Plan

Modèles couplés en milieu poreux : transport réactif et fractures

Laila AMIR

Directeurs de thèse : Michel KERN, Jean E. ROBERTS Correspondant ITASCA : Daniel BILLAUX

Soutenance de thèse

18 Décembre 2008

Laila AMIR Transport réactif

Partie I : transport réactif

Chimie et transport

- Lois chimiques
- Convection-diffusion

Modèle couplé

- Formulation mathématique
- Algorithme pour l'approche globale

3 Résultats numériques

Partie I : transport réactif

Chimie et transport

- Lois chimiques
- Convection-diffusion

2 Modèle couplé

- Formulation mathématique
- Algorithme pour l'approche globale

Résultats numériques

Partie I : transport réactif

Chimie et transport

- Lois chimiques
- Convection-diffusion

Modèle couplé

- Formulation mathématique
- Algorithme pour l'approche globale

Résultats numériques

Partie II : intersection des fractures

Problème modèle avec fractures

Modélisation numérique
 Décomposition de domaine
 Formulation mixte

6 Résultats numériques

7 Un préconditionneur

Partie II : intersection des fractures

- Problème modèle avec fractures
- 5 Modélisation numérique
 - Décomposition de domaine
 - Formulation mixte
 - 6 Résultats numériques
 - 7 Un préconditionneur

Partie II : intersection des fractures

- Problème modèle avec fractures
- 5 Modélisation numérique
 - Décomposition de domaine
 - Formulation mixte
- 6 Résultats numériques
- 7 Un préconditionneur

Partie II : intersection des fractures

- Problème modèle avec fractures
- 5 Modélisation numérique
 - Décomposition de domaine
 - Formulation mixte
- 6 Résultats numériques
- 🕖 Un préconditionneur

Part I

Partie I: transport réactif dans un milieu poreux

-

合□ ▶ ◀

Phénomènes hydrogéologiques

- Transport
 - advection
 - diffusion
- Chimie
 - réaction
 - sorption

◆ 同 ▶ ◆ 目

Couplage des phénomènes

Entre transport et chimie

Choisir une méthode de couplage Méthode globale ou séquentielle?

Phénomènes hydrogéologiques

- Transport
 - advection
 - diffusion
- Chimie
 - réaction
 - sorption

< 同 ▶

-

3

э

Couplage des phénomènes

Entre transport et chimie Choisir une méthode de couplage Méthode globale ou séquentielle?

Laila AMIR Transport réactif

Lois chimiques Convection-diffusion

Chimie

Laila AMIR Transport réactif

*ロト *個ト *注ト *注ト

-2

Lois chimiques Convection-diffusion

Equilibre chimique

Réactions chimiques:

 c_j composants aqueux (mobiles), s_j composants sorbés (immobiles), x_i espèces secondaires aqueuses, espèces secondaires sorbées y_i .

・ロト ・同ト ・ヨト ・ヨト

Lois chimiques Convection-diffusion

Modèle mathématique

Système d'équations non-linéaires

Loi d'action de masse

$$\log x = S \log c + \log K_x,$$

$$\log y = A \log c + B \log s + \log K_y.$$

Conservation de la masse

$$c + S^t x + A^T y = T$$
, T connu par transport
 $s + B^T y = W$, W imposé

Total dissout :
$$C = c + S^T x$$
, Total fixé : $F = A^T y$.
 $C = \Phi(T), \qquad F = \Psi(T)$

Le rôle du modèle chimique est de séparer les espèces en partie mobile et partie immobile

Lois chimiques Convection-diffusion

Modèle mathématique

Système d'équations non-linéaires

Loi d'action de masse

$$\log x = S \log c + \log K_x,$$

$$\log y = A \log c + B \log s + \log K_y.$$

Conservation de la masse

$$c + S^t x + A^T y = T$$
, T connu par transport
 $s + B^T y = W$, W imposé

Total dissout : $C = c + S^T x$, Total fixé : $F = A^T y$. $C = \Phi(T)$, $F = \Psi(T)$

> Le rôle du modèle chimique est de séparer les espèces en partie mobile et partie immobile

> > Laila AMIR Transport réactif

Lois chimiques Convection-diffusion

Résolution du système chimique

Logarithme des inconnues

- On utilise logarithme des inconnues c, s $(lc = \log c, ls = \log s)$
- Le système chimique devient :

$$H\begin{pmatrix}lc\\ls\end{pmatrix} = \begin{pmatrix}e^{(lc)} + S^{T}e^{(\log K_{x} + Slc)} + A^{T}e^{(\log K_{y} + Alc + Bls)} - T\\e^{(ls)} + B^{T}e^{(\log K_{y} + Alc + Bls)} - W\end{pmatrix} = 0,$$

Avantage : concentrations positives

 ψ connu, on utilise le développement de Taylor, on obtient

Jacobian

$$\psi'(\mathbf{T}) = A^{\mathbf{T}} y \begin{pmatrix} A & B \end{pmatrix} \begin{pmatrix} H' \end{pmatrix}^{-1} \begin{pmatrix} I \\ 0 \end{pmatrix} .$$

Lois chimiques Convection-diffusion

Résolution du système chimique

Logarithme des inconnues

- On utilise logarithme des inconnues c, s $(lc = \log c, ls = \log s)$
- Le système chimique devient :

$$H\begin{pmatrix}lc\\ls\end{pmatrix} = \begin{pmatrix}e^{(lc)} + S^{T}e^{(\log K_{x} + Slc)} + A^{T}e^{(\log K_{y} + Alc + Bls)} - T\\e^{(ls)} + B^{T}e^{(\log K_{y} + Alc + Bls)} - W\end{pmatrix} = 0,$$

