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Abstract

Recognizing human actions is an important and challengipig in computer vision, with many
important applications including video surveillance,aadndexing and understanding of social
interaction. From a computational perspective, actiomsbeadefined as four-dimensional pat-
terns, in space and in time. Such patterns can be modelegl seieral representations which
differ from each other with respect to, among others, thealisiformation used, e.g. shape or
appearance, the representation of dynamics, e.g. implikplicit, and the amount of invari-
ance that the representation exhibits, e.g. a viewpoiariaxce allowing to learn and recognize
using different camera configurations.

Our goal in this thesis is to develop a set of new techniqueadon recognition. In the first
part we present "Motion History Volumes”, a free-viewporapresentation for human actions
based on 3D visual-hull reconstructions computed form iplelicalibrated, and background-
subtracted, video cameras. Results indicate that thigseptation can be used to learn and
recognize basic human action classes, independently degdmody size and viewpoint.

We then present in the second part an approach based on a Bplaxédased HMM, which
addresses the problem of recognizing actions from arlitveaws, even from a single cam-
era. We will thus no longer require a 3D reconstruction dytime recognition phase, instead
we will use learned 3D models to produce 2D image informatighich is compared to the
observations.

In the third and last part, we present a compact and efficirnplar-based representation,
which in particular does not attempt to encode the dynamicsncaction through temporal
dependencies. In experimental results we demonstratsubkhta representation can precisely
recognize actions, even with cluttered and non-backgraagminented sequences.
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Résumeé de la these

Le but de cette these est de développer un ensemble dellesueehniques pour I'identification
d’'action humaine a partir d’'une vidéo. Lidentificatioradtion — c.-a-d. observant d’autres
personnes, identifiant ce qu’elles font, les imitant, agigésant a leurs actions — est une partie
élementaire de notre vie quotidienne. En fait, cettedasi toute a fait une tache banale et sans
aucun effort pour la plus part d’entre nous. Pouvons-nastaller des modeles d’ordinateur qui
peuvent demontrer des capacités semblables ?

En fait, les étres humains sont capables de reconnadiiterfeent les actions humaines. Nous
prenons beaucoup de plaisir a regarder des personnagésire gction, dans des filmes, en
sport, et dans des événements sociaux, par exempleéedimke nous commencons a regar-
der et observer les plus grands (parents et autres) powsrapprd’eux comment se comporter.
Les mécanismes qui hous donnent cette capacité passiensant cependant que des connais-
sances et des compréhensions. Par conséquent le diéselept des techniques, qui donnent
des capacités similaires sur des ordinateurs est une diftibiée et pour nous une grande chal-
lenge.

Il existe plusieurs applications intéressantes dansieailee de la reconnaissance et d'iden-
tification d’action (voir figurel) : nous citons, la grande base de donnée des images esvidéo
sur Internet, qui ne cesse de grandir jour apres jour, lelsivs de la télévision et les ar-
chives des filmes, ont besoin de beaucoup de compétenceaupelrclassification automa-
tique en catégories homogenes. En robotique, l'ideatifio réussie d’'une action est prin-
cipale pour permettre aux hommes et aux ordinateurs uneatien normale et autonome.
Dans les systémes de surveillance modernes, les obsas/giELvent a peine percevoir la vue
d’ensemble de toute I'information disponible. Par consid nous avons besoin de systemes
automatiques, qui nous aident a sélectionner I'inforomaiimportante.
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FIGURE 1.: Exemple d'actions dans differents domaines d’applicati(En haut) Agressions
sur des images de surveillance ; interactions entre 'hominierdinateur ; (En bas) des gestes
dans des filmes d’action, les nouvelles, et I'enregistrérdensport. Pouvons-nous concevoir
une machine, qui peut comprendre telles actions ?

Actuellement, nous n’avons pas la connaissance pourietigdels systemes. D’abord, nous
devons comprendre comment distinguer les actions en lenv@usieurs fois s’exécuté, de
differents points de vue, par des personnes differeates, differents modeles et dans difféerents
contextes. Ensuite, nous devons comprendre comment eenpdeyte connaissance instruite
accumulée pour identifier et appeler de nouvelles actiosd nous les voyons. Dans cette
thése, nous voulons établir des modéles d’'ordinateid@muontrent de telles capacités.

Dans le reste de ce chapitre, nous continuerons la descrigds problemes impliqués en
reconnaissance et identification d’action. Nous donnon&sapn résume court des techniques
existantes dans ce domaine, et présentons finalement paxchps et nos contributions.

Probl emes et difficult és

D’une maniere technique, le terraetion se réfere dans ce travail a un événement 4D, exécuté
par un agent dans I'espace et a un temps précis. En patjcwtre centre d’attention est sur des
ordres significatifs et des mouvements de corps courtesqted par exempledonner coups

de pied poignarder marcher s’assoir par terre etc. De tels événements habituellement ne
peuvent pas étre répétés exactement, et chaque exdiapl®n est unique. Cependant, notre
but est d’'identifier des classes d’'action, méme lorsqer'edit exécutée par differentes personnes
sous differents points de vue, et malgré de grandesreliftees dans la fagon et la vitesse de



I'exécution.

En développant un systéme pour I'identification d’actioous devons construire une hiérar-
chie complexe avec de asionet de la apprentissage automatique. Au niveau le plus bas, no
devons extraire le maintien et le mouvement dispositifs viégos, par exemple un modele
paramétrisé de corps ou une représentation simpliisédosur des images de silhouette. Le
traitement de plus haut niveau consiste a propager cesditifp sur le temps et les tracer
dans des classes significatives de mouvement. Chaqueigtpliguée représente ses propres
difficultés.

Les difficult és

Un systeme de reconnaissance d’actions réaliste etrpefa dans la vie quotidienne doit
aborder une multitude des difficultés, provenant des ssges differentes. Dans le paragraphe
suivant nous allons montrer en détails les differentéicditées.

Difficult é de vision

L'extraction de caractéristiques distinctives a paditime séquence d'image est un probleme
fondamental dans la vision. En reconnaissance d’actioarkcteristique visuelle la plus impor-
tante est le corps humain et sa configuration avec le tempstdpeésentations tres differentes
peuvent étre employées, s'étendant des modeles cresplie corps aux images simples de
silhouettes. Dans I'un ou l'autre cas, les issues suivathbdgent étre abordées : détection de
personne ; extraction des caractéristiques distinotifia gosture. De ce fait, les propriétés telles
gue la manipulation de I'occlusion et le fouillis, la robesse au bruit, les differentes illumi-
nations et la présence de I'ombres, et la robustesse &ratits types de I'habillement et de
physiques, sont d'importance.

De plus, dans des configurations réalistes nous ne pouamsnposer des contraintes au
point de vue et a I'orientation des sujets en ce qui conclemeameéras. En conséquence, une
pose ou un mouvement simple peut avoir comme conséquenueniore presque infini d’ob-
servations possibles. Une représentation approprigaidsi expliquer de tels changements.

Mod élisation d’actions

Une autre difficulté principale vient de la grande varigbitju’'une classe d’action peut s'expo-
ser, en particulier si elle est exécuté par differenjstsude genre et de taille différents, et avec
une vitesse et une maniere differentes. Les étiquettesnbuvements qui sont sémantiguement
significatifs pour nous, tels que woup de piedun coup de poingou unsigne par la main
peuvent avoir comme conséquence une latitude large derpiigtations possibles. C’est ainsi
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gue ce probleme est considéré comme un défi particuier poncevoir un modele d’action,
gui identifie pour chaque action ses caractéristiquesdiayu’il maintient une adaptabilité ap-
propriée atoutes les variations de formes. La questibguesle est la fagon dont pouvons nous
trouver des données appropriées, qui expliquent towgdalle variation. Les données annotées
de mouvement sont crues et difficiles & acquérir, pountéavitable pour apprendre les modeles
réalistes des actions.

Segmentation de mouvement et spotting

Etant donnée des modeles d’action appropriées, noussavesoin de quelques approches
pour appliquer ces modeles a des données réalistesfmwos de vidéos. Typiquement, les
représentations d’action sont congues et appris esanilides séquences artificielles, qui con-
tiennent des exemples d’actions simples et isolés. Enmdus pouvons apprendre seulement
un ensemble fini d’actions. Comment pouvons-nous applidesitelles représentations sur un
ensemble d’'actions continues et réalistes ? Nous devarmopaéquent localiser des frontieres
d’action dans les vidéos, et nous avons besoin de capaaité repérer des actions intéressantes
et la séparer du nombre presque infini de mouvements sarificsijon en générale que nous
rencontrions en réalité.

Primitives des mouvements et taxonomies d’action

Finalement, en reconnaissance d'action le probleme Ig iplportant résulte du manque de
la science de la théorie sur I'articulation et la perceptie mouvement. L'identification d’ac-
tion est souvent comparée a la reconnaissance de la patddeaucoup d’autres techniques
sont adoptées du méme domaine. Cependant, les systemesotinaissance de la parole sont
fortement basés sur les concepts linguistiques, telsnguraprésentation symbolique discréete
de la langue parlée - représentée par des phonétigassytlabes, et des mots -, et leur as-
semblée dans la structure basée sur la syntaxe et la 8gosmarDe méme, la formation du
systeme de reconnaissance de la parole moderne est baskss slonnées annotées avec plu-
sieurs niveaux, par exemple a un niveau de phonéme, suveaunde mot, et sur le niveau de
phrase. Des concepts semblables sont absents en ideiotifid&tction (une exception sur des
taches spécialisées telles que I'annotation de daBsejonséquence, les concepts établis et les
directives pour concevoir et apprendre des systemesntifiation d’action sont absents.

Etat de I'art de la reconnaissance d’action

Comme nous avons cité precédemment, l'identificatiactibn peut étre vu comme une com-
binaison de la vision et de la apprentissage automatiqueodnaéquent diverses approches ont



été proposées, ces approches sont basées sur déf@@mbinaison de méthodes. Bien que,
beaucoup de directions intéressantes aient été osy@rsgiu’au maintenant, il n’y a pas beau-
coup d'informations claires sur les meilleures manieregbcéder i ) ]. Dans le
paragraphe suivant nous allons donner une vue d’ensembiteades méthodes employées;
une discussion détaillée peut étre trouvée en chahitre

Représentation de posture

La tache principale de vision en l'identification d'actiest I'extraction des posture et les ca-
ractéristigues de mouvement qui forment les sequenceésée. Traditionnellement, il y a deux
vues contrastantes sur le type de représentation desé@ristigues a utiliser :

e |'approche basée sur imodele tented’extraire des caractéristiqgues qui décrivent ex-
plicitement la posture et le mouvement des parties du cdsps. telle représentation
sont par exemple : marquer sur des certains points membhiffses baton 2D, 3D ou
cinématique organisme modeles. Rejet de la motion capgaahniques, & marqueur ou
sans marqueurs, sont nécessaires pour extraire de #plEsentations. En conséquence,
ces approches ne sont applicables que dans des configariitiatees, par exemple,
des productions vidéo ou des analyses de sport, mais ldifficappliquer dans d’autres
scénarios

e Pour surmonter les difficultés avec les extractions duateodeé corps, des représentations
simplifiees basées sur diesnplates locales et des mades globauxont été proposeées.
Les représentations les plus utilises couramment scs# bar le flux optique, les sil-
houettes, et sur des correctifs locales similaire aux g#sars SIFT en reconnaissance
d’objet.

Mod élisation d’action

Des techniques pour modeler des actions en termes deigtasset la dynamique sur les ca-
ractéristigues des posture, peuvent étre diviseesusiepirs vues contrastantes :

e Des actions peuvent étre modelées en utilisant les tgeagbaide reconnaissance des
formes qui ont explicitement un composant temporel, d.-an modele qui prévoit des
observations a chaque instant basé sur des observatgsnexdmples précédents dans
d'autres périodes de temps, par exemple un HMM. Nous appale telles techniques
des mockles de<tats de transition

e Alternativement, le mouvement peut étre modelé im@imieént en utilisant ce que nous
appelons uneeprésentation d’espace-tempsAu lieu de regarder des actions en se ba-
sant sur "per-frame”, des telles approches peuvent modéeteactions a une séquence de
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(o)}

(a) Deux ensembles de données frequemment utiliséscennaissance d'action : (En haut) la base des données
KTH [Schuldt et al. 2004, (En bas) I'ensemble des données de Weizmaiiarlk et al, 2005. Les vues sont
approximativement fronto-paralleles, et les acteursilsobnt face a I'appareil-photo soit ils sont orientésagkeles

aux plan de visionnement.
| 1 1 .
ﬂ “ ﬂ \ H
-
l”.}" I — r"t‘— E — r”.}" 3 ' E r"t‘— I —

(b) Un exemple de séquence de notre base de données : negistons des actions avec des configurations
arbitraires de multiples cameras, et les acteurs choigisibeement leur position et orientation par rapport a ces
cameras.

FIGURE 2.: (a) La plus part des approches existantes assument la catibgude la vue fixe
et la contrainte I'orientation des acteurs. (b) Nous tit@é aux scénes avec l'installation
arbitraire de cameras.



niveau, c.-a-d. une séquence en entier a comme consérjuer représentation simple
de dispositif, qui est instruite et classifiee en utilisdas techniques d’étude statiques,
par exemple le plus proche voisin ou support vecteur magaNe1).

e En conclusion, il est également possible de modeler demaalans leseprésentations
dynamiques libres c.-a-d. a un niveau simple de frame, ou en considérargrisembles
non commandés temporels de frame, par exemple par occargendispositif d’histo-
gramme.

Lind épendance du point de vue

Des difficultés additionnelles sont présentées quand reissons observer des actions de dif-
ferente points de vues, bien que, la majorité de travaitlentification d’action adresse actuel-
lement seulement le cas ou I'action dépend d’'une vue bé¢grahiner, voir le schéma 2(a). Les
approches Vue-indépendantes, peuvent étre distisgrése basant sur les stratégies suivantes :

e les méthodes qui se base $invariance de vue consiste a trouver une fonction assor-
tie entre les observations, qui est identique indéperddntpoint de vue observé. Une
fonction si assortie peut étre par exemple basée sur lgsapates epipolar ou les inva-
riants géomeétriques, qui peuvent étre calculés daggpondances point par point entre
les paires d’'images.

e Les approches basées sunt@malisation, tentent de détecter I'orientation réelle, et de
transformer respectivement toutes les observations endsenique, ou I'assortiment a
lieu. Pour détecter une telle orientation, les approcleesgnt par exemple employer les
parties du corps détectées, ou d'autres sélectionexaanple direction de marche.

e Les approches basées surdaherche exhaustiveapprennent des vues multiples d’'une
action, et assortissent I'observation contre chacunéeg'aC’est probablement I'approche
la plus franche pour prolonger n'importe quelle approche-gépendante a la vue-indé-
pendance. D’'une maniére primordiale, cependant, powrngte la vue-indépendance
demeurera restreinte exactement a I'ensemble de vues.appr

Approches et contributions

Comme cité précédemment, actuellement nous n'avondg@ascoup d'informations claires
sur l'identification d’action au sujet des meilleures nemas de procéder. Il est donc important
d’explorer differentes directions ; et nous faisons adeis cette these. Nous proposons trois



8 Résumé de la thése

nouveaux cadres pour l'identification d’action. Notre &idapporte en particulier des contri-
butions en ce qui concerne les issues suivantes : modalisate-indépendante des actions,
études de la posture et des primitifs de mouvement, nsati&n de la dynamique des actions,
segmentation temporelle des actions.

La motivation pour nos approches peut étre récapitub@ence suit :

e Modele Libre : Dans notre travail nous évitons l'utilisation d’'un moel@larameétrisé de
corps. Comme mentionné précédemment, la récuparafiln modele de corps est un
probleme difficile, et actuellement limité a des confajions tres contraints. Nous pen-
sons que l'identification d'action peut fortement tirenbéce d’'une représentation sim-
plifiée de posture. Nous avons employé dans nos appraetesction des silhouettes du
fond, bien que d’'autres formes de représentations de glitfpgourraient étre integrées
(comme exemple, nous avons expérimenté aussi bien asemeges filtrées par contour
et le chanfrein s'assortissant, pour éviter des dépearedasur la soustraction de fond).

e L'ind épendance de vue Notre but est de réaliser I'identification d’action d'unendi-
guration qui ne dépend pas de la vue, en d'autre mots "vu mefild’'une vue arbi-
traire”, et sans contraintes sur l'orientation relativareries acteurs et les appareils-
photo, voir le schéma 2(b). En plus, une fois appris avecinstallation spécifique de
caméra, nos modeles devraient étre facilement trasgstés a de nouvelles installations
de caméra. D’'une maniere primordiale, nous voulonss&ates demandes sans utilisa-
tion des entrées additionnelles, par exemple la préséesgoints de correspondances
entre les observations. La clef pour remplir ces demandesmias approches exige I'uti-
lisation de I'information 3D. Nous dérivons deux cadred'dpeproche vue-indépendants
(voir le schémad et 4) : Dans notre premiere approche nous travaillons emtierg en
3D, en utilisant des reconstructions de "visual-hull” cddes a partir des observations de
multiple vues. Notre deuxieme approche essaye l'ideatiic méme d’'une seule vue,
encore une fois en utilisant les modeles préecédemmetrtits en 3D.

e Diff erents mockles d’action : Nous nous ne limitons pas a une représentation simple
d’'action, et expérimentons a la place avec differentsl@es. Notre premiére approche
est basée sur une représentation "espace-temps”. Nous &ouvé cette représentation
dans une comparaison pour nous comporter le meilleur gesgilune part, notre deux-
ieme approche est basée sur un modele d'état-tramsitiea-d. un HMM, qui, en raison
de ses caractéristiques génératives, a été adaptixmpour produire des vues 2D arbi-
traires d’'un modele 3D. Dans notre derniere approches agans expérimenté avec une
représentation qui ne modele pas la dynamique, et ébmuaus avons constaté qu’une
telle représentation est souvent suffisante pour identiie actions avec des résultats du



dernier cri.

e Utilisation des primitifs de posture et de mouvement :Nous pensons que les actions
peuvent étre représentées par des vocabulaires deitifsrégtémentaires de mouvement
et des primitifs de posture. Nous expérimentons aveerdifftes stratégies pour choisir
quelques primitifs. Une méthode pour le choix des primitifune séquence de mouve-
ment continue est présentée dans la premiere partietideticese. L'intéerét est la visuali-
sation des données pour découvrir des classes de mouyamuen’exige aucune forme
de surveillance. Dans la deuxieme partie de cette thase expérimentons avec le choix
distinctif de clef-pose sur des séquences, cette foisittgamt la surveillance en termes
des étiquettes d'une classe donrf&®nnant nous avons constaté gu’une fois choisi d’'une
telle maniere, un trés petit nombre de clef-pose est anffigour représenter une série de
I'action effectuée par beaucoup de personnes.

Les approches et leurs contributions sont détaillees tiasuite.

Motion history volumes for free viewpoint action recogniti on

Dans notre premiere approche nous avons proposé I'adgetibn History Volumes” (MHVSs)
comme une représentation qui se repose sur l'indépeaddada vue d'ou la séquence de
vidéo a été prise ou vue-invariable pour l'identificatid’action humaine. L'idée fondamentale
est de faire I'identification d’action en 3D, employant dégsences de visuel-hulls calculés
a partir des appareils-photo calibrés plusieurs foisaetgopustraits du fond, voir le schéra
Des caractéristigues de mouvement sont alors calcula@gégrant des observations multiples
frame sur le temps a fin d’avoir un seul MHV simple, c.-a-de gille de voxels 3D qui code
simultanément I'espace 3D et le temps. L'alignement etteaparaisons invariables d’'orien-
tation sont effectués efficacement en utilisant la tramséz de Fourier dans des coordonnées
cylindrique autour de I'axe vertical. Contrairement awaviux existants sur I'identification par
aspect de vue-invariable d’action (voir la secti®13.2, notre représentation n'exige aucune
sélection additionnelle, telle que les correspondaneepaiht par exemple. Les contributions
sont récapitulees comme suivant :

Représentation invariable de I'action en 3D : Nous présentons une nouvelle représ-
entation invariable pour des actions observées dansalbesdu voxel 3D. La représentation
est motivée par la prétention que les actions semblalif@sent la plupart du temps par des
transformations rigides composées par échelle, paslation et par rotation autour du l'axe z.
On a montré que la représentation soutient u ne cat@gionssignificative des classes simples
d’action exécutées par differents acteurs, indépemaant des tailles de point de vue, de genre
et de taille du corps.
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FIGURE 3.: Représentation d'action 3D "volumes d’histoire de mougath ("Motion History
Volumes”) : Nous employons des observations de multiple paur reconstruire des coques
du visuel 3D. Les coques visuelles sont integrées avenips dans des volumes d’histoire de
mouvement (MHVs). Basé sur la méthode de MHVs nous appieabidentifions des actions.
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Segmentation temporelle : En se basant sur le MHVs, nous dérivons une méthode pour la
segmentation temporelle des jets de mouvement. Puisqreneprésentation est indépendante
de point de vue, elle a comme résultats des méthodes deeatagion et de classification qui
sont efficaces et robustes.

Identification d’action des vues arbitraires en utilisant d es exemplaires
3D

Egalement, notre deuxieme approche challenge l'ideatifin d’action independamment de la
vue. Cette fois nous atteignons ce but méme lorsque unevgewdst donné, mais néanmoins
sans exiger les parties du corps marquées ou n'importéegioeme de correspondances de
point entre les paires d’observations. En identifiant désres d’'une vue simple nous ne pou-
vons plus compter sur une reconstruction 3D pendant la pifiasntification. Cependant, la
clef de notre approche pour réaliser I'identification vmeéépendante d’action est I'utilisation
d’'un modele interne de I'action 3D, apprise des vues mekipqui est alors employé pendant
I'identification pour produire I'information 2D arbitrard’image, voir le schemd. Cette ap-
proche apporte les contributions suivantes :

Exemplaire 3D bas é surle HMM : Le probleme est formulé comme un modéle graphique
de probabilité. Un exemplaire basé sur le HMM sera @g&ripi représente I'action et la trans-
lation de vue comme deux parametres indépendantes dessuscde Markov. Le premier pour
I'orientation du sujet relatif a la camera et le deuxiemerpa vue indépendante, Le mouve-
ment du corps-centré prises par l'artiste au cours desrdiftes étapes de I'action. Les proces-
sus aléatoires sont centrés autour d'un ensemble derpe€D, les copies, qui représentent les
differents états de mouvement, et qui sont utilisés gé@merer la silhouette 2D observée

Sélection des postures dominant : Pour le choix du posture dominant, une approche de
wrapper est proposée. On a montre qu’un petit ensemble starpcsélectionnée est suffisant
pour représenter un grand nombre de differentes actifest@ees par differents acteurs.

Identification d’action utilisant 'encastrement base sur des exemplaires

Nos expériences précédentes avec de petits ensemblesylaires ont inspiré notre derniére
approche, ou nous dérivons une représentation conduitee représentation fortement sim-
plifiee et purement de type " bottom-up” exemplaire. Noussiprésentons une représentation
libre, compacte et efficace, basée sur un ensemble de abistanun ensemble d’exemplaires
qui représente les clés statique distinctif de postunesécbasant sur une base de données pu-
bliques, trés connue et représentes par une approchedeipandent, nous démontrons alors
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FIGURE 4.: "Exemplaire-basé HMM” pour des reconnaissances d'aaemvues arbitraires :
Un modele 3D appris est employé pour produire des séggahe visuels de la coque 3D. Les
séquences 3D sont projetées en 2D et ajuster contre Retim.
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gu'une telle représentation, qui ne fait pas en particuleemodélise aucune des relations tem-
porelles entre les armatures, peut identifier des actiompacer aux résultats de I'état de I'art.
En outre, nous expérimentons dans notre derniére appadat des exemplaires et des images
reconstruit par filtres sur les bords pour surmonter desmt#gnces sur la soustraction du fond.
L'approche apporte les contributions suivantes :

Exemplaire incluant la repr ésentation :  Une nouvelle représentation est dérivée, qui
représentent entierement une séquence d’actionsersrame ensemble fixe d’exemplaires de
distance. La représentation est équivalente a inclaseadtions dans un espace défini par des
distances a I'ensemble des clefs des posent des exersplairesprésentation est peu sensible
a l'ordre temporel et aux variations de d'échelle de teneps la vertu de I'efficacité et de la
simplicité.

Mod élisation libre dynamique d’action : L'approche démontre comment un ensemble
de distinctif statique clef-pose est suffisant pour modeéaucoup de differentes actions ef-
fectuées par differents acteurs. En particulier aucuodatisation des dépendances temporelles
entre clef-pose n’est nécessaire pour réaliser detaésaomparables a I'état de l'art.

Identification des ordres encombr és: Nous démontrons comment la représentation de
I'exemplaire proposé, en méme temps que des distancedias®vancées, peut étre employée

pour I'identification des action a partir des actions quitement beaucoup de bruit et sans

soustraction du fond des séquences segmentées.

La base de donn ées d’'IXMAS

En conclusion, une contribution, qui est également de@taé mentionnée, est notre base de
données (le schéma 2(b)fig :emb :3figa), que nous avongisméspendant nos expériences. Les
ordres d’acquisition de mouvement de xmas d’Inria (IXMA&)me un ensemble de données
d’identification d’action de multi-vue de 13 jour de vie gui¢nne d’actions, réalisé effectuées
par 11 acteurs différents, chacun 3 fois en changeant te geivue de la prise de la vidéo. C'est
le seul base de données multi-vue qui est disponible pudaiignt dans le domaine de recon-
naissance d’action. Depuis que nous I'avons rendu disfmpilbliquement, il a été téléchargé
par plusieurs groupes de recherche partout dans le moniée ebhta été employé en plusieurs

publications récentes de conférence, nous citons paneee] , ,
?

] ’ 7 [ ] 1 ] y ]

1 1 1 ]'
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Profil de th ese

Un examen détaillé de la situation actuelle en reconan@ss d’action est présenté emapitre

2. Par la suite la taxonomie illustrée brievement dans tdi@e 1.2, ou nous classifions des
approches selon la modélisation de I'action et la repiiasien et de la posture. Nous nous
concentrons ensuite sur les représentations basant guelmdépendant pour l'identification

d’action, et finalement noua allons discuter des approcbas lp segmentation automatique,
découverte des primitives des mouvement, et I'identificaties jets réalistes des actions.

