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INTRODUCTION

Low-dimensional physical models were originally introduced as a purely
mathematical abstraction with the intention to find some exact solutions
to the models which do not allow analytical solutions in the usual “physi-
cal” dimensions (d = 3). With respect to the modern development of the
experimental physics they however obtain quite practical use. The prac-
tical applications again stimulate theoretical researches of the influence of
any kinds of structure imperfections or lattice finiteness on the now well
known behaviour of the ideal models. The investigation of these problems
has a great practical value, since such phenomena inevitably appear in
real physical samples. Since the present work concerns ferromagnetic lat-
tice spin models, it is natural to consider as structural defects “quenched”
nonmagnetic impurities introduced in the initial regular lattice [1,2].

Spin models of continuous symmetry can possess also defects of an-
other kind: topological defects |3-5| which in despite of their name are not
something artificially brought but deeply connected to the nature of these
models. Present in higher dimensions as well these special excitations of
the ground state have especially remarkable impact in two dimensions.
For example, in the classical two-dimensional XY model topological de-
fects (also called vortices in the context of this model) behave themselves
similarly to the two-dimensional neutral gas of particles with Coulomb
interaction and cause a phase transition (Berezinskii-Kosterlitz- Thouless
transition (BKT) [6,7]) with features similar to the insulator-conductor
transition in the two-dimensional electrolyte [8,9].

The classical two-dimensional XY model presents a beautiful exam-



ple of topological defects influence on the critical behaviour. One of the
exact results for the model formulated in the Mermin-Wagner-Hohenberg
theorem |10, 11| and 1/¢*> Bogolyubov theorem 12| states the absence of
spontaneous magnetization for non-zero temperatures, but at low temper-
atures the model exhibits so called quasi-long-range order which cannot be
described by such a usual order parameter as magnetization. One of the
interesting consequences of the quasi-long-range ordering is a remarkable
residual magnetization in a system of a finite size L which vanishes with a
power law as L increases [13,14]. At the critical temperature, Tk, topo-
logical defects reach a “conducting” state destroying the quasi-long-range

order and leaving the system magnetically completely disordered.

It is well known that introduction of additional disorder (positional
disorder, for example) can significantly reflect in the model properties and
even change the character of the critical behaviour. Although disorder
is irrelevant (Harris criterium [15]) at the very BKT transition point, i.e.
it does not change the universal critical exponents, there are important
disorder effects such as changes in the critical temperature Tk and non-
universal (at T' < Tpgr) value of the temperature-dependent exponent of
the spin pair correlation function which defines the residual magnetization
scaling behaviour too. A highly important question is also the question of
the topological and structural defects interaction.

Due to the absence of an exact solution the two-dimensional XY model
requires approximate approaches, among which one should remark the

following;:

o spin-wave approzimation |16] which allows for a precise enough an-
alytical estimation of all important physical characteristics of the
system at low temperatures; this approximation neglects topologi-
cal defects, so it fails at higher temperatures when the influence of

vortices becomes visible and does not describe the BKT transition;
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e Villain model [17,18] which apart from its importance as an alter-
native model possessing vortices and a BKT transition and having
the Hamiltonian convenient for analytical purposes, can serve as a
low-temperature approximation to the 2D XY model; the Villain

model describes topological defects as well as spin-wave excitations;

e Kosterlitz-Thouless phenomenological model [7,8| based on the con-
tinuous elastic medium approximation an artificial intoduction of
topological defects; not being derived from the microscopic 2D XY
model Hamiltonian, it still gives correct qualitative picture of its

universal critical behaviour (at Tpkr).

Subject actuality. The problem of the influence of structural disor-
der on the behaviour of magnetic models, first formulated almost fifty years
ago (see, for example, [1,2]), has become the subject of a sufficient number
of theoretical works since that time. Somehow, the two-dimensional XY
model remained a bit aside these researches, very fruitful for other spin
models (as Ising and Heisenberg models, see [19] for references), mostly
because of the fact that quenched disorder does not change qualitatively
the critical behaviour of this model according to the Harris criterium |15].
However, it is known that the model has some highly interesting analyt-
ically accessible properties of the low temperature phase (see, for exam-
ple, [8,14,16]) of a non-universal character which thus can depend on the
presence of disorder [20|. Paradoxically, the first steps in the investigation
of these questions were made only quite recently [21,22], mostly by Monte
Carlo simulations [20,22-27|, but neither the experimental nor the ana-
lytic results |20, 24| can be considered as exhaustive enough; for example,
no approximate analytic estimation of the critical temperature reduction
caused by disorder (registered in the computer simulations [20,26]) has
been made before our research started. With our research we hope at least

to contribute to a partial filling of these white spots.
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Research connection with scientific programs, plans, themes.
The thesis is prepared in the Institute for condensed matter physics of the
NAS of Ukraine and in Laboratoire de Physique des Matériaux, Université
Henri Poincaré, Nancy 1 according to the plans of the following themes: N
01050002081 “Peculiarities of the condensed systems critical behaviour un-
der the influence of an external field, structural disorder, frustration, and
anisotropy” (2005-2007), Ne 0107U002081 “Development and application of
the analytic theory and computer experiment methods to the description
of transport phenomena in ion-electronic systems” (2007-2011); under sup-
port of the grant “Allocation de these en co-tutelle MESR”, french-german
PhD program College doctoral Franco-Allemand “Statistical Physics of
Complex Systems”, and CNRS (France) - NASU (Ukraine) cooperation
project «Critical behaviour of structurally disordered and frustrated sys-
tems» (2005-2007).

Goal and tasks of the research. The object of study are classi-
cal two-dimensional spin models of continuous symmetry with lattice de-
fects (non-magnetic impurities) distributed randomly on the lattice sites
(quenched disorder). The subject of study is a research of the disorder
and lattice finiteness influence on the behaviour of such models. The goal
of study is to obtain quantitative characteristics of the behaviour of the
models under consideration (for example, the pair correlation function de-
cay exponent, the critical temperature) as functions of the nonmagnetic
dilution concentration. As the method of study we use both analytical
computations on the basis of the given models with the help of functional
integration method [28-30] and Monte Carlo simulations with the Wolff
algorithm [31].

Scientific novelty of the results. In the thesis the temperature-
dependent pair correlation function exponent as a function of structural
defects concentration is obtained and the result accords with the Monte

Carlo simulations data better than the previously existing estimates. The
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exponent of the residual spontaneous magnetization decay with the lattice
size is obtained as well and it appears to be connected with the pair cor-
relation function exponent as expected from the finite-size scaling theory.
Within the approximate approaches explored in the work an argument in
favor of the pair correlation function self-averaging is given at low temper-

atures.

For the first time non-magnetic impurities are explored in the context
of the Villain model and the interaction between structural and topological
defects is found from the microscopic Hamiltonian. A similar type of inter-
action is obtained in the frame of the Kosterlitz-Thouless phenomenologi-
cal model through a procedure more appropriate for the lattice structure
description than the methods previously used by other researchers. The
estimates of the topological and structural defects interaction found for
the Villain and Kosterlitz-Thouless models agree with each other as well

as with the presently available computer experiment results.

On the basis of the results for the structural and topological defects in-
teraction an analytical estimation of the topological phase transition (BKT
transition) critical temperature reduction due to nonmagnetic dilution is
given for the first time. The result obtained is in fair agreement with the

avallable Monte carlo data.

The behaviour of the pair correlation function of a finite two-dimensional

Heisenberg model is estimated in the low-temperature limit.

The spontaneous magnetization probability distribution in a finite two-
dimensional XY model with quenched disorder is investigated in Monte
Carlo simulations and analytically.

Practical value of the results. The results presented in the thesis
can be useful for experimental researches of magnetic materials with two-
dimensional XY model properties (layered magnets and ultrathin mag-

netic films with planar anisotropy).

Personal contribution of the researcher. In the papers written
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with co-authors the contribution of the author includes:

e the pair correlation function and residual magnetization (for a finite
lattice) behaviour estimation for the two-dimensional XY model in

the spin-wave approximation |32-34];

e the diluted Villain model derivation from the diluted two-dimensional
XY model in the low-temperature limit and the structural and topo-
logical defects interaction estimation from the microscopic diluted
Villain model Hamiltonian [35,37];

e the analytical estimation of the interaction between structural and

topological defects in the phenomenological Kosterlitz-Thouless model
[35];

e the analytical estimation of the BKT transition critical temperature

reduction due to structural disorder [35];

e interpretation of the magnetization probability distribution functions
in a finite two-dimensional XY model with disorder obtained in
Monte Carlo simulations [33,34];

e participation in Monte Carlo simulations [32-34];

e the pair correlation function behaviour in a finite two-dimensional

Heisenberg model in the low-temperature limit [36].

Thesis results approbation. The results of the thesis have been
reported and discussed at the following scientific meetings: “Statistical
Physics and Low Dimensional Systems 2006: Atelier des groupes Physique
Statistique et Surface et Spectroscopies du LPM” (Nancy, 17th-19th May
2006), “2nd International Conference on Quantum Electrodynamics and
Statistical Physics (QEDSP2006)” (Kharkiv, 19th-23rd September 2006),
“Statistical Physics and Low Dimensional Systems 2007: Atelier des groupes
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Physique Statistique et Surface et Spectroscopies du LPM” (Nancy, 23rd-
25th May 2007), “The 32nd Conference of the Middle European Cooper-
ation in Statistical Physics (MECO32)” (Ladek Zdroj, Poland, 16th-18th
April 2007), “Christmas discussions 2008” (Lviv, 4th-5th January 2008),
“VII-th All-ukrainian seminar-school and competition of young scientists
in the field of statistical physics and condensed matter — 2008” (Lviv, 5th-
6th June 2008); and also in numerous seminars of the Condensed matter
statistical theory section of the Institute for condensed matter physics of
the National academy of sciences of Ukraine, of the theoretical group at
Laboratoire de Physique des Matériaux (Université Henri Poincaré, Nancy
1), and in a seminar in the Theoretical Physics Institute in Leipzig (Ger-
marny).

Publications. Five papers [32-36], one preprint [37], and four confer-
ence abstracts [38-41| have been published on the materials of the thesis.






Chapter 1

LITERATURE OVERVIEW

In this chapter an overview of the main literature concerning spin models
of continuous symmetry, especially the two-dimensional XY model, and

with respect to the structural disorder influence is given.

1.1 Spin models of continuous symmetry

1.1.1 Topological defects

Presence of topological defects and their possible influence on the criti-
cal properties attract special attention to the spin models of continuous
symmetry [3,5]. For the first time topological defects drew the atten-
tion of researchers in the field of phase transitions and critical phenomena,
in connection to the extremely unusual behaviour of the two-dimensional
XY model [6,7]. The topological phase transition in this model gives the
most profound example of the influence of topological defects on the crit-
ical properties of spin models with continuous symmetry. However, other
similar models show interesting effects of a topological nature as well.

In a general case the Hamiltonian of a classical spin model of continuous

symmetry can be written as:

H = - > J1)8:Sy, (1.1)
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where the sums span all the lattice sites, S, is the value of a spin on
the site r, and J(r,r’) is the spin coupling for the sites r and r’. Such
models, as one knowns, can properly describe properties of a number of
magnetic materials. Depending on the number of components of spins
one distinguishes: XY model (S, = (5¢,5Y)), Heisenberg model (S, =
(S7,8Y,52)), N-vector model (S, = (S}, S2,...,5N)).

In order to difine in a simple way what a topological defects is let us say
that a topological defect is such a spin configuration that is characterized
by some region (the core) of strong spin disorientation and the remaining
area where the spin orientation changes slowly from one site to another (see
fig.1.1). Of course, the above description is very loose, for a mathematical
definition one should refer to [3,42]. Topological defects have specific
names in different models, for example, vortices in the two-dimensional

XY model, or hedgehogs in the three-dimensional Heisenberg model [3].

The case of the two-dimensional XY model (also sometimes referred
to as O(2) model or the plane rotators model) will be discussed later in
detail. For the moment let us mention the interesting effects caused by the

presence of topological defects in other models described by a Hamiltonian
of the form (1.1).

The three-dimensional XY model in contrast to its two-dimensional re-
alization exhibits a more familiar ferromagnetic-paramagnetic phase tran-
sition picture with long-range order appearance [43,44|. But there are
works which present results in favor of the crucial role of topological de-
fects (called vortex strings in this context) in the phase transition in this

model (see, for example, [45]).

Another well known continuous symmetry spin model — the Heisen-
berg model (also called O(3) model) — has quite different properties in
2D and 3D as well. In three dimensions the model undergoes a phase
transition from the magnetically ordered state with a nonzero order pa-

rameter to the state of disorder [43]. Although the critical properties can



18

be described properly within the frames of the theories that do not take
into account topological excitations, there are strong evidences about an
essential influence of topological defects on the model behaviour [47-49].
Some works claim complete impossibility of the phase transition occur-
rence if topological defects are excluded (that can be artificially achieved
in Monte Carlo simulations using unfavourable chemical potential associ-
ated to the topological defects) [47,48|, others only mention the change of
critical exponents in this case |49).

The two-dimensional Heisenberg model behaviour remains in some
sense a controversial question even today. Topological defects that can
exist in this model are called instantons [46]. The previously mentioned
Mermin-Wagner-Hohenberg theorem [10, 11| denies the very possibility of
long-rang ordering at any nonzero temperature (in the thermodynamic
limit), but the early high-temperature expansions [50| were in favor of a
phase transition in the Hesinberg model in two dimensions as well as in
the 2D XY model. In the two-dimensional XY model case these results
were subsequently supported by the discovery of the BKT transition. In
contrast to this, the 2D Heisenberg model has not received any subse-
quent evidences for a phase transition, and the Polyakov renorm-group
analysis [46,51| claimed absence of any phase transition at nonzero tem-
perature. That conclusion has become generally accepted, although there
are alternative opinions (see, for example, [5,52]) in favour of a phase

transition similar to that in the two-dimensional model.

1.1.2 Two-dimensional XY model

As it is definitely known today, topological defects play a crucial role in
the critical behaviour of the two-dimensional XY model and related mod-
els [4,42]. One of the exact results for spin models of continuous sym-
metry in one and two dimensions is the Mermin- Wagner-Hohenberg the-

orem [10,11] which denies existence of any spontaneous magnetization at
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nonzero temperature. This property is caused by the fact that in an infi-
nite lattice with dimensions less than three, spin-wave excitations destroy
any long-range order even at arbitrary small temperatures. But the spin
pair correlation function behaves in a different way in 1D and 2D systems,
although it decays to zero with distance in both cases. The spin-wave ap-
proximation applicable in the low-temperature limit (77 — 0) gives the
following asymptotic forms of the pair correlation function as a function
of the distance R in the XY model in different dimensions [16,42]:

const , d>3;
Gy(R) ~ S R, d=2: (1.2)

—alR —
R—oo €a,d—1.

It is obvious that the two-dimensional case is very particular. Although the
correlations decay with distance, so one can not speak about long-range
ordering, they decay algebraically that is much slower than in the case of
a usual magnetic disorder (which can be observed in the same model in
1D, for example). This phenomenon is called quasi-long-range ordering.
The Hamiltonian of the two-dimensional XY model with the nearest

neighbours interaction writes as:

H = —J) (S:S5+5ysy) . (1.3)
(r.r/)
where the sum spans all the nearest neighbour pairs in a square lattice,
and J is the coupling constant.

Besides possible description of the properties of such an important
physical object as the superfluid helium, the two-dimensional model can
also apply to more closely related real physical systems such as magnets
with planar anisotropy. Of course, low dimensionality restricts its ap-
plication to so called quasi-two-dimensional magnets [55] such as layered
magnets (three-dimensional structures with weak interplane interaction)

and ultrathin magnetic films. Although the mentioned materials should
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be described by three-component Heisenberg spins rather than by two-
component XY spins [55], easy plane spin anisotropy and weak interplane
coupling draw their properties closely to those typical for the 2D XY
model [55-57].

Another interesting subject is the investigation of stability and be-
haviour of vortices (similar to those in the 2D XY model) in the two-
dimensional Heisenberg model with easy-plane anisotropy [54,68,70]. The
researches show qualitative resemblance to the 2D XY model behaviour
in a wide interval of the disorder parameter values [56-58].

Features of the 2D XY model behaviour can be observed in some
temperature region even in so unlike (in the sense of its symmetry) model
as the two-dimensional clock model with ¢ > 4 [4,59].

So, on one hand, the two-dimensional XY model really has a great
practical value describing (at least qualitatively) an important class of
magnetic materials, and, on the other hand, it is highly interesting from
the fundamental theoretical point of view revealing the most profound
topological defects influence. It is moreover accessible for analytical re-
searches.

It is convenient to investigate the low-temperature phase of the 2D
XY model analytically in the spin-wave approximation which is supposed
to be quantitatively reliable in the low-temperature limit and also gives
qualitatively correct results in the whole quasi-long-range ordering phase
[18].

The spin-wave approximation means the substitution of the scalar
product of spins in the Hamiltonian (1.3) with an approximate expansion

up to the quadratic term in the angle (Sr/,gr/) between the spins |16]:

SESE + SISl = cos (8080) — 1 - %(S/E)Q a4

Such a substitution is acceptable only at low enough temperatures when

the neighbouring spins are oriented almost in the same direction.
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In the spin-wave approximation the Hamiltonian (1.3) can be diago-
nalized and the model admits analytical solution. The pair correlation

function of spins shows a power law decay with distance [16]:
(St,Spir) ~ R (1.5)

with the non-universal temperature-dependent exponent
kT
n(T) = 5T (1.6)
where kp — the Boltzman constant. Divergence of the magnetic susceptibil-
ity in the low-temperature phase follows from the above result as well [16].
The finite two-dimensional XY model possesses some residual spon-
taneous magnetization which goes to zero as the lattice size increases

[13,14,60]. The spontaneous magnetization can be defined as:

(m) = ]1,< (ZS>2> . (1.7)

This decay is so slow that spontaneous magnetization can be observed even
in macroscopic magnetic samples [13,14]. The spin-wave approximation
gives a power law vanishing of the magnetization with the lattice size
N = L x L (L is the linear size):

(m) = N7 (1.8)

with the exponent 1 defined by (1.6).

But the thermodynamically averaged value of the magnetization alone
does not contain in itself the complete information about the finite system
properties. As the researches [60,62] suggest important scientific value has
the form of the magnetization probability distribution which appears to
be non-Gaussian and non-universal (in the sense of its independence of the
system size and exponent 1). This is a consequence of the quasi-long-range
correlation in the system and accord well with the fact that the correlation

length ¢ is divergent in the low-temperature phase [42].
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1.1.3 Vortices in two-dimensional XY model

The spin-wave approximation describes the behaviour of the model quan-
titatively correct only in the limit of low temperatures. This is so because
according to the Kosterlitz-Thouless theory |7] at low temperatures topo-
logical defects are closely bound in neutral vortex-antivortex pairs which
insufficiently disturb the spin field and thus in fact do not show them-
selves in the model properties. As the temperature increases the mean
distance between the vortices in the bound pairs becomes larger and their
influence on the model behaviour correspondingly increases, but somehow
the spin-wave theory continues to give qualitatively correct results for the
pair correlation function and other physical characteristics behaviour in
the system in the whole low-temperature phase, only the real temperature
should be replaced with some effective value [8,18].

In spite of such a wide temperature region of its applicability (at
least for a qualitative description) the spin-wave approximation does not
give any information about the most exciting phenomenon in the two-
dimensional XY model — the Berezinskii-Kosterlitz-Thouless transition.
The model described by the spin-wave Hamiltonian remains quasi-long-
range ordered at any finite temperature and no phase transition occurs [16].

