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1.

Introduction

Les techniques de rendu en Synthèse d’Images produisent des images d’une scène virtuelle
en prenant comme point de départ la définition de cette scène : les objets qui la composent, leur
position, leurs matériaux, mais aussi la position de l’observateur.

Parmi les techniques de rendu, on distingue les techniques de rendu Photo-Réalistes, qui
cherchent à produire une image aussi proche que possible de la réalité, en simulant les échanges
lumineux à l’intérieur de la scène. On obtient ainsi une image de la scène avec les effets d’éclai-
rage, à la fois directs et indirects, les reflets, les ombres...

La recherche dans le domaine de la simulation de l’éclairage a énormément progressé au
cours des dernières années, de telle sorte que la production d’images photoréalistes est désormais
un objectif accessible pour le grand public. Plusieurs applications industrielles tirent parti de cette
génération d’images photoréalistes : visite virtuelle de bâtiments, jeux vidéo, prototypage virtuel,
effets spéciaux, design architectural...

Ces applications industrielles ont un effet d’entraînement sur la recherche : les utilisateurs
(et les industriels) sont demandeurs d’effets toujours plus réalistes, et les chercheurs sont mis
à contribution. Le décalage entre la date de publication d’un nouvel algorithme et son emploi
dans un produit industriel s’est considérablement réduit, passant de plus de 10 ans dans les
années 1990 à quelques années seulement en 2006. Non seulement ce dynamisme augmente les
possibilités d’application industrielle pour nos recherches, mais encore il ouvre de nouvelles
directions de recherche, pour combler les besoins accrus en interactivité et en réalisme des
utilisateurs.

Dans ce mémoire, nous allons nous intéresser à ces problèmes de simulation photo-réaliste de
l’éclairage. En particulier, nous allons présenter : la simulation de l’éclairage par des méthodes
d’éléments finis multi-échelles (radiosité par ondelettes), la détermination des caractéristiques
de la fonction d’éclairage (dérivées, fréquence), et la simulation en temps-réel ou interactif de
plusieurs effets lumineux (ombres, reflets spéculaires, éclairage indirect). Ces trois domaines
recouvrent l’ensemble de nos travaux pendant cette période.

– Dans le domaine de la simulation de l’éclairage par éléments finis, nous avons travaillé
sur la méthode de radiosité hiérarchique, puis sur la méthode de radiosité par ondelettes.
Nous avons montré l’efficacité de la représentation hiérarchique, mais aussi ses limites :
la hiérarchie est conditionnée par la modélisation initiale de la scène. Nous avons montré
comment s’affranchir de cette limitation. Nous avons également montré que l’extension de
la méthode de radiosité aux ondelettes d’ordre élevé imposait une modification radicale
de l’algorithme, puis comment combiner efficacement les ondelettes d’ordre élevé avec un
maillage de discontinuité.

– Un des problèmes commun à plusieurs méthodes de simulation de l’éclairage, c’est qu’il
est nécessaire d’adapter l’échantillonnage employé aux caractéristiques de la fonction
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10 CHAPITRE 1. INTRODUCTION

d’éclairage. Mais ces caractéristiques sont, par définition, inconnues au début de la si-
mulation. Nous avons montré comment calculer localement certaines caractéristiques de la
fonction d’éclairage : d’une part ses dérivées, d’autre part la fréquence de ses variations.

– Enfin, on remarque qu’une part très importante des calculs en simulation de l’éclairage
est consacrée à l’aspect visuel du résultat, plus qu’à la précision physique des calculs.
Il est possible de calculer une image physiquement acceptable d’une scène en un temps
très court, mais calculer une image visuellement réaliste de la même scène multiplie ap-
proximativement par 10 le temps de calcul. Cette règle expérimentale vaut pour plusieurs
algorithmes de simulation, comme la radiosité ou le photon mapping. Mais le réalisme
visuel n’est, par définition, nécessaire que pour la partie visible de la scène. Nous avons
développé plusieurs algorithmes qui permettent de calculer en temps réel certains effets
essentiels pour le réalisme visuel (ombres, reflets spéculaires). En combinant ce calcul
temps-réel avec un calcul séparé des effets d’éclairage indirect, notre but est d’obtenir une
simulation en temps-réel de l’éclairage global dans une scène dynamique.

1.1 Structure du mémoire
Nous avons rédigé trois principaux chapitres, couvrant les travaux de chaque thème. Après

chaque chapitre en français se trouvent les articles eux-mêmes, donnant le détail des travaux.
Nous présentons ensuite les conclusions et quelques perspectives pour l’avenir.

Les travaux décrits dans ce mémoire ont tous été réalisés en collaboration avec des collègues
ou dans le cadre des stages de DEA ou des thèses que j’ai co-dirigés. Les noms de mes collabo-
rateurs sont cités dans les endroits appropriés.



2.

Modélisation multi-échelles de l’éclairage

Les techniques de radiosité hiérarchiques ou par ondelettes utilisent une représentation multi-
échelle de l’éclairage. Cette représentation hiérarchique permet d’accélérer les calculs. Cepen-
dant, la représentation hiérarchique est basée sur le modèle géométrique de la scène ; l’influence
de ce modèle géométrique peut ralentir la simulation et en diminuer la qualité. Nous présentons
deux méthodes pour s’affranchir du modèle géométrique original. Nous présentons également
une analyse de l’algorithme de radiosité par ondelettes. L’emploi de fonctions de base hiérar-
chiques d’ordre 2 ou 3, par opposition aux fonctions de base constantes par morceaux, impose
d’adapter l’algorithme pour tenir compte des coûts proportionnels à l’ordre des fonctions de base
élevé puissance n. Nous montrons qu’avec une adaptation fine de chacune des étapes de l’algo-
rithme, ces ondelettes d’ordre élevé permettent de réduire la complexité et d’accélérer les calculs.

2.1 La méthode de radiosité hiérarchique
Dans les techniques de simulation de l’éclairage, on cherche à calculer l’aspect d’une scène

donnée pour un observateur virtuel. La scène étant définie par sa géométrie, les matériaux et les
caractéristiques (position, émission) des sources lumineuses, le calcul de l’éclairage revient à
résoudre l’équation de l’éclairage1 :

L(x, θ0, φ0) = Le(x, θ0, φ0) +
∫

Ω

ρbd(x, θ0, φ0, θ, φ)Li(x, θ, φ) cos θ dω (2.1)

La radiance en un point x dans la direction (θ0, φ0) est simplement la somme de la radiance
émise en propre (Le) et de la radiance réfléchie en ce point. Il existe plusieurs méthodes de ré-
solution de cette équation (lancer de rayon, radiosité, Monte-Carlo, photon mapping) ; parmi ces
méthodes, la méthode de radiosité2 résout l’équation 2.1 en simplifiant le problème (en supposant
toutes les surfaces diffuses), puis en discrétisant l’équation obtenue. On aboutit à une équation
matricielle :

B = E + MB (2.2)

dont la complexité est en O(n2) par rapport à la discrétisation de la scène. Comme les surfaces de
la scène sont diffuses, le résultat obtenu est indépendant du point de vue, ce qui permet ensuite
de se déplacer dans la scène en temps-réel (voir figures 2.1 et 2.2).

1. James T. K. « The Rendering Equation ». Computer Graphics (ACM SIGGRAPH ’86 Proceedings), 20(4):143–
150, août 1986.

2. Cindy M. G, Kenneth E. T, Donald P. G et Bennett B. « Modelling the Interaction of
Light Between Diffuse Surfaces ». Computer Graphics (ACM SIGGRAPH ’84 Proceedings), 18(3):212–222, juillet
1984.
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12 CHAPITRE 2. MODÉLISATION MULTI-ÉCHELLES DE L’ÉCLAIRAGE

(a) Tholos, Delphe (b) Place Stanislas, Nancy

Figure 2.1 – Images de modèles architecturaux calculées avec la méthode de radiosité. Les mo-
dèles ont été fournis par l’École d’Architecture de Nancy.

(a) (b)

Figure 2.2 – Images du modèle du Soda Hall calculées avec la méthode de radiosité. Le modèle
du Soda Hall a été fourni par Carlo Sequin.

La matrice M contient les coefficients de transfert d’énergie lumineuse entre les différentes
facettes de la discrétisation de la scène. On résout l’équation 2.2 de façon itérative :

B = (I − M)−1E =
∞
∑

k=0

Mk E (2.3)

La taille de la matrice M est n2, où n est le nombre de facettes issues de la discrétisation de la
scène. Cette taille rend difficile son stockage en mémoire pour de scènes complexes. On utilise
alors une résolution partielle, qui repose à chaque étape, sur le calcul soit d’une ligne, soit d’une
colonne de la matrice (voir figure 2.3) :

– le calcul basé sur une ligne revient à mettre à jour la radiosité d’une facette en fonction de
la radiosité de toutes les autres facettes de la scène (gathering).

– le calcul basé sur une colonne revient à mettre à jour la radiosité de toutes les facettes de
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(b) Gathering

Figure 2.3 – Gathering et Shooting : utilisation d’une ligne ou d’une colonne de la matrice de
transport, M.

la scène en fonction de la radiosité d’une seule facette (shooting).
Dans la radiosité classique, le shooting permet d’obtenir des images exploitables plus rapide-
ment : l’éclairage direct est obtenu dès les premières étapes, et la partie la plus importante de
l’éclairage indirect est obtenue ensuite. En revanche, le temps nécessaire pour obtenir la solution
après convergence est identique dans les deux méthodes.

2.2 Analyse de l’algorithme de radiosité hiérarchique
L’algorithme de radiosité hiérarchique3, 4 utilise une représentation multi-échelle de la ra-

diosité sur chacune des surfaces composant la scène, ce qui permet de réduire la complexité de
l’algorithme à O(n log n). Sur chacun des objets composant la scène, on établit une hiérarchie de
facettes, représentant la radiosité à différents niveaux de précision. Les interactions ou transferts
d’énergie entre objets peuvent ensuite être établis entre les différents niveaux des hiérarchies ;
ainsi, pour deux objets éloignés l’un de l’autre (et donc échangeant peu d’énergie), on placera
une interaction entre les représentations de haut niveau des deux hiérarchies. En revanche, pour
deux objets proches et échangeant beaucoup d’énergie, on fera établira les interactions entre des
représentations précises de l’éclairage sur chaque objet.

On peut dire que la méthode correspond à stocker l’opérateur de transport M sous forme de
blocs.

L’algorithme de radiosité hiérarchique calcule le transfert d’énergie lumineuse de façon ité-
rative en plusieurs étapes :

– raffiner la représentation de l’opérateur de transfert M, pour tenir compte de la radiosité
existante dans la scène. Cette étape utilise un oracle de raffinement pour déterminer les
interactions qui ne sont pas modélisées avec une précision suffisante.

– utiliser l’opérateur M pour transférer l’énergie entre les différents objets de la scène.

3. Pat H, David S et Larry A. « A Rapid Hierarchical Radiosity Algorithm ». Computer Gra-
phics (ACM SIGGRAPH ’91 Proceedings), 25(4):197–206, juillet 1991.

4. Pat H et David S. « A Rapid Hierarchical Radiosity Algorithm for Unoccluded Environments ».
Dans Photorealism in Computer Graphics (Eurographics Workshop on Photosimulation, Realism and Physics in
Computer Graphics), p. 151–171, juin 1992.
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– propager l’énergie reçue par les différents niveaux hiérarchiques de chaque objet dans l’en-
semble de la hiérarchie (push-pull).

La méthode de radiosité hiérarchique modifie en profondeur l’algorithme de radiosité : à
chaque étape, on a une représentation complète de l’opérateur de transport, et on peut donc cal-
culer un transfert de radiosité dans toute la scène en une seule étape.

Dans une étape de propagation, il est plus facile d’utiliser du gathering que du shooting :
avant qu’une surface puisse envoyer son énergie dans la scène, il est nécessaire d’effectuer une
étape de push-pull. Le shooting impose ainsi un trop grand nombre d’étapes de push-pull, ce
qui le rend moins efficace que le gathering. Expérimentalement, nous avons aussi trouvé que la
méthode de shooting est plus sensible à l’imprécision sur les calculs des coefficients de transfert,
et divergeait avec les méthodes imprécises de calcul de ces coefficients utilisées à l’époque.

Nous avons effectué une étude en profondeur de l’algorithme de radiosité hiérarchique [16]
(voir p. 26). Cette étude a montré deux choses importantes :

– la plus grande partie du temps de calcul est passé dans les tests de visibilité (plus de 80 %
dans une scène complexe). Les autres étapes de l’algorithme ont une influence relativement
modeste;

– la méthode construit une hiérarchie sur chacun des objets de haut niveau composant la
scène . On établit d’abord un lien entre chacune de ces hiérarchies (initial linking), puis
on raffine ces liens. La méthode a ainsi une complexité réduite par rapport au nombre
de facettes générées lors du raffinement, mais reste quadratique par rapport au nombre
d’objets de haut niveau composant la scène.

En nous basant sur cette étude, nous avons proposé une méthode de lazy linking, qui réduit le
temps de calcul d’un facteur 2, et permet d’obtenir les premières images plus rapidement. Nous
avons également proposé un nouvel oracle de raffinement, qui évite des raffinements inutiles, et
permet de gagner encore un facteur 2 sur le temps de calcul.

2.3 Efficacité de la hiérarchie
La méthode de lazy linking que nous avons proposé permet seulement de diminuer l’influence

de l’étape de création des liens entre surfaces de haut niveau, mais elle ne supprime pas complè-
tement cette étape, dont la complexité reste quadratique. Plusieurs méthodes ont été proposées
pour réduire encore la complexité, comme le clustering5 ou le face-clustering6.

Une des difficultés provient de l’étape de push-pull, qui dépend des formes relatives entre les
nœuds parents et enfants de la hiérarchie. Les calculs de l’étape de push-pull sont simplifiés si la
hiérarchie est régulière, c’est-à-dire si à chaque niveau de la hiérarchie les formes et les positions
des nœuds fils par rapport aux ascendants sont identiques. Une hiérarchie régulière impose que
les surfaces de haut niveau qui sont soit triangulaires, soit parallélogrammes.

Cependant, dans une grande partie des scènes utilisées pour la simulation de l’éclairage, les
surfaces de départ n’ont pas une forme régulière (voir figure 2.4). Avant de lancer les calculs de
radiosité, il est alors nécessaire de les trianguler, mais cette triangulation augmente artificielle-
ment le nombre de surfaces de haut niveau dans la scène. En outre les triangles résultants de la
triangulation influencent négativement les calculs : ils ont souvent des formes très allongées, ce
qui diminue la qualité de la simulation (voir figure 2.5) et l’influence de la hiérarchie. Enfin, des
discontinuités peuvent apparaître entre les triangles.

5. Francois S. « Clustering and Volume Scattering for Hierarchical Radiosity Calculations ». Dans Rendering
Techniques ’95 (Eurographics Workshop on Rendering), p. 105–117, juin 1994.

6. A. W, P. H et M. G. « Face Cluster Radiosity ». Dans Rendering Techniques ’99 (Eurogra-
phics Workshop on Rendering), p. 293–304, 1999.
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(a) Détail de la figure 2.1(b) (b) Triangulé : 32 tri-
angles

(c) Non-triangulé : une
seule surface

Figure 2.4 – Les modèles contiennent des surfaces planes complexes, qui sont triangulées exces-
sivement.

(a) Triangulé (b) Non-triangulé (notre algorithme)

Figure 2.5 – Calcul de radiosité sur des surfaces planes quelconques.
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Figure 2.6 – La fonction de radiosité est définie sur un domaine plan étendu, plus simple que la
surface originale.

En collaboration avec le doctorant François Cuny (co-encadré par Jean-Claude Paul et
Laurent Alonso), nous avons proposé une méthode qui permet les calculs de radiosité hié-
rarchique sur des surfaces planes de forme quelconque, y compris les surfaces concaves ou
trouées [14] (voir p. 42). Cette méthode repose sur une extension de la surface plane originale à
une surface plus simple, qui la contient, et sur laquelle il est possible de construire une hiérarchie
régulière (voir figure 2.6). La radiosité doit être définie de façon continue sur la surface étendue,
tout en étant égale à la radiosité sur la surface de départ.

Notre algorithme permet naturellement de diminuer le nombre de surfaces initiales dans la
scène, et ainsi de diminuer le coût mémoire de l’algorithme et le coût de l’étape d’initial linking,
et ces points ont été confirmés par nos expériences. De façon plus surprenante, nous avons trouvé
que notre algorithme accélère la convergence de l’algorithme de radiosité hiérarchique (voir fi-
gure 2.7) : le pourcentage d’énergie restant à propager dans la scène diminue plus rapidement. Ce
résultat montre que la hiérarchie régulière employée approxime de façon plus efficace la radiosité
sur la surface que la hiérarchie basée sur la triangulation des surface.

Ces résultats ont été étendus par la suite au cas des surfaces courbes paramétriques7, puis des
maillages polygonaux paramétrés8.

2.4 Ondelettes d’ordre élevé
La méthode de radiosité hiérarchique repose sur une représentation multi-échelle de l’éclai-

rage. Cette représentation a été par la suite formalisée et étendue à des fonctions d’ondelettes
quelconques9. En théorie, ces recherches ouvraient la voie à des fonctions de base d’ordre plus
élevé, par exemple linéaires ou quadratiques par morceaux, au lieu de constantes par morceaux.

En pratique, l’utilisation d’ondelettes d’ordre élevé modifie l’équilibre de l’algorithme. Le

7. Laurent A, François C, Sylvain P, Jean-Claude P, Sylvain L et Eric W. « The Virtual
Mesh: A Geometric Abstraction for Efficiently Computing Radiosity ». ACM Transactions on Graphics, 20(3):169–
201, juillet 2001.

8. Gregory L, Bruno L, Laurent A et Jean-Claude P. « Master-Element Vector Irradiance for Large
Tesselated Models ». Dans Third International Conference on Computer Graphics and Interactive Techniques in
Australasia and South East Asia (GRAPHITE ’05), p. 315–322, 463, novembre 2005.

9. Steven J. G, Peter S, Michael F. C et Pat H. « Wavelet Radiosity ». Dans ACM SIG-
GRAPH ’93, p. 221–230, 1993.
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(c) Soda Hall (figure 2.2)

Figure 2.7 – Taux de convergence (rapport énergie restant à propager sur énergie initiale) en
fonction du temps de calcul (en secondes)

coût de stockage des coefficients attachés à des ondelettes d’ordre n est de (n + 1)k, où k est la
dimension de la fonction échantillonnée. Ainsi, le coût lié au stockage de chaque facette de la
hiérarchie évolue comme (n + 1)2, et le coût de stockage de chaque interaction évolue comme
(n + 1)4. L’emploi d’ondelettes d’ordre 2 (quadratiques par morceaux) augmente donc le coût de
stockage de chaque interaction de deux ordres de grandeur.

Pour cette raison, une étude expérimentale10 a montré que les ondelettes d’ordre élevé n’ap-
portaient pas d’amélioration significative par rapport aux ondelettes de Haar (constantes par
morceaux). Cette étude était basée sur une implémentation naïve de l’algorithme de radiosité
par ondelettes, en modifiant simplement la fonction de base. Avec le doctorant François Cuny
(co-encadré par Jean-Claude Paul et Laurent Alonso), nous avons montré qu’il était nécessaire
d’adapter chacune des étapes de l’algorithme aux spécificités introduites par les fonctions de base
d’ordre élevé [8] (p. 56). Il était également nécessaire de réfléchir aux conséquences de chaque
adaptation sur les autres étapes de l’algorithme ; ainsi, la décision de ne pas stocker les liens a eu
une influence sur le choix de l’algorithme de résolution.

10. Andrew W et Paul H. « An Empirical Comparison of Progressive and Wavelet Radiosity ». Dans
Rendering Techniques ’97 (Eurographics Workshop on Rendering), p. 175–186, 1997.
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2.4.1 Améliorations de l’algorithme
Nous avons proposé les modifications suivantes à l’algorithme de radiosité par ondelettes :
– Le coût lié au stockage des interactions étant prohibitif (16 ou 81 fois plus élevé qu’avec

des fonctions constantes par morceaux), nous avons abandonné le principe de stockage des
liens. Il était devenu plus intéressant de recalculer les liens à chaque itération que de les
stocker en mémoire.

– Une conséquence de ce choix est qu’il devenait à nouveau plus intéressant d’utiliser du
shooting pour la propagation de l’énergie. Avec le shooting, la distribution d’énergie pro-
pagée dans la scène varie à chaque étape, ce qui signifie que la distribution optimale des
liens varie à chaque itération. Il n’est donc pas pénalisant de les recalculer, au contraire.

– Nous avons augmenté la précision du calcul des coefficients de transfert pour chaque ité-
ration. En particulier, nous avons multiplié les tests de visibilité pour les interactions entre
facettes partiellement visibles. Nous avons trouvé que l’augmentation du temps de calcul
lié à ces tests supplémentaires était plus que compensée par l’augmentation de la qualité
du résultat.

– Nous avons également utilisé un oracle de raffinement11 qui tenait compte de la nature
linéaire ou quadratique de la fonction d’éclairage en cours de calcul pour guider le raffine-
ment. On ne raffine une interaction que si la fonction d’éclairage sur le récepteur s’écarte
significativement de la représentation fournie par les fonctions de base.

Avec ces modifications, nous avons montré que les ondelettes d’ordre élevé permettaient
d’obtenir un résultat de meilleure qualité et plus rapidement que les ondelettes de Haar. Chaque
nœud de la hiérarchie a un coût de stockage plus élevé (4 ou 9 fois plus élevé selon le degré
des ondelettes utilisées), mais la réduction du nombre de nœuds dans la hiérarchie compense ce
surcoût.

La figure 2.8 montre le coût en mémoire de la modélisation de l’éclairage, en fonction de
l’erreur commise dans la simulation, pour deux scènes de test. On voit que pour une simulation
de mauvaise qualité (erreur ≈ 0.1), les ondelettes de Haar fournissent une approximation plus
compacte en mémoire, mais que plus la qualité de la simulation augmente et plus les ondelettes
d’ordre élevé sont avantagées. Pour chaque base d’ondelettes étudiées, il existe un niveau de
qualité où elle est meilleure que les autres bases.

Le niveau de qualité correspondant à une simulation acceptable visuellement correspond (ex-
périmentalement) à une erreur ≈ 5 × 10−3, c’est-à-dire à l’intersection des courbesM2 etM3.

Nous avons également représenté l’erreur commise dans la simulation de l’éclairage, en fonc-
tion du temps de calcul, pour les trois bases d’ondelettes (voir figure 2.9). On voit que l’erreur
commise diminue en fonction du temps de calcul, pour les trois bases. Pour chaque base d’onde-
lettes, il existe un niveau de qualité pour lequel elle fournit un résultat plus rapidement que les
autres bases.

Si on analyse ces résultats, on voit que lorsqu’on raffine peu par rapport au modèle de départ,
les ondelettes constantes sont avantagées, ce qui est normal : leur coût par objet est moins élevé
que les autres bases. En revanche, plus on raffine, plus les fonctions de base d’ordre élevé per-
mettent une modélisation plus précise et plus compacte de la radiosité. Sur ce point, nos travaux
se complètent naturellement avec nos travaux sur la simplification de la scène (voir section 2.3
et [14]), dans la mesure où sur un modèle où les surfaces sont triangulées, le raffinement est
moins efficace.

Comme conséquence inattendue, mais intéressante, de nos travaux, nous avons trouvé que
notre implémentation donnait directement une fonction de radiosité continue (voir figure 2.10),
sans qu’il soit nécessaire d’effectuer un post-traitement (contrairement à toutes les implémenta-

11. Philippe B et Yves W. « Error Control for Radiosity ». Dans Rendering Techniques ’96 (Eurographics
Workshop on Rendering), p. 153–164, 1996.
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Figure 2.8 – Coût mémoire (en Ko) pour les différentes fonctions de base, en fonction de l’erreur
sur la simulation.
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Figure 2.9 – Erreur commise sur la simulation en fonction du temps de calcul (en s).

(a) Haar (b)M 2 (c)M 3

Figure 2.10 – Comparaison entre les ondelettes de Haar (constantes),M2 (linéaires) etM3 (qua-
dratiques), pour le même temps de calcul.
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Figure 2.11 – Lissage a posteriori des ondelettes de Haar. On peut comparer la qualité avec la
figure 2.10.

tions précédentes). La qualité de la fonction que nous obtenons avec des ondelettes linéaires ou
quadriques sans post-traitement est supérieure à celle obtenue avec des ondelettes constantes par
morceaux et un post-traitement (voir figure 2.11)

2.4.2 Maillage de discontinuités et ondelettes d’ordre élevé
Dans la simulation de l’éclairage, on rencontre fréquemment des discontinuités de la fonction

d’éclairage ou de sa dérivée. Ces discontinuités sont par exemple liées au contact entre objets,
ou bien aux ombres dures causées par des sources ponctuelles. Les discontinuités de la dérivée,
elles, sont liées aux frontières d’ombre et de pénombre causées par des sources étendues.

Un échantillonnage par mailles régulières, comme celui produit par la radiosité par onde-
lettes, ne permet évidemment pas de modéliser ces discontinuités. Pour chaque discontinuité de
la radiosité, l’oracle de raffinement est conduit à subdiviser indéfiniment, jusqu’à atteindre un
seuil sur la taille de la facette. Avec des ondelettesM2 etM2, chaque maille a un coût plus élevé
qu’avec des ondelettes constantes. Le raffinement effectué sur les discontinuités vient contreba-
lancer les gains obtenus par ailleurs.

Plusieurs travaux ont montré que dans le cas de la radiosité classique, un maillage adapté
aux discontinuités fournit les meilleurs résultats en terme de qualité12, 13, 14. Ces travaux ont été
étendus au cas de la radiosité hiérarchique15, 16, 17. Toutes ces approches commencent par calculer
l’ensemble des discontinuités, par des méthodes géométriques, puis triangulent cet ensemble, et
construisent enfin le maillage hiérarchique en se basant sur la triangulation.

Cette méthode a plusieurs défauts : le nombre de discontinuités des dérivées est élevé, donc
le maillage généré est très complexe, et cette complexité ralentit la simulation. Certaines des dis-

12. Daniel L, Filippo T et Donald P. G. « Discontinuity Meshing for Accurate Radiosity ».
IEEE Computer Graphics and Applications, 12(6):25–39, novembre 1992.

13. Paul H. « Discontinuity Meshing for Radiosity ». Dans Eurographics Workshop on Rendering, p. 203–226,
mai 1992.

14. George D et Eugene F. « A Fast Shadow Algorithm for Area Light Sources Using Backprojection ».
Dans ACM SIGGRAPH ’94, p. 223–230, 1994.

15. Daniel L, Filippo T et Donald P. G. « Combining Hierarchical Radiosity and Discontinuity
Meshing ». Dans ACM SIGGRAPH ’93, p. 199–208, 1993.

16. George D et Francois S. « Accurate Visibility and Meshing Calculations for Hierarchical Radiosity
». Dans Rendering Techniques ’96 (Eurographics Workshop on Rendering), p. 269–278, 1996.

17. Fredo D, George D et Claude P. « Fast and Accurate Hierarchical Radiosity Using Global Visi-
bility ». ACM Transactions on Graphics, 18(2):128–170, 1999.
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continuités calculées n’ont par ailleurs pas d’effets visibles sur la simulation14. Enfin, le maillage
généré est incompatible avec l’approche par ondelettes, qui nécessite une hiérarchie régulière.

(a) (b) (c)

Figure 2.12 – Une maille coupée par une discontinuité est (a) décomposée en deux mailles. Pour
chacune des mailles, nous identifions le parallélogramme englobant (b). Sur chaque parallélo-
gramme, nous conduisons un algorithme de radiosité par ondelettes classique.

Nous avons développé un algorithme qui combine les ondelettes d’ordre élevé avec le
maillage de discontinuité [13] (voir p. 68). Notre algorithme utilise les ondelettes d’ordre élevé
autant que possible, et n’introduit les discontinuités dans le maillage que si l’oracle de raffinement
établit qu’elles permettront d’en réduire la complexité. Nous avons trouvé qu’il n’est nécessaire
d’introduire dans le maillage qu’un petit nombre de discontinuités seulement (voir figure 2.13).
Les autres discontinuités sont approximées de façon correcte par les fonctions de base linéaires
ou quadratiques.

Notre travail est basé sur les travaux précédents sur la radiosité sur des surfaces planes quel-
conques [14], mais en modifiant l’approche sur plusieurs points :

– Les deux côtés de la discontinuité jouent un rôle dans la simulation de l’éclairage. Il faut
donc créer deux mailles spéciales pour chaque discontinuité introduite (voir figure 2.12).

– Sur la discontinuité, il faut calculer des coefficients de push-pull particuliers, qui tiennent
compte de la proportion effective de la surface qui se trouve de chaque côté de la discon-
tinuité. Sur le reste de la hiérarchie, en amont et en aval de la discontinuité, on utilise une
subdivision régulière, avec tous ses avantages.

– Il peut y avoir intersection entre plusieurs discontinuités (les frontières d’ombre causées
par plusieurs sources lumineuses, ou encore les frontières d’ombre et de pénombre qui se
rejoignent quand l’obstacle touche le récepteur). Il faut alors traiter les discontinuités les
unes après les autres, et prévoir certains cas particuliers.

Notre approche permet une représentation très compacte de la radiosité, y compris en pré-
sence de discontinuités (voir [13] et figure 2.13). Dans les zones éclairées, les ondelettes M3

permettent d’utiliser des mailles très larges tout en fournissant une représentation continue, tan-
dis que sur les frontières d’ombre, l’emploi des discontinuités permet d’interrompre rapidement
le raffinement. Dans les zones de pénombre, nous avons montré qu’il n’est pas toujours néces-
saire d’introduire les discontinuités, et que si la transition est suffisamment douce, les ondelettes
M3 peuvent la modéliser correctement.

2.4.3 Radiosité spatio-temporelle

Avec le doctorant Cyrille Damez (encadré par François Sillion), nous nous sommes par
ailleurs intéressé au calcul de la radiosité dans un espace à 4 dimensions (3 dimensions d’espace
et une dimension de temps). En supposant connue une animation, nous voulons calculer l’éclai-
rage pour toute cette animation, en exploitant non seulement la cohérence spatiale mais aussi la
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(a) (b)

Figure 2.13 – Radiosité avec ondelettes quadriques (M3) et maillage de discontinuité, en présence
d’une source surfacique. Une partie de la zone de pénombre du fauteuil est modélisée avec des
mailles régulières, sans avoir besoin d’insérer de discontinuités. On voit aussi que des mailles
très larges suffisent pour la zone éclairée au pied du fauteuil.

cohérence temporelle de l’éclairage, par une décomposition hiérarchique portant également sur
la dimension temporelle.

Les travaux préliminaires18 souffraient d’importantes discontinuités temporelles. Ces discon-
tinuités existent également dans les dimensions spatiales dans le cas de la radiosité hiérarchique
classique, où elles sont partiellement corrigées par un post-traitement. Les discontinuités tempo-
relles sont à la fois beaucoup plus gênantes, parce qu’elles concernent l’ensemble de la scène, et
plus difficiles à traiter.

Nos travaux sur les ondelettes d’ordre élevé avaient montré que ces ondelettes génèrent di-
rectement une solution continue dans le domaine spatial. Nous avons montré qu’en introduisant
les ondelettes d’ordre élevé dans le domaine temporel [6] (p. 82), il était également possible
d’éliminer les discontinuités temporelles.

2.5 Structure de la scène
Nous avons fait plusieurs fois l’expérience de relations avec des partenaires extérieurs au

monde de la recherche : avec l’École d’Architecture de Nancy, avec la société OPTIS, avec les
entreprises innovantes Visual Information Systems (Cape Town) et VSP-Technologies (Nancy),
avec le Fraunhofer-Institut für Graphische Datenverarbeitung (Darmstadt), avec les partenaires
des projets européens ARCADE et SIMULGEN. Ces partenaires nous confiaient des scènes sur
lesquelles nous pouvions tester nos algorithmes de calcul (voir, par exemple, figure 2.1). Ces
scènes étaient, à chaque fois, fournies sous forme d’un ensemble désordonné de polygones, sans
information de connectivité ni structure interne.

Des discussions avec nos partenaires nous ont appris que la structure de la scène est, en
général, présente lors du processus de modélisation, mais qu’elle est perdue dans les multiples
transferts de fichiers. Cette disparition peut se produire même entre les différents services d’une
même entreprise.

18. C. D et F. S. « Space-Time Hierarchical Radiosity ». Dans Rendering Techniques ’99 (Eurographics
Workshop on Rendering), p. 235–246, 1999.
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D’un autre côté, nos propres travaux et ceux d’autres chercheurs ont montré que la connais-
sance de la structure de la scène sous-jacente permet une meilleure qualité dans la simulation de
l’éclairage, par exemple en remplaçant un ensemble de triangles déconnectés par un seul poly-
gone plan [14], ou bien en remplaçant un ensemble de polygones par une surface paramétrée7, ou
encore en exploitant la structure de la scène pour construire une hiérarchie efficace pour le lancer
de rayons, le clustering ou l’instantiation.

Nous avons lancé le projet SHOW, en collaboration avec François Sillion et Cyril Soler, et
avec trois autres projets INRIA : ALICE, REVES et IPARLA. L’objectif du projet SHOW est
de reconstruire la structure d’un grand ensemble de données désordonnées. En particulier, le
doctorant Aurélien Martinet, financé par le projet SHOW et que je co-encadre avec Cyril Soler
et François Sillion travaille sur l’extraction d’une structure de scène en partant d’un ensemble de
polygones désordonnés.

Les premiers résultats [4] (voir p. 96) ont permis l’extraction d’ensembles de triangles
connexes par arêtes, qui forment des briques de base. Nous sommes également parvenus à extraire
la liste des symétries de chaque brique de base, et à identifier les briques identiques, même si leur
tesselation diffère. Des travaux ultérieurs19 permettent l’identification rapide d’objets identiques
dans la scène, où les objets sont formés par assemblage de briques de base.

2.6 Discussion
Dans ce chapitre, nous avons présenté nos travaux dans le domaine de la radiosité par onde-

lettes. Nos contributions portent sur des améliorations de l’algorithme : faire porter la hiérarchie
sur l’ensemble de la scène, adapter la méthode aux ondelettes d’ordre élevé, combiner ondelettes
d’ordre élevé et maillage de discontinuité.

Ces améliorations sont importantes, voire essentielles pour toute application pratique de la
méthode de radiosité. Combinées, elles permettent une représentation optimale — compacte —
de l’éclairage diffus dans une scène. Mais ces travaux ont leurs propres limitations :

– on ne calcule que l’éclairage diffus, or les fonctions de réflectance complexes jouent un
rôle important dans le réalisme de la scène ;

– on manque d’informations a priori sur le comportement de la fonction d’éclairage, ce qui
ne permet pas d’adapter l’échantillonnage aux variations de la fonction ;

– une part très importante du temps de calcul est consacrée au calcul des frontières d’ombre
et de pénombre dans l’éclairage direct, alors que ces frontières ne jouent qu’un rôle mineur
dans le calcul de l’éclairage indirect.

Ces différents points sont partiellement liés. Ainsi, introduire des fonctions de réflectance qui
ne sont ni diffuses, ni spéculaires impose d’échantillonner à la fois dans le domaine spatial et
dans le domaine angulaire, augmentant ainsi la dimensionnalité du problème et le coût mémoire
de l’algorithme. Une connaissance a priori des variations de la fonction d’éclairage permettrait
d’adapter l’échantillonnage (spatial et angulaire) à ces variations, et ainsi de contrôler le coût
mémoire de l’algorithme. Le prochain chapitre est consacré à l’extraction des propriétés de la
fonction d’éclairage.

Le troisième point est commun à d’autres algorithmes de simulation de l’éclairage : une
grande part du temps de calcul est consacrée à des effets qui sont importants pour l’aspect visuel
de l’image calculée (frontières d’ombre, réflexions spéculaires) mais qui sont sans intérêt pour

7. Laurent A, François C, Sylvain P, Jean-Claude P, Sylvain L et Eric W. « The Virtual
Mesh: A Geometric Abstraction for Efficiently Computing Radiosity ». ACM Transactions on Graphics, 20(3):169–
201, juillet 2001.

19. Aurélien M. « Structuration automatique de scènes 3D ». Thèse, Université Joseph Fourier, 2006.
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les calculs d’éclairage indirect. Cette disproportion impose de réfléchir à ce qu’on simule, et
d’étudier les moyens de calculer séparément certains effets. C’est l’objet du chapitre 4.
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2.7 Articles
2.7.1 Liste des articles

– An efficient progressive refinement strategy for hierarchical radiosity (EGWR ’94)
– Wavelet Radiosity on Arbitrary planar surfaces (EGWR 2000)
– A novel approach makes higher order wavelets really efficient for radiosity (EG 2000)
– Combining higher-order wavelets and discontinuity meshing: a compact representation for

radiosity (EGSR 2004)
– Space-time hierarchical radiosity with clustering and higher-order wavelets (CGF 2004)
– Accurate detection of symmetries in 3D shapes (TOG 2006)
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2.7.2 An efficient progressive refinement strategy for hierarchical radiosity (EGWR ’94)
Auteurs : Nicolas H, François S et George D
Conférence : 5eEurographics Workshop on Rendering, Darmstadt, Allemagne.
Date : juin 1994



An E�cient Progressive Re�nement Strategy for

Hierarchical Radiosity

Nicolas Holzschuch, Fran�cois Sillion, George Drettakis

iMAGIS / IMAG ?

A detailed study of the performance of hierarchical radiosity is presented,
which con�rms that visibility computation is the most expensive operation.
Based on the analysis of the algorithm's behavior, two improvements are sug-
gested. Lazy evaluation of the top-level links suppresses most of the initial linking
cost, and is consistent with a progressive re�nement strategy. In addition, the
reduction of the number of links for mutually visible areas is made possible by
the use of an improved subdivision criterion. Results show that initial linking
can be avoided and the number of links signi�cantly reduced without noticeable
image degradation, making useful images available more quickly.

1 Introduction

The radiosity method for the simulation of energy exchanges has been used to
produce some of the most realistic synthetic images to date. In particular, its
ability to render global illumination e�ects makes it the technique of choice for
simulating the illumination of indoor spaces. Since it is based on the subdivision
of surfaces using a mesh and on the calculation of the energy transfers between
mesh elements pairs, the basic radiosity method is inherently a costly algorithm,
requiring a quadratic number of form factors to be computed.

Recent research has focused on reducing the complexity of the radiosity simu-
lation process. Progressive re�nement has been proposed as a possible avenue [1],
whereby form factors are only computed when needed to evaluate the energy
transfers from a given surface, and surfaces are processed in order of importance
with respect to the overall balance of energy. The most signi�cant advance in
recent years was probably the introduction of hierarchical algorithms, which
attempt to establish energy transfers between mesh elements of varying size,
thus reducing the subdivision of surfaces and the total number of form factors
computed [4, 5].

Since hierarchical algorithms proceed in a top-down manner, by limiting the
subdivision of input surfaces to what is necessary, they �rst have to establish a
number of top-level links between input surfaces in an \initial linking" stage. This

? iMAGIS is a joint research project of CNRS/INRIA/UJF/INPG. Postal address:

B.P. 53, F-38041 Grenoble Cedex 9, France. E-mail: Nicolas.Holzschuch@imag.fr.
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2 Nicolas Holzschuch, Fran�cois Sillion, George Drettakis

results in a quadratic cost with respect to the number of input surfaces, which
seriously impairs the ability of hierarchical radiosity systems to deal with envi-
ronments of even moderate complexity. Thus a reformulation of the algorithm
is necessary in order to be able to simulate meaningful architectural spaces of
medium complexity (several thousands of input surfaces). To this end the ques-
tions that must be addressed are: What energy transfers are signi�cant? When
must they be computed? How can their accuracy be controlled?

The goal of the research presented here is to extend the hierarchical algorithm
into a more progressive algorithm,by identifying the calculation components that
can be delayed or removed altogether, and establishing improved re�nement
criteria to avoid unnecessary subdivision. Careful analysis of the performance
of the hierarchical algorithm on a variety of scenes shows that the visibility
calculations dominate the overall compute time.

Two main avenues are explored to reduce the cost of visibility calculations:
First, the cost of initial linking is reduced by delaying the creation of the links
between top-level surfaces until they are potentially signi�cant. In a BF re�ne-
ment scheme this means for instance that no link is established between dark
surfaces. In addition, a form factor between surfaces can be so small that it is
not worth performing the visibility calculation.

Second, experimental studies show that subdivision is often too high. This is
a consequence of the assumption that the error on the form factor is of magni-
tude comparable to the form factor itself. In situations of full visibility between
surfaces, relatively large form factors can be computed with good accuracy.

2 Motivation

To study the behaviour of the hierarchical algorithm, we ran the original hierar-
chical program [5] on a set of �ve di�erent interior environments, varying from
scenes with simple to moderate complexity (from 140 to 2355 input polygons).
The scenes we used were built in di�erent research e�orts and have markedly
di�erent overall geometric properties. By using these di�erent scenes, we hope
to identify general properties of interior environments. We thus hope to avoid,
or at least moderate, the pitfall of unjusti�ed generalisation that oftens results
from the use of a single scene or a class of scenes with similar properties to char-
acterise algorithm behaviour. The scenes are: \Full o�ce", which is the original
scene used in [5], \Dining room", which is \Scene 7" of the standard set of scenes
distributed for this workshop, \East room" and \West room", which are scenes
containing moderately complex desk and chair models, and �nally \Hevea", a
model of a hevea tree in a room. Table 1 gives a short description and the num-
ber of polygons n for each scene. Please refer to colour section (Figs. 1, 3, 5 and
9-12) for a computed view of the test scenes.

2.1 Visibility

The �rst important observation we make from running the algorithm on these
test scenes is the quanti�cation of the cost of visibility calculations in the hier-
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Progressive Re�nement Strategy for Hierarchical Radiosity 3

Table 1. Description of the �ve test scenes.

Name n Description

Full O�ce 170 The original o�ce scene

Dining room 402 A table and four chairs

East room 1006 Two desks, six chairs

West room 1647 Four desks, ten chairs

Hevea 2355 An hevea tree with three light sources

archical algorithm. As postulated in previous work [9, 6], visibility computation
represents a signi�cant proportion of the overall computation time. In the graph
shown in Fig. 1, the percentages of the computation time spent in each of the
�ve main components of the hierarchical algorithm are presented. \Push-pull"
signi�es the time spent traversing the quadtree structure associated with each
polygon, \Visibility" is the time spent performing visibility calculations, both
for the initial linking step and subsequent re�nement, \Form Factors" is the
time spent performing the actual unoccluded form factor approximation calcu-
lation, \Re�ne" is the time spent updating the quadtree for re�nement, and
�nally \Gather" shows the cost of transferring energy across the links created
between quadtree nodes (interior or leaves) [5]. The graph in Fig. 1 shows that

Full O�ce Dining RoomEast Room West Room Hevea
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Re�ne

Form-Factors
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Fig. 1. Relative time spent in each procedure.

visibility calculations dominate the computation in the hierarchical algorithm2.

2 In its current version, the program uses a �xed number of rays to determine the

mutual visibility between two polygons. The cost of visibility computation is thus
roughly proportional to the number of rays used. In the statistics shown here, 16 rays

were used, a relatively small number. Using more rays would increase the percentage

of time devoted to visibility tests.
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4 Nicolas Holzschuch, Fran�cois Sillion, George Drettakis

Of course this is relative to the algorithm used. A better approach, e.g. with
a pre-processing step, as in Teller et al. [9] could probably reduce the relative
importance of visibility.

2.2 Initial Linking

The second important observation concerns the actual cost of the initial linking
step. As mentioned in the introduction, this cost is at least quadratic in the
number of polygons, since each pair of input polygons has to be tested to de-
termine if a link should be established. Since this step is performed before any
transfer has commenced, it is a purely geometric visibility test, in this instance
implemented by ray-casting. The cost of this test for each polygon pair can vary
signi�cantly, depending on the nature of the scene and the type of ray-casting
acceleration structure used. In all the examples described below, a BSP tree is
used to accelerate the ray-casting process.

Table 2. Total computation time and cost of initial linking (in seconds).

Name n Total Time Initial Linking

Full o�ce 170 301 5.13

Dining room 402 4824 436

East room 1006 587 194

West room 1647 1017 476

Hevea 2355 4253 1597

Table 2 presents timing results for all test scenes. The total computation
time is given for ten steps of the multigridding method described by Hanrahan
et al [5].3.

These statistics show that the cost of initial linking grows signi�cantly with
the number of polygons in the scene. The dependence on scene structure is also
evident, since the growth in computation time between East room andWest room

is actually sublinear, while on the other hand the growth of the computation
time between West room and Hevea displays greater than cubic growth in the
number of input polygons. For all tests of more than a thousand polygons, it is
clear that the cost of initial linking becomes overwhelming. Invoking this cost at
the beginning of the illumination computation is particularly undesirable, since
a useful image cannot be displayed before its completion. Finally, we note that
recent improvements of the hierarchical radiosity method by Smits et al. [8] and
Lischinski et al. [6] have allowed signi�cant savings in re�nement time, but still

3 The k'th step of the multigridding method is typically implemented as the k'th

\bounce" of light: the �rst step performs all direct illumination, the second step all

secondary illumination, the third all tertiary illumination etc.
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Progressive Re�nement Strategy for Hierarchical Radiosity 5

rely on the original initial linking stage. Thus initial linking tends to become the
most expensive step of the algorithm4.

Another interesting observation can be made concerning the number of top-
level links (links between input polygons) for which the product BF never be-
comes greater than the re�nement threshold "

refine
over the course of the ten

re�nement steps5. Figure 2 shows the percentage of such links during the �rst
ten iterations. A remarkably high percentage of these links never becomes a can-
didate for re�nement: after 10 steps, between 65% and 95% of the links have
not been re�ned. A signi�cant number of those links probably have very little
impact on the radiosity solution.
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Fig. 2. Percentage of links for which BF does not exceed "refine.

What can be concluded from the above discussion? First, if the initial linking
step can be eliminated at the beginning of the computation, a useful solution be-
comes available much more quickly, enhancing the utility of the the hierarchical
method. Second, if the top-level links are only computed when they contribute
signi�cantly to the solution, there is the potential for large computational savings
from eliminating a large number of visibility tests.

2.3 Unnecessary Re�nement

The third important observation made when using the hierarchical algorithm
is that unnecessary subdivision is incurred, especially for areas which do not
include shadow boundaries. This observation is more di�cult to quantify than
the previous two. To demonstrate the problem we present an image of the Dining
room scene, and the corresponding mesh (see colour section, Fig. 1 and 2). The
simulation parameters were "

refine
= 0:5 and MinArea = 0:001.

As can be seen in Fig. 2 in the colour section, the subdivision obtained
with these parameters is such that acceptable representation of the shadows

4 For example Lischinski et al. report a re�nement time of 16 minutes for an initial

linking time of 2 hours and 16 minutes.
5 This is the " used in the original formulation.
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is achieved in the penumbral areas caused by the table and chairs. However, the
subdivision on the walls is far higher than necessary: the illumination over the
wall varies very smoothly and could thus be represented with a much coarser
mesh. In previous work it was already noted that radiance functions in regions
of full illumination can be accurately represented using a simple mesh based on
the structure of illumination [2].

If this unnecessary subdivision is avoided, signi�cant gains can be achieved
since the total number of links will be reduced, saving memory, and since an
attendant reduction of visibility tests will result, saving computation time.

3 Lazy Evaluation of the Top-level Interactions

In this section a modi�cation of the hierarchical algorithm is proposed, which
defers the creation of links between top-level surfaces until such a link is deemed
necessary. The basic idea is to avoid performing any computation that does not
have a sizable impact on the �nal solution, in order to concentrate on the most
important energy transfers. Thus it is similar to the rationale behind progressive
re�nement algorithms. At the same time it remains consistent with the hierarchi-
cal re�nement paradigm, whereby computation is only performed to the extent
required by the desired accuracy.

To accomplish this, a criterion must be de�ned to decide whether a pair of
surfaces should be linked. In our implementation we use a speci�c threshold
"
link

on the product BF. Top-level links are then created lazily, only once the
linking criterion is met during the course of the simulation.

3.1 Description of the Algorithm

In the original hierarchical radiosity algorithm, two polygons are either mutually
invisible, and thus do not interact, or at least partially visible from each other
and thus exchange energy. We introduce a second quali�cation, whereby a pair
of polygons is either classi�ed or unclassi�ed. A pair will be marked classi�ed

when some information is available regarding its interaction. Initially, all pairs
of polygons are marked as unclassi�ed.

At each iteration, all unclassi�ed pairs of polygon are considered: First their
radiosity is compared to "

link
. If they are bright enough, we check (in constant

time) if they are at least partially facing each other. If not, the pair is marked
as classi�ed and no link is created. If they are facing, we compute an approxi-
mation of their form factor, without a visibility test. If the product of the form
factors and the radiosity is still larger than "

link
, we mark the pair of polygons as

classi�ed, and compute the visibility of the polygons. If they are visible, a link
is created using the form factors and visibility already computed. Thus a pair
of polygons can become classi�ed either when a link is created, or when the two
polygons are determined to be invisible. Figure 3 shows a pseudo-code listing of
both the Initial Linking phase and the Main Loop in the original algorithm [5]
and Fig. 4 gives the equivalent listing in our algorithm.
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Progressive Re�nement Strategy for Hierarchical Radiosity 7

Initial Linking

for each pair of polygons (p; q)

if p and q are facing each other

if p and q are at least partially visible from each other

link p and q

Main Loop

for each polygon p

foreach link l leaving p

if B � F > "refine
re�ne l

foreach link l leaving p

gather l

Fig. 3. The Original Algorithm

Initial Linking

for each pair of polygons (p; q)
record it as unclassi�ed

Main Loop

for each unclassi�ed pair of polygons (p; q)

if p and q are facing each other
if Bp > "link or Bq > "link

compute the unoccluded FF

if B � F > "link
link p and q

record (p; q) as classi�ed

else record (p; q) as classi�ed
for each polygon p

for each link l leaving p

if B � F > "refine
re�ne l

for each link l leaving p

gather l

Fig. 4. Pseudo-code listing for our algorithm

The threshold "
link

used to establish top-levels interactions is not the same as
the threshold used for BF re�nement, "

refine
. The main potential source of error

in our algorithm is an incomplete balance of energy. Since energy is transfered
across links, any polygon for which some top-level links have not been created
is retaining some energy, which is not propagated to the environment.

When recursive re�nement is terminated because the product BF becomes
smaller than "

refine
, a link is always established, which carries some fraction of

this energy (the form factor estimate used in the comparison against "
refine

is an
upper bound of the form factor). On the other hand, when two top-level surfaces
are not linked because the product BF is smaller than "

link
, all the corresponding

energy is \lost". It is thus desirable to select a threshold such that "
link

< "
refine

.
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8 Nicolas Holzschuch, Fran�cois Sillion, George Drettakis

In the examples shown below we used "
link

= "
refine

=5.

The classi�ed/unclassi�ed status of all pairs of input surfaces requires the

storage of n(n�1)
2

bits of information. We are currently working on compression
techniques to further reduce this cost6.

3.2 Energy Balance

Since radiosity is mainly used for its ability to model light interre
ection, it is
important to maintain energy consistency when modifying the algorithm. An
issue raised by the lazy linking strategy is that \missing" links, those that have
not been created because they were deemed insigni�cant, do not participate
in energy transfers. Thus each gather step only propagates some of the energy
radiated by surfaces.

If the corresponding energy is simply ignored, the main result is that the
overall level of illumination is reduced. However a more disturbing e�ect can
result for surfaces that have very few (or none) of their links actually established:
these surfaces will appear very dark because they will receive energy only from
the few surfaces that are linked with them.

The solution we advocate in closed scenes is the use of an ambient term

similar to the one proposed for progressive re�nement radiosity [1]. However the
distribution of this ambient term to surfaces must be based on the estimated
fraction of their interaction with the world that is missing from the current
set of links. The sum of the form factors associated with all links leaving a
surface gives an estimate of the fraction of this surface's interactions that is
actually represented. Thus, in a closed scene, its complement to one represents
the missing link. Using this estimate to weight the distribution of the ambient
energy, the underestimation of radiosities can be partially corrected: surfaces
that have no links will use the entire ambient term, whereas surfaces with many
links will be only marginally a�ected.

However, since form factors are based on approximate formulas, the sum of
all form-factors can di�er from one, even for a normally linked surface. This
comes from our BF re�nement strategy: we accept that the form-factor on a
link between two dark surfaces be over-estimated, or under-estimated. This may
results in energy loss, or creation. If the error we introduced by not linking some
surfaces is of the same order { or smaller { than the one due to our lack of
precision on the form-factor estimation, using the ambient term will not su�ce
to correct the energy inbalance.

To quantify the in
uence of those errors on the overall balance of energy, we
compute the following estimate of the incorrect energy:

EET =
X
p

j1� FpjBpAp (1)

6 The storage cost for the classi�ed bit represents 62 kb for a thousand surfaces, 25

Mb for twenty thousand surfaces.
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Progressive Re�nement Strategy for Hierarchical Radiosity 9

where Ap is the area of polygon p, Bp its radiosity and Fp the sum of the form
factors on all links leaving p. This can be compared to the total energy present
in the scene:

ET =
X
p

BpAp (2)
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Fig. 5. Incorrect Energy EET =ET

Figure 5 shows a plot of the ratio EET
=ET for the Dining Room scene and

the Full O�ce, for both the original algorithm and our algorithm. Note that the
error can be signi�cant, but is mainly due to the original algorithm.

4 Reducing the Number of Links

The re�nement of a link is based on the estimation of an associated error bound.
Various criteria have been used that correspond to di�erent error metrics, in-
cluding the error in the form factor [4], the error in the radiosity transfer [5],
and the impact of the error in the radiosity transfer on the �nal image [8].

All these criteria implicitly assume that the error in the form factor estimate
is equivalent to the magnitude of the form factor itself. While this is true for
in�nitesimal quantities, in many instances it is possible to compute a reasonable
estimate of a relatively large form factor. In particular this is true in situations
of full visibility between a pair of surfaces.

Consider two patches p and q. A bi-directionnal link between them carries
two form factor estimates Fp;q and Fq;p. If we re�ne the link by dividing p in
smaller patches pi of area Ai (e.g. in a quadtree), the de�nition of the form factor

Fu;v =
1

Au

Z
Au

Z
Av

G(dAu; dAv)dAudAv (3)

where G is a geometric function, implies that the new form factors verify:

Fp;q =
1

Ap

 X
i

AiFpi;q

!
(4)
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10 Nicolas Holzschuch, Fran�cois Sillion, George Drettakis

Fq;p =
X
i

Fq;pi (5)

These relations only concern the exact values of the form factors. However
they can be used to compare the new form factor estimates with the old ones,
and determine a posteriori wether re�nement was actually required. If the sum
of the Fq;pi is close to the old Fq;p, and they are not very di�erent from one
another, little precision was gained by re�ning p. Moreover, if Fp;q is close to the
average of the Fpi;q, and the Fpi;q are not too di�erent from one another, then
the re�nement process did not introduce any additional information. In this case
we force p and q to interact at the current level, since the current estimates of
form factors are accurate enough.

In our implementation we only allow reduction of links in situations of full
visibility between surfaces. We compute the relative variation of the children
form factors, which we test against a new threshold "

reduce
. We also check that

the di�erence between the old form factor Fp;q and the sum of the Fpi;q , and
the di�erence between Fq;p and the average of the Fq;pi are both smaller than
"
reduce

.

If we note Fu;v our current estimation of the form-factor between two patches
u and v, and assuming we want to re�ne a patch p in pi, we note:

Fmin
p;q = mini(Fpi;q) Fmin

q;p = mini(Fq;pi )

Fmax
p;q = maxi(Fpi;q) Fmax

q;p = maxi(Fq;pi)

F 0

p;q =
1
Ap

(
P

iAiFpi;q) F 0

q;p =
P

i Fq;pi

and we re�ne p if any of the following is true:

F
max

p;q
�F

min

p;q

Fmax

p;q

> "
reduce

F
max

q;p
�F

min

q;p

Fmax

q;p

> "
reduce

jF 0

p;q
�Fp;qj

F 0

p;q

> "
reduce

jF 0

q;p
�Fq;pj

F 0

q;p

> "
reduce

The decision to cancel the subdivision of a link is based purely on geometrical
properties, therefore it is permanent. The link is marked as \un-re�nable" for
the entire simulation.

The check whether a link is worth re�ning involves the computation of form
factor estimates to and from all children of patch p. Thus the associated cost in
time is similar to that of actually performing the subdivision. If a single level
of re�nement is avoided by this procedure, there will be little gain in computa-
tion time, but the reduction in the number of links will yield memory savings.
But if link reduction happens \early enough", several levels of re�nement can
be avoided. In our test scenes, an implementation of this algorithm reduced sig-
ni�cantly the number of quadtree nodes and links (see Fig. 6), with a slightly
smaller reduction in computation time because of the cost of the extra form
factor estimates (see Fig. 7).
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5 Results

5.1 Lazy Linking

Figures 3 in coulour section shows the same scene as in Fig. 1, computed using
the lazy linking strategy of Sect. 3. Note that it is visually indistinguishable
from its original counterpart. Figure 4 plots the absolute value of the di�erence
between these two images.

5.2 Reduction of the Number of Links

To measure the performance of the reduction criterion, we computed the ratio of
the number of quadtree nodes (surface elements) obtained with this criterion, to
the number of nodes obtained with the original algorithm. The graph in Fig. 6a
plots this ratio against the number of iterations. Note that an overall reduction
by nearly a factor of two is achieved for all scenes. Figure 6b shows a similar
ratio for the number of links. This global reduction of the number of objects
involved leads to a similar reduction of the memory needed by the algorithm,
thus making it more practical for scenes with more polygons.
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Fig. 6. Percentage of nodes and links left after reduction.

Figure 7 shows the ratio of the computation times using the improved cri-
terion and the original algorithm. The reduction of the number of links has a
dramatic impact on running times, with speedups of more than 50%.

Figure 5 and 6 in colour section shows the image obtained after link reduc-
tion. Note the variation in the mesh on the walls, and the similarity of the shaded
image with the ones in Figs. 1 and 3. Figure 7 plots the absolute value of the
di�erence between the image produced by the original algorithm and the image
obtained after link reduction. Note that part of the di�erences are due to the
lazy linking strategy of Sect. 3. So Figure 8 shows the di�erence between lazy
linking and reduction of the number of links.

5.3 Overall Performance Gains

Timing results are presented in Table 3. As expected, a signi�cant speedup is
achieved, particularly for complex scenes. For all scenes, ten iterations with lazy
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Fig. 7. Percentage of computation time using link reduction.

linking took less time to compute than the �rst iteration alone with the original
algorithm. Finally, using lazy linking and reduction produces a useful image in
a matter of minutes even for the most complex scenes in our set.

Table 3. Time needed for ten iterations (and time for producing the �rst image).

Name n Original Algorithm with Lazy Linking: : : and Reduction

Full o�ce 170 301 s (242 s) 287 s (234 s) 43 s (30 s)

Dining room 402 4824 s (4191 s) 4051 s (3911 s) 657 s (552 s)

East room 1006 587 s (378 s) 377 s (191 s) 193 s (59 s)

West room 1647 1017 s (752 s) 514 s (277 s) 270 s (101 s)

Hevea 2355 4253 s (2331 s) 1526 s (847 s) 543 s (122 s)

6 Conclusions and Discussion

We have presented the results of an experimental study conducted on a variety
of scenes, showing that visibility calculations represent the most expensive por-
tion of the computation. Two improvements of the hierarchical algorithm were
proposed. The �rst modi�cation creates top-level links lazily, only when it is
established that the proposed link will have a de�nite impact on the simula-
tion. With this approach the hierarchical algorithm still remains quadratic in
the number of input surfaces, but no work and very little storage is devoted to
the initial linking phase. The resulting algorithm is more progressive in that it
produces useful images very quickly. Note that the quadratic cost in the number
of input surfaces can only be removed by clustering methods [7].
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An improved subdivision criterion was introduced for situations of full vis-
ibility between surfaces, which allows a signi�cant reduction of the number of
links.

Future work will include the simpli�cation of the hierarchical structure due
to multiple sources and subsequent iterations. A surface that has been greatly
re�ned because it receives a shadow from a given light source can be fully illu-
minated by a second source, and the shadow become washed in light.

Better error bounds, both on form factor magnitude and global energy trans-
fers, should allow even greater reduction of the number of links. Accurate visibil-
ity algorithms can be used to this end, by providing exact visibility information
between pairs of surfaces.
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Surfaces
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Abstract. Wavelet radiosity is, by its nature, restricted to parallelograms or tri-
angles. This paper presents an innovative technique enabling wavelet radiosity
computations on planar surfaces of arbitrary shape, including concave contours
or contours with holes. This technique replaces the need for triangulating such
complicated shapes, greatly reducing the complexity of the wavelet radiosity al-
gorithm and the computation time. It also gives a better approximation of the
radiosity function, resulting in better visual results. Our technique works by sep-
arating the radiosity function from the surface geometry, extending the radiosity
function defined on the original shape onto a simpler domain – a parallelogram –
better behaved for hierarchical refinement and wavelet computations.

1 Introduction

Wavelet radiosity [12] is one of the most interesting technique for global illumination
simulation. Recent research [7] has shown that higher order multi-wavelets (M2 and
M3) are providing a very powerful tool for radiosity computations. Multi-wavelets can
approximate the radiosity function efficiently with a small number of coefficients. As a
consequence, they give a solution of better quality in a shorter time.

Multi-wavelets are defined only on parallelograms and triangles. This causes prob-
lems for radiosity computations on scenes coming from real world applications, such
as architectural scenes, or CAD scenes. In such scenes, planar surfaces have a fairly
complicated shape (see figure 1 and 12(a)). To do wavelet radiosity computations on
such scenes, we have to tessellate these planar shapes into triangles and parallelograms,
which results in a large number of input primitives (see figure 1(b)). Furthermore, this
decomposition is purely geometrical and was not based on the illumination, yet it will
influence our approximation of the radiosity function. In some cases, this geometric
decomposition results in a poor illumination solution (see figure 2(a) and 11(a)).

In the present paper, we separate the radiosity function from the surface geometry.
This enables us to exploit the strong approximating power of multi-wavelets for radios-
ity computations, with planar surfaces of arbitrary shape – including concave contours,
contours with holes or disjoint contours. Our algorithm results in a better approxima-
tion of the radiosity function (see figure 2(b) and 11(b)) with a smaller number of input
primitives, faster convergence and lower memory costs.

1INRIA Lorraine.
2Institut National Polytechnique de Lorraine.
3UMR no 7503 LORIA, a joint research laboratory between CNRS, Institut National Polytechnique de

Lorraine, INRIA, Université Henri Poincar´e and Universit´e Nancy 2.
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(a) Detail of fig-
ure 12(a)

(b) Tessellated:
32 triangles

(c) Our algorithm:
1 surface

Fig. 1. Planar surfaces can have a fairly complicated shape

(a) Tessellated (b) Our Algorithm

Fig. 2. Wavelet radiosity on arbitrary planar surfaces (see also figure 11)

Our algorithm extends the radiosity function defined on the original shape onto a
simpler domain, better behaved for hierarchical refinement and wavelet computations.
This extension of the radiosity function is defined to be easily and efficiently approxi-
mated by multi-wavelets. The wavelet radiosity algorithm is modified to work with this
abstract representation of the radiosity function.

Our paper is organised as follows: in section 2, we will review previous work on
radiosity with planar surfaces of complicated shape. Section 3 is a detailed explanation
of our algorithm and of the modifications we brought to the wavelet radiosity algorithm.
Section 4 presents the experiments we have conducted with our algorithm on different
test scenes. Finally, section 5 presents our conclusions.
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2 Previous work

The wavelet radiosity method was introduced by [12]. It is an extension of the radiosity
method [11] and especially of the hierarchical radiosity method [13]. It allows the use
of higher order basis functions in hierarchical radiosity.

In theory, higher order wavelets are a very powerful tool to approximate rapidly
varying functions with little coefficients. In practice, they have several drawbacks, es-
pecially in terms of memory costs. In the early implementations of wavelets bases in
the radiosity algorithm, these negative points were overcoming the positive theoretical
advantages [19]. Recent research [7] has shown that using new implementation meth-
ods [2, 3, 7, 18, 21] we can actually exploit the power of higher order wavelets, and that
their positive points are now largely overcoming the practical problems. They provide
a better approximation of the radiosity function, with a small number of coefficients,
resulting in faster convergence and smaller memory costs.

On the other hand, higher order wavelets, and especially multi-wavelets (M2 and
M3) are defined as the tensor products of one-dimensional wavelets. As a consequence,
they are defined over a square. The definition can easily be extended on parallelograms
or triangles, but higher order wavelets are not designed to describe the radiosity function
over complex surfaces.

Such complex surfaces can occur in the scenes on which we do global illumination
simulations. Especially, scenes constructed using CAD tools such as CSG geometry or
extrusion frequently contain complex planar surfaces, with curved boundaries or holes
in them.

The simplest solution to do radiosity computations on such surfaces is to tessellate
them into triangles, and to do radiosity computations on the result of the tessellation.
This method has several negative consequences on the radiosity algorithm:

� It increases the number of input surfaces and the algorithmic complexity of the
radiosity algorithm is linked to the square of the number of input surfaces.

� The tessellation is made before the radiosity computations and it influences these
computations. It can prevent us from reaching a good illumination solution.

� The tessellation does not allow a hierarchical treatment over the original surface,
only over each triangle created by the tessellation. We can not fully exploit the
capabilities of hierarchical radiosity, and especially of wavelet radiosity.

� By artificially subdividing an input surface into several smaller surfaces, we are
creating discontinuities. These discontinuities will have to be treated at some
point in the algorithm.

� Tessellation can create poorly shaped triangles (see figure 1(b)), or slivers. These
slivers can cause Z-buffer artifacts when we visualise the radiosity solution, and
are harder to detect in visibility tests (e.g.ray-casting).

Some of these problems can be removed by using clustering [10, 16, 17]. In clus-
tering, neighbouring patches are grouped together, into acluster. The cluster receives
radiosity and distributes it to the patches that it contains. On the other hand, current
clustering strategies are behaving poorly in scenes with many small patches located
close to each other [14]. It would probably be more efficient to apply clustering to the
original planar surfaces instead of applying it to the result of the tessellation.

A better grouping strategy is face-clustering [20]. In face-clustering, neighbouring
patches are grouped together according to their coplanarity. Yet even face-clustering
depends on the geometry created by the tessellation. Furthermore, it would not allow
us to exploit the strong approximating power of multi-wavelets.
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� if the original planar shape is polygonal:

– compute its convex hull (in linear time) using the
chain of points [9].

– compute the minimal enclosing parallelograms of
the convex hull (in linear time) using Schwarzet
al. [15].

– if the previous algorithm gives several enclos-
ing parallelograms, select the one that has angles
closer to�

2
.

� if the original shape is a curve, or contains curves:

– approximate the curve by a polygon
– compute the enclosing parallelogram of the poly-

gon
– compute the extrema of the curve in the directions

of the parallelogram.
– if needed, extend the parallelogram to include

these extrema.

Fig. 3. Our algorithm for finding an enclosing parallelogram.

Bouatouchet al.[5] designed a method for discontinuity meshing and multi-wavelets.
In effect, they are doing multi-wavelets computations over a non-square domain. How-
ever, their algorithm requires several expensive computations of push-pull coefficients.
Our algorithm avoids these computations.

Baumet al. [1] designed a method for radiosity computations with arbitrary planar
polygons, including polygons with holes. Their method ensures that the triangles pro-
duced are well-shaped, and suited for radiosity computations. Since it is designed for
non-hierarchical radiosity, it is done in a preliminary step, before all radiosity compu-
tations. Our method, designed for wavelet radiosity, acts during the global illumination
simulation, and adapts the refinement to the radiosity.

3 The Extended Domain Algorithm

In this section, we present our algorithm for wavelet radiosity computations on planar
surfaces of arbitrary shape. Our algorithm separates the radiosity function from the
surface geometry; we introduce a simple domain that will be used for radiosity compu-
tations. The radiosity function on the original surface is inferred from the radiosity on
the simple domain.

Section 3.1 explains how we select an extended domain for our computations. In
section 3.2, we describe how we extend the definition of the radiosity function over
this domain. The extended domain is then used in a wavelet radiosity algorithm like
an ordinary patch, with some specific adjustments. These adjustments are described in
section 3.3.

3.1 Selection of an extended domain

The first step of our algorithm is the choice of an extended domain, which we will use
for wavelet radiosity computations. This extended domain must obey two rules:

4



Radiosity function
over the original polygon

The original
polygon

The extended domain

The radiosity function

Radiosity function extended
over the extended domain

Fig. 4. Extending the radiosity function over the extended domain.

� it must enclose the original shape,
� it must be well suited for wavelet radiosity computations.

Since multi-wavelets (M2,M3...) are defined as tensor products of one-dimensional
wavelets, the second rule implies that the extended domain must be a parallelogram.
Moreover, if this parallelogram is closer to a rectangle, there will be less distortions in
the wavelet bases, resulting in a better approximation of the radiosity function. Sowe
want the angles of the parallelogram to be close to�

2
.

Since only radiosity computations made on the original shape are of interest, we also
want the enclosing parallelogram to be as close as possible from the original shape.

Basically, any parallelogram satisfying these criterions could be used with our al-
gorithm. The algorithm used in our implementation is described in figure 3. The key
point is that this algorithm runs in linear time with respect to the number of vertices: the
convex hull of a chain of points in 2D can be computed in linear time [9], and Schwarz’s
algorithm for the enclosing parallelogram is also linear [15].

3.2 Extending the radiosity function over this domain

Once we have an extended domain, we need to define the radiosity function over this
domain. This extension of the radiosity function must obey two rules (see figure 4):

� it must be equal to the original radiosity function over the original domain
� it must be as simple and as smooth as possible, to be efficiently approximated by

multi-wavelets.

The second point is crucial: we have to compute the radiosity function over the
entire domain. Because of the hierarchical nature of wavelets, during the push-pull step
radiosity values computed at one point of the domain can influence other points of the
domain. So our extension of the radiosity function must be computed with the same
precision regardless of whether we are on the original surface or not.

Since the discontinuities of the radiosity function and its derivatives only come from
visibility discontinuities, we do not want to introduce more visibility discontinuities in
our extension. We define anextended visibilityfunctionV 0: the visibility between a
point Q in space and a pointP on the extended domain is defined as the visibility
betweenQ andP 0, whereP 0 is defined as the closest point fromP on the original
planar surface:

V 0(Q;P ) = V (Q;P 0)

Of course, ifP is already on the original planar surface,P 0 is equal toP . In that
case, the extended visibility function is equal to the standard visibility function.

5



(a) Trapezoidal map for the sur-
face in figure 1(c)

(b) Using the trapezoidal map for visibility queries

Fig. 5. Trapezoidal map of an arrangement of line segments

The radiosity function on the extended domain is then defined as the radiosity func-
tion, as computed by the wavelet radiosity algorithm, using this extended visibility
function in the radiosity kernel.

3.3 Using the extended domain in the wavelet radiosity algorithm

In this section, we describe our adaptation of the wavelet radiosity algorithm to work
with our extended domains. We use a standard wavelet radiosity algorithm [7, 21]. The
core of the algorithm is left unchanged (refinement oracle, link storage). We will review
here the points that require some special attention:

� reception and push-pull
� visibility
� emission
� refinement

Reception and Push-Pull. The wavelet radiosity algorithm is a hierarchical algo-
rithm. During the push-pull step, radiosity values computed at one point of the patch
can influence the representation of radiosity for the entire patch. Hence, we want the
same precision for all radiosity computations over the entire patch.

For reception, the extended domain is therefore treated just like an ordinary patch.
All parts of the extended domain are receiving radiosity, with the same precision, re-
gardless of whether or not they belong to the original planar surface.

Similarly, we are doing the push-pull step over the entire extended domain, without
any reference to the original surface. Since our extended domain is by design a par-
allelogram, instead of an ordinary polygon, we do not have to compute any expensive
push-pull coefficients.

Visibility. For all the visibility computations, only the original planar surface can act
as an occluder. The extended domain is never used in visibility computations.
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Fig. 6. The weights of the quadrature points can be seen as the area of azone of influence.

To detect if the original surface is actually occluding an interaction, we compute
the trapezoidal map of an arrangement of line segments [4, 8] over the segments of the
contour of the original surface (see figure 5). For each trapeze, we store its status –
whether it is inside or outside of the original surface.

Using randomized algorithms, trapezoidal maps can be constructed in time
O(n logn), wheren is the number of vertices. Once constructed, they can be queried in
O(logn) time. Since the construction algorithm is randomised, we shuffle the segments
of the original surface before building the trapezoidal map.

Visibility queries in our radiosity algorithm are visibility queries between two points,
either two quadrature points [7] or the closest point on the original surface from a
quadrature point (see section 3.2). We compute the intersection between the ray joining
these quadrature points and the supporting plane of the original surface, check whether
the intersection point is inside the bounding box of the extended domain, then check
whether it is inside the extended domain itself, then query the trapezoidal map to check
if it is inside or outside the original surface.

Emission. During the reception, the entire extended domain has received illumination.
The radiosity received over parts of the extended domain that are not included in the
original surface does not exist in reality, and it should not be sent back into the scene.
Otherwise, there would be an artificial creation of energy, violating the principle of
conservation of energy.

Because of the hierarchical nature of the wavelet radiosity algorithm, it would be
difficult to compute the exact part of this radiosity function that really exists. Instead,
we act on the weights of the quadrature points.

In the wavelet radiosity algorithm, all the transfer coefficients between an emitter
and a receiver are computed using quadratures. Quadratures allow the evaluation of
a complex integral by sampling the function being integrated at the quadrature points,
and multiplying the values by quadrature weights. Most implementations use Legendre-
Gauss quadratures.

