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Résumé

Cette these est consacrée a I’étude de quelques aspects de la récurrence de trois
classes de systemes dynamiques : systemes dynamiques p-adiques polynomiaux,
systemes topologiques ayant la propriété de spécification et systeme de Gauss

associé aux fractions continues.

Dans une premiere partie, on étudie d’abord les polynomes a coefficients
dans Z, d’ordre supérieur a 2, comme des systemes dynamiques sur Z,. Nous
prouvons que pour un tel systeme, Z, est composé des composants minimaux et de
leurs bassins d’attraction. Pour tout polynome quadratique sur Zs, nous exhibons
tous ses composants minimaux. On étudie également les polynomes localement
dilatants et transitifs. Nous montrons que la restriction d’un tel polynéme sur son

ensemble de Julia est conjugué a un sous-shift de type fini.

Dans une deuxieme partie, nous prouvons que pour un systeme dynamique

s , . . , : : ,
compact ayant la propriété de spécification, I’entropie topologique de ’ensemble
des points génériques d’'une mesure invariante est égale a I’entropie de la mesure.
En corollaire, nous établissons un principe variationnel pour le spectre d’entropie

topologique des moyennes de Birkhoff a valeurs dans un espace de Banach.

La derniere partie est consacrée a I’étude des fractions continues. Nous trou-
vons en s’appuyant sur la théorie de l'opérateur de Ruelle, les spectres multifrac-
tals complets de 'exposant de Khintchine et de ’exposant de Lyapunov, qui ne
sont ni concaves ni convexes. Notre résultat sur le spectre de Lyapunov complete
celui de Pollicott et Weiss. Nous avons aussi bien étudié les fractions continues
extrémement non-normales et la fréquence des quotients partiels. Notre travail

sur la fréquence complete celui de Billingsley et Henningsen.

Mots clés: systemes dynamiques p-adiques, systemes dynamiques topologiques,
fractions continues, minimalité, points génériques, analyse multifractale, exposants

de Khintchine et de Lyapunov






Abstract

In this thesis, we study some aspects of recurrence in three classes of dy-
namical systems: p-adic polynomial dynamical systems, systems satisfying the

specification property and Gauss dynamics associated to continued fractions.

In the first part, we begin with the study of polynomials with coefficients
in Z, with order larger than 2 as dynamical systems on Z,. We prove that for
such a system, Z, is decomposed into minimal components and their attracting
basins. For any quadratic polynomial on Z,, we exhibit all its minimal compo-
nents. We then study transitive locally expanding polynomials. We prove that
such a polynomial, restricted to its Julia subset, is conjugate to a subshift of finite
type.

In the second part, we prove that for a dynamical system with specification
property, the topological entropy of the set of generic points of any invariant mea-
sure is equal to the entropy of the measure. Consequently, we obtain a variational
principle for the topological entropy spectrum of Banach valued Birkhoff ergodic

averages.

The last part is devoted to continued fractions. By applying the Ruelle op-
erator theory, we obtain the multifractal spectra of the Khintchine exponent and
Lyapunov exponent, which are neither concave nor convex. Our result on Lya-
punov spectrum completes that of Pollicott and Weiss. We have also well studied
the extremely non-normal continued fractions and the frequency of partial quo-

tients. Our work on the frequency completes that of Billingsley and Henningsen.

Key words: p-adic dynamical systems, topological dynamical systems, contin-
ued fractions, minimality, generic points, multifractal analysis, Khintchine expo-

nent, Lyapunov exponent.
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Chapter 1

Introduction

1.1 An overview of the thesis

Let X be an abstract space, G be a semigroup and T} : X — X (t € G) be
a family of transformations on X satisfying Tsy; = Ts o T;. Then I' := {T}}ieq
defines a semigroup action of G on X. We call (X,I') a dynamical system. In
this thesis, we study some discrete dynamical systems, where the semigroup G is
generated by a single transformation 7' : X — X. In this case (X, I") will also be
denoted by (X, 7).

There are two ways to study dynamical systems: topological way and measure-
theoretic way, which correspond respectively to two theories: Theory of Topolog-

ical Dynamical Systems and Ergodic Theory.

In a topological dynamical system, the state space X is usually supposed
to be a compact space ( in the present thesis we will also study some noncom-
pact topological spaces) and T" a homeomorphism or surjective continuous trans-
formation (in the present thesis, we will also consider some piecewise continuous
transformations). The study of topological dynamical systems concerns properties
like periodicity, recurrence, wandering, transitivity, minimality, mixing property,
chaotic property and so on. In the ergodic theory, the state space X is supposed
to admit a measurable structure and 7' is a measure-preserving transformation.
There are many concepts in the ergodic theory, which are similar to those in topo-
logical dynamical systems. Two of major results in the ergodic theory are Birkhoff
ergodic Theorem ([18], 1931) and Von Neumann’s mean ergodic theorem ([135],
1932).

There are also two ways to classify dynamical systems through topological
conjugacy or measure-theoretic conjugacy, which are related to two important
conjugate invariants: topological entropy and measure-theoretic entropy. The

measure-theoretic entropy was introduced into the ergodic theory by Kolmogorov



([91], 1958) and the topological entropy was introduced by Adler, Konheim and
McAndrew ([1], 1965). Ornstein ([115], 1970) showed that measure-theoretic en-
tropy characterizes Bernoulli systems. A shortcoming of the entropy is that it can

not distinguish systems with zero entropy.

In this thesis we will focus on the study of the minimality and the chaotic
property of p-adic dynamical systems, on the study of the topological entropies of
sets of generic points in topological dynamical systems satisfying specification and

on the study of recurrence of Gauss dynamics associated to continued fractions.
The thesis is divided into three parts.

In the first part, we study iterations of a polynomial of degree larger than 2

with coefficients in the field Q, of p-adic numbers (p being a prime).

If the coefficients of the polynomial f are in the ring Z, of p-adic integers, i.e.
[ € Zylx], then f : Z, — Z, is a 1-Lipschitz map and (Z,, f) becomes a compact
topological dynamical system with zero entropy. We will study the minimality of
the whole system (Z,, f) and the minimal subsystems of (Z,, f) when the whole
system (Z,, f) is not minimal. Remark that the minimality of f on a compact and
open invariant subset of Z, is equivalent to the ergodicity, uniquely ergodicity and
strictly ergodicity, with the normalized Haar measure as the invariant measure

(see Proposition 2.24).

One of our main theorems (Theorem 3.18) asserts that if (Z,, f) is a poly-
nomial dynamical system with f € Z,[z] and deg f > 2, then the space Z, is

decomposed into three parts:
Z,=AUBUC,

where A is the finite set (maybe empty) consisting of all periodic points of f,
B = | |, B; is the union of all (at most countably many) clopen invariant sets such
that each subsystem f : B; — B; is minimal, and each point in C' (if any) lies in
the attracting basin of a periodic orbit or of a minimal component B;.
According to the above result, the minimality of the whole system (Z,, f)
means that there is only one minimal component in B and A = C = (). Thus
we face two problems: one is determine the minimality of the system (Z,, f), the
other is to find the exact decomposition, especially all the components of B, when

(Z,, f) is not minimal.



People have mainly worked on the first problem, which we will discuss in
Subsection 1.2.2. The second problem for the affine transformation has been solved
by Fan, Li, Yao and Zhou ([50]). This decomposition problem seems much more
difficult for higher order polynomials. In this thesis, we can solve the problem for

the system (Zo, f) where f € Zs|x] is a quadratic polynomial (Theorem 3.23-3.30).

The other class of p-adic polynomial dynamical systems we would like to study
consists of transitive locally expanding polynomial dynamical systems in the field
Qp. Let f € Q,[z]. Consider f : X — Q, where X C Q, is a compact open
set of Q,. We define the so-called Julia set J;r = (), f~"(X). It is clear that
f~Y(J;) = J; and then f(J;) C J;. We are interested in the dynamical system
(Jg, f). If fis transitive and locally expanding, the system (Jy, f) is proved to
be conjugate to some subshift of finite type (Theorem 4.1). Actually the same
result holds for some more general p-adic dynamical systems in Q, called p-adic

repellers in Q,, which are not necessarily polynomial (Chapter 4).

In the rest parts of this thesis, we are concerned with interesting invariant
subsets in a dynamical system. These subsets are related to Birkhoff averages
of real or Banach valued functions. Their sizes are described either by Bowen’s

generalized topological entropy or by Hausdorff dimension.

Let (X,T) be a dynamical system. In the cases we study, X is usually a
metric space and even compact, and 7' is continuous or piecewise continuous. Let

® : X — R be a real valued function. The Birkhoff averages of ® are defined by

n—

A, ®(z) = % O(T7x) (n>1).

1
J=0

We are interested in the level sets of the limit of Birkhoff averages of ®:

Xo(a) := {x clim A, ®(z) = a} , a€RU{—00,00}.

n—oo

We would like to use topological entropy and/or Hausdorff dimension to measure
the sizes of Xg(a).

We are also interested in the set of divergent points
D :={x : the limit of A, ®(x) does not exist},

and subsets of D defined by different asymptotic behaviors of A,®(z).



In the case X¢(00) # ), we consider finer structures of the set X¢(00). So, to

this end, we consider the level sets of fast Birkhoff averages of polynomial speed:

Xo(a, B) := {a: o lim iz_:@)(Tj:zc) = a} (B>1),

or of exponential speed:

n—oo Q" 4

Xo(a,a) == {ZL’ : lim iEQJ(T%) = a} (a>1).

The level sets of Birkhoff averages of a Banach-valued function ® are also
studied (Theorem 5.2 and Theorem 5.3).

In the second part of the thesis (Chapter 5), we consider a topological dy-
namical system (X, T), where X is a compact metric space and T : X — X is
a continuous transformation. We suppose that (X, T) satisfies specification prop-
erty (see the definition in Subsection 1.3.2). Let B be a real Banach space and
B* its dual space. Let & : X — B* be a B*-valued continuous function. Given
a € B*, we study the level sets Xg () of the Birkhoff averages of ®, where the
limit, lim,, .. A4,P(x), is in the sense of the weak star topology o(B*, B). The
topological entropies of the level sets Xg(«) for @ € B* are determined by a
variational principle (Theorem 5.2 and Theorem 5.3). More significant is that a
system satisfying specification property is saturated in the sense that the topo-
logical entropy of the set of generic points with respect to an invariant measure
is equal to the measure-theoretic entropy of the measure (Theorem 5.1). This
is a converse theorem under specification of a Theorem due to Bowen [21]. We
illustrate our results by applying them to study the frequencies of blocks in the
dyadic development of real numbers.

The third part of the thesis (the last three chapters) is devoted to continued
fractions. We consider the Gauss transformation 7" on [0,1) (for the definition
see Subsection 1.3.3). Define a;(z) = |1/z], then a,(x) = a;(T" (x)) for n >
2. The a,(z)’s are the partial quotients of continued fraction expansion of x =
la1(x),as(x),...] € Q°N [0, 1].

In Chapter 6, the problem that we study corresponds to ®(z) = loga;(z) or
log |T"(z)|. We call y(z) := lim,,_o A, loga;(x) the Khintchine exponent of z, if



the limit exists. We call A(z) := lim,,_,o Ay, log|T”|(x) the Lyapunov exponent of
x, if the limit exists. The Hausdorff dimensions of the level sets of Khintchine
exponents and Lyapunov exponents, which are called Khintchine spectrum and
Lyapunov spectrum respectively, are obtained (Theorem 6.2 and Theorem 6.3). In
both cases of Khintchine exponents and Lyapunov exponents, we have Xg(00) # ().
Thus we are led to study the level sets of fast Khintchine exponents and Lyapunov

exponents (Theorem 6.1).

In Chapter 7, we consider the frequencies of blocks of partial quotients (also
called words) in continued fractions. Let (W;);>1, W; € N* be a sequence of all
words of finite length (in some fixed order), where N* stands for the set of all
finite words in N¥. Let ®(x) = (1w, (a1(x) - - - aw;|(2)))i>1, where 1y, stands for
the indicator function of the word W;. We are interested in the set of points such
that A,®(z) extremely oscillate. Denote by acc(A,®(x)) the set of accumulation
points of A,®(z) in the weak star topology of £*°. We study the set

F:=¢2xeQ°nN[0,1] : acc(A,P(x)) = U acc(A4,P(y))

y€Qen[0,1]

We prove that dimg(F) = 1/2 (Theorem 7.2). We also prove that the Hausdorff
dimension of the set of extreme non-normal continued fractions defined by Olsen
([113]), which is a subset of IF, is also 1/2 (Theorem 7.4). The Hausdorff dimension

of this set was previously conjectured to be 0.

In Chapter 8, we take ® = (1pj, 1j, ... ), where 1f; stands for the indicator
function of the cylinder [4] (i.e., the fundamental interval [1/(j+1),1/5)). Here we
are interested in the frequencies of partial quotients. Let 7= (p1, ps, . ..) be a prob-
ability vector. We study the level set X4 (p), which is the set of points for which
the frequency of the digit j in the continued fraction expansion of z = [ay, az, - - |
is equal to p; for each j > 1. We compute the exact Hausdorft dimension of
Xo(p) (Theorem 8.1). Partial results were obtained by Billinsley and Henningsen.
The results as well as the methods are different from those in the study of the

Khintchine and Lyapunov exponents.

In the following we will detail the above presentation.



1.2 p-adic dynamical systems

Before we present our results on p-adic dynamical systems in Subsections
1.2.2 and 1.2.3 , we start with some history remarks on p-adic numbers and p-adic

dynamical systems.

1.2.1 p-adic numbers and p-adic dynamical systems

The p-adic numbers were introduced by Hensel in 1897. Simply speaking,
the field of p-adic numbers Q, is the topological completion of the field Q with
respect to some non-Archimedean absolute value (p-adic absolute value |-|,). The
ring of p-adic integers Z, is the unique maximal ideal in Q,. In 1918, Ostrowski
([117]) proved that every non-trivial absolute value on Q is either equivalent to
the classical Archimedean absolute value or to one of the p-adic absolute value.
We can consider the algebraic extensions of QQ,. The absolute value can also be
uniquely extended. However, any extension of finite order of Q, is not algebraically
closed. Thus the algebraic closure Q of @, is an infinite extension. But Qf
is not topologically complete. Fortunately, the topological completion of Q is
algebraically closed. This ultimate field, denoted by C,, is called the field of

complex p-adic numbers.

In 1987, Volovich ([139]) applied the p-adic numbers to establish the p-adic
string theory. The p-adic physical investigations then stimulated people’s high
interests in p-adic dynamical systems. Earlier work of Oselies and Zieschang ([116])
appearing in 1975, concerned with the continuous automorphisms of the ring of
p-adic integers Z, which are the multiplication transformations az with a a unit
in Z,. It seems to be the first study of p-adic dynamical systems. With the
aim of studying the distribution of Fibonacci numbers, Coelho and Parry ([31])
also studied these multiplications. The power transformations z" were studied
by Gundlach, Khrennikov and Lindahl ([63]). The first work about the complex
p-adic dynamical systems might be due to Herman and Yoccoz ([09]) in 1983. In
1994, Lubin ([99]) studied the iteration of analytic p-adic maps.

In the following, we will discuss two classes of transformations, 1-Lipschitz

transformations and expansive transformations.



1.2.2 Minimality of polynomial dynamical systems on Z,

Let f € Zy[x] be a polynomial with coefficients in Z,. It is a 1-Lipschitz
transformation from 7Z, to Z,. We consider the compact topological dynamical
system (Z,, f).

As we have mentioned, we will prove that

Theorem 1.1 (Theorem 3.18). Let f € Zylx] with degf > 2. We have the

following decomposition
z,=A| |B| |C

where A is the finite set consisting of all periodic points of f, B = ||, B; is
the union of all (at most countably many) clopen invariant sets such that each
subsystem f : B; — B; is minimal, and each point in C' lies in the attracting basin

of a periodic orbit or of a minimal subsystem.

Two problems arise:

Problem 1. Under what conditions, the decomposition of (Z,, f) consists of only
one piece of component in B and A = C' = 0 i.e., the whole system (Z,, f) is
minimal ?
Problem 2. If (Z,, f) is not minimal, how to find the exact and complete decom-
position?

Concerning the first problem, a general criterion of minimality was given by
Larin ([95]). He showed that for p > 5, the system (Z,, f) is minimal if and only
if f is minimal modulo p?; and for p = 2 or 3, the system (Z,, f) is minimal if and
only if f is minimal modulo p?.

In a recent work, Chabert, Fan and Fares ([33]) obtained a criterion of mini-
mality for 1-Lipschitz maps on Legendre sets in any discrete valuation domain.

There exist practical criteria of minimality by using the coefficients of the

polynomial. Larin ([95]) showed that when p = 2, the system (Z,, f) where
f(x) =3 apa® € Zy[X] is minimal if and only if

ap =1 (mod 2),
=1 (mod 2),
200 = ag+as+--- (mod 4),

as+a;—1=as+ag+--- (mod 4).



For general polynomials in the case of p > 3, people don’t known any necessary

and sufficient condition for minimality by using the coefficients.

However, for special classes of polynomials, there are complete solutions. For
example, it is proved (Larin [95], Fan, Li, Yao and Zhou [50]) that an affine map
f(z) = ax + b with a,b € Z,, is minimal if and only if

(1) a=1 (mod p) when p >3 or a =1 (mod p?) when p = 2,

(2) b # 0 (mod p).

For a quadratic polynomial f(z) = az®+bx+c with a, b, ¢ € Z,, an exercise in
Knuth ([89], p.32, Exercise 8), together with Larin’s general criterion cited above

or Theorem 2.25, implies that the system (Z,, f) is minimal if and only if
(1) a=0 (mod p),b=1 (mod p),c # 0 (mod p), if p > 5,

(2) a=0 (mod 9),b=1 (mod 3),c# 0 (mod 3) or
ac =6 (mod 9),b =1 (mod 3),c# 0 (mod 3), if p > 3.

(3) a=0 (mod 2), a+b=1 (mod 4) and ¢ #Z 0 (mod 2), if p = 2.

It is well-known that any polynomial minimal system (Z,, f) is topologically
conjugate to the adding machine (Z,,z + 1), and the conjugacy is an isometry.
See, for example, [33], where Chabert, Fan and Fares obtained a more general
result on the minimality of a 1-Lipschitz map restricted on an invariant clopen set

in any discrete valuation domain).

Coelho and Parry ([31]) studied the minimality of the multiplication f(z) :=
ax (a € Z,) on the group of units U := {zx € Z,, : |z|, = 1} for p > 3 instead of on
the whole ring Z,. Here and in the follows | - |, is the p-adic absolute value. They
showed that for a € U, (U, f|y) is minimal if and only if a (mod p?) generates
the multiplicative group (Z/p*Z)*. For p = 2, Fan, Li, Yao and Zhou ([50])
showed that the system (Us, f|y,) where Uy := 1 4 4Z,, is minimal if and only if
+a (mod 8) generates the multiplicative group (Z/8Z)*.

Gundlach, Khrennikov and Lindahl ([63]) studied the minimality of f(z) =
2" (n > 1) on each ball 1+ p*Z, k > 1, a subgroup of U. After the work [(3],
Anashin ([5]) showed that for p > 3, and f(z) = 2™ + p*lu(x) with & > 2 and
u € Zy|X], the transformation f restricted on 1+ p*Z, is minimal if and only if n

is a generator of (Z/p?Z)*. Fan, Li, Yao and Zhou ([50]) showed that the system
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(Uy, flu,) where f(z) = az™ (a € Z,,n > 1) and U; = 1 + pZ, is topologically
conjugate to the system (Z,, g) where g(z) = nx + Log(a)/Log(1l + p), and the
logarithmic function is defined as the classical one:

oo

Log(1 +2) = Y (-1 2 (Jal, < 1).

Now let us look at the second problem to which the thesis will bring some
contribution. Fan, Li, Yao and Zhou ([50]) gave an explicit and complete picture
of the minimal decomposition of Z, (p > 2) for affine transformations. This
was one of our motivations to study polynomial of higher degree. We recall here
some part of their results in the case p = 2. Let f(z) = ax (a € Z3). Denote
U, =1+2""Zy (n > 0). Then we have Z, = AL B C where A = {0} consists
of the unique fixed point, C' is empty and B = UnZO 2"U. Furthermore, each
(2"U, flany) (n > 1) is conjugate to (U, f|y). About the subsystem (U, f|y), we
have

(1) if @ € Uy, then U is decomposed into |a — 1|;'/2 minimal components,

(2) if @ € U\ Uy, then U is decomposed into |a+1|;'/2 minimal components.

It seems much more difficult to study the decomposition for polynomials of
higher order, even for quadratic polynomials. However, we can exploit the ideas
from Desjardins and Zieve ([10]), and study the minimal decomposition of general

polynomials (Theorem 1.1).

In Chapter 3, we will give a complete picture of the minimal decomposition of
any 2-adic quadratic polynomial dynamical system. As we will see, we can reduce

the problem to the quadratic polynomials of the following form
2=\, 2 +br, 2*+x—d,

where A € Z,, b =1 ( mod 2) and vd € Z,. The obtained results are stated in
Theorems 3.22-3.30. We state here only one of them.

Theorem 1.2 (Theorem 3.23). Any 2-adic quadratic polynomial dynamical system
which has only one fixed point in Zsy is topologically conjugate to the transformation

2?2 +x on Zy. For the dynamical system (Zs, x> + ), we have

(1) the set 1 4 2Zs is mapped into 27Zs.



(2) the set 275 is decomposed into

227, = {0}] | <|_| 2"t 2’%) :

n>2

and for each n > 2, 2"~1 + 2"Z, consists of 22 pieces of minimal compo-
nents:
on—l L gon 4 2227, t=0,...,2" % — 1.

In this case, A = {0}, C' =1+ 2Z, and B = 27, consists of infinite minimal
components 271 4 2" 4+ 22727, (n > 2,0 <t < 2"72).

In [33], Chabert, Fan and Fares recently proved that minimal sets of any 1-
Lipschitz map are Legendre sets. We will prove that minimal sets of a polynomial
are special Legendre sets. A set £ C Z, is a Legendre set if for any s > 1 and any
r € E/p°Z,, the number

gs :=Card {y € E/p""'Z,: y=x mod p°}
is independent of x € E/p°Z,. Let

Ps = Q12" s (Vs > 1).

It is clear that p, = Card E/p°Z,. We call (ps)s>1 the structure sequence of E.
Consider the inverse limit

Z(Ps) = lim Z/pSZ.
This is a profinite group, usually called an odometer, and the map 7: z — z + 1
is called the adding machine on Z,,).

Chabert, Fan and Fares proved the following theorem.

Theorem 1.3 ([33]). Let E be a clopen set in Z, and f : E — E be a 1-Lipschitz
map. If the dynamical system (E, f) is minimal, then f is an isometry, FE is a
Legendre set and the system (I, f) is conjugate to the adding machine on (Zy,), T)
where (ps) is the structure sequence of E. On the other hand, on any Legendre set

there exists at least one minimal map.

We improve the above result in the case of polynomials by giving more infor-

mation on the structure sequences of polynomial minimal components.
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Theorem 1.4 (Theorem 3.21). Let f € Z,[z] with deg f > 2. If E is a minimal
clopen invariant set of f, then f : E — FE is conjugate to the adding machine on

an odometer Z,,), where
(ps) = (k7 kd? kdp? kdp27 e )
with some k € N,k <p and d|(p — 1).

In [57], Fan and Wang asked for the form of Legendre sets on which there
is a minimal polynomial of given degree. The above theorem, which gives all
the possible forms of Legendre sets on which there are minimal polynomials with

coefficients in Z,, partially answers Fan and Wang’s question.

1.2.3  p-adic repellers in Q,

Now let us consider a class of expansive transformations on the field Q,. They
are quite different from the polynomial dynamical systems on Z, that we have just
studied. They exhibit chaotic behaviors.

Let f: X — Q, be a map from a compact open set X of Q, into Q,. We
assume that (i) f~'(X) C X; (i) X = |J,.; Bp--(c;) can be written as a finite
disjoint union of balls of centers ¢; and of the same radius p~” (with some 7 € Z)

such that for each i € I there is an integer 7; € Z satisfying

[f (@) = fWlp =p e —yl,  (Vo,y € Byr(c)). (1.1)

For such a map f, define its Julia set by Jr = ([ —, f~"(X). It is clear that
f~Y(J;) = J; and then f(J;) C J;. We are interested in the dynamical system
(Jg, f)-

The triple (X, Jy, f) is called a p-adic weak repeller if all 7; in (1.1) are

nonnegative, but at least one is positive. We call it a p-adic repeller if all 7; in
(1.1) are positive. For convenience, we will write || f|| = p™ for any map having
the property (1.1), which could be called the expanding ratio (resp. contractive
ratio) of f on the ball B,--(c;) when 7; > 0 (resp. 7; < 0).

We have the following theorem.

Theorem 1.5 (Theorem 4.1). Any transitive p-adic weak repeller (X, Jy, f) is
1sometrically conjugate to some subshift of finite type endowed with a suitable

metric.

11



For the definitions of transitivity of the p-adic weak repeller and of the sub-
shift, see Chapter 4.

Many polynomials in Q,[X] belong to the class of p-adic weak repellers. One
class is of the form f(x) = p ™ P(x) € Q,[z] with m > 0 and P € Z,[z| satisfying
|P(z)|, > |z|, for all x & Z, and f'(x) # 0 for all x € X (by Theorem 4.2). Some

concrete examples are fully examined at the end of Chapter 4.

In the literature, Thiran, Verstegen and Weyers [137] and Dremov, Shabat
and Vytnova [11] studied the chaotic behavior of p-adic quadratic polynomial
dynamical systems. Woodcock and Smart [117] proved that the so-called p-adic

logistic map
P —x

p
is topologically conjugate to the full shift on the symbolic system with p symbols.

D Ly — Ly

1.3 Entropy and Hausdorff dimension in dynamical

systems

In the other parts of this thesis, we are concerned with following subjects,

each of which corresponds to one chapter:

(1) Entropies of level sets of Birkhoff averages for continuous functions in a

compact topological dynamical system with specification property;

(2) Hausdorff dimensions spectrum (from the multifractal point of view) of

Khintchine exponents and Lyapunov exponents in continued fractions;
(3) Sizes of some sets of non-normal continued fractions;

(4) Frequency of partial quotients (described by Besicovitch-Eggleston sets) in

continued fractions.

These studies are tightly related to Multifractal Analysis. So, we begin with some

historic remarks on the study of Birkhoff averages and multifractal analysis.

1.3.1 Birkhoff averages and multifractal analysis

Let (X,T) be a dynamical system with X a metric space and T a piecewise

continuous transformation. Let ® be a continuous function taking values in R or
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in some real Banach space. As mentioned in Section 1.1, we are interested in level
sets Xg () of Birkhoff averages of ®, subsets of the set D of divergent points, and
level sets of fast Birkhoff averages, Xo (o, 8) and Xo(a, a) if Xg(00) # 0. We will
adopt two concepts, the entropy and Hausdorff dimension to measure the sizes of
these sets.

As we know, entropies describe the complexity of dynamical systems. There
are two kinds of entropies: measure-theoretic entropy and topological entropy. In
1973, Bowen ([21]) generalized the concept of topological entropy to any subset of
the state space.

Denote respectively by hiop(A) and dimpy(A) the topological entropy and
Hausdorff dimension of a set A. The functions f(«) := hyp(Xe(a)) and g(a) :=
dimpy (Xo(a)) are called multifractal spectra of ®.

In many well known cases, the spectra f(a) and g(«) obey the following

formula (called variational principle)

hiop(Xao(a)) = sup {hu : u invariant and /deu = a} :

h
dimg (Xg(a)) = sup{ - : p invariant and /(Dd,u = a} :
Jlog | T"|(x)dp
In the literature, Fan and Feng ([18, 19]) proved a variational principle when

(X,T) is a mixing subshift of finite type and ® is a continuous R-valued function
valued. Barreira, Saussol and Schmeling ([9]) obtained a variational principle for
Holder functions. Barreira and Saussol ([8]) established a variational principle in
the case where T is a transformation with upper semi-continuous entropy, and
® is a function with a unique equilibrium. The case where T is C'*-conformal
mixing transformation and ® is continuous was studied by Feng, Lau and Wu
([58]). Takens and Verbitzkiy ([135]) generalized the variational principle to sys-
tems satisfying specification.

Concerning the subsets of the set D of divergent points, Barreira and Schmel-
ing ([7]) showed that for mixing subshifts of finite type and for a Holder continuous
® which is not cohomologous to zero, the set D admits full entropy and Hausdorff
dimension. Fan, Feng and Wu ([19]) proved that on a mixing subshift of finite

type, if the Birkhoff averages of the continuous function ® do not have the same
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limit for all points, then the set D has full Hausdorff dimension. Olsen([l11])
considered the set of points whose accumulation points of Birkhoff average are
prescribed. He obtained a variational principle for its Hausdorff dimension on a
subshift space. Pfister and Sullivan ([123], [121]) studied the Billingsley dimension
and topological entropy for the sets of Olsen type in both shift space and (-shift

space.

It seems that level sets of fast Birkhoff averages Xg(c, 3) and Xg(a, a) have
not been examined before. Because in many classical cases, the set Xg(00) is
empty (for example, the Birkhoff averages of a continuous function ® in a subshift
space). However, there are some other kinds of fast Birkhoff averages studied by
Fan and Schmeling ([56]) in finite symbolic dynamical systems. They considered

the points converging with different velocities, for example,
Xo(a,a,p) = {:L‘:AnCI)(:E)—/Qd,uwanﬁ_l} aceR,0< 6 <1,

where u,, ~ v, means u,/v, — 1. They found that X¢(a,a,3) admits the same

Hausdorff dimension as Xg(a).

1.3.2 Level sets of Birkhoff averages in saturated systems

In this subsection we would like to state the main results of the second part
of the thesis.

Let T': X — X be a continuous transformation on a compact metric space X
with metric d. Let B be a real Banach space and B* its dual space. We consider
B* as a locally convex topological space with the weak star topology o(B*,B).
For any B*-valued continuous function ® : X — B*, we consider the level sets
Xo(a), a € B* of the Birkhoff average A, ®(z).

Denote by M., the set of all T-invariant probability Borel measures on X.
For i € My, the set G, of p-generic points is defined by

n—1
1 w*
G”:: {:L'EXE Eodem—>/L}7
‘]:

w*
where — stands for the weak star convergence of the measures.

A dynamical system (X,7T) is said to be saturated if for any p € My, we
have hiop(Gp) = hy,.
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Bowen ([2]) proved that on any compact dynamical system, we have h,(G,,) <
h, for any p1 € Miy,y. So, saturatedness means that G, is of optimal topological

entropy.

A dynamical system (X,T') is said to satisfy the specification property if for
any € > 0 there exists an integer m(e) > 1 having the property that for any integer

k > 2, for any k points x, ..., 2, in X, and for any integers
a1§b1<a2§b2<---<ak§bk
with a; — b;i—1 > m(e) (V2 <i < k), there exists a point y € X such that

d(T** "y, Trx;) < € (VO<n<b—a, VI<i<k).

The specification property was introduced by Bowen ([24]) who required that
y is periodic. But the present day tradition doesn’t require this. The specification
property implies the topological mixing. Blokh ([19]) proved that these two prop-
erties are equivalent for continuous interval transformations. Mixing subshifts
of finite type satisfy the specification property. In general, a subshift satisfies
the specification if for any admissible words u and v there exists a word w with
lw| < k (some constant k) such that uwv is admissible. For (-shifts defined by
Tsr = Sz (mod 1), there is only a countable number of 3’s such that the [ shifts
admit Markov partition (i.e. subshifts of finite type), but an uncountable number
of B’s such that the (-shifts satisfy the specification property ([132]). For basic
properties of systems satisfying specification property, we recommend the readers
the book of Denker, Grillenberger and Sigmund ([39]).

We obtain the following theorem.

Theorem 1.6 (Theorem 5.1). A system satisfying specification property is satu-

rated.

Let Mg(a) = {1 € My : [ ®du = a} where [ ®du denotes the vector-

valued integral in Pettis’ sense. We also prove the following theorem.

Theorem 1.7 (Theorem 5.2). Suppose that the dynamical system (X,T) is satu-
rated. Then
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(a) if Mo(a) =0, we have Xo(a) = 0;
(b) if Mg () # 0, we have
hiop(Xo(a)) = sup  hy.
HEM g (cv)

As application, we study the frequencies of blocks in the base-2 expansion
of a real number. Except for a countable set, each ¢ € [0,1] has a unique base-2
expansion, t = S>>0 In (¢, € {0,1}). Let k > 1. Write 0% for the block of k

n=1 2n

consecutive zeroes and define the 0"-frequency of ¢ as the limit (if exists)

ft k)= lim %h{l <j<mititjs--tie =0}
Let (aq, as, - - - ) be a sequence of non-negative numbers. We denote by S(ay, az, -+ )
the set of all numbers ¢ € [0, 1] such that f(t, k) = ay for all £ > 1. We prove
Theorem 1.8 (Theorem 5.4). The set S(ay,ay,---) is non-empty if and only if

1:&026112&22...; ai—ZaiH—i—angO (ZZO) (12)

Under the above condition (1.2), we have
hiop(S(ar, az, -+ +)) = —=h(1 =) + > h(a; —2a;41 + aj12) (1.3)
=0
where h(z) = —xlogx.

The rest of this introduction is devoted to present our works on continued

fractions.

1.3.3 Khintchine and Lyapunov Spectra in continued fractions

It is known that the continued fraction of a real number can be generated by
the Gauss transformation 7" : [0,1) — [0, 1) defined by
1
T(0):=0, T(x):=— (mod 1), for x € (0,1). (1.4)
x
Every irrational number x in [0, 1) is uniquely expanded as an infinite expansion

of the form

r = = (1.5)
Gl(fﬂ) +

ag(x) + .+ @)+ T @) as(x) +
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where a;(z) = [1/z] and a,(z) = a,(T" ' (x)) for n > 2 are partial quotients of

x (|z] denoting the integral part of z). For simplicity, we will denote the second

term in (1.5) by [a1,ag, - ,a, + T"(x)] and the third term by [ay, as, a3, - --].
For any z € [0,1) with its continued fraction (1.5), we define its Khintchine

exponent y(z) and Lyapunov exponent A(z) respectively by

n n—1
1 1 .
= lim ~ Y loga;(z) = lim ~ Y loga (7T
)= g 2l (o) = ]20: og ax (17 (x)),
1 1 =
A(z) == lim —1 (T"' = lim =1 ‘T’Tj (
(z) := lim —log|(T")(z)| = lim —~ > log|T"(T"(z))

if the limits exist. The Khintchine exponent of z stands for the average (geometric)
growth rate of the partial quotients a,(z), and the Lyapunov exponent, which is
extensively studied from dynamical system point of view, stands for the expanding
rate of T'. They are both Birkhoff averages.

The fact that the sets {z : y(z) = oo} and {z : A\(z) = oo} are nonempty
inspires our study of fast Birkhoff averages. Let ¢ : N — R,. Assume that
lim,, @ = 00. The fast Khintchine exponent and fast Lyapunov exponent of

x € [0, 1], relative to ¢, are respectively defined by

(x) = ingoa-x:ian_loa Iz
% R K 1 m\/ I K 1 = ! 7l

For real numbers &, 3 > 0, we are interested in the level sets of Khintchine expo-

nents and Lyapunov exponents:
Ee={xec[0,1):7(x) =&}, Fp:={ze0,1): Mz) =0},
and the level sets of fast Khintchine exponents and fast Lyapunov exponents:
Ee(p) :={r €[0,1):7%(x) =&}, Fa(p) :={z €[0,1): \*(x) = G},

The Khintchine spectrum and the Lyapunov spectrum are the dimensional

functions:
t(¢) := dim E; t(3) := dim Fp.

17



Functions

t2(§) = dim Ee(p)  9(f8) := dim F(yp)

are called the fast Khintchine spectrum and the fast Lyapunov spectrum relative
to .

It should be noticed (see Billingsley [16] and Walters [110]) that the trans-
formation 7' is measure-preserving and ergodic with respect to the Gauss measure
ie defined by

dis — dx
fa = (1+2)log2

An application of Birkhoff ergodic theorem yields that for Lebesgue almost all
z € [0,1),

y(x) =& = /log ai(z)dpe = 2.6854...
2

™
=2.37314....
6 log 2 373

Az) = Ao = / log |T" ()| dpi =

Here &, is called the Khintchine constant and Ay the Lyapunov constant. Both
constants are relative to the Gauss measure.

We can determine the multifractal spectra t(-),(-), t#(-), #(-).

For the fast spectra ¢#(-), 1#(-), we prove

Theorem 1.9 (Theorem 6.1). If (p(n+ 1) —¢(n)) T oo and lim % =b>1,
then E¢(p) = Foe(p) and dim E¢(p) = 1/(b+ 1) for all £ > 0.

For the Khintchine spectrum #(-), we have

Theorem 1.10 (Theorem 6.2). Let § = [logai(z)dug(x). For & > 0, the
Hausdorff dimension t(§) of the set E¢ has the following properties

1) t(&) =1, t(+o00) = 1/2.

2)t'(&) <0 for all £ > &, /(&) =0 and t'(§) > 0 for all § < &.

3) t'(0—) = 400, t'(+o0) = 0.

4)t"(&) < 0, but t"(&1) > 0 for some & > &. So t(£) is neither conver nor

concave.
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N |

Khintchine spectrum

For Lyapunov spectrum #(-), we have

Theorem 1.11 (Theorem 6.3). Let A\g = [ log|T"(x)|dpc(x) and vy = 2log %5
For any B € [y0,00), the Hausdorff dimension t(3) of the set Fs has the following
properties

1) t(N) =1, t(+00) = 1/2.

2) t(B) <0 for all B > Xo; t'(No) = 0 and t'(3) > 0 for all B < Xo.

3) ' (v0—) = +oo, t'(+00) = 0.

4) " (No) < 0, but t(B1) > 0 for some 31 > o, i.e., t(3) is neither convex

nor concave.

Lyapunov spectrum
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It should be noticed that the non-convexity shows a new phenomenon for the

multifractal analysis in our settings.

For a better understanding of our motivation, we would like to review some

classical works.

