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Résumé en français

Le Modèle Standard et la physique des saveurs

Le Modèle Standard des interactions fortes et électrofaibles (MS) résume l’essentiel des con-
naissances actuelles sur la physique subatomique et des interactions fondamentales (hormis
la gravitation). A la date d’aujourd’hui, même si de nombreuses questions restent sans
réponse, aucun résultat expérimental ne contredit les prédictions du MS.

Le MS peut se diviser en plusieurs secteurs, faisant reférence aux processus et aux parti-
cules auxquelles on s’interesse. Bien qu’il y ait un grand nombre de paramètres libres dans
la théorie, l’ajustement électrofaible global révèle un excellent accord avec les données. De
ces paramètres, environ la moitié proviennent du secteur demélange des quarks. Il y a à
peine une décennie, ce secteur était un des moins bien testésdu modèle (avec les neutrinos),
alors même qu’il est le seul où ait été mis en évidence un phénomène de grande importance,
à savoir laviolation de CP.

La violation de CP a éte découverte en 1964, dans les désintégrations des kaons neutres.
Peu après, Sakharov montra que celle-ci est un élément nécéssaire pour expliquer l’asymétrie
matière/antimatière de l’univers. La matrice de Cabbibo-Kobayashi-Maskawa (CKM), dont
les paramètres représentent les amplitudes de mélange des quarks, permet d’accomoder la
violation de CP dans le cadre du MS. On sait cependant que cemécanisme CKMest insu-
ffisant pour expliquer l’asymétrie matière/antimatière observée ; on tend à considèrer que
la matrice CKM (ainsi que l’ensemble du MS) est une représentation à basse énergie d’une
théorie plus fondamentale.

L’étude du secteur des saveurs, en particulier à travers deseffets liés à la violation de CP,
pourrait révéler une Nouvelle Physique (NP) au-delà du MS. Du fait du succès incontestable
du MS, il convient de placer la violation de CP dans un cadre théorique bien établi, pour
s’assurer que les possibles déviations par rapport au MS puissent être interprétées comme
dues à des effets de NP.

La matrice CKM décrit les transitions entre quarks en termesde quatre paramètres seule-
ment : trois angles de rotation et une phase irréductible. Cette phase contient toute l’informa-
tion sur la violation de CP. Ce nombre réduit de paramètres fondamentaux fait que le secteur
des saveurs est hautement prédictif. L’ambition du programme de physique des saveurs est
d’obtenir des mesures redondantes d’observables liées à lamatrice CKM.

Dans ce cadre, le but principal desusines à B, dont les expériencesBABAR et Belle sont
les représentants en activité depuis une décennie, est de produire une étude systématique
des asymétries de CP dans les désintégrations des mésons B. Au-delà de la métrologie de la



matrice CKM, qui en est le premier objectif, le programme desusines à B s’est continuelle-
ment élargi vers une recherche d’effets de NP ; non seulementen améliorant constamment
la précision des mesures, mais aussi en étendant le nombre deprocessus étudiés, grâce à
l’augmentation des échantillons des données disponibles.

Des équipes d’analyse de phénoménologie, où le groupe CKMfitter est un acteur de
premier rôle, produisent des études combinées de l’ensemble des mesures disponibles, afin
de produire un ajustement global de la matrice CKM. La conséquence est une confirmation
éclatante du mécanisme CKM.

Au vu de ce grand succès du MS, un scénario deViolation Minimale de la Saveur(VMS)
est considéré de nos jours comme une alternative vraisemblable : les possibles contribu-
tions de NP se manifesteraient sous la forme de petites perturbations au mécanisme CKM.
L’objectif de physique des usines à B s’oriente ainsi de plusen plus vers la recherche d’effets
en provenance de cette VMS.

Une approche prometteuse est celle desanalyses en amplitudes. Egalement appelées
analyses de Dalitz, elles permettent d’accèder directement aux amplitudes de désintégra-
tion, et de séparer les phases faibles et fortes qui y contribuent, par la résolution des profils
d’interférence entre états intermédiaires résonants. Dans le cas des désintégrations des mé-
sons B en trois hadrons légers, les canauxB → Kππ ont la particularité d’être dominés
par des contributions aux ordres supérieurs (boucles), tout en ayant des taux de désintégra-
tion relativement importants. De ce fait, les analyses de Dalitz de ces modes peuvent avoir
une meilleure sensibilité aux contributions provenant de la NP. Cette approche sous-tend le
travail expérimental et phénoménologique présenté dans cette thèse.

Le cadre de travail : l’expérienceBABAR

Le travail de recherche exposé dans cette thèse s’est réalisé dans le cadre de l’expérience
BABAR, qui est une collaboration internationale regroupant des institutions de dix pays. Le
détecteurBABAR est placé auprès du collisionneur PEP-II du Stanford LinearAccelerator
Center SLAC, en Californie (Etats-Unis). PEP-II est une usine à B, constitué d’un dou-
ble anneau de stockage d’électrons et positrons. Les paramètres de collision des faisceaux
sont ajustés à la résonanceΥ (4S), dont la masse est très légèrement supérieure au seuil de
production de pairesB − B̄; des mésonsB sont ainsi produits à un taux très élevé. Le
détecteurBABAR a été conçu pour enregistrer les produits des désintégrations des mésonsB
avec d’excellentes performances en termes d’efficacité et de résolution. La période de prise
de données de l’expérienceBABAR a commencé en 1999, et s’est prolongée jusqu’en 2008.
La richesse et qualité de la production scientifique de la collaborationBABAR contribuent
grandement au succès actuel de la physique des saveurs.

Cette thèse comprend deux travaux complémentaires. En premier lieu, la thèse décrit
un travail d’analyse de données expérimentales, sous la forme d’uneanalyse en amplitudes
dépendantes du temps du mode de désintégrationB0 → K0

Sπ
+π−. Cette analyse se traduit

par plusieurs résultats, du fait de la variété de processus contribuant à la dynamique de
ce mode de désintégration. Ensuite vient une analyse de phénoménologie, qui exploite un
sous-échantillon des résultats expérimentaux obtenus précédemment, ainsi que les résultats



disponibles provenant des autres modesB → Kππ, dans le but d’extraire des contraintes
sur la matrice CKM. Cette dernière étude se base sur des travaux théoriques récents, qui sont
ici étendus et modifiés avec des contributions originales.

Analyses de physique et résultats

Analyses en ampitudesB → Kππ : Motivation physique

Une prédiction du mécanisme CKM est que les asymétries de CP dépendantes du temps
dans les transitions du typeb → qq̄s (“modes dominés par les pingouins”), doivent être,
avec une très bonne approximation, les mêmes que dans les transitions du typeb → cc̄s
(“modes en or”). Pour ces derniers, les paramètresS et C des asymétries dépendantes du
temps (correspondant respectivement à la violation de CP induite par le mélange et à la
violation directe de CP) ont pour valeurS = sin 2β et C = 0, où β est un des angles du
triangle d’unitarité de la matrice CKM. Les modes en or sont insensibles à d’éventuelles
contributions de NP ; par contre, les termes en boucles sont dominants dans les amplitudes
des modesb → qq̄s, et de ce fait leurs amplitudes peuvent être modifiées substantiellement
par des contributions au-delà du MS. La mesure deS etC dans les modes dominés par les
pingouins représente un test important du MS : un écart significatif par rapport aux valeurs
dans les modes en or serait une indication de NP.

Dans l’amplitude de désintégrationB0 → K0
Sπ

+π−, deux résonances intermédiaires
correspondent à des modes dominés par les pingouins : leρ0(770)K0

S et lef0(980)K0
S. Un

avantage additionel d’étudier ces modes avec une analyse deDalitz dépendante du temps
provient du fait que l’interférence entre ces modes permet de mesurer directement la phase
βeff de l’asymétrie de CP dépendante du temps, alors que les analyses basées sur des taux de
comptage ne peuvent accèder qu’au paramètreS = sin 2βeff .

L’analyse en amplitudes des modesB → Kππ permet en outre de mesurer les phases
relatives entre les modes résonants intermédiaires en pseudoscalaire-vecteur dans l’état final.
Pour le canalB0 → K0

Sπ
+π−, en plus du modeρ0(770)K0

S déjà évoqué, l’état final a aussi
une contribution du modeK∗+(892)π−. Bien que ce soit un mode spécifique de saveur,
l’analyse de Dalitz permet de mesurer la phase relative∆φ(K∗−(892)π+, K∗+(892)π−) en-
tre l’amplitude de désintégration et son amplitude conjuguée de CP, par le biais du profil
d’interférence duK∗+(892) avec les résonances accessibles à la fois auxB0 et auxB̄0. Des
travaux théoriques récents ont évoqué la possibilité d’utiliser la valeur de cette observable
pour contraindre l’angleγ de la matrice CKM.

Analyse des données expérimentales du modeB0 → K0
Sπ

+π−

Ce travail commence par établir un algorithme de sélection des données enregistrées par
BABAR, en vue d’analyser un échantillon riche en événementsB0 → K0

Sπ
+π−. Cet algo-

rithme est basé sur des critères d’optimisation de l’identification du signal, et sur la carac-
térisation et la réjection des bruits de fond.

La deuxième étape consiste à établir un modèle statistique,basé sur une fonction de



vraisemblance étendue, définie de sorte à ce qu’elle décriveles données de l’échantillon, et
qu’elle permette d’en extraire les mesures expérimentalesdes observables physiques définis-
sant le processusB0 → K0

Sπ
+π−. Le défi le plus important de cette étape est le développe-

ment d’un modèle physique décrivant la dynamique de la désintégrationB0 → K0
Sπ

+π−

sous la forme d’unmodèle isobare, une approximation où l’amplitude totale de désintégra-
tion est considérée comme une somme cohérente d’amplitudes, correspondant à des états
résonants intermédiaires. De nombreux critères de validation ont été appliqués sur ce mo-
dèle, pour s’assurer de sa robustesse et de sa fiabilité.

Finalement, l’échantillon des données a été soumis à un ajustement de vraisemblance
maximale étendue. Les mesures expérimentales sont extraites du résultat de cet ajustement,
et se présentent principalement sous la forme d’observables quasi-deux-corps, qui sont des
fonctions des paramètres de l’amplitude isobare. Les observables mesurées incluent prin-
cipalement : les taux de désintégration et les asymétries deCP de toutes les composantes
intermédiaires, ainsi qu’un taux de désintégration inclusif et une asymétrie de CP globale ;
les paramètres des asymétries dépendantes du temps pour lescomposantes accessibles aussi
bien auxB0 qu’aux B̄0 ; les phases isobares relatives entre composantes dans un même
plan de Dalitz; enfin, pour les composantes spécifiques de saveur, la phase relative entre
l’amplitude isobare et son amplitude conjuguée de CP.

L’ajustement a identifié huit composantes significatives dans l’amplitude totale ; de ce
fait, le nombre d’observables mesurées est considérable. Parmi les résultats obtenus, les
principaux sont les suivants :

• L’ajustement trouve deux solutions, avec des figures de mérite équivalentes sur la qua-
lité de l’ajustement. Les valeurs des fractions isobare et des asymétries directes sont
très proches dans les deux solutions ; cependant, certainesdes phases isobare ont des
valeurs nettement différentes. Ainsi, ce résultat provient d’une ambiguité double dans
la résolution des profils d’interférence dans le plan de Dalitz. Les résultats sur les
observables physiques sont obtenus à partir de ces deux maximums de la fonction
de vraisemblance complète, et aucune approximation n’est faite dans l’extraction des
intervalles de confiance sur les paramètres mesurés.

• La mesure des paramètres(βeff , C) dans le modef0(980)K0
S, tout en étant en bon ac-

cord avec les modes en or, exclut la conservation de CP avec une signification de3, 5
écarts standard, en incluant les intertitudes systématiques. L’erreur totale est dominée
par la statistique, et la contribution principale à la systématique provient des incerti-
tudes sur le modèle isobare utilisé.

• Pour leρ0(770)K0
S, les résultats sont aussi en accord avec les modes en or. Par ailleurs,

la valeur(βeff = 180◦, C = 0) de conservation de CP est exclue à3, 9 écarts standard,
et le résultat est compatible avec la valeur(βeff = 0◦, C = 0) à mieux que1 écart
standard. Comme pour lef0(980)K0

S, l’erreur totale est dominée par la statistique,
et la contribution principale à la systématique provient des incertitudes sur le modèle
isobare utilisé.

• Pour le modeK∗+(892)π−, la mesure du paramètre de violation directe de CP donne
ACP = −0.20±0.10±0.02±0.01; la valeur non nulle a une signification de2.0 écarts



standard. La phase relative∆φ(K∗−(892)π+, K∗+(892)π−) entre l’amplitude et son
amplitude conjuguée est mesurée pour la première fois. Ce dernier résultat est limité
par la faible sensibilité due à la taille limitée des zones d’interference avec d’autres
résonances, et ne permet que d’exclure l’intervalle[−132◦ : +25◦] à 95% niveau de
confiance. Si bien la mesure de∆φ(K∗−(892)π+, K∗+(892)π−) est dominée par la
statistique, l’écart entre les deux maximums de la vraisemblance dilue sensiblement la
contrainte obtenue.

• La présence d’une contribution significative au spectreπ+π−, dans la région autour de
mπ+π− ∼ 1.5 GeV/c2, est établie avec une signification de4, 8 écarts standard. Ce
signal est paramétré comme une somme cohérente de deux contributions, le tenseur
f2(1270) et une autre résonancefX(1300) non repertoriée, et qui a été identifée pour
la première fois dans les modesB+ → K+π−π+. Comme dans ces autres analyses de
Dalitz, le meilleur ajustement s’obtient en utilisant un scalaire pour lefX(1300).

Une version préliminaire de ce travail a été présentée au nomde la collaborationBABAR,
à la conférence Lepton-Photon en 2007, et est disponible dans arXiv:0708.2097. La
version finale est actuellement en cours de validation interne dans la collaboration (étapes
finales de révision éditoriale), et doit à être publiée dansPhysical Review D.

Interprétation phénoménologique des modesB → K∗π etB → Kρ

Le but de ce travail phénoménologique est d’extraire des contraintes sur la matrice CKM à
partir des mesures d’observables sur les modes en pseudoscalaire-vecteur dans les désinté-
grationsB → Kππ. Ces mesures incluent des résultats de l’analyse des données décrite
ci-dessus. La stratégie est basée essentiellement sur la symétrie d’isospin, reliant les quatre
amplitudes de désintégrationB → K∗π d’une part, et les quatre amplitudes de désinté-
grationB → Kρ de l’autre. Au-delà de l’isospin, le nombre d’hypothèses dynamiques
extérieures est réduit au minimum, le but recherché étant d’obtenir des résultats aussi in-
dépendants du modèle que possible.

La méthode dite “CPS/GPSZ” a été utilisée comme base de référence ; les auteurs sug-
gèrent que la mesure de∆φ(K∗−(892)π+, K∗+(892)π−), combinée avec les phases relatives
entre leK∗+(892)π− et leK∗0(892)π0, accessibles par l’analyse de Dalitz (indépendante du
temps) du modeB0 → K+π−π0, permettent de poser une contrainte non triviale sur les
paramètres de la matrice CKM. Qui plus est, les auteurs affirment que, sous l’hypothèse de
négliger les contributions dites enpingouins électrofaibles(PEW), cette contrainte donnerait
accès direct à l’angleγ de la matrice CKM.

Cette thèse s’est d’abord fixée comme objectif de produire une extension de la mé-
tode CPS/GPSZ, visant à maximiser l’utilisation de l’information expérimentale disponible.
Cependant, cette démarche a aussi permis de démontrer que certaines des conditions invo-
quées par la méthode CPS/GPSZ ne sont pas correctes. Pour CPZ/GPSZ, l’accès à l’angle
γ repose sur l’hypothèse que la mesure de la phase relative∆φ(K∗−(892)π+, K∗+(892)π−)
peut se faire avec une analyse de Dalitzintégrée en tempsdu modeB0 → K0

Sπ
+π−, afin

que cette mesure soit indépendante du mélangeB0 − B̄0. Or cette affirmation est double-
ment incorrecte : non seulement cette phase n’est accessible qu’avec une analyse dépen-



dante du temps, mais de plus, l’observable physique correspondante contient nécéssairement
l’information sur la phase du paramètreq/p du mélangeB0 − B̄0. De ce fait, la méthode
CPS/GPSZ repose sur une contrainte qui n’est pas une fonction d’observables physiques.

Une méthode correcte est dévéloppée et utilisée dans cette thèse ; on démontre que la
contrainte basée sur des observables physiques donnerait lieu, dans l’hypothèse où on néglige
lesPEW, à une contrainte sur l’angleα de la matrice CKM (et non pasγ). Les conditions
de validité de cette hypothèse extérieure sont testées, à lafois en termes de la structure
des relations d’isospin, et en utilisant les contraintes provenant des mesures expérimentales
disponibles. On montre que pour les systèmeB → K∗π, les mesures ne favorisent pas le
scénario dePEW négligleables ; qui plus est, les mesures actuelles surK∗π n’ont qu’une
faible compatibilité avec les estimations théoriques disponibles sur lesPEW.

De ce fait, les contraintes obtenues sur la matrice CKM sont dominées par des incerti-
tudes d’origine théorique.

Finalement, une méthode qui exploite conjointement l’ensemble des mesures surK∗π et
Kρ est développée. Le potentiel de cette analyse combinéeK∗π + Kρ est estimé à l’aide
d’une analyse prospective, basée sur une extrapolation desincertitudes expérimentales. Les
résultats permettent d’illustrer le potentiel de physiquede ces analyses dans le cadre de
l’expérience LHCb, ainsi que des projets SuperB ou Belle-upgrade.

Cette étude se fait dans le cadre du groupe CKMfitter, notamment en collaboration avec
Jérôme Charles. Une version préliminaire de ce travail de phénoménologie est présentée dans
cette thèse. La version finale contiendra probablement quelques extensions de la méthode
dans un cadre plus élargi que la seule symétrie d’isospin. L’objectif final est de soumettre ce
travail à publication dansJournal of High Energy Physics.
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Introduction

The Standard Model (SM) of strong and electroweak interactions summarizes the current
knowledge on subatomic physics and the fundamental interactions (excluding gravitation).
Although several questions remain without answer, no experimental result contradicts the
SM predictions to date.

The SM can be divided into several sectors making reference to the processes consi-
dered. Although the SM has a large number of parameters that have to be extracted from
experiment, the global electroweak fit reveals a very good agreement with data. Among the
SM parameters, about half of them come from the quark flavor sector. Until a decade ago,
this sector (and that of the neutrinos) was the least tested,but it is the only one where a
phenomenon of great importance,CP violation, has been observed.

CP violation was discovered in 1964 in decays of neutral kaons.Later, Sakharov re-
marked thatCP violation is one key requirement to explain the matter/antimatter asymmetry
in the Universe. The Cabbibo-Kobayashi-Maskawa (CKM) quark mixing matrix enables to
incorporateCP violation into the SM framework. However, it has been shown that theCKM
mechanismis insufficient to explain the observed matter/antimatter asymmetry; it is widely
believed that the CKM matrix (and the entire SM) is a low-energy representation of a more
fundamental theory.

Measurements ofCP violation related effects, could reveal New Physics (NP) beyond
the SM if they cannot be accounted within the SM framework.

The CKM matrix describes the transitions between quarks with only four parameters:
three real rotation angles and one irreducible phase. This phase contains all the informa-
tion aboutCP violation. This reduced number of fundamental parameters makes the flavor
sector highly predictive. The ambition of the flavor physicsprogram is to obtain redundant
observables linked to the CKM matrix.

In this context, the main goal of theB factories, where theBABAR and Belle experiments
are the representatives in activity in the past decade, is toproduce a systematic study ofCP
asymmetries inB meson decays. Beyond CKM metrology, theB factories program has
continuously broadened the search of NP effects, not only byimproving the precision of the
measurements, but also by extending the number of processesstudied, thanks to the increase
of available data samples.

Several phenomenology groups, where CKMfitter plays an active role, combine the avail-
able experimental measurements to produce a global fit of theCKM matrix. The result is a
striking confirmation of the CKM mechanism.

Given the great success of the SM, a scenario ofMinimal Flavor Violation(MFV) is the
favored hypothesis to date: possible contributions of NP would appear as small perturbations
of the CKM mechanism.B factories today are increasingly oriented to study processes
sensitive to MFV.

A promising approach is that ofamplitudes analyses, or Dalitz analyses for three-body
decays. They provide direct access to decay amplitudes, andthereby disentangle weak and
strong phases by resolving the interference patterns between intermediate resonant states.



Among three-body decays ofB mesons to light hadrons, the rather abundantB → Kππ
channels are dominated by high order diagrams (loops). Dalitz analysis may therefore offer
high sensitivity to NP contributions. This approach subtends the experimental and phe-
nomenological analyses presented in this thesis.

This thesis is divided into four parts. In Part I an introduction of the theoretical con-
cepts used in this thesis are given. In Chapter 1,CP violation within the SM is described.
Then, theB meson system is reviewed emphasizing the experimental advantages of studying
such a system, and summarizing the current constraints on the CKM parameters. Chapter 2
discusses kinematics and dynamics of the three body decays,which are essential tools for
the time-dependent amplitude analysis of theB0 → K0

Sπ
+π− mode. Chapter 3 provides

a theoretical introduction to the different methods that can be used to constraint the CKM
parameters from the measurements ofB → K∗π andB → ρK modes, using mainly the
SU(2) isospin symmetry.

Part II is devoted to the description of the PEP-II accelerator and theBABAR detector.
This is where the characteristics of the detector which are important for reconstruction and
selection ofB0 → K0

Sπ
+π− decays are introduced.

The statistical analysis ofB0 → K0
Sπ

+π− decays is presented in Part III. Chapter 5
describes the data samples used for the present analysis, and the reconstruction and selection
algorithms applied to them. The relevant backgrounds from otherB decays are presented.
In Chapter 6 the construction of the likelihood function used to fit theB0 → KSπ

+π− final
data sample is described. The validation of the likelihood function, based on Monte Carlo
(MC) simulations, is presented there as well. Finally, Chapter 7 presents the fit results and
the estimation of the systematic uncertainties.

Part IV, the last of this thesis, is dedicated to the interpretation of the experimental results
on theB → K∗π andB → ρK system, using a phenomenological analysis based mainly
on isospinSU(2) symmetry. The derived constraints on hadronic and CKM parameters are
explored.



Part I

Theoretical Introduction



Chapter 1

Weak interactions, quark mixing and CP
violation

CP violation in weak interactions was first observed in 1964 [1]in decays of neutralK
mesons. Later on, Sakharov remarked thatCP violation is one key requirement to explain
the matter/antimatter asymmetry in the Universe [2]. Whilethe Standard Model of particle
physics incorporates a mechanism to accommodateCP violation [3, 4], it has been shown
that it is insufficient to explain the matter/antimatter asymmetry [5].

The Standard Model (SM) is the theory that describes all the known phenomena at the
subatomic scale. Although the SM has a large number of parameters that have to be extracted
from experiment, the global electroweak fit reveals a very good agreement with data [6].
However, many theoretical arguments motivate the search for New Physics. Today most
of the experimental effort is directed to falsify the SM, which is considered a low-energy
representation of a more fundamental theory.

Studying the flavor sector of the SM, in particular throughCP violation related effects,
could reveal New Physics. Due to the impressive success of the SM, it is convenient to place
theCP violation within its theoretical framework in order to constrain the SM parameters
or to throw some light on possible deviations due to New Physics.

This chapter describes the mechanism ofCP violation in weak interactions in the SM
framework. Then, theB meson system is described emphasizing the experimental advan-
tages of studying such a system. Finally, a short summary of the achievements ofB factories
in the measurement ofCP violation and constraints on SM parameters is given.

1.1 CP Violation in the Standard Model

The SM is a renormalizable quantum field theory constructed under the principle of local
gauge invariance with theSU(3)C ⊗SU(2)L⊗U(1)Y symmetry group. This group includes
the strong interaction symmetry group of color rotations,SU(3)C , and the electroweak in-
teraction groupSU(2)L ⊗ U(1)Y . The SM predicts that the latter is spontaneously broken
to SU(2)L ⊗ U(1)Y → U(1)em, whereU(1)em is the group of the electromagnetic interac-
tion. Noether’s theorem associates conserved quantities (charges) with gauge symmetries of
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strong and electromagnetic interactions. The weak interaction does not have an associated
conserved quantity as its gauge symmetry is broken.

1.1.1 Elementary constituents

The SM is based on a limited number of particles: the fermions, which are the elementary
constituents of matter; the bosons, which are the mediatorsof the interactions between the
fermions; and the Higgs boson, which is the responsable of the particles masses, and ofCP
violation through the Yukawa couplings (cf. Sec. 1.1.2).

Gauge bosons

There are twelve gauge mediators in the SM: the gluons, the mediators of the strong inter-
action, and theγ, W± andZ0, which mediate the electromagnetic and weak interactions,
respectively.

The gluons are massless, electrically neutral and carry color charge. There are eight
gluons, corresponding to the number ofSU(3) generators.

The electromagnetic interaction is mediated by the photon,a massless particle that car-
ries no electric charge and generates an interaction of infinite range. The weak interaction
bosons,W± andZ0, acquire mass through spontaneous symmetry breaking. Theycan in-
teract with each other through weak interaction couplings,and theW±, due to its electric
charge, couples with the photon.

Fermions

The fermions can be separated in two categories: quarks, susceptible to all three interactions,
and leptons, only capable of interacting weak and electrically. All fermions can be organized
in three families with identical properties except for their masses. The fermionic fields have
left chirality components transforming asSU(2)L doublets and right chirality components
transforming as singlets. The weak interaction only acts onleft chirality components.

1st family

(

νe

e−

)

L

, e−R,

(

u
d

)

L

, uR, dR

2nd family

(

νµ

µ−

)

L

, µ−
R,

(

c
s

)

L

, cR, sR

3rd family

(

ντ

τ−

)

L

, τ−R ,

(

t
b

)

L

, tR, bR

(1.1)

This configuration assumes that neutrinos are massless. TheSuper-Kamiokande, SNO and
KamLAND experiments observed that neutrinos from one family can be transformed, by
oscillation, to neutrinos of another family [7] with frequencies proportional to their mass
square differences. It is possible to extend the SM to takeν masses into account. However,
this has no effect in the following discussion which mainly deals with the weak interactions
of the quark sector.
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The Higgs boson

TheSU(3)C ⊗ SU(2)L ⊗ U(1)Y symmetry group prevents the bare masses of leptons and
quarks to appear in the Lagrangian density. To evercome to this problem, the SM is com-
pleted with a last particle: the Higgs boson, which is a Lorentz scalar, electrically neutral and

is a weak isospin doublet with four degrees of freedom,φ =

(

φ+

φ0

)

. Spontaneous break-

down of electroweak symmetry (the Higgs mechanism [8]) dynamically generates masses
for the fermions due to the Yukawa couplings of fermion fieldsand the Higgs doublet (cf.
Sec. 1.1.2). The Higgs particle has not been experimentallyobserved. Direct searches by
LEP II set a lower limit (mH > 114.4 GeV at 95%) [9] and the electroweak precision fit sets
an upper limit [6]. Searches made at Tevetron by theCDF andD∅ collaborations extended
the explored phase space, but still no observation has been made.ATLASandCMSexperi-
ments, constructed on the Large Hadron Collider (LHC) atCERN, are ready to take data, and
will look for direct evidence of the Higgs boson.

1.1.2 CP violation and the CKM Matrix

In a first stage the electroweak Lagrangian is analyzed to detect possible sources ofCP
violation. The electroweak Lagrangian can be written as thesum of three contributions,

LEW = Lkinetic + LHiggs + LY ukawa . (1.2)

There is also a term that couples the Higgs field to the gauge bosons, that has no consequence
onCP violation. The first term on the right side is the kinetic lagrangian of quarks and lep-
tons, the second and third ones are the Higgs field and the Yukawa Lagrangians, respectively.
The last term describes the coupling of the Higgs boson with the fermionic fields.

After spontaneous symmetry breaking, the Higgs field [8] confers a mass to each fermion
through the Yukawa couplings. The Yukawa Lagrangian for thecouplings between Higgs
and fermion fields, is given, after symmetry breaking, by (the mass term for neutrinos is
ignored)

LY ukawa = −(ū′
LM

uu′
R + d̄′

LM
dd′

R + ē′
LM

ee′
R + h.c.)(1 +

φ0

v
) , (1.3)

where:

• φ0 andv are the Higgs scalar field and the Higgs field mean value in vacuum, respec-
tively;

• u′
R,L, d′

R,L ande′
R,L are the up and down quark and charged leptons (e−, µ− andτ−)

vectors in the 3D flavor space:

u′
R,L =

(

1∓γ5

2

)





u′

c′

t′



 , d′
R,L =

(

1∓γ5

2

)





d′

s′

b′



 and e′
R,L =

(

1∓γ5

2

)





e′

µ′

τ ′



 ;

(1.4)
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• Mu,Md andMe are complex mass matrices3 × 3 for the up and down quarks and
charged leptons, respectively.

The quark mass spectrum is obtained by diagonalizing the mass matrices. TheMu,d,e

arbitrary complex matrices can be diagonalized by using twounitary matrices,Uu,d,e
L and

Uu,d,e
R , as follows,

Uχ
RM

χUχ
L = Mχ

diag χ = u, d, e , (1.5)

whereMχ
diag is a diagonal real matrix ((Mχ

diag)ij = mχ
i δij). This is where the fermion

massesmi are input by hand into the SM. The quark and lepton fields expressed in the
mass eigenstates base (without primes) are given by,

(u(R,L))i = (Uu
(R,L))ij(u

′
(R,L))j ,

(d(R,L))i = (Ud
(R,L))ij(d

′
(R,L))j ,

(e(R,L))i = (Ue
(R,L))ij(e

′
(R,L))j .

(1.6)

In the new basis the Yukawa Lagrangian can be written as

LY ukawa = −(ūLM
u
diaguR + d̄LM

d
diagdR + ēLM

e
diageR + h.c.)(1 +

φ0

v
) . (1.7)

TheUχ
(R,L) matrices being absent, the interactions of the Higgs field and fermions fields are

C, P andCP conserving. The kinetic term remains invariant in the new basis. What is
interesting is to see the weak interaction Lagrangian (the couplings of the fermion fields
to theW± andZ0 bosons). This can be separated into charged and neutral current pieces,
Lint = LNC + LCC . In the mass eigenstates basis, theLNC remains invariant because its
terms are of the form̄φ′

(L,R)γµφ
′
(L,R) (φ = u,d, e, ν). As an example,

ū′
Lγµu

′
L = ūLU

u
LγµU

u†
L uL = ūLγµuL . (1.8)

However, the quark charged-current term is modified by the basis transformation. In effect,
after the spontaneous symmetry breaking, the Lagrangian term describing theW± boson and
quark field coupling is given by

LCC =
g√
2

[ū′
Lγ

µd′
R]W+

µ + h.c. , (1.9)

whereg is theSU(2)L coupling constant andW+
µ is theSU(2)L gauge field. There is a

similar term for the coupling ofW± and lepton fields, that corresponds to replacingu → e
andd → ν. In the mass eigenstate basis, Eq.(1.9) can be written as

LCC =
g√
2

[ūLγ
µVCKMdR]W+

µ + h.c. , (1.10)

where the matrixVCKM , given by

VCKM = Uu
LU

d†
R =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb,



 (1.11)
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is the Cabibbo-Kobayashi-Maskawa (CKM) Matrix. This matrix was introducted by Kobayashi
and Maskawa [3] for three quark families, as an extension of Cabibbo’s model [4] of two
quark families. This matrix is complex and unitary, and, as will be discussed later, is the
source of CP violation in the SM.

In the approximation of zero neutrino masses, the rotation matrix for the neutrino fields
can be chosen to be the same as that for the charged leptons (Ue

L). This leaves lepton charged-
current term invariant. In the case of non-zero neutrino masses there exists an analogous
matrix toVCKM known as PMNS matrix [10].

1.1.3 CKM matrix properties

Number of independent parameters

The fact thatVCKM has a complex phase does not necessarily mean that there isCP violation
in the SM. In the case ofN quark families,VCKM will be a complexN×N matrix, and being
the product of two unitary matrices, it is itself unitary. Not all its parameters are physically
meaningful, as2N−1 of its phases can be absorbed in the quark fields by phase redefinitions
(uLk → eiφu

kuLk, and the same for the down quarks). Furthermore, the fact that VCKM is
unitary implies that it can be parameterized withN(N −1)/2 rotation angles (Euler angles).
All this leaves(N − 1)(N − 2)/2 independent phases. For the case ofN = 2 families,
VCKM is real and there is noCP violation. It is then necessary that the number of families
beN ≥ 3 to haveCP violation in the SM. This is the "KM ansatz" to explainCP violation.
In the case ofN = 3, four parameters are needed to describeVCKM : 3 (real) rotation angles
and one phase. All the information onCP violation is contained in this phase, thus making
the quark flavor sector of the SM highly predictive.

Conditions for CP violation

CP is not necessarily violated in the 3 families SM. If two quarks of the same charge had
equal masses, one rotation angle and one phase could be removed fromVCKM . Likewise, if
the value of any of the three rotation angles were0 or π/2, then the phase could be removed.
Finally,CP would not be violated if the value of the phase was0 or π. All these conditions
can be merged into one, parameterization independent, condition [11], which can be stated
as,

det[Mu,Md] = −2iFuFdJ 6= 0 ⇐⇒ CP violation , (1.12)

whereFu(d) = (mt(b) −mc(s))(mt(b) −mu(d))(mc(s) −mu(d))/m
3
t(b), andJ is a measure of

CP violation independent of any phase convention, known as theJarlskog invariant. In case
there is no degeneracy for the quark masses of the up and down quarks,

J 6= 0 ⇐⇒ CP violation . (1.13)

The are several parameterizations forVCKM . The two most used are the Standard and
Wolfestein parameterizations, which are now described.



1.1CP Violation in the Standard Model 32

Standard parameterization

The Standard parameterization was proposed by Chau and Keung [12]. It is obtained as the
product of three (complex) rotation matrices and a overall phase,

VCKM =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13



 , (1.14)

wherecij = cos θij , sij = sin θij for i < j = 1, 2, 3, and theθij are the rotation angles
between families.

Wolfenstein parameterization

Following the experimental observation of a the hierarchy on theVCKM elements, Wolfen-
stein [13] proposed an expansion of theCKM matrix in terms of four parametersλ, A, ρ
andη (λ ≃ |Vus| ∼ 0.22 being the expansion parameter),

VCKM =





1 − λ2

2
λ Aλ3(ρ− iη)

−λ 1 − λ2

2
Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1



+ O(λ4) . (1.15)

In this parameterizationη contains theCP violation information,i.e. CP violation when
η 6= 0. To all orders inλ, the exact Wolfenstein parameterization can be defined as,

s12 ≡ λ ,
s23 ≡ Aλ2 ,

s13e
−iδ ≡ Aλ3(ρ− iη) ,

(1.16)

inserted in the standard parameterization (cf. Eq.(1.14)), so that unitarity is achieved to all
orders1 This exact parameterization is used in the phenomenology studies performed with
the CKMfitter group [14, 15] described in Chapter 8.

The Unitarity Triangle

TheCKM matrix is unitary under the hypothesis of universal weak couplings,i.e. gl = gν =
gu = gd, which explains the presence of a unique gauge group,SU(2)L, for all families.

1 The Taylor expansion of Eq.(1.14), in terms of Eq.(1.16), uptoO(λ9) reads,

Vud = 1 − 1

2
λ2 − 1

8
λ4 − 1

16
λ6(1 + 8A2(ρ2 + η2)) − 1

128
λ8(5 − 32A2(ρ2 + η2)) ,

Vus = λ− 1

2
A2λ7(ρ2 + η2) ,

Vub = Aλ3(ρ− iη) ,
Vcd = −λ+ 1

2
A2λ5(1 − 2(ρ+ iη)) + 1

2
A2λ7(ρ+ iη) ,

Vcs = 1 − 1

2
λ2 − 1

8
λ4(1 + 4A2) − 1

16
λ6(1 − 4A2 + 16A2(ρ+ iη)) − 1

128
λ8(5 − 8A2 + 16A4) ,

Vcb = Aλ2 − 1

2
A3λ8(ρ2 + η2) ,

Vtd = Aλ3(1 − ρ− iη) + 1

2
Aλ5(ρ+ iη) + 1

8
Aλ7(1 + 4A2)(ρ+ iη) ,

Vts = −Aλ2 −Aλ4(1 − 2(ρ+ iη)) + 1

8
Aλ6 + 1

16
Aλ8(1 + 8A2(ρ+ iη)) ,

Vtb = 1 − 1

2
A2λ4 − 1

2
A2λ6(ρ2 + η2) − 1

8
A4λ8 .
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This unitarity implies various relations among theVCKM elements. Three of them are useful
for probing the SM prediction ofCP violation as they involve the non-trivialCKM phase:

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0 , (1.17)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0 , (1.18)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 . (1.19)

Each of these three relations requires the sum of three complex quantities to vanish and so
can be geometrically represented in the complex plane as triangles of same areaJ/2. The
phase transformations of the quark fields modify the triangle orientations in the complex
plane, but their shapes remain invariant,i.e. the internal angles and sides of these triangles
are independent of phase convention and are directly related toCP violation observables.
These are the "unitarity triangles", represented with a common scale in the left hand side of
Fig. 1.1.

The first two triangles are related to theCKM matrix elements that governs theK0 − K̄0

andB0
s − B̄0

s systems, respectively. For each of those triangles one sideis much shorter than
the others, and it almost collapses into a line. This offers an intuitive understanding of why
CP violation is expected to be small on those systems. Decays related to the small sides
(e.g.K → πνν̄) are rare but can exhibit significantCP violation.

The most exciting physics lies inBd decays. It is related to the third triangle, which has
wide angles and therefore implies largeCP violation effects. Eq.(1.19) is thus known as
the "Unitarity Triangle" (UT) drawn on the right hand side plot of Fig. 1.1. Note that in this
representation a phase convention has been chosen in whichVcdV

∗
cb is real and all sides have

been divided by|VcdV
∗
cb|.

(c)

(b)

(a)

7204A47–92

Rt

(ρ,η)

γ

α

β
ρ

η

Ru

(0,0)                                                     (1,0)

Figure 1.1:On the Left: geometrical representation of relations (1.17-1.19), drawn with a
common scale. On the Right: geometrical representation of the Unitarity Triangle choosing
a phase convention in whichVcdV

∗
cb is real, and dividing all sides by|VcdV

∗
cb|. This fixes one

of the sides along the real axis and gives it unit length.

Depicting the rescaled Unitarity Triangle in theρ̄− η̄ complex plane, defined bȳρ+ iη̄ ≡
−VudV

∗
ub/VcdV

∗
cb, the lengths of the two complex sides are

Ru =

∣

∣

∣

∣

VudV
∗
ub

VcdV ∗
cb

∣

∣

∣

∣

=
√

ρ̄2 + η̄2 , (1.20)
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Rt =

∣

∣

∣

∣

VtdV
∗
tb

VcdV ∗
cb

∣

∣

∣

∣

=
√

(1 − ρ̄)2 + η̄2 . (1.21)

The three angles of the UT are denoted byα, β andγ:

α ≡ arg
(

− VtdV ∗
tb

VudV ∗
ub

)

, β ≡ arg
(

−VcdV ∗
cb

VtdV ∗
tb

)

, γ ≡ arg
(

−VudV ∗
ub

VcdV ∗
cb

)

, (1.22)

with α + β + γ = π. The unitarity triangle relations allow to test theVCKM matrix unitar-
ity. To test unitarity is to explore violations of the consequences of the 3 families SM. Any
deviations would mean new physics effects. This sets the case for measuring the angles and
sides of the UT. Several of these parameters are directly related withCP violation observ-
ables from theB meson system. Overconstraining the UT parameters with suchobservables
allows us to test the SM.

1.2 TheB Meson System

This section describes the quantum mechanical properties of the B meson system. The
emphasis is set on introducing convention-free physical quantities related toCP violation.
Three different kinds ofCP violation are distinguished. The termB meson refers to mesons
made of āb antiquark, plus another quark from to the first or second family. Only theB0

d and
B+

u (denoted in the followingB0 andB+) are produced by PEP-II.

1.2.1 The quantum mechanics of neutralB mesons

In presence of strong and electromagnetic interactions only, a neutral meson state and its
CP conjugated would be stable and form a particle-antiparticle pair with common mass.
Due to weak interactions, those states can decay. To describe the neutral meson system,
different neutral states are relevant: two flavor eigenstates, which have definite quark content
and are useful for understanding particle production and particle decay processes; and two
Hamiltonian eigenstates (mass eigenstates) with definite mass and lifetime, which propagate
in spacetime in a definite fashion. If theCP symmetry were conserved ([CP,H] = 0) then
the mass eigenstates would also beCP eigenstates. In any case, mass eigenstates are not
flavor eigenstates, and so flavor eigenstates get mixed as they propagate. This phenomenon
which is well known for neutral kaons [16], has been observedfor neutralBd [17] and
Bs [18], and more recently for neutralD [19] mesons. In the following only the neutralBd

meson system,B0 = db̄ andB̄0 = bd̄, is considered.

An arbitrary linear combination of the flavor eigenstates,

a(t)|B0
〉

+b(t)|B̄0
〉

, (1.23)

is governed by the time-dependent Schrödinger equation

i
d

dt

(

a(t)
b(t)

)

= H
(

a(t)
b(t)

)

= (M − i

2
Γ)

(

a(t)
b(t)

)

, (1.24)
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whereM andΓ are two2 × 2 hermitic matrices known as mass and decay matrices, respec-
tively. CPT invariance ([CPT,H] = 0) imposesM11 = M22 = M andΓ11 = Γ22 = Γ, and
CP conservation would implyarg(M12/Γ12) = 0. The diagonal terms inM are dominated
by the flavor eigenstates masses, and the off-diagonal ones represent theB0

⇋ B̄0 transition
via virtual intermediate states (dispersive part). The diagonal terms ofΓ describe the decays
B0 → f andB̄0 → f̄ , and the off-diagonal ones represent transitionsvia real intermediate
states (absorptive part),B0 → f → B̄0 andB̄0 → f → B0 wheref is a final state common
toB0 andB̄0.

After diagonalizing the Hamiltonian,H, the physical states can be written as,

|BL

〉

= p|B0
〉

+q|B̄0
〉

, |BH

〉

= p|B0
〉

−q|B̄0
〉

, (1.25)

where the subindexL (H) refers to the lighter (heavier) Hamiltonian eigenstate with eigen-
valueλL = ML − iΓL/2 (λH = MH − iΓH/2), andp andq satisfy|p|2 + |q|2 = 1. The mass
and width difference are defined as follows,

∆md = MH −ML, ∆Γ = ΓH − ΓL , (1.26)

so that∆m is positive by definition. Finding the eigenstates of Eq.(1.24) the following
relations are derived

(∆md)
2 − 1

4
(∆Γ)2 = 4(|M12|2 −

1

4
|Γ12|2) , (1.27)

∆md∆Γ = 4Re(M12Γ
∗
12) . (1.28)

Finally, the ratioq/p is given by

q

p
= − ∆md − i

2
∆Γ

2(M12 − i
2
Γ12)

. (1.29)

The Schrödinger equation is solved immediately. AnyB state can be written as an ad-
mixture ofBL andBH

|B(t)
〉

= aH(t)|BH

〉

+aL(t)|BL

〉

. (1.30)

The amplitudes of this admixture evolve in time as

aH(t) = aH(0)e−iMHte−
1
2
ΓH t , aL(t) = aL(0)e−iMLte−

1
2
ΓLt . (1.31)

In the case of theBd mesons, they are expected to have negligible difference in lifetime
(width). This difference is produced by decay amplitudes ofchannels common toB0 and
B̄0. The branching ratios for such channels are at or below the level of 10−3. As many
channels contribute with different signs, then it is expected that the sum does not exceed the
individual level, hence∆ΓBd

/ΓBd
∼ O(10−2). The measured value of∆md/ΓBd

∼ 0.73
implies then∆ΓBd

≪ ∆md model-independently. It follows that (using Eqs. 1.27-1.29)
|Γ12| ≪ |M12| and|q/p| ∼ 1.
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A state which is created at timet = 0 as an initially pureB0 (B̄0), denoted by|B0
phys

〉

(|B̄0
phys

〉

), has (cf. Eq. 1.25)aL(0) = aH(0) = 1/(2p) (aL(0) = −aH(0) = 1/(2p)). The
time evolution of these states are, neglecting∆ΓBd

in front of ∆md, given by

|B0
phys(t)

〉

= e−i(MH+ML)t/2e−Γdt/2

[

cos

(

∆mdt

2

)

|B0
〉

+i
q

p
sin

(

∆mdt

2

)

|B̄0
〉

]

, (1.32)

|B̄0
phys(t)

〉

= e−i(MH+ML)t/2e−Γdt/2

[

cos

(

∆mdt

2

)

|B̄0
〉

+i
p

q
sin

(

∆mdt

2

)

|B0
〉

]

. (1.33)

This oscillation phenomenon is governed by the Feynman diagrams shown in Fig. 1.2. In
these diagrams are included three different up-quarks (u, c, t) loops , since all of them couple
with theW bosonvia a λ6 CKM factor. However, integrating over the internal degrees
of freedom (up-quark andW boson momenta) yields an expansion that weights the con-
tribution of each amplitude by the ratio of the corresponding quark mass to that of theW
boson [20]. The top quark contribution is the dominant one, the correspondingCKM factor
gives(VtdV

∗
tb)

2 ∼ e−2iβ . Then, theB0 states that oscillate intōB0 pick up an extra phase
−2β, known as themixing phase, with respect to theB0 states that do not oscillate. This
phase is measurable whenever bothB0 andB̄0 decay to a common final state.

Figure 1.2:Box Feynman diagrams for neutralBd mixing.

In the neutralB mesons, the amplitude for the mixing process is rather largedue to the
relative proximity of the values for their lifetimeτB0 = (1.530±0.009)ps and the oscillation
frequency∆md = (0.507±0.005)ps−1 [21]. They give a large oscillation probability before
decay

χd =
(τB0∆md)

2

2[1 + (τB0∆md)2]
= 0.1878 ± 0.0024 , (1.34)

hence the prominent role of the mixing process. An immediateconsequence is the large
time-dependentCP asymmetries that mixing produces, which are described in Sec. 1.2.3
(CP violation in mixing and decay).

1.2.2 Tagging and∆t measurement from coherentB0B̄0 production at
BABAR

At an e+e− collider operating at theΥ (4S) resonance, neutralB0 − B̄0 mesons are pro-
duced from theΥ (4S) decay in a coherentP -wave state. TheΥ (4S) resonance is a spin 1
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bb̄ bound state with mass just aboveBB̄ production threshold, and theB meson has spin
zero. According to Bose-Einstein statistics, the total wave function has to be symmetric with
respect toB0 − B̄0 exchange. Conservation of angular momentum implies that theB0 − B̄0

system is in al = 1 relative orbital angular momentum state, so the spatial wave function
is antisymmetric. Hence, the flavor wave function also has tobe antisymmetric. Then, as
long as bothB mesons have not decayed, the system evolves in such a way thatat any time
there is only oneB0 and oneB̄0 meson. If one of theB mesons, referred asBtag, decays
to a state of known flavor (B0 or B̄0) at a given timettag, the otherB, referred asBCP ,
at that timemust be of the opposite flavor (this is one case of the Einstein-Podolsky-Rosen
paradox [22]). However once one of the particles decays, theother continues to evolve ac-
cording to Eqs.(1.32) or (1.33), and events with twoB0 or two B̄0 are possible. This is the
rationale for the flavor tagging technique of neutralB mesons used atBABAR when studying
theB0/B̄0 → f/f̄ decays. In this technique one of theB’s is fully reconstructed, at the time
tCP , to thef final state (BCP ). The otherB is partially reconstructed, at the timettag, and
its flavor is deduced from its decay products (Btag) (e.g. in semileptonic decays the charge
of the lepton gives directly theB flavor, cf. Sec. 5.3). Knowing theBtag flavor gives directly
theBCP flavor atttag. ∆t is defined as the time difference betweenBCP andBtag decays
∆t ≡ tCP − ttag (cf. Fig. 1.3). The technique to measure∆t will be described with more
details in Chapter 5.

Figure 1.3:Principle of theB flavor tagging and∆t ≡ tCP − ttag measurement based on
the coherent production ofB0

dB̄
0
d mesons pairs via theΥ (4S) resonance. If theBtag meson

is in theB0
d (B̄0

d) state at timet = ttag, then theBCP is in theB̄0
d (B0

d) state at the same time.

1.2.3 Three types ofCP violation

TheB (B̄) meson decay amplitude to a final statef (f̄), denoted byAf (Āf̄ ), is written as

Af =
〈

f |H|B
〉

, (1.35)

Āf̄ =
〈

f̄ |H|B̄
〉

, (1.36)
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whereH is the Hamiltonian governing the decay. A given process is made of different
contributions, and the total amplitude is the sum of all of them

Af =
∑

j

aje
iδjeiφj , (1.37)

Āf̄ =
∑

j

aje
iδje−iφj , (1.38)

whereaj is the modulus of the contributing amplitude, andδj andφj are the strong (CP -
even) and weak (CP -odd) phases of that amplitude. In the SM the weak phases comefrom
theCKM matrix elements, and the strong phases from the quark "dressing" (cf. Chapter 3).

The possible manifestations ofCP violation can be classified in a model-independent
way (cf. Fig. 1.4): 1)CP violation in decay; 2)CP violation in mixing; and 3)CP violation
in the interference between decays with and without mixing.In each case it is useful to define
the corresponding convention freeCP -violating quantity.

Figure 1.4:Scheme representing the three types ofCP violation: (A) directCP violation,
(B) CP violation in mixing, (C)CP violation in the interference between decays with and
without mixing.

1) Direct CP violation

There is directCP violation if the transition probabilityB0 → f is different from that of
B̄0 → f̄ ,

Γ[B → f ] 6= Γ[B̄ → f̄ ] ⇐⇒ directCP violation , (1.39)
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whereΓ is the process rate. TheCP asymmetry is defined as

ACP =
Γ(B̄ → f̄) − Γ(B → f)

Γ(B̄ → f̄) + Γ(B → f)
. (1.40)

As the process rate is proportional to the total amplitude square, then Eq.(1.40) can be written
as

ACP =
1 − |Af/Āf̄ |2
1 + |Af/Āf̄ |2

. (1.41)

Hence, the directCP violation condition can be written in terms of the convention free
quantity

∣

∣

∣

∣

Āf̄

Af

∣

∣

∣

∣

6= 1 =⇒ directCP violation (1.42)

ThisCP violation results from the interference among various terms in the decay amplitude.
From Eqs.(1.37), (1.38) and (1.41), it can be seen that this type ofCP violation will not
occur unless at least two terms that have different weak and strong phases interfere,

|Af |2 − |Āf̄ |2 = −2
∑

i,j

aiaj sin(φi − φj) sin(δi − δj) . (1.43)

DirectCP violation is the only kind ofCP violation possible for the charged modes.

Direct CP violation in the interference pattern. Another observable related with this
kind of CP violation can be obtained from Dalitz plot analyses (cf. Chapter 2). Due to
interference between different components over the Dalitzplot, relative isobar phases (cf.
Sec. 2.4.3) are directly accessible. If these phases between two interferring components
are different forB andB̄ decays, then there isCP violation. Letφij andφ̄ij be the phase
differences between componentsi andj forB andB̄ decays, respectively. Then, the quantity
∆φij = φij − φ̄ij is aCP violation observable

∆φij 6= 0 =⇒ directCP violation . (1.44)

ThisCP violation will be realized as a difference in the interference pattern in theB andB̄
Dalitz plots. This can occur even if each component hasACP = 0 (cf. Eq.(1.40)).

Dalitz plot analyses of theB+ → K+π−π+ [23, 24] decay channel have recently shown
evidence for this manifestation of directCP violation. If the result is confirmed, would be
the first observation of directCP violation in the decay of a charged particle.

2)CP violation in mixing

The fact thatB0 can turn into itsCP conjugate gives rise to a different type ofCP violation.
It manifests itself as a difference in the transition probabilities B0 → B̄0 andB̄0 → B0:

Γ[B0 → B̄0] 6= Γ[B̄0 → B0] ⇐⇒ CP violation in mixing. (1.45)
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ThisCP violation is related to the fact that mass eigenstates are not CP eigenstates. This
difference can be expressed in terms of the convention free quantity|q/p| (cf. Eq. 1.29) as

∣

∣

∣

∣

q

p

∣

∣

∣

∣

2

=

∣

∣

∣

∣

M∗
12 − i

2
Γ∗

12

M12 − i
2
Γ12

∣

∣

∣

∣

, (1.46)

because theB0 → B̄0 and B̄0 → B0 transitions are described by the matrix elements
M12 − i

2
Γ12 andM∗

12 − i
2
Γ∗

12, respectively. Then

|q/p| 6= 1 =⇒ CP violation in mixing. (1.47)

This type ofCP violation was observed in the neutralK system in 1964 [1]. This phe-
nomenon is expected to be negligible in the neutralB mesons (cf. section 1.2.1), so in the
following the approximation|q/p| ∼ 1 will be used.

3)CP violation in the interference of mixing and decay

CP violation in the interference between decays with and without mixing (or shortlyCP
violation in mixing and decay) occurs whenever

Γ[B0 → f ] 6= Γ[B̄0 → f ] , (1.48)

wheref is a final state accessible to bothB0 and B̄0. This type ofCP violation comes
from the interference of amplitudesA(B0 → f) andA(B0 → B̄0 → f) (and conversely for
B̄0). In the following only the case ofB0 andB̄0 decaying to a commonCP eigenstatefCP

with eigenvalueηCP will be considered. The case in whichf is not aCP eigenstate is more
complicated, for an account see chapter 6 of [25].

The amplitudes for the processesB0
phys(t) → fCP andB̄0

phys(t) → fCP are given by
(cf. Eq.(1.32) and (1.33))

〈

fCP |H|B0
phys(t)

〉

= ηCPAfCP
(g+(t) + λfCP

g−(t)) , (1.49)
〈

f̄CP |H|B̄0
phys(t)

〉

= ηCP

〈

fCP |H|B̄0
phys(t)

〉

= ηCP
p

q
AfCP

(g−(t) + λfCP
g+(t)) ,

(1.50)

whereg±(t) are written as

g+(t) = e−i(MH+ML)t/2e−Γdt/2 cos (∆mdt/2) , (1.51)

g−(t) = e−i(MH+ML)t/2e−Γdt/2i sin (∆mdt/2) , (1.52)

and where

λfCP
= ηCP

q

p

Āf

Af

, (1.53)

is the convention free quantity carrying theCP violation information. Consequently, the
time-dependentCP asymmetry is given by (using Eq.(1.40), (1.49) and (1.50)),

ACP (t) =
1 − |λCP |2
1 + |λCP |2

cos(∆mdt) −
2Im(λCP )

1 + |λCP |2
sin(∆mdt) . (1.54)
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Then, there will beCP violation if,

λCP 6= ±1 =⇒ CP violation in mixing decay interference. (1.55)

It has to be noted that both direct (|Āf/Af | 6= 1) and mixing-inducedCP violation (|q/p| 6=
1) verify Eq.(1.55). However, there are circumstances in which both|Āf/Af | = |q/p| = 1
and there is stillCP violation through

|λCP | = 1, Im(λCP ) 6= 0 . (1.56)

In this case Eq.(1.54) is simplified to

ACP (t) = −Im(λCP ) sin(∆mdt) . (1.57)

1.2.4 B factories achievements

First observation of CP violation in the B meson system and the measurement of
sin(2β)

The first major achievement ofB factories is the precision measurement of thesin 2β pa-
rameter. A non-zero value was first measured in 2001 by theBABAR and Belle collabora-
tions [26, 27] by studyingCP violation in decays governed byb → cc̄s transitions, known
asgoldenmodes (e.g.B0 → J/ΨK0

S). In these modes, the observedCP violation is from
decay-mixing interference. The advantages in studying these modes are two-fold:
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Figure 1.5:On the left: The top histograms represent the time∆t distributions forBtag =
B0 (red) andBtag = B̄0 (blue) events inB0/B̄0 → J/ΨK0

S decays. On the bottom the
derived time-dependent asymmetry. On these plots the fittedprobability density function is
superimposed. On the right: dominant tree diagram for theB0 → J/ΨK0

S.

• These modes have a very distinctive experimental signature, and so very clean event
samples are available. This is illustrated on the left plot of Fig. 1.5, displaying the
time distributions forBtag = B0 andBtag = B̄0 events. At the bottom of the same
plot the derived time-dependentCP -asymmetry is shown. It can be seen that the time
evolution ofB0 andB̄0 mesons is different, which establishes theCP violation.
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• Theoretically thegoldenmodes are a clean way to have access to theβ angle of the
CKM matrix. For decays governed byb → cc̄s transitions (cf. right plot of Fig. 1.5)
such asB0 → J/ΨK0

S, and explicit representation ofλCP (cf. Eq.(1.53)) can be found
from the ratio of the amplitude for̄B0 → (cc̄)K̄0 to the interfering process̄B0 →
B0 → (cc̄)K0 → (cc̄)K̄0. The decayB0 → (cc̄)K0 involves ab̄ → c̄cs̄ transition
with an amplitude proportional to[V ∗

cbVcs], while B̄0 → (cc̄)K̄0 provides analogously
a factorηCP [VcbV

∗
cs]. BecauseB0 → B̄0 mixing is dominated by a loop diagram with

a t quark, it introduces a factor[V ∗
tdVtb/VtdV

∗
tb], whileK0 → K̄0 mixing, dominated

by thec quark loop, adds a factor of[V ∗
cdVcs/VcdV

∗
cs]. Altogether, for transitions of the

typeb → cc̄s,

λCP = ηCP

(

VtdV
∗
tb

V ∗
tdVtb

)(

VcbV
∗
cs

V ∗
cbVcs

)(

V ∗
cdVcs

VcdV ∗
cs

)

= ηCPe
−2iβ . (1.58)

Then, for these modesIm(λCP ) = sin(2β). The current HFAG average ofsin(2β)
for all thecharmoniummodes is [28]

sin(2β) = 0.691 ± 0.029 ± 0.014 , (1.59)

where the first and second errors are statistical and systematical, respectively.

First observation of direct CP violation in the B mesons system

The first observation of directCP violation was made in 2004 byBABAR and Belle [29, 30].
TheBABAR measurement is represented in Fig. 1.6, where it is shown an sPlot2 [31] of the
energy difference (∆E) forB0 → K+π− (solid blue line) andB̄0 → K−π+ (dotted red line)
events. This variable is defined as the difference of

√
s/2−E∗

B , whereE∗
B is the reconstructed

B meson energy in the collisione+e− CM frame (cf. Sec. 5.6.1). TheB0/B̄0 rate asymmetry
is evidently non-zero. The current World Average value isAK+π− = −0.098+0.012

−0.011 [28].

1.3 Constraints on theCKM Matrix and B factories

The main purpose of flavor physics is to obtain redundant measurements of CKM related
observables that can reveal physics beyond the SM. The CKMfitter group [14, 15] produces
a global fit to the CKM matrix, known as the "standard CKM fit", based on a list of exper-
imental constraints on theCKM matrix elements where theoretical errors are under control.
The current list of "standard" inputs is given below:

• B factories allow to measure observables by studying theBd andBu mesons.BABAR

and Belle have contributed with precision measurements of∆md andsin 2β. Other
parameters are also accessible given the high statistics accumulated by these two ex-
periments:|Vub|, |Vcb|, and the UT anglesα andγ.

2An sPlot is technique to contruct background-subtracted event weights distributions.
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Figure 1.6:sPlot of the distribution of∆E for signalB0/B̄0 → K±π∓ events, comparing
(solid)B0 and (dashed)̄B0 decays. The distribution is not centered at zero as the energy of
theB meson candidate is calculated with a pion hypothesis for thekaon.

– ∆md = (0.507 ± 0.005) ps−1, extracted from oscillations in the neutralBd sys-
tem;

– sin 2β, measured from decays governed byb→ cc̄s transitions (cf. Sec. 1.2.4 for
a description of this measurement);

– |Vcb| = (42.0 ± 1.0) × 10−3, most accurately obtained from exclusiveB →
D(∗)ℓν̄ℓ and inclusive semileptonicb→ c decays;

– |Vub| = (3.90± 0.68)× 10−3, which can be extracted from either from inclusive
B(B → Xuℓνℓ) decays, or from exclusive decays such asB → {π, ρ, ω, η}ℓνℓ;

– α, measured from the isospin analysis of theb→ uūd charmless channels:B →
ππ, B → ρπ andB → ρρ;

– γ, extracted from decays governed byb → cūs quark level transitions (e.g.

B+ → D
(∗)0

K(∗)+).

• Studies in the neutralK andBs systems, andβ decays allow access to:

– |ǫK | = (2.229 ± 0.010) × 10−3, fromCP violation studies of neutral kaons;

– ∆ms = (17.77 ± 0.12)ps−1, the mass difference betweenBH andBL eigen-
states in the neutralBs meson system, is measured from oscillations of neutral
Bs mesons. CDF [32] gives the strongest constraint;

– |Vud| = 0.97418 ± 0.00026, from β decays of nuclei, neutrons and pions;

– |Vus| = 0.2246 ± 0.0012, from Kaon and hyperon semi-leptonic decays;

The most up to date result on the(ρ̄, η̄) plane, obtained with the latest measurements for the
ICHEP08 conference, is presented in Fig. 1.7. The elliptical region shows the allowed region
by the SM for the apex of the UT.
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Figure 1.7:Individual constraints on the(ρ̄, η̄) plane from the|εK|, |Vud|, |Vus|, |Vcd|, |Vud|,
|Vcs|, ∆md, ∆ms, |Vts|, and the direct measurements of the UT anglesα, β and γ. The
regions containing the points with a CL higher than5% are drawn in color. The global
CKM fit gives an almost "elliptical" constraint in the center of the plot.

All the measurements of the CKM parameters are compatible among themselves and with
the SM. The compatibility delimits a much reduced area in theparameter space. This result
combines measurements of processes of different nature: processes that violate/conserve
CP , processes dominated by tree amplitudes or dominated by loops, and processes that
come from very diverse sectors (nuclei, neutrons, pions, kaons,B andBs mesons). The
constrained region in Fig. 1.7 indicates that the CKM mechanism gives a solid description of
the experimental data, which reduces strongly the parameter space for possible flavor mixing
scenarios beyond the SM.
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The contribution ofB factories to the knowledge of the CKM parameters is not limited
to metrological purposes (i.e. to measure theCKM matrix elements in the hypothesis that the
SM is correct). Precision measurements in search for new physics are also performed. New
physics searches have been broadened not only by improving the precision of the measure-
ments, but also by increasing the number of processes used toobtain the desired parameters.
One example is the study ofB → K∗π andB → ρK modes presented in Chapter 3.

Given the great success of the SM, a scenario ofMinimal Flavor Violationis the hypoth-
esis favored up to date: non-standard physics contributions would appear as small perturba-
tions of the CKM mechanism.B factories today are increasingly oriented to study processes
sensitive to effects of this non-standard physics.

A possible candidate to achieve such a goal, are amplitudes analyses (cf. Chapter 2)
where weak and strong phases can be directly disentangled byresolving the interference
patterns, and so could have a better sensitivity to contributions from physics beyond the SM.
This approach subtends the statistical and phenomenological analyses presented in Part III
and Chapter 8.



Chapter 2

B0 → K0
Sπ

+π− and Charmless 3-bodyB
decays

2.1 Introduction

Decays ofB mesons to three-body charmless hadronic final states have attracted consider-
able attention in recent years. Amplitude (Dalitz Plot) analyses for a number of three-body
final states have been performed (K+π−π+, K+π−π0, K0

Sπ
+π−, K+K−K+, K+K−K0

S),
where branching fractions for many quasi-two body (Q2B) (the two bodies being a stable
particle and a resonance, hence the term "quasi") resonant states have been measured for the
first time or with a significantly improved accuracy. The three-body charmless final states
provide a rich laboratory for studying different aspects ofstrong interactions, but more im-
portantly they provide new possibilities for searches ofCP -violation, and many new tests
of theCKM framework for charged current weak interactions. In decaysto three-body
final states that are often dominated by Q2B channels, the strong phase motion along the
lineshape of interfering resonances are measured and can beused to constrain theCKM
phases. While in decays to two-body final states (B → Kπ, ππ) directCP -violation can be
observed as a difference in theB andB̄ decay rates, in the three-body channelsCP -violation
can furthermore manifest itself as a difference in interference pattern of two Q2B interfering
amplitudes contributing toB andB̄.

This chapter discusses the kinematics and dynamics of the three body decays, which
are essential tools for the time-dependent amplitude analysis of theB0 → K0

Sπ
+π− mode.

First, the experimental and theoretical status of Dalitz plot analyses is summarized. Then a
word is said about searches for New Physics with the measurement of sin(2βeff ) with the
Penguin-dominated modesB0 → f0(980)K0

S andB0 → ρ0(770)K0
S that contribute to the

decay channel studied in this thesis. The rest of the chapteris dedicated to the theoretical
description of time-dependent Dalitz Plot analyses. The kinematics of three body decays are
presented with the definition of the Dalitz Plot (DP). The isobar model is presented, which
is used to describe the decay dynamics, giving the Dalitz Plot dependence of the decay
amplitudes. The time and DP dependence of the probability density function (PDF) used
in the Maximum Likelihood Fit is given. Finally, the definitions of physical parameters in
terms of fit parameters are presented.
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2.2 Experimental and theoretical status

The study of charmless Q2B and three-bodyB decays is one of the main topics in the physics
program ofB factories. Since branching fractions for most hadronic channels are of the
order of10−5 to 10−6 [33], the higher accumulated statistics allows for Dalitz Plot analyses
for the most prominent modes or those with high reconstruction efficiencies, such asB+ →
π+π−π+ [34], B0 → (ρπ)0 [35, 36], B+ → K+K−K+ [37], B0 → K+K−K0 [38],
B0 → K+π−π0 [39, 40],B+ → K+π−π+ [23, 24]. In this latter mode,BABAR and Belle
find the first evidence for directCP -violation in a charged mode, with theB+ → ρ0K+

submode, both experiments yielding a similar level of significance.
TheB0 → (ρπ)0 result was the first amplitude analysis including flavor tagging and

time-dependence, and later on theB0 → K+K−K0 analysis followed. For the mode
B0 → K0

Sπ
+π−, only Q2B [41] and tag- and time-integrated Dalitz plot [42]analyses

had been performed before the analysis presented in this thesis. The Q2B approach iso-
lates different components on the Dalitz plot and measures the corresponding yields. The
disadvantage of this approach is that interference betweencomponents is ignored. This in-
troduces substantial systematic uncertainties. Specifically, there is no access to the phase
differences between interfering components, and only the corresponding branching ratios
andCP -asymmetries (provided the tagging information is not ignored) can be extracted.
CP -averaged interference patterns can be extracted from tag-and time-integrated Dalitz
plot analyses, which enables one to measure average phase differences and relative magni-
tudes between the amplitudes of the different components. The fact that the time and tagging
information are ignored means that noCP -asymmetries are accessible. The analysis treated
in this thesis includes simultaneously the tag, time and Dalitz plot information, determining
with improved accuracy phase differences,CP -asymmetries and branching fractions. Also,
as explained in chapter 3, the observables accessible from this analysis are ingredients for
the phenomenological analyses of theK∗π andKρ systems.

