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qui je dédie ce travail.

ii



Liste de Publications

(1) On ergodic decomposition of p-adic polynomial dynamical systems, (avec

A.-H. Fan), prépublication.
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Résumé

Cette thèse est consacrée à l’étude de quelques aspects de la récurrence de trois

classes de systèmes dynamiques : systèmes dynamiques p-adiques polynomiaux,

systèmes topologiques ayant la propriété de spécification et système de Gauss

associé aux fractions continues.

Dans une première partie, on étudie d’abord les polynômes à coefficients

dans Zp d’ordre supérieur à 2, comme des systèmes dynamiques sur Zp. Nous

prouvons que pour un tel système, Zp est composé des composants minimaux et de

leurs bassins d’attraction. Pour tout polynôme quadratique sur Z2, nous exhibons

tous ses composants minimaux. On étudie également les polynômes localement

dilatants et transitifs. Nous montrons que la restriction d’un tel polynôme sur son

ensemble de Julia est conjugué à un sous-shift de type fini.

Dans une deuxième partie, nous prouvons que pour un système dynamique

compact ayant la propriété de spécification, l’entropie topologique de l’ensemble

des points génériques d’une mesure invariante est égale à l’entropie de la mesure.

En corollaire, nous établissons un principe variationnel pour le spectre d’entropie

topologique des moyennes de Birkhoff à valeurs dans un espace de Banach.

La dernière partie est consacrée à l’étude des fractions continues. Nous trou-

vons en s’appuyant sur la théorie de l’opérateur de Ruelle, les spectres multifrac-

tals complets de l’exposant de Khintchine et de l’exposant de Lyapunov, qui ne

sont ni concaves ni convexes. Notre résultat sur le spectre de Lyapunov complète

celui de Pollicott et Weiss. Nous avons aussi bien étudié les fractions continues

extrêmement non-normales et la fréquence des quotients partiels. Notre travail

sur la fréquence complète celui de Billingsley et Henningsen.

Mots clésµsystèmes dynamiques p-adiques, systèmes dynamiques topologiques,

fractions continues, minimalité, points génériques, analyse multifractale, exposants

de Khintchine et de Lyapunov
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Abstract

In this thesis, we study some aspects of recurrence in three classes of dy-

namical systems: p-adic polynomial dynamical systems, systems satisfying the

specification property and Gauss dynamics associated to continued fractions.

In the first part, we begin with the study of polynomials with coefficients

in Zp with order larger than 2 as dynamical systems on Zp. We prove that for

such a system, Zp is decomposed into minimal components and their attracting

basins. For any quadratic polynomial on Z2, we exhibit all its minimal compo-

nents. We then study transitive locally expanding polynomials. We prove that

such a polynomial, restricted to its Julia subset, is conjugate to a subshift of finite

type.

In the second part, we prove that for a dynamical system with specification

property, the topological entropy of the set of generic points of any invariant mea-

sure is equal to the entropy of the measure. Consequently, we obtain a variational

principle for the topological entropy spectrum of Banach valued Birkhoff ergodic

averages.

The last part is devoted to continued fractions. By applying the Ruelle op-

erator theory, we obtain the multifractal spectra of the Khintchine exponent and

Lyapunov exponent, which are neither concave nor convex. Our result on Lya-

punov spectrum completes that of Pollicott and Weiss. We have also well studied

the extremely non-normal continued fractions and the frequency of partial quo-

tients. Our work on the frequency completes that of Billingsley and Henningsen.

Key words: p-adic dynamical systems, topological dynamical systems, contin-

ued fractions, minimality, generic points, multifractal analysis, Khintchine expo-

nent, Lyapunov exponent.
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Chapter 1

Introduction

1.1 An overview of the thesis

Let X be an abstract space, G be a semigroup and Tt : X → X (t ∈ G) be

a family of transformations on X satisfying Ts+t = Ts ◦ Tt. Then Γ := {Tt}t∈G

defines a semigroup action of G on X. We call (X,Γ) a dynamical system. In

this thesis, we study some discrete dynamical systems, where the semigroup G is

generated by a single transformation T : X → X. In this case (X,Γ) will also be

denoted by (X,T ).

There are two ways to study dynamical systems: topological way and measure-

theoretic way, which correspond respectively to two theories: Theory of Topolog-

ical Dynamical Systems and Ergodic Theory.

In a topological dynamical system, the state space X is usually supposed

to be a compact space ( in the present thesis we will also study some noncom-

pact topological spaces) and T a homeomorphism or surjective continuous trans-

formation (in the present thesis, we will also consider some piecewise continuous

transformations). The study of topological dynamical systems concerns properties

like periodicity, recurrence, wandering, transitivity, minimality, mixing property,

chaotic property and so on. In the ergodic theory, the state space X is supposed

to admit a measurable structure and T is a measure-preserving transformation.

There are many concepts in the ergodic theory, which are similar to those in topo-

logical dynamical systems. Two of major results in the ergodic theory are Birkhoff

ergodic Theorem ([18], 1931) and Von Neumann’s mean ergodic theorem ([138],

1932).

There are also two ways to classify dynamical systems through topological

conjugacy or measure-theoretic conjugacy, which are related to two important

conjugate invariants: topological entropy and measure-theoretic entropy. The

measure-theoretic entropy was introduced into the ergodic theory by Kolmogorov
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([91], 1958) and the topological entropy was introduced by Adler, Konheim and

McAndrew ([1], 1965). Ornstein ([115], 1970) showed that measure-theoretic en-

tropy characterizes Bernoulli systems. A shortcoming of the entropy is that it can

not distinguish systems with zero entropy.

In this thesis we will focus on the study of the minimality and the chaotic

property of p-adic dynamical systems, on the study of the topological entropies of

sets of generic points in topological dynamical systems satisfying specification and

on the study of recurrence of Gauss dynamics associated to continued fractions.

The thesis is divided into three parts.

In the first part, we study iterations of a polynomial of degree larger than 2

with coefficients in the field Qp of p-adic numbers (p being a prime).

If the coefficients of the polynomial f are in the ring Zp of p-adic integers, i.e.

f ∈ Zp[x], then f : Zp → Zp is a 1-Lipschitz map and (Zp, f) becomes a compact

topological dynamical system with zero entropy. We will study the minimality of

the whole system (Zp, f) and the minimal subsystems of (Zp, f) when the whole

system (Zp, f) is not minimal. Remark that the minimality of f on a compact and

open invariant subset of Zp is equivalent to the ergodicity, uniquely ergodicity and

strictly ergodicity, with the normalized Haar measure as the invariant measure

(see Proposition 2.24).

One of our main theorems (Theorem 3.18) asserts that if (Zp, f) is a poly-

nomial dynamical system with f ∈ Zp[x] and deg f ≥ 2, then the space Zp is

decomposed into three parts:

Zp = A tB t C,

where A is the finite set (maybe empty) consisting of all periodic points of f ,

B =
⊔

iBi is the union of all (at most countably many) clopen invariant sets such

that each subsystem f : Bi → Bi is minimal, and each point in C (if any) lies in

the attracting basin of a periodic orbit or of a minimal component Bi.

According to the above result, the minimality of the whole system (Zp, f)

means that there is only one minimal component in B and A = C = ∅. Thus

we face two problems: one is determine the minimality of the system (Zp, f), the

other is to find the exact decomposition, especially all the components of B, when

(Zp, f) is not minimal.
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People have mainly worked on the first problem, which we will discuss in

Subsection 1.2.2. The second problem for the affine transformation has been solved

by Fan, Li, Yao and Zhou ([50]). This decomposition problem seems much more

difficult for higher order polynomials. In this thesis, we can solve the problem for

the system (Z2, f) where f ∈ Z2[x] is a quadratic polynomial (Theorem 3.23-3.30).

The other class of p-adic polynomial dynamical systems we would like to study

consists of transitive locally expanding polynomial dynamical systems in the field

Qp. Let f ∈ Qp[x]. Consider f : X → Qp where X ⊂ Qp is a compact open

set of Qp. We define the so-called Julia set Jf =
⋂∞

n=0 f
−n(X). It is clear that

f−1(Jf ) = Jf and then f(Jf ) ⊂ Jf . We are interested in the dynamical system

(Jf , f). If f is transitive and locally expanding, the system (Jf , f) is proved to

be conjugate to some subshift of finite type (Theorem 4.1). Actually the same

result holds for some more general p-adic dynamical systems in Qp called p-adic

repellers in Qp, which are not necessarily polynomial (Chapter 4).

In the rest parts of this thesis, we are concerned with interesting invariant

subsets in a dynamical system. These subsets are related to Birkhoff averages

of real or Banach valued functions. Their sizes are described either by Bowen’s

generalized topological entropy or by Hausdorff dimension.

Let (X,T ) be a dynamical system. In the cases we study, X is usually a

metric space and even compact, and T is continuous or piecewise continuous. Let

Φ : X → R be a real valued function. The Birkhoff averages of Φ are defined by

AnΦ(x) :=
1

n

n−1∑
j=0

Φ(T jx) (n ≥ 1).

We are interested in the level sets of the limit of Birkhoff averages of Φ:

XΦ(α) :=
{
x : lim

n→∞
AnΦ(x) = α

}
, α ∈ R ∪ {−∞,∞}.

We would like to use topological entropy and/or Hausdorff dimension to measure

the sizes of XΦ(α).

We are also interested in the set of divergent points

D := {x : the limit of AnΦ(x) does not exist},

and subsets of D defined by different asymptotic behaviors of AnΦ(x).

3



In the case XΦ(∞) 6= ∅, we consider finer structures of the set XΦ(∞). So, to

this end, we consider the level sets of fast Birkhoff averages of polynomial speed:

XΦ(α, β) :=

{
x : lim

n→∞

1

nβ

n−1∑
j=0

Φ(T jx) = α

}
(β > 1),

or of exponential speed:

XΦ(α, a) :=

{
x : lim

n→∞

1

an

n−1∑
j=0

Φ(T jx) = α

}
(a > 1).

The level sets of Birkhoff averages of a Banach-valued function Φ are also

studied (Theorem 5.2 and Theorem 5.3).

In the second part of the thesis (Chapter 5), we consider a topological dy-

namical system (X,T ), where X is a compact metric space and T : X → X is

a continuous transformation. We suppose that (X,T ) satisfies specification prop-

erty (see the definition in Subsection 1.3.2). Let B be a real Banach space and

B∗ its dual space. Let Φ : X → B∗ be a B∗-valued continuous function. Given

α ∈ B∗, we study the level sets XΦ(α) of the Birkhoff averages of Φ, where the

limit, limn→∞AnΦ(x), is in the sense of the weak star topology σ(B∗,B). The

topological entropies of the level sets XΦ(α) for α ∈ B∗ are determined by a

variational principle (Theorem 5.2 and Theorem 5.3). More significant is that a

system satisfying specification property is saturated in the sense that the topo-

logical entropy of the set of generic points with respect to an invariant measure

is equal to the measure-theoretic entropy of the measure (Theorem 5.1). This

is a converse theorem under specification of a Theorem due to Bowen [24]. We

illustrate our results by applying them to study the frequencies of blocks in the

dyadic development of real numbers.

The third part of the thesis (the last three chapters) is devoted to continued

fractions. We consider the Gauss transformation T on [0, 1) (for the definition

see Subsection 1.3.3). Define a1(x) = b1/xc, then an(x) = a1(T
n−1(x)) for n ≥

2. The an(x)’s are the partial quotients of continued fraction expansion of x =

[a1(x), a2(x), . . . ] ∈ Qc ∩ [0, 1].

In Chapter 6, the problem that we study corresponds to Φ(x) = log a1(x) or

log |T ′(x)|. We call γ(x) := limn→∞An log a1(x) the Khintchine exponent of x, if

4



the limit exists. We call λ(x) := limn→∞An log |T ′|(x) the Lyapunov exponent of

x, if the limit exists. The Hausdorff dimensions of the level sets of Khintchine

exponents and Lyapunov exponents, which are called Khintchine spectrum and

Lyapunov spectrum respectively, are obtained (Theorem 6.2 and Theorem 6.3). In

both cases of Khintchine exponents and Lyapunov exponents, we haveXΦ(∞) 6= ∅.
Thus we are led to study the level sets of fast Khintchine exponents and Lyapunov

exponents (Theorem 6.1).

In Chapter 7, we consider the frequencies of blocks of partial quotients (also

called words) in continued fractions. Let (Wi)i≥1, Wi ∈ N? be a sequence of all

words of finite length (in some fixed order), where N? stands for the set of all

finite words in NN. Let Φ(x) = (1Wi
(a1(x) · · · a|Wi|(x)))i≥1, where 1Wi

stands for

the indicator function of the word Wi. We are interested in the set of points such

that AnΦ(x) extremely oscillate. Denote by acc(AnΦ(x)) the set of accumulation

points of AnΦ(x) in the weak star topology of `∞. We study the set

F :=

x ∈ Qc ∩ [0, 1] : acc(AnΦ(x)) =
⋃

y∈Qc∩[0,1]

acc(AnΦ(y))

 .

We prove that dimH(F) = 1/2 (Theorem 7.2). We also prove that the Hausdorff

dimension of the set of extreme non-normal continued fractions defined by Olsen

([113]), which is a subset of F, is also 1/2 (Theorem 7.4). The Hausdorff dimension

of this set was previously conjectured to be 0.

In Chapter 8, we take Φ = (1[1], 1[2], . . . ), where 1[j] stands for the indicator

function of the cylinder [j] (i.e., the fundamental interval [1/(j+1), 1/j)). Here we

are interested in the frequencies of partial quotients. Let ~p = (p1, p2, . . . ) be a prob-

ability vector. We study the level set XΦ(~p), which is the set of points for which

the frequency of the digit j in the continued fraction expansion of x = [a1, a2, · · · ]
is equal to pj for each j ≥ 1. We compute the exact Hausdorff dimension of

XΦ(~p) (Theorem 8.1). Partial results were obtained by Billinsley and Henningsen.

The results as well as the methods are different from those in the study of the

Khintchine and Lyapunov exponents.

In the following we will detail the above presentation.
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1.2 p-adic dynamical systems

Before we present our results on p-adic dynamical systems in Subsections

1.2.2 and 1.2.3 , we start with some history remarks on p-adic numbers and p-adic

dynamical systems.

1.2.1 p-adic numbers and p-adic dynamical systems

The p-adic numbers were introduced by Hensel in 1897. Simply speaking,

the field of p-adic numbers Qp is the topological completion of the field Q with

respect to some non-Archimedean absolute value (p-adic absolute value | · |p). The

ring of p-adic integers Zp is the unique maximal ideal in Qp. In 1918, Ostrowski

([117]) proved that every non-trivial absolute value on Q is either equivalent to

the classical Archimedean absolute value or to one of the p-adic absolute value.

We can consider the algebraic extensions of Qp. The absolute value can also be

uniquely extended. However, any extension of finite order of Qp is not algebraically

closed. Thus the algebraic closure Qa
p of Qp is an infinite extension. But Qa

p

is not topologically complete. Fortunately, the topological completion of Qa
p is

algebraically closed. This ultimate field, denoted by Cp, is called the field of

complex p-adic numbers.

In 1987, Volovich ([139]) applied the p-adic numbers to establish the p-adic

string theory. The p-adic physical investigations then stimulated people’s high

interests in p-adic dynamical systems. Earlier work of Oselies and Zieschang ([116])

appearing in 1975, concerned with the continuous automorphisms of the ring of

p-adic integers Zp which are the multiplication transformations ax with a a unit

in Zp. It seems to be the first study of p-adic dynamical systems. With the

aim of studying the distribution of Fibonacci numbers, Coelho and Parry ([34])

also studied these multiplications. The power transformations xn were studied

by Gundlach, Khrennikov and Lindahl ([63]). The first work about the complex

p-adic dynamical systems might be due to Herman and Yoccoz ([69]) in 1983. In

1994, Lubin ([99]) studied the iteration of analytic p-adic maps.

In the following, we will discuss two classes of transformations, 1-Lipschitz

transformations and expansive transformations.
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1.2.2 Minimality of polynomial dynamical systems on Zp

Let f ∈ Zp[x] be a polynomial with coefficients in Zp. It is a 1-Lipschitz

transformation from Zp to Zp. We consider the compact topological dynamical

system (Zp, f).

As we have mentioned, we will prove that

Theorem 1.1 (Theorem 3.18). Let f ∈ Zp[x] with deg f ≥ 2. We have the

following decomposition

Zp = A
⊔
B
⊔
C

where A is the finite set consisting of all periodic points of f , B =
⊔

iBi is

the union of all (at most countably many) clopen invariant sets such that each

subsystem f : Bi → Bi is minimal, and each point in C lies in the attracting basin

of a periodic orbit or of a minimal subsystem.

Two problems arise:

Problem 1. Under what conditions, the decomposition of (Zp, f) consists of only

one piece of component in B and A = C = ∅ i.e., the whole system (Zp, f) is

minimal ?

Problem 2. If (Zp, f) is not minimal, how to find the exact and complete decom-

position?

Concerning the first problem, a general criterion of minimality was given by

Larin ([95]). He showed that for p ≥ 5, the system (Zp, f) is minimal if and only

if f is minimal modulo p2; and for p = 2 or 3, the system (Zp, f) is minimal if and

only if f is minimal modulo p3.

In a recent work, Chabert, Fan and Fares ([33]) obtained a criterion of mini-

mality for 1-Lipschitz maps on Legendre sets in any discrete valuation domain.

There exist practical criteria of minimality by using the coefficients of the

polynomial. Larin ([95]) showed that when p = 2, the system (Z2, f) where

f(x) =
∑
akx

k ∈ Z2[X] is minimal if and only if

a0 ≡ 1 (mod 2),

a1 ≡ 1 (mod 2),

2a2 ≡ a3 + a5 + · · · (mod 4),

a2 + a1 − 1 ≡ a4 + a6 + · · · (mod 4).
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For general polynomials in the case of p ≥ 3, people don’t known any necessary

and sufficient condition for minimality by using the coefficients.

However, for special classes of polynomials, there are complete solutions. For

example, it is proved (Larin [95], Fan, Li, Yao and Zhou [50]) that an affine map

f(x) = ax+ b with a, b ∈ Zp, is minimal if and only if

(1) a ≡ 1 (mod p) when p ≥ 3 or a ≡ 1 (mod p2) when p = 2,

(2) b 6≡ 0 (mod p).

For a quadratic polynomial f(x) = ax2+bx+c with a, b, c ∈ Zp, an exercise in

Knuth ([89], p.32, Exercise 8), together with Larin’s general criterion cited above

or Theorem 2.25, implies that the system (Zp, f) is minimal if and only if

(1) a ≡ 0 (mod p), b ≡ 1 (mod p), c 6≡ 0 (mod p), if p ≥ 5,

(2) a ≡ 0 (mod 9), b ≡ 1 (mod 3), c 6≡ 0 (mod 3) or

ac ≡ 6 (mod 9), b ≡ 1 (mod 3), c 6≡ 0 (mod 3), if p ≥ 3.

(3) a ≡ 0 (mod 2), a+ b ≡ 1 (mod 4) and c 6≡ 0 (mod 2), if p = 2.

It is well-known that any polynomial minimal system (Zp, f) is topologically

conjugate to the adding machine (Zp, x + 1), and the conjugacy is an isometry.

See, for example, [33], where Chabert, Fan and Fares obtained a more general

result on the minimality of a 1-Lipschitz map restricted on an invariant clopen set

in any discrete valuation domain).

Coelho and Parry ([34]) studied the minimality of the multiplication f(x) :=

ax (a ∈ Zp) on the group of units U := {x ∈ Zp : |x|p = 1} for p ≥ 3 instead of on

the whole ring Zp. Here and in the follows | · |p is the p-adic absolute value. They

showed that for a ∈ U, (U, f |U) is minimal if and only if a (mod p2) generates

the multiplicative group (Z/p2Z)×. For p = 2, Fan, Li, Yao and Zhou ([50])

showed that the system (U2, f |U2) where U2 := 1 + 4Z2, is minimal if and only if

±a (mod 8) generates the multiplicative group (Z/8Z)×.

Gundlach, Khrennikov and Lindahl ([63]) studied the minimality of f(x) =

xn (n ≥ 1) on each ball 1 + pkZp, k ≥ 1, a subgroup of U. After the work [63],

Anashin ([5]) showed that for p ≥ 3, and f(x) = xn + pk+1u(x) with k ≥ 2 and

u ∈ Zp[X], the transformation f restricted on 1 + pkZp is minimal if and only if n

is a generator of (Z/p2Z)×. Fan, Li, Yao and Zhou ([50]) showed that the system
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(U1, f |U1) where f(x) = axn (a ∈ Zp, n ≥ 1) and U1 = 1 + pZp is topologically

conjugate to the system (Zp, g) where g(x) = nx + Log(a)/Log(1 + p), and the

logarithmic function is defined as the classical one:

Log(1 + x) :=
∞∑

n=1

(−1)n+1x
n

n
, (|x|p < 1).

Now let us look at the second problem to which the thesis will bring some

contribution. Fan, Li, Yao and Zhou ([50]) gave an explicit and complete picture

of the minimal decomposition of Zp (p ≥ 2) for affine transformations. This

was one of our motivations to study polynomial of higher degree. We recall here

some part of their results in the case p = 2. Let f(x) = ax (a ∈ Z2). Denote

Un = 1 + 2n+1Z2 (n ≥ 0). Then we have Zp = A tB t C where A = {0} consists

of the unique fixed point, C is empty and B =
⋃

n≥0 2nU. Furthermore, each

(2nU, f |2nU) (n ≥ 1) is conjugate to (U, f |U). About the subsystem (U, f |U), we

have

(1) if a ∈ U2, then U is decomposed into |a− 1|−1
2 /2 minimal components,

(2) if a ∈ U\U2, then U is decomposed into |a+1|−1
2 /2 minimal components.

It seems much more difficult to study the decomposition for polynomials of

higher order, even for quadratic polynomials. However, we can exploit the ideas

from Desjardins and Zieve ([40]), and study the minimal decomposition of general

polynomials (Theorem 1.1).

In Chapter 3, we will give a complete picture of the minimal decomposition of

any 2-adic quadratic polynomial dynamical system. As we will see, we can reduce

the problem to the quadratic polynomials of the following form

x2 − λ, x2 + bx, x2 + x− d,

where λ ∈ Z2, b ≡ 1 ( mod 2) and
√
d 6∈ Z2. The obtained results are stated in

Theorems 3.22-3.30. We state here only one of them.

Theorem 1.2 (Theorem 3.23). Any 2-adic quadratic polynomial dynamical system

which has only one fixed point in Z2 is topologically conjugate to the transformation

x2 + x on Z2. For the dynamical system (Z2, x
2 + x), we have

(1) the set 1 + 2Z2 is mapped into 2Z2.
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(2) the set 2Z2 is decomposed into

2Z2 = {0}
⊔(⊔

n≥2

2n−1 + 2nZ2

)
,

and for each n ≥ 2, 2n−1 + 2nZ2 consists of 2n−2 pieces of minimal compo-

nents:

2n−1 + t2n + 22n−2Z2, t = 0, . . . , 2n−2 − 1.

In this case, A = {0}, C = 1 + 2Z2 and B = 2Z2 consists of infinite minimal

components 2n−1 + t2n + 22n−2Z2 (n ≥ 2, 0 ≤ t < 2n−2).

In [33], Chabert, Fan and Fares recently proved that minimal sets of any 1-

Lipschitz map are Legendre sets. We will prove that minimal sets of a polynomial

are special Legendre sets. A set E ⊂ Zp is a Legendre set if for any s ≥ 1 and any

x ∈ E/psZp, the number

qs := Card
{
y ∈ E/ps+1Zp : y ≡ x mod ps

}
is independent of x ∈ E/psZp. Let

ps := q1q2 · · · qs (∀s ≥ 1).

It is clear that ps = Card E/psZp. We call (ps)s≥1 the structure sequence of E.

Consider the inverse limit

Z(ps) := lim
←

Z/psZ.

This is a profinite group, usually called an odometer, and the map τ : x 7→ x + 1

is called the adding machine on Z(ps).

Chabert, Fan and Fares proved the following theorem.

Theorem 1.3 ([33]). Let E be a clopen set in Zp and f : E → E be a 1-Lipschitz

map. If the dynamical system (E, f) is minimal, then f is an isometry, E is a

Legendre set and the system (E, f) is conjugate to the adding machine on (Z(ps), τ)

where (ps) is the structure sequence of E. On the other hand, on any Legendre set

there exists at least one minimal map.

We improve the above result in the case of polynomials by giving more infor-

mation on the structure sequences of polynomial minimal components.
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Theorem 1.4 (Theorem 3.21). Let f ∈ Zp[x] with deg f ≥ 2. If E is a minimal

clopen invariant set of f , then f : E → E is conjugate to the adding machine on

an odometer Z(ps), where

(ps) = (k, kd, kdp, kdp2, · · · )

with some k ∈ N, k ≤ p and d|(p− 1).

In [57], Fan and Wang asked for the form of Legendre sets on which there

is a minimal polynomial of given degree. The above theorem, which gives all

the possible forms of Legendre sets on which there are minimal polynomials with

coefficients in Zp, partially answers Fan and Wang’s question.

1.2.3 p-adic repellers in Qp

Now let us consider a class of expansive transformations on the field Qp. They

are quite different from the polynomial dynamical systems on Zp that we have just

studied. They exhibit chaotic behaviors.

Let f : X → Qp be a map from a compact open set X of Qp into Qp. We

assume that (i) f−1(X) ⊂ X; (ii) X =
⊔

i∈I Bp−τ (ci) can be written as a finite

disjoint union of balls of centers ci and of the same radius p−τ (with some τ ∈ Z)

such that for each i ∈ I there is an integer τi ∈ Z satisfying

|f(x)− f(y)|p = pτi|x− y|p (∀x, y ∈ Bp−τ (ci)). (1.1)

For such a map f , define its Julia set by Jf =
⋂∞

n=0 f
−n(X). It is clear that

f−1(Jf ) = Jf and then f(Jf ) ⊂ Jf . We are interested in the dynamical system

(Jf , f).

The triple (X, Jf , f) is called a p-adic weak repeller if all τi in (1.1) are

nonnegative, but at least one is positive. We call it a p-adic repeller if all τi in

(1.1) are positive. For convenience, we will write ‖f‖ = pτi for any map having

the property (1.1), which could be called the expanding ratio (resp. contractive

ratio) of f on the ball Bp−τ (ci) when τi ≥ 0 (resp. τi ≤ 0).

We have the following theorem.

Theorem 1.5 (Theorem 4.1). Any transitive p-adic weak repeller (X, Jf , f) is

isometrically conjugate to some subshift of finite type endowed with a suitable

metric.
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For the definitions of transitivity of the p-adic weak repeller and of the sub-

shift, see Chapter 4.

Many polynomials in Qp[X] belong to the class of p-adic weak repellers. One

class is of the form f(x) = p−mP (x) ∈ Qp[x] with m > 0 and P ∈ Zp[x] satisfying

|P (x)|p ≥ |x|p for all x 6∈ Zp and f ′(x) 6= 0 for all x ∈ X (by Theorem 4.2). Some

concrete examples are fully examined at the end of Chapter 4.

In the literature, Thiran, Verstegen and Weyers [137] and Dremov, Shabat

and Vytnova [41] studied the chaotic behavior of p-adic quadratic polynomial

dynamical systems. Woodcock and Smart [147] proved that the so-called p-adic

logistic map
xp − x

p
: Zp → Zp

is topologically conjugate to the full shift on the symbolic system with p symbols.

1.3 Entropy and Hausdorff dimension in dynamical

systems

In the other parts of this thesis, we are concerned with following subjects,

each of which corresponds to one chapter:

(1) Entropies of level sets of Birkhoff averages for continuous functions in a

compact topological dynamical system with specification property;

(2) Hausdorff dimensions spectrum (from the multifractal point of view) of

Khintchine exponents and Lyapunov exponents in continued fractions;

(3) Sizes of some sets of non-normal continued fractions;

(4) Frequency of partial quotients (described by Besicovitch-Eggleston sets) in

continued fractions.

These studies are tightly related to Multifractal Analysis. So, we begin with some

historic remarks on the study of Birkhoff averages and multifractal analysis.

1.3.1 Birkhoff averages and multifractal analysis

Let (X,T ) be a dynamical system with X a metric space and T a piecewise

continuous transformation. Let Φ be a continuous function taking values in R or
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in some real Banach space. As mentioned in Section 1.1, we are interested in level

sets XΦ(α) of Birkhoff averages of Φ, subsets of the set D of divergent points, and

level sets of fast Birkhoff averages, XΦ(α, β) and XΦ(α, a) if XΦ(∞) 6= ∅. We will

adopt two concepts, the entropy and Hausdorff dimension to measure the sizes of

these sets.

As we know, entropies describe the complexity of dynamical systems. There

are two kinds of entropies: measure-theoretic entropy and topological entropy. In

1973, Bowen ([24]) generalized the concept of topological entropy to any subset of

the state space.

Denote respectively by htop(A) and dimH(A) the topological entropy and

Hausdorff dimension of a set A. The functions f(α) := htop(XΦ(α)) and g(α) :=

dimH(XΦ(α)) are called multifractal spectra of Φ.

In many well known cases, the spectra f(α) and g(α) obey the following

formula (called variational principle)

htop(XΦ(α)) = sup

{
hµ : µ invariant and

∫
Φdµ = α

}
.

dimH(XΦ(α)) = sup

{
hµ∫

log |T ′|(x)dµ
: µ invariant and

∫
Φdµ = α

}
.

In the literature, Fan and Feng ([48, 49]) proved a variational principle when

(X,T ) is a mixing subshift of finite type and Φ is a continuous Rd-valued function

valued. Barreira, Saussol and Schmeling ([9]) obtained a variational principle for

Hölder functions. Barreira and Saussol ([8]) established a variational principle in

the case where T is a transformation with upper semi-continuous entropy, and

Φ is a function with a unique equilibrium. The case where T is C1+δ-conformal

mixing transformation and Φ is continuous was studied by Feng, Lau and Wu

([58]). Takens and Verbitzkiy ([135]) generalized the variational principle to sys-

tems satisfying specification.

Concerning the subsets of the set D of divergent points, Barreira and Schmel-

ing ([7]) showed that for mixing subshifts of finite type and for a Hölder continuous

Φ which is not cohomologous to zero, the set D admits full entropy and Hausdorff

dimension. Fan, Feng and Wu ([49]) proved that on a mixing subshift of finite

type, if the Birkhoff averages of the continuous function Φ do not have the same
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limit for all points, then the set D has full Hausdorff dimension. Olsen([114])

considered the set of points whose accumulation points of Birkhoff average are

prescribed. He obtained a variational principle for its Hausdorff dimension on a

subshift space. Pfister and Sullivan ([123], [124]) studied the Billingsley dimension

and topological entropy for the sets of Olsen type in both shift space and β-shift

space.

It seems that level sets of fast Birkhoff averages XΦ(α, β) and XΦ(α, a) have

not been examined before. Because in many classical cases, the set XΦ(∞) is

empty (for example, the Birkhoff averages of a continuous function Φ in a subshift

space). However, there are some other kinds of fast Birkhoff averages studied by

Fan and Schmeling ([56]) in finite symbolic dynamical systems. They considered

the points converging with different velocities, for example,

XΦ(α, a, β) :=

{
x : AnΦ(x)−

∫
Φdµ ∼ anβ−1

}
a ∈ R, 0 ≤ β < 1,

where un ∼ vn means un/vn → 1. They found that XΦ(α, a, β) admits the same

Hausdorff dimension as XΦ(α).

1.3.2 Level sets of Birkhoff averages in saturated systems

In this subsection we would like to state the main results of the second part

of the thesis.

Let T : X → X be a continuous transformation on a compact metric space X

with metric d. Let B be a real Banach space and B∗ its dual space. We consider

B∗ as a locally convex topological space with the weak star topology σ(B∗,B).

For any B∗-valued continuous function Φ : X → B∗, we consider the level sets

XΦ(α), α ∈ B∗ of the Birkhoff average AnΦ(x).

Denote by Minv the set of all T -invariant probability Borel measures on X.

For µ ∈Minv, the set Gµ of µ-generic points is defined by

Gµ :=

{
x ∈ X :

1

n

n−1∑
j=0

δT jx
w∗
−→ µ

}
,

where
w∗
−→ stands for the weak star convergence of the measures.

A dynamical system (X,T ) is said to be saturated if for any µ ∈ Minv, we

have htop(Gµ) = hµ.
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Bowen ([24]) proved that on any compact dynamical system, we have htop(Gµ) ≤
hµ for any µ ∈ Minv. So, saturatedness means that Gµ is of optimal topological

entropy.

A dynamical system (X,T ) is said to satisfy the specification property if for

any ε > 0 there exists an integer m(ε) ≥ 1 having the property that for any integer

k ≥ 2, for any k points x1, . . . , xk in X, and for any integers

a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk

with ai − bi−1 ≥ m(ε) (∀2 ≤ i ≤ k), there exists a point y ∈ X such that

d(T ai+ny, T nxi) < ε (∀ 0 ≤ n ≤ bi − ai, ∀1 ≤ i ≤ k).

The specification property was introduced by Bowen ([24]) who required that

y is periodic. But the present day tradition doesn’t require this. The specification

property implies the topological mixing. Blokh ([19]) proved that these two prop-

erties are equivalent for continuous interval transformations. Mixing subshifts

of finite type satisfy the specification property. In general, a subshift satisfies

the specification if for any admissible words u and v there exists a word w with

|w| ≤ k (some constant k) such that uwv is admissible. For β-shifts defined by

Tβx = βx ( mod 1), there is only a countable number of β’s such that the β shifts

admit Markov partition (i.e. subshifts of finite type), but an uncountable number

of β’s such that the β-shifts satisfy the specification property ([132]). For basic

properties of systems satisfying specification property, we recommend the readers

the book of Denker, Grillenberger and Sigmund ([39]).

We obtain the following theorem.

Theorem 1.6 (Theorem 5.1). A system satisfying specification property is satu-

rated.

Let MΦ(α) = {µ ∈Minv :
∫

Φdµ = α} where
∫

Φdµ denotes the vector-

valued integral in Pettis’ sense. We also prove the following theorem.

Theorem 1.7 (Theorem 5.2). Suppose that the dynamical system (X,T ) is satu-

rated. Then
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(a) if MΦ(α) = ∅, we have XΦ(α) = ∅;
(b) if MΦ(α) 6= ∅, we have

htop(XΦ(α)) = sup
µ∈MΦ(α)

hµ.

As application, we study the frequencies of blocks in the base-2 expansion

of a real number. Except for a countable set, each t ∈ [0, 1] has a unique base-2

expansion, t =
∑∞

n=1
tn
2n (tn ∈ {0, 1}). Let k ≥ 1. Write 0k for the block of k

consecutive zeroes and define the 0n-frequency of t as the limit (if exists)

f(t, k) = lim
n→∞

1

n
]{1 ≤ j ≤ n : tjtj+1 · · · tj+k−1 = 0k}.

Let (a1, a2, · · · ) be a sequence of non-negative numbers. We denote by S(a1, a2, · · · )
the set of all numbers t ∈ [0, 1] such that f(t, k) = ak for all k ≥ 1. We prove

Theorem 1.8 (Theorem 5.4). The set S(a1, a2, · · · ) is non-empty if and only if

1 = a0 ≥ a1 ≥ a2 ≥ . . . ; ai − 2ai+1 + ai+2 ≥ 0 (i ≥ 0). (1.2)

Under the above condition (1.2), we have

htop(S(a1, a2, · · · )) = −h(1− a1) +
∞∑

j=0

h(aj − 2aj+1 + aj+2) (1.3)

where h(x) = −x log x.

The rest of this introduction is devoted to present our works on continued

fractions.

1.3.3 Khintchine and Lyapunov Spectra in continued fractions

It is known that the continued fraction of a real number can be generated by

the Gauss transformation T : [0, 1) → [0, 1) defined by

T (0) := 0, T (x) :=
1

x
(mod 1), for x ∈ (0, 1). (1.4)

Every irrational number x in [0, 1) is uniquely expanded as an infinite expansion

of the form

x =
1

a1(x) +
1

a2(x) +
. . . + 1

an(x) + T n(x)

=
1

a1(x) +
1

a2(x) +
1

a3(x) +
. . .

(1.5)

16



where a1(x) = b1/xc and an(x) = a1(T
n−1(x)) for n ≥ 2 are partial quotients of

x (bxc denoting the integral part of x). For simplicity, we will denote the second

term in (1.5) by [a1, a2, · · · , an + T n(x)] and the third term by [a1, a2, a3, · · · ].

For any x ∈ [0, 1) with its continued fraction (1.5), we define its Khintchine

exponent γ(x) and Lyapunov exponent λ(x) respectively by

γ(x) := lim
n→∞

1

n

n∑
j=1

log aj(x) = lim
n→∞

1

n

n−1∑
j=0

log a1(T
j(x)),

λ(x) := lim
n→∞

1

n
log
∣∣∣(T n)′(x)

∣∣∣ = lim
n→∞

1

n

n−1∑
j=0

log
∣∣∣T ′(T j(x))

∣∣∣,
if the limits exist. The Khintchine exponent of x stands for the average (geometric)

growth rate of the partial quotients an(x), and the Lyapunov exponent, which is

extensively studied from dynamical system point of view, stands for the expanding

rate of T . They are both Birkhoff averages.

The fact that the sets {x : γ(x) = ∞} and {x : λ(x) = ∞} are nonempty

inspires our study of fast Birkhoff averages. Let ϕ : N → R+. Assume that

limn→∞
ϕ(n)

n
= ∞. The fast Khintchine exponent and fast Lyapunov exponent of

x ∈ [0, 1], relative to ϕ, are respectively defined by

γϕ(x) := lim
n→∞

1

ϕ(n)

n∑
j=1

log aj(x) = lim
n→∞

1

ϕ(n)

n−1∑
j=0

log a1(T
j(x)),

λϕ(x) := lim
n→∞

1

ϕ(n)
log
∣∣∣(T n)′(x)

∣∣∣ = lim
n→∞

1

ϕ(n)

n−1∑
j=0

log
∣∣∣T ′(T j(x))

∣∣∣.
For real numbers ξ, β ≥ 0, we are interested in the level sets of Khintchine expo-

nents and Lyapunov exponents:

Eξ := {x ∈ [0, 1) : γ(x) = ξ}, Fβ := {x ∈ [0, 1) : λ(x) = β},

and the level sets of fast Khintchine exponents and fast Lyapunov exponents:

Eξ(ϕ) := {x ∈ [0, 1) : γϕ(x) = ξ}, Fβ(ϕ) := {x ∈ [0, 1) : λϕ(x) = β}.

The Khintchine spectrum and the Lyapunov spectrum are the dimensional

functions:

t(ξ) := dimEξ t̃(β) := dimFβ.
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Functions

tϕ(ξ) := dimEξ(ϕ) t̃ϕ(β) := dimFβ(ϕ)

are called the fast Khintchine spectrum and the fast Lyapunov spectrum relative

to ϕ.

It should be noticed (see Billingsley [16] and Walters [140]) that the trans-

formation T is measure-preserving and ergodic with respect to the Gauss measure

µG defined by

dµG =
dx

(1 + x) log 2
.

An application of Birkhoff ergodic theorem yields that for Lebesgue almost all

x ∈ [0, 1),

γ(x) = ξ0 =

∫
log a1(x)dµG = 2.6854...

λ(x) = λ0 =

∫
log |T ′(x)|dµG =

π2

6 log 2
= 2.37314....

Here ξ0 is called the Khintchine constant and λ0 the Lyapunov constant. Both

constants are relative to the Gauss measure.

We can determine the multifractal spectra t(·), t̃(·), tϕ(·), t̃ϕ(·).

For the fast spectra tϕ(·), t̃ϕ(·), we prove

Theorem 1.9 (Theorem 6.1). If (ϕ(n+ 1)− ϕ(n)) ↑ ∞ and lim
n→∞

ϕ(n+1)
ϕ(n)

:= b ≥ 1,

then Eξ(ϕ) = F2ξ(ϕ) and dimEξ(ϕ) = 1/(b+ 1) for all ξ ≥ 0.

For the Khintchine spectrum t(·), we have

Theorem 1.10 (Theorem 6.2). Let ξ0 =
∫

log a1(x)dµG(x). For ξ ≥ 0, the

Hausdorff dimension t(ξ) of the set Eξ has the following properties

1) t(ξ0) = 1, t(+∞) = 1/2.

2) t′(ξ) < 0 for all ξ > ξ0, t
′(ξ0) = 0 and t′(ξ) > 0 for all ξ < ξ0.

3) t′(0−) = +∞, t′(+∞) = 0.

4) t′′(ξ0) < 0, but t′′(ξ1) > 0 for some ξ1 > ξ0. So t(ξ) is neither convex nor

concave.
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0

1
2

t(ξ)

1

ξ0 ξ

Khintchine spectrum

For Lyapunov spectrum t̃(·), we have

Theorem 1.11 (Theorem 6.3). Let λ0 =
∫

log |T ′(x)|dµG(x) and γ0 = 2 log 1+
√

5
2

.

For any β ∈ [γ0,∞), the Hausdorff dimension t̃(β) of the set Fβ has the following

properties

1) t̃(λ0) = 1, t̃(+∞) = 1/2.

2) t̃′(β) < 0 for all β > λ0; t̃
′(λ0) = 0 and t̃′(β) > 0 for all β < λ0.

3) t̃′(γ0−) = +∞, t̃′(+∞) = 0.

4) t̃′′(λ0) < 0, but t̃′′(β1) > 0 for some β1 > λ0, i.e., t̃(β) is neither convex

nor concave.

0

1
2

t̃(β)

1

γ0 λ0 β

Lyapunov spectrum
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It should be noticed that the non-convexity shows a new phenomenon for the

multifractal analysis in our settings.

For a better understanding of our motivation, we would like to review some

classical works.

It was known to E. Borel ([20]) in 1909 that for Lebesgue almost all x ∈ [0, 1),

there exists a subsequence {anr(x)} of {an(x)} such that anr(x) → ∞. A more

explicit result due to Borel-Bernstein (see [14, 21, 22]) is the 0-1 law which hints

that for almost all x ∈ [0, 1], an(x) > ϕ(n) holds for infinitely many n’s or finitely

many n’s according as
∑
n≥1

1
ϕ(n)

diverges or converges. Then it arose a natural

question to quantify the exceptional sets in terms of Hausdorff dimension. The

first published work on this aspect was due to Jarnik ([73] in 1928) who was

concerned with the set E of continued fractions with bounded partial quotients

and with the sets E2, E3, · · · , where Eα is the set of continued fractions whose

partial quotients do not exceed α. He successfully got that the set E is of full

Hausdorff dimension, but he didn’t find the exact dimensions of E2, E3, · · · . Later,

lots of works were done to estimate dimE2, including those of Good ([62]), Bumby

([29]), Hensley ([67], [68]), Jenkinson and Pollicott ([74]), Mauldin and Urbański

([105]) and references therein. Up to now, the optimal approximation on dimE2

is given by Jenkinson ([75]) in 2004:

dimH E2 = 0.531280506277205141624468647368471785493059109018398779 · · ·

which is accurate up to 54 decimal places. Other works which concern the Haus-

dorff dimensions of exceptional sets in continued fractions are Hirst [70, 71], Cusick

[37], Moorthy [110], Luczak [101], Kesseböhmer and Zhu [79], Kesseböhmer and

Stratmann [80], and Wang and Wu [144].

M. Pollicott and H. Weiss ([128]) initially studied the level set Fβ of the Lya-

punov exponents and obtained some partial results about the Lyapunov spectrum

t̃(·). This is one of motivations for us to find a complete solution.

We briefly present our methods in finishing this subsection. The main tool

of our study on the Khintchine spectrum and Lyapunov spectrum is the Ruelle-

Perron-Frobenius operator with potential function

Φt,q(x) = −t log |T ′(x)|+ q log a1(x), Ψt(x) = −t log |T ′(x)|
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where (t, q) are suitable parameters. The usual way, as Pollicott and Weiss did

([128]), to obtain the spectrum through Ruelle theory (the study about the Ruelle-

Perron-Frobenius operators and the thermodynamical formalism) fixes q and finds

T (q) as the solution of P (T (q), q) = 0. (Here P (t, q) is the pressure corresponding

to the potential function of two parameters). The information contained in the

curve T (q) can only give some partial results ([128]). In the thesis, we look for

multifractal information from the whole two-dimensional surface defined by the

pressure P (t, q) rather than the single curve T (q). This leads us to obtain complete

graphs of the Khintchine spectrum and the Lyapunov spectrum.

There exist several works on pressure functions associated to different poten-

tials in the Gauss dynamics. For a detailed study on pressure function associated

to one potential function, we refer to the works of Mayer ([107], [108], [109]),

and for pressure functions associated to two potential functions, we refer to the

works of Pollicott and Weiss ([128]), Walters ([141], [142]) and Hanus, Mauldin

and Urbański ([64]). We will use the theory developed in [64].

1.3.4 Non-normal continued fractions

We study two subsets of non-normal continued fractions. One is the set of

continued fractions with maximal frequency oscillation, and the other is the set of

extremely non-normal continued fractions which was previously defined by Olsen

in [113].

Write the continued fraction expansion of x ∈ [0, 1]∩Qc as x = [a1(x), a2(x), . . . ].

Let N? denote the set of finite words over N, which will be called digit strings al-

ternatively. For any k-digit string W = (w1, · · · , wk) ∈ N?, we write

f(W,x, n) := ]{1 ≤ j ≤ n− k + 1 : aj(x) = w1, · · · , aj+k−1(x) = wk}

for the number of occurrences of W among the first n digits of x. We are concerned

with certain sets of continued fractions which are determined by the limit behaviors

of the sequence of all asymptotic frequencies, namely, { 1
n
f(W,x, n) : n ≥ 1,W ∈

N?}.
We denote by Freq(W,x) the collection of all accumulation points of the

sequence { 1
n
f(W,x, n) : n ≥ 1}, and

Freq(W ) =
⋃

x∈[0,1)∩Qc

Freq(W,x).
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We are interested in the set

F = {x ∈ [0, 1) : Freq(W,x) = Freq(W ) for all W ∈ N?}

of continued fractions with maximal frequency oscillation. This name is justified

by the fact that, for any digit string W ∈ N?, the asymptotic frequencies of W

in the continued fraction expansion of x ∈ F oscillates to the maximal possible

extent.

