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Abstract

The growing complexity of the 3D data generated by various modeling techniques requires
efficient algorithms to process and visualize these data. The efficiency of such algorithms is
related to the underlying structure of the data: without any structuring, an algorithm has no
hope to achieve sub-linear complexity which is a huge problem when processing large amount
of 3D data with millions of primitives.
The central aspect of this thesis is structural information in computer graphics, that is the

information concerning the structure of objects or scenes. A large number of information may
be qualified structural, ranging from simple geometric features to semantic information such
as: the symmetry group of an object, the parameters of a swept surface, a scene graph or even
a complete semantic representation of a scene. In this thesis, we define structural informa-
tion as a two-scale notion, namely the object and the scene levels: structural information at
the object level captures the way an object has been modeled i.e. this object is a revolution
surface, a Nurbs surface, . . . . Conversely, structural information at the scene level contains
information about how objects are organized in the scene i.e. the hierarchy of objects in the
scene or their semantic representation. We specially focus on two specific types of structural
information and propose a way of structuring the scene at both the object and scene levels
using the information of symmetry and instancing.

In the first part of this thesis, we propose an original method to structure the geometry at
the object level based on the information of symmetry. The symmetry information is object-
based structural information that is of great importance for many geometric tasks such as
compression, mesh editing, shape matching, . . . . The work developed in this thesis focuses
on computing the whole symmetry group of a 3D mesh i.e. either discrete (such as planar or
rotational symmetries) or continuous (such as cylindrical or spherical symmetries). Finding
all symmetries of a shape is much more difficult than simply checking whether a given trans-
form actually is a symmetry. In particular the naive approach that would consist of checking
as many potential candidates as possible to find a symmetry is far too costly. We thus need a
deterministic method to find good candidates. Inspired by the work on principal component
analysis, we introduce for this purpose the generalized moment functions of a 3D shape.
In the second part, we propose a method to structure the geometry at the scene level based

on instancing information i.e. the structure of what is repeated in the scene at multiple levels
of scale. The knowledge of such information can be used in many tasks such as rendering
efficiency for ray-tracing or radiosity, or for mesh-editing. From the symmetry information
that we have computed on the objects of the scene, we show that computing such a hierarchy
is a non-trivial process and divide it in two steps: a first step which aims at discovering
frequent geometric patterns i.e. objects or set of objects that occur multiple times in a scene
and a second step that organizes these patterns into a hierarchy.
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Extended Abstract (in French)

Contexte et Motivation

La complexité croissante des données 3D générées par diverses techniques de modélisation
nécessite des algorithmes efficaces afin de traiter ces données ou de les visualiser. L’efficacité
de ces algorithmes est fortement liée à la structure de ces données. En effet, sans aucune
structure, un algorithme ne peut espérer une complexité sous-linéaire, ce qui représente un
problème conséquent lorsque les données à traiter sont constituées de millions de primitives
3D.
Dans cette thèse, on considère l’information de structure comme un outil, pouvant être

utilisé, par exemple, par un artiste ou de manière plus abstraite par un algorithme pour
répondre à la question: “Comment les données sont-elle structurées ?”.
Une grande quantité d’informations peut être qualifiées d’information de structure, allant

d’une simple caractéristique géométrique aux informations complexes de sémantiques. Parmi
celles-ci, on peut citer (voir Figure 1):

• le groupe de symétrie d’un objet,

• le L−systeme permettant de générer un modèle naturel telle qu’une plante,

• les paramètres d’une surface de révolution,

• la paramétrisation d’une surface NURBS,

• un graphe de scène,

• une représentation sémantique complète d’une scène, capturant les fonction, les carac-
téristiques et les relations entre chaque objet dans la scène,

• . . .

L’efficacité d’un grand nombre d’algorithmes est basée sur la connaissance d’une telle in-
formation: le groupe de symétrie d’un objet peut être utilisé pour compresser un objet 3D,
ou l’éditer de manière consistante avec ses symétries; la paramétrisation d’une surface est
une donnée indispensable pour texturer des objets; un graphe de scène peut être utilisé pour
améliorer la vitesse de rendu d’une géométrie à l’aide de techniques de type view-frustum
culling ou par l’utilisation des informations d’instantiation qu’il contient. Enfin, associer des
informations sémantiques à un contenu 3D est une nécessité afin de pouvoir ré-utiliser ce
contenu après l’avoir extrait d’une scène 3D.

9
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Figure 1: Quelques exemples d’information de structure. De gauche à droite: Le groupe de
symétrie d’une forme permet de l’éditer ou de la compresser. La connaissance des paramètres
d’une surface de révolution permet de représenter cet objet de manière concise. Le graphe
de scène permet d’organiser les objets d’une scène pour, par exemple, accélérer le rendu de la
scène.

La notion de structure est souvent associée à la notion d’échelle. C’est par exemple le
cas dans la modélisation de scènes naturelles qui sont le plus souvent modélisées à l’aide de
techniques procédurales telles que les fractales, qui sont des représentations multi-échelles
par définition.
Dans ce document, nous nous inspirons de cette notion d’échelle et définissons l’information

de structure comme une information à deux niveaux:

• Le niveau objet : ce type d’information capture la nature de l’objet (la façon dont un objet
à été modélisé) i.e. cet objet est une surface de révolution, une surface NURBS, . . . ,

• le niveau scène : ces informations nous renseignent sur l’organisation des objets à
l’intérieur d’une scène i.e. la hiérarchie des objets ou une représentation sémantique.

La connaissance de ces informations de structure étant importante pour l’efficacité de
nombreux algorithmes, il semble important de se questionner sur leur accessibilité. Ce ques-
tionnement est à l’origine des travaux développés dans cette thèse et se résume par le postulat
suivant:

“Dans la majorité des cas, l’information de structure n’est pas accessible”

Dans le cadre de cette thèse, nous justifions ce postulat par les deux points suivants:

1. L’information de structure était présente mais à été perdue durant les échanges de don-
nées.

2. Les données sont non-structurées par nature.

Nous donnons quelques éléments de notre réflexion ci-dessous.
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Échange de données

Les échanges de données ont été identifiées comme un problème majeur car il se situe au
carrefour de plusieurs difficultés, telle que l’utilisation de multiple plat-formes, logiciels et
format de fichiers.
D’un point de vue pratique, les données géométriques modélisées de manière interactive

ne sont pas produites de manière séquentielle i.e. primitive par primitive. Ces données sont
le plus souvent générées en utilisant des outils semi-automatiques telles que l’instantiation,
la symétrie et les surfaces paramétriques qui forment l’information de structure associée à
cette géométrie.
En théorie, ces information sont donc accessibles car faisant partie du processus de créa-

tion de cette géométrie. En pratique, il arrive très souvent que cette information soit perdue
lors d’une conversion d’un format de fichier à un autre. Dans la plupart des cas, cette conver-
sion ne peut être supprimée, par exemple dans le cas ou un format de fichier particulier n’est
pas lisible par l’utilisateur du modèle.
Il peut également arriver qu’une géométrie, modélisée de manière interactive par des out-

ils standards, soit distribuée sous une forme non adaptée comme illustrée Figure 2. Dans
ce cas précis, l’information de structure utilisée pour générer la géométrie est perdue car ces
formats ne supportent pas le stockage d’information de structure telle que l’instantiation et
la modélisation hiérarchique.

Figure 2: La Powerplant est un modèle complexe formé de 13 millions de polygones. Une
partie de ce modèle est présentée sur la gauche de la figure. Ce modèle est distribué sous la
forme de fichier PLY qui n’est pas conçu pour être un format général de description de scène
complexe. Ainsi, ce format ne supporte pas, par exemple, les propriétés d’instantiation, qui
sont pourtant largement utilisées dans ce genre de scènes.

Enfin, dans certains cas extrêmes, les problèmes liés aux formats de fichiers sont “résolus”
en transmettant les données 3D de manière incohérente sous une forme appelée soupe de
polygones (voir Figure 3).
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Figure 3: Les informations de structure d’un objet peuvent être perdues lors d’échanges de
données. La nature d’un objet, dans ce cas une surface de révolution est perdue et l’objet est
simplement décrit comme un ensemble de primitives 3D.

A partir de ces constats, deux axes de travail peuvent être adoptés:

• Un axe permettant de retrouver l’information de structure initialement présente dans
la géométrie.

• Un second axe dont l’objectif serait de rendre cette information accessible tout au long
de la chaîne de traitement de la géométrie i.e. un format d’échange fait pour le travail
collaboratif.

Le travail développé dans cette thèse se concentre sur le premier point i.e. re-générer
l’information de structure et l’utiliser pour structurer la géométrie. Le second axe de tra-
vail constitue un domaine de recherche actif en particulier avec le développement de Col-
lada(COLLAborative Design Activity).

Modélisation non-interactive

Parmi l’ensemble des méthodes de modélisation, l’avantage principal des techniques dites
“non-interactive” telles que la modélisation procédurale, les techniques de scanner 3D ou la
modélisation basée image est leur nature automatique, permettant la génération de modèles
extrêmement détaillé qu’il serait très difficile voir impossible d’obtenir à l’aide d’outils clas-
siques de modélisation. Cette caractéristique est essentielle car elle permet d’atteindre, par
exemple, le degré de complexité présent dans les scènes naturelles (voir Figure 4).
Cependant, cette façon de générer des données constitue également le principal défaut

de ces méthodes: Dans une majorité des cas, les données sont produites de manière séquen-
tielle, sans aucune structure et ne contiennent donc jamais d’information sur leur nature.
Dans certains cas, cette information peut être présente mais ne pas correspondre à la notion
de structure voulue par l’utilisateur de la géométrie. Par exemple, lors de la modélisation
procédurale d’un ville, le modeleur va “grouper” tous les objets partageant un matériel com-
mun (par exemple la brique) et ainsi perdre l’information de redondance pouvant être présent
dans la scène.
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Figure 4: La modélisation non-interactive permet d’obtenir des modèles extrêmement com-
plexes et détaillés. Généralement, ces géométries sont peu ou pas structurées ce qui peut
représenter une limite à leur utilisation, par exemple (droite) pour le rendu interactif de
scènes urbaines complexes.

Contributions

Le travail présenté dans cette thèse se concentre sur deux types d’information de structure
et propose des méthodes permettant de structurer une scène 3D aux niveaux objets et scènes.
Les deux types d’information sont les suivants:

• Symétrie des objets 3D i.e. information de structure au niveau objet.

• Représentation hiérarchique des instances présents dans la scène i.e. information de
structure au niveau scène.

On qualifie les scènes que l’on cherche à traiter de non structurées et le but des travaux
développés dans cette thèse est de structurer ces données d’entrées comme représenté sur
la Figure 1.9.

Figure 5: Vue d’ensemble des travaux de cette thèse. Partant d’une géométrie non structurée,
nous définissons et créons des objets dans cette géométrie, calculons les symétries de chacun
de ces objets, et utilisons cette information pour représenter la géométrie initiale sous la forme
d’une hiérarchie d’instances.

L’aspect non structuré des scènes que l’on cherche à traiter pose le problème de définir la
notion d’objet. Nous proposons un moyen simple et efficace de pré-traiter la géométrie afin de
la décomposer en objets, appelés tuiles dans la suite de cette thèse. Les tuiles sont simplement
définies comme les ensembles maximaux de polygones connexes par arêtes.
Des exemples de décomposition en tuiles sont présentés Figure 6.
Cette décomposition de la géométrie en tuiles, en se basant uniquement sur les informa-

tions géométriques est présentée en détail dans le chapitre 2.
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(a) (b) (c)

(d) (e)

Figure 6: Quelques exemples de décomposition en tuiles d’objets simples. Pour chaquemodèle,
chacune de ces tuiles est représentée par une couleur distincte.

Basées sur cette définition des objets, les deux principales contributions de cette thèse sont
présentées ci-dessous.

Détection de symétries des objets 3D

L’information de symétrie est une information importante pour de nombreuses taches géométriques
telles que la compression, la mise en correspondance de maillage, . . . . Le travail développé
dans cette thèse a pour but de calculer le groupe de symétrie complet d’un maillage 3D i.e.
symétries discrètes telle que les symétries planaires et/ou symétries continues telles que les
symétries de révolution.
En particulier, le travail développé se concentre sur les symétries globales de la forme 3D

(par opposition aux symétries locales) et est indépendante de la tesselation de l’objet original.
Ces deux aspects sont illustrés sur la Figure 7.
Trouver toutes les symétries d’une forme est bien plus difficile que de simplement tester

si une transformation est une symétrie. En particulier, l’approche naïve consistant à tester
autant de candidats que possible pour trouver des symétries est trop coûteuse et imprécise.
Une méthode efficace de recherche de symétries est donc indispensable et est divisée en deux
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(a)

(b)

Figure 7: Deux caractéristiques importantes de notre recherche de symétries. a) Nous détec-
tons les symétries globales i.e. qui s’applique au centre de gravité de la forme, par opposition
aux symétries locales. b) La recherche de symétries doit être indépendante du maillage de la
géométrie.

parties dans cette thèse :

Symétries des formes simples Dans une première phase, nous introduisons des fonc-
tions intermédiaires, dont l’ensemble des symétries est un sur-ensemble de l’ensemble des
symétries de la forme elle-même mais dont le calcul des symétries est aisé. En utilisant les
bonnes propriétés de ces fonctions, nous en déduisons un algorithme déterministe pour isoler
un nombre restreint d’isométries candidates à être symétrie de la forme. Ces candidats sont
ensuite filtrés i.e. testés sur la forme de base afin de décider si elle constitue une symétrie de
cette forme.
Inspiré par les travaux sur l’analyse en composantes principales, nous introduisons pour

cela, les fonctions moments généralisées d’ordre p d’une forme dont l’expression est donnée
par :

M p(ω) =
Z

s∈S
‖s×ω‖pds (1)

Le chapitre 4 est consacré à l’étude de ces moments et à leur importance dans la recherche
des symétries d’une forme 3D.
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Figure 8: Extraction des symétries pour une forme simple. Partant de la forme origi-
nale (a), ces moments généralisés (b) ainsi que les gradients de ces moments (c) sont cal-
culés. L’ensemble de leurs directions d’extrema contient les axes de symétries de la forme,
représenté à droite. Ici, deux symétries planaires ont été trouvées ainsi qu’une symétrie de
rotation de π. Il est important de noter que la forme n’est ni convexe ni étoilée et que le
maillage ne respecte pas les symétries de la forme.

Nous montrons que ces fonctions possèdent de bonnes propriétés dans la recherche des
symétries d’une forme. En particulier, ces fonctions ont les mêmes symétries que les formes,
plus un petit nombre d’autres candidats qui nécessite d’être filtré. De plus, nous présentons
un ensemble de traitement élégant basé sur les harmoniques sphériques pour calculer de
manière propre et efficace les symétries d’une forme 3D quelconque. La méthode dévelop-
pée est robuste et permet, par exemple, de calculer les symétries des modèles scannées ou
les symétries sont généralement approximatives. Un exemple complet de calcul de symétrie
d’une forme 3D est présenté sur la figure 8.

Symétries des formes composées La seconde contribution de cette thèse dans la recherche
des symétries est d’étendre l’algorithme précédent en un algorithme constructif, qui calcule
de manière indépendante les symétries de chacune des composantes d’un objet - en utilisant
l’algorithme présenté précédemment - et combine ensuite cette information pour calculer les
symétries de l’objet complet. Lorsque la décomposition d’un objet en accord avec ces symétries
est possible, cet algorithme constructif se révèle être plus précis et efficace que la stratégie
direct i.e. calcul des symétries de l’objet complet (voir Figure 9).

Ces travaux sont présentés en détails à partir de la page 67 de ce manuscrit. L’ensemble
des travaux présenté dans cette thèse pour le calcul des symétries d’un objet 3D ont fait l’objet
d’une publication dans le journal ACM Transactions on graphics [Martinet et al., 2006].
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Figure 9: Un modèle complexe possédant le même groupe de symétries qu’un icosaèdre.
L’algorithme constructif calcule les 15 plans de symétries (centre) et les 31 axes distincts de
symétries de rotation (droite) en utilisant les symétries de chacune des tuiles de ce modèle
(gauche).

Instantiation Hiérarchique de Géométrie

La principale motivation de la seconde partie de ce travail est d’ajouter de l’information de
structure dans les mondes virtuels faits d’un grand nombre de primitives 3D. Dans cette
thèse, nous concentrons notre travail sur la notion d’instantiation à plusieurs niveaux d’échelle
aussi appelée Instantiation Hiérarchique. La connaissance de l’information d’instantiation
dans une géométrie 3D revient à savoir identifier les objets se répétant dans cette géométrie,
potentiellement à plusieurs niveaux de détails.
La connaissance d’une telle information peut être utilisée dans de nombreux domaines de

l’informatique graphique telles que le lancer de rayon, la radiosité ou l’édition de maillage.
En utilisant l’information de symétries calculée par les techniques présentées précédemment,
nous présentons une méthode divisée en deux parties afin de représenter une géométrie sous
la forme d’une hiérarchie d’instances (voir Figure 10).

Figure 10: Vue d’ensemble. Partant d’une structure au niveau objet de la géométrie, i.e.
la décomposition de la géométrie en tuiles, associée à leur information de symétries, nous
utilisons une approche en deux étapes pour représenter la géométrie sous la forme d’une
hiérarchie d’instances.

Génération desmotifs géométriques fréquents La première étape a pour but la recherche
des motifs géométriques fréquents dans la géométrie; nos motifs géométriques étant définis
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comme des ensembles de tuiles.
Nous prouvons qu’une méthode simple basée sur l’agglomération des tuiles est non util-

isable due à sa complexité exponentielle et présentons une méthode originale basée sur la
recherche des symétries locales dans la scène. Tous ces éléments sont développés en détails
dans le chapitre 8 de cette thèse.

Création d’une hiérarchie d’instances Dans la deuxième étape, nous cherchons à or-
ganiser les motifs fréquents de la géométrie sous la forme d’une hiérarchie d’instances. Nous
avons identifié plusieurs critères que doit respecter une hiérarchie d’instances afin d’être util-
isable (par exemple pour l’édition de maillages et/ou la compression) et montrons que générer
une hiérarchie qui respecte ces critères est un problème qui se révèle de complexité exponen-
tielle. Afin de pouvoir appliquer l’algorithme d’instantiation sur des scènes complexes des
algorithmes d’approximation doivent être utilisés. Nous présentons dans cette thèse, un algo-
rithme d’approximation permettant la représentation optimale d’une scène pour le lancer de
rayon (voir Figure 11).

Figure 11: Hiérarchie d’instances optimisée pour le lancer de rayons. Pour cette géométrie, le
taux de compression obtenu est d’environ 1:8.

Tous ces éléments sont développés en détails dans le chapitre 9 de cette thèse.
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1
Introduction

The central aspect of this thesis is structural information in computer graphics, that is the
information concerning the structure of objects or scenes. More precisely, we focus on the
question of its accessibility, motivated by the fact that, most of the time, structural informa-
tion is not present mainly for two reasons: it is either lost, for example during the translation
from one format standard to another, or it is not present by nature due to the way the data
have been modeled or acquired.
In the first part of this chapter, we focus on the structural information from a general point

of view and present some examples of its utilization in the field of computer graphics.
In the second part, we motivate and justify the main assumption of this thesis, that is the

lack of structural information in 3D virtual worlds. We first review the problem of exchange
of 3D information which may be grouped under the term of asset exchange. We then focus on
the relation between some particular ways of modeling or acquiring data such as procedural
modeling or 3D scanners and the set of structural information that may be accessible in the
data they produced.
Finally, in a third part, we present the main contributions of this thesis.

1.1 Structural Information

The growing complexity of the 3D data generated by various modeling techniques requires
efficient algorithms to process and visualize these data. The efficiency of such algorithms is
related to the underlying structure of the data: without any structuring, an algorithm has no
hope to achieve sub-linear complexity which is a huge problem when processing large amount
of 3D data with millions of primitives.
In this thesis, we consider structural information to be a tool that might be used by users

or designers of the model and more abstractly by any processing and rendering technique to
answer the question: “How are things constructed ?”. A large amount of information may be
qualified structural, ranging from simple geometric features to semantic information such as:

21
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• the symmetry group of an object,

• the L−system that generates a natural model such as a plant,

• the parameters of a swept surface,

• the parametrization of a NURBS surface,

• a scene-graph,

• a complete semantic representation of a scene, that captures the functions, the charac-
teristics and relationships between each object in the scene,

• . . .

The efficiency of a large number of algorithms is based on such information: the symmetry
group of an object may be used for mesh compression, shape matching or mesh editing; The
parametrization of a surface has applications in geometric modeling and computer graphics;
the scene graph may improve rendering speed through view-frustum culling or by using in-
stancing information it may contain. Finally, associating some semantics with 3D contents
may be a major issue for reusing such contents or pieces of content after having extracted
them from existing 3D scenes.

The notion of structure is often associated to the notion of scale. This is for example the
case of natural models which are modeled using some procedural algorithms such as fractals,
which contains repetition of forms over some ranges of scale.
The few examples given above inspired us for a definition of structural information as a

two-scale notion, namely the object and the scene levels: structural information at the object
level captures the way the object has been modeled i.e. this object is a revolution surface, a
Nurbs surface, . . . . Conversely, structural information at the scene level contains information
about how objects are organized in the scene i.e. the hierarchy of objects in the scene or their
semantic representation.

1.2 Accessibility of Structural Information

The structural information introduced above is of central importance and is broadly used to
improve rendering or any other processing of the geometry of the scene. This raises the prob-
lem of its accessibility which is at the core of this thesis. More precisely, the basic assumption
that motivates our work is:

“Most of the time, structural information is not accessible”

We identify two reasons that justify this assumption:

1. The structural information was present but has been lost during asset exchange,

2. The structural information is not present by nature.

In the following sections, we review each of these two points.
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1.2.1 Asset Exchange

Asset exchange groups every action related to the transmission of 3D information. Exchang-
ing assets has been identified as a major problem as it runs into the difficulty of using multiple
platforms, software and files formats.
From a practical point of view, the geometric data modeled by interactive tools1 are not

produced in a sequential way i.e. primitive per primitive. The data are usually generated
using some semi-automatic tools such as instancing, symmetry or parametric surfaces which
form the set of structural information associated to the geometry.
In theory, these information must be accessible as part of the modeling process. Experi-

mentally, it is however very frequent that such information is lost during translation from one
file format to another. Most of the time, this translation part cannot be avoided, for example
if the output of the modeling tools such as Alias Maya, Discreet 3D-Studio is not readable by
the user of the model. These problems are very frequent in more complex processes as the
industry of Digital Content Creation (DCC) is a highly collaborative process.
In most creation pipelines, the file formats used for asset exchange are defined as Inter-

change formats. An interchange format is used to exchange data from one DCC tool to another
and the goal for such a format is to be able to transfer files with the features that the DCC
tools provide. A simple example would be the ability to exchange NURBS primitives from
Maya to 3ds max, which implies that the programs need to have export and import support
for a specific interchange format. The set of interchange format contain the major set of file
formats usually used: ply, obj, vrml, x3d, . . . .
In order for an interchange format to be efficient, an import/export plug-in must exist for

every DCC tool that output every information that would be exported with the format of the
source software. This raises some major difficulties such as:

• the problem of proprietary formats. For example, the FBX file format is broadly used
in DCC tools but is not an open format. It means that it has not been designed by a
working group, but by a single company.

• the need for constant updates of importer/exporter, based on the new features of a mod-
eling tool.

It may also happen that some scenes, modeled by any DCC tool, are distributed under
the form of a file format not intended to be a general scene description (see Figure 1.1 on the
following page). In this case, structural information that may have been used to originally
model the scene is lost as by nature these file formats do not support structural information
such as object instantiation, modeling hierarchies or objects sub-parts.
Finally, an extreme case that might be used to avoid potential problems with any file

format is to transmit 3D data in a incoherent way sometimes called polygon soup. This way
of encoding the data can be seen as the lowest common denominator of file formats.
Starting from these statements, the two potential working avenues that can be adopted

are:

• A way of recovering the lost information or even computing usable information if not
initially part of the data, which is the approach retained in this thesis,

1The set of interactive software are often refer to as Digital Content Creation tools (DCC tools)
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Figure 1.1: The powerplant model is a complex model made of 13 millions polygons. A part
of it is shown on the left. This model is distributed under the form of PLY file format which
is not intended to be a general scene description language. This means for example that it
includes no instancing properties which however seems to occur a lot in this kind of scenes.

• a way of keeping the whole set of information accessible during the whole pipeline, i.e.
an exchange open format made for collaborative work.

The work developed in this thesis focuses on the first point i.e. recovering structural in-
formation. The second point is about to be solved with the introduction of a tool dedicated to
collaborative work named Collada(COLLAborative Design Activity):

Collada: The expectations of the Collada file format are very important mainly due to
the participants involved in its creation. First introduced by Sony, Collada is now directly
supported by major DCC vendors. This way, it will support all the features needed by the
major modeling software, and thus facilitate exchange between them.
Right now, Collada is primarily used to extract the content from a DCC tool, or to inter-

change data between DCC tools. At the final production stage, developers generally transform
the Collada content to their own format i.e. PlayStation, X3D, Xbox 360, etc. . . , and use their
own “conditioning pipeline” or “asset pipeline” to optimize the data, test the data for problems,
merge data with other content, and “compile” the data in platform specific format for use with
a specific game engine / real-time application. We refer to [Arnaud and Barnes, 2003] for more
details about Collada.

1.2.2 Non-interactive modeling

Among the set of modeling techniques, the main advantages of the non-interactive techniques
such as procedural modeling, scanning or image-based modeling is their automatic nature,
that allows the generation of extremely detailed models that would be very difficult, or even
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impossible, to obtain through interactive modeling techniques. This feature is essential as it
allows to reach the natural degree of complexity that arise in natural scene.
However, this way of generating the data is also the main drawback of those methods:

most of the time, data are produced in a sequential way, without any structuring and hence
do not contain, in general, any information about the way they have been generated. It may
however happen that such an information is present but does not match the wanted notion of
structure. For example, when procedurally modeling cities, the modeler will group together
all objects that share the common materials and hence loose information of which objects
are repeated and where. Another example concerns the use of 3D scanners to acquire large
environments. In this case, the output of such modeling method is an unstructured set of
primitives. We rapidly review the main non-interactive techniques used for modeling:

Scanning tools

Scanning tools are used to acquire geometry of objects through active sensors.

CT or MRI scanner

Computed Tomography (CT) and MRI ( Magnetic Resonance Imaging) are two ways of acquir-
ing 2D data sets. Usually those data are acquired under the form of a regular pattern (i.e. one
slice every millimeter) in order to form a complete 3D data set. This final data set is usually
represented as a voxel grid (see Figure 1.2). The major application area of such techniques is
medical imaging.

Figure 1.2: Volume rendering of 3D acquired from Magnetic Resonance Imaging.

3D scanners

The purpose of 3D scanners (see Figure 1.3 on the following page) is to create a point cloud of
geometric samples on the surface of the object. Starting from these points, a reconstruction
process can be used to recover a 3D polygonal model from the scan. If color information is
collected at each point, then the colors on the surface of the object can also be determined.
3D scanners are very analogous to cameras. While a camera collects color information about
surfaces within its field of view, 3D scanners collect distance informations about surfaces
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within its field of view. The “picture” produced by a 3D scanner is a depth image that describes
the distance to a surface at each point in the picture.
For most situations, a single scan will not produce a complete model of the subject. Mul-

tiple scans, even hundreds, from many different directions are usually required to obtain
information about all sides of the subject. These scans have to be brought in a common ref-
erence system, a process called registration, before a reconstruction process could be used to
form a complete 3D polygonal model. 3D scanners are very popular and have been employed
to acquire large models such as the well-known digital Michelangelo project [Levoy et al.,
2000].
The 3D scanner techniques are however not limited to a single object and methods have

been developed to acquire entire environments from multiple views [Wang and Oliveira,
2002].

