the preceding section at position a. RD
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Figure 4.11: Raw Data Processing with Wbw MoCo (16◦ Aperture Angle)

in slant-range direction rea(y) can be approximated by dividing the trajectory (y) in a
number of linear segments N and to be made up of RD acquired for all these positions, as
follows:

y = [y1....yN ]
san(y) = rea(yn) + y tan Ψn (4.32)

where

Ψn = arctan
{
rea(yn+1)− rea(yn)

yn+1 − yn

}
(4.33)

Making use of the transformation shown in figure 3.16, sensor imaging for each linear seg-
ment can be seen as equivalent to a squint-mode configuration with an angle Ψn. Thus,
each linear segment results in an image with a resolution reduced by a factor of N and at
a shifted position of

ran = ra cos Ψn + ya sin Ψn (4.34)

yan = −ra sin Ψn + ya cos Ψn (4.35)

In case of a large value for N, the synthesized image consists of multiple copies of low
resolution images, that are shifted from the actual position (ra, ya). This is demonstrated
in figure 4.12, where the trajectory error was approximate by linear segments. RD were
simulated using these segments, as well as the actual error and the synthesized images for
both these cases are shown. Both of the defocused images resemble each other, meaning
that motion error effects can be described physically by linear segmentation and a change
of geometry for each segment.
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Figure 4.12: A Focused Image, Motion Error in the Slant Range and its Linear Approxi-
mations, and Processed Data corresponding to Both Cases
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4.5 SAR Raw Data Simulation

SAR RD simulation in the case of sensor motion errors is similar to the one with no mo-
tion errors, if the time domain simulation is used. It can be inferred from equation 4.3
that the RD corresponding to an entire scene are the sum of the RD for each point in the
scene. Thus, the total number of multiplications required for a scene of dimension nrny is
nrnyntna as in chapter 3 that can be too large in case of a realistic case. Hence, efficient
RD simulation in the frequency domain is explored.

As discussed in section 4.3, MoCo procedure is integrated with the image formation process
to generate focused images. It has already been stated in chapter 3 that RD simulation
can be achieved in 2D frequency domain by inverse image formation algorithms, alongwith
the phase inclusion process. If the MoCo procedure can also be reversed, it may be inte-
grated with the RD simulation schemes proposed in chapter 3 to generate efficiently the
RD. However, it is very easy to see that the Wbw MoCo described in subsection 4.3.2.2
is dependent on the position of each point in the image. Therefore, in order to use it
in inverse form, the reflectivity map after multiplication by the reference function has to
be divided in subpatches, and each subpatch is subsequently multiplied by motion errors
corresponding to the center of the scene in 2D frequency domain. This approach is not
appropriate for RD simulation, as each subpatch contains not only the contributions from
points in the neighboring subpatches, but the process of making a subpatch causes the
loss of a part of the spectrum and leads to phase discontinuities.

The Nbw Moco may seem appropriate for RD simulation using ICSA, as it uses range-
varying exponential multiplications before azimuth compression to compensate the whole
image. However, this multiplication causes a wavenumber shift in the time direction, that
varies with the range positions, described as a residual range-varying phase for the side-
lobes in [88]. This shift, for a point at position m, is given by

∆km(y) = kc
d{rer(y)− rem(y)}

dr
≈ kcxe(y)(sin θr − sin θm) + kcze(y)(cos θr − cos θm)
≈ kcxe(y)(θr − θm) cos θm − kcze(y)(θr − θm) sin θm (4.36)

where r in the subscript rer varies from 1 to nr for each m, and sin θr and cos θr have been
linearized in the vicinity of θm. Thus, this wavenumber shift is actually varying with the
range position of the point scatterer. In order to use inverse MoCo, this shift should be
first incorporated for each range position separately. Therefore, simulating the RD using
directly these algorithms is not feasible. An example for the purpose of illustration is
shown in the figures 4.13 and 4.14.

In literature, [31], [33] present RD simulators for stripmap and spotlight modes, respec-
tively that use partial summation operations. The latter uses the approach presented in
figure 3.2, using equation 3.8. In the following, other options based on [31] will be exam-
ined and improvements will be proposed.
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Figure 4.13: 2D Spectrum before 2nd Order MoCo
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Figure 4.14: 2D Spectrum after 2nd Order MoCo
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Considering equation 4.15, it can be seen that RD in 1D range wavenumber domain is
actually a summation of RD for each scatterer. Thus RD generation using this property
does not hold any advantage compared to the time-domain simulation. However, some
efficiency may be achieved by expanding the square root in the exponential term using
Taylor series:

√
r2
m + (y − yn)2 = rm +

(y − yn)2

2rm
− (y − yn)4

8r3
m

+ ... (4.37)

Using this expression, equation 4.15 becomes

S(k, y) = P (∆k)
∑
m,n

σ(rm, yn) exp
[
−j2k

(
rm +

(y − yn)2

2rm
− (y − yn)4

8r3
m

)]
∆Sem(k, y)

(4.38)

that can be rewritten in the form of a convolution as

S(k, y) = P (∆k)
∑
m,n

σ(rm, yn) exp(−j2krm)
{

exp
(
−j2k y2

2rm
+ j2k

y4

8r3
m

)
⊗ δ(y − yn)

}
∆Sem(k, y) (4.39)

Using the 1D FT of the ideal target function Γ(rm, ky) given in equation 3.7, the summa-
tion in the azimuth direction can be carried out using FFTs and multiplications as shown
below:

S(k, y) = P (∆k)
∑
m

exp(−j2krm)F−1
y

[
Fy

{
exp

(
−jk y

2

rm
+ jk

y4

4r3
m

)}
Γ(rm, ky)

]
∆Sem(k, y) (4.40)

where Fy and F−1
y represent the FT and IFT in the azimuth direction, respectively. Thus,

RD can be generated for each range position using FFTs and IFFTs, and adding the re-
sult. Its block diagram is shown in figure 4.15 and its computational complexity can be
calculated as follows:

• 1D FFT of the exponential term exp
(
−jk y

2

rm
+ jk y4

4r3m

)
, the reflectivity map and

their multiplication followed by IFFT resulting in 2nrnylog2ny + nylog2ny + nrny
computations.

• Multiplication of the result of the preceding step by P (∆k) exp(−j2krm)∆Sem(k, y)
taking nrny computations.

• Summation over all the range position taking a total of nr(2nrnylog2ny+nylog2ny+
2nrny) multiplications.
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Figure 4.15: Block Diagram for Nbw Simulator
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• 1D IFFT of the result taking nrnylog2ny operations.

The total number of multiplications needed can be approximated to be 2n2
rny(1 + log2ny)

that is slightly more than that in the narrowbeamwidth and arbitrary deviation method of
[33]. However, this simulation method avoids calculating an expression of azimuth FT by
POSP, which may be less accurate as compared to the range direction, due to a relatively
low TBP.

If it is required to increase efficiency at the expense of POSP related approximations,
the series expansion in equation 4.37 can be limited to the first-order term (the limit on
the aperture angle is given by equation A.29) and the analytical expression for the FT of
the exponential term in the azimuth direction is calculated as

Fy

{
exp

(
−jk y

2

rm

)}
= exp

(
−j

k2
yrm

4k

)
(4.41)

Using the above term in equation 4.40 reduces n2
rnylog2ny computations.

S(k, y) = P (∆k)
∑
m

exp(−j2krm)F−1
y

{
exp

(
−j

k2
yrm

4k

)
Γ(rm, ky)

}
∆Sem(k, y) (4.42)

It is necessary to analyze the preceding method to find its validity limits in terms of the
allowed motion errors, given the parameters of the sensor and the scene following the rea-
soning given in [32] and [33]. For this purpose, the expression for the motion error given
by equation 4.22 will be approximated [89], assuming that the motions error in the line of
sight direction to be a constant, i.e., rem(y) = rem as only the maximum allowed error is
to be calculated. This simplifies the analysis as well.

∆remn(y) ≈ rem −
(yn − y)2

2(rm − rem)
+

(yn − y)2

2rm

= rem −
(yn − y)2rem

2(rm − rem)rm

≈ rem −
(yn − y)2rem

2r2
m

(4.43)

Ignoring the second part of motion error and using the first part (actually Nbw errors) in
equation 4.16, the following criterion of validity is obtained for the Nbw approximation to
be valid.

∣∣∣∣2k(yn − y)2rem
2r2
m

∣∣∣∣ � 1

| remmax | �
r2
m

(kc + ∆kmax)(∆Y/2)2

� 4c
π(2fc +Bt)θ2

y

(4.44)
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The Nbw motion errors can be generalized by a substitution rem = de sin(θm+θxz), where
de(y) =

√
x2
e(y) + z2

e (y) and θxz(y) = arctan
(
ze(y)
xe(y)

)
. Thus, equation 4.44 becomes

| demax |�
4c

π(2fc +Bt)θ2
y

(4.45)

A second way to simulate RD is by considering wide beamwidth (Wbw) but assuming
narrow bandwidth (Nbaw). For this purpose, equation 4.20 is examined, after image for-
mation, and the Wbw errors are divided into a range position-invariant Nbw error part,
and a range position varying Wbw part.