The set F is a set of totally non-normal continued fractions. To be more

precise, let µ be any Borel probability measure which is ergodic with respect to

the Gauss transformation (see [72]), then the Birkhoff ergodic theorem implies

that for µ-almost all x ∈ [0, 1)

lim
n→∞

1

n
f(W,x, n) = µ {y ∈ [0, 1) : aj(y) = wj, 1 ≤ j ≤ k}

for every W = (w1, · · · , wk) ∈ N?. Let us say that x is a µ-normal continued

fraction if the last relation holds. It is then clear that F is a set of non-normal

continued fractions which has µ-measure null. Therefore, the set F is small in

the measure-theoretic sense. However, it is large from the topological viewpoint.

Indeed, one can show that F is the intersection of a countable number of residual

sets, hence the set F is residual in [0, 1), namely, its complementary set is of

the first category. As a consequence, the packing dimension of F is 1 (Theorem

7.1). However, it is interesting to note that the Hausdorff dimension of F is of

intermediate size.

Theorem 1.12 (Theorem 7.2). The set F of continued fractions with maximal

frequency oscillation is of Hausdorff dimension one-half.

The other interesting set we will consider is the set E of extremely non-

normal continued fractions introduced by Olsen ([113]) in 2003. Let us first recall

the definition. For each k ≥ 1, define the simplex of probability vectors with index

set Nk by

∆k :=

{(
p(W )

)
W∈Nk : p(W ) ≥ 0,

∑
W

p(W ) = 1

}
.

We will denote the elements of ∆k by vectors, and equip ∆k with the 1-norm∥∥~p− ~q
∥∥

1
=
∑

W∈Nk

|p(W )− q(W )|.
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Define the sub-simplex of shift invariant probability vectors in ∆k by

Sk :=

{
~p ∈ ∆k :

∑
i

p(iV ) =
∑

i

p(V i) for all V ∈ Nk−1

}
.

Denote the vector of n-th asymptotic frequencies of the k-words occurring in x by

Πk(x, n) :=
( 1
n
f(W,x, n)

)
W∈Nk .

It is clear that Πk(x, n) ∈ ∆k. Let Ak(x) denote the set of accumulation points

of the sequence {Πk(x, n)}∞n=1 with respect to the 1-norm
∥∥.∥∥

1
. It is known that

Ak(x) ⊂ Sk (see [113]). Then we define

Ek = {x ∈ [0, 1) ∩Qc : Ak(x) = Sk}

and E =
⋂∞

k=1 Ek, which is called the set of extremely non-normal continued

fractions.

The set E is closely related to the set F of continued fractions with maximal

frequency oscillation. Indeed, we have E ⊂ F (Theorem 7.3).

In [113], Olsen proved that the set E is residual in [0, 1) and has packing

dimension 1. (Therefore the assertion that F is residual and of packing dimension

1, comes directly from the fact that E ⊂ F.) As for the Hausdorff dimension,

based on the analogous results in the decimal expansion case, it was conjectured

in [113] that dim(E) = 0. However, we prove that

Theorem 1.13 (Theorem 7.4). The Hausdorff dimension of the extreme non-

normal continued fraction set E is one-half.

1.3.5 The Frequency of partial quotients in continued fractions

We study the Besicovitch-Eggleston sets defined by the points with given

frequencies of partial quotients of continued fractions.

The continued fraction of an irrational x is still denoted by x = [a1, a2, a3, · · · ].
For x ∈ [0, 1)∩Qc, define the frequency of the digit j ∈ N in the continued fraction

expansion of x by

τj(x) := lim
n→∞

τj(x, n)

n
,

if the limit exists, where τj(x, n) := Card{k : ak(x) = j, 1 ≤ k ≤ n}.
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A probability vector ~p = (p1, p2, . . . ), i.e., pj ≥ 0 for all j ≥ 1 and
∑∞

j=1 pj =

1, will be referred to as a frequency vector. For such a given vector ~p, we define

the Besicovitch-Eggleston set

E~p := {x ∈ [0, 1) ∩Qc : τj(x) = pj ∀j ≥ 1}.

Recall that Gauss transformation T admits an ergodic invariant measure µG,

dµG =
1

(1 + x) log 2
dx.

By Birkhoff’s ergodic theorem, for Lebesgue almost all points (µG-a.e.)

τj(x) =

∫ 1/j

1/(j+1)

1

(1 + x) log 2
dx =

1

log 2
log

(i+ 1)2

i(i+ 1)
, ∀j ≥ 1.

Thus if we take

pj =
1

log 2
log

(i+ 1)2

i(i+ 1)
∀j ≥ 1, (1.6)

then E~p admits Lebesgue measure 1.

For any a1, a2, · · · , an ∈ N, let

I(a1, a2, · · · , an) := {x ∈ [0, 1) : a1(x) = a1, a2(x) = a2, · · · , an(x) = an}

and call it a rank n fundamental interval . Denote by Merg the set of T -invariant

ergodic measures. The entropy of µ will be denoted by hµ. Let N be a sub-

set of Merg such that for any µ ∈ N , one has µ(I(j)) = pj for all j ≥ 1 and

−2
∫

log xdµ < ∞. Denote the Hausdorff dimension by dimH . With the conven-

tion sup ∅ = 0, we have the following theorem.

Theorem 1.14 (Theorem 8.1). For a given frequency vector ~p, we have

dimH(E~p) = max

{
1

2
, sup

µ∈N

hµ

−2
∫

log xdµ

}
. (1.7)

The study of the Besicovitch-Eggleston type sets dates from the work of

Besicovitch ([15]) in 1935 and Eggleston ([43]) in 1949, in which they studied the

m-adic expansion case. For the Besicovitch-Eggleston sets in continued fractions,
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Kinney and Pitcher ([88]) obtained a lower bound in 1966. They showed that if∑∞
j=1 pj log j <∞, then

dimH E~p ≥
∑∞

j=1 pj log pj

2
∫

log xdµ~p

, (1.8)

where µ~p is the Bernoulli on [0, 1] such that µ(I(j)) = pj for all j ≥ 1. This lower

bound is in fact the Hausdorff dimension of the Bernoulli measure µ~p. However,

by the result of Kifer, Peres and Weiss ([87]) in 2001, this lower bound is not

always the best one. It is proved that there exists a universal constant ε0 > 10−7,

such that

dimH µ~p ≤ 1− ε0, for any Bernoulli measure µ~p. (1.9)

Take ~p0 = (p0
j)j≥1 as (1.6), for example, then dimH(E~p) = 1. But by (1.9),

any Bernoulli measure can obtain the Hausdorff dimension 1. Thus Kinney and

Pitcher’s result (1.8) can not serve as an exact lower bound for dimension of E~p0

In 1975, Billingsley and Henningsen ([17]) searched the lower bound by con-

sidering all ergodic measures and proved that if
∑∞

j=1 pj log j <∞, then

dimH(E~p) ≥ sup
µ∈N

hµ

−2
∫

log xdµ
.

It is essentially a half part of the lower bound of Theorem 1.14, except that in

Theorem 1.14, we do not assume
∑∞

j=1 pj log j < ∞. At the end of Section 8.4,

we will show that if

∞∑
j=1

pj log j = ∞, (1.10)

then

dimH(E~p) =
1

2
.

In fact, the condition (1.10) implies N = ∅, thus by the convention of sup ∅ = 0,

the right side of (1.7) gives the value 1/2.

The other half part of the lower bound of Theorem 1.14, dimH(E~p) ≥ 1/2,

is a corollary of Proposition 1.7 in [97]. However, we will give a direct proof in

Chapter 8 (Section 8.4). The key point is that there are infinite possible choices

of the digits which allow us to construct a big enough Cantor like subset of E~p.
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To give an exact upper bound of the Hausdorff dimension of any Besicovitch-

Eggleston set in continued fractions. We will use the techniques of [97] and [17] in

estimating the lengths of fundamental intervals, to distinguish the effect of both

two parts of 1/2 and the well-known variational principle in Theorem 1.14. We

briefly explain how we made it. Denote the right side of (1.7) by s. We prove the

upper bound of Theorem 1.14 by the definition of Hausdorff dimension. By using

the rank-n fundamental intervals as a cover of E , for any γ > s, we will need to

estimate the following ∑
x1···xn∈A

|I(x1, · · · , xn)|γ, (1.11)

where x1 · · ·xn ∈ A signifies that the digits x1, . . . , xn satisfies some frequency

conditions. We fix a large enough N and use Lemma 2.38 to pick up the digits

which is larger than N . Suppose there are ñ digits which is smaller than N among

x1, . . . , xn. We have (1.11) is less than(
∞∑

j=N+1

8

(j + 1)2γ

)n−ñ ∑
x1···xñ∈Ã

|I(x1, · · · , xñ)|γ,

where Ã signifies the set of words which is in A but with digits less than N . Then

the first term is bounded by a constant, since γ > s ≥ 1/2. The second term can

be treated the similar way as that in Billingsley and Henningsen [17], since the

digits x1, . . . , xñ ∈ Ã contains only digits less than N . Since

γ > s ≥ sup
µ∈N

hµ

−2
∫

log xdµ
,

the second term is bounded from infinity. Combining these two terms, we have

for any γ > s, the summation of (1.11) is strictly less than infinity, which implies

the Hausdorff dimension of E~p less than s.

To end this subsection, we would like to remark that the methods to cal-

culate the Hausdorff dimensions of Besicovitch-Eggleston sets are different from

those to obtain the Khintchine and Lyapunov spectra. In the study of Khintchine

and Lyapunov spectra, we find suitable measures which are supported on the level

sets of Birkhoff averages though the theory of Ruelle operator. While to calcu-

late the Hausdorff dimension of Besicovitch-Eggleston sets, we on one hand, find

some Cantor like subset bounding the dimension from below; on the other hand,

estimate the Hausdorff measure directly which induces the upper bounds.
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Chapter 2

Preliminaries

2.1 Basic definitions and properties of dynamical systems

An introduction to the study of dynamical systems can be found in the books:

Denker, Grillenberger and Sigmund [39], Walters [140], Katok and Hasselblatt [78],

Pollicott and Yuri [127], Kurta [94].

A terminology: we say the transformation satisfies some property if the dy-

namical system satisfies that one.

2.1.1 Topological dynamical systems

A topological dynamical system is a pair (X,T ) where X is a compact metric

space with a metric d, and T : X → X is a continuous transformation.

A point x ∈ X is called a fixed point if T (x) = x. A fixed point x ∈ X is said

to be stable if for any ε > 0, there exists δ > 0, such that for any y ∈ X satisfying

d(y, x) < δ, one has d(T ny, x) < ε for all n ≥ 0. A fixed point x ∈ X is said to be

attracting if it is stable and moreover there exists δ > 0 such that for any y ∈ X
satisfying d(y, x) < δ, we have limn→∞ d(T

ny, x) = 0. A fixed point which is not

stable will be called unstable.

A point x ∈ X is periodic if there exists a positive integer p such that T px = x.

The least p will be called the period of x. A point x ∈ X is said to be eventually

periodic if there exists some nonnegative integer m such that Tmx is periodic.

A point is said to be preperiodic if it is eventually periodic but not periodic. A

periodic point with period p is called stable or attracting if it is stable or attracting

as a fixed point of T p.

If T has derivative at the fixed point x, then we also say x is attracting if

|T ′(x)| < 1, repelling if |T ′(x)| > 1 and indifferent if |T ′(x)| = 1. For the definition

of the periodic point of period p, we say it is attracting, repelling and indifferent

if T p is so. It is easy to see repelling fixed points are unstable.
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Two topological dynamical systems (X,T ) and (Y, S) are said to be topologi-

cal conjugate if there exists a homeomorphism φ : X → Y such that φ◦T = S ◦φ.

The homeomorphism φ is called a conjugacy. If φ is not homeomorphism but

continuous and surjective then (Y, S) is called a factor of (X,T ) and φ is called a

factor map.

A topological dynamical system (X,T ) is said to be transitive if there exists

at least one point x ∈ X such that the orbit set OT (x) := {T nx : n ∈ N} is dense.

We call (X,T ) a minimal system if for all points x ∈ X, OT (x) is dense. The

system (X,T ) is said to be chaotic if it is transitive and the set of periodic points

is dense in X and X is infinite. The system (X,T ) is said to be mixing if for any

nonempty open sets U, V ⊂ X, there exists a positive integer N such that for all

n ≥ N , T n(U) ∩ V 6= ∅.

A subset E ⊂ X is called T -invariant if TE = E. If E is closed and T -

invariant, then (E, T |E) becomes a subsystem. A closed and T -invariant subset E

is called a minimal set with respect to T if (E, T |E) is minimal.

Proposition 2.1. For any topological dynamical system (X,T ), there exists a

minimal set.

Proposition 2.2. If (X,T ) is transitive or minimal, then for any f ∈ C(X) (the

set of all complex valued continuous functions) satisfying f ◦ T = f , we have f is

a constant.

A point x ∈ X is called an equicontinuous point if for any ε > 0, there

exists δ > 0 such that for any y ∈ X satisfying d(x, y) < δ and for all n ≥
0, one has d(T ny, T nx) < ε. A topological dynamical system (X,T ) is said to

be equicontinuous if all the points in X are equicontinuous. It is said to be

almost equicontinuous if the set of the equicontinuous points is a residual set. In

particular, if T is an isometry then T is equicontinuous.

A system (X,T ) is said to be sensitive if there exists an ε > 0, for any x ∈ X
and any δ > 0, there exists y ∈ X satisfying d(y, x) < δ, and an integer n ≥ 0

such that d(T ny, T nx) ≥ ε.

A system (X,T ) is said to be expansive (positively expansive) if there exists

an ε > 0 such that for any x 6= y ∈ X, there exists an integer n ≥ 0 such that

d(T nx, T ny) ≥ ε.
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Theorem 2.3 ([2]). A transitive system is either sensitive or almost equicontin-

uous.

Theorem 2.4 ([60],[2]). A transitive equicontinuous system is minimal and a

minimal almost equicontinuous system is equicontinuous.

Theorem 2.5 (see [94], p. 147). A minimal equicontinuous system on a totally

disconnected infinite space is topologically conjugate to an adding machine.

Theorem 2.6 ([60]). A chaotic system is sensitive.

Proposition 2.7. A mixing dynamical system with at least two points is sensitive.

Proposition 2.8. If X is perfect and (X,T ) is positively expansive then (X,T )

is sensitive.

2.1.2 Measure-preserving dynamical systems and ergodic theory

Let (X,B, µ) be a probability space where B is a σ-algebra and µ is a probabil-

ity measure. A transformation T : X → X is said to be measurable if T−1(B) ⊂ B,

and measure-preserving if T is measurable and µ(T−1B) = µ(B) for all B ∈ B.

If T is measure-preserving, then (X,B, µ, T ) will be called a measure-preserving

dynamical system. If T is invertible and T−1 is also measure-preserving, then

(X,B, µ, T ) will be called a measure-theoretic dynamical system. T will be called

an isomorphism from (X,B, µ) to itself.

Two measure-preserving systems (X,B, µ, T ) and (Y, C, ν, S) are measure-

theoretic conjugate if there exist X ′ ∈ B, Y ′ ∈ C such that µ(X\X ′) = ν(Y \Y ′) =

0 and there exists an isomorphism φ : X ′ → Y ′ such that ν = µ ◦ φ−1 and

φ ◦ T = S ◦ φ µ-a.e.. If φ is not isomorphic but only measure-preserving and

surjective, then (Y, C, ν, S) will be called a factor of (X,B, µ, T ) and φ will be

called a factor map.

Theorem 2.9 (Poincaré’s Recurrence Theorem). Let (X,B, µ, T ) be a measure-

preserving system . Let E ∈ B satisfy µ(E) > 0. Then there exists F ⊂ E with

µ(F ) = µ(E) such that for every point x ∈ F , there is a sequence of positive

integers n1 < n2 < n3 < · · · with T ni(x) ∈ E for each i.
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The measure-preserving system (X,B, µ, T ) is said to be ergodic if for any

B ∈ B satisfying T−1B = B, one has µ(B) = 0 or µ(B) = 1. We also say T or µ

is ergodic in this case.

Proposition 2.10. The following are equivalent:

(1) T is ergodic,

(2) for any B ∈ B satisfying µ(T−1B4B) = 0, one has µ(B) = 0 or µ(B) = 1,

(3) whenever f is measurable and f ◦ T = f a.e., then f is constant a.e.,

(4) whenever f ∈ L2(µ) and f ◦ T = f a.e., then f is constant a.e..

Theorem 2.11 (Birkhoff Ergodic Theorem). Suppose (X,B, µ, T ) is a measure

preserving system and f ∈ L1(µ). Then there exists a function f ∗ ∈ L1(µ) such

that f ∗ ◦ T = f ∗,
∫
f ∗dµ =

∫
fdµ and

lim
n→∞

1

n

n−1∑
j=0

f(T jx) = f ∗(x), µ− a.e..

If T is ergodic then f ∗ is the constant
∫
fdµ, µ− a.e..

Theorem 2.12 (von Neumann mean Ergodic Theorem). Let (X,B, µ, T ) be a

measure-preserving system and f ∈ Lp(µ). There exists a function f ∗ ∈ Lp(µ)

such that f ∗ ◦ T = f ∗, and

lim
n→∞

‖ 1

n

n−1∑
j=0

f(T jx)− f ∗(x) ‖p= 0.

A measure-preserving system (X,B, µ, T ) is said to be weak-mixing if for any

A,B ∈ B, one has

lim
n→∞

1

n

n−1∑
j=0

| µ(T−jA ∩B)− µ(A)µ(B) |= 0.

It is said to be strong mixing if for any A,B ∈ B, one has

lim
n→∞

| µ(T−jA ∩B)− µ(A)µ(B) |= 0.
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2.1.3 Topological and measurable dynamical systems

The topological dynamical systems and the measure preserving dynamical

systems are always mixed together. Let (X,T ) be a topological dynamical system

with X a compact metric space and T a continuous transformation. Let B be the

Borel σ-algebra. Denote M denote the set of all Borel probability measures on

X and Minv the set of all T -invariant measures in M. The system (X,T ) always

possesses some T -invariant Borel probability µ.

Theorem 2.13 (Kryloff-Bogoliouboff ([93],1937)). The set Minv is nonempty.

We remark that Oxtoby and Ulam ([118],1939) gave a sufficient and necessary

condition under which Minv is nonempty for general T on complete separable

metric space.

For Minv we have

Proposition 2.14. The set Minv is a convex subset of M, closed in the weak

topology. If T is not identity, then Minv is nowhere dense in M.

If Minv is a singleton, then the system (X,T ) is called uniquely ergodic.

Denote the set of all complex valued functions by C(X).

Proposition 2.15. For the topological dynamical system (X,T ), the following are

equivalent:

(1) T is uniquely ergodic,

(2) for all f ∈ C(X), (1/n)
∑n−1

j=0 f(T jx) converges uniformly to a constant,

(3) for all f ∈ C(X), (1/n)
∑n−1

j=0 f(T jx) converges pointwise to a constant.

(4) there exists µ ∈Minv such that for all x ∈ X,

lim
n→∞

1

n

n−1∑
j=0

f(T jx) =

∫
fdµ.

A system is called strictly ergodic if it is uniquely ergodic and minimal.

Proposition 2.16. Let (X,T ) be a topological dynamical system with T a home-

omorphism. Suppose (X,T ) is uniquely ergodic with Minv = {µ}. Then T is

minimal if and only if µ(U) > 0 for all nonempty open set U .
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Proposition 2.17. Let (X,T ) be a topological dynamical system with X a compact

metric space and T being equicontinuous. Then the following are equivalent:

(1) T is minimal,

(2) T is uniquely ergodic,

(3) T is strictly ergodic,

(4) T is ergodic for any µ ∈Minv with µ(U) > 0 for any open set U ,

(5) T is ergodic for some µ ∈Minv with µ(U) > 0 for any open set U .

Corollary 2.18. Let (X,T ) be a rotation dynamical system on the compact metric

group X. Then T is uniquely ergodic if and only if T is minimal. The Haar

measure is the only invariant measure. In this case, the system is strictly ergodic.

2.2 p-adic numbers, p-adic analysis and p-adic dynamics

For an introduction to p-adic numbers and p-adic analysis, we recommend

the book of Schikhoff ([131]). For p-adic dynamics, see the book of Khrennikov

and Nilsson ([86]).

Let K be a field. An absolute value on K is a function | · | : K → [0,∞) such

that

(1) |x| ≥ 0 for all x ∈ K, and |x| = 0 if and only if x = 0,

(2) |xy| = |x||y| for all x, y ∈ K,

(3) |x+ y| ≤ |x|+ |y| for all x, y ∈ K.

If we have |x + y| ≤ max{|x|, |y|} for all x, y ∈ K replacing the third one above,

the absolute value will be called non-Archimedean, and the field K will be called

a non-Archimedean field. The image under the function | · | of the multiplicative

group K× of K is a subgroup of (R+,×). If this subgroup is discrete we will say

the absolute value is discrete.
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Let p > 2 be a prime number. For all n ∈ Z\{0}, we denote by υp(n)

the greatest integer k > 0 such that pk divides n in Z. By convention, we put

υp(0) = +∞. For all x = m/n ∈ Q with m,n ∈ Z and n 6= 0, define

|x|p := p−υp(m/n) := p−(υp(m)−υp(n)).

Then |·|p is a discrete non-Archimedean absolute value on Q, called p-adic absolute

value over Q, while υp is called the p-adic valuation over Q.

The field Qp of p-adic numbers is the topological completion of Q with respect

to the metric topology induced by |·|p. The extension of |·|p (resp. υp) will still be

denoted by the same notation.

It is known that |·|p is ultrametric over Qp: for all x, y ∈ Qp such that

|x|p 6= |y|p, we have

|x+ y|p = max
{
|x|p , |y|p

}
.

A sequence (xn)n>0 in Qp is convergent if and only if

lim
n→+∞

υp(xn − xn−1) = +∞.

Any x ∈ Qp, can be written as

x =
∑

n>υp(x)

xnp
n (0 6 xn < p).

The ring Zp of p-adic integers is the local ring of Qp. It is the unit ball of Qp:

Zp = {x ∈ Qp : |x|p ≤ 1}. It is also the closure of N with respect to the topology

induced by | · |. Furthermore, Qp is locally compact and Zp is compact.

Denote by Zp[x] be the set of all polynomials with coefficients in Zp. We have

the following.

Theorem 2.19 (Hensel’s lemma). Let f ∈ Zp[x]. Assume that there exist α0 ∈ Zp

and γ ∈ N such that

f(α0) ≡ 0 (mod p2γ+1),

f ′(α0) ≡ 0 (mod pγ),

f ′(α0) 6≡ 0 (mod pγ+1).

Then there exists α ∈ Zp such that f(α) = 0 and α ≡ α0 (mod pγ+1)
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The following results concern about squares in Qp.

Lemma 2.20 (Euler’s criterion). Let p ≥ 3. We have u ∈ (Z/pZ)∗ is a square if

and only if u
p−1
2 ≡ 1 (mod p)

Proposition 2.21. Suppose p ≥ 3. Let x = pvp(x)u ∈ Qp\{0}. Then x is a square

in Qp if and only if vp(x) is even and the image ū of u in (Zp/pZp)
∗ = (Z/pZ)∗,

is a square.

Proposition 2.22. Suppose p = 2. Let x = pvp(x)u ∈ Qp \ {0}. Then x is a

square in Qp if and only if vp(x) is even and u ≡ 1 (mod 8).

Let X ⊂ Qp. The set of all continuous functions f : X → Qp is denoted by

C(X) and the set of bounded continuous functions is denoted by Cb(X). If X is

compact, then C(X) = Cb(X). Let B(X,Qp) be the set of all bounded functions

from X to Qp. Define a norm on B(X,Qp) by

‖ f ‖∞= sup
x∈X

|f(x)|p.

Then Cb(X) is a closed subspace of the non-Archimedean Banach space B(X,Qp).

A function f : X → Qp is said to be locally constant if for any point x ∈ X, there

exists a neighborhood U such that f is constant on U ∩ X. Locally constant

functions are continuous functions and dense in the Banach space Cb(X).

Let U ⊂ Qp be an open set. The function f : U → Qp is differentiable at

x ∈ U if the following limit exists:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

In this case, f ′(x) is called the derivative of f at x. If f is differentiable at every

point in U , we say f is differentiable on U .

We remark that the classical mean-value theorem in p-adic analysis is invalid,

and there exists some function with derivative equals zero everywhere but is not

constant.

A function f : X → Qp is continuously differentiable at a point a ∈ X if the

following limit exists

lim
43(x,y)→(0,0)

f(x)− f(y)

x− y
,

where 4 = {(x, y) : x, y ∈ X, x 6= y}. Obviously, continuously differentiability

implies differentiability.
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Proposition 2.23. If f : X → Qp is continuously differentiable at a ∈ X, then

there exists a neighborhood U of a such that

|f(x)− f(y)|p = |f ′(a)|p|x− y|p x, y ∈ X ∩ U.

A function f : X → Qp is 1-Lipschitz if

|f(x)− f(y)|p ≤ |x− y|p ∀x, y ∈ X.

Any polynomial f ∈ Zp[x] is 1-Lipschitz, and any 1-Lipschitz function is

equicontinuous. Thus by Proposition 2.17, we have

Proposition 2.24. The minimality of f ∈ Zp[x] on a closed subset of Zp is

equivalent to its ergodicity, uniquely ergodicity and strictly ergodicity respect to

the normalized Haar measure.

For the ergodicity, we have the following theorem.

Theorem 2.25 ([5], [33]). Let X ⊂ Zp be a compact set, and f ∈ Zp[x]. f is

measure-preserving (or, accordingly, ergodic) if and only if it is bijective (accord-

ingly, transitive) on X/pnZp for all n ≥ 1.

2.3 Entropy and Hausdorff dimension

We recommend the book of Walters ([140]) and Pollicott and Yuri ([127]) for

the definitions and properties of the classical topological entropy and measure-

theoretic entropy, the books of Falconer ([44], [45]), Mattila ([102]), and Pesin

([119]) for the basic knowledge of Carathéodory structure and Hausdorff dimen-

sion, and the original paper of Bowen ([24]) for the definition of the generalized

version of topological entropy and its properties.

2.3.1 Topological entropy and measure-theoretic entropy

Let (X,T ) be a topological dynamical system with X a compact metric space

and T a continuous transformation. Let α = {Ai}, β = {Bj} be two (finite) covers

of X. The refinement of α and β is defined by

α ∨ β := {Ai ∩Bj : Ai ∩Bj 6= ∅}.
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For finite cover α = {A1, . . . , An}, define the topological entropy of α by H(α) :=

logN(α), where N(α) is the smallest number of sets of subcovers of α. The

topological entropy of T relative to a cover α is defined by

h(T, α) := lim sup
n→∞

1

n
H(∨n−1

i=0 T
−iα).

The topological entropy of T is defined by

htop(T ) := sup{h(T, α) : α is a finite cover of X}.

Proposition 2.26. Any expansive homeomorphism has finite topological entropy.

Proposition 2.27. The homeomorphisms of the unit circle and [0, 1] are of topo-

logical entropy zero.

Let (X,B, µ, T ) be a measure-preserving dynamical system. We say α =

{Ai}i∈I is a countable measurable partition of the probability space (X,B, µ) if

(1) X = ∪iAi up to a set of zero µ-measure, and

(2) Ai ∩ Aj = ∅(i 6= j) up to a set of zero µ-measure.

Define the information function I(α) : X → R by

I(α)(x) := −
∑

i

log µ(Ai)1Ai
(x),

where 1Ai
is the indicator function of the set Ai. The entropy of the partition α

is defined by

H(α) :=

∫
I(α)dµ = −

∑
A∈α

µ(α) log µ(α).

Given a sub-σ-algebra A ⊂ B, the conditional information function I(α|A) :

X → R is defined by

I(α|A)(x) := −
∑

i

log µ(Ai|A)(x)1Ai
(x),

where µ(Ai|A)(x) = E(1Ai
(x)|A)(x) is the conditional measure. The conditional

entropy of α with respect to A is defined by

H(α|A) :=

∫
I(α|A)dµ.
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For partition α = {Ai}, we write

∨n−1
i=0 T

−iα := {Aj0 ∩ T−1Aj1 ∩ · · · ∩ T−(n−1)Ajn : Aji
∈ α}

The entropy of partition α is defined by

h(T, α) := lim
n→∞

Hn(α)

n
= inf

n≥1

Hn(α)

n
,

where Hn(α) := H(∨n−1
i=0 T

−iα) can be proved to satisfy the subadditive property.

Given two partitions α and β, the notation H(α|β) means H(α|β̂), where β̂

is the σ-algebra generated by β.

Proposition 2.28. We have an alternative definition of the entropy of α:

h(T, α) = lim
n→∞

H(α| ∨n−1
i=0 T

−iα).

The measure-theoretic entropy of T is defined by

hµ(T ) := sup
{α:H(α)<∞}

h(T, α).

Proposition 2.29. Any rotation of a compact metric abelian group is of measure-

theoretic entropy zero.

Let (X,T ) be a topological dynamical system with X a compact metric space

and T a continuous transformation. The entropy map is defined by µ → hµ(T )

from Minv to [0,∞].

Proposition 2.30. The entropy map is affine, i.e.,

hpµ+(1−p)ν(T ) = phµ(T ) + (1− p)hν(T ), µ, ν ∈Minv.

Proposition 2.31. If T is expansive, then the entropy map is upper semi-continuous,

i.e., for µ ∈ Minv, for any ε > 0 there exists a neighborhood U of µ such that for

any ν ∈Minv, one has hν(T ) < hµ(T ) + ε.

Theorem 2.32. We have the following variational principle:

htop(T ) = sup{hµ : µ ∈Minv}.
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2.3.2 Carathéodory structure and Hausdorff dimension

Let X be a metric space with metric d, F a collection of subsets of X and η

a non-negative function on F . Assume that

(1) for any δ > 0, there are E1, E2, · · · ∈ F such that X = ∪∞i=1Ei and

sup{diam(Ei)} ≤ δ (here and the follows, “diam” stands for the diameter of

the sets),

(2) for any δ > 0, there is an ε > 0 such that η(E) ≤ δ for any E ∈ F with

diam(E) ≤ ε.

Then τ = (F , d, η) will be called a Carathéodory structure. For Z ⊂ X define

ψδ(Z) := inf

{ ∞∑
i=1

η(Ei) : Z ⊂
⋃
i

Ei, 0 < diam(Ei) < δ

}
.

We see that ψδ is monotonic, thus we define the Carathéodory outer measure

ψ = ψ(τ) = ψ(F , d, η) by

ψ(Z) := lim
δ→0

ψδ(Z) = sup
δ>0

ψδ(Z).

We know that (see [102], p. 55.)

Proposition 2.33. The function ψ is a Borel measure and if the members of F
are Borel sets, then ψ is Borel regular.

Suppose X is separable. Take F to be the collection of all subsets of X. For

s ≥ 0, let η(E) = diams(E) and assume 00 = 1 and diam(∅) = 0 for convenience.

Then the Carathéodory outer measure becomes the classical Hausdorff outer mea-

sure. Denote by Hs the Hausdorff outer measure. An important fact is that it

will define the same Hausdorff outer measure Hs if we replace F by the collection

of all the open sets or the collection of all the closed sets.

The Hausdorff dimension of a subset Z is then defined by

dimZ := inf{s : Hs(Z) <∞} = sup{s : Hs(Z) = ∞}.

We have

Proposition 2.34. The Hausdorff dimension of Z will be the same if we replace

F by the family of the open balls or the family of close balls.
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2.3.3 Bowen’s entropy and Bowen Lemma

We still consider the topological dynamical system (X,T ) where X is a com-

pact metric space with metric d and that T : X → X is a continuous transforma-

tion.

For any integer n ≥ 1, define the Bowen metric dn on X by

dn(x, y) = max
0≤j<n

d(T jx, T jy).

For any ε > 0, denote by Bn(x, ε) the open dn-ball centered at x of radius ε.

We follow Bowen’s definition of entropy ([25]). Let Z ⊂ X be a subset of X.

Let ε > 0. We say a collection (at most countable) R = {Bni
(xi, ε)} covers Z if

Z ⊂
⋃

iBni
(xi, ε). For such a collection R, put n(R) = mini ni. Let s ≥ 0. Define

Hs
n(Z, ε) = inf

R

∑
i

exp(−sni),

where the infimum is taken over all covers R of Z with n(R) ≥ n. The quantity

Hs
n(Z, ε) is non-decreasing as a function of n, so the following limit exists

Hs(Z, ε) = lim
n→∞

Hs
n(Z, ε).

(We remind the readers that the function Hs(·, ε) is a Carathéodory outer measure

with F being the family of ε-Bowen balls {Bn(x, ε)}, the metric being dn and the

function η defined by η(Bn(x, ε)) = e−n.)

For the quantity Hs(Z, ε) considered as a function of s, there exists a critical

value, which we denote by htop(Z, ε), such that

Hs(Z, ε) =

{
+∞, s < htop(Z, ε)

0, s > htop(Z, ε).

One can prove that the following limit exists

htop(Z) = lim
ε→0

htop(Z, ε).

The quantity htop(Z) is called the topological entropy of Z.

For x ∈ X, we denote by V (x) the set of all weak limits of the sequence of

probability measures n−1
∑n−1

j=0 δT jx. It is clear that V (x) 6= ∅ and V (x) ⊂ Minv

for any x. The following Bowen lemma is important in estimating the entropies.
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Lemma 2.35 (Bowen [24]). For t ≥ 0, consider the set

B(t) = {x ∈ X : ∃µ ∈ V (x) satisfying hµ ≤ t} .

Then htop(B
(t)) ≤ t.

Let µ ∈Minv be an invariant measure. A point x ∈ X such that V (x) = {µ}
is said to be generic for µ. Recall the definition of Gµ (Subsection 1.3.2), we know

that Gµ is the set of all generic points for µ. Bowen proved that htop(Gµ) ≤ hµ

for any invariant measure. This assertion can be deduced by using Lemma 2.35.

In fact, the reason is that x ∈ Gµ implies µ ∈ V (x). Bowen also proved that

the inequality becomes equality when µ is ergodic. However, in general, we do

not have the equality htop(Gµ) = hµ (saturatedness, see Subsection 1.3.2) and it

is even possible that Gµ = ∅. Cajar ([30]) proved that full symbolic spaces are

saturated. Concerning the µ-measure of Gµ, it is well known that µ(Gµ) = 1 or 0

according as whether µ is ergodic or not (see the book of Denker, Grillenberger

and Sigmund ([39])).

2.4 Basic properties of continued fractions

In this section, we collect some known facts and establish some elementary

properties of continued fractions that will be used later. For a wealth of classical

results about continued fractions, see the books by J. Cassels ([32]), G. Hardy and

E. Wright ([65]). The books by P. Billingsley ([16]), I. Cornfeld, S. Fomin and

Ya. Sinai ([36]) contain an excellent introduction to the dynamics of the Gauss

transformations and its connection with Diophantine approximation.

Let x = [a1(x), a2(x), · · · ] be the continued fraction expansion of x ∈ [0, 1)\Q.

Denote by pn/qn the usual n-th convergent of the continued fraction of x, defined

by

pn

qn
:= [a1(x), · · · , an(x)] :=

1

a1(x) +
1

a2(x) +
. . . +

1

an(x)

.

It is known (see [81] p.9) that pn, qn can be obtained by the recursive relation:

pn+1 = an+1pn + pn−1, qn+1 = an+1qn + qn−1, n ≥ 1 (2.1)

with the convention that p−1 = q0 = 1, p0 = q−1 = 0. Furthermore, we have
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Lemma 2.36 ([72] p.5). Let ε1, · · · , εn ∈ R+. Define inductively

Q−1 = 0, Q0 = 1, Qn(ε1, · · · , εn) = εnQn−1(ε1, · · · , εn−1) +Qn−2(ε1, · · · , εn−2).

(Qn is commonly called a continuant.) Then we have

i) Qn(ε1, · · · , εn) = Qn(εn, · · · , ε1),

ii) qn = Qn(a1, · · · , an), pn = Qn−1(a2, · · · , an).

As consequences, we have the following results.

Lemma 2.37 ([81]). For any a1, a2, · · · , an, b1, · · · , bm ∈ N, let qn = qn(a1, · · · , an)

and pn = pn(a1, · · · , an). We have

(i) pn−1qn − pnqn−1 = (−1)n;

(ii) qn+m(a1, · · · , an, b1, · · · , bm) = qn(a1, · · · , an)qm(b1, · · · , bm) +

qn−1(a1, · · · , an−1)pm−1(b1, · · · , bm−1);

(iii) qn ≥ 2
n−1

2 ,
n∏

k=1

ak ≤ qn ≤
n∏

k=1

(ak + 1).

Lemma 2.38 ([148]). For any a1, a2, · · · , an, b ∈ N,

b+ 1

2
≤ qn+1(a1, · · · , aj, b, aj+1, · · · , an)

qn(a1, · · · , aj, aj+1, · · · , an)
≤ b+ 1 (∀1 ≤ j < n).

For any a1, a2, · · · , an ∈ N, let

In(a1, a2, · · · , an) = {x ∈ [0, 1) : ak(x) = ak, 1 ≤ k ≤ n}

which is called an n-th basic interval or a rank n fundamental interval. Sometimes,

we also write it as I(a1, a2, · · · , an).

Lemma 2.39 ([72] p.18). For any a1, a2, · · · , an ∈ N, the rank n fundamen-

tal interval In(a1, a2, · · · , an) is the interval with the endpoints pn/qn and (pn +

pn−1)/(qn + qn−1). As a consequence, the length of In(a1, · · · , an) is equal to∣∣∣In(a1, · · · , an)
∣∣∣ =

1

qn(qn + qn−1)
. (2.2)

Consequently, we have an estimate

1

2q2
n

≤
∣∣∣I(a1, · · · , an)

∣∣∣ ≤ 1

q2
n

. (2.3)
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We will denote In(x) the rank n fundamental interval that contains x, i.e.

In(x) = In
(
a1(x), · · · , an(x)

)
. Let B(x, r) denotes the ball centered at x with

radius r. For any x ∈ In(a1, · · · , an), we have the following relationship between

the ball B(x, |In(a1, · · · , an)|) and In(a1, · · · , an), which is called regular property

in [23].

Lemma 2.40 ([23]). Let x = [a1, a2, · · · ]. We have:

(i) When an 6= 1, B(x, |In(x)|) ⊂
3⋃

j=−1

In(a1, · · · , an + j).

(ii) When an = 1 and an−1 6= 1, B(x, |In(x)|) ⊂
3⋃

j=−1

In−1(a1, · · · , an−1 + j).

(iii) When an = 1 and an−1 = 1, B(x, |In(x)|) ⊂ In−2(a1, · · · , an−2).

From Lemma 2.37 and Lemma 2.39, we deduce the following estimation:

Lemma 2.41. For any irrational number x ∈ [0, 1) and n ≥ 1

2−(2n+1) ≤
∣∣In(x)

∣∣( n∏
k=1

ak(x)

)2

≤ 1.

Suppose an 6= 1. Let

I ′n(x) = In(a1, · · · , an−1, j − 1) and I ′′n(x) = In(a1, · · · , an−1, j + 1)

be the fundamental intervals adjacent to In(x). By (2.1) and Lemma 2.39, one

has the following lemma.

Lemma 2.42. If an(x) ≥ 2, then the lengths of the fundamental interval In(x)

and its two adjacent intervals I ′n(x) and I ′′n(x) are related by∣∣In(x)
∣∣/3 ≤ ∣∣I ′′n(x)

∣∣ ≤ ∣∣In(x)
∣∣ ≤ ∣∣I ′n(x)

∣∣ ≤ 3
∣∣In(x)

∣∣.
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Chapter 3

Minimality of the Polynomials on Zp

In this chapter, a polynomial of degree≥ 2 with coefficients in Zp is considered

as dynamical system on Zp. It is proved that the dynamics of such a system is

totally described by its minimal subsystems. For any quadratic polynomial on Z2,

we exhibit all its minimal subsystems. 1

3.1 Introduction

Let Zp be the ring of p-adic integers (p being a prime number). Let f ∈ Zp[x]

be a polynomial of coefficients in Zp and with degree deg f ≥ 2. It is well known

that f : Zp → Zp is a 1-Lipschitz map. In this chapter we study the minimal

decomposition of the topological dynamical system (Zp, f).

One of interesting problems well studied in the literature is the minimality of

the system f : Zp → Zp ([4, 5, 33, 40, 82, 84, 85, 86, 89, 95]). If the system is not

minimal, we will prove the following result which says that the system admits at

most countably many minimal subsystems which totally describe the dynamics of

the system (see Theorem 3.18).

Theorem A. Let f ∈ Zp[x] with deg f ≥ 2. We have the following decomposition

Zp = A
⊔
B
⊔
C

where A is the finite set consisting of all periodic points of f , B =
⊔

iBi is

the union of all (at most countably many) clopen invariant sets such that each

subsystem f : Bi → Bi is minimal, and each point in C lies in the attracting basin

of a periodic orbit or of a minimal subsystem.

Affine maps were fully studied in [50] (see also [34]). We will refer to the

above decomposition as the minimal decomposition of the system f : Zp → Zp.

1A. H. Fan and L. M. Liao, On minimal decomposition of p-adic polynomial dynamical systems,

preprint.

43



A finite periodic orbit of f is trivially a minimal set. The theorem shows that

there are only a finite number of periodic orbits. This is actually a consequence of

the following theorem. The results are due to Pezda [125] and to Desjardins and

Zieve [40] in the case p ≥ 3. (see Theorem 3.17).

Theorem B. Let f ∈ Zp[x].

1) If p ≥ 5, the periods of periodic orbits are of the form ab with a|(p − 1)

and 1 ≤ b ≤ p.

2) If p = 3, the periods of periodic orbits must be 1, 2, 3, 4, 6 or 9.

3) If p = 2, the periods of periodic orbits must be 1, 2 or 4.

In a recent work, Chabert, Fan and Fares [33] showed that each clopen set Bi

must be a Legendre set and that in general, on any Legendre set there exist min-

imal 1-Lipschtz maps. We will show that for a polynomial system, the Legendre

sets Bi are of special forms. Let (ps)s≥1 be a sequence of positive integers such

that ps|ps+1 for every s ≥ 1. We denote by Z(ps) the inverse limit of Z/psZ, which

is said to be an odometer. The map x → x + 1 is called the adding machine on

Z(ps). We will prove the following Theorem (see Theorem 3.21).

Theorem C. Let f ∈ Zp[x] with deg f ≥ 2. If E is a minimal clopen invariant

set of f , then f : E → E is conjugate to the adding machine on an odometer Z(ps),

where

(ps) = (k, kd, kdp, kdp2, · · · )

with some k ∈ N, k ≤ p and d|(p− 1).

There are few works on the minimal decomposition. Multiplications on Zp

(p ≥ 3) were studied by Coelho and Parry [34] and general affine maps were

studied by Fan, Li, Yao and Zhou [50]. In these cases and only in these cases, we

have known the minimal decomposition.

It seems much more difficult to study higher order polynomials, even the

quadratic polynomials. In this chapter, we try to attack the problem. The above

mentioned results are obtained by using some idea coming from Desjardins and

Zieve’s work [40]. Let E be an f -invariant compact set. It is now well known that

the subsystem (E, f) is minimal if and only if the induced map fn : E/pnZ →
E/pnZ is transitive for any n ≥ 1 (see [5, 33]). The idea of Desjardins and Zieve
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is to establish relations between fn’s cycles and fn+1’s cycles, by linearizing the

map fk
n+1 on a k-cycle of fn.

For an arbitrary 2-adic quadratic polynomial

f(x) = ax2 + bx+ c

on Z2, we find all its minimal components. In fact, such a system f : Z2 → Z2 is

conjugate to one of the following quadratic polynomials

x2 − λ, x2 + bx, x2 + x− d

where λ ∈ Z2, b ≡ 1 (mod 2) and
√
d 6∈ Z2. The obtained results are stated in

Theorems 3.22-3.30. Let us state some of these results.

Theorem D. Consider the polynomial x2 − λ on Z2.

1) If λ ≡ 0 (mod 4), then there are two attracting fixed points, one in 4Z2

with basin 2Z2, and the other one in 1 + 4Z2 with basin 1 + 2Z2.

2) If λ ≡ 1 (mod 4), then the whole Z2 is attracted into a periodic orbit of

period 2 with one orbit point in 4Z2, and the other one in 3 + 4Z2.

3) If λ ≡ 2 (mod 4), then there are two attracting fixed points, one in 2+4Z2

with basin 2Z2, and the other one in 3 + 4Z2 with basin 1 + 2Z2.

4) If λ ≡ 3 (mod 4), then the whole Z2 is attracted into a periodic orbit of

period 2 with one orbit point in 1 + 4Z2, and the other one in 2 + 4Z2.

Theorem E. Consider the polynomial f(x) = x2 + x on Z2[x]. There is one fixed

point 0. We have f(1 + 2Z2) ⊂ 2Z2 and we can decompose 2Z2 to be

2Z2 = {0}
⊔(⊔

n≥2

2n−1 + 2nZ2

)
.

Each 2n−1 + 2nZ2 (n ≥ 2) consists of 2n−2 pieces of minimal components:

2n−1 + t2n + 22n−2Z2, t = 0, . . . , 2n−2 − 1.

Theorem F. Consider the polynomial f(x) = x2 + x − d with d = 3 (mod 4).