Avantage : concentrations positives

 ψ connu, on utilise le développement de Taylor, on obtient

Jacobian

$$\psi'(\mathbf{T}) = A^{\mathsf{T}} y \begin{pmatrix} A & B \end{pmatrix} \begin{pmatrix} H' \end{pmatrix}^{-1} \begin{pmatrix} I \\ 0 \end{pmatrix}$$

Laila AMIR

、、

Lois chimiques Convection-diffusion

Transport

Laila AMIR Transport réactif

-2

Lois chimiques Convection-diffusion

Transport dans un milieux poreux

Equation de diffusion-advection

$$\omega \frac{\partial \mathbf{c}}{\partial t} - \operatorname{div}(\mathbf{D}\operatorname{grad}\mathbf{c}) + \operatorname{div}(\mathbf{u}\mathbf{c}) = f$$

Tenseur de dispersion

$$\mathbf{D} = d_e \mathbf{I} + |\mathbf{u}|[\alpha_I \mathbf{E}(\mathbf{u}) + \alpha_t (I - \mathbf{E}(\mathbf{u}))], \quad E_{ij}(\mathbf{u}) = \frac{u_i u_j}{|\mathbf{u}|}$$

Conditions aux bords

D grad
$$\mathbf{c} \cdot \mathbf{n} = 0$$
 sur Γ_N , $\mathbf{c} = c_d$ sur Γ_D .

Lois chimiques Convection-diffusion

Transport hétérogène

Equation de diffusion-advection

$$\omega \frac{\partial \mathbf{c}}{\partial t} + \frac{\partial}{\partial x} \left[\underbrace{-\mathbf{D}}_{\varphi_d} \frac{\partial \mathbf{c}}{\partial x} + \underbrace{\mathbf{uc}}_{\varphi_a} \right] = f \quad \text{for } \mathbf{0} < x < L$$

Discrétisation en espace : volumes finis

$$\omega_i h_i \frac{d\boldsymbol{c}_i}{dt} + (\varphi_{d,i+\frac{1}{2}} + \varphi_{a,i+\frac{1}{2}} - \varphi_{d,i-\frac{1}{2}} - \varphi_{a,i-\frac{1}{2}}) dt = 0$$

 $\text{où } \varphi_{d,i+\frac{1}{2}} = -D_{i+\frac{1}{2}} \big(\frac{c_{i+1}-c_i}{h_{i+\frac{1}{2}}} \big) \quad \text{et} \quad \varphi_{\textbf{a},i+\frac{1}{2}} = u\textbf{c}_i$

Laila AMIR Transport réactif

▲ 同 ▶ → 三 ▶

Lois chimiques Convection-diffusion

Advection et diffusion implicites

$$\omega_i h_i (\mathbf{c}_i^{n+1} - \mathbf{c}_i^n) + (\varphi_{d,i+\frac{1}{2}}^{n+1} + \varphi_{a,i+\frac{1}{2}}^{n+1} - \varphi_{d,i-\frac{1}{2}}^{n+1} - \varphi_{a,i-\frac{1}{2}}^{n+1}) \Delta t = 0$$

Advection explicite et diffusion implicite

$$\omega_i h_i (c_i^{n+1} - c_i^n) + (\varphi_{d,i+\frac{1}{2}}^{n+1} + \varphi_{a,i+\frac{1}{2}}^n - \varphi_{d,i-\frac{1}{2}}^{n+1} - \varphi_{a,i-\frac{1}{2}}^n) \Delta t = 0$$

Splitting: diffusion implicite et advection explicite

$$\Delta t = M \Delta t_a,$$

Etape d'advection

$$c_i^{n,m+1} = c_i^{n,m} - \frac{\Delta t_a \mathbf{u}}{h_i} (c_i^{n,m} - c_{i-1}^{n,m}), \quad m = 0, ..., M - 1$$

Etape de diffusion

$$(-\frac{D_{i-\frac{1}{2}}}{h_{i-\frac{1}{2}}}\Delta t)\boldsymbol{c}_{i-1}^{n+1} + (\omega_{i}h_{i} + \frac{D_{i+\frac{1}{2}}}{h_{i+\frac{1}{2}}}\Delta t + \frac{D_{i-\frac{1}{2}}}{h_{i-\frac{1}{2}}}\Delta t)\boldsymbol{c}_{i}^{n+1} - \frac{D_{i+\frac{1}{2}}}{h_{i+\frac{1}{2}}}\Delta t\boldsymbol{c}_{i+1}^{n+1}$$

Lois chimiques Convection-diffusion

Advection et diffusion implicites

$$\omega_i h_i (\boldsymbol{c}_i^{n+1} - \boldsymbol{c}_i^n) + (\varphi_{d,i+\frac{1}{2}}^{n+1} + \varphi_{a,i+\frac{1}{2}}^{n+1} - \varphi_{d,i-\frac{1}{2}}^{n+1} - \varphi_{a,i-\frac{1}{2}}^{n+1}) \Delta t = 0$$

Advection explicite et diffusion implicite

$$\omega_{i}h_{i}(c_{i}^{n+1}-c_{i}^{n})+(\varphi_{d,i+\frac{1}{2}}^{n+1}+\varphi_{a,i+\frac{1}{2}}^{n}-\varphi_{d,i-\frac{1}{2}}^{n+1}-\varphi_{a,i-\frac{1}{2}}^{n})\Delta t=0$$

Splitting: diffusion implicite et advection explicite

$$\Delta t = M \Delta t_a,$$

Etape d'advection

$$c_i^{n,m+1} = c_i^{n,m} - \frac{\Delta t_a \mathbf{u}}{h_i} (c_i^{n,m} - c_{i-1}^{n,m}), \quad m = 0, ..., M - 1$$

