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M. Jeanny HÉRAULT, Président
M. Adrian van OOSTEROM, Rapporteur
M. Jean-François CARDOSO, Rapporteur
M. Christian JUTTEN, Co-directeur de thèse
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  چكيده
 

 و همـة انـواع آن   داشـته ها انواع مختلفي  اين نارسايي. باشند  بيماريهاي مادرزادي ميهاي قلبي جزء شايعترين   نارسايي
دهند و ممكن است تنهـا بـر رشـد كـودك تـأثير                در بدو تولد و يا تا سالها پس از تولد بروز ظاهري از خود نشان نمي               

در حال حاضـر     .استي قلبي بسيار مؤثر     ها  هنگام نارسايي   در تشخيص زود  ين  قلب جن از اين رو مانيتور كردن       .گذارندب
باشـند كـه تنهـا ضـربان قلـب            كردن قلب جنين سيستمهاي اولتراسوند مـي       متداولترين روشهاي موجود براي مانيتور    

 كـه منـشأ     ايـن در حاليـست    . توان بوسيلة آنها تشخيص داد      هاي قلبي جنين را مي      جنين و دستة معدودي از نارسايي     
بـه   .باشـند   هاي موجود در نحوة انقباض عضلة قلبي مي         هاي قلبي، در سيستم عصبي قلب و آريتمي         بسياري از نارسايي  

 كه حاوي نحوة فعاليت الكتريكي قلب است، بسيار مفيـد           )ECG(الكتروكارديوگرام  همين علت مانيتور كردن سيگنال      
  . سيستمهاي اولتراسوند فعلي باشدا مكملي برايتواند جايگزين و ي  به لحاظ كلينيكي ميبوده و

 ECG در مقابل ساير تداخلهاي محيطي و بويژه سـيگنال           ، جنين ECG بعلت ضعيف بودن سيگنال      از سوي ديگر  
پذير بوده   از روي جمجمة جنين امكان     و    جنين تاكنون با روشهاي تهاجمي     ECG موج   شكل مادر، مانيتور كردن دقيق   
  .باشند  منحصر به زمان زايمان مياست كه اين روشها هم

كانالهاي ثبـت   اي از     نالهاي قلبي جنين از آرايه    استخراج سيگ هاي پردازشي مسألة       بهبود جنبه  اين تحقيق هدف از   
 كه عمومـاً مبتنـي       در مقايسه با كارهاي گذشته     .باشد  شده از روي شكم مادر و همچنين تحليل بهتر اين سيگنالها مي           

آوري روشهاي پيشنهادي در استفادة مناسب از اطلاعات پيـشين            ، نو باشند   پردازش سيگنال مي   بر تكنيكهاي كلاسيك  
)a priori (در اين تحقيق بـا  .باشد پريوديك اين سيگنالها مي موجود نسبت به سيگنالهاي قلبي، همچون ساختار شبه 

استفاده از اين اطلاعات سعي شده است تا علاوه بر بهبـود كيفيـت روشـهاي موجـود، تكنيكهـاي پردازشـي مخـتص                        
  .سيگنالهاي قلبي طراحي گردد

هاي مختلف، همچون زمان، مكان، فركانس و ويژگيها با ساير سيگنالها             كه سيگنالهاي قلبي جنين در حوزه      جااز آن 
باشند، قـادر بـه تفكيـك         ها استوار مي    دارند، روشهايي كه تنها بر اطلاعات موجود در يكي از اين حوزه           و نويزها تداخل    

هاي مختلف توأماً     هارائه شده سعي شده است كه از نقاط قوت حوز         لذا در روشهاي    . باشند   نمي ECGكامل سيگنالهاي   
 Bayesian، فيلترهـاي    ECG مرفولوژيـك ي  به لحاظ تئوريك، روشـهاي پيـشنهادي تركيبـي از مـدلها            .استفاده شود 

  .باشند  ميمنابعكور  و شبهتفكيك كور ، و انواع خاصي از فيلترهاي مكاني مطرح در تئوري تئوري تخمينمطرح در 
ايـن روشـها    باشند و با توجه به جـامع بـودن            قلبي مي   متدهاي ارائه شده مبتني بر ساختار مرفولوژيك سيگنالهاي       

 نيـز   بلادرنـگ پردازش سيگنالهاي قلبي بزرگسالان و همچنين در طراحي سيستمهاي مانيتورينـگ            در  از آنها   توان    مي
كلية روشـهاي    ،)MCG(مغناطيسي قلب   و   الكتريكيسيگنالهاي  شباهت مرفولوژيك    همچنين با توجه به      .بهره جست 

اي از كاربرد     بطور خاص، نمونه   .باشند  قابل اعمال مي  نيز  پيشنهادي بر روي سيگنالهاي مغناطيسي جنين و بزرگسالان         
  .گردد هاي دوقلو ارائه مي  جنينMCGاين روشها در تفكيك سيگنالهاي 

زيرفـضاهاي  سـيگنالهاي   ارائه خواهد شد كـه قـادر بـه تفكيـك     بازگشتيپردازشي  در كنار روشهاي فوق، تكنيك      
بردهـاي بـسيار متنـوعي در       اراي كار اين تكنيـك د   . باشند  هاي تَكين سيگنال و نويز مي       از تركيب يك سيگنال   مطلوب  

 .باشد ميمباحث پردازش سيگنال 
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Résumé

Les malformations cardiaques congénitales sont parmi les malformations les plus com-
munes à la naissance et la première cause de décès des nouveau-nés. La plupart des ano-
malies cardiaques sont visibles dans la morphologie des signaux électriques cardiaques,
qui sont enregistrés par l’électrocardiographie qui semble contenir plus d’informations
par rapport aux méthodes conventionnelles sonographiques. Par conséquent, l’étude non
invasive des signaux cardiaques du fœtus peut fournir un moyen efficace pour contrôler le
bon fonctionnement du cœur du fœtus et peut être utilisé pour la détection précoce des
anomalies cardiaques.

Dans les précédentes études, diverses méthodes ont été mises au point pour le traite-
ment et l’extraction d’électrocardiogramme (ECG) du fœtus, à partir des signaux enregis-
trés de la surface du corps de la mère. Toutefois, en raison du faible rapport signal/bruit
de ces signaux, l’application d’électrocardiographie fétale a été limitée à l’analyse des
battements cardiaques et à des enregistrements ECG invasifs pendant l’accouchement.

Dans cette recherche, l’objectif est d’améliorer les méthodes de traitement du signal
utilisées en cardiographie du fœtus et d’apporter de nouvelles solutions à ce problème,
en développant de nouvelles techniques de modélisation et de filtrage des signaux d’ECG
du fœtus enregistrés par un réseau d’électrodes placées sur le ventre maternel. L’idée de
base derrière les méthodes développées, consiste à utiliser les informations a priori des
signaux cardiaques, tels que leur pseudo-périodicité, afin d’améliorer les performances des
méthodes existantes et de concevoir de nouvelles techniques de filtrage qui sont spécifiques
aux signaux cardiaques. En raison du recouvrement des signaux du fœtus avec les inter-
férences/bruits dans différents domaines, les méthodes qui utilisent l’information dans
un seul de ces domaines, ne réussissent pas à extraire les ECG fœtaux. Par conséquent,
nous proposons des méthodes de traitement qui utilisent les informations provenant de
différents domaines, afin d’améliorer la qualité des signaux extraits.

Théoriquement, les méthodes proposées sont des combinaisons de modèles morpho-
logiques de l’ECG, de techniques de filtrage bayésienne ad hoc basées sur la théorie de
l’estimation et de classes spéciales de filtres spatiaux issus du contexte de la séparation
aveugle et semi-aveugle de sources. Il est montré que, en raison de la généralité des mé-
thodes proposées, les mêmes procédures sont également applicables aux signaux ECG
multicapteurs chez l’adulte, et peuvent être utilisées en temps réel dans les systèmes de
surveillance cardiaque.

En outre, les méthodes développées sont fondées sur la morphologie du signal car-
diaque, sans prendre en compte les particularités de la théorie du volume conducteur
et la propagation électromagnétique dans les milieux physiologiques. Par conséquent, les
mêmes méthodes sont applicables à d’autres modalités de surveillance cardiaque, comme
le magnétocardiogramme (MCG), qui sont morphologiquement similaire à l’ECG. En par-
ticulier, nous présentons une étude de cas sur l’extraction des signaux MCG de jumeaux.

Nous présentons également une technique originale de déflation, qui vise à séparer les
sous-espaces formés par les signaux d’intérêt dans des mélanges sous-déterminés. Cette
idée s’avère très performante et débouche sur des applications diverses dans d’autres
contextes.
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Abstract

Congenital heart defects are among the most common birth defects and the leading cause
of birth defect-related deaths. Most cardiac defects have some manifestation in the mor-
phology of cardiac electrical signals, which are recorded by electrocardiography and are
believed to contain much more information as compared with conventional sonographic
methods. Therefore, the noninvasive study of fetal cardiac signals can provide an effec-
tive means of monitoring the well-being of the fetal heart and may be used for the early
detection of cardiac abnormalities.

In previous studies, various methods have been developed for the processing and ex-
traction of fetal electrocardiogram (ECG) signals recorded from the maternal body sur-
face. However, due to the low signal-to-noise ratio of these signals, the application of fetal
electrocardiography has been limited to heartbeat analysis and invasive ECG recordings
during labor.

In this research, the objective is to improve the signal processing aspects of fetal
cardiography and to provide better insights of this problem, by developing new techniques
for the modeling and filtering of fetal ECG signals recorded from an array of electrodes
placed on the maternal abdomen. The basic idea behind the developed methods is to
use a priori information about cardiac signals, such as their pseudo-periodic structure, to
improve the performance of the currently existing techniques and to design novel filtering
techniques that are customized for cardiac signals. Due to the overlap of the fetal signals
and interferences/noises in different domains, the methods that use the information in
only one of these domains do not usually succeed in extracting the fetal ECG. Therefore,
we design methods that use the information from various domains, in order to improve
the quality of the extracted signals.

Theoretically, the proposed methods are combinations of morphological models of the
ECG, ad hoc Bayesian filtering techniques based on estimation theory, and special classes
of spatial filters adapted from the blind and semi-blind source separation context. It is
shown that due to the generality of the proposed methods, the same procedures are also
applicable to multichannel adult ECG recordings and can be used in real-time cardiac
monitoring systems.

Moreover, the developed methods are based on the cardiac signal morphology without
going into the details of volume conduction theory and the conductivities of the prop-
agation media. Hence, the same methods are applicable to other cardiac monitoring
modalities such as the magnetocardiogram (MCG), which are morphologically similar to
the ECG. We specifically present a case study on the extraction of twin fetal MCG signals.

We also present an advanced deflation technique, which is able to separate subspaces of
desired signals from degenerate mixtures of signal and noise. This idea has found various
applications in other contexts.
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Chapter 1

Introduction

Heart defects are among the most common birth defects and the leading cause of birth defect-related
deaths [129, 136]. Every year, about one out of 125 babies are born with some form of congenital heart
defects 1 [6]. The defect may be so slight that the baby appears healthy for many years after birth, or so
severe that its life is in immediate danger. Congenital heart defects originate in early stages of pregnancy
when the heart is forming and they can affect any of the parts or functions of the heart. Cardiac anomalies
may occur due to a genetic syndrome, inherited disorder, or environmental factors such as infections or
drug misuse [150, 129]. They can also occur due to specific fetal positioning that chokes the umbilical
cord [230]. In any case, the regular monitoring of the fetal heart and the early detection of cardiac
abnormalities can help obstetrics and pediatric cardiologist2 to prescribe proper medications in time, or
to consider the necessary precautions during delivery or after birth.

Most cardiac defects have some manifestation in the morphology of cardiac electrical signals, which
are recorded by electrocardiography and are believed to contain much more information as compared
with conventional sonographic methods [155]. However, due to the low SNR of fetal electrocardiogram
(ECG) recorded from the maternal body surface, the application of fetal electrocardiography has been
limited to heart-beat analysis and invasive ECG recordings during labor.

In Fig. 1.1 the amplitude and frequency range of fetal ECG have been compared with other noises
and artifacts. Accordingly, the fetal ECG is much weaker than the other interfering biosignals. Moreover,
from the signal processing perspective, there is no specific domain (time, space, frequency, or feature) in
which the fetal ECG can be totally separated from the interfering signals (Fig. 1.2).

Although in previous works, a large body of research has been devoted to the filtering of fetal cardiac
signals, due to the complexity of the problem there are still many open issues that require improved signal
processing techniques.

In this research, the objective is to improve the signal processing aspects of fetal cardiography and to
provide better insights of this problem, by developing new techniques for the modeling and filtering of fetal
ECG signals recorded from an array of electrodes placed on the maternal abdomen. The basic idea behind
the developed methods is to use a priori information about cardiac signals, such as their pseudo-periodic
structure, to improve the performance of the currently existing techniques and to design novel filtering
techniques specific to cardiac signals. Due to the overlap of the fetal signals and interferences/noises
in different domains (Fig. 1.2), the methods that use the information in only one of these domains do
not usually succeed in extracting the fetal ECG. Therefore, the objective is to design methods that use
the information from various domains (including time, frequency and space), in order to improve the
quality of the extracted signals. It is shown that due to the generality of the proposed methods, the
same procedures are also applicable to multichannel adult ECG recordings and can be used in real-time
cardiac monitoring systems.

The hereby developed methods are based on the cardiac signal morphology and we do not go into the
details of volume conduction theory and the conductivities of the propagation media. We will show that
the same methods are applicable to other cardiac monitoring modalities such as the magnetocardiogram
(MCG), which are morphologically similar to the ECG. Therefore, throughout the manuscript, unless
specifically noted, all the methods developed for the ECG are also applicable to MCG recordings.

1 A condition is called ‘congenital’ when it is present at birth [129].
2 Pediatric cardiologist: children’s heart disease specialist
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Figure 1.1: The amplitude and frequency range of biosignals that can interfere with fetal cardiac sig-
nals [218, 48, 187]. The labels in this figure stand for the maternal electrocardiogram (mECG), elec-
troencephalogram (mEEG), electrohystrogram (mEHG), electrooculogram (mEOG), electromyogram
(mEMG), electrohystrogram (mEHG), and the fetal ECG (fECG). Note that the amplitude of these
signals also depends on the site from which the data is recorded.

Figure 1.2: An illustration of the overlap of the fetal ECG signals with the maternal ECG and other
interferences and noise. We can see that the fetal signals overlap with the undesired signals in time,
space, frequency, and feature domains; therefore, methods that only work in one specific domain are not
capable to fully separate the fetal cardiac signals.

1.1 Overview of the Thesis and Contributions

In Fig. 1.3, the conceptual links between the different chapters of the manuscript are depicted. While the
next two chapters provide the necessary background, the main contributions of this research are presented
in Chapter 4 to Chapter 9, plus some minor contributions in the formulations at the end of Chapter 3.
The discrete classical methods used throughout the different chapters for benchmarking the proposed
techniques are otherwise highlighted with citation to the original works. In what follows, we will have a
brief overview of each chapter.

Chapter 2

In this chapter, the history of fetal electrocardiography and a selection of the related literature are
reviewed. At the end of this chapter we will define the problem of interest and the objectives of this
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Figure 1.3: The conceptual link between the chapters.

work.

Chapter 3

In this chapter, the electrophysiology of the fetal heart and fetal cardiac development stages are presented.
We also review the dipole model of the heart, which may be considered as the theoretical basis of electro-
cardiography. These issues are required in later chapters for the development of the proposed techniques
and the interpretation of the extracted fetal signals. Although the theory of electrocardiography is rather
developed and based on well-known electromagnetic principles, some of the physical properties presented
in Section 3.4.1, have not yet been considered in the signal processing community.

Chapter 4

In order to evaluate single and multi-channel filtering techniques, suitable models are required for gen-
erating synthetic mixtures of fetal cardiac signals plus interferences and noise. In this chapter, based
on the dipole theory of the heart and a previously existing dynamic model for single-channel adult ECG
generation, a morphologic model is presented that can be used to generate an arbitrary number of syn-
thetic ECG channels in single and multiple pregnancies, for different fetal positions, and with variable
amounts of maternal ECG interference and noise. This model is used in later chapters for the evaluation
and comparison of the proposed filtering techniques.

A shorter version of this chapter was published in [169]. More recently the model was also extended
to abnormal beat generation, using Hidden Markov Models [40].

Chapter 5

In previous works many methods have been proposed for ECG denoising. These methods are based on
the separation of the signal and noise in time, frequency, scale, or feature domain. In this chapter, based
on the pseudo-periodic structure of ECG signals, a Bayesian filtering framework is presented for ECG
denoising. The idea is based on a dynamic model originally proposed for generating synthetic adult ECG
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[133]. It is shown that the presented framework is a logical extension of some of the existing methods
and that it outperforms the most common filtering schemes. We will also show that this framework can
be effectively used for denoising fetal ECG recordings and finding confidence intervals for the estimated
components.

Preliminary versions of this Bayesian framework were reported in [172, 174] and a full version of the
idea with quantitative comparisons with classical methods was presented in [175]. A three-dimensional
extension of this model was also presented in [176].

Chapter 6

Multichannel linear transforms are commonly used for the decomposition of mixtures of fetal ECG and
interferences. While in previous studies much attention has been paid to the denoising aspects of these
approaches, the interpretation of linear decomposition of mixtures of ECG signals has not been well-
studied. In this chapter, after a short overview of the multipole theory and electrophysiological properties
of ECG signals, through several examples and case studies, we will present some general explanations and
interpretations for linearly extracted ECG signals. Additional discussions concerning the dimensionality
of multichannel ECG, necessity of preprocessing, practical problems concerning high-dimensional data
and electrode positioning are also presented. The illustrations in this chapter are rather subjective and
intended to give a better insight for designing ECG processing schemes and interpreting their results.
Nevertheless, the presented ideas are based on theoretical facts and we have experimentally validated
them over many existing datasets. These ideas are used in later chapters for designing specific filtering
schemes that are specific to ECG signals.

Preliminary results of the finding of this chapter were presented in [177, 170, 100].

Chapter 7

The existing blind and semi-blind decomposition techniques are commonly based on the maximization
of measures of component separation such as uncorrelatedness or independence. While these criteria are
rather effective for blind decomposition, for semi-blind decomposition problems, i.e., where we have con-
siderable a priori information about the desired signals, they are not necessarily the optimal approach.
In these cases, it is more appropriate to design ad hoc source separation techniques that are customized to
the prior information. In this chapter, we will present a linear multichannel source separation technique
that is specifically designed for pseudo-periodic signals such as the ECG, with possible inter-beat varia-
tions of the RR-interval. It is show that by this method, we can find ECG components ranked in order
of relevance to the ECG periodicity. This procedure is of especial interest for the automatic removal of
maternal ECG contaminations from fetal recordings. At the end of this chapter a case study is presented,
in which a combination of techniques are used for the extraction and tracking of twin MCG signals in
long magnetic recordings. It is shown that the movements of the fetuses can also be tracked from the
components linearly extracted from multichannel MCGs. Through this example we show how different
methods can be integrated together for extracting and denoising fetal cardiac signals.

The idea developed in the first part of this chapter was presented in [171], and was later used in a
similar context for improving the performance of sequential source extraction methods [203].

Chapter 8

Following the ideas of Chapter 6, adult and fetal ECG signals should not be considered as signals having
a finite and fixed number of dimensions. Instead, they should be considered as infinite dimensional
signals that can only be ‘approximated’ with lower-dimensional subspaces. Therefore, by applying linear
decomposition methods to mixtures of maternal and fetal ECG signals (with few number of electrodes),
we can always have problems of rank deficiency, which may result in spurious residues of the maternal
components within the fetal signals, or vice versa. This is a special case of the more general problem of
extracting desired signals from degenerate mixtures of signal plus interference and noise. In this chapter,
a deflation procedure is presented by which a desired signal subspace can be extracted from a (possibly)
degenerate mixture of signals and full-rank noise. The proposed method consists of decomposition and
denoising steps that are repeatedly applied to the noisy signal. While the idea is rather general and
may be adapted to different applications, the presented results are based on the decomposition method
presented in Chapter 7 and the Bayesian approach of Chapter 5. The method is specifically evaluated on
real and simulated mixtures of fetal ECG signals.
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Based on this method, we have recently applied for two patents in the domain of “fetal ECG/MCG
denoising” and the “removal of cardiac interferences from other biosignal recordings”. Other applications
of this framework were also reported in [75, 7].

Chapter 9
In this chapter, the Bayesian ECG filtering framework developed in Chapter 5, is extended to the removal
of cardiac artifacts, such as ECG, MCG, Ballistocardiogram, etc., from other biomedical recordings, using
as few as one single cardiac reference channel. This framework may be considered as a byproduct of the
methods that we developed. The applications of this method are studied using simulated and real signals.

This framework together with various examples were recently published in [173].

Chapter 10
In the last chapter, we summarize the findings of the current work and their points of strength and
weakness, as compared with previous methods. We will also present some of the possible directions of
research that are left as open problems for future studies.

Appendix A
In this appendix, the theory of principal angles between subspaces is reviewed.

Appendix B
An over-fitting phenomenon, known as the problem of ‘spikes and bumps’, is introduced in Section 6.4.
This phenomenon is very common in independent decomposition of high-dimensional noisy signals. In
this appendix, some of our preliminary findings for explaining this phenomenon are presented.

Appendix C
In this appendix, the relationship between the physical properties of distributed sources and the covariance
matrix of the corresponding observation signals are found in a simplified case. The derived equations,
illustrate some of the ideas developed in Chapter 6.

Appendix D
The proposed methods also had some interesting byproducts that are not limited to fetal ECG extraction
and denoising. In this appendix we present general explanations about some of these byproducts which
had methodological novelty and may be considered as additional contributions of this work.

Matlab® implementations of many of the hereby presented methods are provided in our Open Source
ECG Toolbox (OSET), online available at [167].





Chapter 2

State of the Art

2.1 Introduction

In this chapter, the state of the art in fetal cardiac signal extraction and analysis, before and during
the current work are reviewed. Due to the rather old history of the problem and the rich literature in
this field, it is not possible to cover all the existing methods in their details. Also due to the complexity
of the problem, many of the existing methods have used a combination of approaches, some of which
have been borrowed from other contexts. Therefore, we will review a selection of the available literature
with special focus on the most significant ones, which have been specifically developed for the problem
of interest. The more detailed literature is presented separately in each chapter.

2.2 Historical Review of the Early Works

The fetal electrocardiogram was first observed by M. Cremer in 1906 [42]. The early works in this area were
done by using galvanometric apparatus of that time, which were limited by the very low amplitude of the
fetal signals. As measurement and amplification techniques improved, fetal electrocardiography became
more feasible and popular [124]. The limiting factor was then the low fetal SNR, especially in presence
of the strong maternal cardiac interference; a problem which exists up to now. A few decades later, with
the developments in computer science and signal processing techniques, automatic signal processing and
adaptive filtering techniques were used for fetal R-wave detection [57], and maternal cardiac interference
cancellation [220, 207]. The issue has since been considered as a challenging problem for both biomedical
and signal processing communities.

In order to give an idea of the previous and current research interest in this field, the number of
publications in the field of fetal electro and magneto-cardiography, which have been registered in PubMed
[204], can be seen in Fig. 2.1. We can see that after a sharp peak in the 1960’s, the trend seems to have
been decreasing until the year 2000 (of course in terms of the number of publications). But in the last
decade, the interest has again increased, especially for fetal magnetocardiography. This should be partially
seen as a result of novel low-noise and low-price measurement and digitizing systems, and partially due to
the developments in array signal processing and adaptive filtering techniques. Of course, comparing this
with the total number of publications in the field of electro and magneto-cardiography (both for adults
and fetuses) in Fig. 2.2, we notice that fetal cardiography is still in its preliminary stages and there is still
a long way to go, for making fetal cardiography a clinically trustable means of fetal cardiac monitoring.
It should also be noted that as illustrated in Fig. 2.3, despite the increase in the number of ECG/MCG
researches in Fig. 2.2, when normalizing the number of these works by the total number of publications
registered in PubMed over the same period, we notice that the percentage of researches in ECG studies
has decreased since the 1980’s, while MCG research has gained more interest.

In the following, we categorize some of the existing methods in this area from different viewpoints and
study their cons and pros.

7
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Figure 2.1: Number of publications in the field of fetal electro- and magneto-cardiography, registered in
PubMed [204].

Figure 2.2: Number of publications in the field of electro- and magneto-cardiography, registered in
PubMed [204].

Figure 2.3: The percentage of publications in the field of electro- and magneto-cardiography normalized
by the number of publications in all subjects, registered in PubMed [204].
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2.3 Objectives

Previous studies have followed one of these objectives:

• Fetal heart-rate analysis

• Fetal ECG morphology analysis

The fetal ECG morphology contains much more clinical information as compared to the heart-rate alone.
However, due to the low SNR of the fetal signals, it is a more challenging task. Therefore, most of the
previous works have only achieved in extracting the fetal RR-intervals using the R-peaks or ensemble
averages of the fetal ECG waveforms. The complete morphologic study of the fetal ECG, on a beat-to-
beat basis, is therefore left as a challenging problem.

2.4 Methodologies

2.4.1 Data Collection

Fetal ECG data collection is either invasive or noninvasive. In invasive methods, the recording electrodes
have direct contact with the fetal skin or scalp, which may only be achieved by using an intrauterine
electrode during labor [149, 69, 114]. The signals recorded by invasive methods have better quality as
compared with noninvasive methods; but the procedure is rather inconvenient and is limited to during
labor. On the other hand, noninvasive methods use the signals recorded from the maternal abdomen, they
can be done in any stage of pregnancy using dozens of electrodes. However, the low fetal ECG SNR and the
other interferences are the limiting factors of this method. Nevertheless, due to the numerous advantages
of the noninvasive method, a large body of research has been conducted towards the development of
signal processing techniques for retrieving the fetal ECG from noninvasive recordings.

2.4.2 Data Analysis

We can categorize the existing fetal data analysis literature by their methodologies. The existing methods
in this area include:

Direct Fetal ECG Analysis

In early works, fetal ECG detection was done over raw data without any processing. For instance in [117],
some special cases were reported in which due to the vertex presentation of the fetus, the fetal R-peaks
appeared as positive peaks while the maternal peaks had negative peaks. In such cases, the detection of
the fetal RR-intervals is rather simple and may be achieved by simple peak detection, even without the
removal of the maternal ECG. However, these methods are not always applicable and highly depend on
the fetal presentation and gestational age.

Adaptive Filtering

Different variants of adaptive filters have been used for maternal ECG cancellation and fetal ECG extrac-
tion. These methods consist of training an adaptive or matched filter for either removing the maternal
ECG using one or several maternal reference channels [220, 149], or directly training the filter for extract-
ing the fetal QRS waves [57, 153]. Ad hoc, adaptive filters such as ‘partition-based weighted sum filters’
[185], and least square error fittings [131], have also been used for this purpose.

Note that the existing adaptive filtering methods for maternal ECG artifact removal, either require
a reference maternal ECG channel that is morphologically similar to the contaminating waveform, or
require several linearly independent channels to roughly reconstruct any morphologic shape from the three
references [220]. Both of these approaches are practically inconvenient and with limiting performance,
since the morphology of the maternal ECG contaminants highly depends on the electrode locations and it
is not always possible to reconstruct the complete maternal ECG morphology from a linear combination
of the reference electrodes1. Therefore, a maternal ECG cancellation method that would not require any

1See Chapter 3 for the limitations of the single dipole model of the heart.
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excess reference electrodes or at most a single reference without the morphologic similarity constraint is
of great interest.

Linear Decomposition

Decomposition of single or multi-channel recordings is another common approach. In this method, the
signals are decomposed into different components by using suitable basis functions. The basis functions
can be selected from classes that are somehow in coherence with the time, frequency, or scale character-
istics of the fetal components. Wavelet decomposition [122, 108], and matching pursuits [3], are among
these methods.

Spatial filtering techniques such as singular value decomposition (SVD) [43, 207, 210, 102], blind and
semi-blind source separation [227], can be considered as ‘data-driven’ decomposition methods, which
construct the required basis functions from the data itself, by maximizing some statistical measure of
signal separation. In [226, 228], it has been shown that for fetal ECG extraction blind source separation
methods outperform adaptive filters such as the one proposed in [220]. One of the advantages of spatial
filtering over conventional adaptive filters is that they can also separate the maternal and fetal complexes
with temporal overlap.

Different variants of blind and semi-blind source separation methods have been used for fetal ECG
extraction [28, 45]. These methods are commonly based on the assumption of independent components
(or more generally independent subspaces) for the maternal and fetal signals, or the existence of some
temporal structure for the desired signals [14, 229, 123]. Blind source separation methods have also been
combined with wavelet decomposition for extracting and denoising the fetal ECG signals [212, 95].

Decomposition methods are currently the most common and effective way of fetal ECG extraction
and denoising. However, the existing methods are rather generic and have not been fully customized to
the periodic structures of ECG. Therefore, a challenging issue is to design multichannel signal processing
methods (linear or nonlinear) that are specific to ECG/MCG signals.

Nonlinear Decomposition

Linear decomposition methods using either fixed basis functions (e.g. wavelets), or data-driven basis
functions (e.g. singular vectors) have limited performance for nonlinear or degenerate mixtures of signal
and noise. In fact, fetal signals and other interferences and noises are not always ‘linearly separable’ (cf.
Chapter 6). One solution for such cases is to use nonlinear transforms for separating the signal and noise
parts of the observations.

Of course, nonlinear transforms are rather ad hoc and require some prior information about the desired
and undesired parts of the signal. In [183, 182, 164, 103], using nonlinear projections, a series of maternal
ECG cancellation and fetal ECG enhancement methods have been developed. These methods consist
of using the noisy signal and its delayed versions for constructing a state-space representation of the
signal, smoothing the state-space trajectory using conventional or PCA smoothers [110], and transferring
the samples back to the time-domain representation. These methods are very attractive from the point
that they are applicable to as few as one single maternal abdominal channel. However, the selection of
the required time-lags is empirical and the important inter-beat variations of the cardiac signals can be
wiped-out during the state-space smoothing. Moreover, they have higher computational complexity as
compared with linear methods.

2.5 Forward Modeling vs. Inverse Solutions

An important aspect of noninvasive cardiac signal studies (either for adults or fetuses) is to find relation-
ships between the cardiac potentials generated at the heart level and the potentials recorded on the body
surface. This problem is known as the forward problem of electrocardiography, for which electromagnetic
principles are used with electrophysiological models of cardiac potentials and volume conduction models,
to predict the potentials that can appear on the body surface. Forward modeling also provides valuable
insight for the more practical problem of estimating the cardiac potentials from body surface recordings,
namely the inverse solution. Forward and inverse problems have long been studied for adult cardiac
signals [71, 79]; but there are only few works of this sort for fetal cardiac signals.
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Some pioneer studies on fetomaternal compartment conductivities and fetal ECG modeling were pre-
sented in [144, 147, 146, 145], where the fetal ECG and the volume conductor medium from the fetal
heart up-to the maternal abdominal leads were modeled and simulated. They have also questioned some
previous results on the conductivity of the maternal internal body tissues and note that the fetal ECG –as
seen from the maternal abdomen– does not have the same dimensionality throughout pregnancy. This
may partially be due to the physiological changes of the fetal heart itself, and partially due to the low
conductivity of the vernix caseosa that surrounds the fetus and electrically shields it from the outside
world in certain gestational ages. Some of these findings have also been verified with experimental results.

In a more recent study, the problem of reliability of the fetal magnetocardiogram (MCG) and ECG has
been studied using forward modeling in normal and pathologic cases [190]. They use different models for
different stages of gestation. Specifically, in the forward modeling of the last trimester of gestation, they
considered a layer of vernix caseosa containing two holes and achieved fetal ECG maps that resembled
the actual measured maps. The holes in the vernix caseosa were considered over the mouth of the fetus
and the onset of the umbilical cord, corresponding to the ‘preferred’ current pathways. Other issues
concerning the low-amplitude of the fetal T-waves are also presented in this work. However, for the
processing of their real data, they used simple methods such as average waveform subtraction of the
maternal MCG.

2.6 Alternative Measurement Techniques

In previous works, besides electrocardiography, the well-being of the fetal heart has also been monitored
by other techniques [155], including:

• Echocardiography [224, 53]; also known as sonography of the heart which is based on standard
ultrasound techniques.

• Phonocardiography [230, 111, 211]; which is a graphic registration of the heart sounds and murmurs
produced by the contracting heart (including its valves and associated great vessels), picked up as
vibrations and transformed by a piezoelectric crystal microphone into a varying electrical output
according to the pressure imposed by the sound waves [33, 56].

• Cardiotocography [186]; which is the simultaneous measurement of the fetal heart rate with an
ultrasound transducer, and the uterine contractions with a pressure-sensitive transducer (called a
tocodynamometer), for measuring the strength and frequency of uterine contractions [221].

• Magnetocardiography [104, 190, 34, 198, 215]; which is a technique to measure the magnetic fields of
cardiac signals using extremely sensitive devices such as the Superconducting Quantum Interference
Device (SQUID) [223].

Among these methods, echocardiography is the most common –and commercially the most available–
means of fetal cardiac monitoring. However, the ECG and the MCG contain more information, since
most cardiac abnormalities have some manifestation on the ECG or MCG morphology or RR-interval
timing [155]. The current work is therefore focused on the ECG and partially the MCG, which is
the magnetic counterpart of the ECG. Note that due to the morphologic similarity of the MCG and
ECG, MCG processing methods are similar to the ECG-based ones; although using the current SQUID
technology for magnetic recordings, the SNR of the fetal MCG is usually higher than its ECG. However,
ECG recording apparatus are simpler and currently more affordable as compared with MCG systems.

2.7 Current Challenges and Problem Definition

Reviewing previous works, we notice that despite of the rich literature, there are still several key elements
that require further studies. Following our previous explanations, among the different data collection
setups, we concentrate on ECG-based systems using multichannel noninvasive maternal abdominal mea-
surements, and the objective is to retrieve the fetal ECG morphology with the highest possible fidelity, as
required for morphological studies. In this context, the limiting factors and challenging signal processing
issues include:
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• weakness of fetal cardiac potentials and low-conductivity layers surrounding the fetus which lead
to low amplitude fetal ECG at the maternal body surface;

• high interference of maternal ECG, uterus contraction, maternal respiratory, and motion artifact
signals;

• possible movements of the fetus and the need for a sort of ‘canonical representation’ of the fetal
cardiac signals with respect to the fetal body axis;

• development of automatic procedures that can be applied on long datasets with minimal interaction
with an expert operator;

• providing confidence measures for the estimated cardiac signals and finding theoretical bounds for
the amount of ‘retrievable information’ from body surface recordings in presence of noise.

Moreover, conventional ECG filtering methods are commonly based on some measure of time, fre-
quency, or scale-separability of signals and noise, which is common with all denoising techniques. However,
cardiac signals have additional pseudo-periodic structure, which we believe, have not been well-utilized
in ECG denoising schemes.

In previous studies multichannel decomposition methods have been commonly applied to the observed
signals rather ‘blindly’ and there is generally no guarantee that the fetal components be extracted as
separate components. Therefore, an important issue is to increase the probability of extracting the
fetal components and also to improve the quality of the extracted components, through appropriate
preprocessing and using a priori information about the signal/noise mixtures. This is a necessary step
for developing robust fetal ECG/MCG extraction algorithms.

Linear decomposition methods are very common, not only due to the validity of linear model itself2;
but also for the simplicity of these models. However, as mentioned before, there are cases in which
the desired signals are not linearly separable and nonlinear decomposition is inevitable3. Therefore, an
interesting field of study is to combine linear and nonlinear techniques to benefit from the simplicity of
linear transforms and the power of nonlinear methods at the same time.

Another related issue is to find physiological interpretations for components extracted by multichannel
source separation techniques. While these methods are commonly based on the maximization of rather
abstract statistical criteria, such as statistical independence, it is not very evident what the resultant
components physically correspond to, when applied to real data. For cardiac signals, this issue is more
crucial, when we consider that the heart is a distributed source and not a point (punctual) source.

Morphologic modeling of the fetal ECG is another issue of interest. While previous fetal ECG/MCG
models concentrate on forward models based on electromagnetic and volume conduction theories [144,
190], for evaluating signal processing techniques based on body surface potentials, more abstract models
are required. In fact, in order to evaluate and compare single or multi-channel processing techniques,
we need models that enable us to manipulate the signal processing aspects of the simulated signals such
as their morphology, RR-interval timing, fetal position, dimensionality, and SNR, without going into the
details of signal propagation and volume conduction theories. For adult ECG, an example of such models
was developed in [133], where single-channel adult ECG was modeled with a dynamic model. However,
the existing models have not considered the multi-dimensional nature of the ECG and are not appropriate
for the evaluation of multichannel techniques that use the ‘mutual information’ of the different channels.

2.8 Summary and Conclusions

In this chapter, we briefly reviewed the fetal cardiac signal extraction literature and its challenging issues.
It was noted that in the current study we are interested in improving the signal processing aspects of this
problem, in order to facilitate the extraction of fetal cardiac signals. In later chapters several methods
are proposed for achieving these objectives, together with additional byproducts of this work that are not
limited to fetal cardiac signals.

2A discussion about the validity of linear models for ECG decomposition is presented in Chapters 3 and 6.
3See Chapter 6 for related discussions.



Chapter 3

Electrophysiology of the Fetal Heart

3.1 Introduction

In this chapter the prerequisite physiological and electrophysiological aspects of fetal cardiac development
and monitoring are presented. Some of these issues are used in later chapters for explaining the results
achieved from multichannel analysis of maternal abdominal recordings.

3.2 Fetal Cardiac Development

The heart is among the first organs developed in the fetus and undergoes a considerable amount of
growth in the very early stages of pregnancy [96] (Fig. 3.1). The most critical period of this development
is between three and seven weeks after fertilization, when a simple heart tube assumes the shape of a
four-chambered heart (Fig. 3.2).

The heart is believed to begin beating by the 22nd day of life and can be externally monitored by
ultrasound imaging in the 7th to 9th week [96]; although only vague images are recordable at this step.
The cardiac waveforms and beat-to-beat variability of the heart rate are not measurable in ultrasound
imaging. Therefore, the fetal ECG and MCG that contain morphological information of the cardiac
activity have received much interest. These signals can be recorded from the maternal abdomen as early
as the eighteenth to twentieth week after conception [155, 206].

3.2.1 Fetomaternal Compartments

A simplified anatomy of the fetomaternal compartments can be seen in Fig. 3.3. Accordingly, the fetus is
surrounded by several different anatomical layers with different electrical conductivities [144, 147]. The

��
����*

The Heart

Figure 3.1: The fetus and its heart in the early stages of development; adopted with permission from
[118].
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: Developments of the fetal heart during gestation; adopted with permission from [118].

highest and lowest conductivity are found in the amniotic fluid and the vernix caseosa, respectively. Both
of these layers surround the fetus completely.