Then f(2Z2) ⊂ 1 + 2Z2 and 1 + 2Z2 is the unique minimal component of f .
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This chapter is organized as follows. In Section 3.2, we give a detailed recall

of the idea in [40] by studying the induced dynamical systems fn on Z/pnZ when

p ≥ 3. In Section 3.3, we consider the case of p = 2 which was not developed in

[40]. As we shall see, the case p = 2 is not exactly the same as the case p ≥ 3. In

Section 3.4 and 3.5, we discuss how does a minimal component form by analyzing

the reduced maps fn (n ≥ 1) and prove the decomposition theorem. In Section

3.5, we discuss the possible forms of minimal components. In Section 3.6, we give

a detailed description of the minimal decomposition for an arbitrary quadratic

polynomial system on Z2.

3.2 Induced dynamics on Z/pnZp (p ≥ 3)

The main core of this section follows Desjardins and Zieve [40]. We shall give

more details and rewrite some proofs for reader’s convenience. The case p = 2,

which is a little bit special, will be fully discussed in the next section.

Let p ≥ 3 be a prime (we may replace 3 by 2 in many places). Let n ≥ 1 be

a positive integer. Denote by fn the induced mapping of f on Z/pnZ, i.e.,

fn(x mod pn) = f(x) mod pn.

Many properties of the dynamics f are linked to those of fn. One is the following.

Theorem 3.1 ([5], [33]). Let f ∈ Zp[x] and E ⊂ Zp be a compact f -invariant set.

Then f : E → E is minimal if and only if fn : E/pnZp → E/pnZp is minimal for

each n ≥ 1.

It is clear that if fn : E/pnZp → E/pnZp is minimal, then fm : E/pmZp →
E/pmZp is also minimal for each 1 ≤ m < n. So, the above theorem shows that

it is important to investigate under what condition, the minimality of fn implies

that of fn+1.

Assume that σ = (x1, · · · , xk) ⊂ Z/pnZ is a cycle of fn of length k (also called

k-cycle), i.e.,

fn(x1) = x2, · · · , fn(xi) = xi+1, · · · , fn(xk) = x1.

In this case we also say σ is at level n. Let

X :=
k⊔

i=1

Xi where Xi := {xi + pnt; t = 0, · · · , p− 1} ⊂ Z/pn+1Z.
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Then

fn+1(Xi) ⊂ Xi+1 (1 ≤ i ≤ k − 1) and fn+1(Xk) ⊂ X1.

In the following we shall study the behavior of the finite dynamics fn+1 on

the fn+1-invariant set X and determine all cycles in X of fn+1, which will be called

lifts of σ. Remark that the length of any lift σ̃ of σ is a multiple of k.

Let g := fk be the k-th iterate of f . Then, any point in σ is fixed by gn, the

n-th induced map of g. For x ∈ σ, denote

an(x) := g′(x) =
k−1∏
j=0

f ′(f j(x)) (3.1)

bn(x) :=
g(x)− x

pn
=
fk(x)− x

pn
. (3.2)

The values on the cycle σ = (x1, . . . , xk) of the functions an and bn are important

for our purpose. With them, we define affine maps

Φ(x, t) = bn(x) + an(x)t (x ∈ σ, t ∈ Z/pZ).

The 1-order Taylor expansion of g at x implies

g(x+ pnt) ≡ x+ pnbn(x) + pnan(x)t ≡ x+ pnΦ(x, t) (mod p2n). (3.3)

An important consequence of the last formula shows that gn+1 : Xi → Xi is

conjugate to the linear map

Φ(xi, ·) : Z/pZ → Z/pZ.

We could call it the linearization of gn+1 : Xi → Xi.

As we shall see in the following lemma, the coefficient an(x) (mod p) is always

constant on Xi and the coefficient bn(x) (mod p) is also constant on Xi but under

the condition an(x) ≡ 1 (mod p).

Denote by vp(n) the p-valuation of n.

Lemma 3.2. Let n ≥ 1 and σ = (x1, · · · , xk) be a k-cycle of fn.

(i) For 1 ≤ i, j ≤ k, we have

an(xi) ≡ an(xj) (mod pn).
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(ii) For for 1 ≤ i ≤ k and 0 ≤ t ≤ p− 1, we have

an(xi + pnt) ≡ an(xi) (mod pn).

(iii) For 1 ≤ i ≤ k and 0 ≤ t ≤ p− 1, we have

bn(xi + pnt) ≡ bn(xi) (mod pA),

where A := min{vp(an(xi)− 1), n} = min{vp(an(xj)− 1), n} for 1 ≤ i, j ≤ k.

(iv) If an(xi) 6≡ 0 (mod p) for some 1 ≤ i ≤ k, then for all 1 ≤ i, j ≤ k we

have

min{vp(bn(xi)), n} = min{vp(bn(xj)), n}.

Consequently, min{vp(bn(xi)), A} = min{vp(bn(xj)), A}.

Proof. Assertion (i) follows directly from the definition of an(xi) and the fact that

σ = (xi, fn(xi), · · · , fk−1
n (xi)). The assertion (ii) is a direct consequence of

an(xi + pnt) ≡
k∏

j=1

f ′(f j(xi + pnt)) ≡
k∏

j=1

f ′(f j(xi)) (mod pn).

The 1-order Taylor expansion of g at xi gives

g(xi + pnt)− (xi + pnt) ≡ pn

(
g(xi)− xi

pn

)
+ pnt(g′(xi)− 1) (mod p2n).

Hence

bn(xi + pnt) ≡ bn(xi) + t(an(xi)− 1) (mod pn).

Then (iii) follows.

Write

g(f(xi))− f(xi) = f(fk(xi))− f(xi) = f(xi + pnbn(xi))− f(xi).

The 1-order Taylor expansion f at xi leads to

g(f(xi))− f(xi) ≡ pnbn(xi)f
′(xi) (mod p2n).

Hence we have

bn(f(xi)) ≡ bn(xi)f
′(xi) (mod pn).

Thus we obtain (vi), because an(xi) 6≡ 0 (mod p) (for some 1 ≤ i ≤ k) implies

f ′(xi) 6≡ 0 (mod p) for all 1 ≤ i ≤ k.
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According to Lemma 3.2 (i) and (ii), the value of an(x) (mod pn) does not

depend on x ∈ X. According to Lemma 3.2 (iii) and (iv), whether bn(x) ≡
0 (mod p) does not depend on x ∈ X if an(x) ≡ 1 (mod p). For simplicity,

sometimes we shall write an and bn without mentioning x.

The above analysis allows us to distinguish the following four behaviors of

fn+1 on X:

(a) If an ≡ 1 (mod p) and bn 6≡ 0 (mod p), then Φ preserves a single cycle of

length p, so that fn+1 restricted to X preserves a single cycle of length pk. In this

case we say σ grows.

(b) If an ≡ 1 (mod p) and bn ≡ 0 (mod p), then Φ is the identity, so fn+1

restricted to X preserves p cycles of length k. In this case we say σ splits.

(c) If an ≡ 0 (mod p), then Φ is constant, so fn+1 restricted to X preserves

one cycle of length k and the remaining points of X are mapped into this cycle.

In this case we say σ grows tails.

(d) If an 6≡ 0, 1 (mod p), then Φ is a permutation and the `-th iterate of Φ

reads

Φ`(x, t) = bn(a`
n − 1)/(an − 1) + a`

nt

so that

Φ`(t)− t = (a`
n − 1)

(
t+

bn
an − 1

)
.

Thus, Φ admits a single fixed point t = −bn/(an − 1), and the remaining points

lie on cycles of length d, where d is the order of an in (Z/pZ)∗. So, fn+1 restricted

to X preserves one cycle of length k and p−1
d

cycles of length kd. In this case we

say σ partially splits.

Now let us study the relation between (an, bn) and (an+1, bn+1). Our aim is

to see the change of nature from a cycle to its lifts.

Lemma 3.3. Let σ = (x1, . . . , xk) be a k-cycle of fnand let σ̃ be a lift of σ of

length kr, where r ≥ 1 is an integer. We have

an+1(xi + pnt) ≡ ar
n(xi) (mod pn), (1 ≤ i ≤ k, 0 ≤ t ≤ p− 1) (3.4)

pbn+1(xi + pnt)

≡t(an(xi)
r − 1) + bn(xi)(1 + an(xi) + · · ·+ an(xi)

r−1) (mod pn).
(3.5)
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Proof. The formula (3.4) follows from

an+1 ≡ (gr)′(xi + pnt) ≡ (gr)′(xi) ≡
r−1∏
j=0

g′(gj(xi)) ≡ ar
n (mod pn).

By repeating r-times of the linearization (3.3), we obtain

gr(xi + pnt) ≡ xi + Φr(t, xi)p
n (mod p2n),

where Φr means the r-th composition of Φ as function of t. However,

Φr(t, xi) = tan(xi)
r + bn(xi)(1 + an(xi) + · · ·+ an(xi)

r−1).

Thus (3.5) follows from the definition of bn+1 and the above two expressions.

By Lemma 3.3, we get immediately the following proposition.

Proposition 3.4. Let n ≥ 1. Let σ be a k-cycle of fn and σ̃ be a lift of σ. Then

we have

1) if an ≡ 1 (mod p), then an+1 ≡ 1 (mod p);

2) if an ≡ 0 (mod p), then an+1 ≡ 0 (mod p);

3) if an 6≡ 0, 1 (mod p) and σ̃ is of length k, then an+1 6≡ 0, 1 (mod p);

4) if an 6≡ 0, 1 (mod p) and σ̃ is of length kd where d ≥ 2 is the order of an

in (Z/pZ)∗, then an+1 ≡ 1 (mod p).

This result is interpreted as follows in dynamical system language:

1) If σ grows or splits, then any lift σ̃ grows or splits.

2) If σ grows tails, then the single lift σ̃ also grows tails.

3) If σ partially splits, then the lift σ̃ of the same length as σ partially splits,

and the other lifts of length kd grow or split.

If σ = (x1, · · · , xk) is a cycle of fn which grows tails, then f admits a k-

periodic point x0 in the clopen set X =
⊔k

i=1 xi + pnZp and X is contained in the

attracting basin of the periodic orbit x0, f(x0), · · · , fk−1(x0).

With the preceding preparations, we are ready to prove the following Propo-

sitions 3.5-3.7 which predict the behavior of the lifts of a cycle σ by the properties

of σ. We refer the reader to [40] for their proofs. Otherwise we can follows the

similar proofs of Propositions 3.8-3.10 in the case p = 2.
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Proposition 3.5 ([40]). Let σ be a growing cycle of fn and σ̃ be the unique lift of

σ.

1) If p ≥ 3 and n ≥ 2 then σ̃ grows.

2) If p > 3 and n ≥ 1 then σ̃ grows.

3) If p = 3 and n = 1, then σ̃ grows if and only if b1(x) 6≡ g′′(x)/2 (mod p).

According to 1) and 2) of Proposition 3.5, in the cases p ≥ 3, n ≥ 2 and

p > 3, n ≥ 1, if σ = (x1, · · · , xk) grows then its lift also grows, and the lift of the

lift will grow and so on. So, the clopen set

X =
k⊔

i=1

xi + pnZp

is a minimal set.

Let

An(x) := vp(an(x)− 1), Bn(x) := vp(bn(x)).

By Lemma 3.2, for a cycle σ = (x1, . . . , xk), min{An(xi), n} and min{Bn(xi), n}
do not depend on the choice of xi, 1 ≤ i ≤ k. Without misunderstanding, we will

not mention xi in An and Bn.

Proposition 3.6 ([40]). Let p ≥ 3 and n ≥ 1. Let σ be a splitting cycle of fn.

1) If min{An, n} > Bn, every lift splits first Bn − 1 times then grows.

2) If An ≤ Bn and An < n, there is one lift which behaves the same as σ (i.e.,

this lift splits and An+1 ≤ Bn+1 and An+1 < n+ 1) and other lifts split An − 1

times then grow.

3) If Bn ≥ n and An ≥ n, then all lifts split at least n− 1 times.

Proposition 3.7 ([40]). Let p ≥ 3 and n ≥ 1. Let σ be a partially splitting k-cycle

of fn and σ̃ be a lift of σ of length kd, where d is the order of an in Z/pZ.

1) If An+1 < nd, then σ̃ splits An+1 − 1 times then grows.

2) If An+1 ≥ nd, then σ̃ splits at least nd− 1 times.

We remark that in the partially splitting case, min{An+1(x), nd} depends

only on the lifting cycle of fn+1 of length kd but not on x (see [40], Corollary 3).
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3.3 Induced dynamics on Z/pnZp (p = 2)

In this section we focus on the special case p = 2 which is not considered

in [40]. The first part in the preceding section (where p ≥ 3 is not explicitly

assumed) remain true for p = 2. Notice that when p = 2, there is no partially

splitting cycles.

We only need to study how a cycle grow or split. We distinguish four cases.

Let σ be a cycle of fn. We say σ strongly grows if an ≡ 1 (mod 4) and bn ≡
1 (mod 2), σ weakly grows if an ≡ 3 (mod 4) and bn ≡ 1 (mod 2). We say σ strongly

splits if an ≡ 1 (mod 4) and bn ≡ 0 (mod 2), σ weakly splits if an ≡ 3 (mod 4) and

bn ≡ 0 (mod 2).

The following results hold true when p = 2. Their proofs are postponed and

get together at the end of this section.

Proposition 3.8. Let σ be a cycle of fn (n ≥ 2). If σ strongly grows then the lift

of σ strongly grows. If σ weakly grows then the lift of σ strongly splits.

The first assertion of Proposition 3.8 implies that if σ = (x1, · · · , xk) is a

strongly growing cycle of fn (n ≥ 2), then
⊔
xi + pnZp is a minimal set.

Recall that

An(x) = v2(an(x)− 1), Bn(x) = v2(bn(x)).

Proposition 3.9. Let σ be a strongly splitting cycle of fn (n ≥ 2).

1) If min{An, n} > Bn, then all lifts strongly split Bn−1 times, then strongly

grow.

2) If An ≤ Bn and An < n, then one lift behaves the same as σ (i.e., this lift

strongly splits and An+1 ≤ Bn+1 and An+1 < n+ 1). The other one splits An − 1

times, then strongly grows forever.

3) If Bn ≥ n and An ≥ n, then all lifts strongly split at least n− 1 times.

Proposition 3.10. Let σ be a weakly splitting cycle of fn (n ≥ 2). Then one lift

behaves the same as σ and the other one weakly grows and then strongly splits.

To prove these propositions, we need the following lemmas.
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Lemma 3.11. Let σ be a growing cycle of fn (n ≥ 2). Then

an+1(xi) ≡ 1 (mod 4), (3.6)

2bn+1(xi + pnt) ≡ bn(xi)(1 + an(xi)) (mod 4). (3.7)

Proof. Taking p = 2 and r = 2 in (3.4), we get

an+1(xi) ≡ a2
n(xi) (mod 2n).

Since n ≥ 2 and an ≡ 1 (mod 2), we obtain (3.6).

Taking p = 2 and r = 2 in (3.5), we get

2bn+1(xi + 2nt) ≡ t(an(xi)
2 − 1) + bn(xi)(1 + an(xi)) (mod 2n).

Since n ≥ 2 and an ≡ 1 (mod 2), we obtain (3.7).

Lemma 3.12. Let σ be a splitting cycle of fn.

If An < n, then An+1 = An and if An ≥ n, then An+1 ≥ n. Consequently,

min{An+1, n} = min{An, n}. (3.8)

Proof. We need only to notice that we have an+1 ≡ an (mod 2n) since σ splits.

Lemma 3.13. Let σ = (x1, . . . , xk) be a splitting cycle of fn. Then for 1 ≤ i ≤ k

and for t = 0 or 1, we have

2bn+1(xi + 2nt) ≡ bn(xi) + t(an(xi)− 1) (mod 2n). (3.9)

Consequently, we have

Bn+1(xi + 2nt) = Bn(xi)− 1 if Bn(xi) < min{An(xi), n}, (3.10)

Proof. Since σ splits, taking p = 2 and r = 1 in (3.5), we obtain the result.

The following lemma concerns an elementary property of polynomials on Z2.

Lemma 3.14. Let h ∈ Z2[x]. If a ≡ b (mod 2), then h′(a) ≡ h′(b) (mod 4).

Furthermore, if h′(a) ≡ 1 (mod 2), then h′(a)h′(b) ≡ 1 (mod 4) .
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Proof. It suffices to notice that the coefficient of x2k+1 in h′(x) is equal to 0 (mod 2).

Lemma 3.15. Let σ be a growing k-cycle of fn (n ≥ 1). Then its lift strongly

grows or strongly splits.

Proof. Let x1 be a point in σ. What we have to show is an+1(x1) ≡ 1 (mod 4).

Since σ is a growing k-cycle, we have

fk(x1) ≡ x1 (mod 2n), an(x1) = (fk)′(x1) ≡ 1 (mod 2).

So, by Lemma 3.14, we have

an+1(x1) = (f 2k)′(x1) = (fk)′(x1)(f
k)′(fk(x1)) ≡ 1 (mod 4).

A direct consequence is the following result.

Corollary 3.16. If a cycle grows twice (maybe between the two growths, it splits

several times), then it will grow forever.

Proof. Let σ̃ be the lift of a growing cycle σ. Assume that after several times of

splitting, one of lifts of σ̃ grows. By Lemma 3.15, this growing lift at a level n ≥ 2

must strongly grow. Thus by Proposition 3.8, it will grow forever.

We are now going to prove Propositions 3.8-3.10.

Proof of Proposition 3.8. If σ grows, then by (3.6), the lift of σ strongly grows

or strongly splits. If σ strongly grows, then by (3.7), we have

2bn+1(xi + pnt) ≡ 2bn(xi) (mod 4).

Thus

bn+1(xi + pnt) ≡ bn(xi) 6≡ 0 (mod 2).

Hence the lift of σ strongly grow.

If σ weakly grows, then by (3.7), we have

2bn+1(xi + pnt) ≡ 0 (mod 4).
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Thus

bn+1(xi + pnt) ≡ 0 (mod 2).

Hence the lift of σ strongly splits. �

Proof of Proposition 3.9. First notice that if σ strongly splits then an ≡
1 (mod 4). Since n ≥ 2, by Lemma 3.2 we have a` ≡ 1 (mod 4) for all ` > n.

So, all the lifts strongly grow or strongly split. Recall that by Lemma 3.2, both

min{An(xi), n} and min{Bn(xi), n} are independent of xi. We will simply write

An and Bn if there is no confusion.

Proposition 3.9 contains three cases which are defined by some conditions on

An and Bn. If such a condition is satisfied, we say σ or (An, Bn) belongs to the

corresponding case.

Case 1: min{An, n} > Bn. By (3.10), we have Bn+1 = Bn− 1. Thus by (3.8)

min{An+1, n+ 1} ≥ min{An+1, n} = min{An, n} > Bn > Bn+1.

Hence the lifts of σ still belongs to Case 1. By induction, we know that after

` := Bn times, Bn+` = 0 (i.e. bn+` 6= 0 mod p). Since σ strongly splits, we have

an+` ≡ 1 (mod 4). Thus the lifts at level n + ` strongly grow. That is to say all

lifts of σ split Bn − 1 times, then strongly grow forever.

Case 2: An ≤ Bn and An < n. By Lemma 3.12, we have An+1 = An. Since

Bn ≥ An, there exists one t such that

bn + t(an − 1) ≡ 0 (mod 2An+1),

and the other which we can write as 1− t such that

bn + t(an − 1) 6≡ 0 (mod 2An+1).

Hence by (3.9), for one lift of σ Bn+1 ≥ An and for the other one Bn+1 = An − 1.

Thus for one lift, An+1 = An ≤ Bn+1, and An+1 = An < n + 1. Therefore, this

lift belongs to Case 2. For the other one, Bn+1 = An − 1 = An+1 − 1 < An+1,

and Bn+1 = An − 1 < n + 1. Thus this lift belongs to Case 1. By induction, we

know that one lift of σ behaves the same as σ (i.e., strongly splits and satisfies

the condition of Case 2 at level n+ 1) and the other one splits An− 1 times, then

the lifts strongly grow.
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Case 3: Bn ≥ n and An ≥ n. By the definition of bn, if the cycle splits, the

order of bn deceases at most one when the level goes up one step. Since Bn ≥ n,

we have Bn+1 ≥ n − 1, and if n ≥ 2, the lifts of σ still strongly split. Thus by

induction, the lifts of σ split at least n− 2 times. But after that we can not give

any more information. �

Proof of Proposition 3.10. Since σ weakly splits, an+1 ≡ an ≡ 3 (mod 4).

Thus An+1 = An = 1 < n and Bn ≥ 1 = An. Thus (An, Bn) belongs to Case 2 in

Proposition 3.9. By the proof of Proposition 3.9, we know that for one lift of σ,

Bn+1 ≥ An and then An+1 = An ≤ Bn+1. Thus this lift behaves the same as σ.

For the other lift, Bn+1 = An − 1 = 0. Hence this second lift weakly grows, and

then strongly splits by Proposition 3.8. Therefore, we complete the proof. �

3.4 Minimal decomposition

If a cycle always grows then it will produce a minimal component of f . If

a cycle always splits then it will produce a periodic orbit of f . If a cycle grows

tails, it will produce an attracting periodic orbit with an attacking basin. We shall

describe this more precisely.

Let σ = (x1, . . . , xk) be a cycle of fn. We say σ is a cycle at level n. Let

X :=
k⊔

i=1

(xi + pnZp).

There are four special situations for the dynamical system f : X → X.

(S1) Suppose σ grows tails. Then f admits a k-periodic orbit with one pe-

riodic point in each ball xi + pnZp (1 ≤ i ≤ k), and all other points in X are

attracted into this orbit. In this situation, if x is a point in the k-periodic orbit,

then |(fk)′(x)|p < 1 since (fk)′(x) = am(x) ≡ 0 (mod pm) for all m ≥ n. The

periodic orbit (x, f(x), · · · , fk−1(x)) is then attractive.

(S2) Suppose σ grows and its lifts always grow. Then f is transitive on each

X/pmZp m ≥ n. Thus, by Theorem 3.1, f is minimal on X. In this case, we say

that σ is a starting growing cycle at level n.

(S3) Suppose σ splits and there is a splitting lift on each level larger than n.

Then there is a k-periodic orbit with one periodic point in each xi + pnZp (1 ≤
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i ≤ k). We say that σ is a starting splitting cycle at level n. In this situation, if

x is a point in the k-periodic orbit, then (fk)′(x) = 1 since (fk)′(x) = am(x) ≡
1 (mod pm) for all m ≥ n. Thus the periodic orbit (x, f(x), · · · , fk−1(x)) is

indifferent.

(S4) Suppose σ = (x1, . . . , xk) partially splits (p ≥ 3). Then by Proposition

3.7, there is one lift of length k which still partial splits like σ. Thus there is a

k-periodic orbit with one periodic point in each xi + pnZp (1 ≤ i ≤ k). In this

situation, if x is a point in the k-periodic orbit formed above, then |(fk)′(x)|p = 1

since (fk)′(x) = am(x) 6≡ 0, 1 (mod pm) for all m ≥ n. Hence, the periodic orbit

(x, f(x), · · · , fk−1(x)) is indifferent.

Now we can deduce all possible periods of the polynomial systems on Zp.

Proposition 3.17 ([40], see also [125]). Let f ∈ Zp with deg f ≥ 2.

1) If p ≥ 5, the lengths of cycles are of the form ab with a|(p − 1) and

1 ≤ b ≤ p;

2) If p = 3, the length of cycles must be 1, 2, 3, 4, 6 or 9;

3) If p = 2, the length of cycles must be 1, 2 or 4. If there is 4-periodic orbit,

then f1 should be a permutation on Z/2Z.

Proof. We only show 3), because the proofs of 1) and 2) are similar and can be

found in [40] and [125]. The first assertion of 3) can also be found in [125].

Notice that any periodic orbit comes from an infinite sequence of splitting of

some cycle, and that the length of the periodic orbit is the length of the cycle. So,

what we want to study are all possible lengths of starting splitting cycles.

The possible lengths of cycles at the first level (i.e. the cycles of f1 on Z/2Z)

are 1 and 2. Notice that the growth of length must be multiplied 2, according to

our discussion in the preceding sections. So, the possible lengths of cycles are 2k

(k ≥ 0). However, by Corollary 3.16, if a cycle grows twice it will grow forever.

There, any cycle of length 2k (k ≥ 3), which must have grown twice, can’t be a

starting splitting cycle. Hence the lengths of starting splitting cycles can only be

1, 2, 4.

If there is a periodic orbit of length 4, there must be a starting splitting cycle

of length 4. This is possible only in the following case: at the first level, f1 admit
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a 2-cycle. Otherwise it needs to grow twice and then its lifts will grow forever.

This will produce a clopen minimal set not a periodic orbit.

Theorem 3.18. Let f ∈ Zp[x] with deg f ≥ 2. We have the following decomposi-

tion

Zp = A
⊔
B
⊔
C

where A is the finite set consisting of all periodic points of f , B =
⊔

iBi is

the union of all (at most countably many) clopen invariant sets such that each

subsystem f : Bi → Bi is minimal, and each point in C lies in the attracting basin

of a periodic orbit or of a minimal subsystem.

Proof. We first explain that there are only finitely many periodic points. In fact,

by Proposition 3.17, there are only finitely many possible lengths of periods. Pe-

riodic points are solutions of the equations f qi(x) = x with {qi} being one of

possible length of period. Since deg f ≥ 2, each equation admits a finite number

of solutions. So, there is only a finite number of periodic points.

We start from the second level. Decompose Zp into p2 balls with radius p−2.

Each ball is identified with a point in Z/p2Z. The induced map f2 admits some

cycles. It is possible that some point outside any cycle is mapped into a cycle. The

ball corresponding to such a point will be put into the third part C. From now

on, we really start our analysis with cycles at level n ≥ 2. Let σ = (x1, . . . , xk) be

a cycle at level n ≥ 2. Let

X =
k⊔

i=1

(xi + pnZp).

Suppose p ≥ 3. We distinguish four cases.

(P1) σ grows tails. Then by (S1), the clopen set X consists of a k-periodic

orbit and other points are attracted by this periodic orbit. So, X contributes to

the first part A and the third part C.

(P2) σ grows. Then by Proposition 3.5, σ is in the situation (S2). Therefore

X is a minimal component. So, X ⊂ B.

(P3) σ splits. Then we shall apply Proposition 3.6. If σ belongs to Case 1

described by Proposition 3.6, then after finitely many times of splitting, the lifts

will grow forever and so they are in the situation of (S2). Therefore we get a finite
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number of minimal components, all belonging to B. If σ belongs to Case 2, then

there is one lift of σ sharing the property (S3), and others lifts different from the

cycle containing the periodic orbit (at any level m ≥ n + 1) find themselves in

the situation (S2) after finitely many times of lifting. Therefore, we get a periodic

orbit and an infinite number of minimal components. If σ belongs to Case 3, then

σ splits into pn cycles at level 2n. These cycles at level 2n may continue this

procedure (P3). But this procedure cannot continue infinitely, because there is

only a finite number of periodic points. So, all these cycle may continue to split

but they must end with their lifts belonging either to Case 1 or Case 2. So, X
contributes to both A and B.

(P4) σ partially splits. Then σ is in the situation (S4). thus there comes out

a periodic orbit. Suppose σm is the lift of σ containing the periodic orbit at level

m ≥ n+ 1. If σm belongs Case 1 in Proposition 3.7, then the other lifts different

from σm+1, will be in the situation (S1) after finite times. If σm belongs Case 2 in

Proposition 3.7, then each of other lifts different from σm+1, splits as pnd−1 cycles

at level nd. We do (P3) for these cycles at level nd.

Suppose p ≥ 3. We distinguish five cases.

(Q1) σ grows tails. Then σ is in the situation (S1). We have the same

conclusion as (P1) above.

(Q2) σ strongly grows. Then by Proposition 3.8, σ is in the situation (S2).

We have the same conclusion as (P2) above.

(Q3) σ strongly splits. By Proposition 3.9, the arguments are the same as

(P3): The processes will be ended if the condition 1) or 2) in Proposition 3.9 is

satisfied. If the condition 3) in Proposition 3.9 is satisfied, we repeat (Q3) for the

lifts of σ. But the processes will be eventually ended with the condition 1) or 2),

because there is only a finite number of periodic points.

(Q4) σ weakly grows. Then by Proposition 3.8, the lift of σ strongly splits.

We are then in the situation (Q3).

(Q5) σ weakly splits. By Proposition 3.10, then one lift is in the situation

(S3) which produces a periodic orbit, and the other lifts different from the cycle

containing the periodic orbit, at any level m ≥ n+ 1, will weakly grow. Then we

are in the situation (Q4).

All the above processes will stop. So, we get the decomposition in finite
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steps.

We have excluded the affine polynomials from the theorem. Exactly speaking

the conclusion is false for affine polynomials. For example, every points in Zp are

fixed by f(x) := x. Anyway, affine polynomials have been fully studied in [50].

Corollary 3.19. Let f ∈ Zp[x] with deg f ≥ 2. If f admits an indifferent fixed

point or a periodic orbit, then there exists a sequence of minimal components with

their diameters and their distances from the fixed point or the periodic orbit tending

to zero.

Proof. Suppose (x1, . . . , xk) is an indifferent periodic orbit. Let x
(n)
j ∈ Z/pnZ and

x
(n)
j ≡ xj (mod pn) for 1 ≤ j ≤ k. Then σn = (x

(n)
1 , . . . , x

(n)
k ) is a splitting or

partially splitting cycles at level n. By the processes of the decomposition, the

cycles σn should be in the situation (S3) or (S4). That is to say σn splits for all n

or σn partially splits for all n.

Since there are only finite number of periodic orbits, for any ε > 0 small

enough, there is no other periodic orbits in the ε neighborhood of the orbit

(x1, . . . , xk). Take n such that p−n < ε. Then the lifts of σn which are differ-

ent to σn+1 will never split infinitely. Hence they will grow after finite time. Then

all the lifts of σn which are different to σn+1, considered as union of balls, are

finite number of minimal components. Since these balls are contained in xj +pnZp

for each j respectively. Thus there is a minimal component such that the diam-

eter and the distance to the orbit (x1, . . . , xk) are all less than p−n. The result

is obtained if we consider infinitely n and find one minimal component for each

n.

3.5 Conjugacy classes of Minimal subsystems

Recently, Chabert, Fan and Fares [33] proved that minimal sets of a 1-

Lipschitz map are Legendre sets. We shall prove that minimal sets of a polynomial

are special Legendre sets. A set E ⊂ Zp is a Legendre set if for any s ≥ 1 and any

x ∈ E/psZp, the number

qs := Card
{
y ∈ E/ps+1Zp : y ≡ x mod ps

}
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is independent of x ∈ E/psZp. Let

ps := q1q2 · · · qs (∀s ≥ 1).

It is clear that ps = Card E/psZp. We call (ps)s≥1 the structure sequence of E.

Consider the inverse limit

Z(ps) := lim
←

Z/psZ.

This is a profinite group, usually called an odometer, and the map τ : x 7→ x + 1

is called the adding machine on Z(ps).

Theorem 3.20 ([33]). Let E be a clopen set in Zp and f : E → E be a 1-Lipschitz

map. If the dynamical system (E, f) is minimal, then f is an isometry, E is a

Legendre set and the system (E, f) is conjugate to the adding machine on (Z(ps), τ)

where (ps) is the structure sequence of E. On the other hand, on any Legendre set

there exists at least one minimal map.

We improve the above result in the case of polynomials by giving more infor-

mation on the structure sequence.

Theorem 3.21. Let f ∈ Zp[x] with deg f ≥ 2. If E is a minimal clopen invariant

set of f , then f : E → E is conjugate to the adding machine on an odometer Z(ps),

where

(ps) = (k, kd, kdp, kdp2, · · · )

with some k ∈ N, k ≤ p and d|(p− 1).

Proof. By our previous discussion on the cycles of fn on Z/pnZ, a clopen minimal

set E is formed when a cycle grows forever. If n is the starting level for the cycle

to grow, then E is a union of some balls with radius p−n. Therefore, for s ≥ n,

every nonempty intersection of E with a ball of radius p−s contains p balls of

radius p−(s+1). That is to say qs = p. From the cycle at the first level to the

starting cycle at level n, the growth of cycle length is multiplied by 1, p or some d

satisfying d|(p− 1). That is to say for 1 ≤ s < n, every nonempty intersection of

E with a ball of radius p−s contains the same number (1, p or d) of balls of radius

p−(s+1). Thus E is a Legendre set. To determine ps for 1 ≤ s < n, we distinguish

three cases: p ≥ 5, p = 3, p = 2.
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Case p ≥ 5. In this case, when a cycle grows, its lifts grow forever. So, a

cycle at level 1 starts with growing, several times of splitting or several times of

partial splitting. Then the lifted cycle grows forever. Therefore, there are three

ways to form a minimal set. We show the three ways by the growth of cycle length

as follows (k being the length of the cycle σ on the level 1).

Case 1. σ grows:

(k, kp, kp2, . . . ),

Case 2. σ splits:

(k, k, . . . , k, kp, kp2, . . . ),

Case 3. σ partially splits:

(k, kd, . . . , kd, kdp, kdp2, . . . ), d|(p− 1), d ≥ 2.

The above three cases correspond to three kinds of adding machines. However,

by the result of Buescu and Stewart [28], the adding machines in both Case 1

and Case 2 are conjugate to (Z(ps), τ) where ps = (k, kp, kp2, . . . ). In Case 3, the

adding machines are all conjugate to (Z(ps), τ) where ps = (k, kd, kdp, kdp2, . . . )

and d|(p− 1), d ≥ 2.

Case p = 3. We distinguish four cases.

Case 1. σ grows and its lift also grows:

(k, kp, kp2, . . . ),

Case 2. σ grows but its lift splits:

(k, kp, . . . , kp, kp2, . . . ),

Case 3. σ splits:

(k, k, . . . , k, kp, kp2, . . . ),

Case 4. σ partial splits:

(k, kd, . . . , kd, kdp, kdp2, . . . ), d|(p− 1), d ≥ 2.

62



Then (E, f) is conjugate to (Z(ps), τ) where ps = (k, kd, kdp, kdp2, . . . ) with 1 ≤
k ≤ p, and d|(p− 1).

Case p = 2. We distinguish twelve cases.

(1, 1, 1, . . . 1︸ ︷︷ ︸
strongly split

, 2, 22, 23, . . . ),

(1, 1︸︷︷︸
strongly grows

, 2, 22, 23, . . . ),

(1, 1︸︷︷︸
weakly splits

, 1︸︷︷︸
weakly grows

, 2, . . . 2︸ ︷︷ ︸
strongly split

, 22, 23, . . . ),

(1, 1︸︷︷︸
weakly grows

, 2, . . . 2︸ ︷︷ ︸
strongly split

, 22, 23, . . . ),

(1, 2, . . . , 2︸ ︷︷ ︸
strongly split

, 22, 23, . . . ),

(1, 2︸︷︷︸
strongly grows

, 22, 23, . . . ),

(2, 2, . . . , 2︸ ︷︷ ︸
strongly split

, 22, 23, . . . ),

(2, 2︸︷︷︸
strongly grows

, 22, 23, . . . ),

(2, 2︸︷︷︸
weakly splits

, 2︸︷︷︸
weakly grows

, 22, . . . , 22︸ ︷︷ ︸
strongly split

, 23, . . . ),

(2, 2︸︷︷︸
weakly grows

, 22, . . . , 22︸ ︷︷ ︸
strongly split

, 23, . . . ),

(2, 22, . . . , 22︸ ︷︷ ︸
strongly split

, 23, . . . ),

(2, 22︸︷︷︸
strongly grows

, 23, . . . ).

In any of these cases, the system (E, f) is conjugate to (Z2, x+ 1).
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3.6 2-adic Quadratic Polynomials

In this section, we undertake a full investigation on the minimal decomposi-

tion of 2-adic quadratic polynomial systems on Z2 of the form:

f(x) := ax2 + bx+ c (a, b, c ∈ Z2, a 6= 0).

As we shall see, the system f(x) = ax2 + bx + c is conjugate to one of the

following quadratic polynomials

x2 − λ, x2 + bx, x2 + x− d

where λ ∈ Z2, b ≡ 1 (mod 2) and
√
d 6∈ Z2.

Let us state our results on the minimal decomposition of (Zp, f). The proofs

are postponed at the end of this section. By the way, we shall discuss the behavior

of f on the field Qp.

If a ≡ 1 (mod 2), then limn→∞ |fn(x)| = ∞ for any x 6∈ Z2. An elementary

calculation shows that ax2 + bx+c on Z2 is conjugate to x2 + bx+c on Z2 through

the conjugacy x 7→ ax. If a ≡ 0 (mod 2), then limn→∞ |fn(x)| = ∞ for any

x 6∈ 1
a
Z2 and ax2 + bx + c on 1

a
Z2 conjugates to x2 + ax + ac on Z2 through the

conjugacy x 7→ ax. Thus without loss of generality, we need only to consider the

quadratic polynomials of the form

x2 + bx+ c (b, c ∈ Z2).

We distinguish two cases according to b ≡ 0 (mod 2) or b ≡ 1 (mod 2)

If b ≡ 0 (mod 2), x2 + bx+ c is conjugate to

x2 − λ

with λ = b2−4c−2b
4

through the conjugacy x 7→ x+ B
2
.

Theorem 3.22. Consider the polynomial f(x) = x2 − λ on Z2.

1) If λ ≡ 0 (mod 4), then f admits two attracting fixed points, one in 4Z2

with 2Z2 as its attraction basin, and the other one in 1 + 4Z2 with 1 + 2Z2 as its

attraction basin.

2) If λ ≡ 1 (mod 4), then the whole Z2 is attracted into a periodic orbit of
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period 2 with one orbit point in 4Z2 and the other one in 3 + 4Z2.

3) If λ ≡ 2 (mod 4), then f admits two attracting fixed points, one in 2+4Z2

2Z2 as its attraction basin, and the other one in 3 + 4Z2 with 1 + 2Z2 as its

attraction basin.

4) If λ ≡ 3 (mod 4), then the whole Z2 is attracted into a periodic orbit of

period 2 with one orbit point in 1 + 4Z2 and the other one in 2 + 4Z2.

If b ≡ 1 (mod 2), then x2 + bx+ c is conjugate to

x2 + x− d

where d = (b−1)2−4c
4

∈ Z2 through x 7→ x+ b−1
2

. It is clear that x2 + x− d admits

fixed points if and if only
√
d ∈ Z2. Thus we need to study the case x2 + x − d

with
√
d ∈ Z2 and the case x2 + x− d with d ∈ Z2 but

√
d 6∈ Z2.

If
√
d ∈ Z2 (i.e. x2 + x− d has a fixed point), then x2 + x− d conjugates to

x2 + bx

with b = 1− 2
√
d through x 7→ x+

√
d.

If b = 1, the minimal decomposition of x2 + x is as follows.

Theorem 3.23. Consider the polynomial f(x) = x2 + x on Z2[x]. There is one

fixed point 0. We have f(1 + 2Z2) ⊂ 2Z2 and we can decompose 2Z2 into

2Z2 = {0}
⊔(⊔

n≥2

2n−1 + 2nZ2

)
.

Each 2n−1 + 2nZ2 (n ≥ 2) consists of 2n−2 pieces of minimal components:

2n−1 + t2n + 22n−2Z2, t = 0, . . . , 2n−2 − 1.

If b ≡ 1 mod 2 but b 6= 1, we divide it into three subcases: b = 1 − 4m,

m ∈ Z2 \ {0}; b = −1− 4m, m ∈ Z2 with v2(m) ∈ 1 + 2N; b = −1− 4m, m ∈ Z2

with v2(m) ∈ 2N. If f(x) = x2 + (−1− 4m)x with v2(m) = 0, then f is conjugate

to g(x) = x2 + (−1 − 4(−m − 1))x with v2(−m − 1) = v2(m + 1) ≥ 1 through

x 7→ x − 4m − 2. Thus the third case reduce to f(x) = x2 + (−1 − 4m)x with

v2(m) ∈ 2N∗ with the notation N∗ being the numbers in N different with 0.
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Before the statement of the following results, we would like to give some

terminology to simplify our statements.

We say a 1-cycle (x) at level n is of type I-[k] if it splits k times then its

lifts grow forever. In this case, the ball x + pnZp is decomposed into pk pieces of

minimal components. Such a component is a ball of radius p−n−k. Sometimes the

ball x+ pnZp is said to be of type I-[k].

We say the a 2-cycle (x, y) at level n is of type II-[k] if it splits k times then

its lifts grow forever. In this case, the union of two balls (x+ pnZp)∪ (y+ pnZp) is

decomposed into pk pieces of minimal components. Such a component is a union

of two balls of radius p−n−k. The union (x+ pnZp)∪ (y+ pnZp) is sometimes said

to be of type II-[k]. Remark that it is possible for the union (x+pnZp)∪(y+pnZp)

to be a ball of radius p−n+1.

If an invariant subset E ⊂ Zp is a union of invariant subsets Fn ⊂ Zp n ∈
J ⊂ N where each ball Fn is of type I-[k], we will denote it as

E =
⊔
n∈J

Fn − {I-[k]}.

If an invariant subset E ⊂ Zp is a union of invariant subsets Fn ⊂ Zp n ∈ J ⊂ N
where each Fn is a union of two balls of type II-[k], we will denote it as

E =
⊔
n∈J

Fn − {II-[k]}.

Now we are ready to state the following theorems.

Theorem 3.24. Consider f(x) = x2 + (1− 4m)x, m ∈ Z2 \ {0}. Then f admits

two fixed points 0 and 4m and f(1 + 2Z2) ⊂ 2Z2, and we can decompose 2Z2 as

2Z2 = {0, 4m}
⊔
E1

⊔
E2

⊔
E3,

where

E1 =
⊔

2≤n<v2(m)+3

(
2n−1 + 2nZ2

)
− {I-[n− 2]},

E2 =
⊔

n>v2(m)+3

(
2n−1 + 2nZ2

)
− {I-[v2(m) + 1]},

E3 =
⊔

n>v(m)+3

(
4m+ 2n−1 + 2nZ2

)
− {I-[v2(m) + 1]}.
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Theorem 3.25. Consider f(x) = x2 + (−1 − 4m)x with v2(m) ∈ 1 + 2N. Then

f admits two fixed points 0 and 4m+ 2, f(1 + 2Z2) ⊂ 2Z2 and we can decompose

2Z2 as

2Z2 = {0, 4m}
⊔
E1

⊔
E2

⊔
E3,

where

E1 =
⊔
n≥4

(
4m+ 2 + 2n−2 + 2n−1Z2

)
− {II-[1]},

E2 =
⊔

4≤n≤bv2(m)/2c+3

(
2n−2 + 2n−1Z2

)
− {II-[2n− 5]},

E3 =
⊔

n>bv2(m)/2c+3

(
2n−2 + 2n−1Z2

)
− {II-[v2(m) + 1]}.

Theorem 3.26. Consider f(x) = x2 + (−1 − 4m)x with v2(m) ∈ 2N∗. Then f

admits fixed points 0 and 4m + 2, and f(1 + 2Z2) ⊂ 2Z2. The invariant set 2Z2

admits the following form

2Z2 = {0, 4m}
⊔
E1

⊔
E2

⊔
E3

⊔(
2v2(m)/2+1 + 2v2(m)/2+2Z2

)
,

where

E1 =
⊔
n≥4

(
4m+ 2 + 2n−2 + 2n−1Z2

)
− {II-[1]},

E2 =
⊔

4≤n<v2(m)/2+3

(
2n−2 + 2n−1Z2

)
− {II-[2n− 5]},

E3 =
⊔

n>v2(m)/2+3

(
2n−2 + 2n−1Z2

)
− {II-[v2(m) + 1]}.

Denote E = 2v2(m)/2+1 + 2v2(m)/2+2Z2.

(1) If v2(m) = 2 and v2(m− 4) = 3, then E is of type II-[4].

(2) If v2(m) = 2 and v2(m− 4) ≥ 5, then E is of type II-[5].

(3) If v2(m) = 2 and v2(m−4) = 4, then there exists a 2-periodic orbit with one

point x1 ∈ 4 + 16Z2 and the other x2 ∈ 12 + 16Z2 and we can decompose E

as E = {x1, x2}
⊔
E4, where

E4 =
⊔
k≥5

(
(x1 + 2k−1 + 2kZ2) ∪ (x2 + 2k−1 + 2kZ2)

)
− {II-[5]}.
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(4) If v2(m) ≥ 4 and v2(m − 2v2(m)) < v2(m) + 3, then E is of type II-[v2(m −
2v2(m)) + 1].

(5) If v2(m) ≥ 4 and v2(m − 2v2(m)) ≥ v2(m) + 3, then there exists a 2-

periodic orbit with one point x′1 ∈ 2v2(m)/2+1 + 2v2(m)/2+3Z2 and the other

x′2 ∈ 2v2(m)/2+1 + 2v2(m)/2+2 + 2v2(m)/2+3Z2; and we can decompose E as

E = {x′1, x′2}
⊔
E ′4, where

E ′4 =
⊔

k≥v2(m)/2+3

(
(x′1 + 2k−1 + 2kZ2) ∪ (x′2 + 2k−1 + 2kZ2)

)
−{II-[v2(m) + 1]}.

Now we are left to study the polynomials f(x) = x2 + x− d with d ∈ Z2 but
√
d 6∈ Z2.

We distinguish four cases.

Theorem 3.27. Consider f(x) = x2 + x − d with d = 0 (mod 4) and
√
d 6∈

Z2. Then f(1 + 2Z2) ⊂ 2Z2 and 2Z2 is decomposed as finite number of minimal

components. Let n0 = bv2(d)/2c+ 1.

(1) If v2(d) = 2 and v2(d − 4) = 3, then 2Z2 consists of three minimal compo-

nents: 4Z2, 2 + 8Z2 and 6 + 8Z2.