Spin vortices (topological defects) (see fig.1.1) introduced by Kosterlitz
and Thouless to explain the unusual phase transition on a phenomenologi-
cal level |7] later received a firm support of their existence and importance
both in experimental (meaning Monte Carlo experiments) [13,71] and the-
oretical [17,18] researches. As great achievement, in the topic one should
consider the approximate model proposed by Villain [17] and subsequently
called with his name. Within this frame the vortex spin configurations and
their 2D-Coulomb-like interaction can be analytically obtained directly
from the microscopic Hamiltonian. Although the Villain model can be
formally considered as an independent model with a specifically defined

Hamiltonian possessing together with the 2D XY model spin vortices
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Figure 1.1: Examples of vortices with topological charges equal to +1 (top)
and —1 (bottom) in the two-dimensional XY model.

and a topological phase transition, in the low-temperature limit it can be
mathematically derived from the 2D XY model Hamiltonian [18]. Thus,
at least at low temperatures, one can be confident with the fact that the
Villain model vortices are equivalent to those of the two-dimensional XY
model (though at higher temperatures their behaviour can differ because
the difference in their critical temperature values (non-universal property)
are remarkably different [66]). In fig.1.1 some examples of the vortices with
diverse topological charges are presented (vortices with the same charges
are topologically equivalent though they differ visually). The researches
suggest that real influence on the model behaviour can make only vortices
with charges with the absolute value equal to one [18], topological defects

with higher values of the charge are energetically unfavourable.
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According to the Kosterlitz-Thouless theory [7] the phase transition
in the 2D XY model has features of the insulator-conductor transition
in the two-dimensional Coulomb gas [9]. The mean distance between the
vortices bound in pairs increases with temperature and finally at some
critical value Tk dissociation of such pairs happens. The resulting gas of

free topological defects ruins any quasi-long-range ordering in the system.

1.2 Structural disorder

1.2.1 Quenched and annealed disorder

The concept of disorder in the context of condensed matter physics is very
broad and can apply in fact almost to any physical system [76-78]. Our
research concerns lattice spin models of continuous symmetry and this
defines the circle of possible types of disorder that can be added to this
models. For example, in the two-dimensional XY model one can study
disorder in the form of a random phase shift (for example, [79,81]), random
local field (for example, [80,81]), random anisotropy (for example, [82,83])
or random coupling constant (for example, [27,100]). But perhaps the
most typical kind of disorder in magnetic systems is the positional disor-
der which means that some sites in the lattice are randomly occupied by
nonmagnetic ions |1,2|. Such a model of disorder describes appropriately
defects in real magnetic materials. Already in the first profound works
devoted to this problem [2] an idea about configurational averaging (aver-
aging over all the possible realizations of disorder) of observable physical
quantities arised. Mazo [84] showed that the free energy of a physical
system depending not only on dynamical variables (atomic spins in our
case) but also on random variables (nonmagnetic impurities positions, for
example), with some fixed probability distribution function, should be the

averaged value of the free energy as a function of the random variables.
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The described situation corresponds to nonequilibrium impurities distribu-
tion defined phenomenologically. This kind of disorder is called quenched
disorder and it reflects the situation in real physical samples properly, since
the relaxation time of such impurities is usually very large compared to
the timescale of the spin relaxation. A specific property of the quenched
disorder influence on the behaviour of magnetic systems is the existence of
the percolation threshold [1,85,86].

However, there is also another type of positional disorder which is called
annealed in contrast to the quenched one (see, for example, [88,89]). In
this case the positions of nonmagnetic ions are defined by the thermody-
namic equilibrium state and their distribution is at equilibrium. From the
mathematical point of view this means that the free energy of the system is
the logarithm of the configurationally averaged partition function. When
computing other thermodynamical quantities the averaging over the vari-
ables describing the impurities positions should be added to the trace over
the spin variables. In fact, annealed disorder is equivalent to the lattice-gas

magnetic models.

There are some works devoted to the research of the impurities relax-
ation dynamics, i.e. the transition from the quenched to annealed disorder
(see, for example, [90]). Another link between two different types of dis-
order can be seen in the works that suggest to study quenched disorder
through some fictitious system with annealed disorder constructed in such
a way that it has the properties analogous to the properties of the initial

system (see [91]).

When dealing with quenched disorder, attention should be paid to the
self-averaging property of the system physical quantities [92-94|. In the
case when a quantity is non-self-averaging, its configurational average ob-
tained on the basis of a finite set of disorder realizations will not represent

properly its real observable value.
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1.2.2 Disorder in two-dimensional XY model

Since our study mostly concerns quenched disorder, let us give only a
very brief excursus to the works on the influence of annealed disorder
on the two-dimensional XY model behaviour. 2D XY model is used
in particular to describe *He-"He mixture in two dimensions |95, 96| and
realizes the classical two-dimensional ferromagnetic lattice gas model [98].
The existence of the quasi-long-range ordering at low temperatures in this
model is proved rigorously [101] and supported by Monte Carlo simulations
197]. The critical temperature decreases as the nonmagnetic impurities
concentration increases [97]. There are also convincing evidences about
a first order phase transition which occurs at some values of the dilution
concentration in this model [98-100]. This phenomenon appears only for
annealed disorder and does not have place in the model with quenched
disorder [20, 26].

Quenched disorder in the two-dimensional XY model causes reduc-
tion of the critical temperature which, as a function of nonmagnetic sites
concentration, decreases with concentration and turns to zero at some fi-
nite critical value of concentration [20,26] (see fig.1.2). Today there are
practically no doubts that this critical concentration coincides with the
percolation threshold [20,26] (which is ¢ ~ 0.59 [105] for the square lattice
which is usually considered). Thus the quasi-long-range ordering phase
exists until there is an infinite percolation cluster in the system. Ones
the concentration of magnetic sites reaches the percolation threshold any
ordering becomes impossible. Before our research started no analytical
estimation of the critical temperature of a diluted 2D XY model as a
function of dilution concentration existed in the literature.

According to the Harris criterium [15], universal critical exponents of
the 2D XY model at the BKT transition remain unchanged by quenched
structural disorder. Obviously, this is true only for such dilution concen-

trations at which an infinite percolation cluster exists. Thus the value of
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Figure 1.2: Phase diagram quoted from [26]: 2D XY model critical tem-
perature as a function of nonmagnetic sites concentration observed in

Monte Carlo simulations. The insert shows the vicinity of the percola-
tion threshold.

the pair correlation function exponent at the critical point which is uni-
versal (n(Tpkr) = 1/4 [8]) remains the same in the model with disorder.
However, in the low-temperature phase the exponent n depends on the
temperature and coupling constant |16], thus it is not universal. As the
researches show in the model with structural disorder the exponent 7 also
depends on the nonmagnetic impurities concentration increasing with the

dilution concentration [20].

The residual spontaneous magnetization behaviour in a finite two-
dimensional XY model with quenched disorder stayed unexplored until

very recently.

Finally, one of the most crucial questions concerning nonmagnetic di-
lution in the 2D XY model is the form of the interaction between non-
magnetic impurities and topological defects present in the system. The

knowledge of this interaction can be of use in calculating the critical tem-
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perature reduction connected with the dilution and also is important itself

concerning the possible applications in nanotechnology [104].
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Figure 1.3: A spin vortex centered in (0,0) with a nonmagnetic vacancy in

(5,0) (left) and (1,0) (right) obtained through energy minimization of the
spin field |21].

The first paper [21] devoted to the research of the interaction between
a spin vacancy and a topological defect suggested a repulsive form of the
interaction due to the incorrect estimation scheme. It was based upon
the continuous elastic medium approximation with artificially introduced
topological defect configurations (the Kosterlitz-Thouless model), and a
spin vacancy was presented in this model by some cutout area removed
from the continuous spin field. In fig.1.3 quoted from |21] one can see a
spin configuration obtained by a minimization of the energy of the spin field
(vortex structure was guaranteed by antisymmetric boundary conditions)
with a spin vacancy (a cutout) at the distance of five (left) and one (right)
lattice constants from the vortex center (on the right side there is a visible
distortion of the initial vortex form which looks like a “screening” of the spin
field behind the vacancy). The energy of the vortex with a vacancy situated

closer to its center has a greater value, so it is energetically preferable for
a vortex to keep away from a spin vacancy.
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Figure 1.4: Spin dynamics simulation results for a vortex spin configuration
with a nonmagnetic vacancy [24]. Comparison of the initial configuration
(left) with the configuration obtained after 150 time steps (right) suggests

an attractive interaction between the vacancy and the vortex center.

However, Monte Carlo and spin dynamics simulations strongly sug-
gested the opposite picture of interaction [24]: vacancies attract topologi-
cal defects and pin them (see fig.1.4). Calculations redone with the crucial
assumption about the vortex configuration unchanged by the presence of
a vacancy leaded to a qualitatively correct result [24]. Of course, speaking
rigorously, such an assumption is not completely true, it is an approxima-
tion needed to avoid physically incorrect consequences when substituting
the discrete lattice with a continuous spin field. One can assume that the
truth is somewhere in between: the spin field changes due to the presence

of a vacancy but only locally and not so globally as it appears in fig. 1.3.
Another disadvantage of the study [24] can be seen in the dependence of
the interaction result on the way one chooses the “vacancy” cutout form,
i.e. on its area which is somewhat indefinite and moreover is not linked

to the microscopic structure of the lattice (the coordination number, for

example).
Attractive form of the interaction between structural and topological

defects is supported by the studies of other model possessing vortices as

well |23].
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1.3 Conclusions

The presented overview reveals great theoretical and practical value of
the research of the influence of positional disorder on the behaviour of
two-dimensional spin models of continuous symmetry (and especially the
2D XY model), and in the same time it shows the insufficiency of such
researches remaining for today. Particularly interesting seems the question
of the lattice finiteness influence on such models behaviour which has never
been investigated in combination with structural disorder. The form of
the interaction between structural defects and spin vortices is important
also from the point of view of the modern nanotechnology development
and search of new data storage methods, since vortex structures are often
observed in nanostructured magnetic thin films (see [104], for example).
The described situation opens an intriguing field for scientific research

which the present thesis tries to cover at least partially.






Chapter 2

TWO-DIMENSIONAL XY MODEL WITH
DISORDER

This chapter presents a study of the influence of structural disorder on the
behaviour of the two-dimensional XY model at temperatures sufficiently
lower than the Berezinskii-Kosterlitz-Thouless transition temperature. In
this interval of temperatures one can with good precision neglect the im-
pact of the topological defects present in the system, so the spin-wave
approximation can be of use. We will present an original perturbation
theory: expansion in the parameter which characterizes dilution (several
alternative candidates for such a parameter are proposed). Our attention
will be mainly focused on the pair correlation function behaviour which
is one of the most interesting characteristics of the two-dimensional XY
model. Together with the analytical treatment a series of Monte Carlo
simulations were performed for the 2D XY model with different concen-
trations of dilution; the results of these simulations are presented in this
chapter as well. We will compare the computer experiment data to the an-

alytical results. The most essential results of this chapter were published
in [32-34,37-41].
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2.1 Quenched dilution

2.1.1 Configurational averaging

Herein, quenched dilution (disorder) in a ferromagnetic system means ran-
dom replacement of some fraction of magnetic lattice sites with nonmag-
netic impurities (spin vacancies). The mathematical description deals with

the “occupation numbers”:

1, if site r has a spin ;
C =
' 0, if site r is empty .

(2.1)

Setting a certain set of the variables {c¢, } any disorder configuration can be
realized with a given dilution concentration. We will deal with uncorrelated
random disorder, i.e. the occupation probability for a site is independent
of the other sites states. Thus, to obtain such a disorder configuration
with the concentration ¢ of magnetic sites (and concentration 1 — ¢ of
nonmagnetic impurities respectively) it is enough to set the probability

P(cy) for the site r to be empty or occupied by a spin:

C ife,=1;
P(e,) = ’ ' ’ 2.2
(@) {1c,ifcr=O. (2:2)

Following [2], we distinguish quenched disorder (when the impurities
are filled randomly in the system) and annealed disorder when nonmag-
netic sites are in their thermodynamic equilibrium positions. In fact, such
annealed disorder is nothing else but another formulation of a lattice-gas
ferromagnetic model [97] where spin sites have a space degree of freedom:
their position in the lattice. In the annealed disorder case the partition
function of the system should be averaged for all the possible realizations of
disorder, this just means inclusion of the magnetic sites space coordinates
into the trace. Contrary, according to [2,84] when dealing with quenched

disorder such averaging can be and should be done only for observable
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physical quantities such as the free energy or, for example, the spin pair
correlation function.

The present research is restricted to the uncorrelated quenched disor-
der consideration, so hereafter speaking about disorder/dilution we will
always mean quenched impurities distribution (except where something
else is explicitely stated). The configurationally averaged physical quan-
tities will be of importance. A dash over an expression, ﬁ, will denote

configurational averaging; mathematically it can be defined as:

- Y Y [P

crlz(),l crN:O,l

~—

(..)

= > .Y H(calcrﬁac)acho)] (..). (2.3)

¢r;=0,1 crN:0,1 | T

Sometimes quantities averaged in such a way will be called configurational
averages (in analogy with thermodynamical averages) but mostly we will
implicitly mean configurationally averaged values when speaking about
observable physical quantities. For example, the free energy of the sys-
tem which is an observable quantity and thus has to be averaged over all

possible configurations of disorder will be given by the expression:

Fip = —TlnZ

conf

(2.4)

where T' — the temperature in energy units, and Z.,n¢ — the configura-
tionally dependent partition function which depends on the particular dis-

order realization and generally is given by the expression:
Zoong = Tr e HUD/T (2.5)

with H({c,}) being the system Hamiltonian dependent on the occupation
numbers (2.1) along with the spin variables, and Tr(...) meaning only

integration over the spin degrees of freedom.
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Another important characteristic, the pair correlation function of spins,

averaged over disorder configurations has the form:

Cr

TR Ty o-H({(@)/TS,S,,m . (2.6)

conf

G(R) = Crcr+R<SI‘Sr+R> =

2.1.2 Self-averaging

Systems with quenched disorder can be characterized by such a property
as self-averaging [92]. In the previous subsection the configurational aver-
aging procedure was defined, but the practical value of such an averaged
quantity is related to the form of its probability distribution over differ-
ent realizations of disorder. The value of an arbitrary physical quantity
X in a system with disorder depends on the exact form of the disorder
configuration, thus, it is a random quantity described by the probability
distribution function P(X, N) dependent on the size N of the system. If
one desires to describe the system with the configurational average X one
should check the relative variance of the distribution P(X, N):

X2 - X’

Rx(N) = =—— (2.7)

If the relative variance of a macroscopic quantity X goes to zero, Rx — 0,
in the thermodynamic limit (N — o0) then one says that X is self-
averaging and thus the system can be described explicitly by the configu-
rational average X . If Ry goes with N — oo to a finite constant value
then the system is said to be non-self-averaging. When Rx — 0 there are
different degrees of self-averaging which can be distinguished depending
on the form of the decay of Rx. When Ry ~ N~! one says about strong
self-averaging, and if Ry ~ N~% (0 < z < 1) the self-averaging is weak.
Beyond the critical region the additivity property along with the cen-
tral limit theorem automatically lead to a strong self-averaging, i. e.

Rx ~ N1 (this is true for additive quantities, of course). However, at the
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critical point the situation becomes more complicated because of the long-
range critical correlations; it has been shown by the renormalization group
technic [92] that in the case of relevant disorder (when disorder influences
the critical behaviour, according to the Harris criterium) the self-averaging
is lost at the critical point. Though at the very critical point of the BKT
transition in the 2D XY model disorder is irrelevant according to the Har-
ris criterium [15], the whole low-temperature phase (7" < Tpgr) is critical,
and there disorder has visible influence on the properties of the model, for
example, the nonuniversal pair correlation function exponent depends on
the dilution concentration [20]. This poses an important task of finding
along with the configurationally averaged values of physical quantities like
(2.4) and (2.6) their relative variances (2.7).

2.2 Spin-wave approximation

2.2.1 Spin-wave Hamiltonian

A spin in the model (1.3) has a fixed length (we choose it equal to one),
thus, in fact, each site is described by a single degree of freedom. Instead
of the two spin components, Sy and SY, let us introduce a single variable
which describes rotation of a spin in two-dimensional space; the angle
between the spin and an arbitrary fixed reference direction in the plain
of its rotation can serve as such a variable. Introducing in this way the
angle variables 6, the scalar product S¥S% + SYSY, can be rewritten as a
cosine of the angle difference between the two spins: cos(6, — 6y). The

Hamiltonian (1.3) then writes as:
H = —J) > cos(bea, —bk), (2.8)
r a=xy

where a,, a, — the elementary cell basis.

The Hamiltonian of the two-dimensional XY model with quenched
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disorder can be written using the occupation numbers (2.1):

H = — JZ Z coS(bpra, — Or) Cria, Cr - (2.9)

r oa=zy

It is obvious that (2.9) as well as (2.8) is minimal when all spins are
parallel. Considering low temperatures one can obtain satisfactory results
by taking into account only low energy excitations which are small devia-
tions from the ground state. In this case the difference between the angles
0, on neighbouring sites remains small and the cosine can be expanded in

a Taylor series around the energy minimum:

oS (Bria, — 0r) — 1— = (0rya, —0,)° . (2.10)

The Hamiltonian (2.9) will write as:
H ~ Hy + Hgy,

where

1 2
HSW = 5 JZ Z <9r+aa — 01-) Cr+a,Cr (211)

r a=xy
will be referred of as the “spin-wave” Hamiltonian, and according to (2.2)

Hy can be written with good precision as:

Hy = —JY ) e ~ — 2]

r a=zy

Hy does not depend on the spin degrees of freedom, and thus reduces to a

constant added to the free energy:

F ~ F. + 2J¢

Fyw = —Tln (Tr e Hsw/ T) , and does not enter the observable physical

quantities such as the spin pair correlation function, for example.
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The trace, Tr..., over the spin degrees of freedom can be defined in

terms of the angle variables 0, as a functional integral:

Trg...ZIH/zC;f:].... (2.12)

The coefficient 1/(27) appears from the normalization: Trpl = 1. To

obtain a thermodynamic average in the spin-wave approximation we will

use the following formula:

Try [e‘ﬁHSW . ]
Try e PHsw

(...} =

(2.13)

Of course, any observable quantity which characterizes the diluted
model (2.11) along with the thermodynamical averaging should be av-

eraged over the configurations of disorder according to the formula (2.3):
Tr, [e=0Hsw ]
ce ) = : 2.14

The dependence of the Hamiltonian Hg, on the occupation numbers, Eq.

(2.11), puts a nontrivial problem which will require approximate approaches.

2.2.2 Fourier transformation on a two-dimensional lat-
tice
In the pure model case (Eq. (2.8)) the spin-wave approximation (2.10)

allows to find an analytic solution of the model by passing to the Fourier

variables 0y according to the transformation formulas:

O = o> Mo, o= S MO, (2.15)
k r

where the sum over k spans N sites of the reciprocal lattice within the first
Brillouin zone (NV is the number of sites in the original lattice). In terms

of the variables 0y the Hamiltonian (2.8) has a diagonal form (decomposes
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into a sum of terms each of which depends on a single wave-vector k) and

is written as [16]:

HP — gz S K2(K) 0 (2.16)

k a=xy

where K,(k) = 2sin e
Although the Hamiltonian with quenched impurities, Eq. (2.11), can-
not be diagonalized in such a way, we apply the Fourier transformation
(2.15) since our approach will be based on an extraction of the diagonal
part in (2.11) which will correspond to the undiluted system (2.16).
Before calculating any thermodynamical quantities with the Hamilto-
nian written in the Fourier variables on should express the trace (2.12) in
terms of 0y too. This can be done with the help of the well known formula

for the change of variables in a multiple integral [106]:

/.../f(:z:l,...,:z:n) doy . du, (2.17)
= [ s g e 8) 1T ] dads

where x; are the initial variables, & are the new variables, and J =
det(0x;/0&;) is the transformation Jacobian. The transformation (2.15)
is linear , thus one can conclude straightforwardly that the Jacobian is
constant and can be put outside the integral.