Since the weights are positive and their sum is equal to1, you can visualise them
as being the length of azone of influencefor the corresponding quadrature point (see
figure 6(a) for the one dimension case). The same applies in two dimensions: the
weights of the quadrature points can be seen as the area of a zone of influence (see
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for each interactions! r:
for each quadrature pointqi on the emitters

Ai = area of influence ofqi
�i  percentage ofAi that is inside the original emitter
q0

i = nearest point fromqi on the emitter
for each quadrature pointpj on the receiverr

p0

j = nearest point on the receiver
V (q0

i; p
0

j) = visibility betweenq0

i andp0

j

G(qi; pj) = radiosity kernel betweenqi andpj
Br+ = �iwiwjBs(qi)V (q

0

i; p
0

j)G(qi; pj)
end for

end for

Fig. 7. Pseudo-code for wavelet radiosity emission using the extended domain.

empty meshfull mesh extended mesh

Fig. 8. Refinement of the extended domain

figure 6(b)); the weight of quadrature pointpi;j is wiwj . Please note that these zones
of influence are not equal to the Vorono¨ı diagram of the quadrature points.

We suggest an extension to the Gaussian quadrature to take into account the fact
that the extended domain is not entirely covered by the actual emitter: the weight of a
quadrature point is multiplied by the proportion of its area of influence that is actually
covered by the emitter. For example, on figure 6(c), the weight of the quadrature point
in the hashed area should bew1w2. Since the fraction of its area of influence covered
by the emitter is�, the weight used in the computation will be�w1w2.

Our method allows for a quick treatment of low precision interactions, and for high
precision interactions, it tends toward the exact value. The more we refine an interac-
tion, the more precision we get on the radiosity on the emitter. We also get the exact
value if the zone of influence is entirely full or entirely empty.

In some cases, it can happen that the quadrature point falls outside the original
emitter. We use these quadrature points anyway.

Figure 7 shows the pseudo-code for radiosity emission using the extended domain.

Refinement. As with the original wavelet radiosity algorithm, the extended domain
can be subdivided if the interaction needs to be subdivided. The refinement oracle
deals with the extended domain as it would deal with any other patch. Because of the
hierarchical representation of the radiosity function in the wavelet radiosity algorithm,
we must have the same precision on the radiosity function over the entire domain. The
push-pull step can make parts of the domain that are not inside the original surface
influence our representation of the radiosity function over the entire domain.
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Name # initial surfaces after tessellation ratio
Opera 17272 32429 1.88
Temple 7778 11087 1.43
Soda Hall 145454 201098 1.38

Table 1. Description of our test scenes
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Fig. 9. Number of patches in our test scenes

If the extended domain is refined, we deal with each part of the subdivided extended
domain as we would deal with the original extended domain. Two special cases can
appear (see figure 8):

� if the result of the subdivision does not intersect at all with the original planar
surface, it is empty. Therefore it cannot play a role in the emission of radiosity,
but we keep computing the radiosity function over this patch.

� if the result of the subdivision is totally included inside the original planar sur-
face. In that case, we are back to the standard wavelet radiosity algorithm on
parallelograms.

4 Experiments

We have tested our algorithm for wavelet radiosity on arbitrary planar surfaces on vari-
ous test scenes (see figure 12 for images of our test scenes, and table 1 and figure 9(a)
for their description). We were interested in a comparison between our algorithm and
the standard wavelet radiosity algorithm, acting on parallelograms and triangles. All
the computations were conducted on the same computer, a SGI Origin 2000, using a
parallel version [6] of our wavelet radiosity algorithm [7, 21].

In all these test scenes, the number of surfaces after tesselation is less than twice the
number of surfaces in the original scene. Much less than what could be expected from
figure 1. Most of the initial surfaces in the scenes are parallelograms or triangles, and
don’t require tesselation.

The first result is that our algorithm gives better visual quality than doing wavelet
radiosity computations on a tessellated surface (see figure 2 and 11). Our separation of
the radiosity function from the surface geometry results in a better approximation of the
radiosity function.
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Fig. 10. Convergence rate (un-shot energy over initial energy) as a functionof computation time
(in seconds).

Beyond this important result, we were interested in a comparison of computation
time and memory costs for both algorithms.

Obviously, our algorithm reduces the number of patches, and therefore the memory
cost of the initial scene (see table 1 and figure 9(a)). According to our computations, it
also reduces the number of patches in the final scene, although not in the same propor-
tions (see figure 9(b)).

The later result was to be expected: the wavelet radiosity algorithm will refine the
original scene a lot, resulting in numerous sub-patches. The number of patches in the
scene after the radiosity computations is mainly linked to the complexity of the radios-
ity function itself, and not to the complexity of the scene. However, it appears that
our algorithm results in more efficient refinement, since we reach convergence with a
smaller number of patches. In some scenes, we can reach convergence with 30 % less
patches.

The fact that our algorithm allows for more efficient refinement also appears in the
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computation times (see figure 10). In our experiments, we measure the energy initially
present in the scene and the energy that hasn’t yet been propagated in the scene. The ra-
tio of these two measures tells us how far we are from complete convergence. Figure 10
displays this ratio as a function of the computation time, both for our algorithm and for
the wavelet radiosity algorithm operating on a tessellated version of the scene. Our
algorithm ensures a faster convergence on all our test scenes. The speedup is of about
30 %, which shows that acting on the original planar surface instead of the tessellated
surface gives more efficient refinement.

5 Conclusion

In conclusion, we have presented a method to separate the radiosity function from the
surface geometry. This method removes the need to tessellate complex planar surfaces,
resulting in a more efficient global illumination simulation, with better visual quality.
Our method results in faster convergence, with smaller memory costs.

In our future work, we want to extend this algorithm to discontinuity meshing. Dis-
continuity meshing introduces a geometric model of the discontinuities of the radiosity
function and its derivatives, thediscontinuity mesh. The discontinuity mesh provides
optimal meshing for radiosity computations near the discontinuities. The discontinuity
mesh is a complicated structure, and it can influence radiosity computations away from
the discontinuities, for example because of triangulation. We want to use our algorithm
to smoothly integrate the discontinuity mesh in the natural subdivision for multi-wavelet
radiosity, removing the need to tesselate the discontinuity mesh.

We also want to explore a combination of our algorithm with clustering techniques.
First, our algorithm could be used to group together neighbouring coplanar patches in
a natural way. This would help the clustering strategy [14] and give a more accurate
result. Second, we would like to integrate our algorithm with face-clustering, bringing
multi-wavelets into face-clusters.

Finally, our separation of the radiosity function from the surface geometry could
also be used to compute radiosity using multi-wavelets on curved surfaces. There are
several parametric surfaces for which the limits of the parametric space are not square.
We suggest using our algorithm to enclose these limits into a square limit, making it
easier for multi-wavelets.
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(a) Tessellated (b) Our Algorithm

Fig. 11. Using our algorithm for wavelet radiosity on arbitrary planar surfaces (see also figure 2)
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(b) Temple (c) Soda Hall

Fig. 12. Our test scenes
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Abstract
Since wavelets were introduced in the radiosity algorithm5, surprisingly little research has been devoted to higher
order wavelets and their use in radiosity algorithms. A previous study13 has shown that wavelet radiosity, and
especially higher order wavelet radiosity was not bringing significant improvements over hierarchical radiosity
and was having a very important extra memory cost, thus prohibiting any effective computation. In this paper,
we present a new implementation of wavelets in the radiosity algorithm, that is substantiallydifferent from pre-
vious implementations in several key areas (refinement oracle, link storage, resolution algorithm). We show that,
with this implementation, higher order wavelets are actually bringing an improvement over standard hierarchical
radiosity and lower order wavelets.

1. Introduction

Global illumination simulation is essential for realistic ren-
dering of virtual scenes. In global illumination, we take
the geometric definition of a virtual scene, we simulate the
propagation of light throughout the scene, modelling its vi-
sual and physical effects, such as shadows and reflections.
Global illumination simulation has applications in all the ar-
eas where a realistic rendering is interesting, such as archi-
tecture, archeology, urban planning and computer-aided de-
sign.

The radiosity method is one of the methods used in global
illumination simulation. In the radiosity method, we model
the exchanges of energy between the objects of the scene in
order to compute the radiant energy per unit area (orradios-
ity) on all the surfaces of all the objects in the scene. The
radiosity can be used directly to display the objects of the

† Institut National Polytechnique de Lorraine.
‡ INRIA Lorraine.
§ UMR no 7503 LORIA, a joint research laboratory between
CNRS, Institut National Polytechnique de Lorraine, INRIA, Uni-
versité Henri Poincaré and Université Nancy 2.

scene and the quality of the simulation is directly linked to
the precision we have on the radiosity function.

The radiosity function is usually computed using finite
element methods. The most efficient of these methods are
hierarchical and use a multi-scale representation of the ra-
diosity function6 to reduce the algorithmic complexity of
the computations. Hierarchical methods have been extended
with wavelets5. The simplest wavelet base is piecewise con-
stant (Haar wavelets), but many other wavelet bases can be
used in radiosity computations.

In theory, higher order wavelets are providing a more
compact representation of complex functions. Hence they
use less memory and give a smoother representation of the
function, that looks better on display. Higher order wavelets
should be the ideal choice for radiosity computations.

In practice, the memory required to store the interactions
between objects grows with thefourth power of the order
of the wavelet base, prohibiting any real computation with
complex wavelets. Furthermore, Haar wavelets allow many
simplifications and optimisations that exploit their great sim-
pleness. If these optimisations are kept with higher order
wavelets, they can inhibit some of their properties. In one

c© The Eurographics Association and Blackwell Publishers 2000. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.
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experimental study13 the practical problems of higher order
wavelets were largely overcoming their theoretical benefits.

However, these practical problems are not inherent to
higher order wavelets themselves, only to their implemen-
tation in the radiosity method. In this paper, we present a
new approach to higher order wavelets, that is substantially
different from previous implementations in several key ar-
eas, such as refinement oracle, link storage and resolution
algorithm. Our approach has been developed by taking a
complete look at higher order wavelets and at the way they
should integrate with the radiosity method. With this imple-
mentation, we show that the theoretical advantages of higher
order wavelets are overcoming the practical problems that
have been encountered before. Higher order wavelets are
now providing a better approximation of the radiosity func-
tion, with faster convergence to the solution. They also re-
quire lessmemory for storage.

Our paper is organised as follows: in section2, we review
the previous research on wavelet radiosity and higher order
wavelets. Then in section3, we present our implementation,
concentrating on the areas where it is substantially different
from previous implementations: the refinement oracle, not
storing the interactions and the consequences it has on the
resolution algorithm.

The main result that we present in this paper is the exper-
imental study we have conducted on higher order wavelets
with our implementation. Section4 is devoted to this exper-
imentation and its results, namely that higher order wavelets
are providing a faster convergence, a solution of better qual-
ity and require less memory for their computations. Finally,
section5 presents our conclusions and future areas of re-
search.

2. Previous work

In this section we review the basis of the wavelet radiosity
algorithm (section2.1), then we present the implementation
details of previous implementations for key areas of the al-
gorithm (section2.2): the refinement oracle, the visibility es-
timation and the memory problem. This review will help for
the presentation of our own implementation of these areas,
in section3.

2.1. The wavelet radiosity algorithm

In the radiosity method, we try to solve the global illumina-
tion equation, restricted to diffuse surfaces with no partici-
pating media:

B(x) = E(x)+ρ(x)
Z

S
B(y)K(x,y)dy (1)

Eq.1 expresses the fact that the radiosity at a given point
x in the scene,B(x), is equal to the radiosity emitted byx
alone,E(x), plus the radiosity reflected byx, coming from

all the other objects in the scene.K(x,y) is the kernel of the
equation, and expresses the part of radiosity emitted by point
y that reachesx.

To compute the radiosity function, we use finite element
methods. The function we want to compute,B(x), is first
projected onto a finite set of basis functionsφi :

B̃(x) = ∑
i

αiφi(x) (2)

Our goal is to compute the best approximation of the
radiosity function, given the set of basis functionsφi . We
must also find the optimal set of basis functions. A possibil-
ity is to use wavelets. Wavelets are mathematical functions
that provide a multi-resolution analysis. They allow a multi-
scale representation of the radiosity function on every object.
This multi-scale representation can be used in the resolution
algorithm6, 5, allowing us to switch between different repre-
sentations of the radiosity function, depending on the degree
of precision required. This multi-scale resolution results in a
great reduction of the complexity of the algorithm6.

There are two broad classes of resolution algorithm:gath-
eringandshooting. In gathering, each patch updates its own
radiosity function using the energy sent by all the other
patches, whereas in shooting each patch sends energy into
the scene, and all the other patches update their own radios-
ity. In both cases, the energy is carried alonglinks, that are
established by the wavelet radiosity algorithm, and used to
store the information related to the interaction. A key ele-
ment of the wavelet radiosity algorithm is therefinement or-
acle, that tells which levels of the different multi-scale rep-
resentation of radiosity should interact.

Finally, before each energy propagation, we must update
the multi-scale representation of radiosity, so that each level
contains a representation of all the energy that has been re-
ceived by the object at all the other levels. This is done dur-
ing thepush-pullphase.

2.2. Details of previous implementations

2.2.1. Refinement oracles

The refinement oracle is one of the most important parts in
hierarchical radiosity algorithms. Since it tells at which level
the interaction should be established, it has a strong influ-
ence on both the quality of the radiosity solution and the
time spent doing the computations. A poor refinement ora-
cle will give poor results, or will spend a lot of time doing
unnecessary computations.

In theory, the decision whether or not to refine a given in-
teraction could only be taken with the full knowledge of the
complete solution. However, the refinement oracle must take
the decision using only the information that is locally avail-
able: the energy to be sent, and the geometric configuration
of the sender and the receiver.

c© The Eurographics Association and Blackwell Publishers 2000.

58



F. Cuny, L. Alonso and N. Holzschuch / A novel approach makes higher order wavelets really efficient for radiosity

Given two patches in the scene, let us consider their inter-
action: patchs, with its current approximation of the radios-
ity function B̃s(y), is sending light toward patchr. Using a
combination of eq.1 and eq.2, we can express the contribu-
tion of patchs to the radiosity of patchr:

Bs→r(x) = ρ∑
i

αi

Z
s
φi(y)K(x,y)dy (3)

For the interaction between the two patches we will use
the relationship coefficients,Ci j :

Bs→r(x) = ∑
j

β jφ j (x)

β j =

Z
r
Bs→r(x)φ j (x)

β j = ρ∑
i

αi

Z
r

Z
s
φi(y)φ j (x)K(x,y)dydx

β j = ρ∑
i

αiCi j

TheseCi j coefficients express the relationship between
the basis functionsφ j (x) and φi(y). Computing theCi j re-
quires the computation of a complex integral, which cannot
be computed analytically and must be approximated, usually
using quadratures.

In most current implementations, refinement oracle esti-
mate the error on this approximation of theCi j . This error
is then multiplied by the energy of the sender, to avoid re-
fining interactions that are not carrying significant energy.
There are several ways to estimate the error on theCi j coef-
ficients: pure heuristics6, sampling theCi j at several sample
points5 and a conservative method giving an upper-bound on
the propagation of the energy10, 8.

A recurrent problem with current refinement oracles is
that they concentrate on theCi j coefficients. This provides
a conservative analysis, but it can be too cautious, especially
with higher order basis functions. TheCi j coefficients are
usually bound with constant functions and hence so is the
radiosity function. Such a binding does not take into account
the capacity of higher order wavelets to model rapidly vary-
ing functions in a compact way. To take this into account,
we need to move the radiosity functioninsidethe refinement
oracle. In section3.1, we present a refinement oracle that
addresses this problem.

2.2.2. Visibility estimations

Discontinuities of the radiosity function and its deriva-
tives are only caused by changes in the visibility between
objects7. Therefore, great care must be taken when adding
visibility information to the radiosity algorithm.

As we have seen, we use a quadrature to compute the
Ci j coefficients. This quadrature requires several estimates
of the kernel functionK(x,y) and therefore of the visibil-
ity between pointsx and y. Computing a visibility sample

is much costlier than computing a kernel sample without
visibility. As a consequence, estimating the visibility be-
tween two patches is the most costly operation in wavelet
radiosity9. Several methods have been developed in order to
provide a quick estimate of visibility, sometimes at the ex-
pense of reliability.

The easiest method6, 5 assumes a constant visibility be-
tween the patches. The constant is equal to 1 for fully visible
patches, 0 for fully invisible patches, and is in]0,1[ for par-
tially visible patches. It is estimated by computing several
jittered visibility samples between the patches and averag-
ing the results.

Another method computes exact visibility between the
corners of the patches, and interpolates between these val-
ues for points located between the corners, using barycentric
coordinates.

Shadow masks16, 11 have also been used in wavelet radios-
ity computations. In theory, shadow masks allow the decou-
pling of visibility from radiosity transport, and therefore a
better compression of the radiosity transport operator, thus
reducing the memory cost.

All these methods attempt to approximate visibility by
computing less visibility samples than kernel samples, in or-
der to reduce the cost of visibility in wavelet radiosity. Ac-
cording to an experimental study of wavelet radiosity con-
ducted by Willmott13, 14 the result is a poor approximation of
the radiosity function, especially near shadow boundaries.

Another method is to compute exactly one visibility sam-
ple for each kernel sample. It has been used at least by
Gershbein4, although it is not explicitely stated in his paper.
According to our own experience, as well as Willmott ex-
tended study14, this method gives better visual results. Fur-
thermore, it gives more numerical precision. On the other
hand, it can introduce some artefacts, because the visibility
samples are forced to be in a regular pattern.

In our implementation, we used one visibility sample for
each kernel sample, because we were looking for numeri-
cal accuracy, and because the artefacts are removed by our
refinement oracle.

2.2.3. Memory usage

Since the computation of theCi j coefficients can be rather
long, they are usually stored once they have been computed,
so that they can be reused. The storage is done on the link
betweens andr.

An important problem with previous wavelet radiosity im-
plementations is the memory required for this storage. If we
use wavelet bases of the orderm, then we havemone dimen-
sional functions in the wavelet base. For two dimensions,
such as the surface of objects in our virtual scene, we have
m2 functions in the base. As a consequence, storing the inter-
action between two patches requires computing and storing
m4 Ci j coefficients.

c© The Eurographics Association and Blackwell Publishers 2000.
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Hence, the memory usage of wavelet radiosity grows with
the fourth power of the wavelet base used. Wavelets of order
3 will have a memory usage almost two orders of magnitude
higher than wavelets with 1 vanishing moment. In an exper-
imental study of wavelet radiosity, Willmott13 showed that
this memory usage was effectively prohibiting any serious
computation with higher order wavelets.

In 1998, Stamminger12 showed that it was possible to
eliminate completely the storage of the interactions in hier-
archical radiosity. His study was only made for hierarchical
radiosity, but it could be extended to wavelet radiosity, and
it would remove the worst problem of radiosity with higher
order wavelets. In section3.2, we review the consequences
of not storing links on the wavelet radiosity algorithm.

3. A novel approach to higher order wavelets in the
radiosity algorithm

Since experimental studies conducted with previous imple-
mentations of wavelet radiosity have shown that higher or-
der wavelets are behaving more poorly than Haar wavelets,
we need to review the key points of our implementation that
differ from previous implementations: the refinement oracle
and getting rid of interaction storage, along with the conse-
quences it has on the algorithm.

All the elements described in this section have been im-
plemented and tested thanks to our radiosity testbed soft-
ware, Candela15.

3.1. The refinement oracle

Instead of estimating the errors on the propagation coef-
ficients, we estimate the error on the propagated energy
directly. Our refinement oracle is quite similar to that of
Bekaert2, 3.

To estimate the errors on the radiosity function, we use
control points on the receiver. These control points are lo-
cated so that they provide meaningful information: they are
different from quadrature points, and their number depends
on the size of the receiver. Some of the control points are
located on the boundary of the receiver, in order to ensure
continuity with neighbouring patches.

Our refinement oracle is summed up in fig.1. The radios-
ity values at the control pointsBs→Pi are computed by direct
integration of eq.3 at pointx = Pi , using a quadrature. To
take the norm of the errors at the control points, we can use
any norm, such as theL1 norm, theL2 norm, theL∞ norm.
We have found that all these norms are giving similar results
for refinement.

3.2. Not using links and the consequences

In order to reduce the memory footprint of the radiosity algo-
rithm, we have chosen not to store links, as in Stamminger12.

for each interactions→ r :
compute the radiosity function on the receiver:Bs→r(x)
for each control pointPi

compute the radiosity at this control point directly:Bs→Pi

compare with interpolated value,
store the difference:
δi = |Bs→r (Pi)−Bs→Pi |

end for
take theLn norm of the differences:
δB = ‖δi‖n

compare with refinement threshold
end for

Figure 1: Our refinement oracle

Not storing links is some kind of a trade-off between mem-
ory and time: by not storing links, we are saving memory.
However, the information that has not been stored will prob-
ably have to be recomputed at some stage in the algorithm,
which will cost time.

Not storing links also has consequences on the structure of
the algorithm itself. The main consequence is on the choice
between gathering and shooting.

Gathering sends energy from all the patches to all the other
patches at each iteration. All the links are used during a
given iteration.

Shooting sends the unshot energy from one patch to all the
other patches. At a given point in time, only the links from
the shooting patch to all the patches are being used. The
shooting patch is then send to the bottom of the shooting
queue, and the links will not be re-used until it gets back
to the top of the shooting queue.

Therefore, if we chose not to store links, it makes more
sense to use shooting than to use gathering. But the reverse
is also true: if you use shooting instead of gathering, it also
makes more sense not to store links.

in gathering, the optimal link distribution for one iteration
can be computed by refining the link distribution from
the previous distribution, because the radiosity gathered
at one point can only grow with subsequent iterations.

in shooting, the energy carried along the links is only
the unshot energy at the shooting patch. Its distribution
changes completely for each use of the patch. As a conse-
quence, the optimal link distribution has no relation with
the links computed for previous iterations.

4. Comparison of several wavelet bases

In this section, we present our experimental comparison of
different wavelet bases. We start with a description of the
experimentation protocol in section4.1. We then present the
results of our experiments in section4.2. Discussion of these
results and comparison with previous studies follows in sec-
tion 4.3.

c© The Eurographics Association and Blackwell Publishers 2000.
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4.1. The experimentation protocol

4.1.1. The wavelet bases

We wanted to use our implementation of wavelet radiosity
for a comparison of several wavelet bases. We have used the
first three multi-wavelets bases :M1 (Haar),M2 andM3.

We use theMn multi-wavelets as they were previously
defined1, 5: the smoothing functions forMn are defined by
tensorial products of the firstn Legendre polynomials.

We have not used flatlets bases (Fn), because although
they haven vanishing moments, they are only piecewise con-
stant, and therefore do not provide a better approximation
than Haar wavelets with further refinement.

4.1.2. The test scenes

Our tests have been conducted on several test scenes, rang-
ing from simple scenes, such as the blocker (see fig.2(a))
to moderately complex scenes, such as the class room (see
fig. 2(d)). All our test scenes are depicted on fig.2, with their
number of input polygons.

4.1.3. Displaying the results

All the figures in this paper are depicting the exact results of
the computations, without any post-processing of any kind:
the radiosity function is displayed exactly as it has been com-
puted. Specifically, there has been no attempt to ensure con-
tinuity of the radiosity function, except in the refinement or-
acle. Similarly, we haven’t balanced or anchored the com-
puted mesh. So, for example, in fig.4(c), the continuity of
the radiosity function is due only to the refinement oracle
depicted in section3.1.

M3 wavelets can result in quadrically varying functions,
which can not be displayed on our graphics engines. To dis-
play these functions, we subdivide each patch into four sub-
patches, on which we compute four linearly varying func-
tions approximating the quadrically varying radiosity func-
tion.

4.1.4. Computing the error

In order to compute the computational error, we have com-
puted a reference solution, usingM2 wavelets, with a very
small refinement threshold. Furthermore, the minimal patch
area in the reference solution was 16 times smaller than
the minimal patch area in the computed solutions. We also
checked that with all the wavelet bases, the computed solu-
tions did converge to the reference solution.

We have measured the energetic difference between this
reference solution and the computed solutions. In order to
have comparable results on all our test scenes, this differ-
ence is divided by the total energy of the scene. It is this
ratio of the energetic difference over the total energy that we
call global error. Thus, a global error of 10−1 means there is

an energetic difference of 10 % between the energetic distri-
butions of the computed solution and the reference solution.

According to our experiments, this measure of global er-
ror is consistent, and gives comparable visual results on all
the test scenes. For example, a global error of 10−1 will
always give a poor result (see fig.3(a)), a global error of
10−2 will give a better result, but still with visible artefacts
at shadow boundaries (see fig.3(b)), and a global error of
10−3 will always give a correct result (see fig.3(c)). In our
experience, (see fig.3) the global error must be lower than
5.10−3 in order to get visually acceptable results.

As it has been pointed out12, we have also found that this
global error is closely correlated to the refinement threshold
on each interaction (thelocal error).

4.1.5. Experimentation details

In all our experiments, we have used the same computer, a
SGI Octane working at 225 MHz, with 256 Mb of RAM.

4.2. Results

4.2.1. Visual comparison of our three wavelet bases

The first test to conduct is whether higher order wavelets are
giving a better visual impression. In previous tests13, higher
order wavelets were unable to provide a correct approxima-
tion of the radiosity function, especially near shadow bound-
aries. Shadow boundaries are very important because they
have a large impact on the visual perception of the scene.

Our first experiment focuses solely on this problem. We
have computed direct illumination from an area light source
to a planar receiver, with an occluder partially blocking the
exchange of light. All wavelet bases were used with the same
computation time (66 s).

Fig. 4 shows the radiosity function computed for each
wavelet base, along with the mesh used for the computation.
Two elements appear clearly: higher order wavelets are pro-
viding a much more compact representation of the radios-
ity function, even near shadow boundaries, and the radiosity
function computed withM2 andM3 wavelets is smoother
than the function computed with Haar wavelets.

Haar wavelets are usually not displayed as such, but us-
ing some sort of post-processing, such as Gouraud shad-
ing. Fig.5 shows the result of applying Gouraud shading to
fig. 4(a). As you can see, although it can hide some of the dis-
continuities, Gouraud shading can also introduce some new
artefacts.

Judging from fig.4, higher order wavelets are better for
radiosity computations than lower order wavelets. This is
only a qualitative results and must be confirmed by quanti-
tative studies; that is the object of the coming sections (4.2.2
and4.2.3).

c© The Eurographics Association and Blackwell Publishers 2000.
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(a) Blocker (3) (b) Tube (5) (c) Dining room (402) (d) Classroom (3153)

Figure 2: Our test scenes, with their number of input polygons

(a) 10−1 (b) 10−2 (c) 10−3

Figure 3: Visual comparison of results for different values of global error

(a) Haar (b) M2 (c) M3

Figure 4: Visual comparison of results for our three wavelet bases
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Figure 5: Applying Gouraud shading to Haar wavelets
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Figure 6: Global error with respect to computation time (in s)
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4.2.2. Computation time

Fig. 6 shows the relationship between global error and com-
putation time for our four test scenes and our three wavelet
bases.

The most important point that can be extracted from
these experimental data is that with our implementation,
higher order wavelets are performingbetter than lower or-
der wavelets. They obtain results of higher quality, and they
are faster: to get a visually acceptable result on the classroom
scene (global error below 5.10−3), M3 wavelets use 104 s
(see fig.6(d)). In the same computation time, Haar wavelets
only reach a global error level of 10−2. This test scene is
our hardest test scene, with lots of shadow boundaries. It is
on such test scenes that higher order wavelets were behaving
poorly with previous experimentations13.

The advantage of higher order wavelets is more significant
on high precision computations and on complex scenes. The
more precision you need on your computations, the faster
they are, compared to lower order wavelets.

On the contrary, for quick approximations,M2 wavelets
are performing better thanM3 wavelets. The same applies
to Haar wavelets compared toM2 wavelets, for very quick
and crude approximations.

Each wavelet base has anarea of competence, where it
outperforms all the other wavelet bases: Haar wavelets are
the most efficient base for global error above 10−1 — which
corresponds to a simulation with many artefacts still visible
(see fig.3(a)).M2 wavelets are better than all the other bases
for global error between 10−1 and (roughly) 5.10−3, and
M3 wavelets are the best for global error below 5.10−3.

4.2.3. Memory use

The key problem with higher order wavelets in previous
studies13 was their high memory use, that effectively prohib-
ited any real computation. We have computed the memory
footprint of our implementation of wavelets for our four test
scenes and our three wavelet bases. Fig.7 shows the memory
used by the algorithm as a function of the global error.

As you can see, for high precision computations (global
error below 5.10−3), higher order wavelets actually have a
lower memory use than low order wavelets. The effect is
even more obvious on our more complex scenes (see fig.7(c)
and7(d)).

On the other hand, for low precision computations, this hi-
erarchy is reversed, and Haar andM2 wavelets have a lower
memory use. Once again, each wavelet base has an area
of competence, where it outperforms all the other wavelet
bases. For very crude approximations, Haar wavelets are the
most efficient with respect to memory use, then, for moder-
ately good approximations,M2 wavelets are the most effi-
cient, untilM3 takes over for really good approximations.

A very impressive result is the way the memory cost of

a given wavelet base degrades quickly if we try to bring the
global error level below a certain threshold. This effect ap-
pears very clearly on fig.7(c) and7(d). There seems to be
a maximum degree of precision for each wavelet base, and
the wavelet base can only conduct global illumination simu-
lations below this degree. Be aware, however, that the degra-
dation is made more impressive on fig.7 by the fact that
we are using a logarithmic scale for global error and a non-
logarithmic scale for memory use. Furthermore, the degrada-
tion is quite small when it is compared to the total memory
used: between 10 % and 20 %. Since the effect appears in a
similar way for all the wavelet bases used in the test we think
it could be a general effect, and apply to all wavelet bases.

Please note that the fact that higher order wavelets have a
lower memory use than lower order wavelets is actually quite
logical. Higher order wavelets are providing a more power-
ful tool for approximating complex functions, with a higher
dimensional space for the approximation. Furthermore, they
have more vanishing moments, so their representation of a
given complex function is more compact and requires less
coefficients. Our experiments are therefore bringing practi-
cal results in connection with theoretical expectations.

The fact that lower order wavelets are more compact for
low precision computations was also to be expected from
theory. Low precision computations are, by nature, not tak-
ing into account all the complexity of the radiosity function.
As a consequence, they provide a very simple function, that
is also easy to approximate, especially for simple wavelet
bases.

4.3. Discussion and comparison with previous studies

Despite the fact that we are reaching opposite conclusions,
we would like to point out that our study is actually consis-
tent with the previous study by Willmott13, 14.

In Willmott’s study, higher order wavelets were carry-
ing a strong memory cost, due to link storage. As a conse-
quence, radiosity computations with higher order wavelets
were restricted to low precision computations. According to
our experiments, for low precision computations, lower or-
der wavelets are indeed providing a faster approximation,
with a lower memory use.

Our study can therefore be seen as an extension of Will-
mott’s study to high precision computations. Such high pre-
cision computations were made possible only by getting rid
of links12. Once you have eliminated link storage, the mem-
ory cost of the radiosity algorithm is almost reduced to the
cost of mesh storage. The refinement oracle (see section3.1)
ensures that the mesh produced is close to optimal with re-
spect to the radiosity on the surfaces.

Also, by concentrating the oracle on the mesh instead of
the interactions, we are able to exploit the power of wavelet
bases functions to efficiently approximate functions. This re-
sults in a coarser mesh, both at places where the radiosity
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Figure 7: Memory requirements (in kB) with respect to global error

function has slow variations, such as an evenly lit wall, and
at place with rapid variations, such as shadow boundaries.

5. Conclusion and future work

We have presented an implementation of wavelets bases
in the radiosity algorithm. With this implementation, we
have conducted experimentations on several wavelet bases.
Our experiments show that for high precision computa-
tions, higher order wavelets are providing a better approx-
imation of the radiosity function, faster, and with a lower
cost in memory. Please note that our implementation is not
putting any disadvantage on lower order wavelets; for Haar
wavelets, our refinement oracle only uses a few tests and the
visibility estimation only requires one visibility test. Simi-
larly, the benefit of not storing links is independant of the
wavelet base.

Although in this paper we have only conducted tests on
relatively small test scenes (up to 3000 input polygons), our
implementation (Candela15) enables us to use higher order
wavelets on arbitrarily large scenes. Fig.8* shows a radios-
ity computation withM2 wavelets made with our imple-
mentation on a scene with 144255 input polygons. The com-
putations took 3 hours, and required approximately 2 Gb of
memory on 32 processors of a SGI Origin 2000. The com-
plete solution had approximately 1.5 million patches.

The optimal choice for radiosity computations depends
on the degree of precision required. Lower order wavelets
are better for low precision computations, and higher order
wavelets are better for high precision computations. Each
wavelet base corresponds to a certain degree of precision,
where it outperforms all the other wavelet bases, both for
the computation time and the memory footprint. Although
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our computations have been limited to Haar,M2 andM3
wavelets, we think that this effect applies to all the other
wavelet bases, such asM4, M5... and that for even more
precise computations,M4 would outperformM3, and so
on.

However, for moderately precise computations,M2
wavelets are quite sufficient. The precision level that corre-
sponds, in our experience, to visually acceptable results is at
the boundary between the areas of competence ofM2 and
M3, soM2 wavelets can be used.M2 wavelets also have
a distinct advantage over all the other wavelet bases: they
result in linearly varying functions that can be displayed di-
rectly on current graphics hardware (using Gouraud shad-
ing), as opposed to constant, quadric or cubic functions.

In our future work, we want to explore the possibility to
use several different wavelet bases in the resolution process.
In this approach, it would be possible to use Haar wavelets
for interactions that do not require a lot of precision, such as
interactions that do not carry a lot of energy, andM2, and
perhapsM3, M4..., wavelets for interactions that require a
high precision representation. We think that this approach
could be especially interesting with shooting since the first
interactions will carry a lot of energy, while later interactions
will only carry a small quantity of energy.

We also want to explore the possibility to use higher order
wavelets on non-planar objects. Since they have a better abil-
ity to model rapidly varying radiosity functions, they seem
to be the ideal choice for curved surfaces, such as spheres or
cylinders.
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Figure 8: Radiosity computation on a large scene (withM2 wavelets)
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Meshing: a Compact Representation for Radiosity
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Abstract
The radiosity method is used for global illumination simulation in diffuse scenes, or as an intermediate step in
other methods. Radiosity computations using Higher-Order wavelets achieve a compact representation of the
illumination on many parts of the scene, but are more expensive near discontinuities, such as shadow boundaries.
Other methods use a mesh, based on the set of discontinuities of the illumination function. The complexity of this
set of discontinuities has so far proven prohibitive for large scenes, mostly because of the difficulty to robustly
manage a geometrically complex set of triangles. In this paper, we present a method for computing radiosity that
uses higher-order wavelet functions as a basis, and introduces discontinuities only when they simplify the resulting
mesh. The result is displayed directly, without post-processing.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
I.3.5 [Computational Geometry and Object Modeling]:

1. Introduction

The radiosity method is a finite element method used for
simulating light exchanges between diffuse surfaces. As
such, it is used either for computing global illumination in
diffuse scenes or as an intermediate step in other global
illumination methods. Although other rendering methods,
such as Bi-Directional Path Tracing or Photon Mapping are
highly popular because they account for light exchanges be-
tween specular surfaces, many people still use radiosity be-
cause it offers the possibility to move the viewpoint in real-
time after illumination computations.

However, radiosity methods are difficult to manage. The
quality of the output is not always visually correct, and the
memory cost of the algorithm can be quite high, since it
needs to store a complete representation of the illumination
on all objects in the scene. Hierarchical methods are used
nowadays to reduce storage costs and computation time, and

† ARTIS is a research project in the GRAVIR/IMAG laboratory, a
joint unit of CNRS, INPG, INRIA and UJF
‡ LORIA is a joint unit of CNRS, INPL, INRIA, UHP and Univer-
sité Nancy 2.

among them wavelet methods have proven interesting. Us-
ing higher-order wavelets as the basis functions, it is possible
to approximate smoothly varying illumination with a small
number of patches, reducing the memory cost.

A constant problem with basic radiosity methods is their
misbehaviour near shadow boundaries. As most of these
methods use an axis-aligned hierarchical grid for their finite-
element computations, they are missing discontinuities that
are not aligned with the grid. Solving this problem requires
either using a finer grid size near shadow boundaries or
using finite elements aligned with the shadow boundaries,
calleddiscontinuity meshing. The former method increases
the memory cost, while the latter provides good quality re-
construction of illumination but the discontinuities are com-
plex, and managing them in a robust and efficient way is still
a research problem.

Since most higher-order wavelets are defined as tensor-
products of 1D basis functions, they are only properly de-
fined over parallelogram patches. As a consequence, they are
in theory incompatible with discontinuity meshing, which
produces complex polygons.

In this paper, we present an algorithm that combines
higher-order wavelets with discontinuity meshing. We use
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wavelets, defined on a regular subdivision in places where
they provide a good approximation, and we introduce dis-
continuities only in places where they reduce the complex-
ity of the mesh. This selection of effective discontinuities is
done during the refinement process, by the refinement ora-
cle. The mesh produced is still a regular grid, but some of its
patches are cut by discontinuities.

We use a fragment program to display quadric wavelets
directly. We are displaying the results of our illumination
computations immediately, without post-processing or final
gather. We are exploiting the fact that higher-order wavelets
with the proper refinement oracle result in apparently con-
tinuous functions after reconstruction, even in the absence
of a specific step to enforce this continuity.

This paper is organised as follows: in the following sec-
tion, we will review previous work on hierarchical – or
wavelet – radiosity and discontinuity meshing, as well as in-
tegrating them. Then, in section 3 we will present our algo-
rithm, and in section 4 we will present results and pictures
from our experimentations. Finally, we will conclude and ex-
pose future research directions.

2. Previous Work

The radiosity method was first introduced for global illu-
mination simulations by Goralet al. in 1984 [GTGB84].
It uses a finite element formulation of the rendering equa-
tion [KH84] for diffuse scenes, and gets a complete rep-
resentation of global illumination. The radiosity method
was later extended using a hierarchical formulation of
the finite element method [HS92, HSA91]. The hierar-
chical representation limits the complexity of the radios-
ity algorithm to O(n) instead of O(n2). This hierarchi-
cal formulation was later extended using a wavelet frame-
work [GSCH93, SGCH93].

It is possible to use wavelets of different order (piecewise-
constant basis, piecewise-linear basis, piecewise-polynomial
basis). Early implementations of higher-order wavelets
proved inefficient [WH97], until a complete analysis of the
wavelet radiosity algorithm [CAH00] showed that with the
right implementation, a good refinement oracle [BW96] and
efficient memory management [SSSS98] they were actually
more interesting than hierarchical piecewise-constant basis
functions for global illumination simulations, with smaller
memory costs and shorter computation times.

Piecewise polynomial wavelets are more costly for each
patch of the finite element formulation, requiring(k+ 1)2

coefficients for a wavelet basis made of polynomials of de-
greek. But they provide a better approximation of the illu-
mination function, resulting in a smaller number of patches.
The study by Cunyet al. [CAH00] showed that most of the
time, the reduction in the number of elements more than
compensates for the extra cost for each element, allowing
a faster computation of radiosity and a smaller memory cost.

However, many scenes on which we wish to compute
global illumination exhibit sharp discontinuities of the illu-
mination functions, for example shadows caused by point
light sources or small area light sources, or shadows caused
by occluders that are close to the receiver. Regular hierar-
chical basis of continuous polynomials are unable to model
such discontinuities. In the presence of these discontinuities,
most radiosity algorithms refine the hierarchy a lot, using
very small patches to approximate the radiosity function.
The result is that the number of patches used near the dis-
continuity is roughly independent from the order of the ba-
sis function. Since each patch stores(k+ 1)2 coefficients,
wavelet bases of higher-order polynomials end up being
more costly at these discontinuities.

Discontinuities of the radiosity function can be
computed using geometrical methods [LTG92, Hec92]
[DF94, SG94, GS96, DDP02]. An adaptive mesh based on
these discontinuities provides a better approximation of
the radiosity function [LTG92, Hec92]. Radiosity methods
based on the discontinuity mesh have been proposed, either
with classical radiosity [LTG92, Hec92, Stu94, DF94] or
with hierarchical radiosity [LTG93, DS96, DDP99]. All
these methods start with the complete set of discontinuities,
triangulating it and refining it as necessary. The entire set
of discontinuites is quite large, giving a very complex mesh
as a starting point. Managing this mesh proves compli-
cated, and the associated memory cost is not neglictible.
[DS96] used a regular mesh for visible areas, but kept the
triangulated set of discontinuities for penumbra regions.

Several of the discontinuities in the discontinuity mesh
are not visible in the radiosity function. Simplifica-
tions of the discontinuity mesh have been suggested
[DF94, HWP97, Hed98]. But as they are computing discon-
tinuites before the illumination computations, this selection
uses only geometrical tools and has not access to illumina-
tion information.

In our algorithm, however, we use a regular subdivision
as often as possible, and we only introduce discontinuities
if they result in a simpler mesh. Significative discontinuities
are thus naturally selected during the hierarchical refinement
process.

A single paper has used Discontinuity Meshing to-
gether with wavelet radiosity with higher order-basis func-
tions [PB95]. Their study is quite complete, but they used
only very simple scenes for their tests: a single patch with a
single discontinuity. As a consequence, they could not iden-
tify several problems that only occur in larger scenes, such
as intersecting discontinuities or the cost of computing push-
pull coefficients: their method would not scale to scenes
much bigger. They tried to merge wavelets with disconti-
nuities by finding a wavelet-compatible parametrization of
the patch that followed the discontinuity. This causes a com-
plex computation of push-pull coefficients for each hierar-
chical level. Also, building such a parametrization is not al-
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ways possible, in the case of intersecting discontinuities. Fi-
nally, their approach does not address the problem of man-
aging the set of discontinuities. Our algorithm, by contrast,
keeps the same parametrization for all patches in the hier-
archy, making it easy to compute push-pull coefficients. We
can deal with multiple discontinuities and intersecting dis-
continuities. Each discontinuity inserted in the hierarchy is
treated only at its hierarchical level.

3. Algorithm

In this section, we present our algorithm for merging ra-
diosity using higher-order wavelets with meshing discon-
tinuities. We start with a short summary of the Hierarchi-
cal Radiosity algorithm, and how it has been adapted to
higher-order wavelets (section 3.1). Then we present our al-
gorithm for merging the wavelet bases with discontinuities
(section 3.2). Some finer points of the implementation are
explained in section 3.3.

3.1. Wavelet Radiosity

3.1.1. The Hierarchical Radiosity Algorithm

In Wavelet Radiosity, each surface of the scene carries a hi-
erarchical representation of illumination, using the wavelet
basis. This representation is computed iteratively, through
three essential steps:

• refinement of interactions,
• propagation of energy,
• push-pull.

At the beginning of the algorithm, we select the surface
with the largest unshot energy, and indentify all surfaces that
are potentially visible from it. We establish interactions be-
tween the shooting surface and all these receiving surfaces.

We thenrefinethese interactions, in a hierarchical manner.
At each point in time, we consider the current multi-scale
representation of the interaction, and check whether it is ac-
curate enough, according to therefinement oracle. If not, we
refine the interaction, by subdividing either the shooting sur-
face or the receiver.

Once we are satisfied with the level of precision on the
interaction, wepropagatethe energy by sending the unshot
energy of the shooting surface to the receivers, updating the
wavelet coefficients on the receivers.

After these steps, the unshot energy of the shooting sur-
face is set to zero, and we pick the surface with the largest
unshot energy as the next shooting surface.

After the propagation, the different levels of the hierarchy
on each surface have received energy, but there isn’t a con-
sistent representation of the energy received at all hierarchi-
cal levels. This representation must be reconstructed before
we can use the hierarchical representation for shooting or

for display. It is done during thepush-pullstep. Thepush-
pull step is a recursive procedure, where parent nodes add
their energy to their children, and the children’s energy is
collected in each parent and averaged.

3.1.2. Using Higher-Order Wavelets

Using higher-order wavelets, such as Multi-Wavelets (M2
andM3) [Alp93], does not change the algorithm, except in
these details:

• each patch carries a wavelet representation of the radiosity
function. TheMn basis is made of polynomials of degree
n−1, so each patch hasn2 basis functions and storesn2

coefficients.
• The interaction between two patches implies computing

the influence that each wavelet coefficient on the shooting
patch has on every wavelet coefficient on the receiving
patch. Each of these influence coefficients is expressed as
an integral, which is approximated using quadratures. As
there aren2 coefficients on each patch, we must evaluate
n4 integrals.

• The push-pull step implies computing the influence that
each wavelet coefficient on the parent patch has on ev-
ery wavelet coefficient on the children patches, and recip-
rocally. These influences are also expressed as integrals.
These integrals only depend on the respective geometry
of the parents and children patches in the hierarchy. For
a regular subdivision, the push-pull coefficients are there-
fore constant on the hierarchy, and are pre-computed. For
irregular subdivision, the push-pull coefficients must be
recomputed at each level, a potentially costly step.

• As 2D wavelets are usually defined as tensor-products
of 1D wavelets, they are only defined over a parallelo-
gram. Researchs have shown how to extend this definition
for complex planar surfaces [HCA00] and for parametric
curved surfaces [ACP∗01].

• Given the large number of coefficients for each interaction
(n4, as much as 81 coefficients for polynomials of degree
2), it is important to avoid storing them. Once we have
treated an interaction, we delete all its coefficients. This
strategy can result in computing the same interaction co-
efficients twice, but the gain in memory largely offsets the
potential loss in time [SSSS98, CAH00].

3.2. Combining Wavelets and Discontinuity Meshing

3.2.1. The algorithm

Our algorithm works as follows:

• For each shooting surface, for each receiving surface, we
compute the set of discontinuities on the receiving sur-
face.

• We proceed with the usual refinement of interaction, using
the oracle and a regular subdivision.

• When the refinement oracle identifies that the interaction
should be subdivided only because of a discontinuity, it
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(a) (b) (c)

Figure 1: A patch cut by a discontinuity (a) results in two children patches. For each children patch, we identify the enclosing
parallelogram (b). We conduct standard wavelet radiosity on each parallelogram (c).

introduces adiscontinuity-based subdivisioninstead of a
regular subdivision.

• Discontinuity-based subdivision works by:

– Computing the intersection of the current patch with
the discontinuity.

– For each part of the subdivided patch, identify the
smallest parallelogram that encloses it.

– Apply our radiosity algorithm using a regular subdivi-
sion over each parallelogram (see Figure 1).

• Once we are satisfied with the level of refinement for this
interaction, we propagate the energy, then erase the dis-
continuities and the interaction coefficients. Discontinu-
ities that have not been used for subdivision are forgotten.

We want to use the regular subdivision as much as possi-
ble for its robustness and simplicity. Our algorithm only in-
troduces discontinuities if they are considered important by
the refinement oracle. Smooth transitions that can be prop-
erly approximated by the wavelet basis will not be intro-
duced in the hierarchy.

In the following paragraphs, we review each step of this
algorithm in detail: refinement oracle, discontinuity-based
subdivisions, push-pull over a discontinuity, intersection of
discontinuities.

3.2.2. Refinement oracle and selection of discontinuities

We use the refinement oracle described in previous pub-
lications [BW96, CAH00]: for each patch, we select test-
ing points, where we compute radiosity directly. The val-
ues computed are compared with values obtained using the
wavelet basis. If the norm of the differences is above the
refinement threshold, the oracle concludes that we should
refine.

This oracle works well, especially if the testing points are
chosen with a good heuristics. By putting some of the test-
ing points on the boundaries of the patches, we have found
that we obtain a representation of radiosity that looks con-
tinuous without having to ensure this continuity in post-

processing (see [CAH00] and Figure 2 for an example using
M3 wavelets).

In our algorithm, we do two computations of the refine-
ment oracle: one with standard visibility computations, and
one assuming full visibility. If their results differ, visibil-
ity is the only reason for subdivision and we introduce a
discontinuity-based subdivision.

Subdivisions are thus only introduced in the hierarchy
if they actually cancel further refinements on at least one
side, resulting in a more compact hierarchy. For point light
sources, introducing a subdivision generates a coarse mesh
on both sides of the subdivision (see Figure 2(a)). For area
light sources, introducing subdivisions creates a coarse mesh
in fully lit areas and in the umbra, while the penumbra is
more refined (see Figure 2(b)).

For stability and robustness, a discontinuity is introduced
only if the intersection between the discontinuity and the
current patch is simple enough. Thus our algorithm only has
to manage simple patches and surfaces. For complex occlud-
ers casting a combination of simple and complex disconti-
nuities, only the simple discontinuities are introduced in the
mesh (see Figure 11).

In our implementation, we have used the following crite-
ria for selecting simple discontinuities: at least one of the
patches resulting from the discontinuity-based refinement
must be convex, and the number of vertices in each polygon
remains below a certain threshold.

3.2.3. Discontinuity-based subdivisions

Once we have selected a patch for discontinuity-based sub-
division, we compute the intersection between the patch and
the discontinuities, resulting in two separate patches. Most
of the time, these sub-patches are neither parallelograms nor
triangles. For each of the sub-patches, we build the smallest
enclosing parallelogram (see Figure 1). We then use these
enclosing parallelograms instead of the patches in the radios-
ity algorithm as we would use standard patches:

• For radiosity reception, the enclosing parallelogram is
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(a) Point light source (b) Area light source

Figure 2: M3 (quadric) wavelets with discontinuity meshing on simple scenes

treated as a standard receiver. It is subdivided normally,
using regular subdivision.

• For radiosity emission, only the actual sub-patch is al-
lowed to emit radiosity; other parts of the enclosing par-
allelogram are not allowed to emit. Following previous
research [HCA00] we do this through the quadrature
weights, during the computation of Gaussian quadratures.
We see each quadrature weight as the representative of an
area of influencefor the quadrature point (see Figure 3).
We modulate the quadrature weight by the percentage of
this area of influence that is inside the actual sub-patch.

• For push-pull, we use the standard push-pull coefficients
since we have a standard subdivision.

3.2.4. Push-Pull Coefficients over a discontinuity

On most steps of the radiosity algorithm, our method uses
classical methods. The main difference lies in the push-pull
step over the discontinuity.

The enclosing parallelograms of the children patches are
overlapping, and we need the push-pull step to compensate
for this. Let us assume a patchp has been subdivided into
two children patchesp1 andp2. The children patchespi are
enclosed into parallelogramsei . Each of the patches have its
own set of wavelet basis functions:φ j on p, φi

j on ei . The
radiosity function is expressed as:

Bp(x) = ∑
j

α j φ j (x)

Bei (x) = ∑
j

αi
j φ

i
j (x)

3.2.4.1. Push Coefficients:For the push step, we need to
project Bp on the basis functions of the childrenei . The
wavelets coefficients of the projection will be added to the
wavelet coefficients on each childei . Since, on each patch,
wavelets functions form an orthonormal basis, wavelet coef-
ficients are expressed as the scalar product of the radiosity
function with the basis functions:

αi
j = 〈Bei |φ

i
j〉i

where the subscripti on the dot product expresses the fact
that the integration takes place onei . We are looking for the
contribution ofBp to theαi

j , pushij :

pushij = 〈Bp|φi
j〉i

= 〈∑
k

αkφk|φ
i
j〉i

= ∑
k

αk〈φk|φ
i
j〉i

= ∑
k

αkC
i
k j

The push coefficients,Ci
k j, only depend on the basis func-

tions and on the relative geometry ofp andei . We have an
integral expression for the push coefficients:

Ci
k j = 〈φk|φ

i
j〉i =

Z

ei

φk(x)φ
i
j (x)dx

3.2.4.2. Pull coefficients: For the pull step, we need to
combine together the radiosity functions on patchespi , and
express this radiosity on the wavelet basis for patchp. As
the ei patches are overlapping, we restrict the definition of
Bei to its support. We use the characteristic function ofei ,
δei , defined as being equal to 1 onei and 0 everywhere else.

Combining together the radiosity functions computed on
the children gives us:

Be1(x)δe1(x)+Be2(x)δe2(x) = ∑
i

∑
j

αi
j φ

i
j (x)δei (x)

The pull step projects this combined function on the wavelet
basis forp:

pullk = ∑
i

∑
j

αi
j〈φ

i
j δei |φk〉

= ∑
i

∑
j

αi
jD

i
jk

The pull coefficients,Di
jk depend on the geometry of the

subdivision:

Di
jk = 〈φi

j δei |φk〉 =
Z

p
φi

j (x)δei (x)φk(x)dx
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Figure 3: The weights of the quadrature points can be seen as the area of azone of influence.

?

Figure 4: A non-convex patch cut along a discontinuity can
result in two children whose enclosing parallelograms do
not cover the enclosing parallelogram of the parent.

3.2.4.3. Computation of push-pull coefficients For the
push-pull step over the discontinuity, we have an integral
expression, which we approximate using Gaussian quadra-
tures. As we are integrating a discontinuous function (δek),
we might have accuracy problems in the computation. We
compensate by using a large number of sampling points.
Also, once we have computed the coefficients for one patch,
we check that they are consistent with each other, and that
there is no creation or destruction of energy during the push-
pull step. Should we detect an inconsistency, we recompute
them with more precision.

Push-pull coefficients are then stored on the hierarchy. Be-
cause these special push-pull coefficients only happen once
for each discontinuity-based subdivision, we can afford to
spend some time computing them.

3.2.5. Intersection of several discontinuities

The patches resulting from a discontinuity-based subdivi-
sion are not necessarily convex. If a non-convex patch is cut
by another subdivision, the enclosing parallelograms of the
children do not cover the enclosing parallelogram of the par-
ent patch (see Figure 4).

This configuration appears when discontinuities from two
light sources intersect each other, or when the umbra and
penumbra boundaries touch each other, for an occluder that
is in contact with the receiver.

When it appears, it causes the push-pull coefficients to

be incomplete in their definition. To account for this, we
extend the enclosing parallelograms of the children so that
their union covers the enclosing parallelogram of the parent
patch. Except for this small point there is no special case
in our algorithm for dealing with several light sources and
intersecting discontinuities (see Figure 5).

3.3. Implementation details

In this section, we review implementation details of our al-
gorithm. The points described here are notessentialto our
algorithm; others could use different approaches,e.g. for
computing discontinuities, or for handling visibility queries
in radiosity computations. However, the approach we used to
solve these problems can be interesting to other researchers.

We have used non-conventional solutions for computing
discontinuities, in the refinement oracle, for visibility queries
and for displaying results:

Finding Discontinuities: We only need the set of discon-
tinuities for the interaction currently being refined. We
compute extremal discontinuities (umbra and penumbra
boundaries), using a method based on theGLU Tesse-
lator [SWND03]. Our method identifies EV, VE and
EEE events, converts these events into 2D polygons cor-
responding to their intersection with the plane of the re-
ceiver, then uses theGLU Tesselator to compute the
union and the intersection of these 2D polygons. Our al-
gorithm for finding discontinuities is not complete (it can
miss some discontinuities) but it is robust and it finds the
most important discontinuities.
Umbra and penumbra boundaries are not necessarily lin-
ear: on EEE evetns, parts of them can be conic curves.
Our algorithm deals with such conics in a straightforward
manner.
Once we have computed the umbra and penumbra con-
tours, we have to answerposition queries: “is this point
inside the umbra or not?”. We store the contours in an ar-
rangement of line segments, using trapezoidal maps(see,
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(a) Point light sources (M3 wavelets) (b) Area light sources (M3 wavelets)

Figure 5: Combining together several discontinuities (both scenes have three light sources, red, green and blue, located in a
triangle above the cube).

e.g. [BDS∗92, CGA]). This randomized data structure an-
swers our positions query in average timeO(logn), with
creation timeO(nlogn) and memory costO(n).

Handling Discontinuites in the Refinement Oracle: The
refinement oracle takes sampling points on the receiving
patch. Some sampling points can lie on a discontinuity,
which makes their exact value unknown. To avoid
unnecessary refinement, points lying on a discontinuity
can take a different value in the oracle depending on the
patch being considered.

Handling Visibility Queries: In our radiosity computa-
tions, we need the percentage of the light source that
is visible from the receiving points. Previous implemen-
tations used a geometric data-structure, theBackprojec-
tion [DF94] to compute an exact value of this percentage.
We are computing it instead using an OpenGL extension,
OcclusionQuery [ARB], which gives us the percent-
age of the pixels of the light source that are visible from
the receiving point. In our experiments, occlusion queries
are more robust than the geometric data structure while
having the same speed, and they are much faster than cast-
ing rays, while giving more precise results.

Displaying Results: M3 wavelets give quadrically varying
functions; they are displayed using a small fragment pro-
gram (10 lines of code). Linear interpolation from the
graphics hardware (Gouraud shading) is not perfect for
M2 wavelets, which are bilinear functions. It is possi-
ble to replace this linear interpolation by a small fragment
program.

4. Experimentations and Results

4.1. Experimentation protocol

Test scenes:We have used two different test scenes: the
Cabin, from Radiance set of test scenes, and Room 523
from the Soda Hall model. For each scene, we used either
point light sources or area light sources, giving a total of
four test scenes. On all test scenes, we computed direct

and indirect illumination. Pictures of the test scenes are
available in Figures 7 and 13 (see color plates).

Wavelet Bases:We have tested our algorithm with the first
three multi-wavelets bases:M1 (Haar),M2 (piecewise-
linear) andM3 (piecewise-quadric). In the pictures, Haar
wavelets are displayed after a post-processing step to en-
sure continuity,M2 wavelets are displayed using stan-
dard linear interpolation from the graphics hardware and
M3 wavelets use a fragment program for the quadrically
varying part.

Material: All computations were done on the same com-
puter: a 2.4 GHz Pentium IV, with 1Gb memory and an
NVIDIA GeForce FX 5600.

4.2. Visual comparison for point light sources

The first reason to use discontinuity meshing is the quality
of the illumination computed. Adapting the mesh to the dis-
continuities produces a radiosity function that looks pleasing
to the eye.

The leftmost columns of Figures 6 and 12 show a side-
by-side comparison of the different wavelet bases on a spe-
cific detail of the Cabin test scene, with a point light source.
All pictures were generated with the same computation time
(25 s) to give a fair comparison of the different wavelet
bases. Without discontinuity meshing, the most satisfying
representation is obtained withM2 wavelets, but artefacts
are clearly visible along the discontinuity line; Haar andM3
wavelets are visually not acceptable within the prescribed
time frame; they would eventually achieve a satisfying re-
sult, but for a longer computation time.

With discontinuity meshing, all wavelets bases achieve a
visually pleasing result. Our algorithm for merging disconti-
nuities with wavelets thus achieves a visually better result in
the same computation time.

We did a similar comparison for Room 523 of the Soda
Hall. Figure 8 shows the pictures obtained with the differ-
ent wavelet bases on a detail of the room. All pictures were
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Figure 6: Wireframe version of simulation for the Cabin test scene. See also the color plates.
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Figure 7: Wireframe version of our test scenes after simulation withM3 wavelets. See also the color plates.
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(a) Haar+DM (b)M2+DM (c)M3+DM

(d) Haar (e)M2 (f) M3

Figure 8: Visual comparison of the different wavelet bases for a point light source. All pictures used roughly 190 s computation
time.

generated with approximately the same computation time
(190 s).

From a distant point of view, all the pictures are of compa-
rable quality. On a large scene like this, with a high number
of discontinuities, the time spent estimating the discontinu-
ities and dealing with them becomes equivalent to the time
it takes to do regular subdivisions.

However, when we look closely at the shadow boundaries,
ringing artefacts and staircase effects become clearly visible
(see the full resolution inserts).

We also compared the memory costs for both versions of
the program (with discontinuity-based subdivision and with-
out). Figure 9 shows the memory costs for all three wavelet
bases, for the pictures on Figures 6, 12 and 8. On a scene
with a large number of discontinuities, such as Room 523,
our algorithm results in an important gain in memory costs.
Each discontinuity introduced replaces a large number of
regular patches, resulting in a net gain. On the Cabin test
scene, with the prescribed time limit, the refinement was not
pushed to the same levels. As a consequence, the memory
gain is not as strong.

In short, our algorithm for merging discontinuities with

higher-order wavelet bases always gives better results than
existing algorithms, with a smaller memory cost.

4.3. Visual Comparison for Area Light Sources

The rightmost columns of Figures 6 and 12 show the same
comparison of the different wavelet bases for the same detail
of the Cabin test scene, this time using an area light source.
All pictures were generated with approximately the same
computation time (240 s). This time, the benefits of using the
discontinuity-based approach appear very clearly. All three
wavelet bases greatly outperform the non-discontinuity-
based versions. This is because computing the discontinu-
ities speeds-up the visibility computations, the most ex-
pensive step in hierarchical radiosity. Within discontinuity-
based wavelet methods,M2 andM3 wavelets produce the
nicest result.

For comparison, Figure 10 shows the memory costs for
all wavelet bases on this test scene. Notice that this time,
the memory cost is biggerwith discontinuity meshing than
without.

This is a side effect of our comparison method: the time
given for the simulation was much too short for the system
without discontinuities. It has just computed a crude ver-
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Figure 9: Memory costs (in Kb) for simulations on our test
scenes, with point light sources.
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Figure 10: Memory costs (in Kb) for simulations on the
Cabin test scene, with an area light source.

sion of illumination. If we give it more time for simulation,
it eventually computes a nice version of the illumination,
at a higher memory cost. Note that the memory cost with-
out discontinuities increases with the order of the wavelet
base. This is consistent with previous research [HCA00]:
for crude estimates of the illumination, the memory cost in-
creases with the order of the wavelet base, while for high-
quality estimates, the memory cost decreases with the order
of the wavelet base.

4.4. Selective choice of discontinuities

In places where the radiosity is smoothly varying, our al-
gorithm can choose not to introduce discontinuities, keep-
ing the regular subdivision. This effect appears clearly in the
wireframe representations of our test scenes (see the right-
most column of Figures 6 and 12, and Figure 7).

Figure 11 also shows a detail of the Room 523 test scene
(with an area light source) where complex discontinuities
exist, but were not introduced in the mesh. This behaviour is
more likely to occur with area light sources, which produce
smoothly varying illumination, than with point light sources,
where there is always aC0 discontinuity at a shadow bound-
ary.

4.5. Influence of the minimal area parameter

An important issue in the practical use of radiosity algo-
rithms is the choice of parameters. A bad choice of the pa-
rameters results in a long computation time or a simulation
that is not visually pleasing – sometimes both.

The minimal area for patches is one of these parame-
ters. Without discontinuity-based refinement, this minimal
area is reached for many patches on all sharp discontinuities
(see the wireframe representations of the test scenes, in Fig-
ure 6 and additional materials). A variation of this parameter
has important consequences on the computation time, on the
memory cost and on the quality of the result. Dividing this
minimal area by 2 results in twice as many patches being
used to represent each sharp discontinuity, potentially dou-
bling the computation times and memory cost.

With discontinuity-based refinement the minimal area is
not reached, except in places where discontinuities are too
complex. Hence, a variation of this parameter has little con-
sequences on the computation times and memory costs. Our
algorithm has almost cancelled the influence of the mini-
mal area parameter. The user of our radiosity system has one
main parameter, the maximum value of the error on each in-
teraction. The minimal area still has an effect on the quality
of the simulation, computation time and memory cost, but it
is a minor effect.

5. Conclusion and Future Directions

In this paper, we have presented a new algorithm for ra-
diosity computations, that combines higher-order wavelets
with discontinuity meshing. Our algorithm uses regular sub-
division for wavelets where it is practical, and switches to
discontinuity-based subdivision where discontinuities exist.
Only discontinuities that are important in the computation of
the illumination solution are actually introduced in the mesh.
This results in a compact representation of radiosity, with a
good compromise between quality and cost.

This representation can be displayed directly on the
screen, or it can be used as a starting point for more com-
plete illumination computations, such as Monte-Carlo illu-
mination.

Our algorithm is robust enough to handle complex discon-
tinuities. It automatically discards discontinuities which are
not important enough for the radiosity computations, provid-
ing a good way to manage the complicated set of disconti-
nuities.

In future work, we want to combine our algorithm
with a robust computation of visibility discontinuities
(e.g. [DD02]). We also want to combine our work with sep-
arate works allowing higher-order wavelet radiosity compu-
tations on curved surfaces [ACP∗01] and triangular meshes.

In a separate direction of research, although our algorithm
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(a) (b)

Figure 11: Our algorithm only inserts discontinuities that are perceived as useful by the refinement oracle (M3 wavelets).

only inserts discontinuities as they are needed in the refine-
ment process, it starts by computing all potential discontinu-
ities for the current interaction, a costly preliminary step. We
will explore the possibility to suppress this step, using stan-
dard refinement but detecting inside the refinement oracle
that subdivision is probably caused by a discontinuity, then
only computing and inserting this discontinuity in the mesh.
This would reduce the computation cost of our algorithm. In
our experiments, almost all the discontinuities caused by in-
direct lighting are not important enough to justify their inser-
tion in the hierarchy. It is therefore not practical to compute
them in advance.
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Figure 12: Visual comparison of results for the Cabin test scene. See also figure 6 for wireframe representation.
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Figure 13: Our test scenes (all figures withM3 wavelets). See also figure 7 for wireframe representation.
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Abstract

We address in this paper the issue of computing diffuse global illumination solutions for animation sequences. The

principal difficulties lie in the computational complexity of global illumination, emphasized by the movement of

objects and the large number of frames to compute, as well as the potential for creating temporal discontinuities

in the illumination, a particularly noticeable artifact. We demonstrate how space-time hierarchical radiosity, i.e.

the application to the time dimension of a hierarchical decomposition algorithm, can be effectively used to obtain

smooth animations: first by proposing the integration of spatial clustering in a space-time hierarchy; second, by

using a higher-order wavelet basis adapted for the temporal dimension. The resulting algorithm is capable of

creating time-dependent radiosity solutions efficiently.

Keywords: global illumination, animation, hierarchical radiosity, clustering, wavelets.

ACM CCS: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

Global illumination techniques have reached the stage where

they allow the calculation of high-quality images of three-

dimensional scenes, complete with subtle lighting and inter-

reflection effects. It is therefore natural to try and use them

for the production of animation films, or more generally in

all lighting jobs related with special effects, such as combin-

ing synthesized elements with live action film footage. Un-

fortunately, global illumination techniques remain typically

expensive to use, even more so in the case of frame-by-frame

lighting calculations.

In this paper, we present a fully developed version of the

space-time hierarchical radiosity, an algorithm aimed at com-

puting view independent global illumination simulations for

animated scenes. It works with scenes containing moving

solid objects, whose trajectory are known beforehand and

computes a hierarchical radiosity solution for the entire ani-

mation, instead of frame-by-frame.

The hierarchical formulation for radiosity is extended by

introducing a fourth dimension, time, along with the three

spatial dimensions. All four dimensions are treated in the

same way, meaning that we can refine an interaction either

in time or in space. This results in few computations being

done in areas where there is little temporal variation of the

illumination, while areas with rapid variation of the illumi-

nation will be computed to full precision. The hierarchical

formulation guarantees a compact representation of the tem-

poral variations of the radiosity function: as a result, the en-

tire animation is computed much faster than by performing a

complete radiosity solution for each frame.

In a way similar to the original Hierarchical Radiosity al-

gorithm [1], the efficiency of the space-time hierarchical ra-

diosity algorithm depends on the depth of the space-time hi-

erarchy built during computations: the deeper the hierarchy,

the more efficient the algorithm. This suggests that it should

prove especially beneficial for complex scenes.

We have previously presented a preliminary version of the

space-time hierarchical radiosity algorithm [2]. We present

here a fully developed algorithm. In particular, two major

issues are addressed: first, we have modified the algorithm so

that it uses linear wavelets for the time dimension, to improve

c© The Eurographics Association and Blackwell Publishing Ltd
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the temporal continuity of the animations produced. Second,

we have combined space-time radiosity with clustering, thus

enabling the algorithm to work more efficiently and on larger

scenes. This allows us to use this algorithm in a range of

complexity where its benefits can be fully realized.

The paper is organized as follows. In the next section, we

briefly discuss previous work in time-dependent illumination

of animated scenes, and review the shortcomings of our pre-

liminary approach. Then, in Section 3, our fully developed

algorithm is given in detail. In Section 4, we provide an anal-

ysis of the performances of space-time hierarchical radiosity,

compared to our previous approach as well as frame-by-frame

computations. Finally, in Section 5, we draw our conclusions

and trace directions for future work.

2. Background and Motivations

2.1. Global illumination algorithms for animations

Several algorithms to compute global illumination images

have been proposed since the pioneering work of Goral et al.

[3]. As the performance of the said algorithms and the com-

puting power of graphics workstations improved, several

propositions have been made to extend these algorithms

and reduce the overwhelming cost of computing globally il-

luminated animations. Two classes of applications can be

distinguished:

� Interactive methods, which render new solutions quickly,

usually by reusing previous computation results as much

as possible. They aim at offering as fast a feedback as

possible in response to changes made by the user. In-

teractive methods have been developed for Hierarchical

Radiosity [4,5], Path Tracing [6,7] and Particle Tracing

[8,9,10,11].

� Offline methods, where the objects movements are sup-

posed continuous and known a priori. They aim at render-

ing high-quality animations, and therefore should ensure

a constant quality. Global Monte Carlo methods [12] and

Particle Tracing [13] algorithms have been proposed to

compute high-quality global illumination animations.

A study of the current state of the art for both types of ani-

mated global illumination algorithms can be found in Damez

et al. [14]. In this section, we discuss briefly only the methods

allowing the computation of higher-quality animations.

Surprisingly, the case of high-quality animations has re-

ceived little attention when compared to the amount of work

devoted to interactive algorithms in the literature. Indeed,

most interactive algorithms could be used to compute a movie

sequence. However, the quality of the resulting animation

may not always be satisfying, as these methods were de-

signed to satisfy real-time constraints instead of animation

quality criteria.

In particular, the accumulated errors due to the incremen-

tal nature of most interactive algorithm may cause distract-

ing artifacts. The resulting frames quality may seem accept-

able when considered separately. Nevertheless, discontinu-

ities in the shading of surfaces may appear between two

consecutive frames. The interactive global illumination al-

gorithm proposed by Wald et al. [10], though it recomputes

a complete global illumination solution for each frame in-

dependently, is fast enough to converge to a good quality

view-dependent solution within a couple seconds. However,

in order to avoid light flickering due to its stochastic na-

ture, it requires to use the same random seeds from one

frame to the other, which only ensures temporal continu-

ity of lighting for light paths that do not intersect moving

objects.

It also seems natural to try to capitalize on the knowledge of

objects movement to enhance the quality of the rendered ani-

mation. Therefore, it makes sense to consider high-quality an-

imations rendering as a separate problem, and to develop al-

gorithms specifically designed to solve it. Myszkowski et al.

[13] extended the density estimation photon-tracing algo-

rithm to the case of animated scenes, allowing the use of

photons for several consecutive frames. The decision to ex-

tend or contract the segment of time during which a given

sample is valid is based on a perception-based Animation

Quality Metric. It is used to measure the perceived dif-

ference between consecutive frames, and therefore reduce

the flickering which results from the stochastic noise. How-

ever, to this date, this method is based on a fixed mesh

and lack some kind of adaptive refinement scheme. There-

fore, the spatial resolution of the solutions computed is

limited.

Martin et al. [15] proposed a two pass algorithm based on

hierarchical radiosity. During the first pass, a coarse hierar-

chical solution for the complete animation is computed incre-

mentally. Then during the second pass, the resulting mesh and

link structure is used to efficiently perform final gathering,

assigning to each space-time mesh element a high-resolution

texture movie representing the radiosity of this patch during

the corresponding interval of time. Since this algorithm ef-

ficiently solves the problem of high-quality final gathering

for animated scenes, which our approach does not address,

both methods can be seen as complementary. In particular,

the algorithm of Martin et al. does not make use of a cluster

hierarchy during the first pass, which limits its application to

very simple scenes. However, we show in Section 3.3 how to

solve this particular issue. As a consequence, coupling both

approaches seems promising.

2.2. Previous work on the space-time hierarchical

radiosity algorithm

In order to reduce the cost of diffuse global illumination

computations for animations, we introduced in a previous
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publication [2] the space-time hierarchical radiosity algo-

rithm. Our preliminary algorithm lacked several key features

that would enable its use on scenes with complex geometry

or lighting condition. In particular, it did not feature a way

to extend the object hierarchy above the surfaces level (an

approach that is commonly referred as clustering [16,17]).

Moreover, distracting “jumps” in the illumination could

appear in scenes where important changes in indirect lighting

occur along time. Similar discontinuities can be observed

in the spatial dimension for the classical static Hierarchical

Radiosity algorithm (cf. Figure 1), when the refinement oracle

used is based only on a global evaluation of the error. Oracles

designed to take into account the distribution of the error

on the receiving elements can remove such discontinuities

[18,19].

Additionally, the piecewise constant function basis we

used did not allow a proper distribution of the approximation

errors on the mesh elements. As a consequence, low-intensity

light exchanges, such as indirect bounces, were either insuffi-

ciently refined, or overly refined when the refinement thresh-

old was reduced.

We demonstrate such discontinuities using a scene for

which our preliminary algorithm performed in an obviously

unsatisfying manner. This scene is composed of four boxes

in a closed room with colored walls (red, blue, green and

gray), illuminated by rotating spotlights. As a consequence

the lighting in the scene is mostly indirect, and varies in

large proportions. The resulting animation presents impor-

tant lighting discontinuities in time, in particular at the main

subdivisions of the animation time interval, as illustrated in

Figure 2. Such discontinuities must obviously be reduced in

order to make our algorithm of practical use.

3. The Space-Time Hierarchical Radiosity Algorithm

3.1. The space-time radiosity equation

We want to compute the radiosity function B(p, t) for each

point p at each time t defined over (S × T ) where S is the

set of all points on all surfaces of the scene and T is the time

interval over which we want to compute our animation. We

define the following functions:

r : (S × S × T ) → IR the distance from point p to point q

at time t

θ : (S × S × T ) → [0, π ] the angle between the outgoing

normal at p and the direction from p to q at time t

v : (S × S × T ) → {0, 1} the visibility function between

p and q at t

ρ :S → [0, 1] the diffuse reflectance at p

E : (S × T ) → IR the self-emitted radiosity at p at time t

Figure 1: A radiosity discontinuity is clearly visible between

the upper and lower half of the walls.

