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1 Introduction 
The cerebellum is traditionally regarded as a structure involved in motor control, but this view 

is now quite simplistic. Indeed, during the past decades, with the advent of functional 

neuroimaging methods, it has become increasingly clear that the cerebellum also plays an 

important role in higher level cognitive tasks. In the context of pathology, cerebellar 

dysfunctions are not only a cause of deficits in the coordinating motor activity or motor 

learning, but also induce various cognitive disorders. Thus, understanding how the cerebellum 

functions is a challenging question for biomedical research, in addition to any general 

principles applicable to the whole brain that we can gain from the study of this structure. 

 

The beautifully regular and simple cellular organization of the cerebellar cortex is repeated in 

a crystalline manner across the entire cerebellum. The core of each fundamental cerebellar 

microcircuit is the Purkinje cell, one of the largest and most complex neurons in the brain, the 

most fascinating also. Because of its huge size (with a cell body of ~20 µm in diameter in 

rat), this cell was the first neuron to be identified in 1837 (Figure  1.1), despite the low 

magnification and poor resolution of microscopes available at this time, by the famous Czech 

anatomist Johannes Evangelista Purkinje (1787-1869). 

 

On their highly developed dendritic tree, Purkinje cells receive a tremendous amount of 

excitation originating from the spinal cord, cortex and other brain areas. After integration of 

this information, relayed by its two main glutamatergic afferences, climbing and parallel 

fibers, the Purkinje cell provides the sole output of the cerebellar cortex, by projecting its 

axon on the cerebellar deep nuclei. Any information exiting the cerebellum to the rest of the 

brain must go out from Purkinje cells. Knowledge of the connections between Purkinje cell 

and its afferences is thus particularly important when considering the role of these cells in 

processing different forms of information to ensure the overall function of the cerebellum. 

 

During my thesis, I focused my attention on the way Purkinje cells receive and modulate their 

receptivity to excitatory inputs coming from glutamatergic afferences, throughout 

development and adulthood. Purkinje cells express a wide variety of glutamate receptors that 

mediate excitatory transmission. Among these diverse receptors, I was particularly interested 

by one type of ionotropic glutamate receptor, the N-methyl-D-aspartate receptor (NMDA-R). 
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Jan Evangelista Purkyně (1787-1869) 

Physiologist and anatomist born in Libochovice, Bohemia (Czech Republic). 
 

 
First description of the cerebellar Purkinje cell, drawn by J.E. Purkinje, and presented to the Congress of 

Physicians and Scientists in Prague, in 1837. 

Figure  1.1: J.E.Purkinje and the famous cerebellar cell which bears his name 

 

NMDA-Rs play a major role in many cerebral processes like development, neuroplasticity 

and neuronal death. They display unique features allowing them notably to act as “coincident 

detector”, of interest for instance in hebbian plasticity. They also mediate calcium signalling, 

which plays pivotal roles in many cellular processes. In Purkinje cells, a particular kind of 

NMDA-R is present during the first week of postnatal life in the mouse. However, their exact 

function in Purkinje cells is still a mystery. A study performed in collaboration during this 

thesis allowed us to propose their contribution in the neuroprotective depolarization that could 
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permit the survival of certain Purkinje cells during the time window of postnatal 

developmental cell death. Because no NMDA-Rs were detected after the first postnatal week, 

the Purkinje cells were widely considered as a rare example of an integrative neuron lacking 

NMDA-Rs. Actually, we demonstrated that, after a transient period of absence, between the 

second and the third postnatal week in mouse, a new type of NMDA-Rs appears at climbing 

fiber to Purkinje cell synapses, and is expressed throughout adulthood. We showed that these 

receptors take part in the climbing fiber excitatory transmission in a manner that suggests 

their role in many neuronal mechanisms, among them, synaptic plasticity. We also studied the 

possibility of a competition between this NMDA-R and another type of glutamate receptor 

that is specifically expressed in Purkinje cells, the delta2 glutamate receptor (GluRdelta2), 

which is essential for preventing extension and multiple innervation by climbing fibers. Our 

results do not support an interaction between these glutamate receptors. However, when 

innervation of Purkinje cell by multiple climbing fibers is maintained in adult mutant mouse 

lacking GluRdelta2, we observed that, NMDA-Rs participate only in the synaptic currents of 

the strongest climbing fiber. This suggests a role for NMDA-Rs in the choice and the 

stabilization of one climbing fiber, probably in a activity-dependent manner. 

 

Before detailing and discussing these results, I will first present the cerebellum and its main 

connections, its cellular organization and development, and some of the main cerebellar 

functions. Then, I will focus on the excitatory network of cerebellar microcircuit, to cover the 

actors of the glutamatergic transmission at Purkinje cell synapses. Finally, NMDA-Rs and 

their patterned expression in Purkinje cells will be covered in the last part of this introductory 

literature review. 
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1.1 Cerebellum 

1.1.1 Anatomical architecture and main connections 

Located at the bottom of the brain, constituting the posterior part of the hindbrain, the 

cerebellum is divided into two large hemispheres connected by an intermediate region, the 

vermis. First comparative anatomical observations of the Dutch anatomist Lodewijk Bolk 

(published by Glickstein and Voogd, 1995), relating structure and function, identified three 

main cerebellar lobes: the anterior; posterior, and the flocculonodular lobes (Figure  1.2) 

According to the more recent phylogenic Larsell’s subdivisions (Larsell, 1970), ten lobules 

can be distinguished in all mammalian species, and can be grouped in three main parts 

(overlapping partially the previous subdivisions): 

- archicerebellum (composed of the flocculonodular lobe), the phylogenetically oldest 

part of cerebellum, implicated notably in balance and eye movements. 

- paleocerebellum (comprising the anterior lobe, the vermis and its lateral borders, the 

paravermis), the first section of cerebellum to evolve, essentially concerned with 

regulating postural tone, and limb movements. 

- neocerebellum (formed by the lateral hemispheres), last part to evolve, involved in 

planning movement and influencing neocortical activities. 

 

 

Figure  1.2: The cerebellum and its major anatomical subdivisions 

Superior view of the unfolded cerebellum with schematic representation of its anatomical subdivisions. Colors 
represent Bolk’s subdivisions, letters refer to Larsell’s classification. 
(from Manni & Petrosini, Nature Reviews Neuroscience 5, 241-249, 2004 doi:10.1038/nrn1347) 
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The cerebellum is connected to the pons and medulla by three major paired peduncles, 

composed of both afferent and efferent fibers (Palay and Chan-Palay, 1974, Figure  1.3): 

- The superior peduncle mostly carries efferent fibers coming from deep cerebellar 

nuclei. It forms the major output pathway of the cerebellum projecting on various 

structures like the red nucleus, the thalamus (ventro-lateral and ventro-median), and 

the medulla.  

- The middle peduncle. This one is the largest of the three peduncles. Entirely composed 

of afferent fibers originating from the pontine nuclei, it constitutes the cortico-ponto-

cerebellar pathway, because fibers projecting on the pontine nuclei descend from the 

cerebral cortex. 

- The inferior peduncle contains various types of afferent and efferent fibers. The spino-

cerebellar tract comes from the medulla and conveys proprioceptive information to the 

archicerebellum. The inferior olive, that receives projections from the cerebral cortex 

as well as from the medulla, sends its own projections, the climbing fibers, through 

this peduncle on the whole cerebellum. It is also noteworthy that this peduncule 

carries to the vestibular nuclei the direct projections of Purkinje cells located in the 

flocculonodular lobe. 

 
 

 

Figure  1.3: Afferents and efferents pathways of the cerebellum  

The efferent pathways to the cerebellum and the distribution of these fibers in the cortex of the vermis are 
indicated by their respective colors. Afferents from the spinal cord (brown) reach the cortex mainly through the 
inferior cerebellar peduncle and distribute in the cerebellar anterior lobe and part of the posterior vermis 
(brown). Vestibular afferents (blue) distribute to the fastigial nucleus and the flocculonodular lobe (blue). 
Afferents from the reticular formation (RF) enter the cerebellum and distribute throughout the cortex (orange). 
The RF receives input from higher and lower centers (orange arrows). Fibers from the inferior olive (OL) 
(yellow) distribute to the entire cortex (yellow). Input to the OL comes from higher and lower brain centers 
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(yellow arrows). All of the above inputs enter through the inferior peduncle. Afferents from the pons (green) 
that receives inputs from the cerebral cortex (green tracts) enter through the middle peduncle to distribute to the 
entire cortex. The major efferents of the cerebellum (red) leave through the superior peduncle. The fibers from 
the dentate nucleus, interpositus nuclei, fastigial nuclei go to thalamus nuclei (ventrolateral and ventroanterior), 
red nucleus, RF and the vestibular nuclei. 
(from Palay & Chan-Palay, 1974) 

 

In the human brain, the cerebellum constitutes only 10% of the total brain volume but 

contains roughly half of the total number of brain neurons (Zagon et al., 1977). This 

impressive amount of neurons is extremely organized in this remarkable structure, described 

extensively since the first studies of Cajal (1911) and Eccles (1967) on the cerebellar 

anatomic and functional organisation. 

1.1.2 Cellular organization of the cerebellum 

The cerebellum has a relatively simple architecture: a three-layered cerebellar cortex 

(molecular, cellular and granular), a corpus medullare (white matter), where four deep nuclei 

are located (fastigial, interpositus [globase and emboliform], and dentate nuclei Figure  1.4a). 

Five major types of neurons have been identified in the cerebellar cortex, plus recently, 

Lugaro and unipolar brush cells. Five are inhibitory GABAergic neurons (Purkinje, Golgi, 

basket, stellate and Lugaro cells), and two are excitatory glutamatergic neurons (granule and 

unipolar brush cells). These different neurons take place in a highly uniform cytoarchitecture 

(Figure  1.4c and Figure  1.5). How are they interconnected? 

 

One of the two major inputs to the cerebellum is provided by the mossy fibers which come 

from the brain stem (in particular from the pontine nuclei) and spinal cord. These 

glutamatergic fibers, that send collaterals to the deep nuclei, ascend to the granular layer to 

synapse on granule cells in specialized domains named glomeruli. Granule cell axons extend 

into the uppermost layer of the cortex (the molecular layer) where they bifurcate in “T”. The 

parallel fibers (PF) arising as axons from a single granule cell typically distribute information 

to over 2,000 Purkinje cells, via excitatory glutamatergic neurotransmission. Each Purkinje 

cell can receive converging input from over 200,000 granule cells via these PFs in rat 

cerebellum (Napper and Harvey, 1988).  
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Figure  1.4: Organization of the cerebellar deep nuclei and cerebellar cortex. 
(a) Posterior view of the human cerebellum, showing the cerebellar nuclei embedded below the cerebellar 
cortex. (b) Drawing of midsagittal cross-section through the cerebellum (dotted line indicates the plane of 
section), showing lobular organization. Each of the ten lobules is demarcated by a Roman numeral (I–X). (c) 
Cut-away illustration of an individual cerebellar cortical lobule, indicating the presence of three layers. The 
figure shows the relative positions of Purkinje cells and their main inputs (parallel and climbing fibres).  
(from Ramnani Nature Reviews Neuroscience 7, 511–522 (July 2006), doi:10.1038/nrn1953) 
 
 
In addition, Purkinje cells receive glutamatergic input from climbing fibers (CF), which arise 

from the inferior olive. Unlike a PF, which makes a single synapse with Purkinje cells, CFs go 

one-on-one with Purkinje cells, wrap around the cell body and proximal dendrites, making 

around 1500 synaptic contacts. These CF terminals have high probability of glutamate 

release, which makes the CF-Purkinje cells connection remarkably strong (Dittman and 

Regehr, 1998; Foster et al., 2002). Purkinje cells perform a complex integration of the vast 

amount of excitatory inputs they receive from different regions of the brain, together with the 

control of the inhibitory network. From the integration of this vast amount of information, 

Purkinje cells generate an output (a “decision”) that inhibits neurons of the deep cerebellar 

nuclei. 
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Figure  1.5: Schematic cellular organization of the cerebellar microcircuit. 

Mossy fibers (mf) arising essentially from pontine nuclei send collaterals on neurons of the cerebellar nuclei 
(CN), deeply buried in the white matter (WM),  and terminates their course by contacting granule cells (GC) in 
the granular layer (GL ), in areas called glomeruli (gl). Each terminal of mossy fiber is contacted by dendrites 
from 50–60 distinct granule cells. In addition glomeruli contain the GABAergic synapses between Golgi cells 
and granule cells, and the glutamatergic contacts between mossy fibers and Golgi cells (unrepresented). Axons 
of granule cells bifurcate in the molecular layer (ML ) and contact Purkinje cell (PC) arborisation by “en 
passant” synapses. The climbing fiber (CF) arises from a neuron of the inferior olivary (IO ). It sends collaterals 
on neurons of the deep cerebellar nuclei and contacts intimately Purkinje cell proximal dendrites. After 
integration of its excitatory inputs, Purkinje cell can generate an inhibitory output on the cerebellar deep nuclei. 
PCL: Purkinje cell layer. 
(adapted from http://www.cdtdb.brain.riken.jp/CDT/About.jsp 
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1.1.3 Postnatal development of the cerebellar cortex 

In human, the cerebellum continues to develop through childhood and adolescence, reaching 

its full structural growth by the 15th to 20th years of life (Diamond, 2000). In rodents, the 

cerebellum is also remarkably immature at birth (Woodward et al., 1971), and undergoes an 

intense period of maturation that lasts for about 3 weeks (Figure  1.6), and that prolongs up to 

7-8 weeks (McKay and Turner, 2005). 

 

In early postnatal days, all Purkinje cells are innervated by multiple CFs (Crepel et al., 1976; 

Mariani and Changeux, 1981; Crepel, 1982). These multiple CFs initially form synapses on 

the perisomatic processes of Purkinje cell in newborn mice (Chedotal and Sotelo, 1993). 

Progressively, CFs forsake the soma to invade the Purkinje cell’s proximal dendrites where 

they make strong synaptic contacts (Palay and Chan-Palay, 1974). Supernumerary CFs are 

eliminated eventually with the progress of postnatal development, and mono-innervation is 

attained by the end of the third postnatal week in mice (Kano et al., 1995). There have been 

several decades of investigations to understand the mechanisms of this selective activity-

dependent regression. However, this question remains uncompletely resolved. The current 

view on the subject makes the developmental long term plasticities key players of these 

processes. 

 

In the mouse, morphological data demonstrated that the synapses between PFs and Purkinje 

cell are established at around P7 (Zhao et al., 1998). Granule cells are generated by the 

vigorous proliferation of their progenitors in the external germinal layer during the first two 

postnatal weeks. This leads to a huge number of cells. Post-mitotic granule cells then 

bilaterally extend their axons, the PFs, and their cell bodies migrate downward in the 

developing molecular layer. By the third postnatal week, they finally settle in the internal 

granular layer underneath the Purkinje cell layer. During these first three weeks, cells in the 

pia mater play a role in granule cell proliferation and migration, whereas Bergman glia 

extends their processes into the molecular layer, guiding migrating granule cells (Altman, 

1975). Internal granule cells further differentiate, forming synapse complexes in glomeruli 

that gather excitatory afferent mossy fibers and inhibitory Golgi cell axons. Some 

differentiating granule cells undergo an apoptotic cell death, which is thought to ensure the 

fine-tuning of the proper cell numbers and connectivity. 
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Simultaneously, Purkinje cells undergo a massive outgrowth of dendrites and form elaborate 

arborizations containing numerous synapses with extending PFs. Supernumerary CFs are 

pruned away by competing with PFs. In addition, the competition for Purkinje cell territories 

is mutually regulated between PFs and CFs by their respective activity. 

 

 

 

 

Figure  1.6: Postnatal development of the cerebellar cortex in mouse. 

Schematic representation of the mouse cerebellar cortex at its main developmental stages during the three first 
postnatal weeks (P: postnatal day). EGL: external granular layer, GCP: granule cell progenitors, GL: granular 
layer, IGL: internal granular layer, ML: molecular layer, PCL: Purkinje cell layer; BG: Bergmann glia. 

(adapted from http://www.cdtdb.brain.riken.jp/CDT/About.jsp) 
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1.2 Cerebellar functions 

1.2.1.1 Cerebellum and motor control 

How is information processed in the stereotyped cerebellar microcircuit? Independently of 

learning, the cerebellum plays a role in the adequate execution of movement. There are 

several trends of theories about cerebellar functions, sometimes controversial. Many of them 

are based on the notion that cerebellum contains “internal models” of the motor apparatus. 

These internal models encode the representation of dynamic properties of body part that 

enables the central nervous system to predict the consequences of motor commands and to 

determine those required to perform specific tasks. The internal model mimics the behaviour 

of the sensorimotor system in the external environment, and helps the brain, by prediction, to 

perform the movement precisely, without the need to refer to feedback from the moving body 

part. These internal models allow to predict the more adequate set of actions in a given 

context but the changes in the context, or the learning of new movements, requires them to be 

plastic. For this reason, in addition to this classical view of its acute correction of motor 

programs, the cerebellum has long been proposed to be the place of motor learning. 

1.2.1.2 Cerebellum and motor learning 

It is thought that the cerebellum might store motor memory in the form of internal models 

(Imamizu et al., 2000; Kawato et al., 2003).The unusual architecture of the cerebellar cortex 

first inspired theoretical models of its function, later confirmed by experimentation. Brindley 

(1969) proposed that we initially generate movements "consciously," under higher cerebral 

control. As the movement is practiced, the cerebellum learns to link this movement to the 

context in which it is executed. Marr and Albus (in 1969-1971), soon followed by Ito (1972), 

proposed that the linkage between the contextual input and the appropriate motor output is 

established and stored in the cerebellar neuronal microcircuit, through the PF-Purkinje cell 

synapses. This is the so called Marr-Albus-Ito model of learning in the cerebellum (Figure 

 1.7). The PF-Purkinje cell connection is modified during the period of learning by the activity 

of the CF which conveys error signals and induces a long term change in synaptic strength. 

This change is input specific and is named the long-term depression (LTD) of PF–Purkinje-

cell synapses (for reviews, see Ito, 2001, 2006). When the linkage is complete, the occurrence 

of the context (represented by a certain input to the cerebellum) will trigger through the 

cerebellar microcircuit the appropriate motor response (output). This explains how we 

become able to move skillfully after repeated practice. The "learned" movement is 
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distinguished from the "unlearned" conscious movement by being automatic, rapid, and 

stereotyped. It is worth mentioning here that the first experimental evidence of LTD in the 

early 1980s came from the observation of changes in the rate of discharge of rabbit Purkinje 

cells in vivo (Ito et al., 1982; Ekerot and Kano, 1985). These changes were attributed to 

synaptic plasticity. Even though this LTD was confirmed by the study of synaptic currents 

later on, one can not exclude that a part of this plasticity could rely on intrinsic plasticity. 

 

 

 

Figure  1.7: The Marr-Albus model of motor learning.  

In this model, sparse reencoding in the cerebellum enables learning to create very precise stimulus-response 
mappings. Granule cells (GC) spike only when sufficient mossy fiber (MF) input is present, causing overlapping 
mossy fiber input patterns to be reencoded in nonoverlapping populations of granule cells. Plasticity controlled 
by climbing fibers (CF) weakens the strength of parallel fiber (PF)–Purkinje cell (PC) synapses (via LTD, 
indicated by the lightning bolt). LTD alters the efficacy of stimulus A firing the Purkinje cell and thus produces 
altered motor output. Because stimulus B activates different PFs than stimulus A activates, the motor response to 
stimulus B is unaltered by training. Open circles and dotted lines indicate inactive neurons and synapses. Filled 
circles and solid lines indicate active neurons and synapses. The thin PF arrow indicates a synapse weakened by 
LTD. 
(Figure extracted from Boyden et al, Annual Review of Neuroscience Vol. 27: 581-609, July 2004) 
 

Since the Marr-Albus-Ito model, cerebellar functions of sensorimotor integration and control 

motor have been substantiated by an impressive body of evidence. Experimental studies of 

simple behavioural models of motor learning, like the adaptation of the vestibulo-ocular reflex 

(VOR), or the associative eyeblink conditioning, have strengthened this theory (Bracha, 2004; 

Manzoni, 2007). In addition, LTD can be studied in cerebellar slices in vitro which provide 

means to dissect the underlying cellular mechanisms (Ito, 2001). As a consequence, the PF-

Purkinje cell LTD has been extensively studied and appear to be important in the cerebellar 

motor learning, but many other sites and types of plasticity, synaptic and non-synaptic, also 
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exist in the cerebellar circuit, for reviews, see (for reviews, see Hansel et al., 2001; Boyden et 

al., 2004; De Zeeuw and Yeo, 2005). These additional plasticities probably also contribute to 

the cerebellum-dependent learning. Here are some of different forms and sites of plasticity, 

other than the classical PF-Purkinje cell synaptic LTD, identified in the cerebellar circuit: 

• presynaptic long-term potentiation (LTP) PF-Purkinje cell synapses (Salin et al., 1996; 

Linden and Ahn, 1999; Qiu and Knopfel, 2007), 

• postsynaptic LTP of PF-Purkinje cell synapse(Lev-Ram et al., 2002; Lev-Ram et al., 

2003),  

• postsynaptic CF-Purkinje cell LTD (Hansel and Linden, 2000) 

• LTP and LTD of inhibitory interneuron - Purkinje cell synapse (Jorntell and Ekerot, 

2002),  

• LTP and LTD of PF- interneuron synapse (Rancillac and Crepel, 2004), 

• LTP and LTD of mossy fiber-granule cell synapse (D'Angelo et al., 1999; Gall et al., 

2005), 

• LTP and LTD of synapses received by deep nuclear cells (Racine et al., 1986; 

Aizenman et al., 1998) 

• non-synaptic changes (intrinsic plasticity) in cerebellar neurons (Schreurs et al., 1998). 

This variety of cellular mechanisms provide the cerebellum with a wide flexibility to refine 

the code and dynamics of learned responses, enable storage of motor memories over different 

timescales, and allow bidirectional alteration of movement amplitude. However, going from 

the cell to the behaviour still remains a big step to pass over. 

 

Finally, if internal models theory explains the control motor capacity of the cerebellum, this 

concept is also instrumental in understanding the involvement of the cerebellum in 

“cognitive” higher functions (Ito, 2005, 2008). In this case, the internal models reproduce the 

properties of mental representations in the cerebral cortex. 

1.2.1.3 Cerebellum and cognition 

The most important function of the cerebellum may be to coordinate motor function so that 

movements can be performed smoothly, but new evidence has emerged during recent years, 

indicating that the cerebellum may also play a key role in cognitive process in the central 

nervous system. First evidence for the involvement of the cerebellum in cognition arose from 

the demonstrations of its anatomical connections with multiple cortical regions including 

frontal and parietal cortex, through the pons and thalamus (Middleton and Strick, 1994; 
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Schmahmann, 1996; Middleton and Strick, 2001; Allen et al., 2005). These pathways 

facilitate cerebellar incorporation into the distributed neural circuits governing intellect, 

emotion and autonomic function in addition to sensorimotor control. 

 

Using in vivo neuroimaging, extensive studies have also demonstrated during the past decade 

that the cerebellum is co-activated with prefrontal and temporo-parietal cortices during a 

variety of mental activities (even when motor activity is well-controlled), for instance in 

emotion attribution, language tasks, facial recognition, directed attention, theory of mind 

attributions, mental calculations, various types of memory (Parsons and Fox, 1997; Cabeza 

and Nyberg, 2000; Ioannides and Fenwick, 2005). However, in many cases, activation of the 

human cerebellum in imaging studies may also be related to actual or planned movement of 

the eyes, vocal apparatus or fingers (Glickstein, 2007). In addition, the extreme folding and 

the long latency of the bold signal detected in fMRI make the cerebellum a structure that is 

hard to study with this technique. Therefore, these imaging studies must be carefully 

interpreted. 

 

Lesion studies have been a classic method for studying regional functions. Many studies have 

suggested that the primary effect of lesions in the cerebellum is impairment in motor 

coordination or motor learning, supporting the prevailing view of the primary cerebellar 

functions (Bastian et al., 1998). However other more subtle functions can also be affected by 

cerebellar lesions. Cognitive and affective deficits have been reported in case of lesions of 

posterior cerebellar regions in adult patients (Exner et al., 2004). Time perception and 

production are impaired in subjects with cerebellar injuries, suggesting that the cerebellum 

might facilitate time estimation (Keele and Ivry, 1990; Mathiak et al., 2004). Other studies 

have demonstrated that cerebellar lesions might produce symptoms that are similar to those of 

psychiatric disorders, such as mutism (Ersahin et al., 1997). However, lesions studies hold 

limits, since cerebellar lesions do not systematically produce psychotic symptoms, as they do 

not always manifest ataxic motor syndromes. 

 

An important domain of evidence involving the cerebellum in cognition has also emerged 

from observations of cerebellar impairments in various mental disorders such as dyslexia, 

autism or schizophrenia (for review, see Gordon, 2007). Decreased Purkinje cell size and 

decreased excitatory input to them from the granule cells have been reported in schizophrenia 

(Tran et al., 1998). In patients diagnosed with autism, a disorder that has many features in 
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common with schizophrenia, such as impairments in cognition and social awareness, the most 

consistently reported abnormalities are the selective loss of Purkinje cells and the cerebellar 

atrophy (Courchesne et al., 2004). Because the cerebellum seems to participate in many 

different cortical activities, cerebellar dysfunctions and particularly during the development of 

the brain could lead to many different types of cortical malfunction. In turn, this could lead to 

the wide diversity of symptoms and cognitive dysfunctions that can be observed in the clinical 

forms of schizophrenia, or autism. Interestingly, these pathologies are disorders of brain 

development, and as previously mentioned, the cerebellum is poorly developed at birth and 

display a slow postnatal development. Current working hypotheses suggest that faults of 

cerebellar development at microstructural level could result in altered interconnectivity 

between cerebellum and frontal cortex resulting in the impairment of diverse functional 

systems (emotional, sensory, autonomic, memory, etc.) (Courchesne et al., 2005; Andreasen 

and Pierson, 2008). 

 

Investigating the development and the function of the cerebellum could help to better 

understand these pathologies. The central neuron of cerebellar function, the Purkinje cell, thus 

deserves particular interest. During my thesis, I endeavoured to understand more particularly 

how the excitatory glutamatergic transmission is mediated in this cell.  
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1.3 Actors of the glutamatergic transmission 
in Purkinje cells 

Parallel and climbing fibers bring the two main excitatory inputs to the Purkinje cell. At both 

types of synapses, these fibers liberate glutamate as neurotransmitter. Who are the actors of 

this glutamatergic transmission? What are the resulting excitatory responses? 

1.3.1 Glutamate receptors of Purkinje cells 

1.3.1.1 AMPA-Receptors 

Purkinje cells express different types of glutamate receptors. Alpha-amino-3-hydroxy-5-

methyl-4-propionic acid receptors (AMPA-R) represent the major class and are expressed at 

both CF and PF synapses (Zhang et al., 1990; Petralia et al., 1998). In developing and mature 

Purkinje cells, AMPA-Rs mainly mediate fast excitatory transmission. They are 

heterotetramers, principally composed of Glu-R2, -R3 and -R1 subunits, with GluR2 being 

the most abundant (Lambolez et al., 1992; Ripellino et al., 1998). The GluR2 subunit 

determines the Ca2+ permeability of the receptor channel. In the absence of GluR2, the 

AMPA-R is Ca2+ permeable, whereas the presence of GluR2 reduces considerably its Ca2+ 

permeability. Thus, the contribution of Ca2+ influx through AMPA-Rs seems to be 

functionally negligible (Kuruma et al., 2003). AMPA-Rs activation in Purkinje neurons can 

however provide the depolarization necessary for the opening of voltage-gated Ca2+ channels 

(VGCCs), which contribute to synaptic Ca2+ signaling. 

1.3.1.2 Kainate receptors 

In contrast to AMPA-Rs, Kainate receptor expression is low in Purkinje cells, especially in 

mature animals (Hausser and Roth, 1997; Ripellino et al., 1998). However, both GluR5 and 

KA1 kainate receptor subunits are expressed by Purkinje cells (Wisden and Seeburg, 1993). It 

has been shown more recently that GluR5-containing kainate receptors could be responsible 

for ~5% of the CF-excitatory postsynaptic current (EPSC) (Huang et al., 2004). However, it 

should be noticed that the animals used in this study were not adult (mice aged from P15 to 

P19). Thus the situation might be still different in the adult.  

1.3.1.3 Metabotropic glutamate receptors 

The metabotropic glutamate receptor of the subtype 1 (mGluR1), is strongly expressed in 

Purkinje cells at parallel fiber synapses, where it gives rise to a slow excitatory postsynaptic 
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current (Batchelor et al., 1994) in response to tetanic parallel fiber stimulation. mGluR1 is 

coupled to phospholipase C β (PLCβ) through Gq proteins, and leads to the production of 

diacylglycerol (DAG) and inositol-trisphosphate (IP3) that activates Ca2+ release from 

intracellular stores (Finch and Augustine, 1998). This Ca2+ combines with DAG to elevate 

protein kinase C (PKC) activity. mGluR1 has also been reported at CF-Purkinje cell synapses 

(Dzubay and Otis, 2002). At these synapses however, mGluR1 currents have been observed 

after CF stimulation: 1) when glutamate uptake is blocked, 2) when a train of stimulation is 

given to CF, indicating their peri- or extrasynaptic location (Dzubay and Otis, 2002) or 3) 

with the coincident presence of an mGluR1 agonist (Yuan et al., 2007). High levels of 

mGluR7 are also found in Purkinje cells terminals (Phillips et al., 1998; for review about 

mGluR7 in Purkinje cells, see Knopfel and Grandes, 2002). mGluRs are implicated in LTD 

and generate synaptic-induced retrograde signaling (Hartell, 1994; Levenes et al., 2001). 

1.3.1.4 Delta2 glutamate receptors (GluRdelta2) 

Remarkably, Purkinje cells also express delta2 glutamate receptors (GluRdelta2), which are 

orphan receptors expressed almost exclusively by these cells. GluRdelta2 are located 

specifically at PF–Purkinje cell synapses, except during a short period of the early 

development in which they are also found at CF synapses (Araki et al., 1993; Takayama et al., 

1996; Zhao et al., 1998). GluRdelta2 have been cloned by sequence homology with AMPA-

Rs and NMDA-Rs (Yamazaki et al., 1992a; Araki et al., 1993; Lomeli et al., 1993). 

Interestingly, the structural comparison with other ionotropic glutamate receptors has recently 

demonstrated that the amino acid composition of the ligand-binding cavity of GluRdelta2 is 

most similar to that of the NR1 subunit of the NMDA-R (Naur et al., 2007). Like NR1 

subunit, GluRdelta2 can bind Glycine or D-serine. However, neither its agonist (if one), nor 

its physiological role, has been clearly identified. 

 

Last but not least, NMDA receptors, which are the focus of this thesis, are also expressed in 

postnatal and adult Purkinje cells. They will be extensively treated in the last part of this 

review. 

1.3.2 Glutamate Transporters  

Often viewed as secondary actors of the glutamatergic transmission, glutamate transporters 

however deeply influence and shape synaptic transmission (for review, see Tzingounis and 

Wadiche, 2007). Excitatory amino-acid transporters (EAATs) rapidly bind released glutamate 
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to remove it from the extracellular space into glial or neuronal cells. This glutamate uptake is 

coupled to the transport of ions and its stoechiometry is responsible for keeping the tonic 

extracellular glutamate concentration at 25 nM, below the level which activates receptors 

(Herman and Jahr, 2007). In the cerebellum, Bergmann glial cells are closely apposed to 

Purkinje cells synapses (Palay and Chan-Palay, 1974); see Figure  1.8. At PF and CF synapses 

with Purkinje cells, Bergmann glial cells express predominantly EAAT1, with a small 

contribution by EAAT2 transporters (Furuta et al., 1997). Purkinje cells express not only the 

ubiquitous EAAT3 neuronal transporter but also the high-affinity EAAT4, which is expressed 

at a high density, in particular at CF synapses (Tanaka et al., 1997; Dehnes et al., 1998) and 

mediates a synaptic transporter current (Otis et al., 1997; Auger and Attwell, 2000). 

 

 

Figure  1.8: Organization of 
glutamate transporters at 
parallel fiber to Purkinje cell 
synapses.  

Parallel fibres (PFs) originating 
from granule cells make en 
passant synapses on PCs. Each 
synaptic contact is nearly fully 
ensheathed by Bergmann glial 
(BG) membranes. Purkinje cell 
glutamate transporters (EAAT4) 
are located perisynaptically, 
whereas glial transporters face the 
synapse. Note that the scale of the 
various cellular components is 
distorted to more clearly 
emphasize the key points (figure 
extracted from Tzingounis and 
Wadiche, 2007). 
 

 

One of the most important roles of glutamate transporters is to limit the activation of 

extrasynaptic receptors, for example, NMDA-Rs of Purkinje cells (see in Results chapter, 2nd 

part), or mGluRs that are pivotal for cerebellar synaptic plasticity (Hartell, 1994). 

Interestingly, in juvenile rats, stimulation protocols that induce a LTD at the CF-Purkinje cell 

synapse (Hansel and Linden, 2000; Shen et al., 2002), concomitantly induce a LTP of 

glutamate transporter currents through PKC activation (Shen and Linden, 2005). It could well 

be that CF-LTD relies, at least partly, on this LTP of glutamate transporters.  

 

* 

*
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In conclusion, the patterned expression, the number and the activity of both glutamate 

receptors and transporters mediate and shape the excitatory input to Purkinje cells, as well as 

control the induction of their plasticity. 

 

1.3.3 Excitatory responses evoked in Purkinje cells by its 
glutamatergic afferents 

1.3.3.1 Parallel fiber response 

In response to PF activation, Purkinje cell discharge in “simple spikes” (SSs) at frequencies 

that can attain rates of >200 Hz during motor performance (Thach, 1967). It has been 

estimated that ~50 PFs are enough to evoke a spike (Barbour, 1993). A single suprathreshold 

activation of PFs produces a Na+ spike and a local dendritic Ca2+ signal that relies on Ca2+ 

entry through VGCCs (Eilers et al., 1995), whereas tetanic stimulation produces a biphasic 

response: the first component depends on AMPA-R activation, the second requires mGluR1 

receptors. 

1.3.3.2 Climbing fiber response 

In contrast to PFs, CF discharge occurs at very low rate, ~1 Hz in quiescent animals 

(Armstrong and Rawson, 1979). Climbing fiber activation evokes a massive all-or-none spike 

of complex waveform and origin, the “complex spike” (CS). CS results from widespread 

activation of AMPA-Rs in the dendrite, associated to the activation of mGluR1 receptors. In 

addition, as we demonstrated in this thesis, there is also a NMDA-component in the CS in the 

adult. The Na+ influx through AMPA-Rs depolarizes the Purkinje cell causing dendritic Ca2+ 

spikes that are carried mainly by P/Q- and T-types VGCCs. The elevation of internal 

concentrations of Ca2+ also activates calcium-activated potassium conductances (KCa2+) that 

are of two different types in Purkinje cells: the “small” and “big” KCa2+, named respectively 

BK and SK channels. 

 

In acute cerebellar slices, during whole-cell current clamp recording from singe Purkinje cell 

activated by the CF, the depolarization spreads towards the soma and evokes a regular Na+ 

spike that is recorded as the first active component in the CS (Figure  1.9). It has been 

suggested that both resurgent-Na+ and Ca2+ currents contribute to the following slow complex 

spike components, and to the afterdepolarization (ADP), while a last slow 

afterhyperpolarization (AHP) is due to K+ efflux (Schmolesky et al., 2002; Schmolesky et al., 
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2005); Figure  1.9B. By evoking widespread dendritic Ca2+ transients (Miyakawa et al., 1992), 

the CF discharge is known to be a key signal for synaptic plasticity, in particular the LTD of 

PF-Purkinje cell synapses (see for review Ito, 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1.9: The climbing fiber 
excitation evokes a complex spike in the 
Purkinje cell.  

(A) A complex spike recorded from the Purkinje 
cell soma demonstrates one fast Na+ spike (spike 
1) and one or four slower spikes at the top of a 
depolarization plateau. (B) Subsequent to the fast 
and slow spikes, a complex spike is composed of 
a slow afterdepolarization (ADP) and 
afterhyperpolarization (AHP).  
 

1.3.3.3 Spontaneous activity 

Purkinje cells are spontaneously active. This spontaneous activity has previously been 

attributed to the continuous glutamate release from PFs synapses (Eccles et al., 1967). 

However, in isolation from the rest of the cerebellar circuitry, or by blocking fast synaptic 

transmission, Purkinje cells tonically fire (Llinas and Sugimori, 1980b; Llinas and Sugimori, 

1980a; Hausser and Clark, 1997). Because of their intrinsic membrane properties, relying in 

particular on non-inactivating Na+ currents (Raman and Bean, 1997), Purkinje cells display 

high firing rate of Na+ spikes, i.e. spontaneous simple spikes (Womack and Khodakhah, 2002; 

2004). From P21 in mouse, as the cerebellum achieves its anatomical and functional 

maturation, Purkinje cells show a complex trimodal pattern of spontaneous activity in which 
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they continuously cycle among tonically firing, bursting, and silent modes (Womack and 

Khodakhah, 2002; McKay and Turner, 2005). The rate and pattern of the intrinsic activity of 

Purkinje cells is modified by synaptic inputs from CF and PFs. In particular, the CF input to 

Purkinje cell exerts an inhibitory action on the spike-generating system to maintain SS 

activity at a low level (Cerminara and Rawson, 2004). Similarly, the CS is followed in vivo by 

a pause in ongoing simple spike activity (Simpson et al., 1996). It has been suggested that the 

AHP component of the CS could cause this pause (Schmolesky et al., 2005). Thus, 

modulations of the CS components can have deep effects on the regulation of Purkinje cell 

spontaneous activity. 
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1.4 NMDA-receptors in Purkinje cells 

The present review about NMDA-Rs in Purkinje cell was written in order to be submitted for 

publication. 

1.4.1 NMDA-R: general properties 

NMDA-Rs are ionotropic glutamate receptors that play a major role in many cerebral 

processes like development, neuroplasticity and neuronal death. They display unique features 

among ligand-gated ionotropic receptors. To be activated, they not only must bind both 

glutamate and the co-agonist glycine -or D-serine- (Johnson and Ascher, 1987), but they also 

require a coincident membrane depolarization, in order to relieve a Mg2+ block of the receptor 

ion channel (Mayer et al., 1984). This remarkable property of both voltage-dependent and 

ligand-gated channel confers on the NMDA-R the capacity to act as a molecular coincidence 

detector of simultaneous pre- and postsynaptic excitation. Since NMDA-Rs display a high 

permeability to Ca2+ ions, their activation causes a large influx of Ca2+ into cells (MacDermott 

et al., 1986) that initiates signal transduction cascades, triggering for instance LTD or LTP of 

synaptic currents. 

 

NMDA-Rs are heteromeric complexes of different subunits classified, to date, in three 

families: NR1 (eight splice variants), NR2 (NR2A, -2B, -2C, and -2D), and the recently 

characterized NR3 subunits family (NR3A and NR3B). In the mouse, some NMDA-R 

subunits are differently denominated: NR-Zeta, NR-epsilon1, -epsilon2, -epsilon3, -epsilon4, 

NR-chi1, -chi2 which correspond to NR1, NR2A, -2B, -2C, -2D, NR3-A and -3B 

respectively. To simplify the understanding of the present thesis report, I have chosen the first 

denomination, whatever the species. 

 

NMDA-Rs are tetramers of two mandatory glycine-binding NR1 subunits and two glutamate-

binding NR2 subunits that can be identical or different. The type of NR2 subunit is critical in 

determining some of the key biophysical and pharmacological properties of the receptor, like 

agonist affinity, magnesium sensitivity, deactivation kinetics, modulation by polyamines and 

channel conductance (for review, see Dingledine et al., 1999). The Glycine-binding NR3 

subunit could act as a dominant-negative subunit in the NMDA-R complex, notably by 

reducing calcium permeability (Nishi et al., 2001; Perez-Otano et al., 2001), but the role of 

this subunit remains to be clearly determined.  
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Each type of NMDA-receptor subunit and isoform exhibit a different developmental and 

regional pattern of expression in the brain, resulting in an important source of functional 

diversity among NMDA-Rs. In Purkinje cells, let us see what kinds of NR1 isoforms and/or 

NR2 subunits are successively expressed throughout postnatal life and adulthood. 

1.4.2 Purkinje cells express NR1 subunits throughout the 
postnatal and adult life  

While NR2 subunit expression has long been controversial, there was early compelling 

evidence for the NR1 expression by Purkinje cells, in young as well as in mature animals. 

