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Introduction

Let us denote by H a separable Hilbert space with norm |·| and inner product
〈·, ·〉 and consider the stochastic differential equation in HdX(t) =

(
AX(t) + F (X(t))

)
dt+BdW (t), t ≥ 0

X(0) = x ∈ H,
(1)

where A : D(A) ⊂ H → H is the infinitesimal generator of a strongly
continuous semigroup etA, F : D(F ) ⊂ H → H is nonlinear, B : H → H is
linear and continuous and (W (t))t≥0 is a cylindrical Wiener process, defined
on a stochastic basis (Ω,F , (Ft)t≥0,P) and with values in H.

We shall assume that problem (1) has a unique solution X(t, x) and we
denote by Pt, t ≥ 0, the corresponding transition semigroup, which is defined
by setting

Ptϕ(x) = E
[
ϕ(X(t, x))

]
, t ≥ 0, x ∈ H (2)

where ϕ : H → R is a suitable function. To fix the ideas, for k ≥ 0 we
consider the space Cb,k(H) of all continuous mappings ϕ : H → R such that

x→ R, x 7→ ϕ(x)

1 + |x|k

is uniformly continuous and

‖ϕ‖0,k := sup
x∈H

|ϕ(x)|
1 + |x|k

<∞.

We shall write Cb(H) := Cb,0(H). Under suitable conditions the semigroup
Pt acts on Cb,k(H).

It is well known that the function u(t, x) := Ptϕ(x) is formally the solution
of the Kolmogorov equation

Dtu(t, x) = K0u(t, x), u(0, x) = ϕ(x), (3)

v
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where K0 is given by

K0ϕ(x) =
1

2
Tr
[
BB∗D2ϕ(x)

]
+ 〈Ax+ F (x), Dϕ(x)〉, x ∈ H, (4)

and B∗ is the adjoint of B. The expression (4) is formal: it requires that
ϕ is of class C2, that BB∗D2ϕ(x) is a trace class operator and that x ∈
D(A)∩D(F ). So, it is convenient to define K0 in a suitable domain D(K0).

We start by the set of exponential functions EA(H), which consists of the
linear span of the real and imaginary part of the functions

H → C, x 7→ ei〈x,h〉, h ∈ D(A∗),

where D(A∗) is the domain of the adjoint operator of A. By a simple com-
putation we see that K0 is well defined in EA(H) and

K0ϕ(x) = −|Bh|2ϕ(x) + i (〈x,A∗h〉+ 〈F (x), h〉)ϕ(x), (5)

for any ϕ ∈ EA(H) and x ∈ D(F ). Notice that if D(F ) = H and |F (x)| ≤
c(1 + |x|) for some c > 0 then K0ϕ ∈ Cb,1(H).

The semigroup Pt is not strongly continuous in Cb,k(H) in all interesting
cases. It is continuous with respect to a weaker topology, see, for instance, [8],
[9], [29], [31], [40]. We shall follow the approach of π-semigroups introduced
by Priola. In this approach we define the infinitesimal generator K of Pt in
the space Cb,k(H) as follows

D(K) =

{
ϕ ∈ Cb,k(H) : ∃g ∈ Cb,k(H), lim

t→0+

Ptϕ(x)− ϕ(x)

t
= g(x),

∀x ∈ H, sup
t∈(0,1)

∥∥∥∥Ptϕ− ϕt

∥∥∥∥
0,k

<∞
}

Kϕ(x) = lim
t→0+

Ptϕ(x)− ϕ(x)

t
, ϕ ∈ D(K), x ∈ H.

(6)

A problem which arises naturally is to investigate the relationships between
the “abstract” operatorK and the “concrete” differential operatorK0 defined
in (5).

Let us briefly describe how this problem has been discussed so far.
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A well known approach consists in solving equation (3) and look for an
invariant measure ν for the semigroup Pt, that is, a probability measure on
H such that ∫

H

Ptϕ(x)ν(dx) =

∫
H

ϕ(x)ν(dx),

for any t ≥ 0, ϕ ∈ Cb(H). It is straightforward to check that for any p ≥ 1,
ϕ ∈ Cb(H)∫

H

|Ptϕ(x)|pν(dx) ≤
∫
H

Pt(|ϕ|p)(x)ν(dx) =

∫
H

|ϕ|p(x)ν(dx).

Hence, the semigroup Pt can be uniquely extended to a strongly continuous
contraction semigroup in Lp(H; ν), for any p ≥ 1. Let us denote by Kp :
D(Kp) ⊂ Lp(H; ν) → Lp(H; ν) its infinitesimal generator. If the invariant
measure ν enjoys suitable regularity properties then Kp is an extension of
K0 and Kpϕ = K0ϕ, for any ϕ ∈ EA(H). The next step is to prove that
(K0, EA(H)) is dense in D(K) endowed with the graph norm. That is, that
EA(H) is a core for (Kp, D(Kp)). Many papers have been devoted to this
approach, see [3], [17], [19], [20], [36] and references therein.

An other approach, based on Dirichlet forms, have been proposed to
solve (3) directly in the space L2(H;µ), see [2], [30], [35], [44] and references
therein. Here µ is an infinitesimally invariant measure for K0. Differently
from the previous strategy, the solution is used to construct weak solution to
(1), for instance in the sense of a martingale problem as formulated in [45].

We stress that in the described strategies equation (3) is considered in
some Lp-space. Recently, increasing attention has been devoted to study
Kolmogorov operators like K0 in spaces of continuous functions. We mention
here the papers [41], [42], where the stochastic equation{

dXt = (∆X(t) + F (X(t))) dt+
√
AdW (t)

X(0) = x ∈ H,
(7)

has been considered. Here H := L2(0, 1), W (t), t ≥ 0 is a cylindrical Wiener
process on H, A : H → H is a nonnegative definite symmetric operator of
trace class, ∆ is the Dirichlet Laplacian on (0, 1), F : H1

0 (0, 1) → H is a
measurable vector field of type

F (x)(r) =
d

dr
(Ψ ◦ x) (r) + Φ(r, x(r)), x ∈ H1

0 (0, 1), r ∈ (0, 1).
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Here H1
0 (0, 1) denotes the usual Sobolev space in L2(0, 1) with Dirichlet

boundary conditions. The associated Kolmogorov operator is

Lϕ(x) =
1

2
Tr
(
AD2ϕ(x)

)
+ 〈∆x+ F (x), Dϕ(x)〉 ,

where ϕ : H → R is a suitable cylindrical smooth function. Roughly speak-
ing, the authors show that L can be extended to the generator of a strongly
continuous semigroup in a space of weakly continuous functions weighted by
a proper Lyapunov-type function. Then, they construct a Markov process
which solves equation (7) in the sense of the martingale problem.

The goal of this thesis is twofold. First we want to show that K is
the closure (in a suitable topology) of K0. To get our results, we need, of
course, suitable regularity properties of the coefficients and a suitable choice
of D(K0). Second we want to study the following equation for measures µt,
t ≥ 0 on H,

d

dt

∫
H

ϕ(x)µt(dx) =

∫
H

Kϕ(x)µt(dx), ∀ ϕ ∈ D(K), t ∈ [0, T ], (8)

where µ0 is given in advance. The precise definition will be given later. Since
the operator K is abstract, it is of interest to consider the concrete equation

d

dt

∫
H

ϕ(x)µt(dx) =

∫
H

K0ϕ(x)µt(dx), ∀ ϕ ∈ D(K0), t ∈ [0, T ]. (9)

For this problem uniqueness is difficult and existence is easier.

Let us give an overview on some recent developments about this problem
in the finite and infinite dimensional framework.

In [5] (see also [6] for the elliptic case) a parabolic differential operator of
the form

Lu(t, x) = ∂tu(t, x) +
d∑

i,j=1

aij(t, x)∂xi∂xju(t, x) +
d∑
i=1

bi(t, x)∂xiu(t, x),

is considered. Here (t, x) ∈ (0, 1)×Rd, u ∈ C∞0 ((0, 1)×Rd) and aij, bi : (0, 1)×
Rd → R are suitable locally integrable functions. The authors prove that if
there exists a suitable Lyapunov-type function for the operator L, then for
any probability measure ν on Rd there exists a family of probability measures
{µt, t ∈ (0, 1)} such that∫ 1

0

∫
Rd
Lu(t, x)µt(dx)dt = 0
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for any u ∈ C∞0 ((0, 1) × Rd) and limt→0

∫
Rd ζ(x)µt(dx) =

∫
Rd ζ(x)ν(dx), for

any ζ ∈ C∞0 (Rd). Uniqueness results for this class of operators have been
investigated in [4].

Equations for measures in the infinite dimensional framework have been
investigated in [7]. Here it has been considered a locally convex space X and
an equation for measures formally written as∫

X

Hϕ(t, x)µ(dx) = 0, (10)

where ϕ : X → R is a suitable “cylindrical” function and H is an elliptic
operator of the form

Hϕ(t, x) =
∞∑

i,j=1

aij(t, x)∂xi∂xjϕ(x) +
∞∑
i=1

bi(t, x)∂xiϕ(x), (t, x) ∈ (0, 1)×X,

where aij, bi : (0, 1)×Rd → R are suitable locally µ-integrable functions. The
authors showed that under certain technical conditions, it is possible to prove
existence results for the measure equation (10).

At our knowledge, there are no uniqueness results for the measure equa-
tion (9) in the infinite dimensional framework .

The main novelty of this thesis consists in showing existence and unique-
ness of a solution for problem (9). Differently from [7], we deal with time in-
dipendent differential operators which act on continuous functions defined on
some separable Hilbert space. We consider important cases such as Ornstein-
Uhlenbeck, reaction-diffusion and Burgers operators.

Let us describe the content of the thesis.

In Chapter 1 we consider an abstract situation, a general stochastically
continuous Markov semigroup Pt with generator K. Under a suitable as-
sumption we prove general existence and uniqueness results for equation (8).

In Chapter 2 we consider the case when F = 0. In this case Pt reduces
to the Ornstein-Uhlenbeck semigroup. We prove that K is the closure of K0

in Cb(H) (this result was known, see [31]) then we solve both equation (8)
and equation (9).
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In Chapter 3, we consider the case when F is a bounded and Lipschitz
perturbation of A. We prove that K is the closure of K0 in Cb(H). The
results of chapters 2, 3 are contained in the paper [37].

In Chapter 4, we consider the case when F is a Lipschitz perturbation of
A. We prove that K is the closure of K0 in Cb,1(H) (this result was known in
Cb,2(H) with more regular coefficients, see [21], [31]). We prove existence and
uniqueness of a solution for problems (8), (9) when1

∫
H

(1 + |x|)|µ0|TV (dx) <
∞.

In Chapter 5 we consider reaction diffusion equations of the form
dX(t, ξ) = [∆ξX(t, ξ) + λX(t, ξ)− p(X(t, ξ))]dt+BdW (t, ξ), ξ ∈ O,

X(t, ξ) = 0, t ≥ 0, ξ ∈ ∂O,

X(0, ξ) = x(ξ), ξ ∈ O, x ∈ H,

where ∆ξ is the Laplace operator, B ∈ L(H) and p is an increasing poly-
nomial with leading coefficient of odd degree d > 1. Here O = [0, 1]n and
H = L2(O). We prove that K is the closure of K0 in the space of all contin-
uous functions ϕ : L2d(O)→ R such that

sup
x∈L2d(O)

|ϕ(x)|
1 + |x|d

L2d(O)

<∞.

Moreover, we prove existence and uniqueness of a solution for problems (8),

(9) when

∫
H

(
1 + |x|dL2d(O)

)
|µ0|TV (dx) <∞. The results of this chapter seem

to be new and are contained in the submitted paper [38].

In Chapter 6 we consider the stochastic Burgers equation in the interval
[0, 1] with Dirichlet boundary conditions perturbed by a space-time white
noise 

dX =

(
D2
ξX +

1

2
Dξ(X

2)

)
dt+ dW, ξ ∈ [0, 1], t ≥ 0,

X(t, 0) = X(t, 1) = 0

X(0, ξ) = x(ξ), ξ ∈ [0, 1],

1Here |µ0|TV is the total variation measure of µ0
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where x ∈ L2(0, 1). We prove that K is the closure of K0 in the space of all
continuous functions ϕ : L6(0, 1)→ R such that

sup
x∈L6(0,1)

|ϕ(x)|
1 + |x|8L6(0,1)|x|2L4(0,1)

<∞.

We prove existence and uniqueness of a solution for problems (8), (9)

when

∫
H

(1 + |x|8L6(0,1)|x|2L4(0,1))|µ0|TV (dx) < ∞. The results of this chapter

seem to be new and they are the object of a forthcoming paper.
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0.1 Functional spaces

Let E,E ′ two real Banach spaces endowed with the norms | · |E, | · |E′ .

• We denote by L(E,E ′) the Banach algebra of all linear continuous
operators T : E → E ′ endowed with the usual norm

‖T‖L(E,E′) = sup{|Tx|E′ ; x ∈ E, |x|E = 1}, T ∈ L(E,E ′).

If E = E ′, we shall write L(E) instead of L(E,E). If E ′ = R, the
space (E,R) is the topological dual space of E, and we shall write E∗

instead of (E,R).

• We denote by Cb(E;E ′) the Banach space of all uniformly continuous
and bounded functions f : E → E ′, endowed with the norm

‖f‖Cb(E,E′) = sup
x∈E
|f(x)|E′ .

If E ′ = R, we shall write Cb(E) instead of Cb(E; R). In some cases, we
shall denote the norm of Cb(E) by ‖ · ‖0. However, this notation will
be explicitly given when it is necessary.

• The space C1
b (E;E ′) consists of all f ∈ Cb(E;E ′) which are Fréchet

differentiable with differential Df ∈ Cb(E;L(E,E ′)), that is Df : E →
L(E,E ′) is uniformly continuous and bounded. The space C1

b (E;E ′)
is a Banach space with the norm

‖f‖C1
b (E;E′) = ‖f‖Cb(E,E′) + ‖Df‖Cb(E,L(E,E′))

• For any k ∈ N, k > 1, the space Ck
b (E;E ′) consists of all f ∈ Cb(E;E ′)

which are k-times Fréchet differentiable with uniformly continuous and
bounded differentials up to the order k.

• For any k ∈ N, k > 1, the Banach space Cb,k(E) consists of all functions
ϕ : E → R such that the function E → R, x 7→ (1+|x|k)−1ϕ(x) belongs
to Cb(E). We set ‖ϕ‖0,k := ‖(1 + | · |kE)−1ϕ‖0.

• M(E) denotes the space of all finite Borel measures on E. We denote
by |µ|TV the total variation measure of µ ∈M(E).

• If V : E → R is a positive measurable function, MV (E) is the set of
all Borel measures on E such that∫

E

(1 + V (x))|µ|TV (dx) <∞.

If V (x) = |x|kE for some k > 1 we write Mk(E) instead of MV (E).



2 Preliminaries

In most of the cases, we shall work with Hilbert spaces. Let H be a separable
Hilbert space of norm | · | and inner product 〈·, ·〉. The following notations
are used

• Σ(H) is the cone in L(H) consisting of all symmetric operators. We
set

L+(H) = {T ∈ Σ(H) : 〈Tx, x〉 ≥ 0, x, y ∈ H}.

• L1(H) is the Banach space of all trace class operators endowed with
the norm

‖T‖1 = Tr
√
TT ∗, T ∈ L1(H),

where Tr represents the trace. We set L+
1 (H) = L1(H) ∩ L+(H);

0.1.1 Gaussian measures

Let m ∈ R and λ ∈ R+. The Gaussian measure of mean m and variance λ
is the measure on R

Nm,λ(dx) =


1

(2πλ)1/2
e−

(x−m)2

2λ dx, if λ > 0,

δm(dx), if λ = 0,

where dx is the Lebesgue measure on R and δm is the Dirac measure at m.
Let n > 1. We are going to define the Gaussian measure on Rn of

mean a ∈ Rn and covariance Q ∈ L+(Rn). Since Q is linear, symmetric
and positive, there is an orthonormal basis {e1, . . . , en} and n nonnegative
numbers {λ1, . . . , λn} such that

Qei = λiei, i ∈ {1, . . . , n}.

Let us consider the linear transformation R : Rn → Rn defined by

x 7→ Rx = (〈x, e1〉, . . . , 〈x, en〉).

As easily seen, R is orthonormal. Let us consider the product probability
measure on Rn

µ(dξ) :=
n∏
i=1

N(Ra)i,λi(dξi)

and define the Gaussian measure Na,Q by∫
Rn
ϕ(x)Na,Q(dx) =

∫
Rn
ϕ(R∗ξ)µ(dξ),
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for any integrable Borel real function ϕ : Rn → R.
If Q ∈ L+(Rn) is strictly positive, that is detQ > 0, the Gaussian measure

N(a,Q) can be represented by the explicit formula

Na,Q(dx) = (2π)−n/2(detQ)−1/2e−
1
2
〈Q−1(x−a),x−a〉dx, x ∈ Rn.

When a = 0, we shall write NQ instead of N(a,Q).
In order to extend the notion of Gaussian measure on a Hilbert space, we

need to introduce some concepts.
Let R∞ be the set of all real valued sequences2. R∞ may be identified

with the product of infinite copies of R, that is

R∞ =
∏
n∈N

Xn,

where Xn = R, for any n ∈ N. Any element of R∞ is of the form (xn)n∈N,
with xn ∈ R. B(R∞) is the σ-algebra of R∞ generated by the cylindrical sets

{(xn)n∈N ∈ R∞ : xi1 ∈ A1, . . . , xin ∈ An},

where n ∈ N, i1, . . . , in ∈ N, Aj ∈ B(R), j = 1, . . . , n.
We identify the Hilbert space H with `2, that is the set of all sequences

(xn)n∈N ∈ R∞ such that
∞∑
n=1

|xn|2 <∞.

It is easy to see that `2 is a Borel set of R∞.
Now let Q be a symmetric, nonnegative, trace class operator. Briefly,

Q ∈ L+
1 (H). We recall that Q ∈ L+

1 (H) if and only if there exists a com-
plete orthonormal system {ek} in H and a sequence of nonnegative numbers
(λk)k∈N such that

Qek = λkek, k ∈ N

and

TrQ =
∞∑
k=1

λk < +∞.

For any a ∈ H and Q ∈ L+
1 (H) we define the Gaussian probability

measure Na,Q on R∞ as a product of Gaussian measures on R, by setting

Na,Q =
∞∏
k=1

Nak,λk , ak = 〈a, ek〉, k ∈ N,

2In the literature it is often denoted by Rω or RN
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where Nak,λk is the Gaussian measure on R with mean ak and variance λk.
If a = 0 we shall write NQ for brevity.

After a straightforward computation, we see that∫
R∞
‖x‖2`2Na,Q(dx) =

∞∑
k=1

(a2
k + λk) = ‖a‖2`2 + TrQ <∞,

since a ∈ H and Q is of trace class. It follows that the measure Na,Q is
concentrated in H, i.e.

Na,Q(H) =

∫
H

Na,Q(dx) = 1.

For this reason, we say that N(a,Q) is a Gaussian measure on H.
Let us list some useful identities. The proof is straightforward and may

be found in several texts (see, for instance, [22], [23]). We have∫
H

〈x, h〉Na,Q(dx) = 〈a, h〉, h ∈ H;

∫
H

〈x− a, h〉〈x− a, k〉Na,Q(dx) = 〈Qh, k〉, h, k ∈ H;∫
H

ei〈x,h〉Na,Q(dx) = ei〈a,h〉−
1
2
〈Qh,h〉, h ∈ H.

0.2 The stochastic convolution

Here and in what follows we assume the following hypothesis, typical of the
infinite dimensional framework (see [9], [22], [25], [26])

Hypothesis 0.1. (i) A : D(A) ⊂ H → H is the infinitesimal generator of
a strongly continuous semigroup etA of type G(M,ω), i.e. there exist
M ≥ 0 and ω ∈ R such that ‖etA‖L(H) ≤Meωt, t ≥ 0;

(ii) B ∈ L(H) and for any t > 0 the linear operator Qt, defined by

Qtx =

∫ t

0

esABB∗esA
∗
x ds, x ∈ H, t ≥ 0 (11)

has finite trace;

(iii) (W (t))t≥0 is a cylindrical Wiener process, defined on (Ω,F , (Ft)t≥0,P)
and with values in H.
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We are going to define the stochastic convolution WA(t). Formally, the
Wiener process W (t), t ≥ 0 can be written as the series

W (t) =
∞∑
k=1

βk(s)ek

where {ek, k ∈ N} is an orthonormal basis for H and βk(·), k ∈ N are
mutually indipendent brownian motions. We formally write WA(t) as the
series

∞∑
k=1

∫ t

0

e(t−s)ABekdβk(s). (12)

The generic term ∫ t

0

e(t−s)ABekdβk(s),

is a vector valued Wiener integral, which can be defined as∫ t

0

e(t−s)ABekdβk(s) =
∞∑
h=1

∫ t

0

〈e(t−s)ABek, eh〉dβk(s) eh.

It is easy to check that∣∣∣∣∫ t

0

e(t−s)ABekdβk(s)

∣∣∣∣2 =

∫ t

0

|e(t−s)ABek|2ds.

Theorem 0.2. Assume that Hypothesis 0.1 holds. Then for any t ≥ 0 the
series in (12) is convergent in L2(Ω,F ,P;H) to a Gaussian random variable
denoted WA(t) with mean 0 and covariance operator Qt, where Qt is defined
by (11). In particular we have

E[|WA(t)|2] = Tr Qt.

Proof. See, for instance, [22].

We study now WA(t) as a function of t. To this purpose, let us introduce
the space

CW ([0, T ];L2(Ω,F ,P;H)) := CW ([0, T ];H))

consisting of all continuous mappings F : [0, T ] → L2(Ω,F ,P;H) which are
adapted to W , that is such that F (s) is Fs–measurable for any s ∈ [0, T ].
The space CW ([0, T ];H)), endowed with the norm

‖F‖CW ([0,T ];H)) =

(
sup
t∈[0,T ]

E
(
|F (t)|2

))1/2

,

is a Banach space. It is called the space of all mean square continuous adapted
processes on [0, T ] taking values on H.
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Theorem 0.3. Assume that Hypothesis 0.1 holds. Then for any T > 0 we
have that WA(·) ∈ CW ([0, T ];H).

Proof. See, for instance, [22].

Example 0.4 (Heat equation in an interval). Let H = L2(0, π), B = I and
let A be given by (3) 

D(A) = H2(0, π) ∩H1
0 (0, π),

Ax = D2
ξx, x ∈ D(A).

(13)

A is a self–adjoint negative operator and

Aek = −k2ek, k ∈ N,

where
ek(ξ) = (2/π)1/2 sin kξ, ξ ∈ [0, π], k ∈ N.

Therefore in this case Qt is given by

Qtx =

∫ t

0

e2sAxds =
1

2
(e2tA − I)A−1x, x ∈ H.

Since

Tr Qt =
1

2

∞∑
k=1

1− e−2tk2

k2
≤ 1

2

∞∑
k=1

1

k2
< +∞,

we have that Qt ∈ L+
1 (H). Therefore Hypothesis 0.1 is fulfilled.

Example 0.5 (Heat equation in a square). We consider here the heat equa-
tion in the square O = [0, π]N with N ∈ N. We choose H = L2(O), B = I,
and set 

D(A) = H2(O) ∩H1
0 (O),

Ax = ∆ξx, x ∈ D(A),

where ∆ξ represents the Laplace operator.
A is a self–adjoint negative operator in H, moreover

Aek = −|k|2ek, k ∈ NN ,

3Hk(0, π), k ∈ N represent Sobolev spaces and H1
0 (0, π) is the subspace of H1(0, π) of

all functions vanishing at 0 and π.
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where
|k|2 = k2

1 + · · ·+ k2
N , (k1, ..., kN) ∈ NN ,

and
ek(ξ) = (2/π)N/2 sin k1ξ · · · sin kNξ, ξ ∈ [0, π]N , k ∈ NN .

In this case

Tr Qt =
∑
k∈NN

1

|k|2
(

1− e−2t|k|2
)

= +∞, t > 0,

for any N > 1.
Choose now B = (−A)−α/2, α ∈ (0, 1), so that

Bx =
∑
k∈NN

|k|−α〈x, ek〉ek.

Then we have

Tr Qt =
∑
k∈NN

1

|k|2+2α

(
1− e−2t|k|2

)
, t > 0,

and so, Tr Qt < +∞ provided α > N/2− 1.

0.2.1 Continuity in time of the stochastic convolution

We assume here that Hypothesis 0.1 is fulfilled. We know by Theorem 0.3
that WA(·) is mean square continuous. We want to show that WA(·)(ω) is
continuous for P–almost all ω, that is that WA(·) has continuous trajectories.
For this we need the following additional assumption.

Hypothesis 0.6. There exists α ∈ (0, 1
2
) such that∫ 1

0

s−2α Tr [esACesA
∗
]ds < +∞.

Note that Hypothesis 0.6 is automatically fulfilled when C is of trace–
class.

We shall use the factorization method, (see [12]) based on the following
elementary identity∫ t

s

(t− σ)α−1(σ − s)−αdσ =
π

sin πα
, 0 ≤ s ≤ σ ≤ t, (14)
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where α ∈ (0, 1). Using (14) we can write

WA(t) =
sin πα

π

∫ t

0

e(t−σ)A(t− σ)α−1Y (σ)dσ, (15)

where

Y (σ) =

∫ σ

0

e(σ−s)A(σ − s)−αBdW (s), σ ≥ 0. (16)

To go further, we need the following analytic lemma.

Lemma 0.7. Let T > 0, α ∈ (0, 1),m > 1/(2α) and f ∈ L2m(0, T ;H). Set

F (t) =

∫ t

0

e(t−σ)A(t− σ)α−1f(σ)dσ, t ∈ [0, T ].

Then F ∈ C([0, T ];H) and there exists a constant Cm,T such that

|F (t)| ≤ Cm,T‖f‖L2m(0,T ;H), t ∈ [0, T ]. (17)

Proof. Let MT = supt∈[0,T ] ‖etA‖ and t ∈ [0, T ]. Then by Hölder’s inequality
we have,

|F (t)| ≤MT

(∫ t

0

(t− σ)(α−1) 2m
2m−1dσ

) 2m−1
2m

|f |L2m(0,T ;H)

=MT

(
2m− 1

2αm− 1

) 2m−1
2m

tα−
1

2m |f |L2m(0,T ;H),

(18)

that yields (17). It remains to show the continuity of F. Continuity at 0
follows from (18). So, it is enough to show that F is continuous at any
t0 > 0. For ε < t0

2
set

Fε(t) =

∫ t−ε

0

e(t−σ)A(t− σ)α−1f(σ)dσ, t ∈ [0, T ].

Fε is obviously continuous on [ε, T ]. Moreover, using once again Hölder’s
inequality, we find that

|F (t)− Fε(t)| ≤MT

(
2m− 1

2mα− 1

) 2m−1
2m

εα−
1

2m |f |L2m(0,T ;H).

Thus limε→0 Fε(t) = F (t), uniformly on [ t0
2
, T ], and F is continuous at t0 as

required.
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Now we are ready to prove the almost sure continuity of WA(·).

Theorem 0.8. Assume that Hypotheses 0.1 and 0.6 hold. Let T > 0 and
m ∈ N. Then there exists a constant C1

m,T > 0 such that

E

(
sup
t∈[0,T ]

|WA(t)|2m
)
≤ C1

m,T . (19)

Moreover WA(·) is P–almost surely continuous on [0, T ].

Proof. Choose α ∈ (0, 1
2m

) and let Y be defined by (16). Then, for all σ ∈
(0, T ], Y (σ) is a Gaussian random variable NSσ where

Sσx =

∫ σ

0

s−2αesAQesA
∗
xds, x ∈ H.

Set Tr (Sσ) = Cα,σ. Then for any m > 1 there exists a constant Dm,α > 0
such that

E
(
|Y (σ)|2m

)
≤ Dm,ασ

m, σ ∈ [0, T ].

This implies ∫ T

0

E
(
|Y (σ)|2m

)
dσ ≤ Dm,α

m+ 1
Tm+1,

so that Y (·)(ω) ∈ L2m(0, T ;H) for almost all ω ∈ Ω. Therefore, by Lemma
0.7, WA(·)(ω) ∈ C([0, T ];H) for almost all ω ∈ Ω. Moreover, we have

sup
t∈[0,T ]

|WA(t)|2m ≤
(
CM,T

π

)2m ∫ T

0

|Y (σ)|2mdσ.

Now (19) follows taking expectation.

0.2.2 Continuity in space and time of the stochastic
convolution

Here we assume that the Hilbert spaceH coincides with the space of functions
L2(O) where O is a bounded subset of RN . We set

WA(t)(ξ) = WA(t, ξ), t ≥ 0, ξ ∈ O.

We want to prove that, under Hypothesis 0.9 below, WA(·, ·)(ω) ∈ C([0, T ]×
O) for P–almost all ω ∈ Ω.

Hypothesis 0.9.
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(i) For any p > 1 the semigroup etA has a unique extension to a strongly
continuous semigroup in Lp(O) which we still denote etA.

(ii) There exist r ≥ 2 and, for any ε ∈ [0, 1], Cε > 0 such that

|etAx|W ε,p(O) ≤ Cεt
− ε
r |x|Lp(O) for all x ∈ Lp(O). (20)

(iii) A and C are diagonal with respect to the orthonormal basis {ek}, that
is there exist sequences of positive numbers {βk}k∈N and {λk}k∈N such
that

Aek = −βkek, Cek = λkek, k ∈ N.

Moreover, βk ↑ +∞ as k →∞.

(iv) For all k ∈ N, ek ∈ C(O) and there exists κ > 0 such that

|ek(ξ)| ≤ κ, k ∈ N, ξ ∈ O. (21)

(v) There exists α ∈ (0, 1
2
) such that

∞∑
k=1

λkβ
2α−1
k < +∞. (22)

Example 0.10. Assume that A is the realization of an elliptic operator of
order 2m with Dirichlet boundary conditions in O. Then (i) holds, (ii) holds
with r = 2m, see e.g. [1]. (iv) does not hold in general. As easily seen, it is
fulfilled when O = [0, π]N .

If O = [0, π], A is as in (13) and Q = I, then Hypothesis 0.9 is fulfilled
with r = 2 and α ∈ (0, 1/4).

To prove continuity of WA(t, ξ) on (t, ξ) we need an analytic lemma.

Lemma 0.11. Assume that Hypothesis 0.9 holds. Let T > 0, α ∈ (0, 1/2),
m > 1

α
and f ∈ L2m([0, T ]×O). Set

F (t) =

∫ t

0

e(t−σ)A(t− σ)α−1f(σ)dσ, t ∈ [0, T ].

Then F ∈ C([0, T ]×O) and there exists a constant CT,m such that

sup
t∈[0,T ],ξ∈O

|F (t, ξ)|2m ≤ CT,m|f |2mL2m([0,T ]×O). (23)
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Proof. Set ε = 1
2
αr. Taking into account (20) we have that

|F (t)|W ε,2m(O)≤
∫ t

0

(t− σ)α−1|e(t−σ)Af(σ)|W ε,2m(O)dσ

≤Cε
∫ t

0

(t− σ)α/2−1|f(σ)|L2m(O)dσ

By using Hölder’s inequality and taking into account that m(α−2)
2m−1

> −1, we
find

|F (t)|2mW ε,2m(O) ≤ Cε

(∫ t

0

(t− σ)
m(α−2)
2m−1 dσ

)2m−1

|f |2mL2m([0,T ]×O).

Since ε > 1
2m

we obtain (23) a consequence of Sobolev’s embedding theorem.

We are now ready to prove

Theorem 0.12. Assume that Hypotheses 0.1 and 0.9, hold. Then WA(·, ·)
is continuous on [0, T ]×O, P–almost surely. Moreover, if m > 1/α we have

E

(
sup

(t,ξ)∈[0,T ]×O
|WA(t, ξ)|2m

)
< +∞.

Proof. We write WA(t) as in (15), where Y is given by (16) with B =
√
C.

Let us prove that Y ∈ Lp([0, T ]×O), p ≥ 2, P–almost surely. First we notice
that for all σ ∈ [0, T ], ξ ∈ O, we have, setting Y (σ)(ξ) = Y (σ, ξ),

Y (σ, ξ) =
∞∑
k=1

√
λk

∫ σ

0

e−βk(σ−s)(σ − s)−αek(ξ)dβk(σ).

Thus, Y (σ, ξ) is a real Gaussian random variable with mean 0 and covariance
γ(σ, ξ) = γ given by

γ =
∞∑
k=1

λk

∫ σ

0

e−2βkss−2α|ek(ξ)|2ds.

Taking into account (21) and (22) we see that

γ≤
∞∑
k=1

λk

∫ +∞

0

e−2βkss−2α|ek(ξ)|2ds

= κ222α−1Γ(1− 2α)
∞∑
k=1

λkβ
2α−1
k < +∞.
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Therefore there exists Cm > 0 such that

E|Y (σ, ξ)|2m ≤ Cm, m > 1.

