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INTRODUCTION
Low-dimensional physial models were originally introdued as a purelymathematial abstration with the intention to �nd some exat solutionsto the models whih do not allow analytial solutions in the usual �physi-al� dimensions (d = 3). With respet to the modern development of theexperimental physis they however obtain quite pratial use. The pra-tial appliations again stimulate theoretial researhes of the in�uene ofany kinds of struture imperfetions or lattie �niteness on the now wellknown behaviour of the ideal models. The investigation of these problemshas a great pratial value, sine suh phenomena inevitably appear inreal physial samples. Sine the present work onerns ferromagneti lat-tie spin models, it is natural to onsider as strutural defets �quenhed�nonmagneti impurities introdued in the initial regular lattie [1, 2℄.Spin models of ontinuous symmetry an possess also defets of an-other kind: topologial defets [3�5℄ whih in despite of their name are notsomething arti�ially brought but deeply onneted to the nature of thesemodels. Present in higher dimensions as well these speial exitations ofthe ground state have espeially remarkable impat in two dimensions.For example, in the lassial two-dimensional XY model topologial de-fets (also alled vorties in the ontext of this model) behave themselvessimilarly to the two-dimensional neutral gas of partiles with Coulombinteration and ause a phase transition (Berezinskii-Kosterlitz-Thoulesstransition (BKT) [6, 7℄) with features similar to the insulator-ondutortransition in the two-dimensional eletrolyte [8, 9℄.The lassial two-dimensional XY model presents a beautiful exam-



9ple of topologial defets in�uene on the ritial behaviour. One of theexat results for the model formulated in the Mermin-Wagner-Hohenbergtheorem [10, 11℄ and 1/q2 Bogolyubov theorem [12℄ states the absene ofspontaneous magnetization for non-zero temperatures, but at low temper-atures the model exhibits so alled quasi-long-range order whih annot bedesribed by suh a usual order parameter as magnetization. One of theinteresting onsequenes of the quasi-long-range ordering is a remarkableresidual magnetization in a system of a �nite size L whih vanishes with apower law as L inreases [13,14℄. At the ritial temperature, TBKT, topo-logial defets reah a �onduting� state destroying the quasi-long-rangeorder and leaving the system magnetially ompletely disordered.It is well known that introdution of additional disorder (positionaldisorder, for example) an signi�antly re�et in the model properties andeven hange the harater of the ritial behaviour. Although disorderis irrelevant (Harris riterium [15℄) at the very BKT transition point, i.e.it does not hange the universal ritial exponents, there are importantdisorder e�ets suh as hanges in the ritial temperature TBKT and non-universal (at T < TBKT) value of the temperature-dependent exponent ofthe spin pair orrelation funtion whih de�nes the residual magnetizationsaling behaviour too. A highly important question is also the question ofthe topologial and strutural defets interation.Due to the absene of an exat solution the two-dimensionalXY modelrequires approximate approahes, among whih one should remark thefollowing:
• spin-wave approximation [16℄ whih allows for a preise enough an-alytial estimation of all important physial harateristis of thesystem at low temperatures; this approximation neglets topologi-al defets, so it fails at higher temperatures when the in�uene ofvorties beomes visible and does not desribe the BKT transition;



10
• Villain model [17, 18℄ whih apart from its importane as an alter-native model possessing vorties and a BKT transition and havingthe Hamiltonian onvenient for analytial purposes, an serve as alow-temperature approximation to the 2D XY model; the Villainmodel desribes topologial defets as well as spin-wave exitations;
• Kosterlitz-Thouless phenomenologial model [7,8℄ based on the on-tinuous elasti medium approximation an arti�ial intodution oftopologial defets; not being derived from the mirosopi 2D XYmodel Hamiltonian, it still gives orret qualitative piture of itsuniversal ritial behaviour (at TBKT).Subjet atuality. The problem of the in�uene of strutural disor-der on the behaviour of magneti models, �rst formulated almost �fty yearsago (see, for example, [1,2℄), has beome the subjet of a su�ient numberof theoretial works sine that time. Somehow, the two-dimensional XYmodel remained a bit aside these researhes, very fruitful for other spinmodels (as Ising and Heisenberg models, see [19℄ for referenes), mostlybeause of the fat that quenhed disorder does not hange qualitativelythe ritial behaviour of this model aording to the Harris riterium [15℄.However, it is known that the model has some highly interesting analyt-ially aessible properties of the low temperature phase (see, for exam-ple, [8, 14, 16℄) of a non-universal harater whih thus an depend on thepresene of disorder [20℄. Paradoxially, the �rst steps in the investigationof these questions were made only quite reently [21,22℄, mostly by MonteCarlo simulations [20, 22�27℄, but neither the experimental nor the ana-lyti results [20, 24℄ an be onsidered as exhaustive enough; for example,no approximate analyti estimation of the ritial temperature redutionaused by disorder (registered in the omputer simulations [20, 26℄) hasbeen made before our researh started. With our researh we hope at leastto ontribute to a partial �lling of these white spots.



11 Researh onnetion with sienti� programs, plans, themes.The thesis is prepared in the Institute for ondensed matter physis of theNAS of Ukraine and in Laboratoire de Physique des Mat�eriaux, Universit�eHenri Poinar�e, Nany 1 aording to the plans of the following themes: �0105U002081 �Peuliarities of the ondensed systems ritial behaviour un-der the in�uene of an external �eld, strutural disorder, frustration, andanisotropy� (2005-2007), � 0107U002081 �Development and appliation ofthe analyti theory and omputer experiment methods to the desriptionof transport phenomena in ion-eletroni systems� (2007-2011); under sup-port of the grant �Alloation de these en o-tutelle MESR�, frenh-germanPhD program Coll�ege dotoral Frano-Allemand �Statistial Physis ofComplex Systems�, and CNRS (Frane) - NASU (Ukraine) ooperationprojet ¾Critial behaviour of struturally disordered and frustrated sys-tems¿ (2005-2007).Goal and tasks of the researh. The objet of study are lassi-al two-dimensional spin models of ontinuous symmetry with lattie de-fets (non-magneti impurities) distributed randomly on the lattie sites(quenhed disorder). The subjet of study is a researh of the disorderand lattie �niteness in�uene on the behaviour of suh models. The goalof study is to obtain quantitative harateristis of the behaviour of themodels under onsideration (for example, the pair orrelation funtion de-ay exponent, the ritial temperature) as funtions of the nonmagnetidilution onentration. As the method of study we use both analytialomputations on the basis of the given models with the help of funtionalintegration method [28�30℄ and Monte Carlo simulations with the Wol�algorithm [31℄.Sienti� novelty of the results. In the thesis the temperature-dependent pair orrelation funtion exponent as a funtion of struturaldefets onentration is obtained and the result aords with the MonteCarlo simulations data better than the previously existing estimates. The



12exponent of the residual spontaneous magnetization deay with the lattiesize is obtained as well and it appears to be onneted with the pair or-relation funtion exponent as expeted from the �nite-size saling theory.Within the approximate approahes explored in the work an argument infavor of the pair orrelation funtion self-averaging is given at low temper-atures.For the �rst time non-magneti impurities are explored in the ontextof the Villain model and the interation between strutural and topologialdefets is found from the mirosopi Hamiltonian. A similar type of inter-ation is obtained in the frame of the Kosterlitz-Thouless phenomenologi-al model through a proedure more appropriate for the lattie struturedesription than the methods previously used by other researhers. Theestimates of the topologial and strutural defets interation found forthe Villain and Kosterlitz-Thouless models agree with eah other as wellas with the presently available omputer experiment results.On the basis of the results for the strutural and topologial defets in-teration an analytial estimation of the topologial phase transition (BKTtransition) ritial temperature redution due to nonmagneti dilution isgiven for the �rst time. The result obtained is in fair agreement with theavailable Monte arlo data.The behaviour of the pair orrelation funtion of a �nite two-dimensionalHeisenberg model is estimated in the low-temperature limit.The spontaneous magnetization probability distribution in a �nite two-dimensional XY model with quenhed disorder is investigated in MonteCarlo simulations and analytially.Pratial value of the results. The results presented in the thesisan be useful for experimental researhes of magneti materials with two-dimensional XY model properties (layered magnets and ultrathin mag-neti �lms with planar anisotropy).Personal ontribution of the researher. In the papers written



13with o-authors the ontribution of the author inludes:
• the pair orrelation funtion and residual magnetization (for a �nitelattie) behaviour estimation for the two-dimensional XY model inthe spin-wave approximation [32�34℄;
• the diluted Villain model derivation from the diluted two-dimensional
XY model in the low-temperature limit and the strutural and topo-logial defets interation estimation from the mirosopi dilutedVillain model Hamiltonian [35, 37℄;

• the analytial estimation of the interation between strutural andtopologial defets in the phenomenologial Kosterlitz-Thouless model[35℄;
• the analytial estimation of the BKT transition ritial temperatureredution due to strutural disorder [35℄;
• interpretation of the magnetization probability distribution funtionsin a �nite two-dimensional XY model with disorder obtained inMonte Carlo simulations [33, 34℄;
• partiipation in Monte Carlo simulations [32�34℄;
• the pair orrelation funtion behaviour in a �nite two-dimensionalHeisenberg model in the low-temperature limit [36℄.Thesis results approbation. The results of the thesis have beenreported and disussed at the following sienti� meetings: �StatistialPhysis and Low Dimensional Systems 2006: Atelier des groupes PhysiqueStatistique et Surfae et Spetrosopies du LPM� (Nany, 17th-19th May2006), �2nd International Conferene on Quantum Eletrodynamis andStatistial Physis (QEDSP2006)� (Kharkiv, 19th-23rd September 2006),�Statistial Physis and Low Dimensional Systems 2007: Atelier des groupes



14Physique Statistique et Surfae et Spetrosopies du LPM� (Nany, 23rd-25th May 2007), �The 32nd Conferene of the Middle European Cooper-ation in Statistial Physis (MECO32)� (Ladek Zdroj, Poland, 16th-18thApril 2007), �Christmas disussions 2008� (Lviv, 4th-5th January 2008),�VII-th All-ukrainian seminar-shool and ompetition of young sientistsin the �eld of statistial physis and ondensed matter � 2008� (Lviv, 5th-6th June 2008); and also in numerous seminars of the Condensed matterstatistial theory setion of the Institute for ondensed matter physis ofthe National aademy of sienes of Ukraine, of the theoretial group atLaboratoire de Physique des Mat�eriaux (Universit�e Henri Poinar�e, Nany1), and in a seminar in the Theoretial Physis Institute in Leipzig (Ger-many).Publiations. Five papers [32�36℄, one preprint [37℄, and four onfer-ene abstrats [38�41℄ have been published on the materials of the thesis.





Chapter 1LITERATURE OVERVIEW
In this hapter an overview of the main literature onerning spin modelsof ontinuous symmetry, espeially the two-dimensional XY model, andwith respet to the strutural disorder in�uene is given.1.1 Spin models of ontinuous symmetry1.1.1 Topologial defetsPresene of topologial defets and their possible in�uene on the riti-al properties attrat speial attention to the spin models of ontinuoussymmetry [3, 5℄. For the �rst time topologial defets drew the atten-tion of researhers in the �eld of phase transitions and ritial phenomenain onnetion to the extremely unusual behaviour of the two-dimensional
XY model [6, 7℄. The topologial phase transition in this model gives themost profound example of the in�uene of topologial defets on the rit-ial properties of spin models with ontinuous symmetry. However, othersimilar models show interesting e�ets of a topologial nature as well.In a general ase the Hamiltonian of a lassial spin model of ontinuoussymmetry an be written as:

H = −
∑

r,r′

J(r, r′)SrSr′ , (1.1)



17where the sums span all the lattie sites, Sr is the value of a spin onthe site r, and J(r, r′) is the spin oupling for the sites r and r′. Suhmodels, as one knowns, an properly desribe properties of a number ofmagneti materials. Depending on the number of omponents of spinsone distinguishes: XY model (Sr = (Sx
r , S

y
r )), Heisenberg model (Sr =

(Sx
r , S

y
r , S

z
r)), N -vetor model (Sr = (S1

r , S
2
r , . . . , S

N
r )).In order to di�ne in a simple way what a topologial defets is let us saythat a topologial defet is suh a spin on�guration that is haraterizedby some region (the ore) of strong spin disorientation and the remainingarea where the spin orientation hanges slowly from one site to another (see�g.1.1). Of ourse, the above desription is very loose, for a mathematialde�nition one should refer to [3, 42℄. Topologial defets have spei�names in di�erent models, for example, vorties in the two-dimensional

XY model, or hedgehogs in the three-dimensional Heisenberg model [3℄.The ase of the two-dimensional XY model (also sometimes referredto as O(2) model or the plane rotators model) will be disussed later indetail. For the moment let us mention the interesting e�ets aused by thepresene of topologial defets in other models desribed by a Hamiltonianof the form (1.1).The three-dimensionalXY model in ontrast to its two-dimensional re-alization exhibits a more familiar ferromagneti-paramagneti phase tran-sition piture with long-range order appearane [43, 44℄. But there areworks whih present results in favor of the ruial role of topologial de-fets (alled vortex strings in this ontext) in the phase transition in thismodel (see, for example, [45℄).Another well known ontinuous symmetry spin model � the Heisen-berg model (also alled O(3) model) � has quite di�erent properties in
2D and 3D as well. In three dimensions the model undergoes a phasetransition from the magnetially ordered state with a nonzero order pa-rameter to the state of disorder [43℄. Although the ritial properties an



18be desribed properly within the frames of the theories that do not takeinto aount topologial exitations, there are strong evidenes about anessential in�uene of topologial defets on the model behaviour [47�49℄.Some works laim omplete impossibility of the phase transition our-rene if topologial defets are exluded (that an be arti�ially ahievedin Monte Carlo simulations using unfavourable hemial potential assoi-ated to the topologial defets) [47,48℄, others only mention the hange ofritial exponents in this ase [49℄.The two-dimensional Heisenberg model behaviour remains in somesense a ontroversial question even today. Topologial defets that anexist in this model are alled instantons [46℄. The previously mentionedMermin-Wagner-Hohenberg theorem [10,11℄ denies the very possibility oflong-rang ordering at any nonzero temperature (in the thermodynamilimit), but the early high-temperature expansions [50℄ were in favor of aphase transition in the Hesinberg model in two dimensions as well as inthe 2D XY model. In the two-dimensional XY model ase these resultswere subsequently supported by the disovery of the BKT transition. Inontrast to this, the 2D Heisenberg model has not reeived any subse-quent evidenes for a phase transition, and the Polyakov renorm-groupanalysis [46, 51℄ laimed absene of any phase transition at nonzero tem-perature. That onlusion has beome generally aepted, although thereare alternative opinions (see, for example, [5, 52℄) in favour of a phasetransition similar to that in the two-dimensional model.1.1.2 Two-dimensional XY modelAs it is de�nitely known today, topologial defets play a ruial role inthe ritial behaviour of the two-dimensional XY model and related mod-els [4, 42℄. One of the exat results for spin models of ontinuous sym-metry in one and two dimensions is the Mermin-Wagner-Hohenberg the-orem [10, 11℄ whih denies existene of any spontaneous magnetization at



19nonzero temperature. This property is aused by the fat that in an in�-nite lattie with dimensions less than three, spin-wave exitations destroyany long-range order even at arbitrary small temperatures. But the spinpair orrelation funtion behaves in a di�erent way in 1D and 2D systems,although it deays to zero with distane in both ases. The spin-wave ap-proximation appliable in the low-temperature limit (T → 0) gives thefollowing asymptoti forms of the pair orrelation funtion as a funtionof the distane R in the XY model in di�erent dimensions [16, 42℄:
G2(R) ∼

R→∞





onst , d ≥ 3 ;

R−η , d = 2 ;

e−αR , d = 1 .

(1.2)It is obvious that the two-dimensional ase is very partiular. Although theorrelations deay with distane, so one an not speak about long-rangeordering, they deay algebraially that is muh slower than in the ase ofa usual magneti disorder (whih an be observed in the same model in
1D, for example). This phenomenon is alled quasi-long-range ordering.The Hamiltonian of the two-dimensional XY model with the nearestneighbours interation writes as:

H = − J
∑

〈r,r′〉
(Sx

rS
x
r′ + Sy

rS
y
r′) , (1.3)where the sum spans all the nearest neighbour pairs in a square lattie,and J is the oupling onstant.Besides possible desription of the properties of suh an importantphysial objet as the super�uid helium, the two-dimensional model analso apply to more losely related real physial systems suh as magnetswith planar anisotropy. Of ourse, low dimensionality restrits its ap-pliation to so alled quasi-two-dimensional magnets [55℄ suh as layeredmagnets (three-dimensional strutures with weak interplane interation)and ultrathin magneti �lms. Although the mentioned materials should



20be desribed by three-omponent Heisenberg spins rather than by two-omponent XY spins [55℄, easy plane spin anisotropy and weak interplaneoupling draw their properties losely to those typial for the 2D XYmodel [55�57℄.Another interesting subjet is the investigation of stability and be-haviour of vorties (similar to those in the 2D XY model) in the two-dimensional Heisenberg model with easy-plane anisotropy [54,68,70℄. Theresearhes show qualitative resemblane to the 2D XY model behaviourin a wide interval of the disorder parameter values [56�58℄.Features of the 2D XY model behaviour an be observed in sometemperature region even in so unlike (in the sense of its symmetry) modelas the two-dimensional lok model with q > 4 [4, 59℄.So, on one hand, the two-dimensional XY model really has a greatpratial value desribing (at least qualitatively) an important lass ofmagneti materials, and, on the other hand, it is highly interesting fromthe fundamental theoretial point of view revealing the most profoundtopologial defets in�uene. It is moreover aessible for analytial re-searhes.It is onvenient to investigate the low-temperature phase of the 2D

XY model analytially in the spin-wave approximation whih is supposedto be quantitatively reliable in the low-temperature limit and also givesqualitatively orret results in the whole quasi-long-range ordering phase[18℄.The spin-wave approximation means the substitution of the salarprodut of spins in the Hamiltonian (1.3) with an approximate expansionup to the quadrati term in the angle ( ̂Sr,Sr′

) between the spins [16℄:
Sx

rS
x
r′ + Sy

rS
y
r′ = cos

(
̂Sr,Sr′

)
→ 1 − 1

2

(
̂Sr,Sr′

)2

. (1.4)Suh a substitution is aeptable only at low enough temperatures whenthe neighbouring spins are oriented almost in the same diretion.



21 In the spin-wave approximation the Hamiltonian (1.3) an be diago-nalized and the model admits analytial solution. The pair orrelationfuntion of spins shows a power law deay with distane [16℄:
〈Sr,Sr+R〉 ∼ R−η(T ) (1.5)with the non-universal temperature-dependent exponent
η(T ) =

kBT

2πJ
, (1.6)where kB � the Boltzman onstant. Divergene of the magneti suseptibil-ity in the low-temperature phase follows from the above result as well [16℄.The �nite two-dimensional XY model possesses some residual spon-taneous magnetization whih goes to zero as the lattie size inreases[13, 14, 60℄. The spontaneous magnetization an be de�ned as:

〈m〉 =
1

N

〈√√√√
(∑

r

Sr

)2〉
. (1.7)This deay is so slow that spontaneous magnetization an be observed evenin marosopi magneti samples [13, 14℄. The spin-wave approximationgives a power law vanishing of the magnetization with the lattie size

N = L× L (L is the linear size):
〈m〉 = N−η(T )/4 , (1.8)with the exponent η de�ned by (1.6).But the thermodynamially averaged value of the magnetization alonedoes not ontain in itself the omplete information about the �nite systemproperties. As the researhes [60,62℄ suggest important sienti� value hasthe form of the magnetization probability distribution whih appears tobe non-Gaussian and non-universal (in the sense of its independene of thesystem size and exponent η). This is a onsequene of the quasi-long-rangeorrelation in the system and aord well with the fat that the orrelationlength ξ is divergent in the low-temperature phase [42℄.



221.1.3 Vorties in two-dimensional XY modelThe spin-wave approximation desribes the behaviour of the model quan-titatively orret only in the limit of low temperatures. This is so beauseaording to the Kosterlitz-Thouless theory [7℄ at low temperatures topo-logial defets are losely bound in neutral vortex-antivortex pairs whihinsu�iently disturb the spin �eld and thus in fat do not show them-selves in the model properties. As the temperature inreases the meandistane between the vorties in the bound pairs beomes larger and theirin�uene on the model behaviour orrespondingly inreases, but somehowthe spin-wave theory ontinues to give qualitatively orret results for thepair orrelation funtion and other physial harateristis behaviour inthe system in the whole low-temperature phase, only the real temperatureshould be replaed with some e�etive value [8, 18℄.In spite of suh a wide temperature region of its appliability (atleast for a qualitative desription) the spin-wave approximation does notgive any information about the most exiting phenomenon in the two-dimensional XY model � the Berezinskii-Kosterlitz-Thouless transition.The model desribed by the spin-wave Hamiltonian remains quasi-long-range ordered at any �nite temperature and no phase transition ours [16℄.Spin vorties (topologial defets) (see �g.1.1) introdued by Kosterlitzand Thouless to explain the unusual phase transition on a phenomenologi-al level [7℄ later reeived a �rm support of their existene and importaneboth in experimental (meaning Monte Carlo experiments) [13,71℄ and the-oretial [17, 18℄ researhes. As great ahievement, in the topi one shouldonsider the approximate model proposed by Villain [17℄ and subsequentlyalled with his name. Within this frame the vortex spin on�gurations andtheir 2D-Coulomb-like interation an be analytially obtained diretlyfrom the mirosopi Hamiltonian. Although the Villain model an beformally onsidered as an independent model with a spei�ally de�nedHamiltonian possessing together with the 2D XY model spin vorties
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Figure 1.1: Examples of vorties with topologial harges equal to +1 (top)and −1 (bottom) in the two-dimensional XY model.and a topologial phase transition, in the low-temperature limit it an bemathematially derived from the 2D XY model Hamiltonian [18℄. Thus,at least at low temperatures, one an be on�dent with the fat that theVillain model vorties are equivalent to those of the two-dimensional XYmodel (though at higher temperatures their behaviour an di�er beausethe di�erene in their ritial temperature values (non-universal property)are remarkably di�erent [66℄). In �g.1.1 some examples of the vorties withdiverse topologial harges are presented (vorties with the same hargesare topologially equivalent though they di�er visually). The researhessuggest that real in�uene on the model behaviour an make only vortieswith harges with the absolute value equal to one [18℄, topologial defetswith higher values of the harge are energetially unfavourable.



