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Chapter 1

Introduction

Radar imaging is based on emitting electromagnetic waves in the direction
of an examined scene and measuring the echo of the backscattered field to
generate a reflectivity map. Synthetic Aperture Radar (SAR) constitutes
an extension of imaging radar leading to an increased resolution.

Compared to optical and infrared systems, SAR sensors possess some
advantages: Since the radar antennas are active and provide their own illu-
mination source, they operate equally well during day and night in contrast
to passive sensors. As microwaves with wavelengths longer than one cen-
timeter permeate nearly undisturbedly small water drops, radar imaging
techniques can be used under unfavorable weather conditions such as in
the presence of clouds and rain. The large frequency diversity permits the
measurement of different characteristics of the studied area. For instance
at L-band the electromagnetic waves penetrate partially the forest canopy
resulting in backscattering contributions from the ground, the tree trunks
and the tree cover.

Over urban areas, the analysis of SAR data is a very difficult task due
to three main reasons: Radar images are geometrically distorted by layover
and shadow effects. The layover yields a superposition of different reflection
components. Scattering patterns are very complex with various contribu-
tions within one resolution cell. In urban scenes, particular phenomena like
single bounce reflection from surfaces such as building roofs and sport fields,
double bounce scattering generated by building wall-ground and tree trunk-
ground interaction arise. It may occur also higher-order reflection processes.
Lastly, SAR images are affected by the speckle effect that is normally mod-
eled as a multiplicative noise.

To overcome these problems some extensions of single-channel Synthetic
Aperture Radar have been proposed:

SAR Polarimetry studies how the polarization of an electromagnetic
wave is modified by interacting with a target or natural media [8,46]. These
modifications are significantly associated with geometric characteristics and



physical properties of the examined object such as its shape, orientation, and
dielectric features. Hence, polarimetric information coupled with the knowl-
edge of electromagnetic reflection behavior offers an additional dimension to
describe targets using SAR data. This allows the separation and identifi-
cation of scattering mechanisms of natural media employing differences in
the polarization signature for purposes of classification and parameter in-
version [12,13,32].

SAR interferometry is an established technique to measure terrain to-
pography [6,69,91]. This approach is based on the generation of an inter-
ferogram using two complex SAR images of the same area acquired from
two slightly different look angles. The phase difference contains informa-
tion related to the scene topography and permits the determination of the
scatterer height in order to generate high resolution digital elevation models
(DEMs). The interferometric coherence, which is sensitive to changes in the
arrangement of reflectors inside the resolution cells, can be used to monitor
changing processes. Differential SAR interferometry enables accurate map-
ping of elevation changes to detect small surface deformations [25,26,81,86].

In the past, two advanced multi-channel SAR approaches have been
studied:

While SAR interferometry permits the retrieval of the topographic height
of reflectors, the physics of scattering processes can be investigated via SAR
polarimetry. In polarimetric SAR interferometry both techniques are com-
bined to estimate the vertical location of scattering mechanisms [14]. To
extract physical parameters from single-baseline POL-InSAR, observations
a coherent model describing the reflection processes has been designed [75].
Schemes to inverse the electromagnetic model for retrieving forest param-
eters such as tree height and underlying ground topography have been in-
troduced [15,75]. Processing polarimetric single-baseline InSAR signals by
means of the ESPRIT algorithm has been proposed to investigate forested
areas [114] and applied to analyze urban scenes [42].

An extension of conventional two-dimensional SAR imaging is SAR to-
mography that allows the reconstruction of a three-dimensional scatterer dis-
tribution [84,85]. An airborne multibaseline interferometric SAR configura-
tion including fourteen parallel tracks has been used to form a synthetic aper-
ture in elevation. This set-up permits to achieve focusing in height direction
and to generate a three-dimensional SAR image [84,85]. The tomographic
SAR imaging approach has been applied to forested areas where both the
ground level and the tree canopy have been distinguished resulting in an
estimation of tree height and ground topography. Since the tomographic
processing preserves the phase information the scattering pattern inside the
studied volume has been examined using polarization diversity [84,85]. A
three-dimensional radar imaging technique of vegetation using single and
dual-baseline polarimetric interferometric SAR observations called polariza-
tion coherence tomography has been developed recently [16,17].



Lately, spectral analysis techniques have been analyzed in detail to pro-
cess single polarization multibaseline interferometric SAR data [37,39,63].
These algorithms serve two main purposes. Firstly, they retrieve the param-
eters of signals such as their spatial frequency and reflectivity (estimation
problem). The estimate of the spatial frequency or phase allows the calcu-
lation of the height of scatterers. Thus, high resolution methods resolve the
layover problem by extracting the characteristics of multiple backscattering
sources inside the same range-azimuth resolution cell [37]. The reflectivity
estimates result in three-dimensional images [63]. Secondly, spectral analysis
techniques determine the number of sources (detection problem).

Several nonparametric and parametric array signal processing techniques
for the analysis of single polarization MB interferometric signals have been
scrutinized: Classical beamforming [45] and Capon [11,37] are nonparamet-
ric methods to determine simultaneously phase and amplitude. They do not
make any assumption about the statistical properties of the received signal.
The MUSIC [37,100] and least squares methods [63] are model-based al-
gorithms for frequency and reflectivity estimation, respectively. Multilook
RELAX [37,63] is a parametric joint frequency and reflectivity estimator.
In the InSAR scenario, they operate under modeling error, since they do not
take the speckle phenomenon into account. Despite this fact, model-based
algorithms produce generally better results than nonparametric techniques.
They refine the resolution and reduce considerably the influence of sidelobes.
The second major purpose of spectral analysis techniques is to extract the
number of sources, called the detection or model order selection problem.
Although this problem is severely aggravated in the case of InSAR data due
to speckle, common information theoretic criteria like the minimum descrip-
tion length and the efficient detection criteria are utilized to solve it [38,65].

Recently, spectral analysis techniques have been utilized for three-dimen-
sional imaging from single polarization dual-baseline observations [67, 90]
and polarimetric tomographic measurements [43, 44, 64]. The number of
backscattering sources has been estimated using model order selection meth-
ods on single polarization dual-baseline InSAR data [66].

In this work, a new way of analyzing polarimetric multibaseline InSAR
data is conceived by adapting the above described array signal processing
algorithms to this configuration. Until now, these techniques have been
developed for the special case of polarization diversity in the receive chan-
nel [23,118]. Since in the SAR context sensors are active, wave polarimetry
comprising two polarization states has to be extended to scattering po-
larimetry including four polarizations channels. In a first step the single
polarization MB InSAR signal model is generalized to the fully polarimet-
ric set-up. In this situation, the polarimetric MB interferometric steering
vector is a linear combination of four vectors each of them being associated
with one specific polarization. The coefficients of this combination form a
polarimetric scattering vector that allows to extract the physical features



of reflectors. Subsequently, polarimetric spectral estimation algorithms are
formulated in a rigorous mathematical way and their features are explained.
These new algorithms enhance the phase estimation of scatterers not merely
by increasing the dimension of the observation space, but also via calculating
optimal polarization combinations. Furthermore, they permit the retrieval
of some physical characteristics of the reflectors by performing a polarimetric
analysis of the estimated scattering mechanisms. Additionally, the polari-
metric reflectivity can be determined. To specify the number of sources, the
information theoretic criteria have to be adapted to the polarimetric MB
InSAR configuration as the degrees of freedom increase compared to the
single polarization case. Finally, a joint estimation and detection approach
is presented for the single polarization [113] and fully polarimetric case.

To demonstrate the performance of the conceived spectral analysis tech-
niques, they are applied to fully polarimetric dual-baseline InSAR, observa-
tions of an urban environment. First, the number of backscattering sources
is estimated by the model order selection techniques. Using single-baseline
POL-InSAR measurements, scatterer height and reflection mechanisms are
determined to produce a three-dimensional model of an urban scene. Sub-
sequently, the building layover is analyzed by means of polarimetric dual-
baseline interferometric SAR data. Finally, three-dimensional images are
generated that include polarimetric information about the reflection pro-
cesses.

The proposed array signal processing methods are applied to fully polari-
metric and repeat pass dual-baseline interferometric SAR images at L-band
acquired by DLR’s experimental SAR (E-SAR) system on August 1st, 2000,
over the city of Dresden in Germany.

The structure of the thesis is as follows:

A short introduction to basic and advanced techniques of Synthetic Aper-
ture Radar (SAR) is given in chapter 2. First, fundamental concepts of
Synthetic Aperture Radar are described. Subsequently, two established ex-
tensions of single-channel SAR are presented: SAR polarimetry and SAR
interferometry. Finally, two advanced multi-channel SAR approaches are
outlined, namely polarimetric SAR, interferometry and multibaseline SAR
interferometry.

Classical spectral analysis methods to process single polarization multi-
baseline interferometric SAR data are presented in chapter 3. First, an
established signal model for sensor array processing and models of MB In-
SAR point-like targets and extended sources are described. Model order
selection algorithms are explained that rely on information theoretic crite-
ria to estimate the number of sources. Spectral estimation techniques are
elaborated to retrieve the signal parameters such as the scatterer height and
their reflectivity from single polarization MB InSAR observations. Finally,
a maximum likelihood estimator is introduced that solves the combined



detection-estimation problem.

Spectral analysis methods are adapted to the polarimetric multibase-
line interferometric SAR scenario in chapter 4. First, signal models are
extended to include polarization diversity yielding the multibaseline polari-
metric interferometric steering vector. The model order selection techniques
to estimate the number of sources from MB POL-InSAR observations are
elaborated in the second section. Subsequently, the spectral estimation al-
gorithms are adapted to process polarimetric MB InSAR data. They permit
the retrieval of the spatial frequencies, the associated optimal scattering vec-
tors, and the polarimetric reflectivities. Finally, the polarimetric maximum
likelihood estimator is developed for solving simultaneously the detection-
estimation problem.

The performance of the developed array signal processing algorithms
is demonstrated in chapter 5 by applying them to fully polarimetric dual-
baseline InSAR observations over an urban environment. First, the num-
ber of backscattering sources is determined by the model order selection
techniques. By means of single-baseline POL-InSAR measurements the re-
flector height and scattering mechanisms are extracted to provide a three-
dimensional model of an urban scene. Subsequently, the building layover is
analyzed from polarimetric dual-baseline interferometric SAR data. Finally,
three-dimensional images are generated that include polarimetric informa-
tion about the reflection processes.

Finally, the results are summarized and some perspectives are outlined.






Chapter 2

Synthetic Aperture Radar

This chapter gives a short introduction to basic and advanced techniques of
Synthetic Aperture Radar (SAR). First, fundamental concepts of Synthetic
Aperture Radar are described. Subsequently, two established extensions of
single-channel SAR, are presented: While SAR polarimetry is sensitive to
the shape, orientation, and dielectric properties of scatterers, SAR interfer-
ometry allows to estimate their height. Finally, two advanced multi-channel
SAR approaches are outlined: Polarimetric SAR interferometry and multi-
baseline SAR interferometry.

2.1 Synthetic Aperture Radar

The fundamental concepts of Synthetic Aperture Radar (SAR) are presented
in this section. First, SAR image resolution is explained and subsequently
the properties and a basic processing approach of SAR raw data are intro-
duced. Finally, some important characteristics of SAR images are described.

2.1.1 SAR Image Resolution

Synthetic Aperture Radar (SAR) is a coherent, microwave imaging tech-
nique to produce a two-dimensional reflectivity map of a studied scene with
high spatial resolution. A monostatic radar system comprises a microwave
transmitter and receiver mounted on a moving platform such as an air-plane
or a satellite. As the radar moves along its flight direction, called azimuth
or along-track dimension, the antenna beam is pointed sidewards to the
ground. The direction perpendicular to the sensor trajectory is referred to
as slant-range or across-track dimension. The antenna emits consecutively
short radar pulses to objects on the ground that scatter off part of the en-
ergy to the receiver. The reflected signals reach the receiver after the time

delay

Ar= 2 (2.1)
C



that depends on the distance d between the scatterer and the sensor. The
propagation velocity of electromagnetic waves is denoted by ¢. Two reflec-
tors with different distances to the radar can be separated due to the different
time delays of their echoes. The slant-range resolution d, is a function of
the transmitted pulse duration 7, or the signal bandwidth BW [21,85]

cT c
Ogp = 5 = 2BW (2.2)
Very short pulse lengths are required to obtain fine range resolution, whereas
high energy pulses have to be emitted to achieve sufficient signal-to-noise
ratios (SNRs). To overcome this contradiction, a linearly frequency modu-
lated pulse (chirp) is transmitted. The energy which is distributed over a
longer duration is compressed by applying a matched filter to the returned
signal.
The azimuth resolution of a conventional side-looking radar is related to
the size of the antenna footprint on the ground. The angular spread «, is
given by

A
QOrg = Z
where ) is the wavelength and L the antenna length in the along-track

direction. At range rg, the spatial resolution in azimuth is obtained as

AT
Oaz = QraTo = TO (24)

For long distances between the sensor and the target the resolution in flight
direction degrades. To yield high along-track resolution the synthetic aper-
ture principle is employed: The response of a reflector on the ground is
contained in several radar echoes leading to a phase history over the illu-
mination time. By coherently combining pulses, a synthetically enlarged
antenna is constructed. An artificial antenna array is built up using the
movement of a single sensor.The beam spread of the synthetic antenna of
length L, is given by

(2.3)

A
Qsq = %
where the factor two accounts for the phase shift induced by the two-way
path between the antenna and the scatterer. The maximum length of the
synthetic aperture for an object at range distance rg is limited by the flight
path length during which the reflector is illuminated, i.e., the size of the
antenna footprint on the ground

(2.5)

AT
Lgo = apqro = TO (26)

Finally, the spatial resolution in azimuth using a synthetic aperture results
in [6,22]
L

Oaz = QgqT0 = 5 (27)



In contrast to other imaging techniques utilizing a telescope or microscope [21],
the achievable resolution in SAR does not depend on the sensor-target dis-
tance since the effective antenna length increases with longer range distances.
Moreover, the smaller the real antenna, the better the resolution in along-
track.

2.1.2 SAR Raw Data Characteristics

During the SAR data acquisition the observed scene on the ground is pro-
jected into the recorded raw data by a special transfer function. The basic
SAR signal features are explained, making the following simplifying assump-
tions: The sensor moves along a straight line in azimuth direction with a
constant velocity v. The along- and cross-track coordinates are given by
r = vt,, and r = 0, respectively. It is assumed that the radar is transmit-
ting a single frequency signal.

The reflection processes on the ground can be described by a reflectivity
function p(x,r) € C. It models the ground as a superposition of d-like point
scatterers

plx,r) = ané(a: — T, T — Ty) (2.8)

where p, € C is the complex backscattering amplitude related to the nth
scatterer, and &(x,r) the two-dimensional Dirac delta-function.

The antenna transmits radar pulses to the ground with the pulse rep-
etition frequency PRF and receives the backscattered echoes after a short
time-delay. The transmitted pulses of the sensor at position z is written as

sr(x, 1) = p(t) exp(jwt) = 6(t) exp(jwt) (2.9)

where p(t) represents a pulse envelope being a delta-function in this case,
and w the radar carrier frequency.

As the velocity of electromagnetic wave propagation ¢ and the platform
speed v differ by several orders of magnitude, the distance between the
emitting and receiving positions are ignored. When the radar pulse is sent
at time t = 0 for each azimuth location x, the echo of a target positioned at
(zn,7y) is received by the sensor after the time delay

Atn(xa T, Tn) = M (210)
where d(x — x,,7,) denotes the distance between the sensor at the position
x and the reflector at (x,,r,). Apart from a phase-shift of wAt,, that
encodes the travelled path the echo of a scatterer has the same shape as the
transmitted pulse. The received echo at position x after demodulation is a
coherent superposition of all echoes from the reflectors inside the illuminated



scene [85]

o) = Z o ( M) exp <_2jwd(x;mmrn)>exp(jwt)

= exp(jwt) // T, Tn) - 0(t — Aty)

2j d —dnyin
exp (- jud(@ = 2n, v ))dxndrn. (2.11)
C

The exponential contribution in front of the integral in equation (2.11) is
removed by coherent quadratic demodulation. The time delay At, and
hence d(z — zp,r,) determine both the scatterer phase and its location in
the raw data.

The range history of the nth scatterer is

d(x — xp,mn) = /12 4+ (. — zp)2. (2.12)

The hyperbolic curve with center at x, and curvature depending on r,
describes the echoes of a target received from different azimuth locations x.
This phenomenon is called range cell migration.

For SAR sensors with moderate to low resolution (r, > Lg,), the range
history can be rewritten using the Taylor series expansion [6]

(x — xn)z'

27y,

d(x — xp, 1) 210 + (2.13)
By means of the parabolic approximation the total response of a single
scatterer at position (x,,r,) results in

29 ; _ 2 .
87 (%, Zn,Tn) = pn exp <— Juj”) exp (W) rect <xL x”)
n sa
(2.14)

The first exponential component has a constant phase associated with the
minimum sensor-scatterer distance that is essential for SAR interferometry.
The variation of the received signal phase in along-track is determined by the
quadratic phase term of the second exponential contribution. The focusing
in azimuth relies on evaluating this specific phase term. The rect-function

1 if o[ <4

0 otherwise (2.15)

rect(x) = {
accounts for the finite illumination time.

The range migration phenomenon (2.12) causes the scatterer represen-
tation to be two-dimensional in the raw data domain. Thus, the inverse
process of focusing SAR raw data is in general a two-dimensional opera-
tion. Only under some simplifying assumptions it is possible to decouple
the along- and across-track variables.
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2.1.3 Basic SAR Raw Data Processing

SAR raw data processing for computing an approximation of the original
complex reflectivity p(z,r) relies generally on matched filtering methods. At
the pixel (z,r,), the image v(x,,r,) is calculated by

V(Tp,Tn) = // sant(x,t)href(x,t,wn,rn)dwdt (2.16)

where the received signal s%!(z,t) € C is correlated with the two-dimensional

reference functions hy.cf(x,t, £, 7,) that corrects the phase history at (x,,, ry).

To provide a basic understanding of SAR raw signal processing a method
that is based on simplifying assumptions is outlined in the following. In
practice more advanced techniques have to be employed [5,9]. Under the
condition

Ly, < 4\/ ToPsr (2.17)

the range variation of the echoes is so small during the illumination time
that range time and range distance are interchangeable through r = %t
Then the correlation in (2.16) becomes a one-dimensional operation and an

azimuth line of the image results in [85]

2r
v(z,ry) = sff’t (J:,t = 7”) Og href(x,70)

2 jwa?
= gt (;C,t _ ﬁ) @y exp <*7W ) (2.18)
c cry,

where ©®, denotes the correlation in a-direction and Ay f(x,7,) is the matched
reference function to focus a point scatterer positioned at range 7.

The correlation for the echo of a single scatterer at (x,,,r,) is obtained
as [85]

7)(.73,7“”) = Sf(ﬂfaxmrn) O href(xarn) (219)

Lsa

— / 2 pn eXp <] wrn) eXp (]W(g $n) > eXp (_](.L)(é $) ) dé—
rn—Lsa c cry cry

2 ] L
= Lsapn exp <j CUTn> exp (ﬂ(l‘ — $n)2> SiI]_C (w = (1‘ - $n)2> .
C Cl'p, Cl'p,

It follows that the achievable resolution in azimuth is given by

mery,

Paz = (2.20)

wlgg

The linear phase term in equation (2.19) is related to the minimum antenna-
reflector distance.
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Since this two-dimensional time domain correlation is very slow and in-
efficient it is performed in the frequency domain by

~ ~ or ~
V(ky,rn) = Sff’t <k’a:7 7”) Hyep(kyymn) (2.21)

where f/(kw, Tn), S’f;"t (kx, 2”7"), and H,. #(kz,rn) are the Fourier transforma-
tions of v(z, ry,), st (3:, 27"7"), and hyef(z,y), respectively, and k, represents
the spatial frequency in the z-dimension. Finally, the Fourier transform of

hyef(x,7n) can be written as [85]

1 .
Hyep(kgyrn) = %/hmf(a:,rn)exp(—jkxx)dx
1 jwz?
= —/exp (_jwa: )exp(—jkggm)dx
2w Cry,
1

jernk?
— 2.22
2 P ( 4w > ( )
where the last approximation follows from the principle of stationary phase [21].
The final image is obtained by the inverse Fourier transform of V' (kg,r,) in

(2.21). For high resolution imaging and advanced SAR applications sophis-
ticated SAR raw data processing techniques exist [9,70,71,83].

Q

2.1.4 SAR Image Properties
Geometric Distortions

The SAR range imaging mode causes geometric distortion phenomena. A
constant resolution in slant range direction d, is associated with the ground
range resolution [31]

581"

= (2.23)

Ogr =

Thus, the from near to far range increasing incidence angle ¥ results in an
improved ground range resolution dy..

Examining the impact of a surface slope 3, three scenarios can be dis-
tinguished [6]:

For —9 < B < 1, terrain slopes tilted towards the SAR sensor get
compressed (foreshortening) in the image, whereas those tilted away from
the SAR appear stretched.

A slope angle with 8 > 1 leads to an inversion of the positions in the
SAR image as illustrated in figure 2.1. For instance, in slant range a peak
of a mountain with a steep slope might be projected into the same azimuth-
range resolution cell as some point in the valley since the former is closer to
the antenna location than the latter. This phenomenon is called layover.

Figure 2.1 shows that shadow can be noticed in radar images for § <
Y — 5 where no backscattering energy reaches the sensor.
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Figure 2.1: Layover and shadow phenomena.

These geometric distortion phenomena play a crucial role in SAR remote
sensing of urban areas as buildings cause layover and shadow.

Speckle Effect

The generated SAR image, i.e., the backscattering reflectivity estimate, is
affected by the so called speckle effect. As SAR is a coherent sensor, the
speckle phenomenon is induced by interferences of waves scattered from
many randomly distributed elementary reflectors inside each resolution cell
leading to constructive and destructive interference.

Although speckle is a scattering phenomenon and not a noise, for ex-
tended sources it can be modeled as a multiplicative noise from the SAR
data processing point of view [54,55]. Over homogeneous media, the complex
speckled backscattering reflectivity is the product of the original unspeck-
led reflection coefficient and the multiplicative speckle contribution that is
generally assumed to be a complex Gaussian distributed random variable.

Due to speckle, SAR images have a certain granularity that complicates
image analysis. Before examining SAR data, it is necessary to apply filtering
techniques to reduce the speckle effect [56,57,79].

2.2 SAR Polarimetry

Polarimetry studies how the polarization of an electromagnetic wave is mod-
ified by interacting with a target or natural media. These modifications are
significantly associated with geometric characteristics and physical proper-
ties of the examined object. Thus, polarimetric information coupled with
the knowledge of electromagnetic reflection behavior offers an additional di-
mension to describe targets using SAR data. In the SAR context, wave
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polarimetry comprising two polarization states has to be extended to scat-
tering polarimetry with four polarizations.

This section presents the basic concepts of SAR polarimetry including
the mathematical formalisms. Finally, a physical interpretation of scattering
processes is explained.

2.2.1 Electromagnetic Wave Polarization

The radar signal is an electromagnetic wave and its propagation can be de-
scribed by the Maxwell equations. Under the assumptions that the medium
where the radar waves propagate is a vacuum and non-conducting, lossless,
and isotropic, the electric field E(r,t) € R?, and magnetic field B(r,t) € R3
observe the following laws:

divE =0 (2.24)
0B
IE+—=0 2.25
curl K. + ot ( )
divB =0 (2.26)
and | 5K
I1B=—— 2.27
cur c2 ot ( )

where c is the wave velocity in a vacuum.

The propagation equation of the electric field can be written in vector
notation as: o
10°E
-—=0. 2.28
c Ot? (2:28)
For planar waves the solution of the propagation equation is given in complex
form as

V2E +

E(r,t) = R (Eexp(ji(k - r — wt))) (2.29)

where the wavevector k indicates the propagation direction and depends on
the wavenumber 5
)
=—=— 2.30
N T (2.30)

with the wavelength )\ and the angular frequency w = 2nf.
In the Cartesian coordinate system and for a wave propagating in 2
direction the electric field can be decomposed along the axes  and 3 as:

k

E, = Ey, cos(wt — kz + §;) (2.31)

and
E, = Ey, cos(wt — kz + ) (2.32)

where 6, and d, are the absolute phases in & and g, respectively.
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Within a plane orthogonal to the propagation direction, chosen so that
z = 0, the electric field E describes a parametric curve with

E, = Ey, cos(wt + d;) (2.33)
and
E, = Ey, cos(wt + 0y). (2.34)

These are the equations of an ellipse and depend on the parameters Ey,,
Eyy, and 6, — 6. It can be rewritten as

E.\? . E.E, E,2 N\ .,
(52) —2mepy e+ (2] =stoe-s) @

For Ky, = Eyy, and d, —0, = =7, it describes a circle, whereas for 6, = J,[n]
it describes a line.

The electric field can be represented in complex form using the Jones
vector [68], i.e., E introduced in (2.29). The Jones vector is defined in the
plane perpendicular to the propagation direction by

e- 5 |- Eneie | a0

The Jones vector is defined in (2.36) employing the polarization basis (z, )
that is directly linked to the geometric basis. Since the Jones vectors are
elements of a complex vector space, other bases generated by orthogonal
Jones vectors are possible, e.g., a circular basis including left and right hand
circular vectors. For linear polarizations, the notation (h, v) instead of (z, )
is common.