From previous Q2B [41, 43, 44, 45] and time-integrated amplitude analyses [42], an in-
clusive branching fraction ofB(B0 → K0π+π−) = (44.8 ± 2.5) × 10−6 was measured,
and significant yields for theK∗(892),K∗

0(1430), f0(980) andρ0(770) resonant states were
found. In their time-integrated amplitude analysis, Bellefinds an excess in theπ+π− in-
variant mass spectrum around∼ 1.3GeV/c2, which they model as the coherent sum of a
f2(1270) and a scalar, somewhat arbitrarily. Branching fractions and Dalitz plot structure
are in agreement with the ones found inB+ → K+π−π+ andB0 → K+π−π0 modes, as
expected. Tables 2.1 and 2.2 summarize the experimental findings.

On the theoretical side, there exist predictions for the branching fractions andCP -
asymmetries for theB0 → K∗+(892)π−, B0 → ρ0(770)K0

S andB0 → f0(980)K0
S reso-

nant modes, which contribute to theB0 → K0
Sπ

+π− final state. For thef0(980) there is no
strong consensus about its quark structure. Some claim it tobe a two-quark state, wheress̄,
(uū+ dd̄)/

√
2 states are mixed, due to the fact that this resonance can decay toKK andππ.

Other claim that is a four-quark state. So the theoretical calculations are difficult to inter-
pret. Those predictions are based on QCD factorization [46], SU(3) flavor symmetry [47]
and QCD factorization including final state interactions [48]. The directCP -asymmetries
are predicted to be large for theK∗±(892)π∓ andρ0(770)K components. The predicted
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Parameter BABAR Belle
B(B0 → ρ0(770)K0

S) 4.9 ± 0.8 ± 0.9 [45] 6.1 ± 1.0+1.1
−1.2 [42]

B(B0 → f0(980)(→ π+π−)K0
S) 5.5 ± 0.7 ± 0.6 [41] 7.6 ± 1.7+0.9

−1.3 [42]
B(B0 → K∗+(892)π−) 12.6+2.7

−1.6 ± 0.9 [40] 8.4 ± 1.1+1.0
−0.9 [42]

ACP (B0 → K∗+(892)π−) −0.19+0.20
−0.15 ± 0.04 [40] —

B(B0 → (Kπ)∗0) 9.4+1.1+1.4
−1.3−1.1 ± 1.8 [40] 49.7 ± 3.8+6.8

−8.2 [42]
B(B0 → K0

Sπ
+π−)NR — 19.9 ± 2.5+1.7

−2.0 [42]
B(B0 → K0

Sπ
+π−)tot 43.0 ± 2.3 ± 2.3 [41] 47.5 ± 2.4 ± 3.7 [42]

Table 2.1:Summary of the total and partial Branching fractions (in units of10−6), and direct
CP -asymmetry (only for theB0 → K+(892)π−) measurements made byBABAR and Belle
before the present analysis. The(Kπ)∗0 notation refers to the S-waveKπ.

time-dependentCP -asymmetries are usually large.

2.3 b→ sq̄q Penguin Dominated Modes and New Physics

It is possible to detect physics beyond the SM (or New Physics(NP)) by measuring theβ
angle inb → qq̄s (q = u, d, s) Penguin dominated decays. Such loops are dominated by
virtual t-quarks, which involve a singleCKM factorV ∗

tbVts. Thus, in the context of the SM,
if the CP -asymmetry in theBd → fCP is measured, wherefCP is anCP eigenstate with
eigenvalueηCP = ±1, and the decay is dominated by ab → qq̄s hadronic Penguin, a probe
to NP is made. In effect, theCKM phase involved in theb → qq̄s Penguin dominated
decays is the same as that probed inb → cc̄s (golden modes,e.g. B0

d → J/ψK0
S), so it is

expected to havesin 2βqq̄s = −ηCP sin 2βcc̄s for the mixing inducedCP -asymmetry and also
ACP ∼ 0 for the directCP -asymmetry. Therefore, a discrepancy would clearly point to NP,
which would indicate that there are new amplitudes contributing to the hadronicb → qq̄s
Penguin decays, corresponding to new particles circulating in the loop.

A number ofb → qq̄s Penguin dominated decay channels have been identified; among
them areK+K−K0

S,φK0
S, η′K0

S,K0
SK

0
SK

0
S, π0K0

S,ωK0
S, π0π0K0

S, f0(980)K0
S andρ0(770)K0

S.
The last two modes contribute to theB0 → K0

Sπ
+π− signal (the decay channel studied in the

thesis). Depending on the mode, the decay amplitudes can getcontributions from the quark-
level b → uūs Tree diagram, so that the level of Penguin-dominance is mode-dependent
(for instance,φK0

S, K0
SK

0
SK

0
S andη′K0

S are considered very clean). What is measured with
these modes is not directlyβ but ratherβeff , which includes the Tree contamination. Cur-
rently, the discrepancies between charmonium and charmless time-dependent asymmetries
are not statistically significant, but compilations [28] (cf. Fig. 2.1) show that most central
values ofsin 2βeff are belowsin 2β from the golden modes. As a general rule, theoretical
estimations [48] would pushsin(2βeff) abovesin(2βcc̄s).

In this analysis it is possible to measuresin 2βeff for theB0 → f0(980)K0
S andB0 →

ρ0(770)K0
S Penguin dominated decays. Such measurements have been performed previously

on smaller data samples with the Q2B approaches [43, 44, 45].A Dalitz plot analysis of
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Parameter BABAR Belle
S(B0 → ρ0(770)K0

S) 0.20 ± 0.52 ± 0.24 [45] —
C(B0 → ρ0(770)K0

S) 0.64 ± 0.41 ± 0.20 [45] —
S(B0 → f0(980)(→ π+π−)K0

S) −1.62+0.56
−0.51 ± 0.09 [43] 0.18 ± 0.23 ± 0.11 [44]

C(B0 → f0(980)(→ π+π−)K0
S) 0.27 ± 0.36 ± 0.12 [43] 0.15 ± 0.15 ± 0.07 [44]

Table 2.2:Summary of the direct and mixing inducedCP -asymmetry measurements for the
B0 → f0(980)(→ π+π−)K0

S andB0 → ρ0(770)K0
S modes made byBABAR and Belle before

the present analysis.

the larger data sample is justified, since it can improve the Q2B measurements shown on
table 2.2, by properly accounting for the interference between resonances. Also, whereas the
Q2B analyses are sensitive only tosin 2βeff , an amplitude analysis can use the interferences
with the other resonances to extract directly theβeff phase.

sin(2βeff) ≡ sin(2φe
1
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Figure 2.1:Summary of thesin 2βeff (left) andACP (right) measurements from the Penguin
dominated modes compared with the golden modes (b → cc̄s) measurements, according to
the Heavy Flavor Averaging Group[28] after the 2007 Winter conferences (updated sum-
mary figures will be shown in Chapter 8, including results from this thesis). The central
values of the Penguin modes tend to be below the values of the golden modes (b → cc̄s),
but the discrepancies are not statistically significant. For the directCP -asymmetries all
measurements are consistent with zero, as expected in the SM.
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2.4 Three-Body Decays and theB0 → K0
Sπ

+π− Channel

This section recalls the basic properties of three-body decay kinematics and the dynamical
model, as far as they are needed to motivate the various choices and conventions that are used
in the analysis. It is important to describe in detail the latter, as a single sign or a different
helicity convention will change the numerical value for theparameters that will be extracted.
This section is based on [21, 35, 49].

The main challenge of Dalitz Plot analyses is the construction of a realistic signal prob-
ability density function (PDF), where both the kinetic and dynamical properties as well as
their time dependence are modeled to good accuracy.

2.4.1 Particle Decays

The partial decay rate of a mother particle of massM into n daughters in its rest frame is
given in terms of the Lorentz-invariant matrix elementA by

dΓ =
(2π)4

2M
|A|2dΦn(P ; p1, ..., pn) , (2.1)

wheredΦn is an element ofn-body phase space given by

dΦn(P ; p1, ..., pn) = δ4(P −
n
∑

i=1

pi)

n
∏

i=1

d3pi

(2π)3
2Ei , (2.2)

whereP andpi are the four-momentum of the mother andi-th daughter particles, respec-
tively, andpi andEi are the three-momentum and energy, respectively, of thei-th daughter
in the mother particle rest frame. This phase space can be generated recursively,

dΦn(P ; p1, ..., pn) = dΦj(q; p1, ..., pj)
× dΦn−j+1(P ; pj+1, ..., pn)(2π)3dq2 ,

(2.3)

whereq =
∑j

i=1 pi. This form is particularly useful in the case where a particle decays into
another particle that subsequently decays.

2.4.2 The Dalitz Plot

Consider the decay of a spin-zeroB0 meson with four-momentumpB into three daughters
π+(p+), π−(p−) andK0

S(p0), with corresponding four-momenta. The original number of12
unknowns in theB0 rest frame is reduced to2, taking advantage of the known masses of the
four particles involved (4 constraints), energy and momentum conservation (4) and the fact
that two spatial angles are irrelevant (no direction is preferred) (2). As independent variables,
the two-body invariant masses squared (Mandelstam variables) are used

s+ = (p+ + p0)
2, s− = (p− + p0)

2 . (2.4)
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The invariant mass of the positive and negative pion,s0 = (p+ + p−)2, is obtained from
energy and momentum conservation:

s0 = m2
B0 + 2m2

π+ +m2
K0

S
− s− − s+ . (2.5)

Using the Mandelstam variables to describe theB0 decay process, the differential width
reads

dΓ(B0 → K0
Sπ

+π−) =
1

(2π)3

|A|2
32m3

B0

ds+ds− , (2.6)

whereA is the Lorentz-invariant amplitude for theB0 → K0
Sπ

+π− transition. In the fol-
lowing, Ā will represent the amplitude for thēB0 → K0

Sπ
+π− transition. Note that a trivial

integration over the spatial angles has been performed prior to Eq. 2.6. The scatter plot in
s+ ands− plane is called theDalitz Plot. In the following, the notation{DP} for the Dalitz
plot coordinates{s+, s−} will be used, and, correspondingly,{dDP} for the Dalitz plot ele-
ment{ds+ds−}. Similarly,{DP} will refer to the pair{s−, s+}. The symmetric boundaries
of the DP are obtained when,e.g. for aK∗+ → K0

Sπ
+ resonance,p+ andp0 are parallel

(minimum mass-squared) or anti-parallel (maximum mass-squared). As a function ofs+,
the kinematic boundariess−[max] ands−[min] are given by

s−[max/min](s+) = (E∗
− + E∗

0)
2 −

(

√

E∗2
− −m2

π+ ∓
√

E∗2
0 −m2

K0
S

)2

, (2.7)

where

E∗
+ =

s+ −m2
K0

S
+m2

π+

2
√
s+

, (2.8)

E∗
0 =

s+ −m2
π+ +m2

K0
S

2
√
s+

, (2.9)

E∗
− =

m2
B0 − s+ −m2

π+

2
√
s+

, (2.10)

are the energies in the(K0
Sπ

+) rest frame. For events close to the edges of the DP one of the
si (i = +, 0,−) takes a small value while the others are rather large, whereas in the center
of the DP the invariant masses of the three pairs of particlestake approximately the same
values. This implies that in the latter case, the directionsof the three particles are distributed
quite isotropically, and they carry similar energies, whereas in the former case, one particle
in the final state is back-to-back to the other two, which movein parallel, giving the event
a strong directionality. Finally, for an event lying near the corners of the DP, one of the
particles is slow.

If |A|2 is constant, the allowed region on the DP will be uniformly populated with events.
A nonuniformity in the DP gives immediate information on|A|2. As an example with the
B0 → K0

Sπ
+π− decay mode, bands appear whens+ = m2

K∗+(892), reflecting the decay chain
B0 → K∗+(892)(→ K0

Sπ
+)π−.

Due to angular momentum conservation, the distribution of events decaying through a
scalar resonance will uniformly populate the band of mass associated to the intermediate



2.4 Three-Body Decays and theB0 → K0
Sπ

+π− Channel 52

state, since the lack of spin means there is no preferred direction for the daughters of the
resonance. For a vector intermediate state, however, a privileged direction exists due to the
fact that in this case the resonance is polarized in a helicity-zero state. Therefore, one needs to
compute three helicity angles (one for each(K0

Sπ
+), (K0

Sπ
−) and(π+π−) pair of particles),

e.g. thecosθ+ is defined as the cosine of the angle between the negativeB0 momentum in
the(K0

Sπ
+) rest frame (which is the flight direction of the(K0

Sπ
+) pair in theB0 rest frame,

and the negative flight direction of theπ− in theB0 rest frame) and the momentump∗
+ of

theπ+ in the(K0
Sπ

+) rest frame. It is given by

cosθ+ = −2E∗
+E

∗
− + 2m2

π+ − s0

2|p∗+||p∗−|
, (2.11)

and the expansion as a function of the Dalitz variabless+, s−, leads to

cosθ+ = −
[

s+(s− − s0) −
(

m2
B0 −m2

π+

)

(

m2
K0

S
−m2

π+

)]

×
[

m4
π+ +

(

s+ −m2
K0

S

)2

− 2m2
π+

(

s+ +m2
K0

S

)

]−1/2

×
[

m4
π+ +

(

s+ −m2
π+

)2 − 2m2
π+

(

s+ +m2
π+

)

]−1/2

,

(2.12)

wheres0 is obtained from Eq. 2.5. Exchangings+ ↔ s− in Eq. 2.12 yields the cosine of the
helicity angle of the(K0

Sπ
−) pair,cosθ−, and replacings+ → s0 together withmK0

S
↔ mπ+

gives−cosθ0 for the(π+π−) pair. Fig. 2.2 illustrates the conventions that are adoptedfor the
helicity angles:

• cosθ+(K0
Sπ

+) is defined as the angle between theπ+ in the (K0
Sπ

+) rest frame and
the(K0

Sπ
+) flight direction in theB0 rest frame.

• cosθ−(K0
Sπ

−) is defined as the angle between theπ− in the (K0
Sπ

−) rest frame and
the(K0

Sπ
−) flight direction in theB0 rest frame.

• cosθ0(π
+π−) is defined as the angle between theπ+ in the(π+π−) rest frame and the

(π+π−) flight direction in theB0 rest frame.

For vanishing relative strong phases, each resonance overlap comes with a relative minus
sign so that maximal destructive interference is observed at all points with equal masses
squared.

2.4.3 The isobar model

The amplitudeA contains all the underlying dynamics of theB0 → K0
Sπ

+π− decay. In the
isobar model approximation [50, 51] the amplitude is modeled as the coherent sum of terms
with individual couplings, propagators and spinsJ , each representing a resonant state in one
pair of particles,

A(DP ) =

N
∑

i=j

cjF
J
j (DP ) , (2.13)
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Figure 2.2:Convention adopted for the helicity angles. Left: Example for the θ+ helicity
angle definition. Right: graphical representation of the helicity conventions on the Dalitz
plot. For vanishing relative strong phases it leads to destructive interference in all points of
the Dalitz plot where at least two of the three mass combinations are equal. See text for the
geometrical definition.

A(DP ) =

N
∑

j=1

cjF j(DP ) , (2.14)

whereN is the number of intermediate states considered,cj (cj) are complex amplitudes
describing the couplings of theB0 (B̄0) meson to the particular resonant final state, and
F J

j (DP ) (F
J

j (DP )) are the DP-dependent dynamical amplitudes for each spinJ resonant
state. All the weak phase dependence is contained incj (it also contains strong phases),
whileF J

j (DP ) contains the strong dynamics only, therefore

F J
j (DP ) = F

J

j (DP ) . (2.15)

TheF J
j term is represented by the product of the invariant mass factor and angular distribu-

tions,i.e.
F J

j (DP ) = RJ
j (m) ×XJ(|p∗|rj) ×XJ(|q|rj) × Tj(J,p,q) , (2.16)

where:

• m is the invariant mass of the two decay products of the resonance,

• RJ
j (m) is the resonance mass term or “lineshape” (e.g.Breit-Wigner),

• Tj(J,p,q) is the angular distribution,

• XJ are the Blatt-Weisskopf penetration factors (barrier factors) with parameterrj,
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• p∗ is the momentum of the bachelor particle (i.e. the accompanying particleb in the
decayB → R b, whereR is the resonant state) evaluated in theB0 rest frame,

• p andq are the momenta of the bachelor particle and one of the resonance daughters,
respectively, both evaluated in the resonance rest frame. The modulus ofq is a function
of m and the resonance daughter masses,ma andmb, given by

|q| =
m

2

(

1 − (ma +mb)
2

m2

)1/2(

1 − (ma −mb)
2

m2

)1/2

, (2.17)

The conventions adopted for these terms are described in detail in the following.
A Dalitz plot or amplitude analysis extracts the complex couplingscj andcj from data,

out of a specific model for the resonant structure. As will be seen later, the time and DP-
dependent probability density function (PDF) depends on|A|2, |A|2 andAA∗ (cf. Eq. 2.43),
which means that bilinear terms on the dynamical amplitudeswill appear in the model of
the distribution over the DP. These terms, which are proportional toFjF

∗
k , FjF

∗
k or F jF

∗
k,

respectively, are sensitive to the interference between two resonancesj andk, thus allowing
for the relative phase betweencj andck, cj andck or cj andck to be determined. For thecj
andck complex amplitudes, a polar parameterization in terms of moduli and phases can be
adopted,cj = |cj|eiφj andck = |ck|eiφk .

Finally, it is important to mention that the Isobar Model (Eqs. 2.13, 2.14) neglects rescat-
tering of the final state particles and is known to lead to unitarity violation whenever the
overlapping of two resonances is significant. Alternatives, such as theK-matrix [52, 53, 54]
model, exist but their complexity outweights their merits for the present analysis given the
current statistics.

2.4.4 Mass term description

For the resonance mass terms, several different forms are used. A summary of the param-
eters, as masses and widths, used in the lineshapes of the different resonances is given on
Tables 2.3 and 2.4.

Relativistic Breit-Wigner lineshape

The relativistic Breit-Wigner (RBW) [21, 55, 56] lineshapeis used to describe theK∗(892)
andfX(1300) resonant states, and alsominor resonances that are added to the nominal signal
model for systematics studies (cf. Sec. 7.3). For this parameterization:

RJ
j (m) =

1

[(m0
j )

2 −m2)] − im0
jΓ

J
j (m)

, (2.18)

wherem is the invariant mass of the two-daughter combination,m0
j is the resonance pole

mass andΓJ
j (m) is the width dependent on the invariant massm, defined by

ΓJ
j (m) = Γ0

j

( |q|
|q|0

)2J+1(m0
j

m

)

X2
J(|q|rj) , (2.19)



55 B0 → K0
Sπ

+π− and Charmless 3-bodyB decays

Resonance Parameters Form Factor Ref. for
Parameters

f0(980) mass= 965 ± 10 Flatte [59]
gπ = 165 ± 18
gK = 695 ± 93

ρ0(770) mass= 775.5 ± 0.4 GS [21]
width = 146.4 ± 1.1
radius= 5.3+0.9

−0.7
K∗+(892) mass= 891.66 ± 0.26 RBW [21]

width = 50.8 ± 0.9
radius= 3.6 ± 0.6

K∗+(1430) mass= 1415 ± 3 LASS [60]
width = 300 ± 6
Effective Range term cutoff= 1800
a = 2.07 ± 0.1(GeV/c)−1

r = 3.32 ± 0.34(GeV/c)−1

fX(1300) mass= 1471 ± 7 RBW [23, 42]
width = 97 ± 15

f2(1270) mass= 1275.4 ± 1.1 RBW [21]
width = 185.2+3.1

−2.5
radius= 3.0 [60]

χc0(1P ) mass= 3414.75 ± 0.35 RBW [21]
width = 10.4 ± 0.7

NR flat phase space

Table 2.3:Parameters of lineshapes for resonances that will be used inthe nominal Dalitz
plot model. Masses and widths are inMeV/c2, and resonance radii in(GeV/c)−1, unless
mentioned otherwise.

whereΓ0
j = ΓJ

j (m0
j ) is the resonance decay width, and the|q|0 symbol denotes the value of

|q| whenm = m0
j .

Gounaris-Sakurai lineshape

An alternative form for describing theρ0(770) lineshape (and also minor resonances) is
the Gounaris-Sakurai parameterization [57] of theP -wave scattering amplitude for a broad
resonance, decaying to two pions:

RJ
j (m) =

1 + d · Γ0
jm

0
j

[(m0
j )

2 −m2] + f(m) − im0
jΓ

J
j (m)

, (2.20)

whereΓJ
j (m) is the same as in Eq. 2.19, the functionf(m) is fiven by

f(m) = Γ0
j

(m0
j )

2

|q|30

{

|q|2[h(m) − h(m0
j )] + [(m0

j )
2 −m2]|q|20

dh

dm

∣

∣

∣

∣

m0
j

}

, (2.21)

and the functionh(m) is defined as

h(m) =
2

π

|q|
m

ln

(

m+ 2|q|
2mπ+

)

, (2.22)
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Resonance Parameters Form Factor Ref. for
Parameters

K∗+(1410) mass= 1414 ± 15 RBW [21]
width = 232 ± 21

K∗+(1680) mass= 1717 ± 27 RBW [21]
width = 322 ± 110

K∗+
2 (1410) mass= 1425.6 ± 1.5 RBW [21]

width = 98.5 ± 2.7
f0(1710) mass= 1724 ± 7 RBW [21]

width = 137 ± 8
ρ0(1450) mass= 1465 ± 25 RBW [21]

width = 400 ± 60
radius= 3.0

ρ0(1450) mass= 1465 ± 25 GS [21]
width = 400 ± 60
radius= 3.0

ρ0(1700) mass= 1720 ± 20 GS [21]
width = 250 ± 100
radius= 3.0

χc2(1P ) mass= 3556.20 ± 0.09 RBW [21]
width = 2.03 ± 0.12
radius= 3.0

Table 2.4:Parameters of lineshapes for minor resonances that will be considered for sys-
tematics studies. Masses and widths are inMeV/c2, and resonance radii in(GeV/c)−1.

with
dh

dm

∣

∣

∣

∣

m0
j

= h(m0
j )
[

(8|q|20)−1 − (2(m0
j)

2)−1
]

+ [2π(m0
j )

2]. (2.23)

The normalization condition atRJ
j (0) fixes the parameterd = f(0)/Γ0

jm
0
j . It is found to

be [57]

d =
3

π

m2
π+

|q|20
ln

(

m0
j + 2|q|0
2mπ+

)

+
m0

j

2π|q|0
−
m2

π+m0
j

π|q|30
. (2.24)

Flatté lineshape

The conditions under which a Breit-Wigner lineshape is a good representation are rather
restrictive. A particular phenomenon not accounted for, and that is relevant to the present
analysis, is the change in the lineshape resulting from the opening of a threshold. An example
is thef0(980) state, whose main decay modes aref0(980) → ππ andf0(980) → KK. The
mass of theKK at rest is∼ 990MeV/c2, within a fraction of the width of the resonance
mass. This means that events decaying through thef0(980) state with masses below that
threshold can proceed essentially only to theππ final state, whereas events with masses
above the threshold also have the possibility of producing theKK final state. The final
effect is an asymmetry in the lineshape.
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The Flatté [58], or coupled channel Breit-Wigner lineshape, is used to describe the
f0(980) resonance. It is given by

RJ
j (m) =

1

[(m0
j )

2 −m2] − im0
j (Γππ(m) + ΓKK(m))

, (2.25)

where the symbols previously defined are used. The decay widths of the resonance in theππ
andKK final states are given by:

Γππ(m) = gπ

(

1

3

√

1 − 4m2
π0/m2 +

2

3

√

1 − 4m2
π+/m2

)

, (2.26)

ΓKK(m) = gK

(

1

2

√

1 − 4m2
K+/m2 +

1

2

√

1 − 4m2
K0/m2

)

, (2.27)

wheregπ andgK are coupling constants (measured in previous experiments)for which the
following values are used

gπ = (0.165 ± 0.010 ± 0.015)GeV/c2 ,
gK/gπ = (4.21 ± 0.25 ± 0.25) .

(2.28)

These are taken from results by the BES experiment [59]. Whenm is below theK+K−

threshold,ΓKK becomes imaginary and so contributes to the real part of the denominator.
Above theK+K− threshold but below theK0K

0
threshold, theK+K− part of ΓK+K−

contributes to the imaginary part of the denominator, making the total width bigger due
to theK+K− coupling, while theK0K

0
part contributes to the real part. AboveK0K

0

threshold the wholeΓKK is real and so contributes to the imaginary part of the denominator.

LASS lineshape

It is known that theI = 1/2 S-waveKπ resonance, while dominated by theK∗
0(1430)

below2 GeV/c2, is not a simple Relativistic Breit-Wigner [40, 23, 60, 61].Up to theKη′

threshold, the wave is rather elastic. Adding an effective-range term to the RBW term, was
suggested [62] to describe the slowly increasing phase as a function ofKπ mass. This pa-
rameterization is denoted here as LASS, in reference to the Large Aperture Superconducting
Solenoid spectrometer (LASS) experiment, that introducedit for the first time inKπ scat-
tering studies [63]. As commented in [24], while this approach is reasonably well motivated
from the experimental point of view (as it stems from measurements to scattering data), the
use of the LASS parameterization is limited to the elastic region ofM(Kπ) ≤ 2.0 GeV/c2,
which is the kinematical range probed by the LASS experiment. The values obtained by
LASS have to be scaled by amKπ/|q| factor forB decays [60]. The lineshape is given by

RJ
j (m) =

m

|q| cot δB − i|q| + e2iδB
m0

jΓ
0
j

m0
j

|q|0

[(m0
j )

2 −m2] − im0
jΓ

0
j
|q|
m

m0
j

|q|0

, (2.29)
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where the first and second terms in the right hand side are the effective range and resonant
terms of the lineshape, respectively. Them0

j andΓ0
j parameters are the mass and width of

theK∗
0(1430) resonance andcot δB is given by

cot δB =
1

a|q| +
1

2
r|q| . (2.30)

The parametersa andr are the scattering length and the effective range, respectively, and are
taken from a 37-point fit to the LASS data [60]

a = (2.07 ± 0.10)(GeV/c)−1 ,
r = (3.32 ± 0.34)(GeV/c)−1 .

(2.31)

In this thesis, the non-resonant term of the amplitude is cutoff at 1.8 GeV/c2, which is
the same configuration adopted the inBABAR analysis of the chargedB+ → K+π−π+

mode [34].

Non-resonant lineshape

Signal in the center of the DP is described with a flat distribution, constant over the whole
DP.

The parameters in the lineshapes could in principle be obtained from a fit to data, but this ap-
proach has a technical disadvantage. When normalizing the PDF (cf. Sec. 2.4.8, Eq.(2.43)),
integrals of the termsFj(DP )F ∗

k (DP ) over the whole DP have to be calculated each time
one of the parameters of the resonance lineshape varies. This would make the fitting process
unacceptably heavy in CPU-time. For this reason these parameters are kept fixed, and the
integrals of theFj(DP )F ∗

k (DP ) terms over the DP are only calculated once.

2.4.5 Blatt-Weisskopf Factors

The functionsXJ are the nuclearBlatt-Weisskopf penetration factors[64]. They are semi-
classical and motivated by the potential~J(J + 1)/(2mρ2) occurring in the Schrödinger
equation, expressed in the spherical coordinates, for the scattering of a particle with orbital
angular momentumJ > 0 in a central field. The repulsive potential is equivalent to arotation
energy, and can thus be denoted ascentrifugal barrier. For growingJ or decreasing radial
distanceρ, the centrifugal barrier increases, which entails a decreasing transition probability.
One can empirically determine a radial distance, calledinteraction radius, r, of the reso-
nance, which separates an outside region (with respect to the centrifugal barrier), with little
interaction, from an inside region where the interaction between the particles is strong [65].
The transition coefficients of the centrifugal barrier are the Blatt-Weisskopf factors. They
are derived using spherical Bessel and Hankel functions andread from the lowest orbital
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momenta (spins):

XJ=0(z) = 1 ,

XJ=1(z) =

√

1 + z2
0

1 + z2
,

XJ=2(z) =

√

z4
0 + 3z2

0 + 9

z4 + 3z2 + 9
, (2.32)

wherez0 represents the value ofz (which is equal to|q|r or |p∗|r) when the invariant mass
is equal to the pole mass of the resonce. This factor only has an effect forJ > 0. The
values of the interaction radius for the different resonantstates used in this thesis are listed
in tables 2.3 and 2.4.

2.4.6 Angular Distribution

The angular distribution depends on the spin of the resonance. For aB decay into a scalar
resonance{κσ} (with {κσ} = {0+}, {0−}, {+−}) it is simply given by

Tj(J = 0,p,q) = 1 . (2.33)

In the case of aB decay into a vector resonance{κσ} and a bachelor{τ}, it can be written
as

Tj(J = 1,p,q) = (pB0 + pτ )µ

∑

i ǫ
µ
i (pκσ)ǫν∗i (pκσ)(pκ − pσ)ν

= sκ+σ − sσ+τ + (1/sκ+σ)
(

m2
B0 −m2

τ

)

(m2
σ −m2

κ)
= −4pκ · pτ

= −4|pκ||pτ | cos θκ+τ ,

(2.34)

where all four-momentapi are given in the resonance rest frame,θκ+τ is the helicity angle,
and the relation

∑

i

ǫµi (p)ǫν∗i (p) = −ηµν +
pµpν

p2
, (2.35)

for the sum over the polarizations four-vectors has been used. The last two lines of Eq. 2.34
reproduce the convention for the cosines of the helicity angles defined in Eq. 2.11 and
Fig. 2.2. Note that the occurrence of thecos θκ+τ in the propagator substantially enhances
the interference of different vector resonances in the corners of the DP. For tensor resonances
the angular distribution is

Tj(J = 2,p,q) = (8/3) (3(pκ · pτ )
2 − (|pκ||pτ |)2)

= (8/3)|pκ|2|pτ |2 (3 cos2 θκ+τ − 1) .
(2.36)

One has to decide which daughter of the resonance to choose for the calculation of the he-
licity angle. For theB0 → K0

Sπ
+π− mode this issue is slightly complicated. For resonances

in mK0
Sπ+ or mK0

Sπ− one can always choose theK0
S, as one only getsB0 (B̄0) decaying to
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resonances inmK0
Sπ+ (mK0

Sπ−). This means one chosesK0
S andπ− (π+) for pτ andpκ in the

case of aB0 (B̄0) decay. For resonances inmπ+π− one would like to choose the pion such
that the same choice is maintained. However, since the flavorof theB at its decay to theCP
eigenstate is not known, this cannot be done. Therefore, theconvention adopted here is to
always choose theπ+ daughter; keeping in mind that this must be taken into account in the
likelihood function (cf. Chapter 6) by introducing a(−1)J factor forCP eigenstate decays
of theB̄0.

2.4.7 The Square Dalitz Plot
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Figure 2.3:Nominal (left) and square (right)B0 → K0
Sπ

+π− Dalitz plots obtained from
highly simplified Monte Carlo without detector simulation,generated with an arbitrary
model includingf0(980)K0

S, ρ0(770)K0
S and K∗±(892)π∓ resonances. The hatched ar-

eas indicate the main overlap regions between theπ+π− resonant statesf0(980)K0
S and

ρ0(770)K0
S and theK∗±(892)π∓ bands, which are removed in the Q2B analyses. The

contour lines correspond tomK0
Sπ± = 0.892 GeV/c2, mπ+π− = 0.770 GeV/c2 and

mπ+π− = 0.980 GeV/c2.

Due to the low final state masses,m0
j ≪ mB0 , signal events tend to populate the kine-

matic boundaries of the Dalitz plot. It turns out that due to combinatorics, the dominant
e+e− → qq̄ (q = u, d, s, c) continuum background (cf. Sec. 5.5) also accumulates at the
boundaries, so the classical DP representation (Eq. 2.6) turns out to be inadequate when one
intends to use empirical reference shapes in a likelihood fit(cf. Chapter 6). Therefore the
concept of a square Dalitz plot (denotedsquareDP or {SDP} in the following) is intro-
duced, by defining the transformation

d+, ds− −→ |detJ |, dm′, dθ′, (2.37)
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where

m′ ≡ 1

π
arccos

(

2
mπ+π− −mπ+π−[min]

mπ+π−[max] −mπ+π−[min]
− 1

)

, (2.38)

θ′ ≡ 1

π
θπ+π− , (2.39)

wheremπ+π−[max] = mB0 −mK0
S

andmπ+π−[min] = 2mπ+ are the boundaries ofmπ+π−

invariant mass,θπ+π− is theπ+π− helicity angle, and|detJ | is the Jacobian of the transfor-
mation. The new variables have validity ranges in(0, 1). The determinant of the Jacobian is
given by
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Figure 2.4:Jacobian determinant (Eq. 2.40) of the transformation (Eq.2.37). The plot shows
the distribution that would be obtained in the square Dalitzplot for a uniform (non-resonant)
in the nominal Dalitz plot.

|detJ | = 4 |p∗
+||p∗

0|mπ+π− · ∂mπ+π−

∂m′ · ∂ cos θ0
∂θ′

, (2.40)

where |p∗
+| =

√

E∗
+ −m2

π+ and |p∗
0| =

√

E∗
0 −m2

π0 , and the energiesE∗
+ andE∗

0 are
evaluated in theπ+π− rest frame. The partial derivatives in Eq. (2.40) read

∂mπ+π−

∂m′ = −π
2

sin(πm′) (mπ+π−[max] −mπ+π−[min]) , (2.41)

∂ cos θ0
∂θ′

= −π sin(θ′π) . (2.42)

Figure 2.3 shows the original (left hand plot) and the transformed (right hand plot) Dalitz
plots from highly simplified Monte CarloB0 → K0

Sπ
+π− events, generated with an arbi-

trary model includingf0(980)K0
S, ρ0(770)K0

S andK∗±(892)π∓ resonances. The hatched



2.4 Three-Body Decays and theB0 → K0
Sπ

+π− Channel 62

areas indicate the main overlap regions between the different f0(980)K0
S andρ0(770)K0

S

and theK∗±(892)π∓ bands, which are removed in the Q2B analyses. The plots illustrate the
homogenization of the Dalitz plot obtained after the transformation (2.37). The determinant
of the Jacobian (Eq. 2.40) is shown in Fig. 2.4. It is the distribution that would be obtained
in the square Dalitz plot for a uniform (non-resonant) priorin the nominal DP.

2.4.8 Time and DP-Dependent PDF

With ∆t = tCP − ttag defined as the proper time interval between the decay of the fully
reconstructedB0 → K0

Sπ
+π− (B0

CP ) and that of the other meson (B0
tag) from theΥ (4S), the

tagging, time and DP-dependent decay rate is given by [25]

|ACP (∆t, DP, qtag)|2 =
e|∆t|/τB0

4τB0

[

|A(DP )|2 + |A(DP )|2

− qtag

(

|A(DP )|2 − |A(DP )|2
)

cos (∆md∆t)

+ qtagIm
[

exp(−2iφmix)A(DP )A∗(DP )
]

sin (∆md∆t)

]

,

(2.43)

whereqtag is +1 (−1) when theB0
tag isB0 (B̄0), τB0 is the neutralB meson lifetime,∆md

is theB0B̄0 mass difference (the mixing frequency) andexp(−2iφmix) is theq/p phase (the
mixing phase, which is the CKM angleβ in the SM). The DP dependence is contained in
theA andA. Here it is assumed that there is noCP violation in mixing (|q/p| ∼ 1). In
the following a phase convention whereby the phase from theB0B̄0 mixing is absorbed into
theB̄0 decay amplitude (i.e. in Ā, and therefore in all thecj) is used. Lifetime differences
betweenBL andBH eigenstates is negligible (cf. Sec. 1.2.1, Eq.(1.25)). Eq.2.43 does not
include the non-zero probability of mistagging nor the resolution in the∆t measurement,
effects that will be described in Secs. 5.3 and 5.4.3, respectively.

2.4.9 Physical observables

A fit to data allows us to measure directly the relative magnitudes and phases of the isobar
amplitudes, for all components in the signal DP model. Thesemeasured isobar amplitudescj
(cj), where the index represents thej-th component, are used to extract the Q2B parameters,
for which the definitions are below.

For a resonant decay modej which is aCP eigenstate,e.g. B0 → ρ0(770)K0
S, the

following Q2B parameters are extracted: theφ angle, defined as,

φ(j) = 2βeff(j) = arg(cjc
∗
j) , (2.44)

It is worth recalling that in the convention used here, theB̄0 decay amplitudes absorbs the
q/p term fromB0B̄0 mixing. In this way, for Penguin dominated decays such asf0(980)K0

S

andρ0(770)K0
S, thisφ angle corresponds to the2βeff(j) parameter.
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The parameters of direct and mixing-inducedCP -asymmetries are defined as:

C(j) =
|cj |2 − |cj |2
|cj|2 + |cj |2

, (2.45)

S(j) = ηCP

2Im(cjc
∗
j)

|cj|2 + |cj|2
= −ηCP

√

1 − C2(j) sinφ(j) , (2.46)

whereηCP is theCP eigenvalue of the final state. As this last parameter is a function ofφ(j)
andC(j), and Dalitz Plot analyses are sensitive directly to phases,the results are mostly
presented in terms of theφj andCj parameters, out of which constraints onS(j) can be
derived.

For a self-tagging resonant decay modej, e.g. B0 → K∗+(892)π−, it is customary to
define theCP -asymmetry as:

ACP (j) =
|cj |2 − |cj |2
|cj|2 + |cj|2

. (2.47)

The relative isobar phase difference between any two resonancesj andk is defined by:

∆φ(j, k) = arg(cjc
∗
k) . (2.48)

A similar quantity can be defined for a self-tagging resonantdecay modej and itsCP
conjugatedj:

∆φ(j, j) = arg(cjc
∗
j
) , (2.49)

here again, this phase difference∆φ(j, j) has implicitly absorbed the phase fromB0B̄0

mixing.
The relative isobar fractionFF (j) (or fit fraction) of a resonancej is defined as follows:

FF (j) =
(|cj|2 + |cj|2)〈FjF

∗
j 〉

∑

µν (cµc∗ν + cµc
∗
ν)〈FµF ∗

ν 〉
, (2.50)

where

〈FµF
∗
ν 〉 =

∫

DP

FµF
∗
ν d(DP ) . (2.51)

Finally, the inclusive directCP -asymmetry and branching fraction1,

Aincl
CP =

∫

DP
[|A(DP )|2 − |A(DP )|2]d(DP )

∫

DP
[|A(DP )|2 + |A(DP )|2]d(DP )

, (2.52)

Bincl = B(B0 → K0π+π−) =
Nsig

B(K0 → K0
S)〈ε〉NBB

, (2.53)

1Results are stated in terms of theK0 final state, taking into account the probability forB(K0 → K0
S
) = 0.5

and forB(K0
S
→ π+π−) = (69.20±0.05)% [21]. The latter is already taken into account in the reconstruction

efficiency,〈ε〉.
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whereNsig is the fitted signal yield (cf. Sec. 6.1),NBB is the number ofB0B̄0 pairs produced
in the period between 1999 and September 2006 (cf. Sec. 5.1.1), and 〈ε〉 is the model-
dependent average signal reconstruction efficiency over the Dalitz plot. With the inclusive
branching fraction and the isobar fractions the partial branching fraction for componentj
can be calculated as follows,

B(j) = FFjBincl. (2.54)

The methods to extract confidence intervals for these observables will be presented on Sec. 6.7.



Chapter 3

Theory Elements for theB → K∗π and
B → ρK Modes

3.1 Introduction

Within the Standard Model, hadronicB decays proceed at the quark levelvia both Tree
and loop (Penguin) diagrams [66]. In theb → cc̄s processes (e.g. B0 → J/ψK0

S) the
CKM phase in the dominant Tree amplitude is the same as that of theCabibbo suppressed
Penguin diagrams, which in the Wolfenstein parameterization is real and so the only weak
phase to consider is theB0B̄0 mixing phase2β. In this case, theCKM angleβ can be
extracted without hadronic uncertainties from the time-dependentCP -asymmetry, which is
proportional tosin(2β). In the case of charmlessB decays, different weak phases have to
be considered, hence the extraction ofCKM couplings is more difficult. Inb → duū pro-
cesses (e.g. B → ππ1) the two leading amplitudes carry differentCKM phases, so that
extractingsin(2α) from the time dependentCP -asymmetry suffers from hadronic uncer-
tainties. Methods to determineα where the two bodyB → ππ decay amplitudes are related
by SU(2) isospin symmetry have been proposed [67], and are of standard usage. With such
an "isospin analysis", theCKM phase for the Tree level diagram can be separated from
the Penguin contamination. The information from branchingfractions andCP -asymmetries
makes possible to constrainα up to discrete ambiguities.

For theb → uūs processes (e.g. B → Kπ) the situation is partly different: not only
do the Tree and Penguin amplitudes carry differentCKM phases, but also they are com-
parable in magnitude (although the Tree process is stronglyCKM suppressed). Isospin
methods using theB → Kπ modes have also been suggested, which disentangle the Pen-
guin contribution of the decay amplitude to set constraintson the CKM parameters given
that an hadronic scenario has been set. In some cases, such analyses claim to provide ac-
cess to the UT angleγ [68], although the cleanliness of such methods is subject ofdebate.
Finally, methods using bothB → ππ andB → Kπ systems usingSU(3) flavor symmetry
to relate all the decay amplitudes have been proposed to provide more stringent constraints
in the(ρ̄, η̄) plane [14, 69]. TheSU(3) symmetry is not exact, and breakdown effects have

1When charges are not shown, reference is made to all charge combinations.
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to be carefully taken into account. The drawback of these approaches stems from the dif-
ficulty to disentangle the constraints onCKM parameters from unwanted consequences of
the different hypotheses.

This chapter provides a theoretical introduction to the different methods that can be used
to constraint theCKM parameters from the measurements ofB → K∗π (whereK∗ refers to
anyKπ resonant state likeK∗(892) orK∗(1430)) andB → ρK modes. These modes have
been already discussed in the literature [112]. Three approaches are proposed: an isospin
analysis ofB → K∗π modes (here, a word is said about a method known as CPS/GPSZ that
uses observables from theB0 → K∗+π− andB0 → K∗0π0 subsystem to constrain the(ρ̄, η̄)
plane); a similar isospin analysis ofB → Kρ modes; finally, a method based onSU(2)
symmetry which combines all accessible information from both B → K∗π andB → Kρ
system, is mentioned.

Throughout this chapter, the approximation of noCP -violation in mixing, i.e. |q/p| =
1, is assumed. This hypothesis has no visible impact on the constraints and significantly
simplifies the calculations.

3.2 Isospin Analysis for theB → K∗π modes

3.2.1 Decay Amplitudes

The extraction ofCKM parameters out ofCP -violation observables is complicated in some
cases by the presence of hadronic matrix elements relating the quark field operators used in
writing down the theory with the hadrons detected by experiment. For the purposes of the
present analysis, a phenomenological parameterization ofthe amplitude will be adopted,
where the hadronic matrix elements are unknowns. In the SM, the general form of the
B0 → K∗+π− decay amplitude is:

A+− ≡ A(B0 → K∗+π−) = V ∗
ubVusMu + V ∗

cbVcsMc + V ∗
tbVtsMt . (3.1)

The dominant diagrams are represented in Fig. 3.1, where areshown the Tree (left) and
gluonic Penguins (right) contributions, the latter havingthree contributions for the quarks
circulating in theW+ loop (u, c, t). There are also contributions of Penguin amplitudes in
which the gluon emitted in the loop is replaced by aγ or Z0 gauge boson. Such diagrams
are called electroweak Penguins, and are suppressed with respect to gluonic Penguins by the
ratio of electroweak to strong coupling constants,αem/αS, but this suppression is compen-
sated by a large quark top mass dependence, which make then not negligible [145]. There
is a similar equation for theCP conjugated amplitudēA+−, theCKM factors appearing as
complex conjugated. The unitarity relation Eq. 1.19 can be used to write this expression in
term of only twoCKM factors. There exist three equivalent ways of re-writing Eq. 3.1, that
will be referred to asU, C andT conventions:

A+− =







V ∗
cbVcs(Mc −Mu) + V ∗

tbVts(Mt −Mu) (U)
V ∗

ubVus(Mu −Mc) + V ∗
tbVts(Mt −Mc) (C)

V ∗
ubVus(Mu −Mt) + V ∗

cbVcs(Mc −Mt) (T)
(3.2)
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where the amplitude coefficientsMu (U), Mc (C) andMt (T), respectively, have been re-
placed. Adopting theC convention, theA+− is written as,

A+− = V ∗
ubVusT

+− + V ∗
tbVtsP

+− , (3.3)

whereT+− andP+− are defined as

T+− ≡Mu −Mc and P+− ≡ Mt −Mc , (3.4)

and similar expressions for the remaining threeAij ≡ A(Bi+j → Kiπj) ((i, j) = (0,+),
(+, 0), (0, 0)) amplitudes

A+0 ≡ A(B+ → K∗+π0) = V ∗
ubVusT

+0 + V ∗
tbVtsP

+0 , (3.5)

A0+ ≡ A(B+ → K∗0π+) = V ∗
ubVusT

0+ + V ∗
tbVtsP

0+ , (3.6)

A00 ≡ A(B0 → K∗0π0) = V ∗
ubVusT

00 + V ∗
tbVtsP

00 . (3.7)

The T ij andP ij complex numbers include implicitly the strong phases, while the weak
phases are contained explicitly in theCKM factors, and are usually referred as Tree and
Penguin amplitudes. The adoptedC convention in writing theAij decay amplitude is totally
arbitrary and has no physical implication. Any of the other conventions can be used, however
each choice changes the content of theT ij andP ij phenomenological amplitudes, which
contain different topological contributions,e.g.Tree, Penguin, annihilation, etc. (see later).

TheCKM ratio |VtsV
∗
tb/VusV

∗
ub| ∼ 50 increases significantly the Penguin contribution

with respect to the Tree diagram: this may provide a better sensitivity to unknown virtual
particles, and then to NP effects, but this implies also a more complicated hadronic dynamics.

�
W+

q = u c t

d

b

d

u

u

s
V ∗

qb Vqs

Figure 3.1:Tree (left) and Penguin (right) diagrams for theB0 → K∗+π− decay.

3.2.2 Physical observables

In Chapter 8, the measured branching fractions,CP -asymmetries and phase differences for
theB → K∗π modes are used in a phenomenological analysis. While aKπ pair can resonate
via several intermediate states, and all of them can in principle be used, the phenomenolog-
ical analysis performed in this thesis only observables from K∗(892)-mediated modes are
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used, so in the followingK∗ exclusively refers toK∗(892) vector resonant state. The four
CP averaged branching fractions are defined as

Bij = Φ
τBi+j

2

(

|Aij|2 + |Āij |2
)

, (3.8)

whereτBi+j is the relevantB meson lifetime andΦ is the decay phase space constant given
by

Φ =
1

8π~

(

GF√
2

)2
1

2mB

√

√

√

√

[

1 −
(

mK∗ +mπ

mB

)2
][

1 −
(

mK∗ −mπ

mB

)2
]

, (3.9)

where~ is the Planck constant,GF is the Fermi constant, andmB, mπ andmK∗ are the
B meson,π pion andK∗ resonance masses, respectively. The fourCP -asymmetries are
defined as

Aij
CP =

|Āij|2 − |Aij|2
|Āij|2 + |Aij|2 . (3.10)

These observables can be extracted from Q2B and Dalitz Plot analyses (cf. Chapter 2). Also
five phase differences are accessible from Dalitz Plot analyses (the definitions here deviate
slightly from the ones introduced in Chapter 2):

• The∆φ phase difference is defined as

∆φ = arg

(

q

p

Ā+−

A+−

)

, (3.11)

which is extracted from the decay mode studied in this thesis, B0 → K0
Sπ

+π−. The
B0 → K∗+(892)(→ K0π+)π− (B̄0 → K∗−(892)(→ K̄0π−)π+) resonant decay
contribute to theB0 (B̄0) DalitzPlot (DP). This phase difference can be measured in
two ways: 1) the resonant contributions interfere through mixing (thus theq/p factor)
due to the fact that the final stateK0

Sπ
+π− is accessible both toB0 andB̄0. But as

discussed in Chapter 2, they interferere in a too small region of the DP to provide
significant sensitivity; 2) the resonant contributions cansignificantly interfere with
other components,e.g. B0 → K0ρ0(→ π+π−) (B̄0 → K̄0ρ0(→ π+π−)), that are
present in the sameB0 (B̄0) DP and that interfere with each other through mixing
in a significant DP region. The DP amplitude technique exploits simultaneously both
informations.

• Theφ(00,+−) andφ̄(00,+−) phase differences are defined as

φ(00,+−) = arg(A00/A+−) and φ̄(00,+−) = arg(Ā00/Ā+−), (3.12)

which can be extracted from theB0 → K+π−π0 Dalitz Plot analysis [40], due to the
interference of theB0 → K∗+(892)(→ K+π0)π− andB0 → K∗0(892)(→ K+π−)π0

(B̄0 → K∗−(892)(→ K−π0)π+ andB̄0 → K̄∗0(892)(→ K+π−)π0) resonant com-
ponents on theB0 (B̄0) DP planes.
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• Finally, two other phase differences can be defined,

φ(0+,+0) = arg(A0+/A+0) and φ̄(0+,+0) = arg(Ā0+/Ā+0), (3.13)

which are accessible in aB+ → K0
Sπ

+π0 Dalitz Plot analysis, due to the interference
of theB+ → K∗0(892)(→ K0π0)π+ andB+ → K∗+(892)(→ K0π+)π0 (B− →
K̄∗0(892)(→ K̄0π0)π− andB− → K∗−(892)(→ K̄0π−)π0) resonant components on
theB+ (B−) DP planes. As no experimental results are available yet, these observables
will only be considered in prospective studies, assuming expected uncertainties on
these modes.

In summary, theB → K∗π observables are: four branching fractions, fourCP -asymme-
tries and five phase differences, which gives a total of thirteen observables. Experimental
results are currently available on eleven out of these thirteen observables.

3.2.3 Isospin Relations

Theπ+, π0 andπ− mesons form an isospin triplet and haveI3 = +1, 0,−1 as third isospin
component, respectively. TheK∗0 andK∗+ mesons have isospin numberI = 1/2, as doB
mesons, with third isospin componentI3 = 1/2,−1/2. TheK∗π states have a total isospin
numberI = 3/2 or I = 1/2. Assuming that isospin symmetry holds, theB0 → K∗+π−,
B+ → K∗+π0, B+ → K∗0π+ andB0 → K∗0π0 amplitudes can be decomposed in terms
of I = 3/2 andI = 1/2 isospin amplitudes, which will be referred to asA1,3/2, A1,1/2 and
A0,1/2, where the first index is the difference of the final and initial isospin number∆I, and
the second the final isospinIf . The decomposition will be made explicit in the following,
and is based on [67].

In order to simplify the discussion, theB → K∗π decays can be described in two steps:

• The weak decay (W): theB decays intōuus̄d quarks for the neutral Bs and intōuus̄u
for the charged Bsvia weak interactions,which do not conserve isospin.

• The hadronization and rescattering effects (S): the quarkshadronize into pions and
kaons via strong interactions, conserving both total isospin and its third component.

The total Hamiltonian can be factorized in two componentsH = HSHW . TheHW

operator is the weak interaction Hamiltonian responsable for the weak decaȳb → ūus̄, in
which thed (in the case ofB0 decays) oru (in the case ofB+ decays) quarks are treated as
spectators. More explicitly, the action ofHW over aB0 orB+ state can expressed as follows

HW |B0〉 = HW (|d〉|b̄〉) = |d〉(HW |b̄〉) ,
HW |B+〉 = HW (|u〉|b̄〉) = |u〉(HW |b̄〉) . (3.14)

The ūus̄ state has isospin numberI = 1 or I = 0, and|d〉 = |I = 1
2
, I3 = −1

2
〉 (|u〉 = |I =

1
2
, I3 = 1

2
〉), so the action ofHW on theB0 or B+ states can be decomposed into isospin

eigenstates with the help of the Clebsch-Gordan coefficients as follows

HW |B0〉 = |d〉(a0|0, 0〉 + a1|1, 0〉)
= a0|12 ,−1

2
〉 + a1(

√

2
3
|3
2
,−1

2
〉 +

√

1
3
|1
2
,−1

2
〉) , (3.15)
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for the neutralB decays, and

HW |B+〉 = |u〉(a0|0, 0〉 + a1|1, 0〉)
= a0|12 , 1

2
〉 + a1(

√

2
3
|3
2
, 1

2
〉 −

√

1
3
|1
2
, 1

2
〉) , (3.16)

for the chargedB decays. Thea0 anda1 are complex numbers containing the weak phases
from the decay process. TheHS operator is the strong interaction Hamiltonian responsable
for the hadronization. Summarizing all these, the four amplitudes can be written as follows:

A(B → K∗+π−) = 〈K∗+π−|HSHW |B0〉 , (3.17)

A(B → K∗0π0) = 〈K∗0π0|HSHW |B0〉 , (3.18)

A(B → K∗+π0) = 〈K∗+π0|HSHW |B+〉 , (3.19)

A(B → K∗0π+) = 〈K∗0π+|HSHW |B+〉 . (3.20)

TheK∗π final states can be decomposed into isospin eigenstates withthe help of the Clebsch-
Gordan coefficients

|K∗+π−〉 =
∣

∣

1
2
, 1

2

〉

|1,−1〉 =
√

1
3

∣

∣

3
2
,−1

2

〉

+
√

2
3

∣

∣

1
2
,−1

2

〉

,

|K∗+π0〉 =
∣

∣

1
2
, 1

2

〉

|1, 0〉 =
√

2
3

∣

∣

3
2
, 1

2

〉

+
√

1
3

∣

∣

1
2
, 1

2

〉

,

|K∗0π+〉 =
∣

∣

1
2
,−1

2

〉

|1,+1〉 =
√

1
3

∣

∣

3
2
, 1

2

〉

−
√

2
3

∣

∣

1
2
, 1

2

〉

,

|K∗0π0〉 =
∣

∣

1
2
,−1

2

〉

|1, 0〉 =
√

2
3

∣

∣

3
2
,−1

2

〉

+
√

1
3

∣

∣

1
2
,−1

2

〉

.

(3.21)

Using Eqs. 3.15, 3.17 and the first equation from 3.21 the decomposition of theA(B0 →
K∗+π−) amplitude in terms of isospin amplitudes can be made

A(B0 → K∗+π−) =
√

2
3
a0

〈

1
2
,−1

2
|HS|12 ,−1

2

〉

+
√

2
3
a1

〈

3
2
,−1

2
|HS|32 ,−1

2

〉

−
√

2
3
a1

〈

1
2
,−1

2
|HS|12 ,−1

2

〉

.

(3.22)

As HS respects isospin symmetry, it has to satisfy〈I, I3|HS|I, I3〉 = hI , i.e. the matrix
element only depends on the isospin number and not on its third component. Using this, the
A(B0 → K∗+π−) amplitude can be finally written as

1√
2
A(B0 → K∗+π−) =

1

3
A1,3/2 −

1

3
A1,1/2 +

√

1

3
A0,1/2 , (3.23)

whereA1,3/2 = a1h3/2, A1,3/2 = a1h1/2 andA0,1/2 = a0h1/2 incorporate the change in
magnitude as well as the strong-phase-shift corrections toa0 anda1 due to hadronization
and rescattering effects for the finalI = 1/2 andI = 3/2 states, respectively. Similarly,
the decomposition of the remainingB → K∗π amplitudes is summarized on table 3.1. The
same relations are valid for theCP conjugated amplitudes, where theA∆I,If

amplitudes
have opposite weak phases. Examining the amplitudes on table 3.1, summing the second
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Modes Decay Amplitudes

K∗π A(B+ → K∗+π0) = 2
3
A1,3/2 − 1

3
A1,1/2 +

√

1
3
A0,1/2

A(B0 → K∗0π0) = 2
3
A1,3/2 + 1

3
A1,1/2 −

√

1
3
A0,1/2

1√
2
A(B+ → K∗0π+) = 1

3
A1,3/2 + 1

3
A1,1/2 −

√

1
3
A0,1/2

1√
2
A(B0 → K∗+π−) = 1

3
A1,3/2 − 1

3
A1,1/2 +

√

1
3
A0,1/2

Table 3.1: B → K∗π decay amplitudes decomposition in terms of isospin amplitudes
A∆I , If , where∆I and If are the transition isospin difference and final state isospin, re-
spectively.

and the fourth row, and the first and third one, a quadrilateral relation is fulfilled between the
fourK∗π amplitudes, and the same holds true for theCP conjugated,

A0+ +
√

2A+0 = A+− +
√

2A00, (3.24)

Ā0+ +
√

2Ā+0 = Ā+− +
√

2Ā00. (3.25)

3.2.4 Reparameterization Invariance

The two complex isospin relations Eqs.(3.24) and (3.25) eliminate four real parameters,
which brings their number to thirteen. This number matches the total number of physical
observables (cf. Sec. 3.2.2). In the general parameterization there are16 real hadronic pa-
rameters, there is a non-physical global phase, and the2 realCKM parametersρ andη (the
A andλ parameters being very well known, are kept fixed, cf. Sec. 1.3). Isospin symmetry
provides two new independent complex relations, which eliminate4 real parameters, there
are then16 − 1 + 2 − 4 = 13 parameters left. It could be thought that in this situation (13
observables for 13 unknowns) there is no need for any other external hypothesis, other than
SU(2) symmetry, to fit for the unknowns in terms of measurements. But this statement is
incorrect, due toreparameterization invariance.

The developments in this section are based on [71]. In a general fashion (not only in the
context of the SM) the decay amplitude of aB meson (neutral or charged) into a final state
f can be written in the following way,

Af = M1e
iφA1eiδ1 +M2e

iφA2eiδ2 ,
Āf̄ = M1e

−iφA1eiδ1 +M2e
−iφA2eiδ2 ,

(3.26)

whereφAj (j = 1, 2) areCP -odd weak phases,δj areCP -even strong phases andMj are
the magnitudes of the corresponding terms. In the case of a neutralB decaying into aCP
eigenstate with eigenvalueηf = ±1, the right hand side of thēAf̄ expression is multiplied
by ηf .

Any additional termM3e
iφA3eiδ3 contributing to the amplitude, bringing an additional

weak phase, can be expressed in terms ofeiφA1 and eiφA2 as long as there exista and b



3.2 Isospin Analysis for theB → K∗π modes 72

parameters such as
eiφA3 = aeiφA1 + beiφA2 ,
e−iφA3 = ae−iφA1 + be−iφA2 .

(3.27)

In effect,

A′
f = Af +M3e

iφA3eiδ3 = M ′
1e

iφA1eiδ′1 +M ′
2e

iφA2eiδ′2 ,

Ā′
f̄ = Āf̄ +M3e

−iφA3eiδ3 = M ′
1e

−iφA1eiδ′1 +M ′
2e

−iφA2eiδ′2 ,
(3.28)

with
M ′

1e
iδ′1 = M1e

iδ1 +M3e
iδ3a ,

M ′
2e

iδ′1 = M2e
iδ2 +M3e

iδ3b ,
(3.29)

and where the solutions for theCP -even parametersa andb are given by,

a =
sin(φA3 − φA2)

sin(φA2 − φA1)
,

b =
sin(φA3 − φA1)

sin(φA2 − φA1)
. (3.30)

The solutions are only valid in the case whereφA1 − φA2 6= nπ (n integer),i.e. when there
is more than one weak phase. These results can be easily extended to the case where the
amplitude has an arbitrary numberN of distinct contributions, each one with different weak
phases.

Usually, within some particular model, the weak phases thatappear in Eqs.(3.26) are
inspired from the Lagrangian. In the SM those are directly the phases of the CKM elements
involved in the calculation of the decay amplitude (cf. Sec.3.2.1). On general grounds, and
without any hypothesis about theCP -even termsMj andδj , the decay amplitudes can be
expressed in terms of any pair of weak phases{ϕA1, ϕA2}, as long asϕA1 − ϕA2 6= nπ.
Specifically,

Af = M1e
iϕA1ei∆1 + M2e

iϕA2ei∆2 ,
Āf̄ = M1e

−iϕA1ei∆1 + M2e
−iϕA2ei∆2 ,

(3.31)

where theCP -even part of the amplitude transforms as

M1e
i∆1 = M1e

iδ1
sin(φA1 − ϕA2)

sin(ϕA2 − ϕA1)
+M2e

iδ2
sin(φA2 − ϕA2)

sin(ϕA2 − ϕA1)
,

M2e
i∆2 = M1e

iδ1
sin(φA1 − ϕA1)

sin(ϕA2 − ϕA1)
+M2e

iδ2
sin(φA2 − ϕA1)

sin(ϕA2 − ϕA1)
. (3.32)

This change in the set of weak basis does not have any physicalimplications, hence the name
reparameterization invariance(RpI).

It has to be stressed that this invariance has nothing to do with the unitarity relation of
theCKM matrix (cf. Eq.(1.19)); nor is unitarity needed in order to justify any of theU, C

or T choices (cf. Sec. 3.2.1). The weak phases inVusV
∗
ub andVtsV

∗
tb can be used as basis,

regardless of whether theCKM matrix is unitary or not, and regardless of whether the quark-
level diagrams contributing to the decay amplitudes carry these precise CKM couplings.
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Now consider two sets of weak phases{φA1, φA2} and{φA1, ϕA2} with φA2 6= ϕA2. If
an algorithm allows to writeφA2 as a function of physical observables then, owing to the
similarity of Eqs.(3.26) and (3.31),ϕA2 would be extracted with exactly the same function,
leading toφA2 = ϕA2, in contradiction with the assumptions. Then, the weak phases in the
parameterization of the decay amplitudes have no physical meaning and cannot be extracted
without additional hadronic hypothesis.

In the discussion above it was assumed that the two weak phases that are used to describe
the decay amplitudes are different (moduloπ). In the case in which only one weak phase can
be used to describe the decay amplitude, then weak phases canbe extracted from experiment.
An example is the decay of neutralB to CP eigenstates. In the case of no directCP -
asymmetry,ACP = 0, the decay amplitudes can be expressed in terms of a single weak
phase, which can be extracted with the measurement of the phase ofλCP = (q/p)Āf̄/Af (cf.
Sec. 1.2.3). Reciprocally, when the amplitude can be described with only one weak phase,
there is no directCP -violation. Explicitly,λCP can be written as (cf. Eq.(1.53))

λCP = ηf
q

p

Āf

Af

= ηf
q

p
e−2iφA1

1 + rei(φA1−φA2)eiδ

1 + re−i(φA1−φA2)eiδ
, (3.33)

whereδ = δ2 − δ1 andr = M2/M1. TheCP -asymmetryACP is given by

ACP = −1 − |λCP |2
1 + |λCP |2

= − 2r sin(φA1 − φA2) sin δ

1 + 2r cos(φA1 − φA2)cosδ + r2
. (3.34)

AssumingACP = 0 implies that: i)r = 0 (there is only one amplitude); or ii)φA1 = φA2

(there is only one weak phase); or that iii)δ1 = δ2. In the last case, it is always possible to
find a magnitudeM3 and a weak phaseeiφA3 such that

Af = (M1e
iφA1 +M2e

iφA2)eiδ1 = M3e
iφA3eiδ1 ,

Āf̄ = ηf(M1e
iφA1 +M2e

−iφA2)eiδ1 = ηfM3e
−iφA3eiδ1 ,

(3.35)

with M3 andeiφA3 given by

M3 = M2
1 +M2

2 + 2M1M2 cos(φA1 − φA1) ,

e−2iφA3 =
M1e

−iφA1 +M2e
−iφA2

M1eiφA1 +M2eiφA2
=

1 + rei(φA1−φA2)

1 + re−i(φA1−φA2)
e−2iφA1 . (3.36)

In cases i) and ii)λCP = ηf (q/p)e
−2iφA1; in case iii)λCP = ηf(q/p)e

−2iφA3 . The classical
example of ii) is theB0 → J/ψK0

S decay, where the dominant Tree and Penguin amplitudes
have (to a very good approximation) the same weak phases and are real, and this fact ensures
that the mixing phasearg(q/p) can be safely extracted from the measurement of the time-
dependentCP -asymmetry. In case iii)φA3 depends on CKM phases and on the penguin to
tree ratio, which makes difficult to set a clean constraint onCKM phases without additional
theoretical input.
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3.2.5 Parameterizations

Classical parameterization

Eq. 3.24 and 3.25 can be used to eliminate two complex quantities. For the decay amplitudes
parameterization the hadronic amplitudesT+−, P+−,N0+ = T 0+, T 00

C , PEW andPEW
C can

be used
A+− = VusV

∗
ubT

+− + VtsV
∗
tbP

+− ,
A0+ = VusV

∗
ubN

0+ + VtsV
∗
tb(−P+− + PEW

C ) ,√
2A+0 = VusV

∗
ub(T

+− + T 00
C −N0+) + VtsV

∗
tb(P

+− − PEW
C + PEW ) ,√

2A00 = VusV
∗
ubT

00
C + VtsV

∗
tb(−P+− + PEW ) .