Figure 1.3: Laser Scanners. Model Shop Color 3D Scanner and high-resolution Desktop 3D
Model 15

The geometry acquired by 3D scanner technology is highly unstructured and the output of
such modeling techniques is a large point cloud or even large meshes. The processing of such
large unstructured 3D data sets is now an important subject of research where more relevant
work deal with multi-resolution techniques on arbitrary meshes.

Image-based Modeling

Although laser scanning are able to produce high quality 3D reconstructions, they still lack
flexibility with respect to material and lighting conditions, are relatively expensive, and are
often applicable only to restricted types of objects. This has motivated techniques to recon-
struct 3D objects from simple photos or video.
In computer vision, the techniques to recover 3D shapes from 2D images are called shape-

from-X techniques, where X can be shading, stereo, motion, texture, . . .
An important domain of research is the shape-from-stereo techniques andmore specifically

themulti-view stereo, who reconstructs a complete 3D model from a collection of images taken
from known camera viewpoints (see Figure 1.4 on the next page).

[Wilczkowiak et al., 2003; Debevec, 1996] proposed an interesting approach of semi-
automatic modeling based on geometric constraints. The main objective is to reconstruct 3D
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Figure 1.4: Reconstruction (right) with the method of [Goesele et al., 2006] of a temple and an
input image (left) for comparison.

models from one or few images by introducing some geometric constraints of incidence, par-
allelism or symmetries. We refer the interested readers to [Seitz et al., 2006; Wilczkowiak,
2004].

Procedural Modeling

The term “Procedural Modeling” refers to the automated (or partially automated) generation
of 3D geometry. It is often used to create complex natural objects such as plants or mountains
but can also be applied to man-made geometry as well. More generally, it is a modeling
technique well adapted for models resulting from repeating, self-similar or random process
(see Figure 1.5).
The two main advantages of this modeling technique are its ability to create complex

worlds, tedious to build by hand, and its scalability.
There exist various types of procedural modeling techniques which we detailed below.

swept surfaces

Those surfaces are obtained by sweeping a 2D curve along a 3D trajectory. The simplest swept
surfaces are revolution surface in which the 3D trajectory is simply a line. By using a more
complex profile, complex models can be obtained such as seashells [Fowler et al., 1992] as
presented in Figure 1.6.

fractals

The precise mathematical definition of fractals defines a fractal object as an object that
present self-similarity at infinite resolution. In the computer graphics field, [Ebert et al.,
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Figure 1.5: Procedural modeling is well adapted for models resulting from repeating, self-
similar or random process.

Figure 1.6: An example of seashells obtained by extrusion with the methods of [Fowler et al.,
1992]. Various shapes are obtained by varying the parameters of the seashells generation.

2002] defined a fractal as “a geometrically complex objects , the complexity of which arises
through the repetition of form over some range of scale”. Many natural objects exhibit this
characteristic such as terrains, plants, clouds, water, fur, etc....
In general, fractals can be classified as deterministic and non-deterministic (also called

random fractal), depending on whether they contain randomness.
Random fractals have been used extensively in computer graphics to model natural ob-

jects, most notably terrains. Most fractal terrain generation algorithms work through recur-
sive subdivision and pseudo-random perturbation. An original surface is defined and divided
equally into subparts. New vertices are added and pseudo-randomly displaced from the orig-
inal surface, with a displacement magnitude that decreases at each iteration. Therefore, the
first iteration gives the large peaks on the surface, and later subdivisions add smaller-scale
detail. The major advantage of such methods is that only the parameters for controlling the
random number generator, the level of subdivision, and the “roughness” of the surface need
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to be tuned to define an extremely complex terrain.

Grammar-based Models

Grammar-based models, primarily L−systems, allow natural complexity to be specified with a
few parameters. Grammar-basedmodels have been broadly used in computer graphics [Fowler
et al., 1992; Deussen et al., 1998] to produce remarkably realistic models and images of trees,
plants and seashells. These models use formal languages, parallel graph grammars called
L−systems, to describe natural structures algorithmically and are closely related to deter-
ministic fractals in their self-similarity.
An L−system is a formal language where all the rules are applied in parallel to provide

a final “sentence” describing the object. In the L−system, each terminal symbol represents a
part of the object or a directional command to be interpreted by a three-dimensional draw-
ing mechanism. A “sentence” for a tree would contain words describing each branch, its
length, size and branching angle, when its develops, and its connection in the tree. A simple
L−system, as well as one complete grammar-based model are presented in Figure 1.7

Figure 1.7: Left) A simple L−system formed by two production rules and the resulting sen-
tence and trees. The only terminal symbol of this grammar is the “leaf”. Right) Several
examples of Grammar-based models of trees.

Combined methods

The “Combined methods” do not represent new procedural ways of modeling data but rather
a way of combining existing methods (such as L−systems) with domain specific knowledges.
Such methods have been mainly developed to improve the simulation of plant growing pro-
cesses [Deussen et al., 1998; Prusinkiewicz et al., 2001].
Such methods are capable of simulating the growth interaction with the features of the

field, such as ecological characteristics of plant species and the initial distribution of plants.
At the very end, a procedural model is used to generate each individual plant.

Once again, the geometry modeled by procedural methods is most of the time unstruc-
tured. For example, as pointed out by [Hart, 1992], the geometry generated by L−system
models is not organized efficiently for rendering. Due to their automatic nature, these model-
ing techniques have most of the time no knowledge about the global structure of the geometry
they output, such as terrains modeled by fractals. Yet generated by introducing some ran-
domness in the generating process, some global structure may be present, such as “packs” of
geometry repeated at different scales.



30 CHAPTER 1. INTRODUCTION

Figure 1.8: A city procedurally created by the method of [Parish and Muller, 2001]. Approxi-
mately 26,000buildings were created.

1.3 Contributions

In this thesis, we focus on two specific types of structural information and propose a way of
structuring the scene at both the object and scene levels. More precisely, we structure the
objects and scenes using:

• Symmetry of objects i.e. structuring at the object level.

• Hierarchical representation of instances in the scene i.e. structuring at the scene level.

We qualify the input scenes that we want to process as unstructured and the work devel-
oped in this thesis aimed at structuring these scenes as represented in Figure 1.9.
The unstructured aspect of the scenes raises the problem of defining what an object is. We

propose, in Chapter 2, a way of pre-processing this unstructured geometry and a new way of
defining what an object is, based purely on geometric information.
Based on this definition of objects, the two main contributions of this thesis are detailed

below (see Figure 1.9):

Structuring at the object level: The symmetry information is object-based structural in-
formation that is of great importance for many geometric tasks such as compression, mesh
editing, shape matching, . . . . The work developed in this thesis focuses on computing the
whole symmetry group of a 3D mesh i.e. either discrete (such as planar or rotational symme-
tries) or continuous (such as cylindrical or spherical symmetries). Finding all symmetries of
a shape is much more difficult than simply checking whether a given transform actually is a
symmetry. In particular the naive approach that would consist of checking as many poten-
tial candidates as possible to find a symmetry is far too costly. We thus need a deterministic
method to find good candidates. The work done in this thesis for symmetry computation is
divided in two phases:

• In a first phase, we use intermediate functions, whose set of symmetries is a superset
of the set of symmetries of the shape itself, but for which computing the symmetries is



1.3. CONTRIBUTIONS 31

Figure 1.9: Thesis Outline. Starting from an unstructured scene, we first form objects in this
scene, compute the symmetries of each of these objects and then form a hierarchy of instances
of the scene.

much easier. By examining these functions, we will derive a deterministic algorithm
which finds a finite number of possible candidates. These candidates are then checked
back on the original shape. Choosing a family of functions which fulfills these require-
ments is relatively easy. More difficult is the task of finding such functions for which
computing the symmetries can be done both accurately and efficiently.

Inspired by the work on principal component analysis, we introduce for this purpose the
generalized moment functions of the shape (see Chapter 4). These functions indeed, have
the same symmetries as the shape itself, plus a small number of extra candidates. Fur-
thermore, we propose an elegant framework based on spherical harmonics to accurately
and efficiently find symmetries of the generalized moment functions.

• The second contribution, presented in Section 4.5, is to extend the proposed algorithm
into a constructive algorithm, which separately computes the symmetries of sub-components
of an object – using the first method –, and then associates this information to compute
symmetries of the whole composite shape. When it is possible to decompose an object
according to its symmetries, this constructive algorithm proves to be more accurate and
efficient than directly computing the symmetries of the whole object.
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The work developed in this part has been published in [Martinet et al., 2006].

Structuring at the scene level: The main motivation of the second part of this work is
to add some structural information to virtual worlds made of massive 3D polygonal data,
obtained from modeling through interactive or non-interactive tools. We focus on instancing
information i.e. the structure of what is repeated in the scene at multiple levels of scale. The
knowledge of such information can be used in many tasks such as rendering efficiency for
ray-tracing or radiosity, or for mesh-editing.
From the symmetry information that we have computed on the objects of the scene, we

show that computing such a hierarchy is a non-trivial process and divide it in two steps:

• The first step, presented in Chapter 8, aims at discovering frequent geometric patterns
i.e. objects or set of objects that occur multiple times in a scene. We translate this
problem into finding local symmetries in the scene and propose an efficient scheme to
compute such information.

• The second step, presented in Chapter 9, organizes these patterns into a hierarchy. We
identify some criteria that must be respected by the hierarchy in order for it to be effi-
cient, and prove that computing a hierarchy that respects this constraint is an exponen-
tial problem i.e. a problem where no polynomial algorithm exists to solve this problem.
We thus propose an approximation algorithm based on the criteria the hierarchy of in-
stances must respect.



2
Preliminaries: Pre-processing geometry

As presented in the Introduction, the scenes we want to process are unstructured. Some non-
interactive modeling techniques such as 3D scanners output the geometry of the model as an
incoherent list of polygons i.e. polygons soup. Conversely, it is very rare that the geometry
modeled by interactive software came in a totally unstructured way.1 Most of the time, the
model came as an Indexed Face Set which describe a complete mesh in a more convenient
way. However, this way of structuring the data is most of the time not usable as it may for
example regroup objects by common material and hence lose the information that an object is
replicated elsewhere in the scene with another material.
This motivate us for considering each input scene as an incoherent list of polygons and

hence “forget” about any connexity or material information that may be present initially.
Starting from this incoherent list of polygons, we have to form objects in the scene, which is
the purpose of this chapter.

2.1 Object Creation

Defining “objects” in an incoherent list of polygons must respect two constraints:

1. The way of forming “objects” must be independent of the tessellation of this object.

2. The complexity of the object creation step must be low as we aimed to compute it on
large 3D environments with up to 15 millions of polygons.

We propose to define objects as tiles:

Definition 1 A tile is a maximal set of edge-connected polygons

1This may however happen as a list of polygons constitutes a practical common denominator to all possible
formats.
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To obtain them, we insert all vertices of the model into a KDTree and use this KDTree to
efficiently recover which polygons share vertices up to a given precision and share an edge.
By propagating connectivity information between neighboring polygons we then build classes
of edge-connected polygons which we define to be our tiles.
It is quite easy to verify that the two conditions introduced as the beginning of this section

are respected. First of all, as the definition of the tiles is based on connectivity between
polygons, it is completely independent of the degree of tessellation of an object. Moreover,
computing the tiles of a scene is a very fast process as it only requires to build a KDTree an
iterate trough every vertices of the scene (see the computation times in Table 2.2).

2.2 Results

(a) cupboard (b) keyboard (c) plane seat

(d) chandelier (e) petrolpipe

Figure 2.1: Examples of tiles decomposition. For every models, each of its tiles is represen-
tated by a distinct color. Numerical values associated to these models are presented in Ta-
ble 2.2 on the facing page.
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scene name # polygons # tiles computation time(secs)
cupboard 1,204 13 0.1
computer 2,437 115 0.1
plane seat 3,346 8 0.1
chandelier 9,632 29 0.4
petrolpipe 22,304 25 1.6
LBXStudio 514,890 8,389 12
Powerplant 12,748,510 155,348 2mns
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Part II

Detecting Symmetries in 3D Shapes
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3
Background and Related work

Symmetry is one of the most important features of objects. Identifying symmetries of an object
is an interesting problem as this knowledge can lead to various applications such as compres-
sion, reconstruction, classification, analysis, alignement and model matching. Furthemore,
symmetry is a fundamental concept which human visual perception utilizes and many ob-
jects constructed by humans are symmetrical, because this makes them easier to interpret
and manufacture.
In this chapter, we first introduce the fundamental concepts of symmetry from a mathe-

matical point of view and then present the most relevant work done in symmetry detection.

3.1 Background

In the following, E represents an affine euclidean space of dimension two or three with a
direct orthonormal frame (O,e1,e2) or (O,e1,e2,e3) depending on the dimension. The vector
space associated to E is noted E, which is of dimension two or three with direct orthonormal
basis (e1,e2) or (e1,e2,e3) depending on the dimension. Except when otherwise specified, we
note M

′
the image of a point M by an affine application.

3.1.1 Affine and Vector Isometry

Definition 2 f : E → E is an affine isometry if:

∀A,B∈ E d( f (A), f (B)) = d(A,B)

By definition, an affine isometry has the property of conserving distance.
An affine isometry may be seen as a particular type of approximate isometry, also refer to

as ε−isometry:

Definition 3 f : X→ X is an ε−affine isometry if:
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1. for every (x,x′) ∈ X2, one has |d( f (x), f (x′))−d(x,x′)| ≤ ε and

2. for any point y in X, there exists a point x in X such that d(y, f (x))≤ ε.

That is, an ε−isometry preserves distances to within ε and leaves no element of the
codomain further than ε away from the image of an element of the domain.

Property 1 The distance-preserving property of an affine isometry induces angle and area
preserving property.

Proof Let consider three non-aligned points A, B and C of E , for which:

BC2 = BA2 +AC2 +2
−→
BA.
−→
AC

and considering their images by an isometry A′, B′ and C′:

B′C′2 = B′A′2 +A′C′2 +2
−−→
B′A′.
−−→
A′C′

By applying distance-conservation property, we have BA = B′A′, AC = A′C and BC = B′C′

which make the two scalar products equal, i.e.
−→
BA.
−→
AC =

−−→
B′A′.
−−→
A′C′ and hence prove the angle-

preserving property.

Theorem 1 Let f be an affine isometry and M,N two points of E .

ϕ : E→ E, defined by ϕ(
−−→
MN) =

−−−−−−→
f (M) f (N) =

−−→
M′N′ is the vector isometry associated to f .

Theorem 2 If f is an affine isometry, its associated vector isometry ϕ is an orthogonal endo-
morphism.

Proof By simply using the distance-preserving property of an affine isometry, we have

∀A,B∈ E d( f (A), f (B)) = d(A′,B′) = d(A,B)⇔∀−→u ∈ E ||ϕ(−→u )||= ||−→u ||
and equivalence can be established with −→u =

−→
AB.

The vector isometry associated to f only indicates a change of direction induced by the
isometry on a vector and not a change of origin of this vector.

Example 1 The vector isometry associated to a translation on E is the identity.

3.1.2 Orientation-preserving ability of isometry

The set of vector and affine isometries can be partitioned based on their ability to preserve
orientation.

Definition 4 An affine isometry f is orientation preserving if, for all non collinear points A, B,
C, the proper angle measures of the angles ABC and A’B’C’ have the same sign. It is orientation

reversing if the measured angles have opposite signs.

A vector isometry associated to an orientation preserving affine isometry is called a direct
isometry. Convertly, a vector isometry associated to an orientation reversing affine isometry
is called an indirect isometry.

Theorem 3 The Classification Theorem: Every isometry is one of the following: the identity, a
translation, a rotation, a reflection, or a glide reflection.

The proof of this theorem is presented in Appendix B.
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3.1.3 Vector Isometry in IR3

If (e1,e2,e3) represents a basis of IR3, a vector isometry ϕ is completely defined by a system of
three vectors:

a1 = ϕ(e1) a2 = ϕ(e2) a3 = ϕ(e3)

which correspond to the images of the vectors of the basis through the isometry ϕ.
In this basis, this isometry is represented by a matrix formed by filling its rows with the

vectors ai : 


a1
1 a2

1 a3
1

b1
1 b2

1 b3
1

c1
1 c2

1 c3
1




Since a vector isometry is a norm-preserving application, we have the following property:

Property 2 In an orthonormal basis, the matrix of an isometry is orthogonal, which implies
that its determinant is ±1.

This property naturally induces the following corollary:

Corollary 4 Any orthogonal matrix is the matrix of an isometry in an orthonormal basis.

A useful task that will be used in the following is to compute the parameters of an isometry,
that is its nature (direct or indirect), its axis and angle. We explain below how to compute
such parameters from the matrix representation of the vector isometry.

Direct Isometry. Let ϕ be a direct vector isometry, given by its matrix Mϕ in any basis. As
direct, the determinant of its matrix representation is equal to 1.
There exists a basis (e1,e2,e3) of IR3 in which the matrix of ϕ is:

Mϕ =




1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)




The vector isometry ϕ is either the identity or the rotation of axis e1 and angle θ. The axis
e1 is the only non-null vector invariant with respect to ϕ.
This vector can be easily obtained by solving:

ϕ(e1) = e1

To compute the angle of rotation θ, we:

• compute cos(θ) with the trace of the matrix Mϕ, which is equal to 1+ 2cos(θ), indepen-
dently of the coordinate system,

• search the sign of sin(θ) which is the same as det(e1,u,ϕ(u)), where u is any vector non-
colinear to e1.

If θ = 0, ϕ is the identity vector isometry, otherwise ϕ represent the rotation of axis e1 and
angle θ.
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Notation: When the angle of rotation of a vector isometry ϕ can be expressed as a frac-
tion of 2π, i.e. θ = 2π/k, ϕ is called a k−fold rotational isometry.

Indirect Isometry. Let ϕ be an indirect isometry, given by its matrix Mϕ. There exists a
basis (e1,e2,e3) of IR3 in which the matrix of ϕ is:

Mϕ =



−1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)




The indirect vector isometry ϕ is the commutative composition of a vector rotation and a
reflexion with the respect to the plane orthogonal to the rotation axis.
The axis of rotation e1 is changed to its opposite by ϕ. It can be obtained by solving:

ϕ(e1) =−e1

To compute the angle of rotation θ, we:

• compute cos(θ) with the trace of the matrix Mϕ, which is equal to −1+2cos(θ),

• search the sign of sin(θ) which is the same as det(e1,u,ϕ(u)), where u is any vector non-
colinear to e1.

3.1.4 Symmetry of 3D Shapes

As presented above, for a given isometry I , there always exists an orthonormal basis (X,Y ,Z)
into which the matrix of I takes the following form:

I(λ,α) =




λ 0 0
0 cosα −sinα
0 sinα cosα


 with

{
α ∈ [0,2π[
λ =±1

(3.1)

As illustrated by the example of the cube (see Figure 3.1 on the next page), this corre-
sponds to three different classes of isometries: rotations, mirror-symmetries and their compo-
sition, depending whether λ is positive and/or α = 0(mod π).

Finding a symmetry of a shape thus resolves into finding the parameters of the isometries,
that is a vectorX —which we call the axis of the isometry — and an angle α—which we call
the angle of the isometry — such that I(λ,α) maps this shape onto itself.

3.1.5 Symmetry Group

The vector isometries presented above form a group structure refered to as a symmetry group.
More precisely, the Euclidean group E(n) is the symmetry group of the euclidean space IRn,
i.e., the elements of this group are the vector isometries of this space. The group of direct
isometries E+(n) is a subgroup of the euclidean group E(n). The group of indirect isometries
is called E−(n).
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π

2π
3

π
2

π

2π
3

π
2

Figure 3.1: Mirror-symmetries and rotational-symmetries found by our algorithm for a cube
(for clarity, not all elements are represented).

Definition 5 The symmetry group of an object is the group of all isometries under which it is
invariant with composition as the operation. It is a subgroup of the isometry group of the space

concerned, i.e. E(n).

Example 2 C4 = {I ,R,R2,R3} is a symmetry group, where R is a rotation of angle π
2 in IR3. R2

is the half-turn around the rotation axis, which is the composition of two rotations R. It is the
only element, distinct from neutral element I , which is its own inverse. The group C4 is often

referred to as the cyclic group of order 41.

The symmetry groups are often divided in two groups: the discrete and the continuous
symmetry groups.

Discrete symmetry groups. These symmetry groups come in three types:

• Finite point groups, i.e. group of symmetries leaving a point fixed. These groups included
rotations, reflections and central symmetry.

• Infinite lattice groups, which include only translations.

• Infinite space groups which combines elements of both previous types

Continuous symmetry groups. Groups with an infinite number of elements that contain
rotations of arbitrary small angles and/or translations of arbitrary small distances. Once
again, these symmetry groups come in two types:

• Continuous symmetry groups with a fixed point, including cylindrical and spherical
symmetry.

1A cyclic group is a group that can be generated by a single element (in this case the rotation R)
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• Continuous symmetry groups without a fixed point, including those with a screw axis,
such as an infinite helix.

If the symmetry group of an object O is only formed of the identity isometry, then Owill be
called asymmetric, otherwise symmetric.

3.1.6 Geometric Congruence

Definition 6 Two geometric figures that can be related by an isometry are called congruent.

A necessary, but not sufficient condition, for two figures to be congruent is that these two
figures must be of the same symmetry type:

Definition 7 Two geometric figures are considered to be of the same symmetry type if their
symmetry groups are conjugate subgroups of the Euclidean Group E(n). Two subgroups H1

and H2 of a group G are said to be conjugate, if there exists g∈G, such that H1 = g−1H2g.

As an example, two geometric figures both with mirror symmetry, but with respect to a
different mirror plane are considered to be of the same symmetry type (see Figure 3.2.)

Figure 3.2: A necessary, but not sufficient condition, for two figures to be congruent is that
those two figures must be of the same symmetry type. The 2D geometric figures A and B are
not congruent but have the same symmetry type, since they both have a mirror symmetry.

3.2 Related Work in Symmetry Detection

In this section, we present related work in Symmetry Detection. These papers can be broadly
classified in two categories based on the symmetry information that they output:

• Symmetry as a binary feature: “real” symmetries of the model. Searching for those kind
of symmetries is essentially a binary question since an object is either symmetric or non-
symmetric with respect to a target isometry. These algorithms may be categorized into
detection of either global or local symmetries and as either involving exact or approxi-
mate symmetries.
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• Symmetry as a continuous feature: Deriving a measure of symmetry for an object. In
this case, the problem is not binary but continuous since these methods try to answer
the question: “Which amount of the model is symmetric with respect to this isometry ?”.

3.2.1 Symmetry as a binary feature

We present in this section, the most relevant methods that have been released concerning the
detection of symmetry of a geometric entity in 2D and 3D. As stated before, these methods
may be categorized into detection of either global or local symmetries and as either involving
exact or approximate symmetries.

Symmetry as a pattern-matching problem:

Many methods [Attalah, 1985; Wolter et al., 1985; Highnam, 1985] propose to turn the sym-
metry detection problem into a substring matching algorithm.
The substring matching problem can be formulated as follows:

“Given strings Sand T, find all occurrences of T as a substring of S”

To solve this problem, [Knuth et al., 1977] proposed a method that solves the substring
matching problem with complexity proportional to the sum of the length of the strings. One
interesting application of this technique is symmetry detection which has been initially intro-
duced by [Attalah, 1985]. The starting point of these methods consists in considering a string
as a discrete signal on a circle as depicted on Figure 3.3 on the next page.
From this, symmetry detection can be done on the signal represented by S. More precisely,

we can test if Shas rotational symmetry by testing if S is a non-trivial substring of SS, that is
the concatenation of Swith itself (see Figure 3.4 on page 47).
In the same way, we can test if the signal Shas a reflective symmetry by testing if S is a

substring of (SS)t (see Figure 3.5 on page 47).
The idea of considering the string as a discrete signal on a circle leads to efficient algo-

rithms for computing discrete symmetries of set of points in 2D and 3D:

Testing symmetries of 2D point set. Computing symmetries of a 2D point set is a three
steps process:

1. Replace each point of the point set by a point on the unit circle by encoding its distance
by a symbol from an alphabet,

2. encode, for each point, its angular distance to its neighbor around the circle (also using
some symbol in an alphabet).

3. The signal on the circle is transformed to a string whose main property is that symme-
tries of the initial point set are also symmetries of this string.

The process described above can so be used to detect reflective and rotational symmetries
of the set of points (see Figure 3.6 on page 48).
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Figure 3.3: The starting point when mapping the symmetry detection problem to the sub-
string matching one is to consider the string as a discrete signal on the circle.

Testing symmetries of 3D point set. For the extension to the 3D case, [Alt et al., 1988]
proceed in a similar way, by first projecting all points on the unit sphere. As the set is now
formed of labeled points on the unit sphere, their convex hull is some polyhedron, which may
be described using edges graph augmented by edges label carrying the edge length and the
angular distance to the next vertex around this edge. The problem is now to detect the sym-
metries of this polyhedron using one of the techniques described in the next section.

Although these methods are capable of recovering reflective and rotational symmetries of
point set, their main limitations are:

• limited to global symmetry,

• hard to extend for approximate symmetries. A first attempt to reach this goal has been
introduced by [Alt et al., 1988] but the complexity of its approach makes it impractical
for large data sets.

As a natural extension of symmetry of point set, we now focus on methods that aimed at
discovering symmetries of polyhedra.
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Figure 3.4: To test if the signal S has a rotational symmetry, it suffices to test if S is a non-
trivial substring of SS.

Figure 3.5: To test if the signal S has a reflective symmetry, it suffices to test if Sis a substring
of (SS)t .

Symmetries of Polyhedra:

A lot of work in computational geometry has dealt with the task of detecting symmetries of
polyhedra. In the following, we present some classes of methods developed to detect symme-
tries of polyhedra based on graph techniques and “generate-and-test” methods. For a complete
overview of these techniques, readers can refer to [Jiang and Bunke, 1991].
A polyhedron consisting of n vertices, m edges and h faces can be defined as a graph G =

(V,E,F) embedded on the surface of a 3D solid object, where V represent the set of vertices, E
the set of undirected edges and F the set of oriented faces.

Graph-based methods: Maybe the most natural classes of algorithms that deal with sym-
metries of polyhedra are the one that are based on graph theory. Any symmetry of a polyhe-
dron consists of an automorphism of the graph G (isomorphism of G onto itself) and a three-
dimensional rotation. In its general form, the graph isomorphism problem is known to be
NP-hard [Eppstein, 1995]. It means that no efficient (polynomial) algorithm is known to solve
it. Some polynomial algorithms have however been proposed for planar graphs and especially
triply connected graphs. All the algorithms that rely on graph-based methods make use of
this properties to efficiently detect symmetries of the polyhedron. This however introduces
some restrictions about the class of polyhedron that can be treated by these methods, due
to the fact that for some types of polyhedra, the associated graph is not planar as presented
on Figure 3.7 on the next page.
In theory, after computing the automorphism of the graph G of the polyhedra, one has to

check geometric conditions, i.e. check that there exists a rotation R that map the correspond-
ing vertices of the automorphism. [Jiang and Bunke, 1991] proposed to incorporate geometric
conditions during the graph automorphism detection thus reducing the overall runtime of the
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Figure 3.6: The three steps of the methods to find the symmetry of a 2D point set. Left)
Each point of the set is projected to the unit circle. Middle) Each point is assigned a symbol,
computed from the angular distance to its nearest neighbor. Right) The symmetry of the point
set is computed with substring matching algorithm (a planar symmetry in this example).

