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We consider the stochastic differential equation in separable
Hilbert space H (norm | · | and inner product 〈·, ·〉)

dX (t) =
(
AX (t) + F (X (t))

)
dt + BdW (t), t ≥ 0

X (0) = x ∈ H,
(1)

where

I A : D(A) ⊂ H → H is the infinitesimal generator of a strongly
continuous semigroup etA, t ≥ 0;

I F : D(F ) ⊂ H → H is nonlinear;

I B : H → H is linear and continuous;

I (W (t))t≥0 is a cylindrical Wiener process, defined on a
stochastic basis (Ω,F , (Ft)t≥0,P) and with values in H.
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Assume that problem (1) has a solution X (t, x), and consider the
corresponding transition semigroup

Ptϕ(x) = E
[
ϕ(X (t, x))

]
, t ≥ 0, x ∈ H

where ϕ : H → R is a suitable function.

The function u(t, x) := Ptϕ(x) is formally the solution of

Dtu(t, x) = K0u(t, x), u(0, x) = ϕ(x),

where K0 is the Kolmogorov differential operator

K0ϕ(x) =
1

2
Tr
[
BB∗D2ϕ(x)

]
+ 〈Ax + F (x),Dϕ(x)〉, x ∈ H, (2)

and B∗ is the adjoint of B. The expression (2) is formal: it
requires that ϕ is of class C 2, that BB∗D2ϕ(x) is a trace class
operator and that x ∈ D(A) ∩ D(F ). So, it is convenient to define
K0 in a suitable domain D(K0).
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The main object of this Thesis consists in studying the
relationships between the solution of the stochastic equation

dX (t) =
(
AX (t) + F (X (t))

)
dt + BdW (t), t ≥ 0

X (0) = x ∈ H,

and the Kolmogorov differential operator

K0ϕ(x) =
1

2
Tr
[
BB∗D2ϕ(x)

]
+ 〈Ax + F (x),Dϕ(x)〉

in spaces of continuous functions.
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For k ≥ 0 we consider the space Cb,k(H) of all continuous
mappings ϕ : H → R such that

x → R, x 7→ ϕ(x)

1 + |x |k

is uniformly continuous and

‖ϕ‖0,k := sup
x∈H

|ϕ(x)|
1 + |x |k

<∞.

We shall write Cb(H) := Cb,0(H).
Under suitable conditions the semigroup Pt , t ≥ 0 acts on Cb,k(H).

L. Manca Kolmogorov operators in spaces of continuous functions



Introduction
Contents of the Thesis

The abstract operator

Pt is not a strongly continuous semigroup on Cb,k(H) with respect
to the norm ‖ · ‖0,k .
We follow the approach of π-convergence introduced in [Priola,
1999]. In this approach we define the infinitesimal generator K of
Pt in the space Cb,k(H) as follows

Kϕ(x) = lim
t→0+

Ptϕ(x)− ϕ(x)

t
, ϕ ∈ D(K ), x ∈ H,

where

D(K ) =

{
ϕ ∈ Cb,k(H) : sup

t∈(0,1)

∥∥∥∥Ptϕ− ϕ
t

∥∥∥∥
0,k

<∞ and

∃g ∈ Cb,k(H) : lim
t→0+

Ptϕ(x)− ϕ(x)

t
= g(x), ∀x ∈ H

}
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The goal of this thesis is twofold.

I We show that the ‘abstract’ operator K is the closure (with
respect to a suitable topology) of the ‘concrete’ Kolmogorov
differential operator

K0ϕ(x) =
1

2
Tr
[
BB∗D2ϕ(x)

]
+ 〈Ax + F (x),Dϕ(x)〉

In other words, we characterize K on a core D(K0) ⊂ D(K ),
where K and K0 coincide.

I We study the following equation for measures

d

dt

∫
H
ϕ(x)µt(dx) =

∫
H

K0ϕ(x)µt(dx), ∀ ϕ ∈ D(K0), t ≥ 0,

where the unknown is the family of measures µt , t ≥ 0 on H
and µ0 is given in advance.
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Chapter 1 is devoted to introduce

I notations;

I gaussian measures on separable Hilbert spaces;

I regularity properties of the stochastic convolution.