In the maternal abdomen compartments, the skin and the subcutaneous fat also have a poor con-
ductivity – about ten times smaller than the muscle tissue [147, 190]. Therefore these two layers, which
are the interface of the surface electrodes and the internal tissues, have considerable influence on the
recorded fetal ECG. All of these different tissues and layers form a so called, volume conductor, in which
the fetal cardiac signals propagates up-to the maternal body surface. This volume conductor is not a
steady conductor and its electric conductivity and geometric shape constantly change throughout gesta-
tion. Specifically, in the second half of gestation (20th week onward), in which the ECG and MCG are
recordable from the surface electrodes, it is known that the amniotic fluid [23, 126], the placenta, and
the fetus itself [12] are all increasing in volume. The very low conductivity vernix caseosa layer is formed
between the 28th and 32nd weeks of gestation [144, 147]. It almost electrically shields the fetus and
makes the recording of fetal surface ECG very difficult. However, for normal pregnancies (non-premature
deliveries), the layer slowly dissolves in the 37th to 38th weeks of pregnancy [190]. In previous studies
different interpretations have been presented for the fetal ECG signals recorded during the third trimester
of gestation (after the forming of the vernix caseosa), based on preferred current pathways such as the
umbilical cord, the oronasal cavity, or even random holes in the vernix caseosa [144, 147]. The preferred
current pathway hypothesis, besides the intrinsic weakness of the fetal ECG and its gradual development,
also explains some of the differences between adult and fetal ECG and vectorcardiogram shapes.

3.2.2 Fetal Presentations

During the first two trimesters of pregnancy the fetus does not have a specific presentation and moves
about a lot. By the beginning of the third trimester it commonly settles in a head-down position known
as the vertex presentation, which is more appropriate for birth [148]. However, as shown in Figs. 3.4
and 3.5 the fetus may also settle in other, but less-probable, presentations. The presentation of the fetus
influences the fetal cardiac signals recorded from the maternal body surface over different leads [166].
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Intestines

Fetal membranes
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Uterus

Placenta

Amniotic fluid

Bladder

Figure 3.3: The major fetomaternal compartments that influence the fetal cardiac surface potentials;
adopted with permission from [190]. The vernix caseosa is formed over the fetal skin.

(a) Vertex 96.8 % (b) Breech 2.5 % (c) Shoulder 0.4 % (d) Face 0.2 % (e) Brow 0.1 %

Figure 3.4: Different fetal presentations and the percentage of incidence at the end of gestation; adopted
with permission from [190].

Figure 3.5: Different fetal vertex positions and their incidence at the end of gestation; adopted with
permission from [190]. In the right side abbreviations, L stands for left, R for right, O for occiput, A for
anterior, T for transverse and P for posterior. The LOA position is seen in the left graph.
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Figure 3.6: The anatomy of the fetal heart; adopted with permission from [190].

3.3 Physiology of the Fetal Heart

The anatomy of a fully developed fetal heart is depicted in Fig. 3.6. There are some functional differences
between the fetal and adult hearts. It is known that after birth, the left ventricle pumps blood to the
body and the right ventricle pumps the blood to the lungs for acquiring oxygen. However, for the fetus
the fetal oxygen is supplied by the placenta; therefore the blood is no longer pumped to the lungs for
this purpose. Instead both ventricles pump the blood throughout the body (including the lungs) [190].
For this purpose there are two shunts, namely the the foramen ovale and the ductus arteriosus that link
the outgoing vessels of both ventricles. This allows blood to enter the right atrium and to bypass the
pulmonary circulation. A similar adaptation in the fetus is the ductus venosus, which is a vessel that
allows blood to bypass the liver. It carries blood with oxygen and nutrients from the umbilical cord
straight to the right side of the fetal heart [184].

After birth, the foramen ovale closes with the first breaths and the ductus arteriosus partially closes
in 10 to 15 hours after birth and takes up-to three weeks for complete closure. The ductus venosus also
closes shortly after birth, when the umbilical cord is cut and blood flow between the mother and fetus
stops [184]. There are also other minor changes in the physiology of the baby’s heart and its circulatory
system that take place within the first year after birth.

3.3.1 Electrical Activity of the Fetal Heart

While the mechanical function of the fetal heart differs from an adult heart, its beat-to-beat electrical
activity is rather similar. The wave-like pumping action of the heart is controlled by a network of
neural fibers that are distributed throughout the myocardium and coordinate its regular contraction and
relaxation [26]. The myocardial stimulation starts from the sinoatrial node (SA-node), which serves as
the natural pacemaker for the heart. The SA-node is a cluster of cells located in the upper-right posterior
wall of the right atrium, which sends the electrical impulse that triggers each heartbeat. This impulse
further stimulates the second cluster of cells, namely the atrioventricular node (AV-node) that is situated
in the lower posterior wall of the right atrium. After the AV-node the depolarization front enters the
bundle of His, the left and right bundles, and ends in the Purkinje fibers, depolarizing the ventricular
muscles in its way.

The procedure of myocardium contraction is known as the depolarization (or systole) cycle that is
followed by the repolarization (or diastole) cycle, in which the myocardium relaxes and becomes ready
for the next activation. A complete cardiac cycle is depicted in Fig. 3.7.

3.3.2 The Electrocardiogram

The ECG measured on the body surface is a result of the stage-wise activation of the myocardium and
results in the so-called PQRST-complex depicted in Fig. 3.7. This letter representation was first coined by
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Figure 3.7: The activation cycle of the fetal heart; adopted with permission from [190].

Einthoven in 1895 [55, 88]. In this notation, the P-wave accounts for the spreading of the depolarization
front through the atria. During the next 50ms, only very weak signals are recordable, as it takes some time
for the depolarization front to travel through the AV-node and since only a small number of myocardiac
cells take part in the atrioventricular conduction the signals are very small1 [91]. Next, the ventricles
are depolarized resulting in the QRS-complex. At the same time the atria are repolarized; however this
repolarization is obscured by the depolarization of the ventricles. Finally we have the T-wave, which
corresponds to the repolarization of the ventricles. In some measurements the T-wave is followed by a
small wave known as the U-wave which, for normal ECG, is believed to be due to repolarization of the
His-Purkinje system [88]. Other hypothesis for the origin of the U-wave have been suggested in [13]. The
segment between the end of the U-wave up-to the beginning of the next P-wave is known as the isoelectric
segment of the ECG, in which the myocardium does not have a measurable activity.

It should be noted that despite the similarities in the electrical properties of fetal and adult cardiac
systems, there are some differences in their RR-interval and morphology. The fetal heartbeat is almost
twice as fast as an adult heartbeat with considerable changes in different stages of fetal cardiac develop-
ment [86]. The heart-rate variability (HRV) of the fetus is also known to be simpler (less dynamic) than
an adult. However, as the fetal autonomic nervous systems evolves the HRV patterns also become more
and more complex [205, 214]. A typical example of this complexity is depicted in Fig. 3.8.

Morphologically, adult and fetal ECGs have rather similar patterns; but the relative amplitudes of
the fetal complexes undergo considerable changes throughout gestation and even after birth. The most
considerable change concerns the T-waves, which are rather weak for fetuses and newborns [206].

3.4 The Electromagnetic Basis of the Electrocardiogram

The electrical currents and potentials generated in the heart are the result of opening and closure of
ionic channels at a cellular level. The coherent activation of numerous cellular reactions of this sort
results in electrical fields that propagate in the so called body volume conductor, resulting in measurable
potentials at the body surface. Neglecting the underlying chemical reactions, from an electromagnetic
point of view, the biological volume conduction problem is somewhat unusual in the sense that the current
sources are within the conductor rather than being due to induction [70]. Through the study of electrical
and magnetic properties of body tissues, it is found that the cardiac volume conductor problem has the
following important features [71]:

1. The electric displacement current is negligible. Therefore, the electromagnetic problem is quasi-
static, which means that the electric and magnetic fields are decoupled, the electric field is propor-
tional to the gradient of the electric scalar potential, and the divergence of the current density is
zero.

2. The problem is linear, meaning that superposition holds for the potentials due to several sources.

1Note that although frequently addressed as being isoelectric, the PQ segment is not isoelectric [91].
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Figure 3.8: The increasing complexity in fetal HRV time-series in different gestational ages; adopted from
[214].

3. For frequencies below several kilohertz, the capacitive component of the electrical impedance of body
tissues is negligible, which means that the tissues are with a very good approximation, resistive.

From these properties, it has been shown that the electrical potential φ, recorded at the body surface
satisfies the well-known Poisson equation:

∇2φ =
1
σ
∇ · J (3.1)

where J is the cardiac impressed current dipole moment density and σ is the conductivity at the mea-
surement point of the potential φ [70].

To solve this differential equation, we require a model for the conduction media. For our problem of
interest, we consider the volume conductor, or the propagation media, to be formed of M (a finite number
of) homogeneous regions separated from one another by closed surfaces sj having the conductivities σ′j
and σ′′j on its interior and exterior. These regions correspond to the different anatomical compartments
in Fig. 3.3. With this simplification and by using the Green’s theorem, (3.1) may be transformed into a
more useful representation for calculating the body surface potentials [70, 71]:

4πσφ =
∫

v

J · ∇
(1
r

)
dv +

M∑
j=1

(σ′′j − σ′j)
∫

sj

φj∇
( 1
rj

)
· dsj (3.2)

On the left-hand-side of (3.2), φ is the potential difference between a fixed point outside the charge
distribution and the reference of potentials. It corresponds to the potentials recorded on the body surface.
The volume v is an arbitrary volume containing the current dipole distribution (i.e. the heart). r is the
radial distance of the element of volume or area from the point from which the potential φ is recorded.
The potentials φj , inside the integral on the right-hand-side of (3.2) are the potentials of surface elements
of the integral. ∇ · J is the divergence of J, ∇

(
1/r

)
is the gradient of 1/r, and the dot sign (·) represents

vectorial inner-product. Finally, dv is the volume element and dsj is a vectorial surface element, normal
to the j-th surface element. An equivalent equation that is more appropriate for the later presented
models is as follows [70]:

4πσφ = −
∫

v

1
r
∇ · Jdv −

M∑
j=1

σ′′j − σ′j
σ′′j + σ′j

∫
sj

2Ej

rj
· dsj (3.3)
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where Ej
.= (E′ + E′′)/2, and E′ and E′′ are the electric fields on either sides of the surfaces with

conductivity discontinuity.
From (3.2) and (3.3), we can see that the body surface potentials consist of two parts: a term corre-

sponding to the divergence of the cardiac impressed current dipole moments, and a term corresponding
to the ‘reflections’ of the cardiac sources onto the surfaces of conductivity mismatch.

3.4.1 Multipole Expansion of Body Surface Potentials

Equations (3.2) and (3.3) are rather complicated to envisage and we can use multipole expansions to
derive alternative representation for them. To do so, we need to expand the term 1/r, in (3.3) using some
basis function [193, 93]. While this expansion can be done using various basis functions, the spherical
harmonic expansion is the most common expansion, as it is in accordance with the rather localized nature
of our sources of interest. If we consider x as the location vector of the point from which the potential
φ is measured, and x′ as the location vector of the volume or surface elements of the integrands of the
right-hand-side of (3.3), 1/r may be represented in spherical coordinates as follows [93]:

1
r

=
1

|x− x′|
= 4π

∞∑
l=0

l∑
m=−l

1
2l + 1

rl
<

rl+1
>

Y ∗
lm(θ′, φ′)Ylm(θ, φ) (3.4)

where r<
.= min(|x|, |x′|), r>

.= max(|x|, |x′|), and Ylm(θ, φ) and Y ∗
lm(θ′, φ′) are the spherical harmonic

functions that are related to the well-known Legendre polynomials as follows:

Yl,m(θ, φ) =

√
2l + 1

4π

(l −m)!
(l + m)!

Pm
l (cos θ)ejmφ (3.5)

Yl,−m(θ, φ) = (−1)mY ∗
l,m(θ, φ) (3.6)

where Pm
l (cos θ) are Legendre polynomials.

Although the spherical harmonic expansion might seem complicated in the first view, its benefit
is that the terms corresponding to the source locations (x′) are completely factorized from the terms
corresponding to the observation point (x). Next, by noting that for the points on the body surface
r< = |x′| and r> = |x|, and using (3.4) in (3.3), the potential φ recorded from the body surface (outside
the volume conductor v), may be represented in the following compact form:

φ = lim
L→∞

L∑
l=0

l∑
m=−l

almslm (3.7)

where slm and alm are defined as follows:

slm
.= qlm +

M∑
j=1

uj
lm

qlm =
∫

v

|x′|lY ∗
lm(θ′, φ′)∇ · Jdv

uj
lm =

2(σ′′j − σ′j)
(σ′′j + σ′j)

∫
sj

|x′|lY ∗
lm(θ′, φ′)Ej · dsj

alm =
−Ylm(θ, φ)

σ(2l + 1)|x|l+1

(3.8)

Equation (3.7) is a key representation that requires further explanations. The terms alm are called the
multipole coefficients and as noticed from (3.8), they only depend on the location of the observation point
of the potential φ and do not rely on the cardiac source distributions. On the other hand, the slm are
called the multipole moments, consisted of two parts: qlm and uj

lm, which are due to the impressed current
densities and the electric fields caused by discontinuities in the surface conductivities, respectively. They
are therefore independent of the observation point and solely depend on the distributions of the impressed
current sources.

Note that although we focus on cardiac potentials in this study, the same equations hold for any
biosignal (such as the EEG), which satisfy the same underlying assumptions. Moreover, due to the
duality of the electric and magnetic fields, similar equations can be derived for the magnetocardiogram.
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Figure 3.9: Illustration of the vectorcardiogram loop.

3.4.2 Monopole and Dipole Approximations

Two special cases of (3.7) are achieved for L = 0 and L = 1, namely the monopole and dipole expansions
[127]. For L = 0, (3.7) reduces to:

φ0 = a0,0s0,0 (3.9)

which states that for observation points far from the charge distribution (far enough for a monopole model
to hold), the potentials are proportional to the overall monopole moment. However, in bioelectricity we
can never have a single isolated monopole current source due to the need of charge conservation [127],
meaning that the monopole term is zero. Now neglecting the monopole term, for L = 1 we have:

φ1 = a1,−1s1,−1 + a1,0s1,0 + a1,1s1,1
.= aT d (3.10)

where a = [a1,−1 a1,0 a1,1]T and d = [s1,−1 s1,0 s1,1]T . Note that for ECG signals, d is a pseudo-
periodic function of time, representing the cardiac dipole vector. This last representation is the basis
of the vectorcardiogram (VCG). Accordingly, we can model the electrical cardiac activity with a single
rotating dipole located at the center of the heart with its end sweeping a pseudo-periodic loop in the
space. The VCG loop is illustrated in Fig. 3.9. The single dipole model is believed to explain 80%–90%
of the representation power of the body surface potentials [208].

3.5 Summary and Conclusions

In this chapter the physiology and electrophysiology of the fetus was reviewed. We also presented the
theoretical basis for electrocardiogram signals recorded from the body surface. The theory of electrocar-
diography, presented in Section 3.4, has been readily developed in previous works [70, 71], and is based on
well-known electromagnetic principles. However, to our knowledge, the compact representation in (3.7)
and the reflection multipole coefficients in (3.8) have not been considered in previous works that have
studied the problem of electrocardiography from the signal processing perspective. These properties will
be used in later chapters for interpreting the components extracted by multichannel analysis of an array
of maternal abdominal recordings.



Chapter 4

Synthetic ECG Generation

4.1 Introduction

The electrical activity of the cardiac muscle and its relationship with the body surface potentials has
been studied with different approaches ranging from single dipole models to activation maps [51]. The
goal of these models is to represent the cardiac activity in the simplest and most informative way for
specific applications. Depending on the application of interest, any of the proposed models have some
level of abstraction, which makes them a compromise between simplicity, accuracy, and interpretability for
cardiologists. Specifically, as explained in Chapter 3, the single dipole model and its variants are equivalent
source descriptions or multipole expansions of the true cardiac potentials. This means that they can only
be used as far-field approximations of the cardiac activity and do not have evident interpretations in
terms of the underlying electrophysiology [208]. However, despite these intrinsic limitations, the single
dipole model remains a popular model, as it provides a three-dimensional representation of cardiac signals
that accounts for 80% to 90% of the power of the body surface potentials [208, 127].

In recent years research has been conducted towards the generation of synthetic ECG signals to
facilitate the validation of signal processing algorithms. Specifically, in [133, 132], a dynamic model has
been developed, which reproduces the morphology of the PQRST complex and its relationship to the
beat-to-beat (RR-interval) timing in a single nonlinear dynamic model. Considering the simplicity and
flexibility of this model it is reasonable to assume that it can be easily adapted to a broad class of normal
and abnormal ECGs. However previous works are restricted to single channel ECG modeling, meaning
that the parameters of the model should be re-calculated for each of the recording channels. Moreover,
for the maternal and fetal mixtures recorded from the abdomen of pregnant women, there are very few
works which have both considered the cardiac source and the propagation media [144, 19, 134].

Real ECG recordings are always contaminated with noise and artifacts; hence besides the modeling
of cardiac sources and propagation media, it is also very important to have realistic models for noise
sources. Since common ECG contaminants are non-stationary and temporally correlated, time-varying
dynamic models are required for the generation of realistic noises.

In this chapter, a three dimensional canonical model of the single dipole vector of the heart is proposed.
This model, which is inspired by the single-channel ECG dynamic model presented in [133], is later related
to the body surface potentials through a linear model that accounts for the temporal movements and
rotations of the cardiac dipole, together with a model for the generation of realistic ECG noise. The ECG
model is then generalized to fetal ECG signals recorded from the maternal abdomen.

The hereby proposed model is a morphological representation of the ECG. Therefore, due to the du-
ality of the electric and magnetic field potentials of the heart, the same model may be used for modeling
adult or maternal/fetal MCG recordings. The presented model is therefore believed to be an effective
means of simulating realistic multichannel maternal/fetal ECG or MCG mixtures, in single and multi-
ple pregnancies. This model is used in later chapters for the quantitative evaluation of the proposed
multichannel filtering methods.

21
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Figure 4.1: The three body axes, adapted from [127].

4.2 The Cardiac Dipole vs. the Electrocardiogram

The single dipole model of the heart was introduced in Section 3.4. Accordingly, the myocardium’s
electrical activity may be represented by a time-varying rotating vector, the origin of which is assumed
to be at the center of the heart as its end sweeps out a quasi-periodic path through the torso. This vector
may be mathematically represented in Cartesian coordinates, as follows:

d(t) = x(t)âx + y(t)ây + z(t)âz, (4.1)

where âx, ây, and âz are the unit vectors of the three body axes shown in Fig. 4.1. With this definition,
and by assuming the body volume conductor as a passive resistive medium which only attenuates the
source field [71, 24], any ECG signal recorded from the body surface would be a linear projection of the
dipole vector d(t), onto the direction of the recording electrode axes v = aâx + bây + câz:

ECG(t) =< d(t),v >= a · x(t) + b · y(t) + c · z(t) (4.2)

As a simplified example, consider the dipole source of d(t) inside a homogeneous infinite volume
conductor. The potential generated by this dipole at a distance |r| is:

φ(t)− φ0 =
d(t) · r
4πσ|r|3

=
1

4πσ
[x(t)

rx

|r|3
+ y(t)

ry

|r|3
+ z(t)

rz

|r|3
] (4.3)

where φ0 is the reference potential, r = rxâx + ryây + rzâz is the vector which connects the center of the
dipole to the observation point, and σ is the conductivity of the volume conductor [127, 71]. Now consider
the fact that the ECG signals recorded from the body surface are the potential differences between two
different points. Equation (4.3) therefore indicates how the coefficients a, b, and c in (4.2) can be related
to the radial distance of the electrodes and the volume conductor conductivity. Of course, in reality
the volume conductor is neither homogeneous nor infinite, leading to a much more complex relationship
between the dipole source and the body surface potentials. However as discussed in Chapter 3, even with
a complete volume conductor model, the body surface potentials are linear instantaneous mixtures of the
transmembrane potentials of the cardiac myocytes [71].

A three-dimensional vector representation of the ECG, namely the vectorcardiogram (VCG), is also
possible by using three of such ECG signals. Basically any set of three linearly independent ECG electrode
leads can be used to construct the VCG. However, in order to achieve an orthonormal representation that
best resembles the dipole vector d(t), a set of three orthogonal leads that correspond with the three body
axes are selected. The normality of the representation is further achieved by attenuating the different
leads with a priori knowledge of the body volume conductor, to compensate for the non-homogeneity of
the body thorax [127]. The Frank lead system [62], or the corrected Frank lead system [60], which has
better orthogonality and normalization, are conventional methods for recording the VCG.

Based on the single dipole model of the heart, Dower et al have developed a transformation for finding
the standard 12-lead ECGs from the Frank electrodes [52]. The Dower transform is simply a 12×3 linear
transformation between the standard 12-lead ECGs and the Frank leads, which can be found from the
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Table 4.1: Parameters of the synthetic ECG model in (4.4)
Index(i) P Q R S T
θi(rad) −π/3 −π/12 0 π/12 π/2
ai 1.2 −5.0 30 −7.5 0.75
bi 0.25 0.1 0.1 0.1 0.4

minimum mean square error (MMSE) estimate of a transformation matrix between the two electrode sets.
Apparently the transformation is influenced by the locations of the recording leads and the attenuations of
the body volume conductor with respect to each electrode [81]. The Dower transform and its inverse [54],
are evident results of the single dipole model of the heart with a linear volume conductor. However, since
the single dipole model of the heart is not a perfect representation of the cardiac activity, cardiologists
usually use between six to twelve electrodes in their studies [127].

4.3 A Synthetic ECG Generator

The dynamic models presented in this chapter and the next are modifications of the synthetic ECG
generator proposed by McSharry et al. [133]. This model has a variable number of free parameters that
make it adaptable to many normal and abnormal ECGs. The dynamic model consists of a set of nonlinear
dynamic state equations in Cartesian coordinates:

ẋ = ρx− ωy
ẏ = ρy + ωx

ż = −
∑

i∈{P,Q,R,S,T}

ai∆θi exp(−∆θ2
i

2b2
i

)− (z − z0)
(4.4)

where x, y, and z are the state variables, ρ = 1−
√

x2 + y2, ∆θi = (θ− θi) mod (2π), θ = atan2(y, x) is
the four quadrant arctangent of the elements of x and y, with −π 6 atan2(y, x) 6 π, and ω is the angular
velocity of the trajectory as it moves around the limit cycle in the x− y plane. As it is seen in (4.4), each
of the P, Q, R, S, and T-waves of the ECG waveform are modeled with a Gaussian function located at
specific angular positions θi. The ai, bi, and θi terms in (4.4) correspond to the amplitude, width, and
center parameters of the Gaussian terms of this equation. Some typical values of these parameters taken
from [133] are listed in Table 4.1. In this model, the baseline wander of the ECG is modeled with the
parameter z0 that is assumed to be a relatively low amplitude sinusoidal component coupled with the
respiratory frequency.

The three-dimensional trajectory generated by (4.4), consists of a circular limit cycle in the x−y plane
that is pushed up and down as it approaches each of the θi. The z coordinate of this three-dimensional
trajectory, when plotted versus time gives the synthetic ECG. In [38], some methods have been developed
for estimating the values of the model parameters for realistic ECGs, based on nonlinear optimization of
the parameters of (4.4) and for a given ECG dataset.

Modification of the Dynamic ECG Model

The dynamic equations proposed in [133] are in Cartesian coordinates. As a first simplification, these
equations can be transferred into polar coordinates. Moreover, assuming the z state variable in (4.4) to
be in millivolts, bi’s and θi’s in radians, and time in seconds, it is clear that the ai’s are in mV/(rad × s).
So in order to simplify the dimensions and later relate the model parameters with real ECG recordings,
the ai terms in (4.4) will be replaced with:

ai =
αiω

b2
i

i ∈ {P,Q,R, S, T},

where the αi are the peak amplitudes of the Gaussian functions used for modeling each of the ECG
components, in millivolts. This definition may be verified from (4.4), by neglecting the baseline wander
term (z − z0) and integrating the ż equation with respect to t. With these changes, the new form of the
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dynamic equations in polar coordinates is as follows:
ṙ = r(1− r)
θ̇ = ω

ż = −
∑

i∈{P,Q,R,S,T}

αiω

b2
i

∆θi exp(−∆θ2
i

2b2
i

)− (z − z0)
(4.5)

where r and θ are respectively the radial and angular state variables in polar coordinates. These new set
of equations have some benefits compared with the original equations proposed in [133]. First of all, the
polar form is much simpler and its interpretation is straightforward. Accordingly, the first equation in
(4.5) represents the radial behavior of the generated trajectory, and converges to the limit cycle of r = 1
for any initial value of r > 1. However, the second and third equations of (4.5) are independent of r,
making the first differential equation redundant. Therefore, this first equation may be excluded as it does
not affect the synthetic ECG (the z state variable). Another benefit of this representation is that the
phase parameter θ, is an explicit state-variable that indicates the angular location of the P, Q, R, S and
T-waves (Table 4.1). This point is further used in Chapter 5 for the implementation of Bayesian ECG
filters. For the problem of interest, (4.5) may be further simplified by discarding the baseline wander
term (z − z0). The simplified ECG model is as follows:

θ̇ = ω

ż = −
∑

i

αiω

b2
i

∆θi exp(−∆θ2
i

2b2
i

) (4.6)

This model is very generic and, as we will show, it may be used to model a broad class of periodic
waveforms.

4.4 Cardiac Dipole Vector and ECG Modeling

From the single dipole model of the heart, it is known that the different ECG leads can be assumed
as projections of the heart’s dipole vector onto the recording electrode axes. All leads are therefore
time synchronized with each other and have a quasi-periodic shape. Therefore, we propose to use a
three-dimensional extension of (4.6) to model the dipole vector d(t) defined in (4.1):

θ̇ = ω

ẋ = −
∑

i

αx
i ω

(bx
i )2

∆θx
i exp[− (∆θx

i )2

2(bx
i )2

]

ẏ = −
∑

i

αy
i ω

(by
i )2

∆θy
i exp[− (∆θy

i )2

2(by
i )2

]

ż = −
∑

i

αz
i ω

(bz
i )2

∆θz
i exp[− (∆θz

i )2

2(bz
i )2

]

(4.7)

where as with (4.5)-(4.6), ∆θx
i = (θ−θx

i ) mod (2π), ∆θy
i = (θ−θy

i ) mod (2π), ∆θz
i = (θ−θz

i ) mod (2π),
and ω = 2πf , where f is the beat-to-beat heart rate. Accordingly, the first equation in (4.7) generates
a circular trajectory rotating with the frequency of the heart rate. Each of the three coordinates of the
dipole vector d(t) is modeled by a summation of Gaussian functions with amplitudes αx

i , αy
i , and αz

i ;
widths bx

i , by
i , and bz

i ; located at rotational angles θx
i , θy

i , and θz
i . As before, the intuition behind this

set of equations is that the baseline of each of the dipole coordinates is pushed up and down as the
trajectory approaches the centers of the Gaussian functions, generating a moving variable-length vector
in the (x, y, z) space. Moreover, by adding some deviations to the parameters of (4.7), i.e. considering
them as random variables rather than deterministic constants, it is possible to generate more realistic
cardiac dipoles with inter-beat variations.

This model of the rotating dipole vector is rather general, since due to the universal approximation
property of Gaussian mixtures, any continuous function (as the dipole vector is assumed to be so), can
be modeled with a sufficient number of Gaussian functions up-to an arbitrarily close approximation [18].
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Figure 4.2: Synthetic ECG signals of the Frank lead electrodes

Figure 4.3: A typical synthetic VCG loop. Arrows indicate the direction of rotation. Each clinical lead
is produced by mapping this trajectory onto a 1-dimensional vector in this three-dimensional space.

Note that the synthetic models in (4.6) and (4.7), could have also been simply presented as a sum of
Gaussian functions (by simply integrating these equations with respect to time). However, this state-space
representation can be used to study the evolution of the signal dynamics using state-space approaches
[68]. This dynamic model is used in later chapters to represent the underlying dynamics of noisy ECG
recordings within a Bayesian filtering framework.

Equation (4.7) can also be thought as a model for orthogonal lead VCG coordinates, using appropriate
scaling factors for the attenuations of the volume conductor. This analogy between the orthogonal VCG
and the dipole vector can be used to estimate the parameters of (4.7) from the three Frank lead VCG
recordings. As an illustration typical signals recorded from the Frank leads and the dipole vector modeled
by (4.7) are plotted in Figs. 4.2 and 4.3. The parameters of (4.7), used for the generation of these figures
are presented in Table 4.2. These parameters have been estimated from the best MMSE fitting between
N Gaussian functions and the Frank lead signals. As it can be seen in Table 4.2, the number of the
Gaussian functions is not necessarily the same for the different channels and can be selected according
to the shape of the desired channel.

4.4.1 Multichannel ECG modeling

The dynamic model in (4.7) is a representation of the dipole vector of the heart (or equivalently the
orthogonal VCG recordings). In order to relate this model to realistic multichannel ECG signals recorded
from the body surface, we need an additional model to project the dipole vector onto the body surface,
which also accounts for the conductions of the body volume conductor, the possible rotations and scalings
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Table 4.2: Parameters of the synthetic model presented in (4.7) for the ECGs and VCG plotted in Figs.
4.2 and 4.3

Index(i) 1 2 3 4 5 6 7 8 9 10 11
αx

i (mV) 0.03 0.08 -0.13 0.85 1.11 0.75 0.06 0.10 0.17 0.39 0.03
bx
i (rad) 0.09 0.11 0.05 0.04 0.03 0.03 0.04 0.60 0.30 0.18 0.50

θi(rad) -1.09 -0.83 -0.19 -0.07 0.00 0.06 0.22 1.20 1.42 1.68 2.90
αy

i (mV) 0.04 0.02 -0.02 0.32 0.51 -0.32 0.04 0.08 0.01
by
i (rad) 0.07 0.07 0.04 0.06 0.04 0.06 0.45 0.30 0.50 – –

θj(rad) -1.10 -0.90 -0.76 -0.11 -0.01 0.07 0.80 1.58 2.90
αz

i (mV) -0.03 -0.14 -0.04 0.05 -0.40 0.46 -0.12 -0.20 -0.35 -0.04
bz
i (rad) 0.03 0.12 0.04 0.40 0.05 0.05 0.80 0.40 0.20 0.40 –

θk(rad) -1.10 -0.93 -0.70 -0.40 -0.15 0.10 1.05 1.25 1.55 2.80

of the dipole, and the ECG measurement noises. Following the discussions of Section 4.2, a rather
simplified linear model which accounts for these measures and is in accordance with (4.2) and (4.3) is
suggested as follows:

ECG(t) = H ·R · Λ · s(t) + η(t) + n(t) (4.8)

where ECG(t) ∈ RN is a vector of ECG signals in N leads, s(t) = [x(t), y(t), z(t)]T ∈ R3 contains the
three components of the dipole vector d(t), H ∈ RN×3 corresponds to the body volume conductor model
(as for the Dower transformation matrix), Λ = diag(λx, λy, λz) ∈ R3×3 is a diagonal matrix corresponding
to the scaling of the dipole in each of the x, y, and z directions, R ∈ R3×3 is the rotation matrix for the
dipole vector, η(t) is low-rank or structured noise, representing other biological sources that contaminate
the ECG, and n(t) is full-rank observation noise that always exist in physiological measurements. In
(4.8), we have discriminated between low-rank and full-rank noise to emphasize their different origins.

Note that H, R, and Λ are generally functions of time. Although the product of H · R · Λ may
be assumed to be a single N × 3 matrix, the representation in (4.8) has the benefit that the rather
stationary features of the body volume conductor that depend on the location of the ECG electrodes and
the conductivity of the body tissues can be considered in H, while the temporal inter-beat movements of
the heart can be considered in Λ and R, meaning that their average values are identity matrices in a long
term study: Et{R} = I, Et{Λ} = I. In Section 4.7, by using the Givens rotation, a means of coupling
these matrices with external sources such as the respiration and achieving non-stationary mixtures of the
cardiac source will be presented.

4.4.2 Modeling maternal abdominal recordings

By utilizing a dynamic model like (4.7) for the dipole vector of the heart, the signals recorded from the
abdomen of a pregnant woman, containing the fetal and maternal heart components can be modeled as
follows:

x(t) = xm(t) + xf (t) + η(t) + n(t)
= Hm ·Rm · Λm · sm(t) + Hf ·Rf · Λf · sf (t) + η(t) + n(t) (4.9)

where the noises n(t) and η(t) and the matrices Hm, Hf , Rm, Rf , Λm, and Λf have similar definitions as
the ones in (4.8), with the subscripts m and f referring to the mother and fetus, respectively. Moreover,
Rf has the additional interpretation that its mean value Et{Rf} = R0 can be assumed as the relative
position of the fetus with respect to the axes of the maternal body (and not equal to identity, as assumed
above). This is an interesting feature for modeling the fetus in the different typical positions such as
vertex or breech positions previously shown in Figs. 3.4 and 3.5.

As illustrated in Fig. 4.4, sf (t) = [xf (t), yf (t), zf (t)]T can be assumed as a canonical representation
of the fetal dipole vector with respect to the fetal body axes. Therefore, to calculate this vector with
respect to the maternal body axes, sf (t) should be rotated by the three-dimensional rotation matrix R0:

R0 =

 1 0 0
0 cos θx sin θx

0 − sin θx cos θx

 cos θy 0 sin θy

0 1 0
− sin θy 0 cos θy

 cos θz sin θz 0
− sin θz cos θz 0

0 0 1

 , (4.10)

where θx, θy, and θz are the angles of the fetal body planes with respect to the maternal body planes.
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Figure 4.4: Illustration of the fetal and maternal VCGs vs. their body coordinates

The model presented in (4.9) may be simply extended to multiple pregnancies (twins, triplets, quadru-
plets, etc.), by considering additional terms for the other fetuses.

4.4.3 Fitting the model parameters to real recordings

As previously stated, due to the analogy between the dipole vector and the orthogonal lead VCG record-
ings, the number and shape of the Gaussian functions used in (4.7) can be estimated from typical VCG
recordings. This estimation requires a set of orthogonal leads, such as the Frank leads, in order to cali-
brate the parameters. There are different possible approaches for the estimation of the Gaussian function
parameters of each lead. Nonlinear least square error (NLSE) methods, as previously suggested in [39],
have been proved as an effective approach. Otherwise, one can use the A∗ optimization approach adopted
in [18], or benefit from the algorithms developed for radial basis functions (RBF) from the neural network
context [20].

It should be noted that (4.7) is some kind of canonical representation of the heart’s dipole vector;
meaning that the amplitudes of the Gaussian terms in (4.7) are not the same as the ones recorded from
the body surface. In fact, using (4.7) and (4.8) to generate synthetic ECG signals, there is an intrinsic
indeterminacy between the scales of the entries of s(t) and the mixing matrix H, since the cardiac dipole
vector is only a modeling tool and not a physical source that can be recorded1. To solve this ambiguity,
and without loss of generality, we assume the power of the dipole vector to be normalized in each of its
three coordinates.

As mentioned before, the H mixing matrix in (4.8) depends on the location of the recording electrodes.
So in order to estimate this matrix, we first calculate the optimal parameters of (4.7) from the Frank
leads of a given database. Next, the H matrix is estimated by using a MMSE estimate between the
synthetic dipole vector and the recorded ECG channels of the database. In fact, by using the previously
mentioned assumption that Et{R} = I and Et{Λ} = I, the MMSE solution of the problem is:

Ĥ = E{ECG(t) · s(t)T }[E{s(t) · s(t)T }]−1 (4.11)

For the case of abdominal recordings the estimation of the Hm and Hf matrices in (4.9) are more diffi-
cult and require a priori information about the location of the electrodes and a model for the propagation
of the maternal and fetal signals within the maternal thorax and abdomen [134]. A coarse estimation
of Hm can be achieved for a given configuration of abdominal electrodes by using (4.11) between the
abdominal ECG recordings and three orthogonal leads placed close to the mother’s heart for recording
her VCG. Yet, the accurate estimation of Hf requires more information about the maternal body and
non-homogeneous models of the volume conductor (cf. Section 3.2).

The ω term introduced in (4.7) is in general a time-variant parameter that depends on physiological
factors such as the speed of electrical wave propagation in the cardiac muscle and the HRV [133]. Fur-
thermore, since the phase of the respiratory cycle can be derived from the ECG (or through other means
such as amplifying the differential change in impedance in the thorax; impedance pneumography) and Λ

1Unless theoretically, if we had the complete body conductivities and the surface distributions, which could be used in
the Gabor-Nelson theorem to calculate the cardiac dipole vector [66].
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is likely to vary with respiration, it is logical that an estimation of Λ over time can be made from such
measurements.

The average (static) orientation of the fetal heart with respect to the maternal cardiac source is rep-
resented by R0 which could be initially determined through a sonogram, and later inferred by referencing
the signal to a large database of similar-term fetuses. Of course, both Λ and R0 are functions of the
respiration and heart rates and therefore tracking procedures such as expectation maximization (EM)
[63], or Kalman filter (KF) may be required for online adaptation of these parameters [174, 175].

However, as we will show in Chapter 8, for multichannel statistical studies, where we need to analyze
the performance of a given algorithm with Monte Carlo simulations, it is not necessary to derive the
matrices defined in (4.9) from real observations. Instead, we may use random matrices with a desired
angle between their column subspaces to represent the overall products Hm · Rm · Λm and Hf · Rf · Λf .
This idea is revisited in the case study presented in Section 4.6.2.

4.5 ECG Noise Modeling

An important issue that should be considered in the modeling of realistic ECG signals is to model realistic
noise sources. Following [64], the most common high-amplitude ECG noises that cannot be removed by
simple in-band filtering, are:

• baseline wander (BW)

• muscle artifact (MA)

• electrode movement (EM)

For the fetal ECG signals recorded from the maternal abdomen the following may also be added to this
list:

• maternal ECG

• fetal movements

• maternal uterus contractions

These noises are typically very non-stationary in time and colored in spectrum (having long-term corre-
lations). This means that white noise or stationary colored noise are generally insufficient to model ECG
noise. In practice, researchers have preferred to use real ECG noises such as those found in the MIT-BIH
non-stress test database (NSTDB) [139, 87], with varying SNRs.