I(kr, ky) = |P (∆k)|2
∑
m,n

σ(rm, yn) exp(−jkrrm−jkyyn) exp[−j2k{∆remn(y)−∆reref (y)}]

(4.46)

with the two transformations given by equations 4.23 and 4.24 linking the errors in (k, y)
to (kr, ky) domain. Assuming Nbaw, i.e., kr ≈ 2kc, the preceding equation can be written
as

I(kr, ky) = |P (∆k)|2
∑
m,n

σ(rm, yn) exp(−jkrrm−jkyyn) exp[−j2kc{∆remn(y)−∆reref (y)}]

(4.47)

where

y ≈ yn −
ky
2kc

rm (4.48)

As a result of this approximation, an azimuth FT of the modified reflectivity map at an
azimuth position yn can be written as

Γn(r, ky) = exp
[
−j2kc

{
∆rern

(
yn −

ky
2kc

r

)
−∆reref

(
yn −

ky
2kc

r

)}]
σ(r, yn) exp(−j2kcr − jkyyn) (4.49)

where

∆rern(.) =
∑
m

∆remnδ(r − rm) (4.50)

that results in

I(kr, ky) = |P (∆k)|2
∑
n

Fr(Γn(r, ky)) (4.51)

Thus a modified reflectivity map where motion errors are embedded can be generated
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according to equation 4.49 and a summing operation in the azimuth direction. This re-
flectivity map can then be converted into 2D frequency domain, and multiplied with the
2D FT of a reference image for the phase inclusion process. The result can then be used
for RD simulation using ICSA/IOKA and the final result is the multiplied by the Nbw
motion error for a reference position, i.e., exp{−j2kreref (y)}. This process is shown in
figure 4.16 and its computational complexity can be calculated by considering its main step:

• Generation of the modified reflectivity map by nrny multiplications for each az-
imuth position and taking 1D FFT of the final result requiring nrn2

y + nrnylog2nr
computations.

• 2D FFT of a reference image and multiplication with the above reflectivity map
taking nrnylog2nrny + nrny computations.

• Using the result for IOKA that takes nrny(log2(nrny) + 2(2Mker − 1) + 1) compu-
tations.

• Multiplication by the reference Nbw error taking nrny multiplications.

The total number of multiplications is approximated as nrn2
y, that can be less than that

in [33] for Nbw approximation and moderate deviations and the preceding simulation ap-
proach as well for ny < nr. In order to find a validity domain for this simulation method,
an analysis is made, making use of equation 4.45. Its second part, i.e., position-varying
error is neglected for all the frequencies other than the central frequency, whereas it is the
same for Nbw error, except for the reference range. Thus there are two constraints:

∣∣∣∣∆k(yn − y)2rem
r2
m

∣∣∣∣ � 1

| remmax | �
r2
m

(∆kmax)(∆Y/2)2

| demax | �
4c

πBtθ2
y

(4.52)

and

| 2∆k(rem − reref ) | � 1

| xe sin θm + ze cos θm − xe sin θref − ze cos θref | �
1

2∆k

| dem{sin(θm + θxz)− sin(θref + θxz)} | �
1

2∆k

dem{sin(θref + θxz)− sin(θref + θxz) + cos(θref + θxz)(θm − θref )} | � 1
2∆k

| dem cos(θref + θxz)(θm − θref ) | � 1
2∆k

(4.53)
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Figure 4.16: Block Diagram for Nba Simulator

sin(θm+θxz) has been linearized in the above equation around θref = arccos(h/rref ). The
following constraint is observed:

| demax |�
c

2πBt | θm − θref |
(4.54)

This constraint is more severe than the preceding one and that given for the Nbw approach,
however, in case of a high aperture angle, it may be less restrictive, e.g., for an azimuth
aperture angle of 4◦ and 10◦, the limits are 29 m and 5 m, respectively for Nbw case,
whereas for Nba case, the maximum allowed deviation is 8.5 m for a point at the end of
the scene.

4.5.1 Examples

In order to demonstrate the accuracy of the proposed techniques, phase of the simulated
RD is compared to the phase of the data from a time-domain simulator. The simulation
parameters used are the same as in table 3.1. A point is placed at a slant-range distance of
45 m from the scene center and RD were simulated with a trajectory error in the form of a
cosine, having a maximum amplitude of 0.8 m and covering two cycles over the aperture,
in the directions of altitude and ground range. The phase difference for both approaches
through one range and azimuth position in the RD is shown in figures 4.17 and 4.18,
and indicates satisfactory results. In the case of Nbw approach, this error in the azimuth
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Figure 4.17: Phase Error in Time Direction for a Point at 45 m

direction is slightly less than that generated by Nba (using ICSA) approach as the latter
is limited by the distance of a point from the reference range. To reinforce this point, the
same process is repeated for a point at the center that is also the reference range and at
a slant range distance of 450 m from the center. It is clear that the phase error in the
azimuth direction increases for the Nba, as the point moves away from the scene center.

Another point that should be noted is that the use of equation 4.42 induces a limit on the
value of the aperture angle. As an example, a point at a distance of 45 m from the scene
center is used to simulate RD with an aperture angle of 10◦ and the corresponding phase
errors are plotted in figures 4.23 and 4.24. The phase error using Nbw approach alongwith
equation 4.42 is much more than that using Nba approach, especially at the extremes of
aperture.

4.6 Conclusions

This chapter has explained image formation and RD simulation in the presence of motion
errors. Two different approaches based on narrow-bandwidth and narrow-beamwidth ap-
proximations were proposed for this purpose and analyzed to find validity limits in terms
of system parameters and motion errors.
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Figure 4.18: Phase Error in Azimuth Direction for a Point at 45 m
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Figure 4.19: Phase Error in Time Direction for the Center Point
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Figure 4.20: Phase Error in Azimuth Direction for the Center Point
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Figure 4.21: Phase Error in Time Direction for a Point at 450 m
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Figure 4.22: Phase Error in Azimuth Direction for a Point at 450 m
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Figure 4.23: Phase Error in Time Direction for a Point at 45 m and 10◦ Aperture
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Figure 4.24: Phase Error in Azimuth Direction for a Point at 45 m and 10◦ Aperture





Chapter 5

Raw Data Simulation for Extended
Scenes

5.1 Outline of the Chapter

This chapter discuses RD simulation for extended scenes. The case of an urban scene
consisting of buildings placed on a rough terrain is used for simulation examples. The
chapter is divided into two parts: The first part presents a description of rough surfaces.
An electromagnetic model needed to calculate the reflected field from such an extended
scene is also introduced. This model is used to simulate polarimetric data according to
different scene parameters. The features of anisotropic building response that has already
been reported in the literature, is also included in the simulation. Furthermore, an example
in case of such a scene imaged with sensor trajectory deviations is presented. The second
part of this chapter introduces RD simulation in an interferometric SAR configuration,
alongwith examples concerning a flat surface as well as an urban scene consisting of a
single building. Only geometric decorrelation is considered, however, the possibility of
taking into account other sources of decorrelation is discussed.

5.2 Introduction to Surfaces

All the simulation examples considered so far consisted of a set of simple point scatterers,
having a deterministic amplitude and phase, given in a reflectivity map. This was conve-
nient to check the accuracy of the simulated RD by comparing phase in time and azimuth
direction with that generated by a time domain simulator. However, in actual cases, the
situation is much more different due to two main reasons:

• There are usually more than one scatterer within a resolution cell.

• A surface may be rough and due to this roughness, superposition of reflections from
all these scatterers may result in a varying overall phase and/or amplitude.

Initially, the concept of roughness is explained by considering figure 5.1 that shows a wave
impinging at an angle θ1 on two points located at ground range positions of x1 and x2 and
heights of z1 and z2, respectively, on a rough surface (the two positions can be considered
to be inside a resolution cell). The wave is reflected at an angle θ2 from both positions,
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x1 x2

θ1
θ2

θ1 θ2
z1

z2

Figure 5.1: Reflection of Waves from a Rough Surface

and the phase difference resulting from the two points can be calculated as [55]

∆φ = kc{(z1 − z2)(cos θ1 + cos θ2) + (x2 − x1)(sin θ1 − sin θ2)} (5.1)

where kc is the wavenumber. The interference between the two reflected waves depends
on the magnitude of ∆φ compared with π. If it is much smaller that π, the waves will
interfere constructively, whereas a phase difference comparable to π will lead to destructive
interference. There is a coarse criterion called Rayleigh criterion that categorizes a surface
into smooth or rough: If ∆φ < π/2, the surface is smooth, otherwise it is rough [55]. This
leads to the conclusion that a surface’s roughness depends mainly on the frequency and
angle of the incident waves, as ∆θ is dependant on these two features. In the following,
the two surface categories are explained:

5.2.1 Smooth Surface

For a smooth surface, z1 = z2 and considering θ1 = θ2 (specular reflection), ∆φ = 0.
There is only constructive interference, thus giving a strong reflection. If θ1 6= θ2 (other
than specular direction), destructive interference takes place as ∆φ increases according to
the next equation.