Obviously, 0k are complex quantities: 0y = 0 + 6y, and from the
first look it seems that one has too many new variables than one needs;
however, it is easy to see that not all of them are independent because
0_x = 0. To exclude the extra variables we will consider only 0y
with k within one arbitrary half of the first Brillouin zone (for example,
(0<k, <Z0<k,<I)U(0 <k, <I,—I<k,<0),seefig. 2.1) and
we will denote this domain as By, and the rest of the 1st Brillouin zone

will be denoted as B_ (the point k = 0 will be considered separately).
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Then, the Hamiltonian (2.16) will read as:

1, = 23S K e+ 3 Y Y K200 bl

keB, a=x,y keB_ a=xy
J 2 J 2
SED D W CUTYENED Db pE-ESTavs
keB, a=x,y keB, a=z,y
= JY ) KXk 6], (2.18)
keB, a=ux,y
where 0| = /0 0-x = \/ (05)? 0;)%. Let us note that 6 with
k = 0 does not enter the Hamiltonian
ky
B
-+ ky
0
B.

Figure 2.1: The division of the 1st Brillouin zone into two equal parts: if
k € B, then —k € B_.

The trace Trg..., Eq. (2.12), can be written in the Fourier variables

as the functional integral:

NG
.:|j\/ db, H/ dek/ deg | ... . (2.19)
-NZ

keB,

Expansion of the boundaries of the integration over ¢; and ¢ in (2.19)
is possible owing to the fact that the trace operation always acts on an
expression containing the Boltzman factor e #H& which is not vanishing

at low temperatures (3 — oo) only for small values of 6, 65 (see (2.18)).
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The absolute value of the Jacobian J can be found by comparing
the trace Trg e ? 20 calculated in the variables 0. and in the Fourier-
transformed variables 0. It is easy to check that Y 602 = >, |6x|* =
08 + 2 1 cp+ |0k]?, and thus,

(/%)

r

=\J|/ doo e 1]

keB,
which leads to
| T | =

o (2.20)

Now, one can draw the finale expression of the functional integral

Trg ... in the Fourier variables 6Oy:
NG db, < dhe [ de;
Trg...:/ — HQ/ k/ —k | (2.21)
_NZT 2T —0 27 — 0 2T
a k€B+

2.2.3 Disorder configuration inhomogeneity parame-

ter

The nonmagnetic sites density can be written as:

p(r) = > (1= o) , (2.22)

r/

where

1, ifr=r;
51‘,1" - B b (223)
0, ifr#£r.

is the Kroneker symbol which can be represented as:

1 "
o § : iq(r’'—r)
51‘,1" = _N - €q , (224)
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where the sum over q spans sites of the reciprocal lattice within the 1st

Brillouin zone. Inserting (2.24) into (2.22) one obtains:

p(r) = Z e_iqr% Z e (1 — ) . (2.25)

q r’

The Fourier transform of the impurities density,
1 )
pa = & Z Tl —¢p) (2.26)

can serve as a parameter which characterizes the dilution (2.1) in the
inverse space. In the limiting case when there is no dilution (all ¢, = 1)
pq = 0 for any q.

It is easy to see that py is the concentration of nonmagnetic sites,
1 — ¢, if one neglects the fluctuation of this concentration in different
realizations of disorder. Due to the random distribution of nonmagnetic
impurities in the lattice it is statistically not preferable to come across
essential inhomogeneities of the impurities local density, so all pq with
q # 0 have small absolute values. In other words, pq does not differ

essentially from its configurationally averaged value (see (2.3)):

5q = (1—¢)dqo . (2.27)

A deviation of pq from its averaged value (2.27),
— 1 tqr
Apqg = pq — Pq = Nzeq (c—a) (2.28)

will be called the disorder configuration inhomogeneity parameter or briefly
just “disorder parameter”, since it characterizes the fluctuation of pq con-
nected with the random character (disorder) of the dilution. Let us imagine
the situation when the nonmagnetic sites which make the fraction 1 — ¢ of

all the sites form some regular structure, then pq can be written as:

r

pa = (1—¢) [mZeq] , (2.29)
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where the sum over r spans the empty sites only. The expression in the
brackets in (2.29) is just a Kroneker symbol dq0, thus, in this particular
case, when the impurities are ordered in some sense, the equalities pq = pq
and Apg = 0 hold.

Let us rewrite the spin-wave Hamiltonian of the diluted model (2.11)
in the Fourier-transformed variables 6k, Eq. (2.15), and pq, Eq. (2.26):

Hy, = HY — gz Z Z 0,01 (1 _ emthaa _ gmikia e—i(ka-kk(’l)a)
kK K

«

" [ S pa (14 €9) %Z ik tq)r
q

r

B ZZ Pape e—iq(’la%z ei(k+k’+q+q’)r] |
qa d

r

where HE  is the Hamiltonian of the pure model (2.16). Since

1 —i(k+k'+q)r __ 1 —i(k+k'+q+q)r __

NE e ar = 5k+k'+q,0 and NE e ardr = 5k+k’+q+q’,0:
r r

we have

Ho = Hyy + 7YY S cos B3 oy K, (0K, (K) i
k Kk

(0%

3D 3) S [Z €1 g p] Ko () Ko (K) e
k k «

a

(2.30)

with

Ko(k) = 2sinf? . (2.31)
Also we will use the Hamiltonian (2.30) written through the disorder pa-
rameter Apg:

HSW = HAp:O +cJ Z Z Z COS WAP—k—k’ Ka(k)Ka(k’)Qka/
k ¥k

«

53 3 Sa ) PV FHNE T
k kK «

’ (2.32)
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where

2J
Hapo = 72 > K2(K) by (2.33)

k a=zy
is the Hamiltonian of the undiluted model (2.16) with the renormalized

coupling constant ¢®J (c is the concentration of magnetic sites).

2.2.4 Free energy of a weakly diluted model

Let us estimate the free energy (2.4) of a system described by the Hamil-
tonian (2.30). The configuration-dependent partition function will write

in this case as:
Zconf - Tl"g 6_6(HSPW+HP+HP2) ) (234)

where notions H, and H > were introduced for the linear and quadratic in
p parts of the Hamiltonian (2.30) respectively. Multiplying and dividing
(2.34) by the partition function of the pure model Z;. we have:

Try e~ OHR+Hy+H,2)

A = Z
conf pure TI'@ o BHP, )

and thus one can write:
Zeonf = Zpure <e_ﬁ(Hp+Hp2)> , (235)
p
where (...), denotes the thermodynamic averaging with the undiluted
model Hamiltonian (2.16). Then, the configurationally averaged free en-

ergy (2.4) can be expressed as:

1
Fo = Ff, = 5o <e—ﬁ<Hp+Hp2>> , (2.36)
P

where FP is the free energy of the pure model (2.16).
Expanding the configuration-dependent expression into the Taylor se-

ries in powers of pq one arrives at:

In <e—5<Hp+Hp2>>p = In (1 + i (_l!ﬁ)l (H,+ Hp2)1>p> —

=1
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l1+ Al

Z Z N (HP+Hp2)ll>p---<(Hp+Hp2)lm>

00
y E .
m=1

The configurational averaging procedure acts on the variables pq, so the
problem reduces to the estimation of averages of the type: py ... pq,

(n=1,...,00). The expression for p, has already been written once, Eq.
(2.27); it is also not difficult to find that:

- 1
pqlp(h - [(1 - C) - (1 - 6)2] N5Q1+Q2,0 + (1 - C)2 5Q170 5%,0 ) (2'37)

. 1
Pq,PazPas = [(1 - C) - 3(1 - 6)2 + 2(1 - 0)3] m 5(11+Q2+Q3,0
1
+ [(1 - C)2 - (1 - 0)3} N (5q1,05q2+q3,0 + 0q2.00qs +qs.0 T 5q3,05q1+q2,0)
+ (1 — 6)3 6q1,0 (Sq%() 5q3,0 . (238)

Considering low concentrations of nonmagnetic sites (weak dilution) one
can keep in (2.37) and (2.38) only terms linear in (1 — ¢). Then, it is easy

to generalize:

1
Pay - Pan = (1—0) Nn—1 s+ a0 - (2.39)
According to the expressions drawn, the terms containing any powers of
H > will vanish, since they will include sums of the type: Zq el (see

(2.30)) which give zero. Then, one can write:

111 <€—5(Hp+Hp2)>

p

00 00 00 11+ A+, l l
Z Z Z <H,,1>p o <Hpm>
=1 ln=1

m=1 1=

p

The thermodynamic averages <H f)>p will obviously lead to the calculation
of the quantities <«9k19k2 . -9k21719k21>p which can be written as (see Eq.
(2'6072'62»: <9k10k2 - '9k21710k21>p - 5k1+k2+...+k2171+k2170

X (O, bk, - . . 8k21_18k21>p . Thus, we arrive at the expression:
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In <e—6(Hp+Hp2)>
D

gy EVT Sy ) (Hpy) o (H )

m L., 0! N P=N
m—1 h=1  lp=1 ! m

where Hp:% is the part H, of the Hamiltonian (2.30) with pxyr = 1/N:

J N
Hyy = > DTS cos Btk K (K) Ko (K) Ok . (2.40)
k K

Collecting the series we get the free energy (2.36):

1 em
Fu = Fh = (1=0N 5 In <e BHP—N> . (2.41)
p

SW

Going back to the direct space and expressing the quantity H,_ ! in the

angle variables 0, we have:

J
Hp:% = 3 ((9% — (9())2 + (Hay — (9())2 + (H—am — 90)2 + (Q_ay — (9())2) ,

i.e. the energy for one single spin vacancy (empty site) in the coordinate

system origin. Thus, one can write:
1 —BH,_ 1
—— In(e " ~nN = F_1 — FY = AF _.1
6 p ’ ™

where F,_1 is the free energy of the model (2.11) with one single spin

vacancy at the origin, and F¥ is the free energy of the pure model. So,
Fow = FL + (1—¢)N AFp:% : (2.42)

As one can conclude, our assumption of the dilution concentration 1 — ¢
smallness led to the reduction of the initial problem to a calculation of
the free energy of a system with one single vacancy. In other words, the
nonmagnetic impurities almost do not “feel” each other being present in

small concentrations.
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It is not difficult to find the analytical expression for the free energy
of the pure model, F2 , using the Hamiltonian (2.16) diagonalized in the

SW?

Fourier variables. From the partition function,

SO [T A sy, w200 0074002
Zpure:H(2/_oo27T/_ooge o [ ]

keB,
—-1/2
_ 1 _ 2
— kl;{ TR go <2wﬁjza: Ka(k)> ,(2.43)

we find the free energy:

P = g > In (2#%31{3(@) , (2.44)

kA0

where the sum covers the 1st Brillouin zone except k # 0, K,(k) was

defined in (2.31), and T is the temperature expressed in the energy units.

The difference between the free energies of the “single-vacancy” and

pure models, AF,_ 1, can be estimated approximately expanding the ex-

1
N
pression

in powers of H,_ L Obviously, the influence of a single spin vacancy on
the infinite system is infinitesimally small, thus H,_ L can be considered
as a weak perturbation and the first several terms in the perturbation
expansion are enough to have a nice result. Note that the same result could
be obtained directly in the expansion in pq keeping the corresponding order
terms and neglecting the rest. We emphasize that such a procedure cannot
be considered as the perturbation expansion in the dilution concentration
1 — ¢, since any term in the expansion gives its own contribution linear in
1 —c (Eq. (2.39)). In the following subsection similar expansion will be

applied to estimate the spin pair correlation function.
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2.3 Pair correlation function of spins

2.3.1 Expansion in the disorder configuration inho-

mogeneity parameter

The configurationally average spin pair correlation function (2.6) of the

model (2.11) can be written in the angle variables 6, as:

GR) = *(cos (bryr —br)) (2.45)

where ¢? is the probability that the sites r and r + R are not empty.
Passing to the Fourier variables fy according to the formula (2.15), (2.45)

can be written as:

GR) = *{cos Z MO ) (2.46)
k£0

with nx = n + i n.,

Me = \/LN (cosk(r+R) — coskr) |,
M = \/LN (sink(r+R) — sinkr) . (2.47)
The expression (2.46) is correct due to the property: 6, = 65, 6°, = —6;,

Nk = Mo M =~ -

The occupation numbers ¢, enter the thermodynamic average (2.46)
through the Fourier-transform of the impurities density px in the Hamilto-
nian (2.30) or through the disorder configuration inhomogeneity parameter
Apy in the Hamiltonian written in the form (2.32). In order to find the
configurationally averaged value of the pair correlation function (2.46) one
has to expand the expression (2.46) into a series in powers of px or Apy.
The result of the expansion in px which corresponds to the perturbation
theory for a weak dilution will be found in the next subsection. Herein,
we will obtain the result of the expansion which we expect to be more

reliable at stronger concentrations of dilution. As the parameter of such
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an expansion we take the disorder configuration inhomogeneity parameter
Apy which is supposed to be small for the most probable configurations
of disorder at any concentrations of dilution. As one will convince after-
wards, comparing the results of both expansions (calculated up to the third
order) with the Monte Carlo simulation data, the expansion in Apy will
really better describe the stronger dilution region of the phase diagram.
Although the convergence of this expansion (as well as of the expansion
in px) remains questionable one can notice similarity with the well known
perturbation theory for the sum over the wave-vector k (a sum over k
will correspond to each power of px or Apy in our expansions) which is
of the order of the ratio between the effective interaction volume and the
elementary cell volume, a2 [107,108].

Let us introduce the following designations in the Hamiltonian (2.32):

Hgw = HAsz + HAp + H(Ap)27 (248)

HAp = cJ Z Z Z COS WAp_k_k/Ka(k)Ka(k’)Hkﬁk/, (249)
k ¥k

«

H(Ap)z = —% Z Z Z eiw Z eiqaa qu A,O_k_k/_q
k Kk

o q
x Ko(k)EKo(K) O . (2.50)

In order to realize the configurational averaging operation in (2.46) we

expand <cos Yk £0 77k‘9k> in powers of the disorder parameter Apy:

< COS Z nk8k> = < COS Z T}kek>Ap=O (2.51)

k40 k40

Apx

9 cos Yy b
2 [ 92

Ap=0



o0

0?( cos Mt
08 Do M) ApkApy
OApOApy
Ap=0

s

9 ( cos D k0 Meb)
OAprOAprOA pyr

ApxApwApyr

RN

where (...)A ,—o denotes the thermodynamic averaging with the Hamilto-
nian Ha,—o, (2.33).

In our research we take into account only the terms up to the third

order in the expansion (2.51). As it was mentioned before, Apy can be
considered as a small parameter in the case of a random non-correlated
disorder. One can call the expansion (2.51) the perturbation theory for
the unperturbed Hamiltonian (2.33).

Now, (2.46) can be averaged over the configurations of disorder noting
that:

Apg = 0,

— 1

Apglpy = ¢l =) N Oqtq'0 (2.52)
1

ApgApgApyr = — c(1 — 3¢+ 2¢%) N2 Oqta/+q",0 -

The spin pair correlation function (2.46) can be also written in the form:

) <6—/J’(HAP+H<AP>2) cos Zk#) 77k9k>Ap:O

GR) = c <e—ﬁ(HAp+H<Ap>2)>

(2.53)

Ap=0

The expansion (2.51) is equivalent to the expansion of the expression above
in powers of Ha, and Hap32 where the terms up to the third order in
Apy are kept only. The terms of the expansion containing Hapye will
vanish after the configurational averaging, since they will contain the sums

Zq e’ which give zeros. The terms linear in Ap will disappear as well
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(see (2.52)), thus:

G(R) - 62< cos Z nk8k>Ap:O
k#0

P [ (enn)y, o
X { 1+ 9 ( éoszknl;t?k}Ap_Ao - - <Hip>Ap=0

2 <HAP>A :o<HAPC°SZk77k9k>A o S \2
ﬁ <pCOs Zk nk9k>Ap:0 p <HAp>AP:0
n ﬁ_?’ <HiP>Ap:O<HApcoszknk9k>Ap:O

ey - <Hip>Apo<HAp>Apo)
Ap=0

(
E (Hp) )
B8 [ (Hsn),  SHR, cos Tiomebie)

<COSank9k>A 0 o <HAP>ApO<H2p>ApO)

<HAP>A O<HAP COS Zk nk0k>Ap o

3
<coszk nk9k>Ap:0 - <HAP>ApO>
ﬁ3 <H3PCOSZk77k9k> B
-5 ( @oszknkekup - <ng>Ap . . (2.54)
Let us find <cos Zk;&o nk0k>Ap:O first:

< COS Z nk8k> Apmo = Re <ei 2_k£0 77k9k>Ap:O

K40
(/ / d9k —5c2jz K2(k )[(ek)2+(9§)2]+i2(n§9§+n§9§)>
( / / B o=petd 5, Kl >[<9k>2+<9a>21>
keB,

_ |77k\
= exp{ 2502JZ . } (2.55)

k40

keBy
= Re

where the following notation was applied:

ZK2 = KX(k) + K.(k). (2.56)
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The thermodynamical averaging in <Hg‘p COS > 1 40 nk8k> Ap—q CONCETDS the
variables 6y, so, regarding the form of Ha, (Eq. (2.49)), the problem
reduces to the estimation of the averages of the type <9k1«9k/1 o Ok, iy

X COS Y 20 77k9k> Ap=0 Obviously, one can write:

<9k19k’1 w o+ Oy, e, COS Z 77k<9k>
A

k40 =0

o 0 0 0
- <1>m< : cosan9k> ’
A

Ok, O Oy, Oy, ;
p:

0 — 0
Ome — Oy,

the differentiation with respect to the parameter nyx and thermodynamical

where the short notation is introduced: —z’% . The operations of
k

averaging can be reversed:

<9k1 Ow, - - - Ok, b, COS Z 77k9k>
A

k#0 =0

= (=" 0 0 . 0 0 <cosZ77k9k>
A

Ok, Ok, ONky,,, Oy, o

p=0

Using the result (2.55) and the equality: gni:/ = 20k (which is easily

deduced from the property: n°, =ni , n°, = —n;) we get:

<8kek’ COS Z nk9k> (257)
A

kA0 =0

Z L nxn-x 1 Oxik0

— 8 — ?

<COS " k> { BENT wone | BET e |
A

k£0 =0

k40

<9k19k29k39k4 cos Z 77k‘9k> (2.58)
A

p=0
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L Y S U
L L BN 0% e Vi

= <COS Z nk9k>
kA0 A

1 <5k1+k2,077k377k4 +5k1+k3,077—k277—k4 +5k1+k4,077—k277—k3

p_

(ﬁ c? ‘]) 5 Yk2Vks Vka Tk ks Tka Vka2 ks Tka

N Okytks, 07—k, 11—k, n Okytka 01—k ks n 5k3+k4,o77k177k2>

V1 Vks Vky V1 Vks Vks Vk1Vks Vks
1 <5k1+k2705k3+k4,0

MR

N Oky+ks,00ks+ky.0 n Ok; +k4,00k5+k3.,0
Tk1Vke Vk1Vko Tk1 ko

and

p=0

{ L g ke ks Nk ks Tk

<9k1 ka eksekz;&ks eke COs Z 77k9k> (259)
A
(BAT)® Y Vo Vs Via Vs Vo
15

k40
= <cos Z 77k9k>
k40 A

1 <,5k1+kz,077k377k477k5nk6 4. \>

+
(Bc2J)? Vi Vis Vka Vis Vko
45

7\

1 <r5k1+k2,05k3+k4,077k577k6 + .. \>

(Bc2 ) Vicy Vis Vs Vko
15

+ 1 5k1+k2,05k3+k4,05k5+k6,0 + o \
(Be2J)? Vi Vi Vs ’

in the last expression the sums in the brackets span all the possible com-
binations of the wave-vectors in the Kroneker symbols (the numbers over
the brackets report the number of terms inside the brackets).