2.2.2 Polarimetric Representation of Radar Targets

The interaction of an electromagnetic wave with a medium or a target gen-
erally modifies its polarization state. The Jones vector representing the
reflected wave can be expressed by the incident wave and a linear transfor-
mation matrix, called scattering matrix S € Maty(C), or Sinclair matrix as
well. It couples the illuminating field E; with the scattered field E, using
the polarization basis (iL,f}) by [8,78]

_ | Shn She
E, =SE,; = [ Sun Suw }E (2.37)

The elements of S are distinguished by the index, where the letter on the
right is associated with the incident wave polarization and the one on the
left with the scattered wave polarization. The diagonal elements of the Sin-
clair matrix are called co-polarized since they represent the multiplicative
complex coefficients relating the projections of the illuminating and reflected
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Jones vectors onto the same axis of the polarization basis. The off-diagonal
entries of S are referred to as cross-polarized. The Sinclair matrix describes
completely how the polarization of a monochromatic incident wave is mod-
ified by the interaction with a radar target. The power corresponding to a
radar target is denoted as SPAN and defined by

SPAN = [Spu|? + [Snol? + |Sun|? 4 |Su|?- (2.38)

In a monostatic configuration, i.e., when the emitter of the incident wave
and the receiver of the scattered wave are located at the same position, the
reciprocity theorem [12] implies that the Sinclair matrix S is symmetric:
Shv = Suh-

Vectorizing the scattering matrix by projecting it onto a matrix group
allows to obtain a target vector that contains the whole coherent polarimetric
information
ko
k1
ko
ks
where W represents a set of matrices which define a projection basis. The
best known bases are the one corresponding to the lexicographic ordering [12]

wo={[o o) [odl 2ol [0 2]} e

and the other one based on the modified Pauli matrices

wn-fald 2l Sl 1l 7]}

01 0 —1 | 10 0
(2.41)

The target vector associated with the lexicographic basis k4 € C* is given
by

k= %tr(S\I!) _ (2.39)

Shh
_ Shv
krs = S (2.42)
Sou
and that related to the Pauli basis kpy € C* is given by
Shh + va
1 Shh - Szw
kps = — 243
PR St S 24)
j(Shv - vh)

For the monostatic scenario the target vectors k3 € C3, and kpy € C3
reduce to

Shh 1 Shh+SmJ
ks = | V2S5, and  kpy=—— | Sph—Sw |, (244)
Sow \/§ 25hw
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respectively.

These vectors are coherent representations of the scattering matrix and
their norm equals the SPAN of the target, i.e., |[kz3[% = ||[kps||3 = SPAN.
The two representations are related by the unitary transformation matrix
Ay € U4((C)

1 1 0 0
B 10 0 1 —j
kL4 - A4kP4 — ﬁ 0 0 1 j kP4 (245)
1 -1 0 0
and Az € SO3(R)
1 1 1 0
ks =Askps=—| 0 V2 | kps, (2.46)
V211 21 o

respectively.

The coherent scattering matrices are measured by the radar antenna
apart from a phase term. This phase contribution is generated by the sensor-
reflector-sensor path and cannot be compensated. Employing quadratic
forms permits to overcome this problem and to study the second order po-
larimetric statistics, i.e., the variance of the signals in different polarization
channels and their mutual correlations.

Utilizing the lexicographic target vector k4, the polarimetric covariance
matrix Cy € Maty(C) is defined as [12]

E{SunSip} E{SmnSho} E{SmnSpp} E{ShnSyy}
E{SnoSpnt  E{ShoSh,} E{SmSpt E{ShuSiy}
E{SwSiy) E{SiSi,) E{SuSy) E{SmSi)
E{SuwSint E{SwSi,} E{SwuSi} E{SwwS;,}

(2.47)
For the monostatic case, the polarimetric covariance matrix C3 € Matg(C)
is given by [12]

Cy = E{kpskf,} =

E{SmSi}y  V2E{SmS;,}  E{SmS;,}
Cs = Blkpakly) = | VEE(SwSi)  2B{(SwS,)  VIE{SwS)
E{SywSint  V2E{SwS;,}  E{SwSi}
(2.48)
Similarly, the polarimetric coherency matrices C4 € Maty(C), and C3 €
Mat3(C) are obtained as [12]

T, = E{kpsk¥,} and  T3= E{kpskk;}, (2.49)

respectively. Since these matrices are Hermitian positive-semidefinite, their
eigenvalues are real-valued nonnegative. From equations (2.45) and (2.46),
it follows

C4 = A4T4Af and C3 = A3T3A§I (250)
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Thus, the covariance matrix C4 and the coherency matrix T4 (and Cg and
T3, respectively) are similar and have the same eigenvalues.

2.2.3 Physical Interpretation

SAR polarimetry allows to exploit multidimensional data. By transmitting
waves in diverse polarizations it is possible to characterize more accurately
the electromagnetic behavior of illuminated objects. This behavior is closely
related to certain physical properties of the target, such as its shape, its
dielectric constant, and its electric conductivity. Hence, SAR polarimetry
provides additional physical information of the examined scene.

Coherent Decompositions

Analyzing the Sinclair matrix or the associated target vectors is notably
efficient for deterministic targets. In particular, the Pauli basis constitutes
a starting point to model objects in a physical way. The different compo-
nents of the Pauli basis can be linked to canonical scattering behaviors. For
instance, a dominant contribution in the hh 4 vv channel corresponds to a
reflection on a surface or a trihedral, while a dominant component in hh —vv
indicates a horizontally or vertically oriented dihedral. A strong constituent
in hv is associated with a dipole or a dihedral object oriented at 7 according
to the power in the hh + vv channel. The targets have been characterized
by means of the coherent scattering matrix in [10,49,50, 108].

Incoherent Decompositions

Various approaches have been proposed for providing a physical interpreta-
tion of the incoherent polarimetric matrices [32,46]. A decomposition that
does not assume any a priori knowledge about the reflection pattern has
been suggested in [12]:

The projection of an incoherent polarimetric representation onto the ba-
sis of its eigenvectors allows to decompose in a unique manner a distributed
target into a sum of three pure targets whose target vectors are orthogo-
nal. Thus, the eigenvectors are associated with the physical characteristics
and correspond to scattering mechanisms. The coherency matrix T can be
decomposed into its eigenvectors

3
T3 = VAV = Z NevievH (2.51)
k=1

where V € SU3(C) denotes the matrix of orthonormal eigenvectors vy, and
A € Mat3(R) the diagonal matrix including the real-valued eigenvalues Ay
with A\ > 0. The coherency matrix T is decomposed into a noncoherent sum
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of three coherency matrices Ty = vkv{j , each weighted by the associated
eigenvalue [12,13]

3
T3 = Z e T (2.52)
k=1

As the matrices T have unit trace, the eigenvalues represent the power
associated with each contribution and are sorted: Ay > Ay > A3 > 0.

The eigenvalue set indicates the distribution of the total power on the
different decomposition components. This distribution describes the pro-
portion of power related to the mechanism and is defined by

Zi:l Ak

These normalized eigenvalues can be interpreted as pseudo-probabilities con-
nected with the statistical properties of the reflection processes in natural
media with p; > ps > p3 > 0. The eigenvalue spectrum can be specified by
two real-valued parameters, the entropy and the anisotropy [12,13].

The entropy indicates the degree of statistical disorder of the reflection
pattern and is given by

Pk (2.53)

3

H ==Y pilogsp. (2.54)
k=1

If the entropy is zero, the first pseudo-probability equals one. In this case the
coherency matrix represents a pure target and the scattering is deterministic.
Entropy close to one corresponds to a uniform distribution of the probability
set where the scattering process is a random noise.

The anisotropy is defined by

A=L2"DPs (2.55)
P2 + 3
and characterizes the relative importance of the secondary reflection mech-
anisms.
A unitary vector v € C? has five degrees of freedom and can be written

as
COS «x

v =exp(j¢) | sinacosBexp(jd) | . (2.56)

sin acsin 3 exp(j7y)
where ¢, «, 3,6,7 € R. The phase term ¢ depends on the way eigenvectors
are calculated and does not contribute to the scattering type [27]. The
angle o indicates the nature of the scattering mechanism. A value close to
zero relates to surface reflection, a equals 7 for scattering from a dipole, and
reaches 5 when the target consists of a dihedral object. The three remaining
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parameters are related to the orientation of the examined target around the
radar line-of-sight.

Using the angles {«, ag, a3} from the three eigenvectors of the coherency
matrix the average & value is computed by

Qi

3
= Zpkak. (257)
k=1

2.3 SAR Interferometry

SAR interferometry is an established technique to measure terrain topog-
raphy. The application of this technique is based on the generation of an
interferogram using two complex SAR images of the same area acquired from
two slightly different look angles. The phase difference contains information
related to the scene topography.

The fundamental properties of SAR interferometry are outlined and the
decorrelation sources of the interferometric coherence are detailed.

2.3.1 SAR Interferometry Basics

Cross-track SAR interferometry is a technique to determine the height lo-
cation of a scatterer. Two complex SAR images of the same scene are
aquired from slightly different sensor positions (see [6,69,91] and the refer-
ences therein). This is realized either in a single-pass mode employing two
antennas simultaneously or in a repeat-pass mode where the same region is
imaged repeatedly from different parallel trajectories.

Figure 2.2 displays the basic cross-track InSAR acquisition geometry.
The area is imaged by two sensors S; and So, that are separated by the
baseline B with the slope angle €. A scatterer p is positioned at the topo-
graphic height z. The range distances from the reflector p to S; and S5 are
r1 and 7y, respectively. As the range distances r1 and ro are different the
incidence angle ¥ and finally the object height can be estimated. Applying
the cosine law to the triangle in figure 2.2, the distance rs can be written as

r2 =712+ B> +2r\B cos(g —U+e). (2.58)

S
sin(d—e¢)

This can be reformulated as

2 _,2_ g2
sin(9 — ¢) = % (2.59)

If the baseline parameters B and e are known, the look angle ¥ can be
extracted by equation (2.59). Then the reflector height can be computed by

h = hg — r1 cos V. (2.60)

20



Figure 2.2: Interferometric SAR acquisition geometry.

This approach is called radar stereogrammetry [52,53].

The precision with which the target location is determined is in the order
of the range distance estimation accuracy and therefore limited by the range
resolution (2.2). SAR interferometry yields a considerably finer resolution
in the vertical direction since the SAR interferogram allows to measure the
difference between r; and r» much more precisely than each range distance.
After coregistrating the SAR images s; and sy [29], the interferogram is
calculated by

" A
5185 = |s1][s2]p1p3 exp <17(r1 - 7“2)) : (2.61)

Under the assumption that the complex reflectivity p remains constant for
small changes of the incidence angle, the phases of p; and ps are equal
and the interferometric phase only includes the path difference between the
sensors. Ignoring the fact that the phase of the interferogram is ambiguous
within integer multiples of 27, the absolute phase difference is a very precise
measure of the range difference between the antennas. In comparison with
radar stereogrammetry this rationale leads to noticeably enhanced angular
resolution.
Utilizing Aryy = rg — 71, the relation (2.59) can be rewritten as

AT%Q B2

Bsin(¥ —¢) = A .
sin(¥ — €) ri2 + 5. 2

(2.62)

If the baseline B is chosen to be small relative to the range distance 71, the
most significant contribution in equation (2.62) is the path difference Aris.
Neglecting the last two terms it follows

a7

4
6= Arip~ ;Bsin(ﬁ —e) (2.63)
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Let p be another reflector positioned at the same range distance but with
a topographic height difference Az to the first scatterer. Because of the
slightly changing look angle its interferometric phase is

4
H(Az) = TWB sin(¥ + AY(Az) — e). (2.64)
The relation between the phase and height differences is derived by [85]
T . .
Ap = TB(sm(ﬁl + AY(Az) —€) —sin(d —¢))
4
TWB cos(¥ — €)AY(Az)
4m B cos(V —€)
A 71 sin v

%

%

Az (2.65)

where the difference quotient of the sin function is used in the first approx-
imation and the second stems from
Az
AV(Az) ~ (2.66)

rysind’

Defining the orthogonal or normal baseline

B = Bcos(¥ —¢) (2.67)
the height sensitivity is
A¢p 4w B,
— = . 2.68
Az A 7r1sind ( )
The vertical wavenumber k., is introduced by
it B
k,=— . 2.
N A rsind (2:69)
The height of ambiguity
Arsind
= 2.70
227 2 B, ( )

describes the height leading to a phase change of 2w. Before calculating
the topographic height from the measured wrapped phase —7 < ¢ < 7 via
equation (2.68), the absolute phase has to be reconstructed using phase un-
wrapping methods [20,30,35,40,82]. The ability to resolve the 2 ambiguity
depends on the local terrain slope and the phase noise level caused by signal
decorrelation between the two acquired images [47,115].
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2.3.2 Interferometric SAR Coherence and Decorrelation
Sources

Due to the random aspect of SAR data, the correlation between the two
SAR images s; and s is defined by [115]

_ E{s1s5} .
VE{s157}E{s253}

Its absolute value |v| is called interferometric coherence and measures the
interferogram quality: For a coherence close to one the interferometric phase
distribution resembles a delta function. The phase difference appears noisy
for low coherences. When the coherence is zero, the distribution is uniform
and the interferogram does not contain useful information.

To analyze in detail the decorrelation sources the signal intensities of the
complex SAR images s; and sy are given by

v (2.71)

I} = B{s157} :/ ov1 |y (x,7)|2dV (2.72)
14

and
I = E{sss}} — / a0l ho(, 7)2AV (2.73)
1%

where 0,1 and 0,2 are the volume scattering coefficients, and hy and hy are
the coherent SAR impulse response functions of s; and so, respectively. If
it is assumed that h = hy = hg, and o, = 0,1 = 042, the interferometric
correlation can be expressed by

o fv ove(r) exp(—j2(k; — ko) - 1)|h(z,r)2dV
Jy oulh(z,r)2dV +n

(2.74)

where o, is the product of the complex scattering amplitudes of both im-
ages. It can be interpreted as the scattering contributions that are stable in
time. The location vector r is given by r = [z,y, 2|7, and the wavevectors
k; and ky by k; = k[0,sin®;, cos 9;]7, with the wavenumber k = 27” The
additive noise is denoted by n. The interferometric correlation v can be split
up into the following decorrelation sources [115]:

The thermal additive noise leads to the factor

Jy ou(@)|h(z,r)[?dV 1
YSNR = f h 24V = 1
V(Tv(r)| (l’,rf‘)‘ +n 1+ SNER

(2.75)

The lower the signal-to-noise ratio (SNR), the higher the decorrelation due
to thermal noise.

In the repeat-pass scenario temporal decorrelation occurs since the scat-
terers’ properties may change between the acquisitions:

- fv Jve(r)|h(x,r)\2dV
Ytemporal = fv UU(I‘)“L(.%', r)|2dV .

(2.76)
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If the scattering behavior does not vary during the two passes, i.e., 0, = Ope,

then Vtemporal = 1.
As the complex reflectivity is angle-dependent the decorrelation due to

the slightly different look angles is
o Jv ove(r) exp(—j2(ky — ko) - v)|h(z, r)[2dV
Vspatial = fV Uye|h(x,7”)|2dv

(2.77)

If the incidence angles 91 = 15 and wavenumbers k; = ko, then k; = ko and
Vspatial = 1. In this situation it is not possible to retrieve the reflector’s topo-
graphic height. The term sp.ti1 can be decomposed into two constituents
by means of the relation

exp(—j2(k; — ko) - 1) (2.78)
k cos 9B ksin9B
= exp <—j2 <<% —|—Ak:sin19> Y+ <¥ + Akcosﬁ) z>
B

where Ak = k1 —ko, k = ]“LQ]”, and the approximation Av ~ sin(Av) = =+
are used. The first component is [33]

[ ove(r) exp (—j2 (M + Ak sinﬁ) y) |h(z,r)|?dzdy

’Ysurface = f ‘h(w, r)‘dedy
(2.79)
Setting Ak = —% increases Ygurface- Lhis decorrelation generated by
different incidence angles can be reduced by wavenumber shift filtering [33,

80].
The second contribution can be expressed as [33]
fz Ove(2) exp (—j2 (% + Ak cos 19) z) dz
Yvolume = fz Toe (Z)dZ

(2.80)

which describes the decorrelation caused by scatterers distributed inside a
volume.
Summarizing, the coherence can be split up as

Y = 7YSNR  Vtemporal * Vspatial
YSNR * Vtemporal * Vsurface * Vvolume- (281)

Processing artefacts such as coregistration errors that decrease as well the
coherence || are not considered.

2.4 Advanced Multi-channel SAR

In this section two advanced multi-channel SAR approaches, namely po-
larimetric SAR interferometry and multibaseline InSAR are outlined. For
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single-baseline polarimetric SAR interferometry the mathematical formalism
is presented. Finally, SAR tomography using multibaseline InSAR observa-
tions is shortly introduced.

2.4.1 Single-baseline Polarimetric SAR Interferometry

While SAR interferometry permits to retrieve the topographic height of
reflectors, the physics of scattering processes is investigated via SAR po-
larimetry. In polarimetric SAR interferometry both techniques are coher-
ently combined to estimate the vertical location of scattering mechanisms.
The notion of polarimetric SAR interferometry is introduced by extending
the interferometric coherence to the polarization diversity scenario.

The scattering vectors ki, ko acquired from spatially separated positions
at either end of a baseline are given in the Pauli polarization basis as

1
V2

The covariance matrix T = E{ksk{!} € Matg(C) is defined by [14]
k; H 1 H } [ Ty Q2 ]
Te=F ki k = 2.83
0 {[1@][1 2] Qf Ty (2:83)

and is Hermitian, positive semidefinite. The matrices T;; € Matg(C) for
i =1,2 and Q1 € Mat3(C) are obtained as

k; (i, + St Shy — Si, 250, ] (2.82)

Ty = E{k ki}, (2.84)

Ty = E{kokil}, (2.85)
and

Qo = E{k ki}. (2.86)

where T;, are the conventional Hermitian coherency matrices containing the
fully polarimetric information for each separate image. The non-Hermitian
matrix €215 includes the interferometric phase relations of the different po-
larimetric channels between both images [14].

To extend the definition of interferometric coherence to diverse polariza-
tions the normalized vectors wi,wy € C3 with ||w;||o = 1 for i = 1,2 are
introduced. They can be interpreted as two scattering mechanisms. Then
the scattering coefficients p; € C are defined by

1 = W{Ikl and Lo = ngkg. (2.87)
The vector interferogram is formed by

E{mps} = E{(wi'ki)(w3'ks)"} = wil Qiows (2.88)
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and the polarimetric interferometric phase by

¢ = arg(E{pp5}) = arg(wi Q12ws) (2.89)
with
arg(wi wy) = 0. (2.90)

This leads to the generalized polarimetric interferometric coherence v € C
with o
E{Wl 912W2}

\/E{W{{anl}E{WgTQQWQ}

If wi # wa, the contribution of the polarimetric correlation 7,, between
w1 and wy is generally less than one and

N (2.91)

Y = Yint * Vpol (2'92)

where ~;,+ includes the different interferometric components as explained in
subsection 2.3.2. If the scattering mechanisms are identical, i.e., w1 = wao,
then vp, = 1 and 7 = 7;n¢. Using the formalism of the generalized co-
herence the interferometric coherence can be computed for any polarization
combination. For instance, to determine the correlation where the first im-
age has hh and the second hh — vv polarization, the scattering mechanisms
Wi = [%, %,O]T and wo = [0,1,0]7 have to be selected, respectively. The
interferometric coherence value depends strongly on the polarization chan-
nels since the backscattering processes differ with respect to the polarization
state [14].

As the interferometric coherence changes noticeably with polarization
an approach has been conceived to calculate the polarization combination
yielding the highest correlation [14]. Other methods to optimize the in-
terferometric coherence have been developed in [19] where both one single
and two scattering mechanisms are considered. These techniques have been
extended to the multibaseline POL-InSAR scenario in [72-74].

To extract physical parameters from polarimetric interferometric SAR
observations a coherent model describing the scattering processes has been
designed (see [75] and the references therein). It relates the SAR mea-
surables to the forest parameters like tree height. The random volume
over ground model takes a vegetation layer and ground interactions into
account. Schemes to inverse the electromagnetic model for extracting forest
parameters such as tree height and underlying ground topography have been
introduced in [15,75].

Besides forest parameter inversion, POL-InSAR has been applied to re-
trieve biophysical parameters of agricultural crops [4,92] and mine detection
and surface clutter rejection [93].

Processing polarimetric single-baseline InSAR, signals by means of the
ESPRIT algorithm was proposed in [114] to investigate forested areas and
used in [42] to analyze urban scenes.
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2.4.2 Multibaseline SAR Interferometry

An extension of conventional two-dimensional SAR imaging is SAR tomog-
raphy that allows the reconstruction of a three-dimensional scatterer distri-
bution [84,85]. An airborne multibaseline interferometric SAR configuration
including fourteen parallel tracks has been used to form a synthetic aperture
in elevation. This set-up permits to achieve focusing in height direction and
to generate a three-dimensional SAR image.

The tomographic SAR imaging approach has been applied to forested
areas where both the ground level and the forest canopy have been dis-
tinguished resulting in an estimation of tree height and ground topogra-
phy [84,85]. Since the tomographic processing preserves the phase infor-
mation the scattering pattern inside the studied volume has been examined
using polarization diversity [84,85].

Spectral analysis techniques have been utilized for tomographic imaging
from polarimetric multibaseline InSAR measurements in [43, 44, 64].

A three-dimensional radar imaging technique of vegetation using sin-
gle and dual-baseline polarimetric interferometric SAR observations called
polarization coherence tomography has been developed in [16,17].

Another application of multibaseline InSAR is differential interferome-
try to produce high-quality digital elevation models (DEMs) [24] and high
accuracy differential measurements for subsidence and surface deformation
detection and monitoring [18, 25,26, 76] based on a selection of stable re-
flectors known as permanent scatterers from spaceborne data. Airborne
differential SAR interferometry has been presented in [81,86] to retrieve the
error in a DEM and to investigate the temporal evolution of deformations,
for instance in agricultural fields.
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Chapter 3

Single Polarization
Multibaseline InSAR
Spectral Analysis Techniques

Spectral analysis methods to process single polarization multibaseline (MB)
interferometric SAR data are presented in this chapter. In the first sec-
tion, an established signal model for sensor array processing and models of
multibaseline InSAR point-like targets and extended sources are described.
The next section explains model order selection algorithms relying on in-
formation theoretic criteria to estimate the number of sources. Spectral
estimation techniques to retrieve the signal parameters such as the scatterer
height and their reflectivity from single polarization MB InSAR observations
are elaborated in the third section. Finally, a maximum likelihood estimator
is introduced that solves the combined detection-estimation problem.

3.1 Single Polarization MB InSAR Signal Models

First a common signal model for sensor array processing is presented that
is a starting point for conceiving some spectral analysis techniques such as
the MUSIC method. Subsequently a model for deterministic multibaseline
InSAR data is introduced which describes the response from point-like tar-
gets. The stochastic model for extended sources comprises the speckle effect
as multiplicative noise. Finally, the two preceding approaches are joined to
form a hybrid model.

3.1.1 Sensor Array Signal Model

A signal model widely used in sensor array processing (see [100,107,110,113]
and the references therein) is the following: For p sensors the received signal
vector y(I) € CP is a superposition of a finite number of signals buried in
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Figure 3.1: General MB InSAR imaging geometry.

additive noise

Ny
y() = si(ha(8;) + n(l) (3.1)
i=1
with the number of samples L, and [ = 1,...,L. The terminology is as

follows: s;(l) is the scalar complex amplitude of the ith signal, a(8;) a
vector dependent on the unknown parameter vector @; of the ith source,
and n(l) the additive noise. The number of sources is denoted by Nj.

In the context of single polarization multibaseline interferometric SAR
data, the vector a(0;) has the following structure: For a uniform linear array
(ULA) the steering vector a(p) € CP is a function of the interferometric
phase at the overall baseline ¢, i.e., the phase difference between the two
furthest phase centers. It has the form

a(p) = [Lexp{jo/(p — 1)},....exp{j}]". (3.2)

The phase ¢ is related to the spatial frequency w,w € [—m,7), by [37,89,107]

p=(p—Dw. (3.3)

For a general acquisition geometry, i.e., a nonuniform and nonlinear array,
the steering vector a(z) is dependent on the reflector height z, and is repre-
sented as
a(z) = [1,exp{jkz2},... ,eXp{jﬁsz}]T (3.4)
O]
where the vertical wavenumber is defined by x,, = 4{% (cf. equa-
i (1) sin (%)
tion (2.69)). In figure 3.1 an MB InSAR system with an irregular track
distribution is depicted.
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The noise n(l) is assumed to be a stationary and ergodic Gaussian
random vector, independent of the signals, with zero mean and covari-
ance matrix 021 € Mat,(C) where o2 is the unknown noise power, i.e.,
n(l) ~ NE(0,021).

For a finite set of observations {y(1),...,y(L)}, the matrix form of this
model is

y(1) = A(0)s(l) + n(l) (3.5)
with the matrix A(0) = [a(0:),...,a(0n,)] € Mat, y,(C) and the pa-
rameter vector @ = [07,...,0% ]7. The signal vector is defined by s(l) =

[s1(D), ..., sn,(D)]T. The data covariance matrix R = E{y(l)y" (1)} € Mat,(C)
is given by
R = ASAY 4+ 521 (3.6)

If the signal covariance matrix S = E{s(l)s” (1)} is nonsingular and diag-
onal, the signals are uncorrelated. When the matrix is not diagonal, they
are partially correlated. If the signals are fully correlated and hence S is
singular, the signals are called coherent.

Since the data covariance matrix is not known a priori, it has to be es-
timated. Under the assumption of a Gaussian distribution, the maximum
likelehood estimate of the sample covariance matrix R € Mat,,(C) is com-
puted by

L
R=13 vy ) (37)
=1

This signal model plays an essential role in the spatial problem of source
location using an array of sensors where it is common to postulate the follow-
ing simplifying assumptions [107]: The sources are considered to be located
in the far field of the array and to be point emitters. The sources and the
sensors are supposed to be in the same plane. Moreover, the propagation
medium is assumed to be homogeneous, i.e., not dispersive, and the waves
arriving at the array are supposed to be planar. The signals are assumed
to be narrowband and centered around a known frequency. Under these
conditions, the so-called direction of arrival (DOA) determines the source
location. The DOA can be also viewed as a spatial frequency.