24Aording to the Kosterlitz-Thouless theory [7℄ the phase transitionin the 2D XY model has features of the insulator-ondutor transitionin the two-dimensional Coulomb gas [9℄. The mean distane between thevorties bound in pairs inreases with temperature and �nally at someritial value TBKT dissoiation of suh pairs happens. The resulting gas offree topologial defets ruins any quasi-long-range ordering in the system.
1.2 Strutural disorder1.2.1 Quenhed and annealed disorderThe onept of disorder in the ontext of ondensed matter physis is verybroad and an apply in fat almost to any physial system [76�78℄. Ourresearh onerns lattie spin models of ontinuous symmetry and thisde�nes the irle of possible types of disorder that an be added to thismodels. For example, in the two-dimensional XY model one an studydisorder in the form of a random phase shift (for example, [79,81℄), randomloal �eld (for example, [80,81℄), random anisotropy (for example, [82,83℄)or random oupling onstant (for example, [27, 100℄). But perhaps themost typial kind of disorder in magneti systems is the positional disor-der whih means that some sites in the lattie are randomly oupied bynonmagneti ions [1, 2℄. Suh a model of disorder desribes appropriatelydefets in real magneti materials. Already in the �rst profound worksdevoted to this problem [2℄ an idea about on�gurational averaging (aver-aging over all the possible realizations of disorder) of observable physialquantities arised. Mazo [84℄ showed that the free energy of a physialsystem depending not only on dynamial variables (atomi spins in ourase) but also on random variables (nonmagneti impurities positions, forexample), with some �xed probability distribution funtion, should be theaveraged value of the free energy as a funtion of the random variables.



25The desribed situation orresponds to nonequilibrium impurities distribu-tion de�ned phenomenologially. This kind of disorder is alled quenheddisorder and it re�ets the situation in real physial samples properly, sinethe relaxation time of suh impurities is usually very large ompared tothe timesale of the spin relaxation. A spei� property of the quenheddisorder in�uene on the behaviour of magneti systems is the existene ofthe perolation threshold [1, 85, 86℄.However, there is also another type of positional disorder whih is alledannealed in ontrast to the quenhed one (see, for example, [88, 89℄). Inthis ase the positions of nonmagneti ions are de�ned by the thermody-nami equilibrium state and their distribution is at equilibrium. From themathematial point of view this means that the free energy of the system isthe logarithm of the on�gurationally averaged partition funtion. Whenomputing other thermodynamial quantities the averaging over the vari-ables desribing the impurities positions should be added to the trae overthe spin variables. In fat, annealed disorder is equivalent to the lattie-gasmagneti models.There are some works devoted to the researh of the impurities relax-ation dynamis, i.e. the transition from the quenhed to annealed disorder(see, for example, [90℄). Another link between two di�erent types of dis-order an be seen in the works that suggest to study quenhed disorderthrough some �titious system with annealed disorder onstruted in suha way that it has the properties analogous to the properties of the initialsystem (see [91℄).When dealing with quenhed disorder, attention should be paid to theself-averaging property of the system physial quantities [92�94℄. In thease when a quantity is non-self-averaging, its on�gurational average ob-tained on the basis of a �nite set of disorder realizations will not representproperly its real observable value.



261.2.2 Disorder in two-dimensional XY modelSine our study mostly onerns quenhed disorder, let us give only avery brief exursus to the works on the in�uene of annealed disorderon the two-dimensional XY model behaviour. 2D XY model is usedin partiular to desribe 3He-4He mixture in two dimensions [95, 96℄ andrealizes the lassial two-dimensional ferromagneti lattie gas model [98℄.The existene of the quasi-long-range ordering at low temperatures in thismodel is proved rigorously [101℄ and supported by Monte Carlo simulations[97℄. The ritial temperature dereases as the nonmagneti impuritiesonentration inreases [97℄. There are also onvining evidenes abouta �rst order phase transition whih ours at some values of the dilutiononentration in this model [98�100℄. This phenomenon appears only forannealed disorder and does not have plae in the model with quenheddisorder [20, 26℄.Quenhed disorder in the two-dimensional XY model auses redu-tion of the ritial temperature whih, as a funtion of nonmagneti sitesonentration, dereases with onentration and turns to zero at some �-nite ritial value of onentration [20, 26℄ (see �g.1.2). Today there arepratially no doubts that this ritial onentration oinides with theperolation threshold [20,26℄ (whih is c ≃ 0.59 [105℄ for the square lattiewhih is usually onsidered). Thus the quasi-long-range ordering phaseexists until there is an in�nite perolation luster in the system. Onesthe onentration of magneti sites reahes the perolation threshold anyordering beomes impossible. Before our researh started no analytialestimation of the ritial temperature of a diluted 2D XY model as afuntion of dilution onentration existed in the literature.Aording to the Harris riterium [15℄, universal ritial exponents ofthe 2D XY model at the BKT transition remain unhanged by quenhedstrutural disorder. Obviously, this is true only for suh dilution onen-trations at whih an in�nite perolation luster exists. Thus the value of
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Figure 1.2: Phase diagram quoted from [26℄: 2D XY model ritial tem-perature as a funtion of nonmagneti sites onentration observed inMonte Carlo simulations. The insert shows the viinity of the perola-tion threshold.the pair orrelation funtion exponent at the ritial point whih is uni-versal (η(TBKT) = 1/4 [8℄) remains the same in the model with disorder.However, in the low-temperature phase the exponent η depends on thetemperature and oupling onstant [16℄, thus it is not universal. As theresearhes show in the model with strutural disorder the exponent η alsodepends on the nonmagneti impurities onentration inreasing with thedilution onentration [20℄.The residual spontaneous magnetization behaviour in a �nite two-dimensional XY model with quenhed disorder stayed unexplored untilvery reently.Finally, one of the most ruial questions onerning nonmagneti di-lution in the 2D XY model is the form of the interation between non-magneti impurities and topologial defets present in the system. Theknowledge of this interation an be of use in alulating the ritial tem-



28perature redution onneted with the dilution and also is important itselfonerning the possible appliations in nanotehnology [104℄.

Figure 1.3: A spin vortex entered in (0,0) with a nonmagneti vaany in(5,0) (left) and (1,0) (right) obtained through energy minimization of thespin �eld [21℄.The �rst paper [21℄ devoted to the researh of the interation betweena spin vaany and a topologial defet suggested a repulsive form of theinteration due to the inorret estimation sheme. It was based uponthe ontinuous elasti medium approximation with arti�ially introduedtopologial defet on�gurations (the Kosterlitz-Thouless model), and aspin vaany was presented in this model by some utout area removedfrom the ontinuous spin �eld. In �g.1.3 quoted from [21℄ one an see aspin on�guration obtained by a minimization of the energy of the spin �eld(vortex struture was guaranteed by antisymmetri boundary onditions)with a spin vaany (a utout) at the distane of �ve (left) and one (right)lattie onstants from the vortex enter (on the right side there is a visibledistortion of the initial vortex form whih looks like a �sreening� of the spin�eld behind the vaany). The energy of the vortex with a vaany situatedloser to its enter has a greater value, so it is energetially preferable fora vortex to keep away from a spin vaany.
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Figure 1.4: Spin dynamis simulation results for a vortex spin on�gurationwith a nonmagneti vaany [24℄. Comparison of the initial on�guration(left) with the on�guration obtained after 150 time steps (right) suggestsan attrative interation between the vaany and the vortex enter.However, Monte Carlo and spin dynamis simulations strongly sug-gested the opposite piture of interation [24℄: vaanies attrat topologi-al defets and pin them (see �g.1.4). Calulations redone with the ruialassumption about the vortex on�guration unhanged by the presene ofa vaany leaded to a qualitatively orret result [24℄. Of ourse, speakingrigorously, suh an assumption is not ompletely true, it is an approxima-tion needed to avoid physially inorret onsequenes when substitutingthe disrete lattie with a ontinuous spin �eld. One an assume that thetruth is somewhere in between: the spin �eld hanges due to the preseneof a vaany but only loally and not so globally as it appears in �g. 1.3.Another disadvantage of the study [24℄ an be seen in the dependene ofthe interation result on the way one hooses the �vaany� utout form,i.e. on its area whih is somewhat inde�nite and moreover is not linkedto the mirosopi struture of the lattie (the oordination number, forexample).Attrative form of the interation between strutural and topologialdefets is supported by the studies of other model possessing vorties aswell [23℄.



301.3 ConlusionsThe presented overview reveals great theoretial and pratial value ofthe researh of the in�uene of positional disorder on the behaviour oftwo-dimensional spin models of ontinuous symmetry (and espeially the
2D XY model), and in the same time it shows the insu�ieny of suhresearhes remaining for today. Partiularly interesting seems the questionof the lattie �niteness in�uene on suh models behaviour whih has neverbeen investigated in ombination with strutural disorder. The form ofthe interation between strutural defets and spin vorties is importantalso from the point of view of the modern nanotehnology developmentand searh of new data storage methods, sine vortex strutures are oftenobserved in nanostrutured magneti thin �lms (see [104℄, for example).The desribed situation opens an intriguing �eld for sienti� researhwhih the present thesis tries to over at least partially.





Chapter 2
TWO-DIMENSIONAL XY MODEL WITHDISORDER
This hapter presents a study of the in�uene of strutural disorder on thebehaviour of the two-dimensional XY model at temperatures su�ientlylower than the Berezinskii-Kosterlitz-Thouless transition temperature. Inthis interval of temperatures one an with good preision neglet the im-pat of the topologial defets present in the system, so the spin-waveapproximation an be of use. We will present an original perturbationtheory: expansion in the parameter whih haraterizes dilution (severalalternative andidates for suh a parameter are proposed). Our attentionwill be mainly foused on the pair orrelation funtion behaviour whihis one of the most interesting harateristis of the two-dimensional XYmodel. Together with the analytial treatment a series of Monte Carlosimulations were performed for the 2D XY model with di�erent onen-trations of dilution; the results of these simulations are presented in thishapter as well. We will ompare the omputer experiment data to the an-alytial results. The most essential results of this hapter were publishedin [32�34,37�41℄.



332.1 Quenhed dilution2.1.1 Con�gurational averagingHerein, quenhed dilution (disorder) in a ferromagneti system means ran-dom replaement of some fration of magneti lattie sites with nonmag-neti impurities (spin vaanies). The mathematial desription deals withthe �oupation numbers�:
cr =

{
1 , if site r has a spin ;
0 , if site r is empty . (2.1)Setting a ertain set of the variables {cr} any disorder on�guration an berealized with a given dilution onentration. We will deal with unorrelatedrandom disorder, i.e. the oupation probability for a site is independentof the other sites states. Thus, to obtain suh a disorder on�gurationwith the onentration c of magneti sites (and onentration 1 − c ofnonmagneti impurities respetively) it is enough to set the probability

P (cr) for the site r to be empty or oupied by a spin:
P (cr) =

{ ñ , if ñr = 1 ;
1 − ñ , if ñr = 0 . (2.2)Following [2℄, we distinguish quenhed disorder (when the impuritiesare �lled randomly in the system) and annealed disorder when nonmag-neti sites are in their thermodynami equilibrium positions. In fat, suhannealed disorder is nothing else but another formulation of a lattie-gasferromagneti model [97℄ where spin sites have a spae degree of freedom:their position in the lattie. In the annealed disorder ase the partitionfuntion of the system should be averaged for all the possible realizations ofdisorder, this just means inlusion of the magneti sites spae oordinatesinto the trae. Contrary, aording to [2, 84℄ when dealing with quenheddisorder suh averaging an be and should be done only for observable



34physial quantities suh as the free energy or, for example, the spin pairorrelation funtion.The present researh is restrited to the unorrelated quenhed disor-der onsideration, so hereafter speaking about disorder/dilution we willalways mean quenhed impurities distribution (exept where somethingelse is expliitely stated). The on�gurationally averaged physial quan-tities will be of importane. A dash over an expression, (. . .), will denoteon�gurational averaging; mathematially it an be de�ned as:
(. . .) =

∑

cr1=0,1

. . .
∑

crN
=0,1

[∏

r

P (cr)

]
(. . .)

=
∑

cr1=0,1

. . .
∑

crN
=0,1

[∏

r

(cδ1−cr,0 + (1 − c)δcr,0)

]
(. . .) . (2.3)Sometimes quantities averaged in suh a way will be alled on�gurationalaverages (in analogy with thermodynamial averages) but mostly we willimpliitly mean on�gurationally averaged values when speaking aboutobservable physial quantities. For example, the free energy of the sys-tem whih is an observable quantity and thus has to be averaged over allpossible on�gurations of disorder will be given by the expression:

Fdis = − T lnZconf (2.4)where T � the temperature in energy units, and Zconf � the on�gura-tionally dependent partition funtion whih depends on the partiular dis-order realization and generally is given by the expression:
Zconf = Tr e−H({cr})/T (2.5)with H({cr}) being the system Hamiltonian dependent on the oupationnumbers (2.1) along with the spin variables, and Tr(...) meaning onlyintegration over the spin degrees of freedom.



35 Another important harateristi, the pair orrelation funtion of spins,averaged over disorder on�gurations has the form:
G(R) = crcr+R

〈
SrSr+R

〉
=

crcr+R

Zconf
Tr e−H({cr})/TSrSr+R . (2.6)2.1.2 Self-averagingSystems with quenhed disorder an be haraterized by suh a propertyas self-averaging [92℄. In the previous subsetion the on�gurational aver-aging proedure was de�ned, but the pratial value of suh an averagedquantity is related to the form of its probability distribution over di�er-ent realizations of disorder. The value of an arbitrary physial quantity

X in a system with disorder depends on the exat form of the disorderon�guration, thus, it is a random quantity desribed by the probabilitydistribution funtion P (X,N) dependent on the size N of the system. Ifone desires to desribe the system with the on�gurational average X oneshould hek the relative variane of the distribution P (X,N):
RX(N) =

X2 − X
2

X
2 . (2.7)If the relative variane of a marosopi quantity X goes to zero, RX → 0,in the thermodynami limit (N → ∞) then one says that X is self-averaging and thus the system an be desribed expliitly by the on�gu-rational average X . If RX goes with N → ∞ to a �nite onstant valuethen the system is said to be non-self-averaging. When RX → 0 there aredi�erent degrees of self-averaging whih an be distinguished dependingon the form of the deay of RX . When RX ∼ N−1 one says about strongself-averaging, and if RX ∼ N−z (0 < z < 1) the self-averaging is weak.Beyond the ritial region the additivity property along with the en-tral limit theorem automatially lead to a strong self-averaging, i. e.

RX ∼ N−1 (this is true for additive quantities, of ourse). However, at the



36ritial point the situation beomes more ompliated beause of the long-range ritial orrelations; it has been shown by the renormalization grouptehni [92℄ that in the ase of relevant disorder (when disorder in�uenesthe ritial behaviour, aording to the Harris riterium) the self-averagingis lost at the ritial point. Though at the very ritial point of the BKTtransition in the 2D XY model disorder is irrelevant aording to the Har-ris riterium [15℄, the whole low-temperature phase (T < TBKT) is ritial,and there disorder has visible in�uene on the properties of the model, forexample, the nonuniversal pair orrelation funtion exponent depends onthe dilution onentration [20℄. This poses an important task of �ndingalong with the on�gurationally averaged values of physial quantities like(2.4) and (2.6) their relative varianes (2.7).2.2 Spin-wave approximation2.2.1 Spin-wave HamiltonianA spin in the model (1.3) has a �xed length (we hoose it equal to one),thus, in fat, eah site is desribed by a single degree of freedom. Insteadof the two spin omponents, Sx
r and Sy

r , let us introdue a single variablewhih desribes rotation of a spin in two-dimensional spae; the anglebetween the spin and an arbitrary �xed referene diretion in the plainof its rotation an serve as suh a variable. Introduing in this way theangle variables θr the salar produt Sx
rS

x
r′ + Sy

rS
y
r′ an be rewritten as aosine of the angle di�erene between the two spins: cos(θr − θr′). TheHamiltonian (1.3) then writes as:

H = − J
∑

r

∑

α=x,y

cos(θr+aα
− θr) , (2.8)where ax, ay � the elementary ell basis.The Hamiltonian of the two-dimensional XY model with quenhed



37disorder an be written using the oupation numbers (2.1):
H = − J

∑

r

∑

α=x,y

cos(θr+aα
− θr) cr+aα

cr . (2.9)It is obvious that (2.9) as well as (2.8) is minimal when all spins areparallel. Considering low temperatures one an obtain satisfatory resultsby taking into aount only low energy exitations whih are small devia-tions from the ground state. In this ase the di�erene between the angles
θr on neighbouring sites remains small and the osine an be expanded ina Taylor series around the energy minimum:

cos (θr+aα
− θr) → 1 − 1

2
(θr+aα

− θr)
2 . (2.10)The Hamiltonian (2.9) will write as:

H ≃ H0 + Hsw,where
Hsw =

1

2
J
∑

r

∑

α=x,y

(θr+aα
− θr)

2 cr+aα
cr (2.11)will be referred of as the �spin-wave� Hamiltonian, and aording to (2.2)

H0 an be written with good preision as:
H0 = − J

∑

r

∑

α=x,y

cr+aα
cr ≃ − 2Jc2 .

H0 does not depend on the spin degrees of freedom, and thus redues to aonstant added to the free energy:
F ≃ Fsw + 2Jc2

(
Fsw = −T ln

(
Tr e−Hsw/T

)
), and does not enter the observable physialquantities suh as the spin pair orrelation funtion, for example.



38The trae, Tr . . ., over the spin degrees of freedom an be de�ned interms of the angle variables θr as a funtional integral:
Trθ . . . =

[∏

r

∫ π

−π

dθr
2π

]
. . . . (2.12)The oe�ient 1/(2π) appears from the normalization: Trθ1 = 1. Toobtain a thermodynami average in the spin-wave approximation we willuse the following formula:

〈 . . . 〉 =
Trθ

[
e−βHsw . . .

]

Trθ e−βHsw
. (2.13)Of ourse, any observable quantity whih haraterizes the dilutedmodel (2.11) along with the thermodynamial averaging should be av-eraged over the on�gurations of disorder aording to the formula (2.3):

〈
. . .

〉
=

(
Trθ [e−βHsw . . . ]

Trθ e−βHsw

)
. (2.14)The dependene of the Hamiltonian Hsw on the oupation numbers, Eq.(2.11), puts a nontrivial problem whih will require approximate approahes.2.2.2 Fourier transformation on a two-dimensional lat-tieIn the pure model ase (Eq. (2.8)) the spin-wave approximation (2.10)allows to �nd an analyti solution of the model by passing to the Fouriervariables θk aording to the transformation formulas:

θr = 1√
N

∑

k

e−ikrθk , θk = 1√
N

∑

r

eikrθr , (2.15)where the sum over k spans N sites of the reiproal lattie within the �rstBrillouin zone (N is the number of sites in the original lattie). In termsof the variables θk the Hamiltonian (2.8) has a diagonal form (deomposes



39into a sum of terms eah of whih depends on a single wave-vetor k) andis written as [16℄:
Hp

sw =
J

2

∑

k

∑

α=x,y

K2
α(k) θkθ−k , (2.16)where Kα(k) ≡ 2 sin kaα

2 .Although the Hamiltonian with quenhed impurities, Eq. (2.11), an-not be diagonalized in suh a way, we apply the Fourier transformation(2.15) sine our approah will be based on an extration of the diagonalpart in (2.11) whih will orrespond to the undiluted system (2.16).Before alulating any thermodynamial quantities with the Hamilto-nian written in the Fourier variables on should express the trae (2.12) interms of θk too. This an be done with the help of the well known formulafor the hange of variables in a multiple integral [106℄:
∫
. . .

∫
f(x1, . . . , xn) dx1 . . . dxn (2.17)

=

∫
. . .

∫
f(x1(ξ1, . . . , ξn), . . . xn(ξ1, . . . , ξn)) | J | dξ1 . . . dξn ,where xi are the initial variables, ξi are the new variables, and J =

det(∂xi/∂ξj) is the transformation Jaobian. The transformation (2.15)is linear , thus one an onlude straightforwardly that the Jaobian isonstant and an be put outside the integral.Obviously, θk are omplex quantities: θk = θc
k + iθs

k, and from the�rst look it seems that one has too many new variables than one needs;however, it is easy to see that not all of them are independent beause
θ−k = θ∗k. To exlude the extra variables we will onsider only θkwith k within one arbitrary half of the �rst Brillouin zone (for example,(
0 ≤ kx ≤ π

a
, 0 < ky ≤ π

a

)⋃(
0 < kx ≤ π

a
,−π

a
≤ ky ≤ 0

), see �g. 2.1) andwe will denote this domain as B+, and the rest of the 1st Brillouin zonewill be denoted as B− (the point k = 0 will be onsidered separately).



40Then, the Hamiltonian (2.16) will read as:
Hp

sw =
J

2

∑

k∈B+

∑

α=x,y

K2
α(k) θkθ−k +

J

2

∑

k∈B−

∑

α=x,y

K2
α(k) θkθ−k

=
J

2

∑

k∈B+

∑

α=x,y

K2
α(k) θkθ−k +

J

2

∑

k∈B+

∑

α=x,y

K2
α(−k) θ−kθk

= J
∑

k∈B+

∑

α=x,y

K2
α(k) |θk|2 , (2.18)where |θk| =

√
θkθ−k =

√
(θc

k)
2 + (θs

k)
2. Let us note that θk with

k = 0 does not enter the Hamiltonian

Figure 2.1: The division of the 1st Brillouin zone into two equal parts: if
k ∈ B+ then −k ∈ B−.The trae Trθ . . ., Eq. (2.12), an be written in the Fourier variablesas the funtional integral:

Trθ . . . = | J |
∫ N π

a

−N π
a

dθ0


∏

k∈B+

∫ ∞

−∞
dθc

k

∫ ∞

−∞
dθs

k


 . . . . (2.19)Expansion of the boundaries of the integration over θc
k and θs

k in (2.19)is possible owing to the fat that the trae operation always ats on anexpression ontaining the Boltzman fator e−βHp
sw whih is not vanishingat low temperatures (β → ∞) only for small values of θc

k, θs
k (see (2.18)).



