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CHAPTER |

Introduction

1.1 Dissertation Objectives

Bladed disks are used in various important engineering applications, such as fans, im-
peller pumps, windmills, propellers, turbine generators, and jet engines. In a nominal
design, a bladed disk is a structure of cyclic symmetry, where all the disk-blade sectors
are identical and arranged around the central axis. In practice, however, there are always
small variations in structural properties along the sectors, resulting from manufacturing
tolerances, material deviations, and uneven operational wear. Due to these small irreg-
ularities, which are referred to as mistuning, the cyclic symmetry of the bladed disk is
destroyed.

Since a nominal bladed-disk design features cyclic symmetry, only a single sector
model is required for the vibration analysis of the whole assembly, and the modes appear
in the form of circumferential harmonic waves. Therefore, the vibration energy is evenly
distributed to every sector in a perfectly tuned bladed disk when an engine order excita-
tion, which is harmonic in time and differs by a constant phase angle from blade to blade,
is applied. The free response of a bladed disk features groups of system modes dominated
by blade motion, whose natural frequencies are located in narrow frequency bands around

the blade-alone natural frequencies. Because of this high modal density, the modes are sig-



nificantly altered by small mistuning (especially, blade mistuning) so that the mode shapes
are not spatially harmonic any more. Consequently, the dynamic behavior of a bladed disk
with mistuning may be qualitatively different from that of the tuned configuration. The
vibration energy can become concentrated in a few blades, and those blades experience
higher levels of stress than would be predicted from a nominal design. In addition, cyclic
symmetry cannot be used for the analysis of a mistuned bladed disk, and the model of the
whole mistuned assembly is required, which is costly.

In order to understand the basic mechanisms of the mistuning effects on bladed disk
dynamics, lumped parameter models have been often studied. Using these models, many
mistuning phenomena—such as mode pair splitting, mode localization, and forced vi-
bration response magnification—have been explained, and the maximum forced response
magnification that can be reached due to mistuning has been estimated. Also, reduced-
order models (ROMs) have been developed based on the parent finite element models
(FEMSs) in order to provide an accurate prediction of the vibratory response of bladed
disks, and some ROMs have been used to identify the mistuning in actual bladed disks.
Still, there is a need for smaller and more accurate ROMs, because Monte Carlo simula-
tions of randomly mistuned bladed disks are commonly performed for design evaluation.
Furthermore, most ROMs have been developed by assuming that mistuning is small, which
is not necessarily the case.

Recently, it has been reported that, when mistuning is intentionally introduced to nom-
inal designs, the maximum blade forced response level can be decreased. That is, a nomi-
nally mistuned design can be robust with respect to unavoidable random mistuning. How-
ever, it is not known which patterns of intentional mistuning are optimal. In addition,
optimization procedures can be prohibitively expensive due to the huge design space of

intentional mistuning patterns, even for lumped parameter models.



The primary objectives of this research are as follows:

To develop an efficient and accurate reduced-order modeling method for the vibra-

tion of bladed disks with small mistuning.
e To apply the reduced-order modeling methods to the identification of mistuning.

e To investigate the underlying mechanism of intentional mistuning so that some
strategies to reduce the design space for intentional mistuning patterns can be ex-

tracted.

e To develop a reduced-order modeling technique that can handle the cases in which

mistuning is so large that ROMs for small mistuning cannot be used.

1.2 Background

The effect of mistuning on turbomachinery rotors has long been studied by experi-
ments and by analytical and numerical models. In 1957, Tobias and Arnold [1] reported
that inevitable imperfections in rotating disks cause mode pairs with identical natural fre-
guencies to separate into two distinct modes. Since then, there has been a significant
amount of research on understanding and predicting the vibration of mistuned bladed
disks. Many of these studies have employed lumped parameter models using analyti-
cal, numerical, statistical, and perturbation methods (Whitehead [2], Wagner [3], Dye and
Henry [4], Ewins [5, 6], EI-Bayoumy and Srinivasan [7], Griffin and Hoosac [8], Lin and
Mignolet [9], Wei and Pierre [10, 11], an@ttarsson and Pierre [12], etc.). In particular,
Wei and Pierre [10, 11] demonstrated that bladed disk systems with low damping, high
modal density, and moderately weak interblade coupling are most susceptible to mode

localization and resonant amplitude magnification. Although a lumped parameter model



can provide basic understanding of the underlying mechanisms of mistuning phenomena,
it cannot be used for accurate predictions of the dynamic response of an actual bladed disk.

Therefore, FEMs have been employed to yield ROMs by using component mode syn-
thesis (Irretier [13], Zheng and Wang [14], Castamieal.[15], Kruse and Pierre [16, 17],
Bladhet al.[18—20], Moyroudet al.[21]), a receptance technique (Yang and Griffin [22]),
and classical modal analysis with mistuning projection (Yang and Griffin [23]). Castanier
et al. [15] introduced a component-based ROM in which mistuning is implemented by
varying blade modal stiffness. Blad al. [18] extended this modeling method by intro-
ducing the projection of mistuning to cantilevered-blade normal modes so that mistuning is
implemented in the modal domain. Mistuning implementation in the modal domain has a
great advantage in that a small number of modal mistuning values are sufficient to describe
complex parameter variations in a blade. Yang and Grffin’'s method [23] is also notable
due to the compact size of the resulting ROM, which is achieved by recognizing that, when
a tuned system has a set of normal modes that are closely spaced in a frequency range, a
slightly mistuned system also has normal modes closely spaced in the same frequency
range and the mistuned normal modes can be captured using only that set of tuned normal
modes. In Yang and Griffin’'s method [23], tuned-system normal modes are used directly
to construct a ROM without substructuring a bladed disk. Therefore, no additional errors
are introduced in a ROM of tuned systems. However, since mistuning is directly projected
to tuned-system modes in this method, the knowledge of mass or stiffness mistuning ma-
trices in physical coordinates is required for the implementation of mistuning into a ROM,
which is cumbersome.

Once a ROM of a bladed disk is obtained, the next concern is to assess the safety of
a given design using the model. Typically, blade forced-response level is represented by

an amplification factor that is the ratio of the largest blade response in a mistuned system



to that in the tuned counterpart. Therefore, the assessment is usually performed by iden-
tifying the maximum amplification factor. Some researchers [2, 24-28] have derived ana-
lytical forms for the maximum amplification factor. Most famously, Whitehead [2, 24, 25]
reported an amplification factor ¢1 + /N,)/2, where N, is the number of blades. In
Kenyonet al.’s work [27], only mode distortion was considered to find the maximum am-
plification factor. Therefore, their maximum factor could not reach Whitehead'’s factor.
Rivas-Guerra and Mignolet [28] argued that Whitehead'’s factor is recovered only when
the engine order of excitation is equaltor N, /2 for IV, even. Despite all these research
efforts, the obtained maximum amplification factors are based on lumped parameter mod-
els, and thus may not be applicable to actual bladed disks. Therefore, statistical analyses
have often been used to determine confidence limits (e.g., the 99th percentile value) for
the amplification factor, which requires a large number of Monte Carlo simulations on
mistuned bladed disks. Hence, the development of a small, accurate ROM has been an
important issue, even though a method to reduce the number of simulations required for
the accurate estimation of the response statistics has been developed [29].

Another use of a ROM is to identify mistuning in actual bladed disks. Mistuning iden-
tification is important as a means of monitoring the quality of the manufacturing process,
and also in the maintenance checks of operational rotors. &1@d4¢30, 31] first reported
a mistuning identification method using a ROM. Subsequently, Feiner and Griffin [32, 33]
developed another method using a simpler model. These methods are based on the as-
sumption that the dynamic behavior of an actual bladed disk is exactly represented by a
FEM. The sensitivity of the identification results to the possible modeling errors, which
might be critical, has not been examined.

Although a nominal design of a bladed disk usually means a tuned configuration, there

have been many studies showing that a nominally mistuned design can reduce blade forced



response level. Ewins [34] reported that deliberate, significant detuning has the possibil-
ity to reduce blade vibration levels for specific engine orders of excitation. Griffin and
Hoosac [8] observed that the level of the maximum blade forced response is reduced
by constructing an alternate mistuning configuration with two blade populations, where
each population has different mean natural frequencies. Recently, the beneficial effect of
intentionally incorporating mistuning into a nominal design has been studied more sys-
tematically (Castanier and Pierre [29, 35, 36], Breetal. [37]). In these studies, it has
been shown that using two or more blade designs with nominally different natural frequen-
cies can make a bladed disk system more robust with respect to random mistuning. The
performance of intentionally mistuned designs is dependent on the pattern of intentional
mistuning. Therefore, one recent study [38] was focused on finding an optimal intentional
mistuning pattern using an optimization algorithm. However, only limited information was
used to evaluate each iteration of the intentionally mistuned design, without identifying the

maximum blade response, because of cost.

1.3 Dissertation Outline

The remaining chapters of this dissertation are compiled from a collection of six
manuscripts (five technical papers and one technical note) that have been prepared for
submission to scientific journals. Because of this, some of the background material is
repeated in various chapters. The remaining chapters are summarized as follows.

In chapter Il, a component-based modeling framework for mistuned bladed disks is
developed, in which a mistuned bladed disk is substructured into a tuned bladed disk and
virtual mistuning components. From this framework, a compact ROM is derived for the
case of small mistuning. The obtained ROM uses a small set of tuned-system normal

modes as a basis, and mistuning is projected to cantilevered-blade component modes,



and then to tuned-system modes via the modal participation factors of cantilevered-blade
modes for tuned-system modes.

In chapter Ill, a new technique for mistuning identification based on the modeling
technique developed in chapter Il is presented. A sensitivity study is performed for both
modeling errors and data noise, and in order to compensate for these modeling errors, the
concept of “cyclic modeling error” is introduced.

In chapter IV, two methods to calculate the upper bound of the amplification of the
blade forced response are presented. First, using lumped parameter models, the maximum
amount of vibration energy that can be concentrated in a single blade is calculated, and
the response of the blade is obtained. In another method, the worst combination of closely
spaced tuned-system traveling wave modes is found to yield the largest blade response.
Also, some indicators to approximate the largest stress level in a blade are studied.

In chapter V, the basic mechanism of intentional mistuning is investigated using lumped
parameter models, and three guidelines to reduce the design space for intentional mis-
tuning patterns are proposed. They are validated by testing all the patterns available for
12-blade systems when two blade types are used, and their effectiveness is also examined
using a ROM for an industrial rotor.

In chapter VI, a new reduced-order modeling technique is developed for bladed disks
with large, geometric deviations from a nominal design. By accounting for the effects
of the deviations as though they were produced by external forces, a set of basis vectors
are established using a combination of tuned-system normal modes compensated by static
modes. The developed method shows fast convergence, and produces ROMs as compact
as those for small mistuning.

Finally, in chapter VII, the contributions of this research are summarized, and ideas for

future work are proposed.



CHAPTER I

A Compact, Generalized Component Mode Mistuning
Representation for Modeling Bladed Disk Vibration

New techniques are presented for generating reduced-order models of the vibration
of mistuned bladed disks from parent finite element models. A novel component-based
modeling framework is developed, by partitioning the system into a tuned bladed disk
component and virtual mistuning components. The mistuning components are defined by
the differences between the mistuned and tuned mass and stiffness matrices. The mistuned
system model is assembled with a component mode synthesis technique, using a basis of
tuned-system normal modes and attachment modes. The formulation developed is general
and can be applied to any mistuned bladed disk, including those with large, geometric
mistuning (e.g., severe blade damage). In the case of small (i.e., blade frequency) mis-
tuning, a compact reduced-order model is derived by neglecting the attachment modes.
For this component mode mistuning model, the blade mistuning is projected first onto the
component modes of a tuned, cantilevered blade, and then projected again onto the tuned-
system normal modes via modal participation factors. In this manner, the measured modal
characteristics of mistuned blades can be used to capture systematically the effects of the
complex physical sources of mistuning. A numerical validation of the methods developed

is performed for both large and small mistuning cases using a finite element model of an



industrial rotor.

2.1 Introduction

A bladed disk consists of a set of disk-blade sectors that are typically assumed to be
identical. In practice, however, there are always small variations in the structural prop-
erties of individual blades, resulting from manufacturing tolerances, material deviations,
and operational wear. These variations are referred to as blade mistuning. Due to mis-
tuning, the vibratory response of an industrial bladed disk may be considerably different
from that of its nominal, tuned design. Over the past 40 years much research has been
done on the dynamic behavior of mistuned bladed disks, and many of these studies have
been based on lumped parameter models [3—11]. While such simple models do provide a
basic understanding of the effects of mistuning, they cannot be used to predict accurately
the vibratory response of industrial bladed disks. Therefore, various techniques have been
developed to construct reduced-order models (ROMs) of bladed disks systematically from
their finite element representations. These include component mode synthesis [13, 15, 18—
21, 39], a receptance technique [22], and classical modal analysis with a mistuning pro-
jection [23]. The major differences between these reduced-order modeling techniques are
the substructuring approach and the mistuning implementation. Another method to obtain
the response of mistuned systems without building an attendant reduced-order model has
been proposed by Petr@¥ al. [40]. In this approach, the response of a mistuned system
is calculated using response levels for the tuned assembly, together with a modification
matrix constructed from the frequency response function matrix of the tuned system and a
matrix describing the mistuning.

In general, reduced-order models are obtained by substructuring a bladed disk into

disk and blade components, as this allows for easy implementation of blade mistuning.
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However, one approach [23] has recently been proposed by Yang and Griffin, in which
the tuned-system normal modes are used without substructuring to generate a reduced-
order model. One advantage of avoiding substructuring is that there is no additional error
introduced in the tuned system model. Another advantage is that, since the number of
tuned-system normal modes required is on the order of the number of blades, the size of
Yang and Griffin’s reduced-order model is smaller than that of any other.

The way in which blade mistuning is implemented into a reduced-order model is a key
issue, because mistuned reduced-order models should be able to replicate the behavior
of actual mistuned systems. Castane¢ral. [15] included mistuning in a component-
based reduced-order model by varying the blade modal stiffnesses that appear explicitly
in a synthesized stiffness matrix. Blaeh al. [18] extended this method by projecting
mistuning onto the normal modes of a tuned cantilevered blade fixed at the disk-blade
interface. Since a small number of modal stiffness variations are directly employed in
the reduced-order model, the implementation of mistuning is quite efficient. Also, since
different mistuning patterns can be used for the various individual blade modes, multi-
blade-mode bladed disks can be modeled realistically. Therefore, this mistuning projection
method has great potential for general implementation in reduced-order models. Yang
and Griffin [23] used a similar mistuning projection, but in theory their method requires
the knowledge of the mistuned mass and stiffness matrices in physical coordinates, since
the mistuning expressed in physical coordinates is directly projected to the tuned system
modes. Therefore, they only considered the case of a mistuned blade stiffness matrix
proportional to the nominal matrix. The method proposed by Pett@l. [40] also uses
a mistuning matrix in physical coordinates. Therefore, for the practical implementation of
mistuning, it is clear that the mistuning projection method of Blatlal. [18] is useful,

with the caveat that the component mode shapes of mistuned and tuned blades are assumed
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to be the same and that only stiffness mistuning is present.

In this paper, a general reduced-order model for mistuned bladed disks is developed.
In this approach, the mistuned system is represented by the full tuned system and by vir-
tual mistuning components, and a hybrid-interface method is used to combine them. The
mistuning components consist only of mass and stiffness deviations from the tuned config-
uration, and all the degrees of freedom (DOF) in the mistuning components are considered
to be interface degrees of freedom. Since no assumption is made about mistuning in this
formulation, the resulting reduced-order model can be constructed for arbitrary mistuning,
regardless of whether it is small or large.

Most previous research on mistuning has been based on the assumption that mistuning
is small (i.e., small blade-frequency mistuning), which is not necessarily the case. If there
is large mistuning, such as a fractured blade tip, or significant variations in blade geometry
due to damage, then it is necessary to include a very large number of tuned-system modes
or tuned-component (disk and blade) modes in the reduced-order models. This is due to
the fact that mistuning may change the mass or stiffness matrices significantly, and the
mode shapes of a mistuned blade may be completely different from those of a tuned blade.
Because of this difficulty, reduced-order models developed to date have not been able to
capture such large mistuning. In the general formulation proposed herein, the attachment
modes of the tuned system are used to generate an accurate reduced-order model with a
reasonable size for the case of large mistuning. This allows for the efficient prediction of
the response of bladed disks with large, mode shape mistuning. Furthermore, intentional
mistuning [36], which may be not small in local areas of the blades, can be efficiently
studied with this method.

In this paper, a reduced-order model for the special case of small mistuning is also de-

rived from the above general formulation. This model uses the same tuned mode basis, and
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thus it features the same small number of DOF as that of Yang and Griffin’s method [23].
Blade mistuning is implemented using the mistuning projection approach originally de-
veloped by Bladret al.[18], which is extended here to handle the generalized blade mis-
tuning cases considered. By using only a few modes of a mistuned cantilevered blade, any
type of small structural mistuning can be accurately accounted for. This new approach
to small-mistuned bladed disks is referred to as the component mode mistuning (CMM)
method. In preceding studies [18—20], a bladed disk was substructured into disk and blade
components in order to project mistuning to the normal modes of a tuned cantilevered
blade. With the CMM method, modal participation factors of the cantilevered-blade nor-
mal modes are used to describe the blade motion in terms of the tuned-system normal
modes, and thus, mistuning is projected to cantilevered-blade normal modes without re-
quiring a component-based representation of the full system. Furthermore, by examining
modal participation factors, just a few dominant cantilevered-blade normal modes can be
used for the mistuning projection.

A major advantage of this method is that, even when mistuning is present in only
part of the blade such that the modal mistuning patterns for the various blade modes are
different, the influence of mistuning may still be estimated accurately. That is, arbitrary
patterns of mistuning in the physical mass and stiffness matrices can be efficiently and
accurately implemented in a compact reduced-order model using modal mistuning values
for a few cantilevered-blade modes. This feature is especially useful when two groups of
blade-dominated modes of the tuned system are closely spaced.

The primary contribution of this paper is a new method for systematically formulating
a general reduced-order model of mistuned bladed disks, regardless of whether mistuning
is small or large. In particular, the new ROM handles the effects of large structural and

geometric variations, such as fractured and damaged blades. Another contribution is the
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development of a compact modeling framework for a bladed disk with generalized small
blade mistuning and aerodynamic coupling. In particular, the CMM model allows one to

handle the cases of local blade mistuning and different mistuning patterns for the different
blade modes.

The paper is organized as follows. The general formulation of a reduced-order model
for a bladed disk with arbitrary mistuning is presented in section 2.2. The CMM represen-
tation for the case of small blade mistuning is derived in section 2.3. In section 2.4, the
general approach is validated by comparing the results of the finite element model (FEM)
and the ROM for an industrial rotor with a rogue blade, which causes large mistuning. In
section 2.5, the CMM approach is validated for the same industrial rotor but with small
mistuning. The test cases include mistuning that leads to a proportional change in the
blade stiffness matrix as well as non-proportional mistuning. The conclusions are given in

section 2.6.

2.2 General Reduced-Order Model Formulation for a Mistuned Sys-
tem

A general, component-based framework is considered, whereby a mistuned bladed
disk is partitioned into &uned bladed diskomponent and a set of virtual components that
represent thélade mistuning, as shown in Fig. 2.1. Each virtual substructure, or mistun-
ing component, is defined as having mass and stiffness matrices equal to the difference
between the mistuned and tuned matrices of a single blade. Since the response of a typical
bladed disk is much more sensitive to mistuning in the blades than in the disk, only blade
mistuning is considered in this study. However, the proposed substructuring approach can
be applied to any mistuned system.

In order to combine the tuned system and mistuning components, a hybrid-interface
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component mode synthesis (CMS) [41] approach is employed. The tuned system is treated
as afree-interface component, while the mistuning components are treated as fixed-interface
components. For the CMS of the tuned system component, normal modes and attachment
modes [41] are needed, where the attachment modes are obtained by applying a unit force
to each interface DOF, successively. For the CMS of a mistuning component, normal
modes and constraint modes [41] are needed, where the constraint modes are obtained by
enforcing a unit displacement at each interface DOF, successively. Note that since all the
DOF in the mistuning components are interface DOF, they do not have component normal
modes. Therefore, the constraint modes, which in this case are represented by the identity
matrix, are sufficient to describe the motion of the mistuning components.

The reduced mass and stiffness matrices in modal coordinates for the free-interface
component (the tuned systemy); andx®, can be written using its truncated set of normal

modes®*, and complete set of attachment modg$, as follows:

[ ®5" MSPS

p’ = (2.1a)
TSMIBS S MSwS
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kS = (2.1b)
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where A is a diagonal matrix of the eigenvalues of the retained normal modesa
vector of physical coodinates, apdis a vector of modal coordinates. The superscsipt
denotes a tuned system, and the subscrdptd I" denote the DOF of the disk and the
blades, respectively. The subsrcrigisand ¥ denote the generalized coordinates for the
retained component normal and interface modes, respectively.

For the mistuning components, the reduced mass and stiffness matrices in modal coor-
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dinatesu’ andx?’, are the same as those in physical coordinates.

o =T"M°T =M° (2.2a)
K =T"K’I = K° (2.2b)
x’ =1p% = pY, (2.2c)

where

M’ = Bdiag [M’], K’ = Bdiag [K}],
n=1 n=1

,,,,, N N

the superscripté denotes the mistuning componerﬂiiia% [-] denotes a block-diagonal
matrix with thenth block corresponding to theth blade, andV is the number of blades.
Now, the assembly of the components is achieved by satisfying displacement compatibility

at the component interface (i.&3 = x°). This yields, from Eq. (2.1c) and (2.2c):
®7py + Uipy = pY. (2.3)
This constraint equation leads to the synthesized representation of a mistuned system:
[—w?p" + (14 jy)s] p = [0S f, (2.4)

where

5 MBS @5 MOWS
p" = p® + g S ! (2.5a)
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3 KIPS BSTKIWS
v =S4 | T roor r (2.5b)
USTKIBS WKW

pYn = . (2.5¢)

As indicated in Eq. (2.5), the mistuned system is described only with the normal modes

and the attachment modes of the corresponding tuned system. Since no assumption has
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been made about mistuning in deriving this reduced-order model, the formulation is en-
tirely general and applicable to any kind of mistuned system. The only restriction is that
the number of DOF in a mistuned part must be the same as that in the corresponding part
of the tuned system. The number of attachment modes required is the same as the number
of DOF of the mistuning components. Although the number of attachment modes may be
large (i.e., the number of blade DOF), the attachment modes can be calculated easily and
they improve the convergence rate of the natural frequencies and mode shapes of the ROM
as the number of tuned-system normal modes increases, as will be discussed in section 2.4.
Therefore, an accurate ROM of a reasonable size can be achieved in a systematic manner

for arbitrary mistuning by using this general formulation.

2.3 Small Mistuning Case: Component Mode Mistuning Method

In this section, the general ROM developed above is simplified by assuming that blade
mistuning is small compared to nominal properties in the modal domain/(i .j.? —
ki) /K5l < 1. Because the simplified ROM employs mistuning in component modal
coordinates of a tuned cantilevered blade, this new method for small mistuning is called

Component Mode Mistuning (CMM).

2.3.1 Approximation for Small Mistuning

Recently, Yang and Griffin reported on modal interaction [42] and applied the results to
the modeling of mistuned bladed disks [23]. The main idea for their method is that, when
a tuned bladed disk has normal modes closely spaced in a frequency range, a slightly
mistuned bladed disk also features closely spaced modes in the same range, and thus the
mistuned normal modes can be expressed using a subset of the tuned normal modes. This
means that the tuned normal modes outside of the frequency range of interest, or any static

modes, can be ignored in modeling a mistuned system with small mistuning.
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Using this approach, #° and the corresponding modal coordinate$, are ignored

in Eq. (2.5), then the synthesized representation becomes

o = [I + @ﬁTM5¢§] (2.6a)
KU = [AS + <1>§TK5q>ﬂ (2.6b)
b = {p} (260)

In general, a bladed disk features sets of blade-dominated modes grouped into narrow
frequency bands, and the number of normal modes in each band is on the order of the
number of blades. Therefore, Eq. (2.6) provides an accurate representation of a small-
mistuned bladed disk in a frequency range of interest with matrices of dider

It can be observed in Eq. (2.6) that the mass and stiffness deviation matrices in physical
coordinates are projected to the blade portion of the tuned-system normal modes (in this
study, mistuning is limited to the blades). Hence, the reduced mass and stiffness matrices
can be obtained only ¥1° andK?’ are either known or at least estimated so that they match
the mass and stiffness characteristics of the actual blades in a certain frequency range.
However, such estimation becomes impractical whM¢handK? are not proportional to
the corresponding tuned matrices, which is the case when each blade mode family features

a different mistuning pattern.

2.3.2 Component Mode Mistuning Projection

Bladhet al. [18] introduced a mistuning projection method, where the stiffness mis-
tuning matrices in physical coordinates are projected to the normal modes of a tuned blade
cantilevered at its root. The projection gives the diagonal matrix of modal stiffness de-
viations with the assumption that the tuned and mistuned blade-alone mode shapes are
the same. With this approach, non-proportional blade mistuning can be implemented effi-

ciently using the modal stiffness deviations, without requiring the estimati®& oHow-
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ever, since the ROM was generated by substructuring a rotor into a disk and blades, the
model size was larger than that of Yang and Griffin’s model [23], which is on the order of
the number of blades.

In this section, the blade portion of the tuned-system normal modes in Eq. (2.6) is
represented by the modal participation factors of the component modes of a tuned can-
tilevered blade, and the mistuning projection method of BlettHl.’s is employed without
substructuring. Furthermore, it is shown that, even when the mistuning projection matri-
ces are not diagonal, using only the diagonal terms is a good approximation as long as the
motion of a blade in a mistuned system is dominated by one mode of a tuned cantilevered
blade.

To carry out this projection, the modal participation factors first need to be obtained
to represent the blade motion in tuned-system modes. If only cantilevered-blade normal
modes are used to describe the blade motion, then the displacements at the boundaries
(e.g., blade-disk boundary, shroud-to-shroud boundary) cannot be captured. Therefore,
additional modes are required to describe motion at the boundary. However, since it is
not feasible to measure these additional boundary modes, the proposed approach is to
determine them by minimizing their contribution to the mistuning projection, which is
eventually ignored for small boundary displacements.

Here, the additional mode set is introduced in the following form:

v
I
where®? which is not yet determined, corresponds to the interior DOF of a cantilevered
blade, and corresponds to the boundary DOF that are fixed in the cantilevered blade.
The number of modes in this set is the number of boundary DOF so that any boundary

motion can be described. Since mistuning may be random, the nominal mass and stiffness
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matrices of a bladeM?, KZ, are used in minimizing the contribution of the boundary

modes. Then, the mass and stiffness projections to the boundary modes become

— - T -~
5 vl M7, Mj,| |®)
Moy = . (2.7a)
I MEz" MEL| | T
o
5 38 K, Ki,| |¥]
KD, = ’ ’ : (2.7b)
I KZT KE || 1

where the subscriptsand: denote the boundary and interior DOF of a cantilevered-blade,

respectively.

Now, by taking the first variation g&/}, andx.[,, in ¥, the boundary mode contribu-
tions to the mass and stiffness projections are minimizeddghtt and¥2* correspond-

ing to the mass and stiffness projection can be obtained from the following equations:

whEm o ME =0 (2.8a)

ib,0

MB

1,0

Bk L KE —. (2.8b)

B
K ib,0

Here, it should be noted that?* is the set of Craig-Bampton constraint modes of a

cantilevered blade [41].