Dans lechapitre 3 nous présentons la méthodeotion history volume$MHVs) comme
représentation d’'action de point de vue libre. Motiondmgtvolumes sont dérives comme exten-
sion de I'historigue des mouvements des imagaso| S ]. Nous présentons
alors des algorithmes pour I'alignement d’orientatiorestédomparaisons de MHVSs, en utilisant
une représentation basée sur des grandeurs de traesfalenFourier dans des coordonnées
cylindrique. Les expériences sur I'ensemble de la baseod@é&ks d'IXMAS prouvent que
MHVs soutient la catégorisation significative des classawmples d’action qui ont ete exécuté
par differents acteurs, indépendamment des taillesoife de vue, de genre et de corps. Ce
chapitre est basé sur un travail d'abord présenté aliéatinternationallEEE International
Workshop on modeling People and Human Interaction (PHIP520 | ], et
a été mis a jour pour une version de journal d&osnputer Vision and Image Understanding
(CVIV), 2006 [ | ].

Nous présentons dans d¢bapitre 4 une méthode pour la segmentation temporelle automa-
tique en utilisant MHVs. A travers des expériences nousradions montrer comment la seg-
mentation et la classification basées sur MHVs peuveatsitiployées pour découvrir automati-
guement des taxonomies des primitifs de mouvement dessandreétiquetés des mouvements.
Plus loin nous donnons des résultats de classification détition sur les streams continus
des actions. Ce chapitre est basé sur le travail publig ldasonférencéEEE Vision and Pattern
Recognition (CVPR), 2006 | ]. Des partie ont été pris du papier de journal
[ , 1.

Dans lechapitre 5 nous donnons une introduction courte concernant le HMMsLet pro-
longation a I'exemplaire-basé HMMs. Des algorithmes gt@iude de paramétre de HMM et
le choix d’exemplaire sont donnés. Nous alors discutetiqudiérement notre choix pour la
sélection d’exemplaire, qui est basé sur une approcheragpsr | ] ], en
comparaison avec d'autres méthodes sélectionnées.

Nous détaillons dans kehapitre 6 notre approche pour l'identification d’action des vues ar-
bitraires en utilisant une exemplaire-basée de HMM. Nessons I'approche sur de diverses
installations d’appareil-photo de I'ensemble de base dmées d'IXMAS, et donnons finale-
ment une comparaison aux résultats réalisés avec lasemiation de MHV. Ce travail a été
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présenté la premiére fois danslEBEE International Conference on Computer Vision (ICCV),
2007 [ | ].

Dans lechapitre 7 nous présentons notre approche en utilisant I'exemplaise sur I'en-
castrement. La représentation d’encastrement estlédétat differents sélections pour la rep-
résentation d'image et des fonctions d’ajustement sostudes. Nous avons performé des
expériences sur I'ensemble de données disponible pdstient, et les nous I'avons comparé
aux résultat de I'état de I'art. Ce chapitre est baséestralail présenté dans la conferehe&E
Conference on Computer Vision and Pattern Recognition (&yYR008 [ >

].

Finalement, erhapitre 8 nous allons conclure notre travail, nous discuterons leklpmes

rencontrés, et nous donnerons des directions pour |lesutxduturs.






CHAPTER 1

Introduction

The goal of this thesis is to develop a set of new techniqueadiion recognition from video.
Action recognition —i.e. looking at other people, recognizing what they do, imitgtit, or
reacting to it — is an elementary part of our daily life. Adtyafor most of us humans it is
quite a common and effortless task. Can we build computeretsdtiat demonstrate similar
capabilities?

In fact, humans easily do action recognition. We enjoy lagkat other people in action;
in movies, sport, and social events, for instance. Frondhbbibd on we love watching other
people, and learning from them. The mechanisms, which esald this fascinating ability, are
however only little known and understand. Consequentlyeld@ing techniques, which give
similar abilities to computers, is a difficult and challemgitasks.

There are numerous important applications of action reiiognsee also Figuré.1): for in-
stance, the ever-growing amount of image and video infaoman the internet, TV and movie
archives, needs capabilities for automatic indexing anegemization. In robotics, successful
action recognition is key to allow humans and computers araband autonomous interaction.
In modern surveillance systems, human observers can lmametyiew all available information.
Hence we need automatic systems, which help us in seletingriportant information.

Currently, we do not have the knowledge to build such systéfinst, we need to understand
how to learn actions by seeing them performed multiple tinfresn different viewpoints, by
different people, with different styles and in differenintexts. Second, we need to understand
how to use that accumulated learned knowledge to recogndename new actions when we
see them. In this thesis, we want to build computer modetsdérmonstrate such capabilities.

17
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Figure 1.1.: Sample actions in different application domains: (Top)raggions in surveillance
footage; interactions between human and computer; (bpttents in feature film, news, and
sport recordings. Can we design a machine, which can umdersuch actions?

In the remainder of this chapter, we will continue outlinitige problems involved in ac-
tion recognition. We then give a short review of existinghteques, and finally introduce our
approaches and contributions.

1.1. The Problem

Technical speaking, the terattionrefers in this work to a 4D event, performed by an agent in
space and in time. In particular, our focus is on meaningfhrt sequences of body motions,
such as for instancekicking punching walking, siting down etc. Such events usually cannot
be repeated exactly, and each action instance is unique.ode@im is to recognize action
classes, even when performed by different agents undereliff viewpoints, and in spite of
large differences in manner and speed.

When developing a system for action recognition, we haveottsituct a complex hierar-
chy of vision andlearning modules. On the low level, we need to extract posture andomoti
features from videos.g a parameterized body model or a simplified representatsedon
silhouette images. The higher level processing consigisapfagating those features over time
and mapping them into meaningful motion classes. Each st@tvied represents its own diffi-
culties
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1.1.1. Difficulties

An realistic action recognition system has to address atodt of difficulties, originating from
very different issues.

Vision Issues

Extracting discriminative features from image sequenses fundamental problem in vision.
In action recognition the visual feature of interest is thenlan body and its configuration over
time. Very different representations can be used, rangimmg £omplex body models to simple
silhouettes images. In either case, the following issuesl he be addressed: person detection
and location; extraction of discriminative posture featurThereby properties such as handling
of occlusion and background clutter, robustness to noigereht illumination and shadows,
and robustness to different types of clothing and physigaiessof importance.

Further, in realistic settings we can not impose conssaomt viewpoint and orientation of
the subjects with respect to the cameras. Consequentlggke gg0se or motion can result in
an almost infinite number of possible observations. An gmieite representation needs thus to
account for such changes.

Action Modeling

Another major difficulty comes from the large variabilityathan action class can exhibit, in
particular if performed by different subjects of differeggnder and size, and with different
speed and style. Motions labels which are semantically ingan to us, such akick, punch
or wave can result in a wide latitude of possible interpretatidbss thus a particular challenge
to design an action model, which identifies for each acti@ndharacteristic attitudes, while
maintaining appropriate adaptability to all forms of véinas.

Directly related is the question of how can we find appropriedining data, which accounts
for all such variation. Annotated motion data is raw and cliffi to acquire, yet inevitable for
learning realistic models of actions.

Motion Segmentation and Spotting

Given appropriate action models, we need approaches tp tiygde to realistic video data. Typ-
ically, action representations are designed and learnied astificial sequences, which contain
single, isolated action instances. Further we can onlyladinite vocabulary of actions. How
can we apply such representations to realistic continutiesiras of action utterances? We
consequently need to locate action boundaries in videarssgand we need capabilities to
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spot interesting actions out of the almost infinite numbemefningless motions that we will
encounter in reality.

Motion Primitives and Action Taxonomies

Finally, an important issue in action recognition resultsf the lack of a theoretic science on
motion articulation and perception. Action recognitiorofsen compared to speech recogni-
tion, and many techniques are adopted from this field. Howeypeech recognition systems
are heavily based on linguistic concepts, such as a dissyetéolic representation of the spo-
ken language — represented through phonemes, syllabldsyamis —, and their assembly
into structure based on syntax and semantics. Similarréarg of modern speech recogni-
tion system is based on data annotated on multiple legadspn a phoneme level, on a word
level, and on a the sentence level. Similar concepts ar@ngissaction recognition (an excep-
tion are specialized tasks such as dancing annotation)segoently, established concepts and
guidelines for designing and learning action recognitigstesms are missing.

1.2. A Brief Background on Action Recognition

As mentioned earlier, action recognition can be viewed asmbination of vision and pat-
tern modeling algorithms. Hence various approaches hase psposed based on different
combination of such methods. Although, many interestingations have been opened, up to
now, there is very little clear information about best waygptoceed ) ]. Inthe
following we give a short overview of the methods used; aaitkxt discussion can be found in
Chapter2.

Posture representation

The principle vision task in action recognition is the egtian of posture and motion features
form the video sequences. Traditionally, there are tworesting views on the kind of feature
representation to use:

e Model basedapproaches attempt to extract features which explicitscdbe position
and motion of body parts. Such representations are forrinetamarker points on cer-
tain limbs, 2D stick figures, or 3D kinematic body models. Motcapture techniques,
marker-based or marker-free, are necessary to extractspisentations. Consequently,
these approaches are only applicable in constrained getérgy video productions or
sports analysis, but difficult to apply in other scenarios.



1.2 A Brief Background on Action Recognition 21

T — i i

(a) Two frequently used datasets in action recognition:p)(tdTH-dataset $chuldt et al. 2004, (bottom)
Weizmann-dataset3|ank et al, 2009. The views are approximately fronto-parallel, and acteiteer face the
camera or are oriented parallel to the viewing plane.

(b) Sample sequences from our dataset: we record actiohsmwittiple arbitrary camera configurations, and the
actors freely choose their position and orientation widpeet to these cameras.

Figure 1.2.: (a) Most existing approaches assume fixed view setup andraomghe orienta-
tion of the actors. (b) We work on scenes with arbitrary cansetup.
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e To overcome the difficulties with body model extraction, glified representations based
onlocal and global templateshave been proposed. Commonly used representations are
based on optical flow, silhouettes, and local patches si@l&IFT descriptors in object
recognition.

Action modeling

Techniques for modeling actions in terms of statistics anthohics over posture features, sim-
ilar can be divided into several contrasting views:

e Actions can be modeled using pattern recognition techsithes explicitly have a tempo-
ral componenti.e. a model which predicts an observations at each time instaased on
observations from the preceding time instaneg,a HMM. We name such techniques
state-transition models

¢ Alternatively, motion can be modeled implicitly using sdled space-time representa-
tions. Instead of looking at actions at a "per frame” basis, sugr@ches model actions
on a sequence levele. a whole sequence results in a single feature represantatioch
is learned and classified using static machine learninghtgubs,e.g nearest neighbor
or support vector machine

e Finally, it is also possible is to model actionsdpnamic free representationsi.e. either
on a single frames level, or by considering temporal unedlesets of frames.g by
histogramming feature occurrence.

View Independence

Additional difficulties are introduced when we allow to obse actions form different and
changing views, although, the majority of work in actionaguition currently addresses only
the view-dependent case, see Figlui®a) View-independent approaches, can be distinguished
based on the following strategies:

e View invariance is the idea of finding a matching function between obseraatiovhich
is the same independent of the observed viewpoint. Such ehingtfunction can be for
instance based apipolar constraint®r geometrical invariantswhich can be computed
from given point-to-point matches between pairs of images.

e Approaches based @rormalization, attempt to detect the actual orientation, and respec-
tively transform all observations into a canonical cooatinframe, where the matching
takes place. To detect such orientation, approaches canstance use detected body
parts, or other cueg,g walking direction.
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e Approaches based @xhaustive searchlearn multiple views of an action, and match
the observation against each of them. This is probably th& staightforward approach
to extend any view-dependent approach to view-indepemrddngportantly, however, to
notice, that view-independence will remain restrictedxacatly the set of learned views.

1.3. Overview of Approaches and Contributions

As mentioned earlier, currently we have very little cledormation in action recognition about
the best ways to proceed. It is therefore important to egptbifferent directions; and we do
so in this thesis. We propose three new frameworks for acgongnition. Our work makes
in particular contributions with respect to the followingsues: view-independent modeling
of actions, learning of pose and motion primitives, modglof action dynamics, temporal
segmentation of actions.

The motivation for our approaches can be summarized asvioip

e Model free: In our work we avoid the use of a parameterized body model. &stioned
previously, recovering a body model is a difficult problemdacurrently restricted to
very constrained settings. We think that action recogmittan strongly benefit from
a simplified posture representation. We used in our appesabhackground subtracted
silhouettes, although other forms of features representatcould be integrated (as an
example, we experimented as well with edge filtered imagdscaamfer matching, to
avoid dependencies on background subtraction).

¢ View independent: Our aim is to achieve action recognition from arbitrary viemnfig-
uration, and without constraints on the relative orientatbetween the actors and cam-
eras, see Figuré.2(b) Further, once learned with a specific camera setup, our Isode
should be easily transferable to new camera setups. Inmblyrteve want to achieve this
demands without the use of additional cuegy given point correspondences between
observations. Key to meet this demands in our approachhks issed of 3D information.
We derive two view-independent frameworks (Figit8 and1.4): In our first approach
we work entirely in 3D, using visual-hull reconstructiorentputed from multiple views
observations. Our second approach attempts recognitien em a single view, yet
again using previously learned 3D models.

¢ Different action models: We do not restrict ourself to a single action representation
and experiment instead with different models. Our first apph is based on a so called
space-timerepresentation. Interestingly we found this represamtain a comparison
to perform best. On the other hand, our second approach ésllmasa state-transition
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model,i.e. a HMM, which, because of its generative characteristicss lest adapted to
generate arbitrary 2D views from a 3D model. In our last appho we experimented
with a representation which does not model dynamics, angrisimgly we found that

such a representation is often sufficient to recognize retidth state-of-the-art results.

e Use of posture and motion primitives: We think actions can be represented through
vocabularies of elementary motion and posture primitivs.experiment with different
strategies to select such primitives. A method for selactibmotion primitives from
continues motion sequences is presented in the first pahniofiesis. The interest is a
purely visual-data driven discovery of motion classes,chltioes not require any form of
supervision. In the second part of this thesis we experimithtdiscriminative selection
of key-poses from sequences, this time using supervisiderins of given class labels.
Surprisingly we found that when selected in such a way, vergllsnumber of key-poses
are sufficient to represent a variety of action performed apyrdifferent people.

The approaches and their contributions are detailed asfsll

1.3.1. Motion History Volumes for Free Viewpoint Action Rec ognition

In our first approach we propose Motion History Volumes (MBlds a view-invariant repre-
sentation for human action recognition. The basic idea dotaction recognition in 3D, using
visual-hulls sequences computed from multiple calibrated background subtracted cameras,
see Figurel.3. Motion features are then computed by integrating multfdene observations
over time into a single MHM,.e. a 3D voxel-grid which simultaneously encodes 3D space and
time. Orientation invariant alignment and comparisonsparormed efficiently using Fourier
transforms in cylindrical coordinates around the vertias. In contrary to most existing works
on view-invariant action recognition (see Sectih.2), our representation does not require any
additional cues, such as given point correspondences $tarioe. The contributions are sum-
marized as following:

3D Invariant Action Representation: We present a new invariant representation for ac-
tions observed in 3D voxel space. The representation isvatetl by the assumption that sim-
ilar actions mostly differ by rigid transformations compdsof scale, translation, and rotation
around the z-axis. It is shown that the representation stgpmpoeaningful categorization of
simple action classes performed by different actors,peesve of viewpoint, gender and body
sizes.

Temporal Segmentation: Based on MHVs we derive a method for temporal segmenta-
tion of motion streams. Because our representation is amgnt of viewpoint, it results in
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Figure 1.3.: 3D action representation "Motion History Volumes”: We useltiple view ob-
servation to reconstruct 3D visual hulls. The visual hutks iategrated over time into Motion
History Volumes (MHVs). Based on MHVs we learn and recogmizgons.
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segmentation and classification methods which are sunghsefficient and robust.

Unsupervised Discovery of Motion Primitives: Based on the above contributions, we
are able to segment action streams and cluster those segmen@ hierarchy of primitive
action classes. Our method can be used as the first step in-ageenvised action recognition
system that will automatically break down training exarspié people performing sequences
of actions into primitive actions that can be discriminglinclassified and assembled into high-
level recognizers.

1.3.2. Action Recognition from Arbitrary Views using 3D Exe mplars

Also our second approach attempts action recognition ienidgnt of view. This time we

achieve this goal even when only a single view is given, butnbeless without requiring

labeled body parts or any form of point correspondencesdmvpairs of observations. When
recognizing actions from a single view we can not longer oslya 3D reconstruction during the
recognition phase. Yet, key of our approach to achieve walgpendent action recognition is
the use of an internal 3D action model, learned from multysvs, which is then used during
recognition to produce arbitrary 2D image information, 5&gure 1.4 The approach makes
the following contributions:

3D Exemplar-based HMM:  The problem is formulated as a probabilistic graphical nhode
An exemplar-based HMM is derived, which represents actiahvaew-transform as two inde-
pendent Markov processes, one for the orientation of theesutelative to the camera, and the
other for the view-independent, body-centered motioresttken by the performer during the
various stages of the action. The random processes argagai®und a set of discriminative
3D key-poses, the exemplars, which represent the differarion states, and which are used
to generate the 2D silhouette observations.

Discriminative Key-Pose Selection: For selection of the key-poseswaapper approach
is proposed. It is shown, that a very small set of such disnstively selected key-poses is
sufficient to represent a large number of different acticersgpmed by different actors.

1.3.3. Action Recognition using Exemplar-based Embedding

Our previous experiments with small sets of exemplars iedpour last approach, where we
derive a strongly simplified and purely bottom-up drivenrapéar representation. We present
a dynamic free, compact and efficient action representabased on a set of distances to a
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Figure 1.4.:"Exemplar-based HMM” for action recognitions from arbityaviews: A learned
3D model is used to generate 3D visual hull sequences. TheeGlesces are projected into

2D and matched against the observation.
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set of discriminative static key-pose exemplars. On a pudlailable and well known view-
dependent dataset, we then demonstrate that such a rdptiEserwhich in particular does not
attempt to model any temporal relations between framesra@rgnize actions with state-of-
the-art results. Also, we experiment in our last approacdh exemplars and edge-filters images
to overcome dependencies on background-subtraction. gpreach makes the following con-
tributions:

Exemplar Embedding Representation: A new representation is derived, which repre-
sent an entirely action sequence trough a fixed set of exemigtaances. The representation is
equivalent to embedding actions into a space defined byndissato key-pose exemplars. The
representation is insensitive to temporal order and vaniatin time-scale, and has the virtue of
efficiency and simplicity.

Dynamic free Action Modeling: The approach demonstrates how a set of discriminative
static key-poses is sufficient to model many different axtiperformed by different actors. In
particular no modeling of temporal dependencies betwegrpkses is necessary to achieve
state-of-the-art results.

Recognition from Cluttered Sequences: We demonstrate how the proposed exemplar
representation, in conjunction with advanced matchintpdies, can be used for recognition
from cluttered and non-background segmented sequences.

1.3.4. IXMAS Dataset

Finally, a contribution, which is also worth mentioningpisr dataset (Figurg.2(b), which we
recorded during the course of our experiments. The Inriasxmation acquisition sequences
(IXMAS) forms a multi-view action recognition dataset of d&ily-live actions, performed by
11 different actors, each 3 times with changing viewpoinis the only publicly available mul-
tiview action recognition dataset. Since we made it puplaslailable, it has been downloaded
from research groups all over the world, and was used in akexazent peer conference publi-
cations,e.g [ , ) ; , ) ) |

el ] 1 1 1 1 ]'

1.4. Thesis Outline

A detailed review of the state-of-the-art in action recdigni is presented ilChapter 2. We
thereby follow the taxonomy briefly sketched in Sectiof, where we classify approaches ac-
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cording to posture representation and action modeling. Wga focus on view-independent
representations for action recognition, and finally discaggproaches for automatic segmenta-
tion, motion primitives discovery, and recognition fronalistic streams of actions.

In Chapter 3 we present motion history volumes (MHVs) as a free-viewpaition repre-
sentation. Motion history volumes are derived as extengiamotion history imagest;

; ]. We then present algorithms for orientation invariangainent and compar-
isons of MHVs, using a representation based on Fourier radgs in cylindrical coordinates.
Experiments on the IXMAS dataset show that MHVs supportsnimgdul categorization of
simple action classes performed by different actors,peesve of viewpoint, gender and body
sizes. This chapter is based on work first presented atlBR& International Workshop on
modeling People and Human Interaction (PHI), 2005 | ], and was revised
for a journal version irComputer Vision and Image Understanding (CVIU), 2006

, 1.

In Chapter 4 we present a method for automatic temporal segmentationy ddHVs. In
experiments we show how segmentation and classificatioedbas MHVs can be used to au-
tomatically discover taxonomies of motion primitives framlabeled sequences of motions.
Further we show classification and detection results onimootis streams of actions. This
chapter is based on work publishedEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2006] | ]. Parts where also taken from the Journal paper
[ , 1.

In Chapter 5 we give a short introduction into HMMs and their extensiomxemplar-based
HMMs. Algorithms for HMM parameter learning and exemplaleséon are given. We then
specially discuss our choice for exemplar selection, whidiased on a wrapper approaéto{

] ], in comparison with other selection methods.

In Chapter 6 we detail our approach for action recognition from arbitraiews using an
exemplar-based HMM. We experiment the approach on variameca setups from the IXMAS
dataset, and finally give a comparison to results achievéld twée MHV representation. This
work was first presented iEEE International Conference on Computer Vision (ICC\0)0?2
[ .2007.

In Chapter 7 we present our approach for exemplar based embedding. Tihedeling rep-
resentation is detailed, and different choices for imageesentation and matching function
are discussed. We perform experiments on a publicly availdditaset, and compare them with
the state-of-the-art. This chapter is based on work predaniEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2008 : ].

Finally, in Chapter 8 we conclude our work, discuss issues, and give directionfufare
work.






CHAPTER 2

State of the Art

Action recognition has become an active research topicrimpeter vision over the last years,
and a considerable amount of literature exists on sevepakts of it. As stated earlier, actions
recognition approaches typically consist of a combinatibmision and machine learning tech-
niques. The vision part is to extract representative pesteatures from the image or video
signal; the machine learning part is to model action typdtiatributions over such features,
in posture-space and in time. Although boundaries betweervio parts sometimes overlap,
we nevertheless found such a classification of approachssgdnn posture representation and
action representation, most adequate to review curretat sfahe art approaches; and we will
use this taxonomy in the following. Another important poaxtd one of the main contributions
of our work, is view-independent modeling of actions. T liere we will review different view
representation used for action recognition in a separateose Also learning and modeling of
motion primitives, and their automatic identification irgeences is of interest for this thesis
and will be reviewed in a separate section. For more broddws\vof tracking, motion capture,
and recognition techniques we refer to the surveysd ; ! )

e t] ] ] Ll ] L 5

2.1. Posture Representation

Various ways to represent human posture for action redogrtitave been suggested. We sepa-
rate betweemodel based representatiare. approaches based on parametric body models that

31
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Figure 2.1.: lllustration of moving light displays, taken fromiq ) ]. Johansson

showed that humans can recognize actions merely from themot a few light displays
attached to the human body.

use techniques from motion capture (MOCAP), and approaittasio not use a body model.
For the latter we distinguish further between approachesdanglobal representationand
approaches based total representations

2.1.1. Model Based Representations

Model based approaches represent posture in form of a paramm®@del of the human body.
In his seminal psychophysical work on visual interpretatad biological motion,

[ ] showed that humans can recognize actions merely form thteomof a few moving
light displays (MLD) attached to the human body (Fig@r#). Over several decades these ex-
periments inspired approaches in action recognition, whsed similar representations based
on motion of landmark points on the human body. The experisnesmre also origin of the
vexed controversy on whether humans actually recognizerectlirectly from 2D motion pat-
terns, or whether they first compute a 3D reconstruction filoenrmotion of the patters — and
accordingly the question: how to proceed in action recogm Other works(

' ! C ] showed, that humans can even identify gender
and identity from MLDs. Later; [ ] found that upside-down recordings of MLDs are
usually not recognized by humans, what was interpretedeasrtsence of a strong prior model
in humans perception : ], which expects people walking upright and which can
not adapt to strong transformations.

Consequently, two different paradigms exist: "recogmitimy reconstruction” and "direct
recognition”. Recognition by reconstruction approachese motion capture techniques to esti-
mate a 3D model of the human body, typical represented asalatic joint model. See Figure



2.1 Posture Representation 33

2.2for some examples. In their seminal theoretical work ongsgntation of three dimensional
shapes| [ ] proposed a body model consisting of a hierarchy of cylin-
drical primitives. Such a model was later adopted by seweptiown approaches,g [ 1

] . ]. "Top down” means here, that a 3D model is used in a generfamework,
i.e. 3D body models are sampled from the search space of joiriigcoations, projected into
2D, and matched against the observation. A more general tnodigl based on super-quadrics

was used in the multiview approach ©f { ]. Even more flexible the model
usedin | ) ], which approximates body parts in 3D through a texturethspl
model. In | f ! , ] a bottom-up approach is proposed,

which first tracks body parts in 2D, using rectangular apgeeg patches, and then lifts the
tracked 2D configuration into 3D. Marker-based MOCAP teghas were also used for action
recognition, for instanceé [ ] compute a joint model from 14 marker
points attached to a ballet dancer’s body. Instead of retay&inematic joint configurations,
several approaches directly work on the trajectories ofi¥@a@mical landmark®.g [

, 1996 1997, K1999.

Direct recognition approachedirectly work on 2D models of the human body, without lifting
these into 3D. Common 2D representations are stick figurds28nanatomical landmarks,
similar to Johansson’s MLDsC [ ] works on interpretation of MLDs:!

[ ] recover a stick figure from the skeleton of a person’s si#ttai
[ ] detect stick figure motions in the space-time volume spdiyean image sequence of a
walking person. Alternatively, coarse 2D body represé@matbased on blobs and patches can
be usede.g [ [ ) ; 4 , 4 ,

].