∆φ = kc{(x2 − x1)(sin θ1 − sin θ2)} (5.2)

Therefore, the scattered field will be strong in the specular direction, and decreases gradu-
ally in other directions, that can be considered as a lobe. This specular field is also known
as coherent field, due to its predictable and constant phase compared to the incident field.

5.2.2 Rough Surface

In case of a rough surface z1 6= z2, although this difference may be small in case of a
slightly rough surface. For the specular direction, the phase difference is given as
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Figure 5.2: Addition of Coherent and Incoherent Fields [55]

∆φ = 2kc(z1 − z2) cos θ1 (5.3)

As long as it is much smaller than π, there will be constructive interference leading to
a strong reflection. However, when it becomes larger (due to height difference z1 − z2),
destructive interference occurs, thus reducing the amplitude of the reflected specular field.
For non-specular directions, the phase difference varies over 0 − 2π for different reflected
angles according to equation 5.1, thus giving rise to several reflections having no fixed
phase relative to the incident wave phase. This field is also known as incoherent field, due
to its lack of phase relationship with the incident field.

The reason for separately describing the coherent and incoherent field is that the two
combine differently: Coherent fields add together in phase to give an amplitude that is
equal to the sum of the amplitude of the individual components, whereas incoherent fields
add together to give an amplitude that may be less than the amplitude of the individual
components. This is shown in figure 5.2.

5.2.3 Description of a Rough Surface

A rough surface may be described in terms of its difference from a reference surface that
may be chosen based on the surface type [55]. This difference is given by two measures:
The spread of height about the reference surface, and its variations. The former may be
described by a height probability distribution function p(z) satisfying the following con-
straint:

〈z〉 =
∫ ∞
−∞

zp(z)dz = 0 (5.4)

where 〈.〉 is the averaging operation. The standard deviation of the height is given by

ss =
√
〈z2〉 (5.5)
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Usually in the literature, Gaussian distribution having a certain standard deviation ss is
used to describe the height distribution and is given as [55]

p(z) =
1

ss
√

2π
exp(− z2

2s2
s

) (5.6)

It is symmetrical about zero meaning that Gaussian surfaces are distributed equally above
and below the reference surface [55]. The second measure for surface roughness may be
represented by the correlation function that describes the height change with slant-range
(or ground-range) distance ∆r (or ∆x). It is defined as

C(∆r) =
〈h(r)h(r + ∆r)〉

s2
s

(5.7)

This correlation function has the property of C(0) = 1, and as ∆r increases, C(∆r) de-
creases gradually to zero, with the decay rate depending on the distance over which points
become uncorrelated, whereas, the decay shape depends on the surface type. The surface
correlation can also be assumed to be Gaussian and is given as

C(∆r) = exp
(
−∆r2

l2s

)
(5.8)

where ls is called the correlation length and is the distance over which the correlation falls
by 1/e, where e = ln−1(1). Other types of correlation functions can also be used.

5.3 Total Electromagnetic Field from a Surface

A resolution cell may be considered large compared to the wavelength of the incident
waves, and can be divided into a number of scatterers having a size comparable to the
wavelength. The reflected echo from each cell is the result of coherent summation (adding
both amplitude and phase) from each of them. This result may vary from one resolution
cell to another, thus causing a fluctuation over an image and leads to a granular appear-
ance in an image called speckle [26], that can be reduced by speckle filtering [56]. An
example is shown in figure 5.3, where the first figure shows a speckled image, while the
second image shows the speckle filtered image.

If there is no dominant scatterer in the resolution cell and the total number of scatterers
is N, the total reflected signal from a resolution cell at position (rm, yn) can be considered as

σ(rm, yn) =
N∑
l=1

Al exp(jφl) (5.9)

where Al exp(jφl) is the contribution of the lth scatterer. If N is large, then by cen-
tral limit theorem, σ(rm, yn) follows a zero-mean complex circular Gaussian distribution.
<{σ(rm, yn)} and ={σ(rm, yn)} are normally distributed according to the following prob-
ability distribution:
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Image after Speckle FilteringSpeckled Image

Figure 5.3: Speckled Image and Speckle Filtered Image

p[<{σ(rm, yn)}] =
1

s
√

2π
exp

[
−<{σ(rm, yn)}2

s2

]
(5.10)

p[={σ(rm, yn)}] =
1

s
√

2π
exp

[
−={σ(rm, yn)}2

s2

]
(5.11)

where
E[<{σ(rm, yn)},={σ(rm, yn)}] = 0 (5.12)

and

E[<{σ(rm, yn)}2] = E[={σ(rm, yn)}2] = s2/2 (5.13)

The magnitude and the phase of σ(rm, yn) can also be considered as Rayleigh and uni-
formly distributed, respectively [1]. Equation 5.9 actually represents the incoherent part
of the field as it is randomly distributed. The coherent part may be represented by a
simple mean µ, thus representing the total field given in a reflectivity map as

σ(r, y) ∼ {N(µr, s2/2) + jN(µi, s2/2)} (5.14)

where N(µ, s2/2) represents a normal distribution with mean µ and variance s2/2.

Summarizing the preceding discussion, a field reflected from a random rough surface may
be considered as Gaussian whose mean and variance can be calculated by an electromag-
netic model. This model itself takes as input the surface variance, its correlation length
and the angle of incidence. The output mean and variance (included in the S matrix),
that actually represent the coherent and incoherent parts, respectively, of the backscat-
tered field are used to calculate the backscattering coefficients (given in the reflectivity
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Figure 5.4: Validity Domain of Electromagnetic Models [85]

map) for different polarizations by generating Gaussian variables as follows:

σh(r, y) ∼ Shh{N(µr, 1/2) + jN(µi, 1/2)} (5.15)

σv(r, y) ∼ Svv{N(µr, 1/2) + jN(µi, 1/2)} (5.16)

σhv(r, y) ∼ Shv{N(µr, 1/2) + jN(µi, 1/2)} (5.17)

σvh(r, y) ∼ Svh{N(µr, 1/2) + jN(µi, 1/2)} (5.18)

The different models existing in literature are Small Perturbation Model (SPM), Integral
Equation Model (IEM), Physical Optics (PO) and Geometric Optics (GO) models. Each
model has a different validity domain that is shown in figure 5.4, depending on the product
of wavenumber and roughness parameters [85].

An important question often ignored is the minimum number of scatterers to be present
inside a resolution cell for the presented speckle model to be applicable, as the central
limit theorem cannot be applied if N is small. [11] uses the results of [57] to infer this
number to be 4, whereas [58] gives this number as approximately greater than 5. From
these results, the limiting factor can be seen as the resolution of SAR. In case of a high
resolution (less than five times the wavelength), the number of scatterers such that each
scatterer’s size is comparable to the size of the wavelength may be less than this limit and
thus the above mentioned speckle model cannot be applied and alternative models have to
be used. Another reason for non-gaussian speckle model is in case the surface correlation
length is greater than or comparable to the resolution cell [56] and N may be considered
small. This situation is still under investigation for SAR [59].
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5.4 Extended Scene-Polarimetric Case

An extended scene consisting of a ground surface and a building having a flat roof is used
for simulation examples and is shown in figures 5.5 and 5.6.

The building length in the along-flight direction is represented by yb, its height by hb, its
width in ground-range direction by xb (in slant-range by rb), its orientation angle (com-
pared to the along-flight direction) by ψ and the incidence angle at the building wall by θ.
There are certain features in a SAR image of such a scene that shall be explained as follows:

Layover

It corresponds to an inversion of geometry [1] and overlap of the points in an image that
are at the same slant-range distance but different ground range positions and heights as
shown in figure 5.5. In this case, part of the roof and all of the wall fall in front of the
building wall and there is an overlap between the ground and the roof. The length in the
slant range is given by [60].

∆dl = hb cos θ (5.19)

Shadow

It corresponds to a region that produces no backscattered signal as shown in figure 5.5.
Its length in slant range can be expressed as [60]

∆ds =
hb

cos θ
(5.20)
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Foreshortening

This effect leads to dilation and compression of different features in slant range as com-
pared to ground range. It is mainly due to the relationship between slant range and ground
range given by equation 1.11 and is dominant for objects near the sensor (near range).

