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CHAPTER I

Introduction

1.1 Dissertation Objectives

Bladed disks are used in various important engineering applications, such as fans, im-

peller pumps, windmills, propellers, turbine generators, and jet engines. In a nominal

design, a bladed disk is a structure of cyclic symmetry, where all the disk-blade sectors

are identical and arranged around the central axis. In practice, however, there are always

small variations in structural properties along the sectors, resulting from manufacturing

tolerances, material deviations, and uneven operational wear. Due to these small irreg-

ularities, which are referred to as mistuning, the cyclic symmetry of the bladed disk is

destroyed.

Since a nominal bladed-disk design features cyclic symmetry, only a single sector

model is required for the vibration analysis of the whole assembly, and the modes appear

in the form of circumferential harmonic waves. Therefore, the vibration energy is evenly

distributed to every sector in a perfectly tuned bladed disk when an engine order excita-

tion, which is harmonic in time and differs by a constant phase angle from blade to blade,

is applied. The free response of a bladed disk features groups of system modes dominated

by blade motion, whose natural frequencies are located in narrow frequency bands around

the blade-alone natural frequencies. Because of this high modal density, the modes are sig-

1
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nificantly altered by small mistuning (especially, blade mistuning) so that the mode shapes

are not spatially harmonic any more. Consequently, the dynamic behavior of a bladed disk

with mistuning may be qualitatively different from that of the tuned configuration. The

vibration energy can become concentrated in a few blades, and those blades experience

higher levels of stress than would be predicted from a nominal design. In addition, cyclic

symmetry cannot be used for the analysis of a mistuned bladed disk, and the model of the

whole mistuned assembly is required, which is costly.

In order to understand the basic mechanisms of the mistuning effects on bladed disk

dynamics, lumped parameter models have been often studied. Using these models, many

mistuning phenomena—such as mode pair splitting, mode localization, and forced vi-

bration response magnification—have been explained, and the maximum forced response

magnification that can be reached due to mistuning has been estimated. Also, reduced-

order models (ROMs) have been developed based on the parent finite element models

(FEMs) in order to provide an accurate prediction of the vibratory response of bladed

disks, and some ROMs have been used to identify the mistuning in actual bladed disks.

Still, there is a need for smaller and more accurate ROMs, because Monte Carlo simula-

tions of randomly mistuned bladed disks are commonly performed for design evaluation.

Furthermore, most ROMs have been developed by assuming that mistuning is small, which

is not necessarily the case.

Recently, it has been reported that, when mistuning is intentionally introduced to nom-

inal designs, the maximum blade forced response level can be decreased. That is, a nomi-

nally mistuned design can be robust with respect to unavoidable random mistuning. How-

ever, it is not known which patterns of intentional mistuning are optimal. In addition,

optimization procedures can be prohibitively expensive due to the huge design space of

intentional mistuning patterns, even for lumped parameter models.
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The primary objectives of this research are as follows:

• To develop an efficient and accurate reduced-order modeling method for the vibra-

tion of bladed disks with small mistuning.

• To apply the reduced-order modeling methods to the identification of mistuning.

• To investigate the underlying mechanism of intentional mistuning so that some

strategies to reduce the design space for intentional mistuning patterns can be ex-

tracted.

• To develop a reduced-order modeling technique that can handle the cases in which

mistuning is so large that ROMs for small mistuning cannot be used.

1.2 Background

The effect of mistuning on turbomachinery rotors has long been studied by experi-

ments and by analytical and numerical models. In 1957, Tobias and Arnold [1] reported

that inevitable imperfections in rotating disks cause mode pairs with identical natural fre-

quencies to separate into two distinct modes. Since then, there has been a significant

amount of research on understanding and predicting the vibration of mistuned bladed

disks. Many of these studies have employed lumped parameter models using analyti-

cal, numerical, statistical, and perturbation methods (Whitehead [2], Wagner [3], Dye and

Henry [4], Ewins [5, 6], El-Bayoumy and Srinivasan [7], Griffin and Hoosac [8], Lin and

Mignolet [9], Wei and Pierre [10, 11], and́Ottarsson and Pierre [12], etc.). In particular,

Wei and Pierre [10, 11] demonstrated that bladed disk systems with low damping, high

modal density, and moderately weak interblade coupling are most susceptible to mode

localization and resonant amplitude magnification. Although a lumped parameter model
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can provide basic understanding of the underlying mechanisms of mistuning phenomena,

it cannot be used for accurate predictions of the dynamic response of an actual bladed disk.

Therefore, FEMs have been employed to yield ROMs by using component mode syn-

thesis (Irretier [13], Zheng and Wang [14], Castanieret al. [15], Kruse and Pierre [16, 17],

Bladhet al. [18–20], Moyroudet al. [21]), a receptance technique (Yang and Griffin [22]),

and classical modal analysis with mistuning projection (Yang and Griffin [23]). Castanier

et al. [15] introduced a component-based ROM in which mistuning is implemented by

varying blade modal stiffness. Bladhet al. [18] extended this modeling method by intro-

ducing the projection of mistuning to cantilevered-blade normal modes so that mistuning is

implemented in the modal domain. Mistuning implementation in the modal domain has a

great advantage in that a small number of modal mistuning values are sufficient to describe

complex parameter variations in a blade. Yang and Grffin’s method [23] is also notable

due to the compact size of the resulting ROM, which is achieved by recognizing that, when

a tuned system has a set of normal modes that are closely spaced in a frequency range, a

slightly mistuned system also has normal modes closely spaced in the same frequency

range and the mistuned normal modes can be captured using only that set of tuned normal

modes. In Yang and Griffin’s method [23], tuned-system normal modes are used directly

to construct a ROM without substructuring a bladed disk. Therefore, no additional errors

are introduced in a ROM of tuned systems. However, since mistuning is directly projected

to tuned-system modes in this method, the knowledge of mass or stiffness mistuning ma-

trices in physical coordinates is required for the implementation of mistuning into a ROM,

which is cumbersome.

Once a ROM of a bladed disk is obtained, the next concern is to assess the safety of

a given design using the model. Typically, blade forced-response level is represented by

an amplification factor that is the ratio of the largest blade response in a mistuned system
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to that in the tuned counterpart. Therefore, the assessment is usually performed by iden-

tifying the maximum amplification factor. Some researchers [2, 24–28] have derived ana-

lytical forms for the maximum amplification factor. Most famously, Whitehead [2, 24, 25]

reported an amplification factor of(1 +
√
Nb)/2, whereNb is the number of blades. In

Kenyonet al.’s work [27], only mode distortion was considered to find the maximum am-

plification factor. Therefore, their maximum factor could not reach Whitehead’s factor.

Rivas-Guerra and Mignolet [28] argued that Whitehead’s factor is recovered only when

the engine order of excitation is equal to0 orNb/2 for Nb even. Despite all these research

efforts, the obtained maximum amplification factors are based on lumped parameter mod-

els, and thus may not be applicable to actual bladed disks. Therefore, statistical analyses

have often been used to determine confidence limits (e.g., the 99th percentile value) for

the amplification factor, which requires a large number of Monte Carlo simulations on

mistuned bladed disks. Hence, the development of a small, accurate ROM has been an

important issue, even though a method to reduce the number of simulations required for

the accurate estimation of the response statistics has been developed [29].

Another use of a ROM is to identify mistuning in actual bladed disks. Mistuning iden-

tification is important as a means of monitoring the quality of the manufacturing process,

and also in the maintenance checks of operational rotors. Judgeet al.[30, 31] first reported

a mistuning identification method using a ROM. Subsequently, Feiner and Griffin [32, 33]

developed another method using a simpler model. These methods are based on the as-

sumption that the dynamic behavior of an actual bladed disk is exactly represented by a

FEM. The sensitivity of the identification results to the possible modeling errors, which

might be critical, has not been examined.

Although a nominal design of a bladed disk usually means a tuned configuration, there

have been many studies showing that a nominally mistuned design can reduce blade forced
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response level. Ewins [34] reported that deliberate, significant detuning has the possibil-

ity to reduce blade vibration levels for specific engine orders of excitation. Griffin and

Hoosac [8] observed that the level of the maximum blade forced response is reduced

by constructing an alternate mistuning configuration with two blade populations, where

each population has different mean natural frequencies. Recently, the beneficial effect of

intentionally incorporating mistuning into a nominal design has been studied more sys-

tematically (Castanier and Pierre [29, 35, 36], Breweret al. [37]). In these studies, it has

been shown that using two or more blade designs with nominally different natural frequen-

cies can make a bladed disk system more robust with respect to random mistuning. The

performance of intentionally mistuned designs is dependent on the pattern of intentional

mistuning. Therefore, one recent study [38] was focused on finding an optimal intentional

mistuning pattern using an optimization algorithm. However, only limited information was

used to evaluate each iteration of the intentionally mistuned design, without identifying the

maximum blade response, because of cost.

1.3 Dissertation Outline

The remaining chapters of this dissertation are compiled from a collection of six

manuscripts (five technical papers and one technical note) that have been prepared for

submission to scientific journals. Because of this, some of the background material is

repeated in various chapters. The remaining chapters are summarized as follows.

In chapter II, a component-based modeling framework for mistuned bladed disks is

developed, in which a mistuned bladed disk is substructured into a tuned bladed disk and

virtual mistuning components. From this framework, a compact ROM is derived for the

case of small mistuning. The obtained ROM uses a small set of tuned-system normal

modes as a basis, and mistuning is projected to cantilevered-blade component modes,
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and then to tuned-system modes via the modal participation factors of cantilevered-blade

modes for tuned-system modes.

In chapter III, a new technique for mistuning identification based on the modeling

technique developed in chapter II is presented. A sensitivity study is performed for both

modeling errors and data noise, and in order to compensate for these modeling errors, the

concept of “cyclic modeling error” is introduced.

In chapter IV, two methods to calculate the upper bound of the amplification of the

blade forced response are presented. First, using lumped parameter models, the maximum

amount of vibration energy that can be concentrated in a single blade is calculated, and

the response of the blade is obtained. In another method, the worst combination of closely

spaced tuned-system traveling wave modes is found to yield the largest blade response.

Also, some indicators to approximate the largest stress level in a blade are studied.

In chapter V, the basic mechanism of intentional mistuning is investigated using lumped

parameter models, and three guidelines to reduce the design space for intentional mis-

tuning patterns are proposed. They are validated by testing all the patterns available for

12-blade systems when two blade types are used, and their effectiveness is also examined

using a ROM for an industrial rotor.

In chapter VI, a new reduced-order modeling technique is developed for bladed disks

with large, geometric deviations from a nominal design. By accounting for the effects

of the deviations as though they were produced by external forces, a set of basis vectors

are established using a combination of tuned-system normal modes compensated by static

modes. The developed method shows fast convergence, and produces ROMs as compact

as those for small mistuning.

Finally, in chapter VII, the contributions of this research are summarized, and ideas for

future work are proposed.



CHAPTER II

A Compact, Generalized Component Mode Mistuning
Representation for Modeling Bladed Disk Vibration

New techniques are presented for generating reduced-order models of the vibration

of mistuned bladed disks from parent finite element models. A novel component-based

modeling framework is developed, by partitioning the system into a tuned bladed disk

component and virtual mistuning components. The mistuning components are defined by

the differences between the mistuned and tuned mass and stiffness matrices. The mistuned

system model is assembled with a component mode synthesis technique, using a basis of

tuned-system normal modes and attachment modes. The formulation developed is general

and can be applied to any mistuned bladed disk, including those with large, geometric

mistuning (e.g., severe blade damage). In the case of small (i.e., blade frequency) mis-

tuning, a compact reduced-order model is derived by neglecting the attachment modes.

For this component mode mistuning model, the blade mistuning is projected first onto the

component modes of a tuned, cantilevered blade, and then projected again onto the tuned-

system normal modes via modal participation factors. In this manner, the measured modal

characteristics of mistuned blades can be used to capture systematically the effects of the

complex physical sources of mistuning. A numerical validation of the methods developed

is performed for both large and small mistuning cases using a finite element model of an

8
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industrial rotor.

2.1 Introduction

A bladed disk consists of a set of disk-blade sectors that are typically assumed to be

identical. In practice, however, there are always small variations in the structural prop-

erties of individual blades, resulting from manufacturing tolerances, material deviations,

and operational wear. These variations are referred to as blade mistuning. Due to mis-

tuning, the vibratory response of an industrial bladed disk may be considerably different

from that of its nominal, tuned design. Over the past 40 years much research has been

done on the dynamic behavior of mistuned bladed disks, and many of these studies have

been based on lumped parameter models [3–11]. While such simple models do provide a

basic understanding of the effects of mistuning, they cannot be used to predict accurately

the vibratory response of industrial bladed disks. Therefore, various techniques have been

developed to construct reduced-order models (ROMs) of bladed disks systematically from

their finite element representations. These include component mode synthesis [13, 15, 18–

21, 39], a receptance technique [22], and classical modal analysis with a mistuning pro-

jection [23]. The major differences between these reduced-order modeling techniques are

the substructuring approach and the mistuning implementation. Another method to obtain

the response of mistuned systems without building an attendant reduced-order model has

been proposed by Petrovet al. [40]. In this approach, the response of a mistuned system

is calculated using response levels for the tuned assembly, together with a modification

matrix constructed from the frequency response function matrix of the tuned system and a

matrix describing the mistuning.

In general, reduced-order models are obtained by substructuring a bladed disk into

disk and blade components, as this allows for easy implementation of blade mistuning.
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However, one approach [23] has recently been proposed by Yang and Griffin, in which

the tuned-system normal modes are used without substructuring to generate a reduced-

order model. One advantage of avoiding substructuring is that there is no additional error

introduced in the tuned system model. Another advantage is that, since the number of

tuned-system normal modes required is on the order of the number of blades, the size of

Yang and Griffin’s reduced-order model is smaller than that of any other.

The way in which blade mistuning is implemented into a reduced-order model is a key

issue, because mistuned reduced-order models should be able to replicate the behavior

of actual mistuned systems. Castanieret al. [15] included mistuning in a component-

based reduced-order model by varying the blade modal stiffnesses that appear explicitly

in a synthesized stiffness matrix. Bladhet al. [18] extended this method by projecting

mistuning onto the normal modes of a tuned cantilevered blade fixed at the disk-blade

interface. Since a small number of modal stiffness variations are directly employed in

the reduced-order model, the implementation of mistuning is quite efficient. Also, since

different mistuning patterns can be used for the various individual blade modes, multi-

blade-mode bladed disks can be modeled realistically. Therefore, this mistuning projection

method has great potential for general implementation in reduced-order models. Yang

and Griffin [23] used a similar mistuning projection, but in theory their method requires

the knowledge of the mistuned mass and stiffness matrices in physical coordinates, since

the mistuning expressed in physical coordinates is directly projected to the tuned system

modes. Therefore, they only considered the case of a mistuned blade stiffness matrix

proportional to the nominal matrix. The method proposed by Petrovet al. [40] also uses

a mistuning matrix in physical coordinates. Therefore, for the practical implementation of

mistuning, it is clear that the mistuning projection method of Bladhet al. [18] is useful,

with the caveat that the component mode shapes of mistuned and tuned blades are assumed
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to be the same and that only stiffness mistuning is present.

In this paper, a general reduced-order model for mistuned bladed disks is developed.

In this approach, the mistuned system is represented by the full tuned system and by vir-

tual mistuning components, and a hybrid-interface method is used to combine them. The

mistuning components consist only of mass and stiffness deviations from the tuned config-

uration, and all the degrees of freedom (DOF) in the mistuning components are considered

to be interface degrees of freedom. Since no assumption is made about mistuning in this

formulation, the resulting reduced-order model can be constructed for arbitrary mistuning,

regardless of whether it is small or large.

Most previous research on mistuning has been based on the assumption that mistuning

is small (i.e., small blade-frequency mistuning), which is not necessarily the case. If there

is large mistuning, such as a fractured blade tip, or significant variations in blade geometry

due to damage, then it is necessary to include a very large number of tuned-system modes

or tuned-component (disk and blade) modes in the reduced-order models. This is due to

the fact that mistuning may change the mass or stiffness matrices significantly, and the

mode shapes of a mistuned blade may be completely different from those of a tuned blade.

Because of this difficulty, reduced-order models developed to date have not been able to

capture such large mistuning. In the general formulation proposed herein, the attachment

modes of the tuned system are used to generate an accurate reduced-order model with a

reasonable size for the case of large mistuning. This allows for the efficient prediction of

the response of bladed disks with large, mode shape mistuning. Furthermore, intentional

mistuning [36], which may be not small in local areas of the blades, can be efficiently

studied with this method.

In this paper, a reduced-order model for the special case of small mistuning is also de-

rived from the above general formulation. This model uses the same tuned mode basis, and
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thus it features the same small number of DOF as that of Yang and Griffin’s method [23].

Blade mistuning is implemented using the mistuning projection approach originally de-

veloped by Bladhet al. [18], which is extended here to handle the generalized blade mis-

tuning cases considered. By using only a few modes of a mistuned cantilevered blade, any

type of small structural mistuning can be accurately accounted for. This new approach

to small-mistuned bladed disks is referred to as the component mode mistuning (CMM)

method. In preceding studies [18–20], a bladed disk was substructured into disk and blade

components in order to project mistuning to the normal modes of a tuned cantilevered

blade. With the CMM method, modal participation factors of the cantilevered-blade nor-

mal modes are used to describe the blade motion in terms of the tuned-system normal

modes, and thus, mistuning is projected to cantilevered-blade normal modes without re-

quiring a component-based representation of the full system. Furthermore, by examining

modal participation factors, just a few dominant cantilevered-blade normal modes can be

used for the mistuning projection.

A major advantage of this method is that, even when mistuning is present in only

part of the blade such that the modal mistuning patterns for the various blade modes are

different, the influence of mistuning may still be estimated accurately. That is, arbitrary

patterns of mistuning in the physical mass and stiffness matrices can be efficiently and

accurately implemented in a compact reduced-order model using modal mistuning values

for a few cantilevered-blade modes. This feature is especially useful when two groups of

blade-dominated modes of the tuned system are closely spaced.

The primary contribution of this paper is a new method for systematically formulating

a general reduced-order model of mistuned bladed disks, regardless of whether mistuning

is small or large. In particular, the new ROM handles the effects of large structural and

geometric variations, such as fractured and damaged blades. Another contribution is the
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development of a compact modeling framework for a bladed disk with generalized small

blade mistuning and aerodynamic coupling. In particular, the CMM model allows one to

handle the cases of local blade mistuning and different mistuning patterns for the different

blade modes.

The paper is organized as follows. The general formulation of a reduced-order model

for a bladed disk with arbitrary mistuning is presented in section 2.2. The CMM represen-

tation for the case of small blade mistuning is derived in section 2.3. In section 2.4, the

general approach is validated by comparing the results of the finite element model (FEM)

and the ROM for an industrial rotor with a rogue blade, which causes large mistuning. In

section 2.5, the CMM approach is validated for the same industrial rotor but with small

mistuning. The test cases include mistuning that leads to a proportional change in the

blade stiffness matrix as well as non-proportional mistuning. The conclusions are given in

section 2.6.

2.2 General Reduced-Order Model Formulation for a Mistuned Sys-
tem

A general, component-based framework is considered, whereby a mistuned bladed

disk is partitioned into atuned bladed diskcomponent and a set of virtual components that

represent theblade mistuning, as shown in Fig. 2.1. Each virtual substructure, or mistun-

ing component, is defined as having mass and stiffness matrices equal to the difference

between the mistuned and tuned matrices of a single blade. Since the response of a typical

bladed disk is much more sensitive to mistuning in the blades than in the disk, only blade

mistuning is considered in this study. However, the proposed substructuring approach can

be applied to any mistuned system.

In order to combine the tuned system and mistuning components, a hybrid-interface
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component mode synthesis (CMS) [41] approach is employed. The tuned system is treated

as a free-interface component, while the mistuning components are treated as fixed-interface

components. For the CMS of the tuned system component, normal modes and attachment

modes [41] are needed, where the attachment modes are obtained by applying a unit force

to each interface DOF, successively. For the CMS of a mistuning component, normal

modes and constraint modes [41] are needed, where the constraint modes are obtained by

enforcing a unit displacement at each interface DOF, successively. Note that since all the

DOF in the mistuning components are interface DOF, they do not have component normal

modes. Therefore, the constraint modes, which in this case are represented by the identity

matrix, are sufficient to describe the motion of the mistuning components.

The reduced mass and stiffness matrices in modal coordinates for the free-interface

component (the tuned system),µS andκS, can be written using its truncated set of normal

modes,ΦS, and complete set of attachment modes,ψS, as follows:

µS =

 I ΦST
MSΨS

ΨST
MSΦS ΨST

MSΨS

 (2.1a)

κS =

 ΛS ΦST
KSΨS

ΨST
KSΦS ΨS

Γ

 (2.1b)

xS =

xS∆

xSΓ

 =

ΦS
∆ ΨS

∆

ΦS
Γ ΨS

Γ


pSΦ

pSΨ

 , (2.1c)

whereΛ is a diagonal matrix of the eigenvalues of the retained normal modes,x is a

vector of physical coodinates, andp is a vector of modal coordinates. The superscriptS

denotes a tuned system, and the subscripts∆ andΓ denote the DOF of the disk and the

blades, respectively. The subsrcriptsΦ andΨ denote the generalized coordinates for the

retained component normal and interface modes, respectively.

For the mistuning components, the reduced mass and stiffness matrices in modal coor-
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dinates,µδ andκδ, are the same as those in physical coordinates.

µδ = IT Mδ I = Mδ (2.2a)

κδ = IT Kδ I = Kδ (2.2b)

xδ = I pδΨ = pδΨ , (2.2c)

where

Mδ = Bdiag
n=1,...,N

[
Mδ

n

]
, Kδ = Bdiag

n=1,...,N

[
Kδ
n

]
,

the superscriptδ denotes the mistuning components,Bdiag
n=1,...,N

[·] denotes a block-diagonal

matrix with thenth block corresponding to thenth blade, andN is the number of blades.

Now, the assembly of the components is achieved by satisfying displacement compatibility

at the component interface (i.e.,xSΓ = xδ). This yields, from Eq. (2.1c) and (2.2c):

ΦS
ΓpSΦ + ΨS

ΓpSΨ = pδΨ . (2.3)

This constraint equation leads to the synthesized representation of a mistuned system:

[
−ω2µsyn + (1 + jγ)κsyn

]
psyn =

[
ΦSΨS

]T
f , (2.4)

where

µsyn = µS +

ΦS
Γ
T
MδΦS

Γ ΦS
Γ
T
MδΨS

Γ

ΨS
Γ
T
MδΦS

Γ ΨS
Γ
T
MδΨS

Γ

 (2.5a)

κsyn = κS +

ΦS
Γ
T
KδΦS

Γ ΦS
Γ
T
KδΨS

Γ

ΨS
Γ
T
KδΦS

Γ ΨS
Γ
T
KδΨS

Γ

 (2.5b)

psyn =

pSΦ

pSΨ

 . (2.5c)

As indicated in Eq. (2.5), the mistuned system is described only with the normal modes

and the attachment modes of the corresponding tuned system. Since no assumption has
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been made about mistuning in deriving this reduced-order model, the formulation is en-

tirely general and applicable to any kind of mistuned system. The only restriction is that

the number of DOF in a mistuned part must be the same as that in the corresponding part

of the tuned system. The number of attachment modes required is the same as the number

of DOF of the mistuning components. Although the number of attachment modes may be

large (i.e., the number of blade DOF), the attachment modes can be calculated easily and

they improve the convergence rate of the natural frequencies and mode shapes of the ROM

as the number of tuned-system normal modes increases, as will be discussed in section 2.4.

Therefore, an accurate ROM of a reasonable size can be achieved in a systematic manner

for arbitrary mistuning by using this general formulation.

2.3 Small Mistuning Case: Component Mode Mistuning Method

In this section, the general ROM developed above is simplified by assuming that blade

mistuning is small compared to nominal properties in the modal domain, i.e.,|(κsynij −

κSij)/κ
S
ij| � 1. Because the simplified ROM employs mistuning in component modal

coordinates of a tuned cantilevered blade, this new method for small mistuning is called

Component Mode Mistuning (CMM).

2.3.1 Approximation for Small Mistuning

Recently, Yang and Griffin reported on modal interaction [42] and applied the results to

the modeling of mistuned bladed disks [23]. The main idea for their method is that, when

a tuned bladed disk has normal modes closely spaced in a frequency range, a slightly

mistuned bladed disk also features closely spaced modes in the same range, and thus the

mistuned normal modes can be expressed using a subset of the tuned normal modes. This

means that the tuned normal modes outside of the frequency range of interest, or any static

modes, can be ignored in modeling a mistuned system with small mistuning.



17

Using this approach, ifΨS and the corresponding modal coordinates,pSΨ , are ignored

in Eq. (2.5), then the synthesized representation becomes

µsyn =
[
I + ΦS

Γ

T
MδΦS

Γ

]
(2.6a)

κsyn =
[
ΛS + ΦS

Γ

T
KδΦS

Γ

]
(2.6b)

psyn =
{
pSΦ
}
. (2.6c)

In general, a bladed disk features sets of blade-dominated modes grouped into narrow

frequency bands, and the number of normal modes in each band is on the order of the

number of blades. Therefore, Eq. (2.6) provides an accurate representation of a small-

mistuned bladed disk in a frequency range of interest with matrices of orderN .

It can be observed in Eq. (2.6) that the mass and stiffness deviation matrices in physical

coordinates are projected to the blade portion of the tuned-system normal modes (in this

study, mistuning is limited to the blades). Hence, the reduced mass and stiffness matrices

can be obtained only ifMδ andKδ are either known or at least estimated so that they match

the mass and stiffness characteristics of the actual blades in a certain frequency range.

However, such estimation becomes impractical whenMδ andKδ are not proportional to

the corresponding tuned matrices, which is the case when each blade mode family features

a different mistuning pattern.

2.3.2 Component Mode Mistuning Projection

Bladh et al. [18] introduced a mistuning projection method, where the stiffness mis-

tuning matrices in physical coordinates are projected to the normal modes of a tuned blade

cantilevered at its root. The projection gives the diagonal matrix of modal stiffness de-

viations with the assumption that the tuned and mistuned blade-alone mode shapes are

the same. With this approach, non-proportional blade mistuning can be implemented effi-

ciently using the modal stiffness deviations, without requiring the estimation ofKδ. How-
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ever, since the ROM was generated by substructuring a rotor into a disk and blades, the

model size was larger than that of Yang and Griffin’s model [23], which is on the order of

the number of blades.

In this section, the blade portion of the tuned-system normal modes in Eq. (2.6) is

represented by the modal participation factors of the component modes of a tuned can-

tilevered blade, and the mistuning projection method of Bladhet al.’s is employed without

substructuring. Furthermore, it is shown that, even when the mistuning projection matri-

ces are not diagonal, using only the diagonal terms is a good approximation as long as the

motion of a blade in a mistuned system is dominated by one mode of a tuned cantilevered

blade.

To carry out this projection, the modal participation factors first need to be obtained

to represent the blade motion in tuned-system modes. If only cantilevered-blade normal

modes are used to describe the blade motion, then the displacements at the boundaries

(e.g., blade-disk boundary, shroud-to-shroud boundary) cannot be captured. Therefore,

additional modes are required to describe motion at the boundary. However, since it is

not feasible to measure these additional boundary modes, the proposed approach is to

determine them by minimizing their contribution to the mistuning projection, which is

eventually ignored for small boundary displacements.

Here, the additional mode set is introduced in the following form:ΨB
o

I

 ,
whereΨB

o , which is not yet determined, corresponds to the interior DOF of a cantilevered

blade, andI corresponds to the boundary DOF that are fixed in the cantilevered blade.

The number of modes in this set is the number of boundary DOF so that any boundary

motion can be described. Since mistuning may be random, the nominal mass and stiffness
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matrices of a blade,MB
o , KB

o , are used in minimizing the contribution of the boundary

modes. Then, the mass and stiffness projections to the boundary modes become

µB
ψψ =

ΨB
o

I


T  MB

ii,o MB
ib,o

MB
ib,o

T
MB

bb,o


ΨB

o

I

 (2.7a)

κB
ψψ =

ΨB
o

I


T  KB

ii,o KB
ib,o

KB
ib,o

T
KB
bb,o


ΨB

o

I

 , (2.7b)

where the subscriptsb andi denote the boundary and interior DOF of a cantilevered-blade,

respectively.

Now, by taking the first variation ofµB
ψψ andκB

ψψ in ΨB
o , the boundary mode contribu-

tions to the mass and stiffness projections are minimized, andΨB,m
o andΨB,k

o correspond-

ing to the mass and stiffness projection can be obtained from the following equations:

MB
ii,oΨ

B,m
o + MB

ib,o = 0 (2.8a)

KB
ii,oΨ

B,k
o + KB

ib,o = 0. (2.8b)

Here, it should be noted thatΨB,k
o is the set of Craig-Bampton constraint modes of a

cantilevered blade [41].

Now, the motion of thenth blade in the tuned-system modes is described by cantilevered-

blade normal modes and boundary modes as follows:

ΦS
Γ ,n =



Φ
B
o ΨB,m

o

0 I


qmφ,n

qψ,n

 for mass mistuning,

orΦ
B
o ΨB,k

o

0 I


qkφ,n

qψ,n

 for stiffness mistuning.

(2.9)
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Therefore, the blade portion of the tuned-system modes can be expressed as:

ΦS
Γ =



(I⊗Um)qm,

or

(
I⊗Uk

)
qk,

(2.10)

where

Um =

ΦB
o ΨB,m

o

0 I

 Uk =

ΦB
o ΨB,k

o

0 I



qm =



...

qmφ,n

qψ,n

...


qk =



...

qkφ,n

qψ,n

...