Figure 3.7: If the polyhedron has a hole, its graph representation is non-planar. The red edges
show that it is not possible to connect the up and bottom faces of the polyhedron without
crossing an existing edge.

algorithm.

Generate-and-test methods: Such methods proceed in two steps: generation of potential
symmetry axes and check of this candidate symmetry of the polyhedron.
In [Waltzman, 1989], the authors proposed a method based on the observation that any

symmetry axis of a polyhedronG= (V,E,F)without holes passes at least through two elements
of the set V ∪E∪F .
This observation restrict the set of potential axis of symmetry as the axis may pass through:

1. two faces,

2. a face and a vertex,

3. a face and a edges,

4. two vertices,



3.2. RELATED WORK IN SYMMETRY DETECTION 49

5. a vertex and a edge, or

6. two edges.

The approach followed by [Waltzman, 1989] separately considers three different cases:
symmetry axis which pass through at least one face (1-3), symmetry axes which pass through
a vertex(4-5) and symmetry axes which pass through two edges(6).
The authors included constraint for each of potential axis of symmetry: If a symmetry

axis l passes through the face f of P, then f , considered as a polygon, must be symmetric.
In addition, l must be orthogonal to f and intersect f at its centroid. Another constraint for
the existence of a symmetry axis passing through two edges is that the number of edges of P
is divisible by two. Each potential symmetry axis that has survived to these constraints are
verified on the polyhedron to see if they are real symmetry axis.

As a conclusion, these methods seem effective to compute symmetries of a certain class of
polyhedra but are tedious to implement and are, once again, highly noise-sensitive. Moreover,
these methods seem to be too restrictive to be applied on general 3D shapes as the topology of
the polyhedra must respect its symmetries. For general 3D meshes, this means that a model
must be tessellated according to its symmetries, which is rare in common Computer Graphics
models.

Symmetries of 3D Objects:

For detecting the symmetries of general 3D objects, many methods have used the following
fundamental property of symmetry to determine reflective and rotational symmetries:

Analytic Conditions for Symmetry: For an object in N−dimensional space, the term
“principal axes” refer to the set of N vectors that satisfy the following conditions: a) they
point in the direction of the maximum variance of the data i.e. variance of shape for solids
and b) they are mutually orthogonal. Principal axes are eigenvectors of the object’s inertia
matrix (and of its covariance matrix too). Each eigenvalue is related to the variance of the
shape along the corresponding eigenvector. The Principal axes are uniquely defined (up to
their directions) only if the eigenvalues are distinct.
As stated in [Minovic et al., 1993], in the 3D-space, the principal axes of the covariance

matrix are influenced by the equality of the corresponding eigenvalues in such a way that
if two (three) eigenvalues are equal, two (three) eigenvectors are not uniquely determined.
However, principal axes have the following important relations with body’s properties:

Theorem 5 The eigenspaces of the body inertia matrix are invariant under symmetries of the
body. Furthemore:

• Any plane of symmetry of a body is perpendicular to a principal axis.

• Any axis of symmetry of a body is a principal axis.

The following corollaries are the result of this theorem:
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Corollary 6 If all the eigenvalues of the inertia matrix of the body are distinct, then it has a
finite number of simple i.e. reflective, rotational symmetries.

Corollary 7 If exactly two eigenvalues of the inertia matrix are equal, then it has a rotational
or simple symmetry. The potential axis of symmetry is the principal axis that corresponds to

the distinct eigenvalue.

In the first method that relies on these properties, [Minovic et al., 1993] determined
symmetries of an object using an octree representation. Their method first computes the
principal axis of the object, aligns it into a canonical frame and build its associated octree. The
authors also present a way of detecting symmetries when two or three eigenvalues associated
to the principal axes are equal. The symmetry of the objects is obtained by computing the
symmetry degree by recursively examining symmetric cells of the octree.
[Sun and Sherrah, 1997] proposed a method to detect symmetry based on the Extended

Gaussian Image (EGI). This method aimed at converting the symmetry detection problem to
the correlation of the Gaussian Image based on the observation that if an object is symmetric,
then so is its EGI.

However, the methods relying on the principal axes of the shape to compute symmetries of
the object are, in general, not reliable and cannot be used to accurately detect all symmetries.
More precisely, if all eigenvalues are distinct then the symmetry will be accurately reported
by these methods. It is however not rare that two or three eigenvalues are numerically equal
which makes these methods failed (see Figure 3.8).
In addition, in the case where the three eigenvalues are equal, for example in the case of

a cube, these methods will not be able to detect symmetries as any direction will be consid-
ered as a potential axis of symmetry. The methods using principal axes “see” such shapes as
spherically symmetric objects.
When the shape has cylindrical symmetry, two of its eigenvalues are equal. In this case,

the axis of rotation can be efficiently found by considering the eigenvector associated to the
unique eigenvalue. On non-cylindrical symmetric shapes, this case may however happen as
presented on the pillar in Figure 3.8 on the preceding page. In this case, there is no robust
way of computing the real axis of reflective symmetry as the shape is considered as a cylinder.
This fact is a real problem as those kind of objects often populate architectural scenes.

At this point, it is worth mentioning that all the following methods of detecting symme-
tries are posterior to our methods of symmetry detection.

Recently, [Mitra et al., 2006] proposed a method to compute partial, approximate or both
symmetries. The authors consider the euclidean group generated by translation, reflection,
rotation and uniform scaling and consider a model, or a part of a model symmetric if any
element of this group left the model unchanged (see Figure 3.9). This formulation enables
them to detect local symmetry which is the major contribution of their method.
We briefly detailed the various steps of their methods in the following:

• At a first step, input model needs to be sampled and a signature must be computed for
each sample.
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Figure 3.8: Methods relying on the principal axes of the shape may fail if all eigenvalues are
not distinct. Left). As the variance of the cube is independent of the direction, all eigenvalues
are equal which makes the cube equivalent to a sphere. Right) A common model were only
one principal axis can be determined. In theory, this case may only happen for cylindrical
symmetric object.

• This signature is computed so has to be invariant with respect to the elements of the
euclidean group. The authors choose to use curvature as a signature.

• After computing these signatures, the transformation between each pair of points is
computed and a new point is generated in the transformation space. The smart idea
here is to see each new point in the transformation space as a vote for a specific symmetry
(see Figure 3.10 on the next page). It must be noted that they propose a method to only
compute a smaller number of couples rather than the theoretical O(n2) which need to be
processed, where n is the number of samples.

• After filling the transformation space, detecting symmetry is done by clustering points

Figure 3.9: In [Mitra et al., 2006], the authors presented a technique to compute partial and
approximate symmetries, based on a clustering in a well-chosen vector space.
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in space Γ that have voted for the same symmetry.

Figure 3.10: Illustration of symmetry detection in 2D by the method of [Mitra et al., 2006].
Left) Every pair of points defines a symmetry line that can be described by a distance d and an
angle φ. This correspond to one point in the transformation space (Middle) and thus clusters
of points in this space provide evidence of a symmetry (Right).

This method is efficient and can find global and local symmetry of a model. However, an
important drawback of their method is that it is only able to detect discrete symmetry as
shapes with continuous symmetry groups translate as a continuous curves or surfaces in the
transformation space. This is the main limitation of the method as they cannot find, for ex-
ample, symmetry axis of a cylindrical symmetric object.

Also recently, [Simari et al., 2006] introduced a method which can be seen as a way of
compressing a model based on a particular type of symmetry. A new structure called the
folding tree is proposed, which encode the non redundant regions of the mesh by recursively
detecting planar symmetry of the mesh, or part of the mesh (see Figure 3.11).

Figure 3.11: (a) Original model. (b) The detected global symmetry. (c) and (d) The method is
recursively applied to the detected symmetric region. (e) The reconstructed model from the
folding tree.

When searching for local symmetry, a great challenge is the robust removal of asymmetric
outliers of the shape. To address this, [Simari et al., 2006] use maximum likelihood estimator
(M-estimator) and process in a top-down way by first removing larger symmetric region and
recursively apply their method to the newly created subpart of the object.
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To remove asymmetric outliers in the mesh, their method used an M−estimator that map
error values to an associated cost, which is controlled by a single parameter γ. This estimator
is used to assign a weight to each vertex with respect to a planar symmetry. More precisely,
for a plane p and a point r i , the distance di is the distance from the reflected point of r i with
respect to p to the mesh. This distance is then used to assign weights to vertices where
vertices with larger distance are assigned a smaller weight. These weights are then used to
compute a new weighted covariance matrix C relative to the weight by:

C =
1
S∑

i=1

nwi(vi−m)(vi−m)t

The axis of the planar symmetry is chosen as the eigenvector associated to the maximal
eigenvalue computed from the matrix C.
By recursively applying this process, their method is able to build symmetric regions by

giving more importance to in-progress building planar symmetry.
Their method is efficient for finding local planar symmetry, but the initialization of the al-

gorithm using the covariance matrix of the mesh can lead to miss symmetry axes. Moreover,
it is not clear if this method is able to robustly detect local planar symmetries in the presence
of dominant assymmetric outliers

As a conclusion, to our knowledge, no method has been released that discovers perfect
discrete and continuous symmetries (up to a threshold) of a 3D model. As a lot of methods
have focused on finding planar symmetries [Simari et al., 2006] or rotational symmetry [Jiang
and Bunke, 1991; Brass and Knauer, 2004] or both [Mitra et al., 2006] none of them is able to
detect all global symmetries of a shape in a unified framework. We will present, in the next
chapter, a fast and robust method that is able to detect the complete symmetry group of a
model (discrete and continuous) as well as a method to find symmetry of a set of assembled
objects computed from the symmetries of each element of the set.
The second part of this chapter focuses on symmetry seen as a continuous feature.

3.2.2 Symmetry as a continuous feature

At the time were most methods that search for symmetry could not allow noise in input
data, [Zabrodsky et al., 1995] introduce a continuous measure of symmetry which transform
the binary question: “Does a model have a given symmetry ?” to the continuous question:
“How much of a given symmetry does a model have ?”.
In this paper, the distance between two shapes P and Q each formed of points Pi and Qi is

defined as:

d(P,Q) =
1
n

n

∑
i=0

||Pi−Qi ||2

The Symmetry Transform ST of a shape P is the symmetric shape closest to P in terms of
the metric d. The Symmetry Distance SD is defined as the minimum amount of work needed
to transform a model into a symmetric one, in other words:

SDP = d(P,ST(P))
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Figure 3.12: The initial shape, formed by points Pi and its “nearest” shape, formed of points P̂i

that has 3−fold rotational symmetry.

The authors present a methods to compute the Symmetry Transform of a shape. An ex-
ample of such Symmetry Distance is presented in Figure 3.12 on the next page.
This method is however limited as it can only consider symmetry with respect to only one

point or plane at a time.
One of the first approach develop to evaluate the symmetries of a 2D model, at every sym-

metries, were developed using shape descriptor. These methods [Sun, 1995; Marola, 1989]
rely on a generalization of discrete substring matching to continuous correlation with the
Fast Fourier Transform. These methods compute the symmetries of a model by using corre-
lation to compare the shape descriptor of a 2D model with all of its rotations and reflections.
This approach is a general one that could be applied to any shape descriptor that represents
a model with a function defined on a circle, or in 2D.

In the 3D case, where shape descriptors are represented as spherical function or as 3D
function, [Kazhdan et al., 2003a, 2004b] use the analogous of FFT on the sphere, namely
the Fast Harmonic Transform to compute the measure of all symmetries. In their work, the
authors present a mathematical foundation for symmetry measure, where the key points are
detailed below:

Definition 8 Given a vector space V and a group G that acts on V, we say that v∈V is sym-
metric with respect to G if γ(v) = v for all γ ∈G. In this case, we say that v is G−invariant.

Definition 9 The symmetry distance of a vector vwith respect to group G is the L2 distance to

the nearest vector G−invariant:

SDG(v) = min
w∈G−inv

||v−w||

As the vector that are G−invariant define a subspace of G, it follows that the nearest
G−invariant vector that minimize SDG is the projection of v onto the subspace of invariant
vector, that is:

SDG = ||v− γ(v)||= ||v−ΠG(v)|| (3.2)
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where ΠG represent the projection onto the subspace invariant under the action of G. It
must be noticed that the symmetry distance defined in Equation (3.2) is coherent with the
symmetry distance defined in [Zabrodsky et al., 1995].
As the elements of G are orthogonal transformations, a theorem from representation the-

ory can be applied that states that a projection of a vector onto the subspace invariant under
the action of an orthogonal group is the average of the vector over the different elements in
this group. Thus, we have:

SD2
G = ||v||2− 1

|G| ∑γ∈G

< v,γ(v) >

which turns the problem of symmetry measure into a problem of function correlation. To
compute the symmetry measure of a shape descriptor represented as a spherical function,
their method first express this function on the spherical harmonic basis and use rotation
property of spherical harmonic to derive an algorithm in O(b4), where b represents the band-
width of the spherical harmonic decomposition, to compute symmetry descriptor for a given
symmetry.
Examples of symmetry descriptors are presented in Figure 3.13. The descriptors are rep-

resented by scaling points on the unit sphere in proportion to the measure of symmetry, so
that points corresponding to axes of near symmetry are pushed out from the origin and corre-
sponding to axes of near anti-symmetry are pulled in the origin.

Figure 3.13: Examples of symmetry descriptor computed for a planar symmetry with the
method of [Kazhdan et al., 2004b]. The descriptors are represented by scaling points on the
unit sphere in proportion to the measure of symmetry, so that points corresponding to axes
of near symmetry are pushed out from the origin and corresponding to axes of near anti-
symmetry are pulled in the origin.

The main contribution of this method is the ability to quickly obtain a continuous measure
of symmetry for all possible symmetries. However, as will be described further, having a con-
tinuous measure of symmetry is not the guarantee to have a perfect symmetry, i.e. it is not
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easy to get back to the binary question: “Does a model have a given symmetry ?”. It requires
to accurately find local maxima of a tabulated function which is non-trivial.

[Podolak et al., 2006] build upon this work to introduce a Planar-Reflective Symmetry
Transform (PRST). This work can been seen as a extension of the work of [Kazhdan et al.,
2004b] as it aim to compute a measure of the planar symmetry of an object with respect to all
planes inside the object bounding volume. For any given plane, the PRST indicates the degree
of symmetry the object exhibits with respect to it.

Figure 3.14: [Podolak et al., 2006] presents a method to compute a measure of symmetry
of the planar transform of an object with respect to all planes inside the object bounding
volum. Each point of space is colored by the symmetry measure of the plane with the largest
symmetry passing through it, with darker lines representing greater symmetries.

A discretized version of the PRST is computed on a uniform grid of 643 resolution and for
efficiency of computation, the authors propose an importance sampling scheme, in which pairs
of randomly selected points vote for the plane between them. These votes are accumulated in
discrete bins over polar parameters in a manner reminiscent of the Hough transform.
The second contribution of this paper is to provide a method to refine local maxima of

the tabulated PRST. These local maxima correspond to planes for which the object exhibits a
degree of local or global symmetry. The authors also provide multiple applications based on
this knowledge such as mesh segmentation or viewpoint selection (see Figure 3.15).

Figure 3.15: In [Podolak et al., 2006], the selection of the best viewpoint of an object is based
on the assumption that symmetry present of the object present redundant information and is
therefore to be avoided



4
Generalized moments And Symmetries

In this section we introduce a new class of functions: the generalized moments of a shape. We
then show that these functions have at least the same symmetries than the shape itself, and
that their own symmetries can be computed in a very efficient way.

4.1 Definition

For a surface S in a 3-dimensional domain, we define its generalized moment of order 2p in
direction ω by

M 2p(ω) =
Z

s∈S
‖s×ω‖2pds (4.1)

In this definition, s is a vector which links the center of gravity of the shape (placed at the
origin) to a point on the surface and ds is thus a infinitesimal surface element. M 2p itself is a
directional function.
It should be noted that, considering S to have some thickness dt, the expression M 2(ω)dt

(i.e the generalized moment of order 2) corresponds to the moment of inertia of the thin shell
S along ω, hence the name of these functions. Furthermore, the choice of an even exponent
and a cross-product will lead to very interesting properties.

4.2 Shape symmetries and moments

Symmetry properties of a shape translate into symmetry properties of its moment functions.
We now introduce a theorem that we will be rely on (see proof in Appendix):

Theorem 8 : Any symmetry I of a shape S also is a symmetry of all itsM 2pmoment functions:

I(S) = S ⇒ ∀ω M 2p(I(ω)) = M 2p(ω)

57
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Furthemore, ifM 2p has a symmetry I with axis ω, then the gradient ofM 2p is null at ω:

∀ω M 2p(I(ω)) = M 2p(ω) ⇒ (∇M 2p)(ω) = 0

This theorem implies that the axes of the symmetries of a shape are to be found in the
intersection of the sets of directions which zero the gradients of each of its moment functions.
The properties are not reciprocal however: once the directions of the zeros of the gradients of
the moment functions have been found, they must be checked on the shape itself to eliminate
false positives.

4.3 Efficient computation

At first sight, looking for the zeros of the gradient of the moment functions requires precise
and dense sampling of these functions, which would be very costly using their integral form of
Equation 4.1. We thus present an efficient method to compute the generalized even moment
functions of a shape, using spherical harmonics. In particular, we can accurately compute
the spherical harmonic coefficients of the moment functions without sampling these func-
tions. The search for zeros in the gradient will then be performed efficiently on the spherical
harmonic decomposition itself.

Spherical harmonics We use real-valued spherical harmonics [Hobson, 1931] to represent
directional functions. Real spherical harmonics are defined, for integers l ≥ 0 and −l ≤m≤ l ,
by:

Ym
l (θ,ϕ) =





√
2 Nm

l Pm
l (cosθ)cos(mϕ) for 0 < m≤ l

Nm
l P0

l (cosθ) for m= 0√
2 Nm

l P−m
l (cosθ)sin(mϕ) for− l ≤m< 0

where Pm
l are the associated Legendre polynomials; the normalization constants Nm

l are such
that the spherical harmonics form an orthonormal set of functions for the scalar product:

< f ,g >=
Z

‖ω‖=1
f (ω)g(ω)dω

This corresponds to choosing:

Nm
l =

√
2l +1

4π
(l −|m|)!
(l + |m|)!

We will use the following very powerful property of spherical harmonics: any spherical har-
monic of degree l can be expressed in a rotated coordinate system using harmonics of same
degree and coefficients depending on the rotation R:

Ym
l ◦R= ∑

−l≤m′≤l

Dm,m′

l (R)Ym′
l (4.2)

Any combination of spherical harmonics of degree less than l can therefore be expressed in a
rotated coordinate system using spherical harmonics of degree less than l without loss of in-
formation. Coefficients Dm,m′

l (R) can efficiently be obtained using recurrence formulae [Ivanic
and Ruedenberg, 1996] or directly computed [Ramamoorthi and Hanrahan, 2004].
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Computation of moment functions As defined by Equation 4.1, the 2p−moment function
of a shape S is expressed as:

M 2p(ω) =
Z

s∈S
‖s×ω‖2pds

=
Z

s∈S
‖s‖2psin2p βds

In this expression, β is the angle between sand ω.
Function β 7→ sink β has angular dependence on β only and therefore decomposes into zonal

harmonics (i.e. harmonics Ym
l for which m= 0). Performing the calculation shows that when k

is even, the decomposition is finite. Setting k = 2p, we obtain :

sin2p β =
p

∑
l=0

Sl
pY

0
2l (β, .)

with:

Sl
p =

√
(4l +1)π

22l

2l

∑
k=l

(−1)k 22p+1p!(2k)!(p+k− l)!
(2(p+k− l)+1)!(k− l)!k!(2l −k)!

(4.3)

We provide the corresponding derivation and the proof of the finite decomposition in the ap-
pendix section of this paper, for the sake of completeness.
Let Rs be a rotation which maps z, unit vector along z−axis, to s. Using Equation 4.2 for

rotating the Y0
2l zonal harmonics, we have :

sin2p β =
p

∑
l=0

Sl
p

2l

∑
m=−2l

D0,m
2l (Rs)Y

m
2l (ω)

And finally:

M 2p(ω) =
p

∑
l=0

2l

∑
m=−2l

C2p
2l ,mYm

2l (ω) (4.4)

using

C2p
2l ,m = Sl

p

Z

s∈S
‖s‖2pD0,m

2l (Rs)ds (4.5)

Equation 4.4 says that M 2p decomposes into a finite number of spherical harmonics, and
Equation 4.5 allows us to directly compute the coefficients. The cost of computing M 2p is
therefore (p+1)(2p+1) surface integrals (one integral per even order of harmonic, up to order
2p). This is much cheaper than the alternative method of computing the scalar product ofM 2p

as defined by Equation 4.1, with each spherical harmonic basis function: this would indeed
require many evaluations ofM 2p, which itself is defined as a surface integral.
Furthermore, numerical accuracy is only concerned when computing the Cm

2k,p coefficients,
and we can now compute bothM 2p and its gradient analytically from Equation 4.4.
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4.4 Finding symmetries of a single shape

In this section, we present our algorithm for identifying symmetries of a shape seen as a single
entity, as opposed to the algorithm presented in the next section where the shape is considered
as an aggregation of multiple sub-parts. For a given shape, we want to determine the axis X

and the (λ,α) parameters of the potential isometries, using the generalized moment functions,
and check the isometries found against the actual shape.
Central symmetries (λ = −1 and α = π) form a specific case, since by construction, M 2p

always has a central symmetry. Because central symmetries also do not require an axis, we
treat this case directly while checking the other candidate symmetries on the shape itself in
Section 4.4.3.

4.4.1 Determination of the axis

As we saw in Section 4.2 the axis of isometries which let a shape globally unchanged also zero
the gradient of the generalized even moments of this shape. We thus obtain a superset of
them by solving for:

∇(M 2p)(ω) = 0

In a first step, we estimate a number of vectors which are close to the actual solutions, by
refining the sphere of directions starting from an icosahedron. In each face, the value of
‖∇(M 2p)(ω)‖2 is examined in several directions and faces are sorted by order of the minimal
value found. Only faces with small minimum values are refined recursively. The number of
points to look at in each face as well as the number of faces to keep at each depth level are
constant parameters of the algorithm.
In a second step we perform a steepest descent minimization on ‖∇(M 2p)(ω)‖2, starting

from each of the candidates found during the first step. For this we need to evaluate the
derivatives of ‖∇(M 2p)‖, which we do using analytically computed second order derivatives
of the spherical harmonics along with Equation 4.4. The minimization converges in a few
steps because starting positions are by nature very close to actual minima. This method has
the double advantage that (1) the derivatives are very efficiently computed and (2) no approx-
imation is contained into the calculation of the direction of the axis beyond the precision of
the calculation of the C2p

2l ,m coefficients.
During this process, multiple instances of the same direction can be found. We filter them

out by estimating their relative distance. While nothing in theory prevents the first step from
missing the area of attraction of a minimum, it works very well in the present context. Indeed,
moment functions are very smooth, and shapes having two isometries with very close – yet
different – axis are not common.
Finally, because all moment functions whatever their order, must have an extremum in

the direction of the axis of the symmetries of the shape, we compute such sets of directions for
multiple moment functions (e.g. M 4, M 6 andM 8), but keep only those which simultaneously
zero the gradient of all these functions – which in practice leaves none or very few false
positives to check for.
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4.4.2 Determination of rotation parameters

After finding the zero-directions for the gradient of the moment functions, we still need to find
the parameters of the corresponding isometric transforms. This is done deterministically by
studying the spherical harmonic coefficients of the moment functions themselves. We use the
following properties:

Property 1 : A function has a mirror-symmetry Sz around the z= 0 plane if and only if all
its spherical harmonic coefficients for which l + m is even are zero (i.e. it decomposes onto
z−symmetric harmonics only). In the specific case of the moment functions:

∀ω M 2p(ω) = M 2p(Szω) ⇔ m≡ 0(mod 2)⇒C2p
2l ,m = 0

Property 2 : A function has a revolution-symmetry around the z axis if and only if it decom-
poses onto zonal harmonics only, i.e.

∀l ∀m m 6= 0 ⇒ Cm
l = 0

Property 3 A function is self similar through a rotation Rα of angle α around z if and only if
all its spherical harmonic coefficients Cm

l verify:

∀l ∀m Cm
l = cos(mα)Cm

l −sin(mα)C−m
l (4.6)

Property 3 can be adapted to check if the function is self-similar through the composition of a
rotation and a symmetry with the same axis (i.e. the case λ = −1). In this case the equation
to be checked for is:

∀l ∀m (−1)l+mCm
l = cos(mα)Cm

l −sin(mα)C−m
l (4.7)

These properties are easily derived from the very expression of the spherical harmonic func-
tions [Hobson, 1931].
Before using these properties, the moment function must be expressed in a coordinate

system where the zaxis coincides with the previously found candidate axis. This is performed
using the rotation formula in Equation 4.2. Then checking for properties 1 and 2 is trivial
provided that some tolerance is accepted on the equalities. Using property 3 is more subtle:
coefficients of the function are first examined by order of decreasing m. For λ = 1 for instance,
when the first non zero value of Cm

l is found, Equation 4.6 is solved by:

tan
mα
2

=
C−m

l

Cm
l

i.e. α =
2
m

arctan

(
C−m

l

Cm
l

)
+

kπ
m

then all the remaining coefficients are checked with the obtained values of α. If the test
passes, then α is the angle of an existing rotation-symmetry for the moment function. A very
similar process is used to search for α when λ =−1.
The error tolerance used when checking for properties 1, 2 and 3 can be considered as a

way of detecting approximate symmetries on objects. We will show in the results section that
symmetries can indeed be detected on noisy data, such as scanned models.
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4.4.3 Filtering results

The condition extracted from Theroem 8 is a necessary condition only. To avoid false positives,
the directions and rotation angles obtained from the moment functions must therefore be
verified on the shape itself. We do this using a symmetry measure inspired by the work of
Zabrodsky et al. [Zabrodsky et al., 1995]. Let S and R be two tessellated shapes. Let VS and
VR be the mesh vertices of S and R . We define the measure dM between S and R by:

dM(S ,R ) = max
p∈VS

(min
q∈R
‖p−q‖) (4.8)

The symmetric measure dA(S) of a shape S with respect to a symmetry A is then defined by:

dA(S) = max(dM(S ,AS),dM(AS ,S))

It should be noted that this definition is different from that of theHausdorff distance since, in
Equation 4.8, not all points of S are considered but only the mesh vertices, whereas all points
of R are used. However, because S is polyhedral, dA(S) = 0 still implies that AS = S .
From an implementation point of view, we choose a treshold ε, a fraction of the boudning

box diagonal and keep A as a symmetry if dA(S)≤ ε.
Computing dA is costly, but fortunately we only compute it for a few choices of A which

are the candidates we found at the previous step of the algorithm. This computation is much
cheaper than computing a full symmetry descriptor [Kazhdan et al., 2004b], for a sufficient
number of directions to reach the precision of our symmetry detection algorithm.