Indeed, most of in situ hybridization (Moriyoshi et al., 1991; Monyer et al., 1992; Akazawa et 

al., 1994; Laurie and Seeburg, 1994; Monyer et al., 1994; Watanabe et al., 1994; Nakagawa et 

al., 1996) and immunohistochemical studies (Petralia et al., 1994a; Garyfallou et al., 1996; 

Hafidi and Hillman, 1997; Thompson et al., 2000) showed that the NR1 subunit is expressed 

by Purkinje cell as early as E13 in the mouse (Watanabe et al., 1994) and throughout 

adulthood. 

 

NR1 occurs as eight distinct splice variants that influence NMDA-Rs properties and that are 

regionally and developmentally regulated (Sugihara et al., 1992; Laurie and Seeburg, 1994) 

for review see (Zukin and Bennett, 1995). NR1 isoforms result from the alternative splicing of 

exon 5 (the N1 amino-terminal cassette), exon 21 (the C1 carboxy-terminal cassette), and 22 

(when this C2 carboxy-terminal cassette is deleted, the C2’ cassette replaces it); see Figure 

 1.10. In the terminology of Hollmann et al. (1993), the eight NR1 splice variants are 

denominated NR1-1a, -1b, -2a, -2b, -3a, -3b, -4a and -4b. The number indicates the variant at 

the carboxy-terminal end (1 = no deletion; 2, 3, and 4 = deletions of C1, C2, C1+C2 

respectively). In the a-subtype, N1 is absent, whereas the b-subtype displays N1 (Hollmann et 

al., 1993). 

 

The N1 cassette directly controls proton inhibition (Figure  1.10A) and voltage-independent 

inhibition by Zn2+ ions of NMDA-Rs. Alternative splicing of the NR1 C-terminal affects the 

trafficking, cell surface expression, and synaptic targeting of NMDA-Rs in an activity-

dependent manner (Ehlers et al., 1995; Okabe et al., 1999; Mu et al., 2003).  

• All NR1 isoforms also contain a C0 cassette which, together with C1, mediates 

protein–protein interactions for instance with calmodulin (Ehlers et al., 1996), (Baude 

et al.)-actinin (Wyszynski et al., 1997), neurofilaments (Ehlers et al., 1998), and a 
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protein YOTIAO (Lin et al., 1998) as well as signalling to the nucleus (Bradley et al., 

2006) and export from the endoplasmic reticulum (ER) (Wenthold et al., 2003).  

• The C1 cassette has been shown to contain an endoplasmic reticulum retention signal 

(Scott et al., 2001) that can be masked by the C2’ cassette (Standley et al., 2000), 

and/or by the association with NR2 subunit (Hawkins et al., 2004; Yang et al., 2007). 

Thus, NR1-1 subunits (C1/C2) alone are likely to be retained in the ER (see further). 

• The C2 cassette is necessary for maintenance of dendritic spines in hippocampal 

pyramidal neurons (Alvarez et al., 2007). Indeed, either NR1-1 -containing 

(C0/C1/C2) or NR1–2 -containing (C0/C2) receptors are able to preserve some levels 

of spine density.  

• The C2' cassette contains a terminal PDZ-binding motif that mediates interactions 

with PSD-95, PSD-93, synapse-associated protein-102 (SAP-102), and SAP-97 (for 

review, see O'Brien et al., 1998). mRNA splicing that regulates C2/C2' expression is 

activity-regulated such that activity blockade leads to enhanced expression of C2'-

containing NR1 subunits and promotes surface expression of NMDA-Rs (Mu et al., 

2003). In contrast, NR1–3 -containing receptors (C0/C1/C2') are insufficient to 

maintain spine density and do not enhance the spine recovery by C2-containing 

receptors. Thus, although the C2' domain is required for interactions with PSD-95 and 

may be important for anchoring to the PSD, it seems not to be necessary for spine 

maintenance. 

 

Figure  1.10: Schematic 
structure of the NR1 subunit 
and representation of some 
NR1 isoforms 

(A) Like other ionotropic glutamate 
receptor subunits, NR1 possess four 
hydrophobic regions within the 
central portion of the sequence 
(gray). The second transmembrane 
domain forms a re-entrant loop 
giving an extracellular N-terminus 
and intracellular C-terminus. A “pH 
sensor” is present in the N-terminus 
domain. A surface loop encoded by 
the N1 cassette can limit proton 
access to this site. Polyamines, 
Zn2+, and ifenprodil also act, at 
least in part by modulating the 
proton sensitivity. (B) Schematic 
representation of the different 
splicing combinations in NR1 
isoforms of the b-subtype. 

A 

B 
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In the rat cerebellum, in situ hybridization (Laurie and Seeburg, 1994; Laurie et al., 1995) 

showed that Purkinje cells express different NR1 splice variants, depending on the 

development stage. Because the alternative splicing of the NR1 mRNA has been shown to be 

activity-dependent, it could be of interest to understand the signals regulating this mechanism 

in Purkinje cells. Similarly, the actual influence of the NR1 isoforms on NMDA-Rs properties 

remains rather unexplored in these cells, maybe because these receptors were presumed to be 

absent in the adult. However, the type of NR1 subunit could be relevant to understand the 

diverse functions of NMDA-Rs expressed in Purkinje cells at different ages. 

 

In addition to the influence of NR1 isoforms, the identity of NR2 subunits within the NMDA-

R complex also strongly affects NMDA-R properties. NR2 subunits are differentially 

regulated during development and the different NR1/NR2 subunit combinations expressed in 

neonatal versus adult Purkinje cells make functional NMDA-Rs with remarkably different, 

and even opposite, properties. 

1.4.3 NMDA-Rs of Purkinje cells in neonatal rodents 
(first postnatal week) 

From P0 to P8, Purkinje cells mainly express NR1 lacking the C1 cassette (NR1-2, -4). NR1 

splice variants of neonatal Purkinje cells are thus well suited to favour the expression of 

NMDA-Rs at the external membrane. Accordingly, NMDA-Rs currents are clearly detected in 

postnatal Purkinje cells (Rosenmund et al., 1992; Momiyama et al., 1996; Misra et al., 2000). 

 

NR2 subunits of the neonate Purkinje cells are of the NR2D subtype. Both recombinant and 

native NR1-NR2D receptors that are expressed by immature Purkinje cells have unique 

properties (Momiyama et al., 1996; Misra et al., 2000). These are low single-channel 

conductance displaying two levels, a main one of 38pS and a sub-conductance of 18 pS. 

Typically of these receptors, transitions between the two levels are asymmetrical, transitions 

from the main to the sub-conductance being more frequent than in the other direction 

(Momiyama et al., 1996). These low-conductance channels are distinct in their properties 

from the ‘conventional’ 50 pS NMDA-Rs containing NR2A or –B subunits. They have low 

sensitivity to Mg2+ block and a low EC50 for glutamate (concentration producing half-

maximal response) compared to NR1-NR2A or –B. Their high affinity for glutamate results in 

extremely slow deactivation kinetics in response to brief application of glutamate (Monyer et 

al., 1994). Channel openings have been shown to occur as late as 30 s after brief glutamate 
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applications (Misra et al., 2000). They also display no apparent desensitization in the 

continued presence of agonist while NR2A or –B containing NMDA-Rs rapidly and strongly 

desensitize (Wyllie et al., 1998; for review see Dingledine et al., 1999).  

 

These properties have remarkable consequences: from a functional point of view, the 

NR1/NR2D receptors are easily activatable at low threshold of neuronal activity. From an 

experimental point of view, NR2D-containing NMDA-Rs can be easily detected with 

exogenous glutamate application compared to NR2A/B, especially if the method of agonist 

application is slow, as it is generally the case in slice preparations. This probably explains 

why they were the first NMDA-Rs to be detected in Purkinje cells (Dupont et al., 1987; 

Garthwaite et al., 1987; Krupa and Crepel, 1990; Yuzaki et al., 1990; Rosenmund et al., 

1992). On the other hand, these specific properties, in particular high affinity for glutamate, 

make them poorly suitable for classical fast synaptic transmission. Accordingly, they have not 

been detected in CF excitatory postsynaptic currents of immature Purkinje cells (CF-EPSCs) 

(Llano et al., 1991; Lachamp et al., 2005). What can be their function? 

 

During the three postnatal weeks, the cerebellum undergoes major anatomical changes (see 

Figure  1.6 and Figure  1.11). The developmental profile of NMDA-Rs subunits remarkably 

matches some key steps of the Purkinje cell excitatory synaptogenesis, suggesting that these 

receptors could play a role in this phenomenon. Among the different possibilities:  

1) they could contribute to CF synaptogenesis and/or could participate to the regression of 

supernumerary CF synapses,  

2) they could be involved in the neuroprotection of neonatal Purkinje cells,  

3) and/or they could finally participate to the PF synaptogenesis. 

1.4.3.1 NMDA receptors and climbing fibers synaptogenesis 

By CF “synaptogenesis”, one has to understand here both the formation of synapses and the 

selection of the future only one contact. 

 

NMDA-R blockade in utero (E17 to E20) does not impair AMPA-R expression and clustering 

in the early developing cerebellum (Lachamp et al., 2005). This suggests that NMDA-Rs are 

not necessary for CFs synaptogenesis, which starts as early as at E19 in rats (Morara et al., 

2001). In addition, no obvious histological defects have been explicitly reported in the 

cerebellum of mice defective in the NR2D subunit (Ikeda et al., 1995), although it is worth 

mentioning that, in this latter study, the cerebellum may not have been carefully examined.  
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During the first postnatal week in rats and mice, the major, if not only, glutamatergic inputs of 

Purkinje cells are multiple CFs with similar strength. In rats, the multiple innervation by CFs 

has been reported to reach a peak at P5 (Crepel and Mariani, 1976; Crepel et al., 1976; 

Mariani and Changeux, 1981). The exact mechanism of the regression of supernumerary CFs 

is not yet fully known, but it has been shown that an early stage of the process of CF 

maturation consists in the differentiation of initially equally strong synapses into one large 

and several small synaptic inputs. In mice, differences in the strengths of multiple CFs 

become larger from P3 to P6 (Hashimoto and Kano, 2003). From the end of the first postnatal 

week, a massive elimination of supernumemary CFs occurs, leading to a final stage, at about 

P21 in mouse, in which all the Purkinje cells are innervated by a single CF. This regression of 

multiple innervation is impaired in vivo by chronic infusion of the NMDA-Rs antagonist, D-

APV, between P4 and P5 (Rabacchi et al., 1992). On the other hand, this in vivo infusion of 

D-APV blocks all the NMDA-Rs of the zone. Thus, it is not clear if this effect results from 

NMDA-Rs of the Purkinje cells or of the other cells around.  

 

Bosman et al. (2008) have shown that in rats, a new form of LTP is expressed uniquely and 

just for a restricted period of early development (from P4 to P10) in the large CF input. This 

LTP could allow the activity-dependent selection of the future unique climbing fiber. As 

major actors of some LTP processes, NMDA-Rs could participate to this activity-dependent 

selection of the future unique climbing fiber. However, this LTP is not blocked by antagonists 

of NMDA-Rs (Bosman et al., 2008). Thus, NMDA-Rs of immature Purkinje cells are unlikely 

to be involved in the regression of multiple innervation. This is in accordance with the fact 

that a big part of this phenomenon occurs when immature NMDA-Rs have largely 

disappeared (from P7 to P21 in mice). 

1.4.3.2 NMDA receptors and the neuroprotective depolarization 

Because NMDA-Rs of neonatal Purkinje cells have a high affinity for glutamate, display no 

apparent desensitization, slowly deactivate and are poorly inhibited by protons or Zn2+, they 

can be easily and robustly activated by small transients of glutamate. Thus, neonate Purkinje 

cells would be more sensitive to excitotoxicity than their adult counterparts because of these 

NMDA-Rs. However, in primary cultures made from wild-type (WT) mice at E18 or P0, in 

which most of the Purkinje cells die within the first 4 days in vitro (div), NMDA-Rs in 

Purkinje cells were shown to directly enhance the survival of immature Purkinje cells in vitro 

(Yuzaki et al., 1996). In addition, Purkinje cells death was greater in cultures made from NR1 

knockout mice. Conversely, adding exogenous NMDA or [(NR1-/-) granule cells] to the 
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cultures increased Purkinje cell survival (Yuzaki et al., 1996). Thus, immature NMDA-Rs of 

Purkinje cells themselves support their survival in culture.  

 

This suggests that juvenile NMDA-Rs could protect Purkinje cells from developmental cell 

death in vivo. By the way of a collaborative study, we have provided evidence that 

depolarization protects immature Purkinje cells from apoptotic death, at least in organotypic 

cultures. We also showed that at this critical age, coculturing cerebellar slices with 

glutamatergic inferior olivary neuron preparation protected Purkinje cells (Ghoumari et al., 

2006, see in Results, 1st part). These results support a pivotal role of excitatory inputs, 

provided by CF innervation, in the survival of neonatal Purkinje neurons. Although NMDA-

Rs of immature Purkinje cells do not seem to play a direct role in the CF synaptogenesis, it 

can be proposed that they act as sensors of ambient glutamate released by CFs to promote the 

survival of Purkinje cells targeted by growing CF. 

1.4.3.3 NMDA receptors and parallel fibers synaptogenesis 

Do immature NMDA-Rs contribute to parallel fibers synaptogenesis? In fact, the temporal 

concordance between the increasing parallel fiber synaptogenesis and the disappearance of 

NR2D (Figure  1.11), rather suggests that parallel fiber activity could trigger the regression of 

NR2D subunits. Some experimental data support this hypothesis. Staggerer mice hold a 

mutation leading to a selective absence of synapse formation between parallel fibers and 

Purkinje cells, which leads to a secondary loss of most granule cells and to multiple 

innervation of Purkinje cells by climbing fibers. Staggerer Purkinje cells show a much greater 

sensitivity to NMDA than the cells of control mice (Dupont et al., 1984), suggesting that they 

retain the expression of the neonatal NR2D-containing NMDA-Rs. Actually, in situ 

hybridization as well as immunohistochemical data show that Staggerer Purkinje cells express 

both NR2D and NR2A (Nakagawa et al., 1996). It is thus rather tempting to hypothesize that 

neonatal NMDA-Rs are down-regulated by the parallel fiber/Purkinje cell synaptogenesis. 

However it remains difficult to distinguish between a causal versus concomitant relationship. 

Thus, the role of these juvenile receptors in synaptogenesis of Purkinje cells, if any, remains 

to be elucidated. 
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1.4.4 Second postnatal week: a gap in the expression of 
NMDA-Rs  

1.4.4.1 Estrogen responsive element in the gene encoding NR2D 

The GRIN2D gene that encodes for NR2D subunits contains four half-palindromic Estrogen 

Response Elements (EREs) in its 3’ untranslated region (Watanabe et al., 1999). This 

characteristic repeat of ERE is not observed in the other genes coding NMDA-R subunits. 

More than one isoform of the estrogen receptor (ER) exists in mammals, and estrogen 

regulation via the ER-α and ER-β isoforms on the NR2D-ERE are not equivalent. It has been 

indeed shown that ER-α up regulates the NR2D mRNA whereas ER-β induces its down 

regulation (Vasudevan et al., 2002). In the cerebellum, the expression of estrogen receptors 

varied with age and cell-type, but not gender. In the developing rat cerebellum, ER-α is 

expressed in P3 Purkinje cells (Perez et al., 2003), whereas ER-β is first detected on postnatal 

day 6 (P6), with peak intensities of immunostaining coinciding with the initiation of axonal 

and dendritic growth that occurs between P7 and P8 (Jakab et al., 2001). Expression of ER-β 

remains high during maturation of Purkinje cell dendrites, and then decreases to a lower level 

maintained in the adult (Price and Handa, 2000; Jakab et al., 2001). 

 

Active estrogen formation in the gonads does not occur during neonatal life but exposure to 

maternal estrogens can still persist for the few days after birth, and Purkinje cells may 

themselves synthesize estrogen during the postnatal period (Sakamoto et al., 2003). It is thus 

likely that estrogen acts directly on Purkinje cells through intranuclear ER-α to up regulate the 

NR2D mRNA expression in Purkinje cells during the first postnatal week. Then, from P6, 

estrogens probably down regulate the expression of NR2D subunit by acting on ER-β. This is 

in accordance with the expression profile observed for NR2D subunit during the Purkinje cell 

postnatal development, see Figure  1.11 (Momiyama et al., 1996). 

 

At P6 in mouse, estrogens were shown to promote dendritic growth, spinogenesis, and 

synaptogenesis of Purkinje cells (Sasahara et al., 2007). In adult mouse, estrogens enhance 

induction of LTP at the PF to Purkinje cell synapse, whereas it does not affect LTD 

(Andreescu et al., 2007). Moreover, it increases the density of PF to Purkinje cell synapses, 

whereas it does not affect the density of CF synapses (Andreescu et al., 2007). At this age, 

NR2D expression may be down regulated by estrogens. This needs to be further studied and 

could give clues on the function of juvenile NMDA receptors. 
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1.4.4.2 NR1 homomeric NMDA receptors are not functional 

Between the second and the third postnatal week, Purkinje cells do not seem to express 

significant amount of NR2 subunits anymore but express NR1 alone. As stated before, it is 

rather unlikely that NR1-homomers reach external membranes. Accordingly, NMDA currents 

detected in P5 young rat or mouse markedly declined with age (Crepel and Krupa, 1990; 

Krupa and Crepel, 1990). However, because some small currents remained detectable after 

the first postnatal week (Crepel and Krupa, 1990), NR1 homomers have been suspected to 

mediate these small currents in Purkinje cells, like those recorded in Xenopus oocytes 

expressing NR1 homomers (Moriyoshi et al., 1991). However, a recent study showed that 

these small homomeric currents observed in Xenopus oocytes are, in fact, caused by an 

endogenous NR2-like protein. This confirmed that NMDA-Rs are not functional as homomers 

(Schmidt and Hollmann, 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1.11: Schematic representations of the developmental patterned expression of NR2 
subunits in Purkinje cells in respect of the main steps of Purkinje cell maturation  

For detailed legend of the top figure, see figure 1.6. 
Bottom figure is schematic. Left axis is not scaled because amounts of different NR2 subunits relative to each 
other are not known. The temporal profiles of NR2D and NR2A/B are however based on Momiyama et al. J. 
Physiol. Lond (1996), 494.2, pp.479-492, and Piochon et al. J. Neurosc. (2007), 27(40):10797-108, respectively. 
Although NR3B subunits have been recently evidenced in adult Purkinje cells, their temporal profile is still not 
known during postnatal development. Dotted line is thus speculative. 
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1.4.5 NMDA-Rs of the adult Purkinje cells: a controversy 

1.4.5.1 Features of the NR1 isoforms expressed in the adult Purkinje cells 

After P21 in rats as well as in adult humans, NR1 splice variants of Purkinje cell lack the N1 

cassette (Laurie and Seeburg, 1994; Laurie et al., 1995 in rats; for human, see Scherzer et al., 

1997). At physiological pH, NMDA-Rs that lack N1 are tonically inhibited (by ~50%), 

whereas those that include N1 are fully active. A surface loop encoded by the N1 cassette may 

act as a tethered pH-sensitive modulator of NMDA-R (Figure  1.10A). Polyamines could 

shield the proton sensor of NR1 and this may explain the ability of polyamines to potentiate 

NMDA-Rs containing NR1 subunit lacking N1 (Traynelis et al., 1995). Voltage-independent 

Zn2+ inhibition acts similarly on NR1 lacking the N1 cassette (Traynelis et al., 1998). The 

coassembly with NR2 subunits also influences the effects of N1 on Zn2+ inhibition (Chen et 

al., 1997; Traynelis et al., 1998; Rumbaugh et al., 2000). For instance, inhibition by proton or 

Zn2+ is stronger when the NR1 isoform lacking N1 is assembled with NR2A or NR2B 

(Traynelis et al., 1998). This is actually the case of adult Purkinje cells whose NR1 lack N1 

and co-assemble with NR2A and to a lesser extent NR2B (Piochon et al., 2007; Renzi et al., 

2007). The NR2A subunit (see below) is highly sensitive to Zn2+ inhibition (Chen et al., 1997) 

Therefore, the NMDA-Rs of mature Purkinje cells are expected to be tonically blocked at 

physiological pH by protons and Zn2+. This could thus help to protect mature Purkinje cells 

from NMDA-R-mediated glutamate toxicity. 

 

After the third week (P21), rats Purkinje cells express the NR1-1, -2 and -4 types (containing 

C1+C2, C2, C2’ respectively; (Laurie and Seeburg, 1994; Laurie et al., 1995). Alvarez et al. 

(2007) recently showed that the physical interactions of the C-tail of NMDA-Rs with some 

proteins can mediate the long-term stabilization of synapses and spines. This maintenance of 

normal spine density and synapse stability requires the coexpression of the two specific splice 

isoforms of the NR1 subunit that contain the C-terminal C2 cassette (Alvarez et al., 2007). In 

adult Purkinje cells, the NMDA-Rs composed of C2-containing NR1 splice variants and NR2 

subunits could thus favor the stability of some synapses and spines (in particular climbing 

fiber synapses, see below).  

1.4.5.2 In search of NR2 subunits in mature Purkinje cells 

Until recently, the expression of NR2 subunits in adult Purkinje cells remained unclear. 

Although differencies among various species used in the diverse previous studies can still 



Introduction 
 

  44 

exist, it now appears in the light of more recent studies that, in mature animals, Purkinje cells 

express NMDA-Rs actually activated by the climbing fiber stimulation. 

 

First electrophysiological studies with intracellular recordings already suggested the presence 

of NMDA-Rs in the proximal dendrites of Purkinje cells (Kimura et al., 1985; Quinlan and 

Davies, 1985; Sekiguchi et al., 1987) in adult rat and guinea pig. Similarly, other authors 

showed that 25 to 30% of adult Purkinje cells still respond to iontophoretic applications of 

NMDA (Dupont et al., 1987; Krupa and Crepel, 1990). Interestingly, an in vivo study in the 

adult rat revealed that NMDA currents induced in most Purkinje cells of control animals were 

no longer present after climbing fiber deprivation (Billard and Pumain, 1989).  

 

In contrast with these studies performed with intracellular or extracellular recordings, patch-

clamp studies focused on Purkinje cells from animals for the most younger than 3 weeks, this 

technique preferring cells with a less developped arborization for proper space clamp (Llano 

et al., 1991). Between P12 and P21, most of patch-clamp studies failed to detect any 

functional NMDA-Rs (Konnerth et al., 1990; Farrant and Cull-Candy, 1991; Llano et al., 

1991). From these results, adult Purkinje cells have since been widely considered as neurons 

lacking NMDA-Rs. Purkinje cells indeed lack NMDA-R currents between the second and the 

third postnatal week.They nevertheless can not be considered as mature: in rat Purkinje cells, 

~P12 to ~P18 corresponds to a period of rapid maturation, consisting of a marked expansion 

of the dendritic tree, that coincides with important changes in electrophysiological properties, 

for instance a rapid maturation of the Ca2+ spike-mediated discharge patterns (McKay and 

Turner, 2005). Howerver, after P21, there is still a maturation that prolongs up to P90. Thus, 

Purkinje cells maturation is not completed in animals younger than 3 weeks. 

 

Besides electrophysiological studies, immunohistochemistry or in situ hybridization studies 

drew discrepant conclusions about the expression of NR2 subunits in adult Purkinje cells. 

NR2A mRNA was evidenced in rats as well as in humans (Akazawa et al., 1994; Rigby et al., 

1996; Scherzer et al., 1997), whereas some other studies did not detect any NR2 mRNA in 

adult rodent Purkinje cells (Monyer et al., 1994; Watanabe et al., 1994). Similarly, low 

immunoreactivity for NR2A/B subunits was detected in adult mice (Yamada et al., 2001), 

while Thompson et al. (2000) found clear NR2-B labeling in Purkinje cells from adult rats 

and mice, as well as NR2-A labelling in mice only (Thompson et al., 2000, this study also 

points out the importance of species specificity in this debate). Finally, in addition to 



Introduction 

  45

differences among experimental procedures, discrepancies in different studies can be 

attributable to the different temporal limits to “adulthood” given by different authors (some 

authors considering rats or mice as “adults” at ~P21). 

 

The question of the expression of functional NMDA-Rs in mature Purkinje cells thus 

deserved some re-examinations. Using adult mice aged more than 8 weeks, we not only 

demonstrated that mature Purkinje cells effectively express functional NMDA-Rs, but also 

that these receptors participate to climbing fiber synaptic transmission. Moreover, synaptic 

NMDA currents become detectable from the third week after birth (Figure  1.11). Our results 

of the present report that will be detailed in the second part of the results chapter, have been 

partly confirmed by the independent group of Stuart Cull-Candy in London (Renzi et al., 

2007). 

1.4.5.3 NR3B, an additional subunit in the game of Purkinje cell NMDA-R 

The recent discovery of two novel types of NMDA receptor subunits - NR3A and NR3B 

(Ciabarra et al., 1995; Sucher et al., 1995; Nishi et al., 2001; Chatterton et al., 2002; Matsuda 

et al., 2002) - has further expanded the diversity of the NMDA receptors. Intensive research 

are now conducted on these “non-conventional” NMDA-Rs, but the actual knowledge on the 

subject still largely comes from studies using various heterologous expression system. 

� In Xenopus oocytes and HEK296 cells, NR3A/B subunits have been shown to co-

assemble with NR1 subunits to form excitatory glycine receptors, as they require 

glycine alone for activation, in the absence of glutamate (Chatterton et al., 2002; 

Smothers and Woodward, 2007). Whether these glycine-sensitive excitatory channels 

are functionally present in neurons is not entirely clear. 

� In contrast to NR1, NR3A/B subunits bind glycine with very high affinity (Yao and 

Mayer, 2006). However, in the absence of NR1, NR3 can not substitute for NR1 to 

form functional channels as no glutamate/glycine-activated currents were induced 

when the NR3 was paired with any NR2 subunit (Chatterton et al., 2002; Smothers and 

Woodward, 2007).  

� When coexpressed with NR1 and NR2, NR3 subunits strongly decreases NMDA-R 

currents, acting in a dominant negative manner (Nishi et al., 2001; Chatterton et al., 

2002), and particularly reduces Mg2+ sensitivity of NMDA-induced currents and Ca2+ 

permeability (Matsuda et al., 2002). These tri-heteromeric NMDA receptors require 

both glutamate and glycine to be activated (Smothers and Woodward, 2007). Thus, in 



Introduction 
 

  46 

the presence of NR2 subunits, excitatory glycine- NR1-NR2-NR3 heteromers may not 

exist in great abundance. Finally, NR3 subunits could also control membrane 

trafficking of NMDA-Rs (Matsuda et al., 2003). 

 

By modulating the properties of NMDA-Rs, NR3 subunits may therefore contribute to the 

regulation of physiological and pathological processes, such as neurodevelopment, synaptic 

plasticity or excitotoxicity. Nevertheless, studies of native NR3-containing NMDA receptors 

are complicated by their pronounced desensitization by free glycine (Chatterton et al., 2002; 

Madry et al., 2007), the small amplitude of their currents, in addition to an atypical 

pharmacology (Smothers and Woodward, 2007). Transgenic mice lacking or over expressing 

NR3A subunits have thus been recently generated to study physiological roles of NR3 subunit 

(Tong et al., 2008). Analysis of hippocampal and cerebro-cortical neurons of these mice 

suggested that NR3A subunits are incorporated into endogenous NMDA-Rs and modulate 

their properties, in the same manner as previously observed in heterologous expression 

system. However, native glycine-excitatory NMDA currents have not been reported and could 

be specific of the NR3 expression in heterologous system (Tong et al., 2008).  

 

Like NR1 and NR2 subunits, NR3A and NR3B are developmentally and spatially regulated. 

In the rat central nervous system, NR3A protein was found to peak at P8, and to decrease 

gradually from P12 to adulthood. In adult, only weak NR3A protein was expressed in the 

cerebellar cortex, more highly in granule cells than in Purkinje cells (Wong et al., 2002). In 

the whole brain, while NR3A mRNA decreases after the second postnatal week, NR3B 

mRNA is constant through development and in adult (Matsuda et al., 2002). Very recently, it 

has been shown that in 8-weeks old rats, Purkinje cells display a strong NR3B 

immunostaining; see Figure  1.12 (Wee et al., 2008). The NR3B labeling extended from the 

soma to the branched dendritic tree in the molecular layer, colocolazing with NR1 

immunolabeling (Figure  1.13). In adult mice, the eventual presence of NR3B subunit in 

Purkinje cells will be discussed in the following results section. Because, NR3 subunits 

decrease the calcium permeability of NMDA receptors, their presence in mature Purkinje cells 

could have functional implications on the long term synaptic plasticity or other mechanisms 

such as neuroprotection from glutamate-mediated excitotoxicity. 
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Figure  1.12: Fluorescent photomicrographs showing NR3B immunoreactivity in rat 
cerebellum. 

(A) Distribution patterns of NR3B immunoreactivity (green) in the granule cells and Purkinje cells. NR3B 
staining in the molecular layer is mostly in the neuropil, although occasional staining of cell bodies was also 
observed. (A’) is the high-magnification image of the area around the asterisk in A. ML, molecular layer; GL, 
granular layer; PL, Purkinje layer; 20 µm. 

 
 

 

Figure  1.13:NR3B is coexpressed with NR1 in Purkinje cells.  

Photomicrographs of cells showing immunoreactivity for both NR3B (green) and NR1 (magenta) in cerebellum 
(M–R). Colocalization of NR1 and NR3B is shown at low magnification in the substructures of the cerebellum 
(M–O). Colocalization of NR1 and NR3B is also shown at high magnification in (P–R). Scales bars 40 µm. 
(Figures from Wee et al., 2008, J Comp Neurol 509(1): 118-35.)  
functional implications on the long term synaptic plasticity or others mechanisms such as neuroprotection from 
glutamate-mediated excitotoxicity. 
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1.5 Problem and work hypothesis  

While NMDA-Rs expressed in neonatal Purkinje cells have still unknown functions, those 

expressed in adult mouse Purkinje cells were so far ignored. The goal of this thesis was thus 

to clarify the function of the neonatal NMDA-Rs and to investigate the expression and the 

functions of the NMDA-Rs in adult mouse Purkinje cells.  

Consequently, we started our study with the following work hypotheses: 

1) Juvenile NMDA-Rs can induce prolonged depolarization of postnatal Purkinje cells. It 

was thus necessary to better understand the effect of depolarization in these cells, in 

particular during the time window of developmental cell death that occurs between P3 

and P5. 

2) The assumption that Purkinje cells do not express NMDA-Rs was mainly based on 

patch-clamp studies of rodents younger than 2 to 3 weeks. A careful examination of 

excitatory responses of Purkinje cells from “true” adult mouse (older than 8 weeks) 

was thus needed. 

 

Using whole-cell patch-clamp recordings, completed by immunohistochemical studies (see in 

the following section, Material and Methods), here are the main results that we obtained:  

1) By means of a collaboration, we demonstrated that depolarizing agents, including 

NMDA, or the presence of CFs, have a neuroprotective effect on postnatal Purkinje 

cells in organotypic cultures. This will be presented in the first part of the results 

chapter. This study provides some clues to understand the role of developmental 

NMDA-Rs in juvenile Purkinje cells. 

2) We evidenced the presence of NMDA-Rs in adult mouse Purkinje cells, and their 

participation to CF responses. These results and their possible implications in adult 

mouse Purkinje cell physiology will be more extensively detailed and discussed in the 

second part of the Results chapter. 

3)  In a third part will be presented our study of NMDA-Rs expression in Purkinje cells 

lacking the GluRdelta2 receptors. In Purkinje cells remaining innervated by multiple 

CFs, we observed that NMDA-Rs mediate the responses of the strongest CF uniquely, 

suggesting their role in the selection and/or the stabilization of one afferent CF during 

development. 

4) Finally, I will present our results in progress on the involvement of NMDA-Rs in PF- 

LTD induction in adult mouse Purkinje cell. 
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2 Materials and methods 

2.1 Animals 

Animals breeding and all the experiments were performed in conformity with animal care 

protocols approved by the French Ministry of Agriculture and the guidelines of the European 

Community Council. In accordance with the French Law, I received a specific formation 

authorizing to perform experiments on animals. A minimal number of animals was used and 

handled with maximum care to minimize their stress and suffering.  

 

Except in the first study presented here (Ghoumari et al., 2006), in which we used Sprague-

Dawley rats (Rattus norvegicus), we used C57Bl/6J mice (Mus musculus) provided by the 

“Elevages Janvier” (Le Genest-St-Isles, France). Ho-Nancy mice used in the third study 

presented in this thesis are on the C57Bl/6J background, and express the Nancy allele, in 

which the deletion in the GRID2 gene spans three of the four transmembrane domains of the 

GluR-delta2 protein. This mutant mouse has been previously described in (Guastavino et al., 

1990) and (Lalouette et al., 2001). 

2.2 Slice preparation 

Equipment setup 

Extractor hood. The use of the volatile anaesthetic 2-bromo-2-chloro-1,1,1-trifluoroethane 

(halothane) requires particular caution; animal anesthesia must be performed under an 

extractor hood equipped with the appropriate filter. 

Instruments: standard fine tools and adequate dissection kit. For Pasteur pipette: the thin part 

of a Pasteur pipette is cut off. A pipette ball is attached to the cut end of the pipette, and the 

blunt end is used to gently move slices from one place to the other. 

Dissection microscope: with a magnification factor of 5–10. 

Vibratome: Vibratome Leica VT1000S, equipped with a cold light source, a magnifier glass, 

knife holder, a specimen disc. The inner buffer-chamber is filled with ice-cold BBS 

(bicarbonate buffered solution, see composition further) and the outer chamber with ice. The 

frequency is set at 6, the speed at 2.5 and cutting thickness at 180 µm. 
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Incubation chamber: a submerged chamber optimized to ensure sufficient oxygenation of 

the tissue is filled with BBS, and bubbled continuously with carbogen (95% oxygen, 5% 

carbon dioxide) at room temperature. 

Dissection and slice procedure: 

Animals are first anesthetized by halothane inhalation and then rapidly decapited. The skin is 

removed from the posterior part of the cranium. The skull is cut laterally and along the line 

separating the cerebellum from the forebrain, with micro-dissection scissors. The cerebellar 

vermis is removed from the brain, and rapidly transferred to ice-cold, carbogen saturated 

slicing solution in a Petri dish. Under microscope visual control, the meninges are gently 

removed, in order to facilitating the subsequent slicing. The vermis is slid laterally onto a thin 

film of cyanoacrylate glue on the cooled specimen disc that is next fixed in the vibratome 

chamber, then filled with ice-cold carbogen-saturated BBS. Parasagittal 180 µm-thick slices 

are cut and placed in the incubation chamber (containing carbogen-saturated BBS) for at least 

60 min at room temperature, until use. Slices are generally usable for 5–6 hours after 

incubation. 

2.3 Electrophysiology 

Erwin Neher and Bert Sakmann developed the patch clamp in the late 1970s and early 1980s. 

This technique (Hamill et al., 1981) relies on the particular capacity of cellular membranes to 

form a tight contact with a glass pipette apposed to the cell surface. The recording of 

picoampere-sized currents with a good resolution and a relatively low background noise is 

allowed by the high resistance seal that can be obtained between the glass and the cell 

membrane (a "gigaseal", since the electrical resistance of the seal is in excess of a gigaohm). 

Patch-clamp technique has been adapted by (Edwards et al., 1989) for in situ cell recording, in 

acute brain slices. 

 

Equipment setup 

Vibration isolation table:  in our case, a pneumatic system is used, with a compressed air 

supply. This isolates the experimental setup from vibrations. 

Shielding and grounding: The setup is enclosed in a Faraday cage connected to the ground 

that shields from interference and electric fields. Furthermore, electrical apparatus 

(microscope, manipulators…) and any conductive material in the setup are grounded in the 

same single-point. 

Upright microscope: our Zeiss Axioskop-FS microscope is equipped with the followings: 
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- Nomarski differential interference contrast optics,  

- a water-immersion objective: 40 times, which enables long working distance (>2 mm 

electrodes are inserted at a steep angle of >25°),  

- a magnifier, placed between the objective and a video camera CCD, offers 2.25 times 

magnification (Nikon). A black and white video monitor allows the visualization, 

without requiring the microscope oculars.  

Patch-clamp amplifier: Axopatch-200A amplifier (Molecular Devices) which allows 

voltage- as well as current- clamp recordings.  

Recording equipment: a standard oscilloscope allows to directly access to the amplifier 

output, and the computer acquires and stores crude data with the ACQUIS1 software (Bio-

Logic, France). 

Motorized micromanipulators: They allow continuous sub-micron movements by 

piezoelectric actuators systems, and are oriented so that each pipette can be changed 

independently. One is from Burleigh Instrument (PCS-5000) and the two others are from 

Luigs&Neuman (LN unit 4MRE).  

Pipettes: are made of thick-walled, borosilicate glass capillary, filamented to ease filling with 

internal solution (see below for composition). Pipettes are pulled on a horizontal 2-stage 

puller (Sutter Instrument) and fire polished (MF-830; Narishige) to a final resistance of 2-5 

MΩ depending on the internal solution used. Patch-pipette solutions are filtered with 0.2 µm 

pore filters and disposable fillers (Microloader, Eppendorf) are used to fill pipettes. Electrodes 

are made of a silver wire coated with silver chloride. Pipettes are stably kept by pipette 

holders. The patch-pipette holder is connected by a catheter to a disposable syringe which 

enables positive pressure as well as pulses of suction applications. A manometer monitors 

pressure and suction changes. 

Experimental slice chamber and perfusion system: A glass-bottomed chamber is used and 

continuously perfused at a fairly high rate (typically 1–2 ml/min), with carbogen-saturated 

(and heated, if relevant) BBS to ensure adequate oxygenation. The BBS is removed from the 

chamber via outflow tubing connected to a peristaltic pump (Gilson). The pump rate of 

aspiration is monitored via a pressure transducer immersed in the recording chamber. When 

solutions are heated prior to entry (to 32-35°C, by a heating jacket around the inflow), a small 

temperature probe close to the slice is used to accurately monitor recording temperature. A 

“harp”, a U-shaped piece of flattened platinum with nylon threads (pulled from nylon tights) 

glued across it, is used to hold down the cerebellar slice in the recording chamber. A reference 
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electrode, consisting in a silver wire coated with silver chloride, is also immersed in the 

recording chamber and connected to the ground of the amplifier headstage. 

 

Patch-clamp procedure 

The cerebellar slice is gently transferred in the perfused recording chamber. Purkinje cells are 

visually identified from their position, size and shape. Candidate cells are chosen on their 

“healthy looking” somata and in function of their accessibility to patch-pipette (Edwards et 

al., 1989).  

 

The patch-pipette is filled with internal solution (~15 µl) and inserted in the pipette holder. A 

positive pressure is applied before entering the bath solution. The pipette is lowered into the 

bath, and moved into position, just above the cell. In voltage clamp, a 'test pulse' (-10 mV, 10 

ms square pulse of voltage, applied at >3 Hz) is applied and the current required for this 

voltage pulse is monitored on an oscilloscope. At this time, the resistance of the pipette tip 

can be calculated using Ohm's law (Resistance = Voltage/Current). On the patch-clamp 

amplifier, any voltage offset between the electrode and the bath (“pipette potential”) is zeroed.  

 

Bath and “intra-pipette” solutions are composed of different anions and cations concentrations 

with different mobility, generating a liquid junction potential (LJP). This LJP is thus also 

compensated at this time, when any voltage offset is zeroed. After achieving the whole-cell 

voltage clamp, the pipette solution is no longer in direct contact with the bath solution, thus, 

its LJP disappears, but its compensating amplifier offset remains. Internal solutions KCl or 

CsCl based induce small LJP, and this error can be neglected in these cases. For other internal 

medium, in which the error can not be neglected, the LJP can be calculated and the correction 

on the imposed potential can be applied on-line or a posteriori. 

 

Then, the pipette is approached to the cell surface with a continuous focus on the tip of the 

electrode. When a dimple starts to appear, the pressure on the pipette is immediately released, 

light negative pressure is then applied to the pipette via gentle suction and finally the holding 

voltage potential (- 70 mV) is applied. Once a stable giga-seal has formed, pipette capacitance 

compensations (slow and fast) can be done. Then, the cell membrane beneath the pipette tip is 

broken by brief suction to enter the whole-cell recording mode. Series resistance (access + 

pipette resistances) and membrane capacitance are estimated and compensated (70-75%). 