As explained in the following, parametric models such as time-varying autoregressive (AR) models
can be used to generate realistic ECG noises, which follow the non-stationarity and spectral shape of real
noise. The parameters of this model can be trained by using real noises such as the NSTDB. Having
trained the model, it can be driven by white noise to generate different instances of such noises, with
almost identical temporal and spectral characteristics. There are different approaches for the estimation
of time-varying AR parameters. An efficient approach that we adopt, is to reformulate the AR model
estimation problem in the form of a standard Kalman filter (KF) [68].

For the time series yn, a time-varying AR model of order p can be described as follows:

yn = −an1yn−1 − an2yn−2 − ...− anpyn−p + vn

= −[yn−1, yn−2, ..., yn−p]


an1

an2

...
anp

 + vn,
(4.12)

where vn is the input white noise and the ani(i = 1, ..., p) coefficients are the p time-varying AR
parameters at the time instant n. So by defining ζn

.= [an1, an2, ..., anp]T as a state vector, and
hn

.= −[yn−1, yn−2, ..., yn−p]T , we can reformulate the problem of AR parameter estimation in the KF
form as follows: {

ζn+1 = ζn + wn

yn = hT
nζn + vn,

(4.13)
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(a) (b)

Figure 4.5: Typical segment of ECG BW Noise (a) Original (b) Synthetic

Figure 4.6: Frequency response magnitudes of 32 segments of the time-varying AR filters for the Baseline
Wander noises of the NSTDB. This figure illustrates how the AR filter responses are evolving in time.

where we have assumed that the temporal evolution of the time-varying AR parameters follow a random
walk model with a white Gaussian input noise vector wn. This approach is a conventional and practical
assumption in the KF context when there is little information about the dynamics of a state vector [68].

To solve the standard KF equations [68], we also require the expected initial state vector ζ̄0 = E{ζ0},
its covariance matrix P0 = E{ζ̄0ζ̄

T
0 }, the covariance matrices of the process noise Qn = E{wnwT

n}, and
the measurement noise variance rn = E{vnvT

n }.
ζ̄0 can be estimated from a global time-invariant AR model fitted over the whole samples of yn, and its

covariance matrix (P0) can be selected ‘large enough’ to indicate the imprecision of the initial estimate.
The effects of these initial states are of less importance and under some general convergence properties
of KFs, they usually vanish in time.

By considering the AR parameters to be uncorrelated, the covariance matrix Qn can be selected as a
diagonal matrix. The selection of the entries of this matrix, depends on the extent of yn’s non-stationarity.
For quasi-stationary noises, the diagonal entries of Qn are rather small, while for highly non-stationary
noises they are large. Generally the selection of this matrix is a compromise between convergence rate
and stability. Finally, rn is selected according to the desired variance of the output noise.

To complete the discussion, the AR model order should also be selected. It is known that for stationary
AR models, there are information-based criteria such as the Akaike information criterion (AIC) for
the selection of the optimal model order. However, for time-varying models the selection is not as
straightforward, since the model is dynamically evolving in time. In general, we expect the model order
to be less than the optimal order of a global time-invariant model.

Now having the time-varying AR model, it is possible to generate noises with different variances. As
an illustration, in Fig. 4.5 a one minute long segment of BW with a sampling rate of 360Hz, from the
NSTDB [139, 138], and the synthetic BW noise generated by the proposed method using a time-varying
AR model of order twelve, are depicted. The frequency response magnitude of the time-varying AR filter
designed for this BW noise is depicted in Fig. 4.6. As it can be seen, the time-varying AR model is acting
as an adaptive filter that is adapting its frequency response to the contents of the non-stationary noise.

The proposed method generates single-channel noises. This method may be extended to multichannel
noise in various ways. One approach is to use multivariate autoregressive models for simulating the noise
sources [196]. A simpler approach that we adopt in the later presented results, is to generate M single-
channel noises independently, and to project them to the ECG signal subspace with a projection matrix
An ∈ RN×M . By this way, we can model low-rank observation noises from different origins, such as
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Table 4.3: The normalized MSE (%) in the synthetic VCG channels using five and nine Gaussian functions
VCG Channel 5 Gaussians 9 Gaussians

Vx 1.24 0.09
Vy 1.68 0.15
Vz 3.60 0.12

Table 4.4: The percentage of MSE (%) in the ECGs reconstructed by Dower transformation from the
original VCG and from the synthetic VCG using five and nine Gaussian functions

ECG Channel Original VCG 5 Gaussians 9 Gaussians
V1 0.78 2.06 0.86
V2 0.67 3.14 0.72
V6 0.16 1.12 0.19

muscle contractions or respiration.

4.6 Illustrations

The proposed synthetic ECG model is believed to have interesting applications from both the theoretical
and practical point of view. Here, we study the accuracy of the model and a special case study. Further
applications of this model are presented in later chapters.

4.6.1 The model accuracy

As a first illustration, the accuracy of the model presented in (4.8) will be studied for a typical ECG
signal of the Physikalisch-Technische Bundesanstalt diagnostic ECG database (PTBDB) [158, 22, 112].
The database consists of twelve standard ECG channels and three Frank lead VCGs. In order to have
a clean template for extracting the model parameters, the signals are preprocessed by a bandpass filter
to attenuate the baseline wander and high frequency noises. The ensemble average of the ECG is then
extracted from each channel. Next, the parameters of the Gaussian functions of the synthetic model are
extracted from the ensemble average of the Frank lead VCGs, using the nonlinear least squares procedure
explained in Section 4.4.3. The Original VCGs and the synthetic ones generated from five and nine
Gaussian functions are depicted in Figs. 4.7(a)–4.7(c) for comparison. The percentage of mean square
error (MSE) of the two synthetic VCGs with respect to the true VCGs are listed in Table 4.3.

The H matrix defined in (4.8) may also be calculated by solving the MMSE transformation between
the ECG and the three VCG channels (similar to (4.11)). As with the Dower transform, H can be used
to find approximate ECGs from the three original VCGs or the synthetic VCGs. In Figs. 4.7(d)–4.7(f),
the original ECGs of channels V1, V2, and V6, and the approximate ones calculated from the VCG are
compared with the ECGs calculated from the synthetic VCG using five and nine Gaussian functions for
one ECG cycle. As it can be seen in these results, the ECGs reconstructed from the synthetic VCG model
have significantly improved as the number of Gaussian functions have been increased from five to nine,
and the resultant signals very well resemble the ECGs reconstructed from the original VCG by using the
Dower transform. The model improvement is especially notable around the asymmetric segments of the
ECG such as the T-wave.

However, it should be noted that the ECG signals reconstructed from the Dower transform (either
from the original VCG or the synthetic ones), do not perfectly match the true recorded ECGs, especially
in the low amplitude segments such as the P-wave. This in fact shows the intrinsic limitation of the single
dipole model in representing the low-amplitude components of the ECG which require more than three
dimensions for their accurate representation (cf. Section 3.4). The percentage of MSE of the calculated
ECGs of Figs. 4.7(d)–4.7(f) with respect to the true ECGs are listed in Table 4.4.
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(a) Vx (b) Vy (c) Vz

(d) V1 (e) V2 (f) V6

Figure 4.7: Original vs. synthetic VCGs and ECGs using 5 and 9 Gaussian functions. For comparison,
the ECG reconstructed from the Dower transformation is also depicted in (d)-(f) over the original ECGs.
The synthetic VCGs and ECGs have been vertically shifted 0.2mV for better comparison. Refer to text
for details.

4.6.2 Fetal ECG extraction

In [169], a detailed example of the proposed method for modeling maternal abdominal recordings was
presented. The thereby presented example was based on a specific electrode configuration and fetal
positioning, and the matrices Hm and Hf were calculated by assuming the maternal thorax as an infinite
homogeneous volume conductor. Here, we will not go into the details of that example; but will instead
present an example that will be used in later chapters for evaluating multichannel source separation
methods.

Following (4.9), each of the maternal and fetal parts of the simulated signals belongs to a three-
dimensional subspace and the structured noise belongs to an M -dimensional one (M < N). We can
therefore represent (4.9) in the following compact form:

x(t) = xm(t) + xf (t) + η(t) + n(t)

= [Am Af An] ·

 sm(t)
sf (t)
v(t)

 + n(t)

.= A · s(t) + n(t)

(4.14)

where Am, Af ∈ RN×3, An ∈ RN×M , v(t) ∈ RM represents M -dimensional noise, and η(t) = Anv(t) is
the structured noise defined in (4.9). This form of the signal model is of special interest for the evaluation
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Table 4.5: Parameters of the synthetic fetal dipole used in Section 4.6.2
Index(i) 1 2 3 4 5
αx

i (mV) 0.07 -0.11 1.3 0.07 0.03
bx
i (rad) 0.1 0.03 0.05 0.02 0.3

θi(rad) -0.7 -0.17 0 0.18 1.4
αy

i (mV) 0.04 0.30 0.45 -0.35 0.05
by
i (rad) 0.1 0.05 0.03 0.04 0.3

θj(rad) -0.9 -0.08 0 0.05 1.3
αz

i (mV) -0.01 0.03 -0.40 0.46 -0.01
bz
i (rad) 0.1 0.4 0.03 0.03 0.3

θk(rad) -0.8 -0.3 -0.1 0.06 1.35

of blind and semi-blind source separation algorithms. In fact, according to (4.14), the source signal
s(t) has M + 6 dimensions. Now depending on whether the number of synthetic channels N is equal,
smaller, or greater than M + 6, the source separation problem becomes determined, under-determined,
or over-determined, respectively.

Now, instead of calculating Am and Af from a volume conductor model, we choose them as random
matrices having specific gains and a maximum principal angle of θmf in between. Principal angles are
introduced in Appendix A; they are frequently used to define the angle between two subspaces [73].
Therefore, for our application of interest a small θmf indicates that the maternal and fetal subspaces are
close to each other, which makes their separation more difficult. Now by considering the maternal ECG
xm(t) as interference and η(t) and n(t) as noise for the fetal signals xf (t), the overall fetal signal-to-
interference ratio (SIR) and signal-to-noise ratio (SNR) over all channels may be defined as follows:

SIR .=
Et,i{xfi

(t)2}
Et,i{xmi(t)2}

(4.15)

SNRη
.=

Et,i{xfi
(t)2}

Et,i{ηi(t)2}
(4.16)

SNRn
.=

Et,i{xfi(t)
2}

Et,i{ni(t)2}
(4.17)

where xfi
(t), xmi

(t), ni(t), and ni(t) are respectively the entries of xf (t), xm(t), η(t), and n(t) in channel
i, and Et,i{·} represents summation over time and channels. Following these definitions, the gains of Am,
Af , An, and the full-rank noise n(t) are defined such that the fetal SIR and SNR be equal to their desired
values.

In this example, we use the parameters listed in Tables 4.2 and 4.5, to generate the maternal and fetal
dipoles sm(t) and sf (t), respectively. The maternal and fetal heart rates are assumed to be fm = 0.9Hz
and ff = 2.2Hz, respectively.

We consider eight synthetic ECG channels, in two cases: once with a maximum principal angle of
θmf = 10◦ between Am and Af , and another time with a maximum principal angle of θmf = 60◦.

For the structured noise, we consider three independent noise sources: real baseline wander, muscle
artifacts, and electrode movement taken from the NSTDB [138, 139]. To project these noises to the sensor
subspace, we use a random 8 × 3 matrix An. The full-rank noise n(t) is considered as white Gaussian
noise. The gains of all the mixing matrices and the full-rank noise in (4.14), are adjusted such that we
have SIR=−30dB, SNRη=−20dB, and SNRn=5dB for the fetus, which are in accordance with typical
experimental recordings. A ten second segment of eight channels generated with this method can be seen
in Figs. 4.8 and 4.9, for θmf = 10◦ and θmf = 60◦, respectively.

In this example, considering the number of sources and mixtures, we have an under-determined mixture
of sources. Therefore, linear source separation algorithms that seek as many sources as sensors are not
expected to extract all the signal components. For illustration, we apply the JADE algorithm [30], to
these synthetic signals in order to extract eight independent components. The resultant components can
be seen in Figs. 4.10 and 4.11, corresponding to the inter-subspace angles θmf = 10◦ and θmf = 60◦,
respectively. From these results we can see that JADE has extracted the three maternal components in
both cases. On the other hand, for the case in which the maternal and fetal subspaces were rather far
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(θmf = 60◦) two fetal components have been extracted, while when the maternal and fetal subspaces are
close (θmf = 10◦), only one noisy fetal component has been extracted. A closer look at these figures shows
that there are traces of the fetal components left in the maternal signal, especially for θmf = 10◦. The
other components in both figures correspond to the structured and full-rank noises. Further discussions
concerning the interpretation of components extracted by multichannel source separation techniques are
presented in Chapters 6 and 8.

(a) Channel 1 (b) Channel 2 (c) Channel 3 (d) Channel 4

(e) Channel 5 (f) Channel 6 (g) Channel 7 (h) Channel 8

Figure 4.8: Synthetic maternal abdomen signals with θmf = 10◦, SIR=−30dB, SNRη=−20dB, and
SNRn=5dB.

(a) Channel 1 (b) Channel 2 (c) Channel 3 (d) Channel 4

(e) Channel 5 (f) Channel 6 (g) Channel 7 (h) Channel 8

Figure 4.9: Synthetic maternal abdomen signals with θmf = 60◦, SIR=−30dB, SNRη=−20dB, and
SNRn=5dB.
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(a) IC 1 (b) IC 2 (c) IC 3 (d) IC 4

(e) IC 5 (f) IC 6 (g) IC 7 (h) IC 8

Figure 4.10: Independent Components extracted from the synthetic multichannel recordings of Fig. 4.8.
Strong maternal components can be seen in the first three components. Components four to six, more or
less correspond with the baseline wander, muscle artifacts, and electrode movement noises. Noisy fetal
R-peaks are seen in the seventh component and the last component is principally noise, with some minor
traces of the fetal peaks.

(a) IC 1 (b) IC 2 (c) IC 3 (d) IC 4

(e) IC 5 (f) IC 6 (g) IC 7 (h) IC 8

Figure 4.11: Independent Components extracted from the synthetic multichannel recordings of Fig. 4.9.
Strong maternal components can be seen in the first three components. Components four to six, more or
less correspond with the baseline wander, muscle artifacts, and electrode movement noises. Fetal R-peaks
are seen in the last two components.
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4.7 Time-varying volume conductor models

As mentioned in previous sections, the mixing matrices of cardiac signals are generally functions of time,
having oscillations coupled with the respiration rate or the heart beat. Such oscillatory couplings may be
modeled in our synthetic ECG model by using the Givens transform [73].

It is known that any rotation (orthonormal) matrix R ∈ RN×N can be decomposed into L =
N(N − 1)/2 single rotations corresponding to the number of possible rotation planes in this space. This
decomposition, known as the Givens decomposition, is as follows:

R =
∏

i=1...N−1,j=i+1...N

Rij , (4.18)

where Rij is the Givens rotation matrix of the i–j plane, derived from an N -dimensional identity matrix
with the four following changes in its entries:

Rij(i, i) = cos(θij), Rij(i, j) = sin(θij)
Rij(j, i) = − sin(θij), Rij(j, j) = cos(θij),

(4.19)

where θij is the rotation angle between the i and j axes, in the i–j plane. The R0 matrix presented in
(4.10) is a three-dimensional example of the general rotation in (4.18).

Now in order to achieve a time-varying rotation matrix that is coupled with an external source, such
as the respiration rate or heart beat (either for the adult or the fetus), any of the θij rotation angles can
oscillate with the external source frequency, as follows:

θij(t) = θmax
ij sin(2πft) (4.20)

where θmax
ij is the maximum deviation of the θij rotation angle, and f is the frequency of the external

source. The axes that are coupled with the oscillatory source depend on the nature of the sources
of interest and the geometry of the problem (i.e. the relative location and distance of the sources).
Apparently depending on this geometry other means of coupling are also possible.

The hereby presented idea can be used to achieve time-varying mixtures in (4.8)-(4.9), by either using
them as multiplicative factors for the mixing matrices, or for modifying the left or right eigenmatrices of
these mixing matrices.

4.8 Summary and Conclusions

In this chapter a three-dimensional model of the dipole vector of the heart was presented. The model was
used for the generation of synthetic multichannel signals recorded from the body surface of adults and
pregnant women. A practical means of generating realistic ECG noises recorded in real conditions was
also developed and the application of the proposed model, especially for fetal ECG studies, was illustrated
through a simulated example. Due to the multidimensional nature of cardiac signals, the hereby presented
models are of especial interest for multichannel analysis methods presented in later chapters.

Considering the simplicity and generality of the proposed model, there are many other issues which
may be addressed in future works.

The proposed model is based on the single dipole model of the heart, which limits the cardiac subspace
dimensions to three. In Chapter 6, it is shown that up-to five or six dimensions may be necessary for
the better representation of the cardiac dipole. Therefore, the accuracy of the model can be increased by
using more dimensions to represent the cardiac subspace.

In future works, the idea of extending the single dipole model to moving dipoles [208], can also be
studied. For such an approach, the dynamic representation in (4.7) can be very useful. In fact the
moving dipole would be simply achieved by adding oscillatory terms to the x, y, and z coordinates in
(4.7), to represent the speed of the heart’s dipole movement. Therefore, besides the modeling aspects of
the proposed model, it can also be used as a means of verifying the performance of different heart models.

Following the discussions in Section 4.4, it is known that Gaussian mixtures can be used to model any
ECG signal, even with asymmetric shapes such as the T-wave, which are rather common in real recordings.
However, in these cases, two or more Gaussian terms or a log-normal function may be required to model
each asymmetric shape. For such applications, it could be simpler to substitute the Gaussian functions
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with naturally asymmetric functions, such as the Gumbel function which has a Gaussian shape that is
skewed towards the right- or left-side of its peak [80].

The modeling of abnormal ECG signals (either for adults or fetuses) should also be considered in future
works. The dynamic models presented in this chapter can effectively generate multichannel normal or
abnormal beats with consistent morphology. However, cardiac abnormalities usually appear as occasional
odd-beats between a set of normal ones. We believe that the Hidden-Markov Model (HMM) can be very
effective for modeling such abnormalities. A preliminary idea of this extension was recently presented in
[40].

Finally, we note that we should be cautious about how we interpret the components of dipole or
multipole expansions of the cardiac potentials. In Chapter 6 we will discuss that multipole expansions
of electromagnetic field potentials are not generally unique and a change of observation point (sensor
location) can lead to different dipole expansions. Therefore, the dipolar sources that we modeled in (4.7)
should not be envisaged as a truly existing dipolar source that is independent of sensor locations. This
is of especial importance for interpreting the results of source separation methods applied to real and
synthetic data.



Chapter 5

A Bayesian ECG Filtering
Framework

5.1 Introduction

Up to now, many approaches have been developed for ECG denoising. Despite of the rich literature in
this field, there are still many applications, such as the fetal ECG extraction problem, which lack reliable
signal processing tools to extract the weak ECG components contaminated with background noise and
permit the measurement of subtle features in the ECG. The numerous non-cardiac ECG contaminants
overlap with the cardiac components in the frequency domain, particularly in the 0.01Hz to 100Hz range.
Bandpass filtering is therefore inadequate to suppress such contaminants [37], [74].

Ensemble averaging (EA) is another common approach for the extraction of small cardiac components
from the noise contaminated ECG. However, as EA requires the averaging of many beats, the subtle
but important inter-beat variations in the cardiac cycle are lost in the averaging procedure [116]. As
an improvement over EA, classical adaptive filter (AF) architectures have also been used for the noise
cancellation of ECGs containing baseline wander, power line interference, EMG noise, and motion artifacts
[220, 199, 113].

For stationary signals, the Wiener filter (WF) is the optimal linear filtering technique in the minimum
mean square error (MMSE) sense, applied either in a causal sense in the time-domain, or as the non-
causal WF applied in the frequency domain. However, the WF is not expected to (and does not) give
good results for a noisy ECG, due to the non-stationary nature of the cardiac signal. In some related
works, filtering approaches have been proposed based on time-frequency [115], [116], and time-scale [107],
[141] WFs. The intuition behind the use of the time-frequency or wavelet transforms in these applications
is to apply the WF in two domains, to facilitate the tracking of ECG nonstationarities.

Wavelet denoising (WD) is now a common practice for denoising of signals having multi-resolution
characteristics such as the cardiac signal in the ECG. Donoho [49], proposed a soft thresholding method
for the so-called shrinkage of the noise components in the wavelet domain. Their approach together with
some ad hoc variants of it, have since been used for many applications, including high-resolution ECG
denoising [107, 162, 2]. In these cases, the model of the ECG is essentially based on the frequency content
of the ECG and to some degree, the localization of the ECG peaks in time.

In this chapter, we demonstrate that by using a realistic model to describe the quasi-periodic behavior
of the ECG, the idea of model-based filtering may be further extended to a general Bayesian filtering
framework for adult and fetal ECG denoising.

5.2 Review of the Bayesian Filtering Theory

A classical problem in estimation theory is the estimation of the hidden states that are observable through
a set of measurements of a system with an underlying dynamic model . The well-known Kalman filter
(KF) is one such method and under certain general constraints, it can be proved to be the optimal filter
in the MMSE sense [106]. The conventional KF assumes a linear model for the system dynamics and
observation equations. In practice however, most systems are nonlinear in nature and in order to extend

37
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the idea of conventional KF to such systems, several variants of the original KF have been developed. In
this section, the theoretical foundations of some of these extensions are briefly reviewed to facilitate the
presentation of the proposed methods.

5.2.1 The Extended Kalman Filter

The extended Kalman filter (EKF) is an extension of the standard KF to nonlinear systems. Consider
a discrete-time nonlinear system with the unobserved underlying state vector xk and observation vector
yk at time instant k. A dynamic model of this system may be represented as follows:{

xk+1 = f(xk,wk, k)
yk = g(xk,vk, k) (5.1)

where f(·) is the state evolution function and g(·) represents the relationship between the state vector and
the observations. The process and measurement noise vectors are wk and vk respectively, with associated
covariance matrices Qk = E{wkwT

k } and Rk = E{vkvT
k }. The initial estimate of the state vector is also

assumed to be known and is given by x0 = E{x0}, with P0 = E{(x0 − x0)(x0 − x0)T }.
Our objective is to find the MMSE estimate of the vector xk. In order to use the KF formalism

for this problem, it is necessary to derive a linear approximation of (5.1) near a desired reference point
(x̂k, ŵk, v̂k) [84], [142]. This leads to the following linear approximate model:{

xk+1 ≈ f(x̂k, ŵk, k) + Ak(xk − x̂k) + Fk(wk − ŵk)
yk ≈ g(x̂k, v̂k, k) + Ck(xk − x̂k) + Gk(vk − v̂k) (5.2)

where

Ak = ∂f(x, ŵk, k)
∂x

∣∣∣
x=x̂k

Fk = ∂f(x̂k,w, k)
∂w

∣∣∣
w=ŵk

Ck = ∂g(x, v̂k, k)
∂x

∣∣∣
x=x̂k

Gk = ∂g(x̂k,v, k)
∂v

∣∣∣
v=v̂k

(5.3)

Moreover, to simplify the matrix notations, the matrices Fk and Gk are usually absorbed into the noise
covariance matrices as follows:

Qk ← FkQkFT
k , Rk ← GkRkGT

k

With these notations, the EKF algorithm may be summarized as follows:

x̂−k+1 = f(x̂+
k ,w, k)

∣∣∣
w=wk

rk = yk − g(x̂−k ,v, k)
∣∣∣
v=vk

Kk = P−
k CT

k [CkP−
k CT

k + Rk]−1 x̂+
k = x̂−k + Kkrk

P−
k+1 = AkP+

k AT
k + Qk P+

k = P−
k −KkCkP−

k

(5.4)

where by definition rk is the innovation signal, wk = E{wk}, vk = E{vk}, x̂−k
.= Ê{xk|yk−1, ...,y1}

is the a priori estimate of the state vector in the k-th stage using the observations y1 to yk−1, and
x̂+

k
.= Ê{xk|yk, ...,y1} is the a posteriori estimate of this state vector after using the k-th observation yk.

P−
k and P+

k are defined in the same manner to be a priori and a posteriori estimates of the state vector
covariance matrices before and after using the k-th observation, respectively, i.e.

P−
k

.= E{e−k e−k
T } (5.5)

P+
k

.= E{e+
k e+

k

T } (5.6)

where e−k
.= xk − x̂−k and e+

k
.= xk − x̂+

k .
The matrix P+

k , is an essential part of the Kalman filter and it is calculated and updated as the filter
propagates in time. The eigenvalues of this matrix can be used to form an error likelihood ellipsoid, also
known as concentration ellipsoid [209, p. 79], that represents the region of highest likelihood for the state
vector xk. This likelihood ellipsoid provides a confidence region for the estimated signals.
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5.2.2 The Extended Kalman Smoother

As with the Kalman smoother, the extended Kalman smoother (EKS) uses the information of future
observations to give better estimates of the current state. Due to this non-causal nature, the EKS is
expected to have a better performance compared with the EKF. The EKS algorithm basically consists
of a forward EKF stage followed by a backward smoothing stage. Depending on the smoothing strategy,
smoothing algorithms are usually classified into fixed-lag or fixed-interval smoothers [68]. In this work
the fixed interval EKS is used, since the filtering procedure is carried out offline on the entirety of each
ECG signal. For real-time applications of the proposed EKS methods, the fixed-lag smoother is usually
more appropriate.

5.2.3 The Unscented Kalman Filter

For highly nonlinear systems, the linear estimate of the nonlinear model does not provide a good approx-
imation of the model, and hence the EKF will not track the desired signal around sharp turning points
(such as for the ECG). In recent years there has been great interest towards the extensions of the KF
to highly nonlinear systems [35]. The unscented Kalman filter (UKF) is a filter based on the unscented
transform (UT), a method for the estimation of the first and second order statistics of the outputs of
highly nonlinear systems with Gaussian inputs [84]. In fact, for the UKF the linearization of the system
model is no longer necessary since the prior estimate of the state covariance matrix, which is required
for the Kalman gain calculations in (5.4), is directly estimated using the UT. The theory of the UKF
and its implementation issues have already been discussed in the literature and the reader is referred
to [84, ch. 7] for a detailed mathematical description. Note that the UKF is numerically sensitive and
the covariance matrices estimated by the UT may become semi-definite; therefore much effort has been
made to achieve numerically stable versions of this algorithm. The UKF algorithm used in this work is
based on the ReBEL Matlab® library, previously developed for nonlinear Bayesian filtering [217] and is
optimized to prevent the estimated covariance matrices from becoming semi-definite.

5.3 Methods

In Chapter 4, it was shown that realistic ECG signals can be produced by using a set of state-space
equations to model the ECG. In the following, similar equations are used to model the temporal dynamics
of ECG signals, for designing a Bayesian filter for ECG denoising. In order to do so, we use a variant of
(4.6) in its discrete form with the assumption of a small sampling period δ:

θk+1 = (θk + ωδ) mod (2π)

zk+1 = −
∑

i

δ
αiω

b2
i

∆θi exp(−∆θ2
i

2b2
i

) + zk + η (5.7)

where zk represents the ECG at time instant k, ∆θi = (θk − θi) mod (2π), η is a random additive noise
that models the inaccuracies of the dynamic model (including the baseline wander), the summation i is
taken over the number of Gaussian functions used for modeling the shape of the desired ECG channel,
and the other parameters follow the definitions given in Section 4.41. As we showed in Chapter 4, due
to the flexibility of Gaussian mixtures, by using a sufficient number of Gaussian functions they can be
fitted to signals recorded from different ECG leads. However, in order to illustrate the general filtering
framework, in this chapter we only use five Gaussians to model the ECG channels containing the P, Q,
R, S, and T-waves.

Here forth, θk and zk are assumed as the state variables, and ω, αi, θi, bi and η are assumed as i.i.d
Gaussian random variables considered to be process noises2. Following the notation in (5.1), the system
state and process noise vectors are defined as follows:

xk = [θk, zk]T ,

wk = [αP , ...αT , bP , ..., bT , θP , ..., θT , ω, η]T ,
(5.8)

1Note that in this notation, θk is a time-varying phase at time instant k, while θi is the phase representing the center of
the i-th Gaussian function (with i varying over the indexes P, Q, R, Q, T, or etc.).

2In our case, the Gaussianity of the process noises is a ‘working assumption’ that helps us in using the Kalman filtering
formulation in practice; but does not exactly hold in theory for some of the parameters such as ω.
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and the process noise covariance matrix is given as Qk = E{wkwT
k }.

5.3.1 Linearization of the Nonlinear Dynamic ECG Model

In order to set up an EKF model based on the nonlinear synthetic model (5.7), it is necessary to have a
linearized version of the model. Consequently, the state-equation (5.7) requires linearization using (5.2)
and (5.3). By defining: {

θk+1 = F0(θk, ω, k)
zk+1 = F1(θk, zk, ω, αi, θi, bi, η, k), (5.9)

the following equations represent the linearized model with respect to the state variables θk and zk:

∂F0

∂zk
= 0

∂F0

∂θk
=

∂F1

∂zk
= 1

∂F1

∂θk
= −

∑
i∈{P,Q,R,S,T}

δ
αiω

b2
i

[1− ∆θ2
i

b2
i

] exp(−∆θ2
i

2b2
i

)
(5.10)

Similarly, the linearization of (5.9) with respect to the process noise components yields:

∂F0

∂ω
= δ

∂F1

∂η
= 1 i ∈ {P,Q,R, S, T}

∂F0

∂αi
=

∂F0

∂bi
=

∂F0

∂θi
=

∂F0

∂η
= 0

∂F1

∂αi
= −δ

ω∆θi

b2
i

exp(−∆θ2
i

2b2
i

)

∂F1

∂bi
= 2δ

αiω∆θi

b3
i

[1− ∆θ2
i

2b2
i

] exp(−∆θ2
i

2b2
i

)

∂F1

∂θi
= δ

αiω

b2
i

[1− ∆θ2
i

b2
i

] exp(−∆θ2
i

2b2
i

)

∂F1

∂ω
= −

∑
i

δ
αi∆θi

b2
i

exp(−∆θ2
i

2b2
i

)

(5.11)

5.3.2 Observation Equations

The noisy ECG recordings are assumed to be observations for the KF. The relationship between the states
and observations of the KF depends on the location of the electrodes and the origin of the measurement
noise. For example, motion artifacts, environmental noise or bioelectrical artifacts such as EMG or
electrogastric noise, may be assumed as additive measurement noises.

In addition to the noisy ECG observations, the phase θ can also be added as a second observation.
In fact, by studying the values of Table 4.1, it is noticed that the R-peak is always assumed to be
located at θ = 0 and the ECG contents lying between two consecutive R-peaks are assumed to have a
phase between 0 and 2π (or −π and π). So by simply detecting the R-peaks an additional observation,
namely φk, is achieved. While R-wave detection is a rather simple and routine procedure in most cases
(cf. Appendix D), one may benefit from more sophisticated and robust approaches for very low SNR
applications [9]. This additional phase information will also help to synchronize the dynamical KF
trajectories with the reference noisy signals, without the need for manual synchronization. This RR-
interval phase warping technique may be assumed as a generalization of the external reference previously
used for the synchronization of AFs for event-related signals [143], [113].

Hence the phase observations φk and the noisy ECG measurements sk may be related to the state
vector as follows: [

φk

sk

]
=

[
1 0
0 1

]
.

[
θk

zk

]
+

[
uk

vk

]
(5.12)

where Rk = E{[uk, vk]T [uk, vk]} is the observation noise covariance matrix.
In the context of estimation theory, the variance of the observation noise in (5.12) represents the

degree of reliability of a single observation. In other words, when a rather precise measurement of the
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Figure 5.1: An illustration of the phase assignment approach

Figure 5.2: Several cycles of the ECG phase-wrapped in the state space

states of a system is valid the diagonal entries of Rk are small, and the KF gain is adapted so as to
rely on that specific measurement. However, for the epochs where the measurements are too noisy or
there are no measurements available, the Rk entries are large and the KF tends to follow its internal
dynamics rather than tracking the observations [172]. Recall that the phase state variable θk is periodic,
starting on θ = 0 at the R-peak and ending on θ = 2π at the next R-peak. Although the only valid phase
observation is obtained from the R-peak locations, it is possible to linearly assign a phase value between
0 and 2π to the intermediate samples, as illustrated in Fig. 5.1. The later presented results are all based
on this linear phase assignment. However, to indicate the increased uncertainty in the phases assigned
to the intermediate samples, the first diagonal entry of Rk corresponding to the time varying variance of
the measurement phase noise, may be increased. Another alternative and rather sophisticated approach
for the estimation of the intermediate phase values is to directly detect the location of the P, Q, S, and
T-waves from the original signal. However, the previous approach is preferred since R-peak detection is
far more reliable in high noise scenarios.

5.3.3 Estimation of the Model Parameters

Prior to the implementation of the filter, it is necessary to select the values of the process and measurement
noise covariance matrices. Generally, by using m Gaussian kernels in (5.7), the process noise vector defined
in (5.8) has 3m + 2 entries (here 17), leading to a (3m + 2) × (3m + 2) process noise covariance matrix
Qk. But if the noise sources are assumed to be uncorrelated with each other, a reasonable approximation
adopted here, then the matrix is simplified to be diagonal. The measurement noise covariance matrix Rk

is similarly considered to be diagonal.
In order to automate the parameter selection procedure for any given ECG, the parameters should be

estimated from the signal itself. For this, as described in the previous subsection, any noisy ECG may be
transformed to a three-dimensional representation by plotting the noisy ECG versus the periodic phases
that are assigned to each sample in polar coordinates on the unit circle (r = 1). A typical phase-wrapped
ECG with additive noise may be seen in Fig. 5.2. It is now possible to estimate the dynamic model
parameters for the given ECG. For this, the mean and variance of the phase-wrapped ECG is calculated
for all phases between 0 and 2π. This gives the average of the ECG waveform. A typical signal produced
by this approach is depicted in Fig. 5.3. The error bar in this figure corresponds with the standard
deviation (SD) of different ECG cycles around the mean ECG. Next, the problem is to find the optimal
parameters of (5.7) that can best fit the mean ECG. In this stage, many optimization methods may be
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Figure 5.3: An average and standard deviation-bar of 30 ECG cycles of a noisy ECG

used. For example as suggested in [38], by using a nonlinear least-squares approach, the best estimate
of these parameters in the MMSE sense can be found. A practical means of solving this nonlinear least-
squares problem is the lsqnonlin function of Matlab® that was used to estimate the initial parameters
for the later presented results.

The next step is to find an estimate for the covariance values of Qk. Theoretically, Qk is a measure
of the ECG morphology consistency. Therefore, large entries of Qk correspond to the non-consistent
parameters, e.g. due to abnormal beats. We can practically find rough estimated for Qk, by using the
error values as depicted in Fig. 5.3. In fact, in this step we are attempting to calculate the magnitude of
the deviation of the parameters of the Gaussian functions in (4.4) around the estimated mean that best
model the acceptable deviations of the ECG around the mean ECG (ECG(θ)). This is again a nonlinear
least-squares problem that is solved by finding the optimal parameters that generate the best fit of the
mean ECG within the upper and lower ranges of ECG(θ) + σECG(θ) and ECG(θ)− σECG(θ). A similar
method was used in Section 4.4.3 for fitting the synthetic model parameters to real recordings.

It should be noted that the parameter estimation procedure detailed above is an offline approach
that estimates the optimal parameter values for any dataset. It is also possible to develop an online
extension of this algorithm that estimates the model and noise parameters from the most recent cycles
of the ECG. However, for short ECG recordings we have found that the parameters of the model remain
relatively constant and this online process is unnecessary for such signals. Furthermore, as it will be later
noted, by monitoring the innovation signal of the KF, it is possible to fine-tune the estimated parameters
throughout the filtering process, without the need for their re-estimation. Therefore, for any new dataset,
it is possible to start with approximate values for the parameters of the model, which have been calculated
from similar data and to modify these values throughout the filtering process.

The angular frequency ω may be set to ω = 2π/T , where T is the RR-interval period in each ECG
cycle. For short signals with minor RR-interval deviations, a simpler approximation is to use a global
ω using the average RR-interval of the whole signal. It should be noted however, that ω can also be
considered to vary on an intra-beat basis too, since the PR and QT-intervals are known to change with
varying autonomic tone, heart rate and to some extent, with each changing RR-interval. The results
presented in this chapter are based on the simpler approximation above using a global angular frequency.

The variance of the process noise η should also be estimated. Noting that η is a parameter that
represents the imprecision of the dynamic model, neglecting the other physiological sources that influence
the ECG, a simple estimate for this parameter would be a zero mean Gaussian random variable with
an appropriate variance. An intuitive value for this variance may be found from the deviations of the
isoelectric segment of the ECG between the end of the T-wave and the beginning of the next P-wave,
which correspond to the ending segments of the ECG error-bar of Fig. 5.3.

From (5.12) we can observe that uk is the phase measurement noise. As mentioned before, the phase
for each beat is determined from the R-peaks of the signal. A possible noise source for uk is the sampling
error that occurs when the actual R-peak is located between two sample times. Another noise source arises
from the additive noise spikes that can cause a misdetection of the R-peak location. The first of these
may be easily modeled by assuming that the R-peak is uniformly distributed between two consecutive
samples. By considering that each ECG cycle is equivalent to 2π in the phase domain, uk would be
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uniformly distributed in the range of ±ωδ/2, where ω is the angular frequency and δ is the sampling
period. With this assumption we have: E{u2

k} = (ωδ)2/12. Although there have been rather robust
R-peak detectors developed to overcome the misdetection of the R-peaks [9], a precise study of this issue
requires the amplitude noise to be related to the phase error (or the so called phase jitter), a practice
that has been well-studied in other contexts [195]. In this work, for the sake of simplicity, it is assumed
that the R-peak detector is reliable and the only phase error is due to the imprecision of the sampling
time. Moreover, as mentioned in the previous subsection, for the intermediate phases laying between
consecutive peaks the variance of the phase noise can be increased to indicate the imprecision of the
phase values.

There are also several ways to estimate the variance of the measurement noise, vk. One method is to
estimate the noise power from the deviations of the whole signal around the phase-wrapped ECG, or from
the portions of the ECG between two successive T and P-waves. A quantitative study of the accuracy
of these estimates is presented later. There are also online approaches for noise power estimation, which
have been previously suggested for similar applications [116], and apparently the selection of the method
depends on the origin of the expected noise.

5.3.4 Stability and Convergence Issues

The stability and convergence issues of the KF and its extensions have been well-discussed in the literature.
In order to ensure numerical stability of the KF equations, and to prevent the covariance matrices from
becoming semi-definite, the Joseph stabilized form [76, p. 233] of (5.4) is used for the a posteriori
covariance estimation, to guarantee positive-definite estimates of the covariance matrix.