It was known to E. Borel ([20]) in 1909 that for Lebesgue almost all z € [0, 1),
there exists a subsequence {a,, (x)} of {a,(z)} such that a,, (x) — co. A more
explicit result due to Borel-Bernstein (see [141, 21, 22]) is the 0-1 law which hints
that for almost all z € [0, 1], a,(x) > ¢(n) holds for infinitely many n’s or finitely
many n’s according as Y ﬁ diverges or converges. Then it arose a natural
question to quantify the iicceptional sets in terms of Hausdorff dimension. The
first published work on this aspect was due to Jarnik ([73] in 1928) who was
concerned with the set E of continued fractions with bounded partial quotients
and with the sets FEs, Fs,---, where F, is the set of continued fractions whose
partial quotients do not exceed «. He successfully got that the set F is of full
Hausdorff dimension, but he didn’t find the exact dimensions of Ey, Fj, - - -. Later,
lots of works were done to estimate dim FEs, including those of Good ([62]), Bumby
([29]), Hensley ([67], [68]), Jenkinson and Pollicott ([74]), Mauldin and Urbanski
([105]) and references therein. Up to now, the optimal approximation on dim Es

is given by Jenkinson ([75]) in 2004:
dimy Ey = 0.531280506277205141624468647368471785493059109018398779 - - -

which is accurate up to 54 decimal places. Other works which concern the Haus-
dorff dimensions of exceptional sets in continued fractions are Hirst [70, 71], Cusick
[37], Moorthy [110], Luczak [101], Kessebohmer and Zhu [79], Kessebohmer and
Stratmann [30], and Wang and Wu [111].

M. Pollicott and H. Weiss ([128]) initially studied the level set Fj of the Lya-
punov exponents and obtained some partial results about the Lyapunov spectrum

£(-). This is one of motivations for us to find a complete solution.

We briefly present our methods in finishing this subsection. The main tool
of our study on the Khintchine spectrum and Lyapunov spectrum is the Ruelle-

Perron-Frobenius operator with potential function
D, ,(z) = —tlog|T'(x)| + qlogar(x), Wy(x) = —tlog|T'(x)]
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where (t,q) are suitable parameters. The usual way, as Pollicott and Weiss did
([128]), to obtain the spectrum through Ruelle theory (the study about the Ruelle-
Perron-Frobenius operators and the thermodynamical formalism) fixes ¢ and finds
T'(q) as the solution of P(T'(q),q) = 0. (Here P(t,q) is the pressure corresponding
to the potential function of two parameters). The information contained in the
curve T'(q) can only give some partial results ([128]). In the thesis, we look for
multifractal information from the whole two-dimensional surface defined by the
pressure P(t, q) rather than the single curve T'(¢). This leads us to obtain complete
graphs of the Khintchine spectrum and the Lyapunov spectrum.

There exist several works on pressure functions associated to different poten-
tials in the Gauss dynamics. For a detailed study on pressure function associated
to one potential function, we refer to the works of Mayer ([107], [108], [109]),
and for pressure functions associated to two potential functions, we refer to the
works of Pollicott and Weiss ([128]), Walters ([I11], [112]) and Hanus, Mauldin
and Urbanski ([61]). We will use the theory developed in [(4].

1.3.4 Non-normal continued fractions

We study two subsets of non-normal continued fractions. One is the set of
continued fractions with maximal frequency oscillation, and the other is the set of
extremely non-normal continued fractions which was previously defined by Olsen
in [113].

Write the continued fraction expansion of x € [0, 1]NQ° as z = [a1(x), az(z), ... ].
Let N* denote the set of finite words over N, which will be called digit strings al-
ternatively. For any k-digit string W = (wy, - -+ ,wy) € N*, we write

fWzn) =H{1<j<n—k+1:ai(x)=wi, - a5p-1(2) = wi}

for the number of occurrences of W among the first n digits of . We are concerned
with certain sets of continued fractions which are determined by the limit behaviors
of the sequence of all asymptotic frequencies, namely, {% fW,z,n) :n>1,W €
N*}.

We denote by Freq(W,z) the collection of all accumulation points of the
sequence {1 f(W,z,n) :n > 1}, and

Freq(W) = U Freq(W, z).

z€[0,1)NQ°
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We are interested in the set
F={ze€l0,1): Freq(W,x) = Freq(W) for all W € N*}

of continued fractions with maximal frequency oscillation. This name is justified
by the fact that, for any digit string W € N*, the asymptotic frequencies of W
in the continued fraction expansion of x € F oscillates to the maximal possible

extent.

The set F is a set of totally non-normal continued fractions. To be more
precise, let u be any Borel probability measure which is ergodic with respect to
the Gauss transformation (see [72]), then the Birkhoff ergodic theorem implies
that for p-almost all z € [0, 1)

T S (Woz,m) = ey € 0.1): ay(y) = ;.1 < 5 < )
for every W = (wy,--- ,wy) € N*. Let us say that z is a p-normal continued
fraction if the last relation holds. It is then clear that F is a set of non-normal
continued fractions which has p-measure null. Therefore, the set F is small in
the measure-theoretic sense. However, it is large from the topological viewpoint.
Indeed, one can show that [F is the intersection of a countable number of residual
sets, hence the set F is residual in [0,1), namely, its complementary set is of
the first category. As a consequence, the packing dimension of F is 1 (Theorem
7.1). However, it is interesting to note that the Hausdorff dimension of F is of

intermediate size.

Theorem 1.12 (Theorem 7.2). The set F of continued fractions with mazimal

frequency oscillation is of Hausdorff dimension one-half.

The other interesting set we will consider is the set E of extremely non-
normal continued fractions introduced by Olsen ([113]) in 2003. Let us first recall
the definition. For each k > 1, define the simplex of probability vectors with index
set N¥ by

Ay = {(p(W))WeNk :p(W) >0, Zp(W) = 1} :

We will denote the elements of A, by vectors, and equip A with the 1-norm

17=dll, = D [p(W)—q(W)|.

W eNk
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Define the sub-simplex of shift invariant probability vectors in Ay by

S = {ﬁe Ay Zp(iV) = Zp(Vi) forall V € Nkl} )

Denote the vector of n-th asymptotic frequencies of the k-words occurring in x by

1
Hk<1;7 n) = (Ef<W7 xz, n))WeNk‘
It is clear that II;(x,n) € Ag. Let Ag(z) denote the set of accumulation points

of the sequence {II(z,n)},”, with respect to the I-norm ||.||,. It is known that
Ay (z) C Sk (see [113]). Then we define

Ek = {l’ € [0, 1) N @c . Ak(QZ) = Sk}

and E = (2, E;, which is called the set of extremely non-normal continued

fractions.

The set E is closely related to the set F of continued fractions with maximal

frequency oscillation. Indeed, we have E C F (Theorem 7.3).

In [I13], Olsen proved that the set E is residual in [0,1) and has packing
dimension 1. (Therefore the assertion that [ is residual and of packing dimension
1, comes directly from the fact that E C F.) As for the Hausdorff dimension,
based on the analogous results in the decimal expansion case, it was conjectured

in [113] that dim(E) = 0. However, we prove that

Theorem 1.13 (Theorem 7.4). The Hausdorff dimension of the extreme non-

normal continued fraction set E is one-half.

1.3.5 The Frequency of partial quotients in continued fractions

We study the Besicovitch-Eggleston sets defined by the points with given

frequencies of partial quotients of continued fractions.

The continued fraction of an irrational z is still denoted by x = [ay, as, ag, - - -]
For x € [0,1)NQ¢, define the frequency of the digit j € N in the continued fraction
expansion of x by
Tj (.17, n)

() = lim 00,

if the limit exists, where 7;(z,n) := Card{k : ax(z) = 7,1 < k < n}.
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A probability vector p'= (p1,pa,...), i.e., p; > 0forall j > 1 and 377, p; =
1, will be referred to as a frequency vector. For such a given vector p, we define

the Besicovitch-Eqggleston set
E={re[0,1)NQ°: 7;(x) =p; Vj > 1}.
Recall that Gauss transformation 7" admits an ergodic invariant measure g,

1
dpg = —————=d
fa (14 z)log?2 v

By Birkhoff’s ergodic theorem, for Lebesgue almost all points (pug-a.e.)

1/3 1 1 (i +1)?
T (1) = dx = lo - ) Vj Z 1
() /wﬂ) 1+a)log2™ ~“log2 Si(i+r1)

Thus if we take

1 (i +1)

= V> 1, 1.6
bi log 2 °8 i(i+1) )= (16)
then &y admits Lebesgue measure 1.
For any aq,as,--- ,a, € N, let
ar, a2, ,an) ={2 €[0,1) : a1(x) = a1, a2() = az, -+, an(x) = ay}

and call it a rank n fundamental interval . Denote by M., the set of T-invariant
ergodic measures. The entropy of p will be denoted by h,. Let N be a sub-
set of Moy such that for any p € N, one has p(I(j)) = p; for all j > 1 and
—2 [logzdp < oo. Denote the Hausdorff dimension by dimy. With the conven-

tion sup ) = 0, we have the following theorem.

Theorem 1.14 (Theorem 8.1). For a given frequency vector p, we have

1 h
dimy (&) = - B —— 1.7
imp (Ep) maX{T sup —2flogxd,u} (1.7)

The study of the Besicovitch-Eggleston type sets dates from the work of
Besicovitch ([15]) in 1935 and Eggleston ([13]) in 1949, in which they studied the

m-~adic expansion case. For the Besicovitch-Eggleston sets in continued fractions,
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Kinney and Pitcher ([88]) obtained a lower bound in 1966. They showed that if
> i1 pjlogj < oo, then

* p.logp,
dimg &5 > —Zj_lp] gp]’
2 [log xdpy

where pz is the Bernoulli on [0, 1] such that p(I(j)) = p; for all j > 1. This lower

(1.8)

bound is in fact the Hausdorff dimension of the Bernoulli measure pz. However,
by the result of Kifer, Peres and Weiss ([37]) in 2001, this lower bound is not
always the best one. It is proved that there exists a universal constant ey > 1077,

such that

dimpy py <1 —¢€p, for any Bernoulli measure fi;. (1.9)

Take po = (p9);>1 as (1.6), for example, then dimy(E5) = 1. But by (1.9),
any Bernoulli measure can obtain the Hausdorff dimension 1. Thus Kinney and

Pitcher’s result (1.8) can not serve as an exact lower bound for dimension of &

In 1975, Billingsley and Henningsen ([17]) searched the lower bound by con-

sidering all ergodic measures and proved that if Z]oil pjlogj < oo, then
dimy (E5) > sup L
peN —2flogxdu
It is essentially a half part of the lower bound of Theorem 1.14, except that in
Theorem 1.14, we do not assume Z;’;lpj logj < co. At the end of Section 8.4,

we will show that if

ij log j = oo, (1.10)
j=1
then X

In fact, the condition (1.10) implies N' = (), thus by the convention of sup ) = 0,
the right side of (1.7) gives the value 1/2.

The other half part of the lower bound of Theorem 1.14, dimgy(&;) > 1/2,
is a corollary of Proposition 1.7 in [97]. However, we will give a direct proof in
Chapter 8 (Section 8.4). The key point is that there are infinite possible choices

of the digits which allow us to construct a big enough Cantor like subset of &.
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To give an exact upper bound of the Hausdorff dimension of any Besicovitch-
Eggleston set in continued fractions. We will use the techniques of [97] and [17] in
estimating the lengths of fundamental intervals, to distinguish the effect of both
two parts of 1/2 and the well-known variational principle in Theorem 1.14. We
briefly explain how we made it. Denote the right side of (1.7) by s. We prove the
upper bound of Theorem 1.14 by the definition of Hausdorff dimension. By using
the rank-n fundamental intervals as a cover of £, for any v > s, we will need to
estimate the following

> M-l (1.11)
@1z €A
where zy---x, € A signifies that the digits zy,...,x, satisfies some frequency
conditions. We fix a large enough N and use Lemma 2.38 to pick up the digits
which is larger than N. Suppose there are n digits which is smaller than N among
x1,...,T,. We have (1.11) is less than

0o 8 n—mn
(Z <j_+1—>zv> S e )l

J=N+1 z1--zr €A

where A signifies the set of words which is in A but with digits less than N. Then
the first term is bounded by a constant, since v > s > 1/2. The second term can
be treated the similar way as that in Billingsley and Henningsen [17], since the
digits 1, ..., x5, € A contains only digits less than N. Since

v > s > sup L,

peN —2 [log xdp

the second term is bounded from infinity. Combining these two terms, we have
for any v > s, the summation of (1.11) is strictly less than infinity, which implies
the Hausdorff dimension of &y less than s.

To end this subsection, we would like to remark that the methods to cal-
culate the Hausdorff dimensions of Besicovitch-Eggleston sets are different from
those to obtain the Khintchine and Lyapunov spectra. In the study of Khintchine
and Lyapunov spectra, we find suitable measures which are supported on the level
sets of Birkhoff averages though the theory of Ruelle operator. While to calcu-
late the Hausdorff dimension of Besicovitch-Eggleston sets, we on one hand, find
some Cantor like subset bounding the dimension from below; on the other hand,

estimate the Hausdorff measure directly which induces the upper bounds.
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Chapter 2

Preliminaries

2.1 Basic definitions and properties of dynamical systems

An introduction to the study of dynamical systems can be found in the books:
Denker, Grillenberger and Sigmund [39], Walters [110], Katok and Hasselblatt [7%],
Pollicott and Yuri [127], Kurta [94].

A terminology: we say the transformation satisfies some property if the dy-

namical system satisfies that one.

2.1.1 Topological dynamical systems

A topological dynamical system is a pair (X, 7") where X is a compact metric

space with a metric d, and T : X — X is a continuous transformation.

A point z € X is called a fixed point if T'(z) = x. A fixed point z € X is said
to be stable if for any € > 0, there exists § > 0, such that for any y € X satisfying
d(y,z) < ¢, one has d(T"y,x) < € for all n > 0. A fixed point x € X is said to be
attracting if it is stable and moreover there exists § > 0 such that for any y € X
satisfying d(y,z) < §, we have lim,, .., d(T"y,x) = 0. A fixed point which is not
stable will be called unstable.

A point x € X is periodic if there exists a positive integer p such that TPz = z.
The least p will be called the period of x. A point z € X is said to be eventually
periodic if there exists some nonnegative integer m such that 7™z is periodic.
A point is said to be preperiodic if it is eventually periodic but not periodic. A
periodic point with period p is called stable or attracting if it is stable or attracting

as a fixed point of TP.

If T has derivative at the fixed point z, then we also say x is attracting if
|T'(x)| < 1, repelling if |7"(x)| > 1 and indifferent if |T"(z)| = 1. For the definition
of the periodic point of period p, we say it is attracting, repelling and indifferent

if TP is so. It is easy to see repelling fixed points are unstable.
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Two topological dynamical systems (X, T) and (Y, .S) are said to be topologi-
cal conjugate if there exists a homeomorphism ¢ : X — Y such that ¢oT' = So¢.
The homeomorphism ¢ is called a conjugacy. If ¢ is not homeomorphism but
continuous and surjective then (Y, .5) is called a factor of (X,T") and ¢ is called a

factor map.

A topological dynamical system (X,7T) is said to be transitive if there exists
at least one point x € X such that the orbit set Op(z) := {T"x : n € N} is dense.
We call (X,T) a minimal system if for all points x € X, Or(z) is dense. The
system (X, T') is said to be chaotic if it is transitive and the set of periodic points
is dense in X and X is infinite. The system (X, T') is said to be mixing if for any
nonempty open sets U,V C X, there exists a positive integer N such that for all
n>N,T"(U)NnV #10.

A subset E C X is called T-invariant if TE = E. If E is closed and T-
invariant, then (F,T|g) becomes a subsystem. A closed and T-invariant subset £

is called a minimal set with respect to 1" if (£, T|g) is minimal.

Proposition 2.1. For any topological dynamical system (X,T), there ezists a

minimal set.

Proposition 2.2. If (X, T) is transitive or minimal, then for any f € C(X) (the
set of all complex valued continuous functions) satisfying foT = f, we have f is

a constant.

A point x € X is called an equicontinuous point if for any ¢ > 0, there
exists 6 > 0 such that for any y € X satisfying d(z,y) < 0 and for all n >
0, one has d(T"y, T"z) < €. A topological dynamical system (X,7") is said to
be equicontinuous if all the points in X are equicontinuous. It is said to be
almost equicontinuous if the set of the equicontinuous points is a residual set. In
particular, if 7" is an isometry then 7' is equicontinuous.

A system (X, T) is said to be sensitive if there exists an € > 0, for any z € X
and any d > 0, there exists y € X satisfying d(y,z) < d, and an integer n > 0
such that d(T"y, T"z) > e.

A system (X, T) is said to be expansive (positively expansive) if there exists
an € > 0 such that for any = # y € X, there exists an integer n > 0 such that
d(T"z, T"y) > e.
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Theorem 2.3 ([2]). A transitive system is either sensitive or almost equicontin-

uous.

Theorem 2.4 ([60],[2]). A transitive equicontinuous system is minimal and a

mainimal almost equicontinuous system s equicontinuous.

Theorem 2.5 (see [91], p. 147). A minimal equicontinuous system on a totally

disconnected infinite space is topologically conjugate to an adding machine.
Theorem 2.6 ([60]). A chaotic system is sensitive.
Proposition 2.7. A mizing dynamical system with at least two points is sensitive.

Proposition 2.8. If X is perfect and (X, T) is positively expansive then (X,T)

18 sensitive.

2.1.2 Measure-preserving dynamical systems and ergodic theory

Let (X, B, i) be a probability space where B is a o-algebra and p is a probabil-
ity measure. A transformation 7' : X — X is said to be measurable if T-!(B) C B,
and measure-preserving if 7' is measurable and u(7'B) = u(B) for all B € B.
If T is measure-preserving, then (X, B, u,T") will be called a measure-preserving
dynamical system. If T is invertible and 77! is also measure-preserving, then
(X, B, u, T) will be called a measure-theoretic dynamical system. 7" will be called
an isomorphism from (X, B, 1) to itself.

Two measure-preserving systems (X, B, u,T) and (Y,C,v, S
theoretic conjugate if there exist X’ € B,Y" € C such that p(X\ X’

) are measure-
) =v(Y\Y') =
0 and there exists an isomorphism ¢ : X’ — Y’ such that v = o ¢! and
poTlT = So¢ pae. If@is not isomorphic but only measure-preserving and
surjective, then (Y,C,v,S) will be called a factor of (X,B,u,T) and ¢ will be

called a factor map.

Theorem 2.9 (Poincaré’s Recurrence Theorem). Let (X, B, u,T) be a measure-
preserving system . Let E € B satisfy u(E) > 0. Then there exists FF C E with
w(F) = p(E) such that for every point x € F, there is a sequence of positive
integers ny < ng < mg < --- with T"(z) € E for each i.
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The measure-preserving system (X, B, u, T) is said to be ergodic if for any
B € B satisfying T-'B = B, one has u(B) = 0 or u(B) = 1. We also say T or u

is ergodic in this case.
Proposition 2.10. The following are equivalent:
(1) T is ergodic,
(2) for any B € B satisfying u(T~*B A B) =0, one has u(B) =0 or u(B) =1,
(3) whenever f is measurable and f oT = f a.e., then f is constant a.e.,
(4) whenever f € L*(u) and foT = f a.e., then f is constant a.e..

Theorem 2.11 (Birkhoff Ergodic Theorem). Suppose (X, B, u,T) is a measure
preserving system and f € L'(u). Then there exists a function f* € L'(u) such

that f*oT = f*, [ f*du= [ fdu and

o1
lim —
n—oo N,

Zf(zj) = f*(z), p—ae.
7=0

If T is ergodic then f* is the constant [ fdu, p— a.e..

Theorem 2.12 (von Neumann mean Ergodic Theorem). Let (X,B,u,T) be a
measure-preserving system and f € LP(u). There exists a function f* € LP(u)
such that f*oT = f*, and

1 n—1 4
Jim || ST () — (@) =0,
7=0

A measure-preserving system (X, B, u, T) is said to be weak-mixing if for any
A, B € B, one has

n—1

.1 i
lim = | u(T7ANB) = p(A)u(B) [=0.
=0

It is said to be strong mixing if for any A, B € BB, one has

lim | f(T7ANB) = pu(A)u(B) |= 0.

n—oo
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2.1.3 Topological and measurable dynamical systems

The topological dynamical systems and the measure preserving dynamical
systems are always mixed together. Let (X, T") be a topological dynamical system
with X a compact metric space and T" a continuous transformation. Let B be the
Borel o-algebra. Denote M denote the set of all Borel probability measures on
X and M;,, the set of all T-invariant measures in M. The system (X, 7T) always

possesses some T-invariant Borel probability .

Theorem 2.13 (Kryloff-Bogoliouboff ([93],1937)). The set M,y is nonempty.

We remark that Oxtoby and Ulam ([1158],1939) gave a sufficient and necessary
condition under which M;,, is nonempty for general T" on complete separable

metric space.

For M;,, we have

Proposition 2.14. The set Mi,, is a convexr subset of M, closed in the weak
topology. If T is not identity, then My, is nowhere dense in M.

If M,y is a singleton, then the system (X, T") is called uniquely ergodic.

Denote the set of all complex valued functions by C'(X).

Proposition 2.15. For the topological dynamical system (X,T), the following are

equivalent:
(1) T is uniquely ergodic,
(2) forall f € C(X), (1/n) Z;:Ol f(Tiz) converges uniformly to a constant,
(3) for all f € C(X), (1/n) 2;:01 f(T7x) converges pointwise to a constant.

(4) there exists p € My, such that for all x € X,

n—1

A system is called strictly ergodic if it is uniquely ergodic and minimal.

Proposition 2.16. Let (X,T) be a topological dynamical system with T a home-
omorphism. Suppose (X, T) is uniquely ergodic with Mi,, = {u}. Then T is
minimal if and only if n(U) > 0 for all nonempty open set U.
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Proposition 2.17. Let (X, T) be a topological dynamical system with X a compact

metric space and T being equicontinuous. Then the following are equivalent:
(1) T is minimal,
(2) T is uniquely ergodic,
(8) T is strictly ergodic,
(4) T is ergodic for any p € My, with u(U) > 0 for any open set U,
(5) T is ergodic for some p € Min, with p(U) > 0 for any open set U.

Corollary 2.18. Let (X, T) be a rotation dynamical system on the compact metric
group X. Then T is uniquely ergodic if and only iof T is minimal. The Haar

measure is the only invariant measure. In this case, the system is strictly ergodic.

2.2 p-adic numbers, p-adic analysis and p-adic dynamics

For an introduction to p-adic numbers and p-adic analysis, we recommend
the book of Schikhoff ([131]). For p-adic dynamics, see the book of Khrennikov
and Nilsson ([30]).

Let K be a field. An absolute value on K is a function |- | : K — [0, 00) such
that

(1) |z| > 0 for all x € K, and |z| = 0 if and only if z = 0,
(2) lay| = [ally| for all 2,y € K,
(3) |z +y| < x|+ |y| for all z,y € K.

If we have |z + y| < max{|z|, |y|} for all x,y € K replacing the third one above,
the absolute value will be called non-Archimedean, and the field K will be called
a non-Archimedean field. The image under the function | - | of the multiplicative
group K* of K is a subgroup of (R, x). If this subgroup is discrete we will say

the absolute value is discrete.
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Let p > 2 be a prime number. For all n € Z\{0}, we denote by v,(n)
the greatest integer £ > 0 such that p* divides n in Z. By convention, we put

v,(0) = +o0. For all z = m/n € Q with m,n € Z and n # 0, define

’gj‘ = p—Up(m/n) — p—(Up(m)—Up(n)).
p

Then || pisa discrete non-Archimedean absolute value on Q, called p-adic absolute

value over Q, while v, is called the p-adic valuation over Q.

The field Q, of p-adic numbers is the topological completion of Q with respect
to the metric topology induced by || . The extension of |-, (resp. vj) will still be

denoted by the same notation.

It is known that |-, is ultrametric over Q,: for all z,y € Q, such that

2], # [y, we have
2+ yl, = max {Jal,,, yl, } -

A sequence (z,),>0 in Q, is convergent if and only if

lim v,(z, —2,-1) = +00.
n——4oo

Any z € Q,, can be written as

T = Z Tnp" (0 <z, <p).

nzup(z)

The ring Z,, of p-adic integers is the local ring of Q,. It is the unit ball of Q,:
Zy,={x € Q,: |x|, <1}. It is also the closure of N with respect to the topology

induced by | - |. Furthermore, Q, is locally compact and Z, is compact.

Denote by Z,[x] be the set of all polynomials with coefficients in Z,. We have
the following.

Theorem 2.19 (Hensel’s lemma). Let f € Zy[z]. Assume that there exist o € Z,,
and v € N such that

f(ag) =0 (mod p**1),
f' (o) =0 (mod p?),
f'(ao) # 0 (mod p™™H).

Then there exists a € Zy, such that f(a) =0 and o = o (mod p'*1)
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The following results concern about squares in Q,.

Lemma 2.20 (Euler’s criterion). Let p > 3. We have u € (Z/pZ)" is a square if
and only if ' =1 (mod p)

Proposition 2.21. Suppose p > 3. Let x = p»@u € Q,\{0}. Then x is a square
in Q, if and only if vy(x) is even and the image @ of u in (Z,/pZ,)" = (Z/pZ)",

1S a square.

Proposition 2.22. Suppose p = 2. Let x = p»@u € Q, \ {0}. Then = is a

square in Q, if and only if v,(x) is even and w =1 (mod 8).

Let X C Q,. The set of all continuous functions f : X — Q, is denoted by
C(X) and the set of bounded continuous functions is denoted by Cy(X). If X is
compact, then C(X) = Cy(X). Let B(X,Q,) be the set of all bounded functions
from X to Q,. Define a norm on B(X,Q,) by

IS lloo= sup £ ()],
rzeX

Then Cy(X) is a closed subspace of the non-Archimedean Banach space B(X,Q,).
A function f : X — Q, is said to be locally constant if for any point z € X, there
exists a neighborhood U such that f is constant on U N X. Locally constant
functions are continuous functions and dense in the Banach space Cp(X).

Let U C Q, be an open set. The function f : U — Q, is differentiable at

x € U if the following limit exists:

o) — i LE D) =)

h—0 h
In this case, f'(x) is called the derivative of f at x. If f is differentiable at every
point in U, we say f is differentiable on U.

We remark that the classical mean-value theorem in p-adic analysis is invalid,
and there exists some function with derivative equals zero everywhere but is not
constant.

A function f : X — Q, is continuously differentiable at a point a € X if the

following limit exists
fx) = fy)
AS(zy)—(00) T —1Y
where A = {(z,y) : z,y € X,z # y}. Obviously, continuously differentiability

implies differentiability.
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Proposition 2.23. If f : X — Q, is continuously differentiable at a € X, then
there exists a neighborhood U of a such that

1f(@) = fWl = f(a)plz—yl, 2,yeXNU.
A function f : X — Q, is 1-Lipschitz if
f@) = fWlp <lv—yl, VoyeX

Any polynomial f € Zy[z] is 1-Lipschitz, and any 1-Lipschitz function is

equicontinuous. Thus by Proposition 2.17, we have

Proposition 2.24. The minimality of f € Zylx] on a closed subset of Z, is
equivalent to its ergodicity, uniquely ergodicity and strictly ergodicity respect to

the normalized Haar measure.

For the ergodicity, we have the following theorem.

Theorem 2.25 ([5], [33]). Let X C Z, be a compact set, and f € Z,[z]. f is
measure-preserving (or, accordingly, ergodic) if and only if it is bijective (accord-

ingly, transitive) on X/p"Z, for alln > 1.

2.3 Entropy and Hausdorff dimension

We recommend the book of Walters ([110]) and Pollicott and Yuri ([127]) for
the definitions and properties of the classical topological entropy and measure-
theoretic entropy, the books of Falconer ([14], [15]), Mattila ([102]), and Pesin
([119]) for the basic knowledge of Carathéodory structure and Hausdorff dimen-
sion, and the original paper of Bowen ([24]) for the definition of the generalized

version of topological entropy and its properties.

2.3.1 Topological entropy and measure-theoretic entropy

Let (X, T) be a topological dynamical system with X a compact metric space
and T" a continuous transformation. Let o = {4;}, 3 = {B;} be two (finite) covers
of X. The refinement of o and [ is defined by
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For finite cover a« = {A;, ..., A,}, define the topological entropy of « by H(«) :=
log N(a), where N(«) is the smallest number of sets of subcovers of . The

topological entropy of T relative to a cover « is defined by
T, «) ;= limsup 1H(\/;I oT ).
The topological entropy of T is defined by
hiop(T') := sup{h(T, @) : a is a finite cover of X }.

Proposition 2.26. Any expansive homeomorphism has finite topological entropy.

Proposition 2.27. The homeomorphisms of the unit circle and [0, 1] are of topo-

logical entropy zero.

Let (X,B,u,T) be a measure-preserving dynamical system. We say a =

{A;}icr is a countable measurable partition of the probability space (X, B, ) if
(1) X =U;A; up to a set of zero p-measure, and
(2) AinA; =0(i # j) up to a set of zero p-measure.

Define the information function I(a) : X — R by

= log (A1 (2),

where 14, is the indicator function of the set A;. The entropy of the partition a

is defined by
Hia)i= [ 1(@)dn ==Y (e)logala

Aca
Given a sub-o-algebra A C B, the conditional information function I(a|.A) :
X — R is defined by

I(alA)(z Zlogu Ai A) ()14, (2),

where u(A;|A)(x) = E(Ly4,(x)|.A)(z) is the conditional measure. The conditional
entropy of a with respect to A is defined by

H(a|A) ::/I(a|A)d,u
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For partition oo = {4;}, we write
VAT = {A;,, NT'A;; Nn---NT- DA, - A €a}

The entropy of partition « is defined by

h(T,a) ;== lim Hila) = inf

n—00 n n>1 n

H,(a)

)

where H,(a) := H(V{ZyT'a) can be proved to satisfy the subadditive property.

Given two partitions a and 3, the notation H(«|3) means H(a|5), where 3
is the o-algebra generated by f.

Proposition 2.28. We have an alternative definition of the entropy of a:

h(T,a) = lim H(a| Vi T "a).

n—oo

The measure-theoretic entropy of T is defined by

h,(T):= sup h(T,a).
{a:H(a)<o0}

Proposition 2.29. Any rotation of a compact metric abelian group is of measure-

theoretic entropy zero.

Let (X, T) be a topological dynamical system with X a compact metric space
and T" a continuous transformation. The entropy map is defined by p — h,(T)
from My, to [0, oc].

Proposition 2.30. The entropy map is affine, i.e.,
hpﬂ+(1_p)V(T) = th(T) + (]‘ _p)hV(T)7 M,V € Minv-

Proposition 2.31. IfT is expansive, then the entropy map is upper semi-continuous,
i.e., for u € My, for any € > 0 there exists a neighborhood U of i such that for
any v € Miny, one has h,(T) < h,(T) +e.

Theorem 2.32. We have the following variational principle:
hiop(T) = sup{h, : p € Miny}-
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2.3.2 Carathéodory structure and Hausdorff dimension

Let X be a metric space with metric d, F a collection of subsets of X and n

a non-negative function on F. Assume that

(1) for any 6 > 0, there are Ey, Ey,--- € F such that X = U E; and
sup{diam(E;)} < § (here and the follows, “diam” stands for the diameter of
the sets),

(2) for any 6 > 0, there is an € > 0 such that n(E) < § for any £ € F with
diam(F) <e.

Then 7 = (F,d,n) will be called a Carathéodory structure. For Z C X define
Vs(Z) = inf{z n(E): Z C | JEi, 0 < diam(E;) < 5}.
i=1 i

We see that s is monotonic, thus we define the Carathéodory outer measure

Y= ¢(T) - 77Z)(‘7:.7 d, 77) by

Y(Z) = %{%%(2) = supYs(Z).

>0

We know that (see [102], p. 55.)

Proposition 2.33. The function 1 is a Borel measure and if the members of F

are Borel sets, then 1 is Borel reqular.

Suppose X is separable. Take F to be the collection of all subsets of X. For
s >0, let n(E) = diam®(E) and assume 0° = 1 and diam(()) = 0 for convenience.
Then the Carathéodory outer measure becomes the classical Hausdorff outer mea-
sure. Denote by H* the Hausdorff outer measure. An important fact is that it
will define the same Hausdorff outer measure H?* if we replace F by the collection

of all the open sets or the collection of all the closed sets.

The Hausdorftf dimension of a subset Z is then defined by
dim Z = inf{s: H*(Z) < oo} = sup{s: H*(Z) = oo}.
We have

Proposition 2.34. The Hausdorff dimension of Z will be the same if we replace
F by the family of the open balls or the family of close balls.
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2.3.3 Bowen’s entropy and Bowen Lemma

We still consider the topological dynamical system (X,7) where X is a com-
pact metric space with metric d and that T : X — X is a continuous transforma-

tion.

For any integer n > 1, define the Bowen metric d,, on X by

dp(z,y) = max d(T9z, Ty).

0<j<n
For any € > 0, denote by B, (x,€) the open d,-ball centered at = of radius e.

We follow Bowen’s definition of entropy ([25]). Let Z C X be a subset of X.
Let € > 0. We say a collection (at most countable) R = {B,,(z;,€)} covers Z if
Z C \J; Bn,(x;,€). For such a collection R, put n(R) = min; n,;. Let s > 0. Define

H(Z €)= 11}13f z; exp(—sn;),

where the infimum is taken over all covers R of Z with n(R) > n. The quantity

H?(Z,¢€) is non-decreasing as a function of n, so the following limit exists

H*(Z,e) = lim H(Z,¢).

n—oo

(We remind the readers that the function H*(-, €) is a Carathéodory outer measure
with F being the family of e-Bowen balls { B, (x, €)}, the metric being d,, and the
function n defined by n(B,(x,€)) = e™™.)

For the quantity H*(Z, €) considered as a function of s, there exists a critical

value, which we denote by hop(Z, €), such that

+OO, s < htop(Z, 6)

H*(Z ¢e) =
( ) { O, S > htop(27 6).

One can prove that the following limit exists
ht0p<Z) = hr% htop(27 E).

The quantity hiop(Z) is called the topological entropy of Z.

For x € X, we denote by V(x) the set of all weak limits of the sequence of
probability measures n~*! Z?;ol driz. It is clear that V(z) # 0 and V(z) C Miyy

for any x. The following Bowen lemma is important in estimating the entropies.
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Lemma 2.35 (Bowen [21]). Fort > 0, consider the set
BY = {z € X : Ju € V() satisfying h, < t}.
Then hiop(BW) <t

Let p € My, be an invariant measure. A point # € X such that V(z) = {u}
is said to be generic for p. Recall the definition of G, (Subsection 1.3.2), we know
that G, is the set of all generic points for u. Bowen proved that hi,(G,) < hy,
for any invariant measure. This assertion can be deduced by using Lemma 2.35.
In fact, the reason is that + € G, implies u € V(z). Bowen also proved that
the inequality becomes equality when g is ergodic. However, in general, we do
not have the equality hiop(GL) = h, (saturatedness, see Subsection 1.3.2) and it
is even possible that G, = (). Cajar ([30]) proved that full symbolic spaces are
saturated. Concerning the p-measure of G, it is well known that ;(G,) =1 or 0

according as whether p is ergodic or not (see the book of Denker, Grillenberger
and Sigmund ([39])).

2.4 Basic properties of continued fractions

In this section, we collect some known facts and establish some elementary
properties of continued fractions that will be used later. For a wealth of classical
results about continued fractions, see the books by J. Cassels ([32]), G. Hardy and
E. Wright ([65]). The books by P. Billingsley ([16]), I. Cornfeld, S. Fomin and
Ya. Sinai ([30]) contain an excellent introduction to the dynamics of the Gauss
transformations and its connection with Diophantine approximation.

Let © = [a1(x), az(z), - - - | be the continued fraction expansion of z € [0,1)\Q.

Denote by p,, /g, the usual n-th convergent of the continued fraction of z, defined
by

Dn 1
Pr i fay(a), - anle)] = .
n ay (Zl?) + 1
CL2<$) + .+ m
It is known (see [31] p.9) that p,, g, can be obtained by the recursive relation:
Pn+1 = Qp+1Pn +pn—17 dn+1 = Qp+1Qn + Gn—1, N Z 1 (21)

with the convention that p_1 = ¢y = 1, pg = ¢_1 = 0. Furthermore, we have
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Lemma 2.36 ([72] p.5). Let ey, ,e, € RT. Define inductively

Q—l = 07 QO = 17 Qn(517 e 7677,) = 5nQn—1(517 e Jgn—1> + Qn—2<€17 e 7671—2)'

(Q., is commonly called a continuant.) Then we have

7’) Qn<€17"' 75n) = Qn(gny"' 751);
i) qn = Qn(ay, - ,an), Pp = Qn-1(az, -, an).

As consequences, we have the following results.

Lemma 2.37 ([31]). For anyay,as, -+ ,a,,b1,--+ by €N, let g, = qn(ay, - ,ap)
and pn, = pp(ay, -+ ,a,). We have

n

(1) Pa-1Gn — Pndn—1 = (=1)";
(11) Qn—i-m(al; T, U, b17 T 7bm) = Qn(ala e 7an)Qm(b17 Tt 7bm) +

qn—1<a17 te 7an—1)pm—1(b17 e 7bm—1);
(i) ¢o>2"7, [lax<qn< II(ar+1)
k=1 k=1

Lemma 2.38 ([118]). For any ay,ag, - ,a,,b € N,

b+]—Sqn—i—l(ala"'7aj7b7aj+17'”)an) Sb—i—l (V1§j<n)
2 QR(ah"' yAjy Ajy1, 7an)
For any aq,as,--- ,a, € N, let
L(ai, a9, -+ ya,) ={x €0,1) : ap(x) = a, 1 <k <n}

which is called an n-th basic interval or a rank n fundamental interval. Sometimes,

we also write it as I(ay,as, -+ ,a,).

Lemma 2.39 ([72] p.18). For any aj,aq,--- ,a, € N, the rank n fundamen-
tal interval I, (a1, aq,--- ,a,) is the interval with the endpoints p,/q, and (p, +

Pn-1)/(Gn + qn_1). As a consequence, the length of I,,(ay,--- ,a,) is equal to

1
L(ay, -+ ,a,)| = ———. (2.2)
Qn(Qn + Qn71>
Consequently, we have an estimate
1 1
E S ’I(al,--- ,an) S g (23)
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We will denote I,,(z) the rank n fundamental interval that contains z, i.e.
I(z) = I,(a1(z), -+ ,an(x)). Let B(z,r) denotes the ball centered at = with
radius r. For any = € I,(a,- - ,a,), we have the following relationship between

the ball B(x,|I,(a1, -+ ,a,)|) and I,(ay,--- ,a,), which is called reqular property

in [23].
Lemma 2.40 ([23]). Let x = [ay,az,---|. We have:
3
(i) When a, # 1, B(x,|L,(z)]) € U (a1, - ,an+ 7).
j=—1
3
(i) When a, =1 and a,—1 # 1, B(z,|I,(z)]) € U In-1(a1, -, an-1+J).
j=—1

(iii) When a, =1 and a,—1 = 1, B(z, |I,(x)|) C Li—2(as, -+ ,a,_2).
From Lemma 2.37 and Lemma 2.39, we deduce the following estimation:

Lemma 2.41. For any irrational number x € [0,1) and n > 1
n 2
9—(2n+1) < |1 (2)] (H ak(:p)) <1
k=1

Suppose a, # 1. Let
I;L([L') :In(alf" 7an717j_1) and [7/1/<x) :In<a1a"' aanflaj—i_l)

be the fundamental intervals adjacent to I,(z). By (2.1) and Lemma 2.39, one

has the following lemma.