One instantly gets the averages (x0i)a,— » {0k, ks 0k50k4) 5= and
(O, O O Orc, Oy Oxcq ) p—pp from (2.57)-(2.59) putting all my equal to zero:
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1 Oktx0

(Oxb)ppep =

1 Ok +k2,00k3 4+ kg0
6 8 6 8 B — 1 2, 3 4,
< k1 VkaVks k4>Ap—0 (662J)2 { Vie, Vi

+5k1+k3,05k2+k4,0 n Ok +ka,00ks +ks,0 , (2.61)
fyklf)/kz ’Yk17k2

<ek1 ekz 81{3 ek4 ka eke > Ap=0

15
1 r5k1+kz,05k3+k4,05k5+k670 ) 2.62
—— o) (26
C ,‘}/klr}/ksﬁ}/kS

Substituting the equalities obtained above, (2.55), (2.57)-(2.62), and the
expressions for the configurational averaging (2.52) into the expansion
(2.54), the spin pair correlation function (2.46) can be brought to the

following form:

7| 1
G(R) = Pex — 1 — 2.63

1 - 2 / / , . 2
‘ Z Z cos Fethalt ¢ U“BJ;’%)@ Ko (k) K (k) Ka(K)Ks(K) [7K]
k kK a3 Tk Y/ Vi

1—-3 2 2 4 / ’ % "_ 1 Va
-+ z; ¢ e E Z cos (kazka)a cos (kﬁzkﬁ)a cos M 21%)
kK k" a,3,y
2
o Kall)Ro (00 Kall)Ra() Kol [l Z \nk\ |
K e e e o

In the expression above we neglected the terms containing powers of tem-
perature, 1/3, higher than the first, since we are dealing with the low-
temperature region. We neglected the terms vanishing in the thermody-

namic limit as well. The expression in the parentheses has the form of
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the first two orders of the Taylor expansion of an exponent; in the low-

temperature limit, 1/3 — 0, which we consider it can be replaced by the

exponent:
e[ 1
GR) = chXp{ 5 Z 5 (2.64)
208c*J o Ok ﬁc J
1—c 2 2 53 o Bl (e M) Kl F(K) [
Tx! Yk
kk’ a3
1—3c+2c iKa (K=
+ ¢t e Z Z cos 08 (kﬁzkﬁ) cos ¥ 2k”)
C k.k’ k" 767
o FallORS () Koo () Kall) Kal) 0 [® Z Ink\2
Yk Y/ 'yk// ’
Tk 120

The expression (2.64) is a result of the thermodynamic and configurational
averaging of the pair correlation function expansion in the disorder config-
uration inhomogeneity parameter up to the third order. The first term in
the exponent argument corresponds to the zeroth order of the expansion;
the first order contribution is zero, since Apyx = 0; the terms with the

1— 3c+20
and c?

coefficients =< correspond to the contributions of the second

and third orders respectively.

2.3.2 Pair correlation function asymptotic behaviour

It is not difficult to convince ourself that for nx defined by the equalities
(2.47):
1.
> = NSHP% : (2.65)
Substituting (2.65) into the result (2.64) of the third order expansion in

the disorder parameter, we get:

GR) = CQGXP{ : (SO(R) + 12651(3)
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1 — 3¢+ 22
_ >

[SQ(R) + 2 SO(R)] ) } . (2.66)

where we used the following notations:

2 kR

2 sin” =%
SR) = =Y —=, (2.67)
N k20 Tk
8 / / a
Sl(R) = m Z Z Z COS (kagka)a CcoS U%J;kﬁ)
k0 k' a0
Ka(KE(k) Kolk)Eu(k) S0 5

X : (2.68)

FYk/ ")/k

Tk
16 keatk! a (kK +k5)a (K!—k,)a
S2(R) = WZZZZCOS( +2a) COS —5— COS ~—

kA0 k' K’ o,y

K,(k)K,(k) K.K&)KzKk') Ksk")K, (k") Sin2%

Tk T/ V! Yk

X (2.69)

We are interested in the asymptotic behaviour of the pair correlation
function at large distances R. Thus, the next step should be the evaluation
of the asymptotic form of the sums (2.67)-(2.69) in the limits: R — oo,
N — oo. Let us commence with Sy(R); when R < oo, the expression
under the sum is finite everywhere (including the point k = 0), so, in the
thermodynamic limit one can pass in (2.67) from summation to integration

over the 1st Brilouin zone according to the rule:

Na? 1
> - (QW)Q/dkH(N ),

k

Then,

a? sin? %

Since vk = 0 for k = 0, it is not difficult to notice that the integral diverges
with R — oo. The form of this divergence is defined by the pole of 7—11( at

k = 0, so the asymptotic behaviour of the integral will not change if one
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expands v around k = 0: v, ~ a?|k|?. We have:

1 sin? kR
So(R) ~ — [ dk——2 R : 2.70
) = o [adit . R (2.70)
Introducing the polar coordinates k = |/k2 + k;, © = arctan Z—z, one can
rewrite (2.70) as:

2y

1 VT 2m 1 )
97 ), dk/o dgoEsm (E cos ) (2.71)

So(R) =

where we changed the integration domain: —7/a < k, < 7/a, —7/a <
k, < m/a, to the equal by area domain: 0 < k < 2y/7/a, 0 < ¢ < 2,
and the vector R was chosen parallel to the Ok, axis.

After the change of the variable: k—f — x let us split the domain of
integration in the following way:

Rym

RVF .
/ de — / dr + / dx |
0 0 €

where € is chosen in such a way that it is possible within the interval (0, ¢)

to expand:

2

sin?(z cos ) ~ 12 cos? . Then,

1 € 2w 1 RTﬁ 9 .
So(R) = ﬁ/@ xdgg/o dy cos? o + ﬁ/ dx/o dgpsm (x cosp) |
g

X

The first term is small and independent of R, so it can be neglected when
investigating the asymptotic form of Sy(R). Expressing: sin®(z cos ) =

5(1 — cos(2x cos p)), we get:

1 Ry d 27 1 Rf 27 9
Su(R) = f/o do — d:c/o PRGN

2 2
4dm= ). dm= ). x

One notices that the integral with respect to x in the second term reduces
in the limit R — 0o to the integral cosine Ci(e) = — [ €2z |109] which
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is a function of € only, so the asymptotic behaviour is determined by the
first term, and finally:

So(R) ~ —1In(Rja), R—oo. (2.72)

2T

This result allows for the immediate evaluation of the asymptotic be-
haviour of the pair correlation function in the pure model (2.16). Let

us use (2.55) putting ¢ = 1, then:

Goue(R) = exp{—wSO(R)} -~ (f)ﬁ @2

Thus, we have recovered the well known result [16] for the temperature-
dependent exponent of the pair correlation function of the 2D XY model:
Npwe = 1/(273J). In order to obtain the exponent 7gs of the model
with quenched disorder one should evaluate the asymptotic behaviour of
the sums S1(R) and S3(R) in (2.66) as well. The mentioned behaviour
is determined again by the region of small |k|. In (2.68) let us expand:
cOs M ~ COS k2l, COS(]%T]%) ~ COS %, K.(k) ~ ak,, Kg(k) >~ akg,
vk =~ a?|k|? (the higher order terms do not contribute to the asymptotic

behaviour for R — o0):

SIR) ~ 375 cos Bt cos Kok 1c,0)10,00) 510”55
1 = - COs COS —5—
N2 T fvari 2 |k|2 V! a2|k|2
2 Sln2 k;:{ 4 2 k'a K2 k/
- NZ 2kZ N ZCOS N
k40 K/£0
4 / /
~ Sy(R) N Z cos’ % %, (2.74)
I/ 40

since the terms containing the product £,k, vanished after the averaging.
The coefficient in front of Sy(R) in (2.74) converges rapidly to a constant

value when N — o0 and can be estimated with any desirable precision by
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a simple numerical summation (with the help of a computer code):

4 Ka KK
5 Y cos? bt KU — 7271 (2.75)
k' £0

So, from (2.72) we finally obtain:
1
S1(R) ~ 0.727 2—1n(R/a) : R — oo . (2.76)
T

In a similar way, expanding (2.69) for small |k|:

k:/ k// k// k//
S2(R) =~ e E E E cos tatha)a ¢ g 27 COS =5

KA0K'20 «
% K.(K)K,(k') K,(k")K,(k")
8% % '
B : KtkDa _  Ka . Kla . Ka .. ka .
Xpressing cos = COS 9 COS 9 sin 9 sin 9 , WE get:

2 2
1 4 'a 2(k’ 2 . K2 k/
S(R) = SO(R)§{ (ﬁ g cos’ % %) - (ﬁ E sin kL.a —fh(d )>

K#£0 K/£0

P
( Zsmk’ /> ( Zcos z Cosklya W) }

K'£0 K'£0

Numerical summation suggests that all the terms in the braces except the

first one vanish in the thermodynamical limit N — oo. Thus,

(0.727)>2

SQ(R) ~ 5

So(R) = 0.264 Sp(R) ,
and finally, using (2.72):

1
S2(R) ~ 0.264 %111(3/&) : R — oo . (2.77)

'The sum (2.75) and similar sums hereafter span the sites of the inverse lattice
within the 1st Brillouin zone (except the point k = 0); we say about rapid convergence
of the sums, since (2.75), for example, differs only by the value of the order of 107!
for N = 1000 and N = 10000. However, for our purposes it is quite enough to write
down the result up to the third figure after the decimal point.
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Substituting (2.72), (2.76) and (2.77) into (2.66), we have:

G(R) ~ <5>% (2.78)

a

with the pair correlation function exponent dependent on the magnetic

sites concentration c:

1 <1 1—c 1 — 3¢+ 262
1

s = —= | 0.727 — 2.264 . 2.79
s 2n3J \ 2 * c c ) (2.79)

The first term in the parentheses corresponds to the zeroth order of the
expansion in the disorder parameter; the first order contribution is zero;
the second and third terms in the parentheses correspond to the second

and third order of the expansion respectively.

2.3.3 Expansion in pq

At small concentrations of nonmagnetic impurities one can consider their
contribution to the Hamiltonian (2.30) as a perturbation and expand the
spin pair correlation function (2.46) in pq instead of Apq. Again we only

take into account the terms up to the third order:

R) = C2<COSZ77k9k>p { 1 —p ( <HcoC:§)zk:;:9kkik> - <Hp>p)

k#£0

ﬂz(<H;‘f;i;::;‘;f“> (7),) - (Lt )

< cos Yy nk9k>

H COSank9k> B <m>p)

cos Yk nk9k>

A
%< H,) (B2 cosSyombic) _ (), )

cos Yk nk9k>

<H COS Y nk9k> B <—
cos >k nk9k>
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53 <£ cos Yy 77k9k>p T3
o g (cos >y mkbi), o <Hp >p ) (280)
where we denoted the thermodynamical averaging with the undiluted model

Hamiltoian (2.16) as (...),. Using (2.39) and (2.55), (2.57)-(2.62) with

¢ =1, in the limit 3 — oo we have:

GR) ~ ¢ exp{ L (SO(R) + (1-0¢) 25(R)

/8J '
1st order
+ (1—¢) Si(R) + (1-0¢) [5*2(R) 42 SO(R)]) } ,
2nd§rder ~ ~- -~
3rd order

where the correspondence of the terms to the orders of the expansion is
noted. The asymptotic behaviour of the sums Sy(R), S1(R) and S3(R)
for large R is given by the expressions (2.72), (2.76) and (2.77), thus,

GR) ~ (5> o (2.81)

a

with the pair correlation function exponent:

1
w=——(14201- . - . —o) ]. (2
M 27T5J< +2 (1—c) + 0.727 (1 — ¢) + 2.264 (1 cl) (2.82)

1st order 2nd§rder 3rd grder

Please note that the mentioned orders correspond to the powers of pq in
the expansion, not to the powers of the dilution concentration 1 —c. As it
has been remarked before, any power of pq gives its own contribution linear
in 1 — ¢, the higher order contributions are neglected in (2.82), since we
have used an approximate equality (2.39). We will compare (2.82) to the
result of the expansion in Apg, Eq. (2.79), later comparing both analytical

results to the Monte Carlo simulation data.
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2.3.4 Pair correlation function self-averaging

In order to make any conclusions about the self-averaging of the configuration-

dependent pair correlation function,
Geont(R) = ¢ {cos(Opir — ;) (2.83)

one has to find the relative variance,

-2
2
R . Gconf - GCOnf
G = 2

G'conf

(2.84)

We will evaluate this quantity within the second order approximation of the
expansion in Apq. The pair correlation function, Geonr = G(R), already
estimated in the third order approximation of the perturbation expansion

(Eq. (2.66)), in the second order approximation has the form:

Geont = exp{ — BCl?J (SO(R) -+ 126 Sl(R)>} . (2.8h)

Thus, it remains to evaluate the quantity:

G2 (R) = ¢cos(Opir — 60p))° | (2.86)

conf

which in the second order approximation will write as:

Ggonf - C4< Cos Z 771{9k>2Ap:0
k#£0

<H—2pcosz nk9k> B —
" { o 62 ( éoSani0k>Ap—AOpo B <HiP>AP=0

- 3 < )y (o Bumli) sy 72 )
Pl Ap=0

< cosy nk9k>Ap:0

_}_52 <HAPCOSank02k>2Ap_O o <HAP>Ap:O<HApCOSZknk9k>Ap:0 '
(cos 3 i mkcbic) A =0 < cos Yy 77k9k> Ap—o
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Applying the results obtained in the previous subsections, we find:

2 l1—-c
2
G* . = ¢ exp{ ey (SO(R) + — Sl(R))} . (2.87)
Substituting (2.85) and (2.87) into (2.84), we obtain immediately:
Re = 0. (2.88)

Note that the result (2.88) is obtained in the thermodynamic limit N —
00, so, it is rather impossible to say something about the scaling form of
the relative variance, Rg(N).

Formally our result allows to claim the self-averaging of the pair corre-
lation function, although it should be clearly realized that (2.88) was esti-
mated in the second order approximation of the expansion in the disorder
parameter and the whole analytical approach is based on the assumption
that the temperature is low. The question about the self-averaging prop-

erty of the pair correlation function at higher temperatures remains open.

2.3.5 Comparison to the Monte Carlo simulation re-

sults

In order to check the results of our analytical approach we have performed
a series of Monte Carlo simulations of the two-dimensional XY model with
different concentrations of nonmagnetic dilution and at different tempera-
tures. We used the Wolff cluster algorithm |31], periodic boundary condi-
tions, 10000 Monte Carlo sweeps for thermalization and the same number
of sweeps for the measurements.

We explored the following lattice sizes: 16 x 16, 32 x 32, 64 x 64,
128 x 128 and 256 x 256. The pair correlation function exponent n(7)

was obtained through the residual magnetization scaling behaviour:

Mr(L) ~ L0y (T) = 2n(T) (2.89)
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the last relation is true for a two-dimensional lattice (L = /N is the
linear size of the system). We implicitly assume here that the universality
remains unchanged for a diluted system and the exponent n(7) which
stands in the scaling relation (2.89) is the same as the one in the pair
correlation function decay, Go(R) ~ R just like in the undiluted
model. The residual magnetization behaviour will be discussed in detail
in Chapter 4.

Our choice of such indirect way of estimation of the pair correlation
function exponent is caused by the difficulties with the pair correlation
function measurement in Monte Carlo simulation due to its possible non-
self-averaging. Although just in the previous subsection we put arguments
in favor of the self-averaging property of this particular physical quantity at
low temperatures, those arguments were obtained through an approximate
method and do not remove the problem completely, moreover we explored
a wide range of temperatures in our computer simulations including those
close the transition temperature. Non-self-averaging of a physical quantity
results in such an unpleasant fact that the configuration average of the
quantity cannot be evaluated reliably enough on the basis of an incomplete
set of random realizations of disorder as we deal with in the Monte Carlo
simulations; in this case such an incomplete configurational averaging leads
rather to the most probable value than to the real configurational average

(see, for example, [114]).

Global quantities such as magnetization undergo less fluctuations when
switching between diffirent disorder realizations than the local quantities
such as the pair correlation function, but even in this case there is a risk
of non-self-averaging which may impact the result of the Monte Carlo
simulations. However, the researches of two and three dimensional systems
suggest (see, for example, [93,94,115]) that usually the number of disorder
realizations of order of a thousand is enough for reliable configurational

averages. In our simulations we used 1000 realizations of disorder.
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Figure 2.2: Comparison of the results for the ratio n/n™# as a function
of the magnetic sites concentration ¢ obtained from different orders of the
perturbation expansions in p and Ap and in the Monte Carlo simulations.
The figures in front of the “MC” symbols mean the relative temperature

kpT/J values taken in the computer simulations.

In fig. 2.2 we show for comparison in the same plot the Monte Carlo
simulation outputs and the results of the expansions in pq and Apq to
different orders. Though the every next order of both expansions (at least
up to the third order) seems to come closer to the “experimental data”,
the differences between the different orders of the expansions do not al-
low to say about their rapid convergence. However, this is not surprising,
since similar expansions in other problems of condensed matter physics of-
ten happen to be divergent (for example, the field-theoretical expansions,
see [67]), but they still can be succesfully used applying some special tech-
nics. We also conclude that the results of the corresponding orders of the
two expansions (except the zeroth order) coincide in the small dilution
concentration (1 — ¢) limit, but differ significantly at stronger dilutions

and the expansion in Apqy seems to be closer to the Monte Carlo points
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within that range as we predicted.

Anyway, comparing the analytical curves and the Monte Carlo sim-
ulation results in fig. 2.2 one can conclude about good accordance of
our analytical approach with the computer experiments in the range from
c = 0.75 to c = 1 at low temperatures, at least up to the third orders in

the expansions in pq and Apg.

2.4 Conclusions

The main result of this chapter is the analytic estimation of the spin pair
correlation function behaviour of the two-dimensional XY model with
quenched disorder (random nonmagnetic dilution) at low temperatures
through a perturbation expansion in the parameter characterizing disor-
der. Moreover, we have explored two different candidates for the per-
turbation theory parameter: 1) the Fourier-transform of the nonmagnetic
impurities local density which was assumed small for low concentrations
of dilution; 2) the deviation of the dilution density Fourier-transform from
its average (over all possible realizations of disorder) value which is ex-
pected to be small for a macroscopic system. Both expansions show also
some analogy with the perturbation theory for the sum over k which corre-
sponds to the expansion in the effective-interaction-volume-to-elementary-
cell-volume ratio (~ a~3). Both expansions lead to a power law decay of
the pair correlation function for large distances (like in the pure model), but
with a different nonuniversal exponent n(7"). Structural disorder causes in-
crease of the pair correlation function decay exponent at low temperatures.
Since it is known that the value of this exponent at the critical point of
the BKT transition (n(7gxr) = 1/4) remains unchanged in the presence
of disorder, one can already deduce that the critical temperature Tggr
should decrease in a diluted system (which is understood even intuitively).