Etape de diffusion

$$(-\frac{D_{i-\frac{1}{2}}}{h_{i-\frac{1}{2}}}\Delta t)\boldsymbol{c}_{i-1}^{n+1} + (\omega_{i}h_{i} + \frac{D_{i+\frac{1}{2}}}{h_{i+\frac{1}{2}}}\Delta t + \frac{D_{i-\frac{1}{2}}}{h_{i-\frac{1}{2}}}\Delta t)\boldsymbol{c}_{i}^{n+1} - \frac{D_{i+\frac{1}{2}}}{h_{i+\frac{1}{2}}}\Delta t\boldsymbol{c}_{i+1}^{n+1}$$

Lois chimiques Convection-diffusion

Advection et diffusion implicites

$$\omega_i h_i (\mathbf{c}_i^{n+1} - \mathbf{c}_i^n) + (\varphi_{d,i+\frac{1}{2}}^{n+1} + \varphi_{a,i+\frac{1}{2}}^{n+1} - \varphi_{d,i-\frac{1}{2}}^{n+1} - \varphi_{a,i-\frac{1}{2}}^{n+1}) \Delta t = 0$$

Advection explicite et diffusion implicite

$$\omega_i h_i (c_i^{n+1} - c_i^n) + (\varphi_{d,i+\frac{1}{2}}^{n+1} + \varphi_{a,i+\frac{1}{2}}^n - \varphi_{d,i-\frac{1}{2}}^{n+1} - \varphi_{a,i-\frac{1}{2}}^n) \Delta t = 0$$

Splitting: diffusion implicite et advection explicite

$$\Delta t = M \Delta t_{a}$$
,

Etape d'advection

$$c_i^{n,m+1} = c_i^{n,m} - \frac{\Delta t_a \mathbf{u}}{h_i} (c_i^{n,m} - c_{i-1}^{n,m}), \quad m = 0, ..., M - 1$$

Etape de diffusion

$$(-\frac{D_{i-\frac{1}{2}}}{h_{i-\frac{1}{2}}}\Delta t)\boldsymbol{c}_{i-1}^{n+1} + (\omega_{i}h_{i} + \frac{D_{i+\frac{1}{2}}}{h_{i+\frac{1}{2}}}\Delta t + \frac{D_{i-\frac{1}{2}}}{h_{i-\frac{1}{2}}}\Delta t)\boldsymbol{c}_{i}^{n+1} - \frac{D_{i+\frac{1}{2}}}{h_{i+\frac{1}{2}}}\Delta t\boldsymbol{c}_{i+1}^{n+1}$$
$$= \omega_{i}h_{i}\boldsymbol{c}_{i}^{n,M}$$

Lois chimiques Convection-diffusion

Résultats : cas homogène

La solution analytique

$$\boldsymbol{c}(x,t) = \frac{c_d}{2} \operatorname{erfc}\left(\frac{\omega x - \mathbf{u}t}{2\sqrt{\omega \mathbf{D}t}}\right) + \exp\left(\frac{\mathbf{u}x}{\mathbf{D}}\right) \operatorname{erfc}\left(\frac{\omega x + \mathbf{u}t}{2\sqrt{\omega \mathbf{D}t}}\right).$$

Comparaison de la solution numérique et exacte

3

э

< □ > < 同 > < 回 > <

Lois chimiques Convection-diffusion

Résultats : cas homogène

La solution analytique

$$\boldsymbol{c}(x,t) = \frac{c_d}{2} \operatorname{erfc}\left(\frac{\omega x - \mathbf{u}t}{2\sqrt{\omega \mathbf{D}t}}\right) + \exp\left(\frac{\mathbf{u}x}{\mathbf{D}}\right) \operatorname{erfc}\left(\frac{\omega x + \mathbf{u}t}{2\sqrt{\omega \mathbf{D}t}}\right).$$

Comparaison de la solution numérique et exacte

3

э

Image: A math a math

Lois chimiques Convection-diffusion

Résultats : cas hétérogène

Cas test

	Milieu A	Milieu B
Porosité	1	2
Diffusion	1e-2	1
Longueur	2	3
Vitesse	10	10
Maillage	1600	1200

 $\begin{array}{l} \mbox{Conditions}:\\ \mbox{aux bords} \ \mbox{c}_d = \mbox{c}_g = 0\\ \mbox{initiale}\\ \mbox{c}_0 = \mbox{exp}\left[-3(1/2-x)^2 \right] \end{array}$

Erreur d'approximation

- Maillage rafiné $h_A = 1/2^{10} \Rightarrow$ Solution de référence
- Maillages grossiers $h_A = \{1/2^q\}_{q=1,\cdots,9}$

Lois chimiques Convection-diffusion

Résolution par la méthode de décomposition d'opérateurs

Volumes finis pour l'étape d'advection

$$\omega \frac{\boldsymbol{c}^{n,*} - \boldsymbol{c}^n}{\Delta t} + \operatorname{div}(\mathbf{u}\boldsymbol{c}^n) = 0$$

Eléments finis mixtes hybrides pour l'étape de diffusion

$$\omega \frac{c^{n+1} - c^{n,*}}{\Delta t} - \operatorname{div}(\mathbf{D}\nabla c^{n+1}) = f$$

Avantages

- Conservation de la masse
- Bonne représentation des fronts
- Dispersion numérique limitée

Avantages

- La concentration et son gradient sont calculés simultanément
- Continuité de flux
- Tenseur dispersion plein

< ロト < 同ト < 三ト <

Convection-diffusion

Résolution par la méthode de décomposition d'opérateurs

	Availlages
Volumes finis pour l'étape d'advection	Conservat Bonne rer
$\omega \frac{\boldsymbol{c}^{n,*} - \boldsymbol{c}^n}{\boldsymbol{c}^n} + \operatorname{div}(\mathbf{u}\boldsymbol{c}^n) = 0$	fronts
Δt	 Dispersion limitée
	Avantages
Eléments finis mixtes hybrides pour l'étape de diffusion	Avantages • La concen gradient s
Eléments finis mixtes hybrides pour l'étape de diffusion	Avantages • La concen gradient s simultané
Eléments finis mixtes hybrides pour l'étape de diffusion $\omega \frac{c^{n+1} - c^{n,*}}{2} - \operatorname{div}(\mathbf{D}\nabla c^{n+1}) = f$	Avantages • La concern gradient s simultané • Continuité