This signal model is the basis for conceiving the model order selec-
tion techniques in section 3.2, the MUSIC algorithm in subsection 3.3.3,
and the maximum likelihood estimator for solving the combined detection-
estimation problem in section 3.4.
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3.1.2 Deterministic MB InSAR Signal Model

For point-like scatterers, a realization of the single polarization multibaseline
InSAR measurement vector y(l) with p antennas can be modeled as

y(l) = t+n()

Ns,
= >V exp(iti)al6r,) + (). (3.8)
=1

The first term, t, is highly coherent and can be associated with deterministic
targets [28]. Ny, represents the number of backscattering sources, /7, the
amplitude of their response, and 1); their phase. The steering vector a(6;,)
is introduced in subsection 3.1.1.

Hence, the MB InSAR received data vector y(l) is a Gaussian random
process with nonzero mean

N,

p=> /T exp(jii)a(by,) =t # 0 (3.9)
=1

and covariance matrix R € Mat,(C), i.e., y(I) ~ ME(u,R). The returned
signal (3.8) can be expressed in matrix notation as (cf. equation (3.5))

y()=A(0)s+n(l) (3.10)
with the signal vector s = [81, . ,sNSt]T , Si = /Tt exp(Jvi).

The structure of the non-central covariance matrix R = E{y()y" (1)}
of the received data (3.8) is

R = A(0)SA(0) + o1 (3.11)

with the signal covariance matrix S = ss’. This model takes coherent multi-
path scattering effects into account that might occur in urban environments.

3.1.3 Stochastic MB InSAR Signal Model

Recently, a signal model for the single polarization multibaseline InSAR
configuration with p sensors has been conceived [37,39, 63] incorporating
the SAR speckle effect as multiplicative noise. For extended sources the
observation vector y(I) is written as

y(l) = ¢(l) +n()
Ns,.

= Y VRx(l) @a(d,) +n(l) (3.12)
j=1

with the number of looks L, and [ = 1,...,L, and the Schur-Hadamard
product ® (elementwise multiplication). The contribution c(l) represents
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the response of distributed environments including the SAR speckle phe-
nomenon as multiplicative noise [37,39,63]. Ny, is the number of extended
backscattering sources. The unknown reflectivity 7, the steering vector
a(f.;) with the unknown parameter 6.;, and the additive noise n(l) are
defined as in subsections 3.1.1 and 3.1.2.

The multiplicative noise x;(I) € CP related to the jth source is modeled
as a stationary, circular Gaussian distributed random variable with zero
mean, unit variance, and covariance matrix C; = E{xj(l)xf (I)}. For dif-
ferent looks 11 # 2, the random processes x;(l1) and x;(l2) are assumed to
be independent and identically distributed (locally stationary in a homoge-
neous scene). This can be written in shorthand notation x;(1) ~ N£(0, C;).
Neglecting possible multipath effects the sources can be considered as inde-
pendent. If the speckle is completely correlated for each component, i.e., the
speckle is constant over the array, x;(I) = x;(I)1 with 1 =[1,...,1] € C?,
the signal is spatially fully correlated and has constant amplitude.

Thus, the stochastic MB InSAR received data vector y(l) is a Gaussian
random process with zero mean and covariance matrix R, which can be
written as

Ns,.

R =E{y()y"()} =Y _7,C; @ a(b.,)a" (6.,) + ool (3.13)
j=1

An alternative form is given by

N,
R=> 7.,A;C;A + 071 (3.14)
j=1

with the diagonal matrix A; = diag (1, exXp{jhz2e; by -+ eXPLikz, 2e; }) €
Mat,(C).

Under the condition of fully correlated speckle the data covariance matrix
reduces to

N,
R=> r,a(f;)a"(0,) + ool = A(0)SAT(0) + 021 (3.15)
j=1

where the steering matrix is defined by A(0) = [a(f,),...,a(fc,, )] €
Ne,
j=1
Maty, (R). In this case the covariance matrix resembles that of the sensor
array signal model (3.6) introduced in subsection 3.1.1.

Mat,, v, (C) and the diagonal signal covariance matrix by S = diag (. ) e

3.1.4 Hybrid MB InSAR Signal Model

Combining the signal models introduced in the previous two subsections
a hybrid model consisting of deterministic and stochastic constituents is
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presented now. The single polarization multibaseline InSAR returned signal
with p sensing elements is expressed by

y() = t+c()+n()

N,

= > VA esp(ji)alb,)

+ Y Vi) ©a(be) +n() (3.16)
j=1

with the number of looks L and [ = 1,..., L. The first term, t, is a highly
coherent part and can be associated with deterministic targets [28]. The sec-
ond contribution, c(l), represents the response of distributed environments
incorporating the SAR speckle effect as multiplicative noise [37,39,63]. The
total number of backscattering sources Ny is the sum of the number of de-
terministic and stochastic reflectors, Ns = Ny, + N,.. The characteristics of
the additive noise n(l), and the steering vector a(f) with the unknown pa-
rameter § are explained in subsection 3.1.1. The unknown reflectivity 7, and
the complex argument v are defined as in subsection 3.1.2. The properties
of the multiplicative noise x;(l) are described in subsection 3.1.3.

The MB InSAR data vector y(l) is a circular Gaussian distributed ran-
dom process. Since the deterministic and stochastic signal components are
assumed to be independent, the structure of the non-central data covariance
matrix R = E{y(l)y” (1)} for the hybrid model is

Ns,.
R=ASA" +Y 7.C;0a(b,)a"(b,) +ol1 (3.17)
j=1

where the steering matrix A and the signal covariance matrix S are defined
in subsection 3.1.2 and the speckle covariance matrix C; in subsection 3.1.3.
This model accounts for multipath reflections processes that arise in urban
sceneries.

The hybrid model for MB InSAR data and the sensor array signal model
outlined in section 3.1.1 exhibit the following discrepancies: The determinis-
tic part causes the returned signal to have nonzero mean and the stochastic
constituent includes the speckle effect as multiplicative noise.

The task is to estimate the following unknown quantities: The number of
backscattering sources Ng and the signal parameters such as the reflectivity
7 and the height z (or interferometric phase ¢). For single polarization
multibaseline InSAR received data, the techniques to solve the detection
problem are described in section 3.2 and the algorithms to estimate the
properties of the signals are presented in sections 3.3 and 3.4.
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3.2 Model Order Selection Techniques

Estimating the number of signals is a key issue in sensor array processing.
For instance the MUSIC algorithm explained in section 3.3 requires the
knowledge of the model order. In this section an approach for solving the
detection problem based on the application of information theoretic criteria
using the eigenvalues of the covariance matrix is presented.

To solve the detection problem, i.e., to estimate the number of sources,
Wax et Kailath [110] have used a model similar to the one described in
subsection 3.1.1, where the received signal vector y(l) is given by

N
y() =) _si(l)a(8:) +n(l). (3.18)
i=1
The Ng sources with N; < p, are assumed to have linearly independent
steering vectors a(@;). The objective is to estimate the number of sources
N,. This can be done by analyzing the structure of the covariance matrix
as detailed in appendix A, section A.1l.
For a set of L independent observations, Y = {y(1),...,y(L)}, and
a family of models, i.e., a parameterized family of probability densities
f(Y|6(k)), the task is to select the best fitting model. The general in-
formation theoretic criterion (ITC) can be expressed as

ITC(k) = —log f(Y | 6(k)) + g(n(k)) (3.19)

with the maximum likelihood estimate 6 of the parameter vector @ and
the assumed number of sources k. The first term is the log-likelihood of the
maximum likelihood estimator of the model parameters. The bias correction
g(n(k)) accounts for the difference (with respect to the mean Kulback-Liebler
distance) between the estimated density f(Y | 8(k)) and the modeled density
f(Y]6(k)). It is a function of the number of free real-valued parameters
n(k) in the vector 6. Then the number of sources N, can be estimated via

~

N = arg mkin ITC(k). (3.20)

Different choices of the penalty function lead to various approaches such as
the Akaike information criterion [1,2]

AIC(k) = —log f(Y | (k) + n(k) (3.21)
and the minimum description length [87,101]
A 1
MDL(k) = —log f(Y | 6(k)) + 5n(k)log L. (3.22)

MDL is a special case of an efficient detection criterion (EDC). EDC [3,116]
is a family of criteria

EDC(k) = —log f(Y |0(k)) + n(k)CL (3.23)
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where the function C', satisfies the following conditions

Cr

g =0 (3:24)
and o
. L
1 — " = 0. 2
et log(log L) o (3:25)

For the applications in chapter 5 two detection criteria have been utilized [38,
65]: C: =log L referred to as EDC; and C% = \/Llog L called EDCs.
Let k € {0,1,...,p— 1} be the assumed number of sources and let A\; >
- > A\p and vq,...,v, be the eigenvalues and eigenvectors, respectively,
of the covariance matrix R. As explained in appendix A, section A.2, the
model is described by the parameter vector

9(1{3) = <)‘17“‘>>‘k70-727,7V{7-"7V£)T' (326)

Using the eigenvalues M > > j\p of the sample covariance matrix R
the log-likelihood of the maximum likelihood estimator of the model param-
eters (see appendix A, section A.2) can be formulated as [110]

) [P, AV
log f(Y |8(k)) = (p — k)Llog < e ) :
p—k Zi:kzﬂ Ai

As derived in appendix A, section A.2, the degrees of freedom (DoF) for
the single polarization multibaseline interferometric configuration are [110]

(3.27)

nk)=k+1+k(2p—1—k) =k(2p— k) + 1. (3.28)

For the single polarization scenario the DoF depend on the number of sensors
p that equals the dimension of the observation space.

The final information theoretic criteria are obtained by inserting (3.27)
and (3.28) into (3.21), (3.22), and (3.23), respectively. For the Akaike infor-
mation criterion this yields

P AL/ (k)

AIC(k) = —(p — k) Llog ( TR > + k(2p — k). (3.29)
p—k Zi:kzﬂ Ai

The minimum description length is given by

p A/ (p=k) 1
MDL(k) = —(p — k)Llog ( ;:kﬂp ZA > + §k(2p —k)logL (3.30)
p—k Ei:k-{—l Ai

and the efficient detection criteria can be written as

I AL/ (p—F)
EDC(k) = —(p — k)L log < lekﬂp L ) +k(2p —k)Cr.  (3.31)
p—k Zi:szrl Ai
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It has been proved [110] that the MDL estimator is consistent, i.e., the
estimator attains the true number of signals with probability one if the
number of independent samples converges to infinity, L — oo. The EDC
are consistent [3,116] as well, whereas the AIC estimator is inconsistent.
Asymptotically AIC overestimates the number of signals [110].

A preprocessing technique to stabilize the variations of the small eigen-
values is diagonal loading [38, 65]

R =R+ 6021 (3.32)

where § is the loading factor and o2 the additive noise power.

The data model from which the order selection methods are derived and
the properties of the MB InSAR signals as modeled in subsection 3.1.4 differ.
This means the eigenvalues-based information theoretic criteria techniques
operate under model mismatch. The performance of the various ITC meth-
ods for analyzing single polarization multibaseline InSAR data has been
investigated by numerical simulations [38, 65] by taking into account the
speckle effect as multiplicative noise. EDC methods were found to be most
robust to model mismatching.

Estimating the number of signals is typically a part of the joint detection-
estimation problem. In general this problem is solved in two steps: First
the number of sources is determined, subsequently the signal parameters are
retrieved using the estimate of the first step. For example the model order
estimate may be fed into the MUSIC algorithm to extract the properties
of the signals. An alternative approach that is computationally much more
complex is the combined detection-estimation. Such a technique based on
the maximum likelihood estimator is presented in section 3.4. This method
is particularly beneficial in the threshold regime [110], i.e., in the situation
of low signal-to-noise ratio, small sample size, or closely “spaced” signals.

3.3 Spectral Estimation Algorithms

Spectral estimation algorithms to analyze single polarization multibaseline
InSAR observations are presented in this section. They allow to determine
the parameters of multicomponent MB InSAR signals that are affected by
the speckle effect. The parameters are the spatial frequency to retrieve the
scatterer height and solve the layover problem and the reflectivity for 3D
imaging. The techniques can be classified in nonparametric and model-
based methods. Beamforming and Capon are nonparametric approaches to
estimate the spatial frequency and reflectivity which make no assumption
about the statistical properties of the received signals. If a data model ex-
ists parametric or model-based techniques might have better performance
even in the case of model mismatch. The superresolution MUSIC algorithm
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Figure 3.2: Beamforming spectrum including two sources.

extracts the spatial frequency, the linear least-squares method the reflectiv-
ity, and the superresolution M-RELAX both the spatial frequency and the
reflectivity. The number of sources is assumed to be known.

3.3.1 Conventional Beamforming

Beamforming was the first algorithm that was suggested for solving the
layover problem using multibaseline InSAR data [45]. The beamforming
method for spatial frequency estimation can be derived as a Finite Impulse
Response (FIR) filter [107]. The basic principle for the filter design is that
it lets the signals associated with a particular spatial frequency pass undis-
torted while attenuating the signals at all other frequencies. The derivation
of the classical beamforming algorithm is explained in detail in appendix B,
section B.1.

Using the relation (3.3) between the phase and the spatial frequency, the
spectrum of the beamforming method is obtained as

~

aH(w)Ra(w).

> (3.33)

L
Por(w) = =7 3 la @)y () =
=1

The frequency estimates & = [@1,...,&n,]T correspond to the locations of
the N; maxima of the spectrum. The reflectivity estimate at frequency w;
is determined by 7; = Pgp(&;).

In figure 3.2 the beamforming spectrum is displayed for received data
including two sources, one at ¢; = 0 rad and the second at ¢ = 37 rad.

It can be shown [107] that the beamforming method is not consistent
for the frequency estimation problem with multiple sources, Ns > 1. In the
beamforming filter design the signals are assumed to be uncorrelated, i.e.,
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Figure 3.3: Capon spectrum with two sources.

R = 1. As the data is generally correlated, R # I, the Capon method is
developed next.

3.3.2 Capon Method

In the derivation of the beamforming technique it was assumed that the re-
ceived signal is spatially white with unit variance, i.e., R = I. For designing
the Capon method the identity matrix I is replaced by the covariance matrix
R as outlined in appendix B, section B.2.
The Capon spectrum is given by [11]
- 1

Po(w) = oA (3.34)

The inverse matrix R™! exists under the condition that the noise term has
a positive definite covariance matrix and L > p. The frequency estimates

@ = [@1,...,0n,]7 are associated with the frequencies of the N, highest
peaks of the spectrum Pgo. The reflectivity at frequency w; is estimated by
7 = Po(@;).

It has been shown empirically [37,107] that the Capon method exhibits
better performance compared to beamforming with regard to spatial reso-
lution and sidelobe suppression.

Figure 3.3 illustrates the Capon spectrum employing the same simulation
parameters as in the computation of the beamforming spectrum (figure 3.2).
In comparison to beamforming the spectral peaks are narrower and the
leakage is noticeably reduced.

These nonparametric techniques do not require any assumptions about
the statistical characteristics of the received signals. In cases where an ap-
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propriate data model exists model-based or parametric approaches yield
generally superior estimation accuracy [37,107].

3.3.3 MUSIC Algorithm

The MUTItiple Slgnal Classification (or MUItiple SIgnal Characterization)
method [7,100] is a parametric spatial frequency estimator for signals buried
in white noise. Since MUSIC decomposes the covariance matrix in its eigen-
values and eigenvectors and analyzes their properties, it is a subspace-based
technique. Compared to nonparametric approaches such as beamforming
and Capon, the MUSIC method exhibits a better performance if the data
satisfy the postulated covariance matrix model. The derivation of the con-
ventional MUSIC technique is elaborated in appendix B, section B.4.

The spectral MUSIC algorithm can be formulated as follows: First the
sample covariance matrix R has to be calculated like in equation (3.7), sub-
section 3.1.1. The eigendecomposition of R provifies the eigenvalues A >

s > ;\p and the respective eigenvectors (f1,...,fx,) and (&1,...,8,_n.)-
The matrix F = [fi,...,fx,] € Mat, n,(C) corresponds to the signal sub-
space and G = [§1,...,8,-n,] € Mat, ,_n,(C) is associated with the noise

subspace. The spatial frequency estimates are determined as the N, maxima,
of the pseudo-spectrum
A 1
Py (w) = = : 3.35
) all (w)GGHa(w) (3.35)
The subspace spanned by the noise eigenvectors must be at least of dimen-
sion one

p>Ny+1. (3.36)

It has been demonstrated by numerical analysis that the MUSIC method
produces generally better estimation results than beamforming and Capon,
even if multiplicative noise is present [37,39].

It can be observed in figure 3.4 that the MUSIC pseudo-spectrum has
finer resolution and lower sidelobes than beamforming (figure 3.2) and Capon
(figure 3.3).

It has been shown by numerical simulation and proven theoretically [104,
106] that the MUSIC algorithm possesses good performance for uncorrelated
signals, whereas the estimation precision deteriorates significantly when the
signals are highly correlated. As the maximum likelihood estimators are
expected to have superior estimation accuracy, the M-RELAX method and
an MLE based on the stochastic signals model are described in subsection
3.3.5 and section 3.4, respectively.

3.3.4 Least-Squares Method

The least-squares method for amplitude estimation is based on a model
of multiple complex sinusoids of known frequency embedded in additive
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Figure 3.4: MUSIC pseudo-spectrum comprising two sources.

noise [39,63,107]. The N, complex amplitudes are simultaneously estimated
to reduce interference from close frequencies. The spatial frequencies have
to be determined first by nonparametric methods such as beamforming and
Capon or by model-based techniques like MUSIC [63].

The unknown reflectivities {Ti}f-\;sl are retrieved by minimizing the linear
least-squares error function [63,107]

L N 2
1 S
Qule(l),a(2),.. (D) = 7 > |ly() = > ai(Da(wi) (3.37)
=1 i=1 2
where a(l) = [a1(1),...,an,(1)]T € CNs are the amplitudes of the cisoids of

the Ith look, I =1,..., L, and ||-||2 signifies the Euclidian norm. Optimizing
this equation with respect to a(l) results in the least-squares solution [34]

a(l) = (AA) T ATy (1) (3.38)

with the steering matrix A = [a(w1),...,a(wn,)] € Mat, n,(C). As the
frequencies w;,7 = 1,..., N, are unknown, the steering matrix A has to be
replaced by

A =[a(),...,a(@n,)] € Mat, y.(C) (3.39)

employing the frequency estimates {d)z}f\;sl The complex amplitudes are
determined as [39,63]

&(l) = (AHAY1 Ay (). (3.40)

Finally, the reflectivities are extracted by
1L
fi=1 ; la;(D?,  i=1,...,N,. (3.41)
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It has been proved [63] that this estimator is unbiased in the absence of
additive noise and asymptotically (with respect to p — oc0) unbiased in the
presence of additive noise if the frequencies are known and the multiplicative
noise terms are fully correlated.

The LS algorithm can be used to improve the reflectivity estimates of
the nonparametric estimation methods like beamforming and Capon and to
retrieve the reflectivities after determining the spatial frequencies by means
of the MUSIC technique.

3.3.5 M-RELAX

The RELAX algorithm [58] is a superresolution technique to determine iter-
atively the parameters of multicomponent complex exponential signals cor-
rupted by autoregressive noise. The frequencies and complex amplitudes are
simultaneously estimated by minimizing a nonlinear least-squares (NLLS)
criterion. For additive white Gaussian noise, the ML estimator coincides
with the NLLS joint frequency and amplitude estimator [63,107]. The
nonlinear least-squares function involves a multidimensional nonconvex op-
timization problem. The RELAX method searches for the global minimum
of the NLLS criterion by solving a sequence of one-dimensional problems.

In the single look case (L = 1), the RELAX algorithm [58] minimizes
the nonlinear least-squares error function

N, 2

Qila,w) = |ly =) oa(w;) (3.42)
=1 2

where the frequencies w = [wy,...,wn,]T and complex amplitudes o =
[a1,...,an,]T are estimated from the data vector y.

The basic idea of the RELAX algorithm is as follows: In the first step,
it determines the parameters of the dominant component. In the second
step, a corrected data vector is calculated by subtracting the first compo-
nent from the received data employing the preliminarily estimated param-
eters. Subsequently, the frequency and complex amplitude of the second
component are extracted using this new data vector. The parameters of
the first component are redetermined by constructing a corrected data vec-
tor with the information about the second component’s parameters. The
procedure of the second step is iterated until a convergence criterion is ful-
filled. This scheme is repeated until the assumed number of sources N is
reached resulting in frequency {@;}2**, and complex amplitude {&;}1*, es-
timates. They are asymptotically (p > 1) Gaussian distributed, unbiased,
and statistically efficient [58], i.e., the estimates achieve asymptotically the
Cramér-Rao bound.

To apply this method for retrieving the signals’ parameters from MB
InSAR measurements, it was generalized to the multilook scenario [37,63]
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by defining the multilook nonlinear least-squares cost function

L N, 2
Qrla(l),a(2),...,a(l),w) = % D v =) cilba(w) (3.43)
=1 =1 2

where the data y(I) and the amplitudes a(l) = [a1(1),...,an,()]T depend
on the look number [. It can be observed that the formula on the right
side is the same as for the least-squares approach (3.37) in subsection 3.3.4,
where the error function is independent of the spatial frequencies.

To formulate the M-RELAX algorithm in a rigorous way, the following
definitions are introduced: The corrected data vector is

ym(l) =y(l) = > aa@), 1=1,...,L (3.44)

where the parameters {dji,di(l)}f\isl i2m have been already determined in
the previous steps. After replacing y(I) with y,,(l), the minimization of the
cost function (3.43) with respect to w,, leads to the frequency estimate

~

W = arg mgx{aH (wRpa(w)} (3.45)

where the the sample covariance matrix Ry, of {y,(I)}/, is utilized. By
optimizing (3.43) with respect to a,, (1), the amplitude estimate is obtained
as
p

It can be noted that equation (3.45) for the frequency estimate corresponds
to the beamforming spectrum (3.33) of the data {y,(I)}X, apart from nor-
malization.

The algorithmic scheme of M-RELAX [37,63] is summarized in appendix

(3.46)

C.
M-RELAX estimates the frequencies {al}fﬁl and complex amplitudes
{di(l)}f.v:sl,l =1,..., L. Finally, the reflectivity can be extracted as

==Y la(?,  i=1,...,N, (3.47)

The RELAX method is robust to mismodeling errors [58] and for MB
InSAR observations M-RELAX can provide higher estimation precision than
MUSIC [39,63], especially in the threshold regime, i.e., when the signal-to-
noise ratio is low and the number of looks is small.
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3.4 Maximum Likelihood Joint Detection and
Estimation

A maximum likelihood estimator based on the stochastic signals model for
solving the combined detection-estimation problem is presented in this sec-
tion. Unlike MUSIC, it remains optimal even for fully correlated signals.
After describing the data model and stating the problem, the simultaneous
detection-estimation method is derived.

3.4.1 Data Model and Problem Formulation

Like in subsection 3.1.1, the signal y(l) received by the p sensors can be

expressed as [113]
N

y() = siDaw:) +n(l). (3.48)
i=1
In contrast to the MUSIC algorithm explained in subsection 3.3.3, there is
no assumption made about the structure of the signal covariance matrix.
S might be even singular, i.e., the signals can be fully correlated. Thus,
this signal model includes multipath propagation effects [113]. The steering
vectors a(w;) are assumed to be linearly independent and Ng < p [111].
The matrix notation of the signal model is given by

y(l) = A(w)s(l) +n(l) (3.49)

with the steering vector matrix A(w) € Mat,, n,(C) and the vector of un-
known spatial frequencies w = [wy,...,wn.].

The objective is to determine the number of sources Ny and the spatial
frequencies wy, ... ,wn,. The former problem is called the detection problem
and the latter the estimation problem.

3.4.2 Combined Detection-Estimation Method

Let k be the presumed number of sources, k € {0,...,p—1}. In this situation
the data model is

y(l) = A(w(k))s(l) +n(l) (3.50)
with the steering vector matrix A(w(k)) € Mat,, ;(C)
A(w(k)) =[a(w1),...,a(wy)]- (3.51)

As shown in the derivation of the MUSIC method in subsection 3.3.3, y (1)
can be split up into two components, scilicet yg(I) € C* and y,(l) € CP~*
belonging to the signal and noise subspace, respectively. It exists a unitary
coordinate transformation G(w(k)) € Mat,(C) with

y(l) = G(w(k)) [ it } . (3.52)
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The orthogonal projection on the signal subspace P a (k) € Mat,(C) is
defined by [113]

P A wii)) = Alw(k) [AT (k) A(w (k)] AT (w(k)) (3.53)

and the orthogonal projection on the noise subspace Pj(u(k)) € Mat,(C)
by

ij@DZI—PAWW, (3.54)
Then
Py () = Gla(h) | Yo | (3.55)
and
Py () =Gl | % |- (3.56)

Each w(k) results in a different partitioning of the space CP into signal
and noise subspaces and thus a different model for the data. The model
that best fits the sampled data is determined by the minimum description
length principle [87,88]: The shortest code length for encoding the data set
Y ={y(1),...,y(L)} is asymptotically given by (cf. section 3.2)

Z{y()} = —log f(Y ) + g(n) (3.57)

where f(Y |0) is the probabilistic model with the maximum likelihood es-

N

timate @ of the unknown parameter vector 6

~

0 = arg max log f(Y |9). (3.58)

The penalty function g(n) balances for the difference between the estimated
density f(Y |6) and the modeled density f(Y | @), and depends on the num-
ber of free real-valued parameters 7 in the vector 6.