L. Manca Kolmogorov operators in spaces of continuous functions



Introduction
Contents of the Thesis

In Chapter 2 we consider an abstract situation, where a general
Markov semigroup Pt , t ≥ 0 acts on the uniformly continuous and
bounded functions Cb(E ) on a Banach space E .

We study the semigroup and its infinitesimal generator in the
framework of the π-convergence, as introduced in [Priola, 1999].

Finally, we solve the equation for measures

d

dt

∫
E
ϕ(x)µt(dx) =

∫
E

Kϕ(x)µt(dx), ∀ ϕ ∈ D(K ), t ≥ 0,

where (K ,D(K )) is the infinitesimal generator of Pt in the space
Cb(E ).
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We show that for any finite Borel measure µ on E there exists a
unique family of finite Borel measures µt , t ≥ 0 fulfilling∫ T

0
|µt |TV (E )dt <∞, for any T > 0;

∫
E
ϕ(x)µt(dx)−

∫
E
ϕ(x)µ(dx) =

∫ t

0

(∫
E

Kϕ(x)µs(dx)

)
ds,

for any ϕ ∈ D(K ), t ≥ 0.
The solution is given by the measures P∗t µ, t ≥ 0, which are
defined by∫

E
ϕ(x)P∗t µ(dx) =

∫
E

Ptϕ(x)µ(dx), for any ϕ ∈ Cb(E ).
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In Chapter 3 we consider the case F = 0, that is the equation
dX (t) = AX (t)dt + BdW (t), t ≥ 0

X (0) = x ∈ H,

where

I A : D(A) ⊂ H → H is the infinitesimal generator of a strongly
continuous semigroup etA, t ≥ 0;

I B : H → H is linear and continuous;

I the linear operator Qt , defined by

Qtx =

∫ t

0
esABB∗esA∗x ds, x ∈ H, t ≥ 0

has finite trace.
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In this case the associated transition semigroup reduces to the
Ornstein-Uhlenbeck semigroup Rt , t ≥ 0 given by

Rtϕ(x) =

∫
H
ϕ(etAx + y)NQt (dy), ϕ ∈ Cb(H), t ≥ 0, x ∈ H,

where NQt , t > 0 is the Gaussian measure on H of zero mean and
covariance operator Qt .

We denote by (L,D(L)) the infinitesimal generator of the OU
semigroup in Cb(H).
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Let IA(H) be the linear span of the real and imaginary part of the
functions

H → C, x 7→
∫ a

0
e i〈esAx ,h〉− 1

2
〈Qsh,h〉ds : a > 0, h ∈ D(A∗),

where D(A∗) is the domain of the adjoint operator of A.

We show that the set IA(H) is a core for the infinitesimal operator
L and that

Lϕ(x) =
1

2
Tr[BB∗D2ϕ(x)] + 〈x ,A∗Dϕ(x)〉, x ∈ H

for any ϕ ∈ IA(H).
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We also show that for any finite Borel measure µ on H there exists
a unique family of measures µt , t ≥ 0 such that∫ T

0
|µt |(H)dt <∞, for any T > 0

and∫
H
ϕ(x)µt(dx)−

∫
H
ϕ(x)µ(dx) =

∫ t

0

(∫
H

L0ϕ(x)µs(dx)

)
ds,

t ≥ 0, ϕ ∈ IA(H), where

L0ϕ(x) =
1

2
Tr[BB∗D2ϕ(x)] + 〈x ,A∗Dϕ(x)〉, ϕ ∈ IA(H), x ∈ H.

Finally, the solution is given by µt = R∗t µ.
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In Chapter 4, we consider the case
dX (t) =

(
AX (t) + F (X (t))

)
dt + BdW (t), t ≥ 0

X (0) = x ∈ H,

where

I A,B are as in Chapter 3;

I F : H → H is Lipschitz continuous and bounded.