(3.37)

This parameterization is frequently used in the literature, and will be referred to as the “clas-
sical” parameterization. The notationN0+ makes reference to the fact that the contribution
to theK∗0π+ proportional toVusV

∗
ub has a annihilation or exchange topology, which are equi-

valent from the phenomenological point of view (in these amplitudes there are also mixed
u andc Penguins contributions). The corresponding diagrams are shown in Fig. 3.2. The
B0 → K∗0π0 Tree amplitude being color suppressed is denoted asT 00

C (cf. Fig. 3.3). The
EW notation in thePEW andPEW

C amplitudes refers to “Electro-weak”, and makes refer-
ence to the Penguin amplitudes contributing to theB+ → K∗+π0 andB+ → K∗0π+ decays,
PEW

C being color suppressed with respect toPEW . The gluonic emission on the loop (shown
in the right diagram of Fig. 3.1) has to give a∆I = 0 due to isospin conservation in strong
interactions. As thēb ands̄ quarks have isospin zero, the total isospin difference onlycan be
∆I = 0. As a consequence, the∆I = 1 components for theB → K∗+π0 andB → K∗0π+

modes do not have any gluonic Penguin contribution. Then, the “EW” notation actually
makes reference to the∆I = 1 electroweak Penguin, the other (∆I = 0) being absorbed in
the gluonic PenguinsP+−.

Figure 3.2:Annihilation (left) and Exchange (right) diagrams contribution to theN0+ am-
plitude for theB+ → K∗0π+ decay. The two contributions are equivalent from the phe-
nomenological point of view.

Parameterizationà la Pivk-Le Diberder

There is another parameterization which has a simpler form with respect to the hadronic am-
plitudes and where theCKM factors are expressed in termsρ̄ andη̄ only [72]. It is inspired
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Figure 3.3:Color suppressed diagram for theB+ → K∗0π+ decay.

on a parameterization used in [73] for a study ofCKM constraints using theB → ππ sys-
tem. It will be referred in the following as the “Pivk-Le Diberder” (PLD) parameterization.
Using the following identities (cf. Eqs.(1.16) and recalling q/p = VtdV

∗
tb/V

∗
tdVtb),

VusV
∗
ub =

λ√
1 − λ2

VtdV
∗
tb

[

1

1 − ρ̄− iη̄
− 1

]

,

q

p
V ∗

usVub =
λ√

1 − λ2
VtdV

∗
tb

[

1

1 − ρ̄+ iη̄
− 1

]

,

VtsV
∗
tb

VusV ∗
ub

= −1 − λ2

λ

1

ρ̄+ iη̄
− 1 + A2λ2 =

(

− 1

λ2
+ 1

)

ρ̄− iη̄

ρ̄2 + η̄2
− 1 , (3.38)

the decay amplitudes can be written as

A+− = λuT̃
+−
[

1 +
VtsV

∗
tb

VusV ∗
ub

P+−

T+−

]

,

A0+ = λuT̃
+−
[

N0+

T+− +
VtsV

∗
tb

VusV ∗
ub

(

−P
+−

T+− +
PEW

C

T+−

)]

,

√
2A+0 = −A0+ + λuT̃

+−
[

1 +
T 00

T+−

] [

1 +
VtsV

∗
tb

VusV
∗
ub

PEW

T3/2

]

,

√
2A00 = −A+− + λuT̃

+−
[

1 +
T 00

T+−

] [

1 +
VtsV

∗
tb

VusV ∗
ub

PEW

T3/2

]

, (3.39)

whereT3/2 = T+− + T 00
C is the Tree contribution to theI = 3/2 final state, and̃T+− andλu

are given by

T̃+− =
λ√

1 − λ2
VtdV

∗
tb

T+−

(1 − ρ̄)2 + η̄2
. (3.40)

λu ≡
[

ρ̄(1 − ρ̄) − η̄2 − iη̄
]

(3.41)

This parameterization is well adapted to extract ratios of pure hadronic amplitudes, and to
apply the constraints on hadronic hypothesis that will be described in Sec. 3.2.7, which relate
the electro-weak Penguins to the Tree hadronic amplitudes.
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3.2.6 TheB0 → K∗+π− andB0 → K∗0π0 subsystem and theCPS/GPSZ
technique

Using the observables from theB0 → K∗+π− andB0 → K∗0π0 decays, a constraint on
the CKM angleα can be set in the hypothesis of negligible EWPs, as suggestedby [74, 75]
(this assumption on the EWPs ensures the reparameterization invariance breaking). This
method, which will be called CPS/GPSZ in this thesis, is illustrated here as follows: taking
the Eq.(3.37) parameterization, and considering the two combinations of amplitudes

A0 = A(B0 → K∗+π−) +
√

2A(B0 → K∗0π0) = VusV
∗
ub(T

+− + T 00
C ) , (3.42)

Ā0 = A(B̄0 → K∗−π+) +
√

2A(B̄0 → K̄∗0π0) = V ∗
usVub(T

+− + T 00
C ) , (3.43)

one defines the convention-independent ratio

R0 =
q

p

Ā0

A0
= e−2iβe−2iγ = e−2iα (3.44)

that provides a clean determination of theα weak phase. TheA0 amplitude can be extracted
using the decay chainsB0 → K∗+(→ K+π0)π− andB0 → K∗0(→ K+π−)π0 contributing
to theB0 → K+π−π0 DP. Similarly,Ā0 can be extracted from thēB0 → K−π+π0 DP using
the same procedure. TheB0 → K+π−π0 decay channel being self-tagging (see Sec. 5.3)
no mixing is possible, and theA(K∗+π−) andA(K∗−π+) (A(K∗0π0) andA(K̄∗0π0)) am-
plitudes can not interfere.

The phase difference betweenA(K∗+π−) andA(K∗−π+) (cf. Sec. 3.2.2) is extracted
from theB0 → K0

Sπ
+π− DP, considering the decay chainB0 → K∗+(→ K0π+)π− and the

CP conjugatedB̄0 → K∗−(→ K̄0π−)π+. These channels do interfere through mixing but
in a small DP region, and they both interfere with the decaysB0B̄0 → ρ0(→ π+π−)K0

S and
with other resonances (which also interfere between them through mixing) contributing to
the same DP. In this way the phase difference betweenA(K∗+π−) and(q/p)A(K∗−π+) can
be extracted.

A similar ratio can be constructed, again in the hypothesis of negligible EWPs, using the
chargedB decays, using the following two combinations of amplitudes

A+ = A(B+ → K∗0π+) +
√

2A(B+ → K∗0π+) = VusV
∗
ub(T

+− + T 00
C ), (3.45)

A− = A(B− → K̄∗0π−) +
√

2A(B− → K∗−π0) = V ∗
usVub(T

+− + T 00
C ) . (3.46)

Then, the free of phase convention ratio

R∓ =
q

p

Ā−

A+
= e−2iβe−2iγ = e−2iα (3.47)

can be in principle used for the extraction ofα. As before,A± can be extracted from the
decay chainsB± → K∗±(→ K0π±)π0 andB± → K∗0(→ K0π0)π± entering in theB± →
K0

Sπ
±π0 DP. Electric charge forbids the extraction of the relative phase of the two DP’s

along the way discussed above, so that further theoretical arguments have to be adopted in
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order to fix the relative phases between opposite-sign amplitudes [74]. Alternatively, the full
information coming from the charged and neutralB decays can be combined to improve the
accuracy of theα determination.

The inclusion of the EWPs completely changes Eqs.(3.44) and(3.47). In fact, even
though EWPs yield a subdominant contribution to branching fractions (because of theαem

suppression with respect to the strong Penguin contribution), they provide anO(1) contribu-
tion toR0 andR∓ (more generally, they provide anO(1) correction toCP -violating effects
in charmlessb → s decays). Furthermore, theCKM couplings amplify the contribution of
EWPs to the amplitudes. The net effect of the EWPs is that theCKM dependence ofR0 and
R∓ does not factorise into a singleα dependence, so that the CPS/GPSZ technique provides
a more complicated constraint on the(ρ̄, η̄) parameters. The argument of the ratioR0,

φ3/2 = arg(R0) , (3.48)

is a physical observable as it is a function of physical observables. Given a theoretical hy-
pothesis it can be expressed as a function of theρ̄ andη̄ parameters, and can then be used to
set a constraint in the(ρ̄, η̄) plane. As an example, in the hypothesis ofPEW = 0 we have
the relationφ3/2 = α.

Dalitz plot analyses combined with isospin have already shown their effectiveness in
the extraction ofα from B → πππ [76]. A proposal relying on isospin for extracting the
UT angleγ using a global analysis ofB → K0

S(ππ)I=0,2, including time-dependentCP -
asymmetries at fixed values of the DP variables (cf. Sec. 2.4)can be found in ref. [77].

It has to be said that the methods described originally in [74, 75] do not include the
q/p term in Eqs.(3.44) and (3.47). The authors then claim instead to have direct access to
the UT angleγ in the hypothesis of negligible electro-weak Penguin contributions. The
issue is that the ratios Eqs.(3.44) and (3.47) without the inclusion of theq/p mixing factors
are not physical observables as they are not invariant underphase redefinitions of theB/B̄
fields [25]. In effect, without the inclusion of theq/p factor, theR̃0 ratio is written as

R̃0 =
〈K∗−π+|H|B̄0〉 +

√
2〈K̄∗0π0|H|B̄0〉

〈K∗+π−|H|B0〉 +
√

2〈K∗0π0|H|B0〉
. (3.49)

By performing the phase transformation|B0
ζ 〉 → e−iζ |B0〉, |B̄0

ζ 〉 → eiζ|B̄0〉, the amplitude

ratio transforms as̃R0
ζ → e2iζR̃0, proving that its phase is not a physical observable. Note in

contrast that as a consequence of the phase transformation,(q/p)ζ → e−2iζ(q/p), so that the
real physical observable isR0 = (q/p)R̃0.

Another claim of [74] is that the phase difference between theA(K∗+π−) andA(K∗−π+)
can be measured with a time-integrated Dalitz plot analysisof B0 → K0

Sπ
+π−. As shown in

Chapter 2, the only term sensitive to phase differences betweenB0 andB̄0 decay amplitudes
in the time-dependent Dalitz plot PDF, Eq.(2.43), is the sinus term with the cross factor
Im

[

AA∗]. When a time integration is performed, the PDF then is written as

|ACP (DP, qtag)|2 ∝ |A(DP )|2 + |A(DP )|2 − qtag∆
(

|A(DP )|2 − |A(DP )|2
)

, (3.50)

where∆ is a constant that depends on theB0 lifetime. It can be seen that after the time-
integration there is no cross term, and thus there is no sensitivity to phase differences between
B0 andB̄0 decay amplitudes.
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3.2.7 Hadronic hypothesis

The effective Hamiltonian governing the decaysB → K(K∗)π has the form [78]

H =
GF√

2

{

∑

i=1,2

ci (ΩuQ
u
i +ΩcQ

c
i) −Ωt

10
∑

i=3

ciQi

}

+ h.c. , (3.51)

whereΩq = VqsV
∗
qb are products ofCKM matrix elements,ci are Wilson coefficients, andQi

are local four-quark operators. There is a hierarchy in the values of the Wilson coefficients
for electro-weak operators:|c9,10| ≫ |c7,8| [79]. In this approximation the electro-weak
Hamiltonian can be written as follows,

HEWP ≃ c9Q9 + c10Q10 , (3.52)

which is useful since there are general relations betweenQ9,10 and the current-current oper-
atorsQ1,2. The operatorsQ9,10 have a(V − A) × (V − A) Dirac structure, and can then be
written as linear combination of the operatorsQ1−4 [79],

Q9 =
3

2
Qu

1 +
3

2
Qc

1 −
1

2
Q3 ,

Q10 =
3

2
Qu

2 +
3

2
Qc

2 −
1

2
Q4 , (3.53)

which holds in the convention whereQ2 is the dominant operator (c2 ∼ 1). Qc
1,2 andQ3,4

operators are∆I = 0, thus from Eq.(3.53) the∆I = 1 electro-weak Penguin (EWP) Hamil-
tonian writes

[HEWP ]∆I=1 =
3

2
[c9Q

u
1 + c10Q

u
2 ]∆I=1

=
3

2

c9 + c10
2

[Qu
1 +Qu

2 ]∆I=1 +
3

2

c9 − c10
2

[Qu
1 −Qu

2 ]∆I=1 , (3.54)

while the∆I = 1 current-current Hamiltonian is given by

[HCC ]∆I=1 =
c1 + c2

2
[Qu

1 +Qu
2 ]∆I=1 +

c1 − c2
2

[Qu
1 −Qu

2 ]∆I=1 . (3.55)

Numerically, the ratios(c9 + c10)/(c1 + c2) and(c9 − c10)/(c1 − c2) satisfy (see Table XXII
of [80])

(

c9 + c10
c1 + c2

≃ −0.0084

)

≃
(

c9 − c10
c1 − c2

≃ +0.0084

)

, (3.56)

which are calculated at the next to leading order (NLO) in theframework of QCD factoriza-
tion. DenotingR = (3/2)(c9 + c10)/(c1 + c2), [HEWP ]∆I=1 can be casted into

[HEWP ]∆I=1 = R
c1 + c2

2
[Qu

1 +Qu
2 ]∆I=1 −R

c1 − c2
2

[Qu
1 −Qu

2 ]∆I=1 (3.57)

which is not proportional to[HCC ]∆I=1 in Eq.(3.55), because of the sign flip in the second
term of the right hand side. Then,[HEWP ]∆I=1 is not simply proportional to[HCC ]∆I=1.
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In order to exploit Eq.(3.57), one has to look for a combination of amplitudes that receive
contributions of only one of the terms in Eq.(3.57). In theSU(3) limit [74, 75], it is found
that in the∆I = 1 combinationA(B0 → K∗+π−) +

√
2A(B0 → K∗0π0) (the same combi-

nation described in the CPS/GPSZ methods) the EWP contributions are proportional to the
CC ones. Then, the following relation can be set

PEW = RT3/2 , (3.58)

with R = (1.35 ± 0.12) × 10−2, where the error comes from neglecting theQ7,8 operators,
and from a residual scale dependence of the Wilson coefficients, as they are calculated on a
specific energy scale. Now, in theSU(3) limit the two mesons in the final state,K∗ andπ,
are not identical. Then, instead of Eq.(3.58) a modified relation is set

PEW = ReffT3/2 , (3.59)

whereReff = R(1+rV P )/(1−rV P ), and where therV P (VP standing for vector-pseudoscalar)
parameter is given by

rV P =
〈K∗π(I = 3/2)|Q−|B〉
〈K∗π(I = 3/2)|Q+|B〉 , (3.60)

withQ± = (Q1±Q2)/2. While forB → Kπ decays theSU(3) flavor symmetry guarantees
that〈Kπ(I = 3/2)|Q−|B〉 vanishes [74, 75], the same argument does not apply toK∗π final
states. To leading order in QCD factorization [81] the final state dependentrV P coefficient
is given by

rV P =

∣

∣

∣

∣

fK∗FB→π
0 − fπA

B→K∗

0

fK∗FB→π
0 + fπAB→K∗

0

∣

∣

∣

∣

<∼ 0.05 , (3.61)

whereFB→π
0 andAB→K∗

0 denote pseudoscalar and vector form factors, andfπ andfK∗ de-
note decay constants. Corrections to QCD factorization areexpected to be of the order to
∼ 20%, enhancing the value ofrV P , which makes the estimate in Eq.(3.61) too optimistic.
For the phenomenological analysis discussed in this thesis, two scenarios can be tested:

• "Aggressive" scenario:|rV P | ≤ 0.05 (GPSZ estimation);

• Nominal scenario:|rV P | ≤ 0.2;

In theSU(3) limit, a similar relation can be found for thePEW
C , but it depends on sub-

leading terms that contribute inρπ andK∗K̄ modes. While an analysis including informa-
tion stemming from those modes appeals to be very interesting, is lies certainly beyond the
time scale for the present work.

3.2.8 Conclusion

TheB → K∗π system can offer more information on theCKM parameters than theB →
Kπ system due to the fact that additional observables are available, namely the five phase
differences accessible from Dalitz Plot analyses. Even though the number of observables and
parameters are the same, the system is not closed due to reparameterization invariance. To
break RpI, and extract information onCKM phases, additional external hypothesis have to
be made; in this analysis we limit the possible choices to a single hypothesis, based onSU(3)
symmetry and QCD factorization, relating the color-allowed EWP to the Tree amplitudes.
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3.3 Isospin Analysis for theB → ρK modes

3.3.1 Introduction

This section describes the isospin analysis ofB → ρK modes. This system having the
same isospin relations asB → K∗π, the decay amplitudes can be parameterized similarly in
terms of hadronic amplitudes andCKM factors. The fundamental difference between the
B → ρK system with respect to theB → K∗π system is the fewer number of observables
experimentally accessible. In particular only one phase difference can be extracted from
Dalitz Plot analyses.

3.3.2 Decay Amplitudes

The decay amplitudes for theB → ρK system have exactly the same isospin structure as
the ones for theB → K∗π system, so the same isospin relations hold. Adopting theC

convention, the amplitudes can be written using the classical parameterization

a+− ≡ A(B0 → K+ρ−) = VusV
∗
ubt

+− + VtsV
∗
tbp

+−,
a0+ ≡ A(B+ → K0ρ+) = VusV

∗
ubn

0+ + VtsV
∗
tb(−p+− + pEW

C ),
a+0 ≡ A(B+ → K+ρ0) = VusV

∗
ub(t

+− + t00C − n0+) + VtsV
∗
tb(p

+− − pEW
C + pEW ),

a00 ≡ A(B0 → K0ρ0) = VusV
∗
ubt

00
C + VtsV

∗
tb(−p+− + pEW ).

(3.62)
where thet+−, p+−, t00C , n0+, pEW andpEW

C hadronic amplitudes are different from the ones
of theB → K∗π modes, but have the same topological interpretation. TheB → ρK system
alone has the same number of hadronic parameters as theB → K∗π system, which adding
the twoCKM parameters(ρ̄, η̄) gives a total of thirteen parameters.

3.3.3 The physical observables

As with theB → K∗π system, fourCP averaged branching fractions and fourCP -asymme-
tries are observables from Q2B and Dalitz Plot analyses. Those are similarly defined as in
Eqs.(3.8) and (3.10), but theAij amplitudes are replaced by theaij amplitudes, and in the
corresponding phase space constant for the branching fractions themK∗ andmπ masses are
replaced by themK andmρ masses, respectively.

For theB → ρK system there are less observable phase differences than in theB →
K∗π system, because only oneρK resonant decay can contribute to a given DP, so the only
way of observing interference between twoB → ρK amplitudes is throughB0B̄0 mixing in
ρ0(770)K0

S. The only phase difference measurable is

2βeff = arg

(

q

p

ā00

a00

)

, (3.63)

which is extracted from the mode studied in this thesis,B0 → K0
Sπ

+π−. As was mentioned
in Sec. 3.2.2, theB0 → K0ρ0(→ π+π−) and B̄0 → K̄0ρ0(→ π+π−) decays interfere
through mixing, thus the presence of theq/p factor in Eq. 3.63.
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In summary, theB → ρK observables are: four branching fractions, fourCP -asymmetries
and one phase difference, which gives a total of nine observables.

3.3.4 Hadronic hypothesis

When considering theρK system alone the same hadronic hypothesis made for theK∗π
system can be applied. In this case this is written as

pEW = R
1 + rV P

1 − rV P

t3/2 , (3.64)

where againt3/2 = t+− + t00C . As for theK∗π system, two scenarios can be explored:

• "Aggressive" scenario:|rV P | ≤ 0.05.

• Nominal scenario:|rV P | ≤ 0.2.

3.3.5 Conclusion

Despite that theB → ρK system obeys the same isospin relations asB → K∗π, a reduced
number of observables is accessible: nine observables out of 13 parameters. Even with the
theoretical assumption described in Sec. 3.3.4 (which eliminates other two parameters) the
system remains under-constrained. The only advantage ofB → ρK is the cleaner access
to the mixing phase2βeff in B0 → ρ0KS (if compared to the two-body systemB → Kπ,
where only the time-dependent CP-asymmetryS is accessible inB0 → π0KS); this single
advantage does not compensate for the drawback of having andunder-constrained system.

3.4 Combining theB → K∗π andB → ρK modes

3.4.1 Introduction

K∗π andρK resonant states can contribute to the same DP and interfere,so more phase
differences are accessible. In a combined study of observables from both systems, more
observables are added, while the total number ofCKM plus hadronic parameters staying
almost unchanged. When studding theK∗π or ρK systems alone, there is always an un-
physical global phase. But when studding both systems together, there is only one global
unphysical phase, due to the fact that a phase difference between both subsystems is now
observable. In this section the new observables are listed,and a description of how the two
systems can be combined is presented.

Most of the published phenomenological analyses combiningB → K(K∗)π andB →
Kπ(ρ) systems rely onSU(3) flavor symmetry in order to relate hadronic amplitudes from
both systems, reducing the number of unknowns [14, 69]. In the analysis here presented, the
experimental access to observables linking theB → K∗π andB → ρK amplitudes, give a
natural relation between both systems. Therefore a phenomenological analysis can be based
primarily onSU(2) isospin only.
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3.4.2 The physical observables

SeveralK∗π andρK resonant decays contribute to the same DP. The following additional
phase differences are accessible:

• φ(K∗+π−, K0ρ0) = arg(A(B0 → K∗+π−)A∗(B0 → K0ρ0)) due to interference
of the decay chainsB0 → K∗+(→ K0

Sπ
+)π− andB0 → K0ρ0(→ π+π−) both

contributing to theB0 → K0
Sπ

+π− decay mode.

• φ(K∗+π−, K+ρ−) = arg(A(B0 → K∗+π−)A∗(B0 → K+ρ−)) due to interference
of the decay chainsB0 → K∗+(→ K+π0)π− andB0 → K+ρ−(→ π−π0) both
contributing to theB0 → K+π−π0 decay mode. Also accessible is theCP conjugated
phaseφ̄(K∗−π+, K−ρ+) = arg(A(B̄0 → K∗−π+)A∗(B̄0 → K−ρ+)).

• φ(K∗0π+, K+ρ0) = arg(A(B+ → K∗0π+)A∗(B+ → K+ρ0)) due to interference of
the decay chainsB+ → K∗0(→ K+π−)π+ andB+ → K+ρ0(→ π+π−) both con-
tributing to theB+ → K+π−π+ decay mode. Also accessible is theCP conjugated
phaseφ̄(K̄∗0π−, K−ρ0) = arg(A(B− → K̄∗0π−)A∗(B− → K−ρ0)).

• φ(K∗+π0, K0ρ+) = arg(A(B+ → K∗+π0)A∗(B+ → K0ρ+)) due to interference
of the decay chainsB+ → K∗+(→ K0π+)π0 andB+ → K0ρ+(→ π+π0) both
contributing to theB+ → K0

Sπ
+π0 decay mode. Also accessible is theCP conjugated

phaseφ̄(K∗−π0K̄0ρ−) = arg(A(B− → K∗−π0)A∗(B− → K̄0ρ−)).

In total, there are seven additional phase differences experimentally accessible from the
combination of both systems, which considering the previous thirteen observables from the
B → K∗π system alone, and the nine observables from theB → ρK, make a total of13 +
9 + 7 = 29 observables. Because bothK∗π andρK systems are considered simultaneously,
there is only one single irrelevant global phase, which makes fourteen parameters for each
system minus a global phase, giving a total of14 + 14 − 1 = 27.

It could be now thought that the system is overconstrained, but in fact not all the ob-
servables are theoretically independent, as all experimental observables are functions of the
decay amplitudes only. For each system, there are eight complex decay amplitudes (four for
theB decays and four thēB decays), which gives thirty-two real parameters; then there are
two isospin relations for each system, which eliminates eight other parameters; finally, taking
into account the single unphysical global phase gives a total of 2(16) − 8 − 1 = 23 theoret-
ically independent observables that can be constructed. This means that the29 observables
listed above are not all theoretically independent. But as their experimental extraction comes
from independent analyses, these measurements provide redundant information, that act as
an effective enhancement of sensitivity, and thus further constrain the phenomenological
analysis.

3.4.3 Hadronic hypothesis

Here again, external information needs to be added to break RpI. When considering both
K∗π andρK systems together, instead of applying again the relations in 3.59 and 3.64, a
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more relaxed hadronic hypothesis can be tested. In theSU(3) limit the rV P parameters for
both systems satisfy the following relation

rK∗π = −rρK . (3.65)

The following parameterization is then adopted

rK∗π = +rf +
1

2
rSU3 ,

rρK = −rf +
1

2
rSU3 , (3.66)

whererf is theSU(3) symmetric correction to QCD factorization, andrSU3 parameterizes
SU(3) breaking. In this case, the following scenarios are considered:

• "Aggressive" scenario:|rf | ≤ 0.05, |rSU3| ≤ 0.05.

• Nominal scenario:|rf | ≤ 0.05, |rSU3| ≤ 0.30.

3.4.4 Conclusion

A combined study of bothB → K∗π andB → ρK systems together adds seven new ex-
perimental observables. These are phase differences, accessible when both resonant decays
contribute to the same DP and interfere. In the combined isospin analysis, there is only one
spurious phase in the decay amplitudes, which gives a total of 23 parameters, to be extracted
out of 29 experimental observables. Combining both systems promises an access to tighter
constraints on these parameters, in light of the higher number of experimentally independent
observables. As a single hadronic hypothesis suffices to break RpI, a safer, more relaxed
relation between hadronic parameters can be tested, to extract information on the(ρ̄, η̄) pa-
rameters of the CKM matrix.

3.5 Strategies for a phenomenological analysis

For the phenomenological analysis (see Chapter 8) two different scenarios can be considered:

1. Scenario 1:using external information (the global CKM fit) on the CKM parameters,
constraints can be made on the ratio of the hadronic amplitudes. This approach has
the advantage that the theoretical hypothesis made are relatively safe,i.e. it is only
assumed the unitarity of the CKM matrix. The inputs used in this scenario are the
results on̄ρ andη̄ from the global CKM fit and the experimental measurements forthe
system considered (i.e.B → K∗π orB → ρK). Two kind of outputs can be obtained
from this approach:

• Constraints on unavailable observables (e.g.φ(0+,+0) andφ̄(0+,+0), cf. Eq.(3.13)),
which gives the predicted value of the observables under thesafe hypothesis of
the unitarity of the CKM matrix.
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• Constraints on the ratio of hadronic parameters, which can be used to test theo-
retical hypothesis, including the ones described in this chapter (cf. Sec. 3.2.7).

2. Scenario 2: using an hadronic hypothesis (e.g. Sec. 3.2.7), constraints are made on
CKM parameters (i.e. on the(ρ̄, η̄) plane). In this case the stability of the hadronic hy-
pothesis can be evaluated by measuring how sensitive are theconstraints on the CKM
parameters on the theoretical uncertainties. One of the main goals of this phenomeno-
logical analysis is to test the CPS/GPSZ method.

In a fist step, the two scenarios described above are studied using the observables from
B → K∗π modes. A similar study usingB → ρK modes has a more limited impact, due to
the reduced number of observables, but still bounds on ratios of hadronic parameters can be
set. Finally, a combined study using observables from both systems will be discussed. The
results on these two approaches will be shown in Secs. 8.3, 8.4 and 8.5, respectively.

Prospective studies will be presented in Sec. 8.5.3, where the potential of the methods
described in this chapter are extrapoled, based on numbers stemming from the future inte-
grated luminosities, and expected performances of the Belle-upgrade, Super-B, and/or LHCb
projects.



Part II

PEP-II and theBABAR Experiment



Chapter 4

An Introduction to the BABAR experiment

The primary goal of theBABAR experiment is the systematic study ofCP asymmetries in
the decays of the neutralB mesons toCP eigenstates. Other priority goals are the precision
measurements of decays of bottom and charm mesons and ofτ leptons, and searches for
rare process that become accessible with the high luminosity of the PEP-IIB factory (cf.
Sec. 4.1). As discussed in Sec. 1.3, the measurement of theβ angle of the CKM matrix,
which was the key design objective ofBABAR, relies on the measurement of time-dependent
CP asymmetries in the neutral modes induced byb → cc̄s transitions. In a similar spirit,
time-dependent measurements withB0 → π+π− andB0 → ρ+ρ− are important for con-
straining theα angle of the CKM matrix. In order to observe the time-dependentCP asym-
metries, the detector has to be capable to:

• reconstruct completely exclusive final states;

• determine the flavor of the decaying neutralB mesons;

• measure the time difference between the twoB mesons in the event. (cf. Sec. 1.2.2).

The principal channels considered with priority at the timeof BABAR conception include:

• For sin 2β: B0 → J/ψK0
S, B0 → J/ψK0

L, B0 → J/ψK∗0, B0 → D+D−, B0 →
D∗+D∗−.

• For sin 2α: B0 → π+π−,B0 → π+π−π0, B0 → a1π.

Due to the smallness of the branching fractions of these finalstates (< 10−5),BB̄ mesons
pairs have to be produced copiously. TheBABAR detector was designed and optimized to
achieve the physics goals described above. The asymmetrice+e− collider B factory PEP-II
B, was designed to deliver theB mesons to the experiment.

This chapter describes the experimental facility used for collecting the data used in the
analyses presented in this thesis. The beam particles production and accelerator system, the
storage rings and the PEP-II collider [82] are described in the first section (Sec. 4.1). Then
(Sec. 4.2) theBABAR detector [83], which surrounds the PEP-II interaction point (IP), is de-
scribed. This detector is composed of several subsystems. Each of them provides part of in-
formation for a complete event reconstruction: the tracking system, composed of the silicon
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vertex tracker (SVT) and the drift chamber (DCH); the particle identification system (PID),
which is composed mainly of the detector of Cherenkov radiation (DIRC); the electromag-
netic calorimeter (EMC); and the muon and hadron detector (IFR), instrumented within the
magnetic flux return steel. The way in which this informationis used for the reconstruction
of the particles forming theB decay final states will be presented in Chapter 5.

4.1 e+e− B factories andPEP-II

In the late 1980s, studies [84] indicated that the best source ofB mesons for a B physics
program was ane+e− collider running in asymmetric mode,i.e. with beams of unequal
energy, operating at theΥ (4S) resonance mass (10.58 GeV/c2). TheB mesons are pro-
duced in pairs from the processe+e− → Υ (4S) → BB̄. TheΥ (4S) resonance,abb̄ bound
state, decays exclusively toB0B̄0 andB+B− pairs (B(Υ (4S) → BB̄) > 96% [21], with
B(Υ (4S) → B0B̄0)/B(Υ (4S) → B+B−) ∼ 1), and thus provides an ideal laboratory for
the study ofB mesons. PEP-II is such a collider housed in the former PEP (Positron-Electron
Project) tunnel, on the SLAC (Stanford Linear Accelerator Center) laboratory, located in
California. Two of the main design criteria are:

• Produce high luminosities (3.0 × 1033cm2s−1 was the project goal).

• Operate in an asymmetric mode, resulting inB0 mesons with high enough momenta
in the laboratory frame to infer their decay times from theirdecay lengths, which are
measured from the location of decay vertex (cf. Sec. 5.4).

There are several advantages to thee+e− environment over an hadronic environment, namely:

• a high signal-to-background ratio, (characterized by the cross section ratioσbb̄/σTOT ≃
0.2);

• clean events, with a mean charged multiplicity of∼ 11 for B decays and smaller for
other reactions;

• low interaction rates∼ 10Hz (physics rate);

• the possibility to reconstruct final states containingπ0s and photons, thereby allowing
exclusive measurements in many channels.

Also the PEP-II configuration provides several kinematicaladvantages: knowledge of the
exact 4-momentum of the two-B meson system; the knowledge of the momentum magni-
tudes of the twoB mesons individually in the center-of-mass (CM) system. These informa-
tions can be used as constraints, which considerably help insuppressing backgrounds (cf.
Sec. 5.6.1).
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4.1.1 TheLINAC and the storage rings

PEP-II is made of two storage rings of2.2 Km of circumference in which the collision takes
place. Fig. 4.1 shows an schematic view of the PEP-II collider and the LINAC accelerator.
The LINAC (LINear ACcelerator) constitutes the PEP-II injection system. It is3 Km long
and accelerates the particles up to their nominal energies.The LINAC is a facility also used
for other purposes, being able to produce beams with energies up to50 GeV. The electrons
and positrons used by PEP-II only use part of the acceleratorcapabilities. These electrons
and positrons produced in the LINAC are accelerated until their nominal energies, and then
injected to PEP-II storage rings placed at the end of the linear accelerator. Once there, the
electrons and positrons, which circulate in bunches in separate rings, are made to collide at
the IP, around which theBABAR detector is located.

Figure 4.1:The linear accelerator at SLAC and the PEP-II collider.

The High Energy Ring (HER) produces electron beams with9.0 GeV of energy, while
the Low Energy Ring (LER), delivers positrons with an energyof 3.1 GeV, which upon
collision, result in a boost of〈βγ〉 ∼ 0.56 along thee− beam direction in the laboratory
frame. This boost allows the measurement of theBCP/Btag mesons time difference (cf.
Sec. 1.2.2). The parameters for these storage rings are summarized on table 4.1.

4.1.2 The interaction region

The interaction region is instrumented with magnets that focus the beams before collision,
direct them so that there is no crossing angle at the IP, and finally separate them before the
exiting bunch of particles collides with a bunch from the other beam (cf. Fig. 4.2). The next
quadrupole magnets, labelled by QD and QF, are located outside theBABAR detector. They
focus the high and low energy beams. The bunches are brought together, collide head-on,
and are separated magnetically in the horizontal plane by a pair of dipole magnets (B1),
followed by a series of quadrupole magnets (Q1). TheB1 dipoles, located at±21 cm on
either side of the IP, and theQ1 quadrupoles are permanent magnets placed inside theBABAR

solenoid (cf. Sec. 4.2.6). This close distance from the IP was designed to obtain a small
spacing of bunches in the beams (1.26 m), so the beams have to be separated very quickly in
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Parameters Design Typical
Energy HER/LER (GeV) 9.0/3.1 9.0/3.1
Current HER/LER(A) 0.75/2.15 1.9/2.9
# of bunches 1658 1722
Bunches spacing (ns) 4.2 8.4
σLx (µm) 110 120
σLy (µm) 3.3 5.6
σLz (mm) 9 9
Luminosity (1033cm−2s−1) 3.0 9.0
Luminosity (pb−1/day) 130 700

Table 4.1:PEP-II beams parameters. Values are given for both design and typical colliding
beam operation in April 2008.σLx, σLz andσLz refer to horizontal, vertical and longitudinal
RMS size of the luminous region.

order to avoid parasitic collisions. The first unwanted crossing point is located63 cm away
from the IP.

The collision axis is offset from thez-axis of theBABAR detector by about20 mrad in the
horizontal plane to minimize the perturbation on the beams by the solenoidal field. In order
to have the highest possible solid angle, theB1 andQ1 components have to be very compact,
and in order not to compromise the vertexing resolution, thevertex detector (cf. Sec. 4.2.1)
has to be as close to the water-cooled beryllium beam pipe as practical. The beam pipe has
an internal radius of2.6 cm and its inner surface is coated with a4 µm thin layer of gold to
attenuate synchrotron radiation. The SVT and theB1 andQ1 magnets are placed inside a
support tube of4.5 m long and27.7 cm inner diameter inside the beamline supports. The
quasi-vertical dotted lines of Fig. 4.2 represent the acceptance ofBABAR.

4.1.3 Monitoring of the beam parameters

The most critical beam parameters forBABAR performance are: luminosity; energies of the
two beams; and positions, angles, and size of the luminous region. While PEP-II measures
radiative Bhabha scattering events to provide a fast monitoring of the relative luminosity,
BABAR derives the absolute luminosity offline from other QED processes, primarilye+e−

andµ+µ− pairs. The measured rates are consistent and stable as a function of time. During
operation, the mean energies of the two beams are calculatedfrom the total magnetic bend-
ing strength and the average deviations of the acceleratingfrequencies from their central
values. The RMS energy spreads of the LER and HER beams are2.3 MeV and5.5 MeV,
respectively. To ensure that the data is recorded close to the peakΥ (4S) resonance, the ob-
served ratio of theBB̄ enriched events to lepton pair production is monitored online. Near
the peak of the resonance, a2.5% change in the ratio corresponds to a2 MeV change in the
C.M. energy, but this drop does not distinguish between energy settings below or above the
Υ (4S) peak. The best monitor and absolute calibration of the C.M. energy is derived from
the measured C.M. momentum of fully reconstructedB mesons combined with the known
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Figure 4.2:The PEP-II optics around the interaction point seen in the horizontal plane. The
scale is contracted in the vertical axis. The electrons go into the detector from the left. The
roles of the different magnets is described are the text.

B-meson mass. The beam energies are necessary input for the calculation of two kinematic
variables commonly used to separate signal from backgroundin the analysis of exclusive
B-meson decays (cf. Sec 5.6.1). The direction of the beams relative toBABAR is measured
iteratively run-by-run1 usinge+e− → e+e− ande+e− → µ+µ− events. The size and posi-
tion of the luminous region (see design values in Table 4.1) are critical parameters for the
time-dependent analyses. They are determined from the closest approach to thez-axis of
two-charged particles events as a function of the azimuth angle, and from the position of the
two tracks.

4.1.4 Machine backgrounds

The primary source of accelerator backgrounds are, in orderof increasing importance: syn-
chrotron radiation around the IP; interaction of beam particles with residual gas in the stor-
age rings; electromagnetic showers generated in beam-beamcollisions. These backgrounds
should be avoided as they can lead to degradation of the performance of the detector, due
to sustained radiation damage, and large dead times in whichthe readout of the detector
subsystems are idle.

Synchrotron radiation in the nearby dipoles, theQ1 quadrupoles andB1 dipoles gener-
ates a severe background. The beam orbits, vacuum-pipe apertures and synchrotron radia-
tions masks have been designed such that most of these photons are channeled to a distant
dump; the remainder are subject to multiple scatters beforethey can enter theBABAR accep-
tance.

1A "run" is a small period of data taking (∼ 50 min) in which the beam quality is stable.
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Beam-gas bremsstrahlung and Coulomb scattering of residual gas molecules cause in
some cases beam particles to escape the acceptance of the ring and hit the beam pipe pro-
ducing electromagnetic showers that spread over the detector. Vacuum pumps maintain the
residual pressure to a minimum, and collimators cut the beamtails generated by betatron os-
cillations and beam-gas interactions. Beam-gas scattering is the primary source of radiation
damage in the SVT and the dominant source of background in alldetectors systems, except
for the DIRC.

Radiative Bhabha scattering results in low energy electrons or positrons that hit aperture
limitations within a few meters of the IP and sprayBABAR with electromagnetic showers.
This background is proportional to the instantaneous luminosity. This is the dominant back-
ground in the DIRC.

4.1.5 The continuous injection system

At the beginning ofBABAR in 1999, the electrons and positrons were injected in the storage
rings in bunches of109 particles with a frequency between(1 − 30)Hz, with a mean time
spacing of4ns. In normal operation the injection was made every(40 − 50) min. These
periods of injection (of∼ 5 min) generated intense backgrounds inBABAR. Also, the injec-
tion induced dead time, because it was necessary to ramp downthe high voltages of detector
systems for protection purposes. Data taking was interrupted regularly. Additionally, beam
currents decreased continuously, and the recorded luminosity was not optimal.

A system of continuous injection known as trickle injectionwas established since 2004.
A new injection is only arranged when the instantaneous luminosity falls below a pre-
established threshold, and can be made continuously at a lowrate. This was first achieved
for the LER, resulting in a gain in luminosity of35%. Later on it was implemented in the
HER, giving a additional gain of12% (cf. Fig. 4.3). The inconvenient of this new method is
in the difficulty to limit the backgrounds created by the injection. In successive tests it was
shown that these backgrounds could be kept to a manageable level, and the default operation
has been this trickle injection since 2004.

4.1.6 Types of data delivered

The nominal operation of PEP-II, with the beam C.M. energiestuned to be at theΥ (4S)
resonance peak (

√
s = 10.58 GeV), is known asOn-peakoperation mode. Due to their

high mass (mB = 5.279 GeV/c2), theB-mesons have a momentum in the C.M. frame of
p∗B =

√

s/4 −m2
B ≃ 341 MeV/c. In this frameγ∗B = E∗

B/p
∗
B = 1.002 andβ∗

B = p∗B/E
∗
B =

0.064, and so theB-mesons are non-relativistic. PEP-II also deliversOff-peakdata taken
40 MeV below the nominal C.M. energy, where theB-meson production is null. These
data, which represent10% of the total integrated luminosity, are used for detailed studies of
non-resonant backgrounds.

Thebb̄ production is not the only process that takes place at theΥ (4S) peak. There are
also events of the typee+e− → qq̄ (whereq = c, s, u, d), e+e− → ℓ+ℓ− (ℓ− = e−, µ−, τ−)
ande+e− → γγ. Table 4.2 shows the production cross sections for these other processes.
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The e+e− → qq̄ events are particularly important in the analysis presented in this thesis
because they are the dominant background component.

e+e− → Cross-Section (nb)

bb̄ 1.10
cc̄ 1.30
ss̄ 0.35
uū 1.39
dd̄ 0.35
τ+τ− 0.94
µ+µ− 1.16
e+e− ∼ 40

Table 4.2:Cross Sections at
√
s = 10.58 GeV taken from [25].

4.1.7 Performance

The design luminosity and accelerator parameter goals weremet by PEP-II within the first
year of running. After that, the design performances have been surpassed repeatedly in terms
of instantaneous and integrated luminosity per day and per month. Table 4.3 shows the lumi-
nosity records achieved by PEP-II. A value of1.2 × 1034cm−2s−1 instantaneous luminosity
was eventually reached. The machine stopped running at theΥ (4S) peak in September
2007, having recorded a total of432.9fb−1 integrated luminosity. After that, the data tak-
ing was performed at theΥ (2S) andΥ (3S) resonances (which are located at10.023 GeV
and10.355 GeV [21], respectively), finishing with integrated luminosities of20.3fb−1 and
14.5fb−1, respectively. This last operation mode was decided mainlyfor two reasons: a)
to study bottomonium physics, and what let to the discovery of the bottomonium ground
stateηb(1S) in the transitionΥ (3S) → γηb [85]; and b) to search for a lightCP -odd Higgs
boson, which is predicted in Next-to-Minimal Supersymmetric extensions of the Standard
Model [86], in the channelΥ (3S) → γA0(→ invisible). No evidence was found [87]. A
summary of the time integrated luminosity delivered by PEP-II and recorded byBABAR is
presented in Fig. 4.3, from the beginning of the data taking at 1999 until the end in 2008.

4.2 TheBABAR Detector

The requirements to studyCP -violation mentioned at the beginning of the chapter place
stringent constraints on the detector, which must have:

• a large and uniform acceptance, down to small polar angles relative to the boost direc-
tion;

• good reconstruction efficiencies for charged tracks and forphotons, down to60 MeV/c
and20 MeV/c, respectively;
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PEP-II Records
Quantity Date Record

Peak Luminosity 16 Aug 2006 1.2 × 1034cm−2s−1

Best shift (8hrs) 16 Aug 2006 339.0pb−1

Best best day 19 Aug 2007 858.4pb−1

Best weak 12-18 Aug 2007 5.137fb−1

Best month Aug 2007 19.732fb−1

Peak HER current 29 Feb 2008 2069mA
Peak LER current 7 Apr 2008 3213mA

Table 4.3: PEP-II delivered instantaneous, integrated per day, per weak and per month
luminosity, and LER and HER currents records for the whole data taking period 1999-2008.
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Figure 4.3:Integrated luminosity delivered by PEP-II and integrated by BABAR for the whole
data taking period 1999-2008. The curves show the deliveredluminosity by PEP-II (dark
blue), the total luminosity recorded byBABAR (red), and the fractions recorded on theΥ (4S)
(light blue),Υ (3S) (magenta) andΥ (2S) (yellow) resonances. Also is shown the recorded
off-peak luminosity (green). The improvement in the integrated luminosity after 2004 due to
the trickle injection can be seen in the figure.
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• very good momentum resolution for signal-background separation;

• excellent energy and angular resolution for the photons which come fromπ0 andη and
for radiative decays;

• sufficient vertex resolution to measure the time differencebetweenBCP andBtag de-
cays (cf. Sec, 5.4);

• efficient hadron and lepton identification, as these are crucial to the tagging algorithm
(cf. Sec. 5.3);

• a selective and redundant trigger system;

• dead times as short as possible, so that higher luminositiescan be handled;

• components resisting to radiation, and capable of operate reliably under high back-
ground conditions.

TheBABAR detector, installed around the IP of the PEP-II collider, was built to achieve these
goals. It is a classic almost4π acceptance detector. To maximize the geometrical acceptance
for the boostedΥ (4S) decays, the detector is shifted relative to the IP by0.37 m in the
direction of the LER. Fig. 4.4 shows a longitudinal section through the detector center, and
Fig. 4.5 shows an end view.
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Figure 4.4:BABAR detector longitudinal section.

The detector consists of five subsystems: a silicon vertex tracker (SVT) used to measure
angles and positions of charged particles just outside the beam pipe; a drift chamber (DCH),
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whose purpose is the measurement of momentum of charged particles; together they com-
pose theBABAR tracking system; a ring-imaging Cherenkov detector (DIRC), which provides
information to identify charged particles (in particularK/π separation); a CsI crystal elec-
tromagnetic calorimeter (EMC), designed to measure the energies of photons and electrons,
and used for electron identification. These subsystems are surrounded by a superconducting
solenoid. Finally, the steel flux return is instrumented (IFR) for muon and neutral hadron
detection. The polar angle coverage extends to350 mrad and400 mrad in the forward and
backward directions, respectively, defined with respect tothe HER. As indicated in Figs. 4.4
and 4.5, theBABAR right-handed coordinate system is fixed on the main trackingsystem
(DCH), with thez-axis coinciding with its principal axis offset by20 mrad with respect to
the electron beam direction. The positivey-axis points upward and the positivex-axis points
away from the center of the PEP-II storing rings.

In the following sections, each detector subsystem is described with some detail.

4.2.1 The Silicon Vertex Tracker (SVT)

Physical requirements

The SVT [88] has been designed to provide a precise reconstruction of the decay vertices
near the IP. This is critical for the measurement of the time-difference betweenB and B̄
decays, and that of the flight distances ofD mesons andτ leptons. The mean separation
between the twoB-mesons is of the order of260 µm. To avoid a significant impact on the
∆t resolution, the mean vertex resolution along thez-axis for fully reconstructedB decays
must be better than80 µm. The required resolution in thex − y plane of∼ 100 µm arises
for the need to reconstruct secondary vertices inτ andD decays.
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The detector also provides precise reconstruction of trajectories of charged particles. It
provides a standalone tracking for particles with low transverse momentumpt < 120 MeV/c,
the minimum that can be measured reliably in the DCH alone. This capability is fundamental
for the identification of slow pions fromD∗ decays. The SVT is also used in association with
the DCH for the reconstruction of charged particles with high transverse momentum (pt).

The SVT is used for particle identification through its own measurement of ionization
energy lossdE/dx. This also gives the best determination of the track angles,which is rele-
vant to achieve design resolution for the Cherenkov angle (cf. Sec. 4.2.4) for high momentum
tracks.

Design

In order to minimize the impact of multiple Coulomb scattering, the SVT is located as close
as possible to the IP. It consists of 5 concentric layers (300 µm thickness each) of double-
sided silicon strip sensors. These sensors are assembled into modules with readout at each
end, so that the passive material in the acceptance volume isreduced (cf. Fig. 4.6). The strips
on opposite sides of each sensor are mutually orthogonal: the strips in theφ (z) direction are
parallel (transverse) to the beam axis, giving the two coordinates at the impact location. In
order to avoid dead zones inφ, the layers 4 and 5 are divided in two sub-layers (4a,4b,5a and
5b) and located at slightly different radii. The three innerlayers give the position and angle
information for the measurement of the decay vertex position. The outer two layers are at a
much larger radii, and provide the coordinate and angle measurements needed to match SVT
and DCH tracks. The layers are organized in 6, 6, 6, 16 and 18 modules, respectively. Each
module contains from 4 to 8 silicon detectors and has its own readout electronics. In total,
the SVT has 340 silicon detectors covering a area of0.96 m2, with a total of 150,000 readout
channels. The geometrical acceptance of the detector is constrained by the components of
PEP-II. The angular coverage goes from17o to 150o in the polar angle.

Once a day, and each time the SVT configuration changes, calibrations are performed in
absence of circulating beams. All electronic channels are tested for different values of the
injected charge. Gains, thresholds, and electronic noise are measured, and defective channels
are identified. The calibration results have proven very stable and repeatable.

The SVT, located very close to the beams, is significantly affected by radiation. The most
significant problem is the integrated radiation dose. This can affect the detector by changing
its crystalline structure, or by increasing the front-end electronic noise. The detector was
designed to resist to a maximum of5 Mrad of integrated radiation dose. Protection from high
backgrounds is made with a customized online protection system, called SVTRAD. This
system permitsBABAR to stop automatically the beams when the instantaneous or integrated
radiation doses go above predefined thresholds.

Performance

The average efficiency in track reconstruction of the SVT as measured ine+e− → µ+µ−

data is97%. The high efficiency achieved by the SVT for lowpt particles enables to perform
demanding physics analyses, such as theBABAR recent evidence ofD0 − D̄0 mixing [19]. In
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this analysis the flavor of theD-mesons, coming from the decayD∗+ → D0π+, are tagged
with the slow charged pion.

The strip sensors provide up to ten ionization energy lossdE/dx measurements per
charged track. The resolution on this energy loss measurement is approximately14%. A
2σ separation between kaons and pions can be achieved up to a momentum of500 MeV/c,
and between kaons and protons below1 GeV/c.

4.2.2 The Drift Chamber (DCH)

Physical requirements

The principal purpose of the drift chamber [89] is the efficient detection of charged parti-
cles and the measurement of their momenta and angles with high precision. This allows
for reconstruction of exclusiveB andD meson decays with low background. As multiple
scattering can be significant in track resolution, the material in front and inside the chamber
volume was kept to a minimum. The DCH complements the measurements of impact pa-
rameter and directions of tracks provided by the SVT near theIP. It also plays a critical role
in the extrapolation of charged tracks to the DIRC, EMC and IFR. Finally, it provides one of
the main inputs to the L1 trigger (cf. Sec. 4.2.8).
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The reconstruction of decay and interaction vertices of long-lived particles outside the
SVT volume, like theK0

S (present in the final state of the decay channel studied in this
thesis, and in many other channels studied in time-dependent analyses), relies solely on the
DCH. For this purpose, the chamber should be able to measure longitudinal positions with a
resolution of∼ 1 mm.

The DCH is used for the identification of low momentum particles with the measurement
of the ionization energy lossdE/dx. The achieved design resolution of about7% allows to
separate kaons from pions up to momentum of700 MeV/c. This capability complements
the DIRC in the barrel regions. In the forward and backward directions the DCH is the only
device which provides some discrimination between chargedparticles of different mass.

Design

The DCH is cylindrical and3 m long. It is bounded in the radial direction by the support
tube (the DIRC) at its inner (outer) radius. It is composed of7104 small hexagonal drift
cells, arranged in 40 cylindrical layers. In this way it is possible to make up to 40 spatial and
ionization loss measurements for charged particles with momentum larger than180 MeV/c.
The multiple scattering inside the chamber is held to a minimum by choosing aluminium field
wires with low mass, and a mixture of helium isobutane gas (80% : 20%). This represents
less than0.2%X0 radiations lengths. To facilitate matching of the SVT and DCH tracks, and
in order not to deteriorate DIRC and EMC performances, the material in the inner and outer
walls and in the forward direction is thin and minimum. The middle of the chamber inz is
located asymmetrically with respect the IP to maximize the acceptance given the boost of
thee+e− collision, being offset by∼ 370 mm in the HER direction. This asymmetry is such
that particles at polar angles of17.2o or 152.6o traverse half of the layers of the chamber.
Fig. 4.7 shows a longitudinal section of the DCH.
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Figure 4.7:Longitudinal section of the DCH. The chamber is offset from the IP by370 mm
in the HER direction.

The layers are grouped by four into ten superlayers, with different stereo angles. The
stereo angle is defined as the angle between the cells wires and thez-axis, in a revolution
plane around thez-axis. The stereo angles of the superlayers alternate between axial (null
stereo angle: A) and stereo (non-null stereo angle: U,V) pairs, in the order AUVAUVAUVA.
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This layout is shown in the left hand plot of Fig. 4.8. 24 of the40 layers form a small
stereo angle with thez-axis. The stereo layers give the longitudinal position information
of the tracks with a resolution of1 mm. In this way the three-dimensional measurement
is obtained. The axial layers are used to measure the curvature angle of the tracks, which
allows for the measurement of the tracks momentum. The driftcells have a hexagonal shape,
with typical dimensions of11.9 mm × 19.0 mm. Each cell consists of gold-coated sense
wires made of tungsten-rhenium (20 µm in diameter). This sense wires are surrounded by
six field aluminium wires coated with gold (80 µm and120 µm in diameter). The cell layout
is shown in the right hand side plot of Fig. 4.8. The fields thatseparate the superlayers have a
potential of340 V, and the other field wires are at ground potential. A positivehigh voltage
1960 V is applied to the sense wires. The voltages have been chosen to optimize the gas
gain.
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Figure 4.8: (left) Schematic layout of the DCH cells for the four innermost superlayers.
Lines have been added between field wires for visualization purposes. The numbers on the
right side give the stereo angles (mrad) of the sense wires in each layer. (right) Drift cells
isochrones, i.e. contours of equal drift times of ions in cells of layers 3 and 4 of an axial
superlayer. The isochrones are spaced by100 ns.

The front-end electronics are calibrated daily to determine the channel-by-channel cor-
rection constants and thresholds. The entire online calibration takes less than two minutes.

Performance

The energy lossdE/dx for charged particles traversing the DCH is derived from thetotal
charge deposited in each drift cell [83]. The left plot in Fig. 4.9 shows the distribution
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of dE/dx measurements as a function of the track momenta. The superimposed Bethe-
Bloch prediction for particles of different masses have been determined from selected control
samples. The measureddE/dx resolution for Bhabha events is shown in the right plot of
Fig. 4.9. The RMS resolution is typically7.5%.
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Figure 4.9:Performance of theBABAR drift chamber for particle identification using ion-
ization energy loss measurements. (left) Measurement ofdE/dx as a function of track mo-
mentum. The curves show the Bethe-Bloch predictions fitted on selected control samples of
particles of different masses. (right) Difference betweenthe measured and expected energy
lossdE/dx for e± from Bhabha scattering, measured in the DCH at a operating voltage of
1960 V. The curve represents a Gaussian fit to data with a resolutionof 7.5%.

The performace of the tracking system, SVT and DCH, will be described in the next section.

4.2.3 Performance of the charged particle tracking system

The main purpose of theBABAR charged particle tracking system, SVT and DCH, is the
efficient detection of charged particles and the measurement of their momenta and angles
with high precision. These measurements allow for the reconstruction of exclusiveB and
D mesons decays. Reconstruction of multiple decay vertices of weakly decayingB andD
mesons is of primary importance.

The reconstruction of charged tracks relies on data from both tracking systems, the SVT
and the DCH. Charged tracks are defined by five parameters (d0, φ0, ω, z0, tanλ) and their
associated error matrix. These parameters are measured at the point of closest approach to
thez-axis. d0 andz0 are the distances to this point from the origin of the coordinate system
in thex−y plane and along thez-axis, respectively. The angleφ0 is the azimuth of the track,
λ is the dip angle relative to the transverse plane. Finally,ω = 1/pt is the curvature.d0 and
ω are signed variables. Their sign depends on the charge of thetrack. The procedures for
track finding and fitting use the Kalman filter algorithm [90],which takes into account the
distribution of material in the detector and the map of the magnetic field.

The efficiency for reconstructing tracks in the DCH, with samples of multi-hadrons
events, has been measured as a function of transverse momentum, polar and azimuthal an-
gles in events with multiple tracks. The absolute DCH tracking efficiency is the ratio of
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Figure 4.10:Top and bottom left: The track reconstruction efficiency in the DCH at operating
voltages of1900 V and1960 V, as a function of transverse momentum (top) and polar angle
(bottom). Top middle: Resolution in the parametersd0 and z0 for tracks in multi-hadrons
events as a function of the transverse momentum. Bottom middle: Distribution of the error
on the difference∆z betweenB meson vertices for a sample of events in which oneB0 is
fully reconstructed. Top Right: Resolution in the transverse momentumpt determined from
cosmics ray muons traversing the DCH and SVT. Bottom Right: Reconstruction of the decay
J/ψ → µ+µ− in selectedBB̄ events.

reconstructed DCH tracks to tracks detected in the SVT. The top and bottom plots on the
left in Fig. 4.10 show the results for two voltage settings ofthe DCH. At the design voltage
of 1960 V, the average efficiency is(98 ± 1)% for tracks above200 MeV/c and with polar
angleθ > 500 mrad.

The resolution in the five track parameters is monitored usinge+e− andµ+µ− pair events.
It is also estimated off-line for tracks in events with multiple hadrons and with cosmic rays
muons. The dependence of the resolution ind0 andz0 on the transverse momentumpt is
presented in the top middle plot of Fig. 4.10. Thed0 andz0 resolutions are about25 µm and
40 µm, respectively, atpt = 3 GeV/c.

The average vertex resolution of a decayingB-meson is60 µm when it is reconstructed
exclusively (BCP , cf. Sec 1.2.2). The bottom middle plot of Fig. 4.10 shows theestimated
error in the measurement of the difference along thez-axis between the vertices of two
neutralB mesons (BCP andBtag), where one of them is fully reconstructed, and the other
serves as a flavor tag. The average resolution for the twoBCP andBtag vertex separation
is 190 µm, which is dominated by theBtag vertex reconstruction. This resolution is only
∼ 0.73 times the mean separation of between the twoB-mesons. Studies on Monte-Carlo
simulations have shown that this gives a degradation of only10% in the measurement of
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time-dependentCP asymmetries.
The DCH contributes primarily to thept measurement. The top right plot of Fig. 4.10

shows the resolution in the transverse momentum as a function of the transverse momentum,
derived from cosmic ray muons. The data are well representedby a linear functionσpt/pt =
(0.13 ± 0.01)% · pt + (0.45 ± 0.03)%, wherept is in GeV/c.

Finally, the bottom right hand plot in Fig. 4.10 shows the mass resolution forJ/ψ mesons
reconstructed in theµ+µ− final state using different data samples.

4.2.4 The Detector of Internally Reflected Cerenkov Light (DIRC)

Physical requirements

CP violation studies in neutralB-mesons decays rely on determining the flavor of theBtag

meson decay (cf. Sec 5.3). This flavor tagging is done using the correlation of charges of
certain particles, mostly leptons and kaons, with the flavorof the parent meson (cf. Sec. 5.3).
The identification of these charged particles is needed as the charge-flavor correlation de-
pends on the particle species used. The leptons are identified mainly with the EMC (for the
electrons), and the IFR (for the muons). As mentioned before, the tracking system can be
used to identify reliably charged hadrons (kaons, pions, protons) with a momentum up to
700 MeV/c. The kaons used for flavor tagging have a momentum spectrum that extends up
to 2 GeV/c, with most of them below1 GeV/c. On the other hand, pions and kaons from
rare two body decays asB0 → K+π− andB0 → π+π− have momenta between1.7 and
4.2 GeV/c. It is then crucial to avoid contamination in the isolation of such final states as
they have differentCP asymmetries.

The DIRC separates kaons from pions with a significance of4σ or greater, for all tracks
from B-meson decays from the pion Cherenkov threshold up to3.0 GeV/c. The particle
identification (PID) below700 MeV/c relies primarily on thedE/dx measurements made
by the DCH and the SVT.

Design

The main component of the PID system used inBABAR is the ring-imaging Cherenkov detec-
tor, called DIRC [91]. The detector is based on the fact that acharged particle travers-
ing a medium of refractive indexn produces, when its velocity is above the threshold
v/c = β > 1/n, a Cherenkov radiation cone with anglecosθC = 1/nβ. Knowing the
medium refractive index and the particle momentum obtainedby the tracking system one

hasβ = p/
√

p2 +M2
particle. The particle can be then identified by calculating its mass:

Mparticle = p
√
n2cosθC − 1.

The DIRC radiator material is synthetic fused silica in the form of long (4.9 m) thin
bars, with rectangular cross-section (3.5 × 1.7 m2). The bars serve both as radiators and
as a light guide for the portion of the light that get trapped in the radiator by total internal
reflection. The measurement principle is presented in Fig. 4.11, where the DIRC geometry
is shown, and where the principle of light production, transport and imaging is illustrated.
The fused silica is chosen because of its properties: resistance to ionization radiation, long
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Figure 4.11:Schematics of the DIRC fused silica radiator bar and imagingregion. Not
shown is a6 mrad angle on the bottom of the surface of the wedge (see text).

attenuation length, large index of refraction (n = 1.473) and low chromatic dispersion within
the wavelength acceptance of the DIRC. The bars are placed in12 containers hermetically
sealed calledbar boxes(cf. left hand plot of Fig. 4.12). They form a 12-sided polygonal
barrel (cf. right hand plot of Fig. 4.12) with a radius of810 mm, located between the DCH
and the EMC. Each bar box contains 12 bars, for a total 144 bars. Within a bar box the 12
bars are optically isolated by a∼ 150 µm air gap between the neighboring bars. They are
also placed in a flux of Nitrogen gas, with a index of refraction sufficiently different from the
fused silica to make the surface very reflecting. The gas flow maintains the bar boxes free
from condensation. Because of the C.M. boost, particles areproduced mostly in the forward
direction. To minimize interference with other detector systems in the forward region, the
DIRC photon detector is placed at the backward end.

For relativistic particles,β ≃ 1, some photons always lie within the total internal re-
flection limit of the fused silica bars, and are transported on either one of both ends of the
bar, depending on the angle of the incident particle. The emission angle of the photon with
respect to the particle track is conserved by multiple reflections in the bar walls (between 50
and 300). A mirror is placed at the forward end, perpendicular to the bar axis, to reflect the
photons to the backward part which is instrumented. Once thephotons arrive at the instru-
mented end, most of them emerge into a expansion region filledwith water,called standoff
box (SOB), which is a toroidal tank containing6000 ℓ of pure water with a refractive index
of n = 1.33. This refractive index is reasonably close to that of the fused silica, minimizing
in this way the total internal reflection at interface of the two media.

The photons are detected by an array of 10752 phomultiplierstubes (PMTs) at the rear
of the SOB, arranged in 12 sectors. The expected Cherenkov light pattern at this surface is
essentially a conic section, where the opening angle of the cone is the Cherenkov production
angle. A fused silica wedge of91 mm long and trapezoidal profile is located at the bar exit.
It increases the angular coverage of the detection surface.The wedge reflects the photons
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Figure 4.12:Left: Schematics of the DIRC bar box assembly. Right: Exploited view of the
DIRC mechanical support structure. The steel magnetic shield is not shown.

with large angles with respect to the bar axis direction. This reduces the number of PMTs
needed, and recovers photons that would have been lost by internal reflection at the fused
silica/water interface. The bottom of the wedge has a slightupward slope (∼ 6 mrad) in
order to improve the focalization of photons on the PMTs. This is presented in Fig. 4.11,
where are shown the paths of the Cherenkov photons produced by the same particle. The path
of the photon having (not having) a reflection in the wedge is shown by the plain (dotted)
line. If the bottom wedge surface had not a slope, the two photons would have parallel paths,
and would not hit the same PMT.

The DIRC occupies80 mm of radial space in the central volume including supports,
with a total of17%X0 radiation lengths at normal incidence. The coverage of the radiator
bars is of94% in azimuth and a polar angle between25.5o and147o. The distance from the
end of the bar to the PMTs is∼ 1.2 m, which together with the size of the bars and PMTs,
gives a geometric contribution to the single photon Cherenkov angle resolution of∼ 7 mrad.
This value is slightly larger than the RMS spread of the photon production (dominated by
a ∼ 5.4 mrad chromatic term) and transmission dispersions. The overallsingle photon
resolution is aboutσC,γ = 10 mrad.

Performance

The image obtained in the detection surface represents a fraction of the Cherenkov cone,
with, sometimes, several branches. The ambiguities stem from the odd/even, top/bottom,
left/right number of reflections on the sides of the bars; andalso because direct and end
mirror reflected photons contribute.

The left hand plot in Fig. 4.13 shows ane+e− → µ+µ− event in the transversex − y
plane. For each PMT hit the expected arrival time of the photon produced by a given charged
particle can be calculated. Due to the unknown number of reflections in the bars, the mirrors
and the wedge, there is a 16-fold ambiguity in the association of a PMT hit with a given
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Figure 4.13:Display of ane+e− → µ+µ− event in thex − y plane. The tracks are recon-
structed by the tracking system. The points corresponds to PMTs hits in a time window of
±300 ns. On the left: all the PMTs with hits are shown. On the right: selection of PMTs
hits with an arrival time at±8 ns from the expected time. The reflection of the photons in the
bars surfaces, the mirrors andthe wedge produce symmetric images.

track. A selection according to the∆tγ , the difference between the measured and expected
photon arrival time, allows not only to reduce the number of ambiguities (around 3 cutting
at∆tγ < 8 ns), but also suppress beam-induced backgrounds. More importantly, it excludes
other tracks in the same event as the source of the photon (cf.right hand plot in Fig. 4.13).
The calibration for unknown PMT time response uses two independent approaches. The first
is a conventional pulser control system. It is performed online using a light pulser system
with blue LEDs, one per sector. About 65,000 light pulses areused to determine the mean
time response of the PMTs. The second approach uses reconstructed tracks from collision
data. It uses approximately 100,000 collected track to construct the distribution of single
channel∆tγ , which is fitted to extract the global time offset.

The reconstruction of the Cherenkov angle is made with a maximum likelihood method
that uses the spatial (polar and azimuth angles of the produced photons by the charged track)
and temporal (∆tγ) measured informations. The reconstruction routine currently provides
a likelihood value for each of the five stable particle types (e,µ,π,K,p) if the track passes
through the active volume of the DIRC. These likelihoods arecalculated by maximizing the
likelihood value of the entire event while testing different hypothesis for each track.

In the left plot of Fig. 4.14 the number of detected photons (Npe) produced ine+e− →
µ+µ− events is shown. It goes from 20, at normal incidence, to 65 atlarge polar angles.
This variation is reproduced by Monte-Carlo simulations (represented by the red curve in
the figure). The number of Cherenkov photons varies with the pathlength of the track in the
silica bars. It is smallest at perpendicular incidence at the center, and increases towards the
ends of the bars. The peak at perpendicular incidence is explained as photons produced in
bothz > 0 andz < 0 directions are detected.