4.4.4 Results

Complete example

The whole process is illustrated in Figure 4.1. Starting from the original object (a), the mo-
ment functions of orders 4,6 and 8 are computed (See e.g. M 8 in (b)). The gradients of these
moments are then computed analytically (c), and used for finding the directions of the min-
ima. The unfiltered set of directions contains 7 directions, among which only 3 are common
extrema ofM 4,M 6 andM 8. This set of 3 directions (D1,D2 andD3) must contain the axes of
the symmetries of the shape. After checking the symmetry axis and parameters on the actual
shape, D1 reveals to be the axis of a 2-fold symmetry, which is the composition of the two
remaining mirror-symmetries of axesD2 andD3.
The example of the cube, shown in Figure 4.2 illustrates the extraction of rotations and

mirror-symmetries. Experiments have shown that our method finds all 48 symmetries what-
ever the coordinate system the cube is originaly expressed in.

Robustness tests

We now study the sensitivity of our method to small perturbations of the 3D model in two
different ways :

1. Noise : We randomly perturb each vertex of each polygon independently in the original
model by a fraction of the longest length of the model’s bounding box.
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M8

D2D1

D3
(b)

‖∇M8‖2

(c)

(a)

Figure 4.1: Extraction of symmetries for a single shape. Starting from the original shape
(a), generalized moments (b) and their gradients (c) are computed. The set of their common
extrema directions contains the axes of the symmetries of the shape, depicted at right. Here,
both mirror-symmetries have been found as well as the 2-fold rotational symmetry. Note that
the original shape is neither convex nor star-shaped, and that the mesh is not consistent with
the symmetries of the geometry.

π

2π
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π
2

π

2π
3
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2

Figure 4.2: Mirror-symmetries and rotational-symmetries found by our algorithm for a cube
(for clarity, not all elements are represented).
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Figure 4.3: View of the three 3D models used in the robustness tests presented in Figure 4.4
shown with their symmetries. For the sake of clarity, we chose models with only one symmetry
each.

2. Delete : We randomly delete a small number of polygons in the model.

We use a set of three models to test the robustness of our method. These models are
shown in Figure 4.3 as well as their symmetry. For sake of clarity, we use objects with only
one symmetry.
In order to test the robustness of the method, we progressively increase the magnitude of

the noise and let the algorithm automatically detect the symmetry. In our robustness tests,
we consider shapes as single entities and use the first algorithm presented in Section 4.4 to
detect these symmetries. To evaluate the reliability of the results, we compute the angular
deviation between the found axis of symmety and the real one i.e. computed with no noise.
In our experiments, noise magnitude varies from 0 to 1% of the longest length of the model’s
bounding box and the number of deleted polygons ranges from 0 to 5% of the total number of
polygons in the model (see Figure 4.4).
The results of these experiments show that for small variations, our method has approx-

imatively linear dependency regarding noise and delivers high-quality results even for non-
perfect symmetries. These statistical results can also be used to derive an upper bound on the
mean angular error obtained as a function of the noise in the model.

Application to scanned models

We present in Figure 4.5 examples of applying the single-shape algorithm to scanned models,
retreived from a web database and used as is (See at http://shapes.aim-at-shape.net).
Our algorithm perfectly detects all the parameters of candidate symmetries for all these
shapes. When testing these symmetries, one should allow a large enough symmetry distance
error (as defined in Section 4.4.3) because these models are by nature not perfectly symmetric.

4.4.5 Discussion

The M 2p functions being trigonometric polynomials on the sphere, they have a maximum
number of strict extrema depending on p: the larger p, the more M 2p is able to capture the
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Figure 4.4: We test the sensitivity of the method to noise by progressively increasing noise
magnitude and letting the algorithm detect the symmetry for each of our three test models.
We evaluate the accuracy of the results by computing the angular deviation between the axis
found and the axis of the symmetry of the original model. Top row: We perturb each vertex
of each polygon independently by a fraction of the longest length of the bounding box on each
of the three test models. Left figure shows a noisy “pickup” model with a noise magnitude of
1% and right figure shows angular deviation evolution for the three models, for a magnitude
ranging from 0% to 1%.Bottom row: We randomly delete polygons of the models. Left figure
shows a noisy pickup obtained by deleting 5% of the polygons and right figure shows angular
deviation evolution by deleting 0% to 5% of the polygons of the three models. As can be seen
from the curve, for small variation of the models, our method has approximatively linear de-
pendency regarding noise and delivers high-quality results even for non-perfect symmetries.
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π
2

π

Figure 4.5: Our algorithm perfectly detects approximate symmetries of scanned models. De-
tecting those symmetries requires relaxing the constraints when checking candidate symme-
tries on the model. Please note that these scanned models are by nature neither axis-aligned
nor tesselated according to their symmetries. This illustrates the fact that our algorithm does
not depend on the coordinate system nor on the mesh of the objects.

Model Teeth Vase Pelvis Angkor statue
# polygons 233,204 76,334 50,000 163,054
Computing moments* 33.7 11.8 7.26 23.26
Finding parameters 0.4 0.6 0.4 0.7
Checking candidates 9.4 11.1 5 12.2
Total 43.5 23.5 12.66 36.16

Figure 4.6: Computation times in seconds for the four scanned models presented in Fig-
ure 4.5.**Global computation times for moments of order 2 to 8
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information of a symmetry, i.e. to have an extremum in the direction of its axis. But because
all moment functions must have a null gradient in this direction (according to Theorem 8),
these extrema are “bound” to become non-strict extrema for small values of p, and M 2p is
forced to be constant on a sub-domain of non-null dimension. Using the cube as an example,
in which case M 2 is a constant function: a trigonometric polynomial of order 2 can simply
not have enough strict extrema to represent all 12distinct directions of the symmetries of the
cube.
In all tests we conducted however, using moments up to order 10 has never skipped any

symmetry on any model. But it would still be interesting to know the exact maximum number
of directions permitted by moments of a given order.

4.5 Finding symmetries of groups of objects

In Section 4.4 we have presented an algorithm for finding the symmetries of single shapes.
In this section, we present a constructive algorithm which recovers the symmetries of a group
of objects – which we call tiles to indicate that together they form a larger object –, from the
symmetries and positions of each separate tile.
The constructive algorithm first computes (if necessary) the symmetries of all separate

tiles using the single shape algorithm. Then it detects which tiles are similar up to an iso-
metric transform and finds the transformations between similar tiles. Then it explores all
one-to-one mappings between tiles, discarding mappings which do not correspond to a sym-
metry of the group of tiles as a whole.
Section 4.5.2 explains how we detect similar tiles and Section 4.5.3 details the algorithm

which both explores tile-to-tile mappings and finds the associated symmetry for the whole set
of tiles.
Because it is always possible to apply the algorithm presented in Section 4.4 to the group of

tiles, considering it as a single complex shape, questioning the usefulness of the constructive
method is legitimate. For this reason we will explain in Section 4.5.5 in which situations
the constructive method is more preferable to the algorithm for single shapes; but let us first
explain the method itself.

4.5.1 Computing the symmetries of each tile

If not available, the symmetries of each tile are computed using the algorithm presented in
Section 4.4. When assembling known objects together, the economy of this computation can
of course be performed by simply computing the symmetries of one instance for each class of
different tiles.

4.5.2 Detecting tiles congruency

In this subsection we introduce a shape descriptor suitable for detecting whether two shapes
are identical up to an — unknown — isometry. We will use this tool for classifying tiles before
trying to find a mapping of a composite object onto itself.
Let S be a shape and C2p

2l ,m the spherical harmonic coefficients of its generalized even mo-
ment functionsM 2p up to an order p. Our shape descriptor is defined as the p(p+1)/2-vector
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A B C
components 
Descriptor vector

Figure 4.7: This figure illustrates the reliability of our congruency descriptor (as defined by
Equation 4.9): Two identical objects meshed differently and expressed in two different coordi-
nate systems (A and B) have extremely close descriptor vectors, but a slightly different object
(C) has a different descriptor. The graphics on the right shows each component of the three
descriptors.

obtained by packing together the frequency energy of the spherical harmonic decomposition
of all moments of S up to order p:

D2p =
[
d0

0,d
2
0,d

2
2, . . . ,d

2p
0 ,d2p

2 . . .d2p
2p

]
(4.9)

with

d2k
2l = ∑

−2l≤m≤2l

(
C2k

2l ,m

)2
(4.10)

It has been shown by Kazhdan et al. [Kazhdan et al., 2003b] that dk
l , as defined in Equa-

tion 4.10, does not depend on the coordinate system the spherical harmonic decomposition is
expressed in. This means that each d2p

2l , and therefore D2p itself, is not modified by isometric
transforms of the shape. Mirror-symmetries do not affect d2p

2l either, since they only change
the sign of the coefficient for some harmonics in a coordinate system aligned with the axis.
Two tiles A and B are considered to be similar up to an isometric transform, at a precision

ε, when:
‖D2p(A)−D2p(B)‖< ε

Theoretically, this shape descriptor can produce false positives, i.e. tiles that are not con-
gruent but have the same descriptor, but it can not produce false negatives because of its
deterministic nature. Our experiments have shown that using moments up to order 6 pro-
duces a sufficiently discriminant shape descriptor on all test scenes. This is illustrated in
Table 4.9 where we present the average “precision” value, that is the percentage of matched
tiles that are actually identical up to an isometric transform, for a set of architectural scenes
(Figure 4.8).
By definition, congruent tiles should have the same set of symmetries, possibly expressed

in different coordinate systems. Since we know the symmetries of each of the tiles, we intro-
duce this constraint, thereby increasing the discriminating power of our shape descriptor as
shown in Table 4.10.
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Room Plane Studio
39,557 Polygons 182,224 Polygons 515,977 Polygons

Figure 4.8: Scenes used for testing the object congruency descriptor. In each scene the de-
scriptor has been used to detect objects with similar geometry (but possibly different meshes)
up to a rigid transform. Objects found to be congruent are displayed with the same color.

Max 39,557 Polygons 182,224 Polygons 515,977 Polygons
order 851 Tiles 480 Tiles 5,700 Tiles

2 92.1 % 43.9 % 92.3 %
4 100 % 78.0 % 100 %
6 100 % 92.2 % 100 %
8 100 % 100 % 100 %

Figure 4.9: Percentage of tiles matched by our shape descriptor that are effectively identical
for our test scenes.

Max 39,557 Polygons 182,224 Polygons 515,977 Polygons
order 851 Tiles 480 Tiles 5,700 Tiles

2 95.6 % 73.4 % 97 %
4 100 % 96.0 % 100 %
6 100 % 100 % 100 %
8 100 % 100 % 100 %

Figure 4.10: Percentage of tiles matched by our shape descriptor that are effectively identical
using the added constraint that identical tiles must have the same set of symmetries up to a
rigid transform.
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4.5.3 Algorithm for assembled objects

Overview

Once we have determined all classes of congruent tiles, the algorithm examines all the one-to-
one mappings of the set of all tiles onto itself, which map each tile onto a similar tile. For each
one-to-one mapping found, it determines the isometric transforms which are simultaneously
compatible with each tile and its symmetries.
The algorithm works recursively: at the beginning of each recursion step, we have ex-

tracted two subsets of tiles H1 and H2 of the composite shape S , and we have computed the
set of all possible isometric transforms that globally transform H1 into H2. Then, taking two
new similar tiles S1 ∈ S \H1 and S2 ∈ S \H2, we restrict the set of isometric transforms to the
isometric transforms that also map S1 onto S2 (but not necessarily S2 onto S1). Because these
tiles have symmetries, this usually leaves multiple possibilities.
Note that the global symmetries found must always be applied with respect to the center

of mass g of S , according to the definition of a symmetry of S .
At the end of the recursion step, we have the set of isometric transforms that map H1∪{S1}

onto H2∪{S2}.
Each recursion step narrows the choice of symmetries for S . The recursion stops when

either this set is reduced to identity transform, or when we have used all the component tiles
in the model. In the latter case, the isometric transforms found are the symmetries of the
composite shape. The recursion is initiated by taking for H1 and H2 two similar tiles, that is
two tiles of the same class.
In the following paragraphs, we review the individual steps of the algorithm: finding all

the isometric transforms which map tile S1 onto similar tile S2, and reducing the set of com-
patible symmetries of S . We then illustrate the algorithm on a step-by-step example.

Finding all the isometries which transform a tile onto a similar tile

At each step of our algorithm, we examine pairs of similar tiles S1 and S2, and we have to find
all the isometries which map S1 onto S2.
If gi is the center of mass of tile Si and g is the center of mass of the composite shape S , this

condition implies that the isometries we are looking for transform vector g1−g into g2−g. In
order to generate the set of all isometric transforms that map S1 onto S2, we use the following
property:

Property 4 : If J is an isometry that maps S1 onto a similar tile S2, then all the isometries K
which map S1 onto S2 are of the following form:

K = JT−1AT with A∈GS1 such that A(g1−g) = g1−g (4.11)

where GS1 is the group of symmetries of S1 and T is the translation of vector g−g1 (please refer

to the Appendix for proof of this property).

This property states that once we know a single seed isometric transform which maps S1 onto
S2, we can generate all such transforms by using the elements of GS1 in Equation 4.11.
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Mapping               Symmetry

mirror-symmetryB
2-fold symmetryG

mirror-symmetryC
2-fold symmetryE

mirror-symmetryD
2-fold symmetryF

S1 → S1

S2 → S2
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3-fold symmetryH

Figure 4.11: Three spheres uniformly distributed on a circle in the z-plane. Etablishing all
one-to-one mappings of the set of all tiles onto itself, which map each tile onto a similar tile,
are used to detect all the symmetries of the shape. Note that the 3−fold symmetry H is
detected and is associated to a circular permutation mapping.

Finding a seed transform

We need to find a seed transform J that maps S1 onto S2. For each tile, we extract a minimum
set of independent vectors that correspond to extremas of their generalized even moment
functions. The number of vectors needed depends on the symmetries of the tile. J is then
defined as any isometric transform that maps the first set of vectors onto the second, as well
as vector g1−g onto g2−g. Most of the time, a single isometric transform is possible at most.
When multiple choices exist the candidate transforms are checked onto the shapes using the
distance presented in Section 4.4.3. This ensures that we find at least one seed transform.

Ensuring compatibility with previous isometries

During the recursion, we need to store the current set of compatible isometries we have found.
We do this by storing a minimal set of linearly independent vectors along with their expected
images by these isometries. For example, if we have to store a symmetry of revolution, we
store only one vector, the axis of the symmetry, and its image (itself). For mirror symmetries,
rotations and central symmetries, we store three independent vectors, along with their images
by this isometric transform. For instance, in the case of a rotation of angle π around axis X,
we have:

X 7→X Y 7→ −Y Z 7→ −Z (4.12)

By examining all the one-to-one mappings of the set of all tiles onto itself, which map each
tile onto a similar tile, we are able to detect all symmetries of the set of tiles (See figure 4.11).
Note on this example that the 3−fold symmetry H is detected and is associated to a circular
permutation mapping.
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Tile S1 Tile S2

S1

S2

R

TileR
(1 mirror-symetry) (1 mirror-symetry)

g2
g1 g g1

g2

(1 rotation-symetry)
π

Figure 4.12: Illustration of the constructive algorithm on a very simple example: from the
symmetries of each of the 3 parts of the object, the symmetries of the whole object are recov-
ered. Please note that no symmetry was ommitted in this figure, in particular tile R only
has a rotational symmetry but no mirror symmetry. See text of Section 4.5.4 for a detailed
explanation.

4.5.4 Step-by-step example

Figure 4.12 presents a very simple example of a shape (a pair of pliers) composed of 3 tiles
S1,S2 (the handles) and R (the head). Two of the tiles are similar up to an isometric transform:
S1 and S2. Figure 4.12 also displays the centers of mass g1 and g2 of tiles S1 and S2 (which are
not in the plane z= 0) and the center of mass g of the whole shape. In the coordinate systems
centered on their respective centers of mass, S1 and S2 have a mirror-symmetry of axis Z and
R has a rotation-symmetry around axisX of angle π.

Our constructive algorithm starts by selecting tile R and a similar tile (here, the only
possible choice is R ).
Step 1: the algorithm explores the possibilities to transform R into itself. Two possibilities
exist: (a) the identity transform, and (b) the rotation around X of angle π, deduced from (a)
by property 4.
At this point, the algorithm branches, and either tries to map S1 to itself (branch 1) or to S2

(branch 2).
Branch 1, step 1: the algorithm tries to match S1 to itself. The only compatible transform is
the identity transform.
Branch 1, step 2: The algorithm then tries to map S2 to itself. Once again, the only possible
transform is the identity transform, and the recursion stops because all the tiles in the model
have been used.
Branch 2, step 1: the algorithm tries to match S1 to S2. The only compatible transform is the
rotation aroundX of angle π.
Branch 2, step 2: the algorithm then tries to match S2 to S1. Once again, the only compatible
transform is the rotation aroundX of angle π, and the recursion stops because all the tiles in
the model have been used.

Two symmetries have been found that map the shape onto itself: the identity transform
and the rotation aroundX of angle π. Note that although our algorithm can potentially create
lots of branching, we prune branches that result in empty sets of transforms and in practice,
we only explore a small number of branches.
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2π
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Figure 4.13: A complex model which has the same group of symmetries than the icosahe-
dron. The constructive algorithm successfully retrieves all 15 planes of mirror symmetries
(center) and all 31distinct axes of rotational-symmetries (right) using the rotational and mir-
ror symmetry of each tile (at left). The presence of 3−fold and 5−fold symmetries proves that
our algorithm also detects symmetries which map a set of similar tiles onto itself through a
complex permutation.

4.5.5 Application scenarios

In order to illustrate the efficiency of the constructive algorithm, we show in this section
various situations where this method is a valuable alternative to the single-shape algorithm.

Application to an agregation of many objects

Figure 4.13 presents a complex model which has the same group of symmetries as an icosa-
hedron. The constructive algorithm retrieves all the 31distinct axis of rotational-symmetries
(Figure 4.13, right) as well as the 15 axis of plannar symmetries (Figure 4.13, middle) of the
shape, using the symmetries of each tile (Figure 4.13, left), which are 1 revolution-symmetry
and 1mirror-symmetry.

Conversely, directly applying the first algorithm on such a shape shows that M 2 to M 8

are extremely close to constant functions, making the extraction of directions an inaccurate
process. The single-shape algorithm still correctly finds all the axis if using moments up to
order 10, but this has some impact on computation times. Furthermore, the single-shape
algorithm needs checking all symmetries found on the model – which is a significant part of
its computation time. This is not the case for the constructive algorithm because it relies on
its knowledge of the symmetries of the tiles only. Because many symmetries exist for this
model, the total computation time of the single-shape algorithm is therefore much higher.
This is summarized in Table 4.14, where we compare the computation times for both methods
at equivalent precision (i.e. 10−4 radians).
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Method Single shape (order 10) Constructive (order 4)
Moments calculation 500sec 30×0.5 sec
Symmetry verification 46×55 sec 30×2×1.5 sec
Tile congruency N/A 2 sec
Tile mappings N/A 10 sec
Total 50mn 30 sec 1mn 57 sec

Figure 4.14: Comparison of the costs of the single-shape algorithm presented in Section 4.4
to the cost of the constructive algorithm to find all 46 symmetries of the icosahedron shape
displayed on Figure 4.13 at equivalent precision. Because the object is close to a sphere and
because it has many symmetries, the constructive algorithm performs much better.

Finding symmetries inside non coherent geometry

There exist common situations where 3D scenes do not come as a set of closed separate objects,
but as an incoherent list of polygons. This happens for instance when retrieving geometric
data from a web site, mostly because a list of polygons constitutes a practical common denom-
inator to all possible formats.
In such a case, applying the single-shape algorithm would certainly give the symmetries

of the whole scene, but if we are able to partition the set of polygons into adequate groups –
i.e. tiles – to which we apply the constructive algorithm we may be able to extract symmetric
objects from the scene, as well as the set of symmetries for the whole scene more rapidely, as
illustrated in Figure 4.13.
The gain in using the constructive algorithm to recover symmetries in the scene resides in

the fact that, once tile symmetries have been computed, grouping them together and testing
for symmetries in composed objects only adds a negligible cost, which is not the case when
we try to apply the single shape algorithm to many possible groups of polygons or even to the
entire scene itself.
Figure 4.15 gives examples of such tiles for objects collected from the web as a raw list of

polygons.
Our simple heuristic approach of making tiles produced very good results on all scenes

we tested and suffices for a proof of concept of the constructive algorithm. This is illustrated
in Figure 4.15, where a lamp object and a chess game are shown along with their global
symmetries. These symmetries were computed from the symmetries of each of the sub-parts.
These in turn were separately computed using the algorithm presented in Section 4.4.
Obviously this application needs that constructed tiles be consistent with symmetries, i.e.

that it is possible to partition the scene into tiles which will map onto each other through
the symmetries of the scene. This may not be easy with scanned models for instance nor in
perturbated data. In such a case, our simple heuristic should be modified so as to base poly-
gon neighborood relationships on proximity distances between polygons rather than vertex
positions only. Doing so, cutting one tile into two parts and remeshing them independently
would have a high probability of producing the same original tile after reconstruction. If not,
then the existance of a symmetry inside the model may become questionnable: suppose for
instance that the wrench in the step by step example (Section 4.5.4) gets split into tiles that
are not exact symmetrical copies of one another, and that these two tiles are too far away to
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Original model

Tiles extracted using heuristic of
Section 4.5.5 and their symme-
tries, computed with the single-
shape algorithm

Global symmetries of the model

2π

7

π

2

π

π

π

2

π

π

π

π

Figure 4.15: Two models taken from the web. From the raw list of polygons (left) our heuristic
for scene partitionning extracts tiles before the single-shape algorithm computes the symme-
tries for each of them (center). Using this information, the constructive algorithm computes
the symmetries of the whole model (right). Top row: A lamp object which has seven mirror-
symmetries and a 7−fold rotational-symmetry. Bottom row: a chess board which is composed
of pieces with very different symmetries but reveals to only have a single 2−fold symmetry
around a vertical axis (Note: in this last model, once tiles have been identified, chess pieces
were moved so as to obtain a model with at least one global symmetry).
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Model Plier Lamp Chessboard
# polygons 1,940 39,550 24,942
# tiles 3 22 8
Computing moments* 0.9 18.2 15
Finding parameters 0.4 1.2 2.0
Checking candidates 2.3 7.4 7.9
Constructive algo. 0.001 0.05 0.01
Total 3.601 26.85 24.91

Figure 4.16: Computation times in seconds for the different steps of our algorithm, for the
models shown in this paper.**Global computation time for moments of order 2 to 8

be merged into a single tile. Then the model is by nature not symmetric anymore, which will
also be the output of the constructive algorithm.

4.5.6 Computation cost

Computation times (in seconds) for the models shown in this paper are given in Table 4.16,
as well as the complexity of the models. They were measured on a machine equipped with a
2.4 GHz processor with 512MB of memory. As expected, the cost of the computation of the
moment functions and the cost of the verification of the candidates required by the first algo-
rithm occupy the most important part of the total cost, and depend on the model complexity.
Conversely, finding the parameters of the symmetries (Section 4.4.2) as well as applying the
constructive algorithm only depends on the number of these symmetries.
Regarding accuracy, both algorithms computed the axes of the symmetries with a maxi-

mum error of 10−4 radians, independently of shape complexity, in our tests.



5
Results And Applications

5.1 Geometry compression and instantiation

Our framework can be used for model compression at two different levels: (1) If a model
exhibits symmetries, then it can be compressed by storing only the significant part of the
model, and using the symmetries to recreate the full model. (2) if a model contains multiple
instances of the same part, then these parts can be instantiated.

Although complex models often do not present symmetries, symmetry-based compression
can usually be used on some sub-parts of the model. The ability to express a model by ex-
plicitely storing the significant parts only while instancing the rest of the scene is provided
by some recent 3D file formats such as X3D (See Table 5.2 on the next page). We thus mea-
sure our compression ratios as the size of the X3D files before and after our two compression
operations which we detail now:

The scene is first loaded as a raw collection of polygons, before being decomposed into tiles,
using the heuristic presented in Section 4.5.5. We then compute symmetries and congruent
descriptors for each tile. Computation times shown on Table 5.2 present the average time
needed to compute symmetries and congruent descriptors for a single tile. As the process of
computing tile properties does not depend on the other tiles, it is an easily parallelizable pro-
cess. The scene is then first compressed by instancing the tiles. Secondly, when storing each
tile, we only store the minimum significant part of its geometry according to its symmetries.
This part is extracted using the same algorithm we will present for remeshing a tile according
to its symmetries in the next section. Note that compression rates shown on this table are
computed using geometry information only, i.e. neither texturing nor material information
are taken into account. Compression times shown in Table 5.2 on the following page are the
times needed to detect all classes of tile congruency.
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Section 14  : 248,432 triangles

Compression Rate  1:7

Section 6 : 55,300 triangles

Compression Rate  1:5.5

Figure 5.1: Detecting symmetries and similarities between tiles created from a raw list of
polygons, allows us to compress geometric models in two ways: (1) by instancing similar tiles
and (2) inside each symmetric tile, by instancing the part of the geometry which permits to
reconstruct the whole tile. In such a big model as the powerplant (13 millions triangles) we
achieve an compression ratio (ratio of geometry file size in X3D format) of 1 : 4.5. We show on
this figure two sub-parts of the complete model. For each, we show the tiles computed by our
heuristic (See Section 4.5.5) as well as the obtained compression ratio. The PowerPlant model
is a courtesy of The Walkthru Project.

Model Room Plane Studio Powerplant
# polygons 39,557 182,224 515,977 12,748,510
# tiles 851 480 5,700 155,348
av. computing tile properties (secs) 1.45 1.3 1.9 1.1
Compression time (secs) 7.2 9 14.6 311
Compression rate 1 : 2.7 1 : 8.3 1 : 3.5 1 : 4.5

Figure 5.2: Examples of compression rates obtained using our symmetry detection method
coupled with the congruency descriptor. See text in Section 5.1 for a detailed explanation.
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Symmetry Detection

Coherent Re-Meshing

Constrained

mesh-Editing

Figure 5.3: Starting from an object in arbitrary orientation, we detect symmetries of the
shape (in the figure, a planar symmetry) and use it to remesh the objects with respect to
these symmetries. Then, a user can easily edit the mesh and modify it while keeping the
symmetries of the initial shape.

5.2 Mesh Editing

It may be interesting, when an object contains symmetries, to remesh the object with respect
to these symmetries. In order to do this, we proceed by first extracting the minimum part of
the shape that can be reconstructed through each symmetry independently; then we apply the
corresponding symmetry to each of them in order to get as many meshes of the shape which
are consistent with each symmetry independently. The final step is to compute the union of
all these meshes, merging identical vertices and adding new vertices at edge crossings. While
not necessarily optimal, the obtained mesh is consistent with all symmetries of the shape.
Since a coherent remeshing allows to establish a correspondence between model vertices,

we have developed a proof-of-concept mesh editing system which allows the user to modify
a 3D object under the constraints given by the symmetries of the original object. It appears
that, under the constraint of too many symmetries, no vertices can be moved independly of
the others and the geometry is sometimes bound to scale about its center of gravity. Images
collected from this program are displayed in Figure 5.3.