Independent of the model used (2D or 3D) the difficulties Wiriding body parts and estimat-
ing a parametric body model are evident. Commercial MOCAd®esys use markers attached
to the actors to recover the body pose, or require heavy asaction, but there are only few
applications in action recognition that allow for such deaisits, e.g film production and an-
notation of MOCAP data for animatiori| , ]. Markerless MOCAP is typically
based on highly non-convex optimizations, which are dootoesich issues as false initializa-
tion, local extrema, and non-recovery from failure. Reasvelopments in MOCAPH

| ) ( , ; ] use strong prior
learning to reduce such issues by assuming particular tfesivities, walking or running for
instance, and thus by imposing constraints on the type dfilplesbody configuration. Hence,
these methods strongly reduce the search space of possgde ponsidered, which, however,
limits their application to action recognition. Moreovemrks that combine MOCAP with ac-
tion models | | ) \ ], indicate that successful MOCAP
may need good action models, rather than the other way around
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Figure 2.2.: Model based posture representations: (a) hierarchical 8@ehbased on cylindri-

cal primitives [ : ]; (b) ballet dancer with markers attached to boGy: |
‘ ]; (c) body model based on rectangular patchiesr{ /
]; (d) blob model | ) 1; () 2D marker trajectoriesy| J 1;

(f) stick figure | ,1994.
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2.1.2. Global Representations

The difficulties with estimating exact body models drovedegelopment for other representa-
tions. Global representations, also sometimes caltdigtic representations, do not model body
parts, and instead only encode global body structure, gnosfiorm of fixed size templates.
See Figure2.3 for some examples. Such representations are strong sicapins compared
to parametric body models. As our goal is, howevart,the exact recovery of joint configura-
tions, but to provide useful features for a higher levehatgtireasoning, action recognition can
strongly benefit from such simplified representations, Wwiiicoid the difficulties of MOCAP
approaches.

In their seminal work [ ] motivated the use of templates for action
recognition in an experiment. In the spirit & [ ] (see Sectior2.1.]) they showed
sequences of extremely low dimensional and blurred acgoordings to an audience. Unlike
with Johansson’s MLDs, the blurred sequences did not caifficent cues for reconstructing
and fitting human body parts, yet most of the people where taliecognize the actions3

[ ] concluded, that often simplified body representationshsas blurred
templates, contain sufficient cues for recognition.

Among the various global representations used by the v&action recognition approaches,
silhouettes and contours are most frequentiy. [ ] divide a silhouette image
into a set of non overlapping bins, and compute the ratioafkobhnd white pixels within each
bin. A similar representation is also used iflg : ]. { ]
integrate silhouettes over time in so callewbtion history image¢MHI) and motion energy
imagegMEI),see Figure.5. In | | ] a similar representation
is derived based on anfinite impulse response filter [ ] proposes the use
of a hierarchical MHI. [ ] use a spline contour to track the outline of
a person. [ ] uses phase correlation to match silhouette imag&si
[ ] and I ] both work on the volume spanned by silhouette images
over time. [ ] matches silhouettes using shape context descriptors.

Silhouette representation are insensitive to color, textand contrast changes, but never-
theless provide sufficient discriminative information farse classification. On the downside,
silhouette base representations fail in detecting seliustns, and depend on a robust back-
ground segmentation. Consequently, few attempts haverbade to apply above methods in
uncontrolled settings.g outdoor scenes, where exact background segmentatidfidésitli The
chamfer distance has been used to match silhouettes of lsumeluttered sceness|

| ) ¢ , | ], but few of these techniques
have been extended to action recognition in uncontrolléihge

Instead of depending on a background model, one can segroéntsructure from back-
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Figure 2.3.: Global posture representations: (a) Silhouettes of testnikes [famato et al.
1997; (b) silhouettes pixels accumulated in regular gritialhg and Sutgr2007; (c) spline
contours Rittscher and Blakel999; (d) optical flow magnitude accumulated in regular grid
[Polana and Nelsqrii994; (e) optical flow split into directional components, theluriped
[Efros et al, 2003.
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ground by identifying only parts that are moving. Severatkgause optical flow to that aim.
[ ] compute several statistics based on the direction and noagnof

the normal flow. In ) ] flow magnitude is accumulated in a grid of
non-overlapping bins( [ ] segment an optical flow field into motion blobs.

[ ] split the optical flow field into four different scalar fieldsorresponding to
the negative and positive, horizontal and vertical compboéthe flow), which are separately
matched. This representation was also useirof y ) , ].
Also gradient fields inXY'T" direction | ) ] can be used to identify
structure based on motion.

Flow based representations are typically computed overa sitme window, and contain
thus besides posture cues as well motion information. Whidtedepending on a background
subtraction, these approaches depend strongly on the floypuwtation, and consequently in-
herit all issues that come with these estimations, suchrestséty to noise, color, and texture
variations.

It is also possible to simply match images without any fopegd and background substrac-
tion, as in the seminal work of] ) ], where images of hand gestures are
directly correlated. This work assumes however a statickidi@ckground.

Templates result in strong simplifications compared to patac body models. Templates
are, however, difficult adapted to variations in view andgadsis thus important to account for
such variation, either through a large number of differentplate instances, or by using suitable
features and matching functions that are insensitive to @Rrd pose transformations. While
holistic approaches have been applied to scenarios of m#ayett kind, they are sometimes
advocated as being especially useful for distant-viewscaadse representatioresg "30 pixel
tall” [ : ]

2.1.3. Local Representations

A compromise between global static templates and the higdatgmeterizable body models, is
to decompose a global observation into smaller informatsggons and to describe the regions
by a set of local templates. Unlike with model based reptasiens, the resulting interest
regions are, howevenot linked to certain body parts. Instead basic image stagisiach as
high variation in tempo-spatial gradient, or homogeneitieda, are used to locate the regions
in images and videos.

Recently, so callegpace-time interest poin{s [ ) ,

] became popular, driven by the success of interest poirddaral descriptorsH
; ) [ } | ) , ] in object recog-

nition and image classification. Such image classificatigpr@aches are typically based on
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(b)

Figure 2.4.: Local posture representations: (a) Space-time interastio |

J ] are computed at points of high spatiotemporal variati@pétiotemporal corners”).
(b) Spatio-temporal features iD{ . ] are designed to be more responsive then the
former space-time interest points.

bottom up strategies, which first detect small interestomgjiin the image, mostly at corner
like structures, and then assign each region to a set oflpotsd "vocabulary-features”. Image
classification reduces then to computations on histograish accumulate the occurrence of
such vocabulary-features. Similar interest detector fie@en proposed by:

[ ] and later by [ ], see Figure2.4, to locate informative regions in
the space-time volumes spanned by video sequences. Typicaleach detected location a
compact vector descriptionsq [ ] , ) )

] of the surrounding space-time cuboid is formed and assdignea set of preselected
vocabulary-features. Generally there are many analogitegen these approaches and the use

r

of so called SIFT-descriptors pwe, ] in image classification.

A huge advantage of interest point based approaches ispndhlahckground subtraction is
required for the computation of the space-time featurestn®nlownside, the detected features
are mostly unordered and of variable size, and consequerdbeling geometrical and tem-
poral structure is difficult with space-time features. Mapproaches stick therefore with so
called "bags of features” representations, which, as ptsly mentioned, describes sequences
simply through histograms of feature occurrences, witmoodeling any geometrical structure
between the feature locations4] [ ! | | ,
Bags of feature modeling became prominent in image claasdit for categorization of ob-
jects classes, such as bicycles, cars, and chairs for egaimphese settings, discarding global
structural information can be even advantageous, as ittseisuproper insensitivity to intra-
class variations and view transformations. It is howevdrabear whether such insensitivity
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to structural information is advantageous for action redogn task, where we are concerned
with a single object categorie. the human body, yet with exact knowledge about its strattur
configuration. Recent approacheésd ; 4 ) ] use graphi-
cal models to add structural information to local featuggresentations in action recognition.
These attempts are however in a very early state, and clyridminot lead to significant im-
provements in recognition results.

Besides SIFT like features, other forms of local patche Hmen usedt
[ ] try to compose newly observed space-time regions usirgnpatextracted from previous
frames of a sequence. This approach needs no supervisiaaamuigtect irregularities in videos
as well as in single images. Unfortunately, it depends onxéensive combinatorial search
over all possible space-time patch combinations. Anotlessipility to identify patches is to
over-segment the space-time volume, and to explain segnteough prior manually selected
space-time patches(§ , ]. In this work pictorial structuresH f

] ; ] are used to model geometric relations between the
patches.

2.2. Modeling Actions

As mentioned earlier, from a machine learning view, actiomssist of distributions over pos-
ture configurations, this over time. In the previous sectiendiscussed different vision based
posture representations. In this section we discuss howottehstatistics over such posture
representations, and in particular how to represent the@desh component of such models.
We therefore distinguish between three kinds of approackiete-transition mode)s.e. ap-
proaches that explicitly model temporal evolution of postoonfigurations, typically through
a set of finite states and temporal transitions between stages;space-time representations
i.e. approaches that implicitly model posture and time by li@rstatic classifiers over com-
plete sequence examples; dighamics-free representatigrise. approaches that do not model
temporal relations between postures.

2.2.1. State-Transition Models

We can represent dynamics over postures explicitly usingnamical modelj.e. an approx-
imation of the true dynamic system. The choice of dynamic eh@glgenerally independent
from the posture representatiare. joint models or templates. A common way to approximate
the dynamical system over postures is to group posturesimtitar configurationsi.e. states,
and to learn temporal transition functions between thedest We name this kind of dynamics
modelingstate-transition models
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Among the versatile state-transition models used for aggzognition the most prominent
is certainly thenidden Markov modgHMM) [ I ]. The HMM came in particular
to fame because of its great success in the speech and ratgmahge processing community.
It is a basic probabilistic finite state machine with a sirgglgte variable, whose labels typically
represents different posture clusters. State transitmlwsy the Markovian assumptionge. the
state at time only depends on its directly preceding state at time 1. The first work on
action recognition using HMMs was probably] | ], where a discrete HMM is
used to represent sequences over a set of vector quantizedetie features of tennis footage.

[ ] use a continuous HMM for recognition of American sign laage.
[ ] learns a kind okwitching-state HMMbver a set of autoregressive models, each
approximating linear motions of blobs in the video framehé&tapproaches using HMMs are

! : ], for instance.

Various extensions to the more general clasdyofamic Bayesian networkBBN) [

| ] have been proposed to overcome limitations of a HMiVE [ ] learn
coupled HMMs to model interactions between several statiables. They use a two state
coupled HMM to recognize interactions between left andtrigind motions during Tai Chi ex-
ercises. [ ] use a complex DBN to model interactions between two
persons, such asugging handshaking and punchingfor instance. [ ]
model interactions between people and objects in their weithg Bayesian network$

[ ] propose to use hierarchical HMMs for activity recognitiai [ ]and
[ ] extend HMMs with separate latent states for posture and.vie

In recent work, [ ] propose to use Conditional Random Fields (CRF)
instead of HMMs. They argue that CRFs can better model dejrenes between features and
observations overs time, because they do not depend o stiroplifying assumptions such as
the HMMs. Further, CRFs are advocated for being discrimisatompared to the generative
HMMs. Modelling sub-structures within actions is, howewveot as straightforward with a
CRF, as it i.g with a HMM. Therefore the basic CRF framework, proposedsim]

. ], can only model dynamics between separate actions irssabat not within action
classes. More recent works i/ , ] , 4 : ]
overcome this problem by using additional layers of latemtables.

Other dynamic models that have been used for action re¢oguite: auto regressive models

[ ; ; ¢ ) ! ], grammars| k

) | ], state-space approacheso| ; ], time delayed
neural networks Y : ], and techniques from natural language processing
[ : , , ], among others.

[ ] criticize in their work the previously discussed dynamiodels for making
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assumption about the dynamical process, such as lineattgper of states, and Markovian
assumptionetc, and they argue that these models only approximate thetmdinear physical
process of human motion. They propose to use a chaotic systemiscover the true type of
inherent dynamics.

It is also important to mention, that state space models spedially advantageous due to
their high degree of modularity. Sequential models canesasssmaller vocabulary units to
build larger networks of complex actionixi| . ], and similarly, complex models
can be used to segment sequences into smaller Ui | : )

) ! \ ], as discussed more in detail in Sect#.

2.2.2. Space-Time Representations

Instead of representing posture and dynamics explicitly separately in a layered model,
space-time representations implicitly encode dynamicdit®ctly learning the appearance of
complete sequences. As for the state-transition modedgespme representations can gener-
ally use any posture representations, joint models or global/local templates.

Typically, space-time approaches directly represent aycs through example sequences,
either by stacking framewise features into a single feataotor, or by extracting features from
the n-dimensionakpace-time volumepanned by a sequence over time. See Figusdor
some examples. For instande; [ ] and I } build space-
time volumes by stacking multiple silhouette frames intingle volumetric representation, and
extract a set of local and global features from this voluroggpresent actions. In their seminal
work on space-time templates; [ ] build MHIs by mapping successive
frames of silhouette sequences into a single image, andogxtiu-momentsHiu, ] from
this representation. MHIs are generally similar to a deptp momputed from a space-time
volume. [ ] and [ ] extract Fourier coefficients from a
sequence as compact descriptor.

In comparison to state-transition models, space-timeesgtations canot explicitly model
variations in time, speed, and action style. Such variatame instead represented through large
sets of example sequences, and in combination with advatiasdification techniques. As
most space time representations result in fixed size vegpresentations, they are easily used
with static classification techniques. Often simple nagamegyhbor assignment or naive Bayes
classification are used in experiments, but also more aédalassification techniques have
been proposed, such as Neural NetworksGnid \ ], Support Vector Machines in
[ , ], and Adaboost ini , ) , ) ,

, : 1

To deal with variable lengths representations, simpletlebhgsed normalization or the more
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Key Frame MEI MHI

Figure 2.5.: Space-time representations: (a) motion energy images)(&itel motion history
images (MHI) [ § ]; (b) space-time shapeslf , ]
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advanced dynamic time warping (DTW5 § ) ] has been used.

[ ] correlate observations frames against a set of learned mwaplates, and
match the resulting sequences of correlation scores using.D [ ]
and [ ] use DTW to match sequences of joint model configurations.

[ ] propose a DTW method for action recognition that allowsédret

modeling of variations within model sequences. Note that\Ddan be also interpreted as a
state-transition model, where each frame of the model seguespresents a sperate state, and
the best sequences of the observation frames through tta¢es s found. Under this consid-
eration it is also important to note, that the dynamic prograng algorithm used for DTW is
general a non-probabilistic form of the the Viterbi pathasithm used for HMMs.

Itis also important to mention, that several of the previpdgscussed local and global repre-
sentationse.g spatiotemporal features and optical flow (SecBidh3and2.1.2), are computed
over small time windows (typically 2-4 frames). These rgpregations contain consequently as
well space-time information, however, only in a very smatid interval. To model complex
action these descriptors need a further modeling of dyresmng the techniques discussed in
this chapter.

2.2.3. Dynamic Free Representations

Several approaches do not aim to model dynamics, eitheribyg gigle frames to recognize
actions, or by using time independent measures, such asefieg of feature occurrence over
time. While certainly not practical with all kind of actionthese approaches often argue that
humans can recognize many actions from a single image — henognition methods should
be able to do so as well. The benefit of such representaticeslised complexity and insen-
sitive to temporal variations such as exact length and spéadtions. Nevertheless, motion
contains important cues for action recognition, as denatest in [ ]. These
approaches need thus powerful static matching technigusspensate for the lack of motion
information.

[ ] introduced the use of singlkey-framesi.e. characteristic
frames of an action, to recognize forehand and backhankestia tennis recordings. The term
key-frame comes originally from animation and filmmakindnese key frames define start and
ending point of a smooth motion. Matching ifvd ) ] is based on an
advanced point to point matching between edge filtered isyaganeasure the deformation of
a edge template with respect to the image observation.

Time independent representations are also important fimdevent recognition from single
imagery,i.e. photographs. [ ] present an approach that combines different
visual cues in a generative model to recognize sport evarggatic imageryg.g badminton



44 Chapter 2: State of the Art

snowboardingsailing, etc. Another approach for unsupervised discovery of actiogsga from
single images is proposed ini/f , ]

Besides single static images, sequences can be also entitidedt taking temporal relations
into account. Histogram techniquds. the so calletbags of featuregpproaches, have been
used to represent sequences simply base on the frequenegtofd occurrence.g [

, J , ) ) , , ]. The biologically mo-
tivated system of [ ] uses a different technique with feature vectors computed
as maximum match responses to a set of prototypes.

Similarly, in our work on exemplar-based embedding (Sectiowe derive a new represen-
tation, which does not take temporal relations into accoumtparticular we found that time
independent modeling of actions can often compete with rmicke complicated dynamical
frameworks, while providing the virtues of simplicity anfigiency.

As with space-time representations, time independenésepitations typically result in fixed
size vectors, and are therefore often used in combinatidn &dvanced classification tech-
niques, such as SVMs irsf | | | ] and Adaboost inlf

, 2007.

2.3. View Independent Representations

As mentioned earlier (Sectidh1.]), fundamental considerations on the model representation
i.e. wether to use a 2D or 3D representation, have a long higta@agtion recognition. Early psy-
chophysical experiments§ ) ] where asking whether humans use structure from
motion reconstruction to recognize actions, or whethey theognize actions directly from 2D
motion patterns. Besides action recognition, paradigmseoanstructive vision vs. purposive
vision | N ] where generally popular in the vision community.

Approaches demonstrating general qualities of eithectioe (2D or 3D model) have been
proposed. Following the initial success of those approgchew challenges, such as learning
larger number of action classes and robustness under nabisitesettings, gained importance.
Within this scope, a very important demand is independemg&tvpoint, which wasn’t address
by most of the early approaches. It is our opinion, that sumfsiclerations bring the issue on
how to represent posturee. in 2D or 3D, into a interesting new perspective. In the follg
discussion we will therefore in particular focus on the eli#int view representations used by
action recognition approachéas. 2D, multi-view, or 3D.

We take our taxonomy for view-independent action recognifrom work on shape match-
ing: [ ] names three strategies for view-independent matchingmalization,
invariance, and exhaustive searblormalizationmaps observations from different views into a
common canonical coordinate frame; matching is then pmddrunder this canonical setting.
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Invariance uses features that do not depend on view transformatios, that the resulting
match is the same for any view transformati@xhaustive searctakes all possible view trans-
formations into account, and searches for the optimal maitttin these. All these strategies
apply as well to action recognition, with the additionaffidifilty that the viewpoints themselves
may change over time. In the following we discuss approatlassd on these strategies, and
further, as mentioned previously, separate between vipvesentations in 2D, multi-view, or
3D.

2.3.1. Normalization

In normalization, each observation is mapped to a commoaonieal coordinate fame. There-
fore normalization approaches generally first estimates thet indicate the transformation from
the canonical frame to the current state of the observadioth then correct the observation with
respect to the estimated transformation. Matching theestpkace after the observations have
been normalized.

Normalization in 2D

Normalization is used by many approaches as a preprocestgipdo remove global scale and
translation variations. In particular global represantgte.g silhouette base approaches (Sec-
tion 2.1.9), often extract a rectangular region of interest (ROI) atbthe silhouette, and scale
and translate this region to a unit frame. This normalizatemoves global variations in body
size, as well as some scale and translation variationstireggfilom perspective changes.

Normalization with respect to out-of-plane transformasipe.g a camera rotation, is not
trivial given a single 2D observation. Nevertheless; [ ] propose a method, which
estimates the 3D orientation of a person from its walkingction in 2D, using knowledge
about the ground homography and camera calibration. Asguomnly horizontal rotation of
the body in 3D, the 2D silhouette of the person is perspdygts@rected onto a fronto parallel
view and matched against a set of canonical silhouettes.

Normalization in 3D

Although it strongly limits the application of action regutjon approaches, walking direction
as orientation cue was, as well, used by several 3D basedagh@s to compute a reference
frame for normalization| [ ] use multiple views to compute a 3D voxel recon-
struction of a walking person. The walking direction is thesed to back-project the person
silhouette on a view orthogonal to the walking directiong action recognition is performed
on the resulting silhouettes. Also [ ] align voxel grids of human bodies us-
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ing their waking direction. After normalization, they pemi action recognition on velocities
of body part estimates: [ ] extend MHIs [ g ] to disparity
maps. An estimated global flow direction is used in this warlalign the 2.5D MHIs. Also
several joint model based approaches use an estimatechgraiection to estimate the initial
model,e.g [ | 4 \ ].

Given a 3D joint body model, an orientation independenttjapresentation can be compute
based on the global body structures. Often the torso is usedf@rence object to normalize
all joints with respect to its orientation. It is further piide to represent each body part with
and individual coordinate frames. For exampils; [ ] compute individual
reference frames for the torso, arms, and hips.

In summary, normalization approaches are based on theatigtimof the body orientation.
Consequently, all following phases depend on the robustoéshis step. Miss alignments,
because of noise or intraclass variations, are likely tecafill following phases of the approach.

2.3.2. View Invariance

View-invariant approaches do not attempt to estimate viansformations between model and
observation. Instead view-invariant approaches searde#&bures and matching functions that
are independent.€. do not change) with respect to the class of view transfaomsiconsidered.

View Invariance in 2D

A simple form of view-invariance is based on histogrammimgstead of representing image
features in a fixed grid, only the frequency of feature oanres is stored. Such an represen-
tation has been used for instance4sy [ ] to represent distributions of
space-time gradients. This representation, however,molides invariance to transformations
in the image plane.

The availability of point correspondencesg in form of anatomical landmarks, was fre-
quently used for view-invariant matching between pairshservations, see Figuge6for some
examples. For instance, an epipolar geometry can be estinfi@m a subset of point corre-
spondences, and then used to constrain the set of all pomr@spondences, and respectively a
matching cost over changing views can be computed withautirieg a full 3D reconstruction.
l.e. given point matchege;, 2}),7 = 1,...,n > 8 in pairs of imaged, I’, the fundamental ma-
trix F', which holds the relatiom; F'z;, = 0, can be estimated. This relation holds however only
if all point pairs come from the same rigid object. Hence #wiiting residua}_, |=; Fz'}|* can
be used as matching cosi\| : , , ! )

) } 10]. Similar, matrix factorization and rank constraints, mstruc-
ture from motion estimation’f ) ], can be used to validate whether point
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correspondences in two images came from the same singleotgct | ) 4
: ; 0]

Geometric invariantd,e. measures that do not change under a geometric transformaén
also been used for invariant matching of landmark pointses€hinvariants can be computed
from 5 points that lie in a plane- [ ) ) ] detect joint
configuration during walking cycles that fulfill the conditi of 5 landmarks lying in a common
plane, and use these to compute geometric invariants.

All these approaches are based on the assumption that momespondences are available
in pars of images. With exception iR{ , ) b, | ], the
problem of how to compute such points is not addressed by thpgroaches. Another draw-
back of these approaches is, that the matching can only bputech between pairs of image
observations, and it is difficult to extend the matching tarengeneral class representations.
Further note, that although these approaches are singie2ie computing the fundamental
matrix and structure from motion factorizations are alyefit steps towards a 3D reconstruc-
tion.

View Invariance in 3D

Based on 3D body part trajectories [ ] investigates 10 different view-
invariant representations in their work. These includét shwvariant velocities(dz, dy, dz) in
cartesian coordinates, and shift and horizontal rotatiwariant velocitiegdr, df, dz) in polar
coordinate. In evaluation on 18 Tai Chi gestures, the palardinate representation has best
overall recognition rates.

There are few other view-invariant approaches in 3D, andaally few approaches that do
not depend on a joint body model or point correspondencexaeption is the work of

[ ], which proposes a view invariant pose representationcbasea voxel recon-

struction. Cylindrical 3D histograms (Figug7) similar to the 2D shape context descriptor
[ ] ], are used as invariant measure of the the voxel's distabun this
work. The same descriptor was later used-by [ ] for action recognition. This
representation, however, only appliedbinary voxel grids.

One of the contributions of our work is a view-invariant reggntation based on Fourier
coefficients in cylindrical coordinates, that applies tgy amulti-valuedvoxel representations,
e.g in our work a 3D extension of MHIs. Fourier descriptors aedl\lnown as invariant shape

representationse.g [ ) ) : ) ) ]. Similar, the
closely related spherical harmonics (broadly speakingirieo components on a sphere) have
been proposed for invariant shape retrievalkzy [ ]. To our knowledge, no

previous work exist on using invariant fourier descriptfmsaction recognition.
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(b)

Figure 2.6.: View invariant action recognition: (a) geometrical inaris can be computed from
5 point that lie in a planeHarameswaran and Chellap2#03; (b) View-invariant matching
of hand trajectoriesqao et al. 20031]. Point matches between different observations are com-

puted from discontinuities in motion trajectories.
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Figure 2.7.: View invariant visual hull distributions(} , ]: (Left) invariant to
rotation along vertical axis using a cylindrical surfacRight) 3D rotation invariance using a
sphere.

In parallel to our work, another view invariant MHI repretaion has been propose:
[ ] proposes to compute MHVs from voxel reconstructions, kimo our work.
However, they chose a different invariant representatiaseld on 3D moments.§ ]

1.

2.3.3. Exhaustive Search

Instead of deciding on a single transformation, as it isdgjfor normalization methods, or

discarding all transformation dependent information, @k ivariant methods, one can search
over all possible transformations considered. At first sigim exhaustive search may seem
heavy on computational resources. Yet, reasonable assunspsuch as restrictions to certain
classes of transformations, advanced search strategigqrapagation of findings over time,

can drastically reduce the search space. Moreover, witlstéelily increasing performance

of modern computer systems, the computational expensecbfraethods is about to become
fairly manageable.

Exhaustive Search using Multiple 2D Views

Several approaches use a fixed set of cameras installeddatiogiractor, and simultaneously
record the actions from this multiple views. During recdigmi, an observation is then matched
against each recorded view and the best matching pair isifiéen In their work on MHIs,
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[ ] record actions with 7 cameras, each with an offset ¢f B0the
horizontal plane around the actors. During recognition tameras with 90offset are used,
and matched against all pairs of recorded views with the sgheffset. An action is then
labeled with respect to the best average match of two cameSamilar [ |

] use 8 prerecorded views, and a single view during recagniti heir work uses a single
HMM to mode temporal relations between prototype silhasetind view changes over time.
Also b ] use 8 prerecorded views. In their work individual HMMs f@ch
view are learned without transitions between close vievssgquently, smooth view changes,
e.g a person slowly turning around while performing an actwan not be recognized.

All these approaches only work with a limited set of prereleor views; any camera config-
uration that was not explicitly recorded during learning cat be modeled.

Exhaustive Search using a 3D Generative Model

To achieve more flexibility with respect to changes in cansetap, an internal model based on
a 3D representation can be used. From such a 3D represantatio given camera parameters,
any possible 2D view observation can be rendered. Generapiproaches are frequently used
in MOCAP, where parameterized 3D models of the human bodypmjected into 2D. These
models have explicit variables for global 3D position anigmtation, that are estimated simul-
taneously with the remaining joint parameteesy [ \ ) \

) ] ], see also Figure.8.