5.4.1 Reflection Phenomena

There are different phenomena arising due to reflection of the incident electromagnetic
waves that are considered here:

• Single bounce (SB) from ground, wall and roof.

• Double bounce (DB) due to reflections from wall going towards the ground and
reflected towards the sensor (Path A-B-C-D) and vice versa (Path D-C-B-A).

• Triple bounce (TB) from the wall-ground-wall (Path A-B-C-B-A) or ground-wall-
ground (Path D-C-B-C-D) reflections towards the sensor.

The area of the wall is ybhb, whereas the area covered on the ground by both DB and TB
is ybhb tan θ cosψ and xbhb tan θ cos(π/2 − ψ) [15], for the wall facing the sensor and for
the wall facing away from the sensor, respectively. The latter part is small if the building
is oriented at a small angle ψ. The next figure shows the distribution of DB and TB as
described in [61]. Two points should be noticed:

1. The distance traveled by waves from DB is equivalent to the case of the waves
incident and reflected from the building-wall interaction point. Thus, all the field
reflected from the area is spread over one range bin (represented by O1 in figure 5.7).
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2. The distance traveled by the waves in case of TB varies between the wall-ground
interaction point and a point corresponding to the building height projected on
ground, as shown in figure 5.7 by O2. The total reflected field is spread uniformly
over the range bins from O1 to O2.

An existing model proposed by [15], based on PO and GO model, is used. The wall and
the roof are considered to be totally smooth in the model, however, in this thesis, the lat-
ter is considered to be slightly rough (as in [62]) and its contributions are also calculated.
PO model is preferred, as the GO model is unrealistic in a typical urban environment.
However, the wall is assumed to be completely smooth and the field reflected by it is
calculated using a GO model. The model gives the coherent (µ) and incoherent part
(s) for each of the phenomena considered and calculates the S matrix. These values are
recalled here for reference (equations 5.21-5.29). The parameters given in table 3.1 are
used for a building with dimensions shown in figures 5.5 and 5.6, placed on a terrain of
dimensions xg and yg, in the ground-range and azimuth directions, respectively. The sub-
scripts sbw, sbg and sbr represent single-bounce from wall, ground and roof respectively,
whereas db and tb represent DB and TB contributions, respectively. s2

r and s2
g are the roof

and ground variance, respectively and lr and lg refer to their respective correlation lengths.

µsbw = ybhb cosψsinc(2kcyb sinψ) (5.21)
µsbg = exp(−2k2

cs
2
g cos2 θ)ygxg (5.22)

s2
sbg = exp(−4k2

cs
2
g cos2 θ)ygxgπl2g

+∞∑
p=1

(2kcsg cos θ)2p

p!p
exp

{
−(2kclg sin θ)2

4p

}
(5.23)
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Figure 5.8: Rotation of an Object during the Imaging Process

µsbr = exp(−2k2
cs

2
r cos2 θ)ybxb (5.24)

s2
sbr = exp(−4k2

cs
2
r cos2 θ)ybxbπl2r

+∞∑
p=1

(2kcsr cos θ)2p

p!p
exp

{
−(2kclr sin θ)2

4p

}
(5.25)

µdb = exp(−2k2
cs

2
g cos2 θ)ybxb tan θ cosψsinc(2kcyb sinψ) (5.26)

s2
db = exp(−4k2

cs
2
g cos2 θ)ybxb tan θ cosψπl2g

+∞∑
p=1

(2kcsg cos θ)2p

p!p

exp
{
−(2kclg sin θ sinψ)2

4p

}
(5.27)

µtb = exp(−2k2
cs

2
g cos2 θ)ybxb tan θ cosψsinc(2kcyb sinψ) (5.28)

s2
tb = exp(−4k2

cs
2
g cos θ2)ybxb tan θ cosψπl2g

+∞∑
p=1

(2kcsg cos θ)2p

p!p

exp
{
−(2kclg sin θ sinψ)2

4p

}
(5.29)

The presence of a sinc function is due to the integration over a rectangular patch, shown
in [63]. The model gives values corresponding to the narrowbeamwidth assumption, i.e.
all the incident waves in the beamwidth have more or less the same aspect (instantaneous
squint) angle at the building wall. In a more accurate representation, this is no longer
applicable as the beam consists of angles varying from −θy/2 to θy/2 that can be seen
equivalent to a narrowbeamwidth configuration and a building rotating from −θy/2 to
θy/2 towards the along-flight direction. Note that this is due to the azimuth angular mo-
tion of a scene relative to the SAR as described in [64]. The rotation causes the reflection
to be maximum, when the incident waves direction and the building wall are orthogonal
to each other.

This rotating/widebeamwidth effect can be taken into account by replacing ψ in the above
equations by a range of angles varying from −θy/2−ψ to θy/2−ψ. It can be demonstrated
by calculating values of µdb and s2

db that are shown in the next figure for angles of ψ = 0◦

and ψ = −4◦. It is evident that the coherent part is shifted and centered around ψ. The
same sinc function has been reported in [65], [66], [67] for dihedral reflectors that repre-
sents double bounce, whereas [62] refers to this as a non-stationary phenomenon present
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Figure 5.10: Incoherent Part of DB for 2 Different Orientations
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in SAR images of urban areas. The incoherent part does not show a big dependance on ψ
and hence it is assumed to be constant during the imaging process.

The shifting effect for the coherent part is apparent only in equations 5.21, 5.26-5.29.
The reason is that the ground and roof surfaces are assumed to be flat, whereas this effect
arises only in case of a sloped surface, which in the above case is a wall. For a tilted roof,
it can also appear and in the layover region, it may be present due to single bounce reflec-
tions from the wall. Note that the flat surfaces also "rotate" during the imaging process,
however, the reflected waves’ intensity does not change with the "rotation angle".

5.4.2 Generation of Reflectivity Map

The reflectivity map σ(r, y) can be divided into several parts, with each of them corre-
sponding to one phenomenon, and the respective coherent σc(r, y) and incoherent σi(r, y)
parts, i.e.

σ(r, y) = σcsbw(r, y) + σcsbg(r, y) + σcsbr(r, y) + σcdb(r, y) + σctb(r, y)

+σisbg(r, y) + σisbr(r, y) + σidb(r, y) + σitb(r, y) (5.30)

Simple geometric relations and equations 5.19-5.20 are used to calculate the area and its
position in slant range for each part of the reflectivity map. In case of the building roof,
the incidence angle does not change much as the building length is small and hence can
be assumed constant. The corresponding coherent and incoherent parts are calculated by
means of a PO model for each phenomenon (GO model for the wall) and spread regularly
over all the area in a straightforward manner, and then multiplied by a Gaussian variable,
(1)different for each phenomenon, having a mean of 0 and a variance of 1.

A description for the generation of the incoherent part for SB from roof is as follows:

σisbr(r, n) =
ssbr

PrQr
√

2
{N(0, 1) + jN(0, 1)}

∑
p,q

δ(r − rp, y − yq) (5.31)

where Pr and Qr refer to the total number of bins the roof covers in the slant range
and azimuth directions, respectively and the summation term represents the position of
the roof. The same process applies for the incoherent part of SB from ground, DB and TB.

For the coherent part, the aspect angle varying feature of the reflected field has to be
taken into account. By considering ky ≈ 2kc sin θas, where θas = arcsin( ky

2kc
), the coherent

part for the wall such that ψ = 0 may be written in frequency domain as

σcsbr(r, ky) =
µsbw
Pr

sinc(kyyb)
∑
p

δ(r − rp) (5.32)

Thus, it may be generated directly in the frequency domain using the values of θas given

(1)As described in [82], the speckle should be applied at the resolution cell level, otherwise spatial
correlation should be taken into account
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earlier, to have a linear phase spacing in the frequency domain followed by an IFFT, that
leads to

σcsbr(r, y) =
µsbw
PrQr

rect(
y

yb
)
∑
p

δ(r − rp) (5.33)

For a building oriented at an angle ψ, θas =⇒ θas−ψ and equation 5.33 may be modified as

σcsbr(r, ky) =
µsbw
Pr

sinc(kyyb − kψyb)
∑
p

δ(r − rp) (5.34)

where

kψ = 2kc sinψ (5.35)

The IFFT of equation 5.34 gives

σcsbr(r, y) = exp(jkψy)
µsbw
PrQr

rect(
y

yb
)
∑
p

δ(r − rp) (5.36)

σcsbr(r, y) is then rotated by an angle ψ to take into account the geometrical orientation of
the building that results in

σcsbr(r, y) = exp(jkψy)
µsbw
PrQr

∑
p,q

δ(r − rp, y − yq) (5.37)

The same procedure applies to coherent parts for DB and TB. For SB reflection from
the ground and roof, the coherent part can be generated (due to absence of aspect angle
dependency) by simply dividing the calculated variance over the area, ignoring any shifted
sinc function. The coherent and incoherent parts are calculated for each polarization to
give the corresponding reflectivity maps.