41 The absolute value of the Jaobian J an be found by omparingthe trae Trθ e
−β
∑

r θ2
r alulated in the variables θr and in the Fourier-transformed variables θk. It is easy to hek that ∑r θ

2
r =

∑
k |θk|2 =

θ2
0 + 2

∑
k∈B+ |θk|2, and thus,

∏

r

(∫ ∞

−∞

dθr
2π

e−βθ2
r

)

= | J |
∫ ∞

−∞
dθ0 e

−βθ2
0

∏

k∈B+

(∫ ∞

−∞
dθc

k e
−2β(θc

k)2
∫ ∞

−∞
dθs

ke
−2β(θs

k)2

)

whih leads to
| J | =

2
N−1

2

(2π)N
. (2.20)Now, one an draw the �nale expression of the funtional integral

Trθ . . . in the Fourier variables θk:
Trθ . . . =

∫ N π
a

−N π
a

dθ0

2π


∏

k∈B+

2

∫ ∞

−∞

dθc
k

2π

∫ ∞

−∞

dθs
k

2π


 . . . . (2.21)2.2.3 Disorder on�guration inhomogeneity parame-terThe nonmagneti sites density an be written as:

ρ(r) =
∑

r′

(1 − cr′)δr,r′ , (2.22)where
δr,r′ =

{
1 , if r = r′ ;
0 , if r 6= r′ . (2.23)is the Kroneker symbol whih an be represented as:

δr,r′ =
1

N

∑

q

eiq(r′−r) , (2.24)



42where the sum over q spans sites of the reiproal lattie within the 1stBrillouin zone. Inserting (2.24) into (2.22) one obtains:
ρ(r) =

∑

q

e−iqr 1

N

∑

r′

eiqr′(1 − cr′) . (2.25)The Fourier transform of the impurities density,
ρq =

1

N

∑

r

eiqr(1 − cr) , (2.26)an serve as a parameter whih haraterizes the dilution (2.1) in theinverse spae. In the limiting ase when there is no dilution (all cr = 1)
ρq = 0 for any q.It is easy to see that ρ0 is the onentration of nonmagneti sites,
1 − c, if one neglets the �utuation of this onentration in di�erentrealizations of disorder. Due to the random distribution of nonmagnetiimpurities in the lattie it is statistially not preferable to ome arossessential inhomogeneities of the impurities loal density, so all ρq with
q 6= 0 have small absolute values. In other words, ρq does not di�eressentially from its on�gurationally averaged value (see (2.3)):

ρq = (1 − c)δq,0 . (2.27)A deviation of ρq from its averaged value (2.27),
∆ρq = ρq − ρq =

1

N

∑

r

eiqr(c− cr) , (2.28)will be alled the disorder on�guration inhomogeneity parameter or brie�yjust �disorder parameter�, sine it haraterizes the �utuation of ρq on-neted with the random harater (disorder) of the dilution. Let us imaginethe situation when the nonmagneti sites whih make the fration 1− c ofall the sites form some regular struture, then ρq an be written as:
ρq = (1 − ñ)[ 1

(1 − ñ)N∑
r̃

eiqr̃

]
, (2.29)



43where the sum over r̃ spans the empty sites only. The expression in thebrakets in (2.29) is just a Kroneker symbol δq,0, thus, in this partiularase, when the impurities are ordered in some sense, the equalities ρq = ρqand ∆ρq = 0 hold.Let us rewrite the spin-wave Hamiltonian of the diluted model (2.11)in the Fourier-transformed variables θk, Eq. (2.15), and ρq, Eq. (2.26):
Hsw = Hp

sw − J

2

∑

k

∑

k′

∑

α

θkθk′

(
1 − e−ikαa − e−ik′

αa + e−i(kα+k′
α)a
)

×
[ ∑

q

ρq

(
1 + e−iqαa

) 1

N

∑

r

e−i(k+k′+q)r

−
∑

q

∑

q′

ρqρq′ e−iq′αa 1

N

∑

r

e−i(k+k′+q+q′)r

]
,where Hp

sw is the Hamiltonian of the pure model (2.16). Sine
1
N

∑

r

e−i(k+k′+q)r = δk+k′+q,0 and 1
N

∑

r

e−i(k+k′+q+q′)r = δk+k′+q+q′,0 ,we have
Hsw = Hp

sw + J
∑

k

∑

k′

∑

α

cos (kα+k′
α)a

2
ρ−k−k′ Kα(k)Kα(k′) θkθk′

− J

2

∑

k

∑

k′

∑

α

ei
(kα+k′α)a

2

[∑

q

eiqαa ρq ρ−k−k′−q

]
Kα(k)Kα(k′) θkθk′(2.30)with

Kα(k) ≡ 2 sin kαa
2 . (2.31)Also we will use the Hamiltonian (2.30) written through the disorder pa-rameter ∆ρq:

Hsw = H∆ρ=0 + ñJ∑
k

∑

k′

∑

α

cos (kα+k′
α)a

2 ∆ρ−k−k′ Kα(k)Kα(k′)θkθk′

−J
2

∑

k

∑

k′

∑

α

ei
(kα+k′α)a

2

[∑

q

eiqαa∆ρq∆ρ−k−k′−q

]
Kα(k)Kα(k′)θkθk′ ,(2.32)



44where
H∆ρ=0 =

c2J

2

∑

k

∑

α=x,y

K2
α(k) θkθ−k (2.33)is the Hamiltonian of the undiluted model (2.16) with the renormalizedoupling onstant c2J (c is the onentration of magneti sites).2.2.4 Free energy of a weakly diluted modelLet us estimate the free energy (2.4) of a system desribed by the Hamil-tonian (2.30). The on�guration-dependent partition funtion will writein this ase as:

Zconf = Trθ e
−β(Hp

sw+Hρ+Hρ2) , (2.34)where notions Hρ and Hρ2 were introdued for the linear and quadrati in
ρ parts of the Hamiltonian (2.30) respetively. Multiplying and dividing(2.34) by the partition funtion of the pure model Zpure we have:

Zconf = Zpure
Trθ e

−β(Hp
sw+Hρ+Hρ2)

Trθ e−βHp
sw

,and thus one an write:
Zconf = Zpure

〈
e−β(Hρ+Hρ2)

〉
p
, (2.35)where 〈. . .〉p denotes the thermodynami averaging with the undilutedmodel Hamiltonian (2.16). Then, the on�gurationally averaged free en-ergy (2.4) an be expressed as:

Fsw = F p
sw − 1

β
ln
〈
e−β(Hρ+Hρ2)

〉
p
, (2.36)where F p

sw is the free energy of the pure model (2.16).Expanding the on�guration-dependent expression into the Taylor se-ries in powers of ρq one arrives at:
ln
〈
e−β(Hρ+Hρ2)

〉
p

= ln

(
1 +

∞∑

l=1

(−β)l

l!
〈(Hρ +Hρ2)l〉p

)
=
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∞∑

m=1

(−1)m−1

m

∞∑

l1=1

. . .
∞∑

lm=1

(−β)l1+...+lm

l1! . . . lm!
〈(Hρ +Hρ2)l1〉p . . . 〈(Hρ +Hρ2)lm〉

p
.The on�gurational averaging proedure ats on the variables ρq, so theproblem redues to the estimation of averages of the type: ρq1

. . . ρqn(n = 1, . . . ,∞). The expression for ρq has already been written one, Eq.(2.27); it is also not di�ult to �nd that:
ρq1

ρq2
=
[
(1 − c) − (1 − c)2

] 1

N
δq1+q2,0 + (1 − c)2 δq1,0 δq2,0 , (2.37)

ρq1
ρq2

ρq3
=
[
(1 − c) − 3(1 − c)2 + 2(1 − c)3

] 1

N2
δq1+q2+q3,0

+
[
(1 − c)2 − (1 − c)3

] 1

N

(
δq1,0δq2+q3,0 + δq2,0δq1+q3,0 + δq3,0δq1+q2,0

)

+ (1 − c)3 δq1,0 δq2,0 δq3,0 . (2.38)Considering low onentrations of nonmagneti sites (weak dilution) onean keep in (2.37) and (2.38) only terms linear in (1− c). Then, it is easyto generalize:
ρq1

. . . ρqn
≃ (1 − c)

1

Nn−1
δq1+...+qn,0 . (2.39)Aording to the expressions drawn, the terms ontaining any powers of

Hρ2 will vanish, sine they will inlude sums of the type: ∑q e
iqαa (see(2.30)) whih give zero. Then, one an write:

ln
〈
e−β(Hρ+Hρ2)

〉
p

=

∞∑

m=1

(−1)m−1

m

∞∑

l1=1

. . .

∞∑

lm=1

(−β)l1+...+lm

l1! . . . lm!

〈
H l1

ρ

〉
p
. . .
〈
H lm

ρ

〉

p
.The thermodynami averages 〈H l

ρ

〉
p
will obviously lead to the alulationof the quantities 〈θk1

θk2
. . . θk2l−1

θk2l

〉
p
whih an be written as (see Eq.(2.60�2.62)): 〈θk1

θk2
. . . θk2l−1

θk2l

〉
p

= δk1+k2+...+k2l−1+k2l,0

×
〈
θk1
θk2

. . . θk2l−1
θk2l

〉
p
. Thus, we arrive at the expression:
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ln
〈
e−β(Hρ+Hρ2)

〉
p

= (1− c)N
∞∑

m=1

(−1)m−1

m

∞∑

l1=1

. . .
∞∑

lm=1

(−β)l1+...+lm

l1! . . . lm!

〈
H l1

ρ= 1
N

〉
p
. . .
〈
H lm

ρ= 1
N

〉
p
,where Hρ= 1

N
is the part Hρ of the Hamiltonian (2.30) with ρk+k′ = 1/N :

Hρ= 1
N

=
J

N

∑

k

∑

k′

∑

α

cos (kα+k′
α)a

2 Kα(k)Kα(k′) θkθk′ . (2.40)Colleting the series we get the free energy (2.36):
Fsw = F p

sw − (1 − c)N
1

β
ln
〈
e
−βH

ρ= 1
N

〉
p
. (2.41)Going bak to the diret spae and expressing the quantity Hρ= 1

N
in theangle variables θr we have:

Hρ= 1
N

= −J
2

(
(θax

− θ0)
2 + (θay

− θ0)
2 + (θ−ax

− θ0)
2 + (θ−ay

− θ0)
2
)
,i.e. the energy for one single spin vaany (empty site) in the oordinatesystem origin. Thus, one an write:

−1

β
ln
〈
e
−βH

ρ= 1
N

〉
p

= Fρ= 1
N

− F p
sw ≡ ∆Fρ= 1

N
,where Fρ= 1

N
is the free energy of the model (2.11) with one single spinvaany at the origin, and F p

sw is the free energy of the pure model. So,
Fsw = F p

sw + (1 − c)N ∆Fρ= 1
N
. (2.42)As one an onlude, our assumption of the dilution onentration 1 − csmallness led to the redution of the initial problem to a alulation ofthe free energy of a system with one single vaany. In other words, thenonmagneti impurities almost do not �feel� eah other being present insmall onentrations.



47 It is not di�ult to �nd the analytial expression for the free energyof the pure model, F p
sw, using the Hamiltonian (2.16) diagonalized in theFourier variables. From the partition funtion,

Zpure =
∏

k∈B+

(
2

∫ ∞

−∞

dθc
k

2π

∫ ∞

−∞

dθs
k

2π
e−βJ

∑
α K2

α(k)[(θc
k)2+(θs

k)2]
)

=
∏

k∈B+

1

2πβJ
∑

αK
2
α(k)

=
∏

k6=0

(
2πβJ

∑

α

K2
α(k)

)−1/2

, (2.43)we �nd the free energy:
F p

sw =
T

2

∑

k6=0

ln

(
2π
J

T

∑

α

K2
α(k)

)
, (2.44)where the sum overs the 1st Brillouin zone exept k 6= 0, Kα(k) wasde�ned in (2.31), and T is the temperature expressed in the energy units.The di�erene between the free energies of the �single-vaany� andpure models, ∆Fρ= 1

N
, an be estimated approximately expanding the ex-pression

−1

β
ln
〈
e
−βH

ρ= 1
N

〉
pin powers of Hρ= 1

N
. Obviously, the in�uene of a single spin vaany onthe in�nite system is in�nitesimally small, thus Hρ= 1

N
an be onsideredas a weak perturbation and the �rst several terms in the perturbationexpansion are enough to have a nie result. Note that the same result ouldbe obtained diretly in the expansion in ρq keeping the orresponding orderterms and negleting the rest. We emphasize that suh a proedure annotbe onsidered as the perturbation expansion in the dilution onentration

1− c, sine any term in the expansion gives its own ontribution linear in
1 − c (Eq. (2.39)). In the following subsetion similar expansion will beapplied to estimate the spin pair orrelation funtion.



482.3 Pair orrelation funtion of spins2.3.1 Expansion in the disorder on�guration inho-mogeneity parameterThe on�gurationally average spin pair orrelation funtion (2.6) of themodel (2.11) an be written in the angle variables θr as:
G(R) = c2

〈
cos (θr+R − θr)

〉
, (2.45)where c2 is the probability that the sites r and r + R are not empty.Passing to the Fourier variables θk aording to the formula (2.15), (2.45)an be written as:

G(R) = c2
〈
cos
∑

k6=0

ηkθk
〉 (2.46)with ηk = ηc

k + i ηs
k ,

ηc
k = 1√

N
(cosk(r + R) − coskr) ,

ηs
k = 1√

N
(sink(r + R) − sinkr) . (2.47)The expression (2.46) is orret due to the property: θc

−k = θc
k, θs

−k = −θs
k,

ηc
−k = ηc

k, ηs
−k = −ηs

k .The oupation numbers cr enter the thermodynami average (2.46)through the Fourier-transform of the impurities density ρk in the Hamilto-nian (2.30) or through the disorder on�guration inhomogeneity parameter
∆ρk in the Hamiltonian written in the form (2.32). In order to �nd theon�gurationally averaged value of the pair orrelation funtion (2.46) onehas to expand the expression (2.46) into a series in powers of ρk or ∆ρk.The result of the expansion in ρk whih orresponds to the perturbationtheory for a weak dilution will be found in the next subsetion. Herein,we will obtain the result of the expansion whih we expet to be morereliable at stronger onentrations of dilution. As the parameter of suh



49an expansion we take the disorder on�guration inhomogeneity parameter
∆ρk whih is supposed to be small for the most probable on�gurationsof disorder at any onentrations of dilution. As one will onvine after-wards, omparing the results of both expansions (alulated up to the thirdorder) with the Monte Carlo simulation data, the expansion in ∆ρk willreally better desribe the stronger dilution region of the phase diagram.Although the onvergene of this expansion (as well as of the expansionin ρk) remains questionable one an notie similarity with the well knownperturbation theory for the sum over the wave-vetor k (a sum over kwill orrespond to eah power of ρk or ∆ρk in our expansions) whih isof the order of the ratio between the e�etive interation volume and theelementary ell volume, a−3 [107, 108℄.Let us introdue the following designations in the Hamiltonian (2.32):

Hsw = H∆ρ=0 + H∆ρ + H(∆ρ)2 , (2.48)
H∆ρ = ñJ∑

k

∑

k′

∑

α

cos (kα+k′
α)a

2 ∆ρ−k−k′Kα(k)Kα(k′)θkθk′, (2.49)
H(∆ρ)2 = −J

2

∑

k

∑

k′

∑

α

ei
(kα+k′α)a

2

[∑

q

eiqαa ∆ρq ∆ρ−k−k′−q

]

× Kα(k)Kα(k′) θkθk′ . (2.50)In order to realize the on�gurational averaging operation in (2.46) weexpand 〈 cos
∑

k6=0 ηkθk
〉 in powers of the disorder parameter ∆ρk:

〈
cos
∑

k6=0

ηkθk
〉

=
〈
cos
∑

k6=0

ηkθk
〉

∆ρ=0
(2.51)

+
∑

k

[
∂
〈
cos
∑

k6=0 ηkθk
〉

∂∆ρk

]

∆ρ=0

∆ρk
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+

1

2!

∑

k

∑

k′

[
∂2
〈
cos
∑

k6=0 ηkθk
〉

∂∆ρk∂∆ρk′

]

∆ρ=0

∆ρk∆ρk′

+
1

3!

∑

k

∑

k′

∑

k′′

[
∂3
〈
cos
∑

k6=0 ηkθk
〉

∂∆ρk∂∆ρk′∂∆ρk′′

]

∆ρ=0

∆ρk∆ρk′∆ρk′′ ,where 〈. . .〉∆ρ=0 denotes the thermodynami averaging with the Hamilto-nian H∆ρ=0, (2.33).In our researh we take into aount only the terms up to the thirdorder in the expansion (2.51). As it was mentioned before, ∆ρk an beonsidered as a small parameter in the ase of a random non-orrelateddisorder. One an all the expansion (2.51) the perturbation theory forthe unperturbed Hamiltonian (2.33).Now, (2.46) an be averaged over the on�gurations of disorder notingthat:
∆ρq = 0 ,

∆ρq∆ρq′ = c(1 − c)
1

N
δq+q′,0 , (2.52)

∆ρq∆ρq′∆ρq′′ = − c(1 − 3c+ 2c2)
1

N2
δq+q′+q′′,0 .The spin pair orrelation funtion (2.46) an be also written in the form:

G(R) = c2

〈
e−β(H∆ρ+H(∆ρ)2) cos

∑
k6=0 ηkθk

〉
∆ρ=0〈

e−β(H∆ρ+H(∆ρ)2)
〉

∆ρ=0

. (2.53)The expansion (2.51) is equivalent to the expansion of the expression abovein powers of H∆ρ and H(∆ρ)2 where the terms up to the third order in
∆ρk are kept only. The terms of the expansion ontaining H(∆ρ)2 willvanish after the on�gurational averaging, sine they will ontain the sums
∑

q e
iqαa whih give zeros. The terms linear in ∆ρk will disappear as well



51(see (2.52)), thus:
G(R) = c2

〈
cos
∑

k6=0

ηkθk
〉

∆ρ=0

×
{

1 +
β2

2

( 〈
H2

∆ρ cos
∑

k ηkθk

〉
∆ρ=0

〈cos
∑

k ηkθk〉∆ρ=0
−
〈
H2

∆ρ

〉
∆ρ=0

)

− β2

( 〈
H∆ρ

〉
∆ρ=0

〈
H∆ρ cos

∑
k ηkθk

〉
∆ρ=0〈

cos
∑

k ηkθk

〉
∆ρ=0

−
〈
H∆ρ

〉2
∆ρ=0

)

+
β3

2

( 〈
H2

∆ρ

〉
∆ρ=0

〈
H∆ρ cos

∑
k ηkθk

〉
∆ρ=0〈

cos
∑

k ηkθk

〉
∆ρ=0

−
〈
H2

∆ρ

〉
∆ρ=0

〈
H∆ρ

〉
∆ρ=0

)

+
β3

2

( 〈
H∆ρ

〉
∆ρ=0

〈
H2

∆ρ cos
∑

k ηkθk

〉
∆ρ=0〈

cos
∑

k ηkθk

〉
∆ρ=0

−
〈
H∆ρ

〉
∆ρ=0

〈
H2

∆ρ

〉
∆ρ=0

)

− β3



〈

H∆ρ

〉2

∆ρ=0

〈
H∆ρ cos

∑
k ηkθk

〉
∆ρ=0〈

cos
∑

k ηkθk

〉
∆ρ=0

−
〈
H∆ρ

〉3
∆ρ=0




− β3

6

( 〈
H3

∆ρ cos
∑

k ηkθk

〉
∆ρ=0

〈cos
∑

k ηkθk〉∆ρ=0
−
〈
H3

∆ρ

〉
∆ρ=0

)}
. (2.54)Let us �nd 〈 cos

∑
k6=0 ηkθk

〉
∆ρ=0

�rst:
〈
cos
∑

k6=0

ηkθk
〉

∆ρ=0
= Re

〈
ei
∑

k 6=0 ηkθk

〉
∆ρ=0

= Re

∏

k∈B+

(
2

∫ ∞

−∞

dθc
k

2π

∫ ∞

−∞

dθs
k

2π
e−βc2J

∑
α K2

α(k)[(θc
k)2+(θs

k)2]+i2(ηc
kθc

k+ηs
kθs

k)

)

∏

k∈B+

(
2

∫ ∞

−∞

dθc
k

2π

∫ ∞

−∞

dθs
k

2π e−βc2J
∑

α K2
α(k)[(θc

k)2+(θs
k)2]

)

= exp



− 1

2βc2J

∑

k6=0

|ηk|2
γk



 , (2.55)where the following notation was applied:

γk ≡
∑

α

K2
α(k) = K2

x(k) + K2
y(k) . (2.56)



52The thermodynamial averaging in 〈Hm
∆ρ cos

∑
k6=0 ηkθk

〉
∆ρ=0

onerns thevariables θk, so, regarding the form of H∆ρ (Eq. (2.49)), the problemredues to the estimation of the averages of the type 〈θk1
θk′

1
· · · θk2m

θk′
2m

× cos
∑

k6=0 ηkθk
〉

∆ρ=0
. Obviously, one an write:

〈
θk1
θk′

1
· · · θk2m

θk′
2m

cos
∑

k6=0

ηkθk

〉

∆ρ=0

= (−1)m

〈
∂

∂ηk1

∂

∂ηk′
1

· · · ∂

∂ηk2m

∂

∂ηk′
2m

cos
∑

k6=0

ηkθk

〉

∆ρ=0

,where the short notation is introdued: ∂
∂ηk

≡ ∂
∂ηc

k

−i ∂
∂ηs

k

. The operations ofthe di�erentiation with respet to the parameter ηk and thermodynamialaveraging an be reversed:
〈
θk1
θk′

1
· · · θk2m

θk′
2m

cos
∑

k6=0

ηkθk

〉

∆ρ=0

= (−1)m ∂

∂ηk1

∂

∂ηk′
1

· · · ∂

∂ηk2m

∂

∂ηk′
2m

〈
cos
∑

k6=0

ηkθk

〉

∆ρ=0

.Using the result (2.55) and the equality: ∂ηk

∂ηk′
= 2δk,k′ (whih is easilydedued from the property: ηc

−k = ηc
k , ηs

−k = −ηs
k) we get:

〈
θkθk′ cos

∑

k6=0

ηkθk

〉

∆ρ=0

(2.57)
=

〈
cos
∑

k6=0

ηkθk

〉

∆ρ=0

{
− 1

(βc2J)2

η−kη−k′

γkγk′
+

1

βc2J

δk+k′,0

γk

}
,

〈
θk1
θk2
θk3
θk4

cos
∑

k6=0

ηkθk

〉

∆ρ=0

(2.58)
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=

〈
cos
∑

k6=0

ηkθk

〉

∆ρ=0

{
1

(βc2J)4

η−k1
η−k2

η−k3
η−k4

γk1
γk2

γk3
γk4

− 1

(βc2J)3

(
δk1+k2,0η−k3

η−k4

γk2
γk3

γk4

+
δk1+k3,0η−k2

η−k4

γk2
γk3

γk4

+
δk1+k4,0η−k2

η−k3

γk2
γk3

γk4

+
δk2+k3,0η−k1

η−k4

γk1
γk2

γk4

+
δk2+k4,0η−k1

η−k3

γk1
γk2

γk3

+
δk3+k4,0η−k1

η−k2

γk1
γk2

γk3

)

+
1

(βc2J)2

(
δk1+k2,0δk3+k4,0

γk1
γk2

+
δk1+k3,0δk2+k4,0

γk1
γk2

+
δk1+k4,0δk2+k3,0

γk1
γk2

)}

and
〈
θk1
θk2
θk3
θk4
θk5
θk6

cos
∑

k6=0

ηkθk

〉

∆ρ=0

(2.59)
=

〈
cos
∑

k6=0

ηkθk

〉

∆ρ=0

{
− 1

(βc2J)6

η−k1
η−k2

η−k3
η−k4

η−k5
η−k6

γk1
γk2

γk3
γk4

γk5
γk6

+
1

(βc2J)5

( 15︷ ︸︸ ︷
δk1+k2,0η−k3

η−k4
η−k5

η−k6

γk2
γk3

γk4
γk5

γk6

+ · · ·
)

− 1

(βc2J)4

( 45︷ ︸︸ ︷
δk1+k2,0δk3+k4,0η−k5

η−k6

γk1
γk3

γk5
γk6

+ · · ·
)

+
1

(βc2J)3

( 15︷ ︸︸ ︷
δk1+k2,0δk3+k4,0δk5+k6,0

γk1
γk3

γk5

+ · · ·
) }

,in the last expression the sums in the brakets span all the possible om-binations of the wave-vetors in the Kroneker symbols (the numbers overthe brakets report the number of terms inside the brakets).One instantly gets the averages 〈θkθk′〉∆ρ=0 , 〈θk1
θk2
θk3
θk4