- tion de la masse
- présentation des
- n numérique
- tration et son ont calculés ment
- é de flux
- ispersion plein

з

Lois chimiques Convection-diffusion

 $\mathcal{W}_h = \text{espace de Raviart-Thomas-Nédélec d'ordre le plus bas,}$ et $\mathcal{M}_h = \text{l'espace des fonctions constantes sur chaque élément K de <math>\mathcal{T}_h$ On pose $\mathbf{r} = \mathbf{D}\nabla \mathbf{c}$, et on cherche $\mathbf{c}_h \in \mathcal{M}_h$ et $\mathbf{r}_h \in \mathcal{W}_h$

Volumes finis pour l'advection

$$\int_{\mathcal{K}} \omega \frac{\boldsymbol{c}_{h}^{n,m+1} - \boldsymbol{c}_{h}^{n,m}}{\Delta t_{a}} + \int_{\partial \mathcal{K}} \boldsymbol{c}_{h}^{n,m*} \mathbf{u} \cdot \mathbf{n}_{\mathcal{K}} = 0, \quad \text{pour} \quad m = 0, \cdots, M - 1,$$

où $c_h^{n,m*}$ est la concentration amont.

Eléments finis mixte hybrides pour la diffusion

$$\begin{split} &\int_{K} \omega \frac{\boldsymbol{c}_{h}^{n+1} - \boldsymbol{c}_{h}^{n,M}}{\Delta t} + \int_{K} \operatorname{div} \mathbf{r}_{h}^{n+1} = \int_{K} f, \quad K \in \mathcal{T}_{h}, \\ &\int_{\Omega} D^{-1} \mathbf{r}_{h}^{n+1} \cdot \mathbf{u} - \int_{\Omega} \boldsymbol{c}_{h}^{n+1} \operatorname{div} \mathbf{u} = -\int_{\partial \Omega} \boldsymbol{c}_{d} \, \mathbf{u} \cdot \mathbf{n}_{\Omega}, \quad \mathbf{u} \in \mathcal{W}_{h}. \end{split}$$

Lois chimiques Convection-diffusion

Imlémentation dans 3FLO (code ITASCA)

- Ecoulement transitoire
- Transport VF et EFMH
- Discrétisation en temps avec décomp. d'opérateurs

Comparaison de résultats 3FLO et solution analytique 🜑

Cas test

Tetra : $\Delta x = 2$, $\Delta y = 2$, $\Delta z = 1$ **Cond. bd:** $c_d = 10$ *if* $|y| \le a, (a = 8)$

Deux régimes sont testés :

- diffusif: Pe = 1 ($D_L = 2$, $D_T = 0.2$)
- advectif: $Pe = 10 \ (D_L = 0.2, \ D_T = 0.02).$

• • • • • • • •

Lois chimiques Convection-diffusion

Imlémentation dans 3FLO (code ITASCA)

- Ecoulement transitoire
- Transport VF et EFMH
- Discrétisation en temps avec décomp. d'opérateurs

Comparaison de résultats 3FLO et solution analytique 🜑

Cas test

Tetra : $\Delta x = 2$, $\Delta y = 2$, $\Delta z = 1$ **Cond. bd:** $c_d = 10$ *if* $|y| \le a, (a = 8)$

Deux régimes sont testés :

- diffusif: Pe = 1 ($D_L = 2$, $D_T = 0.2$)
- advectif: $Pe = 10 \ (D_L = 0.2, \ D_T = 0.02).$

Lois chimiques Convection-diffusion

Imlémentation dans 3FLO (code ITASCA)

- Ecoulement transitoire
- Transport VF et EFMH
- Discrétisation en temps avec décomp. d'opérateurs

Comparaison de résultats 3FLO et solution analytique 🜑

Cas test

Tetra : $\Delta x = 2$, $\Delta y = 2$, $\Delta z = 1$ **Cond. bd:** $c_d = 10$ *if* $|y| \le a, (a = 8)$

Deux régimes sont testés :

- diffusif: Pe = 1 ($D_L = 2$, $D_T = 0.2$)
- advectif: $Pe = 10 \ (D_L = 0.2, \ D_T = 0.02).$

Lois chimiques Convection-diffusion

2

Régime advectif

Lois chimiques Convection-diffusion

Régime diffusif

・ロン ・部 と ・ ヨ と ・ ヨ と …

2

Lois chimiques Convection-diffusion

Couplage transport et chimie

<ロ> <同> <同> < 同> < 同>

2

Formulation mathématique Algorithme pour l'approche globale

Formulation couplée

Transport pour chaque espèce et composant

$$\begin{split} &\omega \frac{\partial \mathbf{x}_i}{\partial t} + L(\mathbf{x}_i) = r_i^{\mathbf{x}}, \quad \omega \frac{\partial \mathbf{c}_j}{\partial t} + L(\mathbf{c}_j) = r_j^{\mathbf{c}}, \\ &\omega \frac{\partial \mathbf{y}_i}{\partial t} = r_i^{\mathbf{y}}, \qquad \qquad \omega \frac{\partial \mathbf{s}_j}{\partial t} = r_j^{\mathbf{s}}, \end{split}$$

Eliminer les termes de réactions (inconnus) r_i et r_j en utilisant la loi de conservation de masse