Now, the motion of thexth blade in the tuned-system modes is described by cantilevered-

blade normal modes and boundary modes as follows:
(

;7 Wil \ag, o
for mass mistuning,

0 I qun

@%n = or (2.9)

for stiffness mistuning.
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Therefore, the blade portion of the tuned-system modes can be expressed as:

4
IeU™) qm,
7 = or (2.10)
(I®U*) 4,
\
where
_(I)B ‘I/B’m _(I)B \I’B’k
Um _ (0] o Uk _ (o) [0
0 I 0 I
q = q = )
q’l[J,n qun

and® denotes the Kronecker product. Note that sidige™ and®.* are differentq’,

and q’q‘;m are also different. The modal participation factors can be easily calculated be-
cause a tuned system is a structure with cyclic symmetry (see Appendix A). In most cases,
only a few normal mode participation factors per blade (usually, just one for unshrouded
rotors) are dominant, because the blade motion in a tuned-system normal mode tends to be
well correlated to that of a cantilevered-blade normal mode (this will be discussed further
in section 2.5). Therefore, a few dominant modes are sufficient for the normal mode set,

o3
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Inserting Eg. (2.10) into Eq. (2.6), the reduced mass and stiffness matrices become
Msyn =TI+ qu (I ® UmT) M§ (I ® Um) q

— I+ Z quUmTM6 Um m
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SinceM? andK? are not necessarily proportional to the nominal matri€&s’ M2 U™
andU*" K2 U* are full matrices, as shown in Eq. (2.11).

Equation (2.11) can be used for any small-mistuned bladed disk, but it still requires to

know the mistuning values for the boundary modes. These cannot be readily measured,
but they can be computed in the few cases the mistuning distribution within the blades is

known (e.g., if one assumes proportional mistuning). Now, suppose that the displacements

at the blade structural boundaries in the tuned-system normal modes are very small, so that
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the contribution of the boundary modes to the mistuning projection is negligible. This is
the usual case for unshrouded rotors. Then, the dominant cantilevered-blade normal modes
are sufficient to project mistuning without losing accuracy. In this case, the partitions per-
taining to the boundary modes can be ignored and the reduced mass and stiffness matrices

can be approximated as:

N
ITREESD SR TL v (2.12a)
n=1
al T
K" A 4 Z q';n Rg¢7nq’;7n. (2.12b)
n=1

Note thatu), , andk}, , still have off-diagonal terms if the mistuned mass and stiff-
ness matrices are not proportional to the nominal matrices. However, each column of
q;, and q’(;m is usually dominated by one modal participation factor, and the motion of
each blade in a system with small mistuning is usually dominated by one mode of a tuned
cantilevered blade. In this case, the off-diagonal termﬁj@jn and nfw’n, which repre-
sent the coupling between cantilevered-blade modes due to mistuning, can be neglected.

Therefore, Eq. (2.12) can be even more simplified as follows:

N

syn m T qs s m
K =1+ Zl s.n d}?‘Rg ('u¢¢7n,r) Ap.n (2138.)
al T
SYN ~o S k . ) k
KT AT Zl%’” diag (x5,.) do.n (2.13b)
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and R is a set of retained cantilevered-blade normal mode numbers. In this equation, the
required number of the modal mistuning values per blade is the number of the retained

cantilevered-blade normal modes.
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Next, the calculation of the modal mistuning matricp%n andn‘fmn, and their diag-
onal terms are discussed. Assuming that the mode shapes of the actual (i.e., mistiuned)
cantilevered blade have been measured or computed, the tuned-cantilevered-blade normal
modes can be expressed as linear combinations of the mistuned-cantilevered-blade normal
modes as follows:

®5 = @by, (2.14)

wherev,, is a matrix consisting of the modal participation factors.
The mode orthogonality with respect to the mass and stiffness matrices for the mis-

tuned cantilevered blade is written as follows:

1= 2" (M2

g,+M,) @8 (2.15a)

i,

AP = 8" (K2, + K. @ (2.15b)

11,0 1,

Pre-multiplying byv,,”, post-multiplying byv,,, and using Eq. (2.14),

T
Vi v, =@ (M, + M) @0 =T+ p,,, (2.16a)
v,TAPv, = 8" (K2, + K3, ) ®% = AP + k), . (2.16b)
Therefore,
Bosm = Vo' v —1 (2.17a)
Kgn = Vi Alv, — AL (2.17b)

Therth diagonal terms of the above mistuning matrices are

Bosmr = Vin Vi — 1 (2.18a)

n‘;(b?n,r = vr,nTAfvr,n —\B (2.18b)

T,00
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wherev,, is therth column ofv,, and ), , is therth element ofA?. Sincev,,, is
dominated by the factor of theh mistuned modey,..,,, for small mistuning cases, the

diagonal terms can be approximated as:

oy, 0k, — 1 (2.19a)

rr,n

Kgmr R AR U — AL (2.19b)

rnrrm

If only the eigenvalues (or natural frequencies) of the mistuned cantilevered blades are
known, then the mass and stiffness mistuning cannot be obtained from the above equation.
However, if only stiffness mistuning is assumed, an equivalent stiffness mistuning value,
KSs..» CAN be computed. Since no mass mistuning is assyajed,. = 0, andv?,,, ~ 1.

T

Then, the equivalent stiffness mistuning value becomes
Kogme B AL — AL, (2.20)

Note that this eigenvalue mistuning was employed in the study by BEdadh[18].

Typically, unsteady aerodynamic coefficients are obtained using aerodynamic codes
based on a set of cantilevered-blade normal modes in a cyclic assembly (i.e., a cascade)
using a complex cyclic coordinate transformation [43]. Therefore, using the cantilevered-
blade mode participation factors computed for the mistuning projection in the CMM method,
aerodynamic coefficients can also be projected to the normal modes of the tuned system.

Eventually, the equation of motion for a small-mistuned system with aerodynamic

coupling can be expressed as
[—w? (™" + ) + jwe® + (1+ j7) 67" + 67 p§ = &5, (2.21)

wherep®, k%, andc® are the aerodynamic coupling mass, stiffness, and damping matrices

in modal coordinates of tuned-system normal modes.
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2.4 Large Mistuning Case Study: Rogue Blade

The industrial bladed disk depicted in Fig. 2.1 is used in this study. This integral bladed
disk (blisk) has 29 blades, and forms the second stage of a four-drum compressor used in
an advanced gas turbine application. The rotor model is clamped at the ribs located at
the outer edges of the disk, which is a rough approximation of boundary conditions due
to neighboring stages. The finite element model is constructed with standard linear brick
elements (eight-noded solids), and it has 126,846 DOF.

Figure 2.2 displays the free vibration natural frequencies of the tuned bladed disk
versus the number of nodal diameters. The natural frequencies and mode shapes were
obtained via cyclic symmetry using a finite element model of a single sector. The blade-
dominated mode families are characterized on the right-hand side of the horizontal lines
in Fig. 2.2, where F denotes a flexural bending mode, T a torsion mode, S a stripe mode,
and R denotes elongation in the radial direction. The frequencies frequently mentioned in
this paper are marked by dotted horizontal lines with the corresponding frequency on the
right side.

In this large mistuning case study, a single “rogue blade” is considered to have large
mistuning, with all other blades being tuned. Mistuning is introduced by changing the
rogue blade geometry significantly, as depicted in Fig. 2.3. It is assumed that the mass
density and Young’s modulus are not changed. TherelditandK?, which are needed
to build the large mistuning ROM, can be obtained from the rogue blade geometry. The
ROM can be constructed using a single-sector finite element model, since the attachment
modes corresponding to all the rogue blade DOF are obtained from a cyclic symmetry
analysis of a single sector.

The size of the resulting reduced-order model is determined by the number of tuned-
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system normal modes in a truncated set plus the number of attachment modes. In this
case study, a ROM is constructed in the frequency range 32—-36 kHz (which includes 3T
and 2S modes), and the results are compared with those of the finite element model of
the complete mistuned bladed disk. At the least, the tuned-system normal modes in the
frequency range of interest must be retained, and the attachment modes for all the nodes
in the rogue blade are also included. Therefore, the reduced-order model has at least 66
(tuned normal modes in 32—36 kHz)2,496 (attachment modes) DOF. Although this size

is much greater than that of a ROM for small mistuning, it is still much smaller than that

of the 126,846-DOF parent FEM. Furthermore, once a modal analysis is performed for the
reduced-order model, 66 normal modes of the mistuned bladed disk may be sufficient to
compute the forced response in the range 32—36 kHz.

To validate the ROM, the convergence of the ROM natural frequencies toward the FEM
results is tested by increasing the number of tuned-system normal modes. Also, the forced
response calculated with the ROM is compared to the FEM results. Figure 2.4 shows the
average natural frequency error versus the number of tuned-system normal modes. The
tested frequency ranges for the tuned-system normal mode basis are 32—-36 kHz, 26-43
kHz, and 22-45 kHz, and the 66 estimated mistuned natural frequencies that exist between
32 and 36 kHz are chosen for comparison with the FEM results. As can be seenin Fig. 2.4,
the estimated natural frequencies converge toward the FEM results as the number of tuned-
system normal modes increases. Also, note the very small average error, less than 0.02 %,
even when the smallest ROM is considered.

Next, the forced response is investigated. From Fig. 2.4, it is clear that 136 tuned
normal modes in the range 26—43 kHz and the attachment modes are sufficient to describe
the behavior of the mistuned system in the range 32-36 kHz, and this ROM is used to

compute the forced response. The structural damping coefficient of 0.006 is used. A unit
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force normal to the blade surface is applied to one of the nodes at the tip of each blade (see
Fig. 2.3), and engine order 1 and 5 excitations are considered. Euclidean displacement
norms for each blade are computed, and the maximum response amplitude of any blade
is found at each sampled excitation frequency, so as to provide an envelope of the blade
amplitudes. The ROM results are shown and compared with FEM results in Fig. 2.5.
As can be seen, excellent agreement is obtained, thus providing further validation of the
ROM'’s accuracy.

In Fig. 2.5, note that an additional resonance appears around 34.3 kHz in the response
of the mistuned system with the rogue blade, and that this peak is larger than the two
resonant peaks for the tuned bladed disk. Hence the presence of a single rogue blade can
significantly alter the forced response, and this effect is accurately captured by the ROM.
The other two resonant frequencies of the rogue blade system are almost the same as those
of the tuned system, and the peak amplitudes are similar. In the case of engine order 1
excitation, the first main peak corresponds to the 30th mode of the 66 mistuned modes in
the 32—-36 kHz range, the second peak corresponds to the 36th mode, and the third peak
corresponds to the 66th mode. In the case of engine order 5 excitation, the three largest
peaks correspond to the 4th, 36th, and 41st modes. These mistuned modes are depicted in
Fig. 2.6 (the displacement of a node at the tip of each blade is shown). The 30th and 66th
modes are nearly sinusoidal waves of harmonic 1 in terms of the blade number, and the
4th and 41st modes are nearly sinusoidal waves of harmonic 5. However, the 36th mode
is highly localized to blade 1, which is the rogue blade. Obviously, the largest forced

response peak around 34.3 kHz for the rogue blade system is caused by this localization.
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2.5 Small Mistuning Case Study

The CMM technique is validated using again the industrial bladed disk in Fig. 2.1. To
build a CMM-based reduced-order model, two tuned finite element models are required,

as depicted in Fig. 2.7:

1. A single-sector model from which the normal modes of the tuned system are ob-
tained via cyclic symmetry analysis (Commercial FEA software packages, such as
MSC/NASTRAN, have cyclic symmetry routines). There are 4,374 DOF per sector

in the finite element model.

2. A blade-alone model from which the cantilevered-blade normal modes and the static
boundary modes are obtained. This model has a total of 2,496 DOF, and there are

96 DOF at the interface between the blade and the disk.

The tuned-system normal modes were obtained from the single-sector model. Fig-
ure 2.2 shows the occurrence of numerous natural frequency veering regions. Earlier stud-
ies[16, 39] have shown that large increases in the mistuned forced response, relative to the
tuned response, are likely to occur in veering regions. Therefore, the ability of CMM mod-
els to capture the mistuned response in veering regions was tested, and two such regions
were investigated: region 1 is located at three nodal diameters, around 28 kHz, and region
2 is located at five nodal diameters, around 34 kHz, as labeled in Fig. 2.2.

For the rotor studied, displacements at the blade root are very small compared to those
at the blade’s interior, such that the contribution to the mistuning projection of the bound-
ary modes defined at the blade-disk boundary can be neglected. Hence the normal mode
mistuning projection used in EqQ. (2.12) or (2.13) is sufficient to construct a mistuned ROM.
Although the CMM method can handle many types of small blade mistuning, here for sim-

plicity mistuning is introduced as slight variations in the Young’s modulus of the blades.
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That is, only stiffness mistuning is considered, and two cases are investigated: a case of a

proportional change in the blade stiffness, and a case of a non-proportional change.

2.5.1 Proportional Mistuning
The mistuned Young’'s modulus for bladeF,,, is
E, = E,(1+6F),

whereFE, is the nominal Young’s modulus valué’ is a non-dimensional mistuning value

for the Young's modulus of theth blade, and uniform within a blade for the proportional
mistuning case. Hence the natural frequencies of all the cantilevered-blade normal modes
are mistuned by the same percentage and the mode shapes remain unchanged.

In this case, there are no off-diagonal terms;@]m, and only the eigenvalues of
the cantilevered blades are mistuned. Hence, Eq.(2.13) is appropriate for implementing
mistuning anokgd),n becomes exactlyZAZ. A dimensionless eigenvalue mistuning pa-
rameteryy;,, is introduced as

Orp =
wherew, ,, is therth natural frequency of theth blade and, , is therth natural frequency
of a tuned blade. For proportional stiffness mistunisfg, is equal toyZ for any moder,
and the eigenvalue mistuning pattern is the same for all blade modes. The specific pattern
used to obtain the FEM and CMM results is shown in Table 2.1.

The CMM model is constructed by selecting a set of tuned-system normal modes to
capture mistuned-system normal modes, and a set of cantilevered-blade normal modes to
describe the blade motion in the tuned-system normal modes. Since the modal density
is high in the investigated veering regions in Fig. 2.2, a narrow frequency band can be
selected for the tuned-system mode basis. For example, 26—29 kHz can be chosen for

veering region 1. The selection of cantilevered-blade modes depends on the tuned-system
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modes chosen for a basis. Namely, modal participation factors for the tuned-system modes
in cyclic coordinates need to be calculated using a sufficient number of cantilevered-blade
modes (see EqQ. 2.10 and Appendix), and the dominant cantilevered-blade modes can be
determined from inspection of these factors.

Here/a‘;(z,’n’r = 0%, wro’, and itis pre- and post-multiplied by the corresponding modal
participation factors in the mistuning projection. Hence if the levels of random mistuning
are on the same order for any modethe modal participation factors weighted by the
corresponding cantilevered-blade natural frequencies are meaningful in determining what
are the dominant cantilevered-blade modes. Figure 2.8 shows the weighted average modal

participation factors, which are defined as

H N .
Wro };} ; ‘(Lb,h,r,l’
@, = —= , (2.22)
> N
h=0

where N, is the number of the retained tuned-system normal modes corresponding to

harmonich, when the lowest 30 cantilevered-blade modes are used to describe the blade
motion in the tuned modes in the ranges 26—29 kHz and 32—-36 kHz.

It should be noted that the number of cantilevered-blade modes and corresponding
mistuning patterns does not affect the size of the ROM, but it can affect its accuracy.
Nevertheless, it is desirable to retain a small number of mistuning values, and the domi-
nant cantilevered-blade modes required for accurate mistuning representation can be de-
termined from Fig. 2.8. For instance, only the 7th cantilevered-blade mode is dominant for
the range of 26—29 kHz, because the corresponding weighted-average modal participation
factor is much greater than the others. For the same reason, the 8th and 9th modes are
dominant for the frequency band of 32-36 kHz. This means that the eigenvalue mistun-
ing patterns for the 7th mode and for the 8th and 9th modes are sufficient to predict the

behavior of the mistuned system in the veering region 1 and 2, respectively.
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Once a basis of tuned-system modes is selected and the dominant cantilevered-blade
modes are identified for the mistuning projection, a ROM can be built using the CMM
technique for the mistuning values in Table 2.1. Next, the results from the ROM are
compared with the FEM ones.

The convergence of mistuned natural frequencies and mode assurance criterion (MAC)
ratios are presented in Figs. 2.9 and 2.10 for two frequency bands: 26-29 kHz for region
1, and 32-36 kHz for region 2. Figure 2.9 shows the average error of the mistuned system
natural frequencies estimated by the CMM model relative to the FEM natural frequencies,
versus the number of retained cantilevered-blade modes. Figure 2.10 shows the average
MAC ratio between the CMM and the FEM mistuned modes versus the number of retained
cantilevered-blade modes. Since most tuned system normal modes in the range 26—29 kHz
are dominated by the 7th cantilevered-blade mode, the frequency error and MAC ratio are
significantly improved when the 7th mode is retained in the CMM model. Similarly, the
frequency error and MAC ratio in the range 32—-36 kHz show great improvement when
the 8th and 9th cantilevered-blade modes are retained. These convergence trends could be
predicted from Fig. 2.8.

The forced response to engine order excitation is considered in the two veering regions
indicated in Fig. 2.2: engine order 3 excitation is applied in region 1, and engine order
5 and 24 excitations are applied in region 2. In both cases, the loads and the structural
damping coefficient are the same as for the large mistuning study in section 2.4. The
effect of aerodynamic coupling is not considered.

Figures 2.11 and 2.12 depict the tuned and mistuned forced responses in veering region
1. In Fig. 2.11, 34 tuned system modes (in the range 26—29 kHz) are used, while Fig. 2.12
is for 106 tuned system modes (in the range 22—-34 kHz). In the case of 34 tuned modes,

only the 7th cantilevered-blade mode is employed to project mistuning to the tuned system
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modes. In the case of 106 modes, the 6th, 7th, and 8th cantilevered-blade modes are used
because these three modes are dominant in the range 22-34 kHz. Note that the largest
resonant blade amplitude of the mistuned system is 2.24 times larger than that of the tuned
system. In Fig. 2.11, there are slight differences between the FEM and CMM results
for both the tuned and mistuned responses, although for this ROM the average natural
frequency error is only 0.0075 % and the average MAC ratio is 99.8958 %. This difference
can be explained by noting that the mistuned system modes obtained from the CMM model
are in the range 26—29 kHz. Hence, the effects of modes outside this frequency range are
not included, and the CMM and FEM results differ even for the tuned response, especially
near the edges of the frequency band. As can be seen in Fig. 2.12, when a wider frequency
band is chosen, the discrepancy between FEM and CMM results decreases. But, if one
considers the peak amplitudes at resonant frequencies, the 34-DOF CMM model results
match the FEM ones very closely.

Veering region 2 is more complicated because two close blade-dominated mode fam-
ilies are present in its frequency range. A set of 66 tuned system modes (32—-36 kHz) is
used for the CMM modeling, and the 8th (3T) and 9th (2S) cantilevered-blade modes are
used for the mistuning projection. Figures 2.13 and 2.14 depict forced response results
for engine order 5 and 24 excitations, respectively. Note the excellent matches between
CMM and FEM results, indicating that the effects of modes outside the 32—36 kHz range
are negligible. Also, since the only difference between engine order 5 and engine order
24 excitations for the 29-blade system is the sign of the phase angle of the forcing vec-
tor, the tuned forced response is the same in both cases. However, the mistuned forced
responses differ for engine orders 5 and 24, and the amplification factors of the largest

resonant amplitude are 1.51 and 1.34, respectively.
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2.5.2 Non-proportional Mistuning

Here, non-proportional mistuning is considered, mjgn is a full matrix. However,
as discussed in section 2.3, it is a good approximation to use only the diagonal terms
of nf;m, which are approximately the eigenvalue mistuning values. Note that the mis-
tuned blades feature different eigenvalue mistuning patterns for different cantilevered-
blade modes. Therefore, the number of mistuning patterns required equals the number
of cantilevered-blade modes used in the mistuning projection. Although the mode shapes
of cantilevered blades are changed by this type of mistuning, Eq. (2.13) with only the di-
agonal mistuning values is employed again, as in the proportional mistuning case. The
results are compared with those obtained using Eq. (2.12) with full mistuning matrices.

The non-proportional mistuning is introduced by using two different sets of Young’s
moduli for the FEM of the cantilevered blades. Onﬁloéis for the lower left and upper
right parts of blades and the otheﬁQ& is for the lower right and upper left parts of blades.

The Young’s modulus mistuning parameters are listed in Table 2.2, and Fig. 2.15 shows
the resulting eigenvalue mistuning patterns for several cantilevered-blade modes.

As can be seen in Fig. 2.15, the eigenvalue mistuning patterns are slightly different
from each other. Thus, inaccurate results might be obtained by choosing only one of these
patterns, because the dynamic characteristics of a bladed disk can be very sensitive to
mistuning. The solution is to utilize all the mistuning patterns that are available. If there
is only one blade-dominated mode family in the frequency band selected for the tuned-
system mode basis, as in the case of veering region 1, then a single mistuning pattern may
be sufficient. However, if multiple blade-dominated mode families are close and they are
included in a reduced-order model, as in the case of veering region 2, then every dominant
cantilevered-blade mode should have its own mistuning pattern.

These observations are substantiated by investigating the forced response for excita-
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tions corresponding to veering regions 1 and 2. In region 1, a single eigenvalue mistuning
pattern corresponding to the 7th cantilevered-blade mode has a dominant effect, as in the
proportional mistuning case. For the CMM reduced-order model, 106 tuned-system nor-
mal modes (22—-34 kHz) are retained. Figure 2.16 shows the forced response in veering
region 1 by the FEM and the CMM model. In the CMM model, the eigenvalue mistuning
patterns for the 1st through the 15th cantilevered-blade modes are set to be the same as that
of the 7th mode, although they are actually different. As can be seen, the CMM results are
in very good agreement with the FEM ones. This is because the mistuning pattern for the
dominant cantilevered-blade mode is correct.

Figures 2.17 and 2.18 show forced response results in the 32—36 kHz range, obtained
by four different ROMs and by the FEM. As mentioned earlier, there are two blade-
dominated mode groups in this range. In all four cases, 136 tuned system normal modes
(26—-43 kHz) are used as a basis, but mistuning projections are performed differently. In
Fig. 2.17 (a), the single mistuning pattern of the 8th cantilevered-blade mode is used,
while in Fig. 2.17 (b), the single mistuning pattern of the 9th cantilevered-blade mode
is used. For these single mistuning pattern cases, mistuning is projected to the lowest
15 cantilevered-blade modes. In Fig. 2.18 (a), the two mistuning patterns of the 8th and
9th cantilevered-blade mode are used to project the mistuning values to the corresponding
cantilevered-blade modes, respectively. In Fig. 2.18 (b), the six mistuning patterns of the
6th to 11th cantilevered-blade modes are used in the mistuning projection.

Results show clearly that the ROMs with two and six eigenvalue mistuning patterns
predict the mistuned system response considerably better than those with the single mis-
tuning patterns. In fact, using a single pattern is seen to lead to poor results, including for
the resonant response amplitudes. This demonstrates that when multiple blade-dominated

mode groups are so close that they interact in the response of a mistuned system, all the
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eigenvalue mistuning patterns corresponding to the dominant cantilevered-blade modes are
required in the reduced-order model. For a bladed disk with several different eigenvalue
mistuning patterns, it can be difficult or impractical to obt&ifiin physical coordinates,
especially if changes in the individual mistuned mode shapes need to be considered. Nev-
ertheless, the CMM technique only requires the eigenvalue mistuning patterns, which can
be measured, thus enabling the projection of non-proportional mistuning to tuned-system
modes.

Figure 2.19 shows forced response results for the same frequency range as in Fig. 2.18.
The difference is that the changes in the blade mode shapes due to mistuning are consid-
ered, and Eqg. (2.12) is employed. The eigenvalues and mode shapes of the 1st to 15th
cantilevered-blade modes are used, and the full matricg%&j andnfw,n corresponding
to the 1st through 15th cantilevered-blade modes are obtained. Note that the eigenvalues
and mode shapes are obtained from the finite element models of the mistuned blades. In
Fig. 2.19 (a), only the mistuning values corresponding to the 8th and the 9th cantilevered-
blade modes are used in the ROM, while in Fig. 2.19 (b), the mistuning values for the 6th
through the 11th cantilevered-blade modes are used. These results are seen to be more
accurate than those in Fig. 2.18, because now mode shape mistuning is considered. Also,
the results in Fig. 2.19 (b) are slightly better than those in Fig. 2.19 (a). However, note that
the accuracy of the results in Fig. 2.18, which only considers eigenvalue mistuning, is still
acceptable.

Finally note that the reduced-order modeling framework presented in this paper can be
readily applied to shrouded rotors. The interested reader is referred to a previous study by

the authors [44].
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2.6 Conclusions

A general reduced-order model framework for mistuned bladed disks was developed
by dividing a mistuned system into a tuned system and virtual mistuning components.
This approach handles the case of large blade mistuning, such as geometric and mode
shape mistuning. The method employs tuned-system normal modes and attachment modes
to represent mistuned-system normal modes. A compact ROM for the important case of
small blade mistuning was also derived from the general formulation, using a component
mode mistuning method in which a mistuning projection is performed using the modal
participation factors of cantilevered-blade component modes.

In the CMM method, the finite element models of a tuned sector and a tuned can-
tilevered blade are required. Cantilevered-blade normal modes and boundary modes are
employed to describe the blade motion of the tuned-system normal modes that are ob-
tained from the single-sector model. Thereby, mistuning values in the modal domain of the
cantilevered-blade component modes are projected onto the tuned-system normal modes.
Since the boundary modes are defined by minimizing their contribution in the mistuning
projection, they can be neglected when the the tuned-system modes feature displacements
at the boundaries that are much smaller than those at the interior of a blade. Therefore, in
many cases, modal mistuning values corresponding to dominant cantilevered-blade modes
are sufficient to predict the response of a mistuned system. The modal mistuning values
corresponding to cantilevered-blade modes can be computed easily from the natural fre-
guencies and mode shapes of mistuned blades. This means that actual arbitrary mistuning
in the physical domain can be efficiently implemented in a ROM with a small number of
mistuning values in the modal domain.

The general ROM was validated for a large mistuning case, using an industrial turbo-
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machinery rotor with a rogue blade with significantly different geometry. It was observed
that the estimated natural frequencies of the mistuned rotor converge rapidly as the se-
lected number of tuned-system modes is increased. Also, the forced response results from
the ROM showed excellent agreement with the FEM results.

The CMM method for small blade mistuning was validated for both proportional and
non-proportional stiffness mistuning cases. By inspecting the modal participation factors,
it was found that there are dominant cantilevered-blade modes that are sufficient for rep-
resenting mistuning. For proportional stiffness mistuning, a single eigenvalue mistuning
pattern was sufficient for mistuning implementation. For non-proportional mistuning, the
mistuning values corresponding to individual dominant cantilevered-blade modes were re-
quired when two blade-dominated mode groups were close. Selecting just one eigenvalue

mistuning pattern produced poor results.
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2.7 Figures and Tables

% 4
=

Z=v7

Wi

N
: it

"

Al
o\

LR
1

W%,
&

=
—

AN

TR
TRy
N\

W
W

Tuned bladed disk Blade mistuning
component (#°, kK°) components (M3, k3)

Figure 2.1: Substructuring of a mistuned bladed disk.
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Figure 2.11: Frequency response for engine order 3 excitation, obtained by the FEM and
a 34-DOF CMM model.
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Figure 2.12: Frequency response for engine order 3 excitation, obtained by the FEM and
a 106-DOF CMM model.
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Figure 2.13: Frequency response for engine order 5 excitation, obtained by the FEM and
a 66-DOF CMM model.
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Figure 2.14: Frequency response for engine order 24 excitation, obtained by the FEM and
a 66-DOF CMM model.
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Figure 2.16: Frequency response for engine order 3 excitation, obtained by the FEM and
the 106-DOF CMM model with the single eigenvalue mistuning pattern of
the 7th cantilevered-blade mode applied to the 1st through 15th cantilevered-
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Figure 2.17: Frequency response for engine order 5 excitation, as obtained by the FEM
and 136-DOF CMM models with a single eigenvalue mistuning pattern of
(a) the 8th and (b) the 9th cantilevered-blade mode applied to the lowest 15
cantilevered-blade modes.
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Figure 2.18: Frequency response for engine order 5 excitation, as obtained by the FEM
and 136-DOF CMM models with eigenvalue mistuning patterns of (a) the
8th and 9th, and (b) the 6th to 11th cantilevered-blade modes applied to the
corresponding cantilevered-blade modes.