,

and⊗ denotes the Kronecker product. Note that sinceΨB,m
o andΨB,k

o are different,qmφ,n

andqkφ,n are also different. The modal participation factors can be easily calculated be-

cause a tuned system is a structure with cyclic symmetry (see Appendix A). In most cases,

only a few normal mode participation factors per blade (usually, just one for unshrouded

rotors) are dominant, because the blade motion in a tuned-system normal mode tends to be

well correlated to that of a cantilevered-blade normal mode (this will be discussed further

in section 2.5). Therefore, a few dominant modes are sufficient for the normal mode set,

ΦB
o .
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Inserting Eq. (2.10) into Eq. (2.6), the reduced mass and stiffness matrices become

µsyn = I + qmT
(
I⊗UmT

)
Mδ (I⊗Um)qm

= I +
N∑
n=1

qmn
TUmTMδ

nU
mqmn

= I +
N∑
n=1

qmn
T

 µδ
φφ,n µδ

φψ,n

µδ
φψ,n

T
µδ
ψψ,n

qmn

(2.11a)

κsyn = ΛS + qk
T
(
I⊗UkT

)
Kδ
(
I⊗Uk

)
qk

= ΛS +
N∑
n=1

qkn
T
UkTKδ

nU
kqk

= ΛS +
N∑
n=1

qkn
T

 κδ
φφ,n κδ

φψ,n

κδ
φψ,n

T
κδ
ψψ,n

qk,

(2.11b)

where

µδ
φφ,n = ΦB

o

T
Mδ

ii,nΦ
B
o

µδ
φψ,n = ΦB

o

T [
Mδ

ii,nΨ
B,m
o + Mδ

ib,n

]
µδ
ψψ,n = ΨB,m

o

T [
Mδ

ii,nΨ
B,m
o + Mδ

ib,n

]
+ Mδ

ib,n

T
ΨB,m
o + Mδ

bb,n

κδ
φφ,n = ΦB

o

T
Kδ
ii,nΦ

B
o

κδ
φψ,n = ΦB

o

T [
Kδ
ii,nΨ

B,k
o + Kδ

ib,n

]
κδ
ψψ,n = ΨB,k

o

T [
Kδ
ii,nΨ

B,k
o + Kδ

ib,n

]
+ Kδ

ib,n

T
ΨB,k
o + Kδ

bb,n.

SinceMδ
n andKδ

n are not necessarily proportional to the nominal matrices,UmTMδ
nU

m

andUkTKδ
nU

k are full matrices, as shown in Eq. (2.11).

Equation (2.11) can be used for any small-mistuned bladed disk, but it still requires to

know the mistuning values for the boundary modes. These cannot be readily measured,

but they can be computed in the few cases the mistuning distribution within the blades is

known (e.g., if one assumes proportional mistuning). Now, suppose that the displacements

at the blade structural boundaries in the tuned-system normal modes are very small, so that
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the contribution of the boundary modes to the mistuning projection is negligible. This is

the usual case for unshrouded rotors. Then, the dominant cantilevered-blade normal modes

are sufficient to project mistuning without losing accuracy. In this case, the partitions per-

taining to the boundary modes can be ignored and the reduced mass and stiffness matrices

can be approximated as:

µsyn ≈ I +
N∑
n=1

qmφ,n
Tµδ

φφ,nq
m
φ,n (2.12a)

κsyn ≈ ΛS +
N∑
n=1

qkφ,n
T
κδ
φφ,nq

k
φ,n. (2.12b)

Note thatµδ
φφ,n andκδ

φφ,n still have off-diagonal terms if the mistuned mass and stiff-

ness matrices are not proportional to the nominal matrices. However, each column of

qmφ,n andqkφ,n is usually dominated by one modal participation factor, and the motion of

each blade in a system with small mistuning is usually dominated by one mode of a tuned

cantilevered blade. In this case, the off-diagonal terms ofµδ
φφ,n andκδ

φφ,n, which repre-

sent the coupling between cantilevered-blade modes due to mistuning, can be neglected.

Therefore, Eq. (2.12) can be even more simplified as follows:

µsyn ≈ I +
N∑
n=1

qmφ,n
Tdiag

r∈R

(
µδφφ,n,r

)
qmφ,n (2.13a)

κsyn ≈ ΛS +
N∑
n=1

qkφ,n
T
diag

r∈R

(
κδφφ,n,r

)
qkφ,n, (2.13b)

where

µδφφ,n,r = ΦB
r,o

T
Mδ

ii,nΦ
B
r,o

κδφφ,n,r = ΦB
r,o

T
Kδ
ii,nΦ

B
r,o,

andR is a set of retained cantilevered-blade normal mode numbers. In this equation, the

required number of the modal mistuning values per blade is the number of the retained

cantilevered-blade normal modes.
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Next, the calculation of the modal mistuning matrices,µδ
φφ,n andκδ

φφ,n, and their diag-

onal terms are discussed. Assuming that the mode shapes of the actual (i.e., mistuned)nth

cantilevered blade have been measured or computed, the tuned-cantilevered-blade normal

modes can be expressed as linear combinations of the mistuned-cantilevered-blade normal

modes as follows:

ΦB
o = ΦB

n vn, (2.14)

wherevn is a matrix consisting of the modal participation factors.

The mode orthogonality with respect to the mass and stiffness matrices for the mis-

tuned cantilevered blade is written as follows:

I = ΦB
n

T (
MB

ii,o + Mδ
ii,n

)
ΦB
n (2.15a)

ΛB
n = ΦB

n

T (
KB
ii,o + Kδ

ii,n

)
ΦB
n . (2.15b)

Pre-multiplying byvnT , post-multiplying byvn, and using Eq. (2.14),

vn
Tvn = ΦB

o

T (
MB

ii,o + Mδ
ii,n

)
ΦB
o = I + µδ

φφ,n (2.16a)

vn
TΛB

n vn = ΦB
o

T (
KB
ii,o + Kδ

ii,n

)
ΦB
o = ΛB

o + κδ
φφ,n. (2.16b)

Therefore,

µδ
φφ,n = vn

Tvn − I (2.17a)

κδ
φφ,n = vn

TΛB
n vn −ΛB

o . (2.17b)

Therth diagonal terms of the above mistuning matrices are

µδ
φφ,n,r = vr,n

Tvr,n − 1 (2.18a)

κδ
φφ,n,r = vr,n

TΛB
n vr,n − λBr,o, (2.18b)
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wherevr,n is the rth column ofvn, andλr,o is the rth element ofΛB
o . Sincevr,n is

dominated by the factor of therth mistuned mode,vrr,n, for small mistuning cases, the

diagonal terms can be approximated as:

µδ
φφ,n,r ≈ v2

rr,n − 1 (2.19a)

κδ
φφ,n,r ≈ λBr,nv

2
rr,n − λBr,o. (2.19b)

If only the eigenvalues (or natural frequencies) of the mistuned cantilevered blades are

known, then the mass and stiffness mistuning cannot be obtained from the above equation.

However, if only stiffness mistuning is assumed, an equivalent stiffness mistuning value,

κδ
φφ,n,r, can be computed. Since no mass mistuning is assumed,µδ

φφ,n,r = 0, andv2
rr,n ≈ 1.

Then, the equivalent stiffness mistuning value becomes

κδ
φφ,n,r ≈ λBr,n − λBr,o. (2.20)

Note that this eigenvalue mistuning was employed in the study by Bladhet al. [18].

Typically, unsteady aerodynamic coefficients are obtained using aerodynamic codes

based on a set of cantilevered-blade normal modes in a cyclic assembly (i.e., a cascade)

using a complex cyclic coordinate transformation [43]. Therefore, using the cantilevered-

blade mode participation factors computed for the mistuning projection in the CMM method,

aerodynamic coefficients can also be projected to the normal modes of the tuned system.

Eventually, the equation of motion for a small-mistuned system with aerodynamic

coupling can be expressed as

[
−ω2 (µsyn + µa) + jωca + (1 + jγ) κsyn + κa

]
pSΦ = ΦST f , (2.21)

whereµa, κa, andca are the aerodynamic coupling mass, stiffness, and damping matrices

in modal coordinates of tuned-system normal modes.
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2.4 Large Mistuning Case Study: Rogue Blade

The industrial bladed disk depicted in Fig. 2.1 is used in this study. This integral bladed

disk (blisk) has 29 blades, and forms the second stage of a four-drum compressor used in

an advanced gas turbine application. The rotor model is clamped at the ribs located at

the outer edges of the disk, which is a rough approximation of boundary conditions due

to neighboring stages. The finite element model is constructed with standard linear brick

elements (eight-noded solids), and it has 126,846 DOF.

Figure 2.2 displays the free vibration natural frequencies of the tuned bladed disk

versus the number of nodal diameters. The natural frequencies and mode shapes were

obtained via cyclic symmetry using a finite element model of a single sector. The blade-

dominated mode families are characterized on the right-hand side of the horizontal lines

in Fig. 2.2, where F denotes a flexural bending mode, T a torsion mode, S a stripe mode,

and R denotes elongation in the radial direction. The frequencies frequently mentioned in

this paper are marked by dotted horizontal lines with the corresponding frequency on the

right side.

In this large mistuning case study, a single “rogue blade” is considered to have large

mistuning, with all other blades being tuned. Mistuning is introduced by changing the

rogue blade geometry significantly, as depicted in Fig. 2.3. It is assumed that the mass

density and Young’s modulus are not changed. Therefore,Mδ andKδ, which are needed

to build the large mistuning ROM, can be obtained from the rogue blade geometry. The

ROM can be constructed using a single-sector finite element model, since the attachment

modes corresponding to all the rogue blade DOF are obtained from a cyclic symmetry

analysis of a single sector.

The size of the resulting reduced-order model is determined by the number of tuned-
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system normal modes in a truncated set plus the number of attachment modes. In this

case study, a ROM is constructed in the frequency range 32–36 kHz (which includes 3T

and 2S modes), and the results are compared with those of the finite element model of

the complete mistuned bladed disk. At the least, the tuned-system normal modes in the

frequency range of interest must be retained, and the attachment modes for all the nodes

in the rogue blade are also included. Therefore, the reduced-order model has at least 66

(tuned normal modes in 32–36 kHz)+ 2,496 (attachment modes) DOF. Although this size

is much greater than that of a ROM for small mistuning, it is still much smaller than that

of the 126,846-DOF parent FEM. Furthermore, once a modal analysis is performed for the

reduced-order model, 66 normal modes of the mistuned bladed disk may be sufficient to

compute the forced response in the range 32–36 kHz.

To validate the ROM, the convergence of the ROM natural frequencies toward the FEM

results is tested by increasing the number of tuned-system normal modes. Also, the forced

response calculated with the ROM is compared to the FEM results. Figure 2.4 shows the

average natural frequency error versus the number of tuned-system normal modes. The

tested frequency ranges for the tuned-system normal mode basis are 32–36 kHz, 26–43

kHz, and 22–45 kHz, and the 66 estimated mistuned natural frequencies that exist between

32 and 36 kHz are chosen for comparison with the FEM results. As can be seen in Fig. 2.4,

the estimated natural frequencies converge toward the FEM results as the number of tuned-

system normal modes increases. Also, note the very small average error, less than 0.02 %,

even when the smallest ROM is considered.

Next, the forced response is investigated. From Fig. 2.4, it is clear that 136 tuned

normal modes in the range 26–43 kHz and the attachment modes are sufficient to describe

the behavior of the mistuned system in the range 32–36 kHz, and this ROM is used to

compute the forced response. The structural damping coefficient of 0.006 is used. A unit
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force normal to the blade surface is applied to one of the nodes at the tip of each blade (see

Fig. 2.3), and engine order 1 and 5 excitations are considered. Euclidean displacement

norms for each blade are computed, and the maximum response amplitude of any blade

is found at each sampled excitation frequency, so as to provide an envelope of the blade

amplitudes. The ROM results are shown and compared with FEM results in Fig. 2.5.

As can be seen, excellent agreement is obtained, thus providing further validation of the

ROM’s accuracy.

In Fig. 2.5, note that an additional resonance appears around 34.3 kHz in the response

of the mistuned system with the rogue blade, and that this peak is larger than the two

resonant peaks for the tuned bladed disk. Hence the presence of a single rogue blade can

significantly alter the forced response, and this effect is accurately captured by the ROM.

The other two resonant frequencies of the rogue blade system are almost the same as those

of the tuned system, and the peak amplitudes are similar. In the case of engine order 1

excitation, the first main peak corresponds to the 30th mode of the 66 mistuned modes in

the 32–36 kHz range, the second peak corresponds to the 36th mode, and the third peak

corresponds to the 66th mode. In the case of engine order 5 excitation, the three largest

peaks correspond to the 4th, 36th, and 41st modes. These mistuned modes are depicted in

Fig. 2.6 (the displacement of a node at the tip of each blade is shown). The 30th and 66th

modes are nearly sinusoidal waves of harmonic 1 in terms of the blade number, and the

4th and 41st modes are nearly sinusoidal waves of harmonic 5. However, the 36th mode

is highly localized to blade 1, which is the rogue blade. Obviously, the largest forced

response peak around 34.3 kHz for the rogue blade system is caused by this localization.



28

2.5 Small Mistuning Case Study

The CMM technique is validated using again the industrial bladed disk in Fig. 2.1. To

build a CMM-based reduced-order model, two tuned finite element models are required,

as depicted in Fig. 2.7:

1. A single-sector model from which the normal modes of the tuned system are ob-

tained via cyclic symmetry analysis (Commercial FEA software packages, such as

MSC/NASTRAN, have cyclic symmetry routines). There are 4,374 DOF per sector

in the finite element model.

2. A blade-alone model from which the cantilevered-blade normal modes and the static

boundary modes are obtained. This model has a total of 2,496 DOF, and there are

96 DOF at the interface between the blade and the disk.

The tuned-system normal modes were obtained from the single-sector model. Fig-

ure 2.2 shows the occurrence of numerous natural frequency veering regions. Earlier stud-

ies[16, 39] have shown that large increases in the mistuned forced response, relative to the

tuned response, are likely to occur in veering regions. Therefore, the ability of CMM mod-

els to capture the mistuned response in veering regions was tested, and two such regions

were investigated: region 1 is located at three nodal diameters, around 28 kHz, and region

2 is located at five nodal diameters, around 34 kHz, as labeled in Fig. 2.2.

For the rotor studied, displacements at the blade root are very small compared to those

at the blade’s interior, such that the contribution to the mistuning projection of the bound-

ary modes defined at the blade-disk boundary can be neglected. Hence the normal mode

mistuning projection used in Eq. (2.12) or (2.13) is sufficient to construct a mistuned ROM.

Although the CMM method can handle many types of small blade mistuning, here for sim-

plicity mistuning is introduced as slight variations in the Young’s modulus of the blades.
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That is, only stiffness mistuning is considered, and two cases are investigated: a case of a

proportional change in the blade stiffness, and a case of a non-proportional change.

2.5.1 Proportional Mistuning

The mistuned Young’s modulus for bladen, En, is

En = Eo(1 + δEn ),

whereEo is the nominal Young’s modulus value.δEn is a non-dimensional mistuning value

for the Young’s modulus of thenth blade, and uniform within a blade for the proportional

mistuning case. Hence the natural frequencies of all the cantilevered-blade normal modes

are mistuned by the same percentage and the mode shapes remain unchanged.

In this case, there are no off-diagonal terms inκδ
φφ,n, and only the eigenvalues of

the cantilevered blades are mistuned. Hence, Eq.(2.13) is appropriate for implementing

mistuning andκδ
φφ,n becomes exactlyδEnΛB

o . A dimensionless eigenvalue mistuning pa-

rameter,δer,n, is introduced as

δer,n =
ωr,n

2 − ωr,o
2

ωr,o2
,

whereωr,n is therth natural frequency of thenth blade andωr,o is therth natural frequency

of a tuned blade. For proportional stiffness mistuning,δer,n is equal toδEn for any moder,

and the eigenvalue mistuning pattern is the same for all blade modes. The specific pattern

used to obtain the FEM and CMM results is shown in Table 2.1.

The CMM model is constructed by selecting a set of tuned-system normal modes to

capture mistuned-system normal modes, and a set of cantilevered-blade normal modes to

describe the blade motion in the tuned-system normal modes. Since the modal density

is high in the investigated veering regions in Fig. 2.2, a narrow frequency band can be

selected for the tuned-system mode basis. For example, 26–29 kHz can be chosen for

veering region 1. The selection of cantilevered-blade modes depends on the tuned-system
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modes chosen for a basis. Namely, modal participation factors for the tuned-system modes

in cyclic coordinates need to be calculated using a sufficient number of cantilevered-blade

modes (see Eq. 2.10 and Appendix), and the dominant cantilevered-blade modes can be

determined from inspection of these factors.

Hereκδφφ,n,r = δer,nωr,o
2, and it is pre- and post-multiplied by the corresponding modal

participation factors in the mistuning projection. Hence if the levels of random mistuning

are on the same order for any moder, the modal participation factors weighted by the

corresponding cantilevered-blade natural frequencies are meaningful in determining what

are the dominant cantilevered-blade modes. Figure 2.8 shows the weighted average modal

participation factors, which are defined as

q̄kφ,r =

ωr,o
H∑
h=0

Nh∑
l=1

|q̃kφ,h,r,l|

H∑
h=0

Nh

, (2.22)

whereNh is the number of the retained tuned-system normal modes corresponding to

harmonich, when the lowest 30 cantilevered-blade modes are used to describe the blade

motion in the tuned modes in the ranges 26–29 kHz and 32–36 kHz.

It should be noted that the number of cantilevered-blade modes and corresponding

mistuning patterns does not affect the size of the ROM, but it can affect its accuracy.

Nevertheless, it is desirable to retain a small number of mistuning values, and the domi-

nant cantilevered-blade modes required for accurate mistuning representation can be de-

termined from Fig. 2.8. For instance, only the 7th cantilevered-blade mode is dominant for

the range of 26–29 kHz, because the corresponding weighted-average modal participation

factor is much greater than the others. For the same reason, the 8th and 9th modes are

dominant for the frequency band of 32–36 kHz. This means that the eigenvalue mistun-

ing patterns for the 7th mode and for the 8th and 9th modes are sufficient to predict the

behavior of the mistuned system in the veering region 1 and 2, respectively.
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Once a basis of tuned-system modes is selected and the dominant cantilevered-blade

modes are identified for the mistuning projection, a ROM can be built using the CMM

technique for the mistuning values in Table 2.1. Next, the results from the ROM are

compared with the FEM ones.

The convergence of mistuned natural frequencies and mode assurance criterion (MAC)

ratios are presented in Figs. 2.9 and 2.10 for two frequency bands: 26–29 kHz for region

1, and 32–36 kHz for region 2. Figure 2.9 shows the average error of the mistuned system

natural frequencies estimated by the CMM model relative to the FEM natural frequencies,

versus the number of retained cantilevered-blade modes. Figure 2.10 shows the average

MAC ratio between the CMM and the FEM mistuned modes versus the number of retained

cantilevered-blade modes. Since most tuned system normal modes in the range 26–29 kHz

are dominated by the 7th cantilevered-blade mode, the frequency error and MAC ratio are

significantly improved when the 7th mode is retained in the CMM model. Similarly, the

frequency error and MAC ratio in the range 32–36 kHz show great improvement when

the 8th and 9th cantilevered-blade modes are retained. These convergence trends could be

predicted from Fig. 2.8.

The forced response to engine order excitation is considered in the two veering regions

indicated in Fig. 2.2: engine order 3 excitation is applied in region 1, and engine order

5 and 24 excitations are applied in region 2. In both cases, the loads and the structural

damping coefficient are the same as for the large mistuning study in section 2.4. The

effect of aerodynamic coupling is not considered.

Figures 2.11 and 2.12 depict the tuned and mistuned forced responses in veering region

1. In Fig. 2.11, 34 tuned system modes (in the range 26–29 kHz) are used, while Fig. 2.12

is for 106 tuned system modes (in the range 22–34 kHz). In the case of 34 tuned modes,

only the 7th cantilevered-blade mode is employed to project mistuning to the tuned system
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modes. In the case of 106 modes, the 6th, 7th, and 8th cantilevered-blade modes are used

because these three modes are dominant in the range 22–34 kHz. Note that the largest

resonant blade amplitude of the mistuned system is 2.24 times larger than that of the tuned

system. In Fig. 2.11, there are slight differences between the FEM and CMM results

for both the tuned and mistuned responses, although for this ROM the average natural

frequency error is only 0.0075 % and the average MAC ratio is 99.8958 %. This difference

can be explained by noting that the mistuned system modes obtained from the CMM model

are in the range 26–29 kHz. Hence, the effects of modes outside this frequency range are

not included, and the CMM and FEM results differ even for the tuned response, especially

near the edges of the frequency band. As can be seen in Fig. 2.12, when a wider frequency

band is chosen, the discrepancy between FEM and CMM results decreases. But, if one

considers the peak amplitudes at resonant frequencies, the 34-DOF CMM model results

match the FEM ones very closely.

Veering region 2 is more complicated because two close blade-dominated mode fam-

ilies are present in its frequency range. A set of 66 tuned system modes (32–36 kHz) is

used for the CMM modeling, and the 8th (3T) and 9th (2S) cantilevered-blade modes are

used for the mistuning projection. Figures 2.13 and 2.14 depict forced response results

for engine order 5 and 24 excitations, respectively. Note the excellent matches between

CMM and FEM results, indicating that the effects of modes outside the 32–36 kHz range

are negligible. Also, since the only difference between engine order 5 and engine order

24 excitations for the 29-blade system is the sign of the phase angle of the forcing vec-

tor, the tuned forced response is the same in both cases. However, the mistuned forced

responses differ for engine orders 5 and 24, and the amplification factors of the largest

resonant amplitude are 1.51 and 1.34, respectively.
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2.5.2 Non-proportional Mistuning

Here, non-proportional mistuning is considered, andκδ
φφ,n is a full matrix. However,

as discussed in section 2.3, it is a good approximation to use only the diagonal terms

of κδ
φφ,n, which are approximately the eigenvalue mistuning values. Note that the mis-

tuned blades feature different eigenvalue mistuning patterns for different cantilevered-

blade modes. Therefore, the number of mistuning patterns required equals the number

of cantilevered-blade modes used in the mistuning projection. Although the mode shapes

of cantilevered blades are changed by this type of mistuning, Eq. (2.13) with only the di-

agonal mistuning values is employed again, as in the proportional mistuning case. The

results are compared with those obtained using Eq. (2.12) with full mistuning matrices.

The non-proportional mistuning is introduced by using two different sets of Young’s

moduli for the FEM of the cantilevered blades. One (δE
n,1) is for the lower left and upper

right parts of blades and the other (δE
n,2) is for the lower right and upper left parts of blades.

The Young’s modulus mistuning parameters are listed in Table 2.2, and Fig. 2.15 shows

the resulting eigenvalue mistuning patterns for several cantilevered-blade modes.

As can be seen in Fig. 2.15, the eigenvalue mistuning patterns are slightly different

from each other. Thus, inaccurate results might be obtained by choosing only one of these

patterns, because the dynamic characteristics of a bladed disk can be very sensitive to

mistuning. The solution is to utilize all the mistuning patterns that are available. If there

is only one blade-dominated mode family in the frequency band selected for the tuned-

system mode basis, as in the case of veering region 1, then a single mistuning pattern may

be sufficient. However, if multiple blade-dominated mode families are close and they are

included in a reduced-order model, as in the case of veering region 2, then every dominant

cantilevered-blade mode should have its own mistuning pattern.

These observations are substantiated by investigating the forced response for excita-
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tions corresponding to veering regions 1 and 2. In region 1, a single eigenvalue mistuning

pattern corresponding to the 7th cantilevered-blade mode has a dominant effect, as in the

proportional mistuning case. For the CMM reduced-order model, 106 tuned-system nor-

mal modes (22–34 kHz) are retained. Figure 2.16 shows the forced response in veering

region 1 by the FEM and the CMM model. In the CMM model, the eigenvalue mistuning

patterns for the 1st through the 15th cantilevered-blade modes are set to be the same as that

of the 7th mode, although they are actually different. As can be seen, the CMM results are

in very good agreement with the FEM ones. This is because the mistuning pattern for the

dominant cantilevered-blade mode is correct.

Figures 2.17 and 2.18 show forced response results in the 32–36 kHz range, obtained

by four different ROMs and by the FEM. As mentioned earlier, there are two blade-

dominated mode groups in this range. In all four cases, 136 tuned system normal modes

(26–43 kHz) are used as a basis, but mistuning projections are performed differently. In

Fig. 2.17 (a), the single mistuning pattern of the 8th cantilevered-blade mode is used,

while in Fig. 2.17 (b), the single mistuning pattern of the 9th cantilevered-blade mode

is used. For these single mistuning pattern cases, mistuning is projected to the lowest

15 cantilevered-blade modes. In Fig. 2.18 (a), the two mistuning patterns of the 8th and

9th cantilevered-blade mode are used to project the mistuning values to the corresponding

cantilevered-blade modes, respectively. In Fig. 2.18 (b), the six mistuning patterns of the

6th to 11th cantilevered-blade modes are used in the mistuning projection.

Results show clearly that the ROMs with two and six eigenvalue mistuning patterns

predict the mistuned system response considerably better than those with the single mis-

tuning patterns. In fact, using a single pattern is seen to lead to poor results, including for

the resonant response amplitudes. This demonstrates that when multiple blade-dominated

mode groups are so close that they interact in the response of a mistuned system, all the
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eigenvalue mistuning patterns corresponding to the dominant cantilevered-blade modes are

required in the reduced-order model. For a bladed disk with several different eigenvalue

mistuning patterns, it can be difficult or impractical to obtainKδ in physical coordinates,

especially if changes in the individual mistuned mode shapes need to be considered. Nev-

ertheless, the CMM technique only requires the eigenvalue mistuning patterns, which can

be measured, thus enabling the projection of non-proportional mistuning to tuned-system

modes.

Figure 2.19 shows forced response results for the same frequency range as in Fig. 2.18.

The difference is that the changes in the blade mode shapes due to mistuning are consid-

ered, and Eq. (2.12) is employed. The eigenvalues and mode shapes of the 1st to 15th

cantilevered-blade modes are used, and the full matrices ofµδ
φφ,n andκδ

φφ,n corresponding

to the 1st through 15th cantilevered-blade modes are obtained. Note that the eigenvalues

and mode shapes are obtained from the finite element models of the mistuned blades. In

Fig. 2.19 (a), only the mistuning values corresponding to the 8th and the 9th cantilevered-

blade modes are used in the ROM, while in Fig. 2.19 (b), the mistuning values for the 6th

through the 11th cantilevered-blade modes are used. These results are seen to be more

accurate than those in Fig. 2.18, because now mode shape mistuning is considered. Also,

the results in Fig. 2.19 (b) are slightly better than those in Fig. 2.19 (a). However, note that

the accuracy of the results in Fig. 2.18, which only considers eigenvalue mistuning, is still

acceptable.

Finally note that the reduced-order modeling framework presented in this paper can be

readily applied to shrouded rotors. The interested reader is referred to a previous study by

the authors [44].
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2.6 Conclusions

A general reduced-order model framework for mistuned bladed disks was developed

by dividing a mistuned system into a tuned system and virtual mistuning components.

This approach handles the case of large blade mistuning, such as geometric and mode

shape mistuning. The method employs tuned-system normal modes and attachment modes

to represent mistuned-system normal modes. A compact ROM for the important case of

small blade mistuning was also derived from the general formulation, using a component

mode mistuning method in which a mistuning projection is performed using the modal

participation factors of cantilevered-blade component modes.

In the CMM method, the finite element models of a tuned sector and a tuned can-

tilevered blade are required. Cantilevered-blade normal modes and boundary modes are

employed to describe the blade motion of the tuned-system normal modes that are ob-

tained from the single-sector model. Thereby, mistuning values in the modal domain of the

cantilevered-blade component modes are projected onto the tuned-system normal modes.

Since the boundary modes are defined by minimizing their contribution in the mistuning

projection, they can be neglected when the the tuned-system modes feature displacements

at the boundaries that are much smaller than those at the interior of a blade. Therefore, in

many cases, modal mistuning values corresponding to dominant cantilevered-blade modes

are sufficient to predict the response of a mistuned system. The modal mistuning values

corresponding to cantilevered-blade modes can be computed easily from the natural fre-

quencies and mode shapes of mistuned blades. This means that actual arbitrary mistuning

in the physical domain can be efficiently implemented in a ROM with a small number of

mistuning values in the modal domain.

The general ROM was validated for a large mistuning case, using an industrial turbo-
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machinery rotor with a rogue blade with significantly different geometry. It was observed

that the estimated natural frequencies of the mistuned rotor converge rapidly as the se-

lected number of tuned-system modes is increased. Also, the forced response results from

the ROM showed excellent agreement with the FEM results.

The CMM method for small blade mistuning was validated for both proportional and

non-proportional stiffness mistuning cases. By inspecting the modal participation factors,

it was found that there are dominant cantilevered-blade modes that are sufficient for rep-

resenting mistuning. For proportional stiffness mistuning, a single eigenvalue mistuning

pattern was sufficient for mistuning implementation. For non-proportional mistuning, the

mistuning values corresponding to individual dominant cantilevered-blade modes were re-

quired when two blade-dominated mode groups were close. Selecting just one eigenvalue

mistuning pattern produced poor results.
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2.7 Figures and Tables

+

Tuned bladed disk                                      Blade mistuning
 component                                               components( M  , K   )SS (M  , K   )δ δ

Figure 2.1: Substructuring of a mistuned bladed disk.
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Figure 2.3: Rogue blade geometry.
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Figure 2.5: Forced response results from the FEM (126,846 DOF) and a ROM (2,632
DOF) for two cases of engine order excitation.
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Figure 2.11: Frequency response for engine order 3 excitation, obtained by the FEM and
a 34-DOF CMM model.
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Figure 2.12: Frequency response for engine order 3 excitation, obtained by the FEM and
a 106-DOF CMM model.
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Figure 2.13: Frequency response for engine order 5 excitation, obtained by the FEM and
a 66-DOF CMM model.
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Figure 2.14: Frequency response for engine order 24 excitation, obtained by the FEM and
a 66-DOF CMM model.
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Figure 2.17: Frequency response for engine order 5 excitation, as obtained by the FEM
and 136-DOF CMM models with a single eigenvalue mistuning pattern of
(a) the 8th and (b) the 9th cantilevered-blade mode applied to the lowest 15
cantilevered-blade modes.
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Figure 2.18: Frequency response for engine order 5 excitation, as obtained by the FEM
and 136-DOF CMM models with eigenvalue mistuning patterns of (a) the
8th and 9th, and (b) the 6th to 11th cantilevered-blade modes applied to the
corresponding cantilevered-blade modes.
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Figure 2.19: Frequency response for engine order 5 excitation, as obtained by the FEM and
136-DOF CMM models with mistuning values obtained using eigenvalues
and mode shapes corresponding to (a) the 8th and 9th, and (b) the 6th to 11th
cantilevered-blade normal modes.
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Table 2.1: Eigenvalue mistuning pattern for the case study rotor with proportional mistun-
ing.