Using these definitions, for every X = (p, t) ∈ (S × T )

the radiosity function satisfies the following equation:

B(X ) = E(X ) +
∫

(S×T )

B(Y )K(X , Y ) dY , (1)

where

K is defined on (S × T )2 as

K((p, t), (q, t ′)) = ρ(p)k(p, q, t)δ(t, t ′) (2)

k is the function defined on (S × S × T ) by

k(p, q, t) =
cos θ (p, q, t) cos θ (q, p, t)

πr (p, q, t)2
v(p, q, t) (3)

δ is the Dirac distribution equal to 0 when t �= t ′

Note that, though equation (1) seems to describe intertem-

poral light exchanges, such nonphysical transfers are avoided

thanks to the Dirac function in equation (2). Note also that
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Figure 2: Example of temporal discontinuities. Visualizations of the scene at t = 1/2 − ǫ, at t = 1/2 + ǫ and the difference

image. The illumination of the entire scene has been modified in a single frame interval.

equation (1) is formally equivalent to the classical radiosity

equation in the static case. Therefore, any algorithm capable

of solving the latter can probably be extended in a straight-

forward manner to solve the former. In particular, we shall

see that we can derive a finite element formulation similar to

that of standard radiosity [17,20].

3.2. Discretization

Equation (1) is a Fredholm equation of the second kind, and

can be discretized by the Galerkin method. We want to com-

pute an approximation B̃ of B in a finite-dimensional function

space spanned by an orthogonal basis of functions (ui)1≤i≤N .

Therefore, we can express B̃ as a linear combination of the

ui:

B̃ =
N

∑

j=1

B j u j .

The Galerkin condition [17] defines the approximation B̃ so

that the residual function

r (X ) = B̃(X ) − E(X ) −
∫

Y∈(S×T )

B̃(Y )K(X , Y ) dY

is orthogonal to all the ui. In such a case, the coefficients Bj

that define B̃ are solutions of the following linear system:

(I − M)B = E, (4)

where I is the identity matrix, the vector E is defined by

∀i ∈ [1, N ]Ei =
〈E, ui 〉
‖ui‖2

and the matrix coefficients are defined by:

∀(i, j) ∈ [1, N ]2 Mi, j =
〈
∫

Y
K(., Y )u j (Y ) dY , ui 〉

‖ui‖2
(5)

The simplest possible choice of a function basis is piece-

wise constant functions. As discussed in Section 2.2, this

choice proves unsatisfying in certain cases, where it causes

noticeable temporal discontinuities in indirect lighting. As

a consequence, we propose instead functions that are piece-

wise constant in space, and piecewise polynomial in time. To

a given element k of our mesh, defined as the cross product of

polygon Pk and time interval Tk, correspond L basis functions

uLk+i(p, t) with 0 ≤ i < L , equal to 0 when (p, t) is outside

(Pk × Tk), and to �i
k(t) otherwise. Since the ui have to form

an orthogonal basis, the �i
k are the restriction of the first L

Legendre polynomials to the time interval Tk = [αk , β k], i.e.

�0
k(t) = 1

�1
k(t) =

√
3

(

2
t − αk

βk − αk

− 1

)

. . .

Therefore, the variations of radiosity of each element k in

the mesh will be described by L unknown coefficients BLk, . . .,

B Lk+L−1. Furthermore, from equation (5), it can be derived

that each pair (k, l) of elements in our mesh corresponds to a

L × L block ρ k I k,l in the matrix M, where I k,l is the following

interaction matrix:

Ik,l =
1

||Pk ||(βk − αk)

∫

Tk∩Tl

Gk,l (t)

∫

Pk

∫

Pl

k(p, q, t) dq dp dt

(6)

and the matrix Gk,l is defined as:

Gk,l (t) =







�0
k(t)�0

l (t) · · · �0
k(t)�L−1

l (t)

...
. . .

...

�L−1
k (t)�0

l (t) · · · �L−1
k (t)�L−1

l (t)






.

The interaction matrix extends the traditional notion of

form factor used in the classical static radiosity algorithms.

3.3. Hierarchical solution of the discrete equation

We are using piecewise polynomial functions to describe the

variations of radiosity in time. Therefore, the resulting al-

gorithm is an extension of the Wavelet Radiosity algorithm

[21,22], using Haar basis over the spatial dimension and

Alpert’s ML basis [23] over the time dimension.

Since our mesh elements are defined both by their geom-

etry and their time interval, they can be subdivided either in
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Figure 3: A simple example of space-time hierarchy: here the

root hierarchical element (represented as a space × time 3D

volume) has been first subdivided in time. One of the resulting

siblings has been subdivided in space.

space (partitioning their geometry, e.g. using a quadtree sub-

division scheme) or in time (subdividing the time range and

leaving the geometry unchanged). As illustrated by Figure 3,

repeated applications of either subdivision scheme build a

data structure that offers a multi-resolution representation of

the radiosity function over space and time. As in the original

Hierarchical Radiosity algorithm, links joining two hierarchi-

cal elements are used to specify at which level of precision

the light exchanges should be actually computed.

Consequently, the space-time hierarchical radiosity algo-

rithm, similarly to the original hierarchical algorithm of

Hanrahan et al. is an iteration composed of the following

three steps:

(1) Recursive evaluation of the precision of all links to

place them at the appropriate level in the hierarchy.

The evaluation of the links is performed by a function

named refinement oracle. As a side-effect, this recursive

process adaptively builds the hierarchical mesh, refin-

ing the original mesh elements where more precision is

needed. Our oracle is be discussed in Section 3.4.

(2) Gathering the light through the links in the hierar-

chy. Light exchanges computations are detailed in Sec-

tion 3.5.

(3) Ensuring the coherence of radiosities between all hi-

erarchical levels. This bidirectional traversal of the hi-

erarchy is referred to as Push–Pull and is discussed in

Section 3.6.

To fully benefit from the strength of the hierarchical for-

mulation, it is necessary to extend the hierarchy of elements

above the initial surfaces level, by hierarchically grouping

together surfaces, and eventually groups of surfaces (called

clusters). At the top of our hierarchy will be one root cluster,

which will represent all surfaces, during the whole anima-

tion. The starting point of the algorithm will be the root link

joining this cluster to itself, thereby representing all possi-

ble interactions between all surfaces in the scene, during the

whole animation [16,17].

Hierarchical Radiosity algorithms with clustering for static

scenes perform the construction of the cluster hierarchy as a

preprocessing step. Such an approach cannot be used in our

case, since the resulting spatial hierarchy would preexist the

recursive link refinement procedure, preventing any tempo-

ral refinement until we reach the surfaces level. We propose

instead a new approach, which we name lazy clustering. At

the beginning of our algorithm, we only build the root cluster,

plus one cluster for each different rigid motion in the anima-

tion. The rest of the cluster hierarchy is built as a by-product

of the link refinement procedure. Therefore, as for surfaces

elements in the space-time mesh, we can split clusters that

have not been previously refined either in time or in space

(see Figure 4):

� Time-refinement of a cluster can be performed by creat-

ing two clusters as children of the original one, each one

defined over one half of the original time interval. Each

surface inside the original cluster must be duplicated and

one copy is assigned to each of the two children clusters.

� Space-refinement of a cluster is the act of grouping to-

gether some of the surfaces contained in the said cluster,

forming new children clusters (which may be space or

time split later on during the refinement process), pos-

sibly leaving some surfaces as direct children. This can

be achieved in applying only one step of any classical

top-down recursive clustering method (without the recur-

sion). We chose to adapt Christensen’s clustering method

[24], which is straightforward to implement and produces

a rather well-formed spatial hierarchy [25].

3.4. Space-time refinement oracle

The refinement oracle is the function in charge of evaluating

the precision of a given link and decide if it is placed at the

appropriate level in the hierarchy. In the case of the space-

time hierarchical radiosity algorithm, this function has two

goals:

� To decide whether a given link is a precise enough rep-

resentation of the corresponding light exchange (like in

classical Hierarchical Radiosity).

� If it is not precise enough, to determine whether it should

be split in space or time.

A simple oracle, based on a comparison of the estimated

time-variance and space-variance of the irradiance gathered

across the link, always produces the same mesh, regardless of

the function basis used. This is obviously not satisfying since

piecewise polynomial functions should offer a better approx-

imation of the radiosity than piecewise constant functions at

the same subdivision depth.
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Figure 4: The cluster in the left-hand image (represented in 2D for simplicity) can be subdivided either spatially (center),

or temporally (on the right). Spatial subdivision builds one new hierarchical level of clusters around the surfaces. Temporal

subdivision duplicates the surfaces and subdivides the corresponding time interval.

We propose to extend for space-time radiosity an oracle

designed for Wavelet Radiosity in the static case [18,19,26],

based on estimates of the error on the propagated energy

rather than on estimates of the variation of this energy. We

use a grid of control points located on the receiving element,

and a set of control points in time. On these control points, at

the control times, we estimate the radiosity value using two

methods:

(1) by multiplying the emitters’ radiosity vector by the in-

teraction matrix corresponding to the link, and then in-

terpolating the radiosity values at the control times,

(2) by direct integration of the radiosity on the emitter, us-

ing a quadrature.

The difference between these two values is an indication

of the error made when evaluating the interaction at this point

for this level of precision. The norm of these differences is

used as the error on the current interaction. Refinement will

occur if this norm is above the refinement threshold set by

the user.

The control points and times must be carefully chosen

so that they provide meaningful information. They must be

different from the quadrature points and times used for the

form factor computations. The number of control points and

times must be higher for large receivers so that we do not

miss important features. Also, placing control times at the

beginning and at the end of the time interval greatly enhances

temporal continuity.

Once we have made the decision to refine an interaction,

we must choose between refinement in space or in time. We

compute two variance estimates for the set of estimated error

values on our grid of control points and times:

� An average spatial variance: for each fixed control time

we compute the variance of error values at each control

points, and then take the temporal average.

� An average temporal variance: for each fixed control

point we compute the variance of error values at each

control times, and then take the spatial average.

We refine the interaction in time if the average temporal

variance is above the average spatial variance, and in space

otherwise.

3.5. Light exchanges computations

Computing the light exchanged between two linked surfaces

is straightforward. The product of the link’s interaction ma-

trix by the radiosity of the emitter is added to the radiosity

of the receiver. The interaction matrix has generally been

computed previously during the refinement procedure using

simple Gaussian quadratures.

However, interactions involving one or more clusters re-

quire a special approach, based on the one described by

Sillion [27]. Roughly, anisotropic emission from a cluster is

approximated by going down to the surfaces level to estimate

the directional radiant intensity exiting the cluster (Delayed

Pull), and the irradiance gathered by a cluster from a given

hierarchical element is distributed to all the surfaces inside

the cluster immediately at gathering time according to their

orientation (Immediate Push). The specificities of the space-

time hierarchical radiosity method come from the fact that the

position, orientation and radiosity of the objects can change

with time.

3.5.1. Emission from a cluster: Delayed pull

In the classical hierarchical radiosity algorithm, the compu-

tation of the light emitted from an object involves the compu-

tation of the form factor between the sender l and the receiver

k. It is very difficult to define what the form factor should be

if the sender is an anisotropic cluster. Therefore, we directly

compute the irradiance emitted by the cluster to the receiver,

by summing the contributions of the N surfaces contained in
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the cluster l. At a given time t, point p receives from the N

elements i in l the total irradiance:

Ireceived (p, t) =
N

∑

i=1

∫

Qi

Bi (q, t)g(p, q, t)v(p, q, t)dq,

where the geometric configuration function is defined by:

g(x, y, t) =
R(t) cos θ ′

πr 2

and the R function is the receiver factor defined in [27] as

cos θ if the receiver is a surface and 1 if the receiver is a cluster

(the surfaces orientation in the receiving cluster will be taken

into account by the Immediate Push mechanism described in

Section 3.5.2).

We approximate the received irradiance by projecting it

on our function basis: The resulting approximation is a linear

combination of our L basis functions:

Ĩ =
L−1
∑

j=0

λ j uLk+ j .

Since the ui are orthogonal we have:

λ j =
1

||uLk+ j ||2
〈Ireceived , uLk+ j 〉

=

∑

i

[

∫

Tk∩Ti

(

∫

Pk

∫

Qi
g(p,q,t)v(p,q,t)dqdp

)

Bi (t)�
j

k (t)dt
]

Ak(βk − αk)
.

Computing the above integral is costly as it involves a

number of visibility estimations proportional to the number

of surfaces in the cluster. Therefore we approximate it by

factoring out the visibility, and average it over the sending

cluster:

λ j =

∑

i

[

∫

Tk∩Ti

(

∫

Pk

∫

Qi
g(p, q, t)dqdp

)

Bi (t)�
j

k (t)Ṽ (t)dt
]

Ak(βk − αk)
,

where

Ṽ (t) =
1

Ak Al

∫

Pk

∫

l

v(x, y, t) dx dy.

We compute the α j and Ṽ (t) using a Gaussian quadrature.

Since the cost of evaluating the approximate visibility must

not depend on the number N of surfaces inside the cluster l

we place the quadrature points independently of the surfaces

positions inside the cluster’s bounding box.

3.5.2. Reception inside a cluster: Immediate push

The reception inside a cluster obeys the immediate push prin-

ciple: the irradiance received at the cluster level is immedi-

ately dispatched to all surfaces inside the cluster, where it is

multiplied by the cosine of the angle between the normal of

the surface and the direction of the incoming radiance. The

origin of the incoming radiance is assumed to be the center

of the emitter, whether a cluster or a surface.

Since both the cluster and the sender may be moving, the

receiver factor is time-dependent. We need to project it on

our wavelet basis. Let us assume a cluster k has received

an irradiance Ireceived. This irradiance is distributed to each

surface i in the cluster k according to its orientation:

Ii = Ireceived (t) cos θi (t)

Ii is then reprojected on the wavelet basis for the time inter-

val Ti over which the hierarchical element i is defined. The

resulting approximate irradiance is then:

Ĩi =
L−1
∑

j=0

γ1�
j

i

and the γ coefficients are:

γ j =
1

||� j

i ||2
〈Ii |� j

i 〉

=
1

βi − αi

∫

Ti ∩Tl

Ireceived (t) cos θi (t)�
j

i (t) dt .

These integrals are once again approximated using a Gaussian

quadrature.

Our method contains two successive approximations: we

have separately computed the irradiance received at the clus-

ter level, which was time-dependent, projected it onto the

function basis, then dispatched it to the surfaces, taking into

account the surface movement, and reprojected it on the func-

tion basis for the receiving surface. This double approxima-

tion is consistent with the clustering approach. If the refine-

ment oracle decides that we can compute an interaction at

the cluster level, then this approximation should be sufficient.

Spending more computation time to find a better approxima-

tion would impair the hierarchical nature of the algorithm

and would reduce its performance.

3.6. Push–pull traversal

After the irradiances have been gathered across all links in

the scene, a traversal of the complete hierarchy is necessary

to maintain coherence between the different hierarchical lev-

els. First, irradiance contributions computed at various level

of the hierarchy have to be pushed down to the lowest level of

the structure and summed along the way. Here the radiosities

of each leaf are computed, and these radiosities are then pro-

gressively pulled up the hierarchy and averaged to compute

the correct radiosity representation corresponding to each hi-

erarchical level.

In the case of Wavelet Radiosity [21], this process is

slightly more complicated than it is for static Hierarchical

Radiosity since we need to define how to combine the coef-

ficients describing the radiosity variations, to convert them

from one hierarchical level to the other. Remember from Sec-

tion 3.2 that our multi-resolution basis functions are cross

products of the scale functions of the Haar basis over space,

and scale functions of the ML basis over time. Since we use
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a very simple midpoint subdivision scheme when subdivid-

ing elements in time, the coefficients that have to be pushed

down or pulled up during this traversal can be computed us-

ing simple linear transformations, which are independent of

the element or the hierarchical level. Both linear transforms

are referred to as the two scale relationship [22], and are de-

termined by two L × L matrices P and Q. When L = 2 (linear

wavelets), those matrices are:

P =









1 0

−
√

3

2

1

2









Q =









1 0

√
3

2

1

2









.

When pushing down the total irradiance I (remember that

this is a L-dimensional vector) from a given element split in

time to each of its two children, the corresponding irradiances

I′ and I′′ to be transmitted to its first and second children are

given by the following linear transform:

I ′ = t P I and I ′′ = t Q I .

Respectively when pulling up, the average radiosity B of an

element can be computed from the radiosities of its two chil-

dren B′ and B′′:

B =
1

2
(P B ′ + Q B ′′)

3.7. Practical issues and choices

3.7.1. Choice of a space-time function basis.

Higher-order wavelets have been previously used as func-

tion basis for the representation of radiosity [21,22]. How-

ever, the algorithms resulting from their straightforward use

within the classical Hierarchical Radiosity framework were

proved impractical, slower than when using classical piece-

wise constant function basis and giving poorer results [28].

Further research [26] has later shown that by making use

of several recent advances in the field [18,19,26,29] higher-

order wavelets were providing a better approximation of the

illumination function, requiring less memory and computa-

tion time. In particular, the radiosity function produced looks

continuous without postprocessing thanks to an adequate re-

finement oracle.

Unfortunately, to this date, higher-order wavelets in the

spatial dimension cannot be easily applied to cluster objects.

This is due to the fact that it is difficult to provide a func-

tion mapping the surfaces contained in a cluster onto the

square domain where the wavelet basis is defined. Therefore,

in order to be able to use higher-order wavelets for surfaces

and clusters for inexpensive approximations, a mechanism to

use different approximation order for different hierarchical

elements should be defined. Our refinement oracle would au-

tomatically adapt to the new function basis. The only point

needing change would be the Push–Pull matrices we gave in

Section 3.6.

However, this problem does not arise in the temporal

dimension. Moreover, the lower dimensionality makes the

added cost of the use of wavelets lower in the temporal di-

mension than it is in the spatial dimension. Therefore, we

decided to limit our use of wavelets to the description of the

temporal variations of radiosity. In our implementation, our

function basis was composed of linearly varying functions

(the M2 basis). This choice proved sufficient in practice to

significantly reduce the temporal discontinuities (see Sec-

tion 4).

In order to provide a smooth appearance for patches in

our example animations, we applied a simple linear interpo-

lation over the polygons as a postprocess, when traversing

the space-time mesh to generate the images. Though it no-

ticeably increases the visual appeal of the results, this post-

process doesn’t improve the precision of the solution. Much

better reconstruction methods have been proposed for static

scenes, such as final gathering [30,31], and can be applied

here on an image per image basis. Moreover, Martin et al.

have proposed recently a final gathering acceleration method

for animated scenes [15], whose coupling with our approach

seems promising.

3.7.2. Memory management issues

and refinement ordering.

As our experiments will show in Section 4, the space-time

hierarchical radiosity algorithm is quite memory intensive.

This is due to the fact that we keep in memory a complete

view independent solution describing the variations of radios-

ity for all surfaces during the whole animation time interval.

Though the amount of memory available on graphic worksta-

tions is rapidly increasing, it may prove necessary to reduce

our algorithm requirements when running on less powerful

machines or when computing long animation sequences.

One way of reducing the memory cost is to use hard-disk

space to cache parts of the hierarchy that are temporarily not

required for computations. For the algorithm to remain ef-

ficient when such a caching scheme is used, accesses to the

disk should be limited to a small number of large files. The or-

der according to which we traverse the space-time hierarchy

during the refinement should be chosen accordingly.

Such a desirable traversal order can be derived if we recall

from equation (6) that elements whose time interval do not

overlap cannot exchange energy. Since we always subdivide

time intervals in two parts of equal length, for every element

P that can interact with a given element Q, we know that

either TP ⊂ TQ or TQ ⊂ TP. Therefore, we can easily deter-

mine which element may be needed to compute or refine a

certain interaction, by bucketing hierarchical elements and

links according to their time interval.

c© The Eurographics Association and Blackwell Publishing Ltd 2004



C. Damez et al. / Space-Time Hierarchical Radiosity 137

Figure 5: Variation of the radiosity function at the center of the highlighted element during the animation.

The refinement can be performed as a traversal of the hier-

archy that would correspond to a depth-first-order traversal

of the time intervals binary tree. Only the elements whose

time interval contain the one currently visited should be kept

in memory. Disk access would only take place when moving

from one time interval to the other.

We ran an experiment to estimate the corresponding gain

in memory that could be expected from such a traversal. For

the SPOT scene (see Sections 2.2 and 4.1), we used 25 − 1 =
31 time interval buckets to sort our elements (one for each

time interval corresponding to the first five subdivision level).

The maximum total cost of the portion of the hierarchy that

needs to be kept in memory is 40 MB whereas more than

450 MB are required when we are keeping everything in

RAM (cf. Table 1). In such a case, file accesses should not

reduce excessively the performances of our algorithm: The

added cost of reading and writing 31 files each about 15

MB big should be reasonable since an iteration on this scene

already requires 10–20 minutes.

4. Experimental Results

In this section, we discuss the performance of our algorithm

on several test scenes. In Section 4.1, we demonstrate the

improvement on temporal continuity that our use of piecewise

linearly varying functions offers when compared to simple

“box” functions. In Section 4.2, we demonstrate our use of

clustering and we offer comparisons with frame-by-frame

Hierarchical Radiosity calculations to show that we obtain

good acceleration factors.

4.1. Improvement of temporal continuity

To illustrate the improvement in temporal continuity ob-

tained using the M2 function basis in the time dimension,

we use the test scene from Section 2.2. In this scene, the

sweeping movement of spotlights over walls painted in dif-

ferent colors cause important changes in the indirect illumi-

nation of the scene. In particular, strong color bleeding effects

can be observed moving on the ceiling and the floor of the

scene.

As explained in Section 2.2, this scene was purposedly

designed as a “worst-case scenario” for the space-time hier-

archical radiosity algorithm in order to exhibit strong tempo-

ral discontinuities. When using a piecewise constant function

basis to describe the variation of radiosity in time, the indirect

lighting effects in this scene are extremely discontinuous. For

example, the color bleeding patches seem to be updated only

every second or so. The amplitude of these discontinuities is

shown in the radiosity variation plot of Figure 5. It can be

clearly seen that the greatest discontinuity is located at the

middle of the animation, then at the first and third quarter.

The magnitude of the largest discontinuity is about 40% of

the time-average radiosity of this patch, which makes it quite

noticeable. Smaller discontinuities can be observed at other

even subdivisions of the time interval.

However, the same animation, computed using hierarchi-

cal elements linearly varying in time, exhibits a much more

coherent indirect illumination. Without paying careful atten-

tion, it is difficult to perceive any discontinuity. We can see

on Figure 5 that the indirect lighting is obviously more “con-

tinuous” than when using a piecewise constant function ba-

sis. The largest discontinuity (at t = 1/4) has a magnitude of

about 7% of the average radiosity of the patch. Figure 6 shows

that this strong reduction of discontinuities can be observed

on all surfaces of the scene. Table 1 allows the comparison

of computation time and memory cost when computing this

animation with a frame-by-frame Hierarchical Radiosity al-

gorithm, with our algorithm using the Haar basis, and with

our algorithm using the M2 basis, respectively. All timings

have been measured on a single 300Mhz MIPS R12000 pro-

cessor of an SGI Onyx2 computer.
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Figure 6: Comparison of temporal discontinuities at t = 1

2
. Darker colors indicate a higher discontinuity (arbitrary units). Left:

hierarchical radiosity, right: M2 wavelets.

Table 1: Performance comparison on the SPOTS scene, between frame-by-frame Hierarchical Radiosity, our algorithm using the Haar basis,

and our algorithm using the M2 basis

Computation Time

Direct Lighting Indirect Lighting Total per Image Memory Used (MB)

Frame-by-Frame HR 1 s × 600 = 600 s 15 s × 600 = 9, 000 s 16.0 s 5

Haar 254 s 1,492 s 2.9 s 587

M2 271 s 1,172 s 2.4 s 464

The following comments can be made about these results:

� Though this scene is geometrically quite simple, the

speedup factor obtained, when compared to a frame-by-

frame computation, is about 6. (Note that this accelera-

tion factor is only about 2 if we only take into account

the time needed to compute the direct illumination). Our

algorithm performance on such scenes where the indirect

lighting is dominant and dramatically changing over time

is therefore satisfying.

� The memory consumption when using the M2 basis is

15% lower than when using the Haar basis, in spite of

the added storage cost of the second radiosity coefficient

and the interaction matrices. The animation has also been

computed slightly faster. This is due to the fact that fewer

subdivisions in time are needed to obtain a precise enough

representation of the variations of radiosity in time, re-

sulting in a faster refinement and a lighter mesh.

4.2. Validation of the Clustering Approach

We have tested our algorithm on scenes composed of sev-

eral thousands of input polygons (see Figure 7). For such

scenes, Hierarchical Radiosity computations without the use

of clustering would have been extremely long because of the

quadratic cost of the initial linking stage.

The first of our three test animations takes place in a small

room with some furniture (a couple desks, chairs, pens, etc.).

It is lit by four area light sources. The bookshelf, against

the wall, falls to the floor. The animation is 4 seconds long,

and is composed of 100 frames. The input geometry is com-

posed of 7, 200 polygons. The second animation takes place

in a large library hall with several desks separated by rows of

bookshelves. This scene is lit by numerous area light sources.

A character is moving through the hall. The animation is 20

seconds long and is composed of 500 frames. There are about

35 000 input surfaces. The third animation is somehow sim-

ilar to the test scene we use in Section 4.1. We replaced the

boxes by more complex objects. The resulting scene is com-

posed of approximately 30 000 polygons and is 24 seconds

long.

Table 2 summarizes our experimental results for our three

test scenes. In this table, we compare the resources neces-

sary to compute the animations when using the space-time

hierarchical radiosity algorithm and when performing a hier-

archical radiosity with Clustering frame-by-frame providing

the same image quality. All timings have been observed on a

300 MHz MIPS R12000.

The more elements the mesh is composed of, the more

the hierarchical approach is advantageous. Since it makes it

possible to compute more complicated animations, clustering

really allows us to benefit fully from the hierarchical nature of
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Figure 7: Sample frames from our test animations.

Table 2: Comparative results for the use of clustering: we compare computation time and memory use of our algorithm to the time and memory

needed to compute the same animation frame-by-frame with classical Hierarchical Radiosity with Clustering

Computation Time Memory Used

STHR Static HRC STHR (MB) Static HRC (MB)

SHELF 3,335 s 184 s × 100 = 18, 400 s 100 16

HALL 33,333 s 1.185 s × 500 = 592, 500 s 842 120

ROBOTS 4,591 s 109 s × 600 = 65, 400 s 475 17

our algorithm. The typical speedup is ranging from 6

to 18.

The memory consumption of our algorithm is quite high,

since we keep in memory at the same time a complete view

independent global illumination solution for all frames of the

animation (we have discussed a possible way to avoid this

in Section 3.7.2). However, we can note that the memory

cost of our algorithm depends more on the complexity of the

illumination than on the number of input polygons. The more

complex the input mesh is, the smaller the polygons are on

average. Therefore, they are less likely to be subdivided later,

and the resulting hierarchy will not be much bigger than if it

consisted initially of large unsubdivided surfaces.

5. Conclusion

In this paper, we proposed a new algorithm to compute global

illumination in diffuse animated environments. This algo-

rithm is based on the adaptive refinement of a hierarchical

mesh defined both over time and space. It can therefore ben-

efit from the a priori knowledge of objects movements to

factor out a large part of redundant computations.

This technique allows computation of animations with a

quality similar to frame-by-frame computation, in a shorter

time. Geometrically complex scenes can be dealt with thanks

to the definition of a clustering approach extending the space-

time mesh. The continuity of indirect lighting is improved by
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the simultaneous use of a piecewise-linear wavelet basis in

the time dimension and of an adequate space-time refinement

oracle.

Promising directions for future research include:

� The derivation of a space-time final gathering approach,

adapting the one proposed by Martin, Pueyo and Tost

[15].

� The implementation and extensive testing of disk caching

schemes such as the one suggested in Section 3.7.2.

� The parallelization of this algorithm. This should be

straightforward on a shared memory architecture [32]

but will certainly prove more difficult on a cluster of PC.

� Experiments with alternative wavelet basis in the time

dimension, for example using higher-order polynomials.

� The extension of our algorithm to nondiffuse scenes, us-

ing a unified mesh-based particle shooting approach [9].

� The construction of a refinement criteria using human

perception-based animation quality metrics [13].
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Accurate Detection of Symmetries in 3D Shapes

AURÉLIEN MARTINET, CYRIL SOLER, NICOLAS HOLZSCHUCH and FRANÇOIS X. SILLION

ARTIS, INRIA Rhône-Alpes

We propose an automatic method for finding symmetries of 3D shapes, that is, isometric transforms which leave a shape globally
unchanged. These symmetries are deterministically found through the use of an intermediate quantity: the generalized moments.
By examining the extrema and spherical harmonic coefficients of these moments, we recover the parameters of the symmetries
of the shape. The computation for large composite models is made efficient by using this information in an incremental algorithm
capable of recovering the symmetries of a whole shape using the symmetries of its subparts. Applications of this work range from
coherent remeshing of geometry with respect to the symmetries of a shape to geometric compression, intelligent mesh editing,
and automatic instantiation.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Curve, surface,

solid and object representations

General Terms: Algorithms

1. INTRODUCTION

Many shapes and geometrical models exhibit symmetries: isometric transforms that leave the shape
globally unchanged. Using symmetries, one can manipulate models more efficiently through coherent
remeshing or intelligent mesh editing programs. Other potential applications include model compres-
sion, consistent texture-mapping, model completion, and automatic instantiation.

The symmetries of a model are sometimes made available by the creator of the model and represented
explicitly in the file format the model is expressed in. Usually, however, this is not the case, and auto-
matic translations between file formats commonly result in the loss of this information. For scanned
models, symmetry information is also missing by nature.

In this article, we present an algorithm that automatically retrieves symmetries in a geometrical
model. Our algorithm is independent of the tesselation of the model; in particular, it does not assume
that the model has been tesselated in a manner consistent with the symmetries we attempt to identify,
and it works well on noisy objects such as scanned models. Our algorithm uses a new tool, the generalized

moment functions. Rather than computing these functions explicitly, we directly compute their spherical
harmonic coefficients, using a fast and accurate technique. The extrema of these functions and their
spherical harmonic coefficients enable us to deterministically recover the symmetries of a shape.

For composite shapes, that is, shapes built by assembling simpler structures, we optimize the compu-
tation by applying the first algorithm to the subparts, then iteratively building the set of symmetries of
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the composite shape, taking into account both the relative positions of the subparts and their relative
orientations.

We envision many applications for our work, including geometric compression, consistent mesh edit-
ing, and automatic instantiation.

This article is organized as follows. In the following section, we review previous work on identifying
geometric symmetries on 2D and 3D shapes. Then in Section 3, we present an overview of the symmetry-
detection problem and the quantities used in our algorithms. In Section 4, we introduce the generalized
moments and our method to compute them efficiently; in Section 5, we present our algorithm for
identifying symmetries of a shape. The extension of this algorithm to composite shapes is then presented
in Section 6., Finally, in Section 7, we show various applications of our algorithm.

2. RELATED WORK

Early approaches to symmetry detection focused on the 2D problem. Attalah [1985], Wolter et al. [1985]
and Highnam [1985] present methods to reduce the 2D-symmetry detection problem to a 1D pattern
matching problem for which efficient solution are known [Knuth et al. 1977]. Their algorithms efficiently
detect all possible symmetries in a point set but are highly sensitive to noise.

Identifying symmetries for 3D models is much more complex, and little research on this subject has
been published. Jiang and Bunke [1991] present a symmetry-detection method, restricted to rotational
symmetry, based on a scheme called generate and test, first finding hypothetical symmetry axes, then
verifying these assumptions. This method is based on a graph representation of a solid model and uses
graph theory. The dependency between this graph representation and the mapping between points
makes their method highly dependent on the topology of the mesh and sensitive to small modifications
of the object geometry. Brass and Knauer [2004] provide a model for general 3D objects and give an
algorithm to test congruence or symmetry for these objects. Their approach is capable of retrieving
symmetry groups of an arbitrary shape but is also topology-dependent since it relies on a mapping
between points of the model. Starting from an octree representation, Minovic et al. [1993] describe an
algorithm based on octree traversal to identify symmetries of a 3D object. Their algorithm relies on
PCA to find the candidate axis; PCA, however, fails to identify axes for a large class of objects, including
highly symmetric objects such as regular solids.

All these methods try to find strict symmetries for 3D models. As a consequence, they are sensitive
to noise and data imperfections. Zabrodsky et al. [1995] define a measure of symmetry for nonperfect
models, defined as the minimum amount of work required to transform a shape into a symmetric shape.
This method relies on the ability to first establish correspondence between points, a very restrictive
precondition.

Sun and Sherrah [1997] use the Extended Gaussian Image to identify symmetries by looking at
correlations in the Gaussian image. As in Minovic et al. [1993], they rely on PCA to identify potential
axes of symmetry, thus possibly failing on highly symmetric objects. More recently, Kazhdan et al. [2004]
introduced the symmetry descriptors, a collection of spherical functions that describe the measure of a
model’s rotational and reflective symmetry with respect to every axis passing through the center of mass.
Their method provides good results in the shape identification but involves a surface integration for each
sampled direction; this surface integration is carried on a voxel grid. Using the symmetry descriptors
to identify symmetries requires an accurate sampling in all directions, making their algorithm very
costly for an accurate set of results. In contrast, our algorithm only computes a deterministic small
number of surface integrals, which are performed on the shape itself, and still provides very accurate
results. Effective complexity comparisons will be given in Section 8.
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Fig. 1. Mirror symmetries and rotational symmetries found by our algorithm for a cube (for clarity, not all elements are repre-
sented).

3. OVERVIEW

Considering a surface S, the symmetries of S are the isometric transforms which map S onto itself, in
any coordinate system centered on its center of gravity. Symmetries of a shape form a group for the
law of function composition with identity as its neutral element. For a given shape, the study of such a
group relates to the domain of mathematical crystallography [Prince 2004].

The group of the cube, for instance, contains 48 elements (see Figure 1): the identity, eight 3−fold
rotations around 4 possible axes, nine 4−fold rotations around 3 possible axes, six 2−fold rotations
around 6 possible axes, nine mirror-symmetries, and fifteen other elements obtained by composing
rotations and mirror symmetries.

Studying the group of isometries in IR3 shows that, for a given isometry I , there always exists an
orthonormal basis (X, Y, Z) into which the matrix of I takes the following form:

I (λ, α) =

⎛

⎝

λ 0 0
0 cos α − sin α

0 sin α cos α

⎞

⎠ with

{

α ∈ [0, 2π [
λ = ±1

As suggested by the example of the cube, this corresponds to 3 different classes of isometries: rotations,
mirror symmetries, and their composition, depending whether λ is positive and/or α = 0(mod π ). Find-
ing a symmetry of a shape thus resolves into finding a vector X — which we call the axis of the isometry
— and an angle α — which we call the angle of the isometry — such that I (λ, α) maps this shape onto
itself.

However, finding all symmetries of a shape is much more difficult than simply checking whether
a given transform actually is a symmetry. In particular, the naive approach that would consist of
checking as many sampled values of (X, λ, α) as possible to find a symmetry is far too costly. We thus
need a deterministic method for finding good candidates.

Our approach to finding symmetries is to use intermediate functions, which set of symmetries is
a superset of the set of symmetries of the shape itself, but for which computing the symmetries is
much easier. By examining these functions, we will derive in Section 5 a deterministic algorithm
which finds a finite number of possible candidates for X, λ, and α. Because some unwanted triplets
of values will appear during the process, these candidates are then checked back on the original
shape. Choosing a family of functions which fulfill these requirements is easy. More difficult is the
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task of finding such functions for which computing the symmetries can be done both accurately and
efficiently.

Inspired by the work on principal component analysis [Minovic et al. 1993], we introduce the gener-

alized moment functions of the shape for this purpose. These functions will be the topic of Section 4.
These functions, indeed, have the same symmetries as the shape itself plus a small number of extra
candidates. Furthermore, we propose an elegant framework based on spherical harmonics to accurately
and efficiently find their symmetries.

A second contribution of this article is to extend the proposed algorithm into a constructive algorithm
which separately computes the symmetries of subcomponents of an object—using the first method—,
and then associates this information to compute symmetries of the whole composite shape. This con-
structive algorithm proves to be more accurate in some situations and more efficient when it is possible
to decompose an object according to its symmetries. It is presented in Section 6.

4. GENERALIZED MOMENTS

In this section, we introduce a new class of functions: the generalized moments of a shape. We then
show that these functions have at least the same symmetries as the shape itself and that their own
symmetries can be computed in a very efficient way.

4.1 Definition

For a surface S in a 3-dimensional domain, we define its generalized moment of order 2p in direction ω
by

M2p(ω) =
∫

s∈S
‖s × ω‖2p ds. (1)

In this definition, s is a vector which links the center of gravity of the shape (placed at the origin) to a
point on the surface, and ds is thus an infinitesimal surface element. M2p itself is a directional function.

It should be noted that, considering S to have some thickness dt, the expression M2(ω)dt (i.e., the
generalized moment of order 2) corresponds to the moment of inertia of the thin shell S along ω, hence
the name of these functions. Furthermore, the choice of an even exponent and a cross-product will lead
to very interesting properties.

4.2 Shape Symmetries and Moments

Symmetry properties of a shape translate into symmetry properties of its moment functions. We now
introduce a theorem that we will be rely on (see proof in Appendix):

THEOREM 1. Any symmetry I of a shape S also is a symmetry of all its M2p moment functions:

I (S) = S ⇒ ∀ω M2p(I (ω)) = M2p(ω).

Furthemore, if M2p has a symmetry I with axis ω, then the gradient of M2p is null at ω:

∀ω M2p(I (ω)) = M2p(ω) ⇒ (∇M2p)(ω) = 0.

This theorem implies that the axes of the symmetries of a shape are to be found in the intersection
of the sets of directions which zero the gradients of each of its moment functions. The properties are
not reciprocal, however. Once the directions of the zeros of the gradients of the moment functions have
been found, they must be checked on the shape itself to eliminate false positives.
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4.3 Efficient Computation

At first sight, looking for the zeros of the gradient of the moment functions requires precise and dense
sampling of these functions which would be very costly using their integral form of Equation (1). We
thus present an efficient method to compute the generalized even moment functions of a shape, using
spherical harmonics. In particular, we can accurately compute the spherical harmonic coefficients of
the moment functions without sampling these functions. The search for zeros in the gradient will then
be performed efficiently on the spherical harmonic decomposition itself.

Spherical Harmonics. We use real-valued spherical harmonics [Hobson 1931] to represent directional
functions. Real spherical harmonics are defined, for integers l ≥ 0 and −l ≤ m ≤ l , by:

Y m
l (θ , ϕ) =

⎧

⎨

⎩

√
2 Nm

l Pm
l (cosθ ) cos(mϕ) for 0 < m ≤ l

Nm
l P0

l (cosθ ) for m = 0√
2 Nm

l P−m
l (cosθ ) sin(mϕ) for − l ≤ m < 0

where Pm
l are the associated Legendre polynomials; the normalization constants Nm

l are such that the
spherical harmonics form an orthonormal set of functions for the scalar product:

< f , g >=
∫

‖ω‖=1

f (ω)g (ω) dω.

This corresponds to choosing:

Nm
l =

√

2l + 1

4π

(l − |m|)!
(l + |m|)!

.

We will use the following very powerful property of spherical harmonics. Any spherical harmonic of
degree l can be expressed in a rotated coordinate system using harmonics of same degree and coefficients
depending on the rotation R:

Y m
l ◦ R =

∑

−l≤m′≤l

Dm,m′

l (R)Y m′

l . (2)

Any combination of spherical harmonics of degree less than l can therefore be expressed in a rotated
coordinate system, using spherical harmonics of degree less than l , without loss of information. Coeffi-
cients Dm,m′

l (R) can efficiently be obtained using recurrence formula [Ivanic and Ruedenberg 1996] or
directly computed [Ramamoorthi and Hanrahan 2004].

Computation of Moment Functions. As defined by Equation (1), the 2p−moment function of a shape
S is expressed as:

M2p(ω) =
∫

s∈S
‖s × ω‖2p ds

=
∫

s∈S
‖s‖2p sin2p

β ds

In this expression, β is the angle between s and ω.
Function β �→ sink

β has angular dependence on β only and therefore decomposes into zonal harmon-
ics (i.e., harmonics Y m

l for which m = 0). Performing the calculation shows that, when k is even, the
decomposition is finite. Setting k = 2p, we obtain :

sin2p
β =

p∑

l=0

Sl
pY 0

2l (β, .)
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with:

Sl
p =

√
(4l + 1)π

22l

2l∑

k=l

(−1)k 22p+1 p!(2k)!(p + k − l )!

(2(p + k − l )+1)!(k − l )!k!(2l − k)!
. (3)

For the sake of completeness, we provide the corresponding derivation and the proof of the finite de-
composition in the appendix section of this article.

Let Rs be a rotation which maps z, unit vector along z−axis, to s. Using Equation (2) for rotating the
Y 0

2l zonal harmonics, we have :

sin2p
β =

p∑

l=0

Sl
p

2l∑

m=−2l

D0,m
2l (Rs)Y

m
2l (ω).

And finally:

M2p(ω) =
p∑

l=0

2l∑

m=−2l

C
2p

2l ,mY m
2l (ω), (4)

using

C
2p

2l ,m = Sl
p

∫

s∈S
‖s‖2pD0,m

2l (Rs) ds. (5)

Equation (4) says that M2p decomposes into a finite number of spherical harmonics, and Equation (5)
allows us to directly compute the coefficients. The cost of computing M2p is therefore (p + 1)(2p + 1)
surface integrals (one integral per even order of harmonic, up to order 2p). This is much cheaper than
the alternative method of computing the scalar product of M2p as defined by Equation (1) with each
spherical harmonic basis function: this would indeed require many evaluations of M2p, which itself is
defined as a surface integral. Furthermore, numerical accuracy is only a concern when computing the
Cm

2k, p coefficients, and we can now compute both M2p and its gradient analytically from Equation (4).

5. FINDING SYMMETRIES OF A SINGLE SHAPE

In this section, we present our algorithm for identifying symmetries of a shape seen as a single entity as
opposed to the algorithm presented in the next section where the shape is considered as an aggregation
of multiple subparts. For a given shape, we want to determine the axis X and the (λ, α) parameters
of the potential isometries, using the generalized moment functions, and check the isometries found
against the actual shape.

Central symmetries (λ = −1 and α = π ) form a specific case since, by construction, M2p always has
a central symmetry. Because central symmetries also do not require an axis, we treat this case directly
while checking the other candidate symmetries on the shape itself in Section 5.3.

5.1 Determination of the Axis

As we saw in Section 4.2, the axis of isometries which let a shape globally unchanged also zero the
gradient of the generalized even moments of this shape. We thus obtain a superset of them by solving
for:

∇(M2p)(ω) = 0.

In a first step, we estimate a number of vectors which are close to the actual solutions by refining the
sphere of directions starting from an icosahedron. In each face, the value of ‖∇(M2p)(ω)‖2 is examined
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in several directions, and faces are sorted by order of the minimal value found. Only faces with small
minimum values are refined recursively. The number of points to look at in each face, as well as the
number of faces to keep at each depth level, are constant parameters of the algorithm.

In a second step, we perform a steepest descent minimization on ‖∇(M2p)(ω)‖2, starting from each
of the candidates found during the first step. For this we need to evaluate the derivatives of ‖∇(M2p)‖
which we do using analytically computed second-order derivatives of the spherical harmonics along
with Equation (4). The minimization converges in a few steps because starting positions are by nature
very close to actual minima. This method has the double advantage that (1) the derivatives are very
efficiently computed and (2) no approximation is contained into the calculation of the direction of the

axis beyond the precision of the calculation of the C
2p

2l ,m coefficients.
During this process, multiple instances of the same direction can be found. We filter them out by

estimating their relative distance. While nothing in theory prevents the first step from missing the
area of attraction of a minimum, it works very well in the present context. Indeed, moment functions
are very smooth, and shapes having two isometries with very close—yet different—axis are not common.

Finally, because all moment functions, whatever their order, must have an extremum in the direction
of the axis of the symmetries of the shape, we compute such sets of directions for multiple moment
functions (e.g., M4, M6 and M8) but keep only those which simultaneously zero the gradient of all
these functions, which in practice leaves none or very few false positives to check for.

5.2 Determination of Rotation Parameters

After finding the zero directions for the gradient of the moment functions, we still need to find the
parameters of the corresponding isometric transforms. This is done deterministically by studying the
spherical harmonic coefficients of the moment functions themselves. We use the following properties.

PROPERTY 1. A function has a mirror symmetry Sz around the z = 0 plane if and only if all its spherical

harmonic coefficients for which l + m is even are zero (i.e., it decomposes onto z−symmetric harmonics

only). In the specific case of the moment functions:

∀ω M2p(ω) = M2p(Szω) ⇔ m ≡ 0(mod 2) ⇒ C
2p

2l ,m = 0.

PROPERTY 2. A function has a revolution symmetry around the z axis if and only if it decomposes onto

zonal harmonics only, that is,

∀l ∀m m �= 0 ⇒ Cm
l = 0.

PROPERTY 3. A function is self-similar through a rotation Rα of angle α around z if and only if all its

spherical harmonic coefficients Cm
l verify:

∀l ∀m Cm
l = cos(mα)Cm

l − sin(mα)C−m
l . (6)

Property 3 can be adapted to check if the function is self-similar through the composition of a rotation
and a symmetry with the same axis (i.e., the case λ = −1 as defined in Section 3). In this case, the
equation to be checked for is:

∀l ∀m (−1)l+mCm
l = cos(mα)Cm

l − sin(mα)C−m
l . (7)

These properties are easily derived from the very expression of the spherical harmonic functions
[Hobson 1931].
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Before using these properties, the moment function must be expressed in a coordinate system where
the z axis coincides with the previously found candidate axis. This is performed using the rotation
formula in Equation (2). Then checking for Properties 1 and 2 is trivial provided that some tolerance
is accepted on the equalities. Using Property 3 is more subtle; coefficients of the function are first
examined by order of decreasing m. For λ = 1, for instance, when the first nonzero value of Cm

l is found,
Equation (6) is solved by:

tan
mα

2
=

C−m
l

Cm
l

, that is, α =
2

m
arctan

(
C−m

l

Cm
l

)

+
kπ

m
,

then all the remaining coefficients are checked with the obtained values of α. If the test passes, then α

is the angle of an existing rotation symmetry for the moment function. A very similar process is used
to search for α when λ = −1.

The error tolerance used when checking for Properties 1, 2, and 3 can be considered as a way of
detecting approximate symmetries on objects. We will show in the results section that symmetries can
indeed be detected on noisy data such as scanned models.

5.3 Filtering Results

The condition extracted from Theroem 1 is a necessary condition only. To avoid false positives, the
directions and rotation angles obtained from the moment functions must therefore be verified on the
shape itself. We do this using a symmetry measure inspired by the work of Zabrodsky et al. [1995]. Let S
and R be two tessellated shapes. Let VS and VR be the mesh vertices of S and R. We define the measure

dM between S and R by:

dM (S, R) = max
p∈VS

(min
q∈R

‖p − q‖). (8)

The symmetric measure dA(S) of a shape S with respect to a symmetry A is then defined by:

dA(S) = max(dM (S, AS), dM (AS, S)).

It should be noted that this definition is different from that of the Hausdorff distance since, in Equa-
tion (8), not all points of S are considered but only the mesh vertices, whereas all points of R are used.
However, because S is polyhedral, dA(S) = 0 still implies that AS = S.

Computing dA is costly, but fortunately we only compute it for a few choices of A which are the
candidates we found at the previous step of the algorithm. This computation is much cheaper than
computing a full symmetry descriptor [Kazhdan et al. 2004] for a sufficient number of directions to
reach the precision of our symmetry detection algorithm.

5.4 Results

Complete Example. The whole process is illustrated in Figure 2. Starting from the original object (a),
the moment functions of orders 4, 6, and 8 are computed (see, e.g., M8 in (b)). The gradients of these
moments are then computed analytically (c) and used for finding the directions of the minima. The
unfiltered set of directions contains 7 directions among which only 3 are common extrema of M4, M6,
and M8. This set of 3 directions (D1,D2, and D3) must contain the axes of the symmetries of the shape.
After checking the symmetry axis and parameters on the actual shape, D1 is revealed as the axis of a
2-fold symmetry which is the composition of the two remaining mirror symmetries of axes D2 and D3.

The example of the cube, shown in Figure 1, illustrates the extraction of rotations and mirror sym-
metries. Experiments have shown that our method finds all 48 symmetries whatever the coordinate
system the cube is expressed in originaly.
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Fig. 2. Extraction of symmetries for a single shape. Starting from the original shape (a), generalized moments (b) and their
gradients (c) are computed. The set of their common extrema directions contains the axes of the symmetries of the shape, depicted
at right. Here, both mirror symmetries have been found as well as the 2-fold rotational symmetry. Note that the original shape
is neither convex nor star-shaped and that the mesh is not consistent with the symmetries of the geometry.

Fig. 3. View of the three 3D models used in the robustness tests presented in Figure 4 shown with their symmetries. For the
sake of clarity, we chose models with only one symmetry each.

Robustness Tests. We now study the sensitivity of our method to small perturbations of the 3D model
in two different ways.

(1) Noise. We randomly perturb each vertex of each polygon independently in the original model by a
fraction of the longest length of the model’s bounding box.

(2) Delete. We randomly delete a small number of polygons in the model.

We use a set of three models to test the robustness of our method. These model as well as their
symmetry are shown in Figure 3. For the sake of clarity, we use objects with only one symmetry.

In order to test the robustness of the method, we progressively increase the magnitude of the noise
and let the algorithm automatically detect the symmetry. In our robustness tests, we consider shapes as
single entities and use the first algorithm presented in Section 5 to detect these symmetries. To evaluate
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Fig. 4. We test the sensitivity of the method to noise by progressively increasing noise magnitude and letting the algorithm
detect the symmetry for each of our three test models. We evaluate the accuracy of the results by computing the angular de-
viation between the axis found and the axis of the symmetry of the original model. Top row: We perturb each vertex of each
polygon independently by a fraction of the longest length of the bounding box on each of the three test models. The left fig-
ure shows a noisy pick-up model with a noise magnitude of 1% and the right figure shows angular deviation evolution for
the three models for a magnitude ranging from 0% to 1%. Bottom row: We randomly delete polygons of the models. The left
figure shows a noisy pick-up obtained by deleting 5% of the polygons and the right figure shows angular deviation evolution
by deleting 0% to 5% of the polygons of the three models. As can be seen from the curve, for small variations of the mod-
els, our method has approximatively linear dependency regarding noise and delivers high-quality results even for nonperfect
symmetries.

the reliability of the results, we compute the angular deviation between the found axis of symmety and
the real one, that is, computed with no noise. In our experiments, noise magnitude varies from 0 to 1%
of the longest length of the model’s bounding box, and the number of deleted polygons ranges from 0 to
5% of the total number of polygons in the model (see Figure 4).

The results of these experiments show that, for small variations, our method has approximatively
linear dependency regarding noise and delivers high-quality results even for nonperfect symmetries.
These statistical results can also be used to derive an upper bound on the mean angular error obtained
as a function of the noise in the model.

5.4.1 Application to Scanned Models. We present in Figure 5 examples of applying the single-shape
algorithm to scanned models, retreived from a Web database and used as is (see http://shapes.aim-at-
shape.net). Our algorithm perfectly detects all the parameters of candidate symmetries for all these
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Fig. 5. Our algorithm perfectly detects approximate symmetries of scanned models. Detecting these symmetries requires re-
laxing the constraints when checking candidate symmetries on the model. Please note that these scanned models are by nature
neither axis-aligned nor tesselated according to their symmetries. This illustrates the fact that our algorithm does not depend
on the coordinate system nor on the mesh of the objects.

Table I. Computation times (in seconds) for the Four Scanned
Models Presented in Figure 5

Model Teeth Vase Pelvis Angkor statue

# polygons 233, 204 76, 334 50, 000 163, 054
Computing moments* 33.7 11.8 7.26 23.26
Finding parameters 0.4 0.6 0.4 0.7
Checking candidates 9.4 11.1 5 12.2

Total 43.5 23.5 12.66 36.16
∗Global computation times for moments of order 2 to 8

shapes. When testing these symmetries, one should allow a large enough symmetry distance error (as
defined in Section 5.3) because these models are by nature not perfectly symmetric.

5.5 Discussion

Because the M2p functions are trigonometric polynomials on the sphere, they have a maximum number
of strict extrema depending on p: the larger p is, the more M2p is able to capture the information of a
symmetry, that is, to have an extremum in the direction of its axis. But because all moment functions
must have a null gradient in this direction (according to Theorem 1), these extrema are bound to become
nonstrict extrema for small values of p, and M2p is forced to be constant on a subdomain of nonnull
dimension. Using the cube as an example in which case M2 is a constant function a trigonometric
polynomial of order 2 can simply not have enough strict extrema to represent all 12 distinct directions
of the symmetries of the cube.

In all the tests we conducted, however, using moments up to order 10 has never skipped any symmetry
on any model. But it would still be interesting to know the exact maximum number of directions
permitted by moments of a given order.

6. FINDING SYMMETRIES OF GROUPS OF OBJECTS

In Section 5, we have presented an algorithm for finding the symmetries of single shapes. In this section,
we present a constructive algorithm which recovers the symmetries of a group of objects—which we
call tiles to indicate that together they form a larger object—from the symmetries and positions of each
separate tile.
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Fig. 6. This figure illustrates the reliability of our congruency descriptor (as defined by Equation (9)). Two identical objects
meshed differently and expressed in two different coordinate systems (A and B) have extremely close descriptor vectors, but a
slightly different object (C) has a different descriptor. The graphics on the right shows each component of the three descriptors.

The constructive algorithm first computes (if necessary) the symmetries of all separate tiles using
the single shape algorithm. Then it detects which tiles are similar up to an isometric transform and
finds the transformations between similar tiles. Then it explores all one-to-one mappings between tiles,
discarding mappings which do not correspond to a symmetry of the group of tiles as a whole.

Section 6.2 explains how we detect similar tiles and Section 6.3 details the algorithm which both
explores tile-to-tile mappings and finds the associated symmetry for the whole set of tiles.

Because it is always possible to apply the algorithm presented in Section 5 to the group of tiles,
considering it as a single complex shape, questioning the usefulness of the constructive method is
legitimate. For this reason, we will explain in Section 6.5 in which situations the constructive method
is preferable to the algorithm for single shapes; but let us first explain the method itself.

6.1 Computing the Symmetries of Each Tile

If not available, the symmetries of each tile are computed using the algorithm presented in Section 5.
When assembling known objects together, the economy of this computation can, of course, be performed
by simply computing the symmetries of one instance for each class of different tiles.

6.2 Detecting Tiles Congruency

In this subsection, we introduce a shape descriptor suitable for detecting whether two shapes are
identical up to an—unknown—isometry. We will use this tool for classifying tiles before trying to find
a mapping of a composite object onto itself.

Let S be a shape and C
2p

2l ,m the spherical harmonic coefficients of its generalized even moment func-

tions M2p up to an order p. Our shape descriptor is defined as the p(p + 1)/2-vector obtained by pack-
ing together the frequency energy of the spherical harmonic decomposition of all moments of S up to
order p:

D2p =
[

d0
0 , d2

0 , d2
2 , . . . , d

2p

0 , d
2p

2 . . . d
2p

2p

]

(9)

with

d2k
2l =

∑

−2l≤m≤2l

(

C2k
2l ,m

)2
(10)

(See Figure 6). It has been shown by Kazhdan et al. [2003] that dk
l , as defined in Equation (10), does

not depend on the coordinate system the spherical harmonic decomposition is expressed in. This means

that each d
2p

2l , and therefore D2p itself, is not modified by isometric transforms of the shape. Mirror
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Table II. Percentage of Tiles Matched by our Shape
Descriptor That Are Effectively Identical For Our Test Scenes

Max 39,557 Polygons 182,224 Polygons 515,977 Polygons
order 851 Tiles 480 Tiles 5,700 Tiles

2 92.1% 43.9% 92.3%

4 100% 78.0% 100%

6 100% 92.2% 100%

8 100% 100% 100%

Fig. 7. Scenes used for testing the object congruency descriptor. In each scene, the descriptor has been used to detect objects
with similar geometry (but possibly different meshes) up to a rigid transform. Objects found to be congruent are displayed with
the same color.

symmetries do not affect d
2p

2l either since they only change the sign of the coefficient for some harmonics
in a coordinate system aligned with the axis.

Two tiles A and B are considered to be similar up to an isometric transform, at a precision ε, when:

‖D2p(A) − D2p(B)‖ < ε.

Theoretically, this shape descriptor can produce false positives, that is, tiles that are not congruent
but have the same descriptor, but it can not produce false negatives because of its deterministic nature.
Our experiments have shown that using moments up to order 6 produces a sufficiently discriminant
shape descriptor on all test scenes. This is illustrated in Table II where we present the average precision
value, that is, the percentage of matched tiles that are actually identical up to an isometric transform,
for a set of architectural scenes (Figure 7).

By definition, congruent tiles should have the same set of symmetries, possibly expressed in different
coordinate systems. Since we know the symmetries of each of the tiles, we introduce this constraint,
thereby increasing the discriminating power of our shape descriptor as shown in Table III.

6.3 Algorithm for Assembled Objects

6.3.1 Overview. Once we have determined all classes of congruent tiles, the algorithm examines
all the one-to-one mappings of the set of all tiles onto itself which map each tile onto a similar tile.
For each one-to-one mapping found, it determines the isometric transforms which are simultaneously
compatible with each tile and its symmetries.

The algorithm works recursively: at the beginning of each recursion step, we have extracted two
subsets of tiles, H1 and H2, of the composite shape S, and we have computed the set of all possible
isometric transforms that globally transform H1 into H2. Then, taking two new similar tiles, S1 ∈ S \H1
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Table III. Percentage of Tiles Matched By Our Shape
Descriptor That Are Effectively Identical Using the Added
Constraint That Identical Tiles Must Have the Same Set of

Symmetries Up to a Rigid Transform
Max 39,557 Polygons 182,224 Polygons 515,977 Polygons
order 851 Tiles 480 Tiles 5,700 Tiles

2 95.6% 73.4% 97%

4 100% 96.0% 100%

6 100% 100% 100%

8 100% 100% 100%

and S2 ∈ S \ H2, we restrict the set of isometric transforms to the isometric transforms that also map
S1 onto S2 (but not necessarily S2 onto S1). Because these tiles have symmetries, this usually leaves
multiple possibilities.

Note that the global symmetries found must always be applied with respect to the center of mass g

of S, according to the definition of a symmetry of S.
At the end of the recursion step, we have the set of isometric transforms that map H1 ∪ {S1} onto

H2 ∪ {S2}.
Each recursion step narrows the choice of symmetries for S. The recursion stops when either this

set is reduced to identity transform or when we have used all the component tiles in the model. In the
latter case, the isometric transforms found are the symmetries of the composite shape. The recursion
is initiated by taking for H1 and H2 two similar tiles, that is, two tiles of the same class.

In the following paragraphs, we review the individual steps of the algorithm: finding all the isometric
transforms which map tile S1 onto similar tile S2 and reducing the set of compatible symmetries of S.
We then illustrate the algorithm in a step-by-step example.

6.3.2 Finding All the Isometries Which Transform a Tile onto a Similar Tile. At each step of our
algorithm, we examine pairs of similar tiles, S1 and S2, and we have to find all the isometries which
map S1 onto S2.

If gi is the center of mass of tile Si and g is the center of mass of the composite shape S, this condition
implies that the isometries we are looking for transform vector g1 − g into g2 − g. In order to generate
the set of all isometric transforms that map S1 onto S2, we use the following property.

PROPERTY 4. If J is an isometry that maps S1 onto a similar tile S2, then all the isometries K which

map S1 onto S2 are of the following form:

K = JT−1 AT with A ∈ GS1
such that A(g1 − g) = g1 − g, (11)

where GS1
is the group of symmetries of S1, and T is the translation of vector g−g1 (refer to the Appendix

for proof of this property).

This property states that, once we know a single seed isometric transform which maps S1 onto S2, we
can generate all such transforms by using the elements of GS1

in Equation (11).

6.3.3 Finding a Seed Transform. We need to find a seed transform J that maps S1 onto S2. For each
tile, we extract a minimum set of independent vectors that correspond to extremas of their generalized
even moment functions. The number of vectors needed depends on the symmetries of the tile. J is then
defined as any isometric transform that maps the first set of vectors onto the second as well as vector
g1 − g onto g2 − g. Most of the time, a single isometric transform is possible at most. When multiple
choices exist, the candidate transforms are checked onto the shapes using the distance presented in
Section 5.3. This ensures that we find at least one seed transform.
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Fig. 8. Three spheres uniformly distributed on a circle in the z-plane. Etablishing all one-to-one mappings of the set of all tiles
onto itself, which map each tile onto a similar tile, are used to detect all the symmetries of the shape. Note that the 3−fold
symmetry H is detected and is associated to a circular permutation mapping.

6.3.4 Ensuring Compatibility with Previous Isometries. During the recursion, we need to store the
current set of compatible isometries we have found. We do this by storing a minimal set of linearly
independent vectors along with their expected images by these isometries. For example, if we have to
store a symmetry of revolution, we store only one vector, the axis of the symmetry, and its image (itself).
For mirror symmetries, rotations, and central symmetries, we store three independent vectors, along
with their images by this isometric transform. For instance, in the case of a rotation of angle π around
axis X, we have:

X �→ X Y �→ −Y Z �→ −Z. (12)

By examining all the one-to-one mappings of the set of all tiles onto itself, which map each tile onto a
similar tile, we are able to detect all symmetries of the set of tiles (see Figure 8). Note in this example
that the 3−fold symmetry H is detected and is associated to a circular permutation mapping.

6.4 Step-By-Step Example

Figure 9 presents a very simple example of a shape (a pair of pliers) composed of 3 tiles, S1, S2 (the
handles), and R (the head). Two of the tiles are similar up to an isometric transform, S1 and S2. Figure 9
also displays the centers of mass, g1, and g2 of tiles S1 and S2 (which are not in the plane z = 0), and
the center of mass g of the whole shape. In the coordinate systems centered on their respective centers
of mass, S1 and S2 have a mirror symmetry of axis Z, and R has a rotation symmetry around axis X of
angle π .

Our constructive algorithm starts by selecting tile R and a similar tile (here, the only possible choice
is R).

Step 1. The algorithm explores the possibilities to transform R into itself. Two possibilities exist (a) the identity
transform, and (b) the rotation around X of angle π , deduced from (a) by Property 4.
At this point, the algorithm branches, and either tries to map S1 to itself (branch 1) or to S2 (branch 2).
Branch 1, Step 1. The algorithm tries to match S1 to itself. The only compatible transform is the identity
transform.

ACM Transactions on Graphics, Vol. 25, No. 2, April 2006.

111



454 • A. Martinet et al.

Fig. 9. Illustration of the constructive algorithm on a very simple example: from the symmetries of each of the 3 parts of the
object, the symmetries of the whole object are recovered. Please note that no symmetry was ommitted in this Figure. In particular,
tile R has only a rotational symmetry but no mirror symmetry. See text of Section 6.4 for a detailed explanation.

Fig. 10. A complex model which has the same group of symmetries as the icosahedron. The constructive algorithm successfully
retrieves all 15 planes of mirror symmetries (center) and all 31 distinct axes of rotational symmetries (right) using the rotational
and mirror symmetry of each tile (at left). The presence of 3−fold and 5−fold symmetries proves that our algorithm also detects
symmetries which map a set of similar tiles onto itself through a complex permutation.

Branch 1, Step 2. The algorithm then tries to map S2 to itself. Once again, the only possible transform is the
identity transform, and the recursion stops because all the tiles in the model have been used.
Branch 2, Step 1. The algorithm tries to match S1 to S2. The only compatible transform is the rotation around X
of angle π .
Branch 2, Step 2. The algorithm then tries to match S2 to S1. Once again, the only compatible transform is the
rotation around X of angle π , and the recursion stops because all the tiles in the model have been used.

Two symmetries have been found that map the shape onto itself, the identity transform and the
rotation around X of angle π . Note that, although our algorithm can potentially create lots of branching,
we prune branches that result in empty sets of transforms and, in practice, we only explore a small
number of branches.

6.5 Application Scenarios

In order to illustrate the efficiency of the constructive algorithm, we show in this section various situ-
ations where this method is a valuable alternative to the single-shape algorithm.

6.5.1 Application to an Agregation of Many Objects. Figure 10 presents a complex model which has
the same group of symmetries as an icosahedron. The constructive algorithm retrieves all the 31 distinct
axis of rotational symmetries (Figure 10, right) as well as the 15 axis of plannar symmetries (Figure 10,
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Table IV. Comparison of the costs of the single-shape algorithm
presented in Section 5 to the cost of the constructive algorithm to

find all 46 symmetries of the icosahedron shape displayed on
Figure 10 at equivalent precision. Because the object is close to a

sphere and because it has many symmetries, the constructive
algorithm performs much better

Method Single shape (order 10) Constructive (order 4)

Moments calculation 500 sec 30 × 0.5 sec
Symmetry verification 46 × 55 sec 30 × 2 × 1.5 sec
Tile congruency N/A 2 sec
Tile mappings N/A 10 sec
Total 50mn 30 sec 1mn 57 sec

middle) of the shape, using the symmetries of each tile (Figure 10, left), which are 1 revolution symmetry
and 1 mirror symmetry.

Conversely, directly applying the first algorithm on such a shape shows that M2 to M8 are extremely
close to constant functions, making the extraction of directions an inaccurate process. The single-shape
algorithm still correctly finds all the axis if using moments up to order 10, but this has some impact on
computation times. Furthermore, the single-shape algorithm requires checking all of the symmetries
found on the model which is a significant part of its computation time. This is not the case for the
constructive algorithm because it relies on its knowledge of the symmetries of the tiles only. Because
many symmetries exist for this model, the total computation time of the single-shape algorithm is
therefore much higher. This is summarized in Table IV where we compare the computation times for
both methods at equivalent precision (i.e., 10−4 radians).

6.5.2 Finding Symmetries Inside Noncoherent Geometry. There exist common situations where 3D
scenes do not come as a set of closed separate objects but as an incoherent list of polygons. This hap-
pens, for instance, when retrieving geometric data from a Web site, mostly because a list of polygons
constitutes a practical common denominator to all possible formats.

In such a case, applying the single-shape algorithm would certainly give the symmetries of the whole
scene but if we are able to partition the set of polygons into adequate groups, that is, tiles to which we
apply the constructive algorithm, we may be able to extract symmetric objects from the scene as well
as the set of symmetries for the whole scene more rapidely as illustrated in Figure 10.

The gain in using the constructive algorithm to recover symmetries in the scene resides in the fact
that, once tile symmetries have been computed, grouping them together and testing for symmetries in
composed objects only adds a negligible cost which is not the case when we try to apply the single-shape
algorithm to many possible groups of polygons or even to the entire scene itself.

The various issues in the decomposition of a raw list of polygons into intelligent tiles are beyond the
scope of this article. In our case, tiles only need to be consistent with the symmetries. We propose the
following heuristic to achieve this correctly for most scenes:

We define tiles as maximal sets of edge-connected polygons. To obtain them, we insert all vertices of
the model into a KDTree and use this KDTree to efficiently recover which polygons share vertices up
to a given precision and share an edge. By propagating connectivity information between neighboring
polygons, we then build classes of edge-connected polygons, which we define to be our tiles. Figure 11
gives examples of such tiles for objects collected from the Web as a raw list of polygons.

Our simple heuristic approach of making tiles produced very good results on all scenes we tested and
suffices for a proof of concept of the constructive algorithm. This is illustrated in Figure 11 where a
lamp object and a chess game are shown along with their global symmetries. These symmetries were
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Fig. 11. Two models taken from the Web. From the raw list of polygons (left) our heuristic for scene partitionning extracts tiles
before the single-shape algorithm computes the symmetries for each of them (center). Using this information, the constructive
algorithm computes the symmetries of the whole model (right). Top row: A lamp object which has seven mirror symmetries and a
7−fold rotational symmetry. Bottom row: a chess board which is composed of pieces with very different symmetries but reveals to
only have a single 2−fold symmetry around a vertical axis (Note: in this last model, once tiles have been identified, chess pieces
were moved so as to obtain a model with at least one global symmetry).

computed from the symmetries of each of the subparts. These, in turn, were separately computed using
the algorithm presented in Section 5.

Obviously, this application requires that constructed tiles be consistent with symmetries, that is, that
it is possible to partition the scene into tiles which will map onto each other through the symmetries
of the scene. This may not be easy with scanned models, for instance, nor in perturbated data. In such
a case, our simple heuristic should be modified so as to base polygon neighborood relationships on
proximity distances between polygons rather than vertex positions only. Doing so, cutting one tile into
two parts and remeshing them independently, would have a high probability of producing the same
original tile after reconstruction. If not, then the existance of a symmetry inside the model may become
questionnable. Suppose, for instance, that the wrench in the step-by-step example (Section 6.4) gets
split into tiles that are not exact symmetrical copies of one another, and that these two tiles are too far
away to be merged into a single tile. Then the model is by nature not symmetric anymore which will
also be the output of the constructive algorithm.
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Table V. Computation Times (in seconds) for the
Different Steps of our Algorithm, for the Models

Shown in this Article
Model Plier Lamp Chessboard
# polygons 1, 940 39, 550 24, 942
# tiles 3 22 8

Computing moments* 0.9 18.2 15
Finding parameters 0.4 1.2 2.0
Checking candidates 2.3 7.4 7.9

Constructive algo. 0.001 0.05 0.01

Total 3.601 26.85 24.91
∗Global computation time for moments of order 2 to 8.

6.6 Computation Cost

Computation times (in seconds) for the models shown in this article are given in Table V as well as
the complexity of the models. They were measured on a machine equipped with a 2.4GHz processor
with 512MB of memory. As expected, the cost of the computation of the moment functions and the
cost of the verification of the candidates required by the first algorithm occupy the most important
part of the total cost and depend on the model complexity. Conversely, finding the parameters of the
symmetries (Section 5.2) as well as applying the constructive algorithm only depends on the number
of these symmetries.

Regarding accuracy, both algorithms computed the axes of the symmetries with a maximum error of
10−4 radians, independently of shape complexity, in our tests.

7. APPLICATIONS

7.1 Geometry Compression and Instantiation

Our framework can be used for model compression at two different levels. (1) If a model exhibits
symmetries, then it can be compressed by storing only the significant part of the model and using the
symmetries to recreate the full model. (2) If a model contains multiple instances of the same part, then
these parts can be instantiated. (see Figure 12).

Although complex models often do not present symmetries, symmetry-based compression can usu-
ally be used on some subparts of the model. The ability to express a model by explicitely storing the
significant parts only while instancing the rest of the scene is provided by some recent 3D file formats
such as X3D (see Table VI). We thus measure our compression ratios as the size of the X3D files before
and after our two compression operations which we detail now.

The scene is first loaded as a raw collection of polygons, before being decomposed into tiles, using the
heuristic presented in Section 6.5.2. We then compute symmetries and congruent descriptors for each
tile. Computation times shown in Table VI present the average time needed to compute symmetries and
congruent descriptors for a single tile. As the process of computing tile properties does not depend on the
other tiles, it is an easily parallelizable process. The scene is then first compressed by instancing the tiles.
Secondly, when storing each tile, we only store the minimum significant part of its geometry according
to its symmetries. This part is extracted using the same algorithm we will present for remeshing a tile
according to its symmetries in the next section. Note that compression rates shown on this table are
computed using geometry informations only, that is, neither texturing nor material information are
taken into account. Compression times shown in Table VI are the times needed to detect all classes of
tile congruency.
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Fig. 12. Detecting symmetries and similarities between tiles created from a raw list of polygons allows us to compress geometric
models in two ways: (1) by instancing similar tiles and (2) inside each symmetric tile, by instancing the part of the geometry which
permits to reconstruct the whole tile. In such a big model as the powerplant (13 millions triangles), we achieve a compression
ratio (ratio of geometry file size in X3D format) of 1:4.5. We show in this figure two subparts of the complete model. For each, we
show the tiles computed by our heuristic (see Section 6.5) as well as the obtained compression ratio. The PowerPlant model is a
courtesy of The Walkthru Project.

Table VI. Examples of Compression Rates Obtained Using our Symmetry
Detection Method Coupled with the Congruency Descriptor. (See text in

Section 7.1 for a detailed explanation.)
Model Room Plane Studio Powerplant

# polygons 39, 557 182, 224 515, 977 12, 748, 510
# tiles 851 480 5, 700 525, 154
av. computing tile properties (secs) 1.45 1.3 1.9 1.1
Compression time (secs) 7.2 9 14.6 311
Compression rate 1 : 2.7 1 : 8.3 1 : 3.5 1 : 4.5

7.2 Mesh Editing

It may be interesting, when an object contains symmetries, to remesh the object with respect to these
symmetries. In order to do this, we proceed by first extracting the minimum part of the shape that can
be reconstructed through each symmetry independently, then we apply the corresponding symmetry
to each of them in order to get as many meshes of the shape which are consistent with each symmetry
independently. The final step is to compute the union of all these meshes, merging identical vertices and
adding new vertices at edge crossings. While not necessarily optimal, the obtained mesh is consistent
with all symmetries of the shape.

Since a coherent remeshing allows for the establishment of a correspondence between model ver-
tices, we have developed a proof-of-concept mesh editing system which allows the user to modify a
3D object under the constraints given by the symmetries of the original object. It appears that, under
the constraint of too many symmetries, no vertices can be moved independently of the others, and the
geometry is sometimes bound to scale about its center of gravity. Images collected from this program
are displayed in Figure 13.