Lemma 2.42. If a,(x) > 2, then the lengths of the fundamental interval I,(z)

and its two adjacent intervals I, (z) and I!'(x) are related by

| Lo(2)|/3 < | Ly (2)| < [In(2)] < |1, ()] < 3|La())|.
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Chapter 3

Minimality of the Polynomials on Z,

In this chapter, a polynomial of degree > 2 with coefficients in Z,, is considered
as dynamical system on Z,. It is proved that the dynamics of such a system is
totally described by its minimal subsystems. For any quadratic polynomial on Zs,

we exhibit all its minimal subsystems. !

3.1 Introduction

Let Z, be the ring of p-adic integers (p being a prime number). Let f € Z,[x]
be a polynomial of coefficients in Z, and with degree deg f > 2. It is well known
that f : Z, — Z, is a 1-Lipschitz map. In this chapter we study the minimal

decomposition of the topological dynamical system (Z,, f).

One of interesting problems well studied in the literature is the minimality of
the system f : Z, — Z, ([1, 5, 33, 40, 82, 84, 85, 86, 89, 95]). If the system is not
minimal, we will prove the following result which says that the system admits at
most countably many minimal subsystems which totally describe the dynamics of

the system (see Theorem 3.18).

Theorem A. Let f € Z,[x] with deg f > 2. We have the following decomposition

z,=A| |B| |C
where A is the finite set consisting of all periodic points of f, B = ||, B; is
the union of all (at most countably many) clopen invariant sets such that each

subsystem f . B; — B; is minimal, and each point in C' lies in the attracting basin

of a periodic orbit or of a minimal subsystem.

Affine maps were fully studied in [50] (see also [31]). We will refer to the

above decomposition as the minimal decomposition of the system f : Z, — Z,,.

'A. H. Fan and L. M. Liao, On minimal decomposition of p-adic polynomial dynamical systems,

preprint.
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A finite periodic orbit of f is trivially a minimal set. The theorem shows that
there are only a finite number of periodic orbits. This is actually a consequence of
the following theorem. The results are due to Pezda [125] and to Desjardins and
Zieve [10] in the case p > 3. (see Theorem 3.17).

Theorem B. Let f € Z,[x].

1) If p > 5, the periods of periodic orbits are of the form ab with a|(p — 1)
and 1 < b <p.

2) If p =3, the periods of periodic orbits must be 1,2,3,4,6 or 9.

3) If p =2, the periods of periodic orbits must be 1,2 or 4.

In a recent work, Chabert, Fan and Fares [33] showed that each clopen set B;
must be a Legendre set and that in general, on any Legendre set there exist min-
imal 1-Lipschtz maps. We will show that for a polynomial system, the Legendre
sets B; are of special forms. Let (ps)s>1 be a sequence of positive integers such
that ps|psi1 for every s > 1. We denote by Z,, the inverse limit of Z/p,Z, which
is said to be an odometer. The map x — x + 1 is called the adding machine on

Zp,)- We will prove the following Theorem (see Theorem 3.21).

Theorem C. Let f € Z,[x] with deg f > 2. If E is a minimal clopen invariant
set of f, then f : E — E is conjugate to the adding machine on an odometer Z,,),

where

(ps) = (k?, k?d, k‘dp, kdpQ’ .. )
with some k € Nk <p and d|(p —1).

There are few works on the minimal decomposition. Multiplications on Z,
(p > 3) were studied by Coelho and Parry [31] and general affine maps were
studied by Fan, Li, Yao and Zhou [50]. In these cases and only in these cases, we

have known the minimal decomposition.

It seems much more difficult to study higher order polynomials, even the
quadratic polynomials. In this chapter, we try to attack the problem. The above
mentioned results are obtained by using some idea coming from Desjardins and
Zieve’s work [10]. Let E be an f-invariant compact set. It is now well known that
the subsystem (E, f) is minimal if and only if the induced map f, : E/p"Z —
E/p"Z is transitive for any n > 1 (see [5, 33]). The idea of Desjardins and Zieve
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is to establish relations between f,,’s cycles and f,1’s cycles, by linearizing the

map f¥ , on a k-cycle of f,.

For an arbitrary 2-adic quadratic polynomial
f(z)=ar* +bx +c

on Zs, we find all its minimal components. In fact, such a system f : Zy — Zs is

conjugate to one of the following quadratic polynomials
2=\ i4br, P*+zr—d

where A € Zy, b = 1 (mod 2) and v/d € Z,. The obtained results are stated in

Theorems 3.22-3.30. Let us state some of these results.

Theorem D. Consider the polynomial z* — X\ on Zs.

1) If X = 0 (mod 4), then there are two attracting fixed points, one in 47
with basin 275, and the other one in 1+ 47y with basin 1 + 27Z,.

2) If A =1 (mod 4), then the whole Zy is attracted into a periodic orbit of
pertod 2 with one orbit point in 47y, and the other one in 3 + 4Z;.

3) If A = 2 (mod 4), then there are two attracting fized points, one in 2+ 474
with basin 274, and the other one in 3 + 475 with basin 1 + 27Z,.

4) If A = 3 (mod 4), then the whole Zq is attracted into a periodic orbit of
pertod 2 with one orbit point in 1 + 474, and the other one in 2 + 47..

Theorem E. Consider the polynomial f(x) = x® +x on Zs[z]. There is one fived
point 0. We have f(1 4 2Zs) C 27y and we can decompose 27 to be

27, = {0}] | <|_| PARES 2”22) .

Each 2" + 2"Zy (n > 2) consists of 2”2 pieces of minimal components:

2t g2 4 22727, t=0,...,2" % — 1.

Y

Theorem F. Consider the polynomial f(x) = 2* + x — d with d = 3 (mod 4).
Then f(2Z3) C 14 2Zy and 1+ 27y is the unique minimal component of f.
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This chapter is organized as follows. In Section 3.2, we give a detailed recall
of the idea in [10] by studying the induced dynamical systems f,, on Z/p"Z when
p > 3. In Section 3.3, we consider the case of p = 2 which was not developed in
[10]. As we shall see, the case p = 2 is not exactly the same as the case p > 3. In
Section 3.4 and 3.5, we discuss how does a minimal component form by analyzing
the reduced maps f, (n > 1) and prove the decomposition theorem. In Section
3.5, we discuss the possible forms of minimal components. In Section 3.6, we give
a detailed description of the minimal decomposition for an arbitrary quadratic

polynomial system on Zs.

3.2 Induced dynamics on Z/p"Z, (p > 3)

The main core of this section follows Desjardins and Zieve [10]. We shall give
more details and rewrite some proofs for reader’s convenience. The case p = 2,
which is a little bit special, will be fully discussed in the next section.

Let p > 3 be a prime (we may replace 3 by 2 in many places). Let n > 1 be
a positive integer. Denote by f,, the induced mapping of f on Z/p"Z, i.e.,

falz mod p") = f(z)  mod p".
Many properties of the dynamics f are linked to those of f,,. One is the following.

Theorem 3.1 ([5], [33]). Let f € Z,[x] and E C Z, be a compact f-invariant set.
Then f: E — E is minimal if and only if f, : E/p"Z, — E/p"Z, is minimal for
eachn > 1.

It is clear that if f, : E/p"Z, — E/p"Z, is minimal, then f,, : E/p"Z, —
E/p™Z, is also minimal for each 1 < m < n. So, the above theorem shows that
it is important to investigate under what condition, the minimality of f,, implies
that of f,.1.

Assume that o = (xy,- -+ ,x,) C Z/p"Z is a cycle of f,, of length k (also called
k-cycle), i.e.,

fn(ml) = T2, " 7fn<xl) = Tjt1, 7fn('rk) =T1.

In this case we also say o is at level n. Let

k
X = | X where X;:={a;+p"t; t=0,---,p—1} CZ/p""'Z.

=1
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Then
for1(Xi) C X (1<i<k—1) and fo1(Xe) C X1

In the following we shall study the behavior of the finite dynamics f, 1 on
the f,,11-invariant set X and determine all cycles in X of f,, 11, which will be called

lifts of 0. Remark that the length of any lift 6 of ¢ is a multiple of k.
Let g := f* be the k-th iterate of f. Then, any point in o is fixed by g,, the

n-th induced map of g. For x € o, denote

(@) = ¢/ (@) = [ PP 0) 1)

o) v S —x

b,(x) := 3.2
(z) p - (3.2)
The values on the cycle o = (x1,...,xy) of the functions a,, and b, are important
for our purpose. With them, we define affine maps
O(z,t) = by(z) + ay(2)t (x € 0,t € Z/DZ).
The 1-order Taylor expansion of g at z implies
g(z +p"t) = 2+ p"by(2) + pan(x)t = x + p"P(x,t)  (mod p*™). (3.3)

An important consequence of the last formula shows that ¢,.1 : X; — X is

conjugate to the linear map
O(x;, ) Z)pZ — 7] pZ.

We could call it the linearization of g,.1 : X; — Xj.

As we shall see in the following lemma, the coefficient a,,(x) (mod p) is always
constant on X; and the coefficient b,(z) (mod p) is also constant on X; but under
the condition a,(z) =1 (mod p).

Denote by v,(n) the p-valuation of n.

Lemma 3.2. Letn > 1 and 0 = (x1,- -+ ,x%) be a k-cycle of f,.
(i) For 1 <1i,j <k, we have

an(z;) = an(z;) (mod p).
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(ii) For for 1 <i <k and 0 <t <p—1, we have
ans - 97) = (i) (mod 7).
(iii) For 1 <i<k and 0 <t <p—1, we have
bu(; + p't) = bu(z;)  (mod p),

where A := min{v,(a,(z;) — 1),n} = min{v,(a,(z;) — 1),n} for 1 <i,j <k.
(iv) If an(z;) # 0 (mod p) for some 1 < i < k, then for all 1 < 1,5 < k we
have
minuy (bu(z0)), n} = mingu, (bu(z;)),
Consequently, min{v,(b,(x;)), A} = min{v,(b,(x;)), A}.

Proof. Assertion (i) follows directly from the definition of a,(z;) and the fact that

o= (x5, fulxi), -, f¥Y(x;)). The assertion (ii) is a direct consequence of
k k
an(z; +p*t) = [[ /(P @i +p0) = [ £ (F (@) (mod p*).
=1 j=1

The 1-order Taylor expansion of g at x; gives
n nyy — n [ 9\Ti) — i n n
oot 00) = (o) = (P (g )~ 1) anod )

Hence
by (z; + p"t) = bp(x;) + t(an(x;) — 1)  (mod p").
Then (iii) follows.
Write
9(f (@) = flxi) = F(f*(x) = fm) = flai+ p"ba(:)) — fls).

The 1-order Taylor expansion f at z; leads to

9(f(xi)) = f(:) = p (i) f' (i) (mod p™).

Hence we have

bn(f(:)) = bu(wi) f'(w:)  (mod p").
Thus we obtain (vi), because a,(z;) Z 0 (mod p) (for some 1 < i < k) implies
f(x;) Z0 (mod p) for all 1 <i < k. O
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According to Lemma 3.2 (i) and (ii), the value of a,(z) (mod p") does not
depend on z € X. According to Lemma 3.2 (iii) and (iv), whether b,(z) =
0 (mod p) does not depend on z € X if a,(z) = 1 (mod p). For simplicity,

sometimes we shall write a,, and b, without mentioning x.

The above analysis allows us to distinguish the following four behaviors of
fni1 on X:

(a) If a,, = 1 (mod p) and b,, Z 0 (mod p), then & preserves a single cycle of
length p, so that f,,, restricted to X preserves a single cycle of length pk. In this
case we say g grows.

(b) If a, = 1 (mod p) and b, = 0 (mod p), then @ is the identity, so f 11
restricted to X preserves p cycles of length k. In this case we say o splits.

(c) If a,, = 0 (mod p), then ® is constant, so f,; restricted to X preserves
one cycle of length £ and the remaining points of X are mapped into this cycle.
In this case we say o grows tails.

(d) If @, # 0,1 (mod p), then ® is a permutation and the ¢-th iterate of ®

reads
Oz, t) = bu(al —1)/(a, — 1) + alt

so that

@%w—t:aﬁ—1)04- b ).

a, — 1
Thus, ¢ admits a single fixed point ¢ = —b,/(a, — 1), and the remaining points
lie on cycles of length d, where d is the order of a,, in (Z/pZ)*. So, fni1 restricted

to X preserves one cycle of length k and ’%1 cycles of length kd. In this case we

say o partially splits.

Now let us study the relation between (a,,b,) and (a1, b,41). Our aim is

to see the change of nature from a cycle to its lifts.

Lemma 3.3. Let 0 = (xy,...,x1) be a k-cycle of fhand let 6 be a lift of o of

length kr, where r > 1 is an integer. We have
ng1 (T +p"t) = ap () (mod p"),  (1<i<k0<t<p-—1) (3.4)

Pbns(x; + p't)

(3.5)
=t(an(z:)" — 1) + bp () (1 + an(x;) + - + an(z)"™")  (mod p™).
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Proof. The formula (3.4) follows from
tni1 = (¢7) (@i +p"t) = (") (1) = [ [ ¢(¢' (1) = @], (mod pr).

By repeating r-times of the linearization (3.3), we obtain

g (x; +p't) = 2 + (¢, z;)p"  (mod p*"),
where ®" means the r-th composition of ¢ as function of ¢. However,
O (t,2;) = tan ()" + bu(z:) (1 + an(@;) + - + an(2:) ).

Thus (3.5) follows from the definition of b,+1 and the above two expressions. [

By Lemma 3.3, we get immediately the following proposition.

Proposition 3.4. Let n > 1. Let o be a k-cycle of f, and ¢ be a lift of 0. Then
we have

1) if a, =1 (mod p), then a,+1 =1 (mod p);

2) if a, =0 (mod p), then a,+1 =0 (mod p);

3) if a, # 0,1 (mod p) and G is of length k, then a,,1 #Z 0,1 (mod p);

4) if a,, 0,1 (mod p) and & is of length kd where d > 2 is the order of a,
in (Z/pZ)*, then a,1 =1 (mod p).

This result is interpreted as follows in dynamical system language:

1) If o grows or splits, then any lift & grows or splits.

2) If o grows tails, then the single lift & also grows tails.

3) If o partially splits, then the lift & of the same length as o partially splits,
and the other lifts of length kd grow or split.

If o = (1, - ,x) is a cycle of f,, which grows tails, then f admits a k-
periodic point x( in the clopen set X = |_|f:1 x; + p"Z, and X is contained in the
attracting basin of the periodic orbit xq, f(xg), -, f* " 1(xo).

With the preceding preparations, we are ready to prove the following Propo-
sitions 3.5-3.7 which predict the behavior of the lifts of a cycle o by the properties
of 0. We refer the reader to [10] for their proofs. Otherwise we can follows the

similar proofs of Propositions 3.8-3.10 in the case p = 2.
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Proposition 3.5 ([10]). Let o be a growing cycle of f, and & be the unique lift of

.
1) If p > 3 and n > 2 then & grows.
2) If p>3 and n > 1 then & grows.
3) If p=3 and n =1, then & grows if and only if by(z) Z ¢"(x)/2 (mod p).
According to 1) and 2) of Proposition 3.5, in the cases p > 3,n > 2 and
p>3,n>1,if o = (xy, - ,x) grows then its lift also grows, and the lift of the

lift will grow and so on. So, the clopen set
k
X=||z+p'Z,
i=1

is a minimal set.
Let
A, (z) = vp(an(x) — 1), Byu(z) = v,(bn(x)).

By Lemma 3.2, for a cycle 0 = (xy,...,xx), min{A,(z;),n} and min{B,(z;),n}
do not depend on the choice of x;,1 < i < k. Without misunderstanding, we will

not mention x; in A,, and B,,.

Proposition 3.6 ([10]). Let p > 3 and n > 1. Let o be a splitting cycle of f,.

1) If min{A,,,n} > B, every lift splits first B, — 1 times then grows.

2) If A, < B, and A,, < n, there is one lift which behaves the same as o (i.e.,
this lift splits and Any1 < Bpy1 and A,y1 < n+ 1) and other lifts split A, — 1
times then grow.

3) If B, > n and A, > n, then all lifts split at least n — 1 times.

Proposition 3.7 ([10]). Let p > 3 andn > 1. Let o be a partially splitting k-cycle
of fn and & be a lift of o of length kd, where d is the order of a,, in Z/pZ.

1) If Anyq < nd, then G splits A,+1 — 1 times then grows.

2) If A1 > nd, then & splits at least nd — 1 times.

We remark that in the partially splitting case, min{ A4, 1(x),nd} depends
only on the lifting cycle of f,, .1 of length kd but not on z (see [10], Corollary 3).
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3.3 Induced dynamics on Z/p"Z, (p =2)

In this section we focus on the special case p = 2 which is not considered
in [10]. The first part in the preceding section (where p > 3 is not explicitly
assumed) remain true for p = 2. Notice that when p = 2, there is no partially
splitting cycles.

We only need to study how a cycle grow or split. We distinguish four cases.
Let ¢ be a cycle of f,. We say o strongly grows if a, = 1 (mod 4) and b, =
1 (mod 2), o weakly grows if a, = 3 (mod 4) and b,, = 1 (mod 2). We say o strongly
splits if a,, = 1 (mod 4) and b,, = 0 (mod 2), o weakly splits if a,, = 3 (mod 4) and
b, =0 (mod 2).

The following results hold true when p = 2. Their proofs are postponed and
get together at the end of this section.

Proposition 3.8. Let o be a cycle of f, (n >2). If o strongly grows then the lift
of o strongly grows. If o weakly grows then the lift of o strongly splits.

The first assertion of Proposition 3.8 implies that if ¢ = (z1, - ,x;) is a
strongly growing cycle of f,, (n > 2), then | |z; + p"Z, is a minimal set.
Recall that

Ap(x) = va(an(z) — 1), Bp(x) = va(bn(x)).

Proposition 3.9. Let o be a strongly splitting cycle of f, (n > 2).

1) If min{A,,n} > B,, then all lifts strongly split B, — 1 times, then strongly
grow.

2) If A, < B, and A,, < n, then one lift behaves the same as o (i.e., this lift
strongly splits and A,y1 < Buy1 and A, < n+1). The other one splits A, — 1
times, then strongly grows forever.

3) If B, > n and A, > n, then all lifts strongly split at least n — 1 times.

Proposition 3.10. Let o be a weakly splitting cycle of f,, (n > 2). Then one lift

behaves the same as o and the other one weakly grows and then strongly splits.

To prove these propositions, we need the following lemmas.

52



Lemma 3.11. Let o be a growing cycle of f, (n >2). Then

any1(z;)) =1 (mod 4), (3.6)

2bp41(z; + pt) = bp(x) (1 + an(z;))  (mod 4). (3.7)
Proof. Taking p =2 and r = 2 in (3.4), we get
ans1(2) = a(z;)  (mod 27).

Since n > 2 and a,, = 1 (mod 2), we obtain (3.6).

Taking p =2 and r = 2 in (3.5), we get
2011 (15 + 2') = t{an(2;)* — 1) + by(2;) (1 + ap(z;))  (mod 27).
Since n > 2 and a, = 1 (mod 2), we obtain (3.7). O

Lemma 3.12. Let o be a splitting cycle of f,.
If A, <n, then A, 1 = A, and if A, > n, then A1 > n. Consequently,

min{A,;1,n} = min{A,,n}. (3.8)
Proof. We need only to notice that we have a,.; = a,, (mod 2") since o splits. [

Lemma 3.13. Let 0 = (z1,...,xy) be a splitting cycle of f,. Then for 1 <i <k

and fort =0 or 1, we have
2b, 41 (x; 4+ 2"t) = by () + t(an(z;)) — 1)  (mod 27). (3.9)
Consequently, we have
Bpii(z; +2"t) = Bu(z;) — 1 if B,(z;) < min{A,(x;), n}, (3.10)

Proof. Since o splits, taking p =2 and = 1 in (3.5), we obtain the result. O]

The following lemma concerns an elementary property of polynomials on Zs.

Lemma 3.14. Let h € Zslx]. If a = b (mod 2), then h'(a) = h'(b) (mod 4).
Furthermore, if h'(a) =1 (mod 2), then h'(a)h/(b) =1 (mod 4) .
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Proof. Tt suffices to notice that the coefficient of %1 in h'(z) is equal to 0 (mod 2).
[

Lemma 3.15. Let o be a growing k-cycle of f, (n > 1). Then its lift strongly

grows or strongly splits.

Proof. Let xy be a point in 0. What we have to show is a,.1(z1) = 1 (mod 4).

Since o is a growing k-cycle, we have
f¥(zy) = 21 (mod 2"), an(21) = (f%)(z1) =1 (mod 2).

So, by Lemma 3.14, we have

ani1(21) = (f*) (21) = (/) (@) (F*) (f*(21)) =1 (mod 4).

A direct consequence is the following result.

Corollary 3.16. If a cycle grows twice (maybe between the two growths, it splits

several times), then it will grow forever.

Proof. Let ¢ be the lift of a growing cycle . Assume that after several times of
splitting, one of lifts of ¢ grows. By Lemma 3.15, this growing lift at a level n > 2
must strongly grow. Thus by Proposition 3.8, it will grow forever. O

We are now going to prove Propositions 3.8-3.10.

Proof of Proposition 3.8. If o grows, then by (3.6), the lift of o strongly grows
or strongly splits. If o strongly grows, then by (3.7), we have

2b, 41 (x; + pt) = 2b,(z;)  (mod 4).

Thus
bpi1(x; +p"t) = by(x;) #0  (mod 2).

Hence the lift of o strongly grow.
If o weakly grows, then by (3.7), we have

2, 1(x; +p"t) =0 (mod 4).
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Thus
busi(z; +p"t) =0 (mod 2).

Hence the lift of o strongly splits. OJ

Proof of Proposition 3.9. First notice that if o strongly splits then a, =
1 (mod 4). Since n > 2, by Lemma 3.2 we have a; = 1 (mod 4) for all ¢ > n.
So, all the lifts strongly grow or strongly split. Recall that by Lemma 3.2, both
min{A4,(z;),n} and min{B,(x;),n} are independent of z;. We will simply write
A,, and B,, if there is no confusion.

Proposition 3.9 contains three cases which are defined by some conditions on
A, and B,. If such a condition is satisfied, we say o or (A,, B,) belongs to the

corresponding case.

Case 1: min{A,,n} > B,. By (3.10), we have B,,;; = B,, — 1. Thus by (3.8)
min{A,11,n+ 1} > min{A,1,n} = min{A,,n} > B, > B,1.

Hence the lifts of o still belongs to Case 1. By induction, we know that after
¢ := B, times, B, , = 0 (i.e. b,4¢ # 0 mod p). Since o strongly splits, we have
anie = 1 (mod 4). Thus the lifts at level n + ¢ strongly grow. That is to say all

lifts of o split B,, — 1 times, then strongly grow forever.

Case 2: A, < B, and A, < n. By Lemma 3.12, we have A,,; = A,. Since
B, > A, there exists one t such that

by +t(a, —1) =0 (mod 24T1),
and the other which we can write as 1 — ¢ such that
by +t(a, —1)#0 (mod 24T,

Hence by (3.9), for one lift of o B, 11 > A, and for the other one B,,;; = A, — 1.
Thus for one lift, A,.1 = A, < B,11, and A,,; = A, < n+ 1. Therefore, this
lift belongs to Case 2. For the other one, B,,1 = A, — 1 = A,.1 — 1 < A1,
and B,y1 = A, — 1 <n+ 1. Thus this lift belongs to Case 1. By induction, we
know that one lift of o behaves the same as o (i.e., strongly splits and satisfies
the condition of Case 2 at level n+ 1) and the other one splits A,, — 1 times, then
the lifts strongly grow.
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Case 3: B, > n and A, > n. By the definition of b, if the cycle splits, the
order of b, deceases at most one when the level goes up one step. Since B, > n,
we have B, ;1 > n — 1, and if n > 2, the lifts of o still strongly split. Thus by
induction, the lifts of o split at least n — 2 times. But after that we can not give

any more information. O

Proof of Proposition 5.10. Since o weakly splits, a,11 = a, = 3 (mod 4).
Thus A,41 = A, =1<nand B, >1=A,. Thus (A4,, B,,) belongs to Case 2 in
Proposition 3.9. By the proof of Proposition 3.9, we know that for one lift of o,
B,y1 > A, and then A, 1 = A, < B,;1. Thus this lift behaves the same as o.
For the other lift, B,,,; = A, — 1 = 0. Hence this second lift weakly grows, and
then strongly splits by Proposition 3.8. Therefore, we complete the proof. O

3.4 Minimal decomposition

If a cycle always grows then it will produce a minimal component of f. If
a cycle always splits then it will produce a periodic orbit of f. If a cycle grows
tails, it will produce an attracting periodic orbit with an attacking basin. We shall

describe this more precisely.
Let 0 = (x1,...,x%) be a cycle of f,. We say o is a cycle at level n. Let

k
X:= I_l(l’l +p"Z,).

i=1
There are four special situations for the dynamical system [ : X — X.

(S1) Suppose o grows tails. Then f admits a k-periodic orbit with one pe-
riodic point in each ball z; + p"Z, (1 < i < k), and all other points in X are
attracted into this orbit. In this situation, if x is a point in the k-periodic orbit,
then |(f*)(z)|, < 1 since (f*)(z) = am(z) = 0 (mod p™) for all m > n. The
periodic orbit (x, f(x),---, f*"}(z)) is then attractive.

(S2) Suppose o grows and its lifts always grow. Then f is transitive on each
X/p™Z, m > n. Thus, by Theorem 3.1, f is minimal on X. In this case, we say
that o is a starting growing cycle at level n.

(S3) Suppose o splits and there is a splitting lift on each level larger than n.
Then there is a k-periodic orbit with one periodic point in each z; + p"Z, (1 <
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i < k). We say that o is a starting splitting cycle at level n. In this situation, if
r is a point in the k-periodic orbit, then (f*)(z) = 1 since (f*)(z) = an(z) =
1 (mod p™) for all m > n. Thus the periodic orbit (x, f(z),---, f*1(z)) is

indifferent.

(S4) Suppose o = (x1, ..., ) partially splits (p > 3). Then by Proposition
3.7, there is one lift of length k£ which still partial splits like o. Thus there is a
k-periodic orbit with one periodic point in each z; + p"Z, (1 < i < k). In this
situation, if z is a point in the k-periodic orbit formed above, then |(f*)'(x)|, =1
since (f*)(z) = am(x) £ 0,1 (mod p™) for all m > n. Hence, the periodic orbit
(z, f(z), -, fF1(x)) is indifferent.

Now we can deduce all possible periods of the polynomial systems on Z,.

Proposition 3.17 ([10], see also [125]). Let f € Z, with deg f > 2.

1) If p > 5, the lengths of cycles are of the form ab with al(p — 1) and
1<b<p;

2) If p =3, the length of cycles must be 1,2,3,4,6 or 9;

3) Ifp =2, the length of cycles must be 1,2 or 4. If there is 4-periodic orbit,
then fi should be a permutation on 7./27.

Proof. We only show 3), because the proofs of 1) and 2) are similar and can be

found in [10] and [125]. The first assertion of 3) can also be found in [125].

Notice that any periodic orbit comes from an infinite sequence of splitting of
some cycle, and that the length of the periodic orbit is the length of the cycle. So,

what we want to study are all possible lengths of starting splitting cycles.

The possible lengths of cycles at the first level (i.e. the cycles of f, on Z/2Z)
are 1 and 2. Notice that the growth of length must be multiplied 2, according to
our discussion in the preceding sections. So, the possible lengths of cycles are 2*
(k > 0). However, by Corollary 3.16, if a cycle grows twice it will grow forever.
There, any cycle of length 2% (k > 3), which must have grown twice, can’t be a
starting splitting cycle. Hence the lengths of starting splitting cycles can only be
1,2,4.

If there is a periodic orbit of length 4, there must be a starting splitting cycle
of length 4. This is possible only in the following case: at the first level, f; admit
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a 2-cycle. Otherwise it needs to grow twice and then its lifts will grow forever.

This will produce a clopen minimal set not a periodic orbit. O]

Theorem 3.18. Let f € Z,[z] with deg f > 2. We have the following decomposi-

tion
z,=A| |B| |C

where A is the finite set consisting of all periodic points of f, B = ||, B; is
the union of all (at most countably many) clopen invariant sets such that each
subsystem f : B; — B; is minimal, and each point in C' lies in the attracting basin

of a periodic orbit or of a minimal subsystem.

Proof. We first explain that there are only finitely many periodic points. In fact,
by Proposition 3.17, there are only finitely many possible lengths of periods. Pe-
riodic points are solutions of the equations f%(z) = z with {¢;} being one of
possible length of period. Since deg f > 2, each equation admits a finite number

of solutions. So, there is only a finite number of periodic points.

We start from the second level. Decompose Z, into p? balls with radius p~2.
Each ball is identified with a point in Z/p?Z. The induced map f, admits some
cycles. It is possible that some point outside any cycle is mapped into a cycle. The

ball corresponding to such a point will be put into the third part C. From now

on, we really start our analysis with cycles at level n > 2. Let 0 = (x1,...,z) be
a cycle at level n > 2. Let

k

i=1

SUPPOSE p > 3. We distinguish four cases.

(P1) o grows tails. Then by (S1), the clopen set X consists of a k-periodic
orbit and other points are attracted by this periodic orbit. So, X contributes to
the first part A and the third part C.

(P2) o grows. Then by Proposition 3.5, ¢ is in the situation (S2). Therefore
X is a minimal component. So, X C B.

(P3) o splits. Then we shall apply Proposition 3.6. If o belongs to Case 1
described by Proposition 3.6, then after finitely many times of splitting, the lifts

will grow forever and so they are in the situation of (S2). Therefore we get a finite
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number of minimal components, all belonging to B. If ¢ belongs to Case 2, then
there is one lift of o sharing the property (S3), and others lifts different from the
cycle containing the periodic orbit (at any level m > n + 1) find themselves in
the situation (S2) after finitely many times of lifting. Therefore, we get a periodic
orbit and an infinite number of minimal components. If o belongs to Case 3, then
o splits into p™ cycles at level 2n. These cycles at level 2n may continue this
procedure (P3). But this procedure cannot continue infinitely, because there is
only a finite number of periodic points. So, all these cycle may continue to split
but they must end with their lifts belonging either to Case 1 or Case 2. So, X
contributes to both A and B.

(P4) o partially splits. Then o is in the situation (S4). thus there comes out
a periodic orbit. Suppose o, is the lift of o containing the periodic orbit at level
m >n+ 1. If g, belongs Case 1 in Proposition 3.7, then the other lifts different
from 0,1, will be in the situation (S1) after finite times. If o, belongs Case 2 in

nd—1

Proposition 3.7, then each of other lifts different from o,,,1, splits as p cycles

at level nd. We do (P3) for these cycles at level nd.

SUPPOSE p > 3. We distinguish five cases.

(Ql) o grows tails. Then o is in the situation (S1). We have the same
conclusion as (P1) above.

(Q2) o strongly grows. Then by Proposition 3.8, ¢ is in the situation (S2).
We have the same conclusion as (P2) above.

(Q3) o strongly splits. By Proposition 3.9, the arguments are the same as
(P3): The processes will be ended if the condition 1) or 2) in Proposition 3.9 is
satisfied. If the condition 3) in Proposition 3.9 is satisfied, we repeat (Q3) for the
lifts of . But the processes will be eventually ended with the condition 1) or 2),
because there is only a finite number of periodic points.

(Q4) o weakly grows. Then by Proposition 3.8, the lift of o strongly splits.
We are then in the situation (Q3).

(Q5) o weakly splits. By Proposition 3.10, then one lift is in the situation
(S3) which produces a periodic orbit, and the other lifts different from the cycle
containing the periodic orbit, at any level m > n + 1, will weakly grow. Then we
are in the situation (Q4).

All the above processes will stop. So, we get the decomposition in finite
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steps. O

We have excluded the affine polynomials from the theorem. Exactly speaking
the conclusion is false for affine polynomials. For example, every points in Z, are

fixed by f(z) := z. Anyway, affine polynomials have been fully studied in [50].

Corollary 3.19. Let f € Z,|x] with deg f > 2. If f admits an indifferent fized
point or a periodic orbit, then there exists a sequence of minimal components with
their diameters and their distances from the fixed point or the periodic orbit tending

to zero.

Proof. Suppose (z1,...,xx) is an indifferent periodic orbit. Let x§n) € Z/p"7Z and

:c§”> = z; (mod p") for 1 < j < k. Then o, = (z{",... (") is a splitting or
partially splitting cycles at level n. By the processes of the decomposition, the
cycles o, should be in the situation (S3) or (S4). That is to say o, splits for all n

or o, partially splits for all n.

Since there are only finite number of periodic orbits, for any ¢ > 0 small
enough, there is no other periodic orbits in the ¢ neighborhood of the orbit
(z1,...,x). Take m such that p=™™ < e. Then the lifts of o,, which are differ-
ent to 0,1 will never split infinitely. Hence they will grow after finite time. Then
all the lifts of o, which are different to 0,1, considered as union of balls, are
finite number of minimal components. Since these balls are contained in x; +p"Z,
for each j respectively. Thus there is a minimal component such that the diam-
eter and the distance to the orbit (z1,...,xy) are all less than p~. The result
is obtained if we consider infinitely n and find one minimal component for each
n. [

3.5 Conjugacy classes of Minimal subsystems

Recently, Chabert, Fan and Fares [33] proved that minimal sets of a 1-
Lipschitz map are Legendre sets. We shall prove that minimal sets of a polynomial
are special Legendre sets. A set E C Z, is a Legendre set if for any s > 1 and any

x € E/p°Z,, the number
qgs = Card {y € E/p""'Z,: y=2 mod p°}
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is independent of x € E/p°Z,. Let

psi=qqe-qs (Vs> 1).

It is clear that p; = Card E/p°Z,. We call (ps)s>1 the structure sequence of E.
Consider the inverse limit
Z(ps) = lim Z/pSZ.

This is a profinite group, usually called an odometer, and the map 7:z — z + 1

is called the adding machine on Z,,).

Theorem 3.20 ([33]). Let E be a clopen set inZ, and f : E — E be a 1-Lipschitz
map. If the dynamical system (E, f) is minimal, then [ is an isometry, E is a
Legendre set and the system (I, f) is conjugate to the adding machine on (Zg,),T)
where (ps) is the structure sequence of E. On the other hand, on any Legendre set

there exists at least one minimal map.

We improve the above result in the case of polynomials by giving more infor-

mation on the structure sequence.

Theorem 3.21. Let f € Z,[z] with deg f > 2. If E is a minimal clopen invariant
set of f, then f : E — E is conjugate to the adding machine on an odometer Z,,),
where

(ps) = (k, kd, kdp, kdp?, - - -)

with some k € N,k < p and d|(p — 1).

Proof. By our previous discussion on the cycles of f,, on Z/p"Z, a clopen minimal
set E is formed when a cycle grows forever. If n is the starting level for the cycle
to grow, then FE is a union of some balls with radius p~". Therefore, for s > n,
every nonempty intersection of E with a ball of radius p™® contains p balls of

st1) That is to say ¢, = p. From the cycle at the first level to the

radius p~
starting cycle at level n, the growth of cycle length is multiplied by 1, p or some d
satisfying d|(p — 1). That is to say for 1 < s < n, every nonempty intersection of
E with a ball of radius p~® contains the same number (1, p or d) of balls of radius
p (st

three cases: p > 5, p=3,p=2.

). Thus F is a Legendre set. To determine p, for 1 < s < n, we distinguish
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Case p > 5. In this case, when a cycle grows, its lifts grow forever. So, a
cycle at level 1 starts with growing, several times of splitting or several times of
partial splitting. Then the lifted cycle grows forever. Therefore, there are three
ways to form a minimal set. We show the three ways by the growth of cycle length
as follows (k being the length of the cycle o on the level 1).

Case 1. o grows:
(k, kp, kp?,...),
Case 2. o splits:
(kyk, ... kkp, kp*,...),
Case 3. o partially splits:
(k,kd, ... kd kdp,kdp?, ...), d|(p—1),d>2.

The above three cases correspond to three kinds of adding machines. However,
by the result of Buescu and Stewart [28], the adding machines in both Case 1
and Case 2 are conjugate to (Z,,), 7) where ps = (k, kp,kp?,...). In Case 3, the
adding machines are all conjugate to (Z,,), 7) where p, = (k, kd, kdp, kdp?, . ..)
and d|(p — 1),d > 2.

Case p = 3. We distinguish four cases.

Case 1. o grows and its lift also grows:
(k, kp, kp?,...),
Case 2. o grows but its lift splits:
(k,kp,... kp, kp* ...),
Case 3. o splits:
(k,k, ... k kp kp?, ...),
Case 4. o partial splits:
(k,kd, ... kd kdp, kdp®,...), d|(p—1),d>2.
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Then (E, f) is conjugate to (Z,,), ) where p, = (k, kd, kdp, kdp?, . ..

k < p, and d|(p —1).

Case p = 2. We distinguish twelve cases.