The resolution on the Cherenkov angle is given by:σC,track = (σC,γ/
√

Npe) ⊕ σtrace,
whereσC,γ is the single photon Cherenkov angle resolution, and the constant termσtrace is
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Figure 4.14:Left: Number of detected photons in the DIRC versus track polar angle for
reconstructed tracks in di-muon events compared to Monte-Carlo simulation. Right: Dif-
ference between the measured and expected Cherenkov angle,∆θtrack, for single muons in
µ+µ− events.
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Figure 4.15:In the left:K − π separation (inσ units) of the DIRC as a function of the track
momentum; and in the right: efficiency and misidentificationprobability of the selection
of charged kaons as a function of track momentum, both obtained from a data sample of
D∗+ → D0(→ K−π+)π+ decays.

the uncertainty in the track parameters. The track Cherenkov resolution forµ+µ− events
is shown in right hand plot of Fig. 4.14. The width of the fittedGaussian distribution is
2.5 mrad compared with the design goal2.2 mrad. TheK/π separation can be inferred
from the measured single track resolutionvs.momentum inµ+µ− events, and the difference
between expected and measured Cherenkov angles of charged pions and kaons. The left
hand plot of Fig. 4.15 show theK − π separation as a function of momentum obtained from
a data sample ofD∗+ → D0(→ K−π+)π+ decays. The expected separation between kaons
and pions at3 GeV/c is about4.2σ. The efficiency for correctly identifying a charged kaon
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that traverses the radiator bar, and the probability to wrongly identify a pion as a kaon as a
function of momentum is obtained from a data sample ofD∗+ → D0(→ K−π+)π+ decays
(cf. right plot of Fig. 4.15). The average kaon efficiency andpion misidentification are
96.2 ± 0.2 and2.1 ± 0.1, respectively.

Contribution to the subdetector maintenance as DIRC commissioner

During the period between January and July 2007, I was memberof the DIRC maintenance
crew, working as commissioner. My responsabilities were tomonitor the correct behavior
of the detector components,i.e. PMTs array, Front-End and data transmission electronics,
the cooling system, the SOB water system and the gas system. During this 6-month period
no major problems occurred, only routine repairs were performed, replacing malfunctioning
electric components and unplugging noisy PMTs.

4.2.5 The Electromagnetic Calorimeter (EMC)

Physical requirements

The EMC [92] detects electromagnetic showers of particles that pass through it, measuring
their energy and angular position. This allows the detection of photons fromπ0 andη decays
as well as from electromagnetic processes. It is used to identify electrons and to differentiate
e fromπ (e/π separation) through the measurement ofE/p (whereE is the energy deposited
on the calorimeter andp is the momentum measured by the tracking system). Electron
identification is important for neutralB-meson flavor taggingvia leptonic decays, for the
reconstruction of vector mesons likeJ/ψ, and to study semi-leptonic and rare decays ofB
andD mesons, andτ leptons.

The EMC detects particles with an excellent efficiency in a energy range between20 MeV
and9 GeV. The upper bound is set by the need to measure QED processes like e+e− →
e+e−(γ) and e+e− → γγ, which are used for calibration and luminosity measurements.
The lower bound is set by the need for highly efficient reconstruction ofB-meson decays
containingπ0 andη.

Design

The EMC consists of a cylindrical barrel and a conical forward endcap. It has full coverage
in azimuth and from15.8o to 141.8o in polar angle (cf. Fig. 4.16). The barrel (endcap)
contains 5760 (820) crystals arranged in 48 (8) rings with 120 identical crystals each, adding
up a total of 6580 crystals. In each crystal, a high energy electron initiates a shower by first
emitting bremsstrahlung photons which in turn convert intoa e+e− pair, the newe+ (e−)
thenselves emit photons and sort of chain reaction develop as a shower. This process gives
an exponential increase in the shower particles. The showerstops when the photon energy
goes below the pair production threshold. The crystals act not only as a total-absorption
scintillating medium, but also as a light guide funneling light to the photodiodes that are
mounted in the rear surface of the crystals, from which the energy of the particle is estimated.
The thallium-doped CsI crystals properties meet theBABAR needs: the high light yield (∼
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Figure 4.16:A longitudinal cross-section of the EMC (dimensions are inmm). Only half of
the detector is shown, which is symmetric around thez-axis. The figure show the arrange-
ment of the 56 crystals rings.

50000γ/ MeV) and small Molière radius (3.8 cm) allow for excellent energy and angular
resolution; the short radiation length (1.85 cm) allows for shower containment. The crystals
have a trapezoidal shape, their length increases from29.6 cm (16.1 radiation lengths) in the
backward to32.4 cm (17.6 radiation lengths) in the forward direction. This limits the effect
of shower leakage from increasingly high energy particles.All these characteristics permit
an efficient single crystal detection (close to100% at low energy) with relatively compact
dimensions.

The EMC energy calibration is made in two steps. First, the collected light in single
crystals is translated to the actual energy deposited. Thisis performed at low energies with
two devices, a radioactive photon source and a light pulser,while at at higher energies the
relation between polar angle and energy ofe± from Bhabha events is exploited. In the second
step, the energy deposited in a shower spreading over several adjacent crystals is related to
the energy of incident photons or electrons. This correction is made as a function of cluster
energy and angle. At low energies it is derived fromπ0 → γγ decays, and at higher energies
the correction is estimated from single photon Monte-Carlosimulations.

Performance

The energy resolution of a homogeneous crystal calorimetercan be described empirically in
terms of the sum of two terms added in quadrature:σE/E = (a/[E(GeV )]1/4) ⊕ b [83].
The energy dependent term,a, which is dominant at low energies, arises primarily from the
fluctuation in photon statistics, but is also depends on electronic noise and beam-generated
background. The constant term,b, which is dominant at high energies, arises from non-
uniformity in the light collection, leakage or absorption in the material between and in front
the crystals, and uncertainties in the calibration. At low energy it is directly measured with
the radioactive source, yieldingσE/E = 5.0 ± 0.8% at 6.13 MeV. At higher energies
the energy resolution is derived from Bhabha scattering, yielding σE/E = 1.9 ± 0.07%
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at 7.5 GeV. The left plot of Fig 4.17 shows the energy resolution extracted from several
processes as a function of energy. A fit to the energy dependence results in

σE

E
=

(2.32 ± 0.30)%
4
√

E(GeV)
⊕ (1.85 ± 0.12)% . (4.1)

Angular resolution is determined by the transverse crystalsize and the distance from the
IP. It can, as in the case of the energy resolution, be parameterized empirically as a sum of
an energy dependent and a constant term:σθ = σφ = (c/

√

E(GeV))+d. The measurement
of the angular resolution is based on the analysis ofπ0 and η decays to two photons of
approximately equal energy. The result is presented in the right hand plot of Fig 4.17. A fit
to the data points results in

σθ = σφ =

(

3.87 ± 0.07
√

E(GeV)
+ (0.00 ± 0.04)%

)

mrad . (4.2)
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Figure 4.17: On the left: the energy resolution for the EMC measured for photons and
electrons from various processes. The solid curve is a fit using an empirical formula (cf.
Eq. 4.1) and the shaded area denotes the RMS error of the fit. Onthe right: the angular
resolution on the EMC for photons fromπ0 decays. The solid curve is also an empirical
formula (cf. Eq. 4.2).

In Fig. 4.18 is shown the two-photon invariant mass inBB̄ events, the solid blue curve
being a fit to data. The reconstructedπ0 mass is measured to be135.1 MeV/c2, and the
width of 6.9 MeV/c2 agrees with Monte-Carlo simulation. It has to be noted that the π0

mass resolution function is asymmetric, due to leakage in the energy measurement.
Electrons are separated from charged hadrons primarily on the basis of the shower en-

ergy, lateral shower moments (which describe the shape of the associated cluster), and
track momentum. In addition, thedE/dx energy loss measured by the tracking system
and the DIRC Cherenkov angle are required to be consistent with an electron. The most
discriminant electron/hadron variable is theE/p ratio. Fig. 4.19 shows the efficiency for
electron identification and pion misidentification as a function of the particle momentum
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Figure 4.18:Invariant mass of two photons inBB̄ events. The energies of the photons and
theπ0 are required to exceed30 MeV and300 MeV, respectively. The solid line is a fit to
data.

(left) and polar angle (right). The electron efficiency is measured using radiative Bhabhas
e+e− → e+e−e+e− events. The pion misidentification is measured from selected charged
pions fromK0

S → π+π− decays. The electron identification efficiency is94.8% and the
probability of pion misidentification is0.3%.

Figure 4.19:The electron identification efficiency and pion misidentification probability as a
function of the particle momentum (left) and the polar angle(left) in the laboratory system.

4.2.6 The Superconducting Solenoid Magnet

For the measurement of charge and momentum of charged particles, theBABAR tracking
system is immersed in a magnetic field of1.5 T (±0.2 mT), which is principally on the
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z-axis. This magnetic field is produced by a superconducting solenoid located around the
EMC. Its superconducting material is a10 Km cable composed of niobium-titanium (NbTi)
filaments incrusted in aluminium. The solenoid current is4600 A. It is cooled to an operating
temperature of4.5 K using liquid helium. It does not occupy a big radial space in order to
not deteriorate the neutral hadrons and muons detection by the IFR. The most important
design constraint was to minimize the disturbance of operation of the PEP-II beam elements.
In particular, its radial component must be under0.25 T in order to not impact theB1 and
Q1 magnets. The steel magnet segmented flux return is also used to protect the PEP-II
quadrupoles, to support the detector components on the inside, and to give them protection
against magnetic forces and from potential earthquakes. This structure is also used to host
the outerBABAR subdetector, the IFR.

4.2.7 The Instrumented Flux Return (IFR)

Physical requirements

The IFR [93] is designed to identify muons with high efficiency and good purity. Muons are
important forB-meson flavor taggingvia semi-leptonic decays and for the reconstruction of
vector mesons likeJ/ψ. This is also important for the study of semi-leptonic and rare decays
involving leptons fromB andDmesons andτ leptons. The detector is also designed to detect
neutral hadrons (primarilyK0

L and neutrons), allowing the study ofB-mesons exclusive
decays, in particularCP eigenstates.
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Figure 4.20:Schematic view of the IFR sections: Barrel, forward (FW) andbackward (BW)
end doors. The shape of the RPC modules and their dimensions are indicated.

Design

The IFR uses the steel flux return of the magnet, as a muon filterand hadron absorber. Single
gap resistive plate chambers (RPCs) and limited streamer tubes (LSTs) detectors with two-
coordinate readout are installed in the gaps of the segmented steel of the barrel and end doors
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flux return (cf. Fig. 4.20). The steel is segmented into 18 plates, increasing in thickness from
2 cm to 10 cm with radius. There are 19 LST layers in the barrel and 18 RPCs in the endcaps.
In addition, two layers of cylindrical RPCs are installed between the EMC and the solenoid
coil to detect particles exiting the EMC.
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Figure 4.21:Cross section of a planar RPC used in the IFR.

The RPC (cf. Fig. 4.21) consists of two bakelite sheets,2 mm-thick separated by a gap
of 2 mm, connected to high voltage (∼ 8 kV) and ground. The gap between the two sheets
is filled with a non-flammable gas mixture of argon, freon and isobutane (56.7% : 38.8% :
4.5%). This gas mixture has been chosen for their absorption properties in the UV, avoiding
the photons propagation.

The LST has similar but more performant behavior than the RPCs. It consists of a silver
wire coated with plate of100 µm in diameter, which is located at the center of a cell of
9 × 9mm2 section. A plastic structure (profile) contains 8 such cells, which is coated with
a resistive layer of graphite. The profiles are inserted in plastic tubes filled with a non-
flammableCO2 based gas.

The IFR covers a total active area of about2000 m2, with a total of806 RPC/LST mod-
ules, 57 in each of the 6 barrel sectors, 108 in each of the fourhalf end doors, and 32 in the
two cylindrical layers. The size and the shape of the modulesare matched to the steel di-
mensions. The RPC/LST detect showers from ionizing particles via capacitive readout strips
made of aluminium and located at the end of the detectors. Thestrips are arranged to make
a bi-dimensional array in the(z, φ) coordinates for the barrel and in the(x, y) for the end
doors. When a ionizing charged particle passes through the gas, produces a spark, the hit
strips are used to measure the impact position. The muons being heavier than electrons, the
bremsstrahlung is less effective as a mechanism of energy loss. Since they have relatively
long lifetimes and do not participate in nuclear interactions, they are very penetrating parti-
cles. The steel flux return is then used as a muon filter. For neutral hadrons the IFR is used as
a primitive calorimeter. The steel is used as an absorber where the hadrons interact producing
shower with charged particles that are then detected by the RPCs/LSTs. The informations
obtained by the IFR are combined with those obtained by the other subdetectors.



113 An Introduction to the BABAR experiment

Figure 4.22:muon efficiency (left scale) and pion misidentification probability (right scale)
as a function of laboratory track momentum (left plot) and polar angle (left plot) measured
mostly in the IFR.

Performance

The muon identification relies almost entirely on the IFR, the other subdetectors provide
complementary information. The charged particles, reconstructed by the tracking system,
are muon candidates if they meet the minimum ionization particles criteria in the EMC. The
charged tracks reconstructed in the SVT and DCH are extrapolated to the IFR taking into
account non-uniformities in the magnetic field, multiple scattering and average energy loss.
The extrapolated tracks are associated with clusters in theIFR if the impact parameter is
consistent with the cluster position. The performance, illustrated in the plots of Fig. 4.22 has
been obtained from samples of muons frome+e− → µ+µ−e+e− and pions from three-prong
τ decays andK0

S → π+π− decays. A muon detection efficiency close to90% is achieved in
the momentum range of1.5 < p < 2.0 GeV/c, with a fake rate of pions about6 − 8%.

TheK0
L and other neutral hadrons interact in the steel of the IFR andcan be identified as

clusters that are not associated with a charged track. Monte-Carlo simulations predict that
about65% of K0

L abovep > 1 GeV/c produce clusters in the cylindrical RPC, or a cluster
with hits in two or more planar RPC layers. The detection efficiency and angular resolution
of the clusters forK0

L have been studied withe+e− → φ(→ K0
SK

0
L)γ events. The results are

a detection efficiency between20−40%, and angular resolutions around60 mrad forK0
L not

interacting with the EMC. When EMC information is also provided, the angular resolution
improves by a factor of 2.

4.2.8 The Trigger

The highBABAR luminosity implies that an important number of particles are present in the
detector at each instant. The aim of the trigger is to record physics events with high efficiency
and to reject a maximum number of background events. A randomtrigger records control
event samples that are used for efficiency calculation and validation studies. InBABAR two
trigger levels are used:L1 andL3.
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Figure 4.23:Schematic representation of an event from theL3 trigger in the detector in
transversal cut. The circles are hits in the DCH, the red curves the reconstructed tracks,
the EMC crystals are colored according the deposited energyand the squares represents the
centroid location of the EMC clusters.

The L1 trigger is implemented in hardware. This system consists ofa global trigger
(GLT) that combines the input from several individual triggers linked to the DCH (DCT),
the EMC (EMT) and the IFR (IFT). These are continuously passing data describing the
objects found by the subdetectors, which is then passed to the GLT. The GLT tries to match
them to any of the24 trigger lineswhich represent events of interest. If the timing of the
trigger signal coincides with a bunch crossing, the fast control and timing system (FCTS)
issues an accept signal. It is at this point that some classesof physics events, such as QED
processes that are used only for calibration, are scaled down, making their acceptance less
likely. The trigger frequency ofL1 is required to be less than4.5 kHz for a luminosity of
∼ 1034cm−2s−1.

TheL3 trigger is implemented in software running in computing farms, and uses the
information from all subdetectors. This trigger must reduce by∼ 10 the number of events
accepted by theL1. Examples of rejected events are tracks not originating from the IP or
inconsistent with a bunch crossing (machine background). The trigger system have a total
efficiency of99.7% for BB̄ events, and of the order of90% for τ+τ− andµ+µ− events. An
event display of theL3 trigger system is shown in Fig. 4.23.

4.2.9 The Data Acquisition System (DAQ)

TheBABAR data acquisition system refers to the overall architectureby which the detector, the
triggers and the computing structure operate. This is schematically illustrated in Fig. 4.24.
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The Front-End electronics processes and digitizes the signals coming from the detector and
passes the output to theL1 trigger. If an accept signal is issued by the FCTS, the event
is passed to theL3 trigger. Finally, the event passes through the fast reconstruction and is
recorded to disk, where it is written to the event store. Oncethere, the events will be totally
reconstructed in a matter of days. The DAQ system also records the detector conditions
during data taking that will be used for the final reconstruction of events and for Monte-
Carlo event production (to reproduce the running conditions, cf. Sec. 5).

Figure 4.24:Schematic diagram of theBABAR data acquisition system.

4.2.10 Online Prompt Reconstruction (OPR)

The Online Prompt Reconstruction (OPR) is the bridge between the online and the offline
systems. This system reads raw data recorded in disk. Operating in a computing farm it
selects physical events, performs complete reconstruction, obtainsrolling calibrations, col-
lects extensive monitoring data for quality assurance and writes the result to an event store.
The rolling calibration is the generation of reconstruction calibration constants during nor-
mal events processing. For the event selection and reconstruction two level filters are used:
Digifilter and BGFilter. The first one uses only the information obtained fromL1 andL3.
Its principal purpose is to eliminate calibration events, like Bhabha scattering. The events
passing this first level pass to a first reconstruction stage,where pattern algorithms try to find
tracks in the DCH, clusters in the EMC and particle identification is calculated. These events
are then classified, using the fast reconstruction information, in subfilters mutually exclusive.
An event, at this level, is essentially a collection of tracks and clusters in the EMC and IFR.
Those are then accessed by the reconstruction code of the analyst to form candidates for a
given decay channel.



Part III

Analysis of theB0 → K0
Sπ

+π− mode



Chapter 5

Data Sample, Reconstruction and
Selection

As discussed in the previous chapter, data is collected by the DAQ system and processed
by OPR, then recorded to disk in mutually exclusive subfilters. Data is available for the
analyst for full reconstruction and selections. This chapter describes the data samples used
for the present analysis, the reconstruction algorithms and the selection applied to them. The
techniques for flavor tagging and time-dependentCP asymmetries measurements are also
described. The different event species: signal and variousbackgrounds, present in the data
samples are described. A classification of background components is presented, and the
discriminant variables used to distinguish background from signal are introduced.

5.1 The Data Sample

5.1.1 TheOn-peakand Off-peakdata samples

The analysis is based on data taken byBABAR in the running period 1999-2006. The Run1-5
data sample is made of382.9 × 106 BB̄ meson pairs, equivalent to an integrated luminosity
of 347.3 fb−1 at theΥ (4S) peak. In addition, the available36.6 fb−1 of data, taken40 MeV
below theΥ (4S) resonance, are also used. The dataset is summarized in Table5.1.

Sample Lon(fb
−1) NBB̄(106) Loff(fb−1)

Run 1 20.72 22.43 2.65
Run 2 60.92 67.32 6.90
Run 3 32.28 35.70 2.47
Run 4 100.31 110.48 10.12
Run 5 133.02 146.93 14.47
Total 347.25 382.86 36.61

Table 5.1:Summary of the integrated on-resonance and off-resonance data. A “Run” is a
period of continuous data taking, lasting typically some ten months.
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5.1.2 Monte Carlo Samples

Simulated data, or Monte-Carlo (MC), is essential for understanding detection effects (e.g.
misreconstructed signal, reconstruction efficiencies, etc.), backgrounds and systematics that
affect the analysis procedure. In a first stage, physics events are generated with theEvtGen
package [94], which provides an accurate representation ofphenomena as mixing and inter-
ference (crucial for a faithful modeling ofCP violation), and angular distributions of decay
products (e.g. pseudoscalar-to-vector-vector). Although the vast majority of B decays are
generated withEvtGen, genericB decays to hadronic final states and continuum events are
simulated with an interface toJETSET [95]. EvtGen generates charmless 3-body decays
using the isobar model with the same lineshapes and angular distributions as presented in
Secs. 2.4.3-2.4.6. The output of this first stage is a list of particles with the corresponding
4-vectors and vertices for decay products.

In a second stage, the interaction of decay products with thedetector as they propagate
(and possibly decay,e.gK0

S → π+π−) is simulated using aBABAR customized software
based on theGEANT4 package [96]. Processes like rescattering and photon production, and
a detailed account of energy loss and deposition by particles in different parts of the detector
(e.g.silicon strips in SVT, gas and wires in DCH and crystal in EMC)are simulated, which
requires a detailed modeling of detector geometry and matter distribution. Each of these in-
teractions (orhits) are used to simulate the data read out by the electronics, trigger and DAQ
system. At this stage,hits from electronic noise and machine backgrounds characterizing a
period of running are also taken into account. For this, realevents recorded with a random
trigger are aggregated to simulated events. In a last stage,the simulated electronic output is
processed with the same version ofBABAR reconstruction software used for real data.

The MC samples used to characterize signal and background, and to optimize the selec-
tion are the following:

• 6219k non-resonant (NR)B0 → K0
Sπ

+π−events.

• 1321k B0 → K0
Sπ

+π− (custom Dalitz plot Model1) events.

• 155k B0 → ρ0(→ π+π−)K0
S events.

• 155k B0 → f0(980)(→ π+π−)K0
S events.

• 138k B0 → K∗+(→ K0
Sπ

+)π− events.

• 3745k B0 → a+
1 (→ K0

Sπ
+)π− events.

• 1641k B0 → D+ρ− events.

• 1754k B0 → D+π− events.

• 1664k B0 → D−(K0
Sπ

−)π+ events.

• 1551k B → Ψ(2S)X events.

1For details see Sec. 6.6.1.
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• 155k B+ → K∗+(K0
Sπ

+)K∗0(K+π−) events.

• 170k B0 → D−(K+π−π−)π+ events.

• 677k B0 → χc1(J/Ψγ)K
0
S events.

• 644k B0 → D∗+(D0(K0
Sπ

0)π+)π− events.

• 1478k B0 → D∗+(D+(K0
Sπ

+)π0)π− events.

• 212k B0 → D+(K0
SK

+)π− events.

• 21k B0 → K∗
0 (1430)+(K0

Sπ
+)π− events.

• 21k B0 → Ψ(2S)K0
S events withΨ(2S) → ll, Ψ(2S) → J/Ψππ, or Ψ(2S) → χγ.

• 777k B0 → η′(ργ)K0
S events.

• 66.2 × 106 continuumuū, dd̄, ss̄ events.

• 57.6 × 106 continuumcc̄ events.

• 471.6 × 106 genericB0B̄0 events.

• 469.2 × 106 genericB+B− events.

The neutral (charged) genericB MC is a cocktail of several final states frome+e− →
B0B̄0 (the relative abundances of different decay channels beingtuned to the experimental
branching fractions [21, 28]). These MC samples are used forB-background studies (see
Sec. 5.8), and corresponds to approximately2.7 times the size of the data sample.

5.2 Reconstruction

Event reconstruction proceeds in two stages. First, the Offline Prompt Reconstruction soft-
ware finds tracks and calorimeter clusters from hits in the DCH and SVT, and crystals with
energy deposits in the EMC, respectively. Cherenkov photons and energy lossdE/dx infor-
mations are used to form particle identification selectors.In the second step, objects that are
not directly detected but that can be inferred from properties and correlations of their decay
products, are reconstructed. Such objects are known ascomposites, theD- andB-mesons
being good examples. Combinations of tracks and neutral objects are used to form composite
"candidates", allowing the vertexing of theB-mesons, and so the∆t measurement. In this
section, the algorithms for tracking, calorimeter reconstruction, particle identification and
vertexing are briefly described. The definitions used for theevent selection are introduced.
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5.2.1 Tracking algorithms

The charged tracks, following helicoidal trajectories in the solenoid field, are described by
five parametersd0, z0, φ0, λ andω (which were introduced in Sec. 4.2.3), that are fitted using
a Kalman filter algorithm [90]. The algorithm starts from theDCH hits found by theL3
trigger to form a track, further hits are added if they are consistent with the primary track.
Then a search is made for tracks that may not have originated from the IP (e.g.K0

S that lived
enough to decay outside the SVT), or may not be energetic enough to traverse the whole
chamber. Finally, SVT hits are added to the DCH ones if consistent, otherwise the SVT
hits are examined for low momentum SVT-only tracks. Reconstructed tracks are stored in
standard lists with different quality requirements.

In the present analysis, pion candidates are taken from the standardGoodTrackLoose
list, which consist of tracks with:pt > 0.1 GeV/c; p < 10.0 GeV/c; a minimum of 12 hits
in the DCH;d0 < 1.5 cm andz0 < 10 cm.

5.2.2 Calorimeter algorithms

A typical electromagnetic shower spreads over several adjacent crystals, forming a cluster of
energy deposits. This cluster may be due to more than one particle, and hence present en-
ergy distributions with more than one maximum, each of them being referred as abump. The
calorimeter reconstruction routines are intended to locate such bumps, extract their shapes
and estimate the energy of the passing particle. The algorithm starts by finding "seed" crys-
tals with an energy above10 MeV. Clusters are build by adding surrounding crystals with
energies above1 MeV, or from neighboring seeds with at least3 MeV. Local bumps are
located by standard methods [92]. Given a bump, each crystalis given a weightwj that
depends on its distance to the bump location, its deposited energy (Ej) and Molière radius.
This weight is then used to estimate the bump energy asEbump =

∑

j wjEj, the sum running
over all the crystals in the cluster. Finally, a bump is associated with a charged particle if the
projected track to the inner face of the EMC is consistent with the bump location. Otherwise,
it is assumed to originate from a neutral particle.

5.2.3 Particle identification (PID)

The long-lived charged particles tracked inBABAR are: electrons, muons, pions, kaons and
protons. Their correct identification is crucial for the physics goals, and it is achieved by
exploiting the different interactions that those particles have with each subdetector. Informa-
tion from all subdetectors (SVT, DCH, DIRC, EMC and IFR) is used to construct a PDF that
represents the likelihood of a particle to belong to a given species. In the case of electrons
and muons, this PDF is made from informations collected in the EMC and IFR, respectively.
The proton production is limited inBABAR and is of no interest for the present analysis. The
likelihood for kaon and pion hypothesis is constructed as the product of PDFs from the SVT,
DCH and DIRC for the corresponding particle hypothesis. Thefirst two contribute with
dE/dx measurements, which are compared with the Bethe-Bloch expectation. The DIRC
PDF is a binned likelihood obtained from MC, and uses the number of Cherenkov photons
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and the angle of those photons with the track (Cherenkov angle). For a given hypothesis,
cuts on the likelihood are applied to generate mutually exclusive categories:VeryLoose,
Loose, Tight andVeryTight for pions, andNotPion, VeryLoose, Loose, Tight
andVeryTight for kaons. In the present analysis, pions in theLoose category are se-
lected, with an efficiency and kaon misidentification rate around95% and5 − 15%, respec-
tively [97].

5.2.4 Vertexing

Candidates for composite particles are first formed from allpossible combinations of charged
and neutral particles matching the decay daughters. In the present analysis,K0

S candidates
are formed from all possible oppositely charged tracks in the event assumed to be pions, with
a invariant mass, after vertexing, within25 MeV/c2 of theK0

S mass [21]. This selection of
K0

S candidates is referred asKsDefault list. B candidates are formed from allK0
S can-

didates and two oppositely charged tracks. For eachK0
S or B candidate, its decay vertex

is calculated with a geometrical fit in which the daughters are required to emerge from a
common vertex. This task is performed by theTreeFitter package [98], which fits the
whole decay chain applying a Kalman filter. For theB vertexing, constraints are applied to
reduce resolution effects, which have a high impact in Dalitz plot analyses, as resolution may
cause events to go outside the kinematical boundaries. For this, a vertexing fit is performed
constraining the compositeB candidate to have the nominalB mass, from which the DP co-
ordinates and the related event shape variables are calculated. A second vertexing fit is made
with no mass-constraint to calculate the discriminant kinematical variables (cf. Sec. 5.6.1).

5.3 The flavor tagging

A key ingredient in the measurement of time-dependentCP asymmetries is to determine
the flavor of one of the twoB mesons, referred asBtag (cf. Sec. 1.2.2). This is achieved
with the analysis of theBtag decay products when it decays into a flavor-specific state. For
example, in the semileptonic decayB0 → D∗−ℓ+νℓ (B̄0 → D∗+ℓ−ν̄ℓ), the charge of the
lepton unambiguously identifies the decaying neutralB-meson as aB0 or a B̄0. Also, the
subsequent decayD∗− → D0(→ K−X+)π− gives a soft pion and kaon in the final state
whose charges uniquely identify theBtag flavor. The purpose of the tagging algorithm is
to determine the flavor of theBtag with the highest possible efficiencyεtag and the lowest
possible probabilityω of assigning a wrong flavor toBtag. These goals are crucial for time-
dependent analyses, where the statistical error on time-dependent parameters (likesin 2β and
∆md) is inversely proportional to the square-root of the "effective tagging efficiency",

σ ∝ 1/
√

(Q), with Q = εtag(1 − 2ω)2. (5.1)

Theεtag is calculated with respect to the sample of events that satisfy the requirements of the
tag-side vertexing and that have at least one fully reconstructed candidate. Various mutually
exclusive tagging categories can be defined with their ownεc

tag andωc (see Sec. 5.3.1). The
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Q factor in this case isQ =
∑

c ε
c
tag(1 − 2ωc)

2. The effective tagging efficiency ofBABAR,
for the tagging protocol used in this analysis, isQ = 30.5 ± 0.3%.

Other quantities, which are more convenient from the experimental point of view (see
Sec. 6.3.2, Eq. 6.15), can be defined as a function ofωc (ω̄c), which are the probabilities of
incorrectly identifying aBtag = B0 asB̄0 (or Btag = B̄0 asB0), for events in the tagging
categoryc. These quantities are defined as,

〈ωc〉 = 1
2
(ωc + ω̄c) , ∆ωc = ωc − ω̄c

Dc = 1 − 2ωc , D̄c = 1 − 2ω̄c

〈Dc〉 = 1
2
(Dc + D̄c) = 1 − (ωc + ω̄c) , ∆Dc = Dc − D̄c = −2(ωc − ω̄c),

(5.2)

where∆Dc parameterizes a possible difference in performance of the tagging procedure for
the two tags,B0 andB̄0.

5.3.1 TheBABAR flavor tagging algorithm

The tagging algorithm [99] is based on multivariate techniques that combine several different
signatures to achieve optimal separation betweenB0 andB̄0 events. It starts by removing
all reconstructed charged tracks that belong to the fully reconstructedBCP candidate, the
rest being assigned toBtag. A set of loose criteria are applied to these in order to reject
ghost tracks. To improve the vertex resolution,K0

S or Λ0 candidates are used in place of
their daughters. The remaining candidates are used for a geometrical fit to a common vertex,
taking into account the beam energies, the beam spot position and the flight direction of the
other, fully reconstructed,B candidate.

TheBtag flavor is determined from a combination of nine different tagsignatures, such
as the properties of charged leptons, kaons and pions. For each of these signatures, prop-
erties such as charge, momentum and decay angles are used as input to a Neural Net-
work (NN), or "sub-tagger": Lepton, Kaon, slow pion, Kaon-slow pion,
maximum momentum, fast-slow particles correlation andLambda. To
illustrate the procedure, two of the more important sub-taggers are now described:Lepton
andKaon.

Lepton sub-tagger

Electrons and muons produced in direct semileptonic decays(with a B = 10.4% [21]), or
primary leptons, provide excellent tag information. The charge of an electron (or muon)
from ab → cℓ−ν̄ transition is directly associated to the flavor of theB0 meson: a positively
(negatively) charged lepton indicatesB0 (B̄0). Leptons from cascade decays, orsecondary
leptons, occurringvia theb → W−c(→ sℓ+ν) transition, carry tagging information as well:
their charge is opposite to that of the primary lepton. To isolate primary from secondary
leptons, several discriminant variables are used: the CM momentum of the track,p∗, as sec-
ondary leptons are characterized by a softer momentum spectrum; the cosine of the angle
between the missing momentum (which approximates that of the neutrino) and the lepton’s
momentum,cos θmiss, since the directions of the primaryℓν pair are expected to be anti-
correlated in the CM frame; finally, the energy contained in the hemisphere defined by the
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direction of the virtualW±. For primary leptons, theW recoils against ac quark and leads
to a virtually empty hemisphere. In contrast, for secondaryleptons thec quark that emits the
W has recoiled from the decay of theb with an appreciable boost, and all its decay products
will be boosted in the same direction.

The flavor tagging algorithm uses three different sub-taggers exploiting the presence of
a lepton in the final state:

• The electron sub-tagger, with tracks that satisfy theVeryTight electron ID criteria.

• The muon sub-tagger, with tracks that satisfy theTight muon ID criteria.

• Kinematical lepton sub-tagger, designed to recover the primary leptons that did not
pass the selection criteria for electrons and muons, this tagger achieve the tagging
based solely on kinematics.

Kaon sub-tagger

The kaon sub-tagger exploits the presence of charged kaons in the decay of theBtag meson.
The dominant source of charged kaons is fromb → c → s transition giving the cascade
decaysB0 → D̄(→ K+X)X or B̄0 → D(→ K−X)X, where the charge of the kaon tags
the flavor of theBtag. The high probability of producing a charged kaon in the decay of
a B-meson (78 ± 8% [21]) coupled with the much higher fraction ofright sign (coming
from theb → W−c(→ s → K−) transition) vs.wrong sign(decay products of theW−,
e.g. b → XW−(→ c̄s/d), c̄ → s̄ → K+) kaons (0.58 ± 0.08 vs. 0.13 ± 0.06 [100]) and
the good signal to background ratio, makes the kaon tagger the most powerful source of
tagging information. TheNN uses as inputs the charges and likelihood of up to three kaon
candidates, the number ofK0

S, and the transverse momentum squared of the charged tracks
on the tag side,p2

t (tot) =
∑

p2
t . A high p2

t (tot) increases the likelihood that a charged kaon
was produced from aW rather from ac quark, and a non-zero number ofK0

S, likely created
in a b→ c→ s transition, makes it less likely that a charged kaon is a truekaon that tags the
Btag flavor.

TheNN outputs of the nine sub-taggers are combined in a singleNN calledTag04,
trained to assign the correct flavor toBtag. The output ofTag04 is a signed probability,
where the magnitude represents the confidence of the estimation and the sign the flavor of the
Btag meson (NN > 0 ⇒ Btag = B0, andNN < 0 ⇒ Btag = B̄0). The algorithm classifies
the event in seven disjoint categories according to theNN output value, which are now listed
in increasing order of mistag probability:Lepton, KaonI, KaonII, Kaon-Pion, Pion,
Other andNotag, where the last one is a category where no reliable tagging information is
provided (DNoTag = 0). The name given to each category indicates the dominant physics
contributing to the flavor identification.

The algorithm is trained and checked using MC, and is validated on data using a large-
"Bflav" sample of fully reconstructed flavor-specific decays,B0 → D(∗)−π+,B0 → D(∗)−ρ+

andB0 → D(∗)−a+
1 . These decays are self-tagging, since aD(∗)−h+ (D(∗)+h−) is only

accessible from aB0 (B̄0). A fit to the∆t distribution (see Sec. 6.3.2, Eq. 6.15) allows the
extraction mistag probabilities (see Table 5.2).
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Category εtag(%) ∆εtag(%) ω(%) ∆ω(%) Q(%) ∆Q(%)
Lepton 8.69 ± 0.07 −0.0 ± 0.2 3.1 ± 0.3 −0.1 ± 0.6 7.66 ± 0.12 0.04 ± 0.41
KaonI 10.96 ± 0.08 0.2 ± 0.2 5.2 ± 0.4 −0.1 ± 0.7 8.78 ± 0.16 0.21 ± 0.50
KaonII 17.23 ± 0.10 0.1 ± 0.3 15.4 ± 0.4 −0.5 ± 0.6 8.26 ± 0.18 0.29 ± 0.54

Kaon-Pion 13.78 ± 0.09 −0.3 ± 0.3 23.5 ± 0.5 −1.8 ± 0.7 3.88 ± 0.14 0.43 ± 0.38
Pion 14.37 ± 0.09 −0.7 ± 0.3 32.9 ± 0.5 5.1 ± 0.7 1.67 ± 0.10 −1.08 ± 0.26
Other 9.57 ± 0.08 0.3 ± 0.2 41.8 ± 0.6 4.6 ± 0.9 0.26 ± 0.04 −0.28 ± 0.10
Total 74.61 ± 0.12 −0.4 ± 0.6 30.50 ± 0.30 −0.4 ± 1.0

Table 5.2: Performance of the tagging algorithm on data. The results are a fit to a data
sample of over80000 fully reconstructedBflav decays. Here∆ε = εB0 − εB̄0 , ∆ω =
ωB0 − ωB̄0 and∆Q = QB0 − QB̄0 refer to differences betweenB0 and B̄0 tags in tagging
efficiency, mistag fraction and effective tagging efficiency, respectively.

5.4 ∆t measurement

The difference betweenB decay times,∆t = tCP − ttag, is determined from the measured
separation∆z between the vertices of the reconstructedBCP meson and the flavor-tagging
Btag meson along thez axis. The resolution on∆z is dominated by the uncertainty on thez
position for theBtag vertex.

5.4.1 ∆z Measurement

In the reconstruction of theBCP vertex, all daughter tracks are used. Daughter tracks from
K0

S andD candidates are first fit to a separate vertex and the resultingparent momentum and
position are used in the fit to theBCP vertex. The RMS resolution inz for theBCP vertex
in MC simulation is about65 µm for more than99% of theB candidates. The resolution is
about5% worse in data than in MC simulation.

The vertex of theBtag decay is constructed from all tracks in the event except the daugh-
ters ofBCP . For fully reconstructed modes, as the one studied in this thesis, an additional
constraint is provided by the calculatedBtag production point and three-momentum. This
is determined from the knowledge of the three-momentum of the fully reconstructedBCP

candidate, its decay vertex and error matrix, and from the knowledge of the average posi-
tion of the interaction point and theΥ (4S) average boost (cf. Fig. 5.1). The average beam
spot position and the angle of the beam in the detector are updated once per run, while the
beam energies are recorded more frequently for any change above0.05 MeV. TheseBtag

parameters are used as input to a geometrical fit to one singlevertex, including all the other
tracks in the event except those used to reconstructBCP . In order to reduce bias and tails
due to long-lived particles,K0

S andΛ0 candidates are used as input to the fit in place of their
daughters. In addition, tracks consistent with photon conversions (γ → e+e−) are excluded.
To reduce contributions from charm products, which tend to bias the determination of the
vertex position, the track with the largest vertexχ2 contribution (χ2 > 6) is removed, the
fit is redone until no track fails theχ2 requirement. In MC simulation the RMS of the core
and tail Gaussian components of the residual∆z distribution (measured minus true∆z) is
190 µm. This residual distribution is fitted with the sum of three Gaussian distributions and
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it is found that the RMS of the narrowest Gaussian, which contains70% of the area, is about
100 µm. Only 1% of the area is in the widest Gaussian.

Figure 5.1: Schematic view of the geometry in theyz plane for aΥ (4S) → BB̄ decay.
For fully reconstructed decay modes, the line of flight of theBtag can be estimated from
the (reverse) momentum vector and the vertex position of theBCP , and from the beam spot
position in thexy plane and theΥ (4S) average boost. Note that the scale in they direction
is substantially magnified compared to that of thez direction.

5.4.2 ∆t Calculation

By far the dominant limitation on the accuracy with which∆t is determined from the mea-
sured decay length difference,∆z, is the experimental resolution on the∆z measurement.
The second limitation in the∆t measurement comes from theB meson momentum of about
340 MeV/c in theΥ (4S) CM frame. A correction is applied for this effect, and is described
below. The impact on the∆t measurement of the spread in the two beam energies, which
results in a momentum spread with a Gaussian width of about6 MeV/c, is negligible. Fi-
nally, a correction is applied for the20 mrad angle between theΥ (4S) boost direction (the
z axis in the following discution) and the axis of the symmetryof the detector, along which
the separation between the vertices is measured.

Neglecting theB momentum in theΥ (4S) frame, the relation between∆z and∆t can
be written as

∆z = βγc∆t, (5.3)

whereβγ is theΥ (4S) boost factor, with average value of〈βγ〉 = 0.56. The boost factor
is calculated directly from the beam energies, which are monitored every5 sec, with an
accuracy of0.1%.

In the case of a fully reconstructedBCP , its momentum direction is measured with good
precision, and is used to correct forB momentum in theΥ (4S) frame. However, the cor-
rection depends on the sum of thetCP + ttag, which can only be determined with very poor
resolution. The estimatetCP + ttag = τB + |∆t| is used to correct for the measuredBCP
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momentum direction and extract∆t from the following expression:

∆z = βγγ∗CP c∆t+ γβ∗
CPγ

∗
CP cos θ∗CP c(τB + |∆t|), (5.4)

whereθ∗CP , β∗
CP andγ∗CP are the polar angle with respect to the beam direction, the veloc-

ity and the boost factor of theBCP in theΥ (4S) rest frame. The difference between∆t
calculated with Eq.(5.3) and Eq.(5.4) is very becauseγ∗CP = 1.002 andβ∗

CP = 0.064. The
events-by-event difference in∆t calculated with the two methods has an RMS of0.20 ps.
Eq.(5.4) improves the∆t resolution by about5%. In addition, it removes a correlation be-
tween the resolution on∆t and the true value of∆t. This correlation is due to the fact that
the RMS in the second term in Eq.(5.4) depends on the expectation value of(tCP + ttag)

2,
which in turn depends on|∆t|. Eq.(5.4) is used for allB decays to hadronic final states,
as in the present thesis, while Eq.(5.3) is used for semileptonic modes since theB direction
cannot be measured for these decays.

5.4.3 ∆t resolution Model

The∆t resolution function is represented in terms ofδt = ∆t − ∆ttrue by a sum of three
Gaussian distributions (called the core, tail and outlier components) with different means
and widths,

R(δt; â) = (1 − ftail − fout)G
(

δt, s
b
coreσ∆t, s

σ
coreσ∆t

)

+ftailG
(

δt, s
b
tailσ∆t, s

σ
tailσ∆t

)

+ foutG
(

δt, s
b
out, s

σ
out

)

,
(5.5)

whereG(x, x0, σ) is a Gaussian with biasx0 and standard deviationσ. For the core and tail
Gaussian, the measured errorσ∆t derived from the vertex fit for each event is used, allowing
us to separate scale factorssσ

core andsσ
tail to accommodate an overall underestimate (sσ

k > 1)
or overestimate (sσ

k < 1) of the errors for all events. The core and tail Gaussian distributions
are allowed to have a nonzero mean to account for residual charm decay products included in
theBtag vertex. In the resolution function, these mean offsets are scaled byσ∆t to account for
an observed correlation between the mean of theδt distribution andσ∆t in MC simulation.
This correlation is due to the fact that, inB decays, the vertex error ellipse for theD decay
products is oriented with its major axis along theD flight direction, leading to a correlation
between theD flight direction and the calculated uncertainty on the vertex position inz for
theBtag candidate. In addition, the flight length of theD in thez direction is correlated with
its flight direction. Therefore, the bias in the measuredBtag position due to inclusion ofD
decay products is correlated with theD flight direction.

MC simulations confirm the expectation that the resolution function is less biased for
events with a primary lepton tag than those with a kaon tag. Therefore, the mean of the core
Gaussian is allowed to be different for each tagging category. One common mean is used for
the tail component. The third Gaussian has a fixed width of8 ps and no offset (i.e. sb

out = 0
andsσ

out = 8 ps in Eq.(5.5)); it accounts for the fewer than1% of events with incorrectly
reconstructed vertices.

Since theBtag vertex position dominates the∆t resolution, no significant difference is
expected between the∆t resolution function of differentB decays to hadronic final states
without aD-meson. Hence, identical resolution functions are used when applicable for all
modes. This assumption is supported by MC simulation.
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5.5 Event Kinematics and Shape

Three event species are distinguished in the data:

• Signal eventsB0 → K0
Sπ

+π−.

• Continuum background events, of the typee+e− → qq̄ (q = u, d, s, c); this species
represents the dominant background.

• Background events coming fromB decays different from the signal.

This section describes the properties of the species mentioned above. The goal is to
use all available information for discriminating signal with respect to backgrounds. The
discriminant variables used to exploit these properties are described in Sec. 5.6.

5.5.1 Kinematics

One of the fundamental differences between signal and combinatorial background is the
kinematics of the underlying production. TheΥ (4S) decays in two particles of the same
mass,B and B̄, imposing two constraints in the CM frame. If theB-meson is correctly
reconstructed, the energy of its decay products has to be equal to half the beam energy in the
Υ (4S) rest frame, and its reconstructed mass has to be equal to thatof theB-meson:

E∗
rec = Ebeam/2 =

√
s/2,

mrec = mB.
(5.6)

These constraints allow us to discriminate signal against background events. For continuum,
a flat distribution forE∗

rec andmrec is expected in the whole dynamical range, excluding ac-
ceptance effects. Most of theB-background components are characterized by higher or lower
multiplicity than signal, or by misidentification of a particle (theB0 → D−(→ K0

Sπ
+)π+

B-background component being an exception, see Sec. 5.8 for more details). In both cases
the reconstructed mass and energy are calculated with an incorrect number of decay prod-
ucts or with an incorrect mass hypothesis, with the effect that the distributions are shifted
with respect to that of the signal, and their shapes distorted. These differences are used to
construct the two main kinematical variables for the analysis (cf. Sec. 5.6.1).

5.5.2 Event topology

Thee+e− collisions do not produce onlyΥ (4S) events, but also hadronic backgrounde+e− →
qq̄ (whereq = u, d, s, c), and leptonic backgrounde+e− → ℓ+ℓ−(γ) (whereℓ = e, µ, τ ).
Table 4.2 summarizes properties and production rates for these events. Each of these back-
grounds has its own characteristics, different from the signal, which are used to discriminate
them from the signal. These differences are called event shapes in thee+e− CM frame (cf.
table 5.3).

In an e+e− → qq̄ event, whereq = u, d, s, c, a small amount of the initial energy is
invested in rest masses of the quarks. Most of the available energy is carried as kinematic
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Background component Shape
e+e− → qq̄ (whereq = u, d, s, c) Several hadrons

decay in two back-to-back jets
e+e− → Υ (4S) → BB̄ Several hadrons

isotropic decay in the CM
e+e− → ℓ+ℓ− (whereℓ = e, µ, τ ) Two back-to-back

high momentum tracks
e+e− → γγ Two back-to-back

high momentum photons

Table 5.3:Shape of the different kinds of events. The third row denoteshow important the
background component is for the present analysis.

energy, and both quarks fragment in two back-to-back jets (cf. left hand plot of Fig. 5.2).
This implies that the event will roughly follow a(1 + cos2 θ) distribution, whereθ is the
CM angle of one of the jet with respect to thez-axis, as predicted by lowest order Feyn-
man QED diagram for ane+e− → f f̄ , wheref is a spin-1/2 fermion. In contrast, in an
e+e− → Υ (4S) → BB̄ event, the spin-1Υ (4S) decaying into two spin-0B mesons gives,
by conservation of angular momentum, asin2(θ) angular distribution of theB decays (in the
Υ (4S) rest frame), whereθ is the angle between theB direction and thez-axis. Further-
more, theΥ (4S) → BB̄ reaction is barely allowed kinematically, and theB-mesons have
low momentum in the CM frame (∼ 340 MeV/c), compared with that of their daughters
(∼ 1 − 2 GeV/c). This means that the decay products of theB-meson will not follow its
flight direction due to the small boost. Finally, theB-meson being a pseudoscalar, no direc-
tion is preferred in its decay, and so the distribution of their daughters will be approximately
spherical in theΥ (4S) CM frame (cf. right hand plot of Fig. 5.2).

Figure 5.2:Shape ofe+e− → qq̄ (left) ande+e− → Υ (4S) → BB̄ (right) events in thee+e−

CM frame. The solid blue lines represent the directions of reconstructed particles forming
theB candidate, the dashed black lines represent the other particles in the event, denoted as
"rest of the event" (ROE).

Among the events produced by PEP-II (cf. table 5.3), the continuum background is the
most difficult to reduce. A large amount can be reduced with simple cuts, but it remains the
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dominant background component in the final sample, and its discrimination in a maxi- mum
likelihood fit (see chapter 6) is a crucial challenge of the analysis. The variables defined to
exploit these event shape properties are generally referred to as "shape variables", and are
described in Sec. 5.6.2.

The rare leptonic events that contribute to the sample have characteristics very similar to
those of continuum background, and are then treated as continuum events in this analysis.
TheB-background events, having very similar shapes as the signal, are only discriminated
using the kinematical and DP variables.

5.6 Main discriminant Variables

In this section the general properties of the different event species contributing to the data
sample are exploited to define the discriminant variables. These variables will be used in two
ways:

• Cuts will be applied on these variables in order to enhance the signal in the data sample,

• Some of these variables will be used in the maximum likelihood fit.

5.6.1 Kinematic Variables

In order to exploit the specifics ofB decay kinematics, two variables are defined,∆E and
mES, which are used in the maximum likelihood fit (cf. Chapter 6).Two criteria illus-
trate their discriminant power: they exploit in an optimal way the information contained in
Eqs. (5.6); also, possible correlations among them and withthe other variables used in the
likelihood fit (a Neural Network,∆t and the DP variables) are small.

The energy difference∆E

The energy difference,∆E, can be expressed in a Lorentz-invariant form as

∆E = (2qBq0 − s)/2
√
s, (5.7)

where
√
s = 2E∗

beam is the total energy of thee+e− system in the CM frame, andqB and
q0 = (E0,p0) are the Lorentz vectors representing the momentum of theB candidate and of
thee+e− system,q0 = qe+ + qe− . In the CM frame,∆E takes the more familiar form

∆E = E∗
B −E∗

beam, (5.8)

hereE∗
B is the reconstructed energy of theB-meson. The∆E distribution receives a sizeable

contribution from the beam energy spread, but is generally dominated by detector energy
resolution (this being clearly the dominant term for modes involving neutral particles).
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The energy-substituted massmES

The second kinematical variable is the energy-substitutedmass,mES. In the laboratory
frame,mES can be determined from the measured three-momentumpB of theB candidate
without explicit knowledge of the masses of the decay products:

mES =

√

(s/2 + pB · p0)
2 /E2

0 − p2
B. (5.9)

In the CM frame (p0 = 0), this variable takes the familiar form

mES =
√

E∗2
beam − p∗2B , (5.10)

wherep∗2B is the CM momentum of theB-meson, derived from the momenta of their decay
products, and theB-meson energy is substituted byE∗

beam. As theB-mesons are almost at
rest in the CM frame, the resolution onmES is dominated by the spread in the beam energy.

For signal events,mES yields the mass of theB-meson and shows a clean peak. For
continuum events, composed of light quarks, the only way of reaching theB rest mass is by
artificially associating random tracks. As a consequence, their distribution displays a slowly
varying shape, as expected from their combinatoric nature.

The idea behind∆E is different and complementary to that ofmES. Whereas the latter
is by construction independent of the mass hypothesis for each of the tracks,∆E depends
strongly on them. If, for example, a kaon is misidentified as apion, its energy, and conse-
quently that of theB candidate, will be smaller than its true energy. The event then will be
shifted towards negative values of∆E. In contrast, the distribution for signal events peaks
at zero as expected, making∆E especially helpful for discriminating fromB-background
events.

In modes with no neutral particles in the final state, the resolution for the∆E andmES

variables are∼ 15 MeV and∼ 3 MeV/c2, respectively. The parameterization used for their
distributions are described in Sec. 6.3.1. Plots of both variables for signal and background
can be seen in Fig. 5.5.

5.6.2 Shape Variables and the neural network

In order to exploit the topological differences betweenBB̄ and continuum events several
variables can be defined. All of them use the same starting information (particle flight direc-
tion in theΥ (4S) rest frame) and are therefore strongly correlated. A Multivariate Analyzer
technique is adopted to define a single variable to be used forselection and discrimination in
the maximum likelihood fit. A non-linear Neural Net (NN) [101] is used, that combines the
variables defined below.

cos(θB)

The cosine of the angle between the CMB candidate direction and thez axis. In the case
of perfect reconstruction, this variable follows asin2θB = 1 − cos2 θB distribution for the
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signal. In contrast, for continuum background events, theB candidate is formed by random
combination of tracks, which mean thatcos θB will have random values, and hence a flat
distribution (out of acceptance effects).

cos(θT)

The cosine of the angle between theB candidate thrust axis and thez axis. The thrust of a
collection of particles is defined as the direction,t̂ (with |t̂| = 1), in which the sum,T , of the
projections of the momenta of the particles is maximized:

T ≡ Maxt̂

{∑

i |t̂ · pi|
∑

i pi

}

, (5.11)

where thei index runs over all the particles in the collection. Given the spherical nature ofB
decays, the thrust axis of the trueB candidate is essentially random. For continuum events
in contrast, which are strongly collimated, the above definition ensures that the thrust axis
approximates the direction of the hadronic jets, even when the tracks are selected artificially
to form aB candidate. In the case of perfect reconstruction, the distribution of this variable
is expected to be uniform (1 + cos2 θT ) for signal (continuum background) events.

The monomialsLn

Other variables can be defined to exploit the difference in the angular distributions of theB
candidate decay products for signal and continuum events. Since the present analysis ex-
plores the whole allowed phase space of the three-body decay, the signal-side angular infor-
mation cannot be used without biasing the data sample, but the fact that the otherB behaves
statistically, but independently, in the same way can be exploited. The variables described
in the following are calculated excluding the signalB candidate particles; the remaining
collection of particles is referred to as the rest-of-the-event (ROE). Using tracks from the
ROE has the advantage of eliminating possible correlationswith the kinematical variables,
as the construction of these last ones uses only theB candidate particles, and so there is very
little common information: to first order, these correlations are assumed to be negligible (cf.
see Sec. 6.2). It should be noted that the intrinsic symmetryof continuum events, due to
their jet-like structure, leads to correlations between the values of their ROE and signal-side
quantities. Since the signal-side is used to calculate the DP coordinates, it is then expected
a correlation between these and some discriminant variables. This correlation is taken into
account in the construction of the continuum PDF (cf. see appendix A, Sec. A.2).

In order to exploit the angular correlations, a set of monomials momentum-weighted
sums over the angles of the tracks in the ROE with respect to the beam axis are defined:

Ln =
∑

i=roe

pi × |cos(θB,i)|n . (5.12)

A calculation of the separation power of the monomials for signal and background enables to
identify those with the largest separation power. As it is customary in charmless analyses in
BABAR, the present analysis uses the zeroth and the second order ones,L0 andL2, as in [102].
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Figure 5.3:Top left: Distribution of the NN variable for truth-matchedsignal (solid line), and
off-resonance data (dashed line). Top Right: Distributionof the transformed NN variable for
truth-matched signal (solid line), and off-resonance data(dashed line), which will be used
in the final maximum likelihood fit. Bottom: background rejection versus signal efficiency,
obtained by different cuts on theNN outputs (solid line). For comparison, the same curve
is shown for theNN trained for theBABAR B0 → (ρπ)0 analysis [35], and applied to the
present data.

The variables just defined are used as inputs to a Neural Network, which has the following
structure:

• number of input variables:Nvar = 4;

• number of output classes: 2 (signal and background);

• number of layers: 4 (input, output & 2 hidden layers);

• number of neurons per layer:Nvar,Nvar − 1,Nvar − 2, 2;

• number of training cycles: ca. 20000;

• size of the training samples: 27K signal truth-matched2 non resonant MC events and
27K off-resonance data events.

2A definition of truth-matched will be given in Sec. 5.7.2
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The optimal signal/continuum discriminating power of theNN is chosen with a training
procedure, using independent subsets of signal MC and off-resonance data as training and
validation samples.

TheNN distributions for truth-matched signal, and off-resonance data are shown in the
top left hand side plot of Fig. 5.3. The right hand plot of the same figure show the distribution,
for signal and background, of a transformedNN that will be used in the maximum likelihood
fit, which will be described later on (cf. see Eq.(5.13)). Thediscriminating power is shown
on Fig. 5.3, where the background rejection is plotted against signal efficiency for different
values of the cuts on theNN output. For comparison, the rejection-efficiency curve is also
shown for theNN trained for theBABAR B0 → (ρπ)0 analysis [35], and applied to the
present data.

5.7 Event Selection

After reconstruction, the data is subject to different stages of selection criteria. In a first
stage,B candidates are formed by requiring aK0

S candidate from theKsDefault list
(cf. Sec. 5.2.4), and two oppositely charged tracks taken from GoodTracksLoose (cf.
Sec. 5.2.1). All this is done before applying the following requirements,

• mES > 5.2 GeV/c2,

• 4.99 < E∗
B < 5.59 GeV (cf. Sec. 5.6.1),

• total energy of the event (in the CM frame)ETotal < 20.0 GeV.

As a second step, some additional cuts are applied,

• The cosine of the angle between the momentum of theK0
S candidate and the line that

connects its decay vertex with that of theB candidate must satisfycosαK0
S
> 0.999.

• TheK0
S lifetime significance is required to satisfyτK0

S
/στ

K0
S

> 5.0, rejecting in this

way combinatorial background.

• TheK0
S candidate mass is constrained to be in the range|mπ+π−−mK0

S
| < 15 MeV/c2,

wheremK0
S

is the PDG [21] value of theK0
S mass.

• Charged tracks are required to satisfy thePiLoose requirements (cf. Sec. 5.2.3).

• Loose cuts are applied on∆t and its error,|∆t| < 20 ps andσ∆t < 2.5 ps, as is
standard inBABAR time-dependent analyses.

• To further discriminate signal from continuum background it is requiredNN > −0.4.
This cut is not designed to suppress a maximum amount of background; rather, as
theNN is one of the variables used in the maximum likelihood fit, thepurpose of
this cut is to have a signal efficiency of approximately90%, while removing roughly
70% of continuum background. The motivation is to reduce the size of the dataset to
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a value that is compatible with the available CPU constraints, both for the maximum
likelihood fit and MC simulations.

As the NN distributions show sharp peaks both for signal and continuum background,
the empirical description of theNN output shape is made simpler by means of a
transformation, defined so that it is confined within[0, 1] after selection,

NN → 1 − arccos(NN + A) +B

B + C
, (5.13)

whereA = 0.001, B = 0.98 andC = 0.92. This transformedNN , with its distribu-
tion shown in the top right hand plot of Fig. 5.3, is used in themaximum likelihood
fit.

• Cuts on the kinematic variablesmES and∆E are applied to select three regions of
interest in the(mES,∆E) plane (cf. Fig. 5.4):
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Figure 5.4: (mES,∆E) plane, showing signal region (blue box),mES (red box) and∆E
(green boxes) sidebands. The box histogram is non-resonantMC. The signal concentrates
predominantly in the signal box.

1. the signal region, where the signal eventsB0 → K0
Sπ

+π− are expected to be, is
defined as:5.272 < mES < 5.286 GeV/c2 and65 < ∆E < 65 MeV,

2. themES sideband, 5.2 < mES < 5.26 GeV/c2 and−0.1 < ∆E < 0.1 GeV,

3. the∆E sideband, |∆E| > 0.1 GeV.

The last two regions are used to characterize the continuum distributions (see Sec. 6.3.4).

• Additional vetoes are applied to reduce misidentification of the charged particles: both
tracks are required to fail theTight electron, kaon and proton PID requirement, and
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at least one track must fail theTight muon PID requirement. Muon and protons
vetoes have a negligible effect is this analysis, and have only been kept because they
are standard cuts in charmless analyses inBABAR.

The distributions ofmES, ∆E,mK0
S
, andK0

S lifetime significance for truth-matched and
misreconstructed Self Cross Feed (see definition later) signal events, and onpeak sideband
events are shown in Figs. 5.5 and 5.6.
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Figure 5.5:Distributions ofmES (left) and∆E (right) for truth matched signal events (black
solid histogram), SCF events (black dashed) and onpeak sideband events (blue histogram).
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Figure 5.6:Distributions ofmK0
S

(left) andK0
S lifetime significance (right) for truth matched

signal events (black solid histogram), SCF events (black dashed) and onpeak sideband events
(blue histogram).

The summary of selection efficiencies for each cut is given inTable 5.4, together with
the total selection efficiency. Values are given for non-resonant MC and for several resonant
modes entering the Dalitz model (cf. Sec. 6.8). Differencesbetween efficiencies for the
different modes are significant. They are mainly due to the dependence of efficiency over the
Dalitz Plot, and also to different rates of misreconstructed events (see Fig. 6.7). It has been
checked that efficiency in a given DP point is independent of the MC used.
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Cut NR B0 → K0
Sf0 B0 → K0

Sρ0 B0 → K∗+π− Offpeak
Reconstruction 0.400 0.417 0.423 0.411 —

5.272 GeV< mES < 5.286 GeV 0.904 0.903 0.857 0.822 0.183
−65 MeV< ∆E < 65 MeV 0.922 0.910 0.872 0.874 0.221
|mK0

S

− mPDG
K0

S

| < 15 MeV 0.983 0.986 0.984 0.975 0.680

τK0
S

/στ
K0

S

> 20 0.936 0.955 0.950 0.922 0.376

cos αK0
S

> 0.999 0.991 0.996 0.996 0.986 0.955

|∆t| < 20ps andσ∆t < 2.5ps 0.955 0.950 0.945 0.953 0.898
Kaon PID veto 0.956 0.963 0.964 0.953 0.614

Electron PID veto 0.964 0.955 0.953 0.961 0.913
Muon PID veto 1.000 0.999 1.000 0.999 1.000
Proton PID veto 1.000 1.000 1.000 1.000 1.000

NN > −0.4 andNN < 0.999 0.899 0.898 0.895 0.896 0.293
Total 0.2412 0.252 0.229 0.205 —

±0.0002 ±0.001 ±0.001 ±0.001

Table 5.4: Summary of selection efficiency for TM+SCF eventsin different signal MC sam-
ples. The efficiencies quoted are relative efficiencies. TheTotal efficiency is the product of
the relative ones.

5.7.1 Multiple candidates

When an event has several (n) candidates that pass the selection criteria, one of them is
chosen arbitrarily. The index of the selected event is the remainder of the Time Stamp of
the events divided byn. This approach avoids any bias, while being fully reproducible. In
the signal MC samples, the multiplicity varies between1.1% in the center of the DP, up to
several percent in theρ0(770)K0

S andK∗(892)+π− bands. Depending on the mode,3 − 5%
of the multiple candidate events have more than two candidates. Fig. 5.7 shows the event
multiplicities for different MC samples and off-peak data.
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Figure 5.7:Number of candidates per event passing the full selection. Shown areB0 →
f0(980)K0

S, B0 → ρ0(770)K0
S, B0 → K∗±(892)π∓, non-resonant MC and the continuum-

background components, represented in different colors and line-styles.
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5.7.2 Misreconstructed signal and migration over theDP

Misreconstructed signal events, also called Self Cross Feed (SCF), also present in the se-
lected the data sample. A simulated signal event is classified as truth matched (TM) if the
two pions and theK0

S are matched with the right particles at the generator level.In addi-
tion to this, it is required that the mothers of the matched generator level particles be the
expected ones, according to each specific signal MC mode. Allsignal events that fail the
truth matching criterion are classified as SCF. Fig. 5.8 shows a comparison between TM and
SCF events in the non-resonant MC formES and∆E. Fig. 5.9 shows the migration over the
square DP for TM and SCF events. On the horizontal (vertical)axis of these plots is shown
the difference between true and reconstructed value of them′ (θ′) variable,m′

true − m′
rec.

(θ′true − θ′rec.). The fraction of misreconstructed events per tagging category and MC mode
is detailed in Table 5.5. The average fractions have been calculated using the branching
fractions measured in [41].

Details about the parameterization of SCF events in the maximum likelihood fit are de-
scribed in Sec. 6.3.2.
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Figure 5.8:mES (top) and∆E (bottom) distributions for TM (left) and SCF (right) events
in NR MC.
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Figure 5.9:Migration over the square DP for TM (left) and SCF (right) events in NR MC.

Tag. Cat. NR f0K
0
S ρ0K0

S K∗π K∗∗π average
Lepton 0.0072 0.0216 0.0462 0.0458 0.0137 0.0249
Kaon1 0.0095 0.0305 0.0618 0.0514 0.0206 0.0323
Kaon2 0.0111 0.0371 0.0799 0.0642 0.0245 0.0398
KaonPion 0.0110 0.0372 0.0827 0.0694 0.0213 0.0395
Pion 0.0111 0.0356 0.0800 0.0598 0.0223 0.0374
Other 0.0118 0.0425 0.0934 0.0692 0.0281 0.0447
NoTag 0.0124 0.0425 0.0835 0.0660 0.0317 0.0450
Total 0.0110 0.0368 0.0778 0.0623 0.0245 0.0391

Table 5.5: Fraction of misreconstructed events per tagging category and MC mode. The
average fractions have been calculated using the branchingfractions measured in [41].

5.8 B-background

An additional sources of background come from otherB decays that can be misidentified as
signal events. Several kinds ofB background can be distinguished:

• B decays having the same multiplicity as signal events. Belong to this category the
B0 → D−(→ K0

Sπ
−)π+, B0 → J/Ψ(→ l+l−)K0

S), andB0 → Ψ(2S)(→ l+l−)K0
S)

modes. The long-living modeB0 → D−(→ K0
Sπ

−)π+ has exactly the same final
state as the studied decay mode. It is treated as part of theB-background since it does
not interfere with strongly decaying charmless resonances. For the charmonium res-
onances (J/Ψ andΨ(2S)), the two leptons (typically muons) in the final state have
been misidentified as pions. These backgrounds could in principle be simply elimi-
nated from the sample, by applying narrow vetoes on the Dalitz plane. On the other
hand, these events are useful to determine some parameters of signal likelihood vari-
ables (such asmES, ∆E) directly from the fit, and so are kept in the sample.

• B decays having lower multiplicity than signal. In this case,one or more particles of
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the (ROE) are wrongly considered as coming from theB candidate. In general, these
background events do not peak simultaneously both inmES and∆E.

• B decays having higher multiplicity than signal. In this case, one or more particles of
the final state are wrongly considered as coming from the restof the event (ROE). As
in the previous case, these events are not distributed as a peaking component both in
mES and∆E.

In order to characterize the list of channels generatingB backgrounds in the present
analysis, the reconstruction and selection algorithms have been applied to the neutral and
charged generic MC samples,B0B̄0 andB+B−. The procedure followed is described below.