50

0.25

— — Mistuned ROM
—— Mistuned FEM
---- Tuned FEM

0.2
0.15
0.1

0.05f ]

Maximum Blade Displacement Norm [mm]

32 325 33 335 34 345 35 355 36
Excitation Frequency [kHz]

(@)

0.25

— — Mistuned ROM
—— Mistuned FEM
---- Tuned FEM

0.2
0.15
0.1

0.05f ]

Maximum Blade Displacement Norm [mm]

32 325 33 335 34 345 35 355 36
Excitation Frequency [kHz]

(b)

Figure 2.19: Frequency response for engine order 5 excitation, as obtained by the FEM and
136-DOF CMM models with mistuning values obtained using eigenvalues
and mode shapes corresponding to (a) the 8th and 9th, and (b) the 6th to 11th
cantilevered-blade normal modes.
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Table 2.1: Eigenvalue mistuning pattern for the case study rotor with proportional mistun-
ing.

Blade | &¢ (= 67) | Blade | &¢ (= 6F)

1 0.05704| 16 0.04934
2 0.01207| 17 0.04479
3 0.04670, 18 0.03030
4 -0.01502| 19 0.00242
5 0.05969| 20 0.01734
6 -0.03324| 21 0.02919
7 -0.00078| 22 -0.00328
8 -0.01688| 23 0.00086
9 0.00242, 24 -0.03654
10 -0.02747| 25 -0.03631
11 -0.03631| 26 -0.01665
12 -0.03570| 27 0.00783
13 -0.03631| 28 -0.01169

14 -0.03631| 29 -0.01332

15 0.00242
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Table 2.2: Young’s modulus mistuning parameters for the case study rotor with non-
proportional mistuning.

[/ Different Young'’s moduli

Blade 47, 6y, Bladel 47, 0rs
1 | 0.0408Q0 0.0103Q 16 | 0.0199Q 0.03120
2 [-0.06110-0.04990 17 |-0.0249Q-0.07530
3 | 0.0143Q 0.02780 18 | 0.0638Q 0.01350
4 |-0.06230-0.07580 19 | 0.0314Q0-0.00080
5 [-0.0117Q-0.00390 20 |-0.0122(Q-0.00320
6 |-0.02700-0.0321Q0 21 | 0.03390-0.01210
7 | 0.0519Q 0.0045Q0 22 |-0.0322Q0-0.04590
8 [-0.06720-0.11630 23 |-0.0083Q 0.00530
9 | 0.0371Q 0.0177Q 24 | 0.0601Q 0.08270
10 | 0.0652Q 0.0146Q 25 | 0.0254Q 0.04540
11 | 0.0679Q 0.0558Q 26 |-0.03980-0.08310
12 | 0.0400Q 0.0591Q 27 | 0.0470Q 0.04230
13 |-0.00850-0.0508Q 28 | 0.0178Q 0.01180
14 |-0.0002Q0-0.0485Q 29 |-0.05070Q-0.06600
15 |-0.03960Q-0.02800




CHAPTER Il

|dentification of Mistuning in Bladed Disks and
Reduced-Order Model Updating Based on a Component
Mode Mistuning Model

A new method for the identification of blade mistuning in bladed disks is presented.
The approach is based on the recently developed component mode mistuning reduced-
order modeling technique. The equations of motion of the bladed disk reduced-order
model are transformed to yield a set of linear equations, and the blade mistuning values are
identified using a least-squares procedure that reduces the influence of measurement errors.
A sensitivity study is performed, which considers not only data noise but also modeling
errors, and it is found that errors in the free vibration eigenvalues of the tuned bladed disk
are most critical. In order to compensate for these errors, the identification formulation is
modified, so that both tuned-system eigenvalues and blade mistuning values are identified.
Thereby, the accuracy of the identification results is considerably improved. Furthermore,
the reduced-order model is updated using the identified tuned-system eigenvalues. The
new method is validated numerically using the forced responses of the finite element model

of an integrally bladed disk.
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3.1 Introduction

Small variations in the structural properties of blades in a bladed disk assembly, which
are referred to as mistuning, can qualitatively alter its dynamic behavior compared to
that expected from the ideally tuned system. In particular, blade forced response am-
plitudes can be significantly amplified due to mistuning, possibly causing high-cycle fa-
tigue problems. Many researchers have studied the phenomena induced by blade mis-
tuning, and various reduced-order models (ROMs) have been developed to predict effi-
ciently the dynamic behavior of large-scale finite elements models of mistuned bladed
disks [15, 19, 20, 23, 44, 45].

The ROM equations of motion are simulated based on the premise that mistuning is
known. Since bladed disk response can be highly sensitive to mistuning, precise infor-
mation on mistuning is required for the accurate prediction of the forced response of a
specific bladed disk. Knowing blade mistuning values is also important as a means of
monitoring the quality of the manufacturing process, and potentially in the maintenance
checks of operational rotors. Mistuning is usually represented by the deviations of the
blade-alone natural frequencies from the nominal values, and it can be determined by mea-
suring blade-alone natural frequencies through broach block tests before inserting blades
in the disk. Also, methods have been developed to estimate the variations of the structural
parameters of blades from measured blade-alone natural frequencies [46,47]. However,
additional mistuning can be generated during both the assembly and the operational life of
bladed disks. Furthermore, blades in integrally bladed disks cannot be removed for test-
ing. Therefore, there is a need to identify mistuning without separating the blades from
the disk, based on bladed disks system measurements.

In recent years, several methods have been developed to identify mistuning from vibra-
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tion measurements of bladed disk assemblies. Mignolet and Lin [48] proposed a technique
to identify the structural parameters of blades in a lumped parameter model of mistuned
bladed disks. Pichadt al.[49] tested several global model updating methods using modal
data for mistuning identification, also based on a lumped parameter model. However,
while a lumped parameter model may capture the basic mechanisms of bladed disk vibra-
tion, it cannot be used to represent accurately the dynamic behavior of actual bladed disks.
In 2001, Judgeet al. [30] were first to develop a technique for mistuning identification
based a ROM obtained from a parent finite element model (FEM), and they subsequently
improved their method [31]. In 2002, Feiner and Griffin [45] proposed a simpler ROM,
called the fundamental mistuning model, based on which they later proposed a mistuning
identification method [32,33,50]. However, their identification procedure is applicable
only when one isolated blade-dominated mode family is present in a frequency range of
interest.

Recently, the authors have reported a new reduced-order modeling technique for mis-
tuned bladed disks, namely component mode mistuning (CMM) [44]. The construction of
a ROM by the CMM technique is also simple, although not so simple as for Feiner and
Griffin’s model, and a CMM model represents its parent FEM very accurately regardless
of the number of mode families present in the frequency range of interest. In this paper,
the CMM modeling technique is extended to the problem of mistuning identification.

In many studies on mistuning identification [30, 31, 48, 49, 51], the sensitivity of the
identification results to noise in the measured data was examined in order to test the robust-
ness of the identification procedure. However, the sensitivity to modeling errors was not
studied, although it could significantly affect the accuracy of the results. These modeling
errors can be present in both the parent FEM and the ROM. While the errors generated by

an accurate reduced-order modeling process (such as CMM) are negligible, the FEM rep-
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resents only an approximation of the manufactured bladed disks. As such it may contains
errors that should not be neglected, for example in the boundary conditions. Therefore, in
this paper the sensitivity to both modeling errors and data noise is studied, and it is found
that the identification results are most sensitive to errors in the free vibration eigenvalues
of the tuned bladed disk.

Similarly to other ROMs for bladed disks, a CMM model is constructed based on a
tuned FEM. As mentioned above, the parent tuned FEM can be slightly different from an
actual tuned bladed disk. Since these differences feature cyclic symmetry, in this paper
they are referred to as the “cyclic modeling error”. It is shown that the cyclic modeling
error appears in the form of an exactly or approximately diagonal matrix in the equations
of motion for a CMM model, and that these diagonal terms can be considered as the devia-
tions of the tuned-FEM eigenvalues from those of the actual tuned bladed disk. Therefore,
it is proposed in this study to identify both blade mistuning and tuned-system eigenvalues
at the same time, in order to compensate for the cyclic modeling error that is shown to be
critical to the accuracy of mistuning identification.

The primary contribution of this paper is the development of a simple mistuning iden-
tification method that is robust with respect to modeling errors. In particular, a ROM built
using the CMM technique is updated using the identified cyclic modeling error present
in the parent FEM, so that the forced response of an actual bladed disk can be predicted
accurately by the updated ROM.

This paper is organized as follows. In section 3.2, the basic formulation for the mis-
tuning identification method based on a CMM model is derived, and it is numerically
validated. The sensitivity of the method to modeling errors and data noise is examined
in section 3.3. In section 3.4, the concept of cyclic modeling error is introduced, and a

modified method to identify both the blade mistuning values and the cyclic modeling error
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is proposed. Finally, the conclusions are given in section 3.5.

3.2 Identification of Blade Mistuning

3.2.1 Theory

Component mode mistuning (CMM) is a vibration modeling method for mistuned
bladed disks developed by the authors [44]. In this approach, a ROM is constructed using
the free response characteristics of the parent FEMs of a tuned bladed disk and of a tuned,
cantilevered blade that is fixed at its root. Note that in the real world all bladed disks fea-
ture mistuned blades. Therefore in this section, the "virtual” tuned bladed disk that can
be associated with an actual bladed disk is assumed to be represented exactly by its tuned
FEM.

In this study, only blade stiffness mistuning is considered, by assuming that mass mis-
tuning can be represented by equivalent stiffness mistuning. In the derivation of the CMM
formulation [44], the mistuning in physical coordinates is first projected to the retained
cantilevered-blade normal and constraint modes, and then it is projected again to the re-
tained tuned-system modes via the modal participation factors of the cantilevered-blade
modes for the blade motion in the tuned-system normal modes.

Therefore, from the CMM formulation the equations of steady-state forced response

can be written as follows:
[~ T+ (1+ ) (A% + QTr°Q)|p® = £, (3.1)

wherew is an excitation frequency\®, p°, andf® are the modal stiffnesses (free vibration
eigenvalues), coordinates, and forces, respectively, for a truncated set of tuned-system
normal modes, ang’ is a mistuning projection matrix, which contains the projection of

blade stiffness mistuning to a truncated set of cantilevered-blade m@dissthe matrix
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of participation factors of the cantilevered-blade modes for the blade motion in the tuned-
system modes. And is a structural damping ratio. Aerodynamic coupling effects are
neglected in this study, by assuming that measurements are performed on stationary bladed
disks [30, 52, 53].

Usually, blade mistuning is represented by the deviations of cantilevered-blade eigen-
values (or natural frequencies) from the nominal values. These deviations are obtained by
projecting the blade stiffness mistuning to the cantilevered-blade normal modes. Here, it
is assumed that the displacements at the blade root are so small that the mistuning projec-
tion to cantilevered-blade constraint modes is neglected, and that the motion of a blade in
a bladed disk is dominated by a single cantilevered-blade normal mode, so that the off-
diagonal coupling term of the mistuning projection matrg, can be neglected. That is,
QTk°Qp® can be approximated Q7 A>*Qp®, whereA% is the diagonal matrix of
the eigenvalue deviations of the retained cantilevered-bladed normal modes, a® now
contains only the factors corresponding to the cantilevered-blade normal modes. Hence,
in this study, the mistuning values that are sought in the identification procedure are the
diagonal terms oA%<, The number of such diagonal terms\s, - V,, whereN,, is the
number of the retained cantilevered-blade normal modes\arid the number of blades
in the bladed disk.

When the CMM equations of motion are simulated, the eigenvalue mistuning patterns
and external forcing are given as input data, pfids the only unknown to be determined
for given excitation frequencies. Of cour§@andA® are obtained from the tuned FEMs.
However, in the mistuning identification problem, p®, andf® are obtained from exper-
imental measurements. Then, the only unknown becomes the mistdifig,

The modal coordinateg®, can be calculated from the measured displacements using
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the following relation:

Xmeas = Umeasp57 (32)

wherex,,...s IS the vector of the displacements at measured degrees of freedom (DOF),
andU,,.., is the matrix containing the displacements at the measured DOF in the tuned-
system modes. If the row and column sized ..., are different, then a least-squares
problem needs to be solved by pre-multiplyirg..s by the pseudo-inverse afl,,,..s.
The modal external force§?, can also be calculated from the forces measured in physi-
cal coordinates, but measuring the forces may be impractical if non-contacting means of
excitation, such as acoustic or electromagnetic [30, 31,52, 53], are used. In thi§°case,
can be neglected if the displacements are measured at resonant frequencies and damping
is small.

Finally, the equation of motion (3.1) is transformed to yield the following set of linear

equations in the unknown eigenvalue deviations whesets of experimental data are

collected:
B T 3\ ( 3\
d,c .
QTQip! QIQ.py - QTQ.p7| [ AT ff + wip? — (1+j7)A°p?
d,¢cb .
QIQip; QQep; -+ QQups | |7 1 | 7 +wipl - (1+jN)A
. . . 14y ’
QrQipg QfQupd - QrQ.ps| (X €5+ w2 pS — (14 j7)A%DS,

(3.3)
whereQ; is theith row of Q, n equalsN,, - N, /\f’d’ is the eigenvalue deviation of the
corresponding cantilevered-blade mode for the corresponding blade;arid, andw?
are the tuned-system modal coordinates, modal forces, and excitation frequency corre-
sponding to theth measured data set, respectively. The above set of complex equations
can be divided into two sets of real equations for the real and imaginary parts. Then, the

eigenvalue deviations, which are real valued, can be obtained by solving the two sets of
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real linear equations together using a least-squares method. Note that Eq. (3.3) can also be

used for free response data by settingndf* to be zero.

3.2.2 Numerical Validation

The above mistuning identification method is validated using the tuned FEM of a 24-
blade validation bladed disk that was used by Juelgal. [30, 31]. The finite element
mesh of the bladed disk is shown in Fig. 3.1. Note that since the tuned FEM features
cyclic symmetry, the modes can be obtained from the FEM of a single sector. Figure 3.2
displays the natural frequencies of the tuned FEM versus the number of nodal diameters
(or the harmonic number).

Usually, bladed-disk system modes that are dominated by blade motion are present
in narrow frequency bands so that the lines connecting the natural frequencies are nearly
horizontal on a natural frequency plot, and these mode shapes are greatly altered by slight
changes in the structural properties of blades. As can be seen in Fig 3.2, the bladed disk
model used in this study also features blade-dominated modes that are characterized by
close natural frequencies at the higher harmonics. Here 1F denotes the first flexural bend-
ing mode of a cantilevered blade, and 1T denotes the first torsion mode. In this study,
the eigenvalue mistuning of the 1F mode was investigated. Therefore, 17 tuned-system
modes marked with filled circles between the two dotted lines in Fig. 3.2 were selected
to construct a 17-DOF ROM using the CMM modeling technique. The matrix of modal
participation factors(), was composed of only the factors corresponding to the 1F mode.

In lieu of measured data, forced response results obtained for a mistuned FEM were
used. Blade mistuning was introduced into the tuned FEM by varying Young’s modulus
for each blade, such that the mean of the individual blade mistuning values was zero.

Engine order 7 excitation was considered by applying a load to one of the nodes at each
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blade tip, and the amplitude of the axial displacement at a node near each blade tip was
recorded at each excitation frequency. The resulting forced responses of the 24 blades
are depicted in Fig. 3.3. In order to simulate a case where the resonant peaks overlap so
that individual natural frequencies and mode shapes cannot be measured clearly, in this
numerical study the structural damping ratio of the FEM was set to be 0.0015, although
the structural damping ratio of the actual bladed disk specimen is 0.00015 [30]. As can
be seen, the resonant peaks are not clearly separated, except for the first peak around
1.99 kHz. In fact, there are two modes that overlap around 1.99 kHz. The 13 resonant
frequencies marked with dotted vertical lines in Fig. 3.3 were selected for the response
data to be used in the identification process, and external forces were considered as if they
were not measurable. Therefore, when mistuning was identified using Eq. (3.3), the modal
forces were neglected.

The number of mistuning values to be determined, which is 24, is greater than the
number of modal coordinates in the ROM, which is 17. Therefore, mistuning cannot be
identified with a single data set obtained at one frequency. At least two data sets at different
frequencies are required, and it can be expected that the identification results become
more reliable as more data sets are used when data noise is present. For this test case,
13 data sets were used as mentioned above. The identified mistuning pattern is depicted
in Fig. 3.4, and it is compared with the exact (and known) mistuning pattern of the FEM.
The mistuning values displayed are the deviations of the 1F-cantilevered mode eigenvalues
normalized with the nominal eigenvalue. The discrepancies between the identified and the
exact mistuning values are due to the difference between the ROM and the FEM, because
in this case there were no “measurement” errors. Since the identified mistuning values are
very close to the exact ones, it can be said that the CMM-based ROM represents the FEM

very accurately.
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Using the identified mistuning, the natural frequencies and mode shapes of the mis-
tuned bladed disk were obtained from the 17-DOF ROM, and typical results are depicted
in Fig. 3.5. As can be seen, the results from the ROM with the identified mistuning match
very well those from the mistuned FEM, which indicates that the identification of mistun-

ing was successful.

3.3 Sensitivity to Modeling and Measurement Errors

In the previous section, no errors in the response data were considered. Also, since the
data were obtained from a mistuned FEM rather than measured from a physical specimen,
the parent tuned FEM of the CMM model was exactly the tuned equivalent of the mistuned
FEM rather than that of the physical blisk, which means no modeling errors were consid-
ered in the parent tuned FEM. In this section, the sensitivity of the identification results to
errors in both FEMs and measurements is investigated.

The modeling parameters required for the CMM-based mistuning identification are the
tuned-FEM natural frequencies {)\ the displacements at measured DOF in the tuned-
FEM mode shapes (1.l.;), and the cantilevered-blade mode participation factors for the
blade motion in the tuned-FEM mode shapes (Q). Of course, the cantilevered-blade modes
are obtained from the FEM of a tuned, cantilevered-blade model. Excitation frequencies
(w) and physical displacements,(x,;) are obtained from measurements, and the damp-
ing ratio (1) can also be determined experimentally. All these modeling parameters and
measured data can have errors in them, but the errassaire neglected in this study by
assuming that excitation frequencies are correctly realized by a signal generator.

The sensitivity to small errors in parameters and data can be assessed by differentiating
Eqg. (3.3). First, Eq. (3.3) is differentiated with respectig, which is the element at the

1th row andrth column ofQ, and multiplied byQ;,. in order to obtain the sensitivity to the



63

ratio of the error to the exact value. Here, for simplicity it is assumed that a single data set

is measured. The following equation is obtained:
5,ch
QI Qip° QIQ:p° -+ QIQ.p° @Qir = —Qi N (Qir + QF,)P°, (3.9
whereX® is the column vector of the deviations of the eigenvalues of cantilevered-blade
normal modes, an@), , is a square matrix whoseh row isQ; and all the other rows are
zero.
Next, consider the sensitivity to errorsAv. Differentiating Eq. (3.3) with respect to

)7, theith tuned-system eigenvalue, and subsequently multiplying’hpne obtains:

a)\é,cb T
QIQip® QQp° -+ QIQ.p° % Afz—kf{o e 0Py 0 e 0} )
(3.5)
wherep? is theith element op®.
And, differentiating Eq. (3.3) with respect toand multiplying by~ yields:
é,¢cb
QiQip° Q7Q:p° -+ QIQ.p° 827 WZﬁ(fs+w2PS)- (3.6)

The modal coordinateg®, are calculated from Eq. (3.2). That is; is a function of
U, ,.as aNdx,.... Therefore, the differentiation o&<* with respect tp® can indicate the
sensitivity to errors ifJ, .., andx,,..s. Differentiating Eq. (3.3) with respect &, and

multiplying by p?, the resulting equation is

d,cb
QOw’ QI - Q| st
:_pf {QthT QuQL .. QMQE} AP (3.7)
o g
pr o 0 e maa 0 of

Since the matrices that pre-multiply the partial derivatives in Egs. (3.4), (3.5), (3.6)

and (3.7) are the same, the comparison of the right-hand side terms of these equations can
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determine which parameter or data error the identification results are most sensitive to.
The cantilevered-blade mode patrticipation factors for the tuned-system modes in cyclic
coordinates are usually less than 1. Hence, the factors for the tuned system modes in phys-
ical coordinatesQ, are smaller tha/+/N if the tuned-system modes are obtained using

a real-form cyclic analysis [54]. The structural damping ratio is usually very small; note
that~ for the validation bladed disk is 0.00015. Furthermdtfec,b is a small percentage

of the cantilevered-blade eigenvalue; arti— (1 + jv)\? is also on the order of>®,
because the values of and)\? are on the order of the cantilevered-blade eigenvalue and
close to each other. These observations indicate that the order of the right-hand side term
in Eq. (3.5) is much greater than those in Egs. (3.4), (3.6) and (3.7). Therefore, it can
be expected that the identification results are most sensitive to errors in the tuned-system
eigenvalues.

In order to confirm the above sensitivity analysis, mistuning identification was per-
formed for the FEM of the validation bladed disk in Fig. 3.1, using 100 sets of model
parameters or measured data with random errors. The same forced response data as in the
previous section were used. Note that, since 13 response data sets were selected from the
FEM forced response, a total of 1,300 response data sets were used in each case. Six cases
were studied: 5% random errors @ only; 5% random errors i\ only; 5% random
errors invy only; 5% random errors iJ,,.,, only; random noise ix,,..s, whose level
was 1% of the maximum displacement amplitude in the response data; and all of these
errors and noise combined together. For each case, 100 mistuning patterns were identified
using Eq. (3.3), and 100 sets of mistuned-system natural frequencies were calculated from
the 17-DOF ROM using the identified mistuning patterns. Then, the largest and smallest
mistuning values for each of the 24 blades were found, and also, the highest and lowest

natural frequencies for each of the 17 bladed-disk system modes were found. The results
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are depicted in Fig. 3.6. As can be expected, the identification results are not much af-
fected by the errors i®Q, v, U,,cas, @aNdx,,.0s- And, as can be seen in Fig. 3.6(b), the
identification results are highly sensitive to the errors in the tuned-system eigenvalues.
Also note that the results in Fig. 3.6(b) and in Fig. 3.6(f) are very similar. This means that
the tuned-system eigenvalue errors can be the primary cause of failure of the mistuning

identification procedure.

3.4 Identification of the Cyclic Modeling Error

The errors in the modeling parameters for a CMM model are caused primarily by the
discrepancy between the parent tuned FEM and the virtual tuned system that can be as-
sociated with the physical bladed disk. Here, this difference is referred to as the “cyclic
modeling error”, because the deviation of the parent tuned FEM from the virtual tuned
system features cyclic symmetry. In this section, the CMM equation of motion, Eqg. (3.1),
is modified to include a cyclic modeling error term so that, in addition to the blade mis-
tuning values, the modeling errors can be identified. Thereby, the CMM model can be

updated, and the accuracy of mistuning identified is significantly improved.

3.4.1 Cyclic Modeling Error

Suppose that there is an ideal tuned FEM that represents exactly the dynamic behavior
of the virtual tuned system, and that it has the same number of DOF as the “real” tuned
FEM. Also, assume that the difference between the ideal and the real FEMs (i.e., the cyclic
modeling error) is small enough that the motion of the ideal FEM can be represented with
the mode shapes of the real FEM. Note that it has been recently reported by Yang and
Griffin [42] that when a system features a group of modes closely spaced in a narrow
frequency range, the motion of a system slightly changed from the original system can be

represented with the modes of the original system.



66

Then, the reduced stiffness matrix of a CMM model for the ideal FEM with mistuning
can be written as\’ + &5 K@ + QTA%*Q, where®® is a matrix containing the
modes of the real tuned FEM in physical coordinates, Kids the difference between
the stiffness matrices of the ideal and the real tuned FEMs. Here again, only a stiffness
error is considered, by assuming that the mass modeling error can be represented by an
equivalent stiffness modeling error. The projection of the cyclic modeling error®fito
can be re-written using the modes in real cyclic coordinates, as follows (for more detail
about real-form cyclic analysis, see [54]):

5" K'®* = Bdiag [@ﬁT] (FT e DI © K2,,)(F © T)Bdiag [éﬁ]

..... g (3.8)
— Bdiag [éﬁT] Ie K

sec
,,,,, )it

,,,,,,,,,,

whereBdiag [e] denotes a pseudo-block-diagonal matrix, whose block sizes can be dif-
ferent, H equals(N, — 1)/2 for N, odd andN,/2 for N, even, and®? is a set of cyclic
modes corresponding to harmonicwhich can be obtained from a single-sector FEM. For

a single-harmonic mode, the row size®{ is the number of DOF in a sector, while for a
double-harmonic mode it is twice that. The column sizeébgfis the number of retained
modes for the corresponding harmonic. HBris a real-valued Fourier matrix denotes

the Kronecker produck?,, is the deviation of the stiffness matrix of the real single-sector

FEM from the ideal one, anK! is defined as
K? for h = 0, andh = N, /2 if N, is even

K = (3.9)
for h # 0, andh # N, /2.
0 K¢

sec

\

As can be seen in Eq. (3.8), the projection of the cyclic modeling error appears in the form

of a pseudo-block-diagonal matrix.
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Now, consider a case in which only one mode (or one mode pair) per harmonic is
retained in the CMM model. Then, a single-harmonic block becomes just a scalar, and a
double-harmonic block becomes a 2 x2 matrix. A mode pair for a double harmonic can be

written as follows [54]:

¢h,c q[)h,c
R (3.10)
h,s h,s
1 2

whereg"“ and¢* are the cosine and sine parts for one of the modes in the paig/ahd

andqbg’S are for the other mode. This mode pair obeys the following relation:

¢?,S — :i:d)lz’l,,c
(3.11)
¢y° = F*
Hence,
T
d)h,c ¢h,c ngc 0 d)h,c ¢h,c A 0
; 2 ; i - , (3.12)
178 275 0 ngc 1’8 278 0 A
where

h,cT 8 h,c h,cT k) h,c
A:¢1 K 1 +¢2 K 2 -

Therefore, if a single mode (or a single mode pair) per harmonic is retained, the projection
matrix becomes a diagonal matrix. Note that, even if two or more modes (or mode pairs)
are retained per harmonic, then the off-diagonal terms may be neglected as long as each

mode of the ideal FEM is dominated by only one mode of the real FEM.

3.4.2 Mistuning Identification with ROM Updating

Since the projection of the cyclic modeling error onto the modes of a real FEM is,
exactly or approximately, a diagonal matrix, it can be interpreted as the deviations of the

real-FEM eigenvalues from the ideal-FEM ones. That is, the equations of motion for a
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CMM model of the ideal FEM can be written as
[~ T+ (147 (A + A% 4+ QTAQ)]p® = 7, (3.13)

where A% is a diagonal matrix of the deviations of the real-FEM eigenvalues, which
accounts for the cyclic modeling error. It should be noted that the mean of the blade
mistuning values now becomes zero. This is because any offset of the mean value can be
eliminated by adjustingh?.