(1, 1,1,...1,2,2%,2° ...),
N——

strongly split

(1, 1 02,2223 ),

strongly grows

(1, 1, 1, 2,...2 ,222° ),
~~~ ~~ ——
weakly splits weakly grows gtrongly split

2 63
Ao 2.2 29,
——

weakly grows strongly split

(1,

(1, 2,...,2 ,222% . ..),
N——

strongly split

(17 \2/ 7227237"')7

strongly grows

2 03
(2, 2,...,2,2223 ),
——
strongly split

(2, 2 222800,

strongly grows

2 2 o3
2, 2, 2. 222293 ),
N~ ~—~ N ,
weakly splits weakly grows strongly split

2 2 3
2 2 2°,...,2%,2°, ...
( ) \ , ; ) )4y )7
weakly grows strongly split

(2,2%,...,22,2% . ..),
N——

strongly split

(2, 22 2% ...

strongly grows

In any of these cases, the system (F, f) is conjugate to (Zs,z + 1).
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3.6 2-adic Quadratic Polynomials

In this section, we undertake a full investigation on the minimal decomposi-

tion of 2-adic quadratic polynomial systems on Z, of the form:
f(z) :=ax® +bx +c (a,b,c € Zy,a # 0).

As we shall see, the system f(z) = az? + bx + ¢ is conjugate to one of the

following quadratic polynomials
22—\, 2 +bxr, 2*+x—d

where X\ € Zs, b =1 (mod 2) and Vd & L.

Let us state our results on the minimal decomposition of (Z,, f). The proofs

are postponed at the end of this section. By the way, we shall discuss the behavior
of f on the field Q,.

If a =1 (mod 2), then lim, . |f"(z)| = oo for any = ¢ Z,. An elementary
calculation shows that ax?+ bz + ¢ on Z, is conjugate to 22+ bz + ¢ on Z, through
the conjugacy x +— ax. If a = 0 (mod 2), then lim, . |f"(z)] = oo for any
x & %Zg and az® + bz + ¢ on %Zg conjugates to x? + ax + ac on Z, through the
conjugacy x +— ax. Thus without loss of generality, we need only to consider the

quadratic polynomials of the form
22+ br +c (b,c € Zy).

We distinguish two cases according to b = 0 (mod 2) or b =1 (mod 2)
If b= 0 (mod 2), % + bx + ¢ is conjugate to

2 — )\
with \ = W through the conjugacy = +— = + Z.

Theorem 3.22. Consider the polynomial f(x) = 2% — X on Zs.

1) If A\ =0 (mod 4), then f admits two attracting fixed points, one in 47,
with 27y as its attraction basin, and the other one in 1 + 47y with 1 + 27y as its
attraction basin.

2) If A = 1 (mod 4), then the whole Zy is attracted into a periodic orbit of
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period 2 with one orbit point in 475 and the other one in 3 + 4Z,.

3) If A =2 (mod 4), then [ admits two attracting fixed points, one in 2+ 47,
275 as its attraction basin, and the other one in 3 + 474 with 1 4+ 2Zs as its
attraction basin.

4) If A = 3 (mod 4), then the whole Zy is attracted into a periodic orbit of
pertod 2 with one orbit point in 1 + 47+ and the other one in 2 + 4Z,.

If b=1 (mod 2), then z* + bx + ¢ is conjugate to

v+ x—d
where d = %2740 € Zy through z — z + b’Tl It is clear that 22 + x — d admits
fixed points if and if only v/d € Z,. Thus we need to study the case 2° + = — d

with v/d € Z, and the case 22 + x — d with d € Z, but Vd & Z,.
If Vd € Zy (ie. 22 + 2 — d has a fixed point), then 22 + x — d conjugates to

2 + bz

with b = 1 — 2v/d through = — z + V/d.

If b = 1, the minimal decomposition of 22 + z is as follows.

Theorem 3.23. Consider the polynomial f(x) = 2* +x on Zy|z]. There is one
fized point 0. We have f(1+ 2Zs) C 279 and we can decompose 27 into

27, = {0}| | <|_| oty 2”22) .

n>2

Each 27! 4+ 2"Zy (n > 2) consists of 2" pieces of minimal components:

on=t pgn 4 2227, t=0,...,2" 2 —1.

If b =1 mod 2 but b # 1, we divide it into three subcases: b = 1 — 4m,
m € Zy \{0}; b=—1—4m, m € Zy with va(m) € 1 +2N; b= —1 —4m, m € Z;
with vy(m) € 2N. If f(z) = 2? + (—1 — 4m)z with va(m) = 0, then f is conjugate
to g(z) = 2% + (=1 — 4(—m — 1))z with vo(—m — 1) = va(m + 1) > 1 through
r +— x — 4m — 2. Thus the third case reduce to f(z) = 2* + (=1 — 4m)z with
ve(m) € 2N* with the notation N* being the numbers in N different with 0.
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Before the statement of the following results, we would like to give some

terminology to simplify our statements.

We say a l-cycle (z) at level n is of type I-[k] if it splits k times then its
lifts grow forever. In this case, the ball z + p"Z, is decomposed into p* pieces of
minimal components. Such a component is a ball of radius p~™ . Sometimes the
ball z + p"Z, is said to be of type I-[k].

We say the a 2-cycle (z,y) at level n is of type II-[k] if it splits k times then
its lifts grow forever. In this case, the union of two balls (z +p"Z,) U (y + p"Z,) is
decomposed into p* pieces of minimal components. Such a component is a union
of two balls of radius p~™~*. The union (x + p"Z,) U (y + p"Z,) is sometimes said
to be of type II-[k]. Remark that it is possible for the union (z+p"Z,)U(y+p"Z,)
to be a ball of radius p~"*!.

If an invariant subset £/ C Z, is a union of invariant subsets F,, C Z, n €

J C N where each ball F, is of type I-[k], we will denote it as

E=||F.-
neJ

If an invariant subset £ C Z,, is a union of invariant subsets F,, C Z, n € J C N

where each F}, is a union of two balls of type II-[k], we will denote it as

E=||F, — {1k

neJ

Now we are ready to state the following theorems.

Theorem 3.24. Consider f(x) = 2® + (1 —4m)x, m € Zy \ {0}. Then f admits
two fized points 0 and 4m and f(1 4 2Zy) C 275, and we can decompose 27y as

27, = {0,4m}| | Ei| | Es| | Bs,

where
E, = |_| (2" +27Zy) — {I-[n — 2]},
2<n<v2(m)+3
By= || (@ +2"Z) — {Ifva(m) + 1]},
n>vz(m)+3
Ey= || (4m+2""+2"Zy) — {Foa(m) + 1]}
n>v(m)+3
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Theorem 3.25. Consider f(z) = 2* + (—1 — 4m)x with vy(m) € 1 + 2N. Then

| admits two fized points 0 and 4m + 2, f(1 + 2Zs) C 2Zs and we can decompose
2745 as

27, = {0,4m}| | Ei| |Bs| | Bs,

where

By = | (4m+2+ 272 4+ 277'Zy) — {II1]},

n>4

By = | | (2% + 2" Zy) — {1I-[2n — 5]},
4<n<|v2(m)/2]+3

Es = | ] (2772 4 2°71Zy) — {II-[ua(m) + 1]}.

n>|v2(m)/2]+3

Theorem 3.26. Consider f(x) = x> + (—1 — 4m)x with vo(m) € 2N*. Then f
admits fixed points 0 and 4m + 2, and f(1 4 2Zs) C 2Zy. The invariant set 27,

admits the following form

27y = {0,4m}| | Ei| |Bs| | Bs| | (2020/2H 4 2utmi/zt2g,)

where

Ey=| | (4m+2+4 272 4+ 277'Zy) — {II1]},

n>4

Ey, = |_| (2"72 4 2" 'Zy) — {II-[2n — 5]},
4<n<wvz(m)/2+3

Bs= || (@72 +2"7'2y) — {IFva(m) + 1]}
n>va(m)/2+3

Denote E = 2v2(m)/2+1 4 gva(m)/2+27,
(1) If vo(m) = 2 and va(m — 4) = 3, then E is of type 11-[4].
(2) If vo(m) = 2 and vo(m — 4) > 5, then E is of type 11-[5].

(3) If va(m) = 2 and va(m —4) = 4, then there exists a 2-periodic orbit with one
point x1 € 4 + 16Zs and the other xo € 12 + 16Z5y and we can decompose E
as £ = {x1,x2} | | E4, where

Ey=| | (w1 4+ 287" + 2°Zy) U (o + 2871 + 2¥2)) — {IL-[5]}.

k>5
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(4) If va(m) > 4 and vo(m — 2°20™) < vy(m) + 3, then E is of type 1I-[vy(m —
Qes(m) 4 1]

(5) If vo(m) > 4 and vo(m — 220™) > wy(m) + 3, then there exists a 2-
periodic orbit with one point )y € 2v20m)/2+1 4 ova(m)/2437, and the other
xhy € 2u2m)/2HL g gua(m)/242 4 9gua(m)/2437, - and we can decompose E as

E = {2}, 2L} | | £}, where

Bim L) (2 2 U (o 24 242) () + 1)

k>va(m)/243

Now we are left to study the polynomials f(z) = 2*> + z — d with d € Z, but
Vd & 7.

We distinguish four cases.

Theorem 3.27. Consider f(z) = x>+ — d with d = 0 (mod 4) and Vd ¢
Zs. Then f(1 + 27Zy) C 2Zo and 275 is decomposed as finite number of minimal
components. Let ng = |ve(d)/2] + 1.

(1) If vo(d) = 2 and vo(d — 4) = 3, then 2Zy consists of three minimal compo-
nents: 47, 2 + 879 and 6 + 8%Z.

(2) Ifva(d) = 2 and va(d—4) = 4, then 27y consists of five minimal components:
422, 2 + 8227 6+ 822, 10 + 8Z2, and 14 + 8Z2

(3) If va(d) > 3 and vo(d) is odd, then 2Zy = Ey| | E2, where

E1 = |—| (2n—1 + ZHZQ) - {[_[n - 2]}7

2<n<ng

E2 = 2”022 - {[—[no - 1]}
(4) If vo(d) > 3 and vy(d) is even, then 2Zo = E7 | | E5| | EY, where
Ei= || (@7'+2'Z) —{In—2]},
2<n<no—1
Eé = 2”022 - {]-[TLO - 2]},
Eé = 271071 + 2”0Z2 — {[—[TLQ + 1}}
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Theorem 3.28. Consider f(x) = 2> + 2 —d with d = 1 (mod 4) and Vd & Zs.
Then f(2Zs) C 1+ 27y and 3+ 47 is of type 1I-1. Let d = 5+ 8t with t € Zy. If
vo(t) < 1, then 1+ 4Zy is of type 11-(vo(t) + 1). If va(t) > 2, then

1 +4ZQ == {Il,JIQ}I—IEll—lEQI—lE?,,

with the form

By = (a+2'Zy) U (f(a) + 2'Zy) — {1I-3]},
Ey = (b+ 2°Zs) U (f(b) + 2°Zs) — {1I-[3]},
By = | (01 +2'Z2) U (2 + 2'Zo) — {IL[3]},

n>6

U
U

and 1, T is a 2-periodic orbit such that 1 € ¢ + 257y and x5 € f(c) + 257Z,.

Preciously,
(1) If va(t) =2 and va(t —4) = 3, thena =1,b=25,c¢ = 9.
(2) If va(t) =2 and va(t —4) > 4, then a =1,b=9,c = 25.
(3) If va(t) = 3, thena=9,b=1,c=17.
(4) If vo(t) > 4, then a =9,b=17,c=1.

Theorem 3.29. Consider f(z) = 2> + x — d with d = 2 (mod 4) and \V/d & Z,.

(1) If vo(d — 2) = 2, then 27, is of type 11-1.

(2) If ve(d—2) = 3, then 8ZoU(f(0)48Zz) is of type 11-1, (4+8Zo)U(f(4)+8Z,)
consists of a 2-periodic orbit with one point x1 € 4 + 8Zo and the other
Ty € f(4) + 8Zs, and for each n > 4, (xy + 2"Zy) U (x2 + 2"Zs) is of type
I1-2;

(3) Ifvo(d—2) > 4, then 4+8Zy U (f(4) +8Zy) is of type 11-1, 8Zy U (f(0)+8Zy)
consists of a 2-periodic orbit with one point x1 € 8Zy and the other xo €
f(0) + 8Zy, and for each n > 4, (x1 + 2"Zs) U (9 + 2"Zs) is of type 11-2.

Theorem 3.30. For f(z) = 2*+z—d withd = 3 (mod 4), the ball 27, is mapped

into the ball 1 + 274 which is the unique minimal component.

69



We prove Theorems 3.22-3.26. The proofs of Theorems 3.27-3.30 will be
omitted since they are similar to those of Theorems 3.22-3.26.

Proof of Theorem 3.22. Let f(z) = 2> — A. Then f'(z) = 2x and (f?)(z) =
423 — 4\

1) If A = 0 (mod 4), then 2 4 4Z, and 3 + 4Z, are mapped into 4Z, and

14475 respectively, and 4Z, and 14474 are mapped into themselves respectively.
Consider the cycles (0) and (1) of fy. We have

az(0) = f/(0) =0 (mod 2) and ax(1) = f'(1) =0 (mod 2).

Thus cycles (0) and (1) grow tails, hence there will form two attracting fixed
points, one in 4Z, with basin 2Zs, and the other one in 1+4Z, with basin 1+ 2%Z,.

2) If A =1 (mod 4), then 1+4Z, and 2+ 4Z, are mapped into 4Z, and 3+47Z,
respectively, and 4Z, and 3 + 4Z, are mapped into 3 + 4Z, and 4Z, respectively.
Consider the cycle (0,3) of fo. We have

az(0) = (f2)(0) = 0 (mod 2).

Thus cycle the cycle (0,3) grows tails, hence there will form an attracting 2-
periodic orbit, with one point in 4Z,, and the other one in 3 4+ 47Z,. We also see
that the attracting basin is the whole Zs.

The proofs of 3) and 4) are similar to the proofs of 1) and 2). O

Proof of Theorem 5.25. Let f(x) = x® + x. We will use a diagram to show

the structure of the dynamics of f.
\ level 1 (mod 2)
5

level 2 (mod 22)

2 level 3 (mod 23)

/

4 12 10 6 14 level 4 (mod 2%)

O T—

A,
[\,
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At level n, the ”—” stands for the transformation of the elements of Z/p"Z

under f,,. Thus the diagram shows that
fi(1) =0, f1(0) =0, d.e., f(142Zy) C27Zy and f(2Zy) C 2Z,.
and
f2(0) =0, f2(2) =2, .., f(4Zy) C4Zy and f(2 + 4Zs) C 2 + 47Zs.

Since f(1+2Zy) C 27, and f~(1+2Zy) = 0, we need only to consider 2Z,. From
the diagram, we also see that (0) is the only cycle of f; with length 1, and (0), (2)
are two lifts of (0).

We will start our examination from the level 2. Since

f(0) =0 _
e 0

a(0) = f/(0) =1 and by(0) =
we have a5(0) =1 (mod 4) and
Ay(0) =00 and By(0) = oo.

Thus the cycle (0) strongly splits and by Proposition 3.9, the cycle (0) splits
infinite times.

Since

we have a5(2) =1 (mod 4) and
Ay(2) =2 and By(0)=0.

Thus the cycle (2) strongly grows which implies that the lift of (2) still grows, and

so on. Hence 2 + 47, is a minimal component.

By induction we know that for all n > 2
A,(0) =00 and B,(0) = occ.

Thus the cycle (0) of f,_; always splits to be two cycles (0) and (2"~1) of f,,, and
the number 0 should be a fixed point.

Now for n > 2, let us consider the cycle (2"71) of f,,. With the same calcu-

lations,
a,(2") =2"+1 and b,(2"') =2""2
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Thus a,(2" ') =1 (mod 4) and
A2 =n and B,(2" ') =n-2.

Hence, the cycle (2"71) strongly splits and B, < min{A,,n}. By Proposition 3.9,
the lift of (2"7!) splits B, — 1 = n — 3 times then all lifts strongly grow. Thus
there are 2”2 pieces of minimal components which constitute 2"~ + 2"Z,. They
are

on—l ppon y 2227, t=0,...,2" % — 1.
This concludes the proof of Theorem 3.23. n

Proof of Theorem 3.2/. Let f(z) = x> + (1 — 4m)z. We see that there are
two fixed points 0 and 4m, and 1 4 2Z, is mapped into 2Zs. We are concerned

with the invariant subset 2Z,.

Consider 2"~ 4+ 2"Z, (n > 1). We study the cycle (2"71) at level n. We have
a, (2" =2"—dm+1  b,(2" ) =2""%—2m,
thus @, (2"1) =1 (mod 4) and if 2 < n < vy(m) + 3,
A, 2" HY>n B,2"Y)=n-2.

Hence, the cycle (2"~1) strongly splits and B, < min{4,,,n}. By Proposition 3.9,
the lift of (2"7!) strongly splits B, — 1 = n — 3 times then all lifts strongly grow.
Thus we will obtain the part E; in Theorem 3.24.

If n > vy(m) + 3,
A, (277 = vy(m) + 2 B, (2"7Y) = vy(m) + 1.

Hence, the cycle (2"71) strongly splits and B, < min{A,,n}. By Proposition 3.9,
the lift of (2"~!) strongly splits B,, — 1 = vy(m) times then all lifts strongly grow.
Hence we have the part Es.

Consider 4m + 2"~! + 2"Zy (n > vg(m) + 3). Let s, = 4m + 2"~ (mod 2")
and 0 < s, < 2". We study the cycle (s,) at level n. We have

n\°on 4
an(sp) =28, —4m + 1 bu(sn) = w,
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thus a,(2" 1) =1 (mod 4) and
An(2n71) = Ug(m) + 2 Bn(2n71) = Ug(m) + 1.

Hence, B,, < min{A,,n}. By Proposition 3.9, the cycle (s,) strongly splits and
the lift of (s,) strongly splits B,, — 1 = vy(m) times then all lifts strongly grow.
Therefore, we have the part F5. This completes the proof. O

Proof of Theorem 3.25. Let f(z) = 2* + (—1 — 4m)x with vy(m) € 1 + 2N.
We see that there are two fixed points 0 and 4m + 2, and 1 + 2Z, is mapped into
27..

Since 0 and 4m + 2 are two fixed points, there are cycles (0) and (,,) at each
level, where t,, = 4m + 2 (mod 2") and 0 < t,, < 2". Consider the cycles (0) and
(t,—2) at level n — 2. By studying the a,,_2, b, 2 of these two cycles, we know that
they weakly split. By Proposition 3.10, after splitting, half of lifts weakly grow.
Thus we will obtain two 2-cycles: (2772 272 4+ 2"71) and (s, s, + 2"!) at level
n, where s, = 4m + 2+ 2"2 (mod 2" ') and 0 < s,, < 271,

For each n > 4, we study the cycle (s, s, +2"!) at level n. We have

an(sp) =8 (4 (%)3 —3(4m +1) (%)2 +m(4m + 1)s, +2m* + m) +1

1
2—nsn(sn —4m — 2)(s?

thus a,(s,) =1 (mod 4) and

bn(sn) =

5 —d4ms, —4m),
An(sn) =3 Bu(sp) =1.

Hence, the cycle (s,, s, + 2" 1) strongly splits and B, < min{A,,n}. Therefore,
by Proposition 3.9, the lift of (s, s, + 2"!) strongly splits B, —1=1—-1=0
times then all lifts strongly grow. Thus we obtain F; in Theorem 3.25.

Now we study the cycle (2722772 + 2771} at level n > 4. We have

an(277%) = 25772 — 3(4m + 1)2%" 73 + m(4m + 1)2" + 16m> + 8m + 1
ba(277%) =2(2"% — 2m — 1)(22"7° — m2"% —m).

Thus @,(2"2?) =1 (mod 4) and for each n > L@J + 3,
A2 =wy(m) + 3 B,(2"7?) = vy(m) + 1.
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Hence, the cycle (2"72,2""1) strongly splits and B,, < min{A,,n}. Therefore, by
Proposition 3.9, the lift of (2772 2" 1) strongly splits B, — 1 = vy(m) +1—1 =
vo(m) times then all lifts strongly grow. Thus we have Ej.

For each 4 < n < L@j + 3,
A, (2" =2n—-3  B,(2"% =2n-5.

Hence, if n > 4, then the cycle (2772,2""1) strongly splits and A, > B, > n.
Therefore, the lift of (2772, 2"1) strongly splits at least n — 1 times. But except
this we do not obtain any further more information. Thus Proposition 3.9 is not

sufficient for us. Now we do some calculations directly.

For any point 2772 4 ¢2"n~1 € 2772 4 2""1Z,. with t € Z,, we have
ARy — @) =271+ 2t) - O, (3.11)
where
O:= (2" +2" 7 =2m —1) (2" + 2" ) —m(2" 2+ 2" —m).
Since 4 <n < L@J + 3, we have v5(©) = 2n — 6, and

P42 — (20 41277 = 0 (mod 2°"77)
Z 0 (mod 2°"%)

Thus the cycles grow at level 3n — 5. By Corollary 3.16, the cycles grow always.
Therefore we obtain the part E, which completes the proof. O

Proof of Theorem 3.26. Let f(z) = 2? + (=1 — 4m)z with vy(m) € 2N*. We
see that there are two fixed points 0 and 4m + 2, and 1 + 2Z, is mapped into 2Z,.

As the proof of Theorem 3.25, we study two 2-cycles: (2772 2"72 +2"~1) and
(Sn, Sn+2"71) at level n, where s, = 4m+2+2""2 (mod 2"7') and 0 < s,, < 2771,
The existence of Ei, Fy, 3 are the same as that of Theorem 3.25.

We consider 2772 4 2717, with n = % + 3. We are going to study the
cycle (272 2"71) at level n. We study the points 2772 4 271 € 2772 4 2n~17,
with ¢ € Zy. With the same calculation in the proof of Theorem 3.25, we have
the same equation (3.11). To continue the proof, we will distinguish two cases:

va(m) = 2 and vy(m) > 4.
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If vo(m) = 2, then n = v9(m)/2+ 3 =4 and
O = (4t —2m + 1)[(4 —m) + 16(t + t) — 4m(1 + 2t)].
Thus if vy(m — 4) = 3, then v2(0) = 3 and
AR e — @242 = 0 (mod 2%)
Z 0 (mod 2°).

If vo(m —4) > 5, then v5(©) = 4 and

A2 +e2m ) — (2" 2+ 12" = 0 (mod 27)
Z 0 (mod 2').

Hence we will obtain (1) and (2) of Theorem 3.26.

Since f%(z) —x = z(x — 4m — 2)(z* — 4mx — 4m), f has 2-periodic orbit if
and only if 22 — 4ma — 4m = 0 has solutions different to 0 and 4m + 2 in Z,. But
2% — 4max — 4max = 0 has solution 0 or 4m + 2 only if m = 0 or m = —1. Thus
for the case vy(m) € N*, f has 2-periodic orbit if and if only A:= 16m? + 16m has
square roots in Zy. By the standard argument in number theory (see [133], p.18),
this is equivalent to 272(™m(m 4 1) = 1 (mod 8). By some basic calculations it
is then equivalent to ve(m — 4) = 4. This is nothing but the rest case we need to
study. Thus for vy(m — 4) = 4, there exists a 2-periodic orbit.

From the equation x? — 4mx — 4m = 0, the periodic point can be written as

m m(m + 1) m m(m+1)
9“:4(5* T) “:4(5— T)

Since v3(m) = 2, we have 1 = 4 (mod 8). Recall we are concerned with 2772 +
217, (n > 4) which is the union of two balls 2724 2"Z, and 2"~2+2""1 +2"7Z,,
and we are studying the cycle (272,272 4+ 2771 at level n > 4. Thus we have
1 =4 (mod 16) and zo = 12 (mod 16).

For each k > 5, we consider the union of the two balls (z; + 2¥~! + 2%7Z,) U
(3 + 2871 4+ 2FZ,). We study the cycle (sy,s5) where s; = x7 + 2871 (mod 2%),
sy = x5 + 2871 (mod 2%) and 0 < s1,s5 < 2%, For every point z; + 2! + 2% ¢
1y + 281+ 287, (t € Zy), we have

Aoy + 257 128) — (o + 287 - 12)

_93 (% 4ok tQH) (% 4ok2 gkl o, 1) LD,

(3.12)
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where
® = 20y (2871 4 12F) + (2871 1 128)? — am (28T + 12F).

Here we have used the property that z; is a solution of the equation z? —
dmx — 4m = 0.

Since vo(m) = 2 and ve(z1) = 2, we get vo(P) = k + 2. Thus

foy 4+ 2 28) — (2 + 28 4 12F) = 0 (mod 2FTP)
Z% 0 (mod 2F19).

Hence we have (3).
Now we are left to treat the case ve(m) > 4. In this case the equation
2% — 4mx — 4m = 0 admits solutions if and only if vy(m — 2%2(™) > vy (m) + 3.
We still consider 2"~ 24271 Zy with n = 2043, Tf vy (m—220") < vy(m)+3,
then v5(0) = vy(m — 2%20™) and for any ¢ € 22

P22 4127 — (202442771 = 0 (mod 2U(m2 )
Z£ 0 (mod 22~ ZUZ(M)H”H)
Then we will obtain (4

)-
If vy(m — 2%20™)) > v,y(m) + 3, then 272 4 2"1Z, consists of a 2-periodic
orbit:

vo (m) vo (m
oy =27t <2 2 \/2 v2(m)m(m + 1))
rh =275 (Q‘Wm — \/2—vz<m>m(m + 1)) :

For each k > ”2 ) 13, we consider (2 4 281 + 2V7Z,) U (z, + 281 4 28Zy).
For every point ) + 2871 + 2% € 2] + 2k L 2874, (t € Zy), we have the
same calculation as (3.12). Since k > ”2 ) 4+ 3 and ve(2)) = UZ(m) + 1, we get

1)2( + 2F73 4 #2k2) = % — 2 and 7)2((1)) = T + k. Thus

0 (mod 22 (m)+k+1>

715 0 (rnod Qv2 m)+l~c+2)

A 4 287 2Ry — (2] 4+ 287 12k

Hence we have (5). This completes the proof. O
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Chapter 4

The p-adic Repellers in Q,

In this chapter, we study the p-adic transitive weak repellers on the field Q,
of p-adic numbers. It is proved that any such repeller is isometrically conjugate

to a subshift of finite type where a suitable metric is defined. !

4.1 Statement of results

Let p > 2 be a prime number and @Q, be the field of p-adic numbers. Let
f X — Q, be amap from a compact open set X of Q, into Q,. We assume that
(i) f7YX) C X; (ii) X = | ];c; Bp-~(c;) can be written as a finite disjoint union
of balls of centers ¢; and of the same radius p~” (with some 7 € Z) such that for

each ¢ € I there is an integer 7; € Z such that

[f (@) = f(W)lp = p"

eyl (Va,y € By-(c). (4.1)

For such a map f, define its Julia set by
Jr =) f(x). (4.2)
n=0

It is clear that f~'(J;) = J; and then f(J;) C J;. We will study the dynamical
system (Jy, f).

The triple (X, Jy, f) is called a p-adic weak repeller if all 7; in (4.1) are non-
negative, but at least one is positive. We call it a p-adic repeller if all 7; in (4.1)
are positive. For later convenience, we will write || f|| = p™ for any map having
the property (4.1), which could be called the expanding ratio (resp. contractive
ratio) of f on the ball B,--(c;) when 7; > 0 (resp. 7; <0) .

We study p-adic weak repellers with all 7; are nonnegative.

!A. H. Fan, L. M. Liao, Y. F. Wang and D. Zhou, p-adic repellers in Q, are subshifts of finite type,
C. R. Math. Acad. Sci. Paris 342 (2006), no. 2, 129-134.
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For any ¢ € I, let

(the second equality holds because of the expansiveness and of the ultrametric

property). Then define a matrix A = (A4, ;)«s, called incidence matrix, by

If A is irreducible, we say that (X, Jy, f) is transitive. That A is irreducible means,
for any pair (4,7) € I x I there is positive integer m such that A7} > 0.

Given I and the irreducible incidence matrix A as above. Let X4 be the
corresponding subshift space and let ¢ be the shift transformation on ¥ 4. We
equip X4 with a metric d; depending on the dynamics which is defined as follows.
First for i,j € I,i # j, let x(i,j) be the integer such that |¢; — ¢;j|, = p~"(9). Tt

clear that k(i,j) < 7. By the ultra-metric inequality, we have
lz —yl, =lci —¢lp, (i #j, Vo € By-(c;),Vy € By--(c;)). (4.3)
For x = ($07x17”' 7$n7"') and Y= (y07y17"' 7yn7"') n ZA) define

df(x, y) — p7T107Tg;17---7TZTL717/1(xn,yn) (lf n # O),

(4.4)
dy(a,y) = p ) (it 0= 0)

where n = n(z,y) = min{i > 0 : x; # y;}. It is clear that d defines the same
topology as the classical metric which is defined by d(z,y) = p~"@v).

Theorem 4.1. Let (X, Jy, f) be a transitive p-adic weak repeller with incidence
matriz A. Then the dynamics (J¢, f,| - |p) is isometrically conjugate to the shift
dynamics (X4, 0,dy).

Remark 1. If the incidence matric A is not irreducible, the index set [ is partitioned
into classes of indexes I, 1 . T®*) We can arrange 1™, 1® .. I®) in an
order so that A is written as lower triangular matrix with irreducible sub-matrixes
Ay, Ag, ..., Ay on its diagonal (see [98]). We can then apply Theorem 4.1 to
f:X® —Q for each 1 <t <k, where X = J,_;y Bp-~(cs).

Remark 2. Theorem 4.1 holds not only for p-adic dynamics but also for any ultra-
metric dynamics which satisfy the two conditions (i) and (ii) listed at the beginning

of the note and the property stated in Lemma 4.3 below.
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The following result allows us to apply Theorem 4.1 to polynomial dynamics.

Theorem 4.2. Let f € Qp[z] be a polynomial with f'(x) # 0 for all x € Q,.
There exists a compact-open set X C Q,, and an integer T such that conditions (i)

and (ii) are satisfied. Moreover, for x & J¢, lim, . | f"(z)|, = oo.

Here is a class of polynomials to which the above results can apply. Let
f(x) = p™P(z) € Qplz] with P € Z,[z] and m > 0 (otherwise f € Z,[z]).
Assume first that

() [P@)l, = |2l, Vo 2 Z,

Let

X = U B,-m(i), where Ij={0<i<p™:P(i)=0modp™}.
il
Assume further that
(b) f'(z) # 0 for all z € X.
In order to apply Theorem 4.1 or Theorem 4.2 to this polynomial p~"P(z), in
general, we have to find a finer partition of X such that (4.1) holds on each

component of this new partition.

4.2 Proofs

Proof of Theorem 4.1. The proof consists of the following lemmas.

Lemma 4.3. For each i € I, the restricted map f : By--(c;) — B, (f(ci)) is

a bijection.

Proof. The injectivity and the inclusion f(B,--(c;)) € B,-=+~(f(c;)) are direct
consequences of the hypothesis (4.1). Since f(B,--(¢;)) is the continuous image
of a compact set and then is closed, for the surjectivity, it suffices to prove that
f(By-+(c;)) is dense in B, (f(c;)). For an arbitrary integer n > 1, consider
the p" points ¢; + kp™ (0 < k < p") in the ball B,--(¢;). Any two such different
points ¢; + k'p™ and ¢; + k”p™ has a distance strictly larger than p~"~7. So, by the
hypothesis (4.1),

|f(CZ + k,pT) - f(Cz + k”pT)|p > p_"—7+n.
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Then the p" image points f(c;+kp") belong to p™ different balls of radius p=" 7.
Thus each ball of radius p™" " contained in B,-++~ (f(c;)) contains an image

point. Since n is arbitrarily large, we get the density. O]

Let Iexp C I (resp. Iis,) be the subset of indexes ¢ € I such that 7; > 0 (resp.
7, = 0). A ball B,--(¢;) is said to be expanding (resp. isometric) if i € Loy, (resp.
i € Iiso).

Lemma 4.4. For each isometric ball B,--(c;), there exists an integer n > 1 such

that f"(By--(c;)) is an expanding ball.

Proof. If B,-+(c;) is an isometric ball, by Lemma 4.3, the image f(B,--(¢;)) is still
a ball of the same size as B,,-+(c;). Suppose that the conclusion of the lemma is not
true. Then all balls f*(B,--(¢;)) (k=0,1,---) are isometric balls. Since there is
a finite number of isometric balls, there are 0 < k' < k” such that f¥(B,--(c;)) =
f* (B, (c;)). This contradicts the irreducibility. O

Lemma 4.5. For each x € Jy there is a unique sequence (jn)n>0 € X4 such that
r € B, (cj,), [f(x) € By-=(cj,), -+, ["(x) € By—-(cj,), -~

Proof. This is just because f(J;) C J;r C X and {B,~-(c;) }iesr is a partition of
X. U
Denote by h : Jf — ¥4 the map z — (jn)n>0 and call (j,)n>0 the code

sequence of x.

Lemma 4.6. For each sequence (jn)n>0 € X4, there are an infinite number of

Jn s belonging to I.yp.

Proof. When A; ; = 1, we say j is an issue of . That 7 € [is, means ¢ has only one
issue. Using the same argument as in the proof of Lemma 4.4 but in a different
presentation, we can prove that there is no sequence (jn)n>0 in X4 which ends

with 7,,’s having only one issue. O]

If j is an issue of 4, let T}; : B,-+(¢;) — B,--(¢;) be the inverse map restricted
on By--(c;) of f: By—+(¢;) = f(Bp--(c;)). Remark that if ¢ € [y, then Tj; is an

isometry and if ¢ € oy, then Tj; is a contraction with p~™ as its contraction ratio.
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Lemma 4.7. For each sequence (j,)n>0 € X4 and for any choice (by,) with b, €
B,--(cj,) (n=10,1,2,---), the following limit
T = nh_{EO Tjoj1Tj1j2 - 'Tjn—ljn (bn) (45>

ezists and is independent of the choice (by)n>0. The point x belongs to Jr and it

has (jn) as its code sequence.
Proof. Let x,, = T01, L1 - - - Lj, 1, (bn). We have

‘xn-l-m - xn|p < HTJoleJljz st ]}nfljn Hdlam(X>

where diam(X') denotes the diameter of X. By Lemma 4.6, |55, Ty - - - Ljo_1jn
tends to zero. Thus we have proved the existence of the limit by the Cauchy

criterion. Let (0,) is another choice. Let z], be the corresponding x,. We have
’ml xn‘P < ” Joji ]1]2 - ‘Tjn—ljnl‘diam(X)
which proves the independence. Recall that foT;;(z) = . Then the last assertions

in the lemmas are obviously true. O]

Denote by h* : ¥4 — Jy the map (j,) — « where z is well determined by
(4.5 ) in Lemma 4.7.

Lemma 4.8. The map h: (Js, |- |,) — (Xa4,dy) is an isometric homeomorphism.

Proof. Lemma 4.7 and the definition of code show h o h* = Idy, and h* o h =
Idj,. So, h is a bijection. It remains to show that h is isometric. For T =
(Joji-++jn--+) € Baand § = (joji---Jn -+ ) € Ea, let @ = h*(2) and y = h*(y).
Let n = min{i > 0 : j; # j/}. If n = 0, it is clear that d;(7,7) = p~"U0d0) =
|[# = ylp- Ifn #0,

[z —yly = |h*(7) = @)

= ‘7}1_)1/130 7-.‘70]1 T 7Tjn—l]"n (bn) - nh_{lé.lo T7(/)J/ ) T?;L 1] (b, )|
= H Gogr " L agn_ 1” | Jn— un(xl) _TJ'nAjL(y)lpa
where
hm TJanH T vinan (bnyr) and y = lim T,]n E '7};%_13';%(5%%)-
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Since

L P

0J1
we have only to show that
T gu (@) = Ty, (Y |[p = p T R0,

In fact, since Tj, ,;,(«') and T; (y') are both in the same ball B,--(j,—1), the

nflj»ﬁl

expanding property (4.1) shows

2" =3l = 1 (T 13 (@) = ST WD) = 27T (@) = Ty ()

Then we conclude by the definition of x (see (4.3) and the fact that 2’ € B,--(j)
and y' € B,-+ (1) (ju # j,), which give |2/ — ¢/|, = p~"Unn), O

Lemma 4.9. We have ho f = o oh.

Proof. Recall that h(z) is the code sequence of x and that f o T;;(x) = x. Using

these facts and the expression (4.5) of z, we have
ho (@) = ho flm Ty, ... T, (b))
= h(hinT]m PN T’jn—ljn(bn)) = (]1 .. ]n .. ) = 0 O h(ZE)
U

Proof of Theorem 4.2. Assume f(x) = >°7 a;a’ with a, # 0. There exists
an integer ¢ such that if |x|, > p°, we have lanrlp lan|, (1 < k < n) and

|z

2]~ an|, > p, so that

n An—1 Qo n
|f(x)|p = |'I|p | an + T +ot oy |p: |$|p|an|p > p|x|p. (4.6)

Let X = {z € Q, : ||, < p’}. By (4.6), we have f(Q,\ X) C Q,\ X. Hence,
f7YX) C X. Also by (4.6), we get lim,, ., | f"(2)], = oo for z ¢ X. Furthermore,
we have lim,,_ |f"(z)|, = oo for @ & Jp := (o, f[~™(X). In fact, for x & Jy,
there exists ng > 0 such that f™(z) ¢ X, thus lim, . | """ (x)], = .

The strict differentiability of f € Q,[z] (See [131], p.78) and the fact f'(z) # 0
for all x € Q, imply that for a« € X, there exists an integer 7(a) such that
|f(z) = fW)lp = |f'(a)|p|lz —yl, for all 2,y € B,-+@ (a). Then the compactness of

X implies that there is an integer 7 such that condition (ii) is satisfied. [J
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4.3 Examples.

Example 1. Let a € Z, and m > 1 be an integer. Consider the transformation

fm,a : Qp — @p giVGIl by
P — ax

fma(x) = pm

In the case where m = 1 and ¢ = 1(mod p), the map f,,, : Z, — Z, was
shown, by C. F. Woodcock and N. P. Smart [117], to be topologically conjugate
to the full shift on the symbolic system with p symbols.

It is easy to see that |f; .(z)[, = p™. We have even |fu,.(z) — fim.a(¥)]p =
p" | —yl|, for all z,y € Z,,|v —y|, < 1 and |2¥ — az|, > |z|, for © € Z,. Let
Ina={0<k <p™:k? —ak =0 (mod p™)} and let Xy o = | ey, (K +p"Zy).
If a =1 (mod p), 2P — ax = 0 has p solutions on Z,, by Hensel lemma. Then
by Theorem 4.1, on the Julia set J,, 4, fm.a i conjugate to the full shift on the
symbolic space of p symbols. If @ # 1 (mod p), then I,,, = {0} and J,,, = {0}
is the singleton consisting of the repeller fixed point 0. In both cases, for every

T & Jma we have lim, o | f} ,(2), = oo.

Example 2. Let ¢ = 2 € Q, with lcol, = 1 and 7 > 1. Consider the p-adic
logistic map f. : Q, — Q,, defined by
—1
fola) = eala— 1) = 2=
p’r
Let I, ={0 <k <p” :k(k—1) =0(mod p7)}. It is clear that I. = {0,1}.
Notice that

\fe(@) = fe(W)lp = PTIx — ylp|1 = (z + )|, (Vo).

So, we get | fe(x) — fo(y)|p = p7|z — y|, whenever z,y € B,—-(0) or z,y € B,--(1).
Let J. be the Julia set of f., by Theorem 4.1, (J, f.) is always conjugate to the
full shift on the symbolic space of two symbols.

Example 3. Consider the polynomial f : Qs — Qy defined by

z(z—1)(x+1)
5 :

fz) =
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It is easy to see |f'(z)|, = 2, |f"(x)/2], < 1, |f"(x)/6], = 2 on 2Z, and

| ()], =1, |f"(2)/2], = 2, |f"(x)/6], = 2 on 1 + 2Z,. Then by
(z —y)? (z—y)*
9 6

we have |£(2) — )]y = f')lpke — ylp for 2,3 € Zg, | — yly < 1/4. Thus we
can take X = | [°_ (k + 4Z;). Then the conditions (i) and (i) are satisfied and

incidence matrix, which is irreducible, is equal to

f(@) = fly) = (x—y)f'(y) + () + (),

o = O O
o = O O

1
0
0
0

_ O = =

In this case we have 79 = 7, = 2 and 71 = 73 = 1. The topological entropy of

(Jg, f) is equal to log 1.6956... where 1.6956... is the maximal eigenvalue of A.
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Chapter 5

Level Sets of Birkhoff Averages in Saturated Systems

In this chapter, we will study compact topological dynamical systems with