Formulation couplée:

$$\omega \frac{\partial T^{ic}}{\partial t} + L(C^{ic}) = 0, \quad ic = 1, \dots, N_c$$

$$T^{ic}_{ix} = C^{ic}_{ix} + F^{ic}_{ix} \qquad ic = 1, \dots, N_c \text{ and } ix = 1, \dots, N_x$$

$$F_{ix} = \Psi(T_{ix}) \qquad ix = 1, \dots, N_x.$$

Formulation mathématique Algorithme pour l'approche globale

Formulation couplée

Transport pour chaque espèce et composant

$$\begin{split} &\omega \frac{\partial \mathbf{x}_i}{\partial t} + L(\mathbf{x}_i) = r_i^{\mathbf{x}}, \quad \omega \frac{\partial \mathbf{c}_j}{\partial t} + L(\mathbf{c}_j) = r_j^{\mathbf{c}}, \\ &\omega \frac{\partial \mathbf{y}_i}{\partial t} = r_i^{\mathbf{y}}, \qquad \qquad \omega \frac{\partial \mathbf{s}_j}{\partial t} = r_j^{\mathbf{s}}, \end{split}$$

11

Eliminer les termes de réactions (inconnus) r_i et r_j en utilisant la loi de conservation de masse

Formulation couplée:

$$\omega \frac{\partial T^{ic}}{\partial t} + L(C^{ic}) = 0, \quad ic = 1, \dots, N_c$$

$$T^{ic}_{ix} = C^{ic}_{ix} + F^{ic}_{ix} \qquad ic = 1, \dots, N_c \text{ and } ix = 1, \dots, N_x$$

$$F_{ix} = \Psi(T_{ix}) \qquad ix = 1, \dots, N_x.$$

Formulation mathématique Algorithme pour l'approche globale

Différentes algorithmes de couplage

- SIA (Yeh et Tripathi 1989, Carrayrou 2004)
- DSA (Hammond et Valocchi 2005, Saaltink 1998)
- Méthode de réduction (Knabner, Kraeutle 2006)
- DAE (Erhel, de Dieuleveult 2008)

Nouvelle approche globale

$$\begin{cases} \omega \frac{C^{n+1} - C^n}{\Delta t} + \omega \frac{F^{n+1} - F^n}{\Delta t} + L(C^{n+1}) = 0\\ T^{n+1} = C^{n+1} + F^{n+1}\\ F^{n+1} = \Psi(T^{n+1}) \end{cases}$$

 $f(C^{n+1}, T^{n+1}, F^{n+1}) = 0$ Système non linéaire

• Méthode de Newton exacte ou inexacte?

Formulation mathématique Algorithme pour l'approche globale

Différentes algorithmes de couplage

- SIA (Yeh et Tripathi 1989, Carrayrou 2004)
- DSA (Hammond et Valocchi 2005, Saaltink 1998)
- Méthode de réduction (Knabner, Kraeutle 2006)
- DAE (Erhel, de Dieuleveult 2008)

Nouvelle approche globale

$$\begin{cases} \omega \frac{C^{n+1} - C^n}{\Delta t} + \omega \frac{F^{n+1} - F^n}{\Delta t} + L(C^{n+1}) = 0\\ T^{n+1} = C^{n+1} + F^{n+1}\\ F^{n+1} = \Psi(T^{n+1}) \end{cases}$$

$$f(C^{n+1}, T^{n+1}, F^{n+1}) = 0 \quad \text{Système non linéaire}$$

Méthode de Newton exacte ou inexacte?

Formulation mathématique Algorithme pour l'approche globale

Structure de la matrice Jacobienne

Jacobien :
$$f'(C, T, F) = \begin{pmatrix} (\omega I + \Delta tL) & 0 & \omega I \\ -I & I & -I \\ 0 & -\Psi'(T) & I \end{pmatrix}$$

 $\Psi'(T)$ La matrice Jacobienne de chimie

 Stockage de la matrice Jacobienne est coûteux, la taille de la matrice est 3N_xN_c

Formulation mathématique Algorithme pour l'approche globale

Structure de la matrice Jacobienne

Jacobien :
$$f'(C, T, F) = \begin{pmatrix} (\omega I + \Delta tL) & 0 & \omega I \\ -I & I & -I \\ 0 & -\Psi'(T) & I \end{pmatrix}$$

 $\Psi'(T)$ La matrice Jacobienne de chimie

 Stockage de la matrice Jacobienne est coûteux, la taille de la matrice est 3N_xN_c

Formulation mathématique Algorithme pour l'approche globale

Méthode de Newton Krylov

- GMRES, TFQMR et BiCGStab nécessite seulement le produit de la matrice Jacobienne fois un vecteur. peut être approché par differences finis ou calculé exactement.
 - * **Approximation numérique**: soit x un point, et v un vecteur, l'approximation est

$$Jv = f'(x)v \approx rac{f(x+\epsilon v) - f(x)}{\epsilon}$$
 (\$\epsilon\$ petit)

* Calcul analytique

$$J\begin{pmatrix} v_C\\ v_T\\ v_F \end{pmatrix} = \begin{pmatrix} (\omega + \Delta tL)v_C\\ -v_C + v_T - v_F\\ v_F - \Psi'(T)v_T \end{pmatrix}$$

Formulation mathématique Algorithme pour l'approche globale

Méthode de Newton Krylov

 GMRES, TFQMR et BiCGStab nécessite seulement le produit de la matrice Jacobienne fois un vecteur.

peut être approché par differences finis ou calculé exactement.
 * Approximation numérique: soit x un point, et v un vecteur,

l'approximation est

$$Jv = f'(x)v pprox rac{f(x+\epsilon v) - f(x)}{\epsilon}$$
 (\$\epsilon\$ petit)

* Calcul analytique

$$J\begin{pmatrix} v_C\\ v_T\\ v_F \end{pmatrix} = \begin{pmatrix} (\omega + \Delta tL)v_C\\ -v_C + v_T - v_F\\ v_F - \Psi'(T)v_T \end{pmatrix}$$