Interestingly, similar methods haven not been proposeddbon recognition, and in partic-
ular not without using a representations based on a jointaing&h exception is the key-pose
approach by [ ], that has been developed in parallel to our work. In this
work a small set of synthetic 3D key-poses is rendered fronodating software. Actions are
then matched against the poses, which are projected into?Degpect to all possible transfor-
mations. Dynamics over poses and changes in view transfiamsaare modeled in a dynamic
network, and the best pose-view sequence is found via a dgranogramming search. Inter-
estingly, this approach which was developed in paralleluioveork on exemplar-based HMMs
(Section6), shares the idea of projecting a set of learned 3D exendkégqzoses into 2D to
infer actions from arbitrary view. However, the work that wél present in this thesis, uses
a probabilistic formulation instead of the determinisiitked action graph introduced imn.|

: 1], allowing therefore to naturally handle uncertaintiedérent to actions
performed by different people and with different styles.

In another context; [ ], [ ]s [ ] pro-
pose HMMs with additional capabilities to model similarityansformations in the viewing
plane. Such HMMs allow to compute transformation indepahdbservation probabilities by
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Figure 2.8.: Generative MOCAP: (a) Tracking a person walking in cyctedgnbladh et al.
200Q. (b) Factor-state hierarchical HMM body model and tragkiasults using the generative
approach infPeursum et g/2007.
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marginalizing over all possible transformations. Compgitmarginals is indeed a form of ex-
haustive search, except that no deterministic decisioma@e. Instead a probability taking
all possible search results into account is computed. Thephar-based HMMs proposed in
this thesis is an extension of such a framework for view ietelent action recognition. To our
knowledge, such a framework hasn’t been previously usedttehperspective transformations
in action recognition.

2.4. Action Recognition in the Real World

Most of the previously discussed action representatiorerevtiesigned for classification of sin-
gle, isolated action units. In this section we discuss sofitbeotechniques that are necessary
to apply such representations to continuous streams @iectas it is necessary for real world
applications: Temporal segmentatiois necessary to cut streams of motions into single action
instances that are consistent to the set of initial trairsaguences used to learn the models.
Closely related are the questions: how to choose suchlisgg@mentations; and is there some-
thing like an elementary vocabulary of primitive motionsaiction articulation and perception?
To address this questions we will discuss several worksdlihagat buildingaction taxonomies
Another problem that arises on realistic sequences isyibatery unlikely can learn models
for all possible motions that may appear. We need thus tqaksitospotactions,i.e. a tech-
nique that identifies important actions within utterancésirmmportant actions. Further, we
need models for these unimportant actions, so céilled or garbagemodels.

2.4.1. Temporal Segmentation

We categorize methods for temporal segmentation into ttlesses: boundary detection, slid-
ing window, and dynamic programming approach&aundary detectioomethods explicitly
search for features in the motion sequences that chametstiart and end points of actions.
Such boundaries are for example discontinuities or extriaraaceleration, velocities, and cur-
vature. Sliding windowbased methods correlate prior learned action models aghasbser-
vation stream, and detect actions by searching for peakiseircérrelation score Dynamic
programmingapproaches use state-transition representation of acti@t explicitly model
transitions between the different action models. Dynamagmmamming techniques, such as
the Viterbi path, are then used to label a observation bytifyarg the best sequence of that
observation through the set of action states. The appreamteedescribed in detail in the fol-
lowing.
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Boundary Detection

As mentioned earlier, motion boundaries are typically aafias discontinuities and extrema in
acceleration, velocities, or curvature of the observedionst The choice of boundaries thus
implicitly results in a basic motion taxonomy.

[ ] discussed in their seminal theoretical work the problersegimenting
the 3D movement of shapes and suggest the use of rest statdgcal minima, of the 3D
motion of human limbs as natural transitions between prmimovements. Similar;

{ ] define in their work two elementary kinds of motion boundaristarts
and stopsand dynamic boundaries Starts and stopsare boundaries that occur whenever a
motion changes from a moving state into a rest state, andveicsa. Starts and stops are thus
analog to the rest states defined iy [ ]. Furthermoredynamic boundaries
result from discontinuities, such as steps and impulsef®rae applied to the object in action,
and fall thus generally within the reference frames definedtarts and stops.

Computational approaches for motion boundary detectiethat of [ ]
They perform an SVD decomposition of a long sequence of alpfiow images and detect
discontinuities in the trajectories of selected SVD congds to segment video into motion
patterns. Similar [ ] cluster action sequences by detecting minima and maxima
of optical flow inside body silhouettes. Instead of factmgzflow into different components,
their method only uses the average global flow magnitude.e Bas2D trajectories of hand
gestures) [ ] search for local minima of velocities and local maxima oége
in direction. Similar [ ] examine trajectories of hand motions, see Figu{b)

[ ] use a hierarchical body model and detect local minima isdpmomen-
tum, and kinetic energy of the joints. They compare theinsagtation results on professional
choreographed dances.

In our work on motion history volumes (Chapté, we propose a segmentation of actions
into primitives based on 3D motion velocity minima. In camyr to previous work, this rep-
resentation does not depend on flow commutations or avitijabf joint trajectories, and is
directly computed from the global 3D MHV representation. tiie best of our knowledge, no
previous work has attempted to perform motion segmentdtam volumetricreconstructions.

An advantage of boundary detection methods, is that segt@midoes not depend on prior
learned action models. As we will see in our work on MHVs, simtependent segmentation
can be used to generates action taxonomies purely fromlaaa.

Sliding Window

Sliding window approaches segment video streams basedarrigarned action models. Based
on an empirically chosen length and stepsister, a sequemtieided into multiple overlapping
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subsequences. Each subsequence is matched against radidleantions models, and peaks
in the resulting correlation scores are assumed as posgititsn positions. The segmentation
depends thus strongly on the sequences used to train thésywtat is in contrary to boundary
detection, where the action models result from the choidmahdary segmentation criteria.

A sliding window approach can be used with any of the prewjodsscussed spatial and
temporal representations. The space-time approactsil ) ,

, | [ ) , ) ] use a sliding window. There are
as well approaches that align sequences based on DDAV ) 1
) } , ], and HMM based representatiorisd \ }
, 1.

Compared to boundary detection methods, sliding windowhous are more expensive, as
they involve per frame evaluation of all models. To achieseustness against duration of an
action, often multiple window length are used, resultingmadditional multitude of evalua-
tions. Also, as already mentioned, sliding window methad @aly segment known actions, in
contrary to the boundary detection methods that segmeapéertient of action models.

Dynamic Programming

In the previous section we discussed some state-transitamels, such as HMMs, that used a
sliding window to segment actions. In these setups isolaiedels for each action are evaluated
independently for each windowed observation, and labdlitigws a maximum a-posteriori
rule. Another possibility to segment sequence using $tatesition models is to build a sin-
gle network from combination of all individual action modeSuch networks can be build for
instance by joining all models in a common start and end nadebg adding a loop-back tran-
sition between these two nodes. Itis also further possibédiow for more complex transitions
between actiong.g actions may share states and transitions between actiapbenadjusted
individually to reflect realistic probabilities of actiorisllowing each other. Such complex
structure are similar to HMMs networks used in continuousesp recognition. Segmentation
and labeling of a complex action sequence is then computednaisimum-cost path trough
the network using dynamic programming techniqueg, the Viterbi path for HMMs | f
] The works [ : ) ! L \ J
: ] use such networks for action recognition based on HMMs.il&m3
[ ], [ ] use CRFs. The work df [ ]

uses autoregressive models to represent actions, and ansatin filter to switch between
these models.

One problem with these aparchies is, however, that a meahilggrning of the complex
networks structures requires an enormous amount of tantda, especially when transitions
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between actions are learned from real data. In speech néioogsuch data is available in form
of text-documents, word-transcriptions, and phonetidalbeled sequences. Similar data does,
however, currently not exist for action recognition, andréore transitions between actions
are often set manually, or strong assumption, such as amtf@nsition probabilities, are made.
Under those assumptions the segmentation quality of theskelsis equivalent to sliding win-
dow approaches over the individual models. Neverthelesglynamic programming technique
can be advantageous, as it efficiently avoids the exhaustiarch over all subsequences that is
inherent to the sliding window approaches.

2.4.2. Action Taxonomies

As mentioned earlier, many models in action recognitionde@réved from techniques in speech
recognition. In speech, the elementary ingredients tadbsiich modelsij.e. definitions of
speech primitives, vocabularies, and grammars are wehetkfi Similar commonly accepted
taxonomies do not exist for motions and actions. Indepengleposals for motion primitives
have been madé&: [ ] introducesmovemess the complement fghoneme speech.
Movemesare basic building blocks of actions words, that can be apprated with a linear
system. Similar, [ ] chose the namédyneme In their work they build
HMM networks based on an empirical chosen alphabets aly8®mes Another work which
addresses building motor primitives in joint space is that o [ ].

In this work, primitives of kinetic origin are naméghetemesin computer graphics;

[ ] introduce the concept oferbs and adverbto interpolate new motions from example
motions. In the work of [ ], the user can define a set of motion primitives,
which is then used to synthesize new composite motions.

Besides manually defining action taxonomies, several @gpes attempt a purely data driven
discovery of motion primitivest [ ], see Figure.9(a) start from a fully
connected HMM to represent a continuous action sequencenfkapy based minimization is
then used to discover independent structures within the HbMpruning most of the tran-
sitions. They evaluate their method on single blob trajgesoof office activity and outdoor
traffic. [ ] segment hand gestures using boundary detection. For egeh s
ment a separate HMM is learned and a distance defined betvedéenob HMM allows them
to hierarchical cluster these HMMS. [ ] compute normalized cuts
on correlation matrixes of action sequences to clusteretBeguences. [ ] pro-
pose a SVD techniques for 3rd order tensors, to factdRpeorle<actionxtime joint_coordinate
tensors intanotion signatures [ ] use a spatio-temporal extension of
the ISOMAP embedding method ¢ ) ] to discover motor-primitive from
MOCAP data.
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Figure 2.9.: Primitive discovery and garbage modeling using HMMs: (aadies from Brand
and Kettnakegr200(]. Transition probabilities and initial state probabéi of a fully connected
HMM, (Left) before and (Middle) after structure discoversing entropic estimation. (Right)
resulting graphical model (b) HMM network with additionarage-model (threshold model).
The garbage model is build as an ergodic fully connected HNED on copies of all states in

the original models fromllee and Kim 1999.
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The work on MHVs we present in this thesis provides a similasupervised discovery of
motion primitives. In contrary to previous work, our appehas purely based on visual-cues,
and does not require extraction of a body model or pointdtajees.

2.4.3. Action Spotting And Garbage Models

When working with realistic sequences we will be confromgth an almost infinite number
of possible actions. Many of these actions will be meansgi®otion utterances that are not
critical for the application context. Nevertheless, itigical that we detect them as meaning-
less. There are many issues here. One is the size of the Yagabtihuman actions. In speech
recognition also, there are problems dealing with largeabataries. But to be fair, we are not
there yet in action recognition. The first thing is to recagrthat we can only deal with a small
vocabulary of actions. Thus, we can either limit ourseleesituations with small vocabularies,
such as sign language, or take care of actions that cannetbgrized because they were not
learned. This is similar to the distinction betwegmen worldvs closed worldassumptions is
Al.

In analogy to speech recognition, we can distinguish inoactecognition betweeword-
spotting approaches.e. approaches thatetecta small set of important actions within a large
corpus of unknown actions, amntinuous recognitioni.e. approaches thatlassifyobserva-
tions, under the assumption that all observed actions féeta fixed vocabulary of known and
previously learned actions. Most current approaches inracecognition only address the lat-
ter classification scenario. Typically a small fixed set dicars models4 3-10) is learned and
each observation is assigned to one of these models. IntspEatlar approaches are mean-
while able to cover vocabularies as large as complete layggoaodels. Although attempts to
learn action vocabularies exist (see Sect#.d, it is arguably whether these will ever be
as complete as speech vocabularies. Especially if we cemgidt there is an almost infinite
number of meaningless actions. Moreover, real world apfios of action recognitiorg.g
surveillance, often depend on detection of a few importatibas,e.g aggression. Spotting ap-
proaches, that distinguish between key-actions and uniaapioactions, are thus an interesting
alternative to continuous action recognition.

Some classification approaches can be easily extended tiingpby thresholding model
distances or similarity scores. Thresholding was usedamgle in | )

] , ) , ) ]. For approaches that allow for variable length
observations, however, appropriate normalization of tlaéching scores has to be taken into
account. Typical examples are HMMs, where the observailietiiood continuously decreases
with increasing length of a sequence, and consequently égtfixeshold can not be applied. An
approach that takes such a specialized normalization auouet is | { ]
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An alternative to length based normalization is to exgiliaihodel the non action class using

a so callediller or garbagemodels | ) ) | ]. There are
few works in action recognition that attempt to learn suchaaleh An exception is the work
of [ ] on gesture recognition. Here HMMs are learned for eacloacnd an

additional garbage model is build as an ergodic fully coted¢iMM, based on copies of all
states in the original models, see Figar@(b)
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Action Recognition in 3D:
Motion History Volumes

This part introduces Motion History Volumes (MHV) as viemwairiant space-time representa-
tion for human actions. MHVs are computed in 3D, based onaVvisull reconstructions from
multiple calibrated and background-subtracted video came

In chapter3, we present algorithms for computing, aligning and commaMHVs of different
actions performed by different people in a variety of viemp® Alignment and comparisons
are performed efficiently using Fourier transforms in agtinal coordinates around the vertical
axis. Results indicate that this representation can be toskeghrn and recognize basic human
action classes, independently of gender, body size andhoietv

In chapter4, we present a new method, based on MHVs, for segmenting naciitto
primitives and classifying them into a hierarchy of actiolasses. Because our repre-
sentation is independent of viewpoint, it results in segaigin and classification meth-
ods which are surprisingly efficient and robust. Our new métltan be used as the
first step in a semi-supervised action recognition systeat thill automatically break
down training examples of people performing sequences tibrec into primitive ac-
tions that can be discriminatingly classified and assemldgd high-level recognizers.
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CHAPTER 3

Motion History Volumes

In this chapter we introduce a new motion descriptor,mfztion history volumé@iHV), which
fuses action cues, as seen from different viewpoints and sha@t time periods, into a single
three dimensional space-time representation. MHVs argeterns a 3D extension ohotion
history imagegMHI), which were originally proposed big [ ]. We use
therefore multiple cameras and shape from silhouette igoés.

Based on MHVs we investigate how to build models of humaroastthat can support cat-
egorization and recognition of simple action classes,pedédently of viewpoint, actor gender
and body sizes. The key to our approach is the assumptiowéaeed only consider variations
in viewpoints around the central vertical axis of the humadyb Accordingly, we propose a
view invariant representation based on Fourier analysi8lld¥/s in a cylindrical coordinate
system.

Figure3.1lexplains our method for comparing two action sequences.aparately compute
their visual hulls and accumulate them into motion histasjumes. We transform the MHVs
into cylindrical coordinates around their vertical axesd a&xtract view-invariant features in
Fourier space.

The chapter is organized as follows. First, we recall Dam Bobick’s definition of motion
templates and extend it to three dimensions in Se@&i@nWe present efficient descriptors for
matching and aligning MHVs in Sectich2 We present classification results in Sect®a
and conclude in SectioB.4.

61
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Figure 3.1.: The two actions are recorded by multiple cameras, spatiatbgrated into their
visual hulls (a), and temporally integrated into motiortdmg volumes (b)(c). Invariant motion
descriptors in Fourier space (d) are used for comparingabeattions.
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3.1. Definitions

In this section, we first recall 2D motion templates as inticet by [ ]
to describe temporal actions. We then propose their gepatiah to 3D in order to remove the
viewpoint dependence in an optimal fashion using calilbkratemeras.

3.1.1. Motion History Images

Motion Energy Images (MEI) and Motion History Images (MHB ; ]
were introduced to capture motion information in imageseyrbncode, respectively, where
motion occurred, and the history of motion occurrencediérimage. Pixel values are therefore
binary values (MEI) encoding motion occurrence at a pixemaltiple-values (MHI) encoding
how recently motion occurred at a pixel. More formally, ddes the binary-valued function
D(z,y,t), D = 1 indicating motion at timg¢ and location(z, y), then the MHI function is
defined by:

b (1) — { T if D(z,y,t) =1 3.1)

max(0, h(z,y,t —1) — 1) otherwise,

wherer is the maximum duration a motion is stored. Intuitively, téll correspond to the
depth map computed along the time axis of the space-timensmhpanned by functio. The
associated MEI can easily be computed by thresholding0.

The above motion templates are based on motion[i(e:, y, t) is @ motion indicating func-
tion, however Bobick and Davis also suggest to compute tatepbased on occupancy, replac-
ing D(x,y,t) by the silhouette occupancy function. They argue that gfioly the complete
body makes templates more robust to incidental motionsab@ir during an action. Our ex-
periments confirm that and show that occupancy providesstatues for recognition, even if
occupancy encodes not only motion but also shapes which duhgtifiiculties when comparing
movements, as illustrated in FiguBe2

In [ g ] invariance to in-plane rotations and scaling is achieviedHu
moments [Hu, ], which are only a crude representation. View invariancéhwespect
to out-of-plane rotation requires then many images frorfedihit viewpoints and it becomes
unclear how to decide which action is seen. We instead campLdingle rotation invariant
motion history representation in 3D, as explained in the segtions.

3.1.2. Motion History Volumes

In this section, we extend 2D motion templates to 3D. Theaghoif a 3D representation has
several advantages over a single, or multiple, 2D view sepriation:
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(@) (b) (©) (d)

Figure 3.2.: Motion versus occupancy. Using motion only in image (a), ae mughly gather
that someone is lifting one arm. Using the whole silhouatiteaad, in (b), makes it clear that
the right arm is lifted. However the same movement execuyed Wwoman, in (c), compares
favorably with the man’s action in (a), whereas the wholeib®domparisons between (b) and
(d) is less evident.

A 3D representation is a natural way to fuse multiple imagésrination. Such repre-
sentation is more informative than simple sets of 2D imagesesadditional calibration
information is taken into account.

e A 3D representation is more robust to the object’s positi@tative to the cameras as it
replaces a possibly complex matching between learned \aad'$he actual observations
by a 3D alignment (see next section).

e A 3D representation allows different camera configurations

¢ Finally, as we will se in the remainder of this chapter, a 3presentation allows for
view-invariant matching of actions, without requiring thuer input cues. This is hence
in contrary to the previously discussed 2D invariant apginea (Sectior?2.3.2, which
additionally required given point correspondences betwesgrs of observations.

Motion templates extend easily to 3D by considering the paasy function in 30D(x, y, z, t),
whereD = 1if (z,y, z) is occupied at time and D = 0 otherwise, and by considering voxels
instead of pixels:

if D t)=1
o (2,9, 2, t) ={ ’ t iz, 2,2) (3.2)

max (0, h,(z,y,z,t —1) — 1) otherwise.

In the rest of this chapter, we will assume templates to benatized and segmented with
respect to the duration of an action:

U(ma Y, Z) = VUr=tmax—tmin ('1'7 Y, z, tmax)/(tmax - tmin)» (33)
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Figure 3.3.: Motion history volume examples: (Left to righgit down walk, kick, punch Color
values encode time of last occupancy.

wheret i, andt, ., are start and end time of an action. Hence, motions loosendepeies
on absolute speed and result all in the same length. In Qhépie will present an automatic
method to detect action boundaries using a motion energgdbsegmentation.

The input occupancy functio®(z,y, z,t) is estimated using silhouettes and thus, corre-
sponds to the visual hull} | ]. Visual hulls present several advantages, they are
easy to compute and they yield robust 3D representationte Imvever that, as for 2D motion
templates, different body proportions may still result ery different templates. Figurg.3
shows examples for motion history volumes.

3.2. Motion Descriptors

Our objective is to compare body motions that are free intlona, orientations and sizes. This
is not the case of motion templates, as defined in the pregection, since they encode space
occupancy. The location and scale dependencies can be edrbg\centering, with respect to

the center of mass, and scale normalizing, with respect totavariance, motion templates, as

usual in shape matching. For the rotation, and followitug { ] who used
the Hu Momentsliu, ] as rotation invariant descriptors, we could considentsienple 3D
extensions by [ ]. However, our experiments with these descriptors, based

on first and second order moments, were unsuccessful inrdigating detailed actions. In ad-
dition, using higher order moments as o[ ) ] is not easy in practice. Moreover,
several works tend to show that moments are inappropriataridescriptors, especially in the
presence of noise, e.g5| f ]. In contrast, several workss| ] ,

I ) { ] demonstrated better results using Fourier
based features. Fourier based features are robust to maiseegularities, and present the nice
property to separate coarse global and fine local featutes/iand high frequency components.
Moreover, they can be efficiently computed using fast Foedransforms (FFT). Our approach
is therefore based on these features.
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Invariance of the Fourier transform follows from tReurier shift theorema function fy(z)
and its translated counterpdi{x) = fo(x—x¢) only differ by a phase modulation after Fourier
transformation:

Fy(k) = Fy(k)e~92mkzo, (3.4)

Hence, Fourier magnitudg$’; (k)| are shift invariant signal representations. The invaganc
property translates easily onto rotation by choosing doatd systems that map rotation onto
translation. Popular example is the Fourier-Mellin transf, e.g. { | ], that uses
log-polar coordinates for translation, scale, and rotativariant image registration. Work in
shape matching bit [ ] proposes magnitudes of Fourier spherical harmonics
as rotation invariant shape descriptors.

In a similar way, we use Fourier-magnitudes and cylindrezadrdinates, centered on bodies,
to express motion templates in a way invariant to locationkratations around the-axis. The
overall choice is motivated by the assumption that simitioas only differ by rigid transfor-
mations composed of scale, translation, and rotation arthex:-axis. Of course, this does not
account for all similar actions of any body, but it appearbeéoreasonable in most situations.
Furthermore, by restricting the Fourier-space represient#o the lower frequencies, we also
implicitly allow for additional degrees of freedom in objeppearances and action executions.
The following section details our implementation.

3.2.1. Invariant Representation

We express the motion templates in a cylindrical coordisgistem:
2 .2 -1(Y
v(v/x? 4+ y?, tan <—>,z) —v(r,0,z).
x
Thus rotations around theaxis results in cyclical translation shifts:
v(x cos by + ysin Oy, —z sin Oy + y cos Oy, z) — v(r, 0 + Oy, 2).

We center and scale-normalize the templates. In detail,i$f the volumetric cylindrical
representation of a motion template, we assume all voxelsrédpresent a time step, i.e. for
whichv(r, 0, z) > 0, to be part of a point cloud. We compute the m@zend variances, and
o in z- andr-direction. The template is then shifted, so that 0, and scale normalized so
thato, = o, = 1.

We choose to normalize inandr direction, instead of a principal component based normal-
ization, focusing on the main directions human differ on.isTinethod may fail aligning e.g.

a person spreading its hand with a person dropping its haridjiees good results for people
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Figure 3.4.: 1D-Fourier transform in cylindrical coordinates. Fourteansforms ovel are
computed for couples of valugs, z). Concatenation of the Fourier magnitudes forradind =
forms the final feature vector.

performing similar actions, which is more important.

The absolute value§’ (r, kg, z)| of the 1D Fourier-transform

V(r kg, 2) = / o(r, 0, z)e 720 qp. (3.5)

—TT
for each value of andz, are invariant to rotation alorg

See Figure.4for aniillustration of the 1D-Fourier transform. Note thatious combinations
of the Fourier transform could be used here. For the 1D Fotraesform the spatial order along
z andr remains unaffected. One could say, a maximum of informatictmese directions is
preserved. Further, to gain the properties of the Four@rsfiorm €.g robustness to noise,
separation in fine and coarse features) for all dimensiamgdaitional 2D Fourier-transform
can be applied tg (r, kg, z) for r andz:

U (wr, gy ) = / / V (r, kg, 2)]e—T2mrm+022) gy i (3.6)

An important property of the 1D-Fourier magnitudes istitgial ambiguity with respect to
the reversal of the signal. Consequently, motions thatyamergetric to thez-axis (e.g. move left
arm - move right arm) result in the same motion descriptohss €an be considered either as a
loss in information or as a useful feature halving the spasgrmmetric motions. However, our
practical experience shows that most high level descriptaf human actions do not depend on
this separation.

In cases where it is important to resolve left/right amttiggia slightly different descriptor
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lift left arm lift right arm

(@) (b) (©) (@) (b) (©

Figure 3.5.:Volume and spectra of sample motions: (a) cylindrical repngation in
0,r),(r,z),(0,z) averaged over the third dimension for visualization puegpgb) corre-
sponding 3D-Fourier Spectra; (c) 1D-Fourier spectra. Nlost the 3D descriptor treats both
motions differently (i.e. top and bottom row (b)), while th® descriptors treats them the same.

can be used. One such descriptor is the magnituidg,, ko, k)| of the 3D-Fourier transform

V(krak97kz) = (37)

/ / / v(r, 6, z)e_j2”(k”+k90+kzz)drd@dz,

applied to the motion template This descriptor is only symmetric with respect to an ini@rs
of all variables, i.e. humans standing upside-down, whimésdchot happen very often in prac-
tice. While our previous work\j/einland et al. 2009 used that descriptor3(7) with success,
the results were anyway inferior to those obtained waith)(and an invariance to left right sym-
metry proved to be beneficial in many classification tasks.isdialization of both descriptors
is shown in Figure3.5.

3.3. Classification Using Motion Descriptors

We have tested the presented descriptors and evaluated$mwninant they are with different
actions, different bodies or different orientations. Ouwitial results [Veinland et al. 2004
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using a small dataset of only two persons already indicdtedhigh potential of the descriptor.
Here we presents results on an extended dataset, the s I6dIAS dataset. The dataset is
introduced in the next section, followed by classificatiesults using dimensional reduction
combined with Mahalanobis distance and linear discrintimasalysis (LDA).

3.3.1. The IXMAS Dataset

Early in our thesis, we created the IXMAS (INRIA Xmas Motiorcduisition Sequences) data
set for training, testing and evaluation of our algorithr881ce there was no publicly available
data set of that kind at the time, we decided to make it availabother researchers as well
The data set contains 11 actions, see Figu6efor instance, each performed 3 times by
actors (5 males / 5 females). To demonstrate the view-igmes, the actors freely change their
orientation for each acquisition and no further indicasiam how to perform the actions beside
the labels were given, as illustrated in Fig3t&.