specification property. It is proved that any such system is saturated in the sense
that the topological entropy of the set of generic points of any invariant measure
is equal to the measure-theoretic entropy of the measure. Banach valued Birkhoff
ergodic averages are studied and a variational principle for its topological entropy
spectrum is obtained. As application, a particular example is fully examined.
Such an example concerns with the set of real numbers for which the frequencies

of occurrences in their dyadic expansions of infinitely many words are prescribed. !

5.1 Introduction and statement of the results

Let (X, T) be a dynamical system which means a continuous transformation
T : X — X on a compact metric space X with metric d. We recall a list of

notations:

e T-invariant probability Borel measures on X: M,

ergodic measures in Mi,,: Meg

e Bowen'’s entropy of a subset E: hi,(E),

measure-theoretic entropy: h,

We also recall some basic concepts. Recall that a dynamical system (X, T')
is said to satisfy the specification property if for any € > 0 there exists an integer
m(e) > 1 having the property that for any integer k > 2, for any k points xy, ..., Ty

in X, and for any integers

g <bp<ay<by<---<a<b

!A. H. Fan, L. M. Liao, and J. Peyri¢re, Generic points in systems of specification and Banach valued
Birkhoff ergodic average, Discrete and Continuous Dynamical Systems, 21 (2008) 1103-1128.

85



with a; — b;—1 > m(e) (V2 <i < k), there exists a point y € X such that
d(T" ™y, T"x;) < € Vo<n<b —a; V1I<i<k).

The set G, of p1-generic points is defined by
1 n—1
G, = {xeX:ﬁZO5zjw—>u},
]:

w*
where — stands for the weak star convergence of the measures.

A dynamical system (X,T') is said to be saturated if for any p € My, we
have hiop(GL) = hy.

Our first result is stated as follows.

Theorem 5.1. If the dynamical system (X, T) satisfies the specification property,

then it 1s saturated.

As application, we study Banach-valued Birkhoff averages for saturated sys-
tems. Let B be a real Banach space and B* its dual space, their duality being
denoted by (-,-). We consider B* as a locally convex topological space with the
weak star topology o(B*,B). For any B*-valued continuous function ® : X — B*,

we consider its Birkhoff ergodic averages

I
—

n

A, ®(x) = (T ) (n>1).

SRS
<.
I
(=)

We would like to know the asymptotic behavior of A, ®(z) in the o(B*, B)-topology
for different points x € X.
Let us state the problem we are studying as follows. Fix a subset £ C B. For
a sequence {&,} C B* and a point £ € B*, we denote by limsup,,_, . &, é ¢ the
fact
lim sup(&,, w) < (&, w) for all w € E.

n—oo

7

B
The meaning of L2 is obvious. It is clear that lim SUDP,, o0 &n < &, or equivalently
limsup,,_, &, L ¢, means &, converges to £ in the weak star topology o(B*,B).
Let a« € B* and E C B. The object of our study is the set
E
Xo(a; E) = {:c € X :limsup 4, ®(x) < 04} :

n—oo
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The set X¢(cr; B) will be simply denoted by Xg (). This is the set of points z € X
such that lim,_..c A,®(z) = a in o(B*, B)-topology. If F denotes the convex cone
of F which consists of all aw’ + bw” with a > 0,0 > 0 and w’ € E,w"” € E, then
Xo(a, E) = Xo(a, E). So we may always assume that E is a convex cone. If E is
symmetric in the sense that £ = —F, then we have

Xo(a, B) = {x € X : lim A,d(x) 2 a}.

n—oo

By entropy spectrum we mean the function
EL(0) = huop(Xo(as B)).

Invariant measures will be involved in the study of the entropy spectrum £F(«).

We set
E
Me(a; E) = {u € My, : | @dp < a}

where [ ®du denotes the vector-valued integral in Pettis’ sense (see [130]) and the

E
inequality ”<” means
/(@,w}d,u < (o,w) for all we E.

For saturated systems, we prove the following variational principle.

Theorem 5.2. Suppose that the dynamical system (X, T) is saturated. Then
(a) If Mo(a; E) =0, we have X¢(a, E) = 0.
(b) If Mg(c;; E) # 0, we have

hiop(Xo(a; E)) = sup  h,. (5.1)
peEMe (;E)

When B is a finite dimensional Euclidean space R? and £ = R?, the varia-
tional principle (5.1) with E' = R? was proved in [13, 19] for subshifts of finite type,
then for conformal repellers ([55]) and later generalized to systems with specifica-
tion property [135]. There are other works assuming that ® is regular (Holder for
example). See [15, 43] for classical discussions, [9, 10, , , , | for re-
cent developments on Birkhoff averages, and [0, 11, 12, 27, 35] for the multifractal

analysis of measures.
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The study of infinite dimensional Birkhoff averages is a new subject. We
point out that [121] provides another point of view, i.e. the thermodynamical

point of view which was first introduced by physicists.

The above variational principle (5.1), when E = B, is easy to generalize to
the following setting. Let W be a continuous function defined on the closed convex
hull of the image ®(X) of ® into a topological space Y. For given &, ¥, and
G eY, we set

Xy(B)={re X ¢ lm v(4,0()) =8}

M%(ﬂ)z{ue/\/&nv : \If(/fbdu) Zﬁ}-

X3 (8) = {x €eX . VU <1im Ancp(x)> - @}

n—oo

and

We also set

[
-
z
8

It is clear that X¥(3) is a subset of X¥(3).

Theorem 5.3. Suppose that the dynamical system (X, T') is saturated. Then

(1) if M3(B) =0, we have Xg (3) =0,
(2) ZfMg(ﬁ) # 0, we have

heop (X3 (8)) = hiop (X3 (8) = sup . (5.2)
peEMg (6)

This generalized variational principle (5.2) allows us to study generalized
ergodic limits like
>y ®(Ta)
mm =
e ijo 9(T7x)
where g : X — RT is a continuous positive function. It suffices to apply (5.2) to ®
replaced by (@, g) and ¥ defined by ¥(x,y) = z/y, with € B* and y € R™.

(5.3)

It also allows us to study the set of points x € X for which the limits
Ao ®(x) = lim,, o A, () verify the equation

U(A®(z)) = 5. (5.4)

88



The present infinite dimensional version of variational principle would have
many interesting applications. We will just illustrate the usefulness of the vari-
ational principle by the following study of frequencies of blocks in the dyadic
development of real numbers. It can be reviewed as an infinitely multi-recurrence

problem.

Let us state the question to which we can answer. All but a countable number

of real numbers t € [0, 1] can be uniquely developed as follows

o tn

t= Z:Q—n (tn € {0,1}).

Let k£ > 1. We write 0F for the block of k consecutive zeroes and we define the
0"-frequency of t as the limit (if it exists)

.1 .
f(t, k’) = lim —ﬂ{l S ¥ S n: tjt]url tee thrkfl = Ok}

n—oo M,
Let (aq, as, - - - ) be a sequence of non-negative numbers. We denote by S(aq, as, - )

the set of all numbers ¢ € [0, 1] such that f(¢,k) = a; for all £ > 1. As a conse-

quence of the variational principle ( 5.1), we prove

Theorem 5.4. The set S(ay,aq,---) is non-empty if and only if the following

condition is satisfied

1:a02a12a2>...; ai—QaHl—l—aHQZO (ZZO) (55)

If the condition (5.5) is fulfilled, we have
hiop(S(a1, a2, +)) = =h(1 =) + > h(a; —2a;41 + a;12) (5.6)
=0

where h(z) = —xlogx.

Furthermore, it is proved that there is a unique maximal entropy measure,

which is completely determined (see Lemma 5.19).

The rest of this chapter is organized as follows. In Section 5.2, we give some

preliminaries. In Section 5.3, we prove Theorem 5.1. In Section 5.4, we prove the
theorems 5.2 and 5.3 and examine the case where B = ¢'(Z). In Section 5.5, we

apply the variational principle (5.1) to the study of the recurrence into an infinite
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number of cylinders of the symbolic dynamics. Especially, we study the set of
orbits whose recurrences into infinitely many cylinders are prescribed. This relies
on the explicit determination of a maximal entropy measure which, by definition,

maximizes the supremum in (5.1).

5.2 Preliminary

The definitions and properties of entropy (measure-theoretic entropy and
Bowen’s generalized version of topological entropy) have been discussed in Section
2.3 of Chapter 2. We also remind the readers of Bowen’s Lemma (Lemma 2.35) in
Section 2.3 which is useful in this chapter. We now wish to recall two propositions
about the measure-theoretic entropy.

We denote by C(X) the set of continuous functions on X, by M = M(X)
the set of all Borel probability measures.

In the sequel, we fix a sequence (p;);>; such that p; > 0 for all ¢ > 1 and
o2 pi = 1 (for example, p; = 27 will do). Suppose that s, = (sp)i>1 (n =
1,2,---) is a sequence of elements in ¢*°. It is obvious that s, converges to
a = (;);>1 € £ in the weak star topology (i.e. each coordinate converges) is

equivalent to
i S plsn o =0
i=1
We also fix a sequence of continuous functions {®;, ®,, ...} which is dense in the
unit ball of C(X). Write & = ($y, Py,...). It is evident that & : X — (> is

continuous when (> is equipped with its weak star topology. Fix an invariant

measure u € Mi,,. Let
a=(ag,a9, - -ag,---) where «; = /(IJidu.

The set of generic points G, can be described as follows

i=1

It is well known that the weak topology of M is compatible with the topology
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Ci(% V) = sz
=1

(5.8)




where both (p;);>1 and {®;};>; are chosen as above.

The following two results will be useful for us.

Proposition 5.5 (Young [150]). For any p € My and any numbers 0 < 6 <
1 and 0 < 6 < 1, there exist an invariant measure v which is a finite convex

combination of ergodic measures, i.e.

v = Z)\kyk, where A, > 0, Z)‘k =1, v € My, 7 €Nt
k=1

k=1
such that
d(p,v) <6, hy, > h, — 0.
This is a consequence of the following result due to Jacobs (see [110], p.

186). Let p € My, be an invariant measure which has the ergodic decomposition

p= [ Morg 7dm(T) where 7 is a Borel probability measure on Me,,. Then we have

hy, = / hedm(T).
Merg

Proposition 5.6 (Katok [77]). Let p € My be an ergodic invariant measure.
Fore >0 and § > 0, let r,(€,0, ) denote the minimum number of e-balls in the
Bowen metric d, whose union has pi-measure more than or equal to 1 — 9. Then
for each 6 > 0 we have
- 1 TR |
h, = lim lim sup — log 7, (€, 0, ) = lim lim inf — log r,, (€, 9, p1).
e—0 5 00 N e—0 n—oo N

In [77], it was assumed that T : X — X is a homeomorphism. But the proof

in [77] works for the transformations we are studying.

5.3 Systems with specification property are saturated

In this section, we prove Theorem 5.1 which says that every system satisfying
the specification property is saturated. Because of Bowen’s lemma (Lemma 2.35),
we have only to show hiep(G,) > hy,. The idea of the proof appeared in [18, 19]
and was developed in [135]. Tt consists of constructing the so-called dynamical

Moran sets which approximate the set of generic points G,.
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5.3.1 Dynamical Moran sets and their entropies

Fix € > 0. Let {my,}x>1 be the sequence of integers defined by my = m(27%¢)
which is the constant appeared in the definition of the specification property (k =
1,2,...). Let {Wy}r>1 be a sequence of finite sets in X and {ny}r>1 be a sequence

of positive integers. Assume that
dyp, (T,y) > be (Vo,y e Wi x #y). (5.9)

Let {Ny}r>1 be another sequence of positive integers with N; = 1. Using these
data, we are going to construct a compact set of Cantor type, called a dynamical
Moran set, which will be denoted by F = F(e, {Wy}, {ns}, {Nr}). We will give

an estimate for its topological entropy.

Denote
M, = #W,.
Fix k£ > 1. For any Ny points xy,--- ,xy, in Wy ie. (z1,---,2n,) € W,ivk7 we
choose a point y(z1,--- ,zy,) € X, which does exist by the specification property,
such that
s €

dy, (x5, T%y) < o (s=1,...,Ny) (5.10)

where

as = (s — 1)(ng +my).

Both (5.9) and (5.10) imply that for two distinct points (zy,--- ,zy,) and

(Z1,- -+, Tn,) in W we have
de, (Y(x1, -+ 2N, ), Y(T1, -+, T, ) > 4de (5.11)
where t, = an, + nyg, i.e.
tr = (Nx — )my + Ngny.

In fact, let y = y(xq, -+ ,2n,) and g = y(Z1, - - , Ty, ). Suppose 4 # T for some
se{l,---,Ng}. Then

v

d, (T y, T y)
dnk (xm js) - dnk <$57 Tasy) - dnk (jsa Tasg)
> be—€/2—¢€/2 =4e.

dtk (y7 g)

v
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Let
D, =W, D= {y(xl,--- TN,) (1,0, 2N, € W,ﬁv’“} (Vk > 2).
Now define recursively L and ¢ as follows. Let
Li =D, 0l =n;.

For any z € Lj and any y € Dy,1 (k > 1), by the specification property, we can
find a point z(z,y) € X such that

€ m €
G @) o) < Sy (T2 ). ) < o

We will choose one and only one such z(z,y) and call it the descend from = € Ly,
through y € Dyq. Let

Livw = {2(z,y) 2 € L,y € Diya},
k+1

gt = L+ Mpgr + tear = Ning + > Ni(m; + ).

1=2

Observe that for any z € Ly and for all y,y € D1 with y # g, we have

dy, (2(2,1), 2(2,9)) < 2% (k> 1), (5.12)

and for any x,Z € Ly and y,y € Dy, with (z,y) # (Z,7), we have
oy, (2(2,9),2(2,9)) > 3 (k> 1). (5.13)

The fact (5.12) is obvious. To prove (5.13), first remark that dy, (2, 2) > 5e > 4e
for any z,z € Ly with z # z, and that for any =,z € Ly and y,y € Dy, with
(2,) # (7,7) we have

d5k+1(z($ay)v z(:?c,gj)) > dgk(lt,fi‘) - dfk<z(xvy)>$> - dgk(Z(i‘,ﬂ),If‘)
and

d4k+1 (Z(SL’, y>> Z(fa g))
> dyy,, (y,7) = diy (T 2(2,y), y) — dyy (T 2(Z, 7)), 7).

Now using the above two inequalities, we prove (5.13) by induction. For any
x,T € Ly and y,y € Dy with either x # Z or y # y, we have

de, (2(,y), 2(Z, 7)) > 4e — 2—62 _ % — e — %
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Suppose we have obtained that
_ € € €
de, (2(w,y), 2(2,9)) > de — 5 = o5 — oo = 2IH‘

Then for any x,z € Ly, and y,y € Dy with (z,y) # (Z,y) we have

o € € € € €
oy, (2(2,y), 2(Z, 7)) > 46_5_2_2_"'_ k=1 9k+1  Qk+1
€ € € €
:46_5_2_2_‘.'_F_ﬁ>36

Now define our dynamical Moran set

F = F(e AW} {m} ANG) = ) B,

where
Fk = U ng(I,GQ_(k_l))

€Ly
(B(z,r) denoting the closed ball of center x and radius r). The set F' is Cantor-like

because for any distinct points @/, 2” € Ly, by (5.13) we have
By, (2,27 FD) ﬂ?@k (2", €27 *=Dy = ¢)
and if z € Ly, descends from x € Ly, by (5.12) we have

By, (z,e27%) C By, (z,e27*D).

Proposition 5.7 (Entropy of F). For any integer n > 1, let k = k(n) > 1 and
0 <p=p(n) < Ngs1 be the unique integers such that

Ok + p(Mmps1 +ngr1) <n <L+ (p+ 1) (mgs1 + nigr).

We have
1
hiop(F) > liminf —(Ny log My + - - - + Ny log My, + plog M4 1).

n—oo N

Proof. For every k > 1, consider the discrete measure o, concentrated on Fj,
1
o = —— 0.
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It can be proved that o, converges in the week star topology to a probability

measure o concentrated on F'. Moreover, for sufficiently large n and every point
z € X such that B,(x,¢e/2) N F # (), we have

1

o(By(z,€¢/2)) < - .
#(Lk)leJrl MlNl T Mlinle—i—l

(see [135]). Then we apply the mass distribution principle to estimate the entropy.
]

5.3.2 Box-counting of G,

Recall that o = (a;);>1 € € and ® = (®;) is a dense sequence in the unit
ball of C'(X). For § > 0 and n > 1, define

Xo(a,0,n) = {x € X: Zpi’An‘I)i(l") — o] < (5} :

i=1

For € > 0, let N(a,d,n,¢€) denote the minimal number of balls B, (x,¢€) to cover
the set Xe¢(cv,d,n). Define

1
Ag (@) := lim lim lim sup - log N(a, d,n,€) (5.14)

e—06—0 500

By the same argument in [18] (p. 884-885), we can prove the existence of the

limits, and the following equality:

1
Ag(a) = lim lim lim inf — log N(«, 6, n, €).

e—00—0 n—oo N

Proposition 5.8. Ag(a) > hy,.

Proof. 1t suffices to prove Ag(a) > h, — 46 for any § > 0. For each ¢ > 1, define
the variation of ®; by

var(®;,€) = sup |P;(z) — Pi(y)|.

d(z,y)<e
By the compactness of X and the continuity of ®;, lim._q var(®;,e) — 0. So

—+00

ll_r)% Zpivar(@i, €) — 0.

i=1
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This, together with (5.14), allows us to choose € > 0 and ¢ > 0 such that

+o0
Zpivar(q)i, €)<d<b (5.15)
i=1
and
1
limsup — log N(«, 58, n,€) < Ap(ar) + 0. (5.16)
n—oo N

For the measure p, take an invariant measure v = >, _, A\g4 having the

properties stated in Proposition 5.5. For 1 < k <r and N > 1, set

Yi(N) = {x €X Y pi|ADi(x) — /(I)idyk <dé (Yn> N)} .
i=1
Since v, is ergodic, by the Birkhoff theorem, we have
lim Zpi Ap®i(z) —/(I)idl/k =0 y,—a.c. (5.17)
i=0

Then by the Egorov theorem, there exists a set with v;-measure greater than 1 —6
on which the above limit (5.17) is uniform. Therefore, if N is sufficiently large,

we have

(Yi(N) >1—0  (Vk=1--,r). (5.18)

Apply the second equality in Proposition 5.6 to the triple (v, 4¢, 6) in place of
(i, €,6). When € > 0 is small enough, we can find an integer N, = Ny (v, 4€,60) > 1
such that

rn(4€,0,v) > exp(n(hy, —0)) (Vn > Ny).

This implies that if n > Ny, then the minimal number of balls B, (x, 4¢) to cover
Y (N) is greater than or equal to exp(n(h,, —6)). Consequently, if we use C'(n, 4¢)

to denote a maximal (n, 4¢)-separated set in Yj(IN), then
#C'(n,4e) > exp(n(h,, —0)) (Yn > Ny). (5.19)
Choose a sufficiently large integer Ny such that

ny = [Agn] > max(Ny, -+, Ng, N) (Vk=1,...,7; Vn > Np)
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([-] denoting the integral part). By the specification property, for each r points
x1 € C(ny,4e),...,x, € C(n,,4e), there exist an integer m(e) depending on e and

a point y = y(x1,...,x,) € X such that
dy, (T y, zp) < € (1<k<r) (5.20)

where
k—1

a; =0, a,= (k—l)m+2ns (k > 2).
s=1

Write n = a, + n,, i.e.

n=(r-— 1)m+2ns.
s=1

We claim that for all such y = y(z1,...,x,), we have
y=y(xy,...,z,) € Xo(a,50,7) (5.21)
when n is sufficiently large, and that for two distinct points (z1,...,z,) and

(),...,2.) in C(ny,4€) x --- x C(n,,4e), the points y = y(x1,...,z,) and ¢y =
y(a), ..., x.) satisty
di(y,y') > 2e. (5.22)

If we admit (5.21) and (5.22), we can conclude. In fact, the balls B;(y, €) are
disjoint owing to (5.22) and hence there are #C'(ny,4€) x ... x #C(n,,4€) such
balls. Therefore, because of (5.21), the minimal number of (7, ¢)-balls needed to

cover Xg(ar,50,7n) is greater than the number of such points y’s. That is to say
N(a,50,n,€) > #C(nq,4€) x ... x #C(n,.,4€)

Then by (5.19), we get

N<a7 567 ﬁa 6) = exp Z[)‘anhl/k - 9)

k=1

By noticing that % — XAy asn —ooand Y, A\, = 1, we get
| .
liminf — log N(a, 56,7, €) > h,, — 36
n—oo M

This, together with (5.16), implies Ag (o) > hy, — 46.
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Now return to prove (5.21) and (5.22). The proof of (5.22) is simple: suppose

xy, # x}, for some 1 < k <r. By (5.20),

dﬁ(yvy/) > dnk<Taky7Takyl> > dnk(mlﬁm;c) -

Now prove (5.21). Recall that a; = [ ®;dv and v =", _, M. We have

A, Z)\k / ;du,,

2¢ > 4e — 2¢ = 2e.

|An®i(y) — o] <
Since d(u,v) < 6 i.e Z;’ilpﬂ [ ®idp — f ®;dv| < &, we have only to show that
ap— 1

Write
r )\kn} 1 r
A BT 13T S a

k=1 j=0 k 2 j=ap—m
T ap—1

~ Dwn ]A[Akn]cb T%y) + — Z > a(Ty)

k2jakm

.
3
=
S

[
S|~

- n
k=1
Then
Ani(y) — Ak/wk < 1(0) + L(3) + L(i) + L(3)
k=1
with

Apen @i(Ty) — Apn) @i(1) |

[Arn]

L(i) = Z =

Y A[,\kn]cbl(xk) —/(I)idl/k
o - z’__xk

T ap— 1

i = - 3 1w

k 27

Since [Agn] < Agnv and zy, satisfies (5.20), by (5.15) we get

ipi[l(i) sz Z Apvar(®;,€) = Zpivar(@, €) < 4.
=1 =1 =1
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Since z, € Yi(N) and [A\gn] > N, we have

i pila(i) < Z pZZ)\k Apon @i (1) / O, duy,
=1 =1
= Z)\k sz Apyn) @i () /‘I)Z )\k =4
1= 1
Since ||®;|| < 1, we have
ipifg(z') < Z Mg”] ~ M| <6
=1 k=1

S ot < O sz = mle)

3>

when n is sufficiently large because n — oo and [Afl—”] — .

By combining all these estimates, we obtain (5.23). O

5.3.3 Saturatedness of systems with specification

In this subsection we will finish our proof of Theorem 5.1, which says that
systems satisfying the specification property are saturated. It remains to prove
hiop(Gp) > As(a). In fact, by Proposition 5.8, we will have hy,(G,) > h,. On
the other hand, it was known to Bowen [24] that h, > h,(G,,). So, we will get
htop(Gp) = by

Proposition 5.9. hi,(G,) > As ()

Proof. 1t suffices to prove hi,(G,) > Ag(a) — 6 for any 6 > 0. To this end, we
will construct dynamical Moran subsets of G, = Xg(a), which approach Xg (o).

The construction is based on separated sets of X¢(a,d,n).

Let m; = m(27%¢) be the constants in the definition of specification. By
the definition of Ag(a) (see (5.14)), when € > 0 is small enough there exist a
sequence of positive numbers {0} decreasing to zero and a sequence of integers

{n)} increasing to the infinity such that

ny, > 2™ (5.24)
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and that for any £ > 1 we can find a (ny, 5e)-separated set Wy, of Xo(a, O, ng)
with
My := Wy > exp(ng(As(a) — 0)). (5.25)

Choose a sequence of integers {Ni} such that

Ny =1 (5.26)
Nj, > 2Me+1t k1 k>2 (5.27)
Nk+1 > 2N1n1+N2(n2+m2)-~+Nk.(nk-i-mk)’ k > 1 (528)

Consider the dynamical Moran set F' = F(e, {Wy}, {nx}, {Nx}) as we constructed
in the last subsection. From (5.24)-(5.28), we get

1
liminf —(Nylog My + - - - 4+ Ny log My, + plog My.11) > Ag(a) — 6.

n—oo M

By Proposition 5.7, we have
hiop(F) > Ag(a) — 6.

Thus we have only to prove F' C Xg(a). Or equivalently

1 [e.9]
lim — Y p; [S,®i(a) — nay| =0 F). 5.29
Tim = i [Su®i(z) — no (z € F) (5.29)

=0

Let us use the same notations as in the last subsection including ¢y , ty , Dy

and L, etc.

Fixn > 1. Let £k > 1 and 0 < p < Ngy1 be the integers, which depend on n,
such that

Ui+ p(Mpg1 +1gr1) <n <L+ (p+ 1) (Mpy1 + Nget1)
Write
q=mn— (b + p(Mys1 + nk41)), be = (s — 1)(mpq1 + ngya).
Decompose the interval [0,n) (C N) into small intervals

[0,n) =10, lx) kaa U + p(Mpgr + Npg1)) U[gk + p(Mpg1 + Ngy1),n)
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and decompose still [(y, £k + p(mys1+nge1)) into intervals alternatively of lengths
nyy1 and myy. Then cut the sum Y5, ®;(T7z) into sums taken over small

intervals. Thus we get
|5, ®;i(x) — nay| < Ji1(i) + Jo(i) + J3(i) + J4(4)
where
Ji(7) = S, Pi(r) — lray]
Jo(i) = i | S @i (T4 ) — g
s:l
J3(i) = Z ‘SnkH‘I’i(Tngrbﬁmkﬂﬂf) — nk+1ai’
s=1
Jy (1) = ‘Squ>i(Tf’“+p(mk+1+"’“+1)x) — qai‘
Since ||®;]| < 1 (hence |a;] < 1), we have

Jo(i) < 2pmy.y, Ji(7) <2q < 2(mypg1 + nggr)-

By (5.27), we have
lim lfj Jo(i) =0, lim lfj (i) =0 (5.30)
o 11 pa Did2 — Y 00 Tl g Dida — U. .

Now let us deal with Ji(i) and J3(i). We claim that for any x € F' there

exists an T € L such that

_ €

d@k<x,.’13) < F, (531)
and that for all 1 < s < p, there exists a point x; € Wy, such that

Ay (25, T ) < ST (5.32)
where
Us = Ek + bs + Mt
In fact, by the construction of F', there exists a point z € Ly such that
€
dy i (z,2) < L (5.33)
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Assume that z descends from some T € L through y € Dy,1. Then

B €
dgk (I, Z) < W (534)
and
m €
dtk+1 (yv TZIHL kHZ) < 2k+1 : (535)

On the other hand, according to the definition of Dy, there exists an x5 € Wy,
such that

., (25, T"y) < (5.36)

2k+1°
Now by the trigonometric inequality, the fact dy, (2,7) < dy,,,(2,2) and (5.33)
and (5.34) we get

_ €
dgk(x,[lf)_w—l—? 271.

Thus (5.31) is proved. By (5.33),(5.35) and (5.36), we can similarly prove (5.34):

dnk+1(ISajhusx)

IN

dnk+1 (I& Tbsy> + d’flk+1 (Tbsy’ Tusz) + dnk+1 (TUSZ7 Tugx)

dnk+1 ('7357 TbsQ) + dtk+1 (ya Tek—i_mkﬂz) + dfk+1 (Z, 37)

€ € €
Ok+1 T 9k+1 T ok

IN

A\

€
Qk—l‘

It is now easy to deal with J3(¢), which is obviously bounded by

< Z ‘Snk_H T“9 _ nk+1 ‘ -+ Z ‘Snk+1 — N0 .
Using (5.32), we obtain
‘Snk+1 ( s) — Snkﬂq)l(T“Sx)‘ S nk+1Var((I)i, 627(]671)).
On the other hand, since x4 € Wi C Xo(a, dgt1, k1), we have, by definition,
sz | S @i(25) = npsrci| < ngya g

Then, combining the last three estimates, and using the facts Z]Oil p; = 1 and

P41 < n, we get

RS RS .
E;plj?)@) S ZinaI'<(I)i,€2 (k 1)) + 6k+1.

i=1
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Since k can be arbitrarily large, we finally get

o0

1
lim — i J3(2) = 0. 5.37
Jim ;lp 3(4) (5.37)
Now it remains to prove
i LS pi(i) =0 (5.38)
im — i J1(1) = 0. :
n—oo N, —1 p !

Observe that
J1(2) < 180, Pi(z) — So, Pi(T)| + |Se, Pi(T) — Lrcvs] -
By (5.31), we have | Sy, ®;(z) — S;, ®:(7)| < £pvar(®;, e2~*~Y). Then
Ji(i) < lpvar(®;, 2Ry 4 Ry
where

Ry, = max|S;, ;(2) — lray] .

z€Lg
Since var(®;, €2~ *1)) tends to zero as k — oo, the desired claim (5.38) is reduced

to
1
lim — E piRg; = 0. (5.39)

We need two lemmas to estimate R ;.

Lemma 5.10. For any y € Dyy1, we have
Zpi ‘Stqu)i(?J) - tk+lai|
i=1

< ZpiNk+1nk+lvar<(I)i7 62_(k+1)) + 2(Nip1 — 1)1 + Npsang10541-
i1

Proof. For any s =1,..., Nii1, there exists x; € Wi such that

dnkﬂ(xS’Tbsy) < Ok+1 (5.40)
where by = (s — 1)(mpq1 + npp1). Write
Ne41 Ngy1—1
Stia Dily) = Z S”kﬂq)i(TbSy) + Smk+1q)i(Tbs+nk+1y).
s=1 s=1
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Then

|Stss i (y) — tryrui]

N1 Niy1—1
Z }SnkH T y) — nk+1ozl| + Z |Smk+1<1) (Tbs+nk+ly> e
s=1

Since s € Wiy1 C Xo(a, dgr1, nr1), by (5.40), we have

sz ’Snk_,_l Tbg - nk-{—lai‘

S sz ‘Snk+1 Tbs — nk+1 xs } + sz |Snk+1 — Ng410
< mekﬂvar(@i, €2 DY Ly Gt
=1

On the other hand,
|£ink+1¢H<]ms+nk+ly)'_'ﬂ1k+16% S;ZTnk+1.
Now it is easy to conclude. O]

Lemma 5.11.

0o 0o k k k
Zlek’Z S 2 Zpl Z fjvar(q)i, 62_j) + 2 Z ijj -+ Z Ejéj.
i=1 =1 j=1 j=1 j=1

Proof. We prove it by induction on k. When £ = 1, we have L1 = D; = W; C
Xo(a,01,n1) and then

ZPiRu <nydy = l10;.

i=1
Suppose the lemma holds for k. For any z € L, thereexist x € Ly and y € Dy, 1,

such that
€

2k+1'

dék (:L', Z) < dtk+1 (y7 TékerkHz) <

2k+1 b
Write

Steu1 @i(2) = Sp, @i(2) + S @i (T%2) + Sy, Pi(THT™412),
Then {Sng(I)i(z) — €k+1az~} is bounded by
|Sgk ( ) Ekaﬂ + }Smk-&-l (Tsz) — mk+1ai‘ —|— ‘Stk+lq)i(T£k+mk+1Z) — tk+1ozz~| .
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Notice that

|96, ®i(2) — lra|

IN

S0, @i(2) — Sg, @i(x)| + [Se, Piw) — v
Uvar(D;, 62_(k+1) + Ry,

AN

S

mkH‘I’i(TZ’“Z)—mkHOéi} < 2mpq

and

’Stkﬂq)i (T£k+mk+1 Z) _ tk+105i‘
’Stk+1q)i(Ték+mk+lz> - Stk+1q)i(y)| + |Stk+1q)i(y) — 10y
< tpggvar(P;, €2 D) 4 |Gty ®i(y) — tryal .

IN

By Lemma 5.10, we have

ZpiRkJrl,i < ZpiRk,i + Zpi(gk +tpyr + Nppings)var(®;, e /25
i—1 i—1 i—1
+2Np 1M1 + Nep1np 10841

Then according to the induction hypothesis the Lemma holds for k + 1, because

Oy + b1 < U1, Niganggr < lpgr.

]

Let us finish the proof of Theorem 5.1 by showing (5.39). Since n; > 2", we

have
Njm; Nimy Mg (= o).
l; 7 Ni(nj+my)  nj+my

Then the estimate in Lemma 5.11 can be written as

(3] k
ZpiRk,i < Z@Cj
i=1 j=1
where ¢; — 0 (j — o0). By (5.28), we have £, > 2%-1. It follows that
1 ) 1 k-1
A ZpiRk,i < ¢+ i Z cil;.
i=1 i=1
This implies (5.39). O
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5.4 Variational principle

In this section, we prove variational principles for saturated systems (Theo-

rem 5.2 and Theorem 5.3).

5.4.1 Proofs of Theorems 5.2 and 5.3

The proof of Theorem 5.3 is similar to that of Theorem 5.2.
Proof of Theorem 5.2 (a). Tt suffices to prove that if there exists a point

r € Xo(a; E), then Mg(a; E) # 0. That x € Xo(o; E) means

lim sup(A,®(z), w) < (a, w) (Vw € E). (5.41)

n—oo

Let 4 be a weak limit of n~! Z;"Zl Ori.. That is to say, there exists a sequence n,,
such that

Nm—1

Jim S 1) = [ fau (5.42)

=0
for all scalar continuous functions f. We deduce from (5.41) and (5.42) that for

all w € F we have

m—00

/(@,w)du = lim (4,, ®(z),w) < limsup(A,®(z),w) < (o, w).

n—oo

So € Mg(a; E). O
Proof of Theorem 5.2 (b). Let t = SUpP,c g (a:r) tu- What we have just proved
above may be stated as follows: if z € Xg(o; E), then

V(z) C Mo(o; E).
It follows that h, <t for any p € V(z). Thus

Xo(;E) C {xeX: VueV(x)satistying h, <t}
C {reX: 3 peV(x)satistying h, <t}.

Then, due to Lemma 2.35, we get hiop(Xo(a; E)) < t.

Now we prove the converse inequality. For any u € Mg (o; E), consider G,

the set of generic points. We have
G, C Xo(a;B) C Xo(a; E).
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The second inclusion is obvious and the first one is a consequence of the fact that
x € G, implies lim,, o A,®(z) = [ ®dp = « in the o(B*, B)-topology. Thus

hiop(Xo(a; B)) > htOP(Gu)-

Since p is an arbitrary invariant measure in Mg(a; E), we can finish the proof
because the system (X, T) is saturated (i.e. hiop(GL) = hy)- O

It is useful to point out the following facts appearing in the proof:
(i) If x € Xo(a, E), then V(z) C Mo(a, E).
(i) We have

U G.cXelwB)yc | G

M€M<I>(O‘7E) Nqu)(a:E)

with éu ={x € X : V(x) 2 pu}. It is worth to notice the fact that all the G, are
disjoint.

It is clear that Mg (a, E) is a compact convex subset of the space My, of
Borel probability invariant measures. If h,, as a function of u, is upper semi-
continuous on Mj,,, then the supremum in the variational principle is attained
by some invariant measure, called the maximal entropy measure in Mg(a, E).
Usually, the structure of Mg(a, F) is complicated. But it is sometimes possible

to calculate the maximal entropy.

Proof of Theorem 5.3. Let x € Xg (3) and let i be a weak limit of n~! E}:& Oz
Then there exists a subsequence of integers {n,,} such that A, &(z) tends to
J ®dp in the weak star topology as m — oo because we have an expression similar
to (5.42) with f = (®,w) (w € B being arbitrary). Hence

m—00 n—oo

¥ < / cpdﬂ> — Jim WA, B(z)) = lim U(A,d(z)) = 4.
Thus we have proved that g € Mg (3). That is to say
V(z) C Mg(B) (v € Xg(8)).
It follows that (a) holds and that due to Lemma 2.35 we have

hiop(Xg (8)) < sup .
pneMZ(B)
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The converse inequality is a consequence of the variational principle (5.1) and

the relationship
3B oX3B8) = |J Xslo.
In fact,
heop(X3 (B) = hep(X3 (B)) > sup  hyop(Xa(a))

a:V(a)=p

= sup sup hy,
al(a)=f peMe(a)

= sup h,.
HEMZ(B)

5.4.2 (*>*(Z)-valued ergodic average

Let us consider the special case where B = ¢1(Z). Then B* = (*(Z). Any

(°°(Z)-valued function ® can be written as
O(x) = (@n(x))nez, with  sup |®,(z)| < co.

Recall that £>°(Z) is equipped with the o(£>°, ¢*)-topology. A (>(Z)-valued func-
tion ® is continuous if and only if all coordinate functions ®, : X — R are
continuous, because for any w = (wy)nez € ¢' we have
(P(z),w) = anén(x).
nez

Let us give an application of the variational principle in this setting. Let [
be a finite or infinite subset of positive integers. Let {®;};c; be a family of real
continuous functions defined on X. We suppose that sup;c; || ®s]|c(x) < co. For
two given sequences of real numbers a = {a;}ic; and b = {b; }ic;, we denote by
S(a,b) the set of points = € X such that

a; < liminf A,,®;(z) < limsup 4, P;(x) < b; (Viel).

n—00 n—00

Corollary 5.12. Suppose that the system (X,T) is saturated. The topological
entropy of S(a,b) defined above is equal to the supremum of the measure-theoretical

entropies hy, for those invariant measures j1 such that
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Proof. For n € Z, let e, be the n'™ element of the canonical basis of (}(Z). Let
® be a function whose nth coordinate and —n'" coordinate are respectively equal
to ®,, and —®,, for each n € I (other coordinates may be taken to be zero). Take
the set £ C ¢!, which consists of e¢; and e_; for i € I. Take o € ¢*° such that
a_; = —a; and «; = b; for 1 € I. Now we can directly apply the variational

principle by noticing that

(@,e) =d;,  (De;) =—, (iel).

The result contained in this corollary is new, even when [ is finite. If I is
finite and if a; = b; for ¢ € I, the preceding corollary allows one to recover the

results in [19] and [135].

The validity of the variational principle is to some extent equivalent to the
fact that the system (X, T) is saturated.

Theorem 5.13. Let (X,T) be a compact dynamical system. The system is sat-
urated if and only if the variational principle (Theorem 5.2 (b)) holds for all real

Banach spaces B.

Proof. Tt remains to prove that the variational principle implies the saturation of

the system.
Take a countable set {f;}ien which is dense in the unit ball of C'(X) (C(X)

being the space of all real valued continuous functions on X). Consider the func-

tion
(I):(fl,fQ,"',fm"')

which takes values in B = ¢>°(N). For any invariant measure p € Mj,,, define

o= (/fldu,/fgdu,---) € (>(N).

It is clear that Mg (a) = {u}. Then the variational principle implies hop(Xo () =
h,,. This finishes the proof because X¢ () is nothing but G,,. O]
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5.5 An example: recurrence in an infinite number of

cylinders

We have got a general variational principle. In order to apply this principle,