Blade δen (= δEn ) Blade δen (= δEn )

1 0.05704 16 0.04934

2 0.01207 17 0.04479

3 0.04670 18 0.03030

4 -0.01502 19 0.00242

5 0.05969 20 0.01734

6 -0.03324 21 0.02919

7 -0.00078 22 -0.00328

8 -0.01688 23 0.00086

9 0.00242 24 -0.03654

10 -0.02747 25 -0.03631

11 -0.03631 26 -0.01665

12 -0.03570 27 0.00783

13 -0.03631 28 -0.01169

14 -0.03631 29 -0.01332

15 0.00242
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Table 2.2: Young’s modulus mistuning parameters for the case study rotor with non-
proportional mistuning.

Different Young’s moduli

Blade δEn,1 δEn,2 Blade δEn,1 δEn,2

1 0.04080 0.01030 16 0.01990 0.03120

2 -0.06110 -0.04990 17 -0.02490 -0.07530

3 0.01430 0.02780 18 0.06380 0.01350

4 -0.06230 -0.07580 19 0.03140 -0.00080

5 -0.01170 -0.00390 20 -0.01220 -0.00320

6 -0.02700 -0.03210 21 0.03390 -0.01210

7 0.05190 0.00450 22 -0.03220 -0.04590

8 -0.06720 -0.11630 23 -0.00830 0.00530

9 0.03710 0.01770 24 0.06010 0.08270

10 0.06520 0.01460 25 0.02540 0.04540

11 0.06790 0.05580 26 -0.03980 -0.08310

12 0.04000 0.05910 27 0.04700 0.04230

13 -0.00850 -0.05080 28 0.01780 0.01180

14 -0.00020 -0.04850 29 -0.05070 -0.06600

15 -0.03960 -0.02800



CHAPTER III

Identification of Mistuning in Bladed Disks and
Reduced-Order Model Updating Based on a Component

Mode Mistuning Model

A new method for the identification of blade mistuning in bladed disks is presented.

The approach is based on the recently developed component mode mistuning reduced-

order modeling technique. The equations of motion of the bladed disk reduced-order

model are transformed to yield a set of linear equations, and the blade mistuning values are

identified using a least-squares procedure that reduces the influence of measurement errors.

A sensitivity study is performed, which considers not only data noise but also modeling

errors, and it is found that errors in the free vibration eigenvalues of the tuned bladed disk

are most critical. In order to compensate for these errors, the identification formulation is

modified, so that both tuned-system eigenvalues and blade mistuning values are identified.

Thereby, the accuracy of the identification results is considerably improved. Furthermore,

the reduced-order model is updated using the identified tuned-system eigenvalues. The

new method is validated numerically using the forced responses of the finite element model

of an integrally bladed disk.

53
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3.1 Introduction

Small variations in the structural properties of blades in a bladed disk assembly, which

are referred to as mistuning, can qualitatively alter its dynamic behavior compared to

that expected from the ideally tuned system. In particular, blade forced response am-

plitudes can be significantly amplified due to mistuning, possibly causing high-cycle fa-

tigue problems. Many researchers have studied the phenomena induced by blade mis-

tuning, and various reduced-order models (ROMs) have been developed to predict effi-

ciently the dynamic behavior of large-scale finite elements models of mistuned bladed

disks [15, 19, 20, 23, 44, 45].

The ROM equations of motion are simulated based on the premise that mistuning is

known. Since bladed disk response can be highly sensitive to mistuning, precise infor-

mation on mistuning is required for the accurate prediction of the forced response of a

specific bladed disk. Knowing blade mistuning values is also important as a means of

monitoring the quality of the manufacturing process, and potentially in the maintenance

checks of operational rotors. Mistuning is usually represented by the deviations of the

blade-alone natural frequencies from the nominal values, and it can be determined by mea-

suring blade-alone natural frequencies through broach block tests before inserting blades

in the disk. Also, methods have been developed to estimate the variations of the structural

parameters of blades from measured blade-alone natural frequencies [46, 47]. However,

additional mistuning can be generated during both the assembly and the operational life of

bladed disks. Furthermore, blades in integrally bladed disks cannot be removed for test-

ing. Therefore, there is a need to identify mistuning without separating the blades from

the disk, based on bladed disks system measurements.

In recent years, several methods have been developed to identify mistuning from vibra-
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tion measurements of bladed disk assemblies. Mignolet and Lin [48] proposed a technique

to identify the structural parameters of blades in a lumped parameter model of mistuned

bladed disks. Pichotet al. [49] tested several global model updating methods using modal

data for mistuning identification, also based on a lumped parameter model. However,

while a lumped parameter model may capture the basic mechanisms of bladed disk vibra-

tion, it cannot be used to represent accurately the dynamic behavior of actual bladed disks.

In 2001, Judgeet al. [30] were first to develop a technique for mistuning identification

based a ROM obtained from a parent finite element model (FEM), and they subsequently

improved their method [31]. In 2002, Feiner and Griffin [45] proposed a simpler ROM,

called the fundamental mistuning model, based on which they later proposed a mistuning

identification method [32, 33, 50]. However, their identification procedure is applicable

only when one isolated blade-dominated mode family is present in a frequency range of

interest.

Recently, the authors have reported a new reduced-order modeling technique for mis-

tuned bladed disks, namely component mode mistuning (CMM) [44]. The construction of

a ROM by the CMM technique is also simple, although not so simple as for Feiner and

Griffin’s model, and a CMM model represents its parent FEM very accurately regardless

of the number of mode families present in the frequency range of interest. In this paper,

the CMM modeling technique is extended to the problem of mistuning identification.

In many studies on mistuning identification [30, 31, 48, 49, 51], the sensitivity of the

identification results to noise in the measured data was examined in order to test the robust-

ness of the identification procedure. However, the sensitivity to modeling errors was not

studied, although it could significantly affect the accuracy of the results. These modeling

errors can be present in both the parent FEM and the ROM. While the errors generated by

an accurate reduced-order modeling process (such as CMM) are negligible, the FEM rep-
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resents only an approximation of the manufactured bladed disks. As such it may contains

errors that should not be neglected, for example in the boundary conditions. Therefore, in

this paper the sensitivity to both modeling errors and data noise is studied, and it is found

that the identification results are most sensitive to errors in the free vibration eigenvalues

of the tuned bladed disk.

Similarly to other ROMs for bladed disks, a CMM model is constructed based on a

tuned FEM. As mentioned above, the parent tuned FEM can be slightly different from an

actual tuned bladed disk. Since these differences feature cyclic symmetry, in this paper

they are referred to as the “cyclic modeling error”. It is shown that the cyclic modeling

error appears in the form of an exactly or approximately diagonal matrix in the equations

of motion for a CMM model, and that these diagonal terms can be considered as the devia-

tions of the tuned-FEM eigenvalues from those of the actual tuned bladed disk. Therefore,

it is proposed in this study to identify both blade mistuning and tuned-system eigenvalues

at the same time, in order to compensate for the cyclic modeling error that is shown to be

critical to the accuracy of mistuning identification.

The primary contribution of this paper is the development of a simple mistuning iden-

tification method that is robust with respect to modeling errors. In particular, a ROM built

using the CMM technique is updated using the identified cyclic modeling error present

in the parent FEM, so that the forced response of an actual bladed disk can be predicted

accurately by the updated ROM.

This paper is organized as follows. In section 3.2, the basic formulation for the mis-

tuning identification method based on a CMM model is derived, and it is numerically

validated. The sensitivity of the method to modeling errors and data noise is examined

in section 3.3. In section 3.4, the concept of cyclic modeling error is introduced, and a

modified method to identify both the blade mistuning values and the cyclic modeling error
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is proposed. Finally, the conclusions are given in section 3.5.

3.2 Identification of Blade Mistuning

3.2.1 Theory

Component mode mistuning (CMM) is a vibration modeling method for mistuned

bladed disks developed by the authors [44]. In this approach, a ROM is constructed using

the free response characteristics of the parent FEMs of a tuned bladed disk and of a tuned,

cantilevered blade that is fixed at its root. Note that in the real world all bladed disks fea-

ture mistuned blades. Therefore in this section, the ”virtual” tuned bladed disk that can

be associated with an actual bladed disk is assumed to be represented exactly by its tuned

FEM.

In this study, only blade stiffness mistuning is considered, by assuming that mass mis-

tuning can be represented by equivalent stiffness mistuning. In the derivation of the CMM

formulation [44], the mistuning in physical coordinates is first projected to the retained

cantilevered-blade normal and constraint modes, and then it is projected again to the re-

tained tuned-system modes via the modal participation factors of the cantilevered-blade

modes for the blade motion in the tuned-system normal modes.

Therefore, from the CMM formulation the equations of steady-state forced response

can be written as follows:

[
−ω2I + (1 + jγ)(ΛS + QTκδQ)

]
pS = fS, (3.1)

whereω is an excitation frequency,ΛS, pS, andfS are the modal stiffnesses (free vibration

eigenvalues), coordinates, and forces, respectively, for a truncated set of tuned-system

normal modes, andκδ is a mistuning projection matrix, which contains the projection of

blade stiffness mistuning to a truncated set of cantilevered-blade modes.Q is the matrix
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of participation factors of the cantilevered-blade modes for the blade motion in the tuned-

system modes. Andγ is a structural damping ratio. Aerodynamic coupling effects are

neglected in this study, by assuming that measurements are performed on stationary bladed

disks [30, 52, 53].

Usually, blade mistuning is represented by the deviations of cantilevered-blade eigen-

values (or natural frequencies) from the nominal values. These deviations are obtained by

projecting the blade stiffness mistuning to the cantilevered-blade normal modes. Here, it

is assumed that the displacements at the blade root are so small that the mistuning projec-

tion to cantilevered-blade constraint modes is neglected, and that the motion of a blade in

a bladed disk is dominated by a single cantilevered-blade normal mode, so that the off-

diagonal coupling term of the mistuning projection matrix,κδ, can be neglected. That is,

QTκδQpS can be approximated byQTΛδ,cbQpS, whereΛδ,cb is the diagonal matrix of

the eigenvalue deviations of the retained cantilevered-bladed normal modes, and nowQ

contains only the factors corresponding to the cantilevered-blade normal modes. Hence,

in this study, the mistuning values that are sought in the identification procedure are the

diagonal terms ofΛδ,cb. The number of such diagonal terms isNcb · Nb, whereNcb is the

number of the retained cantilevered-blade normal modes andNb is the number of blades

in the bladed disk.

When the CMM equations of motion are simulated, the eigenvalue mistuning patterns

and external forcing are given as input data, andpS is the only unknown to be determined

for given excitation frequencies. Of course,Q andΛS are obtained from the tuned FEMs.

However, in the mistuning identification problem,ω, pS, andfS are obtained from exper-

imental measurements. Then, the only unknown becomes the mistuning,Λδ,cb.

The modal coordinates,pS, can be calculated from the measured displacements using



59

the following relation:

xmeas = Umeasp
S, (3.2)

wherexmeas is the vector of the displacements at measured degrees of freedom (DOF),

andUmeas is the matrix containing the displacements at the measured DOF in the tuned-

system modes. If the row and column sizes ofUmeas are different, then a least-squares

problem needs to be solved by pre-multiplyingxmeas by the pseudo-inverse ofUmeas.

The modal external forces,fS, can also be calculated from the forces measured in physi-

cal coordinates, but measuring the forces may be impractical if non-contacting means of

excitation, such as acoustic or electromagnetic [30, 31, 52, 53], are used. In this case,fS

can be neglected if the displacements are measured at resonant frequencies and damping

is small.

Finally, the equation of motion (3.1) is transformed to yield the following set of linear

equations in the unknown eigenvalue deviations whenm sets of experimental data are

collected:

QT
1 Q1p

S
1 QT

2 Q2p
S
1 · · · QT

nQnp
S
1

QT
1 Q1p

S
2 QT

2 Q2p
S
2 · · · QT

nQnp
S
2

...
...

...
...

QT
1 Q1p

S
m QT

2 Q2p
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m · · · QT

nQnp
S
m





λδ,cb1
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...

λδ,cbn


=

1

1 + jγ



fS1 + ω2
1p

S
1 − (1 + jγ)ΛSpS1

fS2 + ω2
2p

S
1 − (1 + jγ)ΛSpS2

...

fSm + ω2
mpSm − (1 + jγ)ΛSpSm


,

(3.3)

whereQi is theith row of Q, n equalsNcb · Nb, λ
δ,cb
i is the eigenvalue deviation of the

corresponding cantilevered-blade mode for the corresponding blade, andpSk , fSk , andω2
k

are the tuned-system modal coordinates, modal forces, and excitation frequency corre-

sponding to thekth measured data set, respectively. The above set of complex equations

can be divided into two sets of real equations for the real and imaginary parts. Then, the

eigenvalue deviations, which are real valued, can be obtained by solving the two sets of
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real linear equations together using a least-squares method. Note that Eq. (3.3) can also be

used for free response data by settingγ andfS to be zero.

3.2.2 Numerical Validation

The above mistuning identification method is validated using the tuned FEM of a 24-

blade validation bladed disk that was used by Judgeet al. [30, 31]. The finite element

mesh of the bladed disk is shown in Fig. 3.1. Note that since the tuned FEM features

cyclic symmetry, the modes can be obtained from the FEM of a single sector. Figure 3.2

displays the natural frequencies of the tuned FEM versus the number of nodal diameters

(or the harmonic number).

Usually, bladed-disk system modes that are dominated by blade motion are present

in narrow frequency bands so that the lines connecting the natural frequencies are nearly

horizontal on a natural frequency plot, and these mode shapes are greatly altered by slight

changes in the structural properties of blades. As can be seen in Fig 3.2, the bladed disk

model used in this study also features blade-dominated modes that are characterized by

close natural frequencies at the higher harmonics. Here 1F denotes the first flexural bend-

ing mode of a cantilevered blade, and 1T denotes the first torsion mode. In this study,

the eigenvalue mistuning of the 1F mode was investigated. Therefore, 17 tuned-system

modes marked with filled circles between the two dotted lines in Fig. 3.2 were selected

to construct a 17-DOF ROM using the CMM modeling technique. The matrix of modal

participation factors,Q, was composed of only the factors corresponding to the 1F mode.

In lieu of measured data, forced response results obtained for a mistuned FEM were

used. Blade mistuning was introduced into the tuned FEM by varying Young’s modulus

for each blade, such that the mean of the individual blade mistuning values was zero.

Engine order 7 excitation was considered by applying a load to one of the nodes at each
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blade tip, and the amplitude of the axial displacement at a node near each blade tip was

recorded at each excitation frequency. The resulting forced responses of the 24 blades

are depicted in Fig. 3.3. In order to simulate a case where the resonant peaks overlap so

that individual natural frequencies and mode shapes cannot be measured clearly, in this

numerical study the structural damping ratio of the FEM was set to be 0.0015, although

the structural damping ratio of the actual bladed disk specimen is 0.00015 [30]. As can

be seen, the resonant peaks are not clearly separated, except for the first peak around

1.99 kHz. In fact, there are two modes that overlap around 1.99 kHz. The 13 resonant

frequencies marked with dotted vertical lines in Fig. 3.3 were selected for the response

data to be used in the identification process, and external forces were considered as if they

were not measurable. Therefore, when mistuning was identified using Eq. (3.3), the modal

forces were neglected.

The number of mistuning values to be determined, which is 24, is greater than the

number of modal coordinates in the ROM, which is 17. Therefore, mistuning cannot be

identified with a single data set obtained at one frequency. At least two data sets at different

frequencies are required, and it can be expected that the identification results become

more reliable as more data sets are used when data noise is present. For this test case,

13 data sets were used as mentioned above. The identified mistuning pattern is depicted

in Fig. 3.4, and it is compared with the exact (and known) mistuning pattern of the FEM.

The mistuning values displayed are the deviations of the 1F-cantilevered mode eigenvalues

normalized with the nominal eigenvalue. The discrepancies between the identified and the

exact mistuning values are due to the difference between the ROM and the FEM, because

in this case there were no “measurement” errors. Since the identified mistuning values are

very close to the exact ones, it can be said that the CMM-based ROM represents the FEM

very accurately.
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Using the identified mistuning, the natural frequencies and mode shapes of the mis-

tuned bladed disk were obtained from the 17-DOF ROM, and typical results are depicted

in Fig. 3.5. As can be seen, the results from the ROM with the identified mistuning match

very well those from the mistuned FEM, which indicates that the identification of mistun-

ing was successful.

3.3 Sensitivity to Modeling and Measurement Errors

In the previous section, no errors in the response data were considered. Also, since the

data were obtained from a mistuned FEM rather than measured from a physical specimen,

the parent tuned FEM of the CMM model was exactly the tuned equivalent of the mistuned

FEM rather than that of the physical blisk, which means no modeling errors were consid-

ered in the parent tuned FEM. In this section, the sensitivity of the identification results to

errors in both FEMs and measurements is investigated.

The modeling parameters required for the CMM-based mistuning identification are the

tuned-FEM natural frequencies (ΛS), the displacements at measured DOF in the tuned-

FEM mode shapes (Umeas), and the cantilevered-blade mode participation factors for the

blade motion in the tuned-FEM mode shapes (Q). Of course, the cantilevered-blade modes

are obtained from the FEM of a tuned, cantilevered-blade model. Excitation frequencies

(ω) and physical displacements (xmeas) are obtained from measurements, and the damp-

ing ratio (γ) can also be determined experimentally. All these modeling parameters and

measured data can have errors in them, but the errors inω are neglected in this study by

assuming that excitation frequencies are correctly realized by a signal generator.

The sensitivity to small errors in parameters and data can be assessed by differentiating

Eq. (3.3). First, Eq. (3.3) is differentiated with respect toQir, which is the element at the

ith row andrth column ofQ, and multiplied byQir in order to obtain the sensitivity to the
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ratio of the error to the exact value. Here, for simplicity it is assumed that a single data set

is measured. The following equation is obtained:[
QT

1 Q1p
S QT

2 Q2p
S · · · QT

nQnp
S

]
∂λδ,cb

∂Qir

Qir = −Qirλ
δ,cb
i (Qi,r + QT

i,r)p
S, (3.4)

whereλδ,cb is the column vector of the deviations of the eigenvalues of cantilevered-blade

normal modes, andQi,r is a square matrix whoserth row isQi and all the other rows are

zero.

Next, consider the sensitivity to errors inΛS. Differentiating Eq. (3.3) with respect to

λSi , theith tuned-system eigenvalue, and subsequently multiplying byλSi , one obtains:[
QT

1 Q1p
S QT

2 Q2p
S · · · QT

nQnp
S

]
∂λδ,cb

∂λSi
λSi = −λSi

{
0 · · · 0 pSi 0 · · · 0

}T
,

(3.5)

wherepSi is theith element ofpS.

And, differentiating Eq. (3.3) with respect toγ and multiplying byγ yields:[
QT

1 Q1p
S QT

2 Q2p
S · · · QT

nQnp
S

]
∂λδ,cb

∂γ
γ =

−γ
(1 + jγ)2

(fS + ω2pS). (3.6)

The modal coordinates,pS, are calculated from Eq. (3.2). That is,pS is a function of

Umeas andxmeas. Therefore, the differentiation ofλδ,cb with respect topS can indicate the

sensitivity to errors inUmeas andxmeas. Differentiating Eq. (3.3) with respect topSi , and

multiplying bypSi , the resulting equation is[
QT

1 Q1p
S QT

2 Q2p
S · · · QT

nQnp
S

]
∂λδ,cb

∂pSi
pSi

= −pSi
[
Q1iQ

T
1 Q2iQ

T
2 · · · QniQ

T
n

]
δλcb

+
pSi

1 + jγ

{
0 · · · 0 ω2 − (1 + jγ)λSi 0 · · · 0

}T
.

(3.7)

Since the matrices that pre-multiply the partial derivatives in Eqs. (3.4), (3.5), (3.6)

and (3.7) are the same, the comparison of the right-hand side terms of these equations can
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determine which parameter or data error the identification results are most sensitive to.

The cantilevered-blade mode participation factors for the tuned-system modes in cyclic

coordinates are usually less than 1. Hence, the factors for the tuned system modes in phys-

ical coordinates,Q, are smaller than2/
√
N if the tuned-system modes are obtained using

a real-form cyclic analysis [54]. The structural damping ratio is usually very small; note

thatγ for the validation bladed disk is 0.00015. Furthermore,λδ,cbi is a small percentage

of the cantilevered-blade eigenvalue; andω2 − (1 + jγ)λSi is also on the order ofλδ,cbi ,

because the values ofω2 andλSi are on the order of the cantilevered-blade eigenvalue and

close to each other. These observations indicate that the order of the right-hand side term

in Eq. (3.5) is much greater than those in Eqs. (3.4), (3.6) and (3.7). Therefore, it can

be expected that the identification results are most sensitive to errors in the tuned-system

eigenvalues.

In order to confirm the above sensitivity analysis, mistuning identification was per-

formed for the FEM of the validation bladed disk in Fig. 3.1, using 100 sets of model

parameters or measured data with random errors. The same forced response data as in the

previous section were used. Note that, since 13 response data sets were selected from the

FEM forced response, a total of 1,300 response data sets were used in each case. Six cases

were studied: 5% random errors inQ only; 5% random errors inΛS only; 5% random

errors inγ only; 5% random errors inUmeas only; random noise inxmeas, whose level

was 1% of the maximum displacement amplitude in the response data; and all of these

errors and noise combined together. For each case, 100 mistuning patterns were identified

using Eq. (3.3), and 100 sets of mistuned-system natural frequencies were calculated from

the 17-DOF ROM using the identified mistuning patterns. Then, the largest and smallest

mistuning values for each of the 24 blades were found, and also, the highest and lowest

natural frequencies for each of the 17 bladed-disk system modes were found. The results
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are depicted in Fig. 3.6. As can be expected, the identification results are not much af-

fected by the errors inQ, γ, Umeas, andxmeas. And, as can be seen in Fig. 3.6(b), the

identification results are highly sensitive to the errors in the tuned-system eigenvalues.

Also note that the results in Fig. 3.6(b) and in Fig. 3.6(f) are very similar. This means that

the tuned-system eigenvalue errors can be the primary cause of failure of the mistuning

identification procedure.

3.4 Identification of the Cyclic Modeling Error

The errors in the modeling parameters for a CMM model are caused primarily by the

discrepancy between the parent tuned FEM and the virtual tuned system that can be as-

sociated with the physical bladed disk. Here, this difference is referred to as the “cyclic

modeling error”, because the deviation of the parent tuned FEM from the virtual tuned

system features cyclic symmetry. In this section, the CMM equation of motion, Eq. (3.1),

is modified to include a cyclic modeling error term so that, in addition to the blade mis-

tuning values, the modeling errors can be identified. Thereby, the CMM model can be

updated, and the accuracy of mistuning identified is significantly improved.

3.4.1 Cyclic Modeling Error

Suppose that there is an ideal tuned FEM that represents exactly the dynamic behavior

of the virtual tuned system, and that it has the same number of DOF as the “real” tuned

FEM. Also, assume that the difference between the ideal and the real FEMs (i.e., the cyclic

modeling error) is small enough that the motion of the ideal FEM can be represented with

the mode shapes of the real FEM. Note that it has been recently reported by Yang and

Griffin [42] that when a system features a group of modes closely spaced in a narrow

frequency range, the motion of a system slightly changed from the original system can be

represented with the modes of the original system.
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Then, the reduced stiffness matrix of a CMM model for the ideal FEM with mistuning

can be written asΛS + ΦSTKδΦS + QTΛδ,cbQ, whereΦS is a matrix containing the

modes of the real tuned FEM in physical coordinates, andKδ is the difference between

the stiffness matrices of the ideal and the real tuned FEMs. Here again, only a stiffness

error is considered, by assuming that the mass modeling error can be represented by an

equivalent stiffness modeling error. The projection of the cyclic modeling error ontoΦS

can be re-written using the modes in real cyclic coordinates, as follows (for more detail

about real-form cyclic analysis, see [54]):

ΦSTKδΦS = B̃diag
h=0,...,H

[
Φ̃ST

h

]
(FT ⊗ I)(I⊗Kδ

sec)(F⊗ I)B̃diag
h=0,...,H

[
Φ̃S
h

]
= B̃diag

h=0,...,H

[
Φ̃ST

h

]
(I⊗Kδ

sec)B̃diag
h=0,...,H

[
Φ̃S
h

]
= B̃diag

h=0,...,H

[
Φ̃ST

h K̃δ
hΦ̃

S
h

]
,

(3.8)

whereB̃diag [•] denotes a pseudo-block-diagonal matrix, whose block sizes can be dif-

ferent,H equals(Nb − 1)/2 for Nb odd andNb/2 for Nb even, and̃ΦS
h is a set of cyclic

modes corresponding to harmonich, which can be obtained from a single-sector FEM. For

a single-harmonic mode, the row size ofΦ̃S
h is the number of DOF in a sector, while for a

double-harmonic mode it is twice that. The column size ofΦ̃S
h is the number of retained

modes for the corresponding harmonic. HereF is a real-valued Fourier matrix,⊗ denotes

the Kronecker product,Kδ
sec is the deviation of the stiffness matrix of the real single-sector

FEM from the ideal one, and̃Kδ
h is defined as

K̃δ
h =



Kδ
sec for h = 0, andh = Nb/2 if Nb is even

K
δ
sec 0

0 Kδ
sec

 for h 6= 0, andh 6= Nb/2.

(3.9)

As can be seen in Eq. (3.8), the projection of the cyclic modeling error appears in the form

of a pseudo-block-diagonal matrix.
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Now, consider a case in which only one mode (or one mode pair) per harmonic is

retained in the CMM model. Then, a single-harmonic block becomes just a scalar, and a

double-harmonic block becomes a 2×2 matrix. A mode pair for a double harmonic can be

written as follows [54]: φh,c
1 φh,c

2

φh,s
1 φh,s

2

 , (3.10)

whereφh,c
1 andφh,s

1 are the cosine and sine parts for one of the modes in the pair, andφh,c
2

andφh,s
2 are for the other mode. This mode pair obeys the following relation:

φh,s
1 = ±φh,c

2

φh,s
2 = ∓φh,c

1

. (3.11)

Hence, φh,c
1 φh,c

2

φh,s
1 φh,s

2


T Kδ

sec 0

0 Kδ
sec


φh,c

1 φh,c
2

φh,s
1 φh,s

2

 =

A 0

0 A

 , (3.12)

where

A = φh,c
1

T
Kδ
secφ

h,c
1 + φh,c

2

T
Kδ
secφ

h,c
2 .

Therefore, if a single mode (or a single mode pair) per harmonic is retained, the projection

matrix becomes a diagonal matrix. Note that, even if two or more modes (or mode pairs)

are retained per harmonic, then the off-diagonal terms may be neglected as long as each

mode of the ideal FEM is dominated by only one mode of the real FEM.

3.4.2 Mistuning Identification with ROM Updating

Since the projection of the cyclic modeling error onto the modes of a real FEM is,

exactly or approximately, a diagonal matrix, it can be interpreted as the deviations of the

real-FEM eigenvalues from the ideal-FEM ones. That is, the equations of motion for a



68

CMM model of the ideal FEM can be written as

[
−ω2I + (1 + jγ)(ΛS + Λδ,S + QTΛδ,cbQ)

]
pS = fS, (3.13)

whereΛδ,S is a diagonal matrix of the deviations of the real-FEM eigenvalues, which

accounts for the cyclic modeling error. It should be noted that the mean of the blade

mistuning values now becomes zero. This is because any offset of the mean value can be

eliminated by adjustingΛδ,S.

In Eq. (3.13),ΛS + Λδ,S is the diagonal matrix of the correct tuned-system eigenval-

ues of an actual bladed disk. However, sinceΛδ,S is unknown, the correct tuned-system

eigenvalues are also unknown. Therefore, both tuned-system eigenvalues and blade mis-

tuning must be identified at the same time. Here the same measured data and modeling

parameters as in section 3.2 are assumed to be given, but the tuned-system eigenvalues are

also treated as unknowns. Also, the restriction that the mean of mistuning values is zero is

imposed by setting

λδ,cb1 = −(λδ,cb2 + · · ·+ λδ,cbn ). (3.14)

Then, the following set of linear equations can be obtained by transforming Eq. (3.1):



B2p
S
1 B3p

S
1 · · · Bnp

S
1 diag

r∈R

(
pS1i
)

B2p
S
2 B3p

S
2 · · · Bnp

S
2 diag

r∈R

(
pS2i
)

...
...

...
...

...

B2p
S
m B3p

S
m · · · Bnp

S
m diag

r∈R

(
pSmi
)





λδ,cb2

...

λδ,cbn

λS1

...

λSl



=
1

1 + jγ



fS1 + ω2
1p

S
1

fS2 + ω2
2p

S
2

...

fSm + ω2
mpSm


,

(3.15)

where

Bi = QT
i Qi −QT

1 Q1,
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diag (•) denotes a diagonal matrix,l is the number of retained tuned-system modes, and

pSki is theith element ofpS
k. By solving these linear equations, both tuned-system eigen-

values and blade mistuning values can be obtained. Then, a CMM model can be updated

by replacingΛS in Eq. (3.1) with the identified tuned-system eigenvalues.