There exists a unique solution X (t, x) of the equation. We denote
by Pt , t ≥ 0 the associated transition semigroup and by (K ,D(K ))
the infinitesimal generator on Pt , t ≥ 0 in Cb(H).
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We show that (K ,D(K )) is the closure in Cb(H) of

K0ϕ(x) =
1

2
Tr[BB∗D2ϕ(x)] + 〈x ,A∗Dϕ(x)〉+ 〈F (x),Dϕ(x)〉,

ϕ ∈ IA(H), x ∈ H.

We also show that for any finite Borel measure µ on H there exists
a unique family of measures µt , t ≥ 0 such that∫ T

0
|µt |(H)dt <∞, for any T > 0

and∫
H
ϕ(x)µt(dx)−

∫
H
ϕ(x)µ(dx) =

∫ t

0

(∫
H

K0ϕ(x)µs(dx)

)
ds,

t ≥ 0, ϕ ∈ IA(H). Finally, the solution is given by P∗t µ, t ≥ 0.
The results of chapters 2, 3, 4 are contained in the paper
[M., Kolmogorov equations for measures, to appear on J.Evol.Eq.]
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In Chapter 5, we consider the case
dX (t) =

(
AX (t) + F (X (t))

)
dt + BdW (t), t ≥ 0

X (0) = x ∈ H,

where

I A,B are as in Chapter 3;

I F : H → H is Lipschitz continuous with globally Lipschitz
constant.

We consider the associated transition semigroup Pt , t ≥ 0 in
Cb,1(H).

Let us enote by (K ,D(K )) the infinitesimal generator of Pt , t ≥ 0
in Cb,1(H).
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We show that (K ,D(K )) is the closure in Cb,1(H) of the operator

K0ϕ(x) =
1

2
Tr[BB∗D2ϕ(x)] + 〈x ,A∗Dϕ(x)〉+ 〈F (x),Dϕ(x)〉,

ϕ ∈ EA(H), x ∈ H

The set of exponential functions EA(H) consists of the linear span
of the real and imaginary part of the functions

H → C, x 7→ e i〈x ,h〉, h ∈ D(A∗),

where D(A∗) is the domain of the adjoint operator of A.
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We also show that for any finite Borel measure µ on H such that∫
H
|x ||µ|TV (dx) <∞.

there exists a unique family of measures µt , t ≥ 0 satisfying∫ T

0

(∫
H

(1 + |x |)|µt |TV (dx)

)
dt <∞, ∀T > 0

and∫
H
ϕ(x)µt(dx)−

∫
H
ϕ(x)µ(dx) =

∫ t

0

(∫
H

K0ϕ(x)µs(dx)

)
ds

for any t ≥ 0, ϕ ∈ EA(H). The solution is given by P∗t µ, t ≥ 0.
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In Chapter 6 we consider reaction diffusion equations of the form
dX (t, ξ) = [∆ξX (t, ξ) + λX (t, ξ)− p(X (t, ξ))]dt + BdW (t, ξ),

X (t, ξ) = 0, t ≥ 0, ξ ∈ ∂O,

X (0, ξ) = x(ξ), ξ ∈ O, x ∈ H,

where ∆ξ is the Laplace operator, B ∈ L(H) and p is an increasing
polynomial with leading coefficient of odd degree d > 1. Here
O = [0, 1]n and H = L2(O).

The transition semigroup Pt , t ≥ 0 acts on the space Cb,d(L2d(O))
of all continuous functions ϕ : L2d(O)→ R such that

sup
x∈L2d (O)

|ϕ(x)|
1 + |x |d

L2d (O)

<∞.
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Set
Ax = ∆ξx , x ∈ D(A) = H2(O) ∩ H1

0 (O).