(2) If v2(d) = 2 and v2(d−4) = 4, then 2Z2 consists of five minimal components:

4Z2, 2 + 8Z2, 6 + 8Z2, 10 + 8Z2, and 14 + 8Z2.

(3) If v2(d) ≥ 3 and v2(d) is odd, then 2Z2 = E1

⊔
E2, where

E1 =
⊔

2≤n≤n0

(
2n−1 + 2nZ2

)
− {I-[n− 2]},

E2 = 2n0Z2 − {I-[n0 − 1]}.

(4) If v2(d) ≥ 3 and v2(d) is even, then 2Z2 = E ′1
⊔
E ′2
⊔
E ′3, where

E ′1 =
⊔

2≤n≤n0−1

(
2n−1 + 2nZ2

)
− {I-[n− 2]},

E ′2 = 2n0Z2 − {I-[n0 − 2]},

E ′3 = 2n0−1 + 2n0Z2 − {I-[n0 + 1]}.
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Theorem 3.28. Consider f(x) = x2 + x − d with d = 1 (mod 4) and
√
d 6∈ Z2.

Then f(2Z2) ⊂ 1 + 2Z2 and 3 + 4Z2 is of type II-1. Let d = 5 + 8t with t ∈ Z2. If

v2(t) ≤ 1, then 1 + 4Z2 is of type II-(v2(t) + 1). If v2(t) ≥ 2, then

1 + 4Z2 = {x1, x2}
⊔
E1

⊔
E2

⊔
E3,

with the form

E1 = (a+ 24Z2) ∪ (f(a) + 24Z2)− {II-[3]},

E2 = (b+ 25Z2) ∪ (f(b) + 25Z2)− {II-[3]},

E3 =
⊔
n≥6

(x1 + 2nZ2) ∪ (x2 + 2nZ2)− {II-[3]},

and x1, x2 is a 2-periodic orbit such that x1 ∈ c + 25Z2 and x2 ∈ f(c) + 25Z2.

Preciously,

(1) If v2(t) = 2 and v2(t− 4) = 3, then a = 1, b = 25, c = 9.

(2) If v2(t) = 2 and v2(t− 4) ≥ 4, then a = 1, b = 9, c = 25.

(3) If v2(t) = 3, then a = 9, b = 1, c = 17.

(4) If v2(t) ≥ 4, then a = 9, b = 17, c = 1.

Theorem 3.29. Consider f(x) = x2 + x − d with d = 2 (mod 4) and
√
d 6∈ Z2.

Then f(1 + 2Z2) ⊂ 2Z2.

(1) If v2(d− 2) = 2, then 2Z2 is of type II-1.

(2) If v2(d−2) = 3, then 8Z2∪(f(0)+8Z2) is of type II-1, (4+8Z2)∪(f(4)+8Z2)

consists of a 2-periodic orbit with one point x1 ∈ 4 + 8Z2 and the other

x2 ∈ f(4) + 8Z2, and for each n ≥ 4, (x1 + 2nZ2) ∪ (x2 + 2nZ2) is of type

II-2;

(3) If v2(d−2) ≥ 4, then 4+8Z2∪(f(4)+8Z2) is of type II-1, 8Z2∪(f(0)+8Z2)

consists of a 2-periodic orbit with one point x1 ∈ 8Z2 and the other x2 ∈
f(0) + 8Z2, and for each n ≥ 4, (x1 + 2nZ2) ∪ (x2 + 2nZ2) is of type II-2.

Theorem 3.30. For f(x) = x2 +x−d with d = 3 (mod 4), the ball 2Z2 is mapped

into the ball 1 + 2Z2 which is the unique minimal component.
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We prove Theorems 3.22-3.26. The proofs of Theorems 3.27-3.30 will be

omitted since they are similar to those of Theorems 3.22-3.26.

Proof of Theorem 3.22. Let f(x) = x2 − λ. Then f ′(x) = 2x and (f 2)′(x) =

4x3 − 4λx.

1) If λ ≡ 0 (mod 4), then 2 + 4Z2 and 3 + 4Z2 are mapped into 4Z2 and

1+4Z2 respectively, and 4Z2 and 1+4Z2 are mapped into themselves respectively.

Consider the cycles (0) and (1) of f2. We have

a2(0) = f ′(0) ≡ 0 (mod 2) and a2(1) = f ′(1) ≡ 0 (mod 2).

Thus cycles (0) and (1) grow tails, hence there will form two attracting fixed

points, one in 4Z2 with basin 2Z2, and the other one in 1+4Z2 with basin 1+2Z2.

2) If λ ≡ 1 (mod 4), then 1+4Z2 and 2+4Z2 are mapped into 4Z2 and 3+4Z2

respectively, and 4Z2 and 3 + 4Z2 are mapped into 3 + 4Z2 and 4Z2 respectively.

Consider the cycle (0, 3) of f2. We have

a2(0) = (f 2)′(0) ≡ 0 (mod 2).

Thus cycle the cycle (0, 3) grows tails, hence there will form an attracting 2-

periodic orbit, with one point in 4Z2, and the other one in 3 + 4Z2. We also see

that the attracting basin is the whole Z2.

The proofs of 3) and 4) are similar to the proofs of 1) and 2).

Proof of Theorem 3.23. Let f(x) = x2 + x. We will use a diagram to show

the structure of the dynamics of f .

1 0 level 1 (mod 2)

0 2 level 2 (mod 22)

0 4 2 6 level 3 (mod 23)

0 8 4 12 2 10 6 14 level 4 (mod 24)

70



At level n, the ”→” stands for the transformation of the elements of Z/pnZ
under fn. Thus the diagram shows that

f1(1) = 0, f1(0) = 0, i.e., f(1 + 2Z2) ⊂ 2Z2 and f(2Z2) ⊂ 2Z2.

and

f2(0) = 0, f2(2) = 2, i.e., f(4Z2) ⊂ 4Z2 and f(2 + 4Z2) ⊂ 2 + 4Z2.

Since f(1+2Z2) ⊂ 2Z2 and f−1(1+2Z2) = ∅, we need only to consider 2Z2. From

the diagram, we also see that (0) is the only cycle of f1 with length 1, and (0), (2)

are two lifts of (0).

We will start our examination from the level 2. Since

a2(0) = f ′(0) = 1 and b2(0) =
f(0)− 0

22
= 0,

we have a2(0) ≡ 1 (mod 4) and

A2(0) = ∞ and B2(0) = ∞.

Thus the cycle (0) strongly splits and by Proposition 3.9, the cycle (0) splits

infinite times.

Since

a2(2) = f ′(2) = 5 and b2(2) =
f(2)− 2

22
= 1,

we have a2(2) ≡ 1 (mod 4) and

A2(2) = 2 and B2(0) = 0.

Thus the cycle (2) strongly grows which implies that the lift of (2) still grows, and

so on. Hence 2 + 4Z2 is a minimal component.

By induction we know that for all n ≥ 2

An(0) = ∞ and Bn(0) = ∞.

Thus the cycle (0) of fn−1 always splits to be two cycles (0) and (2n−1) of fn, and

the number 0 should be a fixed point.

Now for n ≥ 2, let us consider the cycle (2n−1) of fn. With the same calcu-

lations,

an(2n−1) = 2n + 1 and bn(2n−1) = 2n−2.
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Thus an(2n−1) ≡ 1 (mod 4) and

An(2n−1) = n and Bn(2n−1) = n− 2.

Hence, the cycle (2n−1) strongly splits and Bn < min{An, n}. By Proposition 3.9,

the lift of (2n−1) splits Bn − 1 = n − 3 times then all lifts strongly grow. Thus

there are 2n−2 pieces of minimal components which constitute 2n−1 + 2nZ2. They

are

2n−1 + t2n + 22n−2Z2, t = 0, . . . , 2n−2 − 1.

This concludes the proof of Theorem 3.23.

Proof of Theorem 3.24. Let f(x) = x2 + (1 − 4m)x. We see that there are

two fixed points 0 and 4m, and 1 + 2Z2 is mapped into 2Z2. We are concerned

with the invariant subset 2Z2.

Consider 2n−1 +2nZ2 (n ≥ 1). We study the cycle (2n−1) at level n. We have

an(2n−1) = 2n − 4m+ 1 bn(2n−1) = 2n−2 − 2m,

thus an(2n−1) ≡ 1 (mod 4) and if 2 ≤ n < v2(m) + 3,

An(2n−1) ≥ n Bn(2n−1) = n− 2.

Hence, the cycle (2n−1) strongly splits and Bn < min{An, n}. By Proposition 3.9,

the lift of (2n−1) strongly splits Bn − 1 = n− 3 times then all lifts strongly grow.

Thus we will obtain the part E1 in Theorem 3.24.

If n > v2(m) + 3,

An(2n−1) = v2(m) + 2 Bn(2n−1) = v2(m) + 1.

Hence, the cycle (2n−1) strongly splits and Bn < min{An, n}. By Proposition 3.9,

the lift of (2n−1) strongly splits Bn − 1 = v2(m) times then all lifts strongly grow.

Hence we have the part E2.

Consider 4m + 2n−1 + 2nZ2 (n > v2(m) + 3). Let sn ≡ 4m + 2n−1 (mod 2n)

and 0 ≤ sn < 2n. We study the cycle (sn) at level n. We have

an(sn) = 2sn − 4m+ 1 bn(sn) =
sn(sn − 4m)

2n
,
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thus an(2n−1) ≡ 1 (mod 4) and

An(2n−1) = v2(m) + 2 Bn(2n−1) = v2(m) + 1.

Hence, Bn < min{An, n}. By Proposition 3.9, the cycle (sn) strongly splits and

the lift of (sn) strongly splits Bn − 1 = v2(m) times then all lifts strongly grow.

Therefore, we have the part E3. This completes the proof.

Proof of Theorem 3.25. Let f(x) = x2 + (−1 − 4m)x with v2(m) ∈ 1 + 2N.

We see that there are two fixed points 0 and 4m+ 2, and 1 + 2Z2 is mapped into

2Z2.

Since 0 and 4m+ 2 are two fixed points, there are cycles (0) and (tn) at each

level, where tn ≡ 4m + 2 (mod 2n) and 0 ≤ tn < 2n. Consider the cycles (0) and

(tn−2) at level n− 2. By studying the an−2, bn−2 of these two cycles, we know that

they weakly split. By Proposition 3.10, after splitting, half of lifts weakly grow.

Thus we will obtain two 2-cycles: (2n−2, 2n−2 + 2n−1) and (sn, sn + 2n−1) at level

n, where sn ≡ 4m+ 2 + 2n−2 (mod 2n−1) and 0 ≤ sn < 2n−1.

For each n ≥ 4, we study the cycle (sn, sn + 2n−1) at level n. We have

an(sn) = 8

(
4
(sn

2

)3

− 3(4m+ 1)
(sn

2

)2

+m(4m+ 1)sn + 2m2 +m

)
+ 1

bn(sn) =
1

2n
sn(sn − 4m− 2)(s2

n − 4msn − 4m),

thus an(sn) ≡ 1 (mod 4) and

An(sn) = 3 Bn(sn) = 1.

Hence, the cycle (sn, sn + 2n−1) strongly splits and Bn < min{An, n}. Therefore,

by Proposition 3.9, the lift of (sn, sn + 2n−1) strongly splits Bn − 1 = 1 − 1 = 0

times then all lifts strongly grow. Thus we obtain E1 in Theorem 3.25.

Now we study the cycle (2n−2, 2n−2 + 2n−1) at level n ≥ 4. We have

an(2n−2) = 23n−2 − 3(4m+ 1)22n−3 +m(4m+ 1)2n+1 + 16m2 + 8m+ 1

bn(2n−2) = 2(2n−3 − 2m− 1)(22n−6 −m2n−2 −m).

Thus an(2n−2) ≡ 1 (mod 4) and for each n > bv2(m)
2
c+ 3,

An(2n−2) = v2(m) + 3 Bn(2n−2) = v2(m) + 1.
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Hence, the cycle (2n−2, 2n−1) strongly splits and Bn < min{An, n}. Therefore, by

Proposition 3.9, the lift of (2n−2, 2n−1) strongly splits Bn − 1 = v2(m) + 1 − 1 =

v2(m) times then all lifts strongly grow. Thus we have E3.

For each 4 ≤ n ≤ bv2(m)
2
c+ 3,

An(2n−2) = 2n− 3 Bn(2n−2) = 2n− 5.

Hence, if n > 4, then the cycle (2n−2, 2n−1) strongly splits and An > Bn ≥ n.

Therefore, the lift of (2n−2, 2n−1) strongly splits at least n − 1 times. But except

this we do not obtain any further more information. Thus Proposition 3.9 is not

sufficient for us. Now we do some calculations directly.

For any point 2n−2 + t2n−1 ∈ 2n−2 + 2n−1Z2, with t ∈ Z2, we have

f 2(2n−2 + t2n−1)− (2n−2 + t2n−1) = 2n+1(1 + 2t) ·Θ, (3.11)

where

Θ := (2n−3 + t2n−2 − 2m− 1)
(
(2n−3 + t2n−2)2 −m(2n−2 + t2n−1)−m

)
.

Since 4 ≤ n ≤ bv2(m)
2
c+ 3, we have v2(Θ) = 2n− 6, and

f 2(2n−2 + t2n−1)− (2n−2 + t2n−1) ≡ 0 (mod 23n−5)

6≡ 0 (mod 23n−4)

Thus the cycles grow at level 3n − 5. By Corollary 3.16, the cycles grow always.

Therefore we obtain the part E2 which completes the proof.

Proof of Theorem 3.26. Let f(x) = x2 + (−1− 4m)x with v2(m) ∈ 2N∗. We

see that there are two fixed points 0 and 4m+ 2, and 1 + 2Z2 is mapped into 2Z2.

As the proof of Theorem 3.25, we study two 2-cycles: (2n−2, 2n−2 +2n−1) and

(sn, sn +2n−1) at level n, where sn ≡ 4m+2+2n−2 (mod 2n−1) and 0 ≤ sn < 2n−1.

The existence of E1, E2, E3 are the same as that of Theorem 3.25.

We consider 2n−2 + 2n−1Z2 with n = v2(m)
2

+ 3. We are going to study the

cycle (2n−2, 2n−1) at level n. We study the points 2n−2 + t2n−1 ∈ 2n−2 + 2n−1Z2,

with t ∈ Z2. With the same calculation in the proof of Theorem 3.25, we have

the same equation (3.11). To continue the proof, we will distinguish two cases:

v2(m) = 2 and v2(m) ≥ 4.
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If v2(m) = 2, then n = v2(m)/2 + 3 = 4 and

Θ = (4t− 2m+ 1)[(4−m) + 16(t+ t2)− 4m(1 + 2t)].

Thus if v2(m− 4) = 3, then v2(Θ) = 3 and

f 2(2n−2 + t2n−1)− (2n−2 + t2n−1) ≡ 0 (mod 28)

6≡ 0 (mod 29).

If v2(m− 4) ≥ 5, then v2(Θ) = 4 and

f 2(2n−2 + t2n−1)− (2n−2 + t2n−1) ≡ 0 (mod 29)

6≡ 0 (mod 210).

Hence we will obtain (1) and (2) of Theorem 3.26.

Since f 2(x) − x = x(x − 4m − 2)(x2 − 4mx − 4m), f has 2-periodic orbit if

and only if x2− 4mx− 4m = 0 has solutions different to 0 and 4m+ 2 in Z2. But

x2 − 4mx − 4mx = 0 has solution 0 or 4m + 2 only if m = 0 or m = −1. Thus

for the case v2(m) ∈ N∗, f has 2-periodic orbit if and if only M:= 16m2 +16m has

square roots in Z2. By the standard argument in number theory (see [133], p.18),

this is equivalent to 2−v2(m)m(m+ 1) ≡ 1 (mod 8). By some basic calculations it

is then equivalent to v2(m− 4) = 4. This is nothing but the rest case we need to

study. Thus for v2(m− 4) = 4, there exists a 2-periodic orbit.

From the equation x2 − 4mx− 4m = 0, the periodic point can be written as

x1 = 4

(
m

2
+

√
m(m+ 1)

4

)
, x2 = 4

(
m

2
−
√
m(m+ 1)

4

)
.

Since v2(m) = 2, we have x1 ≡ 4 (mod 8). Recall we are concerned with 2n−2 +

2n−1Z2 (n ≥ 4) which is the union of two balls 2n−2 +2nZ2 and 2n−2 +2n−1 +2nZ2,

and we are studying the cycle (2n−2, 2n−2 + 2n−1) at level n ≥ 4. Thus we have

x1 ≡ 4 (mod 16) and x2 ≡ 12 (mod 16).

For each k ≥ 5, we consider the union of the two balls (x1 + 2k−1 + 2kZ2) ∪
(x2 + 2k−1 + 2kZ2). We study the cycle (s1, s2) where s1 ≡ x1 + 2k−1 (mod 2k),

s2 ≡ x2 + 2k−1 (mod 2k) and 0 ≤ s1, s2 < 2k. For every point x1 + 2k−1 + t2k ∈
x1 + 2k−1 + 2kZ2, (t ∈ Z2), we have

f 2(x1 + 2k−1 + t2k)− (x1 + 2k−1 + t2k)

=23
(x1

4
+ 2k−3 + t2k−2

)(x1

2
+ 2k−2 + t2k−1 − 2m− 1

)
· Φ,

(3.12)
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where

Φ := 2x1(2
k−1 + t2k) + (2k−1 + t2k)2 − 4m(2k−1 + t2k).

Here we have used the property that x1 is a solution of the equation x2 −
4mx− 4m = 0.

Since v2(m) = 2 and v2(x1) = 2, we get v2(Φ) = k + 2. Thus

f 2(x1 + 2k−1 + t2k)− (x1 + 2k−1 + t2k) ≡ 0 (mod 2k+5)

6≡ 0 (mod 2k+6).

Hence we have (3).

Now we are left to treat the case v2(m) ≥ 4. In this case the equation

x2 − 4mx− 4m = 0 admits solutions if and only if v2(m− 2v2(m)) ≥ v2(m) + 3.

We still consider 2n−2+2n−1Z2 with n = v2(m)
2

+3. If v2(m−2v2(m)) < v2(m)+3,

then v2(Θ) = v2(m− 2v2(m)) and for any t ∈ Z2

f 2(2n−2 + t2n−1)− (2n−2 + t2n−1) ≡ 0 (mod 2v2(m−2v2(m))+n+1)

6≡ 0 (mod 2v2(m−2v2(m))+n+2).

Then we will obtain (4).

If v2(m − 2v2(m)) ≥ v2(m) + 3, then 2n−2 + 2n−1Z2 consists of a 2-periodic

orbit:

x′1 = 2
v2(m)

2
+1

(
2−

v2(m)
2 m+

√
2−v2(m)m(m+ 1)

)
,

x′2 = 2
v2(m)

2
+1

(
2−

v2(m)
2 m−

√
2−v2(m)m(m+ 1)

)
.

For each k ≥ v2(m)
2

+ 3, we consider (x′1 + 2k−1 + 2kZ2) ∪ (x′2 + 2k−1 + 2kZ2).

For every point x′1 + 2k−1 + t2k ∈ x′1 + 2k−1 + 2kZ2, (t ∈ Z2), we have the

same calculation as (3.12). Since k ≥ v2(m)
2

+ 3 and v2(x
′
1) = v2(m)

2
+ 1, we get

v2(
x′1
4

+ 2k−3 + t2k−2) = v2(m)
2

− 2 and v2(Φ) = v2(m)
2

+ k. Thus

f 2(x′1 + 2k−1 + t2k)− (x′1 + 2k−1 + t2k) ≡ 0 (mod 2v2(m)+k+1)

6≡ 0 (mod 2v2(m)+k+2).

Hence we have (5). This completes the proof.
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Chapter 4

The p-adic Repellers in Qp

In this chapter, we study the p-adic transitive weak repellers on the field Qp

of p-adic numbers. It is proved that any such repeller is isometrically conjugate

to a subshift of finite type where a suitable metric is defined. 1

4.1 Statement of results

Let p ≥ 2 be a prime number and Qp be the field of p-adic numbers. Let

f : X → Qp be a map from a compact open set X of Qp into Qp. We assume that

(i) f−1(X) ⊂ X; (ii) X =
⊔

i∈I Bp−τ (ci) can be written as a finite disjoint union

of balls of centers ci and of the same radius p−τ (with some τ ∈ Z) such that for

each i ∈ I there is an integer τi ∈ Z such that

|f(x)− f(y)|p = pτi|x− y|p (∀x, y ∈ Bp−τ (ci)). (4.1)

For such a map f , define its Julia set by

Jf =
∞⋂

n=0

f−n(X). (4.2)

It is clear that f−1(Jf ) = Jf and then f(Jf ) ⊂ Jf . We will study the dynamical

system (Jf , f).

The triple (X, Jf , f) is called a p-adic weak repeller if all τi in (4.1) are non-

negative, but at least one is positive. We call it a p-adic repeller if all τi in (4.1)

are positive. For later convenience, we will write ‖f‖ = pτi for any map having

the property (4.1), which could be called the expanding ratio (resp. contractive

ratio) of f on the ball Bp−τ (ci) when τi ≥ 0 (resp. τi ≤ 0) .

We study p-adic weak repellers with all τi are nonnegative.

1A. H. Fan, L. M. Liao, Y. F. Wang and D. Zhou, p-adic repellers in Qp are subshifts of finite type,

C. R. Math. Acad. Sci. Paris 342 (2006), no. 2, 129-134.
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For any i ∈ I, let

Ii := {j ∈ I : Bj ∩ f(Bi) 6= ∅} = {j ∈ I : Bj ⊂ f(Bi)}.

(the second equality holds because of the expansiveness and of the ultrametric

property). Then define a matrix A = (Ai,j)I×I , called incidence matrix, by

Aij = 1 if j ∈ Ii; Aij = 0 otherwise.

If A is irreducible, we say that (X, Jf , f) is transitive. That A is irreducible means,

for any pair (i, j) ∈ I × I there is positive integer m such that Am
ij > 0.

Given I and the irreducible incidence matrix A as above. Let ΣA be the

corresponding subshift space and let σ be the shift transformation on ΣA. We

equip ΣA with a metric df depending on the dynamics which is defined as follows.

First for i, j ∈ I, i 6= j, let κ(i, j) be the integer such that |ci − cj|p = p−κ(i,j). It

clear that κ(i, j) < τ . By the ultra-metric inequality, we have

|x− y|p = |ci − cj|p (i 6= j,∀x ∈ Bp−τ (ci),∀y ∈ Bp−τ (cj)). (4.3)

For x = (x0, x1, · · · , xn, · · · ) and y = (y0, y1, · · · , yn, · · · ) in ΣA, define

df (x, y) = p−τx0−τx1−···−τxn−1−κ(xn,yn) (if n 6= 0),

df (x, y) = p−κ(x0,y0) (if n = 0)
(4.4)

where n = n(x, y) = min{i ≥ 0 : xi 6= yi}. It is clear that df defines the same

topology as the classical metric which is defined by d(x, y) = p−n(x,y).

Theorem 4.1. Let (X, Jf , f) be a transitive p-adic weak repeller with incidence

matrix A. Then the dynamics (Jf , f, | · |p) is isometrically conjugate to the shift

dynamics (ΣA, σ, df ).

Remark 1. If the incidence matric A is not irreducible, the index set I is partitioned

into classes of indexes I(1), I(2), . . . , I(k). We can arrange I(1), I(2), . . . , I(k) in an

order so that A is written as lower triangular matrix with irreducible sub-matrixes

A1, A2, . . . , Ak on its diagonal (see [98]). We can then apply Theorem 4.1 to

f : X(t) → Q for each 1 ≤ t ≤ k, where X(t) =
⋃

i∈I(t) Bp−τ (ci).

Remark 2. Theorem 4.1 holds not only for p-adic dynamics but also for any ultra-

metric dynamics which satisfy the two conditions (i) and (ii) listed at the beginning

of the note and the property stated in Lemma 4.3 below.
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The following result allows us to apply Theorem 4.1 to polynomial dynamics.

Theorem 4.2. Let f ∈ Qp[x] be a polynomial with f ′(x) 6= 0 for all x ∈ Qp.

There exists a compact-open set X ⊂ Qp and an integer τ such that conditions (i)

and (ii) are satisfied. Moreover, for x 6∈ Jf , limn→∞ |fn(x)|p = ∞.

Here is a class of polynomials to which the above results can apply. Let

f(x) = p−mP (x) ∈ Qp[x] with P ∈ Zp[x] and m > 0 (otherwise f ∈ Zp[x]).

Assume first that

(a) |P (x)|p ≥ |x|p ∀x 6∈ Zp.

Let

X =
⋃
i∈I0

Bp−m(i), where I0 = {0 ≤ i < pm : P (i) ≡ 0 mod pm}.

Assume further that

(b) f ′(x) 6= 0 for all x ∈ X.

In order to apply Theorem 4.1 or Theorem 4.2 to this polynomial p−mP (x), in

general, we have to find a finer partition of X such that (4.1) holds on each

component of this new partition.

4.2 Proofs

Proof of Theorem 4.1. The proof consists of the following lemmas.

Lemma 4.3. For each i ∈ I, the restricted map f : Bp−τ (ci) → Bp−τ+τi (f(ci)) is

a bijection.

Proof. The injectivity and the inclusion f(Bp−τ (ci)) ⊆ Bp−τ+τi (f(ci)) are direct

consequences of the hypothesis (4.1). Since f(Bp−τ (ci)) is the continuous image

of a compact set and then is closed, for the surjectivity, it suffices to prove that

f(Bp−τ (ci)) is dense in Bp−τ+τi (f(ci)). For an arbitrary integer n ≥ 1, consider

the pn points ci + kpτ (0 ≤ k < pn) in the ball Bp−τ (ci). Any two such different

points ci + k′pτ and ci + k′′pτ has a distance strictly larger than p−n−τ . So, by the

hypothesis (4.1),

|f(ci + k′pτ )− f(ci + k′′pτ )|p > p−n−τ+τi .
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Then the pn image points f(ci+kp
τ ) belong to pn different balls of radius p−n−τ+τi .

Thus each ball of radius p−n−τ+τi contained in Bp−τ+τi (f(ci)) contains an image

point. Since n is arbitrarily large, we get the density.

Let Iexp ⊂ I (resp. Iiso) be the subset of indexes i ∈ I such that τi > 0 (resp.

τi = 0). A ball Bp−τ (ci) is said to be expanding (resp. isometric) if i ∈ Iexp (resp.

i ∈ Iiso).

Lemma 4.4. For each isometric ball Bp−τ (ci), there exists an integer n ≥ 1 such

that fn(Bp−τ (ci)) is an expanding ball.

Proof. If Bp−τ (ci) is an isometric ball, by Lemma 4.3, the image f(Bp−τ (ci)) is still

a ball of the same size as Bp−τ (ci). Suppose that the conclusion of the lemma is not

true. Then all balls fk(Bp−τ (ci)) (k = 0, 1, · · · ) are isometric balls. Since there is

a finite number of isometric balls, there are 0 ≤ k′ < k′′ such that fk′(Bp−τ (ci)) =

fk′′(Bp−τ (ci)). This contradicts the irreducibility.

Lemma 4.5. For each x ∈ Jf there is a unique sequence (jn)n≥0 ∈ ΣA such that

x ∈ Bp−τ (cj0), f(x) ∈ Bp−τ (cj1), · · · , fn(x) ∈ Bp−τ (cjn), · · · .

Proof. This is just because f(Jf ) ⊂ Jf ⊂ X and {Bp−τ (ci)}i∈I is a partition of

X. �

Denote by h : Jf → ΣA the map x 7→ (jn)n≥0 and call (jn)n≥0 the code

sequence of x.

Lemma 4.6. For each sequence (jn)n≥0 ∈ ΣA, there are an infinite number of

jn’s belonging to Iexp.

Proof. When Ai,j = 1, we say j is an issue of i. That i ∈ Iiso means i has only one

issue. Using the same argument as in the proof of Lemma 4.4 but in a different

presentation, we can prove that there is no sequence (jn)n≥0 in ΣA which ends

with jn’s having only one issue.

If j is an issue of i, let Tij : Bp−τ (cj) → Bp−τ (ci) be the inverse map restricted

on Bp−τ (cj) of f : Bp−τ (ci) → f(Bp−τ (ci)). Remark that if i ∈ Iiso, then Tij is an

isometry and if i ∈ Iexp, then Tij is a contraction with p−τi as its contraction ratio.
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Lemma 4.7. For each sequence (jn)n≥0 ∈ ΣA and for any choice (bn) with bn ∈
Bp−τ (cjn) (n = 0, 1, 2, · · · ), the following limit

x = lim
n→∞

Tj0j1Tj1j2 . . . Tjn−1jn(bn) (4.5)

exists and is independent of the choice (bn)n≥0. The point x belongs to Jf and it

has (jn) as its code sequence.

Proof. Let xn = Tj0j1Tj1j2 . . . Tjn−1jn(bn). We have

|xn+m − xn|p ≤ ‖Tj0j1Tj1j2 . . . Tjn−1jn‖diam(X)

where diam(X) denotes the diameter of X. By Lemma 4.6, ‖Tj0j1Tj1j2 . . . Tjn−1jn‖
tends to zero. Thus we have proved the existence of the limit by the Cauchy

criterion. Let (b′n) is another choice. Let x′n be the corresponding xn. We have

|x′n − xn|p ≤ ‖Tj0j1Tj1j2 . . . Tjn−1jn‖diam(X)

which proves the independence. Recall that f◦Tij(x) = x. Then the last assertions

in the lemmas are obviously true.

Denote by h∗ : ΣA → Jf the map (jn) 7→ x where x is well determined by

(4.5 ) in Lemma 4.7.

Lemma 4.8. The map h : (Jf , | · |p) → (ΣA, df ) is an isometric homeomorphism.

Proof. Lemma 4.7 and the definition of code show h ◦ h∗ = IdΣA
and h∗ ◦ h =

IdJf
. So, h is a bijection. It remains to show that h is isometric. For x̄ =

(j0j1 · · · jn · · · ) ∈ ΣA and ȳ = (j′0j
′
1 · · · j′n · · · ) ∈ ΣA, let x = h∗(x̄) and y = h∗(ȳ).

Let n = min{i ≥ 0 : ji 6= j′i}. If n = 0, it is clear that df (x̄, ȳ) = p−κ(j0,j′0) =

|x− y|p. If n 6= 0,

|x− y|p = |h∗(x̄)− h∗(ȳ)|p
= | lim

n→∞
Tj0j1 · · ·Tjn−1jn(bn)− lim

n→∞
Tj′0j′1

· · ·Tj′n−1j′n(b′n)|p
= ‖Tj0j1 · · ·Tjn−2jn−1‖ · |Tjn−1jn(x′)− Tjn−1j′n(y′)|p,

where

x′ = lim
k→∞

Tjnjn+1 · · ·Tjn+k−1jn+k
(bn+k) and y′ = lim

k→∞
Tj′nj′n+1

· · ·Tj′n+k−1j′n+k
(b′n+k).
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Since

‖Tj0j1 · · ·Tjn−2jn−1‖ = p−τj0
−···−τjn−2 ,

we have only to show that

|Tjn−1jn(x′)− Tjn−1j′n(y′)|p = p−τjn−1
−κ(jn,j′n).

In fact, since Tjn−1jn(x′) and Tjn−1j′n(y′) are both in the same ball Bp−τ (jn−1), the

expanding property (4.1) shows

|x′ − y′|p = |f(Tjn−1jn(x′))− f(Tjn−1j′n(y′))|p = pτjn−1 |Tjn−1jn(x′)− Tjn−1j′n(y′)|p.

Then we conclude by the definition of κ (see (4.3) and the fact that x′ ∈ Bp−τ (jn)

and y′ ∈ Bp−τ (j′n) (jn 6= j′n), which give |x′ − y′|p = p−κ(jn,j′n).

Lemma 4.9. We have h ◦ f = σ ◦ h.

Proof. Recall that h(x) is the code sequence of x and that f ◦ Tij(x) = x. Using

these facts and the expression (4.5) of x, we have

h ◦ f(x) = h ◦ f(lim
n
Tj0j1 . . . Tjn−1jn(bn))

= h(lim
n
Tj1j2 . . . Tjn−1jn(bn)) = (j1 . . . jn . . .) = σ ◦ h(x).

Proof of Theorem 4.2. Assume f(x) =
∑n

j=0 ajx
j with an 6= 0. There exists

an integer ` such that if |x|p ≥ p`, we have |an−k|p
|x|kp

< |an|p (1 ≤ k ≤ n) and

|x|n−1
p |an|p ≥ p, so that

|f(x)|p = |x|np | an +
an−1

x
+ · · ·+ a0

xn
|p= |x|np |an|p ≥ p|x|p. (4.6)

Let X = {x ∈ Qp : |x|p < p`}. By (4.6), we have f(Qp \ X) ⊂ Qp \ X. Hence,

f−1(X) ⊂ X. Also by (4.6), we get limn→∞ |fn(x)|p = ∞ for x 6∈ X. Furthermore,

we have limn→∞ |fn(x)|p = ∞ for x 6∈ Jf :=
⋂∞

n=0 f
−n(X). In fact, for x 6∈ Jf ,

there exists n0 ≥ 0 such that fn0(x) 6∈ X, thus limn→∞ |fn+n0(x)|p = ∞.

The strict differentiability of f ∈ Qp[x] (See [131], p.78) and the fact f ′(x) 6= 0

for all x ∈ Qp imply that for a ∈ X, there exists an integer τ(a) such that

|f(x)− f(y)|p = |f ′(a)|p|x− y|p for all x, y ∈ Bp−τ(a)(a). Then the compactness of

X implies that there is an integer τ such that condition (ii) is satisfied. �
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4.3 Examples.

Example 1. Let a ∈ Zp and m ≥ 1 be an integer. Consider the transformation

fm,a : Qp −→ Qp given by

fm,a(x) =
xp − ax

pm
.

In the case where m = 1 and a ≡ 1(mod p), the map fm,a : Zp → Zp was

shown, by C. F. Woodcock and N. P. Smart [147], to be topologically conjugate

to the full shift on the symbolic system with p symbols.

It is easy to see that |f ′m,a(x)|p = pm. We have even |fm,a(x) − fm,a(y)|p =

pm|x − y|p for all x, y ∈ Zp, |x − y|p < 1 and |xp − ax|p ≥ |x|p for x 6∈ Zp. Let

Im,a = {0 ≤ k < pm : kp − ak ≡ 0 (mod pm)} and let Xm,a =
⊔

k∈Im,a
(k + pmZp).

If a ≡ 1 (mod p), xp − ax = 0 has p solutions on Zp, by Hensel lemma. Then

by Theorem 4.1, on the Julia set Jm,a, fm,a is conjugate to the full shift on the

symbolic space of p symbols. If a 6≡ 1 (mod p), then Im,a = {0} and Jm,a = {0}
is the singleton consisting of the repeller fixed point 0. In both cases, for every

x 6∈ Jm,a we have limn→∞ |fn
m,a(x)|p = ∞.

Example 2. Let c = c0
pτ ∈ Qp with |c0|p = 1 and τ ≥ 1. Consider the p-adic

logistic map fc : Qp −→ Qp defined by

fc(x) = cx(x− 1) =
c0x(x− 1)

pτ
.

Let Ic = {0 ≤ k < pτ : k(k − 1) = 0(mod pτ )}. It is clear that Ic = {0, 1}.
Notice that

|fc(x)− fc(y)|p = pτ |x− y|p|1− (x+ y)|p (∀x, y).

So, we get |fc(x)− fc(y)|p = pτ |x− y|p whenever x, y ∈ Bp−τ (0) or x, y ∈ Bp−τ (1).

Let Jc be the Julia set of fc, by Theorem 4.1, (Jc, fc) is always conjugate to the

full shift on the symbolic space of two symbols.

Example 3. Consider the polynomial f : Q2 → Q2 defined by

f(x) =
x(x− 1)(x+ 1)

2
.
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It is easy to see |f ′(x)|p = 2, |f ′′(x)/2|p ≤ 1, |f ′′′(x)/6|p = 2 on 2Z2 and

|f ′(x)|p = 1, |f ′′(x)/2|p = 2, |f ′′′(x)/6|p = 2 on 1 + 2Z2. Then by

f(x)− f(y) = (x− y)f ′(y) +
(x− y)2

2
f ′′(y) +

(x− y)3

6
f ′′′(y),

we have |f(x) − f(y)|p = |f ′(y)|p|x − y|p for x, y ∈ Z2, |x − y|p ≤ 1/4. Thus we

can take X =
⊔3

k=0(k + 4Z2). Then the conditions (i) and (ii) are satisfied and

incidence matrix, which is irreducible, is equal to

A =


1 0 1 0

1 0 0 0

0 1 0 1

1 0 0 0


In this case we have τ0 = τ2 = 2 and τ1 = τ3 = 1. The topological entropy of

(Jf , f) is equal to log 1.6956... where 1.6956... is the maximal eigenvalue of A.
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Chapter 5

Level Sets of Birkhoff Averages in Saturated Systems

In this chapter, we will study compact topological dynamical systems with

specification property. It is proved that any such system is saturated in the sense

that the topological entropy of the set of generic points of any invariant measure

is equal to the measure-theoretic entropy of the measure. Banach valued Birkhoff

ergodic averages are studied and a variational principle for its topological entropy

spectrum is obtained. As application, a particular example is fully examined.

Such an example concerns with the set of real numbers for which the frequencies

of occurrences in their dyadic expansions of infinitely many words are prescribed. 1

5.1 Introduction and statement of the results

Let (X,T ) be a dynamical system which means a continuous transformation

T : X → X on a compact metric space X with metric d. We recall a list of

notations:

• T -invariant probability Borel measures on X: Minv

• ergodic measures in Minv: Merg

• Bowen’s entropy of a subset E: htop(E),

• measure-theoretic entropy: hµ

We also recall some basic concepts. Recall that a dynamical system (X,T )

is said to satisfy the specification property if for any ε > 0 there exists an integer

m(ε) ≥ 1 having the property that for any integer k ≥ 2, for any k points x1, . . . , xk

in X, and for any integers

a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk
1A. H. Fan, L. M. Liao, and J. Peyrière, Generic points in systems of specification and Banach valued

Birkhoff ergodic average, Discrete and Continuous Dynamical Systems, 21 (2008) 1103-1128.

85



with ai − bi−1 ≥ m(ε) (∀2 ≤ i ≤ k), there exists a point y ∈ X such that

d(T ai+ny, T nxi) < ε (∀ 0 ≤ n ≤ bi − ai, ∀1 ≤ i ≤ k).

The set Gµ of µ-generic points is defined by

Gµ :=

{
x ∈ X :

1

n

n−1∑
j=0

δT jx
w∗
−→ µ

}
,

where
w∗
−→ stands for the weak star convergence of the measures.

A dynamical system (X,T ) is said to be saturated if for any µ ∈ Minv, we

have htop(Gµ) = hµ.

Our first result is stated as follows.

Theorem 5.1. If the dynamical system (X,T ) satisfies the specification property,

then it is saturated.

As application, we study Banach-valued Birkhoff averages for saturated sys-

tems. Let B be a real Banach space and B∗ its dual space, their duality being

denoted by 〈·, ·〉. We consider B∗ as a locally convex topological space with the

weak star topology σ(B∗,B). For any B∗-valued continuous function Φ : X → B∗,
we consider its Birkhoff ergodic averages

AnΦ(x) =
1

n

n−1∑
j=0

Φ(T jx) (n ≥ 1).

We would like to know the asymptotic behavior of AnΦ(x) in the σ(B∗,B)-topology

for different points x ∈ X.

Let us state the problem we are studying as follows. Fix a subset E ⊂ B. For

a sequence {ξn} ⊂ B∗ and a point ξ ∈ B∗, we denote by lim supn→∞ ξn
E

≤ ξ the

fact

lim sup
n→∞

〈ξn, w〉 ≤ 〈ξ, w〉 for all w ∈ E.

The meaning of ”
E
=” is obvious. It is clear that lim supn→∞ ξn

B
≤ ξ, or equivalently

lim supn→∞ ξn
B
= ξ, means ξn converges to ξ in the weak star topology σ(B∗,B).

Let α ∈ B∗ and E ⊂ B. The object of our study is the set

XΦ(α;E) =

{
x ∈ X : lim sup

n→∞
AnΦ(x)

E

≤ α

}
.
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The set XΦ(α; B) will be simply denoted by XΦ(α). This is the set of points x ∈ X
such that limn→∞AnΦ(x) = α in σ(B∗,B)-topology. If Ê denotes the convex cone

of E which consists of all aw′ + bw′′ with a ≥ 0, b ≥ 0 and w′ ∈ E,w′′ ∈ E, then

XΦ(α,E) = XΦ(α, Ê). So we may always assume that E is a convex cone. If E is

symmetric in the sense that E = −E, then we have

XΦ(α,E) =
{
x ∈ X : lim

n→∞
AnΦ(x)

E
= α

}
.

By entropy spectrum we mean the function

EE
Φ (α) := htop(XΦ(α;E)).

Invariant measures will be involved in the study of the entropy spectrum EE
Φ (α).

We set

MΦ(α;E) =

{
µ ∈Minv :

∫
Φdµ

E

≤ α

}
where

∫
Φdµ denotes the vector-valued integral in Pettis’ sense (see [130]) and the

inequality ”
E

≤” means∫
〈Φ, w〉dµ ≤ 〈α,w〉 for all w ∈ E.

For saturated systems, we prove the following variational principle.

Theorem 5.2. Suppose that the dynamical system (X,T ) is saturated. Then

(a) If MΦ(α;E) = ∅, we have XΦ(α,E) = ∅.
(b) If MΦ(α;E) 6= ∅, we have

htop(XΦ(α;E)) = sup
µ∈MΦ(α;E)

hµ. (5.1)

When B is a finite dimensional Euclidean space Rd and E = Rd, the varia-

tional principle (5.1) with E = Rd was proved in [48, 49] for subshifts of finite type,

then for conformal repellers ([58]) and later generalized to systems with specifica-

tion property [135]. There are other works assuming that Φ is regular (Hölder for

example). See [15, 43] for classical discussions, [9, 10, 111, 112, 120, 136] for re-

cent developments on Birkhoff averages, and [6, 11, 12, 27, 35] for the multifractal

analysis of measures.
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The study of infinite dimensional Birkhoff averages is a new subject. We

point out that [121] provides another point of view, i.e. the thermodynamical

point of view which was first introduced by physicists.

The above variational principle (5.1), when E = B, is easy to generalize to

the following setting. Let Ψ be a continuous function defined on the closed convex

hull of the image Φ(X) of Φ into a topological space Y . For given Φ, Ψ, and

β ∈ Y , we set

XΨ
Φ (β) =

{
x ∈ X : lim

n→∞
Ψ
(
AnΦ(x)

)
= β

}
and

MΨ
Φ(β) =

{
µ ∈Minv : Ψ

(∫
Φ dµ

)
= β

}
.

We also set

X̂Ψ
Φ (β) =

{
x ∈ X : Ψ

(
lim

n→∞
AnΦ(x)

)
= β

}
=

⋃
α: Ψ(α)=β

XΦ(α).

It is clear that X̂Ψ
Φ (β) is a subset of XΨ

Φ (β).

Theorem 5.3. Suppose that the dynamical system (X,T ) is saturated. Then

(1) if MΨ
Φ(β) = ∅, we have XΨ

Φ (β) = ∅,

(2) if MΨ
Φ(β) 6= ∅, we have

htop

(
XΨ

Φ (β)
)

= htop

(
X̂Ψ

Φ (β)
)

= sup
µ∈MΨ

Φ(β)

hµ. (5.2)

This generalized variational principle (5.2) allows us to study generalized

ergodic limits like

lim
n→∞

∑n−1
j=0 Φ(T jx)∑n−1
j=0 g(T

jx)
, (5.3)

where g : X → R+ is a continuous positive function. It suffices to apply (5.2) to Φ

replaced by (Φ, g) and Ψ defined by Ψ(x, y) = x/y, with x ∈ B∗ and y ∈ R+.

It also allows us to study the set of points x ∈ X for which the limits

A∞Φ(x) = limn→∞AnΦ(x) verify the equation

Ψ
(
A∞Φ(x)

)
= β. (5.4)
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The present infinite dimensional version of variational principle would have

many interesting applications. We will just illustrate the usefulness of the vari-

ational principle by the following study of frequencies of blocks in the dyadic

development of real numbers. It can be reviewed as an infinitely multi-recurrence

problem.

Let us state the question to which we can answer. All but a countable number

of real numbers t ∈ [0, 1] can be uniquely developed as follows

t =
∞∑

n=1

tn
2n

(tn ∈ {0, 1}).

Let k ≥ 1. We write 0k for the block of k consecutive zeroes and we define the

0n-frequency of t as the limit (if it exists)

f(t, k) = lim
n→∞

1

n
]{1 ≤ j ≤ n : tjtj+1 · · · tj+k−1 = 0k}.

Let (a1, a2, · · · ) be a sequence of non-negative numbers. We denote by S(a1, a2, · · · )
the set of all numbers t ∈ [0, 1] such that f(t, k) = ak for all k ≥ 1. As a conse-

quence of the variational principle ( 5.1), we prove

Theorem 5.4. The set S(a1, a2, · · · ) is non-empty if and only if the following

condition is satisfied

1 = a0 ≥ a1 ≥ a2 ≥ . . . ; ai − 2ai+1 + ai+2 ≥ 0 (i ≥ 0). (5.5)

If the condition (5.5) is fulfilled, we have

htop(S(a1, a2, · · · )) = −h(1− a1) +
∞∑

j=0

h(aj − 2aj+1 + aj+2) (5.6)

where h(x) = −x log x.

Furthermore, it is proved that there is a unique maximal entropy measure,

which is completely determined (see Lemma 5.19).