The computation of the code length required to encode the data {y(I)} /-,
is performed in three steps: Firstly, the noise subspace component {yn(l)}l’::]L
is encoded assuming that w(k) is given (see appendix D). Omitting constant
quantities that are independent of k, the code length required to encode the
noise subspace components is obtained as [113]

L{ya(l)|wk)} = Llogdet[6?(w(k)I] + L(p — k) + g(1). (3.59)

Secondly, the signal subspace components {ys(l)}lL:1 are encoded as ex-
plained in appendix D. The number of free real-valued parameters in the
signal data covariance matrix Rg(w(k)) € Maty(C) is

k+2) i=k (3.60)
=1
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Disregarding constant terms the code length of the signal subspace compo-
nents is obtained as [113]

Z{ys(l)|w(k)} = Llogdet[Rs(w(k))] + Lk + g(k?) (3.61)

where Rg(w(k)) € Maty,(C) is the maximum likelihood estimate of Rg(w(k)).
The sum of (3.59) and (3.61) yields the total code length necessary to encode
the noise and signal subspace components

L{yn(l), y5() | (k)} = Llog [det[Ra(w(k))]det[6? (w (k)| + g(k?).
(3.62)
Finally, for encoding the unknown parameter vector w(k) € R¥, it has to be
estimated according to equation (3.62) by

w(k) = arg Ln(% det[Rg(w(k))]det[6% (w(k))T). (3.63)

It can be shown that this estimator is consistent [113].

Two expressions of the relation (3.63) are derived in appendix D. For the
sake of conciseness the abbreviation A = A(w(k)) is used in the following.
The first formulation of the estimate (3.63) is given by [113]

~ 1 ~
w%):mg%%deARPA+——EUPjRWj] (3.64)
w P —

where R € Mat,(C) is the sample covariance matrix of y(I). The second
form of the estimate (3.63) utilizes the eigendecompositions of the matrices
PARPA and PyRPy:

Let [§(w(k)) > -+ > [j(w(k)) be the nonzero eigenvalues of the matrix
PARPj and [} (w(k)) > -+ > I} ; (w(k)) be the nonzero eigenvalues of the
matrix Pif{P}&. As detailed in appendix D, the second expression of the
estimator is [113]

—k

-~ s 1 = n ’
w(k) = argrciukr)l (Hl ) (ﬁ ;li (w(k:))) . (3.65)

The calculation of the ML estimate (3.63) is a nonlinear and nonconvex op-
timization problem of dimension k. It can be solved via (3.65) by alternating
maximization [117].

The code length in w(k) is k. Therefore, the total number of free real-
valued parameters results in

(k) = k(k + 1). (3.66)

The information theoretic criterion (ITC) estimator is given by
1 2 r
ITC (k) = Llog <H 15(&(k ) (sz Zl;‘(@(k))) +g(k(k+1)).
i=1
(3.67)
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The ITC estimate of the number of sources is the minimum value

~

Ng = i ITC k). 3.68
P =B oy TOMe () (369

Choosing the Akaike penalty function g(n(k)) = n(k) provides the AIC
estimator [1,2]

S 1 = ng~ r
AICy (k) = Llog (Hz ) (sz z;z (w(k:))) + k(k+1)

(3.69)
that is inconsistent and overestimates asymptotically the number of signals.
With the bias correction term g(n(k)) = 3n(k)log L the minimum descrip-
tion length [87,101]

—k p—k
H 1 pz 1
=1

(3.70)
is stronlgy consistent [112,116], i.e, k converges to Ny for L — oo. Further-
more, if g(n(k)) = n(k)CL is selected with

Cr
lim — = 71
1o T 0 (3.71)
and o

lim —F e = 72
ey log(log L) o (3:72)

then the efficient detection criterion [3,116]

1 &2 r

EDC =1Ll @k — ) @k k(k+1)C
st = s | (T ) (1 wean)  |sswrney
(3.73)

is stronly consistent as well [3,116].

Since the steering matrix A(w(k)) € Mat,, ;(C) has by definition rank &,
rank(A) = k, the rank of the orthogonal projection on the signal subspace
Pa € Mat,(C) is k, rank(Pa) = k, and the rank of the orthogonal projec-
tion on the noise subspace P% € Mat,(C) is p— k, rank(P£) = p — k. This
implies that their minimum eigenvalues Apin(Pa) = 0 and )\min(Pj) =0,
and the Hermitian projection matrices are ill-conditioned [41,102]:

alPa) = 2 EAS (3.74)
and \ Pl
ro(P%) = %(Pg)) = 0. (3.75)
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As the covariance matrix R is assumed to be nonsingular, it follows that
the Hermitian matrices PARP A € Mat,(C) and PARP% € Mat,(C) have
rank(PARPA) = k, and rank(P{RP%) = p — k, respectively. Thus

ko (PARPA) = Amax(PARPA) (3.76)
)\min(PARPA)
and el
. Amax(PxRP
ko (PARPR) = ax( A &) o (3.77)
Amin(PARP%)

Hence, these matrices are ill-conditioned by construction and their eigenval-
ues have to be computed carefully in the estimator (3.65).

There exist some striking differences between the model order selection
techniques based on the eigenvalues of the covariance matrix (CM MOS) de-
scribed in section 3.2 and the MOS approach using the MLE (MLE MOS)
explained in this section: The degrees of freedom of the former (3.28) are
a function of the number of sensors, i.e., the dimension of the observation
space, whereas the DoF of the latter (3.66) depend on the number of param-
eters that have to be estimated, i.e., the dimension of the space of unknown
parameters. Moreover, the CM MOS method does not consider the avail-
able information about the steering vectors that provides a measure for
the achievable resolution in height direction. The ML estimator takes this
knowledge into account leading to a sensitivity to the vertical distribution
of the reflectors.

For instance, for a sample inside the building layover that is closest to
the antenna positions, there are two main contributions: one corresponds
to the building roof, the other one to the ground topography. In a single
polarization dual-baseline interferometric SAR configuration, at most two
components can be separated within one azimuth-range resolution cell, even
if there might be several elements on the roof that generate backscatter-
ing such as a balcony, windows, and eaves gutter. Thus, the MLE MOS
algorithm is not only - like the covariance matrix based MOS technique -
sensitive to azimuth-range resolution®, but also - in contrast to CM MOS -
sensitive to the achievable resolution in vertical direction.

The fundamental distinction between the MUSIC algorithm (see sub-
section 3.3.3) and the ML estimator is the fact that the MLE analyzes
the structure of both the noise and the signal subspaces, while the MUSIC
pseudo-spectrum computation relies solely on the noise subspace matrix.

!Spatial filtering has a significant impact on MOS results as will be shown in chapter
5
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3.5 Conclusions

The spectral analysis techniques to process single polarization multibaseline
interferometric SAR images have been described in this chapter. In addition
to the well-known stochastic model for distributed sources that includes the
speckle effect as multiplicative noise, a model for deterministic multibase-
line InSAR data has been introduced which characterizes the response from
point-like targets. The hybrid model combines both approaches. Model or-
der selection methods that rely on information theoretic criteria using the
eigenvalues of the covariance matrix to estimate the number of sources have
been explained. Subsequently, spectral estimation techniques have been de-
tailed. They determine the spatial frequency to retrieve the scatterer height
and solve the layover problem and the reflectivity for 3D imaging from sin-
gle polarization MB InSAR observations. Beamforming and Capon are non-
parametric methods to extract the spatial frequency and reflectivity without
making any assumption about the statistical features of the returned sig-
nals. Whereas the model-based superresolution MUSIC algorithm and the
linear least-squares technique estimate the spatial frequency and the re-
flectivity, respectively, the superresolution M-RELAX determines both the
spatial frequency and the reflectivity. Finally, a maximum likelihood es-
timator based on the stochastic signals model for solving simultaneously
the detection-estimation problem has been introduced. Unlike MUSIC, it
remains optimal even for fully correlated signals.
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Chapter 4

Polarimetric Multibaseline
InSAR Spectral Analysis
Techniques

Spectral analysis techniques are adapted to the polarimetric multibaseline
interferometric SAR scenario in this chapter according to the following idea:
In passive sensor systems, the antennas only receive the signals in diverse
polarizations resulting in two polarization channels. In SAR applications,
sensors are active and both transmit the electromagnetic waves and receive
the echo in polarimetric mode leading to up to four polarization states. This
marks the transition from wave polarimetry with two polarization channels
to scattering polarimetry including four polarizations.

First, the signal models are extended to include polarization diversity
yielding the multibaseline polarimetric interferometric steering vector. Model
order selection techniques to estimate the number of sources from MB POL-
InSAR observations are elaborated in the second section. Subsequently, the
spectral estimation algorithms are adapted to process polarimetric MB In-
SAR data. They permit to retrieve the spatial frequencies, the associated
optimal scattering vectors, and the polarimetric reflectivities. Finally, the
polarimetric maximum likelihood estimator is developed for solving simul-
taneously the detection-estimation problem.

4.1 Polarimetric MB InSAR Signal Models

The signal models for single polarization multibaseline InSAR observations
described in section 3.1 are generalized to take polarization diversity into
account. This leads to the notion of the multibaseline polarimetric interfero-
metric steering vector. First, the deterministic and stochastic signal models
are extended to the MB POL-InSAR scenario. Finally, they are fused into
the polarimetric hybrid model.
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Polarization state ~ INpy
single polarization 1
dual-polarized 2
fully polarimetric 3
quad-polarized 4

Table 4.1: The polarization number N.

4.1.1 Deterministic MB POL-InSAR Signal Model

For point-like reflectors the polarimetric multibaseline InSAR received signal
with p sensors can be modeled as

y(l) = t+n()
Ny,

= > /7 expljiti)b(6y,) +n(l) (4.1)
=1

with the number of independent realizations L and [ = 1,..., L. The polari-
metric observation vector y(I) has the dimension p, where p is the product
of the number of antennas p and the polarization number Nyq, p = pNpg.
The coefficient N, attains values ranging from NV,, = 1 for conventional
single polarization data to Ny, = 4 for quad-polarized measurements. For
dual-polarized configurations the polarimetric number adopts N, = 2 and
Nyor = 3 for fully polarimetric set-ups with equal cross-polarization chan-
nels. The values of NV, are summarized in table 4.1.

The main modification compared to the single polarization MB InSAR
signal model (3.8) is the structure of the multibaseline polarimetric interfer-
ometric (MBPI) steering vector b(8;),b(8;) € CP. It depends on the vector
of unknown parameters 8¢, that are modeled as deterministic quantities. In
the following, the characteristics of the MBPI steering vector are explained
by using the notation of the interferometric phase ¢ for a uniform linear ar-
ray. The description for the case of a general acquisition geometry employing
the height parameter z is evident. The features of the polarimetric steering
vector are developed in the framework of quad-polarized observations, the
changes with respect to other polarimetric modes being mentioned whenever
necessary. The MBPI steering vector is a linear combination of four vectors
a,(¢) € CP, each of them associated with one particular polarization

b(p, k) = kiay, (@) + kaa, () + kza, (0) + kaay, (@)
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The vector a(yp) is the familiar single polarization MB interferometric SAR
steering vector introduced in subsection 3.1.1. For a ULA it is represented
as (cf. equation (3.2))

a(p) = [Lexp(jo/(p — 1)),. .. exp(jo)]". (4.3)

For an irregular array the vector a(z) depending on height z is expressed by
(compare equation (3.4))

a(z) = [1,exp(jkz,2), .- exp(jrz,2)] " (4.4)
The weighting coefficients k; € C form a vector
k = [k, ko, kg, ka]" (4.5)

that may be interpreted as a unitary scattering mechanism, kk = 1. This
complex vector is uniquely defined apart from an exponential term exp(j&)
with ¢ € R, that cancels out when forming b(6;)b" (8;). The scattering
mechanism introduces into the MB POL-InSAR model additional unknown
parameters. Hence, for the deterministic model the parameter vector 0
consists of one phase ¢ (respectively height z) of the reflector and the pa-
rameters that describe its related scattering type k, i.e.,

0: = [p. R(kz), S(k2), R(k3), S(k3), R(ka), S(ky)] € R, (4.6)

Without loss of generality (k1) and (k1) are considered to be fixed due to
the normalization of k, and the exponential term, respectively. The number
of real-valued free parameters! Npar is given by

Npar =14 2(Npoy — 1) = 2N — 1 (4.7)

for 1 < N,o < 4. The values of N, are recapitulated in table 4.2.
The MBPI steering vector can be written in matrix notation as

b(¢,k) = B(p)k (4.8)

with the MBPI steering vector matrix B(y) € Mat; n,,(C)

ap) 0 0 0
B =| o ¢ a6 (19)
0 0 0 a(p)

!The other unknown parameters of the signal model such as the number of backscatter-
ing sources Ng,, the reflectivity ¢, and the complex argument ; are not included in the
vector of free parameters. The reason will be clarified in section 4.4 about the polarimetric
joint detection-estimation ML estimator.
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Polarization state  Npqr
single polarization 1
dual-polarized 3
fully polarimetric 5
quad-polarized 7

Table 4.2: The number of free parameters N, in the deterministic signal
model.

The number of backscattering sources is denoted by Ng,. The unknown pa-
rameter 7, is called the polarimetric reflectivity of the ith source: While the
absolute value of the scattering mechanism coefficients |k;| in equation (4.5)
indicates the relative intensity between the polarizations, the reflectivity 7
specifies the SPAN defined in (2.38).

The additive white Gaussian noise n(l) € C? is assumed to have zero
mean and power o2, i.e., n(l) ~ NE(0,02I). Thus, the polarimetric MB
InSAR observation vector y(l) is a Gaussian random process with nonzero
mean p € CP, and covariance matrix R € Mat;(C).

The returned signal (4.1) can be written in matrix notation as

y(l) =D(6:)s + n(l) (4.10)

with the matrix D(6;) € Matg v,, (C) of steering vectors
D(0:) = [b(01,), .. b(Ouy,,)] . (4.11)

the signal vector s = [51, - ,sNSt]T ,8i = /T, exp(j1i), and the parameter

T
T S ar
”70thti| ERNtNP .
Since signals and noise are assumed to be independent, the shape of the
non-central covariance matrix R = E{y(l)y (1)} of the observation (4.1) is

vector 0; = [93;,.

R = D(6,)SD(0,) + 021 (4.12)

with the signal covariance matrix S = ss”. This model incorporates multi-
path reflection phenomena that might appear in urban scenes.
The sample covariance matrix R € Mat;(C) is calculated by

L
R=13 vy ). (4.13)
=1

il

The model can be generalized to hybrid systems where the antennas
acquire different polarimetric channels. If Ng,, Ng,, Nf,, and Ny, denote
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the number of sensors in single polarization, dual-polarized and fully po-
larimetric with equal and diverse cross-polarization mode, respectively, p =
Ngp+2Ngp +3Nypp+4Ny,. The construction of the MBPI steering vector is
evident. For instance a triple baseline interferometric configuration includ-
ing one sensor that is fully polarimetric with hh,vv, and hv polarizations
and two dual-polarized antennas that operate in hh and vv and hh and hv
polarizations respectively results in p = 7.

4.1.2 Stochastic MB POL-InSAR Signal Model

In the case of deterministic signals it was assumed that the steering vector
depends only on one single interferometric phase ¢. Consequently this phase
is related to all polarimetric channels and the corresponding scattering mech-
anism k describes a polarization combination. This reasoning is valid for
deterministic or almost determinstic targets where the interferometric phase
variations are small with respect to polarization. For distributed environ-
ments such as forests that can be modeled as a volume over ground [14,75],
the location of the effective phase center varies considerably in regard of
polarization [14,75,85]. Hence, in the stochastic model characterizing the
response of natural objects it is supposed that each polarization channel is
associated with one particular phase. Therefore, the MBPI steering vec-
tor is a function of these phases. The polarimetric multibaseline InSAR
measurements y (/) with p antennas and p = pN,,,; elements is modeled as

y(l) = c(l) +n()
N,

= Y /Tx(1) ©b(8,) +n(l). (4.14)
j=1

The multibaseline polarimetric interferometric steering vector b(8.) is de-
pendent on the unknown parameter vector .. The MBPI steering vector
is linearly combined by N, vectors a(p;) € CP, each related to one single
polarization

b(p.k) = [k1a’ (p1), .. kn,,a" (on,,)]" (4.15)

where ¢ = [gpl, RN Npol]T. The weighting coefficients k; € C generate the
vector

k= [k, kno)" (4.16)
For the special case of equal phase centers in all polarization channels, it
may be viewed as a unitary scattering mechanism, kk = 1. This complex
vector is uniquely determined except for an exponential contribution exp(j§)
with ¢ € R, that neutralizes when calculating b(8.)b* (8.). Thus, for the
stochastic model the parameter vector 6. contains N, phases ¢; and the
parameters characterizing the vector k, i.e.,

d
0= [01,- - on, s R(ka), S(ka), ..., Rlkn,,), S(kn,,,)] € RVrar. (4.17)
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Polarization state Nggr

single polarization 1
dual-polarized 4
fully polarimetric 7
quad-polarized 10

Table 4.3: The number of free parameters Nfigr in the stochastic signal
model.

Without loss of generality R(k;) and (k1) are supposed to be fixed on
account of the normalization |k|2 = 1 and the exponential component,
respectively. The number of real-valued free parameters? Nﬁgq« is given by

NP4 = Nyt + 2(Npot — 1) = 3Npo — 2 (4.18)

par

for 1 < Ny, < 4, as summarized in table 4.3. The matrix notation of the
MBPI steering vector is

b, k) = Blp)k (4.19)
with the MBPI steering vector matrix B(y) € Mat; n,,(C)
a(p1)
B(p) = | (4.20)

a(SONpol)

The total number of backscattering sources is given by N ;St = Ny .Npoi- The
absolute value of the scattering type coefficients |k;| in equation (4.16) des-
ignates the relative intensity between the polarization channels, whereas the
product 7|k;|* specifies the absolute backscattered power of the associated
polarization.

The multiplicative noise x;(I) € CP corresponding to the jth source is
modeled as a stationary, circular Gaussian random vector with zero mean,
unit variance, and covariance matrix C;. The random processes x;(l1) and
x;(l2) are supposed to be independent and identically distributed for differ-
ent looks [1 # l5. In the particular scenario of fully correlated speckle the
variations of the phases related to one single steering vector are expected to
be small. Hence, the polarimetric MB InSAR measurement y (/) is a Gaus-
sian random vector with zero mean and covariance matrix R, which can be
expressed by

Ns,.
R =E{y()y" ()} =Y 7,C; @b(6,)b"(0.,) + o2L. (4.21)
j=1

2The free parameter vector does not comprise the other unknown quantities like the
quantity 7., the cause of this being elucidated in section 4.4 about the polarimetric joint
detection-estimation ML estimator.
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4.1.3 Hybrid MB POL-InSAR Signal Model

The hybrid model contains both the deterministic and stochastic contribu-
tions defined in the two preceding subsections. For p sensors the multibase-
line InSAR received signal including polarization diversity can be written
as

y(l) = t+c()+n()

Ns,

= > VA exp(jti)b(6r)
-

+ > V7exi(l) ©b(8.,) +n(l) (4.22)
7=1

with the number of looks L and [ = 1,...,L. The first contribution, t, is
a highly coherent component and corresponds to deterministic targets [28].
The second constituent, c(l), represents the response of natural environ-
ments comprising the SAR speckle effect as multiplicative noise [37, 39, 63].
The total number of backscattering sources is calculated by Ny = N, + N[
where Ng, and N, ;St = N, Npy are the number of sources associated to the
deterministic and stochastic part, respectively. The unknown reflectivity 7,
the complex argument 1, and the deterministic MBPI steering vector b(6)
with the unknown parameter vector @; are introduced in subsection 4.1.1.
The properties of the additive noise n(l) are outlined in subsection 4.1.1.

The unknown quantity 7., the stochastic MBPI steering vector b(6.)
being a function of the unknown parameters 8., and the multiplicative noise
x(l) are characterized in subsection 4.1.2.

The polarimetric MB InSAR observations y(I) € C? are circular Gaus-
sian distributed random vectors with nonzero mean and covariance matrix
R. The non-central data covariance matrix R = E{y(I)y (1)} for the hy-
brid model is given by

N,
R =D(6,)SD"(6,) + Y 7.,C; @b(6,,)b"(8,,) + 021 (4.23)
Jj=1

where the MBPI steering matrix D(60;) and the signal covariance matrix S
are defined in subsection 4.1.1 and the speckle covariance matrices C; in
subsection 4.1.2. Multipath propagation phenomena are included in this
model.

In the following the relation of the polarimetric MB InSAR covariance
matrix to two special cases is studied, firstly to the single polarization sce-
nario from chapter 3, and secondly to the single-baseline POL-InSAR, set-up
developed in [14]. For p antennas the MB polarimetric InSAR observation

o7



vector y(I) € C3F with equal cross-polarizations is given in the Pauli basis
by
y(l) = T[Shh( ) =+ Szlw(l)’ BRI Sﬁh(l) + ng(l)v Sllzh(l) - Szlw(l)’ o
o Sp(D) = 85,(1), 255, (D), - .- 287, (D). (4.24)

The data covariance matrix R = E{y(l)y* ()} € Matg,(C) is the block
matrix

Rii Ri2 Ris
R=| R, Ry Roz |. (4.25)

RE R Ras

R;; € Mat,(C) are the standard Hermitian matrices of the single polar-
ization multibaseline InSAR configuration described in chapter 3, where
Ri1,R92, and Rss are linked to hh + vv,hh — vv, and hv polarization,
respectively. The matrices R;; € Mat,(C), that are in general not Hermi-
tian comprehend both polarimetric and interferometric information. More
precisely, they inclose the interferometric phase correlations between two
different polarizations in each case.

The single-baseline POL-InSAR returned signal can be expressed as [14]

ke (1) = _[Shh( )+ Suu (D), Sin(1) = Sy (D), 28, (1),
Sin() + S5, (D), Sin(l) = S2,(1), 257, (D] (4.26)

The covariance matrix Tg = E{ke(I)k& (1)} € Matg(C) is the block matrix

&‘

T Q2 ]
Tg = . 4.27
6 |: 9{12 T22 ( )

T;; € Mat3(C) are the conventional Hermitian coherency matrices con-
taining the fully polarimetric information for each separate image. The
non-Hermitian matrix Q19 € Matg(C) comprises the interferometric phase
relations of the different polarimetric channels between both images [14]. For
p = 2, the measurement y (/) € C° from equation (4.24) is a permutation of
kg(1), i-e., y(I) = Pkg(l), where the permutation matrix P € Matg(Z2) has
the shape

1

i)
o O
—

P= . (4.28)

[u—
o O
O =

1

For the covariance matrix R € Matg(C) of equation (4.25) it follows that
R = PT(P”. Therefore R and T are permutation-similar.
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The objective is to determine the following unknown quantities: The
number of backscattering sources Ny and the signal features as the reflec-
tivity 7, the interferometric phase ¢ (or the height z), and the scattering
mechanism k. For multibaseline polarimetric InNSAR measurements the al-
gorithms to solve the detection problem are detailed in section 4.2 and the
methods to extract the characteristics of the signals are elaborated in sec-
tions 4.3 and 4.4.

4.2 Polarimetric Model Order Selection Algorithms

The generalization of the model order selection techniques for estimating
the number of sources from polarimetric MB InSAR data is developed in
this section. Since the rationale to derive these methods is the same as for
the case of single polarization MB InSAR signals described in section 3.2,
the polarimetric MOS algorithms are stated by highlighting the differences
between both set-ups.

Like in section 3.2, the received signal y(I) € CP with p = pN,g is

modeled as
Ns

() = > si()b(8;) +n(l). (4.29)
i=1
The steering vectors b(6;) are assumed to be linearly independent, and
Ny < p. The task is to estimate the number of sources Ng.
Let k € {0,1,...,p— 1} be the assumed number of sources and let A; >
-+ > Xp and vi,...,v; be the eigenvalues and eigenvectors, respectively, of
the data covariance matrix R € Mat;(C). Thus the parameter vector of
the model is given by

O(k) = (M,..., 02, vi, .. vDT. (4.30)
Employing the eigenvalues M o> ee> 5\25 of the sample covariance matrix

R € Mat;(C) defined by

L
R==3 yOy' Q) (4.31)
=1

SIES

the log-likelihood of the maximum likelihood estimator of the model param-
eters can be written as [110]

P3Gk
) . (4.32)

log f(Y|6(k)) = (5 — k)L log ( e
—k Zi:k—f—l Ai

The dimension of the space spanned by 0(k) provides the number of free
real-valued parameters 7(k): The k eigenvectors constitute a basis of the
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matrix space Mat;(C) with dim(Matj,(C)) = 2pk. Since they are ele-
ments of the special orthogonal group over the complex number field SO 5(C)
the degrees of freedom (DoF) are reduced by the value 2k due to the
normalization, and by k(k — 1) in consequence of the mutual orthogonal-
ization. Hence the orthonormal eigenvectors span a space of dimension
2pk —2k —k(k—1) = k(2p— 1 — k). The real-valued eigenvalues add k DoF.
Therefore the degrees of freedom for the polarimetric multibaseline InSAR
signals result in

nk) =k+1+k(25—1—k) =k(2p— k) + 1. (4.33)

For the scenario of polarization diversity, the number of free parameters
depends on p = pNpy, i.e., on both the number of antennas p and the
polarization number N,,. Compared to the single polarization MB InSAR
configuration the major modification is the augmentation of the observation
space dimension.