Signals are filtered at 2 or 5 kHz (low-pass) and usually sampled at 25-37 µs. 
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Figure  2.1 : Purkinje cell filled with Magnesium Green through a patch pipette (bottom), with 
glass pipettes for PF and CF activation (straight white outlines). (from Wang et al, 2000) 

 

Electrical stimulations of Purkinje cell afferences 

Extracellular stimulations of CFs or PFs were performed with constant voltage isolated units 

(0.1 ms square voltage pulses; 1-90 V) through pipettes filled with external solution. This 

pipette was moved around in the granular layer or molecular layer in the vicinity of the 

recorded Purkinje cell until the search response was obtained: for climbing fiber, an all-or-

nothing strong response, displaying paired-pulse depression (40 ms interval); for parallel 

fiber, a gradual response depending on the stimulation intensity and displaying paired-pulse 

facilitation. 

 

PF-LTD induction 

For plasticity experiments, except when otherwise specified, the recording pipette was filled 

with a K-Gluconate based internal solution containing 1 mM EGTA (see further). Stimulation 

pipettes were set in a similar manner as shown on Figure  2.1. CF was rapidly searched after 

the entry in the whole-cell patch-clamp mode. If the CF response was not found in the 

following 10 minutes, the cell was not used for plasticity experiment, because of the 

intracellular content dialyse that occurs in this patch-clamp configuration. PF responses were 

recorded during a 10 minutes control period, in which PFs were stimulated at a frequency of 

0.2 Hz. Next, in current clamp mode, we used a protocol of LTD-induction adapted from 

Wang et al. (2000), consisting of a train of 5 to 8 PF stimuli evoked at 100 Hz, followed by 
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the CF stimulation 50 to 150 ms later. This pairing was delivered at 1 Hz during 5 minutes. 

Then, in voltage-clamp mode, PF responses were still stimulated at 0.2 Hz. 

 

PF-LTP induction 

The protocol was the same as the PF-LTD protocol previously described, but CF was not 

stimulated. 

 

Ionophoresis experiments 

Ionophoretic pipettes have a final resistance of 40-50 MΩ when filled with 10mM NMDA in 

BBS (pH was set at 7.5). NMDA was ejected using negative square pulses ranging from 100 

to 250 nA. To limit diffusion of NMDA in the BBS, a small positive retention current (usually 

10-15 nA) was continuously applied to the ionophoresis pipette between ejections. 

2.4 Solutions and pharmacology 

Extracellular solutions  

 BBS BBS “Mg free” 

Component (in mM)   

NaCl 130 130 

KCl 2.5 2.5 

CaCl2 2.0 2.0 

MgCl2 1.0 0 

NaHCO3 26.0 26.0 

NaH2PO4 1.3 1.3 

Glucose 10.0 10.0 

 

The bicarbonate buffered solution (BBS) is used for slicing, for incubating slices and for 

electrophysiological recordings. This solution was modified for experiments in which the 

absence of magnesium was required (BBS “Mg free”). The BBS solution is prepared daily 

from a 10 times concentrated stock. Its pH is 7.4 at room temperature after carbogen (95% 

CO2, 5% O2 ) saturation. Its osmolarity is ~300 mOsm. 
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Intracellular solutions 

 

KCl-1EGTA 

KGluconate/ 

6 KCl 

10 EGTA 

KGluconate/ 

6 KCl 

1 EGTA 

CsGluconate 

10 EGTA 

Component  

(in mM) 

    

KCl 150 6.0 6.0 0 

K-Gluconate 0 144 144 0 

Cs-Gluconate 0 0 0 150 

MgCl2 4.6 4.6 4.6 4.6 

HEPES acid 10.0 10.0 10.0 10.0 

EGTA 1.0 10.0 1.0 10.0 

CaCl2 0.1 1.0 0.1 1.0 

ATP-Na 4.0 4.0 4.0 4.0 

GTP-Na 0.4 0.4 0.4 0.4 

pH adjustment With KOH With KOH With KOH With CsOH 

 

Intracellular solutions based on K+ ions were preferred because they are considered as more 

physiologic. Gluconate was used instead of Cl in order to prevent Cl currents in Purkinje 

cells. In some experiments, including current-voltage (I-V) curve protocols, the solutions 

contained Cs to replace K+ ions in order to block K+ conductances, which can decrease 

background noise during recordings. All internal solutions had an osmolarity of ~300 mOsm 

and the pH was adjusted to 7.3. They were aliquoted, then frozen and stored at -18°C until 

utilization. 

 

In some specified experiments, we added 1 or 3 mM of (5R,10S)-(+)-5-methyl-10,11-

dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine hydrogen maleate (MK8001) to the internal 

solution to block postsynaptic NMDA-Rs; no differences were detectable between the two 

concentrations. 
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List of the drugs used 

Bicuculline methiodide (20 µM, Sigma, France) was systematically added to the BBS during 

electrophysiological recordings, in order to block GABAA-mediated currents. Similarly, 25 

µM Glycine was also systematically added in BBS. 

 

Commercial 

name 

Complete  

chemical name 

Provider Effect Generally used 

concentration 

Glycine Glycine Sigma NMDA-R coagonist 25 µM (bath) 

MK801 (5R,10S)-(+)-5-methyl-

10,11-dihydro-5H-

dibenzo[a,d]cyclohepten-

5,10-imine hydrogen 

maleate (MK8001) 

Sigma NMDA-R channel 

blocker 

1 to 3 mM 

(“internal” use) 

 

NBQX 1,2,3,4-tetrahydro-6-nitro-

2,3-[f]-quinoxaline-7-

sulfonamide 

Sigma Selective AMPA-R 

antagonist 

10 µM (bath) 

D-APV D-(-)-2-amino-5-

phosphonopentanoic acid  

Tocris Selective NMDA-R 

antagonist 

50 µM (bath) 

NMDA N-Methyl-D-Aspartate Tocris Selective NMDA-R 

agonist 

20 to 100 µM 

(bath) 

10 mM 

(iontophoresis) 

CNQX 6-cyano-7 

nitroquinoxaline-2,3-dione 

Tocris AMPA-R antagonist 10 to 50 µM 

(bath) 

TTX tetrodotoxine Tocris Na+ voltage-

dependent channels 

blocker 

1 µM (bath) 

AIDA (RS)-1-aminoindan-1,5-

dicarboxylic acid 

Tocris selective Group 1 

mGluR antagonist 

100 µM (bath) 

DL-TBOA DL-threo-β-

benzyloxyaspartic acid 

Tocris Specific and non 

transported 

glutamate 

transporter blocker 

100 µM (bath) 

RU486 

(mifepristone) 

17β-hydroxy-11β-(4-

methylamino-phenyl)-

17α)-(1-propynyl)estra-4,9-

Sigma See publication 1 1 -50 µM (bath 

and cultures) 
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dien-3one 

Bicuculline Bicuculline methiodide Sigma GABAA receptor 

inhibitor 

10 or 20 µM 

(bath) 

RO25-6981 R-(R,S)-{alpha}-(4-

hydroxyphenyl)-{beta}-

methyl-4-(phenylmethyl)-

1-piperidine propranol 

Tocris Selective antagonist 

of NR2B-containing 

NMDA-Rs 

3 to 30 µM 

(bath) 

 

2.5 Data analysis and inclusion criteria 

In the current-clamp mode, cells that were spontaneously more depolarized than -50 mV and 

that needed large current injection to maintain their membrane potential at -70 mV were 

considered to be damaged and were discarded. 

 

To estimate whether a cell displays a detectable D-APV-sensitive and NBQX-resistant EPSC, 

the amplitude of the NBQX-resistant EPSCs in control and during bath application of D-APV 

were compared using a Mann-Whitney one-tailed statistical test. If the two populations of 

amplitudes (control and D-APV) were statistically different (p<0.05, where p is the null 

hypothesis probability), D-APV was considered as having an effect, and the percentage of 

blockade induced by D-APV was calculated. 

 

For analysis of complex spikes, spikes and spikelets were first identified with a threshold 

detection protocol (usually 20 mV). Spike or spikelet latencies were estimated by calculating 

the time between the stimulation and the occurrence of the spike or spikelets. 

 

Averages are given as mean +/- SEM. For statistical comparisons, unless specified, Mann-

whitney or Wilcoxon procedures were used, and p is given as the probability of the null 

hypothesis. 

2.6 Immunohistochemistry 

Parasagittal 60 µm slices were prepared as previously described except that a slicing sucrose 

BBS was used. This solution (containing in mM: 1 CaCl2, 5 MgCl2, 10 Glucose, 4 KCl, 26 

NaHCO3, 248 Sucrose, 1.3 NaH2PO4, pH 7.35) was cooled to 4°C and bubbled with 95% O2 

and 5% CO2. Immediately after slicing, slices were fixed with 4% paraformaldehyde in 

phosphate-buffered saline (PBS) for 2 hours. They were then rinsed 3 times with PBS. 
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Permeabilization and saturation were performed during 1 h on free-floating sections with PBS 

containing 0.25% Triton X-100 and 0.25% fish gelatine (PBS-G-T).  

 

For NR2-C and NR2-D immunodetection, two types of anti-NR2 antibodies were used: a 

rabbit anti-NR2-D raised against amino acids 268-386 of human NR2D, and a goat anti-

NR2C/D raised against a peptide mapping at the C terminus of NR2D of mouse. The latter 

also recognizes NR2C (sc-1471; Santa Cruz Biotechnology, distributed by Tebu, Le Perray en 

Yvelines, France). For NR2A/B immunodetection, rabbit anti-NR2-A/B raised against the C-

terminus tail of the rat NR2A subunit was used. It recognizes both NR2A and NR2B mouse 

proteins equally (AB1548; Chemicon, Temecula, CA, distributed by Euromedex, 

Mundolsheim, France). Slices were divided into three batches and incubated overnight at 

room temperature in the following combinations:  

(1) with only the rabbit anti-NR2-A/B antibody (1 µg/ml),  

(2) with NR2-A/B, mouse anti-Calbindin-D28k (1/10000; Swant, Bellizona, Switzerland) and 

guinea pig anti-Vesicular Glutamate Transporter 2 (VGLUT2) (1/3000; Chemicon) -

antibodies, 

(3) with PBS-G-T only (control).  

 

Slices were then incubated 2 hours with the fluorescent secondary antibodies (10 µg/ml; 

Invitrogen): Alexa Fluor 546 goat anti-rabbit (combinations 1-3), Alexa Fluor 633 goat anti-

mouse and Alexa Fluor 488 goat anti-guinea pig (combinations 2 and 3). The labeled slices 

were mounted in Vectashield medium (Vector Laboratories) and viewed with a confocal 

laser-scanning microscope (SP2; Leica) using a 63x objective. In multiple labeling 

experiments, acquisition of the signal was systematically performed in sequential mode. 

Alexa Fluor 488 was excited at 488 nm (argon laser), Alexa Fluor 546 at 543 nm (helium-

neon laser), and Alexa Fluor 633 at 633 nm (helium-neon laser). Fluorescence signals were 

corrected for background fluorescence by measuring slices from control combination 3. 

 

Three dimensional reconstructions were performed using the Imaris-4software (Bitplane). 
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3 Results 

3.1 Publication 1: 

Neuroprotective effect of mifepristone involves 
neuron depolarization 

 

 
 

« En général, la mort fait que l'on devient plus attentif à la vie. » 

Paulo Coelho, L'Alchimiste 

 

 

3.1.1 Introduction 

It is generally accepted that the process of programmed cell death is common of the 

physiological neuronal development. In the developing cerebellum in vivo, there are two 

major periods of programmed cell death for Purkinje cells: (i) an early embryonic period 

around E15 (Ashwell, 1990), and (ii) a postnatal period between P1 and P5 with a peak at P3 

(Ghoumari et al., 2000). Similarly, survival of mouse Purkinje cells in organotypic cultures is 

age-dependent. In particular, a vast majority of Purkinje cells die by apoptosis when 

cerebellar slices are taken from P1 to P5 mouse and rat pups, but before and after this period, 

Purkinje cells survive in cultures (Dusart et al., 1997). This period of Purkinje cell 

vulnerability corresponds to a time window when Purkinje cells in vivo are engaged in intense 

synaptogenesis, dendritic remodelling and cell death. 

 

The role of NMDA-Rs in neonate Purkinje cells in vivo remains to be elucidated. Some clues 

have been however brought by an in vitro study of Yuzaki et al. (1996) who showed that 

NMDA-Rs of Purkinje cells themselves support their survival in culture. Indeed, in primary 

cultures made from WT mice at E18 or P0, in which most of the Purkinje cells die within the 

first 4 days in vitro, NMDA-Rs were shown to enhance the survival of immature Purkinje 

cells. NMDA-Rs antagonists inhibit this effect in cultures in a dose-dependent manner. In 
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cultures made from NR1 knockout mice, Purkinje cells death was more important. 

Conversely, adding exogenous NMDA or (NR1-/-) granule cells to the cultures increased 

Purkinje cells survival (Yuzaki et al., 1996). This study thus suggests that juvenile NMDA-Rs 

could protect postnatal Purkinje cells in vivo, in particular during the critical periods of 

developmental cell death. In the following study, we did not directly test the mechanism by 

which NMDA-Rs enhance the survival of postnatal Purkinje cells, but we propose that it 

involves depolarization, as we show that mifepristone, as other depolarizing agents, has strong 

neuroprotective effects at P3. 

 

Mifepristone is an antagonist of the glucocorticosteroid and progesterone receptors that is 

better known as RU486, its designation at the Roussel Uclaf company, which designed the 

drug in 1980. Although mifepristone is mainly used as an abortifacient, as an emergency 

contraceptive or as a treatment for obstetric bleeding, it has also been shown to protect rat 

hippocampal neurons from apoptosis after oxidative stress in vitro (Behl et al., 1997), or 

traumatic brain injury in vivo (McCullers et al., 2002). These observations suggested that 

mifepristone could be of biomedical interest for neuroprotective strategies in brain after 

stroke, injury or under pathological conditions. Mifepristone also protects Purkinje cells from 

apoptosis in organotypic slice cultures of postnatal rodent cerebellum and this neuroprotective 

effect is independent of the activation of glucocorticoid or progesterone receptors (Ghoumari 

et al., 2003). 

 

The first aim of the following collaborative study was to understand the neuroprotective 

mechanism of mifepristone. It revealed that mifepristone induces a down regulation of the 

Na+/K+-ATPase expression that causes a neuroprotective depolarization of the postnatal 

Purkinje cell. This study also showed that, more generally, depolarizing agents and 

interestingly, excitatory inputs provided at least by climbing fibers, protect postnatal Purkinje 

cells in cultures. 

3.1.2 Summary of the results 

- DNA microarrays and immunoblotting assays showed that mifepristone prominently inhibits 

the increase of the expression of the Na+/K+-ATPase alpha3 subunit in organotypic cultures of 

P3 cerebella. In mifepristone-treated slices, the enzymatic activity of the Na+/K+-ATPase 

pump is returned to a level comparable to that observed in vivo. Ouabain, a blocker of the 
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Na+/K+-ATPase pump, prevents Purkinje cells death in cultured P3 cerebellar slices, 

mimicking the effect of mifepristone. 

 

- We brought our expertise of patch-clamp recordings to compare the electrophysiological 

behaviour of Purkinje cells in P3 cerebellar slices treated with mifepristone versus in control 

conditions. We demonstrated that the resting potential of Purkinje cells treated with 

mifepristone was significantly more depolarized than control cells. Moreover, mifepristone-

treated Purkinje cells do not fire action potentials, either spontaneously (in absence of current 

injection), or in response to square current pulses, whatever their holding potential. Thus 

mifepristone induces Purkinje cells depolarization and prevents action potential firing. 

 

- P3 cerebellar slices were treated with different depolarizing agents such as high K+, the K+ 

channel blocker TEA and the Na+ channel activator veratridine, that all prevented the 

apoptosis of Purkinje cells in cultures. Similarly, the depolarization of Purkinje cells with 

veratridine supports their survival, and is probably mediated by T-type calcium channels, 

since this effect was blocked only by flunarizine. 

 

- Although the mifepristone-associated depolarization of Purkinje cells is accompanied by an 

increase of cytoplasmic Ca2+, voltage-gated Ca2+ channels are probably not involved in the 

neuroprotective effect of mifepristone, as shown by the absence of effect of Ca2+ chelator 

EGTA, or of T- and L-types voltage-gated Ca2+ channels blockers on mifepristone-associated 

survival.  

 

- Organotypic cultures of cerebellum made from P1 to P7 are deprived from their main 

glutamatergic inputs: the climbing fibers. Conversely, olivo-cerebellar cocultures allowed the 

restoration of climbing fibers connections on P3 Purkinje cells, and this was associated with 

an increase of the Purkinje cells survival. 

 

For figures and details, see accompanying paper. 
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ABSTRACT In several regions of the developing ner-
vous system, neurons undergo programmed cell death.
In the rat cerebellum, Purkinje cell apoptosis is exac-
erbated when cerebellar slices are cultured during the
first postnatal week. To understand the mechanism of
this developmental apoptosis, we took advantage of its
inhibition by the steroid analog mifepristone. This
effect did not involve the classical steroid nuclear
receptors. Microarray analysis revealed that mifepris-
tone down-regulated mRNA levels of the Na�/K�-
ATPase �3 subunit more than three times. Consistent
with the down-regulation of the Na�/K�-ATPase, mife-
pristone caused Purkinje cell membrane depolariza-
tion. Depolarizing agents like ouabain (1 �M), tetraeth-
ylammonium (2 mM), and veratridine (2 �M) protected
Purkinje cells from apoptosis. These results suggest a
role of excitatory inputs in Purkinje cell survival during
early postnatal development. Indeed, coculturing cere-
bellar slices with glutamatergic inferior olivary neuron
preparations allowed rescue of Purkinje cells. These
findings reveal a new neuroprotective mechanism of
mifepristone and support a pivotal role for excitatory
inputs in the survival of Purkinje neurons. Mifepris-
tone may be a useful lead compound in the develop-
ment of novel therapeutic approaches for maintain-
ing the resting potential of neurons at values
favorable for their survival under neuropathological
conditions.—Ghoumari, A. M., Piochon, C., Tomkie-
wicz, C., Eychenne, B., Levenes, C., Dusart, I., Schuma-
cher, M., Baulieu, E. E. Neuroprotective effect of
mifepristone involves neuron depolarization. FASEB J.
20, 1377–1386 (2006)
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Purkinje cells die by apoptosis in organotypic culture
when cerebellar slices are taken between P1 and P7 (1,
2). Although protein kinase C (PKC), the mitochon-
drial pathway of apoptosis, and microglial cells are
involved in this developmental Purkinje cell death, the
underlying cellular and molecular signaling mecha-
nisms remain unknown (2–4). As Purkinje cells in
organotypic cultures die precisely at a time when in-
creased neuronal apoptosis is observed in vivo and
when intense dendrite remodeling and synaptogenesis

take place (4–6), the event is likely to reflect a physio-
logically relevant developmental process.

We previously demonstrated that mifepristone,
well known as an antagonist of the glucocorticoste-
roid and progesterone receptors (7), protects Pur-
kinje cells from apoptotic death in organotypic slice
cultures of postnatal rat and mouse cerebella by a
novel mechanism that involves neither classical intra-
cellular steroid receptors nor the antioxidant prop-
erties of the steroid analog (8). Mifepristone had
already been shown to protect hippocampal neurons
from apoptosis after traumatic brain injury or during
oxidative stress (9, 10).

The strong neuroprotective effect of mifepristone
was expected to give clues to the age-dependent Pur-
kinje cell death and to reveal important developmental
features of this neuron. We show that mifepristone
prevents the increase in Na�/K�-ATPase �3 subunit
expression and activity that normally follows the culture
process, thus maintaining the Purkinje cells in a depo-
larized status resulting in their survival. Indeed, various
depolarizing procedures such as high external K�,
blockade of K� channels and of the Na�/K�-ATPase,
and activation of Na� channels were able to mimic the
protective effects of mifepristone on Purkinje cells. The
catalytic �3 subunit isoform of the Na�/K�-ATPase is
expressed in the nervous system, particularly in rat
Purkinje cells (11–12), and blocking the pump leads to
a rapid depolarization of Purkinje cells (13).

Most important, the restoration of excitatory synaptic
afferents from inferior olivary neurons allowed partial
rescue of Purkinje cells. The present findings reveal a
novel mechanism involved in the neuroprotective ef-
fects of mifepristone, and provide further support for a
pivotal role of excitatory inputs, provided at least in
part by climbing fiber innervation, in the survival of
postnatal Purkinje neurons.

1 Correspondence: INSERM U488, 80 rue du Général
Leclerc, Kremlin-Bicêtre 94276, France. E-mail: ghoumari
@kb.inserm.fr

doi: 10.1096/fj.05–5832com
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MATERIALS AND METHODS

Slice cultures and cocultures

Cerebellar slices were prepared from postnatal day 3 (P3)
Sprague-Dawley rats (Janvier, Le Genest St. Isle, France). For
each experiment, at least 3 animals and 18 slices were used.
After decapitation, brains were dissected out into cold Gey’s
balanced salt solution containing 5 mg/ml glucose (Glc)
(GBSS-Glu) and meninges were removed. Cerebellar parasag-
ittal slices (350 �m thick) were cut on a Macllwain tissue
chopper and transferred onto membranes of 30 mM Milli-
pore culture inserts with 0.4 �m pore size (Millicell, Milli-
pore, Bedford, MA, USA).

Transverse slices (350 �m thick) of the ventral medial
portion of the anterior medulla containing the inferior
olivary neurons (14) were obtained from the same P3
Sprague-Dawley rat and cut on a Macllwain tissue chopper.
Cerebellar slices and the slices containing inferior olivary
neurons were cocultured on membranes of 30 mM Millipore
culture inserts. Even if the ventral medial portion of the
anterior medulla contains neurons other than inferior olivary
neurons, in this study we use the terminology of inferior
olivo-cerbellar coculture as used in a study by Audinat et al.
(14).

Slices were maintained in culture in 6-well plates contain-
ing 1 ml of medium at 35°C in an atmosphere of humidified
5% CO2. The medium was composed of 50% basal medium
with Earle’s salts (Invitrogen, Gaithersburg, MD, USA), 25%
Hanks’ balanced salts solution (Life Technologies, San Diego,
CA, USA), 25% horse serum (Life Technologies), l-glu-
tamine (1 mM), and 5 mg/ml Glc.

Chemicals

The principal steroids and chemical compounds used were
RU486 (mifepristone: 17�-hydroxy-11�-(4-methylamino-phe-
nyl)-17�)-(1-propynyl)estra-4,9-dien-3 one), ouabain, tetra-
ethylammonium (TEA), veratridine, tetrodotoxin (TTX), ni-
fedipine, flunarizine (Sigma, St. Louis, MO, USA), and KCl
(Merck, Rahway, NJ, USA). Doses with maximal efficiency
retained were 1–50 �M for all compounds except for TEA
(1–5 mM) and KCl (30 mM). Cerebellar slices were treated
with these compounds the day of culture and maintained for
5 days in vitro (5DIV). Medium with the respective steroids or
drugs was replaced once after 2 or 3 days.

RNA isolation and cDNA probe synthesis

Cerebellar slices from rat P3 were cultured in the presence or
not of 20 �M RU486. After 1 h incubation, total RNA
isolation, poly(A)� RNA enrichment, and cDNA probe syn-
thesis were carried out for treated or untreated cells with the
Atlas Pure Total RNA labeling system (Clontech, Palo Alto,
CA, USA), as specified by the manufacturer. Prior to purifi-
cation of poly(A)� RNA, total RNA was treated with DNase I.
Poly(A)� RNA enrichment was done on 50 �g of total RNA.

Hybridization of labeled cDNA to Atlas plastic microarrays

Plastic microarrays (Atlas Plastic Mouse 5K microarray-S2838,
Clontech, Palo Alto, CA, USA) were prehybridized for 30 min
at 60°C with prewarmed hybridization solution. Equal counts
of labeled probe from treated or untreated cells were added
independently, after denaturation in a boiling water bath
(95–100°C) for 5 min, onto two plastics microarrays. The
reaction was allowed to proceed overnight at 60°C in roller

bottles. The next day the plastic microarrays were washed
twice with a high-salt wash solution at 58°C for 5 min. Two
additional washes with a low salt solution were done at 58°C
for 5 min. The plastic microarrays were then exposed to a
PhosphorImaging screen for 24 h and scanned at a resolution
of 50 �m on a PhosphorImager (Storm 840, Molecular
Dynamics, Sunnyvale, CA, USA). Analysis of differential gene
expression was performed with the Atlasimage 2.0.1 software
(BD Biosciences, San Jose, CA, USA). This experiment was
repeated twice and the genes regulated by RU486 in both
experiments were selected.

Immunoblot assay

Cerebellar slice cultures were cultured in the absence (con-
trols) or presence of 20 �M RU486 for 30 min, 1 h, 3 h, or 9 h.
Slices were then washed with PBS and dissolved in Laemmli
buffer. Identical amounts of proteins from each sample (25
�g) were separated by electrophoresis using 10% polyacryl-
amide gel, then transferred onto PVDF membranes by semi-
dry transfer. After blocking with 5% dry milk, the membranes
were incubated overnight at 4°C with a primary monoclonal
anti-Na�/K�-ATPase alpha3 antibody (Ab) (1/1000 dilution;
Ozyme, St. Quentin En Yvelines, France). After washing with
Tween20-PBS buffer, membranes were incubated for 1 h with
peroxidase-conjugated AffiniPure goat anti-mouse (1/20000
dilution; Jackson Immunoresesearch Laboratories, Inc., West
Grove, PA, USA). The blots were developed with an enhanced
chemiluminescence�plus detection kit (Amersham, Little
Chalfont, UK).

Na�/K�-ATPase activity

Purified rat Na�/K�-ATPase was prepared from the organo-
typic slice cultures of P3 rat cerebella by an optimized method
of the method of Jørgensen (15) and the one of Muszbek
(16). The slices were untreated (Ctr) or treated separately
with 20 �M RU486 or 1 �M ouabain for 3 h. Enzyme
preparations were stored in ice-cold 0.25M sucrose, 30 mM
histidine (pH 7.2). Homogenates were centrifuged twice with
renewing buffer for 45 min at 60,000 rpm. Protein concen-
tration was determined by the Lowry method using BSA as a
standard. Fifty micrograms of each sample were transferred to
tubes for enzyme assays with ATP (1 mM), MgCl2 (3 mM),
NaCl (130 mM), KCl (20 mM), and histidine (30 mM). After
30 min at room temperature, the reaction was stopped with
250 �l TCA; the inorganic phosphate (Pi) complex with
phosphomolybdate was measured using spectrophotometer
at 623 nM. Enzyme activity is expressed in �moles Pi/min per
milligram protein and mean values � se are calculated for
groups of at least 3 animals.

Antibodies and staining procedures

Rabbit polyclonal and mouse monoclonal antibodies against
calbindin D-28K (diluted 1/10,000, Swant, Bellinzona, Swit-
zerland) were used to visualize Purkinje cells, and Ab against
guinea pig VGluT2 (1/350, Chemicon, Temecula, CA, USA)
was used to label climbing fibers but also mossy and parallel
fibers (1, 17, 18). These first antibodies were revealed,
respectively, with secondary antibodies against goat anti-
rabbit CY3 Ab (1/200 dilution; Jackson ImmunoResearch
Laboratories, Inc.), goat antimouse Alexa Fluor488 (1/1000
dilution, Molecular Probes, Leiden, Netherlands), and don-
key anti-guinea pig CY3 (1/200 dilution, ImmunoResearch
Laboratories). Staining procedures were performed as de-
scribed previously (1, 2).
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Quantification of Purkinje cell survival

To determine the Purkinje cell survival in the cultures,
neurons were immunostained with the anticalbindin Ab and
counted under a fluorescence microscope (axiovert 135M;
Zeiss, Oberkochen, Germany) as described previously (8).
Under these conditions, we counted the total number of
surviving Purkinje cells per slice and calculated the means.
Images of the immunostained Purkinje cells in organotypic
slice cultures of rat and mice cerebella were acquired using an
image analyzing system, confocal Zeiss LSM 410 (Zeiss).
Images were acquired with a nonconfocal configuration (488
nM excitation).

Electrophysiology

Cerebellar slices were prepared from Sprague-Dawley rats
(P3-P4). The cerebellum was rapidly removed and submerged
in ice-cold bicarbonate-buffered solution (BBS) bubbled with
95% O2, 5% CO2. Sagittal slices 180 �m thick were cut with a
vibroslicer (LEICA VT-1000S) and incubated at room temper-
ature (20–22°C) for at least 1 h prior to electrophysiological
recordings either in standard BBS supplemented with 0.5 ‰
alcohol (as the vehicle) for controls or in standard BBS � 25
�M RU486 for test experiments. Slices were then transferred
in a recording chamber superfused at a rate of 1.5 ml/min
with oxygenated BBS containing, in mM: NaCl, 130; KCl, 2.5;
MgCl2, 1; CaCl2, 2; NaHCO3, 26; NaH2PO4, 1.3; Glc, 10; final
pH 7.35 at 20°C.

Purkinje neurons were visually identified from their posi-
tion, size, and shape using Nomarski differential interference
optics [40� water immersion objective (Zeiss) plus a 2.25 �
zoom (Nikon)] mounted on an upright Axioskop fibrous
sheath microscope (Zeiss). Patch-pipettes were pulled with a
2-stage puller (Sutter Instrument, Movato, CA, USA) from
borosilicate capillary glass tubing. Pipettes were fire polished
to a final resistance of 3–5 M� when filled with the following
internal solution (in mM): KCl, 150; HEPES, 10; EGTA, 1;
MgCl2, 4.6; CaCl2, 0.1; ATP-Na, 4; GTP-Na, 0.4; pH was
adjusted to 7.3 with KOH. In some experiments 150 mM KCl
was replaced by 150 mM K-gluconate to prevent chloride
currents. As no difference was observed between cells patched
with K-gluconate compared to those patched with KCl-based
internal solution, results were pooled. Purkinje cells were
recorded by patch-clamp in whole-cell configuration using an
AXOPATCH 200A amplifier (Axon Instruments, Union City,
CA, USA). Patch and estimation of capacitance and series
resistance were made in voltage-clamp mode and series
resistances were partially compensated (60–70%). Record-
ings were then made in the current-clamp mode. Acquisition
and storage were made on a PC running the ACQUIS1
software (Biological). The Mann-Whitney procedure was used
for statistical comparison of means; P is given as the proba-
bility of the null hypothesis. Statistical values are given as
mean � se.

Measurement of intracellular Ca2� levels

Cytoplasmic free calcium levels were analyzed in different
regions of the P3 slices using calcium Fluo-4 (Molecular
Probes, Inc., Eugene, OR, USA). P3 cerebellar slices were
made in culture in the absence (Ctr) or presence of 20 �M
RU486. At the same time, 10 �M calcium Fluo-4 was added to
cultures for 1 h at 37°C, then washed with serum-free Glc-
supplemented Eagle basal medium medium to remove Fluo-4
in excess. The fluorescent signal (excitation at 480 nM;
emission, 510 nM) was visualized using an image analyzing
system, confocal Zeiss LSM 410 and measured using the NIH

image software. The calcium Fluo-4 staining density was
quantified on a continuous scale of 0–255 (darkest). To
minimize differences among the respective measurements,
we set as control an arbitrary concentration of staining 100.
The Fluo-4 staining density was evaluated as a percentage of
(light pixels/light�dark pixels)

Statistical analysis

Data were expressed as mean for at least 18 cerebellar slices
(n�18) from three animals (n�3) and in three independent
experiments � se. The significance of differences between
means was evaluated by Newman-Keuls tests after 1-way
ANOVA and by the Mann-Whitney procedure.

RESULTS

Mifepristone inhibits the increase in Na�/K�-ATPase
mRNA, protein, and activity in cerebellar slices

To study the neuroprotective mechanisms of mifepris-
tone, P3 rat cerebella were cut into slices and immedi-
ately cultured in the presence or absence of 20 �M of
the steroid analog. After 1 h in culture, RNA extracted
from control and mifepristone-treated slices was hybrid-
ized on plastic microarrays. Analysis of changes in gene
expression revealed that mifepristone down- or up-
regulated the expression of several genes. The most
prominent change observed was the 	 3-fold decrease
in the expression of the gene encoding the Na�/K�-
ATPase �3 subunit when compared to control (ratio of
mifepristone/control�0.31).

Immunoblotting assays showed a corresponding de-
crease in Na�/K�-ATPase �3 subunit protein levels in
the cerebellar slices after 1 h of treatment with mife-
pristone when compared to untreated slices (Fig. 1A).
The reduction in the Na�/K�-ATPase �3 subunit pro-
tein could still be observed after 3 h and slightly
increased after 9 h of culture (Fig. 1A). The enzymatic
activity of the Na�/K�-ATPase was also decreased 
3-
fold after treating the cerebellar slices for 3 h with
mifepristone (control: 126�41; mifepristone: 43.5�12
nmol Pi/min/mg of protein) (Fig. 1B). Most impor-
tant, Na�/K�-ATPase activity in cerebellar slices
treated with mifepristone was comparable to that ob-
served in vivo (46.9�4.7 nmol Pi/min/mg of protein).
These results suggested that mifepristone may prevent
an increase in Na�/K�-ATPase expression and activity
resulting from the culture process and that this effect
may be related to its neuroprotective action.

Inhibiting the increase of Na�/K�-ATPase activity
in cerebellar slices prevents Purkinje cell death

We then examined whether a direct down-regulation of
the Na�/K�-ATPase activity by ouabain in cultured P3
cerebellar slices in which nearly all Purkinje cells die
also allowed rescue of these neurons. We first verified
that addition of a low concentration of ouabain (1 �M)
to the medium at the beginning of the culture for 3 h
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partially reduced the activity of the pump to 34.3 � 11
nmol Pi/min/mg of protein, comparable to the normal-
ization observed after mifepristone treatment (Fig. 1B).
Cerebellar slices from P3 rats were then cultured for 5
days in vitro (5DIV) in the absence or presence of 20 �M
mifepristone or 1 �M ouabain (Fig. 2). Purkinje cell
survival was assessed by counting the total number of
calbindin D-28K immunostained cells in the slices. Results
confirmed the strong protective effect of mifepristone on
Purkinje cells in P3 cerebellar slices (Fig. 2B, D). The
neuroprotective effect mifepristone could be mimicked
by reducing the Na�/K�-ATPase activity with ouabain
(Fig. 2C, D). As expected, very few Purkinje cells survived
in untreated slices (
10 Purkinje cells/slice, Fig. 2A).
However, the mean number of surviving Purkinje cells
was 2087 � 105 and 1300 � 80 in slices treated respec-
tively with mifepristone or ouabain (Fig. 2D). Thus, inhib-
iting the culture-dependent increase of Na�/K�-ATPase
activity by either mifepristone or a low concentration of
ouabain protects Purkinje cells from the apoptotic pro-
cess described in cultures of young rat cerebellar slices
(2). We also noted that adding mifepristone or ouabain to
the culture medium for periods as short as 3 h was
sufficient to prevent some Purkinje cells from death (data
not shown).

Mifepristone induces Purkinje cell depolarization

It has been reported that inhibition of the Na�/K�-
ATPase activity in neurons leads to their depolarization

(13, 19). We therefore compared the membrane po-
tentials between Purkinje cells of P3 cerebellar slices
cultured in the absence or presence of mifepristone. In
control slices, the resting membrane potential (RP) of
Purkinje cells fluctuated over time between –60/–70
mV and more depolarized values, i.e., –49.4 mV on
average (see below). Such a typical “two-state” behavior
(�70/�50 mV) was never observed in Purkinje cells
treated with mifepristone (n�18). Therefore, to allow
reliable comparison between untreated and mifepris-
tone-treated cells, mean resting potential of control
cells was calculated from the more depolarized state.
Mean resting potential value of mifepristone treated
cells was –30.9 � 2.8 mV (n�18), being significantly
above the mean resting potential in control cells
(–49.4�2.8 mV; n�14; P�0.001, Fig. 3C). Therefore,
treatment with mifepristone caused a persistent depo-
larization of Purkinje cells.

The action potential firing properties of Purkinje
cells treated with mifepristone were then compared to
untreated cells. In the absence of mifepristone, 9 of 14
Purkinje cells (64%) displayed spontaneous action po-
tentials when no current was injected, as described
(20–21). In contrast, only 1 of the 18 mifepristone-
treated Purkinje cells (5%) fired spontaneously at
resting potential.

To test the spiking properties of Purkinje cells in

Figure 2. Inhibiting the increase of Na�/K�-ATPase alpha3
either by RU486 or by ouabain prevents Purkinje cell death in
organotypic slice cultures of rat cerebellum. Slices of 3-day-
old (P3) rats were cultured for 5 days in vitro (5DIV). Slice
cultures were immunostained with anticalbindin D28-K Ab to
label Purkinje cells. A) Untreated control slices (Ctr): very few
Purkinje cells were present. B) Slices treated with 20 �M
RU486. C) Slices treated with 1 �M ouabain, the specific
Na�/K�-ATPase inhibitor. D) Quantitative analysis of Pur-
kinje cell survival after treatment with RU486 or with ouabain.
In the treated slices with either RU486 or with ouabain, high
Purkinje cell survival was observed. Scale bars: 200 �m.

Figure 1. RU486 down-regulates the Na�/K�-ATPase alpha3
expression and activity. A) Immunoblotting assay was performed
on the Na�/K�-ATPase alpha 3 isoform. Time courses of
Na�/K�-ATPase alpha3 protein expression were determined in
cerebellar slices treated or not by 20 �M RU486 for 1/2, 1, 3,
and 9 h. B) Enzymatic activity of the pump was measured in
RU486- and ouabain-treated P3 cerebellar slices and in un-
treated P3 cerebellar slices. This Na�/K�-ATPase alpha3 activity
was determined by measuring inorganic phosphate (Pi) com-
plexes with phosphomolybdate at 623 nM. Enzyme activity is
expressed in nanomoles Pi/min per milligram protein and
mean values � se were calculated for groups of at least 3
animals. RU486 maintains the Na�/K�-ATPase activity at the in
vivo concentration. Thus, RU486 inhibits the increase rather
than strongly inhibits Na�/K�-ATPase activity. **P � 0.01 as
indicated by Newman-Keuls tests after 1-way ANOVA.

1380 Vol. 20 July 2006 GHOUMARI ET AL.The FASEB Journal



response to depolarization, square current pulses 180
ms in duration of increasing amplitude (�10 up to
�500 pA) were injected across the Purkinje cell mem-
brane through the patch pipette. Cells were first left at
their resting potential (Fig. 3A–C, left panels). In
control cells a threshold current stimulus produced
repetitive firing in 9 of 12 cells (Fig. 3B). In cells treated
with mifepristone, similar depolarizing current pulses
induced no spike in 5 cells, one spike in 9 and more
than one spike in 3 of the 17 cells tested (Fig. 3A–C, left
panel). Thus, when left at their resting potential,
Purkinje cells treated with mifepristone display either
no or very few spikes in response to depolarization. As
expected and as illustrated in Fig. 3C, there was a strong
correlation between the membrane potential and the
number of action potentials induced by the depolariz-
ing pulses. Indeed, when Purkinje cells are depolarized,
they fire fewer action potentials.

We next tested whether maintaining mifepristone-
treated Purkinje cells at –70 mV by a continuous
injection of current could restore their discharge capa-

bilities by allowing voltage-dependent channels to re-
cover from inactivation. In this condition, Purkinje cells
treated with mifepristone still displayed no or low
spiking activity, similar to Purkinje cells left at their
resting potential (Fig. 3A, right panel). Indeed, the
depolarizing current pulses induced no spike in six
cells or a maximum of one spike in eight cells. Only 3
of the 17 cells tested displayed more than one spike on
depolarizing pulses. Thus, mifepristone significantly
depolarizes Purkinje cells from P3 slices and prevents
action potential firing.

Depolarizing agents promote Purkinje cell survival

To further test the role of depolarization in preventing
the apoptosis of Purkinje cells, we treated P3 cerebellar
slices with different depolarizing agents, including high
K�, the K� channel blocker TEA and the Na� channel
activator veratridine. Treatment of the slices during 5
DIV with high K� (30 mM) significantly increased the
number of surviving Purkinje cells: 
70-fold more
Purkinje cells survived than in slices cultured in the
presence of standard concentrations of K� (5 mM)
(Fig. 4C). Thus, high K� allows the rescue of some of
Purkinje neurons in cerebellar slice cultures of P3 rat
cerebellum. Purkinje cell survival could also be in-
creased by treating slices during 5 DIV with TEA (2
mM, Fig. 4B, C) (
300-fold increase in Purkinje cell
survival when compared to untreated slices, Fig. 4A).
This neuroprotective effect of TEA was dose depen-
dent. Even at a concentration as low as 0.5 mM, TEA
resulted in an 
100-fold increase in Purkinje cell
survival compared with control (data not shown).