We show that the associated infinitesimal generator K is the
closure in Cb,d(L2d(O)) of

K0ϕ(x) =
1

2
Tr
[
BB∗D2ϕ(x)

]
+ 〈x ,ADϕ(x)〉+ 〈Dϕ(x),F (x)〉,

ϕ ∈ EA(H), x ∈ L2d(O).
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We show that for any finite Borel measure µ on H such that∫
H
|x |dL2d (O)|µ|TV (dx) <∞

there exists a unique family of measures µt , t ≥ 0 satisfying∫ T

0

(∫
H
|x |dL2d (O)|µt |TV (dx)

)
dt <∞, ∀T > 0

and∫
H
ϕ(x)µt(dx)−

∫
H
ϕ(x)µ(dx) =

∫ t

0

(∫
H

K0ϕ(x)µs(dx)

)
ds,

for any ϕ ∈ EA(H), t ≥ 0.

The results of chapters 5, 6 are contained in the submitted paper
[M., Measure-valued equations for Kolmogorov operators with
unbounded coefficients].
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In Chapter 7 we consider the stochastic Burgers equation in the
interval [0, 1] with Dirichlet boundary conditions perturbed by a
space-time white noise

dX =

(
D2
ξX +

1

2
Dξ(X 2)

)
dt + dW (t), ξ ∈ [0, 1], t ≥ 0,

X (t, 0) = X (t, 1) = 0

X (0, ξ) = x(ξ), ξ ∈ [0, 1],

where x ∈ L2(0, 1).

Existence and uniqueness of a solution has been proved in [Da
Prato, Debussche, Temam, 1994].
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In the paper [Da Prato, Debussche, 2006] has been shown several
estimates on the solution.

The transition semigroup acts on the space Cb,V (L6(0, 1)), which
consists of all the continuous functions ϕ : L6(0, 1)→ R such that

sup
x∈L6(0,1)

|ϕ(x)|
1 + V (x)

<∞

where
V (x) = |x |8L6(0,1)|x |

2
L4(0,1), x ∈ L6(0, 1).
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Let us denote by (K ,D(K )) the infinitesimal generator of Pt ,
t ≥ 0 in Cb,V (L6(0, 1)).
We prove that K is the closure in Cb,V (L6(0, 1)) of

K0ϕ(x) =
1

2
Tr
[
D2ϕ(x)

]
+ 〈x ,ADϕ(x)〉 − 1

2
〈DξDϕ(x), x2〉,

x ∈ L6(0, 1), ϕ ∈ EA(H), where

Ax = D2
ξ x , x ∈ D(A) = H1

0 (0, 1) ∩ H2(0, 1)
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We show that for any finite Borel measure µ on L6(0, 1) such that∫
L6(0,1)

V (x)|µ|TV (dx) <∞

there exists a unique family of Borel measures µt , t ≥ 0 fulfilling∫ T

0

(∫
L6(0,1)

V (x)|µt |TV (dx)

)
dt <∞, ∀T > 0

and∫
L6(0,1)

ϕ(x)µt(dx)−
∫

L6(0,1)
ϕ(x)µ(dx)

=

∫ t

0

(∫
L6(0,1)

K0ϕ(x)µs(dx)

)
ds,

t ≥ 0, ϕ ∈ EA(H). The solution is given by P∗t µ, t ≥ 0.
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The π-convergence

A sequence (ϕn)n∈N ⊂ Cb(E ) is said to be π-convergent to a
function ϕ ∈ Cb(E ) and we write

lim
n→∞

ϕn
π
= ϕ

if
lim

n→∞
ϕn(x) = ϕ(x), for any x ∈ E

and
sup
n∈N
‖ϕn‖0 <∞.
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The m-indexed sequence (ϕn1,...,nm)n1∈N,...,nm∈N ⊂ Cb(E ) is said to
be π-convergent to ϕ ∈ Cb(E ) if for any i ∈ {2, . . . ,m} there
exists an i − 1-indexed sequence (ϕn1,...,ni−1)n1∈N,...,ni−1∈N ⊂ Cb(E )
such that

lim
ni→∞

ϕn1,...,ni

π
= ϕn1,...,ni−1

and
lim

n1→∞
ϕn1

π
= ϕ.
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