In practice due to the Gaussian assumption on the noise sources and the initial state vector values,
the state estimate entries of x̂+

k should lie within the envelope of the square roots of their corresponding
diagonal entries in P+

k for the majority of the time. Therefore, by monitoring the variance of the filter
estimate, it is possible to detect the filter divergence. Moreover it is shown that it is possible to stabilize
the KF online, by introducing a forgetting factor in the original filter equations [68].

Another approach known as serial measurement update [76, p. 232], uses different observations one-
by-one to aid the stability of the KF. This technique requires the observation noise covariance matrix
to be diagonal. However, for non-diagonal observation noise covariance matrices, decorrelation methods
have been developed to diagonalize this matrix [76].

It is also practically convenient to monitor the covariance matrix of the innovation signal throughout
the filtering procedure and to compare it with the innovation covariance matrices estimated by the KF
[125], [76]. This provides a means of monitoring the fidelity of the filter and updating the values of Qk

and Rk. Specifically, with a diagonal (or diagonalized) noise covariance matrix of Rk, the following term
can be formed for the i-th ECG measurement:

γi =
1
N

i∑
k=i−N+1

(rs
k)2

hk
(5.13)

where rs
k is the second entry of the zero-mean innovation vector of rk defined in (5.4), corresponding

with the k-th ECG measurement, N is the length of the averaging window, and hk is the KF estimated
variance of rs

k given by:
hk = E{(rs

k)2} = cT
k P−

k ck + σ2
vk

(5.14)

where ck is the second row of the Ck matrix defined in (5.3), and σ2
vk

= E{v2
k} is the second diagonal

entry of Rk. An identical term can be defined for the phase observation φk.
In fact, γi is an average of the variances of the N recent ECG innovations, normalized by their KF

estimated variances hk. Therefore, as long as the KF is performing correctly, γi ≈ 1. Values of γi much
greater than unity indicate that the innovation signal variance is being underestimated by the KF, while
values close to zero indicate that the innovation signal variance is being overestimated. Therefore, by
monitoring γi it is possible to adaptively modify the KF noise parameters (such as Qk and Rk), to ensure
the filter stability and to achieve a better filtering performance. For example, by using the M most recent
samples of the innovation signal, σ2

vk
can be adaptively modified as follows:

σ2
vk

= λσ2
vk−1

+ (1− λ)
1
M

k−1∑
j=k−M

(rs
j )

2 (5.15)
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where 0 < λ < 1 is the adaptation coefficient 3. In [197], a similar means of online modification of the
Rk and Qk entries have been presented.

For the UKF, the algorithm presented in [84] has three parameters, α̃, β̃, and κ̃. These control
the stability of the filter and enable the algorithm to be fine-tuned for systems with different degrees
of nonlinearity and non-Gaussian inputs. The parameter α̃ is an indication of the spread of the state
variables around their mean and is selected to be a small positive value in the range of 10−4 6 α̃ 6 1. The
parameter β̃ is used to incorporate prior knowledge about the distribution of the state vector, with β̃ = 2
being optimal for Gaussian distributions [84]. The parameter κ̃ is a secondary ad hoc scaling parameter
that is selected in accordance with the size of the state vector and the higher order statistics of the noise
distributions [98], with κ̃ = 0 being the optimal selection for a state vector of size two. A mathematical
study of the effect of these parameters on the UKF accuracy compared with the EKF, can be found in
[98, 97].

5.3.5 Practical Filtering Scheme

Before presenting the experiments and results, the scope of the proposed filtering scheme needs to be
further clarified. Following the discussions of this section, by using the Bayesian framework we are
attempting to utilize a priori information about the underlying dynamics of ECG signals to extract
the ECG components from background noise. Hence, compared with conventional filtering schemes
that perform rather ‘blindly’, Bayesian filters are naturally expected to give superior results as long
as we provide them with valid a priori information concerning the signal and noise dynamics. This
point becomes important when considering that abnormal ECGs can have high inter-beat variations in
their wave timings or morphology, meaning that the underlying dynamics of the signals are not valid in
pathological beats.

In the presented approach, due to the phase wrapping of the RR-interval to 2π, normal inter-beat
variations of the RR-interval (between 10% to 20%), or consistent RR-interval abnormalities such as
bradycardia or tachycardia do not considerably affect the filter performance. However, for abnormalities
that only appear in some of the ECG cycles, the phase error of the model can lead to large errors in the
Gaussian functions’ locations. A similar case can occur when the R-peak is misdetected. In particular,
for morphological abnormalities that appear in some of the ECG cycles, such as the premature ventricular
contraction (PVC) [127], the filtering performance is not expected to be satisfactory for low input SNRs,
since neither the model nor the measurements are reliable for the filter. For such occasional morphologic
changes, even temporal adaptation of the filter parameters is not helpful, as the filter does not have
sufficient time to adapt itself. However the benefit of the Gaussian mixture representation is that the
effect of each Gaussian term vanishes very quickly (in less than an ECG period), meaning that the
errors are not propagated to the following ECG cycles4. Moreover, by monitoring the state estimates’
covariance matrices and the variations of the innovation signals, it is possible to detect such unexpected
abnormalities. Of course, it should be considered that the accurate denoising of abnormal ECGs with
high morphologic changes remains an open problem even for conventional filtering methods.

Finally we note that all the results presented in this work, have been implemented offline. However
the recursive KF equations are originally designed for online applications. Even for the EKS, considering
the quasi-periodic nature of the ECG, fixed lag smoothers with only one or two cycles of ECG lag can be
used.

5.4 Evaluation on Simulated Noisy Mixtures

5.4.1 The Dataset

The MIT-BIH normal sinus rhythm database [72, 160], is used to evaluate the performance of the proposed
methods. This database has been recorded at a sampling rate of 128Hz from 18 subjects with no significant

3For M = 1 (single-step update), (5.15) reduces to the autoregressive model suggested in [197], and for M > 1 (5.15)
represents a moving average filter with the λ parameter changing the slope of the filter’s response. For ECG signals having
sharp changes, the moving average model was found to be more robust to the peak changes.

4A formal justification of this statement requires mathematical proof of stability and convergence of the EKF, EKS, and
UKF for the proposed model, which is beyond the scope of the current study. The reader is referred to [173], for some
related discussions.
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Table 5.1: Parameters of the process and observation noises
θi (rad) Gaussian kernel center ±0.05π
αi (mV) Gaussian kernel peak ±10% of the peak amplitude
bi (rad) Gaussian kernel width ±0.05π
η (mV) 1% of maximum ECG peak
ω (rad/s) Mean beat-to-beat angular frequency (ω̄) ± SD
uk (rad) 0.00± (ω̄δ)/

√
12

vk (rad) Ranges over different SNRs

arrhythmias. From this database 190 low-noise segments of 30 seconds without considerable artifacts were
visually selected for the implementation of the proposed filters. These segments were taken from different
subjects, recorded from the standard VI, VII, and VIII ECG leads. The heart rate of these ECG segments
varied from 55 BPM to 90 BMP (74.1±12.0 BMP on average), with RR-interval deviations between 5%
to 25% (16.7±6.2% on average).

5.4.2 Noise Generation

Mathematically, white noise is defined to have a flat spectral density function over all frequencies. How-
ever, real noise sources have non-flat spectral densities that decrease in power at higher frequencies,
making the spectrum colored and the noise samples correlated in time. There are different ways of gen-
erating colored noise [105], and realistic ECG artifacts (cf. Section 4.5). For the current study, we model
the noise color by a single parameter representing the slope of a spectral density function that decreases
monotonically with frequency:

S(f) ∝ 1
fβ

, (5.16)

where f is the frequency and β is a measure of noise color. White noise (β = 0), pink noise (β = 1)
or flicker noise, and brown noise (β = 2) or the random walk process, are three of the most commonly
referenced noises. The realization of colored noises with spectral densities described by (5.16), generally
require nonlinear frequency domain filtering of white noise 5. For random processes, the expected value
of the squared magnitudes of their frequency transforms, or namely the periodogram, is known to be an
estimate of the spectral density function of the original samples [152]. Therefore, in order to generate
colored noise following (5.16), samples of white noise can be generated and transferred into the frequency
domain using the discrete Fourier transform (DFT). By altering the frequency components of the DFT
according to (5.16), and transferring the reshaped DFT back to the time-domain, typical samples of
colored noise are realized. Note that this approach of frequency domain filtering causes transient behavior
in the generated noise time series that should be discarded from the samples.

5.4.3 Implementation

Having derived the state equations (5.7), the observation equations (5.12), the linearized state equations
of the ECG dynamic model (5.10), (5.11), and the model parameters, the implementation of the EKF,
EKS and the UKF are now possible. The procedure for calculating the parameters of the model and the
noise covariance matrix entries were explained in section 5.3. Using the explained methods, the mean
ECG waveform was extracted for each ECG segment and the parameters of the five Gaussian kernels
were calculated using the nonlinear least-squares method for each ECG segment. Due to the variety
of the ECG leads and the wide range of studied SNR, the covariance matrices were calculated using a
simple approach using the peak values of the Gaussian functions. The parameter selection approach is
summarized in Table 5.1. These parameters can be further customized for specific ECG leads and special
ranges of the input SNR.

In section 5.3.4, the control parameters of the UKF algorithm were introduced. Throughout the
simulations, these parameters were set to β̃ = 2 and κ̃ = 0, and are the optimal selections for a system
having two state variables with a Gaussian input noise. The parameter α̃ = 1 was also empirically derived
as a compromise between performance and stability in different SNRs for the studied database.

5Except for special cases such as β = 2 that can also be achieved through linear time-domain filtering of white noise.
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Table 5.2: WD parameter combinations tested over the database
Parameter Values
Mother wavelet Daubechies 1...8, Coiflets 1...5, Symlets 1...8
Shrinkage rule SURE, Heuristic SURE, Universal, Minimax
Thresholding strategy Hard, Soft
Rescaling approach No scaling, Single level, Multiple level
Decomposition level 1...10

5.4.4 Benchmark Methods

In order to have a comparison between the performance of the proposed methods and conventional ECG
denoising schemes, wavelet denoising (WD), adaptive filtering (AF), and conventional finite impulse
response (FIR) filtering were also tested on the database. Implementations of these standard methods
are now described.

Conventional WD schemes are characterized by different parameters that allow the algorithms to be
customized for different mixtures of signal and noise sources. The type of the mother wavelet, shrinkage
rule, hard- versus soft-thresholding, noise level rescaling approach, and number of decomposition levels are
among the different parameters of common WD algorithms [137]. There are of course, some general rules
concerning the selection of these parameters. For example, the mother wavelet is usually selected from
families that somehow resemble the shape of the desired signal, or the rescaling approach and shrinkage
rules are selected according to the nature (white versus colored) and variance of the noise. However, the
literature on the applications of WD for ECG is rather broad and diverse, making it difficult to judge
what may be the best combination of these parameters. Consequently, a rather exhaustive search was
carried out on the different combinations of the above mentioned parameters to find the best WD scheme
for the database being studied. The different parameters that were tested on this database are listed in
Table 5.2. Among the different tested combinations, the Stein’s unbiased risk estimate (SURE) shrinkage
rule, together with a single level rescaling and a soft thresholding strategy always gave superior results.
Among the tested mother wavelets, Coiflets2, Coiflets3, Symlets4, and Symlets5 gave superior results.
The best decomposition level ranged from 5 to 8, and showed little significant difference within this range.
These results were achieved by the comparison of the SNR curves for input SNR ranging from 35dB to
-5dB and averaged over 100 Monte Carlo runs with different random noise input vectors. The following
reported results are based on the Coiflets3 mother wavelet with 6 levels of decomposition.

The adaptive filtering approach suggested in [113], was the next filtering approach implemented on
the dataset. The original results presented in [113] have been reported on a synthetic ECG, formed
by taking a single QRS complex from an ECG and concatenating the same waveform several times to
generate a deterministic ECG with no timing or morphology variation from beat to beat. An impulse
signal, time-synchronized with the R-wave, was also used as the reference channel to enable single channel
filtering of the ECG. Although their reported results are rather impressive for this simulated ECG, the
method is not expected to give identical results on real ECGs. This is mainly due to the non-stationary
behavior of the ECG that causes the ECG shape and RR-duration to change from beat-to-beat. However
this AF scheme was also implemented on the dataset as another benchmark. In the original work [113],
the number of the AF weights (L) is selected to be equal to the number of samples of the deterministic
QRS complexes. For operating on real ECGs with variable RR-intervals we set L to the maximum sample
period between the RR-waves of the input ECG. A convergence rate of µ = 0.1, led to rapid adaptation
and stable filter outputs for all the SNR range of this study (-5dB – 30dB).

The last filtering approach applied to the dataset was a typical FIR filter, consisting of two cascaded
highpass and lowpass filters, with an overall pass-band of 0.4Hz–40Hz, a pass-band ripple of 1dB, and a
stop-band attenuation of about 60dB. The main frequency components of typical ECGs lie within this
frequency range [11], and the selection of a wider or narrower bandwidth would be a compromise between
the attenuation of in-band ECG and noise components.

5.4.5 Results

In order to investigate the performance of the different methods, artificial white and colored Gaussian
noise with different variances were generated and added to the ECG segments, and the noisy signals
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(a) Original (b) Noisy (c) EKF

(d) UKF (e) EKS (f) WD

(g) AF (h) FIR

Figure 5.4: Typical filtering results for an input signal of 6dB.

were presented to the proposed filters. To ensure the consistency of the results, the whole procedure
was repeated over the 190 ECG segments; each time using a different set of random noise at the input.
The filter output SNR calculation was averaged over the whole 190 results. The SNRs were generally
calculated over the second half of the filtered segments, to ensure that the transient effects of the filters
would not influence the SNR calculations.

In Fig. 5.4, typical results of the FIR, AF, WD, EKF, EKS, and the UKF are presented for an input
SNR of 6dB. Visually comparing these results, it can be seen that the proposed methods have effectively
tracked the original signal in a rather low input SNR scenario. The EKS demonstrates the smoothest
result, while the UKF outperforms the EKF, particularly around the sharp turning points of the signal.
In fact, the main difference between the EKF and UKF results are in the QRS complex of the ECG,
where the EKF performs slightly less well, since it tends to follow the noisy signal rather than the system
dynamics. The reason for this may be seen by observing equations (5.2) to (5.4). According to (5.3),
at low sampling rates and in the rapidly changing regions of the ECG, the approximated matrix Ak has
large entries due to the differentiation, that in turn causes an increase in the values of the P−

k+1 matrix.
This means that the KF tends to rely less on the dynamic model. This assumption was validated by
limiting the maximum and minimum values of the derivatives calculated from (5.3). This change led to
results that demonstrate increased flexibility around the QRS complex of the ECG and is reflective of
the fact that derivative-free filters such as the UKF are more robust to severe nonlinearities of the input
time series. This also suggests that the EKF and EKS can provide better performance for signals having
higher sampling rates (at a cost of higher computation load).

Among the conventional filtering approaches, the WD outperforms the AF and the FIR; but contains
some large ripples that do not correspond to the true ECG.
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Figure 5.5: The mean (top) and Standard Deviation (bottom) of the filter output SNR improvements
versus different input SNRs. In these curves EKF, UKF, and EKS correspond to the results without σ2

vk

adaptation, and EKF2, UKF2, and EKS2 refer to the ones with σ2
vk

adaptation. Refer to text for further
details.

For a quantitative comparison, the mean and SD of the SNR improvements6 versus different input
SNRs, achieved over 190 ECG segments are plotted in Fig. 5.5. The results of the SNR improvements
calculated over the ST-segment, which is extremely sensitive to noise and of great clinical significance,
can also be seen in Fig. 5.6. In the presented results of Figs. 5.5 and 5.6, two approaches have been used
for the EKF, UKF, and the EKS; the first without the online adaptation of σ2

vk
, and the second with

adaptation. For the first case σ2
vk

was fixed to the a priori known variance of the additive noise, and for
the second case, this initial value was adaptively modified by the filter. For the latter, the adaptation
window length was selected to be M = 13 and is approximately equivalent to a 100ms window for the
sampling rate of 128Hz. This window length is wider than the normal QRS complex, and therefore
should be sufficient to prevent sharp variations in σ2

vk
. The adaptation coefficient in (5.15) was set to

λ = 0.6, a value that was empirically found to provide a compromise between adaptation time and
stability of σ2

vk
. Figs. 5.5 and 5.6 illustrate how the results achieved for a constant σ2

vk
(i.e. without

its online adaptation), are almost linearly related to the input SNR, and are generally better than the
adaptively changing σ2

vk
results. In fact for input SNRs below 18dB, the EKF, UKF, and the EKS

degrade the input SNR when σ2
vk

is adapted; but for SNRs below approximately 10dB, the results with
and without adaptation are asymptotically the same. In either case the EKS demonstrates the best
average performance, and the UKF performs marginally better than the EKF. Among the conventional
filtering methods the WD outperforms both the FIR filter and the AF, both of which are inferior to the
other techniques. Furthermore, for input SNRs above 18dB WD outperforms the proposed methods with
σ2

vk
adaptation, but still underperforms the constant σ2

vk
results.

The reason for the asymptotic behavior of the results with and without σ2
vk

adaptation can be explained
by revisiting (5.14), where we see that the variance of the innovation signal estimated by the KF consists of
two parts; the uncertainty of the model parameters (the first term), and the uncertainty of the observations
(σ2

vk
). In high input SNR scenarios, the first term dominates the second. Therefore, when adaptively

6The SNR improvement is defined as the output SNR of the filter (in decibels) minus the input SNR (in decibels).
Negative SNR improvements apparently indicate a degradation of the input SNR caused by the filtering procedure.
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Figure 5.6: The mean (top) and Standard Deviation (bottom) of the filter output SNR improvements
over the ST-segment of the ECG, versus different input SNRs. In these curves EKF, UKF, and EKS
correspond to the results without σ2

vk
adaptation, and EKF2, UKF2, and EKS2 refer to the ones with

σ2
vk

adaptation. Refer to text for further details.

changing σ2
vk

in high input SNRs, we are in fact miscounting the model uncertainties as measurement
errors, leading to the overestimation of the measurement noise. Conversely, in low SNR scenarios σ2

vk

dominates the first term, and the online adaptation is performed correctly. In different applications with
specific ranges of input SNR, this information can help to make online corrections to the estimated noise
parameters. These results also suggest that for stationary noise processes, it is preferable to keep the
filter noise parameters constant, or alternatively, increase the innovation variance averaging length of M .

From the SD plots in Figs. 5.5 and 5.6, it is seen that WD has the least deviation over the different
ECG segments, and among the proposed methods the UKF has the least deviation; meaning that the
UKF results are more robust to dataset variations.

In section 5.3.3 it was noted that the initial values of the measurement noise variance may be estimated
from the SD of the whole phased-wrapped ECG, or just using the SD of the isoelectric segment of the
ECGs between two consecutive T and P waves. To show the accuracy of these estimates, the SNRs
estimated from both methods were compared with the true SNR of the signal in presence of additive
white noise. The mean and SD of these estimates versus the true input SNR, calculated over the whole
database are depicted in Fig. 5.7. As can be seen from this figure, both methods have underestimated
the true SNR (especially in high input SNRs); but the SNR estimated from the isoelectric segment is very
close to the true values for input SNRs below 20dB. In practice, as we have to estimate the measurement
noise variance from the noisy signals, this information may be used as a correction curve for finding
accurate estimates of the noise variance.

The result of the noise color study is depicted in Fig. 5.8 for the SNR improvement of the EKS as a
function of the input SNR and the input noise color β. This result was achieved using the average of the
190 ECG segments, both with and without the online adaptation of the measurement noise variance σ2

vk
.

As can be seen in Fig. 5.8, the EKS performance decreases almost linearly as the noise color ranges
from white (β = 0) to pink (β = 1), while the slope of decrease is larger for lower input SNRs. As with
the previous results, it is seen that the constant σ2

vk
results (top curve) outperforms the results with σ2

vk

adaptation (bottom curve), and both curves merge in input SNRs below approximately 10dB.
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Figure 5.7: Estimated signal SNR versus true SNR, from the isoelectric line segment of the ECG between
the T-waves and the P-waves (solid), and from the whole ECG cycle (dashed).

Figure 5.8: Effect of noise color on the EKS results. (top) without σ2
vk

adaptation, (bottom) with σ2
vk

adaptation. Both curves merge for input SNRs below 10dB.

The study of the noise color effect was not extended beyond pink noise, since as the noise becomes
more colored in spectrum (β increases), the time-domain samples of the noise will have longer-term
correlations. This means that for a valid statistical study of the noise effect longer ECG signals are
required. Moreover, colored noise as defined in (5.16) is not generally guaranteed to be a wide-sense
stationary (WSS) process, meaning that the colored noise samples do not have the same variance7.
When adding such noise to the ECG, each sample receives a different amount of noise; making the overall
SNR criteria rather meaningless. Anyhow, very long-term correlations manifest themselves as slow waves
that do not change the critical ECG waveforms and can be effectively removed with baseline wander
removal techniques presented in Appendix D.

It should be further noted that although the monotonic shape of the SNR surfaces of Fig. 5.8 proves
the consistent behavior of the filtering approaches in different noise colors, the Bayesian framework is
originally based on the assumption of white noise sources. In fact, for colored (structured) noise with a
known spectral behavior, the systematic approach is to use parametric spectral estimation methods to
model the colored noise as the output of a system driven by white noise. Subsequently, the state-space
model of this system can be augmented with the original system model. In this way, the dynamics of the
noise sources are also considered in the filtering procedure.

5.5 Evaluation on Real Maternal/Fetal Mixtures

In this section we use the proposed method for removing maternal ECG artifacts from fetal recordings.
A similar procedure is also used as a post-processing to enhance the fetal ECG.

The well-known DaISy fetal ECG database is used for illustration [46]. The database consists of
five abdominal and three thoracic channels recorded from the abdomen and chest of a pregnant woman
with a sampling rate of 250Hz. In this example, we will only use the first channel of this dataset for
illustration, which is depicted in Fig. 5.9(a). Next, according to the details explained in previous sections,

7Specifically for the random walk process (β = 2), the variance of the noise samples increases linearly with time [152].
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(a) Original

(b) EKS of the maternal ECG

(c) Residual fetal signal

(d) Fetal signal after post-processing

Figure 5.9: The first channel of the DaISy dataset [46], recorded from a maternal abdominal lead before
and after the EKS procedure.

the following steps were applied to remove the maternal ECG: (1) maternal R-peak detection, using one
of the thoracic channels of the dataset, (2) calculation of the maternal phase signal φk, (3) maternal
ECG ensemble average calculation, (4) deriving the parameters of the KF (similar to Table 5.1), and (5)
applying the EKS to estimate the maternal ECG. By subtracting the maternal ECG estimate from the
original signal, the fetal components plus other noises, are left. The maternal ECG estimate and the fetal
residual components are depicted in Figs. 5.9(b) and 5.9(c). As a post-processing step, the EKS was
applied to the residual fetal components, this time training the filter parameters over the fetal signals.
The post-filtered fetal signals are depicted in Fig. 5.9(d).

From the results of Fig. (5.9) we can see that the proposed filtering framework is very effective for
the extraction of fetal components from noisy maternal abdominal mixtures, even from a single channel.
However, as we can see in Fig. 5.9(d), between t=6s and t=7s, the filter has failed to discriminate between
the maternal and fetal components when the ECG waves of the mother and fetus fully overlap in time.
The reason is that when the maternal and fetal components coincide in time, we have no other a priori
information for separating these components over the coinciding epochs. This may in fact be considered
as an intrinsic limitation of single-channel processing. In later chapters we will present a framework for
benefiting from the mutual information existing in multichannel recordings to overcome this limitation.
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Figure 5.10: Several fetal ECG beats adopted from Fig. 5.9, before and after the post-processing EKS,
together with the ±σ and ±3σ confidence envelopes.

As noted in section 5.2.1, an important benefit of Bayesian filtering, is the ability of predicting the
accuracy of the estimates. For the Kalman filter, this is readily achieved through the calculation of
the error covariance matrices P−

k and P+
k , defined in Section 5.2.1. Specifically, for our application of

interest, if the ECG estimation error is Gaussian, the second entry of the state vector xk defined in (5.8),
corresponding to the ECG, is bounded within the ±σ envelope in 68% of the sample points, where σ2

is the second diagonal entry of P+
k . This is due to the fact that about 68% of the values drawn from a

Gaussian distribution are within one standard deviation away from the mean, about 95% of the values are
within two standard deviations, and about 99.7% lie within three standard deviations. These probabilities
are different for non-Gaussian estimation errors. However, the ±σ envelope can still be used as a rough
measure of error spread [209, p. 79]. In Fig. 5.10, several beats of the fetal ECG before and after the
post-processing EKS (adopted from Figs. 5.9(c) and 5.9(d)) together with their corresponding ±σ and
±3σ envelopes are ploted. As we can see, this envelope provides the confidence region of the denoised
signals.

5.6 Multichannel Extension

Another extension of the proposed filtering framework is for multichannel recordings. Commonly, the
ECG is recorded from multiple channels that are highly correlated with each other. This high correlation
implies representational redundancy, which is not desirable for many applications. However, for signal
denoising this redundancy can be exploited to estimate the ECG information embedded in background
noise.

This idea may be mathematically expressed as follows: suppose that we use a linear transform to
decompose a set of noisy ECG recordings yk ∈ RN into N components:

yk = a1s
1
k + a2s

2
k + ... + aNsN

k (5.17)

where k is the time index, ai ∈ RN are unit-length columns of the decomposition matrix, and si
k (i =

1...N) are the decomposing components. Without loss of generality, lets assume that the si
k components

are sorted in descending order of their contribution in the energy of the noiseless ECG8. So if we decide to
choose the first M terms as the most dominant ECG components, the desired ECG could be approximated
with an M -dimensional subspace and the other N −M components would be considered as the non-ECG
or noise components. Therefore, by separating the approximate ECG subspace from the noise subspace,
(5.17) may be rewritten as follows:

yk = Hsk + vk, (5.18)

where H = [a1,a2, ...,aM ] ∈ RN×M , sk = [s1
k, s2

k, ..., sM
k ]T , and vk corresponds to the summation of the

last N −M terms in (5.17) having negligible contribution in the desired ECG.

8In Chapters 6 and 7, we will present appropriate decomposition methods that can be used for this purpose.
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The vector sk can be related to the notion of multipole expansion of body surface potentials, presented
in Section 3.4. Accordingly, each of the entries of sk has a pseudo-periodic rhythm that is synchronous
with the heart beat. We can therefore use a multidimensional extension of (5.9) to represent the dynamics
of this multipole expansion:

θk+1 = (θk + ωδ) mod (2π)

s1
k+1 =

∑
j

−δα1
jω

(b1
j )2

∆θ1
j exp[

−(∆θ1
j )2

2(b1
j )2

] + s1
k + η1

k

...

sM
k+1 =

∑
j

−δαM
j ω

(bM
j )2

∆θM
j exp[

−(∆θM
j )2

2(bM
j )2

] + sM
k + ηM

k

(5.19)

We can now put together the new set of state and observation equations to be used in a Kalman filtering
framework. For this, we define the new state and observation vectors as follow:

Xk
.= [θk, s1

k, ..., sM
k ]T

Yk
.= [φk,yT

k ]T (5.20)

where yk is the multidimensional observations at time k, and φk is a coarse estimate of θk, generated
from the R-peaks, previously defined in (5.3.2). Clearly, Xk is an (M + 1)-dimensional state vector and
Yk is an (N + 1)-dimensional observation vector.

In analogy with (5.8), the new process and observation noise vectors are also defined as follows:

Wk
.= [ω, {α1

i , θ
1
i , b1

i }, ..., {αM
i , θM

i , bM
i }, η1

k, ..., ηM
k ]T

Vk
.= [uk,vT

k ]T (5.21)

where Wk is a large vector containing all the parameters of the Gaussian functions and the other process
noised defined in (4.3) and its dimension depends on the number of Gaussian functions used for modeling
each multipole term, uk is the phase noise due to the uncertainty in the R-peak detection, and vk is
a vector of the ECG observation noises of each channel. All the variables in the definition of Wk can
generally vary with time and the i indexes range over all the number of Gaussian kernels used for modeling
the desired waveforms.

With these definitions, the vector representation of the state dynamics and the observation equations
of the multidimensional extension are as follows:

Xk+1 = F(Xk,Wk)

Yk =
[

1 0T

0 H

]
·Xk + Vk

(5.22)

where F(·) is a vector representation of (5.19), and H ∈ RN×M is the transformation matrix defined
in (5.18). Due to the nonlinearity of the entries of F(·), their linearized versions, identical to (5.10)-
(5.11), are required for the EKF and EKS. However, the UKF can directly use the nonlinear equations
as explained in Section 5.2.3.

We can see that the multidimensional extension is rather straightforward, as long as we can find a
suitable decomposing matrix H. This idea was studied in [176] for a dipole expansion (M = 3) and
using the Dower transform to estimate the matrix H. In Chapter 6, we will study different multichannel
decomposition techniques that can be used for this purpose.

5.7 Summary and Conclusions

In this chapter, a mathematical framework was proposed for the model-based Bayesian filtering of single
and multi-channel noisy ECG recordings. Within this framework several suboptimal filtering schemes were
developed and the results were compared with conventional filtering methods. The results demonstrate
that the proposed approach can serve as a novel framework for achieving high-resolution ECG of adults
or fetuses.
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The filtering schemes were based on a modified version of a previously proposed dynamic ECG model.
However, the generality and modularity of the proposed methods allow for the improvement of the selected
dynamic model. As it was seen, the architecture of the Bayesian filtering methods is such that the filters
can work with a rather coarse dynamic model as long as the covariance matrices of the system noise
vectors are well estimated. Moreover, the derivative-free characteristics of the UKF also removes the
need for an analytical form of the system dynamic model and the statistics of the signals are directly
estimated from a finite number of samples, rather than the linearized models required in the EKF or the
EKS. This suggests that other morphological models of the ECG can be used instead of mathematical
dynamic models. In other words, the nonlinear dynamical model of the ECG may be replaced with other
synthetic ECG generators that are capable of generating normal or abnormal ECGs.

The presented results were based on the assumption of additive Gaussian noise sources. With recent
developments in Bayesian filtering techniques such as the particle filter (PF) [35], other noise distributions
may also be considered.

As discussed in Section 5.3.5, in future works, problems related with abnormal ECGs should also be
addressed in the model. The extension of these methods to many of the common ECG abnormalities
is rather straightforward, since the model parameters may be simply recalculated and used in the filter
model. However, for heart defects such as the PVC, where the abnormal wave only appears in certain
cycles of the ECG, some revisions are necessary in the filtering process to be able to simultaneously filter
the normal and abnormal ECG beats. An intuitive approach to this problem would be to precalculate
the filter model parameters for different abnormalities and switch between these values by predicting the
existence of an abnormal beat, using a standard ECG classifier, a hidden Markov model [40], or directly
using the derived parameters of the model to make a classification itself, as suggested in [38].

Another related issue is the study of the appropriateness of the filtering procedure. In fact, while
the Bayesian filtering framework can serve as a powerful tool for the removal of noise from the ECG,
one should always be aware of over-filtering of the signals that can lead to the removal of clinically
important information from the ECG, or introducing components that do not exist in the true ECG.
Therefore the calculation of theoretical lower estimation error bounds, such as the Cramér Rao bounds
[106], should also be considered in future works. Moreover, some other theoretical and practical aspects
such as convergence-time, stability, and estimation bias, also need further studies.

While the results of this chapter were mainly achieved with artificially generated noise, without any
specific assumption on the noise origin, the generality of the approach allows the model to be customized
for specific applications. In fact, as mentioned in previous sections, for situations where the nature of
the contaminating noises are better known, the noise model may be selected according to the particular
situation. For example, any spectral information about the noise sources, such as the baseline wander
caused by the respiratory system, may be transferred into state-space form by using conventional spectral
factorization methods and be augmented with the dynamic model of the system.

In Section 5.6, the single-channel filtering framework was extended to multichannel recordings. In
later chapters multichannel decomposition methods are presented, which enable the proposed methods to
be linked with multichannel source separation techniques, to simultaneously benefit from the dynamical
filtering abilities of KFs and the spatial filtering abilities of source separation methods.



Chapter 6

Linear Multichannel Analysis of
Cardiac Signals

6.1 Introduction

Statistical decomposition techniques such as the principal component analysis (PCA) [144], singular value
decomposition (SVD) [102], and independent component analysis (ICA) [45, 28] have been widely used as
promising methods of multichannel ECG analysis, and noninvasive fetal ECG extraction. However, the
research in this area has been mainly carried out from the signal processing perspective and there are
few works on the electrophysiological interpretations of the extracted components. Moreover, in previous
studies the cardiac source has commonly been treated as a point source or at most a vectorial source [28],
while in reality the heart is a distributed source consisting of numerous micro-sources. This is not only a
change of viewpoint; but as we will see, it has important influence on the interpretation of the extracted
components.

In this chapter, it is shown that by reconsidering the origins of the ECG signals and their relationship
with other representations of the cardiac activity such as the vectorcardiogram (VCG), it is possible to
relate the shapes of the extracted components to their physiological counterparts. Other issues, concerning
the dimensionality of ECG signals, necessity of preprocessing, and some proposals for new clinical ECG
indexes are also studied.

The main focus of the chapter and the presented case studies are on adult ECG signals without
considerable non-cardiac interference. However, in later chapters, we will use these ideas to develop new
methods for removing maternal ECG contaminations and fetal ECG filtering.

6.2 Electrophysiology of the Heart: A Signal Processing Per-
spective

In Chapter 3, the electrophysiology of the heart was studied from an electromagnetic viewpoint. There
we noted that an appropriate electromagnetic framework for studying this problem is based on Poisson’s
equation presented in (3.1). It was further noted that using the Green’s theorem, (3.1) may be transformed
to an integral equation for calculating the body surface potentials from the current dipole densities. The
integral form of Poisson’s equation was further used to derive (3.7), a multipole expansion of body surface
potentials, which we rewrite here:

φ = lim
L→∞

L∑
l=0

l∑
m=−l

almslm (6.1)

where slm and alm were the multipole moments and multipole coefficients, respectively, and L was the
order of the expansion.

A detailed theoretical discussion on the multipole expansion, from the electromagnetic perspective,
can be found in [193, 36, 93]. Here we adopt a signal processing approach to study this problem; but
before that, there are several important lessons that should be thought from the electrophysiological
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viewpoint. In the following, without going into the electromagnetic details, we briefly refer to the issues
that directly influence our signal processing perspective:

1. The heart is a distributed source consisted of numerous micro-sources and not a point source.

2. The multipole moments are not physically existing sources; they are projections of the distributed
source onto a set of basis functions. Therefore, any linear transform of a finite set of body surface
electrodes can only retrieve a linear mixture of multipole moments of the cardiac source distribution;
but not the source distribution itself.

3. From the expansion (6.1), we can see that the body surface potentials may only be expanded in terms
of infinite series of multipole moments of the cardiac source. Depending on the source distribution,
volume conduction media, and distance of electrodes from the heart, this infinite expansion may
be approximated with a finite number of terms. The monopole1 (L = 0), dipole (L = 1), and
quadrupole (L = 2) expansions are the most common approximations for this expansion [127].

4. Depending on the conductivities of the volume conductor, some sort of reflections of the source dis-
tributions onto the surfaces of conductivity discontinuity can also appear in the multipole expansion
[70, 71]. In this case, what we observe on the body surface is partially due to the distributed source
itself and partially due to such reflections. As shown in Section 3.4, the reflection terms can also
be factorized as additive terms in (6.1).

5. The multipole expansion is not unique, as we can use any basis function in the expansion [93].

Now, coming back to the signal processing side of the fence, suppose that we have an array of N
signals, namely x(t) = [x1(t), x2(t), ..., xN (t)]T , recorded from the body thorax2. Each entry of x(t)
measures the difference of potentials between two points on the body surface having potentials φ1(t) and
φ2(t) that satisfy Poisson’s equation.

Considering that the multipole moments defined in (6.1), are only a function of the source distribution
and the multipole coefficients are only a function of electrode locations, x(t) can be considered as a linear
(not necessarily unique) mixture of the multipole moments. However, our linear multichannel analysis
algorithms are ‘blind’ about the aforementioned electrophysiological models3 and using the statistical
properties of the observed signals x(t), they merely seek for linear transforms of the form:

y(t) = Bx(t) (6.2)

that maximize some statistical measure, such as uncorrelatedness, independence, or periodicity. On the
other hand, the statistical properties of x(t) depend on both the electrode configuration and the statistics
of the distributed sources4, and unlike point sources there is no reason to expect the sources estimated
from one electrode set to be the same, or even linear mixtures of the same sources extracted from another
electrode configuration. In Appendix C, we will show this relationship in a simplified case. In fact,
depending on the distributed source statistics and the electrode configuration, each sensor configuration
can have a null-space which is different from another electrode configuration. This point has been shown
in other contexts for EEG and MEG recordings [165]. For our problem of interest, this implies that
the estimated cardiac subspace is not necessarily invariant under the change of electrode configuration,
which is not a good news from the blind source separation perspective. Nevertheless, depending on the
distributed source statistics and the electrode configuration, some specific electrode configurations may
be more robust to these variations, the study of which is beyond the scope of the current work.

Another issue which is the direct consequence of the cardiac source distributedness is that the cardiac
signal subspace is not finite dimensional. It is of course known that the multipole moments defined in (6.1)
are inversely proportional to powers of the distance between the observation point and the distributed
source elements, and the terms above the dipole terms (L > 1) decay very quickly with the distance

1As noted in Section 3.4.2, the monopole term is zero in a bounded volume conductor having only internal sources.
2In this chapter, we neglect any other electrical activity except the heart.
3Unless the model information is exploited in the form of a prior, which is not considered here.
4As an example of the statistics of the distributed sources, we can refer to second-order statistics such as the cross-

correlation of the impressed current dipole moments (Section 3.4), of the different points inside the charge distribution:
RJ(x, y, t) = E{J(x, t)J(y, t)T }, where J(x, t) and J(y, t) are the impressed current dipole moments of the points located
at x and y, respectively (cf. Appendix C).
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[93]. However, the higher order terms do exist, and depending on the SNR of the observations and the
strength of the non-cardiac components they can be observed in the components extracted from ECG
signals. In other words, theoretically, no matter how many channels we use, the cardiac components may
always manifest as a full-rank signal in the body surface potentials; unless they lie in a null-space of
the observations, for some specific electrode configuration. However, practically, due to the relatively far
distance of the heart from the electrodes, the low SNR of the observations, or the presence of non-cardiac
sources, we might only extract a limited number of these cardiac components, while the weaker ones are
embedded in the other non-cardiac and noise components5 [43].