one of the main questions is to get information about the convex set Mg (v, E)
and the maximal entropy measures contained in it and to compute the maximal
entropy. Let us consider the symbolic dynamical system ({0, 1}, T'), T being the
shift. The structure of the space Mj,, is relatively simple. To illustrate the main
result, we shall consider a special problem of recurrence into a countable number

of cylinders.

5.5.1 Symbolic space

Let X = {0,1}" and T be the shift transformation. As usual, an n-cylinder
in X determined by a word w = xyx9 - - - x,, is denoted by [w] or [z, ,z,]|. For

any word w, define the recurrence to the cylinder [w] of = by

R(z, [w]) = lim — Zl

n—oo N

if the limit exists.

Let W = {w;};er with I C N be a finite or infinite set of words. Let a =
{a;}ier be a sequence of non-negative numbers. We are interested in the following

recurrence set
R(a;W) ={z € X : R(z, [w;]) = a; for all i€ I}

whose topological entropy will be computed by the variational principle which

takes a simpler form.

Corollary 5.14. We have hiop(R(a; W)) = max,c pma,w) by where

M(aW) ={u € My, : pu([wy]) = a; for all i€ I}.

Remark that the shift transformation on the symbolic space is expansive.
Thus the entropy function h, is upper semi-continuous([110], p. 184). Hence we

can obtain the supremum in Corollary 5.14.
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Recall that any Borel probability measure on X is uniquely determined by
its values on cylinders. In other words, a function p defined on all cylinders can

be extended to be a Borel probability measure if and only if
Z :u([xla T amn]) =1
T1, " yIn

and

Z N([xlv"' 71:71—176]) = :u([xla"' 7‘%‘”—1])'

e€{0,1}

Such a probability measure p is invariant if and only if

Z N([Evgj?v"' ,%n]) = M([:B?"" ’xn])'

ec{0,1}

The entropy h,, of any invariant measure j € My, can be expressed as follows

b= lim Y —plfer, - 2,]) log M’g[(gl - ;:ii]l)])‘

T1y,Tn

The sum in the above expression which we will denote by h&n) is nothing but a
conditional entropy of p and it is also the entropy of an (n — 1)-Markov measure

[4n, Which tends towards p as n goes to oc.

A Markov measure of order k is an invariant measure v € M;,, having the

following Markov property: for all n > k and all (xy,--- ,x,) € {0,1}"

V([xlv"' an]) o V([xn—k7"' 71:”])

(e, anal) o vlleng o eal)

A Markov measure of order k is uniquely determined by its values on the (k4 1)-
cylinders. The preceding approximating Markov measure u, has the same values

as p on n-cylinders.

To apply the above corollary, we have to maximize the entropy h, among all
invariant measures p with constraints p([w;]) = a; for ¢ € I. The entropy h,, is
a function of an infinite number of variables p([w]). So we have to maximize a
function of an infinite number of variables. However, in some cases it suffices to
reduce the problem to maximize the conditional entropy which is a function of a

finite number of variables.
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Denote by |w| the length of the word w. Let W, := {w € W : |w| < n} and
M(a,W,) = {p € My : p([wi]) = a;,w; € W, }. Let p* be a maximal entropy
measure over M(a, W) and pf be the (n — 1)-Markov measure which converges

to u*. Let u™ be a maximal entropy measure over M(a, W,). Then

hy» = 7}1—>r£>lo hy: < liminf hym < Hmsup hym) < by

n—00 n—00
Hence
lim hu(n) =hy = max h,.
n—00 peEM(a, W)

However, for any measure y € M(a, W,,), we have h, = h,, = W™ where p, is
the (n— 1)-Markov measure which converges to p ([19]). Thus, p(™ is the maximal

point of the conditional entropy function hftn).

Thus we have proved the following proposition.

Proposition 5.15. The mazimal entropy over M(a, W) can be approximated by

the maximal entropies over M(a, W,,)’s.
5.5.2 Example: Frequency of dyadic digital blocks
Let us consider a special example:
W= {[0]7 [02]7 T [On]v e }
where 0¥ means the word with 0 repeated k times.

Theorem 5.16. Let W = {[0"]},>1 and a = {an}n>1 C RT. We have

(a) Rl@s{(0}izr) # 0 if and only if
1:a02a12a22...; ai—2ai+1+ai+220 (ZZO) (543)

(b) If the above condition is satisfied, then
htop(R(a; W)) = —h<]_ - al) + Z h(az - 26Li+1 + ai+2> (544)
=0

where h(r) = —xlogx.
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The proof of the above theorem is decomposed into several lemmas which
actually allow us to find the unique invariant measure of maximal entropy and to
compute its entropy.

Let p be an invariant measure. The consistence and the invariance of the

measure imply that we may partition all (n + 2)-cylinders into groups of the form
{{0w0], [0w1], [1w0], [1w1]}

such that the measures p([0w0]), p([0wl]), pu([1w0]), pu([lwl]) are linked each other
through the measures p([0w]), u([w0]), u([wl]), u([1w]) of (n + 1)-cylinders. More

precisely, if we write p,, = p([w]), then for any word w of length n, we have
Powo + Powl = Pow
DPiwo + Plwl = Piw
Powo + Piwo = Puo
Dowt + Plwt = Puwil
Lemma 5.17. Suppose p € M(a,W). If w = 0" with n > 0, we have

Pooro = Qny2 (5.45)
Poor1 = Opg1 — Opy2 (5.46)
Prono = Qnt1 — Gny2 (5.47)
prom1 = An — 20p41 + Anyo. (5.48)

Proof. The relation (5.46) is a consequence of the consistence

Poor1 + Pooro = Poon
and the facts pogn = a,41 and pognp = an1o; the relation (5.47) is a consequence of
the invariance

P1o70 + Pooro = Poro
and the same facts; to obtain the relation (5.48) we need both the invariance and
the consistence:

Pion1 + Poor1 = Por1 = Por — Poro-

Then by (5.46) we get

Pion1 = Por — Poro — Poor1 = Ap — 20p41 + Q2.
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Let a, b, ¢ be three positive numbers such that a4+b > ¢. Consider the function
F(t,u,v,w) = h(t) + h(u) + h(v) + h(w) (5.49)
defined on R™, where h(z) = —zlog .
Lemma 5.18. Under the condition
t+v=a, ut+w=>b, t+u=c

the function F defined by (5.49) attains its mazimum at

ac bc ala+b—c) bla+b—c)
t= = == 7 - :
atrb T axy ! a+rb VT T A+ (5.50)

Proof. From the condition we may solve t,u, v as functions of w:
t=c—b4+w, u=b—w, v=a+b—c—w.
So, maximizing F'(t,u, v, w) under the condition becomes maximizing the function
F(w)=h(c—b+w)+h(b—w)+h(a+b—c—w)+ h(w)
which is strictly concave in its domain. Since h'(x) = —1 — logx, we have
F'(w) = —log(c — b+ w) + log(b — w) + log(a+ b — ¢ — w) — log w.

b(at+b— :
blatb—c) Tpq corresponding ¢, u, v are as announced
a+b

in (5.50) 0

Solving F'(w) = 0, we get w =

Lemma 5.19. Suppose that {a,}n>0 is a sequence of real numbers such that

1:a02a12a2>...; CLZ‘—2CL1'+1+CLZ‘+220 (’LZO) (551)

There exists an invariant measure j such that if w is not a block of 0’s, we have

PewPwe

Pw

(Ve, €' € {0,1}). (5.52)

Pewe’ =

The above recursion relations (5.52) together with (5.45-5.48) completely deter-
mine the measure p, which is the unique maximal entropy measure among those

invariant measures v such that v([0"]) = a,, for n > 1.
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Proof. For any p € M(a, W), we must have u([0]) = a; and p([1]) =1 —a;. By

. . 2
"+2) which maximizes h{""?

Proposition 5.15, we are led to find the measure
for each n > 0. Let u be an arbitrary invariant measure in M(a, W, 12), n > 0.
We identify p with the sequence p,, = p([w]) indexed by finite words. By Lemma

5.17, we have

po = a;, p1 =1—a

Poo = A2, Po1 = Pio = A1 — Gz, pii =1—2a; + ay
So, we have

hl(f) = h(ay) + 2h(a; — az) — h(ay) — h(1 —ay) + h(1 — 2a; + ag). (5.53)

Let us now consider the conditional entropy h,(fﬁ) for n > 1, which is a
function of p-measures of (n 4 2)-cylinders, whose general form is [ewe’] with w a
word of length n and €,¢ € {0,1}. If w = 0", by Lemma 5.17, the measures of
the four cylinders [e0"€¢'] with €,€¢ € {0,1} are determined by {ag}r>1. If w # 07,

the four quantities p.,e are linked to each other by

Powo + Powl = Pows  Plwd T Plwl = Plw,  Powo T P1wo = Pwo

through measures of (n + 1)-cylinders: a := py0,b := p1w, ¢ := Pow. Consider the
four measures p.,o as variables, there is only one free variable and three others

are linked to it. Thus to any word w # 0™ of length n is associated a free variable.

In fact, h&"H) is the sum of all terms

=D pelos B (w e {0,1)) (5.54)
If w = 0", the corresponding term (5.54) is a constant depending on the sequence
{a,} (see Lemma 5.17). If w # 0", there is a free variable in the term (5.54). So,
maximizing h,&nﬁ) is equivalent to maximizing all above terms, or equivalently to
maximizing

- Zpewe’ logpewe’- (555)
Applying Lemma 5.18 to the above function in (5.55) provides us with the maximal

point p(™*2) described by (5.52) with |w| = n. It is easy to check that the family
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{pw} defined by (5.45-5.48) and (5.52) for all words w, verifies the consistency and
the invariance conditions. The measure determined by the family is the unique

measure of maximal entropy and p("*? is its (n 4 1)-Markov measure. O

Lemma 5.20. The entropy of the invariant measure v of mazximal entropy deter-

maned in the above lemma is equal to

[ee]

hy = =h(1—a1)+ > h(a; —2a;:14542)

J=0

where h(z) = —xlogx.
Proof. Recall that for any invariant measure 1 we have

h, = lim h{" = inf (Y

n—oo

where

DI S

lw|l=n—1 €=0,1

Thus we may write

hy =h +> (W — p) (5.56)
n=1

For n > 0, write

han+2) = - Z Zpewe’ IOg Pewe Zpe(]"e’ 10g Pene

|lwl=n €¢ €€ Peor

= L(n) + L(n) (5.57)

where Y_' means that the sum is taken over w # 0" (0° meaning the empty word
so that 7;(0) = 0). When n = 0, we get

hl(f) = h(ay) + 2h(a; — az) — h(ay) — h(1 —ay) + h(1 — 2a; + ag). (5.58)

This coincides with (5.53).

Suppose n > 1. By the recursion relation (5.52), we have

]1(77,) = _Z Zpewe’ Ingwe

lw|=n €€

- _ Z Zp““ log— + Zpson log bore

n
|lw|=n € Po

= MY 4 I4(n) (5.59)
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where

Pore
I3(n) = Zps(]"e’ log poon .

From (5.57) and (5.59) we get

R 2 _ p () — () + I3(n). (5.60)

w w

On the one hand, by using the invariance and the consistence we can simplify I3

as follows

DPore
]3(7’1,) = ZponE/ 10g ;
/ on

= Z pon e 10g pOn e — pon log pon

= apy1logan1 + (an — apyr)log(a, — ans1) — ay logay,. (5.61)

On the other hand, we have

IQ(”) = - Zpeone’ log Peore + Zpeon logpeO"

€€ €

= —Gny210g8 12 — 2(any1 — Any2) 10g(Ani1 — anyo)
—(@n — 2an41 + Gpg2)10g(an — 2an41 + Apyo)

+api1logani1 + (an — aniq) log(a, — aniq). (5.62)
By combining (5.60), (5.61) and (5.62) we get

(p(n) — hELnJrQ) o h/(Z’LJrl)
= [h(an+2) - Qh(an—I—l) + h(an)] + 2[h<an+1 - an+2) — h(a, — an-H)]
+h(an, — 2Gp11 + Gpio)-

Finally using (5.56) we get
hM = hl(f) + Z go(n) = —h(l — al) + Z h((lj — 2aj+1 + (Zj+2).
n=1 7=0
O

Remark that the measure of maximal entropy in R(a, W) is not necessarily

ergodic. Here is an example. If a,, = a (Vn > 1) is constant, then there is a unique
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invariant measure in M(a, W), which is ads + (1 — a)d;. In this case, R(a, W)
is not empty but of zero entropy. Notice that R(a, W) contains no point in the
support of the unique invariant measure. If a = %, R(3, W) contains the following
point

01001100011100001111...

(The terms in the two sequences {0¥} and {1*} are alternatively appended.)

At the end of this chapter, we remark that Pfister and Sullivan ([122]) also
obtained Theorem 5.1 with a different method.
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Chapter 6

Khintchine and Lyapunov Spectra

In this chapter, we mainly study the Khintchine spectrum and Lyapunov
spectrum which are in fact some kinds of Birkhoff spectra in continued fractions.
We prove the remarkable fact that the Khintchine spectrum and Lyapunov spec-
trum are neither concave nor convex which signifies a new phenomenon from the
usual point of view of multifractal analysis. We also study the fast Khintchine

spectrum and fast Lyapunov spectrum which are proved to be constant functions.

6.1 Statement of the results

The continued fraction of a real number can be generated by the Gauss trans-
formation 7" : [0,1) — [0, 1) which is defined by

(mod 1), for z € (0,1).

=
=

I
o
=
&

I
K| =

where a;(r) = [1/x] and a,(z) = a;(T" ' (x)) for n > 2 are partial quotients of
x (|z] denoting the integral part of ). The continued fraction expansion is also

denoted by = = [a, as, -+ ,a, + T™(x)] = a1, a9, a3, - ].

We recall a list of definitions and notations we have discussed in Subsection
1.3.3:

!A. H. Fan, L. M. Liao, B. W. Wang and J. Wu, On Khintchine exponents and Lyapunov exponents
of continued fractions, to appear in Ergod. Th. Dynam. Sys..
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e Khintchine exponents and the Lyapunov exponents of = € [0, 1]:

li 1 li 1 (T (x
= Jm Z ogey(@) = Jim = Z g

Az) = lim 11 ’ ‘_1 log | T"(T" ’
(@) = lim > log T nzog @)

n—oo M

e fast Khintchine exponent and fast Lyapunov exponent of x € [0, 1], relative

to ¢ (¢ : N —=R,, and lim,, @ = 0):
1 n—1
~¥ = lim —— log a; lim —— log a, (17
(#)i= lim — > ogay(a) = lim Z (T (@),
1
A (x) ;= lim log‘ ™ ‘ lim — Y log [T"(TY ‘
() 1= Jim s log (77 ()] = Jim Z @)

the level sets of Khintchine exponents and Lyapunov exponents (£, 3 > 0):

Ee:={xe0,1):y(x)=¢}, Fz:={xe€]0,1): \z) =70}

the level sets of fast Khintchine exponents and fast Lyapunov exponents

(& B> 0):
E&(SO) = {l‘ S [07 1) : ’YSO(SB) = f}, Fﬁ(gp) = {‘T € [O’ 1) : )\w(x) = ﬁ}

the Khintchine spectrum and the Lyapunov spectrum:

() == dim Ek t(B) := dim Fj.

fast Khintchine spectrum and the fast Lyapunov spectrum relative to ¢:
t?(€) = dim E¢(y) t%(3) := dim Fj(¢p).

We start with the statement of the results on fast spectra.

Theorem 6.1. Suppose (p(n+1) —¢(n)) T oo and lim % :=b>1. Then

n—oo #(n)

Ee(@) = Foe(p) and dim E¢(p) = 1/(b+ 1) for all € > 0.
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In order to state the results on the Khintchine spectrum, let us first introduce

some notation. Let
D :={(t,q) e R*: 2t — q > 1}, Dy:={(t,q) eER*: 2t —q¢>1,0<t < 1}.

For (t,q) € D, define

1 oo o n
P(t,q) := Ji_{goﬁlog Z Z exp ( sup logHw?([wj, Ce L Wy +x])2t> :
j=1

wi=1 wn=1 z€[0,1]

It will be proved that P(t,q) is an analytic function in D (Proposition 6.19).

Moreover, for any £ > 0, there exists a unique solution (¢(€),¢(§)) € Dy to

the equation

g’g,q) =q¢,
a_q(t7Q) = 5

(Proposition 6.25).

Theorem 6.2. Let § = [logai(z)dug(x). For & >0, the set E¢ is of Hausdorff
dimension t(§). Furthermore the dimension function t(§) has the following prop-
erties

1) t(&) =1, t(+o00) = 1/2.

2) (&) <0 forall € > &; t'(&) =0 and t'(§) > 0 for all £ < &.

3) t'(0—) = 400, t'(+00) = 0.

4)t"(&) < 0, but t"(&1) > 0 for some & > &. So t(€) is neither convex nor

concave.

See Figure 1 for the graph of ¢(&).
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Figure 1. Khintchine spectrum

Let

D={(tq) :f—q>1/2} Do:={(fq):f—g>1/2,0<E<1}.
For (f,q) € D, define
Pi(t lim —log exp [ sup log Wi, wy +2))2ED )
( ) n—oo M wlzl wnz_l (IGOI] H J ])

In fact, Py(,q) = P(f — ¢,0), thus Pi(f,q) is analytic in D.

Denote 7 := 2log %5 For any 3 € (9, ), the system

15}()5 .q) = qp,
1
e —(t.q) =8

admits a unique solution (£(3), ¢(3)) € Dy (Proposition 6.33).

Theorem 6.3. Let A\ = [log|T"(x)|duc and v = 2log %5 For any (B €
[Y0,00), the set Fs is of Hausdorff dimension t(3). Furthermore the dimension
function t(€) has the following properties

1) t(No) = 1, t(+00) = 1/2.

2) t(B) <0 for all B > Xo; t'(No) =0 and t'(3) > 0 for all B < Xo.
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3) #(70—) = +00, #(+00) = 0.
4) 1" (X)) <0, but t"(B1) > 0 for some 1 > Ay i.e. t(3) is neither convex nor

concave.

See Figure 2 for the graph of #(3).

Figure 2. Lyapunov spectrum

The following of this chapter is organized as follows. In Section 6.2, we collect
and establish some basic results that will be used later. Section 6.3 is devoted
to proving the results about the fast Khintchine spectrum and fast Lyapunov
spectrum (Theorem 6.1). In Section 6.4, we present a general Ruelle operator
theory developed in [61] and then apply it to the Gauss transformation. Based on
Section 6.4, we establish Theorem 6.2 in Section 6.5. The last section is devoted

to the study of Lyapunov spectrum (Theorem 6.3).

6.2 Preliminary

The basic properties of continued fractions can be found in Section 2.4 of
Chapter 2. We discuss the Khintchine and Lyapunov exponents and something

about pointwise dimension in this section.
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6.2.1 Jacobian estimate and the level sets of Lyapunov exponents

Recall that for any aq,as,--- ,a, € N, an n-th basic interval or a rank n

fundamental interval is defined by
I(ay, a9, - ;a,) ={x €[0,1) : ar(x) = ar, 1 <k <n}.

An n-th basic interval containing x will be denoted by I, (z).

The Gauss transformation 7" admits the following Jacobian estimate.

Lemma 6.4. There exists a positive number K > 1 such that for all irrational
number x in [0,1), one has

(1) ()
(T™)'(y)
Proof. Assume x = [ay,--+ ,a,, -] € [0,1)\ Q. For any n > 0 and y € I,,(x) =
I.(ay, -+ ,a,), by the fact that T'(z) = —m% we get

1
0 < —= <sup sup
n>0 yel,(z)

'§K<oo.

Z ‘ log |T"(T7 (x))| — log \T’(Tﬂ'(y))” = 22 ( log T?(z) —log T?(y)|.

Applying the mean-value theorem, we have

D) )|t

o te) o) =[P < e
n—j\Wj+1, y Un

where the assertion follows from the fact that all three points T7(z),T7(y) and
T7(z) belong to I,_;j(aj+1," - ,a,). By Lemma 2.37, we have

n—1 n—1 1 n—1 1 n—j—2
log T9(x) — log T? < < - < 4.
D |log () —log TV (y)| < > (2>

=0 Gn—j—1(aj12, -+, an)

Jj=0

Thus the result is proved with K = e*. O

The above Jacobian estimate property of 1" enables us to control the length

of I,(x) by [(T™)'(x)| ™", through the fact that [, . [(T")'(y)|dy = 1.

Lemma 6.5. There exist a positive constant K > 0 such that for all irrational
numbers x in [0, 1),

1 [In ()]

— < < K.
K=

() ()|t
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We remark that from Lemma 2.39 and Lemma 6.5, we have

S < [ < K@),

So the Lyapunov exponent \(x) is nothing but the growth rate of ¢,(z) up to a

multiplicative constant 2:

2
A(x) = lim —log g, (z).

n—oo 1

For any irrational number z in [0, 1), let N, (z) := {j <n:a;(z) # 1}. Set

1
A= {x €10,1] : lim —logqn(ﬁ) = E},

n—00 2
B::{QZG [0, 1] nll_}I{)lonZloga] }
C = {x €[0,1] : lim EﬁNn(I) = O},

where £ stands for the cardinal of a set. Then we have the following relationship.
Lemma 6.6. With the notations given above, we have
A=BcCC.

Proof. 1t is clear that A C C and B C C. Let us prove A = B. First observe
that, by Lemma 2.38, we have

1 1 aj(z)+1 1
“loggu(z) > - log 2 0 L o gnan (1,1
“logga() > — Y log = —— 4 ~logguan, ( )

1
> = Z loga’](x) - Z 10g2 + _log qnfijn(lv 71)
JENR () JEN(2)

Assume x € A. Since A C C, we have

1 1
- Z log2—|—ﬁlogqn,wn(1,...,
JENR(z)

Now by the assumption x € A, it follows

lim — Zloga] = Z loga;(z) = 0.

n—oo M,
jENn (z)
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Therefore we have proved A C B. For the inverse inclusion, notice that

| 1
 log g, <— 1 S og gusn, (1, 1).
~10g g, Z 0g(a;(w) +1) + ~log gn g, )

]eN'IL

Let x € B. Since B C C, we have

1 70
lim —logq,_sn,(1,...,1) = —.
Jim -~ log gn—yw, (L, 1) = 5
Therefore by the assumption = € B, we get
1
limsup —log ¢, () < %
Thus B C A. O

6.2.2 Exponents y(z) and \(z)

In this subsection, we make a quick examination of the Khintchine exponent
~(x) and compare it with the Lyapunov exponent A(z). Our main concern is the

possible values of both exponent functions.

A first observation is that for any = € [0,1), y(z) > 0 and A(z) > v =

21og Y3HL,

By the Birkhoff ergodic theorem, we know that the Khintchine expo-
nent 7( ) attains the value &, for almost all points & with respect to the Lebesgue
measure. We will show that every positive number is the Khintchine exponent

~(z) of some point .

Proposition 6.7. For any £ > 0, there exists a point xo € [0,1) such that v(x¢) =
€.

Proof. Assume & > 0 ( for £ = 0, we take zg = +Tﬁ corresponding to a, = 1.)

Take an increasing sequence of integers {ny }r>1 satisfying

no =1, ngi —nEg — oo, and — 1l,as k — oo.

N1
Let xy € (0,1) be a point whose partial quotients satisfy
elme—me—1)8 < p,, < e 4 1. g, = 1 otherwise.

Since for ny < n < ngiq,

Zloge”l ni-)8 < 2 Zloga] §—Zlog (ni—ni-1)¢ 4 1),
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we have

O

In the following, we will show that the set E; and F\ are never equal. So
it is two different problems to study 7(z) and A(z). However, as we will see,
E¢(¢) = Foe(¢) when ¢ is faster than n.

Proposition 6.8. For any & > 0 and A\ > 2log @, we have E¢ # F.

Proof. Given £ > 0. It suffices to construct two numbers with same Khint-
chine exponent ¢ but different Lyapunov exponents.

For the first number, take just the number zy constructed in the proof of
Proposition 6.7. We claim that

V5 +1

A(xo) = 2§ + 2log 5

(6.1)

In fact, by Lemma 2.38 we have

k k
a,. +1
H ( J2 > an*k(lv T 71) < an(a17 e vank) < H(a”j + 1)an*k(17 U 71)'

7=1 =1

<

Then by the assumption on ny, we have

A(zo) = lim z10,5_);(1,1(330) =2 <§+log V5 + 1) :

n—oo 1 2

Construct now the second number. Fix k& > 1. Define x; = [¢1,- -+ , G, -]
where
_ ;—fm vy | (€N
o (e (2]
kn
Notice that there are n small vectors (1,---,1,[e*]) in g, and the length of ¢, is

equal to N := kn 4+ 1. We can prove

—_— 2
v(z1) =& May) = A ([1, cee Lekﬁj}) +2¢ — p log|e™ |
by the same arguments as in proving the similar result for zy. It is clear that
AMzo) # A(xq) for large k > 1. O
It is evident that Proposition 6.7 and the formula (6.1) yield the following
result due to Pollicott and Weiss ([128]).

127



Corollary 6.9 ([128]). For any A > 2log @, there exists a point xo € [0, 1)
such that M(xg) = A.

6.2.3 Pointwise dimension

We are going to compare the pointwise dimension and the Markov pointwise
dimension (corresponding to continued fraction system) of a Borel probability

measure.

Let i be a Borel probability measure on [0, 1). Define the pointwise dimension

and the Markov pointwise dimension respectively by

_log p(B(z,r)) . log u(ln(2))
d,(z) == lim —= 2 ) lim —=oeed)
) = = e 2% Tog 1)

0,u(x) =

if the limits exist, where B(x,r) is the ball centered at z with radius r.

For two series {u,},>0 and {v,},>0, we write u, < v, which means that
there exist absolute positive constants cq,co such that civ, < u, < cv, for n

large enough. Sometimes, we need the following condition at a point x:

p(B(x, [ In(x)]) = plIn (). (6.2)
We have the following relationship between 0, (z) and d,(x).

Lemma 6.10. Let v be a Borel measure.
(a) Assume (6.2). If d,(x) exists then 6,(x)exists and 6,(x) = d,(z).
(b) If §,,(z) and \(x) both exist, then d,(x)ezists and §,(z) = d,(z).

Proof. (a) If the limit defining d,(z) exists, then the limit

i 108 (B, |I,(z)]))
n—too  log|l,(z)|

exists and equals to d,(x). Thus by (6.2), the limit defining 6,(x) also exists and
equals to d,(x).

(b) Since A(z) exists, by Lemma 6.5 we have

log [L(x)] .. 1 1
n—oo log |I,41(x)]  n—ocon n+1

log |1, 11(z)| = 1. (6.3)
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For any r > 0, there exists an n such that |[,;i(z)] < r < |I,(x)]. Then by
Lemma 2.40, we have I,,11(z) C B(x,r) C I,_o(z). Thus

log u(In—s(x)) _ logp(B(z,r)) _ log pu(Insi(7))
log [In1(z)] — log — log |l (2)]

(6.4)
Combining (6.3) and (6.4) we get the desired result. O

Let us give some measures for which the condition (6.2) is satisfied. These
measures will be used in the subsection 6.5.1. The existence of these measures fi ,

will be discussed in Proposition 6.19 and the subsection 6.5.1.

Lemma 6.11. Suppose (i, 4 is a measure satisfying

pieq(In(2)) = exp(=nP(t, q))|L(x)|" ] ] o,
=1
where P(t,q) is a constant. Then (6.2) is satisfied by pu 4.

Proof. Notice that when a, () = 1, pt o(In(x)) < pi4(I—1(z)). Then in the
light of Lemma 2.40, we can show that (6.2) is satisfied by pu 4. O]

6.3 Fast growth rate: proof of Theorem 6.1
6.3.1 Lower bound

We start with the mass distribution principle (see [15], Proposition 4.2), which

will be used to estimate the lower bound of the Hausdorff dimension of a set.

Lemma 6.12 ([15]). Let E C [0,1) be a Borel set and p be a measure with
u(E) > 0. Suppose that

i i 08 H(B (@, 7))

>s, VerekFk
r—0 logr

where B(x,r) denotes the open ball with center at x and radius r. Then dim E > s.

Next we give a formula for computing the Hausdorff dimension for a class of

Cantor sets related to continued fractions.
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Lemma 6.13. Let {s,}n>1 be a sequence of positive integers tending to infinity

with s, > 3 for alln > 1. Then for any positive number N > 2, we have

. o 10g(3132 T Sn)
d 1): s, < ap Ns, > 1} = liminf '
im{x € [0,1): s, <a,(zr) < Ns, Vn>1} im in 210g(s152 - - - Sn) + 108 Spi1

Proof. Let F' be the set in question and sy be the liminf in the statement. We
call
J(ay,az, - ,a,):=Cl U Livi(ar, -+ an,angr)
Ant1>8nt1
a basic CF-interval of order n with respect to F, where s, < a, < Nsy; for all

1 < k <n. Here C1 stands for the closure. Then it follows that

o0

F= U J(ay, - ap). (6.5)

n=1 sp<arp<Nsk,1<k<n

By Lemma 2.39, we have

Pn Sn+1pn+pn1:| or |:5n+1pn+pn1 Pa

) , (6.6)
Gn  Sn+1qn T qn-1 Sn+1qn T qn-1 Gn

J(ah... 7an): {

according to n is even or odd. Then by Lemma 2.39, Lemma 2.37 and the as-

sumption on a; that s, < a, < Ns; for all 1 < k < n, we have

1 1 1 1

— < .
2N™ 5p41(51 - Gn(Sn1qn + Gn-1) ~ Sns1(S1-- - Sn)?

(6.7)

<

Since s, — 0o as k — oo, then

. logs;+---+logs,
lim

n— oo n

This, together with the definition of sy, implies that for any s > sq, there exists a
sequence {ny : ¢ > 1} such that for all £ > 1,

ne

s=so stsg
(N - 1)W < (Sne-l-l(sl U Snz)2) : ) H Sk < (Sne+1(51 T Snz)2) 2
k=1
Then, by (6.5), together with (6.7), we have
HY(F) < liminf S ‘J(al, o an)|

sp<ar<Nsg,1<k<ng

ne 1 )s
< liminf [ (N —1)™ S < 1.
- {—o00 <( ) ’!;[1 k) <3n5+1(31 ce 5ng)2 -
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Since s > sq is arbitrary, we have dim F' < sq.

For the lower bound, we define a measure p such that for any basic C'F-

interval J(ay,ag, - ,a,) of order n,

- 1
(@, az, - an) = [

o (N =1)s;
By the Kolmogorov extension theorem, i can be extended to a probability measure
supported on F. In the following, we will check the mass distribution principle

with this measure.

Fix s < so. By the definition of sy and the fact that sy — oo (k — o0) and

that N is a constant, there exists an integer ng such that for all n > ny,

[NV = 1)s > (an(H Nsk)2> . (6.8)

k=1
1 1
2Nmo 3n0+1(31 e Sn0)2‘

We take ro =

For any = € F, there exists an infinite sequence {ay, ag, -} with s, < a <
Nsg,Vk > 1 such that = € J(ay,--- ,a,), for all n > 1. For any r < rg, there

exists an integer n > ng such that
|J(a17”‘ ;an+1)| S r < |J(CL1,“' 7a‘n)"

We claim that the ball B(x,r) can intersect only one basic CF-interval of
order n, which is just J(ai,---,a,). We establish this only at the case that n is
even, since for the case that n is odd, the argument is similar.

Case (1): s, < a, < Ns, — 1. The left and right adjacent basic CF-intervals
(of order n) to J(ay,--- ,a,) are J(ay,--- ,a, — 1) and J(a,--- ,a, + 1) respec-
tively. Then by (6.6) and the condition that s,, > 3, the gap between J(ay, - - ,a,)

and J(ay, - ,a, — 1) is

n n n ~ Mn— n— n -1
Pr Sng1(Pn— Pn1) + Pnr Sn+1 Z‘J(al,"',an)-
in Sn+1 (qn a anl) + In—1 An (Sn-‘rl(Qn - Qn—l) + Qn—1>
Hence B(z,r) can not intersect J(aq,---,a, — 1). On the other hand, the gap

J(ai, -+ ,a,) and J(ay, -+ ,a, + 1) is

DPn + Pn—1 Sp+1Pn + Pn—1 . Sn+1 — 1
— = > J(ala"'aan)'
dn + gn—1 Sn+19n + gn—1 (Qn + qnfl)(anrlqn + anl)
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Hence B(z,r) can not intersect J(ay,--- ,a, + 1) either.

Case (2): a, = s,. The right adjacent n-th order basic CF-interval to
J(ay, -+ ,a,) is J(ay, -+ ,a, +1). The same argument as in the case (1) shows
that B(x,r) can not intersect J(ai,---,a, + 1). On the other hand, the gap
between the left endpoint of J(ay,--- ,a,) and that of I, 1(ay, - ,a,_1) is

]ﬁ_pn—l +pn—2 o Sn_l

dn Gn—1 + dn—2 (Qn—l + Qn—2)Qn

v

J(ay, - ,a,)l|.

It follows that B(x,r) can not intersect any n-th order C'F-basic intervals on

the left of J(ay,---,a,). In general, B(x,r) can intersect no other n-th order
C'F-basic intervals than J(ay,--- ,ay).

Case (3): a, = Ns, — 1. From the case (1), we know that B(z,r) can not
intersect any n-th order C'F-basic intervals on the left of J(ai,---,a,). While
for on the right, the gap between the right endpoint of J(ay,- - ,a,) and that of
L i(ay, - ,an-1) is

Pn-1  Snt1Pn + Pn1 Sp+1

= > J(ag, -, an)|.
dn—1 Sn+14n + dn—-1 (Sn+IQn + Qn—1>Qn—1 ( ! n>

It follows that B(x,r) can not intersect any n-th order C'F-basic intervals on
the right of J(ay,---,a,). In general, B(x,r) can intersect no other n-th order
C'F-basic intervals than J(ay,--- ,ay,).

Now we distinguish two cases to estimate the measure of B(z,r).
Case (i). |J(a1, - ans1)| < r < |Lis1(ag, -+ ,ap41)]. By Lemma 2.40
and the fact a,,1 # 1, B(z,r) can intersect at most five (n + 1)-th order basic

CF-intervals. As a consequence, by (6.8), we have

n+1 s
1 1
B <5 — <5 . 6.9
Since
1 1
r>|J(ay, - ,an = > 7
(@ +) U1 (Snt2Gni1 T @n) — 28p42(N" sy oo 5,09)2

it follows that
pu(B(z,r)) < 107°.

132



Case (7). |Iny1(ar, - yanp1)| <r <|J(ai,---,a,)|. In this case, we have

1 1 n+1 2
In+l(a17"' ,an+1) = > 2 2N2 (n+1) (H S’“) ’

Gnt1(Gne1 +an) — 2q5,1

So B(x,r) can intersect at most a number 8rN2"+V(s,...5,.1)? of (n + 1)-th

basic CF-intervals. As a consequence,

n+1
. n —1
,LL(B($,7")) S min {lu(‘](ala aan))7 8TN2( +1)(51”'5n+1)2;£[1 (N— 1)Sk}
< ﬁ;min{l 87“N2(”+1)(81---8 1)2;}-
- (N —1)sg ’ "N = s

k=1

By (6.8) and the elementary inequality min{a, b} < a'~*b* which holds for any
a,b>0and 0 < s < 1, we have

1 s 1 s
N RN TP | R —
((N)) ( (1 sne) O s
< 16NT7r°.

p(B(x,r))

IN

Combining these two cases, together with mass distribution principle, we have
dim F' > sq. O

Let
={ze[0,1):efMP0=D < g () < 2e#MW#1) yp > 1},
It is evident that £’ C E¢(y). Then applying Lemma 6.13, we have

¢(n) 1
> fry .
Ee(ip) 2 lim inf on+ 1) +on) b+l

6.3.2 Upper bound

We first give a lemma which is a little bit more than the upper bound for the
case b = 1. Its proof uses a family of Bernoulli measures with an infinite number

of states.

Lemma 6.14. If lim €% = oo, then dim Ee(p) < 1.

n—oo

133



Proof. For any t > 1, we introduce a family of Bernoulli measures ji;:
p(Ly(ar, - ay)) = e nC)—t 35 loga;(z) (6.10)

where C(t) =log Y L.

n=1
Fix x € E¢(p) and € > 0. If n is sufficiently large, we have

Zloga] < (E+€)p(n). (6.11)

So,
Eg(p) € () U Eulo),
N=1n=N
where
En(e) ={z €[0,1): Zlogag < (§+e)p(n)}.
Now let Z(n,€) be the family of all n-th basic intervals I,,(ay, - ,a,) satis-

fying (6.11). For each N > 1, we select all those intervals in | J -y Z(n, €) which
are maximal (I € |J,_ yZ(n,€) is maximal if there is no other I" in (J7 \, Z(n, €)
such that I € I’ and I # I'). We denote by J(N,e) the set of all maximal
intervals in |J)~ yZ(n,€). It is evident that J(N,e) is a cover of E¢(p). Let
L(ay, - ,a,) € J(N,e€), we have

—nC(t)—t > loga,

we(In(ag, -, ay)) = e Y S el —tetee(n)

On the other hand,

Ln(as, - an)| < e2lgm < 6_22110% < e A=)
Since JLIEIO @ = 00, for each s > t/2 and N large enough, we have
Lo+ s an)| < pallalan, -+ an).
This implies dim Ee(p) < 1/2 = b+1 O
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Now we return back to the proof of the upper bound.

Case (i) b = 1. Since (p(n+1) — p(n)) T oo, Lemma 6.14 implies immedi-
ately dim E¢(¢) < 1.
Case (i) b > 1. By (6.11), for each x € E¢(p) and n sufficiently large

(€ —e)e(n+1) = (€ + €)p(n) <logans(x) < (§+€)p(n+1) — (& —€)p(n).

Take
Lyt = 6(5—6)90(”4‘1)—(54‘6)99(”)’ My = eE+Oe(n+1)—(§—€)p(n)

Define
Fy ={z€]0,1]: L, < ay(x) < M,,Vn > N}.

Then we have
Ee(p) < | Fw.
N=1

We can only estimate the upper bound of dim F;. Because Fy can be written
as a countable union of sets with the same form as F}, then by the o-stability of
Hausdorff dimension, we will have dim Fy = dim F;. We can further assume that

M, > L, + 2.
For any n > 1, define

D, ={(o1,-,0,) EN": Ly <o, < My, 1 <k<nl}.

It follows that
Flzm U t](0-17"'70-77,)7
n>1 (0'17"'70'n)€Dn
where
J(o1,--+ ,04) :=Cl U I(o1,-+ ,0n,0)
0>Lnt1

(called an admissible CF-interval of order n). For any n > 1 and s > 0, we have