A point that immediately comes to mind is that the coherent part can be directly generated
using the time domain representation given in equation 5.37. However, an inconvenience
may arise as the exponential multiplication gives rise to a circular shift and in case of a
large ψ, it will cause the sinc function to wrap around, instead of being shifted "out" of
the imaging aperture angle. This can be overcome by high oversampling, however, the
simplest and the most accurate way is to generate it in frequency domain as shown in
figure 5.11.

5.4.3 Examples

The parameters in table 3.1 are used for simulation examples. A few changes have been
made in accordance with the characteristics of a real scene, that are shown in table 5.1
alongwith the roughness parameters. As a first example, a non-oriented building having
length, width and height of 70m, 10m and 20 m, respectively is simulated. The reflectivity
maps for co-polar polarization channels are depicted in figure 5.12. Note that the inten-
sity level in hh is slightly higher than that in vv. hv and vh polarization channels are not
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Figure 5.11: Generation of Reflectivity Map

Table 5.1: Scene and Simulation Parameters (Stripmap SAR without any Squint)

Sensor Height 3391 m Sensor Velocity 89 ms−1

sg 0.02 lr 0.25 m

sr 0.005 lg 0.06 m

shown, as from the PO model, the contribution from ground, roof and wall is zero. The
presence of a high double bounce can be remarked, that is localized at one range position.
Raw data is generated using these reflectivity maps and OKA is used to generate the
respective images that are shown in figure 5.13. Images can also be generated directly by
convolving the reflectivity map with a reference image-phase inclusion operation. Figure
5.14 shows the amplitude and phase of the co-polar coherence that resembles the results
given in the literature [18].

In the second example, a building at an orientation of 4◦ is simulated and all the above
mentioned steps are repeated. It can be seen that in this case the intensity levels are
slightly lower than those in the case of non-oriented building, as the reflection area for DB
and TB decreases.

5.4.4 Subaperture Analysis

The presence of sinc functions in the coherent part of the buildings’ response gives rise to
an aspect angle changing response, that has been included in the simulation as described in
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Figure 5.12: Generated Reflectivity Map for a Non-oriented Building

Figure 5.13: Focused Images for a Non-oriented Building

Figure 5.14: Magnitude and Phase of Co-polarized Correlation Coefficient for DB
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Figure 5.15: Generated Reflectivity Map for an Oriented Building

Figure 5.16: Focused Images for an Oriented Building
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Table 5.2: Scene Parameters for Subaperture Analysis

Building yb xb hb ψ

A 70 m 10 m 20 m 0◦

B 70 m 10 m 20 m 2◦

C 70 m 10 m 20 m −2◦

D 70 m 10 m 20 m 6◦

E 70 m 10 m 20 m −6◦

the preceding discussion. In order to check the effectiveness of the simulation, a subaper-
ture analysis is carried out that consists of dividing the azimuth beamwidth in different
parts, which is equivalent to imaging the building from different range of aperture angles,
but with a lower azimuth resolution [16]. This can be seen by the following relationship
between the aspect angle and the azimuth wavenumber:

θas = arcsin
(
ky
2k

)
(5.38)

Thus, dividing the azimuth frequency spectrum of RD into Nsa parts leads to the following
aspect angle ranges:

∆θasp = [θy/2− (p− 1)∆θy, θy/2− p∆θy] (5.39)

for p = 1...Nsa and ∆θy = θy/Nsa.

In [16], equation 5.38 has been approximated by

θas ≈ arcsin
(
ky
2kc

)
(5.40)

that requires the conditions ∆k
kc

<< 1 and 2k sin θas << 1 to be satisfied. For equal dis-
tribution of energy in all the subapertures, the varying transmitted wavenumber should
be taken into account as in equation 5.38. This is demonstrated in figure 5.17, where the
solid lines show the subaperture formation according to equation 5.38, while the dotted
lines show the formation according to equation 5.40. It is apparent that the subapertures
formed by solid lines lead to equal distribution of energy, that is important in case of a
large azimuth beamwidth. Moreover, these subapertures avoid any "spill-over" of energy,
an effect that arises in case of the apertures formed by the dotted lines. This can be im-
portant especially in case of presence of any coherent part of spectrum at the subaperture
boundaries.

For the purpose of illustration, the aperture angle was increased from 4◦ to 6◦ and 5
buildings were simulated at different orientations according to table 5.2. The reflectivity



126 Raw Data Simulation for Extended Scenes

ky

k-θy/2

θy/2

Figure 5.17: Subaperture Formation

map, corresponding image for vv channel and in Pauli basis are shown by figures 5.18 -
5.20, respectively.

Three subapertures of 2◦ each were formed, corresponding to an angle range of 3◦ to
1◦ (subaperture 1), −1◦ to 1◦ (subaperture 2), and −1◦ to −3◦ (subaperture 3). A sub-
aperture analysis will show a change in DB response, that will be highest in different
subapertures for different orientations. TB and wall response change also, however, they
are weaker than the DB, and are, therefore, less noticeable, e.g., in subaperture 1, build-
ings oriented from 3◦ to 1◦ will show the highest response.

As predicted, building B has the highest DB intensity in subaperture 1, shown by fig-
ure 5.21, whereas for buildings A and C, it is highest in subapertures 2 and 3, shown by
figures 5.22 and 5.23, respectively. For buildings D and E, the response remains stable as
their orientation angles (−6◦ and 6◦) are not covered within the azimuth beamwidth (−3◦

to 3◦). The incorporation of this anisotropic behavior means that time-frequency analysis
can be carried out on the simulated data, unlike [61].

5.4.5 Simulation in case of Motion Errors

A complete scene consisting of a building shown in figure 5.12 was used for RD simulation
using the method presented in figure 4.15. The trajectory deviations have the sinusoidal
form described in section 4.5.1 with a higher maximum amplitude. The simulated RD was
used for image formation using the CSA and the resulting images with and without MoCo
are shown in figure 5.24. The effects of motion errors are visible, which cause a spreading
of the image in the azimuth direction. After MoCo, the image is well focused.
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Figure 5.18: Generated Reflectivity Map for Buildings Oriented at Different Angles
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Figure 5.19: Focused Image for Buildings Oriented at Different Angles
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Figure 5.20: Focused Image in Pauli Basis for Buildings Oriented at Different Angles
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Figure 5.21: Focused Image in Subaperture 1
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Figure 5.22: Focused Image in Subaperture 2
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Figure 5.23: Focused Image in Subaperture 3
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Figure 5.24: Images, without MoCo and after MoCo

5.4.6 Introduction to Interferometric SAR RD Simulation

As described in [1], [68], [69], [70], there exists decorrelation between the master and slave
images. This may be due to different factors, such as misregistration (m), difference of
imaging geometry (g), temporal decorrelation (t-scene changes between two different ac-
quisitions), thermal noise (s), etc. The total correlation can be expressed as the product
of the individual correlations gives as follows:

γi(rm, yn) = γim(rm, yn)γig(rm, yn)γit(rm, yn)γis(rm, yn) (5.41)

For simulation examples in this section, misregistration errors and system noise are ne-
glected, although they can be taken into account easily. In addition, an urban scene in
single-pass configuration is considered and temporal changes may be very small in this case.