5.8.1 NeutralB background

In a first stage, the signal modes are vetoed from the neutral generic sample, and the largest
contributions of background are identified, which show peaking structures over the DP. These
modes are:

• B0 → D−π+ (D− → K0
Sπ

−),

• B0 → J/ΨK0
S (J/Ψ → l+l−),

• B0 → η
′
K0

S (η
′ → ρ0γ),

• B0 → Ψ(2S)K0
S (Ψ(2S) → µ+µ− andΨ(2S) → X).

Each of these contributions is treated individually in the fit. In a second step, the≈ 970
remaining reconstructed events in the neutral generic sample are examined, after a second
veto on the modes above. The resulting breakdown of the surviving events according to the
B daughters is given in Table 5.6. Both sides of each event,B andB̄ decays, have been
taken into account. These remaining events still show several peaking structures on the DP,
mainly in theD band. The left hand plot of Fig. 5.10 showsmπ+K0

S
around theD mass for

the neutral genericB background component. In this plot, the two most prominent peaking
structures (B0 → D+π− andB0 → D∗+π−) have been isolated.

The most frequent modes from Table 5.6 have been examined to check which exact
decays have been reconstructed. It has been found that a few of the modes, in particular the
semileptonic modes withD∗ were, to a negligible number of exceptions, reconstructed only
when in the other side of the same event there was another known source ofB background.
The frequent presence of these modes in Table 5.6 is explained rather by their large cross
section than by the sensitivity to the present analysis. Therefore these modes are treated
exclusively.

Modes with similar properties (similar peaking structure over the DP, and similarmES

and∆E shapes) are treated in a semi-inclusive way, grouping them into categories. These
modes are detailed in Table 5.7, with the expected number of each one of them in the data
sample. The categories are detailed in the rightmost columnin the same table, where modes
with the same category number are grouped together. Modes that have been used in the study
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Frequency Decay Mode (+ C.C)
212 D+π−

47 D∗+π−

36 D+K−

30 D+ρ−

24 D∗+µ−νµ

18 D∗+e−νe

17 D+µ−νµ

13 D∗+D−
s

12 K0
SK

∗0
0

10 D∗+D∗−K0
S

10 K0
Sµ

−µ+

8 D+a−1
7 K∗+

0 K−

7 D∗+
s D∗−

7 D+e−νe

6 D∗+ρ−

6 D∗+K−D∗0

6 D+π−νµµ
+D∗−

5 a+
1 π

−

Table 5.6:Most frequent modes reconstructed in the vetoed neutral generic MC sample. The
B0 → D−π+ events do not include the decayD− → K0

Sπ
− that has been added exclusively

to the DP model.

of B background, and have not been included in the semi-exclusive PDFs are detailed in the
bottom of Table 5.7 without mention of the category.

To avoid uncontrolled overlap between the channels, the numbers in the Table 5.7 and
are based on a sample where only one side of an event is a known source ofB background.
The right hand plot of Fig. 5.10 illustrates the rationale behind this strategy, by showing
the pollution from other modes in the Dalitz Plot ofB0 → X,B0 → D∗+π−, D∗+ →
D0π+, D0 → X + C.C. mode without "other side filtering". Contributions of decaymodes
from the otherB in the event, likeJ/ΨK0

S andB0 → D−(K0
Sπ

−)π+ are seen, which have
been already treated exclusively.

The remaining events from modes that have not been treated exclusively or semi-exclusively
(< 300), do not show any peaking structures on the Dalitz plot, as shown in left hand plot of
Fig. 5.11. These events are taken as a neutral generic component in the fit.

5.8.2 ChargedB background

A similar study has been applied to the charged generic sample (except for the step of vetoing
the signal model). The most frequently reconstructed modesare detailed in Table 5.8. In this
sample, no obvious peaking structures are present, as shownin right hand plot of Fig. 5.11
and therefore the whole sample is used as a charged generic component in the fit.
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Figure 5.10:Left: mπ+K0
S

around theD mass for the neutral generic B background com-
ponent. The two most dominant peaking structures have been isolated. The marked peak
around 1.95 GeV (red O) representsB0 → D∗+π−. The wider peak around1.8 GeV
(blue X) representsB0 → D+π−. Right: Square DP ofB0 → X,B0 → D∗+(→ D0(→
X + C.C.)π+)π− mode. The black/gray entries represent events with/without knownB
background contribution in the other side. Events where theother side decay channel is
B0 → D−(K0
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S is also clearly seen (ver-
tical cluster of events form′ ≃ 0.42, marked by black dots). This illustrates the pollution
from other modes when no "other side filtering" is applied.
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5.8.3 Summary onB background

In summary, theB-background is separated into 10 categories. There are five exclusive
modes that include:B0 → D−(→ K0

Sπ
−)π+, B0 → J/Ψ(→ ℓ+ℓ−)K0

S, B0 → Ψ(2S)K0
S

(with Ψ(2S) → ℓ+ℓ− , J/Ψππ or χγ), B0 → η′(→ ργ)K0
S andB0 → a+

1 (→ K0
Sπ

+)π−

modes. There are three semi-inclusive categories, whose definition is summarized in ta-
ble 5.7. Finally, there are two inclusive categories referred as neutral and charged generic.
The fractions of events per tagging category for someB backgrounds are detailed in table 5.9.
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Mode Eff. BF Expected Cat.
Yield in

data sample
B0 → X,B0 → D∗+(→ D0(→ X)π+)π− + C.C. 4.20E-05 1.77E-03 27.80 1
B0 → X,B0 → D∗+(→ D+(→ X)π0)π− + C.C. 5.33E-05 8.01E-04 15.98 1
B0 → X,B0 → D+π−,D+ → X + C.C. 3.17E-03 2.76E-03 3271.78 2
B0 → D−(→ K0

Sπ
−)K+ 5.18E-02 2.08E-06 40.28 2

B0 → D+(→ K0
sK)π− + C.C. 1.23E-02 8.17E-06 37.74 2

B0 → D−(→ K+π−π−)π+ 7.67E-05 2.62E-04 7.54 2
B0 → D−(→ K0

sπ
−)µ+ν,B0 → X + C.C. 8.93E-05 2.16E-04 7.21 2

B0 → X,B0 → D+(→ X)ρ− + C.C. 9.71E-06 7.50E-03 27.25 3
B0 → X,B0 → D+(→ K0

Sπ
+)ρ− +C.C. 3.31E-04 1.10E-04 13.66 3

B0 → X,B0 → D+(→ K0
SK

+)ρ− + C.C. 1.11E-04 2.22E-05 0.92 3
B0 → X,B0 → D∗+(→ D(→ X)ρ−)π0 + C.C. 1.16E-06 2.09E-03 0.91 3
B0 → X,B0 → D∗+(→ D0(→ X)π)ρ− + C.C. 1.94E-07 4.60E-03 0.33 3
a+

1 π
− 4.88E-04 3.97E-05 7.25 4

B0 → X,B0 → D∗+(→ D0(D0 → K−π+)π+)π− + C.C. 7.06E-04 6.71E-05 17.74
B0 → D∗+π−,D∗+ → D0(→ K0

Sπ
0)π− + C.C. 7.92E-04 2.01E-05 5.98

B0 → D∗+π−,D∗+ → D+(→ K0
Sπ

+)π0 + C.C. 1.35E-03 1.18E-05 5.96
B0 → D∗+ρ−,D∗+ → D0(→ K0

Sπ
0)π+ + C.C. 2.25E-05 5.25E-05 0.44

B0 → X,B0 → D∗+(→ D0(→ K−π+)π)ρ− + C.C. 4.95E-06 1.75E-04 0.32
B0 → D∗+ρ−,D∗+ → D+(→ K0

sπ
+)π0 + C.C. 2.33E-05 3.07E-05 0.27

χc1K
0
S 1.69E-05 2.90E-06 0.02

B0 → D−K+(D− → π−π0)B0 → X + C.C. 4.25E-05 2.61E-07 0.00
B0 → D∗+(→ D+(→ K0

Sπ
+)π0)µ−νµ + C.C. < 1

B0 → D∗+(→ D0(→ K0
Sπ

0)π+)µ−νµ +C.C. < 1

B0 → D∗+(→ D+(→ K0
Sπ

0)π0)eνe + C.C. < 1

B0 → D∗+(→ D0(→ K0
Sπ

0)π)eνe + C.C. < 1

Table 5.7:Exclusive neutralB background modes. Modes from each category are taken as
a single PDF, as a weighted sum of the individual contributions. Modes without a category
number are grouped in a neutral generic category. Branchingfractions are taken from the
PDG [21] and, when available, from HFAG [28].
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Frequency Decay Mode (+ C.C)
164 π+D0

63 π+D∗0

30 K∗0
0 π+

29 ρ+D0

21 νµµ
+D∗0

11 νee
+D∗0

9 a0
1π

+

8 ρ+D∗0

8 νµµ
+D0

6 D∗+
s D∗0

6 D+
s D

0

6 D+
s D

∗0
6 π+π+π0D∗−

6 π+D0D0D−
s

6 π+D0D0D∗−
s

6 νµµ
+D∗0D0π−

6 νµµ
+D′0

1

5 a+
1 D

∗0

Table 5.8:Most frequent modes reconstructed in the genericB± MC sample.

Tag. Cat. D−π+ J/ΨK0
S η

′
K0

S neu. gen ch. gen Ψ(2S)K0
S

Lepton 0.0889 0.0914 0.0831 0.0622 0.0349 0.0912
Kaon1 0.1031 0.1030 0.0954 0.0895 0.0699 0.0965
Kaon2 0.1671 0.1680 0.1636 0.1662 0.1755 0.1830
KaonPion 0.1386 0.1403 0.1390 0.1399 0.1525 0.1433
Pion 0.1484 0.1459 0.1533 0.1584 0.1541 0.1485
Other 0.1025 0.0990 0.1090 0.1178 0.1183 0.0924
NoTag 0.2513 0.2524 0.2565 0.2659 0.2947 0.2450

Table 5.9:Fraction of events per tagging category for some B backgrounds.



Chapter 6

The Maximum Likelihood Fit

This chapter describes the likelihood function used to fit the B0 → KSπ
+π− final data

sample. First, the treatment of the discriminant (mES, ∆E andNN) and dynamical (∆t
and Dalitz plot) variables are described. Then a validationof the likelihood function, based
on MC studies, is presented. These studies will set the statistical approach for extracting
confidence intervals on the physical parameters. Finally, the nominal signal Dalitz plot model
is introduced.

6.1 The likelihood function

The selected on-resonance data sample consists of signal, continuum-background andB-
background components, separated by the flavor and categoryof the tag side. The variables
mES, ∆E, NN output, and DP discriminate signal from background. The∆t measure-
ment allows to determine mixing-inducedCP -violation, and provides additional continuum-
background rejection. The amplitude analysis allows us access to the relative phases among
different intermediate resonances. The signal likelihoodis the sum of a correctly recon-
structed (TM) component and a misreconstructed (SCF) component. The fit strategy is to
determine as many continuum shape and asymmetry parametersas possible simultaneously
with the signal parameters. This strategy reduces systematic effects from the description of
the dominant background piece. The probability densityPc

i for a single eventi in tagging
categoryc is the sum of the probability densities (PDF) of all components:

Pc
i ≡ f c

sig

[

(1 − f̄ c
SCF)Pc

sig−TM,i + f̄ c
SCFPc

sig−SCF,i

]

+ f c
qq̄

1

2
(1 + qtag,iAqq̄,tag)Pc

qq̄,i

+

NB+

class
∑

j=1

f c
B+j

1

2
(1 + qtag,iAB+,tag,j)Pc

B+,ij +

NB0

class
∑

j=1

f c
B0jPc

B0,ij , (6.1)

where,
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• f c
sig is the fraction of signal events that are tagged in categoryc;

• f̄ c
SCF is the fraction of misreconstructed signal events (SCF) in tagging categoryc,

averaged over the DP;

• Pc
sig−TM,i andPc

sig−SCF,i are the products of PDFs of the discriminating variables used
in tagging categoryc, for TM and SCF events, respectively;

• f c
qq̄ is the faction of continuum events tagged in categoryc;

• qtag,i is the tag flavor of the event; namelyqtag,i = 1 for B0-tag (in other words, āB0

in the signal side when the taggingBtag decays) andqtag,i = −1 for B̄0-tag;

• Aqq̄,tag is a tag asymmetry, parameterizing a possible charge asymmetry in continuum
events;

• Pc
qq̄,i is the continuum PDF for tagging categoryc;

• NB+j (NB0j) is the number of expected events in the charged (neutral)B-related back-
ground classj;

• f c
B+j (f c

B0j) is the fraction of charged (neutral)B-related background events of classj
that are tagged in categoryc;

• AB+,tag,j describes the tag asymmetry in chargedB background of classj; this parame-
trizes an eventual charge asymmetry. Note that the tag-charge correlation is absorbed
in the tag flavor-dependent PDF of the DP (see later);

• Pc
B+,ij is theB+-background PDF for tagging categoryc and classj;

• Pc
B0,ij is theB0-background PDF for tagging categoryc and classj; the time-dependent

PDF is non-trivial as neutralB-background can exhibit direct and mixing-induced
CPV (see later);

The PDFsPc
X are the product of the PDFs of the five discriminating variables (mES,

∆E, NN , DP and∆t) xk, k = 1, . . . , 5 (except for the continuumNN and DP variables,
for which a non-negligible correlation is taken into account in the likelihood function, see
appendix A):

Pc
X,i(j) ≡

∏

k

Pc
X,i(j)(xk) . (6.2)

Finally, the extended likelihood over all tagging categories is given by

L ≡
5
∏

c=1

e−N
c

Nc
∏

i

Pc
i , (6.3)

where is the number of events expected in categoryc

N
c
= N c

sig +N c
qq̄ +

NB+

class
∑

j=1

NB+j +

NB0

class
∑

j=1

NB0j (6.4)
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whereNsig is the total number ofB0 → K0
Sπ

+π− signal events in the data sample;N c
qq̄ is

the number of continuum events that are tagged in categoryc; NB+

class (NB0

class) is the number
of charged (neutral)B-related background classes considered. Including this term allows for
the direct fitting of event yields rather than fractions.

The expression in Eq. 6.1 implies that all correlations among likelihood variables have
been neglected. This statement was tested for∆E, mES, ∆t, andNN on non-resonant sig-
nal MC and onmES sideband in data. The results for signal and background are shown in
Tab. 6.1 and 6.2 respectively. All correlations are small except that for the signalmES and
∆E. The∼ 10% negative correlation a known feature and previous analyseshave shown that
the effect of neglecting it is small for yield estimations andCP -violation asymmetries mea-
surements. This induces a systematic uncertainty which is evaluated using fully-simulated
signal events (cf. Sec. 6.6). Additional care is required for the Dalitz model (see Sec. 6.2).

mES ∆E NN ∆t
mES 100 -9.6 -0.1 -0.0
∆E - 100 0.3 0.0
NN - - 100 0.3
∆t - - - 100

Table 6.1:Correlation matrix amongmES, ∆E, NN , and∆t in a sample of signal MC
B0 → K0

Sπ
+π− non-resonant decays. Values are quoted in percentage.

mES ∆E NN ∆t
mES 100 -0.01 -1.06 -0.79
∆E - 100 -0.04 -4.06
NN - - 100 -0.37
∆t - - - 100

Table 6.2:Correlation matrix amongmES, ∆E, NN , and∆t in a sample of background
events frommES sideband. Values are quoted in percentage.

6.2 Correlation of fit variables with Dalitz Plot, tag and
tagging category

Since the Dalitz plot itself is used in the maximum likelihood fit as a two-dimensional PDF,
it is important to take care of the dependence of the preceding variables all over the Dalitz
plane. In order to do that, the mean and RMS of the distribution of each variable in different
bins of the DP are compared. Figures 6.1–6.5 show the corresponding plots for non-resonant
signal (TM and SCF, cf. Sec. 5.7.2) ofmES, ∆E, ∆t, σ∆t and theNN . As mentioned
before, the SCF events are clustered mostly at the corners ofthe DP.
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For themES variable (cf. Fig. 6.1), the TM and SCF events show a reasonably uniform
distribution of their mean and RMS values over the DP, with a small peak-to-peak spread
compared with the mean RMS value. For the∆E variable (cf. Fig. 6.2), the TM shows a
complicated correlation with the DP, but the peak-to-peak spread is small compared with the
mean RMS value. The same can be concluded for the SCF component. The∆t variable
(cf. Fig. 6.3) for the TM events also shows a rather uniform distribution. For SCF events,
the peak-to-peak spread is of the same order as the RMS value,this correlation of∆t with
the DP is neglected as SCF represents only a small fraction ofthe total signal. Theσ∆t (cf.
Fig. 6.4) also shows a complicated correlation with the DP, but here the peak-to-peak spread
is small compared with the mean RMS value. Finally, theNN variable (cf. Fig. 6.5) show
a flat distribution over the DP both for TM and SCF events. In summary, the correlations of
these variables with the DP for signal is assumed to be small enough, and are neglected in
the likelihood; a systematic uncertainty will be assigned to this assumption, and it will be
evaluated using fully-simulated signal events (cf. Sec. 6.6).

For continuum background, the same test is performed on offpeak data, where the only
variable that shows a visible dependence on the Dalitz plot is theNN , as is illustrated in
Fig. 6.6. This figure also shows the profile of the∆Dalitz in the Square Dalitz plane; this
variable is defined as the smallest of the three invariant masses, rescaled in the(0, 1) range,
where1 (0) represents the center (edges) of the Dalitz plot. The average value ofNN for
offpeak events as function of∆Dalitz variable is also shown. It is clearly seen that there is a
non-negligible correlation betweenNN and the Dalitz plot.

6.3 Parameterization of distributions

The probability density functions of signal andB-backgrounds are obtained from fully simu-
lated MC samples. Whenever possible, these PDFs are described using parametric functions.
For qq̄ the overall strategy is to determine as many continuum background related distribu-
tions as possible, simultaneously with signal from the fit tothe final data sample. In contrast,
it remains impractical to determine the continuum DP distribution in the same fashion. In
light of this, the continuum DP PDF is determined from the onpeak data sidebands (cf.
Sec 5.7) and off-peak data.

6.3.1 ∆E,mES andNN parameterizations

The parameterizations used for the kinematical variables and theNN output for the compo-
nents sin the likelihood function are briefly described here. Specific details of the parame-
terizations can be found in Appendix A.

ThemES distribution of TM signal events is described with a bifurcated Crystal Ball
function, which is a combination of bifurcated Gaussian function with a power law tail (cf.
Eq.(A.1)). The mean and two widths of this function are determined by the fit. A non-
parametric function is used to describe the SCF signal component. The∆E distribution
of TM events is described with a double Gaussian function. Misreconstructed events are
described by a non-parametric function. BothmES and∆E PDFs are described by non-



6.3 Parameterization of distributions 148

)-π(K2m
0 5 10 15 20 25

)+ π
s

(K2
m

0

5

10

15

20

25

5.2793

5.27932

5.27934

5.27936

5.27938

5.2794

5.27942

5.27944

5.27946

5.27948

5.2795
 TM (MEAN)ESm

)-π(K2m
0 5 10 15 20 25

)+ π
s

(K2
m

0

5

10

15

20

25

5.278

5.2785

5.279

5.2795

5.28

 SCF (MEAN)ESm

)-π(K2m
0 5 10 15 20 25

)+ π
s

(K2
m

0

5

10

15

20

25

0.00238

0.0024

0.00242

0.00244

0.00246

0.00248

0.0025

0.00252
 TM (RMS)ESm

)-π(K2m
0 5 10 15 20 25

)+ π
s

(K2
m

0

5

10

15

20

25

0.0022

0.0024

0.0026

0.0028

0.003

0.0032

0.0034

0.0036

 SCF(RMS)ESm

Figure 6.1: Dependence of mean (top) and RMS (bottom) value ofmES distributions in
different bins of the DP, for TM (left) and SCF (right) NR signal events. The SCF events
are mostly clustered at the corners of the DP. The peak-to-peak spread are small compared
to the mean RMS value of the distributions. TM:∆Mean ∼ 0.2 MeV/c2, ∆RMS ∼
0.14 MeV/c2, compared toRMS = 2.5 MeV/c2. SCF:∆Mean ∼ 2.0 MeV/c2, ∆RMS ∼
1.4 MeV/c2, compared toRMS = 3.7 MeV/c2.

parametric functions for allB background classes. Exceptions to this are themES PDFs for
B0 → D−π+ andB0 → J/ψK0

S components, and the∆E PDF forB0 → D−π+, which are
the same as the corresponding distributions of TM signal events. ThemES and∆E PDFs for
continuum events are parameterized with an ARGUS shape function [103] and a first-order
polynomial, respectively, with parameters determined by the fit.

Non-parametric functions are used to empirically describethe distributions of theNN
output found in the MC simulation for TM and SCF signal events, and forB background
events. For TM signal events, different PDFs are used per tagging category to account for
differences observed in the shapes. The continuumNN distribution is parameterized by a
third-order polynomial that is constrained to take positive values in the range populated by
the data. The coefficients of the polynomial are determined by the fit. Continuum events
exhibit a correlation between the DP coordinate and the shape of the event that is exploited
in theNN . To correct for residual effects, a linear dependence of thepolynomial coefficients
on the distance of the DP coordinate from the kinematic boundaries of the DP is introduced.
The parameters describing this dependence are determined by the fit.

Other issues concerning the individual PDFs in Eq. (6.1) arediscussed in the follow-
ing sections. The most important modeling for this analysisis that of the DP from which
the module and phase of complex amplitudes of resonances aredetermined. The detailed
parameterization is described separately below.
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Figure 6.2:Dependence of mean (top) and RMS (bottom) value of∆E distributions in dif-
ferent bins of the DP, for TM (left) and SCF (right) NR signal events. The SCF events are
mostly clustered at the corners of the DP. The peak-to-peak spread are small compared to the
mean RMS value of the distributions. TM:∆Mean ∼ 4.0 MeV, ∆RMS ∼ 4.0 MeV, com-
pared toRMS = 21 MeV. SCF:∆Mean ∼ 20.0 MeV, ∆RMS ∼ 12.0 MeV, compared to
RMS = 36 MeV.

6.3.2 Time and Dalitz Plot PDFs

The connection of time and DP dependence leads to rather involved PDFs, both conceptu-
ally and technically. It has been implemented in a dedicatedmulti-dimensionalRooFit
package [104], inserted into a customized class calledPiPiKsTools. The DP and∆t
connection is discussed below for the signal and backgroundcomponents. The different
lineshapes used for describing the components entering thesignal DP model are discussed
in Sec. 2.4.3. The description of the signal DP model is givenin Sec. 6.8.

DP-dependent selection efficiency and SCF fraction

Dalitz plot PDFs and DP-averaged quantities, like normalization or SCF fractions, require
the knowledge of the DP-dependent relative selection efficiencyε = ε(m′, θ′). This quantity
which is independent of decay dynamics, is obtained from high statistics MC simulation,
as shown in Fig. 6.7. Note that the selection efficiency is notcharge asymmetric,i.e. the
selection efficiency map has to be symmetric with respect toθ′ = 0.5. The Square Dalitz
plane is then folded atθ′ = 0.5 in order to increase the available statistics in the selection
efficiency calculation. One observes a rather flat efficiencyover the main DP. The efficiency
drops close to the extreme corners of the DP, which is where two particles are back-to-back,
while the third is (almost) at rest, and acceptance is necessarily low due to the minimumpT

requirements for the charged particles.
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Figure 6.3:Dependence of mean (top) and RMS (bottom) value of∆t distributions in differ-
ent bins of the DP, for TM (left) and SCF (right) NR signal events. The SCF events are mostly
clustered at the corners of the DP. For the TM the peak-to-peak spread are small compared
to the mean RMS value of the distributions:∆Mean ∼ 0.2 ps, ∆RMS ∼ 0.4 ps, compared
to RMS = 2.6 ps. This is not the case for the SCF:∆Mean ∼ 1.6 ps, ∆RMS ∼ 1.8 ps,
compared toRMS = 2.6 ps, but this component represents only a small fraction of the signal
events.

Moreover, the DP term in the likelihood component for TM and SCF signal (cf. Eq. 6.1)
must be expanded to account for a DP-dependent SCF fractionfSCF = fSCF(m′, θ′). Again,
the DP-dependent SCF fraction does not depend on the decay dynamics. For an eventi, with
Square DP coordinates(m′

i, θ
′
i), the TM and SCF PDFs are written as

Psig−TM,i = εi (1 − fSCF,i) |detJi|
|A±(∆t)|2
〈|NTM|2〉

, (6.5)

Psig−SCF, i = εi fSCF,i |detJi|
|A±(∆t)|2
〈|NSCF|2〉

, (6.6)

whereεi = ε(m′
i, θ

′
i) and fSCF,i = fSCF(m′

i, θ
′
i). The normalization constants〈|NTM|2〉

and〈|NSCF|2〉 is the phase space integration, that has to take into accountthe DP-dependent
efficiencies and SCF fractions

|NTM|2 =
∑

κ,σ

AκAσ∗〈ε (1 − fSCF) |detJ |FκF
∗
σ 〉 , (6.7)

|NSCF|2 =
∑

κ,σ

AκAσ∗〈ε fSCF |detJ |FκF
∗
σ 〉 , (6.8)

and similarly for|NTM|2 and|NSCF|2. The indicesκ, σ run over all resonances of the signal
model. The expectation values occurring in Eqs. (6.7, 6.8) are model-dependent and are
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Figure 6.4:Dependence of mean (top) and RMS (bottom) value ofσ∆t distributions in differ-
ent bins of the DP, for TM (left) and SCF (right) NR signal events. The SCF events are mostly
clustered at the corners of the DP. The peak-to-peak spread are small compared to the mean
RMS value of the distributions. TM:∆Mean ∼ 0.12 ps, ∆RMS ∼ 0.05 ps, compared to
RMS = 0.8 ps. SCF:∆Mean ∼ 0.2 ps, ∆RMS ∼ 0.2 ps, compared toRMS = 0.9 ps.

computed with high statistics MC integration over the square DP:

〈ε (1 − fSCF) |detJ |FκF
∗
σ 〉 =

∫ 1

0

∫ 1

0
ε (1 − fSCF) |detJ |FκF

∗
σ dm

′dθ′
∫ 1

0

∫ 1

0
ε |detJ |FκF ∗

σ dm
′dθ′

, (6.9)

and similarly for〈ε |detJ |FκF
∗
σ 〉, where all quantities in the integrands are DP-dependent.

Note that the integral (6.9) depends on the lineshapes assumed for the components in the
signal model. If parameters on those lineshapes are determined from a fit to data, the deter-
mination of Eq. (6.9) would have to be iterative.

DP-averaged SCF fraction

Equation (6.1) invokes the phase space-averaged SCF fractionfSCF. As for the PDF normal-
ization, this is a decay dynamics-dependent quantity, since it is obtained from an integral of
the decay amplitude-squared over the Dalitz plot

fSCF =

∫ 1

0

∫ 1

0
ε fSCF |detJi| |A±(∆t)|2 dm′dθ′

∫ 1

0

∫ 1

0
ε |detJi |A±(∆t)|2 dm′dθ′

. (6.10)

It is computed iteratively, though the remaining systematic uncertainty after one iteration
step is usually sufficiently small. The SCF fractions are determined separately for each
tagging category from (interfering) MC simulation, weighted by the branching fractions of
the contributing signal modes (cf. Table 5.5).
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Figure 6.5: Dependence of mean (top) and RMS (bottom) value ofNN distributions in
different bins of the DP, for TM (left) and SCF (right) NR signal events. The SCF events
are mostly clustered at the corners of the DP. For the TM peak-to-peak spread are small
compared to the mean RMS value of the distributions:∆Mean ∼ 0.13, ∆RMS ∼ 0.03,
compared toRMS = 0.36. This is not the case for the SCF:∆Mean ∼ 0.2, ∆RMS ∼ 0.18,
compared toRMS = 0.39, but this component is only∼ 2% of the signal events.

TM resolution

The most narrow resonance that is known to contribute theB0 → K0
Sπ

+π− Dalitz plot
is f0(980)1. The intrinsic width of the dominantf0(980) resonance expressed in standard
deviations of a double Gaussian fit function gives approximately

σcore(Ff0(980)) ≈ 0.5 Γf0(980) ≈ 20 MeV/c2 , (6.11)

σtail(Ff0(980)) ≈ 2.0 Γf0(980) ≈ 80 MeV/c2 . (6.12)

This value can be compared to the mass resolution for TM events (∼ 8 MeV/c2 in RMS).
Even the worst tail-Gaussian resolution is narrower than the core width of the double Gaus-
sian fit to thef0(980) lineshape. Therefore, resolution effects in the TM model are not
accounted for. A systematical uncertainty stemming from neglecting resolutions, and other
reconstruction-related effects, is evaluated using fully-reconstructed samples of simulated
signal events (cf. Sec. 6.6).

1Actually the most narrow resonance in the signal DP model (cf. Sec. 6.8) is theχc0 with a width of
10 MeV/c2, ∼ 5 times smaller than that off0(980). This resonance almost does not overlap with the others
because it is too narrow and isolated in the DP. As a consequence, the effect in neglecting TM DP migration
for this component is expected to yield a negligible effect;in any case a systematic uncertainty is assigned to
this effect.
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as the smallest of the three invariant masses, rescaled in the (0, 1) range. Right: Average
value of Neural Network, for offpeak continuum events, as a function of the∆Dalitz variable.
A significant correlation betweenNN and the DP is seen.

Figure 6.7:Selection efficiency for TM (left) and SCF (right) events. Note that the selection
efficiency is not charge asymmetric, i.e. the selection efficiency map has to be symmetric with
respect toθ′ = 0.5. The Square Dalitz plane is then folded atθ′ = 0.5 in order to increase
the available statistics in the selection efficiency calculation.

SCF resolution

Misreconstructed events are concentrated in the corners ofthe Dalitz plot and have a mass
resolution that dramatically varies across the DP. In contrast to TM, resolution effects cannot
be ignored for SCF events (cf. Figs. 5.9). In order to accountfor these resolution effects, a
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2 × 2-dimensional convolution functionRSCF(m′
r, θ

′
r, m

′
t, θ

′
t) is introduced,

RSCF(m′
r, θ

′
r, m

′
t, θ

′
t) , (6.13)

which represents the probability to reconstruct at the coordinate(m′
r, θ

′
r) an event that has

the true coordinate(m′
t, θ

′
t). It obeys the unitarity condition

1
∫

0

1
∫

0

RSCF(m′
r, θ

′
r, m

′
t, θ

′
t) dm

′
rdθ

′
r = 1 , ∀ (m′

t, θ
′
t) ∈ SDP . (6.14)

TheRSCF function is obtained from MC simulation and implemented as afour-dimensional
smoothed histogram, computed once and cached during construction of the PDF. Fig. 6.8
shows the resolution function of TM (left) and SCF (right) for two arbitrary generated values
of the Square DP coordinates(m′

t = 0.10, θ′t = 0.25) and(m′
t = 0.72, θ′t = 0.04).
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Figure 6.8:Resolution for TM (left) and SCF (right) events for two chosen generated values
in the Square DP, indicated by the open stars (see text for thenumerical values).

Signal parameterization of∆t and Dalitz Plot

The reference distribution for the physical Dalitz plot (efficiency and resolution corrections
have been discussed in the previous sections) is obtained from the signal model described in
Sec. 2.4.2. It depends on the underlying resonance structure and is connected with∆t via
the matrix element (6.5,6.6), which serves as PDF.

Since the PDF deals with measured quantities, the physical time-dependent matrix ele-
ment is extended to include mistag probabilities and convolved with the∆t resolutionRsig.
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For an event with tag-flavorqtag, true∆t′ and measured∆t, this leads to:

|A(∆t, σ∆t)|2 =
e−|∆t′|/τB0

4τB0

[

1 + qtag
∆Dc

2
− qtag〈D〉c |A|2 − |A|2

|A|2 + |A|2
cos(∆md∆t

′)

+ qtag〈D〉c
2Im

[

AA∗]

|A|2 + |A|2
sin(∆md∆t

′)

]

⊗ Rsig(∆t
′ − ∆t, σ∆t) , (6.15)

where〈D〉c and∆Dc are the tagging-category-specific average and difference of the tagging
dilutions defined in Eq.(5.2) with the (tagging category dependent) mistag ratesωc andωc for
B0 andB̄0 tags, respectively. In the last formula, and in the following, theDP dependence
of amplitudes is implicit:A = A(DP). As mentioned previously, it has been assumed that
CP violation in mixing can be neglected (|q/p| h 1), and the amplitude parameterization
uses a convention where the phase from theB0B̄0 mixing is absorbed into thēB0 decay
amplitude,e−2iβĀ → Ā.

The resolution model that incorporates the finite vertex resolution has been described in
Sec. 5.4.3. The biases and relevant scale factors were measured in a so-calledBReco sam-
ple [105], which is a set of fully reconstructedB decay events with a high signal/background
ratio. They are given together with values obtained for comparison purposes from MC sim-
ulation. The core biases depend on the tagging categoryc (not indicated in Eq. (5.5)). These
parameters are fixed in the fit. A list of their values is given in Appendix C.

6.3.3 B background parameterization

The DP- and∆t-dependent PDFs factorize for the chargedB-background modes, but not for
the neutralB-background due toB0B̄0 mixing.

ChargedB-background

The chargedB-background contribution to the likelihood (6.1) invokes the parameterAB+,tag,
multiplied by the tag flavorqtag of the event. In the presence of significant tag-“charge”
correlation (denoting an effective tag-versus-Dalitz coordinate correlation), it parameterizes
possible direct CPV in these events. To parameterizes the tag-“charge” correlation, a distinct
square DP PDF for each reconstructedB flavor tag is used, while a tag-averaged PDF is used
for untagged events. The DP-dependent PDF (from which the time dependence factorizes)
reads

P c
B+,ij(DPi) = (1 + qtag,iAB+,tag,j) (1 − ωc)P c

B+j(DPi, qtag,i)

+ (1 − qtag,iAB+,tag,j)ω
cP c

B+j(DPi,−qtag,i) (6.16)
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whereωc are the tagging-category-specific mistag probabilities defined in Eqs. (5.2). The
BReco values [106] for chargedB decays are used, while tagging efficiencies are ob-
tained from MC. The PDFsP c

B+,j(DP,±qtag) are obtained from MC simulation requiring
the trueB flavor. Smoothed Keys histograms are used as parameterization (cf. Appendix A,
Sec. A.3).

Since the tag-“charge” correlation is implemented in the DPPDF, the∆t PDF forB+

background classj is simply given by the exponential decay rate

PB+,ij(∆t) = e−|∆t|/τj ⊗ Rsig(∆t
′ − ∆t, σ∆t) , (6.17)

whereτj is an effective lifetime, with a value very close toτB+ . The resolution functionR
is similar to the one used for the signal (see (Eq. 5.5)). In cases where secondary vertices
occur,e.g., inD decays, the effective lifetime and/or resolution can be significantly altered.

Neutral B-background

The NeutralB background in Eq. (6.1) is parameterized using tag-dependent PDFs. Neutral
B backgrounds are classified in three categories. ConcerningCP -eigenstates, correlation
between the tag and the Dalitz coordinate are of detector/reconstruction origin and expected
to be small. Non-CP eigenstates may exhibit tag-“charge” correlation. Moreover, both types
of decays can have direct and mixing-induced CPV. The third class of neutralB decays
involves charged kaons and hence does not exhibit mixing-induced CPV, but instead exhibits
a strong tag-“charge” correlation, because it consists ofB-flavor eigenstates.

Since neutralB mesons oscillate, a treatment as for chargedB background, using ef-
fective lifetimes as part of the resolution model, is not possible. Therefore, mode-specific
resolution parameters are applied. The following combined∆t and DP PDF for an event
with tagqtag is built:

P c
B0,ij(∆ti, σ∆t,i,DPi) = (1 + acp,j qtag) ·

(

|AB0,j |2 + |AB0,j|2
)

· e
−|∆t′|/τj

4τj

×
[

1 + qtag
∆Dc

j

2
+ qtag〈Dc

j〉 (Sj + ∆Sj) sin(∆md∆t
′
i)

− qtag〈Dc
j〉
(

Cj +
|AB0,j|2 − |AB0,j|2
|AB0,j|2 + |AB0,j|2

∆Cj

)

cos(∆md∆t
′
i)

]

⊗ Rsig(∆t
′
i − ∆ti, σ∆t,i) , (6.18)

where the〈Dc
j〉 and∆Dc

j are the tag dilutions in categoryc andB-background classj (cf.
Eq. (5.2)). They are obtained from MC simulation.acp,j is the overall tag asymmetry forB-
background classj. Usually “charge” asymmetry and “charge”-dependent mixing-induced
CPV are introduced into the PDF model. The parametersCj, Sj and∆Sj in classj are
unknown in general. When this is the case they are set to zero in the nominal model. They
are varied in an allowed range for systematic studies. The situation is different for the tag-
”charge” correlation parameter∆Cj . For most of the modes, tag-charge correlation in the
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Dalitz plot can be reliably taken from MC simulation, via thecoefficient in front of the
∆Cj, where the amplitude moduli-squared are simply the normalized DP distributions in
B0 andB̄0 decays. The values ofacp, C, ∆C, S and∆S, used for each class of neutralB
background in the nominal fit are summarized in Table 6.3. Errors quoted in the table refer
to shifts in the parameter used to evaluate the systematic effect. The DP PDFs are obtained
from smoothed histograms of MC-simulated events.

Note that the physical parameters in the time-dependent PDFare diluted by the (mostly)
incomplete reconstruction ofB-background events.

acp C ∆C S ∆S
D−π+ 0 ± 0.04 0 1. 0 0
J/ψK0

S 0 ± 0.03 0 0 0.697 ± 0.041 0
η

′

K0
S 0 ± 0.13 0 0 0.43 ± 0.17 0

Neutral Generic 0 ± 0.6 0 ± 1. 0 ± 0.6 0 ± 0.6 0 ± 0.6
ψ(2S)K0

S 0 ± 0.07 0 0 0.8893 ± 0.119 0
a+

1 π
− −0.07 ± 0.07 −0.10 ± 0.17 0.26 ± 0.17 0.37 ± 0.22 −0.14 ± 0.22

B-Bkg. Cat. 1 0 ± 0.1 0 1 0 0
B-Bkg. Cat. 2 0 ± 0.04 0 1 0 0
B-Bkg. Cat. 3 0 ± 0.12 0 1 0 0

Table 6.3:Values ofacp, C, ∆C, S and∆S, used for each class of neutralB background
in the nominal fit. Quoted errors refer to the shift of the parameter used to evaluate the
systematic effect.

Figures in Appendix A.3 show all bi-dimensional DP PDFs usedfor the charged and neutral
B-background components.

6.3.4 Continuum parameterization

The Dalitz Plot

The Dalitz plot treatment continuum events is similar to theone used for chargedB back-
ground (6.16), with mistag probabilities set to zero. In particular, DP and∆t PDFs factorize.
The continuum contribution to the likelihood (6.1) invokesthe parameterAqq̄,tag, multiplied
by the tag flavorqtag of the event. It parameterizes a possible direct CPV in theseevents and
is determined by the fit. A tag-averaged PDF for all tagging categories is used. This PDF is
symmetrized with respect toθ′ (as in the case of the selection signal efficiency, see Fig. 6.7)
so that the CPV information is only contained in theAqq̄,tag parameter.

The square DP PDF for continuum events is obtained from off-resonance data using
signal region (SR) and grandmES and∆E sidebands (cf. Sec. 5.7). To increase the available
statistics, sideband on-resonance events are also included. Since this empirical shape is non-
parametric, its precise shape can not be determined from thefit to the final data sample, and
so the validity of the sideband extrapolation has to be tested. This introduces systematic
uncertainties, which will be accounted for in Sec. 7.3. The square DP is broken into regions
and smoothed using different smoothing parameters for eachregion, as there are peaking
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structures of different widths (i.e. peaks in theρ0, K∗ bands due to realρ0s andK∗s).
Fig. 6.9 shows the DP PDF used for the continuum.
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Figure 6.9:Left: Continuum DP PDF, symmetrized with respect toθ′ = 0.5. Right: Fit to
the continuum∆t to the off-resonance data.

The ∆t PDF

The continuum∆t PDF is parameterized as the sum of three Gaussian distributions with
common mean (which has the unit of time), two relative fractions, and three distinct widths
(without units) that scale the∆t event-by-event error,σ∆t, yielding six free parameters:

Pqq̄,i(∆t, σ∆t) = (1 − ftail − fout) ·G (∆t, µ, scoreσ∆t)

+ ftail ·G (∆t, µ, stailσ∆t)

+ fout ·G (∆t, µ, soutσ∆t) . (6.19)

The model is motivated by the observation [107] that the∆t average is independent ofσ∆t,
and that the∆t RMS depends linearly onσ∆t. The fit of ∆t to the off-resonance data is
given in the right hand plot of Fig. 6.9.

6.4 Validation of fit performance with toy studies

The extraction of physical parameters is tested in simulation by means of toy pseudo-experi-
ments. A "toy" experiment is a data sample produced with a simplified Monte Carlo genera-
tion, whose output are random data samples with the likelihood variables, following the PDF
defined in Eq. 6.1. A validation study of the likelihood function can be performed, either as
a function of the fitted isobar parameters, or in terms of the directCP asymmetries, phase
differences and branching fractions. Two different sets oftests have been undertaken:

• High-statistics, signal-only toy experiments, which allow one to disentangle intrinsic
features of the model from statistical effects.
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• More realistic toys, with Continuum and B-background components, and a signal DP
model including the components from which uncontroversialsignal were observed in
Q2B analyses (f0(980)K0

S, ρ0(770)K0
S,K∗±(892)π∓ and(Kπ)∗±0 π∓ 2).

The randomization method

For all these toy experiments, toy datasets are generated and fitted with various models.
Initial values of the amplitude parameters are randomized before the fit in the following
way:

• For moduli, the randomization uses a flat distribution within 0.1 - 2.0 times the gener-
ated module.

• For phases, the randomization uses a flat distribution in theinterval(−π, π).

6.4.1 Signal-only high statistics toys

As a first study, a simple model, made only of one resonance, isconsidered. Other compo-
nents are then added one by one. Toy data sets are generated using the values of physical
parameters described in Table 6.4. Fig. 2.3 shows the distribution over the DP for a signal
model with the components enumerated in Table 6.4, illustrating their location and interfer-
ence. After translating the Q2B quantities into moduli and phases of the isobar amplitudes,
the generation of the dataset is performed. As the normalized likelihood function depends
only on ratios of isobar amplitudes, oneci or c̄i has to be fixed in the fit. The choice of a
particular fixed component is a convention that has no physical consequence. This property
has been checked with toys : values of fitted Q2B parameters are independent of convention.
In the following thec(B0 → f0(980)K0

S) isobar amplitude is fixed to be real, with modulus
4.

One resonance model

Several independent toy data samples off0(980)K0
S decays, with 4K signal events each, are

generated. For each sample, the2βeff(f0(980)K0
S) parameter is fitted. In the absence of

other resonances to interfere with, mirror solutions can not be disentangled from the true
solution. This is shown in Fig. 6.10, where the output value of 2βeff(f0(980)K0

S) is given
as a function of the generation value. For each generated value, the fit can converge on two
distinct points, with approximately the same probability;this happens because the likelihood
function has two equivalent minima in these values. This canbe seen in Fig. 6.11, which
shows the distribution of fitted values for the2βeff (f0(980)K0

S) parameter, for a single toy
data sample fitted several times with random initial values of the isobar amplitudes. There
are two equivalents peaks located at the generated value (blue) and at the mirror solution
(red), the distribution of−log(L) at minimum showing only one peak, indicating that the
likelihood function has two equivalent minima. There is a complete degeneracy in this case.

2The notation of theB± → K±π∓π± [34] andB0 → K±π∓π0 [40] papers is followed here.
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Nominal Values
C(f0(980)K

0
S) -0.05

S(f0(980)K
0
S ) -0.75

2βeff (f0(980)K
0
S) 49.0

BF (f0(980)K
0
S) 0.16

C(ρ0(770)K0
S) +0.05

S(ρ0(770)K0
S) +0.65

2βeff (ρ(770)K0
S) 41.0

BF (ρ0(770)K0
S) 0.10

ACP (K∗±(892)π∓) -0.10
∆φ(K∗+(892)π−,K∗−(892)π+) 0.0
BF (K∗±(892)π∓) 0.27
ACP (K∗±(1430)π∓) 0.0
∆φ(K∗+(1430)π−,K∗−(1430)π+) 0.0
BF (K∗±(1430)π∓) 0.48
∆φ(ρ0(770)K0

S , f0(980)K
0
S) 40.0

Table 6.4:Nominal values of physical parameters for the generation ofthe data sets for the
toy studies. Phases are in degrees.
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Figure 6.10: Scan in the parameter2βeff(f0(980)K0
S) for the one resonance model

(f0(980)K0
S). This is a scan with 20 values within (-180, 180) degrees. The horizontal

and vertical axis show the generated and fitted values, respectively.

Two resonance model

The ρ0(770)K0
S intermediate state is added to the Dalitz model used in the previous sec-

tion. There are then two resonances in the model. A similar toy MC study is performed, on
several independent samples containing6.5K events each. In these fits, three additional pa-
rameters can be determined:2βeff(ρ

0(770)K0
S), ∆φ(f0(980), ρ0(770)), andC(ρ0(770)K0

S).
Fig. 6.12 shows three different scans of2βeff(f0(980)K0

S), for three different, arbitrary val-
ues of∆φ(f0(980), ρ0(770)). In this case, the mirror solution is disfavored, as the fit does
converge more often on the true solution. This feature is further illustrated by performing
randomized fits to a single dataset, whose results are shown in Fig. 6.13. The left hand
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Figure 6.11: Distributions of NLL (negative log likelihood,−log(L)) (left) and
2βeff(f0(980)K0

S) (right) at minima for randomized fits to one data set for the one reso-
nance model with thef0(980)K0

S intermediate state. In the right hand plot the peak in blue
is the angle corresponding to the generated value (42 degrees) and in red peak corresponds
to the degenerated mirror solution (138 degrees).

plot shows the distribution of−log(L) at minimum. In this case there are two peaks very
well separated by 4100 units of likelihood (this big difference stems from the high statis-
tics, and absence of backgrounds, in the toy sample used). 78% of the fits converge to the
global minimum of−log(L) (in blue), at a value corresponding to the generated value of
2βeff(f0(980)K0

S). The remaining 22% of the fits converge to the local minimum (in red), at
a value corresponding to the now non-degenerated mirror solution. The interference pattern
between different intermediate states helps in raising thedegeneracy of the solution.

Scans in∆φ(f0(980), ρ0(770)) andCf0(980)K0
S

are shown in Fig. 6.14. For these param-
eters, a single solution for the fitted value is found for all the scan values. In the case of the
Cf0(980)K0

S
scan, the distribution tends to be narrower in the regions close to the limits of this

parameters, asCf0(980)K0
S

is bound to lie in the(−1, 1) interval.

Four resonance model

As a further step with respect to the previous section, theK∗±(892)π∓ intermediate state to
the Dalitz model is now added. This time, 10K events are generated for each toy data sam-
ple are generated. In this case, there are eight parameters to fit for, the additional ones being
∆φ(K∗±(892)π∓) andACP (K∗+(892)π−, K∗−(892)π+). Fig. 6.15 shows the scans for sev-
eral of the unknown parameters. For∆φ(f0(980), ρ0(770)), no mirror solution is found. On
the other hand,2βeff (f0(980)K0

S), ∆φ(f0(980), K∗+(892)) and ∆φ(f0(980), K∗−(892))
parameters are affected by mirror solutions, identified as local maxima of the likelihood func-
tion. Comparing the output of this test to the result of the previous section, one concludes
that the additional intermediate state in the Dalitz model helps in reducing the degeneracy
of the mirror solutions. As an additional test on the impact of including theK∗±(892)π∓,
randomized fits to the same data set are performed, as shown inFig. 6.16. The left plot shows
the distribution of−log(L) at minimum. Two well defined peaks, separated by 2800 units
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Figure 6.12:Scan for 20 values in the range(−180, 180) in the parameter2βeff(f0(980)K0
S)

for the two intermediate state model (f0(980) andρ0(770)). The horizontal and vertical axis
show the generated and fitted values, respectively. The (upper left), (upper right) and (lower
left) plots are the scans for values of∆φ(f0(980), ρ0(770)) of 40, -120 and -40 degrees,
respectively.

of likelihood, are observed. The fit converges to the global minimum −log(L) in 82% of
the cases (shown in blue in the plot). This minimum corresponds to the generated value of
2βeff(f0(980)K0

S). The remaining 18% of the fits converged to the local minimum (in red).

The conclusion that stems from this last study is that the inclusion of theK∗±(892)π∓

intermediate state helps, but not as significantly as theρ0(770)K0
S, in raising the degeneracy

on the2βeff parameter forf0(980)K0
S. This is not unexpected, as the interference region of

thef0(980)K0
S with theρ0(770)K0

S is larger compared with that of theK∗±(892)π∓, which
occurs only at the corners of the Dalitz Plot (cf. Fig. 2.3).

In principle, a further test could have been performed, adding the(Kπ)∗±0 π∓ S-wave to
the Dalitz model in order to check for further degeneracies.Since the interference pattern
of this component is similar to that ofK∗±(892)π∓, it is expected that its addition provides
further improvement, by decreasing the percentage of fits converging to the mirror solution.
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Figure 6.13:Distributions of−log(L) (shifted to zero) (left) and2βeff(f0(980)K0
S) (right)

at minimum for randomized fits to one data set for the model off0(980)K0
S andρ0(770)K0

S

intermediate states. In these plots peaks of the same color correspond mutually. In the right
hand plot in blue peak corresponds to the generated value (42degrees) and the red peak
corresponds to the now non-degenerated mirror solution (138 degrees).
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Figure 6.14:Scan for 20 values in the range (-180, 180) for∆φ(f0(980), ρ0(770)) (left) and
in the range (-1,1) forCf0

(right) for the two resonances model (f0(980)K0
S andρ0(770)K0

S).
The horizontal and vertical axis show the generated value and the difference between the
fitted and generated values, respectively.

6.4.2 Realistic toys with signal, continuum and B background compo-
nents

As a second step, more realistic toys are generated, including continuum and B-background
components. Each toy was generated using the expected yieldon the data sample: 2200
signal events, 14200 continuum background, 5470 neutralB-background events, split into 5
classes (J/ψK0

S, ψ(2S)K0
S, Dπ, η′K0

S and Neutral Generic) and 280 charged events treated
as a single class (charged generic). The number of events perspecies are generated at ran-
dom, following a Poisson distribution, and event distributions with respect to the fit variables
are generated with the PDFs of the corresponding component.



6.4 Validation of fit performance with toy studies 164

GEN
f0_effβ2

-150 -100 -50 0 50 100 150

F
IT

f0
_e

ff
β2

-200

-150

-100

-50

0

50

100

150

200

0

10

20

30

40

50

60

h1

GEN
*+

f0K
φ∆

-150 -100 -50 0 50 100 150

F
IT

*+
f0

K
φ∆

-200

-150

-100

-50

0

50

100

150

200

0

10

20

30

40

50

h1

GEN
)+π(892)

*-
(Kφ ∆

-150 -100 -50 0 50 100 150

F
IT

)
+ π

(8
92

)
*-

(Kφ ∆

-200

-150

-100

-50

0

50

100

150

200

0

5

10

15

20

25

30

h1

GEN
0ρf0φ∆

-150 -100 -50 0 50 100 150

G
E

N 0ρ
f0φ∆

 -
 

F
IT

0ρ
f0φ∆

-30

-20

-10

0

10

20

30

0

2

4

6

8

10

12

14

16

18

20

22

h2

Figure 6.15: Scan for 20 values in the range (-180, 180) for2βeff(f0(980)K0
S) (up-

per left), ∆φ(f0(980), K∗+(892)) (upper right),∆φ(f0(980), K∗−(892)) (lower left) and
∆φ(f0(980), ρ0(770)) (lower right) for the four intermediate states model (f0(980)K0

S,
ρ0(770)K0

S and K∗±(892)π∓). For the 2βeff(f0(980)K0
S), ∆φ(f0(980), K∗+(892)) and

∆φ(f0(980), K∗−(892)) the horizontal and vertical axes represent the generated and fit-
ted values, respectively. For the scan in∆φ(f0(980), ρ0(770)), the horizontal and vertical
axes represent the generated and fitted minus generated values, respectively.

For the signal, the model contains six intermediate states :f0(980)K0
S, ρ0(770)K0

S,
K∗∓(892)π± and(Kπ)∗∓0 π± S-wave. The signal fit parameters are : a global signal yield
and all relative modules and phases of isobar amplitudes. The generation values for the iso-
bar amplitudes are obtained from the values of physical parameters on Tab. 6.4. Continuum
background yield is fitted simultaneously with the signal yield. Charmless and charmed B-
background yields are fixed at expectation values (which areevaluated using world averages
for the branching fractions, and efficiencies from MC). The complete list of fit parameters
used in this fit configuration is detailed in Table 6.5.

Local minima solutions have been observed in several previous Dalitz analysis. This
feature can be illustrated inB0 → KSπ

+π− analysis, by means of fits to a full toy dataset,
generated with a signal model as described in the last paragraph. When Maximum Likeli-
hood fits with randomized starting values are performed, a fraction of the fits end up con-
verging to solutions (local minima) with larger values of−log(L), as shown in the likelihood
distributions shown in Fig. 6.17.
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Parameter Description Value

NK0
S
π+π− Number ofB → K0

Sπ
+π− events 2200

Nqq̄(tagKaon1) Continuum events in tagging Kaon1 801
Nqq̄(tagKaon2) Continuum events in tagging Kaon2 2133
Nqq̄(tagKaonPion) Continuum events in tagging KaonPion 1780
Nqq̄(tagLepton) Continuum events in tagging Lepton 47
Nqq̄(tagOther) Continuum events in tagging Other 1620
Nqq̄(tagP ion) Continuum events in tagging Pion 2032
Nqq̄(Notag) Continuum events in Notag 5787
NContinuum Total Number of continuum events 14200
NBB Number B Background events 5750
AB0→f0(980)K0

S
Magnitude of the amplitude ofB0 → f0(980)K

0
S 1.0 (fixed)

φB0→f0(980)K0
S

phase of the amplitude ofB0 → f0(980)K
0
S 0.0 (fixed)

A
B

0→f0(980)K0
S

Magnitude of the amplitude ofB
0 → f0(980)K

0
S 1.051

φ
B

0→f0(980)K0
S

phase of the amplitude ofB
0 → f0(980)K

0
S -49

AB0→ρ0(770)K0
S

Magnitude of the amplitude ofB0 → ρ0(770)K0
S 0.092

φB0→ρ0(770)K0
S

phase of the amplitude ofB0 → ρ0(770)K0
S -40

A
B

0→ρ0(770)K0
S

Magnitude of the amplitude ofB
0 → ρ0(770)K0

S 0.087

φ
B

0→ρ0(770)K0
S

phase of the amplitude ofB
0 → ρ0(770)K0

S -81

AB0→K∗(892)+π− Magnitude of the amplitude ofB0 → K∗(892)+π− 0.158
φB0→K∗(892)+π− phase of the amplitude ofB0 → K∗(892)+π− -40

A
B

0→K∗(892)−π+ Magnitude of the amplitude ofB
0 → K∗(892)−π+ 0.175

φ
B

0→K∗(892)−π+ phase of the amplitude ofB
0 → K∗(892)+π− -40

AB0→K0∗(1430)+π− Magnitude of the amplitude ofB0 → K0∗(1430)+π− 5.964
φB0→K0∗(1430)+π− phase of the amplitude ofB0 → K0∗(1430)+π− -57

A
B

0→K0∗(1430)−π+ Magnitude of the amplitude ofB
0 → K0∗(1430)−π+ 5.964

φ
B

0→K0∗(1430)−π+ phase of the amplitude ofB
0 → K0∗(1430)+π− -68

Table 6.5:Parameters and their input values that are used in the toy experiments. Parameters
are free to vary in the fit unless statedfixed. In total, there are 26 floating parameters in the
fit.
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Figure 6.16:Distributions of−log(L) (left) and2βeff(f0(980)K0
S) (right) at minimum for

randomized fits to one data set for the model off0(980)K0
S, ρ0(770)K0

S andK∗±(892)π∓

intermediate states. In these plots peaks of the same color correspond mutually. In the right
hand plot the peak in blue corresponds to the generated value(42 degrees) and the red peak
corresponds to the now non-degenerate mirror solution (138degrees).
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Figure 6.17:Distributions of−log(L) at minimum for randomized fits to one data set gener-
ated with the signal model described in the text, and Continuum andB-background compo-
nents.

Three minima of the likelihood function can be observed.71% of the fits converged to
the global minimum (in blue), but 18% (in red) and 11% (in green) of the fits converged
to other local minima. The global minimum is separated from the others two by2.0 units
of likelihood, and the local minima are separated from each other by a half of unit. Thus,
several randomized fits to data need to be performed, to make sure the global minimum is
properly identified. The distributions for several parameters are shown in the Fig. 6.18 and
Fig. 6.19. A color code indicates the different solutions,e.g. entries in blue correspond
to fits that converged in the global minimum. The entries below each narrow likelihood
peak yield identical results. Fitted parameters usually yield very similar values in all three
solutions, the differences are much smaller than the statistical errors; the exceptions are the
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values of phases, for which the mirror solutions can lie far away from each other. In other
words, while event rates (i.e. fit fractions) and direct CP asymmetries, are well constrained
by the likelihood fit, the sensitivity to interference patterns is less,i.e. several different isobar
configurations can provide an equivalent description of data.
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Figure 6.18: Distributions of 2βeff(f0(980)K0
S) (upper left), 2βeff(ρ

0(770)K0
S) (upper

right), C(f0(980)K0
S) (middle left),C(ρ0(770)K0

S) (middle right),S(f0(980)K0
S) (lower

left) andS(ρ0(770)K0
S) (lower right) at minimum for randomized fits to one data set gener-

ated with the signal model described in the text, and Continuum and B background compo-
nents.
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Figure 6.19:Distributions ofFF (f0(980)K0
S) (upper left),FF (ρ0(770)K0

S) (upper right),
FF (K∗±(892)π∓) (middle left),ACP (K∗±(892)π∓) (middle right),∆φ(f0(980), ρ0(770))
(lower left) and∆φ(K∗+(892)π−, K∗−(892)π+) (lower right) at minimum for randomized
fits to one data set generated with the signal model describedin the text, and Continuum and
B background components.

6.5 Likelihood vs. 2βeff(f0(980)K0
S) Scans

A total degeneracy on phase differences occurs when the signal model contains only one
intermediate state,i.e. in the complete absence of interference. Information stemming from
interference patterns helps resolve the degeneracies the degeneracies, as illustrated by scan-
ning the2βeff(f0(980)K0

S) parameter on toy datasets. For this study, datasets with different
values of the weak mixing phase for thef0(980)K0

S are generated; the relative phases of
the f0(980)K0

S amplitude with respect to the amplitudes of the other resonances are also
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generated at different values. For each independent dataset, the likelihood as a function of
some isobar parameterp1 (or set of isobar parameters~p1) is scanned the following way: 1)
the parameterp1 is set to a fixed value; 2) the toy dataset is fitted several times with the
fitting algorithm starting from random initial values of theisobar parameters; 3) the lowest
likelihood value obtained in these fits is selected; 4) the process is reiterated for different
sequential values of thep1 parameter. The output of this sequence isL vs.p1, on "likelihood
scan" curve.

As always, one amplitude (both module and phase) has to be fixed in the fit. If thecσ
isobar amplitude is taken as the reference, with its phase chosen to be zero, then theφ(σ)
observable is just obtained as (minus) the phase of its CP-conjugated isobar amplitudēcσ.
The likelihood scan as a function of theφ(σ) phase is obtained by re-fitting the same dataset
using different fixed values of thecσ phase. The same procedure can be used to scan the
directCP -violation parameterC. Choosingcσ as reference, and fixing its modulus toa, the
C(σ) observable is a function of|cσ| only (cf. Eq. 2.45). Then, in order to setC to a specific
valueCval, the|cσ| parameter has to be fixed to the value

|cσ| = a

(

1 − Cval

1 + Cval

)1/2

. (6.20)

Using these same relations, a two-dimensional scan of the likelihood as a function ofφ(σ)
andC(σ) can be performed, by simultaneously fixing the module and phase of the|cσ|
parameter at several consecutive values.

6.5.1 High statistics, signal-only likelihood scans

In the case of two minima, the likelihood should look like theenvelope of two multi-Gaussian
likelihoods centered at the corresponding minima. The central shape will depend on, both
the difference in likelihood values at each minimum, and thewidth of each Gaussian. For
example, if the difference in likelihoods in both minima is very large, and the Gaussians are
very wide, the secondary minimum may not be visible on the scan; in contrast, if the two
minima have similar likelihood values, and the Gaussians are narrow, it should be easy to
resolve them.

In presence of backgrounds, the errors of the physical parameters are larger, the Gaussian
around each minimum appears wider. Therefore, backgroundscan potentially alter the po-
tential to resolve local minima. A study using high statistics signal only toy datasets is used
to illustrate this feature. For these toys, generated with 10k events each, the signal model is
made of only two components, thef0(980)K0

S and theρ0(770)K0
S, as previous studies have

shown that the interference pattern of these two componentsprovides the dominant informa-
tion on the2βeff (f0(980)K0

S) scan. In the case of two components, the discrimination power
between the correct and the mirror solutions depends on the values of two parameters: the
value of the mixing phase itself, and the relative phase withrespect to the other resonance
as well. On the one hand, it depends on the mixing angle: if thecorrect solution is2β, the
distance to its mirror solution gets smaller as2β → π/2. On the other hand, it depends also
on the phase difference∆φ(f0(980), ρ0(770)), because the value of this phase determines
the interference pattern of these two components over the Dalitz plot.
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Figure 6.20: Likelihood Scans in2βeff(f0(980)K0
S). Each plot is made with a sin-

gle toy dataset, generated with∆φ(f0(980), ρ0(770)) = 40o and different values of
2βeff(f0(980)K0

S), namely15o, 30o, 45o, 60o, 75o and90o, counting from left to right and
from top to bottom.

In Fig. 6.20, scans for one fixed value of the phase difference∆φ(f0(980), ρ0(770)) and
different generation values of the mixing angle2βeff(f0(980)K0

S) are shown. It can be seen
that the position of the two minima depends on the generationvalue of2βeff(f0(980)K0

S):
they get closer as2βeff(f0(980)K0

S) approaches90o, in which case they coincide. In sim-
ilar spirit, Fig. 6.21 shows scans for one generation value of 2βeff(f0(980)K0

S) and differ-
ent generation values of∆φ(f0(980), ρ0(770)). These plots show that the positions of the
two minima are fixed, but the difference in likelihood units of the two minima depends on
∆φ(f0(980), ρ0(770)). The conclusion of this study is that the ability of resolving the two
minima is a multivariate function of the values for the isobar phases.
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Figure 6.21: Likelihood Scans in2βeff (f0(980)K0
S). Each plot is made with a sin-

gle toy dataset, generated with2βeff(f0(980)K0
S) = 46o and different values of

∆φ(f0(980)ρ0(770), namely0o, 30o, 60o, and90o, counting from left to right and from top
to bottom.

6.6 Studies using fully simulated MC samples

A useful validation consists in generating datasets with components of signal, continuum and
B-background from different independent sources, merging them together and fitting them
to check if the results obtained by the analysis tool are compatible with the generated values.
Such studies are called "embedded fits". This study is particularly relevant when fully simu-
lated MC events are used as signal, because effects like reconstruction and misreconstructed
events are under control.

6.6.1 Dalitz plot model for embedded fits

The signal component in the embedded fits is a DP model MC sample generated using
EvtGen. The sample has1321K generated events, with the following resonances and line-
shapes (C.C. means charge conjugated):

• B0 → f0(980)K0
S and C.C (Flatté lineshape)

• B0 → ρ0(770)K0
S and C.C (RBW lineshape)

• B0 → K∗−(892)π+ and C.C. (RBW lineshape)

Generated values for phases and physical parameters are summarized in Table 6.6. The
generated phases for the different resonances are also represented graphically on Figure 6.22
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(note that the moduli of amplitudes in the figure do not correspond to the values in the actual
sample).

Parameter Generated
Value

Phases
A(f0(980)K

0
S) 0.0

A(f0(980)K
0
S) −37.2

A(ρ0(770)K0
S) 134.7

A(ρ0(770)K0
S) 78.0

A(K∗−(892)π+) −36.1
A(K∗+(892)π−) −80.9
Physical parameters
C(f0(980)K

0
S) 0.0

S(f0(980)K
0
S) −0.61

2βeff (f0(980)K
0
S) 37.2

BF (f0(980)K
0
S) 38.2%

C(ρ0(770)K0
S) 0.0

S(ρ0(770)K0
S) 0.84

2βeff (ρ(770)K0
S) 56.7

BF (ρ0(770)K0
S) 26.4%

ACP (K∗±(892)π∓) 0.0
∆φ(K∗+(892)π−,K∗−(892)π+) 44.7
BF (K∗±(892)π∓) 33.3%
∆φ(ρ0(770)K0

S) −134.7
∆φ(K∗+(892)π−) 36.1

Table 6.6:Generated values for phases and physical parameters in the DP model. Phases
are given in degrees.

Figure 6.22:Phases of different amplitudes in the DP MC. TheA amplitudes are represented
with a half arrow-head. Dark solid arrows stand forf0(980)K0

S, dark dotted arrows for
ρ0(770)K0

S and gray dotted arrows forK∗(892)π. Moduli of amplitudes in the figure do not
correspond to the values in the sample.
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6.6.2 Embedded fits

The event sample of signal MC described above has been split into 200 datasets. The average
number of events in each sample is 2200. Those signal subsamples were embedded into
datasets made of continuum, neutral generic and charged generic events that were generated
with the simplified toy simulation. The average number of events is 14200, 114 and 280 for
continuum, neutral generic and charged generic events, respectively. These numbers roughly
correspond to the expectation yields in the data sample. Each merged dataset has been fitted
20 times with random initial values; the numbers reported below correspond to the best fit
result to each data set.

Distributions of the Q2B parameters are shown in Figs. 6.23 and 6.24. All the distribu-
tions show a Gaussian-like shape, and they are centered at the generated value, except for
thef0(980)K0

S andK∗(892)π fit fractions. For these last two distributions, the mean value
deviates by1.2% from the generated one. This difference will be assigned as asystematic
uncertainty on the fit fractions (cf. Sec. 7.3.1).