Formulation mathématique Algorithme pour l'approche globale

Méthode de Newton Krylov

- Résoud le système linéaire par une méthode iterative.
- Methods de Newton inéxacte
 - Approximation de la direction de Newton:

 $\|f'(x_k)d + f(x_k)\| \le \eta \|f(x_k)\| \quad (0 < \eta < 1)$

- Choix du terme η ?
 - * Garder une convergence quadratique (localement)
 - * Eviter une résolution trop précise du système linéaire

• $\eta = \gamma \|f(x_k)\|^2 / \|f(x_{k-1})\|^2$ (Kelley, Eisenstat et Walker)

Benchmark MoMaS 1D "easy"

A:perm = 0.01, poros = 0.25, W = 1B:perm = 10^{-5} , poros = 0.5, W = 10

Conc.	T_1	T_2	T_3	T_4
Totale		-2		2
	0.3	0.3	0.3	
t∈[0,5000]				
Lessivage		-2		2
t∈[5000,]				

Tableau Morel : Equilibre

Laila AMIR

Transport réactif

Benchmark MoMaS 1D "easy"

A:perm = 0.01, poros = 0.25, W = 1B:perm = 10^{-5} , poros = 0.5, W = 10

Conc.	T_1	T_2	T_3	T_4
Totale		-2		2
	0.3	0.3	0.3	
t∈[0,5000]				
Lessivage		-2		2
t∈[5000,]				

• Tableau Morel : Equilibre

								1		
		X_1	X_2	X_3	X_4	S	K			
	C_1	0	-1	0	0	0	10^{-12}			
	C_2	0	1	1	0	0	1			
	<i>C</i> ₃	0	-1	0	1	0	1			
	<i>C</i> ₄	0	-4	1	3	0	10^{-1}			
	C_5	0	4	3	1	0	10^{+35}			
Ì	CS_1	0	3	1	0	1	10+6			
	CS_2	0	-3	0	1	2	10^{-1}	∄ ≻ ≺ ≣ ≻ ≺ ≣ ≻	-2	৩৫৫

Laila AMIR

Transport réactif

Benchmark MoMaS 1D "easy"

A:perm = 0.01, poros = 0.25, W = 1B:perm = 10^{-5} , poros = 0.5, W = 10

Conc.	T_1	T_2	<i>T</i> ₃	T_4
Totale	0	-2	0	2
Injection	0.3	0.3	0.3	0
t∈[0,5000]				
Lessivage	0	-2	0	2
t∈[5000,]				

• Tableau Morel : Equilibre

ſ		X.	X	X	Χ.	S	K			
}	C		1	<u></u>		0	10-12			
	C_1	0	-1	0	0	0	10			
	C_2	0	1	1	0	0	1			
	<i>C</i> ₃	0	-1	0	1	0	1			
	<i>C</i> ₄	0	-4	1	3	0	10^{-1}			
	C_5	0	4	3	1	0	10 ⁺³⁵			
Ì	CS_1	0	3	1	0	1	10+6			
	CS_2	0	-3	0	1	2	10^{-1}	∄ ▶ ∢ ≣ ▶ ∢ ≣ ▶	-	৩৫৫

Laila AMIR

Transport réactif

Injection et lessivage

Laila AMIR

Transport réactif

2

Oscillations

Conséquence de la discrétisation en espace pour le système chimique (V. Lagneau et J. van der Lee).

Infuence du maillage

0.06

comparison temps CPU pour trois méthodes

(Application à un autre cas test Phreeqc "échange d'ions") Entre deux pas de temps:

• SIA : entre 20 et 27 iter.

no. itér. ∕ quand no. points ∕

NKM : moins de 6 itér NLin.
 Une étape de Newton:

entre 10 et 15 itér. Lin.

no. NLin. itér ~ quand no.points

no. itér. Lin. \nearrow quand no.points \nearrow

⇒ L'approche globale peut probablement être amélioré par l'utilisation d'un bon préconditionneur

Conclusion et perspectives

- Etude du transport non réactif 3D
- Etude du transport réactif 1D
- Couplage par une approche globale
- Utilisation de la méthode de Newton-Krylov
- benchmark MoMaS 1D easy
- Extension 2D et 3D
- Phénomenène de précipitation
- Etude d'un préconditionneur

Part II

Intersection des fractures dans un milieu poreux

Laila AMIR Transport réactif

з

A 10

Intersection des fracures

- Modèles pour la modélisation des fractures
- Raffinement du maillage dans les fractures
- Fractures comme des interfaces
 - Plus perméable
 - Continuité de la pression et discontinuité du flux
 - Moins perméable
 - Discontinuité de la pression et du flux
- Nouvelle contribution
 - Théorique \rightarrow Intersection des fractures
 - Numérique → 3D
 - \rightarrow Configurations arbitraires
 - Préconditionneur

L'équation d'écoulement dans un milieu poreux

Equation de la conservation de masse

$$\operatorname{div}\left(\vec{u}\right) = \mathbf{f}$$

- \vec{u} : vitesse de Darcy
- f : le terme source

Loi de Darcy

$$\vec{u} = -K\vec{\nabla}P$$

P : la pression

K : le tenseur de perméabilité

Problème modèle avec fractures

$$\begin{cases} \operatorname{div}(\vec{u}) = f & \operatorname{dans}\Omega\\ \vec{u} = -K\vec{\nabla}P & \operatorname{dans}\Omega\\ P = P_d & \operatorname{sur}\partial\Omega_D\\ \vec{u}\cdot\vec{\nu} = 0 & \operatorname{sur}\partial\Omega_N \end{cases}$$