The rest of this chapter is organized as follows. In Section 5.2, we give some

preliminaries. In Section 5.3, we prove Theorem 5.1. In Section 5.4, we prove the

theorems 5.2 and 5.3 and examine the case where B = `1(Z). In Section 5.5, we

apply the variational principle (5.1) to the study of the recurrence into an infinite
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number of cylinders of the symbolic dynamics. Especially, we study the set of

orbits whose recurrences into infinitely many cylinders are prescribed. This relies

on the explicit determination of a maximal entropy measure which, by definition,

maximizes the supremum in (5.1).

5.2 Preliminary

The definitions and properties of entropy (measure-theoretic entropy and

Bowen’s generalized version of topological entropy) have been discussed in Section

2.3 of Chapter 2. We also remind the readers of Bowen’s Lemma (Lemma 2.35) in

Section 2.3 which is useful in this chapter. We now wish to recall two propositions

about the measure-theoretic entropy.

We denote by C(X) the set of continuous functions on X, by M = M(X)

the set of all Borel probability measures.

In the sequel, we fix a sequence (pi)i≥1 such that pi > 0 for all i ≥ 1 and∑∞
i=1 pi = 1 (for example, pi = 2−i will do). Suppose that sn = (sn,i)i≥1 (n =

1, 2, · · · ) is a sequence of elements in `∞. It is obvious that sn converges to

α = (αi)i≥1 ∈ `∞ in the weak star topology (i.e. each coordinate converges) is

equivalent to

lim
n→∞

∞∑
i=1

pi|sn,i − αi| = 0.

We also fix a sequence of continuous functions {Φ1,Φ2, . . .} which is dense in the

unit ball of C(X). Write Φ = (Φ1,Φ2, . . .). It is evident that Φ : X → `∞ is

continuous when `∞ is equipped with its weak star topology. Fix an invariant

measure µ ∈Minv. Let

α = (α1, α2, · · ·αi, · · · ) where αi =

∫
Φidµ.

The set of generic points Gµ can be described as follows

Gµ =

{
x ∈ X : lim

n→∞

∞∑
i=1

pi |AnΦi − αi| = 0

}
= XΦ(α). (5.7)

It is well known that the weak topology of M is compatible with the topology

induced by the metric

d̃(µ, ν) =
∞∑
i=1

pi

∣∣∣∣∫ Φidµ−
∫

Φidν

∣∣∣∣ (5.8)
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where both (pi)i≥1 and {Φi}i≥1 are chosen as above.

The following two results will be useful for us.

Proposition 5.5 (Young [150]). For any µ ∈ Minv and any numbers 0 < δ <

1 and 0 < θ < 1, there exist an invariant measure ν which is a finite convex

combination of ergodic measures, i.e.

ν =
r∑

k=1

λkνk, where λk > 0,
r∑

k=1

λk = 1, νk ∈Merg, r ∈ N+

such that

d̃(µ, ν) < δ, hν ≥ hµ − θ.

This is a consequence of the following result due to Jacobs (see [140], p.

186). Let µ ∈Minv be an invariant measure which has the ergodic decomposition

µ =
∫
Merg

τdπ(τ) where π is a Borel probability measure on Merg. Then we have

hµ =

∫
Merg

hτdπ(τ).

Proposition 5.6 (Katok [77]). Let µ ∈ Merg be an ergodic invariant measure.

For ε > 0 and δ > 0, let rn(ε, δ, µ) denote the minimum number of ε-balls in the

Bowen metric dn whose union has µ-measure more than or equal to 1 − δ. Then

for each δ > 0 we have

hµ = lim
ε→0

lim sup
n→∞

1

n
log rn(ε, δ, µ) = lim

ε→0
lim inf
n→∞

1

n
log rn(ε, δ, µ).

In [77], it was assumed that T : X → X is a homeomorphism. But the proof

in [77] works for the transformations we are studying.

5.3 Systems with specification property are saturated

In this section, we prove Theorem 5.1 which says that every system satisfying

the specification property is saturated. Because of Bowen’s lemma (Lemma 2.35),

we have only to show htop(Gµ) ≥ hµ. The idea of the proof appeared in [48, 49]

and was developed in [135]. It consists of constructing the so-called dynamical

Moran sets which approximate the set of generic points Gµ.
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5.3.1 Dynamical Moran sets and their entropies

Fix ε > 0. Let {mk}k≥1 be the sequence of integers defined by mk = m(2−kε)

which is the constant appeared in the definition of the specification property (k =

1, 2, . . .). Let {Wk}k≥1 be a sequence of finite sets in X and {nk}k≥1 be a sequence

of positive integers. Assume that

dnk
(x, y) ≥ 5ε (∀x, y ∈ Wk x 6= y). (5.9)

Let {Nk}k≥1 be another sequence of positive integers with N1 = 1. Using these

data, we are going to construct a compact set of Cantor type, called a dynamical

Moran set, which will be denoted by F = F (ε, {Wk}, {nk}, {Nk}). We will give

an estimate for its topological entropy.

Denote

Mk = #Wk.

Fix k ≥ 1. For any Nk points x1, · · · , xNk
in Wk i.e. (x1, · · · , xNk

) ∈ WNk
k , we

choose a point y(x1, · · · , xNk
) ∈ X, which does exist by the specification property,

such that

dnk
(xs, T

asy) <
ε

2k
(s = 1, . . . , Nk) (5.10)

where

as = (s− 1)(nk +mk).

Both (5.9) and (5.10) imply that for two distinct points (x1, · · · , xNk
) and

(x̄1, · · · , x̄Nk
) in WNk

k we have

dtk(y(x1, · · · , xNk
), y(x̄1, · · · , x̄Nk

)) > 4ε (5.11)

where tk = aNk
+ nk, i.e.

tk = (Nk − 1)mk +Nknk.

In fact, let y = y(x1, · · · , xNk
) and ȳ = y(x̄1, · · · , x̄Nk

). Suppose xs 6= x̄s for some

s ∈ {1, · · · , Nk}. Then

dtk(y, ȳ) ≥ dnk
(T asy, T as ȳ)

≥ dnk
(xs, x̄s)− dnk

(xs, T
asy)− dnk

(x̄s, T
as ȳ)

> 5ε− ε/2− ε/2 = 4ε.
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Let

D1 = W1, Dk =
{
y(x1, · · · , xNk

) : (x1, · · · , xNk
) ∈ WNk

k

}
(∀k ≥ 2).

Now define recursively Lk and `k as follows. Let

L1 = D1, `1 = n1.

For any x ∈ Lk and any y ∈ Dk+1 (k ≥ 1), by the specification property, we can

find a point z(x, y) ∈ X such that

d`k
(z(x, y), x) <

ε

2k+1
, dtk+1

(T `k+mk+1z(x, y), y) <
ε

2k+1
.

We will choose one and only one such z(x, y) and call it the descend from x ∈ Lk

through y ∈ Dk+1. Let

Lk+1 = {z(x, y) : x ∈ Lk, y ∈ Dk+1} ,

`k+1 = `k +mk+1 + tk+1 = N1n1 +
k+1∑
i=2

Ni(mi + ni).

Observe that for any x ∈ Lk and for all y, ȳ ∈ Dk+1 with y 6= ȳ, we have

d`k
(z(x, y), z(x, ȳ)) <

ε

2k
(k ≥ 1), (5.12)

and for any x, x̄ ∈ Lk and y, ȳ ∈ Dk+1 with (x, y) 6= (x̄, ȳ), we have

d`k+1
(z(x, y), z(x̄, ȳ)) > 3ε (k ≥ 1). (5.13)

The fact (5.12) is obvious. To prove (5.13), first remark that d`1(z, z̄) ≥ 5ε > 4ε

for any z, z̄ ∈ L1 with z 6= z̄, and that for any x, x̄ ∈ Lk and y, ȳ ∈ Dk+1 with

(x, y) 6= (x̄, ȳ) we have

d`k+1
(z(x, y), z(x̄, ȳ)) ≥ d`k

(x, x̄)− d`k
(z(x, y), x)− d`k

(z(x̄, ȳ), x̄)

and

d`k+1
(z(x, y), z(x̄, ȳ))

≥ dtk+1
(y, ȳ)− dtk+1

(T `k+mk+1z(x, y), y)− dtk+1
(T `k+mk+1z(x̄, ȳ), ȳ).

Now using the above two inequalities, we prove (5.13) by induction. For any

x, x̄ ∈ L1 and y, ȳ ∈ D2 with either x 6= x̄ or y 6= ȳ, we have

d`2(z(x, y), z(x̄, ȳ)) > 4ε− ε

22
− ε

22
= 4ε− ε

2
.
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Suppose we have obtained that

d`k
(z(x, y), z(x̄, ȳ)) > 4ε− ε

2
− ε

22
− · · · − ε

2k−1
.

Then for any x, x̄ ∈ Lk and y, ȳ ∈ Dk+1 with (x, y) 6= (x̄, ȳ) we have

d`k+1
(z(x, y), z(x̄, ȳ)) > 4ε− ε

2
− ε

22
− · · · − ε

2k−1
− ε

2k+1
− ε

2k+1

= 4ε− ε

2
− ε

22
− · · · − ε

2k−1
− ε

2k
> 3ε

Now define our dynamical Moran set

F = F (ε, {Wk}, {nk}, {Nk}) =
∞⋂

k=1

Fk,

where

Fk =
⋃

x∈Lk

B`k
(x, ε2−(k−1))

(B(x, r) denoting the closed ball of center x and radius r). The set F is Cantor-like

because for any distinct points x′, x′′ ∈ Lk, by (5.13) we have

B`k
(x′, ε2−(k−1))

⋂
B`k

(x′′, ε2−(k−1)) = ∅

and if z ∈ Lk+1 descends from x ∈ Lk, by (5.12) we have

B`k+1
(z, ε2−k) ⊆ B`k

(x, ε2−(k−1)).

Proposition 5.7 (Entropy of F ). For any integer n ≥ 1, let k = k(n) ≥ 1 and

0 ≤ p = p(n) < Nk+1 be the unique integers such that

`k + p(mk+1 + nk+1) < n ≤ `k + (p+ 1)(mk+1 + nk+1).

We have

htop(F ) ≥ lim inf
n→∞

1

n
(N1 logM1 + · · ·+Nk logMk + p logMk+1).

Proof. For every k ≥ 1, consider the discrete measure σk concentrated on Fk

σk =
1

#Lk

∑
x∈Lk

δx.
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It can be proved that σk converges in the week star topology to a probability

measure σ concentrated on F . Moreover, for sufficiently large n and every point

x ∈ X such that Bn(x, ε/2) ∩ F 6= ∅, we have

σ(Bn(x, ε/2)) ≤ 1

#(Lk)M
p
k+1

=
1

MN1
1 · · ·MNk

k Mp
k+1

.

(see [135]). Then we apply the mass distribution principle to estimate the entropy.

5.3.2 Box-counting of Gµ

Recall that α = (αi)i≥1 ∈ `∞ and Φ = (Φi) is a dense sequence in the unit

ball of C(X). For δ > 0 and n ≥ 1, define

XΦ(α, δ, n) =

{
x ∈ X :

∞∑
i=1

pi|AnΦi(x)− αi| < δ

}
.

For ε > 0, let N(α, δ, n, ε) denote the minimal number of balls Bn(x, ε) to cover

the set XΦ(α, δ, n). Define

ΛΦ(α) := lim
ε→0

lim
δ→0

lim sup
n→∞

1

n
logN(α, δ, n, ε) (5.14)

By the same argument in [48] (p. 884-885), we can prove the existence of the

limits, and the following equality:

ΛΦ(α) = lim
ε→0

lim
δ→0

lim inf
n→∞

1

n
logN(α, δ, n, ε).

Proposition 5.8. ΛΦ(α) ≥ hµ.

Proof. It suffices to prove ΛΦ(α) ≥ hµ − 4θ for any θ > 0. For each i ≥ 1, define

the variation of Φi by

var(Φi, ε) = sup
d(x,y)<ε

|Φi(x)− Φi(y)|.

By the compactness of X and the continuity of Φi, limε→0 var(Φi, ε) → 0. So

lim
ε→0

+∞∑
i=1

pivar(Φi, ε) → 0.
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This, together with (5.14), allows us to choose ε > 0 and δ > 0 such that

+∞∑
i=1

pivar(Φi, ε) < δ < θ (5.15)

and

lim sup
n→∞

1

n
logN(α, 5δ, n, ε) < ΛΦ(α) + θ. (5.16)

For the measure µ, take an invariant measure ν =
∑r

k=1 λkνk having the

properties stated in Proposition 5.5. For 1 ≤ k ≤ r and N ≥ 1, set

Yk(N) =

{
x ∈ X :

∞∑
i=1

pi

∣∣∣∣AnΦi(x)−
∫

Φidνk

∣∣∣∣ < δ (∀n ≥ N)

}
.

Since νk is ergodic, by the Birkhoff theorem, we have

lim
n→∞

∞∑
i=0

pi

∣∣∣∣AnΦi(x)−
∫

Φidνk

∣∣∣∣ = 0 νk−a.e. (5.17)

Then by the Egorov theorem, there exists a set with νk-measure greater than 1−θ
on which the above limit (5.17) is uniform. Therefore, if N is sufficiently large,

we have

νk(Yk(N)) > 1− θ (∀ k = 1, · · · , r). (5.18)

Apply the second equality in Proposition 5.6 to the triple (νk, 4ε, θ) in place of

(µ, ε, δ). When ε > 0 is small enough, we can find an integerNk = Nk(νk, 4ε, θ) ≥ 1

such that

rn(4ε, θ, νk) ≥ exp(n(hνk
− θ)) (∀n ≥ Nk).

This implies that if n ≥ Nk, then the minimal number of balls Bn(x, 4ε) to cover

Yk(N) is greater than or equal to exp(n(hνk
−θ)). Consequently, if we use C(n, 4ε)

to denote a maximal (n, 4ε)-separated set in Yk(N), then

#C(n, 4ε) ≥ exp(n(hνk
− θ)) (∀n ≥ Nk). (5.19)

Choose a sufficiently large integer N0 such that

nk := [λkn] ≥ max(N1, · · · , Nk, N) (∀k = 1, . . . , r; ∀n ≥ N0)
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([·] denoting the integral part). By the specification property, for each r points

x1 ∈ C(n1, 4ε), . . . , xr ∈ C(nr, 4ε), there exist an integer m(ε) depending on ε and

a point y = y(x1, . . . , xr) ∈ X such that

dnk
(T aky, xk) < ε (1 ≤ k ≤ r) (5.20)

where

a1 = 0, ak = (k − 1)m+
k−1∑
s=1

ns (k ≥ 2).

Write n̂ = ar + nr, i.e.

n̂ = (r − 1)m+
r∑

s=1

ns.

We claim that for all such y = y(x1, . . . , xr), we have

y = y(x1, . . . , xr) ∈ XΦ(α, 5δ, n̂) (5.21)

when n is sufficiently large, and that for two distinct points (x1, . . . , xr) and

(x′1, . . . , x
′
r) in C(n1, 4ε) × · · · × C(nr, 4ε), the points y = y(x1, . . . , xr) and y′ =

y(x′1, . . . , x
′
r) satisfy

dn̂(y, y′) > 2ε. (5.22)

If we admit (5.21) and (5.22), we can conclude. In fact, the balls Bn̂(y, ε) are

disjoint owing to (5.22) and hence there are #C(n1, 4ε) × . . . × #C(nr, 4ε) such

balls. Therefore, because of (5.21), the minimal number of (n̂, ε)-balls needed to

cover XΦ(α, 5δ, n̂) is greater than the number of such points y’s. That is to say

N(α, 5δ, n̂, ε) ≥ #C(n1, 4ε)× . . .×#C(nr, 4ε)

Then by (5.19), we get

N(α, 5δ, n̂, ε) ≥ exp
r∑

k=1

[λkn](hνk
− θ).

By noticing that [λkn]
n̂

→ λk as n→∞ and
∑r

k=1 λk = 1, we get

lim inf
n̂→∞

1

n̂
logN(α, 5δ, n̂, ε) ≥ hµ − 3θ

This, together with (5.16), implies ΛΦ(α) ≥ hµ − 4θ.
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Now return to prove (5.21) and (5.22). The proof of (5.22) is simple: suppose

xk 6= x′k for some 1 ≤ k ≤ r. By (5.20),

dn̂(y, y′) ≥ dnk
(T aky, T aky′) ≥ dnk

(xk, x
′
k)− 2ε > 4ε− 2ε = 2ε.

Now prove (5.21). Recall that αi =
∫

Φidν and ν =
∑r

k=1 λkνk. We have

|An̂Φi(y)− αi| ≤

∣∣∣∣∣An̂Φi(y)−
r∑

k=1

λk

∫
Φidνk

∣∣∣∣∣+
∣∣∣∣∫ Φidν −

∫
Φidµ

∣∣∣∣ .
Since d̃(µ, ν) < δ i.e.

∑∞
i=1 pi|

∫
Φidµ−

∫
Φidν| < δ, we have only to show that

∞∑
i=1

pi

∣∣∣∣∣An̂Φi(y)−
r∑

k=1

λk

∫
Φidνk

∣∣∣∣∣ < 4δ. (5.23)

Write

An̂Φi(y) =
1

n̂

r∑
k=1

[λkn]−1∑
j=0

Φi(T
ak+jy) +

1

n̂

r∑
k=2

ak−1∑
j=ak−m

Φi(T
jy)

=
r∑

k=1

[λkn]

n̂
A[λkn]Φi(T

aky) +
1

n̂

r∑
k=2

ak−1∑
j=ak−m

Φi(T
jy).

Then ∣∣∣∣∣An̂Φi(y)−
r∑

k=1

λk

∫
Φidνk

∣∣∣∣∣ ≤ I1(i) + I2(i) + I3(i) + I4(i)

with

I1(i) =
r∑

k=1

[λkn]

n̂

∣∣A[λkn]Φi(T
aky)− A[λkn]Φi(xk)

∣∣
I2(i) =

r∑
k=1

[λkn]

n̂

∣∣∣∣A[λkn]Φi(xk)−
∫

Φidνk

∣∣∣∣
I3(i) =

r∑
k=1

∣∣∣∣ [λkn]

n̂
− λk

∣∣∣∣ ∫ |Φi|dνk

I4(i) =
1

n̂

r∑
k=2

ak−1∑
j=ak−m

|Φi(T
jy)|.

Since [λkn] ≤ λkn̂ and xk satisfies (5.20), by (5.15) we get

∞∑
i=1

piI1(i) ≤
∞∑
i=1

pi

r∑
k=1

λkvar(Φi, ε) =
∞∑
i=1

pivar(Φi, ε) < δ.
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Since xk ∈ Yk(N) and [λkn] ≥ N , we have

∞∑
i=1

piI2(i) ≤
∞∑
i=1

pi

r∑
k=1

λk

∣∣∣∣A[λkn]Φi(xk)−
∫

Φidνk

∣∣∣∣
=

r∑
k=1

λk

∞∑
i=1

pi

∣∣∣∣A[λkn]Φi(xk)−
∫

Φidνk

∣∣∣∣ ≤ δ
r∑

k=1

λk = δ.

Since ‖Φi‖ ≤ 1, we have

∞∑
i=1

piI3(i) ≤
r∑

k=1

∣∣∣∣ [λkn]

n̂
− λk

∣∣∣∣ < δ

∞∑
i=1

piI4(i) ≤ (r − 1)m(ε)

n̂

∞∑
i=1

pi =
(r − 1)m(ε)

n̂
< δ

when n is sufficiently large because n̂→∞ and [λkn]
n̂

→ λk.

By combining all these estimates, we obtain (5.23).

5.3.3 Saturatedness of systems with specification

In this subsection we will finish our proof of Theorem 5.1, which says that

systems satisfying the specification property are saturated. It remains to prove

htop(Gµ) ≥ ΛΦ(α). In fact, by Proposition 5.8, we will have htop(Gµ) ≥ hµ. On

the other hand, it was known to Bowen [24] that hµ ≥ htop(Gµ). So, we will get

htop(Gµ) = hµ.

Proposition 5.9. htop(Gµ) ≥ ΛΦ(α)

Proof. It suffices to prove htop(Gµ) ≥ ΛΦ(α) − θ for any θ > 0. To this end, we

will construct dynamical Moran subsets of Gµ = XΦ(α), which approach XΦ(α).

The construction is based on separated sets of XΦ(α, δ, n).

Let mk = m(2−kε) be the constants in the definition of specification. By

the definition of ΛΦ(α) (see (5.14)), when ε > 0 is small enough there exist a

sequence of positive numbers {δk} decreasing to zero and a sequence of integers

{nk} increasing to the infinity such that

nk ≥ 2mk (5.24)
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and that for any k ≥ 1 we can find a (nk, 5ε)-separated set Wk of XΦ(α, δk, nk)

with

Mk := ]Wk ≥ exp(nk(ΛΦ(α)− θ)). (5.25)

Choose a sequence of integers {Nk} such that

N1 = 1 (5.26)

Nk ≥ 2nk+1+mk+1 , k ≥ 2 (5.27)

Nk+1 ≥ 2N1n1+N2(n2+m2)···+Nk(nk+mk), k ≥ 1 (5.28)

Consider the dynamical Moran set F = F (ε, {Wk}, {nk}, {Nk}) as we constructed

in the last subsection. From (5.24)-(5.28), we get

lim inf
n→∞

1

n
(N1 logM1 + · · ·+Nk logMk + p logMk+1) ≥ ΛΦ(α)− θ.

By Proposition 5.7, we have

htop(F ) ≥ ΛΦ(α)− θ.

Thus we have only to prove F ⊆ XΦ(α). Or equivalently

lim
n→∞

1

n

∞∑
i=0

pi |SnΦi(x)− nαi| = 0 (x ∈ F ). (5.29)

Let us use the same notations as in the last subsection including `k , tk , Dk

and Lk etc.

Fix n ≥ 1. Let k ≥ 1 and 0 ≤ p < Nk+1 be the integers, which depend on n,

such that

`k + p(mk+1 + nk+1) < n ≤ `k + (p+ 1)(mk+1 + nk+1)

Write

q = n−
(
`k + p(mk+1 + nk+1)

)
, bs = (s− 1)(mk+1 + nk+1).

Decompose the interval [0, n) (⊂ N) into small intervals

[0, n) = [0, `k)
⋃

[`k, `k + p(mk+1 + nk+1))
⋃

[`k + p(mk+1 + nk+1), n)
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and decompose still [`k, `k +p(mk+1 +nk+1)) into intervals alternatively of lengths

nk+1 and mk+1. Then cut the sum
∑

0≤j<n Φi(T
jx) into sums taken over small

intervals. Thus we get

|SnΦi(x)− nαi| ≤ J1(i) + J2(i) + J3(i) + J4(i)

where

J1(i) = |S`k
Φi(x)− `kαi|

J2(i) =

p∑
s=1

∣∣Smk+1
Φi(T

`k+bsx)−mk+1αi

∣∣
J3(i) =

p∑
s=1

∣∣Snk+1
Φi(T

`k+bs+mk+1x)− nk+1αi

∣∣
J4(i) =

∣∣SqΦi(T
`k+p(mk+1+nk+1)x)− qαi

∣∣
Since ‖Φi‖ ≤ 1 (hence |αi| ≤ 1), we have

J2(i) ≤ 2pmk+1, J4(i) ≤ 2q ≤ 2(mk+1 + nk+1).

By (5.27), we have

lim
n→∞

1

n

∞∑
i=0

piJ2(i) = 0, lim
n→∞

1

n

∞∑
i=0

piJ4(i) = 0. (5.30)

Now let us deal with J1(i) and J3(i). We claim that for any x ∈ F there

exists an x̄ ∈ Lk such that

d`k
(x̄, x) <

ε

2k−1
, (5.31)

and that for all 1 ≤ s ≤ p, there exists a point xs ∈ Wk+1 such that

dnk+1
(xs, T

usx) <
ε

2k−1
(5.32)

where

us = `k + bs +mk+1.

In fact, by the construction of F , there exists a point z ∈ Lk+1 such that

d`k+1
(z, x) ≤ ε

2k
. (5.33)
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Assume that z descends from some x̄ ∈ Lk through y ∈ Dk+1. Then

d`k
(x̄, z) <

ε

2k+1
(5.34)

and

dtk+1
(y, T `k+mk+1z) <

ε

2k+1
. (5.35)

On the other hand, according to the definition of Dk+1, there exists an xs ∈ Wk+1

such that

dnk+1
(xs, T

bsy) <
ε

2k+1
. (5.36)

Now by the trigonometric inequality, the fact d`k
(z, x) ≤ d`k+1

(z, x) and (5.33)

and (5.34) we get

d`k
(x̄, x) ≤ ε

2k+1
+

ε

2k
<

ε

2k−1
.

Thus (5.31) is proved. By (5.33),(5.35) and (5.36), we can similarly prove (5.34):

dnk+1
(xs, T

usx) ≤ dnk+1
(xs, T

bsy) + dnk+1
(T bsy, T usz) + dnk+1

(T usz, T usx)

≤ dnk+1
(xs, T

bsy) + dtk+1
(y, T `k+mk+1z) + d`k+1

(z, x)

<
ε

2k+1
+

ε

2k+1
+

ε

2k

=
ε

2k−1
.

It is now easy to deal with J3(i), which is obviously bounded by

J3(i) ≤
p∑

s=1

∣∣Snk+1
Φi(T

usx)− Snk+1
Φi(xs)

∣∣+ p∑
s=1

∣∣Snk+1
Φi(xs)− nk+1αi

∣∣ .
Using (5.32), we obtain∣∣Snk+1

Φi(xs)− Snk+1
Φi(T

usx)
∣∣ ≤ nk+1var(Φi, ε2

−(k−1)).

On the other hand, since xs ∈ Wk+1 ⊆ XΦ(α, δk+1, nk+1), we have, by definition,

∞∑
i=1

pi

∣∣Snk+1
Φi(xs)− nk+1αi

∣∣ ≤ nk+1δk+1.

Then, combining the last three estimates, and using the facts
∑∞

j=1 pj = 1 and

pnk+1 ≤ n, we get

1

n

∞∑
i=1

piJ3(i) ≤
∞∑
i=1

pivar(Φi, ε2
−(k−1)) + δk+1.
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Since k can be arbitrarily large, we finally get

lim
n→∞

1

n

∞∑
i=1

piJ3(i) = 0. (5.37)

Now it remains to prove

lim
n→∞

1

n

∞∑
i=1

piJ1(i) = 0. (5.38)

Observe that

J1(i) ≤ |S`k
Φi(x)− S`k

Φi(x̄)|+ |S`k
Φi(x̄)− `kαi| .

By (5.31), we have |S`k
Φi(x)− S`k

Φi(x̄)| ≤ `kvar(Φi, ε2
−(k−1)). Then

J1(i) ≤ `kvar(Φi, ε2
−(k−1)) +Rk,i

where

Rk,i = max
z∈Lk

|S`k
Φi(z)− `kαi| .

Since var(Φi, ε2
−(k−1)) tends to zero as k →∞, the desired claim (5.38) is reduced

to

lim
n→∞

1

n

∞∑
i=1

piRk,i = 0. (5.39)

We need two lemmas to estimate Rk,i.

Lemma 5.10. For any y ∈ Dk+1, we have

∞∑
i=1

pi

∣∣Stk+1
Φi(y)− tk+1αi

∣∣
≤

∞∑
i=1

piNk+1nk+1var(Φi, ε2
−(k+1)) + 2(Nk+1 − 1)mk+1 +Nk+1nk+1δk+1.

Proof. For any s = 1, . . . , Nk+1, there exists xs ∈ Wk+1 such that

dnk+1
(xs, T

bsy) <
ε

2k+1
(5.40)

where bs = (s− 1)(mk+1 + nk+1). Write

Stk+1
Φi(y) =

Nk+1∑
s=1

Snk+1
Φi(T

bsy) +

Nk+1−1∑
s=1

Smk+1
Φi(T

bs+nk+1y).
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Then ∣∣Stk+1
Φi(y)− tk+1αi

∣∣
≤

Nk+1∑
s=1

∣∣Snk+1
Φi(T

bsy)− nk+1αi

∣∣+ Nk+1−1∑
s=1

∣∣Smk+1
Φi(T

bs+nk+1y)−mk+1αi

∣∣ .
Since xs ∈ Wk+1 ⊆ XΦ(α, δk+1, nk+1), by (5.40), we have

∞∑
i=1

pi

∣∣Snk+1
Φi(T

bsy)− nk+1αi

∣∣
≤

∞∑
i=1

pi

∣∣Snk+1
Φi(T

bsy)− Snk+1
Φi(xs)

∣∣+ ∞∑
i=1

pi

∣∣Snk+1
Φi(xs)− nk+1αi

∣∣
≤

∞∑
i=1

pink+1var(Φi, ε2
−(k+1)) + nk+1δk+1.

On the other hand, ∣∣Smk+1
Φi(T

bs+nk+1y)−mk+1αi

∣∣ ≤ 2mk+1.

Now it is easy to conclude.

Lemma 5.11.

∞∑
i=1

piRk,i ≤ 2
∞∑
i=1

pi

k∑
j=1

`jvar(Φi, ε2
−j) + 2

k∑
j=1

Njmj +
k∑

j=1

`jδj.

Proof. We prove it by induction on k. When k = 1, we have L1 = D1 = W1 ⊆
XΦ(α, δ1, n1) and then

∞∑
i=1

piR1,i ≤ n1δ1 = `1δ1.

Suppose the lemma holds for k. For any z ∈ Lk+1 there exist x ∈ Lk and y ∈ Dk+1,

such that

d`k
(x, z) <

ε

2k+1
, dtk+1

(y, T `k+mk+1z) <
ε

2k+1
.

Write

S`k+1
Φi(z) = S`k

Φi(z) + Smk+1
Φi(T

`kz) + Stk+1
Φi(T

`k+mk+1z).

Then
∣∣S`k+1

Φi(z)− `k+1αi

∣∣ is bounded by

|S`k
Φi(z)− `kαi|+

∣∣Smk+1
Φi(T

`kz)−mk+1αi

∣∣+ ∣∣Stk+1
Φi(T

`k+mk+1z)− tk+1αi

∣∣ .
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Notice that

|S`k
Φi(z)− `kαi| ≤ |S`k

Φi(z)− S`k
Φi(x)|+ |S`k

Φi(x)− `kαi|

≤ `kvar(Φi, ε2
−(k+1) +Rk,i,

∣∣Smk+1
Φi(T

`kz)−mk+1αi

∣∣ ≤ 2mk+1

and ∣∣Stk+1
Φi(T

`k+mk+1z)− tk+1αi

∣∣
≤

∣∣Stk+1
Φi(T

`k+mk+1z)− Stk+1
Φi(y)

∣∣+ ∣∣Stk+1
Φi(y)− tk+1αi

∣∣
≤ tk+1var(Φi, ε2

−(k+1)) +
∣∣Stk+1

Φi(y)− tk+1αi

∣∣ .
By Lemma 5.10, we have

∞∑
i=1

piRk+1,i ≤
∞∑
i=1

piRk,i +
∞∑
i=1

pi(`k + tk+1 +Nk+1nk+1)var(Φi, ε/2
k+1)

+2Nk+1mk+1 +Nk+1nk+1δk+1.

Then according to the induction hypothesis the Lemma holds for k + 1, because

`k + tk+1 ≤ `k+1, Nk+1nk+1 ≤ `k+1.

Let us finish the proof of Theorem 5.1 by showing (5.39). Since nj ≥ 2mj , we

have
Njmj

`j
≤ Njmj

Nj(nj +mj)
=

mj

nj +mj

→ 0 (j →∞).

Then the estimate in Lemma 5.11 can be written as

∞∑
i=1

piRk,i ≤
k∑

j=1

`jcj

where cj → 0 (j →∞). By (5.28), we have `k ≥ 2`k−1 . It follows that

1

`k

∞∑
i=1

piRk,i ≤ ck +
1

`k

k−1∑
i=1

cj`j.

This implies (5.39).
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5.4 Variational principle

In this section, we prove variational principles for saturated systems (Theo-

rem 5.2 and Theorem 5.3).

5.4.1 Proofs of Theorems 5.2 and 5.3

The proof of Theorem 5.3 is similar to that of Theorem 5.2.

Proof of Theorem 5.2 (a). It suffices to prove that if there exists a point

x ∈ XΦ(α;E), then MΦ(α;E) 6= ∅. That x ∈ XΦ(α;E) means

lim sup
n→∞

〈AnΦ(x), w〉 ≤ 〈α,w〉 (∀w ∈ E). (5.41)

Let µ be a weak limit of n−1
∑n−1

j=0 δT jx. That is to say, there exists a sequence nm

such that

lim
m→∞

1

nm

nm−1∑
j=0

f(T jx) =

∫
fdµ (5.42)

for all scalar continuous functions f . We deduce from (5.41) and (5.42) that for

all w ∈ E we have∫
〈Φ, w〉dµ = lim

m→∞
〈AnmΦ(x), w〉 ≤ lim sup

n→∞
〈AnΦ(x), w〉 ≤ 〈α,w〉.

So µ ∈MΦ(α;E). �

Proof of Theorem 5.2 (b). Let t = supµ∈MΦ(α;E) hµ. What we have just proved

above may be stated as follows: if x ∈ XΦ(α;E), then

V (x) ⊂MΦ(α;E).

It follows that hµ ≤ t for any µ ∈ V (x). Thus

XΦ(α;E) ⊂ {x ∈ X : ∀ µ ∈ V (x) satisfying hµ ≤ t}

⊂ {x ∈ X : ∃ µ ∈ V (x) satisfying hµ ≤ t} .

Then, due to Lemma 2.35, we get htop(XΦ(α;E)) ≤ t.

Now we prove the converse inequality. For any µ ∈ MΦ(α;E), consider Gµ

the set of generic points. We have

Gµ ⊂ XΦ(α; B) ⊂ XΦ(α;E).
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The second inclusion is obvious and the first one is a consequence of the fact that

x ∈ Gµ implies limn→∞AnΦ(x) =
∫

Φdµ = α in the σ(B∗,B)-topology. Thus

htop(XΦ(α;E)) ≥ htop(Gµ).

Since µ is an arbitrary invariant measure in MΦ(α;E), we can finish the proof

because the system (X,T ) is saturated (i.e. htop(Gµ) = hµ). �

It is useful to point out the following facts appearing in the proof:

(i) If x ∈ XΦ(α,E), then V (x) ⊂MΦ(α,E).

(ii) We have ⋃
µ∈MΦ(α,E)

Gµ ⊂ XΦ(α,E) ⊂
⋃

µ∈MΦ(α,E)

G̃µ

with G̃µ = {x ∈ X : V (x) 3 µ}. It is worth to notice the fact that all the Gµ are

disjoint.

It is clear that MΦ(α,E) is a compact convex subset of the space Minv of

Borel probability invariant measures. If hµ, as a function of µ, is upper semi-

continuous on Minv, then the supremum in the variational principle is attained

by some invariant measure, called the maximal entropy measure in MΦ(α,E).

Usually, the structure of MΦ(α,E) is complicated. But it is sometimes possible

to calculate the maximal entropy.

Proof of Theorem 5.3. Let x ∈ XΨ
Φ (β) and let µ be a weak limit of n−1

∑n−1
j=0 δT jx.

Then there exists a subsequence of integers {nm} such that AnmΦ(x) tends to∫
Φdµ in the weak star topology as m→∞ because we have an expression similar

to (5.42) with f = 〈Φ, w〉 (w ∈ B being arbitrary). Hence

Ψ

(∫
Φdµ

)
= lim

m→∞
Ψ(AnmΦ(x)) = lim

n→∞
Ψ(AnΦ(x)) = β.

Thus we have proved that µ ∈MΨ
Φ(β). That is to say

V (x) ⊂MΨ
Φ(β) (∀x ∈ XΨ

Φ (β)).

It follows that (a) holds and that due to Lemma 2.35 we have

htop(X
Ψ
Φ (β)) ≤ sup

µ∈MΨ
Φ(β)

hµ.
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The converse inequality is a consequence of the variational principle (5.1) and

the relationship

XΨ
Φ (β) ⊃ X̂Ψ

Φ (β) =
⋃

α:Ψ(α)=β

XΦ(α).

In fact,

htop(X
Ψ
Φ (β)) ≥ htop(X̂

Ψ
Φ (β)) ≥ sup

α:Ψ(α)=β

htop(XΦ(α))

= sup
α:Ψ(α)=β

sup
µ∈MΦ(α)

hµ

= sup
µ∈MΨ

Φ(β)

hµ.

�

5.4.2 `∞(Z)-valued ergodic average

Let us consider the special case where B = `1(Z). Then B∗ = `∞(Z). Any

`∞(Z)-valued function Φ can be written as

Φ(x) =
(
Φn(x)

)
n∈Z, with sup

n
|Φn(x)| <∞.

Recall that `∞(Z) is equipped with the σ(`∞, `1)-topology. A `∞(Z)-valued func-

tion Φ is continuous if and only if all coordinate functions Φn : X → R are

continuous, because for any w = (wn)n∈Z ∈ `1 we have

〈Φ(x), w〉 =
∑
n∈Z

wnΦn(x).

Let us give an application of the variational principle in this setting. Let I

be a finite or infinite subset of positive integers. Let {Φi}i∈I be a family of real

continuous functions defined on X. We suppose that supi∈I ‖Φi‖C(X) < ∞. For

two given sequences of real numbers a = {ai}i∈I and b = {bi}i∈I , we denote by

S(a,b) the set of points x ∈ X such that

ai ≤ lim inf
n→∞

AnΦi(x) ≤ lim sup
n→∞

AnΦi(x) ≤ bi (∀i ∈ I).

Corollary 5.12. Suppose that the system (X,T ) is saturated. The topological

entropy of S(a,b) defined above is equal to the supremum of the measure-theoretical

entropies hµ for those invariant measures µ such that

ai ≤
∫

Φidµ ≤ bi (∀i ∈ I).
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Proof. For n ∈ Z, let en be the nth element of the canonical basis of `1(Z). Let

Φ be a function whose nth coordinate and −nth coordinate are respectively equal

to Φn and −Φn for each n ∈ I (other coordinates may be taken to be zero). Take

the set E ⊂ `1, which consists of ei and e−i for i ∈ I. Take α ∈ `∞ such that

α−i = −ai and αi = bi for i ∈ I. Now we can directly apply the variational

principle by noticing that

〈Φ, ei〉 = Φi, 〈Φ, e−i〉 = −Φi (i ∈ I).

The result contained in this corollary is new, even when I is finite. If I is

finite and if ai = bi for i ∈ I, the preceding corollary allows one to recover the

results in [49] and [135].

The validity of the variational principle is to some extent equivalent to the

fact that the system (X,T ) is saturated.

Theorem 5.13. Let (X,T ) be a compact dynamical system. The system is sat-

urated if and only if the variational principle (Theorem 5.2 (b)) holds for all real

Banach spaces B.

Proof. It remains to prove that the variational principle implies the saturation of

the system.

Take a countable set {fi}i∈N which is dense in the unit ball of C(X) (C(X)

being the space of all real valued continuous functions on X). Consider the func-

tion

Φ = (f1, f2, · · · , fn, · · · )

which takes values in B = `∞(N). For any invariant measure µ ∈Minv, define

α =

(∫
f1dµ,

∫
f2dµ, · · ·

)
∈ `∞(N).

It is clear thatMΦ(α) = {µ}. Then the variational principle implies htop(XΦ(α)) =

hµ. This finishes the proof because XΦ(α) is nothing but Gµ.
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5.5 An example: recurrence in an infinite number of

cylinders

We have got a general variational principle. In order to apply this principle,

one of the main questions is to get information about the convex set MΦ(α,E)

and the maximal entropy measures contained in it and to compute the maximal

entropy. Let us consider the symbolic dynamical system ({0, 1}N, T ), T being the

shift. The structure of the space Minv is relatively simple. To illustrate the main

result, we shall consider a special problem of recurrence into a countable number

of cylinders.

5.5.1 Symbolic space

Let X = {0, 1}N and T be the shift transformation. As usual, an n-cylinder

in X determined by a word w = x1x2 · · ·xn is denoted by [w] or [x1, · · · , xn]. For

any word w, define the recurrence to the cylinder [w] of x by

R(x, [w]) = lim
n→∞

1

n

n−1∑
j=0

1[w](T
jx)

if the limit exists.

Let W = {wi}i∈I with I ⊂ N be a finite or infinite set of words. Let α =

{ai}i∈I be a sequence of non-negative numbers. We are interested in the following

recurrence set

R(a;W) = {x ∈ X : R(x, [wi]) = ai for all i ∈ I}

whose topological entropy will be computed by the variational principle which

takes a simpler form.

Corollary 5.14. We have htop(R(a;W)) = maxµ∈M(a,W) hµ where

M(a,W) = {µ ∈Minv : µ([wi]) = ai for all i ∈ I} .

Remark that the shift transformation on the symbolic space is expansive.

Thus the entropy function hµ is upper semi-continuous([140], p. 184). Hence we

can obtain the supremum in Corollary 5.14.
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Recall that any Borel probability measure on X is uniquely determined by

its values on cylinders. In other words, a function µ defined on all cylinders can

be extended to be a Borel probability measure if and only if∑
x1,··· ,xn

µ([x1, · · · , xn]) = 1

and ∑
ε∈{0,1}

µ([x1, · · · , xn−1, ε]) = µ([x1, · · · , xn−1]).

Such a probability measure µ is invariant if and only if∑
ε∈{0,1}

µ([ε, x2, · · · , xn]) = µ([x2, · · · , xn]).

The entropy hµ of any invariant measure µ ∈Minv can be expressed as follows

hµ = lim
n→∞

∑
x1,··· ,xn

−µ([x1, · · · , xn]) log
µ([x1, · · · , xn])

µ([x1, · · · , xn−1])
.

The sum in the above expression which we will denote by h
(n)
µ is nothing but a

conditional entropy of µ and it is also the entropy of an (n− 1)-Markov measure

µn, which tends towards µ as n goes to ∞.

A Markov measure of order k is an invariant measure ν ∈ Minv having the

following Markov property: for all n > k and all (x1, · · · , xn) ∈ {0, 1}n

ν([x1, · · · , xn])

ν([x1, · · · , xn−1])
=

ν([xn−k, · · · , xn])

ν([xn−k, · · · , xn−1])
.

A Markov measure of order k is uniquely determined by its values on the (k+ 1)-

cylinders. The preceding approximating Markov measure µn has the same values

as µ on n-cylinders.

To apply the above corollary, we have to maximize the entropy hµ among all

invariant measures µ with constraints µ([wi]) = ai for i ∈ I. The entropy hµ is

a function of an infinite number of variables µ([w]). So we have to maximize a

function of an infinite number of variables. However, in some cases it suffices to

reduce the problem to maximize the conditional entropy which is a function of a

finite number of variables.
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Denote by |w| the length of the word w. Let Wn := {w ∈ W : |w| ≤ n} and

M(a,Wn) := {µ ∈ Minv : µ([wi]) = ai, wi ∈ Wn}. Let µ∗ be a maximal entropy

measure over M(a,W) and µ∗n be the (n − 1)-Markov measure which converges

to µ∗. Let µ(n) be a maximal entropy measure over M(a,Wn). Then

hµ∗ = lim
n→∞

hµ∗n ≤ lim inf
n→∞

hµ(n) ≤ lim sup
n→∞

hµ(n) ≤ hµ∗ .

Hence

lim
n→∞

hµ(n) = hµ∗ = max
µ∈M(a,W)

hµ.

However, for any measure µ ∈ M(a,Wn), we have hµ = hµn = h
(n)
µ , where µn is

the (n−1)-Markov measure which converges to µ ([49]). Thus, µ(n) is the maximal

point of the conditional entropy function h
(n)
µ .

Thus we have proved the following proposition.

Proposition 5.15. The maximal entropy over M(a,W) can be approximated by

the maximal entropies over M(a,Wn)’s.

5.5.2 Example: Frequency of dyadic digital blocks

Let us consider a special example:

W = {[0], [02], · · · , [0n], · · · }

where 0k means the word with 0 repeated k times.

Theorem 5.16. Let W = {[0n]}n≥1 and a = {an}n≥1 ⊂ R+. We have

(a) R(a; {[0n]}n≥1) 6= ∅ if and only if

1 = a0 ≥ a1 ≥ a2 ≥ . . . ; ai − 2ai+1 + ai+2 ≥ 0 (i ≥ 0). (5.43)

(b) If the above condition is satisfied, then

htop(R(a;W)) = −h(1− a1) +
∞∑
i=0

h(ai − 2ai+1 + ai+2) (5.44)

where h(x) = −x log x.
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The proof of the above theorem is decomposed into several lemmas which

actually allow us to find the unique invariant measure of maximal entropy and to

compute its entropy.

Let µ be an invariant measure. The consistence and the invariance of the

measure imply that we may partition all (n+ 2)-cylinders into groups of the form

{[0w0], [0w1], [1w0], [1w1]}

such that the measures µ([0w0]), µ([0w1]), µ([1w0]), µ([1w1]) are linked each other

through the measures µ([0w]), µ([w0]), µ([w1]), µ([1w]) of (n+ 1)-cylinders. More

precisely, if we write pw = µ([w]), then for any word w of length n, we have

p0w0 + p0w1 = p0w

p1w0 + p1w1 = p1w

p0w0 + p1w0 = pw0

p0w1 + p1w1 = pw1

Lemma 5.17. Suppose µ ∈M(a,W). If w = 0n with n ≥ 0, we have

p00n0 = an+2 (5.45)

p00n1 = an+1 − an+2 (5.46)

p10n0 = an+1 − an+2 (5.47)

p10n1 = an − 2an+1 + an+2. (5.48)

Proof. The relation (5.46) is a consequence of the consistence

p00n1 + p00n0 = p00n

and the facts p00n = an+1 and p00n0 = an+2; the relation (5.47) is a consequence of

the invariance

p10n0 + p00n0 = p0n0

and the same facts; to obtain the relation (5.48) we need both the invariance and

the consistence:

p10n1 + p00n1 = p0n1 = p0n − p0n0.