In Eq. (3.13),A° + A% is the diagonal matrix of the correct tuned-system eigenval-
ues of an actual bladed disk. However, sitc¥®’ is unknown, the correct tuned-system
eigenvalues are also unknown. Therefore, both tuned-system eigenvalues and blade mis-
tuning must be identified at the same time. Here the same measured data and modeling
parameters as in section 3.2 are assumed to be given, but the tuned-system eigenvalues are
also treated as unknowns. Also, the restriction that the mean of mistuning values is zero is
imposed by setting

APY = =M+ A, (3.14)

Then, the following set of linear equations can be obtained by transforming Eq. (3.1):

4 )

)\5,01)
2
B T . ( 3
B,p{ Bypf - B.pi diag(py) | | £ +wipy
Byp; Byp; -+ Bups diag(pf) | [N 1 | £ +wipf
AS L+ gy
Bop;, Bsp;, oo Bupy diag(pl)| | [ £5 + wnpn )
A

(3.15)

where

B, =Q/Q - Q/Q,
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diag (e) denotes a diagonal matrikjs the number of retained tuned-system modes, and
py; is theith element ofpf. By solving these linear equations, both tuned-system eigen-
values and blade mistuning values can be obtained. Then, a CMM model can be updated
by replacingAS in Eq. (3.1) with the identified tuned-system eigenvalues.

In order to assess the effectiveness of ROM updating, the identification was performed
in the same way as in section 3.3, but Eqg. (3.15) was applied. Again, 100 sets of modeling
parameters and measured data (@Q),..,, andx,,..,) with random errors and noise were
used, and the identification results are depicted in Fig. 3.7. Note that there was no need to
simulate the errors ih®, because the new updating technique provides for its identifica-
tion (thus effectively removing the primary factor of high sensitivity in the identification
process). Observe that the accuracy of the identified mistuning and mistuned-system nat-
ural frequencies is significantly improved compared with that in Fig. 3.6(f). Also, the
updated tuned-system natural frequencies match well with the exact values overall. This
means that the ROM has been successfully updated. Still, the updated tuned-system fre-
guency at 4 nodal diameters, as well as the mistuned-system frequencies of the 1st and 2nd
modes, are not in good agreement with the exact values. This is because the resonant peak
around 1.99 kHz is very small relative to the other peaks. In fact, the two mode shapes
around 1.99 kHz are nearly the same as the tuned-system modes with 4 nodal diameters,
and thus they are not significantly excited by an engine order 7 excitation.

Therefore, the forced response was computed again, by applying engine 4 excitation
to the mistuned FEM of the validation bladed disk, in order to obtain large resonant peaks
around 1.99 kHz. The results are plotted in Fig. 3.8, where the dotted line marks the
same resonant frequency around 1.99 kHz as in Fig. 3.3. Then, the response data at 1.99
kHz obtained by applying engine order 7 excitation were replaced with the new response

data obtained with engine order 4 excitation, and the identification was performed in the
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same way as above. The results are displayed in Fig. 3.9. As can be seen in Fig. 3.9(a)
and 3.9(c), the highest and the lowest values of all the updated tuned-system frequencies
and mistuned-system frequencies are very close to the exact values. Therefore, it can be
concluded that tuned-system frequencies and blade mistuning can be identified accurately
using the developed method, as long as response data are measured at large resonant peaks
As another validation test for ROM updating, the forced response generated from the
updated CMM model was compared with that of the mistuned FEM. First, only blade
mistuning was identified using a set of modeling parameters and measured data with er-
rors. Of course the resulting tuned-system natural frequencies are a bit in error, and they
are shown in Fig. 3.10. Using the identified mistuning pattern, the forced response was
obtained from the CMM model with these slightly incorrect tuned-system natural frequen-
cies, by applying engine order 7 excitation. The CMM results are compared with the FEM
results in Fig. 3.11(a), where at every excitation frequency only the largest blade amplitude
is plotted so as to provide the response envelope. As can be seen, the non-updated CMM
results are poor. Next, both blade mistuning and tuned-system natural frequencies were
identified, and the CMM model was updated. Figure 3.11(b) shows the forced response
results obtained by the updated CMM model and by the FEM. It can be observed that both

results match extremely well.

3.5 Conclusions

A method for the identification of blade mistuning in bladed disks has been developed.
In this approach, the equation of motion for a reduced-order model built by a compo-
nent mode mistuning technique [44] is transformed to obtain a set of linear equations.
Thereby, blade mistuning is determined by solving a least-squares problem. This identifi-

cation method was numerically validated using the FEM of a validation bladed disk. The
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response data by the FEM were treated as measured data. Also, a sensitivity study was
performed analytically, and numerically by adding errors and noise intentionally to model-
ing parameters and FEM response data. It was found that the accuracy of the identification
results is very sensitive to the errors in the tuned-system eigenvalues.

The concept of “cyclic modeling error” has been introduced, which is the difference
between a tuned FEM on which a CMM model is based and the virtual tuned system of
an actual bladed disk. It was shown that the cyclic modeling error appears as a matrix
that is exactly or approximately diagonal in the CMM formulation, so that the modeling
errors can be interpreted as the errors in tuned-FEM eigenvalues, which are critical to the
accuracy of the mistuning identification results.

The original identification method has been modified by considering tuned-system
eigenvalues as well as blade mistuning as the unknowns. Using the identified tuned-system
eigenvalues, a CMM model is updated such that the cyclic modeling error is compensated
for. As a result, the accuracy of the identified mistuning values is significantly improved.
The modified method was numerically validated using the same bladed-disk FEM. Also,
it has been demonstrated that the forced response results generated by an updated CMM
model are in very good agreement with the FEM results, even if errors are present in mod-
eling parameters and response data. Therefore, it can be concluded that the new method
developed is robust with respect to the errors in the parent FEM and measurements, and
that a CMM model updated in this way can provide accurate predictions of the forced

response of actual mistuned bladed disks.
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CHAPTER IV

Upper Bounds for Bladed-Disk Forced-Response
Amplification Due to Mistuning

Two methods for calculating the upper bound of the mistuning-induced forced-response
amplification for blades in bladed disks are presented. In the first method, the upper bounds
of blade displacement, velocity, and stress are derived from the maximum vibration energy
that can be concentrated into a single blade in lumped parameter models with a single or
two degrees of freedom (DOF) per sector, and the obtained upper bound does not de-
pend on the engine order of excitation. It is seen that, if mistuning is small, the blade
response normalized by the resonant response of a cantilevered blade is bounded around
(1 ++/Np)/2, whereN, is the number of blades in a bladed disk. In another method, the
upper bound is obtained by superposing a set of traveling wave modes with closely spaced
natural frequencies of a tuned bladed disk. This method is applicable to any bladed disk
model. The amplitudes of the traveling waves for a multi-DOF-per sector model are usu-
ally different from each other when they are normalized with respect to the mass matrix.
Therefore, the latter method yields different upper bounds according to the engine order of
excitation. Furthermore, since only closely spaced modes are involved in the calculation,
upper bounds lower than those by the first method can be obtained. The latter method is

demonstrated using a 2-DOF-per-sector model and a finite element model of an advanced

82
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bladed disk.

4.1 Introduction

A nominal design of a bladed disk consists of identical blade-disk sectors. However,
there are always slight differences among the blades in a real bladed disk which are called
mistuning. Due to mistuning, vibration energy in a bladed disk can be concentrated into a
few blades, and the forced-response level of those blades is significantly increased caus-
ing high-cycle fatigue problems. Therefore, there has been a large amount of research
work about the effect of mistuning. Especially, many efforts have been made to find the
maximum blade forced-response level that can be reached due to mistuning, because it is
important information in view of design safety.

Typically, blade forced-response level is represented by the amplification factor that
is the ratio of the largest blade response in a mistuned system to that in the tuned system.
Some researchers [2, 24—-28, 55] have derived analytical forms for the maximum amplifica-
tion factor that is the upper bound of blade-response amplification. Whitehead [2, 24, 25]
obtained the famous maximum amplification factot bf- v/N,) /2, whereN, is the num-
ber of blades in a bladed disk, using a model with a single degree of freedom (DOF) per
sector. MacBain and Whaley [55] also derived a closed form expression for the maximum
resonant response using a pair of modes with the same number of nodal diameters but dif-
ferent frequencies. However, MacBain and Whaley did not consider the distortion of mode
shapes that is also caused by mistuning. In contrast, Kealyah[27] reported another
study on the maximum forced-response amplification in view of mode shape distortion us-
ing a simple 1-DOF-per-sector lumped parameter model. In their work, it was shown that
the Whitehead’s maximum factor cannot be reached for the simple model with structural

mistuning, unless the excitation engine order (EO) is equaldoXN,/2 for N, even, but
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it was also mentioned that the Whitehead’s maximum can be approximated by combining
the effects of mode distortion and frequency splitting. Rivas-Guerra and Mignolet [28]
also obtained similar results that Whitehead’s maximum factor is exactly (for EOk 0
N,/2if N, is even) or approximately (for other engine orders) recovered. They also used
a 1-DOF-per-sector model.

However, a 1-DOF-per-sector lumped parameter model may not represent an actual
bladed-disk design appropriately. Therefore, some studies have been focused on finding
the maximum amplification using optimization algorithms [28, 56-59]. Although an opti-
mization process may be applied to any bladed-disk model, it can be expensive when the
number of blades is large. Furthermore, blade response is so sensitive to mistuning that
the solution may converge to a local maximum not the global maximum. There has been
another type of research for determining the statistics of the amplification factors analyt-
ically [60, 61] or via accelerated Monte Carlo simulations [29, 39], but the statistics does
not provide the maximum amplification. Actually, the maximum amplification factor is
required for the accelerated Monte Carlo simulations.

As mentioned above, the amplification factor is a measure relative to a tuned-system
resonant response. The amplitudes of tuned-system resonant response of 1-DOF-per-
sector models used in the literature are exactly or almost the same for the entire engine
orders of excitation. Therefore, the amplification factor could represent the absolute re-
sponse level. However, for more complicated models where blade DOF and disk DOF
exist separately, one can observe the loci of tuned-system natural frequency veer (see for
example Fig. 4.5). The tuned modes in a veering region usually have smaller blade dis-
placements than the others so that the tuned system shows smaller resonant blade response
when subject to the engine order excitation corresponding to the veering region. In this

case, the traditional amplification factor does not measure the absolute level of response,
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and also the amplification factor can be unbounded as mentioned in Kenyon and Griffin’s
work [62]

This study is focused on finding closed form expressions of the upper bound of blade
response. First, the upper bound of the response of a 1-DOF-per-sector model is revisited
by investigating the relation between the amplitude of blade response and the vibration
energy input through coupling. When Whitehead [25] derived the maximum amplification
factor of (1 4+ v/N,) /2, hysteretic damping was used. In this study, viscous and structural
damping cases as well as hysteretic damping case are examined, and it is shown that
Whitehead’s maximum factor can be exceeded even in case of a 1-DOF-per-sector model
when viscous or structural damping is used. Furthermore, this approach is extended to a 2-
DOF-per-sector model, and it is found that, if blade response is normalized by the resonant
response of a tuned, cantilevered blade, the ratio is bounded afoung/N,)/2. Since
cantilevered-blade response is irrelevant to the engine order of excitation, the ratio can
represent the absolute level of blade response.

Also, Whitehead’s approach, which is to superpose all the traveling wave modes, is
extended to multi-DOF-per-sector models. Recently, Yang and Griffin [42] reported that,
when a system has a group of modes closely spaced in a narrow frequency range, the mo-
tion of a system slightly mistuned from the system can be approximately described with
the closely spaced modes of the original system. And, some reduced-order models for
bladed disks have been developed according to this concept [23, 44]. In this study, this
concept is used to select a small set of traveling wave modes of multi-DOF-per-sector
models to be superposed. Finally, a generalized expression for the upper bound of blade
response is obtained, which gives different values for different systems and for different
engine orders of excitation. Although the upper bound obtained this way may be unreach-

able as Whitehead’s maximum factor, it is still believed to approximate the real limit of
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the maximum blade response with negligible cost. And, it is demonstrated that this ap-
proach allows lower upper bounds for a 2-DOF-per-sector model than that obtained using
the approach mentioned in the previous paragraph.

The stress levels may be computed by post-processing the reduced-order model results
with finite element analysis, but this is cumbersome and expensive. In this work, three
indicators that can be calculated directly from reduced-order models are also proposed
as a way to estimate blade stress levels in a straightforward, systematic, and inexpensive
manner. It is shown that these indicators can be used to predict stress values with good
accuracy relative to finite element results, even for a case in which the displacement and
stress levels show different frequency response trends.

One of the contributions of this paper is that the increase of blade response is bounded
around Whitehead’s maximum factor, if the reference is the resonant response of a tuned,
cantilevered blade, not that of a blade in a tuned bladed disk. Another contribution is the
generalization of Whitehead’s approach for multi-DOF-per-sector models.

This paper is organized as follows. The relation between the amplitude of blade re-
sponse and the vibration energy input through coupling is investigated to find the upper
bound in section 4.2. In section 4.3, the generalized form of upper bound is derived by
extending Whitehead’s approach, and applied to a 2-DOF-per-sector model and a finite
element model of an advanced bladed disk. In section 4.4, three indicators for predicting
blade stress levels directly from reduced-order models of bladed disks are proposed and

validated. Finally, conclusions are summarized in section 4.5.

4.2 Energy Concentration through Coupling

The upper bound of blade response in a bladed disk is investigated using the possible

maximum amount of vibration energy concentration into a single blade or sector. To do
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this, the response of a blade is related with the energy input to the blade through coupling
using lumped parameter models shown in Fig. 4.1. Each sub-figure shows a single sector
of the tuned models. The model in Fig. 4.1(a) has only one blade DOF in each sector, with
tuned mass, and tuned stiffnesk,. Each blade DOF is directly coupled to other blades.
The other one in Fig. 4.1(b) has a blade DOF and a disk DOF in each sector, with disk
massm, and disk stiffness,. For this model, each disk DOF is coupled to other disk
DOF. Thus, for the 1-DOF-per-sector model, energy flow among sectors depends on blade
displacements, but for the 2-DOF-per-sector model, it depends on disk displacements.

In this study, every mass and stiffness are normalized by the bladermas®d stiff-
nessk,. Displacements, velocities, stresses, and frequencies are also normalized by the
largest responses and natural frequency of a tuned, cantilevered blade. Thereby, in this
section, all the results are obtained in non-dimensionalized forms. For the forced response,
engine order excitations are applied, and only steady-state responses are considered. Mis-
tuned models are generated by adding stiffness variations to the tuned blade stiffnesses.

Theith mistuned stiffness is expressed as

ko = kp(1+9;), (4.1)

wherey; is theith mistuning value.

4.2.1 1-DOF-per-sector model

There are two energy input source for a sector. One is from external forcing, and the
other is from other sectors via coupling. These energy sources are balanced with the energy
dissipation by damping. In this study, three cases of different damping representations
are investigated: hysteretic, viscous, and structural damping. Here, hysteretic damping
force is assumed to be proportional to displacement, as in Whitehead’s work [25], while

structural damping force is proportional to stiffness as well as displacement. Therefore,
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if stiffness is mistuned, the damping force by structural damping will be different from
that by hysteretic damping for the same displacement. For viscous damping, the damping
force is proportional to velocity.

First, hysteretic damping is considered. The damping force is written as follows:
fzd = _jchxh (42)

wherej is v/—1, ¢, is the damping coefficient, and, is the displacement of blade

Therefore, the average energy dissipated in blamer a period of oscillation is
d 1 . * 1 2
By = §Re (—jenzvi) = §chw|mi| ’ (4.3)

wherewv; is the complex conjugate of the velocity of bladeAnd, the average energy

input to blade by external forcing is
f 1 e % 1 e .
E! = §Re( fuf) = §wF |z;| sin(A6), (4.4)

whereff is the external force applied to tlith blade,F* is the amplitude of the external
force, andA#d is the phase offf subtracted by the phase of. Because engine order
excitations are assumed, the forces applied to the blades have the same amplitude, but
different phases.

Therefore, the average energy input to bladerough coupling can be written using

Egs. (4.3) and (4.4) as follows:
Ee=E'—Ef = “5’ (cnlzi? = F*|a;| sin(A0)) . (4.5)

Now, a displacement amplification factor, which is the ratitigfto the resonant response

of a tuned, cantilevered blade,;|, is introduced as follows:

qi = |5Ez‘|/|$cb|a (4.6)
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where|z| is obtained by applying the force of the same amplitude as that of the engine
order excitation. Since the resonant frequency is the natural frequency for a 1-DOF system

with the hysteretic damping, the resonant response is

Fe
|z = —, or F°=cpleel 4.7)
Ch

Inserting Egs. (4.6) and (4.7) into Eq. (4.5), and normalizifsgwith (c,w|z4|?)/2, the

following equation is obtained:

Ef = ¢ — q;sin(A9), (4.8)

)

where Ef is the normalized energy input to bladethrough coupling. HencefE? is
bounded as follows:

¢ —q<E<@+q. (4.9)

7

The derived relation in Eq. (4.9) shows that the normalized energy is limited by the dis-
placement amplification relative to the cantilevered-blade resonant response, and vice
versa.

To verify this relation, 1,000 mistuned systems with 12 blades were simulated. For
simplicity, each blade DOF was coupled to only two adjacent blades by springs of stiff-
nessk.. In the tuned systent,./k, was set to be 0.01, which is the value that was used
for a weakly coupled system by Wei and Pierre [10], apd:, was set to be 0.002. Mis-
tuning values were generated by a random number generator in MATLAB, and the used
standard deviation of random mistuning was 0.012, because the systems show large in-
crease in blade forced response for this mistuning level. For external forcing, engine order
3 excitation was used.

From each mistuned system, an excitation frequency at which the largest blade re-

sponse is found was identified using a golden section search method. At that frequency,
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the response results for all 12 blades were collected. Thus, these simulations yielded
12,000 blade response results, and they are depicted in Fig. 4.2. As can be seen, all the
simulation results appear between the two theoretical limit curdes, ¢; and¢? + ¢;.
Note that a negative value of normalized energy input indicates a net energy drain to other
blades, and that the maximum normalized energy draifiddrom Eq. (4.9).

Now, consider the worst case in which all the energy drain flows into a single blade. In
this case, the maximum amount of the normalized energy input through coupling that the
blade can receive i§V, — 1)/4. Therefore, the possible maximum valuegpfs obtained

from the following equation:
G —q=(N,—1)/4, (4.10)

and the value i$1 + \/N,) /2, which is the factor that Whitehead found [2, 25]. Note that
Whitehead used the ratio of the largest blade response in a mistuned bladed disk to that
in the tuned bladed disk as the amplification factor. Since the largest blade response in
a tuned bladed disk with hysteretic damping is the same as the cantilevered-blade reso-
nant response for a 1-DOF-per-sector lumped parameter model, it is no surprise that the
obtained maximum factor here is the same as Whitehead’s maximum factor.

The next case is for viscous damping. The damping force can be written as:

f=—cou;, (4.11)

7

wherec, is the viscous damping coefficient. Therefore, the average energy dissipation is

1
B! = Salul® (4.12)

and the average energy input to bladbrough coupling can be written as follows:

E¢ =

)

(colvil® = F€|uv| cos(AB)) . (4.13)

N | —
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This equation is similar to Eq. (4.5), but it is written with ,not with ;. Therefore, a

velocity amplification factor is introduced in a similar way:
ri = |vil/|ves|, (4.14)

wherev,, is the largest velocity of a tuned, cantilevered blade, which occurs at the natural

frequency, not the resonant frequency of displacement. And, the value is

Fe
|U0b| = Or F¢ = Cv|Ucb|- (415)
C

Inserting Egs. (4.14) and (4.15) into Eq. (4.13), and normaliikigwith (c,|v.|?)/2,
which is the average dissipated energy in a tuned, cantilevered blade at the natural fre-

guency, the following equation is obtained:

E¢ =12 —r;cos(A0). (4.16)

)

And, E¢ is limited by the velocity amplification as follows:
7 —r < Ef <1l (4.17)

The same mistuned systems as previously used for hysteretic damping were simulated
to verify the relation in Eq. (4.17), but viscous damping was used with/m;k, being
0.002. Also, the same engine order excitation was applied. The results are shown in
Fig. 4.3, and they are all between the two theoretical limit curvgs; r; andr? + r;. In
the same way as for hysteretic dampifig+ \/N,)/2 is obtained again for the possible
maximum value of;.

Now, the case of structural damping is investigated. The damping force onigde
written as follows:

f = —jesky(1+ 6;)zi, (4.18)

(2
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wherec;, is structural damping ratio which is non-dimensional. Therefore, the average
energy dissipation is

1
B = icskb(l + 6wz % (4.19)
Hence, the average energy input to bladerough coupling is

E° — g (cokp(1 + 0) |z |* — Fe|a| sin(AF)) . (4.20)

(2

The stress level in the lumped parameter models can be represenitgd Byo;)|x;|.

Thus, a stress amplification factor can be defined as follows:

ky(1 + 0;)|x;
po= BN _ (g ), (4.21)
ky| T |

wherez,, is the resonant response of a tuned, cantilevered blade at its natural frequency.
That is,

Fe
Cskib7

or F¢= Cskb|'rcb|- (422)

|xcb| =

Again, by inserting Egs. (4.21) and (4.22) into Eq. (4.20), and normalizing(withw |z |?) /2,

the following relation is obtained:
P} —pi < (1+6)Ef < p? + ps. (4.23)

Note thatl + §; term still appears the above relation. Simulations for the previous 1,000
mistuned systems were performed with structural damping ratjoofc0.002, and the
results in Fig. 4.4 verify the relation in Eq. (4.23).

Since the maximum normalized energy drain from bladg1/4(1 + 4,,), the possible

maximum value op; is obtained from the following equation:

Ny

1
2
D; Di ( 61) pa 4(1 571)

n#i

(4.24)
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Therefore, the maximum stress amplification depends on mistuning. However, it can be
said that, for small mistuning, the maximum stress amplification is approximgtely
V) /2.

So far, the amplification of displacement, velocity, and stress has been investigated for
the lumped parameter models with hysteretic, viscous, and structural damping, respec-
tively. From the possible maximum vibration energy concentration into a single blade, the
upper bounds of the amplification were obtained. When hysteretic damping is used, the
upper bound of displacement amplification is the same as Whitehead’s maximum ampli-
fication factor,(1 + /N,)/2. However, a displacement amplification factor larger than
(14 v/N,)/2 is possible when viscous or structural damping is used, even for a 1-DOF-
per-sector model. Similarly, velocity amplification for a bladed disk with hysteretic or
structural damping can exce€t+/N,) /2. As a test case, 1-DOF-per-sector models with
3 blades were investigated to find the mistuning patterns that give blade displacement am-
plification larger than Whitehead’s maximum factor (1.3660 for a 3-blade system), when
viscous and structural damping is used. For this, a function in the optimization toolbox
of MATLAB was used with a constraint that all the blade mistuning values are between
—0.03v/3 and0.03+/3 that are the limits of a uniform distribution with the standard devi-
ation of 0.03. The same model parameters as previously used were used again, but engine
order O excitation was applied. Table 4.1 shows examples of the found mistuning values
and displacement amplification values.

However, displacement, velocity, and stress amplification factors are almost the same
for small mistuning. Note that the locations of the data points in Figs. 4.2, 4.3, and 4.4 are
almost the same. This means that Whitehead’s maximum amplification factor can be used

as an approximate upper bound of any amplification for 1-DOF-per-sector models.
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4.2.2 2-DOF-per-sector model

Now, the energy concentration in 2-DOF-per-sector models described in Fig. 4.1(b)
is discussed. Here, only the hysteretic damping case is investigated, because the upper
bounds of velocity and stress amplification for viscous and structural damping can be
obtained in similar ways and will be almost the same as that of displacement amplification
for hysteretic damping if mistuning is small. And, not only blade DOF but also disk DOF
are subject to hysteretic damping. For external forcing, engine order excitations are used
again, but only on blade DOF.

If hysteretic damping is used for both blades and disk, the expression for the damping
force on blade will be the same as Eq. (4.2) for a 1-DOF-per-sector model, and the

damping force on disk sectarcan be written as follows:

fgdisk = —JQRCLT; disk, (4.25)

whereq, is the ratio of the disk damping coefficient to the blade damping coefficight (c
andz; 44 is the displacement of the disk DOF. Hence, the average dissipation energy in
sector: is

1

1
Eid = §ChW’$i,b1ade|2 + §ahchw|xi,disk!2, (4.26)

wherez; y.4. 1S the displacement of the blade DOF. Thus, the average energy input to

sector; through coupling becomes

w .
E; = 5 (cn|zipiadge® + ancn|Tigisk|* — F|i prage] sin(A)) . (4.27)

Normalizing with (c,w|z4|?)/2 again, the above equation can be re-written in a non-

dimensionalized form as follows:

EZC = qzblade + ahqzdisk — iblade SiH(AQ), (428)
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Whereq; piade = |Tipiade|/|Teb|, @NAG aisk = |Tiaisk| /|| From this equation, it can be
seen that the maximum energy drain from a single sector is Li4qjf;. . is small enough

to be neglected. In that case, the maximum normalized energy concentration to: sector
through coupling becomesV, — 1)/4, and the maximum value @f ;... is obtained as

(14 +/N,)/2 from the following equation:

qz?,blade + ahqzdisk — iplade = (Ny — 1) /4. (4.29)

However, blade stress level may be represented by the blade displacement relative to
the corresponding disk displacement. ThatiSyaie — i aisk| IS more meaningful than

|Z; biade|, @nd s0 is the upper bound (of, yiade — i disk|/|ze|. Since

|37i,blade - $i,disk|/\$cb\ < \Ii,blade\/\xcb\ + \%dmﬂ/’%b’ = i plade + Qi disk>

the maximum value of; yjaqe + ¢i.4isc CaN be used as the upper bound fof.q. —
xi,disk|/|l‘cb|-

The derivative ofy; yaqe + i gisk 1S Z€r0 at its maximum. That is,

A(4i blade + Gi,disk) 14 dg; gisk
in,blade d%,blade

= 0. (4.30)

Also, differentiating Eq. (4.29) with respect #Qy.q., the following equation is also ob-

tained:
d i,dis
2Gi plade + 20,5 disk fidisk _ 1 _ (4.31)
qi blade
Finally, from Egs. (4.29), (4.30), and (4.31),
1 ap +1
(Gibiade + Qidisk )max = 3 (1 + h Nb> . (4.32)
Qp

That is, the upper bound Of; 14 — i aisk| iS larger than that ofxz; y.q.|. HoOwever,

if the disk DOF displacement is so small thatq; ., is negligible, which is the usual
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case for bladed disks, the upper bound of the relative displacement will be also around
(1+v/Ny)/2.

Note that blade response amplification was defined in this section based on the re-
sponse of a tuned, cantilevered blade, although the amplification factor is traditionally
based on the blade response in a tuned bladed disk. The traditional amplification factor for
the tuned bladed disk is always equal to 1, even if tuned-bladed-disk response varies with
the engine order of excitation. Also, the traditional amplification factor is unbounded,
because tuned-bladed-disk response may be very small for a certain engine order as re-
ported by Kenyon and Griffin [62]. However, when blade response is normalized with the
response of a tuned, cantilevered blade, the amplification factor for tuned-bladed-disk re-
sponse may not be 1, but the upper bound of the amplification factor is around Whitehead’s

maximum factor.

4.3 Superposition of Closely Spaced Modes

As reported in Yang and Griffin’s work [42], when a tuned bladed disk has modes with
closely spaced natural frequencies, which is the usual case, slightly mistuned systems also
have closely spaced modes in the same range, and the motion of mistuned systems can
be approximated with the linear combination of the closely spaced tuned-system modes.
Thus, here an alternative way to calculate the upper bounds of blade response is investi-
gated using the idea that mistuned-system motion is the superposition of closely spaced
tuned-system modes. The only constraint is that the dissipated energy in a system is equal
to the energy input by external forcing.