InSAR RD simulation consists of generating RD twice according to the master and slave
configurations and taking into account the geometric correlation between them. [29]
presents an RD simulator based in time domain, whereas [36], [71] present an RD simula-
tor based in the frequency domain. [72] presents a simulator that generates a slave image
from a master image. [17] presents an interferogram generator. Here a frequency domain
approach based on chapter 3 will be presented that follows the work of [17] and [71] and in
the following discussion, the case of geometric decorrelation, its expression and its physical
interpretation will be demonstrated for a flat scene by considering the master and slave
RD, and the 2D FFT of the master and slave images.

s1(t, y) =
∑
m,n

σ(rm, yn)p

(
t−

2
√
r2
m + (y − yn)2

c

)
(5.42)

s2(t, y) =
∑
m,n

σ(rm, yn)p

(
t−

2
√

(rm −∆rm)2 + (y − yn)2

c

)
(5.43)
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I1(kr, ky) = |P (∆k)|2
∑
m,n

σ(rm, yn) exp(−jkrrm − jkyyn) (5.44)

I2(kr, ky) = |P (∆k)|2
∑
m,n

σ(rm, yn) exp(−jkr(rm −∆rm)− jkyyn) (5.45)

Equation 5.45 consists of an extra exponential term as compared to equation 5.44, that
can be divided in two parts:

exp(jkr∆rm) = exp{j2(∆kr + kc)∆rm} (5.46)

The term involving ∆kr arises due to difference of imaging geometry and represents a
position shift. The second term, which is infact the interferometric phase term causes a
range frequency shift, that gives rise to geometric decorrelation, as RD range spectrum
in the range direction covers different parts of the reflectivity spectrum [69] for both the
cases. This frequency shift can be calculated as the derivative of the term exp(jkc∆rm)
with respect to range, i.e.,

∆fm =
c

2π
d(kc∆rm)

dr
=
ckc
2π

d(∆rm)
dr

(5.47)

The derivative of ∆rm can be calculated by considering the distance between two points
at positions m and m+ 1 given by [1] as

∆rm −∆rm+1 =
b cos θm(rm − rm+1)

tan θm
(5.48)

that leads to

∆fm =
cb cos θm
λc tan θm

(5.49)

Knowing the relation that convolution of two rectangular pulses leads to a triangular func-
tion, this frequency shift is used to calculate the expression of the geometric correlation
that is given as

γig(r, y) = 1−
∣∣∣∣∆fmBt

∣∣∣∣ (5.50)

Note that this decorrelation is caused by a change of distance for each point in the two
configurations, that gives rise to the extra exponential term exp(jkc∆rm). This term, on
one hand serves to provide height estimation, and on the other hand causes a decorre-
lation, that degrades the interferogram quality, but can be removed [73], [74], [75] using
range spectral shift.

RD simulation consists of generating the RD pair with the correct correlation. This can
be achieved by generating similar master and slave reflectivity map (having a mean µ
and variance s) and multiplying the latter with the term exp{j∆kc∆rm} as shown in the
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following equation. The incoherent part of the reflectivity map is multiplied by the same
Gaussian random variables as the exponential part causes the decorrelation and subse-
quently equations 3.13-3.15 are used for RD simulation:

σ1(r, y) = µ+ s/
√

2{N1r(0, 1) + jN1i(0, 1)}
∑
m,n

δ(r − rm, y − yn) (5.51)

σ2(r−∆r, y) = µ+s/
√

2{N1r(0, 1)+jN1i(0, 1)}
∑
m,n

exp(−j2kc∆rm)δ(r−rm−∆rm, y−yn)

(5.52)

where N1r and N1i represent the real and imaginary parts of the speckle, respectively. In
order to avoid wraparound effects of frequency shift, the reflectivity map should be up-
sampled by a factor of atleast 2 in the range direction as described in [71]. The simulation
process is carried out twice to generate the RD set that can be processed to generate the
image pairs. If the aim of the simulation process is to study only the interferometric SAR
image pairs, this can be carried out by generating the image pair using equation 3.14.
Note that [17] is based on this methodology, however it uses only the reflectivity map for
the interferogram generation and does not take the band limiting effect of a SAR system
into account that may not be sufficient if the phenomenon of range spectral shift is to be
studied.

5.4.6.1 Simulation Examples

Interferometric SAR image pairs are simulated for a plane surface of size 100m in ground
range and azimuth directions, and a height of 20m. The SAR parameters are the same as
those shown in table 3.1 and the baseline is 1 m. An example of the interferogram phase
after flat earth phase removal is shown in figure 5.25. In order to check the accuracy of
the simulation, the estimated height for a fixed azimuth position is also plotted.

The next example consists of a simulation for an urban scene comprising a single build-
ing. This scene is divided into three parts according to the incidence angle, as the range
frequency shift is different for different angles:

• Ground surface, DB and TB having incidence angles of arccos
(
H
r

)
.

• Roof having incidence angles of arccos
(
H−hb
r

)
.

• Wall having incidence angles of arccos
(
H−zw
r

)
where 0 ≤ zw ≤ hb.

All these parts are multiplied separately with an exponential term, generating by using
the respective incidence angles in equation 1.55 and then used for RD simulation. Two
cases were considered:

1. A building of length, width and height of 70m, 10m and 20m, respectively. In
this case all the roof falls infront of the DB, leaving TB as the dominant reflection
phenomenon as shown by the reflectivity map in figure 5.26. The height estimates
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Figure 5.25: Measured Phase and Estimated Plane Height

from the simulated interferogram for a single azimuth position are also shown. Note
that the height estimate decreases at and after the DB position (as DB and TB
represent the ground position).

2. A building of length, width and height of 70m, 40m and 20m, respectively. The
resulting height estimates for one azimuth position is shown in figure 5.27. In the
case there is only a part of the roof in front of the DB. Thus the height estimate
decreases near the DB position and then again increases, eventually falling to zero.

Comments

In the presented simulation examples, three main sources of decorrelation are neglected:

1. Misregistration errors.

2. System noise that causes decorrelation according to the following expression [1]:

γis(r, y) =
1√

{1 + snr1(r, y)−1}{1 + snr2(r, y)−1}
(5.53)

where snr1 and snr2 represent the signal to noise ratio in the master and slave
images, respectively.

3. Topography that results in an extra phase shift and thus an extra decorrelation fac-
tor [76]. If the surface is Gaussian with a variance sg, this factor can be written as
(according to [77])

γit(r, y) = exp

{
−1

2

(
2πcb cos θmsg
λc tan θm

)2
}

(5.54)
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Figure 5.26: Reflectivity Map of Building (width=10m) and Estimated Height

Figure 5.27: Reflectivity Map of Building (width=40m) and Estimated Height
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Misregistration error effects can be included by a very high resampling of the slave reflec-
tivity map to take into account the position shifts caused by the difference of the master
and slave geometries. The remaining two effects can be taken care of by decorrelating
the master and the slave reflectivity map by a factor of γitγis. This can be carried out
by considering two complex random sequences n1 and n2. Another sequence n3 that is
correlated to n1 by a factor of γ can be generated by

n3 = γn1 +
√

1− γ2n2 (5.55)

Thus equation 5.55 is used to generate a correlated random sequence N2(0, 1) that is used
for slave reflectivity map generation described as follows:

N2r(0, 1) = γitγisN1r(0, 1) +
√

1− (γitγis)2N(0, 1) (5.56)

N2i(0, 1) = γitγisN1i(0, 1) +
√

1− (γitγis)2N(0, 1) (5.57)

σ2(r−∆r, y) = µ+s/
√

2{N2r(0, 1)+jN2i(0, 1)}
∑
m,n

exp(−j2kc∆rm)δ(r−rm−∆rm, y−yn)

(5.58)

This concept can be further extended for Polarimetric Interferometric SAR RD simulation
by considering the total correlation to be a product of polarimetric and interferometric
correlation [78]. The former is taken care of by the electromagnetic model used, whereas
the latter can be generated using equation 5.55 for each polarization.

5.5 Conclusions

This chapter applied the techniques proposed in the preceding chapters to a realistic scene,
consisting of a single and multiple buildings placed on a rough ground. The presence of
an anisotropic response in the azimuth direction was shown mathematically and included
in the simulation to make it more realistic. A subaperture analysis was carried out to
show this behavior in the simulated images. Interferometric SAR RD/image simulation
was introduced that made use of spectral shift to generate geometric decorrelation.





Conclusions and Outlook

This thesis has presented fast SAR raw data simulation and given examples for the case
of airborne stripmap mode and broadside geometry.

Chapter 1 presented the mathematical relationships between different SAR system pa-
rameters and resolutions in the range and azimuth directions. The advantages of a chirp
signal were described and it was shown that the sensor movement and the corresponding
data storage leads to the presence of an azimuth chirp as well as an unwanted effect called
range migration. The relationship between azimuth and transmitted frequency and the
corresponding trapezium-like shape was demonstrated and basic points about interferom-
etry and polarimetry were explained as well.

In chapter 2, frequency domain processing was introduced by a subpatch approach. It was
shown that this subpatch approach involves accuracy, computational complexity trade-off.
As a result, two of the main frequency domain processing algorithms, the Omega-k and
the Chirp Scaling algorithms were explained. The change of 2D spectrum, before and after
image formation was also demonstrated.

Chapter 3 examined raw data simulation in different domains. It was shown that the
two dimensional frequency domain is the best one in terms of accuracy and computational
efficiency. Two variants were proposed: The first one uses partial summation, while the
second one replaces this summation by an interpolation. A relationship between the re-
flectivity map and the corresponding SAR image was shown, that actually leads to the
conclusion that image formation algorithms can be reversed to generate raw data. It was
also shown that RD for a moving object can be generated by a geometric transformation
and interpolations.

Chapter 4 explained image formation and raw data simulation in the presence of mo-
tion errors. Two different approximate approaches were proposed for the latter purpose
and analyzed to find validity limits in terms of system parameters and motion errors.