It follows that

E
∫ T

0

∫
O
|Y (σ, ξ)|2mdσ dξ ≤ TCm|O|,

where |O| is the Lebesgue measure of O. So Y ∈ L2m([0, T ] × O) and con-
sequently WA ∈ C([0, T ] × O), P–a. s. Now the conclusion follows taking
expectation in (23), with WA replacing F and Y replacing f .



Chapter 1

Measure valued equations for
stochastically continuous
Markov semigroups

1.1 Notations and preliminary results

Let E be a separable Banach space with norm |·|E. We recall that Cb(E) is the
Banach space of all uniformly continuous and bounded functions ϕ : E → R
endowed with the supremum norm

‖ϕ‖0 = sup
x∈E
|ϕ(x)|.

Definition 1.1. A sequence (ϕn)n∈N ⊂ Cb(E) is said to be π-convergent to
a function ϕ ∈ Cb(E) if for any x ∈ E we have

lim
n→∞

ϕn(x) = ϕ(x)

and
sup
n∈N
‖ϕn‖0 <∞.

Similarly, the m-indexed sequence (ϕn1,...,nm)n1∈N,...,nm∈N ⊂ Cb(E) is said to
be π-convergent to ϕ ∈ Cb(E) if for any i ∈ {2, . . . ,m} there exists an i− 1-
indexed sequence (ϕn1,...,ni−1

)n1∈N,...,ni−1∈N ⊂ Cb(E) such that

lim
ni→∞

ϕn1,...,ni
π
= ϕn1,...,ni−1

and
lim
n1→∞

ϕn1

π
= ϕ.

13
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We shall write
lim
n1→∞

· · · lim
nm→∞

ϕn1,...,nm
π
= ϕ

or ϕn
π→ ϕ as n→∞, when the sequence has one index.

It is worth noticing that if the sequence (ϕn,m)n,m∈N ⊂ Cb(E) is π-
convergent to ϕ ⊂ Cb(E) we can not, in general, extract a subsequence
(ϕnk,mk)k∈N which is still π-convergent to ϕ. This is the reason for which we
consider multi-indexed sequences. However, in order to avoid heavy nota-
tions, we shall often write a multi-indexed sequence as a sequence with only
one index.

Remark 1.2. As easily seen the π-convergence implies the convergence in
Lp(E;µ), for any µ ∈M(E), p ∈ [1,∞).

Remark 1.3. The notion of π-convergence is considered also in [29], under
the name of boundedly and pointwise convergence.

Remark 1.4. The topology on Cb(E) induced by the π-convergence is not
sequentially complete. For a survey on this fact see [31], [40] .

Definition 1.5. For any subset D ⊂ Cb(E) we say that ϕ belongs to the
π-closure of D, and we denote it by ϕ ∈ Dπ

, if there exists m ∈ N and an
m-indexed sequence {ϕn1,...,nm}n1∈N,...,nm∈N ⊂ D such that

lim
n1→∞

· · · lim
nm→∞

ϕn1,...,nm
π
= ϕ.

Finally, we shall say that a subset D ⊂ Cb(E) is π-dense if D
π

= Cb(E).

1.2 Stochastically continuous semigroups

We denote by B(E) the Borel σ-algebra of E.

Definition 1.6. A family of operators (Pt)t≥0 ⊂ L(Cb(E)) is a stochastically
continuous Markov semigroup if there exists a family {πt(x, ·), t ≥ 0, x ∈ E}
of probability Borel measures on E such that

• the map R+ × E → [0, 1], (t, x) 7→ πt(x,Γ) is Borel, for any Borel set
Γ ∈ B(E);

• Ptϕ(x) =
∫
E
ϕ(y)πt(x, dy), for any t ≥ 0, ϕ ∈ Cb(E), x ∈ E;

• for any ϕ ∈ Cb(E), x ∈ E, the map R+ → R, t 7→ Ptϕ(x) is continuous;
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• Pt+s = PtPs, and P0 = IdE.

Remark 1.7. Notice that if (ϕn)n∈N ⊂ Cb(E) is a sequence such that ϕn
π→

ϕ ∈ Cb(E) as n→∞, then Ptϕn
π→ Ptϕ as n→∞, for any t ≥ 0.

In [40] semigroups as in Definition 1.6 are called transition π-semigroups.
We have the following

Theorem 1.8. Let (Pt)t≥0 be a stochastically continuous Markov semigroup.
Then the family of linear maps P ∗t : (Cb(E))∗ → (Cb(E))∗, t ≥ 0, defined by
the formula

〈ϕ, P ∗t F 〉L(Cb(E), (Cb(E))∗) = 〈Ptϕ, F 〉L(Cb(E), (Cb(E))∗), (1.1)

where t ≥ 0, F ∈ (Cb(E))∗, ϕ ∈ Cb(E), is a semigroup of linear maps on
(Cb(E))∗ of norm 1 and maps M(E) into M(E).

Proof. Clearly, P ∗t is linear. Let F ∈
(
Cb(E)

)∗
, t ≥ 0. We have, for any

ϕ ∈ Cb(E),

〈ϕ, P ∗t F 〉L(Cb(E), (Cb(E))∗) ≤ ‖ϕ‖0‖F‖(Cb(E))∗ .

Then Pt : (Cb(E))∗ → (Cb(E))∗ has norm equal to 1. Moreover, by (1.1) it
follows easily that P ∗t (P ∗s F ) = P ∗t+sF , for any t, s ≥ 0, F ∈ (Cb(E))∗. Hence,
(1.1) defines a semigroups of application in (Cb(E))∗ of norm equal to 1.

Now we prove that P ∗t :M(E)→M(E). According to Definition 1.6, let
{πt(x, ·), x ∈ E} be the family of probability measures associated to Pt, that
is Ptϕ(x) =

∫
E
ϕ(y)πt(x, dy), for any ϕ ∈ Cb(E). Note that that Ptϕ ≥ 0 for

any ϕ ≥ 0. This implies that if 〈ϕ, F 〉 ≥ 0 for any ϕ ≥ 0, then 〈ϕ, P ∗t F 〉 ≥ 0
for any ϕ ≥ 0. Hence, in order to check that P ∗t : M(E) → M(E), it is
sufficient to take µ positive. So, let µ ∈ M(E) be positive and consider the
map

Λ : B(E)→ R, Γ 7→ Λ(Γ) =

∫
E

πt(x,Γ)µ(dx).

Since for any Γ ∈ B(E) the map E → [0, 1], x→ πt(x,Γ) is Borel, the above
formula in meaningful. It is easy to see that Λ is a positive and finite Borel
measure on E, namely Λ ∈M(E). Let us show Λ = P ∗t µ.

Let us fix ϕ ∈ Cb(E), and consider a sequence of simple Borel functions
(ϕn)n∈N which converges uniformly to ϕ and such that |ϕn(x)| ≤ |ϕ(x)|,
x ∈ E. For any x ∈ E we have

lim
n→∞

∫
E

ϕn(y)πt(x, dy) =

∫
E

ϕ(y)πt(x, dy) = Ptϕ(x)
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and

sup
x∈E

∣∣∣∣∫
E

ϕn(y)πt(x, dy)

∣∣∣∣ ≤ ‖ϕ‖0.
Hence, by the dominated convergence theorem and by taking into account
that ϕn is simple, we have∫

E

ϕ(x)Λ(dx) = lim
n→∞

∫
E

ϕn(x)Λ(dx) = lim
n→∞

∫
E

(∫
E

ϕn(y)πt(x, dy)

)
µ(dx)

=

∫
E

(∫
E

ϕ(y)πt(x, dy)

)
µ(dx) =

∫
E

Ptϕ(x)µ(dx).

This implies that P ∗t µ = Λ and consequently P ∗t µ ∈M(E).

1.2.1 The infinitesimal generator

It is clear that a stochastically continuous Markov semigroup is not, in gen-
eral, strongly continuous. However, we can define an infinitesimal generator
(K,D(K)) by setting

D(K) =

{
ϕ ∈ Cb(E) : ∃g ∈ Cb(E), lim

t→0+

Ptϕ(x)− ϕ(x)

t
= g(x),

∀x ∈ E, sup
t∈(0,1)

∥∥∥∥Ptϕ− ϕt

∥∥∥∥
0

<∞
}

Kϕ(x) = lim
t→0+

Ptϕ(x)− ϕ(x)

t
, ϕ ∈ D(K), x ∈ E.

(1.2)

The next result is proved in Propositions 3.2, 3.3, 3.4 of [40]. For the reader’s
convenience, we give the complete proof.

Theorem 1.9. Let us assume that (Pt)t≥0 is as in Definition 1.6 and let
(K,D(K)) be its infinitesimal generator, defined as in (1.2). Then

(i) for any ϕ ∈ D(K), Ptϕ ∈ D(K) and KPtϕ = PtKϕ, t ≥ 0;

(ii) for any ϕ ∈ D(K), x ∈ E, the map [0,∞) → R, t 7→ Ptϕ(x) is
continuously differentiable and (d/dt)Ptϕ(x) = PtKϕ(x);

(iii) for any f ∈ Cb(E), t > 0 the map E → R, x 7→
∫ t

0
Psf(x)ds belongs

to D(K) and it holds

K

(∫ t

0

Psfds

)
= Ptf − f.
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Moreover, if ϕ ∈ D(K) we have

K

(∫ t

0

Psfds

)
=

∫ t

0

KPsfds;

(iv) K is a π-closed operator on Cb(E), that is for any sequence {ϕn}n∈N ⊂
Cb(E) such that ϕn

π→ ϕ ∈ Cb(E) and Kϕn
π→ g ∈ Cb(E) as n→∞ it

follows that ϕ ∈ D(K) and g = Kϕ;

(v) D(K) is π-dense in Cb(E);

(vi) for any λ > 0 the linear operator R(λ,K) on Cb(E) defined by

R(λ,K)f(x) =

∫ ∞
0

e−λtPtf(x)dt, f ∈ Cb(E), x ∈ E

satisfies, for any f ∈ Cb(E)

R(λ,K) ∈ L(Cb(E)), ‖R(λ,K)‖L(Cb(E)) ≤
1

λ

R(λ,K)f ∈ D(K), (λI −K)R(λ,K)f = f.

We call R(λ,K) the resolvent of K at λ.

Proof. (i). Take ϕ ∈ D(K). Since ϕ ∈ D(K) we have that

lim
h→0+

Phϕ− ϕ
h

π
= Kϕ.

Hence, by Remark 1.7

KPtϕ
π
= lim

h→0+

PhPtϕ− Ptϕ
h

π
= lim

h→0+
Pt

(
Phϕ− ϕ

h

)
π
=Pt

(
Phϕ− ϕ

h

)
= PtKϕ.

(ii). By (i) we have KPtϕ(x) = d/dtPtϕ(x) = PtKϕ(x). Since the map
t 7→ PtKϕ(x) is continuous, (ii) follows.
(iii) First, we have to check that

∫ t
0
Psfds belongs to Cb(E). For any x ∈ E

we have ∣∣∣∣∫ t

0

Psϕ(x)ds

∣∣∣∣ ≤ t‖ϕ‖0.

Now let us fix ε > 0 and take δ > 0 such that

sup
s∈[0,t]

|Psϕ(x)− Psϕ(y)| < ε

t
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when |x − y| < δ. This is possible since (Pt)t≥0 is a locally bounded in
L(Cb(E)). Therefore, for any x, y ∈ E, |x− y| < δ we have∣∣∣∣∫ t

0

Psϕ(x)ds−
∫ t

0

Psϕ(x)ds

∣∣∣∣ ≤ ∫ t

0

|Ptϕ(x)− Ptϕ(y)| ds < ε.

Hence,
∫ t

0
Psϕds ∈ Cb(E). Let us show

∫ t
0
Psϕds ∈ D(K). Now, taking into

account that for any x ∈ E the integral
∫ t

0
Psϕ(x)ds is a Riemann integral,

we have

Ph

(∫ t

0

Psϕds

)
=

∫ t

0

Pt+hϕds,

for any h ≥ 0, since
∫ t

0
Psϕ(x)ds is the limit with respect to the π-convergence

of functions in Cb(H). So, for any x ∈ E, h > 0 we have

Ph

(∫ t

0

Psϕds

)
(x)−

∫ t

0

Psϕ(x)ds =

∫ t

0

Pt+hϕ(x)ds−
∫ t

0

Psϕ(x)ds

=

∫ t+h

h

Psϕ(x)ds−
∫ t

0

Psϕ(x)ds =

∫ t+h

t

Psϕ(x)ds−
∫ h

0

Psϕ(x)ds.

therefore, by the continuity of s→ Psϕ(x) we have

lim
h→0+

1

h

(
Ph

(∫ t

0

Psϕds

)
(x)−

∫ t

0

Psϕ(x)ds

)
= Ptϕ(x)− ϕ(x).

Finally, since ‖Ps‖L(Cb(E)) ≤ 1 we find∣∣∣∣1h
(
Ph

(∫ t

0

Psϕds

)
(x)−

∫ t

0

Psϕ(x)ds

)∣∣∣∣ ≤ 2‖ϕ‖0.

This implies

sup
h∈(0,1)

∥∥∥∥1

h

(
Ph

(∫ t

0

Psϕds

)
(x)−

∫ t

0

Psϕ(x)ds

)∥∥∥∥
0

<∞.

This prove the first part of (v). Now take ϕ ∈ D(K). By (ii) we see that for
any x ∈ E it holds

Ptϕ(x)− ϕ(x) =

∫ t

0

d

ds
Psϕ(x)ds =

∫ t

0

PsKϕ(x)ds.

Hence, (iii) follows.
(iv) Take (ϕn)n∈N ⊂ D(K) such that ϕn

π→ 0 as n → ∞ and Kϕn
π→ g ∈

Cb(H) as n→∞. By (iii) and Remark 1.7, for any t > 0 we have

Ptϕ− ϕ
π
= lim

n→∞
(Ptϕn − ϕn)
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π
= lim

n→∞

∫ t

0

PsKϕnds
π
=

∫ t

0

Psgds.

Hence it follows easily

lim
t→0+

Ptϕ− ϕ
t

π
= lim

t→0+

1

t

∫ t

0

Psgds
π
= g,

which implies ϕ ∈ D(K) and Kϕ = g.
(v). Take ϕ ∈ Cb(E) and set

ϕn = n

∫ 1
n

0

Psϕds.

By (iii) we have ϕ ∈ D(K). Since for any x ∈ E the map [0,∞) → R,
s 7→ Psϕ(x) is continuous, we have |ϕn(x)− ϕ(x)|E → 0 as n→∞, for any
x ∈ E. Finally, we have |ϕn(x)| ≤ ‖ϕ‖0, which implies ϕn

π→ ϕ as n→∞.
(vi) For any λ > 0 and for any f ∈ Cb(E) we set

Fλf(x) =

∫ ∞
0

e−λtPtf(x)dt, x ∈ E.

Fix λ > 0 and for any f ∈ Cb(E).
Step 1 We first prove that Fλf ∈ Cb(E). Notice that for any f ∈ Cb(E),
λ > 0 the integral on the right-hand side of is meaningful, since P·f(x) is
continuous and ∣∣e−λtPtf(x)

∣∣ ≤ e−λt‖f‖0.

Hence,

sup
x∈E
|Fλf(x)| ≤ ‖f‖0

λ
.

for any f ∈ C(E). To prove the claim, it is sufficient to check that the
function E → R, x 7→ Fλf(x) is uniformly continuous. So, let us fix ε > 0.
Let T > 0 such that (

2‖f‖0
λ

)
e−λT <

ε

2
. (1.3)

There exists δ > 0, depending on f and T , such that if x, y ∈ E and |x−y|E <
δ we have

sup
t∈[0,T ]

|Ptf(x)− Ptf(y)| < ε

2

(
λ

1− e−λT

)
. (1.4)

Then, if x, y ∈ E and |x− y|E < δ it holds

|Fλf(x)− Fλf(y)|
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≤
∫ T

0

e−λt |Ptf(x)− Ptf(y)| dt+

∫ ∞
T

e−λt |Ptf(x)− Ptf(y)| dt

≤ ε

2

(
λ

1− e−λT

)∫ T

0

e−λtdt+ 2‖f‖0
∫ ∞
T

e−λtdt < ε

thanks to (1.3), (1.4).
Step 2 Here we are checking Fλf ∈ D(K) and (λ−K)Fλf = f . Set g = Fλf

and gT =
∫ T

0
e−λtPtf(x)dt. We have

lim
T→∞

‖g − gT‖0 ≤ ‖f‖0
∫ ∞
T

e−λtdt = 0.

For any h > 0, x ∈ E we have

Phg(x)− g(x)

h
=

1

h

∫ T

0

e−λt (Pt+hf(x)− Ptf(x)) dt = Γ1(h, x) + Γ2(h, x),

where

Γ1(h, x) =
eλh − 1

h
g(x),

Γ2(h, x) =
eλh

h

∫ h

0

e−λtPtf(x)dt.

We clearly have
lim
h→0+

Γ1(h, x) = λg(x), x ∈ H

and

sup
h∈(0,1)

‖Γ1(h, ·)‖0 ≤ sup
h∈(0,1)

{
eλh − 1

h

}
‖f‖0

∫ ∞
0

e−λtdt <∞.

Hence, Γ1(h, ·)
π→ λg as h → 0+. Concerning the term Γ2(h, x), for any

x ∈ E we have
lim
h→0+

Γ2(h, x) = f(x),

since the map [0,∞)→ R, t 7→ e−λtPtf(x) is continuous. On the other hand
we have

|Γ2(h, x)| ≤ eλh

h

∫ h

0

e−λtdt‖f‖0 =
eλh
(
1− e−λh

)
λh

‖f‖0

which implies
sup
h∈(0,1)

‖Γ2(h, ·)‖0 <∞.

Hence, Γ2(h, ·)
π→ f as h → 0+. We have found that Fλ ∈ D(K) and that

KFλf = λFλf + f . This implies (λ−K)Fλf = f .
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Definition 1.10. We shall say that a set D ⊂ D(K) is a π-core for the
operator (K,D(K)) if D is π-dense in Cb(E) and for any ϕ ∈ D(K) there
exists m ∈ N and an m-indexed sequence {ϕn1,...,nm}n1∈N,...,nm∈N ⊂ D such
that

lim
n1→∞

· · · lim
nm→∞

ϕn1,...,nm
π
= ϕ

and

lim
n1→∞

· · · lim
nm→∞

Kϕn1,...,nm
π
= Kϕ.

It is clear that a π-core is nothing but the extension of the notion of core
with respect to the π-convergence. A useful example of core is given by the
following

Proposition 1.11. Let (Pt)t≥0 be a stochastically continuous Markov semi-
group and let (K,D(K)) be its infinitesimal generator. If D ⊂ D(K) is
π-dense in Cb(E) and Pt(D) ⊂ D for all t ≥ 0, then D is a π-core for
(K,D(K)).

Proof. In order to get the result, we proceed as in [28]. Let ϕ ∈ D(K).
Since D in π-dense in Cb(E), there exists a sequence (ϕn2)n2∈N ⊂ D (for the
sack of simplicity we assume that the sequence has only one index) such that
ϕn2

π→ ϕ as n2 →∞. Set

ϕn1,n2,n3(x) =
1

n3

n3∑
i=1

P i
n1n3

ϕn2(x) (1.5)

for any n1, n2, n3 ∈ N. By Hypothesis, (ϕn1,n2,n3) ⊂ D. Taking into account
Remark 1.7, a straightforward computation shows that for any x ∈ E

lim
n1→∞

lim
n2→∞

lim
n3→∞

ϕn1,n2,n3(x) = lim
n1→∞

lim
n2→∞

n1

∫ 1
n1

0

Ptϕn2(x)dt

= lim
n1→∞

n1

∫ 1
n1

0

Ptϕ(x)dt = ϕ(x).

Moreover,

sup
n1,n2,n3∈N

‖ϕn1,n2,n3‖0 ≤ sup
n2

‖ϕn2‖0 <∞

since ϕn2

π→ ϕ as n2 →∞. Hence,

lim
n1→∞

lim
n2→∞

lim
n3→∞

ϕn1,n2,n3

π
= ϕ.
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Similarly, since D ⊂ D(K) and Theorem 1.9 holds, we have

lim
n3→∞

Kϕn1,n2,n3(x) =n1

∫ 1
n1

0

KPtϕn2(x)dt

=n1

(
P 1
n1

ϕn2(x)− ϕn2(x)
)
.

So we find

lim
n1→∞

lim
n2→∞

lim
n3→∞

Kϕn1,n2,n3(x) = lim
n1→∞

lim
n2→∞

n1

(
P 1
n1

ϕn2(x)− ϕn2(x)
)

= lim
n1→∞

n1

(
P 1
n1

ϕ(x)− ϕ(x)
)

= Kϕ(x), (1.6)

since ϕ ∈ D(K). To conclude the proof, we have to show that these limits
are uniformly bounded with respect to every index. Indeed we have

sup
n3∈N
‖Kϕn1,n2,n3‖ ≤ ‖Kϕn2‖ <∞,

sup
n2∈N

∥∥∥n1

(
P 1
n1

ϕn2 − ϕn2

)∥∥∥
0
≤ 2n1 sup

n2∈N
‖ϕn2‖0 <∞.

Finally, the last limit in (1.6) is uniformly bounded with respect to n1 since
ϕ ∈ D(K).

1.3 The measure equation

Theorem 1.12. Let (Pt)t≥0 be a stochastically continuous Markov semi-
group, as in Definition 1.6, and let (K,D(K)) be its infinitesimal generator
in Cb(E), defined by (1.2). Then, for any µ ∈ M(E) there exists a unique
family of measures {µt, t ≥ 0} ⊂ M(E) fulfilling∫ T

0

|µt|TV (E)dt <∞, T > 0; (1.7)

∫
E

ϕ(x)µt(dx)−
∫
E

ϕ(x)µ(dx) =

∫ t

0

(∫
E

Kϕ(x)µs(dx)

)
ds, (1.8)

for any ϕ ∈ D(K), t ≥ 0, and the solution is given by P ∗t µ, t ≥ 0.

Proof. Let us fix µ ∈M(E). We split the proof into two parts.
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1.3.1 Existence of a solution

By Theorem 1.8, formula (1.1) defines a family {P ∗t µ, ; t ≥ 0} of finite Borel
measures on E. Moreover, ‖P ∗t µ‖(Cb(E))∗ ≤ ‖µ‖(Cb(E))∗ = |µ|TV (E). Hence,
(1.7) follows. Since for any ϕ ∈ Cb(E) it holds

lim
t→0+

∫
E

Ptϕ(x)µ(dx) =

∫
E

ϕ(x)µ(dx),

by the semigroup property of Pt it follows that for any ϕ ∈ Cb(E) the function

R+ → R, t 7→
∫
E

ϕ(x)P ∗t µ(dx) (1.9)

is continuous. Clearly, P ∗0 µ = µ. Now we show that if ϕ ∈ D(K) then the
function (1.9) is differentiable. Indeed, by taking into account (1.2) and that
P ∗t µ ∈ M(E), we can apply the dominated convergence theorem for any
ϕ ∈ D(K) to obtain

d

dt

∫
E

ϕ(x)P ∗t µ(dx) =

= lim
h→0

1

h

(∫
E

Pt+hϕ(x)µ(dx)−
∫
E

Ptϕ(x)µt(dx)

)
= lim

h→0

∫
E

(
Pt+hϕ(x)− Ptϕ(x)

h

)
µ(dx)

= lim
h→0

∫
E

Pt

(
Phϕ− ϕ

h

)
(x)µ(dx)

=

∫
E

lim
h→0

(
Phϕ− ϕ

h

)
(x)P ∗t µ(dx) =

∫
E

Kϕ(x)P ∗t µ(dx).

Then, by arguing as above, the differential of (1.9) is continuous. This clearly
implies that {P ∗t µ, t ≥ 0} is a solution of the measure equation (1.8).

1.3.2 Uniqueness of the solution

Since problem (1.8) is linear, it is enough to take µ = 0. We claim that in
this case µt = 0, ∀t ≥ 0. In order to prove this, let us fix T > 0 and let us
consider the Kolmogorov backward equation{

ut(t, x) +Ku(t, x) = ϕ(x) t ∈ [0, T ], x ∈ E,
u(T, x) = 0,

(1.10)

where ϕ ∈ Cb(E). The meaning of (1.10) is explained by the following
lemma.
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Lemma 1.13. For any T > 0, ϕ ∈ Cb(E) the real valued function

u : [0, T ]× E → R

u(t, x) = −
∫ T−t

0

Psϕ(x)ds, (t, x) ∈ [0, T ]× E. (1.11)

satisfies the following statements

(i) u ∈ Cb([0, T ]× E) 1;

(ii) u(t, ·) ∈ D(K) for any t ∈ [0, T ] and the function [0, T ] × E → R,
(t, x) 7→ Ku(t, x) is continuous and bounded;

(iii) the real valued function [0, T ]×E → R, (t, x) 7→ u(t, x) is differentiable
with respect to t with continuous and bounded differential ut(t, x), and
the function [0, T ]×E → R, (t, x) 7→ ut(t, x) is continuous and bounded;

(iv) for any (t, x) ∈ [0, T ]× E the function u satisfies (1.10).

Proof. For any s, t ∈ [0, T ], s ≤ t we have

u(t, x)− u(s, x) =−
∫ T−t

0

Pτϕ(x)dτ +

∫ T−s

0

Pτϕ(x)dτ

=

∫ T−s

T−t
Pτϕ(x)dτ.

Then
‖u(t, ·)− u(s, ·)‖0 ≤ |t− s|‖ϕ‖0.

(i) is proved. By (vi) of Theorem 1.9, u(t, ·) ∈ D(K) for any t ∈ [0, T ] and
it holds Ku(t, x) = −PT−tϕ(x) + ϕ(x), for any x ∈ E. So (ii) follows (cfr.
Definition 1.6). Now let h ∈ (−t, T − t) and x ∈ E. We have

u(t+ h, x)− u(t, x)

h
+Ku(t, x)− ϕ(x) = (1.12)

=
1

h

∫ T−t

T−t−h
Pτϕ(x)ds− PT−tϕ(x)

Then, since Ptϕ(x) is continuous in t, (1.12) vanishes as h→ 0. This implies
that u(t, x) is differentiable with respect to t and (1.10) holds. Moreover, by
(ii), we have that the map t 7→ ut(t, x) = −Ku(t, x) + ϕ(x) is continuous.
This proves (iii) and (iv). The proof is complete.

1Clearly, Cb([0, T ]× E) is isomorphic to C([0, T ];Cb(E))
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We need the following

Lemma 1.14. Let {µt} be a solution of the measure equation (1.7), (1.8).
Then, for any function u : [0, T ]×E → R satisfying statements (i), (ii), (iii)
of Lemma 1.13 the map

[0, T ]→ R, t 7→
∫
E

u(t, x)µt(dx)

is absolutely continuous and for any t ≥ 0 it holds∫
E

u(t, x)µt(dx)−
∫
E

u(0, x)µ(dx)

=

∫ t

0

(∫
E

(
us(s, x) +Ku(s, x)

)
µs(dx)

)
ds. (1.13)

Proof. We split the proof in several steps.
Step 1: Approximation of u(t, x).
With no loss of generality, we assume T = 1. For any x ∈ E, let us consider
the approximating functions {un(·, x)}n∈N of u(·, x) given by the Bernstein
polynomials (see, for instance, [46], section 0.2). Namely, for any n ∈ N,
x ∈ E we consider the function

[0, T ]→ R, t 7→ un(t, x) =
n∑
k=0

αk,n(t)u
(k
n
, x
)
,

where

αk,n(t) =

(
n

k

)
tk(1− t)n−k.

Since u ∈ C([0, T ];Cb(E)), it is well known that it holds

lim
n→∞

sup
t∈[0,1]

‖un(t, ·)− u(t, ·)‖0 = 0 (1.14)

and
sup
t∈[0,1]

‖un(t, ·)‖0 <∞, n ∈ N.

Then, for any t ∈ [0, 1]
lim
n→∞

un(t, ·) π
= u(t, ·). (1.15)

We also have that for any n ∈ N, t ∈ [0, 1]

un(t, ·) ∈ D(K),
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and that for any x ∈ E the function [0, 1]→ R, t 7→ Kun(t, x) is continuous
(cfr. (ii) of Lemma 1.13). Then, for any x ∈ E it holds

lim
n→∞

sup
t∈[0,1]

|Kun(t, x)−Ku(t, x)| = 0,

sup
t∈[0,1]

‖Kun(t, ·)‖0 ≤ sup
t∈[0,1]

‖Ku(t, ·)‖0 <∞. (1.16)

This clearly implies that for any t ∈ [0, 1]

lim
n→∞

Kun(t, ·) π
= Ku(t, ·). (1.17)

Similarly, since for any x the function t 7→ u(t, x) is differentiable with respect
to t, we also have that for any x ∈ E

lim
n→∞

sup
t∈[0,1]

|unt (t, x)− ut(t, x)| = 0,

sup
t∈[0,1]

‖unt (t, ·)‖0 ≤ sup
t∈[0,1]

‖ut(t, ·)‖0 <∞. (1.18)

Hence, for any t ∈ [0, 1]

lim
n→∞

unt (t, ·) π
= ut(t, ·). (1.19)

Step 2: differential of
∫
E
un(t, x)µt(dx)

For any n ∈ N, k ≤ n and for almost all t ∈ [0, 1] we have

d

dt

(∫
E

αk,n(t)u
(k
n
, x
)
µt(dx)

)
=

=
d

dt

(
αk,n(t)

∫
E

u
(k
n
, x
)
µt(dx)

)
= α′k,n(t)

∫
E

u
(k
n
, x
)
µt(dx) + αk,n(t)

∫
E

Ku
(k
n
, x
)
µt(dx).

=

∫
E

(
α′k,n(t)u

(k
n
, x
)

+ αk,n(t)Ku
(k
n
, x
))

µt(dx).

Note that the last terms belong to L1([0, 1]). This implies∫
E

un(t, x)µt(dx)−
∫
E

un(0, x)µ(dx)

=

∫ t

0

(∫
E

(
uns (s, x) +Kun(s, x)

)
µs(dx)

)
ds,
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for any n ∈ N.
Step 3: Conclusion
Consider the functions

f : [0, 1]→ R, f(t) =

∫
E

u(t, x)µt(dx)

and

fn : [0, 1]→ R, fn(t) =

∫
E

un(t, x)µt(dx).

By 1.14 we have∣∣∣∣∫
E

(
un(t, x)− u(t, x)

)
µt(dx)

∣∣∣∣ ≤ sup
t∈[0,1]

‖un(t, ·)− u(t, ·)‖0|µt|TV (E).

Since (1.7) and (1.14) hold, it follows that the sequence (fn)n∈N converges
to f in L1([0, 1]), as n→∞. We also have, by Step 2, that fn is absolutely
continuous and hence differentiable for almost all t ∈ [0, 1], with differential
in L1([0, 1]) given by

f ′n(t) =

∫
E

(
unt (t, x) +Kun(t, x)

)
µt(dx),

for almost all t ∈ [0, 1]. By (1.17), (1.19) we have

lim
n→∞

f ′n(t) = lim
n→∞

∫
E

(
unt (t, x) +Kun(t, x)

)
µt(dx)

=

∫
E

(
ut(t, x) +Ku(t, x)

)
µt(dx), (1.20)

for all t ∈ [0, T ]. Moreover, it holds

sup
n∈N
|f ′n(t)| ≤

(
sup
t∈[0,1]

‖u(t, ·)‖0 + sup
t∈[0,1]

‖Ku(t, ·)‖
)
|µt|TV (E).

Hence, still by (1.16) and (1.18), there exists a constant c > 0 such that
supn |f ′n(t)| ≤ c|µt|TV (E). By taking into account (1.7), it follows that the
limit in (1.20) holds in L1([0, 1]). Let us denote by g(t) the right-hand side
of (1.20). We find, for any a, b ∈ [0, 1],

f(b)− f(a) = lim
n→∞

(
fn(b)− fn(a)

)
= lim

n→∞

∫ b

a

f ′n(t)dt =

∫ b

a

lim
n→∞

f ′n(t)dt =

∫ b

a

g(t)dt.

Therefore, f is absolutely continuous, and f ′(t) = g(t) for almost all t ∈ [0, 1].
Lemma 1.14 is proved.
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Now let ϕ ∈ Cb(E) and let u be the function defined in (1.11). Then u
satisfies statements (i)–(iv) of Lemma 1.13. Hence, by Lemma 1.14 it follows
that the function [0, T ] → R, t →

∫
E
u(t, x)µt(dx) is absolutely continuous,

with differential

d

dt

∫
E

u(t, x)µt(dx) =

∫
E

(
ut(t, x) +Ku(t, x)

)
µt(dx)

=

∫
E

ϕ(x)µt(dx),

for almost all t ∈ [0, T ]. So, we can write

0 =

∫
E

u(T, x)µT (dx)−
∫
E

u(0, x)µ(dx) =

=

∫ T

0

(
d

dt

∫
E

u(t, x)µt(dx)

)
dt

=

∫ T

0

(∫
E

ϕ(x)µt(dx)

)
dt.

for all ϕ ∈ Cb(E). By the arbitrariness of T , it follows that for any t ≥ 0 it
holds ∫ t

0

(∫
E

ϕ(x)µs(dx)

)
ds = 0.