8. DISCUSSION

We discuss here a number of features of our technique as well as differences with existing approaches.
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Fig. 13. Starting from an object in arbitrary orientation, we detect symmetries of the shape (in the figure, a planar symmetry)
and use it to remesh the objects with respect to these symmetries. Then, a user can easily edit the mesh and modify it while
keeping the symmetries of the initial shape.

Using Spherical Harmonics

Generalized moments are a central component of our system. As stated before, we do not compute
these functions explicitly but we rather compute their coefficients in a spherical harmonics basis. As
for the decomposition itself, any basis could be used. In particular, a well chosen basis of 3D monomials
restricted to the unit sphere may also lead to a finite decomposition. Still, using spherical harmonics
has many advantages, in particular, because we use the same coefficients computed once for different
tasks throughout this article. (1) The expression of moment function as a sum of spherical harmonics
provides an accurate detection of the potential axes of symmetries. This detection is made deterministic
by finding the zero directions for the gradient of the moment functions. Such a computation is performed
analytically from the 2nd order derivatives of the spherical harmonics, and thus does not introduce
further approximation. (2) Computing symmetry parameters for the moment functions is made very
easy by working on the spherical harmonic coefficients themselves. Since spherical harmonics are
orthogonal and easily rotated, finding symmetries on the moment functions translates into simple
relationships between the coefficients. (3) The spherical harmonic coefficients provide an effective shape
congruency descriptor which we use to detect which tiles are identical up to an unknown isometric
transform.

In summary, the use of spherical harmonics provides us a consistent framework throughout the whole
process of our symmetry-finding algorithm.

Non Star-Shaped Objects

Whether the direct algorithm presented in Section 5 works for non star-shaped objects is a legitimate
question. Our approach never relies on a spherical projection. Indeed, the moment functions, as ex-
pressed in Equations (1) and (5) are computed through an integration over the surface itself, possibly
covering the same directions multiple times but with different values. Parts of a shape which correspond
to a same direction during integration will not contribute the same into the various moment functions
because of the varying exponent. By using various orders of moment functions in our symmetry detec-
tion process and in the computation of our shape congruency descriptor, we thus capture the geometry
of non star-shaped objects as well. Some previous approaches [Kazhdan et al. 2004] achieved this by
decomposing the shape into concentric spherical regions before doing a spherical integration which can
be assimilated to convoluting the shape with 0-degree functions with concentric spherical support; Our
technique is similar, but with another, kind of functions expressed into the form of the even moments.
In summary, detecting symmetries on non star-shaped objects has no particular reason to fail which is
illustrated by the result in Figure 2.
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The second algorithm (for assembled objects) naturally works just as well for non star-shaped objects
as illustrated by the examples in Figure 11.

Avoiding Dense Sampling

Previous methods that defined a continuous measure of symmetry( [Zabrodsky et al. 1995; Kazhdan
et al. 2004]) can theoretically compute both perfect and approximate symmetries. However, detecting
symmetries using such methods involves a sampling step of the directions on the sphere, whose density
must be adapted to the desired angular precision for the axis of the symmetry.

The work of Kazhdan et al. [2004] leads to impressive results concerning the improvment on the shape
matching process. However, relying on this technique to obtain accurate symmetries with high angular
precision requires a time-consuming step for the construction of the symmetry descriptors. According
to the presented results, the time needed to compute reflective, 2-fold, 3-fold, 4-fold, 5-fold, and axial
symmetry information for a spherical function of bandwidth b = 16 is 0.59 seconds. As stated in the
article [Kazhdan et al. 2004], the number of samples taken on the sphere is O(b2) (i.e., approximately
103 sample directions) which is insufficent to reach a high angular precision equivalent to the one
obtained with our method: reaching a precision of 10−4 radians would require approximately 109 sample
directions. This would theoretically increase the computation time to approximately 0.59 × 109/103 =
5.9 105 seconds, making the method inefficient for this task.

In contrast, our method does not rely on a dense sampling of directions to find symmetries but on
the computation of a fixed number of surface integrals which—thanks to the Gauss integration used—
provides an extremely accurate approximation of the spherical harmonic coefficients of the moment
functions. From there on, no further approximation is introduced in the computation of the directions
of the candidate symmetries which lets us achieve an excellent angular precision at a much lower
cost.

Furthermore, the cost of our algorithm does not rely on assumptions about the expected results.
The method of Kazhdan et al. [2004] indeed computes symmetry descriptors for each kind of searched
symmetry. Our method in turn computes all directions of possible symmetries and then checks back on
the shape of the obtained candidates.

9. CONCLUSIONS

We have presented an algorithm to automatically retrieve symmetries for geometric shapes and models.
Our algorithm efficiently and accurately retrieves all symmetries from a given model, independently
of its tesselation.

We use a new tool, the generalized moment functions, to identify candidates for symmetries. The
validity of each candidate is checked against the original shape using a geometric measure. Generalized
moments are not computed directly: instead, we compute their spherical harmonic coefficients using an
integral expression. Having an analytical expression for the generalized moment functions and their
gradients, our algorithm finds potential symmetry axes quickly and with good accuracy.

For composite shapes assembled from simpler elements, we have presented an extension of this algo-
rithm that works by first identifying the symmetries of each element, then sets of congruent elements.
We then use this information to iteratively build the symmetries of the composite shape. This extension
is able to handle complex shapes with better accuracy since it pushes the accuracy issues down to the
scale of the tiles.

Future Work

The constructive algorithm presented in Section 6 automatically detects instantiation relationships
between tiles into a composite shape.
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We are currently developing a constructive instantiation algorithm which iteratively collates similar
tiles into instances, checking at each step that the relative orientation of each tile with respect to each
already constructed instance is preserved.

This algorithm requires the symmetries of the tiles, and maintaining the symmetries of the instances
found so far. For this, we use our shape congruency metric, our algorithm for finding symmetries of single
shapes, and our algorithm for finding symmetries on composite shapes.

APPENDIX (PROOFS)

PROOF OF THEOREM 1. Let A be an isometric transform which lets a shape S be globally unchanged.
We have:

∀ω M2p(Aω) =
∫

s∈S
‖s × Aω‖2p ds

=
∫

t∈A−1S

‖At × Aω‖2p| det A| dt

=
∫

t∈A−1S

‖t × ω‖2p dt

= M2p(ω)

At line 2, we change variables and integrate over the surface transformed by A−1. At line 3, an isometric
transform is a unit transform and so, its determinant is ±1 and thus vanishes. The cross product is
also left unchanged by applying an isometric transform to each of its terms. Line 4: because AS = S, we
also have S = A−1S. The isometric transform A is thus also a symmetry of the M2p moment functions.

Let A be an isometric transform with axis v, and suppose that A is a symmetry of M2p. Let dv be the
direction of steepest descent of function M2p around direction v. Because A is a symmetry of M2p, we
have:

dAv = Adv = dv. (13)

If A is a rotation, this is impossible because dv ⊥ v. Moreover, for all directions ω, we have M2p(−ω) =
M2p(ω) and thus:

d−v = −dv. (14)

So, if A is a symmetry, we have Av = −v. From Equations (13) and (14), we get dv = −dv which is
impossible.

In both cases,M2p can not have a direction of steepest descent in direction v. BecauseM2p is infinitely
derivable, this implies that ∇M2p(v) = 0

PROOF OF PROPERTY 4. Let S and R be two shapes, identical up to an isometric transform. Let J be an
isometric transform such that JS = R. Let T be the translation of vector −uS with uS = gS − g with gS
as the center of mass of S, and g the origin of the coordinate system into which J is applied.

— Let A ∈ GS be a symmetry of S such that AuS = uS . We have ATS = TS (the symmetry A

operates in the coordinate system centered on gS ). Let K = JT−1 AT . Then

KS = JT−1 ATS K 0 = JT−1 AT0

= JT−1TS and = JT−1 A(−uS )
= JS = JT−1(−uS )
= R = J0 = 0
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By construction K is a rigid transform and conserves distances. It maps the origin onto itself. K is thus
an isometric transform. Furthermore, K maps S to R.

— Let K be an isometric transform such that KS = R. Let us choose A = T J−1K T−1. This choice
leads to K = JT−1 AT . Moreover:

ATS = T J−1K T−1TS AuS = T J−1K T−1uS

= T J−1K S and = T J−1K 2uS

= TS = T2uS = uS

and

A0 = T J−1K T−10

= T J−1K uS

= T J−1(gR − g)
= T (−uS )
= 0

By construction A is affine and conserves distances. It maps 0 onto 0. A is thus an isometric transform.
A is also a symmetry of S which verifies AuS = uS .

— The set of isometries which mapS toR is therefore the set of functions K of the form K = JT−1 AT ,
where A ∈ GS is a symmetry of S such that A(g− gS ) = (g− gS ).

PROOF OF EQUATION 3. We compute the decomposition of function θ �−→ sin2p
θ into zonal spherical

harmonics. We prove that this decomposition is finite, and give the values of the coeficients.
By definition [Hobson 1931], we have:

Y 0
L(θ , ϕ) =

√

2L + 1

4π
PL(cos θ )

=
√

2L + 1

4π

(−1)L

2LL!

d L

d xL

[

(1 − x2)L
]

(cos θ )

where Pk is the Legendre polynomial of order k. Because the set of Legendre polynomials P0, P1, ..., Pn

is a basis for polynomials of order not greater than n, function θ �−→ sin2p
θ = (1 − cos2 θ )p can be

uniquely expressed in terms of PL(cos θ ). The decomposition of θ �−→ sin2p
θ is thus finite and has

terms up to Y 0
2p at most.

Let’s compute them explicitely:

d L

d xL

[

(1 − x2)L
]

=
d L

d xL

L∑

k=0

(−1)L−kx2L−2kCk
L

= (−1)L d L

d xL

L∑

k=0

(−1)kx2kCk
L

=
∑

L≤2k≤2L

(−1)L+kCk
L2k(2k − 1)...(2k − L + 1)x2k−L

=
∑

L≤2k≤2L

(−1)L+kCk
L

(2k)!

(2k − L)!
x2k−L
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So:

Y 0
L(θ , ϕ) =

√

2L + 1

4π

∑

L≤2k≤2L

(−1)k

2LL!
Ck

L

(2k)!

(2k − L)!
cos2k−L θ

The coeficients of the decomposition we are interested in are thus:

∫ π

θ=0

∫ 2π

ϕ=0

Y 0
L(θ , ϕ) sin2p

θ sin θdθdϕ = 2π

√

2L + 1

4π

∑

L≤2k≤2L

(−1)k

2LL!
Ck

L

(2k)!

(2k − L)!
I

p

2k−L (15)

where integrals I
p

m are defined by:

I p
m =

∫ π

θ=0

sin2p+1
θ cosm θdθ

First, I
p

m = 0 for all odd m because the integrand in antisymetric around x = π/2. Then, if m is even:

I p
m =

[
1

2p + 2
sin2p+2

θ cosm−1 θ

]π

0
︸ ︷︷ ︸

0

+
m − 1

2p + 2

∫ π

0

sin2p+3
θ cosm−2 θdθ

=
m − 1

2p + 2
I

2p+3
m−2

=
(m − 1)(m − 3) . . . 1

(2p + 2)(2p + 4) . . . (2p + m)

∫ π

o

sin2p+m+1
θdθ

Let Jq be the integral defined by

Jq =
∫ π

0

sin2q+1
θdθ.

We have

Jq = [− cos θ sin2q
θ ]π0

︸ ︷︷ ︸

0

+ 2q

∫ π

0

cos2 θ sin2q−1
θdθ

= 2q Jq−1 − 2q Jq

Therefore

Jq =
2q

2q + 1
Jq−1

=
2q(2q − 2) . . . 2

(2q + 1)(2q − 1) . . . 3
J0

=
22q+1(q!)2

(2q + 1)!

For m even, we can take m = 2r and q = p + r; we get:

I
p

2r =
(2r)!p!

2rr!2r (p + r)!

22p+2r+1(p + r)!2

(2p + 2r + 1)!

=
(2r)!p!22p+1(p + r)!

r!(2p + 2r + 1)!
(16)
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From Equation (15), we deduce that, for L odd,
∫ ∫

Y 0
L(θ , ϕ) sin2p

θ sin θdθdϕ = 0.

For L even, we set L = 2l . Using r = k − l to match Equation (16) in Equation (15), we get:

Sl
p =

∫ ∫

Y 0
2l (θ , ϕ) sin2p

θ sin θdθdϕ

= 2π

√

4l + 1

4π

∑

2l≤2k≤4l

(−1)k

22l (2l )!
Ck

2l

(2k)!

(2k − 2l )!

(2k − 2l )!p!22p+1(p + k − l )!

(k − l )!(2p + 2k − 2l + 1)!

=
√

(4l + 1)π

22l (2l )!

∑

l≤k≤2l

(−1)kCk
2l

(2k)!p!22p+1(p + k − l )!

(k − l )!(2p + 2k − 2l + 1)!

=
√

(4l + 1)π

22l

∑

l≤k≤2l

(−1)k (2k)!p!22p+1(p + k − l )!

k!(2l − k)!(k − l )!(2p + 2k − 2l + 1)!
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3.

Propriétés de la fonction d’éclairage

Dans les méthodes de simulation de l’éclairage, on cherche à reconstituer une fonction
(l’éclairage). Pour ce travail, on ne dispose que d’informations parcellaires, calculées en des
points d’échantillonnage. L’efficacité et la précision des calculs dépendent du positionnement de
l’échantillonnage, mais la détermination du positionnement optimal suppose une connaissance
complète de la fonction d’éclairage.

Il est cependant possible de déterminer certaines caractéristiques de la fonction d’éclairage
aux points d’échantillonnage, comme ses dérivées ou la fréquence de ses variations. On peut
alors adapter l’échantillonnage en fonction de ces caractéristiques, ce qui permet d’améliorer la
qualité de la simulation tout en diminuant le temps de calcul.

Dans ce chapitre, nous avons présenté nos travaux sur les propriétés de la fonction d’éclai-
rage : d’une part la détermination des deux premières dérivées de la radiosité en présence d’obs-
tacles (section 3.1), d’autre part la détermination des fréquences de la fonction d’éclairage (sec-
tion 3.2). Dans les deux cas, on cherche à déterminer des propriétés locales, en se basant sur
l’analyse d’un local light field, en tenant compte des obstacles.

Ces informations (dérivée, fréquence) permettent ensuite de guider efficacement la simulation
de l’éclairage, que ce soit avec un oracle de raffinement qui contrôle l’erreur commise dans la
simulation, ou en adaptant l’échantillonnage dans des algorithmes de photon tracing.

3.1 Étude des dérivées de la fonction d’éclairage et applica-
tions

3.1.1 Dérivées de la fonction de radiosité

La radiosité en un point x sous l’influence d’une source donnée a une expression intégrale,
prenant en compte la fonction d’éclairage de la source :

B(x) =
ρ

π

∫

E(x)
B(y)

cos θ1 cos θ2

r2
dy (3.1)

Où E(x) désigne la partie de l’émetteur E qui est visible du point x, et inclut donc l’influence des
obstacles. La fonction B(x) est dérivable, et il est possible de calculer ses dérivéesr [15, 11, 30].
Nous avons fourni l’expression de la dérivée première (le Jacobien ou le gradient) et de la dérivée
seconde (le Hessien) de la radiosité au point x.

Ces dérivées peuvent être calculées explicitement [15] ; ce calcul réutilise plusieurs quantités
qui sont aussi nécessaires pour le calcul de la radiosité. Il est donc possible de calculer simulta-
nément la radiosité et ses dérivées, pour un surcoût modeste (de l’ordre de 30 %) par rapport au
calcul de la radiosité seule.
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3.1.2 Contrôle de l’erreur lors de la simulation
Mais les dérivées ne donnent qu’une information ponctuelle sur la fonction de radiosité, que

l’on peut éventuellement extrapoler par un développement limité, pour obtenir une information
locale. Pour des applications pratiques (comme une simulation de l’éclairage dans une maquette
virtuelle d’immeuble) il est utile d’avoir une information globale, comme l’erreur commise sur
l’ensemble de la simulation. Cette information globale peut se déduire d’une information sur
l’erreur commise sur chaque interaction entre facettes1, 2.

Nous avons montré comment utiliser la connaissance des dérivées de la radiosité pour en dé-
duire un encadrement strict de l’erreur commise sur chaque interaction. On peut alors en déduire
l’erreur commise sur chaque interaction, et ainsi un oracle de raffinement exhaustif [11, 30] (voir
p. 142).

Cet encadrement repose sur deux conjectures, la conjecture d’unimodalité et la conjecture de
concavité. Ces deux conjectures étendent et formalisent un résultat connu depuis longtemps, que
la radiosité due à une source convexe n’adment qu’un seul maximum3.

3.2 Étude fréquentielle de la fonction d’éclairage

Figure 3.1 – La réflexion est plus ou moins nette en fonction de la BRDF. Ici, la BRDF évolue de
parfaitement spéculaire à gauche à diffuse à droite.

La simulation de l’éclairage présente des phénomènes qui sont plus ou moins flous, en fonc-
tion des objets et des sources lumineuses. Par exemple, la réflexion sur un objet spéculaire est
parfaitement nette, et contient tous les détails de la scène réfléchie, tandis que la réflexion sur
un objet diffus est très floue (voir figure 3.1). De la même manière, l’ombre causée par une
source ponctuelle est nette, tandis que l’ombre causée par une source surfacique est floue (voir fi-
gure 3.2). Enfin, l’éclairage indirect dans une scène est en général plus flou que l’éclairage direct
(voir figure 3.3).

Ce côté net ou flou peut se traduire en terme de contenu fréquentiel de la fonction d’éclairage :
les effets nets (ombres dures, réflexion spéculaires) correspondent à des hautes fréquences, tandis
que les effets flous (ombres douces, réflexion diffuse, éclairage indirect) correspondent à des
basses fréquences.

Avec François Sillion et Cyril Soler, dans le cadre d’une collaboration avec Frédo Durand et
Eric Chan de l’équipe CSAIL du MIT, collaboration financée par une Équipe Associée INRIA,
nous avons montré qu’il est possible de prédire ce contenu fréquentiel de l’éclairage en fonction

1. Daniel L, Brian S et Donald P. G. « Bounds and Error Estimates for Radiosity ». Dans ACM
SIGGRAPH ’94, p. 67–74, 1994.

2. James A, Kenneth T et Brian S. « A Framework for the Analysis of Error in Global Illumination
Algorithms ». Dans ACM SIGGRAPH ’94, p. 75–84, 1994.

3. G. D et E. F. « Accurate and Consistent Reconstruction of Illumination Functions Using Structured
Sampling ». Computer Graphics Forum (Eurographics ’93), 12(3):C273–C284, septembre 1993.
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(a) Source ponctuelle (b) Source surfacique

Figure 3.2 – L’ombre causée par une source ponctuelle est nette, tandis que l’ombre causée par
une source surfacique est plus floue (images gracieusement fournies par Ulf Assarsson).

(a) Éclairage total (b) Éclairage direct (c) Éclairage indirect

Figure 3.3 – L’éclairage indirect est en général plus flou que l’éclairage direct (images gracieu-
sement fournies par Cyril Soler).

de la scène (sources lumineuses, obstacles, matériaux) [5] (voir p. 164). Nous nous intéressons à
la fois au spectre spatial et au spectre angulaire :

– Nous considérons l’éclairage comme un local light field, paramétré par une distance et un
angle par rapport à un rayon de référence.

– Au départ de la source lumineuse, le spectre (spatial et angulaire) de ce local light field est
connu.

– Chaque étape entre la source lumineuse et le récepteur est vue comme un filtre agissant sur
le contenu fréquentiel :
– Le transport à travers l’espace libre a l’effet d’une affinité orthogonale à l’axe des fré-

quences angulaires. Cet effet convertit les fréquences spatiales en fréquences angulaires.
– En présence d’un obstacle, il y a convolution entre le spectre de l’obstacle et celui du

local light field, introduisant de nouvelles fréquences spatiales.
– la réflexion sur un récepteur peut être décomposée en plusieurs phases, avec un filtre

particulier associé à chacune. L’effet général est celui d’un filtre passe-bas dans les fré-
quences angulaires. La fréquence de coupure de ce filtre est liée au caractère spéculaire
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ou non de la BRDF. Une BRDF diffuse coupe complètement les fréquences angulaires
tandis qu’une BRDF spéculaire les conserve entièrement.

– L’effet combiné de ces différents filtres permet de prédire l’étendue du spectre (spatial et
angulaire) en un point donné de la scène. On peut ensuite tirer parti de cette connaissance
pour guider les calculs de simulation de l’éclairage, en adaptant l’échantillonnage aux fré-
quences.

Une des observations les plus intéressantes issues de notre travail est que les fréquences spa-
tiales et angulaires sont liées par l’étape de transport dans l’espace libre. Lorsqu’une BRDF non
spéculaire élimine certaines fréquences angulaires, cela a aussi pour conséquence de supprimer
des fréquences spatiales. Plus le transport est long, plus les fréquences spatiales sont liées à des
fréquences angulaires élevées, et donc plus l’effet de coupure de la BRDF sur les fréquences
angulaires se traduit par des fréquences spatiales basses.

Cet effet, confirmé par des études expérimentales, ouvre de nombreuses possibilités dans la
simulation de l’éclairage. La capacité à prédire les fréquences maximales en chaque point de la
scène permet de guider l’échantillonnage au cours du processus de simulation de l’éclairage, et
ce quelle que soit la méthode employée pour les calculs (photon-mapping, radiosité, PRT...). Ce
travail devrait être la base de nombreuses études futures et applications pratiques.

(a) Obstacles à basses fréquences :
basses fréquences sur le récepteur

(b) Fréquences plus élevées dans les
obstacles : fréquences plus élevées sur
le récepteur

(c) Obstacles à hautes fréquences :
basses fréquences sur le récepteur

Figure 3.4 – Application de notre étude des fréquences de la fonction d’éclairage. Les fréquences
spatiales sur le récepteur diffus évoluent de façon non-monotone avec les fréquences des obs-
tacles.

Comme application de notre étude, considérons le spectre de la fonction d’éclairage sur un ré-
flecteur diffus en présence d’obstacles (voir figure 3.4). Ce spectre évolue de façon non-monotone
en fonction du spectre des obstacles : dans un premier temps, une augmentation de la fréquence
des obstacles se traduit par une augmentation des fréquences spatiales sur le récepteur (voir
figure 3.4(b)). En revanche, passé un certain seuil, une augmentation de la fréquence des obs-
tacles se traduit au contraire par une diminution des fréquences spatiales sur le récepteur (voir
figure 3.4(c)).

Cet effet, déjà étudié4, est parfaitement expliqué par notre étude : l’obstacle introduit des
fréquences spatiales. Le transport après l’obstacle pousse ces fréquences spatiales dans les fré-
quences angulaires. La réflexion sur une surface diffuse coupe les fréquences angulaires, et donc
les fréquences spatiales qui y sont liées.

4. Francois S et George D. « Feature-Based Control of Visibility Error: A Multiresolution Clustering
Algorithm for Global Illumination ». Dans ACM SIGGRAPH ’95, p. 145–152, 1995.
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3.3 Discussion
Dans ce chapitre, nous avons présenté nos travaux sur les propriétés des fonctions d’éclai-

rage. Nous avons montré qu’il est possible de déduire les propriétés locales de l’éclairage en
fonction des positions respectives des objets. Ces propriétés peuvent être utilisées pour guider les
méthodes de résolution, augmentant ainsi leur efficacité.

Les travaux sur le contenu fréquentiel de la fonction d’éclairage n’ont pas encore livré tout
leur potentiel ; nous comptons les poursuivre par de nouvelles recherches.

Chaque réflexion sur une surface non-spéculaire après un transport dans l’espace libre a pour
effet de faire baisser le contenu fréquentiel, aussi bien en espace qu’en angle. En conséquence, les
effets à haute fréquence vont se produire : soit lors des réflexions spéculaires, soit dans l’éclairage
direct, soit lorsque le transport dans l’espace libre a peu d’effet, c’est-à-dire lorsque deux objets
sont proches.

Compte-tenu des progrès des cartes graphiques programmables, il est possible de calculer
séparément et de façon interactive certains de ces effets à haute fréquence. Les effets à basse
fréquence pourraient alors être calculés séparément, avec un échantillonnage plus lâche. Ce calcul
en temps-réel des effets d’éclairage à haute fréquence fait l’objet du chapitre suivant.
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3.4 Articles
3.4.1 Liste des articles

– Accurate Computation of the Radiosity Gradient for Constant and Linear Emitters (EGWR
’95)

– An exhaustive error-bounding algorithm for hierarchical radiosity (CGF ’98)
– A Frequency Analysis of Light Transport (Siggraph 2005)



3.4. ARTICLES 129

3.4.2 Accurate Computation of the Radiosity Gradient for Constant and Linear Emitters
(EGWR ’95)

Auteurs : Nicolas H et François S
Conférence : 6eEurographics Symposium on Rendering, Dublin, Irlande.
Date : juin 1995
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Accurate Computation of the Radiosity Gradient for
Constant and Linear Emitters

Nicolas Holzschuch, François Sillion

iMAGIS/IMAG ⋆

Abstract: Controlling the error incurred in a radiosity calculation is one of the
most challenging issues remaining in global illumination research. In this paper
we propose a new method to compute the value and the gradient of the radiosity
function at any point of a receiver, with arbitrary precision. The knowledge of
the gradient provides fundamental informations on the radiosity function and its
behaviour. It can specially be used to control the consistency of the discretisation
assumptions.

1 Introduction

Computing the effect of a given patch on the radiosity of another patch is easily done
assuming the radiosity on both patches are constant. In that case, we can express
the influence of the emitter on the receiver with a single number, the form-factor.
However, assuming the radiosity on both patches is constant is a strong assumption, and
it introduces a specific source of error in the resolution algorithm.

In 1994, Arvo et al. [2] recorded all possible sources of error in global illumination
algorithms, and introduced a framework for the analysis of error. Errors can occur at
several levels in the resolution process:

– During modeling: our geometry is not exactly that of the scene we want to compute,
and theBRDF are not exact either.

– During discretisation: our set of basis functions is not able to represent the real
solution, but only an approximated one.

– During computation: we do not compute transfer elements exactly, but only within
finite precision.

Lischinski et al. [9] presented an error driven refinement strategy for hierarchical
radiosity. They were able to maintain upper and lower bounds on computed radiosity,
and to concentrate their work in places where the difference was too large.

However, practical tools are still lacking to measure discretisation error. The problem
is to efficiently reconstruct the radiosity function, with only a small number of samples.
The best position for sampling points can only be found with total knowledge of the
radiosity function.

In practice, at each step, we have to intuit the behaviour of the function from our
current set of samples, in order to guess if we should – or not – introduce new sampling
points, and where.

⋆ iMAGIS is a joint research project ofCNRS/INRIA/INPG/UJF. Postal address: B.P. 53, F-38041
Grenoble Cedex 9, France. E-mail:Nicolas.Holzschuch@imag.fr.

131



Knowing the radiosity derivatives allows better sampling, and thus reduction of
discretisation error. Heckbert [6] and Lischinski et al. [7] predicted an efficient surface
mesh using derivatives discontinuities. Drettakis and Fiume [4, 5] used information
on the structure of the function to accurately reconstruct the illumination. Vedel and
Puech [11] presented a refinement criterion based on gradient values at the nodes.

However, these authors usually resorted to approximated values of the partial deriva-
tives, using several computations of radiosity and finite differences. Computing accurate
values for the gradient allows arbitrary precision on our refinement criterion.

Arvo [1] presented a method to compute the irradiance Jacobian in case of partially
occluded light sources. His method is presented with constant emitters. This paper
introduces a new formulation of the radiosity gradient, valid for arbitrary radiosity
functions on the emitter. The derivation is presented in the case of total visibility, i.e.
without occluders. However, we shall see that extending the algorithm to the case of
partial visibility is easy using Arvo’s technique, since the two algorithms are largely
independant.

2 Reformulating the Radiosity Equation

We will consider only diffuse surfaces, characterised by their radiosity functionB(x),
without any assumption aboutB.

We want to know the value ofB at a pointx on a given patchA1, due to the emission
of light from another polygonA2. We will assume a reflectivity ofρ at pointx.

θ1

~n1

~r12

x

θ2

~n2
y

A2

A1

Fig. 1. Geometry of the problem

Our knowledge of radiosity at the receiving point derives from the integral equation:

B(x) =
ρ

π

∫

A2

B(y) cos θ1 cos θ2
‖~r12‖2

dA2 (1)

where~r12 is the vector joining pointx on the receiver and pointy on the emitter.θ1
is the angle between~r12 and the normal on the receiver,θ2 the angle between~r12 and
the normal on the emitter, anddA2 the area element on the emitter around pointy (see
Fig. 1).

Should any occluders be present between pointx and emitterA2, the integral would
only be over the part ofA2 visible fromx.
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We can reformulate Equation 1 as the expression of the flux of a vector field through
surfaceA2:

B(x) =

∫

A2

~F · d ~A2 (2)

where~F is:
~F = −

ρB(y)(~r12 · ~n1)~r12
π‖~r12‖4

A classic way to deal with flux integrals as Equation 2 is to transform them into a linear
integral using Stoke’s theorem2:

∫

A

(∇× ~V ) · d ~A =

∮

∂A

~V · d~x (3)

These linear integrals can be easier to compute, and are also easier to estimate if there
are no closed forms. However, to use Stoke’s theorem (3), we need to express the vector
field ~F as the curl of another vector field,~V .

A classic property is that this is equivalent to~F having a null divergence (∇· ~F = 0).
Basically, the divergence of a vector flux is a quantity that express at each point how
much does the flux “radiates away” from this point, while the curl of a vector field “turns
around” it at each point. The divergence of a curl is always null (∇· (∇× ~V ) = 0), and
if a field has a null divergence, it can be expressed as a curl.

An easy computation shows that the divergence of~F with respect to pointy on
surfaceA2 is3:

∇ · ~F = −
ρ

π

~r12 · ~n1
‖~r12‖2

(∇(B) · ~r12) (4)

and hence is null if the gradient ofB on the emitting surface is null. That is to say, if
the radiosity of the emitter is constant.

We can always separate~F in two parts:

~F = ∇× (~V ) + ~G

Namely:

~V = ρB(y)
~r12 × ~n1
2π‖~r12‖2

~G = −ρ∇(B)×

(

(~r12 × ~n1)

2π‖~r12‖2

)

and thus cut Equation 2 in two integrals:

B(x) =

∮

∂A2

~V · d~x2 +

∫

A2

~G · d ~A2 (5)

Using the properties of cross-products and dot-products, we can rewrite Equation 5 as:

2π

ρ
B(x) = −~n1 ·

∮

∂A2

B(y)
~r12 × d~x2
‖~r12‖2

+

∫

A2

~r12

‖~r12‖2
· (~n1 × (∇(B) × ~n2)) dA2 (6)

2 ∂A stands for the contour ofA, and
∮

expresses that this contour is closed.
3 In this section, all derivative signs (∇,∇·,∇×) are relative to pointy on surfaceA2.
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Note that this rewriting process does not make any assumption whatsoever onB(y).
Hence it can be used in any case. An interesting case is whenB(y) is constant: then
~G = ~0, and the second term is null. Another interesting case isB(y) being linear: then
its gradient is constant and can be carried out of the second integral, leaving only a pure
geometric factor to compute. Appendix A presents a detailed study of these two cases.

This rewriting process separates the radiosity in two terms, a contour integral that we
can generally compute, provided that we know the radiosity on the emitter, and a surface
integral, generally harder to compute as an exact term. But, as shown later, having an
integral form of this term, we can compute its value with an arbitrary precision.

3 The Radiosity Gradient
An interesting quantity to describe scalar fields, such asB(x) is their gradient. Gradient
is the extension of derivation for function of several variables. Basically,∇(B)(x) · ~v
gives the derivative of functionB at pointx in the direction of~v.

3.1 Computing the Gradient
The radiosity gradient can be computed from an equation such as Equation 1 or 6:

∇(B)(x) = ∇

(
∫

A2

~F · d ~A2

)

(7)

In case the emitterA2 does not depend on the position of the pointx – that is to say, in
case there are no occluder between pointx and the emitting surfaceA2 – this equation
is equivalent to:

∇(B)(x) =

∫

A2

∇
(

~F · d ~A2
)

Or, if we use Equation 5:

∇(B)(x) =

∮

∂A2

∇
(

~V · d~x2
)

+

∫

A2

∇(~G · d ~A2) (8)

If the emitter depends on the position of pointx – that is, if there are occluders –
the expression of∇(B)(x) is the sum of two terms; the first one takes into account
the variation of~F , and is exactly the term we are discussing, and the second one takes
into account the variation of the emitter. Thus, it is easy to merge a method to compute
the gradient with occluders and a constant emitter, as in Arvo [1], and our method to
compute the gradient with an arbitrary emitter, but without occluders.

Note that in this section, we are taking a derivative with respect to pointx on
the receiving surface, not with respect to pointy on the emitting surface. So for our
derivating operator, the radiosity on the emitting pointB(y) can be regarded as constant,
as well as its gradient,∇(B)(y).

Using the properties of the gradient of a scalar product, starting from Equation 8,
we can express the gradient of radiosity at the receiving point:

2π

ρ
∇(B)(x) = ~n1 ×

∮

∂A2

B(y)
d~x2

‖~r12‖2
+ 2

∮

∂A2

B(y)
~n1 · ~r12
‖~r12‖4

(~r12 × d~x2)

+

∫

A2

(~n1 × (∇(B)(y) × ~n2))
dA2

‖~r12‖2

− 2

∫

A2

(~n1 × (∇(B)(y) × ~n2)) · ~r12
‖~r12‖4

~r12dA2 (9)
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This equation, like the radiosity equation (6) is divided in two parts: a contour integral
which usually has a closed form, and a surface integral that we can estimate to any
arbitrary precision.

As before, two interesting cases occur: if the gradient on the emitter is null, that is
if we assume a constant radiosity on the emitter, all surface integrals vanish. And if the
gradient on the emitter is constant, that is if we assume a linear radiosity on the emitter,
it can be carried out of the surface integrals, leaving us with purely geometrical factors
or vectors to compute. Please refer to Appendix A for a detailed study of these cases.

3.2 Using the gradient

Knowing the gradient at a point gives very valuable information on the function we are
studying. As previous authors pointed out, the gradient may be used either to reconstruct
the illumination function before display, or to check the consistency of our discretisation
hypothesis.

Reconstructing the illumination function If we know the radiosity values and the
gradient at our sample points, we can then reconstruct the radiosity function as, e.g. a
bicubic spline.

Salesin et al. [10] and Bastos et al. [3] proposed such methods for reconstruction
of radiosity using estimates of gradient. Ward and Heckbert [12] computed irradiance
gradients to interpolate irradiance on receiving surfaces.

Refinement criterion Many radiosity algorithms assume a constant radiosity over
patches. It may seem strange to compute the gradient of radiosity in that case, but
in fact the information given by the gradient can also be used there.

Using the derivatives allows precisely to check whether our discretisation hypothesis
were correct or not, and if they were not, it also gives a hint on where it would be best
to refine in order to minimize the discretisation error.

Patch width

B(x)
Approximate
error on this

patch

Approximate error on this edge

Best probable cutting point

Polynomial approximation

linear interpolation
B(y0)

B(y1)

Constant Radiosity Assumption Linear Radiosity Assumption
(a) (b)

Fig. 2.Using the gradient to measure discretisation error

If we assume constant radiosity on our patches, the gradient gives a first estimate
of how much does the function vary over the patch:∇(B)(x) · ~v is approximately the
difference between radiosity at pointx + ~v and radiosity at pointx. The norm of the
gradient times the width of the patch gives an approximationof how much does radiosity
varies over the patch (see Fig. 2a for an example in 2D). The direction of the gradient
gives the best probable direction of refinement.

If we assume linear radiosity on our patches, we can compute a cubic interpolant over
the patch using the radiosity and gradient values at each vertices, and then test how much
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this cubic interpolant differs from our linear assumption (see Fig. 2b for an example in
2D). We can even compute the difference between linear and cubic interpolant without
explicitly computing the interpolants. This criterion also gives the best next sampling
point, the position of the maximum difference between the two interpolants.

B

∇(B) = 0Error = 0

Real Error

Approximate Error

B(y0) B(y1)

Constant Radiosity Assumption Linear Radiosity Assumption
(a) (b)

Fig. 3. Sample cases where the proposed refinement criterion fail

Although none of these refinement criterion are foolproof (see Fig. 3 for an example
where these two criterion fail to detect an important discretisation error), they provide
a way to measure and quantify the discretisation error.

Also, the points where these refinement criterions are more likely to be fooled are
basically the extrema of the radiosity functions. We know that a single convex emitter
induces only one maximum on the receiver (see, for example, Drettakis [4]).

So, to study the interaction between two patches so as to minimize discretisation
error, we would, first, find the theorical position of the maximum of radiosity, then
sample it, then refine the receiving patch using our gradient-based criterion.

4 Implementation and First Results

We have implemented the gradient and radiosity formulas described in appendix A, for
both constant and linear emitters4. Using aC++ class for vectors, with definitions of
cross- and dot-products makes the implementation very straightforward, being a mere
recopy of the formulas. The only special attention it needs is avoiding to recompute
quantities already computed at previous steps. Most of the quantities needed to express
the gradient were also used for the radiosity.

In the color plates, Fig. A shows the radiosity values on a plane, due to a triangular
emitter parallel to that plane (see Fig. E for the geometry of the scene). Fig. B shows
the norm of the gradient of this radiosity.

Fig. C and D show the same quantities if we assume a linear emitter.

5 Conclusion and Future Work

We have provided a way to compute the gradient of radiosity at the receiving point with
any distribution of illumination on the emitter. The gradient can be used in several ways,
and specially to compute the discretisation error. It can also be used to find the best next
refining point.

Future work will include a complete gradient computation, using the method de-
scribed by Arvo in [1] to take the possible occluders into account.

4 Souce code and documentation for this implementation is available at
ftp://safran.imag.fr/pub/holzschu/gradient.tar.gz.
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The ability to compute radiosity gradients for linear emitters is especially interesting
when using linear basis functions or linear wavelets. In that case, the discretisation error
can be precisely isolated.

Our next step will be a complete implementation of the refinement criterion described
in section 3.2, to effectively reduce the discretisation error, within a hierarchical radiosity
framework with linear radiosity.

We will then have the possible background for a complete radiosity algorithm
with all possible sources of error (visibility, discretisation, computational) recorded and
monitored, thus allowing to focus the computing resources at the points where this error
is large.
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A Application to Constant and Linear Emitters

A.1 Case of a constant emitter

In the case of a constant emitter the Equations 6 and 9 reduce to:

2π

ρ
B(x) = −~n1 ·

∮

∂A2

B(y)
~r12 × d~x2
‖~r12‖2

(10)

−
2π

ρ
∇(B)(x) = ~n1 ×

∮

∂A2

B(y)
d~x2

‖~r12‖2
+ 2

∮

∂A2

B(y)
~n1 · ~r12
‖~r12‖4

(~r12 × d~x2)(11)

If A2 is a polygon, these integrals have a closed form, and yield:

2π

ρ
B(x) = −B2~n1 ·

∑

i

I1(i) (~ri × ~ei)

−
2π

ρ
∇(B)(x) = B2

∑

i

I1(i) (~n1 × ~ei)

+ 2B2
∑

i

(~ri × ~ei) · ~n1 (I2(i)~ri + J2(i)~ei)

where the sum extends on all the edges of the polygon, andB2 is the radiosity of the
emitter.~ri, ~ei, I1(i), I2(i) andJ2(i) stand for (see also Fig. 4):

~ri =
−→
xEi

~ei =
−−−−→
EiEi+1

I1(i) =
γi

‖~ri × ~ei‖

I2(i) =
1

2‖~ri × ~ei‖2

(

~ri+1 · ~ei
‖~ri+1‖2

−
~ri · ~ei
‖~ri‖2

+ ‖~ei‖
2I1(i)

)

J2(i) =
1

2‖~ei‖2

(

1

‖~ri‖2
−

1

‖~ri+1‖2
− 2I2(i)~ri · ~ei

)

andγi is the angle sustended by edge~ei from pointx.

x

A2

A1

Ei

Ei+1

γi

~ei

~ri

Fig. 4. Geometric Notations Used

ComputingB at pointx requires roughly 63 multiplications, 6 divisions, 54 additions
or substractions, 6 square roots and 3 arc cosines. This equals approximately 300
additions on anSGI Indy computer, with no optimisations and the standard compiler.
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Computing∇(B)(x) requires roughly 87 multiplications more, 57 additions more
and 3 divisions more. Which, with the same material, equals approximately 150 addi-
tions.

Although this computationnal cost may depend on implementation details as well
as on the computer used (some compilers have very fast implementations of arc cos
and square root), computing the gradient along with the radiosity does not over-increase
computation time.

A.2 Case of a linear emitter

If the emitter is not constant, the gradient of radiosity on the emitter is not null, and
must be used in our computations. However, if we assume the radiosity of the emitter
is linear, then its gradient is constant and can be carried out of the integrals. Moreover,
this gradient is orthogonal to~n2, and can be expressed as:

∇(B)(y) = ~n2 × ~k

with ~k orthogonal to~n2. ~k = 1
2A2
((B2 −B0)~e0 + (B1 −B0)~e2)

Using the properties of~k, we can express Equation 6 as:

2π

ρ
B(x) = −~n1 ·

∮

∂A2

B(y)
~r12 × d~x2
‖~r12‖2

+(~n1 ·~n2)(~k ·(~m×~n2))+(~m·~n2)(~n2 ·(~n1×~k))

with:

~m =

∫

A2

~r12

‖~r12‖2
dA2 =

∫

A2

∇(ln(r12))dA2

Computing the contour integrals does not induce any particular difficulties. However,
computing~m is harder. We can make use of Ostrogradsky’s theorem, similar to Stoke’s:

∫

A

∇(V )× d ~A = −

∮

∂A

V d~x

to express~m× ~n2.
~m · ~n2 is null if pointx is on polygonA2. If point x is not on polygonA2, it can be

estimated with arbitrary precision.
The formula forB(x) is then:

2π

ρ
B(x) = −~n1 ·

∮

∂A2

B(y)
~r12 × d~x2
‖~r12‖2

− (~n1 · ~n2)~k ·

∮

∂A2

ln(r12)d~x2

+ (~m · ~n2)(~n2 · (~n1 × ~k))

If we derive this formula rather than use Equation 9, we find:

−
2π

ρ
∇(B)(x) = ~n1 ×

∮

∂A2

B(y)
d~x2

‖~r12‖2
+ 2

∮

∂A2

B(y)
~n1 · ~r12
‖~r12‖4

(~r12 × d~x2)

− (~n1 · ~n2)

∮

∂A2

~r12

‖~r12‖2
(~k · d~x2)

+ (~n2 · (~n1 × ~k)) (~n2X1 − 2(~n2 · ~r0)~p)
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with:

~p =

∫

A2

~r12

‖~r12‖4
dA2

X1 =

∫

A2

dA2

‖~r12‖2

Computing~p is exactly like computing~m: we can compute~p×~n2, and we can estimate
~p · ~n2 with arbitrary precision. Then we use:

~p = ~n2 × (~p× ~n2) + (~p · ~n2)~n2

Hence:
2π

ρ
B(x) = −~n1 ·

∑

i

(BiI1(i) + δBiJ1(i)) (~ri × ~ei)

− (~n1 · ~n2)
∑

i

(~k · ~ei)K1(i)

+ (~r0 · ~n2)(~n2 · (~n1 × ~k))X1

−
2π

ρ
∇(B)(x) =

∑

i

(BiI1(i) + δBiJ1(i)) (~n1 × ~ei)

+ 2
∑

i

~n1 · (~ri × ~ei)Bi (I2(i)~ri + J2(i)~ei)

+ 2
∑

i

~n1 · (~ri × ~ei)δBi (J2(i)~ri +K2(i)~ei)

− (~n1 · ~n2)
∑

i

(~k · ~ei) (I1(i)~r1 + J1(i)~e1)

− (~n2 · (~n1 × ~k))(~n2 · ~r0)~n2 ×
∑

i

I2(i)~ei

+ (~n2 · (~n1 × ~k))
(

X1 − 2(~r0 · ~n2)
2X2
)

~n2

With:

δBi = Bi+1 −Bi

J1(i) =
1

‖~ei‖2

[

ln

(

‖~ei+1‖

‖~ei‖

)

+ (~ri · ~ei)I1(i)

]

K1(i) =
1

2‖~ei‖2
(

~ri+1 · ~ei ln(‖~ei+1‖
2)− ~ri · ~ei ln(‖~ei‖

2) + 2‖~ri × ~ei‖γi
)

K2(i) =
1

‖~ei‖2
(

I1(i)− ‖~ri‖
2I2(i)− 2(~ri · ~ei)J2(i)

)

X2 =

∫

A2

dA2

‖~r12‖4

If the the distance between pointx and the emitter surface is null,~m · ~n2 and~p · ~n2
are both null. If it is not, we prefer to estimateX1 andX2. As we know bounds on the
values of the function and its derivatives, we make use of a Gaussian quadrature.
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A. Radiosity on the Receiving Plane,
due to a Constant Emitter.

B. Norm of Radiosity Gradient, due
to a Constant Emitter.

C. Radiosity on the Receiving Plane,
due to a Linear Emitter

D. Norm of the Radiosity Gradient,
due to a Linear Emitter

Receiver

Emitter

0.1

2

E. Geometry of our Test Scene
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An exhaustive error-bounding algorithm
for hierarchical radiosity
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Abstract
This paper presents a complete algorithm for the evaluation and control of error in radiosity calculations. Pro-
viding such control is both extremely important for industrial applications and one of the most challenging issues
remaining in global illumination research.
In order to control the error, we need to estimate the accuracy of the calculation while computing the energy
exchanged between two objects. Having this information for each radiosity interaction allows to allocate more
resources to refine interactions with greater potential error, and to avoid spending more timeto refine interactions
already represented with sufficient accuracy.
Until now, the accuracy of the computed energy exchange could only be approximated using heuristic algorithms.
This paper presents the first exhaustive algorithm to compute fully reliable upper and lower bounds onthe energy
being exchanged in each interaction. This is accomplished by computing first and second derivatives ofthe ra-
diosity function where appropriate, and making use of two concavity conjectures. These bounds are then used in a
refinement criterion for hierarchical radiosity, resulting in a global illumination algorithm with complete control
of the error incurred.
Results are presented, demonstrating the possibility to create radiosity solutions with guaranteed precision. We
then extend our algorithm to consider linear bounding functions instead of constant functions, thus creating sim-
pler meshes in regions where the function is concave, without loss of precision.
Our experiments show that the computation of radiosity derivatives along with the radiosity values onlyrequires
a modest extra cost, with the advantage of a much greater precision.

1. Introduction

Global illumination algorithms now have many applications.
One of the most promising fields is in urban and architectural
planning, where the use of a global illumination algorithm
allows to visualize a future building, and thus to check for
misconceptions. For example, it becomes possible to check

† Current position: Invited Researcher, Department of Computer
Science, University of Cape Town, South Africa.
‡ iMAGIS is a joint research project between CNRS, INRIA,
INPG and Universit´e Joseph Fourier — Grenoble I. Postal ad-
dress: B.P. 53, F-38041 Grenoble Cedex 9, France. E-mail:
Nicolas.Holzschuch@imag.fr.

the ergonomy of the workplace — is there enough light, or
too much? — or to ensure that the items in a museum are
properly lit.

In such applications, it is vital to be able to quantify the
light arriving on each point of the scene, in order to give the
user a precise range in which the illumination is guaranteed
to fall.

Global illumination algorithms generally have at least a
parameter that the user can manipulate, choosing either fast
computations or precise results. For Monte-Carlo ray tracing
algorithms, this parameter can be the number of rays. For
hierarchical radiosity algorithms, it can be the refinement
threshold, used to decide whether or not to refine a given

c© The Eurographics Association 1998. Published by Blackwell Publishers, 108 Cowley
Road, Oxford OX4 1JF, UK and 238 Main Street, Cambridge, MA 02142, USA.
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interaction. Until recently, however, we had little knowledge
of the total precision of the result computed, or of the rela-
tion between the parameters and this precision. Even if it was
clear that spending more time on the simulation would pro-
duce more precise results, we could not quantify precisely
this increase.

In 1994, Lischinski1 proposed a refinement criterion for
hierarchical radiosity such that the error on the energy at
each point of the scene could be controlled by the refinement
threshold. Their algorithm used upper and lower bounds on
the point-to-area form factor for each interaction in order to
compute upper and lower bounds for the radiosity at each
point in the scene. However, they had no way to compute
reliable upper and lower bounds for the point-to-area form-
factor on a given interaction, and still resorted to sampling
— computing a set of values for the form-factor, and taking
the minimum and maximum of these values.

Although Lischinski’s method is easy to implement, it is
not totally reliable. In this paper, we present a method allow-
ing to compute fully reliable upper and lower bounds for the
point-to-area form-factor on any interaction. To achieve this
goal, we use our knowledge of the point-to-area form-factor
derivatives together with its concavity properties.

These concavity properties of the point-to-area form-
factor are described in section 3. They extend the unimodal-
ity conjecture proposed by Drettakis2, 3. Like the unimodal-
ity conjecture, they are only conjectures, and despite their
apparent simplicity, we have been unable to find a complete
demonstration for them. However, we also have been unable
to exhibit a counter-example.

As is explained in appendix B, we can compute exact val-
ues for the derivatives of the point-to-area form-factor; either
for the first derivative, the gradient vector, or for the second
derivative, the Hessian matrix. As we shall also see in ap-
pendix B, it is indeed faster to compute an exact value for the
form-factor derivative than computing approximate values
using several samples. Using our knowledge of the deriva-
tives along with the concavity properties of the point-to-area
form-factor, we show in section 4 how to derive bounds for
the point-to-area form-factor in any unoccluded interaction.
We also show an implementation of the refinement criterion
using these bounds.

When dealing with partially occluded interactions we can
not use the previous bounds, as the concavity conjectures do
not hold in this case. But we can exhibit two emitters that are
convex and bound the actual emitter, which we call the min-
imal and the maximal emitter. Using the previously defined
algorithm, we find an upper bound for the maximal emitter,
and a lower bound for the minimal emitter. The algorithm
for finding these convex emitters is detailed in section 5.

x

A
2

y

r
12

→

n→2θ2

n→1

θ1

A
1

Figure 1: Geometric notations for the radiosity equation.

2. Background

The radiosity method was introduced in the field of light
transfer in 1984 by Goral4. This method uses a simplification
in order to solve the global illumination problem: it assumes
that all the objects in the scene are ideal diffuse surfaces:
their bidirectional reflectance is uniform, and thus does not
depend on the outgoing direction.

In this case, the radiosity emitted at a given pointx can be
expressed as an integral equation:

B(x) = E(x) + ρd(x)

∫

y∈S

B(y)
cos θ1 cos θ2

πr2
V (x, y)dy

(1)

In this equation,S is the set of all pointsy. r is the dis-
tance between pointx and pointy, θ1 andθ2 are the angles
between the−→xy vector and the normals to the surfaces at
point x andy respectively (refer to figure 1 for the geomet-
ric notations).ρd(x) is the diffuse reflectance at pointx, and
V (x, y) expresses whether pointx is visible from pointy or
not.

In order to solve equation 1, Goral4 suggested to discretize
the scene into a set of patches[Pi], over which a constant
radiosity,Bi is assumed.

In this case, the radiosity at pointx becomes:

B(x) = E(x)+ρd(x)
∑

i

Bi

∫

y∈Pi

cos θ cos θ′

πr2
V (x, y)dy

(2)

The purely geometric quantity

Fi(x) =

∫

y∈Pi

cos θ cos θ′

πr2
V (x, y)dy

is called the point-to-area form-factor at pointx from patch
i. It only depends on the respective positions of pointx and
patchi.

Since we assume a constant radiosity value within the
patch, we can compute this value as the average of all the
point values. This leads to a matrix equation:

Bj = Ej + ρi

∑

i

FjiBi (3)

c© The Eurographics Association 1998

144



N. Holzschuch and F. X. Sillion / An exhaustive error-bounding algorithm for hierarchical radiosity 3

where the geometric quantity

Fij =
1

Aj

∫

x∈Pj

∫

y∈Pi

cos θ cos θ′

πr2
V (x, y)dxdy

is called the form-factor. Schr¨oder5 showed that there is a
closed form expression for the form-factor in the case of two
fully visible polygonal patches. In the general case, we do
not have access to the exact value of the form-factor, but
only to approximate values.

Equation 3 can be solved in an iterative manner, using
Jacobi or Gauss-Seidel iterative methods (see Cohen6). The
problem is that in order to compute one full bounce of light
across the surfaces in the scene, we have to compute the en-
tire form-factor matrix, which is quadratic with respect to
the number of patches.

A significant improvement over the classical radiosity
method is hierarchical radiosity. In “standard” radiosity, the
discretisation of one object into patches does not depend on
the objects with which it interacts. In order to model the in-
teraction between objects that are very close, and exchange
lots of energy, we need to subdivide them into many patches,
so as to get a precise modelling of the radiosity. On the other
hand, an interaction between two objects that are far away
could be modelled with fewer patches.

In hier-
archical radiosity, introduced in 1990 by Hanrahan7, each
object is subdivided into ahierarchyof patches, with each
node in the hierarchy carrying the average of the radiosity
of its children. Interaction between objects far away from
each other are modelled as interactions between nodes at a
high level in each hierarchy. On the other hand, interactions
between objects close to each other are modelled as interac-
tions between nodes at a lower level in the hierarchy, thereby
allowing more precision in the modelling of radiosity. Each
interaction between two nodes is modelled by alink, a data
structure carrying the identity of the sender and the receiver,
as well as the form-factor, and possibly other informations
on the respective visibility of both patches. This hierarchical
radiosity algorithm has later been extended using wavelets
(see Gortler8).

The most important step in the hierarchical radiosity
method is the decision whether or not to refine a given in-
teraction. This decision is deferred to arefinement criterion.
Early implementations of the hierarchical radiosity method
used crude approximations of the form-factor between two
patches. It was known that these form-factor estimates were
most imprecise when the result of the approximation was
large. Hence, interactions were refined as long as the form-
factor estimate was above a certain threshold (Hanrahan7).

This refinement criterion does not give the user a full con-
trol of the precision on the modelling of the radiosity func-
tion. In particular, it does not give anyguaranteethat it will
refine all problematic interactions, and it can also refine ex-

cessively in places where the solution has already attained a
correct level of precision (Holzschuch9).

Part of these problems can be addressed by using dis-
continuity meshing, where the patches are first subdivided
along the discontinuity lines of the radiosity function and its
derivatives (see Heckbert10, Lischinski11, 12 and Drettakis13).
These discontinuity lines can be computed using geometric
algorithms. However, as pointed out by Drettakis, these dis-
continuity lines are not of equal importance. Some of them
do not have a noticeable effect on the final radiosity solu-
tion. Hence it is not necessary to compute all the disconti-
nuity lines. Deciding which discontinuity lines are relevant
is done by a refinement oracle, using heuristic methods like
the one described above.

Many of the latest research results have dealt with giv-
ing the user a better control of the level of precision in the
modelling of radiosity in the hierarchical radiosity method.

In the most promising paper on the subject, Lischinski1,
suggested to compute for each interaction an upper and
lower bound for the point-to-patch form-factor between the
points of the receiving patch and the emitting patch, namely
Fmax andFmin, as well as an upper and lower bound for
the radiosity of the emitting patch, using information already
available in the hierarchy. We then know that the radiosity on
the receiving patch is betweenFmaxBmax andFminBmin.

Hence, the uncertainty on the radiosity on the receiving
patch, due to this particular interaction is:

δBreceiver = FmaxBmax − FminBmin

The inaccuracy on the energy of the receiving patch, due to
this particular interaction, is:

δEreceiver = Areceiver (FmaxBmax − FminBmin)

We can then decide to refine all interactions where this im-
precision on the transported energy is above a given thresh-
old. The most difficult part in this algorithm is finding re-
liable values for the bounds on the form-factor. Lischinski1

suggested computing exact values for the point-to-area form
factor at different sampling points on the receiver, and using
the maximum and minimum value at these sampling points
as the upper and lower bounds. Although this algorithm does
not give totally reliable bounds, it does provide a close ap-
proximation, and is quite easy to implement on top of an
existing hierarchical radiosity implementation.

In the following sections we show that it is possible to
compute reliable upper and lower bounds for the point-to-
area form factor. These bounds can then be used in the pre-
ceding algorithm, allowing the refinement of all interactions
where the inaccuracy on the transported energy is above the
threshold.
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Figure 2: Concavity for univariate functions.

3. The Concavity Conjectures

3.1. Definition of Concavity

Univariate functions are said to be concave at a point when
they lie entirely below their tangent at that point; conversely,
they are said to be convex when they lie above their tangent.
When the function crosses its tangent, the point is said to be
an inflection point (see figure 2). Classically, the concavity
of the function is linked to the sign of its second derivative: if
the second derivative is positive, then the function is convex.
If it is negative, then the function is concave. It is only when
the second derivative changes sign that we have an inflection
point.

Concavity is often used to find upper and lower bounds
for functions; if a function is concave on an interval, then
it is below all its tangents on this interval, and above all its
secants (see figure 3). Since concavity allows bounding by
affine functions (like tangents) instead of constants, it gener-
ally provides bounds that are closer to each other, and hence
a “better” range.

This notion of concavity extends naturally to bivariate
functions, such as radiosity defined over a surface. A bivari-

Area of Interest

Xmin Xmax

Secant

Tangents

Figure 3: A function that remains concave across an inter-
val lies above its secant, and below all its tangents on this
interval.
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Figure 4: A point where the function is concave: the function
liesbelow the tangent plane.

ate function is said to be concave at a point when it lies below
its tangent plane (see figure 4), convex when it lies above its
tangent plane and indefinite when the function crosses the
tangent plane (see figure 5). As with univariate functions,
concavity can be used to find upper and lower bounds: if a
function is concave over a triangular area, then on this area it
lies below all its tangent planes, and above the secant plane
defined by the three corners of the triangle.

A univariate function usually crosses its tangent at an iso-
lated point, the inflection point. Contrarily, the set of points
where a bivariate function crosses its tangent plane is a
whole region.

The second derivative of a bivariate function is a2 × 2
matrix, called theHessian matrix. As with univariate func-
tions, the concavity of the function is linked to its second
derivative: if the Hessian matrix is definite positive, then the
function is convex; if the Hessian matrix is definite negative,
then the function is concave; if the Hessian matrix is indef-
inite, then the function is indefinite. The Hessian can be ex-
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Figure 5: A point where the concavity is indefinite: the func-
tion crosses its tangent plane.

pressed with respect to the partial derivatives of the function:

H =

[

∂2f
∂u2

∂2f
∂u∂v

∂2f
∂u∂v

∂2f
∂v2

]

=
1

2

[

r s

s t

]

(4)

The Hessian is definite ifrt− s2 is positive. It is definite-
positive if rt − s2 is positive andr is positive, definite-
negative ifrt − s2 is positive andr is negative. Ifrt − s2

is negative or null, the Hessian is indefinite, and the function
crosses its tangent plane.

It must be noted that a function is necessarily concave
where it has a local maximum, and convex wherever it has
a local minimum. This property is true both for uni- and bi-
variate functions.

3.2. Concavity of the Point-To-Area Form Factor

3.2.1. Background

Let us single out an interaction between an emitting patch
and a receiving patch. We seek an upper and a lower bound
for the point-to-area form-factor across the receiver. These
upper and lower bounds can then be used by a refinement
oracle, as introduced by Lischinski1.

Using the algorithm described in appendix B, we have ac-
cess to the form-factor and to its derivatives at any point of
the receiver. However, these values are only valid at this spe-
cific point. Since we seek a result valid across the whole re-
ceiver, we must exhibit a property of the point-to-area form-
factor that is valid across the receiver.

A similar approach was used by Drettakis2, 3. In the case
of a finite convex emitter, with constant radiosity, and of an
infinite receiver, Drettakis made the following two conjec-
tures:

Conjecture U1Radiosity on the receiver has only one max-
imum.

Conjecture U2 Radiosity on any line on the receiver has
only one maximum.

These two conjectures are referred to below as theuni-
modality conjectures.

Figure 6: The C1 conjecture: the radiosity function has in-
definite concavity everywhere, except over a convex area
(hatched), where the radiosity function is concave.

3.2.2. Concavity Conjectures

Like Drettakis, we consider a finite convex emitter, with
constant radiosity, and we assume the receiver is an infinite
plane. We state the following two conjectures on the concav-
ity of the radiosity on the receiver:

Conjecture C1The Hessian matrix of the radiosity function
is indefinite everywhere, except over a bounded area. On this
area, the radiosity function is concave. Furthermore, the area
is convex.

Conjecture C2 On any line drawn on the receiver, radiosity
is concave over a bounded interval, and convex everywhere
else.

Figure 6 illustrates the C1 conjecture: the radiosity func-
tion is indefinite everywhere — and crosses its tangent plane
— except over a convex region (hatched).

Figure 7 illustrates the C2 conjecture: the radiosity func-
tion defined over a given line is convex across[−∞, a] and
across[b, +∞], and concave across[a, b].

Despite their apparent simplicity, these conjectures have
yet escaped demonstration. It is obvious that they are true in
the simplest case of a point light source sending light in all
directions. However, even for the case of a differential emit-
ter area instead of a point light source, it has not been possi-
ble so far to prove the concavity conjectures. Appendix A is
a detailed study of the differential emitter area.

3.2.3. Relationship between the conjectures

Our concavity conjectures are actually an extension of the
unimodality conjectures: that is, C1 implies U1, and C2 im-
plies U2. Note that we also know that U2 implies U1:

{

U2 =⇒ U1
C2 =⇒ U2
C1 =⇒ U1

U2 =⇒ U1:

Proof Assume U1 is false. Then there exists at least two
maxima for the radiosity function, M1 and M2. On the line
joining M1 and M2 there are two maxima, which is in con-
tradiction with U2.
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Figure 7: The C2 conjecture: the radiosity function on a line is concave only over a finite interval, [AB].

C2 =⇒ U2:

Proof The function is concave on the neighbourhood of each
local maximum. If there are two local maxima on a line,
there must be a local minimum between them. In the neigh-
bourhood of this local minimum, the function would have to
be convex, which is impossible because of C2.

C1 =⇒ U1:

Proof Assume U1 is false. Then there exists at least two lo-
cal maxima for the radiosity function. On the neighbourhood
of each maximum, the radiosity function is concave. But
between the two maxima, there must be a pass-like point,
where the concavity is indefinite. This is in contradiction
with C1.

No relationship between C1 and C2:An important point
is the independenceof our two concavity conjectures. C1
does not imply C2, and C2 does not imply C1.

4. Error Control for Unoccluded Interactions

In this section, we describe our algorithm for finding upper
and lower bounds for the point-to-area form-factor across the
receiver. These values are then used by a refinement oracle
like the oracle introduced by Lischinski1.

4.1. Computing Radiosity Derivatives

Let us callA2 the emitting patch,A1 the receiver andx a
point on the receiver (see figure 1). In this case, there is an
exact formula for the point-to-area form factor (Siegel and
Howell14):

F (x) = −
1

2π
~n1 ·

∮

∂A2

~r12

‖~r12‖2
× d~ℓ2 (5)

where the integral is on∂A2, the contour ofA2, andd~ℓ2 is
the differential element of this contour.

Using this expression of the point-to-area form-factor, it is
possible to compute exact formulae for both its first and sec-
ond derivatives. These formulae for the derivatives are eas-
ily implemented, giving access to exact values for the func-
tion and its derivatives (see appendix B, and also Arvo15 or
Holzschuch16, 17).

If we compute simultaneously the point-to-area form-
factor and its derivatives, we can save computation time by
reusing some geometric quantities that appear in several for-
mulae. In this case, the overall cost of computing the deriva-
tives is reasonable: there is an increase of40% for com-
puting the gradient along with the form-factor, and an in-
crease of100% for computing both the gradient and the Hes-
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sian matrix (see appendix B and Holzschuch16, 17). This cost
must be balanced against what it would require to compute
approximate values for the derivatives using several form-
factor computations: in this case, the cost increase for the
gradient would be of100%, and that of the Hessian600%.

In our refinement phase, we compute the values of the
point-to-area form-factor and its derivatives at the vertices
of the receiving patch. These values can be reused in the
radiosity propagation phase to obtain the radiosity values at
the vertices.

4.2. Computing Bounds for the Point-to-Area
Form-Factor

We show here how our knowledge of the point-to-area form-
factor and its derivatives at the vertices of the receiving
patch, used jointly with our conjectures, gives us access:

• first, to thelocationof the maximum and the minimum of
the point-to-area form-factor,

• second, to an exact value for the minimum,
• third, to an upper bound for the maximum.

4.2.1. The Minimum is at one of the Vertices

An immediate consequence of the unimodality conjectures
(U1 and U2) is that the minimum for the point-to-area form-
factor is necessarily at one of the vertices of the receiver:

• If the minimum was inside the receiving patch, A1, then
there would exist several local maxima for the point-to-
area form-factor on the plane supporting A1 — this is
in contradiction with U1. Hence, the minimum across A1
must be on the contour of A1.

• The contour of A1 is made of polygonal edges. If on one
of these edges the minimum is inside the edge then on the
line supporting the edge the form-factor must have two
maxima — this is in contradiction with U2.

• Hence, the minimum can only be at one of the vertices of
A1.

4.2.2. An exact value for the minimum

Since we chose to compute the point-to-area form-factor at
the vertices of the receiving patch, A1, we do have access to
the exact value of the minimum across A1: it is the minimum
of our computed values for the point-to-area form-factor at
the vertices of A1.

4.2.3. Finding the Position of the Maximum

A consequence of U2 is that given a pointx, given the point-
to-area form-factorF (x) and its gradient at pointx,∇F (x),
for all pointsp such that−→xp · ∇F (x) < 0, we haveF (p) <

F (x).

Otherwise, there would be one local minimum betweenp

andx on the line passing throughp andx, and hence two
local maxima, which is in contradiction with U2.

�����������
�����������
�����������
�����������
�����������
�����������

x

∇F(x)
The maximum lies 
in this half-plane

All form-factor values
in this half-plane are 
smaller than F(x).

Figure 8: Knowledge of the gradient helps find the position
of the maximum.

Hence the maximum of the point-to-area form-factor can
only be in the half-plane defined by:−→xp · ∇F (x) ≥ 0 (see
figure 8.)

This property gives us an algorithm to determine whether
the maximum for the point-to-area form-factor across the re-
ceiving patch A1 can lieinsidethe patch, or if it must be at
one of the vertices (see figure 9):

• For each vertex, there is a half-plane (defined by the form-
factor gradient at this vertex) where the form-factor value
can be greater than the value at the vertex.

• The intersection of these half-planes is an area where the
point-to-area form-factor value can be greater than the
value at all the vertices. The intersection of this area with
the receiving patch is either empty or not empty.

• If this intersection with the patch is not empty, then there
exists an area inside the patch where the maximum can
be.

• If this intersection is empty, then the maximum for the
form-factor across the patch must be at one of the vertices.

4.2.4. If the Maximum is at one of the Vertices

If the above algorithm tells us that the maximum can only be
at one vertex of the receiving patch, then we know the exact
value of the maximum: it is the value of the point-to-area
form-factor at that vertex.

4.2.5. If the Maximum is Inside the Receiving Patch

If the above algorithm tells us there exists an area inside the
receiving patch A1 where the maximum can be, then we do
not have access to the exact value of the maximum of the
point-to-area form-factor across A1.

The only thing we know at this stage is that the value of
the maximum must be greater than the values computed at
the vertices of A1.

There are three kind of algorithms for finding an upper
bound for the point-to-area form-factor across A1:
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Figure 9: Using the gradient to locate the maximum inside or outside the receiving patch.

Heuristic Algorithms: Compute another sample value for
the point-to-area form-factor inside patch A1. The posi-
tion of the sampling point can be arbitrary or can make
use of the information given by the form-factor gradient.

Concavity Algorithms: If the point-to-area form-factor
function on the receiving patch is concave, we use the tan-
gent planes to find an upper-bound.

Geometric Algorithms: Using geometric tools, build an
emitter that encloses the actual emitter for all the points of
the receiving patch, and for which we can find the value
of the maximum. This value is an upper-bound.

Heuristic algorithms include gradient descent algorithms,
as described by Arvo15 and Drettakis2, 3. Gradient descent
algorithms make use of the information provided by the gra-
dient to subdivide the receiving patch until convergence. The
gradient can either be approximated (Drettakis2, 3) or an ex-
act value (Arvo15).

In our implementation, we use concavity algorithms
wherever possible, and resort to geometric algorithms if the
point-to-area form-factor function is not concave.

4.2.5.1. Concavity Algorithms According to C1, the zone
where the point-to-area form-factor function is concave is a
convex one. As a consequence, if the form-factor Hessian is
definite negative at the vertices of the receiving patch, then
it stays definite negative across the receiving patch.

In this case, the form-factor function lies below all its tan-
gent planes at the vertices across the receiving patch. We
know these tangent planes since we know the form-factor
gradient at the vertices. Finding an upper bound for the
point-to-area form-factor is then equivalent to computing the
intersection of the tangent planes.

This is mainly a linear programming problem (see, for
example, Preparata18); the computational complexity of the
problem depends on the dimension of the problem — which

here is always two since we are dealing with bivariate func-
tions — and on the number of vertices in the receiving patch.
Usually, in hierarchical radiosity algorithms, we are restrict-
ing ourselves to triangular or quadrangular patches. If this
is the case, we can assume the complexity of computing the
intersection of the tangent planes is constant.

4.2.5.2. Geometric Algorithms If the form-factor Hessian
is not definite negative at all the vertices of the receiving
patch, then the point-to-area form-factor function is not con-
cave across the entire receiving patch. It is therefore not
possible to use concavity algorithms. In this case, we resort
to geometric algorithms: in a plane parallel to the plane of
the receiver, we construct an emitter with the following two
properties:

• From all the points of the receiver, it is seen as including
the original emitter.

• It has two axes of symmetry, so that we can find the max-
imum form-factor due to the emitter.

The reason for the second item lies in the symmetry prin-
ciple: if the emitter and the receiver are left unchanged by
a planar symmetry, then so is the point-to-area form-factor
function on the receiver; thus its maximum can only lie on
the intersection of the plane of the symmetry and of the plane
of the receiver. If there are two planes that leave the emitter
and the receiver un-changed, then the maximum can only be
at their intersection (see figure 24, in the color section).

To build this emitter:

• select a planeP parallel to the plane of the receiving
patch;

• for each vertexVi of the receiving patch, build the projec-
tion pi of the original emitter according to this vertex on
P (see figure 10);

• this projection is totally equivalent to the original emitter
for this particular vertex;
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• any convex region enclosing all thepi projections is seen
from all the points of the receiver as enclosing the original
emitter; as a consequence, the point-to-area form-factor
due to this convex region is greater than the point-to-area
form-factor due to the actual emitter;

• building a convex region enclosing thepi is a standard ge-
ometry problem (see, for example, Foleyet al.19, Kay20 or
Toth21). Constraining this convex region to have two axes
of symmetry can either be a consequence of the bounding
object used, like ellipses and rectangles, or be a property
we add afterward. Since our problem is a two dimensional
geometry problem — although we have a set of three di-
mensional data points — we start by projecting ourpi

onto one of the coordinates planes(x, y), (z, x) or (y, z).
Once we have built the result in this coordinate plane, we
will project it back onto the emitter plane.

• Several algorithms can be used, either giving a faster re-
sult, but a greater enclosing emitter, and hence a greater
upper-bound, or requiring more time, but giving an en-
closing emitter that is closer to thepi, and hence a smaller
upper-bound:

– Build the convex hull of thepi, then build a region
with two axes of symmetry enclosing the convex hull.
This gives the smaller enclosing emitter, but requires
more computation time

– Build a bounding rectangle enclosing thepi inside the
emitter plane, as in Toth21. This is one of the fastest
possible algorithm. Furthermore, it naturally gives an
enclosing emitter with two axes of symmetry, so there
is no construction time involved for building the sym-
metries.

– Build a bounding ellipse enclosing thepi inside the
emitter plane. This algorithm is slower, but it also
gives an enclosing emitter with two axes of symmetry,
so there is no construction time involved for building
the symmetries.

– A bounding rectangle using the(x, y, z) axes can give
an enclosing emitter much bigger than thepi, thus in-
ducing a greater upper bound. A simple improvement
is to useslabs, as suggested in Kay20. In this case, in
order to build an object with two axes of symmetry,
we have to restrict ourselves to two sets of orthogo-
nal slabs. This algorithm requires more computational
time than the previous algorithm, but can give a signif-
icantly smaller enclosing emitter.

– If ne is the number of vertices of the emitter, and
nr the number of vertices of the receiver, the to-
tal number of vertices for all thepi is nenr. In this
case, the complexity of the convex hull algorithm is
O(nenr log nenr), and the complexity of the other
three algorithms isO(nenr).

Figure 11 gives an example of the construction of an en-
closing emitter.

Receiver

Emitter

P Pi

Figure 10: The projection of the emitter on the planeP from
a given vertex.

Emitter

Enclosing emitter

P

Pi

View from above

Figure 11: Building an enclosing emitter in order to find an
upper bound.

4.3. Implementation and Testing

4.3.1. Refinement Criterion

Once we have access, for each iteration, to the minimum and
maximum form-factor, it is possible to implement a refine-
ment criterion based on their difference. Following the algo-
rithm suggested by Lischinski1, we refine every interaction
such that:

Areceiver (BmaxFmax − BminFmin) > ε

This means that we refine an interaction whenever the un-
certainty on the incoming energy of the receiving patch is
above the thresholdε.

4.3.2. Resulting Mesh Simplification

In regions where the Hessian matrix of the form-factor
is definite-negative, we know that the form-factor can be
bounded between the tangent planes and the secant planes.
We can use these bounding planes to find tighter upper and
lower bounds for the form-factor.