Treatment of P3 cerebellar slices with 0.5–5 �M of
veratridine, another depolarizing agent, also increased
Purkinje cell survival in a dose-dependent manner (a
significant increase in Purkinje cell survival could al-
ready be observed at 2 �M) (Fig. 4D–F). To confirm
that veratridine increases Purkinje cell survival through
its effect on voltage-sensitive Na� channels, slices were
simultaneously treated with veratridine and with tetro-
dotoxin (TTX), a noncompetitive antagonist of Na�

channels. The neuroprotective effect of veratridine was
indeed abolished by 2.5 �M TTX (Fig. 4E, F). This
observation suggests that Purkinje neurons may be
dependent on sodium ion influx for their survival.
However, TTX only partially blocked the neuroprotec-
tive effects of mifepristone or TEA (data not shown),
suggesting different direct targets.

Mifepristone-induced Purkinje cell survival
and Ca2� influx

Neuronal membrane depolarization can drive Ca2�

influx, for instance, through voltage-dependent Ca2�

channels, and Ca2� has been widely implicated in cell
death and survival. In P3 cerebellar slices, Purkinje cell
survival supported by veratridine could be completely
blocked by the coapplication of the low voltage-acti-
vated T-type calcium channel inhibitor flunarizine (5

Figure 3. Depolarized resting potential and lack of firing
behavior in RU486-treated cells. Purkinje cell membrane
potential was recorded in current clamp mode. A) Typical
recordings of a RU486-treated cell. B) Control cells. Figures
illustrate the lack of repetitive firing in the RU486 treated
cells when square current pulses of increasing amplitude (180
ms in duration) are injected. This behavior is observed either
at resting potential (left) or at –70 mV (right). C) Relation-
ship between resting potential and the number of spikes
generated by depolarizing pulses. RU486 cells (black spots)
were more depolarized and fireless than control cells (open
spots).
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�M). In contrast, the L-type calcium channel antago-
nist nifedipine (10 �M) did not affect the survival effect
of veratridine (Fig. 5C). These results demonstrate that
the depolarization of Purkinje cells with veratridine

Figure 5. Treatment by RU486 is followed by a moderate
increase in Ca2� influx. A) Representative whole slice fluo-
rescence of Ca2� release in response to application of 20 �M
RU486, as determined by quantifying the calcium Fluo-4
staining density. B) Neither T-type nor L-type voltage-gated
Ca2� channels [blocked respectively by flunarizine (Fluna, 5
�M) and nifedipine (Nif, 10 �M)] was necessary for the effect
of RU486 on Purkinje cell survival. In addition, the extracel-
lular Ca2� chelator EGTA (1 mM) did not block the effect of
RU486. C) The depolarizing agent, veratridine, induced
Purkinje cell survival in cerebellar slice cultures by Ca2�

influx through T-type voltage-gated Ca2� channels, as it was
blocked only by flunarizine.

Figure 4. Purkinje cell death in organotypic slice cultures of
postnatal rat cerebellum is mainly rescued by depolarizing
stimulus. To confirm the effect of depolarization on Purkinje
cell survival, depolarizing agents such as high K� (30 mM),
TEA, and veratridine were used in this study. A) Untreated P3
control slices (Ctr). B) Slices treated with 2 mM TEA. C)
Quantitative analysis of Purkinje cell survival after treatment
with 20 �M RU486 or with depolarizing agents KCl (30 mM)
or with TEA (2 mM). D) Slices treated with 2 �M veratridine.
E) The veratridine effect was abolished when cultures were
simultaneously treated by veratridine (2 �M) and by 2.5 �M
tetrodotoxin (TTX), a noncompetitive antagonist of voltage-
gated sodium channels. F) Quantitative analysis of Purkinje
cell survival after treatment with 20 �M RU486 or with
depolarizing agent veratridine (2 �M). Note that TTX abol-
ished the effect of veratridine but not that of RU486, suggest-
ing that RU486 does not act via the voltage-gated sodium
channels. Scale bar is 200 �m.
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promotes their survival by increasing the influx of Ca2�

through T-type calcium channels.
We then examined whether treatment by mifepris-

tone also causes an increase in Ca2� influx. Our
electrophysiological results showed that after 1 h in
culture, mifepristone depolarized Purkinje cells in cer-
ebellar slices. This depolarization was accompanied by
a 1.4-fold increase in the cytoplasmic concentrations of
Ca2� as determined by quantifying calcium Fluo-4
staining density (Fig. 5A). However, as shown in Fig. 4,
neither flunarizine nor nifedipine significantly reduced
the effects of mifepristone on Purkinje cell survival. In
agreement with this observation, the extracellular Ca2�

chelator EGTA (1 mM) was also ineffective (Fig. 5B).
Thus, voltage-gated Ca2� channels seem not to be
involved in the neuroprotective effects of mifepristone,
but the release of Ca2� from internal stores (ER) may
play a role.

Purkinje cells survive in inferior olivo-cerebellar
cocultures

Inferior olivary neurons, through their olivo-cerebellar
projections, dynamically regulate the maturation and
functions of Purkinje neurons. However, in organo-
typic cerebellar slice cultures, Purkinje cells are de-
prived of these glutamatergic excitatory synapses, which
mainly derive from climbing fibers (22–23). To test the
hypothesis that the lack of excitatory inputs from
inferior olivary neurons may contribute to the death of
Purkinje cells in cerebellar slice cultures at P3, we
performed an olivo-cerebellar organotypic slice cocul-
ture.

After 5 DIV, we counted 2.3-fold more surviving
Purkinje cells in olivo-cerebellar slice cultures than in
cerebellar slices cultured alone (Fig. 6B). In many of
these olivo-cerebellar slices, the surviving Purkinje cells
were localized at the boundary in proximity of the
olivary slices (Fig. 6A). Moreover, VGluT2 (vesicular
glutamate transporter) immunoreactive fibers were ob-
served to enter the cerebellar slices and in close appo-
sition with the Purkinje cell soma and dendrites (Figure
6C, D). At that age, three types of VGluT2 immunore-
active fibers have been described in the rodent cerebel-
lum: climbing, mossy, and parallel fibers (17–18). How-
ever, in cerebellar slices, cultured alone, an extremely
low labeling with VGluT2 was detected (Fig. 6E–J),
indicating that in the coculture experiments, the
VGluT2 positive fibers originate from the olivary slices.
Furthermore, the fact that these fibers terminate on
Purkinje cell soma and dendrites suggests that they are
more likely climbing fibers than mossy fibers. Indeed,
mossy fibers normally do not contact Purkinje cells
directly. These results strongly suggest that olivo-cere-
bellar connections may play a role in Purkinje cell
survival during postnatal development.

DISCUSSION

We previously demonstrated that mifepristone, well
known as an antagonist of the glucocorticosteroid and
progesterone receptors (7), exerts a powerful neuro-

Figure 6. Purkinje cell survival in inferior olivo-cerebellar cocul-
tures. A) P3 cerebellar slices were cocultured with the inferior
olivary slices for 5DIV and double immunolabeling with VGluT2
(red) and CaBP (green) to visualize respectively glutamatergic
fibers and Purkinje cells. The dashed lines represent the bor-
derlines between inferior olivary and cerebellum slices in the
cocultures. B) Quantification of surviving Purkinje cells in the
olivo-cerebellar coculture. C) Apposition between glutamatergic
fibers and Purkinje neurons. D) Higher magnification of panel
C. Double immunostaining for VGluT2 and CaBP are pointed in
Purkinje cell somata and dendritic shafts by the arrows. Scale
bar: 250 �m (A), 60 �m (C), 20 �m (D). E, F) Slices of P3
inferior olivary neurons were separately cultured and respec-
tively immunostained with CaBP and with VGluT2. G) A merger
of panels E and F. H, I) Slice cultures of P3 cerebellum were
respectively immunostained with CaBP and with VGluT2. J) A
merger of panels H and I. Note that VGluT2 immunostaining
was high in inferior olivary slices but extremely low in cerebel-
lum. In inferior olivary slice cultures, some neurons were CaBP-
positive (green). Scale bar: 200 �m in panels E–I.
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protective action on postnatal Purkinje cells in organo-
typic slice cultures of postnatal rat and mouse cerebel-
lum. This mifepristone effect involves a novel
mechanism, since neither classical intracellular steroid
receptors nor the antioxidant properties of the steroid
analog were found to be involved (8). Here, we dem-
onstrate that mifepristone promotes survival of these
Purkinje cells by causing their persistent depolariza-
tion. Further, results strongly suggest that this could
result from inhibiting the increase in Na�/K�-ATPase
�3 subunit expression and activity. Thus, a certain
degree of excitation may be necessary for Purkinje cells
to survive during the early postnatal period, corre-
sponding to a developmental stage when intense cere-
bellar remodeling and synaptogenesis take place (4–
6). Depolarizing agents such as high K�, TEA, and
veratridine also promoted Purkinje cell survival in
organotypic culture. However, the neuroprotective ef-
fect of mifepristone involved the Na�/K� pump and
bypassed the voltage-gated ion channels, as it could be
mimicked by low concentrations of the Na�/K�-AT-
Pase inhibitor ouabain and was not inhibited by the
sodium channel blocker TTX, by Ca2� channel block-
ers flunarizine and nifedipine, or by the extracellular
Ca2� chelator EGTA. The current data reveal another
interesting feature of the developing Purkinje neurons:
after being placed in culture, they respond with an
increase in Na�/K�-ATPase expression and activity,
which is restored to levels comparable to those ob-
served in vivo by mifepristone or ouabain treatment of
the slices. This contrasts with the generally observed
decrease in neuronal Na�/K�-ATPase activity and �3
subunit expression in response to injury (24–26). The
Na�/K�-ATPase increase, most likely resulting in Pur-
kinje cell hyperpolarization (12), turns out to be fatal
for the immature neurons relying on excitatory inner-
vation for their survival, provided by climbing fibers.
Indeed, coculturing cerebellar slices with slices contain-
ing glutamatergic excitatory inferior olivary neurons
allowed rescue of part of the Purkinje cells.

Regulation of the Na�/K�-ATPase and Purkinje
cell survival

Down-regulation of the Na�/K�-ATPase �3 subunit in
the presence of mifepristone revealed by microarray
analysis was confirmed by measuring protein levels and
pump activity. The inhibition of increased Na�/K�-
ATPase expression could already be observed after 1 h
of treatment, started immediately at the beginning of
the culture, and protein levels then slightly increased
after 9 h. These results indicate that a transient action
of mifepristone may be sufficient for its neuroprotec-
tive effects. Indeed, treating cerebellar slices with mife-
pristone for only 12 h was sufficient to rescue a large
number of Purkinje cells, which normally die at P3 by
apoptosis. We have shown that the caspase-3 pathway is
already activated in Purkinje cells 3 h after being placed
in culture (2).

Decreasing Na�/K�-ATPase activity by a low concen-

tration of ouabain also strongly enhanced Purkinje cell
survival, suggesting that down-regulation of the pump
may account for the neuroprotective effects of mifepris-
tone. A reduction in Na�/K�-ATPase activity is gener-
ally associated with neuron death (26), but it has also
been proposed to be involved in adaptative responses
of brain cells to hypoxia or ischemia (27). Further-
more, down-regulation of the Na�/K�-ATPase has
been shown to protect neurons in culture against
hypoxia, glutamate, or low extracellular K� (28–30).
Down-regulation of the Na�/K�-ATPase could also
provide a pro-survival signal for neurons and stimulate
DNA and protein synthesis (31–34). Thus, depending
on the pathophysiological context, a transient decrease
in Na�/K�-ATPase activity may exacerbate or protect
against neuronal death. Here, we show that decreasing
the Na�/K�-ATPase by mifepristone prevents the age-
dependent Purkinje cell death in organotypic cultures.
The classical steroid receptors seem not to be involved
in the effect of mifepristone on Na�/K�ATPase, as
neither progesterone nor corticosterone inhibited this
effect (data not shown) This is consistent with our
previous finding that mifepristone protects Purkinje
cells in slices of progesterone and glucocorticoid recep-
tor knockout mice. It would be of interest to elucidate
the novel mechanism by which mifepristone could
regulate Na/K-ATPase expression.

Neuroprotective effects of mifepristone and
depolarization of Purkinje cells

Each cycle of the Na�/K� pump extrudes three Na�

ions from the cell and moves 2 K� ions into the cell.
Thus, blocking its activity has two consequences for
Purkinje cells: their rapid depolarization due to the
removal of the associated hyperpolarizing current and,
at longer time scales, a modification of the Na� and K�

membrane gradients (13). As a consequence, trans-
membrane electrochemical gradients of these ions are
changed and Purkinje cells are expected to display
reduced spiking capabilities even when maintained at
–70 mV. This is indeed what we observed here. Thus,
the inhibition of spike discharge in Purkinje cells
treated with mifepristone is not simply a consequence
of their persistent depolarization, but most likely also
reflects a shift in Na� and K� concentrations, expected
to disrupt the driving force of these ions and to block
action potential discharge. Indeed, Purkinje cells
treated with mifepristone were continuously depolar-
ized, displayed either little or no action potential
firings, and, as could be expected, neither TTX nor
flunarizine blocked the neuroprotective effects of mife-
pristone. This would favor the possibility that there are
at least additional mechanisms of mifepristone action.

The activity of the Na�/K� pump was increased in P3
Purkinje cells following the culture process and their
deprivation of main afferents. Thus, under these con-
ditions the response of the neurons at P3 appears to be
inappropriate, as it rapidly leads to their death. As we
demonstrate here, preventing induction of the
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Na�/K� pump with mifepristone protects P3 Purkinje
cells from apoptosis in culture and depolarizing proce-
dures promotes their survival. McKay and Turner re-
cently reported that Purkinje cells at P0 are depolarized
at rest (–34�3 mV) and cannot fire sodium spikes even
when hyperpolarized (35). This electrophysiological
status of P0 Purkinje cells closely resembles that of P3
Purkinje cells treated by RU486. This could be one
reason why P0 Purkinje neurons survive well in culture.
In this view, one could consider that mifepristone
treatment at P3 brings the cells back to a less mature
status, thereby protecting them from death in culture.

The age-dependent death of Purkinje cells in
organotypic cultures

In organotypic cultures of rat cerebellum, Purkinje cell
apoptosis is age dependent (1). Most of these cells
degenerate when cerebellar slices are taken between P1
and P5, but they survive before or after this period. This
critical period of Purkinje cell vulnerability corre-
sponds to a time window when Purkinje cells are
engaged in intense synaptogenesis, dendritic remodel-
ing, and cell death (4–6). We previously showed that
neurotrophic factors, known to play a crucial role in the
development and survival of nerve cells namely, brain-
derived neurotrophic factor, neurotrophin 3, and insu-
lin-like growth factor I have only marginal effects on
the survival of P3 Purkinje cells (3). Membrane depo-
larization by the Na�/K�-ATPase blocker (ouabain),
high potassium chloride (KCl), or other depolarizing
agents such as TEA and verataridine treatment has
been shown to prevent the death of many neuronal cell
types (29, 30, 36–39). Our present results suggest for
the first time that depolarization could be one of the
mechanisms by which the steroid mifepristone allows
neuron survival. Indeed, we show here that all the
compounds that maintain or induce a depolarization
(either down-regulation of Na�/K�-ATPase by mife-
pristone or the use of depolarizing agents such as high
K�, TEA, or veratridine) induce Purkinje cell survival.

At the first postnatal week of rat cerebellum develop-
ment, glutamatergic excitatory synapses on Purkinje
neurons are mainly derived from climbing fibers orig-
inating in the inferior olive nucleus, whereas the exci-
tatory actions of parallel fibers only appear by the end
of the first postnatal week (40–43). Postnatal Purkinje
cells receive multiple innervation by climbing fibers,
which is maximal between P3 and P7, in contrast to the
one-to-one relationship characteristic of the adult stage
(44, 45). Our present data suggest that the strong
excitation arising from the transient multiple innerva-
tion by climbing fibers may play an important role in
the survival of immature Purkinje cells. Indeed, re-
moval of this excitatory innervation by the culturing
process may explain the age-dependent death of Pur-
kinje cells between P3 and P7 in cerebellar slice prep-
arations. This conclusion is supported by the observa-
tions that 1) coculturing cerebellar slices with inferior
olivary slices promotes Purkinje cell survival; and 2)

climbing fibers originating from the olivary neurons, as
documented by our results and as reported by Audinat
et al. (18), form contacts with the surviving Purkinje
cells.

Thus, neuron depolarization is necessary for Pur-
kinje cell survival in cerebellar slice culture and it
represents a novel function of the steroid receptor
antagonist mifepristone. Treatment of the cerebellar
slices by mifepristone may allow restoration of the
physiological environment and maintenance of the
resting potential at a value permitting neuron survival.
These observations will be of interest for neuroprotec-
tive strategies in other brain regions after injury or
under pathological conditions.

We thank Philippe Leclerc for image analysis. This work
was supported in part by an Artemis-Fondation Nationale de
Gerontologie grant to E.E.B. and by the EXELGYN company.

REFERENCES

1. Dusart I., Airaksinen, M. S., and Sotelo, C. (1997) Purkinje cell
survival and axonal regeneration are age dependent: an in vitro
study. J. Neurosci. 17, 3710–3726

2. Ghoumari A. M., Wehrle R., Bernard O., Sotelo, C., and Dusart,
I. (2000) Implication of Bcl-2 and Caspase-3 in age-related
Purkinje cell death in murine organotypic culture: an in vitro
model to study apoptosis. Eur. J. Neurosci. 12, 2935–2949

3. Ghoumari A. M., Wehrle R., De Zeeuw C. I., Sotelo C., and
Dusart I. (2002) Inhibition of protein kinase C prevents Pur-
kinje cell death but does not affect axonal regeneration. J. Neu-
rosci. 22, 3531–3542

4. Marin-Teva J. L., Dusart I., Colin C., Gervais A., van Rooijen, N.,
and Mallat, M. (2004) Microglia promote the death of develop-
ing Purkinje cells. Neuron 41, 535–547

5. Gardette R., Debono M., Dupont, J. L., and Crepel, F. (1985)
Electrophysiological studies on the postnatal development of
intracerebellar nuclei neurons in rat cerebellar slices main-
tained in vitro. II. Membrane conductances. Brain Res. 352,
97–106

6. Armengol, J. A., and Sotelo, C. (1991) Early dendritic develop-
ment of Purkinje cells in the rat cerebellum. A light and
electron microscopic study using axonal tracing in ‘in vitro’
slices. Brain Res. Dev. 64, 95–114

7. Baulieu, E. (1989) Contragestion and other clinical applications
of RU 486, an antiprogesterone at the receptor. Science 245,
1351–1357

8. Ghoumari, A. M., Dusart, I., El-Etr, M., Tronche, F., Sotelo, C.,
Schumacher, M., and Baulieu, E. E. (2003) Mifepristone
(RU486) protects Purkinje cells from cell death in organotypic
slice cultures of postnatal rat and mouse cerebellum. Proc. Natl.
Acad. Sci. U. S. A. 100, 7953–7958

9. Behl, C., Trapp, T., Skutella, T., and Holsboer, F. (1997)
Protection against oxidative stress-induced neuronal cell death-a
novel role for RU486. Eur. J. Neurosci. 9, 912–920

10. McCullers, D. L., Sullivan, P.G., Scheff, S. W., and Herman, J. P.
(2002) Mifepristone protects CA1 hippocampal neurons follow-
ing traumatic brain injury in rat. Neuroscience 109, 219–230

11. Peng, L., Martin-Vasallo, P., and Sweadner, K. J. (1997) Isoforms
of Na,K-ATPase alpha and beta subunits in the rat cerebellum
and in granule cell cultures. J. Neurosci. 17, 3488–3502

12. Biser, P. S., Thayne, K. A, Kong, J. Q., Fleming, W. W., and
Taylor, D. A. (2000) Quantification of the alpha(3) subunit of
the Na(�)/K(�)-ATPase in developing rat cerebellum. Brain
Res. Dev. 123, 165–172

13. Genet, S., and Kado, R. T. (1997) Hyperpolarizing current of
the Na/K ATPase contributes to the membrane polarization of
the Purkinje cell in rat cerebellum. Pfluegers Arch. 434, 559–567

14. Audinat, E., Gahwiler, B. H., and Knopfel, T. (1992) Excitatory
synaptic potentials in neurons of the deep nuclei in olivo-
cerebellar slice cultures. Neuroscience 49, 903–911

1385RU486 INDUCED DEPOLARIZATION AND CELL SURVIVAL



15. Jørgensen, P. L. (1974) Isolation of (Na� plus K�)-ATPase.
Methods Enzymol. 36, 434–438

16. Muszbek, L., Szabo, T., and Fesus, L. (1977) A high sensitive
method for the measurement of ATPase activity. Anal. Biochem.
77, 286–288

17. Hioki, H., Fujiyama, F., Taki, K., Tomioka, R., Furuta, T.,
Tamamaki, N., and Kaneko, T. (2003) Differential distribution
of vesicular glutamate transporters in the rat cerebellar cortex.
Neuroscience 117, 1–6

18. Miyazaki, T., Fukaya, M., Shimizu, H., and Watanabe, M. (2003)
Subtype switching of vesicular glutamate transporters at parale
fibre-Purkinje cell synapses in developing mouse cerebellum.
Eur. J. Neurosci. 17, 2563–2572

19. Cousin, M. A., Nicholls, D. G., and Pocock, J. M. (1995)
Modulation of ion gradients and glutamate release in cultured
cerebellar granule cells by ouabain. J. Neurochem. 64, 2097–2104

20. Crepel, F., and Delhaye-Bouchaud, N. (1978) Intracellular
analyses of synaptic potentials in cerebellar Purkinje cells of the
rat. Brain Res. 155, 176–181
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Supplemental data 

- In primary cultures, Yuzaki et al. (1996) have shown that NMDA-Rs of Purkinje cells are 

directly involved in the survival of Purkinje cells. In our model of organotypic cultures, 

NMDA-Rs could also promote the survival of Purkinje cells. To test this hypothesis, P3 

cerebellar slices cultures were treated for 2 days in vitro in the absence or presence of NMDA 

(20 µM, Figure  3.1, A and B). Purkinje cell survival was assessed by counting the averaged 

number of calbindin positive cells per lobules (Figure  3.1D). The data clearly confirmed the 

protective effect of NMDA on Purkinje cells in P3 cerebellar slices. Moreover, this effect was 

abolished when slices were simultaneously treated with (20 µM) NMDA and (100 µM) of the 

NMDA-channel blocker MK801 (Figure  3.1C).  

 

 

 

(Unpublished data, by courtesy of Abdel Ghoumari)  

Figure  3.1: Purkinje cell death in organotypic slice cultures of postnatal rat cerebellum is 
rescued by NMDA treatment.  

(A) Untreated P3 control slices. (B) P3 slices treated with 20 µM NMDA. (C) The effect of NMDA 
(20 µM) was abolished when cultures were simultaneously blocked by the NMDA-channel blocker 
MK801 (100µM). (D) Quantitative analysis of Purkinje cells survival in control, after treatment with 
20 µM NMDA, and after simultaneous treatment with NMDA (20 µM) and MK801 (100 µM). 
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3.1.3 Discussion 

3.1.3.1 Mifepristone induces Purkinje cells depolarization 

The powerful protective effect of mifepristone on postnatal Purkinje cells in organotypic 

slices cultures remained to be explained since neither the classical intracellular steroid 

receptors, nor the antioxidant properties of mifepristone were found to be involved (Ghoumari 

et al., 2003). This study demonstrates that mifepristone increases the survival of P3 Purkinje 

cells in cultures most probably by inducing their persistent depolarization, via the down-

regulation of the Na+/K+-ATPase pump expression. Blocking the activity of this pump by a 

low concentration of ouabain also strongly enhances Purkinje cells survival. We demonstrated 

that mifepristone, by down-regulating the Na+/K+-ATPase, not only continuously depolarizes 

Purkinje cells, but also inhibits their spike discharge. This inhibition of the firing is not a 

simple consequence of the voltage-gated channels inactivation by depolarization, but most 

likely reflects a profound modification of the Na+ and K+ membrane gradients, probably 

resulting from the down-regulation of the Na+/K+-ATPase. 

3.1.3.2 Purkinje cells depolarization is neuroprotective 

The present results reveal that the transduction as well as the activity of the Na+/K+-ATPase 

alpha3 subunit increases in developing Purkinje cells after being placed in culture. The alpha3 

subunit is considered as an “auxillary” isoform that is recruited during increased cellular 

activity (Blanco and Mercer, 1998). Indeed, with depolarization and the repeated firing of 

action potentials, the Na+ and K+ gradients are dissipated. Under these conditions, while the 

alpha 1- and alpha 2-isoforms are working at saturation, the alpha 3-isoform is activated. In 

this manner, alpha 3 functions as a spare pump to help restoring the resting membrane 

potential. In addition, its high affinity for ATP endows alpha 3 with the ability to use ATP 

even in conditions of low concentrations occurring after intense neuronal activity. The 

recruitment of this “emergency” subunit is thus likely to result from the injury made to the 

cells when Purkinje cells are placed in culture at P3.  

 

The Na+/K+-ATPase increase results in the Purkinje cell hyperpolarization (Genet and Kado, 

1997; Biser et al., 2000) that turns out to be fatal for immature neurons in P3 cerebellar slices 

cultures. Accordingly, this study showed that different depolarizing agents promoted the 

Purkinje cells survival. Thus, Purkinje cells may need a minimal degree of continuous 
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excitation to survive during the early phase of development, this excitation relying 

particularly on excitatory innervation. Indeed, this work presents data in favour of an 

important role played by climbing fibers in neuroprotection of immature Purkinje cells, since 

coculturing cerebellar slices with inferior olivary slices promotes Purkinje cells survival. 

Nevertheless, the effect of TTX, which blocks the action potential-mediated release of 

neurotransmitters, has not been tested in olivo-cerebellar organotypic cultures. This 

experiment would help to clarify the role of excitatory inputs from climbing fibers on the 

Purkinje cell survival in this preparation. 

3.1.3.3 The role of neurotrophic factors in neuroprotection 

Independently of the possible neuroprotective role of climbing fibers excitatory inputs, the 

Purkinje cell survival observed in olivo-cerebellar cocultures could be due to the contribution 

of neurotrophic factors, known to play a crucial role in the development and survival of nerve 

cells. While brain-derived neurotrophic factor, neurotrophin 3, and insulin-like growth factor I 

have been shown to play only marginal roles on the survival of P3 Purkinje cells (Ghoumari 

et al., 2003), other factors could however exert neuroprotective effects on Purkinje cells in 

olivo-cerebellar cocultures. Interestingly, depolarizing stimuli appear to enhance the response 

of certain neuronal populations to neurotrophic stimulation (Ghosh, 1996). Consequently, the 

depolarization induced by glutamate released by climbing fibers could also act in synergy 

with neurotrophic factors, to protect postnatal Purkinje cells from cell death. Which glutamate 

receptor could mediate the neuroprotective depolarization? 

3.1.3.4 Juvenile NMDA-Rs and Purkinje cell neuroprotection 

In a complementary set of experiments to the present study, we focused our attention on a 

candidate target of glutamate: the NMDA-R of postnatal Purkinje cells. P1 to P7 corresponds 

to the period when immature NMDA-Rs are present in Purkinje cells, while at P10 they are 

almost completely absent from these cells (Momiyama et al., 1996). These juvenile NMDA-

Rs do not participate to the climbing fiber synaptic currents in postnatal Purkinje cells 

(Lachamp et al., 2005), and their functional role remains to be elucidated. As we showed in 

this study, NMDA, like other depolarizing agents, protects Purkinje cells in organotypic 

cultures. This result echoes with results of Yuzaki et al. (1996) who demonstrated in a model 

of primary cultures that NMDA-Rs expressed by neonate Purkinje cells directly promote their 

survival. From these observations, it can be proposed that ambient glutamate released from 

climbing fibers acts through NMDA-Rs of immature Purkinje cells. Because juvenile NMDA-
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Rs are composed of the NR2D subunit (which confers high affinity for glutamate, no 

desensitization and slow deactivation), their relatively long lasting activation is able to induce 

prolonged depolarization of Purkinje cells. This could protect them from developmental cell 

death. Oppositely, Purkinje cells devoid of functional contacts with climbing fibers would 

then be eliminated following a physiological process. Thus, instead of promoting 

excitotoxicity, juvenile NMDA-Rs could represent an advantage for Purkinje cells at P3, 

when depolarization displays a neuroprotective effect on these cells. 

 

A first step to test this hypothesis would be to perform inferior olivo-cerebellar cocultures in 

presence of D-APV, a selective antagonist of NMDA-R, or of MK801, a NMDA-channel 

blocker. If the glutamate released by climbing fibers induces a neuroprotective depolarization 

by activating NMDA-Rs expressed by postnatal Purkinje cells, then the inhibition of NMDA-

Rs should block the Purkinje cell survival. Similarly, small interfering RNA could be used to 

specifically disrupt the expression of NR2D subunits that are expressed in postnatal Purkinje 

cells, in order to test their involvement in the survival of Purkinje cells in P3 olivo-cerebellar 

cocultures. 

 

Although NMDA significantly promotes Purkinje cells survival in P3 cerebellar slices 

cultures, its effect is relatively modest compared with the effect of mifepristone or of other 

depolarizing agents. Actually, to be fully activated, NMDA-Rs require a simultaneous 

membrane depolarization to relieve the magnesium block. In our organotypic cultures, part of 

the effect of NMDA is possible because juvenile NMDA-Rs composed of the NR2D subunit 

have a low sensitivity for magnesium block. Nevertheless, it is likely that the NMDA 

neuroprotective effect on Purkinje cells would be enhanced in a magnesium free culture 

medium. In a more physiological context, AMPA/Kainate receptors that are highly expressed 

in P3 Purkinje cells at synapses with climbing fiber (Zhao et al., 1998; Momiyama et al., 

2003; Douyard et al., 2007) could contribute to the Purkinje cell depolarization, allowing 

relieving the magnesium block of juvenile NMDA-Rs. It is worth mentioning here that during 

the first week after birth, GABAergic inputs that are present on immature Purkinje cell are 

depolarising through GABAA receptors (Eilers et al., 2001). Moreover, it has been recently 

shown in newborn cortical neurons that GABA depolarization cooperates with NMDA-R 

activation to regulate excitatory synapses formation (Wang and Kriegstein, 2008). The study 

of such interactions between GABA-A and NMDA receptors will be important next steps in 

understanding the physiology of excitatory systems in the immature cerebellum.  
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Finally, after the critical time window between P3 and P5, Purkinje cells survive in cerebellar 

organotypic cultures. One can propose that the establishment of functional synapses with 

parallel fibers, that starts from ~P5-P7 (Zhao et al., 1998), could compensate for the lack of 

climbing fiber inputs by providing to Purkinje cells a neuroprotective depolarization (if this 

neuroprotection process is still needed at this age). 
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3.2 Publication 2: 

NMDA receptor contribution to the climbing fiber 
response in the adult mouse Purkinje cell 

 

 

 

"What gets us into trouble is not what we don't know. 

 It's what we know for sure that just ain't so." 

Mark Twain 

 

3.2.1 Introduction 

There has been decades of conflicting results about the expression of functional NMDA-Rs by 

Purkinje cells (depending for instance on species, age and/or techniques). With the advent of 

the patch-clamp technique used in cerebellar slices, almost 20 years ago, the possibility arose 

to directly study whole-cell currents. To ensure a better space clamp, Purkinje cells with a less 

developped dendritic tree are usually preferred for patch-clamp recordings (Roth and Hausser, 

2001), thus animals younger than three weeks were mainly used in previous investigations. 

Because these studies did not detect NMDA currents in Purkinje cells of this age, with it came 

the abusive conclusion that Purkinje cells do not express functional NMDA-Rs after the first 

week of the postnatal development. 

 

Despite the fact that the quality of space-clamp during somatic recording of synaptic currents 

is imperfect in patch-clamp recordings of mature Purkinje cells, the study of synaptic currents 

remains qualitatively valid in these cells, keeping in mind that recorded currents are 

substantially distorted in both their kinetics and amplitudes (Roth and Hausser, 2001). Thus, 

all other things being equal, we could perform an attentive examination of the excitatory 

currents generated in Purkinje cells of animals older than 3 weeks. In the following study, we 

showed that, in adult mice, mature Purkinje cells actually express NMDA-Rs that become 

detectable from the third postnatal week and participate to the CF synaptic transmission.  
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3.2.2 Summary of experimental results 

- Mice older than 8 weeks were used to test the effect of bath or iontophoretic applications of 

NMDA on Purkinje cells recorded in whole cell patch-clamp in acute cerebellar slices. In both 

cases, in presence of NBQX, bicuculline, and TTX in the Mg2+-free external solution, 

applications of NMDA induced currents, accompanied by an increase of current noise that is 

typical of NMDA currents. 

 

- The contribution of NMDA-mediated currents to synaptic currents evoked by the PF or the 

CF stimulation was tested, in the presence of bicuculline in the Mg2+-free external solution. 

Whereas PF-EPSCs do not display an NMDA component, CF-EPSCs surprisingly showed a 

NBQX-resistant component, which could be reversibly inhibited by D-APV as well as by 

Mg2+.  

 

- The contribution of GABA-A-mediated currents to the NBQX-resistant CF-EPSC was 

unlikely because of the continuous presence of bicuculline in the bath, and the use of low 

chloride concentration-based internal solutions. Blocking AMPA/Kainate receptors with 

higher concentrations of NBQX (50 µM), or blocking group 1 mGluRs with AIDA had no 

further effect on the NBQX-resistant CF-EPSCs. These results suggested that the NMDA-

mediated CF-EPSC did not result from the indirect activation of GABA-A receptors, 

AMPA/Kainate receptors, or group1 mGlu receptors.  

 

- To test the contribution of glutamate transporters to the NBQX-resistant CF-EPSCs, we used 

the specific and non-transported glutamate transporter blocker DL-TBOA. Instead of blocking 

the NBQX-resistant CF-EPSCs, DL-TBOA potentiated the responses, suggesting that 

glutamate transporters limit the amplitude of these currents. This suggested that NMDA 

mediated CF-EPSC would be smaller, or absent at more physiological temperatures (which 

favor the activity of glutamate transporters). However, at 32-35°C, although the NBQX-

resistant CF-EPSC was potentiated, the relative NMDA-dependent component of this current 

remained the same. In conclusion, glutamate transporters do not prevent the activation of 

NMDA-Rs, even at more physiological temperatures. 

 

- The addition of MK801 to the internal solution contained in the recording pipette 

specifically blocked the NMDA-mediated CF-EPSC. This experiment showed that this 
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current is mediated by NMDA-Rs post-synaptically expressed. This conclusion was further 

confirmed by analyzing the I-V relationship of the NMDA-mediated CF-EPSCs. As expected, 

the I-V relationship was linear in absence of Mg2+ in the external solution, whereas it displays 

the typical j-shape in presence of Mg2+. 

 

- To investigate the NR2 subunits composing the functional NMDA-Rs detected in Purkinje 

cells, immunolabelings of NR2 subunits, along with that of calbindin as markers of Purkinje 

cells, and VGluT2 as signals of climbing fibers terminals, were observed in confocal imaging. 

A strong labeling of Purkinje cells somas and proximal dendrites was observed with NR2-A/B 

antibodies, whereas no labelings were observed for NR2C and NR2D antibodies. In the 

proximal dendrites of Purkinje cells observed at higher magnification, the labeling for NR2-

A/B often coincided with VGluT2 labeling, while it was less intense in the distal Purkinje 

cells dendrites. This distribution of NR2-A/B immunolabelings in Purkinje cells thus 

confirmed the presence of functional NMDA-Rs evidenced in patch-clamp experiments. 

 

- To establish the developmental profile of this NMDA-mediated currents, we analyzed the 

Purkinje cells CF-EPSCs of mice aged of 12 days to 12 weeks. The proportion of cells 

displaying a detectable NMDA component in the CF-EPSCs became significant from P21 and 

the amplitudes of this current increased dramatically from P18 to P21. 

 

- We noticed that in previous studies which investigated the nature of Purkinje cells synaptic 

currents, CNQX was widely used as a specific blocker of AMPA receptors. However, as we 

showed here, CNQX partly blocked the NMDA-mediated CF-EPSCs. 

 

- We next investigated the contribution of NMDA-Rs in the complex spike in mature animals. 

In absence of Mg2+ in the bath, we first demonstrated that NMDA-Rs underlie a non-

negligible part of the complex spike. This NMDA - excitatory post-synaptic potential (EPSP) 

was all or none with a mean amplitude of 14 mV. In presence of Mg2+, blocking NMDA-Rs 

by D-APV reduced the fast depolarization plateau and the slow afterdepolarization of the 

complex spike. It also reversibly increased the spikes and spikelets latencies, and sometimes 

even reduced their number. 

 

For figures and details, see accompanying paper. 
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Among integrative neurons displaying long-term synaptic plasticity, adult Purkinje cells seemed to be an exception by lacking functional
NMDA receptors (NMDA-Rs). Although numerous anatomical studies have shown both NR1 and NR2 NMDA-R subunits in adult
Purkinje cells, patch-clamp studies failed to detect any NMDA currents. Using more recent pharmacological and immunodetection tools,
we demonstrate here that Purkinje cells from adult mice respond to exogenous NMDA application and that postsynaptic NMDA-Rs carry
part of the climbing fiber-mediated EPSC (CF-EPSC), with undetectable contribution from presynaptic or polysynaptic NMDA currents.
We also detect NR2-A/B subunits in adult Purkinje cells by immunohistochemistry. The NMDA-mediated CF-EPSC is barely detectable
before 3 weeks postnatal. From the end of the third week, the number of cells displaying the NMDA-mediated CF-EPSC rapidly increases.
Soon, this EPSC becomes detectable in all the Purkinje cells but is still very small. Its amplitude continues to increase until 12 weeks after
birth. In mature Purkinje cells, we show that the NMDA-Rs contribute to the depolarizing plateau of complex spikes and increase their
number of spikelets. Together, these observations demonstrate that mature Purkinje cells express functional NMDA receptors that
become detectable in CF-EPSCs at �21 d after birth and control the complex spike waveform.

Key words: Purkinje cell; cerebellum; development; climbing fiber; complex spike; NMDA

Introduction
The NMDA receptor (NMDA-R) has unique properties that un-
derlie its roles in developmental, physiological, and pathological
processes in the brain (for review, see Dingledine et al., 1999;
Cull-Candy et al., 2001; Mori and Mishina, 2003). NMDA-Rs are
expressed in almost all principal neurons, but, so far, they seemed
to be absent from adult Purkinje cells. Thus, these cells are often
used as experimental model neurons lacking NMDA-Rs. Al-
though immature rodent Purkinje cells express NR1/NR2-D-
containing NMDA-Rs (Dupont et al., 1987; Rosenmund et al.,
1992; Cull-Candy et al., 1998), there are numerous contradictory
findings regarding the actual expression of functional NMDA-Rs
by adult Purkinje cells. Using patch clamp, electrophysiologists
concluded that Purkinje cells no longer express functional
NMDA-Rs after the first postnatal (PN) week (Konnerth et al.,
1990; Farrant and Cull-Candy, 1991; Llano et al., 1991). Discrep-
ancies remained, however, with previous studies using intracel-
lular or extracellular current-clamp techniques and showing that

adult rat or mouse Purkinje cells respond to ionophoretic appli-
cations of NMDA (Quinlan and Davies, 1985; Dupont et al.,
1987; Billard and Pumain, 1989; Krupa and Crepel, 1990) or
providing evidence for functional NMDA-Rs in adult guinea pig
Purkinje cells (Kimura et al., 1985; Sekiguchi et al., 1987). Immu-
nohistochemistry or in situ hybridization studies display contra-
dictions as well. Although the NR1 subunit is abundantly ex-
pressed by Purkinje cells throughout adulthood (Moriyoshi et al.,
1991; Monyer et al., 1992, 1994; Akazawa et al., 1994; Laurie and
Seeburg, 1994; Petralia et al., 1994a; Watanabe et al., 1994; Naka-
gawa et al., 1996; Hafidi and Hillman, 1997), the expression of
NR2 in the adult remains unclear: some authors found signal for
NR2-A mRNA in rat and human Purkinje cells (Akazawa et al.,
1994; Scherzer et al., 1997), whereas others detected no messen-
gers for NR2 (Monyer et al., 1994; Watanabe et al., 1994). Simi-
larly, low immunoreactivity for NR2-A/B proteins was detected
in young rats (Petralia et al., 1994b) and adult mice (Yamada et
al., 2001), whereas Thompson et al. (2000) found clear NR2-B
labeling in Purkinje cells from adult rats and mice, as well as
NR2-A labeling in mice only. Beyond differences in the species
and techniques, the important remaining question is the age of
the animals, i.e., the temporal definition given to adulthood. In
the present study, we used mice older than 8 weeks to demon-
strate the expression of functional NMDA-Rs in mature Purkinje
cells and their contribution to the waveform of the complex spike
induced by the stimulation of the climbing fiber (CF). These
NMDA-Rs contain NR2-A and/or NR2-B subunits and partici-
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ment et Vieillissement du Système Nerveux, Case Courrier 14, 9 quai St. Bernard, 75005 Paris, France. E-mail:
carole.levenes@snv.jussieu.fr.