The acquisition was achieved using 5 standard Firewire csn&igure3.8 shows example
views from the camera setup used during the acquisitiormfne video we extract silhouettes
using a standard background subtraction technique mapeéinh pixel as a Gaussian in RGB
space. Then visual hulls are computed as discrete gridg asuoxel carving method, where
we carve each voxel that does not project into all of the si#ties images. This method was,
however, mostly chosen because of its simplicity, and thezeno special requirements for the
visual hull computation used.

For experiments in this this chapter, we compute MHVs inradiiical coordinates from the
visual hulls, as previously described. We use a discret@dnytal coordinate representation
with resolution64 x 64 x 64, if not otherwise mentioned. Temporal segmentation wafepaed
manually, such that each action is represented throughgéesimotion template. Note, that a
fully automatic segmentation method is presented in Chalpte

3.3.2. Classification Using Mahalanobis Distance and PCA

In this section, we describe our experiments for clasgifyhe actions in the IXMAS data set
using MHVs. This includes dimension reduction (MHV initiahas64 x 64 x 64 = 262144
dimensions) and the choice of discriminant functions.
In initial experiments on a small dataset and with differdistance measures (i.e. Euclidean
distance, simplified Mahalanobis distance, and Mahalandistance + PCA, see alsd/§
) 1), the combination of a principal component analysis (P@f)ensional re-
duction plus Mahalanobis distance based normalizatiowstddest results. Because of the

small number of training samples that we had at this time, mkg wsed one pooled covariance

The data is available on the Perception welisitep: / / per cepti on. i nri al pes. f r inthe “Data” section.


http://perception.inrialpes.fr
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Figure 3.6.: 11 actions, performed by 10 actors.
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Figure 3.7.: Sample action “kick” performed by 10 actors.

Figure 3.8.: Example views of 5 cameras used during acquisition.
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matrix computed from all samples from all classes. Intanght, we found that the method
extends well to larger datasets and even competes withr ldigariminant analysis (LDA), as
will be shown in the next section.

In PCA, data points are projected onto a subspace that i®ohosyield the reconstruction
with minimum squared error. It is well knowil\[ebh ] that this subspace is spanned by the
largest eigenvectors of the data’s covarialgend corresponds to the directions of maximum
variance within the data. Further, by normalization witbpect to the variance, an equally
weighting of all components is achieved, similar to the silzel use of Mahalanobis distances
in classification, but here computed for one pooled covaganatrix.

Every action class in the data-set is represented by the wadam of the descriptors over the
available population in the action training set. Any newacis then classified according to a
Mahalanobis distance associated to a PCA based dimensaohaition of the data vectors. One
pooled covariance matriX based on the training samples of all classes R, i =1,...,n
was computed:

n

1
Y= - Z(xi —m)(x; —m)", (3.8)
(2
wherem represents the mean value over all training samples.
The Mahalanobis distance between feature vextand a class meam,; representing one
action is:

d(m;,x) = (x — ml-)TVA_lVT(x —m;),

with A containing thek largest eigenvalueg; > Xy > --- > A\, k < n — 1, andV the
corresponding eigenvectors Bf Thus feature vectors are reduced:tprincipal components.

Following this principle, and reducing the initial des¢dp (equation 8.5) to £ = 296
components (the maximum number of possible componentsndhat we have 297 training
sequences per experiment) an average classification r&2.28% was obtained with leave-
one-out cross validation, where we successively used 9ecadtkors to learn the motions and
the 10th for testing. Note that in the original input spacawell as for a simple PCA reduction
without covariance normalization the average rate is 0893%. Detailed results are given in
Table3.1

3.3.3. Classification Using Linear Discriminant Analysis

For further data reduction, class specific knowledge besdmportant in learning low dimen-
sional representations. Instead of relying on the eigemmposition of one pooled covariance
matrix, we use here a combination of PCA and Fisher linearidisnant analysis (LDA), see
e.g. Swets and Wengs] ) ], for automatic feature selection from high di-
mensional data.
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Action PCA (%) Mahalanobis (%) LDA( %)
Check watch 46.66 86.66 83.33
Cross arms 83.33 100.00 100.00
Scratch head 46.66 93.33 93.33
Sit down 93.33 93.33 93.33
Getup 83.33 93.33 90.00
Turn around 93.33 96.66 96.66
Walk 100.00 100.00 100.00
Wave hand 53.33 80.00 90.00
Punch 53.33 96.66 93.33
Kick 83.33 96.66 93.33
Pick up 66.66 90.00 83.33
Average rate 73.03 93.33 92.42

Table 3.1.:IXMAS data classification results. Results on PCA, PCA + Mahabis distance
based normalization using one pooled covariance, and LBAaasented.

First PCA is appliedy = V' X,V = [vi,...,v,,], to derive an < n — ¢ dimensional
representation of the data pointg, « = 1,...,n. The class-numbet dependent limit is
necessary to guaranty non-singularity of matrices in @isoant analysis.

Fisher discriminant analysis defines as within-scatterimat
Sw=Y_> (yj—m)(y; —m;), (3.9)
i

and between-scatter matrix:

C
Sp=> (m; —m)(m; —m)", (3.10)
%
and aims at maximizing the between-scatter while miningizire within-scatter, i.e. we search
a projectionW that maximize(ﬁfttg‘;)). It has been proven thdt equal to the largest eigen-
vectors ofS;; 1S, maximizes this ratio. Consequently a second projecios W'Y, W =

[wy,...,wg], k < c—1is applied to derive our final feature representation Z.

During classification each class is represented by its meeatovm,. Any new actionz is
then classified by summing Euclidean distances over themisant features and with respect
to the closest action class:

d(m;,z) = ||m; — z||. (3.11)

In the experiments the magnitudes of the Fourier represent@equation 8.5) are projected
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Figure 3.9.: Average class distance: (Left) before discriminant angly®ight) after discrimi-
nant analysis.

onto k = 10 discriminant features. Successively we use 9 of the actolsarn the motions,
the 10th is used for testing. The average rate of correcsifileations is then 92.42%. Class
specific results are shown in Tal8el and Figure3.9.

We note that we obtain much better results with the Mahalandistance, using the 296
largest components of the PCA decomposition, as compareditg the PCA components
alone. LDA allows us to further reduce the number of feattoe$0, but otherwise does not
further improve the overall classification results.

3.3.4. Motion History vs. Motion Energy and Key Frames

With the same dataset as before, we compare our MHV basedmtess with a combination of
key poses and energy volumes. While Davis and Bobick sugg@sthe original paper the use
of history and binary images, our experiments with motiolures showed no improvement
in using a combination of MHVs and the binary MEVs. We repddle experiment described
in section3.3.3 for MEVs. Using the binary information the recognitiongdtecomes 80.00%
only. See Table.2 for detailed results. As can be expected: reverse actiogs, st down”
- “get up”, present lower scores with MEVs than with MHVs. TkgVs show also better
performance in discriminating actions on more detailedesca.g. “scratch head” - “wave”.
Also, to show that integration over time plays a fundamerttigl of information, we compare
our descriptor with descriptors based on a single seldatgdrame The idea of key frames
is to represent a motion by one specific frame, see e.g. @aasd Sullivan Carlsson and
Sullivan, 2001]. As invariant representation, we use the magnitudes oatimu (3.5. The
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Action MEV (%) Key frame (%) MHYV (%)
Check watch 86.66 73.33 86.66
Cross arms 80.00 93.33 100.00
Scratch head 73.33 86.66 93.33
Sit down 70.00 93.33 93.33
Getup 46.66 53.33 93.33
Turn around 90.00 60.00 96.66
Walk 100.00 80.00 100.00
Wave hand 80.00 76.66 80.00
Punch 93.33 80.00 96.66
Kick 90.00 90.00 96.66
Pick up 70.00 96.66 90.00
Average rate 80.00 80.30 93.33

Table 3.2.:IXMAS data classification results. Results using the prepgddHVs are presented.
For comparison we also include results using binary MEVskaydrame descriptors.

Resolution d = 64 (%) d = 32 (%) d = 16 (%) d =12 (%) d =10 (%)
Average rate 93.33 93.33 88.18 81.52 63.64

Table 3.3.:Recognition rate for different grid sizeé x d x d) and Mahalanobis distance based
classification.

average recognition rate becomes 80.30%.

Note that for the purpose of this comparison we simply chdbedast frame of each MHV
computation as correspondirkgy frame An improved method for key-pose selection and
matching will be presented in Chapfér

3.3.5. Using Smaller Grid Resolution

In the previous tests we used a voxel grid of gizex 64 x 64, which was an empirical choice
leading to good results in all our experiments. Althoughueavector sizes were further dimen-
sionally reduced using PCA or LDA, the grid resolution ndlveless affects the computational
performance of the initial steps of our methad, 3D reconstruction, MHV computation, and
FFT. Consequently using lower dimensional grids can leahtomproved performance of the
overall framework. In this section we experimented witHat#nt smaller voxel grid resolu-
tions. Results for the Mahalanobis based classificatioslaoen in Table3.3.
Interestingly, the recognition rates remain high, eventlfigr16 x 16 x 16 sized grid. For

size10 x 10 x 10 the rate drops to 63.64%. FiguBel0shows a confusion matrix for size
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Figure 3.10.: Confusion matrix (in %) for recognition using grid siz2 x 12 x 12.

12 x 12 x 12. We observe, that recognition rate for actions involvingéa parts of the body,
e.g walk, sit down andkick, remain acceptable, while actions that involve only smddtedy
parts,e.g the arms, have a larger decrease in recognition rate.

3.3.6. Invariance vs. Alignment

In this experiment we compare our invariant representaigainst results that can be achieved
with a view-dependent frameworke. a scenario where all actors have the same body orien-
tation. We therefore use a semi-automatic method to rotallip align all MHVs: we first
compute a rough alignment of all volumes using a correlatiased method; thereafter mis-
alignment are manually corrected if necessary. Furthernwerted volumes in case of a left
right ambiguities, such that in the final set every actionrily performed with a single body
side,i.e. left or right arm/leg. for matching, the resulting set isrthonly normalized with re-
spect to scale and position, but no rotation invariant digiseris computed. Classification is
performed as previously, using PCA + Mahalanobis distarid@s representations lead to a
recognition rate of 94.85%. FiguBe11lshows the confusion matrix in that case, as well as the
confusion matrix using our invariant descriptor (both wgtid size32 x 32 x 322). We observe
that using our invariant representation in 3D leads to ondygimal differences in recognition
rates, compared to results on view-aligned data.

The experiment shows that we are indeed preserving all gfelidiscriminative information

2Actually, for the invariant representation we only needtres32 x 16 x 32, because of the symmetry of the
Fourier magnitudes



3.4 Conclusion

77

check watc 0 0 0 checkwatcltlld o o o o o o0 0 0 0 o0
Cross arm 0 0 O Cross armso 7 00 00 0O O 0 0
scratch heals 0 3 0 scratch healdd o 000 3 0 3 0f
sit downy o 0.0 0 sitdownro o o 3 000 0 0 74
getupo 0 0 0 getupgo o o o 3 0 3 0 34
turn around 0 0 0 turnarounglo o o o o 0 0 0 O0f
walkt o 0 0 0 walkto o o o o 0 0 0 01
wave hands3 0 3 0 0 wave hango o 7 o o o 0 0 0
punch o 0 3 00 puncho 3 o 0o 0o 0 0 o0 0 0
kickt 3 0 0 kickto o o o0 o0 0o 3 0 o0 01
pick upr o 9 0 0 pickup;sa o g 7 0o 0o 0 0 0 0
X2 oY, S. &) X2 Y, S. &)
(z&;\@‘o@’b\gﬁ&oo NSGER (z,r\c,\@\(\@'b\&\\&oo NSEER
QTR GNP gr QRRTROLT GNP Egr
FI R P Q I R HF R
QS \’b’ 9 \Q $'b' Q,(’ \O (b' 9 \Q $'b'
SO > S O ¥

Figure 3.11.:Confusion matrix (in %) for (left) using invariant represation (right) using
manually aligned volumes.

with our view-independent MHV. Using invariant motion deptors is of course advantageous
in practice, because we do not need to align training exaiptdearning a class model, neither
do we depend on the correct alignment of test examples witheak prototypes for recognition.

On the other hand, we are losing the benefits of view angleatitin, which may be a useful

information to keep for recognizing sequences of primitaeions over time. We investigate
such an approach in Chapt&r

3.4. Conclusion

Using a data set of 11 actions, we have been able to extract@bmdescriptors that appear
to support meaningful categorization of simple action sgasperformed by different actors,
irrespective of viewpoint, gender and body sizes. Bestlteswe obtained by discarding the
phase in Fourier space and performing dimensionality réoluevith a combination of PCA
and LDA. Further, LDA allows a drastic dimension reductid® components). This suggests
that our motion descriptor may be a useful representatiowiéav invariant recognition of an
even larger class of primitive actions.

A limitation of the method is that the representation degend the full knowledge of all
action classes. Adding a new action class requires us tongate everything. Ideally, we
would like to derive a more compositional approach. Alscthis chapter we only addressed
recognition from single temporally-segmented instandegtions since our focus was to vali-
date the action descriptor. For practical applicationsstileneed a method for performing the
segmentation in the first place. This is the topic of our néx=ipter.
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Action Segmentation using Motion History Volumes.

In this chapter we use the previously introdugedtion history volumegchapter3) to auto-
matically segment action sequences into primitive actibas can be represented by a single
MHV. We then cluster the resulting MHVs into a hierarchy ofiac classes, which allow us
to recognize multiple occurrences of repeating actionsaweable to perform those two steps
automatically, mainly because MHVs work in a volume spacée&whkonsiderably reduces the
ambiguities traditionally associated with changes in yieimnts and occlusions even in multiple
views.

Our framework is a first step to automatically generate Iéylel descriptions of video se-
guences in terms of the actions that can be recognized aradférom the given visual input.
Actions generally fall under two distinct categories - casife actions which can be broken
down into distinct temporal parts or segments, and primitictions, which cannot be broken
down further. In order to build a general action recognize¥,need the ability to break down
a given sequence into primitive action segments, to lalmsdetsegments into primitive actions
using a vocabulary of learned action models, and to assetibliabeled segments into com-
posite actions, using concept hierarchigs] , ] or grammars | ]
for instance.

As a concrete example, we asked two members of our lab torpedcsequence of simple
actions, each repeated several times with different posdsstyles, in front of 6 calibrated
cameras. The resulting data set consists of unsegmentedrdadokled synchronized video
sequences such as the one depicted in FiguteUsing the new motion descriptor, we were
able to segment (Sectiohl) and cluster (Sectiod.2) such sequences into primitive actions,

79



80 Chapter 4: Action Segmentation using Motion History Voés.

Figure 4.1.: Example action sequence: Raise arms - rotate arms - turnrkifte arms - rotate
arms - turn left - raise arms - rotate arms, seen from two mdiffeviewpoints. Such sequences
are difficult to segment and label consistently from monaceles, but are easily segmented
and labeled using our view-independent motion descriptors

which we used as training examples for learning statistizdsifiers. Such a semi-supervised
scheme is important in practical terms because it faa@htdhe creation of large training sets
for action recognition in the large.

Our method generates action taxonomies based on pureb ises since we create higher-
level action classes by abstracting two or more recordadractvhichlook the samédrom all
viewpoints (as measured by the differences in a metric sphogotion descriptors extracted
from their MHVs). We believe this is an important step tovwsakdiilding complete, semantic
taxonomies of actions and plans.

Segmentation and labeling of action sequences frouftiple viewsis a relatively little-
studied area. Previous work assumes either that the cameramcalibrated (so that recon-
struction is not possible) or that a full human body modelloamecovered (so that reconstruc-
tion includes body part recognition and tracking). To thetls our knowledge, no previous
work has attempted to perform segmentation and clusteramg ¥olumetricreconstructions. In
this chapter, we propose such a method, which extends miamooethods most naturally by
means of our view-invariant MHV representation. Compardti previous work, our method
has the advantage that we perform all three steps of segmentustering and classifying ac-
tion sequences in 3D with a representation which is fullywievariant, and is much simpler
to recover than a full human body model.

The chapter is organized as follows. We describe our segti@mtalgorithm in Section
4.1 and our clustering algorithm in Sectign2 Finally, we show experiments with automatic
segmentation and recognition on continuous streams afrecin Sectiorl.3 before we discuss
issues and conclude in Sectidrl.
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4.1. Temporal Segmentation

As mentioned earlier, temporal segmentation consistslittisg a sequence of motions into
elementary segments. It is a necessary preliminary steighehlevel processing of motion se-
guences including classification and clustering. In supedsapproaches, segments are usually
manually labeled in an initial set of motion sequences, amthér operations are achieved by
correlating unknown motion sequences with these learngohaets on a frame by frame ba-
sis, using possibly various temporal scales (see our dismusnsliding window segmentation
Section2.4.]). In this work, we do not assume suatpriori knowledge and propose instead
a simple but efficienboundary detectiobased approach to automatically segment 3D motion
seguences.

Any temporal segmentation relies on the definition of elefagnmotion segments. For
boundary detection based methods, segments are impligfiged through characteristic mo-
tion features representing start and end points of an aclibere are two main approaches to
such segmentation: Energy minima can be used to detecsadwdémotion direction, following
an early proposal by Marr and Vain& § z ]. Or discontinuities can be used to
detect changes in the temporal pattern of motient{ J ) J

]. From experiments we found energy minima more stable,similar action sequences
are segmented more consistently.

The function over time that we segment is then a global maim@rgy function. This function
is an approximation of the global body velocity estimatethgshe motion history volumes. It
is based on the observation that rest states corresponstémis where few motions only occur,
and thus result in few voxels encoding motion in the MHV, wisemall temporal windows are
considered. Therefore, segment detection simply congifiteding minima of the sum of voxel
values in the MHV, assuming a small value for the window sizieiring the MHV computation
(equation3.2). Figure4.2 shows several examples of sequences segmented this wagnAgc
seen in the figure, detection of energy minima is fairly unemwbus in this examples.

In our implementation we use a derivative of Gaussian filter zZero crossing to detect the
minima. Parameter in equation 8.2) was set to constant 10 frames during all experiments. In
practice, the minima detection appears to be very sucddas$egmenting motions, even for
coupled motions, like moving torso and arms in parallelalaninima occur. Of course, this
measure is still sensitive to small variations of veloditgttcan result in local minima. However,
by allowing a possible over-segmentation the method wikdemost of the motion segment
boundaries.
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Figure 4.2.: Motion energy for action: Lift arms - rotate arms - lower ararl turn in new
position. Executed three times by (left) female actor,hiignale actor. Local energy minima
serve as segmentation criteria of sequences. Note thagthalé actor simultaneously lowers
the arms and turns around, which results in a single motigmeat with a very high energy.
On the other hand, the male actor first lowers the arms andttines around, which results in
two separate motion segments. Motion volumes for each saigane shown in Figurd.3.
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Lift Turn Lower/ Turn Lift Turn Lower/ Turn Lift Turn
arms arms Turn aroundarms arms Turn aroundarms arms

JXe s

Lift Turn Lower Turn Lift Turn Lower Turn Turn Lift Turn Lower
arms arms arms aroundarms arms arms aroundaroundarms arms arms

Figure 4.3.: History volumes computed at segments of varying duration their clusters,
using segmentation from Figude2 (Top) female actor repeating three times: Lift arms ahead
- rotate arms - lower arms and turn in new position. (Bottong) same done by a male actor,
from original sequence shown in Figutel. The clusters are labeled manually for presentation
purposes.
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4.2. Action Taxonomies

Given a segmented action sequence, we would like to recegnidtiple occurrences of the
same primitive actions and to label the sequence accoydingiis capability will be impor-
tant in the next section when we attempt to train classifierafl primitive actions in a semi-
supervised fashion.

We build an action taxonomy from a segmented sequence bgrbigcally clustering the
segments into classes. Initially, each segment is a siraglercence of its own action class, and
is represented as a single point in the space of view-invanmtion descriptors of Sectidh?2,
which is a high-dimensional Euclidean space. We then apptaradard hierarchical clustering
method to the segments. This creates a binary tree of adisseas, where each class is how
represented by a point cloud in the space of motion descsifisee Figurd.5).

In this section we report experiments on two different deteasf increasing complexity. In
each we segment the sequences as explained in Sdcfi@and compute a single MHV per
segment. This is illustrated in Figuréds3and4.7. The experiments were conducted on MHVs
obtained from6 silhouettes extracted using a standard background stibtramethod. The
resulting motion templates were mapped into a discretadsital coordinate representation of
size64 x 64 x 64. Clustering was achieved using an agglomerative schemergwhe distance
between objects is the Euclidean distance, and clusters iméed according to their furthest
neighbor. The first dataset shows how actions performed figreint persons, with different
bodies, are handled by our system. The second dataset iscareadistic set of natural actions
in arbitrary orders. Its interpretation is less straightfard, but it gives strong insights on the
potential of our motion descriptors to yield consistenthigvel interpretations.

4.2.1. Clustering on Primitive Actions

Here a dataset of 22 motion sequences performed by both aandl@ female actor were
considered. Segmented key actions are shown in FifgjdreThe actors perform successively
each action three times while changing their orientationbdatween. The automatic motion
segmentation returns 203 motion volumes (100 for the worh@8,for the man). We start by

computing a dendrogram of all male segments, using Euclidestiances and furthest neighbor
assignments. A good trade-off between motion variatioriwisingle clusters and multiple

clusters having same labels is then to cut the hierarchy2htdusters. All segments inside
these clusters are labeled according to the most obvioespnetation. From these labels, the
21 clusters are then labeled with respect to the most currdiaingovhich occurs in each clus-
ter. Figure4.5 shows the labeled dendrogram. Within these clusters, P4B6ations were

obviously assigned a wrong cluster, 4 actions give birthingle clusters, and one cluster is
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Figure 4.4.: Perspective views of the motion history volumes computecefh action cate-
gory. (1) lift right arm ahead. (2) lift right arm sideways3) (ift left arm sideways ahead. (4)
lift left arm sideways. (5) rotate both arms lifted. (6) lawmoth arms sideways. (7) lift both
arms sideways. (8) lift right leg bend knee. (9) lift left lbgnd knee. (10) lift right leg firm.
(11) jump.

ambiguous (lower or lift arm sideways).

We next compute a hierarchy from the male and female data.pidedure is the same as
in the previous experiment. Because of higher variatiorthéndataset the clusters result in a
coarser action grouping. A good trade-off between motiaratian within single clusters and
multiple clusters having same labels is this time to cut flkeegnchy into 9 clusters, as shown in
Figure4.6. With respect to this labeling only two actions are wrongdgigned.

4.2.2. Clustering on Composite Actions

In another clustering experiment we used a different dat#fssctions with a much more com-
plex semantics. Those sequences are pantomimes of vaadydifeé actions such as catching
a ball, picking up, stretching, laughing, etc. The segnteriaand clustering methods were ap-
plied to each of these sequences. Figdr&@and4.8show the segmented motion templates and
the hierarchy obtained for one such sequence. Again groupgloer level actions in Figure
4.8have a simple interpretation such as lift or lower arms. Ndge the groupest in position
where segments without motion, typically between actibase been consistently clustered.

4.3. Continuous Action Recognition

In this experiment we use the segmentation for recognitimcantinuous streams of motions.
In particular we test the descriptor on unseen motion caieg@as they appear in realistic sit-
uations. For this purpose we work on the raw video sequencésedXMAS dataset (see
Section3.3.]). In afirst step the dataset is segmented into small motionithres using the au-
tomatic segmentation. Then each segment is either reajaz one of the 11 learned classes
or rejected. As described in Secti8rB.2 for classification we work in normalized PCA space
spanned by the 11 sample motions and perform nearest-megmrmagnt. To decide for the
“garbage”-class we use a global threshold on the distantteetolosest class.
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Figure 4.5.: Hierarchical clustering of 103 male actions. 21 top nodbslid with respect to

the most occurring action.
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Figure 4.6.: Hierarchical clustering of 203 male and female actions. @Prtodes labeled with

respect to the most occurring action.
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(1) Liftarms  (2) Lower (3) Catch (4) Rest (5) Return (6) Do
arms nothing

(7) Litarms  (8) Lower (9) Catch (10) Rest  (11) Return (12) Catch
arms

IEIRIRYNENE

(13) Return  (14) Turn  (15) Catch  (16) Rest  (17) Return  (18) Turn

Figure 4.7.: History Volumes for pantomime sequence “catching ball”.

0.65

0.6

0551 Rest

in
; position
Lit Catch

0.5F

0.45+ arms

Lower
0.4k arms

Turn

0.35

0.25F

0.2

0.15

[ ]

1 7 3 9 15 12 4 10 16 2 8 5 11 17 18 6 13 14

Figure 4.8.: Hierarchical clustering of “catching ball” sequence. Resg segments are shown
in Figure4.7.

The automatic segmentation of the videos results in 1188 BlHdrresponding to approx-
imately 23 minutes of video. In this experiment we set patame = 2, which results in a
slightly finer segmentation compared to the previous erpamis. In manual ground truth la-
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Figure 4.9.: Continues sequence segmented into MHVs and classificasuiis. Action labels
as recognized are displayed. Note that the actwageis incorrect labeled asone andpick
upis labeled asit down Further the dataset contains two actiopsiiit andthrow), that we did
not learn, and that are correctly recognizechase

beling we discover 495 known motions and 693 “garbage”-omsti Note, that such a ground
truth labeling is not always obvious. A good example is therft-motion that was included in
the experiments, but additional turn-like motions alsoespas the actors where free to change
position during the experiments. Moreover, it might be #ratctor was accidentally checking
his watch or scratching his head.

A sample sequence and recognition results are shown ind~g8rr Testing in a leave-one-
out manner, using all possible combinations of 9 actors raining and the remaining 10th
for testing, we show a multi-class ROC curve, FigdréQ plotting the average number of
correctly classified samples, against the number of falséipes. We found a maximal overall
recognition rate (including correctly rejected motion§)8@.79%, for 14.08% false positives
and 78.79% correctly classified motions. Figdr&l shows the average distance between the
“garbage”-motions and the learned classes.