In Fig. 6.1, a typical segment of fifteen channels of ECG signals, adopted from the Physikalisch-
Technische Bundesanstalt diagnostic ECG database (PTBDB) is depicted for illustration [158, 22, 112].
These signals have been recorded from an adult from the twelve standard ECG leads and the three
Frank lead VCGs. In this dataset, the electrodes are rather close to the heart. We can visually see that
the different channels are all synchronous with the heart beat; but have different shapes. They can be
considered as projections of the same distributed source onto the different electrode pairs.

To illustrate the aforementioned properties of the ECG, PCA was used to extract the principal com-
ponents of the dataset. It is known that due to the electrode configuration used in recording the standard
twelve-lead electrodes, only two of the six leads I, II, III, AVR, AVL, and AVF, are linearly independent
[127]. Therefore, among the fifteen ECG channel we can only have eleven independent linear mixtures.
Using PCA, this fact was used to reduce the dimensions of the ECG to eleven. The resultant compo-
nents are depicted in Fig. 6.2. Traces of the ECG (specifically the R-peaks), can be seen in most of the
extracted components.

As another illustration, the JADE algorithm based on higher-order statistics [31, 30], was also applied
to this data for extracting the most independent representation of this dataset. The resultant independent
components may be seen in Fig. 6.3. From this figures, we can see traces of the ECG in eight of the
extracted components. The other components are mainly noise or due to other sources, such as the
respiration. However, a closer look at these components shows that minor traces of the ECG R-peaks
exist in them. This is not an observation that has just happened by chance; similar results can be achieved
over other ECG dataset, recorded from electrodes close to the heart.

From the discussion of this section, now the question is whether using linear multichannel transforms,
the multiple components extracted from the cardiac source convey additional morphological information
(other than just the R-peaks) for cardiac studies. This issue will be further discussed in the following
section.

6.3 A Study of the Components Extracted from Multichannel
Cardiac Recordings

Up to now, we discussed the electrophysiological interpretation of linear mixtures of body surface record-
ings in terms of multipole expansions. In this section, we will study the problem from a morphological
perspective. Some of the hereby presented results were previously reported in [170].

6.3.1 ECG Dimensionality

In the problem of blind or semi-blind source separation, regardless of the origin of the multichannel record-
ings (cardiac or other), given T samples of an N -channel signal x(t), we can seek for linear transforms
of the form (6.2), which satisfy some desired statistical property. Some of these statistical properties
may be visually observed in the scatter plot of the observed signals. To illustrate, in Fig. 6.4 the three-
dimensional scatter plot of the ECG signals of Fig. 6.1 are plotted for some different pairs of the original
ECG channels. Specifically, the last panel in Fig. 6.4(f) has been constructed from the last three channels
of Fig. 6.1, which were recorded from the orthogonal VCG leads. Of course, the original signals in Fig.
6.1 are in a fifteen-dimensional space (or eleven-dimensional due to the electrode redundancy) and we
cannot visualize more than three-dimensional pairs. However, even from the few plots in Fig. 6.4, we
can notice that due to the pseudo-periodicity of the ECG channels, the scatter plot of any pair of these

5For example, using ICA methods based on measures of Kurtosis, ICA will only extract the components that are more
‘kurtotic’ than the other non-cardiac components.
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Figure 6.1: A typical segment of the standard 12-lead and the 3 Frank lead ECGs, adopted from the
PTB diagnostic database [158, 22, 112].

signals is also pseudo-periodic. Moreover, the region of space swept by the scatter plot is rather sparse;
meaning that the ECG only occupies a very small region of the N -dimensional space.

Correlation Dimensions

In data analysis, there are several approaches for the estimation of multivariate data dimensions [85].
Here, we do not intend to present the different existing measures of dimensionality; but just to give an
idea of how sparse the multichannel ECG representation is, we will calculate a fractal dimension measure
known as the correlation dimension [85, ch. 9]. For the N -channel signal x(t), we define

C(r) =
1

N(N − 1)

N∑
i=1

N∑
j=1,j 6=i

I‖xi−xj‖<r, (6.3)

where I‖y‖<r = {1 : if ‖y‖ <= r, 0 : if ‖y‖ > r} and C(r) is the average number of samples of x that are
within the distance of r from each other. C(r) can therefore be considered as the cumulative distribution
function (CDF) of the sample distances. The correlation dimension is now defined as follows:

Dc = lim
r→0

∂ log C(r)
∂ log r

(6.4)

For finite number of samples, it is not possible to take the limit in (6.4). Instead, Dc without the limit
operator, is plotted versus r and the correlation dimension can be interpolated from this plot for when
r → 0.

This measure was calculated from the data samples of Fig. 6.1. The resultant correlation dimension
can be seen in Fig. 6.5(a). For comparison, we have also plotted the correlation dimension of a fifteen-
dimensional white Gaussian noise in Fig. 6.5(b). While the Dc of the Gaussian noise is very close to
fifteen (the number of its channels), the Dc of the ECG is close to one. However, although the ECG space
is very sparse, the regions of space swept by the ECG lie in a rather complicated and curved manifold.
Therefore, using linear transforms of the array ECG we can not map the ECG onto a lower-dimensional
subspace, without loosing the ECG components. This is in fact, a geometric restatement of what we
mentioned in Section 6.2, concerning the infiniteness of the cardiac signal dimensions.
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Figure 6.2: Principal components extracted from the ECG channels of Fig. 6.1 in descending order of
their corresponding eigenvalues.

Figure 6.3: Independent components extracted from the ECG channels of Fig. 6.1 using the JADE
algorithm in descending order of their energy contribution (explained variance).

Dimensionality Study using Principal and Independent Component Analysis

PCA and ICA can be used to study the sensitivity of the different ECG segments to dimension reduction.
As an example, the onset and ending points of each of the P, QRS, and T-segments of the ECG of
Fig. 6.1 were manually detected. Next, due to the aforementioned redundancy in the standard ECG
lead configuration, a primary PCA was applied to the fifteen channels to reduce the dimensions to eleven.
Considering this reduced-dimension data as the reference, PCA was applied to it several times. Each time
by eliminating the least significant components corresponding to the smallest eigenvalues, the residual
components were back-projected to the original ECG subspace by using the inverse of the decomposing
matrix. The average mean-square error (MSE) of all channels was calculated in each case over the
different ECG segments. In Fig. 6.6, the resultant normalized MSE are plotted for different numbers of
dimensions removed. The same procedure was carried out using JADE and each time eliminating the
component with the least significance on the total signal energy (explained variance). The normalized
MSE results are plotted in Fig. 6.7. As seen in Figs. 6.6 and 6.7, the P and QRS-waves are respectively
the most and least sensitive portion of the ECG to dimension reduction. Accordingly, with only five
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(a) (b) (c)

(d) (e) (f)

Figure 6.4: Three-dimensional scatter plot of the signals of Fig. 6.1.

dimensions, i.e., having removed ten dimensions, will lead to a MSE of -30dB for the QRS-waves; while
at least nine dimensions are required for the same MSE over the P-waves.

Moreover, eight to nine of the independent components extracted by ICA have considerable contri-
bution in the ECG energy, which approves our previous discussions in Section 6.2, concerning the ECG
dimensionality. Note that the sensitivity of the different channels to dimension reduction depends on the
electrode configuration, the subject, and other signals and noises in the environment. We will discuss
about the interpretation of the extracted components in the following.

6.3.2 Interpretation of Independent Components Extracted from Cardiac
Recordings

Following our previous discussions, we know that multichannel ECG recordings form a sparse quasi-
periodic loop in a curved manifold. By applying linear ICA to such recordings, we are trying to find
the directions conveying the most ‘information’ in the N -dimensional space. Intuitively, these directions
should correspond to the regions of space in which the data samples are more concentrated. In Fig.
6.8, the VCG representation of the Frank lead electrodes of another sample dataset adopted from the
Physikalisch-Technische Bundesanstalt diagnostic ECG database (PTBDB) [158, 22, 112], can be seen.
The original data consisted of the twelve standard ECG leads together with the three Frank lead VCG
leads, from which we have only plotted the VCG loop for illustration. The baseline wander of this data
was removed as preprocessing. In this figure, we have also depicted the column vectors of the mixing
matrix estimated by JADE. A segment of the independent components corresponding to these vectors are
also seen in Fig. 6.9. As we can see in Fig. 6.8, due to the sparsity of the VCG loop the estimated vectors,
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(a) Dc of a typical ECG (b) Dc of white Gaussian noise

Figure 6.5: The correlation dimensions of (a) a typical ECG, and (b) white Gaussian noise

Figure 6.6: Sensitivity of different ECG components to dimension reduction by applying PCA to eleven-
dimensional data

regardless of their sign6, give the orientations along which the sample points are more concentrated, i.e.,
the major VCG loops and planes. This also explains the special shapes and the time-lags that we see in
the components in Fig. 6.9. In fact, the different independent components extracted from multichannel
ECG, can be considered as projections of the VCG loop (in an N -dimensional hyperspace) onto the
directions of ‘significant’ importance. In case of robustness, these components can be used to extract
clinical features for normal and pathological cases.

Extraction of Clinical Measures

In previous works, different clinical indexes have been extract from the VCG loop [144, 1]. Following our
discussions on the interpretation of the components extracted from multichannel ECG recordings, it is
possible to use the information extracted by PCA or ICA as additional clinical measures. In this context,
some primary ideas were originally proposed in [43, 146], using singular values and eigenvalues. In the
following, we refer to some other possible indexes:

1. The eigenvalues and eigenvectors extracted by PCA convey information about the spread of the
data distribution and may be used to find canonical representations of cardiac signals. Specifically,
the product of the M largest eigenvalues is a measure of the volume occupied by the VCG loop:

c1 =
M∏
i=1

λi,

6The ambiguity of sign and variance is an intrinsic limitation of ICA.



62 Linear Multichannel Analysis of Cardiac Signals

Figure 6.7: Sensitivity of different ECG components to dimension reduction by applying JADE to eleven-
dimensional data

(a) 3D VCG (b) x − y plane

(c) x − z plane (d) y − z plane

Figure 6.8: Different views of the VCG representation of a typical ECG signal recorded from the Frank
lead electrodes, together with column vectors of the mixing matrix estimated by JADE

A similar measure can be derived from the energy of the independent components with the highest
explained variance. In this case, we should give the norm of the columns of the mixing vectors
estimated by ICA, to their corresponding sources to have unit norm mixing vectors.

2. The angle between the mixing vectors (vi) corresponding to the independent components with the
highest explained variance:

φij = cos−1

(
vT

i vj

‖vi‖ ‖vj‖

)
3. As mentioned before the VCG loop can lie in a rather complex manifold. However, the visual

inspection of each of the P, QRS, and T-loops shows that each of these loops can be rather flat.
Interesting measures can be found by detecting the onset and endings of each segment of the ECG



Linear Multichannel Analysis of Cardiac Signals 63

Figure 6.9: A segment of independent components extracted from a typical ECG dataset.

and applying PCA and ICA to the samples of each segment (i.e. local PCA and local ICA). The
upper-mentioned indexes can also be extracted from each segment.

4. The principal angles (PA) [73], between the P, QRS, and T-loops also conveys useful information.
For this, we apply local PCA or local ICA to find the subspaces corresponding to each segment of
the ECG segments. Next, we calculate the PA between each subspace, denoted as follows:

θij = PA(Ai, Aj)

where Ai and Aj are the estimated mixing matrices associated with any of the P, QRS, or T-
segments. The procedure of calculating the PA is explained in Appendix A.

6.3.3 Necessity of Preprocessing

To this end, we have considered rather clean ECG signals without any non-cardiac interference and noise.
However, in presence of noise (especially full-rank noise), the extracted components will not necessarily
have the same interpretation. Therefore, in order to use the principal and independent components
extracted from multichannel ECG as reliable and robust clinical measures, the data should be preprocessed
to remove the non-cardiac interference before applying PCA or ICA.

Baseline Wander Removal

For illustration, JADE is applied to the fifteen-channel ECG signals used in the previous subsection; but
this time without prior baseline wander removal. In Fig. 6.10, eight ‘independent’ components extracted
from these raw data can be seen7. The VCG representation of these signals and the corresponding
columns of the mixing matrix estimated by JADE can be seen in Fig. 6.11. In this figure, we can see that
the scatter plot of the VCG loop is slightly drifted. Therefore, the baseline wander appears in most of
the extracted cardiac components of Fig. 6.10. This is due to the fact that baseline wander is a full-rank
signal and it has not been extracted as a single independent component. As a result, the estimated mixing
vectors in Fig. 6.11 are tilted toward the direction of the baseline wander.

As we can see, baseline wander removal is an essential preprocessing step that should be done before
applying ICA, in order to have meaningful components that purely correspond to the cardiac signals.
Additional to baseline wander removal, VCG loop alignment methods such as the one proposed in [188],
can also be very effective for removing the minor inter-beat variations of the VCG.

7We know that due to the temporal structure of the ECG there exists some dependencies between the components
extracted by ICA. Therefore, by ‘independence’ we mean ‘as independent as possible’; which is achieved through the
maximization of some measure of independence.
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Figure 6.10: A segment of independent components extracted from a typical ECG signal containing
baseline wander. The baseline wander can be seen in most of the extracted components.

(a) 3D VCG (b) x − y plane

(c) x − z plane (d) y − z plane

Figure 6.11: Different views of the VCG representation of a typical ECG signal having baseline wander.

Distribution Assymetry

An implicit assumption of common ICA algorithms is that the input signals are symmetric around their
mean values; since the mean of the data is initially removed and the sign of the ICs are not determinable
[89]. However, ECG data are not symmetric around their mean values, and the isoelectric point of cardiac
signals slightly differs from the mean value of the data. This means that when applying conventional
ICA algorithms to signals such as the ECG (without considering the data asymmetry), the extracted ICs
do not exactly correspond to the main planes in the VCG representation.

As an illustration, the scatter plot of a synthetic asymmetric dataset is depicted in Fig. 6.12(a). The
columns of the mixing matrix, extracted by JADE have also been depicted. As seen in this figure, due
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(a) (b)

Figure 6.12: The effect of PDF asymmetry on the extracted ICs for an (a) asymmetric PDF, and the
(b) PDF made symmetric using equation (6.5). The vectors represent the mixing vectors estimated by
JADE (in positive and negative directions), centered at the mean of the distribution.

to the data asymmetry, ICA does not give the directions of the two lobes of the distribution. Similarly,
for the problem of ECG signals we might be more interested in the directions in which the data has the
most variations with respect to the isoelectric point, rather than the actual ICs, which are derived with
respect to the mean of the data. A simple method that we propose for solving this problem, is to remove
the baseline wander of the ECG, which is identical to making zero the isoelectric line of the ECG (i.e.
making zero the isoelectric point of the multidimensional VCG), and then to make the dataset virtually
zero-mean with respect to the isoelectric point, by augmenting the data samples with their minus values:

xn×2T ← [xn×T , −xn×T ] (6.5)

By this way, we are adding the image of the dataset to the distribution space and therefore making the
density function of the samples symmetric. This makes the dataset twice as long; but has the benefit
that the ICs are found with respect to the isoelectric point of the VCG 8. The result of applying this idea
to the data of Fig. 6.12(a) and the new columns of the mixing matrix extracted by the JADE algorithm
are shown in Fig. 6.12(b). This simple idea may also be useful in other applications for exploiting local
behaviors of complex multivariate distributions around any point other than the actual data mean value.

The effect of data asymmetry becomes much more important for the combination of the fetal and
maternal ECGs, where the fetal signals can be an order of magnitude weaker than the maternal signals.
Therefore, considering the small fetal VCG loop size, the mean value of the data can be very far from
the fetal VCG loop and by applying conventional ICA algorithms that find the components with respect
to the mean of the data, the details of the fetal VCG loop are not extracted as independent components.
This can explain why in practice only a few fetal components are extracted by applying ICA to maternal
abdominal recordings while traces of the fetal signal still exist in the other components. In this case,
maternal ECG removal before applying ICA– or before any other linear transform– can be very effective.
We will come back to this issue in later chapters.

6.4 Curse of Dimensionality and Over-fitting

A well-known problem in multichannel data analysis is a problem known as the curse of dimensionality
(CoD), initially coined by R.E. Bellman [16]. CoD describes the problems caused by the exponential
increase in volume due to adding extra dimensions to an N -dimensional space. For example, 100 evenly-
spaced sample points suffice to sample a unit interval with no more than 0.01 of distance between points.
An equivalent sampling of a 10-dimensional unit hypercube with a lattice having a spacing of 0.01 between
adjacent points would require 1020 sample points. Thus, in some sense, the 10-dimensional hypercube
can be said to be a factor of 1018 larger than the unit interval (example adopted from [222]).

In practical statistical signal processing problems, we work with finite number of samples taken from
some random process. In this case, the CoD implies that with an increase of data dimensions, the sampled

8Evidently the second-half of the extracted sources will also be redundant in this case.
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Figure 6.13: Typical signals extracted from 72 maternal abdominal channels using FastICA. The last
three components are typical ‘bumpy’ signals without any physical origin and due to the ‘spikes and
bumps’ phenomenon [90, 179, 178].

hyperspace becomes more and more sparse, unless if the number of samples are exponentially increased.
In such problems, the CoD can manifest itself in different ways. The most common in ICA applications
is that the estimated statistical measures become less relevant and more sensitive to outliers9.

As a case study, in some of our early studies we were working on 72-channel signals recorded from an
array of maternal abdominal sensors. In order to extract the fetal ECG components, we directly applied
FastICA to the 72-channel recordings. Some of the typical signals that we found are depicted in Fig.
6.13. In this study, there were usually about five components that corresponded to the maternal ECG,
one to the fetal ECG, few components that corresponded to other known sources, such as the maternal
respiration and noise, and about fifty ‘bumpy’ components, such as the ones in the last three panels of
Fig. 6.13, for which we could not find any physiological explanations. It was later found that these
components were merely due to the high number of dimensions (say above 20 channels), when applying
ICA to spectrally colored noisy signals. This phenomenon, known as spikes and bumps, was originally
introduced in [90, 179, 178]. To approve the fakeness of the bumpy components, similar results can be
reproduced by generating 1000 to 5000 samples of Brown noise in 20 to 50 channels. Then, by applying
FastICA or JADE to these synthetic signals results in bumpy signals as shown in Fig. 6.14, which despite
their misleading appearance do not have any physical origin. In Appendix B, we will draft some ideas for
theoretical justification of this phenomenon. The problem is however open to further research in future
studies.

To overcome the problem of bumps and spikes or more generally the CoD, the exponential increase
9Note that in parametric estimation methods in which a model is assumed as the underlying data model, it is the number

of unknown parameters that should be considered as the dimensions. For instance in conventional ICA methods based on
the x = As model, the number of unknown parameters grows with the square of the number of observation channels.
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Figure 6.14: Typical bumpy signals extracted from 40 channels of brown noise using FastICA.

of the sample points is not possible, as it would either require very high sampling rates or an increase
in the signal registration time. On the other hand, almost all biosignals are nonstationary in time and
we usually prefer to process short stationary blocks of data. We can add to this, the higher amount of
processing load and memory required for high-dimensional signal processing.

For high-dimensional observations, more practical methods include (1) projection onto lower dimen-
sions, (2) channel selection, (3) processing groups of channels, and (4) nonlinear mapping; which all lead
to the processing of a lower-dimensional subspace. In the following, we introduce these methods and their
limitations. A survey of different dimension reduction techniques may be found in [61, 119].

1. Projection onto Lower-Dimensions: Projection onto lower-dimensions subspaces using PCA is per-
haps the most popular means of dimension reduction. It simply consists of eigenvalue decomposition
and eliminating the dimensions corresponding to the minor eigenvalues. Despite of its effectiveness,
this procedure has also some limitations, especially for noisy data. It is difficult to automatically
decide on the number of dimensions to keep. For this, we usually seek for some large gaps between
successive eigenvalues or for some sharp changes of slope in the logarithmic plot of the eigenvalues.
However, using PCA we can not assure to have removed all the redundant dimensions or guarantee
to preserve the important ones.

2. Channel Selection: A more effective procedure, which at the same time requires a priori information
of the signals of interest, is to select the more useful channels for processing. In [177, 213], some
electrode selection strategies based on mutual information criteria were proposed for the fetal ECG
extraction problem.

In practice, it is more effective to have a combination of channel selection and projection. It is also
better to eliminate the very noisy channels or the ones that do not convey useful information for
the desired signals, before applying a PCA dimension reduction.

3. Processing Groups of Channels: Another approach is to process small groups of the channels sepa-
rately and to merge the information extracted by such processing in later steps of the analysis. For
instance, MCG signals are very commonly recorded from several hundreds of sensors. However, the
dominant components of the existing bio-sources, such as the maternal and fetal cardiac signals,
do not usually exceed about fifteen to twenty dimensions. So it is rather safe to split the sensor
array into blocks of, say, twenty electrodes and to extract the fetal components from these smaller
subsets. The information found from each group of electrodes can be later merged together for
constructing the fetal MCG subspace, or even at higher levels, such as feature extraction.

4. Nonlinear Mapping : As mentioned before the desired signal subspace can lie in complex nonlinear
manifolds; although each of the signals can be rather simple and structured in the time-domain.
We have already shown examples of this phenomenon for the ECG scatter plots in Fig. 6.4. In
such cases, an alternative dimension reduction approach is to use nonlinear mappings to ‘unfold’
the complex manifold. This however requires a priori information about the manifold structure.
Examples of this procedure can be found in [47, 119].
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6.5 Optimal Sensor Number and Positioning for Fetal ECG Ex-
traction

A fundamental question in designing fetal ECG or MCG recording protocols is how many channels to
use and where to place the sensors on the maternal abdomen. From the discussions of this chapter,
we now know that although the cardiac signal subspace can be theoretically infinite dimensional (due
to the distributedness of the cardiac source); but in practice we can only see between 4 to 8 dominant
components on the body surface of adults. For the fetal signals the number of components is between 1
to 3 and the other components are dominated by the maternal signals and noise. There are also other
biosignal sources such as the maternal respiration and uterus contractions signals, which can appear as
additional sources. Therefore, empirically between 8 to 16 channels, well-distributed over the maternal
abdomen and close to the fetal heart are rather sufficient for extracting the fetal components. Note that
although the fetal R-peaks may also be detected using fewer number of electrodes; but the morphological
details of these signals require more electrodes.

The nonstationarity of the fetal cardiac signals and the possible movements of the fetus should also
be considered in the electrode positioning. While some researchers perform ultrasound measurements for
detecting the fetal position and choosing the appropriate electrode configuration prior to signal recording,
it is practically more convenient to have a fixed electrode configuration, with even more electrodes than
required, and to dynamically re-select the most important ones as the fetus or fetuses move.

Concerning the optimal electrode configuration for retrieving the full fetal ECG morphology, it is
better to have the electrodes rather distributed over the maternal abdomen and not to localize them all
close to one another. This helps us to have a full view of the fetal heart from different sides and prevents
the ECG or MCG signals from becoming degenerate mixtures of the cardiac signals.

6.6 Summary and Conclusions

In this chapter the components extracted by linear transforms of multichannel ECG recordings, such as
ICA, were studied from an electrophysiological and signal processing viewpoint. Considering the distrib-
utedness of the heart, we found some electrophysiological interpretation for the extracted components
and explained the multiple components that are typically extractable from multichannel ECG. We also
studied the close relationship between such components and the vectorcardiogram representation of the
ECG and proposed some quantitative measures that can be derived from such signals and be used as
clinical measures. Issues concerning the dimensionality of these signals were also studied.

The main focus of the chapter and the presented case studies were on adult ECG signals recorded from
the thorax. Nevertheless, the results and interpretations are more or less applicable to the fetal ECG, ex-
cept that the fetal components are much weaker in amplitude and some times become electromagnetically
shielded by low-conductivity layers such as the vernix caseosa (cf. Section 3.3).

Although the results of applying ICA to multichannel ECG recordings are rather subjective and
database dependent, the hereby presented results are believed to be rather insightful from both the signal
processing and physiological viewpoints. In later chapters we will use these insights to develop novel
algorithms for adult and fetal ECG analysis.

In the light of the hereby presented results, there are many other issues which need to be studied in
future works, including:

• A general framework for the study of distributed sources and the theoretical relationship between the
statistical properties of a distributed source and the principal or independent components extracted
from body surface electrodes.

• The study of ECG manifolds, their dimensionality, complexity, and other geometric and statistical
properties of these manifolds. In this context, the Bayesian filtering framework presented in Chapter
5 might also be useful for nonlinearly unfolding the ECG manifolds.

• The impact of cardiac defects on the ECG dimensionality and the clinical measures proposed in
Section 6.3.2, especially for fetal ECG studies.



Chapter 7

Multichannel Electrocardiogram
Decomposition using Periodic
Component Analysis

7.1 Introduction

Independent Subspace Analysis (ISA) has been introduced as an alternative to Independent Component
Analysis (ICA), for problems in which we deal with groups of signals having inter-group independence
and intra-group dependencies. ISA was first introduced in [41] and mathematically developed in [28],
where the notion of ICA was generalized to the notion of multidimensional ICA. As noted there, ISA
relies on the idea of vector-valued components rather than scalar source signals. The first, and yet most
commonly studied, application of ISA is the extraction of fetal ECG from a set of maternal abdominal
mixtures. From the discussions of Chapter 6, the cardiac signals of either the mother or the fetus are
generally multidimensional signals. Therefore, by applying any linear transform to the observation signals
we can extract several maternal and fetal components. From the signal processing point of view, this
means that the maternal and fetal ECG components, individually, form a signal subspace with internal
dependencies, rather than being single dimensional components; while the components of the maternal
and fetal subspaces are independent from each other.

ISA may be realized by applying an initial ICA step on mutichannel observations and then empirically
regrouping the independent components that belong to the same subspace from prior knowledge of the
subspace structures, and to achieve a canonical representation of the desired subspace. In fact, there is
an intrinsic ambiguity in retrieving the components inside the subspaces, which may not be resolved with
the same measure of independence used for extracting the subspaces. Therefore, from the ISA viewpoint,
no representation of components inside a signal subspace can be considered to be better than another.
This is the reason for which the components that belong to the same subspace are regrouped after the
initial ICA step.

The currently challenging issues in the ISA context are (1) how to find the dimensions of each subspace
[28], (2) how to automatically regroup the components [219, 10, 191], and (3) the impact of subspace
distances and noise on the stability of the extracted subspaces [135, 82]. For the fetal ECG extraction
problem, previous studies have focused on the feasibility of extracting the independent subspaces [28, 45]
and regrouping strategies [10].

Although the ISA framework has answered many questions concerning vectorial components, it has
some limitations for being used for ECG decomposition. Following the explanations in Chapter 6, we
know that cardiac signals (or any other distributed source) do not generally have a limited number of
dimensions and any low-rank subspace of the body surface recorded signals is only an approximation
of the true cardiac subspace. Therefore, for ECG signals, rather than seeking for subspaces of fixed
finite dimensions, it is more reasonable to somehow rank the subspace components according to their
contribution in the surface ECG and to threshold the least relevant dimensions.

Another limitation of ISA (and ICA) is that they are usually based on the maximization of some mea-
sure of component independence. However, for pseudo-periodic signals such as the ECG, the temporal
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x PCA−−−−−−−→ v Sphering−−−−−−−−→ z ICA−−−−−−−→ y

(rotation) (scaling) (rotation)

Figure 7.1: General scheme of ICA algorithms with spatial whitening

structure of the signal is rich in information. For such signals, a measure of periodicity of the extracted
signals, both clinically and mathematically, is a more appropriate criterion as compared to independence.
In some recent works, the temporal periodicity of ECG signals has been exploited in source separation
algorithms [94]. These methods are however of the same order of complexity as conventional ICA algo-
rithms, and are basically designed for signals having a constant fundamental period; an assumption that
is not true for real ECG recordings.

In this chapter, we present a linear source separation method that is specifically customized for
pseudo-periodic signals, such as the ECG. The proposed method is partially based on the notion of
periodic component analysis (πCA) introduced in [180] and generalized eigenvalue decomposition [154].
The relationship between this method and well-known source separation techniques such as AMUSE
[201], JADE [31], and SOBI [17] are also discussed. As it is shown, for ECG signals, the method has
several benefits over conventional ICA and is applicable to both adult and fetal ECG embedded in noise.

7.2 Background

7.2.1 Generalized Eigenvalue Decomposition

For symmetric matrices A,B ∈ RN×N , the problem of generalized eigenvalue decomposition (GEVD)
[192], of the matrix pair (A,B), consists of finding the matrices W and D, such that:

WT AW = D , WT BW = I (7.1)

where D is the diagonal generalized eigenvalue matrix corresponding to the eigenmatrix W = [w1, ...,wN ],
with real eigenvalues sorted in ascending order on its diagonal1. As it is seen from (7.1), W is a trans-
formation that simultaneously diagonalizes A and B. Moreover, the first eigenvector w1, corresponding
to the largest generalized eigenvalue, also maximizes the following ratio, known as the Rayleigh quotient
[192]:

J(w) =
wT Aw
wT Bw

(7.2)

This property is used in the derivation of the methods in Chapter 8.

7.2.2 ICA versus Generalized Eigenvalue Decomposition

In the context of ICA, in practice, we have a finite number of samples of an N -dimensional observation
vector x(t) = [x1(t), ..., xN (t)]T , and seek for a linear mixture of these observations that maximizes some
measure of independence, or namely a contrast function. Under some general assumptions the estimated
components are solutions of a BSS problem with a linear latent variable model. Moreover, most ICA
algorithms perform spatial whitening on the dataset, which as shown in Fig. (7.1) only leaves a rotation
matrix to be estimated by maximizing the contrast function of ICA.

An algebraic approach to ICA is to diagonalize a set of matrices containing second or higher-order
statistics of the dataset [31, 17]. For signals with temporal structure, there are various algorithms that
use this algebraic approach. For example, for a wide-sense stationary or cyclostationary real observation
vector x(t), if we define the covariance matrix as:

Cx(τ) = Et{x(t + τ)x(t)T } (7.3)

where Et{·} indicates averaging over t, the AMUSE algorithm provides a linear transform that jointly
whitens the data and diagonalizes Cx(τ) for some arbitrary τ , i.e., the solution of the GEVD problem

1 In the problem of interest, A and B are symmetric positive definite matrices, therefore the eigenvalues of D are real
and positive [192].
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for the matrix pair (Cx(τ), Cx(0)) [201, 154]. However, it is known that no more than two matrices
may be exactly diagonalized by a quadratic transform of the form (7.1), except when they belong to the
same eigenspace [17]. Due to this fact, methods have been proposed which approximately diagonalize a
set of desired matrices, and are more robust to data outliers and computational errors as compared with
AMUSE [29]. In this context, the SOBI algorithm is an example of a time-domain algorithm that whitens
the data and approximately diagonalizes Cx(τ) for several time-lags τ [17]. In [156], joint approximate
diagonalization was further used for the separation of nonstationary and (possibly) Gaussian sources.
Similar time-domain methods have also been proposed for cyclostationary sources, in which the data is
again pre-whitened and matrices representing cyclostationary statistics of the dataset are (approximately)
diagonalized [59]. However, the final output of any of these approximate diagonalization methods is a
linear transformation of the form:

y(t) = WT x(t)
W = QΛ−1/2R

(7.4)

where Q and Λ are respectively the eigenmatrix and eigenvalue matrix of Cx(0), such that Cx(0) = QΛQT ,
and R is the rotation matrix found by maximizing the contrast function of the corresponding ICA method.
In (7.4), the terms Q, Λ−1/2, and R respectively correspond with the PCA, sphering, and ICA steps
indicated in Fig. 7.1. It is easy to show that W , diagonalizes the following symmetric matrix:

Γ = QΛ1/2RDRT Λ1/2QT (7.5)

where D is an arbitrary diagonal matrix 2. It therefore follows that the matrix pair (Γ, Cx(0)) satisfies
(7.1).

Equation (7.5) implies that for pre-whitened data and for a rotation matrix R found by maximizing
any ICA contrast function, there exists a set of matrices Γ that are exactly diagonalizable via GEVD.
The matrix Γ, by itself is not necessarily any of the second or higher-order statistics matrices of the data;
but contains some overall statistics of the data that is exactly diagonalized through the linear transform
W . From this point of view, any ICA algorithm of the form of Fig. 7.1 may be transformed into a
GEVD problem for diagonalizing a single matrix containing some cross statistical measure of the multi-
channel dataset. This suggests that in some applications, instead of forming a set of matrices containing
conventional statistics of the data, such as the second or higher-order statistics, and approximately diag-
onalizing these matrices, we can directly use the a priori information about the desired signals (e.g. their
periodicity) to form an ad hoc symmetric matrix Γ, and seek for linear transforms that diagonalize this
matrix, i.e., decorrelate the ad hoc statistics. The matrix Γ may for example be a covariance-like matrix
as defined in (7.3); but using a time-varying time lag τ that is derived from our prior knowledge of the
dataset. This idea is investigated for ECG signals in the following sections.

7.2.3 Periodic Component Analysis

Here we restate the problem of πCA, adapted from [180], which is merely a restatement of the AMUSE
algorithm derived from a measure of periodicity.

Given an N -dimensional observation vector x(t) = [x1(t), ..., xN (t)]T , we seek for the linear mixture
s(t) = wT x(t) with a maximal periodic structure that minimizes the following measure of periodicity :

ε(w, τ) =
∑

t |s(t + τ)− s(t)|2∑
t |s(t)|2

(7.6)

where w = [w1, ..., wN ]T and τ is the period of interest. It can be shown that (7.6) may be rearranged as
follows:

ε(w, τ) =
wT Ax(τ)w
wT Cx(0)w

= 2[1− wT Cx(τ)w
wT Cx(0)w

] (7.7)

where
Ax(τ) = Et{[x(t + τ)− x(t)][x(t + τ)− x(t)]T }

= 2Cx(0)− 2Cx(τ). (7.8)

In the second part of (7.8) we have used the symmetry of the matrix Cx(τ), and assumed that the time
averages asymptotically converge to statistical averaging as t→∞.

2In fact, in (7.5), the term RDRT represents an arbitrary matrix from the eigenspace of R and Γ = W−T DW−1.
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Then using the Rayleigh-Ritz theorem from linear algebra [192], it follows that the weight vector w
minimizing (7.7) is given by the eigenvector corresponding to the smallest generalized eigenvalue of the
matrix pair (Ax(τ), Cx(0)), or equivalently the largest generalized eigenvalue of (Cx(τ), Cx(0)). As with
(7.1), by assuming D as the diagonal generalized eigenvalue matrix corresponding to the eigenmatrix W ,
with real eigenvalues sorted in descending order on its diagonal, the transformation WT x(t) gives the
most periodic components in descending order of τ -periodicity.

7.3 Modifications for Time-varying Periods

ECG signals have a pseudo-periodic structure that is repeated in every cycle of the ECG beat. However,
normal ECGs can have RR-interval deviations of up to 20% (cf. [160]), which means that a constant
period τ as defined in the previous section, does not fully describe the periodicity of the ECG.

For such signals, we propose to use a time-varying period that is updated on a beat-to-beat basis. For
this, as shown in Fig. 7.2, by detecting the R-peaks of the ECG, a linear phase φ(t) ranging from −π
to π is assigned to each ECG sample, with the R-peak being fixed at φ(t) = 0. The linear phase φ(t),
provides a means for phase-wrapping the RR-interval onto the [−π, π] interval. Therefore, the ECG –
regardless of its RR-interval deviations– may be converted to a polar representation in which the ECG
components in different beats, such as the P, Q, R, S, and T-waves, are more or less phase-aligned with
each other, especially over the QRS segment (Fig. 7.3).

On the other hand, minimizing (7.7), requires the calculation of the cross-correlation between the
samples having a time-lag τ in different channels. So in order to apply πCA to ECG signals, we can
replace the constant time-lag τ in (7.8), with a variable τt that is calculated from φ(t) from beat to
beat. Therefore, in each ECG cycle the sample at the time instant t is compared with the sample t + τt,
namely its dual sample, which is the sample with the same phase value in the successive ECG beat. The
time-varying period τt may be mathematically defined as follows:

τt = min{τ |φ(t + τ) = φ(t), τ > 0} (7.9)

Figure 7.2: Illustration of the phase assignment procedure used for calculating τt in each ECG beat.

Figure 7.3: Polar representation of a noisy ECG using the ECG phase φ(t).
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Using this definition, the covariance matrix defined in (7.3) is redefined as follows:

C̃x = Et{x(t + τt)x(t)T } (7.10)

Moreover, in order to assure the symmetry of C̃x and the realness of its eigenvalues, the following step is
required in practice:

C̃x ← (C̃x + C̃T
x )/2 (7.11)

In fact, if we consider the polar representations of each of the channels of x(t) (as in Fig. 7.3), the
matrix C̃x represents the covariance of the polar representation around its mean value. Following the
discussions in Section 7.2.2, C̃x is the matrix containing the ad hoc statistics of the ECG, i.e., a measure
of ECG periodicity extracted from the ECG R-peak information.

Next, we find W , the GEVD solution of the (C̃x, Cx(0)) pair with the eigenvectors ranked in descending
order of their corresponding generalized eigenvalues. The desired signal vector y(t) = [y1(t), ..., yN (t)]T

is then found from (7.4). The components of y(t) are sorted according to the amount of their periodicity,
relative to the heart beat. In other words, y1(t) is the most periodic component and yN (t) is the least
periodic, with respect to the R-peaks of the ECG. Hereinafter, we refer to the algorithm presented in this
section, which is based on a time-varying lag, as πCA.

The proposed method is rather flexible, and may be extended to other ad hoc statistics extracted from
ECG recordings. For instance, for the problem of fetal ECG extraction, if we define φm(t) and φf (t) as
the maternal and fetal ECG phases found from the maternal and fetal R-peaks, C̃m

x and C̃f
x representing

the covariance matrices of the mother and fetus, are found by averaging (7.10) over the maternal and
fetal periods, respectively. Then the matrix C̃x used in the GEVD may be set to any of the following
matrices:

C̃x = C̃m
x

C̃x = C̃f
x

C̃x = C̃m
x − C̃f

x

(7.12)

If we assume the data to be pre-whitened, the diagonalization of the matrices defined in (7.12) is respec-
tively equivalent to finding (a) the most periodic components with respect to the maternal ECG, (b) the
most periodic components with respect to the fetal ECG, and (c) the most periodic components with
respect to the maternal ECG while being the least periodic components with respect to the fetal ECG.
In this latter case the extracted components should gradually change from the maternal ECG to the fetal
ECG, from the first to the last component3. It should of course be noted that the last two cases are
difficult to implement in practice, as they require the prior extraction of the fetal R-peaks to form the
C̃f

x matrix.