Plugging equations (4.32) and (4.33) into (3.21) leads to the polarimetric
Akaike information criterion

D )\1/(P k)

AIC(k) = —(p — k)Llog < =kl - ) + k(25— k). (4.34)
p— kzz k+1

The polarimetric minimum description length is

p AL/ (k) 1
MDL(k) = —(p — k)Llog < ;:'“'1]5 L ) + 514:(2]5 —k)log L (4.35)
p—k Zi:kJrl Ai

and the efficient detection criteria is given by

Hﬁ Xl/(ﬁ—k)
EDC(k) = —(p — k)Llog < iZktl . ) + k(25— k)Cp.  (4.36)
p— k ZZ k:-l—l

Finally the number of sources N, is estimated by

~

N = arg mkin ITC(k). (4.37)

In the following the most significant special cases are examined: For
Npor = 1 the detection techniques reduce to the methods for multibase-
line InSAR data with one single polarization derived in section 3.2. By
introducing polarization diversity the polarization number attains values
2 < Npo < 4. The polarimetric MOS algorithms may also be applied to
a polarimetric image without interferometric baseline diversity for p = 1
and Npy, = 2,3,4. This provides an alternative approach compared to the
reasoning in [27] where the number of scattering mechanisms is estimated
by means of the polarimetric entropy H and anisotropy A. The model order
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selection techniques can also be adapted to the setting of hybrid antenna con-
figurations with p = N, +2Ng,+3Np+4Ng,. Ny, Nap, Nyp, and Ny, signify
the number of sensors that operate under single polarization, dual-polarized
and fully polarimetric with equal and diverse cross-polarization mode, re-
spectively. For example a triple baseline interferometric system comprising
two antennas that are fully polarimetric with equal cross-polarizations and
one single polarization sensor leads to p = 8.

A polarimetric joint detection-estimation algorithm based on the maxi-
mum likelihood estimator is presented in section 4.4.

4.3 Polarimetric Spectral Estimation Methods

The spectral estimation algorithms are extended to the polarimetric multi-
baseline InSAR configuration in this section. The adaptation to the polari-
metric case not merely increases the number of observables, but particularly
determines the polarization combination for spatial frequency estimation
that is optimal with respect to the specific method. These optimal scatter-
ing mechanisms allow the examination of the reflector physical properties by
analyzing their polarimetric behavior. First, the nonparametric beamform-
ing and Capon methods are generalized to the MB POL-InSAR scenario
that permit to extract the spatial frequencies, the associated optimal scat-
tering vectors, and the polarimetric reflectivities. Subsequently, the model-
based polarimetric techniques are developed: The MUSIC and M-RELAX
algorithms extract the spatial frequency and the corresponding scattering
mechanism. The linear least-squares approach and M-RELAX estimate the
polarimetric reflectivity.

4.3.1 Polarimetric Beamforming

The beamforming method has been extended to the particular scenario of
polarization diversity in the receive channel in [23]. In this section, the
polarimetric beamforming method to process polarimetric MB InSAR ob-
servations is developed using the filter design approach of subsection 3.3.1.
The single polarization MB InSAR steering vector a(w) € CP has to be sub-
stituted by the MB polarimetric InSAR steering vector b(w,k) € CP. The
minimization problem of polarimetric beamforming can be expressed by

mhin hi'h subject to hb(w, k) = 1. (4.38)

The derivation of the polarimetric beamforming filter employing the quadratic
minimization theorem (see appendix B, section B.3 for details) results in
b(w, k) b(w, k)

hir = g (@, K)b(w, k)  p (4.39)

61



In the last equation the relation of the MBPI steering vector

Npol
b (w, k)b(w,k) = a (w)a(w) Y _ kiki = p|k|3 = p (4.40)
=1

was used that follows from (4.2). The power of the filtered signal is given
by

H, "
E{lyr (O} = E{(hG) Ty ()]} = 2= ’szb( LI

It can be maximized with respect to the polarization state k by

(4.41)

b (w, k)Rb(w, k)
max B .
Ik[2=1 p

(4.42)

This maximization problem can be solved via (4.8) by calculating the max-
imum eigenvalue of the Hermitian matrix B (w)RB(w) € Mat Nyt (C)

BH(w)RB(M)kmaX = )\makaax- (443)

Replacing the data covariance matrix R by the sample covariance matrix R
the spectrum of the polarimetric beamforming is

)\max(BH (W)RB (w))

png(w) = p2

(4.44)

where Apax(-) is the maximum eigenvalue operator. This means that for
each frequency w the maximal eigenvalue and its corresponding eigenvector
of the linear system

BH(W)RB(w)kmaX = AmaxKmax (4.45)

has to be computed. In particular the dimension of the Hermitian ma-
trix BY (w)RB(w) € Mat N, (C) is independent of the number of sensors
p. The unitary eigenvector k. can be interpreted as a polarimetric scat-
tering mechanism allowing a polarimetric analysis to retrieve the physical
properties of the reflector. It encodes the polarization combination that is
optimal in the sense of beamforming.

The frequency estimates & = |1, ...,0n,]T are related to the positions
of the N largest peaks of the spectrum. The polarimetric reflectivity at
frequency w; is estimated by 7; = f’g 7 (Wi).

Figure 4.1 demonstrates the polarimetric beamforming spectrum for sim-
ulated signals containing two sources, the first at ¢ = 0 rad and the second
at ¢ = 3m rad.

To adapt the polarimetric beamforming method to the scenario of differ-
ent phase centers, the steering vector b(w, k) € CP with w = [wy, ... ,wNpol]T
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Figure 4.1: Polarimetric beamforming spectrum containing two sources.

has to be considered. The development conforms fundamentally with the
deterministic case by noticing that

Npol
b (w, k)b(w, k) = Y kikia' (wi)a(w) = p|kl3 = p. (4.46)
=1

For instance, in the fully polarimetric configuration with equal cross-polarizations
the structure of the Hermitian matrix B¥ (w)RB(w) € Mat3(C) is

aH(wl)Rna(wl) a (wl)nga(WQ) a (wl)nga(w;g)
BY(w)RB(w) = | a (wy)REa(w;) a(ws)Rapa(ws) af (wy)Roza(ws)
aH(w;g)R{éa(wl) aH(wg)R%a(WQ) aH(wg)Rgga(w;g)
(4.47)
The polarimetric beamforming spectrum is given by
I .
P (w) = Amex(B ;“;)RB(‘”)). (4.48)

The spectrum is a function of N,, parameters. The frequency estimates
w;i,i=1,..., Ny, are obtained as the locations of the Ny maxima of Pgl%(w).

4.3.2 Polarimetric Capon Method

The Capon approach has been adapted to the special configuration of po-
larization diversity in the receive antennas in [23]. In this subsection, the
polarimetric Capon method for analyzing MB POL-InSAR measurements is
conceived paralleling the filter design procedure of subsection 3.3.2. The MB
polarimetric InSAR steering vector b(w, k) is employed in lieu of the single
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polarization MB InSAR steering vector a(w). The optimization problem of
the polarimetric Capon method can be stated as

m}in h’Rh subject to hb(w, k) = 1. (4.49)

The derivation of the polarimetric Capon filter utilizing the quadratic min-
imization theorem (explained in appendix B, section B.3) leads to

R !'b(w, k)
hi = ’ : 4.
¢ bH(w,k)R"b(w,k) (4:50)
The power of the filtered signal can be expressed by
1
E{lyr()*} = E{|(bE)y()|*} = : 4.51
(wr @) = BB YO = prs oo 05
Maximizing it with respect to the polarization state k yields
1
(4.52)

ikl2=1 b (w, k)R~ Tb(w, k)’

The solution of this maximization problem is the minimum eigenvalue of the
Hermitian matrix BY (w)R™'B(w) € Maty, , (C)

BH(W)R_IB(w)kmin = )\minkmin- (453)

With the sample covariance matrix R the spectrum of the polarimetric
Capon method is given by

~p _ 1
Fe) = B RB W) (4.54)

where Apin(+) is the minimum eigenvalue operator. For each frequency w
the minimal eigenvalue and associated eigenvector of the linear system

BH(w)R_lB(w)kmin = )\minkmin (455)

has to be calculated. The dimension of the Hermitian matrix B¥ (w)R™'B(w) €
Maty, ,(C) does not depend on the number of antennas p. The inverse ma-
trix R™1 exists if the noise term has a positive definite covariance matrix
and L > pN,.

The unitary polarimetric scattering type ki, permits to extract the
physical behavior of the scatterer. The polarization combination represented
by kmin is optimal with respect to the Capon criterion. The frequency
estimates @ = l@l, ..., &n,]T are given by the locations of the N, maxima of

the spectrum Pg . The polarimetric reflectivity at frequency w; is extracted
by 7 = P (&).
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Figure 4.2: Polarimetric Capon spectrum comprising two sources.

The polarimetric Capon spectrum in figure 4.2 exhibits finer resolution
and considerably suppressed sidelobes compared to the polarimetric beam-
forming spectrum in figure 4.1.

In the case of different phase centers, the polarimetric Capon spectrum
is obtained as

. 1
PP (w) = - (4.56)
Amin(BH (w)R™1B(w))
The frequency estimates @; are computed as the positions of the Ng highest
peaks of the spectrum Pg 2(w) that depends on Npoi parameters.

4.3.3 Polarimetric MUSIC Algorithm

The MUSIC technique has been proposed for sensors having polarization
diversity on receive in [23,100]. The adaptation of the MUSIC method to
process polarimetric MB InSAR data is elaborated by following the argu-
mentation in subsection 3.3.3 for deriving the standard MUSIC algorithm.

Like in subsection 3.3.3, the returned signal y(I) € C? with p = pN, is

modeled as
Ns

y(1) = si(l)b(wi, ki) + n(l). (4.57)
i=1
The MBPI steering vectors b(w;, k;) are supposed to be linearly independent
with N, < f.

Let Ay > --- > )A; be the eigenvalues of the covariance matrix R in
nonincreasing order. Let (fi,...,fy,) denote the orthonormal eigenvectors
related to (A1,...,An,) and (g1,...,85—n,) the orthonormal eigenvectors
associated with (An,41,...,A5). Define the matrices F = [f,... fn,]| €
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Mat; n, (C) and G = [g1,...,85-nN,] € Mat; ;5_n,(C) of eigenvectors that
span the signal and the noise subspace, respectively.

The main result in developing the polarimetric MUSIC algorithm can be
formulated as follows:

The true frequency values {wi}f\;sl with the associated scattering mech-
anisms {kl}f\ﬁl are the only solutions of the equation

b (w, k)GGb(w, k) = 0. (4.58)

Employing the fundamental conclusion (4.58), the polarimetric spectral
MUSIC method is stated in the following way: First, the sample covariance
matrix R is computed according to equation (4.13), subsection 4.1.1. The

eigendecomposition of R produces the eigenvalues Ay > --- > A5 and the
eigenvectors (fi,...,fn,) and (&1,...,85—n,) that generate the signal and
noise subspace, respectively. By means of the matrices ¥ = [f1,...,fn,] €

Mat; ., (C) and G= &1,-..,8p-N.] € Matj 5_n,(C), the pseudo-spectrum
of the polarimetric MUSIC method is

1
Amin(BH (w)GGHB(w))

Py (w) = (4.59)
For each frequency w the minimum eigenvalue and its eigenvector of the

linear system

B (w)GGHB(w)kmin = AminKmin (4.60)

is calculated. The dimension of the Hermitian matrix BY (w)GGHB(w) €
Maty,,, (C) only depends on the polarization number N, and is not a func-
tion of the number of sensors p. The minimum eigenvector Kin, || Kmin|l2 =
1, can be regarded as a polarimetric scattering mechanism permitting to
determine the physical features of the target. It specifies the optimum po-
larization combination in terms of the polarimetric MUSIC algorithm.

The frequency estimates & = [@1,...,&n,]7 correspond to the locations
of the Ny maxima of the pseudo-spectrum PﬁU(w). The matrix in (4.60)
must be nonsingular, otherwise Ay, = 0, the spectrum (4.59) is infinite,
and the spatial frequencies cannot be determined. A necessary criterion for
the linear system having full rank is

13 > Ns + Npola (4.61)

~

i.e., the dimension of the noise subspace must be at least N, rank(G) >
Npoi- For p — Ny > N, the computation cost of the polarimetric MUSIC
method can be reduced by using the matrix I — FEF e Mat; n,(C) in place
of GG € Mat; ;5 n,(C) in equation (4.59).

It is apparent in figure 4.3 that the polarimetric MUSIC algorithm pro-
duces narrower spectral peaks and reduced leakage than polarimetric beam-

forming (figure 4.1) and polarimetric Capon (figure 4.2).
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Figure 4.3: Polarimetric MUSIC pseudo-spectrum including two sources.

To generalize the polarimetric MUSIC method to the case of stochastic
data the MBPI steering vector b(w,k) € CP with w = [wl,...,wNpol]T
replaces the deterministic steering vector b(w, k) € CP. The reasoning is the
same as in the deterministic scenario and leads to the stochastic polarimetric
MUSIC pseudo-spectrum

1

S P2 _
Pt (@) = e () GG B (@)

(4.62)

The frequency estimates @; are calculated as the locations of the Vg largest
peaks of the pseudo-spectrum Pﬁ%] (w) that depends on N, parameters.

4.3.4 Polarimetric Least-Squares Method

To extend the least-squares method introduced in subsection 3.3.4 to the
polarimetric MB InSAR scenario, the single polarization MB InSAR steer-
ing vector a(w) is substituted by the MBPI steering vector b(w, k). This
implies that the spatial frequencies {wl}fvzgl and the scattering mechanisms
{ki}ﬁvzsl have to be retrieved beforehand using nonparametric algorithms
such as polarimetric beamforming and Capon or model-based approaches
like polarimetric MUSIC.

The unknown polarimetric reflectivities {TZ‘}ZJ-\;SI are extracted by mini-
mizing the linear least-squares cost function

L Ns
QLB BE) = 7 3 [y = Y Dbl k) (4.63)
=1 i=1 2

where B(1) = [61(1), ..., Bn,(1)]T € CNs are the amplitudes of the complex
sinusoids of the Ith look, [ = 1,..., L. Minimizing this relation with respect
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to B(1) leads to the least-squares solution
A(l) = (DD) ' Dy (1) (4.64)

with the MBPI steering matrix D = [b(wy, k;1),...,b(wn,, kn,)] € Mat; v, (C).
Since the frequencies w; and the scattering vectors k; are unknown, the steer-
ing matrix D is replaced by

~

D = [b(@y,ky),...,b(@n,, ky,)] € Mat; v, (C), (4.65)

utilizing the estimates of the frequencies {al}fﬁl and the reflection mecha-
nisms k;. Now, the complex amplitudes are estimated by

30) = (ﬁHﬁ)*l Dy (1). (4.66)

Finally, the polarimetric reflectivities are determined by

L
.1 5 .
fi= 7 ;—1: B:0)?,  i=1,...,N,. (4.67)

The polarimetric LS method can be employed to enhance the polarimet-
ric reflectivity estimation accuracy of the nonparametric techniques such as
polarimetric beamforming and Capon. Furthermore, the frequencies and
scattering mechanisms can be first estimated by the polarimetric MUSIC
algorithm to subsequently retrieve the polarimetric reflectivities by the LS
approach.

It is straightforward to adapt the least-squares method to the case of
polarimetric stochastic signals.

4.3.5 Polarimetric M-RELAX

The M-RELAX algorithm presented in subsection 3.3.5 is adapted to the
polarimetric MB InSAR configuration by replacing the single polarization
MB InSAR steering vector a(w) with the MBPI steering vector b(w, k).

The polarimetric multilook nonlinear least-squares (NLLS) cost function
is defined as

L Ng
QL (B(), ..., B(L),w, Kyee) = % DIy =D BDb(wi k|| (4.68)
=1 1=1 2

where L is the number of looks and [ = 1,..., L. The polarimetric MB In-
SAR observations are y(I) € CP, the spatial frequencies w = [w1,...,wn.] €
RMs | the scattering mechanisms kye. = [(k!)7,..., (kV)T]T € CNsNeot | and
the amplitudes B(1) = [B1(1),..., Bn, ()] € CNs.
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The polarimetric NLLS function depends on the amplitudes, frequencies,
and scattering mechanisms, whereas the linear least-squares cost function
(4.63) in subsection 4.3.4 only depends on the complex amplitudes.

The following definitions are necessary to state the polarimetric M-
RELAX algorithm: The corrected data vector is

ym)=y(D)— > BiDbl@k), I1=1,...,L (4.69)
i=1,i#m

where the parameters {w;, s, Rz}f\ﬁll m Are supposed to be known. Substi-
tuting y,,, (1) for y(), the error function (4.68) is minimized with respect to
wm, K™, and (,,. Employing the sample covariance matrix R, € Mat;(C)
of {ym(l)}lel, the frequency and polarimetric scattering vector estimates
are obtained as

(O, k™) = arg max{b (w,k)R,,b(w, k)}. (4.70)
This maximization problem is solved by using relation (4.8): The frequency

W, 1s determined through computing the maximum eigenvalues of the Her-
mitian matrix B (w)R,,B(w) € Maty, ,(C)

Om = arg max Apax (B (W) R, B(w)). (4.71)
w
The associated maximum eigenvector of the linear system
B ()R, B(w)kmax = AmaxKmax- (4.72)

provides the scattering mechanism estimate km = Kimax. It represents the
polarization combination that is optimal with regard to M-RELAX and
permits a polarimetric analysis to extract the physical characteristics of the
reflector. Equation (4.71) for the frequency estimate is similar to the beam-
forming spectrum (4.44) of the data {y.,(I)}£ , except for normalization.
The amplitude estimate [3,,(l) is extracted as

H/~ m
=P (wm,l; )ym(l) (4.73)

The polarimetric M-RELAX algorithm can be sketched as follows:

Step (1)

Assume Ng = 1. Estimate the frequency wi, the scattering vector ki, and
the amplitudes {Bl(l)}le by means of formulas (4.70) and (4.73), respec-
tively, using the samples {y(l)}lel.

Step (2)
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Assume Ny = 2. Calculate the corrected data vector {y2(I)}%-, by inserting
&1, kq, and {Bl(l)}lel of step (1) in (4.69). Determine the frequency ws, the
scattering vector ky, and the amplitude {3 ()}E | estimates via (4.70) and
(4.73), respectively, from {y2(I)}- ;.

Calculate the corrected data {y1(l)}£_, from (4.69) where &o, ko, and {3, DY,
of substep 1 are employed. Redetermine &1, ki, and {Bl (1) ZL:I from {y (l)}lL:1
through equations (4.70) and (4.73).

Iterate these two substeps until the convergence condition explained below

is satisfied.

Step (3)

Assume Ny = 3. Calculate {y3()}~, by inserting &, k;, and {Bz(l)}lel for
i =1,2 of step (2) in (4.69). Determine w3, k3 and {Bg(l)}le via (4.70) and
(4.73), respectively, utilizing {y3(I)}~,.

Calculate {y1(I)}£, by inserting &, k;, and {ﬂAZ(l)}lL:]L for ¢ = 2,3 into
(4.69). Redetermine @1, kq, and {Bl(l)}lel

Calculate {y2(I)}£ | by inserting &, k;, and {ﬂAZ(l)}lL:]L for i = 1,3 into
(4.69). Redetermine @s, ko, and {Bg(l)}lel

Iterate these three substeps until the termination criterion is met.

Remaining steps.
Repeat this procedure until the assumed or estimated number of sources N
is reached.

The relative change of the cost function (4.68) is chosen as the termina-
tion criterion for the iterative process: If it is less than a user given threshold
g, the iteration is stopped.

The polarimetric M-RELAX method estimates the frequencies {d)z}fvzgl,
the optimal scattering mechanisms {Rz}fvzsl, and the complex amplitudes
{@(Z)}ZN;DZ =1,..., L. Finally, the polarimetric reflectivity is retrieved by

1

7=

1

L
SBOR  i=1,...,N, (4.74)
=1

The extension of the M-RELAX algorithm to process stochastic MB
POL-InSAR observations is evident.

4.4 Polarimetric ML Joint Detection and
Estimation

The extension of the maximum likelihood estimator for solving the joint
detection-estimation problem to MB polarimetric interferometric SAR ob-
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servations is introduced in this section. These techniques have been de-
veloped for the special case of polarization diversity in the receive channel
in [118]. As the reasoning for deriving these algorithms is similar to the sce-
nario of MB InSAR measurements with one single polarization presented in
section 3.4, the polarimetric ML estimator is formulated while emphasizing
the differences between the two modes.

The received signal y(I) € C? with § = pN,,, is modeled as

Ns
y(1) =Y si(D)b(wi, k') +n(l). (4.75)

=1

The statistical properties of the signals {s(l)}%, wheres(l) = [s1(I), ..., sn,(1)]7,

the additive noise {n(l)}%,, and the returned signal {y(I)}£ | are speci-
fied in subsection 3.4.1. The MB polarimetric interferometric steering vec-
tors b(w;, k?) with the spatial frequency w; and the scattering mechanism
ki =[k,..., k}'\,po |7 of the ith source are assumed to be linearly independent
and Ng < p.

The closed-form matrix expression of the polarimetric MB InSAR signal
with N, sources is

l

y(1) = D(w, kyec)s(l) + n(l) (4.76)

where the the matrix D(w, kye.) € Mat; y,(C) contains the MBPI steering
vectors b(w;, k?)

D(w,kyee) = [b(wi, k'), ..., b(wn,, k)] (4.77)
)

with the unknown spatial frequencies w = [w1,...,wn,] € [-7,m)"*, and

the unknown scattering mechanisms
kyee = (KD, ..., (KV)T]T € CNeNpor, (4.78)
This matrix can be rewritten as
D(w, kyec) = C(w)K (4.79)

where the matrix C(w) € Mat; n,n,,,

(C) is given by
C(w) = [B(w1), ..., B(wn,)] (4.80)

with B(w;) € Mat; n,,(C) defined in equation (4.9). The matrix K €
Maty, N, N, (C) comprises the scattering mechanisms

k! 0
0 k2
K= 0 ) (4.81)
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The task is to estimate the number of sources Ny, the spatial frequencies
wi,...,wn,, and the polarimetric scattering types k!,... ks,

Let k € {0,1,...,p — 1} be the assumed number of sources. Using the
abbreviation @ = (w, Ky ), the data model is

¥(1) = DO))s(D) + n() (452)
with the MBPI steering vector matrix D(8(k)) € Mat; ,(C)
D(0(k)) = [b(wi,k'),..., b(ws, k*)]. (4.83)

The received signal y(I) can be partitioned into ys(I) € C¥ and y, (1) €
CP=F associated with the signal and noise subspace, respectively. The or-
thogonal projection on the signal subspace Ppg)) € Mat;(C) is given
by

-1
Py = D(8(k)) [DY (8(k))D(8(k))] D (8(k)) (4.84)
and the orthogonal projection on the noise subspace Pﬁ(e(k)) € Mat;(C)
by
1L

Similarly to the derivation of the single polarization MB InSAR com-

bined detection-estimation in subsection 3.4.2, the code length necessary

to encode the noise subspace components {yn(l)}%, assuming that 6(k) is
given results in

Z{yn()|8(k)} = Llog det[6*(0(k))I] + L(p — k) + (1) (4.86)

where constant terms independent of k are neglected.

Since the number of free parameters in the signal data covariance matrix
Rs(0(k)) € Mat(C) is k%, the code length of the signal subspace compo-
nents is obtained as

L{ys(1)|6(k)} = Llog det[Ry(B(k))] + Lk + g(k?)  (4.87)

where constant quantities are omitted and Rg(0(k)) € Mat(C) is the ML
estimate of Rg(0(k)).

The total code length required to encode the noise and signal subspace
components is the sum of (4.86) and (4.87):

Z{yn(l),ys(1)[0(k)} = Llog det[ﬁs(G(k))]det[&2(O(k))l]] +g(k?).
(4.88)
Using equation (4.88), the unknown parameter vector 6(k) is estimated as

~ ~

6(k) = arg min det[Rs(0(k))]det[52(0(k))I). (4.89)
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To evaluate the equation (4.89) and calculate the estimate @(k), it is re-
formulated by means of the abbreviation D = D(6(k)), keeping in mind that
the matrix D includes both spatial frequency and polarization information,
in the following ways:

The first formulation of the estimate (4.89) can be stated as

~

O(k) = in det[PpRP
(k) arg min et[Pp Dt

1 ~
— ktr[PﬁR]Pﬁ]. (4.90)

with the sample covariance matrix R.

Let 15(0(k)) > --- > [5(6(k)) be the nonzero eigenvalues of the Her-
mitian matrix PpRPp and IM@(k)) > --- > I35 (6(k)) be the nonzero
eigenvalues of the Hermitian matrix Pﬁf{Pﬁ. Then the second expression
of the estimate (4.89) can be written as

p—k

Pk Z
6(k) = argyin (Hz ) (ﬁi . Zzgl(e(k))> L (a9)
i=1

The nonlinear, nonconvex, and high-dimensional optimization problem of
calculating the ML estimate (4.89) can be solved by alternating maximiza-
tion [117] using (4.91).

The degrees of freedom of (k) are obtained as kN, where Ny, =
2Npop — 1 for 1 < N, < 4. The values of Ny, are summarized in ta-
ble 4.2. Hence, for polarimetric MB InSAR measurements the total number
of unknown free parameters is:

n(k) = k(k + Npar). (4.92)

Finally, the number of sources is estimated by

~

N, = in  ITCarr(k 4.93
s=arg min TTC(k) (4.93)

where the information theoretic criterion estimator is:

-k Pk
ITC)y1(k) = Llog <Hls ek) (;k,Zl?(ék)) +9(k(k + Npar))-
=1

(4.94)
Selecting the Akaike bias correction term g(n(k)) = n(k) yields the AIC
estimator [1,2]

- p—k
1L
AICy (k) = Llog (H 15(6y) > (m Zl?(é@) + k(k + Npar)
=1

(4.95)
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that is inconsistent and overestimates asymptotically the number of signals.
Using the penalty function g(n(k)) = 2n(k)log L, the minimum description
length [87,101]

" p—k
1 =, 4 1
MDLys (k) = Llog <H 2 9k ) (]3— ’ ;li (0;0) +§k(k+Npar)logL
(4.96)
is stronlgy consistent [112,116]. By choosing g(n(k)) = n(k)Cr, with
. Cp
ngIolo I = 0 (4.97)
and o
L = oo, (4.98)

lim ————
Pt log(log L)
the efficient detection criterion [3,116]

EDCyr.(k) = Llog (Hls 0y ) <ﬁi

'U‘z
ol

p—k
- Zz?(ak)) +k(k+ Npar)Cr,
=1

(4.99)
is stronly consistent as well [3,116].
The Hermitian matrices PpRPp € Mat;(C) and PRP3 € Mat;(C)
are by construction ill-conditioned with [41,102]

. Amax (PDRP
ke (PpRPp) = 222 (PoRPp) _ (4.100)
Amin(PDRPD)
and Aol
. Amax(P5RP
ko (PpRPp) = 22 ( D p) _ (4.101)
Amin(P5RPL)

Thus, in the estimator (4.91) the eigenvalues have to be calculated with
care.