Pulls for yields are shown in the Figs. 6.25 and 6.26. The meanvalue of the signal yield
pull (bottom right hand plot in Fig. 6.26) shows a bias of∼ 0.28σ, corresponding to∼ 14
events. Also, the width of the pull is slightly narrow (0.9). Both effects are addressed as
systematical errors (cf. Sec. 7.3.1). For the other parameters no significant bias is observed.
It can be concluded from this study on embedded samples that the fitting tool is reasonably
unbiased.

6.7 Extraction of confidence intervals on the physical pa-
rameters

6.7.1 The statistical likelihood scans

In the extended maximum likelihood fit, the total yield ofB0 → K0
Sπ

+π− events, and
the magnitude and phase for each intermediate state, are directly extracted from the fit. A
further step is needed to translate the complex isobar amplitudes into information on physics
quantities. The relevant physical parameters are phase differences, inclusive and exclusive
directCP asymmetries, fit fractions and branching ratios (cf. Sec. 2.4.9). These parameters
are functions of the fit parameters; their functional dependence can be highly non trivial.
Two approaches will be used to estimate the mean values and errors out of the fit results: the
Parabolic Likelihood approach, which assumes a parabolic behavior around a minimum of
the (negative logarithmic) likelihood function; and the more accurate method of likelihood
scans, which does not make any assumptions at all.

• The Parabolic Likelihood (PL) Method: in this method, it is assumed that the (neg-
ative log) likelihood function can be approximated to a hyperparaboloid near a given
minimum. LetXi (i = 1, ..., Nfit) be theNfit parameters allowed to vary in the fit.
Then, the likelihood function can be approximated by,

−2log(L) ≃
∑

ij

(

Xi −Xfit
i

)

C−1
ij

(

Xj −Xfit
j

)

(6.21)
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Figure 6.23:Distributions of fitted Q2B parameters on embedded samples.C(f0(980)K0
S)

(top left),BF (f0(980)K0
S) (top right),C(ρ0(770)K0

S) (middle left),BF (ρ0(770)K0
S) (mid-

dle right), ACP (K∗(892)π) (bottom left),BF (K∗(892)π) (bottom right). The red marks
indicate the generated values.

whereXfit
i are the fitted values andC is the fit covariance matrix. Writing this ap-

proximation, in order to obtain the likelihood scan (−2logL(F )) of a given observable
which is a function of the fit parametersF (Xi) (e.g. a directCP asymmetry), this
hyperparaboloid is just projected in the direction ofF (Xi). By construction, the PL
method takes into account the linear correlations among fit parameters, and propagates
them into the physical quantity one is interested in.

As discussed in Sec. 6.4, the likelihood function is expected to have several local
minima. In general, the empirical observation shows that values ofCP asymmetries
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Figure 6.24:Distributions of fitted Q2B parameters on embedded samples.S(f0(980)K0
S)

(top left), 2βeff (f0(980)K0
S) (top right), S(ρ0(770)K0
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S)
(middle right),∆φ(K∗(892)π) (bottom left),∆φ(f0(980)K0
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The red marks indicate the generation values.

and fit fractions tend to be very similar among local minima, in contrast to isobar phase
differences, that can show larger differences. For the former parameters, it is thus safer
to apply an approximate method, which is referred as the PL-envelope method. The
procedure goes as follows:

1. Having identified then local minima (solutions) of the likelihood function, ob-
tained from randomized fits to data, a−2logLi(F ) is built for each minimum.

2. Using theNNLmin value, the NLL value of the global minimum, the∆χ2
i,min =

2(NLLi −NLLmin) is added to each−2logLi(F ).
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Figure 6.25:Pull on Yields for embedded fits. Continuum yields for categoriesLepton (top
left), Kaon1 (top right), Kaon2 (middle left),Pion (middle right),KaonPion (bottom
left) andOther (bottom right). The blue line is a Gaussian fit.

3. Then, the function

−2∆log(L)(F ) = Min
{

−2logLi(F ) + ∆χ2
i,min

}

, (6.22)

which can be seen as the envelope of all−2logLi(F ) curves, is taken as the total
statistical scan. The confidence level (CL) is defined as

CL(F ) = Prob(−2∆log(L)(F ), 1) ;

the1 − σ (2 − σ) intervals are inferred from theF values for whichCL = 32%
(5%).
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Figure 6.26:Yields distributions for Embedded fits. Yields for continuum NoTag category
(top left), Neutral Generic (top right), Charged Generic (bottom left) and signal (bottom
right). The blue line is a Gaussian fit.

While this approach does not take into account the non-parabolic behavior of the like-
lihood function, and so the nonlinear correlations betweenthe fit parameters, the PL-
envelope method provides an acceptable technique for setting1−σ and2−σ intervals.
Tests have shown that the PL-envelope method reproduces thecomplete likelihood
scan (see later) when the relevant component is uncontroversial. The PL-envelope will
be used for setting confidence intervals on directCP asymmetries, fit fractions and
some of the phase differences (e.g.φ(χC(0)K0

S)).

As an illustration, an example is produced using a realistictoy dataset, generated and
fitted with a 6-resonance model:f0(980), ρ0(770), K∗±(892) and (Kπ)∗±0 . Initial
generation values, and fitted results on this particular toyexperiment are shown on
Table 6.7, and Fig. 6.27 shows the correlation matrix obtained from the fit. Note that
the strongest correlations occur between the phases.

Figs. 6.28 and 6.29 show theL(F ) (and the CL) likelihood scans using the PL method
for some physical parameters (S, C, FF , ACP and phase differences) using only one
minimum (n = 1) of the likelihood function.

• Complete likelihood scans:when the parabolic approximation can not be used safely,
a more correct, CPU-consuming, method will be used. This concerns in particular
the phase differences and some bi-dimensional likelihood scans (see Sec. 6.8 for an
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Parameter Name Generation Value Initial Value in Fit Fit Result
A-k0st-1430-p 5.964 2.416 (5.4949 ± 0.553)
A-kst-892-p 0.158 0.110 (0.14844 ± 0.0158)
A-rho-770-z 0.092 0.030 (0.095087 ± 0.0148)
Ab-f0-980-z 1.051 1.131 (0.84986 ± 0.162)
Ab-k0st-1430-m 5.964 8.585 (5.4481 ± 0.538)
Ab-kst-892-m 0.175 0.049 (0.14215 ± 0.0148)
Ab-rho-770-z 0.087 0.102 (0.074304 ± 0.0132)
DESlope −0.141 −0.141 (−0.200 ± 0.342)
DESq 0.000 0.000 (0.099998 ± 0.104)
contPiNb-Kaon1 1562 1562 (1585.6 ± 41.7)
contPiNb-Kaon2 3921 3921 (3825.5 ± 64.2)
contPiNb-KaonPion 3525 3525 (3671.6 ± 62.6)
contPiNb-Lepton 64 64 (57.111 ± 9.68)
contPiNb-NoTag 11165 11165 (11385 ± 109)
contPiNb-Other 3113 3113 (3077.5 ± 57.2)
contPiNb-Pion 3942 3942 (3901.7 ± 64.6)
phA-k0st-1430-p −57 80 (−84.085 ± 21.3)
phA-kst-892-p −40 48 (−56.187 ± 20.8)
phA-rho-770-z −40 147 (−46.08 ± 18.7)
phAb-f0-980-z −49 −90 (−45.657 ± 16.8)
phAb-k0st-1430-m −68 95 (7.77 ± 33.1)
phAb-kst-892-m −40 28 (45.075 ± 32.4)
phAb-rho-770-z −81 −166 (−93.295 ± 23.6e)
sigPiNb 2200 2200 (2232.1 ± 65.8)

Table 6.7:Initial generation values, and fit results for a specific Toy MC experiment.

account of the nominal DP signal model), namely:

– One-dimensional likelihood scans,

−2βeff (f0(980)K0
S) = arg

[

c(B0 → f0(980)K0
S)c∗(B̄0 → f0(980)K0

S)
]

−2βeff (ρ
0(770)K0

S) = arg
[

c(B0 → ρ0(770)K0
S)c∗(B̄0 → ρ0(770)K0

S)
]

−∆φ(K∗(892)π) = arg
[

c(B0 → K∗+(892)π−)c∗(B̄0 → K∗−(892)π+)
]

−∆φ((Kπ)∗0π) = arg
[

c(B0 → (Kπ)∗+0 π−)c∗(B̄0 → (Kπ)∗−0 π+)
]

−∆φ(f 0(980)K0
S, ρ(770)K0

S) = arg [c(B0 → f0(980)K0
S)c∗(B0 → ρ0(770)K0

S)]
−∆φ(ρ(770)K0

S, K
∗(892)π) = arg [c(B0 → ρ0(770)K0

S)c∗(B0 → K∗+(892)π−)]
−∆φ(ρ(770)K0

S, (Kπ)∗0π) = arg
[

c(B0 → ρ0(770)K0
S)c∗(B0 → (Kπ)∗+0 π−)

]

−∆φ(K∗(892)π, (Kπ)∗0π) = arg
[

c(B0 → K∗+(892)π−)c∗(B0 → (Kπ)∗+0 π−)
]

(6.23)

– Two-dimensional likelihood scans,

−2βeff (f0(980)K0
S) vs C(f0(980)K0

S)
−2βeff (ρ

0(770)K0
S) vs C(ρ0(770)K0

S)
(6.24)

which are an important goal of this study. This also concernsthe fit fractions of com-
ponents with low significance.

Instead of assuming a parabolic shape of theNLL close to its minimum, the data is
refitted under the constraint that the physical parameter under study is fixed (it is also
possible to fix several parameters), but allowing all other isobar parameters to be free
in the fit. Doing that iteratively, theNLL (in fact χ2 = 2(NLL − NLLbestfit)) is
scanned. An example in2βeff(f0(980)K0

S) is given in Sec. 6.5. Due to local minima,
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Figure 6.27:Correlation matrix for the 6-resonance Toy MC fit from Table 6.7.

in general randomized fits have to be performed on each scan value of the physical
parameter under study, which makes this technique very heavy in CPU-computing
time, in particular for bi-dimensional scans.

For each exclusive channel (e.g. f0(980)K0
S), theCP -violation (CPV) information

is contained in the(φ(σ), C(σ)) parameters, zero CPV being located at the points
(0◦, 0) and(180◦, 0). A two-dimensional likelihood scan in these two parametersis
built using their relations with the fitted isobar amplitudes (see Eqs. 2.44 and 2.45,
and the comments in Sec. 6.5). The(φ(σ), C(σ)) plane can be transformed to the
(S(σ), C(σ)) using Eq. 2.46. In doing this transformation part of the information is
lost, but a constraint in CPV is easier to set because there isonly one CP conserving
point,(0, 0). Such 2D scans are made for thef0(980)K0

S andρ0(770)K0
S components,

and are presented in the next Chapter as one of the physics results of this thesis.

6.7.2 Convolution with systematic uncertainties

Section 7.3 summarizes the estimation of systematic uncertainties. Depending on the rele-
vant parameters, systematic errors are presented in two ways: 1) when considered indepen-
dent, systematic errors are added in quadrature. 2) As a systematic covariance matrix, which
is constructed from shifts in the fit parameters (modulus-phase, or real-imaginary of isobar
amplitudes), all independent systematic matrices are justadded. This information has to be
combined with the statistical likelihood scans.

For the inclusive and exclusive directCP asymmetries, fit fractions and branching frac-
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Figure 6.28: Likelihoods (Solid Green) and Confidence Level (Dashed Blue) of physical
parameters extracted from the Toy MC fit in Table 6.7. The curves are constructed with
the PL method.C(f0(980)K0

S) (top left), 2βeff (f0(980)K0
S) (top right), FF (f0(980)K0

S)
(bottom left) andFF (ρ0(770)K0

S) (bottom right). The solid line (dashed) red box is the
intervals at32% (5%) of CL.

tions, the systematic effects are added in quadrature to theasymmetric errors obtained from
the statistical likelihood scans. This approach is reasonably safe for these parameters, since
local minima solutions are almost degenerated. For phase differences, a more elaborate
method is performed, taking into account that values differsignificantly among local min-
ima. In this case the statistical likelihood is convoluted with the systematic error, which is
assumed to be Gaussian, taking care of the likelihood function periodicity of360o.

For the bi-dimensionalφ(σ)−C(σ) likelihood scans, the simple convolution of the like-
lihood function with a 2D Gaussian assumes a Gaussian systematic error inC(σ). This
approach, being only valid near the minimum, fails when approaching the physical bound-
aries ofC(σ). In this case a different method has to be performed, which isdescribed below.

When fixing thecσ = |cσ|exp(iδσ) isobar amplitude in the fit, theφ(σ) andC(σ) param-
eters depend only on̄cσ. The systematic effects are nearly Gaussian (taking into account the
correlations) in the(Re(c̄σ), Im(c̄σ)) plane, as there is no physical boundary. This plane
can be transformed to the(φ(σ), C(σ)) plane by the relations

Re(c̄σ) = |cσ|
(

1−C(σ)
1+C(σ)

)1/2

cos(δσ − φ(σ)),

Im(c̄σ) = |cσ|
(

1−C(σ)
1+C(σ)

)1/2

sin(δσ − φ(σ)).
(6.25)
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Figure 6.29: Likelihoods (Solid Green) and Confidence Level (Dashed Blue) of physical
parameters extracted from the Toy MC fit in Table 6.7. The curves are constructed with
the PL method.ACP (K∗±(892)π∓) (top left),∆φ(K∗+(892)π−, K∗−(892)π+) (top right),
FF (K∗±(892)π∓) (lower left) and∆φ(f0(980), ρ0(770)) (bottom right). The solid line
(dashed) red box is the intervals at32% (5%) of CL.

The convoluted likelihood can be then written as,

L(stat+syst)(φ, C) =

∫ +π

−π

∫ +1

−1

L(stat)(φ
′, C ′)G(Re(c̄σ), Im(c̄σ))|detJ |dφ′dC ′, (6.26)

whereG(Re(c̄σ), Im(c̄σ)) is the systematic Gaussian distribution in the(Re(c̄σ), Im(c̄σ))
plane, anddetJ is the Jacobian of the transformation (6.25). This convolution already takes
into account the periodicity of the likelihood function inφ(σ), and the fact thatC(σ) does
not extend outside the physical region.

6.8 The Nominal Signal Model

Thenominal modelparameterizes the total signal amplitude as the isobar sum of eight con-
tributions. The signal yield is dominated by the following components:

• B0 → ρ0(770)KS (ρ0(770) → π+π−), with an amplitude described with a Gounaris-
Sakurai lineshape;
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• B0 → f0(980)KS (f0(980) → π+π−), with an amplitude described with a Flatté
lineshape;

• B0 → K∗(892)+π− (K∗(892)+ → KSπ
+), uses a Relativistic Breit-Wigner for the

lineshape;

• B0 → (Kπ)∗+0 π− ((Kπ)∗+0 → KSπ
+), corresponding to theKπ S-wave contribu-

tion. It is described with the LASS lineshape, with the dynamical constrains de-
scribed previously (cf. Sec. 2.4.4). The notation used in theB+ → K+π−π+ [23]
andB0 → K+π−π0 [40] papers is used here as well.

For these four components, there are previous Q2B measurements that have shown uncon-
troversial signal yields (see Sec. 2.2).

Apart from these dominant four contributions, data favors inclusion of other components:

• A significant signal was spotted with a dedicated quasi-two-body analysis performed
on the center of the DP; in consequence a non-resonant term, flat in phase space, is
added to the signal model (see Appendix B, Sec. B.2, and Chapter 7, Fig. 7.10).

• Both BABAR and Belle Dalitz analyses ofB+ → K+π−π+ [24, 23], and the time- and
tag-integrated Dalitz analysis ofB0 → KSπ

+π− [42] report a signal excess in the
mππ ∼ 1.2− 1.5 GeV range. This signal is taken into account using a two-component
model, with a tensorf2(1270) component, plus the so-calledfX(1300) component. In
this analysis, a mass/width likelihood scan for scalar, vector and tensor resonances,
favored also such a two-component model (see Appendix B, Sec. B.3).

• Finally,χc(0) is also included (as in [23, 24, 42]).

The present signal model is the same as the one used in theBABAR B+ → K+π−π+ [23]
analysis, as this mode has a higher signal to background ratio, so is more sensitive to small
components. This also accounts for an effort of the collaboration to standarize theBABAR

charmless Dalitz analyses.
A large set of additional components has been tested. None was found to be significant

when fitting the data with these components, and they are therefore not included in the nom-
inal signal model. Nevertheless, they are considered for the estimation of the systematic
uncertainty assigned to the signal model. These additionalresonances are:

• K∗±(1410)

• K∗±(1680)

• K∗±
2 (1430)

• ρ(1450)

• ρ(1700)

• χc2
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A twofold process is performed to evaluate a systematical uncertainty. In the first place,
data is fitted with each of these components added one-by-oneto the nominal model. The
fitted value for the isobar fraction and the change in NLL are used to estimate whether this
additional component is significant or not (cf. Appendix B);the outcome being positive for
thef2(1270), fX(1300) andχc(0) resonances, these ones being included in the signal model,
and negative for all others, these last ones treated as systematics (see Sec. 7.3.7).



Chapter 7

Results

The selection procedure described in Sec. 5.7 retains a total of 22525 events from the on-peak
data sample. TheB-meson candidate in each event is mass constrained to ensurethat the
measurement falls within the Dalitz plot boundary (cf. Sec.5.2.4). The resulting standard
and square Dalitz plots are shown in Fig. 7.1. The density of events is more spread out
in the square Dalitz plot (cf. Sec. 2.4.7). The narrow bands correspond toB0 → D∓π±,
B0 → J/ΨK0

S andB0 → Ψ(2S)K0
S B-background events (cf. Sec. 5.8).

)4/c2)(GeVS
0 K+π(2m

0 5 10 15 20 25

)4
/c2

)(
G

eV
S0

 K- π(2
m

0

5

10

15

20

25

m’
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’θ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.1:The standard (left) and square (right) Dalitz plots of the selected data sample of
22525 events. The narrow bands correspond toB0 → D∓π±, B0 → J/ΨK0

S andB0 →
Ψ(2S)K0

S B-background events.

This final data sample is assumed to consist of signal, continuum background and 10
classes of B-backgrounds. An unbinned maximum likelihood fit is performed, using the
likelihood function described in Chapter 6. A total of 12 yields (total signal, 4 classes of
B-backgrounds and 7 continuum backgrounds per tagging category), plus 30 relative moduli
and phases of isobar amplitudes (cf. Sec. 6.8) result from the fit. All isobar amplitudes are
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measured relative toc(B0 → f0(980)K0
S) which is arbitrarily fixed to be real, with module

4. The fact that the results do not depend on this arbitrary convention has been checked. In
addition, 34 other parameters (referred as shape parameters) that describe the PDFs used in
the likelihood function are left free in the fit. A list of parameters kept fixed in the fit is given
in appendix C.

When the fit is repeated starting from input parameter valuesrandomly chosen, conver-
gence towards two solutions (local minima) is observed. They differ by ∆NLL = 0.16
in likelihood units1. These global and local minima solutions are referred as solution I
and solution II, respectively. Figure 7.2 shows the intensities |A(B0 → K0

Sπ
+π−)|2 and

|A(B̄0 → K0
Sπ

+π−)|2 in theB0 andB̄0 square Dalitz plots, respectively, constructed with
the fitted isobar parameters from these two solutions. The interference patterns are similar
for both solutions, and for bothB0 andB̄0 Dalitz plots.
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Figure 7.2:Intensities|A(B0 → K0
Sπ

+π−)|2 and|A(B̄0 → K0
Sπ

+π−)|2 in theB0 (left plot)
and B̄0 (right plot) square Dalitz plots, respectively, constructed with the fit results on the
isobar parameters from solution I (top plots) and solution II (bottom plots). The intensity
scale is in arbitrary units.

The fitted yields and shape parameters are shown in Table 7.1.They are similar in both
solutions. In Table 7.2 is shown the list of isobar parameters allowed to vary in the fit.
The values of Q2B observables are collected in Table 7.3. As the Q2B observables are
functions of isobar parameters, the errors quoted are the propagation using the covariance

1∆NLL(i) = NLL(i) − NLL(min), whereNLL(i) is the NLL value for the solutioni = 1, 2, and
NLL(min) is NLL value at the global minimum.
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matrices obtained from the minimization routineMinuit (cf. Fig. 7.3). Inspection of fit
results on the isobar parameters show that most moduli of isobar amplitudes, and thus for
ACP and fit fractions, have similar values in both solutions; on the contrary, some isobar
phase differences are significantly different. The strongest correlations are among isobar
parameters. For both solutions, theMinuit correlation matrices for fitted isobar parameters
are given in Fig. 7.3. The matrices show similar patterns as on toy studies (cf. Sec. 6.7), with
the largest correlations among phases.

Parameter Name Fit Result Sol-I Fit Result Sol-II
∆NLL 0.0 0.16
N(B0 → K0

Sπ+π−) 2182 ± 64 2182 ± 64
N(B0 → D+π−) 3361 ± 60 3362 ± 60
N(B0 → J/ΨK0

s) 1804 ± 44 1803 ± 43
N(B0 → η′K0

s) 46 ± 16 44 ± 16
N(B0 → Ψ(2S)K0

s) 142 ± 13 142 ± 13
N(cont-Lepton) 46 ± 8.9 47 ± 9
N(cont-KaonI) 800 ± 31 800 ± 31
N(cont-KaonII) 2127 ± 49 2127 ± 49
N(cont-KaonPion) 1775 ± 45 1775 ± 45
N(cont-Pion) 2048 ± 48 2048 ± 48
N(cont-Other) 1614 ± 42 1614 ± 42
N(cont-NoTag) 5829 ± 80 5829 ± 80
fcore(∆E) Signal 0.63 ± 0.14 0.63 ± 0.14
µcore(∆E) Signal −1.3 ± 0.7 MeV −1.3 ± 0.6 Mev
σcore(∆E) Signal 17.1 ± 1.4 MeV 17.1 ± 1.3 Mev
µtail(∆E) Signal −7.3 ± 2.9 MeV −7.4 ± 3.0 Mev
σtail(∆E) Signal 31.2 ± 4.6 MeV 31.4 ± 4.6 Mev
Slope(∆E) Continuum −8.51 ± 5.77 −8.49 ± 5.77
µ(mES) Signal 5.2788 ± 0.0001 GeV/c2 5.2788 ± 0.0001 Gev/c2

σL(mES) Signal 2.24 ± 0.06 MeV/c2 2.24 ± 0.06 Mev/c2

σR(mES) Signal 2.73 ± 0.07 MeV/c2 2.73 ± 0.07 Mev/c2

Argus Slope(mES) Continuum −0.3 ± 0.2 −0.4 ± 0.2
a1(NN) Continuum 1.9 ± 0.1 1.9 ± 0.1
a2(NN) Continuum 3.2 ± 0.4 3.2 ± 0.4
a3(NN) Continuum −1.1 ± 0.1 −1.1 ± 0.1
a5(NN) Continuum −0.47 ± 0.05 −0.48 ± 0.05
µcommon(∆t) Continuum 0.018 ± 0.007 ps 0.018 ± 0.007 ps
σcore(∆t) Continuum 1.14 ± 0.02 ps 1.14 ± 0.02 ps
ftail(∆t) Continuum 0.16 ± 0.02 0.16 ± 0.02
σtail(∆t) Continuum 2.8 ± 0.2 ps 2.8 ± 0.2 ps
foutlier(∆t) Continuum 0.030 ± 0.004 0.030 ± 0.004
σoutlier(∆t) Continuum 10.7 ± 0.9 ps 10.7 ± 0.8 ps

Table 7.1:Nominal fit results for the event yields, shape parameters, and ∆NLL for solu-
tions I and II. The errors shown are statistical only.

Although errors quoted in Table 7.3 do not include systematic uncertainties, some quali-
tative statements about the fit results can be stated:

• Significance of the dominant components. The dominant components of the signal
model,f0(980)K0

S, ρ0(770)K0
S, K∗±(892)π∓ and theKπ S-wave, yield fit fractions

significantly different from zero. This is in agreement withprevious Q2B and Dalitz
plot analyses (cf. Sec. 2.2). Their presence on data is evident in the mass spectra
(cf. next section, Sec. 7.1.2). For the non-resonant component the fit finds an isobar
fraction that seems very significant considering only the statistical error, but it suffers
from large systematic uncertainties (cf. Sec. 7.3.7).
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Isobar Amplitude |A| Sol-I φ[deg] Sol-I |A| Sol-II φ[deg] Sol-II

A(f0(980)K
0
S) 4.0 0.0 4.0 0.0

Ā(f0(980)K
0
S) 3.7 ± 0.4 −73.9 ± 19.6 3.2 ± 0.6 −112.3 ± 20.9

A(ρ(770)K0
S) 0.10 ± 0.02 35.6 ± 14.9 0.09 ± 0.02 66.7 ± 18.3

Ā(ρ(770)K0
S) 0.11 ± 0.02 15.3 ± 20.0 0.10 ± 0.03 −0.1 ± 18.2

A(NR) 2.6 ± 0.5 35.3 ± 16.4 1.9 ± 0.7 56.7 ± 23.6
Ā(NR) 2.7 ± 0.6 36.1 ± 18.3 3.1 ± 0.6 −45.2 ± 17.8

A(K∗+(892)π−) 0.154 ± 0.016 −138.7 ± 25.7 0.145 ± 0.017 −107.0 ± 24.1
Ā(K∗−(892)π+) 0.125 ± 0.015 163.1 ± 23.0 0.119 ± 0.015 76.4 ± 23.0
A((Kπ)∗+0 π−) 6.9 ± 0.6 −151.7 ± 19.7 6.5 ± 0.6 −122.5 ± 20.3
Ā((Kπ)∗−0 π+) 7.6 ± 0.6 136.2 ± 19.8 7.3 ± 0.7 52.6 ± 20.3

A(fX(1300)K0
S) 1.41 ± 0.23 43.2 ± 22.0 1.40 ± 0.28 85.9 ± 24.8

Ā(fX(1300)K0
S) 1.24 ± 0.27 31.6 ± 23.0 1.02 ± 0.33 −67.9 ± 22.1

A(f2(1270)K
0
S) 0.014 ± 0.002 5.8 ± 19.2 0.012 ± 0.003 23.9 ± 22.7

Ā(f2(1270)K
0
S) 0.011 ± 0.003 −24.0 ± 28.0 0.011 ± 0.003 −83.3 ± 24.3

A(χc0K
0
S) 0.33 ± 0.15 61.4 ± 44.5 0.28 ± 0.16 51.9 ± 38.4

Ā(χc0K
0
S) 0.44 ± 0.09 15.1 ± 30.0 0.43 ± 0.08 −58.5 ± 27.9

Table 7.2:Nominal fit results for the resonant isobar amplitudes for solutions I and II. The
errors shown are statistical only.

• Statistical significance of small components. For the subdominant components,
fX(1300) K0

S, f2(1270)K0
S andχc(0)K0

S, the fit finds small isobar fractions. The
significance of all these components is quantified using fulllikelihood scans, and is
presented in Sec. 7.2.4.

• CP -violation in B0 → f0(980)K0
S decays. Although directCP -violation for this

submode seems not to be significant, the measurement of itsβeff phase is significantly
different from zero, which implies mixing-inducedCP -violation for this submode.
However thisβeff is compatible with the value fromb→ cc̄s decays.

• CP -violation in B0 → ρ0(770)K0
S decays. In contrast with theB0 → f0(980)K0

S

decays, in this submode both direct and mixing-inducedCP -violation seem not to be
significant.

• Direct CP -violation in B0 → K∗±(892)π∓ decays. The central value of the di-
rectCP asymmetry for the submodeK∗±(892)π∓ is roughly similar both solutions,
pointing to an (statistical only) exclusion ofCP conservation at the∼ 2σ level.

The quantification of these statements will be better justified in Sec. 7.2, where the correct
statistical treatment of local minima solutions is properly taken into account (cf. Sec. 6.7)
and the systematic uncertainties are included (cf. Sec. 6.7.2).

7.1 Goodness of Fit and Likelihood Projections

To check the validity of the fits and study the results, 367 toydata samples, corresponding
to independent pseudo-experiments with as many events as inthe final data sample, and
generated using the isobar parameters of solution-I, were fitted with random initial values.
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Parameter Value Sol-I Value Sol-II
C(f0(980)K

0
S) 0.08 ± 0.19 0.23 ± 0.19

βeff (f0(980)K
0
S) 37.0 ± 9.8 56.2 ± 10.4

FF (f0(980)K
0
S) 13.8+1.5

−1.4 13.5+1.4
−1.3

C(ρ0(770)K0
S) −0.05 ± 0.26 −0.14 ± 0.26

βeff (ρ0(770)K0
S) 10.2 ± 8.9 33.4 ± 10.4

FF (ρ0(770)K0
S) 8.6+1.4

−1.3 8.5+1.3
−1.2

ACP (K∗(892)π) −0.21 ± 0.10 −0.19+0.10
−0.11

∆φ(K∗(892)π) 58.3 ± 32.7 176.6 ± 28.8
FF (K∗(892)π) 11.0+1.2

−1.0 10.9+1.2
−1.0

ACP ((Kπ)∗0π) 0.09 ± 0.07 0.12+0.07
−0.06

∆φ((Kπ)∗0π) 72.2 ± 24.6 −175.1 ± 22.6
FF ((Kπ)∗0π) 45.2 ± 2.3 46.1 ± 2.4

C(f2(1270)K
0
S) 0.28+0.35

−0.40 0.09 ± 0.46
φ(f2(1270)K

0
S) 29.8 ± 35.8 107.2 ± 33.3

FF (f2(1270)K
0
S) 2.3+0.8

−0.7 2.3+0.9
−0.7

C(fX(1300)K0
S) 0.13+0.33

−0.35 0.30+0.34
−0.41

φ(fX(1300)K0
S) 11.5 ± 30.3 153.8 ± 27.5

FF (fX(1300)K0
S) 3.6+1.0

−0.9 3.5+1.0
−0.8

C(NR) 0.01 ± 0.25 −0.45+0.28
−0.24

φ(NR) 0.8 ± 17.5 102.0 ± 26.5
FF (NR) 11.5 ± 2.0 12.6 ± 2.0

C(χc(0)K
0
S) −0.29+0.53

−0.44 −0.41+0.54
−0.42

φ(χc(0)K
0
S) 46.3 ± 44.7 110.4 ± 46.6

FF (χc(0)K
0
S) 1.04+0.41

−0.33 0.99+0.37
−0.30

FFTot 97.2+1.7
−1.3 98.3+1.5

−1.3

Aincl
CP −0.01 ± 0.05 0.01 ± 0.05

∆φ(f0(980)K0
S , ρ(770)K0

S) −35.6 ± 14.9 −66.7 ± 18.3
∆φ(ρ(770)K0

S , K∗(892)π) 174.3 ± 28.0 186.3 ± 29.8
∆φ(ρ(770)K0

S, (Kπ)∗0π) −172.8 ± 22.6 −170.8 ± 26.8
∆φ(K∗(892)π, (Kπ)∗0π) 13.0 ± 10.9 15.5 ± 10.2

Table 7.3:Nominal fit results for the Q2B parameters for solutions I andII. Values are quoted
at the1σ level. As the Q2B parameters are functions of the isobar ones, the errors quoted
are the propagation using the covariance matrices obtainedfrom Minuit. Phases are in
degrees andFFs in %.

Fig. 7.4 shows that the fit on data exhibits an NLL well within the range spanned by the
distribution on toy data samples.

It is well known that the test described above, is a necessarybut not sufficient condi-
tion for ensuring the goodness of unbinned maximum likelihood fits. Thus, the quality of
the fitted likelihood function to reproduce the data has to betested with a more extensive
approach. For this, the likelihood function is projected along several directions, and the pro-
jection is compared with the distribution obtained on data.This test can be further extended,
by exploring the projections in regions where signal or background dominates. Signal- or
background-enhanced regions are selected by means of the likelihood ratio variableR

R ≡ LTM

LTM + LSCF + LContinuum + LB−background

, (7.1)

where the likelihood function of an eventL is split between all components (or groups of
components): signal and backgrounds. In the space of observable variables,R approaches
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Figure 7.3:Fit on data correlation matrices between isobar parametersfor solutions I (top)
and II (bottom) obtained fromMinuit.
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Figure 7.4:Distribution of theNLL − NLLdata for 367 toy fits on samples generated with
the PDF parameters of solution-I obtained from the fit to data(the zero point corresponds to
the NLL fitted on data).

1 in signal-dominated regions, and zero in background-dominated regions. Cuts on this
variable can be used to select subsamples with specific signal-to-background levels. The
distribution ofR in data, overlaid with the projection along theR variable of the fitted likeli-
hood function, is plotted with linear (logarithmic) vertical and logarithmic (linear) horizontal
scales on Fig. 7.5.

7.1.1 Discriminant Variables

The distributions formES, ∆E andNN are shown in Fig. 7.6, for different cut values on
the likelihood ratioR (in each case, the plotted variable is excluded from the computation of
R) corresponding to increasing levels of signal purity. Whenstated in the caption, a veto is
applied on theDπ andJ/ΨK0

S B backgrounds, by excluding the bands with1.75 GeV/c2 <
mK0

Sπ∓ < 1.9 GeV/c2 and3.08 GeV/c2 < mπ+π− < 3.12 GeV/c2, respectively. These
figures illustrate the agreement between the PDFs used to model the discriminant variables,
and their distributions in the data.

7.1.2 Dalitz Spectra

The dynamical isobar model used to describe the signal distribution along the Dalitz plot can
be validated using the same approach. Figs. 7.7–7.10 show themK0

Sπ andmπ+π− invariant
mass spectra.

Similar interference patterns occur on themK0
Sπ+ andmK0

Sπ− likelihood projections.
Thus by folding the SDP with respect to theθ′π+π− variable atθ′π+π− = 0.5, and defining
a symmetrizedmK0

Sπ, the symmetrised projections carry essentially the same information,
while multiplying the statistics by a factor of 2.

For each meson pair, the full kinematic range is shown (cf. top plots of Fig. 7.7). The
D± mass peak is prominent in the symmetrizedmK0

Sπ spectrum, as are theJ/Ψ andΨ(2S)
peaks in themπ+π− spectrum. The description of these narrow structures in theDalitz plot
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Figure 7.5:Distribution of the likelihood rationR (cf. Eq.(7.1)) for all events (blue points).
Superimposed is an MC sample of pseudoexperiments (toys) generated with solution I of
the fitted parameters. For the toy distribution is shown the cumulated subdistributions of
different signal and background components. Logarithmic and linear scales are used to
enhance background (top plot) and the signal (bottom plot and the inset on the top plot). The
various components are shaded as follows: Continuum (dark), B backgrounds (grey), SCF
(light gray) and TM (white). The SCF is not visible as it is only 2% of the signal component.
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Figure 7.6: From left to right: mES, ∆E andNN distributions. In all plots a veto on
theDπ andJ/ΨK0

S components is applied. From top to bottom are shown different signal
enhanced samples by removing events withR < cut. The PDF of the considered variable
is not included in the definition ofR. In the top plots noR cut is applied, for plots below,
consecutive cuts onR are applied in order to haveNsign./(Nsign.+Ncont.) ∼ 25%, 50%, 75%
respectively. Below each bin are shown the residuals, normalized in error units, the dotted
and red lines are the1σ and2σ deviations. In each plot a box showing the signal purity, the
signal, B background and continuum efficiencies respectively.

is illustrated with a zoom on the invariant masses. ThemK0
Sπ invariant mass projection in

the region ofDπ is shown in the inset of the top plot of Fig. 7.7. It could be claimed that the
likelihood function used to describe this narrow componentseems to slightly underestimate
theDπ yield; but on the one hand the statistical significance of this disagreement is not
dramatics; and more importantly, even if it was the case, this small imperfection would have
essentially no effect on the results presented in Sec. 7.2, asDπ-related fit parameters have
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negligible correlations with the signal components. Also are shown a zoom on themπ+π−

invariant mass in the region of theJ/ΨK0
S andΨ(2S)K0

S bands (insets in bottom plot of
Fig. 7.7).
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Figure 7.7: SymmetricmK0
Sπ (top) andmπ+π− (bottom) distributions for all events. The

symmetricmK0
Sπ is defined by folding the SDP with respect to theθ′π+π− variable atθ′π+π− =

0.5. Inset in the top plot shows theD± mass region in1 MeV/c2 bins. Insets in the bottom
plot show theJ/Ψ andΨ(2S) mass regions in1 MeV/c2 and2 MeV/c2 bins, respectively.

Themπ+π− spectrum is also shown for a zoom in themπ+π− < 1.8 GeV/c2 region,
separately for negative and positive values of the cosinus of the helicity anglecos(θπ+π−)
(cf. Fig. 7.8). The plots use different cuts on the likelihood ratioR, corresponding to in-
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creasing levels of signal purity. The peaks corresponding to thef0(980)K0
S andρ0(770)K0

S

signal components are evident in the spectrum. A signal excess aroundmππ ∼ 1.3 GeV/c2

is also visible. As mentioned before in Sec. 6.8, this signal, also reported by previous
B → Kππ analyses, is described in this isobar model as a coherent sumof f2(1270)K0

S

andfX(1300)K0
S components.

Similarly, Fig. 7.9 shows themK0
Sπ projection for a zoom on themK0

Sπ < 1.8 GeV/c2 re-
gion, separately for negative and positive values of the cosinus of the helicity anglecos(θK0

Sπ).
Peaks corresponding to theK∗±(892)π∓ andKπ S-wave(Kπ)∗±0 π∓ components are clearly
visible. The interference pattern between the scalar and vectorK∗ is evident from the op-
posite sign of the forward-backward helicity asymmetries below and above the peak of the
K∗(892). This effect is seen both in the symmetrized and in the individualmK0

Sπ spectra,
because the measured phase differences are similar in both cases.

Furthermore, projections on the∆Dalitz variable are shown. This variable is defined as
the smallest of the three invariant masses. The center (edges) of the DP corresponds to high
(low) values of this variable. Fig. 7.10 shows zooms on the edges and the center of the Dalitz
plot for different cuts on the likelihood ratio. The left hand plots of this figure illustrate the
signal density at the center of the DP, which is described in the isobar model by means of a
flat non-resonant component over the entire phase space. These plots are in agreement with
the sPlot [31] analysis performed in the center of the DP, andpresented in Appendix B (cf.
Sec. B.2). This analysis showed evidence for the presence ofsignal and B background events
that populate the center of the DP, albeith with a limited discrimination between these two
B species. The likelihood projections in the center of the DPagree with this conclusion. A
systematic uncertainty on the the non-resonant fit fractionis assigned to take into account he
limited signal to B background discrimination in the centerof the DP (cf. Sec. 7.3.7).

7.1.3 Time-dependent Asymmetries

The quality of a time-dependent analysis relies crucially on a careful modeling of the∆t dis-
tributions. TheB0 → KSπ

+π− sample contains two useful control subsamples for this pur-
pose. The time-dependentCP -violating asymmetries forB0 → D±π∓ andB0 → J/ΨK0

S

decays are well known, and it is straightforward to select events that belong mostly to these
B-background species, by means of a simple cut on the Dalitz plot along the bands they
populate. Fig. 7.11 shows the distributions of∆t for tagged events in theDπ andJ/ΨK0

S

bands. The top (middle) plots of the figure show events in which theB0
tag meson is assigned

a B̄0 (B0) tag, and the bottom plot show the (raw) time-dependentCP asymmetry. The left
hand plot shows the∆t distribution for events in theDπ band, and the right hand plot is
for events in theJ/ΨK0

S band. It can be seen that the distributions are well described by
the model, and that the time-dependentCP asymmetries follow the expected pattern: a null
asymmetry forDπ, and the classical sinusoidal shape forJ/ΨK0

S. In the time-dependent
CP asymmetry plot for theJ/ΨK0

S, the horizontal dotted lines correspond to the peak-
to-peak amplitude of the sinusoidal distribution using theWorld Average value ofSJ/ΨK0

S

(0.660± 0.036± 0.012 [28]), diluted by the factor corresponding to the present analysis (cf.
Sec. 5.3). TheS parameters for these two components have been let free in thefit. The value
obtained forJ/ΨK0

S isSJ/ΨK0
S

= (0.690± 0.077) (error statistical only), in agreement with
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Figure 7.8:mπ+π− distribution, zooming in thef0(980)K0
S and ρ0(770)K0

S signal region,
for positive (left) and negative (right) cosinus of the helicity angle (cos(θπ+π−)). A veto in
theDπ band has been applied. The plots from top to bottom are made with different signal
enhancement samples by removing events withR < cut. The∆t andDP PDFs have been
excluded from theR definition.R cuts are made with the same criteria as in Fig. 7.6.
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Figure 7.9:SymmetrizedmK0
Sπ distribution, zooming in theK∗±(892)π∓ andKπ S-wave

(Kπ)∗±0 π∓ signal region for positive (left) and negative (right) cosinus of the helicity angle
(cos(θK0

Sπ)). A veto in theJ/ΨK0
S andΨ(2S)K0

S bands has been applied. The plots from
top to bottom are made with different signal enhancement samples by removing events with
R < cut. The∆t andDP PDFs have been excluded from theR definition.R cuts are made
with the same criteria as in Fig. 7.6.
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Figure 7.10:∆Dalitz distribution. The plot in the left (right) hand side show thedistribution
for ∆Dalitz < 1.9 GeV/c2(> 1.9 GeV/c2), corresponding to the edges (center) of the DP.
A veto in theJ/ΨK0

S band has been applied. The plots from top to bottom are made with
different signal enhancement samples by removing events with R < cut. The∆t andDP
PDFs have been excluded from theR definition.R cuts are made with the same criteria as
in Fig. 7.6.
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its World Average value.
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Figure 7.11:∆t distributions for events in whichBtag = B̄0, Btag = B0 and the derived
∆t-dependent asymmetry for tagged events in theDπ (left) andJ/ΨK0

S (right) bands. Each
plot contains three subplots in which are shown the events tagged for whichBtag = B̄0

(top),Btag = B0 (middle) and the derived∆t-dependent asymmetry (bottom). The blue do-
tted lines in theJ/ΨK0

S time-dependentCP asymmetry corresponds to the±|QS(J/ΨK0
S)|

values, whereQ is the corresponding dilution factor for the tagging categories taken into
account and in the hypothesis of a100% pureJ/ΨK0

S sample.

Concerning the time-dependent CP-asymmetries of the charmless components of the iso-
bar signal model, the∆t distributions and∆t-dependent asymmetries for thef0(980)K0

S and
ρ0(770)K0

S bands, defined as

• f0(980)K0
S : 0.88 GeV/c2 < mπ+π− < 1.1 GeV/c2,

• ρ0(770)K0
S : 0.6 GeV/c2 < mπ+π− < 0.88 GeV/c2,

are shown in Figs. 7.12–7.13 for all tagged events and for different cut values onR. For
events in thef0(980)K0

S band (cf. Fig. 7.12) and noR cut, the time-dependentCP asym-
metry can hardly be seen, as it is strongly diluted by background. For increasingly tighter



199 Results

cuts on theR variable, the asymmetry becomes visible. It illustrates the non-vanishing time-
dependentCP -violation for thef0(980)K0

S component obtained in the fit:S = −0.96±0.09
andS = −0.90 ± 0.13 (statistical uncertainty only) measured for solutions I and II, respec-
tively. The significance of this result properly taking intoaccount the multiple solutions and
systematic uncertainties is presented in Sec. 7.2.1. For events in theρ0(770)K0

S band (cf.
Fig. 7.13) no significantCP -violation asymmetry is seen.
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Figure 7.12:∆t distributions for events in whichBtag = B̄0, Btag = B0 and the derived
∆t-dependent asymmetry for tagged events in thef0(980)K0

S band. TheDπ events have
been vetoed. Each plot contains three subplots in which are shown the events for which
Btag = B̄0 (top),Btag = B0 (middle) and the derived∆t-dependent asymmetry (bottom).
The plots from top to bottom and left to right are made with different signal enhancement
samples by removing events withR < cut. The∆t andDP PDFs have been excluded from
theR definition.R cuts are made with the same criteria as in Fig. 7.6.



201 Results

 T
ag

s/
(0

.8
 p

s)
0

B

20

40

60

80

100

120

140

160

180

200
 T

ag
s/

(0
.8

 p
s)

0
B

20

40

60

80

100

120

140

160

180

200  = 15%purityS

 = 34%Sε
 = 5%

BB
ε

 = 28%qqε

 T
ag

s/
(0

.8
 p

s)
0

B

20

40

60

80

100

120

140

160

180

200

 T
ag

s/
(0

.8
 p

s)
0

B

20

40

60

80

100

120

140

160

180

200  = 15%purityS

 = 35%Sε
 = 5%

BB
ε

 = 27%
qq

ε

t(ps)∆
-6 -4 -2 0 2 4 6

A
sy

m
m

et
ry

/(
0.

8 
ps

)

-1

-0.5

0

0.5

1

t(ps)∆
-6 -4 -2 0 2 4 6

A
sy

m
m

et
ry

/(
0.

8 
ps

)

-1

-0.5

0

0.5

1
 T

ag
s/

(0
.8

 p
s)

0
B

20

40

60

80

100

 T
ag

s/
(0

.8
 p

s)
0

B

20

40

60

80

100  = 28%purityS

 = 32%Sε
 = 4%

BB
ε

 = 11%qqε

 T
ag

s/
(0

.8
 p

s)
0

B

20

40

60

80

100

 T
ag

s/
(0

.8
 p

s)
0

B

20

40

60

80

100  = 29%purityS

 = 32%Sε
 = 4%

BB
ε

 = 10%
qq

ε

t(ps)∆
-6 -4 -2 0 2 4 6

A
sy

m
m

et
ry

/(
0.

8 
ps

)

-1

-0.5

0

0.5

1

t(ps)∆
-6 -4 -2 0 2 4 6

A
sy

m
m

et
ry

/(
0.

8 
ps

)

-1

-0.5

0

0.5

1

 T
ag

s/
(1

.1
 p

s)
0

B

10

20

30

40

50

 T
ag

s/
(1

.1
 p

s)
0

B

10

20

30

40

50  = 49%purityS

 = 24%Sε
 = 2%

BB
ε

 = 3%qqε

 T
ag

s/
(1

.1
 p

s)
0

B

10

20

30

40

50

 T
ag

s/
(1

.1
 p

s)
0

B

10

20

30

40

50  = 49%purityS

 = 24%Sε
 = 2%

BB
ε

 = 3%
qq

ε

t(ps)∆
-6 -4 -2 0 2 4 6

A
sy

m
m

et
ry

/(
1.

1 
ps

)

-1

-0.5

0

0.5

1

t(ps)∆
-6 -4 -2 0 2 4 6

A
sy

m
m

et
ry

/(
1.

1 
ps

)

-1

-0.5

0

0.5

1

 T
ag

s/
(1

.5
 p

s)
0

B

2

4

6

8

10

12

14

16

18

20

22

24

 T
ag

s/
(1

.5
 p

s)
0

B

2

4

6

8

10

12

14

16

18

20

22

24
 = 69%purityS

 = 14%Sε
 = 1%

BB
ε

 = 0.5%qqε

 T
ag

s/
(1

.5
 p

s)
0

B

2

4

6

8

10

12

14

16

18

20

22

24

 T
ag

s/
(1

.5
 p

s)
0

B

2

4

6

8

10

12

14

16

18

20

22

24

 = 69%purityS

 = 14%Sε
 = 0.9%

BB
ε

 = 0.5%
qq

ε

t(ps)∆
-6 -4 -2 0 2 4 6

A
sy

m
m

et
ry

/(
1.

5 
ps

)

-1

-0.5

0

0.5

1

t(ps)∆
-6 -4 -2 0 2 4 6

A
sy

m
m

et
ry

/(
1.

5 
ps

)

-1

-0.5

0

0.5

1

Figure 7.13:∆t distributions for events in whichBtag = B̄0, Btag = B0 and the derived
∆t-dependent asymmetry for tagged events in theρ0(770)K0

S band. TheDπ events have
been vetoed. Each plot contains three subplots in which are shown the events for which
Btag = B̄0 (top),Btag = B0 (middle) and the derived∆t-dependent asymmetry (bottom).
The plots from top to bottom and left to right are made with different signal enhancement
samples by removing events withR < cut. The∆t andDP PDFs have been excluded from
theR definition.R cuts are made with the same criteria as in Fig. 7.6.
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7.2 Results on Physical Parameters

Results on the physical parameters using the techniques described in Sec. 6.7.1 are pre-
sented here. The convolution with the systematic effects use the framework described in
Sec. 6.7.2. The estimation of the systematic uncertaintieswill be presented in a later section
(cf. Sec. 7.3).

7.2.1 Measurement ofsin 2(βeff) in penguin dominated modes

The measurement of the time-dependentCP -violation in the penguin dominated modes
f0(980)K0

S andρ0(770)K0
S is presented as a bi-dimensional likelihood scan in the(2βeff , C)

plane. These scans are shown in Fig. 7.14. The top plots show the statistical only scans. The
bottom plots are confidence level contours, after the bi-dimensional convolution with the
covariance matrix of systematic uncertainties (cf. Sec. 6.7.2).
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Figure 7.14: (2βeff , C) bi-dimensional likelihood scans for thef0(980)K0
S (left) and

ρ0(770)K0
S (right) components. The top plots show the statistical-only likelihood scan. The

plots at the bottom show the confidence level contours, afterconvolution with the system-
atic uncertainties. The shaded areas represent de1 through5σ contours, respectively. The
regions in white have−2log(L) > 30.

The plots on the left hand side of the figure show the bi-dimensional scan for thef0(980)K0
S

resonant state. For this component theCP conserving points,(0o, 0) and(180o, 0), are ex-
cluded at the3.8σ and 3.5σ level, respectively. This quantifies the results illustrated on
the likelihood projection studies presented in Sec. 7.1.3,where the time-dependentCP -
violation for events in thef0(980)K0

S band was visible for signal-enhanced samples. As
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explained in Sec. 2.3, the comparison with the time-dependent CP -violation parameters in
b → cc̄s modes, is a probe for New Physics. There is a twofold ambiguity in the values of
time-dependent asymmetries obtained inb→ cc̄smodes,(42.1o, 0) and(137.9o, 0) [28], and
both are consistent with the present measurement at the1.2σ and1.1σ level, respectively. No
evidence of physics beyond the SM is found for this component.

The (2βeff , C) plane can be transformed to the more familiar(S,C) plane. The corre-
sponding bi-dimensional contours are shown on the left of Fig. 7.15. As the interference
information is exploited in Dalitz plot analysis, direct access to the phases is possible. Then,
information is lost when passing to the(S,C) plane, but theCP conservation andb → cc̄s
values are each represented by only one point,i.e. (0, 0) and(0.671, 0) [28], respectively
(market by the red star and triangle in the plot). The physically allowed region is represented
within the dotted circle in the figure. Even though part of theinformation is lost in this plane,
the measurement can not cover unphysical regions, which is one of the advantages of Dalitz
plot analyses.CP conservation is excluded at the3.5σ level. The present measurement is
consistent with theb→ cc̄s value at the1.1σ level.
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Figure 7.15:(S,C) confidence level contours for thef0(980)K0
S (left) andρ0(770)K0

S (right)
components, constructed out of the(2βeff , C) bi-dimensional likelihood scans. The shaded
areas represent de1 through5σ contours, respectively. The physically allowed region is
represented within the dotted red circle, the regions in white have−2log(L) > 30. The red
star and triangle on the plots mark the location of the CP conserving ((0, 0)) andb → cc̄s
((sin(2βcc̄s), 0)) values, respectively.

The bi-dimensional likelihood scan(2βeff , C) for theρ0(770)K0
S component is shown

on the right hand of Fig. 7.14. Even though theCP conserving point(180o, 0) is excluded
at 3.8σ level, the measurement is consistent with the other(0o, 0) within 1σ. This is in
agreement with the Likelihood projection studies presented in Sec 7.1.3. The measurement
is consistent with theb → cc̄s values within1σ. The projection in the2βeff(ρ

0(770)K0
S)

direction will be used as input in the phenomenological analysis combining theB → K∗π
andB → ρK systems (cf. Chapter 8). The confidence level contours in thetransformed
(S,C) plane are shown on the right hand side of Fig. 7.15. This measurement excludes
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neitherCP conservation nor theb→ cc̄s values.

7.2.2 The measurement of the CPS/GPSZ phase difference

The measurement of the∆φ(K∗π) CPS/GPSZ phase (cf. Sec. 3.2.2, Eq. 3.11 and Sec. 3.2.6)
for theK∗(892) resonant state is presented as a one-dimensional likelihood scan on the left of
Fig. 7.16. The blue curve represents the statistical only likelihood scan, and the green curve
represents the convolution with the systematic uncertainties. The present measurement does
not set a strong constraint in this phase, only the(−137.0,−5.0)◦ interval is excluded at the
2σ level. This measurement is one of the experimental inputs obtained in this thesis used for
the phenomenological analysis of theB → K∗π modes presented in Chapter 8.
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Figure 7.16:Likelihood scans for the∆φ(K∗(892)π) (left) and∆φ((Kπ)∗0π) (right) phase
differences. The plots show the statistical scans (dashed blue), and the convolutions with the
systematic uncertainties (solid green). Two horizontal dashed lines at−2∆log(L) = 1 and
−2∆log(L) = 4 show the one and two standard deviation intervals, respectively.

The right hand side plot of Fig. 7.16 shows the measurement ofthe similar phase dif-
ference for theKπ S-wave,(Kπ)∗0. As for theK∗(892), the measurement sets no strong
constraint on this phase, only the interval(−132.0, 25.0)o is excluded at the2σ level. The
theoretical interpretation of this phase difference is more controversial than the one of the
K∗(892) resonant state, and then will not be used for the phenomenological analysis pre-
sented in Chapter 8.

7.2.3 Results on directCP asymmetries

The (statistical-only) likelihood scans for the directCP asymmetries are shown in Fig. 7.17.
These plots display the likelihood curves for each solution(dashed blue) and for the enve-
lope curve (solid blue) constructed with thePL-envelope method (cf. Sec. 6.7.1). The1σ
interval is defined as the range where−2∆log(L) < 1 (illustrated by a horizontal line). The
statistical error is added in quadrature with the systematic uncertainties (cf. Sec. 7.3.1).

Most directCP -asymmetries are compatible with zero within1σ. The exception is the
one for theK∗(892)πmode (cf. second row left plot of Fig. 7.17), whereACP (K∗±(892)π∓)
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asymmetry excludes the zero value at the2σ level (taking into account systematic uncertain-
ties). This result has non trivial consequences on the constraint on the strong phase difference
between theT+− andP+− QCD amplitudes (cf. Eq. 3.3) of theB0 → K∗±(892)π∓ decay
amplitude (cf. Chapter 8).

The measurement of the inclusive directCP asymmetry is shown in the left plot of
Fig. 7.18. It is consistent with theCP conservation within1σ.

7.2.4 Fit fractions and significance of small components

The (statistical-only) likelihood scans for the isobar fractions of the dominant components,
f0(980)K0

S, ρ0(770)K0
S,K∗(892)π and(Kπ)∗0, are shown in Figs. 7.19. These plots display

the likelihood curves for each solution (dashed blue) and for the envelop curve (solid blue).
They can be constructed using thePL-envelop method, as the significance of these com-
ponents is well established from previous analyses. The1σ interval is defined as the range
where−2∆log(L) < 1 (illustrated by a horizontal line). In Sec. 7.3.1 the statistical error is
added in quadrature with the systematic uncertainties.

In Fig. 7.20 are shown the likelihood scans of the fit fractions for the "small" compo-
nents:χc(0)K0

S, fX(1300)K0
S + f2(1270)K0

S, and non-resonant. To evaluate accurately the
statistical significance of these components, these scans are obtained with no approximation
in the likelihood function. The blue curve represents the statistical-only scan, and the green
curve the convolution with the systematic uncertainties. The significance is estimated as
Prob(χ2(0), 1), whereχ2(0) is the value of the convoluted scan at zero fit fraction.

• The significance obtained for theχc(0) component is3.8σ (cf. left hand plot of
Fig. 7.20). PreviousBABAR and BelleB+ → K+π−π+ Dalitz plot analyses [23, 24]
found significances above3σ but below5σ for this component. The previous Belle
B0 → K0

Sπ
+π− [42] Dalitz plot analysis found an upper limit that is in agreement

with the present result.

• The significance of the non-resonant component is estimatedto be4.6σ, in agreement
with the studies performed in the center of the DP (cf. Appendix B), and the likeli-
hood projections (cf. Fig. 7.10). The statistical-only significance is highly suppressed
because it suffers of high systematic errors that come from uncertainties on the signal
model 7.3.7.

• Finally, the significance for the componentsfX(1300)K0
S andf2(1270)K0

S considered
separately are2.9σ and2.4σ, respectively. As the signal excess at highmπ+π− mass is
described as a coherent sum of these two components, the significance of the inclusive
fit fraction of these two components is calculated, giving the result4.8σ (cf. right hand
plot of Fig. 7.20), which justifies their coherent inclusion.

All the subsmodes are strongly affected by systematic errors, being the signal model uncer-
tainty the dominant one (cf. Sec. 7.3.7).
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Figure 7.17:Statistical likelihood scans, constructed with the PL-envelope method, for the
C(f0(980)K0

S) (top left),C(ρ0(770)K0
S) (top right),ACP (K∗±(892)π∓) (middle top left),

ACP ((Kπ)∗±0 π∓) (middle top right),C(fX(130)K0
S) (middle bottom left),C(f2(1270)K0

S)
(middle bottom right),C(NR) (bottom left) andC(χC(0)) (bottom right) directCP -
asymmetries. The likelihood scans curves for each solution(dashed blue) are used to build
the envelope curve (solid blue), from which the1σ statistical error are derived. The vertical
scale stops at−2∆log(L) = 4 slightly above3.84 which is the95% confidence level. A
horizontal dashed line at−2∆log(L) = 1 shows the one standard deviation interval.
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Figure 7.18:Statistical likelihood scans, constructed with the PL-envelop method, for the
inclusive directCP -asymmetry (left) and fit fraction (right). The plots show the likelihood
scan curves for each solution (dashed blue) and the envelopecurve (solid blue), which is
used to establish the1σ statistical error. The vertical scale stops at−2∆log(L) = 4 slightly
above3.84 which is the95% confidence level. A horizontal dashed line at−2∆log(L) = 1
shows the one standard deviation interval.
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Figure 7.19:Statistical likelihood scans, constructed with the PL-envelop method, for the
FF (f0(980)K0

S) (top left),FF (ρ0(770)K0
S) (top right),FF (K∗±(892)π∓) (bottom left) and

FF ((Kπ)∗±0 π∓) (bottom right) fit fractions. The plots show the likelihood scan curves for
each solution (dashed blue) and the envelope curve (solid blue), which is used to establish
the 1σ statistical error. The vertical scale stops at−2∆log(L) = 4 slightly above3.84
which is the95% confidence level. A horizontal dashed line at−2∆log(L) = 1 shows the
one standard deviation interval.
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Figure 7.20:Statistical, and statistical convoluted with systematicslikelihood scans, for the
FF (χc0K

0
S) (top left),FF (NR) (top right) fit fractions, and the inclusive fit fraction of the

fX(1300)K0
S and f2(1270)K0

S) components (bottom). The plots show the statistical scans
(dashed blue), and the convolutions with the systematics (solid green). The cut atFF = 0
of the green curve is used to calculate the significance of thecomponent.

Fig. 7.18 also shows the statistical likelihood scan for thetotal isobar fraction, which is
consistent with1.0 within 1σ. This indicates that the average interference over the DP isas
destructive as constructive.

7.2.5 Results on other phase differences

In this section are presented results on other phase differences which are not the main target
of this analysis, but which become accessible with the present data. One of these phase
differences,∆φ(ρ0(770)K0

S, K
∗(892)π), is used as input in the phenomenological analysis

combining theB → K∗π andB → ρK systems. All the measurements are presented as
one-dimensional likelihood scans, the blue curves representing the statistical scans, and the
green ones the convolution with the systematic uncertainties.

The measurement of the∆φ(ρ0(770)K0
S, K

∗(892)π) phase difference between the
c(ρ0(770)K0

S) andc(K∗(892)π) isobar amplitudes is presented in the top left plot of Fig. 7.21.
The constraint set for this phase is not strong, only the(−112.0, 98.0)o interval is excluded
at the2σ level. In the top right plot of the same figure is shown the measurement of the
∆φ(ρ0(770)K0

S, (Kπ)∗0π) phase difference between thec(ρ0(770)K0
S) andc((Kπ)∗0)π) iso-

bar amplitudes, which is the equivalent of the previous phase for theKπ S-wave. The inter-
val (−105.0, 112.0)o is excluded at the2σ level. No strong constraint is set in these phases
because they are extracted from the interference of weakly overlapping components in the
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DP.

Other phase differences between components that have strong overlap in the DP can be
accessed. The measurement of the phase difference between thec(K∗(892)π) andc((Kπ)∗0π)
isobar amplitudes is presented in the bottom left plot of thesame figure. In this case the
value of this parameters are very similar in solutions I and II, an so a strong constraint can
be set, as is shown in the figure. Finally, the measurement of the phase difference between
thec(f0(980)K0

S) andc(ρ0(770)K0
S) isobar amplitudes is shown in the bottom right plot of

Fig. 7.21. Even though the value differs significantly between solutions I and II, the sta-
tistical errors on every solution is of the order of∼ 18o, which translates into a relatively
significant constraint on the confidence interval for this phase.
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Figure 7.21: Statistical, and statistical convoluted with systematicslikelihood scans,
for the ∆φ(ρ0(770)K0

S, K
∗(892)π) (top left), ∆φ(ρ0(770)K0

S, (Kπ)∗0π) (top right),
∆φ(K∗(892)π, (Kπ)∗0π) (bottom left),∆φ(f0(980)K0

S, ρ
0(770)K0

S) (bottom right) phase
differences. The plots show the statistical scans (dashed blue), and the convolutions
with the systematics (solid green). Two horizontal dashed lines at−2∆log(L) = 1 and
−2∆log(L) = 4 shows the one and two standard deviation intervals, respectively.

The mixing phases for the small componentsφ(fX(1300)K0
S), φ(f2(1270)K0

S), φ(NR)
andφ(χC(0)), are shown here only for completeness. The statistical likelihood scans for
them have been built with thePL-envelop method, and have been directly convoluted with
the systematic uncertainties. In Fig. 7.22, the envelope ofthe statistical scans for solutions I
and II (dashed blue), and the convolutions with the systematics (solid green) is shown. The
plots show that all mixing inducedCP -violation are consistent with zero within1σ as the0o

and180o values are not excluded.
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Figure 7.22:Statistical, and statistical convoluted with systematicslikelihood scans (con-
structed with the PL-envelope method), for theφ(fX(1300)K0

S) (top left),φ(f2(1270)K0
S)

(top right),φ(NR) (bottom left) andφ(χC(0)) (bottom right) phase differences. The plots
show the envelope of the statistical scans for solutions I and II (dashed blue), and the con-
volutions with the systematics (solid green). Two horizontal dashed lines at−2∆log(L) = 1
and−2∆log(L) = 4 shows the one and two standard deviation intervals, respectively.

7.2.6 Summary on results

Tables 7.4 and 7.5 summarize the results on the Q2B parameters for all components in the
signal model. Table 7.4 show results on total and partial fit fractions, exclusive and inclusive
directCP -asymmetries for solutions I and II. Each result displays a central value and three
errors: statistical, systematic and signal DP model error,respectively. The evaluation of
the systematic uncertainties is described in Sec. 7.3. On the same table are displayed the
significances of theχc0K

0
S, non-resonant,fX(1300)K0

S andf2(1270)K0
S components. The

significance for the componentsfX(1300)K0
S andf2(1270)K0

S taken together is also given.
Table 7.5 reports the1σ and2σ intervals for the total and partial isobar fractions, and for
the exclusive and inclusive directCP asymmetries. The fact that for some phases the total
intervals have to be expressed as the union of disconnected interval is due to the local minima
structure of the likelihood function.