In fact, Whitehead [2, 25] also used this approach for a 1-DOF-per-sector lumped pa-
rameter model. In his work, all the modes (traveling waves with the same amplitude )

were used to calculate the maximum amplification with the above mentioned constraint,
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and all the modal masses were equal to 1. However, the traveling wave modes for a 2-
or a multi-DOF-per-sector system can have amplitudes different from each other when

normalized such that all the modal masses are equal. Furthermore, multiple modes with
different natural frequencies but with the same interblade-phase angle can be present in
a narrow frequency range where frequency veering is present, while a 1-DOF-per-sector
model has only a single natural frequency for each interblade-phase angle. Therefore, the

purpose of the investigation in this section is to generalize Whitehead'’s approach.

4.3.1 Derivation

It is assumed that a mistuned bladed disk is described using a small set of closely
spaced tuned-system traveling-wave modes whose damping coefficients are not necessar-
ily equal, and that only structural stiffness is mistuned. Then, the equation of motion can
be written as follows:

[—wZI +JC+ A+ AK,] z=g, (4.33)

whereC is a diagonal matrix in which th&h diagonal term (9 is the damping coefficient
corresponding to théh tuned-system modd,; is a diagonal matrix of real tuned-system
eigenvaluesAk is a Hermitian matrix containing the projection of structural stiffness
mistuning onto tuned-system modess a vector of the modal coordinates, agds the
vector of modal forces. Here, a pure engine order excitation is considered for external
forcing so thag has non-zero, real terms only for the traveling wave modes corresponding
to the engine order.

Premultiplying Eq. (4.33) by*, the complex conjugate transposezofind taking the
imaginary part gives

2" Cz = Zlm(z;kgi), (4.34)

i€E

whereF is a set of mode numbers corresponding to the engine order of excitation. Note
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that, sincez*Axz is Hermitian and scalag,* Akz is real. This equation indicates that the
energy dissipation in the system is equal to the energy input by external forcing. Suppose
an extreme case in which the phasegypleads the phase af by 90 ° so that the energy

input is maximized. For this case, the above equation becomes

N
Zci’2i|2 :Z’Zi||gi|> (4.35)
i=1 i€E

whereN,, is the number of the retained traveling-wave modes, and this equation is used
as the constraint.

Now, a quantity to be maximized needs to be determined. The quantity can be the
absolute or relative displacement of blade DOF, or can be the modal displacement of a
cantilevered-blade mode, if multiple DOF are used for a blade, such as the one in a finite
element model. Note that the modal displacement of a cantilevered-blade mode can be
considered similar to the relative displacement in a model with a single DOF for a blade.
Since the worst case occurs when all the traveling wave modes are in phase at one blade,
the quantity (physical or modal displacement) at the blade in such a situation is maximized.

That is, the objective function is

N’"L
max (Z CL,L"Zi‘) y
i=1

whereq; is the amplitude of the displacement in tile traveling wave mode. The deriva-
tive of the objective function is zero at its maximum. Therefdyg, — 1 equations can be

obtained as follows:

Ola| _ _ fori =
E)]zz| aq

o N, (4.36)

Since there is one constraint equation, one modal coordinate need to be chosen as a de-
pendent variable. Here; is chosen as the one, and it can be assumed that mode 1 is not

in the setF without loss of generality.
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Therefore, differentiating Eq. (4.35), and inserting Eqg. (4.36), the relation betwgen

and|z;| is obtained as follows:

|24 fori ¢ E,andi # 1,
|2:] = G (4.37)
A%z + 9 fori € E.
A1 2Ci

(4.38)

Then, |z;| is obtained by inserting the above equation into Eq. (4.37), and the maximum

value of the objective function becomes

DI

)

N 1 N a’? lgi|?
(Zaiw) =5yl a (4.39)

i=1 =1 i€ER

Since this maximum value has been derived using only the mode shapes without con-
sidering natural frequencies and mistuning level as in Whitehead’s approach, this max-
imum value may not be reached. However, this expression still provides more specific
upper bounds for multi-DOF-per-sector models than Whitehead’s factor that was derived

from a 1-DOF-per-sector model.

4.3.2 Examples

A 2-DOF-per-sector model and a finite element model were considered for the appli-
cation of the above upper bound calculation.

For a 2-DOF-per-sector model, the model illustrated in Fig. 4.1(b) was used. Each
disk DOF was connected to two adjacent disk DOF by springs of stiffnegdso, all the
tuned-system modes were assumed to be equally damped, and a cantilevered-blade was

also set to have the same damping as that of the tuned-system modes. Hence, the damping
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coefficient is eliminated when the upper bound of blade response is normalized by the
cantilevered-blade response. The used values for the model parameteygane= 100,

k./ky, = 300, andk,/k, = 40. Figure 4.5 shows the plot of the natural frequencies versus
nodal diameters for the tuned model with 17 blades. The curves connecting the points at
integer nodal diameters were obtained by treating interblade-phase angle as a continuous
variable [39]. Since the nodal diameters 1 to 7 corresponds to double modes, the plot
shows the frequencies of all the 34 modes.

To calculate the upper bounds, first of all the tuned-system modes that can describe the
motion of mistuned systems should be selected. Here, two cases are shown. One is for
closely spaced 17 modes marked by filled circles between two dotted lines in Fig. 4.5, and
the other is for all the 34 modes. The upper bounds:pf- z,| were obtained for various
engine orders of excitation using Eq. (4.39) and normalized by the amplitude of a tuned,
cantilevered blade at its resonance with external forcing of the same magnitude as the
engine order excitations, and are shown in Fig. 4.6. The dotted lines in Fig. 4.6 represent
the upper bound obtained using Eq. (4.32) for a 2-DOF-per-sector model, which is 2.5718
becausey, is equal tan,/m; when all the modes are equally damped. It can be seen that,
when 17 modes are used, the upper bound values obtained using Eq. (4.39) are smaller
than that obtained using Eq. (4.32). Also, the calculated upper bound varies according to
the engine orders, and is smallest at engine order 1. However, when all the modes are
used, all the calculated upper bounds are the same as 2.5718. Here, it should be noted that
the results in Fig. 4.6(a) are more realistic than those in Fig. 4.6(b) because only the 17
modes can mainly interact in mistuned systems when mistuning is small. This indicates
that Eq. (4.39) can provide more realistic and lower upper bounds than Eq. (4.32).

The largest amplitudes af, — x4 in the tuned 2-DOF-per-sector model were obtained

for various engine orders of excitation. And, they are normalized again by the cantilevered-
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blade response. Figure 4.7(a) shows the normalized tuned responses when the 17 modes
are used. As can be seen, all the tuned-system responses are smaller than the cantilevered-
blade response. This is because vibration energy flows from blades to disk so that the
energy level of blades in a tuned bladed disk becomes smaller than that of a tuned, can-
tilevered blade. It can be also observed that the variation of the tuned response level along
the engine orders in Fig. 4.7(a) is similar to that of the upper bound level in Fig. 4.6(a).
This trend can be expected from Eq. (4.39). That ig, ifor : € E are small, the cor-
responding upper bound as well as the tuned response will be small, too. In Fig. 4.7(b),
the ratios of the upper bounds to the tuned responses, which are the upper bounds of tra-
ditional amplification factor, are depicted. Since the tuned response at engine order 1
is much smaller than others, the ratio at engine order 1 is much higher than others, and
exceeds Whitehead’s maximum amplification factor (2.5616 for a 17-blade system).
Equation (4.39) was also applied to an advanced rotor design that can replace multiple
rotor stages. The finite element model shown in Fig. 4.8 was constructed with 10-noded
pyramid elements, and it has 1,299,792 DOF. The natural frequencies of this finite element
model are shown in Fig. 4.9. The lowest five blade-dominated mode families are displayed,
and the corresponding dominant cantilevered-blade mode is shown on the right-hand side
of each mode family. 1F and 2F denote the first and second flexural bending modes, 1T
denotes the first torsion mode, and 1S and 2S denote the first and second stripe modes.
For this study, the 1T mode family was chosen, and 28 modes marked by filled circles
between two dotted lines in Fig. 4.9 was selected for the description of the bladed disk
motion around 1.5 kHz. It was assumed that tuned-system modes and cantilevered-blade
modes were equally damped as in the case of the previous lumped parameter model. A
unit force normal to the surface was applied on a node at the front edge of each blade tip

so that the torsion mode could be well excited, and its phase was adjusted according to
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the engine order of excitation. Although the forcing was unrealistic, and the upper bound
calculation depends on the modal forces, the results can be meaningful as long as the 1T
blade mode is dominant in the motion of the bladed disk and the cantilevered blade.

First, calculated were the 1T modal participation factors in the blade motion of the
selected tuned-system modes. Then, the upper bounds, tuned-system responses, and res-
onant cantilevered-blade response of the 1T mode were obtained based on the modal par-
ticipation factors. The results are shown in Fig. 4.10. As can be seen, the tuned-system
response at engine order 1 is smaller than others while the upper bounds are almost the
same along the engine orders. Therefore, the ratio of the upper bound to the tuned-system
response at engine order 1 is much higher than others, even than Whitehead’s maximum
factor (3.0495 for a 26-blade system), although the ratios at other engine orders are much

lower than 3.0495.

4.4 Predicting Blade Stress Levels Directly from Reduced-Order Vi-
bration Models of Mistuned Bladed Disks

It is well known that the forced vibration amplitudes of bladed disks can increase
dramatically due to small, random discrepancies among the blades, which are referred to
as mistuning. As a result, blade mistuning can lead to significant durability and reliability
problems in turbine engines. In order to analyze bladed disk designs and assess the effects
of mistuning, finite element models (FEMSs) are typically employed. From a finite element
vibration analysis, the displacement and the stress state can be obtained at all degrees
of freedom (DOF) and finite elements. However, industrial bladed disk FEMs usually
feature very large numbers of DOF, and thus traditional finite element analysis (FEA)
can be prohibitively expensive. To address this issue, a variety of techniques [15, 22, 23,

40, 44] have been developed for constructing reduced-order models (ROMs) from FEMs.
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Although such ROMs can be used to solve the vibration response quickly and accurately
relative to FEA, they are typically formulated in terms of modal and physical displacement
variables for the bladed disk, whereas the primary variable of interest for durability and
reliability studies is stress. To calculate blade and/or disk stress levels, the displacements
predicted by the ROM analysis can be projected back to finite element coordinates and then
post-processed via FEA [39]. However, it may be cumbersome and expensive to translate
the ROM output to the FEM input format and then calculate the stress field with FEA,
especially if this process needs to be repeated many times for a Monte Carlo simulation.
In order to take full advantage of a highly efficient reduced-order modeling technique, it
would be better to be able to predict the increase in stress levels due to mistuning directly
from the ROM.

In structural dynamic problems, changes in vibratory stress levels can usually be ap-
proximated based on changes in the corresponding displacement levels, as long as the
shape of the vibration response does not change significantly over a frequency range of
interest. However, bladed disk structures feature frequency regions of high modal density,
and in these regions blade mistuning can greatly alter the system mode shapes, from an
extended pattern for a tuned system to a localized pattern for a mistuned system. Neverthe-
less, for the resonant response of both tuned and mistuned bladed disks, the displacement
shape of each blade often resembles that of a tuned cantilevered-blade mode (the mode
of a single blade cantilevered at its interface with the disk). Indeed, if the blade motion is
dominated by a single cantilevered-blade mode throughout the frequency range of interest,
then blade displacements may be used to describe stress levels. However, if there is more
than one dominant cantilevered-blade mode, which occurs when blade modes have close
natural frequencies, then blade stress trends may not match blade displacement trends.

Also, blade mistuning is usually modeled as a variation of blade stiffness. Therefore, even
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if two blades have the same displacements, they may experience different levels of stress.
In general, some care must be taken to relate blade displacement results to stress levels.
In this work, three indicators are proposed as ROM-based measures of the level of
blade stress in a mistuned bladed disk. These indicators are defined using (1) the Eu-
clidean norm of blade displacements, (2) the modal amplitude of a cantilevered blade, and
(3) the strain energy in a blade. All three indicators can be calculated directly from the
ROM results, without requiring an expensive finite element stress analysis for the mistuned
bladed disk. In the following sections, these indicators are formulated, and then their ac-
curacy is examined and validated by comparing their stress predictions to the largest Von

Mises stresses in the blades calculated from a much more costly finite element analysis.

4.4.1 Stress Indicators

If a tuned blade is modeled as a single-DOF lumped parameter model with a mass
(myp) and a spring (§), the stress level is proportional kg|x|, where|z| is the amplitude
of the spring deformation. Then, the ratio of the stress level of a mistuned blade to that

of a tuned, cantilevered blade at its resonance become9)|z|/|z|, whered is a non-

dimensional blade-stiffness mistuning value, angd| is the amplitude of the resonant
response of a tuned, cantilevered blade. That is, the stress ratio is the protlyct aihd

the displacement ratidz|/|z.|. If this stress ratio and the stress level of a cantilevered
blade are known, then the stress level of any blade can be calculated.

However, when using a finite element model, the elastic deformation induced by the
motion of the disk is included in the blade motion, and thus the stress state for a blade in a
bladed disk assembly can be different from that for a cantilevered blade. Still, if the blade
vibration is dominated by motion corresponding to a single mode of a tuned cantilevered

blade, then the level of the largest stress in a blade—which is perhaps most meaningful in
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terms of design safety—can be approximated by assuming that the disk-induced motion is
negligible, which is often the case for blade-dominated system modes. In this work, based
upon this assumption, three indicators are proposed that represent the largest stress in a
blade when normalized by the largest stress in a cantilevered blade at the resonance con-
dition corresponding to the dominant cantilevered-blade mode. Therefore, each indicator
is referred to as a normalized stress indicator (NSI). Each NSI is defined such that it can
be calculated directly from the displacements obtained from a ROM analysis.
The first normalized stress indicator is formulated in terms of the Euclidean norm of

the physical blade displacement vector:
(1 + )t /Uep, (4.40)

whereu,, is the Euclidean displacement norm for a blade in the mistuned bladed disk, and
ue IS the Euclidean displacement norm for the resonant response of a tuned cantilevered
blade. Here§ is the modal stiffness mistuning value for the dominant cantilevered-blade
mode.

The second normalized stress indicator is formulated in terms of modal amplitudes:
(1 +)am/ac, (4.41)

wherea,, is the dominant modal amplitude of a mistuned blade when the vibration re-
sponse is described in tuned cantilevered-blade modal coordinates,,aadhe modal
amplitude for the resonant response of a tuned cantilevered blade. Natg #rada,,, cor-

respond to the same cantilevered-blade mode. However, this formulation does not require
that cantilevered-blade modes be used as basis vectors in the ROM, because the system
motion can be projected onto these modes to retrigyve-urthermore, a coordinate trans-
formation between ROM modal coordinates and cantilevered-blade modal coordinates can

be calculated priori to make this an extremely inexpensive indicator to compute.
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The third normalized stress indicator is formulated in terms of blade strain energy. For
a single-DOF lumped parameter model, the ratio of the strain energy in a mistuned blade
to that in a tuned, cantilevered blade at its resonance be@mes (|z|/|z|)?. Therefore,

using the strain energy in a blade, an analogous indicator is proposed:

whereF,, is the peak strain energy of a blade in the bladed disk during one period of os-
cillation, andE,, is the peak strain energy during one period of oscillation for the resonant
response of a tuned cantilevered blade.

Although disk-induced motion is usually small, the physical displacements of blades
are determined by the disk-induced rigid body and elastic motion as well as by the cantilevered
blade motion. Only the disk-induced elastic motion and the cantilevered-blade motion
affect the blade stress level. However, the NSI proposed in Eq. (4.40) is affected by the
rigid body motion. Nevertheless, this does not imply that this NSI is less accurate than
the other two, because none of the proposed NSIs accounts for the disk-induced elastic
motion appropriately. Also note that, even if the disk-induced elastic motion may affect
considerably the stress level locally near the blade root, the change in total blade strain
energy due to this motion may be very small.

In order to test the three proposed indicators, the FEM of an industrial rotor with 29
blades shown in Fig. 4.11 was used. (This rotor model was also studied in previous work
by the authors [44], in which its vibration characteristics, including the plot of natural fre-
qguencies versus number of nodal diameters, can be found.) Blade mistuning was imple-
mented by varying Young’s modulus in the finite elements of the blades, and 50 randomly
mistuned systems were obtained. Each mistuned system was tested in two excitation fre-

quency regions: 9-11 kHz and 26—-29 kHz. The second flexural bending (2F) mode of a
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cantilevered blade is the dominant blade motion in 9-11 kHz, and the third flexural bend-
ing (3F) mode is dominant in 26—29 kHz. For external forcing, engine order excitations
were considered by applying a unit force normal to the blade surface on one of the nodes at
each blade tip. Engine order 1 and 3 were used for 9—-11 kHz and 26—29 kHz, respectively.
For each mistuned system and frequency region, a resonant frequency at which the largest
Euclidean blade displacement norm occurs was identified. At that frequency, the response
data for the 29 blades obtained from the FEA were collected. Thus, for each frequency
region, 1450 sets of blade response data were obtained, and the Euclidean blade displace-
ment norm, the amplitude of the 2F or 3F cantilevered-blade mode, and the peak blade
strain energy during a period of oscillation were calculated for each data set. Also, the
largest peak Von Mises stress in each blade during a period of oscillation was calculated
using the complex stress state for the finite element centers obtained from the FEA. The
results for the 2F and 3F regions are shown in Figs. 4.12 and 4.13, respectively.

In these figures, the “normalized largest stress” is defined as the ratio of the largest Von
Mises stress of a blade in a mistuned system to that of a tuned, cantilevered blade. If the
NSIs were to measure the normalized largest stress exactly, then all the data points should
appear on the lines of unit slope in Figs. 4.12 and 4.13. However, as mentioned above, the
disk-induced component of blade motion is not accounted for by the NSIs. Therefore, not
all the data points fall on the lines, although they are located close to them. In Fig. 4.12,
although all indicators underestimate the stress level, the NSI based on the Euclidean norm
is seen to be a better stress approximation than the other two indicators. This is because
disk-induced elastic motion increases the stress level for the 2F mode region, and the rigid
body motion also increases the level of the NSI using the Euclidean norm. The data points
in Fig. 4.13 are considerably more scattered than in Fig. 4.12, especially for small NSI

values, but the general trend is that the NSIs overestimate the blade stress level slightly.
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This means that disk-induced elastic motion generally tends to decrease the stress level in
the 3F region. Hence, it can be seen that the results of the NSI based on the Euclidean norm
are worse. Finally, Figs. 4.12 and 4.13 show that the NSIs based on modal displacement
and on blade strain energy produce almost the same results, which means that the blade
strain energy is determined mostly by the dominant cantilevered-blade mode.

All three of the proposed indicators show good agreement with the normalized largest
Von Mises stress. However, it should be noted that the NSIs of Egs. (4.40) and (4.42)
require the recovery of all the physical blade displacements in finite element coordinates.
In contrast, the NSI of Eq. (4.41) is based on modal displacements, and therefore it is the

least expensive to obtain.

4.4.2 Estimation of Blade Stress Level

Now, suppose that the NSI value of a blade can be calculated and that the largest
stress for the cantilevered-blade response is known. Then, the largest stress in the blade
can be approximated as the product of the NSI value and the cantilevered-blade stress.
In this section, two cases of blade stress estimation are studied using the same model as
in the previous section. The mistuning values are those given in Table 2 in the authors’
previous work [44] that was obtained by a random number generator. In the first case
considered, a single cantilevered-blade mode is dominant over the frequency range of
interest. In the second case, two blade-dominated mode families are so close that the
dominant cantilevered-blade mode for each blade can be different and change throughout
the investigated frequency region.

In order to calculate the NSI value, the dominant cantilevered-blade mode needs to
be known. Usually, within a given blade-dominated mode family, blade motion is gov-

erned by a single cantilevered-blade mode. However, if more than one blade-dominated
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mode family is present in the motion of a mistuned system, the modal displacements of
the corresponding cantilevered-blade modes need to be calculated for each blade at ev-
ery frequency, in order to determine which mode is dominant. That is, even if the stress
measures defined in EqQ. (4.40) or (4.42) are used, the modal displacements still need to be
calculated. This encourages again the use of Eq. (4.41) as a stress indicator. Therefore, the
estimation of blade stress in this study was performed using only the cantilevered-blade
modal amplitude stress indicator, Eq. (4.41).

The first case considered concerns the frequency range 26—29 kHz, in which, as men-
tioned earlier, the 3F blade mode is dominant. From the FEA, stresses and displacements
were obtained by applying engine order 3 excitation. Since the FEA stress calculation is
computationally expensive, it was performed only at the natural frequencies of the mis-
tuned bladed disk, and the NSI values were calculated from Eq. (4.41) based on these
FEA results. In addition, a 34-DOF ROM was built using the component mode mistuning
method [44] and NSI values were again calculated, but this time based on the ROM results
and at all excitation frequencies in the 26—29 kHz range. At each frequency, the largest
Von Mises stresses for the 29 blades were calculated from the FEA results or estimated
from the NSI values, and the largest value among all blades was taken, thus providing the
maximum stress envelope in terms of frequency. Figure 4.14 compares the results from the
FEA and those by the NSIs. It can be seen that the results obtained with the FEM-based
NSI and by the ROM-based NSI match very well, and that they are in good agreement
with the direct FEA stress calculation across the frequency range.

The second case features two close blade-dominated mode families in the 32—-36 kHz
range, dominated by the third torsion (3T) and the second stripe (2S) cantilevered-blade
modes. For this frequency region, a larger ROM with 66 DOF was constructed, which

included modes from both families. Engine order 5 excitation was applied. At every
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frequency, a dominant cantilevered-blade mode was determined for each blade, and then
the NSI value and the estimated stress were obtained according to this dominant mode. In
addition, the Euclidean blade displacement norm was calculated for each blade via FEA
or ROM, and the maximum norm among all blades was selected. The results obtained for
the tuned bladed disk are shown in Fig. 4.15: the Euclidean blade displacement norm is
depicted in Fig. 4.15(a) and the maximum stress in Fig. 4.15(b), in terms of the excitation
frequency. Observe the three resonant peaks in the investigated frequency region, as shown
in Fig. 4.15(b), although the smallest peak barely appears in Fig. 4.15(a). The motion of
the bladed-disk assembly is dominated by the 3T blade mode at the first peak around 33.1
kHz, and by the 2S blade mode at the second peak around 34.7 kHz. However, at the
third peak around 35.1 kHz, the motion is dominated by disk rather than blade motion,
contrary to the other two peaks. Therefore, the third peak in Fig. 4.15(a) is small. Also, it
is seen that the stress results obtained with the NSI do not approximate well the FEA stress
calculation around the third peak, as shown in Fig. 4.15(b). This is because at the third
peak the blade stress level is affected greatly by the disk-induced elastic motion. Also,
comparing Figs. 4.15(a) and 4.15(b), observe that the trend of the displacement results is
qualitatively different from that of the stress results. That is, although the 3T blade mode
gives smaller maximum displacements than the 2S mode, the maximum stress for the 3T
mode is higher than for the 2S mode.

Results were also obtained for the mistuned system, and they are depicted in Fig. 4.16.
Note again that the trend of the displacement results is considerably different from that of
the stress results. It can also be seen in Fig. 4.16(b) that the NSI results are in very good
agreement with the FEA results, except around 35.1 kHz which corresponds to the third
peak in Fig. 4.15(b). Since the tuned-system mode corresponding to the third peak features

small blade motion, this mode is not altered as much by blade mistuning as the other blade-
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dominated modes. Therefore, even for the mistuned system, the motion corresponding to

this mode occurs around 35.1 kHz.

4.5 Conclusions

Using the relation between blade response and vibration energy input through cou-
pling, the maximum energy concentration in a single blade has been derived for 1-DOF-
per-sector models with different damping representations. Therefore, the upper bounds
of the amplification of the blade displacement and velocity, which turned out to be the
same as Whitehead’s maximum amplification factor, were found for hysteretic and vis-
cous damping, respectively. Also, the upper bound of blade stress was found to be around
the Whitehead'’s factor for structural damping. It was also demonstrated that the amplifi-
cation of blade displacement can excéed- \/N,) /2 if viscous or structural damping is
used although it is still bounded aroufid+ /N,)/2 if mistuning is small.

The upper bound for a 2-DOF-per-sector model was also found from the maximum en-
ergy concentration. Although the traditional amplification factor is the ratio of the largest
blade response in a mistuned system to that in the tuned system, the upper bound was nor-
malized by the resonant response of a tuned, cantilevered blade so that the absolute blade
responses could be measured and compared. It was found that the upper bound is larger
than that for a 1-DOF-per-sector model, and that it is still aro(ind \/N,)/2 if disk
displacements are negligible.

Whitehead [25] obtained the upper bound of blade response by superposing all the
traveling wave modes for a 1-DOF-per-sector model. This approach was extended to gen-
eral bladed-disk models with multiple DOF per sector. The generalized expression gives
specific upper bounds for different systems and for different engine orders of excitation.

The expression has been applied to a 2-DOF-per-sector model and a finite element model.
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From the results for the 2-DOF-per-sector model, it was seen that the generalized expres-
sion allows lower upper bounds than that obtained from the maximum vibration energy
concentration, when only closely spaced traveling wave modes are used.

Three normalized stress indicators were proposed as approximate measures of the
largest blade stress level in a mistuned bladed disk. These stress measures were defined
using the Euclidean blade displacement norm, the amplitude of a dominant cantilevered-
blade mode, and the strain energy in a blade. All three can be calculated efficiently from
results obtained with a reduced-order model, without having to resort to expensive finite
element stress calculations for the mistuned bladed disk. The three NSlis were tested using
the finite element model of an industrial rotor. All three indicators showed good accuracy
relative to finite element results. However, the computational cost of the NSI based on the
amplitude of a dominant cantilevered-blade mode is significantly lower than the other two,
especially when more than one dominant blade mode is present in a frequency range.

It was demonstrated with a case study that, when more than one blade-dominated mode
family is present in the frequency region of interest, blade displacement amplitudes can
feature trends that are qualitatively different from those of stress levels. This suggests that
using raw displacement results from reduced-order models can lead to erroneous predic-
tions for stress. Instead, stress indicators, such as those proposed in this work, should be

calculated to assess bladed disk designs.
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4.6 Figures and Tables

Kp

7

(a) 1-DOF-per-sector model

(b) 2-DOF-per-sector model

Figure 4.1: Lumped parameter models of bladed disks.
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Figure 4.2: Energy input through coupling to a blade versus displacement amplification
obtained from 1,000 mistuned systems with a single DOF per sector.
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Figure 4.3: Energy input through coupling to a blade versus velocity amplification ob-
tained from 1,000 mistuned systems with a single DOF per sector.
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Figure 4.4: Energy input through coupling to a blade versus stress amplification obtained
from 1,000 mistuned systems with a single DOF per sector.
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Figure 4.6: Normalized upper bounds of mistuned-system response.
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Figure 4.7: Ratios of upper bounds to tuned-system responses when 17 modes are used.
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Figure 4.12: PERFORMANCE OF NORMALIZED STRESS INDICATORS IN THE
2ND FLEXURAL MODE REGION.
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Table 4.1: Examples of mistuning patterns resulting in displacement amplification larger

than(1 + /N,)/2

Damping Blade mistuning pattern | Displacement amplification

Structural| -0.0520 -0.0224 -0.0226 1.4211

Viscous | -0.0520 -0.0221 -0.0223 1.3928




CHAPTER YV

Intentional Mistuning Design Space Reduction Based on
Vibration Energy Flow in Bladed Disks

Intentional mistuning is the deliberate incorporation of blade-to-blade parameter vari-
ations in the nominal design of a bladed disk. Previous studies have shown that this is a
promising strategy for mitigating the damaging effects of unintended, random mistuning.
In this paper, the mechanisms of intentional mistuning are studied by investigating the
relation between blade response and vibration energy flow in lumped parameter models.
Based on key observations from the energy flow analysis, a few design guidelines are pro-
posed that drastically reduce the design space for intentional mistuning patterns. Thus, an
optimization may be performed on the reduced design space or skipped altogether, yield-
ing dramatic reductions in computational costs. The guidelines are validated by extensive
Monte Carlo simulations for the lumped parameter models as well as for a finite-element-
based reduced-order model of an industrial rotor. It is shown that the reduced design space

includes optimal or near-optimal intentional mistuning patterns.