For N,y = 1, the estimation-detection algorithm reduces to the tech-
nique for processing multibaseline InNSAR, observations with one single polar-
ization detailed in section 3.4. The generalization to data with polarization
diversity leads to 2 < IV, < 4. The adaptation to hybrid antenna constel-
lations is straightforward. The extension of the ML estimator to analyze
stochastic polarimetric MB InSAR measurements is obvious.

A difference between the polarimetric model order selection algorithm
based on the covariance matrix (CM MOS) presented in section 4.2 and
the MOS approach relying on the ML estimator (MLE MOS) developed
in this section can be observed: The degrees of freedom of the MLE MOS
(4.92) are a function of the number of parameters to be determined, i.e., the
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dimension of the space of unknown parameters: In particular, it depends
on the variable N4, but does not depend on the number of sensors p.
In contrast, the DoF of the CM MOS (4.33) depend both on the number
of antennas and the polarization number Ny, i.e., the dimension of the
observation space p = pNp;.

A fundamental discrepancy between the polarimetric ML estimator and
the polarimetric methods to estimate the spatial frequencies like beamform-
ing, Capon, MUSIC, and M-RELAX introduced in section 4.3 is as follows:
The dimension of the linear system that has to be solved in the MLE (4.91)
is p = pNpg, i.e., it depends on both the number of antennas p and the
polarization number N,,. On the other hand, the dimension of the ma-
trices that have to be computed for the polarimetric beamforming, Capon,
MUSIC, and M-RELAX is invariably N, and independent of the number
of sensors p.

4.5 Conclusions

In this chapter, array signal processing techniques have been generalized to
the polarimetric multibaseline interferometric SAR scenario based on the
following principle: In passive sensor systems, the antennas only receive
the signals in diverse polarizations leading to two polarization channels. In
contrast, in the context of SAR the sensors are active and both transmit
the electromagnetic waves and receive the echo of the backscattered signals
in polarimetric mode resulting in up to four polarization states. First, the
signal models have been extended to take polarization diversity into account
yielding the notion of the multibaseline polarimetric interferometric steering
vector. It is a linear combination of four vectors each of them associated
with one particular polarization.

The model order selection techniques have been adapted to estimate the
number of sources from MB POL-InSAR measurements. Subsequently, the
spectral estimation algorithms have been extended to the polarimetric multi-
baseline InSAR configuration. The adaptation to the polarimetric case not
merely increases the number of observables, but particularly determines the
optimal polarization combination for spatial frequency estimation. These
polarimetric methods permit to retrieve the spatial frequencies, the asso-
ciated optimal scattering vectors, and the polarimetric reflectivities. The
optimal scattering mechanisms allow the examination of the reflector phys-
ical properties by analysis of their polarimetric behavior. The nonparamet-
ric beamforming and Capon algorithms have been generalized to the MB
POL-InSAR scenario to extract the spatial frequencies, the corresponding
optimal reflection mechanisms, and the polarimetric reflectivities. Model-
based techniques possess generally better performance than nonparametric
methods concerning resolution and sidelobe suppression. The superresolu-
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tion polarimetric MUSIC and M-RELAX approaches have been conceived
to determine the spatial frequency and the related scattering mechanism.
The linear least-squares method and M-RELAX estimate the polarimet-
ric reflectivity. Finally, the polarimetric maximum likelihood estimator has
been introduced for solving the joint detection-estimation problem from MB
POL-InSAR observations. These polarimetric spectral analysis techniques
have been developed in their most general form: They can be employed in
polarimetric MB InSAR configurations in all possible combinations. Their
mathematical features have been explained in detail.
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Chapter 5

Applications of Polarimetric
Multibaseline InSAR
Spectral Analysis Techniques

To demonstrate the performance of the spectral analysis techniques intro-
duced in the two previous chapters, they are applied to fully polarimetric
dual-baseline InSAR observations of an urban environment. After present-
ing the dataset, the number of backscattering sources is estimated by model
order selection algorithms. Using single-baseline POL-InSAR measurements
the scatterer height and reflection mechanisms are determined to produce
a three-dimensional model of an urban scene. Subsequently, the building
layover is analyzed by means of polarimetric dual-baseline interferometric
SAR data. Finally, three-dimensional images are generated that include
polarimetric information about the reflection processes.

5.1 Presentation of the Dataset

The proposed array signal processing methods are applied to fully polari-
metric and repeat pass dual-baseline interferometric SAR images at L-band
acquired on August 1st, 2000, over the city of Dresden in Germany by DLR’s
experimental SAR (E-SAR) system.

Figure 5.1 shows a Pauli color-coded POLSAR image of a large scene
that includes buildings, vegetation, and surfaces as illustrated in the corre-
sponding optical image in figure 5.2. The resolution of the SAR images is
2.2 m in range and 3.0 m in azimuth. The sensor flight direction is on the
left hand side, i.e., far range is located on the right and near range on the
left side. For the studied area, the incidence angle varies from 43 ° to 48°.
Polarimetric dual-baseline interferometric SAR measurements are available
with a small baseline of about 10 m and a large baseline of around 40 m.
The height of ambiguity ranges from 55 m to 73 m for the small baseline,
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Figure 5.1: Pauli color-coded POLSAR image of the large urban scene.

and attains values between 14 m and 18 m for the large baseline.

The scene contains small edifices such as barracks shown in figure 5.3.
As illustrated in figure 5.4, the large buildings consist of a maximum of
a dozen floors resulting in building heights of more than 30 meters. The
vegetation comprises trees, parks, and grassland (see figure 5.5). Figure 5.6
depicts surfaces like sports fields and bare soils.

5.2 Dual-baseline POL-InSAR Model Order
Selection

The model order selection (MOS) methods are evaluated using fully polari-
metric dual-baseline InSAR data [99] of the scene depicted in figure 5.1.
First, the number of sources is determined by means of single polarization
dual-baseline interferometric observations employing the MOS technique
and EDC without diagonal loading (figure 5.7). The maximum number
of detectable components is two. Bare soils and shadows that are generated
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Figure 5.3: Optical image: Small buildings such as barracks (copyright
G.S.).

Figure 5.4: Optical image: Large buildings (copyright G.S.).
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Figure 5.5: Optical image: Vegetation including trees, parks, and grassland
(copyright G.S.).

Figure 5.6: Optical image: Surfaces such as sport fields (copyright G.S.).

by buildings are partially assigned to the class of zero sources. Vegetated
areas include one or two backscattering contributions, whereas the building
layover is associated with the class containing two or more signal compo-
nents.

Figure 5.8 depicts the estimation result with diagonal loading and load-
ing factor § = 10. Diagonal loading reduces considerably the model order.
The building shadow is now clearly identified as an area without a detected
signal, just like some surfaces such as the smooth sports field. The build-
ing layover that comprises two or more backscattering sources is noticeably
surrounded by resolution cells where only one component is present.

To compare single polarization and fully polarimetric InSAR MOS, the
number of detected signal components is first restricted to two utilizing the
polarimetric dual-baseline interferometric data (figure 5.9). Globally, the
results of the single polarization and fully polarimetric estimation resemble
quite strongly. Especially over man made objects the polarimetric MOS
tends to estimate slighlty more reflecting sources than the single polarization
approach and less over some vegetated areas.

To investigate the building layover in more detail a sub-area including
edifices that are oriented in the sensor flight direction is selected. For display
purposes, the maximum number of estimated sources is set to five. At the
layover edges (figure 5.10), the model order is low with one or two signal
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Figure 5.7: Single polarization dual-baseline InSAR MOS without diagonal
loading.

components, reaching its maximum of five in the middle of the layover. Two-
dimensional filtering causes a mixture of scattering mechanisms comprising
single-bounce reflections from the ground, the wall, and the roof, double
bounce from the ground-wall interaction and possible multipath phenomena.
To limit the influence of two-dimensional 5 x 5 boxcar averaging, an adaptive
filtering with a filter size of ten pixels is applied. It is evident (figure 5.11)
that this preprocessing reduces the model order, in particular inside the
layover.

5.3 Multibaseline POL-InSAR Height and
Scattering Mechanism Estimation

In this section, array signal processing techniques are used to generate a
3D model comprising scattering mechanisms estimated from single-baseline
POL-InSAR data of an urban area. The building layover is analyzed using
polarimetric dual-baseline interferometric SAR measurements.

5.3.1 Single-baseline POL-InSAR Height and Scattering
Mechanism Estimation for 3D Modeling

The height and physical characteristics of the dominant scatterers are de-
termined by the single-baseline fully polarimetric MUSIC algorithm with a
baseline of approximately 10 m [94, 95].

The fully polarimetric MUSIC method not only allows height estimation,
but also a polarimetric analysis by means of the optimal scattering vector
Kmin- Three canonical reflection mechanisms are identified and assigned
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Figure 5.8: Single polarization dual-baseline InSAR MOS with diagonal
loading.

ol +1[1] =211

Figure 5.9: Polarimetric dual-baseline InNSAR MOS with diagonal loading.
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Figure 5.10: Polarimetric dual-baseline InNSAR MOS with 5 x 5 boxcar fil-
tering.

Figure 5.11: Polarimetric dual-baseline InSAR MOS with adaptive filtering.
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Figure 5.12: Identification of three basic scattering mechanisms (DB red,
SR blue, VD green). Top: Original data, bottom: Polarimetric scattering
mechanism generated by MUSIC analysis.

to the double bounce (DB), surface reflection (SR), and volume diffusion
(VD) class [27]. While all these backscattering phenomena are present in
the classification of the original data (figure 5.12, top), the MUSIC method
is able to eliminate the volume diffusion class (figure 5.12, bottom): This
suggests that the algorithm reduces the phase offset in a complex scene
including vegetation and man-made objects.

The building height is estimated by the small baseline (=~ 10 m) fully po-
larimetric MUSIC method. The 3D image (figure 5.13) shows a large scene
of the Dresden dataset. It is color-coded by the magnitude |hh|. Samples
belonging to weakly correlated or shadowed areas are masked out by a cri-
terion based on a threshold of the amplitudes and coherences: Pixels whose
coherence is lower than 0.8 and whose modulus in the vv channel is less
than the average modulus in the whole area are eliminated. Whereas height
estimation of edifices aligned in azimuth direction is feasible, buildings with
another orientation are partially masked out due to low backscattered power.
It has to be borne in mind that layover effects are still visible.

Figure 5.14 illustrates in a 3D view the physical characteristics of the
dominant scatterer by means of the angle «y, defined in equation (2.56):
Blue represents surface reflection (a1 =~ 0), red double bounce (a1 ~ 7/2).
On the top of buildings, double bounce scattering prevails. This can be ex-
plained by particular roof structures or multipath reflection processes gen-
erated by surrounding buildings. This argument is confirmed by average a;
values for the isolated building in the rear part of the scene.
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Figure 5.13: 3D building height estimation using the small baseline fully
polarimetric MUSIC method.

Figure 5.14: 3D building height estimation and scattering mechanism ex-
traction using the small baseline fully polarimetric MUSIC method.
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5.3.2 Dual-baseline POL-InSAR Height Estimation for
Layover Analysis

In this subsection, the building layover is examined in detail using the dual-
baseline POL-InSAR configuration [96,97]. To analyze the layover, a build-
ing that is oriented in sensor flight direction is selected (see figure 5.15).
The edifice consists of five floors and a pitched roof leading to a height of
approximately 17 m. As depicted in figure 5.16, the along-track direction
is on the left side, i.e., far range is situated on the right and near range on
the left side. The diagram 5.17 displays the scattering pattern inside the
building layover: Going from right to left, i.e., from far range towards the
SAR sensor position, there is first the wall-ground interaction point indi-
cated by the number one. It is located at the ground topographic height.
In the middle, there is a mixture of various reflection processes from the
ground, the wall, and the roof. On the left hand side at number two, i.e., at
the samples of the building layover that are closest to the antennas, there
are contributions from the ground and the roof inside one azimuth-range
resolution cell.

In the following, the spectra of beamforming and Capon and the pseudo-
spectra of MUSIC and the maximum likelihood estimator are investigated
for the scenario of one single polarization (vv) and for the case of fully po-
larimetric observations with equal cross-polarizations. The pseudo-spectra
of the single polarization (SP) and polarimetric (FP) MLEs are evaluated
by assuming N, = 1, and are defined as

- 1

Pyr = 5.1

L= 50 ()
using equation (3.65), and

- 1

Pl == 5.2

e = 50 (52

employing equation (4.91), respectively.

The height of ambiguity of the acquisition system with the small and
large baseline is given by H 3qu ~ 67.5m and H Llll;nb ~ 15 m, respectively. To
illustrate the behavior of the (pseudo-)spectra, they are computed in a very
wide range of [—30 m, 3H5% , m]. If not otherwise stated, a 5 x 5 boxcar
filter is employed to average spatially the data.

The (pseudo-)spectra are determined for the samples along the line inside
the building layover shown in figure 5.16 on the right hand side. In the
following figures, their order is from left to right and top to bottom. That
means, the (pseudo-)spectra at the top correspond to far range, i.e., to the
ground-wall interaction points, and those at the bottom are related to near
range, i.e., to the samples inside the layover that are closest to the antenna

location.
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Figure 5.15: Optical image of building number one. Left: View from the
side, right: View from the front (copyright G.S.).

range

azimuth
azimuth

[HH+VV|  [HH-VV|  |HV|

Figure 5.16: Pauli color-coded urban scene (left). The along-track direction
is on the left side, i.e., far range on the right side. Close-up view of the
building layover inside the red box with indicated sample line (right).
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Figure 5.17: Schematic view of building layover with sensor on the left side.
The wall-ground interaction point in far range is indicated by the number
one, the azimuth-range resolution cell inside the layover that is closest to
the sensor position by the number two.
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The spectra of the single polarization and fully polarimetric beamforming
methods in the first row of figures 5.18 and 5.19, respectively, show a broad
mainlobe at approximately 0 m corresponding to the height of the ground
and significant sidelobes at around —1 dB or below. The locations of the
mainlobes in the spectra depicted in the second row jump from around 0
m to about 13 m. In the third and fourth row of figure 5.18, the single
polarization beamforming spectra have mainlobes whose positions increase
from 12 m to 17 m associated with the building wall and roof. The secondary
peaks between —4 m and 0 m are most probably sidelobes caused by the
nonuniform array geometry. The other sidelobes are suppressed below —2
dB. In the last two rows of figure 5.19, the polarimetric beamforming exhibits
a mainlobe at about 17 m related to the building roof. The secondary
maxima at around 1 m might correspond to a backscattering source at the
ground or might be an ambiguity generated by the uneven sampling. The
sidelobes are reduced below —3 dB.

Figures 5.20 and 5.21 illustrate the Capon spectra in single polarization
and fully polarimetric mode, respectively. In the first row, the mainlobes of
the Capon spectra are located at around —1 m and correspond to the ground
height. The sidelobes of the polarimetric Capon method are at around —7
dB or less, whereas the sidelobes of the single polarization Capon algorithm
are below —11 dB. This may be explained by a finer resolution capability
of the polarimetric Capon. Compared to the beamforming technique, the
spectral peaks are much narrower and the sidelobes are noticeably decreased.
In the second row, the mainlobes are positioned between 0 m and 5 m. In
the third and fourth row, the height location of the mainlobe rises from 7
m to 17 m for the single polarization Capon algorithm and lies in the range
of 11 m to 17 m for the polarimetric Capon method. These maxima are
caused by reflectors at the building wall and roof. Particularly in the last
two spectra of the fourth row, there are second peaks situated at about 4
m. They might be induced by targets near the ground or represent spurious
sidelobes. The other sidelobes are at around —6 dB or below.

Since the Capon algorithm requires the computation of the inverse of the
covariance matrix, it is very sensitive to the number of samples employed
to calculate the covariance matrix. Thus, the single polarization and fully
polarimetric Capon spectra are evaluated after 7x 7 boxcar filtering as shown
in figures 5.22 and 5.23, respectively. They resemble largely the Capon
spectra using 5 x 5 boxcar averaging. The most conspicuous difference can
be found in the first two polarimetric Capon spectra of the last row: The
mainlobes are located at approximately 12 m and related to the building
wall. Spikes close to the mainlobe at around 18 m possess strong magnitude
and may be associated with the building roof.

Next, the single polarization (figure 5.24) and fully polarimetric (figure
5.25) MUSIC pseudo-spectra are calculated with model order fixed to one.
In the first row of the MUSIC pseudo-spectra, one mainlobe is visible at
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Figure 5.18: Single polarization beamforming spectra. The spectra are eval-
uated for the samples along the line inside the building layover illustrated
in figure 5.16 on the right hand side. Their order is from left to right and
top to bottom. The spectra at the top correspond to far range, i.e., to the
ground-wall interaction points, and those at the bottom are related to near
range, i.e., to the samples inside the layover that are closest to the antenna

location.
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Figure 5.20: Single polarization Capon spectra.
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Figure 5.21: Fully polarimetric Capon spectra.
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Figure 5.22: Single polarization Capon spectra with 7 x 7 boxcar filter.

94



-20 0 20 40 —-20 0 20 40 —-20 0 20 40
height [m] height [m] height [m]

-20 0 20 40 -20 0 20 40 -20 0 20 40
height [m] height [m] height [m]
0
_st ]
@
°
—10k
-15
-20 o] 20 40 -20 o] 20 40 -20 o] 20 40
height [m] height [m] height [m]

-20 0 20 40 -20 0 20 40 -20 0 20 40
height [m] height [m] height [m]

Figure 5.23: Fully polarimetric Capon spectra with 7 x 7 boxcar filter.
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approximately 0 m and associated with the ground. The spurious sidelobes
are at —7 dB or less. Starting from the image in the middle of the second
row in figure 5.24, the mainlobe of the single polarization MUSIC pseudo-
spectra ranges from 11 m to 18 m, and the second peak from —5 m to 0
m. The sidelobes are lowered to a value smaller than —8 dB. For the fully
polarimetric MUSIC algorithm (figure 5.25), the highest peak is located at
about 17 m, and the second spike at approximately 1 m (except for the
pseudo-spectrum in the middle of row two where the order of spectral peaks
is inverted). In the last row, the sidelobes are diminished to < —7 dB. The
maxima are linked to backscattering sources on the building wall and roof.
The second spikes might be generated by objects on the ground or they rep-
resent anomalous sidelobes induced by the uneven track distribution. While
the single polarization and polarimetric MUSIC methods possess very sim-
ilar ratios between the second peak and the maximum sidelobe of about
two to three, the positions of the two spikes are more stable for the po-
larimetric than the single polarization MUSIC technique. In comparison to
beamforming and Capon, both the single polarization and the fully polari-
metric MUSIC methods lead to finer resolution and reduce considerably the
leakage problem.

Subsequently, the MUSIC pseudo-spectra are computed under the as-
sumption of model order two. They are depicted in figure 5.26 for the SP
MUSIC and in figure 5.27 for the polarimetric MUSIC method. Interest-
ingly, the single polarization MUSIC algorithm (figure 5.26) merely detects
one source located at around —5 m to 12 m apart from the pseudo-spectrum
in the last row at the right side: Two peaks of almost equal power are posi-
tioned at about 6 m and 16 m. Sidelobes are apparently decreased. It has
to be kept in mind that the single polarization MUSIC algorithm of model
order two constitutes an extreme case: The model order of the conventional
MUSIC method is limited by two in a single polarization dual-baseline In-
SAR scenario (see equation (3.36)). In this situation the MUSIC approach
seems to estimate an average interferometric phase.

In the first row of the polarimetric MUSIC pseudo-spectra in figure 5.27,
a spectral maximum at around 0 m is visible with sidelobes at less than
—7 dB (except for the secondary maximum at the right hand side). In the
third row and the two first images of the last row, two pairs of spikes are
identified, namely centered at around 16 m and 0 m with a noise level below
—10 dB. Whereas the mainlobes are positioned at approximately 13 m and
correspond to the building wall, the second peaks are very close at around
18 m and related to the building top. The order of the first and second
lobe is inverted in the pseudo-spectrum in the center of the last row. This
implies that inside the building layover the polarimetric MUSIC algorithm
of model order two is capable of separating two components within one
azimuth-range resolution cell that is near to the sensor location. The height
of two very close sources is estimated: The first at around 13 m is associated
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Figure 5.24: Single polarization MUSIC pseudo-spectra,
one.
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Figure 5.25: Fully polarimetric MUSIC pseudo-spectra, model order set to

one.
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Figure 5.26: Single polarization MUSIC pseudo-spectra, model order set to
two.

with an object along the building wall, the second at about 18 m with the
building roof. This phenomenon will be investigated in more detail in the
next section by analyzing the polarimetric signatures.

In contrast to the single polarization dual-baseline InSAR MUSIC method,
the fully polarimetric MUSIC pseudo-spectra can be computed for model
orders greater than two (cf. equation (4.61)). The behavior of the pseudo-
spectra of the polarimetric MUSIC algorithm with model order fixed at three
is represented in figure 5.28: In the first row, the main peak is located at
around —3 m. Subsequently, the position of the mainlobe increases from —1
m to 15 m. The spectral patterns shown in the last two images of the third
row and the first two images of the fourth row are quite similar to those of
the FP MUSIC method of model order two: The mainlobes are located in
a range from 9 m to 14 m and the second spikes are at around 19 m.
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Figure 5.27: Fully polarimetric MUSIC pseudo-spectra, model order set to

two.
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Figure 5.28: Fully polarimetric MUSIC pseudo-spectra, model order set to

three.
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Figure 5.29: Single polarization MLE pseudo-spectra.

Finally, the single polarization and fully polarimetric MLE pseudo-spectra
are illustrated in figures 5.29 and 5.30, respectively. Going from top left to
bottom right, the mainlobe of the SP MLE is located from 0 m to 18 m (ex-
cept for the pseudo-spectrum in the middle of the second row that exhibits
a peak at 37 m). The sidelobe reduction is rather weak. In the first row of
the fully polarimetric MLE displayed in figure 5.30, the mainlobe is situated
at 0 m and the sidelobes are diminished below —25 dB. Starting from the
image at the end of the second row, the maxima at around 17 m correspond
to targets at the building top. Again, the second peaks at approximately
0 m might originate from a weak scatterer at the ground or they might be
quasi-grating lobes caused by the irregular sampling. It can be observed
that the sidelobes are considerably reduced, in the last row to less than
—30 dB. Ratios between the second peak and the maximum sidelobe attain
values around three.
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Figure 5.30: Fully polarimetric MLE pseudo-spectra.
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Figure 5.31: Pauli color-coded urban scene including oriented buildings. The
flight trajectory is on the left hand side. The sample line is marked by red
color.

So far, the layover of a building aligned in sensor flight direction has been
studied. This analysis is possible as well for edifices that have a different
orientation like the one depicted in figure 5.31. The pseudo-spectra of the
single polarization and fully polarimetric MUSIC method with model order
fixed at one, and of the polarimetric maximum likelihood estimator are
evaluated for the samples along the red line. Again, going from right to left
on the sample line, i.e., from far to near range, corresponds to the order of
the pseudo-spectra from top to bottom and from left to right.

In the first row of figure 5.32 illustrating the single polarization MUSIC
pseudo-spectra with model order fixed to one, the mainlobes are located at
around 2 m and associated with the ground height. Sidelobes lie at < —9
dB. In the second and third row, the position of the mainlobe increases from
3 m to 12 m. The spectral behavior of the polarimetric MUSIC algorithm
of model order one (figure 5.33) and the polarimetric MLE (figure 5.34) is
rather similar: In the first row, a peak at 0 m is detected and the sidelobes
are diminished below —9 dB and —30 dB, respectively. In the second and
third row, the location of the mainlobe rises from 1 m to 13 m. In the
middle of the last row, the SP MUSIC and FP MLE pseudo-spectra exhibit
a dominant target located at 15 m and a second peak at 0 m, whereas the
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Figure 5.32: Oriented building: Single polarization MUSIC pseudo-spectra,
model order set to one.

FP MUSIC pseudo-spectrum possesses the dominant scatterer at 0 m and
a second spike at 15 m. This observation is an indication that the SP and
FP MUSIC methods and the polarimetric MLE are adequate to identify two
components within one azimuth-range resolution cell: The first reflector is
related to the ground topography, the second to the building top. It is
apparent that the sidelobes are significantly suppressed.