In order to assess the effectiveness of ROM updating, the identification was performed

in the same way as in section 3.3, but Eq. (3.15) was applied. Again, 100 sets of modeling

parameters and measured data (Q,Umeas, andxmeas) with random errors and noise were

used, and the identification results are depicted in Fig. 3.7. Note that there was no need to

simulate the errors inΛS, because the new updating technique provides for its identifica-

tion (thus effectively removing the primary factor of high sensitivity in the identification

process). Observe that the accuracy of the identified mistuning and mistuned-system nat-

ural frequencies is significantly improved compared with that in Fig. 3.6(f). Also, the

updated tuned-system natural frequencies match well with the exact values overall. This

means that the ROM has been successfully updated. Still, the updated tuned-system fre-

quency at 4 nodal diameters, as well as the mistuned-system frequencies of the 1st and 2nd

modes, are not in good agreement with the exact values. This is because the resonant peak

around 1.99 kHz is very small relative to the other peaks. In fact, the two mode shapes

around 1.99 kHz are nearly the same as the tuned-system modes with 4 nodal diameters,

and thus they are not significantly excited by an engine order 7 excitation.

Therefore, the forced response was computed again, by applying engine 4 excitation

to the mistuned FEM of the validation bladed disk, in order to obtain large resonant peaks

around 1.99 kHz. The results are plotted in Fig. 3.8, where the dotted line marks the

same resonant frequency around 1.99 kHz as in Fig. 3.3. Then, the response data at 1.99

kHz obtained by applying engine order 7 excitation were replaced with the new response

data obtained with engine order 4 excitation, and the identification was performed in the
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same way as above. The results are displayed in Fig. 3.9. As can be seen in Fig. 3.9(a)

and 3.9(c), the highest and the lowest values of all the updated tuned-system frequencies

and mistuned-system frequencies are very close to the exact values. Therefore, it can be

concluded that tuned-system frequencies and blade mistuning can be identified accurately

using the developed method, as long as response data are measured at large resonant peaks.

As another validation test for ROM updating, the forced response generated from the

updated CMM model was compared with that of the mistuned FEM. First, only blade

mistuning was identified using a set of modeling parameters and measured data with er-

rors. Of course the resulting tuned-system natural frequencies are a bit in error, and they

are shown in Fig. 3.10. Using the identified mistuning pattern, the forced response was

obtained from the CMM model with these slightly incorrect tuned-system natural frequen-

cies, by applying engine order 7 excitation. The CMM results are compared with the FEM

results in Fig. 3.11(a), where at every excitation frequency only the largest blade amplitude

is plotted so as to provide the response envelope. As can be seen, the non-updated CMM

results are poor. Next, both blade mistuning and tuned-system natural frequencies were

identified, and the CMM model was updated. Figure 3.11(b) shows the forced response

results obtained by the updated CMM model and by the FEM. It can be observed that both

results match extremely well.

3.5 Conclusions

A method for the identification of blade mistuning in bladed disks has been developed.

In this approach, the equation of motion for a reduced-order model built by a compo-

nent mode mistuning technique [44] is transformed to obtain a set of linear equations.

Thereby, blade mistuning is determined by solving a least-squares problem. This identifi-

cation method was numerically validated using the FEM of a validation bladed disk. The
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response data by the FEM were treated as measured data. Also, a sensitivity study was

performed analytically, and numerically by adding errors and noise intentionally to model-

ing parameters and FEM response data. It was found that the accuracy of the identification

results is very sensitive to the errors in the tuned-system eigenvalues.

The concept of “cyclic modeling error” has been introduced, which is the difference

between a tuned FEM on which a CMM model is based and the virtual tuned system of

an actual bladed disk. It was shown that the cyclic modeling error appears as a matrix

that is exactly or approximately diagonal in the CMM formulation, so that the modeling

errors can be interpreted as the errors in tuned-FEM eigenvalues, which are critical to the

accuracy of the mistuning identification results.

The original identification method has been modified by considering tuned-system

eigenvalues as well as blade mistuning as the unknowns. Using the identified tuned-system

eigenvalues, a CMM model is updated such that the cyclic modeling error is compensated

for. As a result, the accuracy of the identified mistuning values is significantly improved.

The modified method was numerically validated using the same bladed-disk FEM. Also,

it has been demonstrated that the forced response results generated by an updated CMM

model are in very good agreement with the FEM results, even if errors are present in mod-

eling parameters and response data. Therefore, it can be concluded that the new method

developed is robust with respect to the errors in the parent FEM and measurements, and

that a CMM model updated in this way can provide accurate predictions of the forced

response of actual mistuned bladed disks.
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3.6 Figures

Figure 3.1: Finite element mesh of a 24-blade validation bladed disk.
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Figure 3.2: Natural frequencies of the validation bladed disk.
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Figure 3.3: Forced response of blades subject to engine order 7 excitation.
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Figure 3.6: Sensitivity of identification results to errors in model parameters and measured
data.
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Figure 3.7: Identification results with ROM updating in the presence of random errors in
all the modeling parameters and the measured data.
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Figure 3.8: Forced response of blades subject to engine order 4 excitation.
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Figure 3.9: Identification results with ROM updating when all the data are measured at
large resonant peaks.
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Figure 3.11: Forced response generated from a CMM model subject to engine order 7
excitation using identification results.



CHAPTER IV

Upper Bounds for Bladed-Disk Forced-Response
Amplification Due to Mistuning

Two methods for calculating the upper bound of the mistuning-induced forced-response

amplification for blades in bladed disks are presented. In the first method, the upper bounds

of blade displacement, velocity, and stress are derived from the maximum vibration energy

that can be concentrated into a single blade in lumped parameter models with a single or

two degrees of freedom (DOF) per sector, and the obtained upper bound does not de-

pend on the engine order of excitation. It is seen that, if mistuning is small, the blade

response normalized by the resonant response of a cantilevered blade is bounded around

(1 +
√
Nb)/2, whereNb is the number of blades in a bladed disk. In another method, the

upper bound is obtained by superposing a set of traveling wave modes with closely spaced

natural frequencies of a tuned bladed disk. This method is applicable to any bladed disk

model. The amplitudes of the traveling waves for a multi-DOF-per sector model are usu-

ally different from each other when they are normalized with respect to the mass matrix.

Therefore, the latter method yields different upper bounds according to the engine order of

excitation. Furthermore, since only closely spaced modes are involved in the calculation,

upper bounds lower than those by the first method can be obtained. The latter method is

demonstrated using a 2-DOF-per-sector model and a finite element model of an advanced

82
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bladed disk.

4.1 Introduction

A nominal design of a bladed disk consists of identical blade-disk sectors. However,

there are always slight differences among the blades in a real bladed disk which are called

mistuning. Due to mistuning, vibration energy in a bladed disk can be concentrated into a

few blades, and the forced-response level of those blades is significantly increased caus-

ing high-cycle fatigue problems. Therefore, there has been a large amount of research

work about the effect of mistuning. Especially, many efforts have been made to find the

maximum blade forced-response level that can be reached due to mistuning, because it is

important information in view of design safety.

Typically, blade forced-response level is represented by the amplification factor that

is the ratio of the largest blade response in a mistuned system to that in the tuned system.

Some researchers [2, 24–28, 55] have derived analytical forms for the maximum amplifica-

tion factor that is the upper bound of blade-response amplification. Whitehead [2, 24, 25]

obtained the famous maximum amplification factor of(1+
√
Nb)/2, whereNb is the num-

ber of blades in a bladed disk, using a model with a single degree of freedom (DOF) per

sector. MacBain and Whaley [55] also derived a closed form expression for the maximum

resonant response using a pair of modes with the same number of nodal diameters but dif-

ferent frequencies. However, MacBain and Whaley did not consider the distortion of mode

shapes that is also caused by mistuning. In contrast, Kenyonet al. [27] reported another

study on the maximum forced-response amplification in view of mode shape distortion us-

ing a simple 1-DOF-per-sector lumped parameter model. In their work, it was shown that

the Whitehead’s maximum factor cannot be reached for the simple model with structural

mistuning, unless the excitation engine order (EO) is equal to0 orNb/2 for Nb even, but
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it was also mentioned that the Whitehead’s maximum can be approximated by combining

the effects of mode distortion and frequency splitting. Rivas-Guerra and Mignolet [28]

also obtained similar results that Whitehead’s maximum factor is exactly (for EO= 0or

Nb/2 if Nb is even) or approximately (for other engine orders) recovered. They also used

a 1-DOF-per-sector model.

However, a 1-DOF-per-sector lumped parameter model may not represent an actual

bladed-disk design appropriately. Therefore, some studies have been focused on finding

the maximum amplification using optimization algorithms [28, 56–59]. Although an opti-

mization process may be applied to any bladed-disk model, it can be expensive when the

number of blades is large. Furthermore, blade response is so sensitive to mistuning that

the solution may converge to a local maximum not the global maximum. There has been

another type of research for determining the statistics of the amplification factors analyt-

ically [60, 61] or via accelerated Monte Carlo simulations [29, 39], but the statistics does

not provide the maximum amplification. Actually, the maximum amplification factor is

required for the accelerated Monte Carlo simulations.

As mentioned above, the amplification factor is a measure relative to a tuned-system

resonant response. The amplitudes of tuned-system resonant response of 1-DOF-per-

sector models used in the literature are exactly or almost the same for the entire engine

orders of excitation. Therefore, the amplification factor could represent the absolute re-

sponse level. However, for more complicated models where blade DOF and disk DOF

exist separately, one can observe the loci of tuned-system natural frequency veer (see for

example Fig. 4.5). The tuned modes in a veering region usually have smaller blade dis-

placements than the others so that the tuned system shows smaller resonant blade response

when subject to the engine order excitation corresponding to the veering region. In this

case, the traditional amplification factor does not measure the absolute level of response,
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and also the amplification factor can be unbounded as mentioned in Kenyon and Griffin’s

work [62]

This study is focused on finding closed form expressions of the upper bound of blade

response. First, the upper bound of the response of a 1-DOF-per-sector model is revisited

by investigating the relation between the amplitude of blade response and the vibration

energy input through coupling. When Whitehead [25] derived the maximum amplification

factor of(1 +
√
Nb)/2, hysteretic damping was used. In this study, viscous and structural

damping cases as well as hysteretic damping case are examined, and it is shown that

Whitehead’s maximum factor can be exceeded even in case of a 1-DOF-per-sector model

when viscous or structural damping is used. Furthermore, this approach is extended to a 2-

DOF-per-sector model, and it is found that, if blade response is normalized by the resonant

response of a tuned, cantilevered blade, the ratio is bounded around(1 +
√
Nb)/2. Since

cantilevered-blade response is irrelevant to the engine order of excitation, the ratio can

represent the absolute level of blade response.

Also, Whitehead’s approach, which is to superpose all the traveling wave modes, is

extended to multi-DOF-per-sector models. Recently, Yang and Griffin [42] reported that,

when a system has a group of modes closely spaced in a narrow frequency range, the mo-

tion of a system slightly mistuned from the system can be approximately described with

the closely spaced modes of the original system. And, some reduced-order models for

bladed disks have been developed according to this concept [23, 44]. In this study, this

concept is used to select a small set of traveling wave modes of multi-DOF-per-sector

models to be superposed. Finally, a generalized expression for the upper bound of blade

response is obtained, which gives different values for different systems and for different

engine orders of excitation. Although the upper bound obtained this way may be unreach-

able as Whitehead’s maximum factor, it is still believed to approximate the real limit of
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the maximum blade response with negligible cost. And, it is demonstrated that this ap-

proach allows lower upper bounds for a 2-DOF-per-sector model than that obtained using

the approach mentioned in the previous paragraph.

The stress levels may be computed by post-processing the reduced-order model results

with finite element analysis, but this is cumbersome and expensive. In this work, three

indicators that can be calculated directly from reduced-order models are also proposed

as a way to estimate blade stress levels in a straightforward, systematic, and inexpensive

manner. It is shown that these indicators can be used to predict stress values with good

accuracy relative to finite element results, even for a case in which the displacement and

stress levels show different frequency response trends.

One of the contributions of this paper is that the increase of blade response is bounded

around Whitehead’s maximum factor, if the reference is the resonant response of a tuned,

cantilevered blade, not that of a blade in a tuned bladed disk. Another contribution is the

generalization of Whitehead’s approach for multi-DOF-per-sector models.

This paper is organized as follows. The relation between the amplitude of blade re-

sponse and the vibration energy input through coupling is investigated to find the upper

bound in section 4.2. In section 4.3, the generalized form of upper bound is derived by

extending Whitehead’s approach, and applied to a 2-DOF-per-sector model and a finite

element model of an advanced bladed disk. In section 4.4, three indicators for predicting

blade stress levels directly from reduced-order models of bladed disks are proposed and

validated. Finally, conclusions are summarized in section 4.5.

4.2 Energy Concentration through Coupling

The upper bound of blade response in a bladed disk is investigated using the possible

maximum amount of vibration energy concentration into a single blade or sector. To do
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this, the response of a blade is related with the energy input to the blade through coupling

using lumped parameter models shown in Fig. 4.1. Each sub-figure shows a single sector

of the tuned models. The model in Fig. 4.1(a) has only one blade DOF in each sector, with

tuned massmb and tuned stiffnesskb. Each blade DOF is directly coupled to other blades.

The other one in Fig. 4.1(b) has a blade DOF and a disk DOF in each sector, with disk

massmd and disk stiffnesskd. For this model, each disk DOF is coupled to other disk

DOF. Thus, for the 1-DOF-per-sector model, energy flow among sectors depends on blade

displacements, but for the 2-DOF-per-sector model, it depends on disk displacements.

In this study, every mass and stiffness are normalized by the blade massmb and stiff-

nesskb. Displacements, velocities, stresses, and frequencies are also normalized by the

largest responses and natural frequency of a tuned, cantilevered blade. Thereby, in this

section, all the results are obtained in non-dimensionalized forms. For the forced response,

engine order excitations are applied, and only steady-state responses are considered. Mis-

tuned models are generated by adding stiffness variations to the tuned blade stiffnesses.

Theith mistuned stiffness is expressed as

kb,i = kb(1 + δi), (4.1)

whereδi is theith mistuning value.

4.2.1 1-DOF-per-sector model

There are two energy input source for a sector. One is from external forcing, and the

other is from other sectors via coupling. These energy sources are balanced with the energy

dissipation by damping. In this study, three cases of different damping representations

are investigated: hysteretic, viscous, and structural damping. Here, hysteretic damping

force is assumed to be proportional to displacement, as in Whitehead’s work [25], while

structural damping force is proportional to stiffness as well as displacement. Therefore,
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if stiffness is mistuned, the damping force by structural damping will be different from

that by hysteretic damping for the same displacement. For viscous damping, the damping

force is proportional to velocity.

First, hysteretic damping is considered. The damping force is written as follows:

fdi = −jchxi, (4.2)

wherej is
√
−1, ch is the damping coefficient, andxi is the displacement of bladei.

Therefore, the average energy dissipated in bladei over a period of oscillation is

Ed
i =

1

2
Re (−jchxiv∗i ) =

1

2
chω|xi|2, (4.3)

wherev∗i is the complex conjugate of the velocity of bladei. And, the average energy

input to bladei by external forcing is

Ef
i =

1

2
Re (f ei v

∗
i ) =

1

2
ωF e|xi| sin(∆θ), (4.4)

wheref ei is the external force applied to theith blade,F e is the amplitude of the external

force, and∆θ is the phase off ei subtracted by the phase ofxi. Because engine order

excitations are assumed, the forces applied to the blades have the same amplitude, but

different phases.

Therefore, the average energy input to bladei through coupling can be written using

Eqs. (4.3) and (4.4) as follows:

Ec
i = Ed

i − Ef
i =

ω

2

(
ch|xi|2 − F e|xi| sin(∆θ)

)
. (4.5)

Now, a displacement amplification factor, which is the ratio of|xi| to the resonant response

of a tuned, cantilevered blade,|xcb|, is introduced as follows:

qi = |xi|/|xcb|, (4.6)
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where|xcb| is obtained by applying the force of the same amplitude as that of the engine

order excitation. Since the resonant frequency is the natural frequency for a 1-DOF system

with the hysteretic damping, the resonant response is

|xcb| =
F e

ch
, or F e = ch|xcb|. (4.7)

Inserting Eqs. (4.6) and (4.7) into Eq. (4.5), and normalizingEc
i with (chω|xcb|2)/2, the

following equation is obtained:

Ēc
i = q2

i − qi sin(∆θ), (4.8)

where Ēc
i is the normalized energy input to bladei through coupling. Hence,̄Ec

i is

bounded as follows:

q2
i − qi ≤ Ēc

i ≤ q2
i + qi. (4.9)

The derived relation in Eq. (4.9) shows that the normalized energy is limited by the dis-

placement amplification relative to the cantilevered-blade resonant response, and vice

versa.

To verify this relation, 1,000 mistuned systems with 12 blades were simulated. For

simplicity, each blade DOF was coupled to only two adjacent blades by springs of stiff-

nesskc. In the tuned system,kc/kb was set to be 0.01, which is the value that was used

for a weakly coupled system by Wei and Pierre [10], andch/kb was set to be 0.002. Mis-

tuning values were generated by a random number generator in MATLAB, and the used

standard deviation of random mistuning was 0.012, because the systems show large in-

crease in blade forced response for this mistuning level. For external forcing, engine order

3 excitation was used.

From each mistuned system, an excitation frequency at which the largest blade re-

sponse is found was identified using a golden section search method. At that frequency,
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the response results for all 12 blades were collected. Thus, these simulations yielded

12,000 blade response results, and they are depicted in Fig. 4.2. As can be seen, all the

simulation results appear between the two theoretical limit curves,q2
i − qi andq2

i + qi.

Note that a negative value of normalized energy input indicates a net energy drain to other

blades, and that the maximum normalized energy drain is1/4 from Eq. (4.9).

Now, consider the worst case in which all the energy drain flows into a single blade. In

this case, the maximum amount of the normalized energy input through coupling that the

blade can receive is(Nb − 1)/4. Therefore, the possible maximum value ofqi is obtained

from the following equation:

q2
i − qi = (Nb − 1)/4, (4.10)

and the value is(1 +
√
Nb)/2, which is the factor that Whitehead found [2, 25]. Note that

Whitehead used the ratio of the largest blade response in a mistuned bladed disk to that

in the tuned bladed disk as the amplification factor. Since the largest blade response in

a tuned bladed disk with hysteretic damping is the same as the cantilevered-blade reso-

nant response for a 1-DOF-per-sector lumped parameter model, it is no surprise that the

obtained maximum factor here is the same as Whitehead’s maximum factor.

The next case is for viscous damping. The damping force can be written as:

fdi = −cvvi, (4.11)

wherecv is the viscous damping coefficient. Therefore, the average energy dissipation is

Ed
i =

1

2
cv|vi|2, (4.12)

and the average energy input to bladei through coupling can be written as follows:

Ec
i =

1

2

(
cv|vi|2 − F e|vi| cos(∆θ)

)
. (4.13)
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This equation is similar to Eq. (4.5), but it is written withvi ,not with xi. Therefore, a

velocity amplification factor is introduced in a similar way:

ri = |vi|/|vcb|, (4.14)

wherevcb is the largest velocity of a tuned, cantilevered blade, which occurs at the natural

frequency, not the resonant frequency of displacement. And, the value is

|vcb| =
F e

cv
, or F e = cv|vcb|. (4.15)

Inserting Eqs. (4.14) and (4.15) into Eq. (4.13), and normalizingEc
i with (cv|vcb|2)/2,

which is the average dissipated energy in a tuned, cantilevered blade at the natural fre-

quency, the following equation is obtained:

Ēc
i = r2

i − ri cos(∆θ). (4.16)

And, Ēc
i is limited by the velocity amplification as follows:

r2
i − ri ≤ Ēc

i ≤ r2
i + ri. (4.17)

The same mistuned systems as previously used for hysteretic damping were simulated

to verify the relation in Eq. (4.17), but viscous damping was used withcv/
√
mbkb being

0.002. Also, the same engine order excitation was applied. The results are shown in

Fig. 4.3, and they are all between the two theoretical limit curves,r2
i − ri andr2

i + ri. In

the same way as for hysteretic damping,(1 +
√
Nb)/2 is obtained again for the possible

maximum value ofri.

Now, the case of structural damping is investigated. The damping force on bladei is

written as follows:

fdi = −jcskb(1 + δi)xi, (4.18)
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wherecs is structural damping ratio which is non-dimensional. Therefore, the average

energy dissipation is

Ed
i =

1

2
cskb(1 + δi)ω|xi|2. (4.19)

Hence, the average energy input to bladei through coupling is

Ec
i =

ω

2

(
cskb(1 + δi)|xi|2 − F e|xi| sin(∆θ)

)
. (4.20)

The stress level in the lumped parameter models can be represented bykb(1 + δi)|xi|.

Thus, a stress amplification factor can be defined as follows:

pi =
kb(1 + δi)|xi|

kb|xcb|
= (1 + δi)|xi|/|xcb|, (4.21)

wherexcb is the resonant response of a tuned, cantilevered blade at its natural frequency.

That is,

|xcb| =
F e

cskb
, or F e = cskb|xcb|. (4.22)

Again, by inserting Eqs. (4.21) and (4.22) into Eq. (4.20), and normalizing with(cskbω|xcb|2)/2,

the following relation is obtained:

p2
i − pi ≤ (1 + δi)Ē

c
i ≤ p2

i + pi. (4.23)

Note that1 + δi term still appears the above relation. Simulations for the previous 1,000

mistuned systems were performed with structural damping ratio (cs) of 0.002, and the

results in Fig. 4.4 verify the relation in Eq. (4.23).

Since the maximum normalized energy drain from bladen is 1/4(1+ δn), the possible

maximum value ofpi is obtained from the following equation:

p2
i − pi = (1 + δi)

Nb∑
n=1
n6=i

1

4(1 + δn)
. (4.24)
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Therefore, the maximum stress amplification depends on mistuning. However, it can be

said that, for small mistuning, the maximum stress amplification is approximately(1 +

√
Nb)/2.

So far, the amplification of displacement, velocity, and stress has been investigated for

the lumped parameter models with hysteretic, viscous, and structural damping, respec-

tively. From the possible maximum vibration energy concentration into a single blade, the

upper bounds of the amplification were obtained. When hysteretic damping is used, the

upper bound of displacement amplification is the same as Whitehead’s maximum ampli-

fication factor,(1 +
√
Nb)/2. However, a displacement amplification factor larger than

(1 +
√
Nb)/2 is possible when viscous or structural damping is used, even for a 1-DOF-

per-sector model. Similarly, velocity amplification for a bladed disk with hysteretic or

structural damping can exceed(1+
√
Nb)/2. As a test case, 1-DOF-per-sector models with

3 blades were investigated to find the mistuning patterns that give blade displacement am-

plification larger than Whitehead’s maximum factor (1.3660 for a 3-blade system), when

viscous and structural damping is used. For this, a function in the optimization toolbox

of MATLAB was used with a constraint that all the blade mistuning values are between

−0.03
√

3 and0.03
√

3 that are the limits of a uniform distribution with the standard devi-

ation of 0.03. The same model parameters as previously used were used again, but engine

order 0 excitation was applied. Table 4.1 shows examples of the found mistuning values

and displacement amplification values.

However, displacement, velocity, and stress amplification factors are almost the same

for small mistuning. Note that the locations of the data points in Figs. 4.2, 4.3, and 4.4 are

almost the same. This means that Whitehead’s maximum amplification factor can be used

as an approximate upper bound of any amplification for 1-DOF-per-sector models.
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4.2.2 2-DOF-per-sector model

Now, the energy concentration in 2-DOF-per-sector models described in Fig. 4.1(b)

is discussed. Here, only the hysteretic damping case is investigated, because the upper

bounds of velocity and stress amplification for viscous and structural damping can be

obtained in similar ways and will be almost the same as that of displacement amplification

for hysteretic damping if mistuning is small. And, not only blade DOF but also disk DOF

are subject to hysteretic damping. For external forcing, engine order excitations are used

again, but only on blade DOF.

If hysteretic damping is used for both blades and disk, the expression for the damping

force on bladei will be the same as Eq. (4.2) for a 1-DOF-per-sector model, and the

damping force on disk sectori can be written as follows:

fdi,disk = −jαhchxi,disk, (4.25)

whereαh is the ratio of the disk damping coefficient to the blade damping coefficient (ch),

andxi,disk is the displacement of the disk DOF. Hence, the average dissipation energy in

sectori is

Ed
i =

1

2
chω|xi,blade|2 +

1

2
αhchω|xi,disk|2, (4.26)

wherexi,blade is the displacement of the blade DOF. Thus, the average energy input to

sectori through coupling becomes

Ec
i =

ω

2

(
ch|xi,blade|2 + αhch|xi,disk|2 − F e|xi,blade| sin(∆θ)

)
. (4.27)

Normalizing with (chω|xcb|2)/2 again, the above equation can be re-written in a non-

dimensionalized form as follows:

Ēc
i = q2

i,blade + αhq
2
i,disk − qi,blade sin(∆θ), (4.28)
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whereqi,blade = |xi,blade|/|xcb|, andqi,disk = |xi,disk|/|xcb|. From this equation, it can be

seen that the maximum energy drain from a single sector is 1/4, ifαhq
2
i,disk is small enough

to be neglected. In that case, the maximum normalized energy concentration to sectori

through coupling becomes(Nb − 1)/4, and the maximum value ofqi,blade is obtained as

(1 +
√
Nb)/2 from the following equation:

q2
i,blade + αhq

2
i,disk − qi,blade = (Nb − 1)/4. (4.29)

However, blade stress level may be represented by the blade displacement relative to

the corresponding disk displacement. That is,|xi,blade − xi,disk| is more meaningful than

|xi,blade|, and so is the upper bound of|xi,blade − xi,disk|/|xcb|. Since

|xi,blade − xi,disk|/|xcb| ≤ |xi,blade|/|xcb|+ |xi,disk|/|xcb| = qi,blade + qi,disk,

the maximum value ofqi,blade + qi,disk can be used as the upper bound for|xi,blade −

xi,disk|/|xcb|.

The derivative ofqi,blade + qi,disk is zero at its maximum. That is,

d(qi,blade + qi,disk)

dqi,blade
= 1 +

dqi,disk
dqi,blade

= 0. (4.30)

Also, differentiating Eq. (4.29) with respect toqi,blade, the following equation is also ob-

tained:

2qi,blade + 2αhqi,disk
dqi,disk
dqi,blade

− 1 = 0. (4.31)

Finally, from Eqs. (4.29), (4.30), and (4.31),

(qi,blade + qi,disk)max =
1

2

(
1 +

√
αh + 1

αh
Nb

)
. (4.32)

That is, the upper bound of|xi,blade − xi,disk| is larger than that of|xi,blade|. However,

if the disk DOF displacement is so small thatαhq2
i,disk is negligible, which is the usual
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case for bladed disks, the upper bound of the relative displacement will be also around

(1 +
√
Nb)/2.

Note that blade response amplification was defined in this section based on the re-

sponse of a tuned, cantilevered blade, although the amplification factor is traditionally

based on the blade response in a tuned bladed disk. The traditional amplification factor for

the tuned bladed disk is always equal to 1, even if tuned-bladed-disk response varies with

the engine order of excitation. Also, the traditional amplification factor is unbounded,

because tuned-bladed-disk response may be very small for a certain engine order as re-

ported by Kenyon and Griffin [62]. However, when blade response is normalized with the

response of a tuned, cantilevered blade, the amplification factor for tuned-bladed-disk re-

sponse may not be 1, but the upper bound of the amplification factor is around Whitehead’s

maximum factor.

4.3 Superposition of Closely Spaced Modes

As reported in Yang and Griffin’s work [42], when a tuned bladed disk has modes with

closely spaced natural frequencies, which is the usual case, slightly mistuned systems also

have closely spaced modes in the same range, and the motion of mistuned systems can

be approximated with the linear combination of the closely spaced tuned-system modes.

Thus, here an alternative way to calculate the upper bounds of blade response is investi-

gated using the idea that mistuned-system motion is the superposition of closely spaced

tuned-system modes. The only constraint is that the dissipated energy in a system is equal

to the energy input by external forcing.

In fact, Whitehead [2, 25] also used this approach for a 1-DOF-per-sector lumped pa-

rameter model. In his work, all the modes (traveling waves with the same amplitude )

were used to calculate the maximum amplification with the above mentioned constraint,
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and all the modal masses were equal to 1. However, the traveling wave modes for a 2-

or a multi-DOF-per-sector system can have amplitudes different from each other when

normalized such that all the modal masses are equal. Furthermore, multiple modes with

different natural frequencies but with the same interblade-phase angle can be present in

a narrow frequency range where frequency veering is present, while a 1-DOF-per-sector

model has only a single natural frequency for each interblade-phase angle. Therefore, the

purpose of the investigation in this section is to generalize Whitehead’s approach.

4.3.1 Derivation

It is assumed that a mistuned bladed disk is described using a small set of closely

spaced tuned-system traveling-wave modes whose damping coefficients are not necessar-

ily equal, and that only structural stiffness is mistuned. Then, the equation of motion can

be written as follows: [
−ω2I + jC + Λt + ∆κ

]
z = g, (4.33)

whereC is a diagonal matrix in which theith diagonal term (ci) is the damping coefficient

corresponding to theith tuned-system mode,Λt is a diagonal matrix of real tuned-system

eigenvalues,∆κ is a Hermitian matrix containing the projection of structural stiffness

mistuning onto tuned-system modes,z is a vector of the modal coordinates, andg is the

vector of modal forces. Here, a pure engine order excitation is considered for external

forcing so thatg has non-zero, real terms only for the traveling wave modes corresponding

to the engine order.