Also we have realized a number of Monte Carlo simulations of the
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two-dimensional XY model with different concentrations of nonmagnetic
dilution in order to check our analytical approach. The comparison of the
first three orders results of the two perturbation expansions, (2.79) and
(2.82), to the pair correlation function exponent observed in the Monte
Carlo simulations shows better accordance between theoretical and numer-
ical results with every next order (at least up to the third order terms) (see
fig.2.2), although the convergence of these expansions is questionable. In
the weak dilution limit the pair correlation function exponent behaviours
estimated from the two expansions of the corresponding order (except the
Oth order) coincide, but in the region of stronger dilutions the expansion in
the disorder configuration inhomogeneity parameter seems to come closer
to the “experimental” data (see fig.2.2) (as it was expected from the very
beginning).

Besides the configurationally averaged value of the pair correlation
function we have found with the help of our perturbation theory the rel-
ative variance (2.84) of the configurationally dependent pair correlation
function which happened to be a zero in the thermodynamic limit. Al-
though it does not fit completely the definition of the self-averaging of a
physical quantity this result is definitely in favor of the self-averaging of

the pair correlation function.



Chapter 3

TOPOLOGICAL DEFECTS IN PRESENCE
OF DISORDER

In this chapter the influence of nonmagnetic impurities on the behaviour
of the topological defects present in the two-dimensional XY model will
be studied explicitly. Such impurities being distributed randomly in the
system make an example of structural disorder. In our research we will
use mainly the Villain model which allows for a direct estimation of the
energy of the topological defects and their interaction from the microscopic
Hamiltonian of the model. The Villain model being alone a specific spin
model possessing topological defects and a BKT transition with its own
critical temperature can also be considered as a low-temperature approxi-
mation of the two-dimensional XY model. First of all we will focus on the
energy of interaction between topological defects and nonmagnetic impu-
rities (spin vacancies) brought into the lattice. Besides the Villain model
we will make use of the phenomenological Kosterlitz-Thouless model based
on the continuous medium approximation. The results obtained in both
models will agree with each other as well as with other available researches
of this problem. Finally, we will conclude with an approximate estimation
of the critical temperature reduction due to the presence of nonmagnetic
dilution. The main results of this chapter were published in [35,37,40,41].
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3.1 Villain model with nonmagnetic impuri-

ties

3.1.1 Villain model as a low-temperature limit of the

two-dimensional XY model

As it is known for today, the Villain model [17] can be derived in the low
temperature approximation from the two-dimensional XY model [18]. We
are going to use the same derivation scheme in order to obtain explicitly
the expressions describing the Villain model with nonmagnetic impurities
starting from the model (2.9). For our convenience we consider the Hamil-
tonian

H=-JY [cos(fy—bw) = 1] crew (3.1)

(r,r’)

equivalent to (2.9); the sum spans all the pairs of nearest neighbours. The

corresponding configuration-dependent partition function reads as:

™ d,
= (1:[ /_ﬂ %> exp <Z/>V(Hr — O0p) ey | (3.2)

where V() = K[ cosf — 1] and K = (.

As we have shown in the previous subsection, the spin-wave approxima-
tion applicable at low temperatures leads to the solution which obviously
misses the topological defects which are supposed to cause the BKT transi-
tion, thus, in the spin-wave approximation the model possesses quasi-long-
range ordering at any temperature. Further we will see that the existence
of topological defects in the two-dimensional XY model is connected to
the periodicity of the potential V' (0) with respect to its argument change
by 27w. Obviously, this periodicity is lost when replacing the cosine in
V() by its approximate quadratic form valid only in the vicinity of the

maximum at § = 0. As a matter of fact, V() has an infinite number
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of maxima at the points: 0 = 2mom , m = 0,+1,42,..., o0, and the

Villain approximation means the change:

+00
) Z o~ 37 (0—2mm)? (3.3)

m=—oo

which in contrast to the spin-wave approximation: ¢"® — 6_6J92, re-
covers the initial periodic symmetry of the 2D XY model.
As the first step of the derivation we expand the Boltzmann factor in

the partition function (3.2) in a Fourier series:

exp ZV (Or — Op) crep H Z O(s V(S)C”Cf’, (3.4)

(r,r’) (r;r’) s=—00

where the Fourier-transform has been written in the form ©(s) eV (®)eer

with ©(s) = ¢pcp + (1 —cpep)ds o which insures the equality when ¢y e = 0.
The Fourier variable s conjugate to 6, — 6, is a function of two lattice sites:
s = s(r,r').

The central point of the derivation is the Poisson summation formula

|110] application:

> a)= 3 [ s gty e, 35

S§=—00 m=—0oQ

which is usually used in order improve the convergence of slowly convergent
series. Thus, we can already predict that the result should be rapidly
convergent. Applying (3.5) to the sum over s in (3.4) we can write the

partition function (3.2) as

T d(gr o Sion Vo(Op—00—2mm, 1) crep
= || 5 g O (my) e=) r e (3.6)
e 2m

mr_’r/:—oo
where

eV — / do eV(®) gidh (3.7)
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For the moment we have not done any specific assumption, so the ex-
pression written above is a result of exact mathematical transformation.
Now, let us consider low temperatures, i.e. K — oo. Then, the Fourier-

transform

" 1 27 '
e _ % O A6 6—159 eK(cos@—l) _ G_K[S(K)

1 >
—52/(2K)

e , K — oo, 3.8
ViR (38)
where we used the well known result for the modified Bessel function I5(K)
asymptotic behaviour for K — oo [109]. Substituting (3.8) into (3.7) we
find

2

0 ~ K2 e o (3.9)

As a consequence, the partition function (3.6) will write in the low tem-

perature limit:

Z O (M) (H/ ) e, ,>(9r—9r,—2wmr7r,)2crcr,.

My =—00

(3.10)
But, as far as the integration boundaries with respect to the angle variables
Ok remain (—m, ), all the terms with m,, # 0 give vanishing contribu-
tion to the integral in comparison to the term my, = 0. Thus, (3.10)
remains equivalent to the spin-wave approximation. In order to expand

the integration domain to infinity let us use the equality [17]:

/_ f(p)dp hm2\/ﬁ7T5/ —feg? flp)de, (3.11)

true for any periodic function f(¢) = f(¢ + 2m). (3.11) can be easily

checked by passing to the Fourier variables:

(0.9]

fo)= 3 é%F(s),  F(s)= — / &% f ()

S=—00
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Then, the left hand side of (3.11) simply gives 27 F(0). Integrating term
by term the right hand side:

. > —Bep?+isp — S 3 —s%/(46¢)
_z_: F(s)l1_r)r(1)2 pre - e dp = 2m _z_: F(S)ll_f)I(l)e :

and taking the limit e — 0, we get 27 F'(0) again.
Finally, we come to the partition function of the Villain model with

nonmagunetic dilution |35]:

+00

Z= Y O(my) (H /_ ) g—%) e PHvin (3.12)

m(r,r’)=—o0
with the Hamiltonian

J 2 2
HVill - 5 Z(‘gr — ‘91" — 2Trrnr,r’) CrCyr + € ; Hr . (313)

(r.r/)
Putting all ¢, equal to 1 we get the well known Hamiltonian of the undi-
luted Villain model [17]. Although, being strict, on should apply the limit
e — 0 only after the functional integration with respect to the variables

Ox, hereafter we will not consider the second term when investigating the

properties of the Hamiltonian (3.13).

3.1.2 Diluted Villain model Hamiltonian

The spin-wave approximation allows for an analytic solution of the pure
2D XY model through the Hamiltonian diagonalization in the Fourier
variables, as was mentioned before. It is also known [17] that the undiluted
Villain model Hamiltonian can be diagonalized (with respect to the spin-
wave variables) in a similar way. But, in the case of the Villain model, the
Fourier transformation should concern the discrete variables my v as well.
Considering the sum in (3.13), we deal only with my, for r and r’ being

the nearest neighbours: r' =r+a,, a =2,y (a, = (a,0), a, = (0,a) are
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the vectors of a unit cell), so, when applying the Fourier transformation,
one can consider the two separate sets of “one-site” quantities My ria =

m(r + %) and My, = m(r + ) defined at the point shifted from the

sites of the initial lattice by the vectors 2z

2
addition to (2.15) we can write the transformation law:

and % respectively. Then, in

1 - a a
Myyr+a, = 7= e—zq(r—l—T‘l)ma ) My a5 mrr a,
xr+a, \/N ; q q \/7 Z Ta,
(3.14)
where a = x,y, i.e. we have two independent Fourier transformations for
the bonds along the Ox and Oy axes.
The Hamiltonian (3.13) can be written through (2.15), (3.14) and (2.26)

as:

J ikaa aa ; ixa ; fxa
Hyi = Hyy — 5222 { <eZkT N _ZkT> (elkT —e_ZkT)Hka/
k kK «

 (katkg)a
2

i kaa _jkaa _
— 47 (eZ 2 —e "2 )Hkmﬁ, + 47T2mﬁ‘mﬁ‘,} e’

" [ S pq (14670 %Z il
q

r

B ZZ Paper e_iq;a%Z ei(k+k’+q+q’)r] | (3.15)
qQ dq

r

where Hy. is the Hamiltonian of the undiluted Villain model. Introduc-
ing special notations Hyy, and H{'}Qﬂl for the two parts of the Hamiltonian

respectively linear and quadratic in p:
2
Hyin = Hyy + Hyy + Hyy - (3.16)

ik +q)r _ (kK _
Since + E TRFAT = §erqo and E KA = Gy ey g0,

r

from (3.15) we get:

J ka+k' )a
ZURES 9 9 SERTLE SRR EA TN
k Kk «
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+ 4Ami K, (k)Oemy — 47T2mﬁ‘mﬁ,} : (3.17)

where K, (k) = 2sin % In a similar way we get:

H(fﬂl - %Z Z Z eiw [Z e pg pkk’q] (3.18)
k kK « qa

X{Ka(k)Ka(k')Hka/ + 4miK,(k)bemy — 47T2mﬁ‘mﬁ‘,} :

The undiluted Villain model Hamiltonian, Hyy,, written in the Fourier

variables has the form:

iy = S5 {i00mas e Gt — o, |
k «
(3.19)

One can get rid of the cross-term in (3.19) depending both on the angle

variables 0y and discrete variables my by the change of the angle variables:

K,(k)m: ~
Qk = Yk — 27Tiza ( )mk = @Yk + Qk. (3.20)

2., K3(K)

Substituting (3.20) into (3.19) we get:

J
Hyy = §ZZK2(k)S@kS@—k (3.21)
k o

KoKy (5 (~K)mt — K, (Kpm"y)

2 (Ky<k)mx -
DS R - KK

The first term has the form that fits exactly that of the spin-wave Hamil-
tonian (2.16) but is written through the variables ¢x. The second part
depends exclusively on the discrete variables my; it will be shown below
that it describes the topological defects (vortices) present in the system.

Let us denote the spin-wave and the vortex parts of the Hamiltonian (3.21)
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vor vort- Introducing instead of

as HY, and H),  respectively: Hy,, = HY + H.,

my, the variables
a = i (K. (k)my — K,(k)my) , (3.22)

the vortex part of the undiluted Villain model Hamiltonian can be written

as:

HP . — 2w2qu‘fk‘k , (3.23)
K20

where 1. = K7 (k) + Kj(k).
Unfortunately, it is not possible to split in a similar way the diluted
Villain model Hamiltonian (3.17) into parts depending exclusively on ¢y

and qi. Instead of this one has:

H@ill - Hspw + H\t/)ort + Hp

sw,vort >

(3.24)

where

= 73 S (Do w0 s 529
kK K a

coincides with the form of the 2D XY model spin-wave Hamiltonian part

linear in pq, (2.30), and

Hio = 477 ) ) powee (3.26)
k K

coS WKy(k)Ky(k/) + COS (kyzk;)aKf(k)Kx(k,)
X gkax’ ,

(K2(k) + K2(k)) (K2(K') 4+ K2(K'))

and the cross-term dependent on the vortex degrees of freedom as well as

on the spin-wave ones,

Hspw,vort = 47TJZZp—k—k’ (327)
k ¥

- ; a ky-i-k/y a
(o8 (heth)a e (k) I, (K) — cos P e (1) K (K)
K3 (K) + K} (K)

Prqx’ -
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The term quadratic in pq in the Hamiltonian (3.18) can be expressed in a

similar way:

H{y = Hiy + Hipy + Hspv?/,vort? (3.28)

where
HE, = ‘% >0, it [Z ¢’ Pqﬂkk'q] Ko (k) Ko (K)o
S ’ (3.29)

is the same as the quadratic in pq part of the spin-wave Hamiltonian of
the diluted two-dimensional XY model (2.30), and

vajrt = _QWZJZZZPqP—k—k’—q (3.30)
k kK g

.((ky-i-k?;)

ei((k%k/m)-i-%)a[(y(k)[(y(k/) +é 5 +qy)aKx(k)Kx(k’)
(K2(k) + K2(k)) (K2(K') + K2(K')) e

and

Hsp\:/,vort - _QWJZZqup—k—k’—q (331)
k k q

(ky+

x o (35 ) 1 e (k) — () g 10 1L ()
K%(k/) —f—Kg(k/) Pkqk’ -

The part (3.26) of the diluted Villain model Hamiltonian describes the
interaction of isolated nonmagnetic impurities with the topological defects
(vortices) in the system, and (3.27) describes the combined interaction with
the vortices as well as with the spin-wave excitations. The explicit form
of these interaction energies will be written a bit later. The terms (3.29),
(3.30) and (3.31) are responsable for the interaction between the non-
magnetic impurities in the presence of spin-wave and vortex excitations
of the ground state. Since we consider uncorrelated disorder, it can be
shown that actually only those impurities can interact which are placed

at the neighbouring sites. Thus, for the case of a weak dilution when the
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concentration of impurities is sufficiently small and the probability to meet
two impurities on neighbouring sites is low, it is enough to consider only

those contributions to the Hamiltonian linear in pq.

3.1.3 Topological defects in the Villain model

In order to find the quantity which corresponds in the direct space to the
Fourier-transform ¢y that stands in the vortex part of the Villain model
Hamiltonian let us come back to the direct lattice according to the formula
(3.14):

]. ; Ay : ax
e \/—N Z {in(k)ez(r+7)mr,r+ay - Z.Ky(k)61<r+7)mr,r+aaa} '

(3.32)
kaa i kaa

koo — i — e 2. Then,

Obviously, one can write: 1K, (k) = 27 sin 7§

1 ik(r+32+% 1 ik(r—22+3¢
N LSy D DO L
1 ; ag | Ay 1 ; ag 2y
_ \/—N Er :ezk(r-i- 5+ ;)mr,r—l—az + \/—N Er elk(r—F 2 ;)mr,r—i-ax .

(3.33)

Since at zero temperature we have from the Hamiltonian (3.13) minimum
condition: myy = (0 — 0y)/27, it is obvious that my,y = —my . So,
we can make the change: Myria, = —Mria,r; Meria, = —Mria,r 1
the second and third terms in (3.33). Also we can change the summation
variables in the second and the fourth terms: r — r +a, and r — r + a,

respectively. After such transformations (3.33) will written as:

1 ; a ay
2 : ik(r+224=2
Qk == —\/N e ( 2 2) mr7r+ay + mr+ay,r+az+ay
r

+ mr—l—ax—l-ay,r—l—ax + mr—l—az,r} . (334)
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Introducing the vectors R = r + & + 2 which define the sites of the so

called dual lattice, we write:
1 .
kR
- = € m ag A ar | m ar | A ag | ai
I = R 2T Moy TRy
R

m r 2 r & m r & r_ 2 . 335
+ MRy wpgia w + R+%—79,R—%—7y} (3.35)
Thus, g is the Fourier-transform of the quantity
R = m r_ 2 r & m r 2 r 2
q(R) R-2: 2 R-2e42 + TR _se 2 gyse 2y
m r 2 r & m r_ 2 r 2 336
+ MR s wRyse w + Mg wp s w,  (3.30)

defined on the sites of the dual lattice (see fig. 3.1); it is called topological

charge or charge/strength of the vortex.

2 o< 3

®
R=(X.Y)

1 4

o<—o

Figure 3.1: Topological charge defined on the sites R of the dual lattice:
q(R) =mia+moz+mga+myy, wherel = R—2 -2 2=R—-243

S=R+ %+ %, 4=R+ % — % are the sites of the initial lattice.

The vortex part (3.23) of the undiluted Villain model Hamiltonian can
be written through the topological charges ¢(R) as [17]:

HY o= ) VRR-R)gR)gR) + V20 (Zq ) (3.37)

R R
where the interaction energy of the two topological charges placed at sites
R and R’ is
.2 k(R-R/)

2 ST ————
PR-R) = —272) =5 — 2 . .
V2 (R - R) T S kéoj - (3.38)
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We already have evaluated the asymptotic behaviour of a sum of this
type, (2.67), for large values of the argument R — R’: (2.72). Thus, the
interaction energy of the two topological charges (vortices) ¢(R) and ¢(R’)
1s

R —R/|

VPR -R) ~ — WJIHT : R-R — . (3.39)

The form of the expression (3.39) coincides with the interaction energy of
the two Coulomb particles with charges +mJ in two dimensions [9]. This
explains the name “charge” for the quantities g(R). The potential V)2 (0)
in (3.37) diverges with the system size N:

1 1 T dk
v = o) — ' ; ;
2(0) = 2m JN o mJ e F oo, N —oo, (3.40)
k;éO av N

but the second term in (3.37) disappears in the case of a “neutral” system

of topological charges: > g ¢(R) = 0. Note that for a system of charges

defined by (3.36) its neutrality follows automatically from the periodic
boundary conditions.

According to Villain [17] the vortex part (3.37) of the Hamiltonian of

the undiluted Villain model can be expressed with sufficient precision as:

/ 2
= w03 Y qg®)m R TS )
R R'#R R
(3.41)

Thus, (3.41) is equivalent to the Hamiltonian of a two-dimensional electro-
neutral system of Coulomb charges. The complete Hamiltonian (3.21) of

the pure Villain model can be written in the direct space as:

o/
H{)/ill - gZZ@OI‘ - §0r+aa)2 - WJZ Z q(R)q(R/) IH@

a
R R'#R

+ 253 (R)? (3.42)



80

where the variable describing the spin-wave excitations,

1 ; N
r — = € v - 91- - 91- ; 34:3
= Z i (3.43)

(see 3.20), is the angle between the spin on the site r and a certain direction
defined by the angle

-~ 1 L~
O, = —— ) e g 3.44

where 6y is defined by (3.20). So,

kza Y o kya
my sin ~&= + my Ssin = .
2 : k 2 k 2 e ikr (345)

2ka 2/€a
5 + sin 5

depends on the variables my; which are related to the topological charges.
We are going to show below that the angle field é; describes vortex exci-
tations of the ground state (topological defects).