In particular, the above identity holds true for ϕ = Kψ, for any ψ ∈ D(K).
Then, taking into account (1.8), it follows that for any ψ ∈ D(K), t ≥ 0 it
holds ∫

E

ψ(x)µt(dx) = 0. (1.21)

Finally, since D(K) is π-dense in Cb(E) (cfr. (v) of Theorem 1.9), (1.21)
holds for any ψ ∈ Cb(E), t ≥ 0 and consequently µt = 0 for any t ≥ 0. The
proof is now complete.



Chapter 2

Measure equations for
Ornstein-Uhlenbeck operators

2.1 Introduction and main results

We denote by H a separable Hilbert space with norm | · | and inner product
〈·, ·〉 and we consider the stochastic differential equation in H

dX(t) =AX(t)dt+BdW (t), t ≥ 0

X(0) = x ∈ H,
(2.1)

where A,B, {W (t)}t≥0 fulfil Hypothesis 0.1. In the following, we set Q =
BB∗. For any x ∈ h, equation (2.1) has a unique mild solution X(t, x),
t ≥ 0, that is a square integrable random process adapted to the filtration
(Ft)t≥0, given by

X(t, x) = etAx+WA(t). (2.2)

It is well known that the random variable X(t, x) has Gaussian law of mean
etAx and covariance operator Qt (cfr. Hypothesis 0.1). Hence, the corre-
sponding transition semigroup (Rt)t≥0, called the Ornstein-Uhlenbeck (in the
following, OU) semigroup enjoys the representation

Rtϕ(x) =

∫
H

ϕ(etAx+ y)NQt(dy), ϕ ∈ Cb(H), t ≥ 0, x ∈ H, (2.3)

where NQt is the Gaussian measure on H of zero mean and covariance ope-
rator Qt (see [22]). Of course, in the above formula we mean NQ0 = δ0. Also,
the OU semigroup (Rt)t≥0 is a stochastically continuous Markov semigroup

29
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in Cb(H). Moreover, it is well known that for any t ≥ 0, h ∈ H it holds1

Rte
i〈·,h〉(x) = ei〈e

tAx,h〉− 1
2
〈Qth,h〉, h ∈ H. (2.4)

We denote by (L,D(L)) the infinitesimal generator

D(L) =

{
ϕ ∈ Cb(H) : ∃g ∈ Cb(H), lim

t→0+

Ptϕ(x)− ϕ(x)

t
= g(x),

∀x ∈ H, sup
t∈(0,1)

∥∥∥∥Ptϕ− ϕt

∥∥∥∥
0

<∞
}

Lϕ(x) = lim
t→0+

Ptϕ(x)− ϕ(x)

t
, ϕ ∈ D(L), x ∈ H.

(2.5)

By Theorem 1.12 follows

Theorem 2.1. Let (Rt)t≥0 be the Ornstein-Uhlenbeck semigroup (2.3), and
let (L,D(L)) be its infinitesimal generator. Then, for any µ ∈ M(H) there
exists a unique family of measures {µt, t ≥ 0} ⊂ M(H) fulfilling∫ T

0

|µt|TV (H)dt <∞, T > 0; (2.6)

∫
E

ϕ(x)µt(dx)−
∫
H

ϕ(x)µ(dx) =

∫ t

0

(∫
H

Lϕ(x)µs(dx)

)
ds, (2.7)

for any ϕ ∈ D(L), t ≥ 0. Moreover, µt = R∗tµ, t ≥ 0.

We are interested in extending the previous results to the Kolmogorov
operator associated to equation (2.1), which looks like

1

2
Tr[QD2ϕ(x)] + 〈x,A∗Dϕ(x)〉, x ∈ H.

To this purpose, we need some preliminary results. It will be helpful the
following result about approximation of Cb(H)-functions.

Proposition 2.2. We recall that E(H) is the linear span of the real and
imaginary part of the functions

H → C, x 7→ ei〈x,h〉,

1Rt acts on reals functions, but it can be trivially extended to complex ones
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where h ∈ H. Then E(H) is π-dense in Cb(H) and for any ϕ ∈ Cb(H) there
exists a two-indexed sequence (ϕn1,n2) ⊂ E(H) such that

lim
n1→∞

lim
n2→∞

ϕn1,n2(x) = ϕ(x), x ∈ H (2.8)

sup
n1,n2

‖ϕn1,n2‖0 ≤ ‖ϕ‖0. (2.9)

Moreover, if ϕ ∈ C1
b (H) we can choose the sequence (ϕn1,n2) ⊂ E(H) in such

a way that (2.8), (2.9) hold and for any h ∈ H

lim
n1→∞

lim
n2→∞

〈Dϕn1,n2(x), h〉 = 〈Dϕ(x), h〉, x ∈ H

sup
n1,n2

‖Dϕn1,n2‖Cb(H;H) ≤ ‖Dϕ‖Cb(H;H). (2.10)

Proof. (2.8) and (2.9) are proved in[26], Proposition 1.2. (2.10) follows by
the well known properties of the Fourier approximation with Fejér kernels of
differentiable functions (see, for instance, [33]).

We are going to improve this result. We recall that the set EA(H) has
been introduced in Section 1.1.

Proposition 2.3. For any ϕ ∈ Cb(H) there exists a three-indexed sequence
(ϕn1,n2,n3) ⊂ EA(H) such that

lim
n1→∞

lim
n2→∞

lim
n3→∞

ϕn1,n2,n3

π
= ϕ.

Moreover, if ϕ ∈ C1
b (H), we have that for any h ∈ H it holds

lim
n1→∞

lim
n2→∞

lim
n3→∞

〈Dϕn1,n2,n3 , h〉
π
= 〈Dϕ, h〉.

Proof. Let ϕ ∈ Cb(H) and let us consider a two-indexed sequence (ϕn1,n2) ⊂
E(H) as in Proposition 2.2. Let us define the sequence (ϕn1,n2,n3) by setting

ϕn1,n2,n3(x) = ϕn1,n2(n3R(n3, A
∗)x), x ∈ H, n3 ∈ N,

where R(n3, A
∗) is the resolvent operator of A∗ at n3. Clearly, ϕn1,n2,n3 ∈

EA(H). Taking into account that nR(n,A∗)x → x as n → ∞ for all x ∈ H,
and that for some c > 0 it holds |nR(n,A∗)x| ≤ c|x| for any x ∈ H,n ≥ 1, it
follows that ϕn1,n2,n3

π→ ϕn1,n2 as n3 →∞. If f ∈ C1
b (H), we observe that

〈D(f(nR(n,A∗)·)(x), h〉 = 〈Df(nR(n,A∗)x), nR(n,A)h〉.

Therefore, be arguing as above, we find 〈D(f(nR(n,A∗)·), h〉 π→ 〈Df(·), h〉
as n→∞ . Hence the result follows.
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Example 2.4. If A 6= 0 we have D(L) ∩ EA(H) = {constant functions}. In
fact for any x ∈ H, h ∈ D(A∗) we have

lim
t→0+

Rte
i〈h,x〉 − ei〈h,x〉

t
=

[
−1

2
〈Qh, h〉+ i〈A∗h, x〉

]
ei〈h,x〉,

which is not bounded when h 6= 0 and A 6= 0.

Let IA(H) be the linear span of the real and imaginary part of the func-
tions

H → C, x 7→
∫ a

0

ei〈e
sAx,h〉− 1

2
〈Qsh,h〉ds : a > 0, h ∈ D(A∗),

where D(A∗) is the domain of the adjoint operator of A.

Proposition 2.5. The set IA(H) is π-dense in Cb(H), it is stable for Rt

and IA(H) ⊂ D(L). Moreover, it is a π-core for (L,D(L)) and for any
ϕ ∈ IA(H) it holds

Lϕ(x) =
1

2
Tr[QD2ϕ(x)] + 〈x,A∗Dϕ(x)〉, x ∈ H. (2.11)

Proof. Let h ∈ D(A∗) and a > 0. We have

lim
a→0+

1

a

∫ a

0

ei〈e
sAx,h〉− 1

2
〈Qsh,h〉ds = ei〈x,h〉, x ∈ H

and

sup
a>0

∣∣∣∣1a
∫ a

0

ei〈e
sAx,h〉− 1

2
〈Qsh,h〉ds− ei〈x,h〉

∣∣∣∣ ≤ 2.

Then EA(H) ⊂ IA(H)
π
. Consequently, in view of Proposition 2.3, IA(H) is

π-dense in Cb(H). Now let t > 0. By taking into account (2.4), we can apply
the Fubini theorem to find

Rt

(∫ a

0

ei〈e
sA·,h〉− 1

2
〈Qsh,h〉ds

)
(x) =

=

∫ a

0

ei〈e
(t+s)Ax,h〉− 1

2
〈QtesA

∗
h,esA

∗
h〉− 1

2
〈Qsh,h〉ds =

=

∫ a

0

ei〈e
(t+s)Ax,h〉− 1

2
〈Qt+sh,h〉ds =

=

∫ a+t

0

ei〈e
sAx,h〉− 1

2
〈Qsh,h〉ds−

∫ t

0

ei〈e
sAx,h〉− 1

2
〈Qsh,h〉ds, (2.12)
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since 〈Qte
sA∗h, esA

∗
h〉 = 〈esAQte

sA∗h, h〉 = 〈Qt+sh, h〉 − 〈Qsh, h〉. Then we
have Rt(IA(H)) ⊂ IA(H). Now we prove that IA(H) ⊂ D(L). Let

ϕ(x) =

∫ a

0

ei〈e
sAx,h〉− 1

2
〈Qsh,h〉ds. (2.13)

By (2.12) we have that

Rtϕ(x)− ϕ(x) =

=

∫ a+t

a

ei〈e
sAx,h〉− 1

2
〈Qsh,h〉ds−

∫ t

0

ei〈e
sAx,h〉− 1

2
〈Qsh,h〉ds.

This implies

lim
t→0+

Rtϕ(x)− ϕ(x)

t
= ei〈e

aAx,h〉− 1
2
〈Qah,h〉 − ei〈x,h〉 (2.14)

and
|Rtϕ(x)− ϕ(x)| ≤ 2t.

Then ϕ ∈ D(L) and by Proposition 1.11 follows that IA(H) is a π-core for
(L,D(L)). In order to prove (2.11), it is sufficient to take ϕ as in (2.13). By
a straightforward computation we find that for any x ∈ H it holds

1

2
Tr[QD2ϕ(x)] + 〈x,A∗Dϕ(x)〉

=

∫ a

0

(
i〈A∗esA∗h, x〉 − 1

2
〈esAQesA∗h, h〉

)
ei〈e

sAx,h〉− 1
2
〈Qsh,h〉ds

=

∫ a

0

∂

∂s
ei〈e

sAx,h〉− 1
2
〈Qsh,h〉ds

= ei〈e
aAx,h〉− 1

2
〈Qah,h〉 − ei〈x,h〉,

cfr. Example 2.4. By taking into account (2.14), it follows that (2.11) holds.

We are now able to prove the main result of this chapter

Theorem 2.6. Let (Rt)t≥0 be the Ornstein-Uhlenbeck semigroup (2.3) and
let L0 : IA(H) ⊂ Cb(H)→ Cb(H) be the differential operator

L0ϕ(x) =
1

2
Tr[QD2ϕ(x)] + 〈x,A∗Dϕ(x)〉, ϕ ∈ IA(H)

Then, for any µ ∈ M(H) there exists a unique family of measures {µt, t ≥
0} ⊂ M(H) fulfilling (2.6) and the measure equation∫

E

ϕ(x)µt(dx)−
∫
H

ϕ(x)µ(dx) =

∫ t

0

(∫
H

L0ϕ(x)µs(dx)

)
ds, (2.15)

for any ϕ ∈ IA(H), t ≥ 0. Moreover, µt = R∗tµ, t ≥ 0.
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Proof. By Proposition 2.5 we have that IA(H) is a π-core for (L,D(L)) and
that Lϕ = L0ϕ, for any ϕ ∈ IA(H). So it is easy to see that R∗tµ, t ≥ 0 is
a solution of the measure equation (2.15). Hence, if ϕ ∈ D(L) there exists a
sequence2 (ϕn)n∈N ⊂ IA(H) such that

lim
n→∞

ϕn
π
= ϕ, lim

n→∞
L0ϕn

π
= Kϕ.

For any t ≥ 0 we find∫
H

ϕ(x)µt(dx)−
∫
H

ϕ(x)µ(dx) = lim
n→∞

(∫
H

ϕn(x)µt(dx)−
∫
H

ϕn(x)µ(dx)

)
= lim

n→∞

∫ t

0

(∫
H

K0ϕn(x)µs(dx)

)
ds.

Now observe that for any s ≥ 0 it holds

lim
n→∞

∫
H

L0ϕn(x)µs(dx) =

∫
H

Lϕ(x)µs(dx)

and ∣∣∣∣∫
H

L0ϕn(x)µs(dx)

∣∣∣∣ ≤ sup
n∈N
‖L0ϕn‖0|µs|TV (H).

Hence, by taking into account (2.6) and that supn∈N ‖L0ϕn‖0 < ∞, we can
apply the dominated convergence theorem to obtain

lim
n→∞

∫ t

0

(∫
H

L0ϕn(x)µs(dx)

)
ds =

∫ t

0

(∫
H

Lϕ(x)µs(dx)

)
ds

So, µt,, t ≥ 0 is also a solution of the measure equation (2.6), (2.7). Since by
Theorem 2.1 such a solution is unique, it follows that the measure equation
(2.6), (2.15) has a unique solution, defined by R∗tµ, t ≥ 0.

2.2 Absolute continuity with respect to the

invariant measure

We consider the case when the semigroup Rt has a unique invariant measure
µ. The aim of this section is to study the absolute continuity of the family
(µt)t≥0, solution of (2.6), (2.7), with µ0 = ρµ, where ρ ∈ L1(H,µ).

2For simplicity we assume that this sequence has only one index
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We recall that a necessary and sufficient condition that guarantees exis-
tence of an invariant measure is that

sup
t≥0

Tr[Qt] <∞,

see [22], Theorem 11.7. For simplicity, in this section we shall assume that
Hypothesis 0.1 holds and that ω < 0. These conditions imply that the
operator

Q∞ =

∫ ∞
0

etAQetA
∗
dt

is well defined and of trace class (see, for instance, [22]). We also have that
µ = NQ∞ is the unique invariant measure for the semigroup (Rt)t≥0 and that

lim
t→+∞

Rtϕ(x) =

∫
H

ϕ(x)µ(dx) = 〈ϕ, µ〉,

for all ϕ ∈ Cb(H), x ∈ H. The last statement means that the dynamical
system (H,B(H), µ, (Rt)t≥0) is strongly mixing.

For p ≥ 1, we consider the functional space Lp(H;µ). For any ϕ ∈ Cb(H)
we have ∫

H

|Rtϕ(x)|pµ(dx) ≤
∫
H

Rt|ϕ|p(x)µ(dx) =

=

∫
H

|ϕ(x)|pµ(dx),

since µ is the invariant for Rt. This allows us to extend the Ornstein-
Uhlenbeck semigroup (Rt)t≥0 to a strongly continuous semigroup of contrac-
tions, still denoted it by (Rt)t≥0, on Lp(H;µ). When p = 2, we shall denote
the scalar product of the Hilber space L2(H;µ) by

〈ϕ, ψ〉L2(H;µ), ϕ, ψ ∈ L2(H;µ).

2.3 The adjoint of Rt in L2(H ;µ)

By Theorem 2.1, we have µt = R∗tµ0, that is∫
H

ϕ(x)µt(dx) =

∫
H

Rtϕ(x)µ0(dx) =

∫
H

Rtϕ(x)ρ(x)µ(dx),

for any ϕ ∈ Cb(H), t ≥ 0. Then, it is natural to study the adjoint of Rt in
the space L2(H,µ).
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Following Chojnowska-Michalik and Goldys (see [10]), we shall give an
explicit representation of the adjoint of Rt in the Hilbert space L2(H;µ), by
using the so called second quantization operator. We set

Lµ(H) = {T ∈ L(H) : ∃S ∈ L(H) such that T = SQ1/2
∞ }.

It is easy to see that T ∈ Lµ(H) if and only if

T |
Q

1/2
∞ (H)

∈ L((Q1/2
∞ , H);H),

where (Q
1/2
∞ , H) is the Banach space endowed with the norm ‖x‖

Q
1/2
∞ (H)

=

|Q1/2
∞ x|. Consequently, since Q

1/2
∞ (H) is dense in H, the space Lµ is dense in

L(H) with respect to the pointwise convergence.
Let us define a linear mapping

F : Lµ(H)→ L2(H,µ;H)

by setting
F (T )x = Q∞Sx,

where S ∈ L(H) is such that T = SQ
1/2
∞ . It is easy to see that∫

H

|Fx|2µ(dx) = Tr[Q1/2
∞ TT ∗Q1/2

∞ ].

Then F is extendible by density to all L(H). We shall still denote this
extension by F , and we shall write

F (T )x = Q1/2
∞ TQ−1/2

∞ x.

Clearly, F is not, in general, a bounded linear operator. Let us define, for
any contraction T ∈ L(H), the linear operator

Γ : {T ∈ L(H) : ‖T‖L(H) ≤ 1} → L(Lp(H,µ))

by setting

(Γ(T )ϕ) (x) =

∫
H

ϕ(Q1/2
∞ T ∗Q−1/2

∞ x+Q1/2
∞
√
I − T ∗TQ−1/2

∞ y)µ(dy),

for all ϕ ∈ Lp(H;µ). It is easy to check that Γ(T ) is still a contraction
and that (Γ(T ))∗ = Γ(T ∗). The operator Γ is called the second quantization
operator. For details we refer to [10,23].

We have the next result, proved in [10].
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Theorem 2.7. Assume that for any t > 0 it holds

etA(Q1/2
∞ (H)) ⊂ Q1/2

∞ (H). (2.16)

Then, for all t > 0 and ϕ ∈ L2(H;µ) we have

R∗tϕ(x) =
(
Γ(Q−1/2

∞ etAQ1/2
∞ )ϕ

)
(x).

Remark 2.8. Condition (2.16) is weaker than to require that the OU semi-
group Rt enjoys the strong Feller property. We say that a semigroup (Pt)t≥0

on Bb(H), the Banach space of all bounded and Borel functions ϕ : H → R,
enjoys the strong Feller property when it holds

Ptϕ ∈ Cb(H)

for any t > 0, ∀ϕ ∈ Bb(H). This property is equivalent to require that for
all t > 0 it holds

etA(H) ⊂ Q
1/2
t (H), (2.17)

see [22], Theorem 9.19.

We recall that in general the adjoint of (Rt)t≥0 in L2(H;µ) is not an
Ornstein-Uhlenbeck semigroup. However, the next proposition gives a suffi-
cient condition in order to have this property.

Proposition 2.9. Assume that Q∞(H) ⊂ D(A∗) and that the operator

A1x = Q∞A
∗Q−1
∞ , x ∈ D(A1) = {x ∈ Q∞(H) : Q−1

∞ x ∈ D(A∗)}

generates a C0-semigroup given by etA1 = Q∞e
tA∗Q−1

∞ . Then the adjoint of
Rt in L2(H;µ) is the operator R∗t defined by

R∗tϕ(x) =

∫
H

ϕ(y)NetA1 ,Q1,t
(dy),

where

Q1,tx =

∫ t

0

esA1QesA
∗
1xds, x ∈ H, t ≥ 0.

Proof. See [25], Proposition 10.1.9.



38 Measure equations for Ornstein-Uhlenbeck operators

2.3.1 Absolute continuity of µt

Theorem 2.10. Let µ0(dx) = ρ(x)µ(dx), where ρ ∈ L1(H;µ), and let the
family of measure {µt, t ≥ 0} be the solution of (2.6), (2.7). If (2.17) holds,
then for all t ≥ 0 the measure µt is absolutely continuous with respect to µ
and it satisfies

µt(dx) =
(
Γ(Q−1/2

∞ etAQ1/2
∞ )ρ

)
(x)µ(dx).

Proof. Let {ρn}n∈N be a sequence in L2(H,µ) that converges to ρ in L1(H;µ).
Since for all t ≥ 0 we have Rt(Cb(H)) ⊂ Cb(H) ⊂ L2(H;µ), it holds∫

H

|Rtϕ(x)(ρn(x)− ρ(x))|µ(dx) ≤ ‖ϕ‖0
∫
H

|ρn(x)− ρ(x)|µ(dx), (2.18)

for all ϕ ∈ Cb(H), n ∈ N. Clearly, this implies

lim
n→∞
〈Rtϕ, ρn〉L2(H;µ) = 〈ϕ, µt〉,

for all ϕ ∈ Cb(H). Now let us set S(t) = Q
−1/2
∞ etAQ

1/2
∞ . By Theorem 2.7 we

have
〈Rtψ1, ψ2〉L2(H;µ) = 〈ψ1,Γ(S(t))ψ2〉L2(H;µ), (2.19)

for any ψ1, ψ2 ∈ L2(H;µ). Since Γ(S(t)) ∈ L(L1(H;µ)), by a computation
as above we obtain

lim
n→∞
〈ϕ,Γ(S(t))ρn〉L2(H,µ) =

∫
H

ϕ(x) (Γ(S(t))ρ) (x)µ(dx),

for any ϕ ∈ Cb(H). Finally, taking into account (2.18), (2.19) for any ϕ ∈
Cb(H) it follows

〈ϕ, µt〉 = 〈Rtϕ, µ0〉 =

= lim
n→∞
〈Rtϕ, ρn〉L2(H;µ) = lim

n→∞
〈ϕ,Γ(S(t))ρn〉L2(H;µ) =

=

∫
H

ϕ(x) (Γ(S(t))ρ) (x)µ(dx).

This concludes the proof.

2.3.2 The case of a symmetric Ornstein-Uhlenbeck semi-
group

A particular class of Ornstein-Uhlenbeck processes are the so called reversible
Ornstein-Uhlenbeck processes, which arise in the theory of Interacting Particle
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System and other areas of Mathematical Physics. We are interested to find
necessary and sufficient conditions on A and Q, in order to have

〈Rtϕ, ψ〉L2(H;µ) = 〈ϕ,Rtψ〉L2(H;µ),

where µ is the invariant measure for Rt and ϕ, ψ ∈ L2(H;µ). This problem
was solved in [47] in the case Q = I. A characterization for general sym-
metric Ornstein-Uhlenbeck semigroups of the form (2.3) has been given by
Chojnowska-Michalik and Goldys in [11] as follows

Theorem 2.11. The following conditions are equivalent

(i) The semigroup (Rt)t≥0 is symmetric in L2(H;µ);

(ii) if x ∈ D(A∗) then Qx ∈ D(A) and AQx = QA∗x;

(iii) etAQ = QetA
∗

for all t ≥ 0.

See Theorem 2.7 in [11].

Corollary 2.12. Let (Rt)t≥0 be symmetric. Then the following holds

(i) Q∞(H) ⊂ D(A) and the operator AQ∞ = −1
2
Q is bounded, symmetric

and negative;

(ii) Q(H) ⊂ A(H);

(iii) if kerA = {0}, then

Q∞ = −1

2
A−1Q = −1

2
Q(A∗)−1.

See Corollary 2.5 in [11].
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Chapter 3

Bounded perturbations of OU
operators

3.1 Introduction and main results

We consider here the stochastic differential equation in HdX(t) =
(
AX(t) + F (X(t))

)
dt+BdW (t), t ≥ 0

X(0) = x ∈ H,
(3.1)

where A,B,W are as in Hypothesis 0.1 and

Hypothesis 3.1. F : H → H is Lipschitz continuous and bounded.

Under Hypothesis 0.1, 3.1 equation (3.1) has a unique mild solution

X(t, x) = etAx+

∫ t

0

e(t−s)ABdW (s) +

∫ t

0

e(t−s)AF (X(s, x))ds, (3.2)

(see, for instance, [22]). The transition semigroup (Pt)t≥0 in Cb(H) associated
to equation (3.1) is defined by setting

Ptϕ(x) = E
[
ϕ(X(t, x))

]
, ϕ ∈ Cb(H), t ≥ 0, x ∈ H. (3.3)

Since X(t, x) is continuous in mean square, as easily checked the semigroup
(Pt)t≥0 is a stochastically continuous Markov semigroup (cfr. Proposition
3.2). This allows us to define the infinitesimal generator (K,D(K)) of (Pt)t≥0

41
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as in (6), by setting

D(K) =

{
ϕ ∈ Cb(H) : ∃g ∈ Cb(H), lim

t→0+

Ptϕ(x)− ϕ(x)

t
= g(x),

∀x ∈ H, sup
t∈(0,1)

∥∥∥∥Ptϕ− ϕt

∥∥∥∥
0

<∞
}

Kϕ(x) = lim
t→0+

Ptϕ(x)− ϕ(x)

t
, ϕ ∈ D(K), x ∈ H.

(3.4)

3.2 The transition semigroup and its infinite-

simal generator

We begin with showing that the transition semigroup (Pt)t≥0 in (3.3) is a
stochastically continuous Markov semigroup in Cb(H).

Proposition 3.2. Under Hypothesis 0.1, 3.1 the transition semigroup
(Pt)t≥0 defined in (3.3) is a stochastically continuous Markov semigroup in
Cb(H).

Proof. The proof of the fact that (Pt)t≥0 maps Cb(H) into Cb(H) and that
it is a semigroup of operators may be found in [26], Proposition 3.9. We
also have Ptϕ(x) =

∫
H
ϕ(y)πt(x, dy), where πt(x, ·) is the probability Borel

measure on H defined by πt(x,Γ) = P(X(t, x) ∈ Γ), ∀Γ ∈ B(H). Hence, the
semigroup (Pt)t≥0 is Markovian. Finally, since X(t, x) fulfills (3.2), it follows
easily that for any ϕ ∈ Cb(H), x ∈ H the function H → R, t → Ptϕ(x) is
continuous.

3.2.1 Comparison with the OU operator

According to Chapter 2, we consider the OU semigroup (Rt)t≥0 under Hy-
pothesis 0.1 given by formula (2.3) and its infinitesimal generator (L,D(L)),
given by (2.5).

Proposition 3.3. Under Hypothesis 0.1, 3.1 let (L,D(L)) be the infinite-
simal generator of the OU semigroup (Rt)t≥0, and let (K,D(K)) be the infi-
nitesimal generator of the semigroup (Pt)t≥0 in Cb(H).

Then D(K) ∩ C1
b (H) = D(L) ∩ C1

b (H) and for any ϕ ∈ D(L) ∩ C1
b (H)

we have Kϕ = Lϕ+ 〈Dϕ,F 〉.
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Proof. Let X(t, x) be the solution of equation (3.2) and let us set

ZA(t, x) = etAx+

∫ t

0

e(t−s)AQ1/2dW (s).

Let ϕ ∈ D(L) ∩ C1
b (H). By taking into account that

X(t, x) = ZA(t, x) +

∫ t

0

e(t−s)AF (X(t, x))ds,

by the Taylor formula we have that P-a.s. it holds

ϕ(ZA(t, x)) = ϕ(ZA(t, x))− ϕ(X(t, x)) + ϕ(X(t, x))

= ϕ(X(t, x))−
∫ 1

0

〈
Dϕ(ξZA(t, x) + (1− ξ)X(t, x)),

∫ t

0

e(t−s)AF (X(t, x))ds

〉
dξ.

Then we have

Rtϕ(x)− ϕ(x) = E
[
ϕ(ZA(t, x))

]
− ϕ(x) = Ptϕ(x)− ϕ(x)

−E
[∫ 1

0

〈
Dϕ(ξZA(t, x) + (1− ξ)X(t, x)),

∫ t

0

e(t−s)AF (X(t, x))ds

〉
dξ

]
.

Since ϕ ⊂ D(L) ∩ C1
b (H), it follows easily that for any x ∈ H

lim
t→0+

Ptϕ(x)− ϕ(x)

t
= Lϕ(x) + 〈Dϕ(x), F (x)〉

and

sup
t∈(0,1]

∥∥∥∥Ptϕ− ϕt

∥∥∥∥
0

≤ sup
t∈(0,1]

∥∥∥∥Rtϕ− ϕ
t

∥∥∥∥
0

+ ‖Dϕ‖Cb(H;L(H))‖F‖Cb(H;H) <∞,

that implies ϕ ∈ D(K) and Kϕ = Lϕ + 〈Dϕ,F 〉. The opposite inclusion
follows by interchanging the role of Rt and Pt in the Taylor formula.

3.2.2 The Kolmogorov operator

We consider the Kolmogorov operator associated to equation 3.1

K0ϕ(x) =
1

2
Tr
[
QD2ϕ(x)

]
+ 〈x,A∗Dϕ(x)〉+ 〈Dϕ(x), F (x)〉, (3.5)

where x ∈ H, ϕ ∈ IA(H) (the space IA(H) has been introduced in the
previous chapter).
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Theorem 3.4. The operator (K,D(K)) is an extension of K0, and for any
ϕ ∈ IA(H) we have Kϕ = K0ϕ.

Proof. Note that IA(H) ⊂ C1
b (H). Since by Proposition 2.5 we have IA(H) ⊂

D(L), by Proposition 3.3 we have IA(H) ⊂ D(K) and Kϕ = Lϕ+ 〈Dϕ,F 〉,
for any ϕ ∈ IA(H). Finally, by taking into account (2.11), it follows that
Kϕ = K0ϕ holds for any ϕ ∈ IA(H).

3.3 A π-core for (K,D(K))

We now prove that IA(H) is a π-core for K. We need the following approx-
imation result

Lemma 3.5. Under the hypothesis of Proposition 3.3, let ϕ ∈ D(L)∩C1
b (H).

Then there exists m ∈ N and an m-indexed sequence (ϕn1,...,nm) ⊂ IA(H) such
that

lim
n1→∞

· · · lim
nm→∞

ϕn1,...,nm
π
= ϕ, (3.6)

lim
n1→∞

· · · lim
nm→∞

1

2
Tr
[
QD2ϕn1,...,nm

]
+ 〈·, A∗Dϕn1,...,nm〉

π
= Lϕ, (3.7)

and for any h ∈ H

lim
n1→∞

· · · lim
nm→∞

〈Dϕn1,...,nm , h〉
π
= 〈Dϕ, h〉. (3.8)

Proof. We observe that the results of Proposition 2.3 also holds by approx-
imations with functions in IA(H). Indeed, let (ϕn1,n2,n3) ⊂ EA(H) as in
Proposition 2.3. By setting, for any n1, n2, n3, n4 ∈ N

ϕn1,n2,n3,n4(x) = n4

∫ 1
n4

0

Rtϕn1,n2,n3(x)dt

we have, according to (2.4), that ϕn1,n2,n3,n4 ∈ IA(H). Clearly,

lim
n1→∞

· · · lim
n4→∞

ϕn1,n2,n3,n4

π
= ϕ.

Moreover, since D(Rtf) = etA
∗
Rt(Dϕ) (cfr., e.g., [25], Proposition 6.2.9), we

find that for any h ∈ H it holds

〈Dϕn1,n2,n3,n4(x), h〉 = n4

∫ 1
n4

0

Rt

(
〈Dϕn1,n2,n3(·), etAh〉

)
(x)dt.

Hence,
lim
n1→∞

· · · lim
n4→∞

〈Dϕn1,n2,n3,n4 , h〉
π
= 〈Dϕ, h〉.
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We now construct the desired approximation for ϕ ∈ D(L)∩C1
b (H). Let

ϕ ∈ D(L) ∩ C1
b (H) and (ϕn2) ⊂ IA(H) as above (we denote this sequence

with one index to avoid heavy notations). By setting (ϕn1,n2,n3) as in (1.5)
with Rt instead of Pt, we have that (3.6), (3.7) hold, by the same argument
of the proof of Proposition 1.11.

We now observe that for any n1, n2, n3 ∈ N, the function ϕn1,n2,n3 is
differentiable in every x ∈ H along any direction h ∈ H, with differential

〈Dϕn1,n2,n3(x), h〉 = ϕn1,n2,n3(x) =
1

n3

n3∑
i=1

R i
n1n3

(
〈Dϕn2(·), e

i
n1n3

A
h〉
)
(x)

Moreover,

sup
n1,n2,n3∈N

‖〈Dϕn1,n2,n3 , h〉‖0 ≤ sup
n2

‖Dϕn2‖Cb(H;H) sup
0≤t≤1

‖etA‖L(H)|h| <∞.

Now by arguing as for Proposition 1.11, yields (3.8).

3.3.1 The case F ∈ C2
b (H;H)

The following proposition is proved in [26], section 3.3.