DOI:10.1523/JNEUROSCI.2422-07.2007
Copyright © 2007 Society for Neuroscience 0270-6474/07/2710797-13$15.00/0

The Journal of Neuroscience, October 3, 2007 • 27(40):10797–10809 • 10797



pate in the synaptic currents mediated by the CF in Purkinje cells
(CF-EPSCs). We show that the NMDA-mediated CF-EPSC de-
velops with maturation of Purkinje cells, being hardly detectable
before postnatal day 21 (P21). In addition, we show that the
NMDA-mediated CF-EPSC is half blocked by 10 �M 6-cyano-7-
nitroquinoxaline-2,3-dione (CNQX). These observations ex-
plain the apparent lack of NMDA-Rs in Purkinje cell of pre-adult
rodents, as observed by some authors, and indicate that
NMDA-Rs are important to control the mature CF to Purkinje
cell connection.

Materials and Methods
Care and use of animals. Animal housing and all procedures were per-
formed in accordance with the guidelines of the French Ministry of Ag-
riculture and the European Community. A minimal number of animals
was used and handled with maximum care to minimize their suffering

Slice preparation. C57BL/6 mice (Mus musculus; Elevage Janvier, Le
Genest-St-Isle, France), aged between 12 d and 6 months, were used in
these experiments. Animals were first anesthetized with halothane and
then rapidly decapitated. The cerebellar vermis was immediately re-
moved and cooled to 4°C in oxygenated bicarbonate buffered solution
(BBS) (see below). Parasagittal 180-�m-thick slices were cut with a vi-
bratome (VT-1000S; Leica, Wetzlar, Germany). Slices were then incu-
bated for at least 1 h at room temperature (RT) in the following BBS (in
mM): 130 NaCl, 2.5 KCl, 2.0 CaCl2, 1.0 MgCl2, 26.0 NaHCO3, 1.3
NaH2PO4, and 10.0 glucose, pH 7.4 (when bubbled with 95% O2 and 5%
CO2).

Whole-cell recording procedure. The recording chamber was contin-
uously superfused with oxygenated BBS at a rate of 1–2 ml/min, at
room temperature. In some experiments indicated in the text, the
perfusion solution was warmed to near physiological temperatures
(32–35°C) in the recording chamber. Purkinje cells were visually
identified from their position, size, and shape using Nomarski differ-
ential interference contrast optics [40� water-immersion lens (Zeiss,
Oberkochen, Germany) plus a 2.25� Nikon (Tokyo, Japan) zoom
mounted on an upright Zeiss Axioskop-FS microscope]. Whole-cell
voltage- and current-clamp recordings were made with an Axopatch-
200A amplifier (Molecular Devices, Union City, CA). Signals were
filtered at 2 or 5 kHz (low-pass) and usually sampled at 25–37 �s.
Data acquisition and storage were performed on a personal computer
running the ACQUIS1 software (Bio-Logic, Orsay, France). Patch
pipettes were made of borosilicate glass capillary tubing pulled on a
horizontal puller (Sutter Instruments, Novato, CA) and fire polished
(MF-830; Narishige, Tokyo, Japan) to a final resistance of 2–5 M�
depending on the internal solution used. The internal solutions used
were as follows (in mM): 144.0 K gluconate, 6.0 KCl, 4.6 MgCl2, 10.0
HEPES acid, 10.0 EGTA (or 1.0 for complex spike recordings), 1.0 (or
0.1 in 1 mM EGTA solutions) CaCl2, 4.0 ATP-Na, and 0.4 GTP-Na, pH
7.3 adjusted with KOH. In some experiments, including current–
voltage ( I–V) curve protocols, the solutions contained the following
(in mM): 150 Cs-gluconate, 4.6 MgCl2, 10.0 HEPES acid, 10.0 EGTA,
1.0 CaCl2, 4.0 ATP-Na, and 0.4 GTP-Na, pH 7.35 adjusted with
CsOH. In some experiments, we added 1 or 3 mM of (5R,10S)-(�)-
5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine
hydrogen maleate (MK801) to this internal solution to block postsyn-
aptic NMDA-Rs; no differences were detectable between the two con-
centrations. Series resistances were partially compensated (70 –75%).
Holding potential was set at �70 mV, and liquid junction potential
was not corrected (except when otherwise specified). When used,
Mg 2�-free BBS external solutions were supplemented with 25 �M

glycine. Bicuculline methiodide (10 or 20 �M; Sigma, St. Quentin
Fallavier, France) was always added to block GABAA-mediated cur-
rents. In the current-clamp mode, a few cells that were spontaneously
more depolarized than �50 mV and that needed large current injec-
tion to maintain their membrane potential at �70 mV were consid-
ered to be damaged and were discarded. For ionophoresis experi-
ments, when filled with 10 mM NMDA, ionophoretic pipettes had a
final resistance of 40 –50 M�. NMDA was ejected using negative

square current pulses ranging from 100 to 250 nA. To limit diffusion
of NMDA in the BBS, a small positive retention current (usually
10 –15 nA) was continuously applied to the ionophoresis pipette be-
tween ejections. Extracellular stimulation of CFs or parallel fibers
(PFs) was performed with a constant voltage isolated unit (0.1 ms
square voltage pulses; 1–90 V) through a glass pipette filled with
external solution. This pipette was moved around in the granular
layer or white matter in the vicinity of the recorded Purkinje cell until
the climbing fiber all-or-nothing response was obtained.

Glycine, MK801, 1,2,3,4-tetrahydro-6-nitro-2,3-[f]-quinoxaline-7-
sulfonamide (NBQX) were from Sigma. NMDA, tetrodotoxin (TTX),
CNQX, (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA), D-(�)-2-
amino-5-phosphonopentanoic acid (D-APV), and DL-threo-�-
benzyloxyaspartic acid (DL-TBOA) were from Tocris Bioscience (distrib-
uted by Fisher Bioblock Scientific, Illkirch, France).

To estimate whether a cell displays a detectable D-APV-sensitive
NBQX-resistant EPSC, the amplitudes of the NBQX-resistant EPSCs in
control and their amplitudes during bath application of D-APV were
compared using a Mann–Whitney one-tailed statistical test. If the two
populations of amplitudes (control and D-APV) were statistically differ-
ent ( p � 0.05), D-APV was considered as having an effect, and the per-
centage of blockade induced by D-APV was calculated.

For analysis of complex spikes, spikes and spikelets were first identified
with a threshold detection protocol (usually 20 mV). Spike or spikelet
latencies were estimated by calculating the time between the stimulation
and the occurrence of the spike or spikelets.

Immunohistochemistry. Parasagittal 60 �m slices were prepared as de-
scribed previously in a slicing sucrose BBS (in mM: 1 CaCl2, 5 MgCl2, 10
glucose, 4 KCl, 26 NaHCo3, 248 sucrose, and 1.3 NaH2PO4, pH 7.35)
cooled to 4°C and bubbled with 95% O2 and 5% CO2. Immediately after
slicing, the slices were fixed with 4% paraformaldehyde in PBS for 2 h.
They were then rinsed three times with PBS. Permeabilization and satu-
ration were performed during 1 h on free-floating sections with PBS
containing 0.25% Triton X-100 and 0.25% fish gelatin (PBS-G-T). Three
types of anti-NR2 antibodies were used: (1) rabbit anti-NR2-D raised
against amino acids 268 –386 of human NR2-D; (2) goat anti-NR2-C/D
raised against a peptide mapping at the C terminus of NR2-D of mouse;
it also recognizes NR2-C (sc-1471; Santa Cruz Biotechnology, distrib-
uted by Tebu, Le Perray en Yvelines, France); and (3) rabbit anti-NR2-
A/B raised against the C terminus of the rat NR2-A subunit. It recognizes
both NR2-A and NR2-B mouse proteins equally (AB1548; Chemicon,
Temecula, CA, distributed by Euromedex, Mundolsheim, France). The
anti-NR2-C/D or anti-NR2-D antibodies were used only in single-
labeling experiments and were revealed with Alexa Fluor 546 rabbit anti-
goat or goat anti-rabbit antibodies (10 �g/ml; Invitrogen, Carlsbad, CA),
following the procedure detailed hereafter. For NR2-A/B immunodetec-
tion, slices were divided into three batches and incubated overnight at
room temperature in the following combinations: batch 1 with only the
rabbit anti-NR2-A/B antibody (1 �g/ml); batch 2 incubated with NR2-
A/B, mouse anti-calbindin-D28k (1:10000; Swant, Bellizona, Switzer-
land), and guinea pig anti-vesicular glutamate transporter 2 (VGluT2)
(1:3000; Chemicon) antibodies; and batch 3 incubated with PBS-G-T
only (control). Slices were then incubated 2 h with the fluorescent sec-
ondary antibodies (at 10 �g/ml; Invitrogen): Alexa Fluor 546 goat anti-
rabbit (batches 1–3), Alexa Fluor 633 goat anti-mouse and Alexa Fluor
488 goat anti-guinea pig (batches 2 and 3). In some experiments, sheep
anti-rabbit IgG cyanine 3-coupled (Cy3) (Sigma) was also used as a
secondary antibody to reveal NR2-A/B. The labeled slices were mounted
in Vectashield medium (Vector Laboratories, Burlingame, CA) and
viewed with a confocal laser-scanning microscope (SP2; Leica, Manheim,
Germany) using a 63� objective. In multiple-labeling experiments, ac-
quisition of the signal was systematically performed in sequential mode.
Alexa Fluor 488 was excited at 488 nm (argon laser), Alexa Fluor 546 and
Cy3 dye at 543 nm (helium–neon laser), and Alexa Fluor 633 at 633 nm
(helium–neon laser).

Three-dimensional reconstructions were performed using the
Imaris-4 software (Bitplane, Zurich, Switzerland).

Statistics. Averages are given as mean � SEM. Mann–Whitney or Wil-
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coxon’s tests were used for statistical comparisons, and p is given as the
probability of the null hypothesis.

Results
Bath or ionophoretic applications of NMDA induce currents
in Purkinje cells
Purkinje cells from animals older than 8 weeks were voltage
clamped at �70 mV in the whole-cell patch-clamp configura-
tion (see Materials and Methods). NMDA was applied in the
bath for 1 min in the presence of NBQX (10 �M), TTX (1 �M),
and bicuculline (20 �M). In these conditions, NMDA elicited
inward currents in all the Purkinje cells tested (n � 16), with a
mean amplitude of 38 � 6.4, 110 � 20.8, and 115 � 56.1 pA
for 20, 50, and 100 �M NMDA, respectively (Fig. 1 A). NMDA
was also applied locally using the ionophoresis technique, al-
ways in the presence of NBQX, TTX, and bicuculline at the
same concentration as above. Applications at the level of the
upper third part of the dendrites generally elicited no response
unless using long-lasting ejections (for instance 1 s). Applica-
tions at the level of the lower two-thirds of the Purkinje cell
dendrites generated large inward currents of 349.9 � 54.9 pA
(n � 8) that were completely abolished by D-APV (n � 4) (Fig.
1 B) or by external Mg 2� (n � 4). These currents could reach
�800 pA by increasing the ejection time. We preferred, how-
ever, working on smaller responses to limit diffusion of the
NMDA. Thus, all tested Purkinje cells of adult mice respond to
exogenous application of NMDA.

With slow methods of agonist application, like bath applica-
tion, if the receptors involved are rapidly desensitizing, the result-
ing currents are very small. The fact that the NMDA current is
very small during our bath application experiments compared
with that induced by ionophoresis indicates strong desensitiza-
tion of the response. Thus, the NMDA-Rs demonstrated here are
unlikely to contain the neonatal NR2-D subunits that are known
to display particularly low desensitization (Misra et al., 2000).
Because of their biophysical features, NR2-D subunits are not
compatible with synaptic currents (Misra et al., 2000), whereas
other NR2 subunits are involved in NMDA-mediated synaptic
transmission. It was therefore of interest to test the participation
of the NMDA-Rs demonstrated here in the synaptic transmission
of adult Purkinje cells.

PF-EPSCs display no NMDA component
The participation of some NMDA-Rs in EPSCs of Purkinje cells
was examined in nominal Mg 2�-free solution to prevent
NMDA-R blockade by external Mg 2� ions. PF-EPSCs, elicited by
extracellular stimulation at 3 or 5 s intervals in the molecular
layer, were identified by their graded amplitude increasing with
stimulus intensity and by their characteristic paired-pulse facili-
tation in response to 30 ms interval paired stimulations (Kon-
nerth et al., 1990). PF-EPSCs were inhibited by 10 �M NBQX in
the bath (n � 7) (Fig. 1C). In a few cells (n � 4), a small EPSC
(�30 pA) persisted in the presence of NBQX but was not further
blocked by D-APV. Thus, low-frequency-evoked single PF-
EPSCs display no detectable NMDA component.

CF-EPSCs display an NMDA component
CF-EPSCs were elicited by 30 s interval extracellular stimula-
tion in the granular layer and could be identified by their
all-or-none nature, very large amplitude, and paired-pulse de-
pression (PPD) (40 ms interval) (Konnerth et al., 1990). CF-
EPSCs during control periods were acquired at �70 mV (liq-
uid junction uncorrected), in nominal Mg 2�-free solution

and in the presence of 100 or 500 nM NBQX to reduce voltage-
clamp escape attributable to the very large amplitude of CF-
EPSCs (Fig. 1 D). In contrast to PF-EPSCs, adding 10 �M

NBQX to the bath did not completely abolish CF-EPSCs. A
residual CF-EPSC of 228.9 � 25 pA persisted in 46 of 47 adult
Purkinje cells tested (Figs. 1 D, 2). This NBQX-resistant CF-
EPSC was all or none and displayed PPD. D-APV (50 �M) and
Mg 2� (1 mM), respectively, blocked 87 � 5.5% (n � 9) (Fig.
2 A) and 72.6 � 4% (n � 10) (Fig. 2 B) of this NBQX-resistant
EPSC. The washout of D-APV allowed this NBQX-resistant
CF-EPSC to fully recover (Fig. 2 A).

The NMDA-mediated CF-EPSC does not result from the
indirect activation of AMPA/kainate receptors, metabotropic
glutamate receptors type 1, GABAA receptors, or
glutamate transporters
Purkinje cells respond to exogenous application of NMDA in
the presence of NBQX, bicuculline, and TTX in the bath, i.e.,
when the contribution of polysynaptic NMDA currents is
strongly reduced. This suggests that, surprisingly enough,
these cells express NMDA-Rs. This is further supported by the
existence of an NMDA-mediated component in the CF-EPSC.
However, considerable previous evidence indicated that
NMDA-Rs are not, or very weakly, expressed by adult Purkinje
cells (Crepel et al., 1982; Garthwaite et al., 1987; Konnerth et
al., 1990; Krupa and Crepel, 1990; Farrant and Cull-Candy,
1991; Llano et al., 1991). If this is true, the NMDA-mediated
CF-EPSC evidenced here has to be of presynaptic origin. How
could presynaptic NMDA-Rs carry part of the CF-EPSC? One
possibility lies in the indirect activation of presynaptic NMDA
currents, located at both inhibitory and excitatory terminals.
The stimulation of a single climbing fiber causes the simulta-
neous release of multiple glutamate vesicles at numerous re-
lease sites (Wadiche and Jahr, 2001). The resulting spillover of
glutamate could activate some presynaptic NMDA-Rs, located
on parallel fibers (Petralia et al., 1994a,b) (but see Diez-Garcia
et al., 2005; Shin and Linden, 2005) or inhibitory interneurons
(Glitsch and Marty, 1999; Clark and Cull-Candy, 2002). These
presynaptic NMDA-Rs would then drive the release of gluta-
mate from parallel fibers or GABA from interneurons. GABA
mediates currents in Purkinje cells during bath applications of
NMDA (Llano et al., 1991; Glitsch and Marty, 1999). In the
present study, however, all applications of NMDA were made
in the continuous presence of TTX, bicuculline, and NBQX,
and thus, Na � action potentials, GABAA, and AMPA/kainate
receptor-mediated currents were blocked. In these conditions,
the contribution of polysynaptic NMDA-associated currents
is strongly reduced, if not completely eliminated. In addition,
during the application of exogenous NMDA, we never ob-
served any miniature inward currents, which, in summation,
could have accounted for the NMDA current (Llano et al.,
1991). Finally, the existence of GABAA-mediated currents in
Purkinje cells is very unlikely here, because, in addition to
bicuculline in the bath, recordings were made with low chlo-
ride concentration-based internal solutions. The total esti-
mated chloride concentrations were 5.6 and 15.4 mM, respec-
tively, for Cs- and K-based solutions. In these conditions, at
approximately �70 mV, chloride currents are either outward
or their driving force is low. Thus, in the Purkinje cell recorded
here, the contribution of GABA-mediated currents to the
NMDA inward current is either absent or strongly reduced.

Another possibility involves the contribution of NMDA-Rs
located at parallel fibers (see above). In this hypothesis, some
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presynaptic NMDA-Rs located at parallel fibers could drive the
release of glutamate that could, in turn, activate different targets
on Purkinje cells, such as AMPA/kainate receptors, metabotropic
glutamate receptors type 1 (mGluR1), and glutamate transport-
ers. Concerning the two first candidates, 50 �M NBQX (n � 4) or
the group I mGluR antagonist AIDA (100 �M; n � 3) (Fig. 2D)
have no effect on the NBQX-resistant CF-EPSC. Glutamate
transporters deserve specific attention because they have been
shown to mediate an NBQX-resistant CF-EPSC (Otis et al., 1997;
Auger and Attwell, 2000). Therefore, we blocked glutamate trans-
porters with DL-TBOA, a specific and nontransported glutamate
transporter blocker that does not induce glutamate release by
heteroexchange (Shimamoto et al., 1998). When applied to Pur-
kinje cells, DL-TBOA (100 �M in the bath) did not block but, in
fact, increased the amplitude of the NMDA-mediated CF-EPSCs
from 238.1 � 24.5 pA in the control period to 402.6 � 75 pA (n �
5, Wilcoxon’s test, p 	 0.05) (Fig. 2C). These potentiated re-
sponses were blocked by D-APV (50 �M), showing that they were
carried by NMDA-Rs (Fig. 2C). Thus, the NMDA-mediated CF-
EPSC does not result from the indirect activation of AMPA/kai-
nate receptors, mGluR1, or glutamate transporters in Purkinje
cells.

The large potentiation of the NMDA-mediated CF-EPSCs
observed in the presence of DL-TBOA shows that glutamate
transporters limit the amplitude of these currents, raising the
possibility that the NMDA-mediated CF-EPSC would be
strongly reduced or even absent at physiological temperatures
(because of enhanced glutamate uptake). To test this, we
raised the temperature of the bath to 32–35°C and estimated
the relative contribution of the NMDA-mediated current to
the total NBQX-resistant CF-EPSC by adding D-APV at the
end of the recordings. To calculate the true NMDA-mediated
CF-EPSC, the amplitude of the CF-EPSC recorded in NBQX
plus D-APV was subtracted from the CF-EPSC in NBQX alone.
As illustrated in supplemental Figure 1 A (available at www.
jneurosci.org as supplemental material), the mean NBQX-
resistant CF-EPSC was increased in amplitude (397.6 � 58.8
pA; n � 5) when compared with RT (usually 25°C) experi-
ments (261.6 � 45.3; n � 8 pA). However, the relative NMDA-
dependent component remained the same at both tempera-
tures (supplemental Fig. 1 B, available at www.jneurosci.org as
supplemental material) (196.6 � 80.1, n � 5 at 32–35°C vs
212.5 � 44.3 pA, n � 8 at RT). The remaining NBQX-resistant
CF-EPSC that is potentiated at 32–35°C and that is not medi-
ated by NMDA-Rs probably corresponds to the CF-EPSC car-
ried by glutamate transporters (Otis et al., 1997; Auger and
Attwell, 2000; Huang et al., 2004). Thus, even at more physi-
ological temperature, CF-EPSCs display a clear and constant
NMDA-mediated current, which indicates that glutamate
transporters do not prevent the activation of NMDA-Rs lo-
cated at climbing fiber to Purkinje cell connections.

These observations indicate that some NMDA-Rs of Purkinje
cells are located relatively close to climbing fiber terminals. In
addition, because of the potentiating effect of DL-TBOA, there
might also be additional NMDA-Rs at some distance from the

Figure 1. NMDA currents recorded in adult (�8 weeks) mouse Purkinje cells and their
contribution to the climbing fiber EPSC. A, Bath application of 50 �M NMDA performed in the
presence of NBQX (10 �M), bicuculline (20 �M), and TTX (1 �M). B, Inward currents induced by
ionophoretic applications of NMDA (left) are completely blocked by 50 �M D-APV (right). Re-

4

cordings made in the presence of NBQX, bicuculline, and TTX in the bath (same concentrations as
in A). C, PF-EPSCs are blocked by NBQX. Averaged PF-EPSCs from one cell in control conditions
(left) and in the presence of 10 �M NBQX (right). D, CF-EPSCs display an NMDA-mediated
component. Averaged CF-EPSCs recorded in control conditions (bicuculline only, left), after
addition of 10 �M NBQX (middle), and in the presence of NBQX plus 50 mM D-APV (right). Inset,
Superimposed scaled control-mediated (black) and NMDA-mediated (gray) CF-EPSCs.
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releasing sites. This raises the possibility that, under conditions of
saturation of glutamate transporters (i.e., sustained or repetitive
glutamatergic synaptic transmission), NMDA receptors near CF
terminals could be massively recruited.

In conclusion, there is no detectable contribution of indi-
rect/polysynaptic NMDA currents to the NMDA-mediated
CF-EPSC in our conditions. However, other neurotransmit-
ters and/or mechanisms cannot be ruled out from a complex
model of possible indirect NMDA currents. For this reason, it

Figure 2. Most of the NBQX-resistant CF-EPSC is carried by NMDA-Rs in the absence of
Mg 2�. A, D-APV (50 �M) reversibly blocks the NBQX-resistant CF-EPSC. A1, Averaged CF-EPSCs
recorded in one cell before, during, and after the application of D-APV (as indicated on the
traces). A2, Same cell as A1. Amplitude of the CF-EPSCs plotted over time; note the washout of
D-APV. B, Effect of Mg 2� on the NBQX-resistant CF-EPSC. Superimposed averaged NBQX-
resistant CF-EPSCs recorded before and after addition of 1 mM external Mg 2� (as indicated on

Figure 3. NMDA-mediated CF-EPSCs are postsynaptic. A, Internal MK801 blocks the NBQX-
resistant CF-EPSC. Left, Averaged total CF-EPSCs recorded in one cell with standard K-based
internal solution in the presence of 200 nM NBQX to reduce voltage-clamp escape and after
addition of 10 �M NBQX. Right, Another cell recorded in the same conditions but with 3 mM

MK801 added to the intracellular medium. Note that the infusion of MK801 in the Purkinje cell
illustrated in the right blocks the NBQX-resistant CF-EPSC. B, Left, NBQX-resistant CF-EPSCs
recorded from one cell at different holding potentials (indicated on the left) to establish their
I–V curve. Top traces, In the presence of external Mg 2�; bottom traces, in nominally Mg 2�-
free BBS. Right, Corresponding I–V curve established with the mean � SEM peak amplitude of
three successive EPSCs recorded at a given potential, in the presence (filled circles; standard
BBS) or in the absence of external Mg 2� (open circles; Mg-free).

4

the traces) are shown. Additional application of 50 �M D-APV does not further block the re-
sponse. C, Blocking glutamate transporters with 100 �M of DL-TBOA potentiates the NMDA-
mediated CF-EPSC. C1, Averaged NBQX-resistant CF-EPSCs (trace 1, black) are potentiated by
TBOA (trace 2, dark gray). These potentiated responses are blocked by the final addition of 50
�M D-APV (trace 3, light gray) showing that they are carried by NMDA-Rs. C2, Mean � SEM
amplitude (n � 5 cells) of the NMDA-mediated CF-EPSCs in control (NBQX at 10 �M), after
addition of TBOA (100 �M), and after further addition of D-APV (50 �M). Numbers correspond to
C1. D, Blocking group 1 mGluRs with AIDA (100 �M) has no effect on the NBQX-resistant
CF-EPSC. D1, Averaged NBQX-resistant CF-EPSCs in control (NBQX alone) and during bath ap-
plication of AIDA (NBQX � AIDA). Sweeps are merged for comparison (right). D2, Amplitude of
the NBQX-resistant CF-EPSC plotted over time before and during the application of AIDA (as
indicated).
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was important to clarify the presynaptic or postsynaptic origin
of the NMDA-mediated CF-EPSC with more direct
approaches.

Blocking postsynaptic NMDA-Rs inhibits the
NMDA-mediated CF-EPSC
Postsynaptic NMDA-Rs were blocked specifically in the recorded
Purkinje cell by adding MK801 to the internal solution. MK801 is
a pore blocker of NMDA-Rs that has been used successfully in the
internal medium to block postsynaptic NMDA responses in sin-
gle cells (Berretta and Jones, 1996; Humeau et al., 2003; Massey et
al., 2004; Samson and Pare, 2005). MK801 was added to the in-
ternal medium (1 or 3 mM with no detectable differences), the
climbing fiber was stimulated, and 10 �M NBQX was added to the
bath. The mean amplitude of the NBQX-resistant CF-EPSC was
then estimated. With MK801 in the pipette, it was of 50.6 � 7.5
pA (n � 9) on average, whereas it was of 228.9 � 25 pA in
controls (Fig. 3A) ( p 	 0.001). This remaining MK801-resistant
current of 50.6 � 7.5 pA was not further blocked by D-APV (50
�M). Thus, postsynaptic MK801 has blocked all the NMDA com-
ponent of the CF-EPSC.

These experiments show that the NMDA-mediated CF-EPSC
is postsynaptic with no detectable presynaptic component. This
conclusion, based on pharmacology, was further confirmed by
analyzing the I–V relationship of the NMDA-mediated
CF-EPSCs.

The I–V relationship of the NMDA-mediated CF-EPSCs
displays the typical j-shape of postsynaptic NMDA-Rs
If the NMDA-mediated CF-EPSC is actually postsynaptic, its I–V
relationship is expected to display a negative slope between �70
and �20 mV in the presence of external Mg 2� (the I–V curve is
“j-shaped”). Changing the holding potential of Purkinje cells will
relieve the Mg 2� block of postsynaptic but not of presynaptic
NMDA-Rs. To address this issue, I–V curves of the NMDA-
mediated CF-EPSCs were recorded in the presence or absence of
external Mg 2�.

Because of their very large and fully developed dendrites, it is
not possible to accurately voltage clamp adult Purkinje cells
(Llano et al., 1991). The situation is even worse at depolarized
potentials, at which voltage-dependant ionic channels open, in-
creasing voltage-clamp escape. Thus, one expects that the EPSCs
recorded at positive potentials would be rather small and that
their reversal potential would be above the theoretical value of 0
mV. In these experiments, it was not possible to reduce this prob-
lem by pharmacologically blocking voltage-dependent Na� or
Ca 2� channels: (1) the diffusion of internal channel blockers in
the distal dendrites was not sufficient to prevent voltage-clamp
escape, and (2) we could not use external blockers because they
also inhibit neurotransmitter release. We therefore started the
I–V curve protocols at 0 mV, letting the voltage-dependent cur-
rents inactivate, and then progressively repolarized the cell to
�60 mV (liquid junction estimated at �12 mV and corrected),
focusing on the effect of external Mg 2� ions on the shape of the
I–V curve at these potentials. In standard 1 mM external Mg 2�,
for all cells tested, the I–V curves displayed the typical j-shape of
NMDA-mediated currents at negative potentials (Fig. 3B). In
contrast, in nominally Mg 2�-free external solution, for all but
one of the Purkinje cells recorded (n � 15), the NMDA-mediated
CF-EPSCs displayed a linear I–V relationship, with a positive
slope between �50 and 0 mV (Fig. 3B). A slight blockade of the
NMDA-mediated EPSC was often still apparent at potentials be-
low �60 mV in the Mg 2�-free solution (Fig. 3B). This is probably

attributable to the presence of contaminating Mg 2� ions that
persist in slices.

These results confirm that the NMDA-mediated CF-EPSC is
carried by postsynaptic NMDA-Rs.

Immunolabeling reveals the presence of NR2-A/B subunits on
Purkinje cells
Our results imply the existence of functional NMDA-Rs on Pur-
kinje cell membranes, i.e., of NMDA-Rs composed of hetero-
meric NR1/NR2 subunits, particularly in the vicinity of climbing
fibers terminals. Although the expression of NR1 by adult Pur-
kinje cells is well documented, that of NR2 subunits is less clear
(for instance, see Yamada et al., 2001, as opposed to Thompson et
al., 2000). We thus performed immunolabeling of the NR2 sub-
units, along with that of calbindin and VGluT2 as markers of
Purkinje cells and climbing fibers terminals, respectively. Acqui-
sition of the fluorescent signal with a confocal microscope re-
vealed no labeling for NR2-C or NR2-D subunits in adult Pur-
kinje cells, with any of the antibodies used (see Materials and
Methods and data not illustrated). However, a clear and constant
labeling of NR2-A/B subunits was found in Purkinje cell soma
and proximal dendrites throughout the cerebellar vermis (Fig. 4).
In the molecular layer, cells and dendrites labeled by NR2-A/B
antibodies were almost exclusively calbindin positive (Fig.
4B,C). In the first two-thirds of the molecular layer, correspond-
ing to the zone of climbing fiber terminals, the NR2-A/B subunits
were clearly concentrated in the Purkinje cell dendrites (Fig. 4).
This NR2-A/B staining was homogenous throughout the lobules.
It was present in either NR2-A/B single- or multiple-labeling
experiments (Fig. 4), thereby excluding any interference from
cross-reactions attributable to multiple-staining procedures. Be-
cause of the rather diffuse labeling of NR2-A/B in the overall
Purkinje cells dendrites, nonconfocal images of the 60 �m slices
show a constant and diffuse staining of the molecular layer in
which only soma and large dendrites of Purkinje cells were dis-
tinguishable. Confocal images observed in 1-�m-spaced stacks
revealed clear NR2-labeled dendrites (Fig. 4B). Three-
dimensional (3D) reconstructions of confocal stacks show strong
labeling by NR2-A/B antibodies throughout the proximal den-
drites (Fig. 4C). In the proximal dendrites of Purkinje cells ob-
served at higher magnification, the labeling for NR2-A/B often
coincided with VGluT2 labeling (Fig. 4D).

A lighter and more diffuse labeling of NR2-A/B was also ob-
served in the distal dendrites of Purkinje cells, including in the
upper third of the molecular layer, a zone of contacts exclusively
between parallel fibers and Purkinje cells, as assessed by the ab-
sence of VGluT2 labeling in this zone (Fig. 4B,C). Although the
labeling was less intense in this zone, this observation opens the
possibility of the existence of some extrasynaptic NMDA-Rs on
Purkinje cells near parallel fiber synapses. Alternatively, it could
also correspond to some presynaptic NR2-A/B subunits. In the
granular layer, NR2-A/B and VGluT2 labeling also coincide. This
most probably corresponds to glomeruli, in which mossy fiber
terminals express VGluT2 (Hioki et al., 2003) and granule cell
dendrites NR2-A (as well as NR2-C that are not labeled by the
present antibody) in mature animals (Akaike et al., 1981; Cathala
et al., 2000). In agreement with the observation that mRNA for
NR2-A and NR2-B subunits is absent from stellate and basket
cells (Akazawa et al., 1994), no labeling was detected in these
neurons.

Adult Purkinje cells express high levels of NR1 subunits (Pe-
tralia et al., 1994a; Hafidi and Hillman, 1997; Thompson et al.,
2000). Thus, the description of some NR2 subunits in these cells
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is not surprising and confirms the presence functional NMDA-
Rs. In addition, supporting our data, the distribution of NR2-A/B
labeling described here exactly matches that of NR1 subunits in
Purkinje cells (Petralia et al., 1994a).

The NMDA component of the CF-EPSC appears at the end
of 3 weeks PN and progressively increases with Purkinje
cell maturation
Our data converge toward the presence of NMDA-Rs in mature
Purkinje cells from animals older than 8 weeks. Most of the au-

thors that did not detect NMDA-Rs in fact
worked with much younger animals. The
developmental profile of the NMDA-
mediated CF-EPSC was therefore investi-
gated by quantifying the effect of D-APV
on the amplitude of the CF-EPSC re-
corded in 10 �M NBQX from P12 to 12
weeks PN (see Materials and Methods). As
illustrated in Figure 5B, the NMDA-
mediated component of CF-EPSCs can
hardly be detected before P21. Both the
number of cells displaying NMDA-
mediated CF-EPSC (Fig. 5B) and the mean
amplitude of these NMDA currents in-
crease from P18 to P21 (Fig. 5C), at least in
the vermis, in which our recordings were
performed. From P22, all the cells tested
displayed significant NMDA-mediated
CF-EPSCs, but their amplitudes were still
rather modest and continued to increase,
reaching 69.5 � 4.8% (n � 7) 8 weeks after
birth (Fig. 5C). Taking into account cells
from animals ranging in age from 12 weeks
to 6 months, the mean blockade induced
by D-APV was 87 � 5.5% (Fig. 5C). Thus,
there is still a slight increase in the ampli-
tude of the NMDA-mediated CF-EPSC af-
ter 8 weeks PN. These data show that the
NMDA-mediated component of the CF-
EPSC appears by P21 but is still very small
at this age, probably explaining the diffi-
culty to detect these receptors in previous
studies.

CNQX partly blocks the
NMDA-mediated CF-EPSC
The presence of functional NMDA-Rs in
Purkinje cells and the existence of
NMDA-mediated currents in CF-EPSCs
were investigated previously mostly in
immature animals (Perkel et al., 1990;
Farrant and Cull-Candy, 1991; Llano et
al., 1991); thus, the absence of detectable
NMDA currents is not surprising con-
sidering our results. However, a study
from Perkel et al. (1990) did not show
any NMDA component in the CF-EPSCs
of 4- to 6-week-old rats. Although spe-
cies differences cannot be completely ex-
cluded, examination of this study shows
that it was done using CNQX as a spe-
cific blocker of AMPA receptors. CNQX
has been widely described as being also

an antagonist at NMDA-Rs, in part by competing with glycine
at its modulatory site (Birch et al., 1988; Harris and Miller,
1989; Kessler et al., 1989; Pellegrini-Giampietro et al., 1989;
Lester and Jahr, 1990; Mead and Stephens, 1999) and also with
glutamate at its binding site (Lester and Jahr, 1990). In con-
trast, NBQX has no effect on NMDA currents (Sheardown et
al., 1990). We therefore studied the effect of CNQX on the
NMDA-mediated CF-EPSC in mice older than 8 weeks at con-
centrations commonly used in cerebral tissue slices (Fig. 5D).
At 10, 20, and 50 �M, the residual NMDA-mediated CF-EPSC

Figure 4. Distribution of NR2-A/B immunofluorescence on sagittal slices observed with confocal imaging. A1, Single NR2-A/B
immunolabeling showing the soma and primary dendrites of a Purkinje cell. A2, Same area observed in differential interference
contrast microscopy (DIC). Scale bar, 20 �m. ML, Molecular layer; IGL, internal granular layer. Note the presence of presumably
NR2-A at the level of glomeruli in the IGL. B, Successive 1-�m-spaced confocal sections showing NR2-A/B (red), calbindin (CaBP,
blue), as well as VGluT2 (green) labeling. Scale bar, 40 �m. C, Three-dimensional reconstruction of a stack of 30 successive
1-�m-spaced confocal sections displaying the NR2-A/B immunolabeling alone (left) and NR2-A/B (red) plus CaBP (blue) plus
VGluT2 (green) merged (right). Same zone as in B. Note that the merged 3D stack reveals that distal dendrites of Purkinje cell in the
upper third of the molecular layer displays less intense immunoreactivity for NR2-A/B. D, High-power image (4�) of CaBP-
positive (blue) dendrites showing NR2-A/B (red) and VGluT2 (green). Scale bar, 10 �m.

Piochon et al. • Functional NMDA Receptors in Adult Purkinje Cells J. Neurosci., October 3, 2007 • 27(40):10797–10809 • 10803



was 105 � 10.4, 107.4 � 21.3, and 123.5 � 15.6 pA, respec-
tively, compared with 194.8 � 20.1 (n � 6), 256.4 � 40 (n �
5), and 270.5 � 16 pA (n � 4) in control periods. The residual
responses in 50 �M CNQX were partially reversed by 200 �M

glycine, as expected from the previously described competi-
tion between CNQX and glycine (Lester and Jahr, 1990). This
response was further blocked by D-APV (50 �M), showing that

it was indeed mediated by NMDA-Rs (Fig. 5D). In conclusion,
CNQX, a widely used AMPA/kainate antagonist, at usual
doses, blocks approximately half of the NMDA-mediated CF-
EPSC, probably by competing with glycine and possibly with
glutamate at their binding sites. Taking into account this in-
hibitory effect of CNQX on the NMDA current, together with
the still small amplitude of this EPSC in young animals, our
data predict that, in the presence of 10 �M CNQX and at 4
weeks PN, the CF-EPSC should have an amplitude of �60 pA.
This explains rather well why some authors, such as Perkel et
al. (1990), did not detect these NMDA-Rs. The study from
Krupa and Crepel (1990) is also interesting because they de-
tected NMDA-Rs in adult rat Purkinje cells (8 weeks PN). The
fact that only 25% of the Purkinje cells responded to NMDA in
adults whereas 100% responded during the first week PN un-
der the same experimental conditions is probably attributable
to the differences in subunit composition of the NMDA-Rs at
these two ages. The NR1/NR2-D NMDA-Rs is particularly
easy to detect with exogenous glutamate compared with NR1/
NR2-A/B of the adults. In 1990, these different subunits and
their properties were still unknown, and, compared with ju-
venile currents, the NMDA currents of the adults apparently
decline with age. Interestingly, the authors themselves already
proposed this hypothesis in their discussion (Krupa and Cre-
pel, 1990, their second to last paragraph). In addition, this
study was performed with intracellular voltage-clamp record-
ings, a technique that is less appropriate than patch clamp for
the recording of currents.

NMDA-Rs contribute to the complex spike in mature animals
The NMDA-mediated CF-EPSC is rather small compared with
the AMPA-mediated CF-EPSC, which raises the question of
the functional role of these receptors in Purkinje cell physiol-
ogy. First, in adults, it is important to note that dendritic
currents recorded at the soma are highly filtered and that
voltage is improperly controlled in dendrites, resulting in an
underestimation of the amplitude of the NMDA-mediated
CF-EPSC. Second, the physiological effect of an ionic conduc-
tance does not entirely depend on its amplitude; the location
of the channels may also be at least as important. To better
estimate the potential physiological relevance of the
NMDA-Rs of the adult Purkinje cell, we next switched to re-
cordings in the current-clamp mode and stimulated the
climbing fiber to record the characteristic response, the com-
plex spike. In this mode, we found two categories of Purkinje
cells: (1) silent cells (no spontaneous spiking activity) with a
resting potential at approximately �65/�70 mV; and (2) cells
with a resting potential at approximately �55 mV with inter-
mittent periods of spontaneous spiking activity. Spontaneous
activity complicated the estimation of the resting potential of
cells and of the shape of complex spikes over time. Therefore,
in spontaneously active cells, we injected a small negative cur-
rent through the recording pipette to maintain the Purkinje
cell membrane at approximately �70 mV and to prevent
activity.