Analyzing the building layover by means of dual-baseline polarimetric
InSAR measurements, the following conclusions can be drawn: The single
polarization (SP) and fully polarimetric (FP) beamforming algorithms re-
sult in spectra that are characterized by broad peaks and high sidelobes.
The SP and FP Capon methods are capable of narrowing the peaks and di-
minishing the leakage problem noticeably compared to beamforming. This
facilitates the topographic height detection using the samples that belong to
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Figure 5.33: Oriented building: Fully polarimetric MUSIC pseudo-spectra,
model order set to one.
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Figure 5.34: Oriented building: Fully polarimetric MLE pseudo-spectra.
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the wall-ground interaction points, but it is not sufficient to identify clearly
more than one contribution in the building layover samples that are nearest
to the antenna position. The SP MUSIC with model order set to two and
the SP ML estimator discern merely the height of one single signal showing
rather good and very weak secondary lobe reduction, respectively. The MU-
SIC algorithms both with and without polarization diversity whose model
order are fixed to one, and the polarimetric MLE refine the resolution and
reduce sidelobes in a visible way. For the wall-ground interaction samples
in the far range of the building layover, one peak located at the ground
height is perceived conspicuously. For the samples that are closest to the
sensor location, two sources can be separated and their heights estimated,
associated with the ground topography and the building roof. In the spec-
tral patterns of the polarimetric MUSIC method with model order set to
two, one source at the ground is clearly spotted in far range. In near range
two very close constituents are detected within one azimuth-range resolution
cell, one positioned along the building wall, the other at the building top.
The behavior of the polarimetric MUSIC approach with model order fixed to
three is quite similar. The MUSIC algorithms, particularly the polarimetric
MUSIC, and the polarimetric ML estimator possess the best performance
among the spectral estimation techniques: They are most robust to process
data from the nonuniform nonlinear sensor array. These techniques are ade-
quate to solve the building layover problem, i.e., to recover two components
within one azimuth-range resolution cell.

5.4 Dual-baseline POL-InSAR Reflectivity and
Scattering Mechanism Estimation for 3D
Imaging

In this section, the urban scene is analyzed by producing three-dimensional
images from the dual-baseline POL-InSAR measurements. First, the layover
of the building illustrated in figures 5.16 and 5.15, subsection 5.3.2, is inves-
tigated. Tomographic slices are calculated by the beamforming and Capon
methods using observations in vv channel and with polarization diversity.
The single polarization and fully polarimetric MUSIC and maximum likeli-
hood estimator generate pseudo-tomograms. The three-dimensional images
are computed in the range [—10 m, 25 m] in the vertical direction. The
(pseudo-)tomograms are extracted for the samples along the line inside the
building layover depicted in figure 5.16 on the right hand side.

The tomographic slices shown in figures 5.35 and 5.36 are calculated
by the single polarization (SP) and fully polarimetric (FP) beamforming
algorithms, respectively. On the right hand side, the backscattering from
the wall-ground interaction at the topographic height of approximately 0
m is visible. The mainlobe is broad and the sidelobes are rather strong,
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Figure 5.35: Three-dimensional imaging of building layover. The z-axis
corresponds to slant range with far range on the right hand side. The y-
axis is related to the estimated height going from —10 m to 25 m. Single
polarization beamforming tomographic slice.

especially for the polarimetric beamforming. In the middle of the 3D image,
the SP beamformer shows reflectors between 10 and 15 m associated with
the building wall. The high sidelobes below 0 m are caused by the irregular
sampling. Compared to the very bright backscattering from the wall-ground
interaction, the reflectivity is weak at the left hand side for the SP and FP
and in the middle for the FP beamforming method.

The three-dimensional imaging results of the single polarization and fully
polarimetric Capon techniques are illustrated in figures 5.37 and 5.38, re-
spectively. On the right side, both algorithms detect a signal at around 0
m originating from the building base. In comparison with the beamforming
method, the Capon algorithms lead to finer resolution and better leakage
reduction. Going to the left, the elevation of the scatterer increases to about
10 m for the SP Capon, whereas the FP Capon separates two contributions,
the first slightly above 0 m, and the second at approximately 15 m related
to the building height. To a limited extent, the fully polarimetric Capon
technique possesses sufficiently narrow peaks to identify two components at
different height locations. Again, on the left side, the backscattering is very
weak.

The pseudo-tomograms of the single polarization and fully polarimetric
MUSIC methods with fixed model order one are shown in figures 5.39 and
5.40, respectively. Both algorithms are appropriate to recognize one reflector
at around 0 m corresponding to the wall-ground interaction points at the
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Figure 5.36: Fully polarimetric beamforming tomographic slice.

Figure 5.37: Single polarization Capon tomographic slice.
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Figure 5.38: Fully polarimetric Capon tomographic slice.

right hand side. Compared to the beamforming and Capon techniques, the
spectral peaks of MUSIC with model order one are very narrow and the
sidelobes are visibly decreased. While the height of the main scatterer rises
from around 11 m to 18 m in the SP MUSIC image, the elevation of the
main reflector of the FP MUSIC method is very stable at approximately 17
m. They are associated with the building wall and roof. The second peaks
at around —2 m (SP) and 0 m (FP) seem to be sidelobes in the height of
ambiguity.

The pseudo-tomographic slices of the SP MUSIC (figure 5.41) and the
FP MUSIC (figure 5.42) methods where the model order is set to two are
quite different: The elevation of one single reflector grows from —5 m to more
than 10 m in the single polarization MUSIC 3D image. It has to be noted
that the classical MUSIC algorithm of model order two represents a limiting
case if it is applied to single polarization dual-baseline InSAR measurements
(see equation (3.36)). It seems to compute an average phase. On the right
hand side of the fully polarimetric MUSIC pseudo-tomogram, one source
at around 0 m related to the building base can be seen. Compared to the
polarimetric MUSIC algorithm of model order one, the resolution is slightly
deteriorated: This degradation may be explained by overmodeling or by an
object near the wall-ground interaction points. In the middle and on the left
side, two strong scatterers that are very close to each other are distinguished:
The first at approximately 13 m is generated by targets along the building
wall, the second is very stable at 18 m and caused by the building roof.
Sidelobes are visible at about 0 m.

The pseudo-reflectivities of the polarimetric ML estimator on the left
side of figure 5.43 are that strong that the scatterers in the other parts of
the image cannot be discerned.
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Figure 5.39: Single polarization MUSIC pseudo-tomographic slice, model
order fixed to one.

Figure 5.40: Fully polarimetric MUSIC pseudo-tomographic slice, model
order fixed to one.
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Figure 5.41: Single polarization MUSIC pseudo-tomographic slice, model
order fixed to two.

Figure 5.42: Fully polarimetric MUSIC pseudo-tomographic slice, model
order fixed to two.
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Figure 5.43: Fully polarimetric MLE pseudo-tomographic slice.

Next, the optimal MUSIC scattering vectors ki, are employed to form
three-dimensional images illustrating the reflection processes [98]. Figures
5.44 and 5.45 show the minimum scattering mechanisms computed by the
fully polarimetric MUSIC method with model order set to one and two,
respectively. On the right hand side, the relative power between the polar-
izations is alike. For the polarimetric MUSIC algorithm with model order
fixed to one, the first component of the Pauli polarization basis associated
with surface scattering prevails on the left side at the building top. The
MUSIC method of model order two in figure 5.45 reveals surface reflection
on the building roof, and an additional scattering phenomenon very close to
the building top where the polarization channels seem to have quite equal
amplitudes. It is evident that these reflection processes which are only sep-
arated by a few meters exhibit very disparate polarization signatures.

In the following, scattering patterns are examined in more detail by using
the polarimetric indicator «y of the dominant reflector inside the optimal
vectors kpin. In figures 5.46 (model order one) and 5.47 (model order two)
a mask based on a threshold of the pseudo-reflectivities is applied to set the
samples to black color whose backscattering power is less than the mean
of the imaged area. On the right hand side at the wall-ground interaction
points, the a; value is rather high suggesting double bounce reflection. In
the middle part of the image, the polarimetric descriptor reaches values of
about 7, linked to the double bounce class. At the left hand side, a; attains
average to low values at the roof that are related to surface reflection. Again,
it is conspicuous that the polarimetric MUSIC algorithm of model order
two is adequate to differentiate within one azimuth-range resolution cell
two neighboring scatterers that possess very distinct polarimetric behavior:
Whereas at the roof the a1 value is low and corresponds to surface scattering,
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Figure 5.44: Pseudo-tomographic slice of the optimal MUSIC scattering
mechanisms ki, model order fixed to one.

Figure 5.45: Pseudo-tomographic slice of the optimal MUSIC scattering
mechanisms K,i,, model order fixed to two.
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Figure 5.46: Polarimetric indicator a; of the optimal MUSIC scattering
vector, model order fixed to one.

it is high for the sources below the building top and related to double bounce
reflection.

So far, the layover of one single building has been investigated. Now,
three-dimensional images of a large scene are generated along the sample line
defined in figure 5.48. The area contains three tall buildings as illustrated
in the diagram 5.49. Building number one and two on the right enclose
a spacious courtyard shown in figures 5.15 and 5.50 consisting of several
trees, small barracks, hanging bars and a playground with a slide. Building
number two and three on the left are separated by a street as can be seen
in figure 5.51. The sensor is located on the left hand side.

The pseudo-tomograms are computed by the SP MUSIC (model order
one) and the FP MUSIC (model order one and two) algorithms depicted
in figures 5.52 (SP MUSIC MO 1), 5.53 (FP MUSIC MO 1), and 5.54 (FP
MUSIC MO 2), respectively. Going from right to left, i.e., from far to near
range, the wall-ground interaction samples of the first building are apparent
at about 0 m, followed by the strong backscattering from the roof. In the
courtyard, there is one contribution at the topographic height and strong
reflectors at approximately 10 m. Some spurious sidelobes lie beneath 0
m. In the center of the images is the shadow of building number two, where
scattering processes occur as well. At the left end of the pseudo-tomographic
slices, two buildings can be recovered: First, signals at around 0 m related to
the wall-ground double bounce reflections appear, then a component located
at the roof is detected. Globally, the polarimetric MUSIC MO 1 three-
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Figure 5.47: Polarimetric indicator ay of the optimal MUSIC scattering
vector, model order fixed to two.
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Figure 5.48: Large scene containing three tall buildings and a spacious court-

yard with trees. Azimuth is on the left hand side. The sample line is marked
by red color.
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Figure 5.49: Diagram of the large scene containing three tall buildings and
a spacious courtyard with trees.

Figure 5.51: Optical image. Left: Building number two, right: Building
number three (copyright G.S.).
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Figure 5.52: Large scene containing three buildings and a spacious court-
yard: Single polarization MUSIC pseudo-tomographic slice, model order
fixed to one.

dimensional image can be interpreted rather easily, whereas the scattering
processes of the SP MUSIC MO 1 and FP MUSIC MO 2 methods are more
difficult to analyze.

The interpretation of the reflection pattern is facilitated by the optimal
MUSIC scattering vectors kpi,: Figures 5.55 and 5.56 illustrate the re-
flection mechanisms of the fully polarimetric MUSIC technique with model
order fixed to one and two, respectively. The wall-ground interaction points
of the three buildings are associated with the second component of the Pauli
polarization basis (hh — vv). At the roofs, the first (hh 4+ vv) and second
contributions are dominant. Inside the courtyard, the backscattering of an
object at around 10 m is related to the third term of the Pauli basis (hv).
The rather broad peak and the high sidelobes below 0 m suggest that it
represents the response of a distributed target such as a tree canopy. The
strong signal at approximately 0 m on its right side might be caused by
backscattering from the tree trunk-ground.

Finally, a second large scene consisting of two oriented buildings and
a courtyard is analyzed. The pseudo-tomograms are evaluated along the
sample line in figure 5.57 by the single polarization and fully polarimetric
MUSIC algorithms with model order one. At the left and right side of the
three-dimensional images depicted in figures 5.58 and 5.59, the contributions
from the wall-ground interaction samples at the topographic height and
from the roof at approximately 15 m are noticeable. Inside the courtyard,
there are some targets at the ground and at a height of around 8 m that
may originate from a barrack. This interpretation is backed by the pseudo-
tomographic slice of the optimal MUSIC scattering mechanisms illustrated
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Figure 5.53: Large scene: Fully polarimetric MUSIC pseudo-tomographic
slice, model order fixed to one.

Figure 5.54: Large scene: Fully polarimetric MUSIC pseudo-tomographic
slice, model order fixed to two.
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Figure 5.55: Large scene: Pseudo-tomographic slice of the optimal MUSIC
scattering mechanisms ki, model order fixed to one.

Figure 5.56: Large scene: Pseudo-tomographic slice of the optimal MUSIC
scattering mechanisms ki, model order fixed to two.
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|HH| |HV| [VV|

Figure 5.57: Large scene containing two oriented buildings. Azimuth is on
the left hand side. The sample line is marked by red color.

in figure 5.60. In the center of the courtyard, a strong backscattering with
dominant hh —vv component at 0 m and a reflection related to hv at around
8 m on its left side can be discerned.

The generation of three-dimensional (3D) images from polarimetric dual-
baseline interferometric SAR observations can be summarized as follows:
The single polarization and fully polarimetric beamforming methods pro-
duce tomographic slices with low resolution and strong sidelobes. Even
though the single polarization and fully polarimetric Capon algorithms re-
fine the spectral peaks and reduce the leakage problem, it is still difficult to
analyze the tomograms of the building layover. The single polarization MU-
SIC technique of model order two estimates an average phase. The pseudo-
reflectivities determined by the polarimetric ML estimator are rather strong
on one side so that the sources in the other parts of the sample line can-
not be recognized. The 3D images computed by the single polarization and
fully polarimetric MUSIC algorithms with model order set to one show very
high resolution and considerably diminished leakage: In far range, contribu-
tions associated with the wall-ground interaction points are clearly detected.
In near range, the reflectors are related to the building wall and top. The
pseudo-tomographic slice of the polarimetric MUSIC technique whose model
order is fixed to two exhibits one signal at the building base in far range.
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Figure 5.58: Large scene containing two oriented buildings: Single polariza-
tion MUSIC pseudo-tomographic slice, model order fixed to one.

Figure 5.59: Large scene containing two oriented buildings: Fully polarimet-
ric MUSIC pseudo-tomographic slice, model order fixed to one.
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Figure 5.60: Large scene containing two oriented buildings: Pseudo-
tomographic slice of the optimal MUSIC scattering mechanisms ki, model
order fixed to one.

Compared to the MUSIC methods of order one the spectral pattern is broad-
ened due to overmodeling or a target near the ground-wall interaction points.
For the samples closer to the antenna positions, the polarimetric MUSIC of
model order two is capable of identifying two neighboring objects within one
azimuth-range resolution cell: The first scatterer is located at the building
roof, the second along the wall. The height separation is much lower than
the height of ambiguity of the large baseline, i.e., far beyond the Rayleigh
resolution.

The 3D image interpretation is enhanced by investigating the optimal
polarimetric MUSIC scattering mechanisms: For the wall-ground interaction
samples double bounce is dominant. The backscattering from the building
roof corresponds to surface reflection. The polarimetric MUSIC technique
of model order two is apt to distinguish two close targets that are linked to
distinct polarization behavior: The reflection caused by the roof is related
to surface scattering, the objects along the wall to double bounce.

Finally, large heterogeneous scenes have been examined containing sev-
eral edifices, other man-made items, and diverse vegetation. The building
base and roof are visibly diagnosed both for oriented and non-oriented build-
ings. Furthermore, electromagnetic processes generated by natural environ-
ments can be measured and their height extracted.

5.5 Conclusions

In this chapter, array signal processing techniques have been applied to fully
polarimetric dual-baseline InSAR observations of an urban environment.
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First, the number of backscattering sources has been determined by po-
larimetric model order selection methods. The maximum number of de-
tectable components is two for single polarization dual-baseline InSAR data,
whereas it is eight in a fully polarimetric dual-baseline interferometric SAR
configuration with equal cross-polarizations. The estimation results of the
single polarization and polarimetric detection techniques are rather similar,
if the number of sources is limited to two for comparison purposes. In par-
ticular inside building layover the number of signal components retrieved by
the fully polarimetric algorithm is two or more.

The scatterer height and reflection processes have been extracted from
fully polarimetric single-baseline InSAR measurements. The polarimetric
MUSIC technique determines both the building height and the associated
scattering mechanisms generating a three-dimensional model of a large ur-
ban scene that comprises the reflection types.

Subsequently, a complex urban area has been analyzed by means of
dual-baseline polarimetric InSAR data. First, the layover of a single build-
ing has been examined in detail employing the (pseudo-)spectra and three-
dimensional imaging: The single polarization (SP) and fully polarimetric
(FP) beamforming techniques lead to spectra characterized by low resolu-
tion and strong sidelobes. Although the SP and FP Capon methods are
appropriate to narrow the spectral peaks and alleviate the leakage problem,
it remains complicated to discern the various features in building layover.
The single polarization MUSIC algorithm with model order set to two and
the single polarization ML estimator identify only the height of one contri-
bution having quite good and very weak sidelobe suppression, respectively.

The pseudo-spectra and three-dimensional images evaluated by the MU-
SIC techniques both with and without polarization diversity whose model
order is fixed to one exhibit fine resolution and noticeably reduced leakage:
For the wall-ground interaction samples in far range, one backscattering
source at the topographic height is detected. The elevation of two com-
ponents can be determined inside one azimuth-range resolution cell close
to the sensor position, corresponding to the ground and the building top.
Whereas the spectral patterns of the polarimetric MUSIC of model order
one and the polarimetric ML estimator resemble, the pseudo-tomogram pro-
duced by the polarimetric MLE shows a dominant scatterer in one part of
the slice. The three-dimensional image of the polarimetric MUSIC method
with model order fixed to two (MO 2) reveals one target at the building
base in far range. Overmodeling or an object near the ground-wall inter-
action points blur slightly the peak in comparison with the polarimetric
MUSIC approach of model order one. For samples close to the antenna lo-
cation, the polarimetric MUSIC MO 2 algorithm recognizes two neighboring
constituents within a single azimuth-range resolution cell: One reflector is
positioned at the building top, the other along the wall. The height separa-
tion is far beyond the Rayleigh resolution, i.e., much lower than the height
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of ambiguity of the large baseline. The spectral behavior of the polarimetric
MUSIC method of model order three is quite similar.

Investigating the optimal polarimetric MUSIC reflection types supports
the three-dimensional image interpretation: Double bounce prevails at the
wall-ground interaction samples. The scatterers caused by the roof are re-
lated to surface reflection. In near range, the polarimetric MUSIC technique
of model order two differentiates two close sources associated with disparate
polarization signatures: Besides surface scattering from the building top,
the targets along the wall correspond to double bounce.

Finally, large heterogeneous urban scenes have been analyzed consisting
of several buildings, other man-made objects, and diverse vegetation. The
building base and roof are conspicuous both for oriented and non-oriented
edifices. Additionally, the height of backscattering phenomena induced by
distributed environments has been retrieved.

Among the spectral estimation techniques, the MUSIC algorithms, espe-
cially the polarimetric MUSIC, offer the best performance: They are most
robust to process data acquired by an irregular array configuration. These
methods are capable of resolving the building layover problem, i.e., separat-
ing two components within one azimuth-range resolution cell.
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Chapter 6

Conclusions and Perspectives

In this thesis, spectral analysis techniques have been generalized to process
polarimetric multibaseline interferometric SAR data. These polarimetric
array signal processing algorithms have been described in a rigorous mathe-
matical way and applied to urban areas. They permit the estimation of the
reflector height, the scattering mechanism, and the polarimetric reflectivity.
From single-baseline POL-InSAR observations, a digital elevation model of
an urban scene has been generated including the scattering types. Using
polarimetric dual-baseline InSAR, data, the building layover problem has
been resolved and three-dimensional SAR images have been produced that
reveal the reflection mechanisms.

Basic and advanced concepts of Synthetic Aperture Radar have been pre-
sented in chapter 2: First, basic properties of SAR data have been explained.
Two conventional extensions of single-channel SAR, namely SAR polarime-
try and SAR interferometry have been introduced and two advanced multi-
channel SAR approaches have been outlined: Polarimetric SAR interferom-
etry and multibaseline InSAR, including SAR tomography.

In chapter 3, spectral analysis techniques to process multibaseline in-
terferometric single polarization SAR images have been detailed. While
the well-known stochastic signal model describes extended scatterers and
comprises the speckle phenomenon as multiplicative noise, the deterministic
multibaseline InSAR, data model represents the response from point-like re-
flectors. These two approaches have been joined to form the hybrid model.
To determine the number of backscattering sources model order selection
algorithms have been elaborated. They are based on the application of in-
formation theoretic criteria and employ the eigenvalues of the covariance
matrix. Subsequently, spectral estimation methods have been explained.
They compute both the spatial frequency to extract the reflector height and
resolve the layover problem and the reflectivity to generate 3D images. The
spatial frequency and reflectivity are retrieved by the nonparametric beam-
forming and Capon algorithms that do not make any assumption about
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the statistical properties of the received signals. The model-based super-
resolution MUSIC technique calculates the spatial frequency and the linear
least-squares method the reflectivity. The superresolution M-RELAX esti-
mates both the spatial frequency and the reflectivity. Finally, a maximum
likelihood estimator which relies on the stochastic signals model has been
derived: It solves the combined detection-estimation problem. In contrast
to MUSIC, it is even optimal for fully correlated signals.

Array signal processing methods have been adapted to the polarimet-
ric multibaseline interferometric SAR configuration in chapter 4 based on
the following idea: In passive sensor systems, the antennas merely receive
the signals in diverse polarizations resulting in two polarization states. In
contrast, in the context of SAR the sensors are active and both transmit
the electromagnetic waves and receive the echo of the reflected signals in
polarimetric mode leading to up to four polarization channels. First, the
signal models have been generalized to take polarization diversity into ac-
count yielding the notion of the multibaseline polarimetric interferometric
steering vector. It is a linear combination of four vectors each related to one
specific polarization.

The generalization of the model order selection algorithms to determine
the number of sources from MB POL-InSAR measurements has been in-
troduced. Subsequently, the spectral estimation techniques have been ex-
tended to the polarimetric multibaseline InSAR case. The adaptation to
the polarimetric scenario not only increases the number of observables, but
particularly computes the optimal polarization combination for spatial fre-
quency estimation. These polarimetric methods allow the extraction of
the spatial frequencies, the corresponding optimal scattering vectors, and
the polarimetric reflectivities. The optimal reflection mechanisms permit
the examination of the scatterer physical characteristics by analyzing their
polarimetric behavior. The nonparametric beamforming and Capon algo-
rithms have been adapted to the multibaseline POL-InSAR configuration to
retrieve the spatial frequencies, the associated optimal reflection types, and
the polarimetric reflectivities. As model-based polarimetric techniques, the
superresolution MUSIC and M-RELAX approaches have been developed to
estimate the spatial frequency and the related scattering mechanism. The
linear least-squares method and M-RELAX extract the polarimetric reflec-
tivity. Finally, the polarimetric maximum likelihood estimator has been
conceived for solving the joint detection-estimation problem from MB POL-
InSAR observations. These polarimetric spectral analysis techniques have
been derived in their most general form: They can be used in polarimet-
ric multibaseline InSAR configurations in all possible combinations. Their
mathematical properties have been elaborated.

In chapter 5, array signal processing techniques have been applied to fully
polarimetric dual-baseline interferometric SAR measurements of an urban
scene.
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First, the number of backscattering sources has been extracted by po-
larimetric model order selection algorithms. The maximum number of de-
tectable signals is two for single polarization dual-baseline InNSAR observa-
tions, whereas it is eight in a fully polarimetric dual-baseline interferometric
SAR scenario with equal cross-polarizations. The estimation results of the
single polarization and polarimetric detection methods resemble strongly,
if the number of sources is restricted to two for comparison purposes. In
particular inside building layover the number of components determined by
the fully polarimetric algorithm is two or more.

The reflection height and scattering processes have been retrieved us-
ing fully polarimetric single-baseline InSAR data. The polarimetric MU-
SIC technique estimates both the building height and the related reflection
mechanisms generating a three-dimensional model of a large urban area that
contains the scattering types.

Subsequently, a complex urban scene has been investigated using fully
polarimetric dual-baseline interferometric SAR, observations. First, the lay-
over of one building has been studied thoroughly by means of the spectra and
three-dimensional imaging: The single polarization and fully polarimetric
beamforming algorithms produce spectra with broad peaks and high side-
lobes. Even though the single polarization and polarimetric Capon methods
refine the resolution and diminish the leakage problem, it remains difficult
to analyze the tomograms of the building layover. The single polarization
MUSIC technique of model order two and the single polarization ML esti-
mator detect only the height of one source showing rather good and very
weak sidelobe reduction, respectively.

The pseudo-spectra and three-dimensional images computed by the sin-
gle polarization and fully polarimetric MUSIC algorithms with model order
set to one possess narrow spectral peaks and visibly decreased sidelobes:
In far range, one backscattering component is detected at the topographic
height for the wall-ground interaction samples. The elevation of two targets
can be extracted inside a single azimuth-range resolution cell close to the
antenna location, associated with the ground and the building top. Whereas
the spectral patterns of the polarimetric MUSIC with model order one and
the polarimetric ML estimator are quite similar, the pseudo-tomographic
slice generated by the polarimetric MLE exhibits a dominant reflector in
one part of the image. The three-dimensional image of the polarimetric
MUSIC method of model order two reveals one signal at the ground-wall
interaction points in far range. Compared to the MUSIC algorithms with
order one the spectral peaks are broadened due to overmodeling or objects
near the building base. For the samples closer to the sensor position, the
polarimetric MUSIC with model order two identifies two neighboring scat-
terers within one azimuth-range resolution cell: The first target is located at
the building top, the second along the wall. The height separation is much
lower than the height of ambiguity of the large baseline, i.e., far beyond
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the Rayleigh resolution. The spectral behavior of the polarimetric MUSIC
methods with model order two and three is alike.

The three-dimensional image interpretation is facilitated by examining
the optimal polarimetric MUSIC scattering mechanisms: Double bounce
is dominant for the wall-ground interaction points. The scatterers at the
roof are linked to surface reflection. The polarimetric MUSIC algorithm of
model order two differentiates two close sources that are associated with
distinct polarization signatures: The reflection caused by the roof is related
to surface scattering, the targets along the wall to double bounce.

Finally, large heterogeneous urban scenes have been analyzed containing
several buildings, other man-made items, and diverse vegetation. The build-
ing base and roof are recognized both for oriented and non-oriented edifices.
Moreover, the height of reflection effects generated by natural distributed
environments has been determined.