Proposition 3.6. Let us assume Hypothesis 0.1, 3.1 and that F ∈ C2
b (H;H),

that is F : H → H is twice differentiable with bounded differentials. Then
the semigroup (Pt)t≥0 defined in (3.3) maps C1

b (H) into C1
b (H), and for any

f ∈ C1
b (H), h ∈ H we have

〈DPtf(x), h〉 = E
[
〈Df(X(t, x)), ηh(t, x)〉

]
,

where ηh(t, x) is the mild solution of the differential equation with random
coefficients in H

d

dt
ηh(t, x) = Aηh(t, x) + 〈DF (X(t, x)), ηh(t, x)〉, t > 0,

ηh(0, x) = h.

Corollary 3.7. Under the hypothesis of Proposition 3.6, let (K,D(K)) be
the infinitesimal generator of (Pt)t≥0. Then, for any λ > 0, ω + M‖DF‖0,
the resolvent R(λ,K) of K at λ maps C1

b (H) into C1
b (H) and it holds

‖DR(λ,K)f‖Cb(H;H) ≤
M‖Df‖Cb(H;H)

λ− (ω +M‖DF‖Cb(H;L(H)))
, f ∈ C1

b (H). (3.9)
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Proof. Let f ∈ C1
b (H). For any t ≥ 0, Ptf ∈ C1

b (H) and for any x, h ∈ H it
holds

〈DPtf(x), h〉 = E
[
〈Df(X(t, x)), ηh(t, x)〉

]
,

where ηh(t, x) is as in Proposition 3.6. It is also easy to see that1

|ηh(t, x)| ≤Me(ω+M‖DF‖)t|h|,

see, e.g., [26], Theorem 3.6. Hence, by (vi) of Theorem 1.9, we have

|〈DR(λ,K)f(x), h〉|=
∣∣∣∣∫ ∞

0

e−λtE
[
〈Df(X(t, x)), ηh(t, x)〉

]
dt

∣∣∣∣
≤M‖Df‖Cb(H;H)

∫ ∞
0

e−λte(ω+M‖DF‖)t|h|dt

=
M‖Df‖Cb(H;H)

λ− (ω +M‖DF‖Cb(H;L(H)))
|h|,

for any h ∈ H. Therefore, (3.9) follows.

Proposition 3.8. Let us assume that Hypothesis 0.1, 3.1 hold and let F ∈
C2
b (H;H). Denote by (Pt)t≥0 the transition semigroup defined in (3.3), let

(K,D(K)) be its infinitesimal generator. Then, the set IA(H) is a π-core
for (K,D(K)), and for any ϕ ∈ D(K) there exists m ∈ N and an m-indexed
sequence (ϕn1,...,nm) ⊂ IA(H) such that

lim
n1→∞

· · · lim
nm→∞

K0ϕn1,...,nm
π
= Kϕ. (3.10)

Proof. Let ϕ ∈ D(L) ∩ C1
b (H). By Proposition 3.3 we have that ϕ ∈

D(K) ∩ C1
b (H). Hence, by (i) of Theorem 1.9 we have Ptϕ ∈ D(K) and by

Proposition 3.6 we have Ptϕ ∈ C1
b (H), for any t ≥ 0. So Pt : D(L) ∩ C1

b (H)
→ D(L) ∩ C1

b (H), for any t ≥ 0. Moreover, IA(H) ⊂ D(L) ∩ C1
b (H) and so

D(L)∩C1
b (H) is π-dense in Cb(H), in view of the fact that IA(H) is π-dense

in Cb(H) (cfr. Prop. 2.5). Therefore, by Proposition 1.11, D(L) ∩ C1
b (H)

is a π-core for (K,D(K)). So there exists a sequence (ϕm) ⊂ IA(H) (we
denote this sequence with one index to avoid heavy notations) such that
Lϕm + 〈Dϕm, F 〉

π→ Kϕ, as m → ∞. Now, thanks to Lemma 3.5, we
can approximate any ϕm by a sequence (ϕm,n) ⊂ IA(H) in such a way

that ϕm,n
π→ ϕm, Lϕm,n

π→ Lϕm as n → ∞ and 〈Dϕm,n, h〉
π→ 〈Dϕm, h〉

as n → ∞, for any h ∈ H. Since F : H → H is bounded, we have
〈Dϕm,n, F 〉

π→ 〈Dϕm, F 〉 as n → ∞. Finally, since ϕm,n ∈ IA(H) by Theo-
rem 3.4 it follows (3.10).

1in order to avoid heavy notations we set ‖DF‖ = ‖DF‖Cb(H;L(H))
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3.3.2 The case when F is Lipschitz

Theorem 3.4 shows that K is an extension of K0, and that Kϕ = K0ϕ,
∀ϕ ∈ IA(H). We now show that IA(H) is a π-core for K.

Theorem 3.9. Under the Hypothesis of Theorem 3.4, the set IA(H) is a
π-core for (K,D(K)).

Proof. We denote by LF the Lipschitz constant of F . Let ϕ ∈ D(K), λ >
max{0, ω + LF} and set f = λϕ−Kϕ. Since C1

b (H) is dense in Cb(H) with
respect to the supremum norm (see [34]), there exists a sequence (fn1) ⊂
C1
b (H) such that ‖fn1 − f‖0 → 0 as n1 → ∞. Clearly, if ϕn1 = R(λ,K)fn1

we have

lim
n1→∞

Kϕn1

π
= Kϕ. (3.11)

Now we consider a sequence of functions (Fn2)n2∈N ⊂ C2
b (H;H) such that

lim
n2→∞

Fn2(x) = F (x), ∀x ∈ H (3.12)

and

sup
n2∈N
‖Fn2‖Cb(H;H) ≤ ‖F‖Cb(H;H), sup

n2∈N
‖DFn2‖Cb(H;L(H)) ≤ LF . (3.13)

This construction is not too difficult but technical and an example can be
found in [26], section 3.3.1. Let Xn2(t, x) be the solution of (3.2) with Fn2

instead of F . It is straightforward to see that for any T > 0, x ∈ H

lim
n2→∞

sup
t∈[0,T ]

E
[
|Xn2(t, x)−X(t, x)|2

]
= 0.

Hence, if P n2
t is the transition semigroup associated to Xn2(t, x), we have

that for any ϕ ∈ Cb(H)

lim
n2→∞

P n2
t ϕ

π
= Ptϕ.

We denote by (Kn2 , D(Kn2)) the infinitesimal generator of the transition
semigroup {P n2

t }t≥0, as in (1.2). We also set

K0,n2ϕ(x) = K0ϕ(x) + 〈Dϕ(x), Fn2 − F (x)〉, ϕ ∈ IA(H), x ∈ H.

If R(λ,Kn2) is the resolvent of Kn2 at λ (cfr. (vi) of Theorem 1.9), we have

lim
n2→∞

R(λ,Kn2)f
π
= R(λ,K)f,
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for any f ∈ Cb(H). Setting ϕn1,n2 = R(λ,Kn2)fn1 , for any n1 ∈ N we have

lim
n2→∞

ϕn1,n2

π
= ϕn1 , lim

n2→∞
Kn2ϕn1,n2

π
= Kϕn1 . (3.14)

Moreover, since Fn2 ∈ C2
b (H;H), by Corollary 3.7 we have that R(λ,Kn2) :

C1
b (H)→ C1

b (H) and

‖Dϕn1,n2‖Cb(H;H) ≤
M‖Dϕn1‖Cb(H;H)

λ− (ω + ‖DFn2‖Cb(H;L(H)))
≤
M‖Dϕn1‖Cb(H;H)

λ− (ω + LF )
,

for any n1, n2 ∈ N. Consequently, by (3.12), (3.13) it follows

lim
n2→∞

〈Dϕn1,n2 , F − Fn2〉
π
= 0. (3.15)

Since fn1 ∈ C1
b (H), by Corollary 3.7 we have ϕn1,n2 ∈ D(Kn2) ∩ C1

b (H). By
Proposition 3.8, for any n1, n2 ∈ N we can find a sequence (ϕn1,n2,n3) ⊂ IA(H)
such that

lim
n3→∞

K0,n2ϕn1,n2,n3

π
= Lϕn1,n2 + 〈Dϕn1,n2 , Fn2〉 = Kn2ϕn1,n2 . (3.16)

Hence we have

K0ϕn1,n2,n3 = K0,n2ϕn1,n2,n3 + 〈Dϕn1,n2,n3 , F − Fn2〉
and by (3.14), (3.15), (3.16) it follows

lim
n2→∞

lim
n3→∞

K0ϕn1,n2,n3

π
= lim

n2→∞
Kn2ϕn1,n2 + 〈Dϕn1,n2 , F − Fn2〉

π
= Kϕn1 .

Now the result follows by (3.11).

3.4 The measure equation for K0

The following result follows by Theorem 3.4, Theorem 3.9 and may be proved
in essentially the same way as for Theorem 2.6.

Theorem 3.10. Let (Pt)t≥0 be the transition semigroup defined in (3.3) and
let (K,D(K)) its infinitesimal generator. Then, for any µ ∈ M(H) there
exists a unique family of measures {µt, t ≥ 0} ⊂ M(H) fulfilling∫ T

0

|µt|TV (H)dt <∞, T > 0; (3.17)

and the measure equation∫
E

ϕ(x)µt(dx)−
∫
H

ϕ(x)µ(dx) =

∫ t

0

(∫
H

K0ϕ(x)µs(dx)

)
ds, (3.18)

for any ϕ ∈ IA(H), t ≥ 0, and the solution is given by P ∗t µ, t ≥ 0.



Chapter 4

Lipschitz perturbations of
Ornstein-Uhlenbeck operators

We consider here Kolmogorov operators with a Lispchitz continuous nonli-
nearity in the space Cb,1(H). The main novelties are discussed in Theorems
4.3, 4.4 and are contained in the submitted paper [38].

4.1 Introduction

Let us consider the stochastic differential equation in the Hilbert space HdX(t) =
(
AX(t) + F (X(t))

)
dt+B dW (t), t ≥ 0

X(0) = x ∈ H,
(4.1)

where, behind Hypothesis 0.1 we assume that

Hypothesis 4.1. F : H → H is a Lipschitz continuous map. We set

κ = sup
x,y∈H
x 6=y

|F (x)− F (y)|
|x− y|

.

It is well known that under hypothesis 0.1 and (4.1) for any x ∈ H
problem (4.1) has a unique mild solution, that is a solution of the following
integral equation

X(t, x) = etAx+

∫ t

0

e(t−s)ABdW (s) +

∫ t

0

e(t−s)AF (X(s, x))ds (4.2)

49
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for any t ≥ 0. Moreover, a straightforward computation shows that for any
T > 0 there exists c > 0 such that

sup
t∈[0,T ]

|X(t, x)−X(t, y)| ≤ c|x− y|, ∀x, y ∈ H, (4.3)

and
sup
t∈[0,T ]

E
[
|X(t, x)|

]
≤ c(1 + |x|), x ∈ H, (4.4)

where the expectation is taken with respect to P. As we shall see in Propo-
sition 4.6, estimates (4.3), (4.4) allow us to define the transition operator
associated to equation (4.2) in the space Cb,1(H), by the formula

Ptϕ(x) = E
[
ϕ(X(t, x))

]
, ϕ ∈ Cb,1(H), t ≥ 0, x ∈ H. (4.5)

Still by Proposition 4.6, we see that the family of operators (Pt)t≥0 maps
Cb,1(H) into Cb,1(H) and enjoys the semigroup property, but it is not a
strongly continuous semigroup. However, we can define the infinitesimal
generator of (Pt)t≥0 in Cb,1(H) in the following way

D(K,Cb,1(H)) =

{
ϕ ∈ Cb,1(H) : ∃g ∈ Cb,1(H), lim

t→0+

Ptϕ(x)− ϕ(x)

t
=

= g(x), x ∈ H, sup
t∈(0,1)

∥∥∥∥Ptϕ− ϕt

∥∥∥∥
0,1

<∞
}

Kϕ(x) = lim
t→0+

Ptϕ(x)− ϕ(x)

t
, ϕ ∈ D(K,Cb,1(H)), x ∈ H.

(4.6)
The first result of the chapter is the following generalization of Theorems
1.8, 1.12

Theorem 4.2. Let (Pt)t≥0 be the semigroup defined by (4.5) and let
(K,D(K,Cb,1(H))) be its infinitesimal generator in Cb,1(H), defined by (4.6).
Then, the formula

〈ϕ, P ∗t F 〉L(Cb,1(H), (Cb,1(H))∗) = 〈Ptϕ, F 〉L(Cb,1(H), (Cb,1(H))∗)

defines a semigroup (P ∗t )t≥0 of linear and continuous operators on (Cb,1(H))∗

which mapsM1(H) intoM1(H). Moreover, for any µ ∈M1(H) there exists
a unique family of measures {µt, t ≥ 0} ⊂ M1(H) such that∫ T

0

(∫
H

|x||µt|TV (dx)

)
dt <∞, ∀T > 0 (4.7)
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and ∫
H

ϕ(x)µt(dx)−
∫
H

ϕ(x)µ(dx) =

∫ t

0

(∫
H

Kϕ(x)µs(dx)

)
ds (4.8)

for any t ≥ 0, ϕ ∈ D(K,Cb,1(H)). Finally, the solution of (4.8) is given by
P ∗t µ, t ≥ 0.

A natural question is to study the above problem replacing K with the
Kolmogorov differential operator

K0ϕ(x) =
1

2
Tr
[
BB∗D2ϕ(x)

]
+〈x,A∗Dϕ(x)〉+〈Dϕ(x), F (x)〉, x ∈ H. (4.9)

We stress the fact that the operator K is defined in an abstract way, whereas
K0 is a concret differential operator.

In order to study problem (4.8) with K0 replacing K, we shall extend
the notion of π-convergence in the spaces Cb,k(H) and the related notion of
π-core. We recall that the π-convergence has been introduced in Definition
1.1. We have the following

Theorem 4.3. Under Hypothesis 0.1 and (4.1), the operator (K,D(K,Cb,1(H)))
is an extension of K0, and for any ϕ ∈ EA(H) we have ϕ ∈ D(K,Cb,1(H))
and Kϕ = K0ϕ. Finally, EA(H) is a π-core for (K,D(K,Cb,1(H))).

As consequence we have the third main result of this chapter

Theorem 4.4. For any µ ∈ M1(H) there exists an unique family of mea-
sures {µt, t ≥ 0} ⊂ M1(H) fulfilling (4.7) and the measure equation∫

H

ϕ(x)µt(dx)−
∫
H

ϕ(x)µ(dx) =

∫ t

0

(∫
H

K0ϕ(x)µs(dx)

)
ds, (4.10)

t ≥ 0, ϕ ∈ EA(H). Moreover, the solution is given by P ∗t µ, t ≥ 0.

Remark 4.5. We shall work with uniformly continuous functions for con-
venience only. It is worth noticing that we can state all the result of this
chapter (and also of other chapters) in spaces of continuous functions.

4.1.1 The transition semigroup in Cb,1(H)

This section is devoted to studying the semigroup (Pt)t≥0 in the space Cb,1(H).

Proposition 4.6. Formula (4.5) defines a semigroup of operators (Pt)t≥0 in
Cb,1(H), and there exist a family of probability measures {πt(x, ·), t ≥ 0, x ∈
H} ⊂ M1(H) and two constants c0 > 0, ω0 ∈ R such that
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(i) Pt ∈ L(Cb,1(H)) and ‖Pt‖L(Cb,1(H)) ≤ c0e
ω0t;

(ii) Ptϕ(x) =

∫
H

ϕ(y)πt(x, dy), for any t ≥ 0, ϕ ∈ Cb,1(H), x ∈ H;

(iii) for any ϕ ∈ Cb,1(H), x ∈ H, the function R+ → R, t 7→ Ptϕ(x) is
continuous.

(iv) PtPs = Pt+s, for any t, s ≥ 0 and P0 = I;

(v) for any ϕ ∈ Cb,1(H) and any sequence (ϕn)n∈N ⊂ Cb,1(H) such that

lim
n→∞

ϕn
1 + | · |

π
=

ϕ

1 + | · |

we have, for any t ≥ 0,

lim
n→∞

Ptϕn
1 + | · |

π
=

Ptϕ

1 + | · |
.

Proof. (i). Take ϕ ∈ Cb,1(H), t ≥ 0. We have to show that Ptϕ ∈ Cb,1(H),
that is the function x 7→ (1 + |x|)−1Ptϕ(x) is uniformly continuous and
bounded. Take ε > 0 and let θϕ : R+ → R be the modulus of continuity of
(1 + | · |)−1ϕ. We have

Ptϕ(x)

1 + |x|
− Ptϕ(y)

1 + |y|
= I1(t, x, y) + I2(t, x, y) + I3(t, x, y),

where

I1(t, x, y) = E
[(

ϕ(X(t, x))

1 + |X(t, x)|
− ϕ(X(t, y))

1 + |X(t, y)|

)
1 + |X(t, x)|

1 + |x|

]
,

I2(t, x, y) = E
[
ϕ(X(t, y))

1 + |X(t, y)|

(
|X(t, x)| − |X(t, y)|

1 + |x|

)]
,

I3(t, x, y) = E
[
ϕ(X(t, y)) (1 + |X(t, x)|)

1 + |X(t, y)|

(
1

1 + |x|
− 1

1 + |y|

)]
.

For I1(t, x, y) we have, by taking into account (4.3), (4.4), that there exists
c > 0 such that

|I1(t, x, y)| ≤E
[
θϕ(|X(t, x)−X(t, y)|)1 + |X(t, x)|

1 + |x|

]
≤ θϕ (c|x− y|) E [1 + |X(t, x)|]

1 + |x|
≤ cθϕ(c|x− y|).
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Then, there exists δ1 > 0 such that |I1(t, x, y)| ≤ ε/3, for any x, y ∈ H such
that |x− y| ≤ δ1. For I2(t, x, y) we have, by elementary inequalities,

|I2(t, x, y)| ≤ ‖ϕ‖0,1
1 + |x|

E [||X(t, x)| − |X(t, y)||]

≤ ‖ϕ‖0,1
1 + |x|

E [|X(t, x)−X(t, y)|] ≤ ‖ϕ‖0,1c|x− y|.

Then there exists δ2 > 0 such that |I2(t, x, y)| ≤ ε/3, for any x, y ∈ H such
that |x− y| ≤ δ2. Similarly, for I3(t, x, y) we have

|I3(t, x, y)| ≤ ‖ϕ‖0,1
1 + E [|X(t, x)|]

1 + |x|
||x| − |y||

1 + |y|
≤ c‖ϕ‖0,1(1 + c)|x− y|.

for some c > 0. Then, there exists δ3 > 0 such that |I3(t, x, y)| ≤ ε/3,
for any x, y ∈ H such that |x − y| ≤ δ3. Finally, for any x, y ∈ H with
|x− y| ≤ min{δ1, δ2, δ3} we find that∣∣∣∣Ptϕ(x)

1 + |x|
− Ptϕ(y)

1 + |y|

∣∣∣∣ < ε

as claimed. Now, by taking into account (4.4), there exists c > 0 such that∣∣∣∣Ptϕ(x)

1 + |x|

∣∣∣∣ ≤ ‖ϕ‖0,1 1 + E [|X(t, x)|]
1 + |x|

≤ c‖ϕ‖0,1

Then Ptϕ ∈ Cb,1(H). Note that by (4.4) it follows that the operators Pt are
bounded in a neighborhood of 0. Hence, the existence of the two constants
c0 > 0, ω0 ∈ R follows by (iv) and by a standard argument. Notice that by
the same argument follows1 (v).
(ii). Take ϕ ∈ Cb,1(H), and consider a sequence (ϕn)n∈N ⊂ Cb(H) such that

lim
n→∞

ϕn
1 + | · |

π
=

ϕ

1 + | · |
. (4.11)

Since πt(t, ·) is the image measure of X(t, x) in H, the representation (ii)
holds for any ϕn, that is

Ptϕn(x) = E
[
ϕn(X(t, x))

]
=

∫
H

ϕn(y)πt(x, dy).

1Of course, to prove (iv)-(v) we do not use this statement of (i)
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Since (4.4) holds we have π(x, ·) ∈ M1(H), and by (4.11) there exists c > 0
such that |ϕn(x)| ≤ c(1 + |x|), for any n ∈ N, x ∈ H. Finally, the result
follows by the dominated convergence theorem.
(iii). For any ϕ ∈ Cb,1(H), x ∈ H, t, s ≥ 0 we have

Ptϕ(x)− Psϕ(x) = E
[
ϕ(X(t, x))

1 + |X(t, x)|
− ϕ(X(s, x))

1 + |X(s, x)|
(1 + |X(t, x)|)

]
+E

[
ϕ(X(s, x))

1 + |X(s, x)|
(|X(t, x)| − |X(s, x)|)

]
.

Then

|Ptϕ(x)− Psϕ(x)| ≤ E [θϕ (|X(t, x)−X(s, x)|) (1 + |X(t, x)|)]
+ ‖ϕ‖0,1E [|X(t, x)−X(s, x)|] , (4.12)

where θϕ : R+ → R is the modulus of continuity of (1 + | · |)−1ϕ. Note
also that since for any x ∈ H the process (X(t, x))t≥0 is continuous in mean
square, we have

lim
t→s
|X(t, x)−X(s, x)| = 0 P-a.s..

Hence, by taking into account that θϕ : R+ → R is bounded and that (4.4)
holds, we can apply the dominated convergence theorem to show that the
first term in the right-hand side of (4.12) vanishes as t→ s. Finally, the fact
that the second term on the right-hand side of (4.12) vanishes as t→ s may
be proved by the same argument.
(iv). Take ϕ ∈ Cb,1(H), and consider a sequence (ϕn)n∈N ⊂ Cb(H) such

that (1 + | · |)−1ϕn
π→ (1 + | · |)−1ϕ as n → ∞. By the markovianity of the

process X(t, x) it follows that (iv) holds true for any ϕn. Then, since by (iii)
(1 + | · |)−1Ptϕn

π→ (1 + | · |)−1Ptϕ as n→∞, still by (iii) we find

Pt+sϕ

1 + | · |
π
= lim

n→∞

Pt+sϕn
1 + | · |

= lim
n→∞

PtPsϕn
1 + | · |

π
=

PtPsϕ

1 + | · |
.

This concludes the proof.

Remark 4.7. We recall that for any k > 0, T > 0 there exists ck > 0 such
that

sup
t∈[0,T ]

E[|X(t, x)|k] < ck(1 + |x|k),

that implies {πt(x, ·), t ≥ 0, x ∈ H} ⊂
⋂
k≥0Mk(H). Consequently, all the

results of this section are true with Cb,k(H) replacing Cb,1(H).

Here we collect some properties of the generator (K,D(K,Cb,1(H))).
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Proposition 4.8. Let X(t, x) be the mild solution of problem (4.1) and let
(Pt)t≥0 be the associated transition semigroups in the space Cb,1(H) defined by
(4.5). Let also (K,D(K,Cb,1(H))) be the associated infinitesimal generators,
defined by (4.6). Then

(i) for any ϕ ∈ D(K,Cb,1(H)), we have Ptϕ ∈ D(K,Cb,1(H))) and KPtϕ =
PtKϕ, t ≥ 0;

(ii) for any ϕ ∈ D(K,Cb,1(H)), x ∈ H, the map [0,∞) → R, t 7→ Ptϕ(x)
is continuously differentiable and (d/dt)Ptϕ(x) = PtKϕ(x);

(iii) given c0 > 0 and ω0 as in Proposition 4.6, for any λ > ω0 the linear
operator R(λ,K) on Cb,1(H) doefined by

R(λ,K)f(x) =

∫ ∞
0

e−λtPtf(x)dt, f ∈ Cb,1(H), x ∈ H

satisfies, for any f ∈ Cb,1(H)

R(λ,K) ∈ L(Cb,1(H)), ‖R(λ,K)‖L(Cb,1(H)) ≤
c0

λ− ω0

R(λ,K)f ∈ D(K,Cb,1(H)), (λI −K)R(λ,K)f = f.

We call R(λ,K) the resolvent of K at λ;

(iv) for any ϕ ∈ Cb,1(H), t > 0, the function

H → R, x 7→
∫ t

0

Psϕ(x)ds

belongs to D(K,Cb,1(H)), and it holds

K

(∫ t

0

Psϕds

)
= Ptϕ− ϕ.

Proof. (i). It is proved by taking into account (4.6) and (iii) of Proposition
4.6.
(ii). This follows easily by (i) and by (iii) of Proposition 4.6.
(iii). By (i) of Proposition 4.6 we have∥∥∥∥∫ ∞

0

e−λtPtfdt

∥∥∥∥
0,1

≤ c0

∫ ∞
0

e−(λ−ω0)tdt‖f‖0,1 =
c0‖f‖0,1
λ− ω0

.

Finally, the fact that R(λ,K)f ∈ D(K,Cb,1(H)) and (λI −K)R(λ,K)f = f
hold can be proved in a standard way (see, for instance, [8], [40]).
(iv). The proof is the same of Theorem 1.9.
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4.2 Proof of Theorem 4.2

In order to prove this theorem, we need some results about the transition
semigroup (Pt)t≥0 in the space Cb(H). Since for any ϕ ∈ Cb(H) the repre-
sentation formula

Ptϕ(x) =

∫
H

ϕ(y)πt(x, dy), x ∈ H, t ≥ 0

holds (cfr. (ii) of Proposition 4.6) and X(t, x) is continuous in mean square,
it follows easily that (Pt)t≥0 is a semigroup of contraction operators in the
space Cb(H). Moreover, we have that for any x ∈ H, ϕ ∈ Cb(H) the function
R+ → R, t 7→ Ptϕ(x) is continuous (cfr. (iii) of Proposition 4.6). This means
that (Pt)t≥0 fulfills Definition 1.6, namely it is a stochastically continous
Markov semigroup.

Following (6), we denote by (K,D(K,Cb(H)) the infinitesimal generator
of Pt is the space Cb(H), defined by

D(K,Cb(H)) =

{
ϕ ∈ Cb(H) : ∃g ∈ Cb(H), lim

t→0+

Ptϕ(x)− ϕ(x)

t
= g(x),

x ∈ H, sup
t∈(0,1)

∥∥∥∥Ptϕ− ϕt

∥∥∥∥
0

<∞
}

Kϕ(x) = lim
t→0+

Ptϕ(x)− ϕ(x)

t
, ϕ ∈ D(K,Cb(H)), x ∈ H.

(4.13)
It is clear that D(K,Cb(H)) ⊂ D(K,Cb,1(H)). Hence, by applying Theorem
1.12 to (K,D(K,Cb(H))) it yields

Theorem 4.9. For any µ ∈M(H) there exists a unique family of measures
{µt, t ≥ 0} ⊂ M(H) such that∫ T

0

|µt|TV (H)dt <∞, ∀T > 0 (4.14)

and ∫
H

ϕ(x)µt(dx)−
∫
H

ϕ(x)µ(dx) =

∫ t

0

(∫
H

Kϕ(x)µs(dx)

)
ds (4.15)

holds for any t ≥ 0, ϕ ∈ D(K,Cb(H)).

We split the proof into two lemmata.
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Lemma 4.10. The formula

〈ϕ, P ∗t F 〉L(Cb,1(H),(Cb,1(H))∗) = 〈Ptϕ, F 〉L(Cb,1(H),(Cb,1(H))∗) (4.16)

defines a semigroup of linear operators in (Cb,1(H))∗. Finally, P ∗t :M1(H)→
M1(H) and it maps positive measures into positive measures.

Proof. Fix t ≥ 0. By (4.4) it follows that there exists c > 0 such that
|Ptϕ(x)| ≤ c‖ϕ‖0,1(1 + |x|), for any ϕ ∈ Cb,1(H). Then, if F ∈ (Cb,1(H))∗,
we have ∣∣〈ϕ, P ∗t F 〉L(Cb,1(H),(Cb,1(H))∗)

∣∣ ≤ c‖F‖(Cb,1(H))∗‖ϕ‖0,1,

for any ϕ ∈ Cb,1(H). Since P ∗t is linear, it follows that P ∗t ∈ L((Cb,1(H))∗).
Note that by (ii) of Proposition 4.6 it follows Ptϕ ≥ 0 for any ϕ ≥ 0. This
implies that if 〈ϕ, F 〉 ≥ 0 for any ϕ ≥ 0, then 〈ϕ, P ∗t F 〉 ≥ 0 for any ϕ ≥ 0.
Hence, in order to check that P ∗t :M1(H)→M1(H), it is sufficient to take
µ positive. So, let µ ∈M1(H) be positive and consider the map

Λ : B(H)→ R, Γ 7→ Λ(Γ) =

∫
H

πt(x,Γ)µ(dx).

We recall that since X(t, x) is continuous with respect to x, for any Γ ∈ B(H)
the map H → [0, 1], x → πt(x,Γ) is Borel, and consequently the above
formula in meaningful. It is straightforward to see that Λ is a positive and
finite Borel measure on H, namely Λ ∈M(H). We now show Λ = P ∗t µ.

Let us fix ϕ ∈ Cb(H), and consider a sequence of simple Borel functions
(ϕn)n∈N which converges uniformly to ϕ and such that |ϕn(x)| ≤ |ϕ(x)|,
x ∈ H. For any x ∈ H we have

lim
n→∞

∫
H

ϕn(y)πt(x, dy) =

∫
H

ϕ(y)πt(x, dy) = Ptϕ(x)

and

sup
x∈H

∣∣∣∣∫
H

ϕn(y)πt(x, dy)

∣∣∣∣ ≤ ‖ϕ‖0.
Hence, by the dominated convergence theorem and by taking into account
that ϕn is simple, we have∫

H

ϕ(x)Λ(dx) = lim
n→∞

∫
H

ϕn(x)Λ(dx) = lim
n→∞

∫
H

(∫
H

ϕn(y)πt(x, dy)

)
µ(dx)

=

∫
H

(∫
H

ϕ(y)πt(x, dy)

)
µ(dx) =

∫
H

Ptϕ(x)µ(dx).

This implies that P ∗t µ = Λ and consequently P ∗t µ ∈M(H).
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In order to show that P ∗t µ ∈ M1(H), consider a sequence of functions
(ψn)n∈N ⊂ Cb(H) such that ψn(x) → |x| as n → ∞ and ψ(x) ≤ |x|, for any
x ∈ H. By Proposition 4.6 we have

∫
H
ψn(y)πt(x, dy) →

∫
H
|y|πt(x, dy) as

n→∞ and
∫
H
ψn(y)πt(x, dy) ≤ c(1+ |x|), for any x ∈ H and for some c > 0.

Hence, since µ ∈M1(H) we have

∫
H

|x|P ∗t µ(dx) = lim
n→∞

∫
H

ψn(x)P ∗t µ(dx)

= lim
n→∞

∫
H

(∫
H

ψn(y)πt(x, dy)

)
µ(dx) ≤

∫
H

c(1 + |x|)µ(dx) <∞

This concludes the proof.

Lemma 4.11. For any µ ∈ M1(H) there exists a unique family of finite
Borel measures {µt, t ≥ 0} ⊂ M1(H) fulfilling (4.7), (4.8), and this family
is given by P ∗t µ, t ≥ 0.

Proof. We first check that P ∗t µ, t ≥ 0 satisfies (4.7), (4.8). By Proposition
4.10, for any µ ∈ M1(H), formula (4.16) defines a family {P ∗t µ, t ≥ 0} of
measures on H. Moreover, by (i) of Proposition 4.6 it follows that for any
T > 0 it holds

sup
t∈[0,T ]

‖P ∗t µ‖(Cb,1(H))∗ = sup
t∈[0,T ]

∫
H

(1 + |x|)|P ∗t µ|TV (dx) <∞.

Hence, (4.7) holds. We now show (4.8). By (i), (ii), (iv) of Proposition
4.6 and by the dominated convergence theorem it follows easily that for any
ϕ ∈ Cb,1(H) the function

R+ → R, t 7→
∫
H

ϕ(x)P ∗t µ(dx) (4.17)

is continuous. Clearly, P ∗0 µ = µ. Now we show that if ϕ ∈ D(K,Cb,1(H))
then the function (4.17) is differentiable. Indeed, by taking into account
(4.6) and (i) of Proposition 4.8, for any ϕ ∈ D(K,Cb,1(H)) we can apply the
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dominated convergence theorem to obtain

d

dt

∫
H

ϕ(x)P ∗t µ(dx) =

= lim
h→0

1

h

(∫
H

Pt+hϕ(x)µ(dx)−
∫
H

Ptϕ(x)µt(dx)

)
= lim

h→0

∫
H

(
Pt+hϕ(x)− Ptϕ(x)

h

)
µ(dx)

= lim
h→0

∫
H

Pt

(
Phϕ− ϕ

h

)
(x)µ(dx)

=

∫
H

lim
h→0

(
Phϕ− ϕ

h

)
(x)P ∗t µ(dx) =

∫
H

Kϕ(x)P ∗t µ(dx).