Premultiplying Eq. (4.33) byz∗, the complex conjugate transpose ofz, and taking the

imaginary part gives

z∗Cz =
∑
i∈E

Im(z∗i gi), (4.34)

whereE is a set of mode numbers corresponding to the engine order of excitation. Note
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that, sincez∗∆κz is Hermitian and scalar,z∗∆κz is real. This equation indicates that the

energy dissipation in the system is equal to the energy input by external forcing. Suppose

an extreme case in which the phase ofgi leads the phase ofzi by 90 ◦ so that the energy

input is maximized. For this case, the above equation becomes

Nm∑
i=1

ci|zi|2 =
∑
i∈E

|zi||gi|, (4.35)

whereNm is the number of the retained traveling-wave modes, and this equation is used

as the constraint.

Now, a quantity to be maximized needs to be determined. The quantity can be the

absolute or relative displacement of blade DOF, or can be the modal displacement of a

cantilevered-blade mode, if multiple DOF are used for a blade, such as the one in a finite

element model. Note that the modal displacement of a cantilevered-blade mode can be

considered similar to the relative displacement in a model with a single DOF for a blade.

Since the worst case occurs when all the traveling wave modes are in phase at one blade,

the quantity (physical or modal displacement) at the blade in such a situation is maximized.

That is, the objective function is

max

(
Nm∑
i=1

ai|zi|

)
,

whereai is the amplitude of the displacement in theith traveling wave mode. The deriva-

tive of the objective function is zero at its maximum. Therefore,Nm − 1 equations can be

obtained as follows:

∂|z1|
∂|zi|

= − ai
a1

for i = 2, . . . , Nm. (4.36)

Since there is one constraint equation, one modal coordinate need to be chosen as a de-

pendent variable. Here,z1 is chosen as the one, and it can be assumed that mode 1 is not

in the setE without loss of generality.
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Therefore, differentiating Eq. (4.35), and inserting Eq. (4.36), the relation between|zi|

and|z1| is obtained as follows:

|zi| =


c1ai
cia1

|z1| for i /∈ E, andi 6= 1,

c1ai
cia1

|z1|+
|gi|
2ci

for i ∈ E.

(4.37)

Now, inserting Eq. (4.37) into the constraint in Eq. (4.35),|z1| is obtained as follows:

|z1| =
a1

c1

√√√√√√
∑
i∈E

|gi|2/4ci
Nm∑
i=1

a2
i /ci

. (4.38)

Then,|zi| is obtained by inserting the above equation into Eq. (4.37), and the maximum

value of the objective function becomes(
Nm∑
i=1

ai|zi|

)
max

=
1

2


√√√√Nm∑

i=1

a2
i

ci

∑
i∈E

|gi|2
ci

+
∑
i∈E

ai|gi|
ci

 . (4.39)

Since this maximum value has been derived using only the mode shapes without con-

sidering natural frequencies and mistuning level as in Whitehead’s approach, this max-

imum value may not be reached. However, this expression still provides more specific

upper bounds for multi-DOF-per-sector models than Whitehead’s factor that was derived

from a 1-DOF-per-sector model.

4.3.2 Examples

A 2-DOF-per-sector model and a finite element model were considered for the appli-

cation of the above upper bound calculation.

For a 2-DOF-per-sector model, the model illustrated in Fig. 4.1(b) was used. Each

disk DOF was connected to two adjacent disk DOF by springs of stiffnesskc. Also, all the

tuned-system modes were assumed to be equally damped, and a cantilevered-blade was

also set to have the same damping as that of the tuned-system modes. Hence, the damping
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coefficient is eliminated when the upper bound of blade response is normalized by the

cantilevered-blade response. The used values for the model parameters aremd/mb = 100,

kc/kb = 300, andkd/kb = 40. Figure 4.5 shows the plot of the natural frequencies versus

nodal diameters for the tuned model with 17 blades. The curves connecting the points at

integer nodal diameters were obtained by treating interblade-phase angle as a continuous

variable [39]. Since the nodal diameters 1 to 7 corresponds to double modes, the plot

shows the frequencies of all the 34 modes.

To calculate the upper bounds, first of all the tuned-system modes that can describe the

motion of mistuned systems should be selected. Here, two cases are shown. One is for

closely spaced 17 modes marked by filled circles between two dotted lines in Fig. 4.5, and

the other is for all the 34 modes. The upper bounds of|xb − xd| were obtained for various

engine orders of excitation using Eq. (4.39) and normalized by the amplitude of a tuned,

cantilevered blade at its resonance with external forcing of the same magnitude as the

engine order excitations, and are shown in Fig. 4.6. The dotted lines in Fig. 4.6 represent

the upper bound obtained using Eq. (4.32) for a 2-DOF-per-sector model, which is 2.5718

becauseαh is equal tomd/mb when all the modes are equally damped. It can be seen that,

when 17 modes are used, the upper bound values obtained using Eq. (4.39) are smaller

than that obtained using Eq. (4.32). Also, the calculated upper bound varies according to

the engine orders, and is smallest at engine order 1. However, when all the modes are

used, all the calculated upper bounds are the same as 2.5718. Here, it should be noted that

the results in Fig. 4.6(a) are more realistic than those in Fig. 4.6(b) because only the 17

modes can mainly interact in mistuned systems when mistuning is small. This indicates

that Eq. (4.39) can provide more realistic and lower upper bounds than Eq. (4.32).

The largest amplitudes ofxb − xd in the tuned 2-DOF-per-sector model were obtained

for various engine orders of excitation. And, they are normalized again by the cantilevered-
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blade response. Figure 4.7(a) shows the normalized tuned responses when the 17 modes

are used. As can be seen, all the tuned-system responses are smaller than the cantilevered-

blade response. This is because vibration energy flows from blades to disk so that the

energy level of blades in a tuned bladed disk becomes smaller than that of a tuned, can-

tilevered blade. It can be also observed that the variation of the tuned response level along

the engine orders in Fig. 4.7(a) is similar to that of the upper bound level in Fig. 4.6(a).

This trend can be expected from Eq. (4.39). That is, ifai for i ∈ E are small, the cor-

responding upper bound as well as the tuned response will be small, too. In Fig. 4.7(b),

the ratios of the upper bounds to the tuned responses, which are the upper bounds of tra-

ditional amplification factor, are depicted. Since the tuned response at engine order 1

is much smaller than others, the ratio at engine order 1 is much higher than others, and

exceeds Whitehead’s maximum amplification factor (2.5616 for a 17-blade system).

Equation (4.39) was also applied to an advanced rotor design that can replace multiple

rotor stages. The finite element model shown in Fig. 4.8 was constructed with 10-noded

pyramid elements, and it has 1,299,792 DOF. The natural frequencies of this finite element

model are shown in Fig. 4.9. The lowest five blade-dominated mode families are displayed,

and the corresponding dominant cantilevered-blade mode is shown on the right-hand side

of each mode family. 1F and 2F denote the first and second flexural bending modes, 1T

denotes the first torsion mode, and 1S and 2S denote the first and second stripe modes.

For this study, the 1T mode family was chosen, and 28 modes marked by filled circles

between two dotted lines in Fig. 4.9 was selected for the description of the bladed disk

motion around 1.5 kHz. It was assumed that tuned-system modes and cantilevered-blade

modes were equally damped as in the case of the previous lumped parameter model. A

unit force normal to the surface was applied on a node at the front edge of each blade tip

so that the torsion mode could be well excited, and its phase was adjusted according to
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the engine order of excitation. Although the forcing was unrealistic, and the upper bound

calculation depends on the modal forces, the results can be meaningful as long as the 1T

blade mode is dominant in the motion of the bladed disk and the cantilevered blade.

First, calculated were the 1T modal participation factors in the blade motion of the

selected tuned-system modes. Then, the upper bounds, tuned-system responses, and res-

onant cantilevered-blade response of the 1T mode were obtained based on the modal par-

ticipation factors. The results are shown in Fig. 4.10. As can be seen, the tuned-system

response at engine order 1 is smaller than others while the upper bounds are almost the

same along the engine orders. Therefore, the ratio of the upper bound to the tuned-system

response at engine order 1 is much higher than others, even than Whitehead’s maximum

factor (3.0495 for a 26-blade system), although the ratios at other engine orders are much

lower than 3.0495.

4.4 Predicting Blade Stress Levels Directly from Reduced-Order Vi-
bration Models of Mistuned Bladed Disks

It is well known that the forced vibration amplitudes of bladed disks can increase

dramatically due to small, random discrepancies among the blades, which are referred to

as mistuning. As a result, blade mistuning can lead to significant durability and reliability

problems in turbine engines. In order to analyze bladed disk designs and assess the effects

of mistuning, finite element models (FEMs) are typically employed. From a finite element

vibration analysis, the displacement and the stress state can be obtained at all degrees

of freedom (DOF) and finite elements. However, industrial bladed disk FEMs usually

feature very large numbers of DOF, and thus traditional finite element analysis (FEA)

can be prohibitively expensive. To address this issue, a variety of techniques [15, 22, 23,

40, 44] have been developed for constructing reduced-order models (ROMs) from FEMs.
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Although such ROMs can be used to solve the vibration response quickly and accurately

relative to FEA, they are typically formulated in terms of modal and physical displacement

variables for the bladed disk, whereas the primary variable of interest for durability and

reliability studies is stress. To calculate blade and/or disk stress levels, the displacements

predicted by the ROM analysis can be projected back to finite element coordinates and then

post-processed via FEA [39]. However, it may be cumbersome and expensive to translate

the ROM output to the FEM input format and then calculate the stress field with FEA,

especially if this process needs to be repeated many times for a Monte Carlo simulation.

In order to take full advantage of a highly efficient reduced-order modeling technique, it

would be better to be able to predict the increase in stress levels due to mistuning directly

from the ROM.

In structural dynamic problems, changes in vibratory stress levels can usually be ap-

proximated based on changes in the corresponding displacement levels, as long as the

shape of the vibration response does not change significantly over a frequency range of

interest. However, bladed disk structures feature frequency regions of high modal density,

and in these regions blade mistuning can greatly alter the system mode shapes, from an

extended pattern for a tuned system to a localized pattern for a mistuned system. Neverthe-

less, for the resonant response of both tuned and mistuned bladed disks, the displacement

shape of each blade often resembles that of a tuned cantilevered-blade mode (the mode

of a single blade cantilevered at its interface with the disk). Indeed, if the blade motion is

dominated by a single cantilevered-blade mode throughout the frequency range of interest,

then blade displacements may be used to describe stress levels. However, if there is more

than one dominant cantilevered-blade mode, which occurs when blade modes have close

natural frequencies, then blade stress trends may not match blade displacement trends.

Also, blade mistuning is usually modeled as a variation of blade stiffness. Therefore, even
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if two blades have the same displacements, they may experience different levels of stress.

In general, some care must be taken to relate blade displacement results to stress levels.

In this work, three indicators are proposed as ROM-based measures of the level of

blade stress in a mistuned bladed disk. These indicators are defined using (1) the Eu-

clidean norm of blade displacements, (2) the modal amplitude of a cantilevered blade, and

(3) the strain energy in a blade. All three indicators can be calculated directly from the

ROM results, without requiring an expensive finite element stress analysis for the mistuned

bladed disk. In the following sections, these indicators are formulated, and then their ac-

curacy is examined and validated by comparing their stress predictions to the largest Von

Mises stresses in the blades calculated from a much more costly finite element analysis.

4.4.1 Stress Indicators

If a tuned blade is modeled as a single-DOF lumped parameter model with a mass

(mb) and a spring (kb), the stress level is proportional tokb|x|, where|x| is the amplitude

of the spring deformation. Then, the ratio of the stress level of a mistuned blade to that

of a tuned, cantilevered blade at its resonance becomes(1 + δ)|x|/|xcb|, whereδ is a non-

dimensional blade-stiffness mistuning value, and|xcb| is the amplitude of the resonant

response of a tuned, cantilevered blade. That is, the stress ratio is the product of1 + δ and

the displacement ratio,|x|/|xcb|. If this stress ratio and the stress level of a cantilevered

blade are known, then the stress level of any blade can be calculated.

However, when using a finite element model, the elastic deformation induced by the

motion of the disk is included in the blade motion, and thus the stress state for a blade in a

bladed disk assembly can be different from that for a cantilevered blade. Still, if the blade

vibration is dominated by motion corresponding to a single mode of a tuned cantilevered

blade, then the level of the largest stress in a blade—which is perhaps most meaningful in
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terms of design safety—can be approximated by assuming that the disk-induced motion is

negligible, which is often the case for blade-dominated system modes. In this work, based

upon this assumption, three indicators are proposed that represent the largest stress in a

blade when normalized by the largest stress in a cantilevered blade at the resonance con-

dition corresponding to the dominant cantilevered-blade mode. Therefore, each indicator

is referred to as a normalized stress indicator (NSI). Each NSI is defined such that it can

be calculated directly from the displacements obtained from a ROM analysis.

The first normalized stress indicator is formulated in terms of the Euclidean norm of

the physical blade displacement vector:

(1 + δ)um/ucb, (4.40)

whereum is the Euclidean displacement norm for a blade in the mistuned bladed disk, and

ucb is the Euclidean displacement norm for the resonant response of a tuned cantilevered

blade. Here,δ is the modal stiffness mistuning value for the dominant cantilevered-blade

mode.

The second normalized stress indicator is formulated in terms of modal amplitudes:

(1 + δ)am/acb, (4.41)

wheream is the dominant modal amplitude of a mistuned blade when the vibration re-

sponse is described in tuned cantilevered-blade modal coordinates, andacb is the modal

amplitude for the resonant response of a tuned cantilevered blade. Note thatam andacb cor-

respond to the same cantilevered-blade mode. However, this formulation does not require

that cantilevered-blade modes be used as basis vectors in the ROM, because the system

motion can be projected onto these modes to retrieveam. Furthermore, a coordinate trans-

formation between ROM modal coordinates and cantilevered-blade modal coordinates can

be calculateda priori to make this an extremely inexpensive indicator to compute.
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The third normalized stress indicator is formulated in terms of blade strain energy. For

a single-DOF lumped parameter model, the ratio of the strain energy in a mistuned blade

to that in a tuned, cantilevered blade at its resonance beomes(1+δ)(|x|/|xcb|)2. Therefore,

using the strain energy in a blade, an analogous indicator is proposed:

√
(1 + δ)Em/Ecb, (4.42)

whereEm is the peak strain energy of a blade in the bladed disk during one period of os-

cillation, andEcb is the peak strain energy during one period of oscillation for the resonant

response of a tuned cantilevered blade.

Although disk-induced motion is usually small, the physical displacements of blades

are determined by the disk-induced rigid body and elastic motion as well as by the cantilevered-

blade motion. Only the disk-induced elastic motion and the cantilevered-blade motion

affect the blade stress level. However, the NSI proposed in Eq. (4.40) is affected by the

rigid body motion. Nevertheless, this does not imply that this NSI is less accurate than

the other two, because none of the proposed NSIs accounts for the disk-induced elastic

motion appropriately. Also note that, even if the disk-induced elastic motion may affect

considerably the stress level locally near the blade root, the change in total blade strain

energy due to this motion may be very small.

In order to test the three proposed indicators, the FEM of an industrial rotor with 29

blades shown in Fig. 4.11 was used. (This rotor model was also studied in previous work

by the authors [44], in which its vibration characteristics, including the plot of natural fre-

quencies versus number of nodal diameters, can be found.) Blade mistuning was imple-

mented by varying Young’s modulus in the finite elements of the blades, and 50 randomly

mistuned systems were obtained. Each mistuned system was tested in two excitation fre-

quency regions: 9–11 kHz and 26–29 kHz. The second flexural bending (2F) mode of a
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cantilevered blade is the dominant blade motion in 9–11 kHz, and the third flexural bend-

ing (3F) mode is dominant in 26–29 kHz. For external forcing, engine order excitations

were considered by applying a unit force normal to the blade surface on one of the nodes at

each blade tip. Engine order 1 and 3 were used for 9–11 kHz and 26–29 kHz, respectively.

For each mistuned system and frequency region, a resonant frequency at which the largest

Euclidean blade displacement norm occurs was identified. At that frequency, the response

data for the 29 blades obtained from the FEA were collected. Thus, for each frequency

region, 1450 sets of blade response data were obtained, and the Euclidean blade displace-

ment norm, the amplitude of the 2F or 3F cantilevered-blade mode, and the peak blade

strain energy during a period of oscillation were calculated for each data set. Also, the

largest peak Von Mises stress in each blade during a period of oscillation was calculated

using the complex stress state for the finite element centers obtained from the FEA. The

results for the 2F and 3F regions are shown in Figs. 4.12 and 4.13, respectively.

In these figures, the “normalized largest stress” is defined as the ratio of the largest Von

Mises stress of a blade in a mistuned system to that of a tuned, cantilevered blade. If the

NSIs were to measure the normalized largest stress exactly, then all the data points should

appear on the lines of unit slope in Figs. 4.12 and 4.13. However, as mentioned above, the

disk-induced component of blade motion is not accounted for by the NSIs. Therefore, not

all the data points fall on the lines, although they are located close to them. In Fig. 4.12,

although all indicators underestimate the stress level, the NSI based on the Euclidean norm

is seen to be a better stress approximation than the other two indicators. This is because

disk-induced elastic motion increases the stress level for the 2F mode region, and the rigid

body motion also increases the level of the NSI using the Euclidean norm. The data points

in Fig. 4.13 are considerably more scattered than in Fig. 4.12, especially for small NSI

values, but the general trend is that the NSIs overestimate the blade stress level slightly.
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This means that disk-induced elastic motion generally tends to decrease the stress level in

the 3F region. Hence, it can be seen that the results of the NSI based on the Euclidean norm

are worse. Finally, Figs. 4.12 and 4.13 show that the NSIs based on modal displacement

and on blade strain energy produce almost the same results, which means that the blade

strain energy is determined mostly by the dominant cantilevered-blade mode.

All three of the proposed indicators show good agreement with the normalized largest

Von Mises stress. However, it should be noted that the NSIs of Eqs. (4.40) and (4.42)

require the recovery of all the physical blade displacements in finite element coordinates.

In contrast, the NSI of Eq. (4.41) is based on modal displacements, and therefore it is the

least expensive to obtain.

4.4.2 Estimation of Blade Stress Level

Now, suppose that the NSI value of a blade can be calculated and that the largest

stress for the cantilevered-blade response is known. Then, the largest stress in the blade

can be approximated as the product of the NSI value and the cantilevered-blade stress.

In this section, two cases of blade stress estimation are studied using the same model as

in the previous section. The mistuning values are those given in Table 2 in the authors’

previous work [44] that was obtained by a random number generator. In the first case

considered, a single cantilevered-blade mode is dominant over the frequency range of

interest. In the second case, two blade-dominated mode families are so close that the

dominant cantilevered-blade mode for each blade can be different and change throughout

the investigated frequency region.

In order to calculate the NSI value, the dominant cantilevered-blade mode needs to

be known. Usually, within a given blade-dominated mode family, blade motion is gov-

erned by a single cantilevered-blade mode. However, if more than one blade-dominated
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mode family is present in the motion of a mistuned system, the modal displacements of

the corresponding cantilevered-blade modes need to be calculated for each blade at ev-

ery frequency, in order to determine which mode is dominant. That is, even if the stress

measures defined in Eq. (4.40) or (4.42) are used, the modal displacements still need to be

calculated. This encourages again the use of Eq. (4.41) as a stress indicator. Therefore, the

estimation of blade stress in this study was performed using only the cantilevered-blade

modal amplitude stress indicator, Eq. (4.41).

The first case considered concerns the frequency range 26–29 kHz, in which, as men-

tioned earlier, the 3F blade mode is dominant. From the FEA, stresses and displacements

were obtained by applying engine order 3 excitation. Since the FEA stress calculation is

computationally expensive, it was performed only at the natural frequencies of the mis-

tuned bladed disk, and the NSI values were calculated from Eq. (4.41) based on these

FEA results. In addition, a 34-DOF ROM was built using the component mode mistuning

method [44] and NSI values were again calculated, but this time based on the ROM results

and at all excitation frequencies in the 26–29 kHz range. At each frequency, the largest

Von Mises stresses for the 29 blades were calculated from the FEA results or estimated

from the NSI values, and the largest value among all blades was taken, thus providing the

maximum stress envelope in terms of frequency. Figure 4.14 compares the results from the

FEA and those by the NSIs. It can be seen that the results obtained with the FEM-based

NSI and by the ROM-based NSI match very well, and that they are in good agreement

with the direct FEA stress calculation across the frequency range.

The second case features two close blade-dominated mode families in the 32–36 kHz

range, dominated by the third torsion (3T) and the second stripe (2S) cantilevered-blade

modes. For this frequency region, a larger ROM with 66 DOF was constructed, which

included modes from both families. Engine order 5 excitation was applied. At every
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frequency, a dominant cantilevered-blade mode was determined for each blade, and then

the NSI value and the estimated stress were obtained according to this dominant mode. In

addition, the Euclidean blade displacement norm was calculated for each blade via FEA

or ROM, and the maximum norm among all blades was selected. The results obtained for

the tuned bladed disk are shown in Fig. 4.15: the Euclidean blade displacement norm is

depicted in Fig. 4.15(a) and the maximum stress in Fig. 4.15(b), in terms of the excitation

frequency. Observe the three resonant peaks in the investigated frequency region, as shown

in Fig. 4.15(b), although the smallest peak barely appears in Fig. 4.15(a). The motion of

the bladed-disk assembly is dominated by the 3T blade mode at the first peak around 33.1

kHz, and by the 2S blade mode at the second peak around 34.7 kHz. However, at the

third peak around 35.1 kHz, the motion is dominated by disk rather than blade motion,

contrary to the other two peaks. Therefore, the third peak in Fig. 4.15(a) is small. Also, it

is seen that the stress results obtained with the NSI do not approximate well the FEA stress

calculation around the third peak, as shown in Fig. 4.15(b). This is because at the third

peak the blade stress level is affected greatly by the disk-induced elastic motion. Also,

comparing Figs. 4.15(a) and 4.15(b), observe that the trend of the displacement results is

qualitatively different from that of the stress results. That is, although the 3T blade mode

gives smaller maximum displacements than the 2S mode, the maximum stress for the 3T

mode is higher than for the 2S mode.

Results were also obtained for the mistuned system, and they are depicted in Fig. 4.16.

Note again that the trend of the displacement results is considerably different from that of

the stress results. It can also be seen in Fig. 4.16(b) that the NSI results are in very good

agreement with the FEA results, except around 35.1 kHz which corresponds to the third

peak in Fig. 4.15(b). Since the tuned-system mode corresponding to the third peak features

small blade motion, this mode is not altered as much by blade mistuning as the other blade-
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dominated modes. Therefore, even for the mistuned system, the motion corresponding to

this mode occurs around 35.1 kHz.

4.5 Conclusions

Using the relation between blade response and vibration energy input through cou-

pling, the maximum energy concentration in a single blade has been derived for 1-DOF-

per-sector models with different damping representations. Therefore, the upper bounds

of the amplification of the blade displacement and velocity, which turned out to be the

same as Whitehead’s maximum amplification factor, were found for hysteretic and vis-

cous damping, respectively. Also, the upper bound of blade stress was found to be around

the Whitehead’s factor for structural damping. It was also demonstrated that the amplifi-

cation of blade displacement can exceed(1 +
√
Nb)/2 if viscous or structural damping is

used although it is still bounded around(1 +
√
Nb)/2 if mistuning is small.

The upper bound for a 2-DOF-per-sector model was also found from the maximum en-

ergy concentration. Although the traditional amplification factor is the ratio of the largest

blade response in a mistuned system to that in the tuned system, the upper bound was nor-

malized by the resonant response of a tuned, cantilevered blade so that the absolute blade

responses could be measured and compared. It was found that the upper bound is larger

than that for a 1-DOF-per-sector model, and that it is still around(1 +
√
Nb)/2 if disk

displacements are negligible.

Whitehead [25] obtained the upper bound of blade response by superposing all the

traveling wave modes for a 1-DOF-per-sector model. This approach was extended to gen-

eral bladed-disk models with multiple DOF per sector. The generalized expression gives

specific upper bounds for different systems and for different engine orders of excitation.

The expression has been applied to a 2-DOF-per-sector model and a finite element model.
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From the results for the 2-DOF-per-sector model, it was seen that the generalized expres-

sion allows lower upper bounds than that obtained from the maximum vibration energy

concentration, when only closely spaced traveling wave modes are used.

Three normalized stress indicators were proposed as approximate measures of the

largest blade stress level in a mistuned bladed disk. These stress measures were defined

using the Euclidean blade displacement norm, the amplitude of a dominant cantilevered-

blade mode, and the strain energy in a blade. All three can be calculated efficiently from

results obtained with a reduced-order model, without having to resort to expensive finite

element stress calculations for the mistuned bladed disk. The three NSIs were tested using

the finite element model of an industrial rotor. All three indicators showed good accuracy

relative to finite element results. However, the computational cost of the NSI based on the

amplitude of a dominant cantilevered-blade mode is significantly lower than the other two,

especially when more than one dominant blade mode is present in a frequency range.

It was demonstrated with a case study that, when more than one blade-dominated mode

family is present in the frequency region of interest, blade displacement amplitudes can

feature trends that are qualitatively different from those of stress levels. This suggests that

using raw displacement results from reduced-order models can lead to erroneous predic-

tions for stress. Instead, stress indicators, such as those proposed in this work, should be

calculated to assess bladed disk designs.
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4.6 Figures and Tables
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(a) 1-DOF-per-sector model
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(b) 2-DOF-per-sector model

Figure 4.1: Lumped parameter models of bladed disks.
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Figure 4.2: Energy input through coupling to a blade versus displacement amplification
obtained from 1,000 mistuned systems with a single DOF per sector.
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Figure 4.3: Energy input through coupling to a blade versus velocity amplification ob-
tained from 1,000 mistuned systems with a single DOF per sector.
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Figure 4.4: Energy input through coupling to a blade versus stress amplification obtained
from 1,000 mistuned systems with a single DOF per sector.
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Figure 4.5: Normalized natural frequencies of a tuned 2-DOF-per-sector lumped parame-
ter model.
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Figure 4.6: Normalized upper bounds of mistuned-system response.
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Figure 4.7: Ratios of upper bounds to tuned-system responses when 17 modes are used.
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Figure 4.8: Finite element mesh of an advanced bladed disk.
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Figure 4.9: Natural frequencies of an advanced bladed disk.
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(c) Ratios of upper bounds to tuned-system responses

Figure 4.10: Upper bounds, tuned-system responses, and their ratios for an advanced
bladed disk.
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Figure 4.11: Finite element mesh for an industrial rotor.
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Figure 4.12: PERFORMANCE OF NORMALIZED STRESS INDICATORS IN THE
2ND FLEXURAL MODE REGION.
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Figure 4.13: PERFORMANCE OF NORMALIZED STRESS INDICATORS IN THE
3RD FLEXURAL MODE REGION.
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Figure 4.14: Mistuned forced response in 26–29 kHz, where the 7th cantilevered-blade
mode is dominant.
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Figure 4.15: Tuned forced response in 32–36 kHz, where the 8th and 9th cantilevered-
blade modes are dominant.
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Figure 4.16: Mistuned forced response in 32–36 kHz, where the 8th and 9th cantilevered-
blade modes are dominant.
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Table 4.1: Examples of mistuning patterns resulting in displacement amplification larger
than(1 +

√
Nb)/2

Damping Blade mistuning pattern Displacement amplification

Structural -0.0520 -0.0224 -0.0226 1.4211

Viscous -0.0520 -0.0221 -0.0223 1.3928



CHAPTER V

Intentional Mistuning Design Space Reduction Based on
Vibration Energy Flow in Bladed Disks

Intentional mistuning is the deliberate incorporation of blade-to-blade parameter vari-

ations in the nominal design of a bladed disk. Previous studies have shown that this is a

promising strategy for mitigating the damaging effects of unintended, random mistuning.

In this paper, the mechanisms of intentional mistuning are studied by investigating the

relation between blade response and vibration energy flow in lumped parameter models.

Based on key observations from the energy flow analysis, a few design guidelines are pro-

posed that drastically reduce the design space for intentional mistuning patterns. Thus, an

optimization may be performed on the reduced design space or skipped altogether, yield-

ing dramatic reductions in computational costs. The guidelines are validated by extensive

Monte Carlo simulations for the lumped parameter models as well as for a finite-element-

based reduced-order model of an industrial rotor. It is shown that the reduced design space

includes optimal or near-optimal intentional mistuning patterns.

5.1 Introduction

Due to manufacturing tolerances, in-operation wear, and other causes, bladed disks

always have small, random blade-to-blade variations, called mistuning. While mistuning

127
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is beneficial in terms of aerodynamic stability [63, 64], it can lead to a significant increase

in the maximum blade vibration relative to the ideal, tuned case [2–5, 7]. The increases in

blade vibration amplitudes and stresses due to mistuning are a cause of great concern for

the turbine engine community.

One approach to mitigating the damaging effects of mistuning is to move away from

a perfectly tuned design. It has been reported that maximum blade forced response lev-

els can be decreased by intentionally introducing some mistuning into the nominal de-

sign [8, 29, 35–37]. That is, using two or more designs of blades with nominally different

natural frequencies can make the bladed disk system more robust with respect to random

mistuning. The effectiveness of this intentional mistuning strategy depends largely on the

selected pattern of blade property variation. In order to select the intentional mistuning

pattern, one could perform a design optimization. However, in order to optimize inten-

tional mistuning, the increase in blade forced response due to random mistuning needs to

be evaluated for each iteration of the intentionally mistuned design. Therefore, the com-

putational cost becomes prohibitive for a large number of possible intentional mistuning

patterns. There has been some recent work on determining the pattern of intentional mis-

tuning using optimization algorithms [38]. However, because of the cost, only limited

information was used without evaluating the maximum blade forced response.

In addition, there have been several previous studies on using optimization methods to

find the worst or best overall mistuning patterns in terms of aeroelastic stability [65–68]

or forced response amplification [56, 57, 59, 69]. There have also been a few studies on

finding an optimal blade arrangement when a set of mistuned blades are given [70, 71].

The worst mistuning pattern is useful for finding the maximum blade forced response.