The form-factor for all the points on the receiving patch
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lies below all the tangent planes for the point-to-area form
factor, and above the secant plane. Therefore, we can say
that our uncertainty on the point-to-area form-factor on the
receiver is equal to the maximum of the distance between
the secant plane and these tangent planes.

Computing this distance is again a linear programming
problem (see, for example, Preparata18). The complexity de-
pends on the number of vertices of the receiver,nr, which is
usually three or four. Let us denote byEF F this uncertainty
on the form-factor.EF F can be used in our expressions as a
replacement forFmax − Fmin. Using the fact that:

(BmaxFmax − BminFmin) =

Bmax(Fmax − Fmin) + Fmin(Bmax − Bmin)

we decide to refine a given interaction if

Areceiver (BmaxEF F + Fmin(Bmax − Bmin)) > ε

It must be noted that this new bounding of the form-factor
does not introduce any uncertainty. We are still bounding
the form-factor by fully reliable functions. However, since
these functions are affine instead of constants, they provide
much tighter bounds, and we can expect a simpler mesh in
the areas where the point-to-area form factor is concave.

Figure 25 (in the color section) shows the result of our re-
finement criterion on a simple box, with only direct illumi-
nation. Notice that the mesh produced is coarser in some ar-
eas with respect to the immediately neighbouring areas (the
disc-shaped area on the floor, and the drop-shaped areas on
the walls). These are the places where the Hessian is definite-
negative.

This refinement criterion extends, in some ways, the mesh
simplification found in previous work (Holzschuch9). The
shape of the mesh produced is quite similar between our new
algorithm and the algorithm in Holzschuch9. However, our
new refinement criterion, while keeping low memory costs,
also gives fully reliable upper and lower bounds on the ra-
diosity of each patch.

4.3.3. Dealing with Singularities

4.3.4. Relative Complexity of the Algorithm

Our algorithm requires the computation of the first two
derivatives of the point-to-area form-factor at the vertices of
the receiver. This implies a 100 % increase on the compu-
tation time for each vertex (see appendix B). That is to say,
computing the point-to-area form-factor and its derivatives
costs twice what it would cost to compute the point-to-area
form-factor alone.

Since vertices are shared by several patches, this over-
head cost is shared by several interactions. On the average,
we are only computing one point-to-area form-factor and its
derivatives for each patch. Thus, the cost of our algorithm
is approximately the cost of computing two point-to-area

form-factors for each patch, plus the time needed for the ex-
ploitation of the derivatives for computing upper and lower
bounds.

Existing heuristic refinement algorithms (see Lischinski1)
compute one form-factor sample for each of the receiver ver-
tices, plus one sample at the center of the receiving patch.
If we assume that the form-factor values at the vertices are
shared with the neighbouring patches, we are computing an
average of two point-to-area form-factors for each receiver.

Thus, the cost of the heuristic algorithm and the cost of
our algorithm are roughly similar. The main overhead of our
algorithm when compared with the heuristic algorithm is the
time needed for the actual computations for finding the posi-
tion of the maximum and for finding an upper bound for the
maximum, when necessary.

Hence, the relative costs of our refinement criterion are in
fact quite small and can be generally regarded as acceptable,
especially with respect to the complete control it gives on
the error carried by each interaction.

Also, our algorithm allows for a significant mesh sim-
plification (see figure 25, in the color section) which may,
depending on the scene considered, induce a smaller com-
putation time for the exhaustive refinement criterion when
compared to a heuristic refinement criterion.

5. Error Control for Partially Occluded Interactions

The above algorithm for finding upper and lower bounds
only works in the case of unoccluded interactions, and with
a convex emitter. This algorithm relies on the concavity and
unimodality conjectures, which do not hold if there are oc-
cluders between the emitter and the receiver.

However, it is possible to construct, using geometrical
tools, a minimal and a maximal emitter that have the fol-
lowing qualities:

• both are convex;
• any point of the minimal emitter is fully visible from the

receiver;
• the maximal emitter contains all the points of the emitter

that are visible from at least one point of the receiver;

Then at any given point on the receiver,

• the form-factor due to the minimal emitter is lesser or
equal to the actual form factor,

• and the form-factor due to the maximal emitter is greater
or equal to the actual form-factor.

We apply our previous algorithm to these emitters, and
find a lower bound using the minimal emitter, and an upper
bound using the maximal emitter.

Figure 26 (in the color section) shows an example of min-
imal and maximal emitters for a simple configuration with
only one occluder: the small red square on the ground is the
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Receiver
Emitter

Occluders

Figure 12: A single interaction with occluders.

ver
Emitter

Occluders

Figure 13: Computing the “umbra” and “penumbra” vol-
umes using the receiver as a light source.

receiver; the black square with a white border is the occluder,
and the bright red area is the minimal emitter — the part of
the emitter that is visible from all the points of the receiver.
The dark red area is the maximal emitter. The blue line is the
contour of the emitter as it is seen from one of the points of
the receiver.

5.1. Computing the minimal and maximal emitter

Our definition of minimal and maximal emitter bears a
strong resemblance with the definition of umbra and penum-
bra, except that the roles of the emitter and the receiver are
reversed.

A similar algorithm has been used by Teller to computer
the antipenumbra of an area light source22, and to solve the
visibility problem in a hierarchical radiosity algorithm23, and
by Drettakis13. Drettakis13 used a specific data structure, the
backprojection, which gives to the program the structure of
the projection of the occluders on the emitter plane, from any
point on the receiver.

Algorithms used for computing umbra and penumbra can
be quickly adapted in order to compute the minimal and
maximal emitter for each receiver. Let us consider a sin-
gle interaction, with one emitter, one receiver, and occluders
(see figure 12). We compute the umbra and the penumbra
volume using the receiver as a light source (see figure 13).
The intersection of these volumes with the emitter plane is a
close indication of where the minimal and maximal emitter
are.

Receiver

Emitter

Occluders
Complement of "Umbra"

Maximal Emitter

Figure 14: The maximal emitter can be any convex including
the complement of the “umbra” region.

Receiver

Emitter

Occluders

Complement of 
"penumbra": several 
candidates for 
the minimal emitter

Our minimal emitter

Figure 15: Several possible candidates for the minimal emit-
ter.

5.1.1. Computing the maximal emitter using the
“umbra” volume

The intersection of the emitter with the “umbra” volume is
the set of points on the emitter that are totally invisible from
the receiver.

The complement of this intersection is the set of points
on the emitter that are visible from at least one point on the
receiver.

Since our criterion only works for convex emitters, we
have to build a convex emitter that includes this complement.
Our basic rule is that we must not under-estimate the point-
to-area form-factor, only possibly over-estimate it. Hence,
the maximal emitter must be any convex region including the
previously computed complement — for example the convex
hull of the complement, or the bounding-box of the comple-
ment (see figure 14).

5.1.2. Computing the minimal emitter using the
“penumbra” volume

Similarly, the intersection of the emitter with the “penum-
bra” volume is the set of points on the emitter that are at
least partially hidden from the receiver.

The complement of this intersection is the set of points on
the emitter that are visible all the points of the receiver.

Any convex region that is included in this complement is
a suitable candidate for the minimal emitter (see figure 15).

Depending on the position of the occluders, it is possible
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to have several candidates for the minimal emitter. Ideally,
we would like to pick the candidate that gives the largest esti-
mate for the minimum, since this would give tighter bounds,
and hence reduce the number of un-necessary refinements.
However, it is impossible to find this without computing
the point-to-area form-factor for all the candidates, which
would prove very time-consuming. In our implementation,
we choose the candidate with the largest area, since it is
likely to induce a larger form-factor.

5.2. Implementation and testing

We have implemented our algorithm for finding upper and
lower bounds for the point-to-area form-factor using the
maximal and minimal emitter.

Figure 27 (in the color section) shows the result of our
refinement criterion on a simple scene, with a single oc-
cluder. Notice that the algorithm detects the shadow bound-
aries and refines properly in order to model them. Outside
of the shadow, the mesh produced is identical to the mesh
produced without occluders.

5.3. Complexity of the Algorithm and Possible
Improvements

Our algorithm relies on computation of the umbra and
penumbra volumes for all the interactions. This computation
can be quite costly, if it is implemented in a naive way.

Previous work by Chin24 has shown that the use of a
BSP-tree can greatly improve the computation of umbra and
penumbra volumes. Teller22 showed that by extending the
data structure used to store the interaction between patches
to also store the possible occluders for this interaction, the
complexity of visibility computations could be greatly re-
duced. Both these improvements work with our algorithm.

Our algorithm can also be used in a combination with
standard discontinuity meshing, as described in Lischinski11.
A preliminary light-source discontinuity meshing will re-
duce the complexity of the minimal and maximal emitter
computations by providing occlusion information and reduc-
ing the number of patches where we have to compute these
emitters.

The backprojection algorithm described by Drettakis13, 3

gives for each patch created during the discontinuity mesh-
ing step the geometric structure of the emitter as seen
from this patch. Implementing our algorithm on top of a
backprojection algorithm should be a straightforward post-
processing step.

It has been shown (Lischinski11 and Drettakis13, 3) that the
boundary of the umbra volume can include a quadric sur-
face, and hence can be quite complex to model. However,
our algorithm does not require a complete computation of
the umbra and penumbra volumes for each interaction, but

only the computation of a surface included in the umbra vol-
ume, and of a surface enclosing the penumbra volume. Two
such surfaces can be computed in a straightforward way:

• For each occluder:

– For each receiver vertex, compute the projection of the
occluder onto the emitter supporting plane;

– The intersection of these projections is the umbra vol-
ume for this particular receiver;

– The convex hull of these projections is the penumbra
volume for this receiver.

• The union of the penumbra volumes for all occluders is
the penumbra volume for the entire interaction.

• The union of the umbra volumes for all occluders is not
equal to the umbra volume for the entire interaction. How-
ever, it is included into the actual umbra volume (see
Lischinski11). Hence, we can use it for building the maxi-
mal emitter.

The computation of the projection of the occluders onto
the emitter supporting plane, and the computation of the
union of these projections can be reused for computing the
exact value of the point-to-area form-factor in the radiosity
propagation phase.

The only extra cost of our refinement criterion is then
the computation of the minimal and maximal emitter know-
ing the projection of all the occluders on the emitter plane.
This is a two-dimensional problem, computing a convex re-
gion that contains the complement of the umbra volume,
and another convex region that is included into the comple-
ment of the penumbra volume. Note that we do not have to
explicitely construct the umbra and the penumbra volume,
only the two convex regions. We can use several methods
for computing these convex regions, as described in sec-
tion 4.2.5.2. The cost of our algorithm is the cost of finding
two convex regions enclosingnrn polygons, wheren is the
number of occluders, andnr is the number of vertices of the
receiver.

The heuristic algorithm described by Lischinski1 uses the
same computation of the exact values of the point-to-area
form-factor at the vertices of the receiver, which will be
reused in the radiosity propagation phase, plus the compu-
tation of the point-to-area form-factor at the center of the re-
ceiving patch, which implies the projection of the occluders
on the emitter supporting plane and the computation of the
union of these projections. Hence, the cost of the heuristic al-
gorithm isn projections and the union ofn two-dimensional
polygons.

6. Conclusions and Future Directions

We have introduced a new and reliable way of computing the
maximum and the minimum of the point form-factor on any
interaction. These bounds on the form-factor allow a con-
trol of the precision of the hierarchical radiosity algorithm,
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precision that can be required for certain applications of the
algorithm, such as architectural planning.

These bounds have been integrated in a new refinement
criterion for hierarchical radiosity. We have also presented
another refinement criterion that, while maintaining control
on the upper and lower bounds of the energy transported,
allows a coarser mesh to be constructed in some places, thus
reducing memory and computation costs.

This algorithm is a significant step in error-control for
global illumination methods. Although it has been devised
and implemented in a hierarchical radiosity framework,
nothing in the algorithm prevents the refinement criterion to
be implemented with progressive refinement radiosity, as de-
scribed by Cohen25.

Knowledge of the error produced in all the parts of the al-
gorithm allows global illumination programs to concentrate
their work on parts of the scene where the error is still large,
and to skip parts where it can be neglected. Thus, our algo-
rithm can be hoped to accelerate global illumination compu-
tations by reducing the amount of unnecessary refinement.

Our algorithm relies on several conjectures: the unimodal-
ity conjectures (U1 and U2) and the concavity conjectures
(C1), as well as on a knowledge of the radiosity derivatives.
Table 1 recalls, for each part of the algorithm, which conjec-
ture and which derivatives are being used.

The concavity and unimodality conjectures assume that
radiosity on the emitter is constant, that the receiver is dif-
fuse and that there is full visibility. An extension of our error-
control algorithm to cases where radiosity on the emitter is
not constant, or to reflectance functions that are not constant
would first require a careful study of to what extent do our
concavity or unimodality conjectures still hold. For exam-
ple, it is clear that they cannot hold for whatever distribution
of radiosity on the emitter, but only for specific cases. These
specific cases, once identified, can be used as a functional
basis for radiosity.

We have dealt with the partial visibility problem by com-
puting maximal and minimal emitter, thereby reducing the
problem to two full visibility problems. However, it is known
that it is possible to compute the radiosity gradient in pres-
ence of occluders (see Arvo15), and it seems possible to com-
pute the radiosity Hessian in presence of occluders as well
(see Holzschuch17). In this case, it would be possible to ex-
tend our refinement criterion to some partially visible inter-
actions without having to compute the maximum and mini-
mum emitter. Once again, this can be done only in specific
configurations where the concavity or unimodality conjec-
tures still hold. This is not the case for generic occluders (see
figure 28, in the color section), but only for certain specific,
simple occluders (see figure 29 in the color section).

Although the algorithm described in this paper makes use
of the U1, U2 and C1 conjectures, and of the form-factor
gradient and Hessian, table 1 shows that it is possible to build

a simpler algorithm to find upper and lower bounds by using
only U1, U2 and the form-factor gradient.

This algorithm would be very similar to the gradient-
descent algorithms described by Arvo15 and Drettakis2, 13.
The main difference would be the use of geometric tools, as
described in section 4.2.5.2 to find an upper bound. These
geometric tools will provide a fully reliable upper bound on
the receiving patch.

This simpler algorithm would not allow mesh simplifica-
tion as described in section 4.3.2; also, since this simpler
algorithm would only use geometric methods to find up-
per bounds it can be expected that it will give greater upper
bounds, and hence induce more refinement than our current
algorithm. On the other hand, this algorithm would not re-
quire the computation of the form-factor Hessian, thus sav-
ing computation time, and would probably be easier to ex-
tend to partial visibility cases, where C1 may not hold.

Future work will include an implementation of this sim-
pler algorithm, and timing and memory costs comparisons
between our full algorithm, the simpler algorithm and the
heuristic algorithm, as well as error measurements.
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Appendix A: Concavity conjectures: case study of a
differential area emitter

Let us consider the case of an infinite receiving plane and
a single differential area for the emitter. In this case, due to
the symmetries shared by the emitter and the receiver, there
is only one parameter: the angle, calledθ, between the nor-
mal of the emitter and a line parallel to the receiver, (see
figure 16).

To express the position of a point on the receiver, we
choose a set of axes related to the emitter: the first axes
shares the direction of the projection of the normal of the
emitter on the receiver, and the second axes is orthogonal to
the first. The origin of our coordinate system is the projec-
tion of the emitting point. Using this set of coordinates, we
have a simple expression for the point-to-area form-factor at
any pointM(u, v) on the receiver (see figure 17 the aspect
of the surface):

F (u, v) =
dA

π

u cos(θ) + sin(θ)

(u2 + v2 + 1)2

This value is only foru cos(θ) + sin(θ) > 0. If u cos(θ) +
sin(θ) ≤ 0, then of courseF (u, v) = 0.

The C1 concavity conjecture

In this simple case, it is possible to explicitly compute the
derivatives of the point-to-area form-factor. An explicit com-
putation of the Hessian shows that it is definite if and only if

0

0.2

0.4

0.6

Figure 17: An example of the point-to-area form-factor
function (θ = π

6
).

θ = 0
θ = 0.2
θ = π/6
θ = π/4
θ = π/3
θ = π/2

Figure 18: The areas where the point-to-area form-factor
function is concave for different values ofθ.

the expressionS(u, v, θ) is positive, whereS(u, v, θ) is:

S = −3u
4 − 8 tan θu

3 − 5 tan2
θu

2 − 4u
2
v
2 + 3u

2

+4u tan θ − 8 tan θuv
2

−5 tan2
θv

2 − v
2 − v

4 + tan2
θ

Although it is impossible to find an explicit solution of
the equationS(u, v, θ) = 0, it is possible to plot these solu-
tions for different values ofθ. Figure 18 shows the contour
of the area whereS(u, v, θ) is positive for different values of
θ. Outside these areas,S(u, v, θ) is negative, and hence the
Hessian matrix is indefinite. Inside these areas,S is positive,
and the form-factor is concave.

An interesting point is the shape of the zones where the
point-to-area form factor is concave. Whenθ = π

2
, it is of

course a disc, due to the symmetries in the scene. Whenθ =
0, it is a shape like a drop, that tapers to a point in(0, 0). For
intermediate values ofθ, the zone has an intermediate shape
between the drop and the disc, but this shape always appears
to be convex.

The C2 concavity conjecture

If we now focus on the radiosity on a specific linev = au+
b on the receiving plane, we have, for the form-factor as a
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function ofu,

f(u) =
dA

π

u cos(θ) + sin(θ)

(u2 + (au + b)2 + 1)2

The form-factor is equal tof(u) if u cos(θ)+sin(θ) > 0.
If u cos(θ) + sin(θ) ≤ 0, then the form-factor is null.

It must be noted thatf(u) goes to zero whenu goes to
±∞, and thatf(u) is equal to zero only foru = u0 =
− tan θ.

It is possible to compute the first and the second derivative
of f(u). The first derivative,f ′(u), is of the sign of a second
degree polynomial inu, and the second derivative,f ′′(u) is
of the sign of a third degree polynomial inu. As a conse-
quence,f ′(u) can change sign at most twice, andf ′′(u) at
most three times.

Since the functionf(u) goes to zero whenu goes to±∞,
it must have one maximum betweenu0 and+∞, and one
minimum betweenu0 and−∞. As a consequence,f ′(u)
must change sign exactly twice. Let us callu1 andu2 the
points where the first derivative changes sign (u1 < u0 <

u2).

f ′(u) also goes to zero whenu goes to±∞. As a con-
sequence, it must have one minimum betweenu2 and+∞,
and another between−∞ andu1, and it must have one max-
imum betweenu1 andu2. So the second derivative changes
sign exactly three times. One of the point where the second
derivative changes sign is smaller thanu1, which is smaller
thanu0, and one of them is greater thanu2, which is greater
thanu0.

Then the second derivative changes sign at least once and
at most twice on[u0, +∞]. Whenu goes to+∞, f is con-
vex, andf ′′ is positive. So we just proved thatf ′′ can be
negative only over a unique bounded segment on[u0, +∞].

The form-factor on the line is equal tof(u) for u > u0,
and null everywhere else. So the form-factor on a line is con-
cave only over a unique bounded segment. This proves the
C2 conjecture for a differential area emitter.

Figure 19 shows an example of such af(u) function,
along with its first and second derivatives. It can be noted
that this function is concave over a single segment, and con-
vex everywhere else.

Appendix B: Effective computation of the form-factor
derivatives

In this section, we show how it is possible to compute the
derivatives of the point-to-area form-factor with little addi-
tional computation expense.

In particular, it is shown that the computation of the ex-
act value of the form-factor derivatives is always cheaper
than the computation of an approximate value using several
form-factor samples. For example, the cost of computing the

x

A
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n→1

A
1

r
i

→

r
i +1

→e
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→

γ
i

E

E

i
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Figure 20: Notation when the emitter is a polygon.

F = 0
foreachedge[EiEi+1]

~ri = Ei − x
~ri+1 = Ei+1 − x
crossprod = ~ri × ~ri+1

gamma = arccos
(

~ri·~ri+1
riri+1

)

I1 =
gamma

‖crossprod‖
mixt = ~n1 · crossprod
F− = I1mixt

F∗ = 1
2π

Figure 21: Pseudo-Code for computing the form-factor.

form-factor gradient is 30 %, while computing an approx-
imate value of the gradient would require two form-factor
samples, thus increasing computation time by 100 %

The Point-to-Area Form-Factor

Let us recall that the point-to-area form-factor from a point
x on a patchA1 to a patchA2 (see figure 1) can be expressed
as a contour integral:

F (x) = −~n1 ·
1

2π

∮

∂A2

~r12 × d~ℓ2

‖~r12‖2

For the explicit derivation of this contour integral from the
equation 2, see Siegel and Howell14.

In the case where the emitter is a polygon, this expression
simplifies to a finite sum:

F (x) =
1

2π
~n1 ·

∑

i

~γi (6)

where~γi is the vector of normγi, and of direction the cross-
product~ri × ~ri+1 (see figure 20).

An example pseudo-code for computing the form-factor
using equation 6 can be found in figure 21. This pseudo-
code makes use of the standard 3D operations like addition,
cross-product and dot product.

c© The Eurographics Association 1998
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Figure 19: The radiosity on any line on the receiving plane is concave only over a segment.

Form-Factor Gradient

The point-to-area form-factor gradient can be easily com-
puted by derivation of the previous formula (see Arvo15, or
Holzschuch17):

∇F (x) = −
−1

2π

∑

i

~n1 × ~eiI1

+2~n1 · (~ri × ~ri+1) (~riI2 + ~eiJ2)

With:

I1 =
γi

‖~ei × ~ri‖

I2 =
1

2‖ei × ~ri‖2

(

~ei · ~ri+1

r2
i+1

−
~ei · ~ri

r2
i

+ e2
i I1

)

J2 =
1

2e2
i

(

1

r2
i

−
1

r2
i+1

)

−
~ei · ~ri

e2
i

I2

The code in figure 21 for computing the form-factor can
be extended for computing the gradient. Figure 22 shows the
extension of the pseudo-code needed for computing simul-
taneously the point-to-area form-factor and its gradient (we
did not include the part of the code that is exactly identical).
As can be seen, most of the costly computations like inverse
trigonometric functions have been done for the form-factor,
and do not need to be redone for the gradient.

The exact extra cost of computing the gradient de-

F = 0
~G = ~0
foreachedge[EiEi+1]

.

.

.
F− = I1mixt
~ei =

−−−−−→
EiEi+1

I2 =
~ei·~ri+1

r2
i+1

−
~ei·~ri

r2
i

+ e2
i
I1

I2/ = 2crossprod2

J2 = 0.5

(

1

r2
i

− 1

r2
i+1

)

− ~ei · ~riI2

J2/ = e2
i

~G+ = (~n1 × ~ei)I1 + 2mixt(~riI2 + ~eiJ2)

F∗ = 1
2π

~G∗ = − 1
2π

Figure 22: Pseudo-Code for computing the gradient of the
form-factor.

pends on the computer and on the compiler used. On an
R4000 SGI with the standard cc compiler, it is 30 % (see
Holzschuch16, 17).

What is fundamental is that it actually costs much less to
compute the exact value for the gradient than it would cost
to compute two radiosity values, and then to approximate the
gradient using these values.

c© The Eurographics Association 1998
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F = 0
~G = ~0
H = 0
foreachedge[EiEi+1]

.

.

.
~G+ = (~n1 × ~ei)I1 + 2mixt(~riI2 + ~eiJ2)

I3 =
~ei·~ri+1

r4
i+1

−
~ei·~ri

r4
i

+ e2
i
I2

I3/ = 4crossprod2

J3 = 0.25

(

1

r4
i

− 1

r4
i+1

)

− ~ei · ~riI3

J3/ = e2
i

K3 = I2 − r2
i

I3 − 2~ei · ~riJ3

K3/ = e2
i

H+ = −mixtI2 I + Q(~riI2 + ~eiJ2, ~n1 × ~ei)
+2mixt(Q(~ri, ~ri)I3 + Q(~ei, ~ei)K3 + 2J3Q(~ei, ~ri))

F∗ = 1
2π

~G∗ = − 1
2π

H∗ = 1
π

Figure 23: Pseudo-Code for computing the first two deriva-
tives of the form-factor.

Hessian matrix for the point-to-area form-factor

The point-to-area form factor Hessian matrix can also be
computed by derivation of Equation 6 (see Holzschuch17):

H = −
1

π

∑

i

Q(~n1 × ~ei, ~riI2 + ~eiJ2)

−~n1 · (~ri × ~ei)I2I

+2~n1 · (~ri × ~ei)(Q(~ri, ~ri)I3

+Q(~ei, ~ei)K3 + 2J3Q(~ri, ~ei))

We use the following notation:

Q(~a,~b) = ~at~b +~bt~a

I3 =
1

4

1

‖~ei × ~ri‖2

(

~ei · ~ri+1

r4
i+1

−
~ei · ~ri

r4
i

+ 3e2
i I2

)

J3 =
1

4e2
i

(

1

r4
i

−
1

r4
i+1

)

−
~ri · ~ei

e2
i

I3

K3 =
1

e2
i

(

I2 − r2
i I3 − 2(~ri · ~ei)J3

)

The code for computing the form-factor and the gradient
can be extended to compute the second derivative as well.
Figure 23 shows the extension of the pseudo-code needed
for computing simultaneously the point-to-area form-factor
and its first two derivatives (we did not include the part of
the code that is exactly identical). Once again, recycling ge-
ometric computations previously done reduces the cost of
computing the Hessian matrix, even if the cost is still high
since matrix operations are quite expensive: a single matrix
addition has the same cost as 9 standard additions.

The exact extra cost of computing the Hessian matrix de-
pends on the computer and on the compiler. On a R4000
SGI, with the standard cc compiler, it is 80 % of the cost of

the form-factor alone (see Holzschuch17), meaning that the
overall cost of computing the point-to-area form-factor and
its first two derivatives is2.1 times the cost of computing
the form-factor alone. Notice it is much faster to compute
the exact value than it would be to compute an approximate
Hessian matrix — which would require seven separate form-
factor computations.
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Common symmetry plane

The maximum lies
on this line

Location of the maximum

Figure 24: The symmetries of the scene can help find the location of the maximum.

Figure 25: Direct illumination with our refinement criterion, unoccluded scene.
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Figure 26: Minimal and maximal emitter for a simple configuration.

Figure 27: Direct illumination with our refinement criterion, with one occluder.
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Figure 28: With generic occluders, the unimodality conjectures do not hold.

Figure 29: With certain occluders, the unimodality conjectures still holds.
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Abstract

We present a signal-processing framework for light transport. We
study the frequency content of radiance and how it is altered by
phenomena such as shading, occlusion, and transport. This extends
previous work that considered either spatial or angular dimensions,
and it offers a comprehensive treatment of both space and angle.

We show that occlusion, a multiplication in the primal, amounts
in the Fourier domain to a convolution by the spectrum of the
blocker. Propagation corresponds to a shear in the space-angle fre-
quency domain, while reflection on curved objects performs a dif-
ferent shear along the angular frequency axis. As shown by previ-
ous work, reflection is a convolution in the primal and therefore a
multiplication in the Fourier domain. Our work shows how the spa-
tial components of lighting are affected by this angular convolution.

Our framework predicts the characteristics of interactions such
as caustics and the disappearance of the shadows of small features.
Predictions on the frequency content can then be used to control
sampling rates for rendering. Other potential applications include
precomputed radiance transfer and inverse rendering.

Keywords: Light transport, Fourier analysis, signal processing

1 Introduction

Light in a scene is transported, occluded, and filtered by its complex
interaction with objects. By the time it reaches our eyes, radiance is
an intricate function, and simulating or analyzing it is challenging.

Frequency analysis of the radiance function is particularly inter-
esting for many applications, including forward and inverse render-
ing. The effect of local interactions on the frequency content of
radiance has previously been described in a limited context. For in-
stance, it is well-known that diffuse reflection creates smooth (low-
frequency) light distributions, while occlusion and hard shadows
create discontinuities and high frequencies. However, a full char-
acterization of global light transport in terms of signal processing
and frequency analysis presents two major challenges: the domain
of light rays is intricate (three dimensions for position and two for
direction), and light paths can exhibit an infinite number of bounces
(i.e. in terms of signal processing, the system has dense feedback).

To address the above challenges, we focus on the neighborhood
of light paths [Shinya et al. 1987]. This restriction to local prop-
erties is both a price to pay and a fundamental difficulty with the
problem we study: characteristics such as reflectance or presence
and size of blockers are non-stationary, they vary across the scene.

This paper presents a theoretical framework for characterizing
light transport in terms of frequency content. We seek a deep un-
derstanding of the frequency content of the radiance function in a
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Figure 1: Space-angle frequency spectra of the radiance function
measured in a 3D scene. We focus on the neighborhood of a ray
path and measure the spectrum of a 4D light field at different steps,
which we summarize as 2D plots that include only the radial com-
ponents of the spatial and angular dimensions. Notice how the
blockers result in higher spatial frequency and how transport in
free space transfers these spatial frequencies to the angular domain.
Aliasing is present in the visualized spectra due to the resolution
challenge of manipulating 4D light fields.

scene and how it is affected by phenomena such as occlusion, re-
flection, and propagation in space (Fig. 1). We first present the two-
dimensional case for simplicity of exposition. Then we show that it
extends well to 3D because we only consider local neighborhoods
of rays, thereby avoiding singularities on the sphere of directions.

Although we perform our derivations in an abstract setting, we
keep practical questions in mind. In particular, we strongly be-
lieve that a good understanding of frequency creation and atten-
uation allows for more efficient sampling strategies for stochas-
tic approaches such as Monte-Carlo global illumination. Further-
more, it leads to better sampling rates for light-field rendering, pre-
computed radiance transfer, and related applications. Finally, our
frequency analysis can shed key practical insights on inverse prob-
lems and on the field of statistics of natural images by predicting
which phenomena can cause certain local-frequency effects.

1.1 Contributions

This paper makes the following contributions:

Frequency study in space and angle. Our framework encom-
passes both spatial and directional variations of radiance, while
most previous work studied only one of these two components.

Local surface interactions. We describe the frequency effects of
local shading, object curvature, and spatially-varying BRDF.

Global light-transport. We provide expressions for the frequency
modification due to light transport in free space and occlusion.

Most of the derivations in this paper are carried out in 2D for clarity,
but we show that the main characterizations extend to 3D.
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1.2 Related work

Radiance exhibits both spatial and angular variations. A wealth of
previous work has studied the frequency content along one of these
components, but rarely have both space and angle been addressed.
We do not discuss all applications of Fourier analysis, but rather
focus on studies of frequency modification in light transport.

Filtering and sampling Heckbert’s seminal work on texture an-
tialiasing [1989] derives local bandwidth for texture pre-filtering
based on a first-order Taylor expansion of the perspective transform.
The effect of perspective is also studied in the contexts of hologra-
phy and light field sampling [Halle 1994; Isaksen et al. 2000; Chai
et al. 2000; Stewart et al. 2003], mostly ignoring visibility and spec-
ular effects.

Local illumination as a convolution Recently, local illumina-
tion has been characterized in terms of convolution and it was
shown that the outgoing radiance is band-limited by the BRDF
[Ramamoorthi and Hanrahan 2001b; Ramamoorthi and Hanrahan
2004; Basri and Jacobs 2003]. However the lighting is assumed to
come from infinity and occlusion is ignored. Frolova et al. [2004]
explored spatial lighting variations, but only for convex diffuse ob-
jects. We build on these approaches and extend them by adding
spatial dimensions as well as other phenomena such as occlusion
and transport, at the expense of first-order approximations and a lo-
cal treatment. Ramamoorthi et al. [2004] have also studied local
occlusion in a textured object made of pits such as a sponge. Our
treatment of occlusion considers complex blockers at an arbitrary
distance of the blocker and receiver.

Wavelets and frequency bases Wavelets and spherical harmon-
ics have been used extensively as basis functions for lighting sim-
ulation [Gortler et al. 1993; Keller 2001] or pre-computed radi-
ance transfer [Sloan et al. 2002; Ramamoorthi and Hanrahan 2002].
They are typically used in a data-driven manner and in the context
of projection methods, where an oracle helps in the selection of the
relevant components based on the local frequency characteristics of
radiance. Refinement criteria for multiresolution calculations often
implicitly rely on frequency decomposition [Sillion and Drettakis
1995]. In our framework we study the frequency effect of the equa-
tions of light transport in the spirit of linear systems, and obtain
a more explicit characterization of frequency effects. Our results
on the required sampling rate can therefore be used with stochastic
methods or to analyze the well-posedness of inverse problems.

Ray footprint A number of techniques use notions related to band-
width in a ray’s neighborhood and propagate a footprint for adaptive
refinement [Shinya et al. 1987] and texture filtering [Igehy 1999].
Chen and Arvo use perturbation theory to exploit ray coherence
[2000]. Authors have also exploited on-the-fly the frequency con-
tent of the image to make better use of rays [Bolin and Meyer 1998;
Myszkowski 1998; Keller 2001]. Our work is complementary and
provides a framework for frequency-content prediction.

Illumination differentials have been used to derive error bounds
on radiance variations (e.g. gradients [Ward and Heckbert
1992; Annen et al. 2004], Jacobians [Arvo 1994], and Hessians
[Holzschuch and Sillion 1998], but only provide local information,
which cannot easily be used for sampling control.

Fourier analysis has also been extensively used in optics [Good-
man 1996], but in the context of wave optics where phase and inter-
ferences are crucial. In contrast, we consider geometric optics and
characterize frequency content in the visible spatial frequencies.
The varying contrast sensitivity of humans to these spatial frequen-
cies can be exploited for efficient rendering, e.g. [Bolin and Meyer
1995; Ferwerda et al. 1997; Bolin and Meyer 1998; Myszkowski
1998]. Finally we note that the Fourier basis can separate different
phenomena and thus facilitate inverse lighting [Ramamoorthi and
Hanrahan 2001b; Basri and Jacobs 2003] depth from focus [Pent-
land 1987] and shape from texture [Malik and Rosenholtz 1997].

ℓR 2D light field (2D) around ray R
x spatial dimension (distance to central ray)
v directional dimension in 2-plane parameterization
θ directional dimension in plane-sphere paramerization

f̂ Fourier transform of function f
ΩX frequency along dimension X

i
√
−1

f ⊗ g convolution of f by g
d Transport distance
V(x, v) visibility function of the blockers
cos+(θ) clamped cosine term: max(cos θ, 0)
dE Differential irradiance (after cosine term).
ρ BRDF

Figure 2: Notations.
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Figure 3: (a-b) The two light field parameterization used in this
article. Locally, they are mostly equivalent: we linearize v = tan θ.
(c) Transport in free space: the angular dimension v is not affected
but the spatial dimension is reparameterized depending on v.

2 Preliminaries

We want to analyze the radiance function in the neighborhood of a
ray along all steps of light propagation. For this, we need a number
of definitions and notations, summarized in Fig. 2. Most of the
derivations in this paper are carried out in 2D for clarity, but we
shall see that our main observations extend naturally to 3D.

2.1 Local light field and frequency content

We consider the 4D (resp. 2D) slice of radiance at a virtual plane
orthogonal to a central ray. We focus on the neighborhood of the
central ray, and we call radiance in such a 4D (resp. 2D) neighbor-
hood slice a local light field (Fig. 3 left). Of the many parameteri-
zations that have been proposed for light fields, we use two distinct
ones in this paper, each allowing for a natural expression of some
transport phenomena. Both use the same parameter for the spatial
coordinates in the virtual plane, x, but they differ slightly in their
treatment of directions. For our two-plane parameterization, we
follow Chai et al. [2000] and use the intersection v with a parallel
plane at unit distance, expressed in the local frame of x (Fig. 3-a).
In the plane-sphere parameterization, we use the angle θ with the
central direction (Fig. 3-b) [Camahort et al. 1998]. These two pa-
rameterizations are linked by v = tan θ and are equivalent around
the origin thanks to a linearization of the tangent.

We study the Fourier spectrum of the radiance field ℓR, which

we denote by ℓ̂R. For the two-plane parameterization, we use the
following definition of the Fourier transform:

ℓ̂R(Ωx,Ωv) =

∫
∞

x=−∞

∫
∞

v=−∞

ℓR(x, v)e−2iπΩx xe−2iπΩvv dx dv (1)

Examples are shown for two simple light sources in Fig. 4, with
the spatial dimension along the horizontal axis and the direction
along the vertical axis. We discuss the plane-sphere parameteriza-
tion in Section 4.

One of the motivations for using Fourier analysis is the
convolution-multiplication theorem, which states that a convolution
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Figure 4: (a) A point light source is a Dirac in space times a constant
in angle. (b) Its Fourier transform is a constant in space times a
Dirac in angle. (c) A spot light with a finite-size bulb has a smooth
falloff in angle. (d) Its Fourier transform is a sinc times a bell curve.

in the primary domain corresponds to a multiplication in the Fourier
domain, and vice-versa. As we show in this paper, it affords a com-
pact formulation of frequency modification.

2.2 Overview

When light flows in a scene, phenomena such as transport in free
space, occlusion, and shading each modify the local light field in
a characteristic fashion. These operations are described (in 2D) in

Section 3 as filters operating on the frequency signal ℓ̂. In Section
4, we describe the general case of local shading and extend the
presentation to 3D in Section 5. Section 6 compares our framework
with previous work and shows a simple application.

3 Transport phenomena as linear filters

This section describes the effect on frequency content of successive
stages of light transport. All phenomena are illustrated in Fig. 6
for a simple 2D scene, where light is emitted at the source, trans-
ported in free space, occluded by obstacles, transported again, and
reflected by a surface. At each step, we show a space-direction
plot of radiance, in primal and frequency space, as well as space-
direction frequency-domain plots obtained in a similar 3D scene
(Fig. 9-b). Note the excellent qualitative agreement between the
2D predictions and 3D observations.

3.1 Travel in free space

Travel in free space is a crucial operation because the directional
variation also turns into spatial variation. Consider a slide projector:
At the source, we have a Dirac in space and the image in the direc-
tional domain. At the receiver, the signal of the image is present in
a combination of space and angle. When light travels in free space,
the value of radiance is unchanged along a ray, and travel in free
space is a reparameterization of the local light field (Fig. 3-c). The
value of radiance at a point x after transport can be found using:

ℓR(x, v) = ℓR′ (x − vd, v), (2)

where d is the travel distance. To compute the Fourier transform ℓ̂R,
we insert the change of variable x′ = x− vd in the integral of Eq. 1:

ℓ̂R(Ωx,Ωv) =

∫
∞

x′=−∞

∫
∞

v=−∞
ℓR(x′ , v)e−2iπΩx(x

′
+vd)e−2iπΩvv dx′ dv

=

∫
∞

x′=−∞

∫
∞

v=−∞
ℓR(x′, v)e−2iπΩx x

′

e−2iπ(Ωv+dΩx)v dx′ dv,

This is a shear in the directional dimension (Fig. 6, steps 2 and 4):

ℓ̂R′ (Ωx, Ωv) = ℓ̂R(Ωx, Ωv + dΩx) (3)

The longer the travel, the more pronounced the shear.

3.2 Visibility

Occlusion creates high frequencies and discontinuities in the radi-
ance function. Radiance is multiplied by the binary occlusion func-
tion of the occluders:

ℓR′ (x, v) = ℓR(x, v) V(x, v) (4)
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Figure 5: Unit area in lightfield parameterisation.

where V(x, v) is equal to 1 when there is full visibility and to 0
when the occluders are blocking light transport. At the location of
occlusion, V mostly depends on x (Fig. 6, step 3).

According to the multiplication theorem, such a multiplication
amounts to a convolution in the frequency domain:

ℓ̂R′ (Ωx, Ωv) = ℓ̂R(Ωx, Ωv) ⊗ V̂(Ωx,Ωv) (5)

If the occluders are lying inside a plane orthogonal to the ray, the
occlusion function is a constant in angle, and its Fourier transform
is a Dirac in the angular dimension. In the general case of non-
planar occluders, their spectrum has frequency content in both di-
mensions, but the angular frequency content is restricted to a wedge
with a span proportional to the depth extent of the blockers. Our
formulation also handles semi-transparent blockers by using non-
binary occlusion functions.

After occlusion, another transport step usually occurs, shearing
the spectrum and propagating the occlusion from the spatial dimen-
sion to the angular dimension (Fig. 6, step 4).

3.3 Local diffuse shading

We first treat local shading by a planar Lambertian reflector. Curved
and glossy reflectors will be treated in greater details in Section 4.

For a diffuse reflector with albedo ρ, the outgoing radiance ℓo has
no directional variation; it is simply the integral over all directions
of the incoming radiance per unit area on the receiver surface:

ℓo(x) = ρ

∫

Ω

ℓi(x, v) dA⊥ (6)

dA⊥, the differential area on the receiver surface is cos+ θ times the
Jacobian of the lightfield parameterization; with v = tan θ, we have:

dA⊥ =
dv

(1 + v2)
3

2

= g(v) dv

We introduce dE(x, v) = ℓi(x, v)g(v), the differential irradiance at
point x from the direction v. Since dE is a product of two functions,
its spectrum is the convolution of their spectra:

d̂E(Ωx, Ωv) = ℓ̂i(Ωx, Ωv) ⊗ ĝ(Ωv)

The reflected radiance ℓo is the integral of dE over all directions v; it

is therefore the value of d̂E at Ωv = 0, that is, ℓ̂o(Ωt) = ρd̂E(Ωt, 0).
Putting everything together, we have:

ℓ̂o(Ωx) = ρ
[̂
ℓi(Ωx, Ωv) ⊗ ĝ(Ωv)

]
Ωv=0

(7)

g(v) is a bell-like curve (Fig. 5-a); its Fourier transform is:

ĝ(Ωv) = 4π|Ωv|K1(2π|Ωv|)

where K1 is the first-order modified Bessel function of the second
kind. ĝ is highly concentrated on low frequencies (Fig. 5-b); the
effect of convolution by ĝ is a very small blur of the spectrum in the
angular dimension (Fig. 6, step 5).
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Figure 6: Effects on the spectrum of the various steps of light transport with a diffuse reflector. 2D Fourier transforms for steps 1 to 4 are
obtained analytically; step 5 (convolution) is performed numerically. 3D Version spectrums are obtained numerically, via a Photon-Mapping
algorithm and a FFT of the light field computed.
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Figure 7: Scene configuration
for visibility experiment. Left:
spectrum with only one occluder.
Right: spectrum with two occlud-
ers, computed with full precision
and phase.

3.4 Example and discussion

Fig. 6 illustrates the various steps of light transport for a simple
scene such as Fig. 9b. The slopes of the transport shears correspond
to the travel distance (steps 2 and 4). Visibility increases the spatial
frequency content through the convolution by a horizontal kernel in
frequency space (step 3). There are only a finite number of blockers
in Fig. 6, which explains why their spectrum is not a Dirac comb
times a sinc, but a blurry version. The blocker spectrum mostly
contains a main central lobe corresponding to the average occlusion
and two side lobes corresponding to the blocker main frequency.
This results in a replication of the sheared source spectrum on the
two sides. The smaller the blocker pattern, the further-away these
replicas are in frequency space. The final diffuse integration (step
6) discards all directional frequencies.

The main differences between the 3D and 2D plots of the spectra
in Fig. 6 come from aliasing problems that are harder to fix with
the 4D light field.Furthermore, in the 3D scene, the position of the
blockers is jittered (see Fig. 9), which results in a smoother spec-
trum.

Feature-based visibility The spectra in Fig. 6 show that the second
transport (step 4) pushes the “replicas” to the angular domain. This
effect is more pronounced for high-frequency blockers, for which
the replicas are farther from the vertical line. Since the final diffuse
integration keeps only the spatial line of frequencies (step 5), the
main high-frequency lobe of the blockers is eliminated by diffuse
shading. This is related to the feature-based approach to visibility
[Sillion and Drettakis 1995], where the effect of small occluders
on soft shadows is approximated by an average occlusion. How-
ever, our finding goes one step further: where the feature-based
technique ignores high frequencies, we show that, for small-enough
blockers, most high-frequencies are effectively removed by integra-
tion.

Combining several blockers A difficult scene for visibility is the
case of two occluders that individually block half of the light, and
together block all the light (Fig. 7). In our framework, if one carries
out the computations with full precision, taking phase into account,
one gets the correct result: an empty spectrum (Fig. 7, right).

However, for practical applications, it is probably not necessary
to compute the full spectrum. Instead, we consider elements of
information about the maximal frequency caused by the scene con-
figuration, as we show in Section 6.2. In that case, one can get
an overestimation of the frequencies caused by a combination of
blockers, but not an underestimation.

4 General case for surface interaction

So far, we have studied only diffuse shading for a central ray normal
to a planar receiver (although rays in the neighborood have a non-
normal incident angle). We now discuss the general case, taking
into account the incidence angle, arbitrary BRDF, receiver curva-
ture as well as spatial albedo variation. Our framework builds upon

Ramamoorthi and Hanrahan [2001b] and extends it in several ways,
which we discuss in Section 6.1.

In a nutshell, local reflection simply corresponds to a multiplica-
tion by the cosine term and a convolution by the BRDF. However,
a number of reparameterizations are necessary to take into account
the incidence and outgoing angles, as well as the surface curvature.
We first treat the special case of rotation-invariant BRDFs such as
Phong before addressing more general forms as well as texture and
spatially-varying BRDFs. Recall that we study frequency content in
ray neighborhoods, which means that for local reflection, we con-
sider an incoming neighborhood and an outgoing neighborhood.
Plane-sphere parameterization Since local reflection mostly in-
volves integrals over the directional dimension, it is more naturally
expressed in a parameterization where angles are uniform. This is
why we use here a plane-sphere parameterization where the direc-
tional component θ is the angle to the central ray (Fig. 3-b). The
spatial dimension is unaffected.

In the plane-sphere parameterization, the domain of directions is
the S 1 circle, which means that frequency content along this dimen-
sion is now a Fourier series, not a transform. Fig. 8 shows the effect
of reparameterizing angles on the frequency plane. The frequency
distribution is very similar, although the spectrum is blurred by the
non-linear reparameterization. For bandwidth analysis, this intro-
duces no significant error. Note that for all local interactions with
the surface (and thus in this entire section), there is no limitation to
small values of θ, the linearization v = tan θ ≈ θ will only be used
again after light leaves the surface, for subsequent transport.

4.1 Rotation-invariant BRDFs on curved receivers

Local shading is described by the shading equation

ℓo(xi, θo) =

∫

θi

ℓ(xi, θi) ρxi
(θ′

o
, θ′

i
) cos+ θ

′

i
dθi (8)

where the primed angles are in the local frame of the normal while
the unprimed angles are in the global frame (Fig. 10). For now, we
assume that the BRDF ρ does not vary with xi. Local shading is
mostly a directional phenomenon with no spatial interaction: the
outgoing radiance at a point is only determined by the incoming
radiance at that point. However, the normal varies per point.

As pointed out by Ramamoorthi and Hanrahan [2001b], local re-
flection combines quantities that are naturally expressed in a global
frame (incoming and outgoing radiance) and quantities that live in
the local frame defined by the normal at a point (cosine term and
BRDF). For this, we need to rotate all quantities at each spatial
location to align them with the normal. This means that we ro-
tate (reparameterize) the incoming radiance, perform local shading
in the local frame, and rotate (reparameterize ) again to obtain the
outgoing radiance in a global frame. All steps of the local shading
process are illustrated in Fig. 10 and discussed below.

Step 1 & 7: Reparameterization into the tangent frame We
first take the central incidence angle θ0 into account, and reparam-
eterize in the local tangent frame with respect to the central normal
direction. This involves a shift by θ0 in angle and a scale in space
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fore and after the sphere-plane reparameterization. Left: (Ωx,Ωv)
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Figure 9: Complex frequency effects in light transport. The three scenes have the same area light and diffuse receiver and differ only by
the frequency content of the blockers. (a) Large blockers result in few high frequencies. (b) With smaller (higher frequency) blockers, high
frequencies increase on the receiver. (c) For very high-frequency blockers, high frequencies on the receiver nearly disappear.

by 1/ cos θ0. We also flip the directions so that incident rays are
pointing up and match the traditional local reflection configuration
(Fig. 10), step 1). We omit the full derivation for brevity and pro-
vide directly the equations corresponding to step 1 and 7 of Fig. 10:

ℓ̂i(Ωx, Ωθ) = e−iΩθθ0/| cos θ0| ℓ̂ (−Ωx cos θ0, Ωθ) (9)

ℓ̂′′(Ωx, Ωθ) = eiΩθθ1 | cos θ1| ℓ̂o(Ωx/ cos θ1, Ωθ) (10)

Step 2: Per-point rotation The directional slice corresponding
to each point must be shifted to rotate it in the local frame of the
normal at that point (Fig. 10 step 2): θ′

i
= θi − α(xi).

For a smooth surface, we use a first-order Taylor expansion of
the angle α of the normal at a point xi. Given the curvature k, we
have α(xi) = kxi and the reparameterization is θ′

i
= θi − k xi. This is

a shear, but now along the directional dimension, in contrast to the
transport shear. Similarly, the Fourier transform is sheared along
the spatial dimension (Fig. 10 step 2, last row):

ℓ̂′
i
(Ω′

x
,Ω′θ) = ℓ̂i(Ω

′

x
+ kΩ′θ , Ω

′

θ) (11)

After this reparameterization, our two-dimensional spatio-
directional local light field is harder to interpret physically. For
each column, it corresponds to the incoming radiance in the frame
of the local normal: the frame varies for each point. In a sense, we
have unrolled the local surface and warped the space of light ray in
the process [Wood et al. 2000]. The direction of the shear depends
on the sign of the curvature (concave vs. convex).

Step 3: Cosine term and differential irradiance In the local
frame of each point, we compute differential irradiance by multi-
plying by the spatially-constant clamped cosine function cos+. This
multiplication corresponds in frequency space to a convolution by
a Dirac in space times a narrow function in angle:

d̂E′(Ωx,Ωθ) = ℓ̂
′

i
(Ωx,Ωθ) ⊗ ĉos+(Ωθ)δΩx=0 (12)

Over the full directional domain, the spectrum of cos+ is:

ĉos+(Ωθ) = cos
(
π

2
Ωθ

) 2

1 − (2πΩθ)2
(13)

Most of the energy is centered around zero (Fig. 12-a) and the 1/Ω2
θ

frequency falloff comes from the derivative discontinuity1 at π/2.
Equivalent to the two-plane reparameterization (Section 3.3), the
cosine term has only a small vertical blurring effect.

1A function with a discontinuity in the nth derivative has a spectrum

falling off as 1/Ωn+1. A Dirac has constant spectrum.

Step 4: Mirror-direction reparameterization Common
BRDFs mostly depend on the difference between the mirror
reflection and the outgoing direction. This is why we remap the
local incoming light using a mirror reflection around the normal
(Fig. 10 step 4): dE′

r
(θ′

r
) = dE′(−θ′

i
).

d̂E′
r
(Ωx, Ω

′

θ) = d̂E′(Ωx, −Ω′θ) (14)

This is equivalent to reparameterizations of surface light fields
and BRDFs [Wood et al. 2000; Ramamoorthi and Hanrahan 2002].

Step 5: BRDF convolution In the mirror parameterization, as-
suming that the BRDF depends only on the angle difference, the
shading equation 8 becomes:

ℓ′
o
(xi, θ

′

o
) =

∫

θ′r

dE′
r
(xi, θ

′

r
) ρ′(θo − θ′r) dθ′

r
(15)

Which is a convolution of dE′
r

by ρ′ for each xi: that is, we convolve
the 2D function dE′

r
by a spatial Dirac times the directional shift-

invariant BRDF ρ′ (Fig. 10 step 5). In the Fourier domain, this is a
multiplication by a spatial constant times the directional spectrum
of the BRDF.

ℓ̂′
o
(Ω′

x
,Ω′θ) = d̂E′

r
(Ω′

x
,Ω′θ) ρ̂

′(Ω′θ) (16)

Note, however, that our expression of the BRDF is not recipro-
cal. We address more general forms of BRDF below.

Step 6: Per-point rotation back to tangent frame We now
apply the inverse directional shear to go back to the global frame.
Because we have applied a mirror transform in step 4, the shear and
inverse shear double their effect rather than canceling each other.
Since the shear comes from the object curvature, this models the
effect of concave and convex mirror and how they deform reflection.
In particular, a mirror sphere maps the full 360 degree field to the
180 degree hemisphere, as exploited for light probes.

4.2 Discussion

The important effects due to curvature, cosine term, and the BRDF
are summarized in Fig. 10. Local shading is mostly a directional
phenomenon, and the spatial component is a double-shear due to
curvature (step 2 and 6). The cosine term results, in frequency
space, in a convolution by a small directional kernel (step 3) while
the BRDF band-limits the signal with a multiplication of the spec-
trum (step 5). Rougher materials operate a more aggressive low-
pass, while in the special case of mirror BRDFs, the BRDF is a
Dirac and the signal is unchanged.

Curvature has no effect on the directional bandwidth of the out-
going light field, which means that previous bounds derived in the
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Figure 11: Caustic due to negative curvature. A shear in angle and
then in space are combined to result in a transfer from the direc-
tional frequencies to the spatial frequencies.

special case of inifinite lighting [Ramamoorthi and Hanrahan 2004;
Basri and Jacobs 2003; Ramamoorthi and Hanrahan 2001a; Ra-
mamoorthi and Hanrahan 2002] are valid for spatially-varying il-
lumination. However, the spatial frequency content is strongly af-
fected by curvature, which has important practical implications.

The effect of the curvature shear is further increased by the spa-
tial scaling back to the tangent frame in step 7, as described by
Eq. 10. We stress that this explains the well-known difficulty in
sampling specular lighting in situations such as backlighting on the
silhouette of a curved object. This is modeled by the effect of the
curvature shear, the BRDF bandwidth, and the angular scale due to
rotation into the tangent frame.

A case study: simple caustics Caustics are an example of the
interaction between spatial and angular aspects of light transport.
We illustrate this effect with a simple case similar to a solar oven
(Fig 11). A parallel beam of light hits a surface of negative cur-
vature with a mirror (Dirac) BRDF and converges toward a focal
point. This is modeled in our framework by an incoming spectrum
that has energy only in the angular domain. The shear due to curva-
ture followed by the shear due to transport result in a signal where
the energy is concentrated in space: it is a Dirac at the focal point.

4.3 Rotation-varying BRDFs

Not all BRDFs can be simplified into a term that depends only on
the difference to the mirror direction. For example, the Fresnel term
depends on the incoming angle. We now derive the effect of shading
by a BRDF that is factored into separable terms that depend on the
incoming angle θ′

i
and the difference between the outgoing angle θ′

o

and the mirror direction θ′
r

[Ramamoorthi and Hanrahan 2002], that
is, ρ(θ′

i
, θ′

o
) = f (θ′

i
) ρ′(θo − θ′r).

Since the term f does not depend on the outgoing angle, it can
be applied in the same way as the cos+ term, using a multiplication
that corresponds to a convolution in frequency space; the rest of
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Figure 12: Spectrum of the clamped cosine in the sphere-plane pa-
rameterization. Spectrum of cos+ f (cosine and Fresnel terms) for
different materials.

the shading remains the same with a convolution by ρ′. Combining
the multiplication by f with the mirror reparameterization of step 4
and the convolution by ρ′ of step 5, we obtain in frequency space a
convolution followed by a multiplication:

ℓ̂′
o
(Ω′

x
,Ω′θ) =

(
d̂E′

r
(Ω′

x
,Ω′θ) ⊗ f̂ (−Ω′θ)δΩx=0

)
ρ̂′(Ω′θ)

(17)

Fig. 12-b shows the spectra of the cosine term cos+ multiplied
by the Fresnel term for typical materials; it contains mostly low fre-
quencies. Other approximations with separable functions depend-
ing on θ′

o
are equally easy, just reversing the order of the multipli-

cation and convolution. BRDFs are often approximated by sums
of separable terms, which can be handled easily in our framework
because the Fourier transform is linear.

4.4 Texture mapping

When the result of shading is modulated by a texture T (x), this
multiplication corresponds to a convolution in the Fourier domain:

ℓ̂T (Ωx,Ωθ) = T̂ (Ωx)δΩθ=0 ⊗ ℓ̂o(Ωx,Ωθ) (18)

Since the texture has only spatial components, its spectrum is
restricted to the line of spatial frequencies. This means that texture
mapping only affects frequencies along the spatial dimension.

4.5 Spatially-varying BRDFs

We now extend our model to include spatially-varying BRDFs and
revisit step 5 (shading). For each point, shading is still a convolution
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Figure 13: 3D direction parameterizations.

over the directional domain, but the kernel varies spatially.
To model this effect, we exploit the fact that a 2D Fourier trans-

form can be decomposed into two separable 1D transforms, the
first one vertically, then horizontally. We consider the intermedi-

ate semi-Fourier space ℓ̊(x,Ωθ) that represents for each location x
the 1D Fourier transform of the directional variation of incoming
light. The full Fourier space is then the 1D Fourier transform of the
semi-Fourier transform along the x dimension. We have

ℓ̊′
o
(x,Ωθ) = ˚dE′

r
(x,Ωθ) ρ̊(x,Ωθ),

which is a multiplication in the semi-Fourier domain, and therefore
a convolution along x only in full Fourier space:

ℓ̂′(Ωx,Ωθ) = d̂E′
r
(Ωx,Ωθ) ⊗x ρ̂(Ωx,Ωθ)

This means that in order to characterize the effect of spatially-
varying BRDFs, we consider the spectrum of ρ(x, θ). We then

take the spectrum of the incoming illumination ℓ̂ and convolve it
only horizontally along Ωx, not vertically. We call this a semi-
convolution in Ωx, which we note ⊗x.

In the special case of non-varying BRDFs, the spectrum of
ρ(x, θ) is a Dirac times the directional spectrum of the BRDF. The
horizontal convolution is a multiplication. If the spectrum of ρ is
separable (texture mapping), then the spatially-varying BRDF case
is a multiplication followed by a convolution. The special case of a
a spatially-varying combination of BRDFs [Lensch et al. 2001] can
be handled more simply as the superposition of multiple BRDFs
with weights encoded as textures.

5 Extension to 3D

We now show how our framework extends to 3D scenes.

5.1 Light-field parameterization phenomena

The derivations presented in Section 3 involve a two-plane light-
field parameterization and extend directly to 3D. The only notable
difference is the calculation of differential irradiance (Eq. 7), where
the projected surface area in 3D becomes:

dA⊥ =
du dv

(1 + v2 + u2)2
= G(u, v) du dv

Fig. 5-c presents the spectrum of G(u, v).

5.2 Shading in plane-sphere parameterization

The sphere S 2 of directions is unfortunately hard to parameterize,
which prompted many authors to use spherical harmonics as the
equivalent of Fourier basis on this domain. In contrast, we have
chosen to represent directions using spherical coordinates and to
use traditional Fourier analysis, which is permitted by our restric-
tion to local neighborhoods of S 2. This solution enables a more di-
rect extension of our 2D results, and in particular it expresses well
the interaction between the spatial and angular components.

Spherical coordinates We use the spherical coordinates θ, ϕ
where θ, in [−π, π], is the azimuth and ϕ, in [−π/2, π/2], the co-
latitude. The distortion of this parameterization is cosϕ, which
means that one must remain around the equator to avoid distortion.
In this neighborhood, the parameterization is essentially Euclidean,
to a first-order approximation.

Local reflection is challenging because it involves four neigh-
borhoods of direction around: the incoming direction, the normal,
the mirror direction, and the outgoing direction; in general, we can-
not choose a spherical parameterization where they all lie near the
equator. Fortunately, we only need to consider two of these neigh-
borhoods at a time (Fig. 4).

For this, we exploit the fact that a rotation around an axis on the
equator can be approximated to first order by a Euclidean rotation
of the (θ, ϕ) coordinates: (θ′, ϕ′) = Rα (θ, ϕ)

For brevity, we omit the comprehensive remapping formulas for
3D shading, but we describe the appropriate parameterization for
each step as well as the major differences with the 2D case.

Tangent frame We start with a parameterization where the equa-
tor is in the incident plane, as defined by the central ray of the in-
cident light field and the central normal vector (Fig. 13-b). If the
light field has been properly rotated, only the x spatial dimension
undergoes the scaling by cos θ0 (Eq. 9)

Curvature In 2D, we approximated the angle with the local nor-
mal linearly by α(x) = kx; For a surface, the corresponding lin-
earization of the normal direction (θN , ϕN) involves a bilinear form
[Do Carmo 1976]:

(θN , ϕN) = M (x, y) (19)

If x and y are aligned with the principal directions of the sur-
face, the matrix M is an anisotropic scaling where the scale fac-
tors are the two principal curvatures. The corresponding remapping
of (x, y, θ, ϕ) is a shear in 4D, with different amounts in the two
principal directions. As with the 2D case, the frequency content is
sheared along the spatial dimensions.

Differential irradiance and cosine Step 3 is mostly un-
changed. Since we placed the equator along the incident plane,
the cosine term depends only on θ to a first approximation. The
spectrum is convolved with a small 1D kernel in θ (Fig. 12-a).

Rotationally-symmetric BRDFs The mirror reparameteriza-
tion of step 4 is unchanged, and the angles remain near the equator
since the equator also contains the normals. We express the con-
volution of the mirrored incoming light field by the BRDF in the
neighborhood of the outgoing direction. For this, we rotate our
spherical coordinates so that the new equator contains both the mir-
ror direction and the direction of the central outgoing ray (Fig. 13-
c). Because all the angles are near the equator, the difference angles
between an outgoing ray and a mirrored ray can be approximated
by θ′

o
− θ′

r
and ϕ′

o
− ϕ′

r
, and Eq. 16 applies.

Recap of rotations In summary, we first need to rotate the light-
field parameterization so that the central incidence plane is along
one of the axes before reparameterizing from two-plane to sphere-
plane (Fig. 13-b). We then need to rotate between the mirror repa-
rameterization and the BRDF convolution to place the central out-
going direction on the equator (Fig. 13-c). Finally we rotate again
to put the outgoing plane defined by the normal and central outgo-
ing direction in the equator (not shown).

5.3 Anisotropies in 3D

Our extension to 3D exploits the low distortion of spherical coordi-
nates near the equator, at the cost of additional reparameterization
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Ray space Fourier Spectrum formula
Transport

Travel shear shear ℓ̂(Ωx, Ωv + dΩx)

Visibility multiplication convolution ℓ̂ ⊗ V̂

Local geometric configuration

Light incidence scale spatial scale spatial e
−iΩθθ0

| cos θ0 |
ℓ̂ (−Ωx cos θ0, Ωθ)

Outgoing angle scale spatial scale spatial eiΩθθ1 | cos θ1 | ℓ̂o(
Ωx

cos θ1
,Ωθ)

Curvature shear shear ℓ̂i(Ω
′
x
− kΩ′

θ
, Ω′

θ
)

Local shading

Cosine term multiplication convolution ℓ̂′
i
⊗ ĉos+

BRDF convolution multiplication ρ′ d̂E′r

Texture mapping multiplication convolution T̂ ⊗ ℓ̂

Separable BRDF multiplication convolution
(
d̂E′r ⊗ f̂

)
ρ′

then convolution then multiplication

Space-vary. BRDF semi-convolution semi convolution d̂E′ ⊗x ρ̂

(angles only) (spatial only)

Table 1: Summary of all phenomena

to align the equator with the relevant neighborhoods. Fortunately,
these reparameterization act locally like Euclidean rotations along
axes that preserve the space-angle separation.

Compared to 2D , the 3D case involves anisotropies both in
the directional and spatial components. The spatial scale to ac-
count for the incident and exitant angle affects only one of the
spatial dimensions, along the corresponding plane normal to the
tangent frame. Curvature is usually different along the two prin-
cipal directions. The directional cosine term mostly depends on
θ, while rotationally-symmetric BRDFs only depend on the spher-
ical distance between mirror and outgoing directions and is more
influenced by θ except around the specular peak. These additional
anisotropies make the 3D situation more complex, but locally they
correspond to linear transforms and preserve the distinction and in-
teraction between spatial and directional effects derived in 2D.

Other local shading effects such as separable BRDFs, texture
mapping, and spatially-varying BRDFs can be directly extended
from Section 4. While the formulas are complex and are not de-
rived in this paper, the qualititative effects and relevant parameters
remain the same as in 2D.

6 Discussion

Table 1 summarizes the building blocks that compose our frequency
analysis of light transport. This variety of phenomena can be char-
acterized using simple mathematical operators: scale, shear, con-
volution and multiplication. Even spatially-varying BRDFs can be
handled using a semi-convolution that occurs only along the spatial
dimensions.

Some operations such as occlusion are simpler in the original
ray space, while others such as shading are more natural in fre-
quency space. Our framework allows us to express them all in
a unified way. As discussed above, the 3D case essentially fol-

incoming 

light

curvature 

shear ˆ
convolution

by cos+

diffuse 

integration

(a) (b) (c) (d)

Figure 14: Special case of diffuse shading for an infinite environ-
ment map. In this case, the convolution and multiplication are
equivalent to a mutltiplication.

lows the 2D derivation, with additional reparameterizations steps
and anisotropies.

In practice, the notion of locality is invoked for three different
reasons, whose importance depends on the context and application:
– the use of first-order Taylor series, for example for the curvature
or for the tan θ ≈ θ remapping,
– the principle of uncertainty, which states that low frequencies
cannot be measured on small windows (in which case big neigh-
borhoods are desired), or in other words, that localization is not
possible in space and frequency at the same time,
– most real scenes are not stationary, that is, their properties such as
the presence and size of blockers vary spatially. Smaller neighbor-
hoods might mean more homogeneous properties and more locally-
pertinent conclusions.

We now discuss how our work extends previous frequency char-
acterization, before illustrating how it can be applied, through a
proof of concept in the context of ray-tracing.

6.1 Relation to previous work

Light field sampling Our formulation of transport in free space is
similar to the derivations of light-field spectra [Isaksen et al. 2000;
Chai et al. 2000], and the same relationship between slope and dis-
tance is found. Our expression as a transport operator makes it
easier to extend these analyzes to arbitrary input signals, and in
particular to non-Lambertian objects and occlusion.
Ray footprint Approaches based on ray differentials [Shinya et al.
1987; Igehy 1999; Chen and Arvo 2000] capture the shear trans-
forms due to transport and curvature, and our first-order Taylor ex-
pansion for curvature corresponds to the same differentials. The
approach by Igehy [1999] only uses 2D derivatives by considering
only ray paths that converge to the viewpoint.
Signal processing framework for local reflection Our framework
extends Ramamoorthi and Hanrahan’s signal processing framework
for local reflection [2004] with the following key differences:
– we take into account spatial variation of the incoming light and
the curvature of the receiver,
– however, we characterize reflection only for a ray neighborhood,
– they parameterize the outgoing radiance by by α and θ′o, while we
use a more natural outgoing parameterization in the global frame,
at the cost of reparameterization,
– as discussed above, our expression of the cosine term is a con-
volution in the frequency domain. This cleanly separates the com-
putation of incoming irradiance and BRDF convolution, at the cost
of additional steps. It also allows us to express the cosine term for
BRDFs such as Phong.
On convolution It might come as a surprise that two phenomena
that have been expressed by previous work as convolutions in the
primary space, soft shadows [Soler and Sillion 1998] and the cosine
term [Ramamoorthi and Hanrahan 2004] correspond in our frame-
work to convolutions in the frequency domain. We show here that
our formulation in fact extends these previous work and that the
primary-space convolution is a special case. The key is that they
consider functions that do not vary in one of the domains (space
resp. direction). The corresponding spectra are therefore restricted
to a line, since the Fourier transform of a constant is a Dirac.

Consider the cosine term for infinitely-distant light sources. The
lighting varies only in angle, and its spectrum is restricted to the
vertical line of directions (Fig. 14(a)). After the curvature shear, it is
a 1D function on the line kΩθ = Ωx (Fig. 14(b)), which we convolve
with the vertical kernel ĉos+. However, for each spatial frequency
Ωx, there is only one non-zero value of the sheared function. As
a result, this convolution is a so-called outer product of the two
one-dimensional functions, and the result is the pairwise product

d̂E′(Ωx,Ωθ) = ℓi(0,Ωx/k)ĉos+(Ωx/k−Ωθ). (Fig. 14(c)). The diffuse
integration then restricts the function to the line Ωθ = 0, where
dE′(Ωx, 0) = ℓ′

i
(0,Ωx/k)ĉos+(Ωx/k). The convolution followed by
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Figure 15: Bandwidth derivation for our adaptive ray tracer.

restriction to the horizontal line turned into a simple product of 1D
functions, which corresponds to a convolution in the primary space.

The case of soft shadows studied by Soler and Sillion [1998]
is similar: the emitter is diffuse and has a spectrum restricted to
Ωv = 0, and the blockers are planar and have the same restrictions.
The transport from source to occluders results in slanted lines in
frequency space that are convolved together (Fig. 6, step 3). Our
framework extends these two cases to arbitrary cases where the
spectra are not restricted to lines.

6.2 Sampling rate for glossy rendering

We show how our framework can be used to drive image-space sam-
pling in ray tracing. In particular, we illustrate how our framework
can be used to derive sampling rates for algorithms that do not need
to perform computations in the Fourier domain. While we demon-
strate a working implementation, we emphasize that this application
is meant only as a proof of concept and that further development is
necessary to make it fully general, as we discuss below.

We are motivated by the rendering of glossy materials, which de-
spite effective recent developments [Lawrence et al. 2004] remains
computationally expensive. We observe, however, that glossy ob-
jects appear blurry, so it should be possible to reduce the image
sampling rate. Our framework permits a quantitative expression of
the required sampling rate.

Unoccluded environment map We first consider the case of
environment-map rendering without occlusion. The incoming light
field has only directional content (Fig. 15), and the light incidence
angle (Table 1 row 1) has no effect. The shear of curvature (b)
results in a line of slope k that gets convolved with the cosine nar-
row kernel ĉos+, which we neglect. After mirror reparameteriza-
tion (c), a glossy BRDF band-limits this signal (d), which we ap-
proximate by a cutoff at an angular frequency Ωρ. This cutoff de-
pends on the BRDF of the object visible in a given region of the
image. The upper endpoint of the resulting segment is at coordi-
nate (−kΩρ,Ωρ). We apply the inverse shear (step e) and the scale
by 1/ cos θ1 = 1/(n.v), where n is the normal and v the unit vec-
tor towards the viewpoint. We obtain a maximum frequency of
(− 2k

cos θ1
Ωρ,Ωρ) for the light leaving an object in the direction of the

viewpoint (Fig. 15 step f). A transport shear with distance d yields

a bound of
(
− 2k

cos θ1
Ωρ, Ωρ − d 2k

cos θ1
Ωρ

)

A view computation corresponds to the restriction of the function
to the directional domain, and if we assume d >> 1, we obtain the
following approximate bound on the directional bandwidth for a
region of the image:

Glossy reflection criterion 

(BRDF, curvature, normal, distance)

Harmonic average of blocker distance

Figure 16: Criteria and sampling pattern used to render Fig. 17. The
sampling adapts to curvature, the viewing angle, the BRDF as well
as the harmonic average of the distance to potential blockers.

B = d
2k

n.v
Ωρ (20)

This corresponds to the difficulty in appropriately sampling
curved objects at grazing angles, as discussed in Section 4.2. In ad-
dition, distant objects are minified and the apparent curvature is in-
creased. In 3D, the curvature and normal angle involve anisotropy,
and in practice, we use the absolute value of the larger principal
curvature. However, our implementation computes this criterion
directly in screen-space with finite-difference approximation to the
curvature. As a result, the effect of the normal angle, the distance,
and the anisotropies are included for free; see Fig. 16 for a vi-
sualization of this criterion. The faceted look is due to the finite-
difference curvature and Phong normal interpolation. The BRDF
bandwidth for the two dinosaurs and environments were approxi-
mated manually based on the BRDF exponent.

Occlusion The above derivation assumes full visibility. We inte-
grate the effect of the blockers using a worst-case assumption on the
blocker spectrum, we consider that it has content at all frequency.
Based on the effect of the transport shear, we approximate the spec-
trum due to a blocker at distance d′ by a line of slope 1/d′. Going
through the same steps, we obtain an approximate bound of:

B′ = d
1

n.v

(
1

d′
+ 2k

)
Ωρ (21)

To evaluate this criterion, we use the harmonic average of the
distance to occluders. This information is computed by sampling
a hundred rays for a small set of visible points in the image, in
practice 20,000. The criteria is reconstructed over the image us-
ing the same reconstruction algorithm as for the final image, which
we describe shortly. The blocker criterion is shown Fig. 15. It is
similar to Ward et al.’s criterion for irradiance caching [Ward et al.
1988], but expressing it in a unified frequency framework allows us
to combine it with other bandwidth considerations such as BRDF
roughness.

Algorithm and image reconstruction Our proof-of-concept
computes visibility using four samples per pixel, but uses
aggressively-sparse samples for shading: on average, 0.05 samples
per pixel. We use an edge-preserving reconstruction that exploits
the higher-resolution depth and normal to reconstruct the shading,
in the spirit of McCool’s filtering of Monte-Carlo ray tracing out-
puts [1999] but based on a bilateral filter [Tomasi and Manduchi
1998]. As demonstrated in Fig. 17, this results in a smooth recon-
struction where needed and on sharp silhouettes. The spatial width
of the bilateral filter is scaled according to the bandwidth predic-
tion. Given a bandwidth map, we use the blue-noise method by
Ostromoukhov et al. [2004] to generate a set of image samples
(Fig. 17, right). In summary, our algorithm is as follows:
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Uniform sampling Using our bandwidth prediction

Figure 17: Scene rendered without and with adaptive sampling rate based on our prediction of frequency content. Only 20,000 shading
samples were used to compute these 800 × 500 image. Note how our approach better captures the sharp detail in the shiny dinosaur’s head
and feet. The criteria and sampling are shown in Fig. 16. Images rendered using PBRT [Pharr and Humphreys 2004]

Compute visibility at full resolution

Use finite-differences for curvature criterion

Compute harmonic blocker distance for sparse samples

Perform bilateral reconstruction

Compute B’ based on blocker and curvature

Generate blue noise sampling based on B’

Compute shading for samples

Perform bilateral reconstruction

Observe how our sampling density is increased in areas of
high curvature, grazing angles, and near occluders. The environ-
ment map casts particularly soft shadows, and note how the high-
frequency detail on the nose of the foreground dinosaur is well cap-
tured, especially given that the shading sampling is equivalent to a
200 × 100 resolution image.