7.4 Results

As our first illustration, we apply πCA on the ECG signals used in Fig. 6.1 (page 58). The R-peak
detection, time-varying lag calculation, and covariance matrix calculations were carried out according to
the procedures described in the previous section. The resultant periodic components are depicted in Fig.
7.4. We can see in this figure, how the components are ranked according to their ECG contribution.
These components may be compared with the principal and independent components in Fig. 6.2 and 6.3.
The sensitivity study of the P, QRS, and the T-segments of the ECG, introduced in Section 6.3.1, was
also carried out on the extracted periodic components. The MSE results, similar to Figs. 6.6 and 6.7
may be seen in Fig. 7.5.

The DaISy fetal ECG database is used as our second illustration [46]. As explained in previous
chapters, the database consists of five abdominal and three thoracic channels recorded from the abdomen
and chest of a pregnant woman with a sampling rate of 250Hz. The eight channels of the dataset may be
seen in Fig. 7.6. The independent subspace decomposition approach proposed in [28], using the JADE
algorithm [31], is used as the benchmark ICA method. The eight independent components extracted by
this algorithm are depicted in Fig. 7.7.

By performing R-wave detection on one of the maternal thoracic channels, the maternal ECG phase
φm(t) was calculated according to the explanations of the previous section. Next, the time-varying

3Note that in the last definition of (7.12), C̃x is not necessarily positive definite. However, due to its symmetry the
generalized eigenvalues are real and may be ranked in ascending/descending order.
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Figure 7.4: Periodic components extracted from the ECG channels of Fig. 6.1 in descending order of
periodicity.

Figure 7.5: Sensitivity of different ECG components to dimension reduction by applying πCA to eleven-
dimensional data of Fig. 6.1

Figure 7.6: The DaISy dataset consisting of five maternal abdominal and three thoracic channels [46].

maternal ECG period τm
t was calculated, from which the matrix C̃x and W , the generalized eigenmatrix

of the (C̃x, Cx(0)) pair, were found and sorted in descending order of the eigenvalues. The resultant



Multichannel Electrocardiogram Decomposition using Periodic Component Analysis 75

Figure 7.7: Independent components extracted from the dataset of Fig. 7.6, using JADE. Notice that
components 1, 2, 3, and 5 correspond to the maternal subspace and components 4 and 8 to the fetal
subspace.

Figure 7.8: Periodic components extracted from the dataset with maternal ECG beat synchronization.
The maternal ECG contribution reduces from top to bottom.

periodic components calculated from (7.4) are depicted in Fig. 7.8. As it is seen in this figure, the first
component, corresponding to the largest eigenvalue, has the most resemblance with the maternal ECG,
while as the eigenvalues decrease, the signals become less similar to the maternal ECG. Interestingly,
two of the last extracted components (components six and seven) resemble the fetal ECG. This can be
explained by considering that πCA is ranking the extracted components according to their resemblance
with the maternal ECG period, while the fetal components do not resemble the maternal ECG, when
averaged synchronously with respect to the maternal R-peaks. The fetal components are therefore not
extracted among the first components.

As explained in Section 7.3, it is also possible to consider the fetal ECG periodicity in the matrix
C̃x, which requires the fetal R-peaks for extracting the time-varying fetal period τf

t . For this, the fetal
ECG component extracted by JADE in the fourth channel of Fig. 7.7 is used for fetal R-peak detection
and phase calculation. Having calculated the fetal ECG phase φf (t), the previously explained procedures
are repeated to extract the periodic components of the fetal ECG. The resultant periodic components
are depicted in Fig. 7.9. This time we see that the extracted components are ranked according to their
resemblance with the fetal ECG.

The last results correspond to the last type of covariance matrix defined in (7.12). The covariance
matrix C̃x for this part is calculated from the difference of C̃m

x and C̃f
x . After performing the previously
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Figure 7.9: Periodic components extracted from the dataset with fetal ECG beat synchronization. Notice
that the fetal ECG contribution reduces from top to bottom.

Figure 7.10: Periodic components extracted from the dataset with maternal & fetal ECG beat syn-
chronization. The maternal (fetal) ECG contribution reduces (increases) from top to bottom.

explained GEVD stages, the periodic components are found from (7.4). These components are depicted
in Fig. 7.10. As expected before, the first component has the most resemblance with the maternal ECG,
while the last component mostly resembles the fetal ECG and the intermediate components are mixtures
of maternal and fetal components and noise.

7.5 Multichannel Fetal MCG in Multiple Pregnancy: A Case
Study

The methods proposed up to now have been principally designed for ECG signals. Nevertheless, as
mentioned before, due to the morphological similarity of the ECG and the MCG, the same methods and
tools are applicable to MCG recordings. In what follows, we present a subjective study for the extraction
of twin fetal cardiac signals from an array of MCG recordings using a combination of methods, including
ICA and πCA. In this case study, we can see how the methods are adapted in practice to extract and
track fetal signals from long datasets.

The dataset has been recorded in the Biomagnetic Center of the Department of Neurology, in Friedrich
Schiller University, Jena, Germany4. It consists of several sets of MCG and other signals, in arrays of

4This dataset has been provided by Dr. Dirk Hoyer, from the Biomagnetic Center of the Department of Neurology, in



Multichannel Electrocardiogram Decomposition using Periodic Component Analysis 77

208 channels recorded over 30 minutes, with a sampling rate of 1025Hz. The description of the recorded
channels are summarized in Table 7.1. This data has been recorded by a SQUID Biomagnetometer
system. The pregnant women were positioned supine, i.e., with a slight twist to either side, to prevent
compression of the inferior vena cava by the pregnant uterus. The dewar was positioned with its curvature
above the fetuses after sonographic localization as close to the maternal abdominal wall without contact
as possible [77].

The current results have been achieved on one of the available datasets, namely the q00002252 dataset.
By visual inspection of the dataset, some of the channels were noticed to be zero or at the order of the
quantization error of the analog-to-digital converter of the recording device. These channels (listed in
Table 7.1) were excluded from further analysis to prevent noisy results.

In the following, we explain the procedures that were carried out over the dataset to extract the twin
MCGs. Due to the large size of the data the mentioned steps have been applied on segments of 10000
samples (about 10s), and as later explained, the procedures are repeated over all such windows throughout
the 30 minute data, each time with 10%-50% of overlap with previous windows, for consistency.

7.5.1 Baseline Wander Removal and Preprocessing

Visual inspection of the original data shows that the channels are highly contaminated with baseline
wander (BW). From our previous discussions on ECG signals (Section 6.3.3), we know that the results
of source separation methods are very susceptible to BW and it is necessary to remove it before applying
any source separation. For this, a two-step moving window median filter with 100ms and 200ms window
lengths, was used (cf. Appendix D). The BW removal was followed by a lowpass filter with a cut-off
frequency of 150Hz. This filtering improves the SNR of the source separation procedures and reduces
their susceptibility to noise. Typical channels achieved after the preprocessing procedure are depicted in
Fig. 7.11.

7.5.2 Maternal MCG Removal

The maternal MCG is the most considerable artifact for the fetal MCG. We therefore require an effective
method for removing it. For this we use a combination of πCA and the other methods discussed in
previous chapters. In order to apply πCA for maternal MCG extraction (and removal), the locations
of the maternal R-peaks are required, which may be detected from any ECG or MCG signal that is
synchronously recorded with the dataset. For this, we used the maternal reference ECG channel (channel
number 196, cf. Table 7.1), with a simple peak-detection method that seeks for the maximum points of
the data within a moving window (cf. Appendix D). The maternal R-peaks were detected for the whole
30 minute data and saved for later processing. Using the maternal R-peaks, πCA was applied to the
preprocessed data to sort the components according to their resemblance with the maternal MCG. The
first ten components extracted by πCA, from a typical segment of the preprocessed data may be seen in
Fig. 7.12.

The next step is to remove the maternal MCGs. The simplest (but not necessarily the best) way is
to set the first K components found by πCA to zero and to project the remaining components back to
the sensor space. This is a common practice that is carried out in conventional subspace cancellation
techniques using PCA or ICA [99]. On the other hand, its drawback is that by nulling K components,

Friedrich Schiller University, Jena, Germany

Table 7.1: Description of the recorded channels
Channels Description

1-168 magnetic channels
169-195 magnetic reference channels
196-199 electric channels (mother’s ECG)
200-208 others

Excluded channels
6,7,8,27,28,29,99,100,101,102,108,109,110,129,130,131,180,181,182,183,
186,187,188,189,193,194,195,199,200,201,202,203,204,205,206,207,208
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Figure 7.11: A typical segment of five channels after the preprocessing step

the dimension of the multichannel dataset is reduced. Moreover, if the separation procedure (ICA, πCA,
etc.) does not fully separate the subspaces of the maternal and fetal MCGs, i.e., traces of the fetal MCG
exist in the maternal components, these components are eliminated with the maternal MCG. However,
for the current dataset having many dimensions, it was noticed that by simply nulling the first 5-6
components extracted by πCA, the fetal MCG were still detectable from the remaining channels. We
therefore adopted this simple method and as later explained, the quality of the fetal MCG was improved
in a post-processing step. In Chapter 8, a more robust method is presented that can be used for maternal
ECG/MCG cancellation without loss of dimensions.

7.5.3 Fetal MCG Extraction - First Run

Up to this step, we have preprocessed the data and removed the maternal MCG. Considering the excluded
channels in Table 7.1 and the 5-6 dimensions lost in the maternal MCG cancellation, the data has about
165 dimensions. Since we are processing windows of 10000 samples, the ratio between the number of
channels to the number of samples is too high and we have the problem of curse of dimensionality
described in Section 6.4. To remedy this effect, we use PCA to reduce the dimensions of the data to
30, which was found from the slope changes of the normalized logarithmic plot of the data’s covariance
matrix eigenvalues, in Fig. 7.13. This selection was also practically found to be a compromise between
twin fetal MCG extractability and erroneous components (and noise) extraction.

The next step was to apply ICA on the remaining components to extract the fetal MCGs as inde-
pendent components. For this we used FastICA [67], due to its higher speed for high-dimensional data
(as compared with JADE based on higher-order statistics), and also the ability of initializing its initial
values from window to window. For this, we used FastICA with the symmetric component extraction
method with a cubic polynomial nonlinearity (g(u) = u3) in its fixed-point algorithm, which is related to
a kurtosis-based approximation of negentropy [89]. With these choices, the twin MCGs were empirically
found to be always extractable5.

As mentioned before, the explained procedures were carried out over blocks of 10000 samples and to
assure the consistency of the results, the blocks were chosen to have 10%-50% of overlap with the previous
blocks. Moreover, in order to preserve the order of the extracted components (which would otherwise
be arbitrary in ICA), the estimate of the mixing matrix of the FastICA algorithm for each block was
selected as the initial value of the mixing matrix for the next block. This property, besides preserving
the order of the components, speeds up the calculations too; since the statistical properties of adjacent
blocks are close to each other, and the initial estimate of the mixing matrix will very soon converge to

5Note that in this example we are more interested in the extraction and tracking of fetal MCGs from long recordings,
without any claims on the optimality of the parameters used in the FastICA algorithm.
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Figure 7.12: The first ten periodic components extracted from a typical segment of the data corresponding
to the maternal MCG

its actual value in few iterations. It was later found that a more conservative (and more robust) choice
of the initial mixing matrix is a weighted average of the mixing matrices of previous blocks, rather than
the mixing matrix of the last block. This choice of the mixing matrix still converges much faster than a
blind search (without initialization), and also reduces the risk of loosing track of the components due to
short noisy segments of the data.

The ambiguity of sign and variance is a known intrinsic limitation of ICA. In order to have a nor-
malized representation, the variances of the independent components extracted by FastICA were always
normalized to one and the variance was given to their corresponding columns in the mixing matrix. This
method worked well and due to the overlap of the blocks the signs of the components were rather con-
sistent. However, in some noisy segments of the data the sign was changed. This problem was overcome
when we increased the overlap of the windows to 90% for fine-tuning. The components found in this
extreme case (90% overlap) were very robust without abrupt changes from one block to another.

Note that in the overlapping segments of the data, the extracted components were averaged over the
corresponding samples found from the different block ICAs. For example, for a block length of 10000
samples and an overlap of 90%, we will have 9 estimates for each sample (except for the beginning and
ending blocks) that correspond to the number of overlapping blocks that contain that specific sample.
This averaging generally improves the SNR of components since the signals in the extracted components
(e.g. one specific fetal MCG complex) are correlated with each other, while the noises of the components
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Figure 7.13: The logarithm of the eivenvalues normalized by the first eigenvalue (cf. [120])

are uncorrelated. Theoretically, by averaging N trials, we can achieve an SNR improvement of up to
10 log10 N dB. This can be simply verified by assuming that for each sample we are estimating a random
variable of the form xi = s + ni, where s is the deterministic part of interest that is common in all trials
(e.g. a fetal MCG complex), while ni is the noise part that is uncorrelated from one trial to another.

Typical examples of the first fifteen components found by FastICA are plotted in Fig. 7.14. Among
these components, four of them (components 4, 8, 9, and 10), are persistent in all the different blocks.
Two of these correspond with one of the fetuses (components 4 and 10) and the other one (component 9)
corresponds to the other fetus. This may be verified by plotting these channels in one single plot shown
in Fig. 7.15, where we notice that the temporal cardiac rhythm of two of the components are the same,
while the rhythm of the other one is different. The fact that we have extracted more than one component
from one of the fetuses, corresponds to the multidimensionality of the cardiac signal subspace described
in Chapter 6. The fourth persistent component (component 8) in Fig. 7.14, which is a noisy and spiky
signal with high frequency and irregular spikes, resembles the magnetic gradient noise that is commonly
seen in MCG recordings.

7.5.4 Fetal Peak Detection and HRV Calculation - First Run

The fetal MCG found by FastICA contains some noise. Therefore, the simple peak detection procedure
that was used for the maternal R-peak detection in Section 7.5.2 is not very efficient for the fetus and is
very likely to loose or miscount some of the peaks. This was verified over one of the fetal components.
The well-known Pan-Tompkins R-peak detection method was also applied on the dataset [151]. The
results were however rather similar to the previous approach. A more effective method that we developed
was to use a combination of a matched filter and a peak-detector for R-peak detection. This method is
further described in Appendix D. By this way we achieved to extract the fetal R-peaks for both of the
fetuses with much less erroneous peaks as compared with previous classical methods.

The HRV of the fetuses were next calculated from the estimated fetal peaks. The HRV results may be
seen in Fig. 7.16 for the whole 30 minute of the dataset. From this figure we notice some erroneous peaks,
which are due to the noisiness of the fetal MCG in the corresponding epochs leading to the misdetection
of the fetal R-peaks. The negative peaks in the HRV sequence having almost half the average HRV values
indicate a missed R-peaks and the ones having one third of the average HRV indicate two successive
missed peaks. For automatic detection and analysis, it is further possible to make some general rules
for making corrections over an estimated HRV sequence; an issue which is not considered in the current
study.

A close look at the HRV extracted of the second fetus in Fig. 7.16 shows an interesting phenomenon.
We have zoomed over a small segment of the HRV of the second fetus in Fig. 7.17. As we can see from
this figure, there are some sharp variations in the HRV over some epoches. This can be explained by
considering that the second fetal MCG in Fig. 7.15 is not in the conventional QRS form, i.e., we have
another morphological projection of the vectorcardiogram loop (cf. Chapter 6). Therefore the R-peaks
have not been precisely detected from this representation.
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Figure 7.14: Independent components extracted from a typical segment of the data after preprocessing
and maternal MCG cancellation using πCA

Figure 7.15: Overlayed and zoomed plot of components 4, 9, and 10 from Fig. 7.14. We can see that the
green and red plots correspond to one of the fetuses while the blue plot corresponds to the other fetus
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Figure 7.16: A primary estimate of the fetal HRVs

Figure 7.17: A zoomed view of the second fetal HRV plot of Fig. 7.16

7.5.5 Fetal MCG Extraction - Second Run

We now have a coarse estimate of the fetal MCGs, the corresponding fetal R-peaks, and the cardiac
HRV. These coarse results may be further used to improve the performance of the previous steps of
the algorithm. In this post-processing stage there are broad ranges of possibilities that we can test.
One of the ideas is to use the initial fetal cardiac R-peaks in a πCA procedure, over the output of the
preprocessing step presented in Section 7.5.1. This is similar to what we did for the maternal MCG
extraction using πCA. In fact, having the fetal R-peaks and by using πCA we can seek linear mixtures of
the preprocessed data (BW removed and lowpass filtered data) that is maximally periodic with respect
to the fetal R-peaks. While this procedure can be very effective for extracting multiple dimensions of the
fetal MCG (more than one single component for each fetus), we noticed that in the segments in which
we have misdetected the R-peaks it can lead to erroneous components. We can nevertheless keep the
idea for when we have more accurate estimates of the fetal R-peaks, for instance at the output of this
second post-processing step. Note however that πCA is not very sensitive to single R-peak misdetections,
as the covariance estimates required in the πCA procedure are not very likely to be biased by just a few
misdetected R-peaks.

However, with our current estimate of the fetal R-peaks, one of the possible and effective post-
processings is to consider the fetal R-peaks in the maternal MCG cancellation step. In equation (7.12)
(page 73), several possible covariance matrices were proposed for diagonalization. The procedure that
we used in Section 7.5.2 was based on the first cost function that only seeks for the components that are
maximally synchronous with the maternal R-peaks. This cost function however does not guarantee to
preserve the fetal components. In other words, there is no guarantee that none of the fetal components
exist in the first components extracted by applying πCA over the data using the maternal R-peaks. In
order to guarantee this issue we can use a modified version of (7.12) to assure that the fetal components
are not among the first components extracted by πCA. For this, suppose that we have the preprocessed
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multidimensional data x(t), and the time-varying periods of the maternal and the two fetal MCGs, namely
τm
t , τf1

t and τf2
t have been estimated from the maternal and fetal R-peaks. We propose the following

measure:
C̃x = C̃m

x − (C̃f1
x + C̃f2

x ) (7.13)

where C̃m
x = Et{x(t + τm

t )x(t)T }, C̃f1
x = Et{x(t + τf1

t )x(t)T } and C̃f2
x = Et{x(t + τf2

t )x(t)T } are the
maternal and the two fetal covariance matrices, respectively. Now if we jointly diagonalize C̃x and Cx =
Et{x(t)x(t)T }, the extracted components will be uncorrelated and ranked according to their similarity
with the maternal MCG (appearing in the first components) and the two fetal MCGs (appearing in the
last components). This approach is rather similar to the ideas used in the classification context using
linear classifiers for multiple classes or clusters [65].

In Figs. 7.18 and 7.19 we have depicted the first and last ten components extracted by this method
from a 10s segment of the 171-channel preprocessed data. As it is seen, the first components resemble the
maternal MCG (least similar to the fetal MCGs) while the last components are mixtures of the fetal MCGs
with the least maternal contribution. We can therefore, safely eliminate the first K components that have
minimal contribution in the twin MCGs. In this step, since we are localizing the fetal contribution in
the last πCA components, we can eliminate up to the first 80-100 (or even more) dimensions of the 171-
dimensional preprocessed data, without loosing the fetal components. Therefore, this step also replaces
the dimension reduction that was used in Section 7.5.3. Of course, with the 60-80 remaining dimensions
we are still likely to have the problem of curse of dimensionality. We can therefore additionally use PCA
to reduce the dimensions to about 30 components, as suggested in Section 7.5.3, and re-run FastICA for
re-extracting the fetal components.

In fact, the key difference between single-step dimension reduction (using PCA) and our two-step
dimension reduction (first by πCA and next by PCA) is to better target the components that we want
to preserve, i.e., the fetal MCG. Typical segments of the fetal MCG components extracted by this post-
processing step are depicted in Fig. 7.20.

7.5.6 Fetal Movement Tracking

Thirty minute recordings are rather long and we do not expect two healthy twins to keep silent and
rested during this period. Looking more carefully at the components extracted by the methods proposed in
Sections 7.5.3 and 7.5.5, it was noticed that the fetal MCG morphologies are changing in time. Therefore,
if we assume that the mother has not considerably moved, the MCG electrode configuration can be
considered to be fixed with respect to the mother’s body axis. Therefore, the morphological change of
the fetal MCGs should be due to the fetal movements.

An interesting framework for studying the fetal movements is the idea of subspace tracking. In other
words, in every segment of the data being processed, we can estimate and track the rotations of specific
subspaces of interest from frame to frame. This tracking can be in terms of tracking the principal angles of
the subspaces (cf. Appendix A), or tracking the components themselves. As a tracking problem, Kalman
filtering can also be very effective and due to the rather slow (and limited) possible movements of the
fetuses, a low-dimensional and accurate state-space model can be proposed for the required Kalman filter.
This issue is left for future works; in this study we only used a rather simple least squares estimator for
tracking the fetal movements.

Suppose that A,B ∈ RN×P are the mixing matrices of two segments of the data estimated by ICA.
We seek a rotation matrix Q that minimizes the following measure:

d = ‖A−BQ‖2 , subject to QT Q = I (7.14)

This is a classical optimization problem in linear algebra and the optimal Q is found by singular value
decomposition (SVD) as follows [73, p. 601]:

• Define C
.= BT A,

• Compute the SVD of C: UT CV = Σ,

• Q = UV T .
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Figure 7.18: The first ten periodic components extracted by using a mixed measure of maternal/fetal
MCGs, proposed in Section 7.5.5. Note that these components are not as clean as the maternal compo-
nents in Fig. 7.12, which were based on the maternal periodicity alone.

Using this method, we calculated the rotation matrices (Q) for 10 second blocks with 97.5% of overlap
over the total 30 minute record. The mixing matrix of the first extracted block was used as the reference
matrix A in (7.14), for these calculations. We next calculated the angles between the columns of each
Q with its corresponding column in the Q calculated from the first two blocks (used as a reference).
Assuming that Q ∈ RP×P , we find P angles corresponding to the number of components extracted by
FastICA. Each angle can therefore be considered as a measure of the rotation of a specific component in
time. The calculated angles for four of the components extracted by FastICA (one component from the
first fetus, two from the other fetus, and one for the spiky component that probably corresponds with the
magnetic noise) are plotted in Fig. 7.21. Interestingly, from these results we notice some clear changes in
the rotation angles, which should principally correspond to the movements of the fetuses in these specific
epochs. Another interesting observation is that the spiky component, which does not have a physiological
source, has rotated once around the fifth minute of the data recording. This abrupt change has also
influenced the other rotation angles. This can possibly be due to some specific situational change during
that specific epoch, such as the movement of the mother with respect to the SQUID system.

Note that the matrix QT may also be used as a rotation matrix for compensating the fetal rotations
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Figure 7.19: The last ten periodic components extracted by using a mixed measure of maternal/fetal
MCGs, proposed in Section 7.5.5

and to derive canonical representations of the fetal signals.

7.6 Summary and Conclusions

In this chapter a linear transform was presented that is able to extract the ‘most periodic’ components
corresponding to a desired ECG signal from a set of multichannel recordings by forming some covariance-
like matrix and jointly diagonalizing this matrix and the actual covariance matrix of the dataset. The
intuition behind this method is to find any periodic structure that is synchronous with the reference
ECG R-peaks extracted from a suitably clean ECG reference. As it was explained in Section 7.2.2, the
bases of the proposed method are rather similar to PCA and ICA. However, due to the proper use of
the temporal pseudo-periodicity of the ECG, the method has some interesting benefits over conventional
source separation techniques, which are noted in the following:

• From the physiological point of view, the independence criterion of conventional ICA has been
replaced with a periodic temporal structure criterion, which is a more reasonable assumption for
ECG signals and in accordance with the clinical intuition about the ECG. In fact, cardiologists
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Figure 7.20: Independent components extracted from a typical segment of the data in the post-processing
step (Section 7.5.5)

Figure 7.21: Rotation angles (in degrees) calculated according to the procedure presented in Section 7.5.6

are not familiar with the interpretation of independent components extracted from multichannel
recordings; but they are interested in periodic structures that are repeated in each ECG beat.

• From the mathematical point of view, the temporal information of the ECG is gathered in the matrix
C̃x. Therefore, the conventional iterative ICA algorithm is replaced by an algorithm consisting of
an initial R-wave detection step, covariance matrix calculation, and a single step of GEVD. The
method is therefore more time-efficient.

• The proposed method can also be evaluated from the sparsity viewpoint. ECG signals are rather
sparse in time (cf. Fig. 7.6). For such signals, the second or higher-order statistics estimated in
conventional ICA techniques can be rather susceptible to noise. The measure of periodicity that
was considered in the πCA method is a way of using a priori information to have better estimates
of the required statistics.

• The extracted components are ranked according to their degree of synchronization (periodicity)
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with the R-peaks, while in conventional ICA it is not possible to predict the order of the extracted
components. This feature is very helpful, especially for automating the removal of the maternal
ECG from fetal ECG recordings, or generally for removing cardiac interference from multichannel
biosignals.

• Due to the mean square error compression property of eigenvalue decomposition [89, ch. 6], the
ECG signal is concentrated within the least number of components. In other words, by using the
proposed method, we achieve a minimal representation of the ECG signal. This feature can be used
in ECG compression, as we can define some threshold on the extracted eigenvalues and remove the
components corresponding to the smaller eigenvalues by simple thresholding or through a hypothesis
test. In this way, since the components are ranked according to their resemblance with the ECG,
we are sure that only the ‘least important’ components have been removed. This is however not
the case for ICA or PCA compression techniques when applied to the ECG, since the low variance
components extracted by these methods can convey important parts of the ECG morphology and
may not be removed by thresholding.

• The eigenvalues found from (7.1) are also a measure of the noisiness of the extracted component and
may be used for thresholding the minor components. In the general BSS problem, if we consider
the observed data to follow the latent variable model x = Hs + n, any linear combination of the
data x will contain some noise [44]. However, depending on the criterion that is used, the noise may
be accumulated in a few undesired components while keeping the desired ones such as the ECG
cleaner than the rest of the components. In fact, if we consider any source of aperiodicity as noise,
the proposed method may be interpreted as a transformation that is distributing the noise variance
in the less important components. This is an important issue that is not achieved with conventional
ICA, as they seek for the most independent components and not the most periodic (least noisy)
ones.

• The solutions of GEVD problems are generally more susceptible to noise, as compared with joint
approximate diagonalization methods [17]. However, in the proposed method although only two
matrices are jointly diagonalized, the results are still robust to deviations of heartbeat and noise.
The reason is that the time lags τt required in the calculation of C̃x, are extracted from the beat-to-
beat information of the ECG. The robustness may however be improved in future works, if we split
the overall information of the RR-interval that is carried by C̃x, into several matrices that contain
local information of the ECG cycle, such as the P, QRS, and T-segments. These matrices can then
be approximately diagonalized using joint approximate diagonalization methods [29].

• On the other hand, we should also consider that conventional joint approximate diagonalization
methods require some criterion for measuring the amount of diagonalization of the set of matrices;
for instance by minimizing a weighted sum of the off-diagonal entries [17, 156]. Although it has been
shown that the maximization of such criteria is equivalent to the maximization of other measures
such as the likelihood function [156], the cost function is otherwise rather empirical. Therefore, in
applying approximate diagonalization methods, we have a sort of ‘double-blind’ problem, in the
sense that the matrices used in the diagonalization procedure and the performance measure are
both ad hoc, which makes the interpretation of the results more difficult. However, in GEVD-based
methods we no longer have problems for measuring the amount of diagonalization; but at a cost of
the more sophisticated way of forming the original matrices and at a risk of higher sensitivity.

Although the method is a logical extension of conventional source separation techniques customized for
ECG signals, more quantitative studies are required for its evaluation and comparison with classical
methods. Therefore, in future works, simulated multichannel ECG signals as proposed in Chapter 4,
together with quantitative measures of performance can be used to evaluate the performance of this
method. Issues concerning the choice of the number of effective ECG dimensions, using independence
and periodicity measures, also need further consideration.

In the fetal MCG extraction case study, the proposed method was used for ranking and eliminating the
less-informative components. This procedure also reduces the rank of the observations and is appropriate
for MCG signals, which are commonly recorded from hundreds of channels. However, for ECG signals
recorded from a dozen of electrodes, it is not efficient to reduce the data dimensions by this way. For such
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signals, we prefer to separate the desired and undesired subspaces without loosing the dimensionality of
the recordings. This issue is studied in the next chapter.



Chapter 8

A Deflation Procedure for Subspace
Decomposition

8.1 Introduction

In this chapter, we present a general deflation framework for the separation of a desired signal subspace
of arbitrary dimensions from noisy multichannel observations. The proposed method is an iterative
procedure that is repeatedly applied to the input signal until all the dimensions of the desired subspace
are extracted. This method simultaneously uses single and multichannel priors to split the desired and
undesired subspaces, even for coplanar (intersecting) subspaces. We will see that by appropriate use of
such priors we can even extract the signals from degenerate mixtures of signals and noise in low SNR
scenarios. The proposed method is fairly general and may be applied to various applications.

A special case for the hereby proposed method is the problem of separating fetal cardiac signals from
interferences and noise. It will be shown that the Bayesian filtering framework developed in Chapter
5 and the multichannel periodic component analysis of Chapter 7 can be effectively used within this
framework to recover the weak fetal ECG components embedded in noise.

8.2 Data Model

We consider zero-mean N -dimensional observations x(t) ∈ RN , which follow an additive model as follows:

x(t) = xs(t) + xn(t) (8.1)

where xs(t) is the desired part of the observations considered as the signal part, and xn(t) is the undesired
part considered as noise and/or interference. The covariance matrix of the observations is defined as
follows:

Cx
.= Et{x(t)x(t)T } (8.2)

where Et{·} represents averaging over time. We further assume that the desired and undesired parts of
the observation be uncorrelated; but the desired parts of the different channels be dependent. They can
for example be a linear or nonlinear transform of a signal subspace projected onto the observation space:

xs(t) = f [s(t)] (8.3)

where s(t) ∈ RM and f(·) : RM 7→ RN . The undesired part of the signal is also assumed to be a mixture
of low-rank and full-rank noise and/or interferences. The objective is to denoise the observations, i.e. to
retrieve xs(t).

The data model is very general and appears in many applications. For example, the problem of blind
source (or subspace) extraction with a latent variable model is a special case for this model:

x(t) = Hu(t) + n(t)
= u1(t)h1 + ... + uM (t)hM︸ ︷︷ ︸

xs(t)

+ ... + uP (t)hP + n(t)︸ ︷︷ ︸
xn(t)

(8.4)

89
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where H ∈ RN×P , u(t) ∈ RP , n(t) ∈ RN , and hi ∈ span{H}. In this case, we have assumed that the
signal of interest (xs(t)) is a subspace of the column space of H, while the other subspaces and observation
noise form the undesired part xn(t). Under the assumption of independent sources u(t) with P 6 N ,
and a moderately small noise xn(t), the latent variable model can be solved with second and higher-order
statistical ICA methods [31, 17]. However, the performance of these solutions is limited, since:

a. the estimation of the required demixing matrix is sensitive to the data model and observation noise;

b. they can not solve the degenerate (under-determined) case (P > N);

c. the dimensions of the desired subspace is to be known;

d. non-independent, coplanar subspaces may not be separated;

e. the full-rank noise is not separated and may even be amplified in the extracted components;

f. they commonly reduce the rank of the observation signals, if used for denoising.

We therefore seek for a method for retrieving xs(t), without these limitations based on some a priori
knowledge of the signal/noise subspace structure.

8.3 Method

8.3.1 Single Channel Denoising

Regardless of the multichannel structure of the data model (8.1), in each of the channels the desired
and undesired parts of the observation may be separable (although approximately) using some linear or
nonlinear denoising scheme, applied in the time or transform domain. The optimal denoising scheme is of
course application dependent and its performance depends on the SNR of each channel. Simple frequency
domain filters, wavelet denoisers, optimal Wiener filters, linear or nonlinear Kalman filters, or any other
model-based Bayesian filter, are amongst the possible denoising schemes that can be used for single
channel denoising. However, due to the commonly low SNR of the observations, single channel denoising
is not very efficient for our applications of interest. We therefore seek for a method to benefit from the
mutual spatial information of the different channels to improve the signal quality before denoising.

8.3.2 Linear Decomposition using GEVD

Any linear transform of the observation signals x(t), defined in (8.1), can be represented as follows:

y(t) = wT x(t) = wT xs(t) + wT xn(t) .= ys(t) + yn(t) (8.5)

Apparently, depending on the vector w, different mixtures of signal and noise are achieved. The perfor-
mance of the later proposed method highly relies on the efficient use of the prior information of the signal
and noise subspaces in such linear transforms. In the following, we review several different cost functions
that can appear in different applications, each leading to a different linear transform.

SNR Maximization

Suppose that we want to find a linear mixture of the input with a maximal SNR. The SNR of the linear
mixture y(t) defined in (8.5), can be calculated as follows:

SNR(w) .=
Et{ys(t)2}
Et{yn(t)2}

=
wT Cxs

w
wT Cxnw

=
wT Cxw
wT Cxnw

− 1 (8.6)

where Cxs

.= Et{xs(t)xs(t)T } and Cxn

.= Et{xn(t)xn(t)T } are the covariance matrices of the signal and
noise parts and we have used the uncorrelatedness of the signal and noise parts for the second part of
this equation.

Following the explanations in Section 7.2.1, the maximum value of the SNR is achieved by GEVD of
the matrix pair (Cxs

, Cxn
), or equivalently, the GEVD of the matrix pair (Cx, Cxn

). This approach is
therefore applicable for the case that Cxn

or Cxs
are know or can be estimated.
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Nonstationarity Maximization

Suppose that the signal (or noise) parts of the observations have a ‘burst’ or ‘sparse’ behavior, i.e.
only appear over a certain period of the time, and the active times of the desired signals are known or
could be estimated from the dataset. This is the case for many practical applications such as mixtures
of electroencephalogram (EEG) signals corrupted with eye movement or blink artifacts, EEG evoked
responses to ocular or audio stimuli, or EEG signals corrupted by switching magnetic resonance artifacts
in fMRI experiments. In all of these applications, the observed signals are nonstationary mixtures of
signal and noise. We can therefore define a cost function that accounts for this nonstationarity:

ζ(w) .=
Eθ{y(θ)2}
Et{y(t)2}

=
wT C̃xw
wT Cxw

(8.7)

where θ is the active time epochs of the burst signal (or more generally the time instants with a known
nonstationarity), and C̃x

.= Eθ{x(θ)x(θ)T } is the covariance matrix of the observations over the nonsta-
tionary periods. Next, by maximizing (8.7), we can find the components that have a maximal contribution
in the energy of the burst epochs (the numerator), while having the least contribution in the overall signal
energy (the denominator). Again, following (7.2), the maximum value of ζ(w) is achieved by GEVD of
the matrix pair (C̃x, Cx).

Spectral Contrast Maximization

The signal/noise separability may be achieved in domains other than the time domain. For instance,
suppose that we are interested in extracting band-limited signals from the observation signals. For
example the extraction of alpha or beta (or both) rhythms from noisy EEG recordings. In this case, the
linear mixture defined in (8.5), can be transformed into the frequency domain:

Y (f) .= F{y(t)} = wT F{x(t)} = wT X(f)

where F{·} represents the Fourier transform. We can now define the contrast function as follows:

σ(w) .=
Eν{|Y (ν)|2}
Ef{|Y (f)|2}

=
wT Sxw
wT Cxw

(8.8)

where ν is the frequency band of interest, f is the whole frequency axis (or the Nyquist band for the
discrete case), and Sx

.= Eν{X(ν)X(ν)H} is the cross-spectrum of the observation vector averaged over
the bandwidth of interest. In the denominator of the last part of (8.8), we have used the Parseval’s
relation. In order to have a real symmetric matrix Sx, the summation of Eν{·} is taken over both
positive and negative values of ν (or symmetric frequencies with respect to the Nyquist frequency for the
discrete case), over the frequency bands of interest. This condition guarantees the realness of σ(w). For
this cost function, the maximal spectral contrast is achieved by GEVD of the matrix pair (Sx, Cx).

Note that here the objective is to transform the signals into a domain in which the signal and noise are
better separated. Therefore, any other transform that preserves the linearity, such as wavelet transforms,
may also be used in this procedure.

Periodicity Maximization

The desired or undesired parts of the observations can have a periodic or pseudo-periodic structure. This
is also the case in applications in which a periodic signal is corrupted by noise, such as mixtures of ECG or
MCG signals and noise. In this case we may seek for linear transformations that maximize some measure
of periodicity, while keeping the signal energy bounded:

ε(w) .=
Et{y(t)y(t + τt)}

Et{y(t)2}
=

wT Pxw
wT Cxw

(8.9)

where τt is a (possibly) time-varying period of the periodic or pseudo-periodic signal and Px
.= Et{x(t)x(t+

τt)T }. The AMUSE algorithm with a constant τt [201], and periodic component analysis with a time-
varying time-lag τt presented in Chapter 7, are examples of algorithms that maximize such a cost function.
In either case, the maximum value of ε(w) is again achieved by GEVD of the matrix pair (Px, Cx).
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Figure 8.1: The general iterative subspace decomposition scheme

The cost functions defined in (8.6)-(8.9), were all defined such that the problem of finding the optimal
linear transform would lead to GEVD of the covariance matrix Cx and another positive definite matrix1

that is designed using our prior knowledge of the desired signals. For our problem of interest, linear
transforms based on GEVD have several advantages over other possible linear decompositions:

• The components are uncorrelated and whitened, which means that there is no redundancy in the
extracted components up to the second-order statistics, as in PCA.

• They use all the N2 possible degrees of freedom of an N × N linear transform; unlike PCA or
whitening transforms that only use N(N − 1)/2 and N(N + 1)/2 degrees of freedom, respectively.

• The components are ranked according to the statistical measure used in defining the second diago-
nalized matrix; unlike conventional ICA that can not rank the components.

8.3.3 Iterative Subspace Decomposition

We are now at a point, where we can merge linear multichannel decomposition with single channel de-
noising schemes. The proposed method is presented in Fig. 8.1. The method consists of an iterative
procedure that repeatedly applies a sequence of linear decomposition (projection), denoising, and recom-
position (back-projection) to the input data. Following the explanations in previous subsections, the
linear decomposition unit is a GEVD procedure based on our prior knowledge of the signal and noise
subspaces. The output components of this unit are assumed to be ranked in descending (ascending)
order of ‘similarity’ with the signal (noise) subspace. The objective of this block is to concentrate the
components of the desired subspace in the first few components of its output. This unit is followed by
a linear or nonlinear denoising filter that is applied to the first L components (L � N) of the previous
block. This filter can be a single channel filter applied to each channel separately, or a multichannel
filter applied to the L components together. As explained before, such denoising can indeed be directly
applied to the original x(t) signals too; but by applying it after the linear decomposition in Fig. 8.1, we
benefit from the improved SNR of the first few components extracted by the linear decomposition block.
Finally, the residual signals of the L denoised components and the other N − L unchanged components
are back-projected to the observation space, using the inverse of the linear decomposition matrix. In each
iteration of the algorithm some portion of the signal and noise subspaces are separated and the procedure
is repeated until the output signals satisfy some predefined measure of signal/noise separability.