Then, by arguing as above, it follows that the differential of the mapping
defined by (4.17) is continuous. This clearly implies that P ∗t µ, t ≥ 0 satisfies
(4.8). In order to show uniqueness of such a solution, by the linearity of the
problem it is sufficient to show that if µ = 0 and {µt, t ≥ 0} ⊂ M1(H)
is a solution of equation (4.8), then µt = 0, for any t ≥ 0. Note that
equation (4.8) holds in particular for ϕ ∈ D(K,D(K,Cb,1(H))) (cfr. (4.13))
and consequently (4.15) holds, for any ϕ ∈ D(K,D(K,Cb,1(H))). Note also
that by (4.7) follows that µt, t ≥ 0 fulfils (4.14). Hence, by Theorem 4.9, it
follows that µt = 0, ∀t ≥ 0. This concludes the proof.

4.3 Proof of Theorem 4.3

We split the proof in several steps. We start by studying the Ornstein-
Uhlenbeck operator in Cb,1(H) that is, roughly speaking, the case F = 0 in
(4.9). In Proposition 4.13 we shall prove Theorem 4.4 in the case F = 0.
Then, Corollary 4.14 will show that (K,D(K0)) is an extension of K0 and
Kϕ = K0ϕ for any ϕ ∈ EA(H). In order to complete the proof of the
theorem, we shall present several approximation results. Finally, Lemma
4.16 will complete the proof.

4.3.1 The Ornstein-Uhlenbeck semigroup in Cb,1(H)

An important role in what follows will be played by the Ornstein-Uhlenbeck
semigroup (Rt)t≥0 in the space Cb,1(H), defined by the formula

Rtϕ(x) =

ϕ(x), t = 0,∫
H

ϕ(etAx+ y)NQt(dy), t > 0
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where ϕ ∈ Cb,1(H), x ∈ H and NQt is the Gaussian measure of zero mean
and covariance operator Qt (cfr. Hypothesis 0.1 and Chapter 2). We recall
that formula (3.9)

Rtϕ(x) = E
[
ϕ

(
etAx+

∫ t

0

e(t−s)ABdW (s)

)]
(4.18)

holds, for any t ≥ 0, ϕ ∈ Cb,1(H), x ∈ H. Hence, the Ornstein-Uhlenbeck
semigroup (Rt)t≥0 coincides with the transition semigroup (4.5) in the case
F = 0 in (4.1). Consequently, (Rt)t≥0 satisfies stamentes (i)–(v) of Proposi-
tion 4.6. We recall that (2.3) holds, and consequently Rt : EA(H)→ EA(H),
for any t ≥ 0. We define the infinitesimal generator L : D(L,Cb,1(H)) →
Cb,1(H) of (Rt)t≥0 in Cb,1(H) as in (4.6), with L replacing K and Rt replacing
Pt.

Theorem 4.12. Let (Pt)t≥0 be the semigroup (4.5) and let (Rt)t≥0 be the
Ornstein-Uhlenbeck semigroup (4.18). We denote by (K,D(K,Cb,1(H))) and
by (L,D(L,Cb,1(H))) the corresponding infinitesimal generators in Cb,1(H).
Then we have D(L,Cb,1(H)) ∩ C1

b (H) = D(K,Cb,1(H)) ∩ C1
b (H) and Kϕ =

Lϕ+ 〈Dϕ,F 〉, for any ϕ ∈ D(L,Cb,1(H)) ∩ C1
b (H).

Proof. Let X(t, x) be the mild solution of equation (4.1) and set

ZA(t, x) = etAx+

∫ t

0

e(t−s)ABdW (s).

Take ϕ ∈ D(L,Cb,1(H)) ∩ C1
b (H). By taking into account that

X(t, x) = ZA(t, x) +

∫ t

0

e(t−s)AF (X(s, x))ds,

by the Taylor formula we have that P-a.s. it holds

ϕ(ZA(t, x)) = ϕ(ZA(t, x))− ϕ(X(t, x)) + ϕ(X(t, x)) = ϕ(X(t, x))

−
∫ 1

0

〈
Dϕ(ξZA(t, x) + (1− ξ)X(t, x)),

∫ t

0

e(t−s)AF (X(s, x))ds

〉
dξ.

Then we have

Rtϕ(x)− ϕ(x) = E
[
ϕ(ZA(t, x))

]
− ϕ(x) = Ptϕ(x)− ϕ(x)

−E
[∫ 1

0

〈
Dϕ(ξZA(t, x) + (1− ξ)X(t, x)),

∫ t

0

e(t−s)AF (X(s, x))ds

〉
dξ

]
.
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Before proceeding, we need the following
Claim. For any x ∈ H it holds

lim
t→0+

1

t
E
[∫ 1

0

〈
Dϕ(ξZA(t, x) + (1− ξ)X(t, x)),

∫ t

0

e(t−s)AF (X(s, x))ds

〉
dξ

]
= 〈Dϕ(x), F (x)〉. (4.19)

For any x ∈ H we have

1

t
E
[∫ 1

0

〈
Dϕ(ξZA(t, x) + (1− ξ)X(t, x)),

∫ t

0

e(t−s)AF (X(s, x))ds

〉
dξ

]
−〈Dϕ(x), F (x)〉

= E
[∫ 1

0

〈Dϕ(ξZA(t, x) + (1− ξ)X(t, x))−Dϕ(x), F (x)〉 dξ
]

+
1

t
E
[∫ 1

0

〈
Dϕ(ξZA(t, x) + (1− ξ)X(t, x)),

∫ t

0

e(t−s)AF (X(s, x))ds− F (x)

〉
dξ

]
= I1(t, x) + I2(t, x).

For I1(t, x) we have

|I1(t, x)| ≤E
[∫ 1

0

|Dϕ(ξZA(t, x) + (1− ξ)X(t, x))−Dϕ(x)| dξ
]
|F (x)|

≤ cFE
[∫ 1

0

θDϕ(|ξZA(t, x) + (1− ξ)X(t, x)− x|)dξ
]

(1 + |x|)

where θDϕ : R+ → R+ is the modulus of continuity of Dϕ and cF > 0 is
such that |F (x)| ≤ cF (1 + |x|), ∀x ∈ H. Since E[|ZA(t, x) − x|2] → 0 and
E[|X(t, x)− x|2]→ 0 as t→ 0+, it follows

lim
t→0+

I1(t, x) = 0, ∀x ∈ H.

For I2(t, x) we have

|I2(t, x)| ≤ ‖Dϕ‖Cb(H;H)E
[

1

t

∣∣∣∣∫ t

0

e(t−s)A(F (X(s, x))− F (x))ds

∣∣∣∣]
+‖Dϕ‖Cb(H;H)

∣∣∣∣1t
∫ t

0

e(t−s)AF (x)ds− F (x)

∣∣∣∣ = I2,1(t, x) + I2,2(t, x).

Notice that by Hypothesis 0.1

I2,1(t, x) ≤ M

t

∫ t

0

e(t−s)ωE[|F (X(s, x))− F (x)|]ds
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≤ κ
M

t

∫ t

0

e(t−s)ωE[|X(s, x)− x|]ds.

Consequently, since E[|X(t, x)− x|2]→ 0 as t→ 0+, it follows that

lim
t→0+

I2,1(t, x)→ 0.

For I2,2(t, x) we have, by the fact that the semigroup etA, t ≥ 0 is strongly
continuous,

lim
t→0+

I2,2(t, x)→ 0.

Then,
lim
t→0+

I2(t, x) = 0, ∀x ∈ H.

This prove the claim.
By taking into account that ϕ ∈ D(L,Cb,1(H)) ∩ C1

b (H) and that (4.19)
holds, for any x ∈ H we have

lim
t→0+

Ptϕ(x)− ϕ(x)

t
= Lϕ(x) + 〈Dϕ(x), F (x)〉.

As easily seen, x 7→ Lϕ(x) + 〈Dϕ(x), F (x)〉 is uniformly continuous. More-
over, since t→ E[|X(t, x)|] is continuous and E[|X(t, x)−x|]→ 0 as t→ 0+,
there exists c > 0 such that∣∣∣∣Ptϕ(x)− ϕ(x)

t

∣∣∣∣≤ c(1 + |x|)

+cF‖Dϕ‖Cb(H;H)
M

t

∫ t

0

e(t−s)ω(1 + E[|X(s, x)|])ds

≤ c
(

1 + cF‖Dϕ‖Cb(H;H)
M

t

∫ t

0

e(t−s)ωds

)
(1 + |x|).

This implies

sup
t∈(0,1]

∥∥∥∥Ptϕ− ϕt

∥∥∥∥
0,1

<∞.

Hence, ϕ ∈ D(K,Cb,1(H)) ∩ C1
b (H) and Kϕ = Lϕ + 〈Dϕ,F 〉 as claimed.

The opposite inclusion follows by interchanging the role of Rt and Pt in the
Taylor formula.

Let us set

L0ϕ(x) =
1

2
Tr
[
BB∗D2ϕ(x)

]
+ 〈x,A∗Dϕ(x)〉, ϕ ∈ EA(H), x ∈ H.

We need the following approximation result
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Proposition 4.13. For any ϕ ∈ EA(H) we have ϕ ∈ D(L,Cb,1(H)) and

Lϕ = L0ϕ. (4.20)

The set EA(H) is a π-core for the infinitesimal generator (L,D(L,Cb,1(H))),
and for any ϕ ∈ D(L,Cb,1(H))∩C1

b (H) there exists m ∈ N and an m-indexed
sequence (ϕn1,...,nm)n1,...,nm∈N ⊂ EA(H) such that

lim
n1→∞

· · · lim
nm→∞

ϕn1,...,nm

1 + | · |
π
=

ϕ

1 + | · |
, (4.21)

lim
n1→∞

· · · lim
nm→∞

L0ϕn1,...,nm

1 + | · |
π
=

Lϕ

1 + | · |
. (4.22)

Finally, if ϕ ∈ D(L,Cb,1(H)) ∩C1
b (H) we can choose the sequence in such a

way that (4.21), (4.22) hold and

lim
n1→∞

· · · lim
nm→∞

〈Dϕn1,...,nm , h〉
π
= 〈Dϕ, h〉, (4.23)

for any h ∈ H.

Proof. We recall that the proof of (4.20) may be found in [26], Remark 2.66
(in [26] the result is proved for the semigroup (Rt)t≥0 in the space Cb,2(H),
but it is clear that the result holds also in Cb,1(H)).

Here we give only a sketch of the proof, which is very similar to the proof
given in [37]. Take ϕ ∈ D(L,Cb,1(H)). For any n2 ∈ N, set

ϕn2(x) =
n2ϕ(x)

n2 + |x|2
.

Clearly, ϕn2 ∈ Cb(H) and (1 + | · |)−1ϕn2

π→ (1 + | · |)−1ϕ as n2 → ∞. By
Proposition 2.3, for any n2 ∈ N we fix a sequence2 (ϕn2,n3)n3∈N ⊂ EA(H) such

that ϕn2,n3

π→ ϕn2 as n3 →∞. Set now, for any n1, n2, n3, n4 ∈ N

ϕn1,n2,n3,n4(x) =
1

n4

n4∑
k=1

R k
n1n4

ϕn2n3(x). (4.24)

Since for any ϕ ∈ Cb,1(H), x ∈ H the function R+ → R, t 7→ Rtϕ(x) is
continuous, a straightforward computation shows that the sequence (ϕn1,...,n4)

2we assume that the sequence has only one index
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fulfils (4.21). Similarly, we find that for any x ∈ H it holds

lim
n1→∞

lim
n2→∞

lim
n3→∞

lim
n4→∞

L0ϕn1,n2,n3,n4(x)

= lim
n1→∞

lim
n2→∞

lim
n3→∞

lim
n4→∞

Lϕn1,n2,n3,n4(x)

= lim
n1→∞

lim
n2→∞

lim
n3→∞

n1

∫ 1
n1

0

LRtϕn2,n3(x)dt

= lim
n1→∞

lim
n2→∞

lim
n3→∞

n1

(
R 1

n1

ϕn2,n3(x)− ϕn2,n3(x)
)

= lim
n1→∞

(
R 1

n1

ϕ(x)− ϕ(x)
)

= Lϕ(x).

Here we have used the continuity of t 7→ LRtϕn2,n3(x) and the fact that
LRtϕn2,n3(x) = (d/dt)Rtϕn2,n3(x) (cfr. Proposition 4.6 and Proposition 4.8).
Let us check that any of the above limit is equibounded in Cb,1(H) with
respect to the corresponding index. By (4.24) we have

sup
n4∈N
‖Lϕn1,n2,n3,n4‖0,1 ≤ ‖Lϕn2n3‖0.

By contruction of (ϕn2,n3)n2,n3 we have

sup
n3∈N

∥∥∥n1

(
R 1

n1

ϕn2,n3 − ϕn2,n3

)∥∥∥
0,1
≤ sup

n3∈N
‖2n1ϕn2,n3‖0 <∞

and
sup
n2∈N

∥∥∥n1

(
R 1

n1

ϕn2 − ϕn2

)∥∥∥
0,1
≤ ‖2n1ϕ‖0,1.

Finally,

sup
n1∈N

∥∥∥(R 1
n1

ϕ− ϕ
)∥∥∥

0,1
<∞

since ϕ ∈ D(L,Cb,1(H)). Hence, (4.22) follows.
If ϕ ∈ D(L,Cb,1(H))∩C1

b (H), by Proposition 2.3, there exists a sequence3

(ϕn)n∈N ⊂ EA(H) such that ϕn
π→ ϕ as n → ∞ and 〈Dϕn, h〉

π→ 〈Dϕ, h〉 as
n→∞, for any h ∈ H. Since for any t > 0, n ∈ N we have

〈DRtϕn(x), h〉 =

∫
H

〈Dϕn(etAx+ y), h〉NQt(dy), x ∈ H

it follows 〈DRtϕn, h〉
π→ 〈DRtϕ, h〉 as n → ∞, for any h ∈ H. Then, the

claim follows by arguing as above.

By Theorem 4.12 and Proposition 4.13 we have

Corollary 4.14. (K,D(K,Cb,1(H))) is an extension of K0 and for any ϕ ∈
EA(H) we have ϕ ∈ D(K,Cb,1(H)) and Kϕ = K0ϕ.

3we assume that the sequence has only one index
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4.3.2 Approximation of F with smooth functions

It is convenient to introduce an auxiliary Ornstein–Uhlenbeck semigroup

Utϕ(x) =

∫
H

ϕ(etSx+ y)N 1
2
S−1(e2tS−1)(dy), ϕ ∈ Cb(H)

where S : D(S) ⊂ H → H is a self–adjoint negative definite operator such
that S−1 is of trace class. We notice that Ut is strong Feller, and for any t > 0,
ϕ ∈ Cb(H), Utϕ is infinite times differentiable with bounded differentials (see
[26]). We introduce a regularization of F by setting

〈Fn(x), h〉 =

∫
H

〈
F
(
e

1
n
Sx+ y

)
, e

1
n
Sh
〉
N 1

2
S−1(e

2
nS−1)

(dy), n ∈ N.

It is easy to check that Fn is infinite times differentiable, with first differential
bounded by κ, for any n ∈ N. Moreover, Fn(x) → F (x) as n → ∞ for all
x ∈ H and |Fn(x)| ≤ |F (x)|, for all n ∈ N, x ∈ H.

Let P n
t be the transition semigroup

P n
t ϕ(x) = E[ϕ(Xn(t, x))], ϕ ∈ Cb,1(H) (4.25)

where Xn(t, x) is the solution of (4.1) with Fn replacing F . It is easy to
check

lim
n→∞

E
[
|Xn(t, x)−X(t, x)|2

]
= 0, t ≥ 0, x ∈ H

and
E
[
|Xn(t, x)|

]
≤ E

[
|X(t, x)|

]
, t ≥ 0, x ∈ H,

where c0 > 0, ω0 ∈ R are as in Proposition 4.6. This implies

lim
n→∞

P n
t ϕ

1 + | · |
π
=

Ptϕ

1 + | · |
, (4.26)

for any t ≥ 0, ϕ ∈ Cb,1(H). We denote by (Kn, D(Kn, Cb,1(H))) the infini-
tesimal generator of the semigroup P n

t in Cb,1(H), defined as in (4.6) with
Kn replacing K and P n

t replacing Pt. We recall that all the statements of
Proposition 4.6, Theorem 4.9 hold also for P n

t and (Kn, D(Kn, Cb,1(H))). We
also recall that the resolvent of (K,D(K,Cb,1(H))) in Cb,1(H) is defined for
any λ > ω0 by the formula R(λ,K)f(x) =

∫∞
0
e−λtPtf(x)dt, f ∈ Cb,1(H),

x ∈ H (cfr. Theorem 4.9). Similarly, for a fixed n ∈ N the resolvent of
(Kn, D(Kn, Cb,1(H))) in Cb,1(H) at λ > 0 is defined by the same formula
with P n

t replacing Pt. Since (4.26) holds, it is straightforward to see that

lim
n→∞

R(λ,Kn)ϕ

1 + | · |
π
=
R(λ,K)ϕ

1 + | · |
, (4.27)
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for any ϕ ∈ Cb,1(H), λ > ω0.
The following proposition follows by Corollary 4.9 of [37] and by the fact

that ‖DFn‖ ≤ κ, for any n ∈ N.

Proposition 4.15. For any n ∈ N, let (Kn, D(Kn, Cb,1(H))) be the infinite-
simal generator of the semigroup (4.25). Then for any λ > max{0, ω+Mκ},
the resolvent R(λ,Kn) of Kn at λ maps C1

b into C1
b (H) and it holds

‖DR(λ,Kn)f‖Cb(H;H) ≤
M‖Df‖Cb(H;H)

λ− (ω +Mκ)
, f ∈ C1

b (H). (4.28)

Corollary 4.14 shows that K is an extension of K0 and that Kϕ = K0ϕ,
∀ϕ ∈ EA(H). So, in view of the fact that KPtϕ = PtK0ϕ for any ϕ ∈ EA(H)
(cfr. (i) of Proposition 4.8), it is not difficult to check that P ∗t µ, t ≥ 0 fulfils
(4.7), (4.10). Now, let µ ∈ M1(H) and assume that {µt, t ≥ 0} ⊂ M1(H)
fulfils (4.7), (4.10). In view of Theorem 4.11, to prove that µt = P ∗t µ, for
any t ≥ 0, it is sufficient to show that µt, t ≥ 0 is also a solution of (4.8). In
order to do this, we need an approximation result.

Lemma 4.16. The set EA(H) is a π-core for (K,D(K,Cb,1(H))), and for
any ϕ ∈ D(K,Cb,1(H)) there exist m ∈ N and an m-indexed sequence
(ϕn1,...,nm) ⊂ EA(H) such that

lim
n1→∞

· · · lim
nm→∞

ϕn1,...,nm

1 + | · |
π
=

ϕ

1 + | · |
, (4.29)

lim
n1→∞

· · · lim
nm→∞

K0ϕn1,...,nm

1 + | · |
π
=

Kϕ

1 + | · |
. (4.30)

Proof. Step 1. Let4 ϕ ∈ D(K,Cb,1(H)), λ > max{0, ω0, ω + Mκ} and set
f = λϕ−Kϕ. We fix a sequence (fn1) ⊂ C1

b (H) such that

lim
n1→∞

fn1

1 + | · |
π
=

f

1 + | · |
.

Set ϕn1 = R(λ,K)fn1 . By Proposition 4.8 it follows that

lim
n1→∞

ϕn1

1 + | · |
π
=

ϕ

1 + | · |
, lim

n1→∞

Kϕn1

1 + | · |
π
=

Kϕ

1 + | · |
. (4.31)

Step 2. Now set ϕn1,n2 = R(λ,Kn2)fn1 , where Kn2 is the infinitesimal
generator of the semigroup P n2

t , introduced in (4.25). Since fn1 ∈ C1
b (H), by

Proposition 4.15 we have ϕn1,n2 ∈ C1
b (H) and

sup
n2∈N
‖Dϕn1,n2‖Cb(H;H) ≤

M‖Dfn1‖Cb(H;H)

λ− (ω +Mκ)
, (4.32)

4the assumpion λ > ω0 is necessary to define the resolvent of K (cfr. Proposition 4.8)
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for any n1 ∈ N. Moreover, by (4.27) it holds

lim
n2→∞

ϕn1,n2

π
= ϕn1 , lim

n2→∞
Kn2ϕn1,n2

π
= Kϕn1 , (4.33)

for any n1 ∈ N. Since ϕn1,n2 ∈ D(Kn2 , Cb,1(H)) ∩ C1
b (H), by Theorem 4.12

we have
Kn2ϕn1,n2 = Lϕn1,n2 + 〈Dϕn1,n2 , Fn2〉.

Step 3. By Proposition 4.13, for any n1, n2 ∈ N there exists a sequence
(ϕn1,n2,n3) ⊂ EA(H) (we still assume that it has only one index) such that

lim
n3→∞

ϕn1,n2,n3

π
= ϕn1,n2 , lim

n3→∞

Lϕn1,n2,n3

1 + | · |
π
=
Lϕn1,n2

1 + | · |
(4.34)

and
lim
n3→∞

〈Dϕn1,n2,n3 , h〉
π
= 〈Dϕn1,n2 , h〉.

for any h ∈ H. Notice that, since Fn2 is globally Lipschitz, it follows that

lim
n3→∞

〈Dϕn1,n2,n3 , Fn2〉
1 + | · |

π
=
〈Dϕn1,n2 , Fn2〉

1 + | · |
.

This, together with (4.34), implies that the sequence (ϕn1,n2,n3) fulfils

lim
n3→∞

ϕn1,n2,n3

π
= ϕn1,n2 , lim

n3→∞

Kn2ϕn1,n2,n3

1 + | · |
π
=
Kn2ϕn1,n2

1 + | · |
.

Since K is an extension of K0 (cfr. Corollary 4.14), we have

Kϕn1,n2,n3 = K0ϕn1,n2,n3 = Kn2ϕn1,n2,n3 + 〈Dϕn1,n2,n3 , F − Fn2〉

for any n1, n2, n3 ∈ N. So we find

lim
n3→∞

K0ϕn1,n2,n3

1 + | · |
π
=
Kn2ϕn1,n2 + 〈Dϕn1,n2 , F − Fn2〉

1 + | · |
, (4.35)

for any n1, n2 ∈ N. Moreover, by (4.32), we see that

|〈Dϕn1,n2(x), F (x)− Fn2(x)〉|
1 + |x|

≤
M‖Dfn1‖Cb(H;H)

λ− (ω +Mκ)

|F (x)− Fn2(x)|
1 + |x|

and consequently

lim
n2→∞

〈Dϕn1,n2 , F − Fn2〉
1 + | · |

π
= 0.
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This, together with (4.33) implies

lim
n2→∞

Kn2ϕn1,n2 + 〈Dϕn1,n2 , F − Fn2〉
1 + | · |

π
=

Kϕn1

1 + | · |
. (4.36)

Finally, by taking into account (4.31), (4.35), (4.36), we can conclude that
the sequence (ϕn1,n2,n3)n1,n2,n3 fulfils

lim
n1→∞

lim
n2→∞

lim
n3→∞

ϕn1,n2,n3

1 + | · |
π
=

ϕ

1 + | · |
,

lim
n1→∞

lim
n2→∞

lim
n3→∞

K0ϕn1,n2,n3

1 + | · |
π
=

Kϕ

1 + | · |
.

This concludes the proof.

4.4 Proof of Theorem 4.4

Let ϕ ∈ D(K,Cb,1(H)) and assume that (ϕn)n∈N ⊂ EA(H) fulfils (4.29),
(4.30) (for simplicity we assume that this sequence has only one index: this
does not change the generality of the proof). For any t ≥ 0 we find∫
H

ϕ(x)µt(dx)−
∫
H

ϕ(x)µ(dx) = lim
n→∞

(∫
H

ϕn(x)µt(dx)−
∫
H

ϕn(x)µ(dx)

)
= lim

n→∞

∫ t

0

(∫
H

K0ϕn(x)µs(dx)

)
ds,

since ϕn ∈ D(K,Cb,1(H)) and Kϕn = K0ϕn, for any n ∈ N (cfr. Corollary
4.14). Now observe that since supn∈N |K0ϕn(x)| ≤ c(1 + |x|) for some c > 0
and since µs ∈M1(H) for any s ≥ 0, it holds

lim
n→∞

∫
H

K0ϕn(x)µs(dx) =

∫
H

Kϕ(x)µs(dx)

and

sup
n∈N

∣∣∣∣∫
H

K0ϕn(x)µs(dx)

∣∣∣∣ ≤ c

∫
H

(1 + |x|)|µs|(dx).

Hence, by taking into account (4.7) we can apply the dominated convergence
theorem to obtain

lim
n→∞

∫ t

0

(∫
H

K0ϕn(x)µs(dx)

)
ds =

∫ t

0

(∫
H

Kϕ(x)µs(dx)

)
ds



4.4 Proof of Theorem 4.4 69

So, µt, t ≥ 0 is also a solution of the measure equation for (K,D(K,Cb,1(H))).
Since by Theorem 4.2 such a solution is unique and it is given by P ∗t µ, t ≥ 0,
we have

∫
H
ϕ(x)P ∗t µ(dx) =

∫
H
ϕ(x)µt(dx), for any ϕ ∈ EA(H). By taking

into account that the set EA(H) is π-dense in Cb(H) (cf. Proposition 2.3),
we have

∫
H
ϕ(x)P ∗t µ(dx) =

∫
H
ϕ(x)µt(dx), for any ϕ ∈ Cb(H), which implies

P ∗t µ = µt, ∀t ≥ 0. This concludes the proof.
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Chapter 5

The reaction-diffusion operator

We deal with Kolmogorov operators associated to reaction-diffusion stochas-
tic equations. The results of Theorems 5.2, 5.3, 5.4 seem to be new and they
are contained in the submitted paper [38].

5.1 Introduction

We shall consider here the stochastic heat equation perturbed by a polyno-
mial term of odd degree d > 1 having negative leading coefficient (this will
ensures non explosion). We shall represent this polynomial as

λξ − p(ξ), ξ ∈ R,

where λ ∈ R and p is an increasing polynomial, that is p′(ξ) ≥ 0 for all ξ ∈ R.
We set H = L2(O) where O = [0, 1]n, n ∈ N, and denote by ∂O the

boundary of O. We are concerned with the following stochastic differential
equation with Dirichlet boundary conditions

dX(t, ξ) = [∆ξX(t, ξ) + λX(t, ξ)− p(X(t, ξ))]dt+BdW (t, ξ), ξ ∈ O,

X(t, ξ) = 0, t ≥ 0, ξ ∈ ∂O,

X(0, ξ) = x(ξ), ξ ∈ O, x ∈ H,
(5.1)

where ∆ξ is the Laplace operator, B ∈ L(H) and W is a cylindrical Wiener
process defined in a stochastic basis (Ω,F , (Ft)t≥0,P) in H. We choose W of
the form

W (t, ξ) =
∞∑
k=1

ek(ξ)βk(t), ξ ∈ O, t ≥ 0,

71
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where {ek} is a complete orthonormal system in H and {βk} a sequence of
mutually independent standard Brownian motions on (Ω,F , (Ft)t≥0,P).

Let us write problem (5.1) as a stochastic differential equation in the
Hilbert space H. For this we denote by A the realization of the Laplace
operator with Dirichlet boundary conditions,

Ax = ∆ξx, x ∈ D(A),

D(A) = H2(O) ∩H1
0 (O).

(5.2)

A is self–adjoint and has a complete orthonormal system of eigenfunctions,
namely

ek(ξ) = (2/π)n/2 sin(πk1ξ1) · · · (sinπknξn),

where k = (k1, ..., kn), ki ∈ N. For any x ∈ H we set xk = 〈x, ek〉, k ∈ Nn.
Notice that

Aek = −π2|k|2, k ∈ Nn, |k|2 = k2
1 + · · ·+ k2

n.

Therefore, we have
‖etA‖ ≤ e−π

2t, t ≥ 0. (5.3)

Remark 5.1. We can also consider the realization of the Laplace operator
∆ with Neumann boundary conditions

Nx = ∆ξx, x ∈ D(N),

D(N) =

{
x ∈ H2(O) :

∂x

∂η
= 0 on ∂O

}
where η represents the outward normal to ∂O. Then

Nfk = −π2|k|2fk, k ∈ (N ∩ {0})n,

where
fk(ξ) = (2/π)n/2 cos(πk1ξ1) · · · (cos πknξn),

k = (k1, ..., kn), ki ∈ N ∪ {0} and |k|2 = k2
1 + · · ·+ k2

n.

Concerning the operator B we shall assume, for the sake of simplicity (1),
that B = (−A)−γ/2, where

γ >
n

2
− 1. (5.4)

1All following results remain true taking B = G(−A)−γ/2 with G ∈ L(H).
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The reason of this assumption will be explained in section 5.4.
Now, setting X(t) = X(t, ·) and W (t) = W (t, ·), we shall write problem

(5.1) as dX(t) = [AX(t) + F (X(t))]dt+ (−A)−γ/2dW (t),

X(0) = x.
(5.5)

where F is the mapping

F : D(F ) = L2d(O) ⊂ H → H, x(ξ) 7→ λξ − p(x(ξ)).

It is well known that for any x ∈ L2d(O) problem (5.5) has a unique mild
solution X(t, x), t ≥ 0, x ∈ H (see, for instance, [9], [26]), fulfilling

X(t, x) = etAx+

∫ t

0

e(t−s)ABdW (s) +

∫ t

0

e(t−s)AF (X(s, x))ds (5.6)

for any t ≥ 0. Finally, it is well known that for any T > 0 there exists c > 0
such that

sup
t∈[0,T ]

E
[
|X(t, x)|dL2d(O)

]
≤ c

(
1 + |x|dL2d(O)

)
. (5.7)

|X(t, x)−X(t, y)| ≤ e(λ−π
2)t|x− y|, (5.8)

see [26], Theorem 4.8.

5.2 Main results

We consider here the Kolmogorov operator

K0ϕ(x) =
1

2
Tr
[
BB∗D2ϕ(x)

]
+ 〈x,ADϕ(x)〉+ 〈Dϕ(x), F (x)〉, x ∈ L2d(O).

(5.9)
We are interested in extending the results of Theorems 4.2, 4.3, 4.4 to this
operator. This will be done in Theorems 5.2, 5.3, 5.4 respectively.

Denote by Cb,d(L
2d(O)) the space of all functions ϕ : L2d(O) → R such

that the function

L2d(O)→ R, x→ ϕ(x)

1 + |x|d
L2d(O)

is uniformly continuous and bounded. The space Cb,d(L
2d(O)), endowed with

the norm

‖ϕ‖Cb,d(L2d(O)) = sup
x∈L2d(O)

|ϕ(x)|
1 + |x|d

L2d(O)
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is a Banach space. For a sequence (ϕn)n∈N ⊂ Cb,d(L
2d(O)) and a function

ϕ ∈ Cb,d(L2d(O)) we write

lim
n→∞

ϕn
1 + | · |d

L2d(O)

π
=

ϕ

1 + | · |d
L2d(O)

.

if

lim
n→∞

ϕn(x)

1 + |x|d
L2d(O)

=
ϕ(x)

1 + |x|d
L2d(O)

, ∀x ∈ L2d(O)

and

sup
n∈N
‖ϕn‖Cb,d(L2d(O)) <∞.

Thanks to estimates (5.7) and (5.8) we can define a semigroup of transi-
tion operators in Cb,d(L

2d(O)), by the formula

Ptϕ(x) = E
[
ϕ(X(t, x))

]
, t ≥ 0, ϕ ∈ Cb,d(L2d(O)), x ∈ L2d(O), (5.10)

see Proposition 5.5. We define its infinitesimal generator by setting

D(K,Cb,d(L
2d(O))) =

{
ϕ ∈ Cb,d(L2d(O)) : ∃g ∈ Cb,d(L2d(O)),

lim
t→0+

Ptϕ(x)− ϕ(x)

t
= g(x), ∀x ∈ L2d(O),

sup
t∈(0,1)

∥∥∥∥Ptϕ− ϕt

∥∥∥∥
Cb,d(L2d(O))

<∞
}

Kϕ(x) = lim
t→0+

Ptϕ(x)− ϕ(x)

t
, ϕ ∈ D(K,Cb,d(L

2d(O))), x ∈ L2d(O).

(5.11)
We recall thatMd(L

2d(O)) is the space of all finite Borel measures on L2d(O)
such that ∫

L2d(O)

|x|dL2d(O)|µ|TV (dx) <∞.

Since L2d(O) ⊂ H, we have Md(L
2d(O)) ⊂ M(H). The following theorem

generalizes Theorem 4.2 to the reaction-diffusion case.