5.3 Isotropic Models

As stated earlier, symmetry detection methods based on eigenvectors of the covariance matrix
usually failed for two reasons. The first one is when two eigenvalues are strictly or almost
equivalent. In this case, only one axis can be detect in a robust way, which result in a inde-
termination when looking for axis of symmetry. This is illustrated in Figure 5.4 on the next
page.
The second reason that make PCA-based symmetry detection is when the three eigen-

values of the model are strictly or almost equivalent. In this case, no axis can be derived
and hence no symmetry can be obtained. In this section, we focus on the latter case by first
defining what an isotropic model is and presenting some almost isotropic model.1

1In our work, this simply mean that theM 2p moment of an isotropic model will be constant for p = 1.
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Figure 5.4: Starting from an object in arbitrary orientation, we detect symmetries of the
shape (in the figure, a planar symmetry) and use it to remesh the objects with respect to
these symmetries. Then, a user can easily edit the mesh and modify it while keeping the
symmetries of the initial shape.

Definition 10 A geometric model is called isotropic if its variance is independent of the direc-
tion.

The most natural form that is known to be isotropic is the cube; from a variance point of
view, a cube is equivalent to a sphere. However, it is easily to find model that are also isotropic
as those presented on Figure 5.5 on the facing page.
Intuitively, method based on principal axis will have more difficulty to compute robust

symmetry axis when the model is almost isotropic. To estimate “the distance” from an object
to its isotropic version, we use the method proposed by [Kazhdan et al., 2004a]. In this paper,
authors proposed a way of removing anisotropy of a model by rescaling it based on the value
of the covariance matrix of the model.
More specifically, it can be proved that, for a point set with covariance matrixC, it suffices

to rescale the point set by the matrix C−1/2 to obtain an isotropic point set. If P = p1, p2, ..., pn

is a point set, its covariance matrix is :

Cp =
n

∑
i, j=1

(pi− p j).(pi− p j)
t

When rescaling the point set P by the matrix C−1/2
p , we obtain a new point set that can be

expressed as Q = {C−1/2
p p1,C

−1/2
p p2, ....C

−1/2
p pn)} and the associated covariance matrix is now :

Cq =
n

∑
i, j=1

C−1/2
p (pi− p j).(pi− p j)

tC−1/2
p
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Figure 5.5: A set of isotropic models, i.e. models for which the variance is independent of the
direction. The most well-known isotropic object is the cube, but some other object have also
this property. In this case, applying a method based on principal axes will failed as no axes
can be uniquely defined for testing symmetry.

which transform into :

Cq = C−1/2
p (

n

∑
i, j=1

(pi− p j).(pi− p j)
t)C−1/2

p = 1

The point set Q is now isotropic has its variance is independent of the direction.
To apply it on 3D surfaces, authors pro-

posed an iterative version of this method to
take into account sampling method ( an uni-
form sampling of the surface, once anisotrop-
ically rescaled is not uniform anymore. On
right figure, uniform sampling of the iris is
shown on the left. After isotropic rescaling,
the point set no longer represent uniform
sampling of the surface.
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6
Summary and Discussion

6.1 Summary

We have presented an algorithm to automatically retrieve symmetries for geometric shapes
and models. Our algorithm efficiently and accurately retrieves all symmetries from a given
model, independently from its tesselation.

We use a new tool, the generalized moment functions, to identify candidates for symme-
tries. The validity of each candidate is checked against the original shape using a geometric
measure. Generalized moments are not computed directly: instead, we compute their spher-
ical harmonic coefficients using an integral expression. Having an analytical expression for
the generalized moment functions and their gradients, our algorithm finds potential symme-
try axes quickly and with good accuracy.

Compared to recent method that search both local and global symmetries, we restrict our
search to global symmetry,i.e, symmetry applied to the center of mass of the objects. For
composite shapes assembled from simpler elements, we have presented an extension of this
algorithm that works by first identifying the symmetries of each element, then sets of con-
gruent elements. We then use this information to iteratively build the symmetries of the
composite shape. This extension is able to handle complex shapes with better accuracy, since
it pushes the accuracy issues down to the scale of the tiles.

In the following, we discuss here a number of features of our technique, as well as differ-
ences with existing approaches.

83



84 CHAPTER 6. SUMMARY AND DISCUSSION

6.2 Discussion

Using spherical harmonics

Generalized moments are a central component of our system. As stated before, we do not com-
pute these functions explicitly, but we rather compute their coefficients in a spherical harmon-
ics basis. As for the decomposition itself, any basis could be used. In particular, a well chosen
basis of 3D monomials restricted to the unit sphere may also lead to a finite decomposition.
Still, using spherical harmonics has many advantages, in particular because we use the same
coefficients computed once for different tasks throughout this paper: (1) The expression of mo-
ment function as a sum of spherical harmonics provides an accurate detection of the potential
axes of symmetries. This detection is made deterministic by finding the zero-directions for
the gradient of the moment functions. Such a computation is performed analytically from the
2nd order derivatives of the spherical harmonics, and thus does not introduce further approx-
imation. (2) Computing symmetry parameters for the moment functions is made very easy
by working on the spherical harmonic coefficients themselves. Spherical harmonics being
orthogonal and easily rotated, finding symmetries on the moment functions translates into
simple relationships between the coefficients. (3) The spherical harmonic coefficients provide
an effective shape congruency descriptor, which we use to detect which tiles are identical up
to an unknown isometric transform.
In summary, the use of spherical harmonics provides us a consistent framework through-

out the whole process of our symmetry-finding algorithm.

Non star-shaped objects

Whether the direct algorithm presented in Section 4.4 works for non star-shaped objects is a
legitimate question. Our approach never relies on a spherical projection. Indeed, the moment
functions, as expressed in equations 4.1 and 4.5 are computed through an integration over the
surface itself, possibly covering the same directions multiple times but with different values.
Parts of a shape which correspond to a same direction during integration will not contribute
the same into the various moment functions because of the varying exponent. By using var-
ious orders of moment functions in our symmetry detection process and in the computation
of our shape congruency descriptor, we thus capture the geometry of non star-shaped objects
as well. Some previous approaches [Kazhdan et al., 2004b] achieved this by decomposing
the shape into concentric spherical regions before doing a spherical integration, which can
be assimilated to “convoluting” the shape with 0−degree functions with concentric spherical
support; Our technique is similar, but with an other kind of functions expressed into the form
of the even moments. In summary, detecting symmetries on non-star-shaped objects has no
particular reason to fail, which is illustrated by the result in Figure 4.1.
The second algorithm (for assembled objects) naturally works just as well for non-star-

shaped objects, as illustrated by the examples in Figure 4.15.

Avoiding dense sampling

Previous methods that defined a continuous measure of symmetry( [Zabrodsky et al., 1995;
Kazhdan et al., 2004b]) can theoretically compute both perfect and approximate symmetries.
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However, detecting symmetries using such methods involves a sampling step of the directions
on the sphere, whose density must be adapted to the desired angular precision for the axis of
the symmetry.
The work of Kazhdan et al. [Kazhdan et al., 2004b] leads to impressive results concern-

ing the improvment on the shape matching process. However, relying on this technique to
obtain accurate symmetries with high angular precision requires a time-consuming step for
the construction of the symmetry descriptors. According to the presented results, the time
needed to compute reflective, 2-fold, 3-fold, 4-fold, 5-fold and axial symmetry information for
a spherical function of bandwidth b = 16 is 0.59 seconds. As stated in the paper [Kazhdan
et al., 2004b], the number of samples taken on the sphere is O(b2) (i.e approximately 103

sample directions) which is insufficent to reach a high angular precision equivalent to the one
obtained with our method: reaching a precision of 10−4 radians would approximately require
109 sample directions. This would theoretically increase the computation time to approxi-
mately 0.59×109/103 = 5.9 105 seconds, making the method inefficient for this task.
In contrast, our method does not rely on a dense sampling of directions to find symmetries,

but on the computation of a fixed number of surface integrals which – thanks to the Gauss
integration used – provides an extremely accurate approximation of the spherical harmonic
coefficients of the moment functions. From there on, no further approximation is introduced
in the computation of the directions of the candidate symmetries, which lets us achieve an
excellent angular precision at a much lower cost.
Furthermore, the cost of our algorithm does not rely on assumptions about the expected

results. The method of [Kazhdan et al., 2004b] indeed computes symmetry descriptors for
each kind of searched symmetry. Our method in turn computes all directions of possible
symmetries and then checks back on the shape the obtained candidates.
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Part III

Hierarchical Instancing of
Geometry
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7
Instancing and Computer Graphics

In this chapter, we focus on Instancing Information i.e. the information of what is instantiated
in the scene, possibly at multiple scales. We first demonstrate the utility of such information
by introducing methods that can used such information. As presented above, Instancing In-
formationis often lost or even not present in the input geometric data, depending on the way
the data have been modeled or transformed. Our work so focuses on recovering Instancing
Information and we present, in the second part of this chapter, the previous work related to
this task. We then conclude this chapter by presenting an overview of our method developed
to compute a hierarchy of instances, starting from unstructured geometry.

7.1 Importance of Instancing Information

Three-dimensional environments, man-made or natural, always exhibit some structure at
different scales. This manifests itself by repetition of parts, geometric similarity, and hier-
archical relationships. The development of computer graphics and geometric algorithms has
amply and repeatedly demonstrated the huge benefits that can be drawn from exploiting this
structure, be it for raw performance, convenience of edition and manipulation, or analysis.
In the computer graphics field, instancing is an approved concept for reducing the size of

the file, helping save memory, increasing rendering times, and increasing the data transfer
rates. In the following, we detailed each of these points.

7.1.1 Compression

3D compression is a branch of data compression aimed at the 3D models and other geometric
datasets used in computer graphics, virtual reality, video games, CAD/CAM, and many sci-
entific, engineering, and medical applications. In this section, we only focus of compression
using Instancing Information.
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With the well-known open formats VRML and X3D, compression with instancing is real-
ized with the DEF/USE/PROTO usage. More precisely, the DEF node is used to named a node
that may be referenced later by the USE node. A PROTO definition creates a new node type
that can be used anywhere in the rest of the same world file. An example of a small virtual
world created with and without instancing in X3D is depicted in Figure 7.1

Figure 7.1: An example of a simple 3D scene modeled using instancing capability of X3D.

The compressed scene graph on the right of the above figure can be represented in X3D in
the following way :
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<?xml version="1.0" encoding="UTF-8"?>
<X3D>

<Scene>
<Shape DEF="cylinder">
<Cylinder height="0.2" radius="0.1"/>
</Shape>

<Transform translation="0.5 0.1 0" scale="2 2 2">
<Shape USE="cylinder"/>
</Transform>

<Transform translation="0.5 0.4 0" scale="0.5 1 0.5">
<Transform translation="-0.15 0 0">

<Shape USE="cylinder"/>
</Transform>
<Transform translation="0.15 0 0">

<Shape USE="cylinder"/>
</Transform>
</Transform>
</Scene>

</X3D>

The advantage of compression is obviously increase if the geometry of the object to instan-
tiate is complex. Moreover, producing such a file naturally supposes to know the instancing
relationships between objects.

7.1.2 Rendering

Ray-Tracing

Ray-tracing is a rendering technique that naturally allows instancing. Complex models can be
ray traced with little memory since only the geometric representations of original objects must
be kept in memory [Snyder and Barr, 1987; Kay and Kajiya, 1986]. Thanks to instancing, all
ray intersections are computed against the unique geometrical model common to all instances.

In a formal way, let’s O be an object andM a transformation. To determine the intersection
q of a ray r with an instanceMO, we first compute the intersection p of the inverse transformed
ray M−1r and the original object O. The searched point q is then simply Mp. With the gain in
storage cost that instancing can bring ( which is not a special feature of ray tracing), the main
advantage to use instancing is that the untransformed object may have a simpler intersection
routine, e.g. a sphere versus an ellipsoid.

One of the first used of instancing conjugated with ray-tracing is the work John Ama-
natides, presented in Figure 7.3 on the following page [Mitchell and Amanatides, 1989].



92 CHAPTER 7. INSTANCING AND COMPUTER GRAPHICS

Figure 7.2: left) A simple scene with a single object, instantiated four times. Right) An exam-
ple of determining intersection between a ray and an object. See the explanation below.

Figure 7.3: Image courtesy of John Amanatides. This image is part of an animation, pre-
sented at the Siggraph Electronic Theater, that demonstrates the benefits of instancing for
ray-tracing.
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Radiosity

Radiosity [Goral et al., 1984] is a global illumination rendering algorithm which has its basis
in the theory of thermal radiation, since it relies on computing the amount of light energy
transferred between two surfaces.
Computing the radiosity solution has proved to become very costly even for very simple

configurations because of its inherent quadratic cost. This has stimulated the development of
hierarchical approaches. The idea of hierarchical radiosity is to hierarchically group together
surface elements and scene objects into clusters as depicted in Figure 7.4.

Figure 7.4: Hierarchy of clusters computed on a small plant.

The energy exchanges between all pairs of surface elements in the scene can then be fac-
tored (and approximated) by energy exchanges between clusters thus making the economy
of a lot of computation [Sillion and Puech, 1994]. Approximations made by hierarchical ra-
diosity algorithms are very sensitive to the quality of the cluster hierarchy as pointed out
by [Hasenfratz et al., 1999].
Such methods of computing radiosity are however limited in the size of the scene because

of the memory needed to compute the hierarchy. As instancing is an efficient way of reduc-
ing memory cost in rendering algorithm such as ray-tracing, this has inspired definition of
hierarchical radiosity with instancing [Soler and Sillion, 2000; Soler et al., 2003].
Applying the principle of instancing to radiosity calculations is not strait-forward because

the geometry is used in such methods as a support for the distribution of light energy, which
in turn depends on the position of the object in the scene. As the radiometric information like
reflectance or transmittance functions can somehow be easily shared between instances, the
authors introduced two functions, the generalized BRDF and the transmittance function of an
object to efficiently compute radiosity results with hierarchical instancing. A result of their
technique is presented in Figure 7.5 on the following page.

Instancing with the GPU

The growing possibilities offered by the GPU have recently made possible Hardware-based
geometry instancing. This method improves the potential runtime of rendering instanced
geometry by explicitly allowing multiple copies of a mesh to be rendered sequentially by spec-
ifying the differentiating parameters for each in a separate stream. The different parameters



94 CHAPTER 7. INSTANCING AND COMPUTER GRAPHICS

Figure 7.5: Impact of the hierarchical instancing when rendering a plant model. Self-
similarity present in plants model allow them to be represented with few resources thanks to
instancing.

are usually either color or transformation matrix. Such a technique is very useful for world
clutter such as rocks, bushes, trees, forests, crates and debris (see Figure 7.6). In some genres
of games for example, it can also be useful for weapons and armor.

Figure 7.6: Example of using hardware-based geometry instancing. Vegetation objects of the
same color are submitted for rendering with only one draw call.

We now briefly review the way of using hardware-based instancing for both OpenGL and
DirectX API.

Instancing using OpenGL. OpenGL was the first API to support hardware-based instanc-
ing through a technique called pseudo-instancing. This technique is qualified of pseudo as the
number of draw calls is equal to the number of instances that need to be rendered. The effi-
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ciency of this technique is to pass the per-instance world transform using texture coordinates
glMultiTexCoord() instead of calls like glUniform4fcARB(). This exploits the software and
hardware advantages of the persistent vertex attributes like texture coordinates.
The limitations of this technique are two-fold. First, it is not “real” instancing as the num-

ber of draw calls is equal to the number of instances that need to be rendered. Secondly, this
technique only apply to geometry with a small number of per-instance attributes as it is lim-
ited to the number of vertex attributes.

Real instancing of geometry, i.e. the ability to draw multiple instances of a single draw
call is available in OpenGL through the NVX_instanced_arrays. At the time of writing this
dissertation, “real” instancing of geometry is however still in its experimental version.

Instancing using DirectX. The DirectX API supports instancing since 9.0c version. As
stated above, the main idea is to use multiple streams :

• A primary stream which is a single copy of the model data,

• and a secondary stream that contains per instance data.

Let’s take an example to illustrate this principle. We want to render 50 instances of a
100−vertex tree. The stream0 will contains just the one tree model. The stream1 contains
model world transform (see Figure 7.7).

Figure 7.7: Hardware-based instancing with DirectX used two vertex streams. The stream0
contains one geometrical definition of the model and stream1 contains per instance data, in
this case world transform. ( Image extracted from [Cebenoyan, 2005])

To render the data, the used vertex shader can be the same as usual but must use the
matrix from the vertex stream instead of the matrix from the vertex shader constants. We
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refer the interested readers to [Carucci, 2005] for implementation details of instancing with
directX.

More generally, the performance of hardware-based instancing is dependent on number of
parameters such as the CPU frequency and the size of the batch1 that are sent to the GPU. A
detailed explanation of this can be found in [Cebenoyan, 2005].

7.1.3 Scene Editing

Another notable advantage of instancing is the fast update of geometry. A modification of
parameters ( ex : position) or information ( ex : textures ) in the generic object is simultane-
ously reflected in all its instances in the scene. An example of scene editing using Instancing
Information is presented in Figure 7.8 on the next page.

7.2 Previous Work

Yet very useful for a broad range of algorithms, the literature about recovering instancing
information is not very important. We review below the whole set of methods that focus on
computing instancing information.

7.2.1 Instancing and Linear Fractal Modeling

The two most common linear fractal models are the recurrent iterated function system (RIFS)
and the L−system. Such models are powerful for modeling natural scenes, but are difficult to
render efficiently in current computer graphics system. For example, the geometry produced
by a L−system is not organized efficiently for rendering. This has inspired the work of [Hart,
1992] which proposed a method to convert those two linear fractal models to hierarchical
instancing structure.

7.2.2 Approximate Instancing

In most natural scenes, the number of exact instantiated objects is quite limited due the strict
definition of instancing. This assumption has motivated the development of Approximate
Instancing which primary goal is to increase the degree of instancing of such scenes.
This way of instancing objects has first been investigated by [Brownbill, 1996] who focus

on approximate instancing for plant models. The main idea of approximate instancing is to
consider two objects as instances if they resemble each other while being slightly different.
In this work, the authors analyzed the trade-off between the size of the geometric model and
their perceived visual distortion. Using this technique, dramatic reduction of the size of the
plant database can be achieved ranging from 5 : 1 to 50 : 1with a negligible visual impact on
the generated images.
This technique has been used for generating complete landscape or complete plant ecosys-

tems, such as the methods of [Deussen et al., 1998, 2002] (see Figure 7.9 on page 98).

1A batch is a set of polygons
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(a) (b)

(c) (d)

Figure 7.8: An example of interactive editing at different level using instancing information
collected by our method. a) The Studiomodel which contains many similar objects. b) A close-
view of the kitchen. c) In one operation, designer of the scene can interactively modify the
aspect of an object (the chair in the example) and automatically apply these changes to each
instance found in the scene. d) At an upper level of the hierarchy, designer can now work on
the set formed of a table plus two chairs and modify it.
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Figure 7.9: A landscape obtained with the technique presented in [Deussen et al., 2002]. The
compression rate obtained with instancing is 6.01:1.

More generally, approximate instancing is an effective technique for improve rendering
but seems limited to a specific range of data. The main limitation of such methods is the abil-
ity to define a “proximity” between objects in order to cluster together objects that resemble
each other but are not exactly the same. A promising technique to achieve such goal might
be the use of shape descriptors whose primary goal is to translate the problem of computing
the distance between two objects into a Euclidean distance computation. To achieve this goal,
each object is associated to a vector in a high-dimensional vector space where each component
of the vector is usually a geometric or semantic feature of the object.

7.2.3 Automatic Instancing

[Schultz and Schumann, 2001] present a technique to automatically generate instancing
information from hierarchically organized objects. To our knowledge, this method is the
only one in the literature that deal with the automatic generation of hierarchical Instancing
Information. However, the basic assumption of their method assume that the objects of the
scene are already known and ordered in a tree data structure. As a consequence, their method
is not able to construct a hierarchy of instances from a totally unstructured scene, which is a
far more difficult problem.
An example of their method is presented on Figure 7.10 on the next page.
The method uses a depth-first discover of the initial graph and progressively discover

sibling nodes in the tree. We show on center of Figure 7.10 on the facing page the first
discover node, D and its sibling discover. By repeating this process, the methods is guaranteed
to discover all sibling nodes in the tree. From a data structure point of view, this is equivalent
to convert the tree to a Directed Acyclic Graph. Each node labeled I will so be a reference to a
unique element of its category.
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Figure 7.10: Transformation of a tree of objects into a scene graph using method of [Schultz
and Schumann, 2001]. Details of each step are given below.

Despite the strong constraints imposed by their methods and the relative simplicity of
their approach, the authors report a very good compression ratio, which value reaches 4:1 on
their test scenes. Due to its inherent limitations, the scope of this method is however quite
limited.

The conclusion that can be made from this state of the art is that, up to our knowledge,
no method exist that is able to compute a complete hierarchy of instances from unstructured
geometry. We end this chapter with an overview of the work presented in this thesis that
allow efficient recovery of hierarchical instancing information from unstructured
data.

7.3 Overview of our approach

In order to compute a hierarchy of instances, we use a two-step method, starting from the
structure at the object level i.e. structure of the geometry in tiles, associated with symmetry
information. The two steps are represented in Figure 7.11 and the objective of each step is
presented below:

Figure 7.11: Hierarchical Instancing of Geometry: Overview of our approach. Starting from
the structure at the object level i.e. the decomposition of the geometry in tiles, associated with
symmetry information, we use a two-step method to compute a hierarchy of instances of the
geometry.

1. The first step, presented in Chapter 8, aims at discovering frequent geometric patterns,
i.e. objects or set of objects that occur multiple times in a scene. We first identify and
explain the complexity of this task and present results that illustrate this complexity
on simple test scenes. In a second part, we present an original method that compute
frequent geometric patterns based on the detection of local symmetries in the whole
scene.
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2. The second step, presented in Chapter 9, organizes these patterns into a hierarchy. We
identify some criteria that must be respected by the hierarchy in order for it to be effi-
cient, and prove that computing a hierarchy that respects this constraint is an exponen-
tial problem i.e. a problem where no polynomial algorithm exists to solve this problem.
We thus propose an approximation algorithm and present a method that compute a hi-
erarchy of instances optimized for ray-tracing applications.



8
Frequent Geometric Patterns Discovery

In this chapter, we focus on the first step of creating a hierarchy of instances: the discovery of
frequent geometric patterns in the scene.
After introducing important generalities about this problem as well as some intuition

about its inherent complexity in Section 8.1, we present two methods to discover frequent
geometric patterns. The first method, presented in Section 8.2 is an agglomerative approach
that iteratively grows up a pattern by adding an element to it. The second one, presented
in Section 8.3 is a symmetry-based approach and translates the problem of discovering pat-
terns as the problem of computing local symmetries in the scene.

8.1 Generalities And Notation

As presented in the previous chapter, our input scene is composed of tiles. A pre-process has
been used to compute symmetries of each tile (see page 33) and to form the set of congruent
tiles using our congruent descriptor (see page 67). We associate to each scene a neighborhood
graph that encodes spatial and neighborhood relations between each tile. More specifically,
the neighborhood graph GN = (V,E) is a graph where each vertex is associated to a tile and
each edge mean that the geometric distance between the two tile is smaller than a fixed
threshold. To compute this distance, we use the technique of sphere-tree proposed by [Quin-
lan, 1994]. Moreover, we add color information to each vertex of this graph. We affect color to
the vertices such that two vertices of the same color are associated to congruent tiles.
An example of a very simple scene and its associated neighborhood graph is presented

in Figure 8.1 on the following page.
A set of tiles is said to be connected if its neighborhood graph is connected. An object is a

connected set of tiles. We define the size of an object to be the number of tiles that form this
object. In the following, an object of size k, i.e. formed of k tiles, will be called a k−object. With
this definition, a single tile is a 1−object.
We define a pattern as a generic object which is represented in the scene by its instances.
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Figure 8.1: We associate to each scene a graph named neighborhood graph that encode spatial
proximity between each tile of the scene i.e. each node of the graph. Each edge of the graph
means that the geometric distance between tiles is less than a given fixed threshold. The
nodes associated to congruent tiles have the same color in the neighborhood graph.

Each pattern of the scene has at least one instance, which corresponds to its representation
inside the scene.

Definition 11 Let P be a pattern. The number of instances of a pattern P is noted nP and all

the instances of a pattern form the set IP:

IP = {IP
1 , IP

2 , ..., IP
nP
}

where IP
i represents the iemeinstance of P in the scene.

An instance is a set of tiles. Internally, we represent an instance as a set of integers (the
indices of the tiles used to form this instance). In the following, the notation IP

i will be used to
represent both an instance of P and the associated set of integers.

Definition 12 Let IP
1 and IP

2 be two instances of a pattern P. We say that those two instances
are

• identical if they are formed with the same set of tiles, i.e IP
1 = IP

2 ,

• overlapping if they share at least one tile, i.e IP
1 ∩ IP

2 6= /0,

• disjoint if they are not overlapping, i.e IP
1 ∩ IP

2 = /0.

A pattern P has nP instances in the scene, which can possibly overlap. A way of computing
the occurency of the instances of a pattern with respect to the non-overlapping constraint is
the notion of frequency.

Definition 13 The frequency of a pattern P, denoted Freq(P), corresponds to the maximum
number of disjoint instances of this pattern in the scene. We have:

∀P Freq(P)≤ nP
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Computing the frequency of a given pattern is non-trivial as it is equivalent to identifying
the Maximum Independent Set in a graph. More details on this frequency counting part will
be given in Section 8.2.1.
Based on this notion of frequency, we have:

Definition 14 A pattern P is σ−frequent if Freq(P) ≥ σ.

8.1.1 Problem Representation And Complexity

The complete set of frequent patterns can be conceptually organized in the form of a lattice
that will be referred to as the lattice of frequent patterns. The lattice data structure reflects
the fact that a given pattern can be formed in various ways as depicted in Figure 8.2.

Figure 8.2: The complete set of frequent patterns can be conceptually organized in the form
of a lattice that will be referred to as the lattice of frequent patterns. The lattice data structure
reflect the fact that a given pattern can be formed in various ways. Each pattern at level k
is linked to its parents at level k− 1. Each node at level k has at least two parents and a
maximum of k−1.

The aim of the frequent pattern discovery step is therefore to discover each node of the
lattice and to compute the associated frequency. The output of the frequent pattern discovery
step may be quite large, based on the following principle:

Definition 15 If a pattern is σ−frequent, all its sub-patterns are σ′−frequent too with σ′ ≥ σ.

This principle may seem obvious but it points out the fact that even for scenes of mod-
erate size, where patterns of size 50 are not uncommon, the output of a complete method of
retrieving patterns is in theory 250 patterns, i.e. the number of subsets of these patterns
As our objects are restricted to be connected set of tiles, the theoretic number of 2n sub-

patterns is never reached. This is illustrated in Figure 8.3 on page 105 which represented



104 CHAPTER 8. FREQUENT GEOMETRIC PATTERNS DISCOVERY

the lattice of frequent patterns for the two plane set represented in the frame at the top left.
Each seat contains 16 tiles, which may in theory give 216 frequent sub-patterns. Due to the
connectivity constraints, the size of the lattice i.e. its number of nodes is only equal to 57.
This large output may still be a problem for very complex scenes which introduces the

problem of compressing the output of the frequent pattern discovery step. This is the purpose
of the next paragraph.

8.1.2 Compressing Frequent Patterns.

We first introduce an important relation between patterns, the inclusion relation.

Definition 16 Let P and P
′
be two patterns. We say that P is included in P

′
and note P⊂ P

′
if

there exist a mapping between P and a subpart of P
′
.