Chapter 5 applied the techniques proposed in the preceding chapters to a realistic scene,
consisting of a building placed on a rough ground. The presence of an azimuth position
varying response was shown mathematically and included in the simulation to make it
more realistic. Interferometric SAR raw data/image simulation was introduced that made
use of spectral shift to generate geometric decorrelation.
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Figure 5.28: Conclusions in a Graphic Form
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The above presented conclusions can be summarized by figure 5.28 and the following
statements:

• Time domain simulation is the most accurate form of raw data simulation, however,
it requires a lot of computations and is quite slow.

• The equation S(k, ky) = P (∆k)
∑

m,n σ(rm, yn) exp(−j
√

4k2 − k2
yrm− jkyyn) is the

most accurate form for raw data simulation in the two dimensional frequency do-
main, and can offer significant computational savings in case the sensor trajectory is
assumed to be ideal. Raw data for a moving object can also be simulated efficiently
using this approach and a change of geometry.

• The equation S(k, y) = P (∆k)
∑

m,n σ(rm, yn) exp(−j2k
√
r2
m + (y − yn)2) can re-

duce computational complexity compared to the time domain simulation, when used
in partial summing operation to take into account trajectory errors. This may be
useful in case of extended scenes. For a smaller azimuth aperture, the complexity
may be further reduced by calculating Fourier Transforms in the azimuth direction
at the expense of accuracy.

• An urban scene consists of an anisotropic azimuth response that can be modeled in
terms of shifted sinc functions.

• Interferometric SAR image or raw data simulation can be carried out by using the two
dimensional frequency domain approach and different types of decorrelation factors
can be taken into account using spectral shift and partially correlated speckle.

Based on the terminology of [84], it can be said that the simulator presented in this thesis
is a combination of "SAR processing oriented" and "SAR oriented" simulator.

The results and the knowledge gained through this thesis will be applied further for simula-
tion of marine environment as observed by electromagnetic sensors as a part of the Brittany
region project MODENA (Modelisation de l’observation à distance de l’environnement
maritime), based on [49], [79], [80] and [81]. Moreover, there may be further extensions to
this work that can either improve the results presented here, or take into accounts different
cases that have not been considered. A few possibilities are:

• To extend the SAR raw data simulation for a squint-mode geometry. This can
be taken into account using frequency shift in the azimuth direction. The use of
this data may be used for different experiments alongwith the data for broadside
geometry.

• To examine in detail the phase difference between raw data for a time domain simula-
tor and the proposed simulation methods and reduce them, or find their dependency
on different factors, such as upsampling factor, interpolator type, etc.

• To take into account shadow of a moving object. In this thesis, it has been assumed
that a moving object is placed on a totally non-reflecting background. However, in
more realistic cases, there is the shadowing effect of the object on the surrounding
environment that will be quite pronounced in case of a big object or very high res-
olutions. This effect can be taken into account correctly by considering the shadow
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to consist of two parts: One part, which remains covered throughout the imaging
process and the second part that reflects partially during the raw data acquisi-
tion process, depending on the relative speeds between the sensor and the object.
This may be taken into account by partially generating the reflectivity map in the
frequency domain, as there is a direct relation between the azimuth distance and
frequency domain.

• To generate raw data for multiple moving points, each having a different azimuth
and range velocity. Until now, this process has remained elusive as varying range
velocities cause varying azimuth frequency shifts that cannot be incorporated effi-
ciently. For this purpose, the method presented in [49] may be studied as well as the
time-frequency techniques [40], [51]. [48] can also be explored for this purpose.

• To include misregistration errors, topography and system noise effects in case of
interferometric simulation and realistic scenes consisting of multiple buildings. An
efficient way to include misregistration errors, instead of oversampling of the reflec-
tivity map can also be explored based on the results of [19], [50].

• To extend the interferometric simulation to polarimetric interferometric case. This
may be possible by using partially decorrelated speckle between the master and slave
images for each polarization.

• To generate a backscattering model for an urban scene taking into account the pres-
ence of different structures such as doors, windows, tilted roof, etc. as well as the
presence of grass and trees. A more accurate electromagnetic model having a wider
validity domain may also be used. The results presented in [52] may be used as a
reference.

• To simulate data and images for Multibaseline Interferometric and Polarimetric In-
terferometric case, using decorrelated speckle that may be tested with algorithms
proposed in [53] for the former and [54] for the latter.
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Appendix A

Application of POSP to Calculate
Raw Data Spectrum for a Single
Point

In order to explain the POSP, a signal having the following form is considered:

g(t) = exp{jΘ(t)} (A.1)

Its Fourier transform (FT) can be written as:

G(f) =
∫ +∞

−∞
g(t) exp(−j2πft)dt

=
∫ +∞

−∞
exp(jπΘm(t))dt (A.2)

and

Θm(t) = Θ(t)− 2πft (A.3)

If this phase is rapidly varying, the integral given by equation A.2 is almost zero as its
positive and negative parts cancel each other. The only contribution to the integral will
be around the stationary point t0 where the derivative of the phase given by equation A.3
will be zero with respect to t, i.e.,

dΘm(t)
dt

|t=t0 = 0 (A.4)

A Taylor Series expansion of the phase in the vicinity of the stationary point gives [22]

Θm(t) ≈ Θm(t0) +
(t− t0)2

2
Θ
′′
m(t0) (A.5)
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where

Θ
′′
m(t0) =

d2Θ
′′
m(t0)
dt2

|t=t0 (A.6)

Making use of the relation∫ +∞

−∞
exp{ja(t− t0)2}dt =

(
jπ

a

)1/2

(A.7)

the integral given in equation A.2 can be written as follows:

G(f) =
(

j2π
Θ′′m(t0)

)1/2

exp{jΘm(t0)} (A.8)

This approximate form can be used to calculate the FT of a chirp signal and can be highly
accurate if the TBP (TBP = KT 2

p ) for the considered phase function is more than 100
[3].

The expression of the demodulated received signal by a SAR for a point at a position
m (ignoring the range and azimuth envelopes and taking the reflectivity to be equal to
one) is given as

sm(t, y) = exp

{
−j2kcdm(y) + jπKr

(
t− 2dm(y)

c

)2
}

(A.9)

where dm(y) =
√
r2
m + (y − ym)2. The expression of the received signal in one-dimensional

(1D) and two-dimensional (2D) wavenumber domains can be derived approximately us-
ing the POSP. Two cases will be considered: Small azimuth aperture and large azimuth
aperture. In the former case, the calculations are much simplified.

A.1 Small Azimuth Aperture

In this case, the radar-target distance can be written as

dm(y) ≈ rm +
(y − ym)2

2rm
(A.10)

using the parabolic approximation. Substituting this expression in equation A.9 gives

sm(t, y) = exp

{
−j2kc

(
rm +

(y − ym)2

2rm

)
+ jπKr

(
t− 2dm(y)

c

)2
}

(A.11)
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A.1.1 Azimuth Fourier Transform

The FT of the above equation in the azimuth direction can be computed by applying the
POSP to the following integral:

Sm(t, ky) =
∫ ∞
−∞

sm(t, y) exp(−jkyy)dy (A.12)

The phase of the above integral can be approximated as

Θm(y) ≈ −2kcrm − kc
(y − ym)2

rm
− kyy (A.13)

Taking its derivative with respect to y and equating the result equal to 0 gives the follow-
ing expression for y

y = ym −
rmky
2kc

(A.14)

The radar-target distance in the azimuth wavenumber domain can be written as

dm(ky) = rm +
rmk

2
y

8k2
c

(A.15)

making use of the preceding expression. The 1 D FT is written (by substituting the value
of y in Θm(y)) as:

Sm(t, ky) = exp

{
−j2kcrm + j

rmk
2
y

4kc
− jkyym + jπKr

(
t− 2dm(ky)

c

)2
}

(A.16)

A.1.2 2D Fourier Transform

The 2D FT is calculated by taking a further 1D FT of the preceding expression using the
following integral:

Sm(f, ky) =
∫ ∞
−∞

Sm(t, ky) exp{−j2πft}dt (A.17)

The corresponding phase is

Θm(t, ky) = −2kcrm +
rmk

2
y

4kc
− kyym + πKr

{
t− 2dm(ky)

c

}2

− 2πft (A.18)

Once again, taking a derivative with respect to t, and equating the result equal to 0 gives
the following expression for t:

t =
f

Kr
+

2dm(ky)
c

(A.19)
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Substituting the above value in equation A.18, the following expression is obtained:

Θm(f, ky) = −2kcrm+
rmk

2
y

4kc
−kyym+πKr

(
f

Kr

)2

−2π
f2

Kr
− 4πf

c

(
rm +

rmk
2
y

8k2
c

)
(A.20)

Using ∆k = 2πf/c and a few simple mathematical manipulations, the 2D FT is given as

Sm(∆k, ky) = exp

{
−j2(kc + ∆k)rm − jkyym − j

∆k2c2

Krπ
+ j

rmk
2
y

4kc
− j

∆krmk2
y

4k2
c

}
(A.21)

A.2 Large Azimuth Aperture

In this case, the approximation in equation A.10 cannot be used that makes the calculations
more complicated.