Theorem 5.2. Let (Pt)t≥0 be the semigroup defined by (5.10) in Cb,2(H), and
let (K,D(K,Cb,d(L

2d(O)))) be its infinitesimal generator in Cb,d(L
2d(O)),

defined by (5.11). Then, the formula

〈ϕ, P ∗t F 〉L(Cb,d(L2d(O)), (Cb,d(L2d(O)))∗) = 〈Ptϕ, F 〉L(Cb,d(L2d(O)), (Cb,d(L2d(O)))∗)
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defines a semigroup (P ∗t )t≥0 of linear and bounded operators on (Cb,d(L
2d(O)))∗

which mapsMd(L
2d(O)) intoMd(L

2d(O)). Moreover, for any µ ∈Md(L
2d(O))

there exists a unique family of measures {µt, t ≥ 0} ⊂ Md(L
2d(O)) such that∫ T

0

(∫
H

|x|dL2d(O)|µt|TV (dx)

)
dt <∞, ∀T > 0 (5.12)

and ∫
H

ϕ(x)µt(dx)−
∫
H

ϕ(x)µ(dx) =

∫ t

0

(∫
H

Kϕ(x)µs(dx)

)
ds, (5.13)

t ≥ 0, ϕ ∈ D(K,Cb,d(L
2d(O))). Finally, the solution of (5.12), (5.13) is

given by P ∗t µ, t ≥ 0.

It is worth noticing that Cb(H) ⊂ Cb,1(H) ⊂ Cb,d(L
2d(O)), with continu-

ous embedding. This argument will be used in what follows. Note, also, that
for any ϕ ∈ Cb,d(L2d(O)) there exists a sequence (ϕn)n∈N ⊂ Cb(H) such that

lim
n→∞

ϕn
1 + | · |d

L2d(O)

π
=

ϕ

1 + | · |d
L2d(O)

.

The main result of this section is the following

Theorem 5.3. The operator (K,D(K,Cb,d(L
2d(O)))) defined in (5.11) is an

extension of K0, and for any ϕ ∈ EA(H) we have ϕ ∈ D(K,Cb,d(L
2d(O))) and

Kϕ = K0ϕ. Moreover, the set EA(H) is a π-core for (K,D(K,Cb,d(L
2d(O)))),

that is for any ϕ ∈ D(K,Cb,d(L
2d(O))) there exist m ∈ N and an m-indexed

sequence (ϕn1,...,nm)n1∈N,...,nm∈N ⊂ EA(H) such that

lim
n1→∞

· · · lim
nm→∞

ϕn1,...,nm

1 + | · |d
L2d(O)

π
=

ϕ

1 + | · |d
L2d(O)

(5.14)

and

lim
n1→∞

· · · lim
nm→∞

K0ϕn1,...,nm

1 + | · |d
L2d(O)

π
=

Kϕ

1 + | · |d
L2d(O)

. (5.15)

Thanks to Theorem 5.3 we are able to prove the following

Theorem 5.4. For any µ ∈ Md(L
2d(O)) there exists a unique family of

measures {µt, t ≥ 0} ⊂ Md(L
2d(O)) fulfilling (5.12) and the measure equa-

tion ∫
H

ϕ(x)µt(dx)−
∫
H

ϕ(x)µ(dx) =

∫ t

0

(∫
H

K0ϕ(x)µs(dx)

)
ds, (5.16)

t ≥ 0, ϕ ∈ EA(H). Finally, the solution of (5.12), (5.16) is given by P ∗t µ,
t ≥ 0.
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In the next section we study the transition semigroup (5.10) and its infi-
nitesimal generator (5.11) in the space Cb,d(L

2d(O)). In section 5.4 we shall
introduce an approximation of problem (5.5) that will be often used in what
follows. Finally, in sections 5.5, 5.6, 5.7 we prove Theorems 5.2, 5.3, 5.4,
respectively.

5.3 The transition semigroup in Cb,d(L
2d(O))

The following two propositions may be proved in essentially the same way as
Proposition 4.6 and Proposition 4.8.

Proposition 5.5. Formula (5.10) defines a semigroup of operators (Pt)t≥0 in
Cb,d(L

2d(O)), and there exists a family of probability measures {πt(x, ·), t ≥
0, x ∈ L2d(O)} ⊂ Md(L

2d(O)) and two constants c0, ω0 > 0, such that

(i) Pt ∈ L(Cb,d(L
2d(O))) and ‖Pt‖L(Cb,d(L2d(O))) ≤ c0e

ω0t;

(ii) Ptϕ(x) =

∫
H

ϕ(y)πt(x, dy), for any t ≥ 0, ϕ ∈ Cb,d(L
2d(O)), x ∈

L2d(O);

(iii) for any ϕ ∈ Cb,d(L2d(O)), x ∈ H, the function R+ → R, t 7→ Ptϕ(x) is
continuous.

(iv) PtPs = Pt+s, for any t, s ≥ 0 and P0 = I;

(v) for any ϕ ∈ Cb,d(L
2d(O)) and any sequence (ϕn)n∈N ⊂ Cb,d(L

2d(O))
such that

lim
n→∞

ϕn
1 + | · |d

L2d(O)

π
=

ϕ

1 + | · |d
L2d(O)

we have, for any t ≥ 0,

lim
n→∞

Ptϕn
1 + | · |d

L2d(O)

π
=

Ptϕ

1 + | · |d
L2d(O)

.

Proposition 5.6. Under the hypothesis of Proposition 5.5, let us consider
the infinitesimal generator (K,D(K,Cb,d(L

2d(O)))) of Pt defined in (5.11).
Then

(i) for any ϕ ∈ D(K,Cb,d(L
2d(O))), we have Ptϕ ∈ D(K,Cb,d(L

2d(O)))
and KPtϕ = PtKϕ, t ≥ 0;



5.4 Some auxiliary results 77

(ii) for any ϕ ∈ D(K,Cb,d(L
2d(O))), x ∈ L2d(O), the map [0,∞) → R,

t 7→ Ptϕ(x) is continuously differentiable and (d/dt)Ptϕ(x) = PtKϕ(x);

(iii) given c0, ω0 > 0 as in Proposition 5.5, for any ω > ω0 the linear ope-
rator R(ω,K) on Cb,d(L

2d(O)) defined by

R(ω,K)f(x) =

∫ ∞
0

e−ωtPtf(x)dt, f ∈ Cb,d(L2d(O)), x ∈ L2d(O)

satisfies, for any f ∈ Cb,1(H)

R(ω,K) ∈ L(Cb,d(L
2d(O))), ‖R(ω,K)‖L(Cb,d(L2d(O))) ≤

c0
ω − ω0

R(ω,K)f ∈ D(K,Cb,d(L
2d(O))), (ωI −K)R(ω,K)f = f.

We call R(ω,K) the resolvent of K at ω.

5.4 Some auxiliary results

It is convenient to consider the Ornstein–Uhlenbeck processdZ(t) = AZ(t)dt+ (−A)−γ/2dW (t),

Z(0) = x,

and the corresponding transition semigroup in Cb,1(H)

Rtϕ(x) = E[ϕ(Z(t, x))], ϕ ∈ Cb,1(H). (5.17)

Notice that thanks to (5.3), (5.4) the operator

Qtx=

∫ t

0

esABB∗esA∗xds =

∫ t

0

(−A)−γe2tAxdt

= 1
2
(−A)−(1+γ)(1− e2tA)x, t ≥ 0, x ∈ H,

is of trace class. This implies that the Ornstein-Uhlenbeck process Z(t, x)
has Gaussian law of mean etAx and covariance operator Qt. For the corre-
sponding transition semigroup the representation formula

Rtϕ(x) =

∫
H

ϕ(etAx+ y)NQt(dy)
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holds for any t ≥ 0, ϕ ∈ Cb,1(H), x ∈ H. Notice that we can take γ = 0
and B = I (white noise) only for n = 1. As in section 4.3.1, we denote
by (L,D(L,Cb,1(H))) the infinitesimal generator of the Ornstein-Uhlenbeck
semigroup (Rt)t≥0 in the space Cb,1(H).

A basic tool for proving our results is provided by the following approxi-
mating problemdX

n(t) = (AXn(t) + Fn(Xn(t))dt+ (−A)−γ/2dW (t),

Xn(0) = x ∈ H,
(5.18)

where for any n ∈ N, Fn : H → H is defined by

Fn(x)(ξ) = λx(ξ)− pn(x(ξ)), x ∈ H

and pn is defined by

pn(η) =
np(η)√
n2 + p2(η)

, η ∈ R.

Notice that pn is bounded and differentiable, with bounded differential

p′n(η) =
np′(η)√
n2 + p2(η)

(
1− p2(η)

n2 + p2(η)

)
≥ 0,

for any n ∈ N, η ∈ R. Clearly, |pn(η)| ≤ |p(η)|, η ∈ R and pn(η) → p(η) as
n → ∞, for any η ∈ R. The mapping Fn : H → H is Lipschitz continuous,
and for any n ∈ N, x ∈ H problem (5.18) has a unique mild solution Xn(t, x),
t ≥ 0 (cfr. section 1). Since by the above discussion we have |Fn(x)| ≤ |F (x)|,
x ∈ H and |Fn(x)| → |F (x)| as n → ∞, for any x ∈ H it is not difficult
though tedious to show that for any x ∈ L2d(O) it holds

lim
n→∞

sup
t∈[0,T ]

E
[
|Xn(t, x)−X(t, x)|2

]
= 0 (5.19)

and
E
[
|Xn(t, x)|dL2d(O)

]
≤ E

[
|X(t, x)|dL2d(O)

]
, n ∈ N. (5.20)

Thanks to (5.19), (5.20) and by the fact that Fn : H → H is Lipschitz
continuous, we can define the transition semigroup associated to the mild
solution of (5.18) in both the spaces Cb,d(L

2d(O)) and Cb,1(H).

Proposition 5.7. For any n ∈ N, let (P n
t )t≥0 be the transition semigroup

associated to the mild solution of problem (5.18) in the space Cb,d(L
2d(O)),

defined as in (5.10) with Xn(t, x) replacing X(t, x). Then
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(i) (P n
t )t≥0 satisfies statements (i)–(v) of Proposition 5.5, and for c0, ω0

as in Proposition 5.5 we have ‖P n
t ‖L(Cb,d(L2d(O))) ≤ c0e

ω0t;

(ii) (P n
t )t≥0 is a semigroup of operators in the space Cb,1(H). Moreover

it satisfies statements (i)–(v) of Proposition 4.6. In particular, there
exists cn, ωn > 0 such that ‖P n

t ‖L(Cb,1(H)) ≤ cne
ωnt, for any t ≥ 0.

Proof. (i) follows by (5.20). (ii) follows since equation (5.18) satisfies Hy-
pothesis 4.1.

By (ii) of Proposition 5.7, we can define, for any n ∈ N, the infinitesimal
generator (Kn, D(Cb,1(H))) of the semigroup (P n

t )t≥0 in the space Cb,1(H)
(cfr. (4.6)).

By Theorem 4.12 and Proposition 5.7 it follows that

Proposition 5.8. For any n ∈ N we have that D(L,Cb,1(H)) ∩ C1
b (H) =

D(Kn, Cb,1(H)) ∩ C1
b (H), and for any ϕ ∈ D(L,Cb,1(H)) ∩ C1

b (H) we have
Knϕ = Lϕ+ 〈Dϕ,Fn〉.

The semigroup (P n
t )t≥0 enjoys the following property, which will be es-

sential in the proof of Theorem 5.3.

Proposition 5.9. For any n ∈ N, the semigroup (P n
t )t≥0 maps C1

b (H) into
C1
b (H), and for any ϕ ∈ C1

b (H) it holds

|DPtϕ(x)| ≤ e2(λ−π2)t sup
x∈H
|Dϕ(x)|

Proof. Since the nonlinear mapping Fn is differentiable with uniformly con-
tinuous and bounded differential, it is well known (see, for instance, [22]) that
the mild solution Xn(t, x) of problem (5.18) is differentiable with respect to
x and for any x, h ∈ H we have DXn(t, x) ·h = ηhn(t, x), where ηhn(t, x) is the
mild solution of the differential equation with random coefficients

d

dt
ηhn(t, x) = Aηhn(t, x) +DFn(Xn(t, x)) · ηhn(t, x) t ≥ 0

ηhn(t, x) = 0.

Multiplying the above identity by ηhn(t, x) and integrating over O we find
that

1

2

d

dt
|ηhn(t, x)|2 = 〈(A+λ)ηhn(t, x), ηhn(t, x)〉−

∫
O
p′n(Xn(t, x)(ξ))|ηhn(t, x)(ξ)|2dξ.

Taking into account that p′n ≥ 0 and integrating by parts we find that

1

2

d

dt
|ηhn(t, x)|2 +

∫
O
|Dξη

h
n(t, x)(ξ)|2dξ ≤ λ|ηhn(t, x)|2.
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Now, the classical Poincaré inequality implies |Dξη
h
n(t, x)| ≥ π2|ηhn(t, x)| and

so we obtain

1

2

d

dt
|ηhn(t, x)|2 ≤ (λ− π2)|ηhn(t, x)|2, x ∈ H, t ≥ 0.

Consequently, by the Gronwall lemma we find that

|ηh(t, x)| ≤ e2(λ−π2)t|h|. (5.21)

Now take ϕ ∈ C1
b (H). For any x, h ∈ H we have

DP n
t ϕ(x) · h = E

[
Dϕ(Xn(t, x)) · ηh(t, x)

]
.

Hence by (5.21)

|DP n
t ϕ(x) · h| ≤ E

[
|Dϕ(Xn(t, x))||ηh(t, x)|

]
≤ sup

x∈H
|Dϕ(x)|e2(λ−π2)t|h|,

which implies the result.

5.5 Proof of Theorem 5.2

We have first to show that (P ∗t )t≥0 is a semigroup of linear and continuous
operators in (Cb,d(L

2d(O)))∗ and that P ∗t µ ∈ Md(L
2d(O)) for any t ≥ 0,

µ ∈Md(L
2d(O)). These facts follow by Proposition 5.5 and by the argument

of Lemma 4.10. We leave the details to the reader.
We now show existence of a solution for the measure equation, namely

we show that P ∗t µ, t ≥ 0 fulfils (5.16), (5.12). To show that P ∗t µ, t ≥ 0 fulfils
(5.16) one can use the argument from Lemma 4.11. We left the details to
the reader. We now check that (5.12) holds. Fix T > 0. By the local
boundedness of the operators P ∗t µ and by the semigroup property it follows
that there exists c > 0 such that

sup
t∈[0,T ]

‖P ∗t ‖L((Cb,d(L2d(O)))∗) ≤ c.

Still by the first part of the theorem, since µ ∈ Md(L
2d(O)) we have P ∗t µ ∈

Md(L
2d(O)). Hence∫ T

0

(∫
H

|x|dL2d(O)|P
∗
t µ|TV (dx)

)
dt =

∫ T

0

(∫
L2d(O)

|x|dL2d(O)|P
∗
t µ|TV (dx)

)
dt

≤
∫ T

0

‖P ∗t µ‖(Cb,d(L2d(O)))∗dt ≤ c

∫ T

0

‖µ‖(Cb,d(L2d(O)))∗dt

= cT‖µ‖(Cb,d(L2d(O)))∗ = cT

∫
L2d(O))

(1 + |x|dL2d(O))|µ|TV (dx) <∞.
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Then, (5.12) is proved.
Let us prove uniqueness of the solution. By (4.3) follows that the mild

solutionX(t, x) of problem (5.6) can be extended to a process (X(t, x))t≥0,x∈H
with values in H and adapted to the filtration (Ft)t≥0. In the literature, the
process X(·, x) is called a generalized solution of equation (5.6) (see [26]).
Hence, we can extend the transition semigroup (5.10) to a semigroup in
Cb(H), still denoted by (Pt)t≥0, by setting

Ptϕ(x) = E [ϕ(X(t, x))] t ≥ 0, x ∈ H, ϕ ∈ Cb(H).

Clearly, ‖Pt‖L(Cb(H)) ≤ 1. In addition, the representation

Ptϕ(x) =

∫
H

ϕ(y)π′t(x, dy)

holds for any ϕ ∈ Cb(H), where π′t(x, ·) is the probability measure on H
defined by π′t(x,Γ) = P(X(t, x) ∈ Γ), Γ ∈ B(H). It is clear that π′t(x,Γ) =
πt(x,Γ) when Γ ∈ B(L2d(O)). We define the infinitesimal generator K :
D(K,Cb(H)) → Cb(H) of the semigroup (Pt)t≥0 in the space Cb(H) as in
(4.13). By arguing as in Lemma 4.11, one can show that the semigroup
(Pt)t≥0 in Cb(H) is a stochastically continuous Markov semigroup, in the
sense of [37]. So, we can apply Theorem 4.9 and then for any µ ∈ M(H)
there exists a unique family of measures {µt, t ≥ 0} ⊂ M(H) such that∫ T

0

|µt|TV (H)dt <∞, ∀T > 0 (5.22)

and (5.13) holds for any t ≥ 0 and ϕ ∈ D(K,Cb(H)).
Now take µ = 0, and assume that {µt, t ≥ 0} ⊂ Md(L

2d(O)) fulfils
(5.16), (5.12). Then {µt, t ≥ 0} ⊂ M(H). We want to show now that µt,
t ≥ 0 fulfils also (5.22) and (5.13) for any t ≥ 0, ϕ ∈ D(K,Cb(H)). Taking
in mind that for this equation the solution is unique, this will imply µt = 0
(as measure in H and consequently as measure in L2d(O)) for any t ≥ 0.

Clearly, (5.22) follows by (5.16). It is also possible to prove, by a standard
argument, that D(K,Cb(H)) ⊂ D(K,Cb,d(L

2d(O))) and D(K,Cb(H)) =
{ϕ ∈ D(K,Cb,d(L

2d(O))) ∩ Cb(H) : Kϕ ∈ Cb(H)}. Then, for any ϕ ∈
D(K,Cb(H)), we have ϕ ∈ D(K,Cb,d(L

2d(O))) and hence (5.13) holds for
any ϕ ∈ D(K,Cb(H)). This concludes the proof.

5.6 Proof of Theorem 5.3

The proof is splitted into two lemmata.
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Lemma 5.10. (K,D(K,Cb,d(L
2d(O)))) is an extension of K0, and for any

ϕ ∈ EA(H) we have ϕ ∈ D(K,Cb,d(L
2d(O))) and Kϕ = K0ϕ.

Proof. It is sufficient to prove the claim for ϕ ∈ EA(H) of the form ϕ(x) =
ei〈x,h〉, x ∈ H, where h ∈ D(A). For any t ≥ 0, x ∈ L2d(O) we have

X(t, x) = Z(t, x) +

∫ t

0

e(t−s)AF (X(s, x))ds,

where Z(t, x) is the OU process introduced in section 5.4. Then we have

Rtϕ(x)− ϕ(x) = Ptϕ(x)− ϕ(x)

−iE
[∫ 1

0

ϕ(ξZ(t, x) + (1− ξ)X(t, x))

〈
h,

∫ t

0

e(t−s)AF (X(s, x))ds

〉
dξ

]
,

for any x ∈ L2d(O), since 〈Dϕ(x), y〉 = iϕ(x)〈h, y〉. Since Z(t, x), X(t, x)
are continuous in mean square, by arguing as for Theorem 4.12 it follows

lim
t→0+

iE
[

1

t

∫ 1

0

ϕ(ξZ(t, x) + (1− ξ)X(t, x))

〈
h,

∫ t

0

e(t−s)AF (X(s, x))ds

〉
dξ

]
= iϕ(x)〈h, F (x)〉 = 〈Dϕ(x), F (x)〉. (5.23)

In addition, by (5.7) we have that for any x ∈ L2d(O)

1

t

∣∣∣∣E [∫ 1

0

ϕ(ξZ(t, x) + (1− ξ)X(t, x))

〈
h,

∫ t

0

e(t−s)AF (X(s, x))ds

〉
dξ

]∣∣∣∣
≤ |h|

t
E
[∣∣∣∣∫ t

0

e(t−s)AF (X(s, x))ds

∣∣∣∣] ≤ |h|t
∫ t

0

E [|F (X(s, x))|] ds

≤ |h|
t

∫ t

0

E
[
|X(s, x)|dL2d(O)ds

]
≤ |h|c

(
1 + |x|dL2d(O)

)
. (5.24)

for some c > 0. We recall that EA(H) ⊂ D(L,Cb,1(H)) ∩ C1
b (H). by (5.23)

and Proposition 4.13 it follows

lim
t→0+

Ptϕ(x)− ϕ(x)

t
= Lϕ(x) + 〈Dϕ(x), F (x)〉 = K0ϕ(x), ∀x ∈ L2d(O).

By (5.24) we have

sup
t∈(0,1]

∥∥∥∥Ptϕ− ϕt

∥∥∥∥
Cb,d(L2d(O))

≤ sup
t∈(0,1)

∥∥∥∥Rtϕ− ϕ
t

∥∥∥∥
0,1

+ |h|c <∞

that implies ϕ ∈ D(K,Cb,d(L
2d(O))). This concludes the proof.
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Lemma 5.11. The set EA(H) is a π-core for (K,D(K,Cb,d(L
2d(O)))), and

for any ϕ ∈ D(K,Cb,d(L
2d(O))) there exists m ∈ N and an m-indexed se-

quence (ϕn1,...,nm) ⊂ EA(H) such that

lim
n1→∞

· · · lim
nm→∞

ϕn1,...,nm

1 + | · |d
L2d(O)

π
=

ϕ

1 + | · |d
L2d(O)

, (5.25)

lim
n1→∞

· · · lim
nm→∞

K0ϕn1,...,nm

1 + | · |d
L2d(O)

π
=

Kϕ

1 + | · |d
L2d(O)

. (5.26)

Proof. Take ϕ ∈ D(K,Cb,d(L
2d(O))). We shall construct the claimed se-

quence in four steps.
Step 1. Fix ω > ω0, 2(λ − π2) and set f = ωϕ − Kϕ. Then we have
ϕ = R(ω,K)f . We approximate f as follows: for any n1 ∈ N we set

fn1(x) =
n1f(e

1
n1
A
x)

n1 + |e
1
n1
A
x|d
L2d(O)

, x ∈ H

By the well known properties of the heat semigroup, we have e
1
n1
A
x ∈ L2d(O),

for any x ∈ H. Hence, fn1 ∈ Cb(H) and

lim
n1→∞

fn1

1 + | · |d
L2d(O)

π
=

f

1 + | · |d
L2d(O)

.

By Proposition 5.5 we have

lim
n1→∞

Ptfn1

1 + | · |d
L2d(O)

π
=

Ptf

1 + | · |d
L2d(O)

for any t ≥ 0. Since we have ‖Pt‖L(Cb,d(L2d(O))) ≤ c0e
ω0t, ∀t ≥ 0 (cfr. (i) of

Proposition 5.5) and ω > ω0, it follows

lim
n1→∞

R(ω,K)fn1

1 + | · |d
L2d(O)

π
=

R(ω,K)f

1 + | · |d
L2d(O)

.

Setting ϕn1 = R(ω,K)fn1 , by the above argument we have

lim
n1→∞

ϕn1

1 + | · |d
L2d(O)

π
=

ϕ

1 + | · |d
L2d(O)

, lim
n1→∞

Kϕn1

1 + | · |d
L2d(O)

π
=

Kϕ

1 + | · |d
L2d(O)

.

(5.27)
Step 2. For any n1 ∈ N, let us fix a sequence (fn1,n2)n2∈N ⊂ C1

b (H) such
that

lim
n2→∞

fn1,n2

π
= fn1 .
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Now set ϕn1,n2 = R(ω,K)fn1,n2 . By arguing as in step 1 we have

lim
n2→∞

ϕn1,n2

π
= ϕn1 , lim

n2→∞
Kϕn1,n2

π
= Kϕn1 . (5.28)

Step 3. We now consider the approximation of K introduced in section
5.4. We denote by (Kn3 , D(Kn3 , Cb,1(H))) the infinitesimal generator of the
transition semigroup associated to the mild solution of problem (5.18) in the
space Cb,1(H). For any n1, n2, n3 ∈ N set

ϕn1,n2,n3 =

∫ ∞
0

e−ωtP n3
t fn1,n2dt.

For any n1, n2, n3 ∈ N the function ϕn1,n2,n3 is bounded, since∣∣∣∣∫ ∞
0

e−ωtP n3
t fn1,n2dt

∣∣∣∣ ≤ ‖f‖0 ∫ ∞
0

e−ωtdt <∞.

The fact that ϕn1,n2,n3 ∈ Cb(H) follows by standard computations. By (v) of
Proposition 4.6 and by (i) of Proposition 5.7 it follows that

lim
n3→∞

ϕn1,n2,n3

1 + | · |d
L2d(O)

π
=

ϕn1,n2

1 + | · |d
L2d(O)

, (5.29)

It is also stardard to show that for any n1, n2, n3 ∈ N it holds ϕn1,n2,n3 ∈
D(Kn3 , Cb,1(H))) for and Kn3ϕn1,n2,n3 = ωϕn1,n2,n3 − fn1,n2 . Hence, by (5.29)
we obtain

lim
n3→∞

Kn3ϕn1,n2,n3

1 + | · |d
L2d(O)

π
=

Kϕn1,n2

1 + | · |d
L2d(O)

(5.30)

By Proposition 5.9 it follows that ϕn1,n2,n3 ∈ C1
b (H) and

|Dϕn1,n2,n3(x)| =
∣∣∣∣∫ ∞

0

e−ωtDP n3
t fn1,n2(x)dt

∣∣∣∣
≤
∫ ∞

0

e−(ω−2λ+2π2)tdt sup
x∈H
|Dfn1,n2(x)| ≤ supx∈H |Dfn1,n2(x)|

ω − 2(λ− π2)
. (5.31)

Hence ϕn1,n2,n3 ∈ D(Kn3 , Cb,1(H)))∩C1
b (H), and by Proposition 5.8 it follows

that Kn3ϕn1,n2,n3 = Lϕn1,n2,n3 + 〈Dϕn1,n2,n3 , Fn3〉. Hence, by Lemma 5.10 we
have, for any x ∈ L2d(O)

Kϕn1,n2,n3(x) =Lϕn1,n2,n3(x) + 〈Dϕn1,n2,n3(x), F (x)〉
=Kn3ϕn1,n2,n3(x) + 〈Dϕn1,n2,n3(x), F (x)− Fn3(x)〉.(5.32)
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We recall that |Fn3(x)| ≤ |F (x)| ≤ c|x|d
L2d(O)

, for any n3 ∈ N, x ∈ L2d(O)

and for some c > 0. In addition, |Fn3(x) − F (x)| → 0 as n3 → ∞, for any
x ∈ L2d(O). Consequently, by (5.31) it follows that

lim
n3→∞

〈Dϕn1,n2,n3 , F − Fn3〉
1 + | · |d

L2d(O)

π
= 0. (5.33)

Step 4. By Propositon 4.13 for any n1, n2, n3 ∈ N there exists a sequence2

(ϕn1,n2,n3,n4) ⊂ EA(H) such that

lim
n4→∞

ϕn1,n2,n3,n4

π
= ϕn1,n2,n3 , (5.34)

lim
n4→∞

1
2
Tr
[
BB∗D2ϕn1,n2,n3,n4

]
+ 〈x,ADϕn1,n2,n3,n4〉

1 + | · |
π
=
Lϕn1,n2,n3

1 + | · |
(5.35)

and for any h ∈ H

lim
n4→∞

〈Dϕn1,n2,n3,n4 , h〉
π
= 〈Dϕn1,n2,n3 , h〉.

This, together with the above approximation, implies that for any n1, n2, n3 ∈
N we have

lim
n4→∞

〈Dϕn1,n2,n3,n4 , F − Fn3〉
1 + | · |d

L2d(O)

π
=
〈Dϕn1,n2,n3 , F − Fn3〉

1 + | · |d
L2d(O)

. (5.36)

Step 5. By (5.27), (5.28), (5.29), (5.34) we have

lim
n1→∞

lim
n2→∞

lim
n3→∞

lim
n4→∞

ϕn1,n2,n3,n4

1 + | · |d
L2d(O)

π
=

ϕ

1 + | · |d
L2d(O)

,

and consequently (5.25) follows. We now check

lim
n1→∞

lim
n2→∞

lim
n3→∞

lim
n4→∞

K0ϕn1,n2,n3,n4

1 + | · |d
L2d(O)

π
=

Kϕ

1 + | · |d
L2d(O)

.

This will prove (5.26). By Lemma 5.10, for any n1, n2, n3, n4 ∈ N we have
Kϕn1,n2,n3,n4 = K0ϕn1,n2,n3,n4 . Moreover, by Theorem 4.3 we have ϕn1,n2,n3,n4 ∈
D(Kn3 , Cb,1(H))) and by (5.32)

K0ϕn1,n2,n3,n4(x) = Kn3ϕn1,n2,n3,n4(x) + 〈Dϕn1,n2,n3,n4(x), F (x)− Fn3(x)〉,
2we assume that it has one index
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for any n1, n2, n3, n4 ∈ N, x ∈ L2d(O). By (5.32), (5.35), (5.36) it holds

lim
n4→∞

K0ϕn1,n2,n3,n4

1 + | · |d
L2d(O)

π
=
Kn3ϕn1,n2,n3 + 〈Dϕn1,n2,n3 , F − Fn3〉

1 + | · |d
L2d(O)

.

By (5.30), (5.33) it holds

lim
n3→∞

Kn3ϕn1,n2,n3 + 〈Dϕn1,n2,n3 , F − Fn3〉
1 + | · |d

L2d(O)

π
=

Kϕn1,n2

1 + | · |d
L2d(O)

.

By (5.27), (5.28) it holds

lim
n1→∞

lim
n2→∞

Kϕn1,n2

1 + | · |d
L2d(O)

π
=

Kϕ

1 + | · |d
L2d(O)

.

5.7 Proof of Theorem 5.4

Take µ ∈ Md(L
2d(O)). The fact that P ∗t µ, t ≥ 0 fulfils (5.12) and (5.16)

follows by Theorems 5.2, 5.3 and by the fact that KPtϕ = PtKϕ = PtK0ϕ,
for any ϕ ∈ EA(H) (cfr. Proposition 5.6 and Lemma 5.10). Hence, exi-
stence of a solution is proved. Let us show that such a solution is unique.
Assume that {µt, t ≥ 0} ⊂ Md(L

2d(O)) fulfils (5.12) and (5.16). By The-
orem 5.3 for any ϕ ∈ D(K,Cb,d(L

2d(O))) there exist m ∈ N and an m-
indexed sequence (ϕn1,...,nm)n1∈N,...,nm∈N ⊂ EA(H) such that (5.14), (5.15)
hold. This, together with (5.12), implies that µt, t ≥ 0 fulfils (5.13) for
any t ≥ 0, ϕ ∈ D(K,Cb,d(L

2d(O))) (here we can use the same argument
used to prove Theorem 4.4). Since the solution of (5.12), (5.13) is unique
and it is given by P ∗t µ, t ≥ 0, it follows

∫
H
ϕ(x)P ∗t µ(dx) =

∫
H
ϕ(x)µt(dx),

for any ϕ ∈ EA(H). Hence, since EA(H) is π-dense in Cb(H), it follows∫
H
ϕ(x)P ∗t µ(dx) =

∫
H
ϕ(x)µt(dx), for any ϕ ∈ Cb(H), that implies P ∗t µ = µt,

∀t ≥ 0. This concludes the proof.



Chapter 6

The Burgers equation

We consider the Burgers equation with Dirichlet boundary conditions per-
turbed by a white noise. Existence and uniqueness of a mild solution are
discussed in [13]. In [19] is proved uniqueness of an invariant measure ν
(its existence is proved in [13]). Moreover, still in [19], several estimates
are proved in order to ensure that the operator K0(see (6.10) below) is m-
dissipative in L2(H; ν). Thanks to these estimates, we are able to prove new
results which are described by Theorems 6.4, 6.5 and are the object of a
forthcoming paper.

We recall that in [41], [42] it has been considered a generalized Burg-
ers stochastic equation and the associated Kolmogorov operator it has been
studied in spaces of continuous functions (see the Introduction of this thesis
for a more detailed description). However, in [41], [42] the noise is driven by
a trace class operator, whereas in our case the perturbation is a white noise.

6.1 Introduction and preliminaries

We consider the stochastic Burgers equation in the interval [0, 1] with Dirich-
let boundary conditions perturbed by a space-time white noise

dX =

(
D2
ξX +

1

2
Dξ(X

2)

)
dt+ dW, ξ ∈ [0, 1], t ≥ 0,

X(t, 0) = X(t, 1) = 0

X(0, ξ) = x(ξ), ξ ∈ [0, 1],

(6.1)

where x ∈ L2(0, 1) and W is a cylindrical Wiener process defined in a prob-
ability space (Ω,F ,P) and with values in L2(0, 1).

87
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Let us write problem (6.1) in an abstract form. We denote by Lp(0, 1), p ≥
1, the space of all real valued Lebesque measurable functions x : [0, 1] → R
such that

|x|p :=

(∫ 1

0

|x(ξ)|pdξ
)1/p

< +∞,

and by L∞(0, 1) the space of all real valued Lebesque measurable essentially
bounded functions endowed with the norm

|x|∞ := sup
ξ∈[0,1]

|x(ξ)|.