However, the best mistuning pattern may not actually represent an optimal or near-optimal

design, because the actual response may be greatly affected by the additional, random
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mistuning that will inevitably occur in the manufacturing process, during the assembly, or

during engine operation. In fact, Crawley and Hall [67] showed that the performance of the

optimal pattern was very sensitive to small changes in the mistuning values. Furthermore,

for integrally bladed disks from which blades cannot be separated, blades cannot be re-

arranged.

The goal of this study is not to perform a true design optimization, but rather to develop

a simple approach for identifying a relatively small number of promising patterns of inten-

tional mistuning that are expected to include a near-optimal design. First, the influence of

intentional mistuning on the vibration energy flow in a bladed disk system is investigated.

An underlying physical mechanism of intentional mistuning is presented using the relation

between the energy flow in bladed disks and the stress amplification in blades. Then, based

on key observations from the energy flow analysis, some guidelines for selecting effective

intentional mistuning patterns are proposed and tested.

This paper is organized as follows. In section 5.2, the energy input to a blade through

coupling and the energy flow between sectors are formulated and investigated for lumped

parameter models. Three guidelines for intentional mistuning design space reduction are

proposed in section 5.3. In section 5.4, these guidelines are validated with lumped param-

eter models, and several promising configurations of intentional mistuning are tested for

an industrial rotor. The conclusions from this study are summarized in section 5.5.

5.2 Energy Flow in Lumped Parameter Models

Many researchers have studied bladed disks using lumped parameter models or simple

analytical models [2–4, 7, 8, 10, 12, 36, 38, 65, 66, 70]. In this study, two lumped parameter

models are considered. The first model, shown in Fig. 5.1(a), has only a blade DOF for

each sector, with tuned massmb and tuned stiffnesskb. Each blade DOF is directly coupled
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to neighboring blades by springs of stiffnesskc. The second model, shown in Fig. 5.1(b),

has a blade DOF and a disk DOF for each sector. For this model, the coupling springs

connect the disk DOF. Thus, for the 1-DOF-per-sector model, energy flow occurs only

between neighboring blades, but for the 2-DOF-per-sector model, energy in a blade can

flow to any blade through disk.

In these models, every mass and stiffness can be defined using a ratio with respect to a

blade massmb and stiffnesskb. Frequencies and stresses can be also non-dimensionalized

by a tuned-cantilevered-blade natural frequency and its stress at its resonant frequency.

Thereby, in this study, all the results are obtained in non-dimensionalized form. For the

forced response, engine order excitations are applied, and only steady-state responses are

considered. Structural damping is assumed, and the structural damping ratio is denoted by

γ.

Mistuned models are generated by adding stiffness variations to nominal blade stiff-

nesses. Theith mistuned stiffness is expressed as

kb,i = kb(1 + δi), (5.1)

whereδi is theith mistuning value to be given randomly or intentionally.

5.2.1 Energy Input to a Blade Through Coupling

In the 1-DOF-per-sector lumped parameter model, the average energy dissipated in

bladei over a period of oscillation is

Ed
i =

1

2
Re (jγkb(1 + δi)xiv

∗
i ) =

1

2
γkb(1 + δi)ω|xi|2, (5.2)

wherej is
√
−1, ω is the excitation frequency,xi is the displacement of theith blade,

andv∗i is the complex conjugate of theith-blade velocity. There are two energy sources

to balance this energy loss: the energy input by external forcing, and the energy input
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through the coupling springs. The average energy input to bladei by external forcing is

Ef
i =

1

2
Re (fiv

∗
i ) =

1

2
ωF |xi| sin(∆θ), (5.3)

wherefi is the external force applied to theith blade,F is the amplitude of the external

force, and∆θ is the phase offi subtracted by the phase ofxi. Because engine order exci-

tation is assumed, the forces applied to the blades have the same amplitude, but different

phases.

Using Eqs. (5.2) and (5.3), the average energy input to bladei through coupling can be

written as

Ec
i = Ed

i − Ef
i =

ω

2

(
γkb(1 + δi)|xi|2 − F |xi| sin(∆θ)

)
. (5.4)

Therefore, the energy input through coupling is bounded for a given amplitude of displace-

ment as follows:

ω

2

(
γkb(1 + δi)|xi|2 − F |xi|

)
≤ Ec

i ≤
ω

2

(
γkb(1 + δi)|xi|2 + F |xi|

)
. (5.5)

Now, in order to relate the stress level of a blade to the energy input through coupling,

a stress amplification factor is defined as follows:

pi =
kb(1 + δi)|xi|

kb|xcb|
=

(1 + δi)|xi|
|xcb|

, (5.6)

wherexcb is the displacement of a tuned cantilevered blade at its resonant frequency. That

is, pi indicates the ratio of the stress of a mistuned blade to the maximum stress of a tuned

cantilevered blade. Since structural damping is used, the resonant frequency is the natural

frequency, and the cantilevered blade response is written as

|xcb| =
F

γkb
, or F = γkb|xcb|. (5.7)

Inserting Eqs. (5.6) and (5.7) into Eq. (5.5), and normalizingEc
i with (ω/2) (γkb|xcb|2),

the following relation is obtained:

p2
i − pi ≤ (1 + δi)Ē

c
i ≤ p2

i + pi, (5.8)
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whereĒc
i is the normalized energy input to a blade through coupling. The derived relation

in Eq. (5.8) shows that the stress amplification of a blade is limited by the energy input

through coupling. Similar relations can be derived for different kinds of damping and for

the 2-DOF-per-sector model [72]. The relation for a 1-DOF-per-sector model approxi-

mately holds for a 2-DOF-per-sector model, because the energy input to a sector can be

approximated as the energy input to a blade when the motion is dominated by blades.

These bounds of the energy input are verified using Monte Carlo simulations of mis-

tuned 1-DOF-per-sector and 2-DOF-per-sector models. In the tuned 1-DOF-per-sector

model,kc/kb is set to be 0.01, which is the value that was used for a weakly coupled sys-

tem by Wei and Pierre [10]. For the tuned 2-DOF-per-sector model, the parameter values

are based on those identified for an industrial rotor [73]. (The finite element model of the

industrial rotor will be considered in section 5.4). The parameters were modified slightly

to have a frequency veering region at 1 nodal diameter for a 12-blade system. The non-

dimensionalized parameters aremd/mb = 500.0, kc/kb = 2050.0, andkd/kb = 45.5.

The natural frequencies of the resulting 2-DOF-per-sector tuned system are plotted in

Fig. 5.2. The curves connecting points at integer nodal diameters were obtained by ap-

plying a method that treats the interblade phase angle as a continuous variable [39]. A

structural damping ratio of 0.002 was used for both models. Mistuning values were sam-

pled from uniformly distributed random numbers to obtain 1,000 mistuning patterns. The

standard deviations of the random mistuning values were chosen to be 0.012 for 1-DOF-

per-sector model and 0.006 for 2-DOF-per-sector model, because the systems show large

increases in blade forced response for these mistuning levels.

For the 1-DOF-per-sector model, engine order 3 excitation was used. For the 2-DOF-

per-sector model, engine order 1 excitation was used, which corresponds to the veering

region at 1 nodal diameter. In each simulation, the resonant frequency with the maximum
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blade response was found using a golden section search method. At that frequency, the

response results for all 12 blades were recorded. So, these simulations yielded 12,000

blade response results for each model, as depicted in Fig. 5.3. For the 2-DOF-per-sector

model, the energy input to sectors (not blades) was obtained. Most of the Monte Carlo

simulation results appear between the two theoretical limit curves,p2 − p andp2 + p.

For the 2-DOF-per-sector model results, some points are just outside the lower limit. In

Fig. 5.3, it is observed that large stress amplification is accompanied by large normalized

energy input through coupling. Note that a negative value of normalized energy input

indicates a net energy drain to other blades.

For these Monte Carlo simulations, the energy input through coupling is also shown

as a function of the difference between excitation frequency and blade natural frequency,

|ω−ωi|, in Fig. 5.4. The frequency differences were normalized by the tuned-cantilevered-

blade natural frequency,ωcb. As can be seen, the level of the energy input through coupling

decreases beyond a certain level of the frequency difference. This trend is in good agree-

ment with the findings of Griffin and Hoosac [8]. They observed that the blades most

likely to exhibit the largest vibrations were those that had blade-alone (cantilevered-blade)

frequencies nearly equal to the tuned system resonant frequency, and that the highest re-

sponses occur at frequencies near the tuned system resonant frequency. This means that

a blade has a small stress amplification when an excitation frequency is sufficiently sepa-

rated from the blade natural frequency.

Now, the energy input through coupling into each blade in an intentionally mistuned

design is considered. Here, a “square wave” pattern of intentional mistuning with am-

plitude of 0.1, as shown in Fig. 5.5, is used for the lumped parameter models. Because

this pattern consists of alternating groups of two higher-frequency blades and two lower-

frequency blades, it is called a 2H2L square wave pattern. The reason for choosing this
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pattern will be explained in sections 5.3 and 5.4.

Figures 5.6 and 5.7 show the results from Monte Carlo simulations performed in the

same way as for the nominally tuned designs. In Fig. 5.6, it can be observed that the

level of the energy input through coupling as well as the level of stress amplification is

decreased, which means that the intentional mistuning pattern works well. In Fig. 5.7,

the results appear in two groups. One group is located at the smaller frequency difference

region, and the other at the larger frequency difference region. The separation of these

two groups is caused by the level of intentional mistuning being larger than that of random

mistuning. The energy input to or drain from the blades in the group at the larger frequency

difference region is very small. This verifies again that the energy input through coupling

decreases as the frequency difference increases. Furthermore, the energy input available

to a blade showing the maximum forced response is reduced due to this small energy drain

from those blades at the larger frequency difference region.

5.2.2 Energy Flow Between Sectors Through Coupling

From the investigation of the energy input to a blade through coupling, it was seen that

the possible energy source is reduced by intentional mistuning. Here, the propagation of

energy is investigated. The energy flow between two neighboring sectors is formulated

using stress amplification factors for a 1-DOF-per-sector model. The energy flow from

bladei− 1 to bladei through coupling is written as

Ec
i−1,i =

1

2
Re ((1 + jγ)kc(xi−1 − xi)v

∗
i )

=
1

2
ωkc

[
|xi−1||xi| (γ cos(∆φi−1,i) + sin(∆φi−1,i))− γ|xi|2

]
,

(5.9)

where∆φi−1,i is the phase ofxi−1 subtracted by the phase ofxi. Inserting Eqs. (5.6) and

(5.7) into the above equation, and normalizingEc
i−1,i with (ω/2) (γkb|xcb|2) again, the
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following equation is obtained:

Ēc
i−1,i =

kc
kb

[(
pi−1

1 + δi−1

)(
pi

1 + δi

)(
cos(∆φi−1,i) +

1

γ
sin(∆φi−1,i)

)
−
(

pi
1 + δi

)2
]
,

(5.10)

whereĒc
i−1,i is the normalized energy flow from bladei−1 to bladei. Since the structural

dampingγ is usually much smaller than 1,̄Ec
i−1,i is dominated by the sine term unless

sin(∆φi−1,i) is negligibly small. Therefore,̄Ec
i−1,i may be decreased by decreasingkc/kb,

pi−1, or pi; by increasingγ; or by making∆φi−1,i close to0 or π.

Now, suppose that mistuning is added to a system so that the natural frequencies of the

i−1th andith blades are separated sufficiently, and that the excitation frequency is around

the natural frequency of theith blade. Then, thei − 1th blade will vibrate with a very

small amplitude, and the available level ofĒc
i−1,i may be reduced because of smallpi−1.

If the natural frequencies of both blades are sufficiently far from the excitation frequency,

bothpi−1 andpi will be small andĒc
i−1,i may be further reduced.

For a 2-DOF-per-sector model, an equation similar to Eq. (5.10) is written as follows:

Ēc
i−1,i =

kc/kb
(kd/kb)2

[
pdi−1p

d
i

(
cos(∆φdi−1,i) +

1

γ
sin(∆φdi−1,i)

)
− pdi

2
]
, (5.11)

wherepdi is (kd|xdi |)/(kb|xcb|), xdi is the displacement of theith disk sector, and∆φdi−1,i is

the phase ofxdi−1 subtracted by the phase ofxdi . As can be seen, the energy flow depends

on disk displacements. Therefore, even if the displacement of thei − 1th andith blades

are small, the energy flow between the sectors may not be reduced.

From the results of the Monte Carlo simulations for intentionally mistuned systems

in the previous section, the plots of the energy flow from sectori − 1 to sectori versus

the difference between excitation frequency and the natural frequency of bladei were

obtained as shown in Fig. 5.8. The results appear in two groups, as in Fig. 5.7. It is seen

that the level of the energy flow in 1-DOF-per-sector models is small for the blades at the
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large frequency difference region. However, this trend is not observed in the results for

2-DOF-per-sector models, which means that the vibration energy propagation in 2-DOF-

per-sector models may not be affected by intentional mistuning. Also, since the net energy

input to a blade at the larger frequency difference region is very small (see Fig. 5.6(b)), it

can be concluded that most of the amount of energy flow from sectori − 1 just passes to

sectori+ 1.

5.3 Intentional Mistuning in Nominal Designs

In this section, the design of intentional mistuning patterns is considered in terms of

vibration energy source and propagation. Intentional mistuning is introduced into an orig-

inally tuned bladed disk design by using multiple blade designs, or blade types, where

each blade type has a different blade-alone natural frequency. In this study, the natural

frequency differences between blade types, the number of blade types, and the arrange-

ment of blades of different types are considered as the design parameters for intentional

mistuning. The first parameter is associated with the amplitude of intentional mistuning,

while the second and third are associated with the pattern of intentional mistuning.

5.3.1 Amplitude of Intentional Mistuning

The effects of varying intentional mistuning amplitude are considered by examining

stress amplification factors for lumped parameter models with the 2H2L square wave pat-

tern of intentional mistuning shown in Fig. 5.5. To begin, the 99th percentile stress ampli-

fication factor is estimated for various standard deviations of random mistuning. In order

to estimate the 99th percentile value efficiently, a Weibull distribution fit [29, 39] is applied

to the largest blade stress amplification factors obtained from Monte Carlo simulations of

mistuned bladed disks. By using a Weibull distribution fit, the number of simulations

needed for an accurate prediction of the 99th percentile value can be reduced by orders
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of magnitude. In this case, 100 simulations were run for each sampled standard deviation

value from 0 to 0.03, with a step size of 0.003. The same random mistuning patterns were

used for each set of 100 simulations as were used in section 5.2, with the pattern being

scaled according to the sampled standard deviation value.

Figure 5.9 shows the 99th percentile stress amplification factors for the 1-DOF-per-

sector model for various amplitudes of intentional mistuning. From each curve, the maxi-

mum value was taken, which is referred to as the maximum stress amplification.

In Fig. 5.10, the maximum stress amplification is shown as a function of the amplitude

of intentional mistuning for both lumped parameter models. The overall trend is that, as the

amplitude of intentional mistuning increases, the maximum stress amplification decreases,

but the slope becomes less steep. That is, the maximum stress amplification shows slow

improvement after a certain level of the natural frequency difference between the two blade

types. This trend can be expected from the results in Fig. 5.7. For the remainder of this

study, the amplitude of intentional mistuning will be set to 0.1, and only the selection of

the pattern of intentional mistuning will be investigated.

5.3.2 Pattern of Intentional Mistuning

For the pattern of intentional mistuning, a key parameter is the number of blade types

to be used. As the number of blade types increases, the number of blades with the same

nominal natural frequency decreases. This can be interpreted as an advantage. However, if

the number of blade types increases but their natural frequencies are distributed in a fixed

frequency range, the difference between blade types will decrease, and the advantage will

disappear. Also, as the number of blade types increases, the design space increases rapidly.

Therefore, using only a few blade types may be desirable.

Once the number of blade types is chosen, the arrangement of blades around the cir-
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cumference of the disk needs to be designed. One may use an optimization algorithm to

find the best intentional mistuning pattern. However, as the number of available configu-

rations becomes very large, the computational cost will become prohibitive. Here, three

guidelines are proposed to reduce the design space such that very effective (though not

necessarily optimal) configurations can be found in the reduced design space.

First, it is proposed that an equal or nearly equal number of blades should be assigned

to each blade type. If the number of blades of a certain type increases, the source of the

energy input to a blade through coupling is likely to increase when the excitation frequency

is around the natural frequency of those blades.

Second, it is proposed that the blades of each type should be distributed so that the

mistuning pattern is “balanced” about the bladed disk. If blades of the same type or similar

types are concentrated to one side, the reduction of the energy flow due to small blade

response may be small.

Third, it is proposed that an equal or nearly equal number of blades should be assigned

to each group of consecutive blades of the same type. If the size of one group of a certain

type is larger than the others, the level of the energy flow in this group might be larger

when the excitation frequency is around the natural frequency of those blades.

The second and third guidelines are valid only when the energy flow between sectors

is dependent on the displacements of blades. As mentioned in section 5.2, the energy flow

in a 2-DOF-per-sector model is dependent on the disk displacements. In that case, the

second and third guidelines may not be effective. However, if blade displacement levels

are completely independent of disk displacement levels, these guidelines will not have a

negative effect.

The above three guidelines are satisfied by a few notable classes of intentional mistun-

ing patterns. For example, when two blade types are used, a square wave pattern, such as
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a 1H1L or 2H2L, satisfies the guidelines very well. For three blade types, the guidelines

are satisfied by sawtooth or staircase patterns, such as 1H1M1L or 2H2M2L, where “M”

denotes a medium-frequency blade type. More importantly, these guidelines collectively

provide a dramatic reduction in the design space for selecting an intentional mistuning

pattern. In the next section, the effectiveness of patterns that lie within this design space

will be evaluated numerically.

5.4 Numerical Validation

5.4.1 Lumped Parameter Models

Here, reducing the design space for intentional mistuning patterns by following the

proposed guidelines is demonstrated, and the effect of the guidelines are validated using

lumped parameter models with 12 blades or 15 blades.

Consider the case in which only two blade types are used. After eliminating any pat-

terns that are redundant because they are just rotated versions of another pattern, the num-

ber of unique patterns is 350 for the 12-blade system and 2,190 for the 15-blade system.

For a 12-blade system, the first guideline is met when both the numbers of lower-

frequency blades and higher-frequency blades are chosen to be 6. For a 15-blade system,

one of the numbers can be 7 or 8 with the other being 8 or 7, and here the number of lower-

frequency blades is chosen to be 8. Then, the number of the unique patterns that satisfy

the first guideline becomes 80 for a 12-blade system, and 429 for a 15-blade system.

Now, the second guideline is applied. In order to select balanced patterns, the deviation

of the “center” of the intentional mistuning pattern is used, which is defined as

ε =

√√√√( N∑
i=1

δinti cos

(
2πi

N

))2

+

(
N∑
i=1

δinti sin

(
2πi

N

))2

, (5.12)

whereN is the total number of blades, andδinti is the ith intentional mistuning value.

A low deviation from the center indicates that a pattern is well balanced about the disk.
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From the patterns filtered by the first guideline, the best 10% patterns are selected. Then,

8 patterns for a 12-blade system remain, and 43 patterns for a 15-blade system.

In order to apply the third guideline, the standard deviation of the blade group size is

evaluated. A low standard deviation means that each group of blades contains a similar

number of blades. The best 10% patterns can be selected again from the patterns filtered by

the first and second guidelines. However, some patterns have the same standard deviation

values so that more than 10% of the patterns are selected. Finally, 3 patterns for a 12-

blade system are obtained, and 8 patterns for a 15-blade system. In this manner, the design

space for intentional mistuning patterns can be significantly reduced. The 3 patterns for a

12-blade system are square wave patterns: 1H1L, 2H2L, and 3H3L. Also, the 8 patterns

for a 15-blade system are similar to square wave patterns. Note that an exact square wave

pattern cannot be made for a system with an odd number of blades.

To validate the performance of the filtered patterns, all the available intentional mistun-

ing patterns with two blade types were evaluated. The 12-blade lumped parameter models

discussed in section 5.2 were used again. Also, a 15-blade 1-DOF-per-sector model, with

the same model parameters as those of the 12-blade model, was tested. For each pattern,

100 simulations were run at each sampled standard deviation value of random mistuning,

and the maximum stress amplification factor was determined in the same way as in the

previous section. Engine order 3 excitation was applied to the 1-DOF-per-sector models,

and engine order 1 excitation to the 2-DOF-per-sector model.

The simulation results are shown in Fig. 5.11, where each data point corresponds to

a unique pattern. For each test case, three plots are depicted. First, the plot of the maxi-

mum stress amplification values of all the available patterns versus the number of lower-

frequency blades is shown. Next, a plot for the patterns filtered by the first guideline

is shown with the x-axis being the deviation of the center of intentional mistuning (see
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Eq. (5.12)). Third, the plot for the patterns filtered by the first and second guidelines is

shown with x-axis being the standard deviation of the blade group size.

It can be seen that the proposed three guidelines are very effective for the 1-DOF-per-

sector models. For the 1-DOF-per-sector models, the optimal patterns are found in small

numbers of the filtered patterns. However, for the 2-DOF-per-sector model, only the first

guideline works well. This is because the energy propagation in a 2-DOF-per-sector model

as shown in Fig. 5.1(b) depends on disk displacements that may not be affected by blade

displacements. Still, since any adverse effect is not seen, the second and third guidelines

may be used. Moreover, the intersection of the three guidelines defines a dramatically

reduced design space that includes a near-optimal design. The stress amplification for the

1H1L pattern (1.530), which meets all three guidelines, is close to that of the best design

(1.456).

The three guidelines were derived from the investigation of vibration energy flow in

bladed disks, regardless of the engine order of excitation. Therefore, the reduced design

space can be used for any engine order of excitation. For the 1-DOF-per-sector model

with 12 blades subject to engine order 3 excitation, the optimal pattern is a 2H2L square

wave pattern. In fact, this pattern is optimal for other engine orders of excitation, except 0

and 6. Figure 5.12 shows the maximum stress amplification values of the optimal and the

2H2L patterns. It can be seen that, even for engine orders 0 and 6, the performance of the

2H2L pattern is very close to the optimal one.

Now, more than two blade types are considered in an intentionally mistuned design.

As can be seen in Fig. 5.10, the decreasing rate of the maximum stress amplification

for the 2-DOF-per-sector model levels off significantly around the amplitude of 0.025.

Therefore, it might be better to have more than two blade types if the available range of

intentional mistuning is -0.1 to 0.1. For the case of more than two blade types, all the
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possible configurations are not simulated because of the computational costs associated

with the large design space. Instead, only a few configurations satisfying the three design

guidelines are tested. Figure 5.13 shows the tested sawtooth patterns with three, four,

six, and twelve blade types, and the maximum stress amplification results are depicted

in Fig. 5.14. For the entire engine orders of excitation, the maximum stress amplification

values of the tested configurations are significantly lower than those of the nominal design.

Also, for engine order 1 excitation, the tested configurations show better performance than

any two-blade-type configuration, with the three-blade-type configuration yielding the best

results.

5.4.2 Finite-Element-Based Reduced-Order Model

So far, the proposed guidelines have been validated using lumped parameter models.

Now, the intentional mistuning design guidelines are used for a finite element model of

an industrial bladed disk with 29 blades, which is depicted in Fig. 5.15. The rotor model

is clamped at the rims located at the outer edges of the disk, which is a rough approx-

imation of boundary conditions due to neighboring stages. The finite element model is

constructed with standard linear brick elements (eight-noded solids), and it has 126,846

DOF. Figure 5.16 displays the free vibration natural frequencies of the tuned bladed disk

versus the number of nodal diameters. The blade-dominated mode families are labeled on

the right-hand side of the horizontal lines in Fig. 5.16, where F denotes a flexural bending

mode, and T a torsion mode. A unit force normal to the blade surface is applied to the

node at the center of each blade tip line, and engine order 2 excitation is considered in the

range 12–18 kHz, which includes the 2T/2F blade-dominated mode family with a veering

region near 2 nodal diameters. The used structural damping ratio is 0.006. Mistuning is
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implemented by varying the Young’s modulus of each blade:

Yi = Y0(1 + δi), (5.13)

whereYi is the Young’s modulus of theith blade, andY0 is the original Young’s modulus

for a tuned blade. Because simulations employing the full finite element model would be

quite expensive even for a small number of selected patterns of intentional mistuning, the

component mode mistuning technique [44] was used to generate a reduced-order model

with 33 DOF by selecting the 33 system modes around 15 kHz.

For lumped parameter models, blade stress amplification can be easily calculated.

However, for a reduced-order model, it is difficult to calculate the stress state in all the

elements. Recently, the authors developed an approximate measure of the maximum stress

in a blade, called the normalized stress indicator (NSI), which is defined as follows [72]:

NSI =

√
(1 + δ)Um

Ucb
, (5.14)

whereUm is the peak strain energy of a mistuned blade during a period of oscillation,Ucb is

the peak strain energy of a tuned cantilevered blade at its resonant frequency corresponding

to the 2T/2F mode, andδ is the Young’s modulus mistuning value. This indicator provides

an estimate of the amplification of the largest Von Mises stress in a blade due to mistuning.

The amplitude of intentional mistuning is set to 0.1, and 100 random mistuning pat-

terns are used in the same way as for the lumped parameter models. As with the stress

amplification in previous sections, the maximum normalized stress indicator is taken to

be the peak 99th percentile value for each intentional mistuning configuration. Since the

number of blades is 29, the design space is too huge to evaluate all the available patterns

even if only two blade types are used. Therefore, a small number of patterns that meet

three guidelines well were tested. The tested intentional mistuning patterns and their max-

imum NSI values are shown in Fig. 5.17. Since the number of blades in this bladed disk is
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a prime number, each blade type cannot be assigned to exactly the same number of blades.

However, the closest approximations to several square wave, sawtooth, and staircase pat-

terns were used. The maximum NSI of the original system without intentional mistuning

is 2.474, which indicates the maximum stress level is 147.4% higher than that of a tuned,

cantilevered blade. With intentional mistuning, the maximum blade forced response is

reduced for all the tested patterns. The best of these designs has a maximum NSI of 1.864.

5.5 Conclusions

The energy flow in lumped parameter models of bladed disks was investigated to pro-

vide a deeper understanding of the effects of intentional mistuning on the vibration re-

sponse, as well as to explore design guidelines for intentional mistuning. It was found that

a blade showing large forced response is fed a large amount of vibration energy through

coupling springs, and that blade response becomes smaller when the difference between

the excitation frequency and the blade-alone natural frequency becomes larger. Also, it

was observed that the energy flow between sectors becomes smaller with the increase

of the frequency difference when the amount of the energy flow depends on blade dis-

placements. Based on these findings, the following three design guidelines for intentional

mistuning were proposed:

1. Assign an equal number of blades to each blade type used in the design

2. Distribute the blades of each type so that they are “well balanced” about the disk

3. Arrange the blades of each type into groups of equal sizes

Classes of designs that satisfy all three rules include simple intentional mistuning patterns

with repeated wave forms, such as square wave, sawtooth, and staircase patterns.
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The guidelines were validated by performing extensive Monte Carlo simulations of

lumped parameter models for all the intentional mistuning patterns that can be constructed

with two blade types. It was found that the first guideline is strongly correlated with

a reduction in worst-case blade stress. The second and third guidelines showed weaker

correlation with blade stress reduction for a 2-DOF-per-sector lumped parameter model

where vibration energy propagate only through disk, but neither rule had an adverse effect.

Furthermore, these guidelines collectively defined a drastically reduced design space that

included optimal or near-optimal intentional mistuning patterns. Also, it is expected that

all three guidelines will work for a system with direct coupling between blades, such as

bladed disks with shrouds.

The effectiveness of the approach was also evaluated for lumped parameter models

with three or more blade types, as well for a finite-element-based reduced-order model of

an industrial rotor. For the reduced-order model, simulations were run for ten intentional

mistuning configurations satisfying the three guidelines. All of the tested intentional mis-

tuning configurations resulted in significantly reduced stress levels compared to the origi-

nal design. Overall, it was found that this approach provides a simple way to find effective

designs without requiring a costly optimization process.
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5.6 Figures
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Figure 5.1: Lumped parameter models
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Figure 5.3: Energy input through coupling to a sector versus stress amplification obtained
from 1,000 monte carlo simulations of nominally tuned systems
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Figure 5.4: Energy input through coupling to a sector versus frequency difference obtained
from 1,000 monte carlo simulations of nominally tuned systems
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Figure 5.6: Energy input through coupling to a sector versus stress amplification obtained
from 1,000 monte carlo simulations of intentionally mistuned systems
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Figure 5.7: Energy input through coupling to a sector versus frequency difference obtained
from 1,000 monte carlo simulations of intentionally mistuned systems
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Figure 5.8: Energy flow through coupling between sectors versus frequency difference ob-
tained from 1,000 monte carlo simulations of intentionally mistuned systems
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Figure 5.12: Maximum stress amplification for the best of all patterns and the best square
wave pattern for different engine orders of excitation
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Figure 5.15: Finite element mesh for an industrial rotor
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CHAPTER VI

Vibration Modeling of Bladed Disks Subject to Geometric
Mistuning and Design Changes

A new reduced-order modeling technique is presented for bladed disks that feature

large, geometric deviations from a nominal design. Various finite-element-based reduced-

order models (ROMs) have been proposed in the literature for bladed disks with small

blade-to-blade differences, called mistuning. Many of these techniques rely on the fact that

mistuned-system normal modes can be effectively represented using a linear combination

of the normal modes of the nominal cyclic (tuned) system. However, when the mistun-

ing or geometric deviation is large, the number of tuned-system normal modes required

to describe the mistuned-system normal modes increases dramatically. In this work, a

method for large mistuning is formulated by employing a mode-acceleration method with

static mode compensation. By accounting for the effects of mistuning as though they were

produced by external forces, a set of basis vectors is established using a combination of

tuned-system normal modes compensated by static modes. The obtained basis vectors

approximately span the space of the mistuned-system modes without requiring a much

more expensive modal analysis of the mistuned system, and they provide much better con-

vergence than tuned-system normal modes. Furthermore, in order to extend the method

to higher frequency ranges, quasi-static modes, in which inertia effects are included, are

160
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employed in place of static modes in the mode-acceleration formulation. Validations are

performed for an industrial compressor stage, and it is found that ROMs based on the new

technique are extremely compact, yet they accurately capture the vibration response of

bladed disks subject to geometric mistuning or design changes.