〉∆ρ=0 and
〈θk1

θk2
θk3
θk4
θk5
θk6

〉∆ρ=0 from (2.57)-(2.59) putting all ηk equal to zero:
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〈θkθk′〉∆ρ=0 =

1

βc2J

δk+k′,0

γk

, (2.60)
〈θk1

θk2
θk3
θk4

〉∆ρ=0 =
1

(βc2J)2

{
δk1+k2,0δk3+k4,0

γk1
γk2

+
δk1+k3,0δk2+k4,0

γk1
γk2

+
δk1+k4,0δk2+k3,0

γk1
γk2

}
, (2.61)

〈θk1
θk2
θk3
θk4
θk5
θk6

〉∆ρ=0

=
1

(βc2J)3

( 15︷ ︸︸ ︷
δk1+k2,0δk3+k4,0δk5+k6,0

γk1
γk3

γk5

+ · · ·
)
. (2.62)Substituting the equalities obtained above, (2.55), (2.57)-(2.62), and theexpressions for the on�gurational averaging (2.52) into the expansion(2.54), the spin pair orrelation funtion (2.46) an be brought to thefollowing form:

G(R) = c2 exp



− 1

2βc2J

∑

k6=0

|ηk|2
γk





(
1 − 1

βc2J
(2.63)

×
{

1 − c

c

2

N

∑

k,k′

∑

α,β

cos (kα+k′
α)a

2 cos
(kβ+k′

β)a

2
Kα(k)Kβ(k)

γk

Kα(k′)Kβ(k′)
γk′

|ηk|2
γk

+
1 − 3c+ 2c2

c2

[
4

N2

∑

k,k′,k′′

∑

α,β,γ

cos (kα+k′
α)a

2 cos
(k′

β+k′′
β)a

2 cos
(k′′

γ−kγ)a

2

× Kα(k)Kγ(k)
γk

Kα(k′)Kβ(k′)
γk′

Kβ(k′′)Kγ(k′′)
γk′′

|ηk|2
γk

+
∑

k6=0

|ηk|2
γk

] } )
.In the expression above we negleted the terms ontaining powers of tem-perature, 1/β, higher than the �rst, sine we are dealing with the low-temperature region. We negleted the terms vanishing in the thermody-nami limit as well. The expression in the parentheses has the form of



55the �rst two orders of the Taylor expansion of an exponent; in the low-temperature limit, 1/β → 0, whih we onsider it an be replaed by theexponent:
G(R) = c2 exp

{
− 1

2βc2J

∑

k6=0

|ηk|2
γk

− 1

βc2J
(2.64)

×
{

1 − c

c

2

N

∑

k,k′

∑

α,β

cos (kα+k′
α)a

2 cos
(kβ+k′

β)a

2
Kα(k)Kβ(k)

γk

Kα(k′)Kβ(k′)
γk′

|ηk|2
γk

+
1 − 3c+ 2c2

c2

[
4

N2

∑

k,k′,k′′

∑

α,β,γ

cos (kα+k′
α)a

2 cos
(k′

β+k′′
β)a

2 cos
(k′′

γ−kγ)a

2

× Kα(k)Kγ(k)
γk

Kα(k′)Kβ(k′)
γk′

Kβ(k′′)Kγ(k′′)
γk′′

|ηk|2
γk

+
∑

k6=0

|ηk|2
γk

] } }
.The expression (2.64) is a result of the thermodynami and on�gurationalaveraging of the pair orrelation funtion expansion in the disorder on�g-uration inhomogeneity parameter up to the third order. The �rst term inthe exponent argument orresponds to the zeroth order of the expansion;the �rst order ontribution is zero, sine ∆ρk = 0; the terms with theoe�ients 1−c

c and 1−3c+2c2

c2 orrespond to the ontributions of the seondand third orders respetively.2.3.2 Pair orrelation funtion asymptoti behaviourIt is not di�ult to onvine ourself that for ηk de�ned by the equalities(2.47):
|ηk|2 =

4

N
sin2 kR

2 . (2.65)Substituting (2.65) into the result (2.64) of the third order expansion inthe disorder parameter, we get:
G(R) = c2 exp

{
− 1

βc2J

(
S0(R) +

1 − c

c
S1(R)
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− 1 − 3c+ 2c2

c2

[
S2(R) + 2 S0(R)

] ) }
, (2.66)where we used the following notations:

S0(R) ≡ 2

N

∑

k6=0

sin2 kR
2

γk

, (2.67)
S1(R) ≡ 8

N2

∑

k6=0

∑

k′

∑

α,β

cos (kα+k′
α)a

2 cos
(kβ+k′

β)a

2

× Kα(k)Kβ(k)
γk

Kα(k′)Kβ(k′)
γk′

sin2 kR
2

γk

, (2.68)
S2(R) ≡ 16

N2

∑

k6=0

∑

k′

∑

k′′

∑

α,β,γ

cos (kα+k′
α)a

2 cos
(k′

β+k′′
β)a

2 cos
(k′′

γ−kγ)a

2

× Kα(k)Kγ(k)
γk

Kα(k′)Kβ(k′)
γk′

Kβ(k′′)Kγ(k′′)
γk′′

sin2 kR
2

γk

. (2.69)We are interested in the asymptoti behaviour of the pair orrelationfuntion at large distanes R. Thus, the next step should be the evaluationof the asymptoti form of the sums (2.67)-(2.69) in the limits: R → ∞,
N → ∞. Let us ommene with S0(R); when R < ∞, the expressionunder the sum is �nite everywhere (inluding the point k = 0), so, in thethermodynami limit one an pass in (2.67) from summation to integrationover the 1st Brilouin zone aording to the rule:

∑

k

→ Na2

(2π)2

∫
dk + o(N−1) ,Then,

S0(R) =
a2

2π2

∫
dk

sin2 kR
2

γk

.Sine γk = 0 for k = 0, it is not di�ult to notie that the integral divergeswith R → ∞. The form of this divergene is de�ned by the pole of 1
γk

at
k = 0, so the asymptoti behaviour of the integral will not hange if one



57expands γk around k = 0: γk ≃ a2|k|2. We have:
S0(R) ≃ 1

2π2

∫
dk

sin2 kR
2

|k|2 , R→ ∞ . (2.70)Introduing the polar oordinates k =
√
k2

x + k2
y, ϕ = arctan

ky

kx
, one anrewrite (2.70) as:

S0(R) =
1

2π2

∫ 2
√

π

a

0

dk

∫ 2π

0

dϕ
1

k
sin2

(
kR
2 cosϕ

)
, (2.71)where we hanged the integration domain: −π/a < kx < π/a, −π/a <

ky < π/a, to the equal by area domain: 0 < k < 2
√
π/a, 0 < ϕ < 2π,and the vetor R was hosen parallel to the Okx axis.After the hange of the variable: kR

2 → x let us split the domain ofintegration in the following way:
∫ R

√
π

a

0

dx →
∫ ε

0

dx +

∫ R
√

π

a

ε

dx ,where ε is hosen in suh a way that it is possible within the interval (0, ε)to expand:
sin2(x cosϕ) ≃ x2 cos2 ϕ. Then,
S0(R) =

1

2π2

∫ ε

0

xdx

∫ 2π

0

dϕ cos2 ϕ+
1

2π2

∫ R
√

π

a

ε

dx

∫ 2π

0

dϕ
sin2(x cosϕ)

x
.The �rst term is small and independent of R, so it an be negleted wheninvestigating the asymptoti form of S0(R). Expressing: sin2(x cosϕ) =

1
2(1 − cos(2x cosϕ)), we get:
S0(R) =

1

4π2

∫ R
√

π

ε

dx

x

∫ 2π

0

dϕ − 1

4π2

∫ R
√

π

a

ε

dx

∫ 2π

0

dϕ
cos(2x cosϕ)

x
.One noties that the integral with respet to x in the seond term reduesin the limit R→ ∞ to the integral osine Ci(ε) = −

∫∞
ε

cosx
x
dx [109℄ whih



58is a funtion of ε only, so the asymptoti behaviour is determined by the�rst term, and �nally:
S0(R) ≃ 1

2π
ln(R/a) , R→ ∞ . (2.72)This result allows for the immediate evaluation of the asymptoti be-haviour of the pair orrelation funtion in the pure model (2.16). Letus use (2.55) putting c = 1, then:

Gpure(R) = exp

{
− 1

βJ
S0(R)

}
≃
(
R

a

)− 1
2πβJ

. (2.73)Thus, we have reovered the well known result [16℄ for the temperature-dependent exponent of the pair orrelation funtion of the 2D XY model:
ηpure = 1/(2πβJ). In order to obtain the exponent ηdis of the modelwith quenhed disorder one should evaluate the asymptoti behaviour ofthe sums S1(R) and S2(R) in (2.66) as well. The mentioned behaviouris determined again by the region of small |k|. In (2.68) let us expand:
cos (kα+k′

α)
2 ≃ cos k′

α

2 , cos
(kβ+k′

β)

2 ≃ cos
k′

β

2 , Kα(k) ≃ akα, Kβ(k) ≃ akβ,
γk ≃ a2|k|2 (the higher order terms do not ontribute to the asymptotibehaviour for R→ ∞):

S1(R) ≃ 8

N2

∑

k6=0

∑

k′ 6=0

∑

α,β

cos k′
αa
2 cos

k′
βa

2

kαkβ

|k|2
Kα(k′)Kβ(k′)

γk′

sin2 kR
2

a2|k|2

=
2

N

∑

k6=0

sin2 kR
2

a2|k|2
4

N

∑

k′ 6=0

cos2 k′
xa
2

K2
x(k′)
γk′

≃ S0(R)
4

N

∑

k′ 6=0

cos2 k′
xa
2

K2
x(k′)
γk′

, (2.74)sine the terms ontaining the produt kxky vanished after the averaging.The oe�ient in front of S0(R) in (2.74) onverges rapidly to a onstantvalue when N → ∞ and an be estimated with any desirable preision by



59a simple numerial summation (with the help of a omputer ode):
4

N

∑

k′ 6=0

cos2 k′
xa
2

K2
x(k′)
γk′

= 0.7271 . (2.75)So, from (2.72) we �nally obtain:
S1(R) ≃ 0.727

1

2π
ln(R/a) , R → ∞ . (2.76)In a similar way, expanding (2.69) for small |k|:

S2(R) ≃ S0(R)
8

N2

∑

k′ 6=0

∑

k′′ 6=0

∑

α

cos (k′
α+k′′

α)a
2 cos k′′

xa
2 cos k′′

xa
2

×Kx(k′)Kα(k′)
γk′

Kx(k′′)Kα(k′′)
γk′′

.Expressing cos (k′
α+k′′

α)a
2 = cos k′

αa
2 cos k′′

αa
2 − sin k′

αa
2 sin k′′

αa
2 , we get:

S2(R) ≃ S0(R)
1

2

{(
4

N

∑

k′ 6=0

cos2 k′
xa
2

K2
x(k′)
γk′

)2

−
(

2

N

∑

k′ 6=0

sin k′xa
K2

x(k′)
γk′

)2

−
(

2

N

∑

k′ 6=0

sin k′xa
K2

y(k′)

γk′

)2

+

(
4

N

∑

k′ 6=0

cos k′
xa
2 cos

k′
ya

2
Kx(k′)Ky(k′)

γk′

)2}
.Numerial summation suggests that all the terms in the braes exept the�rst one vanish in the thermodynamial limit N → ∞. Thus,

S2(R) ≃ (0.727)2

2
S0(R) = 0.264 S0(R) ,and �nally, using (2.72):

S2(R) ≃ 0.264
1

2π
ln(R/a) , R → ∞ . (2.77)1The sum (2.75) and similar sums hereafter span the sites of the inverse lattiewithin the 1st Brillouin zone (exept the point k = 0); we say about rapid onvergeneof the sums, sine (2.75), for example, di�ers only by the value of the order of 10−11for N = 1000 and N = 10000. However, for our purposes it is quite enough to writedown the result up to the third �gure after the deimal point.



60Substituting (2.72), (2.76) and (2.77) into (2.66), we have:
G(R) ≃

(
R

a

)−ηdis (2.78)with the pair orrelation funtion exponent dependent on the magnetisites onentration c:
ηdis =

1

2πβJ

(
1

c2
+ 0.727

1 − c

c3
− 2.264

1 − 3c+ 2c2

c4

)
. (2.79)The �rst term in the parentheses orresponds to the zeroth order of theexpansion in the disorder parameter; the �rst order ontribution is zero;the seond and third terms in the parentheses orrespond to the seondand third order of the expansion respetively.2.3.3 Expansion in ρqAt small onentrations of nonmagneti impurities one an onsider theirontribution to the Hamiltonian (2.30) as a perturbation and expand thespin pair orrelation funtion (2.46) in ρq instead of ∆ρq. Again we onlytake into aount the terms up to the third order:

G(R) = c2
〈
cos
∑

k6=0

ηkθk
〉

p

{
1 − β

( 〈
Hρ cos

∑
k ηkθk

〉
p

〈cos
∑

k ηkθk〉p
−
〈
Hρ

〉
p

)

+
β2

2

(〈
H2

ρ cos
∑

k ηkθk

〉
p

〈cos
∑

k ηkθk〉p
−
〈
H2

ρ

〉
p

)
− β2

(〈
Hρ

〉
p

〈
Hρ cos

∑
k ηkθk

〉
p〈

cos
∑

k ηkθk

〉
p

−
〈
Hρ

〉2
p

)

+
β3

2

( 〈
H2

ρ

〉
p

〈
Hρ cos

∑
k ηkθk

〉
p〈

cos
∑

k ηkθk

〉
p

−
〈
H2

ρ

〉
p

〈
Hρ

〉
p

)

+
β3

2

( 〈
Hρ

〉
p

〈
H2

ρ cos
∑

k ηkθk

〉
p〈

cos
∑

k ηkθk

〉
p

−
〈
Hρ

〉
p

〈
H2

ρ

〉
p

)

− β3



〈

Hρ

〉2

p

〈
Hρ cos

∑
k ηkθk

〉
p〈

cos
∑

k ηkθk

〉
p

−
〈
Hρ

〉3
∆ρ=0
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− β3

6

( 〈
H3

ρ cos
∑

k ηkθk

〉
p

〈cos
∑

k ηkθk〉p
−
〈
H3

ρ

〉
p

) }
, (2.80)where we denoted the thermodynamial averaging with the undiluted modelHamiltoian (2.16) as 〈. . .〉p. Using (2.39) and (2.55), (2.57)-(2.62) with

c = 1, in the limit β → ∞ we have:
G(R) ≃ c2 exp

{
− 1

βJ

(
S0(R) + (1 − c) 2S1(R)︸ ︷︷ ︸1st order

+ (1 − c) S1(R)︸ ︷︷ ︸2nd order + (1 − c)

[
S2(R) + 2 S0(R)

]

︸ ︷︷ ︸3rd order ) }
,

where the orrespondene of the terms to the orders of the expansion isnoted. The asymptoti behaviour of the sums S0(R), S1(R) and S2(R)for large R is given by the expressions (2.72), (2.76) and (2.77), thus,
G(R) ≃

(
R

a

)−ηdis (2.81)with the pair orrelation funtion exponent:
ηdis =

1

2πβJ

(
1 + 2 (1 − c)︸ ︷︷ ︸1st order + 0.727 (1 − c)︸ ︷︷ ︸2nd order + 2.264 (1 − c)︸ ︷︷ ︸3rd order )

. (2.82)Please note that the mentioned orders orrespond to the powers of ρq inthe expansion, not to the powers of the dilution onentration 1− c. As ithas been remarked before, any power of ρq gives its own ontribution linearin 1 − c, the higher order ontributions are negleted in (2.82), sine wehave used an approximate equality (2.39). We will ompare (2.82) to theresult of the expansion in ∆ρq, Eq. (2.79), later omparing both analytialresults to the Monte Carlo simulation data.



622.3.4 Pair orrelation funtion self-averagingIn order to make any onlusions about the self-averaging of the on�guration-dependent pair orrelation funtion,
Gconf(R) = c2 〈cos(θr+R − θr)〉 , (2.83)one has to �nd the relative variane,

RG =
G2

conf − Gconf
2

Gconf
2 . (2.84)We will evaluate this quantity within the seond order approximation of theexpansion in ∆ρq. The pair orrelation funtion, Gconf = G(R), alreadyestimated in the third order approximation of the perturbation expansion(Eq. (2.66)), in the seond order approximation has the form:

Gconf = c2 exp

{
− 1

βc2J

(
S0(R) +

1 − c

c
S1(R)

)}
. (2.85)Thus, it remains to evaluate the quantity:

G2
conf(R) = c4〈cos(θr+R − θr)〉2 , (2.86)whih in the seond order approximation will write as:

G2
conf = c4

〈
cos
∑

k6=0

ηkθk
〉2

∆ρ=0

×
{

1 + β2

( 〈
H2

∆ρ cos
∑

k ηkθk

〉
∆ρ=0

〈cos
∑

k ηkθk〉∆ρ=0
−
〈
H2

∆ρ

〉
∆ρ=0

)

− 3β2

( 〈
H∆ρ

〉
∆ρ=0

〈
H∆ρ cos

∑
k ηkθk

〉
∆ρ=0〈

cos
∑

k ηkθk

〉
∆ρ=0

−
〈
H∆ρ

〉2
∆ρ=0

)

+ β2



〈

H∆ρ cos
∑

k ηkθk

〉2

∆ρ=0

〈cos
∑

k ηkθk〉2∆ρ=0

−
〈

H∆ρ

〉
∆ρ=0

〈
H∆ρ cos

∑
k ηkθk

〉
∆ρ=0〈

cos
∑

k ηkθk

〉
∆ρ=0



}
.



63Applying the results obtained in the previous subsetions, we �nd:
G2

conf = c2 exp

{
− 2

βc2J

(
S0(R) +

1 − c

c
S1(R)

)}
. (2.87)Substituting (2.85) and (2.87) into (2.84), we obtain immediately:

RG = 0 . (2.88)Note that the result (2.88) is obtained in the thermodynami limit N →
∞, so, it is rather impossible to say something about the saling form ofthe relative variane, RG(N).Formally our result allows to laim the self-averaging of the pair orre-lation funtion, although it should be learly realized that (2.88) was esti-mated in the seond order approximation of the expansion in the disorderparameter and the whole analytial approah is based on the assumptionthat the temperature is low. The question about the self-averaging prop-erty of the pair orrelation funtion at higher temperatures remains open.2.3.5 Comparison to the Monte Carlo simulation re-sultsIn order to hek the results of our analytial approah we have performeda series of Monte Carlo simulations of the two-dimensionalXY model withdi�erent onentrations of nonmagneti dilution and at di�erent tempera-tures. We used the Wol� luster algorithm [31℄, periodi boundary ondi-tions, 10000 Monte Carlo sweeps for thermalization and the same numberof sweeps for the measurements.We explored the following lattie sizes: 16 × 16, 32 × 32, 64 × 64,
128 × 128 and 256 × 256. The pair orrelation funtion exponent η(T )was obtained through the residual magnetization saling behaviour:

MT (L) ∼ L−xσ(T ) , xσ(T ) =
1

2
η(T ) , (2.89)



64the last relation is true for a two-dimensional lattie (L =
√
N is thelinear size of the system). We impliitly assume here that the universalityremains unhanged for a diluted system and the exponent η(T ) whihstands in the saling relation (2.89) is the same as the one in the pairorrelation funtion deay, G2(R) ∼ R−η(T ), just like in the undilutedmodel. The residual magnetization behaviour will be disussed in detailin Chapter 4.Our hoie of suh indiret way of estimation of the pair orrelationfuntion exponent is aused by the di�ulties with the pair orrelationfuntion measurement in Monte Carlo simulation due to its possible non-self-averaging. Although just in the previous subsetion we put argumentsin favor of the self-averaging property of this partiular physial quantity atlow temperatures, those arguments were obtained through an approximatemethod and do not remove the problem ompletely, moreover we exploreda wide range of temperatures in our omputer simulations inluding thoselose the transition temperature. Non-self-averaging of a physial quantityresults in suh an unpleasant fat that the on�guration average of thequantity annot be evaluated reliably enough on the basis of an inompleteset of random realizations of disorder as we deal with in the Monte Carlosimulations; in this ase suh an inomplete on�gurational averaging leadsrather to the most probable value than to the real on�gurational average(see, for example, [114℄).Global quantities suh as magnetization undergo less �utuations whenswithing between di�rent disorder realizations than the loal quantitiessuh as the pair orrelation funtion, but even in this ase there is a riskof non-self-averaging whih may impat the result of the Monte Carlosimulations. However, the researhes of two and three dimensional systemssuggest (see, for example, [93,94,115℄) that usually the number of disorderrealizations of order of a thousand is enough for reliable on�gurationalaverages. In our simulations we used 1000 realizations of disorder.
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Figure 2.2: Comparison of the results for the ratio ηdil/ηreg as a funtionof the magneti sites onentration c obtained from di�erent orders of theperturbation expansions in ρ and ∆ρ and in the Monte Carlo simulations.The �gures in front of the �MC� symbols mean the relative temperature
kBT/J values taken in the omputer simulations.In �g. 2.2 we show for omparison in the same plot the Monte Carlosimulation outputs and the results of the expansions in ρq and ∆ρq todi�erent orders. Though the every next order of both expansions (at leastup to the third order) seems to ome loser to the �experimental data�,the di�erenes between the di�erent orders of the expansions do not al-low to say about their rapid onvergene. However, this is not surprising,sine similar expansions in other problems of ondensed matter physis of-ten happen to be divergent (for example, the �eld-theoretial expansions,see [67℄), but they still an be suesfully used applying some speial teh-nis. We also onlude that the results of the orresponding orders of thetwo expansions (exept the zeroth order) oinide in the small dilutiononentration (1 − c) limit, but di�er signi�antly at stronger dilutionsand the expansion in ∆ρq seems to be loser to the Monte Carlo points



66within that range as we predited.Anyway, omparing the analytial urves and the Monte Carlo sim-ulation results in �g. 2.2 one an onlude about good aordane ofour analytial approah with the omputer experiments in the range from
c = 0.75 to c = 1 at low temperatures, at least up to the third orders inthe expansions in ρq and ∆ρq.2.4 ConlusionsThe main result of this hapter is the analyti estimation of the spin pairorrelation funtion behaviour of the two-dimensional XY model withquenhed disorder (random nonmagneti dilution) at low temperaturesthrough a perturbation expansion in the parameter haraterizing disor-der. Moreover, we have explored two di�erent andidates for the per-turbation theory parameter: 1) the Fourier-transform of the nonmagnetiimpurities loal density whih was assumed small for low onentrationsof dilution; 2) the deviation of the dilution density Fourier-transform fromits average (over all possible realizations of disorder) value whih is ex-peted to be small for a marosopi system. Both expansions show alsosome analogy with the perturbation theory for the sum over k whih orre-sponds to the expansion in the e�etive-interation-volume-to-elementary-ell-volume ratio (∼ a−3). Both expansions lead to a power law deay ofthe pair orrelation funtion for large distanes (like in the pure model), butwith a di�erent nonuniversal exponent η(T ). Strutural disorder auses in-rease of the pair orrelation funtion deay exponent at low temperatures.Sine it is known that the value of this exponent at the ritial point ofthe BKT transition (η(TBKT) = 1/4) remains unhanged in the preseneof disorder, one an already dedue that the ritial temperature TBKTshould derease in a diluted system (whih is understood even intuitively).Also we have realized a number of Monte Carlo simulations of the



67two-dimensional XY model with di�erent onentrations of nonmagnetidilution in order to hek our analytial approah. The omparison of the�rst three orders results of the two perturbation expansions, (2.79) and(2.82), to the pair orrelation funtion exponent observed in the MonteCarlo simulations shows better aordane between theoretial and numer-ial results with every next order (at least up to the third order terms) (see�g.2.2), although the onvergene of these expansions is questionable. Inthe weak dilution limit the pair orrelation funtion exponent behavioursestimated from the two expansions of the orresponding order (exept the0th order) oinide, but in the region of stronger dilutions the expansion inthe disorder on�guration inhomogeneity parameter seems to ome loserto the �experimental� data (see �g.2.2) (as it was expeted from the verybeginning).Besides the on�gurationally averaged value of the pair orrelationfuntion we have found with the help of our perturbation theory the rel-ative variane (2.84) of the on�gurationally dependent pair orrelationfuntion whih happened to be a zero in the thermodynami limit. Al-though it does not �t ompletely the de�nition of the self-averaging of aphysial quantity this result is de�nitely in favor of the self-averaging ofthe pair orrelation funtion.