We denote by H the Hilbert space of all Lebesque square integrable function
x : [0, 1]→ R, endowed with the norm

|x|2 =

(∫ 1

0

|x(ξ)|2dξ
) 1

2

and the inner product

〈x, y〉 =

∫ 1

0

x(ξ)y(ξ)dξ, x, y ∈ H.

As usual, Hk(0, 1), k ∈ N, is the Sobolev space of all functions in H whose
differentials belong to H up to the order k, and H1

0 (0, 1) is the subspace of
H1 of all functions whose trace at 0 and 1 vanishes. We define the unbounded
self-adjoint operator A in H by

Ax =
∂2

∂ξ2
x

for x in the domain

D(A) = H2(0, 1) ∩H1
0 (0, 1).

and by etA, t ≥ 0 the semigroup in H generated by A. Finally, we denote by
{ek}k∈N the orthonormal system in H given by the eigenvectors of A

ek(ξ) =

√
2

π
sin(kξ), ξ ∈ [0, 1], k ∈ N.

We have
Aek = −k2ek, k ∈ N.

We set

b(x) =
1

2
Dξ(x

2), x ∈ D(b) = H1
0 .
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The operator b enjoys the foundamental property

〈b(x), x〉 = 0 for all x ∈ H1
0 .

Thanks to the introduced notations, we write problem (6.1) in the abstract
form 

dX = (AX + b(X))dt+ dW (t),

X(0) =x, x ∈ H
(6.2)

As usual, the cylindrical Wiener process W (t) is given (formally) by

W (t) =
∞∑
k=1

βk(t)ek, t ≥ 0,

where {βk} is a sequence of mutually independent standard Brownian mo-
tions on a stochastic basis (Ω,F , (Ft)t≥0,P). We recall that the solution of
the linear stochastic equation

dZ(t, x) =AZ(t, x)dt+ dW (t), t ≥ 0

Z(0, x) =x ∈ H
(6.3)

is given by the stochastic convolution

Z(t, x) = etAx+WA(t), (6.4)

see Chapter 2. The process Z(t, x) has a version which is, a.s. for ω ∈ Ω, α-
Hölder continuous with respect to (t, x), for any α ∈ (0, 1

4
) (see [22], Theorem

5.20 and Example 5.21). Now set

Y (t, x) = X(t, x)−WA(t).

We write (6.2) as
Y (t, x) = etAx+

∫ t

0

e(t−s)A
∂

∂ξ
(Y (s, x) +WA(t, x))2 ds,

Y (0, x) =x, x ∈ H

(6.5)

As we shall see, if z(t) ∈ Lp(0, 1) a.s., then etA ∂
∂ξ
z2 ∈ Lp(0, 1) is bounded.

Then the above integral converges and the equation is meaningful.
We say that X(t, x) is a mild solution of (6.2) if Y (t, x) = X(t, x)−WA(t)

satisfies (6.5) for a.s. all ω ∈ Ω.
The following result is proved in [13].
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Theorem 6.1. Let x ∈ Lp(0, 1), p ≥ 2. Then there exists a unique mild
solution of equation (6.2), which belongs a.s. to C([0, T ];Lp(0, 1)), for any
T > 0.

The following estimate is proved in [19].

Proposition 6.2. For any p ≥ 2, k ≥ 1, T > 0 there exists a constant cp,k,T
such that

E

[
sup
t∈[0,T ]

|X(t, x)|kp

]
≤ cp,k,T (1 + |x|kp).

6.2 Main results

In order to proceed, we need to introduce some functional spaces. We denote
by Cb(H) the Banach space of the bounded real valued and continuous func-
tion on H endowed with the usual supremum norm ‖ · ‖0. We also denote by
Cb,1(H) the Banach space of all continuous functions f : H → R such that

‖f‖0,1 := ‖(1 + | · |2)−1f‖0 <∞

Now set
V (x) := |x|86|x|24, x ∈ L6(0, 1)

and denote by Cb,V (L6(0, 1)) the space of all continuous function ϕ : L6(0, 1)→
R such that the function

L6(0, 1)→ R, x 7→ ϕ(x)

1 + V (x)

is bounded. The space Cb,V (L6(0, 1)), endowed with the norm

‖ϕ‖0,V := sup
x∈L6(0,1)

|ϕ(x)|
1 + V (x)

is a Banach space. As easily seen, Cb(H) ⊂ Cb,1(H) ⊂ Cb,V (L6(0, 1)) with
continuous embedding.

For a sequence (ϕn)nN ⊂ Cb,V (L6(0, 1)) and ϕ ∈ Cb,V (L6(0, 1)) we shall
use the notation

lim
n→∞

ϕn
1 + V

π
=

ϕ

1 + V

to say that

lim
n→∞

ϕn(x)

1 + V (x)
=

ϕ(x)

1 + V (x)
, ∀x ∈ L6(0, 1)
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and
sup
n∈N
‖ϕn‖0,V <∞.

When the sequence has more than an index, the meaning of the limit is the
same given in Definition 1.1.

The reason which justifies the introduction of the above spaces is that we
are not able to prove that the transition semigroup associated to the mild
solution of (6.2) acts on uniformly continuous functions. However, thanks to
the estimate given in Proposition 6.2 we can define a semigroup of transition
operators in Cb,V (L6(0, 1)) by the formula

Ptϕ(x) = E
[
ϕ(X(t, x))

]
, t ≥ 0, ϕ ∈ Cb,V (L6(0, 1)), x ∈ L6(0, 1), (6.6)

where X(t, x) is solution of (6.5) (see Proposition 6.10). We define its infi-
nitesimal generator by setting

D(K, Cb,V (L6(0, 1))) =

{
ϕ ∈ Cb,V (L6(0, 1)) : ∃g ∈ Cb,V (L6(0, 1)),

lim
t→0+

Ptϕ(x)− ϕ(x)

t
= g(x), x ∈ L6(0, 1), sup

t∈(0,1)

∥∥∥∥Ptϕ− ϕt

∥∥∥∥
0,V

<∞
}

Kϕ(x) = lim
t→0+

Ptϕ(x)− ϕ(x)

t
, ϕ ∈ D(K, Cb,V (L6(0, 1))), x ∈ L6(0, 1).

(6.7)
We notice that MV (L6(0, 1)) coincides with the space of all finite Borel
measures µ ∈M(H) such that∫

L6(0,1)

V (x)|µ|TV (dx) <∞.

The first result of the chapter is the generalization of Theorems 1.8, 1.12.
We omit the proof which is very similar to the proof of Theorem 4.2

Theorem 6.3. Let (Pt)t≥0 be the semigroup defined by (6.6) and let us
consider its infinitesimal generator (K,D(K, Cb,V (L6(0, 1)))) given by (6.7).
Then, the formula

〈ϕ, P ∗t F 〉L(Cb,V (L6(0,1)), (Cb,V (L6(0,1)))∗) = 〈Ptϕ, F 〉L(Cb,V (L6(0,1)), (Cb,V (L6(0,1)))∗)

defines a semigroup (P ∗t )t≥0 of linear and continuous operators on Cb,V (L6(0, 1))
which maps MV (L6(0, 1)) into MV (L6(0, 1)). Moreover, for any measure
µ ∈ MV (L6(0, 1)) there exists a unique family {µt, t ≥ 0} ⊂ MV (L6(0, 1))
such that ∫ T

0

(∫
L6(0,1)

V (x)|µt|TV (dx)

)
dt <∞, ∀T > 0 (6.8)
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and∫
L6(0,1)

ϕ(x)µt(dx)−
∫
L6(0,1)

ϕ(x)µ(dx)

=

∫ t

0

(∫
L6(0,1)

Kϕ(x)µs(dx)

)
ds (6.9)

for any t ≥ 0, ϕ ∈ D(K, Cb,V (L6(0, 1))). Finally, the solution of (6.8), (6.9)
is given by P ∗t µ, t ≥ 0.

We consider the Kolmogorov differential operator

K0ϕ(x) =
1

2
Tr
[
D2ϕ(x)

]
+ 〈x,ADϕ(x)〉 − 1

2
〈DξDϕ(x), x2〉, (6.10)

x ∈ L6(0, 1), ϕ ∈ EA(H). The following result is the core of this chapter and
it is proved in section 6.8

Theorem 6.4. The operator (K,D(K, Cb,V (L6(0, 1)))) is an extension of K0,
and for any ϕ ∈ EA(H) we have ϕ ∈ D(K, Cb,V (L6(0, 1))) and Kϕ = K0ϕ.
Finally, the set EA(H) is a π-core for (K,D(K, Cb,V (L6(0, 1)))), that is for
any ϕ ∈ D(K, Cb,V (L6(0, 1))) there exist m ∈ N and an m-indexed sequence
(ϕn1,...,nm)n1∈N,...,nm∈N ⊂ EA(H) such that

lim
n1→∞

· · · lim
nm→∞

ϕn1,...,nm

1 + V
π
=

ϕ

1 + V

and

lim
n1→∞

· · · lim
nm→∞

K0ϕn1,...,nm

1 + V
π
=

Kϕ

1 + V

The third main result of this chapter follows by the previous ones and by
reasoning as for Theorems 4.4, 5.4.

Theorem 6.5. For any µ ∈ MV (L6(0, 1)) there exists an unique family
of measures {µt, t ≥ 0} ⊂ MV (L6(0, 1)) fulfilling (6.8) and the measure
equation∫

L6(0,1)

ϕ(x)µt(dx)−
∫
L6(0,1)

ϕ(x)µ(dx) =

∫ t

0

(∫
L6(0,1)

K0ϕ(x)µs(dx)

)
ds,

(6.11)
t ≥ 0, ϕ ∈ EA(H). Moreover, the solution is given by P ∗t µ, t ≥ 0.
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6.3 Further estimates on the solution

In the case of the Burgers equation we are not able to prove uniform con-
tinuity of the solution with respect to the initial data as done in (4.3) in
the case of Lipschitz nonlinearities or in (5.8) in the case of polynomial non-
linearities. We prove only uniform continuity with respect to the inital datum
in a bounded neighbourhood. In order to proceed, set

θ = sup
t∈[0,T ]

|WA(t)|∞, T > 0.

Clearly θ is a random variable, and θ <∞ a.s.
We need the following estimates, proved in Lemma 3.1 of [13]

Lemma 6.6. For any p ∈ [2,∞) there exists cp > 0 such that if Y (t, x) is a
solution of (6.5), then

|Y (t, x)|p ≤ cp
(
θ3 + |x|p

)
e1+2pθt.

We have the following

Theorem 6.7. For any p ∈ [2,∞) there exists a continuous function cp :
(R+)4 → R+ such that

|Y (t, x)− Y (t, y)|p ≤ cp(t, |x|p, |y|p, θ)|x− y|p, x, y ∈ Lp(0, 1)

Proof. Here we follow [13]. By (6.5) we have

Y (t, x)− Y (t, y) = etA(x− y)

+
1

2

∫ t

0

e(t−s)A
∂

∂ξ

(
(Y (s, x)− Y (s, y))(Y (s, x) + Y (s, y) + 2W (s))

)
ds.

then

|Y (t, x)− Y (t, y)|p ≤ |x− y|p

+
1

2

∫ t

0

∣∣∣∣e(t−s)A ∂∂ξ ((Y (s, x)− Y (s, y))(Y (s, x) + Y (s, y) + 2W (s))
)∣∣∣∣
p

ds.

(6.12)

As well known, etA, t ≥ 0 has smoothing properties. In particular, for any
s1, s2 ∈ R, s1 ≤ s2, r ≥ 1, etA maps W s1,r(0, 1) into W s2,r(0, 1), for any t > 0.
Moreover, there exists C1 > 0, depending on s1, s2, r, such that

|etAz|W s2,r(0,1) ≤ C1

(
1 + t

s1−s2
2

)
|z|W s1,r(0,1), z ∈ W s1,r(0, 1), (6.13)
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see Lemma 3, Part I in [43]. Using the Sobolev embedding theorem we have∣∣∣∣e(t−s)A ∂∂ξ ((Y (s, x)− Y (s, y))(Y (s, x) + Y (s, y) + 2W (s))
)∣∣∣∣
p

≤ C1

∣∣∣∣e(t−s)A ∂∂ξ ((Y (s, x)− Y (s, y))(Y (s, x) + Y (s, y) + 2W (s))
)∣∣∣∣
W

1
p ,
p
2 (0,1)

and, thanks to the above estimate with s1 = −1, s2 = 1/p, r = p/2∣∣∣∣e(t−s)A ∂∂ξ ((Y (s, x)− Y (s, y))(Y (s, x) + Y (s, y) + 2W (s))
)∣∣∣∣
p

≤ C1C2

(
1 + (t− s)−

1
2
− 1

2p

)
×
∣∣∣∣ ∂∂ξ ((Y (s, x)− Y (s, y))(Y (s, x) + Y (s, y) + 2W (s))

)∣∣∣∣
W−1,

p
2 (0,1)

≤ C1C2

(
1 + (t− s)−

1
2
− 1

2p

)
|(Y (s, x)− Y (s, y))(Y (s, x) + Y (s, y) + 2W (s))| p

2

≤ C1C2

(
1 + (t− s)−

1
2
− 1

2p

)
|Y (s, x)− Y (s, y)|p |Y (s, x) + Y (s, y) + 2W (s)|p

≤ cpC1C2

(
1 + (t− s)−

1
2
− 1

2p

)
|Y (s, x)− Y (s, y)|p

×
((

2θ3 + |x|p + |y|p
)
e1+2pθs + 2

)
Now the result follows by (6.12) and by Gronwall lemma (see, for instance,
Lemma 7.1.1 in [32]).

By recalling that Y (t, x) = X(t, x) −WA(t) it follows immediately the
following result, which will be fundamental in the next section

Corollary 6.8. For any p ∈ [2,∞), x ∈ Lp(0, 1), T > 0

sup
t∈[0,T ]

|X(t, x+ h)−X(t, x)|p → 0 a.s., as |h|p → 0.
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6.4 The transition semigroup in Cb,V (L6(0, 1))

This section is devoted in studying the semigroup (Pt)t≥0 in the space
Cb,V (L6(0, 1)).

Remark 6.9. By Corollary 6.8 we have that for any ϕ ∈ Cb,V (L6(0, 1))

lim
ε→0

sup
|h|6<ε, t∈[0,T ]

|Ptϕ(x+ h)− Ptϕ(x)| = 0.

This is not sufficient to show that Pt, t ≥ 0 maps uniformly continuous
functions into uniformly continuous functions. However, as we shall see in
(i) of the next proposition, this allows us to show that Pt maps the space
Cb,V (L6(0, 1)) into itself.

Proposition 6.10. Formula (6.6) defines a semigroup of operators (Pt)t≥0

in Cb,V (L6(0, 1)) and there exist two constants c0 ≥ 1, ω0 ∈ R and a family
of probability measures {πt(x, ·), t ≥ 0, x ∈ L6(0, 1)} ⊂ MV (L6(0, 1)) such
that

(i) Pt ∈ L(Cb,V (L6(0, 1))) and ‖Pt‖L(Cb,V (L6(0,1)) ≤ c0e
ω0 t;

(ii) Ptϕ(x) =

∫
H

ϕ(y)πt(x, dy), for any t ≥ 0, ϕ ∈ Cb,V (L6(0, 1)), x ∈

L6(0, 1);

(iii) for any ϕ ∈ Cb,V (L6(0, 1)), x ∈ L6(0, 1), the function R+ → R, t 7→
Ptϕ(x) is continuous.

(iv) PtPs = Pt+s, for any t, s ≥ 0 and P0 = I;

(v) for any ϕ ∈ Cb,V (L6(0, 1)) and any sequence (ϕn)n∈N ⊂ Cb,V (L6(0, 1))
such that

lim
n→∞

ϕn
1 + V

π
=

ϕ

1 + V

we have, for any t ≥ 0,

lim
n→∞

Ptϕn
1 + V

π
=

Ptϕ

1 + V
.

Proof. (i). Take ϕ ∈ Cb,V (L6(0, 1)), t > 0. We have to show that Ptϕ ∈
Cb,V (L6(0, 1)). By Proposition 6.2 it follows that

|Ptϕ(x)| ≤ ‖ϕ‖0,V (1 + E[V (X(t, x))]) ≤ c‖ϕ‖0,V (1 + V (x)),
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for some c > 0. Then, we have to show that the function L6(0, 1) → R.
x 7→ Ptϕ(x) is continuous. Fix x0 ∈ L6(0, 1). We have

|Ptϕ(x0 + h)− Ptϕ(x0)| ≤ E[ϕ(X(t, x0 + h))− ϕ(X(t, x0))|].

By Corollary 6.8 we have that |X(t, x0+h)−X(t, x0)|6 → 0 P-a.s. as |h|6 → 0.
Then, by the continuity of ϕ it follows |ϕ(X(t, x0 + h)) − ϕ(X(t, x0))| →
0 P-a.s. as |h|6 → 0. On the other hand, ϕ(X(t, x0 + h)) has bounded
expectation, uniformly in any L6(0, 1)-ball of center x0. Then, it follows that
Ptϕ(x0 + h) → Ptϕ(x0) has |h|6 → 0. (i) is proved. The other statements
follows by arguing as for Proposition 4.6.

Proposition 6.11. Let X(t, x) be the mild solution of problem (6.2) and
let (Pt)t≥0 be the associated transition semigroups in the space Cb,V (L6(0, 1))
defined by (6.6). Let also (K,D(K, Cb,V (L6(0, 1)))) be the associated infini-
tesimal generators, defined by (6.7). Then

(i) for any ϕ ∈ D(K, Cb,V (L6(0, 1))), we have Ptϕ ∈ D(K, Cb,V (L6(0, 1)))
and KPtϕ = PtKϕ, t ≥ 0;

(ii) for any ϕ ∈ D(K, Cb,V (L6(0, 1))), x ∈ H, the map [0,∞) → R, t 7→
Ptϕ(x) is continuously differentiable and (d/dt)Ptϕ(x) = PtKϕ(x);

(iii) for any ϕ ∈ Cb,V (L6(0, 1)), t > 0, the function

H → R, x 7→
∫ t

0

Psϕ(x)ds

belongs to D(K, Cb,V (L6(0, 1))), and it holds

K

(∫ t

0

Psϕds

)
= Ptϕ− ϕ;

(iv) for any λ > ω0, where ω0 is as in Proposition 6.10, the linear operator
R(λ,K) on Cb,V (L6(0, 1)) defined by

R(λ,K)f(x) =

∫ ∞
0

e−λtPtf(x)dt, f ∈ Cb,V (L6(0, 1)), x ∈ L6(0, 1)

satisfies, for any f ∈ Cb,V (L6(0, 1))

R(λ,K) ∈ L(Cb,V (L6(0, 1))), ‖R(λ,K)‖L(Cb,V (L6(0,1))) ≤
c0

λ− ω0

R(λ,K)f ∈ D(K, Cb,V (L6(0, 1))), (λI −K)R(λ,K)f = f,

where c0 is as in Proposition 6.10. We call R(λ,K) the resolvent of K
at λ.
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Proof. (i), (ii) follows by 6.7, Proposition 6.10 and may be proved as for
Theorem 1.9.

Let us show (iii). First, we have to check that
∫ t

0
Psfds belongs to

Cb,V (L6(0, 1)). By (i) of Proposition 6.10, for any x ∈ L6(0, 1) we have

∣∣∣∣∫ t

0

Psϕ(x)ds

∣∣∣∣ ≤ ‖ϕ‖0,V c0 ∫ t

0

eω0sds(1 + V (x)).

then,

sup
x∈L6(0,1)

1

1 + V (x)

∣∣∣∣∫ t

0

Psϕ(x)ds

∣∣∣∣ <∞.
Now let us fix ε > 0, x0 ∈ L6(0, 1) and take δ > 0 such that

sup
s∈[0,t]

sup
h∈L6(0,1)

|h|6<δ

|Psϕ(x0 + h)− Psϕ(x0)| <
ε

t
.

The constant δ > 0 exists thanks to Remark 6.9. Therefore, for any h ∈
L6(0, 1), |h|6 < δ we have

∣∣∣∣∫ t

0

Psϕ(x0 + h)ds−
∫ t

0

Psϕ(x0)ds

∣∣∣∣ ≤ ∫ t

0

|Ptϕ(x0 + h)− Ptϕ(x0)| ds < ε.

By the arbitrariness of x0, it follows
∫ t

0
Psϕds ∈ Cb,V (L6(0, 1)). The rest of

the proof is essentially the same done for Theorem 1.9.

6.5 Proof of Theorem 6.3

We point out that we have introduced the theory of stochastically continu-
ous Markov semigroup in spaces of uniformly continuous functions only for
convenience. All the result of chapter 1 remains true if we replace Cb(E)
by Cb(E), the Banach space of all the continuous functions f : E → R,
where E is a separable Banach space. Then, if we consider the semigroup
(Pt)t≥0 in (6.24) restricted to the space Cb(L6(0, 1)), by Remark 6.9 we have
Pt : Cb(L6(0, 1)) → Cb(L6(0, 1)) and consequently (Pt)t≥0 is a stochastically
continuous Markov semigroup in Cb(L6(0, 1)).
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Now set1

D(K, Cb(L6(0, 1))) =

{
ϕ ∈ D(K, Cb(L6(0, 1))) : ∃g ∈ Cb(L6(0, 1)),

lim
t→0+

Ptϕ(x)− ϕ(x)

t
= g(x), x ∈ L6(0, 1), sup

t∈(0,1)

∥∥∥∥Ptϕ− ϕt

∥∥∥∥
0

<∞
}

Kϕ(x) = lim
t→0+

Ptϕ(x)− ϕ(x)

t
, ϕ ∈ D(K, Cb(L6(0, 1))), x ∈ L6(0, 1).

(6.14)
As pointed out above, all results of Chapter 2 remain true with Cb(L6(0, 1))
replacing Cb(E). In particular, Theorem 1.8 and Theorem can be extended
to (Pt)t≥0 and its infinitesimal generator (K,D(K, Cb(L6(0, 1)))). For the
reader’s convenience, we summarize these results in the following theorem.

Theorem 6.12. The family of linear maps P ∗t : (Cb(E))∗ → (Cb(E))∗, t ≥ 0,
defined by the formula

〈ϕ, P ∗t F 〉L(Cb(L6(0,1)), (Cb(L6(0,1))))∗) = 〈Ptϕ, F 〉L(Cb(L6(0,1)), (Cb(L6(0,1))))∗),

where t ≥ 0, F ∈ (Cb(L6(0, 1)))∗, ϕ ∈ Cb(L6(0, 1)), is a semigroup of linear
operators on (Cb(L6(0, 1)))∗ which acts on M(L6(0, 1)). Moreover, for any
µ ∈ M(L6(0, 1)) there exists a unique family of measures {µt, t ≥ 0} ⊂
M(L6(0, 1)) fulfilling∫ T

0

|µt|TV (L6(0, 1))dt <∞, T > 0;

∫
Cb(L6(0,1))

ϕ(x)µt(dx)−
∫
Cb(L6(0,1))

ϕ(x)µ(dx)

=

∫ t

0

(∫
Cb(L6(0,1))

Kϕ(x)µs(dx)

)
ds,

for any ϕ ∈ D(K, Cb(L6(0, 1))), t ≥ 0, and the solution is given by P ∗t µ,
t ≥ 0.

Thanks to this theorem, by reasoning as in the proof of Theorem 5.2 we
get the desired result.

1Here ‖ · ‖0 denotes the supremum norm of Cb(L6(0, 1))
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6.6 The OU semigroup in Cb,V (L6(0, 1))

Here we consider the transition semigroup in Cb,V (L6(0, 1)) associated to the
mild solution of (6.3). It is well known (see, for instance, [14]) the following
result

Proposition 6.13. that for any p, k ≥ 1, T > 0 there exists a constant
cp,k,T > 0 such that

E

[
sup
t∈[0,T ]

|Z(t, x)|kp

]
≤ cp,k,T

(
1 + |x|kp

)
. (6.15)

This easily implies that for any T > 0 there exists cT > 0 such that

E

[
sup
t∈[0,T ]

V (Z(s, x))

]
≤ cT (1 + V (x)) . (6.16)

Then, for any t ≥ 0, we define the Ornstein-Uhlenbeck semigroup (Rt)t≥0 in
Cb,V (L6(0, 1)) by setting

Rtϕ(x) = E [ϕ(Z(t, x))] , t ≥ 0, ϕ ∈ Cb,V (L6(0, 1)), x ∈ L6(0, 1), (6.17)

where Z(t, x) is the mild solution of (6.3). Clearly, (6.16) shows that Rt acts
on Cb,V (L6(0, 1)). It is obvious that all the result of Proposition 6.10 holds
also for the OU semigroup (Rt)t≥0. We define the infinitesimal generator of
(Rt)t≥0 in Cb,V (L6(0, 1)) by setting

D(L, Cb,V (L6(0, 1))) =

{
ϕ ∈ Cb,V (L6(0, 1)) : ∃g ∈ Cb,V (L6(0, 1)),

lim
t→0+

Rtϕ(x)− ϕ(x)

t
= g(x), ∀x ∈ L6(0, 1), sup

t∈(0,1)

∥∥∥∥Rtϕ− ϕ
t

∥∥∥∥
0,V

<∞
}

Lϕ(x) = lim
t→0+

Rtϕ(x)− ϕ(x)

t
, ϕ ∈ D(L, Cb,V (L6(0, 1))), x ∈ L6(0, 1).

(6.18)

Remark 6.14. Since all the results of Proposition 6.10 hold for the OU
semigroup, it follows that all the results of Proposition 6.11 hold for the OU
semigroup and its infinitesimal generator in Cb,V (L6(0, 1)).

We set

L0ϕ(x) =
1

2
Tr[D2ϕ(x)] + 〈x,ADϕ(x)〉, ϕ ∈ EA(H), x ∈ L6(0, 1).



100 The Burgers equation

Proposition 6.15. We have EA(H) ⊂ D(L, Cb,V (L6(0, 1))), and Lϕ = L0ϕ,
for any ϕ ∈ EA(H).

Proof. Since Hypothesis 0.1 holds for the operators A and B = I, the re-
striction of Rt to Cb,1(H) generates a semigroup of operators in Cb,1(H) (cfr.
section 4.3.1 and Remark 4.5). We still denote the semigroup by (Rt)t≥0.
Now let (L,D(L, Cb,1(H))) be the infinitesimal generator of the OU semi-
group in the space Cb,1(H), defined as in (2.5). Since EA(H) ⊂ D(L, Cb,1(H)),
to conclude the proof it is suffient to show

D(L, Cb,1(H)) = {ϕ ∈ D(L, Cb,V (L6(0, 1)))∩Cb,1(H) : Lϕ ∈ Cb,1(H)}. (6.19)

Indeed, if ϕ ∈ D(L, Cb,V (L6(0, 1))) ∩ Cb,1(H) and Lϕ ∈ Cb,1(H), in order to
show ϕ ∈ D(L, Cb,1(H)) it is sufficient to show

sup
t∈(0,1]

∥∥∥∥Rtϕ− ϕ
t

∥∥∥∥
0,1

<∞.

For any x ∈ H we have

Rtϕ(x)− ϕ(x) =

∫ t

0

Rtϕ(x)ds.

Hence, since Lϕ ∈ Cb,1(H) and by the local boundedness of Rt we have

sup
t∈(0,1]

∥∥∥∥Rtϕ− ϕ
t

∥∥∥∥
0,1

≤ sup
t∈(0,1]

‖Rt‖L(Cb,1(H))‖Lϕ‖0,1 <∞.

The other inclusion is obvious. This proves (6.19). By Proposition 4.13 it
follows that Lϕ = L0ϕ, ∀ϕ ∈ EA(H).

Remark 6.16. We stress that in this chapter we work with the Ornstein-
Uhlenbeck semigroup (Rt)t≥0 in spaces of continuous functions. As we have
pointed out in Remark 4.5, all the results of Chapter 4 remain true with
Cb(H) replacing Cb(H) and Cb,1(H) replacing Cb,1(H).

6.7 The approximated problem

It is convenient to consider the usual Galerkin approximations of equation
(6.2). For any m ∈ N we define

bm(x) = Pmb(Pmx), x ∈ H
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where

Pm =
m∑
i=1

ei ⊗ ei, m ∈ N.

We consider the approximating problem
dXm(t) = (AXm(t) + bm(Xm(t))dt+ dW (t),

Xm(0) = x,
(6.20)

By setting Y m(t, x) = Xm(t, x)−WA(t), the corresponding mild form is

Y m(t, x) = etAx+
1

2

∫ t

0

e(t−s)APmDξ (Pm(Y m(s, x) +WA(s)))2 ds, (6.21)

Since for any m ∈ N the identity

〈bm(x), x〉 = 0, x ∈ H
holds, all the estimates of Proposition 6.2, 6.18 are uniform on m and we
have the following result.

Theorem 6.17. For any x ∈ Lp(0, 1), p ∈ [2,∞) there exists a unique mild
solution Xm ∈ Lp(0, 1) of equation (6.20). Moreover, for any x0 ∈ Lp(0, 1),
δ > 0 and T > 0

lim
m→∞

sup
|x−x0|p<δ
t∈[0,T ]

|Xm(t, x)−X(t, x)|p = 0

As in (3.3) we denote by Pm
t the transition semigroup

Pm
t ϕ(x) = E[ϕ(Xm(t, x))], t ≥ 0, ϕ ∈ Cb,V (L6(0, 1)), x ∈ L6(0, 1) (6.22)

By a standard argument, we find that for any Cb,V (L6(0, 1)) we have

lim
m→∞

Pm
t ϕ

1 + V
=

Ptϕ

1 + V
, t ≥ 0.

For any m ∈ N, we define the infinitesimal generator of the semigroup
(Pm

t )t≥0 by

D(Km, Cb,V (L6(0, 1))) =

{
ϕ ∈ Cb,V (L6(0, 1)) : ∃g ∈ Cb,V (L6(0, 1)),

lim
t→0+

Pm
t ϕ(x)− ϕ(x)

t
= g(x), x ∈ L6(0, 1), sup

t∈(0,1)

∥∥∥∥Pm
t ϕ− ϕ
t

∥∥∥∥
0,V

<∞
}

Kmϕ(x) = lim
t→0+

Ptϕ(x)− ϕ(x)

t
, ϕ ∈ D(Km, Cb,V (L6(0, 1))), x ∈ L6(0, 1).

(6.23)
It is clear that all the results of Propositions 6.10, 6.11 hold for (Pm

t )t≥0 and
for its infinitesimal generator (Km, D(Km, Cb,V (L6(0, 1)))).
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6.7.1 The differential DPm
t ϕ

In the previous chapters, we derived the properties of the differential DPtϕ
of the transition semigroup directly from the estimates on the differential
Xx(t, x) of the solution X(t, x). This method cannot be applied here, by
the lack of informations about Xx(t, x). In [19], it is proposed to consider a
Kolmogorov operator with an additional potential term

K ′0ϕ(x) = K0ϕ(x)− c|x|44ϕ(x), ϕ ∈ EA(H)

and the corresponding semigroup given by the Feynman-Kac formula

Stϕ(x) = E
[
e−c

∫ t
0 |X(s,x)|44dsϕ(X(t, x))

]
.

By using a generalization of the Bismut-Elworthy formula (see [24]) and some
estimates on Xx(t, x) the authors are able to get estimates on DS(t)ϕ. Then,
by the formula

Ptϕ = Stϕ+ c

∫ t

0

St−s
(
| · |44ϕ

)
ds

they get estimates on DPtϕ.
This method it has been succesfully used to get solutions of the for the

3D-Navier-Stokes equation (see [18], [27]). It has been also used to get
smoothing properties of the differential DPtϕ, with application to control
problems (see, for instance, [15], [16], [39])

The following result is proved in Proposition 3.6 of [19].

Proposition 6.18. There exists ω1 > 0 such that for any m ∈ N, t > 0 and
ϕ ∈ C1

b (H) with Dϕ ∈ Cb(H;H1(0, 1)) we have DPm
t ϕ(x) ∈ H1(0, 1) and

|DPm
t ϕ(x)|H1(0,1) ≤

(
‖Dϕ‖Cb(H;H1(0,1)) + c‖ϕ‖0

)
(1 + |x|6)8 eω1t

The following two results are essential for the proof of Theorem 6.4.

Proposition 6.19. Take λ > ω0, ω1, where ω0 is as in Proposition 6.10 and
ω1 is as in Proposition 6.18. Let f ∈ EA(H) and, for m ∈ N consider the
function

L6(0, 1)→ R, x 7→ ϕ(x) =

∫ ∞
0

e−λtPm
t f(x)dt.