Although these results are encouraging, the approach needs im-
provement in several areas. The visibility criterion in particular
should take into account the light source intensity in a directional
neighborhood to better weight the inverse distances. Even so, the
simple method outlined above illustrates how knowledge of the
modifications of the frequency content through light transport can
be exploited to drive rendering algorithms. In particular, similar
derivations are promising for precomputed radiance transfer [Sloan
et al. 2002] in order to relate spatial and angular sampling.

7 Conclusions and future work

We have presented a comprehensive framework for the description
of radiance in frequency space, through operations of light trans-
port. By studying the local light field around the direction of prop-
agation, we can characterize the effect of travel in free space, oc-
clusion, and reflection in terms of frequency content both in space
and angle. In addition to the theoretical insight offered by our anal-
ysis, we have shown that practical conclusions can be drawn from a
frequency analysis, without explicitly computing any Fourier trans-
forms, by driving the sampling density of a ray tracer according to
frequency predictions.
Future work On the theory side, we are working on the anal-
ysis of additional local shading effects such as refraction, bump-
mapping, and local shadowing [Ramamoorthi et al. 2004]. We hope
to study the frequency cutoff for micro, meso, and macro-geometry
effects [Becker and Max 1993]. The study of participating media
is promising given the ability of Fourier analysis to model differ-
ential equations. The spectral analysis of light interaction in a full
scene is another challenging topic. Finally, the addition of the time
dimension is a natural way to tackle effects such as motion blur.

We are excited by the wealth of potential applications encom-
passed by our framework. In rendering, we believe that many tra-
ditional algorithms can be cast in this framework in order to derive

theoretical justification, but also to allow extensions to more gen-
eral cases (such as from diffuse to glossy). Our preliminary study of
sampling rates in ray tracing is promising, and we want to develop
new algorithms and data structures to predict local bandwidth, es-
pecially for occlusion effects. Precomputed radiance transfer is an-
other direct application of our work.

Our analysis extends previous work in inverse rendering [Ra-
mamoorthi and Hanrahan 2001b; Basri and Jacobs 2003] and we
are working on applications to inverse rendering with close-range
sources, shape from reflection, and depth from defocus.
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4.

Utilisation des cartes graphiques
programmables

Nous avons observé que plusieurs effets lumineux, comme les ombres et les reflets spécu-
laires, sont à la fois essentiels pour la qualité visuelle de la simulation et coûteux à calculer dans
le cadre d’une simulation globale de l’éclairage. D’un autre coté, les cartes graphiques modernes,
programmables, sont capables d’effectuer de nombreux calculs pour chaque pixel de l’image af-
fichée. Il devient alors possible de décharger le CPU d’un certain nombres de calculs en les
confiant à la carte graphique.

Dans ce chapitre, nous avons présenté nos travaux sur l’utilisation des cartes graphiques dans
la simulation des effets lumineux, tels que les ombres douces et les reflets spéculaires. Ces travaux
permettent d’augmenter le réalisme visuel de la simulation de l’éclairage, tout en libérant du
temps de calcul pour la simulation d’autres effets.

4.1 Introduction
La simulation de l’éclairage demande beaucoup de ressources de calcul, tant pour le proces-

seur que pour la mémoire. La qualité visuelle du résultat dépend beaucoup de certains effets à
haute fréquence, tels que les frontières d’ombre ou les reflets spéculaires. Nos expériences nous
ont montré que ces mêmes effets sont aussi les plus coûteux en temps de calcul. Sur certaines
scènes, le seul calcul des frontières des ombres causées par l’éclairage direct représente 90 % du
temps de calcul de l’éclairage global (direct et indirect).

Cette précision est requise surtout pour l’aspect visuel de la scène et non pour la précision
numérique des calculs. Les calculs d’éclairage indirect peuvent utiliser une version simplifiée de
l’éclairage direct, avec des frontières d’ombre grossièrement modélisées, sans perte de précision.
Plusieurs techniques de simulation de l’éclairage, comme la méthode de radiosité hiérarchique
ou le Photon Mapping, exploitent d’ailleurs cette propriété.

En reprenant notre étude sur les propriétés fréquentielles de la fonction d’éclairage [5], nous
voyons que les effets à haute fréquence se produisent principalement :

– en présence de BRDF spéculaires,
– sur les frontières d’ombre,
– lorsque deux objets sont proches l’un de l’autre.
Une caractéristique commune à tous ces cas est qu’ils ne nécessitent pas une information

complète sur l’éclairage dans l’ensemble de la scène : chacun d’eux ne fait intervenir qu’un petit
nombre d’objets simultanément. Ainsi, pour déterminer une frontière d’ombre on a seulement
besoin de connaître les positions de la source lumineuse, des obstacles et du récepteur. Bien que
ces phénomènes ne soient pas purement locaux, il ne s’agit pas non plus à proprement parler de
phénomènes globaux. On pourrait parler de phénomènes semi-locaux.
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À l’inverse, les phénomènes réellement globaux, qui font intervenir l’éclairage sur l’ensemble
de la scène, impliquent une BRDF plutôt diffuse, et sont plutôt des phénomènes à basse fré-
quence, pour lesquels un échantillonnage spatial faible peut être suffisant.

Nous avons d’un côté un ensemble de phénomènes qui sont importants surtout pour leur effet
visuel, donc qui n’ont besoin d’être calculés que pour l’image affichée et qui ne font intervenir
qu’un petit nombre d’éléments de la scène. De l’autre coté, nous avons des cartes graphiques
dont les capacités se sont étendues et qui sont capables d’effectuer des programmes puissants, en
parallèle, pour chaque pixel de l’écran. Leurs principales limitations (les calculs sont limités à
l’image affichée et chaque programme n’a qu’une petite zone mémoire) correspondent en fait ici
à nos besoins.

Il est donc naturel de faire porter la partie coûteuse mais visuellement importante des calculs
de simulation de l’éclairage sur les cartes graphiques programmables, tout en gardant le proces-
seur central pour les calculs globaux, qui nécessitent un accès à l’information sur l’ensemble de
la scène.

Notons qu’il est également possible d’utiliser les cartes graphiques pour accélérer la simula-
tion de l’éclairage global ; dans le cadre de nos travaux, nous l’avions fait pour accélérer les re-
quêtes de visibilité en utilisant un hémicube [9], pour calculer efficacement les frontières d’ombre
et de pénombre [13], pour calculer rapidement le pourcentage de visibilité d’un objet avec des
occlusion queries [13] et pour l’affichage de fonctions d’éclairage non-linéaires [13]. Ces travaux
ne seront pas décrits ici.

4.2 Calcul des ombres douces
Les ombres forment un élément essentiel dans la perception d’une scène virtuelle. Elles four-

nissent des informations sur les positions relatives des objets, sur leur géométrie, sur leurs reliefs.
On distingue généralement les ombres dures, causées par une source ponctuelle, et les ombres
douces, causées par une source étendue (voir figure 3.2.

Le calcul d’une ombre dure revient, pour chaque pixel, à résoudre un problème simple de
visibilité entre deux points. En revanche, le calcul d’une ombre douce impose de connaître, pour
chaque pixel, la proportion de la source lumineuse qui est visible du point. Il s’agit donc d’un pro-
blème de visibilité point-surface, beaucoup plus complexe. Il existe plusieurs méthodes simples
pour calculer des ombres dures en temps-réel1, 2, tandis que le calcul des ombres douces est en-
core un problème ouvert.

Dans le cadre du projet CYBER, dirigé par Jean-Marc Hasenfratz, avec l’ingénieur de re-
cherche Marc Lapierre, nous avons effectué un étude exhaustive des algorithmes de calcul des
ombres douces en temps-réel [7] (voir p. 184). Cette étude a mis en évidence plusieurs limitations
des algorithmes existants :

– Pour tous ces algorithmes, le coût en temps de calcul est directement lié à la taille de la
zone de pénombre. Or plus la zone de pénombre est large, et plus elle correspond à des
phénomènes à basse fréquence, donc moins visibles. On arrive à ce résultat paradoxal que
moins l’ombre douce est visible, et plus elle est coûteuse à calculer.

– Pour calculer la pénombre, il est nécessaire de connaître la portion des obstacles qui
masque partiellement la source lumineuse. Cette information étant aussi difficile à calculer
que l’ombre douce elle-même, les méthodes temps-réel reposent sur une approximation,
en général basée sur les obstacles visibles depuis un point situé au centre de la source. On

1. Lance W. « Casting Curved Shadows on Curved Surfaces ». Computer Graphics (Proc. of SIGGRAPH ’78),
12(3):270–274, 1978.

2. Franklin C. C. « Shadow Algorithms for Computer Graphics ». Computer Graphics (Proc. of SIGGRAPH ’77),
11(2):242–248, 1977.
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ne calcule ensuite que l’ombre douce causée par cette partie des obstacles. Cette approxi-
mation limite la qualité des ombres douces, particulièrement si la source lumineuse est très
étendue par rapport aux obstacles.

– Plusieurs algorithmes sont basés sur une analyse du modèle géométrique des objets. Le
coût des calculs est alors proportionnel à la complexité géométrique des obstacles. L’ombre
douce est généralement un phénomène à basse fréquence, dont la complexité visuelle est
beaucoup moins grande que la complexité géométrique des obstacles. On a ici un surcroît
de travail inutile, lié à la complexité des objets.

Figure 4.1 – Notre algorithme calcule les ombres douces en temps-réel (à gauche) en remplaçant
les obstacles par une version discrétisée (à droite) calculée à partir de la shadow map. Ces images
sont calculées à 84 Hz.

En se basant sur la connaissance accumulée dans cet état de l’art, ainsi que sur les connais-
sances issues du projet CYBER, avec l’étudiant en M2R Lionel Atty (co-encadré avec Jean-Marc
Hasenfratz), nous avons développé un nouvel algorithme de calcul des ombres douces [2]. Cet
algorithme se base sur une discrétisation des obstacles dans une carte de profondeur, et calcule
l’ombre douce causée par l’obstacle discrétisé (voir figure 4.1). Bien qu’il ne résolve pas tous
les points soulevés par notre étude, cet algorithme a l’avantage d’être très rapide et surtout indé-
pendant de la complexité géométrique des obstacles. De plus, plus la pénombre est large, plus
on peut utiliser une discrétisation des obstacles avec un petit nombre de pixels : on arrive ainsi à
consacrer moins de temps de calcul aux ombres douces causées par des sources très étendues.

Le point essentiel de notre algorithme est l’utilisation d’une version discrétisée des obstacles
pour calculer l’ombre douce. Cette approche est amenée à se multiplier dans les travaux futurs :
en remplaçant un modèle géométrique complexe par une version discrète, plus simple et calculée
de façon automatique, il serait possible d’accélérer d’autres algorithmes de calcul.

4.3 Précalcul d’occlusion ambiante

L’occlusion ambiante est utilisée pour moduler l’éclairage ambiant en fonction des obstacles
proches. Elle est définie, soit comme une constante (le pourcentage des directions qui sont blo-
quées par les obstacles proches), soit comme une fonction plus complexe, par exemple un lobe
conique, définissant à la fois le pourcentage d’occlusion et la direction moyenne des obstacles
(voir figure 4.2(a)).
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(a) L’occlusion ambiante peut être
définie comme un cône (d, α).

(b) Nous plaçons une grille 3D autour de
l’objet. Au centre de chaque cellule, on cal-
cule l’occlusion ambiante.

(c) Lors du rendu, ces valeurs sont
utilisées pour l’ombrage des objets
voisins. Cette scène est affichée à
800 Hz.

Figure 4.2 – Précalcul d’occlusion ambiante

Pour les scènes animées, des recherches récentes3, 4 portent sur le stockage d’un champ d’oc-
clusion ambiante, attachée à un objet mobile, et qui influencent les objets voisins. Pour un sto-
ckage compact, ces recherches stockent le champ d’occlusion ambiante en le projetant sur un
espace de fonctions simples mais adaptées (par exemple des fractions rationnelles de la distance
au centre) et en stockant les coefficients dans une carte 2D cubique, indexée par la direction par
rapport au centre de l’objet. On a donc un stockage en O(n2), au prix d’un travail supplémentaire
sur les données, à la fois dans le pré-calcul et au moment du rendu.

En collaboration avec Mattias Malmer et Fredrik Malmer (Syndicate Ent. AB) et Ulf Assars-
son (Chalmers University of Technology) nous avons montré qu’il était plus rentable de stocker
ces données sous forme brute dans une grille 3D, sans pré-traitement [1] (voir p. 224). Au mo-
ment du rendu, les données sont affichées directement. Théoriquement, l’inconvénient de cette
méthode est que le stockage est en O(n3). En pratique, l’occlusion ambiante étant un phéno-
mène qui varie très lentement, on utilise de petites valeurs de n. Nous avons trouvé que n = 32
convenait pour toutes nos scènes. Pour ces valeurs de n, le coût du stockage brut en O(n3) est
comparable à celui du stockage en O(n2) (environ 100 Ko par obstacle), à cause du plus grand
nombre de coefficients par cellule dans ce dernier.

Outre son intérêt évident sur le plan pratique, ce résultat est également intéressant sur le
plan scientifique : pour certains phénomènes, une représentation brute peut être plus intéres-
sante qu’une représentation élaborée. Cet effet est surtout présent sur des phénomènes à basse
fréquence, comme l’occlusion ambiante. Il sera intéressant d’étudier l’emploi de tels stockages
sous forme de grille 3D pour d’autres phénomènes d’éclairage.

4.4 Calcul des réflexions spéculaires
La réflexion spéculaire sur un objet est un phénomène à haute fréquence, qui participe à

l’aspect réaliste de la scène, tout en donnant des informations sur le matériau de l’objet et sur
la proximité avec les objets réfléchis. Ces réflexions spéculaires sont généralement simulées en

3. Kun Z, Yaohua H, Steve L, Baining G et Heung-Yeung S. « Precomputed Shadow Fields for Dynamic
Scenes ». ACM Transactions on Graphics (proceedings of Siggraph 2005), 24(3), 2005.

4. Janne K et Samuli L. « Ambient Occlusion Fields ». Dans Symposium on Interactive 3D Graphics
and Games, p. 41–48, 2005.



4.5. ÉCLAIRAGE INDIRECT 181

utilisant une environment map de la scène, mais cette technique fait l’hypothèse que la distance
entre le réflecteur et l’objet réfléchi est infinie.

(a) Notre algorithme (b) Référence (lancer de rayons) (c) Environment mapping

Figure 4.3 – Réflexions spéculaires calculées avec notre algorithme

Avec le doctorant David Roger (co-encadré avec François Sillion), nous avons développé une
méthode de calcul des réflexions spéculaires en temps-réel qui fonctionne même lorsqu’il y a
contact entre le réflecteur et l’objet réfléchi [3] (voir p. 238). Cette technique calcule (sur la carte
graphique) la réflexion des sommets de la scène, puis interpole entre les positions réfléchies des
sommets. Le principal avantage de la méthode est sa robustesse, y compris dans des situations
difficiles (voir figure 4.3).

Notre méthode a une complexité linéaire par rapport au nombre d’objets dans la scène et
fonctionne en temps réel pour des scènes jusqu’à 20 000 polygones. Le principal inconvénient
repose sur l’interpolation linéaire entre les positions réfléchies des sommets, qui est faite par la
carte, qui peut produire des erreurs visibles dans la réflexion calculée.

4.5 Éclairage indirect

Avec les doctorant Emmanuel Turquin (encadré par François Sillion) et Janne Kontkannen
(Helsinki University of Technology), nous nous sommes intéressés à la simulation de l’éclairage
indirect en temps réel [12] (voir p. 4.7.6). Notre méthode repose sur trois points importants :

– Un opérateur de transport global, qui représente l’éclairage indirect dans l’ensemble de la
scène en fonction de l’éclairage direct. Cet opérateur est calculé à partir de l’opérateur de
transport local, qui représente un rebond de la lumière dans la scène, par multiplications
successives.

– Pour pouvoir calculer ces opérateurs de façon efficace, nous les avons exprimé dans une
base d’ondelettes spécifique, séparant les dimensions angulaires et spatiales.

– Enfin, nous avons développé une méthode pour calculer directement la projection de
l’éclairage direct sur notre base d’ondelettes, afin de pouvoir la donner en entrée à l’opéra-
teur de transport global.

L’essentiel des calculs d’éclairage indirect sont confiés au CPU, tandis que la carte graphique
réalise un calcul précis de l’éclairage direct. En combinant les deux résultats, on a accès à l’éclai-
rage global dans la scène de façon interactive (voir figure 4.4).
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(a) Scène de test

(b) Éclairage direct (c) Éclairage indirect calculé par notre
algorithme

(d) Éclairage global résultat

Figure 4.4 – Notre algorithme pour le calcul interactif de l’éclairage global. Ces images sont
calculées à 15 Hz.

4.6 Discussion
Dans ce chapitre, nous avons présenté nos travaux sur la simulation d’effets lumineux à l’aide

des cartes graphiques programmables. Nous avons vu qu’il est possible de simuler certains effets
importants pour le réalisme de l’éclairage, comme les ombres douces ou les réflexions spécu-
laires, à une vitesse compatible avec l’interactivité.

Les cartes graphiques programmables ouvrent de nouvelles directions grâce à leur puissance
de calcul, mais cette puissance a ses limites. L’architecture de la carte fait qu’il est plus pratique
de l’utiliser pour des calculs localisés, ne nécessitant pas un accès global à la scène. Ainsi les
cartes graphiques sont bien adaptées pour les calculs d’éclairage en un point, pour les calculs
d’ombre (même douce) ou pour les réflexions spéculaires.

De la même manière, nous avons vu que les cartes graphiques pouvaient être utilisée pour les
effets lumineux attachés à un objet, et qui ne se portent que sur les objets très proches, comme
l’occlusion ambiante.

Ainsi, les phénomènes pour lesquels les cartes graphiques sont les mieux adaptées sont aussi
des phénomènes qui sont plutôt à haute fréquence, selon notre analyse fréquentielle du chapitre
précédent.

Ces travaux sur l’emploi des cartes graphiques pour la simulation de l’éclairage sont égale-
ment les travaux les plus prometteurs en termes de collaborations industrielles et de coopérations
internationales.
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4.7 Articles
4.7.1 Liste des articles

– A survey of real-time soft shadows algorithms (CGF 2003)
– Soft shadow maps: efficient sampling of light source visiblity (CGF 2006)
– Fast Precomputed Ambient Occlusion for Proximity Shadows (JGT 2006)
– Accurate specular reflections in real-time (EG 2006)
– Wavelet radiance transport for interactive indirect lighting (EGSR 2006)
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4.7.2 A survey of real-time soft shadows algorithms (CGF 2003)
Auteurs : Jean-Marc H, Marc L, Nicolas H et François X. S.
Journal : Computer Graphics Forum, vol. 22, no 4 (une version préliminaire a été publiée comme
State-of-the-art-report à la conférence Eurographics 2003).
Date : décembre 2003.
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Abstract

Recent advances in GPU technology have produced a shift in focus for real-time rendering applications, whereby
improvements in image quality are sought in addition to raw polygon display performance. Rendering effects
such as antialiasing, motion blur and shadow casting are becoming commonplace and will likely be considered
indispensable in the near future. The last complete and famous survey on shadow algorithms — by Wooet al.52 in
1990 — has to be updated in particular in view of recent improvements in graphics hardware, which make new
algorithms possible. This paper covers all current methods for real-time shadow rendering, without venturing into
slower, high quality techniques based on ray casting or radiosity. Shadows are useful for a variety of reasons: first,
they help understand relative object placement in a 3D scene by providing visual cues. Second, they dramatically
improve image realism and allow the creation of complex lighting ambiances. Depending on the application, the
emphasis is placed on a guaranteed framerate, or on the visual quality of the shadows including penumbra effects
or “soft shadows”. Obviously no single method can render physically correct soft shadows in real time for any
dynamic scene! However our survey aims at providing an exhaustive study allowing a programmer to choose the
best compromise for his/her needs. In particular we discuss the advantages, limitations, rendering quality and
cost of each algorithm. Recommendations are included based on simple characteristics of the application such
as static/moving lights, single or multiple light sources, static/dynamic geometry, geometric complexity, directed
or omnidirectional lights, etc. Finally we indicate which methods can efficiently exploit the most recent graphics
hardware facilities.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism – Color, shading, shadowing, and texture, I.3.1 [Computer Graphics]: Hardware Archi-
tecture – Graphics processors, I.3.3 [Computer Graphics]: Picture/Image Generation – Bitmap and framebuffer
operations
Keywords: shadow algorithms, soft shadows, real-time, shadow mapping, shadow volume algorithm.

1. Introduction

Cast shadows are crucial for the human perception of the 3D
world. Probably the first thorough analysis of shadows was
Leonardo Da Vinci’s48 (see Figure1), focusing on paintings
and static images. Also of note is the work of Lambert35 who

† University Pierre Mendès France – Grenoble II
‡ University Joseph Fourier – Grenoble I
§ INRIA
∗∗ Artis is a team of the GRAVIR/IMAG laboratory, a joint re-
search unit of CNRS, INPG, INRIA, UJF.

described the geometry underlying cast shadows (see Figure
1), and more recently the paper from Knillet al.34.

With the emergence of computer graphics technology, re-
searchers have developed experiments to understand the im-
pact of shadows on our perception of a scene. Through dif-
ferent psychophysical experiments they established the im-
portant role of shadows in understanding:

• the position and size of the occluder49, 38, 27, 30, 31;
• the geometry of the occluder38;
• the geometry of the receiver38.

Wanger49 studied the effect of shadow quality on the per-
ception of object relationships, basing his experiments on
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Figure 1: Left: Study of shadows by Leonardo da Vinci48 —
Right: Shadow construction by Lambert35.

shadow sharpness. Hubonaet al.27 discuss the general role
and effectiveness of object shadows in 3D visualization. In
their experiments, they put in competition shadows, viewing
mode (mono/stereo), number of lights (one/two), and back-
ground type (flat plane, “stair-step” plane, room) to measure
the impact of shadows.

Kerstenet al.30, 31 and Mamassianet al.38 study the rela-
tionship between object motion and the perception of rela-
tive depth. In fact, they demonstrate that simply adjusting
the motion of a shadow is sufficient to induce dramatically
different apparent trajectories of the shadow-casting object.

These psychophysical experiments convincingly establish
that it is important to take shadows into account to pro-
duce images in computer graphics applications. Cast shad-
ows help in our understanding of 3D environments and soft
shadows take part in realism of the images.

Since the comprehensive survey of Wooet al.52, progress
in computer graphics technology and the development of
consumer-grade graphics accelerators have made real-time
3D graphics a reality3. However incorporating shadows, and
especially realistic soft shadows, in a real-time application,
has remained a difficult task (and has generated a great re-
search effort). This paper presents a survey of shadow gen-
eration techniques that can create soft shadows in real time.
Naturally the very notion of “real-time performance” is dif-
ficult to define, suffice it to say that we are concerned with
the display of 3D scenes of significant complexity (several
tens of thousands of polygons) on consumer-level hardware
ca.2003. The paper is organized as follows:

We first review in Section2 basic notions about shad-
ows: hard and soft shadows, the importance of shadow ef-
fects showing problems encountered when working with soft
shadows and classical techniques for producing hard shad-
ows in real time. Section3 then presents existing algorithms
for producing soft shadows in real time. Section4 offers a
discussion and classifies these algorithms based on their dif-

ferent abilities and limitations, allowing easier algorithm se-
lection depending on the application’s constraints.

2. Basic concepts of hard and soft shadows

2.1. What is a shadow?

Consider a light sourceL illuminating a scene:receiversare
objects of the scene that are potentially illuminated byL. A
point P of the scene is considered to be in theumbra if it
can not see any part ofL, i.e. it does not receive any light
directly from the light source.

If P can see a part of the light source, it is in thepenumbra.
The union of the umbra and the penumbra is the shadow,
the region of space for which at least one point of the light
source is occluded. Objects that hide a point from the light
source are calledoccluders.

We distinguish between two types of shadows:

attached shadows,occuring when the normal of the re-
ceiver is facing away from the light source;

cast shadows,occuring when a shadow falls on an object
whose normal is facing toward the light source.

Self-shadowsare a specific case of cast shadows that occur
when the shadow of an object is projected onto itself,i.e. the
occluder and the receiver are the same.

Attached shadows are easy to handle. We shall see later, in
Section4, that some algorithms cannot handle self-shadows.

2.2. Importance of shadow effects

As discussed in the introduction, shadows play an important
role in our understanding of 3D geometry:

• Shadows help tounderstand relative object position
and size in a scene49, 38, 27, 30, 31. For example, without a
cast shadow, we are not able to determine the position of
an object in space (see Figure2(a)).

• Shadows can also help usunderstanding the geometry
of a complex receiver38 (see Figure2(b)).

• Finally, shadows provide useful visual cues that help in
understanding the geometry of a complex occluder38

(see Figure3).

2.3. Hard shadowsvs. soft shadows

The common-sense notion of shadow is a binary status,i.e.a
point is either “in shadow” or not. This corresponds tohard
shadows, as produced by point light sources: indeed, a point
light source is either visible or occluded from any receiving
point. However, point light sources do not exist in practice
and hard shadows give a rather unrealistic feeling to images
(see Figure4(c)). Note that even the sun, probably the most
common shadow-creating light source in our daily life, has
a significant angular extent and does not create hard shad-
ows. Still, point light sources are easy to model in computer
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(a) Shadows provide information about the relative positions
of objects. On the left-hand image, we cannot determine the
position of the robot, whereas on the other three images we
understand that it is more and more distant from the ground.

(b) Shadows provide information about the geometry of the re-
ceiver. Left: not enough cues about the ground. Right: shadow
reveals ground geometry.

Figure 2: Shadows play an important role in our understanding of 3D geometry.

(a) (b) (c)

Figure 3: Shadows provide information about the geometry of the occluder. Here we see that the robot holds nothing in his left
hand on Figure3(a), a ring on Figure3(b)and a teapot on Figure3(c).

graphics and we shall see that several algorithms let us com-
pute hard shadows in real time.

In the more realistic case of a light source with finite ex-
tent, a point on the receiver can have a partial view of the
light, i.e. only a fraction of the light source is visible from
that point. We distinguish theumbra region (if it exists) in
which the light source is totally blocked from the receiver,
and thepenumbraregion in which the light source is par-
tially visible. The determination of the umbra and penumbra
is a difficult task in general, as it amounts to solving visibility
relationships in 3D, a notoriously hard problem. In the case
of polygonal objects, the shape of the umbra and penumbra
regions is embedded in a discontinuity mesh13 which can be
constructed from the edges and vertices of the light source
and the occluders (see Figure4(b)).

Soft shadows are obviously much more realistic than hard
shadows (see Figures4(c) and 4(d)); in particular the de-

gree of softness (blur) in the shadow varies dramatically with
the distances involved between the source, occluder, and re-
ceiver. Note also that a hard shadow, with its crisp bound-
ary, could be mistakenly perceived as an object in the scene,
while this would hardly happen with a soft shadow.

In computer graphics we can approximate small or distant
light source as point sources only when the distance from the
light to the occluder is much larger than the distance from
the occluder to the receiver, and the resolution of the final
image does not allow proper rendering of the penumbra. In
all other cases great benefits can be expected from properly
representing soft shadows.
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Figure 4: Hard vs. soft shadows.

2.4. Important issues in computing soft shadows

2.4.1. Composition of multiple shadows

While the creation of a shadow is easily described for a (light
source, occluder, receiver) triple, care must be taken to allow
for more complex situations.

Shadows from several light sources Shadows produced
by multiple light sources are relatively easy to obtain if we
know how to deal with a single source (see Figure5). Due
to the linear nature of light transfer we simply sum the con-
tribution of each light (for each wavelength or color band).

Shadows from several objects For point light sources,
shadows due to different occluders can be easily combined
since the shadow area (where the light source is invisible) is
the union of all individual shadows.

With an area light source, combining the shadows of sev-
eral occluders is more complicated. Recall that the lighting
contribution of the light source on the receiver involves a
partial visibility function: a major issue is that no simple
combination of the partial visibility functions of distinct oc-
cluders can yield the partial visibility function of the set of
occluders considered together. For instance there may be

points in the scene where the light source is not occluded
by any object taken separately, but is totally occluded by
the set of objects taken together. The correlation between
the partial visibility functions of different occluders cannot
be predicted easily, but can sometimes be approximated or
bounded45, 5.

As a consequence, the shadow of the union of the objects
can be larger than the union of the shadows of the objects
(see Figure6). This effect is quite real, but is not very visible
on typical scenes, especially if the objects casting shadows
are animated.

2.4.2. Physically exact or fake shadows

Shadows from an extended light source Soft shadows
come from spatially extended light sources. To model prop-
erly the shadow cast by such light sources, we must take into
account all the parts of the occluder that block light com-
ing from the light source. This requires identifying all parts
of the object casting shadow that are visible from at least
one point of the extended light source, which is algorithmi-
cally much more complicated than identifying parts of the
occluder that are visible from a single point.

Because this visibility information is much more difficult
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Figure 5: Complex shadow due to multiple light sources. Note the complex interplay of colored lights and shadows in the
complementary colors.

Figure 7: When the light source is significantly larger than the occluder, the shape of the shadow is very different from the
shape computed using a single sample; the sides of the object are playing a part in the shadowing.

to compute with extended light sources than with point light
sources, most real-time soft shadow algorithms compute vis-
ibility information from just one point (usually the center of
the light source) and then simulate the behavior of the ex-
tended light source using this visibility information (com-
puted for a point).

This method produces shadows that are not physically ex-
act, of course, but can be close enough to real shadows for
most practical applications. The difference between the ap-
proximation and the real shadow is harder to notice if the
objects and their shadow are animated — a common occur-
rence in real-time algorithms.

The difference becomes more noticeable if the difference
between the actual extended light source and the point used
for the approximation is large, as seen from the object cast-
ing shadow. A common example is for a large light source,
close enough from the object casting shadow that points of

the light source are actually seeing different sides of the ob-
ject (see Figure7). In that case, the physically exact shadow
is very different from the approximated version.

While large light sources are not frequent in real-time al-
gorithms, the same problem also occurs if the object casting
shadow is extended along the axis of the light source,e.g.
a character with elongated arms whose right arm is point-
ing toward light source, and whose left arm is close to the
receiver.

In such a configuration, if we want to compute a better
looking shadow, we can either:

• Use the complete extension of the light source for visibil-
ity computations. This is algorithmically too complicated
to be used in real-time algorithms.

• Separate the light source into smaller light sources24, 5.
This removes some of the artefacts, since each light source
is treated separately, and is geometrically closer to the
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Figure 6: The shadow of two occluders is not a simple com-
bination of the two individual shadows. Note in particular
the highlighted central region which lies in complete shadow
(umbra) although the light source is never blocked by a sin-
gle occluder.

point sample used to compute the silhouette. The speed
of the algorithm is usually divided by the number of light
sources.

• Cut the object into slices45. We then compute soft shadows
separately for each slice, and combine these shadows. By
slicing the object, we are removing some of the visibility
problems, and we allow lower parts of the object — usu-
ally hidden by upper parts — to cast shadow. The speed
of the algorithm is divided by the number of slices, and
combining the shadows cast by different slices remains a
difficult problem.

Approximating the penumbra region When real-time
soft shadow algorithms approximate extended light sources
using points, they are in fact computing a hard shadow, and
extending it to compute a soft shadow.

There are several possible algorithms:

• extend the umbra region outwards, by computing anouter
penumbraregion,

• shrink the umbra region, and complete it with aninner
penumbraregion,

• compute both inner penumbra and outer penumbra.

The first method (outer penumbra only) will always create
shadows made of an umbra and a penumbra. Objects will
have an umbra, even if the light source is very large with
respect to the occluders. This effect is quite noticeable, as it
makes the scene appear much darker than anticipated, except
for very small light sources.

On the other hand, computing the inner penumbra region
can result in light leaks between neighboring objects whose
shadows overlap.

Illumination in the umbra region An important question
is the illumination in regions that are in the umbra — com-
pletely hidden from the light source. There is no light reach-
ing theses regions, so they should appear entirely black, in
theory.

However, in practice, some form of ambient lighting is
used to avoid completely dark regions and to simulate the
fact that light eventually reaches these regions after several
reflections.

Real-time shadow methods are usually combined with
illumination computations, for instance using the simple
OpenGL lighting model. Depending on whether the shadow
method operates before or after the illumination phase, am-
bient lighting will be present or absent. In the latter case the
shadow region appears completely dark, an effect that can
be noticeable. A solution is to add the ambient shading as a
subsequent pass; this extra pass slows down the algorithm,
but clever re-use of the Z-buffer on recent graphics hardware
make the added cost manageable40.

Shadows from different objects As shown in Sec-
tion 2.4.1, in presence of extended light sources, the shadow
of the union of several objects is larger than the union of
the individual shadows. Furthermore, the boundary of the
shadow caused by the combination of several polygonal ob-
jects can be a curved line13.

Since these effects are linked with the fact that the light
source is extended, they can not appear in algorithms that
use a single point to compute surfaces visible from the light
source. All real-time soft shadow algorithms therefore suffer
from this approximation.

However, while these effects are both clearly identifiable
on still images, they are not as visible in animated scenes.
There is currently no way to model these effects with real-
time soft shadow algorithms.

2.4.3. Real-time

Our focus in this paper is on real-time applications, therefore
we have chosen to ignore all techniques that are based on an
expensive pre-process even when they allow later modifica-
tions at interactive rates37. Given the fast evolution of graph-
ics hardware, it is difficult to draw a hard distinction between
real-time and interactive methods, and we consider here that
frame rates in excess of 10 fps, for a significant number of
polygons, are an absolute requirement for “real-time” appli-
cations. Note that stereo viewing usually require double this
performance.

For real-time applications, the display refresh rate is often
the crucial limiting factor, and must be kept high enough (if
not constant) through time. An important feature to be con-
sidered in shadowing algorithms is therefore their ability to
guarantee a sustained level of performance. This is of course
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impossible to do for arbitrary scenes, and a more impor-
tant property for these algorithms is the ability to paramet-
rically vary the level of performance (typically at the price
of greater approximation), which allows an adaptation to the
scene’s complexity.

2.4.4. Shadows of special objects

Most shadowing algorithms make use of an explicit repre-
sentation of the object’s shapes, either to compute silhou-
ettes of occluders, or to create images and shadow maps.
Very complex and volumetric objects such as clouds, hair,
grass etc. typically require special treatment.

2.4.5. Constraints on the scene

Shadowing algorithms may place particular constraints on
the scene. Examples include the type of object model (tech-
niques that compute a shadow as a texture map typically re-
quire a parametric object, if not a polygon), or the neces-
sity/possibility to identify a subset of the scene as occlud-
ers or shadow receivers. This latter property is important in
adapting the performance of the algorithm to sustain real-
time.

2.5. Basic techniques for real-time shadows

In this State of the Art Review, we focus solely on real-time
soft shadows algorithms. As a consequence, we will not de-
scribe other methods for producing soft shadows, such as ra-
diosity, ray-tracing, Monte-Carlo ray-tracing or photon map-
ping.

We now describe the two basic techniques for computing
shadows frompoint light sources, namelyshadow mapping
and theshadow volume algorithm.

2.5.1. Shadow mapping

Method The basic operation for computing shadows is
identifying the parts of the scene that are hidden from the
light source. Intrisically, it is equivalent to visible surface
determination, from the point-of-view of the light source.

The first method to compute shadows17, 44, 50 starts by
computing a view of the scene, from the point-of-view of
the light source. We store thez values of this image. This
Z-buffer is theshadow map(see Figure8).

The shadow map is then used to render the scene (from
the normal point-of-view) in a two pass rendering process:

• a standard Z-buffer technique, for hidden-surface re-
moval.

• for each pixel of the scene, we now have the geometri-
cal position of the object seen in this pixel. If the distance
between this object and the light is greater than the dis-
tance stored in the shadow map, the object is in shadow.
Otherwise, it is illuminated.

Figure 8: Shadow map for a point light source. Left: view
from the camera. Right: depth buffer computed from the light
source.

• The color of the objects is modulated depending on
whether they are in shadow or not.

Shadow mapping is implemented in current graphics
hardware. It uses an OpenGL extension for the comparison
between Z values,GL_ARB_SHADOW†.

Improvements The depth buffer is sampled at a limited
precision. If surfaces are too close from each other, sampling
problems can occur, with surfaces shadowing themselves. A
possible solution42 is to offset the Z values in the shadow
map by a small bias51.

If the light source has a cut-off angle that is too large, it
is not possible to project the scene in a single shadow map
without excessive distortion. In that case, we have to replace
the light source by a combination of light sources, and use
several depth maps, thus slowing down the algorithm.

Shadow mapping can result in large aliasing problems if
the light source is far away from the viewer. In that case, in-
dividual pixels from the shadow map are visible, resulting in
a staircase effect along the shadow boundary. Several meth-
ods have been implemented to solve this problem:

• Storing the ID of objects in the shadow map along with
their depth26.

• Using deep shadow maps, storing coverage information
for all depths for each pixel36.

• Using multi-resolution, adaptative shadow maps18, com-
puting more details in regions with shadow boundaries
that are close to the eye.

• Computing the shadow map in perspective space46, effec-
tively storing more details in parts of the shadow map that
are closer to the eye.

The last two methods are directly compatible with exist-
ing OpenGL extensions, and therefore require only a small
amount of coding to work with modern graphics hardware.

An interesting alternative version of this algorithm is to

† This extension (or the earlier version,GL_SGIX_SHADOW, is
available on Silicon Graphics Hardware above Infinite Reality 2,
on NVidia graphics cards after GeForce3 and on ATI graphics cards
after Radeon9500.
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Figure 9: Shadow volume.

warp the shadow map into camera space55 rather than the
usual opposite: it has the advantage that we obtain a modu-
lation image that can be mixed with a texture, or blurred to
produce antialiased shadows.

Discussion Shadow mapping has many advantages:

• it can be implemented entirely using graphics hardware;
• creating the shadow map is relatively fast, although it still

depends on the number and complexity of the occluders;
• it handles self-shadowing.

It also has several drawbacks:

• it is subject to many sampling and aliasing problems;
• it cannot handle omni-directional light sources;
• at least two rendering passes are required (one from the

light source and one from the viewpoint);

2.5.2. The Shadow Volume Algorithm

Another way to think about shadow generation is purely ge-
ometrical. This method was first described by Crow12, and
first implemented using graphics hardware by Heidmann23.

Method The algorithm consists in finding the silhouette
of occluders along the light direction, then extruding this
silhouette along the light direction, thus forming ashadow
volume. Objects that are inside the shadow volume are in
shadow, and objects that are outside are illuminated.

The shadow volume is calculated in two steps:

• the first step consists in finding the silhouette of the oc-
cluder as viewed from the light source. The simplest
method is to keep edges that are shared by a triangle fac-
ing the light and another in the opposite direction. This
actually gives a superset of the true silhouette, but it is
sufficient for the algorithm.

• then we construct the shadow volume by extruding these
edges along the direction of the point light source. For
each edge of the silhouette, we build the half-plane sub-
tended by the plane defined by the edge and the light
source. All these half-planes define the shadow volume,
and knowing if a point is in shadow is then a matter of
knowing if it is inside or outside the volume.

• for each pixel in the image rendered, we count the num-
ber of faces of the shadow volume that we are crossing
between the view point and the object rendered. Front-
facing faces of the shadow volume (with respect to the
view point) increment the count, back-facing faces decre-
ment the count (see Figure9). If the total number of faces
is positive, then we are inside the shadow volume, and the
pixel is rendered using only ambient lighting.

The rendering pass is easily done in hardware using a
stencil buffer23, 32, 15; faces of the shadow volume are ren-
dered in the stencil buffer with depth test enabled this way:
in a first pass, front faces of the shadow volumes are ren-
dered incrementing the stencil buffer; in a second pass, back
faces are rendered, decrementing it. Pixels that are in shadow
are “captured” between front and back faces of the shadow
volume, and have a positive value in the stencil buffer. This
way to render volumes is calledzpass.

Therefore the complete algorithm to obtain a picture using
the Shadow Volume method is:

• render the scene with only ambient/emissive lighting;
• calculate and render shadow volumes in the stencil buffer;
• render the scene illuminated with stencil test enabled:

only pixels which stencil value is 0 are rendered, others
are not updated, keeping their ambient color.

Improvements The cost of the algorithm is directly linked
to the number of edges in the shadow volume. Batagelo and
Júnior7 minimize the number of volumes rendered by precal-
culating in software a modified BSP tree. McCool39 extracts
the silhouette by first computing a shadow map, then extract-
ing the discontinuities of the shadow map, but this method
requires reading back the depth buffer from the graphics
board to the CPU, which is costly. Brabec and Seidel10 re-
ports a method to compute the silhouette of the occluders
using programmable graphics hardware14, thus obtaining an
almost completely hardware-based implementation of the
shadow volume algorithm (he still has to read back a buffer
into the CPU for parameter transfer).

Roettgeret al.43 suggests an implementation that doesn’t
require the stencil buffer; he draws the shadow volume in
the alpha buffer, replacing increment/decrement with a mul-
tiply/divide by 2 operation.

Everitt and Kilgard15 have described a robust implementa-
tion of the shadow volume algorithm. Their method includes
capping the shadow volume, settingw = 0 for extruded ver-
tices (effectively making infinitely long quads) and setting
the far plane at an infinite distance (they prove that this step

c© The Eurographics Association and Blackwell Publishers 2003.

192



Hasenfratz et al. / Real-time Soft Shadows

only decreases Z-buffer precision by a few percents). Finally,
they render the shadow volume using thezfail technique; it
works by rendering the shadow volumebackwards:

• we render the scene, storing the Z-buffer;
• in the first pass, we increment the stencil buffer for all

back-facing faces, but only if the face is behind an existing
object of the scene;

• in the second pass, we decrement the stencil buffer for all
front-facing faces, but only if the face is behind an existing
object;

• The stencil buffer contains the intersection of the shadow
volume and the objects of the scene.

The zfail technique was discovered independently by
Bilodeau and Songy and by Carmack.

Recent extensions to OpenGL15, 16, 21 allow the use of
shadow volumes using stencil buffer in a single pass, instead
of the two passes required so far. They also15 providedepth-
clamping, a method in which polygon are not clipped at the
near and far distance, but their vertices are projected onto
the near and far plane. This provides in effect an infinite view
pyramid, making the shadow volume algorithm more robust.

The main problem with the shadow volume algorithm
is that it requires drawing large polygons, the faces of the
shadow volume. The fillrate of the graphics card is often the
bottleneck. Everitt and Kilgard15, 16 list different solutions to
reduce the fillrate, either using software methods or using
the graphics hardware, such as scissoring, constraining the
shadow volume to a particular fragment.

Discussion The shadow volume algorithm has many ad-
vantages:

• it works for omnidirectional light sources;
• it renders eye-view pixel precision shadows;
• it handles self-shadowing.

It also has several drawbacks:

• the computation time depends on the complexity of the
occluders;

• it requires the computation of the silhouette of the occlud-
ers as a preliminary step;

• at least two rendering passes are required;
• rendering the shadow volume consumes fillrate of the

graphics card.

3. Soft shadow algorithms

In this section, we review algorithms that produce soft shad-
ows, either interactively or in real time. As in the previous
section, we distinguish two types of algorithms:

• Algorithms that are based on an image-based approach,
and build upon the shadow map method described in Sec-
tion 2.5.1. These algorithms are described in Section3.1.

• Algorithms that are based on an object-based approach,
and build upon the shadow volume method described
in Section2.5.2. These algorithms are described in Sec-
tion 3.2.

3.1. Image-Based Approaches

In this section, we present soft shadow algorithms based on
shadow maps (see Section2.5.1). There are several methods
to compute soft shadows using image-based techniques:

1. Combining several shadow textures taken from point
samples on the extended light source25, 22.

2. Using layered attenuation maps1, replacing the shadow
map with a Layered Depth Image, storing depth informa-
tion about all objects visible from at least one point of the
light source.

3. Using several shadow maps24, 54, taken from point sam-
ples on the light source, and an algorithm to compute the
percentage of the light source that is visible.

4. Using a standard shadow map, combined with image
analysis techniques to compute soft shadows9.

5. Convolving a standard shadow map with an image of the
light source45.

The first two methods approximate the light source as a
combination of several point samples. As a consequence,
the time for computing the shadow textures is multiplied
by the number of samples, resulting in significantly slower
rendering. On the other hand, these methods actually com-
pute more information than other soft shadow methods, and
thus compute more physically accurate shadows. Most of the
artefacts listed in Section2.4.2 will not appear with these
two methods.

3.1.1. Combination of several point-based shadow
images25, 22

The simplest method22, 25 to compute soft shadows using im-
age based methods is to place sample points regularly on the
extended light source. These sample points are used to com-
pute binary occlusion maps, which are combined into an at-
tenuation map, used to modulate the illumination (calculated
separately).

Method Herf25 makes the following assumptions on the ge-
ometry of the scene:

• a light source of uniform color,
• subtending a small solid angle with respect to the receiver,
• and with distance from the receiver having small variance.

With these three assumptions, contributions from all sam-
ple points placed on the light source will be roughly equal.

The user identifies in advance the object casting shadows,
and the objects onto which we are casting shadow. For each
object receiving shadow, we are going to compute a texture
containing the soft shadow.
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Figure 10: Combining several occlusion maps to compute
soft shadows. Left: the occlusion map computed for a single
sample. Center: the attenuation map computed using 4 sam-
ples. Right: the attenuation map computed using 64 samples.

Figure 11: With only a small number of samples on the light
source, artefacts are visible. Left: soft shadow computed us-
ing 4 samples. Right: soft shadow computed using 1024 sam-
ples.

We start by computing a binary occlusion map for each
sample point on the light source. For each sample point on
the light source, we render the scene into an auxiliary buffer,
using 0 for the receiver, and 1 for any other polygon. These
binary occlusion maps are then combined into an attenuation
map, where each pixel stores the number of sample points
on the light source that are occluded. This attenuation map
contains a precise representation of the soft shadow (see Fig-
ures10and11).

In the rendering pass, this soft shadow texture is combined
with standard textures and illumination, in a standard graph-
ics pipeline.

Discussion The biggest problem for Herf25 method is ren-
dering the attenuation maps. This requiresNpNs rendering
passes, whereNp is the number of objects receiving shad-
ows, andNs is the number of samples on the light source.
Each pass takes a time proportionnal to the number of poly-
gons in the objects casting shadows. In practice, to make this
method run in real time, we have to limit the number of re-
ceivers to a single planar receiver.

To speed-up computation of the attenuation map, we can
lower the number of polygons in the occluders. We can also
lower the number of samples (n) to increase the framerate,
but this is done at the expense of image quality, as the attenu-

ation map contains onlyn−1 gray levels. With fewer than 9
samples (3×3), the user sees several hard shadows, instead
of a single soft shadow (see Figure11).

Herf’s method is easy to parallelize, since all occlusion
maps can be computed separately, and only one computer
is needed to combine them. Isardet al.28 reports that a par-
allel implementation of this algorithm on a 9-node Sepia-2a
parallel calculator with high-end graphics cards runs at more
than 100 fps for moderately complex scenes.

3.1.2. Layered Attenuation Maps1

The Layered Attenuation Maps1 method is based on a modi-
fied layered depth image29. It is an extension of the previous
method, where we compute a layered attenuation map for
the entire scene, instead of a specific shadow map for each
object receiving shadow.

Method It starts like the previous method: we place sam-
ple points on the area light source, and we use these sample
points to compute a modified attenuation map:

• For each sample point, we compute a view of the scene,
along the direction of the normal to the light source.

• Theses images are all warped to a central reference, the
center of the light source.

• For each pixel of these images:

– In each view of the scene, we have computed the dis-
tance to the light source in the Z-buffer.

– We can therefore identify the object that is closest to
the light source.

– This object makes the first layer of the layered attenu-
ation map.

– We count the number of samples seeing this object,
which gives us the percentage of occlusion for this ob-
ject.

– If other objects are visible for this pixel but further
away from the light they make the subsequent layers.

– For each layer, we store the distance to the light source
and the percentage of occlusion.

The computed Layered Attenuation Map contains, for all
the objects that are visible from at least one sample point,
the distance to the light source and the percentage of sample
points seeing this object.

At rendering time, the Layered Attenuation Map is used
like a standard attenuation map, with the difference that all
the objects visible from the light source are stored in the
map:

• First we render the scene, using standard illumination and
textures. This first pass eliminates all objects invisible
from the viewer.

• Then, for each pixel of the image, we find whether the
corresponding point in the scene is in the Layered Atten-
uation Map or not. If it is, then we modulate the lighting
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Figure 12: Percentage of a linear light source that is visible.

value found by the percentage of occlusion stored in the
map. If it isn’t, then the point is completely hidden from
the light source.

Discussion The main advantage of this method, compared
to the previous method, is that a single image is used to store
the shadowing information for the entire scene, compared to
one shadow texture for each shadowed object. Also, we do
not have to identify beforehand the objects casting shadows.

The extended memory cost of the Layered Attenuation
Map is reasonable: experiments by the authors show that
on average, about 4 layers are used in moderately complex
scenes.

As with the previous method, the speed and realism are
related to the number of samples used on the light source.
We are rendering the entire sceneNs times, which precludes
real-time rendering for complex scenes.

3.1.3. Quantitative Information in the Shadow Map24

Heidrichet al.24 introduced another extension of the shadow
map method, where we compute not only a shadow map,
but also a visibility channel(see Figure12), which encodes
the percentage of the light source that is visible. Heidrich
et al.24’s method only works for linear light sources, but it
was later extended to polygonal area light sources by Ying
et al.54.

Method We start by rendering a standard shadow map for
each sample point on the linear light source. The number of
sample points is very low, usually they are equal to the two
end vertices of the linear light source.

In each shadow map, we detect discontinuities using im-
age analysis techniques. Discontinuities in the shadow map
happen at shadow boundaries. They are separating an object
casting shadow from the object receiving shadow. For each

a

b

P1

P0

P4

P3

P34

P2

P12

Figure 13: Using the visibility channel to compute visibil-
ity from a polygonal light source. The shadow maps tell us
that vertices P0, P1 and P4 are occluded and that vertices
P2 and P3 are visible. The visibility channel for edge[P1P2]
tells us that this edge is occluded for a fraction a; similarly,
the visibility channel for edge[P3P4] tells us that this edge
is occluded for a fraction b. The portion of the light that is
occluded is the hatched region, whose area can be computed
geometrically using a and b.

discontinuity, we form a polygon linking the frontmost ob-
ject (casting shadow) to the back object (receiving shadow).
These polygons are then rendered in the point of view of the
other sample, using Gouraud shading, with value 0 on the
closer points, and 1 on the farthest points.

This gives us a visibility channel, which actually encodes
the percentage of the edge linking the two samples that is
visible.

The visibility channel is then used in a shadow mapping
algorithm. For each pixel in the rendered image, we first
check its position in the shadow map for each sample.

• if it is in shadow for all sample points, we assume that it
is in shadow, and therefore it is rendered black.

• if it is visible from all sample points, we assume that it
is visible, and therefore rendered using standard OpenGL
illumination model.

• if it is hidden for some sample point, and visible from
another point, we use the visibility channel to modulate
the light received by the pixel.

Ying et al.54 extended this algorithm to polygonal area
light sources: we generate a shadow map for each vertex of
the polygonal light source, and a visibility channel for each
edge. We then use this information to compute the percent-
age of the polygonal light source that is visible from the cur-
rent pixel.

For each vertex of the light source, we query the shadow
map of this vertex. This gives us a boolean information,
whether this vertex is occluded or not from the point of view
of the object corresponding to the current pixel. If an edge
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Figure 14: Extending the shadow of a point light source: for
each occluder identified in the shadow map, we compute a
penumbra, based on the distance between this occluder and
the receiver.

links an occluded vertex to an non-occluded one, the visibil-
ity channel for this edge gives us the percentage of the edge
that is occluded (see Figure13). Computing the visible area
of the light source is then a simple 2D problem. This area can
be expressed as a linear combination of the area of triangles
on the light source. By precomputing the area of these trian-
gles, we are left with a few multiplications and additions to
perform at each pixel.

Discussion The strongest point of this algorithm is that it
requires a small number of sampling points. Although it can
work with just the vertices of the light source used as sam-
pling points, a low number of samples can result in artefacts
in moderately complex scenes. These artefacts are avoided
by adding a few more samples on the light source.

This method creates fake shadows, but nicely approxi-
mated. The shadows are exact when only one edge of the
occluder is intersecting the light source, and approximate if
there is more than one edge, for example at the intersection
of the shadows of two different occluders, or when an oc-
cluder blocks part of the light source without blocking any
vertex.

The interactivity of the algorithm depends on the time it
takes to generate the visibility channels, which itself depends
on the complexity of the shadow. On simples scenes (a few
occluders) the authors report computation times of 2 to 3
frames per second.

The algorithm requires having a polygonal light source,
and organising the samples, so that samples are linked by
edges, and for each edge, we know the sample points it links.

3.1.4. Single Sample Soft Shadows9, 33

A different image-based method to generate soft shadows
was introduced by Parkeret al.41 for parallel ray-tracing

Umbra

Inner penumbra

Outer penumbra

r

R

P

P
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Blocked

pixels

Receiver
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Point light

r

P'

Figure 15: Extending the shadow of a single sample: For
each pixel in the image, we find the corresponding pixel P
in the shadow map. Then we find the nearest blocked pixel.
P is assumed to be in the penumbra of this blocker, and we
compute an attenuation coefficient based on the relative dis-
tances betwen light source, occluder and P.

and later modified to use graphics hardware by Brabec and
Seidel9.

This method is very similar to standard shadow mapping.
It starts by computing a standard shadow map, then uses
the depth information available in the depth map to extend
the shadow region and create a penumbra. In this method,
we distinguish between the inner penumbra (the part of the
penumbra that is inside the shadow of the point sample) and
the outer penumbra (the part of the umbra that is outside
the shadow of the point sample, see Figure14). Parkeret
al.41 compute only the outer penumbra; Brabec and Seidel9

compute both the inner and the outer penumbra; Kirsch and
Doellner33 compute only the inner penumbra. In all cases,
the penumbra computed goes from 0 to 1, to ensure continu-
ity with areas in shadow and areas that are fully illuminated.

Method In a first pass, we create a single standard shadow
map, for a single sample — usually at the center of the light
source.

During rendering, as with standard shadow mapping, we
identify the position of the current pixel in the shadow map.
Then:

• if the current pixel is in shadow, we identify the nearest
pixel in the shadow map that is illuminated.

• if the pixel is lit, we identify the nearest pixel in the
shadow map that corresponds to an object that is closer
to the light source than the current pixel (see Figure15).

In both cases, we assume that the object found is casting a
shadow on the receiver, and that the point we have found is
in the penumbra. We then compute an attenuation coefficient
based on the relative positions of the receiver, the occluder

c© The Eurographics Association and Blackwell Publishers 2003.

196



Hasenfratz et al. / Real-time Soft Shadows

and the light source:

f =
dist(PixelOccluder,PixelReceiver)

RSzReceiver|zReceiver−zOccluder|

whereR andSare user-defineable parameters. The inten-
sity of the pixel is modulated using8:

• 0.5∗ (1+ f ), clamped to[0.5,1] if the pixel is outside the
shadow,

• 0.5∗ (1− f ), clamped to[0,0.5] if the pixel is inside the
shadow.

For pixels that are far away from the boundary of the
shadow, either deep inside the shadow or deep inside the
fully lit area, f gets greater than 1, resulting in a modulation
coefficient of respectively 0 or 1. On the original shadow
boundary, f = 0, the two curves meet each other continu-
ously with a modulation coefficient of 0.5. The actual width
of the penumbra region depends on the ratio of the distances
to the light source of the occluder and the receiver, which is
perceptually correct.

The slowest phase of this algorithm is the search of neigh-
bouring pixels in the shadow map, to find the potential oc-
cluder. In theory, an object can cast a penumbra than spans
the entire scene, if it is close enough to the light source. In
practice, we limit the search to a maximal distance to the
current pixel ofRmax= RzReceiver.

To ensure that an object is correctly identified as being in
shadow or illuminated, the information from the depth map
is combined with an item buffer, following Hourcade and
Nicolas26.

Discussion The aim of this algorithm is to produce percep-
tually pleasing, rather than physically exact, soft shadows.
The width of the penumbra region depends on the ratio of
the respective distances to the light source of the occluder
and the receiver. The penumbra region is larger if the oc-
cluder is far from the receiver, and smaller if the occluder is
close to the receiver.

Of course, the algorithm suffers from several shortcom-
ings. Since the shadow is only determined by a single sam-
ple shadow map, it can fail to identify the proper shadowing
edge. It works better if the light source is far away from the
occluder. The middle of the penumbra region is placed on
the boundary of the shadow from the single sample, which
is not physically correct.

The strongest point of this algorithm is its speed. Since it
only needs to compute a single shadow map, it can achieve
framerates of 5 to 20 frames per second, compared with 2 to
3 frames per second for multi-samples image-based meth-
ods. The key parameter in this algorithm isR, the search
radius. For smaller search values ofR, the algorithms works
faster, but can miss large penumbras. For larger values ofR,
the algorithm can identify larger penumbras, but takes longer
for each rendering.

A faster version of this algorithm, by Kirsch and
Doellner33, computes both the shadow map and a shadow-
width map: for each point in shadow, we precompute the dis-
tance to the nearest point that is illuminated. For each pixel,
we do a look-up in the shadow map and the shadow-width
map. If the point is occluded, we have the depth of the cur-
rent point (z), the depth of the occluder (zoccluder) and the
shadow width (w). A 2D function gives us the modulation
coefficient:

I(z,w) =

{

1 if z= zoccluder
1+cbias−cscale

w
zoccluder−z otherwise

The shadow-width map is generated from a binary occlu-
sion map, transformed into the width map by repeated appli-
cations of a smoothing filter. This repeated filtering is done
using graphics hardware, during rendering. Performances
depend mostly on the size of the occlusion map and on the
size of the filter; for a shadow map resolution of 512×512
pixels, and a large filter, they attain 20 frames per second.
Performance depends linearly on the number of pixels in the
occlusion map, thus doubling the size of the occlusion map
divides the rendering speed by 4.

3.1.5. Convolution technique45

As noted earlier, soft shadows are a consequence of partial
visibility of an extended light source. Therefore the calcula-
tion and soft shadows is closely related to the calculation of
the visible portion of the light source.

Soler and Sillion45 observe that the percentage of the
source area visible from a receiving point can be expressed
as a simple convolution for a particular configuration. When
the light source, occluder, and receiver all lie in parallel
planes, the soft shadow image on the receiver is obtained
by convolving an image of the receiver and an image of the
light source. While this observation is only mathematically
valid in this very restrictive configuration, the authors de-
scribe how the same principle can be applied to more general
configurations:

First, appropriate imaging geometries are found, even
when the objects are non-planar and/or not parallel. More
importantly, the authors also describe an error-driven algo-
rithm in which the set of occluders is recursively subdivided
according to an appropriate error estimate, and the shadows
created by the subsets of occluders are combined to yield the
final soft shadow image.

Discussion The convolution technique’s main advantages
are the visual quality of the soft shadows (not their phys-
ical fidelity), and the fact that it operates from images of
the source and occluders, therefore once the images are ob-
tained the complexity of the operations is entirely under con-
trol. Sampling is implicitly performed when creating a light
source image, and the combination of samples is handled
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by the convolution operation, allowing very complex light
source shapes.

The main limitation of the technique is that the soft
shadow is only correct in a restricted configuration, and the
proposed subdivision mechanism can only improve the qual-
ity when the occluder can be broken down into smaller parts.
Therefore the case of elongated polygons in th direction of
the light source remains problematic. Furthermore, the sub-
division mechanism, when it is effective in terms of quality,
involves a significant performance drop.

3.2. Object-Based Approaches

Several methods can be used to compute soft shadows in
animated scenes using object-based methods:

1. Combining together several shadow volumes taken from
point samples on the light source, in a manner similar to
the method described for shadow maps in Section3.1.1.

2. extending the shadow volume19, 53, 11 using a specific
heuristic (Plateaus19, Penumbra Maps53, Smoothies11).

3. computing a penumbra volume for each edge of the
shadow silhouette2, 4, 5.

3.2.1. Combining several hard shadows

Method The simplest way to produce soft shadows with
the shadow volume algorithm is to take several samples on
the light source, compute a hard shadow for each sample
and average the pictures produced. It simulates an area light
source, and gives us the soft shadow effect.

However, the main problem with this method, as with
the equivalent method for shadow maps, is the number of
samples it requires to produce a good-looking soft shadow,
which precludes any real-time application. Also, it requires
the use of an accumulation buffer, which is currently not sup-
ported on standard graphics hardware.

An interesting variation has been proposed by Vignaud47,
in which shadow volumes from a light source whose position
changes with time are added in the alpha buffer, mixed with
older shadow volumes, producing a soft shadow after a few
frames where the viewer position does not change.

3.2.2. Soft Planar Shadows Using Plateaus

The first geometric approach to generate soft shadows has
been implemented by Haines19. It assumes a planar receiver,
and generates an attenuation map that represents the soft
shadow. The attenuation map is created by converting the
edges of the occluders into volumes, and is then applied to
the receiver as a modulating texture.

Method The principle of the plateaus method19 is to gener-
ate an attenuation map, representing the soft shadow. The
attenuation map is first created using the shadow volume

Figure 16: Extending the shadow volume of an occluder
with cones and planes.

method, thus filling in black the parts of the map that are
occluded.

Then, the edges of the silhouette of the objects are trans-
formed into volumes (see Figure16):

• All the vertices of the silhouette are first turned into cones,
with the radius of the cone depending on the distance be-
tween the occluder vertex and the ground, thus simulating
a spherical light source.

• then edges joining adjacent vertices are turned into sur-
faces. For continuity, the surface joining two cones is an
hyperboloid, unless the two cones have the same radius
(that is, if the two original vertices are at the same distance
of the ground), in which case the hyperboloid degenerates
to a plane.

These shadow volumes are then projected on the receiver
and colored using textures: the axis of the cone is black, and
the contour is white. This texture is superimposed with the
shadow volume texture: Haines’ algorithm only computes
the outer penumbra.

One important parameter in the algorithm is the way we
color the penumbra volume; it can be done using Gouraud
shading, values from the Z-buffer or using a 1D texture.
The latter gives more control over the algorithm, and allows
penumbra to decrease using any function, including sinu-
soid.

Discussion The first limitation of this method is that it is
limited to shadows on planar surfaces. It also assumes a
spherical light source. The size of the penumbra only de-
pends on the distance from the receiver to the occluders, not
from the distance between the light source and the occlud-
ers. Finally, it suffers from the same fillrate bottleneck as the
original shadow volume algorithm.

A significant improvement is Wyman and Hansen53’s
Penumbra Map method: the interpolation step is done us-
ing programmable graphics hardware6, 20, 14, generating a
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penumbra map that is applied on the model, along with a
shadow map. Using a shadow map to generate the umbra re-
gion removes the fill-rate bottleneck and makes the method
very robust. Wyman and Hansen report framerate of 10 to 15
frames per second on scenes with more than 10,000 shadow-
casting polygons.

The main limitation in both methods19, 53 is that they only
compute the outer penumbra. As a consequence, objects will
always have an umbra, even if the light source is very large
with respect to the occluders. This effect is clearly notice-
able, as it makes the scene appear much darker than antici-
pated, except for very small light sources.

3.2.3. Smoothies11

Chan and Durand11 present a variation of the shadow vol-
ume method that uses only graphics hardware for shadow
generation.

Method We start by computing the silhouette of the object.
This silhouette is then extended using “smoothies”, that are
planar surfaces connected to the edges of the occluder and
perpendicular to the surface of the occluder.

We also compute a shadow map, which will be used for
depth queries. The smoothies are then textured taking into
account the distance of each silhouette vertex to the light
source, and the distance between the light source and the
receiver.

In the rendering step, first we compute the hard shadow
using the shadow map, then the texture from the smooth-
ies is projected onto the objects of the scene to create the
penumbra.

Discussion As with Haines19, Wyman and Hansen53 and
Parker41, this algorithm only computes the outer penumbra.
As a consequence, occluders will always project an umbra,
even if the light source is very large with respect to the oc-
cluders. As mentionned earlier, this makes the scene appear
much darker than anticipated, an effect that is clearly notice-
able except for very small light sources.

The size of the penumbra depends on the ratio of the dis-
tances between the occluder and the light source, and be-
tween receiver and light source, which is perceptually cor-
rect.

Connection between adjacent edges is still a problem with
this algorithm, and artefacts appear clearly except for small
light sources.

The shadow region is produced using the shadow map
method, which removes the problem with the fill rate bot-
tleneck experienced with all other methods based on the
shadow volume algorithm. As with the previous method53,
the strong point of this algorithm is its robustness: the au-
thors have achieved 20 frames per second on scenes with
more than 50,000 polygons.

Figure 17: Computing the penumbra wedge of a silhouette
edge: the wedge is a volume based on the silhouette edge
and encloses the light source.

3.2.4. Soft Shadow Volumes2, 4, 5

Akenine-Möller and Assarsson2, Assarsson and Akenine-
Möller4 and Assarssonet al.5 have developed an algorithm
to compute soft shadows that builds on the shadow volume
method and uses the programmable capability of modern
graphics hardware6, 20, 14 to produce real-time soft shadows.

Method The algorithm starts by computing the silhou-
ette of the object, as seen from a single sample on the
light source. For each silhouette edge, we build asilhouette
wedge, that encloses the penumbra caused by this edge (see
Figure17). The wedge can be larger than the penumbra, that
is we err on the safe side.

Then, we render the shadow volume, using the standard
method (described in Section2.5.2) in a visibility buffer.
After this first pass, the visibility buffer contains the hard
shadow.

In a subsequent pass, this visibility buffer is updated so
that it contains the soft shadow values. This is done by ren-
dering the front-facing triangles of each wedge. For each
pixel covered by these triangles, we compute the percent-
age of the light source that is occluded, using fragment
programs20. For pixels that are covered by the wedge but
in the hard shadow (as computed by the previous pass), we
compute the percentage of the light source that is visible, and
add this value to the visibility buffer. For pixels covered by
the wedge but in the illuminated part of the scene, we com-
pute the percentage of the light source that is occluded and
substract this value from the visibility buffer (see Figures18
and19).

After this second pass, the visibility buffer contains the
percentage of visibility for all pixels in the picture. In a third
pass, the visibility buffer is combined with the illumination
computed using the standard OpenGL lighting model, giving
the soft shadowed picture of the scene.
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Figure 18: Computing the area of the light source that is
covered by a given edge. The fragment program computes
the hatched area for each pixel inside the corresponding
wedge.
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Figure 19: Combining several connected edges. The portion
of the light source that is occluded is equal to the sum of the
portions of the light source occluded by the different edges.

Discussion The complexity of the algorithm depends on
the number of edges in the silhouette of the object, and on
the number of pixels covered by each penumbra wedge. As
a consequence, the easiest optimisation of the algorithm is
to compute tighter penumbra wedges5.

The main advantage of this algorithm is its speed. Using
programmable graphics hardware for all complex computa-
tions, and tabulating complex functions into pre-computed
textures, framerates of 150 frames per second are obtained
on simple scenes, 50 frames per second on moderately com-
plex scenes (1,000 shadow-casting polygons, with a large
light source), with very convincing shadows. Performance
depends mostly on the number of pixels covered by the
penumbra wedges, so smaller light sources will result in
faster rendering.

It should be noted that although a single sample is used to
compute the silhouette of the object, the soft shadow com-
puted by this algorithm is physically exact in simple cases,
since visibility is computed on the entire light source. More
precisely this happens when the silhouette of the occluder
remains the same for all points on the light source,e.g.for a
convex object that is distant enough from the light source.

The weak point of the algorithm is that it computes the
silhouette of the object using only a single sample. It would
fail on scenes where the actual silhouette of the object, as

seen from the area light source, is very different from the
silhouette computed using the single sample. Such scenes
include scenes where a large area light source is close to
the object (see Figure7), and scenes where the shadows of
several objects are combined together (as in Figure6). In
those circumstances, it is possible to compute a more accu-
rate shadow by splitting the light source into smaller light
sources. The authors report that splitting large light sources
into 2× 2 or 3× 3 smaller light sources is usually enough
to remove visible artefacts. It should be noted that splitting
the light source inton light sources does not cut the speed
of the algorithm byn, since the rendering time depends on
the number of pixels covered by the penumbra wedges, and
smaller light sources have smaller penumbra wedges.

One key to the efficiency of the algorithm is its use of
fragment programs20. The fragment programs take as input
the projections of the extremities of the edge onto the plane
of the light source, and give as output the percentage of the
light source that is occluded by the edge (see Figure18). If
several edges are projecting onto the light source, their con-
tributions are simply added (see Figure19) — this addition
is done in the framebuffer. The authors have implemented
several fragment programs, for spherical light sources, for
textured rectangular light sources and for non-textured rect-
angular light sources.

4. Classification

4.1. Controlling the time

Algorithms used in real time or interactive applications must
be able to run at a tuneable framerate, in order to spend less
time for rendering at places where there is a lot of computa-
tion taking place, and more time when the processor is avail-
able.

Ideally, soft shadow methods used in real-time applica-
tions should take as input the amount of time available for
rendering, and return a soft shadow computed to the best of
the algorithm within the prescribed time limit. Since this re-
view focuses on hot research algorithms, this feature has not
been implemented in any of the algorithms reviewed here.
However, all of these algorithms are tunable in the sense that
there is some sort of parameter that the user can tweak, go-
ing from soft shadows that are computed very fast, but are
possibly wrong, to soft shadows that can take more time to
compute but are either more visually pleasing or more phys-
ically accurate.

Several of these parameters are available to a various de-
gree in the methods reviewed:

• The easiest form of user control is the use of a differ-
ent level-of-detail for the geometry of the occluders. Sim-
pler geometry will result in faster rendering, either with
image-based methods or with object-based methods. It
can be expected that the difference in the shadow will not
be noticeable with animated soft shadows.
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Method Time Quality Tunable Light Scene Required Hardware

Image-based

Multi-samples22, 25 I * Y Polygon 1 planar receiver
Distributed Multi-samples28 RT ** Y Planar ShadowMap
Single sample9, 33 RT * Y Sphere ShadowMap
Convolution45 I ** Y Polygon 2D Convol.
Visibility Channel24, 54 I ** Y Linear, Polygon 2D Convol.

Geometry-based

Plateaus19 I ** Y Sphere 1 planar receiver
Penumbra Map53 RT ** Y Sphere Vertex & Frag. Programs
Smoothie11 RT ** Y Sphere Vertex & Frag. Programs
Soft Shadow Volumes2, 4, 5 RT *** Y Sphere, Rect. Fragment Programs

Table 1: Comparison of soft shadows algorithms (see Section4 for details)

• Another form of user control is to add more samples
on the light source22, 25, 1, or to subdivide large light
sources into a set of smaller ones2, 4, 5, 24, 54. It should be
noted that the order of magnitude for this parameter is
variable: 256 to 1024 samples are required for point-
based methods22, 25, 1 to produce shadows without arte-
facts, while area-based methods2, 4, 5, 24, 54 just need to cut
the light source into 2× 2 or 3× 3 smaller sources. Ei-
ther way, the rendering time is usually multiplied by the
number of samples or sources.

• All image-based methods are also tuneable by changing
the resolution of the buffer.

• Other parameters are method-specific:

– the single sample soft shadows9 method is tuneable by
changing the search radius;

– Convolution45 is tuneable by subdividing the occluders
into several layers;

– Plateaus19 are tuneable by changing the number of ver-
tices used to discretize the cones and patches;

– Smoothies11 are tuneable by changing the maximum
width of the smoothies;

4.2. Controlling the aspect

Another important information in chosing a real-time soft
shadow algorithm is the aspect of the shadow it produces.
Some of the algorithms described in this review can produce
a physically exact solution if we allow them a sufficient ren-
dering time. Other methods produce a physically exact solu-
tion in simple cases, but are approximate in more complex
scenes, and finally a third class of methods produce shadows
that are always approximate, but are usually faster to com-
pute.

Physically exact (time permitting): Methods based on
point samples on the light source22, 25, 1 will produce

physically exact shadows if the number of samples is
sufficient. However, with current hardware, the number
of samples compatible with interactive applications gives
shadows that are not visually excellent (hence the poor
mark these methods receive in table1).

Physically exact on simple scenes:Methods that compute
the percentage of the light source that is visible from the
current pixel will give physically exact shadows in places
where the assumptions they make on the respective ge-
ometry of the light source and the occluders are verified.
For example, soft shadow volumes4, 5 give physically ex-
act shadows for isolated convex objects, provided that the
silhouette computed is correct (that the occluder is far
away from the light source). Visibility channel24, 54 gives
physically exact shadows for convex occluders and lin-
ear light sources24, and for isolated edges and polygonal
light sources54 . Convolution45 is physically exact for pla-
nar and parallel light source, receiver and occluder.

Always approximate: All methods that restrict them-
selves to computing only the inner- or the outer-
penumbra are intrisically always approximate. They in-
clude single-sample soft shadows using shadow-width
map33, plateaus19 and smoothies11. The original imple-
mentation of single sample soft shadows9 computes both
the inner- and the outer-penumbra, but gives them always
the same width, which is not physically exact.

The second class of methods is probably the more inter-
esting for producing nice looking pictures. While the con-
ditions imposed seem excessively hard, it must be pointed
out that they are conditions for which it isguaranteedthat
the shadow is exact inall the points of the scene. In most
places of a standard scene, these methods will also produce
physically exact shadows.
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4.3. Number and shape of the light sources

The first cause for the soft shadow is the light source. Each
real-time soft shadow method makes an assumption on the
light sources, their shapes, their angles of emission and more
importantly their number.