Chapter 3
TOPOLOGICAL DEFECTS IN PRESENCEOF DISORDER
In this hapter the in�uene of nonmagneti impurities on the behaviourof the topologial defets present in the two-dimensional XY model willbe studied expliitly. Suh impurities being distributed randomly in thesystem make an example of strutural disorder. In our researh we willuse mainly the Villain model whih allows for a diret estimation of theenergy of the topologial defets and their interation from the mirosopiHamiltonian of the model. The Villain model being alone a spei� spinmodel possessing topologial defets and a BKT transition with its ownritial temperature an also be onsidered as a low-temperature approxi-mation of the two-dimensional XY model. First of all we will fous on theenergy of interation between topologial defets and nonmagneti impu-rities (spin vaanies) brought into the lattie. Besides the Villain modelwe will make use of the phenomenologial Kosterlitz-Thouless model basedon the ontinuous medium approximation. The results obtained in bothmodels will agree with eah other as well as with other available researhesof this problem. Finally, we will onlude with an approximate estimationof the ritial temperature redution due to the presene of nonmagnetidilution. The main results of this hapter were published in [35,37,40,41℄.



693.1 Villain model with nonmagneti impuri-ties3.1.1 Villain model as a low-temperature limit of thetwo-dimensional XY modelAs it is known for today, the Villain model [17℄ an be derived in the lowtemperature approximation from the two-dimensionalXY model [18℄. Weare going to use the same derivation sheme in order to obtain expliitlythe expressions desribing the Villain model with nonmagneti impuritiesstarting from the model (2.9). For our onveniene we onsider the Hamil-tonian
H = −J

∑

〈r,r′〉
[ cos(θr − θr′) − 1 ] crcr′ (3.1)equivalent to (2.9); the sum spans all the pairs of nearest neighbours. Theorresponding on�guration-dependent partition funtion reads as:

Z =

(∏

r

∫ π

−π

dθr
2π

)
exp


∑

〈r,r′〉
V (θr − θr′) crcr′


 , (3.2)where V (θ) = K [ cos θ − 1 ] and K = βJ .As we have shown in the previous subsetion, the spin-wave approxima-tion appliable at low temperatures leads to the solution whih obviouslymisses the topologial defets whih are supposed to ause the BKT transi-tion, thus, in the spin-wave approximation the model possesses quasi-long-range ordering at any temperature. Further we will see that the existeneof topologial defets in the two-dimensional XY model is onneted tothe periodiity of the potential V (θ) with respet to its argument hangeby 2π. Obviously, this periodiity is lost when replaing the osine in

V (θ) by its approximate quadrati form valid only in the viinity of themaximum at θ = 0. As a matter of fat, V (θ) has an in�nite number



70of maxima at the points: θ = 2πm , m = 0,±1,±2, . . . ,±∞, and theVillain approximation means the hange:
eV (θ) →

+∞∑

m=−∞
e−βJ(θ−2πm)2 (3.3)whih in ontrast to the spin-wave approximation: eV (θ) → e−βJθ2, re-overs the initial periodi symmetry of the 2D XY model.As the �rst step of the derivation we expand the Boltzmann fator inthe partition funtion (3.2) in a Fourier series:

exp


∑

〈r,r′〉
V (θr − θr′) crcr′


 =

∏

〈r,r′〉

+∞∑

s=−∞
Θ(s) eis(θr−θr′) eṼ (s)crcr′ , (3.4)where the Fourier-transform has been written in the form Θ(s) eṼ (s)crcr′with Θ(s) = crcr′+(1−crcr′)δs,0 whih insures the equality when crcr′ = 0.The Fourier variable s onjugate to θr−θr′ is a funtion of two lattie sites:

s = s(r, r′).The entral point of the derivation is the Poisson summation formula[110℄ appliation:
∞∑

s=−∞
g(s) =

∞∑

m=−∞

∫ ∞

−∞
dφ g(φ) e−2πiφm , (3.5)whih is usually used in order improve the onvergene of slowly onvergentseries. Thus, we an already predit that the result should be rapidlyonvergent. Applying (3.5) to the sum over s in (3.4) we an write thepartition funtion (3.2) as:

Z =

(∏

r

∫ π

−π

dθr
2π

)
+∞∑

mr,r′=−∞
Θ(mr,r′) e

∑
〈r,r′〉 V0(θr−θr′−2πmr,r′) crcr′ , (3.6)where

eV0(θ) =

∫ ∞

−∞
dφ eṼ (φ) eiφθ . (3.7)



71For the moment we have not done any spei� assumption, so the ex-pression written above is a result of exat mathematial transformation.Now, let us onsider low temperatures, i.e. K → ∞. Then, the Fourier-transform
eṼ (s) =

1

2π

∫ 2π

0

dθ e−isθ eK(cos θ−1) = e−KIs(K)

≃ 1√
2πK

e−s2/(2K) , K → ∞ , (3.8)where we used the well known result for the modi�ed Bessel funtion Is(K)asymptoti behaviour for K → ∞ [109℄. Substituting (3.8) into (3.7) we�nd
eV0(θ) ≃ e−Kθ2/2 , K → ∞ . (3.9)As a onsequene, the partition funtion (3.6) will write in the low tem-perature limit:

Z =
+∞∑

mr,r′=−∞
Θ(mr,r′)

(∏

r

∫ π

−π

dθr
2π

)
e
−K

2

∑
〈r,r′〉(θr−θr′−2πmr,r′)

2crcr′ .(3.10)But, as far as the integration boundaries with respet to the angle variables
θk remain (−π, π), all the terms with mr,r′ 6= 0 give vanishing ontribu-tion to the integral in omparison to the term mr,r′ = 0. Thus, (3.10)remains equivalent to the spin-wave approximation. In order to expandthe integration domain to in�nity let us use the equality [17℄:

∫ π

−π

f(ϕ)dϕ = lim
ε→0

2
√
βπε

∫ ∞

−∞
e−βεϕ2

f(ϕ)dϕ , (3.11)true for any periodi funtion f(ϕ) = f(ϕ + 2π). (3.11) an be easilyheked by passing to the Fourier variables:
f(ϕ) =

∞∑

s=−∞
eisϕF (s) , F (s) =

1

2π

∫ π

−π

e−isϕf(ϕ)dϕ



72Then, the left hand side of (3.11) simply gives 2πF (0). Integrating termby term the right hand side:
∞∑

s=−∞
F (s) lim

ε→0
2
√
βπε

∫ ∞

−∞
e−βεϕ2+isϕdϕ = 2π

∞∑

s=−∞
F (s) lim

ε→0
e−s2/(4βε) ,and taking the limit ε→ 0, we get 2πF (0) again.Finally, we ome to the partition funtion of the Villain model withnonmagneti dilution [35℄:

Z =
+∞∑

m(r,r′)=−∞
Θ(mr,r′)

(∏

r

∫ ∞

−∞

dθr
2π

)
e−βHVill, (3.12)with the Hamiltonian

HVill =
J

2

∑

〈r,r′〉
(θr − θr′ − 2πmr,r′)

2crcr′ + ε
∑

r

θ2
r . (3.13)Putting all cr equal to 1 we get the well known Hamiltonian of the undi-luted Villain model [17℄. Although, being strit, on should apply the limit

ε → 0 only after the funtional integration with respet to the variables
θk, hereafter we will not onsider the seond term when investigating theproperties of the Hamiltonian (3.13).3.1.2 Diluted Villain model HamiltonianThe spin-wave approximation allows for an analyti solution of the pure
2D XY model through the Hamiltonian diagonalization in the Fouriervariables, as was mentioned before. It is also known [17℄ that the undilutedVillain model Hamiltonian an be diagonalized (with respet to the spin-wave variables) in a similar way. But, in the ase of the Villain model, theFourier transformation should onern the disrete variables mr,r′ as well.Considering the sum in (3.13), we deal only with mr,r′ for r and r′ beingthe nearest neighbours: r′ = r+aα , α = x, y (ax = (a, 0), ay = (0, a) are



73the vetors of a unit ell), so, when applying the Fourier transformation,one an onsider the two separate sets of �one-site� quantities mr,r+ax
≡

m(r + ax

2
) and mr,r+ay

≡ m(r +
ay

2
) de�ned at the point shifted from thesites of the initial lattie by the vetors ax

2 and ay

2 respetively. Then, inaddition to (2.15) we an write the transformation law:
mr,r+aα

=
1√
N

∑

q

e−iq(r+aα
2 )mα

q , mα
q =

1√
N

∑

r

eiq(r+aα
2 )mr,r+aα

,(3.14)where α = x, y, i.e. we have two independent Fourier transformations forthe bonds along the Ox and Oy axes.The Hamiltonian (3.13) an be written through (2.15), (3.14) and (2.26)as:
HVill = Hp

Vill − J

2

∑

k

∑

k′

∑

α

{(
eikαa

2 − e−ikαa
2

)(
ei

k′αa

2 − e−i
k′αa

2

)
θkθk′

− 4π
(
eikαa

2 − e−ikαa
2

)
θkm

α
k′ + 4π2mα

km
α
k′

}
e−i

(kα+k′α)a
2

×
[ ∑

q

ρq

(
1 + e−iqαa

) 1

N

∑

r

e−i(k+k′+q)r

−
∑

q

∑

q′

ρqρq′ e−iq′αa 1

N

∑

r

e−i(k+k′+q+q′)r

]
, (3.15)where Hp

Vill is the Hamiltonian of the undiluted Villain model. Introdu-ing speial notations Hρ
Vill and Hρ2

Vill for the two parts of the Hamiltonianrespetively linear and quadrati in ρ:
HVill = Hp

Vill + Hρ
Vill + Hρ2

Vill . (3.16)Sine 1
N

∑

r

e−i(k+k′+q)r = δk+k′+q,0 and 1
N

∑

r

e−i(k+k′+q+q′)r = δk+k′+q+q′,0,from (3.15) we get:
Hρ

Vill =
J

2

∑

k

∑

k′

∑

α

2 cos (kα+k′
α)a

2 ρ−k−k′

{
Kα(k)Kα(k′)θkθk′
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+ 4πiKα(k)θkm

α
k′ − 4π2mα

km
α
k′

}
, (3.17)where Kα(k) ≡ 2 sin kαa

2 . In a similar way we get:
Hρ2

Vill = − J

2

∑

k

∑

k′

∑

α

ei
(kα+k′α)a

2

[∑

q

eiqαa ρq ρ−k−k′−q

] (3.18)
×
{
Kα(k)Kα(k′)θkθk′ + 4πiKα(k)θkm

α
k′ − 4π2mα

km
α
k′

}
.The undiluted Villain model Hamiltonian, Hp

Vill, written in the Fouriervariables has the form:
Hp

Vill =
J

2

∑

k

∑

α

{
K2

α(k)θkθ−k + 4πiKα(k)θkm
α
−k − 4π2mα

km
α
−k

}
.(3.19)One an get rid of the ross-term in (3.19) depending both on the anglevariables θk and disrete variablesmα

k by the hange of the angle variables:
θk = ϕk − 2πi

∑
αKα(k)mα

k∑
γ K

2
γ(k)

≡ ϕk + θ̃k . (3.20)Substituting (3.20) into (3.19) we get:
Hp

Vill =
J

2

∑

k

∑

α

K2
α(k)ϕkϕ−k (3.21)

− 2π2J
∑

k

(Ky(k)mx
k −Kx(k)my

k)
(
Ky(−k)mx

−k −Kx(−k)my
−k

)

K2
x(k) + K2

y(k)
.The �rst term has the form that �ts exatly that of the spin-wave Hamil-tonian (2.16) but is written through the variables ϕk. The seond partdepends exlusively on the disrete variables mα

k; it will be shown belowthat it desribes the topologial defets (vorties) present in the system.Let us denote the spin-wave and the vortex parts of the Hamiltonian (3.21)



75as Hp
sw and Hp

vort respetively: Hp
Vill = Hp

sw +Hp
vort. Introduing instead of

mα
k the variables

qk = i (Kx(k)my
k −Ky(k)mx

k) , (3.22)the vortex part of the undiluted Villain model Hamiltonian an be writtenas:
Hp

vort = 2π2J
∑

k6=0

qkq−k

γk

, (3.23)where γk = K2
x(k) + K2

y(k).Unfortunately, it is not possible to split in a similar way the dilutedVillain model Hamiltonian (3.17) into parts depending exlusively on ϕkand qk. Instead of this one has:
Hρ

Vill = Hρ
sw + Hρ

vort + Hρ
sw,vort , (3.24)where

Hρ
sw = J

∑

k

∑

k′

ρ−k−k′

(∑

α

cos (kα+k′
α)a

2 Kα(k)Kα(k′)

)
ϕkϕk′ (3.25)oinides with the form of the 2D XY model spin-wave Hamiltonian partlinear in ρq, (2.30), and

Hρ
vort = 4π2J

∑

k

∑

k′

ρ−k−k′ (3.26)
×
(

cos (kx+k′
x)a

2 Ky(k)Ky(k
′) + cos

(ky+k′
y)a

2 Kx(k)Kx(k
′)(

K2
x(k) +K2

y(k)
) (
K2

x(k
′) +K2

y(k
′)
)

)
qkqk′ ,and the ross-term dependent on the vortex degrees of freedom as well ason the spin-wave ones,

Hρ
sw,vort = 4πJ

∑

k

∑

k′

ρ−k−k′ (3.27)
×
(

cos (kx+k′
x)a

2 Kx(k)Ky(k
′) − cos

(ky+k′
y)a

2 Ky(k)Kx(k
′)

K2
x(k

′) +K2
y(k

′)

)
ϕkqk′ .



76The term quadrati in ρq in the Hamiltonian (3.18) an be expressed in asimilar way:
Hρ2

Vill = Hρ2

sw + Hρ2

vort + Hρ2

sw,vort , (3.28)where
Hρ2

sw = −J
2

∑

k

∑

k′

∑

α

ei
(kα+k′α)a

2

[∑

q

eiqαa ρqρ−k−k′−q

]
Kα(k)Kα(k′)ϕkϕk′(3.29)is the same as the quadrati in ρq part of the spin-wave Hamiltonian ofthe diluted two-dimensional XY model (2.30), and

Hρ2

vort = −2π2J
∑

k

∑

k′

∑

q

ρqρ−k−k′−q (3.30)
×
(
ei
(

(kx+k′x)
2 +qx

)
aKy(k)Ky(k

′) + ei
(

(ky+k′y)

2 +qy

)
aKx(k)Kx(k

′)(
K2

x(k) +K2
y(k)

) (
K2

x(k
′) +K2

y(k
′)
)

)
qkqk′,and

Hρ2

sw,vort = −2πJ
∑

k

∑

k′

∑

q

ρqρ−k−k′−q (3.31)
×
(
ei
(

(kx+k′x)
2 +qx

)
aKx(k)Ky(k

′) − ei
(

(ky+k′y)

2 +qy

)
aKy(k)Kx(k

′)

K2
x(k

′) +K2
y(k

′)

)
ϕkqk′.The part (3.26) of the diluted Villain model Hamiltonian desribes theinteration of isolated nonmagneti impurities with the topologial defets(vorties) in the system, and (3.27) desribes the ombined interation withthe vorties as well as with the spin-wave exitations. The expliit formof these interation energies will be written a bit later. The terms (3.29),(3.30) and (3.31) are responsable for the interation between the non-magneti impurities in the presene of spin-wave and vortex exitationsof the ground state. Sine we onsider unorrelated disorder, it an beshown that atually only those impurities an interat whih are plaedat the neighbouring sites. Thus, for the ase of a weak dilution when the



77onentration of impurities is su�iently small and the probability to meettwo impurities on neighbouring sites is low, it is enough to onsider onlythose ontributions to the Hamiltonian linear in ρq.3.1.3 Topologial defets in the Villain modelIn order to �nd the quantity whih orresponds in the diret spae to theFourier-transform qk that stands in the vortex part of the Villain modelHamiltonian let us ome bak to the diret lattie aording to the formula(3.14):
qk =

1√
N

∑

r

{
iKx(k)ei(r+ay

2 )mr,r+ay
− iKy(k)ei(r+ax

2 )mr,r+ax

}
.(3.32)Obviously, one an write: iKα(k) = 2i sin kαa

2 = eikαa
2 − e−ikαa

2 . Then,
qk =

1√
N

∑

r

eik(r+ax
2 +

ay
2 )mr,r+ay

− 1√
N

∑

r

eik(r−ax
2 +

ay
2 )mr,r+ay

− 1√
N

∑

r

eik(r+ax
2 +

ay
2 )mr,r+ax

+
1√
N

∑

r

eik(r+ax
2 −ay

2 )mr,r+ax
.(3.33)Sine at zero temperature we have from the Hamiltonian (3.13) minimumondition: mr,r′ = (θr − θr′)/2π, it is obvious that mr,r′ = −mr′,r. So,we an make the hange: mr,r+ay

= −mr+ay,r, mr,r+ax
= −mr+ax,r inthe seond and third terms in (3.33). Also we an hange the summationvariables in the seond and the fourth terms: r → r + ax and r → r + ayrespetively. After suh transformations (3.33) will written as:

qk =
1√
N

∑

r

eik(r+ax
2 +

ay
2 )
{
mr,r+ay

+ mr+ay,r+ax+ay

+ mr+ax+ay,r+ax
+ mr+ax,r

}
. (3.34)



78Introduing the vetors R = r + ax

2
+

ay

2
whih de�ne the sites of the soalled dual lattie, we write:

qk =
1√
N

∑

R

eikR

{
mR−ax

2 −ay
2 ,R−ax

2 +
ay
2

+ mR−ax
2 +

ay
2 ,R+ax

2 +
ay
2

+ mR+ax
2 +

ay
2 ,R+ax

2 −ay
2

+ mR+ax
2 −ay

2 ,R−ax
2 −ay

2

}
. (3.35)Thus, qk is the Fourier-transform of the quantity

q(R) = mR−ax
2 −ay

2 ,R−ax
2 +

ay
2

+ mR−ax
2 +

ay
2 ,R+ax

2 +
ay
2

+ mR+ax
2 +

ay
2 ,R+ax

2 −ay
2

+ mR+ax
2 −ay

2 ,R−ax
2 −ay

2
, (3.36)de�ned on the sites of the dual lattie (see �g. 3.1); it is alled topologialharge or harge/strength of the vortex.

Figure 3.1: Topologial harge de�ned on the sites R of the dual lattie:
q(R) = m1,2 +m2,3 +m3,4 +m4,1, where 1 ≡ R− ax

2 − ay

2 , 2 ≡ R− ax

2 +
ay

2 ,
3 ≡ R + ax

2
+

ay

2
, 4 ≡ R + ax

2
− ay

2
are the sites of the initial lattie.The vortex part (3.23) of the undiluted Villain model Hamiltonian anbe written through the topologial harges q(R) as [17℄:

Hp
vort =

∑

R

∑

R′

V p
qq(R −R′)q(R)q(R′) + V p

qq(0)

(∑

R

q(R)

)2

, (3.37)where the interation energy of the two topologial harges plaed at sites
R and R′ is

V p
qq(R −R′) = − 2π2J

2

N

∑

k6=0

sin2 k(R−R′)
2

γk

. (3.38)



79We already have evaluated the asymptoti behaviour of a sum of thistype, (2.67), for large values of the argument R− R′: (2.72). Thus, theinteration energy of the two topologial harges (vorties) q(R) and q(R′)is
V p

qq(R− R′) ≃ − πJ ln
|R −R′|

a
, R− R′ → ∞ . (3.39)The form of the expression (3.39) oinides with the interation energy ofthe two Coulomb partiles with harges +πJ in two dimensions [9℄. Thisexplains the name �harge� for the quantities q(R). The potential V p

qq(0)in (3.37) diverges with the system size N :
V p

qq(0) = 2π2J
1

N

∑

k6=0

1

γk

≃ πJ

∫ 2
√

π

a

2
√

π

a
√

N

dk

k
→ ∞ , N → ∞ , (3.40)but the seond term in (3.37) disappears in the ase of a �neutral� systemof topologial harges: ∑R q(R) = 0. Note that for a system of hargesde�ned by (3.36) its neutrality follows automatially from the periodiboundary onditions.Aording to Villain [17℄ the vortex part (3.37) of the Hamiltonian ofthe undiluted Villain model an be expressed with su�ient preision as:

Hp
vort = − πJ

∑

R

∑

R′ 6=R

q(R)q(R′) ln
|R −R′|

a
+

π2J

2

∑

R

(q(R))2 .(3.41)Thus, (3.41) is equivalent to the Hamiltonian of a two-dimensional eletro-neutral system of Coulomb harges. The omplete Hamiltonian (3.21) ofthe pure Villain model an be written in the diret spae as:
Hp

Vill =
J

2

∑

r

∑

α

(ϕr − ϕr+aα
)2 − πJ

∑

R

∑

R′ 6=R

q(R)q(R′) ln
|R − R′|

a

+ π2J

2

∑

R

(q(R))2 , (3.42)



80where the variable desribing the spin-wave exitations,
ϕr =

1√
N

∑

r

e−ikrϕk = θr − θ̃r , (3.43)(see 3.20), is the angle between the spin on the site r and a ertain diretionde�ned by the angle
θ̃r =

1√
N

∑

r

e−ikrθ̃k , (3.44)where θ̃k is de�ned by (3.20). So,
θ̃r = − iπ√

N

∑

r

mx
k sin kxa

2
+ my

k sin
kya
2

sin2 kxa
2 + sin2 kya

2

e−ikr (3.45)depends on the variables mα
k whih are related to the topologial harges.We are going to show below that the angle �eld θ̃r desribes vortex exi-tations of the ground state (topologial defets).Let us �nd the form of θ̃r as a funtion of topologial harges q(R). Forthis purpose in (3.45) we pass from the variables mα

k to mr,r+aα
aordingto (3.14) and express all the exponents under the sum through the Eulerformula: e±ix = cosx± i sin x. Then,