Then

(i) ϕ is continuous, bounded and Fréchet differentiable in any x ∈ L6(0, 1)
with continuous differential Dϕ ∈ C(L6(0, 1);H1(0, 1)). Moreover, it
holds

|Dϕ(x)|H1(0,1) ≤
1

λ− ω1

(
‖Df‖Cb(H;H1(0,1)) + c‖f‖0

)
(1 + |x|6)8 ;

(6.24)
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(ii) ϕ belongs to D(L, Cb,V (L6(0, 1))) ∩D(Km, Cb,V (L6(0, 1))) and

Kmϕ(x) = Lϕ(x)− 1

2

〈
DξPmDϕ(x), (Pmx)2

〉
, ∀x ∈ L6(0, 1). (6.25)

Proof. Notice that the mild solution of (6.20) is defined for any x ∈ H (cfr.
[13]). Then, the transition semigroup Pt can be defined in Cb(H). So, since
f ∈ Cb(H), it follows ϕ ∈ Cb(H). By Proposition (6.18) we have

|Dϕ(x)|H1(0,1)≤
∫ ∞

0

e−λt|DPtf(x)|H1(0,1)dt

≤
∫ ∞

0

e−(λ−ω1)tdt
(
‖Df‖Cb(H;H1(0,1)) + c‖f‖0

)
(1 + |x|6)8

and (6.24) follows. Still by (6.24) we get Dϕ ∈ C(L6(0, 1);H1(0, 1)). Indeed,
for any x, h ∈ L6(0, 1),

|Dϕ(x+ h)−DξDϕ(x)|H1(0,1)

≤ 1

λ− ω1

(
‖Df(·+ h)−Df(·)‖Cb(H;H1(0,1)) + c‖f(·+ h)− f(·)‖0

)
(1 + |x|6)8

Since f ∈ Cb(H), and Df ∈ Cb(H;H1(0, 1)), by uniform continuity it follows
|Dϕ(x+ h)−Dϕ(x)|H1(0,1) → 0 as |h|6 → 0. This concludes the proof of (i).

Let us prove (ii). Since the semigroup (Pm
t )t≥0 satisfies the statements of

Proposition 6.10, it follows that its infinitesimal generator Km enjoys the
statements of Proposition 6.11. In particular, we have ϕ = R(λ,Km)f
and therefore ϕ ∈ D(Km, Cb,V (L6(0, 1))). Then we have to show that ϕ ∈
D(L, Cb,V (L6(0, 1))). Now let (Rt)t≥0 be the OU semigroup (6.17) and let
(L,D(L, Cb,V (L6(0, 1)))) be its infinitesimal generator in Cb,V (L6(0, 1)). Fix
x ∈ L6(0, 1), T > 0 and for t ∈ [0, T ] set Xm(t) = Xm(t, x), Z(t) = Z(t, x).
By (6.21), (6.3) we have

Xm(t) = Z(t) +
1

2

∫ t

0

e(t−s)APmDξ(PmX
m(s))2ds

and consequently

Pm
t ϕ(x) = E [ϕ(Xm(t))] = E

[
ϕ(Z(t) +

1

2

∫ t

0

e(t−s)APmDξ(PmX
m(s))2ds)

]
.

Notice that since f ∈ C1
b (H), by (6.24) we get that the function L6(0, 1)→ R,

x 7→ Dϕ(x) is continuous. Then, by Taylor formula we have

Rtϕ(x)− ϕ(x) = Pm
t ϕ(x)− ϕ(x)



104 The Burgers equation

+
1

2
E
[∫ 1

0

〈
Dϕ(ξXm(t) + (1− ξ)Z(t)),

∫ t

0

e(t−s)APmDξ(PmX
m(s))2ds

〉
dξ

]
(6.26)

We claim that

lim
t→0+

1

t
E
[∫ 1

0

〈
Dϕ(ξXm(t) + (1− ξ)Z(t)),

∫ t

0

e(t−s)APmDξ(PmX
m(s))2ds

〉
dξ

]
= −〈DξPmDϕ(x), (Pmx)2〉 (6.27)

holds. By Theorem 6.1, for any T > 0 we can write

X(t) = x+ θ1(t)

Z(t) = x+ θ2(t), t ∈ [0, T ]

where θ1(t), θ2(t) : Ω→ H, t ∈ [0, T ] are random variables such that θ1, θ2 ∈
C([0, T ];H) a.s. and θ1(0) = θ2(0) = 0. On the other hand, by Proposition
6.19 we can write

Dϕ(x+ z) = Dϕ(x) + η(z), z ∈ H
where η ∈ C(H,H1(0, 1)) and η(0) = 0. With these notations we have

Dϕ(ξXm(t) + (1− ξ)Z(t)) =Dϕ(x+ ξθ1(t) + (1− ξ)θ2(t))

=Dϕ(x) + η(ξθ1(t) + (1− ξ)θ2(t)).

Then
lim
t→0+

sup
ξ∈[0,1]

|Dϕ(ξXm(t) + (1− ξ)Z(t))−Dϕ(x)|H1(0,1) =

= lim
t→0+

sup
ξ∈[0,1]

∣∣η(ξθ1(t) + (1− ξ)θ2(t)
)∣∣
H1(0,1)

= 0. (6.28)

For any t > 0 we have∣∣∣∣1t
∫ t

0

e(t−s)APmDξ(PmX
m(s))2ds− PmDξ((Pmx)2)

∣∣∣∣
W−1,2(0,1)

≤ 1

t

∫ t

0

∣∣e(t−s)APmDξ

(
(PmX

m(s))2 − (Pmx)2
)∣∣
W−1,2(0,1)

ds

+
1

t

∫ t

0

∣∣e(t−s)APmDξ(Pmx)2 − PmDξ(Pmx)2
∣∣
W−1,2(0,1)

ds. (6.29)

The first term on the right-hand side is bounded by

1

t

∫ t

0

∣∣PmDξ

(
(PmX

m(s))2 − (Pmx)2
)∣∣
W−1,2(0,1)

ds

≤ 1

t

∫ t

0

∣∣(PmXm(s))2 − (Pmx)2
∣∣
2
ds

≤ 1

t

∫ t

0

|Xm(s)− x|2 |X
m(s) + x|2 ds.
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Since Xm ∈ C([0, T ];H) P-a.s., it follows

lim
t→0+

1

t

∫ t

0

∣∣e(t−s)APmDξ

(
(PmX

m(s))2 − (Pmx)2
)∣∣
W−1,2(0,1)

ds = 0, P-a.s.

Since the semigroup etA, t ≥ 0 can be estended to a strongly continuous
semigroup in W−1,2(0, 1), for the last term of (6.29) it holds

lim
t→0+

1

t

∫ t

0

∣∣e(t−s)APmDξ(Pmx)2 − PmDξ(Pmx)2
∣∣
W−1,2(0,1)

ds = 0.

Hence, by (6.29) we have

lim
t→0+

∣∣∣∣1t
∫ t

0

e(t−s)APmDξ(PmX
m(s))2ds− PmDξ(Pmx)2

∣∣∣∣
W−1,2(0,1)

= 0, P-a.s.

This, together with (6.25) and an integration by parts, implies

lim
t→0+

1

t

∫ 1

0

〈
Dϕ(ξXm(t) + (1− ξ)Z(t)),

∫ t

0

e(t−s)APmDξ(PmX
m(s))2ds

〉
dξ

= 〈Dϕ(x), PmDξ(Pmx)2〉 = −〈DξPmDϕ(x), (Pmx)2〉, P-a.s. (6.30)

In order to obtain (6.28), it is sufficient to show that the terms in the above
limit are dominated by an integrable random variable. Indeed, for any t ∈
(0, T ] we have

1

t

∫ 1

0

〈
Dϕ(ξXm(t) + (1− ξ)Z(t)),

∫ t

0

e(t−s)APmDξ(PmX
m(s))2ds

〉
dξ

≤ 1

t

∣∣∣∣∫ 1

0

Dϕ(ξXm(t) + (1− ξ)Z(t))dξ

∣∣∣∣
H1(0,1)

×
∣∣∣∣∫ t

0

e(t−s)APmDξ(PmX
m(s))2ds

∣∣∣∣
W−1,2(0,1)

≤
∫ 1

0

|Dϕ(ξXm(t) + (1− ξ)Z(t))|H1(0,1) dξ

×1

t

∫ t

0

∣∣e(t−s)APmDξ(PmX
m(s))2

∣∣
W−1,2(0,1)

ds

≤ I1(t)× I2(t).

Set

Cϕ =

(
‖Df‖Cb(H;H1(0,1)) + c‖f‖0

λ− ω1

)
.
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By (6.24) we have∫ 1

0

|Dϕ(ξXm(t, x) + (1− ξ)Z(t, x))|H1(0,1)dξ

≤ Cϕ
(
1 + |ξXm(t, x) + (1− ξ)Z(t, x)|86

)
≤ Cϕ

∫ 1

0

(
1 + ξ|Xm(t, x)|86 + (1− ξ)|Z(t, x)|86

)
dξ

≤ Cϕ

(
1 + sup

t∈[0,T ]

|Xm(t, x)|86 + sup
t∈[0,T ]

|Z(t, x)|86

)
.

Here we have used the convexity of the function z → |z|86. For I2(t) we have

I2(t)≤
c

t

∫ t

0

∣∣(PmXm(s))2
∣∣
2
ds

≤ c
t

∫ t

0

|Xm(s)|24 ds ≤ c sup
t∈[0,T ]

|Xm(t)|24

Then, for any t ∈ (0, T ] we have

1

t

∣∣∣∣∫ 1

0

〈
Dϕ(ξXm(t) + (1− ξ)Z(t)),

∫ t

0

e(t−s)APmDξ(PmX
m(s))2ds

〉
dξ

∣∣∣∣
≤ cCϕ

(
1 + sup

t∈[0,T ]

|Xm(t, x)|86 + sup
t∈[0,T ]

|Z(t, x)|86

)(
sup
t∈[0,T ]

|Xm(t)|24

)
(6.31)

Notice that by Propositions 6.2, (6.13) the random variable

g(x) := cCϕ

(
1 + sup

t∈[0,T ]

|Xm(t, x)|86 + sup
t∈[0,T ]

|Z(t, x)|86

)(
sup
t∈[0,T ]

|Xm(t)|24

)
(6.32)

belongs to L1(Ω,P) and

E[g(x)] ≤ C
(
1 + |x|86|x|24

)
(6.33)

for some C > 0. Consequently, since for any t ∈ (0, T ]

1

t

∣∣∣∣∫ 1

0

〈
Dϕ(ξXm(t) + (1− ξ)Z(t)),

∫ t

0

e(t−s)APmDξ(PmX
m(s))2ds

〉
dξ

∣∣∣∣ ≤ g(x),

by the dominated convergence theorem and by (6.30) follows (6.27) as claimed.
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By (6.26), (6.27) and by the fact that ϕ ∈ D(Km, Cb,V (L6(0, 1))) we obtain

lim
t→0+

Rtϕ(x)− ϕ(x)

t
= Kmϕ+

1

2

〈
DξPmDϕ(x), (Pmx)2

〉
, ∀x ∈ L6(0, 1).

Now, by (6.31), (6.32), (6.33) we have

sup
t∈(0,T ]

∣∣∣∣Rtϕ(x)− ϕ(x)

t

∣∣∣∣≤ sup
t∈(0,T ]

∣∣∣∣Pm
t ϕ(x)− ϕ(x)

t

∣∣∣∣+ E[g(x)]

≤ c(1 + V (x))

since ϕ ∈ D(Km, Cb,V (L6(0, 1)). This implies ϕ ∈ D(L, Cb,V (L6(0, 1))) and
(6.25) follows.

Proposition 6.20. Fix m ∈ N, f ∈ EA(H) and let ϕ be as in Proposition
6.19. Then, there exist k ∈ N and a k-indexed sequence (ϕn1,...,nk)n1∈N,...,nk∈N ⊂
EA(H) such that

lim
n1→∞

· · · lim
nk→∞

ϕn1,...,nk

1 + V
π
=

ϕ

1 + V
(6.34)

lim
n1→∞

· · · lim
nk→∞

L0ϕn1,...,nk

1 + V
π
=

Lϕ

1 + V
(6.35)

and, for any h ∈ H

lim
n1→∞

· · · lim
nk→∞

〈DξDϕn1,...,nk , h〉
(1 + | · |86)

π
=
〈DξDϕ, h〉
(1 + | · |86)

. (6.36)

Proof. Set

ψp(x) =
(

1 + p−1|e
1
p
Ax|86

)−1

ϕ(e
1
p
Ax), x ∈ H, p ∈ N.

Clearly,

lim
p→∞

ψp
1 + | · |86

π
=

ϕ

1 + | · |86
. (6.37)

By the well known properties of the heat semigroup, e
1
p
Ax ∈ L6(0, 1), for any

x ∈ H. Then, since by Proposition 6.19 we have ϕ ∈ Cb(L6(0, 1)), it follows
that ψp : H → R is bounded. Moreover, an easy computation show that ψp
is continuous. Then, ψp ∈ Cb(H). A standard computation show

〈Dψp(x), h〉 =
〈Dϕ(e

1
p
Ax), e

1
p
Ah〉

1 + p−1|e
1
p
Ax|86

− 8ϕ(e
1
p
Ax)|e

1
p
Ax|76〈(e

1
p
Ax)5, e

1
p
Ah〉

p
(

1 + p−1|e
1
p
Ax|86

)2 ,
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x, h ∈ H. Hence, by taking into account (6.24), there exists cf > 0, depend-
ing on f , such that for any x ∈ L6(0, 1) we have

|〈Dψp(x), h〉| ≤ |Dϕ(e
1
p
Ax)|2|e

1
p
Ah|2

1 + p−1|e
1
p
Ax|86

+
8‖ϕ‖0|e

1
p
Ax|76|e

1
p
Ax|36|e

1
p
Ah|L6/5

p
(

1 + p−1|e
1
p
Ax|86

)2

≤

 cf (1 + |e
1
p
Ax|86)(

1 + p−1|e
1
p
Ax|86

)
(λ− ω1)

+
2‖ϕ‖0|e

1
p
Ax|10

6

p
(

1 + p−1|e
1
p
Ax|86

)2

 |e 1
p
Ah|2

≤
(
p

cf
λ− ω1

+ 2‖ϕ‖0
)
|h|2.

Then, ψp is Fréchet differentiable in any x ∈ H and its differentiable is
bounded. An easy but tedious computation shows that Dψp : H → L(H)
is continuous. Therefore2, ψp ∈ C1

b (H). In addition, as easily checked, by
(6.24) and by the above formulæ it follows

lim
p→∞

〈Dψp, h〉
1 + | · |86

π
=
〈Dϕ, h〉
1 + | · |86

, ∀h ∈ H. (6.38)

For any n2, n3 ∈ N, consider the function

ψn2,n3 : H → R, x 7→ ψn2,n3(x) = n2

∫ 1
n2

0

Rtψn3(x)dt.

By Proposition 4.8, Remark 4.5 and by the above computation we find

ψn2,n3 ∈ D(L, Cb,1(H)) ∩ C1
b (H), n2, n3 ∈ N.

Then, by Proposition 4.13 (cfr. Remark 4.5 and Remark 6.16) there exists a
sequence3 {ψn2,n3,n4}n4∈N ⊂ EA(H) such that

lim
n4→∞

ψn2,n3,n4

π
= ψn2,n3 , lim

n4→∞
L0ψn2,n3,n4

π
= Lψn2,n3 (6.39)

lim
n4→∞

〈Dψn2,n3,n4 , h〉
π
= 〈Dψn2,n3 , h〉, ∀h ∈ H. (6.40)

2C1b (H) is the space of all ϕ ∈ Cb(H) which are Fréchet differentiable with continuous
and bounded differential Dϕ : H → L(H)

3we assume that the sequence has one index
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Now set

ϕn1 = R 1
n1

ϕ,

ϕn1,n2 = n2

∫ 1
n2

0

Rt+ 1
n1

ϕdt,

ϕn1,n2,n3 = n2

∫ 1
n2

0

Rt+ 1
n1

ψn3dt,

ϕn1,n2,n3,n4 = R 1
n1

ψn2,n3,n4

As easily checked, by the definition of ϕn1,n2,n3,n4 and by (6.37)

lim
n1→∞

lim
n2→∞

lim
n3→∞

lim
n4→∞

ϕn1,n2,n3,n4

1 + | · |86
π
=

ϕ

1 + | · |86
.

which implies (6.34).
Let us show (6.35). By (2.4) we have that ϕn1,n2,n3,n4 ∈ EA(H) and by

Proposition 4.13 we have

Lϕn1,n2,n3,n4 = L0ϕn1,n2,n3,n4 , ∀n1, n2, n3, n4 ∈ N.

Consequently, by (6.39) and by (i) of Proposition 4.8

lim
n4→∞

L0ϕn1,n2,n3,n4 = lim
n4→∞

R 1
n1

Lψn1,n2,n3

π
= R 1

n1

Lψn1,n2 = LR 1
n1

ψn1,n2 = Lψn1,n2,n3 .

Still by Proposition 4.8 we have

LR 1
n1

ψn1,n2 = n2

(
R 1

n1
+ 1
n2

ψn3 −R 1
n1

ψn3

)
.

Therefore

lim
n2→∞

lim
n3→∞

Lϕn1,n2,n3

(
R 1

n1
+ 1
n2

ψn3 −R 1
n1

ψn3

)
1 + V

π
= lim

n2→∞

(
R 1

n1
+ 1
n2

ϕ−R 1
n1

ϕ
)

1 + V

π
=
R 1

n1

Lϕ

1 + V
.

The last equality follows by (v) of Proposition 6.10 and by the fact that
ϕ ∈ D(L, Cb,V (L6(0, 1))). Finally, since

lim
n1→∞

R 1
n1

Lϕ

1 + V
π
=

Lϕ

1 + V
,
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(6.35) follows.
let us show (6.36). Notice that for any n1, n2, n3, n4 ∈ N, h ∈ H1

0 we have

〈Dϕn1,n2,n3,n4(x), Dξh〉=R 1
n1

(〈
e

1
n1
A
Dψn2,n3,n4 , Dξh

〉)
(x)

=−R 1
n1

(〈
Dξe

1
n1
A
Dψn2,n3,n4 , h

〉)
(x).

By the elementary properties of the heat semigroup, for any t > 0 the linear
operator Dξe

tA : H1
0 → H, z 7→ Dξe

tAz is bounded by |Dξe
tAz|2 ≤ ct−1/2|z|2,

where c > 0 is indipendent of t. Then Dξe
1
n1
A

: H1
0 → H can be extended to

a linear and bounded operator in H, which we still denote by Dξe
1
n1
A

. Then
by (6.40) we have

lim
n4→∞

〈DξDϕn1,n2,n3,n4 , h〉
π
= 〈DξDϕn1,n2,n3 , h〉, ∀h ∈ H.

By the same argument we find

lim
n3→∞

〈DξDϕn1,n2,n3 , h〉
π
= 〈DξDϕn1,n2 , h〉, ∀h ∈ H.

Notice now that by definition of ϕn1,n2 we have

〈DξDϕn1,n2(x), h〉 = R 1
n1

(〈
Dξe

1
n1
A
Dψn2 , h

〉)
(x), x, h ∈ H.

Now, since Dξe
1
n1
A

: H → H is linear and bounded, by (6.38) it follows

lim
n2→∞

〈
Dξe

1
n1
A
Dψn2 , h

〉
1 + | · |86

π
=

〈
Dξe

1
n1
A
Dϕ, h

〉
1 + | · |86

.

Hence, by Proposition 6.10 (cfr. Remark 6.14) we have

lim
n2→∞

〈DξDϕn1,n2 , h〉
1 + | · |86

π
=
〈DξDϕn1 , h〉

1 + | · |86
.

Finally, by Proposition 6.10 applied to the semigroup (Rt)t≥0 we find

lim
n1→∞

〈DξDϕn1 , h〉
1 + | · |86

= lim
n1→∞

R 1
n1

(
〈Dξe

1
n1
A
Dϕ, h〉

)
1 + | · |86

π
=
〈DξDϕ, h〉
1 + | · |86

.

This complete the proof.
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6.8 Proof of Theorem 6.4

We split the proof into two lemmata.

Lemma 6.21. K is an extension of K0 and Kϕ = K0ϕ for any ϕ ∈ EA(H).

Proof. Take h ∈ D(A). It is sufficient to show the claim for

ϕ(x) = ei〈x,h〉, x ∈ L6(0, 1).

Let (L,D(L, Cb,1(H)) be the infinitesimal generator in Cb,1(H) of the Ornstein-
Uhlenbeck semigroup associated to the mild solution of (6.3) and, for any
m ∈ N, let (Km, D(Km, Cb,V (L6(0, 1)))) be the infinitesimal generator of
the semigroup (Pm

t )t≥0 in Cb,V (L6(0, 1)), as defined in (6.22), (6.23). Since
EA(H) ⊂ D(L, Cb,1(H))∩ Cb,1(H), by arguing as for Proposition 6.19 we find
that for any t ≥ 0, x ∈ L6(0, 1) it holds

Pm
t ϕ(x)−Rtϕ(x)

=
i

2
E
[∫ 1

0

ϕ(ξZ(t, x) + (1− ξ)Xm(t, x))dξ

〈
h,

∫ t

0

e(t−s)APmDξ(PmX
m(s, x))2ds

〉]

=
i

2
E
[∫ 1

0

ϕ(ξZ(t, x) + (1− ξ)Xm(t, x))dξ

∫ t

0

〈
h, e(t−s)APmDξ(PmX

m(s, x))2
〉
dsdξ

]

= − i
2
E
[∫ 1

0

ϕ(ξZ(t, x) + (1− ξ)Xm(t, x))dξ

∫ t

0

〈
DξPme

(t−s)Ah, (PmX
m(s, x))2

〉
ds

]
.

since Dϕ(x) = iϕ(x)h. Letting m→∞, by Theorem 6.17 we find

Ptϕ(x)− ϕ(x) = Rtϕ(x)− ϕ(x)

− i
2
E
[∫ 1

0

ϕ(ξZ(t, x) + (1− ξ)X(t, x))dξ

∫ t

0

〈
Dξe

(t−s)Ah, (X(s, x))2
〉
ds

]
.

This implies, still by arguing as for Proposition 6.19,

lim
t→0+

Ptϕ(x)− ϕ(x)

t
= Lϕ(x)− i

2
ϕ(x)〈Dξh, x

2〉 = Lϕ(x)− 1

2
〈DξDϕ(x), x2〉,

for any x ∈ L6(0, 1). As easily seen, |Dξe
tAh|2 ≤ π|Dξh|2, then∣∣∣∣Ptϕ(x)− ϕ(x)

t

∣∣∣∣ ≤ ∣∣∣∣Rtϕ(x)− ϕ(x)

t

∣∣∣∣+
|Dξh|2

2t

∫ t

0

E[|X(s, x)|24]ds
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Now, since ϕ ∈ D(L, Cb,1(H)), the first term of right-hand side is bounded
by ∣∣∣∣Rtϕ(x)− ϕ(x)

t

∣∣∣∣ ≤ c(1 + |x|2),

where cϕ,T > 0 depends only by ϕ and T . By Proposition 6.2, the last term
on the right-hand side is bounded by

|Dξh|2
2t

∫ t

0

E[|X(s, x)|24]ds ≤
|Dξh|2

2
E[ sup

t∈[0,T ]

|X(t, x)|24]ds ≤
cT |Dξh|2

2
(1+|x|24),

where cT > 0 depends only by T . Then,

sup
t∈(0,1)

∥∥∥∥Ptϕ− ϕt

∥∥∥∥
0,V

<∞.

This implies ϕ ∈ D(K, Cb,V (L6(0, 1))) and Kϕ = Lϕ − 1
2
〈DξDϕ, (·)2〉. Con-

sequently, the claim follows by Proposition 4.13.

Lemma 6.22. EA(H) is a π-core for (K,D(K, Cb,V (L6(0, 1)))), that is for
any ϕ ∈ D(K, Cb,V (L6(0, 1))) there exist m ∈ N and an m-indexed sequence
(ϕn1,...,nm)n1∈N,...,nm∈N ⊂ EA(H) such that

lim
n1→∞

· · · lim
nm→∞

ϕn1,...,nm

1 + V
π
=

ϕ

1 + V
(6.41)

and

lim
n1→∞

· · · lim
nm→∞

K0ϕn1,...,nm

1 + V
π
=

Kϕ

1 + V
. (6.42)

Step 1. Take ϕ ∈ D(K, Cb,V (L6(0, 1))) and fix λ > ω0, ω1, where ω0 is as in
Proposition 6.10 and ω1 is as in Proposition 6.18. We set λϕ−Kϕ = f . By
Proposition 6.11 we have ϕ = R(λ,K)f . Let us fix a sequence (fn1)n1∈N ⊂
EA(H) such that

lim
n1→∞

fn1

1 + V
π
=

f

1 + V
.

We set ϕn1 = R(λ,K)fn1 . By Proposition 6.10, 6.11 it follows

lim
n1→∞

ϕn1

1 + V
π
=

ϕ

1 + V
, lim

n1→∞

Kϕn1

1 + V
π
=

Kϕ

1 + V
. (6.43)

Step 2. Now let (Km, D(Km, Cb,V (L6(0, 1)))) be the infinitesimal generator
of the semigroup (Pm

t )t≥0 in the space Cb,V (L6(0, 1)), as defined in (6.23). We
set

ϕn1,n2 =

∫ ∞
0

e−λtP n2
t fn1dt.
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By Proposition 6.11 we have ϕn1,n2 ∈ D(Kn2 , Cb,V (L6(0, 1))) and by a stan-
dard computation

lim
n2→∞

ϕn1,n2

1 + V
π
=

ϕn1

1 + V
, lim

n2→∞

Kn2ϕn1,n2

1 + V
π
=
Kϕn1

1 + V
. (6.44)

Notice that fn1 satisfies the hypothesis of Proposition 6.19. Hence, ϕn1,n2 ∈
D(L, Cb,V (L6(0, 1)) and

Kn2ϕn1,n2 = Lϕn1,n2 −
1

2

〈
DξPn2Dϕn1,n2 , (Pn2 ·)2

〉
, (6.45)

for any n1, n2 ∈ N, x ∈ L6(0, 1). In addition, by (6.24) it holds∣∣〈DξDϕn1,n2(x), x2
〉
−
〈
DξPn2Dϕn1,n2(x), (Pn2x)2

〉∣∣
=
∣∣〈Dϕn1,n2(x), Dξ

(
x2
)
− Pn2Dξ(Pn2x)2

〉∣∣
≤ |Dϕn1,n2(x)|H1(0,1)

∣∣Dξ

(
x2
)
− Pn2Dξ(Pn2x)2

∣∣
W−1,2(0,1)

≤
(
‖Dϕn1‖Cb(H;H1(0,1)) + c‖ϕn1‖0

λ− ω1

)
(1 + |x|6)8

×
∣∣Dξ

(
x2
)
− Pn2Dξ(Pn2x)2

∣∣
W−1,2(0,1)

for any x ∈ L6(0, 1), where W−1,2(0, 1) is the topological dual of H1 endowed
with the norm | · |W−1,2(0,1). Consequently,

lim
n2→∞

〈DξDϕn1,n2(x), x2〉 − 〈DξPn2Dϕn1,n2(x), (Pn2x)2〉
1 + V

π
= 0 (6.46)

Step 3. By Proposition 6.20 for any n1, n2 ∈ N there exists a sequence (we
assume that it has one index) {ϕn1,n2,n3}n3∈N ⊂ EA(H) such that

lim
n3→∞

ϕn1,n2,n3

1 + V
π
=
ϕn1,n2

1 + V
(6.47)

lim
n3→∞

L0ϕn1,n2,n3

1 + V
π
=
Lϕn1,n2

1 + V
(6.48)

and

lim
n3→∞

〈DξDϕn1,n2,n3 , h〉
1 + | · |86

π
=
〈DξDϕn1,n2 , h〉

1 + | · |86
, ∀h ∈ H.

Then it follows

lim
n3→∞

〈
DξPn2Dϕn1,n2,n3 , (·)

2
〉

1 + V
π
=

〈
DξPn2Dϕn1,n2 , (·)

2〉
1 + V

. (6.49)



114 The Burgers equation

Step 4. By construction, (ϕn1,n2,n3)n1,n2,n3 ⊂ EA(H). By (6.43), (6.44),
(6.47)

lim
n1→∞

lim
n2→∞

lim
n3→∞

ϕn1,n2,n3

1 + V
π
=

ϕ

1 + V
.

Hence (6.41) follows. Let us show (6.42). By Lemma 6.21, for any n1, n2, n3 ∈
N, x ∈ L6(0, 1) we have

Kϕn1,n2,n3(x) = K0ϕn1,n2,n3(x) = L0ϕn1,n2,n3(x)− 1

2

〈
Dξϕn1,n2,n3(x), x2

〉
.

By (6.48), (6.49),

lim
n3→∞

K0ϕn1,n2,n3

1 + V
π
=
Lϕn1,n2 − 1

2
〈DξDϕn1,n2 , (·)2〉
1 + V

By (6.45) it holds

Lϕn1,n2 −
1

2

〈
DξDϕn1,n2 , (·)2

〉
= Kn2Dϕn1,n2 +

1

2

〈
DξPn2Dϕn1,n2 , (Pn2·)2

〉
− 1

2

〈
DξDϕn1,n2 , (·)2

〉
By (6.44), (6.46)

lim
n3→∞

Lϕn1,n2,n3 − 1
2
〈DξDϕn1,n2,n3 , (·)2〉
1 + V

π
=
Kϕn1,n2

1 + V

Finally, by (6.43), (6.44) we have

lim
n1→∞

lim
n2→∞

Kϕn1,n2

1 + V
π
=

Kϕ

1 + V
.

6.9 Proof of Theorem 6.5

Take µ ∈MV (L6(0, 1)).

Existence. By Theorem 6.4 we have P ∗s µ ∈ MV (L6(0, 1)), for any s ≥ 0.
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For any ϕ ∈ D(K, Cb,V (L6(0, 1))) we have

lim
h→0+

1

h

(∫
L6(0,1)

Psϕ(x)µ(dx)−
∫
L6(0,1)

Psϕ(x)µ(dx)

)
= lim

h→0+

1

h

(∫
L6(0,1)

KPhϕ(x)P ∗s µ(dx)−
∫
L6(0,1)

ϕ(x)P ∗s µ(dx)

)
= lim

h→0+

∫
L6(0,1)

Phϕ(x)− ϕ(x)

h
P ∗s µ(dx)

=

∫
L6(0,1)

Kϕ(x)P ∗s µ(dx)

=

∫
L6(0,1)

K0ϕ(x)P ∗s µ(dx). (6.50)

Here we have used (iv) of 6.7, Proposition 6.10 and Theorem 6.4. We stress
that the limit above holds by the fact that P ∗s µ ∈MV (L6(0, 1)) and by 6.7.
Still by Proposition 6.10 the function

R+ → R, s 7→
∫
L6(0,1)

K0ϕ(x)P ∗s µ(dx)

is continuous. Then, by integrating (6.50) in [0, t] we find that P ∗t µ, t ≥ 0
fulfils (6.11). By (i) of Proposition 6.10 it follows |P ∗t µ|TV ≤ c0e

ω0t|µ|TV .
Hence P ∗t µ, t ≥ 0 fulfils (6.8).
Uniqueness. Assume that {µt, t ≥ 0} fulfils (6.8), (6.11). Take ϕ ∈
Cb,V (L6(0, 1)). By Theorem 6.4 there exist m ∈ N and an m-indexed sequence
(ϕn1,...,nm)n1,...,nm∈N ⊂ EA(H) such that

lim
n1→∞

· · · lim
nm→∞

ϕn1,...,nm

1 + V
π
=

ϕ

1 + V

and

lim
n1→∞

· · · lim
nm→∞

K0ϕn1,...,nm

1 + V
π
=

Kϕ

1 + V

Then, since {µt, t ≥ 0} ⊂ MV (L6(0, 1)), by the dominated convergence
theorem we have

lim
n1→∞

· · · lim
nm→∞

(∫
L6(0,1)

ϕn1,...,nm(x)µt(dx)−
∫
L6(0,1)

ϕn1,...,nm(x)µ(dx)

)

=

∫
L6(0,1)

ϕ(x)µt(dx)−
∫
L6(0,1)

ϕ(x)µ(dx)
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Similarly, for ant s ∈ [0, t] we have

lim
n1→∞

· · · lim
nm→∞

∫
L6(0,1)

K0ϕn1,...,nm(x)µs(dx)

=

∫
L6(0,1)

Kϕ(x)µs(dx).

Threfore, by (6.8) we can still apply the dominated convergence theorem to
find

lim
n1→∞

· · · lim
nm→∞

∫ t

0

(∫
L6(0,1)

K0ϕn1,...,nm(x)µs(dx)

)
ds

=

∫ t

0

(∫
L6(0,1)

Kϕ(x)µs(dx)

)
ds.

Then, {µt, t ≥ 0} is solution of (6.8) and (6.9), for any ϕ ∈ Cb,V (L6(0, 1)).
But by Theorem 6.3 such a solution is unique, thus µt must concides with
P ∗t µ, ∀t ≥ 0. The proof is complete.
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