s 1 s M- M,
I | e y
(o1, ,0n)EDp (01, ,0n)EDn qpLnt1 <(L1 e Ln)QLnJrl)
It follows that
log My + - +log M, et &
dim F; < lim inf og M1 + +log _ § b—1

n—oo M n+1 _ 1) — 9¢ — 4e’
10g Lk + Z lOg Lk (5 6) (b + ) ¢ b1
= k=1

k=1
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Letting € — 0, we get

6.4 Ruelle operator theory

There have been various works done on the Ruelle transfer operator for the
Gauss dynamics. See Mayer ([107], [L08], [109]), Jenkinson ([75]), Jenkinson and
Pollicott ([71]), Pollicott and Weiss ([128]), Hanus, Mauldin and Urbariski ([61]).
In this section we will present a general Ruelle operator theory for conformal
infinite iterated function system which was developed in [64] and then apply it to
the Gauss dynamics. We will also prove some properties of the pressure function

in the case of Gauss dynamics , which will be used later.

6.4.1 Conformal infinite iterated function systems

In this subsection, we present the conformal infinite iterated function systems
which were studied by Hanus, Mauldin and Urbanski in [61]. See also the book of
Mauldin and Urbanski ([100]).

Let X be a non-empty compact connected subset of R? equipped with a
metric p. Let I be an index set with at least two elements and at most countable
elements. An iterated function system S = {¢; : X — X :i € I} is a collection
of injective contractions for which there exists 0 < s < 1 such that for each ¢ €

and all x,y € X,
p(oi(z), ¢i(y)) < sp(z,y). (6.12)

Before further discussion, we are willing to give a list of notation.
o [":={w:w= (w1, ,wpn),wp €1,1 <k <n},
o ["i=Uy> 11",

o [®:=TI®,1,

¢u = ¢w1O¢w2o"'o¢wn>forw:w1w2"'wnE[nanz 17

|w| denote the length of w € I* U I,
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® W, =wiwy...wy,if }w} > n,

o Whl=[wi...w]={z€l®: z1=wy, 2, =W},
e 0 : ]*° — I the shift transformation,

o [|¢L1:= sup,ex [¢,(x)] for w e I7,

e (C(X) space of continuous functions on X,

| - ||o sSupremum norm on the Banach space C'(X).

For w € I*°, the set

[e.e]

(W) = [ bl (X)
n=1
is a singleton. We also denote its only element by 7(w). This thus defines a coding

map 7 : [°° — X. The limit set J of the iterated function system is defined by
J =m(I™).

Denote by 0X the boundary of X and by Int(X) the interior of X.

We say that the iterated function system S = {¢;}ics satisfies the open set
condition if there exists a non-empty open set U C X such that ¢;(U) C U for
each i € I and ¢;(U) N ¢;(U) = 0 for each pair i,j € I, # j.

An iterated function system S = {¢; : X — X :i € I} is said to be conformal
if the following are satisfied:

(1) The open set condition is satisfied for U = Int(X).

(2) There exists an open connected set V with X C V C R? such that all
maps ¢;, i € I, extend to C! conformal diffeomorphisms of V into V.

(3) There exist h, ¢ > 0 such that for each x € 9X C R?, there exists an open
cone Con(z,h,l) C Int(X) with vertex x, central angle of Lebesgue measure h
and altitude ¢.

(4) (Bounded Distortion Property) There exists K > 1 such that |¢/ (y)] <
K|¢/,(z)| for every w € I* and every pair of points z,y € V.
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The topological pressure function for a conformal iterated function systems
S={¢;: X —- X i€} is defined as

1
P(t) = lim —log > _ |l¢L "
|w|=n

The system S is said to be regular if there exists t > 0 such that P(t) = 0.

Let B > 0. A Holder family of functions of order (3 is a family of continuous
functions F' = {f® : X — C:i € I} such that

Va(F) = sup V,,(F) < oo,

n>1

where

Va(F) = sup sup {|f“(Gow) (@) = [ (G0 (1)) [},

wel™ zyeX

A family of functions F' = {f® : X — R,i € I} is said to be strong if

(%)
D lle | < 0.

el

Define the Ruelle operator on C'(X) associated to F' as

) (z
Lr(g)(x) =Y e Dg(¢i(x)).
iel
Denote by L3 the dual operator of Lp.
The topological pressure of F' is defined by

1 n
P(F):= nan;O - log Z exp <81€1§Zf‘”j o (bajw(x)).
T =1

|w|=n

A measure v is called F-conformal if the following are satisfied:
(1) v is supported on J.
(2) For any Borel set A C X and any w € I*,

v(du(A)) = /AeXp (Z F) 0 dgi — PU’)\WI) dv.

B) v(p,(X)Np (X)) =0 w,7e€I"w#T,n>1.
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Two functions ¢, p € C(X) are said to be cohomologous with respect to the
transformation 7', if there exists u € C'(X) such that

p(x) = o(z) +u(r) — u(T(z)).
The following two theorems are due to Hanus, Mauldin and Urbanski [64].

Theorem 6.15 ([61]). For a conformal iterated function system S = {¢; : X —
X i€ I} and a strong Holder family of functions F = {f® : X — C:i € I},

there exists a unique F'-conformal probability measure vy on X such that Lyvp =

ePFlyp. There exists a unique shift invariant probability measure fup on I such

1

that pp := fip o ™~ 18 equivalent to vp with bounded Radon-Nikodym derivative.

Furthermore, the Gibbs property is satisfied:

1 fir([w]n])

C % p (S f ) —nP(F))

Let U = {® : X - R:ic€l}and F={f9:X - R:i€ I} betwo
families of real-valued Holder functions. We define the amalgamated functions on

1% associated to ¥ and F as follows:

Y(w) =y (r(ow)),  flw):=f(mlow)  Vwel™.

Theorem 6.16 ([61], see also [100], pp. 43-48). Let U and F' be two families of
real-valued Holder functions. Suppose the sets {i € I : sup, (1 (x)) > 0} and {i €
I :sup, (fD(z)) > 0} are finite. Then the function (t,q) — P(t,q) = P(t¥ +qF),
is real-analytic with respect to (t,q) € Int(D), where

D= {(u q): ) expsup(ty® +¢f1)) < OO} :

Furthermore, if tV + qF is a strong Holder family for (t,q) € D and

J 071+ 11y < .

where [ip 4 := [y yqr 15 obtained by Theorem 6.15, then
oP ~ oP 7o~
S = [ Gdina and % - | Fiy

139



If tgz + qf is mot cohomologous to a constant function, then P(t,q) is strictly

convexr and

2*’p 9P

otz dtdg
H(t,q) =

o*p 9P

otdq  0q?

15 positive definite.

6.4.2 Continued fraction dynamical system

We apply the theory in the precedent subsection to the continued fraction
dynamical system. Let X = [0,1] and I = N. The continued fraction dynamical

system can be viewed as an iterated function system:

S:{wi(x): ! :z’eN}.

1+

Recall that the projection mapping 7 : I*° — X is defined by
m(w) = ﬂ Yy, (X), Yw e I,
n=1

Notice that | (0) = —1, thus (6.12) is not satisfied. However, this is not a
real problem, since we can consider the system of second level maps and replace
S by S :={1; 0, :i,5 € N}. In fact, for any = € [0,1)

o9y () = <i+1L>/ - <i(j+i)+1>2 = i'

jtz

In the following, we will collect or prove some facts on the continued fraction

dynamical system, which will be useful for applying Theorem 6.15 and 6.16.

Lemma 6.17 ([101]). The continued fraction dynamical system S is reqular and

conformal.

For the investigation in the present work, our problems are tightly connected

to the following two families of Holder functions.
U = {log |¢;] : i € N} and F = {—logi : i € N}.
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Remark 3. We mention that our method used here is also applicable to other

potentials than the two special families introduced here.

The families W and F' are Holder families and their amalgamated functions

are equal to
Y(w) = —2log(wy + m(ow)), flw)=—logw; Yw e N*.

For our convenience, we will consider the function tW —gF instead of tW +qF'.

Lemma 6.18. Let D := {(t,q) : 2t — q > 1}. For any (t,q) € D, we have
(i) The family tV¥ — qF = {tlog |¢}| + qlogi : i € N} is Hélder and strong.
(ii) The topological pressure P associated to the potential t¥ — qF can be

written as

n—oo M T

1 n
P(t,q) = lim —log Z exp (sup logHw?([wj, C Wy + x])2t> :
W1, ,Wn 7=1
Proof. The assertion on the domain D follows from

1 ) g 00 -
ZC(Qt_Q):Et\II—qFlzz 5 SZZ =((2t —q).

— (i +x) —

where ((2t — ¢) is the Riemann zeta function, defined by

o0

¢(s) ::Z% Vs > 1.

n=1

(i) For (t,q) € D, write (t¥ — ¢F)® := tlog [¢)}| + qlogi. Then

ZI: H exp {(t\If — qF)(z‘)} HOO — i:; H(z—i—z—qx)%

Thus t¥ — ¢F is strong.

=Y i =((2t - q) < 0.

(ii) It suffices to noticed that

T T

sup (Z(t|¢;3| + qlogw;) o ngjw(x)) = suplogl_[u);?’([wj7 e wn + 2]) 2

j=1 j=1

141



Denote by Ljy_,r the conjugate operator of Lyy_,r. Applying Theorem 6.15
with the help of Lemma 6.17 and Lemma 6.18, we get

Proposition 6.19. For each (t,q) € D, there exists a unique t¥ — qF-conformal
probability measure vy, on [0,1] such that Liy  plig = ePtDy, . and a unique
shift invariant probability measure fi,, on N> such that i, = fizgo 7 ' on [0,1]

is equivalent to v 4 and

1 firg([Wln])

— < <C VYw € N,
O™ exp (S (40 — gF)) (n(09w)) = nP(t,q))

Lemma 6.20. For the amalgamated functions (w) = —2log(w; + m(ow)) and

f(w) = —logw;, we have

- /log]T'(x)mt,q = /@d/lm and /log ar(z)dpg, = —/fdﬂt7q(6.13)
and t) — qf 15 not cohomologous to a constant.

Proof. (i). Assertion (6.13) is just a consequence of the facts

—log|[T'(n(w)| = ¥(w),  logai(n(w)) = —f(w) YwelI™

Suppose tg/; —q f was not cohomologous to a constant. Then there would be

a bounded function g such that tqﬁ —q f =g—goT + C, which implies

n—1

1 ~ S . g—goa"
lim — t) — w)y=lim =——+4+C=C
ngrolon;(@b af)(o'w) = lim =——— +
for all w € I*°. On the other hand, if we take wy = [1,1,--- ], wy = [2,2,---] and
ws = (3,3, -], we have

where
Cy = 2tlog( 2_ ), Cy = 2tlog(~———)+qlog2, Cs= 2tlog(~———)4qlog3.
Thus we get a contradiction. O
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By Theorem 6.16 and the proof of Lemma 6.18, we know that D = {(¢,q) :
2t —q > 1} is the analytic area of the pressure P(t,q). Applying Lemma 6.20 and

Theorem 6.16, we get more:

Proposition 6.21. On D = {(t,q) : 2t — ¢ > 1},

(1) P(t,q) is analytic, strictly convex.

(2) P(t,q) is strictly decreasing and strictly convex with respect to t. In other
words, %(t,q) <0 and %(t,q) > 0. Furthermore,

oP

St == [ log|T@)dus (6.14)

(3) P(t,q) is strictly increasing and strictly convex with respect to q. In other

words, %—Ig(t,q) >0 and %Q—qf(t,q) > 0. Furthermore,

oP

a—(t,q) = /logal(x)d,ut,q. (6.15)

q

(4)

o2p 9P
917 0tdq

H(t,q) :=
2°p 9°p
Otdq  0q>

s positive definite.
At the end of this subsection, we would like to quote some results by Mayer
([109]) (see also Pollicott and Weiss ([128])).

Proposition 6.22 ([109]). Let P(t) := P(t,0) and p; := s, then P(t) is defined
in (1/2,00) and we have P(1) =0 and puy = pg. Furthermore,

Pt) = — / log |T"(z)|dpa (). (6.16)
In particular
P(0) = [ 10g|7'(@)ldyic(x) = o (617)
Remark 4. Since py 9 = p1 = pig, by (6.15), we have
%—];(1,0) = /log ai(z)dpe = &. (6.18)
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6.4.3 Further study on P(t,q)

We will use the following simple known fact of convex functions.

Fact 6.23. Suppose f is a convex continuously differentiable function on an in-

terval I. Then f’(x) is increasing and

fly) — f(x)

= <flyy wyela<y.

f'(x) <

First we give an estimation for the pressure P(t,q) and show some behaviors
of P(t,q) when ¢ tends to —oo and 2t — 1 (¢ being fixed).

Proposition 6.24. For (t,q) € D, we have
—tlog4 +log ((2t — q) < P(t,q) <log((2t — q). (6.19)

Consequently,

(1) P(0,q) =log((—q). For any point (to,qo) on the line 2t — q = 1,

lim P(t,q) =
(t7q)*>(t07q0) ( q)
(2) for fized t € R,
: 0P

(3) for fizred t € R, we have

P(t oP
im 28D o im P =0 (6.21)
g——0 q——00 8q
Proof. Notice that # < fwjy ey wp + 2] < wij for x € [0,1) and 1 < j < n.
Thus we have
1 o o
S e 5 [l o aft < Sy
w=1 W1, ,wn J=1 w=1

Hence by Lemma 6.18 (ii), we get (6.19).
We get (1) immediately from (6.19).
Look at (2). For all ¢ > g, by the convexity of P(t,q) and Fact 6.23, we have

OP P(t,q) — P(t,
a_(t7Q> 2 ( q) ( QO)‘
q 4 — qo
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Thus

oP P(t — P(t
lim —(¢,¢) > lim (t: %) (ta) 00
q—2t—1 Jq q—2t—1 o — ¢

Here we use the fact that li2rtn . P(t,q) = +00. Hence we get (6.19).
q—2t—

In order to show (3), we consider P(t, q)/q as function of ¢ on (—o0,2t — 1)\
{0}. Noticed that for fixed t € R, lim,,_ ((2t —q) = 1. Thus

log ¢ (2t —
lim 0g (2t —q)

q——00 q

=0.

Then the first formula in (6.21) is followed from (6.19).

Fix gy < 2t — 1. Then for all ¢ < qo, by the convexity of P(t,q) and Fact
6.23, we have

oP P(t,q0) — Pt
a_(taQ)S (7q0) (7Q)
q do — ¢
Thus
opP P(t,q0) — P(t
g——c0 Jq g——o0 G —q
Hence by Proposition 6.21 (3), we get the second formula in (6.21). O

6.4.4 Properties of (t(¢),q(¢))
Recall that & = [logai(z)ue and Dy := {(t,q) : 2t —q¢ > 1,0 < ¢ < 1}.

Proposition 6.25. For any & € (0,00), the system

gg,q) =q¢, 6.22)
a_q(t7 Q) = 5

admits a unique solution (t(€),q(&)) € Dy. For& = &, the solution is (t(&y), q(&o)) =
(1,0). The function t(§) and q(§) are analytic.

Proof. Existence and uniqueness of solution (t(&),q(§)). Recall that P(1,0) =0
and P(0,q) = log ((—q) (Proposition 6.24).

We start with a geometric argument which will followed by a rigorous proof.

Consider P(t,q) as a family of function of ¢ with parameter ¢. It can be seen from
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the graph (see Figure 3) that for any £ > 0, there exists a unique ¢ € (0, 1], such
that the line £q is tangent to P(t,-). This t = ¢t(£) can be described as the unique
point such that

inf (P(t(g),q) - q§> —0. (6.23)

q<2t(§)—1

We denote by ¢(§) the point where the infimum in (6.23) is attained. Then the

q(&), P(t(£),q(§))) and the derivative of P(t(£),q) — ¢& (with
€) equals 0, i.e.,

tangent point is

—

respect to q) at g

(P(t(é), q) — Q§>l|q(§) =0.

Thus we have %(t({), q(&)) = &. By (6.23), we also have P(t(£),q(£)) —q(§)§ = 0.
Therefore (£(£),q(§)) is a solution of (6.22). The uniqueness of ¢(§) follows by the

fact that %—1; is monotonic with respect to ¢ (Proposition 6.21).

Figure 3. Solution of (6.22)

Let us give a rigorous proof. By (6.20), (6.21) and the mean-value theorem,
for fixed t € R and any £ > 0, there exists a ¢(t,&) € (—o0, 2t — 1) such that

%—];(t,q(t,g)) =£. (6.24)

The monotonicity of %—Z with respect to ¢ implies the uniqueness of ¢(t, &) (Propo-
sition 6.21).
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Since P(t,q) is analytic, the implicit ¢(¢,€) is analytic with respect to ¢ and
¢ Fix € and set

W(t) :== P(t,q(t,€)) — &q(t, €).

Since

W) = S (a(e.) + 5 (La) G - 5.

ot dq
oP
= Plrgwe) v
< 0 (by Proposition 6.21(2)).

Thus W (t) is strictly decreasing.
Since P(0,q) =log((—q) >0 (¢ < —1), for £ > 0 we have
W(0) = P(0,4(0,&)) —&q(0,€) > 0.
Since P(1,q) is convex and P(1,0) = 0, by Fact 6.23 we have

P%’ﬁ(iﬁ){ G LaLe) e i g19>0

and

0—P(1,¢(1,¢)) _ OP B ‘
0— Q(l,f) > a—q(LC](laf)) - 5, if (](1,5) < 0.

If ¢(1,&) = 0, we have in fact £ = & and P(1,¢(1,£)) = 0. Hence, in any case we

have

P(1,q(1,6) — €q(1,€) <0 (6.25)

Therefore, W(1) = P(1,q(1,€)) — £q(1,€) < 0.

Thus by the mean-value theorem and the monotonicity of W (t), there exists
a unique t = t(£) € (0, 1] such that W (¢(§)) =0, i.e.

P(4€).a(t(6).€) ) = €a(t(€).€). (6.26)

If we write ¢(¢(€),€) as ¢(€), both (6.24) and (6.26) show that (¢£(),q(£)) is the
unique solution of (6.22). For & = &y, the assertion in Proposition 6.22 that
P(0,1) =0 = 0-& and the assertion of Remark 4 that %—1;(1, 0) = & imply that
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(0,1) is a solution of (6.22). Then the uniqueness of the solution to (6.22) implies

(t(60),a(&0)) = (0,1).

Analyticity of (t(f), q(ﬁ)) Consider the map

F:(F1>: (P(t,q>—q£>'
F2 %_Iqa(taq)_f

Then the jacobian of F'is equal to

oF  OF or or ¢
_. ot dq _ ot dq
TE) =\ op o op o |

at  9q otdg g
Consequently,
oP o0*P
det (J(F)le=t9)a=at) = 7 * Gz 70
Thus by the implicit function theorem, ¢(§) and ¢(§) are analytic. O

Now let us present some properties on #(£). Recall that § = %—Z(l, 0).
Proposition 6.26. ¢(&) < 0 for & < &, q(&) = 0; ¢(&) > 0 for & > &.

Proof. Since P(1,q) is convex and P(1,0) = 0, by Fact 6.23, we have

P(1,q)—0 _ P
q_o - aq (170) 507 (q>0>a
0—P(l,q) P

¢ < 8_q(1’0) =%, (¢<0).

Hence for all ¢ < 1,

P(1,q) = &g (6.27)

We recall that (¢(&), ¢(&0)) = (1,0) is the unique solution of the system (6.22)
for & = &. By the above discussion of the existence of #(£), t(§) = 1 if and only if
¢ = &. Now we suppose t € (0,1). For £ > &, using (6.27), we have

P(t,q) > P(1,q9) > ¢5 > q¢¢ (Vg <0).
Thus (&) > 0. For & < &, using (6.27), we have
P(t.q) > P(1,9) > ¢5 > q€ (Vg =>0).
Thus ¢(§) < 0. O
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Proposition 6.27. For ¢ € (0,+00), we have
q(&)

N TGRTE) (029
Proof. Recall that

gg@%d@)ZQQK, 6.29)

55@@,ﬂ®)=6 '

By taking the derivation with respect to £ of the first equation in (6.29), we get

oP oP

ﬂ@gg@@%ﬁ@)+d@%hﬂﬁ%ﬂ@):d@ﬁ+Q@)

Taking into account the second equation in (6.29), we get

oP

(&) 57 (8(€), a(€) = a()- (6.30)

]

Proposition 6.28. We have t'(§) > 0 for £ < &, t'(&) = 0, and t'(§) < 0 for
& > &. Furthermore,

(&) —0 (£—0) (6.31)

HE) > 1/2 (€ — +o0). (6.32)

Proof. By Propositions 6.26 and 6.27 and the fact % > 0, t(§) is increasing
on (0,&) and decreasing on (§y,00). Then by the analyticity of ¢(£), we can
obtain two analytic inverse functions on the two intervals respectively. For the
first inverse function, write £ = &;(¢). Then & (¢) > 0 and

P(t,q(t oP
() = =B St a0,
(the equations (6.22) are considered as equations on t). By Proposition 6.26, we

have ¢(&1(t)) < 0 then P(t,q(&(t))) < 0. By Proposition 6.24 (1), liQItn ) P(t,q) =
g2t
0o. Thus there exists qo(t) such that go(t) > ¢(t) and P(t,qo(t)) = 0. Therefore

fu(t) = %—Z(t,qa» < %—];(t,qo(t)).



Since P(0,q) = log ((—q), we have lim;_ qo(t) = co. Thus we get

0P . OP
lim 3—q(t qo(t)) = lm = 9 (0,q) =0.

Hence by & (t) > 0, we obtain lim; o &; () = 0 which implies (6.31).
Write & = &(t) for the second inverse function. Then &(t) < 0 and

P(t.q(t)) _ 0P P
a() 8q(t ,q(t)) > 8q(t,0) (t—1/2).

This implies (6.32). O]

&a(t) =

Let us summarize. We have proved that #(¢) is analytic on (0, 00), %ir%t(g) =
0 and glim t(§) = 1/2. We have also proved that ¢(§) is increasing on (0,&),
decreasing on (&, 00) and (&) = 1.

6.5 Khintchine spectrum

Now we are ready to study the Hausdorff dimensions of the level set
1
={z€]0,1): lim —Zlogaj(:zj) = ¢}
Since Q is countable, we need only to consider
{z€[0,1)\Q: hm Zlogaj
which admits the same Hausdorff dimension with F¢ and is still denoted by E.

6.5.1 Proof of Theorem 1.2 (1) and (2)

Let (¢t,q) € D and pu 4, fit, be the measures in Proposition 6.19. For z €
0,1)\Q, let z = [ay, -+ ,ap, -] and w = 7 }(z). Then w = a;---a, - - € NV

and
firq(In(2)) = preg(In(ar, -+, an)) = firg([wln])-
By the Gibbs property of fi; g,
fng(m([wla]) = exp(=nP(t,q) [ [ wi(w; +w(o7w)) .
j=1
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In other words,

n

Nt,Q(In<m)) = exp(—nP(t,q)) H a?[aﬁ Tyl ']2t‘

J=1

By Lemma 6.5, |I,(z)| < [(T") (z)|™ = H;”:_Ol |T7(z)|?. Thus we have the follow-
ing Gibbs property of 1 4:

piq(1n(x)) < exp(—nP(t,q))|L,( H (6.33)

It follows that

. log g (Ln(2)) g iy loga; — P(t,q)
0y, (1) = lim ——L-"22 — ¢ 4 Jim —2—2
) = 0 g ) T Tlog (@)

The Gibbs property of fi;, implies that p, , is ergodic. Therefore,

q [log ay(x)dus, — P(t,q)
— [log |T"(x)|dpis 4

Using the formula (6.14) and (6.15) in Proposition 6.21, we have

9% (1, Q) P(t,q)
at (ta Q>

Moreover, the ergodicity of fi;, also implies that the Lyapunov exponents A(z)

Oy () =1+ Ut g — Q€.

Opeg(T) =1+

[itg — G.€. (6.34)

exist for 1, almost every x in [0,1). Thus by (6.33), Lemma 6.10 and Lemma
6.11, we obtain

opP
d#t,q (l’) = 5#75,(1 (I) =1+ ! oP

[t — a.e. (6.35)

For ¢ € (0,00), choose (t,q) = (t(£),q(§)) € Dy be the unique solution of (6.22).
Then (6.35) gives

d#t(g),q(g)(x) = t(f) Htq —

By the ergodicity of fis(e)q(e) and (6.15), we have for fi(¢) q(¢) almost every x,

lim - Zloga] = [ 1oz @) duerne = 5 (4. ) = &

n—oo N,
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SO [hi(¢),q(¢) is supported on E¢. Hence
dim(Eg) > dim pu e q¢) = (). (6.36)

In the following we will show that
dim(Ee) <t (Vt > t(£)). (6.37)

Then it will imply that dim(E¢) = ¢(§) for any £ > 0. For any ¢ > ¢(£), take an
€p > 0 such that

P(t(£), q(&)) = P(t,q(€))

0<e < ) if (&) > 0.
and
0<e < "G if ¢(&) < 0.

(For the special case ¢(§) = 0, i.e., £ = &, we have dim E¢ = 1 which is a well-
known result). Such an €, exists, for P(t,q) is strictly decreasing with respect to
t. For alln > 1, set

Ei(eo) = {x €0,N)\Q:¢—e < %]Z_;logaj(:r) <§+60}.

Then we have

E.c |J () B (o)
N=1n=N
Let Z(n, &, €g) be the collection of all n-th order basic intervals I,,(ay, - - - , a,) such

that
1
5—60 < EZIIOgCL](Z‘) < 5"‘60.
]:

Then
Ele)= |J 7
JeZ(n, e0)
Hence {J : J € Z(n,&, &), n > 1} is a cover of Ee. When ¢(§) > 0, by (6.33),

we have

> 2. W

n=1 JeZ(n,&,co)

PEAO) |1 ay - - - ay)1©

<> 2 (@1 ay)1©@ o PLa(E)

n=1 (al...an)>e"(§—50)

S O . Zen(P(t7Q(§))_(§_€0)Q(f)) . Z Mt,q(&)(‘]) < 0
n=1

JEI(?’L7£,60)
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where C' is a constant. When ¢(§) < 0,

>, > I
n=1 JeI(n,,e0)
oo PO |l ay - - - )1

< > (a1~ ay)1® e PLa(9)
n=1 (g1.--ap)<en(E+e0)
< O Z (P (ta(€)=(E+e0)a(§)) Z 1t q6)(J) < o0.

n=1 JEI(nﬁgveo)

Hence we get (6.37).
For the special case £ = 0, we need only to show dim(£y) = 0. This can be

induced by the same process. For any t > 0, since limg_¢¢(§) = 0, there exists
¢ > 0 such that 0 < ¢(§) < t. We can also choose ¢y > 0 such that

P(t,q(&)) — P(t(€),q())
q(§)

> €.

For n > 1, set

El(e) = {x €[0,1)\Q: %Zlogaj(:c) < £+eo}.

Jj=1

We have

By the same calculation, we get dim(Fy) < t. Since t can be arbitrary small, we
obtain dim(Ey) = 0.

By the discussion in the preceding subsection, we have proved Theorem 6.2

(1) and (2).
6.5.2 Proof of Theorem 1.2 (3) and (4)

We are going to investigate more properties of the functions ¢(§) and ¢(§).

Proposition 6.29. We have

lim q(§) = —oo, dim q(§) = 0.
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Proof. We prove the first limit by contradiction. Suppose there exists a subse-
quence & — 0 such that ¢(&5) — M > —oo. Then by (6.31) and Proposition 6.21

(3), we have

oP oP
lim — (¢ =—(0, M )
Jim (). a(69) = 5 (0.00) >0
This contradicts with
oP

8_q(t<§5)’ q(&)) =& — 0.

On the other hand, we know that ¢(§) > 0 when £ > &, and 0 < ¢(§) < 2¢(§) — 1.
Then by (6.32), we have £lim q(&) =0. O

Apply this proposition and (6.28), combining (6.20) and (6.21). We get

lim#'(€) = +oo,  lim ¢(€) =0.
i #(§) = +o0,  lim £(£)

This is the assertion (3) of Theorem 6.2.

Now we will prove the last assertion of Theorem 6.2, i.e., t"(&;) < 0 and there

exists & > & such that t”(£;) > 0, basing on the following proposition.

Proposition 6.30. For ¢ € (0,+00), we have

o LT8R (), a(8)
q(§) = TP q(©) (6.38)
oo PEOFE (), a(8)) — ¢ (€2 FE (1), a(€))
t"(&) = % (16), 4(6)) . (6.39)
Proof. Taking derivative of (6.30) with respect to &, we get
P S (19).a(©) + 4 (OF ()52 (H).a(©)) + () 5 () a(6)) = (©)
(6.40)
Taking derivative of the second equation of (6.29) with respect to &, we get
) gra (16).(9) + () 5 (16).4(0) = 1. (6.41)
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which gives immediately (6.38).
Subtract (6.41) multiplied by ¢'(£) from (6.40), we get (6.39). O

We divide the proof of the assertion (4) of Theorem 6.2 into two parts.

Proof of t"(&) < 0. By Proposition 6.21, 22(1,0) < 0. Since g(&) = 0, by (6.28)

we have (&) = 0. Also by Proposition 6.21, we get

0*P 0*P

0< e —5 (t(%),a(&)) = 2 —7(1,0) < +00

and
0< S t(&n) a(6)) = 57 (10) < oo,

By (6.38) and (6.39), we have

(EPLE(1(6), o(€) 22 (1), a(6)) — (1~ FOZL(1().a(€))

He) = 0 1(0),4(€) ZE (1) 4(©)) (642
Thus by t'(&) = 0, we have t"(&) < 0. O

Proof of t"(&) > 0. Proposition 6.29 shows 5lim q(§) = 0 and we know that
q(&) = 0. However, ¢(£) is not always equal to 0, so there exists a & € [, +00),
such that ¢'(&) < 0. Write

9°P  9%P
ot2  dtdq

H(t,q) =

8*p  9%p
Otdq  Og>

and add (6.41) multiplied by ¢'(§) to (6.40), we get

r OP

(#(©).4(©) Ht.0) (£(©).4(©) " + 5 (H©). a(€)F"() = 2q/(9).  (6.43)

Since H(t,q) is definite positive, 2%(¢,¢q) < 0 and ¢/(&;) < 0, we have ¢”(&;) > 0.
This completes the proof. n

6.6 Lyapunov spectrum

In this last section, we follow the same procedure as in Section 4 and Section

5 to deduce the Lyapunov spectrum of the Gauss map. Kessebohmer recently
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pointed out that the Lyapunov spectrum was also studied by M. Kessebohmer
and B. Stratmann [30].
Take
F =W = {log|¢| : i € N}.
instead of F' = {—logi : i € N} and ¥ = {log |[¢}| : i € N}. Then the strong
Holder family becomes ( — ¢)¥ and D should be changed to

D:={(t,q):t—q>1/2}.

Here and in the rest of this section we will use ¢ instead of ¢ to distinguish the
present situation from that of Khintchine exponents. What we have done in

Section 4 is still useful. Denote by P;(f,q) the pressure P((f — ¢)¥). Then

Pl(th>:P(£_Q>v with P() :P("O)

where P(-,-) is the pressure function studied in the section 4. Hence Pi(t,q) is
analytic and similar equations (6.14) and (6.15) are obtained just with log |7”(x)|
instead of log a;(z).

To determine the Lyapunov spectrum, we begin with the following proposition

which take the place of Proposition 6.24.

Proposition 6.31. For ({,q) € D, we have
— (t = q)log4 +log ¢ (2f — 2q) < Pi(#, q) < log((2f — 29). (6.44)

Consequently, the following are established.
(1) For any point (ty, qo) on the linet —q =1/2,

_lim P(f,q) = oo.
(F.q)~(Fo.0)

(2) For fived t € R,
oP,

lim ——(t,q) = +oo.

(3) Recall that o := 2log 1+T‘@ For fized t € R,

Py(t P .
tim 200 tim 227, ) = 0,

e | q——o0 g



Proof. Py(t,q) is defined as

~ 1 0 oo n ~
Pi(t,q) == nhgjlo Elog Z Z exp ( sup log H([wj, cee L wp x])Q(t_‘J)> )

wi=l  wp=1 z€[01] 5o
The proofs of (1) and (2) are the same as in the proof of Proposition 6.24.
To get (3), we follow another method. Since P (¢, q) = P(t—q), we need only

to show
lim P'(f) = —Y, P(f) +iy = o(f) (t — 00).

t—o0
By Proposition 6.22, P(t) is analytic on (1/2,00). Let E := {P'({) : t > 1/2},
denote by Int(E) and CI(F) the interior and closure of E. By a result in [70], we

have
Int(E) C {— /log T (2)|dpe - p € M} c CI(E),

where M is the set of the invariant measures on [0, 1]. By Birkhoff’s theorem, for

any pu € M, we have
[ A= [tog T @)a
However, we know that \(z) > 9 = 2log %5 Thus

_ /log T @)dn < -0 Ype M. (6.45)

Let 0y = \/‘?’2’1. Then T'(6y) = 0y and the Dirac measure p = dg, is invariant, and

—/log T (x)|ddg, = —log |T"(60)| = —0-

However, by the continuity of P’, we know that E is an interval. Therefore —v,

is the right endpoint of E. Since P'(t) is increasing, we get

lim P'(t) = —o.

t—o00

Let {6, }n>1 be such that 3, < —y and lim 3, = —v. There exist ¢, € R
such that t,, — oo and P'(t,) = [,. By the variational principle ([113], see also

[L09]), there exists an ergodic measure y;, such that
P(ty) = hye, — / log |7') () dj,
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where f,, stands for the metric entropy of p;,. By the compactness of M there
exists an invariant measure ji,, which is the weak limit of y;, (more precisely some
subsequence of p,, . But, without loss of generality, we write it as y;, ). By the
semi-continuity of metric entropy, for any € > 0 we have h,, < h,  + € when t,
is large enough. Thus by (6.45),

P(t,) < h, +€—t,%.
We will show that h, = 0 (see the next lemma), which will imply
P(t,) < e—tyyo.
However, by the definition of Pi(%,q), P(t) can be written as

N 1 oo o n B
P(f) = lim =1 1 e Wy, 2t ).
(f) = Jim —log »_ Z@m( sup log [ [([wy, -+ wn + ) )

wi=l  wp=1 z€[0,1] j=1

Thus if we just take one term in the summation, we have

- 1 i ry
P(t) > lim —1 1 [1,---,1,1 ) = —iv.
()_nl_{gon ogexp( sup ogH( MgL, + z]) ) Yo

Hence we get

Now we are led to show

Lemma 6.32. h, = 0.

Proof. Let h,__(x) be the local entropy of ji. at x which is defined by

b (2) = lim 28He(In(@))

n—o0 n
if the limit exists. Let D, (x) be the lower local dimension of yio, at x which is

defined by
D, (x):=liminf 10g 1 (B2 r))
Hoo r—0 log r

By the Shannon-McMillan-Breiman Theorem, h,_(z) exists p-almost every-
where. It is also known that A(z) exists almost everywhere (by Birkhoff’s the-

orem). So, by the definitions, we have
huo () = D, (2)NT)  ploo — a.e.
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By Birkhoff’s theorem and (6.16),

/ M) dpno(z) = / log |T') () dpto ()
= lim [ log |T"|(z)dp,

= — lim P’(tn) =Y < Q.

n—od

Hence A\(x) is almost everywhere finite. Recall that [20]

b = [ b @) ).

Thus it suffices to prove
D, () =0 po —ae.
That means ([17]) the upper dimension of ji., is zero, i.e. i is supported by a
zero-dimensional set.
Since [ A(z)dpoo(z) = 7o and A(z) > o for any =, we have for u,, almost
everywhere A(x) = 79. Thus by Birkhoff’s theorem, p., is supported by the

following set

n—oo N

{ZL‘ €[0,1] : lim 1 ilog T (T x)| = 70}. (6.46)

Thus we need only to show that the Hausdorff dimension of this set is zero.

Recall
n—1

1 | 1
lim =S log [T/(T92)| = 2 lim = log g, (z).
nggonjzo og |T'(T7x)| = 2 lim —log ga(v)

By Lemma 6.6, (6.46) is in fact the following
1 n
0,1] : lim — 1 () =07. 6.47
{eep Jim S g } (6.47)

However, the Hausdorff dimension of (6.47) is nothing but #(0), the special case
¢ = 0 discussed in the subsection 5.1., which was proved to be zero. Thus the

proof is completed. O

Recall that \g = [log |T"(x)|duc. Let Do :={(f,q) : t —q >1/2,0 <1 < 1}.

We have a proposition similar to Proposition 6.25.
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Proposition 6.33. For any (8 € (v, 0), the system

Jg}gﬂ q) = qp3, 6.9
L .
8_q<t’Q) = [

admits a unique solution (£(3),q(B)) € Dy. For =)o, the solution is
(t(Xo), q(No)) = (1,0). The functions t(3) and q(3) are analytic.

With the same argument, we can prove that #(/3) is the spectrum of Lyapunov
exponent. It is analytic, increasing on (79, Ao] and decreasing on (Ao, 00). It is
also neither concave nor convex. In other words, Theorem 6.3 can be similarly

proved.

Figure 4. Solution of (6.48)

We finish this chapter by the observation that the Lyapunov spectrum can be
stated as follows, which is similar to the classic formula, but with the difference

that we have to divide the Legendre transform by (.

Proposition 6.34.

_1
B

Proof. In fact, the family of functions P;(,q) with parameter ¢ are just right
translation of the function P(—q) with the length £. Write the system (6.48) as

1(9) = =52 — g(9) = S f{P(—q) — a5}, (6.49)
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follows

{ Pt —q) = qpB, (6.50)

If we denote by 4, the Gibbs measure with respect to potential g¥, then by a left

translation the system (6.50) can be written as

{ P(—q) = (t+¢)B,
@E(=q) = 0.

Thus

By using the second equation, we can write ¢ as a function of 3, hence we get
(6.49). m

Figure 5. The other way to see t(f3)
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Chapter 7

Non-normal Continued Fractions

In this chapter we consider certain sets of non-normal continued fractions for
which the asymptotic frequencies of digit strings oscillate in one or other ways.
The Hausdorff dimensions of these sets are shown to be the same value 1/2. An
example among them is the set of “extremely non-normal continued fractions”

which was conjectured to be of Hausdorff dimension 0. *

7.1 Statement of the results

Every x € [0,1) N Q° can be expanded as a continued fraction expansion,

r = [a1(x),as(x),...] where a,(z) € N for all n > 1. In what follows, the
letter “2” will denote both an infinite word (z1, 2o, --+) € N¥ and a real number
x € [0,1) N Q° with continued fraction expansion [z, xs,- -], where z,, = a,(z)
for all n > 1.

We recall the following list of definitions and notations which has appeared
in Subsection 1.3.3.

*

e the set of finite words over N (digit strings): N*.

e the number of occurrences of k-digit string W = (wy, -+ ,w;) € N* among
the first n digits of x:

fWz,n) =t{1<j<n—k+1:a;(z)=wy, -, aj45-1(x) = wy}.

e Freq(W, z) denotes the collection of all accumulation points of the sequence
{zfW,z,n):n>1}

o Freq(W) = U,cp.1)nge Frea(W, z).

L. M. Liao, J. H. Ma and B. W. Wang, Dimension of some non-normal continued fraction sets, to
appear in Math. Proc. Camb. Phil. Soc..
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The set of points of continued fractions with maximal frequency oscillation is
defined by:

F={ze€l0,1): Freq(W,x) = Freq(W) for all W € N*}.

The first immediate result is