Then by (5.46) we get

p10n1 = p0n − p0n0 − p00n1 = an − 2an+1 + an+2.
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Let a, b, c be three positive numbers such that a+b ≥ c. Consider the function

F (t, u, v, w) = h(t) + h(u) + h(v) + h(w) (5.49)

defined on R+4, where h(x) = −x log x.

Lemma 5.18. Under the condition

t+ v = a, u+ w = b, t+ u = c

the function F defined by (5.49) attains its maximum at

t =
ac

a+ b
, u =

bc

a+ b
, v =

a(a+ b− c)

a+ b
, w =

b(a+ b− c)

a+ b
. (5.50)

Proof. From the condition we may solve t, u, v as functions of w:

t = c− b+ w, u = b− w, v = a+ b− c− w.

So, maximizing F (t, u, v, w) under the condition becomes maximizing the function

F (w) = h(c− b+ w) + h(b− w) + h(a+ b− c− w) + h(w)

which is strictly concave in its domain. Since h′(x) = −1− log x, we have

F ′(w) = − log(c− b+ w) + log(b− w) + log(a+ b− c− w)− logw.

Solving F ′(w) = 0, we get w = b(a+b−c)
a+b

. The corresponding t, u, v are as announced

in (5.50)

Lemma 5.19. Suppose that {an}n≥0 is a sequence of real numbers such that

1 = a0 ≥ a1 ≥ a2 ≥ . . . ; ai − 2ai+1 + ai+2 ≥ 0 (i ≥ 0). (5.51)

There exists an invariant measure µ such that if w is not a block of 0’s, we have

pεwε′ =
pεwpwε′

pw

(∀ε, ε′ ∈ {0, 1}). (5.52)

The above recursion relations (5.52) together with (5.45-5.48) completely deter-

mine the measure µ, which is the unique maximal entropy measure among those

invariant measures ν such that ν([0n]) = an for n ≥ 1.
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Proof. For any µ ∈ M(a,W), we must have µ([0]) = a1 and µ([1]) = 1 − a1. By

Proposition 5.15, we are led to find the measure µ(n+2) which maximizes h
(n+2)
µ

for each n ≥ 0. Let µ be an arbitrary invariant measure in M(a,Wn+2), n ≥ 0.

We identify µ with the sequence pw = µ([w]) indexed by finite words. By Lemma

5.17, we have

p0 = a1, p1 = 1− a1

p00 = a2, p01 = p10 = a1 − a2, p11 = 1− 2a1 + a2

So, we have

h(2)
µ = h(a2) + 2h(a1 − a2)− h(a1)− h(1− a1) + h(1− 2a1 + a2). (5.53)

Let us now consider the conditional entropy h
(n+2)
µ for n ≥ 1, which is a

function of µ-measures of (n+ 2)-cylinders, whose general form is [εwε′] with w a

word of length n and ε, ε′ ∈ {0, 1}. If w = 0n, by Lemma 5.17, the measures of

the four cylinders [ε0nε′] with ε, ε′ ∈ {0, 1} are determined by {ak}k≥1. If w 6= 0n,

the four quantities pεwε′ are linked to each other by

p0w0 + p0w1 = p0w, p1w0 + p1w1 = p1w, p0w0 + p1w0 = pw0

through measures of (n + 1)-cylinders: a := pw0, b := p1w, c := p0w. Consider the

four measures pεwε′ as variables, there is only one free variable and three others

are linked to it. Thus to any word w 6= 0n of length n is associated a free variable.

In fact, h
(n+2)
µ is the sum of all terms

−
∑
ε,ε′

pεwε′ log
pεwε′

pεw

(w ∈ {0, 1}n) (5.54)

If w = 0n, the corresponding term (5.54) is a constant depending on the sequence

{an} (see Lemma 5.17). If w 6= 0n, there is a free variable in the term (5.54). So,

maximizing h
(n+2)
µ is equivalent to maximizing all above terms, or equivalently to

maximizing

−
∑
ε,ε′

pεwε′ log pεwε′ . (5.55)

Applying Lemma 5.18 to the above function in (5.55) provides us with the maximal

point µ(n+2) described by (5.52) with |w| = n. It is easy to check that the family
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{pw} defined by (5.45-5.48) and (5.52) for all words w, verifies the consistency and

the invariance conditions. The measure determined by the family is the unique

measure of maximal entropy and µ(n+2) is its (n+ 1)-Markov measure.

Lemma 5.20. The entropy of the invariant measure µ of maximal entropy deter-

mined in the above lemma is equal to

hµ = −h(1− a1) +
∞∑

j=0

h(aj − 2aj+1+j+2)

where h(x) = −x log x.

Proof. Recall that for any invariant measure µ we have

hµ = lim
n→∞

h(n)
µ = inf

n
h(n)

µ

where

h(n)
µ = −

∑
|w|=n−1

∑
ε=0,1

pwε log
pwε

pw

.

Thus we may write

hµ = h(2)
µ +

∞∑
n=1

(h(n+2)
µ − h(n+1)

µ ) (5.56)

For n ≥ 0, write

h(n+2)
µ = −

∑
|w|=n

′∑
ε,ε′

pεwε′ log
pεwε′

pεw

−
∑
ε,ε′

pε0nε′ log
pε0nε′

pε0n

= : I1(n) + I2(n) (5.57)

where
∑′ means that the sum is taken over w 6= 0n (00 meaning the empty word

so that I1(0) = 0). When n = 0, we get

h(2)
µ = h(a2) + 2h(a1 − a2)− h(a1)− h(1− a1) + h(1− 2a1 + a2). (5.58)

This coincides with (5.53).

Suppose n ≥ 1. By the recursion relation (5.52), we have

I1(n) = −
∑
|w|=n

′∑
ε,ε′

pεwε′ log
pwε′

pw

= −
∑
|w|=n

∑
ε,ε′

pεwε′ log
pwε′

pw

+
∑
ε,ε′

pε0nε′ log
p0nε′

p0n

= h(n+1)
µ + I3(n) (5.59)
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where

I3(n) =
∑
ε,ε′

pε0nε′ log
p0nε′

p0n

.

From (5.57) and (5.59) we get

h(n+2)
µ − h(n+1)

µ = I2(n) + I3(n). (5.60)

On the one hand, by using the invariance and the consistence we can simplify I3

as follows

I3(n) =
∑

ε′

p0nε′ log
p0nε′

p0n

=
∑

ε′

p0nε′ log p0nε′ − p0n log p0n

= an+1 log an+1 + (an − an+1) log(an − an+1)− an log an. (5.61)

On the other hand, we have

I2(n) = −
∑
ε,ε′

pε0nε′ log pε0nε′ +
∑

ε

pε0n log pε0n

= −an+2 log an+2 − 2(an+1 − an+2) log(an+1 − an+2)

−(an − 2an+1 + an+2) log(an − 2an+1 + an+2)

+an+1 log an+1 + (an − an+1) log(an − an+1). (5.62)

By combining (5.60), (5.61) and (5.62) we get

ϕ(n) := h(n+2)
µ − h(n+1)

µ

= [h(an+2)− 2h(an+1) + h(an)] + 2[h(an+1 − an+2)− h(an − an+1)]

+h(an − 2an+1 + an+2).

Finally using (5.56) we get

hµ = h(2)
µ +

∞∑
n=1

ϕ(n) = −h(1− a1) +
∞∑

j=0

h(aj − 2aj+1 + aj+2).

Remark that the measure of maximal entropy in R(a,W) is not necessarily

ergodic. Here is an example. If an = a (∀n ≥ 1) is constant, then there is a unique
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invariant measure in M(a,W), which is aδ0̄ + (1 − a)δ1̄. In this case, R(a,W)

is not empty but of zero entropy. Notice that R(a,W) contains no point in the

support of the unique invariant measure. If a = 1
2
, R(1

2
,W) contains the following

point

01001100011100001111...

(The terms in the two sequences {0k} and {1k} are alternatively appended.)

At the end of this chapter, we remark that Pfister and Sullivan ([122]) also

obtained Theorem 5.1 with a different method.
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Chapter 6

Khintchine and Lyapunov Spectra

In this chapter, we mainly study the Khintchine spectrum and Lyapunov

spectrum which are in fact some kinds of Birkhoff spectra in continued fractions.

We prove the remarkable fact that the Khintchine spectrum and Lyapunov spec-

trum are neither concave nor convex which signifies a new phenomenon from the

usual point of view of multifractal analysis. We also study the fast Khintchine

spectrum and fast Lyapunov spectrum which are proved to be constant functions. 1

6.1 Statement of the results

The continued fraction of a real number can be generated by the Gauss trans-

formation T : [0, 1) → [0, 1) which is defined by

T (0) := 0, T (x) :=
1

x
(mod 1), for x ∈ (0, 1).

Every irrational number x in [0, 1) can be uniquely expanded as

x =
1

a1(x) +
1

a2 +
.. . + 1

an(x) + T n(x)

=
1

a1(x) +
1

a2(x) +
1

a3(x) +
. . .

where a1(x) = b1/xc and an(x) = a1(T
n−1(x)) for n ≥ 2 are partial quotients of

x (bxc denoting the integral part of x). The continued fraction expansion is also

denoted by x = [a1, a2, · · · , an + T n(x)] = [a1, a2, a3, · · · ].

We recall a list of definitions and notations we have discussed in Subsection

1.3.3:

1A. H. Fan, L. M. Liao, B. W. Wang and J. Wu, On Khintchine exponents and Lyapunov exponents

of continued fractions, to appear in Ergod. Th. Dynam. Sys..
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• Khintchine exponents and the Lyapunov exponents of x ∈ [0, 1]:

γ(x) := lim
n→∞

1

n

n∑
j=1

log aj(x) = lim
n→∞

1

n

n−1∑
j=0

log a1(T
j(x)),

λ(x) := lim
n→∞

1

n
log
∣∣∣(T n)′(x)

∣∣∣ = lim
n→∞

1

n

n−1∑
j=0

log
∣∣∣T ′(T j(x))

∣∣∣
• fast Khintchine exponent and fast Lyapunov exponent of x ∈ [0, 1], relative

to ϕ (ϕ : N → R+, and limn→∞
ϕ(n)

n
= ∞):

γϕ(x) := lim
n→∞

1

ϕ(n)

n∑
j=1

log aj(x) = lim
n→∞

1

ϕ(n)

n−1∑
j=0

log a1(T
j(x)),

λϕ(x) := lim
n→∞

1

ϕ(n)
log
∣∣∣(T n)′(x)

∣∣∣ = lim
n→∞

1

ϕ(n)

n−1∑
j=0

log
∣∣∣T ′(T j(x))

∣∣∣.
• the level sets of Khintchine exponents and Lyapunov exponents (ξ, β ≥ 0):

Eξ := {x ∈ [0, 1) : γ(x) = ξ}, Fβ := {x ∈ [0, 1) : λ(x) = β}.

• the level sets of fast Khintchine exponents and fast Lyapunov exponents

(ξ, β ≥ 0):

Eξ(ϕ) := {x ∈ [0, 1) : γϕ(x) = ξ}, Fβ(ϕ) := {x ∈ [0, 1) : λϕ(x) = β}.

• the Khintchine spectrum and the Lyapunov spectrum:

t(ξ) := dimEξ t̃(β) := dimFβ.

• fast Khintchine spectrum and the fast Lyapunov spectrum relative to ϕ:

tϕ(ξ) := dimEξ(ϕ) t̃ϕ(β) := dimFβ(ϕ).

We start with the statement of the results on fast spectra.

Theorem 6.1. Suppose (ϕ(n+ 1)− ϕ(n)) ↑ ∞ and lim
n→∞

ϕ(n+1)
ϕ(n)

:= b ≥ 1. Then

Eξ(ϕ) = F2ξ(ϕ) and dimEξ(ϕ) = 1/(b+ 1) for all ξ ≥ 0.
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In order to state the results on the Khintchine spectrum, let us first introduce

some notation. Let

D := {(t, q) ∈ R2 : 2t− q > 1}, D0 := {(t, q) ∈ R2 : 2t− q > 1, 0 ≤ t ≤ 1}.

For (t, q) ∈ D, define

P (t, q) := lim
n→∞

1

n
log

∞∑
ω1=1

· · ·
∞∑

ωn=1

exp

(
sup

x∈[0,1]

log
n∏

j=1

ωq
j ([ωj, · · · , ωn + x])2t

)
.

It will be proved that P (t, q) is an analytic function in D (Proposition 6.19).

Moreover, for any ξ ≥ 0, there exists a unique solution (t(ξ), q(ξ)) ∈ D0 to

the equation

 P (t, q) = qξ,
∂P

∂q
(t, q) = ξ.

(Proposition 6.25).

Theorem 6.2. Let ξ0 =
∫

log a1(x)dµG(x). For ξ ≥ 0, the set Eξ is of Hausdorff

dimension t(ξ). Furthermore the dimension function t(ξ) has the following prop-

erties

1) t(ξ0) = 1, t(+∞) = 1/2.

2) t′(ξ) < 0 for all ξ > ξ0; t
′(ξ0) = 0 and t′(ξ) > 0 for all ξ < ξ0.

3) t′(0−) = +∞, t′(+∞) = 0.

4) t′′(ξ0) < 0, but t′′(ξ1) > 0 for some ξ1 > ξ0. So t(ξ) is neither convex nor

concave.

See Figure 1 for the graph of t(ξ).
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2

t(ξ)

1

ξ0 ξ

Figure 1. Khintchine spectrum

Let

D̃ := {(t̃, q) : t̃− q > 1/2} D̃0 := {(t̃, q) : t̃− q > 1/2, 0 ≤ t̃ ≤ 1}.

For (t̃, q) ∈ D̃, define

P1(t̃, q) := lim
n→∞

1

n
log

∞∑
ω1=1

· · ·
∞∑

ωn=1

exp

(
sup

x∈[0,1]

log
n∏

j=1

([ωj, · · · , ωn + x])2(t̃−q)

)
.

In fact, P1(t̃, q) = P (t̃− q, 0), thus P1(t̃, q) is analytic in D̃.

Denote γ0 := 2 log 1+
√

5
2

. For any β ∈ (γ0,∞), the system P1(t̃, q) = qβ,
∂P1

∂q
(t̃, q) = β

admits a unique solution (t̃(β), q(β)) ∈ D̃0 (Proposition 6.33).

Theorem 6.3. Let λ0 =
∫

log |T ′(x)|dµG and γ0 = 2 log 1+
√

5
2

. For any β ∈
[γ0,∞), the set Fβ is of Hausdorff dimension t̃(β). Furthermore the dimension

function t̃(ξ) has the following properties

1) t̃(λ0) = 1, t̃(+∞) = 1/2.

2) t̃′(β) < 0 for all β > λ0; t̃
′(λ0) = 0 and t̃′(β) > 0 for all β < λ0.
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3) t̃′(γ0−) = +∞, t̃′(+∞) = 0.

4) t̃′′(λ0) < 0, but t̃′′(β1) > 0 for some β1 > λ0 i.e. t̃(β) is neither convex nor

concave.

See Figure 2 for the graph of t̃(β).

0

1
2

t̃(β)

1

γ0 λ0 β

Figure 2. Lyapunov spectrum

The following of this chapter is organized as follows. In Section 6.2, we collect

and establish some basic results that will be used later. Section 6.3 is devoted

to proving the results about the fast Khintchine spectrum and fast Lyapunov

spectrum (Theorem 6.1). In Section 6.4, we present a general Ruelle operator

theory developed in [64] and then apply it to the Gauss transformation. Based on

Section 6.4, we establish Theorem 6.2 in Section 6.5. The last section is devoted

to the study of Lyapunov spectrum (Theorem 6.3).

6.2 Preliminary

The basic properties of continued fractions can be found in Section 2.4 of

Chapter 2. We discuss the Khintchine and Lyapunov exponents and something

about pointwise dimension in this section.

123



6.2.1 Jacobian estimate and the level sets of Lyapunov exponents

Recall that for any a1, a2, · · · , an ∈ N, an n-th basic interval or a rank n

fundamental interval is defined by

In(a1, a2, · · · , an) = {x ∈ [0, 1) : ak(x) = ak, 1 ≤ k ≤ n}.

An n-th basic interval containing x will be denoted by In(x).

The Gauss transformation T admits the following Jacobian estimate.

Lemma 6.4. There exists a positive number K > 1 such that for all irrational

number x in [0, 1), one has

0 <
1

K
≤ sup

n≥0
sup

y∈In(x)

∣∣∣∣(T n)′(x)

(T n)′(y)

∣∣∣∣ ≤ K <∞.

Proof. Assume x = [a1, · · · , an, · · · ] ∈ [0, 1) \Q. For any n ≥ 0 and y ∈ In(x) =

In(a1, · · · , an), by the fact that T ′(x) = − 1
x2 we get

n−1∑
j=0

∣∣∣ log
∣∣T ′(T j(x))

∣∣− log
∣∣T ′(T j(y))

∣∣∣∣∣ = 2
n−1∑
j=0

∣∣∣ log T j(x)− log T j(y)
∣∣∣.

Applying the mean-value theorem, we have∣∣ log T j(x)− log T j(y)
∣∣ =

∣∣∣∣T j(x)− T j(y)

T j(z)

∣∣∣∣ ≤ aj+1

qn−j(aj+1, · · · , an)
,

where the assertion follows from the fact that all three points T j(x), T j(y) and

T j(z) belong to In−j(aj+1, · · · , an). By Lemma 2.37, we have

n−1∑
j=0

∣∣log T j(x)− log T j(y)
∣∣ ≤ n−1∑

j=0

1

qn−j−1(aj+2, · · · , an)
≤

n−1∑
j=0

(
1

2

)n−j−2

≤ 4.

Thus the result is proved with K = e4.

The above Jacobian estimate property of T enables us to control the length

of In(x) by |(T n)′(x)|−1, through the fact that
∫

In(x)
|(T n)′(y)|dy = 1.

Lemma 6.5. There exist a positive constant K > 0 such that for all irrational

numbers x in [0, 1),

1

K
≤ |In(x)|
|(T n)′(x)|−1

≤ K.
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We remark that from Lemma 2.39 and Lemma 6.5, we have

1

2K
q2
n(x) ≤

∣∣∣(T n)′(x)
∣∣∣ ≤ Kq2

n(x).

So the Lyapunov exponent λ(x) is nothing but the growth rate of qn(x) up to a

multiplicative constant 2:

λ(x) = lim
n→∞

2

n
log qn(x).

For any irrational number x in [0, 1), let Nn(x) := {j ≤ n : aj(x) 6= 1}. Set

A :=
{
x ∈ [0, 1] : lim

n→∞

1

n
log qn(x) =

γ0

2

}
,

B :=
{
x ∈ [0, 1] : lim

n→∞

1

n

n∑
j=1

log aj(x) = 0
}
,

C :=
{
x ∈ [0, 1] : lim

n→∞

1

n
]Nn(x) = 0

}
,

where ] stands for the cardinal of a set. Then we have the following relationship.

Lemma 6.6. With the notations given above, we have

A = B ⊂ C.

Proof. It is clear that A ⊂ C and B ⊂ C. Let us prove A = B. First observe

that, by Lemma 2.38, we have

1

n
log qn(x) ≥ 1

n

∑
j∈Nn(x)

log
aj(x) + 1

2
+

1

n
log qn−]Nn(1, . . . , 1)

≥ 1

n

∑
j∈Nn(x)

log aj(x)−
1

n

∑
j∈Nn(x)

log 2 +
1

n
log qn−]Nn(1, . . . , 1).

Assume x ∈ A. Since A ⊂ C, we have

−1

n

∑
j∈Nn(x)

log 2 +
1

n
log qn−]Nn(1, . . . , 1) −→ 0 +

γ0

2
(n→∞).

Now by the assumption x ∈ A, it follows

lim
n→∞

1

n

n∑
j=1

log aj(x) =
1

n

∑
j∈Nn(x)

log aj(x) = 0.
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Therefore we have proved A ⊂ B. For the inverse inclusion, notice that

1

n
log qn(x) ≤ 1

n

∑
j∈Nn(x)

log(aj(x) + 1) +
1

n
log qn−]Nn(1, . . . , 1).

Let x ∈ B. Since B ⊂ C, we have

lim
n→∞

1

n
log qn−]Nn(1, . . . , 1) =

γ0

2
.

Therefore by the assumption x ∈ B, we get

lim sup
n→∞

1

n
log qn(x) ≤ γ0

2
.

Thus B ⊂ A.

6.2.2 Exponents γ(x) and λ(x)

In this subsection, we make a quick examination of the Khintchine exponent

γ(x) and compare it with the Lyapunov exponent λ(x). Our main concern is the

possible values of both exponent functions.

A first observation is that for any x ∈ [0, 1), γ(x) ≥ 0 and λ(x) ≥ γ0 =

2 log
√

5+1
2

. By the Birkhoff ergodic theorem, we know that the Khintchine expo-

nent γ(x) attains the value ξ0 for almost all points x with respect to the Lebesgue

measure. We will show that every positive number is the Khintchine exponent

γ(x) of some point x.

Proposition 6.7. For any ξ ≥ 0, there exists a point x0 ∈ [0, 1) such that γ(x0) =

ξ.

Proof. Assume ξ > 0 ( for ξ = 0, we take x0 = 1+
√

5
2

corresponding to an ≡ 1.)

Take an increasing sequence of integers {nk}k≥1 satisfying

n0 = 1, nk+1 − nk →∞, and
nk

nk+1

→ 1, as k →∞.

Let x0 ∈ (0, 1) be a point whose partial quotients satisfy

e(nk−nk−1)ξ ≤ ank
≤ e(nk−nk−1)ξ + 1; an = 1 otherwise.

Since for nk ≤ n < nk+1,

1

nk+1

k∑
i=1

log e(ni−ni−1)ξ ≤ 1

n

n∑
j=1

log aj ≤
1

nk

k∑
i=1

log(e(ni−ni−1)ξ + 1),
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we have

γ(x0) = lim
n→∞

1

n

n∑
j=1

log aj(x) = ξ.

In the following, we will show that the set Eξ and Fλ are never equal. So

it is two different problems to study γ(x) and λ(x). However, as we will see,

Eξ(φ) = F2ξ(φ) when φ is faster than n.

Proposition 6.8. For any ξ ≥ 0 and λ ≥ 2 log
√

5+1
2

, we have Eξ 6= Fλ.

Proof. Given ξ ≥ 0. It suffices to construct two numbers with same Khint-

chine exponent ξ but different Lyapunov exponents.

For the first number, take just the number x0 constructed in the proof of

Proposition 6.7. We claim that

λ(x0) = 2ξ + 2 log

√
5 + 1

2
. (6.1)

In fact, by Lemma 2.38 we have

k∏
j=1

(
anj

+ 1

2

)
qnk−k(1, · · · , 1) ≤ qnk

(a1, · · · , ank
) ≤

k∏
j=1

(anj
+ 1)qnk−k(1, · · · , 1).

Then by the assumption on nk, we have

λ(x0) = lim
n→∞

2

n
log qn(x0) = 2

(
ξ + log

√
5 + 1

2

)
.

Construct now the second number. Fix k ≥ 1. Define x1 = [ς1, · · · , ςn, · · · ]
where

ςn =

( k︷ ︸︸ ︷
1, · · · , 1, bekξc, · · · , 1, · · · , 1, bekξc︸ ︷︷ ︸

kn

,

⌊(
e(k+1)ξ

[ekξ]

)n⌋)
.

Notice that there are n small vectors (1, · · · , 1, bekξc) in ςn and the length of ςn is

equal to Nk := kn+ 1. We can prove

γ(x1) = ξ, λ(x1) = λ
([

1, · · · , bekξc
])

+ 2ξ − 2

k
logbekξc

by the same arguments as in proving the similar result for x0. It is clear that

λ(x0) 6= λ(x1) for large k ≥ 1. �

It is evident that Proposition 6.7 and the formula (6.1) yield the following

result due to Pollicott and Weiss ([128]).
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Corollary 6.9 ([128]). For any λ ≥ 2 log
√

5+1
2

, there exists a point x0 ∈ [0, 1)

such that λ(x0) = λ.

6.2.3 Pointwise dimension

We are going to compare the pointwise dimension and the Markov pointwise

dimension (corresponding to continued fraction system) of a Borel probability

measure.

Let µ be a Borel probability measure on [0, 1). Define the pointwise dimension

and the Markov pointwise dimension respectively by

dµ(x) := lim
r→0

log µ(B(x, r))

log r
, δµ(x) := lim

n→∞

log µ(In(x))

log |In(x)|

if the limits exist, where B(x, r) is the ball centered at x with radius r.

For two series {un}n≥0 and {vn}n≥0, we write un � vn which means that

there exist absolute positive constants c1, c2 such that c1vn ≤ un ≤ c2vn for n

large enough. Sometimes, we need the following condition at a point x:

µ(B(x, |In(x)|)) � µ(In(x)). (6.2)

We have the following relationship between δµ(x) and dµ(x).

Lemma 6.10. Let µ be a Borel measure.

(a) Assume (6.2). If dµ(x) exists then δµ(x)exists and δµ(x) = dµ(x).

(b) If δµ(x) and λ(x) both exist, then dµ(x)exists and δµ(x) = dµ(x).

Proof. (a) If the limit defining dµ(x) exists, then the limit

lim
n→+∞

log µ(B(x, |In(x)|))
log |In(x)|

exists and equals to dµ(x). Thus by (6.2), the limit defining δµ(x) also exists and

equals to dµ(x).

(b) Since λ(x) exists, by Lemma 6.5 we have

lim
n→∞

log |In(x)|
log |In+1(x)|

= lim
n→∞

1

n
log |In(x)|/ 1

n+ 1
log |In+1(x)| = 1. (6.3)
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For any r > 0, there exists an n such that |In+1(x)| ≤ r < |In(x)|. Then by

Lemma 2.40, we have In+1(x) ⊂ B(x, r) ⊂ In−2(x). Thus

log µ(In−2(x))

log |In+1(x)|
≤ log µ(B(x, r))

log r
≤ log µ(In+1(x))

log |In(x)|
. (6.4)

Combining (6.3) and (6.4) we get the desired result.

Let us give some measures for which the condition (6.2) is satisfied. These

measures will be used in the subsection 6.5.1. The existence of these measures µt,q

will be discussed in Proposition 6.19 and the subsection 6.5.1.

Lemma 6.11. Suppose µt,q is a measure satisfying

µt,q(In(x)) � exp(−nP (t, q))|In(x)|t
n∏

j=1

aq
j ,

where P (t, q) is a constant. Then (6.2) is satisfied by µt,q.

Proof. Notice that when an(x) = 1, µt,q(In(x)) � µt,q(In−1(x)). Then in the

light of Lemma 2.40, we can show that (6.2) is satisfied by µt,q. �

6.3 Fast growth rate: proof of Theorem 6.1

6.3.1 Lower bound

We start with the mass distribution principle (see [45], Proposition 4.2), which

will be used to estimate the lower bound of the Hausdorff dimension of a set.

Lemma 6.12 ([45]). Let E ⊂ [0, 1) be a Borel set and µ be a measure with

µ(E) > 0. Suppose that

lim inf
r→0

log µ(B(x, r))

log r
≥ s, ∀x ∈ E

where B(x, r) denotes the open ball with center at x and radius r. Then dimE ≥ s.

Next we give a formula for computing the Hausdorff dimension for a class of

Cantor sets related to continued fractions.
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Lemma 6.13. Let {sn}n≥1 be a sequence of positive integers tending to infinity

with sn ≥ 3 for all n ≥ 1. Then for any positive number N ≥ 2, we have

dim{x ∈ [0, 1) : sn ≤ an(x) < Nsn ∀ n ≥ 1} = lim inf
n→∞

log(s1s2 · · · sn)

2 log(s1s2 · · · sn) + log sn+1

.

Proof. Let F be the set in question and s0 be the lim inf in the statement. We

call

J(a1, a2, · · · , an) := Cl
⋃

an+1≥sn+1

In+1(a1, · · · , an, an+1)

a basic CF-interval of order n with respect to F , where sk ≤ ak < Nsk for all

1 ≤ k ≤ n. Here Cl stands for the closure. Then it follows that

F =
∞⋂

n=1

⋃
sk≤ak<Nsk,1≤k≤n

J(a1, · · · , an). (6.5)

By Lemma 2.39, we have

J(a1, · · · , an) =

[
pn

qn
,
sn+1pn + pn−1

sn+1qn + qn−1

]
or

[
sn+1pn + pn−1

sn+1qn + qn−1

,
pn

qn

]
(6.6)

according to n is even or odd. Then by Lemma 2.39, Lemma 2.37 and the as-

sumption on ak that sk ≤ ak < Nsk for all 1 ≤ k ≤ n, we have

1

2Nn

1

sn+1(s1 · · · sn)2
≤
∣∣∣J(a1, · · · , an)

∣∣∣ =
1

qn(sn+1qn + qn−1)
≤ 1

sn+1(s1 · · · sn)2
.

(6.7)

Since sk →∞ as k →∞, then

lim
n→∞

log s1 + · · ·+ log sn

n
= ∞.

This, together with the definition of s0, implies that for any s > s0, there exists a

sequence {n` : ` ≥ 1} such that for all ` ≥ 1,

(N − 1)n` <
(
sn`+1(s1 · · · sn`

)2
) s−s0

2 ,

n∏̀
k=1

sk ≤
(
sn`+1(s1 · · · sn`

)2
) s+s0

2 .

Then, by (6.5), together with (6.7), we have

Hs(F ) ≤ lim inf
`→∞

∑
sk≤ak<Nsk,1≤k≤n`

∣∣∣J(a1, · · · , an`
)
∣∣∣s

≤ lim inf
`→∞

(
(N − 1)n`

n∏̀
k=1

sk

)(
1

sn`+1(s1 · · · sn`
)2

)s

≤ 1.
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Since s > s0 is arbitrary, we have dimF ≤ s0.

For the lower bound, we define a measure µ such that for any basic CF -

interval J(a1, a2, · · · , an) of order n,

µ(J(a1, a2, · · · , an)) =
n∏

j=1

1

(N − 1)sj

.

By the Kolmogorov extension theorem, µ can be extended to a probability measure

supported on F . In the following, we will check the mass distribution principle

with this measure.

Fix s < s0. By the definition of s0 and the fact that sk → ∞ (k → ∞) and

that N is a constant, there exists an integer n0 such that for all n ≥ n0,

n∏
k=1

(N − 1)sk ≥
(
sn+1(

n∏
k=1

Nsk)
2

)s

. (6.8)

We take r0 =
1

2Nn0

1

sn0+1(s1 · · · sn0)
2
.

For any x ∈ F , there exists an infinite sequence {a1, a2, · · · } with sk ≤ ak <

Nsk,∀k ≥ 1 such that x ∈ J(a1, · · · , an), for all n ≥ 1. For any r < r0, there

exists an integer n ≥ n0 such that

|J(a1, · · · , an+1)| ≤ r < |J(a1, · · · , an)|.

We claim that the ball B(x, r) can intersect only one basic CF-interval of

order n, which is just J(a1, · · · , an). We establish this only at the case that n is

even, since for the case that n is odd, the argument is similar.

Case (1): sn < an < Nsn − 1. The left and right adjacent basic CF-intervals

(of order n) to J(a1, · · · , an) are J(a1, · · · , an − 1) and J(a1, · · · , an + 1) respec-

tively. Then by (6.6) and the condition that sn ≥ 3, the gap between J(a1, · · · , an)

and J(a1, · · · , an − 1) is

pn

qn
− sn+1(pn − pn−1) + pn−1

sn+1(qn − qn−1) + qn−1

=
sn+1 − 1

qn

(
sn+1(qn − qn−1) + qn−1

) ≥ ∣∣∣J(a1, · · · , an)
∣∣∣.

Hence B(x, r) can not intersect J(a1, · · · , an − 1). On the other hand, the gap

J(a1, · · · , an) and J(a1, · · · , an + 1) is

pn + pn−1

qn + qn−1

− sn+1pn + pn−1

sn+1qn + qn−1

=
sn+1 − 1

(qn + qn−1)(sn+1qn + qn−1)
≥
∣∣∣J(a1, · · · , an)

∣∣∣.
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Hence B(x, r) can not intersect J(a1, · · · , an + 1) either.

Case (2): an = sn. The right adjacent n-th order basic CF-interval to

J(a1, · · · , an) is J(a1, · · · , an + 1). The same argument as in the case (1) shows

that B(x, r) can not intersect J(a1, · · · , an + 1). On the other hand, the gap

between the left endpoint of J(a1, · · · , an) and that of In−1(a1, · · · , an−1) is

pn

qn
− pn−1 + pn−2

qn−1 + qn−2

=
sn − 1

(qn−1 + qn−2)qn
≥
∣∣∣J(a1, · · · , an)

∣∣∣.
It follows that B(x, r) can not intersect any n-th order CF -basic intervals on

the left of J(a1, · · · , an). In general, B(x, r) can intersect no other n-th order

CF -basic intervals than J(a1, · · · , an).

Case (3): an = Nsn − 1. From the case (1), we know that B(x, r) can not

intersect any n-th order CF -basic intervals on the left of J(a1, · · · , an). While

for on the right, the gap between the right endpoint of J(a1, · · · , an) and that of

In−1(a1, · · · , an−1) is

pn−1

qn−1

− sn+1pn + pn−1

sn+1qn + qn−1

=
sn+1

(sn+1qn + qn−1)qn−1

≥
∣∣∣J(a1, · · · , an)

∣∣∣.
It follows that B(x, r) can not intersect any n-th order CF -basic intervals on

the right of J(a1, · · · , an). In general, B(x, r) can intersect no other n-th order

CF -basic intervals than J(a1, · · · , an).

Now we distinguish two cases to estimate the measure of B(x, r).

Case (i). |J(a1, · · · , an+1)| ≤ r < |In+1(a1, · · · , an+1)|. By Lemma 2.40

and the fact an+1 6= 1, B(x, r) can intersect at most five (n + 1)-th order basic

CF-intervals. As a consequence, by (6.8), we have

µ(B(x, r)) ≤ 5
n+1∏
k=1

1

(N − 1)sk

≤ 5

(
1

sn+2(Nn+1s1 · · · sn+1)2

)s

. (6.9)

Since

r >
∣∣∣J(a1, · · · , an+1)

∣∣∣ =
1

qn+1(sn+2qn+1 + qn)
≥ 1

2sn+2(Nn+1s1 · · · sn+1)2
,

it follows that

µ(B(x, r)) ≤ 10rs.
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Case (ii). |In+1(a1, · · · , an+1)| ≤ r < |J(a1, · · · , an)|. In this case, we have

In+1(a1, · · · , an+1) =
1

qn+1(qn+1 + qn)
≥ 1

2q2
n+1

≥ 1

2N2(n+1)

(
n+1∏
k=1

sk

)2

.

So B(x, r) can intersect at most a number 8rN2(n+1)(s1 · · · sn+1)
2 of (n + 1)-th

basic CF-intervals. As a consequence,

µ(B(x, r)) ≤ min
{
µ(J(a1, · · · , an)), 8rN2(n+1)(s1 · · · sn+1)

2

n+1∏
k=1

1

(N − 1)sk

}
≤

n∏
k=1

1

(N − 1)sk

min
{

1, 8rN2(n+1)(s1 · · · sn+1)
2 1

(N − 1)sn+1

}
.

By (6.8) and the elementary inequality min{a, b} ≤ a1−sbs which holds for any

a, b > 0 and 0 < s < 1, we have

µ(B(x, r)) ≤
(

1

sn+1(Nns1 · · · sn)2

)s

·
(

8rN2(n+1)(s1 · · · sn+1)
2 1

(N − 1)sn+1

)s

≤ 16Nrs.

Combining these two cases, together with mass distribution principle, we have

dimF ≥ s0.

Let

E ′ = {x ∈ [0, 1) : eϕ(n)−ϕ(n−1) ≤ an(x) ≤ 2eϕ(n)−ϕ(n−1), ∀n ≥ 1}.

It is evident that E ′ ⊂ Eξ(ϕ). Then applying Lemma 6.13, we have

Eξ(ϕ) ≥ lim inf
n→∞

ϕ(n)

ϕ(n+ 1) + ϕ(n)
=

1

b+ 1
.

6.3.2 Upper bound

We first give a lemma which is a little bit more than the upper bound for the

case b = 1. Its proof uses a family of Bernoulli measures with an infinite number

of states.

Lemma 6.14. If lim
n→∞

ϕ(n)
n

= ∞, then dimEξ(ϕ) ≤ 1
2
.
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Proof. For any t > 1, we introduce a family of Bernoulli measures µt:

µt(In(a1, · · · , an)) = e−nC(t)−t
∑n

j=1 log aj(x) (6.10)

where C(t) = log
∞∑

n=1

1
nt .

Fix x ∈ Eξ(ϕ) and ε > 0. If n is sufficiently large, we have

(ξ − ε)ϕ(n) <
n∑

j=1

log aj(x) < (ξ + ε)ϕ(n). (6.11)

So,

Eξ(ϕ) ⊂
∞⋂

N=1

∞⋃
n=N

En(ε),

where

En(ε) = {x ∈ [0, 1) : (ξ − ε)ϕ(n) <
n∑

j=1

log aj(x) < (ξ + ε)ϕ(n)}.

Now let I(n, ε) be the family of all n-th basic intervals In(a1, · · · , an) satis-

fying (6.11). For each N ≥ 1, we select all those intervals in
⋃∞

n=N I(n, ε) which

are maximal (I ∈
⋃∞

n=N I(n, ε) is maximal if there is no other I ′ in
⋃∞

n=N I(n, ε)

such that I ⊂ I ′ and I 6= I ′). We denote by J (N, ε) the set of all maximal

intervals in
⋃∞

n=N I(n, ε). It is evident that J (N, ε) is a cover of Eξ(ϕ). Let

In(a1, · · · , an) ∈ J (N, ε), we have

µt(In(a1, · · · , an)) = e
−nC(t)−t

n∑
j=1

log aj

≥ e−nC(t)−t(ξ+ε)ϕ(n).

On the other hand,

∣∣∣In(a1, · · · , an)
∣∣∣ ≤ e−2 log qn ≤ e

−2
n∑

j=1
log aj

≤ e−2(ξ−ε)ϕ(n).

Since lim
n→∞

ϕ(n)
n

= ∞, for each s > t/2 and N large enough, we have

∣∣∣In(a1, · · · , an)
∣∣∣s ≤ µt(In(a1, · · · , an)).

This implies dimEξ(ϕ) ≤ 1/2 = 1
b+1

.
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Now we return back to the proof of the upper bound.

Case (i) b = 1. Since (ϕ(n+ 1)− ϕ(n)) ↑ ∞, Lemma 6.14 implies immedi-

ately dimEξ(ϕ) ≤ 1
2
.

Case (ii) b > 1. By (6.11), for each x ∈ Eξ(ϕ) and n sufficiently large

(ξ − ε)ϕ(n+ 1)− (ξ + ε)ϕ(n) ≤ log an+1(x) ≤ (ξ + ε)ϕ(n+ 1)− (ξ − ε)ϕ(n).

Take

Ln+1 = e(ξ−ε)ϕ(n+1)−(ξ+ε)ϕ(n), Mn+1 = e(ξ+ε)ϕ(n+1)−(ξ−ε)ϕ(n).

Define

FN = {x ∈ [0, 1] : Ln ≤ an(x) ≤Mn,∀n ≥ N}.

Then we have

Eξ(ϕ) ⊂
∞⋃

N=1

FN .

We can only estimate the upper bound of dimF1. Because FN can be written

as a countable union of sets with the same form as F1, then by the σ-stability of

Hausdorff dimension, we will have dimFN = dimF1. We can further assume that

Mn ≥ Ln + 2.

For any n ≥ 1, define

Dn = {(σ1, · · · , σn) ∈ Nn : Lk ≤ σk ≤Mk, 1 ≤ k ≤ n}.

It follows that

F1 =
⋂
n≥1

⋃
(σ1,··· ,σn)∈Dn

J(σ1, · · · , σn),

where

J(σ1, · · · , σn) := Cl
⋃

σ≥Ln+1

I(σ1, · · · , σn, σ)

(called an admissible CF-interval of order n). For any n ≥ 1 and s > 0, we have∑
(σ1,··· ,σn)∈Dn

∣∣∣J(σ1, · · · , σn)
∣∣∣s ≤ ∑

(σ1,··· ,σn)∈Dn

∣∣∣ 1

q2
nLn+1

∣∣∣s ≤ M1 · · ·Mn(
(L1 · · ·Ln)2Ln+1

)s .

It follows that

dimF1 ≤ lim inf
n→∞

logM1 + · · ·+ logMn

n∑
k=1

logLk +
n+1∑
k=1

logLk

=
ξ + ε+ 2ε

b−1

(ξ − ε)(b+ 1)− 2ε− 4ε
b−1

.
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Letting ε→ 0, we get

dimEξ(ϕ) ≤ 1

b+ 1
.

6.4 Ruelle operator theory

There have been various works done on the Ruelle transfer operator for the

Gauss dynamics. See Mayer ([107], [108], [109]), Jenkinson ([75]), Jenkinson and

Pollicott ([74]), Pollicott and Weiss ([128]), Hanus, Mauldin and Urbański ([64]).

In this section we will present a general Ruelle operator theory for conformal

infinite iterated function system which was developed in [64] and then apply it to

the Gauss dynamics. We will also prove some properties of the pressure function

in the case of Gauss dynamics , which will be used later.

6.4.1 Conformal infinite iterated function systems

In this subsection, we present the conformal infinite iterated function systems

which were studied by Hanus, Mauldin and Urbański in [64]. See also the book of

Mauldin and Urbański ([106]).

Let X be a non-empty compact connected subset of Rd equipped with a

metric ρ. Let I be an index set with at least two elements and at most countable

elements. An iterated function system S = {φi : X → X : i ∈ I} is a collection

of injective contractions for which there exists 0 < s < 1 such that for each i ∈ I
and all x, y ∈ X,

ρ(φi(x), φi(y)) ≤ sρ(x, y). (6.12)

Before further discussion, we are willing to give a list of notation.

• In := {ω : ω = (ω1, · · · , ωn), ωk ∈ I, 1 ≤ k ≤ n},

• I∗ := ∪n≥1I
n,

• I∞ := Π∞i=1I,

• φω := φω1 ◦ φω2 ◦ · · · ◦ φωn , for ω = ω1ω2 · · ·ωn ∈ In, n ≥ 1,

• |ω| denote the length of ω ∈ I∗ ∪ I∞,
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• ω|n = ω1ω2 . . . ωn, if
∣∣w∣∣ ≥ n,

• [ω|n] = [ω1 . . . ωn] = {x ∈ I∞ : x1 = ω1, · · · , xn = ωn},

• σ : I∞ → I∞ the shift transformation,

• ‖φ′ω‖ := supx∈X |φ′ω(x)| for ω ∈ I∗,

• C(X) space of continuous functions on X,

• || · ||∞ supremum norm on the Banach space C(X).

For ω ∈ I∞, the set

π(ω) =
∞⋂

n=1

φω|n(X)

is a singleton. We also denote its only element by π(ω). This thus defines a coding

map π : I∞ → X. The limit set J of the iterated function system is defined by

J := π(I∞).

Denote by ∂X the boundary of X and by Int(X) the interior of X.

We say that the iterated function system S = {φi}i∈I satisfies the open set

condition if there exists a non-empty open set U ⊂ X such that φi(U) ⊂ U for

each i ∈ I and φi(U) ∩ φj(U) = ∅ for each pair i, j ∈ I, i 6= j.

An iterated function system S = {φi : X → X : i ∈ I} is said to be conformal

if the following are satisfied:

(1) The open set condition is satisfied for U = Int(X).

(2) There exists an open connected set V with X ⊂ V ⊂ Rd such that all

maps φi, i ∈ I, extend to C1 conformal diffeomorphisms of V into V .

(3) There exist h, ` > 0 such that for each x ∈ ∂X ⊂ Rd, there exists an open

cone Con(x, h, `) ⊂ Int(X) with vertex x, central angle of Lebesgue measure h

and altitude `.

(4) (Bounded Distortion Property) There exists K ≥ 1 such that |φ′ω(y)| ≤
K|φ′ω(x)| for every ω ∈ I∗ and every pair of points x, y ∈ V .
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The topological pressure function for a conformal iterated function systems

S = {φi : X → X : i ∈ I} is defined as

P(t) := lim
n→∞

1

n
log

∑
|ω|=n

||φ′ω||t.

The system S is said to be regular if there exists t ≥ 0 such that P(t) = 0.

Let β > 0. A Hölder family of functions of order β is a family of continuous

functions F = {f (i) : X → C : i ∈ I} such that

Vβ(F ) = sup
n≥1

Vn(F ) <∞,

where

Vn(F ) = sup
ω∈In

sup
x,y∈X

{|f (ω1)(φσ(ω)(x))− f (ω1)(φσ(ω)(y))|}eβ(n−1).

A family of functions F = {f (i) : X → R, i ∈ I} is said to be strong if∑
i∈I

||ef (i)||∞ <∞.

Define the Ruelle operator on C(X) associated to F as

LF (g)(x) :=
∑
i∈I

ef (i)(x)g(φi(x)).

Denote by L∗F the dual operator of LF .

The topological pressure of F is defined by

P (F ) := lim
n→∞

1

n
log

∑
|ω|=n

exp

(
sup
x∈X

n∑
j=1

fωj ◦ φσjω(x)

)
.

A measure ν is called F -conformal if the following are satisfied:

(1) ν is supported on J .

(2) For any Borel set A ⊂ X and any ω ∈ I∗,

ν(φω(A)) =

∫
A

exp

(
n∑

j=1

f (ωj) ◦ φσjω − P (F )|ω|
)
dν.

(3) ν(φω(X) ∩ φτ (X)) = 0 ω, τ ∈ In, ω 6= τ, n ≥ 1.
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Two functions φ, ϕ ∈ C(X) are said to be cohomologous with respect to the

transformation T , if there exists u ∈ C(X) such that

ϕ(x) = φ(x) + u(x)− u(T (x)).