θ̃r =
π

2

∑

r′

{
mr′,r′+ax

Pr′,r′+ax
(r) + mr′,r′+ay

Pr′,r′+ay
(r)

}
, (3.46)where we used the following notations:

Pr′,r′+ax
(r) ≡ 1

N

∑

k

[cos kx(x
′ − x) − cos kx(x

′ + a− x)] cos ky(y
′ − y)

sin2 kxa
2 + sin2 kya

2

,(3.47)
Pr′,r′+ay

(r) ≡ 1

N

∑

k

[cos ky(y
′ − y) − cos ky(y

′ + a− y)] cos kx(x
′ − x)

sin2 kxa
2

+ sin2 kya
2 (3.48)(r = (x, y), r′ = (x′, y′)). Obviously, Pr′,r′+ax

(r) = −Pr′+ax,r′(r), Pr′,r′+ay
(r) =

−Pr′+ay,r′(r). Before we noted the property: mr,r′ = −mr′,r. Thus, we are



81allowed to rewrite (3.46) as:
θ̃r =

π

4

∑

r′

{
mr′,r′+ay

Pr′,r′+ay
(r) + mr′,r′+ax

Pr′,r′+ax
(r)

+ mr′+ay,r′Pr′+ay,r′(r) + mr′+ax,r′Pr′+ax,r′(r)

}
. (3.49)Changing the summation indexes in the seond and the third term: r →

r + ay and r → r + ax respetively, and passing to the sites of the duallattie R = (X, Y ) = r + ax

2 +
ay

2 (see �g. 3.1), we get:
θ̃r =

π

4

∑

R

{P1,2(r)m1,2 + P2,3(r)m2,3 + P3,4(r)m3,4 + P4,1(r)m4,1} ,(3.50)where indexes 1-4 are funtions of R: 1 ≡ R − ax

2 − ay

2 , 2 ≡ R − ax

2 +
ay

2 ,
3 ≡ R + ax

2 +
ay

2 , 4 ≡ R+ ax

2 − ay

2 . The oe�ients in front of the disretevariables mi,j an be written as:
P1,2(r) = −Isc(Y − y,X − x) − Iss(X − x, Y − y) ,

P2,3(r) = −Isc(X − x, Y − y) + Iss(X − x, Y − y) ,

P3,4(r) = Isc(Y − y,X − x) − Iss(X − x, Y − y) ,

P4,1(r) = Isc(X − x, Y − y) + Iss(X − x, Y − y) ,where
Isc(X, Y ) =

1

N

∑

kx

∑

ky

sin kxa
2 cos

kya
2

sin2 kxa
2 + sin2 kya

2

sin kxX cos kyY , (3.51)
Iss(X, Y ) =

1

N

∑

kx

∑

ky

sin kxa
2 sin

kya
2

sin2 kxa
2 + sin2 kya

2

sin kxX sin kyY . (3.52)Now, let us write down the de�nition of a topologial defet in termsof the Villain model. Obviously, the ground state of the system is realizedwhen all θr = const and all mr,r′ = 0. A topologial defet (vortex) withthe harge q on the site R of the dual lattie is suh a distorsion of the



82ground state of the spins with the minimal possible energy for whih thefollowing ondition is ful�lled:
∑

〈r,r′〉∈L

(θr − θr′) = q , (3.53)where the sum spans the bonds whih form an arbitrary losed path Lenlosing the point R. Obviously, the minimal energy state of the systemfor the �xed values of mr,r′ will happen when θr − θr′ = 2πmr,r′ . So, atopologial exitation of the ground state is ompletely de�ned (up to asimultaneous rotation of all spins) by the disrete variables mr,r′ , and onean write: ∑

〈r,r′〉∈L

mr,r′ =
∑

R∈V

q(R) , (3.54)where the sum on the right side spans the topologial harges within thearea V enlosed by the path L. The equality (3.54) is a generalisation of(3.36). Some examples of isolated topologial defets with di�erent valuesof the harge an be seen in �g. 1.1. It is visible that suh spin on-�gurations have a ommon feature: when going ounterlokwise aroundthe vortex origin a full irle the angle variable undergoes a jump by 2πqwhere q is the vortex harge. For an isolated vortex there an be de�ned aline (the exat form of whih is arbitrary) going from the vortex origin Rto in�nity along whih the angle variable jump happens (see �g. 3.2). Inorder to insure the ondition (3.54) one should put mr,r′ equal to zero forall the bond (r, r′) exept those whih ross the de�ned line and for whih
mr,r′ = ±q (where the sign depends on the diretion of the rossing).We already have shown that a system of topologial defets is neutralby de�nition in the Villain model with periodi boundary onditions (thesum over all the topologial harges gives zero). For the neutral pair ofvorties q(R) and −q(R′) the line of the angle variable jump must onnettheir origins R and R′ (see �g. 3.3) in order to insure the ondition (3.54).Now, onsidering the vortex exitations �eld (3.50) far enough from the
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Figure 3.2: The topologial harge q. All mr,r′ = 0 exept those whihross the line of the angle variable jump (thik red line): m1,2 = 0, m2,3 =

0, m3,4 = q, m4,1 = 0.

Figure 3.3: The angle variable jump line whih onnets the origins of thevorties bound in a neutral pair.topologial defets origins, |R − r| → ∞, one an use the asymptoti formof the sums (3.68), (3.83). Sine for a disrete lattie X = la, Y = na(where a is the lattie onstant), and l, n are integers: sin π
aX = sin lπ = 0,

sin π
aY = sinnπ = 0. Then, (3.50) will reads as:
θ̃r =

a

2

∑

R

(m3,4 − m1,2)(Y − y)

(X − x)2 + (Y − y)2

(
1 − e−

π
a
(X−x) cos π

a(Y − y)
)

+
a

2

∑

R

(m4,1 − m2,3)(X − x)

(X − x)2 + (Y − y)2

(
1 − e−

π
a
(Y −y) cos π

a (X − x)
)

− 0.17
a2

4π2

∑

R

(m1,2 +m3,4) − (m2,3 +m4,1)

(X − x)(Y − y)



84
×
(
1 − cos π

a
(X − x)

) (
1 − cos π

a
(Y − y)

)
. (3.55)Let us onsider, for example, a neutral pair of vorties with harges +q and

−q entred at the points R+ = (X+, Y0) and R− = (X−, Y0) respetively.Only mr,r′ orresponding to the bonds (r, r′) whih ross the straight line
l joining the origins of the topologial defets and parallel to the axes Ox(see �g. 3.4) are nonzero.
Figure 3.4: A pair of vorties with topologial harges q and −q. Thearrows mark the bonds for whih mr,r′ = q (and, thus, mr′,r = −q), therest of mr,r′ are zero.So, for the dual lattie sites whih are situated on the line l: m1,2 = −q,
m2,3 = 0, m3,4 = +q, m4,1 = 0 in the sums in (3.55); all the rest mr,r′are equal to zero. It immediately follows that the seond term in (3.55) iszero, sine it ontains m2,3 and m4,1 only. In the third term all the termsin the sum turn to zero exept the two orresponding to the sites R+ and
R−, so it an be written as:

− 0.17
qa2

4π2

((
1 − cos π

a(X+ − x)
) (

1 − cos π
a(Y+ − y)

)

(X+ − x)(Y+ − y)

−
(
1 − cos π

a
(X− − x)

) (
1 − cos π

a
(Y− − y)

)

(X− − x)(Y− − y)

)
.We will not write this third term hereafter as it will beome lear thatit gives a vanishing ontribution at a su�ient distane from the vortiesorigins. So, we are interested in the form of the spin �eld orrespondingto a neutral vortex pair far from the origins of the topologial defets. In



85the limit X+ − x, Y+ − y, X− − x, Y− − y → ∞ we an write (3.55) as:
θ̃r ≃ q

∑

R∈l

a(Y − y)

(X − x)2 + (Y − y)2
, (3.56)where the sum already spans the dual lattie sites whih lay on the line

l only. When the distane between the origins of the topologial defets,
|R+ −R−|, is large enough, one an use an integral instead of the sum in(3.56):

θ̃r = q

∫ X−

X+

dX
Y0 − y

(X − x)2 + (Y0 − y)2

= q arctan
y − Y0

x−X+
− q arctan

y − Y0

x−X−
.Generalising the above result for an arbitrary number of topologial de-fets, we may write the vortex exitations �eld as:

θ̃r =
∑

R

q(R) arctan
y − Y

x−X
, (3.57)where the sum spans the topologial harges in the system.Evaluation of some important integralsLet us �nd the form of the funtions:

Isc(X, Y ) ≡ 1

N

∑

kx

∑

ky

sin kxa
2

cos
kya
2

sin2 kxa
2 + sin2 kya

2

sin kxX cos kyY , (3.58)
Iss(X, Y ) ≡ 1

N

∑

kx

∑

ky

sin kxa
2 sin

kya
2

sin2 kxa
2 + sin2 kya

2

sin kxX sin kyY , (3.59)ontaining sums whih span the dual lattie sites within the 1st Brillouinzone for large values of their arguments X, Y . First of all we pass fromsums to integrals in the thermodynami limit N → ∞:
Isc(X, Y ) = 4

a2

(2π)2

∫ π
a

0

dkx

∫ π
a

0

dky

sin kxa
2 cos

kya
2

sin2 kxa
2 + sin2 kya

2

sin kxX cos kyY ,(3.60)
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Iss(X, Y ) = 4

a2

(2π)2

∫ π
a

0

dkx

∫ π
a

0

dky

sin kxa
2 sin

kya
2

sin2 kxa
2 + sin2 kya

2

sin kxX sin kyY ,(3.61)where due to the fat that the funtions in the integrals are even it waspossible to redue the integration domain to one quarter of the 1st Brillouinzone (0 < kx < π/a, 0 < ky < π/a) just multiplying the result by 4.Changing the variable in the integral (3.60): ky → y/Y , we get:
Isc(X, Y ) = 4

a2

(2π)2

∫ π
a

0

dkx

∫ π
a
Y

0

dy

Y

sin kxa
2 cos ya

2Y

sin2 kxa
2 + sin2 ya

2Y

sin kxX cos y .(3.62)Then, in the limit Y → ∞ one an write:
Isc(X, Y ) ≃ 4

a2

(2π)2

∫ π
a

0

dkx

∫ π
a
Y

0

dy

Y

sin kxa
2 sin kxX cos y

sin2 kxa
2 +

(
ya
2Y

)2

=
4Y

π2

∫ π
a

0

dkxsin
kxa
2 sin kxX

∫ π
a
Y

0

cos y dy

y2 +
(
2Y

a sin kxa
2

)2 .(3.63)We will get the integral with respet to y from the known formula [111℄:
∫ ∞

0

cosmy

y2 + a2
dy =

π

2|a| e
−|ma| (a > 0) , (3.64)then,

Isc(X, Y ) =
a

π

∫ π
a

0

e−2Y
a

sin kxa
2 sin kxX dkx . (3.65)Sine Y → ∞, the funtion under the sign of an integral is vanishingeverywhere exept kx → 0, so we apply the Taylor expansion up to thequadrati order: sin kxa

2
≃ kxa

2
. The integral

Isc(X, Y ) =
a

π

∫ π
a

0

e−Y kx sin kxX dkx (3.66)is given by the formula [112℄:
∫
eax sin bx dx =

eax

a2 + b2
(a sin bx− b cos bx) . (3.67)



87Finally, we obtain:
Isc(X, Y ) =

a

π

X

X2 + Y 2
+

a

π

e−
π
a
Y

X2 + Y 2

(
Y sin

π

a
X −X cos

π

a
X
)
.(3.68)Although (3.68) was obtained from the assumption that Y → ∞, we haveserious reasons to laim that this estimation is good in a more general asewhen at least one of the arguments X or Y is su�iently large, in otherwords, when √

X2 + Y 2 → ∞. In order to onvine the reader let us showexpliitly that (3.68) gives the orret asymptoti behaviour of the integral(3.60) in the ase: X → ∞, Y = 0. Then, (3.60) writes as:
Isc(X, 0) = 4

a2

(2π)2

∫ π
a

0

dkx

∫ π
a

0

dky

sin kxa
2 cos

kya
2

sin2 kxa
2 + sin2 kya

2

sin kxX , (3.69)and after the integration with respet to ky it will look as:
Isc(X, 0) =

2a

π2

∫ π
a

0

dkx arctan

[
1

sin kxa
2

]
sin kxX . (3.70)After the hange of the variable kx → x/X:

Isc(X, 0) =
2a

π2

1

X

∫ π
a
X

0

arctan

[
1

sin ax
2X

]
sinx dx , (3.71)where in the limit X → ∞: arctan

[
1

sin ax
2X

]
≃ π/2. Then, �nally,

Isc(X, 0) =
a

π

1

X

(
1 − cos

[
π
X

a

])
. (3.72)It is obvious that the same result follows from (3.68) for Y = 0.In order to disover the behaviour of the integral (3.61) for large valuesof its arguments, we note that the expression sin kxa

2 sin
kya

2

sin2 kxa
2 +sin2 kya

2

is slowly vary-ing and �nite in the whole domain of integration, so the rapidly osillatingfuntions sin kxX, sin kyY an be replaed in the limitX, Y → ∞ by theirmean values in the integration domain:
a

π

∫ π
a

0

sin kxX dkx =
π

a

(
1 − cosπ

X

a

)
, (3.73)
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a

π

∫ π
a

0

sin kyY dky =
π

a

(
1 − cosπ

Y

a

)
. (3.74)Then, the integral (3.61) will write as:

Iss(X, Y ) ≃ a2

π2

(
1 − cosπX

a

) (
1 − cosπY

a

)

XY

× a2

π2

∫ π
a

0

dkx

∫ π
a

0

dky

sin kxa
2 sin

kya
2

sin2 kxa
2 + sin2 kya

2

, (3.75)and the problem is redued to the evaluation of the integral:
I =

a2

π2

∫ π
a

0

dkx

∫ π
a

0

dky

sin kxa
2

sin
kya
2

sin2 kxa
2 + sin2 kya

2

, (3.76)whih after the hange of variables: kx → x = sin2 kxa
2
, ky → y = sin2 kya

2
,an be written as:

I =
1

π2

∫ 1

0

dx√
1 − x

∫ 1

0

dy√
1 − y

1

x+ y
. (3.77)Integrating with respet to y, we have:

I =
1

π2

∫ 1

0

dx√
1 − x2

ln

√
1 + x+ 1√
1 + x− 1

≡ 1

π2

∫ 1

0

dx
dV

dx
lnU , (3.78)where the following notions were introdued: dV

dx
= 1√

1−x2 , U =
√

1+x+1√
1+x−1

.Integrating by parts, we get:
I =

1

π2
V lnU

∣∣∣
1

0
− 1

π2

∫ 1

0

V

U

dU

dx
dx . (3.79)Sine V = arcsinx and dU

dx
= 1

(
√

1+x−1)
2 , �nally:

I =
1

2π
ln

√
2 + 1√
2 − 1

− 1

π2

∫ 1

0

arcsinx

x
dx . (3.80)Thus,

Iss(X, Y ) ≃ a2

π2

(
1 − cosπX

a

) (
1 − cosπY

a

)

XY

×
(

1

2π
ln

√
2 + 1√
2 − 1

− 1

π2

∫ 1

0

arcsinx

x
dx

)
. (3.81)



89The integral in the parentheses an be presented with the series [112℄:
∫

arcsinx

x
dx = x +

1

2 · 3 · 3 x3 +
1 · 3

2 · 4 · 5 · 5 x5 + . . . , (3.82)whih onverges very rapidly for x = 1. With a high enough degree ofpreision one an write:
Iss(X, Y ) ≃ 0.17

a2

π2

(
1 − cosπX

a

) (
1 − cosπY

a

)

XY
. (3.83)3.2 Topologial defets and nonmagneti im-purities interation3.2.1 Mirosopi approah of the Villain model Hamil-tonianThe interation between the nonmagneti impurities and the topologialdefets in the Villain model is desribed by the terms (3.26), (3.27), (3.30),(3.31) of the Hamiltonian (3.16). In the diret spae the mentioned ex-pressions will read as:

Hρ
vort =

∑

r

(1 − cr)
∑

R

∑

R′

q(R)q(R′)V ρ
qq(R − r,R′ − r) , (3.84)

Hρ
sw,vort =

∑

r

(1 − cr)
∑

R

∑

r′

q(R)ϕr′V
ρ
qϕ(R− r, r′ − r) , (3.85)where

V ρ
qq(R − r,R′ − r) = 4π2J

1

N2

∑

k

∑

k′

eik(R−r) eik′(R′−r) (3.86)
× cos (kx+k′

x)a
2 Ky(k)Ky(k

′) + cos
(ky+k′

y)a

2 Kx(k)Kx(k
′)(

K2
x(k) +K2

y(k)
) (
K2

x(k
′) +K2

y(k
′)
)is the interation energy of the pair of unit harge vorties with their originson the sites R and R′ of the dual lattie and a nonmagneti impurity (spin



90vaany) on the site r of the diret lattie,
V ρ

qϕ(R − r, r′ − r) = 4πJ
1

N2

∑

k

∑

k′

eik(R−r) eik′(R′−r) (3.87)
× cos (kx+k′

x)a
2

Kx(k)Ky(k
′) − cos

(ky+k′
y)a

2
Ky(k)Kx(k

′)

K2
x(k

′) +K2
y(k

′)is the energy of the interation between the unit harge topologial defeton the site R of the dual lattie, the spin-wave variable ϕ on the site r′ ofthe initial lattie, and a nonmagneti impurity on the site r of the initiallattie.The ontributions (3.30), (3.31), quadrati in ρ, orrespond to the inter-ation between impurities on di�erent sites in the presene of topologialand spin-wave exitations of the ground state. In the diret spae theywrite as:
Hρ2

vort =
∑

r

∑

r′

(1 − cr)(1 − cr′)
∑

R

∑

R′

q(R)q(R′)V ρ2

qq (r, r′,R,R′) ,(3.88)
Hρ2

sw,vort =
∑

r

∑

r′

(1 − cr)(1 − cr′)
∑

R

∑

r′′

q(R)ϕr′′V
ρ2

qϕ (r, r′,R, r′′) .(3.89)It an be shown that this interation an onern only those impuritieswhih are plaed at neighbouring sites. So,
V ρ2

qq (r, r′,R,R′) = −2π2J
1

N3

∑

k

∑

k′

eik(R−r) eik′(R′−r′)

×
∑

q

eiq(r−r′)e
i
(

kx+k′x
2 +qx

)
aKy(k)Ky(k

′) + ei
(

ky+k′y
2 +qy

)
aKx(k)Kx(k

′)(
K2

x(k) +K2
y(k)

) (
K2

x(k
′) +K2

y(k
′)
) ,and

V ρ2

qϕ (r, r′,R, r′′) = −2πJ
1

N3

∑

k

∑

k′

eik(R−r) eik′(r′′−r′)

×
∑

q

eiq(r−r′)e
i
(

kx+k′x
2 +qx

)
aKx(k)Ky(k

′) − ei
(

ky+k′y
2 +qy

)
aKy(k)Kx(k

′)

K2
x(k

′) +K2
y(k

′)
.



91The sums 1
N

∑
q e

iq(r+aα−r′) give the Kroneker symbols δr+aα,r′, thus,
V ρ2

qq (r, r′,R,R′) = −2π2J
1

N2

∑

k

∑

k′

eik(R−r) eik′(R′−r′) (3.90)
× δr+ax,r′Ky(k)Ky(k

′) + δr+ay,r′Kx(k)Kx(k
′)(

K2
x(k) +K2

y(k)
) (
K2

x(k
′) +K2

y(k
′)
) ,and

V ρ2

qϕ (r, r′,R, r′′) = −2πJ
1

N2

∑

k

∑

k′

eik(R−r) eik′(r′′−r′) (3.91)
× δr+ax,r′Kx(k)Ky(k

′) − δr+ay,r′Ky(k)Kx(k
′)

K2
x(k

′) +K2
y(k

′)
.Indeed, the expressions (3.90) and (3.91) are nonzero only in the ase whenthe sites r and r′ are nearest neighbours.Sine herein we onsider small onentrations of dilution, the probabil-ity for a pair of impurities to our at neibouring sites is small, so withinthe frame of our work we will fous on the form of the expressions (3.86)and (3.87) only.Applying the Euler formula and the formula for a osine of the produtof arguments, one an write (3.86), (3.87) through the sums (3.58), (3.59)as:

V ρ
qq(R− r,R′ − r) = −π2J

{
Isc(X − x, Y − y)Isc(X

′ − x, Y ′ − y)

+ Isc(Y − y,X − x)Isc(Y
′ − y,X ′ − x)

− 2Iss(X − x, Y − y)Iss(X
′ − x, Y ′ − y)

} (3.92)
V ρ

qϕ(R− r, r′ − r) = πJ

{
(δr−ax,r′ − δr+ax,r′) Isc(Y − y,X − x)

+
(
δr+ay,r′ − δr−ay,r′

)
Isc(X − x, Y − y)

− (δr+ax,r′ + δr−ax,r′) Iss(X − x, Y − y)

−
(
δr+ay,r′ + δr−ay,r′

)
Iss(X − x, Y − y)

} (3.93)



92Knowing the asymptoti behaviour of the sums (3.68), (3.68), we an write(3.92) and (3.93) as:
V ρ

qq(R − r,R′ − r) (3.94)
= − a2J

{
(X − x)(X ′ − x)

((X − x)2 + (Y − y)2) ((X ′ − x)2 + (Y ′ − y)2)

×
(
1 − e−

π
a
(Y −y) cos π

a
(X − x)

)(
1 − e−

π
a
(Y ′−y) cos π

a
(X ′ − x)

)

+
(Y − y)(Y ′ − y)

((X − x)2 + (Y − y)2) ((X ′ − x)2 + (Y ′ − y)2)

×
(
1 − e−

π
a
(X−x) cos π

a
(Y − y)

)(
1 − e−

π
a
(X ′−x) cos π

a
(Y ′ − y)

)

− 2(0.17)2a
2

π2

(
1 − cos π

a (X − x)
) (

1 − cos π
a(Y − y)

)

(X − x)(X ′ − x)(Y − y)(Y ′ − y)

×
(
1 − cos π

a(X ′ − x)
) (

1 − cos π
a(Y ′ − y)

)
}
,

V ρ
qϕ(R− r, r′ − r) (3.95)
= aJ

{
(δr−ax,r′ − δr+ax,r′)

(Y − y)
(
1 − e−

π
a
(X−x) cos π

a
(Y − y)

)

(X − x)2 + (Y − y)2

+
(
δr+ay,r′ − δr−ay,r′

) (X − x)
(
1 − e−

π
a
(Y −y) cos π

a(X − x)
)

(X − x)2 + (Y − y)2

−
(
δr+ax,r′ + δr−ax,r′ + δr+ay,r′ + δr−ay,r′

)

× 0.17
a

π

(
1 − cos π

a (X − x)
) (

1 − cos π
a(Y − y)

)

(X − x)(Y − y)