The iterative algorithm depicted in Fig. 8.1 can be expressed as follows:

1The positive definiteness of the matrices, guarantees that the cost functions defined in (8.6)-(8.9) are always positive,
which makes their maximization sensible. Among the defined matrices, Px is the only matrix that depending on the choice
of τt can become non-positive definite. However, for quasi-periodic signals, such as the ECG, a proper choice of τt usually
leads to dominant positive eigenvalues of Px.
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The Subspace Decomposition by Deflation Algorithm
1: x(0)(t) = x(t) , k = 0
2: repeat
3: Calculate C

(k)
x , the covariance matrix of x(k)(t)

4: Calculate Q
(k)
x , the matrix containing the desired statistics of x(k)(t)

5: W (k) ← GEVD(C(k)
x , Q

(k)
x )T

6: y(k)(t)←W (k)x(k)(t)
7: A(k) .= [a(k)

1 , ...,a(k)
N ]←W (k)−1

8: s(k)(t) .= [s(k)
1 (t), ..., s(k)

L (t)]T ← G(y(k)(t))
9: x(k+1)(t)← x(k)(t)−

∑L
j=1 a(k)

j s
(k)
j (t)

10: c← ζ(x(k+1)(t))
11: k ← k + 1
12: until c 6 th

In this algorithm the index k represents the k-th iteration, W (k) is the transpose of the decomposition
matrix found by GEVD, x(k+1)(t) is the output of each iteration, G(·) is the denoising function for re-
moving (keeping) the undesired (desired) components applied to the first L channels of y(k)(t), s

(k)
j (t) is

the output of the denoising block in channel j, a(k)
j is the j-th column vectors of A(k), ζ(·) is a measure of

the desired subspace removal used as a stopping criterion, and th is a predefined threshold. The output
of each iteration of the algorithm can also be represented in the following compact form:

x(k)(t) = x(t)−
k−1∑
i=0

L∑
j=1

a(i)
j s

(i)
j (t) (8.10)

It should be noted that the covariance matrices required for the GEVD procedure of the proposed
method, are recalculated in every iteration from the output signals of the previous iteration. Moreover,
the separation criterion used for designing the linear projector and also the denoising block of Fig. 8.1 do
not need to be the same in all iterations. For instance, for EEG signals, if we use the spectral contrast
function defined in (8.8), one iteration of the algorithm can be designed to extract the alpha rhythms,
while another iteration extracts the beta rhythms of the EEG. Similar examples are presented in the
following for the extraction of maternal and fetal ECG mixtures.

One of the most important advantages of the proposed method is that we can remove the desired (or
undesired) subspaces without loosing the dimensionality of the recordings. This is, in fact, due to the
intermediate denoising step that is ‘breaking’ the linearity of the transform, which is an important issue
for real noisy signal mixtures recorded from a few number of channels.

8.4 Application in Fetal ECG Extraction

As discussed in previous chapters, the fetal ECG recorded from the maternal abdomen are heavily conta-
minated with maternal ECG, which depending on the gestational age and electrode locations, can be up
to ten to thirty times stronger than the fetal components. Independent subspace analysis (ISA) and other
ICA-based methods are the most common approaches for fetal ECG extraction. However, these methods
have limitations that were explored in previous chapters. In fact, although the maternal and fetal ECGs
form two independent subspaces, and ISA tends to separate these two subspaces, but in the presence
of noise or with special lead configurations, the subspaces of the fetal and maternal cardiac signals are
not fully separated by linear ICA. This usually results in fetal signals that are still contaminated by
the maternal components, or in fetal components removed with the maternal signals. We should add to
this, the problem of distributedness of the cardiac sources and the ambiguity in the number of dominant
dimensions corresponding to the maternal and fetal subspaces2.

In the following, the proposed deflation procedure is used for the removal of maternal ECG interference
from fetal recordings. Due to the pseudo-periodic structure of the ECG, the linear step of the algorithm
is designed according to the periodic component analysis procedure developed in Chapter 7, and for the

2The problem of dimensionality is more dominant for the maternal ECG where the far-field approximation of the cardiac
potentials is less relevant.
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Figure 8.2: Maternal phase calculation procedure

Figure 8.3: The overall iterative procedure for maternal ECG cancellation

Figure 8.4: The L-channel Kalman filter for maternal ECG removal

denoising step, we use the Kalman filtering framework presented in Chapter 5. The method is applied
to both simulated and real ECG recordings. The detailed procedure of maternal ECG removal based on
the deflation method is depicted in Figs. 8.2-8.4.

Note that after removing the maternal interference, a post ICA, πCA, or the deflation procedure may
be applied to the residual signals, to separate the fetal components from the other background noises.

8.4.1 Simulated Data

The Dataset

Due to the multi-dimensional nature of the ECG and our processing procedure, a realistic ECG model
with multiple dimensions is required. Here we use a multichannel ECG and noise generator similar to
the one proposed in Section 4.6.2 for generating simulated ECGs. The model is as follows:

x(t) = αHm sm(t) +Hf sf (t) + βHηv(t) + γn(t)
.= αxm(t) + xf (t) + βη(t) + γn(t) (8.11)

where sm(t) and sf (t) are three-dimensional sources representing the maternal and fetal cardiac compo-
nents3, v(t) is structured low-rank noise, n(t) is full-rank noise, and Hm, Hf , and Hη are the volume
conduction transfer matrices for the mother, fetus, and structured noises, respectively. In this model,
the maternal signal xm(t) is assumed as interference, while η(t) and n(t) are assumed as noises for the
fetal signal xf (t). Therefore, the parameters α, β and γ control the signal-to-interference ratio (SIR) and
signal-to-noise ratio (SNR) of the fetal components.

For this simulation, three independent leads from 24 subjects of the Physikalisch-Technische Bun-
desanstalt diagnostic ECG database (PTBDB) [158], were used. This database has a sampling rate of
1000Hz. The signals were further preprocessed for baseline wander removal and bandpass filtered between
0.7Hz and 150Hz.

For each sample trial, three channels of the preprocessed data were randomly selected among the 24
subjects to represent sm(t) and sf (t). Moreover, considering that the fetal heart beat is almost twice as

3the assumption of three dimensions for the maternal and fetal components is based on the far-field dipole approximation
of cardiac potentials [127].
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fast as the maternal heart beat, the signals representing sf (t) were resampled to 500Hz to mimic fetal
ECGs with higher heart beats. All simulations were performed over 10s signals.

The full-rank noise n(t) was considered as white Gaussian noise, while for the structured noise v(t),
real baseline wander, muscle artifacts, and electrode movement signals from the NSTDB [138, 139] were
randomly selected and resampled to fs=1000Hz.

Similar to the example in Section 4.6.2, Hm, Hf , and Hη are random 8 × 3 matrices, which result
in 8 channel observation signals x(t). Moreover, to control the angle between the maternal and fetal
subspaces, we calculate the principal angles (PA) between these two subspaces, denoted as follows:

θmf = PA(Hm,Hf )

The procedure of calculating the PA is explained in Appendix A.
Identical to (4.15)-(4.17), we calculate the following SIR, SNRn, SNRη, and the signal to interference

plus noise ratio(SINR), as measures of fetal signal quality before denoising :

SIR .=
Et,i{xfi

(t)2}
α2Et,i{xmi

(t)2}
(8.12)

SNRη
.=

Et,i{xfi(t)
2}

β2Et,i{ηi(t)2}
(8.13)

SNRn
.=

Et,i{xfi(t)
2}

γ2Et,i{ni(t)2}
(8.14)

SINR .=
Et,i{xfi

(t)2}
Et,i{[αxmi(t) + βηi(t) + γni(t)]2}

(8.15)

where xfi
(t), xmi

(t), ηi(t), and ni(t), are respectively the entries of xf (t), xm(t), η(t), and n(t) in channel
i, and Et,i{·} represents summation over time and channels. Moreover, for this simulation, the parameters
α, β and γ were selected such that

SNRη = SIR + 10dB,
SNRn = SIR + 20dB,

and the overall fetal input SINR was swept in the range of -25dB to -5dB, which are close to their actual
values. With these choices, the maternal ECG is the dominant artifact (as it is so in reality).

Evaluation

For evaluation, three algorithms were used:

1. ICA: As a benchmark method, the JADE algorithm was applied to the simulated data x(t) to
achieve independent components y(t). Then, in order to find and regroup the dominant components
that correspond to the fetal subspace, the optimal linear transform was found such that the following
error be minimized:

ei = Et{
(
yi(t)−wT

i sf (t)
)2} (8.16)

where yi(t) is the i-th entry of y(t) and wi ∈ R3×1 is a projection vector to be found. The optimal
solution of this problem, is known to be:

w∗
i = Et{s(t)sf (t)T }−1Et{yi(t)sf (t)} (8.17)

Using this optimal transform, the corresponding errors were calculated from (8.16) and ranked in
ascending order. The first three channels of y(t) with the smallest value of ei were selected as the
fetal subspace4. These three components were back-projected to the sensor space using the inverse
of the demixing matrix estimated by JADE.

4Note that this procedure is somehow unrealistic for real ISA problems; since in reality we do not have access to the actual
fetal subspace sf (t). Instead the fetal components are selected and regrouped by visual inspection or other classification
criteria.
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(a) (b)

Figure 8.5: The mean and standard deviation bar of SINR improvements achieved in different input
SINRs for (a) θmf < 10◦ (b) θmf > 60◦

2. Deflation: According to the procedure developed in previous sections, the deflation method was
also applied to the synthetic signals for removing the maternal ECG interferences. The R-peaks
of the maternal ECG were detected from an arbitrary channel which had dominant maternal ECG
artifacts. The deflation procedure was repeated in four iterations for each dataset, which was
empirically found to be sufficient for removing the three-dimensional maternal subspace used in the
simulations.

3. Deflation + ICA: As mentioned before, the described deflation procedure is only able to remove the
maternal subspace. The deflation results may be improved by applying a post-filtering, for instance
another ICA, to the signals after maternal ECG removal. This ICA step is identical to the one
explained in item (1), except that the mixture is ‘less-degenerate’, in the sense that the maternal
ECG has already been removed and there are no more dimensions occupied by the maternal ECG
components at the ICA output. Note that in this post-processing step, we again take the first three
independent components corresponding to the fetal subspace.

For each value of the input SINR, the simulations were repeated 10 times, each time with different
signal and noise samples and for different values of θmf . Following the discussions in previous chapters,
multichannel source separation techniques are believed to be rather sensitive to the angles between the
mixing subsets. Therefore, all experiments were performed for two extreme cases: (1) all principle angles
smaller than 10◦ with an average θ̄mf = 5.9◦, which we denote by θmf < 10◦, and (2) all principal values
greater than 60◦ with an average θ̄mf = 73.1◦, which we denote by θmf > 60◦. These two cases represent
very close and very far maternal-fetal subspaces, respectively. They were achieved by generating random
matrices Hm and Hf , and then altering them with a Givens rotation [73], to satisfy the mentioned
conditions on their principle angles.

After applying the filtering procedure, the SINR improvement5 achieved by the filtering procedures
were calculated and compared for the different denoising methods. In Figs. 8.5(a) and 8.5(b), the results
of this study can be seen for θmf < 10◦ and θmf > 60◦, respectively.

We can see from Fig. 8.5(a) that the SINR improvement is significantly lower as compared with
Fig. 8.5(b), indicating the fact that subspace separation becomes more difficult as the two subspaces
become close to each other. In this case, the deflation procedure outperforms ICA and the combination
of deflation and ICA (denoted by deflation+ICA) outperforms both methods, except in very high SINR
where the deflation method alone has outperformed the ICA-based methods. For θmf < 10◦, the standard
deviation of the ICA method is higher than the other methods, indicating its lower robustness.

On the other hand, in Fig. 8.5(b) we can see that for θmf > 60◦ ICA alone and the combination of
ICA and deflation have close performances, while the latter has been slightly more effective. Interestingly,
in the highest input SINR (-5dB), the deflation method has again outperformed the ICA-based methods.

5As before, the SNR improvement is the output SNR, in decibels (dB), minus the input SNR, in dB.
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8.4.2 Real Data

For real data, it is not possible to calculate the SNR improvement as a measure of performance. However,
in order to have a quantitative measure, we propose to compare the amount of ‘periodicity’ of the signal
before and after the filtering procedure. Here, the idea is that an artifact-free signal should not contain
any waveform that is synchronous with the ECG signal. Based on this idea, we first find the ECG R-
peaks and the phase φk, as explained in Chapter 5. Then by using φk, the time-lag τk is calculated as the
time distance between the sample xk and its dual sample xk+τk

6. From this, the following correlation
coefficient is proposed as an overall periodicity measure (PM) for a signal xk:

PM =
∣∣corrcoef(xk, xk+τk

)
∣∣ =

|E{xkxk+τk
}|

|E{x2
k}E{x2

k+τk
}|1/2

(8.18)

where E{·} represents averaging over the time index k. From this definition 0 6 PM 6 1, where PM = 0
indicates an aperiodic signal, and PM = 1 indicates a fully periodic one (with respect to the target ECG
signal). An effective filter should be able to remove any component that is temporally synchronous with
the heartbeat and the samples xk and xk+τk

should become uncorrelated; resulting in a PM close to
zero. It should of course be noted that the reduction of PM is a necessary but not a sufficient measure
of the filtering performance. In fact, the PM might be reduced, e.g. by an increase of the overall noise,
without an improvement of the signal quality. Therefore, other evidence such as the visual inspection
of the resultant waveforms or a comparison of the signal spectra before and after filtering (especially for
EEG signals) is always required besides this measure.

First Dataset

We first apply the proposed method to the DaISy fetal ECG database [46], introduced in previous chapters,
for removing the maternal ECG. This dataset has been replotted in Fig. 8.6(a). As a preprocessing step,
the baseline wander of the data was removed, the maternal R-peaks were detected and the proposed
method was applied on it in five iterations. The results of these iterations are seen in Figs. 8.6(b)-8.6(f).
Note that for this example we have fixed the number of iterations of the recursive algorithm to five, and
we do not use a threshold on the PM for stopping the algorithm.

The PM of all channels in different iterations can also be seen in Table 8.1. It is seen that the proposed
method has effectively reduced the maternal ECG contaminants from the first to the last iteration. This
result is also quantitatively approved as we see that the average PM of all channels has also decreased
in each iteration. These values can be used for defining the appropriate threshold (th) for stopping the
iterative procedure.

In order to compare the performance of the deflation procedure with ICA methods applied directly
on the original data, πCA was applied to the fetal ECG signals of Fig. 8.6(f), i.e., to the results of the
last iteration of the deflation procedure; but this time using the fetal R-peaks as the periodic signal of
interest. Therefore, in the output, the components were ranked in descending order of contribution in
the fetal ECG. The ensemble averages of these periodic components are compared with the independent
components extracted by ICA in Fig. 8.7. In this figure we can see that there are three dominant
components extracted from the fetal ECG by the combination of the deflation procedure and πCA with
some small trace of the fetal P-wave, while ICA has only extracted two dominant components.

Next, by nulling the last six components, i.e. keeping only two dimensions for the fetal ECG, the
components were back-projected to the signal subspace using the inverse of the πCA decomposing matrix.
A similar procedure was applied on the independent components of Fig. 7.7 (page 75), by back-projecting
the fourth and eighth components (that correspond to the fetal ECG) onto the sensor subspace using
the estimated mixing matrix. The resultant components of both methods are depicted in Fig. 8.8. As
seen in this figure, while the fetal contributions in the first five abdominal channels are rather the same
for both methods; but the deflation procedure has additionally found the fetal components that existed
in the last three thoracic channels. This means that there are considerable fetal components even in the
electrodes recorded close to the maternal heart, which are not extractable using simple ICA. We should
add to this that denoising using ICA requires the manual selection of the fetal channels, while it can be
done automatically in the deflation procedure.

6 τk was previously defined in equation (7.9).
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Table 8.1: fetal ECG data PM in different iterations for the DaISy database
channel 1 2 3 4 5 6 7 8 mean
iteration
original 0.837 0.959 0.923 0.617 0.963 0.977 0.981 0.978 0.904

1 0.704 0.801 0.231 0.828 0.403 0.697 0.874 0.954 0.687
2 0.306 0.424 0.223 0.152 0.359 0.501 0.586 0.447 0.375
3 0.281 0.173 0.063 0.151 0.150 0.459 0.268 0.316 0.233
4 0.276 0.169 0.062 0.151 0.152 0.284 0.277 0.316 0.211
5 0.078 0.061 0.058 0.012 0.135 0.281 0.270 0.305 0.150

(a) Original channels (b) First Iteration

(c) Second Iteration (d) Third Iteration

(e) Fourth Iteration (f) Fifth Iteration

Figure 8.6: The results of the proposed method on the DaISy fetal dataset in five iterations
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(a) ICA (b) Deflation+πCA

Figure 8.7: Comparison of the fetal ensemble average extracted by (a) ICA and (b) the deflation method
followed by πCA from the DaISy database

Figure 8.8: Residual fetal components extracted by ICA (in red) and the deflation procedure (in blue)
from the DaISy database
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Table 8.2: fetal ECG data PM in different iterations for the second database
channel 1 2 3 4 5 6 mean
iteration
original 0.291 0.623 0.809 0.790 0.791 0.963 0.705

1 0.515 0.527 0.245 0.733 0.556 0.875 0.575
2 0.471 0.527 0.198 0.680 0.477 0.510 0.477
3 0.266 0.492 0.156 0.019 0.033 0.499 0.244
4 0.112 0.378 0.076 0.019 0.032 0.321 0.156
5 0.056 0.026 0.082 0.006 0.021 0.242 0.072

Second Dataset

The second dataset was recorded in the Biological Signal Analyses group, München, Germany7 [181]. It
consists of five abdominal channels and one thoracic channel for recording the maternal ECG. The data
has a sampling rate of 1600Hz. This dataset was a special case in which, due to the specific electrode
configuration, none of the common linear transforms including PCA, ICA using FastICA, JADE, SOBI,
and πCA achieved in separating the maternal and fetal subspaces. It was therefore a suitable dataset for
evaluating the deflation procedure.

The original dataset and the fetal signals after maternal ECG removal extracted by five iterations
of the deflation method are seen in Fig. 8.9. In Table 8.2 the PM after each iteration of the deflation
method is listed. We can again see that the maternal ECG has been effectively removed in five iterations.

8.5 Summary and Conclusion

In this chapter, a general deflation framework was presented for the separation of a desired signal subspace
of arbitrary dimensions from noisy multichannel (and possibly degenerate) mixtures of signal and noise.

While the method is general and may be adapted to different applications, we specifically focused
on the extraction of fetal ECG signals from maternal abdominal recordings. For this application the
developed method is partially based on the Bayesian filtering framework developed in Chapter 5 and the
multichannel periodic component analysis of Chapter 7. The results of the proposed method were applied
on simulated and real data.

Following our discussions in Chapter 6, ECG signals of either the mother or the fetus, have several
dimensions. Other biosignals and structured noises can also occupy several dimensions. Therefore,
multichannel recordings having six to eight channels can often become degenerate mixtures of the desired
and undesired sources, which means that we can not retrieve all dimensions of the fetal cardiac signals.
In this case, the proposed method, which is able to remove the maternal contaminants without reducing
the rank of the observations, can be very effective for retrieving the weak fetal components.

As compared with simple denoising schemes, the deflation procedure is more effective; but computa-
tionally more expensive. However, due to the simplicity of GEVD as compared to ICA methods based on
approximate joint diagonalization, the proposed method can be more efficient. The cost of this improved
performance is the need for a priori information about the signal and noise subspaces.

The performance of the deflation method highly depends on the performance of its decomposition and
denoising steps. From (8.10), it is seen that the output of each iteration of this algorithm is equal to the
original input vector minus a summation of terms corresponding to the undesired signals. However, an
open question that requires further study is whether the deflation procedure is stable and under which
(theoretical) conditions does it converge to the desired subspace.

7 This dataset has been recorded by Dr. Evelyn Huhn and provided by Dr. Raphael Schneider from the Biological Signal
Analyses group, München, Germany.
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(a) Original channels (b) First Iteration

(c) Second Iteration (d) Third Iteration

(e) Fourth Iteration (f) Fifth Iteration

Figure 8.9: The results of the proposed method on the second fetal dataset in five iterations





Chapter 9

Model-Based Bayesian Filtering of
Cardiac Contaminants from
Biomedical Recordings

9.1 Introduction

The Bayesian filtering framework presented in Chapter 5 was originally developed for ECG denoising.
However, as we showed in Section 5.4 and Chapter 8 the same procedure may be used for eliminating
undesired ECG signals, such as the maternal ECG, from the desired background signals, such as the
fetal ECG. It was later noticed that the same idea could be used as a general framework for removing
cardiac contaminants (CC) such as the ECG, ballistocardiogram1 (BCG), or MCG, from other biomedical
recordings. This idea has been since implemented and tested over several databases from rather diverse
applications, in which conventional CC removal techniques had not led to satisfying results.

In this chapter, the details of this general framework are presented and simulated data are used to
quantify its performance. Moreover, several examples from real world applications are presented, on
which we have evaluated the method up to now. The proposed method is a filtering framework with
several tunable parameters, which enables it to be simply adapted to different applications. Some general
rules are presented throughout the chapter, by which the filter parameters can be manipulated and tuned
for different situations.

For the sake of brevity, we only present the EKS results that were shown to outperform the EKF and
UKF in a wide range of signal SNRs in Chapter 5.

9.2 Cardiac Artifact Removal

In (9.1) and (9.2), the nonlinear state-space model of the ECG, presented in Chapter 5 are rewritten:
Process equation: 

θk+1 = (θk + ωδ) mod (2π)

sk+1 = −
N∑

i=1

δ
αiω

b2
i

∆θi exp(−∆θ2
i

2b2
i

) + sk + η,
(9.1)

Observation equation: {
φk = θk + uk

yk = sk + vk,
(9.2)

where δ is the sampling period, ∆θi = (θk − θi) mod (2π), ω = 2πf , f is the beat-to-beat heart rate,
and N is the number of Gaussian functions used for modeling the shape of the desired ECG. In (9.1) and
(9.2), θk and sk are assumed as the state variables, and ω, αi, θi, bi and η are assumed as i.i.d Gaussian
random variables considered as process noises.

1 The ballistocardiogram is a record of the body’s recoil caused by the cardiac contraction.
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yk

ŝk v̂k

φk

Figure 9.1: The overall denoising scheme. As shown in this figure the R-peaks of the contaminating
signals (CC) may either be detected from an arbitrary reference ECG or from the noisy biosignal after
baseline wander (BW) removal.

The basic difference between our approach here and the method in Chapter 5, is that we are interested
in the residual signal vk rather than sk. In other words, sk represents the CC, while vk is the signal of
interest. Therefore, we can model the CC with the dynamic model in (9.1) and apply the KF to find an
estimate of the artifacts, namely ŝk. The background signal may then be found as follows:

v̂k = yk − ŝk, (9.3)

which is the innovation signal of the KF.
The overall filtering procedure is illustrated in Fig. 9.1 and may be summarized as follows:

1. Baseline wander removal. For the reliable extraction of the average CC templates, the baseline
wander of the noisy records should be removed beforehand.

2. R-peak detection. These peaks are required for constructing the phase signal φk, which is in terms
needed for synchronizing the noisy ECG with the dynamic model in (9.1). They are also used for
extracting the mean CC by synchronous averaging over the heart beats. Depending on the power of
the CC, as compared with the background signals and noise, the R-peaks may be detectable from
the noisy recordings or from any arbitrary ECG channel synchronously recorded with the noisy
dataset.

3. CC template extraction. Using the R-peaks, the ensemble average (EA) and standard deviation of
the CC are extracted through synchronous averaging. Several methods have been proposed in the
literature for synchronous averaging. One of the most effective approaches in this area is the Robust
Weighted Averaging method [121], which outperforms conventional EA extraction methods and is
useful for noisy nonstationary mixtures.

4. Model fitting. As proposed in Chapter 5, by using a nonlinear least square estimation, the parameters
of the Gaussian kernel defined in (9.1) are found, such that the model will best fit the mean CC
waveform.

5. Covariance matrix calculations. The standard deviation of the average CC is used to find the entries
of the covariance matrices of the dynamic model noise Qk, and measurement noise Rk.

6. Filtering. Having extracted all the required parameters, the CC may be estimated by the KF
framework and the desired background signal is found from (9.3).

A rather general algorithm for selecting the filter parameters was presented in Chapter 5. Some other
rules-of-thumb are summarized in Table 9.1, by which the original filter parameters can be adapted to
different situations.

Note further that for online applications or denoising long nonstationary datasets, all of the model
parameters and the covariance matrices may be updated in time, by recalculating them from the most
recent cardiac beats.
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Table 9.1: Rules chart for the manipulation of the filter parameters
Situation Comments
Strong baseline wanders Remove before Kalman filtering
Low SNR (strong CC) Decrease the corresponding Rk entries
High SNR (weak CC) Increase the corresponding Rk entries;

additional ECG reference may be required
for R-wave detection

Desired signal with highly colored spectrum Remove the baseline wander as much as
possible

Desired signal highly nonstationary Allow the filter to adaptively change Rk

using the KF innovation signal according to
the procedure proposed in Chapter 5

Irregular CC (high inter-beat variations of CC) Increase the corresponding Qk entries
Desired signal highly non-Gaussian Better performance may be achieved

using UKF
Batch offline processing EKS outperforms EKF
Online processing Use EKF or fixed-lag EKS with a single

heart beat delay for parameter estimation

9.3 Bayesian Filtering versus Conventional Techniques

Cardiac signal processing is a highly developed and competitive area that might raise suspicions about the
effectiveness of the proposed method. However, we can argue that this method is in fact a generalization
of conventional denoising techniques.

In fact, from a filtering point of view, Kalman filters can be assumed as adaptive filters that con-
tinuously move the poles and zeros of their transfer functions, according to the signal/noise contents of
the input signal and the prior model of the signal dynamics. This feature allows the filter to adapt with
different spectral shapes and temporal non-stationarities. The method is therefore more general than
other frequency domain filters such as FIR, IIR, and Wiener filters that use fixed pole-zero configurations
in their transfer function.

A similar argument holds about wavelet denoising (WD) [107], as it performs a sort of ‘blind thresh-
olding’ between the signal and noise, without using the temporal structure and pseudo-periodicity of the
cardiac contaminants. The proposed method may nevertheless be linked with the known WD techniques,
by applying the Bayesian filter in the wavelet domain rather than the original time domain.

As explained in the previous section, since the ensemble average (EA) of the CC is required for training
the KF parameters, the proposed method is also comparable with conventional EA removal techniques
that simply remove the EA of the contaminating signals from the noisy recordings [5]. The proposed
method is again more general in the sense that it adaptively changes its ensemble average template,
accounting for the inter-beat variations of the CC. In fact, in the extreme case that the desired signal is
very clean (with low cardiac contamination), since the KF is seeking for the CC that is highly defected
by the background signal, the observation signal of the KF is not ‘trusted’, and the filter will follow its
dynamic model that was trained by the EA of the CC. Mathematically speaking, in this case, the entries
of the observation noise covariance matrix Rk are large and the Kalman gain is small [105]. The proposed
method therefore reduces to simple EA subtraction. On the other hand, for extremely noisy signals (with
high cardiac contamination), the Rk entries will be rather small and the filter will ‘trust’ the observations
for CC estimation. Therefore, the filter fully tracks the CC within the input signal.

Hence, the Bayesian approach theoretically outperforms many of the conventional techniques, in the
same manner that model-based parametric methods typically outperform nonparametric methods, as
long as their underlying model is consistent [25]. However, it does not seem to be possible to prove this
claim in the general case, and case-by-case quantitative studies are required for different applications.
In what follows, we present the results of applying the proposed method on simulated data and typical
results that were achieved in several diverse applications, for which, conventional denoising methods did
not yield satisfying results.
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9.4 Applications

9.4.1 Simulated Data

The application domain of the proposed method is rather vast, ranging from low amplitude EEG to
nonstationary EMG. In these applications, the SNR and spectral color of the target signal are very
different. Therefore, in order to show the applicability of the proposed method in these applications,
we can use spectrally colored signals to simulate arbitrary signals representing the EEG or EMG. Then
by diluting this target signal with ECGs (or simulated ECGs) in different strengths, noisy signals are
achieved that may be used for performance studies. For illustration, in Fig. 9.2(a) a thirty second segment
of an arbitrary signal with a frequency range below 25Hz and a 1/f spectral shape is depicted. This signal
was diluted with a rather clean ECG, such that its SNR reduced to 7.6dB. The resultant signal, depicted
in Fig. 9.2(b), was then denoised by the EKS. The denoised signal can be seen in Fig. 9.2(c). In this
example, the output SNR was increased to 15.1dB using the proposed method. The periodicity measure
(PM), defined in Section 8.4.2, for the original, noisy, and denoised signals were 0.095, 0.179, and 0.074,
respectively.

For a consistent quantitative study, Monte Carlo simulations were carried out with different input
signals and by sweeping the SNR and spectral color of the target signal over the entire range of their
practical values. There are different ways of generating spectrally colored signals. Here we adopt the
approach that we used in Section 5.4.2, i.e., we model the signal color by a single parameter β representing
the slope of a spectral density function that decreases monotonically with frequency.

On the other hand, for simulating the cardiac artifacts, the MIT-BIH normal sinus rhythm database
was used [72, 160]. This database has a sampling rate of 128Hz. From this database, 20 low-noise segments
of 30 seconds ECG without considerable artifacts were visually selected from different channels. Next,

(a) Original

(b) Noisy

(c) Denoised

Figure 9.2: Results of the EKS on a mixture of simulated signal plus ECG artifacts. The (a) original,
(b) noisy, and (c) denoised signals can be seen in this figure. The SNR of the noisy signal was improved
from 7.6dB to 15.1dB using the EKS.
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normalized portions of these segments were added to the simulated target signals to achieve simulated
signals in different SNRs. These signals were filtered by the proposed method. In high SNRs, in which
the ECG peaks were not detectable from the noisy signal, the required R-peak detection was performed
on the original ECG, which is equivalent to using an arbitrary reference ECG channel, as shown in Fig.
9.1.

The overall simulation procedure was repeated 10 times for each of the 20 ECG segments, in different
SNRs and with different spectrally colored target signals. The input SNR was swept in the range of
-20dB to 20dB, in 5dB steps, and the signal spectral parameter β was swept in the range of 0 (white
noise) to 2.5 (beyond brown noise), in 0.2 steps. This range of parameters is believed to be sufficient for
simulating practical scenarios2.

The SNR improvement achieved by the proposed filtering procedure was finally averaged over the 200
results (20 ECG segments × 10 trials). The result of this study is depicted in Fig. 9.3. This result shows
an SNR improvement surface, continuously changing according to the input SNR and spectral color. It
is seen that the SNR improvement is generally better in low SNRs than in high SNRs. This was already
expected, since in high input SNRs there is not very much of CC to be removed by the filter. The SNR
improvement also generally increases as the signal spectrum becomes more colored. This is partially due
to the fact that a high spectral color corresponds to a high β value in (5.16), representing a narrow-band
signal. According to the filtering scheme in Fig. 9.1, such components are not affected by the KF, as they
are bypassed by the BW removal block. However, in Fig. 9.3 it is interesting to see that in input SNRs
above 5dB, a minimum SNR improvement is achieved for β ≈ 1, i.e., for a target signal having a pink
spectrum. This can be explained by considering the KF as an adaptive filter that adaptively changes its
input-output transfer function in the frequency domain, to separate the signal from noise. This separation
becomes more difficult, when the target signal and the CC have similar spectral shapes. Therefore, the
minimum performance around β = 1 indicates that the CC used in our Monte Carlo simulations were
spectrally closer (on average) to a pink spectrum than other spectral shapes. Therefore, the filtering of
the CC has been most difficult for β ≈ 1, leading to smaller SNR improvements at the filter output.

Practical target signals do not usually have a monotonically decreasing spectrum. However, from
the Monte Carlo simulations in Fig. 9.3, the approximate performance of the proposed method may be
roughly predicted for different applications, depending on the SNR and spectral color of the target signal.

The PM, defined in (8.18), was also calculated for the BW removed simulated data, before and after
the filtering procedure. As explained before, an effective CC removal should decrease PM (although
not being a sufficient measure of performance). This can be seen in the results shown in Fig. 9.4. Note
however that from Fig. 9.4(a) it is seen that in high input SNRs and low spectral colors (target signal close
to white noise), the input PM is already rather low and the filter does not decrease it more. Nevertheless,
the output PM is always less than the input PM.

It should also be noted that results of Figs. 9.3 and 9.4 are an underestimate of the actual performance,
since for these simulations the KF parameters were all selected in an automated way from the noisy signals,
while in real applications (especially in offline processing), we can always fine-tune the parameters for the
specific signal.

Figure 9.3: SNR improvement results achieved on simulated data in different input SNRs and different
spectral colors.

2Refer to [127] for some typical spectral curves.
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(a) (b)

Figure 9.4: Periodicity measures (PM) achieved on simulated data in different input SNRs and different
spectral colors, (a) before and (b) after denoising. The decrease of PM is used as a necessary, but not
sufficient, measure of the filtering performance.

9.4.2 Single-Channel Fetal ECG Extraction and HRV Analysis

The first example is the six channel maternal abdominal signals used in the second example of Section
8.4.2. As mentioned there, this dataset was a degenerate mixture of maternal and fetal signals, and
the fetal components were not separable from the maternal components with typical linear multichannel
analysis methods. In Section 8.4.2 we used the deflation method for retrieving the fetal components.
However, looking at the first channel of this data depicted in Fig. 9.5, we notice that the fetal SINR is
rather high. In this figure, the R-peaks can be clearly seen in this channel with positive peaks while the
maternal signal appears as negative peaks. Therefore, for HRV analysis that only requires the RR-interval
sequence (and not the ECG morphology), we might achieve in extracting the fetal signals by using the
CC cancellation method, for maternal ECG estimation and removal. After that due to the high SNR of
the fetal components, the R-peaks can be detected from the resultant signal. As a preliminary step, the
baseline wander of the signal was removed by using a two-stage moving median filter with the window
lengths of 200ms and 600ms. In Appendix D, we will show that this method of baseline wander removal
is rather robust and effective. Next, the CC cancellation procedure of Section 9.2, was applied on 100s
of the preprocessed data to remove the maternal ECG. The fetal ECG found by this method can be seen
in Fig. 9.6. We can see that the maternal ECG has been effectively removed, leaving behind the fetal
ECG, which may be used for HRV analysis.

In order to extract the HRV of the fetus, the fetal R-peaks were detected with a robust R-peak
detector based on matched filtering (cf. Appendix D). The original 100s data, the fetal signals after
maternal ECG removal using the EKS, and the fetal HRV are depicted in Fig. 9.7. From this figure, we
can notice some misdetections of the fetal R-peaks, which have led to errors in the fetal HRV sequence.
These cases correspond to the very noisy epochs of the data and also to the time instants in which the
maternal and fetal waves have coincided with each other and the fetal components have been removed
as part of the maternal ECG. It is rather difficult to prevent these minor cases in a long set of single-
channel recording; but we can do so using multichannel recordings with multichannel methods proposed

Figure 9.5: A typical segment of channel 1 of the dataset, including the fetal and maternal ECG
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Figure 9.6: The signal of Fig. 9.5, after maternal ECG removal using the EKS

(a) original data

(b) EKS result

(c) fetal HRV

Figure 9.7: (a) A segment of the original data, (b) the fetal signals after mECG removal, and (c) the
estimated fetal HRV. We can see that the fetal R-peaks have been misdetected at some points and have
caused errors in the HRV sequence.

in previous chapters. In this example, the average of the fetal heartbeat, discarding the misdetections, is
about 136 beats/minute.

9.4.3 EEG Denoising

The effective removal of cardiac artifacts such as the ECG, MCG, and the BCG artifacts from EEG
and MEG recordings, remains a challenging issue. The conventional method of CC cancellation, is
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to subtract the ensemble average (EA) of the CC, either directly or adaptively from the noisy brain
recordings [194, 5, 4]. However, EA subtraction is not enough because it does not account for inter-beat
variations of the cardiac waveforms. More effective means of EEG denoising are KF-based approaches
that use additional channels such as the electrooculogram (EOG) [92], or a motion channel attached to the
temporal artery [21], for recording the BCG and motion artifacts. In these works, the CC of the EEG has
been approximated by a linear mixture of the EOG or an artery channel, and the weights of the mixture
have been estimated by a KF. The drawback of these approaches is that they require additional EOG or
reference artery channels. Moreover, due to the three-dimensional propagation of the cardiac potentials,
the CC recorded from different leads can not be reconstructed from a single reference channel, unless
the reference channel is recorded from a location close to the distorted channel, or alternatively, multiple
reference channels are used. Both of these methods are practically limiting and do not fully remove the
artifacts. A comparative study of the different methods may be found in [78]. Other methods, based on
wavelet transforms and nonlinear noise reduction [216], and ICA [189, 128], have also been proposed.

With this background, the method explained in previous sections was used for removing CC from
EEG signals recorded during an fMRI experiment. In this case, the CC of the EEG can be considered
as a mixture of ECG and BCG signals. The presented method may be considered as an extension of the
work presented in [194, 92, 21]. The advantage of the proposed method over these previous approaches
is that the overall shape of the contaminating ECG plus BCG is extracted from the noisy EEG channel
itself, without the need of any reference BCG channels or lead projections. Next, by using the extracted
waveform, the artifacts are removed by an EKF or EKS. Note that in the proposed method, a single ECG
channel is also required for R-peak detection, which can be simultaneously recorded from any arbitrary
ECG lead.

This idea was tested on a dataset consisting of an EEG channel recorded from the standard AF8 lead
of an awake subject in rest condition with closed eyes, during an fMRI experiment3. An arbitrary ECG
channel was also simultaneously recorded from the subject. The sampling rate of the dataset was 250Hz.
Visually inspecting the data, the EEG appeared to have considerable artifacts that were temporally
synchronous with the ECG beats. These artifacts are clearly seen in the EEG channel depicted in Fig.
9.9(b). In order to remove the CC, the single ECG channel was used to localize the artifacts within the
EEG recordings. For this, the baseline wander of the raw data was removed and the R-peaks of the
ECG were detected from the ECG channel. In this example, a two-stage median filter, with 200ms and
600ms window lengths, was used for baseline wander removal. Next, by using the R-peak information,
the baseline removed EEG channels were synchronously averaged over the ECG period and the average
and standard deviation of the ECG beat template were extracted. This gave the average shape of the CC
(ECG plus BCG) that were contaminated over the EEG. The resultant mean and standard deviation bars
can be seen in Fig. 9.8, for the reference ECG channel and the EEG before and after filtering. As we see,
the CC of the EEG in Fig. 9.8(b), seem to be smoothed by the fMRI magnetic field and do not resemble
the reference ECG in Fig. 9.8(a). This means that conventional adaptive noise cancellation ideas that
remove linear mixtures of three orthogonal ECG leads from the EEG channels are not applicable to this
data.