Laila AMIR

Transport réactif

з

э

Décomposition de domaine Formulation mixte

Décomposition de domaine

		dans Ω _i dans Ω _i sur Γ _{Di}
P_{Di} ($\vec{\mathbf{u}}_i \cdot \vec{\mathbf{\nu}}_i = 0$	sur Γ _{Ni}
	$p_i = p_{i,j} + \frac{d_{i,j}}{4K_{i,j}^n} \left(\xi \vec{\boldsymbol{u}}_i \cdot \vec{\boldsymbol{\nu}}_i - (1-\xi)\right)$	$\left \vec{u}_{j} \cdot \vec{ u}_{j} \right)$ sur $\gamma_{i,j}$
ſ	$\operatorname{div}_{\gamma_{ij}}(\vec{u}_{ij}) = f_{ij} + (\vec{u}_i \cdot \vec{\nu}_i + \vec{u}_j \cdot \vec{\nu}_j)$	dans γ_{ij}
$P_{\gamma_{ij}}$	$\vec{u}_{ij} = -d_{ij} K_{ij} \vec{\nabla}_{\gamma_{ij}} \mathbf{P}_{ij} \neq 0$	dans γ_{ij}
	$ \begin{aligned} & \mathcal{P}_{ij} = \mathcal{P}_{d_{ij}} \\ & \vec{u}_{ij} \cdot \vec{\nu}_{ij} = 0 \end{aligned} $	sur $\partial \gamma_{ij} \cap \partial \Omega_D$ sur $\partial \gamma_{ij} \cap \partial \Omega_N$,

 $P_{T} \begin{cases} P_{23} = P_{24} = P_{34} = P_{T} & \text{sur } T \\ \vec{u}_{23} \cdot \vec{v}_{23} + \vec{u}_{24} \cdot \vec{v}_{24} + \vec{u}_{34} \cdot \vec{v}_{34} = 0 & \text{sur } T \end{cases}$

Décomposition de domaine Formulation mixte

Formulation mixte

Trouver : $(u, P) \in W \times M$ tel que :

$$\begin{cases} \alpha(\boldsymbol{u},\boldsymbol{v}) - \beta(\boldsymbol{v},\boldsymbol{P}) &= -L_d(\boldsymbol{v}) \quad \forall \, \boldsymbol{v} \in W \\ \beta(\boldsymbol{u},r) &= L_f(r) \quad \forall \, r \in M. \end{cases}$$

$$W = \left\{ u = (u_1, u_2, u_3, u_4, u_{12}, u_{23}, u_{24}, u_{34}) : u_i \in H(\operatorname{div}, \Omega_i), \\ (u_i \cdot \vec{\nu}_i + u_j \cdot \vec{\nu}_j) \in L^2(\gamma_{ij}), \quad u_{ij} \in H(\operatorname{div}, \gamma_{ij}) \\ \operatorname{et} (u_{23} \cdot \vec{\nu}_{23} + u_{24} \cdot \vec{\nu}_{24} + u_{34} \cdot \vec{\nu}_{34}) \in L^2(T) \right\}$$
$$M = \left\{ P = (P_1, P_2, P_3, P_4, P_{12}, P_{23}, P_{24}, P_{34}, P_T) : P_i \in L^2(\Omega_i), \\ P_{ij} \in L^2(\gamma_{ij}), \operatorname{et} P_T \in L^2(T) \right\}$$

Décomposition de domaine Formulation mixte

Formes biliéaires

$$\begin{aligned} \alpha(u,v) &= \sum_{i} \int_{\Omega_{i}} K_{i}^{-1} u_{i} \cdot v_{i} + \sum_{i,j} \int_{\gamma_{ij}} (d K_{ij}^{\tau})^{-1} u_{ij} \cdot v_{ij} \\ &+ \sum_{\substack{(i,j) \in S \\ i \neq i}} \int_{\gamma_{i,j}} \frac{d_{i,j}}{4K_{i,j}^{n}} ((\xi u_{i} \cdot v_{i} - (1 - \xi)u_{j} \cdot v_{j}) u_{i} \cdot \vec{v}_{i} \\ &+ (\xi u_{j} \cdot v_{j} - (1 - \xi)u_{i} \cdot v_{i}) u_{j} \cdot v_{j}) \\ \beta(u,r) &= \sum_{i} \int_{\Omega_{i}} div_{i} u_{i} r_{i} + \sum_{i,j} [\int_{\gamma_{ij}} (div_{\gamma_{ij}} u_{ij} - (u_{i} \cdot v_{i} + u_{j} \cdot v_{j})) r_{ij}] \\ &+ \int_{T} (u_{23} \cdot v_{23} + u_{24} \cdot v_{24} + u_{34} \cdot v_{34}) r_{T}, \end{aligned}$$

Formes linéaires

$$L_{f}(r) = \sum_{i} \int_{\Omega_{i}} f_{i} r_{i} + \sum_{i,j} \int_{\gamma_{ij}} f_{ij} r_{ij}$$

$$L_{d}(v) = \sum_{i} \int_{\Gamma_{Di}} P_{di} v_{i} \cdot v_{i} + \sum_{i,j} \int_{\partial \gamma_{ij} \cap \partial \Omega_{D}} P_{d\gamma_{ij}} v_{ij} \cdot v_{ij}$$

Théorie de Babuska Brezzi \Rightarrow L'existence et l'unicité

ъ

0

Décomposition de domaine Formulation mixte

Formes biliéaires

$$\begin{aligned} \alpha(u,v) &= \sum_{i} \int_{\Omega_{i}} K_{i}^{-1} u_{i} \cdot v_{i} + \sum_{i,j} \int_{\gamma_{ij}} (d K_{ij}^{\tau})^{-1} u_{ij} \cdot v_{ij} \\ &+ \sum_{\substack{(i,j) \in S \\ i \neq i}} \int_{\gamma_{i,j}} \frac{d_{i,j}}{4K_{i,j}^{n}} ((\xi u_{i} \cdot v_{i} - (1 - \xi)u_{j} \cdot v_{j}) u_{i} \cdot \vec{v}_{i} \\ &+ (\xi u_{j} \cdot v_{j} - (1 - \xi)u_{i} \cdot v_{i}) u_{j} \cdot v_{j}) \\ \beta(u,r) &= \sum_{i} \int_{\Omega_{i}} div_{i} u_{i} r_{i} + \sum_{i,j} [\int_{\gamma_{ij}} (div_{\gamma_{ij}} u_{ij} - (u_{i} \cdot v_{i} + u_{j} \cdot v_{j})) r_{ij}] \\ &+ \int_{T} (u_{23} \cdot v_{23} + u_{24} \cdot v_{24} + u_{34} \cdot v_{34}) r_{T}, \end{aligned}$$