}
.Negleting the last term in (3.94) whih has a small oe�ient (0.17)2/π2as prefator and onsidering large distanes X − x, Y − y, X ′ − x, Y ′ − y

→ ∞, we arrive at the result:
V ρ

qq(R − r,R′ − r) (3.96)
= − a2J

(X − x)(X ′ − x) + (Y − y)(Y ′ − y)

((X − x)2 + (Y − y)2) ((X ′ − x)2 + (Y ′ − y)2)
,



93whih aords perfetly with the one obtained in the following subsetionin terms of the phenomenologial Kosterlitz-Thouless model.3.2.2 Kosterlitz-Thouless phenomenologial modelThe Kosterlitz-Thouless model [7℄ built in a phenomenologial way to ex-plain the 2D XY model spei� behaviour by the topologial defets in-�uene an be used as an alternative to the Villain model. This model isbased on the ontinuous elasti medium approximation in whih one dealswith a ontinuous spin �eld instead of the disrete lattie of the 2D XYmodel (i.e. the lattie onstant a → 0). The spin variable θr de�ned onthe sites of a disrete lattie transforms into the �eld θ(r) de�ned at anypoint of the two-dimensional spae. The energy of suh a �eld (whih isalled in analogy with the elasti medium theory as elasti energy) is givenby de�nition by the spin-wave Hamiltonian in whih integration over theontinuous domain is used instead of the sum over the lattie:
Eel =

1

2
J

∫
dr(∇θ(r))2 . (3.97)However, the elasti energy (3.97) alone an desribe the system only when

θ(r) and its gradient ∇θ(r) are ontinuous �elds, i.e. they do not ontainany singularities. The topologial defets (vorties) are in fat suh singu-larities of the �eld θ(r) and its gradient.By de�nition [7℄, a vortex with its origin at the point R is suh a on-�guration of the spin �eld θ(r) whih satis�es at the same time the elastienergy (3.97) (omputed for the entire system exept the very viinity ofthe vortex origin R) minimum ondition and the speial topologial on-strain: ∮

L

dθ = 2πq , (3.98)where L is an arbitrary path enlosing the point R, and q is alled thevortex harge or strength. The �eld θ(r) satisfying the above onditions



94has the from [42℄:
θ(r) = q arctan

y − Y

x−X
+ const , (3.99)where r = (x, y) is the referene point, and R = (X, Y ) is the vortexorigin. It is not di�ult to �nd from (3.99) the gradient:

∇θ(r) =
q√

(x−X)2 + (y − Y )2
eϕ , (3.100)where

eϕ = (− sinϕ, cosϕ) , ϕ = arctan
y − Y

x−X
. (3.101)The gradient at the point r is always direted perpediular to the radius-vetor r drawn from the vortex origin. The vortex is ompletely de�ned byits harge q, sine the onstant addend (3.99) does not enter the gradient(3.100) and thus does not hange the energy (3.97).The total energy of a system possessing a topologial defet onsists ofits elasti energy (3.97) omputed for the whole system exept some areaaround the vortex origin whih is alled the vortex ore and the energy ofthat very ore:

E = Ecore + Eel . (3.102)The evaluation of the energy Ecore is a nontrivial task and, obviously,it requires mirosopi onsideration of the lattie struture. However, weomit this question in our researh only stating that the ore energy is �niteand does not depend on the system size. Hereafter we do not mention theore energies of the vorties onsidering only the elasti part of the energy,but keeping in mind that the vortex ores are always exluded from theintegration in (3.97) and the total energy must ontain the ore energiesas well.The energy of the system with one single vortex de�ned by the equation(3.99),
Epure

el = q2Jπ

∫ L

A

dr

r
= q2Jπ ln(L/A) (3.103)



95(A is the vortex ore radius), diverges with the system linear size L. Theenergy of the system with the very same topologial defet and a nonmag-neti impurity (spin vaany) at the point r su�iently far from the vortexorigin an be evaluated by subtrating from the energy (3.103) the energyorresponding to the four bonds (for a square lattie) assoiated with theempty site:
Edil

el = Epure
el −Evac = Epure

el − 1

2
J
∑

α=x,y

[(∇θ · aα)2 + (−∇θ · aα)2]

= Epure
el − 1

2
q2J

a2

r2

{
2 sin2 ϕ+ 2 cos2 ϕ

}
= Epure

el − Jq2 (a/r)2 .(3.104)Thus, the interation between a nonmagneti impurity and a vortex ap-pears to be attrative deaying with their separation as a power law and itdepends on the absolute value of the topologial harge but not on its sign.This is in good aordane with [23,24℄ and our own result obtained in theVillain model. Of ourse, the result (3.104) is obtained with the assump-tion that the nonmagneti site does not in�uene the vortex on�guration(3.99). The validity of this approximation is reliably argued in [24℄. Ourresult (3.104) is in fat very lose to those of [24℄, but we have reasonsto laim that our approah is more adequate, sine the lattie struturehas not been taken into aount in [24℄ and the oe�ient in front of theinteration energy was not set reliably.We go beyond the single-vortex-vaany interation and onsider a non-magneti impurity in a system with a pair of vorties with the harges qand q′. The spin �eld of suh a system is presented by a superposition ofthe separate single vortex �elds: θ(r)+ θ′(r), where θ(r) and θ′(r) are the�elds of the vorties q and q′ respetively. It is known [42℄ that for suh asystem without spin vaanies the energy has the form:
Epure

el = −2πJqq′ ln(R/A) + πJ(q + q′)2 ln(L/A) , (3.105)



96where R is the vorties separation. Note that the seond term divergentwith the system size L vanishes in the ase of a neutral vortex pair (q′ =

−q).Let the polar oordinates of the impurity be (r, ϕ) in the oordinatesystem entered in the origin of the vortex q and (r′, ϕ′) in the oordi-nate system entered in the origin of the vortex q′. Then, the �rst vortex�eld an be expressed as: θ = qϕ + const, and the �eld of the seondvortex will be: θ′ = q′ϕ′ + const′. The orresponding gradients are:
∇θ = q

r(− sinϕ, cosϕ), ∇θ′ = q′

r′ (− sinϕ′, cosϕ′). Then, the energy ofthe system reads as:
Edil

el = Epure
el − 1

2
J

4∑

i=1

(
∇θ(1) · ai + ∇θ(2) · ai

)2 (3.106)with a1 = (a, 0), a2 = (0, a), a3 = (−a, 0), a4 = (0,−a). Finally, we get:
Edil

el = Epure
el − Ja2

(
(q/r)2 + (q′/r′)2 + 2(q/r)(q′/r′) cos(ϕ− ϕ′)

)
.(3.107)It is not di�ult to generalise the above result for a system with an ar-bitrary number of topologial defets and a nonmagneti impurity at thepoint r:

Edil
el = Epure

el −Evac(r) (3.108)
= Epure

el − J
∑

R

∑

R′

q(R)q(R′)
a2

|R− r||R′ − r|
(R− r)(R′ − r)

|R − r||R′ − r| ,where the sums with respet to R and R′ span the topologial defets inthe system.3.3 BKT transition temperature redution inpresene of disorderThe preeding subsetions presented researh of the form of interation be-tween nonmagneti impurities and topologial defets in the Villain model



97as well as in the phenomenologial Kosterlitz-Thouless model. Below wewill use the obtained results for the evaluation of the ritial temperatureredution due to the quenhed nonmagneti dilution applying appropriatesimple approximations to eah of these models.Let us onsider a system possessing topologial defets and quenhednonmagneti impurities. Its elasti energy an be written as:
Edil

el = Epure
el +

∑

rvac

Evac(r) , (3.109)where Epure
el is the energy of the same system without impurities and

Evac(r) is the energy assoiated with a vaany on the site r whih isobviously negative and aording to (3.108) has the form:
Evac(r) = − J

∑

R

∑

R′

q(R)q(R′)
a2

|R − r||R′ − r|
(R − r)(R′ − r)

|R − r||R′ − r| ,(3.110)Stritly speaking, (3.109) is not an exat expression, sine the result (3.110)was obtained for a single isolated impurity. The energy of the two impu-rities plaed on neighbouring sites is not equal to the sum of the energiesof eah impurity alone, sine they have one ommon bond. Nevertheless,(3.109) an be onsidered as a good approximation in the ase of a weakdilution. In the ontinuous limit one an write (3.109) as:
Edil

el = Epure
el +

∫
drρvac(r)Evac(r) , (3.111)where the impurities density

ρvac(r) =
∑

r′

δ(r − r′)(1 − cr) (3.112)was introdued; δ is the delta-funtion, and cr are the oupation numbers(2.1).The energy (3.111) an be used in order to estimate the BKT transitiontemperature, TBKT. Let us onsider an ideal system onsisting only of



98one neutral pair of vorties with harges with absolute values equal toone [46℄. Spin-wave exitations are not taken into aount, sine theydo not a�et the topologial phase transition. Thus, suh a simplistisystem will have only one degree of freedom whih is the distane betweenthe vorties, R. The BKT transition temperature an be approximatelyestimated as the temperature at whih the vortex pair dissoiate, i.e. whenthe thermodynamial average of the squared distane R2 diverges [46℄:
〈
R2
〉

=

∫∞
a R3e−βEel(R)dR∫∞
a Re−βEel(R)dR

→ ∞ . (3.113)In the undiluted system it happens at the temperature kTBKT/J ≃ π/2,sineEpure
el (R) = 2πJ ln(R/a) and it is easy to hek that 〈R2

〉
= a2(πβJ−

1)/(πβJ − 2).The best estimations of the transition temperatures in the two-di-mensional XY model and in the Villain model available for today state:
kTXY

BKT/J ≃ 0.893 and kTVill
BKT/J ≃ 1.503 [66℄. Thus, the desribed methodof estimation rather seems to give a result loser to the BKT transitiontemperature of the Villain model than to that of the 2D XY model. Thedi�erene between the two models is probably aused by the di�erent be-haviour of the vorties at temperatures loser to the transition tempera-ture. We will apply the above sheme to estimate the transition tempera-ture of the diluted Villain model.We will estimate the BKT transition temperature as the temperatureat whih the average squared separation (3.113) with the energy Eel(R)given by (3.111) diverges. In priniple, this result should be on�guration-dependent (depend on the realization of disorder) and is pratially ina-essible, but we are going to make an approximation whih simpli�es theproblem essentially. Let us replae the atual impurities density (3.112)with an approximate form whih we expet to disribe well the real dilu-tion. Sine we onsider unorrelated quenhed disorder, the impurities aredistributed in the system ompletely randomly, so there is no reason for



99di�erent parts of the system to be more or less diluted than the rest. Thismeans that the random �utuations of the loal impurities density an benegleted to some extent, though it denies the very possibility to see anypossible e�ets originating from these �utuations. We replae the density(3.112) with the �smeared� density:
ρ(r) ≃ (1 − c)N/(a2N) = (1 − c)/a2whih is simply the total number of empty sites devided by the systemvolume. Then, the integral in (3.111) an be alulated easily and weget: Eel(R) = [1 − 2(1 − c)]2πJ ln(R/a). It immediately follows that theritial temperature of the system with onentration of dilution 1 − c is

kT dil
BKT/J = [1 − 2(1 − c)]π/2, or, normalizing by the pure model ritialtemperature,

T dil
BKT/T

pure
BKT = 1 − 2(1 − c) . (3.114)The ritial temperature dereases with the onentration of nonmagnetiimpurities as one ould naturally expet beause of the mean oordinationnumber redution. Although our derivation was based on the assumptionabout weak dilution, the result (3.114) still predits the extintion of theBKT transition (ritial temperature turns to zero) at the onentration ofmagneti sites c ≤ 0.5. Being qualitatively orret this predition di�ershowever from the real site perolation threshold value for the square lattie,

c ≃ 0.59 [105℄.The above onsideration onerned the phenomenologial Kosterlitz-Thouless model. Further we show that the same result an be foundfor the Villain model within the appropriate approximation. In this asethe neglet of the loal impurities density �utuations means that we put
∆ρq = 0, or

ρ(k + k′) = (1 − c)δk+k′,0 . (3.115)This an be onsidered as the zeroth order approximation of the pertur-bation expansion in the disorder on�guration inhomogeneity parameter.



100It leads to the following result for the interation energy of vorties:
Hdil

Vort = 2π [1 − 2(1 − c)] J
∑

k6=0

qkq−k∑
γ K

2
γ(k)

. (3.116)As a onsequene, the same value (3.114) of the ritial temperature isobtained.
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Figure 3.5: The phase diagram of the 2D XY model with quenhed dilu-tion of onentration p = 1 − c (c is the onentration of magneti sites).The Monte Carlo simulation results [26℄ are ompared to our analytialpredition (3.114). The insert shows the viinity of the perolation thresh-old.Let us ompare the result (3.114) obtained analytially with the ritialtemperature values observed in Monte Carlo simulations of a diluted 2D

XY model available today. We ompare our result with the phase diagram
(c, TBKT(c)) [26℄) (�g. 3.5). Those simulations overed the two variantsof the XY model: with two-omponent and three-omponent spins (thethird omponent still does not take part in the interation, of ourse).



101Sine our estimate onerns rather the Villain model than the 2D XY , itis better to ompare not the absolute values of the ritial temperaturesbut the ratio (3.114) whih we expet to be lose for the models with thesame topologial mehanism of a phase transition. In [26℄ the transitiontemperature of the three-omponent 2D XY model was identi�ed fromthe pair orrelation funtion exponent η(T ) behaviour (η(TBKT) = 1/4).For the two-omponent 2D XY model the heliity modulus jump wasused to identify the BKT transition temperature along with the mentionedmethod. Although the Monte Carlo data di�er signi�antly even withinthe same model for di�erent methods of ritial temperature measurement,we see that our result seems to give an overestimated value of the transi-tion temperature and this disagreement beomes more ruial at strongerdilutions. First of all one should reall that the whole analyti treatmentwas based on the assumption of dilution weakness, but sine a systematideviation between our predition and the omputer simulation results isnotable even at low onentrations of dilution, one has to suppose thatthis must be the onsequene of the impurities loal density �utuationswhih were negleted in our derivation. So, these �utuations seem toshow themselves in the inrease of the e�etive temperature.
3.4 ConlusionsIn this hapter analytial results for the strutural and topologial defetsinteration energy were obtained, within the frame of the Villain modelas well as from the phenomenologial Kosterlitz-Thouless model. Thesetwo approahes together realize in fat the omplete set of possible ana-lytial tools appliable to this interation researh. The result we found inthe Kosterlitz-Thouless model shows attrative interation between non-magneti impurities and topologial defets aording well with the otherresearhes of this problem [24℄ whih su�ered however from the vague va-



102any representation in the ontinuous medium approximation. We got ridof this unertainty by taking the mirosopi lattie struture into aount.However, the most signi�ant point of the hapter was the involving of theVillain model whih has never been studied before in the ontext of thestrutural disorder researhes. The asymptoti form of the vortex-impurityinteration found in this model oinides with the result of the Kosterlitz-Thouless model, but is obviously more reliable sine it omes from themirosopi Hamiltonian and thus on�rms the Kosterlitz-Thouless modelapproah. Moreover, the Villain model reveals muh more about the im-purities behaviour, for example, it says also about a ombined interationinvolving not only the vaany and the vorties but also the spin-waves.Needless to say that this result would never be found in the Kosterlitz-Thouless model whih do not take spin-wave exitations into aount atall. The results obtained for the energy of the interation between stru-tural and topologial defets were used for the ritial temperature re-dution estimation aused by the quenhed disorder. Although it waspossible to obtain suh an estimate only negleting the �utuations of theloal impurities density, the �nal result aords with the aessible MonteCarlo simulation data, espeially at low enough dilution onentrations.A deviation from the omputer experiment results beomes signi�ant forstronger dilution whih we explain by the in�uene of the mentioned loalimpurities density �utuations.





Chapter 4
LATTICE FINITENESS INFLUENCE ONTHE PROPERTIES OFTWO-DIMENSIONAL SPIN MODELS OFCONTINUOUS SYMMETRY
In this hapter the lattie �niteness in�uene on the properties of the two-dimensional XY and Heisenberg models is studied. In the ase of the 2D

XY model we are interested in the hange of the behaviour of a �nitesystem (already well studied in the undiluted ase) aused by quenhednonmagneti dilution. In a �nite 2D Heisenberg model the low temper-ature behaviour is still interesting even in the ontext of the undilutedmodel, sine it laks for researhes due to the ommon opinion that nophase transition an our in this model at nonzero temperature. Nev-ertheless, the Heisenberg model onsidered on a �nite 2D lattie exhibitsfeatures very similar to those of the 2D XY model. Our researh oversboth omputer simulations and analytial omputations. The main resultsof this hapter were published in [33, 34, 36℄



1054.1 Residual magnetization in a �nite 2D XYmodel with quenhed disorder4.1.1 Magnetization probability distribution funtionThe pair orrelation funtion exponent estimation in the Monte Carlo sim-ulations of Chapter 2 was based on the mean residual magnetization salingbehaviour. However, the very form of the residual magnetization distribu-tion in a system of a �nite size is of a great theoretial interest. As it wasmentioned in Chapter 1, in the undiluted 2D XY model this distributionis of a non-Gaussian universal form. In presene of disorder one an nat-urally expet some dependene of this distribution form on the dilutiononentration.Let us de�ne the instantaneous magnetization whih is a funtion ofthe mirosopi state of the system as the sum of all the spins devided bythe total number of lattie sites:
m =

1

N

∣∣∣∣∣
∑

r

crSr

∣∣∣∣∣ . (4.1)One should notie that within the above de�nition the total magnetiza-tion in the ground state is equal to the onentration of magneti sites cmultiplied by the absolute value of the magneti moment of a single spin(whih is hosen equal to one in our ase).The probability to observe the equilibrium system in a state with a par-tiular value of the magnetization (4.1) is given by the probability distribu-tion funtion Pconf(m) whih is obviously dependent on the on�gurationof disorder.The mean value of the magnetization de�ned in a usual way by the ther-modynami averaging operation with the diluted 2D XY model Hamilto-nian (2.9):
〈m〉 =

Tr
(
me−βH

)

Tr e−βH
, (4.2)



106an be alternatively written in terms of the magnetization probability dis-tribution funtion:
〈m〉 =

∫ 1

0

mPconf(m)dm . (4.3)We de�ne the p-th moment of magnetization as:
Mp ≡ 〈mp〉 =

Tr
(
mpe−βH

)

Tr e−βH
, (4.4)or, in terms of the magnetization probability distribution funtion:

Mp ≡ 〈mp〉 =

∫ 1

0

mpPconf(m)dm . (4.5)It is worth stating for omplete larity that the magnetization probabilitydistribution funtion Pconf(m) is a thermodynami quantity, i.e. it dependson the marosopi state of the system andm plays the role of a parameter.It beomes lear when writing the magnetization probability distributionfuntion of the quantity m through its moments [113℄:
Pconf(m) =

∫ ∞

−∞

dx

2π
eimx

∞∑

p=0

(−ix)p

p!
Mp . (4.6)Thus, the pairs of equations (4.2)/(4.4) and (4.3)/(4.5) are just alternativede�nitions of the same physial quantities.It is quite obvious that the mean magnetization and its moments areon�guration-dependent quantities, so to obtain their observable valuesone should average (4.2) and (4.4) over all possible realizations of disorder.Then, using the magnetization probability distibution funtion, they anbe written as:

〈m〉 =

∫ 1

0

mP (m)dm (4.7)and
Mp =

∫ 1

0

mpP (m)dm , (4.8)where P (m) = Pconf(m) is the on�gurationally averaged magnetizationprobability distribution funtion.



107The outputs of the Monte Carlo simulations mentioned in Chapter 2an be presented in the most expliit form by the magnetization probabilitydistribution funtion for eah realization of disorder (in those simulationswe used 1000 random disorder realizations). The proedure of on�gu-rational averaging of the magnetization probability distribution funtionsobserved in the Monte Carlo simulations is illustrated in �g. 4.1. Oneaverage urve P (m) is drawn on the basis of the urves Pconf(m).
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Figure 4.1: The magnetization probability distribution funtions obtainedfor 20 di�erent realizations of disorder in a system of the size L = 16 withonentration c = 0.95 of magneti sites at the temperature kBT/J =

0.1. The thik line represents the magnetisation probability distributionfuntion averaged over the twenty realizations of disorder.Probably the most remarkable features of the magnetization probabil-ity distribution funtion of the pure 2D XY model is its non-Gaussianform and universality in the sense of independene of its form on the sys-tem size and the ritial exponent η. Those features have been observedin omputer simulations as well as analytially [60, 62℄.Fig. 4.2 presents on�gurationally averaged simulation results for the
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Figure 4.2: The form of the magnetization probability distribution fun-tions averaged over 103 realizations of disorder (c = 0.95) at the tempera-tures kBT/J = 0.1 (T/TBKT(c) ≃ 0.12), 0.5 (T/TBKT (c) ≃ 0.60) and 0.9(T/TBKT (c) ≃ 1.07) for the system of the sizes L = 16, 32, 64.magnetization probability distribution funtion in the 2D XY model withfration of magneti sites c = 0.95 at three di�erent values of the temper-ature. The immediate onlusion is that the distribution peak (and thusthe mean value of m as well) dereases with the lattie size. The urvesfor lower temperatures show learly non-Gaussian harater just like in thease without dilution [60, 62℄.4.1.2 Ring funtionsAnother way to represent the magnetization probability distribution mea-sured in Monte Carlo simulations taking into aount also the orientationof the magnetization is to draw the ring funtion whih is obtained whenone plots in the plane (mx, my) (where mx, my are the two onponents ofthe magnetization vetor) the points orresponding to eah measurement(see �g. 4.3). In fat, the ring funtion is just a bit more detailed form of



109the magnetization probability distribution funtion.
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Figure 4.3: The ring funtions obtained for the system of the size L = 16with onentration c = 0.95 of magneti sites at the temperature (left toright) kBT/J = 0.1, 0.5, and 0.9. The outer rings (in red olor) representthe orrespondingm model without dilution.Sine the Wol� algorithm [31℄ that we use is a luster algorithm, di�er-ent measurement are pratially not orrelated in ontrast to the Metropo-lis algorithm where the measurements orrelate.We are interested in the temperature dependene of the ring funtion ofthe diluted 2D XY system of a �nite size with the given onentration ofnonmagneti impurities. For this purpose three di�erent ring funtions forthe three values of temperature: kBT/J = 0.1, 0.5 and 0.9, for a systemof the size L = 16 are plotted in �g. 4.3. The outer rings (in red olor)represent the undiluted system with analogous parameters.Sine we onsider the magnetization per site and not per spin (N in(4.1) is the total number of sites both magneti and nonmagneti), it isobvious that its mean value in the system without dilution will be greaterthan the orresponding value in the diluted system with the same param-eters. The stronger the dilution is, the smaller the radius of the mostprobable values region beomes. This feature is quite trivial and an beeasily eliminated by a proper normalization of magnetization for eah givendilution onentration, but the quenhed non-magneti dilution also initi-