6.1 Introduction

For many years, researchers have investigated the vibration behavior of bladed disks,

and most studies have been focused on the effect of small, random blade-to-blade discrep-

ancies (mistuning). Not only is mistuning unavoidable, but the vibration response of a

mistuned bladed disk can be considerably different from that of a tuned bladed disk. Al-

though it originates from various sources, mistuning has generally been treated as a small

deviation of blade mass, stiffness, or natural frequency from the nominal value in a sim-

plified bladed disk model (a lumped parameter model or a reduced-order model) [2–4, 7–

10, 12, 15, 18, 19, 21, 23, 44, 74]. However, in reality mistuning is not necessarily small.

Large, geometric variations (e.g., cracking or fracture of a blade due to fatigue or foreign

object damage) can also change dramatically the dynamic behavior of a bladed disk, but

these large-mistuning cases have rarely been studied.

When a lumped parameter model is employed, the system response can be easily ob-

tained, even for large mistuning. However, the number of degrees of freedom (DOF) is so

small that the characteristics of an actual bladed disk may not be captured properly, espe-

cially when geometric mistuning is large. A finite element model (FEM) can predict the

response of actual bladed disks realistically, regardless of the amount of mistuning [13].

However, an FEM is usually computationally expensive, especially when Monte Carlo

simulations are required for statistical analysis of the mistuned response. Therefore, de-

veloping a reduced-order model (ROM) of a small size is of great importance to bladed
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disk research.

Several FEM-based ROMs have been reported in recent years [15, 18, 19, 21, 23, 44].

However, most of these models are based on the assumption that mistuning is small. Two

recently developed methods [23, 44] are notable for generating highly compact ROMs that

feature excellent accuracy relative to the parent FEM. These models use a basis of tuned-

system normal modes to capture mistuned-system normal modes. However, as mistuning

becomes large, the required number of tuned-system normal modes increases dramatically,

and in some cases a model gives poor results regardless of the number of retained modes.

In 1987, Gu and Tongue [75] showed that modal convergence can be accelerated by

using forced modes in addition to free vibration modes. A forced mode (or static mode) is a

shape that is induced in the structure by a given external force vector. In the work of Gu and

Tongue, external forces were applied to a beam by springs that were included as additional

stiffness elements. The concept of a forced mode can be extended to a mistuned system

in an analogous manner, for instance by considering mistuning as additional stiffnesses.

In 1995, Caiet al. [76] considered the effect of mistuning as that of external forces in a

lumped-parameter model, obtained a frequency equation in closed form, and solved it. In

a recent study by the authors [44], a reduced-order model based on a component mode

synthesis (CMS) technique was proposed for large mistuning. In this modeling method,

tuned-system normal modes (free vibration modes) and tuned-system attachment modes

(forced modes) are employed, and the ROMs show good accuracy and fast convergence

with increasing number of tuned-system normal modes. However, the model size is still

greater than that generated by a small-mistuning method, because one attachment-mode

DOF is retained for each physical DOF in the FEM where geometric mistuning is present.

In this work, a non-CMS method for large mistuning is formulated by employing

a mode-acceleration method with static mode compensation. The tuned-system normal
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modes are compensated by static modes that account for the effects of mistuning as though

they were produced by external forces. Thus, a new set of basis vectors is established

for the mistuned system. The obtained basis vectors approximately span the space of

the mistuned-system modes without requiring a much more expensive modal analysis of

the mistuned system, and they provide much faster convergence than the original tuned-

system normal modes. Furthermore, in order to extend the method to higher frequency

ranges, quasi-static modes [77, 78], in which inertia effects are included, are employed in

place of static modes in the mode-acceleration formulation.

In addition to modeling systems with large mistuning, the presented method can also

be used in the design process. Usually, when a change is made to a geometric design

parameter, the new FEM must be analyzed in order to determine the effects of the design

change on the system vibration response. However, if the changes to the mass and stiffness

matrices due to the design change are known, then the new modeling technique can be

used to construct an updated ROM for the revised design without requiring an additional

finite element analysis of the vibration response. In this manner, the process of evaluating

geometric design changes can be expedited.

This paper is organized as follows. The authors’ previous approach for large mistuning

is briefly reviewed in section 6.2. In section 6.3, the new modeling technique is formulated

starting from the original mode-acceleration formulation, and it is refined using the mod-

ified mode-acceleration formulation with quasi-static modes. Then, an industrial bladed

disk with a rogue blade whose geometry deviates severely from the nominal blade design

is examined as a case study in section 6.4. The newly developed method is validated using

the parent FEM, and its performance is compared with previous methods for large and

small mistuning. Two additional cases are examined in sections 6.5 and 6.6, as further

applications of the new modeling technique: a bladed disk with a fractured blade, and



164

a bladed disk subject to geometric design changes in the disk. Finally, conclusions are

summarized in section 6.7.

6.2 Background: Reduced-Order Modeling by CMS

In this section, a general reduced-order model for large mistuning, which was devel-

oped previously by the authors [44], is briefly reviewed. A mistuned bladed disk is divided

into a tuned bladed disk (MS,KS) and mistuning components (Mδ,Kδ) that represent the

difference between the mistuned and tuned mass and stiffness matrices. The mistuned

system model is constructed using a hybrid-interface CMS technique: the tuned system is

treated as a free-interface component, and the mistuning components are treated as fixed-

interface components. Because the mistuning components are not physically separate from

the tuned system, all DOF in the mistuning components are interface DOF. Thus, both

tuned-system attachment modes (ΨS) and a truncated set of normal modes (ΦS) are used

to describe the displacements of the tuned system, but only constraint modes (Ψδ = I)

are used for the mistuning components. The synthesized mass and stiffness matrices

(µsyn,κsyn) of a mistuned system are assembled by enforcing displacement compatibility

at the interface DOF:

µsyn =

 I + ΦS
Γ
T
MδΦS

Γ ΦSTMSΨS + ΦS
Γ
T
MδΨS

Γ

ΨSTMSΦS + ΨS
Γ
T
MδΦS

Γ ΨSTMSΨS + ΨS
Γ
T
MδΨS

Γ


=

 I + ΦS
Γ
T
MδΦS

Γ ΛS−1
ΦS

Γ
T

+ ΦS
Γ
T
MδΨS

Γ

ΦS
ΓΛS−1

+ ΨS
Γ
T
MδΦS

Γ ΨSTMSΨS + ΨS
Γ
T
MδΨS

Γ


(6.1a)
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κsyn =

 ΛS + ΦS
Γ
T
KδΦS

Γ ΦSTKSΨS + ΦS
Γ
T
KδΨS

Γ

ΨSTKSΦS + ΨS
Γ
T
KδΦS

Γ ΨS
Γ + ΨS

Γ
T
KδΨS

Γ


=

ΛS + ΦS
Γ
T
KδΦS

Γ ΦS
Γ
T

+ ΦS
Γ
T
KδΨS

Γ

ΦS
Γ + ΨS

Γ
T
KδΦS

Γ ΨS
Γ + ΨS

Γ
T
KδΨS

Γ

 ,
(6.1b)

whereΓ denotes the interface DOF where mistuning exists.

Eq. (6.1) shows that a mistuned system can be described with the normal modes and

attachment modes of the tuned system. Since a tuned bladed disk features cyclic symme-

try, normal modes and attachment modes can be obtained using only the FEM of a single

sector. However, when attachment modes are involved in the CMS formulation, matrix

ill-conditioning and numerical instability may occur. This is due to the fact that the dis-

placement values of attachment modes are much smaller than those of normal modes, and

also because attachment modes and normal modes may not be clearly independent. The

former problem can be overcome by performing a secondary modal analysis on the attach-

ment mode partition of the synthesized mass and stiffness matrices. In order to reduce

the effect of the latter problem, the number of retained normal modes must be decreased.

However, in this case, the accuracy of the ROM also decreases. To compensate for this

loss of accuracy, more attachment modes can be included in the ROM. Of course, includ-

ing more attachment modes leads a larger model size. In fact, in the authors’ previous

work [44], the size of the ROM for large mistuning using this approach was much larger

than the typical size of a small-mistuning ROM. Therefore, a new, more efficient method

is introduced in the next section.

6.3 New Modeling Technique Using Static Mode Compensation

In this section, a new modeling technique for a mistuned system is formulated using

the mode-acceleration method. In the derivation, the effect of large mistuning is converted
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to that of equivalent external forces.

6.3.1 Static Mode Compensation

The mode-acceleration method is usually used to improve the accuracy of forced re-

sponse predictions by including a static mode (K−1f ) [41]. The formulation for an un-

damped system is as follows:

x = K−1f +
∑
i

(
ω2

ω2
i

)
φiηi, (6.2)

or

x−K−1f =
∑
i

(
ω2

ω2
i

)
φiηi, (6.3)

wherex is the displacement vector,f is the external force vector,ω is the excitation fre-

quency,ωi is the natural frequency of theith mode,φi is the ith normal mode, andηi

is the ith modal amplitude that is used in the mode-displacement method. In Eq. (6.3),

x −K−1f is expressed as a linear combination of normal modes. Note that, in this com-

bination, lower normal modes will dominate due to the coefficients,ω2/ω2
i , if the external

forces excite every mode evenly. That is,x −K−1f can be described with a small set of

normal modes. Now, suppose that the normal modes are unknown, but a set of vectors of

the formx−K−1f are known in a lower frequency range. Then, reversely, lower normal

modes can be obtained accurately by employing the set ofx − K−1f vectors as a basis,

unlessf excites higher modes much more than lower modes.

This concept can be applied to a mistuned system when the tuned-system normal

modes are known. Consider a forced response case in which a mistuned system is vi-

brating at the natural frequency of a tuned-system mode and the motion of the mistuned

system is exactly the same as that of the tuned-system mode. Then, Eq. (6.3) can be
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rewritten as:

φS
j −Km−1fj =

∑
i

(
ωSj

2

ωmi
2

)
φm
i ηij, (6.4)

where the external forces required to enforce this motion are

fj =
[
−ωSj

2
Mm + Km

]
φS
j =

 0[
−ωSj

2
Mδ + Kδ

]
φS

Γ ,j

 , (6.5)

Mm andKm are the mass and stiffness matrices of a mistuned system,ωSj andφS
j are the

jth natural frequency and mode shape of the tuned system,ωmi andφm
i are theith natural

frequency and mode shape of the mistuned system, andηij is the modal participation

factor of theith mistuned-system normal mode for thejth tuned-system normal mode.

The advantage of using tuned-system modes is that they are readily available, because an

analysis of a bladed disk usually starts with computing tuned modes that can be obtained

from the cyclic symmetry analysis of the FEM of a single sector. Another advantage is

that non-zero forcing terms appear only at the DOF where mistuning exists, as indicated

by the partitioning of the right-hand side of Eq. (6.5).

Km−1fj is the static mode of the mistuned system. However, it is also possible to

obtain the static mode from the FEM of the tuned system by using the following relation:

Km−1fj = KS−1
(I + K̄δ KS−1

)−1fj = KS−1
gj, (6.6)

where

gj = (I + K̄δ KS−1
)−1fj =

 0(
I + Kδ ΨS

Γ

)−1
fΓ ,j

 , (6.7)

KS denotes the stiffness matrix of the tuned system,K̄δ denotes a matrix of the same

size as that ofKS, which consists ofKδ and zero terms, andΨS is a set of tuned-system

attachment modes. That is, the static deflection of the mistuned system induced by the

forcesfj is the static deflection of the tuned system induced by the forcesgj. Here, since
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fj has non-zero terms for only the DOF where mistuning exists, so doesgj. Computing

static modes of a mistuned system by using a tuned system is especially useful for bladed

disks, because any static deflection of a tuned bladed disk can be calculated using only the

FEM of a single sector.

Static modes can be obtained by directly applying the forces,fj or gj, or they can be

computed as a linear combination of tuned-system attachment modes with the coefficients

being the corresponding forces. That is,

Km−1fj = KS−1
gj = ΨSgΓ ,j. (6.8)

If many mistuned systems need to be analyzed, the latter method is more efficient, be-

cause the obtained attachment modes can be used for anyKδ. However, if the number of

mistuning DOF is so large that the computation ofΨS andgΓ ,j is costly, then one should

consider computingKm−1fj or KS−1
gj directly.

Now, a truncated set of tuned-system normal modes compensated by static modes,

φS
j −ΨSgΓ ,j, may be used as an alternative basis that approximately spans the space of

the lower mistuned-system normal modes. The reduced mass and stiffness matrices are:

µsyn =
(
ΦS −ΨSGΓ

)T (
MS + Mδ

) (
ΦS −ΨSGΓ

)
= I + ΦS

Γ

T
MδΦS

Γ −
(
ΛS−1

ΦS
Γ

T
+ ΦS

Γ

T
MδΨS

Γ

)
GΓ

−GT
Γ

(
ΦS

ΓΛS−1
+ ΨS

Γ

T
MδΦS

Γ

)
+ GT

Γ

(
ΨSTMSΨS + ΨS

Γ

T
MδΨS

Γ

)
GΓ

(6.9a)

κsyn =
(
ΦS −ΨSGΓ

)T (
KS + Kδ

) (
ΦS −ΨSGΓ

)
= ΛS + ΦS

Γ

T
KδΦS

Γ −
(
ΦS

Γ

T
+ ΦS

Γ

T
KδΨS

Γ

)
GΓ

−GT
Γ

(
ΦS

Γ + ΨS
Γ

T
KδΦS

Γ

)
+ GT

Γ

(
ΨS

Γ + ΨS
Γ

T
KδΨS

Γ

)
GΓ ,

(6.9b)

where the matrixGΓ is a set of the vectorsgΓ ,j. The size of these reduced matrices

is N × N , whereN is the number of tuned-system normal modes in a truncated set.
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As mentioned above, the accuracy will be determined by(ωSj
2
/ω2

i )ηij. If the value of

(ωSj
2
/ω2

i )ηij for the ith mode is relatively small compared to those for other modes, then

the ith mode obtained by this method will be less accurate. That is, mistuned-system

normal modes in a high frequency range may be inaccurate because the value ofωSj
2
/ω2

i

is smaller for a high mode than for a low mode.

6.3.2 Quasi-Static Mode Compensation

In order to obtain an improved representation in a higher frequency range, the formu-

lation of the mode-acceleration method in Eq. (6.2) is modified. First, the equations of

motion of an undamped system are written as follows:[
−ω2M + K

]
x =

[
−
(
ω2 − ω2

c

)
M +

(
K− ω2

cM
)]

x = f , (6.10)

whereωc is a pre-determined frequency, which is the centering frequency used in the

quasi-static mode compensation method introduced by Shyuet al. [77, 78] to improve

CMS models in higher frequency ranges. As can be seen in Eq. (6.10), inertial effects

corresponding to a centering frequency are transfered to the stiffness term. Thereby, the

motion of the original system,M andK, at a frequency ofω becomes the same as the

motion of an equivalent system,M andK − ω2
cM, at a frequency of

√
ω2 − ω2

c . The

equivalent system has the same mode shapes as those of the original system. However, its

eigenvalues are shifted by−ω2
c from the original values. Note that the original system can

be considered as a special case in which the centering frequency is zero.

Applying the mode-acceleration method to this equivalent system,x becomes

x =
(
K− ω2

cM
)−1

f +
(
K− ω2

cM
)−1 (

ω2 − ω2
c

)
Mx

=
(
K− ω2

cM
)−1

f +
∑
i

(
ω2 − ω2

c

ω2
i − ω2

c

)
φiηi.

(6.11)

where(K− ω2
cM)

−1
f are quasi-static modes [77, 78]. Now, as can be seen in Eq. (6.11),

the coefficient ofφi is [(ω2 − ω2
c )/(ω

2
i − ω2

c )]ηi. Therefore, ifωi is close toωc, the
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coefficient of theith mode can have a larger value than the other modes. Therefore,

x − (K− ω2
cM)

−1
f can be described by a small number of mistuned modes around the

centering frequency.

Following the same procedure as that for static mode compensation using the origi-

nal mode-acceleration formulation, the quasi-static modes of a mistuned system can be

computed from the tuned system as follows:

(
Km − ω2

cM
m
)−1

fj = ΨS,QgQΓ ,j, (6.12)

wheregQΓ ,j contains the forces that need to be applied to the equivalent tuned system, and

is written as

gQΓ ,j =
[
I +

(
Kδ − ω2

cM
δ
)
ΨS,Q

]
fΓ ,j

andΨS,Q is a set of quasi-static attachment modes computed from the stiffness matrix of

the equivalent tuned system,KS − ω2
cM

S. Now, the reduced mass and stiffness matrices

are

µsyn =
(
ΦS −ΨS,QGQ

Γ

)T (
MS + Mδ

) (
ΦS −ΨS,QGQ

Γ

)
= I + ΦS

Γ

T
MδΦS

Γ −
[
(ΛS − ω2

cI)
−1ΦS

Γ

T
+ ΦS

Γ

T
MδΨS,Q

Γ

]
GQ

Γ

−GQ
Γ

T
[
ΦS

Γ (ΛS − ω2
cI)

−1 + ΨS,Q
Γ

T
MδΦS

Γ

]
+ GQ

Γ

T
(
ΨS,QTMSΨS,Q + ΨS,Q

Γ

T
MδΨS,Q

Γ

)
GQ

Γ

(6.13a)

κsyn =
(
ΦS −ΨS,QGQ

Γ

)T (
KS + Kδ

) (
ΦS −ΨS,QGQ

Γ

)
= ΛS + ΦS

Γ

T
KδΦS

Γ −
[
ΛS(ΛS − ω2

cI)
−1ΦS

Γ

T
+ ΦS

Γ

T
KδΨS,Q

Γ

]
GQ

Γ

−GQ
Γ

T
[
ΦS

Γ (ΛS − ω2
cI)

−1ΛS + ΨS,Q
Γ

T
KδΦS

Γ

]
+ GQ

Γ

T
(
ΨS,Q

Γ + ω2
cΨ

S,QTMSΨS,Q + ΨS,Q
Γ

T
KδΨS,Q

Γ

)
GQ

Γ ,

(6.13b)

whereGQ
Γ is the set of thegQΓ,j.

The accuracy of this approach depends primarily on the value of[(ωSj
2 − ω2

c )/(ω
2
i − ω2

c )]ηij.
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If ωSj = ωc, thenφS
j −ΨS,QgQΓ ,j is a null vector, and the reduced mass and stiffness matri-

ces have a null column and a null row. Ifωi = ωc, then the inverse ofKm − ω2
cM

m does

not exist. Thusωc should be chosen so that it is not too close to a natural frequency of the

tuned or mistuned system.

Note that it is possible to enhance the method presented in this section by introducing

an iteration scheme, or to improve the accuracy of the mode-acceleration method by using

a higher-order expression. However, in these cases, the external force vectors (Gor GQ)

used for the computation of static modes would be fully populated; thus the entire set of

attachment modes would be needed, and the inversion of a matrix of the size of the full

system would be required. Thus, the cost of such a scheme would probably be prohibitive.

6.4 Comparison of Methods

In this section, the newly developed static mode compensation (SMC) technique is

validated by examining the vibration response of a turbine engine compressor stage with a

rogue blade that has a significant geometric distortion relative to the nominal blade design.

Also, the performance of the SMC method is compared with three other methods:

1. The CMS method for large mistuning [44], which was reviewed in section 6.2.

2. Classical modal analysis (CMA) for small mistuning. In this model, a subset of

tuned-system normal modes are employed [23], and blade mistuning is projected

directly onto the system modes.

3. Component mode mistuning (CMM) technique [44] for small mistuning. As in the

above model, tuned-system normal modes are used for building a ROM. However,

mistuning is projected to tuned-system normal modes by relating the blade motion

in the system modes to the tuned cantilevered-blade normal modes. Thereby, the
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eigenvalue mistuning of a cantilevered blade is projected onto the system modes.

The second and third techniques listed above are extremely accurate and efficient, relative

to finite element analysis, for small-mistuning cases [23, 44].

For the SMC technique and the two small-mistuning methods, the model size is deter-

mined by the number of tuned-system normal modes selected. However, the model size for

the CMS-based large-mistuning method is much larger, because the number of DOF is the

number of tuned-system normal modes plus the number of attachment modes employed.

For this study, the tuned-system normal modes and attachment modes were obtained from

the single-sector FEM. Also, the static deflections of a tuned system due to external forces

were obtained from this FEM. For the test-case rotor, the number of DOF where mistuning

is present due to the geometry deviation is 594, and thus 594 attachment modes are used.

6.4.1 Description of the Test-Case Model

The rotor considered in this study is a 29-blade compressor stage of a gas turbine

engine that was used in a previous study by the authors [44]. Figure 6.1 shows the fi-

nite element mesh, which is constructed with standard linear brick elements (eight-noded

solids) and has 126,846 DOF. This figure also shows a tuned blade for the nominal design.

For this test case, the effect of having one damaged blade with significant geometric mis-

tuning, or a rogue blade, is investigated. The rogue blade geometry used in this study is

shown in Fig. 6.2. The geometry corresponding to the worst-case blade damage is referred

to as 100% distortion. By scaling the difference between the nominal and the 100% dis-

tortion models, intermediate cases were generated, such as the 10% distortion case shown

in Fig. 6.2. The Young’s modulus and mass density values used for the rogue blade were

the same as those for the nominal blade. Nevertheless, due to the geometry change, the

mass and stiffness matrices were significantly changed around the distorted area, even for
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the case of 10% distortion.

First, the natural frequencies and mode shapes of the rogue blade were investigated as

distortion increases. Figure 6.3(a) shows eigenvalue mistuning versus geometry distortion

for the 1st (first flexural mode, FEM natural frequency 2.22 kHz), 5th (second torsion,

20.95 kHz), 8th (third torsion, 33.68 kHz), and 9th (second stripe, 35.11 kHz) modes of a

cantilevered blade that is fixed at its root. The eigenvalue mistuning value is defined as the

ratio of the eigenvalue deviation to the nominal eigenvalue. The modal assurance criterion

(MAC) values between the modes of a nominal blade and a rogue blade are shown in

Fig. 6.3(b). Although all the eigenvalue mistuning values are smaller than 0.07, it is seen

that the mode shapes are significantly different. The mode shapes of cantilevered tuned

and rogue (100% distortion) blades are depicted in Fig. 6.4. As can be seen, the 1st and

5th modes of a tuned and a rogue blades are similar, while the 8th and 9th modes are quite

different.

The tuned test-case rotor has many mode groups that can be characterized in terms of

dominant blade motion (see Fig. 2 in the paper by Limet al. [44]). Similarly, the modes

of the mistuned system can be characterized by blade motion, but not by the number of

nodal diameters. In Figs. 6.5 and 6.6, the natural frequencies for the tuned system and

for the mistuned system with a rogue blade (100% distortion) are shown for the 1st, 5th,

8th, and 9th blade-dominated mode groups. The blade motion for each system mode is

highly correlated with that of a tuned or rogue cantilevered blade. Note that each mode

group has one mistuned-system mode whose natural frequency is away from the others:

the mode at 2.1405 kHz in the 1st group, at 19.605 kHz in the 5th group, at 32.912 kHz

in the 8th group, and at 34.350 kHz in the 9th group. These modes are highly localized

about the rogue blade, as shown in Fig. 6.6, and thus it is expected that they will affect

the forced response for any engine order of excitation. Therefore, the ability to capture
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these rogue blade modes is an important consideration for assessing the performance of a

test-case ROM.

6.4.2 Free Response Results

Figures 6.7 and 6.8 present the convergence of the ROM natural frequencies to the

FEM results for the four different methods: CMS (Component Mode Synthesis,◦), SMC

(Static Mode Compensation using the mode-acceleration formulation,×), CMA (Classical

Modal Analysis with mistuning projection,M), and CMM (Component Mode Mistuning,

�). The rogue-blade-dominated modes mentioned in the previous section had much larger

error than the others. Therefore, the maximum frequency errors were used for the conver-

gence study.

Figure 6.7 shows the maximum natural frequency errors for the lowest blade-dominated

mode group as the number of tuned-system normal modes increases, for the cases of 10%

distortion and 100% distortion. There are 29 mistuned normal modes in the lowest mode

group. For the SMC method, static modes are used rather than quasi-static ones, because

the modes of interest are the lowest modes. For the 1st cantilevered blade mode, the mode

shapes of tuned and rogue blades were almost the same (the MAC value at 100% deviation

is 0.9982). However, as can be seen in Fig. 6.7, the results from the CMA method are poor,

even for the case of 10% geometry distortion.

Figure 6.8 shows natural frequency errors for the 5th and the 8th–9th blade-dominated

mode groups for the case of a rogue blade with 100% deviation. There are 32 normal

modes in the 5th mode group, and 66 normal modes in the 8th and 9th mode groups. The

8th and 9th mode groups are so close that they need to be included in a single ROM. The

results by the CMA method were omitted because the errors were too large. For the SMC

method, the models were obtained using quasi-static modes. The centering frequency was
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selected as 20 kHz for the 5th mode group, and 34 kHz for the 8th and 9th mode groups.

For fair comparison, for the CMS method the models were constructed using quasi-static

attachment modes, and the number of normal modes was increased by including both

higher and lower modes around the centering frequencies. As shown in Fig. 6.8, the SMC

method gives the best results. The CMS method also yields good results but only after

many more normal modes are retained. Note that the CMS results shown here are different

from those in the authors’ previous work [44], because only 594 attachment modes were

used in this study instead of 2496 attachment modes in the previous work. The maximum

errors for the 8th and 9th mode groups by the CMM method are around 0.4% and are thus

very small. However, the ratio of the standard deviation of the natural frequencies to the

average natural frequency is 2.3% for the 8th and 9th mode groups. Thus, an error of 0.4%

may still not be acceptable.

Figure 6.9 illustrates a tuned-system normal mode, a static mode, a quasi-static mode,

and the resulting basis shapes used in the SMC method, all of which are represented for

the geometry of the bladed disk with a rogue blade. It can be seen that the basis shapes

obtained using a static mode are very different from those using a quasi-static mode. In

addition, the motion of the rogue blade for the basis shape obtained by a quasi-static mode

is very similar to the 9th cantilevered-blade mode of the rogue blade shown in Fig. 6.4.

Therefore, it is clear that using quasi-static modes can significantly improve the conver-

gence of a model in a higher frequency region.

The rogue-blade dominated mode in each mode group was selected for testing the

accuracy of mode shape representation. Table 6.1 shows the convergence of the MAC

values between the mode shapes of the various ROMs and those of the FEM. For the mode

in the 1st mode group, all three methods show good results. For the 5th mode group, the

CMM results are worse than the others. For the 8th and 9th mode groups, the mode shapes
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obtained by the CMM method are completely different from the FEM ones, even though

the natural frequency errors seemed acceptable, as shown in Fig. 6.8. This is because the

mode shapes of a mistuned system with large mistuning cannot be captured properly using

a basis of tuned-system normal modes.

It should be noted that, although the CMS and SMC methods showed a similar degree

of accuracy for the free response results, the SMC method yields a much smaller ROM

than the CMS method.

6.4.3 Forced Response Results

In the forced response case, the SMC and CMM methods were considered in order

to compare the performance of a large-mistuning and a small-mistuning ROM. Due to

the distorted geometry of the rogue blade, the aerodynamic external forces may not be

the same as for a bladed disk with nominal geometry. However, for validation purposes,

pure engine order 2 and 5 excitations were considered, and two frequency regions cor-

responding to the 5th (19–22 kHz), and the 8th and 9th (32–36 kHz) mode groups were

investigated. The applied forces were unit loads normal to the blade surface at the tip of

each blade. The degree of distortion for the rogue blade was 100%.

Figures 6.10 and 6.11 show the envelopes of the individual blades’ frequency responses

calculated from the ROMs and the FEM. Euclidean displacement norms were obtained for

every blade, and the largest responding blade was selected at every excitation frequency.

Figure 6.10 depicts results for the 5th mode group, for which 99 tuned-system normal

modes in the 14–26 kHz range were used. Figure 6.11 is for the 8th and 9th mode groups,

and 136 modes were used in the 26–43 kHz range. The results of the SMC method match

well those of the FEM, while the results of the CMM method feature large errors for both

the 5th and the 8th and 9th mode groups. Note that the biggest differences occur around
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the natural frequencies of the rogue-blade-dominated modes (19.6 kHz, 32.9 kHz, and

34.3 kHz). This is because the CMM models cannot capture the rogue-blade-dominated

modes. Also note that the CMM method yields poor results, even though the MAC value

between the 5th cantilevered-blade modes of a tuned and a rogue blade is around 0.9.

Another case was considered with higher MAC values for the tuned and rogue cantilevered-

blade modes. The same model and external forcing were used, except that the geometric

deviation for the rogue blade was 10%. The excitation frequency range was 32–36 kHz.

The MAC value was 0.9922 for the 8th cantilevered-blade mode and 0.9916 for the 9th

mode (see Fig 6.3(b)). The forced response results are shown in Fig. 6.12. Although the

mode shapes of the cantilevered rogue and tuned blades are much closer than in the case

of 100% geometric deviation, there are still significant differences between the FEM and

CMM forced response results. This indicates that the performance of the CMM method is

very sensitive to geometric mistuning.

6.5 Application to a System With a Fractured Blade

So far, the number of finite element DOF have been assumed to be the same for the

tuned and the mistuned systems. However, the SMC method can also handle cases in

which some DOF are removed in the mistuned system. As an example, a bladed disk with

a fractured blade, which is represented by removing some elements from the blade FEM,

is discussed in this section.

The same nominal rotor model as in section 6.4 is considered. The geometry and ex-

ample mode shapes of the fractured blade cantilevered at its root are depicted in Fig. 6.13.