Let us find the form of 6, as a function of topological charges ¢(R). For
this purpose in (3.45) we pass from the variables mj to my y+a, according
to (3.14) and express all the exponents under the sum through the Euler
+iz

formula: e™* = cosx +¢sinz. Then,

-~ m
91« = — Z {mr/,r/—l-azpr/’r/—l-az(r) + mr/,r/+aypr/7r/+ay(r)} 5 (346)

I./

where we used the following notations:

1 cos k(2" — x) — cosk,(z' + a — x)] cos ky(y' —
Pr r'+a (I‘) = Z [ ( ) ( )] y(y y)

N ” sin2%a + sin2ky7a ’
(3.47)
P 1 Z [cos ky(y' —y) — cosky(y' + a — y)] cos k(2" — x)
ot _N ” sin2ki2a + sin”%
(3.48)

(r = (z,y), v = (2',9)). Obviously, Py pya,(r) = —Prya, v (r), P yga,(r) =

— Py ya,r(r). Before we noted the property: my = —my . Thus, we are
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allowed to rewrite (3.46) as:
~ T
er - = Z {mr’,r’—l—aypr’,r’—i—ay(r) + mr’,r’—i—ampr’,r’—i—am (I‘)

+ mr’+ay,r’Pr’+ay,r’<r) + mr’—l—az,r’Pr’—l-az,r’(r)} . (349>

Changing the summation indexes in the second and the third term: r —
r +a, and r — r + a, respectively, and passing to the sites of the dual

lattice R = (X,Y) =r+ & + 3 (see fig. 3.1), we get:

~

T
0, = n Z {Pra(r)mia + Pos(r)mas + P3a(r)mss+ Pui(r)mas}
R

(3.50)
where indexes 1-4 are functions of R: 1=R — % — 2 2=R — % + %
3=R+5+ a—;’, 4=R+%— % The coefficients in front of the discrete

variables m; ; can be written as:

P1,2(r) - _[SC(Y_y7X_':E) _ [SS(X_$7Y_y) )
Pos(r) = —Lo( X —2,Y —y) + L (X —2.Y —vy),
P3,4(r) = [SC(Y_y7X_':E) o [SS(X_$7Y_y) )
Pii(r) = L(X—-2Y—y) + [ (X —2Y—y),
where
Lxy) = 3% e kX cosk Y (3.51)
se( X, = — sin k. X cos , .
N 4= 4 sin? 2 4 sin? 1 !
[(X,Y) = — 3 sinfgrein g XsinkY (3.52)
s ) = X7 S1N K, A SIn . .
N P sin® k;“ + sin? k”Ta !

Now, let us write down the definition of a topological defect in terms
of the Villain model. Obviously, the ground state of the system is realized
when all 6, = const and all m,,» = 0. A topological defect (vortex) with

the charge ¢ on the site R of the dual lattice is such a distorsion of the
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ground state of the spins with the minimal possible energy for which the

following condition is fulfilled:

Y (—06) = q. (3.53)

(rx'yeL
where the sum spans the bonds which form an arbitrary closed path L
enclosing the point R. Obviously, the minimal energy state of the system
for the fixed values of m, will happen when 0, — 0y = 2mmy, . So, a
topological excitation of the ground state is completely defined (up to a

simultaneous rotation of all spins) by the discrete variables my,/, and one

Z My y = ZQ(R)? (354)
yeL

(rx! ReV

where the sum on the right side spans the topological charges within the

can write:

area V' enclosed by the path L. The equality (3.54) is a generalisation of
(3.36). Some examples of isolated topological defects with different values
of the charge can be seen in fig. 1.1. It is visible that such spin con-
figurations have a common feature: when going counterclockwise around
the vortex origin a full circle the angle variable undergoes a jump by 27q
where ¢ is the vortex charge. For an isolated vortex there can be defined a
line (the exact form of which is arbitrary) going from the vortex origin R
to infinity along which the angle variable jump happens (see fig. 3.2). In
order to insure the condition (3.54) one should put m, equal to zero for
all the bond (r, r’) except those which cross the defined line and for which
myy = £q (where the sign depends on the direction of the crossing).

We already have shown that a system of topological defects is neutral
by definition in the Villain model with periodic boundary conditions (the
sum over all the topological charges gives zero). For the neutral pair of
vortices ¢(R) and —¢q(R/) the line of the angle variable jump must connect
their origins R and R’ (see fig. 3.3) in order to insure the condition (3.54).

Now, considering the vortex excitations field (3.50) far enough from the
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o<——©0

1 ik

Figure 3.2: The topological charge ¢q. All m,,» = 0 except those which
cross the line of the angle variable jump (thick red line): my o =0, mo3 =

07 m3,4 =4dq, m4,1 = 0.

NN AN
RS NN SV A A N N N
N e AV A N NN
e e e e
P AR IR T N N N N A g
N

Figure 3.3: The angle variable jump line which connects the origins of the

vortices bound in a neutral pair.

topological defects origins, |R — r| — 00, one can use the asymptotic form
of the sums (3.68), (3.83). Since for a discrete lattice X = la, Y = na
(where @ is the lattice constant), and [, n are integers: sin 7X = sinlm = 0,

sin 7Y = sinnm = 0. Then, (3.50) will reads as:

é; _ —Z (mga — m12)(Y y) (1_e—§(X_x)COS (Y - y))
R

(X —af + (Vg

(mi2 +mga) — (Ma3+may)
Z (X —2)(Y —y)
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x (1 —cosZ(X —x)) (1 —cosZ(Y —y)) . (3.55)

Let us consider, for example, a neutral pair of vortices with charges +q and
—q centred at the points R, = (X,,Yp) and R_ = (X_, Y)) respectively.
Ounly my corresponding to the bonds (r,r’) which cross the straight line
[ joining the origins of the topological defects and parallel to the axes Ox

(see fig. 3.4) are nonzero.

+1 +1 +1 +1 +1 +1 +1 +1 +1

q:+1 q:..l

Figure 3.4: A pair of vortices with topological charges ¢ and —q. The
arrows mark the bonds for which my, = ¢ (and, thus, my, = —¢), the

rest of my v are zero.

So, for the dual lattice sites which are situated on the line I: m; 5 = —q,
mas = 0, mg4 = +q, mg1 = 0 in the sums in (3.55); all the rest my
are equal to zero. It immediately follows that the second term in (3.55) is
zero, since it contains mo 3 and my; only. In the third term all the terms
in the sum turn to zero except the two corresponding to the sites R, and

R_, so it can be written as:
2 ((1=cos (X} —2)) (1 —cos Z(Yy —y))
(X4 —2)(Ys —y)

B (1 —cosZ(X_ —x)) (1 —cosT(Y_ —y))
(Xo—2)(Y- —y) '

qa
— 0.17
A2

We will not write this third term hereafter as it will become clear that
it gives a vanishing contribution at a sufficient distance from the vortices
origins. So, we are interested in the form of the spin field corresponding

to a neutral vortex pair far from the origins of the topological defects. In
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the limit X, — 2, Y, —y, X_ — 2, Y_ —y — 0o we can write (3.55) as

- a(Y —y)
G Dls sy vl 399

where the sum already spans the dual lattice sites which lay on the line
[ only. When the distance between the origins of the topological defects,

IR, — R_|, is large enough, one can use an integral instead of the sum in
(3.56):

X
5 Yo—y
0, = q/ dX
X, (X —2)? + (Yo—y)?
= qarctany_YO — qarctany_YO .
xr— X, r— X_

Generalising the above result for an arbitrary number of topological de-

fects, we may write the vortex excitations field as:

y—Y
t 3.07
Zq ) arc anx_X, ( )

where the sum spans the topological charges in the system.

Evaluation of some important integrals

Let us find the form of the functions:

1 in kea Fya
L.(X)Y) = —ZZ .sm 2 CO_S 22k sink, X cosk,Y ,  (3.58)

I(X,Y)

Il
=)=
| &
B =
S o

<

=
1\31\9‘
g?‘

: —sink, X sink,Y ,  (3.59)
PRI

containing sums which span the dual lattice sites within the 1st Brillouin

zone for large values of their arguments X, Y. First of all we pass from

sums to integrals in the thermodynamic limit N — oc:

kya
SlIl — COS —

dk; 5 k 2 ;k sin k, X cosk,Y |
Y gin?2 ka

+Sln T

I.(X,Y) dk;

(3.60)
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k
dk n g sin 75 k Xsink Y
2ka 2kasmx sink,Y

sm 22 L sin 7

[SS<X7Y dk

(3.61)
where due to the fact that the functions in the integrals are even it was
possible to reduce the integration domain to one quarter of the 1st Brillouin
zone (0 < k, < m/a, 0 < k, < m/a) just multiplying the result by 4.
Changing the variable in the integral (3.60): k, —y/Y, we get:

sin F2% cog g;ﬁ
I.(X,Y) dk; 5 k SR sin k, X cosy .
Y sin” “z¢ —|— sin” £
(3.62)

Then, in the limit Y — oo one can write:

Ty
dy sin Kzt = sin k, X cosy
I(X,)Y) ~ 27T /dk/ 2ka o
2 - (W)
4y cosy dy
m Jo 2+(2Ysmm)

(3.63)

We will get the integral with respect to y from the known formula [111]:

> cosmy T gl
P gy = >0) . 3.64
| Sy = Fo e @0 (3.64
then,
L(Xy) =2 / e gink, X dk, . (3.65)
T Jo

Since Y — oo, the function under the sign of an integral is vanishing

everywhere except k, — 0, so we apply the Taylor expansion up to the

kya ~ kga

£ =~ =22, The integral

L(X,v) = ¢ / CeVhegink, X dk, (3.66)
0

/i

is given by the formula [112]:

ax

/e‘m sinbr dr = a;—+b? (asinbx — bcosbx) . (3.67)
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Finally, we obtain:

a X a e ¥ .m s
[SC(X,Y) = %W + ;W (YSIHEX—XCOSEX> .

(3.68)
Although (3.68) was obtained from the assumption that ¥ — oo, we have
serious reasons to claim that this estimation is good in a more general case
when at least one of the arguments X or Y is sufficiently large, in other
words, when VX2 + Y2 — 0o. In order to convince the reader let us show
explicitly that (3.68) gives the correct asymptotic behaviour of the integral
(3.60) in the case: X — 0o, Y = 0. Then, (3.60) writes as:

kya

/ dk, / dk, sin & SO Gnk X, (3.60)

2ka 2 kya
2

I,.(X,0) = 4

27‘(’

and after the integration with respect to &, it will look as:

2a [+ 1
I,.(X,0) = —Z/ dk, arctan [ — a] sink, X . (3.70)
™ Jo sin “£*
After the change of the variable k, — z/X:
2a 1 1
I,.(X,0) = —Z — arctan [ ax] sinz dz (3.71)
m X sin 55

where in the limit X — oo: arctan |:sin1‘”] ~ /2. Then, finally,

2X

L(X,0) = Z}l((l—cos[ fD | (3.72)

It is obvious that the same result follows from (3.68) for Y = 0.

In order to discover the behaviour of the integral (3.61) for large values
in kza gin kye

of its arguments, we note that the expression — ,m2a+ 5w 1s slowly vary-
sin® L2 4gin” —=—

ing and finite in the whole domain of integration, so the rapidly oscillating
functions sin k, X, sin kY can be replaced in the limit X, Y — oo by their

mean values in the integration domain:

s

a X
ﬁ/ sink, X dk, = — (1—0087‘(’—) : (3.73)
7 Jo a a



88

™

ﬁ/“sinkyy dk, =
0

T

Y=

Y
(1 — cos 77—) : (3.74)
a
Then, the integral (3.61) will write as:

a_2(1 COS T )(1—cos7ry)

[4(X,)Y) =~ -
s : kya
a sin 224 gin 22
X — dk - 3.75
772 / smzﬂ-l-&z%’ ( )
and the problem is reduced to the evaluation of the integral:
kya
sin k22 gip 22
I = — dk dk 2 2 , (3.76)
2 k a San kya
2
which after the change of variables: k, — z = sin® k Sky—y = sin? k; :
can be written as:
1
d 1
= = / Y . (3.77)
T \/1—x 0o V1i—yxz+y

Integrating with respect to y, we have:

I V1 1
I = —2/ d mY_£rF —/ dx—an (3.78)
T 0 \/1—,1}'2 \/1+$—1

where the following notions were introduced: ‘fl‘; = \/W’ U= %iij

Integrating by parts, we get:

Lvdu
= Ly U’ _ [ L%y 3.79
a2’ 7'('2 o Udx v (3:79)
Since V = arcsinz and ¥ = 5, finally:

| V2+1 1 Uarcsin
= —1In
2r /2 -1 ™ Jo T

dx | (3.80)

Thus,

a (1 — COS7TX) (1 — COS W%)
w2 XY
\f 241 1 Uarcsin
27‘(’

v rii=l M d:z:) . (3.81)

[s(X,Y) =~
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The integral in the parentheses can be presented with the series [112]:

arcsin x 1 1-3
dr = 3 = .82
/ ; T x—|—2‘3‘3x +2‘4.5‘5x + . (3.82)

which converges very rapidly for x = 1. With a high enough degree of

precision one can write:

(1 — COS 7r—) (1 — CoS 7TY)
L(X,Y) ~ 0.17 p b e

(3.83)

3.2 Topological defects and nonmagnetic im-

purities interaction

3.2.1 Microscopic approach of the Villain model Hamil-

tonian

The interaction between the nonmagnetic impurities and the topological
defects in the Villain model is described by the terms (3.26), (3.27), (3.30),
(3.31) of the Hamiltonian (3.16). In the direct space the mentioned ex-

pressions will read as:

H . = Z (1—cp) ZZ(] VAR —r, R —r), (3.84)

R R
Hly o = Z (1—c) qu R-rr —r), (3.8
where
VR —1,R —r1) = 47° ZZ ) KR (3.86)

k’

cos B 1 (k) K (K) + cos B R (K) I, (K)
(k

(k) + K20) (l2(9) + K20

is the interaction energy of the pair of unit charge vortices with their origins

on the sites R and R’ of the dual lattice and a nonmagnetic impurity (spin
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vacancy) on the site r of the direct lattice,

V/(R-r,t —1) = 47TJ—ZZ ) e (R) (3.87)

(kxtkl)a K

2 x<k>Ky<k'> — cos BB (1) L (K)

2
KZ(K') + K2(K')

COS
X

is the energy of the interaction between the unit charge topological defect
on the site R of the dual lattice, the spin-wave variable ¢ on the site r’ of
the initial lattice, and a nonmagnetic impurity on the site r of the initial
lattice.

The contributions (3.30), (3.31), quadratic in p, correspond to the inter-
action between impurities on different sites in the presence of topological

and spin-wave excitations of the ground state. In the direct space they

write as:
vort Zzl_cr ZZC] (I'I' RR/)
. (3.88)
Hlyvort = ZZl—cr )1 —cv) ZZC] //V” (r,v, R, 1") .
(3.89)

It can be shown that this interaction can concern only those impurities

which are placed at neighbouring sites. So,

2 2 _ Zkl I
Vq’(_’](r,r/,R,R/) = 27 J—ZZ v)

3 pteon ei<’“””¥'“§”+%>“f<y<k>f<y<k'> U g 1, 1)
(K2(k) + K3 0)) (K2(<) + K3 (1))

and

qu;(r,r/,R,r") = —QWJ—ZZ ) ik (=)

ba)o g (1)K, (K)

y Z eiq(r—r’) ei(%H]z)aKx(k)Ky(k/) . ez( —
q K2 (K) + K2(K)
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The sums % Zq e'drtaa 1) oive the Kronecker symbols Or+ta, r', thus,

VZ(r,r,R,R) = 2&]—22 ) gk (R—r') (3.90)

5r+am,r’Ky(k)Ky(k ) + 5r+ay,r’Kw(k)Kw(kl)
(K2 (k) + Kj(k)) (K2(K) + Kj(K))

and

Ve (r,r,R,t") = —QWJ—ZZ ek (=1 (3.91)

b 0 06) — B 1, (0.6
X
R20) + K3(0¢)

Indeed, the expressions (3.90) and (3.91) are nonzero only in the case when
the sites r and r’ are nearest neighbours.

Since herein we consider small concentrations of dilution, the probabil-
ity for a pair of impurities to occur at neibouring sites is small, so within
the frame of our work we will focus on the form of the expressions (3.86)
and (3.87) only.

Applying the Euler formula and the formula for a cosine of the product
of arguments, one can write (3.86), (3.87) through the sums (3.58), (3.59)

as:

VIR —-r,R —r) = —WQJ{ISC(X —2,Y — ) L(X — 2,V —y)
+ LY —y, X — ) [ (Y —y, X' — )

— 2 (X — 2, Y — ) [ (X — 2, Y — y)} (3.92)

VPR —r, ' —1) = WJ{ (Or—a,r' — Orta, 1) Lse(Y —y, X — 2)

+ (5r+ay,r’ - 5r—ay,r’) ISC(X -, Y — y)
- (5r—|—am,r’ + 5r—am,r’) ]SS(X — X, Y — y)

— (brrayr + Or—ayw) Is(X —2,Y — y)} (3.93)
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Knowing the asymptotic behaviour of the sums (3.68), (3.68), we can write
(3.92) and (3.93) as

VAR -1, R —r) (3.94)
o (X=X )
(X =22+ (Y —y)?) (X' —2)*+ (Y’ —y)?)
(1 —e e W eos T(X — )) (1 — e« W eos T(X —x))

Y -y —y)
(X =2)+ (Y —)?) (X' = 2)? + (Y —y)?)

s

X (1 —e e eos T(Y — y)) (1 — e a0 cog Yy’ — y))

+

;02 (1—cosZ(X —x)) (1 —cosZ(Y —y))
(X =o)X =2)(Y —y)(Y' —y)

X (1 —cos (X" —x)) (1 —cosZ(Y' —y)) } :

VI(R—r,r' —1) (3.95)
= aJ{ (Or—a,r' — Orva,r) Yoy me s cosylY - y)
’ ’ (X —2)22+ (Y — y)
(X —z)(1—e o ¥cosI(X —x))
(X —2)2+ (Y —y)?
— (Orra,x + Or—aya + Orra,x + Or—a,r)

a (1—cosZ(X —x))(1—cosZ(Y — y))}

+ (5r+ay,r’ - 5r—ay,r’)

><O.17; X2y =)

Neglecting the last term in (3.94) which has a small coefficient (0.17)% /7>
as prefactor and considering large distances X —z, Y —y, X' — 2, Y' —y

— 00, we arrive at the result:
VAR -1, R —r) (3.96)
(X —2)(X' —2)+ (Y —y)(Y —y)
(X =2)+ ¥ =y (X =)+ Y —y)?)
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which accords perfectly with the one obtained in the following subsection

in terms of the phenomenological Kosterlitz-Thouless model.

3.2.2 Kosterlitz-Thouless phenomenological model

The Kosterlitz-Thouless model [7] built in a phenomenological way to ex-
plain the 2D XY model specific behaviour by the topological defects in-
fluence can be used as an alternative to the Villain model. This model is
based on the continuous elastic medium approximation in which one deals
with a continuous spin field instead of the discrete lattice of the 2D XY
model (i.e. the lattice constant a — 0). The spin variable 6, defined on
the sites of a discrete lattice transforms into the field 0(r) defined at any
point of the two-dimensional space. The energy of such a field (which is
called in analogy with the elastic medium theory as elastic energy) is given
by definition by the spin-wave Hamiltonian in which integration over the

continuous domain is used instead of the sum over the lattice:
1
B, = 5J/dr(ve(r))2 . (3.97)

However, the elastic energy (3.97) alone can describe the system only when
O(r) and its gradient Vé(r) are continuous fields, i.e. they do not contain
any singularities. The topological defects (vortices) are in fact such singu-
larities of the field O(r) and its gradient.

By definition [7], a vortex with its origin at the point R is such a con-
figuration of the spin field 6(r) which satisfies at the same time the elastic
energy (3.97) (computed for the entire system except the very vicinity of
the vortex origin R) minimum condition and the special topological con-

strain:
%dﬁ = 27q (3.98)
L

where L is an arbitrary path enclosing the point R, and ¢ is called the
vortex charge or strength. The field 0(r) satisfying the above conditions
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has the from [42]:

Y
O(r) = qarctany % T const , (3.99)

where r = (z,y) is the reference point, and R = (X,Y) is the vortex
origin. It is not difficult to find from (3.99) the gradient:

q
VO(r) = e, , 3.100
" V= XP+y-Y)? S
where
: y—Y
— (_ = t . 3.101
e, (—sing, cos ) , © arctan ~—; ( )

The gradient at the point r is always directed perpedicular to the radius-
vector r drawn from the vortex origin. The vortex is completely defined by
its charge ¢, since the constant addend (3.99) does not enter the gradient
(3.100) and thus does not change the energy (3.97).