As expected, the stimulation of the climbing fiber induced an
all-or-none complex spike that consisted of one large spike fol-
lowed by two to five shorter spikelets at the top of a fast depolar-
ization plateau (Eccles et al., 1966) (for review, see Schmolesky et
al., 2002) (see Fig. 7). This fast plateau was followed by a slow
afterdepolarization (ADP) (Schmolesky et al., 2005) (see Fig. 7A).
The duration of the plateau and the number of spikelets were
rather variable among cells, but, for each individual Purkinje cell,

Figure 5. Development of the NMDA-mediated CF-EPSCs and their blockade by CNQX. A,
Amplitude of the NBQX-resistant CF-EPSC over time, in Mg 2�-free external medium, in two
different Purkinje cells from P17 and P26 mice. Addition of 50 �M D-APV in the bath reversibly
blocks the NBQX-resistant CF-EPSC at P26, whereas it has no effect at P17. B, Proportion of
Purkinje cells displaying a detectable NMDA component, observed at different postnatal ages.
The total number of cells (n) recorded at each age is indicated above the bars. C, Percentage of
blockade of the NBQX-resistant CF-EPSCs induced by D-APV (50 �M) over the development.
Ages are indicated at the bottom of the graph. The total number of cells recorded at each age is
indicated above the bars. D, Mean � SEM peak amplitude of the NBQX-resistant CF-EPSCs in
control (10 �M NBQX alone) and after addition of three different concentrations of CNQX (10, 20,
or 50 �M as indicated). On the right, further application of 200 �M glycine tends to reverse the
blockade by CNQX. Final addition of D-APV blocks the response reduced by CNQX and partially
reversed by glycine, showing that it is carried by NMDA-Rs.
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at room temperature, the waveform of the complex spike was
remarkably stable over time, even for long recordings (up to 1 h).
In some cases, an antidromic spike preceded the complex spike
itself. The climbing fiber was stimulated at 0.1 Hz, and the exis-
tence of an NMDA-mediated CF-EPSP was first investigated in
magnesium-free BBS (Fig. 6). In this configuration, adding 10
�M NBQX to the bath while recording the complex spike sup-
pressed spikes and spikelets, leaving a large NBQX-resistant CF-
EPSP (Fig. 6). This EPSP was completely abolished by D-APV (50
�M) or Mg 2� (1 mM) in all the Purkinje cells tested (n � 7) (Fig.

6, right), showing that it is an NMDA-mediated CF-EPSP
(NMDA-EPSP). This NMDA-EPSP was all or none, with a mean
amplitude of 14 � 1.9 mV (n � 7) (Fig. 6, middle).

The contribution of this NMDA-EPSP to the complex spike
was then investigated in more physiological conditions, i.e., in the
presence of 1 mM Mg 2� in the bath (Fig. 7). We measured five
different parameters in the complex spike: the amplitude of the
fast depolarization plateau (plateau), the amplitude of the ADP,
the number of spikes and spikelets, their delays, and the mem-
brane potential over time (Fig. 7) (table in supplemental Fig. 1,
available at www.jneurosci.org as supplemental material). Eight
cells were recorded at room temperature (24 –26°C), and three
cells were recorded at 34°C. In all these 11 cells, D-APV (50 �M

added to the bath) had a significant effect on these parameters
(table in supplemental Fig. 1, available at www.jneurosci.org as
supplemental material). However, when present, the delay of the
initial antidromic spike was not affected by D-APV, except for one
cell in which it disappeared in D-APV and reappeared during
washout. In all but one cell (n � 11), D-APV increased delays of
spikes and spikelets (Fig. 7) (table in supplemental Fig. 1, avail-
able at www.jneurosci.org as supplemental material). At room
temperature, the resting potential slightly but not significantly
increased during D-APV application (Fig. 7A2). At 34°C, this
effect was more prominent. Because modest changes in mem-
brane potential can significantly modify the complex spike wave-
form, we maintained the membrane potential at �70 mV during
the entire recording to reliably compare the complex spikes dur-
ing D-APV together with controls. In 7 of 11 cells, the increase in
spike and spikelet delay ultimately led to a reduction in their
number, thereby significantly changing the spike waveform (Fig.
7B). In five of these cells, this change of waveform was too im-
portant to estimate the effect of D-APV on the plateau and ADP
(table in supplemental Fig. 1, available at www.jneurosci.org as
supplemental material). For the remaining six cells, D-APV re-
duced the amplitude of the depolarization plateau and of the
ADP (Fig. 7A) (table in supplemental Fig. 1, available at www.
jneurosci.org as supplemental material). All these effects of
D-APV were fully reversible on washout, showing that they did
not result from rundown over time (Fig. 7B). In 5 of 11 cells, this
washout was accompanied by a rebound increase of the ampli-
tude of the fast plateau and of the number of spikelets in the
complex spike (as in example of Fig. 7B). The smaller the effects
of D-APV were, the larger this rebound was. This indicates that,
from the beginning of the experiment, some of the NMDA-Rs
were already desensitized/inactivated, suggesting that there
might be a tonic activation of the NMDA component, at least in
our conditions.

In conclusion, blocking NMDA-Rs reduces the amplitude of
the plateau and ADP, increases spike and spikelet latency, and, in
some cases, reduces their number. What might cause these ef-
fects? In the complex spike, the latency of spikes depends, among
other parameters, on the amplitude of the underlying potential:
increasing the potential amplitude reduces latency because the
threshold of discharge is reached faster. Thus, the magnitude of
the latency shift induced by D-APV likely depends on the ampli-
tude of the underlying NMDA potential. Furthermore, if the
NMDA potential is large, the latency shift in D-APV will also be
accompanied by the disappearance of some spikes or spikelets
because their threshold will no longer be reached during the com-
plex spike.

These results show that NMDA-Rs increase the depolariza-
tion induced by the complex spike and prolong its duration.
These effects are likely to favor calcium entry in the dendrites

Figure 6. Blocking the complex spike with NBQX reveals an NMDA-EPSP. Whole-cell current-
clamp recording of a Purkinje cell from a mature animal (6 months old) in the absence of
external Mg 2�. Complex spike illustrated before (control) and after addition of NBQX (10 �M).
NBQX suppresses spikes and spikelets of the complex spike and reveals an NBQX-resistant CF-
EPSP (top middle trace) that is completely inhibited by 50 �M D-APV (top right trace). Note the
kinetics of the complex spike and of NMDA-EPSP superimposed below.
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as well as their propagation, and, be-
cause they occur in the presence of phys-
iological concentrations of Mg 2� and
near physiological temperature,
NMDA-Rs are potent actors in the phys-
iology of adult Purkinje cells.

Discussion
We demonstrate that Purkinje cells from
adult mice respond to exogenous NMDA
applications in the presence of TTX, bicu-
culline, and NBQX. In agreement with
Sekiguchi et al. (1987), we show that Pur-
kinje cells respond to ionophoresis of
NMDA at their proximal but not their dis-
tal dendrites. Accordingly, we detect
NMDA-Rs by immunohistochemistry in
the lower two-thirds of the Purkinje cell
dendrites, i.e., near climbing fiber syn-
apses. Confirming these observations,
NMDA receptors carry part of the CF-
EPSC. In Mg 2�-free solution, the major
part of the NBQX-resistant CF-EPSC is
typical of NMDA currents, i.e., potentia-
tion by glycine and blockade by D-APV,
MK801, and external Mg 2� ions. Three
direct lines of evidence demonstrate that
the NMDA-mediated CF-EPSCs is
postsynaptic: (1) the immunolabelings of
NR2-A/B; (2) the blockade of NMDA-
mediated CF-EPSCs by internal MK801;
and (3) their voltage-dependent block at
hyperpolarized potentials in the presence,
but not in the absence, of external Mg 2�.

The NMDA-mediated CF-EPSC was
present in all but one of the mature Purkinje
cells tested in the study, showing that, in
adult mice, it is a consistent component of
climbing fiber to Purkinje cell synapses.
How can discrepancies between our results
and previous studies be explained? Differ-
ences among various species used cannot be
completely excluded. However, NMDA-Rs
have also been previously detected in guinea
pig, rats, and humans (Quinlan and Davies,
1985; Billard and Pumain, 1989; Krupa and
Crepel, 1990; Scherzer et al., 1997; Thomp-
son et al., 2000). In light of our data, the dif-
ficulty in finding NMDA currents mainly re-
sults from (1) differences in the age of the
animals, (2) the use of CNQX, and (3) the lack of information about
properties of the different NMDA subunits at the time of these stud-
ies. In fact, most of the groups that looked for NMDA currents in
adult Purkinje cells worked in animals younger than 3 weeks. How-
ever, we now show that the adult-type NMDA current is barely de-
tectable before 3 weeks PN and remains small until 6 weeks. In ad-
dition, as observed previously in other cell types, CNQX blocks half
of the NMDA-mediated CF-EPSC. Consequently, as long as the
NMDA current remains relatively small, CNQX leaves a hardly de-
tectable NMDA-mediated CF-EPSC. This probably explains why
Perkel et al. (1990), for instance, did not detect the NMDA responses
in their study performed using 4- to 6-week-old animals.

Many of the studies performed before 1990 in the “true adult”

support our present data by indicating NMDA responses in Pur-
kinje cells, although these studies provided only indirect evidence
attributable to technical and pharmacological problems. Inter-
estingly, some of them even provided evidence for the location of
NMDA-Rs at climbing fibers synapses (Kimura et al., 1985;
Quinlan and Davies, 1985; Sekiguchi et al., 1987; Billard and
Pumain, 1989). Examination of these studies shows that they
were not done with patch-clamp but with extracellular or intra-
cellular microelectrode recordings. The two latter techniques are
compatible with the use of adult animals, whereas patch-clamp
studies prefer immature cells to ensure proper voltage clamp.
Thus, the advent of patch-clamp technique in slices, by con-
straining authors to work in immature (“subadult”) animals,

Figure 7. NMDA-R contribution to the complex spike in standard (1 mM Mg 2�) BBS. Whole-cell recordings from mature
Purkinje cells in the presence of external Mg 2� (1 mM) at room temperature. A1, Complex spikes recorded in bicuculline only
(black trace) and in bicuculline plus D-APV (50 �M, gray trace). In this example, the ADP was measured at 70 ms after the
stimulation onset. Note that D-APV reduces both the fast depolarization plateau (top) and the ADP. A2, Same cell as in A1.
Amplitude of the ADP (bars) and resting potential (squares) plotted over time. B, Same type of recording in another mature
Purkinje cell. B1, Complex spikes before (1), during (2), and after (3) the application of D-APV (50 �M). In this cell, D-APV reduced
the plateau amplitude (arrows) and shifted the appearance of the spikelets (as in traces merged in bottom). B2, Same cell as B1.
Delay of spikes and spikelets of the complex spike plotted over time. Note the occurrence of a third spikelet in some trials during the
washout of D-APV (asterisk on the right trace of B1). This third spikelet occurred in the time window used to estimate the plateau
amplitude, therefore causing the presence of peaks in the plot of amplitude of the plateau over time.
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likely contributed to the conclusion that adult Purkinje cells do
not express functional NMDA-Rs.

Our data indicate that the NR2-A/B subunits of the adult
replace neonatal NR2-D in Purkinje cells (Cull-Candy et al.,
1998). Compared with NR2-A/B, NR2-D containing
NMDA-Rs are less sensitive to Mg 2� block, do not desensitize,
and slowly deactivate (Dingledine et al., 1999; Misra et al.,
2000), which make them easy to detect with exogenous gluta-
mate. Thus, the developmental switch from NR2-D to NR2-
A/B in Purkinje cells renders the detection of NMDA-Rs much
more difficult in adult Purkinje cells. This is probably why
NMDA-Rs were evident in young animals but comparatively
hard to detect in the same conditions later in the development
(Dupont et al., 1987; Krupa and Crepel, 1990). Finally, the
particular properties of NR2-D-containing NMDA-Rs make
them poorly suited for classical fast synaptic transmission,
contrary to NR2-A or NR2-B subunits. Accordingly, NR2-D
are not components of neonatal climbing fiber synaptic trans-
mission at P0 –P4 (Lachamp et al., 2005), whereas NR2-A/B
are expressed at mature climbing fiber connections. Thus, the
translocation of the NMDA-Rs to the synapses during the
development fits their respective biophysical characteristics.

What might be the role of these adult NMDA-Rs? Because
of their well known characteristics, they are likely to modulate
the integration or plasticity of Purkinje cells inputs and/or
outputs or to play a role in the maintenance of their connec-
tions. Purkinje cells no longer respond to NMDA after climb-
ing fiber deafferentation (Billard and Pumain, 1989). Con-
versely, we found adult NMDA-Rs at climbing fiber synapses
from P21 in mice, i.e., an age that coincides with the complete
regression of multiple climbing fiber innervation (Hashimoto
and Kano, 2005). Thus, NMDA-Rs of adult Purkinje cells
could play a role in the adjustment and/or maintenance of
mature climbing fiber to Purkinje cells connections. It is also
interesting to notice that P21 corresponds to the appearance of
a mature form of retrograde signaling in Purkinje cell (Levenes
et al., 2001; Crepel, 2007) and to the developmental transition
stage when the spontaneous activity of Purkinje cells switches
from tonic Na � spiking to a trimodal spiking pattern (com-
bining Na �-spikes, Ca 2�-spikes, and pauses) (McKay and
Turner, 2005). Thus, from both a morphological and physio-
logical point of view, the development of Purkinje cells of mice
and a fortiori of rats is definitely not completed at P21 (Altman
and Bayer, 1997; McKay and Turner, 2005).

Even in adults, NMDA currents are relatively small com-
pared with the total CF-EPSC. However, this does not neces-
sarily imply that NMDA-Rs have no physiological role. Exper-
iments in current-clamp reveal an NMDA-EPSC of 14 mV on
average, which is not negligible. The fact that the complex
spike displays an NMDA component in 1 mM Mg 2�-
containing BBS and at near physiological temperature indicate
that these receptors contribute to the complex spike in physi-
ological conditions. Importantly, this also demonstrates that
the depolarization induced by the complex spike itself is suf-
ficient to relieve the Mg 2� block of NMDA-Rs and to allow
them to be activated by a single climbing fiber discharge.

Despite extensive studies, the informational role of the
complex spike is still unclear (Simpson et al., 1996;
Schmolesky et al., 2002). Depending on the study and on the
research group, it is involved in real-time [like the “timing
device” proposed by Llinas’s group (Lang et al., 2006)], short-
term (modulation of the pause in fast spiking) (Simpson et al.,
1996), or long-term modulation of Purkinje cells activity

(“plasticity”). Whatever its role, the climbing fiber operates at
the level of dendritic integration (input) and/or axonal firing
patterns (output) of Purkinje cells. Looking at their contribu-
tion to the complex spike, NMDA-Rs may act at both levels.

The output of Purkinje cells after a complex spike consists
of a burst of forward-propagating action potentials in the axon
(Llinas and Sasaki, 1989; Khaliq and Raman, 2005). Propaga-
tion of the fast initial spike is highly reliable (Khaliq and Ra-
man, 2005), but that of individual spikelets is much less reli-
able and subject to modulation. Propagation probability
varies predictably with the spikelets waveform and can be de-
scribed as a saturating function of spikelet amplitude, rate of
rise, or preceding interspike interval (Khaliq and Raman,
2005). As we show, NMDA-Rs decrease the delay of the spike-
lets and, in most of the cells, increase their number, thereby
changing interspike intervals. Thus, according to Khaliq and
Raman (2005), the NMDA-mediated component of the com-
plex spike is likely to change the probability of propagating
spikelets in the axon.

Parallel fiber inputs to Purkinje cells display long-term de-
pression (LTD) or potentiation (LTP). Probability of LTD
versus LTP at parallel fiber inputs is under control of the
climbing fiber (Coesmans et al., 2004), which itself undergoes
calcium-dependent LTD (Hansel and Linden, 2000). As we
show here, NMDA-Rs increase the depolarization induced by
the complex spike and prolong its duration. These effects are
expected to favor calcium entry in the dendrites as well as their
propagation. Thus, NMDA-Rs are likely to be players in the
game of mature Purkinje cells plasticity. However, it is diffi-
cult to evaluate from previous studies whether this is the case,
because the molecular actors of Purkinje cell plasticity have
been primarily investigated in immature cerebellar slices, i.e.,
before the expression of NMDA-Rs at climbing fiber synapses.
Thus, it now remains to be established the exact role of the
NMDA-Rs of the Purkinje cells, provided that the basic cellu-
lar rules of plasticity are reappraised in the context of mature
cerebellar cortex.
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Supplemental figures 

 

Figure  3.2 : Supplemental figure 

(A) Averaged CF-EPSCs from one Purkinje cell recorded at 32°C, in the presence of 10 µM NBQX (black) and 
after addition of 50 µM D-APV (grey). 
(B) Mean amplitude (+/- SEM, n=5 cells) of NMDA- versus non-NMDAcomponent of CF-EPSCs, recorded in 
NBQX (10 µM) at room temperature (RT) and at 32°C. The component of the CF-EPSC that remains unblocked 
in NBQX + D-APV and that is potentiated at 32°C is likely to be the transporter current. 
(C) Decrease of the amplitudes of the complex spike plateau (white bar) and of the ADP (grey bar) induced by 
D-APV (50 µM). n= 6 cells. 
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Supplemental data 
 

To investigate the NMDA receptor subtypes underlying the NMDA-mediated CF-EPSCs, we 

further examined their sensitivity to R-(R,S)-{alpha}-(4-hydroxyphenyl)-{beta}-methyl-4-

(phenylmethyl)-1-piperidine propranol (RO25-6981), a specific antagonist for NR2B-

containing NMDA-Rs. 

  

RO25-6981 decreased the NMDA-mediated CF-EPSCs in 4 of the 9 Purkinje cells tested, the 

amount and the kinetics of the inhibition varying widely from cell to cell, independently of 

the antagonist concentrations tested (ranging from 3 to 30 µM, see two representative cells on 

Figure  3.3). The partial blockade of NMDA-mediated CF-EPSCs by RO25-6981 suggested 

that some NMDA-Rs could be composed at least by one NR2B subunit (Figure  3.3, Cell #2).  

 

These results must however be interpreted with caution. Indeed, in addition to its inhibitory 

effect, RO25-6981, like ifenprodil and its derivatives, increases NMDA-R affinity for 

glutamate (Kew et al., 1996). Therefore, while NR2B-containing NMDA-Rs are inhibited by 

RO25-6981 in presence of saturating concentrations of glutamate, other NMDA-Rs that are in 

presence of small amounts of glutamate (for exemple those mediated by extrasynaptic 

receptors), could display increased currents. Thus, the inhibiting effect of RO25-6981 on 

NR2B subunit could be masked. To avoid this problem, in 2 cells, we tested the effect of 

RO25-6981 on DL-TBOA-potentialized NBQX-resistant CF-EPSCs. In these cells, RO25-

6981 however displayed no effect, whereas D-APV completely inhibited these responses 

(data not shown). 
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Figure  3.3: RO25-6981 displays various effects on NMDA-mediated CF-EPSCs 

Whole-cell current-clamp recordings of Purkinje cells from an adult mouse (holding potential = -70 mV).Due to 
its very large amplitude, the maximal amplitude of the CF-EPSC was truncated for clarity. CF-EPSCs 
amplitudes are plotted over time. 
(A) Representative CF-EPSC displaying a weak inhibition by RO25-6981, tested successively at 3, 12 and 24 
µM, in presence of NBQX (10 µM). The NBQX-resistant CF-EPSC is finally inhibited by D-APV (50 µM). 
(B) Representative CF-EPSC displaying a strong inhibition by RO25-6981 (12 µM), in presence of NBQX (10 
µM). The remaining part of the NBQX-resistant CF-EPSC is finally inhibited by D-APV (50 µM). 
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3.2.3 Discussion 

3.2.3.1 Functional NMDA-Rs are expressed in mature Purkinje cells 

Using adult mice aged of more than 8 weeks, we demonstrated in this study that mature 

Purkinje cells effectively express functional NMDA-Rs. While they are not involved in the PF 

synaptic currents, these receptors participate to the CF synaptic transmission, as they mediate 

a component of the CF-EPSC and are able to modulate the waveform of the complex spike. 

Confirming the postsynaptic localization of these NMDA-Rs demonstrated by the I-V 

relationship of the NMDA-mediated CF-EPSC, the addition of MK801 to the internal 

medium specifically blocked this component of the CF-current. In addition, we did not detect 

the contribution from presynaptic or polysynaptic NMDA currents to the NMDA-mediated 

CF-EPSC. 

 

Desensitization of these NMDA currents was significant in bath application versus in 

iontophoresis, and suggested an involvement of high conductances NR2 subunits (NR2A or 

NR2B), which are known to display rapid desensitizations (properties reviewed in 

Dingledine, 1999). In addition, the kinetics confered by these NR2 subunits to NMDA 

currents are compatible with the relatively rapid NMDA-mediated CF-currents recorded in 

mature Purkinje cells. Consistent with Thompson et al. results (2000), our immunolabelings 

confirmed the presence of NR2A/B subunits in Purkinje cells. 

 
Many patch-clamp studies have addressed the question of whether NMDA-Rs are present in 

Purkinje cells but failed to detect NMDA mediated currents. Because we showed that NMDA 

synaptic currents become detectable from the third week after birth, it is understandable that 

the previous studies, mainly conducted on animals younger than three weeks to ensure a 

better space-clamp, missed the detection of NMDA-Rs in Purkinje cells. Furthermore, we 

showed that the widely used AMPA-Rs antagonist CNQX partly blocked the NMDA-

mediated CF-EPSCs, probably by competing with glycine at the co-agonist site of NMDA-Rs. 

This pharmacological agent very likely contributed to bias the detection of NMDA currents. 

3.2.3.2 Publication of Renzi et al. 2007 

At the meanwhile of our publication, an independent group also showed the participation of 

NMDA-Rs to CF-EPSCs in Purkinje cells from adult mice (P62-P76), thus confirming our 

results. What can we learn more from this study by Renzi et al., 2007? 
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High-conductance single-channel currents induced by bath applied NMDA were identified in 

outside-out somatic patches of Purkinje cells. These events that showed a conductance of ~53 

pS, were blocked by D-APV, as well as by Mg2+, and displayed a linear I-V relationship in 

magnesium-free external medium. High-conductances of NMDA currents recorded in 

outside-out patches also suggested the expression of NR2A or NR2B subunits. By testing the 

sensitivity of these NMDA-single channels currents to Zn2+, Renzi et al. demonstrated that 

NMDA-Rs mostly contain the NR2A subunit, while a few of them can also contain the NR2B 

subunit. Moreover, NMDA-R channel activity recorded on somatic PC patches was reduced 

by the NR2B selective blocker Ifenprodil by only ~40%, whereas NMDA-mediated CF-

EPSCs were not affected by Ifenprodil. Interestingly, the selective blocker of NR2B-

containing NMDA-Rs RO25-6981, that we used in our study displayed similar heterogenous 

effects on NMDA-mediated CF-EPSC. On the whole, these observations therefore suggest 

that synaptic NMDA-Rs of adult mouse Purkinje cells are mainly composed of NR2A 

subunits, while extrasynaptic NMDA-Rs can contain, but in a less amount, NR2B subunits. 

3.2.3.3 NR3B subunits are they associated to Purkinje cells NMDA-Rs? 

Since the publication of our study, NR3B subunit has been shown to be strongly expressed in 

mature Purkinje cells in rats (Wee et al., 2008). In mice Purkinje cells, it is possible that 

NR3B are also expressed, although discrepancies between species can exist, as reported for 

NR2A and NR2B subunits. 

 

As the effect of NR3 subunits on NMDA-Rs properties has not yet been fully described in 

native neurons of wild-type mice, it is still difficult to estimate the possible effect of the 

NR3B association to the “conventional” NR1/NR2 heteromeric receptors evidenced in mature 

Purkinje cells. Nevertheless, in their single-channels patch-clamp recordings, Renzi et al. 

(2007) showed “conventional” NMDA-R conductances and properties, in complete 

accordance with the known features of NR1/NR2A, NR1/NR2B, NR1/NR2A/NR2B 

heteromeric receptors. It is thus rather unlikely that the NMDA-currents evidenced in mature 

Purkinje cells are mediated by NR3B containing NMDA-Rs, but this possibility can not be 

totally excluded. According to the NR3 properties described in introduction of this thesis, an 

unknown quantity of NMDA-Rs could be “silenced” by the association of an NR3B subunit 

in the heteromeric complex. In absence of selective pharmacological tools to specifically 

activate or inhibit the NR3 containing NMDA-Rs, the discrimination of the proper effects of 
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NR3B subunits in Purkinje cells NMDA receptors will remain difficult to test in our 

conditions. 

 

To sum up, NR2 subunits expressed in adult mouse are of the 2A and 2B subtypes 

(Thompson et al., 2000; Piochon et al., 2007; Renzi et al., 2007). Our study evidenced their 

participation to CF transmission in mature Purkinje cell. In rat Purkinje cells, NR2A subunit 

expression seems to be weak or absent, whereas NR2B is significantly present (Thompson et 

al., 2000; Lee et al., 2005). In rats, patch-clamp recordings of NMDA currents in mature 

Purkinje cells have not yet been re-examined. However, the transfection of Purkinje cells with 

recombinant virus encoding the NR2B gene has been shown to generate NMDA-R-mediated 

synaptic currents at both the climbing fiber and parallel fiber synapses in infected Purkinje 

cells (Kakegawa et al., 2003). If the contribution of NMDA-Rs to both synaptic currents is 

confirmed in control Purkinje cells, this could reveal more profound differences between 

species. It is also important to note here that NMDA-Rs expression can varied with 

pathological conditions. For example, neonatal toluene exposition has been shown to alter on 

long time scales the NMDA-Rs expression in rat Purkinje cells, by increasing levels of NR2A 

subunits and decreasing those of NR2B (Lee et al., 2005). Additionally, NR3B subunits 

recently evidenced in adult rats Purkinje cell are susceptible to associate with NR1 and/or 

NR2 subunits (Wee et al., 2008). This could deeply modify their classical properties. Finally, 

in adult human Purkinje cells, if NR2A mRNA is strongly expressed, NR2C mRNA 

expression is low to strong depending on authors, and NR2B mRNA is not detectable in all 

cases in human (Rigby et al., 1996; Scherzer et al., 1997). 

3.2.3.4 Physiological relevance of NMDA-Rs in mature Purkinje cells 

Synaptic versus extrasynaptic NMDA-Rs: different compositions, different functions? 

At room temperature, glutamate-transporters being less efficient, a glutamate spillover from 

CF vesicular release can activate extrasynaptic receptors. Yet, experiments at more 

physiological temperature (30-34°C) showed the same relative participation of NMDA-Rs in 

the CF synaptic current (see supplemental Figure  3.2). A location of NMDA-Rs inside the 

Purkinje cells synapses with CF can thus be proposed. On the other hand, NMDA-Rs are also 

found in somatic patches (Renzi et al., 2007), and NMDA-mediated CF-EPSCs are 

potentiated by the specific and nontransported glutamate transporter blocker, DL-TBOA. 

Thus, NMDA-Rs are likely to be both synaptic and extrasynaptic. Moreover, in mature 

Purkinje cells, selective NR2B antagonist ifenprodil was shown to partly inhibit somatic 
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NMDA-Rs only, not those participating in the synaptic currents (Renzi et al., 2007). A 

selective repartition of different NR2 subunit at intra- or extra- synaptic sites could thus occur 

in mature Purkinje cells. However, our results with the selective antagonist of NR2B-subunit 

RO25-6981 drew less categorical conclusions and further examinations of its effect in 

presence of DL-TBOA are needed. Nevertheless, in these experiments, a possible activation 

of presynaptic NMDA-Rs (see further) complicates interpretations. Thus, because of the 

limitations of NR2B-selective antagonists (Neyton and Paoletti, 2006), only studies in 

electronic microscopy could help to confirm the ultrastructural localization of NMDA-Rs 

subtypes in Purkinje cells.  

 

Current studies characterizing NMDA-R subtypes in physiological and pathological processes 

are aimed at finding NR2-specific roles (for review, see Kohr, 2006). Concerning long term 

synaptic plasticity, the recent proposal of differential roles played by NR2A and NR2B and 

by their respective synaptic localization is however still controversial (Liu et al., 2004; 

Massey et al., 2004; but see Fox et al., 2006; Bartlett et al., 2007; Morishita et al., 2007). With 

regard to excitotoxicity, neither the NMDA-R subtype nor the role of synaptic versus 

extrasynaptic NMDA-Rs is resolved, since NMDA-Rs in both compartments can cause 

neurotoxicity (Sattler et al., 2000; Sinor et al., 2000). In mature Purkinje cells, these questions 

remain totally unexplored. 

 

Function of the complex spike…function of NMDA-Rs? 

The presence of a significant but small NMDA component at the CF-EPSC could be 

considered a priori as unimportant for the Purkinje cell physiology. However, as we showed 

in our study, NMDA-Rs displayed a significant contribution to the complex spike and can 

deeply modulate its waveform. Interestingly, activation of NMDA-Rs occurs with a single 

climbing fiber discharge, i.e. a preceding depolarization is not needed to relieve the Mg2+ 

block and obtain the NMDA-Rs participation in the complex spike.  

 

Although the functional role of the complex spike is still unclear, it is well known that 

climbing fiber is involved in the control of Purkinje cell physiology, for instance their 

background firing and the induction of long term synaptic plasticity. The potency of NMDA-

Rs to modulate the complex spike addresses the question of their involvement in these 

phenomena.  
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There is still no consensus on the overall function of the complex spike, and the functional 

significance of the number and the latency of components of the complex spike still remains 

matter of speculation. However, it has been shown recently that during visual stimulation, 

climbing fibers can, in addition to modulate the low frequency discharge of Purkinje cells, 

transmit signals in the form and the number of spikes within the complex spike (Maruta et al., 

2007).  

 

A possible effect on Purkinje cell output 

The output of Purkinje cells after a complex spike consists of a burst of forward-propagating 

action potentials in the axon, in which only the first spike of the complex spike is reliably 

propagated (Llinas and Sasaki, 1989; Khaliq and Raman, 2005; Monsivais et al., 2005). The 

relationship between the propagation of these axonal spikes and the number of spikes 

underlying the complex spike is not clear. Nevertheless, the propagation probability of 

components of the complex spike depends on their waveform, and can be described as a 

saturating function of spike amplitude, rate of rise, or preceding interspike interval (Khaliq 

and Raman, 2005). By modulating these parameters in spikes underlying the complex spike, 

NMDA-Rs could thus change the probability of propagation of the complex spike 

components in the axon.  

 

A participation to CF-LTD induction? 

CF response undergoes a calcium dependent LTD that can be induced by CF-tetanization at 5 

Hz for 30 s (Hansel and Linden, 2000). This LTD, that requires the mGluR1 activation and is 

PKC- and PKA- dependent (Schmolesky et al., 2007), is also associated to a concomitant LTP 

of glutamate transporter currents through PKC activation (Shen and Linden, 2005). This LTD 

decreases CF currents amplitude of ~20%. Interestingly, this modification essentially affects 

the second component of the complex spike, which is composed of series of smaller spikes, 

partly produced by Ca2+ influx (Schmolesky et al., 2002; Schmolesky et al., 2005). As we 

showed, NMDA-Rs modulate this part of the complex spike. Thus, one can make the 

hypothesis that a CF-tetanization induces long term reduction of NMDA-Rs contribution to 

the complex spike. Considering the crucial role of polarity switch played by the complex 

spike in the control of the LTP/LTD induction at PF-Purkinje cells synapse (see below), this 

possibility certainly deserves some investigations. 
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The neuropeptide corticotrophin-releasing factor (CRF), which is released under high activity 

conditions from the CF-terminals, has been shown to facilitate the CF-LTD induction, 

probably by acting on the type 1 CRF receptors (CRF-R1, Schmolesky et al., 2007). 

Interestingly, CRF has been recently demonstrated to depress NMDA-Rs mediated current in 

hippocampal neurons via CRF R1 and PKC signaling (Sheng et al., 2008). It is thus possible 

that NMDA-Rs are a target of the CRF-mediated regulation in mouse Purkinje cells. 

 

Involvement in bidirectional PF-synaptic plasticity 

At its synapses with PF, Purkinje cell displays both LTD (for review, see Ito, 2001) and LTP 

(Lev-Ram et al., 2002). The climbing fiber is able to control the probability of LTD versus 

LTP at PF-Purkinje cells synapses by modulating the Ca2+ entry (Coesmans et al., 2004). 

Because they are activated by the climbing fiber and support the complex spike, in addition to 

the fact that they mediate by themselves a Ca2+ entry, NMDA-Rs of Purkinje cell could play a 

key role in determining the switch from LTP to LTD. Our preliminary results presented 

further were designed to test this hypothesis and favor this possibility. 

 

Effect on intrinsic plasticity 

Less studied than classical synaptic plasticity, another mode of long term information storage 

that neurons can use, consists in activity-dependent changes in their intrinsic excitability. 

Affecting neurons membrane locally or at larger scale, depending on the conductances 

involved in the phenomenon, this intrinsic plasticity could change durably the signal 

integration. It has been already described at two different sites of the cerebellar circuit: at 

mossy fiber to deep cerebellar nuclei synapses (Aizenman and Linden, 2000) and at mossy 

fiber to granule cell synapses (Armano et al., 2000). In both cases, this plasticity results in the 

increase in intrinsic excitability. Its induction requires NMDA-Rs activation and postsynaptic 

Ca2+ transient. Because these molecular candidates are now also gathered in mature Purkinje 

cells, such plasticity can be considered in these neurons. Consistent with this hypothesis, in 

rabbit, after classical conditioning of membrane eyelid response, Purkinje cells of a particular 

cerebellar region have been shown to display an increased membrane excitability that is 

function of the level of conditioning (Schreurs et al., 1998). Moreover, this phenomenon 

involved a reduction of K+-currents in Purkinje cells (Schreurs et al., 1998). In Purkinje cells 

which express high levels of SK and BK, it would be interesting to investigate the possibility 

of their modulation by NMDA-receptors. 
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NMDA-Rs and NO synthase in Purkinje cells: another polemic issue? 

Many experiments in acute cerebellar slices support the view that nitric oxide (NO) is a 

crucial signal leading to LTD at PF-Purkinje cell synapses. It has also been shown that a NO 

signaling cascade triggers persistent changes in spontaneous firing of Purkinje cells (Smith 

and Otis, 2003). What are the cellular events of this NO signalization? In the cerebellum, 

there would be many possible sources of NO, which is produced from arginine by the Ca2+ 

activated calmoduline-dependent NO-synthase (NOS) (Garthwaite et al., 1988). Interestingly, 

NO biosynthesis is preferentially activated by calcium influx through NMDA-Rs by reason of 

their close linkage with NOS by the PSD-95 family of proteins (Brenman et al., 1996; 

Christopherson et al., 1999). NO can diffuse freely across cell membranes and its target is 

probably the soluble guanylate cyclase in cells where NO is produced, as well as in 

neighboring cells (Hobbs and Ignarro, 1996). In Purkinje cells, the particularly abundant 

cGMP-dependent protein kinases are finally activated by the resultant increase in cGMP (El-

Husseini et al., 1999), allowing phosphorylation of the specific endogenous ‘G-substrate', a 

potent inhibitor of phosphatases. 

 

In Purkinje cells, where are expressed both NMDA-Rs and PSD93, a NO release has been 

showed to occur after CF stimulation (Shibuki and Okada, 1991). Therefore, does the CF 

activate a NOS - NMDA-Rs complex in Purkinje cells? This possibility could however be 

unlikely regarding previous literature. 

 

Actually, the exact location of the NOS is a matter of debate. PFs terminals, granular and 

basket cells have been reported to express this protein, whereas no or only very weak NOS 

expression has been found in Purkinje cells (Bredt et al., 1990; Crepel et al., 1994; Chung et 

al., 2002; Iino, 2006). However, the presence of NOS in Purkinje cells can not be totally 

excluded, and could depend on species, age, or specific conditions: In human, the NOS 

immunoreactivity of the Purkinje cells intensively appeared from the early fetal stage, and is 

preserved weakly until adolescence (Ohyu and Takashima, 1998). NOS is also detected in 

adult human Purkinje cells (Egberongbe et al., 1994), where its expression is strongly 

increased in schizophrenia (Bernstein et al., 2001). In mouse, NOS is found in Purkinje cells 

throughout the cerebellum during the first postnatal week, and gradually disappeared from P8 

to P12 (Bruning, 1993). It is to notice that this profile matches the ones of juvenile NMDA-Rs 

expression. In rats, (Rodrigo et al., 1994) found “isolated immunoreactive” Purkinje cells in 

the vermis and parafloccular regions. Interestingly, in rat cerebellar vermis and paravermis, 
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NOS expression can be induced in Purkinje cells by harmaline treatment, which 

synchronously activates inferior olive neurons (from which originate CFs, Saxon and Beitz, 

1996). 

3.2.3.5 Presynaptic NMDA-Rs 

If the expression of NMDA-Rs by Purkinje cells is getting clearer with recent studies (Renzi 

et al., 2007 and ours), their presence can cloud or even question the function of NMDA-Rs 

expressed on presynaptic afferences. 

 

Cerebellar interneurons have been shown to express NMDA-Rs (Glitsch and Marty, 1999). 

Activation of these receptors leads to the release of GABA that mediates inhibitory currents in 

Purkinje cells during bath applications of NMDA, in the presence of tetrodotoxin (TTX), 

indicating a presynaptic location for the underlying NMDA-Rs (Llano et al., 1991; Glitsch 

and Marty, 1999). Presynaptic NMDA-Rs that can be activated by the glutamate spillover of 

the climbing fiber (Szapiro and Barbour, 2007), or by retrograde signalling from Purkinje 

cells (Levenes et al., 2001; Duguid et al., 2007) thus mediate the depolarization-induced 

potentiation of inhibition (Duguid and Smart, 2004). Presynaptic NMDA-Rs expressed in 

interneurons are coupled to a NO cascade, that could be involved in the PF-PC synapses LTD 

(Shin and Linden, 2005), or in presynaptically expressed PF-PC synapses LTP (Qiu and 

Knopfel, 2007). 

 

Granule cells are well known to express NMDA-Rs at their synapses with mossy fibers. The 

early expression of NR2B in granule cells is replaced by NR2A during the initial 3 postnatal 

weeks, and later by intense expression of NR2C in mature animals (Akazawa et al., 1994; 

Monyer et al., 1994; Cathala et al., 2000). Yet, on granule cell axons, i.e. parallel fibers, the 

presence of NMDA-Rs is disputed. In young rats, although patches of staining for NR2 were 

sometimes found on parallel fibers (Petralia et al., 1994b), parallel fibers were unstained in 

NR1 immunostaining studies (Petralia et al., 1994a). In young rats (P18-P24) Purkinje cells, 

the reversible PF-EPSCs depression induced by NMDA application has been attributed to 

these presumptive presynaptic NMDA-Rs based upon their absence at postsynaptic Purkinje 

cells. This NMDA-induced inhibition would not involve a depression of transmitter release 

but would involve a trans-synaptic mechanism in which the NO released by the PFs decreases 

the glutamate sensitivity of the Purkinje cell (Casado et al., 2000). However, recent studies 

found no evidence for these NMDA-Rs in PF terminals (Diez-Garcia et al., 2005; Shin and 
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Linden, 2005; Qiu and Knopfel, 2007). Finally, by the light of our study led on mouse, these 

results could be re-interpreted with postsynaptic NMDA-Rs, provided that the expression of 

NMDA-Rs is verified in rats Purkinje cells of this age.  

 

Finally, given that the mechanisms implicated in long term synaptic plasticity, excitotoxic 

processes and development have been mainly built on the erroneous postulate that adult 

Purkinje cells do not express functional NMDA-Rs, our unexpected results open a new insight 

on the Purkinje cell physiology in adult animals. 
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3.3 Manuscript to submit: 

NMDA receptor participation to climbing fiber EPSC in adult 
mouse Purkinje cells lacking the delta2-glutamate receptor 

 

 

 

"If at first, the idea is not absurd, then there is no hope for it" 

Albert Einstein 

 

 

3.3.1 Introduction and summary 

Classified as an ionotropic glutamate receptor on the basis of its amino acid sequence, 

GluRdelta2 is considered an orphan receptor since no physiological ligand has so far been 

identified. GluRdelta2s are selectively localized at the PF-Purkinje cell synapses in the adult 

cerebellar cortex (Araki et al., 1993; Landsend et al., 1997), except during a short period of 

the early development during which they are also found at CF synapses (Zhao et al., 1997; 

Roche et al., 1999).  