Theoretically, computing that a pattern is included in another is a costly operation as a
possibly large number of mappings must be tested. If the compression scheme is done as a
post-process, a more practical and efficient way of performing this test is to use the instances
associated to each pattern. More precisely:

P⊂ P
′ ⇔∃ i ∈ [1...nP] IP

i ⊂ IP
′

1

When searching to limit the size of the output of a frequent patterns discovering algorithm,
the most natural technique is to discard patterns which are non-maximal:

Definition 17 Let Sσ be the set of σ−frequent patterns. A pattern P∈Sσ is said to bemaximal

if:

∄P
′ ∈ Sσ P⊂ P′

The output of a compression strategy that discards every non-maximal patterns will be
the leaves of the lattice of frequent patterns as those patterns are the only ones that are
not included in any “larger” patterns. In Figure 8.3 on the next page, the only maximal
pattern is the leaf of the lattice, i.e. the whole seat. This kind of compression scheme lost a
lot of information. For example, it removes the information that a plane seat is made of two
armrests.
An important aspect in the definition of maximal patterns is that it is frequency-independent,

i.e. it does not introduce any constraint about the frequency of the patterns. The notion of
closed patterns can be seen as more restrictive way of compressing patterns, due its depen-
dency on the frequency of patterns.

Definition 18 Let Sσ be the set of frequent patterns. A pattern P∈ Sσ is said to be closed if:

∄P
′ ∈ Sσ | P⊂ P

′
and Freq(P) = Freq(P

′
)

The closed frequent patterns of the first example is presented in Figure 8.4 on page 106.
On Figure 8.3 on the next page, the number of closed patterns is equal to 2: the armrest

and the whole seat, which are represented in pink.
We end this section with two properties related to closed patterns.
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Figure 8.3: Even for a very simple scene, like the one represented in the frame at the top left,
the lattice of frequent patterns is quite large and contains 57 nodes. For clarity, edges are not
drawn between the levels of the lattice which are separated by dots.
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Figure 8.4: When considering the scene on the left, only one of the patterns of the lattice is
closed. All the patterns drawn in grey in the lattice, are non-closed as they are included in a
bigger pattern with the same frequency.

Property 3 Non-closed patterns only contain redundant information.

If a pattern P is non-closed, it means that there exists another pattern Q such that P⊂ Q
and Freq(Q) =Freq(P). It is therefore useless to keep the pattern P as every information it
contains (its frequency and its geometry) are completely included in Q.

Property 4 A maximal pattern is closed. The opposite is not true.

The proof of this property is immediate as the definition of a closed-pattern is a restriction
of the definition of a maximal pattern.

In the following two sections, we present two methods used to compute the frequent ge-
ometric patterns, given an input scenes with tiles. We first present in section 8.2 the most
intuitive approach to generate frequent patterns which consists at progressively growing a
pattern by adding a new tile to it. We rely on the work done by [Kuramochi and Karypis,
2004] to mine frequent graph patterns in a single graph and map it to our problem. In sec-
tion 8.3, we present a Symmetry-Based approach that compute patterns and instances by
computing local symmetry in the scene.

8.2 Agglomerative Approach

In this section, we present the most intuitive technique used to identify the set of frequent
patterns: starting from the empty pattern, we progressively increase its size by adding a tile
to it.
This method is widely used in the data mining community and we rely on a recent ap-

proach proposed by [Kuramochi and Karypis, 2004] to mine frequent graph pattern in a single
graph. Although not strictly equivalent to our problem, this parallel will allows us to properly
define some important notions and justifies our definition of patterns and instances.
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As stated earlier, iterating through each element of the lattice of frequent patterns is a
complex task as this lattice contains an exponential number of nodes. To reduce the complex-
ity of this approach, two techniques are used:

• Early pruning of nodes.

• Lattice traversal as a tree.

We detail these two points below, then we present the complete algorithm and present
some results in the last section.

8.2.1 Early pruning of nodes

A desirable property when traversing the lattice of frequent patterns is to be able to prune all
children of a node if the associated pattern is not frequent as illustrated in Figure 8.5.

Figure 8.5: One desirable property is to be able to prune the sub-lattice rooted at a node found
infrequent, as none of the nodes of this sub-lattices will be declared as frequent.

To be able to prune the lattice of the frequent patterns, the way of computing the frequency
of a pattern must respect the downward closure property:

Property 5 downward closure property: The frequency of a pattern decreases as a function of
its size.

This fact justifies the definition of the frequency of a pattern as the maximum number of
its disjoint instances. If the frequency of a pattern was defined as the number of its instances,
the downward closure property would be violated as presented in Figure 8.6 on the following
page.
To determine if a pattern is frequent, it is so necessary to compute its frequency, i.e. its

maximum number of disjoint instances. This is done by using an overlap graph: for a given
pattern, this overlap graph is build by considering each instance of the pattern in the scene
and associating a node to each of them. Two vertices are then linked by an edge if the two
associated instances overlap. This step if critical as obtaining this set turn to be equivalent
to find the maximum set of its overlap graph [Kuramochi and Karypis, 2004].
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Figure 8.6: If the frequency of a pattern is defined as its number of instances, the downward
closure property is violated which is the case in this example. The frequency of the pattern
on the right, of size 2, is greater than the frequency of the pattern of size 1.

Maximum Independent Set: We denote an undirected graph by G = (V,E), where V is a
set of vertices and E is a set of edges, such that each edge is a set of two vertices inV. A subset
of vertices I ⊆ V is called Independent if no two vertices in I are connected by an edge in E.
An Independent Set I is said to be Maximal if its vertices are not a subset of the vertices of a
larger ( in term of number of vertices) Independent Set, and Maximum if there are no larger
Independent Set in the graph G. A Maximum Independent Set (MIS) is, of course, Maximal
(See example in Figure 8.7). The cardinal of the Maximum Independent Set of a graph G is
noted Ω(G).

Figure 8.7: Maximal and Maximum Independent Set. The set of vertices of this set are the
blue one. Left) Initial Graph. Middle) An Independent Set formed of two vertices. This set is
Maximal as no other vertices can be added to form a larger Independent Set. Right) The only
Maximum Independent Set of the graph, which is of course also Maximal.

The problem of finding the MIS of a graph was among the first problems proved to be NP-
complete [Garey and Johnson, 1979]. It is computationally equivalent to several other central
problems for graphs, such as finding maximum clique and finding a minimum vertex cover.
This complexity means that, unless P = NP, a fact that is widely believed to be false, exact
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algorithms are guaranteed to return a solution only in time which increases exponentially
with the number of vertices in the graph. However, the importance of the problem and its
applicability to a wide-range of domains has attracted a considerable amount of research.
Some exacts implementations exists that compute the MIS of a graph of moderate size.

In particular, in our work, for small overlap graph (less than 100 vertices) we use an exact
implementation with the program wclique [Ostergard, 2002] and an approximation algorithm
for large graph. The program wclique is an exact maximum clique problem solver and can
be used to compute the MIS of a graph as the MIS problem on a graph G is equivalent to
the maximum clique problem on G’s complement graph G̃. The approximation algorithm we
used [Kako et al., 2005] to compute the MIS is a greedy approach made of two simple steps:

1. pick the vertex of lowest degree

2. mark it as part of the solution. Remove it from the graph as well as all its neighbors. Go
to 1.

8.2.2 Lattice traversal as a tree

The naive approach for transforming a lattice into a tree is simply to check, for each new
element, if it has already been discovered by the depth-first search. This technique has high
complexity has it must test a large number of patterns for congruency. A more clever way of
doing this transformation and to eliminate these redundant computations is to assign to each
node at level k (corresponding to a k−pattern) a unique parent node a level k−1, named the
generating parent.
With this technique, each node in the lattice has now an unique ancestor hence enabling

the traversal of the lattice as a tree. This technique of transforming a lattice into a tree has
been previously used in the graph-data mining community [Vanetik et al., 2002; Yan and Han,
2002].The problem we have to solve is so:

Problem Statement: Let Pk be a k−pattern and Pk+1 a k+1−pattern formed by extension
of Pk. We have to determine if Pk is the generating parent of Pk+1.

We use the instances associated to each pattern. Let SPk+1 be the set of tiles of all instances
of Pk+1:

SPk+1 = ∪ IPk+1

i i ∈ [1..nPk+1]

We pick, in the set SPk+1, the lowest (or the largest) value that does not disconnect the
corresponding instance. This last condition is very important as we restrict instances to be a
connected set of tiles (see Section 8.1 on page 101). The choice between the lowest or largest
value in this set is unimportant but it must be consistent during the whole algorithm.
By removing this value from the corresponding instance, we obtain a new instance I and

two cases can occur:

• Either this instance I is an instance of Pk. In this case Pk is the generating parent of
Pk+1.

• If I is not an instance of Pk, then Pk is not the generating parent of Pk+1. We do not need
to consider Pk+1 as it will be considered later by extending another k−pattern.
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8.2.3 Algorithm Overview

The agglomerative approach can be presented by the two algorithms presented in page 110.
The central part of this approach is the ExtendPattern method that recursively compute all
potential extensions of an input pattern.

Algorithm 1 Frequent Pattern Discovery by depth-first visit of the lattice of Frequent Pat-
tern.
Require: The frequency threshold σ
Ensure: Discover every frequent Pattern
1: P 1← All frequent 1−Pattern
2: for all P1 ∈ P 1 do
3: ExtendPattern(P1,FrequentPattern,σ)
4: end for
5: return FrequentPattern

Algorithm 2 ExtendPattern
Require: A k−Pattern P,
Require: The set of FrequentPattern already found FrequentPattern
Require: The frequency threshold σ
Ensure: Extend a given pattern
1: for all all instance IP of the Pattern P do
2: Generate all possible (k+1)−instances from IP.
3: end for
4: NewPattern← new patterns generated
5: for all Q in NewPatterndo
6: if P is the Generating Parent of Q then
7: Compute frequency of Q
8: if Q.frequency ≥ σ then
9: FrequentPattern← FrequentPattern∪Q
10: ExtendPattern(Q,FrequentPattern)
11: end if
12: end if
13: end for

8.2.4 Filtering Frequent Patterns

The output of the algorithm is a set of frequent patterns that occur in the scene with respect
to the frequency threshold. We can use a compression scheme by discarding frequent patterns
that are not closed. It is interesting to note that, by slightly modifying the algorithm Extend-
Pattern, we can directly output a set of closed frequent patterns. More specifically, if one
switches the frequency counting part and the parent identification part, non-closed patterns
will be discarded. In the pseudo-code of the ExtendPattern, this is equivalent to switch line
6 and 8. However, the process of counting the frequency of the pattern is a costly operation
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so this method, while restricting the output of the algorithm to closed patterns, results in a
significant increase in the runtime of the algorithm. In our experiments, we note that the
runtime increases by approximatively 50%.

8.2.5 Results

We test this technique on some sample scenes presented in Figure 8.8.

Scene Name #Polygons #Tiles
Plane (part) 13,384 32
Piece 40,410 707
Building 81,451 485

Plane (complete) 182,184 480

Figure 8.8: The scenes used to test the frequent pattern discovery using an agglomerative
approach

The results of our tests are presented in Figure 8.9 and an illustration of the frequent
patterns found on two models is represented in Figure 8.10 on the next page

Scene Name /
Frequency Threshold # Frequent Patterns # Closed Patterns Runtime (secs)

Plane (part)
8
4
2

3
30
30

1
2
2

0.27
3.53
3.48

Piece
10
5
4
2

4
20
990
-

4
13
30
-

0.07
0.62
185
> 1h

Building
20
10
5
2

2
16
58
-

2
9
26
-

0.17
3
48.52
> 1h

Plane (complete)
30
20
10

4
42
-

2
5
-

5.02
190
> 1h

Figure 8.9: Results obtained for the test scenes presented in Figure 8.8. As expected, the run-
time increases as the frequency decreases. Cells with no values means that the algorithm has
not finished after more than 1 hour of computation. All the frequencies have been computed
using an exact MIS implementation.

The main signification of these results is that the size of the scene that can be handled
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by this algorithm is limited. More precisely, searching for frequent pattern is a very com-
plex process when the frequency threshold is low. In this case, the lattice of frequent patterns
is very large since a large number of patterns can be formed at each step.

Figure 8.10: Set of frequent closed patterns obtained with the agglomerative approach, for a
given σ. All the patterns reported here have a frequency greater or equal to σ. The complexity
of the agglomerative approach is reasonable only for high value of frequency threshold. As a
consequence, the set of patterns discovered by this method is limited and not representative
of all the information contained in the scene.
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8.3 Symmetry-Based approach

8.3.1 Basic Statement

As seen in the previous section, searching for frequent patterns based on the traversal of the
lattice is a costly process, especially when the frequency threshold is low. We now present a
second approach to compute frequent patterns based on the following statement:

Basic assumption: Let IP
1 and IP

2 be two instances of a pattern P. There exists at least one
euclidean transform T, such that IP

2 = T(IP
1 ).

Figure 8.11: There exists at least one euclidean transform T, expressed in F that transform
one instance of a pattern into the other.

When considering the input scene as a single entity, the previous statement can be refor-
mulated as follows:

Property 6 Two instances of a pattern form a local symmetry of the input scene.

An example of a local symmetry in a complex scene is presented in Figure 8.12 on the
following page
This formulation leads to the following statement:

Property 7 Finding frequent patterns in a scene is equivalent to finding local symmetries,
when considering the scene as a single entity.

8.3.2 The Transformation Space

To compute local symmetries, we consider the transform space generated by translations,
rotations and reflections. This topological space, denoted Γ is a non-euclideanmanifold formed
by the Cartesian product of several spaces. At least two formulations can be used to generate
this space, depending on the choice of representation for 3D rigid rotations: quaternions and
Euler angles.1

1We have discarded a third representation, the rotation matrix, because of the difficulty to associate a efficient
metric to it (see [Kuffner, 2004] for a detailed discussion).
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Figure 8.12: Two instances of a pattern form a local symmetry in the scene. This is for
example the case for the two chairs and the two pillars in this scene.

• The first possible representation for rotation is a real projective space, denotes IRP3. This
space can be represented by three-dimensional sphere embedded in IR4 with antipodal
points identified. That is, IRP3 = S3/x∽−x, in which S3 = {x∈ IR4, ||x||= 1}. Each element
x = (x1,x2,x3,x4) ∈ IRP3 is a unit quaternion x1 +x2i +x3j +x4k, representing a 3D rotation.
The metric for two points x,y∈ IRP3 is defined as the length of the arc between these two
points on the surface of the sphere, that is:

distIRP3(x,y) = min(acos(x ·y),acos(x · (−y)),

in which x ·y denotes the dot product for vectors in IR4.

• The second possible representation for rotation is to used Euler angles. In this case,
each rotation is represented as a vector (x1,x2,x3),xi ∈ [−π,π]/− π ∽ π. The topology of
this space is S1×S1×S1, where S1 = [0,1]/0∽ 1, and the metric for two points of this
space p,q∈ S1 is defined as:

distS1(p,q) = min(|q− p|,1−|q− p|)

Whatever the choice of the rotation representation is, the space Γ is a non-euclidean man-
ifold formed by the Cartesian product of (T1,distT1) and (T2,distT2) and so the weighted metric
for two points q, p in the Cartesian product T1×T2 is defined as:

dist2T1×T2
= µT1dist2T1

(q, p)+µT2dist2T2
(q, p)

where µT1 and µT2 are two weights used to give equal importance for the two spaces T1 and T2.
In our work, we represent rotations with quaternions which results in the definition of the

space Γ = IR3× IRP3. Γ is a 7−dimensional space where each point in Γ has the form P = (T ,Q)
where T = [tx, ty, tz] represents the translation part and Q = [qw,qx,qy,qz] represents a quater-
nion, i.e. the rotation part. To efficiently compute neighborhood in this non-Euclidean space,
we use the approach proposed by [Atramentov and LaValle, 2002].
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8.3.3 Filling the Transformation space

Our goal is to encode euclidean transforms between tiles of the scene and to seek a set of (al-
most) equal transformations to be able to find frequent closed patterns. As we are interested
in finding instances, i.e. repetition of geometry, it is useless to compute the euclidean trans-
forms between every tiles of the scene and we restrict ourselves to the euclidean transforms
between pairs of congruent tiles (see figure 8.13).

Figure 8.13: When filling our transformation space, we do not need to iterate through every
pair of tiles in the scene. This is illustrated on this figure where congruent objects are shown
with the same color. The computed mappings are represented as continuous lines. The dashed
lines represent useless mappings, that is mappings between two non-congruent tiles.

The first pass of the process is to iterate through the set of pairs of congruent tiles and to
encode their relations, i.e filling the transformation space Γ.
One important point is that isometries that are computed can be either direct, that is rota-

tion and/or translation or indirect such as reflection (see page 40). To separate such isometries
we divide the set of isometries in two sets, Γ+ and Γ− for respectively proper and improper.
In practice, we test the nature of the isometry by looking at the determinant of its associated
matrix.
A single pair of tiles can lead to more than one euclidean transform, i.e. more than one

point in Γ, because of the symmetries attached to each tile. We detail in the following two
paragraphs the way of filling the transformation space, depending on the nature of the sym-
metries of each tile: discrete or continuous.

Discrete Symmetries

In the following, we consider two congruent tiles Ti and T j and named pi , p j their respective
centers of mass. The method used to generate points in Γ for discrete symmetries is presented
in the algorithm 3 on the following page. In line 1 of this algorithm, the method Isometry
computes all possible isometries that map Ti on T j .
In this method, I is the method that computes an isometry that map frame Fi onto frame

Fj . In the same time, this function also compute the reverse mapping, i.e. the mapping from
T j → Ti . For the rotation part, the quaternion of the reverse mapping is simply the inverse
quaternion of the original mapping. Concerning the translation part, for the original mapping,
we have:

ti j = p j −sipi

and for the reverse mapping:
t̃i j = pi−s−1

i p j
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Algorithm 3 Generate Points in Γ
Require: Two congruent tiles Ti and T j with discrete symmetries.
Ensure: Add to the space Γ all the transformation that map Ti → T j .
1: SI = Isometry(Ti ,T j)
2: for all si ∈ SI do
3: ti j = p j −sipi
4: qi j = quaternion(si)
5: if det(si) = 1 then
6: Γ+← Γ+∪Ti j = (ti j ,qi j )

7: q̃i j = q−1
i j {Compute the reverse mapping T j → Ti}

8: t̃i j =−q̃i j · ti j {Compute the reverse mapping T j → Ti}
9: Γ+← Γ+∪ T̃i j = (t̃i j , q̃i j ) {Compute the reverse mapping T j → Ti}
10: else
11: Γ−← Γ−∪Ti j = (ti j ,qi j )

12: q̃i j = q−1
i j {Compute the reverse mapping T j → Ti}

13: t̃i j = q̃i j · ti j {Compute the reverse mapping T j → Ti}
14: Γ−← Γ−∪ T̃i j = (t̃i j , q̃i j ) {Compute the reverse mapping T j → Ti}
15: end if
16: end for

Algorithm 4 Isometry
Require: Two congruent tiles Ti and T j with discrete symmetries.
Ensure: Return all isometries that map Ti on T j .
1: for all all possible frame Fi of Ti do
2: for all all possible frame Fj of T j do
3: SI ← SI ∪ I(Fi ,Fj)
4: end for
5: end for
6: return SI
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which transforms into:

t̃i j = pi−s−1
i p j

si t̃i j = sipi−p j =−ti j
t̃i j =−s−1

i ti j

If si is a direct isometry, this last expression transform into t̃i j = −q̃i j · ti j (line 9). If not,
then si is an indirect isometry which remove the negate sign and so t̃i j = q̃i j · ti j (line 14).

Continuous Symmetries

Continuous symmetries are a special case that must be handled with care. In this case, it is
not possible to encode the relations between two tiles with a finite number of points in the
transformation space. Each tile has an infinite number of frames and the relation between
those tiles traces out multiple points in the transformation space (see Figure 8.14).

Figure 8.14: In case of revolution surface, the transformation between tiles trace out a curve
in transformation space. A representation of a sub-space of Γ corresponding to the translation
part is shown on the right. This curve has been built by sampling the set of all potential
frames of both tiles and computing the associated transformation.

An equivalent problem is cited in [Mitra et al., 2006] where the problem arises for differ-
ential surface patches at umbilic points, i.e. those for which a frame cannot be established
uniquely. However, the authors do not deal with this problem and discard these points from
their sample set. This simple solution is obviously not possible in our case as we do not deal
with a sampling set but with a real set of objects. Discarding these cases would be equivalent
to erase tiles with continuous symmetries from our 3D scene, which is unrealistic.

We now describe how to deal with tiles with continuous symmetries in two separate ways:
we first present a method for efficiently computing the case of revolution surfaces, i.e. the
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case where there exists a fixed vector in the tile frame. In this case, whe show that the set of
transformation is a curve in the transformation space. Then, we present a method to compute
the transformation in the special case of sphere surfaces, where no vector is fixed and hence
any rotation is allowable.

Tiles with cylindrical symmetries Let Ti and T j be two congruent tiles, and pi and p j
their respective center of mass. IfRi j represent the rotation that rotate local frame of Ti on the
local frame of T j , we obtain a point in 7−dimensional transformation space Γ as Ti j = (Ri j ,ti j ),
where ti j = p j −Ri jpi .
If Ti ( and so T j ) have continuous symmetries, we can attach an infinite number of frames

to these tiles (only one axis is determined). In this case the rotational part of the homogeneous
transform represents all the rotation that map one vector to another. Given this, we can see
that if we want to obtain the equation of the curve, one must be able to analytically found all
the rotation that map one vector to another. To resolve it, we rely on quaternion, and more
specifically spherical quaternion interpolation, also named slerp:
Given two quaternions, q0 and q1 that we want to interpolate, parametrized by a single

value t, we have:

slerp(t;q0,q1) =
q0sin((1− t)θ)+q1sin(tθ)

sin(θ)
t ∈ [0..1]

In order to compute all possible rotations that map one vector v1 to another v2, we first
compute two basic quaternions that correspond to the shortest and longest possible rotations.
The most used definition when we want to map one vector to another, is to define the axis
of rotation as the cross-product of the two vectors and the rotation angle as the arc-cosine of
the scalar product of the two vectors. More specifically, we will denote this rotation as the
shortest one and defined it as for two vectors v1 and v2:

q0 = Rshort(n,α)⇔
{

n = v1×v2

α = acos(v1 ·v2)

This rotation is defined as the shortest one as every other rotation R′ = (n′,α′)that map v1 to
v2 will have α′ > α. Our quaternion q0 is so defined as the shortest quaternion, i.e. associated
to Rshort.
We also define to longest quaternion with:

q1 = Rlong(n,α)⇔
{

n = v1+v2
||v1+v2||

α = π

Theorem 9 By Spherical Linear Interpolation between q0 and q1, we obtain all possible rota-

tions between two vectors.

As the angle between our two quaternions q0 and q1 is equal to π
2 when treating them as

unit-length vectors in 4−dimensional space, we have:

slerp(t;q0,q1) = q0sin
(
(1− t)

π
2

)
+q1sin

(
t
π
2

)

which transforms into:
slerp(t;q0,q1) = q0cos

( tπ
2

)
+q1sin

( tπ
2

)
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In the space Γ, the curve Ci j (t) that encode all the mappings from tile Ti to tile T j is defined
as:

Ci j (t) = (ti j (t),qi j (t)) with
{
qi j (t) = q0cos( tπ

2 )+q1sin( tπ
2 )

ti j (t) = p j −qi j (t)pi

Tiles with spherical symmetries. In case of spherical objects, every frame can be affected
to each tile as no axis is fixed. We have to compute the set of transforms associated to such
objects in the Γ space.
Let Ti and T j be two congruent tiles, and pi and p j their respective centers of mass. Let

us denote Ri j the rotation that rotate a local frame of Ti onto one of T j . As seen previously, we
have ti j =p j−Ri jpi . The set of rotationRi j is not constrained so we cannot do any assumption
about its value.
Geometrically, it is easy to see that the value of the translation lies at the surface of the

sphere of center p j and of radius ||pi || in Γ(see Figure 8.15).

Figure 8.15: Left) Two spheres centered on points pi and p j in the euclidean space. Right)
The translation part of the transformation from Ti to T j describes a sphere in Γ centered in p j
of norm ||pi ||.

8.3.4 Forming patterns

As each point that we have inserted in the transformation space is associated to a mapping
between two tiles, the next step is to use this information to compute the set of instances and
patterns. This process is done by establishing clusters in the transformation space.
We proceed in two steps:

1. We form clusters of points that come from discrete symmetries,

2. we add information corresponding to continuous symmetries.

We detail these two processes below.
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Forming clusters of discrete symmetries

A very popular technique for partitioning and clustering is the K-mean. Yet very efficient and
easy to implement, this method need the a-priori definition of the number of clusters that we
aimed to obtain. Another method of clustering is the mean-shift clustering [Comaniciu and
Meer, 2002], based on a density estimation technique (see Figure 8.16).
The main idea of the mean-shift clustering is to consider a point cloud in which we want

to form clusters as samples from an unknown density function. The mean-shift is an efficient
technique to find the modes of this density, i.e. the places where its gradient is equal to zero
without knowing this density. The modes of the density are the places where most of the
samples are and are hence the places where the clusters must be placed. Some technicals
aspects of the mean-shift clustering are given in Appendix C.

Figure 8.16: The basic idea of mean shift clustering is to consider each point in a point cloud
(here in 2D) as a sample from an unknown density function (right). As forming the clusters in
this space is equivalent to find the places where points accumulate, this also the places where
the gradient of the density is equal to zero. The mean-shift is an elegant way to find these
places without knowing the density function or having any assumption about it.

We use mean-shift to form clusters of points in Γ and use the technique of [Atramentov
and LaValle, 2002] to compute nearest neighborhood in this space.

Forming clusters of continuous symmetries

For tiles with cylindrical or spherical symmetries, it is easy to test if the transformation belong
to a given cluster or not.
Each cluster of discrete symmetries C in Γ+ or Γ− is associated with a transformation

Tc = (tc,qc). For two tiles Ti and T j , centered in pi and p j , with continuous symmetries, we
consider the mapping Ti → T j :

• If the tiles have spherical symmetries, testing if these mapping is compatible with the
cluster C is done by checking that:

p j = TCpi
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• If the tiles have cylindrical symmetries, testing if these mapping is compatible with the
cluster C is done by checking that:

{ p j = TCpi

v j = qcvi

where vi and v j represent the axis of the cylindrical symmetries respectively associated
to Ti and T j .

If the transformation space is formed of a large number of points, computing these tests
may be time-consuming. We can use the analytic expression of the points corresponding to
spherical and cylindrical symmetries to quickly discard part of the transformation space and
hence reducing the set of points that need to be tested. The first step consists in computing a
hierarchical partitioning, a kd-tree, of the transformation space based on the positions of the
clusters. Using this spatial data structure, we are able to prune points in a way dependent of
the type of symmetries of the tiles:

Rejection test for spherical symmetries As presented above, the points associated to
the translation part of the mapping Ti → T j describe a sphere centered in p j of norm ||pi ||.
A simple rejection test consists in computing the bounding box of this sphere and use it to
discard points that do not lie inside it. For each of the point that lies inside the bounding box,
we test if the point is at the surface of the original sphere.

Rejection test for cylindrical symmetries This time, the points describe a curve whose
equation is given above. We use this curve to quickly pruned space bucket and hence reject
its associated point. Once again, for each point that lie inside space bucket intersected by the
curve, we test if the point lie on the curve.