7.2.7 Average signal efficiency and branching fractions

To compute the inclusive and partial branching fractions, the signal model dependent average
efficiency〈ε〉 over the DP is needed. This average efficiency is what would beobtained if a
MC sample generated with the fit results is subject to reconstruction and selection described
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Parameter Value Sol-I Value Sol-II
C(f0(980)K

0
S) 0.08 ± 0.19 ± 0.03 ± 0.04 0.23 ± 0.19 ± 0.03 ± 0.04

βeff (f0(980)K
0
S) 36.0 ± 9.8 ± 2.1 ± 2.1 56.2 ± 10.4 ± 2.1 ± 2.1

S(f0(980)K
0
S) −0.96 ± 0.09 ± 0.03 ± 0.02 −0.90 ± 0.13 ± 0.03 ± 0.02

Corr(S(f0(980)K
0
S), C(f0(980)K

0
S)) +19.7% +12.5%

FF (f0(980)K
0
S) 13.8+1.5

−1.4 ± 0.8 ± 0.6 13.5+1.4
−1.3 ± 0.8 ± 0.6

C(ρ0(770)K0
S) −0.05 ± 0.26 ± 0.10 ± 0.03 −0.14 ± 0.26 ± 0.10 ± 0.03

βeff (ρ0(770)K0
S) 10.2 ± 8.9 ± 3.0 ± 1.9 33.4 ± 10.4 ± 3.0 ± 1.9

S(ρ0(770)K0
S) 0.35 ± 0.31 ± 0.06 ± 0.03 0.91 ± 0.13 ± 0.06 ± 0.03

Corr(S(ρ0(770)K0
S), C(ρ0(770)K0

S)) −21.3% −10.4%
FF (ρ0(770)K0

S) 8.6+1.4
−1.3 ± 0.5 ± 0.2 8.5+1.3

−1.2 ± 0.5 ± 0.2

ACP (K∗(892)π) −0.21 ± 0.10 ± 0.01 ± 0.02 −0.19+0.10
−0.11 ± 0.01 ± 0.02

∆φ(K∗(892)π) 58.3 ± 32.7 ± 4.6 ± 8.1 176.6 ± 28.8 ± 4.6 ± 8.1
FF (K∗(892)π) 11.0+1.2

−1.0 ± 0.6 ± 0.8 10.9+1.2
−1.0 ± 0.6 ± 0.8

ACP ((Kπ)∗0π) 0.09 ± 0.07 ± 0.02 ± 0.02 0.12+0.07
−0.06 ± 0.02 ± 0.02

∆φ((Kπ)∗0π) 72.2 ± 24.6 ± 4.1 ± 4.4 −175.1 ± 22.6 ± 4.1 ± 4.4
FF ((Kπ)∗0π) 45.2 ± 2.3 ± 1.9 ± 0.9 46.1 ± 2.4 ± 1.9 ± 0.9

C(NR) 0.01 ± 0.25 ± 0.06 ± 0.05 −0.45+0.28
−0.24 ± 0.06 ± 0.05

φ(NR) 0.8 ± 17.5 ± 3.8 ± 7.5 102.0 ± 26.5 ± 3.8 ± 7.5
FF (NR) 11.5 ± 2.0 ± 1.0 ± 1.7 12.6 ± 2.0 ± 1.0 ± 1.7
NR significance 4.6σ —

C(f2(1270)K
0
S) 0.28+0.35

−0.40 ± 0.08 ± 0.07 0.09 ± 0.46 ± 0.08 ± 0.07
φ(f2(1270)K

0
S) 29.8 ± 35.8 ± 6.2 ± 10.4 107.2 ± 33.3 ± 6.2 ± 10.4

FF (f2(1270)K
0
S) 2.3+0.8

−0.7 ± 0.2 ± 0.7 2.3+0.9
−0.7 ± 0.2 ± 0.7

f2(1270)K
0
S significance 2.4σ —

C(fX(1300)K0
S) 0.13+0.33

−0.35 ± 0.04 ± 0.09 0.30+0.34
−0.41 ± 0.04 ± 0.09

φ(fX(1300)K0
S) 11.5 ± 30.3 ± 4.3 ± 4.5 153.8 ± 27.5 ± 4.3 ± 4.5

FF (fX(1300)K0
S) 3.6+1.0

−0.9 ± 0.3 ± 0.9 3.5+1.0
−0.8 ± 0.3 ± 0.9

fX(1300)K0
S significance 2.9σ —

fX(1300)K0
S ∪ f2(1270)K

0
S significance 4.8σ —

C(χc(0)K
0
S) −0.29+0.53

−0.44 ± 0.03 ± 0.05 −0.41+0.54
−0.42 ± 0.03 ± 0.05

φ(χc(0)K
0
S) 46.3 ± 44.7 ± 4.6 ± 8.3 110.4 ± 46.6 ± 4.6 ± 8.3

FF (χc(0)K
0
S) 1.04+0.41

−0.33 ± 0.04 ± 0.11 0.99+0.37
−0.30 ± 0.04 ± 0.11

χc(0)K
0
S Stat. significance 3.8σ —

FFTot 97.2+1.7
−1.3 ± 2.1 ± 1.15 98.3+1.5

−1.3 ± 2.1 ± 1.15
Aincl

CP −0.01 ± 0.008 ± 0.006 0.01 ± 0.05 ± 0.008 ± 0.006

∆φ(f0(980)K0
S , ρ(770)K0

S) −35.6 ± 14.9 ± 6.1 ± 4.4 −66.7 ± 18.3 ± 6.1 ± 4.4
∆φ(K∗(892)π, (Kπ)∗0π) 13.0 ± 10.9 ± 4.6 ± 4.7 15.5 ± 10.2 ± 4.6 ± 4.7
∆φ(ρ(770)K0

S, (Kπ)∗0π) −172.8 ± 22.6 ± 10.1 ± 8.7 −170.8 ± 26.8 ± 10.1 ± 8.7
∆φ(ρ(770)K0

S, K∗(892)π) 174.3 ± 28.0 ± 8.7 ± 12.7 −173.7 ± 29.8 ± 8.7 ± 12.7

Table 7.4:Summary on fit results for the Q2B parameters (directly quoted in terms ofβeff

for the f0(980)K0
S and ρ0(770)K0

S components), the inclusive directCP asymmetry and
total fit fraction for solutions I and II. The results are quoted as a central value and three
errors: statistical, systematic and DP signal model uncertainty, respectively. Also shown are
the stat+syst linear correlation betweenC andS for thef0(980)K0

S andρ0(770)K0
S com-

ponents, and the significances of the non-resonant,fX(1300)K0
S, f2(1270)K0

S andχc(0)K0
S

components, and of thefX(1300)K0
S andf2(1270)K0

S components taken together. Phases
are in degrees andFFs in %.
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Parameter C. Val. 1σ Coverage 2σ Coverage
C(f0(980)K

0
S) 0.08 (−0.11, 0.40) (−0.30, 0.59)

βeff (f0(980)K
0
S) 36.0 (27.1, 66.0) (18.1, 75.8)

S(f0(980)K
0
S) −0.95 (−1.0,−0.73) (−1.0,−0.49)

FF (f0(980)K
0
S) 13.8 (11.98, 15.62) (9.91, 17.44)

C(ρ0(770)K0
S) −0.05 (−0.39, 0.23) (−0.66, 0.49)

βeff (ρ0(770)K0
S) 10.2 (0.7, 44.5) (−8.8, 57.0)

S(ρ0(770)K0
S) 0.35 (0.02, 1.0) (−0.35, 1.0)

FF (ρ0(770)K0
S) 8.6 (7.29, 10.09) (5.98, 11.59)

ACP (K∗(892)π) −0.21 (−0.31,−0.10) (−0.42, 0.00)
∆φ(K∗(892)π) 58.3 (−180.0,−158.1) ∪ (27.2, 94.3) (−180.0,−127.0) ∪ (−4.8, 180.0)

∪(147.4, 180.0)
FF (K∗(892)π) 11.0 (9.59, 12.56) (8.17, 14.28)
ACP ((Kπ)∗0π) 0.09 (0.02, 0.19) (−0.05, 0.27)
∆φ((Kπ)∗0π) 72.2 (−180.0,−156.0) ∪ (49.8, 97.7) (−180.0,−131.6) ∪ (26.8, 180.0)

∪(152.0, 180.0)
FF ((Kπ)∗0π) 45.2 (42.17, 48.85) (34.00, 52.02)

C(NR) 0.01 (−0.67, 0.28) (−0.87, 0.53)
φ(NR) 0.8 (−16.5, 15.1) ∪ (75.6, 130.1) (−46.4, 38.1) ∪ (49.6, 155.4)

FF (NR) 11.5 (8.70, 14.2) (5.92, 16.87)
C(f2(1270)K

0
S) 0.28 (−0.33, 0.65) (−0.72, 0.94)

φ(f2(1270)K
0
S) 29.8 (−2.1, 141.0) (−40.2, 176.0)

FF (f2(1270)K
0
S) 2.3 (1.28, 3.45) (0.33, 4.71)

C(fX(1300)K0
S) 0.13 (−0.24, 0.64) (−0.59, 0.91)

φ(fX(1300)K0
S) 11.5 (−15.1, 40.4) ∪ (136.2, 180.0) (−180.0,−150.2) ∪ (−47.6, 71.8)

∪(99.3, 180.0)
FF (fX(1300)K0

S) 3.6 (2.30, 5.03) (1.08, 6.53)
C(χc(0)K

0
S) −0.29 (−0.80, 0.24) (−1.0, 0.70)

φ(χc(0)K
0
S) 46.3 (8.2, 158.9) (−180.0,−154.8) ∪ (−40.2, 180.0)

FF (χc(0)K
0
S) 1.04 (0.69, 1.46) (0.39, 1.92)

FFTot 97.2 (−0.06, 0.06) (−0.11, 0.11)
Aincl

CP −0.01 (94.32, 100.67) (91.74, 103.64)
∆φ(f0(980)K0

S , ρ(770)K0
S) −35.6 (−86.2, 19.8) (−11.6,−4.1)

∆φ(K∗(892)π, (Kπ)∗0π) 13.0 (0.4, 27.3) (−12.4, 40.0)
∆φ(ρ(770)K0

S, (Kπ)∗0π) −172.8 (−180.,−140.2) ∪ (159.5, 180.0) (−180.0,−105.2) ∪ (114.5, 180.0)
∆φ(ρ(770)K0

S , K∗(892)π) 174.3 (−180.,−151.5) ∪ (141.8, 180.0) (−180.0,−112.0) ∪ (100.1, 180.0)

Table 7.5:Summary on fit results for the Q2B parameters (directly quoted in terms ofβeff

for the f0(980)K0
S and ρ0(770)K0

S components), the inclusive directCP -asymmetry and
total fit fraction. On the table are shown the central value (C. Val.), 1σ and 2σ coverage
intervals, respectively. The fact that for some phases the total interval have to be expressed
as the union of disconnected intervals is due to the local minima structure of the likelihood
function. Phases are in degrees andFFs in %.

in Chapter 5. The efficiency at a given point of the DP is independent on the signal model, so
the non-resonant MC sample can be used (with∼ 6× 106 events) to construct the efficiency
map (cf. Fig. 7.23). This map is defined as the probability to reconstruct anywhere2 an event
with true SDP coordinates(m′

π+π−, θ′π+π−). This efficiency over the DP is then averaged
using the truth PDF over the Square DP constructed from the fitresults (cf. Fig. 7.2) to
obtain the signal model average efficiency. Using the PDF forsolution I the efficiency is
(23.14± 0.02)% (the error is statistical only). The signal efficiency has also been calculated
using the signal truth PDF obtained from solution II. These two values differ by0.05%,

2Note that thisε is different from the from the TM and SCF efficiencies in Fig. 6.7



213 Results

and this shift is accounted as a systematic uncertainty. In summary, the value of the signal
efficiency is (after applying a correction due toK0

S reconstruction, Sec. 7.3.2)(22.73 ±
0.02 ± 0.61)%. Using this efficiency value, the signal yield, the fit fractions and the number
of B0B̄0 pairs produced during the period 1999-2007, the inclusive and partial branching
fractions are calculated. The results are shown on Table 7.6. The errors are the statistical,
systematic and DP model uncertainties, respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-π+πm’
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

- π
+ π’θ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.23:Signal efficiency function over the SDP constructed with thenon-resonant MC
sample.

Component B(B0 → Mode)(×106)

B0 → f0(980)K0 6.92 ± 0.77 ± 0.46 ± 0.32
B0 → ρ0(770)K0 4.31+0.70

−0.61 ± 0.29 ± 0.12
B0 → K∗+(892)π− 5.52+0.61

−0.54 ± 0.35 ± 0.41
B0 → (Kπ)∗+0 π− 22.67+1.65

−1.27 ± 1.20 ± 0.56
B0 → f2(1270)K0 1.15+0.42

−0.35 ± 0.11 ± 0.35
B0 → fX(1300)K0 1.82+0.55

−0.45 ± 0.16 ± 0.45
Non-resonant 5.77+1.61

−1.00 ± 0.53 ± 0.31
B0 → χC(0)K0 0.52+0.20

−0.16 ± 0.03 ± 0.06
K0π+π− total 50.15 ± 1.47 ± 1.60 ± 0.73

Table 7.6:Summary on branching fractions results (in units of10−6). The first quated error
is statistical, the second systematic and the third is the DPmodel uncertainty. The results are
directly quoted in terms of theK0 in the final stat, taking into account forB(K0 → K0

S) =
0.5.

7.3 Systematics uncertainties

There are several sources of systematic uncertainties in amplitude analyses:

• fit biases coming from reconstruction-related effects, andfrom the model used to de-
scribe the SCF;
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• uncertainties on parameters kept fixed in the fit (such as those involved in the∆t
resolution model, the fractions of signal events belongingto each tagging category, or
themES and∆E distributions);

• statistical uncertainties on the bin contents of the histograms used for the efficiency
map, SCF resolution and DP distributions of continuum andB-background. All these
effects can be understood as an uncertainty on the shape of the corresponding func-
tions;

• uncertainties on the expected number of background events;

• finally, there are the so-called DP model errors, which arisefrom uncertainties in the
composition of the signal model along the the DP, and its parameterization.

The latter uncertainties are harder to asses as there is no systematical procedure to probe
the signal DP model. They are the dominant contributions to the total systematic uncertain-
ties.

7.3.1 Reconstruction and SCF model

Studies on the embedded fits (see Sec. 6.6) have shown that fit biases are small for most
of the Q2B parameters of interest; the larger observed biases concernthe isobar fractions
and the total signal yield. These biases are accounted for assystematic uncertainties due to
reconstruction and the SCF model. On the isobar fractions, the relative systematic error is
1.2%. On the signal yield a systematic of0.28σ (∼ 14 events out of 2200) is found. The
summary of these systematic uncertainties is reported on Table 7.7.

Parameter systematic error Parameter systematic error
FF (f0(980)K0

S)(%) 0.5 FF (ρ0(770)K0
S)(%) 0.3

FF (K∗(892)π)(%) 0.4 FF ((Kπ)∗0π)(%) 1.8
FF (f2(1270)K0

S)(%) 0.09 FF (fX(1300)K0
S)(%) 0.14

FF (NR)(%) 0.5 FF (χc(0)K0
S)(%) 0.04

TotalFF (%) 2.0 Signal yield 14.0

Table 7.7:Systematic uncertainties on the fit fractions and the signalyield due to reconstruc-
tion and the SCF model.

7.3.2 KS reconstruction and tracking efficiencies, PID and luminosity

Systematic effects coming fromK0
S reconstruction and tracking efficiencies, PID and lumi-

nosity affect the signal efficiency, and so the inclusive andpartial branching fractions. The
effect on CPV parameters is negligible. StandardBABAR procedures for the estimation of
these systematic uncertainties are followed.
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• tracking efficiencies : a uniform systematic uncertainty over the DP is applied for
the reconstruction of charged tracks, taking0.8% uncertainty per track on the signal
efficiency, as suggested by the Tracking Efficiency Task Force [108]. For the present
analysis with two charged pions, this gives a total of1.6% relative systematic uncer-
tainty.

• KS reconstruction : a correction and a systematic uncertainty are applied to thesignal
efficiency as suggested by the Tracking Efficiency Task Force[109], due to the recon-
struction of aK0

S with two charged tracks. This correction is a multiplicative factor
that takes into account differences between data and MC simulation. The correction
applied over the DP average efficiency is of0.982 ± 0.004, giving an efficiency of
22.73%, with 0.9% of relative systematic uncertainty.

• PID : As in the case of tracking efficiency, a uniform systematic over the DP is applied
for PID uncertainties, following the same procedure as in [23]. A 1% uncertainty per
track and per selector is taken (as suggested by the TrackingEfficiency Task Force).
As there are two pions and one pion selector (1% each), the total relative systematic
uncertainty is2.0%.

• Differences on signal efficiency for sol I and sol II:For the calculation of the in-
clusive and partial branching fractions, an average signalefficiency is calculated using
the signal truth DP PDF constructed out of the fit results. This efficiency is evaluated
using sol I, and the difference with respect to sol II (0.002%) is taken as a systematic
uncertainty.

• Luminosity: As explained in Sec. 4.1.3, the absolute luminosity atBABAR is estimated
from e+e− → e+e− ande+e− → µ+µ− processes, the uncertainty on this estimation
is about1.5% [83]. This uncertainty propagates into the estimation of the counting of
BB̄ mesons produced atBABAR, which affects the branching fractions (cf. Sec. 2.4.9,
Eq. 2.53). This counting has been estimated to have a1.1% uncertainty [110], using
the ratio of hadronic toµ+µ− production, which givesNBB̄ = (382.86± 4.21)× 106.

• Other systematics:Uncertainties due to vertexing and SVT misalignment are taken
from charmonium analyses [111]. These are less than0.01% for the Q2B parameters
and have a negligible effect on the signal efficiency and yield.

Table 7.8 shows the summary on signal efficiency systematics.

7.3.3 Fixed parameters in the likelihood

Systematic errors coming from fixed parameters in the likelihood function are evaluated by
varying independently each parameter by±1σ, whereσ refers to the World Average error on
the parameter, when available, or a conservative estimate when no measurement is available.
The dataset is fitted using both configurations, and the systematic uncertainty is estimated as
the shift on the corresponding fit parameters. A list of all fixed parameters, with the values
and errors used to evaluate systematics, is given on appendix C. The results of this study are
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Effect Error
tracking efficiencies 1.6%
K0

S reconstruction 0.9%
PID 2.0%
Difference from solI to solII 0.002%
Total 2.7%

Table 7.8: Summary of signal efficiency systematics. The systematics errors quoted are
relative errors.

summarized in Tables 7.9, 7.10 and 7.11–7.12 for fit fractions, directCP asymmetries and
phases and signal yield, respectively.

Parameter f0(980) ρ0(770) K∗(892) (Kπ)∗0 f2(1270) fX(1300) NR χc(0) FFTot

NNeutral Gen. 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
NCharged Gen. 0.01 < 0.01 0.02 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01
N

a+

1
π−

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
NBBkg cat1 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
NBBkg cat2 0.03 0.03 0.04 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.05
NBBkg cat3 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
SCF PDF pars. < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
SCF fraction 0.02 0.02 0.02 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.02
BBkg PDF pars. 0.05 0.13 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.14
D−π+ ∆t resol. < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Sig. ∆t resol. 0.02 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.03
Misstag < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
∆ Misstag 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Tagging effic. < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
∆md(Sig.) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.02
τB0(Sig.) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
∆md(BBkg) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
τB0(BBkg) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Subtotal 0.07 0.14 0.07 0.3 0.06 0.17 0.23 0.01 0.15

Table 7.9: Systematic errors onfit fractions for f0(980), ρ0(770), K∗(892), (Kπ)∗0,
f1(1270), fX(1300),NR andχc(0) intermediate states, and in the total isobar fraction due
to the uncertainty on the fixed parameters in the likelihood function. The isobar fractions
uncertainties are in%.

7.3.4 Tag-Side Interference Effects

It is usually assumed that the individual final states used for flavor tagging can be reached
either from aB0 or B̄0 meson. This assumption is valid only for the lepton tags. In the
case of the non-leptonic tagging decays there is a possibility of mixing from suppressed
contributions to the tag-side final state, which gives placeto a systematic uncertainty.

One of the examples is theD+(→ K−π+π+)π− final state, which is usually associated
with B̄0 meson since the charge of the kaon has the same sign as the flavor of a b quark
(cf. Sec. 5.3). However, this final state can also be reached from aB0 meson through
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Parameter f0(980) ρ0(770) K∗(892) (Kπ)∗0 f2(1270) fX (1300) NR χc(0) Ainclu
CP

NNeutral Gen. < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
NCharged Gen. < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
N

a+
1

π−
< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

NBBkg cat1 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
NBBkg cat2 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
NBBkg cat3 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
SCF PDF pars. < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
SCF fraction < 0.01 < 0.01 < 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01
BBkg PDF pars. 0.01 0.02 < 0.01 0.02 0.05 0.02 0.04 0.02 < 0.01
D−π+ ∆t resol. < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Sig. ∆t resol. < 0.01 < 0.01 < 0.01 < 0.01 0.02 < 0.01 < 0.01 < 0.01 < 0.01
Misstag < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
∆ Misstag < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Tagging effic. < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
∆md(Sig.) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
τB0(Sig.) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
∆md(BBkg) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
τB0(BBkg) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Subtotal 0.01 0.02 0.006 0.02 0.05 0.03 0.04 0.02 0.01

Table 7.10:Systematic errors ondirect CP -asymmetriesfor f0(980), ρ0(770), K∗(892),
(Kπ)∗0, f1(1270), fX(1300), NR andχc(0) intermediate states, and in the inclusive direct
CP asymmetry due to the uncertainty on the fixed parameters in the likelihood function.

Parameter 2βeff (f0) 2βeff (ρ0) ∆φ(K∗(892)) ∆φ((Kπ)∗0) φ(f2) φ(fX) φ(NR) φ(χc(0))

NNeutral Gen. < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.2
NCharged Gen. < 0.1 < 0.1 < 0.1 < 0.1 0.2 < 0.1 < 0.1 0.2
N

a+

1
π−

< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
NBBkg cat1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.1
NBBkg cat2 < 0.1 < 0.1 0.3 0.3 1.2 0.1 0.4 0.2
NBBkg cat3 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.1 < 0.1 0.1
SCF PDF pars. < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.2
SCF fraction 0.3 0.2 0.2 < 0.1 1.2 0.2 0.2 0.4
BBkg PDF pars. 0.4 2.6 1.2 1.5 0.8 1.2 1.9 2.2
D−π+ ∆t resol. < 0.1 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1 0.2
Sig. ∆t resol. 0.4 0.3 1.4 1.4 1.3 0.5 0.5 1.3
Misstag 0.1 0.1 < 0.1 0.1 0.3 0.2 0.1 0.4
∆ Misstag < 0.1 0.2 < 0.1 < 0.1 0.2 0.2 0.1 0.4
Tagging effic. < 0.1 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1 0.3
∆md(Sig.) 0.1 0.1 < 0.2 < 0.1 0.5 0.2 0.2 0.2
τB0(Sig.) < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
∆md(BBkg) < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.1
τB0(BBkg) < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
Subtotal 0.7 2.6 1.9 2.0 2.4 1.4 2.0 2.7

Table 7.11: Systematic errors onphase differences2βeff(f0(980)), 2βeff(ρ
0(770)),

∆φ(K∗(892)), ∆φ((Kπ)∗0), φ(f2(1270)), φ(fX(1300)), φ(NR) and φ(χc(0)) due to the
uncertainty on the fixed parameters in the likelihood function. The phases uncertainties are
in degrees.

a b̄ → cūd̄ decay. Its amplitude is CKM suppressed relative to the dominant B̄0 decay
amplitude (|V ∗

ubVcd/VcbV
∗
ud| ≈ 0.02) and has a relative weak phase difference ofγ.

This uncertainty is estimated with a standard procedure in time-dependent analyses. 500
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Parameter ∆φ(f0, ρ
0) ∆φ(K∗(892), (Kπ)∗0) ∆φ(ρ0, (Kπ)∗0) ∆φ(ρ0, K∗(892)) Signal Yield

NNeutral Gen. < 0.1 < 0.1 < 0.1 < 0.1 2.0
NCharged Gen. < 0.1 < 0.1 < 0.1 < 0.1 2.6
N

a+
1

π−
< 0.1 < 0.1 < 0.1 < 0.1 < 1.0

NBBkg cat1 < 0.1 < 0.1 < 0.1 < 0.1 < 1.0
NBBkg cat2 < 0.1 < 0.1 0.1 < 0.1 5.1
NBBkg cat3 < 0.1 < 0.1 < 0.1 < 0.1 1.1
SCF PDF pars. < 0.1 < 0.1 < 0.1 < 0.1 < 1.0
SCF fraction 0.2 < 0.1 0.2 0.2 5.7
BBkg PDF pars. 1.6 0.2 1.4 1.5 2.2
D−π+ ∆t resol. < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
Sig. ∆t resol. 0.1 < 0.1 0.6 0.7 2.4
Misstag < 0.1 < 0.1 0.1 0.1 < 1.0
∆ Misstag < 0.1 < 0.1 < 0.1 < 0.1 < 1.0
Tagging effic. < 0.1 < 0.1 < 0.1 < 0.1 5.6
∆md(Sig.) < 0.1 < 0.1 0.1 0.1 < 1.0
τB0(Sig.) < 0.1 < 0.1 < 0.1 < 0.1 1.6
∆md(BBkg) < 0.1 < 0.1 < 0.1 < 0.1 < 1.0
τB0(BBkg) < 0.1 < 0.1 < 0.1 < 0.1 < 1.0
Subtotal 1.5 0.2 1.5 1.6 10.7

Table 7.12: Systematic errors onphase differences∆φ(f0, ρ
0), ∆φ(K∗(892), (Kπ)∗0),

∆φ(ρ0, (Kπ)∗0)), ∆φ(ρ0, K∗(892) and in the Signal Yield due to the uncertainty on the fixed
parameters in the likelihood function. The phases uncertainties are in degrees.

MC data samples are generated taking into account the tag-side interference, and then fitted
taking/not-taking the effect into account. The systematiceffect is estimated as the mean bias
on the Q2B parameters, which are shown on Table 7.13.

Par. Shift Par. Shift
C(f0(980)) < 0.01 C(ρ0(770)) 0.06
FF (f0(980)) 0.04 FF (ρ0(770)) 0.02
2βeff (f0(980)) 1.2 2βeff (ρ0(980)) 0.3
ACP (K∗(892)) < 0.01 ACP ((Kπ)∗0) < 0.01
FF (K∗(892)) 0.11 FF ((Kπ)∗0) 0.13
∆φ(K∗(892)) 0.6 ∆φ((Kπ)∗0) 0.3
C(f2(1270)) 0.03 C(fX(1300)) < 0.01
FF (f2(1270)) 0.2 FF (fX(1300)) 0.01
φ(f2(1270)) 0.8 φ(fX(1300)) 1.9
C(NR) < 0.01 C(χC(0)) < 0.01
FF (NR) 0.04 FF (χC(0)) < 0.01
φ(NR) 1.4 φ(χC(0)) 2.1
FFTot 0.3 Aincl

CP < 0.01
∆φ(f0, ρ

0) 3.8 ∆φ(K∗(892), (Kπ)∗0) 4.4
∆φ(ρ0, (Kπ)∗0)) 1.8 ∆φ(ρ0, K∗(892) 6.2

Table 7.13:Systematic errors on total fit fraction, inclusive directCP asymmetry and all
Q2B parameters due to the Tag-Side Interference effect. Theerrors on phases are in degrees
and those onFFs in %.
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7.3.5 Continuum PDF

While most of the PDF parameters for the continuum model are free to vary in the nominal fit,
the Dalitz plot PDF is uniquely determined as a two-dimensional non-parametric map, built
using onpeak sidebands and offpeak data (cf. Sec. 6.3.4). Inorder to build this continuum
DP PDF, the square DP is broken into regions, and smoothed using different smoothing
parameters for each region, to take into account the presence of different peaking structures,
with different widths (i.e. peaks in theρ0,K∗ bands due to realρ0s andK∗s).

A systematic uncertainty coming from the finite size of the samples used to construct the
PDF is estimated. It is evaluated by splitting the continuumuū, dd̄ andss̄, and continuum
cc̄ MC samples (cf. Sec. 5.1.2) into samples of the same size as are used to build the PDF
(on-peak and off-peak). Events on the signal region and sidebands (cf. Sec. 5.7) are used to
construct the DP PDFs. A toy MC sample is generated only with the signal (using the nom-
inal signal model and the isobar parameter values of solution I) and continuum-background
(with one of the constructed PDFs out of the MC continuum sample) components. The
samples are then fitted with all the continuum DP PDFs just constructed. The systematic is
evaluated as the RMS of the distributions of the bias on the fitparameters.

Since the empirical shape parameters of the DP continuum PDFs are not determined si-
multaneously with the signal parameters by the fit, the validity of the sidebands-to-signal
region extrapolation has to be tested. This introduces systematic uncertainties. PDFs cre-
ated with events from different regions of the sideband and signal region of the(mES,∆E)
plane, are used to build continuum MC samples. The signal region DP continuum PDF is
used to generate high statistic toy MC samples (again, only with the signal and continuum
components), which are then fitted using both the signal region and sidebands PDFs. The
systematic is evaluated as the RMS of the distributions of the bias on the fit parameters.

A systematic uncertainty is evaluated on the stability of the smoothing procedure. To
quantify this effect, a series of PDFs were produced with different smoothing parameters,
which are then used to refit the data. The observed shifts in the fit parameters are taken as
systematics.

A charge symmetric PDF is used for the continuum DP for all tagging categories, except
for the non-tagged events. An additional systematic effectis evaluated by fitting data with
the symmetric/non-symmetric DP PDF to evaluate a shift in the Q2B parameters.

The mean biases on the fitted Q2B parameters from these systematic effects are shown
on Table 7.14.

7.3.6 B-background PDF

A systematic error is evaluated due to the DP B-background PDFs, which are 2D his-
tograms. The distributions of the peaking B-background components have been modified
by shifting their central values by± the experimental resolution in the reconstructed mass
(∼ 8 MeV/c2). Their widths have been smeared by the same amount. The systematics are
evaluated as the bias in the fit results with respect to the nominal fit configuration.

There is another source of systematic coming from theJ/ΨK0
S ∆E PDF. The signal and

Dπ B-background uses the same parametric∆E PDF. These fit functions are then able to
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Par. Subtotal Par. Subtotal
C(f0(980)) 0.01 C(ρ0(770)) < 0.01
FF (f0(980)) 0.11 FF (ρ0(770)) 0.04
2βeff (f0(980)) 1.3 2βeff (ρ0(980)) 1.7
ACP (K∗(892)) < 0.01 ACP ((Kπ)∗0) 0.01
FF (K∗(892)) 0.21 FF ((Kπ)∗0) 0.07
∆φ(K∗(892)) 2.7 ∆φ((Kπ)∗0) 2.1
C(f2(1270)) < 0.01 C(fX(1300)) 0.02
FF (f2(1270)) 0.03 FF (fX(1300)) 0.12
φ(f2(1270)) 3.0 φ(fX(1300)) 1.9
C(NR) 0.02 C(χC(0)) 0.01
FF (NR) 0.22 FF (χC(0)) 0.01
φ(NR) 1.1 φ(χC(0)) 2.3
FFTot 0.10 Aincl

CP < 0.01
∆φ(f0, ρ

0) 1.6 ∆φ(K∗(892), (Kπ)∗0) 1.1
∆φ(ρ0, (Kπ)∗0)) 2.9 ∆φ(ρ0, K∗(892) 3.9
Signal Yield 20.2

Table 7.14:Systematic errors on the Q2B parameters and signal yield dueto the uncertainty
on the continuum DP PDF. The errors on phases are in degrees and those onFFs in %.
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Figure 7.24:Left: Comparison between data (blue points) and∆E PDF (histogram) in the
J/ΨK0

S band, a shift between the two is seen due the bias in the absolute energy scale. Right:
the nominal (black) and shifted (red)J/ΨK0

S ∆E PDF used for systematic studies.

adapt their value to the absolute energy scale,i.e. the mean value of the∆E PDF is free to
vary in the fit. However, theJ/ΨK0

S uses a non-parametric PDF for∆E, constructed from
MC. When the fit on data is performed, a shift between the∆E PDF and data is observed as
can be seen in the left hand plot of Fig. 7.24. A systematic is evaluated on this: the∆E PDF
is shifted by the∆E bias, as shown in the right hand plot of Fig. 7.24, then data isrefitted
and the bias in the fit results are taken as systematic. The projection plots shown in Sec. 7.1
use the correctedJ/ΨK0

S ∆E PDF.

The results of all these systematics can be seen in Table 7.15, 7.16 and 7.17-7.18 for fit
fractions, directCP asymmetries and phases and the signal yield, respectively.
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Parameter f0(980) ρ0(770) K∗(892) (Kπ)∗0 f2(1270) fX(1300) NR χc(0) FFTot

Shift D+π− 0.05 0.05 0.01 0.02 0.02 < 0.01 0.05 < 0.01 0.02
SmearD+π− 0.03 0.07 0.01 0.02 < 0.01 < 0.01 0.04 < 0.01 0.04
Shift J/ΨK0

S < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
SmearJ/ΨK0

S < 0.01 < 0.01 < 0.01 0.01 < 0.01 < 0.01 0.02 < 0.01 < 0.01
Shift Ψ(2S)K0

S 0.01 < 0.01 0.03 0.09 < 0.01 0.02 0.05 < 0.01 0.07
SmearΨ(2S)K0

S 0.01 < 0.01 0.01 0.06 < 0.01 < 0.01 0.05 < 0.01 0.03
Shift η′K0

S < 0.01 0.02 < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Smearη′K0

S < 0.02 0.03 < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Shift a+

1 π− < 0.01 < 0.01 < 0.01 0.01 < 0.01 < 0.01 0.01 < 0.01 < 0.01
Smeara+

1 π− < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
PDFJ/(∆E) 0.03 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.07 < 0.01 0.02
Subtotal 0.07 0.09 0.03 0.12 0.02 0.02 0.12< 0.01 0.08

Table 7.15: Systematic errors onfit fractions for f0(980), ρ0(770), K∗(892), (Kπ)∗0,
f1(1270), fX(1300), NR and χc(0) intermediate states, and in the total isobar fraction
due to the uncertainty on the B-background PDFs. The isobar fractions uncertainties are in
%.

Parameter f0(980) ρ0(770) K∗(892) (Kπ)∗0 f2(1270) fX(1300) NR χc(0) Aincl
CP

Shift D+π− < 0.01 0.02 < 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01
SmearD+π− < 0.01 0.06 < 0.01 < 0.01 0.05 < 0.01 < 0.01 < 0.01 < 0.01
Shift J/ΨK0

S < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
SmearJ/ΨK0

S < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Shift Ψ(2S)K0

S < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
SmearΨ(2S)K0

S < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Smearη′K0

S < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Shift η′K0

S < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Shift a+

1 π− < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Smeara+

1 π− < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
PDFJ/(∆E) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Subtotal 0.01 0.06 < 0.01 < 0.01 0.05 0.01 0.01 0.01 < 0.01

Table 7.16:Systematic errors ondirect CP -asymmetriesfor f0(980), ρ0(770), K∗(892),
(Kπ)∗0, f1(1270), fX(1300), NR andχc(0) intermediate states, and in the inclusiveCP -
asymmetry due to the uncertainty on the B-background PDFs.

7.3.7 Signal Model Systematics

A systematic uncertainty is evaluated on the non-resonant fit fraction. A significant signal
was spotted with a dedicated quasi-two-body analysis performed on the center of the DP
using the sPlot technique (cf. Appendix B, Sec. B.2). A signal yield of 175 ± 29 events is
found, mainly attributed to a non-resonant component contributing to the signal model. This
signal yield is highly anticorrelated (−85%) with a non-peaking B background yield. This
correlation is due to the low discrimination between these two species. A systematic uncer-
tainty is assigned on the non-resonant fit fraction to address for this effect. In a conservative
approach, it is estimated to be85% of the statistical uncertainty of the signal yield obtained
on the DP, which results on1.6% systematic error on the fit fraction.

Isobar phases are the most interesting results from this Dalitz analysis. For previous
amplitude analyses, the dominant source of systematics on these phases came from model-



7.3 Systematics uncertainties 222

Parameter 2βeff (f0) 2βeff (ρ0) ∆φ(K∗(892)) ∆φ((Kπ)∗0) φ(f2) φ(fX) φ(NR) φ(χc(0))

Shift D+π− < 0.1 0.7 0.4 0.5 2.4 0.2 0.2 0.3
SmearD+π− 0.5 2.3 1.2 0.9 1.9 1.6 1.3 0.7
Shift J/ΨK0

S < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.2
SmearJ/ΨK0

S < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.1 0.3
Shift Ψ(2S)K0

S 0.4 0.4 0.7 0.7 < 0.1 0.5 0.7 0.4
SmearΨ(2S)K0

S < 0.1 < 0.1 0.2 0.2 0.3 0.2 0.2 0.3
Shift η′K0

S 0.2 < 0.1 < 0.1 < 0.1 0.2 0.1 < 0.1 0.1
Smearη′K0

S 0.1 < 0.1 < 0.1 < 0.1 0.2 0.1 < 0.1 0.2
Shift a+

1 π− < 0.1 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1 0.1
Smeara+

1 π− < 0.1 0.1 < 0.1 < 0.1 0.2 < 0.1 < 0.1 0.1
PDFJ/(∆E) < 0.1 < 0.1 < 0.1 < 0.1 0.2 < 0.1 < 0.1 < 0.1
Subtotal 0.7 2.4 1.4 1.3 3.1 1.7 1.5 1.0

Table 7.17: Systematic errors onphase differences2βeff(f0(980)), 2βeff (ρ
0(770)),

∆φ(K∗(892)), ∆φ((Kπ)∗0), φ(f2(1270)), φ(fX(1300)), φ(NR) and φ(χc(0)) due to the
uncertainty on the B-background PDFs. The phases uncertainties are in degrees.

Parameter ∆φ(f0, ρ
0) ∆φ(K∗(892), (Kπ)∗0) ∆φ(ρ0, (Kπ)∗0)) ∆φ(ρ0, K∗(892) Signal Yield

Shift D+π− 0.8 0.2 1.1 0.9 1.4
SmearD+π− 3.3 0.3 3.7 3.4 < 1.0
Shift J/ΨK0

S < 0.1 < 0.1 < 0.1 < 0.1 < 1.0
SmearJ/ΨK0

S < 0.1 < 0.1 < 0.1 < 0.1 < 1.0
Shift Ψ(2S)K0

S 0.3 < 0.1 0.3 0.2 2.1
SmearΨ(2S)K0

S < 0.1 < 0.1 < 0.2 0.2 1.1
Shift η′K0

S < 0.1 < 0.1 < 0.1 < 0.1 < 1.0
Smearη′K0

S < 0.1 < 0.1 < 0.1 < 0.1 < 1.0
Shift a+

1 π− < 0.1 < 0.1 < 0.1 < 0.1 < 1.0
Smeara+

1 π− < 0.1 < 0.1 0.1 0.2 < 1.0
J/ ∆E PDF < 0.1 < 0.1 < 0.1 < 0.1 1.6
Subtotal 3.4 0.3 3.9 3.6 3.3

Table 7.18: Systematic errors onphase differences∆φ(f0, ρ
0), ∆φ(K∗(892), (Kπ)∗0),

∆φ(ρ0, (Kπ)∗0)), ∆φ(ρ0, K∗(892) and in the Signal Yield due to the uncertainty on the B-
background PDFs. The phases uncertainties are in degrees.

related effects, like shifts in fit parameters when adding/removing components from the nom-
inal signal model. Estimating the uncertainties in this wayis very conservative, as it is clear
several of these effects are correlated and are often double-counted.

A more detailed study of such effects has been performed. Rather than checking for
shifts in fitted values when refitting data with different signal models, the present procedure
is based on a study performed on large samples of toy MC events.

Systematic uncertainties from signal model can be separated in two kinds: the ones that
come from the fixed parameters on the resonant states lineshapes (e.g. the ρ0(770) mass,
width and barrier radius); and the ones coming from the components included in the signal
model. The systematic effects from those sources will be described separately.
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Lineshape parameters

Using the same approach as in Sec. 7.3.3, systematics from fixed parameters in the lineshape
functions are evaluated by changing them incoherently by±1σ, whereσ refers to the World
Average error. As mentioned in Sec. 6.3.2, the approximation of neglecting mass resolution
effects for the TM events of theχc0 component is not valid. For this reason its width is fixed
to 13 MeV/c2 and data is then refitted. This value is the effective width ofa RBW lineshape
after convolution with the experimental mass resolution (5 MeV/c2 around theχc0 band).

The results are summarized in Tables 7.19–7.22 for isobar fractions, directCP asymme-
tries and phases and signal yield, respectively.

Parameter f0(980) ρ0(770) K∗(892) (Kπ)∗0 f2(1270) fX(1300) NR χc(0) FFTot

f0(980) mass 0.32 0.20 0.01 0.28 0.03 0.12 0.45< 0.01 0.19
f0(980) gP 0.47 0.18 0.03 0.07 0.03 0.19 0.23 < 0.01 0.19
f0(980) gK 0.06 0.02 < 0.01 0.10 0.02 0.02 0.46 < 0.01 0.31
ρ0(770) mass < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01 < 0.01 < 0.01
ρ0(770) width < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.02 < 0.01 < 0.01
ρ0(770) radius 0.02 0.04 < 0.01 < 0.01 < 0.01 < 0.01 0.02 < 0.01 < 0.01
K∗(892) mass < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.02 < 0.01 < 0.01
K∗(892) width < 0.01 < 0.01 0.03 0.03 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
K∗(892) radius 0.02 0.01 0.06 0.03 < 0.01 0.02 < 0.01 < 0.01 0.02
(Kπ)∗0 mass 0.02 0.02 < 0.01 0.14 0.02 0.03 0.10 < 0.01 0.03
(Kπ)∗0 width 0.02 0.01 0.02 0.07 0.02 < 0.01 0.19 < 0.01 0.17
f2(1270) mass < 0.01 0.01 < 0.01 < 0.01 0.01 < 0.01 0.02 < 0.01 < 0.01
f2(1270) width < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01 < 0.01 < 0.01
fX(1300) mass 0.11 0.14 0.03 0.09 0.10 0.48 0.12< 0.01 0.23
fX(1300) width 0.36 0.04 0.03 0.15 0.03 0.11 0.30 < 0.01 0.18
χC(0) mass < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.02 < 0.01 0.01
χC(0) width 0.03 0.01 0.01 0.03 0.01 0.01 0.12 0.06 0.06
Subtotal 0.69 0.31 0.13 0.39 0.16 0.28 0.86 0.06 0.55

Table 7.19:Systematic errors on thefit fractions for f0(980), ρ0(770), K∗(892), (Kπ)∗0,
f1(1270), fX(1300),NR andχc(0) intermediate states, and in the total isobar fraction due
to the uncertainty on lineshapes fixed parameters. The isobar fractions uncertainties are in
%.

Components in the Signal Model

The nominal signal model has been described in Sec. 6.8. Other intermediate modes, with
rates too small to be considered, may be present in signal, and ignoring them in the signal
DP model introduces a source of systematic error. A list of the supplementary components
tested for systematics studies is given below,

• ρ0(1450),

• ρ0(1700),

• f0(1710),

• χC(2),
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Parameter f0(980) ρ0(770) K∗(892) (Kπ)∗0 f2(1270) fX(1300) NR χc(0) Aincl
CP

f0(980) mass < 0.01 0.03 < 0.01 < 0.01 0.02 0.01 0.05 < 0.01 < 0.01
f0(980) gP < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
f0(980) gK < 0.01 0.01 < 0.01 < 0.01 < 0.01 0.01 0.03 < 0.01 < 0.01
ρ0(770) mass < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
ρ0(770) width < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
ρ0(770) radius < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
K∗(892) mass < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
K∗(892) width < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
K∗(892) radius < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
(Kπ)∗0 mass < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01 0.02 < 0.01 < 0.01
(Kπ)∗0 width < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
f2(1270) mass < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
f2(1270) width < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
fX(1300) mass 0.01 0.02 < 0.01 < 0.01 0.03 0.02 0.02 < 0.01 < 0.01
fX(1300) width < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01 < 0.01 < 0.01
χC(0) mass < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
χC(0) width < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Subtotal 0.02 0.04 < 0.01 < 0.01 0.04 0.03 0.01 0.02 < 0.01

Table 7.20: Systematic errors on thedirect CP -asymmetries for f0(980), ρ0(770),
K∗(892), (Kπ)∗0, f1(1270), fX(1300), NR and χc(0) intermediate states due to the un-
certainty on lineshapes fixed parameters.

Parameter 2βeff (f0) 2βeff (ρ0) ∆φ(K∗(892)) ∆φ((Kπ)∗0) φ(f2) φ(fX) φ(NR) φ(χc(0))

f0(980) mass 2.0 2.7 0.6 0.7 1.2 0.5 2.1 0.3
f0(980) gP 0.9 1.5 0.9 0.8 0.6 0.9 0.3 0.6
f0(980) gK 1.0 0.9 0.3 0.1 0.3 0.7 1.5 < 0.1
ρ0(770) mass 0.3 0.2 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1
ρ0(770) width 0.4 0.2 0.2 0.1 0.1 0.2 < 0.1 < 0.1
ρ0(770) radius 0.5 0.4 0.2 0.2 0.5 < 0.1 < 0.1 0.2
K∗(892) mass 0.4 0.1 0.2 0.1 < 0.1 0.2 < 0.1 0.1
K∗(892) width 0.2 0.2 0.1 0.1 0.1 0.1 < 0.1 < 0.1
K∗(892) radius 0.4 0.5 0.3 0.1 0.1 0.2 < 0.1 0.1
(Kπ)∗0 mass 0.6 0.5 1.7 1.5 1.1 0.3 < 0.1 1.1
(Kπ)∗0 width 0.4 0.4 0.7 0.7 0.7 0.4 < 0.1 0.2
f2(1270) mass 0.4 0.2 0.2 0.1 0.1 0.2 0.1 0.1
f2(1270) width 0.4 0.2 0.1 0.1 0.6 0.2 0.1 0.1
fX(1300) mass 2.3 2.6 1.1 1.2 1.6 2.0 0.9 0.3
fX(1300) width 0.3 0.9 1.1 0.8 2.6 0.2 0.3 0.6
χC(0) mass 0.4 0.2 0.2 0.1 0.1 0.2 0.1 0.6
χC(0) width 0.6 0.3 0.3 < 0.1 < 0.1 0.3 < 0.1 0.4
Subtotal 3.8 4.4 2.8 2.4 3.7 2.6 2.9 2.0

Table 7.21: Systematic errors on thephase differences2βeff(f0(980)), 2βeff (ρ
0(770)),

∆φ(K∗(892)), ∆φ((Kπ)∗0), φ(f2(1270)), φ(fX(1300)), φ(NR) and φ(χc(0)) due to the
uncertainty on lineshapes fixed parameters. The phases uncertainties are in degrees.

• K∗±
2 (1430),

• K∗(1410),

• K∗(1680).

This list is constructed from PDG [21] by looking at the non-controversial resonances
that can decay toπ+π− or π±K0.
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Parameter ∆φ(f0, ρ
0) ∆φ(K∗(892), (Kπ)∗0) ∆φ(ρ0, (Kπ)∗0)) ∆φ(ρ0, K∗(892) Signal Yield

f0(980) mass 0.8 0.1 5.7 1.4 1.8
f0(980) gP 1.2 < 0.1 1.9 0.4 4.2
f0(980) gK 1.5 0.2 3.0 0.7 1.5
ρ0(770) mass < 0.1 < 0.1 0.3 0.4 < 1.0
ρ0(770) width 0.2 < 0.1 0.3 0.3 < 1.0
ρ0(770) radius 0.2 < 0.1 < 0.1 < 0.1 < 1.0
K∗(892) mass 0.2 0.4 0.3 0.5 < 1.0
K∗(892) width < 0.1 0.2 0.4 0.6 < 1.0
K∗(892) radius 0.3 0.3 0.9 1.2 < 1.0
(Kπ)∗0 mass 0.1 0.2 1.6 0.7 < 1.0
(Kπ)∗0 width < 0.1 0.4 0.3 0.1 < 1.0
f2(1270) mass < 0.1 < 0.1 0.5 0.5 < 1.0
f2(1270) width 0.2 < 0.1 0.2 0.2 < 1.0
fX(1300) mass 0.4 < 0.1 4.6 1.3 1.6
fX(1300) width 1.3 0.1 0.2 1.0 2.6
χC(0) mass < 0.1 < 0.1 0.3 0.4 < 1.0
χC(0) width 0.3 < 0.1 0.2 0.3 < 1.0
Subtotal 2.6 0.7 8.5 3.0 5.8

Table 7.22:Systematic errors on thephase differences∆φ(f0, ρ
0), ∆φ(K∗(892), (Kπ)∗0),

∆φ(ρ0, (Kπ)∗0)), ∆φ(ρ0, K∗(892) and in the signal yield due to the uncertainty on line-
shapes fixed parameters. The phases uncertainties are in degrees.

In order to evaluate this systematic, two complementary methods are performed.

• The first method proceeds in two steps: 1) data is fitted, by keeping the isobar parame-
ters of the Nominal Signal Model (NSM) components fixed, while fitting for the ones
for the supplementary components. This is implicitly assuming that these supplemen-
tary components are small. The fits are made randomizing the initial isobar parameters
values, and the best fit values are kept. 2) using the isobar parameters obtained from
the first step, one hundred high-statistics toy datasets aregenerated with the NSM +
Supplementary components. These datasets are fitted in two configurations: using the
NSM with/without the supplementary components. The systematics are evaluated as
the mean shift in fit parameters between both fit configurations. This evaluation of
systematics is referred as theGenerating with method.

• A complementary exercise consists of generating toy datasets (with the same statistics
as the data sample), using the results from the NSM fit and fitting them with/without
the supplementary components. The purpose here is: if a component is not in data and
is included in the signal model, then the fitter will find a non-zero value for its isobar
fraction (see appendix B, Sec. B.1), and the correlations with other components can
induce biases. One hundred signal-only toys with∼ 1600 signal events are generated.
This evaluation of systematics is referred as theGenerating without method.

Both methods for evaluating systematics are complementaryalthough not completely un-
correlated. A conservative combination is used, by summingindependently the estimations
from Generating with andGenerating without approaches.
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Generating with supplementary components

The results on the fit fractions of the supplementary components after performing step 1 of
theGenerating with method are shown on Table 7.23. Even if the significance ofρ(1450),
ρ(1700),K∗(1410) andK∗(1680) is low, the central values for their fit fractions are consid-
erably large. It is therefore more realistic to use results from from other analyses, when they
have better sensitivity to those small components. The numbers for theρ(1450), ρ(1700) are
taken fromB0 → (ρπ)0 analysis [35], in which they foundFF (ρ(1450))/FF (ρ(770)) =
13.0% andFF (ρ(1700))/FF (ρ(770)) = 7.0% (statistical only error). Similarly, the num-
bers forK∗(1410) andK∗(1680) are obtained from theB+ → K+π−π+ analysis [23]. They
found FF ((K∗(1680))/FF (K∗(892)) = 15.6% andFF ((K∗(1410))/FF (K∗(892)) =
2.7%. For the remaining components, the values obtained from thefit to data are used. The
values used to perform step 2 of theGenerating with method are shown in Table 7.23. The
resulting shift on the fit parameters are the ones shown on thesecond column of Table 7.24.

Component Fit Fraction (From Fit) Fit Fraction (Used For Toy s) source
FF (ρ(1450)) (13.9 ± 12.1)%FF (ρ(770)) (13.0 ± 4.0)%FF (ρ(770)) (ρπ)
FF (ρ(1700)) (14.2 ± 11.6)%FF (ρ(770)) (7.0 ± 4.0)%FF (ρ(770)) (ρπ)
FF (f0(1710)) (3.0 ± 11.2)%FF (f0(980)) (3.0 ± 11.2)%FF (f0(980)) (Fit to Data)
FF (χC(2)) (1.5 ± 0.7)%FF (χC(0)) (1.5 ± 0.7)%FF (χC(0)) (Fit to Data)
FF (K∗

2 (1430)) (4.1 ± 1.5)%FF ((Kπ)∗0) (4.1 ± 1.5)%FF ((Kπ)∗0) (Fit to Data)
FF (K∗(1410)) (36.0 ± 16.4)%FF (K∗(892)) (2.7)%FF (K∗(892)) (K+π−π+)
FF (K∗(1680)) (76.5 ± 22.2)%FF (K∗(892)) (15.6)%FF (K∗(892)) (K+π−π+)

Table 7.23:Values of fit fractions obtained from fit to data (second column) and the ones
used for toy generation (third column) of the supplementarycomponents.

Generating without supplementary components

No significant bias on the fit parameters using this method areobserved; the RMS of the
distributions are taken as the systematic errors. The results from these method are shown on
third column of Table 7.24.

7.3.8 Total Systematics

The systematic effects have been presented mostly as shiftson the Q2B parameters. For
the isobar parameterspi (the module or the phase of a given isobar amplitude) a systematic
covariance matrixV syst is also evaluated for each systematic effect (cf. Sec. 6.7.2). The
matrix elementV syst

i,j is constructed from the isobar parameter shiftsδpi as,

V syst
i,j = δpiδpj . (7.2)

The total systematic matrix is the simple sum of partial systematic matrices. Table 7.25
shows the total systematic errors on the signal yields and the Q2B parameters. Table 7.26
shows the total systematic error on the isobar parameters, the systematic correlation matrix
is reported in Fig. 7.25.
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Par. Gen. with Gen. without Subtotal
C(f0(980)) 0.04 0.02 0.04
FF (f0(980)) 0.50 0.27 0.6
2βeff (f0(980)) 1.3 3.9 4.1
C(ρ0(770)) 0.02 0.02 0.03
FF (ρ0(770)) 0.20 0.11 0.23
2βeff (ρ0(980)) 2.2 2.9 3.7
ACP (K∗(892)) 0.02 0.01 0.02
FF (K∗(892)) 0.70 0.45 0.8
∆φ(K∗(892)) 3.9 7.1 8.1
ACP ((Kπ)∗0) 0.02 0.01 0.02
FF ((Kπ)∗0) 0.30 0.80 0.90
∆φ((Kπ)∗0) 2.0 4.0 4.4
C(f2(1270)) 0.04 0.06 0.07
FF (f2(1270)) 0.40 0.57 0.69
φ(f2(1270)) 6.9 7.7 10.4
C(fX(1300)) 0.05 0.07 0.09
FF (fX(1300)) 0.50 0.71 0.87
φ(fX(1300)) 3.0 3.4 4.5
C(NR) 0.02 0.03 0.04
FF (NR) 0.20 0.57 0.60
φ(NR) 7.1 1.5 7.5
C(χC(0)) 0.03 0.04 0.05
FF (χC(0)) 0.05 0.07 0.09
φ(χC(0)) 5.6 6.1 8.2
FFTot 0.99 0.58 1.15
Aincl

CP 0.004 0.004 0.006
∆φ(f0, ρ

0) 3.7 2.4 4.4
∆φ(K∗(892), (Kπ)∗0) 2.4 4.0 4.7
∆φ(ρ0, (Kπ)∗0)) 7.3 4.7 8.7
∆φ(ρ0, K∗(892) 9.8 8.0 12.7
Signal Yield 31.7 — 31.7

Table 7.24:Systematic errors on total fit fraction, inclusive directCP -asymmetry, all the
Q2B parameters and in the Signal Yield due to the signal modeluncertainty. Errors on
phases are in degrees andFFs in %.

Parameter Total Parameter Total
C(f0(980)) 0.05 C(ρ0(770)) 0.10
FF (f0(980)) 1.03 FF (ρ0(770)) 0.52
2βeff (f0(980)) 5.9 2βeff (ρ0(980)) 7.0
ACP (K∗(892)) 0.02 ACP ((Kπ)∗0) 0.03
FF (K∗(892)) 1.00 FF ((Kπ)∗0) 2.08
∆φ(K∗(892)) 9.3 ∆φ((Kπ)∗0) 6.0
C(f2(1270)) 0.11 C(fX(1300)) 0.10
FF (f2(1270)) 0.74 FF (fX(1300)) 0.94
φ(f2(1270)) 12.1 φ(fX(1300)) 6.2
C(NR) 0.08 C(χC(0)) 0.06
FF (NR) 2.0 FF (χC(0)) 0.11
φ(NR) 8.4 φ(χC(0)) 9.5
FFTot 2.40 Ainclu

CP 0.01
∆φ(f0, ρ

0) 7.5 ∆φ(K∗(892), (Kπ)∗0) 6.6
∆φ(ρ0, (Kπ)∗0)) 13.3 ∆φ(ρ0, K∗(892) 15.4
Signal Yield 42.1

Table 7.25:Total Systematic errors on the Q2B parameters and signal yield. Errors on
phases are in degrees andFFs in %.
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Isobar Amplitude |c| φ[deg] |c̄| φ̄[deg]

f0(980)K0
S Fix Fix 0.18 5.8

ρ(770)K0
S 0.01 8.0 0.01 11.5

K∗+(892)π− 0.02 18.6 0.02 19.7
(Kπ)∗+0 π− 0.6 15.7 0.7 14.8
non-resonant 0.4 16.7 0.5 10.9
fX(1300)K0

S 0.3 17.4 0.2 15.8
f2(1270)K0

S 0.004 10.7 0.007 9.1
χc0K

0
S 0.034 20.2 0.048 19.1

Table 7.26:Total systematic error on isobar parameters.
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Figure 7.25:Total systematic correlation matrix on the isobar parameters.

7.4 Conclusion

Using an amplitude analysis technique ofB0 decays toK0
Sπ

+π−, inclusive and exclusive
branching frations and directCP -asymmetries have been measured; phase differences of
resonant states contributing to the Dalitz plot have been measured. Two solutions, with
equivalent goodness-of-fit figures of merit, were found. Theanalysis has been intensively
tested in order to ensure its robustness. The total errors onthe phase differences are dom-
inated by statistical uncertainties. The dominant systematics are uncertainties on the iso-
bar model used to describe the signal intensity in the Dalitzplot. The main targets of this
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analysis are the measurements of∆S on the penguin dominated decaysB0 → f0(980)K0
S

andB0 → ρ0(770)K0
S, and the measurement of phase differences for theρ0(770)K0

S and
K∗±(892)π∓ resonant states. The constraints on phases for non-overlapping resonances are
statistically limited. The measurements on theρ0(770)K0

S andK∗±(892)π∓ components can
be used to set non-trivial constraints in the(ρ̄, η̄) plane following the methods proposed in
Refs. [74, 75, 77, 112], as explained in Chapter 3.
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Results Interpretation



Chapter 8

Interpretation of experimental results of
theB → K∗π andB → ρK Modes

This chapter presents the numerical results for the theoretical methods described in chapter 3.
First, a short description of theRfit approach is given, which is the statistical framework used
to quote constraints on the different parameters (cf. Sec. 8.1). In the next step theB → K∗π
system is considered (cf. Sec. 8.3). Constraints on the yet unmeasured observables and on
ratios of QCD amplitudes are set using the global CKM fit as an external input to fix the
CKM parameters. The CPS/GPSZ method is tested, using the current available data, as an
independent constraint on the(ρ̄, η̄) plane. In a second step theB → ρK system is consi-
dered (cf. Sec. 8.4). In spite of the lack of experimental observables the possible constraints
on ratios of QCD amplitudes are studied. In a third step, the combinedK∗π/ρK system is
considered (cf. Sec. 8.5). Improved constraints on the unavailable observables and on ratios
of QCD amplitudes related to bothB → K∗π andB → ρK systems are set. The possible
improvements on the CKM constraints given a scenario of controlled theoretical hypothesis
are also studied. Finally, an extrapolation exercise is made to test the potential for CKM
physics ofK∗π + ρK observables, considering the expected statistics at LHCb and SuperB
in 2015.

8.1 TheRfit approach

The numerical results of the phenomenological analysis presented in this chapter uses the
frequentist method known asRfit, which takes into account at the same time the experimental
measurements as well as the theoretical uncertainties. Thedifferent elements of theRfit
method (metrology, hypothesis testing) are described in detail in references [113] and [114];
the elements needed for the following discussion are brieflydescribed below.

The principal tool of theRfit method is the likelihood functionL, which is constructed
as the product of two contributions:

L = Lexp(xexp − xtheo) · Ltheo(yQCD) . (8.1)

The first term measures the agreement between the experimental measurementsxexp and
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their theoretical functionsxtheo in the SM framework; the second term expresses the available
information on the theoretical parametersyQCD.

The treatment of the experimental likelihoodLexp is standard, and is given by the product:

Lexp(xexp − xtheo) =

Nexp
∏

i=1

Lexp(i) , (8.2)

where theNexp individual components of the likelihood are the different available measure-
ments; in the simplest case, these measurements are independent Gaussians,

Lexp(i) =
1√

2πσexp(i)
exp

[

−1

2

(

xexp(i) − xtheo(i)

σexp

)]

. (8.3)

The theoretical componentLtheo of the likelihood function is given by the product:

Ltheo(yQCD) =

NQCD
∏

k=1

Ltheo(k) , (8.4)

where the individual componentsLtheo(k) take into account the imperfect knowledge of the
theoretical parametersyQCD, for which no statistical uncertainty can be easily defined.Those
parameters are usually hadronic parameters, obtained fromtheoretical calculations based on
approximations or hypothesis difficult to validate.

The Rfit method consists in assigning an interval to every theoretical parameteryQCD,
defined in such a way that their likelihood functionLtheo has a uniform value (equal to 1)
if the parameter is within this interval, and has a null valueoutside. By construction, this
allowed interval is arbitrary; it does not come from an experimental uncertainty, nor from
the statistical limitation in a numerical calculation, butfrom the intuition of the theoretician.
TheRfit approach allows to establish a coherent treatment of uncertainties of this kind: once
the theoretician provides the allowed intervals for the theoretical parameters, the allowed
regions of the parameters that are pretended to be extracted, will be those in which the differ-
ent observables are consistent with the values of these parameters, and with the theoretical
parameters contained in their intervals.

8.2 Experimental Measurements

All measurements used in this analysis correspond to results available at the time of the
ICHEP08 conference. World average values are used, which are obtained from the "Heavy
Flavor Averaging Group" (HFAG) [28]. The Branching Fractions, directCP -asymmetries
and phases differences used for the phenomenological analysis are summarized in Table 8.1.
The definitions of these observables in terms of the decay amplitudes are given in Secs. 3.2.2,
3.3.3 and 3.4.2.

For the phases, several values are quoted when multiples solutions are found, as in the
analysis of theB0 → K0

Sπ
+π− channel, presented in part III of this thesis. The∆χ2 of the

local minima solutions with respect to the global one is quoted.
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ofthe
B

→
K

∗π
and

B
→

ρ
K

M
odes

Parameter BABAR Belle CLEO WA
B(K∗+π−) 12.6+2.7

−1.6 ± 0.9 [40] 8.4 ± 1.1+1.0
−0.9 [42] 16+6

−5 ± 2 [115] 10.3 ± 1.1

B(K∗0π0) 3.6 ± 0.7 ± 0.4 [40] 0.4+1.9
−1.7 ± 0.1 [42] 0.0+1.3+0.5

−0.0−0.0 [115] 2.4 ± 0.7

B(K∗0π+) 10.8 ± 0.6+1.1
−1.3 [23] 9.7 ± 0.6+0.8

−0.9 [24] 7.6+3.5
−3.0 ± 1.6 [115] 10.0 ± 0.8

B(K∗+π0) 6.9 ± 2.0 ± 1.3 [116] – 7.1+11.4
−7.1 ± 1.0 [115] 6.9 ± 2.3

ACP (K∗+π−) −0.30 ± 0.11 ± 0.03 [118] – 0.26+0.33+0.10
−0.34−0.08 [119] −0.25 ± 0.11

ACP (K∗0π0) −0.15 ± 0.12 ± 0.02 [118] – – −0.15 ± 0.12
ACP (K∗0π+) 0.032 ± 0.052+0.16

−0.13 [23] −0.032 ± 0.059+0.044
−0.033 [117] – −0.020+0.067

−0.062
ACP (K∗+π0) 0.04 ± 0.29 ± 0.05 [116] – – 0.04 ± 0.29
∆φ(K∗π) 58.3 ± 32.7 ± 9.3 (global min.) – – 58.3 ± 34.0

176.6 ± 28.8 ± 9.3 (∆χ2 = 0.16) – – 176.6 ± 30.3
φ(K∗0π0/K∗+π−) −21.2 ± 20.6 ± 8.0 [118] – – −21.2 ± 22.1
φ̄(K̄∗0π0/K∗−π+) −5.2 ± 20.6 ± 17.8 [118] – – −5.2 ± 27.2
B(K+ρ−) 8.0+0.8

−1.3 ± 0.6 [40] 15.1+3.4+2.4
−3.3−2.6 [121] 16+8

−6 ± 3 [115] 8.6+0.9
−1.1

B(K0ρ0) 4.9 ± 0.8 ± 0.9 [45] 6.1 ± 1.0+1.1
−1.2 [42] < 39 [122] 5.4+0.9

−1.0

B(K0ρ+) 8.0+1.4
−1.3 ± 0.6 [120] – < 48 [125] 8.0+1.5

−1.4

B(K+ρ0) 3.56 ± 0.45+0.57
−0.46 [23] 3.89 ± 0.47+0.43

−0.41 [24] 8.4+4.0
−3.4 ± 1.8 [115] 3.81+0.48

−0.46

ACP (K+ρ−) 0.14 ± 0.06 ± 0.01 [118] 0.22+0.22+0.06
−0.23−0.02 [121] – 0.15 ± 0.06

ACP (K0ρ0) −0.02 ± 0.27 ± 0.10 [123] 0.03+0.24
0.23 ± 0.16 [124] – 0.01 ± 0.20

ACP (K0ρ+) −0.12 ± 0.17 ± 0.02 [120] – – −0.12 ± 0.17
ACP (K+ρ0) 0.44 ± 0.10+0.06

−0.14 [116] 0.405 ± 0.101+0.036
−0.077 [117] – 0.419+0.081

−0.104
2βeff (K0ρ0) 20.4 ± 19.6 ± 7.1 (global min.) – – 20.4 ± 20.8

33.4 ± 20.8 ± 7.1 (∆χ2 = 0.16) – – 33.4 ± 22.0
φ(K0ρ0/K∗+π−) −174.3 ± 28.0 ± 15.4 (global min.) – – −174.3 ± 32.0

173.7 ± 29.8 ± 15.4 (∆χ2 = 0.16) – – 173.7 ± 33.5
φ(K+ρ−/K∗+π−) −21.2 ± 21.6 ± 17.8 [118] – – −21.2 ± 28.0
φ̄(K−ρ+/K∗−π+) −42.4 ± 20.6 ± 8.0 [118] – – −42.4 ± 22.1
φ(K+ρ0/K∗0π+) 29.0 ± 16.6 ± 10.0 [23] – – 29.0 ± 19.4
φ̄(K−ρ0/K̄∗0π−) −26.1 ± 15.5 ± 6.8 [23] – – −26.1 ± 16.9

Table 8.1:Experimental results on Branching Fractions (in units of10−6), directCP -asymmetries and phase differences (in degrees)
used for the phenomenological analysis described in Chapter 3. The notationK∗ refers to theK∗(892) resonant state. Phases without
reference were obtained in the experimental analysis described in Part III of this thesis.
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All Branching fractions and directCP -asymmetries are modeled as asymmetric Gaus-
sian measurements. When the experimental measurement presents multiple solutions the
asymmetric errors take into account the presence of local minima. This approach is relatively
safe when the values of these observables does not vary significantly from one solution to
the other (cf. table 7.3). In the case of phases, when multiple solutions are present the mea-
surement is described by the complete experimental likelihood (see for instance the case of
∆φ(K∗π) in the left hand side plot of Fig. 7.16).

8.3 Isospin analysis of theB → K∗π modes

The theoretical framework for the phenomenological analysis of theB → K∗π system was
described in Sec. 3.2. Here the corresponding numerical results are presented. As explained
in Sec. 3.5, two scenarios are considered for the phenomenological analysis. In scenario 1,
the CKM parameters are fixed using external inputs (from the global CKM fit), constraints
in the ratio of the hadronic parameters as well as on the unmeasured observables are set. The
discussion starts (Sec. 8.3.1) by studying the constraintsthat can be set on the unmeasured
phase differencesφ(0+,+0) andφ̄(0+,+0) (cf. Eq. 3.13). Then, the constraints on the ratio of
hadronic amplitudes are explored (Sec. 8.3.2). The consistency of the hadronic hypothesis
described in Sec. 3.2.7 with the current data is discussed. Finally, scenario 2 is considered,
where the hadronic hypothesis described in Sec. 3.2.7 is applied. The CPS/GPSZ method,
as a tool to extract(ρ̄, η̄), is studied.