The total energy of a system possessing a topological defect consists of
its elastic energy (3.97) computed for the whole system except some area
around the vortex origin which is called the vortex core and the energy of

that very core:
E = Ee + Eq . (3.102)

The evaluation of the energy FE... is a nontrivial task and, obviously,
it requires microscopic consideration of the lattice structure. However, we
omit this question in our research only stating that the core energy is finite
and does not depend on the system size. Hereafter we do not mention the
core energies of the vortices considering only the elastic part of the energy,
but keeping in mind that the vortex cores are always excluded from the
integration in (3.97) and the total energy must contain the core energies
as well.

The energy of the system with one single vortex defined by the equation

(3.99),

L
d
ENY = q2J7T/ i ¢*JrIn(L/A) (3.103)
AT
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(A is the vortex core radius), diverges with the system linear size L. The
energy of the system with the very same topological defect and a nonmag-
netic impurity (spin vacancy) at the point 7 sufficiently far from the vortex
origin can be evaluated by subtracting from the energy (3.103) the energy
corresponding to the four bonds (for a square lattice) associated with the

empty site:

i 1
Ej' = EY" — Ewe = EJ" — 5‘]@; jy[(ve ca,)? + (—V0 - a,)?
1 2 CL2 -2 2 pure ) 2
54 Jﬁ {2sin® ¢ + 2cos” o} = EN" — J¢’ (a/r)” .

(3.104)

. pure
- Eel

Thus, the interaction between a nonmagnetic impurity and a vortex ap-
pears to be attractive decaying with their separation as a power law and it
depends on the absolute value of the topological charge but not on its sign.
This is in good accordance with [23,24] and our own result obtained in the
Villain model. Of course, the result (3.104) is obtained with the assump-
tion that the nonmagnetic site does not influence the vortex configuration
(3.99). The validity of this approximation is reliably argued in [24]. Our
result (3.104) is in fact very close to those of [24], but we have reasons
to claim that our approach is more adequate, since the lattice structure
has not been taken into account in [24] and the coefficient in front of the
interaction energy was not set reliably.

We go beyond the single-vortex-vacancy interaction and consider a non-
magnetic impurity in a system with a pair of vortices with the charges ¢
and ¢’. The spin field of such a system is presented by a superposition of
the separate single vortex fields: 6(r) +6'(r), where 6(r) and 6'(r) are the
fields of the vortices ¢ and ¢’ respectively. It is known |42 that for such a
system without spin vacancies the energy has the form:

BN = —21Jqq In(R/A) + 7J(q+ ¢')*In(L/A) , (3.105)

el
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where R is the vortices separation. Note that the second term divergent

with the system size L vanishes in the case of a neutral vortex pair (¢’ =

—q).

Let the polar coordinates of the impurity be (r, ) in the coordinate
system centered in the origin of the vortex ¢ and (1, ¢") in the coordi-
nate system centered in the origin of the vortex ¢’. Then, the first vortex
field can be expressed as: 6 = qp + const, and the field of the second
vortex will be: 0 = ¢'¢ + const’. The corresponding gradients are:
VO = L(—sinp,cosyp), VO = g—:(—singp’,cosgp’). Then, the energy of
the system reads as:

1A

2
dil _ pure 1 1) 4. 2) . 4.
Edl = pp QJ; (ve a; + Vo aZ> (3.106)

with a; = (a,0), ap = (0,a), a3 = (—a,0), ay = (0, —a). Finally, we get:
Eq = B} —Ja* ((¢/r)* + (d'/r")* + 2(a/r)(d'/7") cos(p — ©)) -
(3.107)
It is not difficult to generalise the above result for a system with an ar-
bitrary number of topological defects and a nonmagnetic impurity at the
point r:

B = BN — Eu.(r) (3.108)

el
- R-r)(R —r)
— EP R)q(R/ - (
cl ZR:%:Q( Jal )\R—r\|R’—r| R_r|[R —1|

where the sums with respect to R and R’ span the topological defects in

the system.

3.3 BKT transition temperature reduction in

presence of disorder

The preceding subsections presented research of the form of interaction be-

tween nonmagnetic impurities and topological defects in the Villain model
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as well as in the phenomenological Kosterlitz-Thouless model. Below we
will use the obtained results for the evaluation of the critical temperature
reduction due to the quenched nonmagnetic dilution applying appropriate
simple approximations to each of these models.

Let us consider a system possessing topological defects and quenched

nonmagnetic impurities. Its elastic energy can be written as:

Eél]ﬂ — Eglure + Z EVaC<I‘) , (3109)

Tyac
where EN™ is the energy of the same system without impurities and
Fyac(r) is the energy associated with a vacancy on the site r which is

obviously negative and according to (3.108) has the form:

) a? R-r)(R —r
Braelr) = - J; ; 1R iR (\R - r)H(R’ - r|) ’
(3.110)

Strictly speaking, (3.109) is not an exact expression, since the result (3.110)

was obtained for a single isolated impurity. The energy of the two impu-
rities placed on neighbouring sites is not equal to the sum of the energies
of each impurity alone, since they have one common bond. Nevertheless,
(3.109) can be considered as a good approximation in the case of a weak

dilution. In the continuous limit one can write (3.109) as:
B = Ehe 4 / Adr prac (1) Evac(1) (3.111)
where the impurities density

Prac(t) =Y 8(r —1')(1— ;) (3.112)

was introduced; ¢ is the delta-function, and ¢, are the occupation numbers
(2.1).
The energy (3.111) can be used in order to estimate the BKT transition

temperature, Tpgr. Let us consider an ideal system consisting only of
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one neutral pair of vortices with charges with absolute values equal to
one [46]. Spin-wave excitations are not taken into account, since they
do not affect the topological phase transition. Thus, such a simplistic
system will have only one degree of freedom which is the distance between
the vortices, R. The BKT transition temperature can be approximately
estimated as the temperature at which the vortex pair dissociate, i.e. when

the thermodynamical average of the squared distance R? diverges [46]:

w [ R3ePEARGR
(R*) = [ ReTEmar % (3.113)

In the undiluted system it happens at the temperature kTgxr/J ~ 7/2,
since EN"(R) = 27.J In(R/a) and it is easy to check that (R?) = a*(73.J—
1) /(mBJ —2).

The best estimations of the transition temperatures in the two-di-
mensional XY model and in the Villain model available for today state:
KTEY:/J ~ 0.893 and kTRik/J =~ 1.503 |66]. Thus, the described method
of estimation rather seems to give a result closer to the BKT transition
temperature of the Villain model than to that of the 2D XY model. The
difference between the two models is probably caused by the different be-
haviour of the vortices at temperatures closer to the transition tempera-
ture. We will apply the above scheme to estimate the transition tempera-
ture of the diluted Villain model.

We will estimate the BKT transition temperature as the temperature
at which the average squared separation (3.113) with the energy Fq(R)
given by (3.111) diverges. In principle, this result should be configuration-
dependent (depend on the realization of disorder) and is practically inac-
cessible, but we are going to make an approximation which simplifies the
problem essentially. Let us replace the actual impurities density (3.112)
with an approximate form which we expect to discribe well the real dilu-
tion. Since we consider uncorrelated quenched disorder, the impurities are

distributed in the system completely randomly, so there is no reason for
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different parts of the system to be more or less diluted than the rest. This
means that the random fluctuations of the local impurities density can be
neglected to some extent, though it denies the very possibility to see any
possible effects originating from these fluctuations. We replace the density
(3.112) with the “smeared” density:

p(r) = (1 —c)N/(a’N) = (1 —c)/a’

which is simply the total number of empty sites devided by the system
volume. Then, the integral in (3.111) can be calculated easily and we
get: Fo(R) =[1—2(1—-c¢)]2nJIn(R/a). It immediately follows that the
critical temperature of the system with concentration of dilution 1 — ¢ is
KT8/ J = [1 —2(1 — ¢)]7/2, or, normalizing by the pure model critical
temperature,

Towr/Thpr =1—2(1—¢) . (3.114)

The critical temperature decreases with the concentration of nonmagnetic
impurities as one could naturally expect because of the mean coordination
number reduction. Although our derivation was based on the assumption
about weak dilution, the result (3.114) still predicts the extinction of the
BKT transition (critical temperature turns to zero) at the concentration of
magnetic sites ¢ < 0.5. Being qualitatively correct this prediction differs
however from the real site percolation threshold value for the square lattice,
¢~ 0.59 [105].

The above consideration concerned the phenomenological Kosterlitz-
Thouless model. Further we show that the same result can be found
for the Villain model within the appropriate approximation. In this case
the neglect of the local impurities density fluctuations means that we put
Apg =0, or

pk+k)=(1-c)lkiwo - (3.115)

This can be considered as the zeroth order approximation of the pertur-

bation expamnsion in the disorder configuration inhomogeneity parameter.
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It leads to the following result for the interaction energy of vortices:

dil qxd—k
HI =2 [1-201 JZZ 20k (3.116)
k40
As a consequence, the same value (3.114) of the critical temperature is

obtained.

Is T
T
0.9 —
e i
> 1
o.l_nxn 0.5
- 08 —
— =
G
0.7 o-o XY-n, [26] -
*—* XY-h.m.,, [26]
v--v XY (3-comp.)-n, [26]
i — Eq.(3.114) i
06 1 | 1 |
0 0.05 0.1 0.15 0.2

Figure 3.5: The phase diagram of the 2D XY model with quenched dilu-
tion of concentration p = 1 — ¢ (¢ is the concentration of magnetic sites).
The Monte Carlo simulation results [26] are compared to our analytical
prediction (3.114). The insert shows the vicinity of the percolation thresh-
old.

Let us compare the result (3.114) obtained analytically with the critical
temperature values observed in Monte Carlo simulations of a diluted 2D
XY model available today. We compare our result with the phase diagram
(¢, Tekr(c)) [26]) (fig. 3.5). Those simulations covered the two variants
of the XY model: with two-component and three-component spins (the

third component still does not take part in the interaction, of course).
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Since our estimate concerns rather the Villain model than the 2D XY, it
is better to compare not the absolute values of the critical temperatures
but the ratio (3.114) which we expect to be close for the models with the
same topological mechanism of a phase transition. In [26] the transition
temperature of the three-component 2D XY model was identified from
the pair correlation function exponent 7n(7") behaviour (n(Tskr) = 1/4).
For the two-component 2D XY model the helicity modulus jump was
used to identify the BKT transition temperature along with the mentioned
method. Although the Monte Carlo data differ significantly even within
the same model for different methods of critical temperature measurement,
we see that our result seems to give an overestimated value of the transi-
tion temperature and this disagreement becomes more crucial at stronger
dilutions. First of all one should recall that the whole analytic treatment
was based on the assumption of dilution weakness, but since a systematic
deviation between our prediction and the computer simulation results is
notable even at low concentrations of dilution, one has to suppose that
this must be the consequence of the impurities local density fluctuations
which were neglected in our derivation. So, these fluctuations seem to

show themselves in the increase of the effective temperature.

3.4 Conclusions

In this chapter analytical results for the structural and topological defects
interaction energy were obtained, within the frame of the Villain model
as well as from the phenomenological Kosterlitz-Thouless model. These
two approaches together realize in fact the complete set of possible ana-
lytical tools applicable to this interaction research. The result we found in
the Kosterlitz-Thouless model shows attractive interaction between non-
magnetic impurities and topological defects according well with the other

researches of this problem [24| which suffered however from the vague va-
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cancy representation in the continuous medium approximation. We got rid
of this uncertainty by taking the microscopic lattice structure into account.
However, the most significant point of the chapter was the involving of the
Villain model which has never been studied before in the context of the
structural disorder researches. The asymptotic form of the vortex-impurity
interaction found in this model coincides with the result of the Kosterlitz-
Thouless model, but is obviously more reliable since it comes from the
microscopic Hamiltonian and thus confirms the Kosterlitz-Thouless model
approach. Moreover, the Villain model reveals much more about the im-
purities behaviour, for example, it says also about a combined interaction
involving not only the vacancy and the vortices but also the spin-waves.
Needless to say that this result would never be found in the Kosterlitz-
Thouless model which do not take spin-wave excitations into account at
all.

The results obtained for the energy of the interaction between struc-
tural and topological defects were used for the critical temperature re-
duction estimation caused by the quenched disorder. Although it was
possible to obtain such an estimate only neglecting the fluctuations of the
local impurities density, the final result accords with the accessible Monte
Carlo simulation data, especially at low enough dilution concentrations.
A deviation from the computer experiment results becomes significant for
stronger dilution which we explain by the influence of the mentioned local

impurities density fluctuations.






Chapter 4

LATTICE FINITENESS INFLUENCE ON
THE PROPERTIES OF
TWO-DIMENSIONAL SPIN MODELS OF
CONTINUOUS SYMMETRY

In this chapter the lattice finiteness influence on the properties of the two-
dimensional XY and Heisenberg models is studied. In the case of the 2D
XY model we are interested in the change of the behaviour of a finite
system (already well studied in the undiluted case) caused by quenched
nonmagnetic dilution. In a finite 2D Heisenberg model the low temper-
ature behaviour is still interesting even in the context of the undiluted
model, since it lacks for researches due to the common opinion that no
phase transition can occur in this model at nonzero temperature. Nev-
ertheless, the Heisenberg model considered on a finite 2D lattice exhibits
features very similar to those of the 2D XY model. Our research covers

both computer simulations and analytical computations. The main results
of this chapter were published in [33,34, 36|
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4.1 Residual magnetization in a finite 2D XY

model with quenched disorder

4.1.1 Magnetization probability distribution function

The pair correlation function exponent estimation in the Monte Carlo sim-
ulations of Chapter 2 was based on the mean residual magnetization scaling
behaviour. However, the very form of the residual magnetization distribu-
tion in a system of a finite size is of a great theoretical interest. As it was
mentioned in Chapter 1, in the undiluted 2D XY model this distribution
is of a non-Gaussian universal form. In presence of disorder one can nat-
urally expect some dependence of this distribution form on the dilution
concentration.

Let us define the instantaneous magnetization which is a function of
the microscopic state of the system as the sum of all the spins devided by

the total number of lattice sites:

Z CrSy

r

m = —

~ (4.1)

One should notice that within the above definition the total magnetiza-
tion in the ground state is equal to the concentration of magnetic sites c
multiplied by the absolute value of the magnetic moment of a single spin
(which is chosen equal to one in our case).

The probability to observe the equilibrium system in a state with a par-
ticular value of the magnetization (4.1) is given by the probability distribu-
tion function Peoue(m) which is obviously dependent on the configuration
of disorder.

The mean value of the magnetization defined in a usual way by the ther-
modynamic averaging operation with the diluted 2D XY model Hamilto-

nian (2.9):
Tr (me‘ﬁH)
(m) = Tr e fH 7

(4.2)
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can be alternatively written in terms of the magnetization probability dis-

tribution function:

1
(m) = / m Peons(m)dm . (4.3)
0
We define the p-th moment of magnetization as:
Tr (mpe_ﬁH )
= (mP) —
MP - <m > - Tr e_ﬁH ) (44)
or, in terms of the magnetization probability distribution function:
1
M, = (m") = / mP Peons()dm . (4.5)
0

It is worth stating for complete clarity that the magnetization probability
distribution function P.opn(m) is a thermodynamic quantity, i.e. it depends
on the macroscopic state of the system and m plays the role of a parameter.
It becomes clear when writing the magnetization probability distribution

function of the quantity m through its moments [113]:

Pani) = [~ ey 2y (16)

o 2T p!

Thus, the pairs of equations (4.2)/(4.4) and (4.3)/(4.5) are just alternative
definitions of the same physical quantities.

It is quite obvious that the mean magnetization and its moments are
configuration-dependent quantities, so to obtain their observable values
one should average (4.2) and (4.4) over all possible realizations of disorder.
Then, using the magnetization probability distibution function, they can

be written as: .
(m) = / mP(m)dm (4.7)
0
and

M, = /lmpP(m)dm : (4.8)

where P(m) = Peont(m) is the configurationally averaged magnetization

probability distribution function.
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The outputs of the Monte Carlo simulations mentioned in Chapter 2
can be presented in the most explicit form by the magnetization probability
distribution function for each realization of disorder (in those simulations
we used 1000 random disorder realizations). The procedure of configu-
rational averaging of the magnetization probability distribution functions
observed in the Monte Carlo simulations is illustrated in fig. 4.1. One

average curve P(m) is drawn on the basis of the curves Peoue(m).

01 T T I

0.08

0.06-

P(m)

0.04r-

0.02[-

0.9 B 0.95

Figure 4.1: The magnetization probability distribution functions obtained
for 20 different realizations of disorder in a system of the size L = 16 with
concentration ¢ = 0.95 of magnetic sites at the temperature kgT/J =
0.1. The thick line represents the magnetisation probability distribution

function averaged over the twenty realizations of disorder.

Probably the most remarkable features of the magnetization probabil-
ity distribution function of the pure 2D XY model is its non-Gaussian
form and universality in the sense of independence of its form on the sys-
tem size and the critical exponent n. Those features have been observed
in computer simulations as well as analytically [60, 62].

Fig. 4.2 presents configurationally averaged simulation results for the
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Figure 4.2: The form of the magnetization probability distribution func-
tions averaged over 10? realizations of disorder (¢ = 0.95) at the tempera-
tures kgT/J = 0.1 (T /Tpxr(c) ~0.12), 0.5 (T'/Trr(c) ~ 0.60) and 0.9
(T/Tpxrr(c) ~ 1.07) for the system of the sizes L = 16, 32, 64.

magnetization probability distribution function in the 2D XY model with
fraction of magnetic sites ¢ = 0.95 at three different values of the temper-
ature. The immediate conclusion is that the distribution peak (and thus
the mean value of m as well) decreases with the lattice size. The curves
for lower temperatures show clearly non-Gaussian character just like in the
case without dilution [60,62].

4.1.2 Ring functions

Another way to represent the magnetization probability distribution mea-
sured in Monte Carlo simulations taking into account also the orientation
of the magnetization is to draw the ring function which is obtained when
one plots in the plane (m,, m,) (where m,, m, are the two conponents of
the magnetization vector) the points corresponding to each measurement

(see fig. 4.3). In fact, the ring function is just a bit more detailed form of
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the magnetization probability distribution function.
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Figure 4.3: The ring functions obtained for the system of the size L = 16
with concentration ¢ = 0.95 of magnetic sites at the temperature (left to
right) kgT'/J = 0.1, 0.5, and 0.9. The outer rings (in red color) represent

the correspondingm model without dilution.

Since the Wolff algorithm [31] that we use is a cluster algorithm, differ-
ent measurement are practically not correlated in contrast to the Metropo-
lis algorithm where the measurements correlate.

We are interested in the temperature dependence of the ring function of
the diluted 2D XY system of a finite size with the given concentration of
nonmagnetic impurities. For this purpose three different ring functions for
the three values of temperature: kgT'/J = 0.1, 0.5 and 0.9, for a system
of the size L = 16 are plotted in fig. 4.3. The outer rings (in red color)
represent the undiluted system with analogous parameters.

Since we consider the magnetization per site and not per spin (N in
(4.1) is the total number of sites both magnetic and nonmagnetic), it is
obvious that its mean value in the system without dilution will be greater
than the corresponding value in the diluted system with the same param-
eters. The stronger the dilution is, the smaller the radius of the most
probable values region becomes. This feature is quite trivial and can be
easily eliminated by a proper normalization of magnetization for each given

dilution concentration, but the quenched non-magnetic dilution also initi-
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ates other much more interesting features of the ring functions.

One of the most remarkable features is the dependence of the width of
the ring function (or its variance) on the temperature. It is well seen in
fig. 4.4 that the width grows as the temperature increases and tends to
a delta-function when T" — 0. This feature is also well known from the
Monte Carlo simulations and analytical researches of the undiluted two-
dimensional XY model [60,62]. The ring function of the diluted model
as well as of the pure one has a distinct non-Gaussian form which can be
noticed in the visible asymmetry density of the points in the regions inside

and outside the peak.