4.4. Discussion and Conclusion

In this chapter, we introduced MHV based methods for segmgaind clustering sequences of
volumetric reconstructions of a human actor performingpast without recognition or tracking
of body parts. This has allowed us to learn classifiers foralsracabulary of primitive actions,
independently of style, gender and viewpoint. We have gigtied our algorithms to discover
meaningful hierarchies of action concepts in more comptarmosite sequences. Moreover,
in experiments we demonstrate the ability of MHVs to workhnliérge amounts of data and
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Recognition vs. False Positive

Recognition
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Figure 4.10.:Recognition rate on raw video sequences: Plots recogmiitminto 11 classes
against false positive rate.

Figure 4.11.: Average distance between “garbage”-samples and traitdsges.
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under realistic situations (23 minutes of video, 1188 motiescriptors). The segmentation
proved to almost always detect the important parts of metiHVs showed good quality in
discriminating learned and unseen motions.

Although we had surprisingly good results, a "garbage” lakmotions in more realistic
settings may require more than a single threshold; multhpesholds and explicit learning on
samples of unknown motions becomes important. Anotherl@nolwe found is, that many
motions can not be modeled by a single template. SeverakdMXAS "actions” are in fact
not primitive actions, but already composite actions. Tgrisblem is made more acute as a
result of possible over-segmentation. For example thedwuand motion consists of several
small steps, which may easily be confused with a single sigle @&ction. This means that we
should not only be concerned with building taxonomies abast, but also with building action
"partonomies” (how actions are built up from primitive acts). The HMM approach in Pdit
provides an extensive discussion of that problem.

One of the major conclusions we draw from our work on MHVshsattan invariant 3D repre-
sentation can easily resolve many of the difficulties thatiaherent to view-dependent/single-
view representations. In particular, ambiguities ariginogn changes in view and self occlusion
are naturally handled by our representation. We would likerhphasize, that our represen-
tation does not need additional information in form of paintrespondences or a joint body
models.

An evident drawback of MHVs is the dependency on multiplemgieduring recognition,
which may not always be available in realistic scenarios.ltigle views during learning are
not an evident drawback. In fact, they are even a very usehtlfe, as this chapter demon-
strates. Therefore, we present in the next part of this shesiaction representation, which is
specially designed for learning from multiple-views andagnition from single and arbitrary
number of views. The representation nevertheless preséineeadvantages of MHMse. no
point correspondences or joint model estimation, andiostak view-independence.






Part |l

Action Recognition from Arbitrary
Views:
3D Exemplar-based HMM

In this second part, we explore a different approach to vieanance. Whereas in the first part,
we had extracted view-invariant features, here we mod&l-tiansform explicitly and search
exhaustively over the unknown view parameters. To this aenpvwopose a new framework,
where we model actions with an exemplar-based HMM. ComptredHYV, this approach
allows us to tackle longer action sequences and to perfocogretion without 3D reconstruc-
tion, even possibly from single views. Because MHV do notilgaproject to single views,
we instead use an instantaneous representation of key poesnext two chapters. A more
thorough comparison of the two models is deferred to Se&i6r8

In Chapter 5 we start with a general introduction into HMMs and their exte
sion to exemplar-based HMMs. In Chaptér we derive and evaluate our frame-
work for view-independent action recognition using a 3D repkar-based HMM.
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CHAPTER D

Markov Models for Action Recognition

In this section we briefly revielwidden Markov modelgHMM) and their extensions to exemplar-
based HMMs. As such, this section serves as an introduatiantine basic HMM concepts
and terminologies, which are important for the understagdif the framework presented in the
next chapter. For a detailed introduction into HMMs we reffierreader to the tutoriak] f

]. We will start by introducingMarkov chainsthe simplest form of a Markov model.

5.1. Markov Chain

A Markov chain is afinite state automatasee Figure$.1(a)and5.1(b) which consist of
a single, discrete random state variablec {1,2,..., N}, and state transition probabilities
p(qt|q:—1). These transition probabilities present the so calliealkov propertyi.e. the state of
variableg, at timet only depends on the directly temporal preceding sjate at timet — 1.
Hence giveny;_1, ¢; is conditional independent of all preceding stajes . ., ¢:—o

PG Gt—1, G2, - - - q1) = P(Ge|qr—1)- (5.1)

Further, a Markov chain is said to bime invariantor homogenous the transitions are constant
over time
p(gr = ilgi—1 = j) = p(ilj). (5.2)

Precisely: in dirst-order Markov modeleach state only depends on its direct predecessor. Hagber-Markov
models with dependencies over several time steps existlgdweare not discussed in this thesis.
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@) ©

Figure 5.1.: Markov models and different visualization techniques:Maykov chain over state
variableq with state transition probabilities(q;|q:—1), visualized adinite state machinéran-
sitions with p(q;|¢:—1) = 0 are not shown). (b) Same Markov chain visualizedgesphi-
cal model (c) Hidden Markov model. State variableis no longer directly observed and is
thereforehidden A different source of observations is added, represertenligh variabley
(observed variable are displayed as shaded nodes, hidtdg//ariables as white nodes).

A Markov chain is thus completely described through a patameet\ = {A, 7}, where
A is conditional probability table witl;; = p(¢;: = jl¢—1 = ), and is vector of initial
probabilities at time = 1, with m; = p(q1 = 7).

To give an example: in action recognition, each state label{1,2,..., N} can represent
one of N different body configurations. Let us assume that we caraeixguch labels directly
from a video sequence &3 = q1, ¢o, ..., qr. Respectively, we can compute the joint obser-
vation probabilities of this sequence with respect to amgaetion model\, i.e. the probability
that this posture sequence was generated by the action nasdel

T
PQIN) = p(a1, g2, arlA) = p(@|A) [ [ p(aelge—1, A (5.3)
t=2

Note, that to keep the notation uncluttered, we will omitdependency on in the following
whenever not critical for the context.

5.2. Hidden Markov Models

Often, e.g typically in action recognition, we will not observe mewgiiul state labels, as we

assumed in the previous example. While we neverthelessssame, that a Markov sequence
over primitive posture states generated the observedlsmmaactual observations are usually
abstract features extracted from video sequences. To nsadbl relations we can employ a
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hidden Markov modeHMM), which explicitly separates betwedatent Markov states and
observations. A HMM is illustrated in Figure 1(c) where an additional observation variable
y (in the simplest case a discrete variaple- 1, ..., M) is introduced. We say the actual state
sequence becoméadenor latent, as we can no longer observe it directly (which is indicated
by unshading the nodes in the figure). Hidden states andwaisers are linked by conditional
distributionsp(y|q), i.e. the probability of observing featugewhile being in hidden statge The
resulting HMM is then described by parameter et {A, B,n}, with A and= being state
transitions and initial probabilities, as described in phevious section, ané is probability
table of conditional observation probabilities. b;; = p(y = jlg = 7).

HMM is a good model for action recognition because a HMM catunadly represents the
uncertainties between posture configuration and visuatrghton, in terms of probabilistic
dependencies. For instance, a state can have high propédilall observations that represent
variations of a single posture, as result of different bodypprtion, action style, view, or simply
camera noise. However, it is important to emphasize, thptastice HMM states not neces-
sarily represent semantically meaningful parts of actigD&en they are simply discovered as
a result of learning a discrete model from experimental.data

5.2.1. Observation Probability

Given a state sequencg = q1, ¢o, - . . , g7 We can compute the joint probability of observing
Y = Y1,Y2,---,Yr andQ as

T
p(Y1,Y2s - YT 1, G2, - - -5 qT) = pyilar) [ [ plailae—1)p(vilar)- (5.4)
t=2

In practice, however, we often only have access to the oagenvsequence, while the re-
sponsible state sequence is not observaldejs hidden. If we hence want to compute the
probability of observingY”, given a model, and independent of the state sequence, weehav
marginalize over all possible sate sequences

p(ylay27"'ayTa)‘) = Z p(y17y27"'7yT7q17QQa"'7QT)' (55)
q1,92;--,97€Q

Such a brute force marginalization, which in fact has timmplexity O(27 - NT) [ f

], can become rapidly computationally unfeasible, evesifoall values ofV andT". Luck-
ily, there is an algorithm based on dynamic programming tmmate such marginals more
efficiently. This is theforward-backward algorithmwhich has time complexit) (N2 - T').
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5.2.2. Forward-Backward Algorithm

The forward-backward algorithm is an efficient recursivethod based on dynamic program-
ming for learning and inference with HMM. It is described grrhs of aforward variable
and abackward variable which are notated as, (i) and 5;(i). Forward variablen;(i) =
p(y1,y2 ..,y q = i) describes the probability of being in statat timet while observing
the partial sequencg, v- . . ., y¢. The computation ofi, () follows an recursive update rule:

N
(i) = p(ydlas = 0) Y v (G)plar = ilg1 = j), 2<t<T, (5.6)
=

with initial condition
a1(i) = plq1 = Dp(ylgr = i), t=1. (5.7)

Using the forward variable, the observation probabilBy4)( of a sequencé) can now be
efficiently by marginalizing; out of o at timet =T

N
P Y2, yr) = > ar(i). (5.8)
=1

Accordingly, the backward variableé (i) = p(yt, yt+1,- - -, yr|q: = i) describes the proba-
bility of observing the last’ — ¢ observationsy, y.+1, - - . , yr given that the state at tintas :.
For more details we refer t63] I ]. Combinations of forward and backward variable
are for instance used for parameter estimation of an HMM,fandomputing the best state
sequence trough an HMM using the Viterbi algorithm.

5.2.3. Classification using Maximum a Posteriori Estimate

Using Bayes theorem the posterior of a class{1,...,C} given observatio®” = y1,y2,...,yr
is
p(Yle,Ac)p(c)
dy)=—F—- 5.9
plely) = E— (5.9)
Becausep(Y') is independent of the class, it follows that
p(c|Y) o p(Yle, Ac)p(c), (5.10)

and hence we can define a maximum a posteriori (MAP) classifier

g(Y) = arg fﬂaxp(ch, Ae)p(c). (5.11)
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Base on this relation, a straightforward strategy to use HMiMaction recognition is to learn
one separate modal. per action class. For an observation sequence the posteri@r each
modelp(Y|)\.) is then computed using (), and the class is assigned with respect to the MAP
estimate$.11). In principle it is possible to manually set the prior prbliigies p(c) to represent
natural relation between action, or to estimate) from data. In the rest of this thesis, we used
a uniformly distributed prior.

5.2.4. Viterbi Path

As discussed earlier, statgsare usually assumed to be hidden. Nevertheless, given an ob-
servationY” = y1,¥s,...,yr we can ask for the single state sequetife= q7,q5,...,q7,
which best explains the observatidre. Q* = arg maxg p(Q|Y'). This is for example of use

for action classification with a large HMM network, which wesnstructed as combination

of several class specific smaller HMMs. Although on a sulsclagel the meaning of states

g remains hidden, on a global level these sates become nowiassbwith different action
classes. Consequently, computation of the optimal stajeesee of an observation through
such a HMM network will provide a simultaneous segmentatiod classification of the ob-
servation sequence. The most common technique used to t®syeh an optimal path is the
Viterbi algorithm | I ], which is efficiently based on dynamic programming.

5.2.5. Learning HMM Parameters

Estimating the parametepsis by far the most difficult problem with an HMM, because there
exists no analytical solution in closed form. Instead patms of an HMM are learned in
an iterative optimization procedure, which in context of Mislis known as th&aum-Welch
method[ y ]. In fact, the Baum-Welch method is identicalérpectation maximiza-
tion (EM), which is a well known and frequently used parametdmnegion technique for static
latent-variable models.

Given a set of training sequenc®s= {Y1, Y, ...}, EM seeks to estimate parametarsuch
that to maximizes the likelihood

PN = ] p(VIN). (5.12)
Yey

To that aim, the EM procedure iterates between the two stepghwvare known aexpectation
andmaximization

1. E-step — Using the current parameter values and trainatg, dhe expected sufficient
statistics (ESS) are estimated. For an HMM the ESS are: nuaflexpected transitions
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from state; to statej, and number of expected observatienghile being in state.

2. M-step — The parameters are reestimate using the ESS #dnieiMMs is achieved by
normalizing the ESS into conditional probabilities.

Note that efficient implementations of the EM iteration usuase the forward-backward algo-
rithm to estimate the ESS.

It can be shown that the above procedure will always converyge maximum. However,
p(Y|\) is generally highly non-convex, and therefore prone tollotaxima. The outcome of
EM therefore strongly depends on the initial parameterahtor A.

5.3. Discrete HMM and Vector Quantization

In the above description of HMMSs, observations where assutoeée be discreteg.g y €
{1,...,M}. The HMM is thus called discrete HMM In case that observations are continuous,
e.g y € R"™, a simple approach to use such observation with a discret®dWector quan-
tization (VQ). In VQ each observation is assigned to ondfopreviously selectedodeword
vectorsV = {v,c1..a} € R™, which together form the so called VQ codebook. Discreitirat
of y follows then typically a nearest neighbor rule

VQ(y) = argmind(y, v;), (5.13)
i
whered is usually the Euclidean distance.

While VQ is an efficient way to generate discrete observatigrsuch a discretization can
cause a strong degradation, which becomes especiallyrgvideen we consider a very sparse
set of codeword¥ in a high dimensional space. In this case, many observati@snot be
accurately described trough a single prototype instanceav&rcome such limitations, we can
use a continuous output HMM, as described in the next section

5.4. Continuous and Semi-Continuous HMM

Instead of quantizing continuous observations into diedabels, we can directly use continu-
ous observation probabilities with an HMM. While such prioitiies can be generally of any

form, not all results in models which can be estimated in dicieft manner. An important

class of continuous HMMs uses mixtures of Gaussian obsenvptobabilities.e.

M
plylg=1) =D _plz = jlg = )N (yluij, Tij), (5.14)
j
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O O © ©
(b)

Figure 5.2.: Continuous hidden Markov models. (a) HMM with mixture of Gaian output.
(b) In a semi-continuous HMM all statesshare the same set of mixture density functions
p(y|z) but with different mixture coefficients(x|q).

@

where discrete probability(z = jl¢g = i) = ¢;; is mixture coefficientand A" are normal
distributions parameterized by meag; and covariance:;;. Such models can be estimated
very efficiently using a slightly modified version of the BatWelch algorithm. The resulting
graphical model is shown in Figute2(a)

Another form of continuous output HMM is the so calledmi-continuousr tied mixture
HMM, Figure 5.2(b) The semi-continuous HMM is a simplification of the Gaussisirture
HMM, where all states share the same set of mixture densitgtions,i.e. p;; = pj, X5 =
¥;,Vi € N, and only the mixture coefficients;, i.e. the probability that a certain mixture
component appears within a certain state, is different @etwstates. Such a model is especially
appropriate in case of limited amount of training data, &aé only a single set of Gaussians to
estimate.

The semi-continuous HMM can as well be interpreted as amsiie of the VQ discrete
HMM, where each codeword is now represented through a mezanend a covariance. It is
hence an improvement over the discrete HMM, because it datedistort observations trough
the deterministic quantization operation. Instead easeation is probabilistically expressed
in terms of all codewords. Moreover, it has the advantagedmlthe codebook simultaneously
with the HMM.

5.5. Exemplar-based HMM

A difficulty in applying HMMs for action recognition is wheié space of observations is not
Euclidean. In those cases, the mean and variance cannofibeddelo resolve that problem,
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exemplar-based HMMs were introduced by [ ] and [ ],

and later also by [ ]. The structure of an exemplar-based HMM is generally
similar to the previously introduced semi-continuous HMamd both share in fact the same
graphical description shown in Figuee2(b) The novelty is, that mixture density functions
p(y|x) are no longer centered on arbitrary mean vajug$ut instead mixture density functions
p(y|x) are explicitly centered on prototypical data instances,ekemplars. In the following
we notate such exemplaXs= {x;c1..an} € X, whereX is the space of all data instances of a
certain class, e.g. images, shapes, visual-heits Often advanced distance measures centered
on the exemplars are usedjify|z), i.e.

plyle = i) = 7 exp (— d(y, %) /o), (5.15)

(2

with d being any distance function defined ovér For example in [ ], a
specialized image distancesg a distance with searches for the best alignment betweegeima
regions, and the chamfer-distanegy a distance specially defined between binary edge images,
was used forl.

Importantly for exemplar-based HMMs, the estimation ofgmaeters in%.15 is no longer
coupled with the HMM estimation. Exemplaxsare usually selected previously, and fixed dur-
ing the HMM estimation. A simple solution therefore is tostler or subsample the exemplars
in the training sequences. A better technique based on dardisative feature selection will
be discussed in Sectiofis5.2and7.3. Estimation of variance; and normalization constant
Z; is generally not straightforward. The work of f ] deals extensively
with this issue and provides and approximation for betfand Z;, which can be estimated
from data. Another solution to estimate these parametdyased on th&DF projection the-
orem| , ]. A more simple solution, proposed I3y [ ], isto use a
non-parametric density fob(15, such that independent afall distributions share the same
manually adjusted parametey = o,¢ = 1,..., M. Under such a setting and with certain
independence assumptiori, can be ignored.

5.5.1. Transformed Exemplar-based HMM

The idea behind the transformed HMN| , ] is to explicitly model view transfor-
mation as latent process in a HMM. Therefore a latent vagighlhich describes a finite set of
possible view transformations;,! = 1,..., L, is insert into the HMM.P, can thereby repre-
sent various classes of transformations, simple 2D siityiltnansformationsg.g translation,
scale, and in-plane rotation. In Chap&rwe will extend this idea for handling out-of-plane
rotation as well. Temporal constraints applied onto thenpgarameters, in form of Markovian
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Figure 5.3.: Transformed exemplar based HMM.

dependencies(ly|l;—1,--.,11) = p(l¢|l;—1), allow them to evolve over time as with a smoothly
moving camera. The resulting model is shown in Figbu&

In the resultingransformed exemplar-based HMdlbservation are explained as transformed
exemplarsP(x). Consequently the probability of observipggivenz and! is

Pyl =il =) = S exp (~ dly, Py(x))/o?). (5.16)

Inference and learning with the model, Fig&.&, is generally not straightforward as it con-
sists two independent random processes, which resultiowpg graph i.e. a graph with more
than one possible path between two nodes. However, for amebe small number of trans-
formationsL and statesV, a simple solution is to introduce a new variagle= (q,!) of size
L x N, which encodes both, state and transformation. Prohbabildf thisextendedstates
are then simply defined as Cartesian products of the trangitrobabilities forg andl, i.e.
p(de|di—1) = p(gt|lg—1)p(l)li—1). The resulting model consist a single Markov process, and
its graphical structure equals the semi-continuous HMMwhim Figure5.2(b) Inference and
learning of state transitions and initial probabilitiedldws therefore the standard estimation
algorithms for HMMs.

5.5.2. Exemplar Selection

As mentioned earlier, exemplars are typically selectedrsdply and prior to the learning of the
remaining HMM parameters. In a classical way, such seledtas to deal with two conflicting
objectives. First, the set of exemplars must be small todkleairning and classification in high
dimensions ¢urse of dimensionalijyand to allow for fast computations. Second, the set must
contain enough elements to account for variations withid lb@tween classes. We will use
the wrapper technique for feature selecti¢n I ], which we first used for
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exemplar selection iri/] | ], but other possibilities will be discussed in Section
5.5.3

Several criteria exist to measure and optimize the qualityfeature set (seeg [

f ). The wrapper approach can be seen as a direct and staaightfl solution
this problem. The criterion optimized is the validation loé ttonsidered classifier (in this thesis
the MAP classifier§.11), which is itself used as a black box by the wrapper whildgrering
a greedy search over the feature space. There are diffe@mtisstrategies for the wrapper and
we use dorward selectionwhich we describe in the following.

Forward Selection

The wrapper method we use is called “forward selectioihf | ], and proceeds
as follows: Forward selection is a bottom-up search proeedhat adds new exemplars to
the final exemplar set one at a time until the final set is redch@andidate exemplars are
all instances in the training set, or a sub-sampled set afethdn each step of the selection,
classifiers for each candidate exemplar set are learnedvahdhited. Consequently, in the first
iteration classifier for each single candidate exempladeamed, the exemplar with the best
evaluation performance is added to the final exemplar sdtftanlearning and evaluation step
is repeated using pairs of exemplars (containing the ajreatbcted), triples, quadruplesic
The algorithm is given below (see Algorithi.

Algorithm 1 Forward Selection
Input: training sequences = {Y1,...Y,,}, validation sequences = {Y1,...Ys}

1. let candidate exemplar s&t= {y : y € V}
2. let final exemplar seX = ()
3. while size ofX smaller tham
a) for eachy € X
i setX’ — {y}UX
ii. train classifierg with ) and keep validation performance dh

b) setX «— {y*} U X wherey* corresponds to the best validation performance ob-
tained in step 3(a). If multiplg* with same performance exist, randomly pick one.

c) set¥ — X\ {y*}
4. returnX

Note that the above procedure assumes one shared exentfitaradkeaction models.



5.5 Exemplar-based HMM 103

5.5.3. Selection Discussion

Many techniques have been used in the literature to selechgars and vocabulary sets in
related approaches. For instance, several methods sytlesantluster the space of exemplars,
eg| ‘ \ ] ]. While generally applicable in our
context, such methods require nevertheless very largeoseteemplars in order to reach the
performance of a smaller set that has been specificallyteel®dth respect to an optimization
criterion. Moreover, as we observed in Secttob.2 a clustering can miss important discrimi-
native exemplars.g clusters may discriminate body shapes instead of actions.

Another solution is to select exemplars based on advanassifitation techniques such
as support vector machinesapnik, ] or Adaboost | J ]. Unfor-
tunately, support vector machines are mainly designed ifarp classifications and, though
extensions to multiple classes exist, they hardly extrashgle feature set for all classes. On
the other hand, Adaboost] 1 ] can be extended to multiple classes and is
known for its ability to search over large numbers of featutgsing the framework introduced
in Chapter7, we experimented with Adaboost using weak classifiers basesihgle exemplars
and pairs of exemplars but performances were less consiegmwith the forward selection.

Wrapper methods, such as the forward selection, are knolwe particularly robust against
over-fitting | y ] but sometimes criticized for being slow due to the
repetitive learning and evaluation cycles. In combinatidth the framework introduced in
Chapter7, we need approximately x m learning and validation cycles to selecfeatures out
of a candidate set with siza. With a non-optimized implementation in MATLAB, selection
of approximately 50 features out of a few hundreds will tak®iad 5 minutes. This is a very
reasonable computation time considering that this steplysrequired during the learning phase
and that a compact exemplar set will benefit to all recogmipibases.






CHAPTER O

Action Recognition from Arbitrary Views using 3D Exemplars.

We now address the problem of learning view-independeatistee 3D models of human ac-
tions, for the purpose of recognizing those same actioms &®ingle or few cameras, without
prior knowledge about the relative orientations betweencimeras and the subjects. A major
enhancement with regard to our previous work on MHVs is, Wato longer require a 3D
reconstruction during the recognition phase. Instead Wleusg learned, exemplar-based 3D
models to produce 2D image information that is comparedaawtiservations. Consequently,
actions can be observed with any camera configuration, fingiesto multiple cameras, and
from any viewpoint. Our main motivation is to cope with unlmorecognition scenarios with-
out learning multiple and specific databases. This has mppijcations, including video-
surveillance, where actions are often observed from aesiagil arbitrary viewpoint.

The requirement to perform recognition from single viewa \®ry strong one, with the effect
that whatever representation is built of the 3D action, éhgrould be an efficient algorithm
for projecting it into an arbitrary view. The simplest modelthis respect uses exemplars of
"poses” described with occupancy grids. The projectionroMHV to a single view is not a
simple operation. In particular it is not an MHI. This preads the use of MHVs in this chapter,
although we refer the reader to the discussion in Se@i6r8

In this chapter we proceed as follows.@ri we contrast our approach with similar technigues
used in motion capture (MOCAP). In Secti6r? we present an overview of the proposed ap-
proach. Details on the exemplar-based HMM are given in 8e&i3. In Section6.4 the
exemplar selection and the model learning are explainedtiddes.5 details recognition. Ex-
periments using a challenging dataset of 11 actions aremed and discussed in Sectiib,

105
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before we conclude the chapter in Sect®oni

6.1. Motivation

Our approach shares some similarities with generative maded in recent work dealing with
markerless motion capture. Vision based motion captureoappes, such a<sf

. ], recover a body model from images by searching for the 30igoration that,
when projected into 2D, best explains the image observaBgrusing a 3D model to generate
2D information, such approaches can thus adjust to anpitiaws. On the downside, modeling
the full human body kinematics, possibly in combinationhaihknown view parameters, result
in a large parameter space, which makes the search for tineabjpiody configuration a difficult
highly non-convex problem. As a result, such approachepiame to local maxima and are
very difficult to calibrate.

In this chapter we propose a generative model similar to MGG#ith the difference that
we represents postures simply through a fixed set of prdyigetected discriminative 3D key-
postures, the exemplars. We will show that using a set of pla®s) instead of a parametric joint
model, is a sufficient representation for most actions. Tdllews our personal experience:
Humans can recognize action without exactly reconstrgdiody configurationg.g as also
demonstrated in the experiments By [ ] with highly blurred imagery
of human motion (see Sectighl.2, and humans can recognize most actions from temporally
sparse yet discriminative sequences of key-framgswhen reading a comic book (an excellent
comic book, which deals with exactly this issueli&] | ).

The view-independent action mode that we propose in thigteh#&s a generative model with
a very low dimensional parameter space. That is, our modeladables for global position
and orientation of the body, and a single variable to repritgsesturej.e. an index to the actual
key-pose exemplar. Using this representation, actionsnadeled as Markov sequences over
exemplar index and view parameters. The resulting modeltrarsformed exemplar-based
HMM, in the spirit of | ( ) g ]. Such a model allows
to use standard inference techniques to identify the aséguence that best explains the im-
age observations. In addition, explicitly modeling thewigansformation between exemplars
and image cues allows such transformation to change overduming recognition as with a
smoothly moving camera.
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6.2. Overview of Approach

We model an action as a Markov sequence over a set of key;pthsegxemplars. Figure
6.1 shows examples of observation sequences and the corrésgdrebst matching exemplar
sequences computed as Viterbi path (Seci@) through our model.

Exemplars are represented in 3D as visual hulls, which wepatea using a system of 5
calibrated cameras. The observation sequence comes ixtrigple from a single camera and
is represented trough silhouettes obtained from backgrsubtraction. To match observation
and exemplars, the visual hulls are projected into 2D andtamizetween the resulting silhou-
ettes is computed. The recognition phase thus generate@8D and never has to infer 3D
from a single view observation.