A.2.1 Time Fourier Transform

The phase of the integral that needs to be evaluated in this case is given as

Θm(t, y) = −2kcdm(y) + πKr

(
t− 2dm(y)

c

)2

− 2πft (A.22)

The derivation of this phase and the subsequent time when this derivative is 0 is given by

t =
f

Kr
+

2dm(y)
c

(A.23)

Substituing the above value of t in equation A.22, the phase can be written as

Θm(f, y) = −2kcdm(y) +
πf2

Kr
− 4πfdm(y)

c
(A.24)

or

Θm(∆k, y) = −2(kc + ∆k)dm(y)− ∆k2c2

4πKr
(A.25)

The last phase term is actually the phase of the range chirp and can be used to describe
the FT of the chirp as

P (∆k) = exp
{
−j∆k2c2

4πKr

}
(A.26)

It shows that the FT of a chirp signal is again a chirp, as described in [2].

Note that the use of FT assumes that the value of t is centered around 0, whereas, in
the actual received RD, the received chirps are centered around the time corresponding
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to the middle of the scene. Thus, the RD in case of processing by OKA should be multi-
plied by exp(−j2∆krref ) and the RD simulated by inverse OKA should be multiplied by
exp(j2∆krref ). rref is the reference range, which is usually chosen to be in the middle of
the scene.

A.2.2 Validity Domain for Small Azimuth Aperture Approximation

The validity of the FT pairs for the small azimuth aperture can be calculated by consid-
ering the following series expansion of the radar-target distance:

dm(y) = rm +
(y − yn)2

2rm
− (y − yn)4

8r3
m

+ ... (A.27)

The phase error due to ignoring terms higher than first-order, in the case of parabolic ap-
proximation, can be calculated by putting a limit that the phase error due to the second-
order term should be very small, assuming that it is large enough to contain the phase
error for higher-order terms:

k
(y − yn)4

4r3
m

� 1

k
∆Y 4

64r3
m

� 1 (A.28)

Assuming k ≈ kc and using the relationship given by equation 1.8, the limit on the az-
imuth aperture angle is

θ4
ymax �

64
kcrm

(A.29)

A.2.3 2D Fourier Transform

In this case, the phase function is

Θm(∆k, y) = −2(kc + ∆k)dm(y)− ∆k2c2

4πKr
− kyy (A.30)

The derivative of the radar-target distance with respect to the azimuth position is

d{dm(y)}
dy

=
y − ym√

r2
m + (y − ym)2

(A.31)

Using this value in the derivative of the phase function, the consequent manipulations give

y = − kyrm√
4(kc + ∆k)2 − k2

y

+ ym (A.32)
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Substituting this value in equation A.30 gives

Θm(∆k, ky) =
−2(kc + ∆k)rm

√
1 + k2

y

4(kc+∆k)2−k2
y

√
4(kc + ∆k)2 − k2

y + rmk
2
y√

4(kc + ∆k)2 − k2
y

−∆k2c2

4πKr
− kyym (A.33)

that leads to

Sm(∆k, ky) = exp
{
−jrm

√
4(kc + ∆k)2 − k2

y − j
∆k2c2

4πKr
− jkyym

}
(A.34)

This equation, that varies with the range and azimuth position, can be used to derive
matched filters in the 2D frequency domain and is used in the OKA.

A.2.4 Azimuth Fourier Transform

The inverse time FT of equation A.34 leads to an expression of RD in the time azimuth-
wavenumber domain. However, to simplify the calculations, an approximation is made [3],
[46] to the phase term of the integral as well as the substitution f = c∆k/(2π). Under this
approximation, a Taylor series expansion is used and any terms higher than the quadratic
term in transmitted frequency are ignored. The phase is given as

Θm(f, ky) = −
√

4k2
c − k2

yrm −
8kcπf

c
√

4k2
c − k2

y

rm +
8k2

yπ
2f2

c2(4k2
c − k2

y)3/2
rm −

πf2

Kr
− kyym + 2πft

(A.35)

Its derivative with respect to f is zero at the following value of f :

f = K(rm, ky)

t− 4kcrm

c
√

4k2
c − k2

y

 (A.36)

where

K(rm, ky) =
Kr

1−Kre(ky)
(A.37)

e(ky) = (k2
yπrm)/(k3

ca
3(ky)c2) and a2(ky) = 1 − (ky/2kc)2. Using the value of f given

in equation A.36 and a few mathematical manipulations elaborated as follows, the phase
simplifies to equation A.39.
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Θm(t, ky) = −
√

4k2
c − k2

yrm −
8kcπf

c
√

4k2
c − k2

y

rm
Kr

1−Kre(ky)

t− 4kcrm

c
√

4k2
c − k2

y

+ πe(ky)

(
Kr

1−Kre(ky)

)2

rm

t− 4kcrm

c
√

4k2
c − k2

y

2

− π

Kr

(
Kr

1−Kre(ky)

)2

rm

t− 4kcrm

c
√

4k2
c − k2

y

2

− kyym + 2πf
Kr

1−Kre(ky)

t− 4kcrm

c
√

4k2
c − k2

y


(A.38)

= −
√

4k2
c − k2

yrm + (t− 4kcrm

c
√

4k2
c − k2

y

)2 2πKr

1−Kre(ky)

+

t− 4kcrm

c
√

4k2
c − k2

y

2

πe(ky)K2
r − πKr

{1−Kre(ky)}2

= πK(rm, ky)
(
t− 2d(rm, ky)

c

)2

− 2kcrma(ky)− kyym (A.39)

giving the following expression:

S(t, ky) = exp

{
jπK(rm, ky)

(
t− 2d(rm, ky)

c

)2

− j2kcrma(ky)− jkyym

}
(A.40)

This expression is used in the CSA. It can be easily verified that the dependance of the
range migration trajectory on the azimuth position of the scatterer has been removed in
the time azimuth- wavenumber domain.
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Expanded View from Subaperture
Analysis

An expanded view of each building in different subapertures is shown in the next figures.
It can be seen that buildings A, B and C have the highest DB amplitude in subapertures
2, 1 and 3, respectively. Buildings D and E donot show a high DB amplitude in any of
the subapertures, however, the overall amplitude of the scene is the highest in subaperture
2. This is because, the roof and the ground have a small coherent component that lies
around 0◦ aspect angle.

Figure B.1: Magnified View of each Subaperture
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Figure B.2: Magnified View of each Subaperture (Cont’d)
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Résumé

Cette thèse traite de la simulation rapide de données SAR au moyen de méthodes de
synthèse inverse. Pour ce faire, les algorithmes omega-k et chirp scaling inverses sont
dévelopés pour le cas d’une trajectoire lineaire. Une transformation est proposée, qui per-
met de produire des données brutes d’un objet mobile à partir d’image SAR d’un objet
statique opérant dans le domaine spectral. Les déviations non-linéaires de trajectoire du
capteur sont aussi prises en considération en simulant des données partiellement dans le
domaine temporel avec l’approximation d’un faisceau d’antenne étroit en largeur ou avec
l’approximation d’une largeur de bande réduite. Toutes ces techniques sont analysées et
les résultats sont comparés avec ceux d’un simulateur temporel pris comme réfèrence. Les
données brutes sont simulées pour une scène complexe comportant un ou plusiers bâtiments
placés au sein d’un environnement naturel surfacique et ayant une réponse anisotrope. Fi-
nalement, la simulation d’images et de données interférometriques est abordée.

Mots-clés: Télédétection, radar à ouverture synthétique, méthodes de simulation.

Summary

This thesis concerns efficient SAR raw data simulation making use of inverse raw data
processing. For this purpose, the Omega-k and Chirp Scaling algorithms are inversed to
generate raw data for an ideal sensor trajectory. Raw data simulation corresponding to a
moving object is also shown to be a modified form of these two dimensional frequency do-
main simulation algorithms. The case of sensor trajectory errors is considered next and it
is demonstrated that this process can be carried out partially in the time domain by mak-
ing narrow-beamwidth and narrow-bandwidth approximations. These approximations are
analyzed, alongwith examples for a point scatterer to check the accuracy of the simulated
data compared to those generated by a reference time domain simulator. Finally, these
techniques are applied to generate raw data for a complex scene, consisting of a single or
multiple buildings placed on a rough ground. The anisotropic nature of the building re-
sponse is also taken into account, besides introducing interferometric image and raw data
simulation.

Keywords: Remote sensing, synthetic aperture radar (SAR), simulation methods.
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