Field of emission: All the methods that are based on an
image of the scene computed from the light source are re-
stricted with respect to the field of emission of the light
source, as a field of emission that is too large will result in
distortions in the image. This restriction applies to all image-
based algorithms, plus smoothies11 and volume-based algo-
rithms if the silhouette is computed using discontinuities in
the shadow map39.

On the contrary, volume-based methods can handle omni-
directional illumination.

Shape: For extended light sources, the influence of the
shape of the light source on a soft shadow is not directly per-
ceptible. Most real-time soft shadow methods use this prop-
erty by restricting themselves to simple light source shapes,
such as spheres or rectangles:

• Single-sample soft shadows9, 33, plateaus19 and
smoothies11 assume a spherical light source. Soft
shadow volumes5 also work with a spherical light source.

• Visibility channel24 was originally restricted to linear light
sources.

• Subsequent implementation of the visibility channel
works with polygonal light sources54.

• Other methods place less restriction on the light source.
Multi-sample methods25, 1 can work with any kind of light
source. Convolution45 are also not restricted. However, in
both cases, the error in the algorithm is smaller for planar
light sources.

• Convolution45 and soft shadow volumes4, 5 work with tex-
tured rectangles, thus allowing any kind of planar light
source. The texture can even be animated4, 5.

Number: All real-time soft shadow algorithms are assum-
ing a single light source. Usually, computing the shadow
from several light sources results in multiplying the ren-
dering time by the number of light sources. However, for
all the methods that work for any kind of planar light
source25, 1, 45, 4, 5, it is possible to simulate several co-planar
light sources by placing the appropriate texture on a plane.
This gives us several soft shadows in a single application of
the algorithm. However, it has a cost: since the textured light
source is larger, the algorithms will run more slowly.

4.4. Constraints on the scene

The other elements causing shadows are the occluders and
the receivers. Most real-time soft shadows methods make
some assumptions on the scene, either explicit or implicit.

Receiver: The strongest restriction is when the object re-
ceiving shadows is a plane, as with the plateaus method19.
Multi-sample soft shadow25, 22 is also restricted to a small
number of receivers for interactive rendering. In that case,
self-shadowing is not applicable.

Self-shadowing: The convolution45 method requires that
the scene is cut into clusters, within which no self-shadows
are computed.

Silhouette: For all the methods that require a silhouette ex-
traction — such as object-based methods — it is implicitly
assumed that we can compute a silhouette for all the objects
in the scene. In practice, this usually means that the scene is
made of closed triangle meshes.

4.5. New generation of GPUs

Most real-time soft shadow methods use the features of the
graphics hardware that were available to the authors at the
time of writing:

Shadow-map: all image-based methods use the
GL_ARB_SHADOW extension for shadow maps. This
extension (or an earlier version) is available, for example,
on Silicon Graphics hardware above the Infinite Reality
2, on NVIDIA graphics cards above the GeForce 3 and
on ATI graphics above the Radeon9500.

Imaging subset: along with this extension, some methods
also compute convolutions on the shadow map. These
convolutions can be computed in hardware if theImag-
ing Subsetof the OpenGL specification is present. This is
the case on all Silicon Graphics machines and NVIDIA
cards.

Programmable GPU: finally, the most recent real-time
soft shadow methods use the programming capability in-
troduced in recent graphics hardware. Vertex programs14

and fragment programs21 are used for single-sample
soft shadows33, penumbra maps53, smoothies11 and soft
shadow volumes4, 5. In practice, this restricts these algo-
rithms to only the latest generation of graphics hardware,
such as the NVIDIA GeForce FX or the ATI Radeon 9500
and above.

Many object-based algorithms suffer from the fact that
they need to compute the silhouette of the occluders, a
costly step that can only be done on the CPU. Wyman
and Hansen53 report that computing the silhouette of a
moderately complex occluder (5000 polygons) uses 10 ms
in their implementation. If the next generation of graph-
ics hardware would include the possibility to compute
this silhouette entirely on the graphics card10, object-based
algorithms53, 11, 2, 4, 5 would greatly benefit from the speed-
up.
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5. Conclusions

In this State of the Art Review, we have described the is-
sues encountered when working with soft shadows. We have
presented existing algorithms that produce soft shadows in
real time. Two main categories of approaches have been re-
viewed, based on shadow maps and shadow volumes. Each
one has advantages and drawbacks, and none of them can
simultaneously solve all the problems we have mentioned.
This motivated a discussion and classification of these meth-
ods, hopefully allowing easier algorithm selection based on
a particular application’s constraints.

We have seen that the latest algorithms benefit from the
programmability of recent graphics hardware. Two main di-
rections appear attractive to render high-quality soft shad-
ows in real time: by programming graphics hardware, and by
taking advantage simultaneously of both image-based and
object-based techniques. Distributed rendering, using for in-
stance PC clusters, is another promising avenue although lit-
tle has been achieved so far. Interactive display speeds can
be obtained today even on rather complex scenes. Continu-
ing improvements of graphics technology — in performance
and programmability — lets us expect that soft shadows will
soon become a common standard in real-time rendering.

Acknowledgments

The “Hugo” robot used in the pictures of this paper was cre-
ated by Laurence Boissieux.

This work was supported in part by the “ACI Jeunes
Chercheurs”CYBERof the French Ministry of Research,
and by the “Région Rhône-Alpes” through the DEREVE re-
search consortium.

We wish to express our gratitude to the authors of the
algorithms described in this review, who have provided us
with useful detailed information about their work, and to
the anonymous reviewers whose comments and suggestions
have significantly improved the paper.

Remark: All the smooth shadows pictures in this paper
were computed with distributed ray-tracing, using 1024
samples on the area light sources.

References

1. Maneesh Agrawala, Ravi Ramamoorthi, Alan Heirich,
and Laurent Moll. Efficient image-based methods for
rendering soft shadows. InComputer Graphics (SIG-
GRAPH 2000), Annual Conference Series, pages 375–
384. ACM SIGGRAPH, 2000.9, 10, 17, 18

2. Tomas Akenine-Möller and Ulf Assarsson. Approxi-
mate soft shadows on arbitrary surfaces using penum-
bra wedges. InRendering Techniques 2002 (13th Eu-
rographics Workshop on Rendering), pages 297–306.
ACM Press, 2002.14, 15, 17, 18

3. Tomas Akenine-Möller and Eric Haines.Real-Time
Rendering. A K Peters Ltd, 2nd edition, 2002.2

4. Ulf Assarsson and Tomas Akenine-Möller. A
geometry-based soft shadow volume algorithm using
graphics hardware.ACM Transactions on Graphics
(SIGGRAPH 2003), 22(3), 2003.14, 15, 17, 18

5. Ulf Assarsson, Michael Dougherty, Michael Mounier,
and Tomas Akenine-Möller. An optimized soft shadow
volume algorithm with real-time performance. In
Graphics Hardware, 2003. 4, 5, 14, 15, 16, 17, 18

6. ATI. SmartshaderTM technology white paper.http://
www.ati.com/products/pdf/smartshader.pdf, 2001. 14,
15

7. Harlen Costa Batagelo and Ilaim Costa Júnior. Real-
time shadow generation using BSP trees and stencil
buffers. InSIBGRAPI, volume 12, pages 93–102, Oc-
tober 1999.8

8. Stefan Brabec. Personnal communication, May 2003.
13

9. Stefan Brabec and Hans-Peter Seidel. Single sample
soft shadows using depth maps. InGraphics Interface,
2002. 9, 12, 17, 18

10. Stefan Brabec and Hans-Peter Seidel. Shadow vol-
umes on programmable graphics hardware.Computer
Graphics Forum (Eurographics 2003), 25(3), Septem-
ber 2003. 8, 18

11. Eric Chan and Fredo Durand. Rendering fake soft shad-
ows with smoothies. InRendering Techniques 2003
(14th Eurographics Symposium on Rendering). ACM
Press, 2003.14, 15, 17, 18

12. Franklin C. Crow. Shadow algorithms for computer
graphics. Computer Graphics (SIGGRAPH 1977),
11(3):242–248, 1977.8

13. George Drettakis and Eugene Fiume. A fast shadow
algorithm for area light sources using backprojection.
In Computer Graphics (SIGGRAPH 1994), Annual
Conference Series, pages 223–230. ACM SIGGRAPH,
1994. 3, 6

14. Cass Everitt. OpenGL ARB vertex pro-
gram. http://developer.nvidia.com/docs/IO/8230/
GDC2003_OGL_ARBVertexProgram.pdf, 2003. 8,
14, 15, 18

15. Cass Everitt and Mark J. Kilgard. Practical and robust
stenciled shadow volumes for hardware-accelerated
rendering. http://developer.nvidia.com/object/robust_
shadow_volumes.html, 2002. 8, 9

16. Cass Everitt and Mark J. Kilgard. Optimized stencil
shadow volumes.http://developer.nvidia.com/docs/IO/
8230/GDC2003_ShadowVolumes.pdf, 2003. 9

c© The Eurographics Association and Blackwell Publishers 2003.

203



Hasenfratz et al. / Real-time Soft Shadows

17. Cass Everitt, Ashu Rege, and Cem Cebenoyan. Hard-
ware shadow mapping.http://developer.nvidia.com/
object/hwshadowmap_paper.html. 7

18. Randima Fernando, Sebastian Fernandez, Kavita Bala,
and Donald P. Greenberg. Adaptive shadow maps.
In Computer Graphics (SIGGRAPH 2001), Annual
Conference Series, pages 387–390. ACM SIGGRAPH,
2001. 7

19. Eric Haines. Soft planar shadows using plateaus.Jour-
nal of Graphics Tools, 6(1):19–27, 2001. 14, 15, 17,
18

20. Evan Hart. ARB Fragment Program: Frag-
ment level programmability in OpenGL.
http://www.ati.com/developer/gdc/GDC2003_OGL_
ARBFragmentProgram.pdf, 2003. 14, 15, 16

21. Evan Hart. Other New OpenGL Stuff: Important
stuff that doesn’t fit elsewhere.http://www.ati.com/
developer/gdc/GDC2003_OGL_MiscExtensions.pdf,
2003. 9, 18

22. Paul S. Heckbert and Michael Herf. Simulating soft
shadows with graphics hardware. Technical Report
CMU-CS-97-104, Carnegie Mellon University, January
1997. 9, 17, 18

23. Tim Heidmann. Real shadows, real time. InIris Uni-
verse, volume 18, pages 23–31. Silicon Graphics Inc.,
1991. 8

24. Wolfgang Heidrich, Stefan Brabec, and Hans-Peter Sei-
del. Soft shadow maps for linear lights high-quality. In
Rendering Techniques 2000 (11th Eurographics Work-
shop on Rendering), pages 269–280. Springer-Verlag,
2000. 5, 9, 11, 17, 18

25. Michael Herf. Efficient generation of soft shadow tex-
tures. Technical Report CMU-CS-97-138, Carnegie
Mellon University, 1997.9, 10, 17, 18

26. J.-C. Hourcade and A. Nicolas. Algorithms for
antialiased cast shadows.Computers & Graphics,
9(3):259–265, 1985.7, 13

27. Geoffre S. Hubona, Philip N. Wheeler, Gregory W. Shi-
rah, and Matthew Brandt. The role of object shadows
in promoting 3D visualization.ACM Transactions on
Computer-Human Interaction, 6(3):214–242, 1999.1,
2

28. M. Isard, M. Shand, and A. Heirich. Distributed ren-
dering of interactive soft shadows. In4th Eurograph-
ics Workshop on Parallel Graphics and Visualization,
pages 71–76. Eurographics Association, 2002.10, 17

29. Brett Keating and Nelson Max. Shadow penumbras for
complex objects by depth-dependent filtering of multi-
layer depth images. InRendering Techniques 1999
(10th Eurographics Workshop on Rendering), pages
205–220. Springer-Verlag, 1999.10

30. Daniel Kersten, Pascal Mamassian, and David C. Knill.
Moving cast shadows and the perception of relative
depth. Technical Report no 6, Max-Planck-Institut fuer
biologische Kybernetik, 1994.1, 2

31. Daniel Kersten, Pascal Mamassian, and David C. Knill.
Moving cast shadows and the perception of relative
depth.Perception, 26(2):171–192, 1997.1, 2

32. Mark J. Kilgard. Improving shadows and reflections
via the stencil buffer.http://developer.nvidia.com/docs/
IO/1348/ATT/stencil.pdf, 1999. 8

33. Florian Kirsch and Juergen Doellner. Real-time soft
shadows using a single light sample.Journal of WSCG
(Winter School on Computer Graphics 2003), 11(1),
2003. 12, 13, 17, 18

34. David C. Knill, Pascal Mamassian, and Daniel Kersten.
Geometry of shadows.Journal of the Optical Society
of America, 14(12):3216–3232, 1997.1

35. Johann Heinrich Lambert.Die freye Perspektive. 1759.
1, 2

36. Tom Lokovic and Eric Veach. Deep shadow maps.
In Computer Graphics (SIGGRAPH 2000), Annual
Conference Series, pages 385–392. ACM SIGGRAPH,
2000. 7

37. Céline Loscos and George Drettakis. Interactive
high-quality soft shadows in scenes with moving ob-
jects.Computer Graphics Forum (Eurographics 1997),
16(3), September 1997.6

38. Pascal Mamassian, David C. Knill, and Daniel Kersten.
The perception of cast shadows.Trends in Cognitive
Sciences, 2(8):288–295, 1998.1, 2

39. Michael D. McCool. Shadow volume recontsruction
from depth maps. ACM Transactions on Graphics,
19(1):1–26, 2000.8, 18

40. Steve Morein. ATI radeon hyperz technology. In
Graphics Hardware Workshop, 2000. 6

41. Steven Parker, Peter Shirley, and Brian Smits. Single
sample soft shadows. Technical Report UUCS-98-019,
Computer Science Department, University of Utah, Oc-
tober 1998.12, 15

42. William T. Reeves, David H. Salesin, and Robert L.
Cook. Rendering antialiased shadows with depth maps.
Computer Graphics (SIGGRAPH 1987), 21(4):283–
291, 1987. 7

43. Stefan Roettger, Alexander Irion, and Thomas Ertl.
Shadow volumes revisited. InWinter School on Com-
puter Graphics, 2002. 8

44. Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim
Foran, and Paul Haeberli. Fast shadows and lighting ef-
fects using texture mapping.Computer Graphics (SIG-
GRAPH 1992), 26(2):249–252, July 1992.7

c© The Eurographics Association and Blackwell Publishers 2003.

204



Hasenfratz et al. / Real-time Soft Shadows

45. Cyril Soler and François X. Sillion. Fast calculation of
soft shadow textures using convolution. InComputer
Graphics (SIGGRAPH 1998), Annual Conference Se-
ries, pages 321–332. ACM SIGGRAPH, 1998.4, 6, 9,
13, 17, 18

46. Marc Stamminger and George Drettakis. Perspective
shadow maps.ACM Transactions on Graphics (SIG-
GRAPH 2002), 21(3):557–562, 2002.7

47. Sylvain Vignaud. Real-time soft shadows on geforce
class hardware. http://tfpsly.planet-d.net/english/3d/
SoftShadows.html, 2003. 14

48. Leonardo Da Vinci.Codex Urbinas. 1490. 1, 2

49. Leonard Wanger. The effect of shadow quality on
the perception of spatial relationships in computer gen-
erated imagery. Computer Graphics (Interactive 3D
Graphics 1992), 25(2):39–42, 1992.1, 2

50. Lance Williams. Casting curved shadows on curved
surfaces. Computer Graphics (SIGGRAPH 1978),
12(3):270–274, 1978.7

51. Andrew Woo. The shadow depth map revisited. In
Graphics Gems III, pages 338–342. Academic Press,
1992. 7

52. Andrew Woo, Pierre Poulin, and Alain Fournier. A sur-
vey of shadow algorithms.IEEE Computer Graphics
and Applications, 10(6):13–32, November 1990.1, 2

53. Chris Wyman and Charles Hansen. Penumbra maps:
Approximate soft shadows in real-time. InRender-
ing Techniques 2003 (14th Eurographics Symposium on
Rendering). ACM Press, 2003.14, 15, 17, 18

54. Zhengming Ying, Min Tang, and Jinxiang Dong. Soft
shadow maps for area light by area approximation. In
10th Pacific Conference on Computer Graphics and
Applications, pages 442–443. IEEE, 2002.9, 11, 17,
18

55. Hansong Zhang. Forward shadow mapping. InRen-
dering Techniques 1998 (9th Eurographics Workshop
on Rendering), pages 131–138. Springer-Verlag, 1998.
8

c© The Eurographics Association and Blackwell Publishers 2003.

205



206 CHAPITRE 4. UTILISATION DES CARTES GRAPHIQUES PROGRAMMABLES

4.7.3 Soft shadow maps: efficient sampling of light source visiblity (CGF 2006)
Auteurs : Lionel A, Nicolas H, Marc L, Jean-Marc H, Charles
H et François X. S.
Journal : Computer Graphics Forum, vol. 25, no 4.
Date : décembre 2006



Volume 0 (1981), Number 0 pp. 1–17

Soft Shadow Maps:

Efficient Sampling of Light Source Visibility
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Figure 1: Our algorithm computes soft shadows in real-time (left) by replacing the occluders with a discretized version (right), using informa-

tion from the shadow map. This scene runs at 84 fps.

Abstract

Shadows, particularly soft shadows, play an important role in the visual perception of a scene by providing visual

cues about the shape and position of objects. Several recent algorithms produce soft shadows at interactive rates,

but they do not scale well with the number of polygons in the scene or only compute the outer penumbra. In

this paper, we present a new algorithm for computing interactive soft shadows on the GPU. Our new approach

provides both inner- and outer-penumbra, and has a very small computational cost, giving interactive frame-rates

for models with hundreds of thousands of polygons.

Our technique is based on a sampled image of the occluders, as in shadow map techniques. These shadow samples

are used in a novel manner, computing their effect on a second projective shadow texture using fragment programs.

In essence, the fraction of the light source area hidden by each sample is accumulated at each texel position of

this Soft Shadow Map. We include an extensive study of the approximations caused by our algorithm, as well as

its computational costs.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Graphics processors I.3.7

[Computer Graphics]: Color, shading, shadowing, and texture

1. Introduction

Shadows add important visual information to computer-

generated images. The perception of spatial relationships be-

tween objects can be altered or enhanced simply by mod-

ifying the shadow shape, orientation, or position [WFG92,

Wan92,KMK97]. Soft shadows, in particular, provide robust

contact cues by the hardening of the shadow due to prox-

imity resulting in a hard shadow upon contact. The advent

of powerful graphics hardware on low-cost computers has

led to the emergence of many interactive soft shadow algo-

rithms (for a detailed study of these algorithms, please refer

to [HLHS03]).

In this paper, we introduce a novel method based on

shadow maps to interactively render soft shadows. Our

c© The Eurographics Association and Blackwell Publishing 2006. Published by Blackwell
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Figure 2: Applying our algorithm (200,000 polygons, oc-

cluder map 256×256, displayed at 32 fps).

method interactively computes a projective shadow texture,

the Soft Shadow Map, that incorporates soft shadows based

on light source visibility from receiver objects (see Fig. 2).

This texture is then projected onto the scene to provide in-

teractive soft shadows of dynamic objects and dynamic area

light sources.

There are several advantages to our technique when com-

pared to existing interactive soft-shadow algorithms: First,

it is not necessary to compute silhouette edges. Second, the

algorithm is not fill-bound, unlike methods based on shadow

volumes. These properties provide better scaling for occlud-

ing geometry than other GPU based soft shadow techniques

[WH03, CD03, AAM03]. Third, unlike some other shadow

map based soft shadow techniques, our algorithm does not

dramatically overestimate the umbra region [WH03,CD03].

Fourth, while other methods have relied on an interpola-

tion from the umbra to the non-shadowed region to approxi-

mate the penumbra for soft shadows [AHT04,WH03,CD03,

BS02], our method computes the visibility of an area light

source for receivers in the penumbra regions.

Our algorithm also has some limitations when compared

to existing algorithms. First, our algorithm splits scene ge-

ometry into occluders and receivers and self shadowing is

not accounted for. Also, since our algorithm uses shadow

maps to approximate occluder geometry, it inherits the well

known issues with aliasing from shadow map techniques.

For large area light sources, the soft shadows tend to blur

the artifacts but for smaller area light sources, such aliasing

is apparent.

We acknowledge that these limitations are important, and

they may prevent the use of our algorithm in some cases.

However, there are many applications such as video games

or immersive environments where the advantages of our

algorithm (a very fast framerate, and a convincing soft

shadow) outweigh its limitations. We also think that this new

algorithm could be the start of promising new research.

In the following section, we review previous work on

interactive computation of soft shadows. In Section 3, we

present the basis of our algorithm, and in the following sec-

tion, we provide implementation details. In the next two sec-

tions, we conduct an extensive analysis of our algorithm;

first, in Section 5, we study the approximations in our soft

shadows, then in Section 6 we study the rendering times of

our algorithm. Both studies are done first from a theoretical

point of view, then experimentally. Finally, in Section 7, we

conclude and expose possible future directions for research.

2. Previous Work

Researchers have investigated shadow algorithms for

computer-generated images for nearly three decades. The

reader is referred to a recent state-of-the art report by Hasen-

fratz et al. [HLHS03], the overview by Woo et al. [WPF90]

and the book by Akenine-Möller and Haines [AMH02].

The two most common methods for interactively produc-

ing shadows are shadow maps [Wil78] and shadow vol-

umes [Cro77]. Both of these techniques have been extended

for soft shadows. In the case of shadow volumes, Assarsson

and Akenine-Möller [AAM03] used penumbra wedges in a

technique based on shadow volumes to produce soft shad-

ows. Their method depends on locating silhouette edges to

form the penumbra wedges. While providing good soft shad-

ows without an overestimate of the umbra, the algorithm is

fill-limited, particularly when zoomed in on a soft shadow

region. Since it is necessary to compute the silhouette edges

at every frame, the algorithm also suffers from scalability is-

sues when rendering occluders with large numbers of poly-

gons.

The fill-rate limitation is a well known limitation

of shadow-volume based algorithms. Recent publica-

tions [CD04, LWGM04] have focused on limiting the fill-

rate for shadow-volume algorithms, thus removing this lim-

itation.

On shadow maps, Chan and Durand [CD03] and Wyman

and Hansen [WH03] both employed a technique which uses

the standard shadow map method for the umbra region and

builds a map containing an approximate penumbra region

that can be used at run-time to give the appearance, includ-

ing hard shadows at contact, of soft shadows. While these

methods provide interactive rendering, both only compute

the outer-penumbra, the part of the penumbra that is outside

the hard shadow. In effect, they are overestimating the umbra

region, resulting in the incorrect appearance of soft shadows

in the case of large area light sources. These methods also

depend on computing the silhouette edges in object space

for each frame; this requirement limits the scalability for oc-

cluders with large numbers of polygons.

Arvo et al. [AHT04] used an image-space flood-fill

method to produce approximate soft shadows. Their algo-

rithm is image-based, like ours, but works on a detection of

shadow boundary pixels, followed by several passes to re-

place the boundary by a soft shadow, gradually extending

the soft shadow at each pass. The main drawback of their

method is that the number of passes required is proportional

c© The Eurographics Association and Blackwell Publishing 2006.
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to the extent of the penumbra region, and the rendering time

is proportional to the number of shadow-filling passes.

Guennebaud et al. [GBP06] also used the back projection

of each pixel in the shadow map to compute the soft shadow.

Their method was developed independently of ours, yet is

very similar. The main differences between the two methods

lie in the order of the computations: we compute the soft

shadow in shadow map space, while they compute the soft

shadow in screen space, requiring a search in the shadow

map.

Brabec and Seidel [BS02] and Kirsch and Doell-

ner [KD03] use a shadow map to compute soft shadows,

by searching at each pixel of the shadow map for the near-

est boundary pixel, then interpolating between illumination

and shadow as a function of the distance between this pixel

and the boundary pixel and the distances between the light

source, the occluder and the receiver. Their algorithm re-

quires scanning the shadow map to look for boundary pixels,

a potentially costly step; in practical implementations they

limit the search radius, thus limiting the actual size of the

penumbra region.

Soler and Sillion [SS98] compute a soft shadow map as

the convolution of two images representing the source and

blocker. Their technique is only accurate for planar and par-

allel objects, although it can be extended using an object hi-

erarchy. Our technique can be seen as an extension of this

approach, where the convolution is computed for each sam-

ple of an occlusion map, and the results are then combined.

Finally, McCool [McC00] presented an algorithm merg-

ing shadow volume and shadow map algorithms by detect-

ing silhouette pixels in the shadow map and computing a

shadow volume based on these pixels. Our algorithm is sim-

ilar in that we are computing a shadow volume for each pixel

in the shadow map. However, we never display this shadow

volume, thus avoiding fill-rate issues.

3. Algorithm

3.1. Presentation of the algorithm

Our algorithm assumes a rectangular light source and starts

by separating potential occluders (such as moving charac-

ters) from potential receivers (such as the background in a

scene) (Fig. 3(a)). We will compute the soft shadows only

from the occluders onto the receivers.

Our algorithm computes a Soft Shadow Map, (SSM), for

each light source: a texture containing the texelwise percent-

age of occlusion from the light source. This soft shadowmap

is then projected onto the scene from the position of the light

source, to give soft shadows (see Fig. 2).

Our algorithm is an extension of the shadow map algo-

rithm: we start by computing depth buffers of the scene.

Unlike the standard shadow map method, we will need two

Compute depth map of receivers

Compute depth map of occluders

for all pixels in occluder map

Retrieve depth of occluder at this pixel

Compute micro-patch associated with this pixel

Compute extent of penumbra for this micro-patch

for all pixels in penumbra extent for micro-patch

Retrieve receiver depth at this pixel

Compute percentage of occlusion for this pixel

Add to current percentage in soft shadow map

end

end

Project soft shadow map on the scene

Figure 4: Our algorithm

depth buffers: one for the occluders (the occluder map) and

the other for the receivers.

The occluder map depth buffer is used to discretize the

set of occluders (see Fig. 3(b)): each pixel in this occluder

map is converted into a micro-patch that covers the same

image area but is is located in a plane parallel to the light

source, at a distance corresponding to the pixel depth. Pixels

that are close to the light source are converted into small

rectangles and pixels that are far from the light source are

converted into larger rectangles. At the end of this step, we

have a discrete representation of the occluders.

The receiver map depth buffer will be used to provide the

receiver depth, as our algorithm uses the distance between

light source and receiver to compute the soft shadow values.

We compute the soft shadow of each of the micro-patches

constituting the discrete representation of the occluders (see

Fig. 3(c)), and sum them into the soft shadow map (SSM)

(see Fig. 3(d)). This step would be potentially costly, but

we achieve it in a reasonable amount of time with two key

points: 1) the micro-patches are parallel to the light source,

so computing their penumbra extent and their percentage of

occlusion only requires a small number of operations, and 2)

these operations are computed on the graphics card, exploit-

ing the parallelism of the GPU engine. The percentage of

occlusion from each micro-patch takes into account the rel-

ative distances between the occluders, the receiver and the

light source. Our algorithm introduces several approxima-

tions on the actual soft shadow. These approximations will

be discussed in Section 5.

The pseudo-code for our algorithm is given in Fig. 4.

In the following subsections, we will review in detail the

individual steps of the algorithm: discretizing the occlud-

ers (Section 3.2), computing the penumbra extent for each

micro-patch (Section 3.3) and computing the percentage of

occlusion for each pixel in the Soft Shadow Map (Sec-

tion 3.4). Specific implementation details will be given in

Section 4.
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Light source

Occluders

Receivers

(a) Scene view

Light source

Occluders

Receivers

(b) Discretizing occluders

Light source

Receivers

P

Shadow of P

(c) Soft shadows from one

micro-patch

Light source

Receivers

Soft Shadow Map

(d) Summing the soft shadows

Figure 3: The main steps of our algorithm

Occluding patch

Light source

Penumbra
Umbra

Figure 5: The penumbra extent of a micro-patch is a rectan-

gular pyramid

3.2. Discretizing the occluders

The first step in our algorithm is a discretization of the oc-

cluders. We compute a depth buffer of the occluders, as seen

from the light source, then convert each pixel in this occluder

map into the equivalent polygonal micro-patch that lies in a

plane parallel to the light source, at the appropriate depth

and occupies the same image plane extent (see Fig. 1).

The occluder map is axis-aligned with the rectangular

light source and has the same aspect ratio: all micro-patches

created in this step are also axis-aligned with the light source

and have the same aspect ratio.

3.3. Computing penumbra extents

Each micro-patch in the discretized occluder is potentially

blocking some light between the light source and some por-

tion of the receiver. To reduce the amount of computations,

we compute the penumbra extent of the micro-patches, and

we only compute occlusion values inside these extents.

Since the micro-patches are parallel, axis-aligned with the

L

L’

O

P
P’

(a)

L L’

P P’

O

CL

CP

(b)

Figure 6: Finding the apex of the pyramid is reduced to a

2D problem

light source and have the same aspect ratio, the penumbra

extent of each micro-patch is a rectangular pyramid (Fig. 5).

Finding the penumbra extent of the light source is equivalent

to finding the apexO of the pyramid (Fig. 6(a)). This reduces

to a 2D problem, considering parallel edges (LL′) and (PP′)
on both polygons (Fig. 6(b)). Since (LL′) and (PP′) are par-
allel lines, we have:

OL

OP
=
OL′

OP′
=
LL′

PP′

This ratio is the same if we consider the center of each line

segment:

OCL

OCP
=
LL′

PP′

Since the micro-patch and the light source have the same

aspect ratio, the ratio r= LL
′

PP′
is the same for both sides of the

micro-patch (thus, the penumbra extent of the micro-patch is

indeed a pyramid).

We find the apex of the pyramid by applying a scaling to

the center of the micro-patch (CP), with respect to the center
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Occluding patch

Light source

Penumbra extentVirtual plane

Figure 7: The intersection between the pyramid and the vir-

tual plane is an axis-aligned rectangle

L L’

R R’

O

CL

CR

zR

zO

Figure 8: Computing the position and extent of the penum-

bra rectangle for each micro-patch.

of the light source (CL):

−−→
CLO=

r

1+ r
−−−→
CLCP

where r is again the ratio r = LL
′

PP′
.

We now use this pyramid to compute occlusion in the

soft shadow map (see Fig. 7). We use a virtual plane, par-

allel to the light source, to represent this map (which will be

projected onto the scene). The intersection of the penumbra

pyramid with this virtual plane is an axis-aligned rectangle.

We only have to compute the percentage of occlusion inside

this rectangle.

Computing the position and size of the penumbra rectan-

gle uses the same formulas as for computing the apex of the

pyramid (see Fig. 8):

−−−→
CLCR =

zR

zO

−−→
CLO

RR
′ = LL′

zR− zO
zO

Occluding patch

Light source

Penumbra extent

A =

A

*

Figure 9: We reproject the occluding micro-patch onto the

light source and compute the percentage of occlusion.

3.4. Computing the soft shadow map

For all the pixels of the SSM lying inside this penumbra ex-

tent, we compute the percentage of the light source that is

occluded by this micro-patch. This percentage of occlusion

depends on the relative positions of the light source, the oc-

cluders and the receivers. To compute it, for each pixel on the

receiver inside this extent, we project the occluding micro-

facet back onto the light source [DF94] (Fig. 9). The result

of this projection is an axis-aligned rectangle; we need to

compute the intersection between this rectangle and the light

source.

Computing this intersection is equivalent to computing

the two intersections between the respective intervals on

both axes. This part of the computation is done on the GPU,

using a fragment program: the penumbra extent is converted

into an axis-aligned quad, which we draw in a float buffer.

For each pixel inside this quad, the fragment program com-

putes the percentage of occlusion. These percentages are

summed using the blending capability of the graphics card

(see Section 4.2).

3.5. Two-sided soft-shadow maps

As with many other soft shadow computation algo-

rithms [HLHS03], our algorithm exhibits artifacts because

we are computing soft shadows using a single view of the oc-

cluder. Shadow effects linked to parts of the occluder that are

not directly visible from the light source are not visible. In

Fig. 10(a), our algorithm only computes the soft shadow for

the front part of the occluder, because the back part of the oc-

cluder does not appear in the occluder map. This limitation

is frequent in real-time soft-shadow algorithms [HLHS03].

For our algorithm, we have devised an extension that

solves this limitation: we compute two occluder maps. In

the first, we discretize the closest, front-facing faces of the

occluders (see Fig. 10(b)). In the second, we discretize the

furthest, back-facing faces of the occluders (see Fig. 10(c)).
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(a) Original algorithm (b) Closest, front faces of the

occluder discretized with their

shadow

(c) Furthest, back faces of the

occluder discretized with their

shadow

(d) Combining the two soft

shadow maps

Figure 10: The original algorithm fails for some geometry. The two-pass method gives the correct shadow.

(a) One pass (148 fps) (b) One pass with bottom patches

(142 fps)

(c) Two passes (84 fps) (d) Ground truth

Figure 11: Two-pass shadow computations enhance precision.

We then compute a soft shadow map for each occluder

map, and merge them, using the maximum of each occluder

map. The resulting occlusion map has eliminated most arti-

facts (Fig. 10(d) and 11). Empirically, the cost of the two-

pass algorithm is between 1.6 and 1.8 times the cost of the

one-pass algorithm. Depending on the size of a model and

the quality requirements of a given application, the second

pass may be worth this extra cost. For example, for an ani-

mated model of less than 100,000 polygons, the one-pass al-

gorithm renders at approximately 60 fps. Adding the second

pass drops the framerate to 35 fps — which is still interac-

tive.

4. Implementation details

4.1. Repartition between CPU and GPU

Our algorithm (see Fig. 4) starts by rendering two depth

maps, one for the occluders and one for the receivers; these

depth maps are both computed by the GPU. Then, in order

to generate the penumbra extents for the micro-patches, the

occluders depth map is transferred back to the CPU.

On the CPU, we generate the penumbra extents for the

micro-patch associated to each non-empty pixel of the oc-

cluders depth map. We then render these penumbra extents,

and for each pixel, we execute a small fragment program

to compute the percentage of occlusion. Computing the per-

centage of occlusion at each pixel of the soft shadow map is

done on the GPU (see section 4.2).

These contributions from each micro-patch are added to-

gether; we use for this the blending ability of the GPU: oc-

clusion percentages are rendered into a floating-point buffer

with blending enabled, thus the percentage values for each

micro-patch are automatically added to the previously com-

puted percentage values.

4.2. Computing the intersection

For each pixel of the SSM lying inside the penumbra extent

of a micro-patch, we compute the percentage of the light

source that is occluded by this micro-patch, by projecting

the occluding micro-patch back onto the light source (see

Fig. 9). We have to compute the intersection of two axis-

aligned rectangles, which is the product of the two intersec-

tions between the respective intervals on both axes.

We have therefore reduced our intersection problem from

a 2D problem to two separate 1D problems. To further op-

timize the computations, we use the SAT instructions in the

fragment program assembly language: without loss of gen-

erality, we can convert the rectangle corresponding to the

light source to [0,1]× [0,1]. Each interval intersection be-
comes the intersection between one [a,b] interval and [0,1].
Exploiting the SAT instruction and swizzling, computing the

area of the intersection between the projection of the oc-
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cluder [a,b]× [c,d] and the light source [0,1]× [0,1] only
requires three instructions:

MOV_SAT rs,{a,b,c,d}

SUB rs, rs, rs.yxwz

MUL result.color, rs.x, rs.z

Computing the [a,b]× [c,d] intervals requires projecting
the micro-patch onto the light source and scaling the projec-

tion. This uses 8 other instructions: 6 basic operations (ADD,

MUL, SUB), one reciprocal (RCP) and one texture lookup to

get the depth of the receiver. The total length of our fragment

program is therefore 11 instructions, including one texture

lookup.

4.3. Possible improvements

As it stands, our algorithm makes a very light use of GPU

resources: we only execute a very small fragment program,

once for each pixel covered by the penumbra extent, and we

exploit the blending ability for floating point buffers.

The main bottleneck of our algorithm is that the penum-

bra extents have to be computed on the CPU. This requires

transfering the occluders depth map to the CPU, and loop-

ing over the pixels of the occluders depth map on the CPU.

It should be possible to remove this step by using the render-

to-vertex- buffer function: instead of rendering the occlud-

ers depth map, we would directly render the penumbra ex-

tents for each micro-patch into a vertex buffer. This vertex

buffer would be rendered in a second pass, generating the

soft shadow map.

5. Error Analysis and comparison

In this section, we analyze our algorithm, its accuracy and

how it compares with the exact soft-shadows. We first study

potential sources of error from a theoretical point of view, in

Section 5.1, then we conduct an experimental analysis, com-

paring the soft shadows produced with exact soft shadows,

in Section 5.2.

5.1. Theoretical analysis

Our algorithm replaces the occluder with a discretized ver-

sion. This discretization ensures interactive framerates, but

it can also be a source of inaccuracies. From a given point

on the receiver, we are separately estimating occlusion from

several micro-patches, and adding these occlusion values to-

gether. We have identified three potential sources of error in

our algorithm:

• We are only computing the shadow of the discretized oc-
cluder, not the shadow of the actual occluder. This source

of error will be analyzed in Section 5.1.1.

• The reprojections of the micro-patches on the light source
may overlap or be disjoined. This cause of error will be

analyzed in Section 5.1.2.

• We are adding many small values (the occlusion from
each micro-patch) to form a large value (the occlusion

from the entire occluder). If the micro-patches are too

small, we run into numerical accuracy issues, especially

with floating-point numbers expressed on 16 bits. This

cause of error will be analyzed in Section 5.1.3.

5.1.1. Discretization error

Our algorithm computes the shadow of the discretized oc-

cluder, not the shadow of the actual occluder. The dis-

cretized occluder corresponds to the part of the occluder

that is visible from the camera used to compute the depth

buffers, usually the center of the light source. Although

we reproject each micro-patch of the discretized occluder

onto the area light source, we are missing the parts of the

occluder that are not visible from the shadow map cam-

era but are still visible from some points of the area light

source. This is a limitation that is frequent in real-time soft

shadow algorithms [HLHS03], especially algorithms relying

on the silhouette of the occluder as computed from a single

point [WH03,CD03,AAM03].

We also use a discrete representation based on the shadow

map, not a continuous representation of the occluder. For

each pixel of the shadow map, we are potentially overes-

timating or underestimating the actual occluder by at most

half a pixel.

If the occluder has one or more edges aligned with the

edges of the shadow map, these discretization errors are of

the same sign over the edge, and add themselves; the worst

case scenario is a square aligned with the axis of the shadow

map.

For more practical occluders the discretization errors on

neighboring micro-patches compensate: some of the micro-

patches overestimate the occluder while others underesti-

mate it.

5.1.2. Overlapping reprojections

At any given point on the receiver, the parts of the light

source that are occluded by two neighboring micro-patches

should be joined exactly for our algorithm to compute the

exact percentage of occlusion on the light source. This is

typically not the case, and these parts may overlap or there

may be a gap between them (Fig. 12). The amount of over-

lap (or gap) between the occluded parts of the light source

depends on the relative positions of the light source, the oc-

cluding micro-patches and the receiver

If we consider the 2D equivalent of this problem (Fig. 13),

with two patches separated by δh and at a distance zO from

the light source, with the receiver being at a distance zR from

the light source, there is a point P0 on the receiver where

there is no overlap between the occluded parts. As we move

away from this point, the overlap increases. For a point at a
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Occluding patches

Light source

Receiver

Overlap

Figure 12: The reprojection of two neighboring micro-

patches may overlap.

R

zR

zO

δh

L

PO

x

x1x2

Figure 13: Computing the extent of overlap or gap between

two neighboring micro-patches.

distance x from P0, the boundaries of the occluding micro-

patches project at abscissa x1 and x2; as the occluding micro-

patches and the light source lie in parallel planes, we have:

x1

x
=

zO

zR− zO
x2

x
=

zO+δh

zR− zO−δh

The amount of overlap is therefore:

x2− x1 = x

(

zO

zR− zO
−

zO+δh

zR− zO−δh

)

= −x
zRδh

(zR− zO)(zR− zO−δh)
(1)

x itself is limited, since the occlusion area must fall inside

the light source:

|x| <
L

2

zR− zO
zO

(2)

The amount of overlap is therefore limited by:

|x2− x1| <
L

2

zRδh

zO(zR− zO−δh)
(3)

Equation 3 represents the error our algorithm makes for

each pair of micro-patches. The overall error of our algo-

rithm is the sum of the modulus of all these errors, for all the

micro-patches projecting on the light source at a given point.

This is a conservative estimate, as usually some patches

overlap while others present gaps; the actual sum of the oc-

clusion values from all the micro-patches is closer to the real

value than what our estimation tells (see Section 5.2).

The theoretical error caused by our algorithm depends on

several factors:

Size of the light source: The maximum amount of overlap

(Eq. 3) depends directly on the size of the light source.

The larger the light source, the larger the error. Our prac-

tical experiments confirm this.

Distance between micro-patches: The maximum amount

of overlap (Eq. 3) also depends linearly on δh, the dis-

tance in z between neighboring micro-patches. Since δh

depends on the discretization of the occluder, the error in-

troduced by our algorithm is related to the resolution of

the bitmap: the smaller the resolution of the bitmap, the

larger the error. Our practical experiments confirm this,

but there is a maximum resolution after which the error

does not decrease.

Note that this source of error is related to the effective

resolution of the bitmap, that is the number of pixels used

for discretizing the occluder. If the occluder occupies only

a small portion of the bitmap, the effective resolution of

the bitmap is much smaller than its actual resolution. For-

tunately, the cost of the algorithm is also related to the

effective resolution of the bitmap.

Distance to the light source/the receiver: If the occluder

touches either the light source or the receiver, the amount

of overlap (Eq. 3) goes toward infinity. When the occluder

is touching the receiver, the area where the overlap occurs

(as defined by equation 2) goes towards 0, thus the er-

ror does not appear. When the occluder is touching the

receiver, the actual effect depends on the shape of the oc-

cluder. In some cases, overlaps and gaps can compensate,

resulting in an acceptable shadow.

5.1.3. Floating-point blending accuracy

Our algorithm adds together many small scale occlusion val-

ues — the occlusion from each micro-patch — to compute a

large scale occlusion value — the occlusion from the com-

plete occluder. This addition is done with the blending abil-

ity of the GPU, using blending of floating-point buffers. At

the time of writing, blending is only available in hardware

for 16-bits floating-point buffers. As a result, we sometimes

encounter problems of numerical accuracy.
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(a) 1282 pixels, FP16 blending

(66 Hz)

(b) 5122 pixels, FP16 blending

(20 Hz)

(c) 5122 pixels, FP32 blending

(CPU)

(d) Ground truth (CPU)

Figure 14: Blending with FP16 numbers: if the resolution of the shadow map is too high, numerical issues appear, resulting in

wrong shadows. Using higher accuracy for blending removes this issue (here, FP32 blending was done on the CPU).

Figure 14 shows an example of these problems. Uncon-

ventionally, increasing the resolution of the shadow map

makes these problems more likely to appear (for a complete

study of floating-point blending accuracy, see appendix A).

The best workaround is therefore to use relatively low reso-

lution for the occluder map, such as 128×128 or 256×256.
While this may seem a low resolution compared to other

shadow map algorithms, our shadow map is focused on the

moving occluder (such as a character), not on the entire

scene, so 128×128 pixels is usually enough resolution.

We see this is only as a temporary issue that will disappear

as soon as hardware FP32 blending becomes available on

graphics cards.

5.2. Comparison with ground truth

We ran several tests to experimentally compare the shadows

produced by our algorithm with the actual shadows. The ref-

erence values were computed using occlusion queries, giv-

ing an accurate estimation of the real occlusion of the light

source. In this section, we review the practical differences

we observed.

5.2.1. Experimentation method

For each image, we computed an error metric as thus: for

each pixel in the soft shadow map, we compute the actual

occlusion value (using occlusion queries), and the difference

with the occlusion value computed using our algorithm. We

summed the modulus of the differences, then divided the re-

sult by the total number of pixels lying either in the shadow

or in the penumbra, averaging the error over the actual soft

shadow. We used the number of pixels that are either in

shadow or in penumbra and not the total number of pixels

in the occluders depth map because the soft shadow can oc-

cupy only a small part of the depth map. Dividing by the

total number of pixels in the depth map would have under-

estimated the error.

We have used 3 different scenes (a square plane parallel to

the light source, a Buddha model and a Bunny model). These

scenes exhibit several interesting features. The Buddha and

Bunny are complex models, with folds and creases. The

Bunny also has important self-occlusion, and in our scene

it is in contact with the ground, providing information on the

behavior of our algorithm in that case. The square plane is

an illustration of the special case of occluders aligned with

the axes of the occluders depth map.

We have tested both the one-pass and the two-pass ver-

sions of our algorithm. We selected four separate parame-

ters: the size of the light source, the resolution of the shadow

map and moving the occluder, either vertically from the re-

ceiver to the light source or laterally with respect to the light

source. For each parameter, we plot the variation of the error

introduced by our algorithm as a function of the parameter

and analyze the results.

5.2.2. Visual comparison with ground truth

Fig. 16 shows a side by side comparison of our algorithm

with ground truth. Even though there are slight differences

with ground truth, our algorithm exhibits the proper behavior

for soft shadows: sharp shadows at places where the object

is close to the ground, a large penumbra zone where the ob-

ject is further away from the receiver. Our algorithm visibly

computes both the inner and the outer penumbra of the ob-

ject.

Looking at the picture of the differences (Fig. 16(d)

and 16(g)) between the shadow values computed by our al-

gorithm and the ground truth values, it appears that the dif-

ferences lie mostly on the silhouette: since our algorithm

only computes the soft shadow of the discretized object, as

seen from the center of the light source. The actual shape of

the soft shadow depends on subtle effects happening at the

boundary of the silhouette.

5.2.3. Size of the buffer

Figure 17 shows the average difference between the occlu-

sion values computed with our algorithm and the actual oc-

clusion values for our three test scenes, when changing the

resolution of the shadow map. In these figures, the abscissa
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(a) Square plane (b) Buddha (c) Bunny

Figure 15: The test scenes we have used

(a) Scene view (b) Our algorithm (c) Ground Truth
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(d) Difference between the occlu-

sion values

(e) Our algorithm (f) Ground Truth
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12 %

(g) Difference between the occlusion val-

ues

Figure 16: Visual comparison of our algorithm with ground truth.
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Figure 17: Variation of the error with respect to the resolution of the shadow map
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is the number of pixels for one side of the shadow map, so

128 corresponds to a 128× 128 shadow map. For this test,
we used non-power of two textures, in order to have enough

sampling data. We can make several observations by looking

at the data:

Two-pass version: the two-pass version of the algorithm

consistently outperforms the single-pass version, always

giving more accurate results. The only exception is of

course the square plane: since it has no thickness, the

single-pass and two-pass version give the same results.

Shadow map Resolution: as expected from the theoretical

study (see Section 5.1.2), the error decreases as the res-

olution of the shadow map increases. What is interesting

is that this effect reaches a limit quite rapidly. Roughly,

increasing the shadow map resolution above 200 pixels

does not bring an improvement in quality. Since the com-

putation costs are related to the size of the shadow map,

shadow map sizes of 200× 200 pixels are close to opti-
mal.

The fact that the error does not decrease continuously as

we increase the resolution of the occluder map is a little

surprising at first, but can be explained. It is linked to the

silhouette effect. As we have seen in Fig. 16, the error

introduced by our algorithm comes from the boundary of

the silhouette of the occluder, from parts of the occluder

that are not visible from the center of the light source, but

visible from other parts of the light source. Increasing the

resolution of the shadow map does not solve this problem.

The optimal size for the shadow map is related to the size

of the light source. As the light source gets larger, we can

use smaller bitmaps.

Discretization error: the error curve for the square plane

presents many important spikes. Looking at the results,

it appears that these spikes correspond to discretization

error (see Section 5.1.1). Since the square occluder is

aligned with the axis of the shadow map, it magnifies dis-

cretization error.

5.2.4. Size of the light source

Figure 18 shows the average difference between the oc-

clusion values computed with our algorithm and the ac-

tual occlusion values when we change the size of the light

source for our three test scenes. The parameter values

range from a point light source (parameter=0.01) to a very

large light source, approximately as large as the occluder

(parameter=0.2). We used a bitmap of 128× 128 pixels for
all these tests. We can make several observations by looking

at the data:

Point light sources: the beginning of the curves

(parameter=0.01) corresponds to a point light source. In

that case, the error is quite large. This corresponds to an

error of 1, over the entire shadow boundary; as we are

computing the shadow of the discretized occluder, we

miss the actual shadow boundary, sometimes by as much

as half a pixel. The result is a large error, but it occurs

only at the shadow boundary.

Light source size: except for the special case of point light

sources, the error increases with the size of the light

source. This is consistent with our theoretical analysis

(see Section 5.1.2).

5.2.5. Occluder moving laterally

Figure 19 shows the average difference between the occlu-

sion values computed with our algorithm and the actual oc-

clusion values, when we move the occluder from left to right

under the light source. The parameter corresponds to the po-

sition with respect to the center of the light, with 0 meaning

that the center of the object is aligned with the center of the

light. We used a bitmap of 128×128 for all these tests.

The error is at its minimum when the occluder is roughly

under the light source, and increases as the occluder moves

laterally. The Buddha and Bunny models are not symmetric,

so their curves are slightly asymmetric, and the minimum

does not correspond exactly to 0.

5.2.6. Occluder moving vertically

Figure 20 shows the average difference between the occlu-

sion values computed with our algorithm and the actual oc-

clusion values, when we move the occluder vertically. The

smallest value of the parameter corresponds to an occluder

touching the receiver, and the largest value corresponds to

an occluder touching the light source. We used a bitmap of

128×128 for all these tests.

As predicted by the theory, the error increases as the oc-

cluder approaches the light source (see Section 5.1.2). For

the Bunny, the error becomes quite large when the upper ear

touches the light source.

6. Complexity

The main advantages of our algorithm are its rendering

speed and its scalability. With a typical setup (a modern

PC, an occluder map of 128× 128 pixels, a scene between
50,000 polygons and 300,000 polygons), we get framerates

between 30 and 150 fps. In this section, we study the nu-

merical complexity of our algorithm and its rendering speed.

We first conduct a theoretical analysis of the complexity of

our algorithm, in Section 6.1, then an experimental analysis,

where we test the variation of the rendering speed with re-

spect to several parameters: the size of the shadow map, the

number of polygons and the size of the light source (Sec-

tion 6.2). Finally, in Section 6.3, we compare the complex-

ity of our algorithm with a state-of-the-art algorithm, Soft

Shadow Volume [AAM03].

6.1. Theoretical complexity

Our algorithm starts by rendering a shadow map and down-

loading it into main memory. This preliminary step has a
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Figure 18: Variation of the error with respect to the size of the light source
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Figure 19: Variation of the error with respect to the lateral position of the occluder

complexity linear with respect to the number of polygons in

the scene, and linear with the size of the shadow map, mea-

sured in the total number of pixels.

Then, for each pixel of the shadow map corresponding to

the occluder, we compute its extent in the occlusion map,

and for each pixel of this extent we execute a small fragment

program of 11 instructions, including one texture lookup.

The overall complexity of this second step of the algo-

rithm is the number of pixels covered by the occluder, mul-

tiplied by the number of pixels covered by the extent for

each of them, multiplied by the cost of the fragment pro-

gram. This second step is executed on the GPU, and benefits

from the high-performance and the parallelism of the graph-

ics card.

The worst case situation would be a case where each

micro-patch in the shadow map covers a large number of

pixels in the soft shadow map. But this situation corresponds

to an object with a large penumbra zone, and if we have a

large penumbra zone, we can use a lower resolution for the

shadow maps. So we can compensate the cost for the algo-

rithm by running it with bitmaps of lower resolution.

Using our algorithm with a large resolution shadow map

in a situation of large penumbra results in relatively high

computing costs, but a low resolution shadow map would

give the same visual results, for a smaller computation time.

6.2. Experimental complexity

All measurements in this section were conducted on a 2.4

GHz Pentium4 PC with a GeForce 6800 Ultra graphics card.

All framerates and rendering times correspond to observed

framerates, that is the framerate for a user manipulating our

system. We are therefore measuring the time it takes to dis-

play the scene and to compute soft shadows, not just the time

it takes to compute soft shadows.

6.2.1. Number of polygons

We studied the influence of the polygon count. Fig. 6.2

shows the observed rendering time (in ms) as a function

of the polygon count, with a constant occluder map size of

128×128 pixels. The first thing we note is the speed of our
algorithm: even on a large scene of 340,000 polygons, we

achieve real-time framerates (more than 30 frames per sec-

ond). Second, we observe that the rendering time varies lin-

early with respect to the number of polygons. That was to

be expected, as we must render the scene twice (once for

the occluder map and once for the actual display), and the

time it takes for the graphics card to display a scene varies

linearly with respect to the number of polygons. For smaller

scenes (less than 10,000 polygons, rendering time below 10

ms), some factors other than the polygon count play a more

important role.

Our algorithm exhibits good scaling, and can handle sig-

nificantly large scenes without incurring a high performance
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Figure 20: Variation of the error with respect to the vertical position of the occluder
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Figure 21: Influence of polygon count
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(a) Bitmap of 642 (184 fps) (b) Ground truth

Figure 23: Large light sources with small bitmaps

cost. The maximum size of the scene depends on the require-

ments of the user.

6.2.2. Size of occluder map

Fig. 6.2.1 shows the observed rendering times (in ms) of

our algorithm, on a scene with 24,000 polygons (Fig. 22(b)),

when the size of the occluder map changes. We plotted the

rendering time as a function of the number of pixels in the

occluder map (that is, the square of the size of the occluder

map) to illustrate the observed linear variation of rendering

time with respect to the total number of pixels.

An occluder map of 5122 pixels gives a rendering time of

150 ms — or 7 fps, too slow for interactive rendering. An

occluder map of 1282 or 2562 pixels gives a rendering time

of 10 to 50 ms, or 20 to 100 fps, fast enough for real-time

rendering. For a large penumbra region, an occluder map of

1282 pixels qualitatively gives a reasonable approximation,

as in Fig. 22(b). For a small penumbra region, our algorithm

behaves like the classical shadow mapping algorithm and ar-

tifacts can appear with a small occluder map of 1282 pixels;

in that case, it is better to use 2562 pixels.

The fact that the rendering time of our algorithm is pro-

portional to the number of pixels in the occluder map con-

firms that the bottleneck of our algorithm is its transfer to the

CPU. Due to the cost of this transfer, we found that for some

scenes it was actually faster to use textures whose dimen-

sions are not a power of 2: if the difference in pixel count is

sufficient, the gain in transfer time compensates the losses in

rendering time.

6.2.3. Light source size

Another important parameter is the size of the light source,

compared to the size of the scene itself. A large light source

results in a large penumbra region for each micro-patch, re-

sulting in more pixels of the soft shadow map covered, and

a larger computational cost. Fig. 24(a) shows the observed

framerate as a function of the size of the light source. We did

the tests with several bitmap resolutions (2562, 1282, 642).

Fig. 24(b) shows the error as a function of the size of the

light source, for the same bitmap resolutions.

As you can see from Fig. 24(a), the rendering time in-

creases with the size of the light source. What is interesting

is the error introduced by our algorithm (see Fig. 24(b)). The

error logically increases with the size of the light source, and

for small light sources, larger bitmaps result in more accu-

rate images. But for large light sources, a smaller bitmap

will give a soft shadow of similar quality. A visual compari-

son of the soft shadows with a small bitmap and ground truth

shows the small bitmap gives a very acceptable soft shadow

(see Fig. 23).

This effect was observed by previous researchers: as the

light source becomes larger, the features in the soft shadow

become blurrier, hence they can be modeled accurately with

a smaller bitmap.

6.3. Comparison with Soft-Shadow Volumes

Finally, we performed a comparison with a state-of-the art

algorithm for computing soft shadows, the Soft-ShadowVol-

umes by Assarsson and Akenine-Möller [AAM03].

Fig. 25 shows the same scene, with soft shadows, com-

puted by both algorithms. We ran the tests with a varying

number of jeeps, to test how both algorithms scale with re-

spect to the number of polygons. Fig. 25(c) shows the ren-

dering times as a function of the number of polygons for both

algorithms. These figures were computed using a window of

512×512 pixels for both algorithms, and with the two-pass
version of our algorithm, with an occluder map resolution of

210×210.

Our algorithm scales better with respect to the number of

polygons. On the other hand, soft shadow volumes provide

a better looking shadow (see Fig. 25(b)), closer to the actual

truth.

It is important to remember that the rendering time for the

Soft- Shadow Volumes algorithm varies with the number of

screen pixels covered by the penumbra region. If the view-

point is close to a large penumbra region, the rendering time

becomes much larger. The figures we used for this compari-

son correspond to an observer walking around the scene (as

in Fig. 25(b)).

7. Conclusion and Future Directions

In this paper, we have presented a new algorithm for com-

puting soft shadows in real-time on dynamic scenes. Our al-

gorithm is based on the shadow mapping algorithm, and is

entirely image-based. As such, it benefits from the advan-

tages of image-based algorithms, especially speed.

The largest advantage of our algorithm is its high fram-

erate, hence there remains plenty of computational power

available for performing other tasks, such as interacting

with the user or performing non-graphics processing such

as physics computations within game engines. Possibly the
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largest limitation of our algorithm is the fact that it does not

compute self-occlusion and it requires a separation between

occluders and receivers. We know that this limitation is very

important, and we plan to remove it in future work, possibly

by using layered depth images.

An important aspect of our algorithm is that we can use

low-resolution shadow maps in places with a large penum-

bra, even though we still need higher resolution shadow

maps for places with small penumbra, for example close to

the contact between the occluder and the receiver. An obvi-

ous improvement to our algorithm would be the ability to use

hierarchical shadow maps, switching resolutions depending

on the shadow being computed. This work could also be

combined with perspective-corrected shadow maps [SD02,

WSP04,MT04,CG04], in order to have higher resolution in

places with sharp shadows close to the viewpoint.

In its current form, our algorithm still requires a transfer

of the occluder map from the GPU to the main memory, and

a loop, on the CPU, over all the pixels in the occluder map.

We would like to design a GPU only implementation of our

algorithm, using the future render-to-vertex-buffer capabili-

ties.
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Appendix A: Floating-point blending accuracy

In this section, we review the issues behind the hardware

blending accuracy problems we have encountered and pro-

pose a temporary fix for these issues.

All the accuracy issues are linked to the fact that hard-

ware blending is, at the time of writing, only available for

16-bits floating point numbers. NVidia graphics hardware

stores these floating-point numbers using s10e5 format: one

bit of sign, 10 bits of mantissa, 5 bits of exponent, with a

bias of 15 for the exponent. The important point for addition

is that the mantissa is stored on 10 bits. As a result, adding a

large number X and a small number ε will give an inaccurate

result if ε < 2−10X :

X + ε = X if ε < 2
−10
X (inFP16)

For example, 2048+1= 2048 (in FP16 format) and 0.5+
1

2049
= 0.5 (also in FP16 format).

In some cases, the addition of the contribution from all

micro-patches will be 1 (meaning complete occlusion of the

light source). As a consequence, we can expect numerical
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accuracy issues if some micro-patches hide less than 2−10 of

the light source. Because 322 = 210, it means that the width
of the reprojection of one micro-patch should be larger than
1

32
of the width of the light source.

This translates easily into conditions for the position of

the occluder:

1

zO
<
1

zR
+
64tanα

NL
(4)

where L is the width of the light source, N is the resolution of

the bitmap, α is the half-angle of the camera used to generate

the shadow map, zO is the distance between the light source

and the occluder and zR is the distance between the light

source and the receiver.

Bitmap resolution: The most important thing is that in-

creasing N makes this error more likely to appear. This

explains why using a bitmap of 512× 512 pixels we see
a poor looking shadow, while the 128×128 bitmap gives
the correct shadow (see Fig. 14).

Light source size: In equation 4, the size of the light source

appears in a product with the resolution of the bitmap. If

the light source is large, the bitmap must be low resolu-

tion in order to avoid FP16 blending errors. Fortunately,

a large light source means a large penumbra for most oc-

cluders, so a low resolution bitmap might be enough for

these penumbra effects.

Occluder position: As the occluder moves closer to the re-

ceiver, the likeliness of blending errors gets lower.

Camera half-angle: Similarly, increasing the camera half-

angle improves the FP16 blending accuracy.

Basically, all these conditions amount to the same thing: us-

ing less pixels to describe the occluder in the shadow map.

While this improves the FP16 blending accuracy, it obvi-

ously degrades the discretization of the occluder and also

increases the overlapping between reprojections of neigh-

boring pixels.

In our experiments (see Fig. 14) the blending accuracy

problem appears very often when the resolution of the

shadow map is larger than 512× 512, sometimes with a
shadow map resolution of 256× 256 and very rarely with
a shadow map resolution of 128×128.

The problem will disappear when hardware blending will

become available on higher accuracy floating point numbers.

FP32 have a mantissa of 23 bits, allowing the use of micro-

patches that block less than 2−23 of the light source, mean-

ing that the width of the back-projection of the micro-patch

should be at least larger that 2−11 than the width of the light

source (64 times smaller than the current threshold). Com-

pared with the current method, it would allow the use of

shadow maps with a resolution above 4096×4096.

With FP16 blending only, the best solution is to use a hier-

archical shadow map for soft-shadow computations, as was

suggested by Guennebaud et al. [GBP06]: the low resolution

shadow map would be used for large penumbra regions, and

the high-resolution shadow map for areas with hard shad-

ows, e.g. when the occluder and the receiver are in contact.
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Abstract. Ambient occlusion is used widely for improving the realism of real-time lighting
simulations. We present a new method for precomputed ambient occlusion, where we store
and retrieve unprocessed ambient occlusion values in a 3D grid. Our method is very easy to
implement, has a reasonable memory cost, and the rendering time is independent from the
complexity of the occluder or the receiving scene. This makes the algorithm highly suitable
for games and other real-time applications.

1. Introduction

An “ambient term” is commonly used in illumination simulations to account for the
light that remains after secondary reflections. This ambient term illuminates areas
of the scene that would not otherwise receive any light. In first implementations,
ambient light was an uniform light, illuminating all pointson all objects, regardless
of their shape or position, flattening their features, giving them an unnatural look.

To counter this effect,ambient occlusionwas introduced by [Zhukov et al. 98]. By
computing theaccessibilityto ambient lighting, and using it to modulate the effects,
they achieve a much better look. Ambient occlusion is widelyused in special ef-

© A K Peters, Ltd.
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Figure 1. Example of contact shadows. This scene runs at 800 fps.

fects for motion pictures [Landis 02] and for illumination simulations in commercial
software [Christensen 02, Christensen 03].

Ambient occlusion also results in objects havingcontact shadows: for two close
objects, ambient occlusion alone creates a shadow of one object onto the other (see
Figure 1).

For offline rendering, ambient occlusion is usually precomputed ateach vertex of
the model, and stored either as vertex information or into a texture. For real-time
rendering, recent work [Zhou et al. 05, Kontkanen and Laine 05] suggest storing
ambient occlusion as a field around moving objects, and projecting it onto the scene
as the object moves. These methods provide important visualcues for the spatial
position of the moving objects, in real-time, at the expenseof extra storage. They
pre-process ambient occlusion, expressing it as a functionof space whose parameters
are stored in a 2D texture wrapped around the object. In contrast, our method stores
theseun-processed, in a 3D grid attached to the object. The benefits are numerous:

• faster run-time computations, and very low impact on the GPU, with a com-
putational cost being as low as 5 fragment shader instructions per pixel,

• very easy to implement, just by rendering one cube per shadowcasting object,

• shorter pre-computation time,

• inter-object occlusion has high quality even for receivingpoints inside the oc-
cluding object’s convex hull,

• handles both self-occlusion and inter-object occlusion inthe same rendering
pass.

• easy to combine with indirect lighting stored in environment maps.

The obvious drawback should be the memory cost, since our method’s memory
costs are inO(n3), instead ofO(n2). But since ambient occlusion is a low frequency
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phenomenon, in only needs a low resolution sampling. In [Kontkanen and Laine 05],
as in our own work, a texture size ofn = 32 is sufficient. And since we are storing
a single component per texel, instead of several function coefficients, the overall
memory cost of our method is comparable to theirs. For a texture size of 32 pixels,
[Kontkanen and Laine 05] report a memory cost of 100 Kb for each unique moving
object. For the same resolution, the memory cost of our algorithm is of 32 Kb if we
only store ambient occlusion, and of 128 Kb if we also store the average occluded
direction.

2. Background

Ambient occlusion was first introduced by [Zhukov et al. 98].In modern imple-
mentations [Landis 02, Christensen 02, Christensen 03, Pharr and Green 04, Bun-
nell 05, Kontkanen and Laine 05], it is defined as the percentage of ambient light
blocked by geometry close to pointp:

ao(p) =
1
π

∫

Ω

(1− V(ω))⌊n · ω⌋ dω (1)

Occlusion values are weighted by the cosine of the angle of the occluded direction
with the normaln: occluders that are closer to the directionn contribute more, and
occluders closer to the horizon contribute less, corresponding to the importance of
each direction in terms of received lighting. Ambient occlusion is computed as a
percentage, with values between 0 and 1, hence the1

π
normalization factor.

Most recent algorithms [Bunnell 05, Kontkanen and Laine 05]also store the aver-
age occluded direction, using it to modulate the lighting, depending on the normal at
the receiving point and the environment.

[Greger et al. 98] also used a regular grid to store illumination values, but their
grid was attached to the scene, not to the object. [Sloan et al. 02] attached radiance
transfer values to a moving object, using it to recompute theeffects of the moving
object on the environment.

3. Algorithm

3.1. Description of the algorithm

Our algorithm inserts itself in a classical framework whereother shading informa-
tion, such as direct lighting, shadows, etc. are computed inseparate rendering passes.
One rendering pass will be used to compute ambient lighting,combined with ambi-
ent occlusion. We assume we have a solid object moving through a 3D scene, and
we want to compute ambient occlusion caused by this object.
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Figure 2. We construct a grid around the object. At the center of each grid element, we
compute a spherical occlusion sample. At runtime, this information is used to apply shadows
on receiving objects.

Our algorithm can either be used with classical shading, or with deferred shading.
In the latter case, the world-space position and the normal of all rendered pixels is
readily available. In the former, this information must be stored in a texture, using
the information from previous rendering passes.

Precomputation: The percentage of occlusion from the object is precomputed at
every point of a 3D grid surrounding the object (see Figure 2). This grid is
stored as a 3D texture, linked to the object.

Runtime: • render world space position and normals of all shadow receivers in
the scene, including occluders.

• For each occluder:

1. render the back faces of the occluder’s grid (depth-testing is dis-
abled).

2. for every pixel accessed, execute a fragment program:

(a) retrieve the world space position of the pixel.

(b) convert this world space position to voxel position in the grid,
passed as a 3D texture

(c) retrieve ambient occlusion value in the grid, using linear inter-
polation.

3. Ambient occlusion valuesa from each occluder are blended in the
frame buffer using multiplicative blending with 1− a.

The entire computation is thus done in just one extra rendering pass. We used the
back faces of the occluder’s grid, because it is unlikely that they are clipped by the
far clipping plane; using the front faces could result in artifacts if they are clipped by
the front clipping plane.
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3.2. Shading surfaces with ambient occlusion alone

The ambient occlusion values we have stored correspond to the occlusion caused by
the occluder itself:

ao′(p) =
1

4π

∫

Ω

(1− V(ω)) dω (2)

that is, the percentage of the entire sphere of directions that is occluded. When we
apply these occlusion values at a receiving surface, duringrendering, the occlusion
only happens over a half-space, since the receiver itself isoccluding the other half-
space. To account for this occlusion, we scale the occlusionvalue by a factor 2.
This shading does not take into account the position of the occluder with respect to
the normal of the receiver. It is an approximation, but we found it performs quite
well in several cases (see Figure 1). It is also extremely cheap in both memory and
computation time, as the value extracted from the 3D textureis used directly.

We use the following fragment program (using Cg notation):

1 float4 pworld = texRECT(PositionTex , pscreen)

2 float3 pgrid = mul(MWorldToGrid, pworld)

3 out.color.w = 1 - tex3D(GridTexture , pgrid)

There are two important drawbacks with this simple approximation: first, the in-
fluence of the occluder is also visible where it should not, such as a character moving
on the other side of a wall; second, handling self-occlusionrequires a specific treat-
ment, with a second pass and a separate grid of values.

3.3. Shading surfaces with ambient occlusion and average occluded direction

For more accurate ambient occlusion effects, we also store the average occluded
direction. That is equivalent to storing the set of occludeddirections as a cone (see
Figure 3). The cone is defined by its axis (d) and the percentage of occlusiona
(linked to its aperture angleα). Axis and percentage of occlusion are precomputed
for all moving objects and stored on the sample points of the grid, in an RGBA
texture, with the cone axisd stored in the RGB-channels and occlusion valuea stored
in the A-channel.

3.3.1. Accounting for surface normal of receiver

In order to compute the percentage of ambient occlusion caused by the moving oc-
cluder, we clip the cone of occluded directions by the tangent surface to the receiver
(see Figure 3(b)). The percentage of effectively occluded directions is a function of
two parameters: the angle between the direction of the cone and the normal at the
receiving surface (β), and the percentage of occlusion of the cone (a). We precom-
pute this percentage and store it in a lookup tableTclip. The lookup table also stores
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α

d

(a) The cone is defined by its directiond
and its apertureα.

α

d

n

β

(b) The cone is clipped by the tangent plane to the
receiver to give the ambient occlusion value.

Figure 3. Ambient occlusion is stored as a cone.

Figure 4. Ambient occlusion computed with our algorithm that accounts for the surface
normal of the receiver and the direction of occlusion.

the effect of the diffuse BRDF (the cosine of the angle between the normal and the
direction). For simplicity, we access the lookup table using cosβ.

We now use the following fragment program:

1 float4 pworld = texRECT(PositionTex , pscreen)

2 float3 pgrid = mul(MWorldToGrid, pworld)

3 float4 {dgrid,a} = tex3D(GridTexture , pgrid)

4 float3 dworld = mul(MGridToWorld, dgrid)

5 float3 n = texRECT(NormalTex, pscreen)

6 float cosβ = dot(dworld,n)
7 float AO = texRECT(Tclip, float2(a, cosβ))
8 out.color.w = 1-AO

This code translates to 16 shader assembler instructions. Figure 4 and 5 were
rendered using this method, with a grid resolution of 323.

Compared to storing only ambient occlusion values, using the average occluded
direction has the advantage that results are more accurate and self-occlusion is natu-
rally treated.
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(a) (b) (c) Ground Truth

Figure 5. Ambient occlusion values, accounting for the normal of the occluder and the direc-
tion of occlusion (135 to 175 fps).

(a) Gouraud shading (b) Blending occlusion from
multiple occluders

(c) Ground truth

Figure 6. Checking the accuracy of our blending method: comparison ofAmbient Occlusion
values computed with ground truth.

3.3.2. Combining occlusion from several occluders

When we have several moving occluders in the scene, we compute occlusion values
from each moving occluder, and merge these values together.The easiest method to
do this is to use OpenGL blending operation: in a single rendering pass, we render
the occlusion values for all the moving occluders. The occlusion value computed
for the current occluder is blended to the color buffer, multiplicatively modulating it
with (1− a).

[Kontkanen and Laine 05] show that modulating with (1− ai), for all occludersi,
is statistically the best guess. Our experiences also show that it gives very satisfying
results for almost all scenes. This method has the added advantage of being very
simple to implement: the combined occlusion value for one pixel is independent
from the order in which the occluders are treated for this pixel, so we only need one
rendering pass.

Each occluder is rendered sequentially, using our ambient occlusion fragment pro-
gram, into an occlusion buffer. The cone axes are stored in the RGB channels and
the occlusion value is stored in the alpha channel. Occlusion values are blended mul-
tiplicatively and cone axes are blended additively, weighted by their respective solid
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angle:

αR = (1− αA)(1− αB)

dR = αAdA + αBdB

This is achieved usingglBlendFuncSeparatein OpenGL. See Figures 5 and 6 for a
comparison of blending values from several occluders with the ground truth values,
computed with distributed ray-tracing: The two pictures exhibit the same important
features, although our method is noticeably lighter (see also Section 4.3).

We have designed a more advanced method for blending the occlusions between
two cones, taking into account the respective positions of the cones and their aper-
ture (see the supplemental materials), but our experimentsshow that the technique
described here generally gives similar results, runs faster and is easier to implement.

3.3.3. Illumination from an environment map

The occlusion cones can also be used to approximate the incoming lighting from
an environment map, as suggested by [Pharr and Green 04]. Foreach pixel, we
first compute the lighting due to the environment map, using the surface normal for
Lambertian surfaces, or using the reflected cone for glossy objects. Then, we subtract
from this lighting the illumination corresponding to the cone of occluded directions.

We only need to change the last step of blending the color buffer and occlusion
buffer. Each shadow receiving pixel is rendered using the following code:
P 
1 Read coned, α from occlusion buffer
2 Readnormalfrom normal buffer
3 Compute mipmap level from cone angleα
4 A = EnvMap(d, α). i.e., lookup occluded light within the cone
5 B = AmbientLighting(normal). i.e., lookup the incoming light due to the envi-
ronment map.
6 return B-A.

In order to use large filter sizes, we used lat-long maps. It isalso possible to use
cube maps with a specific tool for mip-mapping across textureseams [Scheuermann
and Isidoro 06].

3.4. Details of the algorithm

3.4.1. Spatial extent of the grid

An important parameter of our algorithm is thespatial extentof the grid. If the grid
is too large, we run the risk of under-sampling the variations of ambient occlusion,
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(a) (b) (c) Robot parts

Figure 7. Using ambient occlusion with environment lighting. These images are rendered in
roughly 85 fps.

r i

Occluder

ei

Ai

Grid

(a) Our notations (b) Cubic object (c) Elongated object.
Notice the grid isthinner
along the longer axis

Figure 8. Our notations for computing the optimal grid extent based onthe bounding-box of
the occluder (a), and optimal grid extents computed withǫ = 0.1 (b-c).

otherwise we have to increase the resolution, thus increasing the memory cost. If the
grid is too small, we would miss some of the effects of ambient occlusion.