 

Hotfoot is an allelic family of mutations localized in the GluRdelta2 gene (GRID2), which 

result in the loss of function of GluRdelta2. Hotfoot mutant mouse bearing the Nancy-allele 

(Ho-Nancy) displays a large deletion in GRID2, resulting in the complete absence of the 

protein (Lalouette et al., 2001). In these mice, the integrity of PF-Purkinje cell synapses is 

impaired and the regression of the CF multiple innervation is not achieved. In addition, the 

competition between PFs and CFs for Purkinje cell dendritic territory does not occur 

correctly, CFs invading the PF territory (Morando et al., 2001). Functionally, this mutation is 

accompanied by a loss of LTD at PF-Purkinje cell synapses that is not caused by the 

developmental deficits (Hirai et al., 2005). Indeed, GluRdelta2 seems to regulate AMPA-Rs 

clustering at synapses (Hirai et al., 2003), by Ca2+ dependent physical-interactions with 

PSD93 or S-SCAM proteins or other synaptic anchors, that are coupled to AMPA-Rs (Hirai, 

2001; Uemura et al., 2004; Elias and Nicoll, 2007; Kohda et al., 2007; Uemura et al., 2007). 
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On the whole, it appears that during evolution GluRdelta2 could have lost its channel 

properties to acquire the function of an activity-dependent adhesion molecule with the key 

role of orchestrating the synaptogenesis and synaptic plasticity in Purkinje cells by 

modulating the trafficking of receptors at synapses. 

 

Because GluRdelta2 seems to be able to regulate the trafficking of AMPA-Rs via Ca2+-

dependent modulation of the linkage between AMPA-Rs and scaffolding proteins, we 

wondered if in Purkinje cells GluRdelta2 could also regulate NMDA-Rs trafficking with a 

competitive relationship. Several lines of evidence supported this hypothesis: 

- the selective expression of NMDA-Rs at CF synapses only, and GluRdelta2 at PF synapses 

only (at least in the adult) 

- the fact that GluRdelta2 are expressed at CF synapses only during the transient absence of 

NMDA-Rs in Purkinje cells (Zhao et al., 1998; Roche et al., 1999), 

- the fact that, in case of CF deafferentation, NMDA-currents disappear (Elias and Nicoll, 

2007), while GluRdelta2 invades former-CF synapses (Cesa et al., 2003) 

- the homology between these receptors (Yamazaki et al., 1992b), 

- their capacity to interact with same synaptic anchors and PDZ proteins (Roche et al., 1999) 

 

To test this hypothesis, we studied the expression of NMDA-Rs in the Ho-Nancy mutant 

mice, which lack GluRdelta2, where we speculated that, according to our hypothesis of a 

competition, NMDA receptors could be differently expressed and/or localized. We found 

normal expression and localization of NMDA-Rs in the Ho-Nancy Purkinje cells. Like in 

their wild-type counterparts, we did not detect NMDA-currents in PF-EPSCs. These results 

show that the absence of GluRdelta2 does not strongly interfere with NMDA-Rs expression. 

Thus there does not seem to be direct competition between NMDA-Rs and GluRdelta2. In 

addition, we made three interesting observations during this study: 

- Re-estimating carefully the rate of multi-innervation in the Ho-Nancy mouse, we 

showed that the vast majority of Ho-Nancy Purkinje cells are multi-innervated by CFs, 

and with a higher degree than reported in previous studies of this mutant (Lalouette et 

al., 2001). This multiple innervation is equivalent to the GluRdelta2 transgenic knock-

out mouse (Kashiwabuchi et al., 1995b). This means that GluRdelta2 is necessary for 

the proper regression of multiple CFs. 

- We found that, despite the absence of GluRdelta2, NMDA-Rs develop in the same 

time window in the adult (by P21). 
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- Interestingly, in the Ho-Nancy Purkinje cells which were innervated by multiple CFs, 

we detected an NMDA component only at the “dominant” CF response, not at the 

weakest CF responses. These results suggest that the NMDA-Rs expression could be 

selective of one CF, the strongest one. 
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Abstract 
 
Cerebellar Purkinje cells form two different types of excitatory synapses: one with parallel 

fibers (PFs) on distal dendritic arborization and the other with a climbing fiber (CF) on 

proximal dendrites. While AMPA and mGluR1 glutamate receptors are found at both kinds of 

synapses indifferently, the recently evidenced NMDA receptors (NMDA-Rs), and the orphan 

delta2 glutamate receptor (GluRdelta2) are differently and selectively distributed in mature 

mice Purkinje cells. Whereas GluRdelta2 is initially expressed at CFs and PFs postsynaptic 

densities of mice Purkinje cells before approximately the postnatal day P21, it selectively 

localizes at PF-Purkinje cell synapses after this date. Furthermore, from P21, while the 

regression of supernumerary CFs is complete, NMDA-Rs appear in Purkinje cells, localized 

to CF contacts, and are absent from PF synapses. Although the mechanism underlying the 

synapse-specific sorting of GluRdelta2 and NMDA-Rs is unclear, this phenomenon could 

state on a competition between these proteins. These parent glutamate receptors indeed 

share common features, like the capacity to interact with same anchors proteins. In this study 

we made the hypothesis that in the absence of GluRdelta2, NMDA receptors could be 

differently expressed and localized.  

However, the expression and localization of NMDA-Rs appeared to be normal in the Hotfoot-

Nancy (Ho-Nancy) mutant that lacks GluRdelta2. 

Remarkably, we show that the multi-innervation of Purkinje cells is far larger in Ho-Nancy 

mice than previously estimated, so that almost all Purkinje cells receive multiple CF 

connection. In Ho-Nancy, CFs innervate Purkinje cells dendritic arborization more distally 

and invade the territory of PFs. This distal innervation probably underlies the “atypical” 

supernumerary CF connexions that are small and often slower than normal. Interestingly, in 

Ho-Nancy Purkinje cells, the NMDA component was present only at the larger CF response, 

not at the smallest ones, indicating that the NMDA-Rs expression is selective of the “strong” 

CF. Thus, there seems to exist a mechanism that drives the expression of NMDA-Rs at the 

strongest CF and that may be related to stabilization of this connexion.  
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Fig.1. Schematic representation of NMDA-Rs and GluRdelta2s expression in Purkinje 

cells through the postnatal development. 

(A) In wild-type mouse, at early stages (~P2-P5), multiple CF innervate immature Purkinje cells, 

GluRdelta2 are synaptically expressed, whereas NMDA-Rs containing the NR2D subunit are 

expressed extrasynaptically. During the second postnatal week (~P10-P14), Purkinje cell develops its 

dendritic tree. While multiple CFs are still connected to the dendritic arborization, PFs establish their 

first contacts. At this age, NMDA-Rs are absent from Purkinje cells whereas GluRdelta2s display a 

peak of expression and are present at both types of synapses. From ~P21 throughout adulthood, a 

single CF innervates Purkinje cell and PFs are connected on distal dendrites. GluRdelta2 are 

exclusively expressed at PF-Purkinje cells synapses, from which NMDA-Rs are absent. NMDA-Rs 

participate to the CF synaptic transmission and are also extrasynaptically expressed. (B) In adult Ho-

Nancy, multiple CFs remain and invade the distal territory which is normally innervated by PFs. 

NMDA-Rs expression of in Ho-Nancy Purkinje cells was to be determined. 

? 
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Introduction 

Fast excitatory synaptic transmission in the mammalian central nervous system is mediated 

by the activation of ionotropic glutamate receptors (iGluRs). Although different types of 

iGluRs can coexist at same excitatory synapses, in cerebellar Purkinje cells, which receive 

two distinct types of glutamatergic inputs, i.e. parallel fibers (PF) and climbing fibers (CF), the 

delta2 glutamate receptors (GluRdelta2s) and N-methyl-D-aspartate receptors (NMDA-Rs) 

possess their own expression territories. While NMDA-Rs are selectively expressed at CF 

synapses in mature Purkinje cells, GluRdelta2s are selectively localized at postsynaptic 

contacts with PFs (Landsend et al., 1997; Zhao et al., 1997; Piochon et al., 2007). Although 

very little is known about the mechanisms underlying the differential targeting of both these 

types of receptors, their specific segregation suggests a competition or a reciprocal exclusion 

between them. 

 

This hypothesis is also supported by the expression profiles of these two homologous iGluRs 

during Purkinje cell development (Fig.1-A). During the first week of postnatal development, 

GluRdelta2 is expressed at CF synapses, while juvenile NMDA-Rs are found 

extrasynaptically (Momiyama et al., 1996). In the second postnatal week, GluRdelta2 

expression dramatically increases at both CF and PF synapses (Zhao et al., 1998), while 

juvenile NMDA-Rs completely disappear (Momiyama et al., 1996). This period corresponds 

to a developmental stage of great activity in the Purkinje cell, which displays an extensive 

growth of the dendritic arborization and an intense synaptogenesis with PFs. Concomitantly 

begins the regression of supernumerary CFs that initially connected the Purkinje cell. From 

the third postnatal week, with the complete achievement of this regression, a new type of 

NMDA-Rs appears specifically localized at CF-Purkinje cell synapses, and remains 

expressed through adulthood, as we recently described (Piochon et al., 2007). At the same 

time, GluRdelta2 becomes selective of PF-synapses. 

 

Although GluRdelta2 might not function as a ionotropic receptor (Kakegawa et al., 2007a), it 

plays a crucial role in the development of the cerebellum as well as in cerebellar functions 

(for reviews, see Gounko et al., 2007; Mandolesi et al., 2008). GluRdelta2-null mice display 

impaired synapses formation and stabilization, such as naked spines, mismatched PF-

Purkinje cells synapses and the persistent innervation of Purkinje cells by multiple CF 

(Guastavino et al., 1990; Kashiwabuchi et al., 1995a; Kurihara et al., 1997). GluRdelta2s also 

play a critical role in the competition between PFs and CFs to determine their postsynaptic 

domains on the Purkinje cells (Morando et al., 2001; Mandolesi et al., 2008). In mutants 

lacking GluRdelta2, the CFs innervation territory extends distally on the domain of PFs 
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connections to Purkinje cells (Ichikawa et al., 2002). Inversely, when electrical activity is 

blocked by tetrodotoxin (TTX), or when lesion of the inferior olive is performed causing a CF 

deafferentation on Purkinje cells, GluRdelta2 invade the former CF synapses on the proximal 

dendritic spines (Morando et al., 2001; Cesa et al., 2003). Interestingly, in case of CF 

deafferentation, Purkinje cells no longer respond to NMDA (Billard and Pumain, 1989). 

Because GluRdelta2s have been cloned partly by sequence homology with NMDA receptors 

(Yamazaki et al., 1992a; Araki et al., 1993; Lomeli et al., 1993), these receptors share 

common features. In particular, both GluRdelta2 and NMDAR bind some common PDZ 

proteins. This suggests a possible competition for the same synaptic anchors (Roche et al., 

1999). 

 

This question prompted us to determine the developmental pattern of expression of NMDA-

Rs in Purkinje cells of animals lacking GluRdelta2s (Fig.1-B). Furthermore, NMDA-Rs 

contribute to mature CF synapses (Piochon et al., 2007; Renzi et al., 2007). In absence of 

GluRdelta2, mature Purkinje cells are innervated by multiple CFs. In this case, what about 

the expression of NMDA-Rs at these supernumerary CFs synapses? 

 

To test these hypotheses, we used hotfoot-Nancy (Ho) mutant mice that are spontaneous 

knockout of GRID2, i.e. the gene coding GluRdelta2 (Guastavino et al., 1990; Lalouette et 

al., 1998; Lalouette et al., 2001). Using voltage-clamp whole cell recordings, we verify here 

that GluRdelta2 is necessary for the supernumerary CFs regression. Although Purkinje cell 

keep this immature feature, juvenile NMDA-Rs expression do not seem to persist in Ho-

Nancy Purkinje cells in absence of GluRdelta2. Like their wild-type counterparts, Ho Purkinje 

cells express functional NR1 and NR2A/B containing NMDA-Rs that participate to the CF-

EPSC from the third postnatal week. In Ho PCs, immunolabelings of NMDA-Rs follow the 

CFs innervation territory, and thus invade the distal PFs synapses domain. However, no 

participation of NMDARs is detected in PF-EPSCs, indicating that a mechanism independent 

of GluRdelta2 must mediate the absence of NMDA-R currents from PFs excitatory post-

synaptic currents (EPSC). Interestingly, NMDA currents are not detected in the synaptic 

response of supernumerary CFs. This suggests that an additional factor, independent of 

GluRdelta2, could play a role in determining the expression of NMDA-Rs at specific CF 

synapses. 
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Material & Method 

Care and use of animals. Animals breeding and all the experiments were performed in 

accordance with the principles of the guidelines of the French Ministry of Agriculture and the 

European Community Council. A minimal number of animals was used and handled with 

maximum care to minimize their stress and suffering. Ho-Nancy mice used in the present 

study are on the C57Bl/6J background, and express the Nancy allele, in which the deletion in 

the GRID2 gene spans three of the four transmembrane domains of the GluR-delta2 protein. 

This mutant mouse has been previously described (Guastavino et al., 1990; Lalouette et al., 

2001). 

 

Slice preparation. Adult mice aged between 2 and 6 months were used in these experiments. 

Young mice of 14 to 17 days were also used in a set of experiments. Animals were first 

anesthetized with halothane and then rapidly decapitated. The cerebellar vermis was 

immediately removed and cooled to 4°C in oxygenated  bicarbonate buffered solution (BBS, 

see below). Parasagittal 180 µm thick slices were cut with a vibratome (VT-1000S, Leica 

Microsystems, Wetzlar, Germany). Slices were subsequently incubated for at least 1 hour at 

room temperature in BBS that contains (in mM): 130 NaCl, 2.5 KCl, 2.0 CaCl2, 1.0 MgCl2, 

26.0 NaHCO3, 1.3 NaH2PO4, 10.0 glucose, pH 7.4, when bubbled with 95% O2 and 5% CO2. 

 

Whole-cell recording procedure. The slice was placed in a recording chamber continuously 

superfused at a rate of 1-2 ml/minute with oxygenated BBS. Purkinje cells were visually 

identified from their position, size and shape using Nomarski differential interference contrast 

optics (40x water-immersion lens; Zeiss, Oberkochen, Germany), plus a 2.25x Nikon zoom 

(Tokyo, Japan) mounted on an upright Zeiss Axioskop-FS microscope. Whole cell voltage-

clamp recordings were made with an Axopatch-200A amplifier (Molecular Devices, Union 

City, CA). Signals were filtered at 2 or 5 kHz and usually sampled at 25-37 µsec. Data 

acquisition and storage were performed on a personal computer running the ACQUIS1 

software (Bio-logic, Orsay, France). Patch pipettes were made of borosilicate glass capillary 

tubing pulled on a horizontal puller (Sutter Instrument, Novato, CA). their final resistance was 

of 2-5 MΩ depending on the internal solution used. The internal solutions used were (in mM): 

144.0 K gluconate, 6.0 KCl, 4.6 MgCl2, 10.0 HEPES acid, 10.0 EGTA, 1.0 CaCl2, 4.0 ATP-

Na, 0.4 GTP-Na, pH 7.3 adjusted with KOH. Series resistances were partially compensated 

(70 to 75%). Holding potential (Vh) was set at -70 mV (liquid junction potential non 

corrected), unless the response could not be clamped sufficiently to prevent the generation 

of action potentials.In this case, the cell was held at -90 mV. Except otherwise specified, 

recordings were made in Mg2+-free BBS external solution supplemented with 25 µM 
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Glycine. Bicuculline methiodide (20 µM, Sigma, St. Quentin Fallavier, France) was also 

systematically added to block GABAA-mediated currents. For ionophoresis experiments, 

when filled with 10 mM NMDA, ionophoretic pipette had a final resistance of 40 - 50 MΩ. 

NMDA was ejected using negative square current pulses ranging from 100 nA to 250 nA. To 

limit diffusion of NMDA in the BBS, a small positive retention current (usually 10 nA) was 

continuously applied to the iontophoresis pipette between ejections. Extracellular stimulation 

of CFs or PFs was performed with a constant voltage isolated unit (0.1 msec square voltage 

pulses; 1-90 V) through a glass pipette filled with external solution. To look for multiple CFs 

innervating the recorded PC, the stimulation pipette was systematically moved around in the 

vicinity of the recorded Purkinje cell and the stimulus strength was gradually increased at 

each stimulation site, until the all-or-none CF response was obtained. PFs were activated by 

extracellular stimulation in the molecular layer. 

 

Drugs. Glycine and 1,2,3,4-tetrahydro-6-nitro-2,3-[f]-quinoxaline-7-sulfonamide (NBQX), 

were from Sigma-Aldrich (Sigma-Aldrich, France). N-Methyl-D-Aspartate (NMDA), 

tetrodotoxine (TTX), (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA), D-(-)-2-amino-5-

phosphonopentanoic acid (D-APV), were from Tocris Bioscience (distributed by Fisher 

Bioblock scientific, Illkirch, France). 

 

Immunohistochemistry. Parasagittal 60 µm slices were prepared as previously described 

except that a slicing sucrose BBS was used. This solution (containing in mM : 1 CaCl2, 5 

MgCl2, 10 Glucose, 4 KCl, 26 NaHCO3, 248 Sucrose, 1.3 NaH2PO4, pH 7.35) was cooled to 

4°C and bubbled with 95% O 2 and 5% CO2. Immediately after slicing, slices were fixed with 

4% paraformaldehyde in phosphate-buffered saline (PBS) for 2 hours. They were then rinsed 

3 times with PBS. Permeabilization and saturation were performed during 1 h on free-floating 

sections with PBS containing 0.25% Triton X-100 and 0.25% fish gelatine (PBS-G-T).  

For NR2-C and NR2-D immunodetection, two types of anti-NR2 antibodies were used: a 

rabbit anti-NR2-D raised against amino acids 268-386 of human NR2-D, and a goat anti-

NR2-C/D raised against a peptide mapping at the C terminus of NR2-D of mouse. The latter 

also recognizes NR2-C (sc-1471; Santa Cruz Biotechnology, distributed by Tebu, Le Perray 

en Yvelines, France). For NR2-A/B immunodetection, rabbit anti-NR2-A/B raised against the 

C-terminus tail of the rat NR2-A subunit was used. It recognizes both NR2-A and NR2-B 

mouse proteins equally (AB1548; Chemicon, Temecula, CA, distributed by Euromedex, 

Mundolsheim, France). Slices were divided into three batches and incubated overnight at 

room temperature in the following combinations: (1) with only the rabbit anti-NR2-A/B 

antibody (1 µg/ml),  (2) with NR2-A/B, mouse anti-Calbindin-D28k (1/10000; Swant, 

Bellizona, Switzerland) and guinea pig anti-Vesicular Glutamate Transporter 2 (VGLUT2) 
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(1/3000; Chemicon) -antibodies, (3) with PBS-G-T only (control). Slices were then incubated 

2 hours with the fluorescent secondary antibodies (10 µg/ml; Invitrogen): Alexa Fluor 546 

goat anti-rabbit (combinations 1-3), Alexa Fluor 633 goat anti-mouse and Alexa Fluor 488 

goat anti-guinea pig (combinations 2 and 3). The labeled slices were mounted in Vectashield 

medium (Vector Laboratories, Burlingame, CA) and viewed with a confocal laser-scanning 

microscope (SP2; Leica, Manheim, Germany) using a 63x objective. In multiple labeling 

experiments, acquisition of the signal was systematically performed in sequential mode. 

Alexa Fluor 488 was excited at 488 nm (argon laser), Alexa Fluor 546 at 543 nm (helium-

neon laser), and Alexa Fluor 633 at 633 nm (helium-neon laser). Fluorescence signals were 

corrected for background fluorescence by measuring slices from control combination 3. 

 

Analysis and Statistics. To estimate whether a cell displays a detectable D-APV-sensitive 

and NBQX-resistant EPSC, the amplitude of the NBQX-resistant EPSCs in control and 

during bath application of D-APV were compared using a Mann-Whitney one-tailed statistical 

test. If the two populations of amplitudes (control and D-APV) were statistically different 

(P>0.05), D-APV was considered as having an effect, and the percentage of blockade 

induced by D-APV was calculated. Averages are given as mean +/- SEM. For statistical 

comparisons, Mann-whitney or Wilcoxon procedures were used, unless specified, and p is 

given as the probability of the null hypothesis. 
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Results 

Bath or ionophoretic applications of NMDA induce currents in mature Ho-Nancy 

Purkinje cells 

Purkinje cells from Ho-Nancy mice older than 2 months were recorded in the whole-cell 

patch-clamp configuration (Holding potential= -70 mV, see Materials and Methods). NMDA 

(20 µM) was applied in the bath for 1 minute in the presence of NBQX (20 µM), AIDA (100 

µM), Bicuculline (20 µM), and TTX (1 µM) to isolate NMDA response as well as avoid the 

onset of action potential in the slice. In all the Ho-Nancy Purkinje cells tested (n=6), NMDA 

elicited inward currents, with a mean amplitude of 63.6 +/- 20.7 pA. NMDA was also applied 

locally by ionophoresis during 0.2 s at the level of the dendritic arborization of the recorded 

Purkinje cells, in an external solution containing NBQX (20 µM), AIDA (100 µM), bicuculline 

(20 µM), and TTX (1 µM) as for bath applications. These applications elicited inward currents 

of amplitudes going from 19 to 415 pA in all the Ho-Nancy Purkinje cells tested (n=6, 12 

applications). Amplitudes mainly depended on the location of the application pipette as well 

as on the ejecting current pulse applied in the iontophoretic pipette. These currents were 

completely abolished by D-APV (n=6) and reappeared with the washout of D-APV (Fig.2). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. NMDA currents in Purkinje 
cells of adult Ho-Nancy mice. 
Inward currents are induced by 

ionophoretic applications of NMDA in 

adult (>2 months) Ho-Nancy Purkinje 

cells recorded in the presence of NBQX 

(20 µM), bicuculline (20 µM), TTX (1 

µM). D-APV (50 µM) completely blocks 

these currents that reappear after 

washout. Currents display an increased 

noise that is typical of NMDA-Rs. 
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We recently identified NMDA currents in wild-type Purkinje cells of adult mouse. By 

immunolabelings, we demonstrated their expression of NR2A/B subunits (Piochon et al., 

2007). We thus wondered if mature Ho-Nancy Purkinje cells also express such NMDA 

subunits. If so, does the localization of NMDA-Rs in Ho-Nancy Purkinje cells differ from that 

of wild-type? 

 

Immunolabelings of NR2A/B subunits reveal the presence of NR2A/B subunits on 

Purkinje cells of Ho-Nancy mouse and suggest the presence of NMDA-Rs on distal 

dendrites  

To investigate both the nature and the localization of the NR2 subunits composing the 

NMDA-Rs that mediate bath and ionophoretic currents identified in mature Ho-Nancy 

Purkinje cells, we performed immunolabelings of the diverse NR2 subunits, along with that of 

calbindin as markers of Purkinje cells. Acquisition of the fluorescent signal was performed 

with a confocal microscope. Although no labelling was revealed for NR2C or NR2D subunits 

in adult Ho-Nancy Purkinje cells, a strong labelling of NR2A/B subunits was found in Purkinje 

cell soma and dendritic arborisation, which were labelled by the calbindin signal. 

Interestingly, the triple immunolabeling performed with the additional VGluT2 labeling 

showed that the presumptive territory of CF is extended distally in the molecular layer and 

that the NR2A/B labelling is distributed on the same Purkinje cell dendritic territory. Thus the 

NR2A/B labeling is unusual in that it is distally extended in the molecular layer (Fig.3). 

 

In mature Purkinje cells of wild-type mice, it has been shown recently that NMDA-Rs appear 

around the postnatal day P21 and participate to the CF-EPSCs. Do NMDA-Rs also 

participate to the CF-EPSC of Purkinje cells from adult Ho-Nancy mice? Because the 

regression of redundant CFs is impaired in these animals, does an NMDA-component also 

mediate the CF-EPSC of supernumerary CFs? To answer, we first needed to evaluate the 

CF multi-innervation of Ho-Nancy Purkinje cells in our conditions. 
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Fig.3. Immunolabelings of NR2A/B subunit in Purkinje cells of adult Ho-Nancy mice. 

(A), (B) and (C) are of the same confocal section. (A) Calbindin-immunolabeling shows the 

soma and the whole dendritic arborization of the Ho-Purkinje cells in blue. (B) VGluT2-

immunolabeling in green showing the terminals of the mossy fibers in the granular layer and 

the terminals of the CFs in the molecular layer. In Ho-Nancy mouse cerebellum, CFs 

terminals are unusually numerous and distally extended in the molecular layer. (C) NR2A/B-

immunolabeling shows in red the presence of this subunit in Purkinje cell soma and 

dendrites, as confirmed by the superimposed labeling of NR2A/B and calbindin shown in (E). 

(D) The distal territory of Purkinje cell dendrites in the molecular layer, where only PFs 

usually connect is very thin, because of the extension of the CF innervation. (F) NR2A/B 

labeling corresponds to the dendritic territories of CFs innervation. Scale bar, 20 µm. 
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High degree of persistent multiple CF innervation in adult Ho-Nancy mice 

During the first weeks of the postnatal development, multiple CFs that originate from the 

inferior olive innervate the same Purkinje cell. By P21, supernumerary CFs are completely 

eliminated to leave each Purkinje cell innervated by only one CF (Crepel, 1971; Crepel, 

1982). When GluRdelta2 is absent or mutated, the regression of redundant CF is known to 

be impaired, to a degree that seems to depend on the invalidation of the GluRdelta2 gene. 

The percentage of mono-innervated PCs varies significantly between different GluRdelta2 

mutants, going from 40 to 80% (for instance compare (Lalouette et al., 2001; Kakegawa et 

al., 2007b; Motohashi et al., 2007). On the over hand, the estimation of this ratio can greatly 

vary with the experimental procedure. 

Each CF displays a single threshold for excitation. By increasing the stimulus intensity, we 

elicit CF-EPSCs in an all-or-none manner. Moreover, as previously described (Konnerth et 

al., 1990), 30 ms interval paired stimulation of CFs resulted in the characteristic paired pulse 

depression (PPD). Using both these criteria of all-or-none response and PPD, we identify the 

CF-EPSCs evoked by stimulation in the granular layer in Ho-Nancy Purkinje cells voltage-

clamped at -70 mV (Fig.4A and 4B).  

In Ho-Nancy mouse aged of 2 to 6 months, only 17.1% of Purkinje cells were mono-

innervated by a single CF (n=35) displaying a typical large and fast EPSC. On the contrary, 

in wildtype mouse of same ages, all the Purkinje cells recorded in the same conditions in our 

previous study were mono-innervated (Piochon et al., 2007). Compared to the standard CF-

EPSC, most of supernumerary CF-EPSCs displayed an atypical smaller amplitude and 

slower rise-time. As proposed by Ichikawa et al. (2002), atypical CFs may represent 

additional CFs coming from neighboring PCs to the recorded PC. A number of 2, 3 and 4 

steps was found in 42.9, 25.7 and 14.3% of Ho-Nancy Purkinje cells respectively (n=35, 

Fig.4C). In average, Purkinje cells received 2.37 +/- 0.16 CFs (n=35). These results not only 

confirm the crucial role of GluRdelta2 in the elimination process of supernumerary CFs 

(Hashimoto et al., 2001), but also show that adult Ho-Nancy PCs are more severely multi-

innervated than in other GluRdelta2 mutants (Kashiwabuchi et al., 1995b) and than 

previously estimated (Lalouette et al., 2001).  
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Fig.4. Multiple CFs innervation in Ho-Nancy Pukinje cells. 

Purkinje cells of Ho-Nancy mice older than 2 months were held at Vh= -70 mV. By increasing 

progressively the intensity of stimulation at a fixed stimulation site, CF-EPSCs were successively 

evoked and identified on the basis of their all-or-none feature and the PPD, generated by paired 

stimulation separated by 30 msec. (A) Superimposed CF-EPSCs generated in recorded Purkinje cell. 

(B) Plotting the EPSC amplitudes against the intensity of stimulation shows the stepwise recruitment 

of up to four CFs in a Ho-Nancy Purkinje cell. (C) Summary histograms showing the percent number 

of Purkinje cells displaying 1, 2, 3 or 4 steps. (CFs multi-innervation ratio = 2.6, n=26). 
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The largest CF-EPSC displays a NMDA component in adult Ho-Nancy Purkinje cells, 

whereas no NMDA component is detectable in atypical CF-EPSCs 

The largest CF-EPSCs were generated by supra-threshold stimulus intensity for control 

periods. In presence of NBQX (20 µM), CF-EPSCs were not completely blocked. The NBQX-

resistant CF-EPSCs was all-or-none and displayed PPD. D-APV (50 µM) and Mg2+ (1 mM) 

blocked the totality of the NBQX-resistant EPSC in all the cells tested (n=6 and n=5 

respectively), and this inhibition was reversible (Fig.5A and B).  

This residual CF-EPSCs that persisted in the Ho-Nancy Purkinje cells tested had an 

averaged amplitude of 245.9 +/- 74 pA (n=8). Compared to the averaged amplitude of 228.9 

+/- 25 pA (n=43) of NMDA-mediated CF-EPSC from wild-type control mice previously 

recorded, the NMDA component of the total CF-EPSC in Ho-Nancy mice was not 

significantly different (Student t-test, p=0.8). Although Ho-Nancy Purkinje cells remains 

severely multi-innervated in adult mouse, the global NMDA-component of the CF-EPSC does 

not seem to be significantly increased. This suggests that supernumerary atypical CF-EPSCs 

do not add a significant NMDA component to the total CF-EPSC. 

To test this hypothesis, we tested the effect of NBQX on atypical CF-EPSCs. In all the multi-

innervated Purkinje cells tested (n=5), the atypical CF-EPSCs were totally inhibited by NBQX 

(20 µM). However, by increasing the stimulus intensity to the threshold that initially triggered 

the biggest CF-EPSC, we recorded a NBQX-resistant response that was blocked by D-APV 

or Mg2+ (Fig.5C). Thus, in mature Ho-Nancy Purkinje cells innervated by multiple CFs, 

NMDA-Rs seem to participle only to the dominant-CF synaptic transmission, since any 

detectable NMDA component is observed in atypical CF-EPSCs.   
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Fig.5. NMDA currents participate to the strongest CF-EPSC but are no detectable in 

atypical CF-EPSCs. (A) The strongest CF-EPSC displays an NMDA-mediated component: 

averaged CF-EPSCs recorded in absence of Mg2+, before and during the application of NBQX (20 

µM), are superimposed. (B) Effect of D-APV (50 µM) on the NBQX-resistant CF-EPSC represented in 

A. Amplitude of the NBQX-resistant CF-EPSC are plotted over time before (1), during (2) and after the 

application of D-APV (3). Corresponding averaged NBQX-resistant CF-EPSCs are represented on top 

traces. (C) Amplitude of the NBQX-resistant CF-EPSCs plotted over time before and during the 

addition of 1 mM external Mg2+. (D) Representative recording of a CFs-multi-innervated Ho-Nancy 

Purkinje cell, in absence of Mg2+, NBQX (20 µM) was tested simultaneously on the largest CF-EPSC 

and on one of the weak CF-EPSC. Left panel shows averaged strongest CF-EPSC (black traces) 

superimposed with the averaged weak CF-EPSC (grey traces), before and during NBQX (20 µM) 

application. A NBQX-resistant CF-EPSC persists with the intensity of stimulation that evoked the 

strongest CF-EPSC, but not with the stimulation intensity that evoked the weak CF-EPSC initially. 

Right panel shows amplitudes of the strongest CF-EPSC (black) and of the weak CF-EPSC (grey) 

plotted over time, before and after NBQX (20 µM) and D-APV (50 µM) applications. 
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PF-EPSCs display no NMDA component 

Parallel fibers mediated EPSCs (PF-EPSCs) elicited by 0.33 Hz extracellular stimulation in 

the molecular layer were identified by their graded amplitude increasing with 

stimulusintensity, and by their characteristic paired pulse facilitation following 30 ms-interval 

paired stimulations (Konnerth et al., 1990) (Fig.6A). PF-EPSCs were fully abolished by 20 

µM NBQX in the bath (n=5, Fig.6B). Thus, PF-EPSCs display no detectable NMDA 

component. 
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Fig.6. PFs-EPSCs display no NMDA component in Purkinje cells of adult Ho-Nancy 

mouse. Representative experiment performed on a Ho-Nancy Purkinje cell recorded in absence of 

Mg2+. The left panel shows superimposed averaged PF-EPSCs recorded before (black trace) and 

during (grey trace) the application of NBQX (20 µM). On the right panel, amplitudes of the PF-EPSCs 

are plotted over time before and during the application of NBQX (20 µM). Additional application of D-

APV (50 µM) has been tested at the end of the recording. 

 
 
No NMDA component in CF-EPSCs at P15-P17 

In our previous study (Piochon et al., 2007), we demonstrated that NMDA-Rs participate to 

the CF-EPSC from P21. Before this age, the NMDA-mediated CF-EPSC is not detectable, as 

shown by many studies performed between P14 and P21 that did not detect NMDA currents 

in rodent Purkinje cells (Llano et al., 1991). However, at this age, GluRdelta2s are highly 

expressed in Purkinje cells and are present at high levels at CF-Purkinje cells synapses 

Fig.1, (Zhao et al., 1997, Zhao, 1998 #3564). If GluRdelta2s are present transiently at these 

synapses to impede NMDA-Rs expression, an earlier expression of NMDA-Rs could thus be 

allowed by the absence of GluRdelta2 in Ho-Nancy Purkinje cells. In Ho-Nancy mice aged 

between P15 and P17, we tested the participation of NMDA-Rs in CF-EPSCs. The presence 

of NBQX (20 µM) completely abolished CF-EPSCs (n=8, data not shown). Purkinje cells of 
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Ho-Nancy animals thus display the same temporal patterned expression than the one 

observed in wild-type animals for NMDA-Rs. 

 
 
Discussion 

In Purkinje cells of wild-type mouse older than 3 weeks, while GluRdelta2s are inherent to 

PFs synapses, NMDA-Rs exclusively participate to the CF synaptic response. The aim of this 

study was first to determine the spatial and temporal pattern of expression of NMDA-Rs in 

Purkinje cells of the Ho-Nancy mutant mouse that lack GluRdelta2s (Lalouette et al., 2001) to 

test the possibility of a reciprocal exclusion of these receptors at glutamatergic synapses. 

Second, because Ho-Nancy Purkinje cells display an abnormally sustained innervation by 

multiple CFs, it was also interesting to test the expression of NMDA-Rs at supernumerary CF 

synapses. As well as in their wild-type couterparts, we observed that Ho-Nancy Purkinje cells 

of mature mice express functional NMDA-Rs that mediate a part of the CF-EPSC. Before 

P21, these NMDA-Rs are absent from CF-EPSCs displaying thus the same temporal pattern 

of expression as observed in wild-type Purkinje cells. In accordance with the fast kinetics of 

the NMDA currents detected in the CF-EPSC, immunolabelings show that Ho-Nancy NMDA-

Rs are composed of NR2A/B subunits but not NR2D. The NR2A/B labeling follows the 

aberrant CFs innervating territory on Ho-Nancy Purkinje cells dendrites and is thus more 

distally extended in the molecular layer than in wild-type animals. Yet, in Ho-Nancy Purkinje 

cells, NMDA-currents are still absent from PF-EPSCs. Our initial hypothesis of a competitive 

relationship between NMDA and GluRdelta2 receptors is thus unlikely, because in absence 

of GluRdelta2, neither the persistence of juvenile NMDA-Rs, nor an abnormal temporal and 

spatial expression of mature NMDA-Rs are observed in Ho-Nancy animals. Interestingly the 

contribution of NMDA-Rs is not detectable in the supernumerary atypical CF-EPSCs 

suggesting that the NMDA-Rs expression at CF synapses could be selective of the dominant 

CF, in a manner that is independent of the GluRdelta2 expression. Another interesting 

observation of the present study is that Ho-Nancy Purkinje cells remain more strongly multi-

innervated by CFs than previously estimated, and than in other types of GluRdelta2 mutants, 

showing that GluRdelta2 is clearly not dispensable for the redundant CFs regression. 

 

GluRdelta2 and NMDA are unlikely to compete for their synaptic localization 

The persistence of NMDA-Rs composed of the juvenile NR2D subunit has been reported in 

Purkinje cells of the adult mutant mouse staggerer that notably keeps immature features like 

the CF multi-afferentation (Mariani and Changeux, 1980; Dupont et al., 1984; Nakagawa et 

al., 1996). In our experiments on adult Ho-Nancy mouse, NMDA-Rs that participate to the 

CF-EPSC display rapid kinetics, which does not fit with NMDA-Rs containing the NR2D 
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subunits especially because of the characteristic low desensitization of these receptors 

(Misra et al., 2000). NMDA currents observed here are unlikely to be mediated by NMDA-Rs 

containing the neonatal NR2D subunit. On the other hand, NR2D NMDA-Rs do not 

participate to CF-EPSC even in immature wild-type animals. Furthermore our 

immunolabelings performed with antibody directed against the NR2D subunit did not 

revealvthese subunits in Purkinje cells of mature Ho-Nancy. Finally, although Ho-Nancy 

Purkinje cells can be as considered immature because they conserved the postnatal CFs 

multi-innervation, it is thus unlikely that they have conserved the expression of neonatal 

NMDA-Rs. In mature Ho-Nancy animals, the regression of neonatal NMDA-Rs seems thus 

complete, as observed in wild-type animals (Momiyama et al., 1996). The absence of 

GluRdelta2 seems without consequence on the down regulation of neonatal NR2D 

expression, suggesting that mechanisms regulating the expression of both these 

glutamatergic receptors are independent. 

 

From the second until the third postnatal week, any NR2 subunit is detected in Purkinje cells 

of wild-type mouse. NR1 being the sole NMDA-R subunit expressed in Purkinje cells (Hafidi 

and Hillman, 1997), this probably explains the absence of NMDA currents immutably 

observed at this age (Konnerth et al., 1990; Farrant and Cull-Candy, 1991; Llano et al., 1991; 

Piochon et al., 2007). During this period, GluRdelta2 are highly expressed at both CFs and 

PFs synapses (Zhao et al., 1998). However, the GluRdelta2 peak of expression is probably 

not responsible for the transient absence of NMDA-Rs since in Ho-Nancy Purkinje cells, we 

also observed the lack of NMDA-Rs-mediated currents before P21. 

 

As in wild-type mouse, NMDA-Rs do not participate to the PF-EPSC in Ho-Nancy Purkinje 

cells. Thus, GluRdelta2s are unlikely to be involved in the absence of NMDA currents at PF 

synapses. At synapses with PFs, Purkinje cells express various proteins containing PDZ 

domains. For instance, PSD-93, PTPMEG, S-SCAM or Shank1-2 that have been shown to 

bind to GluRdelta2 (Roche et al., 1999; Hironaka et al., 2000; Yap et al., 2003; Uemura et al., 

2004) are also known to interact with NMDA-Rs (Hirao et al., 1998; Naisbitt et al., 1999). In 

Ho-Nancy Purkinje cells, because of the absence of GluRdelta2, these proteins could be 

available to interact with NMDA-Rs. Yet, another mechanism must hamper either the 

addressing, the expression or the functionality of NMDA-Rs at PFs synapses.  

 

The repression of GluRdelta2 expression at CF spines results from CF activity (Cesa et al., 

2003). Similarly, one can also speculate that the expression of NMDA-Rs is specifically 

down-regulated by the PF activity. The disparition of juvenile NMDA-Rs concomitantly with 

the establishment of PFs contacts supports this hypothesis. Because Hotfoot Purkinje cells 
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bear many naked spines that do not receive presynaptic terminals, it could be interesting to 

investigate by electronic microscopy the presence of NMDA-Rs at these inactive spines. Our 

immunolabellings show the presence of NMDA-Rs in distal dendrites of Purkinje cells but the 

resolution does not allow to set out this question. 

 

Although our results indicate that NMDA-Rs are unlikely to compete with GluRdelta2 at PF 

synapses, we can not exclude that, inversely, GluRdelta2 can in some cases compete with 

NMDA-Rs at CF synapses, in mature animals. When CF activity is blocked by TTX, or when 

a 3-acetylpyridine (3-AP)-induced subtotal lesion of inferior olivary neurons is performed, 

GluRdelta2s invade former CF synapses (Cesa et al., 2003). Interestingly, Billard and 

Pumain (1999) have shown that NMDA responses are strongly depressed when PCs are 

deafferented from their climbing fibers, after 3-AP treatment. The corollary would be the 

expression of GluRdelta2s at CFs in Purkinje cells lacking NMDA-Rs. This remains to be 

tested. 