Theorem 7.1. The set F is residual in [0,1), namely, its complementary set is

of the first category. As a consequence, the packing dimension of F is 1.

Let us remark that the packing dimension result follows from the fact (see

[12, Exercise (1.8.4)]) that a residual subset of [0, 1) has packing dimension 1.

It is interesting to note that the Hausdorff dimension of FF is of “intermediate”

size.

Theorem 7.2. One has
dim(F) = 1/2.

Here and in what follows, the symbol “dim” denotes the Hausdorff dimension.

To recall the definition of E of “extremely non-normal continued fractions”,

we recall the other list in Subsection 1.3.3:

e the simplex of probability vectors with index set N* (k > 1):
Ap = {(p(W))WeNk p(W) = 0,) p(W) = 1} :
w

e l-norm on Ayg:

1F=dll, = > [p(W)—q(W)|.

W eNk

e the sub-simplex of shift invariant probability vectors in Ag:
Sk = {ﬁe Ay : Zp(z’V) = Zp(Vi) for all V' € Nkl} .

e the vector of n-th asymptotic frequencies of the k-words occurring in z:

Iy (z,n) == (lf(VV, x,n))WeNk € Ay

n
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[e.9]

e A, (z) denotes the set of accumulation points of the sequence {II(x,n)} -,

with respect to the 1-norm HH1
It is known that Ag(xz) C Sk (see [113]). We define
E, = {x € [0, 1) N @C : Ak(l‘) = Sk}

and E = (,—, Ey, which is the set of “extremely non-normal continued fractions”.

The set E is closely related to the set ' of continued fractions with maximal

frequency oscillation. Indeed,

Theorem 7.3. One has
E CF.

It was proved that the set I is residual in [0, 1) and has packing dimension 1

in [113]. Therefore, Theorem 7.1 follows directly from Theorem 7.3.
Olsen conjectured that dim(E) = 0. We show that

Theorem 7.4. One has
dim(E) = 1/2.

We remark that Theorem 7.2 and 7.4 will follow from more general results.
Our results apply to a large kind of sets of continued fractions which are deter-
mined by various “frequency properties”. The techniques in the following might
be useful in other parts of metric continued fraction theory. Let us describe these

in more detail.

By virtue of E C F, to show that dim(E) = dim(F) = 1/2, it suffices to prove
dim(F) < 1/2 and dim(E) > 1/2. The upper and lower bound on the Hausdorff
dimensions will be treated separately. First, by the definitions, for any ¢ > 1, the

set F is included in

G) ={xz €[0,1) : limsup W =1}

n—oo

So the upper bound result will follow from
Proposition 7.5. For any { > 1, dim(G(¢)) < 1/2.
To deal with the lower bound, let us begin with the following
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Definition 1. Let M C N and A C [0,1) NQ°. The set A is said to be M-free if
{zr€]0,1)NQ°:x, =2z, foralln g M} C A

holds true for every z = [z1, 20, - -] € A. The set A is called “zero-density-free” if
it is M-free for any M with zero density (i.e. lim, .o t8{k <n:k € M} =0).

It is then easy to see that both E and F are “zero-density-free” sets. Therefore,

the lower bound results will follow from the following more general conclusion.

Proposition 7.6. Let A C [0,1) N Q° be a “zero-density-free” set. If there exist
an o € (0,1) and at least one z = [z, 29, -] € A such that

z, < exp(exp(n®)) for alln > 1,
then one has dim(A) > 1/2.

In words, for a “zero-density-free” set, the existence of a “good seed” will

ensure the set has Hausdorff dimension at least 1/2.

Remark 5. It is shown in [101] that, for any b, ¢ > 1, the set
{z €[0,1)NQ°: ay(x) > " infinitely often}

is of Hausdorff dimension 1;4%1 < 1/2. Therefore, essentially, the condition on the

“seed” that z, < exp(exp(n®)) for some a € (0,1) cant not be relaxed.

The following is organized as follows. In section 7.2, we recall some basic
terminology on the combinatorics of words, and prove that E C F. In section 7.3,
we verify the existence of a “good seed” for E. The upper bound (Proposition 7.5)

and lower bound (Proposition 7.6) results will be proved in the last two sections.

7.2 Some combinatorics of words and the relation between
E and F

We first recall some basic terminology on the combinatorics of words. Let
N* denote the set of all finite words over the alphabet N. For any £ > 1, a
word W = (wy,--- ,wg) € N* of length |W‘ = k will be called a k-digit string

alternatively. The concatenation of n consecutive W will be denoted by W™.
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Definition 2. The basic period of a word W = (wy, - - ,wy) is the integer
per(W) :=min{p < k : wy; = w; for 1 <j <k —p};
The basic factor of W is the word W := (wy, - ,wpeT(W)).

For example, let W = (1,2, 3, 1,2), then per(W) = 3, W= (1,2,3).
The following observation will be useful in the sequel.
Lemma 7.7. Let W € N* be a finite word with basic period p and basic factor

W= (wy, -+ ,wp). Then, for each n > 2, the number of occurrences of W in the

pn—word (W)n 1sn—1 orn according as p < |W‘ orp = }W‘ As a consequence,

i £V (W)™ )

n—oo n

=1/p.

Now let us recall that f(W,z,n) stands for the number of occurrences of W
among the first n digits of the infinite words x € NN, that Freq(W, z) denotes the

set of all accumulation points of {W :n > 1}, and that

Freq(W) = U Freq(W, x).

zeNN

Since lim,, o (f(W’x’"H) — f(W’:“”)) =0, one has

n+1 n
Freq(W, x) = [lim inf M, lim sup JW.2,n) . (7.1)
n—oco n o0 n

As a corollary of this and Lemma 7.7, one has
Corollary 7.8. For any W € N* with basic period p, Freq(W) = [O, l/p].

Then we proceed to prove Theorem 7.3, namely, E C F. Let x € E which can

be regarded as an infinite word (z,)>%, € NN. Recall that

() = (- FV,2,) e

oo
n=1

that Ay(x) denotes the set of accumulation points of the sequence {II;(z,n)}

with respect to the 1-norm HHl, and that Ag(z) = Sy for any = € E, where

Sy = {ﬁe JAVAS Zp(iV) = Zp(Vi) forall V e Nk_l} :
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is the sub-simplex of shift invariant probability vectors.
Let V = (vy,- -+ ,v) € N* with basic period m (see Definition 2). By Corol-
lary 7.8, to prove that x € I, it suffice to show that

both of 0 and 1/m are limit points of the sequence {M} i
n n=1

For the first one, let d > max{v; : 1 <i < k} and p'€ Sy with

pld---d)=1and p(W)=0for W#d---d
k times k times

Given ¢ > 0, since p' € Ag(z), we have HHk xT,n) ﬁHl < ¢ for infinitely many n.
It follows that (Vm ") < ¢ infinitely often. Therefore, 0 is a limit point. For the
second one, we notlce that y = (vq, - - - vy,)* is a periodic point with minimal period
m under the shift mapping 7' : N¥ — NN, Let 1 be the periodic orbit measure
(see [39] pp.195) which has mass 1/m at each of the points {y, Ty, -+, T™ 1y}
Then p is a T-invariant ergodic measure. It induces a shift-invariant probability

vector
7= (pW)) yyexpe € Sk with p(W) = p{z: 2y -+ 2, = W} for all W € N*.

In particular, p(V) = 1/m. Since § € Ay(z), we have ||II;(z,n) JH1 < ¢ for

|fon

infinitely many n. It follows that -1 ‘ < ¢ infinitely often. Therefore,

1/m is a limit point. This completes the proof that = € F, and hence that E C F.

7.3 A “good seed” for E

In this section, we shall verify the existence of a word z = (21, 29,---) € NN
such that

z=lz1,29,---] €EE and 2z, <nforalln>1 (7.2)

From this “good seed”, a Cantor-like subset of E will be constructed in Section 5.

We shall use the terminology on combinatorics of words introduced in the
last section. For a pair of finite words W = (wy, -+ ,wg),V = (v, ,v,) € N*

with k& < n, we write
JW, V) =t{1<j<n—k+1:vj=wy, 041 = Wk}

for the number of occurrences of W among V. Then for any x € NV, one has

fW,x,n) = f(W,(z1,--- ,2,)). A direct counting argument yields the following
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Lemma 7.9. For any W,U,V € N*,

HWUV) SNy U
U+ VT VT S O VT

Recall that the vector of n-th asymptotic frequencies of the k-words occurring

in x is denoted by

1
Hk(x>n) = (ﬁf(m/v z’n))WeNk'
For a finite word V, we use a similar notation II(V) so that IIx(zy,--- ,2,) =

[y (z,n). For ease of narration, we introduce the following

Definition 3. Given € > 0, we say that a finite word V' = (vy,--- ,v,) is e-close
to a vector § € Ay, if ||II;(V) —]3”1 <e.

[e.e]

It is clear that the set of accumulation points of the sequence {II;(z,n)} ~,

can be expressed as
Ap(z) ={p € Ay :Ve >0, (x1,---,x,) is e-close to p for infinitely many n}.
Let us recall again that Ay(x) = Sy for any x € E, where

S, = {ﬁe JAVRE Zp(ﬂ/) = Zp(Vi) forall V e Nk_l}

is the sub-simplex of shift invariant probability vectors.

Foreachd > 1,let {1,--- ,d}" denote the collection of all finite words over the
alphabet {1,---  d}. Consider the infinite lower triangular array of finite words
wi,

Wi, Wy,
Wit Wi Wi,

where the d-th column consists of words from {1,--- ,d}" for each d > 1. Juxta-

posing the elements of the array row by row, we get an infinite word
2 = WOWIWR W WP W

In what follows, we’ll specify the elements of the array, and show that the resulting

z satisfies the condition (7.2) and hence is a “good seed” for E.
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We begin by defining, for each d > 1,

S\ = {(p(W)) € Sk :p(W) >0 = We({l,-- d}*}.

Suppose that S@ = {]554(1)} is a dense subset of J;-, S,(Cd). Since U, S,(gd) is
=1
dense in Sy, and that A(z) is a closed subset of Si. To verify that z = [z1, 29, -+ -] €

[E, it suffices to show that for any d > 1
S@ c Ap(2). (7.3)
We need the following technical lemma which is similar to Lemma 2.1 in [113].

Lemma 7.10. Let U € N*, ¢ > 0 and p € S;d). Then there exists a finite word
Ve {l,---,d} such that the word UV is e-close to p.

Proof. Let p'= (p(W))WeNk, then p(W) > 0 if and only if W € {1,--- ,d}*. So we
may identify p with a shift-invariant probability vector over the symbolic space
{1,--- ,d} with index set {1,---,d}*. By Theorem 2.3 in [I13], there exists
y € {1,---,d}" such that

lim HHk(y,n) —ﬁ“l =0.

n—oo

Let U = (u1,--+ ,upy) and V = (yy, -+ ,y,) with n being so large that

m?+mdF ¢ . €
m——i—n < 5 and HHk(y,n) —le < 5

Denote by JF the collection of k-words that occur in UV but lie outside {1, - , d}*,

1.e.

(7.4)

F={WeN\{1,---,d}*: W is a factor of UV} .

Since V € {1,--- ,d}", we have
tF <mand f(W,UV) <m for al W € F.

In combination with Lemma 7.9 and (7.4), this yields

1 1
IM@V)=all, = > o= fW,UV) =p(W)|+ D |——— f(W,UV)|
we{l, - ,d}k WeF
< > ! f(WV)—(W)Hmkor m <f+i=
- m+n ’ P m+n m+n 2 2 €
we{l, ,d}k
This completes the proof of the lemma. O
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Now we proceed to specify the elements of the array one by one. First, we
observe that
SY) = {(p(W)) € Se: p(1*) = 1} == 5

is a singleton. Let S = {]3?)};1 and Wl(l) = 1. It is clear that HHl(l)—ﬁ(ll) H1 =
0. Therefore, WV is 1/2-close to pi".

In general, for any d > 1 and ¢ > d, let Ue(d) denote the prefix of z which
is the concatenation of the words before Wg(d) in the array. Suppose that Ue(d) is
determined. We proceed to specify the word We(d) € {1,---,d}" which is at the /-
th row and d-th column of the array. By Lemma 7.10, there exist V; € {1,--- ,d}"
such that Ué(d)Vl - Vs 1/2€—close to ﬁgd) for 1 <i < /¢—d+ 1. Then we put
Wi = Vi Viag

With this construction, it is clear that the relation (7.3) is satisfied and hence
z € E. Now suppose that z, lies in Wz(d) with ¢ > d. Then z, < d < ¢ < n.
Therefore, the condition (7.2) is satisfied.

Remark 6. Let t, be any real sequence satisfying lim,, . t, = 400, it is obvious
from the construction that there exists a “seed” z = (21,29, -+) € E such that

2z, < t, for all but finitely many n’s.

7.4 Upper bound estimate

This section is devoted to the proof of Proposition 7.5. Let us fix some ¢ > 1
and denote by G the set

G(¢) ={z €[0,1) : limsup

n—oo

fll,z,n) .

To avoid complicated computation, we assume that ¢ > 9. Now we are going to
show that dim(G) < 1/2.
Proof. Fix 0 < e < 1. For each n > 1, put

A, ={(a1, - ,a,) EN":#{j <n:a; =0} > (1 —e)n}.

By the definition of G, we have

Gcﬂ U U I(ay, - ,a,),

N=1 n:N (al,“' 7an)€An
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where we recall that I(aq,- - ,a,) is the rank n fundamental interval defined by
I(ay, -+ ,a,) :={x €0,1) : ag(x) = ax, 1 <k <n}.
For any t > 1/2, let H* signify the t-Hausdorff measure, then

Ht(G) < lim inf Z Z ‘[(ah - ’&n)’t

n=N (a1, ,an)EAn

< hszLio%f i Z ﬁ a; (by Lemma 2.41)

n=N (a1, ,an)EA, k=1
IR TIN < n —2t\m o\
~liminf 3 <m)(£ ) (Zj ) |
n=N (1—e)n<m<n j#e
Let t be close to 1/2 and then let € be so small that
079 <1/8 and 1< (Zﬂt) <2
J#L

In combination with that (;) < 2", this implies

H'(G) <liminf ) en2"87"2" = 0.
N—oo o’
Therefore, dim(G) < 3 as desired. O

7.5 Lower bound estimate

In order to get a lower bound on the Hausdorff dimension, we shall consider

a class of Cantor sets which are interesting in themselves.

Let «, § and ~ be given with
O<a<p<y<l, (7.5)
and M = {my, : £ > 1} be a subsequence of N such that
my, = k7P (7.6)

7

Here, as usual, the symbol “|¢|” means “the integer part of t”.

Let z = [z1,29,** , Zn, - -] € [0,1) NQ° be a number such that
zn < exp(exp(n®)) for all n > 1. (7.7)
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and let B(z) be the set of all x = [ay(x),as(x),---] € [0,1) satisfying

an(x) = 2z, if n g M (7.8)
lexp(exp(k7)) | < an(x) < 2|exp(exp(k?))| ifn=myeM. (7.9)

Since the set E is “zero-density free” (see Definition 1) and contains a “seed”
satisfying the condition (7.7), it contains the subset B(z). Therefore, the lower
bound result is a consequence of Proposition 7.6, which, in turn, follows from the

following

Lemma 7.11. dimg(B(z)) >

N)I»—\

Proof. We will construct a measure supported on B(z) and then apply the mass

distribution principle (see [1(]) to get the dimension estimation.
Let
L, ={I(ay, - ,an) : [(a1, - ,a,) NB(z) # 0}
and call the elements in I,, admissible n-th order fundamental intervals.

We define a set function p on the collection of fundamental intervals as follows.
Put u([0,1)) = 1. If I(ay, - ,a,) € L, put

pl(ar, - an)) = 0;

if I(ay, - ,a,) €L, and my < n < myyq, put

M(I(alv"'a H

J=1

exp exp jV))J

By (7.8) and (7.9), the set function pu is well-defined and can be extended to a

unique probability measure supported on the set B(z).

Let © = [z1, 29, - -] € B(2). Denote by I, (x) the rank n fundamental interval

containing x. Consider the ball B(x,r) centered at x satisfying
[ Lns1(z)] < 3r < |L(2)| with my < n < myp (7.10)

Since x € I, (x) and z,, > 2, by Lemma 2.42, B(x,r) is contained in the union

of three adjacent mj-rank fundamental intervals, namely
B(z,r) C Iy, (z)U Ifﬂk (x) U ],’,'lk(x)
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It follows that

::r;rﬁH

ey exp exp ﬁ))J

For convenience, we shall use the notation
f~g <= lim f =1
g

in the sequel. On the one hand, one has

k
— log(u(B(z,7))) > —log3 + Z log (| exp (exp(j Z exp(j7). (7.11)

7=1

On the other hand, by (7.10), (2.41) and (7.8), one has

|I +1‘ n+1 - 1 ME41 —2 ,k+1 -2
T2 3 = 2”+5) (H xj) Z 2(3+2myp41) < H Zj) (H xmﬂ') )
; Jale

In combination with (7.7), (7.9) and (7.6), this implies that

M1 k+1
—logr < (34 2myq)log2 + 2 Z exp(j*) + 2 Z log(2[exp(exp(57))])
j—l
k+1 k+1

+1)7/
Z exp(j) + QZGXP ~ QZGXP(ﬁ)
o =1

where we have used the fact 0 < a < f < < 1. This and (7.11) together yield

log (u(B(z,r)))

lim inf > 1/2.
sy logr 21/
Since pu is supported on B(z), one has dim(B(z)) > 1/2 as desired. O
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Chapter 8

The Frequency of Partial Quotients of Continued

Fractions

In this chapter, we consider the frequency of partial quotients of continued
fractions. The sets (Besicovitch-Eggleston sets) of points in [0, 1) with prescribed
digit frequencies in their continued fraction expansions are studied. It is shown
that the Hausdorff dimension of these sets, always bounded from below by 1/2,

are given by a modified variational principle. *

8.1 Introduction

Let Q¢ denote the set of irrational numbers. It is a well-known fact that each

x € [0,1) N Q° possesses a unique continued fraction expansion of the form

1

(8.1)

aq (l’) + 1
as(x) + ———

ag(l’) + .

where ai(x) € N =: {1,2,3,---} is called the k-th partial quotients. For each

j € N, define the frequency of the digit j in the continued fraction expansion of x

by

. Ti\xr,n
7j(x) = lim —J(n’ )

if the limit exists, where 7;(z,n) := Card{k : ax(z) = 7,1 < k <n}.

This chapter is concerned with sets of real numbers with prescribed digit fre-
quencies in their continued fraction expansions. To be precise, let p'= (p1,p2, ... )
be a probability vector with p; > 0 for all j € N and Z‘;‘;l p;j = 1, which will be

called a frequency vector in the sequel. Our purpose is to determine the Hausdorff

'A. H. Fan, L. M. Liao and J. H. Ma, On the frequency of partial quotients of regular continued

fractions, preprint.
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dimension of the set
E={xe]0,1)NQ°: 7j(x) =p; Vj > 1}.
We begin with some notations. For any ay,as,--- ,a, € N, we call
I(ay, a9, -+ ,a,) :={z €[0,1) : a1(x) = a1, as(x) = ag, -+ ,an(x) = a,}

a rank n fundamental interval . Let T : [0,1) — [0, 1) be the Gauss transformation
defined by
T0)=0, T(x)=1/xforz e (0,1).

For a given frequency vector p= (p1, p2, - . . ), denote by N (p) the set of T-invariant

ergodic measures such that

/]logm|du < oo and p(I(j)) = p; for all j > 1. (8.2)

Let h, stand for the measure-theoretical entropy of p, and dimpy for the Hausdorft
dimension. With the convention that sup® = 0, the main result of this chapter

can be stated as follows.

Theorem 8.1. For any frequency vector p, one has

1 h
sup

— S
2" LeN®) 2f\10g::r;|du}

Partial results of Theorem 8.1 were known long ago. In 1966, Kinney and

dimpy (&) = max {

Pitcher [38] proved that if >7°° | p;logj < oo then

— > ;21 pjlogp;
2 [|logz|dpus ’

where 417 is the Bernoulli measure on [0, 1] defined by

dimH gﬁ 2

M([(ala&% to 7an)) = Hpaj'
j=1

This lower bound is in fact the Hausdorff dimension of the Bernoulli measure 1.
However, by the result of Kifer, Peres and Weiss [37] in 2001, this lower bound is

not optimal. Indeed, it is shown that
dimg py <1-1077
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for any Bernoulli measure ;.
In 1975, Billingsley and Henningsen [17] proved that if 3 7%, p;logj < oo
then

h
dimg (&) > sup —>"—r.
P en 2 [ |log xldp

They also showed that this lower bound, which is a kind of variational principle, is
just the exact Hausdorff dimension of the set £ provided that all partial quotients
are restricted to the set {1,2,--- | N} for some N € N. It is quite natural to guess
that this should be true in the general case. However, as stated in Theorem 8.1,
it is only a half part of the lower bound.

The other half of the lower bound viz. dimg(&5) > 1/2, follows from Lemma
2.4 in [97]. However, we will give a direct proof.

The upper bound estimate is more difficult. In the proof, we will use the
techniques of [97] and [17] in estimating the lengths of fundamental intervals. Not
incidentally, an entropy-involved combinatorial lemma (Lemma 8.4) will play an
important role.

This chapter is organized as follows. In Section 8.2, we give some preliminar-
ies. In Section 8.3, we prove the upper bound of Theorem 8.1. In Section 8.4, we
give a direct proof for dimy(E;) > 1/2 and show how we can drop the condition
Z;’il pjlogj < oo in Billingsley and Henningsen’s theorem and obtain the lower
bound of Theorem 8.1.

8.2 Preliminary

In Section 2.4, we have given the basic properties of continued fractions. Here

we want to discuss some estimates of the length of a rank n fundamental interval.

Recall p,/q, is the n-th convergent of continued fractions. Sometimes we

denote by p,(ai, - ,a,) and g,(a,--- ,a,) the numerator and denominator of
the n-th convergent of the points initiated with first n partial quotients aq,- - - , ay,.
Recall that for any ay,as,--- ,a, € N,
I(ay,ag, - ,a,) ={x €0,1) : a1(z) = ay,az2(x) = ag, - ,a,(z) = a,}

is a rank n fundamental interval.

We have
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Lemma 8.2.

: 8 -~
|](:1;1’... Ty ’xn)|§0_|_—1)21(xl’ IR 751771)7

where the notatz’on} means “deleting the digit 77.

Proof. By (2.3) and Lemma 2.38, we have

1 2 \° 1
’[<$1,"',j,"',l’n>‘ < S( ) x
q%(ajl’... ’xn) j +1 %2171(1’17"' N/ ’xn)
8

S Grie

‘I(%,"',},"',xn)

O

For any # € [0,1] \ Q and any word #,---i;, € N¥ (k > 1), denote by
Tiyip (T, m) the number of j, 1 < j < n, for which

aj(@) - ajpp-1() = i1 iy
For N € N, define X := {1,..., N}. We shall use the following estimate in

[17].

Lemma 8.3 ([17]). Let N > 1 andn > 1. For any x = [x1,79,...] € [0,1] N Q°
with x; € X for 1 < j <n. Then for any k > 1, we have

pk(il,- B ,Zk) 8n
log |I,,(x)] <2 Tiy i (T, n)log ———= + 8+ —. 8.3
slL@ <2 Y nalen)loe s T (53)

ip-ipeXk

Now we turn to the key combinatorial lemma which will be used in the upper
bound estimate. Let ¢ : [0,1] — R denote the function

»(0) =0, and ¢(t) =—tlogt for 0<t<1.

For every word w € Y% of length n and every word u € 3% of length &, denote by

p(u|w) the frequency of appearances of u in w, i.e.

Tu(w)

plulw) = T

where 7,(w) denote the number of j, 1 < j <n — k + 1, for which
Wi Wjpk—1 = U.
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Define
Hy(w) ==Y o(p(ulw)).

k
ueLY

We have the following counting lemma.

Lemma 8.4 ([01]). For any h > 0,¢ >0, any k € N, k > 1, and any n € N large

enough, we have

Card{w € 3% : Hi(w) < kh} < exp(n(h +¢)).

8.3 Upper bound

8.3.1 Some Lemmas

Let (p(i1,- -+ ,iK))i,..i,env e a probability vector with index set N*. Recall
that gy (i1, ,ix) is the denominator of the convergent of a real number with
leading continued fraction digits 1, ..., .

Lemma 8.5. For any e > 0, there exists k € N such that for any probability vector

(p(ih e ,ik))il...ikeNk, we have
_% p(lla 7Zk)10gp(217 7Zk)
1.1, ENK
2 . . . .
SE p(lhﬂ' 7219)10ng(217"' 7lk)+€'
i1, ENK

Proof. By Jensen’s inequality, for any £ € N, we have

. . Qk(ila"'aik’)72 . . \—2
> pliv, i) log U <log > aulin,eik)

i i
i1-ip ENF p( b ’ k) iy--ipENF

By Lemma 2.39, we have

Z QK(i17"'7ik)72§2 Z |](211k)|:2

i1~-"ik€Nk i1~-~ik€Nk

Thus

. 1 . . Qk(ila"' 7ik)_2

lim — Z p(?‘l?"' 7Zk) log . .

1 : .

< Jim —log > (i, i) =0,
’il---ikENk

which completes the proof. O
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Lemma 8.6. For any probability vector p = (p1,p2,...) and any positive vec-
tor § = (q1,qa,...). Suppose —3 77 pjlogq; = o0 and Y 72, qi < oo for some
positive number s. Then
. — ;-1 pjlogp;
lim sup - <s
n—oo Zj:l Dj lOg qj
Proof. This is a consequence of the following inequality (see [110], p.217): for

nonnegative numbers s; (1 < j < m) such that > 7" | s; = 1 and any real numbers
t; (1 <j <m), we have
Z s;(t; —logs;) < log(z ). (8.4)
=1 j=1
Forn > 1,put s; =p;forl <j <nands,;; = Z;’;nﬂpj. Take t; = slogg;
for 1 <j <mnandt,;; =0. Applying the above inequality (8.4) with m =n + 1,

we get
sy pilogg;— Y pilogp;— (Y pj)log( Y pj) <log(l+ > q)),
j=1 j=1 j=n+1 j=n+1 Jj=1

and consequently,
— 2 pilogp; _ . Ot pi)log(35, i py)  log(1+ 370 45)
=2 jipjlogg; — > i1 pjlogg; — > i1 pjlogy;
Using the facts — 277 p;jloggq; = oo and )77, ¢7 < oo, we can finish the proof

by letting n — oc. O]

Lemma 8.6 implies the following Lemma. Recall that X% = {1,..., N}*.

Lemma 8.7. Let k> 1 and (p(i1,-- - ,ix))i..i,ent be a probability vector. If
Z p(h? 7Zk)loqu(zla 7Zk):OO
i1--ig ENF

then we have

. - Zil.,.ik@% p(in, - i) log p(in, - -+ i)
lim sup

1
N—oo 2211.,.%621& pliv, -+ ix)log qu(in, - -+ i) '

< Z
-2

Proof. By Lemma 2.37, for any k£ € N and any s > 1/2, we have

S i) P S 3 i) = (L <

1,0 ik 11,0k

Thus we have the result by Lemma 8.6. O
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8.3.2 Proof of the upper bound

To prove the upper bound, we shall make use of the multi-step Markov mea-
sures. Let k& > 1, by a (k — 1)-step Markov measure, we mean a T-invariant
probability measure P on [0, 1) satisfying the Markov property

P(I(ay, - ,a,)) _ P(I(am-ky, - ,an))
P(I(ar, -+ ,a@m-1))  PU(am-r), " an-1))

for all n > 1 and aq, -+ ,a, € N (see [32] p.9). According to our conventions, we

(8.5)

may regard Bernoulli measure as 0-step Markov measures.
Let us denote by Pk = Pk (p) the set of (k — 1)-step Markov measures satis-

fying
N-1

P(I(j))=pjfor 1<j<N-1land P(I(N))=1-) p; (8.6)

j=1
Put P([i1,...,i]) = pliy, ..., i) for all ¢ -+ -3 € XX and

_% Zp(zla e 7Zk) 1ng(ila e 7Zk)

o o S i i) logpulins - i) fanlir i) D
In [17], pp.171-172, the authors proved that the following limit exists
Oy = lim By,
and it is equal to the following two limits which both exit:
By = lim sup 2 plin, o in) logplin, -+ i)
k—oo pepr 23 p(in, -+ i) log qi(in, -+ k)
and "
R B 3 5 ThogaliP
Let
f :=limsup By = limsup fy = limsup . (8.8)

N—oo N—oo N—oo

To show the upper bound, we need only to prove the following two propositions.

Proposition 8.8. For any N € N large enough, we have

dimpy (&) < max{;, ﬁN},
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Proposition 8.9. We have

§< {1 h,, }
max< =, SUp —p——t— o .
- 2 MEJI\)/QL[Hogw]du

First, we prove Proposition 8.9.
Proof of Proposition 8.9: By (8.8),

[ = lim sup hm sup — > p(i, -+ ig) logp(in, - - -, ix)
N—oo _}OOPG]P]C 2zp(ll’ ’ ’Zk) loqu(zla alk)

If

hmsup lim sup 2 ZPOD e 7Zk) long(ib e 72.19) = 00,
N—oo k=% pepk

then by Lemma 8.7, we have § < 1/2.

Now suppose that

limsup lim sup 22]}(2'1, i) log gr (i, - - - i) < 00,
N—o0c0 kHOOPe]P’fV

which is equivalent to

limsup lim sup /|log:13|dP < 00.

N—oo k=00 pepk

By (8.8),

5=l ’ hp
= limsup lim sup —f———.
N_mp ke—00 PE]I% 2 [ |logz|dP

Without loss any generality, we suppose there is a sequences of measures Py, € Pk

such that Py converges weakly to a measure p € N(p) and

£ = limsup lim NPy
- N_,OOp k—oo 2 [ |log z|d Py

Then by the upper semi-continuous of the entropy function and the weak conver-

gence, we have

h
B < sup [
,uG/\/")2f|1ng|d:u
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Now we are left to prove Proposition 8.8.
Proof of Proposition §.8: For any fixed integer N which is large enough, and any

e > 0, we have

Eﬁc D ﬁHn(eaN)v

{=1n=¢

where
7;(z,n)

Hn(e,N)::{xGNN:: —Dj <€,1Sj§N}-

For any v > max {1/2, By}, and for any integer k € N, we have

HY (ﬁ H, (e, N))
< Y L@ (>0

7j(@n)
I~

—pjl<e1<j<N

= Z Z ‘](ﬁlv"' 7xn)|77

n(pj—e)<m;<n(p;+e),1<j<N z1--zn€A
where A = {xy- -z, € Z% : 7j(x1 - x,) =my, 1 < j < N}.(We recall that the
notion of 7j(x; - - - x,,) denotes the times of the appearances of j in x; - - - x,.)

Let n := Zjvzl m;. By Lemma 8.2, we have the following estimate by deleting
the digits 7 > N in the first n partial quotients xy,...,xz, of x € I, (x).

v - 8 o gl
> (@, < ( >, W) > (@, w),

x1-Tn€A j=N+1 $1“'IﬁEA

where A := {1+ 27 € %t 1j(21 - 25) =my,1 < j < N}. Since v > 1/2, the

term -
S M
(j+1)*

j=N+1
where M is a constant.
By applying Lemma 8.3, and noticing that 7, ;, (z,7n) < 7, s (21 x5) +k,

we have

| I (2)| = exp{log | La(x)|}

pk(ila'" ,'ik) 8n
< exp2 Z (Tiyoip (X1 -+~ xz) + k) log m o7
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Thus

z1zr€A
Dk 8nry
< DL X ey D (i k) log T 487+ 5 0
My iy, 21T ED iy-ip SR,

where B := {xl cezs €A Tivoip (X1 @) = My gy, Vig -+ iy € Eé‘v}
Take
1 -
Bt Miyiy 8.9
P o(ih) 59
1.1, ENK

in Lemma 8.4. We have for any ¢ > 0, for n large enough

8n
Z exp ] 2v Z (myy..q, + k) log Pr 8y + —lj
4k 2
T1THEDB ’i1"'ik62?\]

8ny

exp 1 (h+6) + 2y Z (Miyvif, + k) log% + 8y + o5
k

IN

i1~~~ik€E§V
Rewrite the right side of the above inequality as
exp {ﬁ (L(,)/? k? mlllk))} )

where

L(v, k,mgy..;,) == h+ 2y Z

iy-ip €S

i k 8 8
Mlog&+g+l+5_
@ 0o 2k

Since there are at most (2 — k + 1)N* possible words of iy - - - 4, in X%, we have

Z 1I(xy, - a3)|

CCl‘“Z‘ﬁEA

< (n—k+ 1)Nk exp {fz ( sup L(~, k,mil...ik)> } :

My iy,

Notice that by the definition of A and B, the possible values of My i), A€

restricted to satisfy the condition that the frequency of digit j in x; - - - x5 is about

Mg, .4
n—k+1/), .
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then approximated to a probability measure P in P%,.

Since v > [y, by (8.7) and (8.9), we can choose first n large enough then k
large enough such that
sup L(v, k,m;,..i,) <O0.

My iy,

Hence finally we can obtain for any v > max {1/2, By},

v <ﬁ Hn(e,N)> < 0

This completes the proof of Proposition 8.8. ]

At the end of this section, we would like to remark that by Proposition 8.8
and Lemma 8.5, we have dimy(&,) < 1.

8.4 Lower bound

In this section we first prove dimy(€;) > 1/2, and then show how to delete
the condition > 72 ;=1 Pjlog j < oo in Billingsley and Henningsen’s theorem to obtain

the lower bound of Theorem 8.1.

The following lemma is important to prove dimg(&z) > 1/2.

Lemma 8.10. For any given sequence of positive integers {c, n>1 tending to the

infinity, there exists a point z = (z1, 22, ...) € &z such that z, < ¢, for alln > 1.

Proof. For any n > 1, we construct a probability vector (pg ), pgn), ceey p,(cn), o)

such that p,(C "> 0forall 1 <k<e, and o 1pk = 1, and that for any k£ > 1,

lim p,gn) = D (8.10)

n—oo

Consider a product Bernoulli probability P supported by [[°~,{1,...,¢,}. For
each digit k£ > 1, consider the random variables of z € NV, X, (z) = Ly () (n >
1). By Kolmogorov’s strong law of large numbers (see [131] p.388), we have for
each digit k,

7111_{{)10 o (Z Ly (@) — ZE(E{k}(%))) =0 P—a.s.,
i=1 i=1
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which implies

o1
lim —
n—oo M,

Tigr(x) = lim — ) p’ =g P—a.s.. (8.11)
2t = 2

That is to say, for P almost every point in the space [[ _,{1,...,¢,}, the digit
k has the frequency p,. Considering each point in NV as a continued fraction

expansion of a number in [0, 1], we complete the proof. ]

We begin to show dimg(Ez) > 1/2.
Proof of dimp(&5) > 1/2: Take ¢, = n in Lemma 8.10, we find a point z € &,
such that

Zn =ap(z) <n (Vn >1). (8.12)
For a positive number b > 1, set
F.(b) :={z €0,1) : ape(z) € (B, 205]; ap(a) = ap(z) if k is nonsquare}.

It is clear that F,(b) C & for all b > 1. We define a measure p on F,(b). For
n?<m < (n+1)?% set

(@) =[] 3 (8.13)

Denote by B(z,r) the ball centered at x with radius r. We will show that for any
0 > 0, there exists b > 1, such that for all x € F,(b),

r—0 log r

1

>——40. (8.14)
2

In fact, for any positive number r, there exist integers m and n such that

[Ins1(2)| < 3r < |Ln(2)] and n? <m < (n+1)% (8.15)

By the construction of F,(b), ay:(x) > v > 1. Let & = [21,25,...]. By
Lemma 2.42, B(x,r) is covered by the union of three adjacent rank n* fundamental

intervals, i.e.,
B(x,r) C I(x1, 22, ..., xp2 — V) U T(21, 29, ..., Tp2) UI(21,T0,..., 2,2 + 1).
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By the definition of i, the above three intervals admit the same measure. Hence
by (8.15), we have

log p(B(x, 1)) _ log3u(I (a1, @2, ..., 202)) (8.16)
) |

logr “log |I(w1, w2, Tiga)

However, on the one hand, by (8.13)
n 1 n
—logpu(I(xy,z9,...,2,2)) = — logH e Z k?*log b.
k=1 k=1

On the other hand, by (2.3) and Lemma 2.37, we have

m+1

—log|I(x1, 22, ..., xme1)] <log2+ Z 2log(xy + 1).
k=1

Let us estimate the second term of sum. First we have

m+1 n+1 m—+1
Z 2log(xr +1) <2 Zlog(xkz +1)+2 Z log(z; +1).
k=1 k=1 k=1
Since 2 < 20%* for all k > 1, we deduce
m+1 n+1 n+1
D loglze +1) <Y log(2F +1) <> log(36")
k=1 k=1 k=1
n+1
= (n+1)log3+ Zk2logb.
k=1

By (8.12), z, < n, for all n > 1, we know

m+1 n+1)2

(n+1)
Z log(z; +1) < Z log(k + 1).
k=1 k=1

Thus for any 6 > 0, take b > 1 large enough, we have for all = € F,(b)

liminf log/’l/<'[<x17 x2? AR 7‘7/‘”2)) 2 1 _ 0'
n—00 IOg|I<I1,ZL’2,...7ZL’m+1)| 2
Hence by (8.15) and (8.16), we obtain (8.14).
Therefore, )
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]

Now to complete the whole proof of Theorem 8.1, we are left to show how to

cancel the condition Z;’il pjlog j < oo in Billingsley and Henningsen’s theorem.

To this end, first notice that if Z]Oil pjlogj = oo, then for any u € Mey,
such that p(1(j)) = p; for all j > 1, we have

/10gxdu > pu(I(4)logj = pjlogj = oo.
j=1

J=1

Thus N (p) = (. By the convention we have

Py _
uex 2 [ Tlogaldp
However, by Propositions 8.8 and 8.9, we have dimpy (&) < 1/2. Since we
always have dimy () > 1/2, we have finally proved that if 3 7%, p;logj = oo,
then
dimy (&) = ~.
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