Next, using the average CC template, the parameters of the Gaussian mixtures required for the EKS
were extracted according to the steps described in Chapter 5. Finally, by applying the EKS to the noisy
EEG recording, the CC was estimated from the background EEG. The noise free EEG signal was achieved
by subtracting the estimated CC from the original noisy recording. In Fig. 9.9, a typical segment of the
resultant EEG is plotted versus the original AF8 channel. As it can be seen, the EKS has effectively
removed the CC from the EEG channel. The PM defined in (8.18), was 0.42 for the original AF8 channel,
0.07 using conventional EA subtraction, and 0.04 after applying the proposed method. Even though
the PM values of conventional EA subtraction and the proposed method are rather close, the proposed
method was found to be more robust to inter-beat deviations of the cardiac signals.

The spectral density functions of the original and denoised EEG signals are depicted in Fig. 9.10.
As it is seen, the filtering procedure has changed the spectrum in the theta and alpha bands, which are
important frequency bands of the EEG spectrum. This implies that spectral analysis of the EEG without
CC removal can be rather misleading.

Another example is presented in Fig. 9.11, for an EEG segment of the MIT-BIH polysomnographic

3 The EEG recordings used in this section have been provided by Dr. Christophe Phillips from the Cyclotron Research
Centre, Liege, Belgium.
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(a) Mean ECG (b) Mean EEG (before denoising) (c) Mean EEG (after denoising)

Figure 9.8: The average and SD-bars of the (a) ECG, (b) EEG before denoising, and (c) EEG after
denoising, by synchronous averaging of the data using the ECG R-peaks.

(a) Reference ECG channel

(b) Original AF8 channel

(c) Denoised AF8 channel

Figure 9.9: Results of the proposed method on a segment of EEG signals recorded during an fMRI
experiment. (a) Reference ECG channel, (b) Noisy AF8 EEG channel, (c) AF8 channel after ECG
removal.

database, recorded during sleep from the C4-A1 channel, with a sampling rate of 250Hz[161]. From this
figure, we can again notice that the CC peaks that were synchronous with the ECG R-peaks have been
effectively removed, while the non-ECG contents and the alpha rhythms have been preserved. The PM
of the noisy and denoised signals were 0.15 and 0.001, respectively. The noisy and denoised signal spectra
are also compared in Fig. 9.12, where we can see that the signal spectrum has been considerably changed
after CC removal, especially in the beta band and higher frequencies.
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Figure 9.10: The spectral estimate of the original and denoised EEG signals, from the fMRI experiment
data. The difference of the two spectra is plotted at the bottom.

(a) Reference ECG channel

(b) Original EEG channel

(c) Denoised EEG channel

Figure 9.11: Results of the proposed method on a segment of EEG signals from the MIT-BIH Polysomno-
graphic Database. (a) Reference ECG channel, (b) Noisy C4-A1 EEG channel, (c) C4-A1 channel after
ECG removal.

9.4.4 EMG Signal Denoising

Another tested application for the proposed method was the removal of ECG contaminants from di-
aphragmatic EMG signals recorded from an intraoesophageal electrode 4. In this application we were
interested in the extraction of diaphragmatic EMG bursts synchronous with the respiration. The exact
detection of the beginning and ending points of the EMG burst are widely used in respiratory studies.
However, the recorded EMG are usually highly contaminated with ECG. The conventional method for

4 The EMG recordings used in this section have been provided by Dr. Vincent Vigneron from the Laboratory of
Informatique, Biologie Intégrative et Systèmes Complexes (IBISC), CNRS FRE 2873, Evry, France.
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Figure 9.12: The spectra of the original and denoised EEG signals, from the MIT-BIH Polysomnographic
Database. The difference of the two spectra is plotted at the bottom.

removing such artifacts is to detect the QRS-segments of the ECG and to remove their EA or to directly
set them to zero. This however removes considerable portions of the EMG signal and causes spurs in the
EMG spectrum.

For this example, the procedure was similar to the previous example. Since the CC was strong, the
R-peaks of the ECG were directly estimated from the noisy recording, from which the ECG EA was
calculated. Next, the dynamic model parameters were selected according to the EA of the ECG artifacts
and the EKS was applied to the noisy recordings. After estimating the ECG and removing it from the
original recordings, the residual signal contains the desired diaphragmatic EMG. For this application,
due to the nonstationary nature of EMG bursts, the adaptive modification of the measurement noise
variance proposed in Section 5.3.4, was used. This procedure was based on the monitoring of the KF
innovation signal, allowing the filter to adapt the KF measurement noise variance Rk, according to the
noise contents of the signal, such that the innovation signal becomes spectrally white5.

An example of an EMG burst signal denoised with this approach is depicted in Fig. 9.13. In this
example, the PM before and after ECG cancellation were 0.68 and 0.002, respectively. The resultant
signal may be further used for EMG burst analysis and depending on the quality of the recorded signals,
additional post-filtering may be required to reject the out-of-band noise.

9.5 Summary and Conclusions

In this chapter, a model-based Bayesian filtering framework was presented for removing cardiac contam-
inants from various biomedical signals. It was shown that the method is applicable to as few as single
channel recordings with an arbitrary reference ECG/MCG channel for R-peak detection.

In summary, the general idea is to use a priori knowledge of the pseudo-periodic structure of ECG,
MCG, or BCG signals to separate the desired and undesired parts of the observations. This method is
hence using the temporal and frequency domain information about the CC. Nevertheless, when multi-
channel recordings are available, one can use the additional information provided by the spatial diversity
of the sensors, which is the essence of spatial filtering methods presented in previous chapters. From
this point of view, this filtering framework can be integrated within the denoising block of the deflation
procedure developed in Chapter 8.

For the sake of brevity, the presented results were only based on the EKS. However, other types of
Bayesian filters such as the UKF and the particle filter (PF) can be used in the same manner for highly
nonlinear and non-Gaussian noise scenarios [84].

Due to the recursive structure of the KF, the proposed method is also computationally efficient and
of special interest for real-time applications. Generally, the computation time of this method is linearly
proportional to the signal length in samples. For the currently developed Matlab® source codes (available
at [167]) the computation time is already close to real-time on a 3GHz CPU for signals with a sampling
rate of up-to 1kHz, except for the CC template fitting step of the algorithm that is carried out by the user

5Note that in the KF context, the whiteness of the innovation signal implies that all the information concerning the
estimated process, up to the second order statistics, have been extracted from the observation signal.
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(a) Original noisy EMG channel

(b) Residual EMG bursts

Figure 9.13: Results of the proposed method on EMG recordings highly contaminated with ECG.

through an interactive graphical user interface, which allows the user to adjust the number and locations
of the Gaussian kernels used for fitting the EA of the cardiac waveforms. However, these Matlab® codes
may be further optimized and converted into low-level languages for being used in pre-processing units
of clinical monitoring systems.



Chapter 10

Conclusions and Future Works

In this research the problem of extracting fetal cardiac signals from an array of maternal abdominal
recordings was studied. Various methods were proposed for this problem and were evaluated on real
and synthetic signals using realistic fetal ECG models. Further issues concerning the interpretation and
dimensionality of these signals were also studied. Considering the very low SNR of fetal cardiac signals,
the main contribution of this work was to develop single and multi-channel signal processing tools that
use a priori information of different natures, about the fetal and contaminating signals, to improve the
quality of fetal cardiac signal extraction.

More specifically, the method developed in Chapter 5 is a novel approach that utilizes the temporal
dynamics of cardiac signals within a Bayesian filtering framework. Therefore, considering the advances in
Bayesian methods, we believe that this framework can serve as a basis for utilizing Bayesian techniques
for cardiac signal processing and analysis.

It is generally known that semi-blind source separation methods based on a priori information, are
more effective than totally ‘blind’ methods. Therefore, a challenging (and ad hoc) issue in the source
separation context, is how to use the existing a priori information to solve specific problems. The
periodic component analysis technique presented in Chapters 7 and 9, is one such method that uses the
pseudo-periodicity of cardiac signals for their separation.

The notion of distributed sources, as compared with point or vectorial sources, presented in Chapter
6, and the interpretation of components extracted by linear decomposition methods, is also an important
contribution of this study. In this context, we should also consider the necessity of preprocessing, e.g.,
baseline wander removal and its impact on the extracted components.

Although linear decomposition techniques are commonly preferred over the nonlinear ones (mainly due
to their relative simplicity), issues such as signal mixture degeneracy and noise, limit the performance
of these methods. The deflation procedure developed in Chapter 8, was a technique that combined
the benefits of linear and nonlinear filtering for dealing with the problem of data degeneracy (through
appropriate use of the signal priors), and without loosing the data dimensions.

Here we add that the methods proposed in previous chapters should not be envisaged as a replacement,
but rather as complements for the existing methods. In fact, due to the various objectives, measurement
setups, fetal conditions and gestational ages, SNR, etc., it is not reasonable (nor possible) to present a
one-for-all universal filtering solution. What is more feasible is to focus on specific applications, such as
fetal R-peak detection using a fixed electrode configuration and perhaps for specific ranges of gestational
age. This approach results in methods and tools that can be used for developing monitoring systems with
specific applications. An alternative approach, which was adopted in this project, was to try to develop a
toolbox by which a set of methods can be rearranged for doing a certain job, e.g. maternal ECG removal
or fetal ECG enhancement, with a minimal interaction with an expert operator. In this approach, for
each case, depending on the aforementioned variable factors, a signal processing scenario can be setup
that benefits from a set of algorithms for achieving the desired objective. For instance, if we are only
interested in fetal heart rate variability analysis and the recorded data is rather clean, a simple maternal
ECG canceller followed by a peak-detector may be satisfying. However, for morphologic studies in low
SNRs a combination of decomposition and filtering methods may be required. It is therefore important
to know the strength and weak-points of each method. In Table 10.1 (page 118), a general comparison is
made between the previously existing and the proposed methods. Accordingly, each method has its own
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benefits and limitations and is applicable for specific scenarios.
We believe that the proposed methods are specifically powerful in the following cases:

• Maternal cardiac interference cancellation using any electrode configuration from single or multiple
channels with minimal influence on fetal components; as long as the maternal R-peaks are detectable
either from the noisy data itself or any arbitrary reference channel.

• Fetal cardiac signal enhancement using the fetal cardiac peaks.

• Decomposition of a desired subspace of cardiac signals from undesired signal subspaces. The sub-
space dimensions need not be known a priori nor fixed, and the signal mixture can be degenerate.

• More generally, the denoising and enhancement of any class of signals characterized by a pseudo-
periodic structure.

• A general framework for the decomposition of multichannel mixtures of signals and noises, based
on a priori information concerning the signal and noise structure.

As we see the methods that we developed for cardiac signals are highly based on the effective use of prior
information, especially the pseudo-periodicity of cardiac signals. Although this is an important factor
that can improve the signal quality, it can also be considered as a point of weakness for the cases that:

• The R-peaks (either for the mother or the fetus) are not well-detected.

• The cases in which the assumption of pseudo-periodicity does not fully hold. For example, for some
pathologic cases such as Premature Ventricular Contractions, where the ECG/MCG morphology
are not consistent, there can be considerable morphologic variations from beat-to-beat. Therefore,
methods such as the πCA or decomposition by deflation will not be very effective in these cases.
We can nevertheless use these methods for the cases in which only one of the maternal or fetal
ECG/MCG are abnormal. We have a similar limitation for the Bayesian filtering framework,
except that in this case the statistical variations of the filter’s innovation signal can be used as an
indication of signal abnormality.

Despite these limitations, it may however be argued that no filtering technique is fully blind. In fact,
any other filtering procedure is also using some a priori model or other prior information from the time,
frequency, space, or feature domain, and up to now no general filtering procedure has been developed
which can be universally applied to normal and abnormal cardiac signals.

10.1 Future Works

Eternally, there are infinite numbers of questions to answer and works to do.... In the following, some of
the questions and possible future fields of study concerning the extraction and analysis of fetal cardiac
signals are noted.

• All practical blind source separation problems contain portions of full-rank or non-full rank noise.
Therefore, from the estimation theoretical perspective, there is always a theoretical limit on the
accuracy of the estimated mixing (demixing) matrices and the estimated signals. In previous re-
search, this issue has been studied in the context of ICA, by using Cramér-Rao bounds [32, 157,
27, 225, 109, 200, 50]. These ideas can be extended to the calculation of similar theoretical bounds
for other decomposition techniques and also for the estimated signals. Specifically, for ECG signals,
we believe that the dynamic model presented in Chapter 5 can be used as an appropriate tool for
this purpose. The calculation of such theoretical bounds can also be helpful for finding theoretical
benchmarks for the performance of different ECG filtering techniques.

• Linear decomposition techniques are very common for blind and semi-blind source separation prob-
lems. In these methods, some measure of signal separability, such as non-gaussianity, second or
higher-order statistics, periodicity, spectral contrast, or etc. is maximized to achieve the desired
transform. However, using many of these methods we frequently find very similar solutions re-
gardless of the cost-function that was maximized. These similarities are rather common between
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a broad range of linear transforms and seem to be due to an intrinsic behavior of linear models
themselves, which impose a very strong constraint on the data model1. It is therefore interesting to
study such common characteristics to find intrinsic properties of linear and nonlinear decomposition
techniques, regardless of the type of criteria that are maximized.

• The modeling of abnormal ECG signals (either for adults or fetuses) is another issue of interest. The
dynamic models presented in Chapter 4 can effectively generate multichannel normal or abnormal
beats with consistent morphology. However, cardiac abnormalities usually appear as occasional odd-
beats between a set of normal ones. Therefore, a smooth transition between normal and abnormal
beats should also be considered in our morphologic models. We believe that the Hidden-Markov
Model (HMM) is an effective means for this purpose. A preliminary idea of this extension was
recently presented in [40]. The HMM-based extension of the ECG generator can also be used
within the Bayesian filtering framework of Chapter 5 for, at the same time, denoising and detecting
abnormal ECGs.

• The clinical validation of the presented methods should also be considered in future works. In
fact, the proposed methods were presented as general ECG processing tools and were validated on
discrete databases, each having a different recording protocol. The methods were also validated over
realistic simulated data. However, due to the lack of a unique fetal database recorded at different
gestational ages and from various subjects, the presented methods have not yet passed standard
clinical validation procedures. This is an essential step that should be taken before using any of the
proposed methods in clinical monitoring systems.

• In Chapter 7, a primary attempt was made to track fetal cardiac signals in long recordings and
to compensate for the fetal movements. This is a topic that requires further studies in future
work. One of the byproducts of this study would be the development of a canonical fetal ECG
representation with respect to the fetal or maternal body axis. Such a representation is believed to
be of significant importance for clinical morphologic studies.

1This idea originated from one of our early discussions with Dr. Vincent Vigneron from the Laboratory of Informatique,
Biologie Intégrative et Systèmes Complexes (IBISC), CNRS FRE 2873, Evry, France.
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Appendix A

Angles Between Subspaces

Let F and G be subspaces in Rm whose dimensions satisfy1:

p = dim(F ) > dim(G) = q > 1 (A.1)

The principle angles θ1,..., θq ∈ [0, π/2] between F and G are defined recursively as follows:

cos(θk) = max
u∈F

max
v∈G

uT v = uT
k vk (A.2)

subject to:
‖u‖ = ‖v‖ = 1
uT ui = 0 , i = 1 : k − 1
vT vj = 0 , j = 1 : k − 1

(A.3)

The principal angles satisfy 0 6 θ1 6 ... 6 θq 6 π/2 and the vectors {u1, ..., uq} and {v1, ..., vq} are called
the principal vectors between F and G.

Principal angles and vectors arise in many statistical applications. The largest principal angle is
related to the notion of distance between equidimensional subspaces. Specifically, if p = q then

dist(F,G) .= ‖F −G‖2 =
√

1− cos(θp)2 = sin(θp) (A.4)

With this definition, given two matrices A ∈ Rm×p and B ∈ Rm×q (p > q) each with linearly independent
columns, the following algorithm computes the orthogonal matrices U = [u1, ..., uq] and V = [v1, ..., vq]
and cos(θ1), ..., cos(θq) such that the θk are the principal angles between ran(A) and ran(B) and uk and
vk are the associated principal vectors:

1. Compute the QR factorizations of the matrices A and B ([73] Chapter 5):

A = QARA QT
AQA = Ip , RA ∈ Rp×p

B = QBRB QT
BQB = Iq , RB ∈ Rq×q

2. C = QT
AQB

3. Compute the singular value decomposition (SVD) of C: Y T CZ = diag(cos(θk))

4. QAY (:, 1 : q) = [u1, ..., uq]

5. QBZ = [v1, ..., vq]

1 This appendix has been adopted from [73, ch. 12].
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Appendix B

On the Spikes and Bumps
Phenomenon

In Chapter 6, an over-fitting phenomenon known as spikes and bumps was introduced, which practically
occurs when applying many of the conventional ICA methods to multichannel data having many noisy
channels. This phenomenon was originally introduced in [90, 179, 178], and it was justified that in the
extreme case of having as many samples and sensors, sparse spiky signals can maximize a measure of
kurtosis; which explains their extraction by marginal distribution-based ICA methods. In [179], some
qualitative explanations have also been presented for bumpy components that appear as independent
components, when applying ICA to high-dimensional signals with 1/f spectral shape.

In our experiments, we further noticed that this phenomenon can also happen when we apply the
aforementioned ICA algorithms to spectrally colored noise (even without having any mixture of true
physical sources), and the shapes and widths of the spikes and bumps highly depend on the spectral form
of the input signals (or noises) and the number of data channels. We made some attempts to formulate
these practical findings and to relate the exact shape of the bumps with the spectral shape and number
of channels. In the following, we present some of our findings in this area. The problem is however open
to further research in future works.

Consider that we have T samples of an N -channel real random process x[n] = [x1[n], ..., xN [n]]T . Also
assume that all the channels of this process have the same spectral shape Sx(ejω). We can therefore
represent each channel x[n], as follows:

xi[n] = wi[n] ∗ h[n] (B.1)

where wi[n] is a unit-variance white noise, ∗ represents convolution, and h[n] is the innovations filter for
the process xi[n] [152, ch. 12], such that

Sx(ejω) = |H(ejω)|2 (B.2)

where H(ejω) is the discrete-time Fourier transform of h[n]. Following (B.2), we also have

h[n] ∗ h[−n] = Rx[n] (B.3)

where Rx[n] is the autocorrelation function of each channel of x[n]. We are now interested in linear
transforms of the form

y[n] =
N∑

i=1

bixi[n] = bT x[n] (B.4)

which maximize the following criterion:

C0 =
1
T

T∑
n=1

f(y[n]) subject to ‖b‖ = 1 (B.5)

where b = [b1, ..., bN ]T and f(·) is some nonlinear contrast function(CF) that we want to maximize. Using
a Lagrange multiplier λ, this constraint optimization problem may be represented as follows:

C =
1
T

T∑
n=1

f(y[n]) + λ
( N∑

i=1

b2
i − 1

)
(B.6)
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By setting to zero the derivative of (B.6) with respect to bp (1 < p < N), we have:

∂C

∂bp
=

1
T

T∑
n=1

f ′(y[n])xp[n] + 2λbp = 0 (B.7)

where f ′(y) = ∂f/∂y. We further multiply both sides of (B.7) by bp and take a summation over all
p = 1, ..., N , to find λ:

λ =
−1
2T

T∑
n=1

f ′(y[n])y[n] (B.8)

Combining (B.7) and (B.8) we find the bp as follows:

bp =
∑T

n=1 f ′(y[n])xp[n]∑T
n=1 f ′(y[n])y[n]

=
〈f ′(y[n]), xp[n]〉
〈f ′(y[n]), y[n]〉

(B.9)

By multiplying both sides of (B.9) by xp[m] and taking the summation over p = 1, ..., N , we can find a
recursive function for calculating y[n]:

y[m] = α
T∑

n=1

N∑
p=1

f ′(y[n])xp[m]xp[n] (B.10)

where α = 〈f ′(y[n]), y[n]〉−1 is a scaling factor. Up to now, we have not used the spectral form of x[n].
Following (B.1) we have:

N∑
p=1

xp[m]xp[n] =
∑
m′

∑
n′

h[m′]h[n′]
N∑

p=1

wp[m−m′]wp[n− n′] (B.11)

Considering that the wp[n] are unit variance white noise, the last term in (B.11) may be approximated
by:

N∑
p=1

wp[m−m′]wp[n− n′] ≈ δ[m− n + n′ −m′] (B.12)

where δ[·] is the Dirac delta function. Therefore, (B.11) simplifies to:

N∑
p=1

xp[m]xp[n] =
∑
n′

h[m− n + n′]h[n′] = h[u] ∗ h[−u]
∣∣∣
u=m−n

= Rx[m− n] (B.13)

This can be used to further simplify (B.10):

y[m] = α
T∑

n=1

f ′(y[n])Rx[m− n] (B.14)

or
y[n] = αf ′(y[n]) ∗Rx[n] (B.15)

Equation (B.15), may also be represented in the frequency domain:

Sx(ejω) =
F{y[n]}

αF{f ′(y[n])}
(B.16)

where F{·} represents the discrete-time Fourier transform. As we see, (B.15) and (B.16) provide a
compact form for relating the spectral information of the input signal x[n] with the output signals y[n].
An additional information that is given by (B.16) is that since Sx(ejω) is real, F{y[n]} and F{f ′(y[n])}
have the same phase. However, to our knowledge, there is no closed form solution for these equations,
unless perhaps for some special f(·) and Rx[n]. For instance, if we use f(u) = u4, which leads to a
kurtosis-based CF, (B.15) reduces to:

y[n] = α′y[n]3 ∗Rx[n] (B.17)
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which belongs to the class of Volterra nonlinear equations with power nonlinearity kernels, which have
some general asymptotic properties [140].

The hereby presented formulations are believed to provide a basis for finding better insights of the
practical problem of spikes and bumps. In further studies, the problems with finite number of samples,
the inaccuracies in the approximation in (B.12), and the necessity of adding additional orthogonality
constraints for the different channels of y[n], should also be considered.





Appendix C

Multichannel Decomposition of
Distributed Sources

In Chapter 6, the relationship between distributed sources and principal and independent components
extracted from multichannel observations of such sources was studied from a practical viewpoint. In this
appendix, we will show this relationship in more details for a simplified case of a finite distributed source
within a homogeneous volume conductor.

Consider a distributed source with a time varying stochastic density ρ(x, t) within a finite homogeneous
volume conductor (Fig. C.1). The field potentials due to this distribution can be represented as follows:

Φ(x, t) =
∫

ρ(x′, t)
|x− x′|p

dx′ (C.1)

where x = [x, y, z]T is the Cartesian coordinates of the observation point1, p is the decay exponent which
depends on the nature of ρ(x, t), and the integral is taken over the volume containing the distributed
source. We further assume that we make n such measurements (observations) from different locations,
each time with respect to the reference point xr. Therefore, the potential difference of each point with
respect to the reference can be written as follows:

∆Φ(xi, t) = Φ(xi, t)− Φ(xr, t) =
∫

ρ(x′, t)
[ 1
|xi − x′|p

− 1
|xr − x′|p

]
dx′ .=

∫
ρ(x′, t)D(xi,x′)dx′ (C.2)

By defining φ(t) = [∆Φ(x1, t), ...,∆Φ(xn, t)]T and G(x′) = [D(x1,x′), ..., D(xn,x′)]T , (C.2) can be
represented in the following compact form:

φ(t) =
∫

ρ(x′, t)G(x′)dx′ (C.3)

where φ(t) can be considered as a vector of differential observations (e.g. body surface potentials).
Without loss of generality, we consider these observations to be zero-mean and calculate their covariance
matrix as follows:

Rφ = Et{φ(t)φ(t)T } =
∫∫

G(x′)Et{ρ(x′, t)ρ(y′, t)}G(y′)T dx′dy′ (C.4)

where Et{·} represents averaging over time. We define Rρ(x′,y′) = Et{ρ(x′, t)ρ(y′, t)} as the cross-
correlations of the source densities of different points inside the distribution. Next, using the Karhunen-
Loève transform [152, ch. 12], Rρ(x′,y′) may be expanded in terms of a unique set of orthogonal basis
functions, namely eigen-functions:

λifi(u) = 〈Rρ(v,u), fi(v)〉, 〈fi(v), fj(v)〉 = δi−j (C.5)

where the λi are the eigenvalues and δi−j is the Dirac delta function. Next, following Mercer’s theorem,
Rρ(x′,y′) can be expanded as follows:

Rρ(x′,y′) =
∞∑

i=1

λifi(x′)fi(y′) (C.6)

1For simplicity, we have normalized the equation by the conductivity of the medium, as it does not affect our calculations.
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Figure C.1: Distributed source model and the electrode positions

Therefore, by defining the vector Ei
.=

∫
fi(x′)G(x′)dx′ and combining (C.4) and (C.6), we find:

Rφ =
∞∑

i=1

λi

∫∫
G(x′)fi(x′)fi(y′)G(y′)T dx′dy′ =

∞∑
i=1

λiEiET
i (C.7)

The EiET
i ∈ Rn×n are symmetric rank-one matrices with an eigenvalue ‖Ei‖2. Rφ is therefore an

infinite weighted sum of such positive definite matrices. Note that although the eigen-functions fi(·) are
orthogonal, the Ei are not necessarily orthogonal. Therefore, (C.7) is a ‘redundant’ decomposition of Rφ

in the n-dimensional space.
What does this equation imply? Rφ is a matrix that we directly calculate from the observed potentials,

while the λi and Ei are derived from the physical properties of the distributed source and the geometry
of the electrodes. Equation (C.7), shows how this matrix can be related to the stochastic properties of
the source density and measures of the electrode positions and distances. In fact, depending on the form
of the cross-correlation function Rρ(·, ·), the infinite summation in (C.6) and (C.7) can be approximated
by a finite number of terms. This is the idea behind the multipole expansion discussed in Chapters 3 and
6.

On the other hand, the matrix Rφ is at the heart of all multichannel decomposition techniques. For
instance in PCA, we are interested in the following decomposition:

Rφ = QDQT =
n∑

i=1

diqiq
T
i (C.8)

where Q = [q1, ...,qn] is the orthogonal eigenmatrix, D = diag(d1, ..., dn) is the eigenvalue matrix, and
the qiq

T
i are orthogonal projectors onto range(Q). Therefore, comparing (C.7) and (C.8), we can see

how the eigenvectors and eigenvalues of a set of observations φ(t), are related to the source distribution
and electrode geometry. The concept of infinite dimensions of the observations, discussed in Chapter 6,
can also be seen from the derived formulations.

Similar (but more complicated) equations can be derived for cumulant tensors [89, ch. 11], of φ(t).
These tensors can be used to relate ICA solutions based on higher-order statistics to the above-mentioned
physical properties of the distributed source.

Note that in the derived equations, we made no specific assumptions on the nature of the source
density ρ(x, t). For the case of ECG signals, taking p = 1, this density function can represent ∇ · J, the
divergence of the cardiac impressed current dipole moment density defined in Section 3.4.

In future studies, a more realistic formulation would be to consider non-homogeneous propagation
media, which as mentioned in Section 3.4 leads to some sort of ‘reflection’ sources due to the surfaces of
conductivity discontinuity.



Appendix D

The Open Source ECG Toolbox
(OSET)

Throughout the manuscript the main methods and algorithms that were specifically developed for fetal
ECG/MCG extraction were presented. Some of these methods resulted in byproducts that were not
restricted to fetal cardiac signals and were applicable to a broader range of biosignals. In this appendix
we present general explanations about some of these byproducts which had methodological novelty and
may be considered as additional contributions of this work.

Most of the proposed methods have been implemented in Matlab®. A collection of these implementa-
tions have been provided in the open source ECG toolbox (OSET), online available at [167]. This toolbox
contains the synthetic ECG/MCG generator proposed in Chapter 4 (for both adults and fetuses), the
Kalman filtering framework presented in Chapter 5, and several preprocessing functions which may be
used for ECG/MCG or even other biosignals. Snapshots of the graphical user interface of this toolbox
are shown in Figs. D.3-D.7 (at the end of the appendix). In what follows the details of some of these
functions are presented.

D.1 Baseline Wander Removal

Several baseline wander (BW) removal functions are provided in OSET, including (1) single pole lowpass
filters using forward-backward filtering to attain zero-lag, (2) bandpass DFT filters, (3) single and two-
stage moving average (MA) filters, and (4) single and two-stage moving window median (MWM) filters.

Specifically, the idea of the MWM filter is to slide a window over the signal and to assign the median
of the window to the sample at the center of each window. It is therefore rather similar to a MA filter,
except that the median value is more robust to outliers than the mean value; therefore spikes such as
the ECG (MCG) R-peaks are less likely to pass the MWM filter1. A theoretical study of the MWM
filter and its extensions may be found in [8]. The intuition behind using a two stage MWM is that the
first filter (with a shorter window length) removes the narrow QRS-wave, while the second one removes
the P and T-waves. Therefore, by subtracting the output of the second MWM filter from the input
signal, we can assure that the complete ECG (MCG) morphology is preserved and the BW components
are effectively removed. Despite the effectiveness of the median filter, its implementation requires the
sorting of the samples within the moving windows. The function is therefore slower than a MA filter.
In order to overcome this issue, we implemented the MWM filter in C++ using the QuickSort sorting
algorithm [163]. A mex-file dynamically linked library (dll) of this filter was also developed, which is
directly executable from Matlab.

In a comparative study, we performed a Monte Carlo simulation for evaluating the performance of
different BW removal methods. For this simulation, the twelve standard leads from 24 subjects of the
Physikalisch-Technische Bundesanstalt diagnostic ECG database (PTBDB) [158], were used to train
synthetic ECG signals and to generate thirty second segment ECG signals, as proposed in Chapter 4.
Next, real segments of BW noise were randomly selected from the MIT-BIH noise stress test database
[139, 159], and added to the synthetic ECG in different portions to achieve noisy ECG in various SNRs.

1It should be noted that the MWM filter is a nonlinear filter.
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The noisy signals were given to the different BW removal methods and the input-output SNR improvement
of each filter was compared as a performance measure. For each input SNR, the simulation was repeated 10
times with different BW noise segments for each of the 24 subjects and over 12 channels. The average and
standard deviation of the SNR improvement over 2880 trials (10 repetitions ×24 subjects ×12 channels)
can be seen in Fig. D.1. We can seen from these results that the two-stage MWM has outperformed

Figure D.1: The mean and standard deviation bars of SNR improvements achieved in different input
SNRs for BW removal based on (MD2) two-stage MWM filter, (MD1) single-stage MWM filter, (MN2)
two-stage MA filter, (LP) zero-lag lowpass filter, and (BP) bandpass DFT filter

the other methods. It was also experienced that the MWM filter results can be further smoothened by
applying a lowpass filter, with a cutoff frequency of 30Hz-50Hz, to the BW estimated by the MWM filter.
Other combinations of these filters, such as the alpha-trimmed mean filter [15, 8], can also be of interest
for BW removal.

D.2 R-Peak Detectors

Three R-peak detectors are provided in OSET: (1) a simple peak detector that seeks for the local peaks
that occur in a window of certain width (corresponding to the approximate heart rate), (2) the classical
Pan-Tompkins R-peak detector [151], and (3) an ad hoc matched filter. The intuition behind the latter
method is that the ECG (or MCG) morphology is rather consistent in time. Therefore, if we use one
of the ECG complexes as a reference of a matched filter and convolve the signal with this reference, the
filter output will have a peak at the points that the signal maximally match the template, i.e., under
each of the ECG complexes. Then by thresholding the matched filter output (e.g. at 0.2 of the maximum
absolute value of the filter output) and detecting the peaks that occur in a sliding window of a certain
length (shorter than the smallest expected RR-interval), we can find the actual ECG peaks. This method
was especially very effective for the detection of the twin fetal MCG peaks presented in Section 7.5, for
which the fetal MCGs were highly noisy.

Note that the matched filter peak-detector finds the time instants in which the signal maximally
matches the template segment. This time instant is not necessarily the same as the signal’s peak location
in that segment, which are found by classical peak detection methods. This leaves us with a more
fundamental question:

Where should the ECG R-peak be defined? The point that the ECG complex has a local peak,
or the center of windows having a maximal similarity (in the mean square error sense) with
other ECG complexes?

The clarification of this definition can also influence HRV studies for both adults and fetuses.
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D.3 Power-Line Noise Notch Filter

Besides the classical lowpass and bandpass filters available in OSET, a specific notch filter has also been
designed for power-line (PL) cancellation. This filter is a Kalman notch filter, which can adapt itself
to mixtures of nonstationary signals and noise. Up to now, several types of PL cancellers have been
proposed in the literature, ranging from simple second order notch filters to sophisticated adaptive filters
[58, 83, 130]. Second order notch filters are rather simple with two parameters for altering the notch
frequency and the filter’s Q-factor; but can be rather unstable or can have long transition times. More
sophisticated notch filters have also been proposed, which are able to track the frequency, phase, and
amplitude of the PL in a broad range of variations; but at the expense of higher complexity. Looking at
the problem of PL interference more realistically, we notice that PL characteristics are highly controlled
in power systems for both economic and safety reasons. The standards are even tighter, when it comes
to hospitals and clinical conditions that are in direct contact with patients. Therefore, a PL canceller
that tracks the PL frequency in the range of several Hertz or with high phase drifts would only be of
theoretical interest. With this background we proposed a rather simple linear Kalman notch filter for PL
cancellation.

We can consider the PL as a sinusoidal signal with an arbitrary amplitude and phase:

xn = B cos(ωn + φ), (D.1)

where ω = 2πf/fs, f is the 50Hz or 60Hz PL frequency, and fs is the sampling frequency. Using
trigonometric identities, (D.1) can be recursively written as follows:

xn+1 + xn−1 = 2 cos(ω)xn (D.2)

A more conservative form of this model, which is also more suitable for a KF, is to consider an additive
zero-mean random term wn, to represent the model errors, including minor frequency, phase or amplitude
deviations. The modified dynamic model is represented as follows:

xn+1 + xn−1 = 2 cos(ω)xn + wn (D.3)

We further consider the observation signals as a superposition of the PL signal and the ECG (or any
other target signal of interest), i.e.,

yn = xn + vn, (D.4)

where xn is the PL and vn is a zero-mean random term representing all the non-PL signals and noises.
In order to set up a KF for estimating the PL, and eventually removing it from the desired biosignal,

the dynamic equation in (D.3) needs to be converted to a matrix state-space form. There are several
standard ways for representing a dynamic model in a state-space form, which are known as canonical
representations. Two of the most common canonical representations, which are of great importance in
control theory, are the controllable and observable canonical forms [101]. The resulting models of these
forms are guaranteed to be controllable and observable, respectively2.

On the other hand, (D.3) is equivalent with a system with wn as its input and xn as its output.
This transfer function is strictly proper, i.e., the degree of the numerator is less than the degree of the
denominator. It can therefore be represented in a controllable canonical form. By defining x′n

.= xn−1,
we can rewrite (D.3) and (D.4) as follows:[

xn+1

x′n+1

]
=

[
2 cos(ω) −1
1 0

] [
xn

x′n

]
+

[
1
0

]
wn (D.5)

yn = [1 0]
[

xn

x′n

]
+ vn, (D.6)

and by defining xn = [xn x′n]T , A =
[

2 cos(ω) −1
1 0

]
, b = [1 0]T , and h = [1 0]T , we come to the

following matrix representation: {
xn+1 = Axn + bwn

yn = hT xn + vn
(D.7)

2 In the context of control theory, controllability is a property of a system, describing the ability to drive the system
states to arbitrary values through the input signal or noise in finite time. Its dual notion of observability describes the
ability to infer the system states given output measurements [101, 202].
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This dynamic model is only marginally stable, since the eigenvalues of the matrix A are λ(A) = e±j

and they exactly lie on the unit circle. This is clearly due to the oscillatory nature of the PL. However,
since the matrices M = [b bA] and N = [h AT h]T are full-rank, the system is both controllable
and observable [101]. This practically means that despite the marginal stability of the model, the PL
may indeed be estimated by this KF and the filter converges to its steady state value, i.e., the value
with the least minimum mean square error, in a finite time from any initial state. It is also proved that
for stationary signals, the filter converges to the optimal Wiener filter in its steady state. The time of
convergence depends on the covariances of the model and observation noises, namely q = E{w2

n} and
r = E{v2

n}.
Moreover, it is seen from (D.5) that the amplitude and phase of the PL defined in (D.1), do not

appear in the dynamic model of the system. This implies that the filter will internally estimate these
values regardless of their initial values.

Note that although we run the proposed KF to estimate x̂n (i.e. the PL), we are finally interested in
the innovation signal of the KF, i.e.

v̂n = yn − x̂n, (D.8)

which represents the PL-removed signal.
To complete the discussion, the values of q and r should also be selected. q is the tunable parameter of

the filter, having a rather small value as compared with the peak amplitude of the expected PL noise. r
is the variance of the non-PL components. For moderate values of input PL noise, we can set r = E{y2

n},
since r is merely the variance of the input signal without the single frequency component f . However, in
high PL noise values we can estimate r by calculating the DFT of yn, removing the 50Hz or 60Hz PL
frequency component, and calculating the variance of the remaining components.

The filter is now ready to be applied to ECG signals using the classical KF equations [68, 106].
Apparently, multiple stages of the proposed filter may be used for removing the different harmonics of
the PL noise. For illustration, in Fig. D.2 PL noise has been synthetically added to clean ECG signals
and the Kalman notch filter results are compared with the original and noisy ECG. A detailed study of
the theoretical properties of this filter, including its steady state performance was reported in [168].

Figure D.2: A segment of diluted, denoised, and original ECG signal (from top to bottom)



The Open Source ECG Toolbox (OSET) 133

Figure D.3: Snapshot of the main interface and workspace of the OSET GUI

(a) BW removal (b) Peak detection (c) Filtering

Figure D.4: Snapshot of some of the functions of the OSET GUI
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Figure D.5: Multichannel analysis panel containing some of the implemented procedures

Figure D.6: Signal plot panel
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Figure D.7: Kalman filter parameter optimization panel
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