Formes linéaires

$$L_{f}(r) = \sum_{i} \int_{\Omega_{i}} f_{i} r_{i} + \sum_{i,j} \int_{\gamma_{ij}} f_{ij} r_{ij}$$

$$L_{d}(v) = \sum_{i} \int_{\Gamma_{Di}} P_{di} v_{i} \cdot v_{i} + \sum_{i,j} \int_{\partial \gamma_{ij} \cap \partial \Omega_{D}} P_{d\gamma_{ij}} v_{ij} \cdot v_{ij}$$

Théorie de Babuska Brezzi

Laila AMIR Tra

 \Rightarrow

L'existence et l'unicité

Décomposition de domaine Formulation mixte

0

 P_{di}

 f_i

 Ω_j $\vec{u} \cdot \vec{n}$

Réduction à un problème d'interface

Opérateur Steklov-Poincaré :

$$S_i(\lambda) = -(\vec{u}_i \cdot \vec{\nu}_i)(0, 0, \lambda)$$

$$\chi_i(f_i, P_{di}) = (\vec{u}_i \cdot \vec{\nu}_i)(f_i, P_{di}, 0)$$

 $\begin{cases} \mathbf{div}_{i}(\vec{u}_{i}) = 0 \quad (f_{i}) \quad \mathrm{dans} \ \Omega_{i} \\ \vec{u}_{i} = -K_{i} \vec{\nabla} P_{i} \quad \mathrm{dans} \ \Omega_{i} \\ P_{i} = 0 \quad (P_{di}) \quad \mathrm{sur} \ \Gamma_{Di} \\ \vec{u}_{i} \cdot \vec{\nu}_{i} = 0 \quad \mathrm{sur} \ \Gamma_{Ni} \\ P_{i} = \lambda \quad (0) \quad \mathrm{dans} \ \gamma_{ij}. \end{cases}$

Le problème à l'interface γ :

Décomposition de domaine Formulation mixte

0

 P_{di}

 f_i

 Ω_j $\vec{n} \cdot \vec{n}$

Réduction à un problème d'interface

Opérateur Steklov-Poincaré :

$$S_i(\lambda) = -(\vec{u}_i \cdot \vec{\nu}_i)(0, 0, \lambda)$$

$$\chi_i(f_i, P_{di}) = (\vec{u}_i \cdot \vec{\nu}_i)(f_i, P_{di}, 0)$$

 $\begin{cases} \mathbf{div}_{i}(\vec{u}_{i}) = 0 \quad (f_{i}) \quad \mathrm{dans} \ \Omega_{i} \\ \vec{u}_{i} = -K_{i} \vec{\nabla} P_{i} \quad \mathrm{dans} \ \Omega_{i} \\ P_{i} = 0 \quad (P_{di}) \quad \mathrm{sur} \ \Gamma_{Di} \\ \vec{u}_{i} \cdot \vec{\nu}_{i} = 0 \quad \mathrm{sur} \ \Gamma_{Ni} \\ P_{i} = \lambda \quad (0) \quad \mathrm{dans} \ \gamma_{ij}. \end{cases}$

Le problème à l'interface γ :

Résultats numériques

Test case 1

 $\vec{u}\cdot\vec{n}=0$

 $\vec{u} \cdot \vec{n} = 0$

< 同 ▶

э

Décomposition de domaine sans fracture

Figure: Pression donnée par le modèle : $K_i = 1, i = 1, ..., 4$

A 10

Décomposition de domaine avec fracture

Figure: Pression donnée par le modèle : $dK_{\gamma} = 100, K_i = 1, i = 1, ..., 4$

A 10

Le préconditionneur

Le système

$$(\sum_{i} S_{i} - d K_{\gamma} \Delta))(\lambda) = b \text{ sur } \gamma$$

Le préconditionneur

DDM sans fracture \rightarrow Neumann-Neumann $(\sum_{i} S_{i}^{-1})^{-1}$

DDM avec fracture:

Ordres différentiels:

$$egin{array}{c} \mathcal{S}_i
ightarrow 1 \ \Delta
ightarrow 2 \end{array}$$

Un bon choix de préconditionneur est $(d K_{\gamma} \Delta)^{-1}$

Tests d'efficacité du préconditionneur

Test de préconditionneur (case $dk_{\gamma} = 100$)

Test de préconditionneur (avec différentes valeurs de dk_{γ})

Laila AMIR T

Conclusion et perspectives

- Etude théorique
- Configuration arbitraire en 3D
- Intersection de fractures
- Préconditionneur
- Hexahèdres irréguliers
- Tetrahèdres, maillage nonconforme
- Extension à l'équation du transport

Solution analytique

$$c(x, y, t) = \frac{xc_0}{(16\pi D_L)^2} \int_0^t \tau^{-\frac{3}{2}} f(\tau) d\tau$$
$$f(\tau) = \left\{ erf\left[\frac{a+y}{(4D_T\tau)^{\frac{1}{2}}}\right] + erf\left[\frac{a-y}{(4D_T\tau)^{\frac{1}{2}}}\right] \right\} exp\left[-\left(\frac{x-v\tau}{(4D_L\tau)^{\frac{1}{2}}}\right)^2\right].$$

2

э

< 同 ▶

< ∃ >