Figure 8.17: Rejection test for Cylindrical Symmetries. We build a kd-tree in the Γ space,
using the clusters of discrete symmetries computed with the mean-shift. We then quickly
prune space bucket which do not intersect the curve of transformation. The space bucket that
are not discard are represented in blue.

Patterns Generation

As each point in the transformation space is associated with a mapping between two tiles,
at the end of the clustering process, each cluster is associated with a map which implicitly
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defines a local symmetry in the scene. As first remarked by [Mitra et al., 2006], the spatial
relation of tiles is lost during the mapping to the transformation space. This implies that we
have no insurance that the instances of the local symmetry form a connected set of tiles.
To ensure that our instances are connected set of tiles, we simply compute the connected

components inside each cluster. We start from a tile and its image through the transformation
of the clusters. Then, we repeat the process for each neighbor tile. This results in forming two
instances, i.e. set of connected tiles, of the same pattern.
The whole set of Information that are contained in the clusters can be seen as a set X. For

a single cluster, the associated information is an equivalence relation, denoted ∼.

Property 8 Let X be the set of objects computed by the clustering step and let∼ the equivalence
relation on the set X. Computing the set of patterns and its instances is equivalent to compute
the set of all equivalence classes in X.

For each of the patterns, we compute its frequency and decide to keep it or not depending
on the frequency threshold.

Filtering Frequent Closed Patterns

As presented earlier, a pattern P∈ SP is said to be closed if:

∄P
′ ∈ SP | P⊂ P

′
and Freq(P) = Freq(P

′
)

To compute closed patterns, we first compute a simple graph structure, named the Pattern
Graph. Each vertex of this graph is associated to a pattern of the scene and a directed edge
e = (v1,v2) links the two vertices if the pattern associated to v2 is included in the pattern
associated to v1. Thanks to this data structure, it is easy to remove non-closed patterns with
the procedure FilterClosedPatterns presented below.
For consistency, we add a vertex to this graph, of frequency 1 and that contains a pattern

with the whole scene. As a consequence, all other patterns of the scene are included in this
pattern. The method FilterClosedPatterns is so first apply to this root node.

Algorithm 5 FilterClosedPatterns
Require: A start node, root, which is associated to a frequent closed pattern.
for all children n of root do
if Freq(n) = Freq(root) then

n is not associated to a closed patterns. Delete it
else
FilterClosedPatterns(n)

end if
end for

Once the non-closed patterns are removed, the Pattern Graph represents inclusion-relation
between all frequent closed patterns in the scene.
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8.3.5 Reducing the mappings set

For complex scenes, considering all pairs of congruent tiles may result in a large number of
points in the transformation space. For example, in a 3D model of 500,000 polygons which de-
compose in 9000 tiles, the number of mappings is more than 13 millions2. This large number
of points may disturb the clustering process but may also be a limit in terms of memory when
treating massive 3D scenes. In this section, we describe a way of reducing the number of pair
of tiles examined and so reducing the clutter in the transformation space.

Using neighborhood graph. The neighborhood graph GN presented in Section 8.1 on
page 101, encodes the spatial relations between pair of tiles.
The generation of all the mapping between congruent tiles can be thought of as a mapping

of the vertices of GN onto the compatible vertices of GN.

Definition 19 On the neighborhood graph, two vertices are said to be compatible if the tiles
they represent are congruent.

In the following, the mapping of the vertices of a graph G1 onto a graph G2 will be denoted
G1 G2. With this notation, the complete set of mapping between tiles is written GN GN.
By simply looking at the topology of this graph, we are able to reduce the set of pairs exam-

ined by the algorithm. More precisely, letCC= (CC1,CC2, ..CCn) be the n connected components
of GN. The mappings that need to be computed can now be expressed as:

CCi  CCj i ∈ [1...n], j ∈ [i...n]

The main idea here is that for two tiles Ti and T j , the two mappings Ti → T j and Ti ← T j

need to be computed. In the case of two independent connected components, an order can
be establish and hence reducing the number of mapping. For example, for two connected
componentsCC1 andCC2, we simply need to compute the mappingsCC1 CC2 as the mapping
CC2 CC1 will contained the same information.
We also have to compute the mappingCCi CCi , in order to discover the potential frequent

patterns “inside” the graph CCi .
This way of computing mapping between tiles is efficient if the neighborhood graph is

formed of a consequent number of connected components, as the number of pairs examined
decreases linearly with the number of components. However, most of the time the neighbor-
hood graph of a scene is composed of only one connected component. This statement is pretty
intuitive since the presence of multiple connected components is physically non plausible as
depicted in Figure 8.18 on the following page
We now present a way of dividing the neighborhood graph in multiple components and of

extending this process hierarchically, in order to reduce the number of pair of tiles that have
to be examined.

2The number of mappings is also highly dependent on the number of congruent tiles and on the number of
symmetries of each tile
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Figure 8.18: The presence of multiple connected components of the neighborhood graph is
physically non plausible. In this case, the neighborhood graph has two connected components
due to the “floating” vase.

Cutting the neighborhood graph: In order to cut the neighborhood graph, it is necessary
to add some information to this graph. We choose to color edges based on the relative posi-
tion/orientation of the two tiles associated to this edge. Two edges of the neighborhood graph
will share the same label if the two objects formed by the two tiles of the edges are congruent
(see Figure 8.19).

Figure 8.19: Left) A simple scene. Right) Its neighborhood graph. We affect to each edge
a label with the property that two edges share the same label if the objects they define are
congruent. In this example, we do not show the label of black edges as they appear only once
in the scene.

Once this graph is obtained, we can discard edges which label occur less than the frequency
threshold σ as they will not be used when forming frequent patterns. More precisely, we can
discard an edge e from a graph G if:

count(label[e],G) < σ

While it is not theoretically proved that this method will form several connected compo-
nents, it appears in practice that we obtain a large number of connected components. We
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therefore use the mapping presented above to compute the pair of tiles that need to be en-
coded by our system.

To increase the efficiency of this method, we extend it by repeating this process on each
created connected components hence resulting in a hierarchy of graphs. The algorithm is
presented below and an illustrating hierarchy of graph is presented in Figure 8.20.

Algorithm 6 GraphDecomposition
Require: A undirected graph G=(V,E) and the frequency threshold σ
Ensure: Erase non-significant edges from G
Erase all edges e for which count(label[e],G) < σ
for all connected components CCi of G do
GraphDecomposition(CCi ,σ)
end for

Figure 8.20: Example of a hierarchy obtained by our method for reducing the number of
examined mappings.The children of a graph correspond to its connected components after
removing of the non-frequent edges. The set of arrowed lines represent the set of mappings
that need to be performed.

Results Using this strategy, we are able to greatly reduce the number of pair of tiles exam-
ined. These results are presented in Table 8.21 on the next page for some sample scenes. All
the results presented are computed with a frequency threshold of two ( σ = 2).

As can be seen, our technique greatly reduces the number of mapping and hence the num-
ber of clusters and the number of non-closed patterns. Moreover, computing this limited set
of mapping is not time-consuming.
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Scene Name # Basic # Reduced Construction (secs)
piece 9,644 883 0.12
building 7,902 2,330 2.82

plane (complete) 25,255 13,115 7.9
LBXStudio 13,491,448 1,380,340 18.2

Figure 8.21: The number of mapping can be greatly reduced, up to a ratio of approximatively
10:1. The overhead time used to build this restricted mapping is not excessive as reported in
the table.

8.3.6 Results

All the results presented here are computed with a frequency threshold of two i.e. σ = 2. The
method described in the previous section is used to reduce the number of mapping that are
proceed by the algorithm. The features of all the test models are presented in Figure 8.22:

Scene Name # Polygons # Tiles
Plane (part) 13,384 32
Piece 40,410 707
Building 81,451 485

Plane (complete) 182,184 480
LBXStudio 514,890 8,389
Powerplant 12,748,510 155,348

Figure 8.22: The scenes used to test the frequent pattern discovery using the symmetry-based
approach

The results of our tests are presented in Figure 8.3.6.

Scene Name # Frequent Patterns # Closed Patterns Runtime (s)
Plane(part) 7 2 0.45
Piece 780 170 12
Building 315 110 6.5

Plane (complete) 173 65 11.8
LBXStudio 1103 395 25mn
Powerplant 134,234 87,100 1h45

Figure 8.23: Results of the patterns discovery obtained with the symmetry-based approach.
See the text below for an explanation of the results presented.

Some examples of the frequent closed patterns discovered in the LBXStudio are presented
in Figure 8.26 on page 129. While the model is not very complex in terms of polygons and
tiles, the time needed to discover frequent patterns may appears important. In our tests, we
observe this in the scene with large number of congruent tiles. In this case, even with the
enhancement method presented above, the number of mapping is still large which clutter the
transformation space and hence increases the running time of the clustering method. In the
scene LBXStudio, this complexity is due to the keys of the keyboard which are all detected
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Figure 8.24: Frequent Patterns obtained on the Plane Model.

Figure 8.25: Frequent Patterns obtained on the Building Model.
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as congruent (see the pattern “keyboard” in the Figure 8.26 on the next page). In order to
form the pattern “keyboard”, all mapping between pairs of keys from each keyboard have to
be tested which result in a large number of points in the transformation space.
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Figure 8.26: Frequent Patterns obtained on the LBX Studio.
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9
Building a Hierarchy of Instances

The set of patterns that we have obtained in the previous chapter contains important geomet-
ric information and can be used, for example, in mesh editing in order to replicate changes
made on a given selected pattern to its siblings. As presented in the related work, light-
ing simulation can also broadly take benefits of such instancing information. A well-known
process to increase efficiency of instancing is to compute a hierarchy of instances and so de-
compose each instance into a set of sub-instances.
The first part of this chapter focuses on the data structure used to represent instancing

information and presents a method to build it from the set of frequent patterns computed in
the previous chapter. In the second part, we present in details a specific application scenario
i.e. a method developed to compute a hierarchy of instances optimized for ray-tracing.

9.1 Representing Hierarchies of Instances

The goal of a hierarchy of instances is to recursively represents the sub-parts that formed each
object of the scene. As the preferred way of designing a model is hierarchically, by composing
objects or parts into more complex objects, a hierarchical data structure now became quite
natural to used. In our work, we focus on a data structure named Hierarchical Assembly
Graph (HAG).

A HAG is a Directed Acyclic Graph which is a common way of representing a model de-
signed hierarchically. Each node denotes an object and an arc denotes the sub-part relations
between two objects. In general, any geometric or other parameters related to the model can
be attached to the nodes or arcs. The most common example is to attach affine transforma-
tions to arcs to denote relative placement and scale of part and subparts [Braid, 1978].
An important observation regarding the HAG is that internal nodes do not represent in-

131



132 CHAPTER 9. BUILDING A HIERARCHY OF INSTANCES

Figure 9.1: Example of a HAG of a very simple scene.

stances of objects in the final model but “generic objects” as represented in Figure 9.11. With
this formalism, an instance is defined as follows:

Definition 20 An instance of an object O in a HAG is a path in that graph starting from the
root node and ending in O.

The HAG data structure has two notable advantages:

• Space efficiency: Information common to all instances generated from the same pattern
is stored only once.

• Fast Update: Modification of parameters or information in the generic object is instan-
taneously reflected to all its instances in the graph.

Our strategy starts from the Pattern Graph previously defined and the final goal is to turn
this graph into a HAG that respect some properties that will be identify later. In a first part,
we explain our method to turn the Pattern Graph into a HAG. In a second part, we identify
constraints that a hierarchy must respect and present of way of generating a hierarchy that
respect such constraints.

9.2 From Frequent Patterns to HAG

To compute the HAG of the scene, we start from the Pattern Graph previously introduced. We
briefly re-introduce its meaning in a first part, then present its limiting features and then our
method to turn it into a HAG.

9.2.1 HAG Construction

The Pattern Graph is a Directed Acyclic Graph where each vertex is associated to a frequent
closed pattern. A directed edge e(v1,v2) linked two vertices if the pattern associated to v2 is

1An immediate parallel to our work would translate those “generic objects” into patterns.
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included in the pattern associated to v1.

This simple graph does not have the structure of a HAG as it does not contain geometric
transformation between all patterns. To transform the Pattern Graph, we need a reference
instance for each pattern. All the transformations of the sub-instances will be computed with
respect to this reference instance:

Definition 21 Let P be a pattern and IP its set of instances. The reference instance of P, IP
re f is

defined as the first instance of this set:

IP
re f = IP

1

The algorithm proceeds by examining each edge of the Pattern Graph and computes the
appropriate transforms. Let e= (v1,v2) be the current examined edge and let P1 and P2 the two
patterns that are respectively associated to v1 and v2. For this edge e, we:

• compute the set SP2 of instances of P2 that are included in IP1
re f ,

• compute the appropriate transform between each element of SP2 and IP1
re f and add an edge

between v1 and v2 that carries this information.

Due to the transitivity nature of the ⊂ relation between patterns, the obtained HAG may
be “dense” i.e. have a large number of edges (see Figure 9.2).

Figure 9.2: Due to the transitivity nature of the ⊂ relation between patterns, the obtained
HAG may be “dense” i.e. have a large number of edges.

A natural way of proceeding would be to compute the transitive reduction of the graph to
eliminate such problems [Aho et al., 1972; La Poutré and van Leeuwen, 1988]:

Definition 22 The transitive reduction of a directed graph G is the directed graph G’ with the
smallest number of edges such that for every path between vertices in G, G’ has a path between

those vertices.
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Such an approach is however not feasible as the transitivity information may sometimes
be confounded with “real” instancing information (see Figure 9.3).

Figure 9.3: Computing the transitive reduction of the Pattern Graph may lead to miss some
important information. In the figure, we lost the information that a chair is part of the tables
but also part of the whole scene.

The right way of proceeding to compute a HAG without redundant information use this
transitive reduction and is a two step process:

1. We first process edges that belong to the transitive reduction of the Pattern Graph.

2. In a second step, we iterate through the edges of the Pattern Graph that have not been
treated yet, i.e. edges that do not belong to its transitive reduction.

For each edge, we mark the instances of the pattern as used to not use themmultiple times
(see Figure 9.4 on the next page).

9.2.2 Observations

The set of frequent closed patterns that we compute on the scene contains a large number of
elements (see page 126). Computing a HAG by using all the frequent closed patterns results
in a complex graph like the one presented in Figure 9.5 for the plane model.
Yet representing the hierarchy of patterns that are present in the scene, we qualify this

graph of unusable mainly due to the overlapping that appear between instances. This over-
lapping is for example present in Figure 9.5 where the sub-instances of the pair of seats
overlap.
Obtaining and using a Hierarchy of Instances with no overlap between the instances is

essential for three reasons:

• When usually rendering a model, all children of a node are rendered once. An over-
lapping among the children will hence result in multiple rendering of the overlapping
part.
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Figure 9.4: The creation of a HAG, starting from the Pattern Graph. Left) The initial Pattern
Graph. The transitive edges, i.e. edges of the transitive reduction of the Pattern Graph are
drawn in green. Middle) The transitive edges are treated simultaneously. Right) The non-
transitive edges are treated which give the final HAG. As each red pattern is contained in
the biggest blue-and-red patterns, there is no edges between the red pattern and the world
pattern.

Figure 9.5: Top) the hierarchy of the plane model with overlapping instances. Bottom) A close
view of a part of the graph where overlapping occurs. The patterns draw in red overlap.
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• This graph is not “usable” for memory reduction e.g. reducing the memory cost of ray-
tracing, as some parts of the scene are replicated multiple times.

• The overlapping made the editing of the model very difficult.

More formally, we define the non-overlapping property as:

Property 9 Non-Overlapping Property: for each node in a HAG, its immediate sub-instances
form a mutually disjoint set.

Except in very simple scenes, like those presented in Figure 9.1 on page 132 and Figure 9.6
on the next page, this property of non-overlapping is not respected.
Deriving a hierarchy that respect this non-overlapping property implies that some choices

must be made i.e. keep some sub-instances and discard some others. We present in the
next section our original method developed to obtain a usable hierarchy i.e. a hierarchy that
respects the non-overlapping property based on the domain of application of the hierarchy.

9.3 Deriving a usable hierarchy of instances

As introduced above, the non-overlapping property implies that if we want that our HAG
respect it, some choices must be made, i.e. keep some sub-instances and discard some others.
This choice is directly related to the utilization that will be made of this hierarchy. Depend-

ing on the application i.e. rendering, scene editing,. . . the hierarchy that we want to obtain
is different. For example, in the case of ray-tracing, the hierarchy must compress the scene
so that the memory requirements will be lower than without instancing. Conversely, when
editing the scene, the optimal solution might be a deep hierarchy of instances or a hierarchy
that maximizes the number of different instances.
Whatever the utilization of the hierarchy of instances, the choice of picking a set of in-

stances and discard some other can be formalize as a problem of maximizing the sum of weight
associated to each instance with respect to the non-overlapping constraint. The weights that
will be affected to instances will of course depend of the utilization of the hierarchy. This
problem is known as theMaximum Weighted Independent Set.
In a first paragraph, we briefly present the key aspects of the problem of Maximum

Weighted Independent Set. In the two last paragraphs, we present a scenario of utilization
which computes a hierarchy of instances optimized for ray-tracing.

9.3.1 The Maximum Weighted Independent Set

The Maximum Weighted Independent Set may be seen as an extension of the algorithm of
Maximum Independent Set previously used to compute the frequency of a pattern. In the
weighted case, each node of a graph is associated to a weight and the goal is to maximize
the sum of weights that may picked in this graph providing that two adjacent vertices must
not be part of the solution. More formally, if we define a weight vector w = (w1,w2, . . .wn) that
represents the weights attached to each vertex of the graph:

Definition 23 Computing a Maximum Weighted Independent Set of a graph G = (V,E) trans-
lates into solving the following optimization problem:
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Figure 9.6: A very simple scene where the HAG respect the non-overlapping constraint. In
this case, we do not need post-process to obtain the final HAG.
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maximize ∑wixi ,
subject to x2

i −xi = 0 for all i ∈V, (i)
xix j = 0 for all (i, j) ∈ E, (ii)

where V is the vertex set of G and E ⊆V×V is the edge set of G.

Notation 1 The weight of the Maximum Weighted Independent Set of a graph G with weight
vector w is noted Ω(G,w).

As for the unweighted case, computing the Maximum Weighted Independent Set is an
NP−complete problem. We present below one approximation algorithm to solve it:

Approximation algorithm for Ω(G,w) For a vertex set X, let w(X) denote the sum of the
weights of the vertices in X. Let NG(v) denote the set of vertices adjacent to vertex v in G.

Definition 24 For a vertex v, we define the weighted degree dw(v,G) of v in G as follows:

dw(v,G) =
w(NG(v))

wv

The approximation algorithm to compute Ω(G,w) is to:

1. Select the vertex of minimum weighted degree

2. delete this vertex and all of its neighbors in G.

3. Apply 1. for the remaining subgraph until its becomes empty.

Readers interested in more details concerning this approximation algorithm can refer
to [Kako et al., 2005].

9.3.2 Hierarchy of instances optimized for Ray-Tracing

Ray-tracing is a rendering technique that naturally allows instancing. Complex models can
be ray traced with little memory since only the geometric representation of original objects
must be kept in memory.
In this case, hierarchical instancing is used to reduce the part of the model that is loaded

in memory. If we take our formalism, this is equivalent to load a single instance of a pattern
and transformation matrices (or any per-instance attributes) for each other instance.
Picking the hierarchy of instances that is best suited for ray-tracing is equivalent to reduce

the storage cost of the scene and hence of each pattern of the scene with respect to the non-
overlapping constraint.
Let’s take an example on the simple scene presented in Figure 9.7 on the facing page.
We introduce the storage cost of a pattern P as C(P). We also introduce the number of

polygons needed to represent it as Npoly(P). As it may happen that instances of a single
pattern may be formed of a different number of polygons due to the tessellation of the scene,
we compute the Npoly(P) as the average number of polygons of its instances.
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Figure 9.7: A simple test scene where each instance of the pattern P contains three instances
of the pattern Q

In Figure 9.7, without hierarchical instancing, the cost of the pattern P is:

C(P) =Npoly(P)

If we use the information that each instance of the pattern P is formed of three instances
of the pattern Q (the triangle), we now have:

C(P) = Npoly(P)−3Npoly(Q)︸ ︷︷ ︸
number of polygons non instantiated

+ C(Q)+3Cre f︸ ︷︷ ︸
cost of instancing

The new storage cost of the pattern P is now the sum of two expressions:

1. The number of polygons non instantiated which is equal to the original number of poly-
gons that formed the pattern P, minus the number of polygons that composes the pattern
Q.

2. The cost of instancing i.e. the storage cost of a single instance of Q plus the cost of three
references to the original pattern. In this term, Cre f represents the per-instance data
that are used. These data are independent of the instance and represents most of the
time transformation matrix, color or texture information.

For any pattern P, we have:
C(P)≤Npoly(P)

with equality if the pattern P has no sub-instances.

Computing the minimum storage cost is equivalent to minimize the cost of every
patterns in the hierarchy and is an NP−complete problem due to the non-overlapping
constraint. We present in the next section our approximation algorithm used to solve this
problem.

Approximation Algorithm

In practice, the storage cost of a pattern is computed as the storage cost of its reference in-
stance IP

re f . Using the HAG that we have computed below, we have access to the sub-instances
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of IP
re f that we represent as an overlap graph GP

O. Each sub-instance of IP
re f is associated to a

vertex of GP
O and an edge relies two vertices if the associated instances overlap. We associate

to each vertex i of the graph the number of polygons of the associated instance ni as well as
its storage cost ci .
We use a greedy approach which takes at each step the best potential solution. To take

into account the cost of the instantiation, we define for each vertex i a value α(i):

∀i α(i) = ni− cost(i)

where:

cost(i) =

{
ci if the associated pattern is picked for the first time
Cre f otherwise

The cost of a vertex is so dependent of the vertex that has been previously picked as part
of the solution. To compute an approximate solution to C(P), we use the following algorithm:

1. C(P)←Npoly(P)

2. i← vertex of maximum α

3. Remove the vertex i and all its neighbors from the graph and update C(P):
C(P)← C(P)−α(i)

4. Apply 2. for the remaining subgraph until its becomes empty.

After choosing the instances that minimize the weight of all the patterns of the scene,
it may happen that some patterns may be single instantiated, which means that they are
instantiated in the scene only one time. In the HAG, an equivalent definition is:

Definition 25 A pattern Pu associated to a node u in the HAG is said to be single instantiated
if:

in-degree(u) = 1

At first sight, single-instantiated patterns may be removed from the hierarchies of in-
stances as theses patterns do not participate to the storage cost reduction of the scene (see Fig-
ure 9.8 on the next page).
As the method used to compute the optimal cost for a pattern is only an approximation

algorithm, it may happen that removing single-instantiated patterns change the cost of the
patterns is was linked to as shown in Figure 9.9 on page 142. In this example, the green
pattern is instantiated only one time in the hierarchy of instances optimized for ray-tracing.
This pattern is so removed and the cost of the grey pattern is recomputed which results in a
new representation with a lower cost (which is the optimal representation).
As the process of computing the weight of a pattern is a recursive one (the weight of a

pattern is computed from the weights of its children), this has to be done carefully.
We chose a iterative algorithm that iterate through each vertex of the HAG, find a single-

instantiated node, remove it from the graph and update the weight of each pattern it was
linked to. As the weight of a pattern is computed in a bottom-up fashion in the HAG, we have
to discover vertices in the HAG in a bottom-up way. As the HAG is a Directed Acyclic Graph,
this is equivalent to discover vertex based on the topological sort of the HAG:
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Figure 9.8: Removing single-instantiated patterns. In this figure, the circle pattern is single-
instantiated and can be removed from the HAG as it does not bring any interesting instancing
information.

Definition 26 A topological sort of a DAG is a linear ordering of its nodes where x comes
before y if there’s a directed path from x to y in the DAG.

Property 10 Each node comes before all nodes to which it has edges.

Property 11 Every DAG has at least one topological sort, and may have many.

By iterating through vertices based on the reverse topological order, we are sure to
update the weight of a pattern before its parent nodes.
The complete approximation algorithm is described below:

Algorithm 7 OptimalHierarchy: Approximation algorithm for ray-tracing
Require: A HAG G
Ensure: Compute a hierarchy of instances optimized for ray-tracing
Sort vertices of G by reverse topological order
v← first vertex associated to single-instantiated pattern
if v do not exist then
return { no single-instantiated pattern left.}
end if
Mark parent patterns of v to be updated
Remove v from G.
ComputeWeights(G)
OptimalHierarchy(G)

In practice, the topological order do not need to be compute at each call of the Optimal-
Hierarchy method.
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Figure 9.9: Due to the approximation algorithm, removing a single-instantiated pattern may
changed the cost of the patterns it was linked to. In this example, the green pattern is single
instantiated in the hierarchy of instances optimized for ray-tracing (left). After removing it
from the hierarchy (right), we recompute the cost of the grey pattern which is now lower (and
is the optimal representation).
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Results

A way of quantifying the quality of a hierarchy of instances for ray-tracing is to evaluate
the compression rate. These compression rates are obtained by computing the storage cost
of the scene with and without instancing and the results are presented in Figure 9.10. Note
that compression rates shown on this table are computed using geometry information only i.e.
neither texturing nor material information are taken into account.

Model Piece Building Plane LBXStudio Powerplant
# polygons 40,410 81,451 182,184 514,890 12,748,510
# tiles 707 485 480 8,389 155,348
Compression time (secs) 0.2 0.8 1.4 7 51
Compression rate 1 : 2.7 1 : 8.3 1 : 3.5 1 : 4.5 1:5.2

Figure 9.10: Examples of compression rates obtained using a hierarchy of instances to repre-
sent the scene. The compression time represents the time needed to compute the hierarchy.

Some examples of hierarchies are presented in Figure 9.12 and Figure 9.11.
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Figure 9.11: Hierarchy of instances for the Plane Model optimized for ray-tracing
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Figure 9.12: Hierarchy of instances for the Building Model optimized for ray-tracing
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10
Conclusions

This chapter concludes this thesis with a summary of principal contributions and some thoughts
about extensions of this work and future research.
This dissertation presents our work done for structuring geometry based on the informa-

tion of symmetry and instantiation. In the first part of this conclusion, we sum up the main
contributions of this thesis. In a second part, we first present the most promising future
work that may be done in both symmetry detection and instantiation and end with some final
thoughts about structural information at the semantic level.

Summary of Contributions

Detection of Symmetries in 3D Shapes

We have presented an algorithm to automatically retrieve symmetries for geometric shapes
and models. Our algorithm efficiently and accurately retrieves all symmetries from a given
model, independently from its tessellation.
We use a new tool, the generalized moment functions, to identify candidates for symme-

tries. The validity of each candidate is checked against the original shape using a geometric
measure. Generalized moments are not computed directly: instead, we compute their spher-
ical harmonic coefficients using an integral expression. Having an analytical expression for
the generalized moment functions and their gradients, our algorithm finds potential symme-
try axes quickly and with good accuracy.
Compared to recent method that search both local and global symmetries, we restrict

our search to global symmetry i.e. symmetry applied to the center of mass of the objects.
For composite shapes assembled from simpler elements, we have presented an extension of
this algorithm that works by first identifying the symmetries of each element, then sets of
congruent elements. We then use this information to iteratively build the symmetries of the
composite shape. This extension is able to handle complex shapes with better accuracy, since
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it pushes the accuracy issues down to the scale of the tiles.
The work developed in this part has been published in [Martinet et al., 2006].