The following two theorems are due to Hanus, Mauldin and Urbański [64].

Theorem 6.15 ([64]). For a conformal iterated function system S = {φi : X →
X : i ∈ I} and a strong Hölder family of functions F = {f (i) : X → C : i ∈ I},
there exists a unique F -conformal probability measure νF on X such that L∗FνF =

eP (F )νF . There exists a unique shift invariant probability measure µ̃F on I∞ such

that µF := µ̃F ◦ π−1 is equivalent to νF with bounded Radon-Nikodym derivative.

Furthermore, the Gibbs property is satisfied:

1

C
≤ µ̃F ([ω|n])

exp
(∑n

j=1 f
(ωj)(π(σjω))− nP (F )

) ≤ C.

Let Ψ = {ψ(i) : X → R : i ∈ I} and F = {f (i) : X → R : i ∈ I} be two

families of real-valued Hölder functions. We define the amalgamated functions on

I∞ associated to Ψ and F as follows:

ψ̃(ω) := ψ(ω1)(π(σω)), f̃(ω) := f (ω1)(π(σω)) ∀ω ∈ I∞.

Theorem 6.16 ([64], see also [106], pp. 43-48). Let Ψ and F be two families of

real-valued Hölder functions. Suppose the sets {i ∈ I : supx(ψ
(i)(x)) > 0} and {i ∈

I : supx(f
(i)(x)) > 0} are finite. Then the function (t, q) 7→ P (t, q) = P (tΨ+ qF ),

is real-analytic with respect to (t, q) ∈ Int(D), where

D =
{

(t, q) :
∑

i∈I
exp(sup(tψ(i) + qf (i))) <∞

}
.

Furthermore, if tΨ + qF is a strong Hölder family for (t, q) ∈ D and∫
(|f̃ |+ |ψ̃|)dµ̃t,q <∞,

where µ̃t,q := µ̃tΨ+qF is obtained by Theorem 6.15, then

∂P

∂t
=

∫
ψ̃dµ̃t,q and

∂P

∂q
=

∫
f̃dµ̃t,q.
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If tψ̃ + qf̃ is not cohomologous to a constant function, then P (t, q) is strictly

convex and

H(t, q) :=


∂2P
∂t2

∂2P
∂t∂q

∂2P
∂t∂q

∂2P
∂q2


is positive definite.

6.4.2 Continued fraction dynamical system

We apply the theory in the precedent subsection to the continued fraction

dynamical system. Let X = [0, 1] and I = N. The continued fraction dynamical

system can be viewed as an iterated function system:

S =

{
ψi(x) =

1

i+ x
: i ∈ N

}
.

Recall that the projection mapping π : I∞ → X is defined by

π(ω) :=
∞⋂

n=1

ψω|n(X), ∀ω ∈ I∞.

Notice that ψ′1(0) = −1, thus (6.12) is not satisfied. However, this is not a

real problem, since we can consider the system of second level maps and replace

S by S̃ := {ψi ◦ ψj : i, j ∈ N}. In fact, for any x ∈ [0, 1)

(ψi ◦ ψj)
′(x) =

( 1

i+ 1
j+x

)′
=
( 1

i(j + x) + 1

)2

≤ 1

4
.

In the following, we will collect or prove some facts on the continued fraction

dynamical system, which will be useful for applying Theorem 6.15 and 6.16.

Lemma 6.17 ([104]). The continued fraction dynamical system S is regular and

conformal.

For the investigation in the present work, our problems are tightly connected

to the following two families of Hölder functions.

Ψ = {log |ψ′i| : i ∈ N} and F = {− log i : i ∈ N}.
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Remark 3. We mention that our method used here is also applicable to other

potentials than the two special families introduced here.

The families Ψ and F are Hölder families and their amalgamated functions

are equal to

ψ̃(ω) = −2 log(ω1 + π(σω)), f̃(ω) = − logω1 ∀ω ∈ N∞.

For our convenience, we will consider the function tΨ−qF instead of tΨ+qF .

Lemma 6.18. Let D := {(t, q) : 2t− q > 1}. For any (t, q) ∈ D, we have

(i) The family tΨ− qF := {t log |ψ′i|+ q log i : i ∈ N} is Hölder and strong.

(ii) The topological pressure P associated to the potential tΨ − qF can be

written as

P (t, q) = lim
n→∞

1

n
log

∑
ω1,··· ,ωn

exp

(
sup

x
log

n∏
j=1

ωq
j ([ωj, · · · , ωn + x])2t

)
.

Proof. The assertion on the domain D follows from

1

4t
ζ(2t− q) = LtΨ−qF 1 =

∞∑
i=1

iq

(i+ x)2t
≤

∞∑
i=1

iq−2t = ζ(2t− q).

where ζ(2t− q) is the Riemann zeta function, defined by

ζ(s) :=
∞∑

n=1

1

ns
∀s > 1.

(i) For (t, q) ∈ D, write (tΨ− qF )(i) := t log |ψ′i|+ q log i. Then

∑
i∈I

∥∥∥ exp
{
(tΨ− qF )(i)

}∥∥∥
∞

=
∞∑
i=1

∥∥∥ iq

(i+ x)2t

∥∥∥
∞

=
∞∑
i=1

iq−2t = ζ(2t− q) <∞.

Thus tΨ− qF is strong.

(ii) It suffices to noticed that

sup
x

(
n∑

j=1

(t|ψ′ωj
|+ q logωj) ◦ ψσjω(x)

)
= sup

x
log

n∏
j=1

ωq
j ([ωj, · · · , ωn + x])2t.
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Denote by L∗tΨ−qF the conjugate operator of LtΨ−qF . Applying Theorem 6.15

with the help of Lemma 6.17 and Lemma 6.18, we get

Proposition 6.19. For each (t, q) ∈ D, there exists a unique tΨ− qF -conformal

probability measure νt,q on [0, 1] such that L∗tΨ−qFνt,q = eP (t,q)νt,q, and a unique

shift invariant probability measure µ̃t,q on N∞ such that µt,q := µ̃t,q ◦ π−1 on [0, 1]

is equivalent to νt,q and

1

C
≤ µ̃t,q([ω|n])

exp
(∑n

j=1(tΨ− qF )(ωj)(π(σjω))− nP (t, q)
) ≤ C ∀ω ∈ N∞.

Lemma 6.20. For the amalgamated functions ψ̃(ω) = −2 log(ω1 + π(σω)) and

f̃(ω) = − logω1, we have

−
∫

log |T ′(x)|µt,q =

∫
ψ̃dµ̃t,q and

∫
log a1(x)dµt,q = −

∫
f̃dµ̃t,q.(6.13)

and tψ̃ − qf̃ is not cohomologous to a constant.

Proof. (i). Assertion (6.13) is just a consequence of the facts

− log |T ′(π(ω))| = ψ̃(ω), log a1(π(ω)) = −f̃(ω) ∀ω ∈ I∞.

Suppose tψ̃ − qf̃ was not cohomologous to a constant. Then there would be

a bounded function g such that tψ̃ − qf̃ = g − g ◦ T + C, which implies

lim
n→∞

1

n

n−1∑
j=0

(tψ̃ − qf̃)(σjω) = lim
n→∞

g − g ◦ σn

n
+ C = C

for all ω ∈ I∞. On the other hand, if we take ω1 = [1, 1, · · · , ], ω2 = [2, 2, · · · ] and

ω3 = [3, 3, · · · ], we have

lim
n→∞

1

n

n−1∑
j=0

(tψ̃ − qf̃)(σjωi) = Ci,

where

C1 = 2t log(

√
5− 1

2
), C2 = 2t log(

√
5− 2

2
)+q log 2, C3 = 2t log(

√
5− 3

2
)+q log 3.

Thus we get a contradiction.
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By Theorem 6.16 and the proof of Lemma 6.18, we know that D = {(t, q) :

2t− q > 1} is the analytic area of the pressure P (t, q). Applying Lemma 6.20 and

Theorem 6.16, we get more:

Proposition 6.21. On D = {(t, q) : 2t− q > 1},
(1) P (t, q) is analytic, strictly convex.

(2) P (t, q) is strictly decreasing and strictly convex with respect to t. In other

words, ∂P
∂t

(t, q) < 0 and ∂2P
∂t2

(t, q) > 0. Furthermore,

∂P

∂t
(t, q) = −

∫
log |T ′(x)|dµt,q. (6.14)

(3) P (t, q) is strictly increasing and strictly convex with respect to q. In other

words, ∂P
∂q

(t, q) > 0 and ∂2P
∂q2 (t, q) > 0. Furthermore,

∂P

∂q
(t, q) =

∫
log a1(x)dµt,q. (6.15)

(4)

H(t, q) :=


∂2P
∂t2

∂2P
∂t∂q

∂2P
∂t∂q

∂2P
∂q2


is positive definite.

At the end of this subsection, we would like to quote some results by Mayer

([109]) (see also Pollicott and Weiss ([128])).

Proposition 6.22 ([109]). Let P (t) := P (t, 0) and µt := µt,0, then P (t) is defined

in (1/2,∞) and we have P (1) = 0 and µ1 = µG. Furthermore,

P ′(t) = −
∫

log |T ′(x)|dµt(x). (6.16)

In particular

P ′(0) = −
∫

log |T ′(x)|dµG(x) = −λ0. (6.17)

Remark 4. Since µ1,0 = µ1 = µG, by (6.15), we have

∂P

∂q
(1, 0) =

∫
log a1(x)dµG = ξ0. (6.18)
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6.4.3 Further study on P (t, q)

We will use the following simple known fact of convex functions.

Fact 6.23. Suppose f is a convex continuously differentiable function on an in-

terval I. Then f ′(x) is increasing and

f ′(x) ≤ f(y)− f(x)

y − x
≤ f ′(y) x, y ∈ I, x < y.

First we give an estimation for the pressure P (t, q) and show some behaviors

of P (t, q) when q tends to −∞ and 2t− 1 (t being fixed).

Proposition 6.24. For (t, q) ∈ D, we have

− t log 4 + log ζ(2t− q) ≤ P (t, q) ≤ log ζ(2t− q). (6.19)

Consequently,

(1) P (0, q) = log ζ(−q). For any point (t0, q0) on the line 2t− q = 1,

lim
(t,q)→(t0,q0)

P (t, q) = ∞;

(2) for fixed t ∈ R,

lim
q→2t−1

∂P

∂q
(t, q) = +∞; (6.20)

(3) for fixed t ∈ R, we have

lim
q→−∞

P (t, q)

q
= 0, lim

q→−∞

∂P

∂q
(t, q) = 0. (6.21)

Proof. Notice that 1
ωj+1

≤ [ωj, · · · , ωn + x] ≤ 1
ωj
. for x ∈ [0, 1) and 1 ≤ j ≤ n.

Thus we have

1

4nt

∞∑
ω=1

(ωq−2t)n ≤
∑

ω1,··· ,ωn

n∏
j=1

ωq
j [ωj, · · · , ωn + x]2t ≤

∞∑
ω=1

(ωq−2t)n.

Hence by Lemma 6.18 (ii), we get (6.19).

We get (1) immediately from (6.19).

Look at (2). For all q > q0, by the convexity of P (t, q) and Fact 6.23, we have

∂P

∂q
(t, q) ≥ P (t, q)− P (t, q0)

q − q0
.
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Thus

lim
q→2t−1

∂P

∂q
(t, q) ≥ lim

q→2t−1

P (t, q0)− P (t, q)

q0 − q
= ∞.

Here we use the fact that lim
q→2t−1

P (t, q) = +∞. Hence we get (6.19).

In order to show (3), we consider P (t, q)/q as function of q on (−∞, 2t− 1) \
{0}. Noticed that for fixed t ∈ R, limq→−∞ ζ(2t− q) = 1. Thus

lim
q→−∞

log ζ(2t− q)

q
= 0.

Then the first formula in (6.21) is followed from (6.19).

Fix q0 < 2t − 1. Then for all q < q0, by the convexity of P (t, q) and Fact

6.23, we have

∂P

∂q
(t, q) ≤ P (t, q0)− P (t, q)

q0 − q
.

Thus

lim
q→−∞

∂P

∂q
(t, q) ≤ lim

q→−∞

P (t, q0)− P (t, q)

q0 − q
= 0.

Hence by Proposition 6.21 (3), we get the second formula in (6.21).

6.4.4 Properties of (t(ξ), q(ξ))

Recall that ξ0 =
∫

log a1(x)µG and D0 := {(t, q) : 2t− q > 1, 0 ≤ t ≤ 1}.

Proposition 6.25. For any ξ ∈ (0,∞), the system P (t, q) = qξ,
∂P

∂q
(t, q) = ξ

(6.22)

admits a unique solution (t(ξ), q(ξ)) ∈ D0. For ξ = ξ0, the solution is (t(ξ0), q(ξ0)) =

(1, 0). The function t(ξ) and q(ξ) are analytic.

Proof. Existence and uniqueness of solution (t(ξ), q(ξ)). Recall that P (1, 0) = 0

and P (0, q) = log ζ(−q) (Proposition 6.24).

We start with a geometric argument which will followed by a rigorous proof.

Consider P (t, q) as a family of function of q with parameter t. It can be seen from
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the graph (see Figure 3) that for any ξ > 0, there exists a unique t ∈ (0, 1], such

that the line ξq is tangent to P (t, ·). This t = t(ξ) can be described as the unique

point such that

inf
q<2t(ξ)−1

(
P (t(ξ), q)− qξ

)
= 0. (6.23)

We denote by q(ξ) the point where the infimum in (6.23) is attained. Then the

tangent point is (q(ξ), P (t(ξ), q(ξ))) and the derivative of P (t(ξ), q) − qξ (with

respect to q) at q(ξ) equals 0, i.e.,(
P (t(ξ), q)− qξ

)′
|q(ξ) = 0.

Thus we have ∂P
∂q

(t(ξ), q(ξ)) = ξ. By (6.23), we also have P (t(ξ), q(ξ))−q(ξ)ξ = 0.

Therefore (t(ξ), q(ξ)) is a solution of (6.22). The uniqueness of q(ξ) follows by the

fact that ∂P
∂q

is monotonic with respect to q (Proposition 6.21).

q

P (t, q)

t = 1
t = t(ξ)

t = 1
2

t = 0

q(ξ)

ξ0

0

ξ

Figure 3. Solution of (6.22)

Let us give a rigorous proof. By (6.20), (6.21) and the mean-value theorem,

for fixed t ∈ R and any ξ > 0, there exists a q(t, ξ) ∈ (−∞, 2t− 1) such that

∂P

∂q

(
t, q(t, ξ)

)
= ξ. (6.24)

The monotonicity of ∂P
∂q

with respect to q implies the uniqueness of q(t, ξ) (Propo-

sition 6.21).
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Since P (t, q) is analytic, the implicit q(t, ξ) is analytic with respect to t and

ξ. Fix ξ and set

W (t) := P
(
t, q(t, ξ)

)
− ξq(t, ξ).

Since

W ′(t) =
∂P

∂t

(
t, q(t, ξ)

)
+
∂P

∂q

(
t, q(t, ξ)

)∂q
∂t

(t, ξ)− ξ
∂q

∂t
(t, ξ)

=
∂P

∂t

(
t, q(t, ξ)

)
(by(6.24))

< 0 (by Proposition 6.21(2)).

Thus W (t) is strictly decreasing.

Since P (0, q) = log ζ(−q) > 0 (q < −1), for ξ > 0 we have

W (0) = P
(
0, q(0, ξ)

)
− ξq(0, ξ) > 0.

Since P (1, q) is convex and P (1, 0) = 0, by Fact 6.23 we have

P
(
1, q(1, ξ)

)
− 0

q(1, ξ)− 0
≤ ∂P

∂q

(
1, q(1, ξ)

)
= ξ, if q(1, ξ) > 0

and

0− P
(
1, q(1, ξ)

)
0− q(1, ξ)

≥ ∂P

∂q

(
1, q(1, ξ)

)
= ξ, if q(1, ξ) < 0.

If q(1, ξ) = 0, we have in fact ξ = ξ0 and P
(
1, q(1, ξ)

)
= 0. Hence, in any case we

have

P
(
1, q(1, ξ)

)
− ξq(1, ξ) ≤ 0 (6.25)

Therefore, W (1) = P
(
1, q(1, ξ)

)
− ξq(1, ξ) ≤ 0.

Thus by the mean-value theorem and the monotonicity of W (t), there exists

a unique t = t(ξ) ∈ (0, 1] such that W (t(ξ)) = 0, i.e.

P
(
t(ξ), q

(
t(ξ), ξ

))
= ξq

(
t(ξ), ξ

)
. (6.26)

If we write q
(
t(ξ), ξ

)
as q(ξ), both (6.24) and (6.26) show that

(
t(ξ), q(ξ)

)
is the

unique solution of (6.22). For ξ = ξ0, the assertion in Proposition 6.22 that

P (0, 1) = 0 = 0 · ξ0 and the assertion of Remark 4 that ∂P
∂q

(1, 0) = ξ0 imply that
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(0, 1) is a solution of (6.22). Then the uniqueness of the solution to (6.22) implies(
t(ξ0), q(ξ0)

)
= (0, 1).

Analyticity of
(
t(ξ), q(ξ)

)
. Consider the map

F =

(
F1

F2

)
=

(
P (t, q)− qξ
∂P
∂q

(t, q)− ξ

)
.

Then the jacobian of F is equal to

J(F ) =:

(
∂F1

∂t
∂F1

∂q
∂F2

∂t
∂F1

∂q

)
=

(
∂P
∂t

∂P
∂q
− ξ

∂2P
∂t∂q

∂2P
∂q2

)
.

Consequently,

det(J(F ))|t=t(ξ),q=q(ξ) =
∂P

∂t
· ∂

2P

∂q2
6= 0.

Thus by the implicit function theorem, t(ξ) and q(ξ) are analytic.

Now let us present some properties on t(ξ). Recall that ξ0 = ∂P
∂q

(1, 0).

Proposition 6.26. q(ξ) < 0 for ξ < ξ0; q(ξ0) = 0; q(ξ) > 0 for ξ > ξ0.

Proof. Since P (1, q) is convex and P (1, 0) = 0, by Fact 6.23, we have

P (1, q)− 0

q − 0
≥ ∂P

∂q
(1, 0) = ξ0, (q > 0);

0− P (1, q)

0− q
≤ ∂P

∂q
(1, 0) = ξ0, (q < 0).

Hence for all q < 1,

P (1, q) ≥ ξ0q (6.27)

We recall that (t(ξ0), q(ξ0)) = (1, 0) is the unique solution of the system (6.22)

for ξ = ξ0. By the above discussion of the existence of t(ξ), t(ξ) = 1 if and only if

ξ = ξ0. Now we suppose t ∈ (0, 1). For ξ > ξ0, using (6.27), we have

P (t, q) > P (1, q) ≥ qξ0 ≥ qξ (∀q ≤ 0).

Thus q(ξ) > 0. For ξ < ξ0, using (6.27), we have

P (t, q) > P (1, q) ≥ qξ0 ≥ qξ (∀q ≥ 0).

Thus q(ξ) < 0.
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Proposition 6.27. For ξ ∈ (0,+∞), we have

t′(ξ) =
q(ξ)

∂P
∂t

(t(ξ), q(ξ))
. (6.28)

Proof. Recall that  P (t(ξ), q(ξ)) = q(ξ)ξ,
∂P

∂q
(t(ξ), q(ξ)) = ξ.

(6.29)

By taking the derivation with respect to ξ of the first equation in (6.29), we get

t′(ξ)
∂P

∂t
(t(ξ), q(ξ)) + q′(ξ)

∂P

∂q
(t(ξ), q(ξ)) = q′(ξ)ξ + q(ξ).

Taking into account the second equation in (6.29), we get

t′(ξ)
∂P

∂t
(t(ξ), q(ξ)) = q(ξ). (6.30)

Proposition 6.28. We have t′(ξ) > 0 for ξ < ξ0, t
′(ξ0) = 0, and t′(ξ) < 0 for

ξ > ξ0. Furthermore,

t(ξ) → 0 (ξ → 0), (6.31)

t(ξ) → 1/2 (ξ → +∞). (6.32)

Proof. By Propositions 6.26 and 6.27 and the fact ∂P
∂t

> 0, t(ξ) is increasing

on (0, ξ0) and decreasing on (ξ0,∞). Then by the analyticity of t(ξ), we can

obtain two analytic inverse functions on the two intervals respectively. For the

first inverse function, write ξ1 = ξ1(t). Then ξ′1(t) > 0 and

ξ1(t) =
P (t, q(t))

q(t)
=
∂P

∂q
(t, q(t)).

(the equations (6.22) are considered as equations on t). By Proposition 6.26, we

have q(ξ1(t)) < 0 then P (t, q(ξ1(t))) < 0. By Proposition 6.24 (1), lim
q→2t−1

P (t, q) =

∞. Thus there exists q0(t) such that q0(t) > q(t) and P (t, q0(t)) = 0. Therefore

ξ1(t) =
∂P

∂q
(t, q(t)) <

∂P

∂q
(t, q0(t)).
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Since P (0, q) = log ζ(−q), we have limt→0 q0(t) = ∞. Thus we get

lim
t→0

∂P

∂q
(t, q0(t)) = lim

q→−∞

∂P

∂q
(0, q) = 0.

Hence by ξ1(t) ≥ 0, we obtain limt→0 ξ1(t) = 0 which implies (6.31).

Write ξ2 = ξ2(t) for the second inverse function. Then ξ′2(t) < 0 and

ξ2(t) =
P (t, q(t))

q(t)
=
∂P

∂q
(t, q(t)) >

∂P

∂q
(t, 0) →∞ (t→ 1/2).

This implies (6.32). �

Let us summarize. We have proved that t(ξ) is analytic on (0,∞), lim
ξ→0

t(ξ) =

0 and lim
ξ→∞

t(ξ) = 1/2. We have also proved that t(ξ) is increasing on (0, ξ0),

decreasing on (ξ0,∞) and t(ξ0) = 1.

6.5 Khintchine spectrum

Now we are ready to study the Hausdorff dimensions of the level set

Eξ = {x ∈ [0, 1) : lim
n→∞

1

n

n∑
j=1

log aj(x) = ξ}.

Since Q is countable, we need only to consider

{x ∈ [0, 1) \Q : lim
n→∞

1

n

n∑
j=1

log aj(x) = ξ}.

which admits the same Hausdorff dimension with Eξ and is still denoted by Eξ.

6.5.1 Proof of Theorem 1.2 (1) and (2)

Let (t, q) ∈ D and µt,q, µ̃t,q be the measures in Proposition 6.19. For x ∈
[0, 1) \ Q, let x = [a1, · · · , an, · · · ] and ω = π−1(x). Then ω = a1 · · · an · · · ∈ NN

and

µt,q(In(x)) = µt,q(In(a1, · · · , an)) = µ̃t,q([ω|n]).

By the Gibbs property of µ̃t,q,

µ̃t,q(π([ω|n])) � exp(−nP (t, q))
n∏

j=1

ωq
j (ωj + π(σjω))−2t.
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In other words,

µt,q(In(x)) � exp(−nP (t, q))
n∏

j=1

aq
j [aj, · · · , an, · · · ]2t.

By Lemma 6.5, |In(x)| � |(T n)′(x)|−1 =
∏n−1

j=0 |T j(x)|2. Thus we have the follow-

ing Gibbs property of µt,q:

µt,q(In(x)) � exp(−nP (t, q))|In(x)|t
n∏

j=1

aq
j . (6.33)

It follows that

δµt,q(x) = lim
n→∞

log µt,q(In(x))

log |In(x)|
= t+ lim

n→∞

q · 1
n

∑n
j=1 log aj − P (t, q)
1
n

log |In(x)|
.

The Gibbs property of µ̃t,q implies that µt,q is ergodic. Therefore,

δµt,q(x) = t+
q
∫

log a1(x)dµt,q − P (t, q)

−
∫

log |T ′(x)|dµt,q

µt,q − a.e.

Using the formula (6.14) and (6.15) in Proposition 6.21, we have

δµt,q(x) = t+
q ∂P

∂q
(t, q)− P (t, q)

∂P
∂t

(t, q)
µt,q − a.e. (6.34)

Moreover, the ergodicity of µ̃t,q also implies that the Lyapunov exponents λ(x)

exist for µt,q almost every x in [0, 1). Thus by (6.33), Lemma 6.10 and Lemma

6.11, we obtain

dµt,q(x) = δµt,q(x) = t+
q ∂P

∂q
(t, q)− P (t, q)

∂P
∂t

(t, q)
µt,q − a.e. (6.35)

For ξ ∈ (0,∞), choose (t, q) = (t(ξ), q(ξ)) ∈ D0 be the unique solution of (6.22).

Then (6.35) gives

dµt(ξ),q(ξ)
(x) = t(ξ) µt,q − a.e.

By the ergodicity of µ̃t(ξ),q(ξ) and (6.15), we have for µt(ξ),q(ξ) almost every x,

lim
n→∞

1

n

n∑
j=1

log aj(x) =

∫
log a1(x)dµt(ξ),q(ξ) =

∂P

∂q
(t(ξ), q(ξ)) = ξ.

151



So µt(ξ),q(ξ) is supported on Eξ. Hence

dim(Eξ) ≥ dimµt(ξ),q(ξ) = t(ξ). (6.36)

In the following we will show that

dim(Eξ) ≤ t (∀t > t(ξ)). (6.37)

Then it will imply that dim(Eξ) = t(ξ) for any ξ > 0. For any t > t(ξ), take an

ε0 > 0 such that

0 < ε0 <
P (t(ξ), q(ξ))− P (t, q(ξ))

q(ξ)
if q(ξ) > 0.

and

0 < ε0 <
P (t, q(ξ))− P (t(ξ), q(ξ))

q(ξ)
if q(ξ) < 0.

(For the special case q(ξ) = 0, i.e., ξ = ξ0, we have dimEξ = 1 which is a well-

known result). Such an ε0 exists, for P (t, q) is strictly decreasing with respect to

t. For all n ≥ 1, set

En
ξ (ε0) :=

{
x ∈ [0, 1) \Q : ξ − ε0 <

1

n

n∑
j=1

log aj(x) < ξ + ε0

}
.

Then we have

Eξ ⊂
∞⋃

N=1

∞⋂
n=N

En
ξ (ε0).

Let I(n, ξ, ε0) be the collection of all n-th order basic intervals In(a1, · · · , an) such

that

ξ − ε0 <
1

n

n∑
j=1

log aj(x) < ξ + ε0.

Then

En
ξ (ε0) =

⋃
J∈I(n,ξ,ε0)

J.

Hence {J : J ∈ I(n, ξ, ε0), n ≥ 1} is a cover of Eξ. When q(ξ) > 0, by (6.33),

we have
∞∑

n=1

∑
J∈I(n,ξ,ε0)

|J |t

≤
∞∑

n=1

∑
(a1···an)>en(ξ−ε0)

enP (t,q(ξ))

(a1 · · · an)q(ξ)
· |J |

t(a1 · · · an)q(ξ)

enP (t,q(ξ))

≤ C ·
∞∑

n=1

en(P (t,q(ξ))−(ξ−ε0)q(ξ)) ·
∑

J∈I(n,ξ,ε0)

µt,q(ξ)(J) <∞
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where C is a constant. When q(ξ) < 0,

∞∑
n=1

∑
J∈I(n,ξ,ε0)

|J |t

≤
∞∑

n=1

∑
(a1···an)<en(ξ+ε0)

enP (t,q(ξ))

(a1 · · · an)q(ξ)
· |J |

t(a1 · · · an)q(ξ)

enP (t,q(ξ))

≤ C ·
∞∑

n=1

en(P (t,q(ξ))−(ξ+ε0)q(ξ)) ·
∑

J∈I(n,ξ,ε0)

µt,q(ξ)(J) <∞.

Hence we get (6.37).

For the special case ξ = 0, we need only to show dim(E0) = 0. This can be

induced by the same process. For any t > 0, since limξ→0 t(ξ) = 0, there exists

ξ > 0 such that 0 < t(ξ) < t. We can also choose ε0 > 0 such that

P (t, q(ξ))− P (t(ξ), q(ξ))

q(ξ)
> ε0.

For n ≥ 1, set

En
0 (ε0) :=

{
x ∈ [0, 1) \Q :

1

n

n∑
j=1

log aj(x) < ξ + ε0

}
.

We have

E0 ⊂
∞⋃

N=1

∞⋂
n=N

En
0 (ε0).

By the same calculation, we get dim(E0) ≤ t. Since t can be arbitrary small, we

obtain dim(E0) = 0.

By the discussion in the preceding subsection, we have proved Theorem 6.2

(1) and (2).

6.5.2 Proof of Theorem 1.2 (3) and (4)

We are going to investigate more properties of the functions q(ξ) and t(ξ).

Proposition 6.29. We have

lim
ξ→0

q(ξ) = −∞, lim
ξ→∞

q(ξ) = 0.
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Proof. We prove the first limit by contradiction. Suppose there exists a subse-

quence ξδ → 0 such that q(ξδ) →M > −∞. Then by (6.31) and Proposition 6.21

(3), we have

lim
ξδ→0

∂P

∂q
(t(ξδ), q(ξδ)) =

∂P

∂q
(0,M) > 0.

This contradicts with

∂P

∂q
(t(ξδ), q(ξδ)) = ξδ → 0.

On the other hand, we know that q(ξ) ≥ 0 when ξ ≥ ξ0, and 0 ≤ q(ξ) < 2t(ξ)− 1.

Then by (6.32), we have lim
ξ→∞

q(ξ) = 0.

Apply this proposition and (6.28), combining (6.20) and (6.21). We get

lim
ξ→0

t′(ξ) = +∞, lim
ξ→∞

t′(ξ) = 0.

This is the assertion (3) of Theorem 6.2.

Now we will prove the last assertion of Theorem 6.2, i.e., t′′(ξ0) < 0 and there

exists ξ1 > ξ0 such that t′′(ξ1) > 0, basing on the following proposition.

Proposition 6.30. For ξ ∈ (0,+∞), we have

q′(ξ) =
1− t′(ξ) ∂2P

∂t∂q

(
t(ξ), q(ξ)

)
∂2P
∂q2

(
t(ξ), q(ξ)

) ; (6.38)

t′′(ξ) =
t′(ξ)2 ∂2P

∂t2

(
t(ξ), q(ξ)

)
− q′(ξ)2 ∂2P

∂q2

(
t(ξ), q(ξ)

)
−∂P

∂t

(
t(ξ), q(ξ)

) . (6.39)

Proof. Taking derivative of (6.30) with respect to ξ, we get

t′(ξ)2∂
2P

∂t2
(
t(ξ), q(ξ)

)
+ q′(ξ)t′(ξ)

∂2P

∂q∂t

(
t(ξ), q(ξ)

)
+ t′′(ξ)

∂P

∂t

(
t(ξ), q(ξ)

)
= q′(ξ).

(6.40)

Taking derivative of the second equation of (6.29) with respect to ξ, we get

t′(ξ)
∂2P

∂t∂q

(
t(ξ), q(ξ)

)
+ q′(ξ)

∂2P

∂q2

(
t(ξ), q(ξ)

)
= 1, (6.41)
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which gives immediately (6.38).

Subtract (6.41) multiplied by q′(ξ) from (6.40), we get (6.39). �

We divide the proof of the assertion (4) of Theorem 6.2 into two parts.

Proof of t′′(ξ0) < 0. By Proposition 6.21, ∂P
∂t

(1, 0) < 0. Since q(ξ0) = 0, by (6.28)

we have t′(ξ0) = 0. Also by Proposition 6.21, we get

0 <
∂2P

∂t2
(t(ξ0), q(ξ0)) =

∂2P

∂t2
(1, 0) < +∞

and

0 ≤ ∂2P

∂q2
(t(ξ0), q(ξ0)) =

∂2P

∂q2
(1, 0) < +∞.

By (6.38) and (6.39), we have

t′′(ξ) =
t′(ξ)2 ∂2P

∂t2
(t(ξ), q(ξ))∂2P

∂q2 (t(ξ), q(ξ))−
(
1− t′(ξ) ∂2P

∂t∂q
(t(ξ), q(ξ))

)2

−∂P
∂t

(t(ξ), q(ξ))∂2P
∂q2 (t(ξ), q(ξ))

. (6.42)

Thus by t′(ξ0) = 0, we have t′′(ξ0) < 0. �

Proof of t′′(ξ1) > 0. Proposition 6.29 shows lim
ξ→∞

q(ξ) = 0 and we know that

q(ξ0) = 0. However, q(ξ) is not always equal to 0, so there exists a ξ1 ∈ [ξ0,+∞),

such that q′(ξ1) < 0. Write

H(t, q) :=


∂2P
∂t2

∂2P
∂t∂q

∂2P
∂t∂q

∂2P
∂q2


and add (6.41) multiplied by q′(ξ) to (6.40), we get(

t′(ξ), q′(ξ)
)
H(t, q)

(
t′(ξ), q′(ξ)

)T
+
∂P

∂t

(
t(ξ), q(ξ)

)
t′′(ξ) = 2q′(ξ). (6.43)

Since H(t, q) is definite positive, ∂P
∂t

(t, q) < 0 and q′(ξ1) < 0, we have t′′(ξ1) > 0.

This completes the proof.

6.6 Lyapunov spectrum

In this last section, we follow the same procedure as in Section 4 and Section

5 to deduce the Lyapunov spectrum of the Gauss map. Kesseböhmer recently
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pointed out that the Lyapunov spectrum was also studied by M. Kesseböhmer

and B. Stratmann [80].

Take

F = Ψ = {log |ψ′i| : i ∈ N}.

instead of F = {− log i : i ∈ N} and Ψ = {log |ψ′i| : i ∈ N}. Then the strong

Hölder family becomes (t̃− q)Ψ and D should be changed to

D̃ := {(t̃, q) : t̃− q > 1/2}.

Here and in the rest of this section we will use t̃ instead of t to distinguish the

present situation from that of Khintchine exponents. What we have done in

Section 4 is still useful. Denote by P1(t̃, q) the pressure P ((t̃− q)Ψ). Then

P1(t̃, q) = P (t̃− q), with P (·) = P (·, 0)

where P (·, ·) is the pressure function studied in the section 4. Hence P1(t̃, q) is

analytic and similar equations (6.14) and (6.15) are obtained just with log |T ′(x)|
instead of log a1(x).

To determine the Lyapunov spectrum, we begin with the following proposition

which take the place of Proposition 6.24.

Proposition 6.31. For (t̃, q) ∈ D̃, we have

− (t̃− q) log 4 + log ζ(2t̃− 2q) ≤ P1(t̃, q) ≤ log ζ(2t̃− 2q). (6.44)

Consequently, the following are established.

(1) For any point (t̃0, q0) on the line t̃− q = 1/2,

lim
(t̃,q)→(t̃0,q0)

P (t̃, q) = ∞.

(2) For fixed t̃ ∈ R,

lim
q→t̃− 1

2

∂P1

∂q
(t̃, q) = +∞.

(3) Recall that γ0 := 2 log 1+
√

5
2

. For fixed t̃ ∈ R,

lim
q→−∞

P1(t̃, q)

q
= γ0, lim

q→−∞

∂P1

∂q
(t̃, q) = γ0.
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Proof. P1(t̃, q) is defined as

P1(t̃, q) := lim
n→∞

1

n
log

∞∑
ω1=1

· · ·
∞∑

ωn=1

exp

(
sup

x∈[0,1]

log
n∏

j=1

([ωj, · · · , ωn + x])2(t̃−q)

)
.

The proofs of (1) and (2) are the same as in the proof of Proposition 6.24.

To get (3), we follow another method. Since P1(t̃, q) = P (t̃−q), we need only

to show

lim
t̃→∞

P ′(t̃) = −γ0, P (t̃) + t̃γ0 = o(t̃) (t̃→∞).

By Proposition 6.22, P (t̃) is analytic on (1/2,∞). Let E := {P ′(t̃) : t̃ > 1/2},
denote by Int(E) and Cl(E) the interior and closure of E. By a result in [76], we

have

Int(E) ⊂
{
−
∫

log |T ′(x)|dµ : µ ∈M
}
⊂ Cl(E),

where M is the set of the invariant measures on [0, 1]. By Birkhoff’s theorem, for

any µ ∈M, we have ∫
λ(x)dµ =

∫
log |T ′(x)|dµ.

However, we know that λ(x) ≥ γ0 = 2 log 1+
√

5
2

. Thus

−
∫

log |T ′(x)|dµ ≤ −γ0 ∀µ ∈M. (6.45)

Let θ0 =
√

5−1
2

. Then T (θ0) = θ0 and the Dirac measure µ = δθ0 is invariant, and

−
∫

log |T ′(x)|dδθ0 = − log |T ′(θ0)| = −γ0.

However, by the continuity of P ′, we know that E is an interval. Therefore −γ0

is the right endpoint of E. Since P ′(t̃) is increasing, we get

lim
t̃→∞

P ′(t̃) = −γ0.

Let {βn}n≥1 be such that βn < −γ0 and lim
n→∞

βn = −γ0. There exist tn ∈ R
such that tn → ∞ and P ′(tn) = βn. By the variational principle ([143], see also

[109]), there exists an ergodic measure µtn such that

P (tn) = hµtn
− tn

∫
log |T ′|(x)dµtn ,
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where hµtn
stands for the metric entropy of µtn . By the compactness of M there

exists an invariant measure µ∞ which is the weak limit of µtn(more precisely some

subsequence of µtn . But, without loss of generality, we write it as µtn). By the

semi-continuity of metric entropy, for any ε > 0 we have hµtn
≤ hµ∞ + ε when tn

is large enough. Thus by (6.45),

P (tn) ≤ hµ∞ + ε− tnγ0.

We will show that hµ∞ = 0 (see the next lemma), which will imply

P (tn) ≤ ε− tnγ0.

However, by the definition of P1(t̃, q), P (t̃) can be written as

P (t̃) = lim
n→∞

1

n
log

∞∑
ω1=1

· · ·
∞∑

ωn=1

exp

(
sup

x∈[0,1]

log
n∏

j=1

([ωj, · · · , ωn + x])2t̃

)
.

Thus if we just take one term in the summation, we have

P (t̃) ≥ lim
n→∞

1

n
log exp

(
sup

x∈[0,1]

log
n∏

j=1

([1, · · · , 1︸ ︷︷ ︸
n−j

, 1 + x])2t̃

)
= −t̃γ0.

Hence we get

P (t̃) + t̃γ0 = o(t̃) (t̃→∞).

Now we are led to show

Lemma 6.32. hµ∞ = 0.

Proof. Let hµ∞(x) be the local entropy of µ∞ at x which is defined by

hµ∞(x) = lim
n→∞

log µ∞(In(x))

n
,

if the limit exists. Let Dµ∞(x) be the lower local dimension of µ∞ at x which is

defined by

Dµ∞(x) := lim inf
r→0

log µ∞(B(x, r))

log r
.

By the Shannon-McMillan-Breiman Theorem, hµ∞(x) exists µ∞-almost every-

where. It is also known that λ(x) exists almost everywhere (by Birkhoff’s the-

orem). So, by the definitions, we have

hµ∞(x) = Dµ∞(x)λ(x) µ∞ − a.e.
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By Birkhoff’s theorem and (6.16),∫
λ(x)dµ∞(x) =

∫
log |T ′|(x)dµ∞(x)

= lim
n→∞

∫
log |T ′|(x)dµtn

= − lim
n→∞

P ′(tn) = γ0 <∞.

Hence λ(x) is almost everywhere finite. Recall that [26]

hµ∞ =

∫
hµ∞(x)dµ∞(x).

Thus it suffices to prove

Dµ∞(x) = 0 µ∞ − a.e.

That means ([47]) the upper dimension of µ∞ is zero, i.e. µ∞ is supported by a

zero-dimensional set.

Since
∫
λ(x)dµ∞(x) = γ0 and λ(x) ≥ γ0 for any x, we have for µ∞ almost

everywhere λ(x) = γ0. Thus by Birkhoff’s theorem, µ∞ is supported by the

following set {
x ∈ [0, 1] : lim

n→∞

1

n

n−1∑
j=0

log |T ′(T jx)| = γ0

}
. (6.46)

Thus we need only to show that the Hausdorff dimension of this set is zero.

Recall

lim
n→∞

1

n

n−1∑
j=0

log |T ′(T jx)| = 2 lim
n→∞

1

n
log qn(x).

By Lemma 6.6, (6.46) is in fact the following{
x ∈ [0, 1] : lim

n→∞

1

n

n∑
j=1

log aj(x) = 0

}
. (6.47)

However, the Hausdorff dimension of (6.47) is nothing but t(0), the special case

ξ = 0 discussed in the subsection 5.1., which was proved to be zero. Thus the

proof is completed.

Recall that λ0 =
∫

log |T ′(x)|dµG. Let D̃0 := {(t̃, q) : t̃− q > 1/2, 0 ≤ t̃ ≤ 1}.
We have a proposition similar to Proposition 6.25.
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Proposition 6.33. For any β ∈ (γ0,∞), the system P1(t̃, q) = qβ,
∂P1

∂q
(t̃, q) = β

(6.48)

admits a unique solution (t̃(β), q(β)) ∈ D̃0. For β = λ0, the solution is

(t̃(λ0), q(λ0)) = (1, 0). The functions t̃(β) and q(β) are analytic.

With the same argument, we can prove that t̃(β) is the spectrum of Lyapunov

exponent. It is analytic, increasing on (γ0, λ0] and decreasing on (λ0,∞). It is

also neither concave nor convex. In other words, Theorem 6.3 can be similarly

proved.

1
2

−1
2 β

t = 0

t = 1
2

t(β)

t = 1

0 q

P (t, q)

Figure 4. Solution of (6.48)

We finish this chapter by the observation that the Lyapunov spectrum can be

stated as follows, which is similar to the classic formula, but with the difference

that we have to divide the Legendre transform by β.

Proposition 6.34.

t̃(β) =
P (−q(β))

β
− q(β) =

1

β
inf
q
{P (−q)− qβ}. (6.49)

Proof. In fact, the family of functions P1(t̃, q) with parameter t̃ are just right

translation of the function P (−q) with the length t̃. Write the system (6.48) as
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follows {
P (t̃− q) = qβ,
dP
dq

(t̃− q) = β.
(6.50)

If we denote by µq, the Gibbs measure with respect to potential qΨ, then by a left

translation the system (6.50) can be written as{
P (−q) = (t̃+ q)β,
dP
dq

(−q) = β.

Thus {
t̃ = P (−q)

β
− q,

dP
dq

(−q) = β.

By using the second equation, we can write q as a function of β, hence we get

(6.49).

−1
2 ββ

t = 0

P (−q)

t(β)

P (t− q)

0
−1 q

P1(t, q)

Figure 5. The other way to see t(β)
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Chapter 7

Non-normal Continued Fractions

In this chapter we consider certain sets of non-normal continued fractions for

which the asymptotic frequencies of digit strings oscillate in one or other ways.

The Hausdorff dimensions of these sets are shown to be the same value 1/2. An

example among them is the set of “extremely non-normal continued fractions”

which was conjectured to be of Hausdorff dimension 0. 1

7.1 Statement of the results

Every x ∈ [0, 1) ∩ Qc can be expanded as a continued fraction expansion,

x = [a1(x), a2(x), . . . ] where an(x) ∈ N for all n ≥ 1. In what follows, the

letter “x” will denote both an infinite word (x1, x2, · · · ) ∈ NN and a real number

x ∈ [0, 1) ∩ Qc with continued fraction expansion [x1, x2, · · · ], where xn = an(x)

for all n ≥ 1.

We recall the following list of definitions and notations which has appeared

in Subsection 1.3.3.

• the set of finite words over N (digit strings): N?.

• the number of occurrences of k-digit string W = (w1, · · · , wk) ∈ N? among

the first n digits of x:

f(W,x, n) := ]{1 ≤ j ≤ n− k + 1 : aj(x) = w1, · · · , aj+k−1(x) = wk}.

• Freq(W,x) denotes the collection of all accumulation points of the sequence

{ 1
n
f(W,x, n) : n ≥ 1}

• Freq(W ) =
⋃

x∈[0,1)∩Qc Freq(W,x).

1L. M. Liao, J. H. Ma and B. W. Wang, Dimension of some non-normal continued fraction sets, to

appear in Math. Proc. Camb. Phil. Soc..
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The set of points of continued fractions with maximal frequency oscillation is

defined by:

F = {x ∈ [0, 1) : Freq(W,x) = Freq(W ) for all W ∈ N?}.

The first immediate result is

Theorem 7.1. The set F is residual in [0, 1), namely, its complementary set is

of the first category. As a consequence, the packing dimension of F is 1.

Let us remark that the packing dimension result follows from the fact (see

[42, Exercise (1.8.4)]) that a residual subset of [0, 1) has packing dimension 1.

It is interesting to note that the Hausdorff dimension of F is of “intermediate”

size.

Theorem 7.2. One has

dim(F) = 1/2.

Here and in what follows, the symbol “dim” denotes the Hausdorff dimension.

To recall the definition of E of “extremely non-normal continued fractions”,

we recall the other list in Subsection 1.3.3:

• the simplex of probability vectors with index set Nk (k ≥ 1):

∆k =

{(
p(W )

)
W∈Nk : p(W ) ≥ 0,

∑
W

p(W ) = 1

}
.

• 1-norm on ∆k: ∥∥~p− ~q
∥∥

1
=
∑

W∈Nk

|p(W )− q(W )|.

• the sub-simplex of shift invariant probability vectors in ∆k:

Sk :=

{
~p ∈ ∆k :

∑
i

p(iV ) =
∑

i

p(V i) for all V ∈ Nk−1

}
.

• the vector of n-th asymptotic frequencies of the k-words occurring in x:

Πk(x, n) :=
( 1
n
f(W,x, n)

)
W∈Nk ∈ ∆k.
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• Ak(x) denotes the set of accumulation points of the sequence {Πk(x, n)}∞n=1

with respect to the 1-norm
∥∥.∥∥

1
.