To compute the optimal spatial extent of the grid, we use the bounding box of the
occluder. This bounding box has three natural axes, with dimension 2r i on each axis,
and a projected area ofAi perpendicular to axisi (see Figure 8(a)).

Along thei axis, the ambient occlusion of the bounding box is approximately:

ai ≈
1

4π
Ai

(d− r i)2
(3)

whered is the distance to the center of the bounding box.
If we decide to neglect occlusion values smaller thanǫ, we find that the spatial

extentei of the grid along axisi should be:

ei = r i +

√

Ai

4πǫ
(4)

We takeǫ = 0.1, giving an extent ofei ≈ 3r i for a cubic bounding box (see
Figure 8(b)). For elongated objects, equation 4 gives an elongated shape to the grid,
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(a) Using raw values, discontinuities can
appear

(b) After re-scaling, ambient occlusion
blends continuously

Figure 9. We need to re-scale occlusion values inside the grid to avoid visible artifacts.

following the shape of the object, but with the grid being thinner on the longer axes
of the object (see Figure 8(c)).

We use a relatively large epsilon value (0.1), resulting in a small spatial extent. As
a consequence, there can be visible discontinuities on the boundary of the grid (see
Figure 9(a)). To remove these discontinuities, we re-scalethe values inside the grid
so that the largest value at the boundary is 0. If the largest value on the boundary of
the grid isVM, each cell of the grid is rescaled so that its new valueV′ is:

V′ =

{

V if V > 0.3
0.3 V−VM

0.3−VM
if V ≤ 0.3

The effect of this scaling can be seen on Figure 9(b). The overall aspect of ambient
occlusion is kept, while the contact shadow ends continuously on the border of the
grid.

3.4.2. Voxels inside the occluder

Sampling points that are inside the occluder will have occlusion values of 1, ex-
pressing that they are completely hidden. As we interpolatevalues on the grid, a
point located on the boundary of the occluder will often havenon-correct values.
To counter this problem, we modify the values inside the occluder (which are never
used) so that the interpolated values on the surface are as correct as possible.

A simple but quite effective automatic way to do this is: for all grid cells where
occlusion value is 1, replace this value by an average of the surrounding grid cells
that have an occlusion value smaller than 1. This algorithm was used on all the
figures in this paper.
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4. Results

All timings and figures in this paper were computed on a Pentium 4, running at 2.8
GHz, with a NVidia GeForce 7800GTX, using a grid resolution of 323.

4.1. Timing results

The strongest point of our method is its performance: addingambient occlusion
to any scene increases the rendering time by≈ 0.9 ms for each occluder. In our
experiments, this value stayed the same regardless of the complexity of the scene or
of the occluder. We can render scenes with 40 different occluders at nearly 30 fps.

The cost of the method depends on the number of pixels coveredby the occluder’s
grid, so the cost of our algorithm decreases nicely for occluders that are far from the
viewpoint, providing an automatic level-of-detail.

The value of 0.9 ms corresponds to the typical situation, visible in all the pictures
in this paper: the occluder has a reasonable size, neither too small nor too large,
compared to the size of the viewport.

4.2. Memory costs

Precomputed values for ambient occlusion are stored in a 3D texture, with a memory
cost ofO(n3) bytes. With a grid size of 32, the value we have used in all ourtests,
the memory cost for ambient occlusion values is 32 Kb per channel. Thus, storing
just the ambient occlusion value gives a memory cost of 32 Kb.Adding the average
occluded direction requires three extra channels, bringing the complete memory cost
to 128 Kb.

4.3. Comparison with Ground Truth

Figure 5(b)-5(c) and 6(b)-6(c) show a side-by-side comparison between our algo-
rithm and ground truth. Our algorithm has computed all the relevant features of
ambient occlusion, including proximity shadows. The main difference is that our
algorithm tends to underestimate ambient occlusion.

There are several reasons for this difference: we have limited the spatial influence
of each occluder, by using a small grid, and the blending process (see Section 3.3.2)
can underestimate the combined occlusion value of several occluders.

While it would be possible to improve the accuracy of our algorithm (using a
more accurate blending method and a larger grid), we point out that ambient oc-
clusion methods are approximative by nature. What is important is to show all the
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relevant features: proximity shadows and darkening of objects in contact, something
our algorithm does.
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Web Information:

Two videos, recorded in real-time and demonstrating the effects of pre-computed ambient
occlusion on animated scenes are available at:

http://www.ce.chalmers.se/˜uffe/ani.mov

http://www.ce.chalmers.se/˜uffe/cubedance.mov

A technique for better accuracy in blending the occlusion from two cones is described in a
supplemental material.
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Accurate Specular Reflections in Real-Time

David Roger and Nicolas Holzschuch
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Figure 1: Left: Specular reflections computed with our algorithm. Middle: ray-traced reference. Right: Environment map reflection.

Abstract

Specular reflections provide many important visual cues in our daily environment. They inform us of the shape of

objects, of the material they are made of, of their relative positions, etc. Specular reflections on curved objects are

usually approximated using environment maps. In this paper, we present a new algorithm for real-time computation

of specular reflections on curved objects, based on an exact computation for the reflection of each scene vertex.

Our method exhibits all the required parallax effects and can handle arbitrary proximity between the reflector and

the reflected objects.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism

1. Introduction

Reflections on specular objects are important in our percep-

tion of a synthetic 3D scene. They convey important infor-

mation about the specular reflector itself, conveying its shape

and its fabric. They can also give information about the rel-

ative spatial positions of objects or the distance between the

reflector and the reflected object. Finally, they give informa-

tion about objects that are not directly visible (see Figure 1).

Real-time computation of specular reflections is usually

† GRAVIR is UMR 5527 GRAVIR, a joint research laboratory of

CNRS, INRIA, INPG and UJF.

done using environment mapping. While these techniques

perform quite well in a wide variety of cases, they have their

shortcomings. They perform best if the reflected object is at

a large distance from the reflector, but as the reflected ob-

ject moves closer to the specular reflector, reflection errors

become more visible. The worst case for environment map-

ping techniques is when the reflector is in contact with the

object being reflected, as in Figure 1. Environment mapping

technique also suffer from the parallax problem: from all the

points on the specular reflector, we are seeing the same side

of the reflected objects, even if the specular reflector is large

enough to see the different sides of an object.

In this paper, we present a new method for computing

specular reflections. Our method is vertex based: we com-

c© The Eurographics Association and Blackwell Publishing 2006. Published by Blackwell

Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,

MA 02148, USA.
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pute the accurate reflected position of each vertex in the

scene, then interpolate between these positions. The advan-

tage of our method is that it is computing the reflection of

the object depending on the position on the reflector. We are

therefore exhibiting all parallax effects, and we can handle

proximity and even contact between the reflector and the re-

flected objects.

However, our method also has obvious limitations: as it is

vertex-based and uses the graphics hardware for linear inter-

polation between the projections of the vertices, artifacts can

appear if the model is not finely tessellated enough. These

artifacts can be overcome using either adaptive tessellation

or curvilinear interpolation. If the model is finely tesselated,

these artifacts are not visible. Our algorithm provides solu-

tions for situations where no convincing solutions existed

before.

Our paper is organized as follows: in the next section, we

review previous work on real-time computation of specular

reflections. Then, in section 3, we present our algorithm for

computing vertex-based specular reflections on curved sur-

faces. In section 4, we present experiments on various scenes

and comparisons with existing methods. Finally, in section 5,

we conclude and present future directions for research.

2. Previous Works

Ray-tracing has historically been used to compute reflec-

tions on specular objects. Despite several advances using ei-

ther highly parallel computers [WSB01,WBWS01,WSS05]

or GPUs [CHH02, PBMH02], ray-tracing is not, currently,

available for real-time computations on a standard worksta-

tion.

Planar specular reflectors are easy to model, at the cost of

a second rendering pass, with a camera placed in the mir-

ror position of the viewpoint [McR96]. Curved reflectors are

more complex; the easiest method uses environment map-

ping [BN76].

Environment mapping computes an image of the scene

and maps it on the reflector as if it was located at an infi-

nite distance. The reflection only depends on the direction

of the incoming vector from the viewpoint, and can be eas-

ily computed in real-time on graphics hardware. Obviously,

environment mapping suffers from parallax issues, since the

reflection depends on a single image computed from a sin-

gle point of view. There is also the question of accuracy:

since all objects are assumed to be at an infinite distance,

their reflection is not necessarily accurate, and the difference

becomes larger as the object gets closer to the reflector.

There has been much research to improve the original en-

vironment mapping algorithm. To remove the parallax is-

sues, Martin and Popescu [MP04] interpolate between sev-

eral environment maps. Yu et al. [YYM05] used an envi-

ronment light-field, containing all the information of a light

field, but organized like an environment map. Both methods

remove parallax issues, at the cost of a longer precomputa-

tion time. The specular reflector is also restricted, and can

only be moved inside the area where the light field or the

environment maps were computed. If it is moved outside of

this area, the environment light field must be recomputed, a

costly step.

Other research have dealt with distance-based reflection.

The simplest method is to replace the infinite-radius sphere

associated with the environment map by a finite-radius

sphere [Bjo04]; the reflection changes with the position of

the reflector in the environment, but parallax effects can not

be modeled.

More accurate methods use the Z-buffer to compute a dis-

tance map along with the environment map. For each pixel of

the environment map, they know both its color and the dis-

tance to the center of the reflected object. Patow [Pat95] and

Kalos et al. [SKALP05] used this information to select the

proper pixel inside the environment map. Their reflections

change depending on the distance between the reflector and

the reflected object. Kalos et al. [SKALP05] use the GPU for

a fast computation of the reflected pixel, and achieve real-

time rendering for moderately complex scenes. Still, image

based methods are inherently limited to the information in-

cluded in the original image.

For planar reflectors, the easiest way to compute the re-

flection is vertex-based, using an alternative camera to com-

pute the image of the scene as reflected by the planar reflec-

tor. For curved reflectors, there is no simple rule to tell the

position of the reflection of the objects. Even for a finite-

radius sphere, the simplest specular reflector, the position of

the reflection depends on a 4th-order polynomial.

Mitchell and Hanrahan [MH92] used the equation of the

underlying surface to compute the characteristic points in the

caustic created by a curved reflector. Ofek [Ofe98] and Ofek

and Rappoport [OR98] computed the explosion map to find

intersected triangles ID based on the reflected vector. Chen

and Arvo [CA00b, CA00a] used ray-tracing to compute the

reflection of some vertices, then applied perturbation to these

reflections to compute the reflection of neighboring vertices.

Estalella et al. [EMD∗05] computed the reflection of scene

vertices on curved specular objects by an iterative method.

At each iteration, the position of the reflection of the ver-

tex is modified, using the angles between the normal, the

vertex and the viewpoint, in the direction where these an-

gles will follow Descartes’ law. They did a fixed number of

iterations, and have implemented the method only on the

CPU. In a subsequent work, developed concurrently with

ours, Estalella et al. [EMDT06] extended this work to the

GPU, searching the position of the reflection of the vertex in

image space.

Our method is comparable to that of Estalella et

al. [EMD∗05, EMDT06], but we use a different refinement

c© The Eurographics Association and Blackwell Publishing 2006.

240



D. Roger & N. Holzschuch / Accurate Specular Reflections in Real-Time

V

Specular 

reflector

E
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Figure 2: Finding the reflection of a given vertex

criterion, keeping geometric bounds on the reflected position

for robustness. We use these geometric bounds for adaptive

refinement, stopping the iteration as soon as we reach sub-

pixel accuracy. In our experience, these two elements are of

great importance: in all the scenes we used, we encountered

robustness-related issues, especially for reflections at graz-

ing angle. We also noticed that the number of iterations re-

quired to reach convergence varies greatly with the position

of the reflection.

3. Algorithm

3.1. Principles

Our algorithm is vertex-based: we compute the reflected po-

sition of all the scene vertices, then let the graphics hardware

interpolate between these vertices and solve visibility issues

with a Z-buffer. Our algorithm therefore inserts itself as a re-

placement for the usual projection of the vertices. Knowing

the position of the viewpoint, E, for each vertex V , we find

the point P on the specular reflector that corresponds to the

position of V (see Figure 2).

The difficult part in this algorithm is computing P as a

function of V and E. Except in the most basic case of planar

specular reflectors, there is no simple relationship between

P, V and E. Even for a sphere, the explicit position of P de-

pends on a polynomial of the fourth order; finding the roots

of this polynomial is feasible, but takes actually longer than

the iterative method we use.

According to Fermat’s principle, light travels along paths

of extremal length, so P must correspond to an extremum

of the optical path length ℓ = EP + PV . We are searching

for extrema of ℓ, or equivalently, for zeros of its first order

derivative, the gradient ∇ℓ.

This is an optimization problem, with a function of two

parameters (the surface of the specular reflector is a 2D man-

ifold). Usually, optimization problems are solved with line

search methods, such as the gradient descent or the con-

jugate gradient methods. These method progress iteratively

from an initial guess. At each step, they know the direction

in which they should progress, but not necessarily the dis-

tance along this direction. Knowing this distance accurately

requires knowledge about the second derivatives of the func-

tion.

Our application is inherently graphical: we are display-

ing the result of our computations on the screen, and chang-

ing parameters — the viewpoint, the reflected scene, the re-

flector — dynamically. One of the most important points

for such graphical applications is temporal coherency: the

reflection of one point must not change suddenly between

frames. We therefore need spatial information about the ac-

curacy of the computations: if we have not yet computed the

position of one point with sub-pixel accuracy, we run the risk

of seeing temporal discontinuities at the next frame. We also

observed in our experiences that the number of iterations re-

quired for convergence varies greatly with the configuration

of the vertex. Spatial information about convergence help in

adapting the number of iterations to the current case.

Line search methods typically use residuals to check the

numerical accuracy of the computations, but they do not pro-

vide information about the spatial accuracy. At each step,

we know the distance traveled from the previous step, but

this information is only linear. Since the reflector is a 2-

dimension surface, it can happen that the algorithm has

closed in on the result along one dimension, but is still far

from it on the other dimension.

The secant method searches for roots of one function f

by replacing it with a linear interpolation between samples,

picking the root of the linear interpolation and iterating.

While the secant method does not guarantee that the root

remains bracketed, it provides a good information about the

accuracy achieved so far, and converges faster than the sim-

pler bisection method. Newton’s method converges faster

than the secant method, but requires computing the deriva-

tive of f .

Since we are looking for zeros of ∇ℓ, we apply to it a

variant of the secant method. At each step, we maintain a

triangle of sample points where we compute ∇ℓ and linearly

interpolate between these gradients. At each step, the trian-

gle of sample points gives us approximate geometric bounds

on the projection of the vertex.

3.2. Algorithm for specular vertex reflection

Our algorithm for computing the reflection of a 3D scene in

a specular reflector uses the following steps:

1. render the scene into the framebuffer, with direct lighting

and shadowing;

2. for all vertices of the scene, find their reflection on the

specular reflector;

3. interpolate between these vertices, computing lighting

and doing hidden surface removal.

For each vertex, finding the position of its reflection is

done iteratively, using a variant of the secant method on the

gradient of the optical path length: at each step, we maintain

a triangle of sample points, and we:
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(a) Example of successive trian-

gles generated by our algorithm

(b) Example image rendered with our

algorithm

0

10

5

(c) Number of iterations required for conver-

gence

Figure 3: Convergence of our iterative system.

• compute the gradient of the optical path length for each

sample point (see section 3.3.2),

• linearly interpolate between these gradients,

• find the resulting gradient with the smallest norm (see sec-

tion 3.3.3).

• discard the original sample point with the largest gradi-

ent, replace it by the new sample point and iterate (see

Figure 3(a)).

At each step, the projected area of the triangle gives us an

indication of the accuracy of our computations. We stop the

computation if this area falls below a certain threshold.

Our method converges quickly in most cases, in 5 to 10

iterations in moderately complex cases but can require up

to 20 iterations for certain difficult points, such as vertices

whose reflection is close to the boundary of the reflector (see

Figure 3(c)).

The method is robust enough to converge even if the initial

set of sample points is poorly chosen. However, it converges

faster if the sample points are close to the actual solution.

Section 3.3.4 describes our strategy for picking the initial

sample points.

Once we have computed the reflection of each vertex, we

project it on the screen and let the graphics hardware does

linear interpolation between the vertices. We exploit the fact

that we know the spatial position of the point being reflected

to compute direction-dependent lighting (see Section 3.3.5).

Hidden surface removal requires special handling, as we

have several possible sources of occlusion: the scene and the

reflector may be hiding each other, parts of the reflector may

be hiding themselves, and parts of the reflected scene are

hiding other parts of the reflected scene. Section 3.3.6 de-

scribes our solution to these combined occlusion issues.

The entire algorithm was implemented on the GPU, using

programmable capabilities for vertex and fragment process-

ing. Hardware implementation issues are described in sec-

tion 3.3.7.

O u
r

r(θ,φ)

Figure 4: To reduce dimensionality, we assume that the re-

flector is star-shaped.

3.3. Details of the algorithm

3.3.1. Specular reflector parameterization

In order to provide interesting reflections, it is better if our

reflector is actually smooth. We also assume that it is pa-

rameterizable. Finally, to reduce the dimensionality of the

problem, we assume that the reflector is star-shaped: there is

a point O that is directly connected to all the points on the

surface of the reflector (see Figure 4).

This reduces the equation of the specular reflector to a

scalar function, r. Using spherical coordinates, for example,

all point P(θ, φ) on the receiver can be expressed as:

P(θ, φ) = O + r(θ, φ)ur with ur =





















sin θ cos φ

sin θ sin φ

cos θ





















For our algorithm, we will also need the variations of the

surface of the reflector: we also compute the derivatives of

the function r.

In a preliminary step, r and its partial derivatives are com-

puted and stored in a texture. Although our algorithm works

with any kind of reflector, the star-shaped hypothesis allows

us to retrieve all the required information about the specular

reflector at any given point with a single texture read. This

c© The Eurographics Association and Blackwell Publishing 2006.

242



D. Roger & N. Holzschuch / Accurate Specular Reflections in Real-Time

will be useful for implementing our algorithm efficiently on

the GPU.

Using spherical coordinates introduces singularities in the

parameterization, at the poles. To avoid numerical issues in

our computations, we do not use r or its partial derivatives

directly, but we only use 3-dimensional vectors such as P

or ∇r. All computations and interpolations are done in 3D

space, never in parameter space.

3.3.2. Optical path derivatives

Assuming we have a sample point on the surface of the

reflector, we can compute the length ℓ of the optical path

length from the viewpoint E to the vertex V through P (see

Figure 2):

ℓ = EP + PV

The gradient of the optical path length depends on the

derivative of point P on the reflector surface:

∇ℓ = ∇(EP) + ∇(PV)

∇ℓ = d(P)















−−→
EP

EP
+

−−→
PV

PV















Here d(P) is the derivative of point P, a linear form oper-

ating on a vector. With our parameterization of P on a star-

shaped reflector, d(P) is also reduced in dimension, and we

can express ∇ℓ as a function of ∇r:

∇ℓ = (∇r · e)ur + (uθ · e)uθ + (uφ · e)uφ (1)

with:

e =

−−→
EP

EP
+

−−→
PV

PV

uθ =





















cos θ cos φ

cos θ sinφ

− sin θ





















uφ =





















− sinφ

cos φ

0





















∇r can be expressed as a function of the partial deriva-

tives of r, but it is not actually necessary in our case. We are

storing information about r and its derivatives in a texture,

which will be accessed by the GPU. As a single texture read

gives access to 4 channels, we store r and its gradient ∇r,

saving computations.

3.3.3. Finding a better estimate for vertex reflection

At each step, we have a triangle of sample points (A, B,C).

For all points D, expressed in barycentric coordinates with

respect to (A, B,C):

D = αA + βB + (1 − α − β)C

we compute an approximation ∇̃dD the gradient of ℓ using

linear approximation:

∇̃dD = α∇dA + β∇dB + (1 − α − β)∇dC

= αa + βb + c

V

E

O

A
B

Figure 5: On a sphere, the reflection lies on the arc (A, B)

Ideally, we would like to select (α, β) such that ∇̃dD = 0.

However, this is not always possible, unless the vectors a, b

and c are linearly dependent. So we pick (α, β) so that ‖∇̃dD‖

is minimum: we derivate ‖∇̃dD‖
2 with respect to α and β,

and find (α, β) such that both derivatives are null. This is

equivalent to solving the linear system:

{

αa2 + β(a · b) + (a · c) = 0

α(a · b) + βb2 + (b · c) = 0

whose determinant is:

δ = a2b2 − (a · b)2

The (α, β) parameters give us a new point D. We discard the

point in (A, B,C) with the largest gradient and replace it with

point D, then iterate.

In some circumstances, the determinant δ of the system

can be null or very small, making the system ill-conditioned.

When it happens, we backtrack in time, replacing one of

the points {A, B,C} by the most recently discarded point. Of

course, we cannot replace the most recently added point, or

the system would enter an infinite loop.

3.3.4. Initialization

Our method is efficient and converges even if arbitrary sam-

ple points are used as a starting triangle. However, the con-

vergence is faster if the starting triangle is small and close to

the result. It is not necessary for our initial guess to actually

enclose the result, since our algorithm is able to extrapolate

outside the triangle if necessary.

For a spherical reflector, the reflection of a vertex V is in

the plane defined by V , the eye E and the center of the sphere

O. Ofek [Ofe98] shows that the reflected vertex is bound on

the arc of circle [AB] where A (resp. B) is the projection of

V (resp. E) on the reflector (see Figure 5).

For non-spherical reflectors, this property does not hold.

We nevertheless use A and B as as two of our initial points.

The third point C is chosen so that ABC is an equilateral

triangle.
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reflector
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Figure 6: Computing the illumination of the reflected scene:

illumination at the reflected point is computed using its

BRDF, with
−−→
VL and

−−→
VP as incoming and outgoing direc-

tions; it is then multiplied by the BRDF on the reflector, with
−−→
PV and

−−→
PE as incoming and outgoing directions.

E

P
P’

V’

V

Figure 7: For a ray originating from the eye, we have to re-

solve visibility issues both between P and P′, on the reflector,

and between V and V ′, on the reflected ray.

3.3.5. Direction-dependent lighting on the reflected

scene

When we display a fragment of the reflected scene, we

know its spatial position V and the approximate spatial posi-

tion of its reflection P. We use this information to compute

directionally-dependent lighting:

• compute illumination at point V , using its BRDF, with the

light source L as the incoming direction and the reflected

point P as the outgoing direction (see Figure 6).

• multiply this by the BRDF of the specular reflector at

point P, using the reflected point V as the incoming di-

rection, and the viewpoint E as the outgoing direction.

This simple rule allows us to have directional lighting on

the reflected scene. The lighting on the reflected scene is thus

not necessarily the same as the lighting on the original scene.

3.3.6. Multiple Hidden-Surface Removal

Hidden surface removal requires special handling, as we

have several possible sources of occlusion (see Figure 7):

the scene and the reflector may be occluding each other,

and we also have to conduct hidden-surface removal on the

reflected scene. The ideal solution would be to use several

depth buffers, or a multi-channel depth-buffer. As these are

not available, we have designed a workaround.

For each vertex V , when we compute its projection P,

we store in the depth buffer the distance between P and V .

This way, the Z-buffer of the graphics card naturally removes

fragments of the reflected scene that are hidden by other ob-

jects.

To solve the other occlusion issues, we use the following

strategy:

• pre-render the frontmost back-facing polygons of the re-

flector into a depth texture; clear the Z-buffer and frame-

buffer.

• render the scene, with lighting and shadowing; clear the

stencil-buffer.

• render the reflector, with hidden surface removal. For pix-

els that are touched by the reflector, set the stencil buffer

to 1.

• clear the depth buffer and render the reflected scene us-

ing our algorithm. The fragments generated are discarded

if the stencil buffer is not equal to 1 (using the classical

stencil test) and if they are further away than the back-

faces of the reflector (using the depth texture computed at

the first step).

• (optional) enable blending and render the reflector, com-

puting its illumination.

Our strategy correctly handles occlusions between the re-

flector and the scene (using the stencil test), as well as self

occlusion of the reflector, using the depth texture. Note that

we have to use frontmost back-facing polygons: using the

frontmost front-facing polygons would falsely remove all the

reflected scene for locally convex reflectors, since we are lin-

early interpolating between reflected points that are on the

surface of the reflector.

3.3.7. GPU implementation

We have implemented our algorithm on the GPU for better

efficiency. To compute the reflected position of one vertex,

we need access to the equation and derivatives of the spec-

ular reflector. Since we stored these in a texture to handle

arbitrary specular reflectors, this limits us to two possible

implementation strategies:

• place our algorithm in vertex shader, using graphics hard-

ware with vertex texture fetch (NVidia GeForce 6 and

above).

• place our algorithm in a fragment shader and render the

reflected positions of the vertices in a Vertex Buffer Ob-

ject. In a subsequent pass, render this VBO. This requires

hardware with render-to-vertex-buffer capability, which

was not available to us at the time of writing.
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We have used the first strategy, but found that it suffers

from several limitations: there are less vertex processing

units than fragment processing units on GPUs, so we are not

taking full advantage of its parallel engine; a texture fetch in

a vertex processor has a large latency; vertex processors can

not currently read from cube maps or rectangular textures,

forcing us to use square textures.

As pointed out by [EMD∗05], it makes sense to use a cube

map to store the information about the specular reflector,

since reflector information is queried based on a direction

vector d, as cube maps are. In the current implementation,

we have to convert the vector d into spherical coordinates

(θ, φ), a costly step.

An implementation of our algorithm using the second

strategy is likely to have much better rendering times, as well

as a simpler code.

4. Experiments and Comparisons

4.1. Comparison with other reflection methods

The strongest point of our algorithm is its ability to produce

reflections with great accuracy. Figure 1 and Figure 8 show,

for comparison, pictures generated with our algorithm, ray-

traced pictures for reference, and pictures generated with en-

vironment mapping. Our method handles all the reflection

issues, including contacts between the reflector and the re-

flected object. Differences between our method and the envi-

ronment mapping method especially appear for objects that

are close to the reflector, such as the hand in Figure 1 and the

handle of the kettle in Figure 8. Notice how the reflection of

the handle of the kettle appears to be flying in the reflection

of the room in Figure 8(c).

For objects that are close to the reflector, our algorithm

exhibits all the required parallax effects. One of the prob-

lems with environment mapping techniques is when objects

are visible from some parts of the reflector but not from its

center. In figure 9, our algorithm properly renders the back

of the chair.

Another strong point of our algorithm is its robustness and

temporal stability. As shown in the accompanying video, re-

flections computed by our algorithm exhibit great temporal

stability, without temporal aliasing. This property is essen-

tial for practical applications, such as video games.

4.2. Rendering speed

As we have seen in Figure 3(c), the number of iterations re-

quired for convergence depends greatly on the position of

the reflection. Reflections close to the center of the reflector

converge quickly, in less than 5 iterations, while reflections

of objects located close to the silhouette of the reflector take

longer to reach convergence.

As a consequence, the rendering time depends on the re-

spective position of the object and the reflector. We observe

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  10000  20000  30000  40000  50000  60000  70000

R
e

n
d

e
ri
n

g
 t

im
e

 (
m

s
)

Number of polygons

Our algorithm
Env. Map.

No Reflections

Figure 10: Observed rendering time (in ms) for render-

ing scenes, with no specular reflections, with environment-

mapping specular reflections and with our algorithm.

the worse timing results if the scene being reflected com-

pletely surrounds the reflector. In that case, many objects are

reflected on the silhouette, dragging the rendering process.

These scenes are also more interesting to render, which is

why we used them nevertheless in all our timings results.

Figure 10 shows the rendering times for scenes of various

sizes, surrounding the specular reflector. For comparison, we

plotted the rendering time for the scene, without specular re-

flections, with specular reflections simulated by environment

mapping and with specular reflections computed by our al-

gorithm. The extra cost introduced by our algorithm is al-

ways larger than that of environment maps, but it remains

within the same order of magnitude. We observe satisfying

performances for scenes up to 40,000 polygons, and we also

observe that rendering times depend linearly on the number

of vertices (all timings in this section were measured on a

2-processor Pentium IV, running at 3 GHz, with a NVidia

GeForce 7800 graphics card). We measure rendering times

in ms by taking the reciprocal of the observed framerate,

multiplied by 1000.

4.3. Robustness and early exit

As our method is based on a triangle of sample points and

uses the gradient of the optical path at each sample point, it

has several advantages:

• we make large steps if we are far from the solution,

and smaller steps as we approach the solution (see Fig-

ure 3(a)). This ensures faster convergence, even with poor

initial conditions.

• the method is remarkably robust, and converges even for

difficult cases, such as vertices reflected at grazing angles;

in that case, it takes longer to reach a converged solution,

but it reaches one, sometimes after more than 10 iterations

(see Figure 3(c)).
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(a) Our method (b) Ray traced reference (c) Environment mapping

Figure 8: Comparison of our results (left) with ray-tracing (center, for reference) and environment-mapping (right). The differ-

ence are especially visible for objects that are close to the kettle, such as its handle and the right hand of the character.

(a) Our algorithm (b) Environment mapping

Figure 9: Our algorithm is able to display objects that are not visible from the center of the reflector. Notice here how the back

of the chair is properly rendered.

We note that for simple cases, our method reaches con-

vergence very quickly (less than 5 iterations), while for dif-

ficult cases it requires more computations. As we are doing

our computations on the vertex processing units, the fact that

different vertices require different computation times is not

a big issue. In our tests, we found that using the early exit

greatly improved the speed of the computations compared

to using a fixed number of iterations.

Spatial consistency could become a larger issue if we

moved the computations to the fragment processing unit, but

we observe (see Figure 3(c)) that all the vertices from one

object have similar complexities; all these vertices should

take roughly the same computation time, ensuring that early

exit also works well in this situation.

4.4. Concave reflectors

Concave reflectors are a special case. As noted by [Ofe98,

OR98], concave reflectors divide space into three zones. Ob-

jects that are in the first zone, close to the reflector, are

reflected only once and upside-up. Objects that are in the

Figure 11: Example of a reflection with a concave reflec-

tor. As our algorithm only captures the first reflection of the

scene in the bowl, the top of the bowl looks empty.
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Figure 13: Example of Z-fighting when a small object is lay-

ered on top of a larger object.

third zone, far from the reflector, are reflected only once,

and upside-down (as in Figure 11). Objects that are in the

second zone, between the other two, can have several reflec-

tions, sometimes an infinite number, and their reflection is

numerically unstable.

As with [Ofe98, OR98], our algorithm properly handles

objects that are either completely in the first or the third

zone, but not objects that cross or are in the second zone.

In our experiments, another problem appeared: concave

objects are highly likely to cause secondary reflections (re-

flections with several bounces inside the specular reflector).

As our algorithm only captures the first reflection of the

scene by the specular reflector, the place where these sec-

ondary reflections should be looks empty.

4.5. Tesselation issues

One of the biggest drawback of our algorithm is that we are

only computing the exact reflection position at the vertices,

and we let the graphics hardware interpolate between the re-

flected positions. Currently, the graphics hardware is only

able to interpolate linearly. This has several consequences.

The first one is that the interpolated objects are located be-

hind the front face of the reflector if the reflector is locally

convex. Thus, the front face of the reflector would hide the

reflection. We had to ensure that the front face of the reflec-

tor was not present in the Z-buffer to avoid this problem.

The second one is that for objects that are not finely tesse-

lated, we see interpolation artifacts. These artifacts can either

be discontinuities between neighboring faces with different

levels of tessellation, or a reflection that looks straight, as

in Figure 12(a). The third consequence appears for thin ob-

jects layered on top of another, larger object (see Figure 13).

Because we are linearly interpolating Z-values as well as po-

sition, the back object may pop in front of the other object,

partially occluding it.

The solution to these issues would be to use curvilin-

ear interpolation, or adaptive tessellation. In the meantime,

we apply our algorithm to well-tessellated scenes (see Fig-

ure 12(b)). Note that curvilinear interpolation of depth val-

ues would be easier with current graphics hardware than

curvilinear interpolation in pixel space.

5. Conclusion and Future Works

We have presented an algorithm for computing reflections on

curved specular surfaces, using vertex-based computations.

Our algorithm produces realistic specular reflections in real-

time, showing all the required parallax effects. Our algorithm

is iterative, with an adaptive number of iterations, and has a

geometry-based criterion for deciding convergence.

In its current form, our algorithm uses linear interpolation

between the projections of the vertices, resulting in artifacts

for scenes that are not finely tessellated. Solutions to this

problem are either adaptive tessellation or curvilinear inter-

polation techniques.

The strongest point of our algorithm is that it can handle

arbitrary geometry on the reflector and the reflected object,

including contact between the two surfaces. It is for this sit-

uation — close proximity between the reflected object and

the reflector — that current environment-map methods do

not provide convincing results. We think that our algorithm

would be best used as a complement to existing methods,

handling the reflection of close objects, while environment-

map based methods would be used for the reflection of fur-

ther objects and the background.

As our algorithm provides a method to compute the re-

flected ray passing by two endpoints, it can be used for other

computations, such as caustics and refraction computations.
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(a) The bar is not tessellated, and its reflection is not curved —

as it should be.

(b) The problem disappears if we tessellate the bar.

Figure 12: The scene has to be well tesselated, or artifacts appear because we cannot render curved triangles.
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Wavelet Radiance Transport for Interactive Indirect Lighting

Janne Kontkanen1, Emmanuel Turquin2, Nicolas Holzschuch2 and François X. Sillion2

1Helsinki University of Technology 2ARTIS† GRAVIR/IMAG INRIA

Maze scene Direct lighting Indirect lighting Complete illumination

Figure 1: This scene is rendererd 15 FPS by our system with full global illumination. The light sources (spotlights) and the
viewpoint can be modified interactively. The precomputation time was 23 minutes.

Abstract
Global illumination is a complex all-frequency phenomenon including subtle effects caused by indirect lighting.
Computing global illumination interactively for dynamic lighting conditions has many potential applications,
notably in architecture, motion pictures and computer games. It remains a challenging issue, despite the consid-
erable amount of research work devoted to finding efficient methods. This paper presents a novel method for fast
computation of indirect lighting; combined with a separate calculation of direct lighting, we provide interactive
global illumination for scenes with diffuse and glossy materials, and arbitrarily distributed point light sources. To
achieve this goal, we introduce three new tools: a 4D wavelet basis for concise radiance expression, an efficient
hierarchical pre-computation of the Global Transport Operator representing the entire propagation of radiance in
the scene in a single operation, and a run-time projection of direct lighting on to our wavelet basis. The resulting
technique allows unprecedented freedom in the interactive manipulation of lighting for static scenes.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Illumination simulation methods have many interesting ap-
plications, for example in architectural design, lighting de-
sign, computer games or motion pictures. These applica-
tions make use of global illumination algorithms, known for
their high computational demands, and would greatly benefit
from improved interactivity. We note that these applications
are often dealing with indoor scenes, illuminated by local
light sources whose position and orientation are subject to

† ARTIS is a research project in the GRAVIR/IMAG laboratory, a
joint unit of CNRS, INPG, INRIA and UJF.

change. In this specific setup, interactive global illumination
remains a particularly challenging issue.

However, by taking advantage of the linearity of the ren-
dering equation it is possible to precompute light transport
offline, and to use this data during run-time to obtain con-
vincing global illumination effects: Precomputed Radiance
Transport methods (PRT) [SKS02, Leh04] precompute the
relationship between the emitted light and the radiance out-
going from the surfaces of the scene. In order to keep the
complexity manageable, these methods usually express the
emission in a low dimensional basis. The most common way
to do this is to consider only infinitely distant lighting, and
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thus reduce the dimensionality of the emission to 2. Yet, lo-
cal light sources (a.k.a. near-field illumination) have 5 de-
grees of freedom, that can be narrowed down to 4 without
loss of generality if we consider that light travels through
a vacuum; this high dimensionality tends to make classical
PRT methods extremely costly.

In this paper, we present a technique for interactive com-
putation of global illumination in static scenes with dif-
fuse and glossy materials, and arbitrarily placed dynamic
point/spotlights. Our algorithm uses a precomputed Global
Transport Operator that expresses the relationship between
incident and outgoing surface radiance. During run-time we
project the direct light form the light sources to the surfaces,
and apply this precomputed operator to get full global illu-
mination. Rather than following the common compute, then
compress scheme, we try to generate the operator directly in
a compact representation.

Our contributions are: a new 4D wavelet basis for compact
representation of radiance, a method to efficiently compute
the Global Transport Operator, greatly speeding up the pre-
computation time, and a method to efficiently project direct
lighting from point light sources on our hierarchical basis at
runtime. These three contributions, combined together, re-
sult in interactive manipulation of light sources, with imme-
diately visible results in the global lighting.

The most noticeable limitation of our approach is directly
linked to a well-known problem of finite-element methods
for global illumination: our basis functions have to be ex-
pressed on the surfaces of the scene. Incidentally, our ex-
ample scenes are exclusively composed of large quads. An-
other important limitation is that BRDFs must be relatively
low-frequency to be efficiently representable in our wavelet
basis.

2. Previous work

Global illumination has been the subject of research in Com-
puter Graphics for decades. Dutré et al. [DBB03] give a
complete survey of the state-of-the art of global illumina-
tion techniques. There have been plentiful research efforts to
speed up global illumination computations and achieve real-
time or interactive framerates.

Ray-tracing has been ported to the GPU [PBMH02,
PDC∗03] or to specific architectures [WSB01,SWS05]. The
same has been done with the radiosity algorithm [Kel97,
CHL04], while others use the GPU for fast computation of
hierarchical form-factors [LMM05].

Nijasure et al. [NPG05] compute a representation of the
incident radiance at several sample points sparsely covering
the volume enclosed by the scene. Incident radiance is stored
using spherical harmonics. Spherical harmonics coefficients
are interpolated between the sample points and applied to the
surfaces of the scene. The system can be iterated to compute

multiple bounces of light, at the expense of rendering time.
This approach can be seen as a dynamic generalization of
Greger’s irradiance volumes [GSHG98].

Dachsbacher and Stamminger [DS06] introduce an ex-
tended shadow map to create first-bounce indirect light
sources. They splat the contribution of these sampled
sources onto the final image using deferred shading. They
only compute the first indirect light bounce, without taking
visibility into account. Nevertheless, they observe that the
results look plausible in most situations.

Despite using GPUs or even custom hardware, the above
methods currently barely run interactively, unless they re-
strict themselves to small scenes or degrade the accuracy of
the simulation.

In a separate research direction, PRT techniques [Leh04]
precompute light exchanges and store the relationship be-
tween incoming lighting and outgoing global illumination
on the surface of an object. The result of these precomputa-
tions, the light transport operator, is compressed and used at
runtime for interactive display of global illumination. Most
PRT techniques start by precomputing the light transport op-
erator with great accuracy, then compress it, typically using
clustered principal component analysis [SHHS03].

The cost of the uncompressed light transport is directly
related to the degrees of freedom (DOF) n in the operator,
growing with O(kn). As discussed in section 1, the general
expression for emission space, assuming no participating
media, has 4 DOF. Given that the outgoing surface radiance
also has 4, the general form of the operator end up with 8
DOF.

To keep memory and precomputation costs tractable, most
PRT techniques somehow restrict these degrees of free-
dom. It is generally achieved by assuming infinitely distant
lighting, as done Sloan et al. [SKS02] and many others.
Another option is to fix the locations of the light sources
in space [DKNY95]. Yet another one is to fix the view-
point [NRH03]: in this work, Ng et al. demonstrate that
all-frequency lighting from an infinitely distant environment
can be rendered efficiently by using a light transport opera-
tor expressed in Haar wavelet basis and non-linearly com-
pressed. The fixed viewpoint restriction applies when the
scene contains glossy materials. In a subsequent publica-
tion [NRH04] the authors remove this restriction by intro-
ducing triple wavelet product integrals. As a result they
are able to generate high quality pictures that solve the 6-
dimensional transport problem, but not with real-time or in-
teractive rates.

Haar wavelets have succesfully been used by oth-
ers [LSSS04, WTL06] to efficiently express all-frequency
transport from detailed environment maps to glossy surfaces.
These method utilize separable decomposition, consisting of
a purely light-dependent term and a purely view-dependent
term.
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The approaches closest to ours are those of Kristensen
et al. [KAMJ05] and Hasan et al. [HPB06]. Both consider
static scenes under near-field illumination, and they sepa-
rate the computation of direct lighting, done on the fly us-
ing standard GPU-based methods, and indirect lighting pre-
computed on some specific basis functions. Kristensen et
al. [KAMJ05] use a 3D unstructured point cloud basis, pre-
computing radiance transport from this basis to the surfaces
of the scene. At run-time, uniform point light sources are
projected onto the point-cloud basis, then they apply the pre-
computed transport operator to obtain indirect illumination
on the surfaces.

In a work concurrent to ours, Hasan et al. [HPB06] pre-
compute direct-to-indirect transport corresponding to our
GTO and express it in wavelet basis. The receiving basis
consist in the visible pixels, and the sending basis is build
by distributing point samples into the scene, which are then
hierarchically clustered. a preprocess. Each of these meth-
ods presents different limitations: the former is restricted
to omni-directional point lights, and the later renders high-
quality pictures but only for diffuse-to-diffuse indirect trans-
fer (although the last reflection can be arbitrarily glossy) and
fixed viewpoint. As a comparison, our method doesn’t suffer
from these restrictions, but is limited to simple geometry and
works best with diffuse materials.

A common problem to many of the existing PRT methods
is their fairly inefficient approach to precomputation. A lot of
information computed during this step is discarded during a
subsequent compression stage. One of our main concerns is
precisely to avoid unnecessary computations and rather try
to directly generate a concise operator (Hasan et al. share
this objective). This way, we greatly reduce the memory
cost and computation time for the precomputation step. We
show clear improvement in precomputation times compared
to Kristensen et al., but as stated earlier, our finite element
approach also brings restrictions not present in their work.

Our work draws inspiration from hierarchical finite ele-
ment methods for global illumination [HSA91, GSCH93].
Wavelet and hierarchical algorithms adapt the solution to
the geometry and lighting conditions: a coarse resolution is
used where the illumination is smooth, and a finer resolution
when there are sharp variations.

In our precomputation, we adopt some of the solutions
used in Wavelet Radiance [CSSD94,CSSD96] which solves
global illumination using a hierarchical 4D wavelet basis.
Wavelet Radiance uses non-standard decomposition to rep-
resent surface radiance, but a standard decomposition for the
transport operator. The latter enables direct computation of
the transfer coefficients without needing a push-pull step.

3. Overview of the algorithm

Our method takes as input the geometric definition of a static
and easily parametrized scene (e.g. composed by quads), and

(a) Standard refinement (b) Non-standard refinement

Figure 2: Forming multi-dimensional wavelet basis.

provides interactive visualization of global illumination ef-
fects in this scene under dynamic local lighting. We compute
a 4D wavelet representation of indirect radiance on the sur-
faces of the scene. Our technique can be split into two high-
level components: an offline component for precomputing
the light transport operator, and a run-time component for
rendering indirect lighting using this operator.

The run-time component uses the precomputed transport
operator to interactively render global illumination:

1. Project direct lighting onto our wavelet basis.
2. Apply the precomputed global transport operator, result-

ing in indirect lighting, expressed in our wavelet basis.
3. Convert this result to outgoing radiance, and blend with

direct lighting.

We treat direct lighting separately because it contains sharp
details that are best rendered using specific techniques. Our
run-time component is explained in section 5.

The offline component consists of these two steps:

1. Compute a Direct Transport Operator (DTO) for the
scene. The DTO expresses the propagation of light inside
the scene, and corresponds to a single bounce of light.

2. Compute a Global Transport Operator (GTO) using the
DTO. The GTO expresses the full radiance propagation
inside the scene, i.e. an infinite number of light bounces.

For efficient computation and compact representation, we
express the operators in wavelet basis. Our bases for express-
ing the surface radiance and the operators are described in
section 4.2. The computation of the DTO is explained in de-
tail in section 4.3. In section 4.4 we discuss how the DTO
can be used to efficiently compute the GTO using Neumann
series and non-linear compression.

4. Offline component

4.1. Wavelet Basis for Surface Radiance

Surface radiance is a 4-dimensional function: two dimen-
sions for the surface location and two dimensions for the di-
rection. Because of its 4D nature, storing a tabulated version
of surface radiance is prohibitively costly. This problem is
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even more pronounced for the 8-dimensional transport oper-
ator that expresses the radiance transport between surfaces.

An efficient expression and computation of the transport
operator highly benefits from a hierarchical representation;
hence we chose wavelets as our basis functions. We elected
Haar wavelets for their computational simplicity, but our
algorithm can be applied to any type of tree wavelet ba-
sis [GSCH93].

The building blocks of Haar basis are the following
smooth function φ and wavelet ψ:

φ(x) =

{

1 for 0 ≤ x < 1
0 otherwise

ψ(x) =



















1 for 0 ≤ x < 1/2
−1 for 1/2 ≤ x < 1

0 otherwise

(1)

All the wavelets and smooth functions of Haar basis are
formed by scales and translates of the above elementary
functions as follows:

φi
j = φ(2ix− j),ψi

j = ψ(2ix− j) (2)

Where i gives the scale, and j gives the translation. For com-
prehensive introduction to Haar wavelets and wavelets in
general we refer to [SDS96].

Multi-dimensional wavelet bases are usually formed by
combining one-dimension wavelet bases. There are two sys-
tems for creating multi-dimensional wavelet bases: the stan-
dard refinement (see Figure 2a), where the dimensions are
refined separately, and the non-standard refinement (see Fig-
ure 2b), where refinement is performed alternatively along
all dimensions.

The non-standard refinement method merges together the
different dimensions, treating them equally. As a conse-
quence, it is more widely used in fields such as Image Anal-
ysis and Image Synthesis, where the two spatial dimensions
serve an equal purpose.

For Radiance computations, the spatial and angular di-
mensions are not equivalent. A surface can exhibit large vari-
ations on the spatial domain and be more continuous over
the angular domain, and linking the resolutions of the spa-
tial and angular dimensions is not always efficient. For this
reason, we decouple the spatial and angular domains, using
standard refinement between these dimensions. For the 2D
sub-domains for angular and spatial dimensions, we still use
non-standard refinement. Our wavelet basis for 4D radiance
therefore uses a combination of standard and non-standard
refinement.

For the angular domain, the hemisphere of directions is
mapped to the unit square using a cosine-weighted concen-
tric map [SC97]; we then apply wavelet analysis over the
unit square. Using this mapping allows pre-integrated cosine
on the hemisphere of directions, with a low angular distor-
tion and constant area mapping.

r r

s a

s s

s a

Figure 3: Light transport from sending basis function
bs

s(y)bs
a(ω) to receiving basis function br

s(x)br
a(α).

4.2. Wavelet Basis for Transport Operator

The projected transport operator consists of coefficients that
describe the influence of each basis function to all the other
ones. The non-standard operator decomposition is a more
common choice in hierarchical radiosity, as in theory it gives
a more compact representation than standard decomposition.
In spite of this we chose to follow [CSSD94] and used stan-
dard operator decomposition. We see two advantages in us-
ing the standard decomposition: it decouples the resolution
for sender and receiver, and there is no need for a push-pull
step. The former is an obvious advantage, for example when
the sender and receiver differ greatly in size or in complexity.

The latter requires an explanation: conventional global il-
lumination methods, using the non-standard representation,
require a push-pull step between light bounces [HSA91].
For these methods, the cost of the push-pull step is not pro-
hibitive. However, we are using the DTO to compute the
Global Transport Operator, using Neumann series (see sec-
tion 4.4). During this computation, we perform several mul-
tiplications between operators. During these operator multi-
plications, the fact that we do not require a push-pull step
greatly accelerates the computation.

4.3. Direct Transport Operator

We compute the Direct Transport Operator to express a sin-
gle bounce of light. As we are going to conduct operator
multiplications, we require the output space of the DTO to
be equal to its input space. This leaves a choice: either we
express the DTO in terms of incident radiance or in terms of
outgoing radiance. We chose to use the incident form of the
Direct Transport Operator.

The incident form of the Direct Transport Operator is de-
fined as follows:

(T L)(x, x← y) =
∫

fr(ω, y, y→ x)V(x, y)⌊ω · ny⌋L(y,ω)dω

(3)

The transport operator maps the incident radiance arriving
to location y from direction ω to incident radiance at another
location x from direction x← y. Given a certain distribution
of incident radiance, applying this operator once gives the
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distribution of light that has been reflected once from the
surfaces of the scene. Here fr refers to BRDF and V to the
visibility term. Along with the ⌊ω · ny⌋ term, they form the
kernel k(x, y,ω) of the light transport operator.

The projected form of the transport operator is obtained
by integrating the 6D kernel against each 8D wavelet, in a
similar fashion to [CSSD94]:
∫

K(x, y,ω)bs
s(y)bs

a(ω)br
s(x)br

a(x← y)dωdxdy (4)

Where K(x, y,ω) = k(x, y,ω)
⌊x←y·ny⌋

r2
xy

and br
s,b

r
a,b

s
s and bs

a

refer to the elementary non-standard basis functions of re-
ceiving spatial, receiving angular, sending spatial and send-
ing angular dimensions, respectively (see section 4.1). x and
y are integrated over surfaces, while ω is integrated over the
hemisphere oriented according to corresponding surface nor-
mal. For a visual illustration, see Figure 3.

In the context of light transport, a wavelet coefficient ob-
tained from Equation 4 has traditionally been called a link.
We will use this term to refer to a group of coefficients for
8D basis functions sharing the same support on all 2D sub-
spaces. In practice, this means that each link corresponds to
255 wavelets and a single smooth function coefficient. This
can be seen by considering that each 2D sub-space has 4 el-
ementary non-standard basis functions that share the same
support, and 44 = 256. As an example of elementary 2D
functions, see the four functions in the lower left corner of
Figure 2b.

We compute the Direct Transport Operator by progres-
sively refining the existing links. We start by creating inter-
actions between coarsest level basis functions in the scene,
and then refine these. At each step, we consider 256 ba-
sis function coefficients. Note, however, that not all the 256
coefficients are stored. We only store the necessary parts
of link: a link between two diffuse surfaces does not need
wavelets in angular domain. In practice, each link contains
between 1 and 256 wavelet coeffients depending on its type.

A refinement oracle (see section 4.3.2) tells us whether
a link needs to be refined. For each link it has a choice to
refine in any of the 2D sub-domains (spatial receiver, angu-
lar receiver, spatial sender, angular sender). The refinement
oracle may independently choose each option, possibly re-
fining both the sender and the receiver in space and angle, or
simply refining the receiver in space, or any combination.

When the link is refined, we create the child wavelets, and
recursively consider each newly created link. Consider a re-
finement of one of the spatial basis functions: when a spa-
tial basis function is refined, four new child links are created
(spatial patch is divided into four child patches). However,
when two of the 2D sub-domains are refined, there will be
4×4= 16 child links to consider, and finally if all the dimen-
sions are refined 44 = 256 child links are created.

When performing progressive refinement in standard ba-

sis, the refinement may arrive at a certain link from several
parent links. This means that when we chose the standard
method for combining dimensions in our 8D basis, we par-
tially lost the tree-property of our basis.

However, we use the same solution for the problem as
was used in the conventional wavelet radiance [CSSD94].
If, in the refinement process, we arrive at a 8D wavelet coef-
ficient that has already been visited, we terminate the traver-
sal. The difference with conventional wavelet radiance is that
we have four independent subspaces instead of two.

An important point in our algorithm is that, as with
Wavelet Radiance [CSSD94], we are computing wavelet
transport coefficients directly between wavelet coefficients,
not between smooth functions. This eliminates the need for
push-pull step.

4.3.1. Numerical Integration

The actual coefficients corresponding to each link are com-
puted by generating quasi-randomly distributed samples in
the support area of the link. Thus, we are computing Equa-
tion 4 by quasi-Monte Carlo integration.

The coefficients of the coarsest links are difficult to com-
pute accurately without a significantly large amount of sam-
ples. On the other hand the finer scale wavelets do not re-
quire as many samples since within a smaller support the
kernel does not deviate as much. Because of this we adopt
the adaptive integration procedure used in Wavelet Radi-
ance [CSSD94]: we first refine the link structure to the finest
level and then perform a wavelet transform to compute the
coarser links in terms of the finer ones. As a result, only
the finest scale wavelet coefficients are computed directly. In
our implementation, this procedure is done during a single
recursive visit.

4.3.2. Refinement Oracle

The refinement oracle considers each link, i.e. a cluster of
coefficients of wavelets sharing the same support at the time.
It works by testing quasi-random samples of the kernel, and
using explicit knowledge of the BRDF. If the oracle finds
that the operator is smooth, then the refinement stops and the
kernel samples are used to compute the wavelet coefficients.

At each refinement step, the refinement oracle has to se-
lect whether to refine the sender or the receiver, or both, and
whether to refine them spatially or angularly, or both. Thus,
the oracle can refine between 0 to 4 dimensions, resulting in
16 possible combinations. The ability to make an indepen-
dent refinement decision in each sub-space is a consequence
of using standard refinement as described in sections 4.1
and 4.2.

The decision to refine the interaction in the angular do-
main is based solely on the BRDFs of the sender and re-
ceiver, unless the sender and the receiver are mutually invis-
ible, in which case the interaction is not refined. The basis
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functions are mutually invisible if no unobstructed ray can
be generated between the supports of the sender and the re-
ceiver. Note that this can happen even if the spatial basis
functions are not mutually occluded, but the angular support
of the sending basis function is oriented in such a way that it
does not point towards the receiving basis function.

Diffuse surfaces are never subdivided angularly. For an
arbitrarily glossy BRDF, the maximum level of angular sub-
division depends on the resolution of its wavelet represen-
tation. Note that at this point of the algorithm, the wavelet
representation is only used to control the refinement reso-
lution, whereas the kernel samples are evaluated using the
original, possibly analytic representation of the BRDF.

Spatial refinement is based on the kernel deviation esti-
mated on the samples. To take advantage of the standard op-
erator decomposition, i.e. the ability to refine the sender and
receiver independently, we apply the following heuristics:

• Refine sender if (max(K)−min(K))As > ǫs

• Refine receiver if (max(K)−min(K))Ar > ǫr

With K as defined in Equation 4; As, Ar refer to the surface
areas covered by the supports of the basis functions; and ǫs,
ǫr to the user selected thresholds. We use separate thresh-
olds for sending and receiving refinement, since it is use-
ful to generate asymmetrically refined matrices, where the
sending basis functions are coarser than the receiving (see
section 4.4).

4.4. Global Transport Operator

Having computed the direct transport operator T , which ex-
presses a single bounce of light transfer between the surfaces
in the scene, we use it to compute the global transport oper-
ator, using the Neumann series:

G = I+T +T 2 +T 3 +T 4 + ...

The global transport operator expresses the relationship be-
tween the converged incident lighting and the incoming in-
cident lighting. G is computed iteratively, from T . At each
step, we compute T n+1 = T nT .

The computation of above series is rather expensive using
a high resolution representation of T , since in the end all
the basis functions interact with each other (unless the scene
consists of separate local environments with no mutual vis-
ibility to each other). For this reason, we aggressively com-
press the matrices during the computation: after each com-
putation of T n, we apply non-linear compression to the re-
sult, removing all coefficients below a certain threshold.

Because of the compression, the number of coefficients in
T n decreases when n increases (see Figure 6). We stop the
computation when all the coefficients in T n are smaller than
our threshold, which in our experiments required up to ten
iterations. To speed-up the computations, we pre-multiply
by the sparsest matrix, computing T n times T .

E = 0.1555 E = 0.0093

E = 0.0216 E = 0.0013

E = 0.0025 E = 0.0002
Original GTO Multiplied by fine DTO

Figure 4: Multiplying the GTO by the original fine-
resolution DTO (right) improves the visual quality compared
to the original GTO (left). Notice that even with a larger nu-
merical error, the gathered GTO gives a more pleasing result
(compare upper right corner with lower left corner). Error
E refers to the sum of squared differences of wavelet coeffi-
cients when compared to uncompressed GTO.

After a coarse GTO has been computed, we still perform
one more step to improve the results: we multiply the series
by the original fine-resolution DTO from the left. This opera-
tion can be thought as a kind of final gathering that improves
the visual aspect of the result by using higher resolution rep-
resentation for the last bounce before the light meets the eye
(see Figure 4), in the same spirit as Hasan et al. [HPB06].

5. Run-time component

The run-time component of our method works as follows:

1. Project direct lighting on the wavelet basis defined on the
surfaces of the scene (section 5.1).

2. Use the precomputed GTO to transform the projected di-
rect light to the converged incident radiance (section 5.2).

3. Transform incident radiance into outgoing radiance by
applying the BRDF of the surfaces (section 5.3).

4. Render the indirect light using the wavelet basis and com-
bine it with direct light computed separately (section 5.4).
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5.1. Direct Light Projection

In order to use the GTO to generate indirect lighting, we
need to project the light from the dynamic light sources to
the 4D radiance basis defined on the surfaces of the scene.

For each light source and for each surface of the scene,
our method proceeds as follows:

1. Estimate the level of precision required.
2. Compute all the smooth coefficients at this level of preci-

sion, by integrating direct lighting on the support of each
coefficient.

3. Perform a wavelet transform on these smooth coeffi-
cients to compute the wavelet coefficients, then discard
the smooth coefficients. This generates a wavelet rep-
resentation of the direct light on all the surfaces of the
scene.

This projection of direct lighting onto our wavelet basis
is fundamental for interactive rendering, so it is important to
perform these computations efficiently. Unfortunately, step
2 involves computing direct lighting for all the smooth coef-
ficients, a costly step for arbitrary light sources.

To estimate the level of precision required (step 1), we
look at the solid angle subtended by the geometry of the ob-
ject, multiplied by the intensity of the light source in the di-
rection of the object.

The computation of the smooth coefficients (step 2) in-
volves computing direct lighting in the scene, including visi-
bility between the light source and the support of the smooth
coefficient. In our implementation, we tried both area light
sources and point light sources, but we found that only
point light sources were currently compatible with interac-
tive framerates.

For point light sources, we compute the visibility using
occlusion queries, i.e. we render the smooth functions from
the view of light source using GL_ARB_occlusion_query ex-
tension of OpenGL, and estimate the solid angle each basis
function subtends based on the number of visible pixels. Our
current implementation only supports direct light projection
to directionally smooth basis functions. This means that di-
rect light falling on a specular surface gets reflected as if the
surface was diffuse.

To benefit from our sparse wavelet representation for sur-
face radiance, the elements need to be dynamically (de-
)allocated. To avoid an excessive amount of dynamic mem-
ory management we use the following method: before pro-
jecting the direct light at each frame we set the existing al-
located coefficients to zero. Then we project the light as de-
scribed, and after the projection we de-allocate the entries
that are still null. This minimizes the amount of dynamic al-
locations and de-allocations required during run-time.

5.2. Application of the GTO

Once we have a wavelet projected representation of direct
incident lighting, we multiply it by the GTO to give the con-
verged incident radiance:

X = GE

where E represents the projected direct light, G is the GTO,
and X is the resulting converged incident radiance. All the
wavelet representations above are in sparse format, so that
only non-zero coefficients are stored.

For efficient multiplication, it is important to take advan-
tage of the sparseness of E: typically the direct light can be
expressed with a small number of wavelet coefficients, since
it is often either spatially localized or falling from a far away
light source, in which case only coarse basis functions are
present in E. We perform the multiplication by considering
only the non-zero element of E and accumulating the results
to X.

We use the same technique to minimize the amount of
dynamic memory allocations in X as we used for computing
E (section 5.1).

5.3. Multiplication by the BRDF

X represents the incident indirect radiance, and yet we need
the outgoing radiance for display. Thus, we need a final mul-
tiplication by the BRDF. In our implementation, we asso-
ciate a wavelet representation of the BRDF with each surface
of the scene and this step simply translates into a multipli-
cation in wavelet space. Note that we use the same wavelet
representation that the oracle uses to determine the angular
refinement (section 4.3.2).

5.4. Rendering from the Wavelet Basis

To generate the final view for the user, we first render the
scene representing the indirect light, and then additively
blend in the direct light using standard techniques.

The indirect light is synthesized from the 4D wavelet ba-
sis to textures using the CPU. Then the whole scene is drawn
using standard texture mapping and optionally bi-linear fil-
tering (results without this filtering can be seen in Figure 4).

To get rid of the discontinuities that would appear between
neighboring coarse level quads, we use border texels (sup-
ported by standard graphics hardware) to ensure a smooth
reconstructed result across the edges of quads.

Each quad is associated with its own texture, and thus it
is possible to use a specific texture resolution for each quad.
In our current implementation we select the texture resolu-
tion according to the maximum of the spatial and angular
resolutions present in the wavelet basis.

The texture synthesis is performed by traversing all non-
zero wavelet coefficients for a given quad. For performance,
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Figure 5: For texture synthesis, we traverse the wavelet hi-
erarchy in the order shown here. We terminate the angu-
lar traversal as soon as we detect that the angular sub-tree
points away from the viewer.
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Figure 6: Number of non-zero entries in DTOn, as a func-
tion of number of bounces n, depending on the threshold
used for wavelet compression, for the maze scene.

we exploit our knowledge of the view direction and avoid
traversing the subtrees of wavelets that do not point towards
the eye: we traverse the wavelet hierarchy first in spatial or-
der, then in angular order (see Figure 5), and terminate the
angular traversal if we detect that the whole subtree points
away from the viewer.

6. Experiments and comparison

We computed the GTO at different resolutions for three dif-
ferent scenes: the Cornell box, a maze and a simple scene
for testing glossy illumination (see Figure 10). The results
are summarized in Table 1. As can be seen, all the results
run either in real-time or at least at interactive framerates.

6.1. Offline component

The most important result is the speed of the precomputa-
tion step. For comparison, the maze scene we used is an ex-
act replica of the scene used by Kristensen et al. [KAMJ05].
The time it takes for our method to compute the GTO on this
scene varies between 24 and 74 minutes depending on the re-
quired quality. Kristensen et al. report a precomputation time
of 6.5 hours on a cluster of 32 PCs. Since their method is eas-
ily parallelizable, we may assume that the performance is al-
most linear with the number of machines, translating into a
total computation time of approximately 8 days using a sin-
gle PC. The comparison is based on a visual judgement. For
more exact evaluation, a numerical error metric would need
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Figure 7: GTO error in the maze scene as a function of the
threshold on wavelet coefficients.

to be used. Nevertheless, we believe it is fair to say that our
method performs the precomputation faster.

This acceleration comes from our algorithm’s ability to
avoid the computation of unnecessary data. All the informa-
tion computed during the pre-processing step is used for the
runtime computation of indirect lighting. On the other hand,
our technique suffers from well-known issues in finite el-
ement methods: we need a parameterization of our scene,
which restricted us to easily parametrizable surfaces (quads
in our current implementation).

Our precomputation time is dominated by the hierarchi-
cal refinement to compute the DTO, while the Neumann se-
ries evaluation to compute the GTO is relatively fast. The
threshold used for non-linear wavelet compression in the
GTO computations has an immediate impact on the memory
cost of our algorithm (see Figure 6): not using compression
in the maze scene results in approximately 2 million links
stored. As each link stores 9 to 16 wavelet coefficients in
floating point and in three channels, the average cost of a
link is 150 bytes. Thus these 2 million links correspond to
approximately 300 Mb which is not practical for real-time
use.

Even a very small threshold (ǫ = 10−6) on our wavelet co-
efficients brings the number of links down to 400,000, cor-
responding to memory cost of 60 Mb. A more aggressive
compression (ǫ = 10−4) further divides these numbers by 6,
bringing the memory cost to 10 Mb.

We checked the relationship between the level of wavelet
compression used on the GTO and the error we make on the
operator. We tested both the standard GTO and the “gath-
ered GTO”, where the GTO is premultiplied by the origi-
nal, fine-resolution DTO. Using the non-compressed opera-
tor as a reference, we computed the error as a function of the
threshold used for compression (see Figure 7). The error on
both operators decreases regularly with the threshold, with
the error on the gathered GTO being consistently smaller
than the error on the standard GTO.

We also checked the relationship between the memory
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Table 1: Summary of the performance of our algorithm. All matrices were computed with a single 3 GHz Pentium 4.

C C H- M M H- G G H-
tDTO (precomp.) 2min 25min 23min 1h 12min 1min 9min
tGTO (precomp.) <1s 2s 40s 1min <1s 1min
FPS (run-time) 60 25 15 7 8 3
Links DTO 3477 30366 65501 288628 4260 36778
Links GTO 418 648 24151 24599 1712 34176
Links gathered GTO 14169 53100 164813 589361 44383 195037
Memory cons. in MB 1.7 6.4 19.7 70 5.3 23.4
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Figure 8: Memory cost of the GTO as a function of the error
on the operator (maze scene).

cost of the GTO and the error it represents (see Figure 8).
For both versions of the GTO, the error decreases as the
memory cost increases. We observe that, surprisingly, the
GTO outperforms the gathered GTO: for a given error, it
always provides a more compact representation of the oper-
ator. Even so, this compact representation does not always
translate into visual quality (see Figure 4): comparing the
two representations of the GTO with similar error levels, we
found that the gathered GTO gives better visual results. The
non-linear compression we used for computing the GTO re-
moves links based on the energy they represent. However,
the visual quality of the image is not directly linked to en-
ergy levels, but also to other spatial information.

6.2. Runtime component

We analyzed the performance of our runtime component.
Timings for each step can be seen on Figure 9. We tried two
different scenes, each of them with a different level of com-
pression of the GTO. All these rendering times correspond
to observed framerates.

Computations related to direct lighting only dependent on
scene complexity, as the projection of direct lighting does
not depend on the accuracy on the GTO. Computing the pro-
jection of direct lighting is about as expensive as the compu-
tation of visible direct lighting on the GPU.

Not surprisingly, the computations related to indirect
lighting (multiplying the direct lighting by the GTO, the
multiplication by the BRDF and conversion to textures)
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Figure 9: Rendering times for the different steps of our run-
time component. For each scene, we tried a high resolution
(moderately compressed) and a low resolution (aggressively
compressed) GTO.

dominate, especially when using a high quality GTO (mod-
erate compression). We observe that the rendering time for
indirect lighting is related to the number of coefficients in
the GTO.

7. Conclusions and Future work

In this paper, we have presented a novel algorithm for fast
computation of indirect lighting. Combined with a separate
computation of direct lighting, our algorithm allows interac-
tive global illumination.

Our algorithm makes use of three different contributions:
first a new wavelet basis for efficient storage of radiance, us-
ing standard refinement to separate the angular and spatial
dimensions, secondly a hierarchical precomputation method
for PRT, and third a fast projection of direct lighting on our
basis. Our method works in a top-down approach, and there-
fore aims to only compute the information that is necessary
for PRT computations.

Our main limitation is inherited from the finite element
methods: the elements (i.e. the basis functions) need to be
mapped to the surfaces of the scene. In the simplest case,
the scene needs to initially consist of large quads as in the
examples of this paper. Nonetheless, as a future work we
wish to study the possibility of to relieve these restrictions in
the spirit of bi-scale radiance transfer [SLSS03]. This would
require an easily parameterizable coarse version of the scene
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Figure 10: Example results on our test scenes. In the glossy case (right column), we show the indirect illumination non-filtered,
and the composited image using bi-linear filtering.

and a method to transfer lighting from this coarse surface to
a finer one.

Another direction for future work is establishing more ex-
plicit relationship between the different compressions done
in our algorithm. In the current method, we have separate
thresholds for hierarchical refinement and the non-linear
compression used during the Neumann series computation.
It would be advantageous to only have a single threshold re-
lated to the quality of GTO we want to obtain.

The oracle’s ability to independently refine each sub-
space is both a strength and a challenge. The refinement
heuristics we presented are not optimal, since they do not
take into account the dependence of directional and spatial
dimensions, as explained by Durand et al. [DHS∗05]. For
instance, it might not make sense to link a sender with a nar-
row angular support to a spatially large receiver. We believe
that this is a very promising direction for future research and
that clear performance improvements are possible.

Yet another idea concerns applying knowledge of run-
time importance, projected from the camera to the surfaces
of the scene. This projection could be used to speed-up the
GTO multiplication as we would know beforehand which
basis functions really contribute to the image. So we could
use only the parts of the GTO that actually have an visible
effect on the result.

Finally, to leverage the full potential of our 4D represen-
tation, we plan to explore run-time projection of arbitrarily
distributed area light-sources instead of point lights. This
would have to be coupled with an accurate display of di-
rect lighting, which could benefit from the information we
collect during the projection.
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Figure 10: Example results on our test scenes. In the glossy case (right column), we show the indirect illumination non-filtered,
and the composited image using bi-linear filtering.
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5.

Conclusion et perspectives

Nous avons développé trois thèmes principaux dans ce mémoire : la simulation de l’éclai-
rage par des méthodes multi-échelles à éléments finis, la détermination des caractéristiques de la
fonction d’éclairage, et la simulation en temps-réel ou interactif de certains effets lumineux.

Nous allons tenter de résumer notre contribution dans chaque thème :
– En ce qui concerne la simulation de l’éclairage par éléments finis, nous avons montré

l’efficacité de la représentation hiérarchique, y compris avec des fonctions d’ondelettes
d’ordre élevé. Nous avons également montré combien les méthodes par éléments finis sont
dépendantes du maillage original, et nous avons développé une méthode pour s’affranchir
des limitations de ce maillage. Enfin, nous avons montré comment combiner les ondelettes
d’ordre élevé avec un maillage de discontinuité.

– Pour l’analyse des propriétés de la fonction d’éclairage, nous avons développé une mé-
thode pour prédire le contenu fréquentiel local de l’éclairage, pour chaque interaction, en
fonction des obstacles rencontrés. Nous avons également développé une méthode pour le
calcul des dérivées de la fonction d’éclairage.

– Enfin, dans le domaine du rendu temps-réel, nous avons développé des méthodes pour la si-
mulation en temps réel de certains effets lumineux : ombres douces, réflexions spéculaires,
éclairage indirect.

Ces travaux ont rencontré plusieurs limitations ou difficultés, et posent un certain nombre de
problèmes intéressants à résoudre.

Ainsi, les méthodes par éléments finis, même hiérarchiques, sont fortement liées au maillage
employé pour représenter la scène. Cette limitation est inhérente à la représentation par éléments
finis, même si plusieurs méthodes ont été développées qui permettent de s’en affranchir partiel-
lement (clustering, face-clustering, instantiation, virtual mesh...). D’autre part, une partie trop
importante du temps de calcul est consacrée à des effets qui sont importants pour l’aspect visuel
de la scène, comme les frontières d’ombre, mais moins importants pour le calcul de l’éclairage
indirect.

L’analyse fréquentielle de la fonction d’éclairage ouvre la voie à de nombreuses études fu-
tures. Nous avons développé un outil pour la prédiction du comportement fréquentiel de l’éclai-
rage en chaque point. Il reste beaucoup de recherches à faire dans ce domaine, à la fois pour le
calcul effectif du contenu fréquentiel dans la scène et pour l’emploi de ces fréquences dans les
méthodes de simulation de l’éclairage. Il est important que le gain en temps de calcul grâce à
l’utilisation du contenu fréquentiel soit supérieur au temps pris pour calculer ce contenu fréquen-
tiel.

Enfin, l’utilisation de cartes graphiques pour la simulation d’effets lumineux est un domaine
très prometteur. En simulant certains effets lumineux sur la carte graphique, il est possible d’aug-
menter le réalisme des simulations d’éclairage tout en diminuant le temps de calcul. En même
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temps, ces cartes programmables ont des limitations : elles fonctionnent sur un modèle SIMD,
sans communications possibles entre les différents processeurs, avec un nombre limité d’instruc-
tions... Les algorithmes qui pourront le mieux exploiter la puissance de ces cartes seront ceux qui
s’adaptent à ces limitations. En général, on pourra plutôt les utiliser pour simuler des phénomènes
locaux ou semi-locaux.

5.1 Perspectives
Notre but, pour nos travaux futurs, est d’obtenir une simulation photoréaliste de l’éclairage

global dans une scène quelconque, en temps-réel. Pour atteindre ce but, nous allons poursuivre
plusieurs directions de recherche :

– D’une part, il est nécessaire de pouvoir simuler l’ensemble des phénomènes liés à l’éclai-
rage direct en temps-réel. Les calculs d’éclairage direct avec des fonctions de réflectance
quelconques et des sources étendues, les calculs d’ombre douce, les réflexions sur des sur-
faces semi-spéculaires sont quelques uns des phénomènes locaux ou semi-locaux que nous
voulons pouvoir simuler de façon photoréaliste en temps-réel.

– D’autre part, un certain nombre de phénomènes liés à l’éclairage indirect ne sont obser-
vables qu’à proximité immédiate des objets, comme l’occlusion ambiante causée par un
objet, ou les réflexions causées par des BRDF semi-diffuses. Pour ces phénomènes, il fau-
drait attacher aux objets mobiles une zone d’influence, à l’intérieur de laquelle on cal-
culerait l’effet. Cette zone d’influence pourrait porter un certain nombre de coefficients
pré-calculés pour la simulation.

– Dans la simulation de l’éclairage, on dispose généralement de plusieurs algorithmes pour
simuler un effet donné, ou d’un ensemble de paramètres pour un algorithme donné. On
a donc des choix à faire, et pour guider ces choix, nous proposons d’utiliser notre ana-
lyse fréquentielle de l’éclairage. On pourrait alors choisir l’algorithme le mieux adapté, ou
encore limiter l’échantillonnage pour les phénomènes à basse fréquence.

– Cette analyse fréquentielle de l’éclairage a également des applications pour les simulations
offline de l’éclairage. Notre approche devrait permettre de guider des calculs de simulation
de l’éclairage par lancer de photons, ou encore d’adapter l’échantillonnage spatial dans les
méthodes de Precomputed Radiance Transfer.
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