Hierarchical Instancing of Geometry

We have presented a two-steps algorithm to compute a hierarchy of instances, starting from
the structure of the object level i.e. structure of the geometry in tiles, associated with symme-
try information. The two steps are summarized below:

Step 1. Frequent pattern discovery: We present, and experiment classical way of dis-
covering frequent patterns in the graph data-mining community, and experiment it for finding
frequent geometric patterns. We show that this method cannot be used in practice, especially
for low frequency threshold.
In order to compute the set of frequent geometric patterns for every values of the frequency

threshold, we then present an original method based on the detection of local symmetries in
the scene. We encode the transformation (translation and rotation) between each congruent
tile in the scene in a vector space named the transformation space and form instances of
patterns by forming clusters in this space.
For couple of tiles with continuous symmetries, the set of transformation between them is

no longer a single point but a continuous set of points which either form a sphere or a curve
in the transformation space. We propose a way of computing an analytical expression of this
set, based on quaternion tools, and use it to efficiently form instances which contain tiles with
continuous symmetries.

Step 2. Computing hierarchy of patterns: We identify the criteria of non-overlapping
that hierarchies must respect in order for it to be usable. This criteria makes the problem of
computing hierarchies of instances an NP-complete problem. We propose a way of deriving
a hierarchy that respect such constraints and present an application scenario to compute a
hierarchy of instances suitable for ray-tracing.

Future Work and Thoughts

Symmetry Detection

The method we propose in this thesis is the first work published in this area that compute
discrete and continuous symmetries of 3D shapes. In the last two years, a large number
of methods have been published in major conferences or journals such as Eurographics or
Siggraph. The whole set of papers that compute symmetries are described in the Chapter 3 of
this dissertation. The state of the art in symmetry detection is now important and cover every
aspect of symmetry: global or local, discrete and/or continuous, approximate and/or exact.
From this statement, it seems that the future work in this area is quite limited. We

however think that a promising working avenue concerns the way of automatically make a
given model more symmetric. This will potentially increase the efficiency of database retrieval
method.
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Instancing of Geometry

Once again, the method proposed in this thesis is the first work that compute a hierar-
chy of instances from a totally unstructured scene. We have presented an application
scenario based on ray-tracing and we are currently working on a generic system to derive a
hierarchy of instances suitable for scene editing.
Deriving a hierarchy of instances suitable for scene-editing is a complicated task as it does

not exist a single way of representing instances in a scenes. For example, one might want to
obtain the deepest hierarchy, the hierarchy with the largest number or instances, etc. . .We
are currently working on a generic model that associate a parametric weight to each pattern
of the HAG and use it to compute an “optimal” hierarchy as done in the application scenario
for ray-tracing. The parameters of this weight will control the way of representing each pat-
tern for example by given more importance to deepest representation.

As explained in Chapter 9, the problem of obtaining a hierarchy with no overlap is an
NP−complete problem. In order to evaluate the quality of our approximation algorithm, the
computation of the approximation ratio of our greedy approach for computing hierarchy opti-
mized ray-tracing, presented in Section 9.3.2, is also a part of our future work.

Semantic of 3D geometry

Structuring the scene at the semantic level seems to be the most challenging work to be done
in the future. A complete semantic representation of a scene captures the functions, the char-
acteristics and relationships between each object in the scene. We think that a method that
aimed to structuring a scene have to cope with the extraction of semantically meaningful
features from geometry, scale transitions, geometric and topological consistency. This infor-
mation is very rich and may be used for example to abstract the data by “understanding” its
contents.
In architectural scenes, this semantic information allows to isolate and identify walls, fur-

niture, desktops, etc. . . as well as the relative placement of objects in the scene e.g the phone
is on the table. We believe that such knowledge might be helpful for example for a visual-
ization system that want to maintain an interactive frame rate (e.g., a constant ten frames
per second) as in [Funkhouser and Séquin, 1993]. Semantic information may be used in such
systems to give more importance to some objects based on their semantic and hence derive a
order of rendering of objects i.e. rendering the table before the phone.

As three-dimensional environments, man-made or natural, always exhibit some structure
at different scales, we claim that the work developed in this thesis is also a first step toward
the accessibility of semantic information in 3D scenes.
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A
Symmetry: Proof of theorems

Appendix: Proofs

of theorem 8 let A be an isometric transform which lets a shape S globally unchanged. We
have:

∀ω M 2p(Aω) =
Z

s∈S
‖s×Aω‖2pds

=
Z

t∈A−1S
‖At×Aω‖2p|detA|dt

=
Z

t∈A−1S
‖t×ω‖2pdt

= M 2p(ω)

At line 2 we change variables and integrate over the surface transformed by A−1. At line
3, an isometric transform being a unit transform, its determinant is ±1 and thus vanishes.
The cross product is also left unchanged by applying an isometric transform to each of its
terms. Line 4: because AS = S we also have S = A−1S. The isometric transform A is thus also
a symmetry of theM 2p moment functions.

Let A be an isometric transform with axis v, and suppose that A is a symmetry of M 2p. Let
dv be the direction of steepest descent of function M 2p around direction v. Because A is a
symmetry ofM 2p we have:

dAv = Adv = dv (A.1)

If A is a rotation this is impossible because dv ⊥ v. Moreover, for all directions ω we have
M 2p(−ω) = M 2p(ω) and thus:

d−v =−dv (A.2)

So, if A is a symmetry, we have Av = −v. From Equations A.1 and A.2 it now comes that
dv =−dv, which is impossible.
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In both cases, M 2p can not have a direction of steepest descent in direction v. Because
M 2p is infinitely derivable, this implies that∇M 2p(v) = 0

of Property 4 Let S and R be two shapes, identical up to an isometric transform. Let J be an
isometric transform such that JS = R . Let T be the translation of vector −uS with uS = gS −g,
gS being the center of mass of S , and g the origin of the coordinate system into which J is
applied.

• Let A∈GS be a symmetry of S such that AuS = uS . We have ATS = TS (the symmetry A
operates in the coordinate system centered on gS ). Let K = JT−1AT. Then

KS = JT−1ATS K0 = JT−1AT0
= JT−1TS and = JT−1A(−uS )
= JS = JT−1(−uS )
= R = J0 = 0

By construction K is a rigid transform and conserves distances. It maps the origin onto
itself. K is thus an isometric transform. Furthermore, K maps S to R .

• Let K be an isometric transform such that KS = R . Let us choose A = TJ−1KT−1. This
choice leads to K = JT−1AT. Moreover:

ATS = TJ−1KT−1TS AuS = TJ−1KT−1uS

= TJ−1KS and = TJ−1K2uS

= TS = T2uS = uS

and
A0 = TJ−1KT−10

= TJ−1KuS

= TJ−1(gR −g)
= T(−uS )
= 0

By construction A is affine and conserves distances. It maps 0 onto 0. A is thus an
isometric transform. A is also a symmetry of S which verifies AuS = uS .

• The set of isometries which map S to R is therefore the set of functions K of the form
K = JT−1AT, where A∈GS is a symmetry of S such that A(g−gS ) = (g−gS ).

of Equation 4.3 We compute the decomposition of function θ 7−→ sin2p θ into zonal spherical
harmonics: we proove that this decomposition is finite, and give the values of the coeficients.
By definition [Hobson, 1931], we have:

Y0
L (θ,ϕ) =

√
2L+1

4π
PL(cosθ)

=

√
2L+1

4π
(−1)L

2LL!
dL

dxL

[
(1−x2)L](cosθ)

Where Pk is the Legendre polynomial of order k. Because the set of Legendre polynomials
P0,P1, ...,Pn is a basis for polynomials of order not greater than n, function θ 7−→ sin2p θ = (1−
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cos2 θ)p can be uniquely expressed in terms of PL(cosθ). The decomposition of θ 7−→ sin2p θ is
thus finite and has terms up to Y0

2p at most.
Let’s compute them explicitely:

dL

dxL

[
(1−x2)L] =

dL

dxL

L

∑
k=0

(−1)L−kx2L−2kCk
L

= (−1)L dL

dxL

L

∑
k=0

(−1)kx2kCk
L

= ∑
L≤2k≤2L

(−1)L+kCk
L2k(2k−1)...(2k−L+1)x2k−L

= ∑
L≤2k≤2L

(−1)L+kCk
L

(2k)!
(2k−L)!

x2k−L

So:

Y0
L (θ,ϕ) =

√
2L+1

4π ∑
L≤2k≤2L

(−1)k

2LL!
Ck

L
(2k)!

(2k−L)!
cos2k−L θ

The coeficients of the decomposition we are interested in are thus:

Z π

θ=0

Z 2π

ϕ=0
Y0

L (θ,ϕ)sin2p θsinθdθdϕ = 2π
√

2L+1
4π ∑

L≤2k≤2L

(−1)k

2LL!
Ck

L
(2k)!

(2k−L)!
I p
2k−L (A.3)

where integrals I p
m are defined by:

I p
m =

Z π

θ=0
sin2p+1 θcosmθdθ

First, I p
m = 0 for all odd m, because the integrand in anti-symetric around x = π/2. Then, if

m is even:

I p
m =

[
1

2p+2
sin2p+2 θcosm−1 θ

]π

0︸ ︷︷ ︸
0

+
m−1
2p+2

Z π

0
sin2p+3 θcosm−2 θdθ

=
m−1
2p+2

I2p+3
m−2

=
(m−1)(m−3)...1

(2p+2)(2p+4)...(2p+m)

Z π

o
sin2p+m+1 θdθ

Let Jq be the integral defined by

Jq =
Z π

0
sin2q+1 θdθ

We have

Jq =
[
−cosθsin2q θ

]π
0︸ ︷︷ ︸

0

+2q
Z π

0
cos2 θsin2q−1 θdθ

= 2qJq−1−2qJq
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Therefore

Jq =
2q

2q+1
Jq−1

=
2q(2q−2)...2

(2q+1)(2q−1)...3
J0

=
22q+1(q!)2

(2q+1)!

For m even, we can take m= 2r and q = p+ r; we get:

I p
2r =

(2r)!p!
2r r!2r(p+ r)!

22p+2r+1(p+ r)!2

(2p+2r +1)!

=
(2r)!p!22p+1(p+ r)!

r!(2p+2r +1)!
(A.4)

From Equation A.5 we deduce that, for L odd,
Z Z

Y0
L (θ,ϕ)sin2p θsinθdθdϕ = 0

For L even, we set L = 2l . Using r = k− l to match Equation A.6 in Equation A.5, we get:

Sl
p =

Z Z

Y0
2l (θ,ϕ)sin2p θsinθdθdϕ

= 2π
√

4l +1
4π ∑

2l≤2k≤4l

(−1)k

22l (2l)!
Ck

2l
(2k)!

(2k−2l)!
(2k−2l)!p!22p+1(p+k− l)!
(k− l)!(2p+2k−2l +1)!

=

√
(4l +1)π
22l (2l)! ∑

l≤k≤2l

(−1)kCk
2l

(2k)!p!22p+1(p+k− l)!
(k− l)!(2p+2k−2l +1)!

=

√
(4l +1)π

22l ∑
l≤k≤2l

(−1)k (2k)!p!22p+1(p+k− l)!
k!(2l −k)!(k− l)!(2p+2k−2l +1)!

In this document we compute the decomposition of function θ 7−→ sin2p θ into zonal spherical
harmonics. We prove that the decomposition is finite, and give the values of the associated
coeficients:

sin2p θ =
p

∑
l=0

Sl
pY

0
2l (θ, .)

with:

Sl
p =

√
(4l +1)π

22l

2l

∑
k=l

(−1)k 22p+1p!(2k)!(p+k− l)!
(2(p+k− l)+1)!(k− l)!k!(2l −k)!

Demonstration

We have

Y0
L (θ,ϕ) =

√
2L+1

4π
PL(cosθ) =

√
2L+1

4π
(−1)L

2LL!
dL

dxL

[
(1−x2)L](cosθ)
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Because the set of Legendre polynomials P0,P1, ...,Pn is a basis for polynomials of order
not greater than n, function θ 7−→ sin2p θ = (1− cos2 θ)p can be uniquely expressed in terms of
PL(cosθ). The decomposition of θ 7−→ sin2p θ is thus finite and has terms up to Y0

2p at most.
Let’s compute them explicitely:

dL

dxL

[
(1−x2)L] =

dL

dxL

L

∑
k=0

(−1)L−kx2L−2kCk
L

= (−1)L dL

dxL

L

∑
k=0

(−1)kx2kCk
L

= ∑
L≤2k≤2L

(−1)L+kCk
L2k(2k−1)...(2k−L+1)x2k−L

= ∑
L≤2k≤2L

(−1)L+kCk
L

(2k)!
(2k−L)!

x2k−L

So:

Y0
L (θ,ϕ) =

√
2L+1

4π ∑
L≤2k≤2L

(−1)k

2LL!
Ck

L
(2k)!

(2k−L)!
cos2k−L θ

The coeficients of the decomposition we are interested in are thus:

Z π

θ=0

Z 2π

ϕ=0
Y0

L (θ,ϕ)sin2p θsinθdθdϕ = 2π
√

2L+1
4π ∑

L≤2k≤2L

(−1)k

2LL!
Ck

L
(2k)!

(2k−L)!
I p
2k−L (A.5)

where integrals I p
m are defined by:

I p
m =

Z π

θ=0
sin2p+1 θcosmθdθ

First, I p
m = 0 for all odd m, because the integrand in anti-symetric around x = π/2. Then, if

m is even:

I p
m =

[
1

2p+2
sin2p+2 θcosm−1 θ

]π

0︸ ︷︷ ︸
0

+
m−1
2p+2

Z π

0
sin2p+3 θcosm−2 θdθ

=
m−1
2p+2

I2p+3
m−2

=
(m−1)(m−3)...1

(2p+2)(2p+4)...(2p+m)

Z π

o
sin2p+m+1 θdθ

Let Jq be the integral defined by

Jq =
Z π

0
sin2q+1 θdθ

We have

Jq =
[
−cosθsin2q θ

]π
0︸ ︷︷ ︸

0

+2q
Z π

0
cos2 θsin2q−1 θdθ

= 2qJq−1−2qJq
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Therefore

Jq =
2q

2q+1
Jq−1

=
2q(2q−2)...2

(2q+1)(2q−1)...3
J0

=
22q+1(q!)2

(2q+1)!

For m even, we can take m= 2r and q = p+ r; we get:

I p
2r =

(2r)!p!
2r r!2r(p+ r)!

22p+2r+1(p+ r)!2

(2p+2r +1)!

=
(2r)!p!22p+1(p+ r)!

r!(2p+2r +1)!
(A.6)

From Equation A.5 we deduce that, for L odd,
Z Z

Y0
L (θ,ϕ)sin2p θsinθdθdϕ = 0

For L even, we set L = 2l . Using r = k− l to match Equation A.6 in Equation A.5, we get:

Sl
p =

Z Z

Y0
2l (θ,ϕ)sin2p θsinθdθdϕ

= 2π
√

4l +1
4π ∑

2l≤2k≤4l

(−1)k

22l (2l)!
Ck

2l
(2k)!

(2k−2l)!
(2k−2l)!p!22p+1(p+k− l)!
(k− l)!(2p+2k−2l +1)!

=

√
(4l +1)π
22l (2l)! ∑

l≤k≤2l

(−1)kCk
2l

(2k)!p!22p+1(p+k− l)!
(k− l)!(2p+2k−2l +1)!

=

√
(4l +1)π

22l ∑
l≤k≤2l

(−1)k (2k)!p!22p+1(p+k− l)!
k!(2l −k)!(k− l)!(2p+2k−2l +1)!



B
Proof of the Classification Theorem

Proof of the Classification Theorem:

Theorem 10 Every isometry is one of the following: the identity, a translation, a rotation, a
reflection, or a glide reflection.

The proof use the triangle theorem:

Theorem 11 If the two triangles ABC and A’B’C’ are congruent, then there exists a unique
isometry F such that F(A) = A’, F(B) = B’, and F(C) = C’.

Let T be an isometry. Let ABC be a triangle, with A,B and C noncollinear, and let A’B’C’
be the image of ABC by the transformation T.
To show that T is one of the types identity, translation, rotation, reflection, or glide re-

flection, we just have to show that there’s an isometry F of one of these types such that F
also takes the triangle ABC to A’B’C’ i.e. F(A) = A’, F(B) = B’, and F(C) = C’. Then, by the
uniqueness part of the triangle theorem, T = F.
The proof is organized into four cases:

Case 1: T fixes A, B, and C i.e. A’= A’, B = B’, and C = C’. Then T is the identity.

If I is the identity, then I(A) = A, I(B) = B, and I(C) = C, so T = I by uniqueness.

Case 2: T fixes exactly two of the points A, B, C. Then T is a reflection.

Suppose that A = A’ and B = B’, but C is not C’. Since T is an isometry, AC = AC’ and BC =
BC’. In other words, C’ lies on the circle c1 with center A through the point C, and C’ lies on
the circle c2 with center B through the point C (see Figure B.1 on the following page).
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Figure B.1: Case 2: We suppose that T fixes A and B but not C.

The intersection of two different circles must be empty, one point, or two points. The point
C lies on both circles c1 and c2. If C were the only point common to c1 and c2, then we would
have AC + BC = AB, so C would lie between A and B, and C would be collinear with A and B,
contrary to hypothesis.
Therefore the intersection of c1 and c2 is two points, C and C’. Since A is equidistant from

C and C’, A lies on the perpendicular bisector of CC’. Since B is equidistant from C and C’, B
also lies on the perpendicular bisector of CC’. Thus AB is the perpendicular bisector of CC’.
Thus if F is the reflection with mirror AB, we have F(A) = A, F(B) = B, and F(C) = C’.
Thus T = F by uniqueness.

Case 3: T fixes exactly one of the points A, B, C.

Case 3a: If T is orientation reversing, then T is a reflection.

Suppose A = A’, but B is not B’, and C is not C’ Since T is orientation reversing, the proper
angle measures of the angles CAB and C’AB’ have opposite signs. Since T is an isometry, CA
= C’A and BA = B’A (see Figure B.2 on the next page).
Let D be the midpoint of the segment BB’. Since the triangle BAB’ is isosceles, AD is

the perpendicular bisector of BB’, and AD is the bisector of the angle BAB’. Since the angles
CAB and B’AC have equal proper angle measures, AD is also the bisector of the angle CAC’.
Since the triangle CAC’ is isosceles, AD is the perpendicular bisector of CC’. Thus if F is the
reflection with mirror AD, we have F(A) = A, F(B) = B’, and F(C) = C’. Therefore T = F by
uniqueness.

Case 3b: If T is orientation preserving, then T is a rotation.
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Figure B.2: Case 3a: We suppose that T is orientation reversing and only fixes A.

Again suppose A = A’, but B is not B’, and C is not C’. Since T is orientation preserving,
the proper angle measures of the angles CAB and C’AB’ are equal. Since T is an isometry, CA
= C’A and BA = B’A. Thus B and B’ lie on the same circle c1 with center A, and C and C’ lie
on the same circle c2 with center A (see Figure B.3)

Figure B.3: Case 3b: We suppose that T is orientation preserving and only fixes A.

The angles CAB and C’AB’ have equal proper angle measure: ĈAB= Ĉ′AB′. Now ĈAC′ =
ĈAB+ B̂AC′ and B̂AB′ = B̂AC′+Ĉ′AB′. So ĈAC′ = B̂AB′. Thus if R is the rotation with center A
and angle CAC’, we have R(A) = A, R(B) = B’, and R(C) = C’. Therefore T = R by uniqueness.

Case 4: T fixes none of the points A, B, C.
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Case 4a: If T is orientation preserving, then T is a translation or a rotation.

Since A, B, C are noncollinear, one of the points B, C does not lie on the line AA’. Suppose
B does not lie on AA’. Thus the lines AB and A’B’ are different.

1. Suppose the lines AB and A’B’ are parallel. Then the vectors AB and A’B’ are either
equal (i.e. ABB’A’ is a parallelogram) or opposite (i.e. ABA’B’ is a parallelogram). If
ABB’A is a parallelogram then AA’ is parallel to BB’. Since T is orientation preserving,
if ABB’A’ is a parallelogram, then so is ACC’A’ as the point C cannot lie on both AA’ and
BB’. We may assume that C does not lie on AA’.

So if S is the translation with vector AA’, we have S(A) = A’, S(B) = B’, and S(C) = C’.
Therefore T = S by uniqueness.

Figure B.4: Classification Theorem: Case 4a where the lines AB and A’B’ are parallel

On the other hand, if ABA’B’ is a parallelogram (and C does not lie on BB’) then CBC’B’
is a parallelogram. In this case, the segments AA’ and BB’ bisect each other, since they
are the diagonals of the parallelogram ABA’B’. For the same reason the segments BB’
and CC’ bisect each other. Let O be the common midpoint of the three segments AA’,
BB’, CC’. [Special cases: If C lies on BB’ but not on AA’ then CAC’A’ is a parallelogram,
and the three segments AA’, BB’. CC’ still have a common midpoint O. If C lies on both
AA’ and BB’ then C = C’ and we let O = C.] If R is the rotation with center O and angle
180 degrees, then R(A) = A’, R(B) = B’, and R(C) = C’, so T = R by uniqueness.

2. Suppose the lines AB and A’B’ are not parallel. Let L be the perpendicular bisector of
AA’, and let M be the perpendicular bisector of BB’. Let O be the intersection of L and
M.

[If L and M are parallel, then AA’ and BB’ are parallel, so ABB’A’ is an isosceles trape-
zoid, and hence L = M. In this case we let O be the intersection of AB and A’B’.] The
(yellow) triangles AOB and A’OB’ are congruent, by the side-side-side congruence theo-
rem. Therefore the angles AOB and A’OB’ have the same proper angle measure. Thus
the angles AOA’ and BOB’ have the same proper angle measure. Let R be the rota-
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Figure B.5: Classification Theorem: Case 4a where the lines AB and A’B’ are not parallel

tion with center O and angle AOA’. Then R(A) = A’ and R(B) = B’. Since T and R are
orientation preserving, R(C) = C’. Therefore T = R by uniqueness.

Case 4b: If T is orientation reversing, then T is a reflection or a glide reflection.

Note that if two angles have corresponding sides parallel, and their proper angle measures
are negatives of each other, then both angles must be right angles. Thus, since T is orientation
reversing, all three sides of the triangle ABC cannot be parallel to the corresponding sides of
triangle A’B’C’. Suppose that AB is not parallel to A’B’.

Figure B.6: Classification Theorem: Case 4b

Let P be the midpoint of segment AA’ and let Q be the midpoint of segment BB’. Let L
be the line PQ. [The points P and Q are not equal, for if they were equal then the triangles
APB and A’PB’ would be congruent, and AB would be parallel to A’B’.] Let X be the foot of the
perpendicular from A to L, let X’ be the foot of the perpendicular from A’ to L, let Y be the
foot of the perpendicular from B to L, and let Y’ be the foot of the perpendicular from B’ to L.
Triangles AXP and A’X’P are congruent, so AX = A’X’. (If X = P then X’ = P, and again AX =
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AX’.) Similarly, BY = BY’. Since AB = A’B’, it follows that the (yellow) trapezoids AXYB and
A’X’Y’B’ are congruent. Therefore XY = X’Y’, so XX’ = YY’.
Let G be the glide reflection with mirror L and vector XX’. (If X = X’ then G is the reflection

with mirror L.) Then G(A) = A’ and G(B) = B’ since XX’ = YY’. Since T and G are orientation
reversing, G(C) = C’. Therefore T = G by uniqueness.
This completes the proof of the classification theorem.



C
Mean Shift Clustering

In this appendix, we present the mean-shift, a method for seeking the mode of a point set
which has been initially proposed in 1975 by [Fukunaga and Hostetler, 1975]. We present
here a simplified version of the mean-shift where the metric of the feature space i.e. the
point cloud is Euclidean, which is not the case in our work (see page 113). We refer once
again to [Fukunaga and Hostetler, 1975] for a complete presentation of the mean-shift in
non-Euclidean space.

Figure C.1: The basic idea of mean shift clustering is to consider each point in a point cloud
(here in 2D) as a sample from an unknown density function (right). As forming the clusters in
this space is equivalent to find the places where points accumulate, this also the places where
the gradient of the density is equal to zero. The mean-shift is an elegant way to find these
places without knowing the density function or having any assumption about it.

We suppose that we have a point clouds in IRd which we want to estimate the mode (see Fig-
ure C.1 for an example in 2D). Each mode of a point cloud correspond to a local maximum of
its density function, and a well-known method to reach it consists in following the direction

163



164 APPENDIX C. MEAN SHIFT CLUSTERING

of the gradient. The mean-shift is an elegant way to find these places without knowing the
density function or having any assumption about it.

C.1 Estimating density gradient

With parametric statistics, we have some assumptions about the law followed by the density
of the point cloud, which can be assimilated to a priori knowledge. Moreover, usual laws
are unimodal whereas real data have often multiple modes. This can be treated by compos-
ing multiples laws together (such as sum of Gaussian laws) but a priori knowledge is still
assumed.
The solution to avoid such a priori is to use non-parametric statistics. Parzen window

allows to estimate the density of a point cloud: if we note {xi}i=1...n the set of n points of the
cloud, we can estimate its density in all points x by:

f̂ (x) =
1

nhd

n

∑
i=1

K
(x−xi

h

)

where K is the kernel function and h is the radius of the ball centered on x called the
bandwidth. A kernel function is a function K : IRd→ IR that verify:

(1) ∀u K(u)≥ 0
(2) ∃M ∀u K(u)≤M

(3)
Z

IRd
K(u)du = 1

(4) lim
||u||→+∞

||u||dK(u) = 0

The gradient of the density function is estimated by the gradient of the estimated density:

∇̂ f (x) = ∇ f̂ (x) =
1

nhd

n

∑
i=1

∇K
(x−xi

h

)
(C.1)

The difference between the estimated density function and the real density function can
be measured using quadratic error:

QE = E
(Z

IRd

(
f̂ (x)− f (x)

)2
dx

)
=

Z

IRd
EQM( f̂ (x))dx

where E designmathematic esperancy and EQM designed the mean quadratic error. [Scott,
1992] proves that minimizing QE gives the following kernel function KE:

KE(x) =

{
1
2C−1

d (d+2)(1−||x||2) ||x||< 1
0 otherwise

which is called the Epanechinokov kernel. We note Cd the volume of the unit sphere in
dimension d. Using this kernel in equation C.1, we have:

∇̂ fE(x) =
nx

n(hdCd)

d+2
h2 Mh(x)
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with:
Mh(x) =

1
nx

∑
xi∈Sh(x)

xi−x

where Sh(x) is the hyper-sphere of radius h and center x which contains nx points of the
cloud.
The vector Mh(x) is called the mean-shift vector and allows to define a path that leads

to a local maximum of density i.e. a mode of the point cloud.

C.2 Algorithm

We suppose that we know the bandwidth h, which is generally computed from that scale of
the point cloud. The simple algorithm to find a mode of the point cloud is the following:

1. Initialization : Pick a random point x in the point cloud

2. Compute the mean shift vector Mh(x)

3. x← x+Mh(x)
Repeat (2) until convergence

The test of convergence is usually done by testing the norm of the mean-shift vector and
the convergence of this algorithm is proved when using the Epanechinokov kernel.
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