5.1 Introduction

Due to manufacturing tolerances, in-operation wear, and other causes, bladed disks

always have small, random blade-to-blade variations, called mistuning. While mistuning

127
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is beneficial in terms of aerodynamic stability [63, 64], it can lead to a significant increase
in the maximum blade vibration relative to the ideal, tuned case [2-5, 7]. The increases in
blade vibration amplitudes and stresses due to mistuning are a cause of great concern for
the turbine engine community.

One approach to mitigating the damaging effects of mistuning is to move away from
a perfectly tuned design. It has been reported that maximum blade forced response lev-
els can be decreased by intentionally introducing some mistuning into the nominal de-
sign [8, 29, 35-37]. That is, using two or more designs of blades with nominally different
natural frequencies can make the bladed disk system more robust with respect to random
mistuning. The effectiveness of this intentional mistuning strategy depends largely on the
selected pattern of blade property variation. In order to select the intentional mistuning
pattern, one could perform a design optimization. However, in order to optimize inten-
tional mistuning, the increase in blade forced response due to random mistuning needs to
be evaluated for each iteration of the intentionally mistuned design. Therefore, the com-
putational cost becomes prohibitive for a large number of possible intentional mistuning
patterns. There has been some recent work on determining the pattern of intentional mis-
tuning using optimization algorithms [38]. However, because of the cost, only limited
information was used without evaluating the maximum blade forced response.

In addition, there have been several previous studies on using optimization methods to
find the worst or best overall mistuning patterns in terms of aeroelastic stability [65—68]
or forced response amplification [56, 57,59, 69]. There have also been a few studies on
finding an optimal blade arrangement when a set of mistuned blades are given [70, 71].
The worst mistuning pattern is useful for finding the maximum blade forced response.
However, the best mistuning pattern may not actually represent an optimal or near-optimal

design, because the actual response may be greatly affected by the additional, random



129

mistuning that will inevitably occur in the manufacturing process, during the assembly, or
during engine operation. In fact, Crawley and Hall [67] showed that the performance of the
optimal pattern was very sensitive to small changes in the mistuning values. Furthermore,
for integrally bladed disks from which blades cannot be separated, blades cannot be re-
arranged.

The goal of this study is not to perform a true design optimization, but rather to develop
a simple approach for identifying a relatively small number of promising patterns of inten-
tional mistuning that are expected to include a near-optimal design. First, the influence of
intentional mistuning on the vibration energy flow in a bladed disk system is investigated.
An underlying physical mechanism of intentional mistuning is presented using the relation
between the energy flow in bladed disks and the stress amplification in blades. Then, based
on key observations from the energy flow analysis, some guidelines for selecting effective
intentional mistuning patterns are proposed and tested.

This paper is organized as follows. In section 5.2, the energy input to a blade through
coupling and the energy flow between sectors are formulated and investigated for lumped
parameter models. Three guidelines for intentional mistuning design space reduction are
proposed in section 5.3. In section 5.4, these guidelines are validated with lumped param-
eter models, and several promising configurations of intentional mistuning are tested for

an industrial rotor. The conclusions from this study are summarized in section 5.5.

5.2 Energy Flow in Lumped Parameter Models

Many researchers have studied bladed disks using lumped parameter models or simple
analytical models [2-4, 7, 8, 10, 12, 36, 38, 65, 66, 70]. In this study, two lumped parameter
models are considered. The first model, shown in Fig. 5.1(a), has only a blade DOF for

each sector, with tuned mass and tuned stiffness,. Each blade DOF is directly coupled
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to neighboring blades by springs of stiffnéss The second model, shown in Fig. 5.1(b),

has a blade DOF and a disk DOF for each sector. For this model, the coupling springs
connect the disk DOF. Thus, for the 1-DOF-per-sector model, energy flow occurs only

between neighboring blades, but for the 2-DOF-per-sector model, energy in a blade can
flow to any blade through disk.

In these models, every mass and stiffness can be defined using a ratio with respect to a
blade mass, and stiffnesg;,. Frequencies and stresses can be also non-dimensionalized
by a tuned-cantilevered-blade natural frequency and its stress at its resonant frequency.
Thereby, in this study, all the results are obtained in non-dimensionalized form. For the
forced response, engine order excitations are applied, and only steady-state responses are
considered. Structural damping is assumed, and the structural damping ratio is denoted by
Y.

Mistuned models are generated by adding stiffness variations to nominal blade stiff-

nesses. Thé&h mistuned stiffness is expressed as
Kyi = k(1 +6;), (5.1)
wherey; is theith mistuning value to be given randomly or intentionally.

5.2.1 Energy Input to a Blade Through Coupling

In the 1-DOF-per-sector lumped parameter model, the average energy dissipated in

bladei over a period of oscillation is
d 1 . * 1 2
Ef = §Re (Jvke(L + 0i)wsv7) = 5’77%(1 + 0wl @], (5.2)

wherej is v/—1, w is the excitation frequency;; is the displacement of th&h blade,
andv; is the complex conjugate of théh-blade velocity. There are two energy sources

to balance this energy loss: the energy input by external forcing, and the energy input
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through the coupling springs. The average energy input to blagexternal forcing is
;1 L1 ,
E! = §Re (fivi) = §wF|xZ| sin(Af), (5.3)

where f; is the external force applied to thth blade,F' is the amplitude of the external
force, andAd is the phase of; subtracted by the phase .of Because engine order exci-
tation is assumed, the forces applied to the blades have the same amplitude, but different
phases.

Using Egs. (5.2) and (5.3), the average energy input to hlddeugh coupling can be
written as

Ef=FE'—E/ = g (Vhp (1 4 0;)|24]* — Fla;| sin(AF)) . (5.4)

Therefore, the energy input through coupling is bounded for a given amplitude of displace-
ment as follows:

w

w

Now, in order to relate the stress level of a blade to the energy input through coupling,

a stress amplification factor is defined as follows:

by = b( )il | )|z |7 (5.6)
Kyl | e

wherez,, is the displacement of a tuned cantilevered blade at its resonant frequency. That
is, p; indicates the ratio of the stress of a mistuned blade to the maximum stress of a tuned
cantilevered blade. Since structural damping is used, the resonant frequency is the natural

frequency, and the cantilevered blade response is written as

F
2| = ——, or F=vky|rel. (5.7)
Yk

Inserting Egs. (5.6) and (5.7) into Eq. (5.5), and normalizitfgwith (w/2) (vks|z|?),

the following relation is obtained:

PP —pi < (14 6)E° < p? + p, (5.8)
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whereFE?¢ is the normalized energy input to a blade through coupling. The derived relation
in Eq. (5.8) shows that the stress amplification of a blade is limited by the energy input
through coupling. Similar relations can be derived for different kinds of damping and for
the 2-DOF-per-sector model [72]. The relation for a 1-DOF-per-sector model approxi-
mately holds for a 2-DOF-per-sector model, because the energy input to a sector can be
approximated as the energy input to a blade when the motion is dominated by blades.

These bounds of the energy input are verified using Monte Carlo simulations of mis-
tuned 1-DOF-per-sector and 2-DOF-per-sector models. In the tuned 1-DOF-per-sector
model,k./k, is set to be 0.01, which is the value that was used for a weakly coupled sys-
tem by Wei and Pierre [10]. For the tuned 2-DOF-per-sector model, the parameter values
are based on those identified for an industrial rotor [73]. (The finite element model of the
industrial rotor will be considered in section 5.4). The parameters were modified slightly
to have a frequency veering region at 1 nodal diameter for a 12-blade system. The non-
dimensionalized parameters arg;/m;, = 500.0, k./k, = 2050.0, andky/k, = 45.5.
The natural frequencies of the resulting 2-DOF-per-sector tuned system are plotted in
Fig. 5.2. The curves connecting points at integer nodal diameters were obtained by ap-
plying a method that treats the interblade phase angle as a continuous variable [39]. A
structural damping ratio of 0.002 was used for both models. Mistuning values were sam-
pled from uniformly distributed random numbers to obtain 1,000 mistuning patterns. The
standard deviations of the random mistuning values were chosen to be 0.012 for 1-DOF-
per-sector model and 0.006 for 2-DOF-per-sector model, because the systems show large
increases in blade forced response for these mistuning levels.

For the 1-DOF-per-sector model, engine order 3 excitation was used. For the 2-DOF-
per-sector model, engine order 1 excitation was used, which corresponds to the veering

region at 1 nodal diameter. In each simulation, the resonant frequency with the maximum
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blade response was found using a golden section search method. At that frequency, the
response results for all 12 blades were recorded. So, these simulations yielded 12,000
blade response results for each model, as depicted in Fig. 5.3. For the 2-DOF-per-sector
model, the energy input to sectors (not blades) was obtained. Most of the Monte Carlo
simulation results appear between the two theoretical limit cupes; p and p? + p.

For the 2-DOF-per-sector model results, some points are just outside the lower limit. In
Fig. 5.3, it is observed that large stress amplification is accompanied by large normalized
energy input through coupling. Note that a negative value of normalized energy input
indicates a net energy drain to other blades.

For these Monte Carlo simulations, the energy input through coupling is also shown
as a function of the difference between excitation frequency and blade natural frequency,
lw—w;|, in Fig. 5.4. The frequency differences were normalized by the tuned-cantilevered-
blade natural frequency,,. As can be seen, the level of the energy input through coupling
decreases beyond a certain level of the frequency difference. This trend is in good agree-
ment with the findings of Griffin and Hoosac [8]. They observed that the blades most
likely to exhibit the largest vibrations were those that had blade-alone (cantilevered-blade)
frequencies nearly equal to the tuned system resonant frequency, and that the highest re-
sponses occur at frequencies near the tuned system resonant frequency. This means that
a blade has a small stress amplification when an excitation frequency is sufficiently sepa-
rated from the blade natural frequency.

Now, the energy input through coupling into each blade in an intentionally mistuned
design is considered. Here, a “square wave” pattern of intentional mistuning with am-
plitude of 0.1, as shown in Fig. 5.5, is used for the lumped parameter models. Because
this pattern consists of alternating groups of two higher-frequency blades and two lower-

frequency blades, it is called a 2H2L square wave pattern. The reason for choosing this
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pattern will be explained in sections 5.3 and 5.4.

Figures 5.6 and 5.7 show the results from Monte Carlo simulations performed in the
same way as for the nominally tuned designs. In Fig. 5.6, it can be observed that the
level of the energy input through coupling as well as the level of stress amplification is
decreased, which means that the intentional mistuning pattern works well. In Fig. 5.7,
the results appear in two groups. One group is located at the smaller frequency difference
region, and the other at the larger frequency difference region. The separation of these
two groups is caused by the level of intentional mistuning being larger than that of random
mistuning. The energy input to or drain from the blades in the group at the larger frequency
difference region is very small. This verifies again that the energy input through coupling
decreases as the frequency difference increases. Furthermore, the energy input available
to a blade showing the maximum forced response is reduced due to this small energy drain

from those blades at the larger frequency difference region.

5.2.2 Energy Flow Between Sectors Through Coupling

From the investigation of the energy input to a blade through coupling, it was seen that
the possible energy source is reduced by intentional mistuning. Here, the propagation of
energy is investigated. The energy flow between two neighboring sectors is formulated
using stress amplification factors for a 1-DOF-per-sector model. The energy flow from

bladei — 1 to bladei through coupling is written as

1 ) *
Ef ;= sRe (14 jv)ke(wiy — 24)v7)

? (5.9)
= jwhe [2i1|2] (7 cos(Adi—1) + sin(A¢_1,)) — v]a[*] ,

whereA¢;_; ; is the phase af;_; subtracted by the phase ©f Inserting Egs. (5.6) and

(5.7) into the above equation, and normaliziAg , ; with (w/2) (vks|ze|?) again, the
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following equation is obtained:

L ke Di-1 Di L. p \’
FE¢ . == A i—1. — A i—1,i - ’
i T g, (1+5i_1) (1+5i> (COS( Fict) 2 sin(Adi-y, >) (1+5i
(5.10)
whereE¢_, ; is the normalized energy flow from blade- 1 to bladei. Since the structural

damping~ is usually much smaller than Ef,u is dominated by the sine term unless
sin(Ag;_1,) is negligibly small. Therefore’?f_lyi may be decreased by decreasingk,,
pi—1, Or p;; by increasingy; or by makingA¢,_, ; close to0 or 7.

Now, suppose that mistuning is added to a system so that the natural frequencies of the
1 — 1th andith blades are separated sufficiently, and that the excitation frequency is around
the natural frequency of thgh blade. Then, the — 1th blade will vibrate with a very
small amplitude, and the available level Bf_, ; may be reduced because of small.
If the natural frequencies of both blades are sufficiently far from the excitation frequency,

bothp;_, andp; will be small andE?¢

1—1,2

may be further reduced.

For a 2-DOF-per-sector model, an equation similar to Eq. (5.10) is written as follows:

_ k. /k 1
Eicfl,i = o/ Ry |:p§l1p;i (COS(A(bgl,i) + ;Sin(Aﬁbgl,z’)) —pgﬂ ) (5.11)

(ka/ks)?

wherep? is (kq|zf|)/(ks|ze|), 27 is the displacement of thigh disk sector, andh¢y, ; is
the phase of¢ , subtracted by the phase @f. As can be seen, the energy flow depends
on disk displacements. Therefore, even if the displacement af-th&th andith blades
are small, the energy flow between the sectors may not be reduced.

From the results of the Monte Carlo simulations for intentionally mistuned systems
in the previous section, the plots of the energy flow from secterl to sectori versus
the difference between excitation frequency and the natural frequency of biadee
obtained as shown in Fig. 5.8. The results appear in two groups, as in Fig. 5.7. Itis seen

that the level of the energy flow in 1-DOF-per-sector models is small for the blades at the
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large frequency difference region. However, this trend is not observed in the results for
2-DOF-per-sector models, which means that the vibration energy propagation in 2-DOF-
per-sector models may not be affected by intentional mistuning. Also, since the net energy
input to a blade at the larger frequency difference region is very small (see Fig. 5.6(b)), it
can be concluded that most of the amount of energy flow from séetar just passes to

sector; + 1.

5.3 Intentional Mistuning in Nominal Designs

In this section, the design of intentional mistuning patterns is considered in terms of
vibration energy source and propagation. Intentional mistuning is introduced into an orig-
inally tuned bladed disk design by using multiple blade designs, or blade types, where
each blade type has a different blade-alone natural frequency. In this study, the natural
frequency differences between blade types, the number of blade types, and the arrange-
ment of blades of different types are considered as the design parameters for intentional
mistuning. The first parameter is associated with the amplitude of intentional mistuning,

while the second and third are associated with the pattern of intentional mistuning.

5.3.1 Amplitude of Intentional Mistuning

The effects of varying intentional mistuning amplitude are considered by examining
stress amplification factors for lumped parameter models with the 2H2L square wave pat-
tern of intentional mistuning shown in Fig. 5.5. To begin, the 99th percentile stress ampli-
fication factor is estimated for various standard deviations of random mistuning. In order
to estimate the 99th percentile value efficiently, a Weibull distribution fit [29, 39] is applied
to the largest blade stress amplification factors obtained from Monte Carlo simulations of
mistuned bladed disks. By using a Weibull distribution fit, the number of simulations

needed for an accurate prediction of the 99th percentile value can be reduced by orders
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of magnitude. In this case, 100 simulations were run for each sampled standard deviation
value from 0 to 0.03, with a step size of 0.003. The same random mistuning patterns were
used for each set of 100 simulations as were used in section 5.2, with the pattern being
scaled according to the sampled standard deviation value.

Figure 5.9 shows the 99th percentile stress amplification factors for the 1-DOF-per-
sector model for various amplitudes of intentional mistuning. From each curve, the maxi-
mum value was taken, which is referred to as the maximum stress amplification.

In Fig. 5.10, the maximum stress amplification is shown as a function of the amplitude
of intentional mistuning for both lumped parameter models. The overall trend is that, as the
amplitude of intentional mistuning increases, the maximum stress amplification decreases,
but the slope becomes less steep. That is, the maximum stress amplification shows slow
improvement after a certain level of the natural frequency difference between the two blade
types. This trend can be expected from the results in Fig. 5.7. For the remainder of this
study, the amplitude of intentional mistuning will be set to 0.1, and only the selection of

the pattern of intentional mistuning will be investigated.

5.3.2 Pattern of Intentional Mistuning

For the pattern of intentional mistuning, a key parameter is the number of blade types
to be used. As the number of blade types increases, the number of blades with the same
nominal natural frequency decreases. This can be interpreted as an advantage. However, if
the number of blade types increases but their natural frequencies are distributed in a fixed
frequency range, the difference between blade types will decrease, and the advantage will
disappear. Also, as the number of blade types increases, the design space increases rapidly.
Therefore, using only a few blade types may be desirable.

Once the number of blade types is chosen, the arrangement of blades around the cir-
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cumference of the disk needs to be designed. One may use an optimization algorithm to
find the best intentional mistuning pattern. However, as the number of available configu-
rations becomes very large, the computational cost will become prohibitive. Here, three
guidelines are proposed to reduce the design space such that very effective (though not
necessarily optimal) configurations can be found in the reduced design space.

First, it is proposed that an equal or nearly equal number of blades should be assigned
to each blade type. If the number of blades of a certain type increases, the source of the
energy input to a blade through coupling is likely to increase when the excitation frequency
is around the natural frequency of those blades.

Second, it is proposed that the blades of each type should be distributed so that the
mistuning pattern is “balanced” about the bladed disk. If blades of the same type or similar
types are concentrated to one side, the reduction of the energy flow due to small blade
response may be small.

Third, it is proposed that an equal or nearly equal number of blades should be assigned
to each group of consecutive blades of the same type. If the size of one group of a certain
type is larger than the others, the level of the energy flow in this group might be larger
when the excitation frequency is around the natural frequency of those blades.

The second and third guidelines are valid only when the energy flow between sectors
is dependent on the displacements of blades. As mentioned in section 5.2, the energy flow
in a 2-DOF-per-sector model is dependent on the disk displacements. In that case, the
second and third guidelines may not be effective. However, if blade displacement levels
are completely independent of disk displacement levels, these guidelines will not have a
negative effect.

The above three guidelines are satisfied by a few notable classes of intentional mistun-

ing patterns. For example, when two blade types are used, a square wave pattern, such as
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a 1H1L or 2H2L, satisfies the guidelines very well. For three blade types, the guidelines
are satisfied by sawtooth or staircase patterns, such as 1H1M1L or 2H2M2L, where “M”
denotes a medium-frequency blade type. More importantly, these guidelines collectively
provide a dramatic reduction in the design space for selecting an intentional mistuning
pattern. In the next section, the effectiveness of patterns that lie within this design space

will be evaluated numerically.

5.4 Numerical Validation

5.4.1 Lumped Parameter Models

Here, reducing the design space for intentional mistuning patterns by following the
proposed guidelines is demonstrated, and the effect of the guidelines are validated using
lumped parameter models with 12 blades or 15 blades.

Consider the case in which only two blade types are used. After eliminating any pat-
terns that are redundant because they are just rotated versions of another pattern, the num-
ber of unique patterns is 350 for the 12-blade system and 2,190 for the 15-blade system.

For a 12-blade system, the first guideline is met when both the numbers of lower-
frequency blades and higher-frequency blades are chosen to be 6. For a 15-blade system,
one of the numbers can be 7 or 8 with the other being 8 or 7, and here the number of lower-
frequency blades is chosen to be 8. Then, the number of the unique patterns that satisfy
the first guideline becomes 80 for a 12-blade system, and 429 for a 15-blade system.

Now, the second guideline is applied. In order to select balanced patterns, the deviation

of the “center” of the intentional mistuning pattern is used, which is defined as

N o 2 N 9 2
¢ = <Z(5;:ntcos (%)) + (Z(;;:ntsm (%)) , (5.12)
i=1 i=1

where N is the total number of blades, angl” is theith intentional mistuning value.

A low deviation from the center indicates that a pattern is well balanced about the disk.
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From the patterns filtered by the first guideline, the best 10% patterns are selected. Then,
8 patterns for a 12-blade system remain, and 43 patterns for a 15-blade system.

In order to apply the third guideline, the standard deviation of the blade group size is
evaluated. A low standard deviation means that each group of blades contains a similar
number of blades. The best 10% patterns can be selected again from the patterns filtered by
the first and second guidelines. However, some patterns have the same standard deviation
values so that more than 10% of the patterns are selected. Finally, 3 patterns for a 12-
blade system are obtained, and 8 patterns for a 15-blade system. In this manner, the design
space for intentional mistuning patterns can be significantly reduced. The 3 patterns for a
12-blade system are square wave patterns: 1H1L, 2H2L, and 3H3L. Also, the 8 patterns
for a 15-blade system are similar to square wave patterns. Note that an exact square wave
pattern cannot be made for a system with an odd number of blades.

To validate the performance of the filtered patterns, all the available intentional mistun-
ing patterns with two blade types were evaluated. The 12-blade lumped parameter models
discussed in section 5.2 were used again. Also, a 15-blade 1-DOF-per-sector model, with
the same model parameters as those of the 12-blade model, was tested. For each pattern,
100 simulations were run at each sampled standard deviation value of random mistuning,
and the maximum stress amplification factor was determined in the same way as in the
previous section. Engine order 3 excitation was applied to the 1-DOF-per-sector models,
and engine order 1 excitation to the 2-DOF-per-sector model.

The simulation results are shown in Fig. 5.11, where each data point corresponds to
a unique pattern. For each test case, three plots are depicted. First, the plot of the maxi-
mum stress amplification values of all the available patterns versus the number of lower-
frequency blades is shown. Next, a plot for the patterns filtered by the first guideline

is shown with the x-axis being the deviation of the center of intentional mistuning (see
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Eqg. (5.12)). Third, the plot for the patterns filtered by the first and second guidelines is
shown with x-axis being the standard deviation of the blade group size.

It can be seen that the proposed three guidelines are very effective for the 1-DOF-per-
sector models. For the 1-DOF-per-sector models, the optimal patterns are found in small
numbers of the filtered patterns. However, for the 2-DOF-per-sector model, only the first
guideline works well. This is because the energy propagation in a 2-DOF-per-sector model
as shown in Fig. 5.1(b) depends on disk displacements that may not be affected by blade
displacements. Still, since any adverse effect is not seen, the second and third guidelines
may be used. Moreover, the intersection of the three guidelines defines a dramatically
reduced design space that includes a near-optimal design. The stress amplification for the
1H1L pattern (1.530), which meets all three guidelines, is close to that of the best design
(1.456).

The three guidelines were derived from the investigation of vibration energy flow in
bladed disks, regardless of the engine order of excitation. Therefore, the reduced design
space can be used for any engine order of excitation. For the 1-DOF-per-sector model
with 12 blades subject to engine order 3 excitation, the optimal pattern is a 2H2L square
wave pattern. In fact, this pattern is optimal for other engine orders of excitation, except 0
and 6. Figure 5.12 shows the maximum stress amplification values of the optimal and the
2H2L patterns. It can be seen that, even for engine orders 0 and 6, the performance of the
2H2L pattern is very close to the optimal one.

Now, more than two blade types are considered in an intentionally mistuned design.
As can be seen in Fig. 5.10, the decreasing rate of the maximum stress amplification
for the 2-DOF-per-sector model levels off significantly around the amplitude of 0.025.
Therefore, it might be better to have more than two blade types if the available range of

intentional mistuning is -0.1 to 0.1. For the case of more than two blade types, all the
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possible configurations are not simulated because of the computational costs associated
with the large design space. Instead, only a few configurations satisfying the three design
guidelines are tested. Figure 5.13 shows the tested sawtooth patterns with three, four,
six, and twelve blade types, and the maximum stress amplification results are depicted
in Fig. 5.14. For the entire engine orders of excitation, the maximum stress amplification
values of the tested configurations are significantly lower than those of the nominal design.
Also, for engine order 1 excitation, the tested configurations show better performance than
any two-blade-type configuration, with the three-blade-type configuration yielding the best

results.

5.4.2 Finite-Element-Based Reduced-Order Model

So far, the proposed guidelines have been validated using lumped parameter models.
Now, the intentional mistuning design guidelines are used for a finite element model of
an industrial bladed disk with 29 blades, which is depicted in Fig. 5.15. The rotor model
is clamped at the rims located at the outer edges of the disk, which is a rough approx-
imation of boundary conditions due to neighboring stages. The finite element model is
constructed with standard linear brick elements (eight-noded solids), and it has 126,846
DOF. Figure 5.16 displays the free vibration natural frequencies of the tuned bladed disk
versus the number of nodal diameters. The blade-dominated mode families are labeled on
the right-hand side of the horizontal lines in Fig. 5.16, where F denotes a flexural bending
mode, and T a torsion mode. A unit force normal to the blade surface is applied to the
node at the center of each blade tip line, and engine order 2 excitation is considered in the
range 12-18 kHz, which includes the 2T/2F blade-dominated mode family with a veering

region near 2 nodal diameters. The used structural damping ratio is 0.006. Mistuning is
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implemented by varying the Young’s modulus of each blade:
Y, = Yo(1+4,), (5.13)

whereY; is the Young’s modulus of théh blade, and is the original Young’s modulus
for a tuned blade. Because simulations employing the full finite element model would be
quite expensive even for a small number of selected patterns of intentional mistuning, the
component mode mistuning technique [44] was used to generate a reduced-order model
with 33 DOF by selecting the 33 system modes around 15 kHz.

For lumped parameter models, blade stress amplification can be easily calculated.
However, for a reduced-order model, it is difficult to calculate the stress state in all the
elements. Recently, the authors developed an approximate measure of the maximum stress

in a blade, called the normalized stress indicator (NSI), which is defined as follows [72]:

(1+9)U,

NSI =
Ucb ’

(5.14)

whereU,, is the peak strain energy of a mistuned blade during a period of oscillaipis,
the peak strain energy of a tuned cantilevered blade at its resonant frequency corresponding
to the 2T/2F mode, andlis the Young’s modulus mistuning value. This indicator provides
an estimate of the amplification of the largest Von Mises stress in a blade due to mistuning.
The amplitude of intentional mistuning is set to 0.1, and 100 random mistuning pat-
terns are used in the same way as for the lumped parameter models. As with the stress
amplification in previous sections, the maximum normalized stress indicator is taken to
be the peak 99th percentile value for each intentional mistuning configuration. Since the
number of blades is 29, the design space is too huge to evaluate all the available patterns
even if only two blade types are used. Therefore, a small number of patterns that meet
three guidelines well were tested. The tested intentional mistuning patterns and their max-

imum NSI values are shown in Fig. 5.17. Since the number of blades in this bladed disk is
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a prime number, each blade type cannot be assigned to exactly the same number of blades.
However, the closest approximations to several square wave, sawtooth, and staircase pat-
terns were used. The maximum NSI of the original system without intentional mistuning

is 2.474, which indicates the maximum stress level is 147.4% higher than that of a tuned,
cantilevered blade. With intentional mistuning, the maximum blade forced response is

reduced for all the tested patterns. The best of these designs has a maximum NSI of 1.864.

5.5 Conclusions

The energy flow in lumped parameter models of bladed disks was investigated to pro-
vide a deeper understanding of the effects of intentional mistuning on the vibration re-
sponse, as well as to explore design guidelines for intentional mistuning. It was found that
a blade showing large forced response is fed a large amount of vibration energy through
coupling springs, and that blade response becomes smaller when the difference between
the excitation frequency and the blade-alone natural frequency becomes larger. Also, it
was observed that the energy flow between sectors becomes smaller with the increase
of the frequency difference when the amount of the energy flow depends on blade dis-
placements. Based on these findings, the following three design guidelines for intentional

mistuning were proposed:

1. Assign an equal number of blades to each blade type used in the design

2. Distribute the blades of each type so that they are “well balanced” about the disk

3. Arrange the blades of each type into groups of equal sizes

Classes of designs that satisfy all three rules include simple intentional mistuning patterns

with repeated wave forms, such as square wave, sawtooth, and staircase patterns.