 

NMDA-mediated CF-EPSCs are detected only in the strongest-CF response 

Although Ho-Nancy Purkinje cells are innervated by multiple CFs, we show here that NMDA-

Rs participate to the largest CF-EPSC from P21, with the same timing and in a proportion 

similar to the one we described previously in wild-type mouse. Therefore, the absence of 

GluRdelta2 does not affect this aspect of the late maturation of the strongest CF. In 

GluRdelta2 mutant mice, Purkinje cells are known to be multiply innervated by CFs. In this 

study, we estimated that the large majority of Ho-Nancy Purkinje cells are multi-innervated, in 

contrary to the previous characterization of this mutant mouse (Lalouette et al., 2001), and in 

contrary to most of studies on other GluRdelta2 mutants. In Ho-Nancy the deletion does not 

only include, but is even far larger than the one present in genetically engineered 

GluRdelta2-/- knockout mice (Kashiwabuchi et al., 1995b). This difference could explain the 

discrepancy between our and some other results. In some studies, to ensure a better 

voltage-clamp, Purkinje cells are recorded at more depolarized potential, i.e. -20 mV. In this 

case, the driving force is rather lower, rendering small CF-EPSCs less detectable. This 

difference of experimental procedure can also bring divergences between studies. In any 

case, GluRdelta2 is essential to restrict CF innervation to the proximal dendrites of Purkinje 

cell. Without GluRdelta2, the CF territory expands along and beyond dendritic arborization of 

the Purkinje cells, causing persistent multiple CF innervation (Ichikawa et al., 2002).  

 

In both Ho-Nancy and wild-type mice, CF stimulation elicits a typical EPSC with a fast rise 

time, a large amplitude, and a NMDA-mediated component. In addition to this main 

response, most Ho-Nancy Purkinje cells display additional steps of atypical CF-EPSCs with a 



Results 

  105

slow rise time and a small amplitude, as observed in studies on the GluRdelta2 knock-out 

mouse (Hashimoto et al., 2001; Ichikawa et al., 2002). Interestingly, these atypical CF-

EPSCs do not bear a detectable NMDA component. Therefore, a mechanism that is 

independent of GluRdelta2 could exist in Purkinje cells to target NMDA-Rs at strongest CF 

synapses, and/or to exclude NMDA-Rs from atypical CF synapses. Importantly, it has been 

shown that the activation of the main CF induces the spread of voltage-dependent Ca2+ 

signals all over the dendritic tree in both GluRdelta2 mutant and wild-type mice, whereas that 

of atypical CFs in the knock-out mouse elicits local Ca2+ signals confined to small distal 

regions of the dendritic tree (Hashimoto et al., 2001). It is thus tempting to propose a role of 

NMDA-Rs in the spread of Ca2+ signals associated to the stimulation of the main CF. 
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3.3.3 Discussion in the context of the present thesis 

The aim of this study of NMDA-Rs in Ho-Nancy Purkinje cell was to test the possibility of a 

competition between GluRdelta2 and NMDA-Rs. This hypothesis was mainly considered in 

respect to their sequence homology, their common anchors, and their spatio-temporal 

expression profiles. If this hypothesis of a competition has been true, the spatio-temporal 

profile of NMDA-Rs would have been disturbed in Ho-Nancy Purkinje cells lacking 

GluRdelta2. However, our results showing no abnormal distribution of NMDA-Rs in Ho-

Nancy Purkinje cells are not in favor of this initial hypothesis of an interaction between 

GluRdelta2 and NMDA-receptors. 

 

We have shown in our previous study that NMDA-Rs participate to the CF synaptic 

transmission in wild-type Purkinje cells. In addition to the diverse possible functions already 

proposed for NMDA-Rs in Purkinje cells (in particular in the synaptic plasticity, see II.2.3), 

another role could be their involvement in synapses stabilization. For example, NMDA-R 

could underlie the stabilization of CF spines and synapses, as it has been demonstrated at 

hippocampal pyramidal neurons (Alvarez et al., 2007). In these neurons, the formation or the 

retraction of spines is NMDA-Rs-dependent, and depend on the frequency of stimulation 

(Nagerl et al., 2004). Such mechanisms could also underlie the stabilization of the strongest 

CF during the development. We assumed that CF-evoked Ca2+ influx to a PC through 

NMDA-Rs may consolidate coactivated CF synapses, whereas it may “punish” other 

excitatory synapses unrelated to the Ca2+ influx. This proposed mechanism is similar to the 

NMDA receptor-dependent synapse refinement in the visual and somatosensory systems, in 

which NMDA-Rs are thought to function as a coincidence detector that introduces Ca2+ influx 

in an activity-dependent manner. It is thought that the Ca2+ influx through NMDA-Rs 

strengthens synapses with correlated activities, whereas it weakens those with uncorrelated 

activities, through which immature redundant connections are refined into functionally mature 

ones (Li et al., 1994).  

 

In wild-type Purkinje cell, during the first postnatal week, a stronger CF emerges from the 

multiple CFs by a LTP process recently evidenced (Hashimoto and Kano, 2003; Bosman et 

al., 2008). A mechanism of regression that depends on the GluRdelta2 (Cesa et al., 2003), and 

on the CF activity (Bravin et al., 1999), must occur thereafter to eliminate supernumerary 

weak-CFs synapses, while another mechanism, maybe NMDA-dependent, could stabilize 
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synapses with the strongest CF. Because adult Ho-Nancy Purkinje cells have been shown to 

be innervated by multiple CFs, it was thus interesting to test the participation of NMDA-R to 

the supernumerary CF-EPSCs, in order to investigate its eventual participation in the 

stabilization of these supernumerary synapses. 

 

Interestingly, we observed a significant NMDA-Rs participation only to the synaptic currents 

of the strongest CF, whereas no NMDA currents were detectable in weak CF synaptic 

responses. How can we interpret this result? Actually, it remains difficult to draw definitive 

conclusions. Indeed, either NMDA-Rs participate only to the strongest CF response, either 

they also mediate an undetectable part of the weak-CFs responses. NMDA-Rs mediate 5 to 

10% of the total CF synaptic current in wild-type Purkinje cells (Piochon et al., 2007). If these 

receptors are present in the same proportion in weak CFs, their possible NMDA component is 

thus hardly detectable in our conditions. Our immunolabelings do not unable us to distinguish 

a separate localization of NMDA-Rs at weak- or strong-CF synapses. If their presence at 

weak-CF synapses was verified, this could indicate that NMDA-Rs are involved in the 

maintenance and stabilization of all CF synapses, whatever the strength of the afferent CF. In 

the other case, i.e. if NMDA-Rs are selectively expressed at synapses with the strongest CF, 

one can speculate that these receptors play a role in the stabilization of the “winner” CF 

synapses. Interestingly, it has been shown recently in GluRdelta2 null mutant mouse, that 

spreads of calcium are observed only for stimulation of the strongest CF (Hashimoto et al., 

2001). Thus it is tempting to make a link between this differential calcium signaling of the 

strongest CF responses, and the presence a calcium-permeable NMDA-Rs at these very 

synapses. P/Q type Ca2+ channels are high voltage-activated VGCCs, that can be activated by 

relatively strong depolarization such as that caused by CF activity. At the time when NMDA-

Rs expression was still ignored in CF-Purkinje cells synapses, VGCCs have been already 

proposed to substitute to NMDA-Rs, and it has been demonstrated that they play an important 

role in the elimination of surplus CF innervation and territory regulation (Miyazaki et al., 

2004). One can not exclude that NMDA-Rs act in synergy with VGCCs in this process. 

However, this remains to be studied. 

 

As a complement of this study, we are now generating a transgenic mouse lacking NMDA-Rs 

specifically in Purkinje cells (see general conclusion of this thesis). If NMDA-Rs are indeed 

involved in the stabilization and/or the selection of CF synapses, thus impairments of the 

Purkinje cells innervation by CF(s) are expected to occur in this mutant mouse. 
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3.4 Results in progress: 

NMDA receptor involvement in bidirectional 
plasticity of parallel fiber to Purkinje cells synapses 

 

"I have not failed. I've just found 10,000 ways that don't work." 

Thomas A. Edison 

 

 

3.4.1 Introduction  

3.4.1.1 An “inverse” BCM rule in PF-Purkinje cell synaptic plasticity  

In hippocampal and neocortical pyramidal neurons, and in cells of various regions of the 

brain, LTP and LTD can be induced at the same synapse. This bidirectional plasticity depends 

on the amplitude of postsynaptic calcium signal, LTP being induced for high threshold of 

calcium, and LTD depending on lower calcium level (Figure  3.4A). This model, well known 

as the BCM (Bienenstock-Cooper-Munroe) rule, was first a mathematical theory 

(Bienenstock et al., 1982). Soon, (Bear et al., 1987) and (Lisman, 1989) completed the model 

by proposing that the postsynaptic Ca2+ level, arising in particular from NMDA-Rs and 

interacting for instance with calmodulin-dependent protein kinase II, could control the 

bidirectional synaptic plasticity. This was later verified experimentally in pyramidal neurons 

of the hippocampus (Cummings et al., 1996) and of the visual cortex (Hansel et al., 1997). As 

usual, Purkinje cells do not follow the general rules, and synaptic plasticity proceeds there in 

an inverse BCM rule, that has been evidenced rather recently (Figure  3.4A, Coesmans et al., 

2004). Which calcium rule governs the bidirectional plasticity in PF-Purkinje cell synapses? 

 

The LTD occurring at PF-Purkinje cell synapse has been extensively investigated since its 

importance given by the Marr-Albus-Ito model. It can be induced by paired stimulations of 

PF and CF at low frequencies, ~1 Hz (Ito et al., 1982). The CF is believed to contribute to the 

PF-LTD induction by enabling a strong Ca2+ influx through voltage gated channels during the 

complex spike, but coincident stimulation of PF and CF boosts the amplitude of the Ca2+ 

transients in spines supralinearly (Wang et al., 2000). The glutamate released by PFs activates 
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AMPA and mGluR1 receptors. These signals converge to activate protein kinase C (PKC), 

which in turn phosphorylates receptors and proteins of the postsynaptic density, resulting in 

AMPA-Rs inactivation. The activation of alphaCaMKII by Ca2+ influx is also essential to 

induce PF-LTD (Hansel et al., 2006), while the inhibition of protein phosphatases is 

facilitating (Ajima and Ito, 1995). NO, by activating the soluble guanylate cyclase, plays also 

a role in this PF-LTD induction (Levenes et al., 1998; Ito, 2001). 

 

PF-Purkinje cells synapses also have the possibility to be potentiated. In addition to various 

LTP that have been evidenced presynaptically (Salin et al., 1996; Linden and Ahn, 1999; Qiu 

and Knopfel, 2007), a true inverse postsynaptic LTD has been characterized. This 

postsynaptic LTP can be induced by the PF stimulation at low frequency (1 Hz) without CF 

stimulation. This LTP depends on NO, but is independent of cGMP. It requires low 

postsynaptic Ca2+ level and is PKC-independent. The inhibition of protein phosphatases 

blocks the PF-LTP induction (Lev-Ram et al., 2002; Lev-Ram et al., 2003; Coesmans et al., 

2004; Belmeguenai and Hansel, 2005). 

 

 

 

 

 

 

Figure  3.4: Calcium threshold 
models for LTP and LTD 
induction 

(A) At excitatory inputs to cortical 
pyramidal cells, there is a higher calcium 
threshold amplitude for LTP than for 
LTD induction (BCM rule). 
(B) As demonstrated in (Coesmans et al., 
2004), bidirectional PF plasticity is 
governed by a calcium threshold 
mechanism inverse to the one illustrated 
in (A). PF-LTD has a higher calcium 
threshold than LTP. CF activity provides 
sufficient calcium to increase 
substantially the probability that the LTD 
threshold is reached. CF-LTD lowers this 
probability. 
 
(from Coesmans et al., 2004, Neuron 
44:691-700). 
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3.4.1.2 Bidirectional PF plasticity is under CF control 

In the switch of the PF synaptic plasticity to LTD or LTP, Coesman et al. (2004) have showed 

that the internal Ca2+ level is determinant: PF-LTD requires higher calcium than PF-LTP. 

Moreover, they suggested that the CF activity, by providing Ca2+ transients, is responsible for 

this switch. Supporting this hypothesis, they demonstrated that the previous CF-LTD 

induction, which is accompanied by a reduction of complex spike-evoked calcium transients 

(Weber et al., 2003), decreases the probability to induce subsequent PF-LTD (Coesmans et 

al., 2004); see Figure  3.4. 

 

As we showed in our previous study, NMDA-Rs contribute to the complex spike (Piochon et 

al., 2007) in which they are able to modulate the series of smaller spikes that are known to be 

partly produced by dendritic Ca2+ influx (Llinas and Sugimori, 1980a; Llinas and Sugimori, 

1980b). This observation prompted us to study the involvement of NMDA-Rs in the induction 

of PF-LTD. Our present objective is to test the effect of NMDA-R blockade on PF-LTD 

induction, using whole-cell patch-clamp recordings in our in vitro slice preparation of adult 

mouse cerebellum.  

3.4.2 Preliminary results 

3.4.2.1 A matter of protocol 

Actually, many protocols have been described to induce PF-LTD, but they were usually used 

in young animals. Beforehand, we had thus to determine the most reliable protocol inducing 

PF-LTD in Purkinje cells of adult mice.  

 

In P18-P27 rat cerebellar slices, a possible PF-LTD protocol consists in paired PF and CF 

stimulation at 1 Hz for 5 min (300 pulses) in presence of GABA-A antagonist (Karachot et 

al., 1994; Coesmans et al., 2004). In control conditions, this protocol has been shown to 

induce a depression of PF-EPSC amplitude amounted to ~80% of baseline. To our 

knowledge, this protocol is the only one to have been tested in adult mice Purkinje cells, 

where it gives rise to a robust LTD, although its onset has been reported to be slower in adult 

than in juvenile animals (Hansel et al., 2006). Thus, we first tested this protocol in adult 

mouse Purkinje cells. Although we tried to rigorously reproduce the experimental conditions 

described in Coesmans et al. (2004) and Hansel et al. (2006), this protocol was not so efficient 
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in our hands to induce PF-LTD in adult mouse Purkinje cells. Indeed, on the 16 Purkinje cells 

tested, it induced PF-LTD in only half of them (data not shown).  

 

In P17-P25 rat, it has been demonstrated that LTD induction is greatest when PF activation 

precedes the CF activation within 50−200 ms (Wang et al., 2000). In this timing rule, which 

matches the properties of several forms of motor learning, conjunctive activation of PF and 

CF generates Ca2+ signals in spines and dendrites that greatly exceed the linear sum of 

responses to the individual inputs. This supralinearity would be mediated by enhanced Ca2+ 

release from the endoplasmic reticulum and occurs only when the bursts of PF stimuli precede 

the CF stimulation (Wang et al., 2000). Recently, examination of the timing dependence 

between PF and CF activity has confirmed that LTD-peak occurs when PF activity precedes 

CF activity by 50–150 ms (Safo and Regehr, 2008). In our search for a reliable protocol, we 

thus decided to test this protocol, consisting of a train of 5 to 8 PF stimuli evoked at 100 Hz, 

followed by the CF stimulation 50 to 150 ms later (Figure  3.5A). This pairing was delivered 

at 1 Hz during 5 minutes, in current clamp mode, in the continued presence of bicuculline (20 

µM) in the bath. This protocol showed better efficiency to induce PF-LTD in adult mouse 

Purkinje cells: 17 cells on the 20 one tested displayed PF-LTD after this protocol (Figure 

 3.5B); the 3 others display no significant change. Thirty five minutes after the protocol PF-

EPSCs averaged 49.9 ± 4 % of their baseline amplitude (n=9). We thus adopted this method 

for the rest of the study. 

3.4.2.2 The bidirectional plasticity depends on the CF stimulation in our 
LTD protocol 

In two cells tested, we observed that in the absence of CF stimulation the sole stimulation of 

PFs by train of 5 to 8 stimuli at 1 Hz can induce a PF-LTP (Figure  3.5C). Although this 

experiment needs to be repeated to be statistically significant, these results suggests that the 

bidirectional plasticity is also verified with our protocol, and would also depend on the CF 

activity, as demonstrated by Coesmans et al. (2004). Moreover, on one cell tested, we 

observed that our LTD protocol failed to induce PF-LTD in presence of 10 mM of the Ca2+ 

chelator EGTA in the internal medium (actually this protocol induced a slight LTP, data not 

shown). Thus, these results suggest that in adult mouse Purkinje cells, the bidirectional PF 

long-term plasticity is governed by the Ca2+ entry that is mediated by the CF response, as 

already demonstrated in young rat Purkinje cells (Coesmans et al., 2004). We then wondered 

if NMDA-Rs, by modulating the complex spike, are involved in the PF-LTD induction. 
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3.4.2.3 D-APV prevents the PF-LTD 

On 2 cells recorded in presence of D-APV (50 µM) in the bath, we applied the PF-LTD 

protocol. Instead of the expected PF-LTD, this produced a PF-LTP in one cell whereas no 

lasting change of the PF-EPSC amplitudes was recorded in the other. This indicative result 

confirms a possible role of NMDA-Rs somewhere in the network involved in the PF-LTD 

induction. By reason of the suspected presence of NMDA-Rs on presynaptic PF terminals 

(Casado et al., 2002), we however decided to focus on experiments using MK801 in the 

internal medium.  

3.4.2.4 Internal MK801 prevents the PF-LTD 

As we showed in our previous study, MK801 blocks Purkinje cells NMDA-Rs when added in 

the medium that fills the recording pipette (Piochon et al., 2007). We thus decided to test the 

effect of this NMDA-R blockade on the induction of PF-LTD. In presence of internal MK801, 

the protocol induced a PF-LTD in only 2 Purkinje cells of the 7 tested, Figure  3.5B). In the 5 

others, the protocol either left the PF responses unchanged (3 cells) or induced a LTP (2 

cells). As a rigorous control of these experiments, we currently test if the inactive form of 

MK801 when added in the internal medium has an effect on PF-LTD induction.  
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Figure  3.5 : NMDA-Rs blockade impairs PF-LTD induction 

(A) Voltage trace corresponding to the train of 8 PF stimuli (100 Hz) followed 120 ms later by the CF 
stimulation. This pairing of PF and CF stimulations is delivered 300 times at 1-s intervals, in current-clamp 
mode, keeping the holding potential at -70 mV. (B) In control conditions, PF-LTD can be induced by the 
previously described protocol in adult mouse Purkinje cells (n = 17; closed circles); in presence of internal 
MK801, this protocol induces a slight PF-LTP (n = 7; open circles). (C) In absence of the CF stimulation, the 
train of 8 PF stimuli (100 Hz) delivered 300 times at 1-s intervals induced a PF-LTD (n = 2). 
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3.4.3 Discussion 

3.4.3.1 Bidirectional plasticity in adult mouse PF-Purkinje cells synapses 

The plasticity processes occurring in adult animals may be rather different than those 

evidenced in young animals. This could explain the difficulties we had to find a reliable 

protocol to induce the PF-LTD. Differences in the LTD-induction in PF-Purkinje cell 

synapses have been reported between young and adult mouse, showing a slower onset of LTD 

in adult as compared to juvenile animals (Hansel et al., 2006). It is likely that our protocol 

would differently induce a PF-LTD in young mouse Purkinje cells, with different onset and 

different amount of depression, but we did not test this. Moreover, the presence of NMDA-Rs 

at CF-Purkinje cells synapses from P21 in mouse could be in part responsible of some 

differences in LTD-induction compared to young animals. 

 

Our results confirm that a bidirectional plasticity also exists at PF-Purkinje cell synapses of 

adult mouse, as described previously by Coesmans et al (2004). Indeed, the stimulation of PFs 

only, without co-activation of CF seems to induce a LTP of PFs response in adult mouse 

Purkinje cells. This LTP seems also to be determined by a low internal Ca2+ level since the 

addition of intracellular calcium chelator would support rather the LTP- than the LTD 

induction. We found that the blockade of the NMDA-Rs also supports the LTP establishment. 

This echoes with a previous study showing that in adult mice lacking the alphaCaMKII 

expression, LTD is converted in LTP in a similar manner (Hansel et al., 2006). These results 

suggest that NMDA-Rs and alphaCaMKII could be involved in same signaling cascade 

depending on calcium entry through CF activity. 

3.4.3.2 NMDA-Rs involvement in PF-LTD induction  

Our preliminary results need further confirmations. However they already draw a potent 

involvement of NMDA-Rs in PF-LTD induction, in Purkinje cells of adult mouse. Indeed, the 

inhibition of the NMDA-Rs by external D-APV, or by internal MK801 impairs the PF-LTD 

induction, and rather supports the PF-LTP establishment.  

 

We showed in our previous study that NMDA-Rs contribute to the complex spike in presence 

of Mg2+, without prior depolarization of the cell. However, it is likely that a prior 

depolarization supports the Mg2+ block relieve and increases the activation of NMDA-Rs 
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during the complex spike. This would explain why the delayed CF stimulation seems more 

efficient to induce LTD than the other protocols we tested. It is worth mentioning here that 

this order dependence of PF and CF stimulation in LTD induction may be a necessary 

component of the temporal dependence of sensory conditioning. For example, in eyeblink 

conditioning, a conditional stimulus such as a tone has been suggested to trigger PF activity. 

For conditioning to occur, the tone must precede the airpuff, thought to be encoded by CF 

activity, by at least 80 ms (Thompson et al., 1997). Similarly, in the adaptation of the 

vestibulo-ocular reflex, a same timing dependence has been suggested (Raymond and 

Lisberger, 1998).  

 

During the co-activation of PFs and CF, NMDA-Rs activation could mediate a Ca2+ entry that 

increases the probability for subsequent PF-LTD, in respect of the “inverse” BCM rule 

described in Purkinje cells. The Ca2+ that directly flows through NMDA-Rs could be 

responsible for the polarity switch from PF-LTD to PF-LTP. However, it is also possible that 

NMDA-R activation indirectly promotes internal Ca2+ increase via other mechanisms. For 

instance, it has been shown that the mGluR1-dependent Ca2+ release induced by the PF burst 

activity is boosted supralinearly by the Ca2+ entry resulting from the complex spike, which 

Ca2+ acts as a co-agonist at IP3 receptors, enabling a subsequent endoplasmic reticulum 

calcium release (Wang et al., 2000; Sarkisov and Wang, 2008). The Ca2+ influx through 

NMDA-Rs could also contribute to the co-activation of IP3 receptors, allowing the internal 

Ca2+ level to reach the threshold of LTD-induction. In addition to this calcium release from 

internal stores, voltage-gated calcium channels would also be responsible for a nonlinear 

amplification of Ca2+ when PFs stimulation is followed by CF activation (Wang et al., 2000; 

Brenowitz and Regehr, 2005). One can propose that the NMDA-Rs activation enhances the 

depolarization that induces the activation of voltage-gated calcium channels. 
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4 Summary and conclusions 
Because of their unique features and their high permeability to Ca2+, NMDA-Rs play a major 

role in many integrative neurons of the central nervous system, where they are involved in 

crucial processes like development, plasticity or neuronal death. Surprisingly, in the Purkinje 

cells, these pivotal integrative neurons of the cerebellar cortex, the nature and the function of 

NMDA-Rs have been so far neglected. While their presence is well known in neonatal 

Purkinje cells, their role is still mysterious, and studies on this precise issue are rather seldom. 

In adult Purkinje cells, NMDA-Rs were considered as absent since the advent, in the early 

90’s, of the patch-clamp techniques used in cerebellar slices. The well admitted presence of 

the NR1 subunit was considered as a vestige from evolution, and discrepant results obtained 

with other techniques did not receive a particular attention. The goal of this thesis was to 

investigate the role of glutamergic afferences of Purkinje cells in synaptogenesis and 

plasticity during development and in the adult, with a particular focus on receptors of the 

NMDA family. 

 

1. Excitation and survival of neonatal Purkinje cells 

Yuzaki et al. (1996) had shown that NMDA-Rs enhance the survival of immature Purkinje 

cells in dissociated culture in vitro. Our results complement this previous study by 

demonstrating that, in organotypic culture and in acute cerebellar slices at P3, depolarization 

in general has also a neuroprotective effect on postnatal Purkinje cells during the period of 

developmental apoptosis, around P3. In addition, the glutamatergic excitation provided by 

CFs could promote the survival of the Purkinje cells contacted by CFs only, by acting on 

juvenile NMDA-Rs, during the critical time window of developmental cell death (Results, 

3.1). 

 

2. NMDA-Rs at CF synapses 

The major result of this thesis is the demonstration that, from the third postnatal week, 

NMDA-Rs participate to the CF excitatory transmission in Purkinje cells of adult mouse 

(Results, 3.2). Many candidates are likely to interact with NMDA-Rs in Purkinje cells. In 

addtion, the calcium signal mediated by these receptors activated by the CF could play key 

roles in a wide variety of cellular processes. Thus, this demonstration opens new insights into 

the understanding of the Purkinje cell physiology. We also show that the NMDA-Rs 

contribute to the “making of” a complex spike, the response of Purkinje cells to the 
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stimulation of the CF. The role of the complex spike in Purkinje cell is still rather unknown 

and covers an impressive spectrum of possibilities, going from timing device to synaptic 

plasticity etc.... Thus, NMDA-Rs in this cell have a promising future. In addition to the 

amazing bulk of possible partners of NMDA-Rs in Purkinje cells, there are many theories that 

now need to be revised. NMDA-Rs may be a sort of missing link that could help solving some 

unresolved or controversial questions in Purkinje cell physiology. 

 

3. CF selection and stabilization 

Although we showed that a competition between NMDA-Rs and GluRdelta2 is unlikely to 

occur (Results, 3.3), our results suggest that the NMDA-Rs are expressed only at the synapses 

of the strongest CF in the adult Hotfoot-mutant mouse, which conserves a multiple CFs 

innervation of Purkinje cells. This indicates that NMDA-Rs could play a role in the choice 

and the stabilization of one CF innervating the Purkinje cell.  

 

4. NMDA-Rs and the synaptic plasticity 

Finally, in the last part of this thesis, our results indicate that, very interestingly, NMDA-Rs 

play an important role in the polarity of PF to Purkinje cell long-term synaptic plasticity 

through their activation by the CF (Results, 3.4). 

 

Novel directions for future research 

The genetic engineering approach that is presently developed in the laboratory is highly 

promising to better understand both the involvement of NMDA-Rs in the CF synapses 

stabilization, and in the synaptic plasticity. The general idea consists in generating a 

transgenic mouse that will be impaired in the expression of the mandatory NMDA subunit 

NR1, selectively in Purkinje cells, and specifically in mature animals by the Cre-Lox 

recombination technique. We believe that this mouse will help to better clarify the roles of 

NMDA-Rs in Purkinje cells of adult mouse. 
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I. Introduction 

Le cervelet est une structure cérébrale nécessaire au maintien de la posture, à la coordination motrice ainsi 

qu’aux apprentissages moteurs. Il apparaît aussi impliqué dans des fonctions cognitives ou émotionnelles, 

ainsi que dans des pathologies humaines. De par sa structure, le cervelet est également un pertinent modèle 

d’étude du développement et de la physiologie des neurones. 

Les cellules de Purkinje sont les neurones intégrateurs du cervelet. Elles reçoivent toutes les informations 

parvenant au cervelet, et constituent l’unique voie de sortie du cortex cérébelleux. Chaque cellule de 

Purkinje reçoit les 2 grands types d’afférences excitatrices, glutamatergiques, du cervelet:  

- Les fibres parallèles (FPs), en grand nombre, relais des fibres moussues. 

- Une fibre grimpante (FG), axone d’un neurone de l’olive bulbaire. La sélection d’une seule FG, 

et l’élimination des FGs surnuméraires qui innervent une même cellule de Purkinje à la 

naissance, interviennent au cours des 3 premières semaines post-natales chez la souris.  

Les synapses de FPs et de FG des cellules de Purkinje sont capables de plasticité à long terme. On admet 

couramment que ces phénomènes de plasticité synaptique jouent un rôle déterminant dans les mécanismes 

cellulaires qui permettent l’apprentissage et la mémoire.  

Outre des récepteurs du glutamate « classiques », de type AMPA/kaïnate, et mGluR1, les synapses 

glutamatergiques des cellules de Purkinje présentent deux particularités notables : 

- 1) la présence d’un récepteur orphelin GluRdelta2, protéine homologue des récepteurs AMPA et 

NMDA, dont la fonction est inconnue mais dont l’absence est délétère pour le développement et 

la physiologie de la cellule. Les cellules de Purkinje sont les seuls neurones du cerveau à 

exprimer les GluRdelta2. 

- 2) l’absence de récepteurs NMDA (Rs-NMDA) chez l’adulte, comme admis depuis le début des 

années 90, après une longue controverse et en dépit de résultats contradictoires. Cette absence 

supposée chez l’adulte succède à une phase d’expression de Rs-NMDA de type juvénile, limitée 

à la première semaine du développement post-natal. La fonction de ces Rs-NMDA chez la 

cellule de Purkinje néonatale est encore mal connue. 

 

L’objectif de mon travail de thèse a été de clarifier la présence des Rs-NMDA chez la cellule de Purkinje 

adulte, et d’étudier le rôle des différents Rs-NMDA, au cours de la première semaine post-natale, ainsi que 

dans les phénomènes de plasticité synaptique chez la cellule de Purkinje adulte. Nous avons également 

étudié la possibilité d’une compétition entre les Rs-NMDA et GluRdelta2. 



Résumé détaillé en Français  

  135

II. Résultats 

1ère publication ( en collaboration avec Abdel Gouhmari): L'effet neuroprotecteur du RU486 sur les 

cellules de Purkinje néonatales (P3) implique leur dépolarisation et suggère un mécanisme impliquant les 

Rs-NMDA juvéniles dans la survie néonatale des cellules de Purkinje. 

 

Le troisième jour post-natal (P3) constitue une fenêtre de fragilité particulière des cellules de Purkinje qui 

se manifeste in vivo par une mort développementale physiologique, et in vitro par la mort de la grande 

majorité des cellules de Purkinje lors de leur mise en culture. Le RU486, antiprogestatif bien connu, 

protège les cellules de Purkinje de cette mort lors de leur mise en culture à P3. Par ailleurs, des études 

antérieures ont montré que la dépolarisation des cellules de Purkinje est aussi un mécanisme 

neuroprotecteur à P3. Nous avons collaboré avec Abdel Gouhmari afin de mieux comprendre ces effets 

neuroprotecteurs et leur lien avec la physiologie du développement. 

 

Résultats:  

- Le RU486 inhibe l'expression d'une pompe Na+/K+-ATPase qui est hyperpolarisante (techniques de 

détection: puces à ADN, western blot, mesure de l'activité ATPasique de la pompe). 

- Cette inhibition induite par le RU486 entraîne une dépolarisation prolongée des cellules de Purkinje 

(enregistrements en patch-clamp de cellules de Purkinje en tranches à P3). 

- D'autres agents dépolarisants ayant des cibles variées (canaux Na+, K+-), et en particulier le NMDA, ont 

un effet protecteur dans les mêmes conditions et à cet âge, alors qu'ils sont toxiques avant, puis après. 

- La présence de fibres grimpantes à proximité des cellules de Purkinje dans des co-cultures olive-cervelet 

favorise très significativement la survie de ces cellules à P3.  

 

Cette étude indique que l'effet protecteur du RU486 lors de la mise en culture des cellules de Purkinje à P3 

résulte de son effet dépolarisant. Elle suggère aussi que la synaptogénèse glutamatergique qui a lieu à P3 

(établissement des connexions entre FGs et cellules de Purkinje) pourrait exercer un effet neuroprotecteur 

sur ces cellules et ce, peut-être via les Rs-NMDA juvéniles. En effet, ces récepteurs sont particulièrement 

adaptés pour sous-tendre ce mécanisme physiologique de protection à P3: ils ont une haute affinité pour le 

glutamate, désensibilisent très peu et déactivent très lentement. Ils pourraient donc "détecter" les fibres 

grimpantes environnantes dès lors qu'elles libèrent du glutamate, et favoriser la survie des cellules de 

Purkinje contactées par ces fibres à cette étape critique du développement. 
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2ème publication : les cellules de Purkinje adultes expriment des récepteurs NMDA qui participent à la 

transmission synaptique de la fibre grimpante 

 

Avec l’avènement dans les années 1990 des études en patch-clamp sur tranches aigües de cervelet, s’est 

formé le postulat que les cellules de Purkinje n’expriment pas de Rs-NMDA après la troisième semaine 

post-natale. En effet, entre la 2e et la fin de la 3e semaine postnatale, les études s’accordent pour ne pas 

détecter de Rs-NMDA chez les cellules de Purkinje de rongeur. Pourtant, les recherches n’ont pas été 

poussées chez des animaux plus âgés, la technique du patch-clamp préférant des cellules à l’arborisation 

dendritique peu développée. Par ailleurs, un grand nombre de résultats obtenus avec d’autres techniques 

indiquaient la présence de Rs-NMDA dans les cellules de Purkinje d’animaux adultes. Nous avons donc 

entrepris d’éclaircir cette question de l’expression des R-NMDA chez la cellule de Purkinje adulte avec la 

technique du patch-clamp qui reste applicable à des neurones de cet âge.  

 

Résultats:  

- Nous avons montré en voltage-clamp que des récepteurs NMDA participent à la transmission synaptique 

entre la FG et la cellule de Purkinje adulte (>12 semaines).  

- Nous avons vérifié que ces courants NMDA de FG ne résultent pas d’une activation indirecte d’autres 

récepteurs du glutamate (AMPA, Kaïnate, mGlu), ni des transporteurs du glutamate, ni des récepteurs 

GABA-A.  

- Ces R-NMDA sont bien post-synaptiques comme l’indiquent le blocage de ces récepteurs par l’intérieur 

de la cellule de Purkinje, et par l’allure caractéristique des courbes courant-voltage (I/V) des courants 

NMDA de FG. 

- Nos marquages immunofluorescents confirment la présence de sous-unités NR2A/B du R-NMDA au 

niveau du soma et des dendrites primaires des cellules de Purkinje de souris adultes sauvages. 

- Les récepteurs NMDA apparaissent à partir de la 3e semaine postnatale, puis leur amplitude augmente 

progressivement jusqu’à atteindre leur maximum 12 semaines après la naissance.  

- Les récepteurs NMDA participent au spike complexe pour favoriser la décharge des potentiels d’actions.  

 

La connexion entre les FGs et les cellules de Purkinje jouent un rôle prépondérant dans la physiologie du 

cervelet. Elle conduit les décharges rythmiques en provenance de l’olive bulbaire, structure qui joue un rôle 

d’horloge, et régule l’activité spontanée des cellules de Purkinje. La FG conditionne également le 

mécanisme de plasticité synaptique le plus étudié dans le cervelet : la dépression synaptique à long terme 

(LTD). La participation des R-NMDA à la réponse de FG soulève donc la question de leur rôle dans ces 

phénomènes de plasticité.  
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3e étude (à soumettre pour publication) : Etude de la multi-innervation des cellules de Purkinje par les 

fibres grimpantes, chez la souris hotfoot (qui  n’exprime pas le récepteur Gludelta2) 

L’homologie de séquence, le profil spatio-temporel d’expression et l’interaction avec des protéines 

d’ancrages communes suggéraient la possibilité d’une compétition entre récepteurs NMDA et Glurdelta2 

au cours du développement. C’est cette hypothèse que nous avons voulu testé dans cette étude en utilisant 

les souris « hotfoot » qui sont des mutants spontanés de GluRdelta2. Une large délétion dans le gène de ce 

récepteur résulte en l’absence totale de GluRdelta2 chez ce mutant. Si une compétition entre R-NMDA et 

GluRdelta2 existait, en l’absence de GluRdelta2 chez hotfoot, les R-NMDA persisteraient au cours du 

développement. 

De plus, il existe chez le mutant hotfoot une persistance, à l’âge adulte, de la multi-innervation des cellules 

de Purkinje par plusieurs FGs, ce qui a des conséquences dramatiques pour la physiologie du cervelet. Il 

était donc également intéressant d’étudier chez ce mutant la contribution du R-NMDA aux réponses de 

FGs, afin d’évaluer son rôle dans la stabilisation des connections entre FGs et cellules de Purkinje. 

Résultats:  

- Chez hotfoot, la grande majorité des cellules de Purkinje adultes reste innervée par plusieurs FGs alors 

que, normalement cette multi-innervation a complètement disparu 21 jours après la naissance. Nous avons 

observé que 83% des 35 cellules de Purkinje hotfoot enregistrées sont multi-innervées par les FGs à l’âge 

adulte (plus de 8 semaines). Cette estimation de la multi-innervation est bien plus grande que celle 

précédemment rapportée chez ce mutant. En réalité, ce pourrait bien être la totalité des cellules de Purkinje 

qui restent multi-innervées car certaines FGs peuvent avoir été sectionnées lors de la préparation des 

tranches. Ces données montrent clairement que GluRdelta2 est nécessaire à l’élimination sélective des 

connexions olivo-cérébelleuses. 

- Chez ce mutant, les R-NMDA présentent un profil d’expression similaire à celui observé chez les 

animaux contrôles, en particulier, ces R-NMDA n’apparaissent pas anormalement exprimés aux synapses 

de FPs. Ceci suggère que l’absence d’expression de GluRdelta2 ne perturbe pas celle des R-NMDA et 

l’hypothèse d’une compétition entre ces récepteurs est donc peu probable.  

- Chez les cellules de Purkinje Hotfoot multi-innervées, nous avons observé que les R-NMDA ne 

participent qu’à la réponse de la plus forte FG, et ne sont pas détectés aux plus petites réponses de FGs. 

Ceci suggère donc un rôle des R-NMDA dans le choix et la stabilisation de la plus forte FG lors de l’étape 

finale de maturation de ces afférences. 
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4e étude (résultats préliminaires) : Les R-NMDA contrôlent la polarité (dépression versus potentialisation) 

de la plasticité synaptique à long terme 

La dépression à long terme (LTD) cérébelleuse est une diminution persistante de l’efficacité de la 

transmission synaptique entre fibres parallèles (FPs) et cellule de Purkinje. Elle s’induit par la stimulation 

conjointe des fibres parallèles et de la fibre grimpante. Inversement, lorsque seules les FPs sont stimulées, 

on obtient classiquement une potentialisation des synapses de FPs appelée potentialisation synaptique à 

long terme (LTP). Des études récentes montrent qu’en fait, c’est la FG qui oriente la polarité de la plasticité 

synaptique, soit vers la LTD soit vers la LTP, en fonction de la quantité de calcium qui entre dans la cellule 

de Purkinje suite à la décharge de la FG. Parce qu’ils sont perméables au calcium et qu’ils sont situés aux 

synapses de FG, les R-NMDA des cellules de Purkinje sont donc de très bons candidats pour participer à ce 

contrôle de polarité de la plasticité synaptique.  

Nous avons donc testé cette hypothèse avec les mêmes méthodes électrophysiologiques que précédemment.  

- La LTD est induite en stimulant conjointement FPs (8 impulsions) et FG (1 impulsion), avec un délai de 

50 à 150 ms, à 1 Hz pendant 5 minutes. Dans ce cas, conformément aux travaux antérieurs, la majorité des 

cellules de Purkinje fait de la LTD : 17 cellules font de la LTD, 3 cellules ne présentent pas de changement 

de gain (20 cellules testées au total).  

- La stimulation des FPs seules induit une LTP (2 cellules), ce qui suggère que la bidirectionnalité de la 

plasticité induite par notre protocole dépend bien de l’activité de la FG. 

- Le même protocole est appliqué en bloquant les R-NMDA avec du D-APV dans le bain. Dans ce cas, sur 

2 cellules enregistrées à ce jour, une fait de la LTD, l’autre fait de la LTP. 

- Pour s’assurer que ce sont bien les récepteurs NMDA des cellules de Purkinje qui changent cette polarité 

(et non pas des récepteurs portés par d’autres cellules de la tranche), j’ai fait les mêmes expériences qu’au 

mais avec un bloquant des récepteurs NMDA (MK801) appliqué dans la cellule enregistrée par l’électrode 

de patch. Dans ce cas, sur 7 cellules au total, 2 font de la LTP, 2 de la LTD, et 3 ne changent pas leur gain. 

Ces résultats suggèrent donc que les R-NMDA situés aux synapses de FG permettent de contrôler la 

polarité de la plasticité synaptique dans les cellules de Purkinje.  

 

III. Conclusion  

Les récepteurs NMDA sont impliqués dans les phénomènes de plasticité synaptique, de développement, de 

vieillissement et dans de nombreuses pathologies du système nerveux central. De manière surprenante, la 

nature et la fonction de ces récepteurs chez la cellule de Purkinje sont resté largement méconnus. Cette 

thèse permet de mieux comprendre à la fois le rôle des R-NMDA juvéniles au cours du développement 

précoce, mais aussi elle met en évidence la présence, jusque là ignorée, de ces récepteurs chez la cellule de 

Purkinje adulte. Ces R-NMDA semblent jouer un rôle important dans la stabilisation de la FG, mais aussi 

dans l’induction de la plasticité synaptique entre FPs et cellules de Purkinje. 

 

 