The MUSIC methods, in particular the polarimetric MUSIC, possess the
best performance among the spectral estimation techniques: They are most
robust to process data acquired by a nonuniform nonlinear sensor array.
These techniques are capable of solving the building layover problem, i.e.,
recovering two components within one azimuth-range resolution cell.

Two main directions of further investigations should be pursued:

Firstly, the conceived methods should be applied to tomographic datasets
consisting of more than two baselines. This will provide an enhanced insight
into the reflection phenomena occuring in densely built-up scenes such as
multipath propagation effects. Moreover, using the proposed algorithms
on tomographic observations with a larger number of tracks the three-
dimensional modeling and imaging quality shall be improved with respect
to increased resolution in the vertical direction and sidelobe suppression.
Furthermore, the performance of fully polarimetric and dual polarization
approaches shall be compared: It is anticipated that co-polarized channels
(hh + vv and hh — vv) are most important in urban areas, whereas co- and
cross-polarized measurements (e.g., vv and hv) are essential for forested
scenes. With regard to current and future satellite missions, the polari-
metric algorithms shall be also examined over urban environments in other
frequency bands. These studies can be carried out on existing airborne
datasets, e.g., from the E-SAR system of DLR. Finally, the techniques shall
be applied to space-borne observations from TerraSAR-X and TanDEM-X
in sceneries with stable reflectors like in mountainous and urban areas by
employing the Spotlight interferometric constellation [48].

Secondly, additional spectral analysis techniques might be developed and
applied in the future. For instance, the M-APES algorithm produces nor-
mally better reflectivity estimates than Capon. It has not been employed
in the framework of this thesis since M-APES yields generally lower res-
olution than Capon [59] and is therefore not suitable for closely spaced
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signals [36,63]. Additionally, its performance degrades for irregularly sam-
pled data. To account for array miscalibrations, robust beamforming meth-
ods such as robust Capon [51, 60, 61] might be utilized. As the MUSIC
method possesses a certain degree of inherent robustness to steering vector
errors [62], robust beamformers have not been investigated in the context of
this work.
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Appendix A

Derivation of the Standard
Model Order Selection

Techniques

In this appendix an approach for solving the detection problem based on
the application of information theoretic criteria using the eigenvalues of
the covariance matrix is elaborated. First the data model is introduced
and the problem is formulated. Subsequently the the model order selection
techniques are derived.

A.1 Data Model and Problem Formulation

To solve the detection problem, i.e., to estimate the number of sources, Wax
et Kailath [110] have used a model similar to the one described in subsection
3.1.1, where the received signal vector y(l) is given by

N

y(1) =Y si(l)a(8;) +n(l). (A.1)

i=1

The N, sources with Ny < p, are assumed to have linearly independent
steering vectors a(@;). The objective is to estimate the number of sources
Ng. The returned signal can be expressed in matrix formulation as

y(l) = As(l) + n(l) (A.2)

with the matrix A = [a(01),...,a(f0n,)] € Mat, n,(C). The data covari-
ance matrix R = E{y(l)y" (1)} € Mat,(C) is

R = ASAT 4+ 521 (A.3)

The assumption that the vectors a(@;) are linearly independent is equiva-
lent to the fact that the matrix A has full column rank, rank(A) = N;.
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Furthermore, assuming that the signal covariance matrix is nonsingular,
rank(S) = Nj, it follows that rank(ASA®) = N, and the p — N, smallest

eigenvalues of this matrix are all equal to zero. Let Ay > --- > A, be the
eigenvalues of the covariance matrix R in descending order. Then the small-
est p — N, eigenvalues \; = o2 for i = Ny + 1,...,p. Hence, the number of

sources can be retrieved by the multiplicity of the smallest eigenvalues. The
problem is that the covariance matrix is unknown and has to be estimated
from a finite dataset. This implies unequal eigenvalues with probability one.
Moreover in the application of detecting the number of signals from single
polarization multibaseline InSAR, data, the above described model for or-
der selection and the MB InSAR data model from section 3.1.4 differ in
several ways: The deterministic component leads to a received data vector
with nonzero mean and the stochastic part comprises the speckle effect as
multiplicative noise.

A.2 Model Order Selection Techniques

Let k € {0,1,...,p — 1} be the assumed number of sources and let \; >

- > Ap and vi,..., v, be the eigenvalues and eigenvectors, respectively, of
the covariance matrix R. Using the spectral theorem for Hermitian matri-
ces [102], the covariance matrix R(6(k)) that comprises k sources can be
written as

p k
=> Aaviv =) (i —op)vivl 4+ 021 (A.4)
i=1 i=1
Hence, the model is described by the parameter vector

O(k) = (M,..., \,o2,vi, .. vDT. (A.5)

First the log-likelihood of the maximum likelihood estimator of the model
parameters is derived [110]: Since the samples are assumed to be statistically
independent and identically distributed with

y(1)|8(k) ~ NE(O,R(B(K))) (A.6)

their joint probability density is

L
syt 106 = 1T o RGO ORT Oy (A7)

Employing the sample covariance matrix defined by
1L
5 Z H
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this probability density can be rewritten as
FUy()}16(k)) = det[TR(O(k))] " exp { ~Ltxr [R7'(B(R)R] }.  (A.9)

Ignoring constants that are independent of 8(k) the log-likelihood function
is given by

log f(Y |0(k)) = —Llog det[R(8(k))] — Lt {R*l(e(k))ﬁ} . (A.10)

Using the eigenvalues A o> > j\p of the sample covariance matrix R the
log-likelihood of the maximum likelihood estimator of the model parameters
can be formulated as [110]

P Xl/(p—k)
> . (A.11)

log f(Y[6(k)) = (p — k) Llog ( e
p—k Zi:k—f—l Ai

To calculate the number of free real-valued parameters 7(k), the dimen-
sion of the space spanned by (k) has to be determined: Since the eigen-
values of the covariance matrix are real-valued, they contribute k£ degrees of
freedom (DoF). The k complex eigenvectors form an orthonormal basis of
the matrix space Mat,, (C) with dim(Mat,, ,(C)) = 2pk. The normaliza-
tion decreases the DoF by 2k, the mutual orthogonalization by

k-1

22@:2%/{@—1). (A.12)

i=1

Hence, the orthonormal eigenvectors span a space of dimension 2pk — 2k —
k(k—1) = k(2p — 1 — k). Thus, the degrees of freedom for the single
polarization multibaseline interferometric configuration are

n(k) =k+1+k@2p—1—k)=k(2p—Fk) + 1. (A.13)
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Appendix B

Derivation of the

Beamforming, Capon, and
MUSIC Methods

In this appendix the beamforming, Capon, and MUSIC algorithms are de-
rived.

The following result on linearly constrained quadratic minimization [107]
is necessary to derive both the single polarization and polarimetric nonpara-
metric spectral estimation techniques such as beamforming and Capon:

Theorem 1 Let D € Mat,,(C) be a Hermitian positive definite matriz, and
let X € Mat,, ,,(C), G € Mat,, ;,(C), and C € Mat,, 1(C). Assume that
G has full column rank equal to k (hence n > k). Then the unique solution
to the minimization problem

m)én XADX subject to XAG=cC (B.1)

s given by
1

X, =D"'G(G"D'G)  C”. (B.2)

The proof can be found in [107].
Ifm=k=1and C =1, then X,G € C" and

DG

Xo=Gmp-ig’

(B.3)

B.1 Derivation of the Classical Beamforming
Method

The beamforming method for spatial frequency estimation can be derived as
a Finite Impulse Response (FIR) filter [107]. The basic principle for the filter
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design is that it lets the signals associated with a particular spatial frequency
pass undistorted while attenuating the signals at all other frequencies. This
can be formulated in the following mathematical way: The filtered signal is
defined as

yr(l) =hy() (B.4)
with the filter h = [hg,...,hp—1]T € CP and the spatial samples y(l) €
CP,l =1,...,L. Then the power of the spatially filtered signal is

E{lyr(1)]*} = h"Rh (B.5)

with the data covariance matrix R = E{y(l)y* (1)} € Mat,(C). The first
condition of the filter construction translates to hfa(w) = 1. Under the
assumption that the received data y(l) is spatially white with R = I, the
power of the filtered signal (B.5) takes the form E{|yx(I)|?} = hf’h. Hence,
the minimization problem of the beamforming method can be stated as [107]

m}in hi’h subject to hfla(w) = 1. (B.6)

The derivation of the beamforming filter employing the theorem from lin-
early constrained quadratic minimization leads to
a(w) a(w)

BT ) (B0

where the second equation follows from the property of the steering vector
al(w)a(w) = p (cf. equations (3.2) and (3.4)). Plugging the filter (B.7) into
(B.5), the power of the filtered signal is

aH w alw
B{lyr ()} = ),

Since the data covariance matrix R is not available, it has to be replaced by
the finite sample estimate R € Mat,(C)

(B.8)

L
~ 1 H
R=13 50" () (B.9)
Finally, the spectrum of the beamforming method is obtained as
L A~
- 1 afl (w)Ra(w
Par(w) = - Y- la¥ @y = HEEREL g1
=1

The frequency estimates & = [@1,...,0n.]7 correspond to the locations of
the Ny maxima of the spectrum. Since the interferometric phase ¢ is related
to the spatial frequency w,w € [—m,7), by ¢ = (p—1)w (see equation (3.3)),
the unambiguous estimation range for ¢ is [—(p — 1)m,(p — 1)7) in the
case of uniform linear arrays. The achievable resolution that is called the
Rayleigh limit [107] is approximately A/arraylength. The Rayleigh limit
of the interferometric phase [37] is Appp = 2m(p — 1)/p. The reflectivity

A

estimate at frequency w; is determined by 7; = Ppp(&;).

138



B.2 Derivation of the Standard Capon Algorithm

In the derivation of the beamforming technique it was assumed that the re-
ceived signal is spatially white with unit variance, i.e., R = I. For designing
the Capon method the identity matrix I is replaced by the covariance matrix
R so that the minimization problem reads [11]

m}in h’Rh subject to hfa(w) = 1. (B.11)

The derivation of the Capon filter using the theorem from quadratic mini-

mization yields
R la(w)
he = . B.12
7 af(WR la(w) (B.12)
Inserting he into equation (B.5) the filtered signal power is
1

all(w) R la(w)’

E{lyr()]*} =

(B.13)

~

Utilizing the sample covariance matrix R, the Capon spectrum is given

by [11] ) .
Po(w) = R TaG) (B.14)

The inverse matrix R™! exists under the condition that the noise term has
a positive definite covariance matrix and L > p. The frequency estimates
@ = [@1,...,0n,]7 are associated with the frequencies of the N highest
peaksAof the spectrum Pe. The reflectivity at frequency w; is estimated by
7 = Po(wi).

B.3 Derivation of the Polarimetric Beamforming
and Capon Filters

As introduced in subsection 4.3.1 the polarimetric beamforming design prob-
lem reads
min h’h  subject to  hi'b(w, k) = 1. (B.15)

From equation (4.2) and ||k||2 = 1 it follows for the multibaseline polarimet-
ric interferometric steering vector b(w, k) € CP

Npol
b(w, k)T b(w, k) = afl (w)a(w) Z Erk; = plk|5 = p. (B.16)
i=1

Utilizing the quadratic minimization theorem leads to the polarimetric beam-

forming filter
b(w, k) b(w, k)
hip = ’ =—. B.1
BF S B, b k) | p (B.17)
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The property (4.15) of the stochastic MBPI steering vector b(w,k) € CP
implies

pol

b(w, k)" b(w, k) Zk*k all (w)a(w;) = p|k|3 = (B.18)

Then the polarimetric beamforming filter is obtained as

b(w,k b(w,k
hiZ = bH(w,(k)b()w,k) = (p ). (B.19)

Like in subsection 4.3.2 the minimization problem of the polarimetric
Capon method is expressed by

m}}nhHRh subject to  hf'b(w, k) = 1. (B.20)

Plugging the FIR filter h € CP and the MBPI steering vector b(w, k) € CP
into theorem 1 gives the polarimetric Capon filter

R_lb(w k)

hl = ’ . B.21
¢ bH(w, k)R- b(w, k) (B-21)
In the same manner the stochastic Capon filter is derived

¢ 7 bA(w, k)R b(w, k)’

B.4 Derivation of the Conventional MUSIC
Technique

The starting point for deriving the MUSIC method is the signal model in-
troduced in subsection 3.1.1:

Ns
y() =) siha(w;) +n(l). (B.23)
i=1
The received signal y(l) € CP can be expressed in matrix notation as

y(1) = As(l) + n(l). (B.24)

It is assumed that the steering vector matrix A = [a(wi),...,a(wn,)] €
Mat,, y,(C) has full column rank, rank(A) = Ns. The data covariance
matrix R = E{y(l)y" (1)} € Mat,(C) has the form

R = ASAT 4+ 521 (B.25)
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The signal covariance matrix S € Mat y, (C) is supposed to be nonsingular,
rank(S) = Ny, but it is not necessarily a diagonal matrix. This means the
signals might be partially correlated.

The eigenvalues of R are denoted in nonincreasing order by A1 > Ay >

-+ > Ap. Let (f1,...,fy,) be the orthonormal eigenvectors corresponding to
(AM,...,AN,) and (81,...,8p—nN,) the orthonormal eigenvectors associated
with (An,+1,...,Ap). From the above described situation it follows that

the matrix ;i&SAH € Mat,(C) has rank(ASA) = N,. Thus, the first N
eigenvalues A1 > --- > A, of the matrix ASA™ are strictly posi‘give and the
p — N, smallest eigenvalues are all equal to zero. Since \; = \; + 02,i =

1,...,p, the eigenvalues of R can be partitioned into the two subsets
(1) \i>02  fori=1,...,N,, (B.26)
(2) \i=02 fori=Ns+1,....p. (B.27)

The characteristics of the corresponding eigenvectors lead to the MUSIC
method [107]: Define the matrices F = [f,...,fy,] € Mat, n,(C) and
G =1[g1,...,8p-n,] € Mat, ,_n,(C) of eigenvectors and the diagonal matri-
ces Ay = diag (A1,...,An,) € Maty, (R) and Ay = diag (An,+1,..-,Ap) =
021 € Mat,,_y, (R) of eigenvalues. Using the spectral theorem for Hermitian
matrices [41], the covariance matrix can be written as

R = FAF + GA,G, (B.28)

Multiplying the matrix G from the right side yields

RG = FA F/G+GA, GG = 02G. (B.29)
=0 =I

Utilizing the relation (B.25), this matrix can be also represented as
RG = ASAYG +72G. (B.30)

Subtracting equations (B.30) and (B.29) implies ASAHG = 0. Since the
matrix AS € Mat, n,(C) has full column rank it follows the first funda-
mental result

AfG =o0. (B.31)

Next, the subspaces that are spanned by the matrices A and F are
analyzed: First the product of R and F is calculated by employing the
eigendecomposition (B.28)

RF = FA, FPE +GA, GPE = FA,. (B.32)
i

Inserting the covariance data model (B.25) this product can be also repre-
sented as
RF = ASAYF + ¢2F. (B.33)
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It follows F = ASA#F (A — 021) "', This relation implies im(F) C im(A).
As the subspaces im(F) and im(A) have the same dimension, dim(im(F)) =
dim(im(A)) = N, the second main result is

im(F) = im(A). (B.34)

Due to the facts (B.31) and (B.34) the subspaces im(F) and im(G) are
referred to as the signal subspace and the noise subspace, respectively.

The principle idea in conceiving the MUSIC algorithm can be stated as
follows:

The true frequency values {wi}ZN;l are the only solutions of the equation

a’(w)GGTa(w) = 0. (B.35)

Equation (B.31) implies that a solution w; fulfills the above condition. It still
has to be shown that {wl} =*, are the only solutions of the frequency estima-
tion problem. Let & be another possible solution with @ # w;,i =1,..., Ng,
i.e., the vector a(~) satisfies equation (B.35) and is linearly independent of
the vectors {a(wl)} . It follows that

0=a’(® )GGHa(cD) = (GHa(@),G"a(@)) = |GHa(@)|3. (B.36)

Hence, G”a(@) = 0 and the vector a(®) is in the kernel or null space of the
matrix G, a(©) € ker(G*). The dimension of the kernel subspace is Ny,
dim (ker GH ) N,. This is a contradiction to the linear independence
of the vectors a(@) U {a(w;)}Y?, € ker(GH). A subspace of dimension N
cannot contain N4 + 1 linearly independent vectors.

Utilizing these features of the eigenvectors of the covariance matrix, the
spectral MUSIC algorithm can be formulated as follows: First the sample
covariance matrix R has to be calculated like in equation (3. 7), subsection
3.1.1. The eigendecomposition of R pr0V1des the eigenvalues AN > > )\
and the respective eigenvectors (fi,...,fx,) and (&1,...,8p_n,). The matrix
P = [fl,.. fNL] € Mat, n,(C) corresponds to the signal subspace and
G =1[g1,...,8, n.] € Mat,, n,(C) is associated with the noise subspace.
The spatial frequency estimates are determined as the Ng maxima of the

pseudo-spectrum
1

Py (w) Al () GG Ta(0) (B.37)
The subspace spanned by the noise eigenvectors must be at least of dimen-
sion one, p > N+ 1. For the special case p = Ngs+ 1 the MUSIC algorithm
conforms to the Pisarenko method [77]. For p — Ny > N, the computational
complexity of the MUSIC method can be alleviated by exploiting the ma-
trix I — FF € Mat,, y,(C) instead of GG? € Mat,,_n,(C) in equation
(B.37). The modified MUSIC algorithm [105] that can be also applied to
coherent signals and the Root MUSIC estimator are not addressed in this
context since they are merely suitable for uniform linear arrays.
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Appendix C

Algorithmic Scheme of the
Conventional M-RELAX

The algorithmic scheme of M-RELAX [37,63] can be summarized in the
following way:

Step (1)
Assume Ny = 1. Estimate the frequency @1 and amplitudes {a:1(I)}2,
by means of formulas (3.45) and (3.46), respectively, using the samples

{Y(l)}lL:1-

Step (2)

Assume N, = 2. Calculate the corrected data vector {y2(I)}£, by insert-
ing @1 and {&1(l)}; of step (1) in (3.44). Determine the frequency ws
and amplitude {@s(l)}X, estimates via (3.45) and (3.46), respectively, from
{y2(D}s-

Calculate the corrected data {y(I)}£, from (3.44) where &9 and {ao(1)}~
of substep 1 are employed. Redetermine &1 and {é&q (1)}, from {y1 (1)}~
through equations (3.45) and (3.46).

Iterate these two substeps until the convergence condition explained below
is satisfied.

Step (3)

Assume N; = 3. Calculate {ys(I)}£, by inserting &; and {a;(1)}£, for
i = 1,2 of step (2) in (3.44). Determine w3 and {a3(I)}~, via (3.45) and
(3.46), respectively, utilizing {ys(l)}~ ;.

Calculate {y1(I)}X, by inserting &; and {&;(I)}1, for i = 2,3 into (3.44).
Redetermine & and {&; (1)} ;.

Calculate {y2(I)}X, by inserting &; and {&;(I)}, for i = 1,3 into (3.44).
Redetermine &g and {a2(1)}E~ ;.

Iterate these three substeps until the termination criterion is met.
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Remaining steps.
Repeat this procedure until the assumed or estimated number of sources N,
is reached.

The termination criterion for the iterative process consists of the relative

change of the cost function (3.43): If it is less than a user given threshold ¢,
the iteration is stopped.
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Appendix D

Derivation of the Standard
MLE

The computation of the code length required to encode the data {y (1)} %, is
performed in three steps: Firstly, the noise subspace component {yn (1)}~
is encoded assuming that w(k) is given. From the statistical assumptions
and equation (3.56) it follows

yn(l) [w(k) ~ NZ7*(0,0°T). (D.1)
Thus, the probability density for the noise subspace component yields

L
1
FUyaO} s lw(k) =TT dotiro?d] exp{—yn Do ?yu()}.  (D2)
=1
Using the sample covariance matrix Ry (w(k)) € Mat,_;(C) of yn(l)

L

Ra(w(k) = =Y ya)yi () (D.3)

=1

it can be transformed to
F{ynYy |w(k)) = detlro®] ~Fexp {—o2Ltr [Ru(w (k)] }. (D)

This probabilistic model depends only on the parameter o2, whose ML es-
timator is

. 1 -
52 (w(k)) = Pl [Rn(w(k))] . (D.5)
Omitting constant quantities that are independent of k, the code length
required to encode the noise subspace components is obtained as [113]

Llyn(l)|w(k)} = Llogdet[6?(w(k)I] + L(p — k) + g(1). (D.6)
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Secondly, the signal subspace components {ys(l)}lL:1 are encoded. The
statistical properties and equation (3.55) imply that

ys(l) | w(k) ~ NE(0, Rs(w(k))) (D.7)

where Rg(w(k)) € Mat(C) is the signal data covariance matrix. The
probabilistic model for the signal subspace component reads

L
Ftys0} 100 = I gy S0y ORs @m0}
=1 s

(D.8)
Employing the maximum likelihood estimate Rg(w(k)) € Mat(C) of Rg(w(k))
defined by

L
A 1
Rs(w(k)) = 7 > ysyd 0 (D.9)
=1
this can be rewritten as
Fys(D} |w(k)) = det[rRs(w(k))] "
. exp {—Ltr [R;l(w(k))ﬁs(w(k;))} } . (D.10)
The number of free real-valued parameters in Rg(w(k)) is
k+2) i=k. (D.11)
Disregarding constant terms the code length of the signal subspace compo-
nents is obtained as [113]
L{ys(l) |w(k)} = Llogdet[Rs(w(k))] + Lk + g(k?). (D.12)

The sum of (D.6) and (D.12) yields the total code length necessary to encode
the noise and signal subspace components

L{yn(l), ys() | w(k)} = Llog [det[Re(w(k))det[6*(w (k)| + g(k?).
(D.13)
Finally, for encoding the unknown parameter vector w(k) € R, it has
to be estimated according to equation (D.13) by

(k) = arg min det[Re(w(k))]det[62 (w(k))I). (D.14)

It can be shown that this estimator is consistent [113].
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Next, two expressions of the relation (D.14) are derived. For the sake of
conciseness the abbreviation A = A(w(k)) is used in the following. From
equations (3.55) and (3.56), it follows

PARPA — Gw(k) | ﬁs(‘(‘)’("")) 0 ] G"(w(k)  (D.15)
and _
PARPL = G(w(k) | Rn(g(k)) }GH(w(k)) (D.16)

where the sample covariance matrix R € Mat,(C) of y(I) is defined by

L
R=1 3 yy" (). (D.17)
=1
Moreover,
N 0 0
P W(HIPK = Gh) | o o |GH @) (D19

Due to the similarity invariance of the trace!, the relation (D.16) implies
tr[Rn(w(k))] = tr[PxR] (D.19)

and inserting (D.5) gives

52 (w(k)) = — PAR] (D.20)
The sum of (D.15) and (D.18) is

G (w(k)).
(D.21)

PARPA +P36%(w(k)) = G(w(k))

Since the matrix G(w(k)) is unitary, the determinant of (D.21) is
det[PARP A + P£6%(w(k))] = det[Rg(w(k))]det[62(w(k))I].  (D.22)

The first formulation of the estimate (D.14) is finally given by [113]

~ 1 A
&(k) = argmindet[PARP A + tr[PAR]PA]. (D.23)
w(k) p—k
The second form of the estimate (D.14) utilizes the eigendecompositions
of the matrices PARP A and PIJQRP}&:

tr[B~'AB] = tr[A] for A € Mat,(C) and B € GL,(C)
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Let I§(w(k)) > -+ > I7(w(k)) be the nonzero eigenvalues of the matrix
PARP4 and [ (w(k)) > - > 1), (w(k)) be the nonzero eigenvalues of the

matrix PxRP%. Then the determinant of equation (D.15) is

k
det[Ry(w (k)] = [] 5w (k) (D.24)
=1

and the trace of (D.16) is

p—k
t[Ra(w(k)] = ) B (w(k)). (D.25)
i=1
Together with (D.5), this yields
1 2
~2 _ n
oalh) = ) (D.26)

Plugging equations (D.24) and (D.26) into (D.14) leads to the second ex-
pression of the estimator [113]

—k

k 1 p—k p
&(k) = arg min (gl (w(kr))) (ﬁ;l (w(kr))) . (D27
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Résumé

Dans cette these, des techniques d’analyse spectrale sont généralisées afin
de traiter des données polarimétriques SAR interférométriques multi-bases.
Ces algorithmes polarimétriques de traitement multi-capteurs sont décrits
d’une maniere mathématique rigoureuse et appliqués aux zones urbaines. Ils
permettent d’estimer la hauteur des diffuseurs, le mécanisme de rétrodiffusion
et la réflectivité polarimétrique. A partir des observations mono-base POL-
InSAR, un modele numérique d’élévation d’une zone urbaine est généré en
déterminant les mécanismes de rétrodiffusion. L’utilisation des données
bi-base POL-InSAR permet de résoudre le probleme de déversement et
de réaliser des images SAR en trois dimensions en indiquant les types de
réflexion.

Mots clefs: SAR, télédétection, interférométrie, polarimétrie, traitement du
signal, environnements urbains.

Abstract

In this thesis, spectral analysis techniques are generalized to process polari-
metric multibaseline interferometric SAR data. These polarimetric array
signal processing algorithms are described in a rigorous mathematical way
and applied to urban areas. They permit the estimation of the reflector
height, the scattering mechanism, and the polarimetric reflectivity. From
single-baseline POL-InSAR observations, a digital elevation model of an
urban scene is generated including the scattering types. Using polarimet-
ric dual-baseline InSAR data, the building layover problem is resolved and
three-dimensional SAR, images are produced that reveal the reflection mech-
anisms.

Keywords: SAR, remote sensing, interferometry, polarimetry, signal pro-
cessing, urban environments