145

The guidelines were validated by performing extensive Monte Carlo simulations of
lumped parameter models for all the intentional mistuning patterns that can be constructed
with two blade types. It was found that the first guideline is strongly correlated with
a reduction in worst-case blade stress. The second and third guidelines showed weaker
correlation with blade stress reduction for a 2-DOF-per-sector lumped parameter model
where vibration energy propagate only through disk, but neither rule had an adverse effect.
Furthermore, these guidelines collectively defined a drastically reduced design space that
included optimal or near-optimal intentional mistuning patterns. Also, it is expected that
all three guidelines will work for a system with direct coupling between blades, such as
bladed disks with shrouds.

The effectiveness of the approach was also evaluated for lumped parameter models
with three or more blade types, as well for a finite-element-based reduced-order model of
an industrial rotor. For the reduced-order model, simulations were run for ten intentional
mistuning configurations satisfying the three guidelines. All of the tested intentional mis-
tuning configurations resulted in significantly reduced stress levels compared to the origi-
nal design. Overall, it was found that this approach provides a simple way to find effective

designs without requiring a costly optimization process.
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5.6 Figures

(b) 2-DOF-per-sector model

Figure 5.1: Lumped parameter models
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CHAPTER VI

Vibration Modeling of Bladed Disks Subject to Geometric
Mistuning and Design Changes

A new reduced-order modeling technique is presented for bladed disks that feature
large, geometric deviations from a nominal design. Various finite-element-based reduced-
order models (ROMs) have been proposed in the literature for bladed disks with small
blade-to-blade differences, called mistuning. Many of these techniques rely on the fact that
mistuned-system normal modes can be effectively represented using a linear combination
of the normal modes of the nominal cyclic (tuned) system. However, when the mistun-
ing or geometric deviation is large, the number of tuned-system normal modes required
to describe the mistuned-system normal modes increases dramatically. In this work, a
method for large mistuning is formulated by employing a mode-acceleration method with
static mode compensation. By accounting for the effects of mistuning as though they were
produced by external forces, a set of basis vectors is established using a combination of
tuned-system normal modes compensated by static modes. The obtained basis vectors
approximately span the space of the mistuned-system modes without requiring a much
more expensive modal analysis of the mistuned system, and they provide much better con-
vergence than tuned-system normal modes. Furthermore, in order to extend the method

to higher frequency ranges, quasi-static modes, in which inertia effects are included, are

160
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employed in place of static modes in the mode-acceleration formulation. Validations are
performed for an industrial compressor stage, and it is found that ROMs based on the new
technique are extremely compact, yet they accurately capture the vibration response of

bladed disks subject to geometric mistuning or design changes.

6.1 Introduction

For many years, researchers have investigated the vibration behavior of bladed disks,
and most studies have been focused on the effect of small, random blade-to-blade discrep-
ancies (mistuning). Not only is mistuning unavoidable, but the vibration response of a
mistuned bladed disk can be considerably different from that of a tuned bladed disk. Al-
though it originates from various sources, mistuning has generally been treated as a small
deviation of blade mass, stiffness, or natural frequency from the nominal value in a sim-
plified bladed disk model (a lumped parameter model or a reduced-order model) [2—4, 7—
10,12,15,18,19, 21, 23, 44, 74]. However, in reality mistuning is not necessarily small.
Large, geometric variations (e.g., cracking or fracture of a blade due to fatigue or foreign
object damage) can also change dramatically the dynamic behavior of a bladed disk, but
these large-mistuning cases have rarely been studied.

When a lumped parameter model is employed, the system response can be easily ob-
tained, even for large mistuning. However, the number of degrees of freedom (DOF) is so
small that the characteristics of an actual bladed disk may not be captured properly, espe-
cially when geometric mistuning is large. A finite element model (FEM) can predict the
response of actual bladed disks realistically, regardless of the amount of mistuning [13].
However, an FEM is usually computationally expensive, especially when Monte Carlo
simulations are required for statistical analysis of the mistuned response. Therefore, de-

veloping a reduced-order model (ROM) of a small size is of great importance to bladed
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disk research.

Several FEM-based ROMs have been reported in recent years [15, 18, 19, 21, 23, 44].
However, most of these models are based on the assumption that mistuning is small. Two
recently developed methods [23, 44] are notable for generating highly compact ROMs that
feature excellent accuracy relative to the parent FEM. These models use a basis of tuned-
system normal modes to capture mistuned-system normal modes. However, as mistuning
becomes large, the required number of tuned-system normal modes increases dramatically,
and in some cases a model gives poor results regardless of the number of retained modes.

In 1987, Gu and Tongue [75] showed that modal convergence can be accelerated by
using forced modes in addition to free vibration modes. A forced mode (or static mode) is a
shape that is induced in the structure by a given external force vector. In the work of Gu and
Tongue, external forces were applied to a beam by springs that were included as additional
stiffness elements. The concept of a forced mode can be extended to a mistuned system
in an analogous manner, for instance by considering mistuning as additional stiffnesses.
In 1995, Caiet al. [76] considered the effect of mistuning as that of external forces in a
lumped-parameter model, obtained a frequency equation in closed form, and solved it. In
a recent study by the authors [44], a reduced-order model based on a component mode
synthesis (CMS) technique was proposed for large mistuning. In this modeling method,
tuned-system normal modes (free vibration modes) and tuned-system attachment modes
(forced modes) are employed, and the ROMs show good accuracy and fast convergence
with increasing number of tuned-system normal modes. However, the model size is still
greater than that generated by a small-mistuning method, because one attachment-mode
DOF is retained for each physical DOF in the FEM where geometric mistuning is present.

In this work, a non-CMS method for large mistuning is formulated by employing

a mode-acceleration method with static mode compensation. The tuned-system normal
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modes are compensated by static modes that account for the effects of mistuning as though
they were produced by external forces. Thus, a new set of basis vectors is established
for the mistuned system. The obtained basis vectors approximately span the space of
the mistuned-system modes without requiring a much more expensive modal analysis of

the mistuned system, and they provide much faster convergence than the original tuned-
system normal modes. Furthermore, in order to extend the method to higher frequency

ranges, quasi-static modes [77, 78], in which inertia effects are included, are employed in

place of static modes in the mode-acceleration formulation.

In addition to modeling systems with large mistuning, the presented method can also
be used in the design process. Usually, when a change is made to a geometric design
parameter, the new FEM must be analyzed in order to determine the effects of the design
change on the system vibration response. However, if the changes to the mass and stiffness
matrices due to the design change are known, then the new modeling technique can be
used to construct an updated ROM for the revised design without requiring an additional
finite element analysis of the vibration response. In this manner, the process of evaluating
geometric design changes can be expedited.

This paper is organized as follows. The authors’ previous approach for large mistuning
is briefly reviewed in section 6.2. In section 6.3, the new modeling technique is formulated
starting from the original mode-acceleration formulation, and it is refined using the mod-
ified mode-acceleration formulation with quasi-static modes. Then, an industrial bladed
disk with a rogue blade whose geometry deviates severely from the nominal blade design
is examined as a case study in section 6.4. The newly developed method is validated using
the parent FEM, and its performance is compared with previous methods for large and
small mistuning. Two additional cases are examined in sections 6.5 and 6.6, as further

applications of the new modeling technique: a bladed disk with a fractured blade, and
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a bladed disk subject to geometric design changes in the disk. Finally, conclusions are

summarized in section 6.7.

6.2 Background: Reduced-Order Modeling by CMS

In this section, a general reduced-order model for large mistuning, which was devel-
oped previously by the authors [44], is briefly reviewed. A mistuned bladed disk is divided
into a tuned bladed disk (F1K®) and mistuning components (VK?°) that represent the
difference between the mistuned and tuned mass and stiffness matrices. The mistuned
system model is constructed using a hybrid-interface CMS technique: the tuned system is
treated as a free-interface component, and the mistuning components are treated as fixed-
interface components. Because the mistuning components are not physically separate from
the tuned system, all DOF in the mistuning components are interface DOF. Thus, both
tuned-system attachment modes’j®nd a truncated set of normal modes’j@re used
to describe the displacements of the tuned system, but only constraint motles [
are used for the mistuning components. The synthesized mass and stiffness matrices
(p®v", k™) of a mistuned system are assembled by enforcing displacement compatibility

at the interface DOF;

T T T
I+ &7 M°®7 &5 MSWS + @9 MO

TSITMS®S + ST MBS WS MSWS + U MO
- (6.1a)
1+ &5 Mi®S AT ST 4 BT MO
I I I I I

-1 T T T
BFAST 4+ WETMIB] WS MSES 4 B MO
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T T T
A5+ 7 K ®F @S KUY + @7 KUY
T T T
TS KPS 4+ v K @7 U7+ O KOUY
- (6.1b)
T T T
A + BT KO®Y ®Y + Y KOWT

Y

&7+ USTKDY Wi+ UHTKODY
where/" denotes the interface DOF where mistuning exists.

Eg. (6.1) shows that a mistuned system can be described with the normal modes and
attachment modes of the tuned system. Since a tuned bladed disk features cyclic symme-
try, normal modes and attachment modes can be obtained using only the FEM of a single
sector. However, when attachment modes are involved in the CMS formulation, matrix
ill-conditioning and numerical instability may occur. This is due to the fact that the dis-
placement values of attachment modes are much smaller than those of normal modes, and
also because attachment modes and normal modes may not be clearly independent. The
former problem can be overcome by performing a secondary modal analysis on the attach-
ment mode partition of the synthesized mass and stiffness matrices. In order to reduce
the effect of the latter problem, the number of retained normal modes must be decreased.
However, in this case, the accuracy of the ROM also decreases. To compensate for this
loss of accuracy, more attachment modes can be included in the ROM. Of course, includ-
ing more attachment modes leads a larger model size. In fact, in the authors’ previous
work [44], the size of the ROM for large mistuning using this approach was much larger
than the typical size of a small-mistuning ROM. Therefore, a new, more efficient method

is introduced in the next section.

6.3 New Modeling Technique Using Static Mode Compensation

In this section, a new modeling technique for a mistuned system is formulated using

the mode-acceleration method. In the derivation, the effect of large mistuning is converted
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to that of equivalent external forces.

6.3.1 Static Mode Compensation

The mode-acceleration method is usually used to improve the accuracy of forced re-
sponse predictions by including a static mode (K [41]. The formulation for an un-

damped system is as follows:

2
—K 't Y ) b, 6.2
X + Z (wiz) b1, (6.2)
or

i

wherex is the displacement vectdt,is the external force vectoy is the excitation fre-
quency,w; is the natural frequency of th#gh mode, ¢, is the :th normal mode, and;
is theith modal amplitude that is used in the mode-displacement method. In Eq. (6.3),
x — K~!f is expressed as a linear combination of normal modes. Note that, in this com-
bination, lower normal modes will dominate due to the coefficientg.?, if the external
forces excite every mode evenly. Thatis;- K—!f can be described with a small set of
normal modes. Now, suppose that the normal modes are unknown, but a set of vectors of
the formx — K~!f are known in a lower frequency range. Then, reversely, lower normal
modes can be obtained accurately by employing the set-ofkK ~!f vectors as a basis,
unlessf excites higher modes much more than lower modes.

This concept can be applied to a mistuned system when the tuned-system normal
modes are known. Consider a forced response case in which a mistuned system is vi-
brating at the natural frequency of a tuned-system mode and the motion of the mistuned

system is exactly the same as that of the tuned-system mode. Then, Eq. (6.3) can be
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rewritten as:

S2
¢S — K" =3 (ﬁ) A, (6.4)
where the external forces required to enforce this motion are
52 s 0
f; = |-wi"M™ + K" ¢ = , (6.5)

M K 6

M™ andK™ are the mass and stiffness matrices of a mistuned syagélamdqbf are the
jth natural frequency and mode shape of the tuned sysignand¢;” are theith natural
frequency and mode shape of the mistuned system,ngnid the modal participation
factor of theith mistuned-system normal mode for tl#h tuned-system normal mode.
The advantage of using tuned-system modes is that they are readily available, because an
analysis of a bladed disk usually starts with computing tuned modes that can be obtained
from the cyclic symmetry analysis of the FEM of a single sector. Another advantage is
that non-zero forcing terms appear only at the DOF where mistuning exists, as indicated
by the partitioning of the right-hand side of Eq. (6.5).

K™ 'f; is the static mode of the mistuned system. However, it is also possible to

obtain the static mode from the FEM of the tuned system by using the following relation:
K" 'f, =K '(I+K°KS ) 'f; = K5 'g, (6.6)

where
0

gi=I+KKS)f; = : (6.7)
I+ K %) " £,
K* denotes the stiffness matrix of the tuned syst@f,denotes a matrix of the same
size as that oK®, which consists 0K’ and zero terms, an®® is a set of tuned-system

attachment modes. That is, the static deflection of the mistuned system induced by the

forcesf; is the static deflection of the tuned system induced by the fgggeldere, since
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f; has non-zero terms for only the DOF where mistuning exists, so gloeSomputing
static modes of a mistuned system by using a tuned system is especially useful for bladed
disks, because any static deflection of a tuned bladed disk can be calculated using only the
FEM of a single sector.

Static modes can be obtained by directly applying the fortes; g;, or they can be
computed as a linear combination of tuned-system attachment modes with the coefficients

being the corresponding forces. That is,
— -1
K" 'f; =K 'g; = Ugp ;. (6.8)

If many mistuned systems need to be analyzed, the latter method is more efficient, be-
cause the obtained attachment modes can be used fa& anyiowever, if the number of
mistuning DOF is so large that the computationlof andg ; is costly, then one should
consider computind<™ ~'f; or Ks_lgj directly.

Now, a truncated set of tuned-system normal modes compensated by static modes,
¢f — W1 ;, may be used as an alternative basis that approximately spans the space of
the lower mistuned-system normal modes. The reduced mass and stiffness matrices are:

pn = (85 — wSG,)" (MS + M?) (85 — G ))

— 1+ &5 MBS (As‘lqﬁf + @?TM“\I:;%) Gr
- GE(@fA T+ wi MIef) + GF (S MO + wi MO ) G
(6.9a)
k= (85 - ¥5G,)" (KS + K%) (@5 — ¥5G )
— A5+ 3TK®S (@?T + cI:?TK‘S\Ir}‘i) Gr (6.9b)
el («1»;? + @?TKééi) +G7 (\11;1 + \II?TK‘S\I!}?> Gr,
where the matrixG is a set of the vectorg, ;. The size of these reduced matrices

is N x N, whereN is the number of tuned-system normal modes in a truncated set.
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As mentioned above, the accuracy will be determinec(cbjif/w?)mj. If the value of
(wfz/wf)mj for theith mode is relatively small compared to those for other modes, then
the ith mode obtained by this method will be less accurate. That is, mistuned-system
normal modes in a high frequency range may be inaccurate because the \Aaﬁfgmzﬁ

is smaller for a high mode than for a low mode.

6.3.2 Quasi-Static Mode Compensation

In order to obtain an improved representation in a higher frequency range, the formu-
lation of the mode-acceleration method in Eq. (6.2) is modified. First, the equations of

motion of an undamped system are written as follows:
M+ K]x=[— (v’ —w)) M+ (K-wM)|x=f, (6.10)

wherew, is a pre-determined frequency, which is the centering frequency used in the
quasi-static mode compensation method introduced by &hwl. [77, 78] to improve
CMS models in higher frequency ranges. As can be seen in Eq. (6.10), inertial effects
corresponding to a centering frequency are transfered to the stiffness term. Thereby, the
motion of the original system\ and K, at a frequency ol becomes the same as the
motion of an equivalent systerdd andK — w?M, at a frequency of /w? — w?. The
equivalent system has the same mode shapes as those of the original system. However, its
eigenvalues are shifted byw? from the original values. Note that the original system can
be considered as a special case in which the centering frequency is zero.

Applying the mode-acceleration method to this equivalent systdmecomes

x= (K- wfl\/[)flf—i— (K- ng)’l (w?* — w?) Mx
22
- (K —ng)’lf+Z (ZQ —Z?) b1

where(K — wfl\/l)_1 f are quasi-static modes [77, 78]. Now, as can be seenin Eq. (6.11),

(6.11)

the coefficient ofg, is [(w? — w?)/(w? — w?)]n;. Therefore, ifw; is close tow,, the
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coefficient of theith mode can have a larger value than the other modes. Therefore,
x — (K —w?M) ' f can be described by a small number of mistuned modes around the
centering frequency.

Following the same procedure as that for static mode compensation using the origi-
nal mode-acceleration formulation, the quasi-static modes of a mistuned system can be

computed from the tuned system as follows:
(K™ —w?M™) ' f; = 959%% | (6.12)

wheregg ; contains the forces that need to be applied to the equivalent tuned system, and
is written as

g?d = [T+ (K° — w?M°) ¥5€] £,

and P is a set of quasi-static attachment modes computed from the stiffness matrix of
the equivalent tuned systeil,* — w?M?*. Now, the reduced mass and stiffness matrices

are
T
p = (25 - w59GE) (M5 + M) (@F - wHeGE)

— T+ @ MR - (A% w4 af MR 6

(6.13a)
- GP" [ @F (AT — i)+ e MR
+GE (eSS 1 w3 M) G
r r r r
T
KU — <@S o \IJS,QG?> (KS + Ké) (‘I’S . \I,S,QG?)
= A5+ @ KIS — [AS(AS - Dol 4 @ KO0 GF 6130

- GE [@f(A - o) A% + K]
+ G (w79 4 eSO MRS 4 Wi KT G,
whereG? is the set of thes?,.

The accuracy of this approach depends primarily on the vaIL(e;JB% —w?)/(w? — w?)]ni;
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If w§ = w,, thene? — \IIS»Qg?J. is a null vector, and the reduced mass and stiffness matri-
ces have a null column and a null row.uf = w,, then the inverse dK™ — w?M™ does

not exist. Thusu. should be chosen so that it is not too close to a natural frequency of the
tuned or mistuned system.

Note that it is possible to enhance the method presented in this section by introducing
an iteration scheme, or to improve the accuracy of the mode-acceleration method by using
a higher-order expression. However, in these cases, the external force vector&(Cx
used for the computation of static modes would be fully populated; thus the entire set of
attachment modes would be needed, and the inversion of a matrix of the size of the full

system would be required. Thus, the cost of such a scheme would probably be prohibitive.
6.4 Comparison of Methods

In this section, the newly developed static mode compensation (SMC) technique is
validated by examining the vibration response of a turbine engine compressor stage with a
rogue blade that has a significant geometric distortion relative to the nominal blade design.

Also, the performance of the SMC method is compared with three other methods:
1. The CMS method for large mistuning [44], which was reviewed in section 6.2.

2. Classical modal analysis (CMA) for small mistuning. In this model, a subset of
tuned-system normal modes are employed [23], and blade mistuning is projected

directly onto the system modes.

3. Component mode mistuning (CMM) technique [44] for small mistuning. As in the
above model, tuned-system normal modes are used for building a ROM. However,
mistuning is projected to tuned-system normal modes by relating the blade motion

in the system modes to the tuned cantilevered-blade normal modes. Thereby, the
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eigenvalue mistuning of a cantilevered blade is projected onto the system modes.

The second and third techniques listed above are extremely accurate and efficient, relative
to finite element analysis, for small-mistuning cases [23, 44].

For the SMC technique and the two small-mistuning methods, the model size is deter-
mined by the number of tuned-system normal modes selected. However, the model size for
the CMS-based large-mistuning method is much larger, because the number of DOF is the
number of tuned-system normal modes plus the number of attachment modes employed.
For this study, the tuned-system normal modes and attachment modes were obtained from
the single-sector FEM. Also, the static deflections of a tuned system due to external forces
were obtained from this FEM. For the test-case rotor, the number of DOF where mistuning

is present due to the geometry deviation is 594, and thus 594 attachment modes are used.

6.4.1 Description of the Test-Case Model

The rotor considered in this study is a 29-blade compressor stage of a gas turbine
engine that was used in a previous study by the authors [44]. Figure 6.1 shows the fi-
nite element mesh, which is constructed with standard linear brick elements (eight-noded
solids) and has 126,846 DOF. This figure also shows a tuned blade for the nominal design.
For this test case, the effect of having one damaged blade with significant geometric mis-
tuning, or a rogue blade, is investigated. The rogue blade geometry used in this study is
shown in Fig. 6.2. The geometry corresponding to the worst-case blade damage is referred
to as 100% distortion. By scaling the difference between the nominal and the 100% dis-
tortion models, intermediate cases were generated, such as the 10% distortion case shown
in Fig. 6.2. The Young’s modulus and mass density values used for the rogue blade were
the same as those for the nominal blade. Nevertheless, due to the geometry change, the

mass and stiffness matrices were significantly changed around the distorted area, even for
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the case of 10% distortion.

First, the natural frequencies and mode shapes of the rogue blade were investigated as
distortion increases. Figure 6.3(a) shows eigenvalue mistuning versus geometry distortion
for the 1st (first flexural mode, FEM natural frequency 2.22 kHz), 5th (second torsion,
20.95 kHz), 8th (third torsion, 33.68 kHz), and 9th (second stripe, 35.11 kHz) modes of a
cantilevered blade that is fixed at its root. The eigenvalue mistuning value is defined as the
ratio of the eigenvalue deviation to the nominal eigenvalue. The modal assurance criterion
(MAC) values between the modes of a nominal blade and a rogue blade are shown in
Fig. 6.3(b). Although all the eigenvalue mistuning values are smaller than 0.07, it is seen
that the mode shapes are significantly different. The mode shapes of cantilevered tuned
and rogue (100% distortion) blades are depicted in Fig. 6.4. As can be seen, the 1st and
5th modes of a tuned and a rogue blades are similar, while the 8th and 9th modes are quite
different.

The tuned test-case rotor has many mode groups that can be characterized in terms of
dominant blade motion (see Fig. 2 in the paper by keimal. [44]). Similarly, the modes
of the mistuned system can be characterized by blade motion, but not by the number of
nodal diameters. In Figs. 6.5 and 6.6, the natural frequencies for the tuned system and
for the mistuned system with a rogue blade (100% distortion) are shown for the 1st, 5th,
8th, and 9th blade-dominated mode groups. The blade motion for each system mode is
highly correlated with that of a tuned or rogue cantilevered blade. Note that each mode
group has one mistuned-system mode whose natural frequency is away from the others:
the mode at 2.1405 kHz in the 1st group, at 19.605 kHz in the 5th group, at 32.912 kHz
in the 8th group, and at 34.350 kHz in the 9th group. These modes are highly localized
about the rogue blade, as shown in Fig. 6.6, and thus it is expected that they will affect

the forced response for any engine order of excitation. Therefore, the ability to capture
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these rogue blade modes is an important consideration for assessing the performance of a

test-case ROM.

6.4.2 Free Response Results

Figures 6.7 and 6.8 present the convergence of the ROM natural frequencies to the
FEM results for the four different methods: CMS (Component Mode SynthgsiSMC
(Static Mode Compensation using the mode-acceleration formulatipiGMA (Classical
Modal Analysis with mistuning projectiony), and CMM (Component Mode Mistuning,
©). The rogue-blade-dominated modes mentioned in the previous section had much larger
error than the others. Therefore, the maximum frequency errors were used for the conver-
gence study.

Figure 6.7 shows the maximum natural frequency errors for the lowest blade-dominated
mode group as the number of tuned-system normal modes increases, for the cases of 10%
distortion and 100% distortion. There are 29 mistuned normal modes in the lowest mode
group. For the SMC method, static modes are used rather than quasi-static ones, because
the modes of interest are the lowest modes. For the 1st cantilevered blade mode, the mode
shapes of tuned and rogue blades were almost the same (the MAC value at 100% deviation
is 0.9982). However, as can be seenin Fig. 6.7, the results from the CMA method are poor,
even for the case of 10% geometry distortion.

Figure 6.8 shows natural frequency errors for the 5th and the 8th—9th blade-dominated
mode groups for the case of a rogue blade with 100% deviation. There are 32 normal
modes in the 5th mode group, and 66 normal modes in the 8th and 9th mode groups. The
8th and 9th mode groups are so close that they need to be included in a single ROM. The
results by the CMA method were omitted because the errors were too large. For the SMC

method, the models were obtained using quasi-static modes. The centering frequency was
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selected as 20 kHz for the 5th mode group, and 34 kHz for the 8th and 9th mode groups.
For fair comparison, for the CMS method the models were constructed using quasi-static
attachment modes, and the number of normal modes was increased by including both
higher and lower modes around the centering frequencies. As shown in Fig. 6.8, the SMC
method gives the best results. The CMS method also yields good results but only after
many more normal modes are retained. Note that the CMS results shown here are different
from those in the authors’ previous work [44], because only 594 attachment modes were
used in this study instead of 2496 attachment modes in the previous work. The maximum
errors for the 8th and 9th mode groups by the CMM method are around 0.4% and are thus
very small. However, the ratio of the standard deviation of the natural frequencies to the
average natural frequency is 2.3% for the 8th and 9th mode groups. Thus, an error of 0.4%
may still not be acceptable.

Figure 6.9 illustrates a tuned-system normal mode, a static mode, a quasi-static mode,
and the resulting basis shapes used in the SMC method, all of which are represented for
the geometry of the bladed disk with a rogue blade. It can be seen that the basis shapes
obtained using a static mode are very different from those using a quasi-static mode. In
addition, the motion of the rogue blade for the basis shape obtained by a quasi-static mode
is very similar to the 9th cantilevered-blade mode of the rogue blade shown in Fig. 6.4.
Therefore, it is clear that using quasi-static modes can significantly improve the conver-
gence of a model in a higher frequency region.

The rogue-blade dominated mode in each mode group was selected for testing the
accuracy of mode shape representation. Table 6.1 shows the convergence of the MAC
values between the mode shapes of the various ROMs and those of the FEM. For the mode
in the 1st mode group, all three methods show good results. For the 5th mode group, the

CMM results are worse than the others. For the 8th and 9th mode groups, the mode shapes
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obtained by the CMM method are completely different from the FEM ones, even though
the natural frequency errors seemed acceptable, as shown in Fig. 6.8. This is because the
mode shapes of a mistuned system with large mistuning cannot be captured properly using
a basis of tuned-system normal modes.

It should be noted that, although the CMS and SMC methods showed a similar degree
of accuracy for the free response results, the SMC method yields a much smaller ROM

than the CMS method.

6.4.3 Forced Response Results

In the forced response case, the SMC and CMM methods were considered in order
to compare the performance of a large-mistuning and a small-mistuning ROM. Due to
the distorted geometry of the rogue blade, the aerodynamic external forces may not be
the same as for a bladed disk with nominal geometry. However, for validation purposes,
pure engine order 2 and 5 excitations were considered, and two frequency regions cor-
responding to the 5th (19-22 kHz), and the 8th and 9th (32—-36 kHz) mode groups were
investigated. The applied forces were unit loads normal to the blade surface at the tip of
each blade. The degree of distortion for the rogue blade was 100%.