Modeling actions and views The matching between model and observation is represented
in a probabilistic framework (Sectiod.3). Consequently, and crucially, that neither the best
matching exemplar sequence, nor the exact projection gaessnneed to be known. Instead a
probability of all potential exemplar sequence and pragecis computed. Using the classical
HMM algorithms (Sectiorb), such a probability can be efficiently computed under thievie

ing conditions: First, we use a small set of exemplars thsl#ed by all models. As we show
in Section5.5.2 a small set of exemplars is sufficient to describe a largetyanof actions, if the
exemplars are discriminative with respect to these acti®esond, we make a few reasonable
assumptions on the parameters of the projective transtmmae. the camera calibration and
position of a person can be robustly observed during redognand only the orientation of a
person around the vertical axis is unknown.

Exemplar selection and model learning Learning an action model consists of two steps:
A set of exemplars is selected, which is shared by all actioogels (Sectio®.5.2; probabili-
ties over these exemplars are learned individually for eation (Sectior6.4.2).

When selecting the exemplars, we are interested in findiegsthbset of poses from the
training sequences, that bests discriminates actiondigpuarpose, we present in Sectia®.2
an approach based on a method for feature subset selectiwapper| | 1.

Given a set of exemplars, the action specific probabilitteseatimated using standard proba-
bility estimation techniques for HMMs, as described in 8816.4.2 Interestingly, the learning
of dynamics over a set of selected 3D exemplars can be pextbeither on 3D sequences of
aligned visually hulls, thus under ideal conditions, or @iynfrom single view observations.
Hence 3D information is not mandatory for that step.
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Figure 6.1.: 2D observation sequencegs (Top: walk in cycleandpunch Bottom: pick up cross armsandscratch heajl observed from
different viewpoints and with unknown orientation of thegmns, are explained trough 3D action models. The best mgtexemplar
sequencer; and the best matching 2D projectid®;(x;), as generated by the models, are displayed. The models atsamall set of
exemplars.



6.3 Probabilistic Model of Actions and Views 109

Motion States

Exemplars

Body Orientations
View transformation

Observations

Figure 6.2.: Probabilistic dependencies of actions: an action is madatea hidden state se-
guenceq), e.g a motion sequence in a posture space. At each timetsteD exemplar,,

i.e. a visual hull, is drawn from the motion sequerigeObservationgy, i.e. silhouettes, result
then from a geometric transformation of exemplars that isdd by2 sets of parameterlsand

[. | are observed parametersg camera parameters determined in a preliminary step/ and
are latent parameters,g body orientation determined during recognition. Shadmiks in the
graph correspond to observed variables.

Classification  Classification is performed using standard HMM algorithassdescribed in
Section6.5.

6.3. Probabilistic Model of Actions and Views

Our representation for human action is a product of two iedépnt random processes, one
for the orientation of the subject relative to the camerd, the other for the view-independent,
body-centered poses taken by the performer during theusstages of the action. The two
processes are modeled in an exemplar-based HMM, shown imef8c, in the spirit of |

; ]and [ ‘ ].

Hidden Motion States  Dynamics in exemplar space are represented by a disbretate
latent variabley that follows a first order Markov chain over time. Thugy:|q—1,...,q1) =
p(qt|qi—1), with ¢ € [1...T], and with the priomp(q;) at timet = 1. Though generally hid-
den, ¢ can intuitively be interpreted as a quantization of thetjoiotion space into action-
characteristic configurations.

Exemplars At each timet, a three dimensional body templatgis drawn fromp(z¢|q;). A
crucial remark here is that these templates do not resuit fody models and joint configura-
tions, but are instead represented by a sét/axemplarsX = {x;c[1..as1}, learned from three
dimensional training sequences.



110 Chapter 6: Action Recognition from Arbitrary Views ugiBD Exemplars.

Note here thap(x;|q;) models the non-deterministic dependencies between metaias
and body configuration. Thus motion stateare not deterministically linked to exemplars as
egin| ¢ , z ], allowing therefore a single motion
stateq to be represented with different exemplars, to account ifiterdnt body proportions,
style, or clothes.

View Transformation and Observation To ensure independence with respect to the view
projection onto the image plané;(x) = p[Rg,u]X, we condition observationg on parame-
ters that represent this transformation. We separate vavgfiormation paramete{a&} com-
puted separately, using robust methdds the camera matri® and positiorw), and body pose
parameters{l}} that are latenti(e. the orientation around the vertical aXis

The resulting density;(yt\xt,it, l}) is represented in form of a kernel function centered on

the transformed exemplafg;(x;):

A |
pyelze =i 1o, 1) o< — exp (= d(y, Pi(x;))? /o), (6.1)

whered is a distance function between between the resulting sgttes,e.g the Euclidean
distance (i.e. the number of pixels which are different)aanore specialized distance such
as the chamfer distanceés§ f ]. (Note that both were giving similar
results in our experiments in this chapter, where we werkisixely working with background
subtracted sequences.)

The temporal evolution of the latent transformation vddalis modeled as a Markov process
with transitions probabilities(i;|l,—1), and a priorp(l;). This is equivalent to a temporal
filtering of the transformation parameters where, inténgst, various assumptions could be
made on the dynamic of these parameters: a static model ataregressive model, or even a
model taking into account dependencies between an actibriew changes.

In our implementation all variable§/,} are discretized. For instance, the orientatibn
is discretized intoL equally spaced angles withi, 27| and u is discretized into a set of
discrete positions. The temporal evolution tbfs modeled using a von Mises distribution:
p(0:0:—1) x exp(kcos(f; — 0;:—1)), that can be seen as the circular equivalent of a normal
distribution, and a uniform prigs(6; ).

6.4. Learning

We learn separate action models for each action class € {1,...,C}. A sequence of
observationst’” = {yi,...,yr} is then classified with respect to the maximum a posteriori
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(MAP) estimate:
g(Y) = arg inaxp(YIAc)p(Ac), (6.2)

see also Sectidh.2.3 The set\. is composed of the probability transition matrigés; |q;—1, ¢),
p(q1]c) andp(x¢|qt, ¢), which are specific to the actian as they represent the action’s dynam-
ics. In contrast, the observation probabilitﬂs;/tm,it,l}) are tied between classes, meaning
that all actions{c = 1..C'} share a common exemplar se¢, X. = X, and a unique variance
o2 = o2. In the context of HMMs, such an architecture is known d®d-mixtureor semi-
continuousHMM[ ( ], see also SectioB.4. This architecture is
particularly well adapted to action recognition since elifint actions naturally share similar
poses. For example, many actions share a neutral restgmoaitd some actions only differ by
the sequential order of poses that composed them. In aglddi@ring parameters dramatically
reduces complexity during recognition, when every exemplast be projected with respect to
numerous latent orientations.

Learning consists then in two main operations: selectiegettemplar set that is shared by
all models; learning the action specific probabilities. Ae will see in the following, the two
operations are tightly coupled. Selection uses learningvéduate the discriminant quality of
exemplars, and learning probabilities relies on a selest¢odf exemplars. Both operations are
detailed below.

6.4.1. Exemplar Selection

Identifying discriminative exemplars is an essential stéphe learning process. A general
discussion on exemplar selection methods was given in@e6tb.3 In action recognition,
previous works use motion energy minima and maxima i : 4 |

], or k-means clustering (adapted to return exemplars) ‘ ] to iden-
tify key-pose exemplars. However, there is no apparentioakship between such criteria and
the action discriminant quality of the selected exempllargarticular for the adapted k-means
clustering [ ¢ ] we observed experimentally, that clusters tend to consist
of different poses performed by similar actors rather thanlar poses performed by different
actors. Consequently, selecting exemplars as poses wiilminin within-cluster distance often
leads to neutral and therefore non-discriminative poses.

To better link the discriminant quality of exemplars and sietection, we propose in this
thesis to use a novel approach for exemplar selection, vibitie wrapper approach introduced
in Section5.5.2

The selection of exemplar is then performed entirely on 3fusaces of rotational aligned
exemplars. Training and evaluation of the remaining proitias can be performed in 3D
or 2D, as detailed in Sectiof.4.2 The approach is illustrated in Figurés3 and 6.4 where
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Figure 6.3.: Selected exemplars: first 48 discriminative exemplars @smed by the forward
selection. The dataset is composed bactions performed by0 actors. Recognition rates are
shown in Figures.4.

exemplars and the associated validation rates are shovgurefd.3 shows that the selected
poses naturally represent key-postuias,characteristic frames of an action.

6.4.2. Learning Dynamics

Given a set of exemplars, the action paramelers; . o : probabilitiesp(q:|g:—1, ¢), p(qi|c)
andp(z¢|g, c), can be learned. Various strategies can be considereddoptimpose. In the
following, we sketch two of them: learning from 3D obseruvas (sequences of visual hulls),
and learning from 2D observations (image sequences). Nat@iboth cases, motion is learned
in 3D over the set of 3D exemplars, obtained as describedctiose.5.2

Learning from 3D Observations

In this training scenario, several calibrated viewpoimesavailable, leading therefore to 3D vi-
sual hull sequences, and all actions are performed withetime ®rientation. In that case, motion
dynamics are learned independently from any viewing t@nshtion, thus;o(yt\xt,it,l}) =
p(y¢|x¢) with y being 3D. Transformation parameters appear later duriagetbognition phase
where both dynamics and viewing process are joined intogiesimodel.

Each model\. is learned through a forward-backward algorithm (Secligh? that is sim-
ilar to the standard algorithm for Gaussian mixture HMNsapine; ], except that the
kernel parameters, that correspond to mean and varianbe &dussians.é. X ando), are not
updated. Note that a similar forward-backward algorithns wleady proposed in the context
of exemplar based HMM<H] | ]
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Figure 6.4.: Validation rate vs. number of selected exemplars.

Learning from 2D Observations

In this scenario, dynamics in the exemplar 3D space areddarsing 2D cues only. In that case,
the situation is similar when either learning or recogrgzii\ nice feature here is that only a
valid set of 3D exemplars is required, but no additional 3Ebrestruction. This is particularly
useful when large amounts of 2D observations are availaliied 3D inference capabilities
(e.g 3D exemplars can be synthesized using a modeling softwaeedynamics over these
exemplars are learned form real observations).

View observations are not aligned and so the orientatiorabt! is latent. Nevertheless,
the number of latent states remains in practice smadl, [, x N, with L being the number of
discrete orientationsand N the number of stateg. The model can be learned by introducing
a new variablej = (¢,1) of sizeL x N that encodes both state and orientation, as explained in
Section5.5.1 Loops in the model are thus eliminated, and learning canebmned via the

forward-backward algorithm introduced in Secti®R.2

6.5. Action Recognition from 2D Cues

A sequence of observatiofsis classified using the MAP estima& 2), as explained in Section
5.2.3 Such a probability can now be computed using the classicalard variable (Section
5.2.2 a(d| ) = p(y1,- -, yt, 4e|Ae), whereg = (g, f) is a variable encoding state and orien-
tation as explained in Sectidh4.2

Arbitrary viewpoints do not share similar parameters; intipalar scales and metrics can
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Figure 6.5.: Camera setup and extracted silhouettes: (Top) the actiatctwclock” from the

L LT}

5 different camera views. (Middle and bottom) sample astideross arms”, “scratch head”,
“sit down”, “get up”, “turn”, “walk”, “wave”, “punch”, “kick”, and “pick up”. Volumetric
exemplars are mapped onto the estimated interest regidicaiad by blue box.

be different. However, the kernel parametéris uniquely defined, with the consequence that
distances computed in equatio.) can be inconsistent when changing the viewpoint. To
adjusto® with respect to changes in these parameters, we introdfice s;o”. Ideally, o2
should be estimated using test data. In practice, the follpwimple approximation ozfrl?
appears to give satisfactory results with the distancetimme we are considering:

1o 5 150011
AT P T °

The idea is here generally that of a Monte-Carlo method, /e sample points in the new
space and use the estimated average change in scale to thplaggnel parameter. For effi-
ciency, the method simply takes the set of projected exespmsamples in the new space.

Another remark is that observations from multiple caliedatameras can easily be incorpo-
rated. Assuming multiple view observatiofig/, ...,y } at timet, we can write their joint
conditional probability as:

K
Pt -yt e b 1) o [ [ ol e B, 1) (6.4)

yr

6.6. Experiments

Experiments were conducted on the IXMAS dataset, see ®€8i®1 and Figure6.5. Our
experimental scheme is as follow&:of the actors are used for exemplar selection and model
learning, the remaining actor is then used for testing. Vigeaethis procedure by permuting
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cameras 24 35 135 1235 1234
% 816 616 70.2 75.9 81.6

Table 6.1.:Recognition rates with camera combinations. For compasisa full 3D recogni-
tion considering 3D manually aligned models as observatimstead of 2D silhouettes, yields
91.11%.

the test-actor and compute the average recognition ratempbar selection is performed on
sub-sampled sequencdse(2.5 frames/s) to save computational costs. Example seuit
exemplars are shown in Figuf3. The number)M of exemplars was empirically set &2

. Parameter learning and testing is performed using all ésain the database. Action are
modeled with2 states, which appears to be adequate since most segmetibed aover short
time periods. Voxel grids are of sizé4 x 64 x 64 and image ROIs64 x 64. The rotation
around the vertical axis is discretized irfi¢ equally spaced values. Consequently, each frame
is matched t&2 x 64 exemplar projections. The ground plane is clustered4rgositions.

6.6.1. Learning in 3D

In these experiments, learning is performed in 3D (as empthin6.4.2. Recognition is then
performed on 2D views with arbitrary actor orientationsc&gmnition rates per camera are given
in Figure6.6, the corresponding views are shown in Figérg

Unsurprisingly, the best recognition rates are obtaineith fvonto-parallel views (cameras
2 and4). The top camera (camera 5) scores worst. For this camerabserve that: the
silhouette information is not discriminative; the pergpecdistortion results in strong bias in
distances; estimating the position of the actor is difficAll these having a strong impact on
the recognition performance.

In the next experiment, several views were used in conjandt test camera combinations.
First, 2 view combinations were experimented. Camend4 give the best recognition rate
at 81.59%. Those2 cameras are both approximately fronto-parallel and pelipatar one
another. Figuré.7 shows the resulting confusion matrix for this specific sefgding further
cameras did not improve results. We also try other camerabic@tions (Table6.1). For
instance, combining the two cameras with the worst rectmmiesults (camera andb) raises
the recognition rate t61.59%.

6.6.2. Learning from single views

In this experiment, learning is performed using single cawn¢as explained in Sectidh4.2.
Observations during learning and recognition are thus lged. The exemplars considered
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Figure 6.6.: Recognition rates when learning in 3D and recognizing in PRe average rates
per camera arg65.4, 70.0, 54.3, 66.0, 33.6

check watclgld .

cross arms

scratch hea

sit downf.00 .00 .00

get up.00 .00 .00 .

turn around.00 .00 .00 .

walk}.00 .00 .00 .

wave hango4 .04 .27 .

punchr.00 .00 .00 .

kick .00 .00 .00 .

pick upy.00 .00 .00 .10 .0

'&%&&%&;@Q X

Napcaitey O S
SO S

(}\ (@)

q/

Figure 6.7.: Confusion matrix for recognition using cameraand4. Note that actions per-
formed with the hand are confused,g “wave” and “scratch head” as well as “walk” and
“turn”.
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Figure 6.8.: Recognition rates when learning and recognizing in 2D.

are the same than in the previous section. Learning fromgiesiriew is obviously prone to
ambiguities, especially when the number of training samddimited. We thus restricted the
experiments to th8 best cameras with respect to the previous experimentsrd=6g8shows
the recognition results per action class and per camera. p@ad to the previous scenario,
recognition rates drop drastically, as a consequence wfiteafrom non-aligned data and sin-
gle view observations. Surprisingly, some of the acti@ng,"“cross arms”, “kick” still get very
acceptable recognition rates, as well as “sit down” andK'pig” that would normally be con-
fused. The average rate for camére 55.24%, 63.49% for camera2 and60.00% for camera
4.

6.6.3. Comparison with MHVs

In this section we compare the performance of the two vietefrendent approaches, MHVs
and exemplar-based HMM, on the IXMAS dataset. Best recimgniaite for MHVs was 93.33%,
using PCA plus Mahalanobis distance based normalizatidrievthe exemplar-based HMM
had best results with 81.3%, when fusing the views of sewmaleras. A direct comparison
of the results indicates thus, that a 3D reconstruction isempowerful than simple fusing of
observation likelihoods form multiple views, even thougimera calibration information was
used in the latter to impose consistency between the views.

When comparing the two approaches it is important to notie¢ there are several issues,
which only exist when working with 2D observations. An exdmfs the scale normaliza-
tion, which we applied in 3D along the main directions of tlygrrical representation before
matching the MHVs. Such scale is easily estimate in 3D. Inf&iever, given only single sil-
houettes we can not infer 3D scale. Respectively, for thenplar based approach all volumes
were kept at their original scale when matched against 2B ,vaniations in scale were only
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Figure 6.9.: Comparison exemplar-based HMM vs. MHVs: (Left) Confusioatrnx (in %)
using exemplar based HMM with average rate 91.21%. (RigsijguMHVs with average rate
94.85%.

explained through different sized exemplars in the trajréet (resulting from different sized
actors).

To directly compare the quality of two different action mtgjée. space-time representation
and state-transition model (Secti@r®), we perform experiments with both models in 3D, on
manually aligned volumes. As we reported in Sect®oB.§ the recognition ratio with MHVs
under this setting is 94.85%. For a exemplar based HMM thdeesm and evaluate using 3D
exemplars, the best recognition rate is 91.21%. The twoogghies have thus similar recogni-
tion rates under such a unified setting, although the spamedpproach is slightly better.€.
3.74%). Confusion matrixes for this experiment are showrigure6.9.

In summary, the space-time MHV representation has very geodgnition results and is
very efficient to compute. On the other hand, the exemplaedd&MM scores slightly worse,
but therefore overcomes one of the main limitations of the\Wdthproachj.e. dependency on
multiple views.

A Generative Space-Time Approach?

In the previous comparison between the MHV space-time sepitation and exemplar-based
model, the former had slightly better results, while théelatvas able to work from single view
observations. This respectively suggests to implemenirdoctation of both approachesg. an
approach that uses 3D MHVs to generate arbitrary 2D MHI olagiems. While this is indeed
an interesting direction, it will result in several diffitiels as explained in the following.

In particular, generating 2D motion-templates from a 3D eipdther than simple silhou-
ettes, imota straightforward process. We exemplary illustrate thi8fdo MHVs and 2D MHIs
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Figure 6.10.:Issues when generating 2D MHIs from a 3D MHV model. (a) The 2ijqetion
of a 3D MHV computed from visual-hulls sequence is differioim (b) the MHI computed
from 2D projections of the sequence. (c) Modifying the remigepipeline we can generate an
equivalent 2D MHI directly from the 3D MHV.

in Figure 6.1Q but similar issues exist for other space-time representgte.g optical flow,
and non-exemplary representatieng statistically represented space occupancy.

In the top row of Figures.10silhouettes of a samplack motion are shown. Figuré.10(a)
shows the resulting MHV that was computed on the 3D volumehisfmotion and projected
onto the image plane, while Figu&10(b) shows the MHI that was computed in 2D after
the silhouettes were each separately projected onto thgeimpkne. Clearly, the 2D MHI
does not correspond to the projected 3D MHV. Hence a gewmeragiproach based on MHVs
can not simply project 3D MHVs into 2D and match these agdifidts computed from 2D
observations. Instead, such an approach would require @liciexrojection of all training
frames into 2D, and re-computation of the 2D representdtiorach new view. When working
with changing views, such a process can become rapidly oypemsive.

Interestingly, for MHVs a solution exists, which requireseamplementation of the standard
2D rendering pipeline. In short, the rendering pipeline maslified so that for each viewing ray
through a pixel not the value (time stamp) of the closest pieclivoxel is adopted, as typically
for a rendering pipeline, but instead for each viewing raptigh a pixel the maximum voxel
value {.e. the longest occupied time stamp) along that direction dptat. The result of such
a modified rendering applied to a MHV is shown in Figér&0(c) which indeed is equivalent
to the MHI in6.10(b)computed form the 2D silhouettes sequence.

It is however important to recall, that our original MHV appch used a classifier based on
averaged MHVs. For such a mean value representation thesabodering would no longer
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Latent motion states (No.) 1 2 3 4
Recognition rate (%) 75.87 80.63 81.59 79.05

Table 6.2.:Recognition rates with HMMs of different complexity.

apply. A solution would be a classifier based on exemplary MHAHIs; in the simplest case
a nearest neighbor approach. We believe this is an integegirection for future work.

6.6.4. On Importance of Modeling Dynamics

In this section we experiment with different number of motstatesN used in the HMM.
Looking at existing work in action recognition, we found thhis parameter is usually set
empirically, and that few investigations on its importarzce presented. To get more insight
on the importance of this parameter, we repeat the expetifmem Section6.6.1using the
two cameras 2 and 4 with different values¥f Results are shown in Tab&2 We observe
that best average recognition rate is achieved uding- 3 states. In Figuré.11we show
confusion matrixes for individual actions for the caés= 1 and N = 3. We observe, that
actions such asit down get up andpick upare more frequently confused if no dynamics are
modeled,.e. by using a single state HMM. This is not surprising, becahsse actions share
similar characteristic postures that only differ in tengdarder. On the other hand, we observe
that actions such dgck andpuncheven have slightly worse recognition results when dynamics
are added. Such actions that are very characteristic iiggsteem not to benefit from the
additional dynamic modeling. Instead, using a more compigmamical model, with several
latent states, complicates the representation and reamgof those actions.

We can thus summarize, that not all actions need dynamic lingdand that some actions
can even benefit from a simplified representation. We willngra this issue further in the
next part of this thesis, where we will specially design ammeglar-based representation to
be independent of temporal order. We then demonstrate,itiaéd many actions, and in
particular those currently considered by the computeprisommunity, can benefit from such
a simplified and highly efficient representation.

6.7. Conclusion

This chapter presented a new framework for view indepenaeitn recognition from a single
or few cameras. To that aim we introduced a probabilistic 8&vgplar model that can generate
arbitrary 2D view observations. It results in a versatilgognition method that adapts to various
camera configurations. The approach was evaluated on ocasedatf 11 actions and with
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Figure 6.11.:Comparison between (left) HMM with single latent motiontstes. (right) HMM
with three motion states: Actions suchssdown get up andpick upare evidently confused
when modeling no dynamics. On the other hand, actions su&itlasnd punchhave worse
recognition rate when additional complexity is introdu¢ethe model.

different challenging scenarios. The best results whetairdd with a pair of fronto-parallel
perpendicular cameras, validating the fact that actiomsbearecognized from view arbitrary
viewpoints.

Our experiments using a small exemplar set of approx. 5eréiftt key-poses, which we
found sufficient to model 11 different actions performed Bydifferent actors, also confirmed
what we initially anticipatedi.e. that many actions are sufficiently describable through afse
characteristic key-posture, without need for recoveryxaioe joint configuration.

In the next part of this thesis we develop an approach whichesdes several issues that
are related to the work in chapter. We experiment with examspfor recognition in non-
background subtracted scenes, and we examine action rgongmsing exemplars in a sim-
plified representation, which in particular does not actdoindynamics.






Part |l

Action Recognition without Modeling
Dynamics:
Exemplar-based Embedding

The previous parts of this thesis were centered around widependent modeling of actions.
In this part, we work on a view-dependent setting, and foauslifferent issues. We derive
a new and strongly simplified exemplar-based representétioaction recognition, which in
particular does not account for modeling dynamics. Thisiisantrary to most existing ap-
proaches, which model actions with representations thla¢reexplicitly or implicitly encode
the dynamics of actions through temporal dependencies.rdpresentation proposed in this
part does not account for such dependencies. Instead, nregtpences are represented with
respect to a set of discriminative static key-pose exeraplad without modeling any temporal
ordering. The interest is a time-invariant representatighich drastically simplifies learning
and recognition by removing time related information suslspeed or length of an action. We
demonstrate on a publicly available dataset, that suchrageptation indeed can precisely rec-
ognize actions with result that equal or exceed those of thet state-of-the-art approaches.
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CHAPTER [

Action Recognition using Exemplar-based Embedding

7.1. Introduction

A challenging issue in action recognition originates frdm tiversity of information which
describes an action. This includes purely visual cues, ghgpe and appearance, as well as
dynamic cues, e.g. space-time trajectories and motiorsfi€dch diversity raises the question
of the relative importance of these sources and also to wémred they compensate for each
other.

As discussed in Sectichl.], [ ] demonstrated through psychophysical exper-
iments that humans can recognize actions merely from theomot a few light points attached
to the human body. Following this idea, several works (se#i@e2.1.]) attempted to recog-
nize actions using trajectories of markers with specifiatmns on the human body. While
successful in constrained environments, these approatthe®t however extend to general
scenarios.

Besides, static visual information give also very strongscan activities. In particular, hu-
mans are able to recognize many actions from a single imagefés instance Figuré.l).
Consequently a significant effort has been put in represensawitch fuse strong visual cues
with temporal models. As we discussed in chaptedifferent directions have been followed.
Space-time representations, such as the motion histooynebhpproach introduced in Chapter
3, simultaneously model in space and time. Other approadngp &aditional state-transition
models, such as hidden Markov models (HMMs), with powerfldge matching abilities based
on exemplar representations, e.g. see the exemplar-badetlil Chapter6.

125



126 Chapter 7: Action Recognition using Exemplar-based étfding

In this chapter we take a different strategy and represdidnscusing static visual infor-
mation without temporal dependencies. Our experimenthénprevious chapter using an
exemplar-based HMM with a single motion state (SectioB.4 already demonstrated, that
certain actions do not require dynamic modeling, and thel sictions can even benefit from
a less complex model. In this chapter we elaborate on thisnfindnd develop a simplified
exemplar-based representation, which specially avoid$etitay temporal relations. Our results
show that such a representation can effectively model rectamd yield recognition rates that
equal or exceed those of the current state-of-the-art appes, with the virtues of simplicity
and efficiency.

Our approach builds on recent works on example-based ernmgedtkthods /

) ! ) ]. In these approaches complex distances between sigrals ar
approximated in a Euclidean embedding space that is spdnynadet of distances to exemplar
measures. Our representations is grounded on such embedolusing only on the visual
components of an action. The main contribution is a timediilant representation that does not
require a time warping step and is insensitive to variatiorspeed and length of an action. To
the best of our knowledge, no previous work has attemptedéosuch an embedding based
representation to model actions.