8.3.1 Constraints on unmeasured experimental measurements

The constraints on the magnitude of the|φ(0+,+0)| and|φ̄(0+,+0)| phase differences are shown
in Fig. 8.1. The present method has no sensitivity to the signof these phases, as the only
inputs for theB+ → K∗0π+ andB+ → K∗+π0 decay modes areCP -asymmetries and
Branching fractions. The1σ coverage for these observables are given by:

|φ(0+,+0)| ∈ (0,+85o) , (8.5)

|φ̄(0+,+0)| ∈ (+68o,+107o) , (8.6)

at 32% CL, with the solutions centered at|φ(0+,+0)| = +58.0o and |φ̄(0+,+0)| = +95.0o,
respectively.

8.3.2 Constraints on the ratio of QCD amplitudes

The results on the ratio of hadronic amplitudes are presented separately for each of the two
solutions of the phases coming from theB0 → K0

Sπ
+π− analysis (i.e. ∆φ(K∗π)) and for

the corresponding envelope,i.e. the constraint obtained when using the complete likelihood
of the measured∆φ(K∗π) observable (cf. see left hand plot of Fig. 7.16). All the results
are presented as bi-dimensional confidence level (C.L.) contours in thearg. v.s.log10(mod.)
plane of the given QCD ratio.
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Figure 8.1:Constraint on the|φ(0+,+0)| (left) and|φ̄(0+,+0)| (right) unmeasured phases from
theB+ → K0

Sπ
+π0 analysis (cf. Eq.(3.13)). There is no sensitivity to the sign of the corres-

ponding phases. The dotted lines at0.32 and0.05 set the confidence interval at1σ and2σ,
respectively.
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Figure 8.2:Constraint on the argument-magnitude plane for the QCD ratio P+−/T+−. As
the tree amplitude is CKM suppressed with respect to the penguin amplitude, the mag-
nitude of this ratio is "normalized" by the corresponding ratio of CKM matrix elements,
|VtsV

∗
tb/VusV

∗
ub|. A logarithmic scale is used on the horizontal axis. The lefthand side and

middle plots show the results using the global and local minima of the∆φ(K∗π) phase (cf.
Table 8.1), respectively. The right hand side plot shows thecorresponding envelope of the
two solutions. White regions are excluded with a less than5% C.L.

Fig. 8.2 shows the results for theP+−/T+− ratio. As the tree amplitude is CKM sup-
pressed with respect to the penguin amplitude, the magnitude of this ratio is "normalized"
by the corresponding ratio of CKM matrix elements,|VtsV

∗
tb/VusV

∗
ub|. The left hand and

middle plots show the results using the global and local minima of the∆φ(K∗π) phase (cf.
table 8.1), respectively. The one on the right hand side shows the envelope of the first two.
White regions are excluded with a less than5% C.L. For both constraints, positive values of
the strong phase difference betweenP+− andT+− are excluded at∼ 95% CL. This is due to
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the2σ significance of theACP (K∗+π−) directCP asymmetry. The result using the global
minimum (cf. left hand side plot of Fig. 8.2) constraint the magnitude of this ratio to be at
high values. In contrast, the constraint using the local minimum (cf. middle plot of Fig. 8.2)
excludes them. The latters constraint is more in agreement with the SM prediction, where
this ratio is predicted to be around one [126].
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Figure 8.3:Constraints on the argument-magnitude plane for theT 00
C /T+− (top),N0+/T+−

(middle) andPEW
C /T+− (bottom) QCD ratios. A logarithmic scale is used on the horizontal

axis. The left hand side and middle plots show the results using the global and local minima
of the∆φ(K∗π) phase (cf. Table 8.1), respectively. The right hand side plot shows the
corresponding envelope of the two solutions. White regionsare excluded with a less than5%
C.L.
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Fig. 8.3 shows the same constraints for theT 00
C /T+−, N0+/T+− andPEW

C /T+− ratios
of QCD amplitudes. It is interesting to note that the constraints on the magnitude of all
these ratios have the same qualitative behavior than the onefor theP+−/T+− normalized
ratio: constraints using the global minimal solution of the∆φ(K∗π) phase (cf. left hand
side plots of Fig. 8.3) tend to allow high values of the magnitude of the QCD ratios; in
contrast the constraints using the local minimum exclude high values of the magnitude of
these parameters. The results using the local minimum are more in agreement with the SM,
where color suppressed (T 00

C , PEW
C ) and OZI suppressed (N+0) amplitudes are predicted to

be smaller thanT+−, the color allowed tree amplitude [126].
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Figure 8.4:Constraint on the argument-magnitude plane for theReff(K∗π) = PEW/T3/2

QCD ratio, whereT3/2 = T+− + T 00
C (cf. Eq.(3.59)). A logarithmic scale is used on the

horizontal axis. White regions are excluded with a less than5% C.L. The magenta and brown
ellipses represents the allowed regions using the theoretical errors for the "aggressive" and
"conservative" scenarios (cf. Sec. 3.2.7).

More interesting is the result on theReff(K∗π) = PEW/T3/2 ratio (cf. Eq.(3.59)), which
is shown in Fig. 8.4. The same pattern as before is followed for this QCD ratio: the cons-
traint obtained with the global minimum solution excludes low values, while the one using
the local minimum excludes high values. Fig. 8.4 shows the constraint obtained by using the
complete experimental likelihood for the phases. Superimposed on the figure is the region
allowed by the theoretical hypothesis described in Sec. 3.2.7 (magenta ellipse) taking the
theoretical errors from the GPSZ [75] authors. The data are marginally consistent with this
hypothesis (the inconsistency is beyond∼ 2σ). In contrast, thePEW = 0 hypothesis is
more consistent with data. The plot also shows the allowed region using the conservative
theoretical error described in Sec. 3.2.7 (brown ellipse),it seems that the GPSZ error has to
be increased by a factor of 5 to start being consistent with the current data. This result has to
be taken with care, as the inconsistency is not very significant. More statistics are needed to
confirm these findings.



8.3 Isospin analysis of theB → K∗π modes 238

In summary, the multiple solutions from the measurement of the∆φ(K∗π) phase set dif-
ferent constraints on the ratios of QCD amplitudes. The local minimum solution sets more
standard constraints on these parameters as they exclude high values for SM suppressed
amplitudes. The result on thePEW/T3/2 suggest that the data are marginally consistent with
the theoretical hypothesis described in Sec. 3.2.7, the theoretical error suggested in [75] has
to be increased by a factor of 5 in order to reach agreement with the current data.

8.3.3 Constraints on the (̄ρ, η̄) plane
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Figure 8.5: Constraints on the(ρ̄, η̄) obtained applying the CPS/GPSZ method (cf.
Sec. 3.2.6), using thePEW = 0 hypothesis. No theoretical uncertainties are taken into
account. The top left and right hand side plots show the constraints using the global and
local minima for the∆φ(K∗π) observable. In the bottom plot is shown the correspond-
ing envelope. The global CKM fit with the latest measurementspresented in ICHEP08 is
superimposed for comparison. White regions are excluded with a less than5% C.L.

The constraints on the(ρ̄, η̄) plane with the CPS/GPSZ (cf. Sec. 3.2.6) observables, and
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using the hypothesis ofPEW = 0 (Reff = 0 and no theoretical error, cf. Eq.(3.59)) are
shown in Fig. 8.5. The global CKM fit with the latest measurements presented at ICHEP08
is superimposed for comparison. The hypothesis ofPEW = 0 is used in order to stress the
fact that under this hypothesis the constraint establishedis on theα UT angle and not on
γ. The top left and right hand side plots show the constraints using the global and local
minimum of the∆φ(K∗π) phase, respectively. Two solutions inα are obtained for every
solution of the∆φ(K∗π) phase. As expected, the global minimum excludes the standard
CKM fit as it prefers high values of thePEW QCD amplitude. The bottom plot shows the
envelope of the constraints using the multiple solutions of∆φ(K∗π) phase, where the four
solutions for theα angle are superimposed.
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Figure 8.6: Constraints on the(ρ̄, η̄) obtained applying the CPS/GPSZ method (cf.
Sec. 3.2.6), using the hypothesis ofReff = 1.35%. In the left is shown the constraint without
theoretical uncertainties. In the right is shown the constraint assuming a conservative the-
oretical uncertainty of30% on theReff parameter. The constraints are already the envelope
of the multiple solutions for the∆φ(K∗π) observable. The global CKM fit with the latest
measurements presented in ICHEP08 is superimposed for comparison. White regions are
excluded with a less than5% C.L.

Fig. 8.6 shows the constraint in the(ρ̄, η̄) plane using the hadronic hypothesis described
in Sec. 3.2.7. The left hand side plot shows the envelope of the multiple solutions for the
∆φ(K∗π) phase forReff = 1.35% with no theoretical error. The hypothesis of non-zero
PEW has the effect of shifting the constraint fromα to φ3/2 (cf. Eq.(3.48)),i.e. the cons-
traints are not any more circles passing through the origin,but circles passing through a
shifted point in the horizontal axis. The marginal consistency with the global CKM fit is due
to the theoretical hypothesis used. As shown in the previoussection, the data are marginally
consistent with this assumption about electroweak penguins. The effect of changing the
value of the theoretical parameterReff from 0 to 1.35% has a significant effect on the(ρ̄, η̄)
constraints. It seems that small changes in the theoreticalhypothesis can lead to significant
changes on the CKM constraints, meaning that the CPS/GPSZ method is totally dominated
by the theoretical uncertainties. This is more easily seen on the right hand plot of Fig. 8.6,
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which shows the(ρ̄, η̄) constraint assuming conservative theoretical errors (30% uncertainty
on therV P parameter, see Sec. 3.2.7). The theoretical error stronglydilutes the constraint,
the results can be made as consistent as desired with the global CKM fit by choosing a
sufficiently high theoretical error.

The conclusion that the CPS/GPSZ method is totally dominated by the theoretical uncer-
tainties can be understood as follows: the hadronic hypothesis relates a tree amplitude to a
penguin amplitude. As the penguin amplitude is CKM enhancedby a factor of∼ 50, a small
theoretical error onReff can be highly amplified.

8.4 Isospin analysis of theB → Kρ system

Due to the reduced number of experimental observables for theB → Kρ system no cons-
traints on the(ρ̄, η̄) can be set. Still experimental bounds on some ratios of QCD amplitudes
can be constructed. This is the case ofp+−/t+− ratio, which is shown in the left hand side
plot of Fig. 8.7. As forB → K∗π, this ratio is scaled by the appropiate CKM factors.
Negative values of the phase of this ratio are excluded at> 95% C.L., because of the∼ 2.5σ
significance of theB0 → K+ρ− directCP asymmetry.
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Figure 8.7: Constraint on the argument-magnitude plane for thep+−/t+− and pEW
C /t+−

QCD ratios. As the tree amplitude is CKM suppressed with respect to the penguin ampli-
tude, the magnitude of this ratio is "normalized" by the corresponding ratio of CKM matrix
elements,|VtsV

∗
tb/VusV

∗
ub|. A logarithmic scale is used on the horizontal axis. White regions

are excluded with a less than5% C.L.

Another example is the case of thepEW
C /t+− QCD ratio, shown on the right hand side

plot of Fig. 8.7. High values of the magnitude of this ratio are excluded by the data. For the
remaining of QCD ratios no significant constraints can be set.
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8.5 Isospin analysis of the combinedB → K∗π and B →
ρK modes

The combined analysisK∗π/ρK aims to use all the available experimental information with
a minimum set of theoretical hypothesis. As explained in Sec. 3.4, the advantage of com-
bining theB → K∗π andB → ρK systems is based on availability of several experimental
observables (phase differences) extracted from the interferences ofK∗π andρK resonances
contributing to the same Dalitz plot, with the inclusion of only one additional parameter,
a phase difference relating bothB → K∗π andB → ρK systems. The combinations of
these two systems promises to improve the constraints on theQCD and CKM parameters
given the redundant and independent experimental measurements. Nevertheless, at least one
theoretical hypothesis has to be made in order to brake RpI and set a constraint on CKM
parameters.

This last section follows the same approaches as for theB → K∗π system. In a first
stage, constraints on the unavailable experimental observables as well as on the ratio of QCD
amplitudes are set. The current hypothesis being tested arethe ones from the CPS/GPSZ
methods, which have been proven in the previous section to betotally dominated by theoret-
ical uncertainties. A different approach will be followed here, by studying improvements on
the precision on the experimental observableφ3/2 as the both systems are combined. As this
observable can be translated into a constraint on(ρ̄, η̄) when a theoretical hypothesis on the
QCD amplitudes is assumed (e.g.PEW = 0 impliesφ3/2 = α), these improvements on the
sensitivity onφ3/2 will improve the constraint on the(ρ̄, η̄) plane.

8.5.1 Constraints on unavailable experimental measurements

Here the predictions on the unavailable observables related to bothB → K∗π andB → ρK
systems are presented. These are all the phase differences coming from theB+ → K0

Sπ
+π0

Dalitz plot: φ(0+,+0) andφ̄(0+,+0), which are only related to theB → K∗π system and pre-
viously discussed in Sec. 8.3.1;φ(K∗+π0, K0ρ+) andφ̄(K∗−π0K̄0ρ−) (cf. see Sec. 3.4.2),
which are measured from the interference ofK∗π andρK resonances. The constraints on
these phase differences are shown in Fig. 8.8.

It is clearly seen that adding the extra information from thecombinedB → K∗π and
B → ρK systems raises the degeneracy in the constraint on theφ(0+,+0) andφ̄(0+,+0) phases,
compared with the constraints obtained with theB → K∗π system alone (cf. Fig. 8.1). For
theφ(0+,+0) phase the positive solution is lightly preferred by data. Incontrast, the positive
solution for theφ̄(0+,+0) is now excluded at the level of∼ 2σ. The corresponding coverage
for these two phases at38% C.L. are the following,

φ(0+,+0) ∈ (−79o,+80o) , (8.7)

φ̄(0+,+0) ∈ (−102o,−60o) , (8.8)

with the central values,+52o and−84o, respectively.
The constraints on theφ(K∗+π0, K0ρ+) andφ̄(K∗−π0K̄0ρ−) phases also show two mi-
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Figure 8.8:Constraint on theφ(0+,+0) (top left),φ̄(0+,+0) (top right),φ(K∗+π0, K0ρ+) (bo-
ttom left) andφ̄(K∗−π0K̄0ρ−) (bottom right) unmeasured phases from theB+ → K0

Sπ
+π0

analysis (cf. Eq.(3.13) and Sec. 3.4.2). The dotted lines at0.32 and0.05 set the confidence
interval at1σ and2σ, respectively.

nima. The corresponding coverage for these two phases at38% C.L. are the following,

φ(K∗+π0, K0ρ+) ∈ (+111o,+290o) , (8.9)

φ̄(K∗−π0, K̄0ρ−) ∈ (+124o,+299o) , (8.10)

with the central values,+259o and+175o, respectively.
For all the phases, there is almost no exclusion at5% C.L., except for thēφ(0+,+0), which

excludes positive values at the∼ 2σ level.

8.5.2 Constraints on the ratio of QCD amplitudes

The constraints on the ratio of QCD amplitudes for theB → K∗π system,P+−/T+−,
T 00

C /T+−, N0+/T+−, PEW
C /T+− andReff(K∗π), are shown in the left hand side plots of

Figs. 8.9 and 8.10. The constraints on theP+−/T+− andT 00
C /T+− QCD ratios do not

improve significantly because they are mostly determined bythe observables related to the
B0 → K∗±π∓ andB0 → K∗0π0 neutral decays. This is also the case for theReff(K∗π)
parameter. In contrast, for theN0+/T+− andPEW

C /T+− QCD ratios some degeneracies
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are raised. The same pattern as with theB → K∗π system alone is followed, the global
minimum solution for the phases obtained from theB0 → K0

Sπ
+π− preferring high values

while the local minimum excludes them.
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Figure 8.9: Constraint on the argument-magnitude plane for theP+−/T+− (top left),
T 00

C /T+− (middle left) andN0+/T+− (bottom left) QCD ratios of theB → K∗π system,
andp+−/t+− (top right), t00C /t

+− (middle right) andn0+/t+− (bottom right) QCD ratios of
theB → ρK system. A logarithmic scale is used on the horizontal axis. White regions are
excluded with a less than5% C.L.

The additional information contained in the cross phases related with the interference of
K∗π andρK resonances can be used to set constraints on the ratio of QCD amplitudes for the
B → ρK system,p+−/t+−, t00C /t

+−, n0+/t+−, pEW
C /t+− andReff(ρK), which are shown
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in the right hand side plots of Figs. 8.9 and 8.10. Degeneracies on thep+−/t+− are raised,
and negative values of its phase are still are excluded at95% C.L. due to the significance
of the directCP asymmetryACP (B0 → K+ρ−). Soft constraints are set on thet00C /t

+−,
n0+/t+− QCD ratios. The constraint on thepEW

C /t+− parameter improves, an upper limit of
|pEW

C /t+−| < 1.0 can be set at the level of95% C.L. No significant constraint is set for the
Reff(ρK) QCD ratio. The same pattern as with theB → K∗π system is followed, the global
minimum solution for the phases obtained from theB0 → K0

Sπ
+π− prefer hight values

while the local minimum excludes them.
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Figure 8.10:Constraint on the argument-magnitude plane for thePEW
C /T+− (top left) and

Reff(K∗π) (bottom left) QCD ratios of theB → K∗π system, andpEW
C /t+− (top right) and

Reff(ρK) (bottom right) QCD ratios of theB → ρK system. A logarithmic scale is used on
the horizontal axis. White regions are excluded with a less than5% C.L.

In summary, the additional information carried by the observables relating theB → K∗π
andB → ρK systems helps to improve most of the QCD ratios. Some QCD ratios related
to B → K∗π improve because degeneracies are raised. Constraints are set for all the QCD
parameters related toB → ρK system, including the ones unconstrained by the observables
fromB → ρK alone.
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8.5.3 Constraints on theφ3/2 observable

The main theoretical hypothesis used so far has been tested with theB → K∗π system
analysis. It was shown that the constraints on the CKM parameters were totally dominated
by the theoretical uncertainties, making the CPS/GPSZ method unusable for all practical
purposes. This section studies theφ3/2(K

∗π) andφ3/2(ρK) observables (cf. Eq.(3.48))
when combining theB → K∗π andB → ρK systems. Their explicit definition in terms of
measurable quantities is given below,

φ3/2(K
∗π) = arg

(

q

p

A(B̄0 → K∗−π+) +
√

2A(B̄0 → K̄∗0π0)

A(B0 → K∗+π−) +
√

2A(B0 → K∗0π0)

)

, (8.11)

φ3/2(ρK) = arg

(

q

p

A(B̄0 → K−ρ+) +
√

2A(B̄0 → K̄0ρ0)

A(B0 → K+ρ−) +
√

2A(B0 → K0ρ0)

)

. (8.12)

Both are independent functions of the observables, and can provide constraints on the(ρ̄, η̄)
with additional theoretical input,e.g.PEW = 0 → φ3/2 = 0.
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Figure 8.11:Constraints on theφ3/2(K
∗π) andφ3/2(ρK) observables. At the top the cons-

traint onφ3/2(K
∗π) using the observables from theB → K∗π system alone (left) and using

the combinedK∗π/ρK system (right) are shown. At the bottom the constraint onφ3/2(ρK)
using the observables from the combinedK∗π/ρK system is shown. The dotted lines at0.32
and0.05 set the confidence interval at1σ and2σ, respectively.
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The constraint onφ3/2(K
∗π) when using only observables from theB → K∗π system

is shown in the left hand side plot of Fig. 8.11. Two maxima canbe seen, which corres-
ponds to the multiple solutions on the phases from theB0 → K0

Sπ
+π− analysis. The width

around each maximum is∼ 18o, the presence of multiple solutions reduces significantly the
constraint. The constraint onφ3/2(K

∗π) when all the available observables of the combined
K∗π/ρK system is shown on the right hand side plot of Fig. 8.11. Againtwo maxima
are seen, shifted by∼ 5o with respect to the previous case. More interesting is that the
width around each maxima reduces to15o. The gain of∼ 3o in precision in the extraction
of theφ3/2(K

∗π) observable is obtained when including the observables for the combined
K∗π/ρK system. Given a theoretical hypothesis, this translates inan improvement on the
possible constraint that can be set on the(ρ̄, η̄) plane. The measurement of the yet unavailable
phases will further improve the constraint.

No constraint on theφ3/2(ρK) observable can be set when considering theB → ρK
alone due to the lack of experimental information. This is not the case when considering the
combinedK∗π/ρK system. A constraint can be set on this observable, as is shown in the
bottom plot of Fig. 8.11. Theφ3/2(ρK) observable can be fixed with information from the
interference of differentK∗π andρK resonances. With the current experimental inputs and
errors only a weak constraint is set.

Once a theoretical hypothesis has been fixed, the information contained in bothφ3/2(K
∗π)

andφ3/2(ρK) observables can be combined to set an stronger constraint onthe CKM parame-
ters. The combination is not so trivial as these obsevables are experimentally correlated, and
the details of their constraint on the(ρ̄, η̄) plane depend on the theoretical hypothesis used.

8.5.4 Extrapolation to 2015

This section studies an extrapolation for integrated luminosities expected for the Belle-
upgrade, SuperB, and/or LHCb projects, in order to estimatethe future performances of
the analysis presented in this section. A total of75ab−1 of data are expected for 2015 ob-
tained only by the SuperB project. The central values of the experimental observables used
for this exercise are shown in Table. 8.2.

The inputs for this exercise are all the 27 possible experimental observables from the
combinedK∗π/ρK system. The central values of branching ratios and directCP asym-
metries are taken from [127], where QCD factorization is assumed to calculate them. The
values of the phases are chosen such that the constraint in the (ρ̄, η̄) is completely consistent
with the standard CKM fit. All the measurements are assumed tobe dominated by systematic
uncertainties.2% and3% errors in braching fractions of charged and neutral modes, respec-
tively, are used. In the same way,2% and3% are used for the errors on theCP asymmetries
for charged and neutral modes, respectively. Finally,5o and8o error are used for the phases
obtained from charged and neutral modes, respectively. Theexperimental errors assumed
are roughly equivalent to the current systematic errors.

Using the inputs described in table 8.2,φ3/2 is obtained with an error of5o. The con-
straint on the(ρ̄, η̄) plane is shown in Fig. 8.12.Reff = 1.35% is assumed, and no theoretical
uncertainties are taken into account. Under the hypothesisof very small theoretical uncer-
tainties, the constraints set on the CKM parameters are competitive with that of the global
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Parameter value Parameter value
B(K∗+π−) 9.13 ± 0.27 B(K+ρ−) 13.42 ± 0.40
B(K∗0π0) 3.89 ± 0.12 B(K0ρ0) 7.53 ± 0.23
B(K∗0π+) 8.90 ± 0.27 B(K0ρ+) 10.27 ± 0.31
B(K∗+π0) 5.25 ± 0.16 B(K+ρ0) 4.81 ± 0.15
ACP (K∗+π−) 0.476 ± 0.024 ACP (K+ρ−) −0.314 ± 0.016
ACP (K∗0π0) −0.047 ± 0.021 ACP (K0ρ0) 0.033 ± 0.016
ACP (K∗0π+) −0.002 ± 0.024 ACP (K0ρ+) −0.005 ± 0.016
ACP (K∗+π0) 0.412 ± 0.021 ACP (K+ρ0) −0.463 ± 0.023
∆φ(K∗π) 30.5 ± 8.0 2βeff (K0ρ0) 19.0 ± 8.0
φ(K∗0π0/K∗+π−) −59.1 ± 8.0
φ̄(K̄∗0π0/K∗−π+) 4.8 ± 8.0
φ(K∗0π+/K∗+π0) 65.0 ± 5.0
φ̄(K̄∗0π+/K∗−π0) 35.1 ± 5.0
φ(K0ρ0/K∗+π−) −52.7 ± 8.0
φ(K+ρ−/K∗+π−) 31.9 ± 8.0 φ̄(K−ρ+/K∗−π+) 47.8 ± 8.0
φ(K+ρ0/K∗0π+) −17.0 ± 5.0 φ̄(K−ρ0/K̄∗0π−) 16.4 ± 5.0
φ(K0ρ+/K∗+π0) 26.6 ± 5.0 φ̄(K̄0ρ−/K∗−π0) −12.0 ± 5.0

Table 8.2:Experimental errors expected for 2015, and central values used for the prospective
studies of constraints in the(ρ̄, η̄) plane. Branching fractions are units of10−6 and phases
are in degrees.
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Figure 8.12:Extrapolation exercise on the possible constraints obtained on the(ρ̄, η̄) plane
for and integrated luminosity of75ab−1, which is expected for 2015 with the SuperB project.
As theoretical input it is assumedReff = 1.35%, no theoretical uncertainties are taken into
account. The global CKM fit with the latest measurements presented in ICHEP08 is super-
imposed for comparison. White regions are excluded with a less than5% C.L.
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CKM fit. The potential of this method for CKM physics will depend on the evolutions of the
usable theoretical frameworks and the relevant theoretical uncertainties.

8.6 Summary

Using the global CKM fit results as an external inputs to fix theCKM parameters, constraints
have been set on unavailable experimental observables and on the ratios of QCD amplitudes
in theK∗π and theρK systems. When consideringB → K∗π alone, the constraints on the
QCD ratios related to that system are weak, mainly because there are multiple solutions for
the phases extracted from theB0 → K0

Sπ
+π− analysis presented in this thesis. Considering

B → ρK alone, experimental bounds are set for a couple of QCD ratiosonly. When con-
sidering the combinedK∗π/ρK system, constraints on all QCD ratios improve due to the
additional experimental information contained in the phase differences related with interfer-
ences ofK∗π andρK resonances.

The CPS/GPSZ (cf. Sec. 3.2.6) method has been revisited and tested. The validity of this
external hypothesis is tested, both in terms of the structure of the isospin relations, and by
using the available experimental measurements. It is shownthat for theB → K∗π system,
the measurements do not favor the scenario of negligiblePEW ; besides, the current measure-
ments onK∗π have a weak consistency with the proposed theoretical estimators ofPEW. As
a result, the constraints on CKM parameters are dominated bytheoretical uncertainties.

Finally, a method that exploits the entire set of measurements on theK∗π andρK systems
is developed. The potential of this combined analysisK∗π/Kρ is estimated with the help a
prospective analysis, based on an extrapolation of the current experimental uncertainties. The
results allow to illustrate the physics potential of these analyses in the context of the LHCb
experiment, the SuperB and Belle-upgrade projects, in scenarios with controlled theoretical
uncertainties.



Chapter 9

Conclusion

The results obtained in this thesis can be summarized into two parts:

• A complete data analysis work for the charmless decayB0 → K0
Sπ

+π− has been
performed with a time-dependent amplitude analysis. Measurements of inclusive and
exclusive branching fractions and directCP asymmetries are performed. Moreover,
phase differences between resonant states are extracted, mainly for thef0(980)K0

S,
ρ0(770)K0

S andK∗±(892)π∓ resonant components.

• A phenomenological analysis using the available experimental information on the
B → K∗π andB → ρK systems is performed, with the methods described in Chap-
ter 3.

9.1 Time-dependent amplitude analysis of the charmless
decay modeB0 → K0

Sπ
+π−

The results of a time-dependent amplitude analysis ofB0 → K0
Sπ

+π− decays, obtained from
a data sample of383× 106 BB̄ decays, are presented. Event rates for signal, continuum and
B-backgrounds are measured. Furthermore,15 pairs of relative phases and magnitudes for
the different resonances are measured, taking advantage ofthe interference between them
in the Dalitz plot. From the measured isobar amplitudes the following Q2B parameters are
derived: exclusive branching fractions, directCP asymmetries and phase differences of the
resonant decay modes. The main results are summarized below:

• Two solutions are found by the fit, with equivalent goodness-of-fit. The values of
the fit fractions and the directCP asymmetries are similar in both solutions; on the
contrary, some isobar phase differences are significantly different. This result comes
from a double ambiguity to resolve the interference patternin the Dalitz plot. The
results on the physical parameters are obtained by studyingthe complete likelihood
function around its two maxima, applying no approximation in the construction of the
confidence intervals on the measured parameters.
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• The measurement of the(βeff , C) parameters in thef0(980)K0
S channel is in good

agreement with the values from golden modes. The measurement excludesCP con-
servation with3.5σ significance including systematic uncertainties. The total error is
dominated by statistical effects, and the dominant contribution to systematic uncer-
tainties comes from the isobar model.

• For theρ0(770)K0
S channel, theβeff parameter is measured for the first time. The

(βeff , C) measurement is also in agreement with the golden modes. It iscompatible
with CP conservation within1σ. As for f0(980)K0

S, the total error is dominated
by statistical effects, and the dominant contribution to systematic uncertainties comes
from the isobar model.

• For theK∗+(892)π− channel, the measurement of the directCP violation asymmetry
isACP = −0.20 ± 0.10 ± 0.02 ± 0.01; the null value is excluded at2σ. The relative
phase∆φ(K∗−(892)π+, K∗+(892)π−) between the decay amplitude and itsCP con-
jugated amplitude is measured for the first time. The small overlap of theK∗+(892)π−

with other resonances limits the sensitivity to measure∆φ(K∗−(892)π+, K∗+(892)π−),
which only allows to exclude the interval[−132◦ : +25◦] (at 95% CL). Although the
measurement of∆φ(K∗−(892)π+, K∗+(892)π−) is dominated by the statistics, the
separation between the maxima of the likelihood function dilutes even more the cons-
traint obtained.

• The presence of a significant contribution to theπ+π− spectrum, in the region around
mπ+π− ∼ 1.5 GeV/c2, is established with a4.8σ significance. This signal is described
as the coherent sum of two contributions, thef2(1270) tensor and a unlisted resonance
fX(1300), which has been identified for the first time inB+ → K+π−π+ decays [23,
24]. As in previous Dalitz analyses, the best fit is obtained using a scalar for the
fX(1300).

All the measurements presented are consistent with previous analyses, and are more pre-
cise than results from Q2B analyses. From the measured decayamplitudes and the signal
yield, the inclusive directCP asymmetry and branching fraction are derived. The inclu-
sive directCP asymmetry is consistent with zero and the inclusive branching fraction is
consistent with previous results.

A preliminary version of this work has been presented, on behalf theBABAR collabora-
tion, at the Lepton-Photon conference in 2007 (arXiv:0708.2097). The final version is
currently in internal review by the collaboration, and is planned to be submitted for publica-
tion in Physical Review D.

9.2 Phenomenological Interpretation of theB → K∗π and
B → Kρ modes

At first, this thesis aimed at producing an extension of the CPS/GPSZ method (cf. Sec. 3.2.6),
which claims to allow access to the angleγ of the CKM UT under the hypothesis of negligi-
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ble electroweak penguins (PEW ). The plan was to maximize the use of available experimen-
tal information. However, this reasoning has also helped torevisit certain conditions invoked
by the CPS/GPSZ methods. A correct method is developed whichshows that the constrained
UT angle under thePEW = 0 assumption is the angleα of the CKM UT (notγ). The validity
of this external hypothesis is tested, both in terms of the structure of isospin relations, and by
using the available experimental measurements. It is shownthat for theB → K∗π system,
the measurements do not favor the scenario of negligiblePEW ; besides, the current measure-
ments onK∗π have a weak compatibility with the available theoretical estimators ofPEW.
As a result, the constraints on CKM parameters are dominatedby theoretical uncertainties.

Finally, a method that exploits the entire set of measurements on theK∗π andρK systems
is developed. The potential of this combined analysisK∗π/Kρ is estimated with the help
a prospective analysis, based on an extrapolation of the current experimental uncertainties.
The results allow to illustrate the physics potential of these analyses in the context of the
LHCb experiment, the SuperB and Belle-upgrade projects.

A preliminary version of this phenomenological work is presented in this thesis. The
final version is likely contain some extensions of the method, in a context more expanded
that only isospin symmetry. The final goal is to summit this work to publication inJournal
of High Energy Physics.
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Appendix



Appendix A

Probability density distributions of fit
variables

This appendix provides additional details on the parameterizations used for the discrimi-
nant variables entering in the likelihood function. The PDFs for the signal (TM and SCF),
continuum andB background species are described.

A.1 Signal and Continuum background

A.1.1 The kinematic variables,mES and ∆E

Signal

• mES: The distribution of TM events is parameterized with a bifurcated Crystal Ball
functionbCB(m;m0, σL, σR, α, n)),

bCB(m) =
1

N
·







exp (−(m−m0)
2/(2σ2

R)) , m > m0

exp (−(m−m0)
2/(2σ2

L)) , m0 − ασL < m ≤ m0
(n/α)n exp (−α2/2)

((m0−m)/σL+n/α−α)n , m ≤ m0 − ασL

(A.1)

which is a combination of bifurcated Gaussian function witha power law tail.N is a
normalization parameter. The values forα = 1.9, n = 10.0 are used, and them0, σL

andσR parameters are determined by the fit.

The SCF events are parameterized with a smooth histogram known as Keys PDFs [128]
(cf. top right plot of Fig. A.1).

The top plots of Fig. A.1 show the parameterization used for TM (left) and SCF (right)
superimposed to the non-resonant MC sample.

• ∆E: The distribution of TM events is parameterized with a doubleGaussian, with all
five parameters determined by the fit to data.

SCF events are parameterized with a single Gaussian PDFG(m;m0, s0), where the
mean and width parameters are determined from MC samples andfixed tom0 = (1.7±
1.4) × 10−2 GeV/c2, ands0 = (1.0 ± 0.1) × 10−1 GeV/c2.
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Figure A.1:Distribution ofmES for TM (top left) and SCF (top right) non-resonant MC and
Off Peak data (bottom). Superimposed are the PDFs used for the maximum likelihood fit.

The top plots of Fig. A.2 shows the parameterization used forTM (left) and SCF (right)
superimposed to the non-resonant MC sample.

Continuum background

• mES: The continuum PDF is parameterized with a two parameter function known as
Argus(m;m0, ξ) [103], wherem0 is a threshold parameter known as endpoint,

Argus(m) =
1

N
·







0 , m > m0

m

(

1 −
(

m
m0

)2
)1/2

exp ξ

(

1 −
(

m
m0

)2
)

, m ≤ m0

(A.2)

N is again a normalization parameter. Since the shape parameter ξ has been found to
be compatible within statistical error among all tagging categories (includingNoTag),
a single average< ξ > is used, determined by the fit to data, simultaneously with the
signal parameters. The kinematic endpointm0 is fixed to5.2897 GeV/c2. The bottom
plot of Fig. A.1 shows a fit to the off-peak sample.

• ∆E: The continuum PDF is parameterized with a second order polynomial. Again,
the same parameters are used for all tagging categories. Thetwo polynomial param-
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eters are obtained by the fit. The bottom plot of Fig. A.2 showsa fit to the off-peak
sample.
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Figure A.2:Distribution of∆E for TM (top left) and SCF (top right) non-resonant MC and
Off Peak data (bottom). Superimposed are the PDFs used for the maximum likelihood fit.

A.2 The Neural Network

In view of the correlation between theNN and the DP coordinates for continuum back-
ground (see Sec. 6.2), theNN PDF for continuum does not factorize any more in the likeli-
hood function. This effect is taken into account by introducing a Dalitz plot-dependence of
theNN variable for continuum.

Signal

Keys PDFs are used, distinguishing for tagging categories,for the empirical MC shape of
TM and SCF events. Figs. A.3 and A.4 show the nonparametric Keys PDFs used for the TM
(left plots) and the SCF (right plots) for the seven tagging categories.



A.2 The Neural Network 256

Continuum background

To account for theNN continuum correlation with the DP, a function that varies with ∆Dalitz

(cf. Fig. 6.6) is used,

Pqq̄(NN ; ∆Dalitz, A,B0, B1, B2) = (1 −NN)A
(

B2NN
2 +B1NN +B0

)

. (A.3)

TheA andB coefficients are linear functions of∆Dalitz,

A = a1 + a4∆Dalitz,
B0 = c0 + c1∆Dalitz,
B1 = a3 + c2∆Dalitz,
B2 = a2 + c3∆Dalitz,

(A.4)

where theai andci coefficients are obtained by the fit. Fig. A.5 shows the fit results of the
polynomial (Eq. A.3) for off-peak events, in different domains on∆Dalitz.
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Figure A.3:NN signal PDFs for the TM (left) and SCF components (right) in theLepton
(top),Kaon1 (middle top),Kaon2 (middle bottom) andKaonPion (bottom) tagging cate-
gories. The histograms are non-resonant MC and the curve is the Keys PDF.
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Figure A.4:NN signal PDFs for the TM (left) and SCF components (right) in the Pion
(top), Other (middle) andNoTag (bottom) tagging categories. The histograms are non-
resonant MC and the curve is the Keys PDF.
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Figure A.5:Fit of NN to the off-resonance data. The fit result is projected in fourdifferent
domains on∆Dalitz, spanning from the DP edges (top, left) to the DP center (bottom, right).
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A.3 PDFs for B Backgrounds

This section illustrates the PDFs used to describe the differentB background components
detailed in Section 5.8.

A.3.1 B0 → D−(→ K0
Sπ

−)π+

As theB0 → D−(→ K0
Sπ

−)π+ B-background component has the same final state as the
signal, it shares itsmES and ∆E PDFs. A Keys PDF is used for theNN ; and a non-
parametric PDF is used is used for the DP. Fig. A.6 illustrates the shape of these four PDFs,
using exclusive MC samples ofB0 → D−(→ K0

Sπ
−)π+ events.

A.3.2 B0 → J/Ψ(→ ℓ+ℓ+)K0
S

As themES construction does not depend on the masses of particles in the final state, the
mES distribution for theB0 → J/Ψ(→ ℓ+ℓ+)K0

S component is expected to be very similar
as that of signal, so this PDF is shared with the signal. The∆E PDF uses a non-parametric
Keys obtained from exclusive MC; its central value in MC was shifted according to the fitted
value of∆E for the signal. A Keys PDF is used for theNN ; and a non-parametric PDF
is used is used for the DP. Fig. A.7 illustrates the shape of these four PDFs, using exclusive
MC samples ofB0 → J/Ψ(→ ℓ+ℓ+)K0

S events.

A.3.3 Other B backgrounds

For the remainingB background classes, a Keys PDF is used to describe theirmES, ∆E and
NN PDFs. As discussed on Sec. 6.3.3, for the DP a non-parametricPDF is used for allB
background components (cf. top plots on Fig. A.6–A.15).



261 Probability density distributions of fit variables

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Entries  340301
Integral   3.403e+05

0

20

40

60

80

100

120

140

160

180

200

220

Entries  340301
Integral   3.403e+05, Dmpp0Square Dalitz PDF, B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Entries  340301
Integral   3.403e+05

0

20

40

60

80

100

120

140

160

180

200

220

Entries  340301
Integral   3.403e+05), Dmpp

0
(BSquare Dalitz PDF, 

)2(GeV/cESm
5.272 5.274 5.276 5.278 5.28 5.282 5.284 5.286

E
ve

n
ts

 / 
( 

0.
00

01
4 

)

0

50

100

150

200

250

 PDFπD

)2(GeV/cESm
5.272 5.274 5.276 5.278 5.28 5.282 5.284 5.286

E
ve

n
ts

 / 
( 

0.
00

01
4 

)

0

50

100

150

200

250

 PDFπD

E(GeV)∆
-0.06 -0.04 -0.02 0 0.02 0.04 0.06

E
ve

n
ts

 / 
( 

0.
00

13
 )

0

50

100

150

200

250

300

 PDFπD

E(GeV)∆
-0.06 -0.04 -0.02 0 0.02 0.04 0.06

E
ve

n
ts

 / 
( 

0.
00

13
 )

0

50

100

150

200

250

300

 PDFπD

Entries  340886
Integral  3.409e+05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

2000

4000

6000

8000

10000

12000

14000

Entries  340886
Integral  3.409e+05

Transformed nn PDF (histogram), Dmpp

Figure A.6:PDFs used for theB0 → D−(→ K0
Sπ

−)π+ B-background component. Square
DP (the top left and right plots areB0 andB̄0 tags, respectively),mES (middle left) and∆E
(middle right), andNN (bottom) PDFs.
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Figure A.7: PDFs used for theB0 → J/ΨK0
S B-background component. Square DP (the

top left and right plots areB0 andB̄0 tags, respectively),mES (middle left) and∆E (middle
right), andNN (bottom) PDFs.
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Figure A.8:PDFs used for theB0 → η
′
K0

S B-background component. Square DP (the top
left and right plots areB0 and B̄0 tags, respectively),mES (middle left) and∆E (middle
right), andNN (bottom) PDFs.
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Figure A.9:PDFs used for theΨ(2S)K0
S B-background component. Square DP (the top left

and right plots areB0 andB̄0 tags, respectively),mES (middle left) and∆E (middle right),
andNN (bottom) PDFs.
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Figure A.10:PDFs used for the charged genericB-background component. Square DP (the
top left and right plots areB0 andB̄0 tags, respectively),mES (middle left) and∆E (middle
right), andNN (bottom) PDFs.
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Figure A.11:PDFs used for the neutral genericB-background component. Square DP (the
top left and right plots areB0 andB̄0 tags, respectively),mES (middle left) and∆E (middle
right), andNN (bottom) PDFs.
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Figure A.13: PDFs used for the mixedB-background modes referred as “category 1“ in
Table 5.7. Square DP (the top left and right plots areB0 and B̄0 tags, respectively),mES

(middle left) and∆E (middle right), andNN (bottom) PDFs.



269 Probability density distributions of fit variables

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Entries  280
Integral    280.7
Entries  280
Integral    280.7 modes (Cat. 2)-π +, D0Square Dalitz PDF, B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Entries  280
Integral    280.7
Entries  280
Integral    280.7 modes (Cat. 2)-π +), D

0
(BSquare Dalitz PDF, 

Entries  280
Integral   280.7

5.272 5.274 5.276 5.278 5.28 5.282 5.284 5.2860

2

4

6

8

10

Entries  280
Integral   280.7

 modes (Cat. 2)-π + PDF (histogram), DESM Entries  280
Integral   280.7

-0.06 -0.04 -0.02 0 0.02 0.04 0.060

2

4

6

8

10

12

14

16

Entries  280
Integral   280.7

 modes (Cat. 2)-π +E PDF (histogram), D∆

Entries  280
Integral   280.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

2

4

6

8

10

12

Entries  280
Integral   280.7

 modes (Cat. 2)-π +Transformed nn PDF (histogram), D

Figure A.14: PDFs used for the mixedB-background modes referred as "category 2" in
Table 5.7. Square DP (the top left and right plots areB0 and B̄0 tags, respectively),mES

(middle left) and∆E (middle right), andNN (bottom) PDFs.
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Figure A.15: PDFs used for the mixedB-background modes referred as “category 3“ in
Table 5.7. Square DP (the top left and right plots areB0 and B̄0 tags, respectively),mES

(middle left) and∆E (middle right), andNN (bottom) PDFs.



Appendix B

Probing the Signal DP Model

It is expected that the same intermediate resonant states that contribute to theB+ → K+π−π+

channel, will also be present in theB0 → K0
Sπ

+π− model. As the charged mode is cleaner
experimentally (higher signal rates and lower backgrounds), its isobar model can be used as
a probe for smaller resonant contributions.

For theB0 → K0
Sπ

+π− channel, Q2B analyses have established uncontroversial sig-
nal yields for thef0(980)K0

S, ρ0(770)K0
S, K∗±(892)π∓ and (Kπ)∗±0 π∓. components (cf.

Sec. 2.2). Thef0(980)K+, ρ0(770)K+, K∗0(892)π+ and(Kπ)∗00 π
+ are also present in the

B+ → K+π−π+ signal. In addition to these, the isobar model of the chargedmode in-
cludes a non-resonant, and aχc(0)K0

S component. Furthermore, the signal aroundmππ ∼
1.5 GeV/c2 is described by using af2(1270)K0

S, and a scalar denoted asfX(1300)K0
S.

Internal coherence in the treatment ofB → Kππ modes calls for the present analysis to
use the same signal DP model as theB+ → K+π−π+ BABAR analysis [23]. This appendix
describes some consistency tests performed on theB0 → K0

Sπ
+π− data sample to validate

this approach.

B.1 Addition of other components to the minimal model

In principle, the isobar model should include all possible intermediate states that may con-
tribute to the signal, but with finite available statistics only the most prominent components
are actually considered, and the less significant ones are treated as systematic effects on the
signal isobar model. A “minimal” signal model is then definedas composed of:f0(980)K0

S,
ρ0(770)K0

S,K∗±(892)π∓ and(Kπ)∗±0 π∓.
In theblind analysisapproach used inBABAR, the relevance of considering other interme-

diate states is studied, by means of "blind fits" to data. In these blind fits, only the changes
in likelihood value∆NLL, when fitting with/without one extra component, and the corre-
sponding fitted isobar fractionFF for this extra component, are actually inspected. This
∆NLL is defined as

∆NLL = NLLMinimal −NLLExtra Comp. (B.1)

whereNLLMinimal is the NLL value at minimum with the Minimal Model, andNLLExtra Comp.



B.1 Addition of other components to the minimal model 272

is the NLL at minimum when an extra component is added. This definition is such that
∆NLL is positive when the addition of an extra component improvesthe fit.

The criteria used to interpret these numbers are defined fromtoy studies, where toy
datasets are generated using the minimal model, then fitted with/without a given extra com-
ponent, to evaluate the expected values for∆NLL andFF when a fake component is added
to the signal model. The configuration for generating these toy datasets is as follows,

• Signal Model (“minimal”): f0(980)K0
S (FF = 16%), ρ0(770)K0

S (FF = 10%),
K∗(892)π (FF = 27%) andK∗(1430)π (FF = 48%).

• Yields: 1700 signal, 19400 Continuum, 3200Dπ, 1700J/ψK0
S, 130ψ(2S)K0

S and
1300 Generic.
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Figure B.1:Results of including a fake component in the signal model. Datasets have been
generated with the minimal model (see text), and fitted including a fake non-resonant (NR)
component. On the left: NLL vsFF of the fake NR component. On the right :σFF vsFF
value.

Left plot in Fig. B.1 shows the results obtained when fitting with an extended model
where a uniform non-resonant (NR) component is added to the minimal signal model. In
the plot are shown the values of the∆NLL vs. the fittedFF for the "fake" extra component.
Similar patterns arise when adding other components. As seen in the figure, this fake com-
ponent induces changes up to∆NLL ∼ 7 − 8 likelihood units, and the fittedFF can reach
values up to∼ 5%. It is worth stressing that, by definition, the values ofFF are biased since
they are bound to be positive. Now, one observes that the significances of the fitted "fake"
FF do not appreciably exceed the∼ 1σ level (cf. right plot in Fig. B.1). The decision on
declaring a component not to be significant, is based on whether its addition to the signal
model in the blind fit to data follows the pattern illustratedin Fig. B.1. If it is not the case,
the component is considered to have a potentially significant contribution to the signal rate,
and should be considered for inclusion in the signal model.

Different components have been tested on blind fits to data. Table B.1 shows the compo-
nents tested and the results. Clearly, the largest improvement in NLL comes from adding
a non-resonant component to the fit. For themππ mass spectrum, addingf2(1270)K0

S,
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Component ∆(NLL) FF
f2(1270)K0

S +19.5 ∼ 3.8%
f0(1370)K0

S +31.1 ∼ 4.2%
ρ0(1450)K0

S +35.2 ∼ 13.1%
f0(1500)K0

S +11.0 ∼ 1.6%
ρ0(1700)K0

S +7.6 ∼ 2.9%
K∗±

2 (1430)π∓ +13.7 ∼ 7.1%
K∗±

0 (1680)π∓ +25.1 ∼ 7.7%
K∗±

0 (1410)π∓ +18.3 ∼ 3.4%
NonResonant +117.0 ∼ 23.6%

Table B.1:List of intermediate states tested.

f0(1370)K0
S or ρ0(1450)K0

S components improve the fit quality by significant amounts. For
themK0

Sπ± spectrum, adding the componentsK∗±
2 (1430)π∓,K∗±(1680)π∓ andK∗±(1410)π∓

also improve the fit quality.
In each case, additional tests are to be performed to complement these elements of inter-

pretation.

B.2 Probing for a non-resonant component

The sPlot technique [31] in the center of the DP has been performed, in order to test for a
non-resonant (NR) component. A fit to the events in the centerof the DP is performed, using
onlymES and∆E variables with the following configuration,

• The DP center is defined asmπ±K0
S
> 2.0 GeV/c2 andmπ+π− > 2.0 GeV/c2 (see left

hand plot of Fig. B.2).

• TheJ/ψK0
S andψ(2S)K0

S have been cut by vetoing the3.07 < mπ+π− < 3.12 GeV/c2

and3.67 < mπ+π− < 3.705 GeV/c2 bands.

• The fit assumes the sample is composed of three species: signal (mostly NR if this
component were present), continuum and B background.

• No cut on theNN is made nor is theNN used in the fit, due to its correlation with
the DP for the continuum: when approaching the DP center, thecontinuumNN shape
becomes more and more twisted towards higher values, i.e. the discrimination with
respect to signal decreases.

• The signal PDF is the same as in the nominal fit, with its parameters fixed. The same
holds for the continuum PDF, with the Argus parameter floated. For the B background
a 2D Keys histogram is used, built from generic MC (see right hand plot of Fig. B.2).

• With just these two variables, using the nominal, tightmES and ∆E window (cf.
Sec. 5.7), the discrimination among species would be too low, and the fit would obtain
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excessive correlations between signal and background yields. The window is thus
enlarged to5.25 < mES < 5.288 GeV/c2 and|∆E| < 100 MeV; nevertheless, a high
anticorrelation of−85% between signal and B background remains.
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Figure B.2:On the left: definition of the DP center used for the sPlot study. On the right:
mES and∆E B-background PDF used for the fit to yields. The PDF is a 2D Keyshistogram
constructed from generic MC. The red rectangle represents themES and∆E fit region.

The results on the fit to yields are shown in Fig. B.3 and on Table B.2. The sPlots for the
NN variable are shown in Fig. B.4. Superimposed to the signal and continuum sPlots are
theNN distributions for non-resonant MC and off-peak, respectively, which are normalized
to the expected number of events in the center of the DP.

Inspection of Figs. B.3 suggests the presence of a significant rate ofB events in the DP
center; the sPlots in Fig. B.4 suggest to interpret these events as signal events. With both
statements taken together, there is evidence for signal in the center of the DP. Such signal
can only originate from a non-resonant component. This component is then added to the
signal DP model, the parameterization being the same as in [23].

Yield Fitted value
Signal 175 ± 29
Continuum 6036 ± 185
B Generic 354 ± 175

Signal - B generic correlation −85%

Table B.2:Results for the fit to yields, performed in DP center using onlymES and∆E.

B.3 Probing the signal aroundmππ ∼ 1.5 GeV/c2

Previous analyses [23, 24, 42] have observed prominent signal rates in themππ mass spec-
trum located around∼ 1.5 GeV/c2. In the charged mode, this signal is described with
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Figure B.3:mES (left) and∆E (right) projections for fit to yields in the DP center. Black
dots are data. The dashed blue, magenta and red curves are thecontinuum, continuum+B-
background and signal PDFs, respectively. For the∆E projection an additional cut inmES

have been applied to enhance the Signal/Background ratio.
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Figure B.4:NN sPlot in the DP center for continuum (upper left), Signal (upper right) and
B-background (lower). The blue/red points in the continuumsPlot are the offpeak in/out the
DP center. For the Signal the blue line is non-resonant MC.

two resonant components: thef2(1270) tensor, and a scalar denoted asfX(1300). This
fX(1300) is modeled with a Relativistic Breit-Wigner lineshape, with fitted mass and width
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of (1449±13) MeV/c2 and(129±25) MeV/c2, respectively. Data prefers a scalarfX(1300)
over vector and tensor. In the present analysis, this signalexcess could be the source for the
large significance for the high-mass resonances tested in the blind fits.

To address this issue of signal excess in theπ+π− mass spectrum above thef0(890), blind
fits to the onpeak data in a number of different configurationsare performed. The now mini-
mal configuration includes now the non-resonant amplitude.Table B.3 shows the changes in
likelihood and isobar fractions for fits including additional (or replacement) resonances.

∆(NLL) BFfX(1300) BFf2(1270) BFρ0(1450))
Minimal+fX(1300)(scalar) 0 ∼ 6.0%
Minimal+fX(1300)(vector) -20 ∼ 7.6%
Minimal+fX(1300)(tensor) -5 ∼ 4.6%
Minimal+fX(1300)(scalar)+f2(1270) +17 ∼ 3.2% ∼ 2.3%
Minimal+fX(1300)(vector)+f2(1270) +10 ∼ 8.1% ∼ 1.6%
Minimal+fX(1300)+ρ0(1450)) + f2(1270) +23 ∼ 6.5% ∼ 1.6% ∼ 2.1%
ρ0(1450) + f2(1270) (nofX(1300)) -5 ∼ 0.7% ∼ 8.3%
f0(1500) instead offX(1300) -3 ∼ 3.1%
f0(1500) + f2(1270) +11 ∼ 5.0% ∼ 1.8%
f0(1500) + f2(1270)+ρ0(1450) +16 ∼ 3.1% ∼ 1.4% ∼ 8.4%

Table B.3:List of intermediate states being tested.

A few conclusions can be drawn from these results:

• the data slightly prefers thefX(1300) (as in the chargedB+ → K+π−π+ analyses) to
thef0(1500) (as in the three-kaonB+ → K+K−K+ andB0 → KSK

+K− analyses).

• there is a further improvement in the fit with the inclusion ofanf2(1270),

• the improvement with the inclusion of aρ0(1450) is less significant,

• even includingρ0(1450) andf2(1700) and excludingfX(1300), there is still significant
improvement by adding thefX(1300) alone,

• for thefX(1300), data slightly prefers the scalar over the vector or the tensor.

In addition to these studies in likelihood changes, two-dimensional scans on the mass
and width of thefX(1300) component have been performed. For these scans, the signal
model contains bothf2(1270), and thefX(1300) (scalar) components. Fig. B.5 shows the
one-dimensional scan for the mass and the width. The best mass and width values are found
to be∼ 1450 MeV/c2 and∼ 80 MeV/c2, respectively, which are consistent with the Belle
B0 → K0

Sπ
+π− result [42] within2.2σ level, statistical-only.

B.4 Probing themKSπ spectrum above∼ 1.5 GeV/c2

For themK0
Sπ± spectrum, adding the componentsK∗±

2 (1430)π∓,K∗±(1680)π∓ and
K∗±(1410)π∓ also improve the fit quality significantly. The issue here is that the significance
of these additions could be due to imperfections on the parameterization of theKπ S-wave,
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Figure B.5:One-dimensional likelihood scans on thefX(1300) mass (left) and width (right),
where the signal model is composed of the minimal model, thef2(1270), and thefX(1300)
(scalar) component.

and/or to correlations with themππ spectrum and the non-resonant component. Since the
isobar model for the charged mode did not include any additional mK0

Sπ± resonance, the
same approach is followed in this analysis. A further, a posteriori, justification is provided
by the good agreement of the isobar model with data, in the projections of themK0

Sπ± spectra
(see Sec. 7.1.2).

B.5 Summary

As the tests performed on data suggest, a non-resonant component is added to the signal
model to describe signal events in the center of the DP. Also,the f2(1270) and the scalar
fX(1300), are used to describe the signal excess seen on the highmππ mas spectrum. In
addition, theχc(0)K0

S is also included, as in theBABAR B+ → K+π−π+ analysis [23].
When including these last components to the signal model, a likelihood change of∼ 45
NLL units is found. The nominal signal model includes these resonances. As a last check,
additional components are added to the nominal signal modelone-by-one; the results are
shown on Table B.4. None of these components appears to be significant, with maybe the
expection of theρ0(1450). As described in Sec.7.3, this last one is an important contribution
in the evaluation of signal model systematics.

Component ∆(NLL) BF (%)
f0(1710)K0

S +2.5 1.0 ± 0.7
ρ0(1450)K0

S +14.0 7.2 ± 1.7
ρ0(1700)K0

S +1.6 0.5 ± 0.4
K∗(1680) +6.7 2.6 ± 1.0
χc(2) -0.3 0.02 ± 0.02

Table B.4:List of additional intermediate states tested with the nominal signal model.



Appendix C

List of Fixed Parameters in the Nominal
Fit

The list of fixed parameters in the nominal fit can be seen in theTables C.1, C.2 and C.3 (the
lineshape parameters have been already described in the Chapter 2, and given on Tables 2.3
and 2.4).

Parameter Value
Neutral Generic Yield 114 ± 6
Charged Generic Yield 282 ± 10

a+
1 π

− Yield 7.3 ± 0.7
BBkg Category 1 Yield 43.8 ± 2.5
BBkg Category 2 Yield 281 ± 20
BBkg Category 2 Yield 34.5 ± 4.6
D+π− ACP Parameter 0.0 ± 0.04
J/ψK0

S
C Parameter 0.0 ± 0.03

J/ψK0
S

S Parameter 0.668 ± 0.026
η′K0

S
C Parameter −0.09± 0.06

η′K0
S

S Parameter 0.61 ± 0.07
Neutral Generic C Parameter 0.0 ± 0.6
Neutral Generic S Parameter 0.0 ± 0.6

Neutral GenericACP Parameter 0.0 ± 0.6
Neutral Generic∆C Parameter 0.0 ± 0.6
Neutral Generic∆S Parameter 0.0 ± 0.6

ψ(2S)K0
S

C Parameter 0.14 ± 0.09
ψ(2S)K0

S
S Parameter 0.95 ± 0.13

a+

1 π
− C Parameter −0.1 ± 0.17

a+

1 π
− S Parameter 0.37 ± 0.22

a+
1 π

− ACP Parameter −0.07± 0.07
a+

1 π
− ∆C Parameter 0.26 ± 0.17

a+
1 π

− ∆S Parameter −0.14± 0.22
BBkg Category 1ACP Parameter 0.0 ± 0.1
BBkg Category 2ACP Parameter 0.0 ± 0.04
BBkg Category 3ACP Parameter 0.0 ± 0.12

Charged Generic Charge Asymmetry 0.0 ± 0.6

Table C.1:List of fixed parameters in the fit. The errors are World Average error on param-
eter, when available, or a conservative estimate when measurement is available.
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Parameter Value
SCF fraction cat. Lepton (2.4 ± 1.1)%
SCF fraction cat. Kaon1 (4.0 ± 1.0)%
SCF fraction cat. Kaon2 (4.0 ± 1.0)%
SCF fraction cat. Pion (4.6 ± 1.2)%

SCF fraction cat. Kaon1Pion (3.7 ± 1.1)%
SCF fraction cat. Other (4.7 ± 1.5)%
SCF fraction cat. NoTag (4.6 ± 0.9)%

signalB0 life time τ 1.537 ± 0.008
signalB0 oscillation frequency∆m 0.502 ± 0.004

Neutral BBkgB0 life time τ 1.537 ± 0.008
Neutral BBkgB0 oscillation frequency∆m 0.502 ± 0.004

CombRgmean1 (∆E SCF parameter) 0.0002 ± 0.0140
CombRgwidth1 (∆E SCF parameter) 0.10 ± 0.02

tagging efficiency cat. Lepton (8.7 ± 0.1)%
tagging efficiency cat. Kaon1 (11.0 ± 0.1)%
tagging efficiency cat. Kaon2 (17.2 ± 0.1)%
tagging efficiency cat. Pion (14.3 ± 0.1)%

tagging efficiency cat. KaonPion (13.8 ± 0.1)%
tagging efficiency cat. Other (9.6 ± 0.1)%

ω[Lepton] 0.028 ± 0.004
ω[Kaon1] 0.056 ± 0.005
ω[Kaon2] 0.150 ± 0.005
ω[Pion] 0.326 ± 0.006

ω[KaonPion] 0.231 ± 0.006
ω[Other] 0.418 ± 0.008

∆ω[Lepton] −0.0002 ± 0.008
∆ω[Kaon1] −0.008 ± 0.009
∆ω[Kaon2] −0.002 ± 0.008
∆ω[Pion] 0.06 ± 0.01

∆ω[KaonPion] −0.029 ± 0.01
∆ω[Other] 0.054 ± 0.012

Table C.2:List of fixed parameters in the fit. The errors are World Average error on param-
eter, when available, or a conservative estimate when measurement is available.
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Parameter Value
fcore signal∆t resolution 0.895 ± 0.001

sb
core cat.Lepton signal∆t resolution −0.07 ± 0.05
sb
core cat.Kaon1 signal∆t resolution −0.14 ± 0.04
sb
core cat.Kaon2 signal∆t resolution −0.21 ± 0.04
sb
core cat.Pion signal∆t resolution −0.21 ± 0.04

sb
core cat.KaonPion signal∆t resolution −0.18 ± 0.04
sb
core cat.Other signal∆t resolution −0.17 ± 0.04

sb
core cat.NoTag signal∆t resolution −0.21 ± 0.03

sσ
core signal∆t resolution 1.104 ± 0.004
sb
tail signal∆t resolution −1.264 ± 0.005
sσ
tail signal∆t resolution 3.0 ± 0.1
sb
out signal∆t resolution 0.
sσ
out signal∆t resolution 0.005 ± 0.008
fcore BBkg ∆t resolution 0.730 ± 0.017

sb
core cat.Lepton BBkg ∆t resolution 0.15 ± 0.07
sb
core cat.Kaon1 BBkg ∆t resolution 0.11 ± 0.07
sb
core cat.Kaon2 BBkg ∆t resolution −0.11 ± 0.05
sb
core cat.Pion BBkg ∆t resolution −0.18 ± 0.05

sb
core cat.KaonPion BBkg ∆t resolution −0.15 ± 0.05
sb
core cat.Other BBkg ∆t resolution −0.13 ± 0.06

sb
core cat.NoTag BBkg ∆t resolution −0.11 ± 0.04

sσ
core BBkg ∆t resolution 1.08 ± 0.04
sb
tail BBkg ∆t resolution −0.6 ± 0.1
sσ
tail BBkg ∆t resolution 3.0
sb
out BBkg ∆t resolution 0.0
sσ
out BBkg ∆t resolution 8.0

Table C.3:List of fixed parameters in the fit. The errors are World Average error on param-
eter, when available, or a conservative estimate when measurement is available.
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Abstract

A time-dependent amplitude analysis ofB0 → K0
Sπ

+π− decays is performed to extract
the CP violation parameters off0(980)K0

S andρ0(770)K0
S, and direct CP asymmetries of

K∗(892)±π∓. The results are obtained from a data sample of(383 ± 3) × 106 BB̄ decays,
collected with theBABAR detector at the PEP-II asymmetric-energy B factory at SLAC.Two
solutions are found, with equivalent goodness-of-fit merits. Including systematic and Dalitz
plot model uncertainties, the combined confidence intervalfor values ofβeff in B0 decays to
f0(980)K0

S is 18◦ < βeff < 76◦ (at 95% C.L.); CP conservation inB0 decays tof0(980)K0
S

is excluded at3.5σ, including systematics. ForB0 decays toρ0(770)K0
S, the combined

confidence interval is−9◦ < βeff < 57◦ (at 95% C.L.). In decays toK∗(892)±π∓ the
measured direct CP asymmetry parameter isACP = −0.20 ± 0.10 ± 0.01 ± 0.02. The
measured phase difference between the decay amplitudes ofB0 → K∗(892)+π− andB̄0 →
K∗(892)−π+ excludes the[−132◦ : +25◦] interval (at95% C.L.). Branching fractions and
CP asymmetries are measured for all significant intermediate resonant modes.

The measurements onρ0(770)K0
S andK∗±(892)π∓ are used as inputs to a phenomeno-

logical analysis ofB → K∗π andB → ρK decays based solely onSU(2) isospin symme-
try. Adding external information on the CKM matrix, constraints on the hadronic parameter
space are set. ForB → K∗π, the preferred intervals for color-allowed electroweak penguins
are marginally compatible with theoretical expectations.The constraints on CKM parame-
ters are dominated by theoretical uncertainties. A prospective study, based on the expected
increase in precision from measurements at LHCb, and at future programs such as Super-B
or Belle-upgrade, illustrates the physics potential of this approach.
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Résumé

Une analyse en amplitudes dépendantes du temps des désintégrationsB0 → K0
Sπ

+π−

est effectuée afin de mesurer les paramètres de violation de CP des modesf0(980)K0
S et

ρ0(770)K0
S, ainsi que l’asymétrie directe de CP pourK∗(892)±π∓. Les résultats sont obtenus

à partid d’un échantillon de(383 ± 3)× 106 pairesBB̄, enregistrées par le détecteurBABAR

auprès du collisionneur asymétrique PEPII au SLAC. Deux solutions sont trouvées, avec des
figures de mérite équivalentes sur la qualité de l’ajustement. En incluant les incertitudes sys-
tématiques et provenant du modèle de Dalitz utilisé, l’intervalle de confiance combiné sur
βeff dans le modef0(980)K0

S est18◦ < βeff < 76◦ (à95% C.L.) ; la conservation de CP dans
ce mode est exclue à3.5 écarts standard. Pour le modeρ0(770)K0

S, l’intervalle de confiance
combiné est est−9◦ < βeff < 57◦ (à 95% C.L.). Pour le modeK∗(892)±π∓, le paramètre
d’asymétrie directe de CP estACP = −0.20±0.10±0.01±0.02. La mesure de la phase rela-
tive entre les amplitudes de désintégrationB0 → K∗(892)+π− et B̄0 → K∗(892)−π+ exclut
l’intervalle [−132◦ : +25◦] (à 95% C.L.). Les rapports d’embranchement et les asymétries
directes de CP sont mesurées pour tous les modes résonants intermédiaires significatifs.

Les mesures obtenues dans les modesρ0(770)K0
S etK∗±(892)π∓ sont utilisées comme

paramètres d’entrée dans une analyse phénoménologique desdésintégrationsB → K∗π et
B → ρK, basée uniquement sur la symétrie d’isospinSU(2). L’ajout d’informations ex-
térieures sur la matrice CKM permet de poser des contraintessur l’espace des paramètres
hadroniques. PourB → K∗π, les intervalles obtenus sur les pingouins électrofaiblesne
sont que marginalement en accord avec les attentes théoriques. Les contraintes sur la ma-
trice CKM sont dominées par des incertitudes d’origine théorique. Une étude de prospec-
tive, utilisant les améliorations attendues sur les mesures de ces modes à LHCb, ou dans
les programmes futurs tels que Super-B ou Belle-upgrade, permet d’illustrer le potentiel de
physique de cette approche.

Mots clés:

BABAR

violation de CP
matrice CKM