110ates other muh more interesting features of the ring funtions.One of the most remarkable features is the dependene of the width ofthe ring funtion (or its variane) on the temperature. It is well seen in�g. 4.4 that the width grows as the temperature inreases and tends toa delta-funtion when T → 0. This feature is also well known from theMonte Carlo simulations and analytial researhes of the undiluted two-dimensional XY model [60, 62℄. The ring funtion of the diluted modelas well as of the pure one has a distint non-Gaussian form whih an benotied in the visible asymmetry density of the points in the regions insideand outside the peak.
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Figure 4.4: The ring funtion of the system of size L = 16 with onentra-tion c = 0.70 of magneti sites at temperature kBT/J = 0.1. The outerring represents the simulation of the analogous system without dilution.In �g. 4.3 the behaviours of the undiluted system and the system withonentration c = 0.95 of magneti sites seem to be allmost equivalent.But the dilution impat beomes more profound as the dilution onen-tration inreases. The ring funtion of the system of the size L = 16 atthe temperature kBT/J = 0.1 but with muh stronger dilution c = 0.70is presented in �g. 4.4. It should be ompared with the �rst plot on theleft in �g. 4.3 whih orresponds to the same temperature value. One an



111see that nonmagneti dilution essentially a�ets the distribution from: thepeak position as well as the variane. Thus, theoretial desription of suha behaviour is an interesting hallenge for the analyti theory.4.1.3 Mean magnetization and its moments in pres-ene of disorderIn Chapter 2 we used the residual magnetization saling behaviour (2.89)to estimate the pair orrelation funtion exponent of the diluted modelimpliitly understanding that this relation does not hange in preseneof disorder. In this setion we will show expliitly within the spin-waveapproximation and the perturbation theory proposed in Chapter 2 thatthe saling form (2.89) is valid indeed in the model with dilution.The magnetization probability distibution in presene of disorder dis-ussed in the previous setion also requires a theoretial desription, soalong with the mean magnetization value we will evaluate the moments ofmagnetization (whih allow to examine the distribution form) as well.For analyti treatment the magnetization (4.1) should be written inangle variables θr:
m =

1

N

∑

r

cr cos(θr − θ) , (4.9)where θ ≡ 1
N

∑
r θr is the arithmeti mean of θr for the entire system.Sine we are looking for observable physial quantities, we should av-erage the magnetization moments over all the possible realizations of dis-order:

Mp ≡ 〈mp〉 =
1

Np

∑

r1,...rp

〈
cr1 · · · crp cosψr1 · · · cosψrp

〉
,where the notation ψr = θr−θ was introdued. Note that the 1st moment,

M1 =
1

N

∑

r

〈cr cosψr〉 = 〈c0 cosψ0〉 ,



112is just the mean magnetization 〈m〉.Replaing the prudut of osines by a sum, the (n+1)-th moment anbe written as:
Mn+1 =

1

2nNn

∑

r1,...rn

∑

αi=±1

〈c0cr1 · · · cos (ψ0 +
∑n

i=1 αiψri)〉 . (4.10)The expression under the sign of a sum in (4.10) will be written in theFourier variables as:
〈c0cr1 · · · crn cos(ψ0 + α1ψr1 · · · +αnψrn)〉

=
〈
c0cr1 · · · crn cos 1√

N

∑
k (ηc

kθ
c
k + ηs

kθ
s
k)
〉with

ηc
k = 1 + α1 coskr1 + · · · + αn coskrn ,

ηs
k = − (α1 sinkr1 + · · · + αn sinkrn) . (4.11)Applying to (4.10) the expansion in the disorder on�guration inhomo-geneity parameter ∆ρ (analogous to (2.51)) and using the on�guratinalaverages (2.52), we get:

Mn+1 =
cn+1

2nNn

∑

r1,...rn

∑

αi=±1

〈cos (ψ0 +
∑n

i=1 αiψri)〉∗

×
[

1 − 1

βJ

(
1 − c

4c3
1

N2

∑

k,k′

gk,k′gk′,k
γk

+
1 − 3c+ 2c2

c4

×
(

1

2N

∑

k

1
γk

− 1

4N3

∑

k,k′,k′′

gk,k′gk′,k′′gk′′,k
1
γk

))

×
(
n+ 1 + 2

∑
i<j αiαj cosk(ri − rj)

) ]
, (4.12)where gk,k′ ≡ (γk+k′ − γk − γk′)/γk. Then, using (2.55), in the low-temperature limit one an write:

〈cos(ψ0 + α1ψr1 · · · +αnψrn)〉∗ ≈ 1 (4.13)
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− 1

4c2βJN

∑

k6=0

1
γk

(
n+ 1 + 2

∑
i<j αiαj cosk(ri − rj)

)
.Substituting the above expression into (4.12), it then beomes possible tosum it up with respet to αi using the obvious equalities:

∑

αi=±1

αi = 0 , α2
i = 1 .The (n+ 1)-th moment of magnetization then reads:

Mn+1 = cn+1

[
1 − n+ 1

βJ

(
1

4c2
1

N

∑

k6=0

1
γk

(4.14)
−1 − c

4c3
1

N2

∑

k,k′

gk,k′gk′,k
1
γk

+
1 − 3c+ 2c2

2c4

×
(

1

N

∑

k

1
γk

− 1

2N3

∑

k,k′,k′′

g−k,k′gk′,k′′gk′′,k
1
γk

))]
.In the limit N → ∞ the sums in (4.14) have the following asymptotibehaviour:

1

N

∑

k

1
γk

≃ const +
1

2π
lnN,

1

N2

∑

k

∑

k′

gk,k′gk′,k
1
γk

≃ const′ +
0.73

2π
lnN,

1

N3

∑

k,k′,k′′

g−k,k′gk′,k′′gk′′,k
1
γk

≃ const′′ − 0.27

2π
lnN .Now, in the low-temperature limit the p-th moment of magnetization anbe expressed in the form:

Mp ≈ cpN− p
4ηdil (4.15)with the exponent ηdil given by Eq. (2.79). The formula (4.15) an be alsowritten as:
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Mp ≈ M1

p
. (4.16)Sine any moment of magnetizationMp an be expressed trivially through

M1 in our approximation, there is no multifratality, and (4.16) does notreover the result of the work [62℄:
Mn = Mn

1


1 +

1

(βJ)2

n(n− 1)

16N2

∑

q6=0

1

γ2
q

+ ...


 .The reason of this is the fat that we have negleted in our derivationthe terms ontaining higher powers of the temperature, 1/(βJ), than one.In fat, our result (4.16) orresponds to a delta-funtion-like probabilitydistribution (zero variane) whih is true only the low-temperature limit.Nevertheless, the mean magnetization value predited by (4.15) with

p = 1:
〈m〉 ≈ cN− 1

4ηdil

, (4.17)supports the saling form (2.89) and aords with the Monte Carlo simu-lations.4.2 Quasi-long-range ordering in a �nite two-dimensional Heisenberg modelIn this setion we investigate the low-temperature behaviour of the pairorrelation funtion of a �nite size two-dimensional Heisenberg model. Ourresearh is based on the assumption that a �nite 2D Heisenberg modelpossesses some spontaneous magnetization, although it should vanish inthe thermodynami limit aording to the Mermin-Wagner-Hohenberg [10,11℄. Suh an assumption has quite reasonable argumentation: transition tothe ordered ground state (all spins in the same diretion) of a �nite lattie



115should be ontinuous. So, at su�iently low temperature the system mustexhibit some �nite magnetization whih inreases approahing T = 0.Aording to the assumption made, all the spins Sr = (Sx
r , S

y
r , S

z
r)standing in the Hamiltonian (1.1) of the two-dimensional Heisenberg modelof the size N = L× L with the ferromagneti nearest neighbours intera-tion, J(r− r′) = Jδ|r−r′|,a, (J > 0):

H = −1

2
J
∑

〈r,r′〉
(Sx

rS
x
r′ + Sy

rS
y
r′ + Sz

rS
z
r′) , (4.18)are pointing more less in the same diretion if the temperature is su�-iently small. This approximation whih is re�ered to hereafter simplyas the low-temperature approximation is learly more restriting than theordinary spin-wave approximation whih only assumes the nearest neigh-bours to be oriented in the same way.

x Sxr Sr
�(1)r �(2)r

Szr zr
SyryFigure 4.5: The angle variables θ(1)

r and θ(2)
r used to desribe the state ofthe spin Sr plaed at the site r.Let us pass to the angle oordinates θ(1)
r , θ(2)

r (see �g. 4.5) de�ned by



116the following relations to the Cartesian ones:
Sx

r = cos θ(1)
r cos θ(2)

r ,

Sy
r = sin θ(1)

r cos θ(2)
r ,

Sz
r = sin θ(2)

r , (4.19)where −π ≤ θ(1) < π, −π
2
≤ θ(2) < π

2
. The hosen variables are modi�edspherial oordinates ϕ, θ: θ(1)

r = ϕ, θ(2)
r = θ − π/2. Considering theangles θ(1)

r , θ(2)
r small at low enough temperatures, the salar produt ofthe two spins in (4.18):

Sx
rS

y
r′ + Sy

rS
y
r′ + Sz

rS
z
r′ = cos(θ(1)

r − θ
(1)
r′ ) cos(θ(2)

r − θ
(2)
r′ ) (4.20)

+
(
1 − cos(θ(1)

r − θ
(1)
r′ )
)

sin θ(2)
r sin θ

(2)
r′ ,an be expressed as:

Sx
1S

x
2 + Sy

1S
y
2 + Sz

1S
z
2 ≈ 1 − 1

2
(θ

(1)
1 − θ

(1)
2 )2 − 1

2
(θ

(2)
1 − θ

(2)
2 )2 , (4.21)and the Hamiltonian (4.18) takes the form

H = H0 +HXY
1 ({θ(1)}) +HXY

1 ({θ(2)}) , (4.22)where
HXY

1 ({θ}) =
1

4

∑

r

∑

r′

J(r− r′) (θr − θr′)
2 (4.23)is the 2D XY model Hamiltonian in the spin-wave approximation [16℄.

H0 is nothing more than a trivial shift in the energy sale.The spin pair orrelation funtion under the assumption of small valuesof θ(1)
r and θ(2)

r writes as:
G2(R) = 〈Sr · Sr+R〉 ≈

〈
cos(θ(1)

r − θ
(1)
r+R) cos(θ(2)

r − θ
(2)
r+R)

〉
. (4.24)where the brakets designate thermodynamial averaging:

〈...〉 =
1

Z
Tr (... e−βH), äå Z = Tr e−βH



117and
Tr ... =

∏

r

1

4π

∫ π

−π

dθ(1)
r

∫ π/2

−π/2

dθ(2)
r cos θ(2)

r ... . (4.25)Due to the separation of variables θ(1)
r and θ(2)

r in the integral in (4.24)the pair orrelation funtion an be written in the following form:
G2(R) = G

(1)
2 (R) ×G

(2)
2 (R) , (4.26)where

G
(1)
2 (R) =

1

Z1
(2π)−N

(∏

r′

∫ π

−π

dθ
(1)
r′

)
e−βHXY

1 ({θ(1)}) cos(θ(1)
r − θ

(1)
r+R) ,(4.27)and

G
(2)
2 (R) =

1

Z2
2−N

(∏

r′

∫ π/2

−π/2

dθ
(2)
r′ cos θ

(2)
r′

)
e−βHXY

1 ({θ(2)}) cos(θ(2)
r −θ(2)

r+R) .(4.28)
Z1 and Z2 appear from the separation of the variables θ(1)

r and θ(2)
r respe-tively in the partition funtion: Z = Z1Z2.Now, it is enough to evaluate the asymptoti behaviour of the funtions

G
(1)
2 (R) and G(2)

2 (R) in the limit R/a → ∞ to know the pair orrelationfuntion behaviour at large distanes. It is easy to notie that G(1)
2 (R)has the same form as the pair orrelation funtion of the 2D XY modelwhih asymptoti behaviour is well known. Thus, our task redues to theevaluation of G(2)

2 (R) in the limit R/a→ ∞. For this purpose we pass tothe Fourier variables:
θ(2)
r =

1

L

∑

k

eikrθk, θk =
1

L

∑

r

e−ikrθ(2)
r , (4.29)where r spans the sites of a square lattie of the size L × L, and k spansthe sites of the inverse lattie within the 1st Brillouin zone. Then, theHamiltonian (4.23) writes as:

HXY
1 ({θ}) = J

∑

k6=0

γkθkθ−k



118with γk ≡ 2 − cos kx − cos ky. The Jaobian of the transformation,
∏

r cos θ
(2)
r , in (4.28) an be replae in the low-temperature limit by theexpression exp

[
−1

2

∑
r(θ

(2)
r )2

] and written in the Fourier variables us-ing the equality: ∑r(θ
(2)
r )2 =

∑
k θkθ−k. The osine cos(θ

(2)
r − θ

(2)
r+R)in (4.28) an be represented in the Fourier variables as the real part of

exp
[

i
L

∑
k(e

ik(r+R) − eikr)θk
].So, (4.28) leads to a produt of the integrals of the type ∫ dθe−aθ2+bθwhih an be immediately alulated expanding the integration boundariesto in�nity (it is aeptable in the low-temperature limit). The integrationgives:

G
(2)
2 (R) = exp

(
− 1

βJN

∑

k

sin2 kR
2

γk + 1
2βJ

)
. (4.30)In order to obtain the expliit form of (4.30) as a funtion of temper-ature 1/(βJ) and distane R/a when its both arguments are su�ientlylarge, we expand γk for small k-s: γk ≃ k2/2 and replae the sum with anintegral in the polar oordinates (1

2kR = 1
2kR cosϕ ≡ z cosϕ):

I(R) ≡ 1

N

∑

k

sin2 kR
2

γk + 1
2βJ

=
1

2π2

∫ √
π

a
R

0

zdz

z2 + (R/a)2

4βJ

∫ 2π

0

dϕ sin2 (z cosϕ) .(4.31)In the limit (R/a)2

4βJ ≫ 1 sin2 (z cosϕ) an be replae by its mean valueover the integration domain, 1
2, whih leads to I(R) ≈ 1

2π ln(4πβJ). Inthe opposite ase, (R/a)2

4βJ ≪ 1, we hoose a �nite parameter ε < 1 in suha way that (R/a)2

4βJ /ε2 ≪ 1 and split the integration with respet to z in
I(R) into two parts: ∫ ε

0 +
∫ √

π

a
R

ε . The �rst part vanishes after the osineexpansion and term by term integration in the limiting ase we onsider.The seond part exhibits the following behaviour: 1
2π ln(R/a). So,

G
(2)
2 (R) ≃

{
(R/a)−

1
2πβJ for (R/a)2

4βJ ≪ 1;

(4πβJ)−
1

2πβJ for (R/a)2

4βJ ≫ 1 .
(4.32)We see that G(2)

2 (R) is either onstant with respet to R or equivalent



119to the 2D XY model pair orrelation funtion depending on the value of
(R/a)2

4βJ .Finally, substituting (4.32) into (4.26) we get the following pair orre-lation funtion behaviour for a �nite two-dimensional Heisenberg model atsu�iently low temperatures:
G2(R) ≃

{
(R/a)−2ηXY for (R/a)2

4βJ
≪ 1 ;

(4πβJ)−ηXY

(R/a)−ηXY for (R/a)2

4βJ ≫ 1 ,
(4.33)where ηXY is the exponent of the 2D XY model pair orrelation funtiondeay, Eq. (1.6).At this point we should larify whih of the two asymptoti forms ob-tained, (4.33), is physially orret. Though we onsider large distanes,the limit R/a → ∞ remains in fat pratially unrihable in a �nite sys-tem, sine its value is limited by the lattie size: R/a < L. On the otherhand, the lower the temperature is, the bigger the spontaneous magneti-zation value beomes, and thus the more reliable our approximation is. Sothe limit βJ → ∞ is our ase. This leads to the onlusion that it is thease (R/a)2

4βJ
≪ 1 in (4.33) whih is physially orret. So, we an laimthat in the low-temperature limit the pair orrelation funtion of a �nitetwo-dimensional Heisenberg model deays with the distane aording toa power law with the exponent two times greater that that of the 2D XYmodel:

G2(R) ≃ (R/a)−2ηXY

. (4.34)In order to hek the analytial result we have performed a series ofMonte Carlo simulations of the Heisenberg model on two-dimensional lat-ties of di�erent sizes at di�erent temperatures. The simulation was basedon the Wol� luster algorithm [31℄. The pair orrelation funtion exponent
η was obtained from the saling behaviour of the three physial quanti-ties: magnetization, M ∼ L− 1

2η(T ) (see �g. 4.6); pair orrelation funtion,
G2(L/2) ∼ L−η(T ); and magneti suseptibility: χ ∼ L2−η(T ) (see �g. 4.6).
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Figure 4.6: The Monte Carlo simulation results for the temperature be-haviour of the magnetization (left) and magneti suseptibility (right) ofthe two-dimensional XY (O(2)) (top) and Heisenberg (O(3)) (bottom)models on latties of di�erent sizes.The power law saling behaviour found in all three ases suggests abouta quasi-long-range-like ordering in a �nite 2D Heisenberg model. The lat-tie size varied in our simulations fromN = 8×8 toN = 256×256 for eahvalue of the temperature (see �g. 4.6). The estimates of the exponent η(T )obtained from the saling of di�erent quantities are plotted in �g. 4.7. Themajority of the experimental points omes from the magnetization mea-surements, sine reliable measurement of magneti suseptibility and pairorrelation funtion requires longer times of simulation. The temperaturerange of the omputer simulations was between 10−9 and 100.In spite of the restriting low-temperature approximation the result
η = 2ηXY seems to aord very well with the Monte Carlo simulations ofthe orresponding model in a wide range of temperatures. Only a few lastexperimental points on the high temperature side start to deviate fromthis predition.
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Figure 4.7: The omparison between the results for the exponent η ofthe two-dimensional Heisenberg model obtained in the Monte Carlo sim-ulations and analytially within the low-temperature approximation. Theorresponding exponent of the 2D XY model is plotted for omparison(dashed line).4.3 ConlusionsIn this setion several di�erent aspets of the lattie �niteness in�uene onthe well known properties of the two-dimensional spin models of ontinuoussymmetry were studied.Firstly, it was the residual spontaneous magnetization probability dis-tribution funtion researh in the 2D XY model with strutural disorder.We have investigated the probability distributions observed in the MonteCarlo simulations at di�erent values of the temperature and dilution on-entration presenting the results in the most expliit possible form: as ringfuntions (�g.4.3,4.4). Together with the Monte Carlo simulations analyt-



122ial alulations were taken in the spin-wave approximation. The resultsfor the mean magnetization and its moments obtained through the pertur-bation expansion in the disorder on�guration inhomogeneity parameterup to the third order support a saling of the magnetization with an expo-nent related to the pair orrelation funtion exponent (found in the sameapproximation), but annot explain the distribution variane dependeneon the dilution onentration observed in the Monte Carlo simulations.This a bit disappointing fat has plae beause of the neglet of terms ofhigher order powers of temperature.Seondly, basing on an assumption about quasi-long-range orderingexistene in a �nite (!) two-dimensional Heisenberg model at low enoughtemperatures, the asymptoti behaviour of the pair orrelation funtion ofspins was studied and appeared to be a power law deay with the exponenttwo times larger than the orresponding exponent of the 2D XY model(found in the SWA). Suh a result for the model whih in the thermo-dynami limit does not exhibit any ordering is a purely �nite-size e�et.The analyti result is reliably on�rmed in Monte Carlo simulations ofthe Heisenberg model realized for di�erent sizes in a wide interval of lowtemperatures.





CONCLUSIONS
Although the present thesis, devoted to the hanges in the behaviour of thetwo-dimensional spin models of ontinuous symmetry aused by quenhedstrutural disorder and lattie �niteness, does not pretend to give a om-pletely expliit answer to every question posed, but makes a profoundand diverse researh whih shifts the knowledge of the mentioned problemone step forward omparing to the situation desribed in the literatureoverview (Chapter 1).Let us remind brie�y the main results and onlusions of the researhwhih an be found in a more expliit form in Conlusions after the orre-sponding hapters.1. The pair orrelation funtion of the two-dimensional XY modelwith nonmagneti quenhed dilution was estimated in the spin-wave ap-proximation on the basis of the perturbation expansion in the disorder on-�guration inhomogeneity parameter. The behaviour observed is a powerlaw deay with distane (just like in the pure model) whih indiates aboutquasi-long-range ordering. However, the pair orrelation funtion exponentin a diluted model has a nontrivial dependene on the dilution onentra-tion, to be more spei� it inreases with the onentration of nonmagnetiimpurities. The result obtained from the perturbation expansion up to thethird order terms shows nie aordane with the Monte Carlo simulationsperformed on purpose to hek the reliability of the analytial approah.Analyti arguments in favor of the pair orrelation funtion self-averagingin the low-temperature phase were also presented.2. The analyti form of the interation between topologial defets (vor-



125ties) and nonmagneti impurities found in the phenomenologial Koster-litz-Thouless model is attrative (in agreement with other researhes of thisproblem [23,24℄) but advantageously di�ers by its orret lattie struturerepresentation. The result is generalized for an arbitrary number of topo-logial defets in the system.3. The form of the interation between nonmagneti impurities andtopologial defets was also investigated within the Villain model whihgives muh more appropriate desription that the phenomenologial Kos-terlitz-Thouless model. The diluted Villain model Hamiltonian was ob-tained in the low-temperature limit from the diluted 2D XY model Hamil-tonian aording to a sheme analogous to the one appliable in the purease [18℄. Along with the separate interations as �impurity-vorties� and�impurity-spin-waves� interation the Hamiltonian obtained desribes aombined interation between an impurity, topologial and spin-wave ex-itations of the ground state. The asymptoti form of the interationbetween an impurity and vorties oinides with the orresponding resultfound in the Kosterlitz-Thouless model. So, the two estimates obtained inthe two di�erent models desribing topologial defets support eah other.4. From the expressions for the interation energy of nonmagneti im-purities and topologial defets obtained both in the Villain and Kosterlitz-Thouless models an analytial estimate of the ritial temperature redu-tion due to nonmagneti dilution was made for the �rst time. The analytiresult aords to some extent with the available Monte Carlo phase dia-grams.5. The probability distribution funtions of the spontaneous magneti-zation in a �nite two-dimensional XY model with quenhed nonmagnetidilution observed in Monte Carlo simulations were represented in a formof ring funtion and showed nontrivial dependene on the onentrationof nonmagneti impurities. An important observation has been made thatthe width of these distributions inreases with the onentration of mag-



126neti sites.6. The analytial alulation of the mean spontaneous magnetization ina �nite 2D XY model with disorder within the spin-wave approximationleads to a power law dependene on the linear size of the system with anexponent two times less than the pair orrelation funtion exponent whihon�rms the saling relation proven for the pure model. An analogousestimation of the moments of magnetization unfortunately does not givethe desirable analytial desription of the probability distribution form de-pendene on the onentration beause of the neglet of higher powers oftemperature.7. The analytial result for the pair orrelation funtion of the two-dimensional Heisenberg model of �nite size obtained in the low-temperaturelimit shows power law deay (indiation of quasi-long-range ordering) withan exponent twie bigger than the analogous exponent (estimated in theSWA) of the 2D XY model. The Monte Carlo simulations of the 2DHeisenberg model for a variety of system sizes within a wide interval oflow temperatures supports the analytial result.
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