Exemplars are selected, as in our previous work, using aafehfeature selection tech-
nique [ ] ]. To compare our representation to the state of the art, \perex
iment in this chapter on a view-dependent dataset, the wellvk Weizmann-dataseB|[

. ]. Our results confirm that action recognition can be achlleysing small sets of
discriminatively selected exemplars, and without coméidetemporal dependencies.

Another important feature of our approach is that it can leslwgith advanced image match-
ing techniques, such as the Chamfer distance/| f ], for visual measure-
ments. In contrast to the classical use of dimensional temuwith silhouette representations,
eg | : ], such a method can be used in scenarios where no background
subtraction is available. In a second experiment we will olesirate, that even on cluttered
non-segmented sequences, our method has precise reaogegults.

The chapter is organized as follows: In Sectib8we present our action representation. In
Section7.3we show how to compute a small but discriminative exemplarlseSection7.4we
evaluate our approach with a publicly available datasaireefoncluding and discussing issues
in Section7.5.

7.2. Action Modeling

Actions can been recognized using the occurrencésywframesin the work of
[ ], class representative silhouettes are matched agautest fiames to recognize
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Figure 7.1.: Sample images from th&eizmanrdataset {lank et al, 2005. A human observer
can easily identify many, if not all, actions from a singleaige. The interested reader may
recognize the following actiongiend jumping-jack jump-in-place jump-forward run, gallop-
sidewayswalk, wave one handwave two handsandjump-forward-one-leg Note, that the
displayed images have been automatically identified by @ihod as discriminative exemplars.

forehand and backhand strokes in tennis recordings. In itasimay, our approach uses a set
of representative silhouette like modeile, the exemplarsbut does not assume a determinis-
tic framework as in Carlsson and Sullivgr2007], where exemplars are exclusively linked to
classes, and decisions are based on single frame detections

A non-deterministic, probabilistic framework, using kiggme-like exemplars in an HMM,
was introduced in the previous part of this thesis. In sudpadownframework, representative
exemplars are matched against video frames, and the resdititances are converted into like-
lihood probabilities. Consequently, the non-determinishcertainty relations between actions,
exemplars, and observation, are represented elegantynrstof probabilities. On the down-
side, such a framework can rapidly become over complicatechputations of normalization
constants and joint probabilities can become infeasilade éso SectioB.5), and consequently
many simplifying assumptions become necessary for suclparoach to remain computable.

Those difficulties inspired our last approach in this thestsere we take a different direction
and derive an exemplar-based approach foattom-up As previously, we start with matching
representative exemplars against video frames. Insteadrwirting those into probabilities,
however, we simply work on the resulting set of distancesounexperiments we found that
learning a simple static classifier over those distanceatisety sufficient to discriminate the
actions that we considered. We interpret the resulting fsdistances as an embedding into a
space defined by distances to key-pose exemplars. Althoaglseno probabilities, uncertain-
ties are nevertheless preserved in such a space, in ternmsgarfaes.

Our approach is illustrated in Figui®2 An action sequence is matched against a set of
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Figure 7.2.: Overview of the embedding method: Two action sequentéwalk) andY (jump forward on one legare matched against a
set of silhouette exemplans. For each exemplar the best matching frame in the sequemdenisfied (exemplar displayed on top of the
corresponding frame; light colors correspond to high miatghlistances; dark colors to low matching distances). Eselting matching
distancesi’ form vectorD*, which is interpreted as an embedding of the sequences Iote dimensional spacR”. The final classifier

is learned ovelR"™, where each point represents a complete sequence.
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n exemplars. For each exemplar the minimum matching distememy of the frames of the
sequence is determined, and the resulting set of distano®s fa vectorD* in the embedding
spaceR™. The intuition we follow is that similar sequences will ydgbroximities to discrimi-
native exemplars which are similar. Hence their point regnéation inR™ should be close. We
thus model actions ifR™ where both learning and recognition are performed. Thi®taitkd
in the following sections.

7.2.1. Exemplar-based Embedding

Our aim is to classify an action sequence= vy, ..., y; over time with respect to the occur-
rence of known representative exemplafs= {z1,...,z,}, €.g. silhouettes. The exemplar
selection is presented in a further section (see Segti®nand we assume here that they are
given.

We start by computing for each exempiarthe minimum distance to frames in the sequence:

d; (Y) = mind(z;, y;), (7.1)
J

whered is a distance function between the primitives considersdieacribed in Section.2.3
At this stage, distances could be thresholded and convettebdinary detections, in the sense

of akey-frameclassifier | ) ]. This requires however thresholds to be
chosen and furthermore does not allow to model uncertaintifrobabilistic exemplar-based
approachesl| ‘ ] do model such uncertainties by converting distances into

probabilities, but as mentioned earlier, at the price of glemcomputations. We instead simply
work on the vectors that result from concatenating all theimiim distances

D*(Y) = (di(Y),....d(Y))" e R", (7.2)

without any probabilistic treatment. Note that our repnéggon is similar in principle to the
embedding described iri\[ ] ] , ] in a static context. We
extend it to temporal sequences.

7.2.2. Classifier

In the embedding spacR”, classification of time sequences reduces to a simple daperat
which is to label the vector®*(Y). A major advantage over traditional approaches is that such
vectors encode complete sequences without the need fomtimmaalizations or alignments.
These vectors are pointsRRf* that are labelled using a standard Bayes classifier. Easficla
1...C is represented through a single Gaussian distribytidd*|c) = N (D*|ue, 2¢), which
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we found adequate in experiments to model all important wiggecies between exemplars.
Assignments are determined through maximum a posteritmatons:

9(D*) = arg ZﬂaX(D*IC)p(C% (7.3)

with p(c) being the prior of class that, without loss of generality, is assumed to be uniform.

Note that when estimating covariangeand depending on the dimensiaenit is often the
case that insufficient training data is available ¥arand consequently the estimation may be
non-invertible. We hence work with a regularized covar@néthe form®: = ¥ + eI, with I
being the identity matrix anela small value.

7.2.3. Image Representation and Distance Functions

Actions are represented as vectors of distances from exesfa the frames in the action’s
sequence. Such distances could be of several types, dagemtihe available information in
the images, e.g. silhouettes or edges. In the following, sgeme that silhouettes are available
for the exemplars, which is a reasonable assumption in #railey phase, and we consider two
situations for recognition. First, silhouettes, obtaif@dnstance with background subtractions,
are available; Second only edges can be considered.

TR}

@ (b) (© (d)

Figure 7.3.: Different types of image representations: (a) Silhouette&ined using back-
ground subtraction. (b) and (c) Silhouette exemplar arefréitt edge images used for matching
when background subtraction can not be performed. A Chamééching is then achieved by
correlating the silhouette (b) with the distance transtredge image (d).

Silhouette-to-Silhouette Matching As in all previous parts of this thesis, we assume in
this scenario that background subtracted sequences dlabéa Consequentlyy andy are
both represented through silhouettes, as illustratedgarki7z.3(a) While difficult to obtain

in many practical contexts, silhouettes, when availabteyige rich and strong cues. Con-
sequently they can be matched with a standard distanceidanahd we choose the squared
Euclidean distancé(z,y) = |z — y|?, which is computed between the vector representations
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of the binary silhouette images. Hence, the distance islgithp number of pixels with differ-
ent values in both images.

Silhouette-to-Edge Matching In a more realistic scenario, background subtraction will
not be possible due to moving or changing background as welhanging light, among other
reasons. In that case, more advanced distances dealingmythfect image segmentations
must be considered. In our experiments, we use such a scemaere edge observations
(see Figurer.3(c), instead of silhouettes, are taken into account. In sucemtions, edges
are usually spurious or missing. As mentioned earlier werassthat exemplars are repre-
sented through edge templates (see Figuséo), computed using background subtraction in a
learning phase. The distance we consider is then the Chaimstance { [

]. This distance function has the advantage of being rolwslutter, since distances be-
tween the template edges, i.e. the exemplar, and theirstlesiges in the observed image are
computed. In detail, the Chamfer distance measures thestldistance for each edge point on
the observation: to any edge point in the exemplgy

fex

where|z| is the number of edge points inandd,(f) is the distance between edgeand the
closest edge-point in. An efficient way to compute the Chamfer distance is by catird the
distance transformed observation (Figudr8(d) with the exemplar silhouette (Figure3(b) .

In the above distance functions, we assume that we can Iticateapproximate person-
centered region of interest (ROI) in an image, so that we ddawe to scan over the whole
image. Note also that the amount of clutter in a sequenceféeast distances. A normalization
where each vectorB*(Y') is translated and scaled with respect to its mean= £ 3" d¥(Y)
and standard deviationp = (1 "7 (d#(Y) — up)?)'/? can then be useful.

n

7.3. Key-Pose Selection

In the previous section, we assume that the exemplars, & setcoiminative primitives, are
known. In practice we obtain them using a wrapper techniquéehiture selection<
) ], which was explained in detail in Secti@n5.2 and previously used for exemplar
selection in Chaptes.
In Figure7.4we show a sample exemplar set which we collected from theMin-dataset
[ , ] (the dataset is detailed in the next section). Figlureshows the average
validation rate of all actions, and Figure6the average validation rates per action, which were
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Figure 7.4.: A set of exemplar silhouettes and their original images asmed by the forward
selection (from left to right). Validation rates computearidg selection are shown in Figure
7.4and7.6.

o

Validation Rate
o o
~

6 8 10 12 14
Exemplar Set Size

Figure 7.5.: Average validation rate during selection of exemplar sgufé7.4.

computed on the training set during the selection. We olestiiat the selected poses naturally
represent key-postures. Interestingly also, that evemgiindhe overall validation rate reaches
100% for 15 exemplars, not all classes are explicitly regomeed through an exemplar, indicating
that exemplars are shared between actions.

7.4. Experiments

We have experimented our approach with the Weizmann-ddtasenk et al, 2009 (see Fig-
ure7.1and7.7) which has been recently used by several autholisef al., 2007, Jhuang et a).
2007, Niebles and Fei-Fei2007, Scovanner et gl2007, Wang and Suter2007. It contains
10 actions: bend (bend)jumping-jack (jack) jump-in-place (pjump)jump-forward (jump)
run (run), gallop-sideways (sidejump-forward-one-leg (skipwalk (walk) wave one hand
(wavel) wave two hands (wave2performed by9 actors. Silhouettes extracted from back-
grounds and original image sequences are provided.
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Figure 7.6.: Validation rate per action during selection of exemplarrsgtre7.4.

All recognition rates were computed with the leave-one@uss-validation. Details are as
follows. 8 out of the9 actors in the database are used to train the classifier aadt $bk
exemplars, théth is used for the evaluation. This is repeated for9adictors and the rates
are averaged. For the exemplar selection, we further nediitte the8 training actors into
training and validation sets. We do this as well with a leaxe-out cross-validation, usirig
training actors and th&th as the validation set, then iterating over all possibgit Exemplars
are constantly selected from &llactors, but never from th@th that is used for the evaluation.
Also note that due to the small size of the training set, thielation rate can easily read®0%
if too many exemplars are considered. In this case, we ralyd@move exemplars during the
validation step, to reduce the validation rate and to allew exemplars to be added. For testing
we nevertheless use all selected exemplars.

7.4.1. Evaluation on Segmented Sequences

In these experiments, the background-subtracted siltemaehich are provided with the Weizmann-
dataset were used to evaluate our method. For the exemj#atise, we first uniformly sub-
sample the sequences by a fadt¢20 and perform the selection on the remaining set of approx-
imately 300 candidate frames. When we use all the 300 frasmesemplars, the recognition
rate of our method is 100%.

To reduce the number of exemplars we search via forwardtgmenver this set. The recog-
nition rate on the test set, with respect to the number of k& is shown in Figuré.8. Note
that the forward selection includes one random step, in ttzteseveral exemplars have the
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Figure 7.7.: Sample sequences and corresponding edge images. (Topdmpjpimping-jack
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Figure 7.8.: Recognition rates vs. exemplar set size. Recognition ipeed on background
subtracted sequences.

same validation rate. We therefore repeat the experifietimes with all actors, and average
over the results. In Figure.9, we show recognition rates for the individual classes. Nopar-
ticular the actiongump-forwardandjump-forward-one-leghat are difficult to classify, because
they are easily confused.

In summary, our approach can reach recognition rates up@®2Qith approximatelyl 20
exemplars. Moreover, with very small exemplar sets (e.gurad 20 exemplars), the average
recognition rate on a dataset @f action and) actors is already higher th&9% and continu-
ously increasing with additional exemplaesd 97.7% for 50 exemplars). In comparison (see
Table7.1), the space-time volume approach proposed lay [ ] had a recognition
rate of 99.61%. [ ] report a recognition rate of 97.78% with an approach
that uses kernel-PCA for dimensional reduction and faakeonditional random fields to model
motion dynamics. The work of [ ] uses a motion representation based on chaotic
invariants and reports 92.6%. Note, however, that a precisgarison between the approaches
is difficult, since experimental setups.,g number of actions and length of segments, slightly
differ with each approach.

7.4.2. Evaluation on Cluttered Sequences

In this experiment, we used edge filtered sequences instdaackground subtracted silhou-
ettes. Edges are detected independently in each frame ofigieal sequences using a Canny
edge detector. The resulting sequences contain a fair anebefutter and missing edges, as
can be seen in Figurg7. Exemplars are nevertheless represented through siteelgethce we
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Figure 7.9.: Recognition rates per action vs. exemplar set size. Retogrs performed on
background subtracted sequences.

Method Recognition Rate (%)
Our Method 100.0
Blank et al.[2009 99.6
Wang and Sutej2007 97.8
Ali et al. [2007 92.6

Table 7.1.:Results of approaches that use background subtraction.
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Figure 7.10.:Recognition rates vs. exemplar set size. Recognition ifopeed on non-
background subtracted, edge filtered, sequences.

assume that background subtraction is available durindetimming phase though not during
recognition. We also assume that the person centered refjioerest in the image can be
located.

For a uniformly sub-sampled exemplar set of si@2@, our method presents a recognition rate
of 93.6% in cross-validation on all0 actions and actors. Similarly to the previous experiment,
we compute the recognition rate with respect to the numbeeleicted exemplars. FigurelO
shows the average recognition rate, and Figutd the rate per action.

We observe that after selection a recognition rat@3ét can be achieved withl 0 exemplars.
Figure7.12shows the resulting confusion matrix in that case.

As in the previous experiment, the two actigomp-forwardandjump-forward-one-legre
difficult to classify, because they present many similasitiAnother interesting observation is
that, with only2 exemplars, more tha0% of the actions are correctly classified.

In summary, our method shows very good results also on nokgbaund subtracted se-
guences (up t83.6% recognition rate). To our knowledge, methods that whestetkon the
Weizmann-dataset without using backgound subtraction Fre: ! 4

, 4 ; ], see Tabler.2 [ ] report up t098.8%
recognition rate with their biologically motivated systefhese results are however computed
from only 9 actions and without theimp-forward-one-legaction which leads in our case 40
false recognitions out of a total 6f [ ] mention82.6% recognition rate us-
ing 3D SIFT descriptors and [ ] 72.8% using spatial-temporal features.
As in previous experiments, experimental setups are $liglifferent with each approacke.g
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Figure 7.11.:Recognition rates per action vs. exemplar set size. Retogns performed on
non-background subtracted, edge filtered, sequences.
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Figure 7.12.: Confusion matrix for recognition on edge filtered sequences
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Method Recognition Rate (%)
[ ] 96.3
Our Method 93.6
[ ] 82.6
[ ] 72.8

Table 7.2.:Results of approaches that usebackground subtraction.

[ ] and [ ] additionally try to locate the person in
the scene.

7.5. Conclusion and Discussion

We presented a new, compact, and highly efficient repretsemtéor action recognition. The
representation is based on simple matching of exemplaradge sequences and does not ac-
count for dynamics. Based on exemplars, our representstipgports advanced image matching
distances and can be used with cluttered non-segmentedrszs

The experiments on sequences with and without backgroubiastion demonstrated that
many actions can be recognized without taking dynamics astmunt. This was especially
true on the publicly available Weizmann dataset, where athod has recognition rates which
equal or exceed those of state-of-the-art approaches. flapmion, this is an important result.
However, it should be noticed that not all actions can beriignated without dynamics. A
typical example is an action and its reversaly as seen in Sectiod.6.4 sit-downand get-
up. Without taking temporal ordering into account, it will bery difficult to discriminate
them. To recognize such actions, a modeling of dynamicsgaimed, either coupled with
the descriptor or on a higher level. Nevertheless, note thiah as demonstrated with many
of the datasets currently used in the field that do not inclggh ambiguous actions, many
recognition applicationsg.g visual surveillance, do not necessarily need to disciteirsuch
particular cases. On the other hand, we strongly think,apptoaches could be experimented
with more realistic scenes to better evaluate their linates.

For future work we plan to extend the approach of this chaggewell to view-independent
action recognition. Further, temporal segmentation ofisages with such a representation
needs to be investigated.
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CHAPTER 8

Conclusion

In the final chapter of this thesis, we conclude our work, péoéate our contributions, and
discuss further research directions and open issues.

8.1. Summary

In this thesis we explored different directions for acti@eagnition. We proposed three new
general frameworks. Major focus of our work was on view-jpeledence, but we made as well
contribution on other issues, such as learning of pose atidmuarimitives, modeling of action
dynamics, and temporal segmentation of actions. We thezaipghasized on designing body
model free representations, to avoid the difficulties iehein MOCAP.

In our first approach we proposed a new view-invariant aaépmesentation, motion history
volumes (ChapteB), as 3D extension of motion history imageésajvis ]. The novelty of
this representation, compared to existing view-invarigpresentations, is that neither a body
model nor other intermediate cues, such as point corregmued, are required to compare
actions over different views. Instead, the use of 3D infdromga which we computed from
multiple calibrated and background subtracted cameras,kem to the success of our repre-
sentation. Orientation invariant alignment and compasswere then performed efficiently
using Fourier transforms in cylindrical coordinates ambuine vertical axis. In experiments,
MHVs demonstrated excellent recognition results, evengusiery simple machine learning
techniques.

Based on MHVs we proposed a new method for automatic segtimmnts# continuous ac-
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tions streams into primitive motions (Chaptyr MHVs allowed us to efficiently compute av-
erage motion velocities in 3D. We used minima in velocity éfie motion boundary. We used
those boundaries for unsupervised segmentation and chgst# motion streams into classes
of primitive motions. Again, our method resulted in segnaiiph and classification methods
which were surprisingly efficient and robust. Moreover, amizary to most existing work, our
method is purely based on visual cues without the need fartamiediate body representation.

Using 3D information showed surprisingly efficient in oursfiapproach. Computation of
3D information is, however, not always possible in pradtgznarios. In our second approach
(Chapters) we hence developed a framework for action recognition fewitrary views, and
in particular from a single view. Key to view independenceswaevertheless, that we modeled
action in 3D. In a generative framework, 3D exemplar-basgibia models were then used to
explain 2D image observations. In a probabilistic fashitynamics over exemplars and view-
point were modeled as two independent Markov processesexemplar based HMM. View-
independence was then achieved by marginalizing over aliple views. Hence our second
approach achieves view-independence even from a single y& again without depending on
additional body model information.

In our experiments we validated the fact that actions carebegnized from view arbitrary
viewpoints, but results where not as good as when workinghsat 3D, even when we fused
observation likelihoods from multiple 2D view. Also we falithat our space-time approach
(MHVSs), has slightly better results compared to the HMM4dthstate-transition model, even
when both works were evaluated exactly on the same data iR@DRhe exemplar-based HMM,
which uses a set of discriminatively selected exemplarswete surprised to find that even a
small number of exemplars are sufficient to models a variegctions performed by different
actors and with different viewpoints.

Those results, using small sets of discriminative key-mpossnplars, motivated our last ap-
proach. In Chapter we purely focused on a bottom-up representation of obdengathrough
sets of discriminative exemplars. In particular, no furtimodeling in terms of motion dynam-
ics was attempted. The resulting representation is henpariicular simple and efficient. In
evaluation we validated the fact, that sets of characiessatic key poses are highly discrim-
inant action descriptors. We established those result oalldkwown view-dependent dataset,
where our approach has results that equal or exceed those ofitrent state of the art.

8.2. Conclusion

As a result of our work, we have found that the choice of ihitepresentation is a very im-
portant aspect of action recognition. An issue which isdhgroften overlooked is view-
independence. Initially, our idea was to derive a "viewairant” action representation.ge.
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features that are independent with respect to the claseof tvansformations considered. As
demonstrated in our MHV approach, we were able to derive sigtrinvariance by using 3D
information extracted from multiple views. MHV is a good eas point, since it is a carefully-
crafted representation which we have demonstrated to\ackiecellent recognition results,
even using very simple machine learning techniques.

When working with single view observations, the problemdmes more difficult, and we
came to the conclusion that a single set of view-invariaatuiees can not suffice to explain all
possible views. Instead we proposed an approach that ilypdjenerates and searches over the
space of possible 2D views. This was nevertheless realgied a learned underlying 3D action
model. So the use of 3D information was as well key to the ssscobour second approach. We
then demonstrated how such a search over arbitrary view aesel gonfigurations can remain
computation feasible while achieving good recognitiorultss by using an HMM framework
that uses a small set of exemplary 3D key-poses, insteadinéenktic body model.

Elaborating further on the key-pose principle, we found tiften solely the use of charac-
teristic key-poses without any further temporal modeliagufficient to discriminate actions.
This finding was in contrary to our initial believe, that teon@ modeling can always improve
on a static action representation. Although there are aviceses where temporal modeling is
indeed indispensabl@.g for different actions that share the same set of poses, weluae,
that in many situation action recognition can benefit fornmaptified representation, which is
invariant to variations in time scale. This was demonstidteour third approach, where we
represented actions through a key-pose based embeddnegeafation, and achieved excellent
recognition results in comparison with other state of the@pproaches.

8.3. Limitations, Future Work, and Open Issues

In the following we discuss limitations of our work and ditieas for future research.

Background Subtraction

As demonstrated in many works, including this thesis, sifflites provide strong cues for action
recognition. Robust extraction of silhouettes from reiliscenes is, however, an open prob-
lem, and existing methods for background substractiontfomonly in constrained settings.
Dependency on silhouettes therefore strongly limitingapplication of many approaches.

In future work we want to investigate several directionsdlves such issues. First, we want to
investigate alternative image features. As an exampleeplaced in our last approach (Chapter
7) silhouette exemplars through edge images and chamfehingsc Alternatively, the integra-
tion of other representations in our frameworks can be tiya®d: optical flow )
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], Gabor filter banks.] J ], and space-time interest pointss]

) ] , ], for instance. Generally we think, an exhaustive evatumti
of all these representations, on realistic datasets aner@ngnified framework, is an important
contribution for future work, to truly discover advancesldimitations of each representation.

Second, we want to investigate new techniques for backgreegmentation based on ad-
vanced foreground models. The background subtractiomigebs currently used in action
recognition are typically based on independent pixel-w@sr statistics. We think that the
use of prior models that model foreground not only as colat,itistead as complex objects,
e.g as human bodies, can strongly improve background sulmnactor instance in image
segmentation [ ] learn kernel-densities over shape exemplars to constrain
segmentation with active contours! { ] couple object detection and image
segmentation using template hierarchies and chamfer imgtch [ ] use human
pose priors in graph cut based image segmentation. Ideadlyyould like to extend such tech-
niques over time, using actions as prior models.

Recognition of Coincidental Actions

Our methods can currently not recognize coincidental asfioe. several actions performed
at the same time, such as waving hands while running forrinstaln particular because we
are using global templates, we can only recognize actiorishndre similar to templates in
our database. Ideally, to recognize coincidental actioaseed to identify individual body
parts, which would be equivalent to using a body model. Fstaimce in the work of

[ ], activities are composed from actions individually reeiagd for each arm and
each leg. Our intension for this thesis was, however, todausing a body model, because of
the difficulties involved in estimating exact position ofdyoparts. Alternatively, we want to
investigate intermediate representations, which usd Infarmation, however not as detailed
as body modeld,e. local templates or global templates factorized into lzegions.

Group Actions and Interactions

Currently our methods assume that there is a single persthe iscene, which we can locate.
Detecting actions of multiple person and their interacidas a difficult problem. Although
some interactions may be most easily described as singenaetg we could learn a global
model of two persons shaking hands; more complex interati®ed an individual modeling
of persons, their actions, and the relations between thoigena. For instance coupled latent
models,e.g [ , ) : ], have been used to model complex
interaction. The success of such methods, however, syraeglend on the prepossessing steps
which are necessary to identify individual people, to segmieem from each other, and to
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track them overt time; this possibly in crowded scenes ardkuncclusion. We think only
with strong developments in all those fields, modelings afiséic actions and interaction will
become practical.

Realistic Datasets and Applications

Including our dataset, there are currently three known afdigly available action recognition
datasets (KTH$ | 1, Weizmann [ , ], IXMAS) used by state-
of-the-art approaches for evaluation and comparison. Batose datasets contains approx-
imately 10 different action; those actions are mostly penfed in controlled setting, without
background motion, few clutter, and, with exception of oataj view-dependent. Evalua-
tion on such data is unrealistic and very one-sided. This f@ainstance clear in our last
approach, where we demonstrated on the view-dependenmafizdataset, that our very sim-
plistic model can have results (up to 100% recognition ratglally or better than much more
ambitious approaches. Evaluation on such limited data sttkes comparison of approaches
difficult, and does not help much to discover their true latidins. Moreover, there is a trend in
current work to ignore important issues, which are not presesuch artificial settings.

For the purpose of this thesis, our own IXMAS dataset proveny useful, pushing us for-
ward to experiment with various representation framewaaks allowing us to perform precise
evaluation and comparison between them. For future workyiNghowever, need more chal-
lenging data sets. Clearly, acquiring data is a time consgroomplex tasks, but there is prob-
ably very little to be gained from over-simplified situatim®e.g where actions are limited to
walking and running motions. Working on true surveillanoetage, sport recordings, movies,
and video data from the internet, will help us to discoverrtred requirements for action recog-
nition, and it will help us to shift focus to other importassues involved in action recognition,
such as previously discussed segmentation of continudiehacdealing with unknown mo-
tions, composite actions, multiple persons, and view iavee, for instance. Only when we
can handle all those issues, we will be able to deal withsgalscenes, such as those initially
displayed in Figurel.1. Until then, a lot of difficult and challenging work remairsiie done
in action recognition.
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