It is known that Ak(x) ⊂ Sk (see [113]). We define

Ek = {x ∈ [0, 1) ∩Qc : Ak(x) = Sk}

and E =
⋂∞

k=1 Ek, which is the set of “extremely non-normal continued fractions”.

The set E is closely related to the set F of continued fractions with maximal

frequency oscillation. Indeed,

Theorem 7.3. One has

E ⊂ F.

It was proved that the set E is residual in [0, 1) and has packing dimension 1

in [113]. Therefore, Theorem 7.1 follows directly from Theorem 7.3.

Olsen conjectured that dim(E) = 0. We show that

Theorem 7.4. One has

dim(E) = 1/2.

We remark that Theorem 7.2 and 7.4 will follow from more general results.

Our results apply to a large kind of sets of continued fractions which are deter-

mined by various “frequency properties”. The techniques in the following might

be useful in other parts of metric continued fraction theory. Let us describe these

in more detail.

By virtue of E ⊂ F, to show that dim(E) = dim(F) = 1/2, it suffices to prove

dim(F) ≤ 1/2 and dim(E) ≥ 1/2. The upper and lower bound on the Hausdorff

dimensions will be treated separately. First, by the definitions, for any ` ≥ 1, the

set F is included in

G(`) = {x ∈ [0, 1) : lim sup
n→∞

f(`, x, n)

n
= 1}.

So the upper bound result will follow from

Proposition 7.5. For any ` ≥ 1, dim(G(`)) ≤ 1/2.

To deal with the lower bound, let us begin with the following
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Definition 1. Let M ⊂ N and A ⊂ [0, 1) ∩Qc. The set A is said to be M-free if

{x ∈ [0, 1) ∩Qc : xn = zn for all n 6∈ M} ⊂ A

holds true for every z = [z1, z2, · · · ] ∈ A. The set A is called “zero-density-free” if

it is M-free for any M with zero density (i.e. limn→∞
1
n
] {k ≤ n : k ∈ M} = 0).

It is then easy to see that both E and F are “zero-density-free” sets. Therefore,

the lower bound results will follow from the following more general conclusion.

Proposition 7.6. Let A ⊂ [0, 1) ∩ Qc be a “zero-density-free” set. If there exist

an α ∈ (0, 1) and at least one z = [z1, z2, · · · ] ∈ A such that

zn ≤ exp
(
exp(nα)

)
for all n ≥ 1,

then one has dim(A) ≥ 1/2.

In words, for a “zero-density-free” set, the existence of a “good seed” will

ensure the set has Hausdorff dimension at least 1/2.

Remark 5. It is shown in [101] that, for any b, c > 1, the set{
x ∈ [0, 1) ∩Qc : an(x) ≥ cb

n

infinitely often
}

is of Hausdorff dimension 1
b+1

< 1/2. Therefore, essentially, the condition on the

“seed” that zn ≤ exp
(
exp(nα)

)
for some α ∈ (0, 1) cant not be relaxed.

The following is organized as follows. In section 7.2, we recall some basic

terminology on the combinatorics of words, and prove that E ⊂ F. In section 7.3,

we verify the existence of a “good seed” for E. The upper bound (Proposition 7.5)

and lower bound (Proposition 7.6) results will be proved in the last two sections.

7.2 Some combinatorics of words and the relation between

E and F

We first recall some basic terminology on the combinatorics of words. Let

N? denote the set of all finite words over the alphabet N. For any k ≥ 1, a

word W = (w1, · · · , wk) ∈ N? of length
∣∣W ∣∣ = k will be called a k-digit string

alternatively. The concatenation of n consecutive W will be denoted by W n.
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Definition 2. The basic period of a word W = (w1, · · · , wk) is the integer

per(W ) := min{p ≤ k : wp+j = wj for 1 ≤ j ≤ k − p};

The basic factor of W is the word W̃ := (w1, · · · , wper(W )
).

For example, let W = (1, 2, 3, 1, 2), then per(W ) = 3, W̃ = (1, 2, 3).

The following observation will be useful in the sequel.

Lemma 7.7. Let W ∈ N? be a finite word with basic period p and basic factor

W̃ := (w1, · · · , wp). Then, for each n ≥ 2, the number of occurrences of W in the

pn–word
(
W̃
)n

is n−1 or n according as p <
∣∣W ∣∣ or p =

∣∣W ∣∣. As a consequence,

lim
n→∞

f(W,
(
W̃
)∞
, n)

n
= 1/p.

Now let us recall that f(W,x, n) stands for the number of occurrences of W

among the first n digits of the infinite words x ∈ NN, that Freq(W,x) denotes the

set of all accumulation points of {f(W,x,n)
n

: n ≥ 1}, and that

Freq(W ) =
⋃

x∈NN

Freq(W,x).

Since limn→∞

(
f(W,x,n+1)

n+1
− f(W,x,n)

n

)
= 0, one has

Freq(W,x) =

[
lim inf
n→∞

f(W,x, n)

n
, lim sup

n→∞

f(W,x, n)

n

]
. (7.1)

As a corollary of this and Lemma 7.7, one has

Corollary 7.8. For any W ∈ N? with basic period p, Freq(W ) =
[
0, 1/p

]
.

Then we proceed to prove Theorem 7.3, namely, E ⊂ F. Let x ∈ E which can

be regarded as an infinite word (xn)∞n=1 ∈ NN. Recall that

Πk(x, n) =
( 1
n
f(W,x, n)

)
W∈Nk ,

that Ak(x) denotes the set of accumulation points of the sequence {Πk(x, n)}∞n=1

with respect to the 1-norm
∥∥.∥∥

1
, and that Ak(x) = Sk for any x ∈ E, where

Sk :=

{
~p ∈ ∆k :

∑
i

p(iV ) =
∑

i

p(V i) for all V ∈ Nk−1

}
.
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is the sub-simplex of shift invariant probability vectors.

Let V = (v1, · · · , vk) ∈ Nk with basic period m (see Definition 2). By Corol-

lary 7.8, to prove that x ∈ F, it suffice to show that

both of 0 and 1/m are limit points of the sequence

{
f(V, x, n)

n

}∞
n=1

.

For the first one, let d > max{vi : 1 ≤ i ≤ k} and ~p ∈ Sk with

p(d · · · d︸ ︷︷ ︸
k times

) = 1 and p(W ) = 0 for W 6= d · · · d︸ ︷︷ ︸
k times

.

Given ε > 0, since ~p ∈ Ak(x), we have
∥∥Πk(x, n)− ~p

∥∥
1
< ε for infinitely many n.

It follows that f(V,x,n)
n

< ε infinitely often. Therefore, 0 is a limit point. For the

second one, we notice that y = (v1, · · · vm)∞ is a periodic point with minimal period

m under the shift mapping T : NN → NN. Let µ be the periodic orbit measure

(see [39] pp.195) which has mass 1/m at each of the points {y, Ty, · · · , Tm−1y}.
Then µ is a T -invariant ergodic measure. It induces a shift-invariant probability

vector

~q =
(
p(W )

)
W∈Nk ∈ Sk with p(W ) = µ {x : x1 · · ·xk = W} for all W ∈ Nk.

In particular, p(V ) = 1/m. Since ~q ∈ Ak(x), we have
∥∥Πk(x, n) − ~q

∥∥
1
< ε for

infinitely many n. It follows that
∣∣f(V,x,n)

n
− 1

m

∣∣ < ε infinitely often. Therefore,

1/m is a limit point. This completes the proof that x ∈ F, and hence that E ⊂ F.

7.3 A “good seed” for E

In this section, we shall verify the existence of a word z = (z1, z2, · · · ) ∈ NN

such that

z = [z1, z2, · · · ] ∈ E and zn ≤ n for all n ≥ 1. (7.2)

From this “good seed”, a Cantor-like subset of E will be constructed in Section 5.

We shall use the terminology on combinatorics of words introduced in the

last section. For a pair of finite words W = (w1, · · · , wk), V = (v1, · · · , vn) ∈ N?

with k ≤ n, we write

f(W,V ) := ]{1 ≤ j ≤ n− k + 1 : vj = w1, · · · , vj+k−1 = wk}

for the number of occurrences of W among V . Then for any x ∈ NN, one has

f(W,x, n) = f(W, (x1, · · · , xn)). A direct counting argument yields the following
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Lemma 7.9. For any W,U, V ∈ N?,∣∣∣f(W,UV )

|U |+ |V |
− f(W,V )

|V |

∣∣∣ ≤ |U |
|U |+ |V |

.

Recall that the vector of n-th asymptotic frequencies of the k-words occurring

in x is denoted by

Πk(x, n) :=
( 1
n
f(W,x, n)

)
W∈Nk .

For a finite word V , we use a similar notation Πk(V ) so that Πk(x1, · · · , xn) =

Πk(x, n). For ease of narration, we introduce the following

Definition 3. Given ε > 0, we say that a finite word V = (v1, · · · , vn) is ε-close

to a vector ~p ∈ ∆k if
∥∥Πk(V )− ~p

∥∥
1
< ε.

It is clear that the set of accumulation points of the sequence {Πk(x, n)}∞n=1

can be expressed as

Ak(x) = {~p ∈ ∆k : ∀ε > 0, (x1, · · · , xn) is ε-close to ~p for infinitely many n} .

Let us recall again that Ak(x) = Sk for any x ∈ E, where

Sk :=

{
~p ∈ ∆k :

∑
i

p(iV ) =
∑

i

p(V i) for all V ∈ Nk−1

}
is the sub-simplex of shift invariant probability vectors.

For each d ≥ 1, let {1, · · · , d}? denote the collection of all finite words over the

alphabet {1, · · · , d}. Consider the infinite lower triangular array of finite words

W
(1)
1 ,

W
(1)
2 ,W

(2)
2 ,

W
(1)
3 ,W

(2)
3 ,W

(3)
3 ,

· · · · · ·

where the d-th column consists of words from {1, · · · , d}? for each d ≥ 1. Juxta-

posing the elements of the array row by row, we get an infinite word

z := W
(1)
1 W

(1)
2 W

(2)
2 W

(1)
3 W

(2)
3 W

(3)
3 · · ·

In what follows, we’ll specify the elements of the array, and show that the resulting

z satisfies the condition (7.2) and hence is a “good seed” for E.
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We begin by defining, for each d ≥ 1,

S
(d)
k :=

{
(p(W )) ∈ Sk : p(W ) > 0 ⇐⇒ W ∈ {1, · · · , d}k

}
.

Suppose that S(d) =
{
~p

(d)
j

}∞
j=1

is a dense subset of
⋃∞

k=1 S
(d)
k . Since

⋃∞
d=1 S

(d)
k is

dense in Sk and that Ak(z) is a closed subset of Sk. To verify that z = [z1, z2, · · · ] ∈
E, it suffices to show that for any d ≥ 1

S(d) ⊂ Ak(z). (7.3)

We need the following technical lemma which is similar to Lemma 2.1 in [113].

Lemma 7.10. Let U ∈ N?, ε > 0 and ~p ∈ S
(d)
k . Then there exists a finite word

V ∈ {1, · · · , d}? such that the word UV is ε-close to ~p.

Proof. Let ~p =
(
p(W )

)
W∈Nk , then p(W ) > 0 if and only if W ∈ {1, · · · , d}k. So we

may identify ~p with a shift-invariant probability vector over the symbolic space

{1, · · · , d}N with index set {1, · · · , d}k. By Theorem 2.3 in [113], there exists

y ∈ {1, · · · , d}N such that

lim
n→∞

∥∥Πk(y, n)− ~p
∥∥

1
= 0.

Let U = (u1, · · · , um) and V = (y1, · · · , yn) with n being so large that

m2 +mdk

m+ n
<
ε

2
and

∥∥Πk(y, n)− ~p
∥∥

1
<
ε

2
. (7.4)

Denote by F the collection of k-words that occur in UV but lie outside {1, · · · , d}k,

i.e.

F =
{
W ∈ Nk \ {1, · · · , d}k : W is a factor of UV

}
.

Since V ∈ {1, · · · , d}n, we have

]F ≤ m and f(W,UV ) ≤ m for all W ∈ F .

In combination with Lemma 7.9 and (7.4), this yields∥∥Πk(UV )− ~p
∥∥

1
=

∑
W∈{1,··· ,d}k

∣∣ 1

m+ n
f(W,UV )− p(W )

∣∣+ ∑
W∈F

∣∣ 1

m+ n
f(W,UV )

∣∣
≤

∑
W∈{1,··· ,d}k

∣∣ 1

m+ n
f(W,V )− p(W )

∣∣+ mdk

m+ n
+

m2

m+ n
<
ε

2
+
ε

2
= ε.

This completes the proof of the lemma.
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Now we proceed to specify the elements of the array one by one. First, we

observe that

S
(1)
k =

{
(p(W )) ∈ Sk : p(1k) = 1

}
:= ~p

(1)
k

is a singleton. Let S(1) =
{
~p

(1)
j

}∞
j=1

and W
(1)
1 = 1. It is clear that

∥∥Π1(1)−~p(1)
1

∥∥
1

=

0. Therefore, W
(1)
1 is 1/2-close to ~p

(1)
1 .

In general, for any d ≥ 1 and ` ≥ d, let U
(d)
` denote the prefix of z which

is the concatenation of the words before W
(d)
` in the array. Suppose that U

(d)
` is

determined. We proceed to specify the word W
(d)
` ∈ {1, · · · , d}? which is at the `-

th row and d-th column of the array. By Lemma 7.10, there exist Vi ∈ {1, · · · , d}?

such that U
(d)
` V1 · · ·Vi is 1/2`-close to ~p

(d)
i for 1 ≤ i ≤ ` − d + 1. Then we put

W
(d)
` = V1 · · ·V`−d+1.

With this construction, it is clear that the relation (7.3) is satisfied and hence

z ∈ E. Now suppose that zn lies in W
(d)
` with ` ≥ d. Then zn ≤ d ≤ ` ≤ n.

Therefore, the condition (7.2) is satisfied.

Remark 6. Let tn be any real sequence satisfying limn→∞ tn = +∞, it is obvious

from the construction that there exists a “seed” z = (z1, z2, · · · ) ∈ E such that

zn ≤ tn for all but finitely many n’s.

7.4 Upper bound estimate

This section is devoted to the proof of Proposition 7.5. Let us fix some ` ≥ 1

and denote by G the set

G(`) = {x ∈ [0, 1) : lim sup
n→∞

f(`, x, n)

n
= 1}.

To avoid complicated computation, we assume that ` ≥ 9. Now we are going to

show that dim(G) ≤ 1/2.

Proof. Fix 0 < ε < 1. For each n ≥ 1, put

An := {(a1, · · · , an) ∈ Nn : ]{j ≤ n : aj = `} > (1− ε)n} .

By the definition of G, we have

G ⊂
∞⋂

N=1

∞⋃
n=N

⋃
(a1,··· ,an)∈An

I(a1, · · · , an),
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where we recall that I(a1, · · · , an) is the rank n fundamental interval defined by

I(a1, · · · , an) := {x ∈ [0, 1) : ak(x) = ak, 1 ≤ k ≤ n}.

For any t > 1/2, let H t signify the t-Hausdorff measure, then

H t(G) ≤ lim inf
N→∞

∞∑
n=N

∑
(a1,··· ,an)∈An

∣∣I(a1, · · · , an)
∣∣t

≤ lim inf
N→∞

∞∑
n=N

∑
(a1,··· ,an)∈An

n∏
k=1

a−2t
k (by Lemma 2.41)

= lim inf
N→∞

∞∑
n=N

∑
(1−ε)n<m≤n

(
n

m

)(
`−2t

)m(∑
j 6=`

j−2t

)n−m

.

Let t be close to 1/2 and then let ε be so small that

`−(1−ε) ≤ 1/8 and 1 <

(∑
j 6=`

j−2t

)ε

< 2.

In combination with that
(

n
m

)
≤ 2n, this implies

H t(G) ≤ lim inf
N→∞

∞∑
n=N

εn2n8−n2n = 0.

Therefore, dim(G) ≤ 1
2

as desired.

7.5 Lower bound estimate

In order to get a lower bound on the Hausdorff dimension, we shall consider

a class of Cantor sets which are interesting in themselves.

Let α, β and γ be given with

0 < α < β < γ < 1, (7.5)

and M = {mk : k ≥ 1} be a subsequence of N such that

mk = bkγ/βc. (7.6)

Here, as usual, the symbol “btc” means “the integer part of t”.

Let z = [z1, z2, · · · , zn, · · · ] ∈ [0, 1) ∩Qc be a number such that

zn ≤ exp
(
exp(nα)

)
for all n ≥ 1. (7.7)
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and let B(z) be the set of all x = [a1(x), a2(x), · · · ] ∈ [0, 1) satisfying

an(x) = zn if n 6∈ M (7.8)⌊
exp
(
exp(kγ)

)⌋
≤ an(x) < 2

⌊
exp
(
exp(kγ)

)⌋
if n = mk ∈ M. (7.9)

Since the set E is “zero-density free” (see Definition 1) and contains a “seed”

satisfying the condition (7.7), it contains the subset B(z). Therefore, the lower

bound result is a consequence of Proposition 7.6, which, in turn, follows from the

following

Lemma 7.11. dimH(B(z)) ≥ 1
2
.

Proof. We will construct a measure supported on B(z) and then apply the mass

distribution principle (see [46]) to get the dimension estimation.

Let

In = {I(a1, · · · , an) : I(a1, · · · , an) ∩ B(z) 6= ∅}

and call the elements in In admissible n-th order fundamental intervals.

We define a set function µ on the collection of fundamental intervals as follows.

Put µ([0, 1)) = 1. If I(a1, · · · , an) 6∈ In, put

µ(I(a1, · · · , an)) = 0;

if I(a1, · · · , an) ∈ In and mk ≤ n < mk+1, put

µ(I(a1, · · · , an)) =
k∏

j=1

1⌊
exp
(
exp(jγ)

)⌋ .
By (7.8) and (7.9), the set function µ is well-defined and can be extended to a

unique probability measure supported on the set B(z).

Let x = [x1, x2, · · · ] ∈ B(z). Denote by In(x) the rank n fundamental interval

containing x. Consider the ball B(x, r) centered at x satisfying∣∣In+1(x)
∣∣ ≤ 3r <

∣∣In(x)
∣∣ with mk ≤ n < mk+1 (7.10)

Since x ∈ Imk
(x) and xmk

≥ 2, by Lemma 2.42, B(x, r) is contained in the union

of three adjacent mk-rank fundamental intervals, namely

B(x, r) ⊂ Imk
(x) ∪ I ′mk

(x) ∪ I ′′mk
(x).
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It follows that

µ(B(x, r)) ≤ 3
k∏

j=1

1⌊
exp
(
exp(jγ)

)⌋ .
For convenience, we shall use the notation

f ∼ g ⇐⇒ lim
f

g
= 1

in the sequel. On the one hand, one has

− log
(
µ(B(x, r))

)
≥ − log 3 +

k∑
j=1

log
(⌊

exp
(
exp(jγ)

)⌋)
∼

k∑
j=1

exp(jγ). (7.11)

On the other hand, by (7.10), (2.41) and (7.8), one has

r ≥
|In+1

∣∣
3

≥ 1

2(2n+5)

(n+1∏
j=1

xj

)−2

≥ 1

2(3+2mk+1)

(mk+1∏
j=1

zj

)−2(k+1∏
j=1

xmj

)−2

.

In combination with (7.7), (7.9) and (7.6), this implies that

− log r ≤ (3 + 2mk+1) log 2 + 2

mk+1∑
j=1

exp(jα) + 2
k+1∑
j=1

log
(
2
⌊
exp
(
exp(jγ)

)⌋)
∼ 2

b(k+1)γ/βc∑
j=1

exp(jα) + 2
k+1∑
j=1

exp(jγ) ∼ 2
k+1∑
j=1

exp(jγ),

where we have used the fact 0 < α < β < γ < 1. This and (7.11) together yield

lim inf
r→0

log
(
µ(B(x, r))

)
log r

≥ 1/2.

Since µ is supported on B(z), one has dim(B(z)) ≥ 1/2 as desired.
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Chapter 8

The Frequency of Partial Quotients of Continued

Fractions

In this chapter, we consider the frequency of partial quotients of continued

fractions. The sets (Besicovitch-Eggleston sets) of points in [0, 1) with prescribed

digit frequencies in their continued fraction expansions are studied. It is shown

that the Hausdorff dimension of these sets, always bounded from below by 1/2,

are given by a modified variational principle. 1

8.1 Introduction

Let Qc denote the set of irrational numbers. It is a well-known fact that each

x ∈ [0, 1) ∩Qc possesses a unique continued fraction expansion of the form

x =
1

a1(x) +
1

a2(x) +
1

a3(x) +
. . .

, (8.1)

where ak(x) ∈ N =: {1, 2, 3, · · · } is called the k-th partial quotients. For each

j ∈ N, define the frequency of the digit j in the continued fraction expansion of x

by

τj(x) := lim
n→∞

τj(x, n)

n
,

if the limit exists, where τj(x, n) := Card{k : ak(x) = j, 1 ≤ k ≤ n}.

This chapter is concerned with sets of real numbers with prescribed digit fre-

quencies in their continued fraction expansions. To be precise, let ~p = (p1, p2, . . . )

be a probability vector with pj ≥ 0 for all j ∈ N and
∑∞

j=1 pj = 1, which will be

called a frequency vector in the sequel. Our purpose is to determine the Hausdorff

1A. H. Fan, L. M. Liao and J. H. Ma, On the frequency of partial quotients of regular continued

fractions, preprint.
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dimension of the set

E~p := {x ∈ [0, 1) ∩Qc : τj(x) = pj ∀j ≥ 1}.

We begin with some notations. For any a1, a2, · · · , an ∈ N, we call

I(a1, a2, · · · , an) := {x ∈ [0, 1) : a1(x) = a1, a2(x) = a2, · · · , an(x) = an}

a rank n fundamental interval . Let T : [0, 1) → [0, 1) be the Gauss transformation

defined by

T (0) = 0, T (x) = 1/x for x ∈ (0, 1).

For a given frequency vector ~p = (p1, p2, . . . ), denote byN (~p) the set of T -invariant

ergodic measures such that∫
| log x|dµ <∞ and µ(I(j)) = pj for all j ≥ 1. (8.2)

Let hµ stand for the measure-theoretical entropy of µ, and dimH for the Hausdorff

dimension. With the convention that sup ∅ = 0, the main result of this chapter

can be stated as follows.

Theorem 8.1. For any frequency vector ~p, one has

dimH(E~p) = max

{
1

2
, sup

µ∈N (~p)

hµ

2
∫
| log x|dµ

}
.

Partial results of Theorem 8.1 were known long ago. In 1966, Kinney and

Pitcher [88] proved that if
∑∞

j=1 pj log j <∞ then

dimH E~p ≥
−
∑∞

j=1 pj log pj

2
∫
| log x|dµ~p

,

where µ~p is the Bernoulli measure on [0, 1] defined by

µ(I(a1, a2, · · · , an)) =
n∏

j=1

paj
.

This lower bound is in fact the Hausdorff dimension of the Bernoulli measure µ~p.

However, by the result of Kifer, Peres and Weiss [87] in 2001, this lower bound is

not optimal. Indeed, it is shown that

dimH µ~p ≤ 1− 10−7
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for any Bernoulli measure µ~p.

In 1975, Billingsley and Henningsen [17] proved that if
∑∞

j=1 pj log j < ∞
then

dimH(E~p) ≥ sup
µ∈N (~p)

hµ

2
∫
| log x|dµ

.

They also showed that this lower bound, which is a kind of variational principle, is

just the exact Hausdorff dimension of the set E~p provided that all partial quotients

are restricted to the set {1, 2, · · · , N} for some N ∈ N. It is quite natural to guess

that this should be true in the general case. However, as stated in Theorem 8.1,

it is only a half part of the lower bound.

The other half of the lower bound viz. dimH(E~p) ≥ 1/2, follows from Lemma

2.4 in [97]. However, we will give a direct proof.

The upper bound estimate is more difficult. In the proof, we will use the

techniques of [97] and [17] in estimating the lengths of fundamental intervals. Not

incidentally, an entropy-involved combinatorial lemma (Lemma 8.4) will play an

important role.

This chapter is organized as follows. In Section 8.2, we give some preliminar-

ies. In Section 8.3, we prove the upper bound of Theorem 8.1. In Section 8.4, we

give a direct proof for dimH(E~p) ≥ 1/2 and show how we can drop the condition∑∞
j=1 pj log j < ∞ in Billingsley and Henningsen’s theorem and obtain the lower

bound of Theorem 8.1.

8.2 Preliminary

In Section 2.4, we have given the basic properties of continued fractions. Here

we want to discuss some estimates of the length of a rank n fundamental interval.

Recall pn/qn is the n-th convergent of continued fractions. Sometimes we

denote by pn(a1, · · · , an) and qn(a1, · · · , an) the numerator and denominator of

the n-th convergent of the points initiated with first n partial quotients a1, · · · , an.

Recall that for any a1, a2, · · · , an ∈ N,

I(a1, a2, · · · , an) = {x ∈ [0, 1) : a1(x) = a1, a2(x) = a2, · · · , an(x) = an}

is a rank n fundamental interval.

We have
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Lemma 8.2.

|I(x1, · · · , j, · · · , xn)| ≤ 8

(j + 1)2

∣∣∣I(x1, · · · , ĵ, · · · , xn)
∣∣∣,

where the notation ĵ means “deleting the digit j”.

Proof. By (2.3) and Lemma 2.38, we have

|I(x1, · · · , j, · · · , xn)| ≤ 1

q2
n(x1, · · · , xn)

≤
(

2

j + 1

)2
1

q2
n−1(x1, · · · , ĵ, · · · , xn)

≤ 8

(j + 1)2

∣∣∣I(x1, · · · , ĵ, · · · , xn)
∣∣∣.

For any x ∈ [0, 1] \ Q and any word i1 · · · ik ∈ Nk, (k ≥ 1), denote by

τi1···ik(x, n) the number of j, 1 ≤ j ≤ n, for which

aj(x) · · · aj+k−1(x) = i1 · · · ik.

For N ∈ N, define ΣN := {1, . . . , N}. We shall use the following estimate in

[17].

Lemma 8.3 ([17]). Let N ≥ 1 and n ≥ 1. For any x = [x1, x2, . . . ] ∈ [0, 1] ∩ Qc

with xj ∈ ΣN for 1 ≤ j ≤ n. Then for any k ≥ 1, we have

log |In(x)| ≤ 2
∑

i1···ik∈Σk
N

τi1...ik(x, n) log
pk(i1, · · · , ik)
qk(i1, · · · , ik)

+ 8 +
8n

2k
. (8.3)

Now we turn to the key combinatorial lemma which will be used in the upper

bound estimate. Let φ : [0, 1] → R denote the function

φ(0) = 0, and φ(t) = −t log t for 0 < t ≤ 1.

For every word ω ∈ Σn
N of length n and every word u ∈ Σk

N of length k, denote by

p(u|ω) the frequency of appearances of u in ω, i.e.

p(u|ω) =
τu(ω)

n− k + 1
,

where τu(ω) denote the number of j, 1 ≤ j ≤ n− k + 1, for which

ωj · · ·ωj+k−1 = u.
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Define

Hk(ω) :=
∑

u∈Σk
N

φ(p(u|ω)).

We have the following counting lemma.

Lemma 8.4 ([61]). For any h > 0, ε > 0, any k ∈ N, k ≥ 1, and any n ∈ N large

enough, we have

Card{ω ∈ Σn
N : Hk(ω) ≤ kh} ≤ exp(n(h+ ε)).

8.3 Upper bound

8.3.1 Some Lemmas

Let (p(i1, · · · , ik))i1···ik∈Nk be a probability vector with index set Nk. Recall

that qk(i1, · · · , ik) is the denominator of the convergent of a real number with

leading continued fraction digits i1, . . . , ik.

Lemma 8.5. For any ε > 0, there exists k ∈ N such that for any probability vector

(p(i1, · · · , ik))i1···ik∈Nk , we have

− 1

k

∑
i1···ik∈Nk

p(i1, · · · , ik) log p(i1, · · · , ik)

≤ 2

k

∑
i1···ik∈Nk

p(i1, · · · , ik) log qk(i1, · · · , ik) + ε.

Proof. By Jensen’s inequality, for any k ∈ N, we have∑
i1···ik∈Nk

p(i1, · · · , ik) log
qk(i1, · · · , ik)−2

p(i1, · · · , ik)
≤ log

∑
i1···ik∈Nk

qk(i1, · · · , ik)−2.

By Lemma 2.39, we have∑
i1···ik∈Nk

qk(i1, · · · , ik)−2 ≤ 2
∑

i1···ik∈Nk

|I(i1 · · · ik)| = 2.

Thus

lim
k→∞

1

k

∑
i1···ik∈Nk

p(i1, · · · , ik) log
qk(i1, · · · , ik)−2

p(i1, · · · , ik)

≤ lim
k→∞

1

k
log

∑
i1···ik∈Nk

qk(i1, · · · , ik)−2 = 0,

which completes the proof.
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Lemma 8.6. For any probability vector ~p = (p1, p2, . . . ) and any positive vec-

tor ~q = (q1, q2, . . . ). Suppose −
∑∞

j=1 pj log qj = ∞ and
∑∞

j=1 q
s
j < ∞ for some

positive number s. Then

lim sup
n→∞

−
∑n

j=1 pj log pj

−
∑n

j=1 pj log qj
≤ s.

Proof. This is a consequence of the following inequality (see [140], p.217): for

nonnegative numbers sj (1 ≤ j ≤ m) such that
∑m

j=1 sj = 1 and any real numbers

tj (1 ≤ j ≤ m), we have

m∑
j=1

sj(tj − log sj) ≤ log(
m∑

j=1

etj). (8.4)

For n ≥ 1, put sj = pj for 1 ≤ j ≤ n and sn+1 =
∑∞

j=n+1 pj. Take tj = s log qj

for 1 ≤ j ≤ n and tn+1 = 0. Applying the above inequality (8.4) with m = n+ 1,

we get

s
n∑

j=1

pj log qj −
n∑

j=1

pj log pj − (
∞∑

j=n+1

pj) log(
∞∑

j=n+1

pj) ≤ log(1 +
n∑

j=1

qs
j ),

and consequently,

−
∑n

j=1 pj log pj

−
∑n

j=1 pj log qj
≤ s+

(
∑∞

j=n+1 pj) log(
∑∞

j=n+1 pj)

−
∑n

j=1 pj log qj
+

log(1 +
∑n

j=1 q
s
j )

−
∑n

j=1 pj log qj
.

Using the facts −
∑∞

j=1 pj log qj = ∞ and
∑∞

j=1 q
s
j < ∞, we can finish the proof

by letting n→∞.

Lemma 8.6 implies the following Lemma. Recall that Σk
N = {1, . . . , N}k.

Lemma 8.7. Let k ≥ 1 and (p(i1, · · · , ik))i1···ik∈Nk be a probability vector. If∑
i1···ik∈Nk

p(i1, · · · , ik) log qk(i1, · · · , ik) = ∞

then we have

lim sup
N→∞

−
∑

i1···ik∈Σk
N
p(i1, · · · , ik) log p(i1, · · · , ik)

2
∑

i1···ik∈Σk
N
p(i1, · · · , ik) log qk(i1, · · · , ik)

≤ 1

2
.

Proof. By Lemma 2.37, for any k ∈ N and any s > 1/2, we have∑
i1,··· ,ik

qk(i1, · · · , ik)−2s ≤
∑

i1,··· ,ik

(i1 · · · ik)−2s = (
∞∑

j=1

j−2s)k <∞.

Thus we have the result by Lemma 8.6.
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8.3.2 Proof of the upper bound

To prove the upper bound, we shall make use of the multi-step Markov mea-

sures. Let k ≥ 1, by a (k − 1)-step Markov measure, we mean a T -invariant

probability measure P on [0, 1) satisfying the Markov property

P (I(a1, · · · , an))

P (I(a1, · · · , a(n−1)))
=

P (I(a(n−k), · · · , an))

P (I(a(n−k), · · · , a(n−1)))
(8.5)

for all n ≥ 1 and a1, · · · , an ∈ N (see [32] p.9). According to our conventions, we

may regard Bernoulli measure as 0-step Markov measures.

Let us denote by Pk
N = Pk

N(~p) the set of (k − 1)-step Markov measures satis-

fying

P (I(j)) = pj for 1 ≤ j ≤ N − 1 and P (I(N)) = 1−
N−1∑
j=1

pj. (8.6)

Put P ([i1, . . . , ik]) = p(i1, . . . , ik) for all i1 · · · ik ∈ Σk
N and

βN,k := sup
P∈Pk

N

− 1
k

∑
p(i1, · · · , ik) log p(i1, · · · , ik)

−2
∑
p(i1, · · · , ik) log pk(i1, · · · , ik)/qk(i1, · · · , ik)

. (8.7)

In [17], pp.171-172, the authors proved that the following limit exists

βN := lim
k→∞

βN,k,

and it is equal to the following two limits which both exit:

β′N := lim
k→∞

sup
P∈Pk

N

−
∑
p(i1, · · · , ik) log p(i1, · · · , ik)

2
∑
p(i1, · · · , ik) log qk(i1, · · · , ik)

.

and

β′′N := lim
k→∞

sup
P∈Pk

N

hP

2
∫
| log x|dP

.

Let

β := lim sup
N→∞

βN = lim sup
N→∞

β′N = lim sup
N→∞

β′′N . (8.8)

To show the upper bound, we need only to prove the following two propositions.

Proposition 8.8. For any N ∈ N large enough, we have

dimH(E~p) ≤ max

{
1

2
, βN

}
,
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Proposition 8.9. We have

β ≤ max

{
1

2
, sup

µ∈N

hµ

2
∫
| log x|dµ

}
.

First, we prove Proposition 8.9.

Proof of Proposition 8.9: By (8.8),

β = lim sup
N→∞

lim
k→∞

sup
P∈Pk

N

−
∑
p(i1, · · · , ik) log p(i1, · · · , ik)

2
∑
p(i1, · · · , ik) log qk(i1, · · · , ik)

.

If

lim sup
N→∞

lim
k→∞

sup
P∈Pk

N

2
∑

p(i1, · · · , ik) log qk(i1, · · · , ik) = ∞,

then by Lemma 8.7, we have β ≤ 1/2.

Now suppose that

lim sup
N→∞

lim
k→∞

sup
P∈Pk

N

2
∑

p(i1, · · · , ik) log qk(i1, · · · , ik) <∞,

which is equivalent to

lim sup
N→∞

lim
k→∞

sup
P∈Pk

N

∫
| log x|dP <∞.

By (8.8),

β = lim sup
N→∞

lim
k→∞

sup
P∈Pk

N

hP

2
∫
| log x|dP

.

Without loss any generality, we suppose there is a sequences of measures PN,k ∈ Pk
N

such that PN,k converges weakly to a measure µ ∈ N (~p) and

β = lim sup
N→∞

lim
k→∞

hPN,k

2
∫
| log x|dPN,k

.

Then by the upper semi-continuous of the entropy function and the weak conver-

gence, we have

β ≤ sup
µ∈N (~p)

hµ

2
∫
| log x|dµ

.
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Now we are left to prove Proposition 8.8.

Proof of Proposition 8.8: For any fixed integer N which is large enough, and any

ε > 0, we have

E~p ⊂
∞⋃

`=1

∞⋂
n=`

Hn(ε,N),

where

Hn(ε,N) :=

{
x ∈ NN :=

∣∣∣∣τj(x, n)

n
− pj

∣∣∣∣ < ε, 1 ≤ j ≤ N

}
.

For any γ > max {1/2, βN}, and for any integer k ∈ N, we have

Hγ

(
∞⋂

n=`

Hn(ε,N)

)
≤

∑
|
τj(x,n)

n
−pj |<ε,1≤j≤N

|In(x)|γ (∀n ≥ `)

=
∑

n(pj−ε)<mj<n(pj+ε),1≤j≤N

∑
x1···xn∈A

|I(x1, · · · , xn)|γ,

where A := {x1 · · ·xn ∈ Σn
N : τj(x1 · · ·xn) = mj, 1 ≤ j ≤ N}.(We recall that the

notion of τj(x1 · · ·xn) denotes the times of the appearances of j in x1 · · ·xn.)

Let ñ :=
∑N

j=1mj. By Lemma 8.2, we have the following estimate by deleting

the digits j > N in the first n partial quotients x1, . . . , xn of x ∈ In(x).

∑
x1···xn∈A

|I(x1, · · · , xn)|γ ≤
(

∞∑
j=N+1

8

(j + 1)2γ

)n−ñ ∑
x1···xñ∈Ã

|I(x1, · · · , xñ)|γ,

where Ã :=
{
x1 · · ·xñ ∈ Σñ

N : τj(x1 · · ·xñ) = mj, 1 ≤ j ≤ N
}
. Since γ > 1/2, the

term
∞∑

j=N+1

8

(j + 1)2γ
≤M,

where M is a constant.

By applying Lemma 8.3, and noticing that τi1...ik(x, ñ) ≤ τi1...ik(x1 · · ·xñ)+k,

we have

|Iñ(x)| = exp{log |Iñ(x)|}

≤ exp

2
∑

i1···ik∈Σk
N

(τi1...ik(x1 · · ·xñ) + k) log
pk(i1, · · · , ik)
qk(i1, · · · , ik)

+ 8 +
8ñ

2k

 .
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Thus ∑
x1···xñ∈Ã

|I(x1, · · · , xñ)|γ

≤
∑

mi1···ik

∑
x1···xñ∈B

exp

2γ
∑

i1···ik∈Σk
N

(mi1···ik + k) log
pk

qk
+ 8γ +

8ñγ

2k

 ,

where B :=
{
x1 · · ·xñ ∈ Ã : τi1...ik(x1 · · ·xñ) = mi1···ik ∀i1 · · · ik ∈ Σk

N

}
.

Take

h =
1

k

∑
i1···ik∈Nk

φ

(
mi1···ik

ñ− k + 1

)
(8.9)

in Lemma 8.4. We have for any δ > 0, for ñ large enough

∑
x1···xñ∈B

exp

2γ
∑

i1···ik∈Σk
N

(mi1···ik + k) log
pk

qk
+ 8γ +

8ñγ

2k


≤ exp

ñ (h+ δ) + 2γ
∑

i1···ik∈Σk
N

(mi1···ik + k) log
pk

qk
+ 8γ +

8ñγ

2k

 .

Rewrite the right side of the above inequality as

exp {ñ (L(γ, k,mi1···ik))} ,

where

L(γ, k,mi1···ik) := h+ 2γ
∑

i1···ik∈Σk
N

mi1···ik + k

ñ
log

pk

qk
+

8γ

ñ
+

8γ

2k
+ δ.

Since there are at most (ñ− k + 1)Nk
possible words of i1 · · · ik in Σñ

N , we have∑
x1···xñ∈Ã

|I(x1, · · · , xñ)|γ

≤ (ñ− k + 1)Nk

exp

{
ñ

(
sup

mi1···ik

L(γ, k,mi1···ik)

)}
.

Notice that by the definition of Ã and B, the possible values of mi1···ik are

restricted to satisfy the condition that the frequency of digit j in x1 · · ·xñ is about

pj. The vector (
mi1···ik

ñ− k + 1

)
i1···ik
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then approximated to a probability measure P in Pk
N .

Since γ > βN , by (8.7) and (8.9), we can choose first ñ large enough then k

large enough such that

sup
mi1···ik

L(γ, k,mi1···ik) < 0.

Hence finally we can obtain for any γ > max {1/2, βN},

Hγ

(
∞⋂

n=k

Hn(ε,N)

)
<∞.

This completes the proof of Proposition 8.8.

At the end of this section, we would like to remark that by Proposition 8.8

and Lemma 8.5, we have dimH(Ep) ≤ 1.

8.4 Lower bound

In this section we first prove dimH(E~p) ≥ 1/2, and then show how to delete

the condition
∑∞

j=1 pj log j <∞ in Billingsley and Henningsen’s theorem to obtain

the lower bound of Theorem 8.1.

The following lemma is important to prove dimH(E~p) ≥ 1/2.

Lemma 8.10. For any given sequence of positive integers {cn}n≥1 tending to the

infinity, there exists a point z = (z1, z2, . . . ) ∈ E~p such that zn ≤ cn for all n ≥ 1.

Proof. For any n ≥ 1, we construct a probability vector (p
(n)
1 , p

(n)
2 , . . . , p

(n)
k , . . . )

such that p
(n)
k > 0 for all 1 ≤ k ≤ cn and

∑cn

k=1 p
(n)
k = 1, and that for any k ≥ 1,

lim
n→∞

p
(n)
k = pk. (8.10)

Consider a product Bernoulli probability P supported by
∏∞

n=1{1, . . . , cn}. For

each digit k ≥ 1, consider the random variables of x ∈ NN, Xn(x) = 1{k}(xn) (n ≥
1). By Kolmogorov’s strong law of large numbers (see [134] p.388), we have for

each digit k,

lim
n→∞

1

n

(
n∑

i=1

1{k}(xi)−
n∑

i=1

E(1{k}(xi))

)
= 0 P− a.s.,
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which implies

lim
n→∞

1

n

n∑
i=1

1{k}(xi) = lim
n→∞

1

n

n∑
i=1

p
(i)
k = pk P− a.s.. (8.11)

That is to say, for P almost every point in the space
∏∞

n=1{1, . . . , cn}, the digit

k has the frequency pk. Considering each point in NN as a continued fraction

expansion of a number in [0, 1], we complete the proof.

We begin to show dimH(E~p) ≥ 1/2.

Proof of dimH(E~p) ≥ 1/2: Take cn = n in Lemma 8.10, we find a point z ∈ E~p,

such that

zn = an(z) ≤ n (∀n ≥ 1). (8.12)

For a positive number b > 1, set

Fz(b) := {x ∈ [0, 1) : ak2(x) ∈ (bk
2

, 2bk
2

]; ak(x) = ak(z) if k is nonsquare}.

It is clear that Fz(b) ⊂ E~p for all b > 1. We define a measure µ on Fz(b). For

n2 ≤ m < (n+ 1)2, set

µ(Im(x)) =
n∏

k=1

1

bk2 . (8.13)

Denote by B(x, r) the ball centered at x with radius r. We will show that for any

θ > 0, there exists b > 1, such that for all x ∈ Fz(b),

lim inf
r→0

log µ(B(x, r))

log r
≥ 1

2
− θ. (8.14)

In fact, for any positive number r, there exist integers m and n such that

|Im+1(x)| < 3r ≤ |Im(x)| and n2 ≤ m < (n+ 1)2. (8.15)

By the construction of Fz(b), an2(x) > bn
2
> 1. Let x = [x1, x2, . . . ]. By

Lemma 2.42, B(x, r) is covered by the union of three adjacent rank n2 fundamental

intervals, i.e.,

B(x, r) ⊂ I(x1, x2, . . . , xn2 − 1) ∪ I(x1, x2, . . . , xn2) ∪ I(x1, x2, . . . , xn2 + 1).
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By the definition of µ, the above three intervals admit the same measure. Hence

by (8.15), we have

log µ(B(x, r))

log r
≥ log 3µ(I(x1, x2, . . . , xn2))

log 1
3
|I(x1, x2, . . . , xm+1)|

. (8.16)

However, on the one hand, by (8.13)

− log µ(I(x1, x2, . . . , xn2)) = − log
n∏

k=1

1

bk2 =
n∑

k=1

k2 log b.

On the other hand, by (2.3) and Lemma 2.37, we have

− log |I(x1, x2, . . . , xm+1)| ≤ log 2 +
m+1∑
k=1

2 log(xk + 1).

Let us estimate the second term of sum. First we have

m+1∑
k=1

2 log(xk + 1) ≤ 2
n+1∑
k=1

log(xk2 + 1) + 2
m+1∑
k=1

log(zk + 1).

Since xk2 ≤ 2bk
2

for all k ≥ 1, we deduce

m+1∑
k=1

log(xk2 + 1) ≤
n+1∑
k=1

log(2bk
2

+ 1) ≤
n+1∑
k=1

log(3bk
2

)

= (n+ 1) log 3 +
n+1∑
k=1

k2 log b.

By (8.12), zn ≤ n, for all n ≥ 1, we know

m+1∑
k=1

log(zk + 1) ≤
(n+1)2∑

k=1

log(k + 1).

Thus for any θ > 0, take b > 1 large enough, we have for all x ∈ Fz(b)

lim inf
n→∞

log µ(I(x1, x2, . . . , xn2))

log |I(x1, x2, . . . , xm+1)|
≥ 1

2
− θ.

Hence by (8.15) and (8.16), we obtain (8.14).

Therefore,

dimH(E~p) ≥
1

2
.
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Now to complete the whole proof of Theorem 8.1, we are left to show how to

cancel the condition
∑∞

j=1 pj log j <∞ in Billingsley and Henningsen’s theorem.

To this end, first notice that if
∑∞

j=1 pj log j = ∞, then for any µ ∈ Merg

such that µ(I(j)) = pj for all j ≥ 1, we have∫
log xdµ ≥

∞∑
j=1

µ(I(j)) log j =
∞∑

j=1

pj log j = ∞.

Thus N (~p) = ∅. By the convention we have

sup
µ∈N

hµ

2
∫
| log x|dµ

= 0.

However, by Propositions 8.8 and 8.9, we have dimH(E~p) ≤ 1/2. Since we

always have dimH(E~p) ≥ 1/2, we have finally proved that if
∑∞

j=1 pj log j = ∞,

then

dimH(E~p) =
1

2
.
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[100] J. Lüroth, Ueber eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe,

Math. Ann., 21 (1883), 411–423.

[101] T. Luczak, On the fractional dimension of sets of continued fractions, Mathematika,

44 (1997), no. 1, 50–53.

[102] P. Mattila. Geometry of sets and measures in Euclidean spaces. Cambridge University

Press, Cambridge, 1995.

[103] K. Mahler, p-adic numbers and their functions. Second edition, Cambridge University

Press, Cambridge, 1981.
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