1.0
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Figure 4.4: The ring function of the system of size L = 16 with concentra-

tion ¢ = 0.70 of magnetic sites at temperature kg7 /J = 0.1. The outer

ring represents the simulation of the analogous system without dilution.

In fig. 4.3 the behaviours of the undiluted system and the system with
concentration ¢ = 0.95 of magnetic sites seem to be allmost equivalent.
But the dilution impact becomes more profound as the dilution concen-
tration increases. The ring function of the system of the size L = 16 at
the temperature kgT'/J = 0.1 but with much stronger dilution ¢ = 0.70
is presented in fig. 4.4. It should be compared with the first plot on the

left in fig. 4.3 which corresponds to the same temperature value. One can
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see that nonmagnetic dilution essentially affects the distribution from: the
peak position as well as the variance. Thus, theoretical description of such

a behaviour is an interesting challenge for the analytic theory.

4.1.3 Mean magnetization and its moments in pres-

ence of disorder

In Chapter 2 we used the residual magnetization scaling behaviour (2.89)
to estimate the pair correlation function exponent of the diluted model
implicitly understanding that this relation does not change in presence
of disorder. In this section we will show explicitly within the spin-wave
approximation and the perturbation theory proposed in Chapter 2 that
the scaling form (2.89) is valid indeed in the model with dilution.

The magnetization probability distibution in presence of disorder dis-
cussed in the previous section also requires a theoretical description, so
along with the mean magnetization value we will evaluate the moments of
magnetization (which allow to examine the distribution form) as well.

For analytic treatment the magnetization (4.1) should be written in

angle variables 6,

m= Z crcos(fy — 0) | (4.9)

r
where 0 = % >, 0y is the arithmetic mean of 6, for the entire system.
Since we are looking for observable physical quantities, we should av-
erage the magnetization moments over all the possible realizations of dis-

order:

— 1
] = 5 3 T enyeont, oty

ry,...Ip

M,

where the notation ¢, = 6, — @ was introduced. Note that the 1st moment,

M, = N Z (cr cos ) = (cocos i)

r
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is just the mean magnetization (m).
Replacing the pruduct of cosines by a sum, the (n+ 1)-th moment can

be written as:

1
M, = N Z Z (coCr, -+ cos (o + Z?:l i) - (4.10)

ri,..rn a;==+1

The expression under the sign of a sum in (4.10) will be written in the

Fourier variables as:

{cocry -+ - er, cO8(Yho + Aty - - - Fanthy,))
= <cocr1 £+ - Gy, COS \/LN > x (Mt + 771‘9(915{)>

with
M = 1+ ajcoskry +-- -+ o, coskry ,

M = — (arsinkry +-- -+ o, sinkry) . (4.11)

Applying to (4.10) the expansion in the disorder configuration inhomo-
geneity parameter Ap (analogous to (2.51)) and using the configuratinal
averages (2.52), we get:

Cn—i—l

Mo = g D0 . {eos (b + X i),

ri,..rp a;==1

s [ ] <1c LN oo L3042

GJ\ 4¢3 N2 — ct
1 1 1 1
X (ﬁ %  AN3 Z gk,k’Qk’,k”Qk”,k%))
k K.k’ Kk
X (n—l— 14+2% 7, qia; cosk(ri—rj)) ] : (4.12)

where gk = (Yk+x — 7% — v)/7. Then, using (2.55), in the low-

temperature limit one can write:

(cos(tho + a1¢y, - +aniy,)), =~ 1 (4.13)
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_m Z 7—11( (n + 142>, aja;cosk(ry — rj)> :
k0

Substituting the above expression into (4.12), it then becomes possible to

sum it up with respect to a; using the obvious equalities:
Z =0, ai=1.
O[Z::l:l

The (n + 1)-th moment of magnetization then reads:

. nt+1( 11
Mn+1zc+1 [1— ﬁj (CQN — (414)

1—c¢ 1 1—3c+26

1 1
X (N % — W Z g kk/gk/,k”gk”,k,}/k) )] .
k

k k/ k//

In the limit N — oo the sums in (4.14) have the following asymptotic
behaviour:

L~ const + — In N
w = const + o—In N,
k

0.73
N2 ; Z gk,k/gk/,k% ~ const’ + o In NV,

=

L 1 ., 0.27
m k;{// g—k,k'gk',k”gk”,k% ~ const’ — ? 1I1 N .

Now, in the low-temperature limit the p-th moment of magnetization can

be expressed in the form:

dil

M, ~= N~ (4.15)

with the exponent nd! given by Eq. (2.79). The formula (4.15) can be also

written as:
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M, ~ M," . (4.16)
Since any moment of magnetization ﬁp can be expressed trivially through
M; in our approximation, there is no multifractality, and (4.16) does not

recover the result of the work [62]:

1 nn-1) 1
My =M |1 + 2 2 Z ~2
(6J)? 16N 7

The reason of this is the fact that we have neglected in our derivation
the terms containing higher powers of the temperature, 1/(4J), than one.
In fact, our result (4.16) corresponds to a delta-function-like probability
distribution (zero variance) which is true only the low-temperature limit.

Nevertheless, the mean magnetization value predicted by (4.15) with

p=1:
(m) ~ eN—T1" (4.17)
supports the scaling form (2.89) and accords with the Monte Carlo simu-

lations.

4.2 Quasi-long-range ordering in a finite two-

dimensional Heisenberg model

In this section we investigate the low-temperature behaviour of the pair
correlation function of a finite size two-dimensional Heisenberg model. Our
research is based on the assumption that a finite 2D Heisenberg model
possesses some spontaneous magnetization, although it should vanish in
the thermodynamic limit according to the Mermin-Wagner-Hohenberg [10),
11]. Such an assumption has quite reasonable argumentation: transition to

the ordered ground state (all spins in the same direction) of a finite lattice
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should be continuous. So, at sufficiently low temperature the system must

exhibit some finite magnetization which increases approaching 7" = 0.
According to the assumption made, all the spins S, = (SF,SY,S7)

standing in the Hamiltonian (1.1) of the two-dimensional Heisenberg model

of the size N = L x L with the ferromagnetic nearest neighbours interac-
tion, J(r —1') = JOjr—p)q, (J > 0):

H= —%J S (5785 + SUSY + S5 | (4.18)
(r,x’)

are pointing more less in the same direction if the temperature is suffi-

ciently small. This approximation which is reffered to hereafter simply

as the low-temperature approximation is clearly more restricting than the

ordinary spin-wave approximation which only assumes the nearest neigh-

bours to be oriented in the same way.

Sr

Figure 4.5: The angle variables oY and ) used to describe the state of
the spin S, placed at the site r.

Let us pass to the angle coordinates ngl)’ o (see fig. 4.5) defined by
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the following relations to the Cartesian ones:

ST = cosfWYcos 6P |
SY = sinfM cos? |
S? = sinf? | (4.19)

where —m < 0 < T, —5 < 02 < 5. The chosen variables are modified
spherical coordinates ¢, 6: 81(41) = ¢, 81(42) = 0 — w/2. Considering the
angles 951), 952) small at low enough temperatures, the scalar product of
the two spins in (4.18):

SISV 4 SYSY + 5257 = cos(6L) — 6l )coswf?) 6% (4.20)
+ (1 cos(6 )) sin sm@l(}),

can be expressed as:

1 1
SEST 4 SUSY 4 §ESE A1 — 5(99 — )2 — 5(99 —o)? . (4.21)

and the Hamiltonian (4.18) takes the form

H = Hy+ H* ({69}) + H ({6%)}) | (4.22)
where

HXY ({0)) = Z Z J(r—r') (0, — 0y)° (4.23)

is the 2D XY model Hamiltonian in the spin-wave approximation [16].
Hy is nothing more than a trivial shift in the energy scale.
The spin pair correlation function under the assumption of small values

of 81(41) and 91(«2) writes as:

Go(R) = (Sy - Sesr) ~ <cos(91 —0"5) cos(0® —eIEQR)>. (4.24)

where the brackets designate thermodynamical averaging:

1
(...)= ETr(... e PH), ne Z=Tr e "
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and

1 T /2
=H4— / do / d6® cos 0. . (4.25)
r ™) -7 —m/2

Due to the separation of variables 61" and 6% in the integral in (4.24)

the pair correlation function can be written in the following form:

Go(R) = Gy(R) x GS(R) , (4.26)
where
1 T XY 1
) = ™ (I1 ) 70 ot~
(4.27)
and
(4.28)

Z1 and Zy appear from the separation of the variables 81(41) and 91(«2) respec-
tively in the partition function: Z = Z; 2.

Now, it is enough to evaluate the asymptotic behaviour of the functions
G;U(R) and Gg)(R) in the limit R/a — oo to know the pair correlation
function behaviour at large distances. It is easy to notice that Ggl)(R)
has the same form as the pair correlation function of the 2D XY model
which asymptotic behaviour is well known. Thus, our task reduces to the
evaluation of Gg)(R) in the limit R/a — oco. For this purpose we pass to
the Fourier variables:

02 = %zk: MO, Oy = %Z e krg2), (4.29)
where r spans the sites of a square lattice of the size L x L, and k spans
the sites of the inverse lattice within the 1st Brillouin zone. Then, the
Hamiltonian (4.23) writes as:

HiXY {9} JZ’}/kaH k
k=£0
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with 7% = 2 — cosk, — cosk,. The Jacobian of the transformation,
I1, cos 952), in (4.28) can be replace in the low-temperature limit by the
expression exp [—%Zr(ef?))?} and written in the Fourier variables us-
ing the equality: ZT(HI@)Q = > 1 0k0_x. The cosine COS(H — «9r+R)
in (4.28) can be represented in the Fourier variables as the real part of
exp [% Zk(eik(rJrR) _ eikr)ﬁk].

So, (4.28) leads to a product of the integrals of the type [ dfe—at>+b0
which can be immediately calculated expanding the integration boundaries

to infinity (it is acceptable in the low-temperature limit). The integration

gives:
1 sin? kB
GPR) =exp |~y —2 | . (4.30)
2 BIN zk: T 357

In order to obtain the explicit form of (4.30) as a function of temper-
ature 1/(8J) and distance R/a when its both arguments are sufficiently
large, we expand 7y for small k-s: vy ~ k?/2 and replace the sum with an
integral in the polar coordinates (3kR = kR cos ¢ = z cos p):

VTR

1 sin? KR 1 a zdz 2n
I(R) = — / —2/ dy sin? (z cos p) .
Nzk:VkJFL 272 Jo 224 UL
(4.31)

257
In the limit (%?2 > 1 sin? (z cos ) can be replace by its mean value
, 5, which leads to I(R) ~ 5-In(473J). In

over the integration domain
< 1, we choose a finite parameter € < 1 in such

(R/a)?
187

/e* < 1 and split the integration with respect to z in

the opposite case,
(R/a)?
137

I(R) into two parts: [, + fET . The first part vanishes after the cosine

a way that

expansion and term by term integration in the limiting case we consider.

The second part exhibits the following behaviour: 5-1In(R/a). So

G(2)<R) - { (R/a)_m for (}iéil]) < 1

(4mBJ)~ =7 for (%? >1.

?

(4.32)

We see that Gé2)(R) is either constant with respect to R or equivalent



119

to the 2D XY model pair correlation function depending on the value of

(R/a)
187

Finally, substituting (4.32) into (4.26) we get the following pair corre-

lation function behaviour for a finite two-dimensional Heisenberg model at

sufficiently low temperatures:

—2n*Y (R/a)? .
Go(R) = { (R/a) for L <1

(4nBJ) " (Rfa)™  for WS s

(4.33)

where nXY is the exponent of the 2D XY model pair correlation function
decay, Eq. (1.6).

At this point we should clarify which of the two asymptotic forms ob-
tained, (4.33), is physically correct. Though we consider large distances,
the limit R/a — oo remains in fact practically unrichable in a finite sys-
tem, since its value is limited by the lattice size: R/a < L. On the other
hand, the lower the temperature is, the bigger the spontaneous magneti-
zation value becomes, and thus the more reliable our approximation is. So
the limit SJ — oo is our case. This leads to the conclusion that it is the

case (%?2 < 1 in (4.33) which is physically correct. So, we can claim

that in the low-temperature limit the pair correlation function of a finite
two-dimensional Heisenberg model decays with the distance according to
a power law with the exponent two times greater that that of the 2D XY
model:
Go(R) ~ (R/a)™2" . (4.34)
In order to check the analytical result we have performed a series of
Monte Carlo simulations of the Heisenberg model on two-dimensional lat-
tices of different sizes at different temperatures. The simulation was based
on the Wolff cluster algorithm [31]|. The pair correlation function exponent
1 was obtained from the scaling behaviour of the three physical quanti-
ties: magnetization, M ~ L~27(T) (see fig. 4.6); pair correlation function,
Go(L/2) ~ L™"T); and magnetic susceptibility: x ~ L) (sce fig. 4.6).



120

=

08—
0.6 —
M N
04—
02
0
0
1
0.8 3
06—
M N
04—
02
0
0
o—0OL=8
O—]m L=16
AL =32
vV—v L=64
O—O L =128
X—x L = 256

Figure 4.6: The Monte Carlo simulation results for the temperature be-
haviour of the magnetization (left) and magnetic susceptibility (right) of
the two-dimensional XY (O(2)) (top) and Heisenberg (O(3)) (bottom)

models on lattices of different sizes.

The power law scaling behaviour found in all three cases suggests about
a quasi-long-range-like ordering in a finite 2D Heisenberg model. The lat-
tice size varied in our simulations from N = 8x8 to N = 256 x 256 for each
value of the temperature (see fig. 4.6). The estimates of the exponent n(7)
obtained from the scaling of different quantities are plotted in fig. 4.7. The
majority of the experimental points comes from the magnetization mea-
surements, since reliable measurement of magnetic susceptibility and pair
correlation function requires longer times of simulation. The temperature
range of the computer simulations was between 10~ and 10V,

In spite of the restricting low-temperature approximation the result
n = 2nXY seems to accord very well with the Monte Carlo simulations of
the corresponding model in a wide range of temperatures. Only a few last
experimental points on the high temperature side start to deviate from

this prediction.
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Figure 4.7: The comparison between the results for the exponent n of
the two-dimensional Heisenberg model obtained in the Monte Carlo sim-
ulations and analytically within the low-temperature approximation. The

corresponding exponent of the 2D XY model is plotted for comparison
(dashed line).

4.3 Conclusions

In this section several different aspects of the lattice finiteness influence on
the well known properties of the two-dimensional spin models of continuous

symmetry were studied.

Firstly, it was the residual spontaneous magnetization probability dis-
tribution function research in the 2D XY model with structural disorder.
We have investigated the probability distributions observed in the Monte
Carlo simulations at different values of the temperature and dilution con-
centration presenting the results in the most explicit possible form: as ring

functions (fig.4.3,4.4). Together with the Monte Carlo simulations analyt-
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ical calculations were taken in the spin-wave approximation. The results
for the mean magnetization and its moments obtained through the pertur-
bation expansion in the disorder configuration inhomogeneity parameter
up to the third order support a scaling of the magnetization with an expo-
nent related to the pair correlation function exponent (found in the same
approximation), but cannot explain the distribution variance dependence
on the dilution concentration observed in the Monte Carlo simulations.
This a bit disappointing fact has place because of the neglect of terms of
higher order powers of temperature.

Secondly, basing on an assumption about quasi-long-range ordering
existence in a finite (!) two-dimensional Heisenberg model at low enough
temperatures, the asymptotic behaviour of the pair correlation function of
spins was studied and appeared to be a power law decay with the exponent
two times larger than the corresponding exponent of the 2D XY model
(found in the SWA). Such a result for the model which in the thermo-
dynamic limit does not exhibit any ordering is a purely finite-size effect.
The analytic result is reliably confirmed in Monte Carlo simulations of
the Heisenberg model realized for different sizes in a wide interval of low

temperatures.






CONCLUSIONS

Although the present thesis, devoted to the changes in the behaviour of the
two-dimensional spin models of continuous symmetry caused by quenched
structural disorder and lattice finiteness, does not pretend to give a com-
pletely explicit answer to every question posed, but makes a profound
and diverse research which shifts the knowledge of the mentioned problem
one step forward comparing to the situation described in the literature
overview (Chapter 1).

Let us remind briefly the main results and conclusions of the research

which can be found in a more explicit form in Conclusions after the corre-
sponding chapters.
1. The pair correlation function of the two-dimensional XY model
with nonmagnetic quenched dilution was estimated in the spin-wave ap-
proximation on the basis of the perturbation expansion in the disorder con-
figuration inhomogeneity parameter. The behaviour observed is a power
law decay with distance (just like in the pure model) which indicates about
quasi-long-range ordering. However, the pair correlation function exponent
in a diluted model has a nontrivial dependence on the dilution concentra-
tion, to be more specific it increases with the concentration of nonmagnetic
impurities. The result obtained from the perturbation expansion up to the
third order terms shows nice accordance with the Monte Carlo simulations
performed on purpose to check the reliability of the analytical approach.
Analytic arguments in favor of the pair correlation function self-averaging
in the low-temperature phase were also presented.

2. The analytic form of the interaction between topological defects (vor-
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tices) and nonmagnetic impurities found in the phenomenological Koster-
litz-Thouless model is attractive (in agreement with other researches of this
problem |23,24]) but advantageously differs by its correct lattice structure
representation. The result is generalized for an arbitrary number of topo-
logical defects in the system.

3. The form of the interaction between nonmagnetic impurities and
topological defects was also investigated within the Villain model which
gives much more appropriate description that the phenomenological Kos-
terlitz-Thouless model. The diluted Villain model Hamiltonian was ob-
tained in the low-temperature limit from the diluted 2D XY model Hamil-
tonian according to a scheme analogous to the one applicable in the pure
case |18]. Along with the separate interactions as “impurity-vortices” and
“impurity-spin-waves” interaction the Hamiltonian obtained describes a
combined interaction between an impurity, topological and spin-wave ex-
citations of the ground state. The asymptotic form of the interaction
between an impurity and vortices coincides with the corresponding result
found in the Kosterlitz-Thouless model. So, the two estimates obtained in
the two different models describing topological defects support each other.
4, From the expressions for the interaction energy of nonmagnetic im-
purities and topological defects obtained both in the Villain and Kosterlitz-
Thouless models an analytical estimate of the critical temperature reduc-
tion due to nonmagnetic dilution was made for the first time. The analytic
result accords to some extent with the available Monte Carlo phase dia-
grams.

D. The probability distribution functions of the spontaneous magneti-
zation in a finite two-dimensional XY model with quenched nonmagnetic
dilution observed in Monte Carlo simulations were represented in a form
of ring function and showed nontrivial dependence on the concentration
of nonmagnetic impurities. An important observation has been made that

the width of these distributions increases with the concentration of mag-
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netic sites.

6. The analytical calculation of the mean spontaneous magnetization in
a finite 2D XY model with disorder within the spin-wave approximation
leads to a power law dependence on the linear size of the system with an
exponent two times less than the pair correlation function exponent which
confirms the scaling relation proven for the pure model. An analogous
estimation of the moments of magnetization unfortunately does not give
the desirable analytical description of the probability distribution form de-
pendence on the concentration because of the neglect of higher powers of
temperature.

7. The analytical result for the pair correlation function of the two-
dimensional Heisenberg model of finite size obtained in the low-temperature
limit shows power law decay (indication of quasi-long-range ordering) with
an exponent twice bigger than the analogous exponent (estimated in the
SWA) of the 2D XY model. The Monte Carlo simulations of the 2D
Heisenberg model for a variety of system sizes within a wide interval of

low temperatures supports the analytical result.
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