Note that the natural frequency of the 9th mode for the fractured blade is 4.9 kHz higher

than its nominal frequency, while others are close to the nominal values (see Fig. 6.4).

Although a finer mesh may be required near the fractured area in order to obtain more
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accurate results, for the purpose of easy comparison the original mesh was maintained

(stress concentration is not considered in this study).

Figure 6.14(a) shows the natural frequencies of a bladed disk with the fractured blade

in the frequency range 32–36 kHz, where the line at 33.929 kHz represents the natural

frequency of a system mode dominated by the 8th fractured-blade mode. Note that there

are 65 mistuned-system normal modes in this frequency range, but there are 66 tuned-

system normal modes. This is because a system mode dominated by the 9th fractured-

blade mode is outside the range.

In order to derive the reduced matrices for the ROM, first the DOF in the bladed disk

model are sorted into three groups: the removed DOF due to fracture (denoted byβ),

the DOF at the boundary between the removed part and the remaining part (denoted by

Γ ), and the interior DOF of the remaining part (denoted byα). Note that the mass and

stiffness terms corresponding toα remain unchanged, but the terms corresponding toΓ

change when theβ part is removed. Also note that there is no mass or stiffness coupling

terms between theα part and theβ part. Therefore, the mass and stiffness matrices of the

tuned system and the fractured-blade system can be written as follows:

MS =


Mαα MαΓ 0

MΓα MΓΓ MΓβ

0 MβΓ Mββ

 , KS =


Kαα KαΓ 0

KΓα KΓΓ KΓβ

0 KβΓ Kββ

 , (6.14)

Mm =

Mαα MαΓ

MΓα MΓΓ + Mδ

 , Km =

Kαα KαΓ

KΓα KΓΓ + Kδ

 , (6.15)

Then, the external forces required to produce motions of the fractured bladed disk that are
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the same as those in the tuned-system modes can be computed as follows:Fα

FΓ

 = Km

ΦS
α

ΦS
Γ

−Mm

ΦS
α

ΦS
Γ

ΛS

=

 0

(KδΦS
Γ −KΓβΦ

S
β)− (MδΦS

Γ −MΓβΦ
S
β)Λ

S

 .
(6.16)

Note thatMm andKm are multiplied only by theα andΓ components of the tuned-system

modes, but that theβ part appears in the resulting expression.

Now, as mentioned in section 6.3, static (or quasi-static) modes can be computed in

two ways: directly applyingFΓ to a mistuned system, or applying equivalent forces (GΓ

or GQ
Γ ) to a tuned system. It should be noted that, since a fractured-blade system does not

have DOF corresponding to theβ part, theβ portion of the static modes obtained from

a tuned system is not used in calculating the equivalent forces, and that the static modes

of a fractured-blade system can be obtained from an original tuned system by applying

forces only to theΓ part. Thus, using quasi-static modes,GQ
Γ can be computed from the

following equation.
Kαα KαΓ

KΓα KΓΓ + Kδ

− ω2
c

Mαα MαΓ

MΓα MΓΓ + Mδ




−1  0

FΓ


ΨS,Q

α GΓ

ΨS,Q
Γ GΓ

 =

ΨS,Q
α GQ

Γ

ΨS,Q
Γ GQ

Γ

 ,
(6.17)

whereΨS,Q is a set of quasi-static attachment modes corresponding to the DOF in theΓ

part. Since

(Kαα − ω2
cMαα)Ψ

S,Q
α + (KαΓ − ω2

cMαΓ )ΨS,Q
Γ = 0

(KΓα − ω2
cMΓα)Ψ

S,Q
α + (KΓΓ − ω2

cMΓΓ )ΨS,Q
Γ + (KΓβ − ω2

cMΓβ)Ψ
S,Q
β = I,

the equivalent forceGQ
Γ becomes

GQ
Γ = (I + (Kδ − ω2

cM
δ)ΨS,Q

Γ − (KΓβ − ω2
cMΓβ)Ψ

S,Q
β )−1FΓ . (6.18)



180

Using this derivation for the quasi-static modes, the reduced mass and stiffness matrices

can be obtained in the same way as in section 6.3, except that only the mode shape DOF

in theα andΓ parts are used.

Since the number of DOF in theΓ part of the fractured blade is 72, the 72 attachment

modes were used to compute the necessary static modes. The centering frequency was

chosen as 34 kHz, and 136 tuned-system normal modes were selected in 26–43 kHz.

Figure 6.14(b) shows the forced response results obtained by the fractured-blade system

ROM and by the FEM. The same unit forces were applied as in section 6.4 and engine

order 5 excitation was considered. Since the number of DOF in the fractured blade is

smaller than that in the nominal blade, the Euclidean displacement norm for a single node

located at each blade tip end was used as the blade response amplitude, and the largest

amplitude of any blade was taken at every frequency to provide an envelope. As can be

seen, the results of the ROM and the FEM match very well. Note that the peak around 34

kHz is due to the fractured-blade-dominated mode at 33.929 kHz.

6.6 Application to a System Subject to Design Changes

When the design of a bladed disk is modified for a certain purpose, the updated fi-

nite element models of the bladed disk (full or single-sector) need to be re-analyzed to

determine the effect of the modification. However, by considering the mass and stiffness

variations due to the design change as ”cyclic mistuning” terms in the SMC method, the

dynamic response of the modified system can be readily obtained without additional finite

element analyses. This approach is described below.

The mass and stiffness matrix modifications resulting from the design change in the

disk and/or the blades are treated as a ”cyclic mistuning” that is present and identical in all

sectors. Note that since the modified bladed disk still features cyclic symmetry, a modified-
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system mode of harmonich can be expressed solely by the original-system modes of

harmonich. Therefore, the SMC method can be formulated for a certain harmonich,

thus further reducing the size of the resulting problem. For example, ifn blade-dominated

mode groups of the original system are selected to construct the SMC model, then the size

of the reduced mass and stiffness matrices will be aboutn × n for a single harmonic, or

2n× 2n for a double harmonic, instead of(n×Nb)× (n×Nb), whereNb is the number

of blades. Of course, in order to obtain the modes for all the harmonics, one should solve

aboutNb/2 problems.

Cyclic symmetry has been used extensively to analyze bladed disks based on single-

sector FEM [15, 18, 79–81]. Here the approach of Bladhet al. [18], which is based on

the real Fourier matrix and a pseudo-block-diagonal matrix, is selected to construct the

reduced matrices for the SMC model. These matrices are obtained by projecting the mass

and stiffness matrices in physical coordinates onto a basis (here, a selected set of system

normal modes compensated by static modes). This projection can be performed for each

sector separately using the cyclic symmetry feature. To do this, all the DOF in the FEM

need to be arranged sector by sector, and the boundary DOF between two adjacent sectors

need to appear redundantly in both sectors. The mass and stiffness matrices can thus be

represented in terms of the single-sector matrices, and the modes in physical (cylindrical)

coordinates can be represented in terms of the modes in cyclic coordinates and the real

Fourier matrix,F, as follows:

MS = I⊗mS (6.19a)

KS = I⊗ kS (6.19b)

ΦS = (F⊗ I)Φ̃S (6.19c)

ΨS,Q = (F⊗ I)Ψ̃S,Q(FT ⊗ I), (6.19d)
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where⊗ denotes the Kronecker product. Here,mS andkS are the mass and stiffness

matrices of the single-sector model, andΦ̃S andΨ̃S,Q are pseudo-block-diagonal matrices

containing the modes in cyclic coordinates. A pseudo-block-diagonal matrix has(Nb +

1)/2 diagonal blocks forN odd, andNb/2 blocks forN even. The column size of a block

corresponding to harmonich depends on the number of selected modes corresponding to

that harmonic, and thus the blocks can have different dimension. Also, the row size of a

block corresponding to a double harmonic is twice that of a single-harmonic block. Note

that I ⊗ mS andI ⊗ kS are block-diagonal matrices in which each block has the same

number of rows and columns.

From Eqs. (6.5) and (6.12), the external forces corresponding to the variation of mass

and stiffness matrices (I⊗mδ andI⊗ kδ) are represented in cyclic coordinates as:

GQ
Γ =

[
I +

(
I⊗ (kδ − ω2

cm
δ)
)
(F⊗ I)Ψ̃S,Q(FT ⊗ I)

]−1

×
[
(I⊗ kδ)(F⊗ I)Φ̃S

Γ − (I⊗mδ)(F⊗ I)Φ̃S
ΓΛS

]
= (F⊗ I)

[
I +

(
I⊗ (kδ − ω2

cm
δ)
)
Ψ̃S,Q

]−1 [
(I⊗ kδ)Φ̃S

Γ − (I⊗mδ)Φ̃S
ΓΛS

]
= (F⊗ I)P̃Γ ,

(6.20)

where

P̃Γ =
[
I +

(
I⊗ (kδ − ω2

cm
δ)
)
Ψ̃S,Q

]−1 [
(I⊗ kδ)Φ̃S

Γ − (I⊗mδ)Φ̃S
ΓΛS

]
.

Here,P̃ is a pseudo-block-diagonal matrix representing the external force matrix in cyclic

coordinates.

Now, replacing the matrices in Eq. (6.13) with the above matrices defined in cyclic
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coordinates, the following reduced matrices are obtained.

µsyn = I + Φ̃S
Γ

T
(I⊗mδ)Φ̃S

Γ −
[
(ΛS − ω2

cI)
−1Φ̃S

Γ

T
+ Φ̃S

Γ

T
(I⊗mδ)Ψ̃S,Q

Γ

]
P̃Γ

− P̃T
Γ

[
Φ̃S

Γ (ΛS − ω2
cI)

−1 + Ψ̃S,Q
Γ

T
(I⊗mδ)Φ̃S

Γ

]
+ P̃T

Γ

(
Ψ̃S,QT (I⊗mS)Ψ̃S,Q + Ψ̃S,Q

Γ

T
(I⊗mδ)Ψ̃S,Q

Γ

)
P̃Γ

(6.21a)

κsyn = ΛS + Φ̃S
Γ

T
(I⊗ kδ)Φ̃S

Γ −
[
ΛS(ΛS − ω2

cI)
−1Φ̃S

Γ

T
+ Φ̃S

Γ

T
(I⊗ kδ)Ψ̃S,Q

Γ

]
P̃Γ

− P̃T
Γ

[
Φ̃S

Γ (ΛS − ω2
cI)

−1ΛS + Ψ̃S,Q
Γ

T
(I⊗ kδ)Φ̃S

Γ

]
+ P̃T

Γ

(
Ψ̃S,Q

Γ + ω2
cΨ̃

S,QT (I⊗mS)Ψ̃S,Q + Ψ̃S,Q
Γ

T
(I⊗ kδ)Ψ̃S,Q

Γ

)
P̃Γ .

(6.21b)

Note thatµsyn andκsyn are square pseudo-block-diagonal matrices whose sizes are de-

termined by the number of original-system normal modes selected. Therefore, each block

in these matrices can be handled separately according to harmonic number, as follows:

µ̃syn
h = Ih + Φ̃S

Γ ,h

T
(Ih ⊗mδ)Φ̃S

Γ ,h

−
[
(ΛS

h − ω2
cIh)

−1Φ̃S
Γ ,h

T
+ Φ̃S

Γ ,h

T
(Ih ⊗mδ)Ψ̃S,Q

Γ ,h

]
P̃Γ ,h

− P̃T
Γ ,h

[
Φ̃S

Γ ,h(Λ
S
h − ω2

cIh)
−1 + Ψ̃S,Q

Γ ,h

T
(Ih ⊗mδ)Φ̃S

Γ ,h

]
+ P̃T

Γ ,h

(
Ψ̃S,Q
h

T
(Ih ⊗mS)Ψ̃S,Q

h + Ψ̃S,Q
Γ ,h

T
(Ih ⊗mδ)Ψ̃S,Q

Γ ,h

)
P̃Γ ,h

(6.22a)

κ̃syn
h = ΛS

h + Φ̃S
Γ ,h

T
(Ih ⊗ kδ)Φ̃S

Γ ,h

−
[
ΛS
h(Λ

S
h − ω2

cIh)
−1Φ̃S

Γ ,h

T
+ Φ̃S

Γ ,h

T
(Ih ⊗ kδ)Ψ̃S,Q

Γ ,h

]
P̃Γ ,h

− P̃T
Γ ,h

[
Φ̃S

Γ ,h(Λ
S
h − ω2

cIh)
−1ΛS

h + Ψ̃S,Q
Γ ,h

T
(Ih ⊗ kδ)Φ̃S

Γ ,h

]
+ P̃T

Γ ,h

(
Ψ̃S,Q

Γ ,h + ω2
cΨ̃

S,Q
h

T
(Ih ⊗mS)Ψ̃S,Q

h + Ψ̃S,Q
Γ ,h

T
(Ih ⊗ kδ)Ψ̃S,Q

Γ ,h

)
P̃Γ ,h,

(6.22b)

where the subscripth denotes a harmonic number, andIh is an identity matrix. Note that

Ih, µ̃syn
h andκ̃syn

h are square matrices whose size is determined by the number of selected
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normal modes corresponding to harmonich. Therefore, the amount of computation for a

sector design change is smaller than for the case of a single mistuned blade.

As an application of this method, a case in which the thickness of the rim of the disk

is changed is discussed. The same nominal rotor model as in the previous sections was

used. As shown in Fig. 6.15, the thickness of the rim on one side of the rotor was varied

by stretching some elements in the radial direction. The stretching ratio,r, defined as the

ratio of the radial coordinate of a modified node to that of an original node, ranged from

0.980 for a thick rim to 1.015 for a thin rim, by increments of 0.001. Therefore, 36 different

designs were obtained. Rim thickness change can be expected to affect the disk-dominated

modes, and therefore the characteristics of the attendant natural frequency veerings, thus

potentially causing significant changes in mistuned forced response levels [39, 82, 83].

The 34 modes in the range 26–30 kHz were examined as the thickness of the rim was

varied. In order to build a ROM, 34 normal modes of the original system are selected.

For quasi-static modes, 27 kHz was chosen as the centering frequency. Thus, two-DOF

models were obtained for harmonics 0, 1, and 4–14; and four-DOF models were obtained

for harmonics 2 and 3. The maximum error of the natural frequencies by the ROM relative

to the FEM ones was obtained for each stretching ratio, and plotted in Fig. 6.16. For

r = 1, the error is zero, because there is no design modification. As can be seen, the error

increases as the amount of stretch increases. However, the error level is so small that it can

be concluded that the SMC method produced an accurate ROM.

The rotor natural frequencies are depicted in Fig. 6.17 for the 36 possible rim thick-

nesses. As expected, the natural frequencies decrease with the rim thickness. The fre-

quencies of blade-dominated modes, which are located at harmonics 1 and 4–14, do not

change much, and the change in rim thickness affects mostly the disk-dominated modes.

Figure 6.17 also shows the variation of a harmonic-0 mode shape. As the rim becomes
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thinner, the mode shape features less blade motion and more disk motion.

This case study indicates that the SMC reduced-order modeling approach can be used

to evaluate the effects of geometric design changes. If a design is changed just once, then

a finite element re-analysis may be more efficient, as computing the normal modes may be

cheaper than computing static modes and building a ROM. However, if the modification

of a certain geometric region needs to be repeated for a design sensitivity analysis or

a design optimization procedure, then the SMC method will provide greatly improved

computational efficiency.

6.7 Conclusions

A new reduced-order modeling technique has been developed for bladed disks with

large, geometric mistuning by utilizing the mode-acceleration method. In this approach,

the static modes used in the mode-acceleration method are calculated by converting the ef-

fect of mistuning to that of equivalent external forces. In order to improve convergence and

accuracy in a higher frequency range, the original formulation has been extended through

the introduction of quasi-static modes. The new techniques allow for the generation of

large-mistuning reduced-order models whose size is comparable to those obtained with

previously-developed methods for small mistuning.

The new method was compared with three other reduced-order modeling techniques

for a test-case model that had a rogue blade whose geometry was severely distorted. The

reduced-order model obtained by a component mode synthesis technique reported earlier

by the authors [44] gave good accuracy. However, the model size was much larger than for

the other methods. The small-mistuning model based on classical modal analysis could

not capture mistuned-system normal modes, even when the geometry deviation was small.

Another small-mistuning model based on the component mode mistuning method could
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capture the response of the mistuned system, but only when the change in the mode shapes

of the cantilevered rogue blade was negligible. As the amount of mode-shape change

increased, the error of the CMM model increased, especially in the estimation of the rogue-

blade-dominated modes. This indicates that, even when the mode shape of a blade differs

only slightly from that of the nominal blade, a small-mistuning model is not able to predict

the behavior of the bladed disk. In contrast, the results obtained by the newly developed

technique showed excellent agreement with the FEM results, regardless of the amount of

mode-shape change due to mistuning.

To demonstrate the power of the new large-mistuning approach, two other applications

were examined, namely a bladed disk with a fractured blade and a bladed disk subject

to a geometric design change. The case of a fractured blade, which was represented by

removing some elements from the finite element model near the blade tip, showed that

the new technique can be used even in the extreme case of a blade with missing material.

Furthermore, it was demonstrated that the new method holds great promise for the efficient

evaluation of the effects of geometric design changes in the disk and blades on bladed disk

response. Although the case study was performed only on bladed disks, the new method

is applicable to any system subject to a large change in the mass and stiffness matrices.
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6.8 Figures and Tables

Nominal Blade

Figure 6.1: Finite element mesh of the test case rotor
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Figure 6.2: Rogue blade geometry
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Figure 6.3: Effect of increasing rogue blade geometry distortion on free response



190

1st tuned mode (2221.6 Hz) 1st rogue mode (2209.6 Hz)

5th tuned mode (20954.2 Hz) 5th rogue mode (20235.1 Hz)

8th tuned mode (33679.5 Hz) 8th rogue mode (33453.4 Hz)

9th tuned mode (35108.4 Hz) 9th rogue mode (34562.6 Hz)

Figure 6.4: Mode shapes of a tuned blade and a rogue blade (100% distortion)
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Figure 6.5: Natural frequencies a bladed disk with a rogue blade (100% distortion)
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Figure 6.6: Rogue-blade-dominated system modes for the case of 100% distortion
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Figure 6.7: Convergence of natural frequency errors for the 1st blade-dominated mode
group
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Figure 6.8: Convergence of natural frequency errors for the case of 100% geometry dis-
tortion
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Figure 6.10: Forced response in the range 19–21 kHz for 100% geometry distortion
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Figure 6.11: Forced response in the range 32–36 kHz for 100% geometry distortion
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Figure 6.13: Mode shapes of a fractured blade
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Figure 6.14: Free and forced response results for a bladed disk with a fractured blade
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Table 6.1: Convergence of MAC values for the rogue-blade-dominated modes calculated
with various ROMs, using the FEM modes as reference.

No. of normal MAC value MAC value MAC value

Mode group modes selected (CMS) (SMC) (CMM)

29 0.996140 0.996114 0.998239

1st 59 0.996141 0.996131 0.998237

group 90 0.996141 0.996138 0.998237

123 0.996141 0.996138 0.998237

32 0.999975 0.999636 0.930084

5th 99 0.999992 0.999974 0.921637

group 164 0.999993 0.999987 0.921462

265 0.999994 0.999992 0.921296

66 0.974233 0.994455 0.000723

8th 136 0.993267 0.999569 0.000688

group 205 0.999217 0.999828 0.000685

268 0.999980 0.999889 0.000680

66 0.999893 0.999854 0.355521

9th 136 0.999946 0.999943 0.356131

group 205 0.999958 0.999945 0.356410

268 0.999957 0.999951 0.356573



CHAPTER VII

Conclusions

7.1 Dissertation Contributions

The main contributions of this dissertation are summarized as follows:

• In chapter II, a general reduced-order vibration modeling framework for mistuned

bladed disks was developed. Also, from the general formulation, a compact reduced-

order model (ROM) for the case of small blade mistuning was derived, which is

called a component mode mistuning model. In the component mode mistuning

method, mistuning projection is performed using the modal participation factors of

cantilevered-blade component modes. Thereby, mistuning in physical coordinates is

efficiently and accurately implemented in a ROM, and the size of the model is only

on the order of the number of blades. The development of this small and accurate

ROM allows cheaper and faster statistical investigations of bladed disks.

• Based on the developed component mode mistuning modeling technique, a method

for the identification of blade mistuning was developed in chapter III. In order to

compensate for the difference between an actual bladed disk and its finite element

model, a “cyclic modeling error” term was introduced. By identifying both cyclic

modeling error and blade mistuning, the accuracy of the identification results is

204
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significantly improved. That is, by incorporating a model updating procedure, the

identification method becomes robust with respect to the errors in modeling param-

eters.

• In chapter IV, the upper bound of blade forced response was investigated. A general-

ized expression was derived so that a specific upper bound can be calculated for any

bladed disk model, even for a finite element model. Also, indicators for estimating

the largest stress in a blade were proposed. Blade displacement is typically used as

a measure of blade response, but stress is more important in terms of design safety.

The proposed stress indicators can be used to approximate the level of blade stress

directly from ROM displacement results, even for cases in which the trend for the

stress level is different from that for blade displacement level.

• In chapter V, the underlying physical mechanism by which intentional mistuning

leads to vibration reduction was investigated in terms of vibration energy flow in

bladed disks. Based on key observations from the energy flow analysis, three guide-

lines were proposed to significantly reduce the design space for intentional mistun-

ing patterns so that an optimal or near-optimal intentional mistuning pattern may be

found efficiently.

• In chapter VI, a new reduced-order modeling technique was developed for a sys-

tem subject to large, geometric mistuning or design changes. When large deviations

are present, it is usually hard to capture the motion of a system using the modes

of the original system. That is, the convergence is very slow. The developed tech-

nique provides very fast convergence in capturing the motion of a system with large

deviations.
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7.2 Future Research

Based on the work reported in this dissertation, some ideas for future research are

proposed as follows:

• In chapter III, a mistuning identification method was presented, but it was validated

only for a single blade-dominated mode family. However, there exist cases in which

more than one mode family can interact due to mistuning. Further validation for

these cases will distinguish the method from other previous methods.

• Usually, engine order excitations or single-blade excitations are used in experiments

on bladed disks, and masses are added to the blades in order to implement mistun-

ing. However, if the phase and magnitude of the forcing applied to each blade can

be controlled independently, the response of the original system with any additional

mistuning can be experimentally simulated by applying non-engine-order excita-

tions. That is, without the cumbersome procedure of adding masses, the response

of many mistuned systems can be obtained using only one bladed disk. Using this

“virtual mistuning” approach, experimental Monte Carlo simulations may be per-

formed.

• The reduced-order modeling technique developed in chapter VI is not limited only

to the cases of bladed disks. It can be applied to general structural vibration prob-

lems. For example, the following three areas are worth exploring with the developed

technique:

1. Design optimization (or possibly topology optimization). The developed tech-

nique can handle for the case of large structural property changes, even for the

case in which some finite elements are removed. Therefore, a design optimiza-
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tion process associated with improving vibration response can be expedited

with this technique.

2. Component mode synthesis. Some ROMs for large and complex structures can

be still large. When the structural properties of a component is significantly

changed for a certain reason, a small part of the reduced mass and stiffness

matrices may be also changed greatly. By applying the developed technique

for the modified reduced mass and stiffness matrices, more efficient vibration

analysis may be achieved.

3. Aerodynamic effects on structures. When aerodynamic forces are added, the

motion of a structure may be considerably different from the structure-alone

motion. Suppose a situation in which the motion of the structure subject to

aerodynamic forces is the same as that of a structure-alone mode at the corre-

sponding structure-alone natural frequency. Then, an analogy between a sys-

tem with large mistuning and a system subject to aerodynamic forces can be

found.

• Finally, the reduced-order modeling method for large mistuning developed in chap-

ter VI should be combined with a small-mistuning technique such as the component

mode mistuning method presented in chapter II. Key applications of such a com-

bined technique include the assessment of vibration response for a system that suf-

fers blade damage, and the optimization of bladed disk designs for reduced stress

and increased safety. Thus, it would provide a comprehensive vibration analysis and

design tool for bladed disks that would help enable the development of more robust

and reliable turbine engines.
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APPENDIX A

Modal Participation Factors of Cantilevered-Blade
Normal Modes

Since a tuned bladed disk features cyclic symmetry, a system mode can be represented

by a mode of a single sector in cyclic coordinates and its harmonic number. Therefore,

once the modal participation factors for the blade portion of a cyclic single-sector mode

are obtained, all the factors for the corresponding full system mode in physical coordinates

can be easily computed.

Tuned-system normal modes can be obtained from a single-sector finite element model

as

ΦS = (F⊗ I) B̃diag
h=0,...,H

[
Φ̃S
h

]
, (A.1)

whereB̃diag
h=0,...,H

[·] denotes a pseudo-block-diagonal matrix, in which block sizes can be

different, andΦ̃S
h is a real cyclic normal mode set corresponding to harmonich. H is

(N − 1)/2 if N is odd, orN/2 if N is even. In this manner, the blade portion of the

tuned-system modes in physical coordinates is expressed as follows:

ΦS
Γ = (F⊗ I) B̃diag

h=0,...,H

[
Φ̃S

Γ ,h

]
(A.2)
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Next,Φ̃S
Γ ,h is described by cantilevered-blade component modes.

Φ̃S
Γ ,h =

Φ̃S
i,h

Φ̃S
b,h

 =



Φ
B
o ΨB,m

o

0 I


q̃mφ,h

q̃mψ,h

 ,
orΦ

B
o ΨB,k

o

0 I


q̃kφ,h

q̃kψ,h

 ,
(A.3)

whereq̃mφ,h, q̃
m
ψ,h, q̃

k
φ,h, andq̃kψ,h are the participation factors of the cantilevered-blade and

boundary modes in the blade portion of the cyclic tuned-system modes of harmonich.

From Eq. (A.3), it is obvious that

q̃mψ,h = q̃kψ,h = Φ̃S
b,h. (A.4)

Before calculating the modal participation factors of the cantilevered-blade modes, it

should be noted that the normal modes and the boundary modes of a cantilevered blade

are orthogonal with respect to nominal mass and stiffness matrices. This is proved using

Eq. (2.8), ΦB
o

0


T  MB

ii,o MB
ib,o

MB
ib,o

T
MB

bb,o


ΨB,m

o

I



=

ΦB
o

0


T  MB

ii,oΨ
B,m
o + MB

ib,o

MB
ib,o

T
ΨB,m
o + MB

bb,o



=

ΦB
o

0


T  0

MB
ib,o

T
ΨB,m
o + MB

bb,o

 = 0

(A.5a)
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=
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=

ΦB

0


T  0

KB
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T
ΨB,k
o + KB

bb,o

 = 0

(A.5b)

Using these orthogonality conditions,q̃mφ,h and q̃kφ,h can be obtained from Eq. (A.3) as

follows: ΦB
o

0


T

MB
o Φ̃S

Γ ,h =

ΦB
o

0


T

MB
o

ΦB
o ΨB,m

o

0 I


q̃mφ,h

q̃mψ,h


=

[
I 0

]q̃mφ,h

q̃mψ,h

 = q̃mφ,h

(A.6a)

ΦB
o

0


T

KB
o Φ̃S

Γ ,h =

ΦB
o

0


T

KB
o

ΦB
o ΨB,k

o

0 I


q̃kφ,h

q̃kψ,h


=

[
ΛB
o 0

]q̃kφ,h

q̃kψ,h

 = ΛB
o q̃kφ,h

(A.6b)

Onceq̃mφ,h and q̃kφ,h are obtained,qmφ,n andqkφ,n are expressed using the real Fourier

matrix,F, and the Kronecker product in the same manner as in Eq. (A.1) and (A.2). That



212

is, 
...

qmφ,n
...

 = (F⊗ I) B̃diag
h=0,...,H

[
q̃mφ,h

]
(A.7a)


...

qkφ,n
...

 = (F⊗ I) B̃diag
h=0,...,H

[
q̃kφ,h

]
(A.7b)
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ABSTRACT

DYNAMIC ANALYSIS AND DESIGN STRATEGIES

FOR MISTUNED BLADED DISKS
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Bladed disks are used in many important engineering applications, including turbine

engine rotors. Typically, each disk-blade sector in a bladed disk is assumed to be identical,

and the bladed disk is analyzed based on a single sector model. However, due to manufac-

turing tolerances, operational wear, and other unavoidable factors, an actual bladed disk

always has discrepancies among individual sectors, called mistuning. Even small mistun-

ing can alter dramatically the vibration response of a bladed disk compared to the ideal,

tuned system. In particular, the vibration energy may be concentrated in a few blades, lead-

ing to increased stress levels and fatigue problems. Moreover, since mistuning destroys

cyclic symmetry, the whole assembly model must be analyzed, which is computationally

expensive.

In this work, a new reduced-order vibration modeling technique for mistuned bladed

disks is presented. This is called the component mode mistuning (CMM) method, and it al-

lows for easy implementation of mistuning and yields more efficient and accurate reduced-

order models (ROMs) compared to previous methods. Based on the CMM method, a mis-



tuning identification technique is also developed. In order to account for the difference

between an actual bladed disk and the finite element model, the concept of “cyclic mod-

eling error” is introduced in the CMM formulation, and a model updating procedure is

implemented to compensate for this error. As a result, the identification method becomes

more accurate and robust. In addition, because the increase in maximum blade response

due to mistuning is used for design safety evaluation, two methods for calculating the

upper bound of this response amplification are presented. Then, as a design strategy for

significantly reducing the worst-case amplification, the use of intentional mistuning in a

nominal design is investigated. Based on key observations from an analysis of vibration

energy flow in bladed disks, some guidelines are proposed for reducing the design space

for intentional mistuning patterns, so that an optimal or near-optimal pattern can be found

without requiring an expensive optimization process. Finally, a novel reduced-order mod-

eling technique is presented for a system subject to large, geometric mistuning or design

changes. A ROM constructed by this new technique shows fast convergence and excellent

accuracy in capturing the motion of a system featuring large deviations from the original

design, which cannot be handled with existing small-mistuning ROMs.