Figures 6.10 and 6.11 show the envelopes of the individual blades’ frequency responses
calculated from the ROMs and the FEM. Euclidean displacement norms were obtained for
every blade, and the largest responding blade was selected at every excitation frequency.
Figure 6.10 depicts results for the 5th mode group, for which 99 tuned-system normal
modes in the 14-26 kHz range were used. Figure 6.11 is for the 8th and 9th mode groups,
and 136 modes were used in the 26—43 kHz range. The results of the SMC method match
well those of the FEM, while the results of the CMM method feature large errors for both

the 5th and the 8th and 9th mode groups. Note that the biggest differences occur around
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the natural frequencies of the rogue-blade-dominated modes (19.6 kHz, 32.9 kHz, and
34.3 kHz). This is because the CMM models cannot capture the rogue-blade-dominated
modes. Also note that the CMM method yields poor results, even though the MAC value
between the 5th cantilevered-blade modes of a tuned and a rogue blade is around 0.9.
Another case was considered with higher MAC values for the tuned and rogue cantilevered
blade modes. The same model and external forcing were used, except that the geometric
deviation for the rogue blade was 10%. The excitation frequency range was 32—-36 kHz.
The MAC value was 0.9922 for the 8th cantilevered-blade mode and 0.9916 for the 9th
mode (see Fig 6.3(b)). The forced response results are shown in Fig. 6.12. Although the
mode shapes of the cantilevered rogue and tuned blades are much closer than in the case
of 100% geometric deviation, there are still significant differences between the FEM and
CMM forced response results. This indicates that the performance of the CMM method is

very sensitive to geometric mistuning.

6.5 Application to a System With a Fractured Blade

So far, the number of finite element DOF have been assumed to be the same for the
tuned and the mistuned systems. However, the SMC method can also handle cases in
which some DOF are removed in the mistuned system. As an example, a bladed disk with
a fractured blade, which is represented by removing some elements from the blade FEM,
is discussed in this section.

The same nominal rotor model as in section 6.4 is considered. The geometry and ex-
ample mode shapes of the fractured blade cantilevered at its root are depicted in Fig. 6.13.
Note that the natural frequency of the 9th mode for the fractured blade is 4.9 kHz higher
than its nominal frequency, while others are close to the nominal values (see Fig. 6.4).

Although a finer mesh may be required near the fractured area in order to obtain more
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accurate results, for the purpose of easy comparison the original mesh was maintained
(stress concentration is not considered in this study).

Figure 6.14(a) shows the natural frequencies of a bladed disk with the fractured blade
in the frequency range 32—-36 kHz, where the line at 33.929 kHz represents the natural
frequency of a system mode dominated by the 8th fractured-blade mode. Note that there
are 65 mistuned-system normal modes in this frequency range, but there are 66 tuned-
system normal modes. This is because a system mode dominated by the 9th fractured-
blade mode is outside the range.

In order to derive the reduced matrices for the ROM, first the DOF in the bladed disk
model are sorted into three groups: the removed DOF due to fracture (denotéd by
the DOF at the boundary between the removed part and the remaining part (denoted by
I'), and the interior DOF of the remaining part (denotedoly Note that the mass and
stiffness terms corresponding doremain unchanged, but the terms corresponding to
change when thg part is removed. Also note that there is no mass or stiffness coupling
terms between the part and thej part. Therefore, the mass and stiffness matrices of the

tuned system and the fractured-blade system can be written as follows:

Maa MaF 0 Kaa Kaf 0
MS = |Mp, Mpr Mpﬂ ’ Ks = |Kro. Kprr Kp/g ) (614)
0 Mgp Mg@ 0 KﬁF Kﬁﬁ
Maa M@F Kaa KaF
Mro, My +M° Kro Krp+K°

Then, the external forces required to produce motions of the fractured bladed disk that are
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the same as those in the tuned-system modes can be computed as follows:

F, P ®5

= K™ —M™ A?
Fr g o5
(6.16)
0
(K°®? — Kmtﬁg) — (M2®7 — Mm@g)AS

Note thatM™ andK™ are multiplied only by ther and/” components of the tuned-system
modes, but that thg part appears in the resulting expression.

Now, as mentioned in section 6.3, static (or quasi-static) modes can be computed in
two ways: directly applyindg" to a mistuned system, or applying equivalent forces (G
or G?) to a tuned system. It should be noted that, since a fractured-blade system does not
have DOF corresponding to thepart, thes portion of the static modes obtained from
a tuned system is not used in calculating the equivalent forces, and that the static modes
of a fractured-blade system can be obtained from an original tuned system by applying

forces only to the™ part. Thus, using quasi-static modé}sf;2 can be computed from the

following equation.

-1

K., K, M, M, 0| |T59G, TSRGY

2 —
_wc - 9

Kfa KI‘F + :[<(S Mpa MF]" + M5 FF \II‘IS:’QGF @?’QG?
where®*¢ is a set of quasi-static attachment modes corresponding to the DOF ih the

part. Since

(Koo — 0’ Mao) 59 + (Kop — w?My ) ®59 = 0

(Kra — w,Mpa) W59 + (Krp — wiMpp) W39 + (K — wiMpg) W59 =1,
the equivalent forcé}f:) becomes

GY = (I+ (K° — *M*)®3% — (K5 — wzmm)xpg@)-lpp. (6.18)
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Using this derivation for the quasi-static modes, the reduced mass and stiffness matrices
can be obtained in the same way as in section 6.3, except that only the mode shape DOF
inthea and[” parts are used.

Since the number of DOF in the part of the fractured blade is 72, the 72 attachment
modes were used to compute the necessary static modes. The centering frequency was
chosen as 34 kHz, and 136 tuned-system normal modes were selected in 26—-43 kHz.
Figure 6.14(b) shows the forced response results obtained by the fractured-blade system
ROM and by the FEM. The same unit forces were applied as in section 6.4 and engine
order 5 excitation was considered. Since the number of DOF in the fractured blade is
smaller than that in the nominal blade, the Euclidean displacement norm for a single node
located at each blade tip end was used as the blade response amplitude, and the largest
amplitude of any blade was taken at every frequency to provide an envelope. As can be
seen, the results of the ROM and the FEM match very well. Note that the peak around 34

kHz is due to the fractured-blade-dominated mode at 33.929 kHz.

6.6 Application to a System Subject to Design Changes

When the design of a bladed disk is modified for a certain purpose, the updated fi-
nite element models of the bladed disk (full or single-sector) need to be re-analyzed to
determine the effect of the modification. However, by considering the mass and stiffness
variations due to the design change as "cyclic mistuning” terms in the SMC method, the
dynamic response of the modified system can be readily obtained without additional finite
element analyses. This approach is described below.

The mass and stiffness matrix modifications resulting from the design change in the
disk and/or the blades are treated as a "cyclic mistuning” that is present and identical in all

sectors. Note that since the modified bladed disk still features cyclic symmetry, a modified-
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system mode of harmonik can be expressed solely by the original-system modes of
harmonich. Therefore, the SMC method can be formulated for a certain harmgnic
thus further reducing the size of the resulting problem. For exampiehléide-dominated
mode groups of the original system are selected to construct the SMC model, then the size
of the reduced mass and stiffness matrices will be ahoutn for a single harmonic, or
2n x 2n for a double harmonic, instead @f x N,) x (n x Ny), whereN, is the number
of blades. Of course, in order to obtain the modes for all the harmonics, one should solve
aboutN, /2 problems.

Cyclic symmetry has been used extensively to analyze bladed disks based on single-
sector FEM [15, 18, 79-81]. Here the approach of Blatlal. [18], which is based on
the real Fourier matrix and a pseudo-block-diagonal matrix, is selected to construct the
reduced matrices for the SMC model. These matrices are obtained by projecting the mass
and stiffness matrices in physical coordinates onto a basis (here, a selected set of system
normal modes compensated by static modes). This projection can be performed for each
sector separately using the cyclic symmetry feature. To do this, all the DOF in the FEM
need to be arranged sector by sector, and the boundary DOF between two adjacent sectors
need to appear redundantly in both sectors. The mass and stiffness matrices can thus be
represented in terms of the single-sector matrices, and the modes in physical (cylindrical)
coordinates can be represented in terms of the modes in cyclic coordinates and the real

Fourier matrix F, as follows:

M® =1®m® (6.19a)
K°=I®k" (6.19b)
®° = (Fo1)d° (6.19c)

U599 = (Fo D)WSC(FT @ 1), (6.19d)
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where® denotes the Kronecker product. Hera® andk® are the mass and stiffness
matrices of the single-sector model, abd andT5? are pseudo-block-diagonal matrices
containing the modes in cyclic coordinates. A pseudo-block-diagonal matrikMas
1)/2 diagonal blocks forV odd, andV, /2 blocks for N even. The column size of a block
corresponding to harmonic depends on the number of selected modes corresponding to
that harmonic, and thus the blocks can have different dimension. Also, the row size of a
block corresponding to a double harmonic is twice that of a single-harmonic block. Note
thatI ® m® andI ® k° are block-diagonal matrices in which each block has the same
number of rows and columns.

From Egs. (6.5) and (6.12), the external forces corresponding to the variation of mass

and stiffness matrices @ m° andI ® k°) are represented in cyclic coordinates as:
~ -1
GP = [T+ (19 (€ - wPm’)) (F & DFSU(F! 0 1)]
X [(1 DK F DS — (Iom)(Fe I)&)ﬁAS}
~ -1 ~ ~
—(FI) [I +(I® (K — wim?)) \IrSvQ} [(I 2 k)5 — (1@ m’)BIAS

= (FeI)Pr,
(6.20)

where
Pr=[I+ (e ) #99]  [1ek)8f - [om))BiA°].

Here,Pis a pseudo-block-diagonal matrix representing the external force matrix in cyclic
coordinates.

Now, replacing the matrices in Eq. (6.13) with the above matrices defined in cyclic
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coordinates, the following reduced matrices are obtained.
p =T+ &5 Lo m’)Bf - (A% W)@ + &f Tom?)Tie| Py
- PR [BH(A% — ) 4 B39 (T m?) &5
+PF (T59 (1o m®)#59 + $39 (1o m") F59) Br
(6.21a)
K= A5+ &5 (10 Kk)B% — [AS(AS —u21) 185" + 3% (1e ké)fI?f;Q] P
—PL[$F(A -2 AT+ 1Y (Lo k)&
+PF (T59 40285 (1o m®)T59 4+ 339 (10 k) F59) B
(6.21b)

Note thatu®¥™ andk*¥™ are square pseudo-block-diagonal matrices whose sizes are de-
termined by the number of original-system normal modes selected. Therefore, each block
in these matrices can be handled separately according to harmonic number, as follows:

T
(

" =1, + i’fﬂh I, ® m(s)i’?h

~[af e @, ¢ 85, 1 0 mhE5Y] B
(6.22a)
— PL [ @F4(AF — o)+ B3 (1 o m?) &5 |
+PL (59 (M e m®) 9 + B (1, @ m)F5) P,
K" = A} + &’?,hT(Ih ® ké)‘izg,h
— [ASA] - W) B, + B, (L e k)RR Py,
B @57 - W) A+ #5008, ]
+PL, (\irf:f,f + 2B (1, @ mS) B9 + \AI'I*?’%T(Ih ® k‘s)\i?ﬁf) Pry,
(6.22h)

where the subscrigt denotes a harmonic number, ahds an identity matrix. Note that

I,, p;”" andk;’" are square matrices whose size is determined by the number of selected
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normal modes corresponding to harmohicTherefore, the amount of computation for a
sector design change is smaller than for the case of a single mistuned blade.

As an application of this method, a case in which the thickness of the rim of the disk
is changed is discussed. The same nominal rotor model as in the previous sections was
used. As shown in Fig. 6.15, the thickness of the rim on one side of the rotor was varied
by stretching some elements in the radial direction. The stretching ratiefined as the
ratio of the radial coordinate of a modified node to that of an original node, ranged from
0.980 for a thick rim to 1.015 for a thin rim, by increments of 0.001. Therefore, 36 different
designs were obtained. Rim thickness change can be expected to affect the disk-dominated
modes, and therefore the characteristics of the attendant natural frequency veerings, thus
potentially causing significant changes in mistuned forced response levels [39, 82, 83].

The 34 modes in the range 26—30 kHz were examined as the thickness of the rim was
varied. In order to build a ROM, 34 normal modes of the original system are selected.
For quasi-static modes, 27 kHz was chosen as the centering frequency. Thus, two-DOF
models were obtained for harmonics 0, 1, and 4-14; and four-DOF models were obtained
for harmonics 2 and 3. The maximum error of the natural frequencies by the ROM relative
to the FEM ones was obtained for each stretching ratio, and plotted in Fig. 6.16. For
r = 1, the error is zero, because there is no design modification. As can be seen, the error
increases as the amount of stretch increases. However, the error level is so small that it can
be concluded that the SMC method produced an accurate ROM.

The rotor natural frequencies are depicted in Fig. 6.17 for the 36 possible rim thick-
nesses. As expected, the natural frequencies decrease with the rim thickness. The fre-
guencies of blade-dominated modes, which are located at harmonics 1 and 4-14, do not
change much, and the change in rim thickness affects mostly the disk-dominated modes.

Figure 6.17 also shows the variation of a harmonic-0 mode shape. As the rim becomes
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thinner, the mode shape features less blade motion and more disk motion.

This case study indicates that the SMC reduced-order modeling approach can be used
to evaluate the effects of geometric design changes. If a design is changed just once, then
a finite element re-analysis may be more efficient, as computing the normal modes may be
cheaper than computing static modes and building a ROM. However, if the modification
of a certain geometric region needs to be repeated for a design sensitivity analysis or
a design optimization procedure, then the SMC method will provide greatly improved

computational efficiency.

6.7 Conclusions

A new reduced-order modeling technique has been developed for bladed disks with
large, geometric mistuning by utilizing the mode-acceleration method. In this approach,
the static modes used in the mode-acceleration method are calculated by converting the ef-
fect of mistuning to that of equivalent external forces. In order to improve convergence and
accuracy in a higher frequency range, the original formulation has been extended through
the introduction of quasi-static modes. The new techniques allow for the generation of
large-mistuning reduced-order models whose size is comparable to those obtained with
previously-developed methods for small mistuning.

The new method was compared with three other reduced-order modeling techniques
for a test-case model that had a rogue blade whose geometry was severely distorted. The
reduced-order model obtained by a component mode synthesis technique reported earlier
by the authors [44] gave good accuracy. However, the model size was much larger than for
the other methods. The small-mistuning model based on classical modal analysis could
not capture mistuned-system normal modes, even when the geometry deviation was small.

Another small-mistuning model based on the component mode mistuning method could
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capture the response of the mistuned system, but only when the change in the mode shapes
of the cantilevered rogue blade was negligible. As the amount of mode-shape change
increased, the error of the CMM model increased, especially in the estimation of the rogue-
blade-dominated modes. This indicates that, even when the mode shape of a blade differs
only slightly from that of the nominal blade, a small-mistuning model is not able to predict
the behavior of the bladed disk. In contrast, the results obtained by the newly developed
technique showed excellent agreement with the FEM results, regardless of the amount of
mode-shape change due to mistuning.

To demonstrate the power of the new large-mistuning approach, two other applications
were examined, namely a bladed disk with a fractured blade and a bladed disk subject
to a geometric design change. The case of a fractured blade, which was represented by
removing some elements from the finite element model near the blade tip, showed that
the new technique can be used even in the extreme case of a blade with missing material.
Furthermore, it was demonstrated that the new method holds great promise for the efficient
evaluation of the effects of geometric design changes in the disk and blades on bladed disk
response. Although the case study was performed only on bladed disks, the new method

is applicable to any system subject to a large change in the mass and stiffness matrices.
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Figure 6.1: Finite element mesh of the test case rotor
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Figure 6.4: Mode shapes of a tuned blade and a rogue blade (100% distortion)
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Figure 6.6: Rogue-blade-dominated system modes for the case of 100% distortion



193

w

10
-~ CMS
-x SMC
2 A CMA
10° ¢ O CMM |]

=
o
N
T

A A A A A A A - A - A A A

o

Maximum Natural Frequency Error, %
H
o

10 ¢ E
10k :
10_3 I I I
0 100 200 300 400
Number of Normal Modes
(a) 10% distortion
10°
Al
TR N N Ny
102 b mA oA A A A
1 - CMS
10" ¢ —x SMC ]
~A- CMA
o O CMM

Maximum Natural Frequency Error, %
H
o

0 100 200 300 400
Number of Normal Modes

(b) 100% distortion

Figure 6.7: Convergence of natural frequency errors for the 1st blade-dominated mode
group



194

(=

10 :
-~ CMS
S -x SMC
- O CMM
o
wm
> ol & Qo Qi 0]
c10 ¢ 1
(O]
>
o
o
L
©
i
© _
Z10 't :
IS
=}
IS 7 ®
3
=
10_2 | | | | |
0 50 100 150 200 250 300
Number of Normal Modes
(&) 5th mode group
10" ‘
-~ CMS
-x SMC
O CMM

100

Maximum Natural Frequency Error, %

0 50 100 150 200 250 300
Number of Normal Modes

(b) 8th and 9th mode groups

Figure 6.8: Convergence of natural frequency errors for the case of 100% geometry dis-
tortion



195

apouw oneis-isenb e Aq pue apow dnels e Aq paurelqo sadeys sisegq:6'9 ainbi4

(zH 000¥¢€ :Aousnbauy BuisluSD) (zH g2°001€€)

d
odeys siseg apow J1els-Isend) dpow psaun]

e

wen=_ARNE|

NauwaRes R o R
NRRES

NSs=u==
e
ESSNTR




196

o
o

0" — SMC (99 DOF)
I -—-- CMM (99 DOF)

o
o

o
N

o
N

o
=

N
S

Euclidean Blade Displacement Norm, mm
o
w

0 Il Il Il
19 19.5 20 20.5 21 215 22
Excitation Frequency, kHz

(&) Engine order 2 excitation

0.6 T . : ; ;
— SMC (99 DOF)
-—.- CMM (99 DOF)

©
[N

Euclidean Blade Displacement Norm, mm
o o
= w

0 1 1 1
19 19.5 20 20.5 21 21.5 22
Excitation Frequency, kHz

(b) Engine order 5 excitation
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Figure 6.15: Stretch of rim in radial direction
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Table 6.1: Convergence of MAC values for the rogue-blade-dominated modes calculated
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with various ROMSs, using the FEM modes as reference.

No. of normal | MAC value | MAC value | MAC value

Mode group| modes selected (CMS) (SMC) (CMM)
29 0.996140 | 0.996114 | 0.998239
1st 59 0.996141 | 0.996131 | 0.998237
group 90 0.996141 | 0.996138 | 0.998237
123 0.996141 | 0.996138 | 0.998237
32 0.999975 | 0.999636 | 0.930084
5th 99 0.999992 | 0.999974 | 0.921637
group 164 0.999993 | 0.999987 | 0.921462
265 0.999994 | 0.999992 | 0.921296
66 0.974233 | 0.994455 | 0.000723
8th 136 0.993267 | 0.999569 | 0.000688
group 205 0.999217 | 0.999828 | 0.000685
268 0.999980 | 0.999889 | 0.000680
66 0.999893 | 0.999854 | 0.355521
9th 136 0.999946 | 0.999943 | 0.356131
group 205 0.999958 | 0.999945 | 0.356410
268 0.999957 | 0.999951 | 0.356573




CHAPTER VII

Conclusions

7.1 Dissertation Contributions

The main contributions of this dissertation are summarized as follows:

e In chapter Il, a general reduced-order vibration modeling framework for mistuned
bladed disks was developed. Also, from the general formulation, a compact reduced-
order model (ROM) for the case of small blade mistuning was derived, which is
called a component mode mistuning model. In the component mode mistuning
method, mistuning projection is performed using the modal participation factors of
cantilevered-blade component modes. Thereby, mistuning in physical coordinates is
efficiently and accurately implemented in a ROM, and the size of the model is only
on the order of the number of blades. The development of this small and accurate

ROM allows cheaper and faster statistical investigations of bladed disks.

e Based on the developed component mode mistuning modeling technique, a method
for the identification of blade mistuning was developed in chapter Ill. In order to
compensate for the difference between an actual bladed disk and its finite element
model, a “cyclic modeling error” term was introduced. By identifying both cyclic

modeling error and blade mistuning, the accuracy of the identification results is

204
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significantly improved. That is, by incorporating a model updating procedure, the
identification method becomes robust with respect to the errors in modeling param-

eters.

In chapter IV, the upper bound of blade forced response was investigated. A general-
ized expression was derived so that a specific upper bound can be calculated for any
bladed disk model, even for a finite element model. Also, indicators for estimating
the largest stress in a blade were proposed. Blade displacement is typically used as
a measure of blade response, but stress is more important in terms of design safety.
The proposed stress indicators can be used to approximate the level of blade stress
directly from ROM displacement results, even for cases in which the trend for the

stress level is different from that for blade displacement level.

In chapter V, the underlying physical mechanism by which intentional mistuning
leads to vibration reduction was investigated in terms of vibration energy flow in
bladed disks. Based on key observations from the energy flow analysis, three guide-
lines were proposed to significantly reduce the design space for intentional mistun-
ing patterns so that an optimal or near-optimal intentional mistuning pattern may be

found efficiently.

In chapter VI, a new reduced-order modeling technique was developed for a sys-
tem subject to large, geometric mistuning or design changes. When large deviations
are present, it is usually hard to capture the motion of a system using the modes
of the original system. That is, the convergence is very slow. The developed tech-
nique provides very fast convergence in capturing the motion of a system with large

deviations.
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7.2 Future Research

Based on the work reported in this dissertation, some ideas for future research are

proposed as follows:

¢ In chapter Ill, a mistuning identification method was presented, but it was validated
only for a single blade-dominated mode family. However, there exist cases in which
more than one mode family can interact due to mistuning. Further validation for

these cases will distinguish the method from other previous methods.

e Usually, engine order excitations or single-blade excitations are used in experiments
on bladed disks, and masses are added to the blades in order to implement mistun-
ing. However, if the phase and magnitude of the forcing applied to each blade can
be controlled independently, the response of the original system with any additional
mistuning can be experimentally simulated by applying non-engine-order excita-
tions. That is, without the cumbersome procedure of adding masses, the response
of many mistuned systems can be obtained using only one bladed disk. Using this
“virtual mistuning” approach, experimental Monte Carlo simulations may be per-

formed.

e The reduced-order modeling technique developed in chapter VI is not limited only
to the cases of bladed disks. It can be applied to general structural vibration prob-
lems. For example, the following three areas are worth exploring with the developed

technique:

1. Design optimization (or possibly topology optimization). The developed tech-
nigue can handle for the case of large structural property changes, even for the

case in which some finite elements are removed. Therefore, a design optimiza-
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tion process associated with improving vibration response can be expedited

with this technique.

2. Component mode synthesis. Some ROMs for large and complex structures can
be still large. When the structural properties of a component is significantly
changed for a certain reason, a small part of the reduced mass and stiffness
matrices may be also changed greatly. By applying the developed technique
for the modified reduced mass and stiffness matrices, more efficient vibration

analysis may be achieved.

3. Aerodynamic effects on structures. When aerodynamic forces are added, the
motion of a structure may be considerably different from the structure-alone
motion. Suppose a situation in which the motion of the structure subject to
aerodynamic forces is the same as that of a structure-alone mode at the corre-
sponding structure-alone natural frequency. Then, an analogy between a sys-
tem with large mistuning and a system subject to aerodynamic forces can be

found.

e Finally, the reduced-order modeling method for large mistuning developed in chap-
ter VI should be combined with a small-mistuning technique such as the component
mode mistuning method presented in chapter Il. Key applications of such a com-
bined technique include the assessment of vibration response for a system that suf-
fers blade damage, and the optimization of bladed disk designs for reduced stress
and increased safety. Thus, it would provide a comprehensive vibration analysis and
design tool for bladed disks that would help enable the development of more robust

and reliable turbine engines.
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APPENDIX A

Modal Participation Factors of Cantilevered-Blade
Normal Modes

Since a tuned bladed disk features cyclic symmetry, a system mode can be represented
by a mode of a single sector in cyclic coordinates and its harmonic number. Therefore,
once the modal participation factors for the blade portion of a cyclic single-sector mode
are obtained, all the factors for the corresponding full system mode in physical coordinates
can be easily computed.

Tuned-system normal modes can be obtained from a single-sector finite element model
as

S _ PN T3S
&S = (F o T) Bdiag [(I)h} , (A1)

,,,,,

Where]§diag [-] denotes a pseudo-block-diagonal matrix, in which block sizes can be
=0,...,H

different, and®; is a real cyclic normal mode set corresponding to harménid? is

(N —1)/2if N is odd, orN/2 if N is even. In this manner, the blade portion of the

tuned-system modes in physical coordinates is expressed as follows:

®; = (F o 1) Bdiag [é%h} (A.2)

.....
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Next, i)?h is described by cantilevered-blade component modes.

(

(I'OB ‘I’f o ﬁgfh

0 I S

®7 ), = = or (A:3)

B B,k ~k
¢0 ‘1’0 qqﬁ,h

\

whereqy,, 4, a5 ,, andgl, , are the participation factors of the cantilevered-blade and
boundary modes in the blade portion of the cyclic tuned-system modes of harmonic

From Eq. (A.3), it is obvious that

ay, =ab, = @y, (A.4)

Before calculating the modal participation factors of the cantilevered-blade modes, it
should be noted that the normal modes and the boundary modes of a cantilevered blade

are orthogonal with respect to nominal mass and stiffness matrices. This is proved using

Eqg. (2.8), )
®7| | M, Mf,| |®)"
T
0 MET ME || T
_ - T -~ -
®7 | ME, w0+ MG,

(A.5a)

ib,0
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Using these orthogonality conditiong;’, and q’;,h can be obtained from Eqg. (A.3) as

follows:
T - T
q)B (I)B (I)B \I,B,m Elm
o = o o o b,h
M @7, = M
0 0 o I ||am,
: v (A.6a)
[ dgn
L qﬁh
T - T
B @B CI)B \I’B’k qk
~ o o o b,h
K, @7, = K
0 0 o I ||&,
- v (A.6b)
- ~k
4,1 -
=|AZ 0 = AJag,
B fhkp,h

Onceqy, and q’;vh are obtainedgqy’, and q’;m are expressed using the real Fourier

matrix, F', and the Kronecker product in the same manner as in Eq. (A.1) and (A.2). That
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ABSTRACT

DYNAMIC ANALYSIS AND DESIGN STRATEGIES
FOR MISTUNED BLADED DISKS

by
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Bladed disks are used in many important engineering applications, including turbine
engine rotors. Typically, each disk-blade sector in a bladed disk is assumed to be identical,
and the bladed disk is analyzed based on a single sector model. However, due to manufac-
turing tolerances, operational wear, and other unavoidable factors, an actual bladed disk
always has discrepancies among individual sectors, called mistuning. Even small mistun-
ing can alter dramatically the vibration response of a bladed disk compared to the ideal,
tuned system. In particular, the vibration energy may be concentrated in a few blades, lead-
ing to increased stress levels and fatigue problems. Moreover, since mistuning destroys
cyclic symmetry, the whole assembly model must be analyzed, which is computationally
expensive.

In this work, a new reduced-order vibration modeling technique for mistuned bladed
disks is presented. This is called the component mode mistuning (CMM) method, and it al-
lows for easy implementation of mistuning and yields more efficient and accurate reduced-

order models (ROMs) compared to previous methods. Based on the CMM method, a mis-



tuning identification technique is also developed. In order to account for the difference
between an actual bladed disk and the finite element model, the concept of “cyclic mod-
eling error” is introduced in the CMM formulation, and a model updating procedure is
implemented to compensate for this error. As a result, the identification method becomes
more accurate and robust. In addition, because the increase in maximum blade response
due to mistuning is used for design safety evaluation, two methods for calculating the
upper bound of this response amplification are presented. Then, as a design strategy for
significantly reducing the worst-case amplification, the use of intentional mistuning in a
nominal design is investigated. Based on key observations from an analysis of vibration
energy flow in bladed disks, some guidelines are proposed for reducing the design space
for intentional mistuning patterns, so that an optimal or near-optimal pattern can be found
without requiring an expensive optimization process. Finally, a novel reduced-order mod-
eling technique is presented for a system subject to large, geometric mistuning or design
changes. A ROM constructed by this new technique shows fast convergence and excellent
accuracy in capturing the motion of a system featuring large deviations from the original

design, which cannot be handled with existing small-mistuning ROMs.



