Instabilités de forme en croissance cristalline

Morgan Brassel

Laboratoire Jean Kuntzmann

Éric Bonnetier Pierre Saramito

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Plan de l'exposé

Mouvement par courbure moyenne

Définition, méthode numérique, simulations Conservation du volume Termes de forçage Anisotropie

Instabilité de Grinfeld

Description du phénomène et modèle Discrétisation et simulations Un modèle incluant le substrat

Évolution des surfaces vicinales

Problème modèle Recherche du minimum global

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Plan de l'exposé

Mouvement par courbure moyenne

Définition, méthode numérique, simulations Conservation du volume Termes de forçage Anisotropie

Instabilité de Grinfeld

Description du phénomène et modèle Discrétisation et simulations Un modèle incluant le substrat

Évolution des surfaces vicinales

Problème modèle Recherche du minimum global

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへ⊙

Définition du mouvement par courbure moyenne

• Loi d'évolution : $V_n = -H$

- V_n : vitesse normale de l'interface
- *H* : courbure moyenne

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < @

Propriétés du mouvement par courbure moyenne

Existence locale en temps pour les données initiales convexes. Les formes convexes restent convexes, et convergent vers un point en devenant asymptotiquement sphériques. [Huisken 1984]

► En dimension deux, existence locale en temps pour les courbes régulières fermées. Elles deviennent convexes en temps fini et convergent vers un point en devenant asymptotiquement circulaires. [Gage & Hamilton 1986, Grayson 1987]

Dans le cas général, singularités en temps fini avant de disparaître.
 Exemple en dimension trois : forme en « haltère ».
 [Grayson 1989]

▶ Principe d'inclusion : si $\Omega_1(0) \subset \Omega_2(0)$ alors $\Omega_1(t) \subset \Omega_2(t)$ sur [0, T[. [Ecker 2002]

Différentes approches en vue de la simulation

► Approche paramétrique : $\Gamma(t) = \{X(s, t) \mid s \in I\}$ [Dziuk 1994]

► Approche de type graphe : $\Gamma(t) = \{(x, u(x, t)) | x \in E\}$ [Huisken 1989]

► Méthode level set : $\Gamma(t) = \{x \in \mathbb{R}^N \mid \omega(x, t) = 0\}$

$$\frac{1}{|\nabla \omega|} \frac{\partial \omega}{\partial t} = \mathsf{div} \left(\frac{\nabla \omega}{|\nabla \omega|} \right)$$

[Evans & Spruck 1991, Chen & Giga & Goto 1991]

• Champ de phase : $\Gamma_{\varepsilon}(t) = \{x \in \mathbb{R}^N \mid C\varepsilon \le \phi(x, t) \le 1 - C\varepsilon\}$

$$\varepsilon \frac{\partial \phi}{\partial t} - \varepsilon \Delta \phi + \frac{1}{\varepsilon} W'(\phi) = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Approche par la méthode de champ de phase

- Avantages :
 - flexibilité, implémentation aisée
 - interprétation physique (interface « diffuse »)

Existence de solutions [Ambrosio 2000]

► $\varepsilon \rightarrow 0$: convergence vers le mouvement par courbure moyenne [de Mottoni & Schatzman 1989/1995, Chen 1992]

Discrétisation de l'équation d'Allen–Cahn

Différentes stratégies numériques testées

Schéma en temps « réaction explicite » :

$$\frac{\varepsilon}{\Delta t}(\phi^{n+1}-\phi^n)-\varepsilon\Delta\phi^{n+1}+\frac{1}{\varepsilon}W'(\phi^n)=0$$

▶ Discrétisation en espace par éléments finis *P*₁ :

$$m(\phi^{n+1},\psi) + \Delta t a(\phi^{n+1},\psi) = m\left(\phi^n - \frac{\Delta t}{\varepsilon^2}W'(\phi^n),\psi\right)$$

• formes bilinéaires :
$$a(\phi, \psi) = \int_{Q} \nabla \phi \cdot \nabla \psi \, dx, \ m(\phi, \psi) = \int_{Q} \phi \psi \, dx$$

- pas de refactorisation de la matrice
- Condition de stabilité : $\Delta t \leq \alpha \varepsilon^2$ ($\varepsilon \approx 2h$)

▲□▶▲圖▶▲≣▶▲≣▶ = ● ● ●

Exemples 2D avec Rheolef (1/2)

Exemples 2D avec Rheolef (2/2)

Calculs sur géométries complexes (mailleur : Bamg)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

maillage

évolution d'une forme initiale triangulaire

Exemples 3D avec Rheolef

▶ Exemple dans le cas convexe :

Cas non convexe : changements de topologie [Grayson 1989]

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

Équation d'Allen–Cahn non locale

- Conservation du volume : apparaît dans de nombreux contextes
- Dans la formulation champ de phase :

$$\int_Q \phi \, dx = V_0$$

► Multiplicateur de Lagrange dans l'équation d'Allen–Cahn :

$$\varepsilon \frac{\partial \phi}{\partial t} - \varepsilon \Delta \phi + \frac{1}{\varepsilon} W'(\phi) + q = 0$$

► Calcul explicite de q (C.L. de Neumann homogénes) :

$$q = -\frac{1}{\varepsilon} \frac{1}{|Q|} \int_Q W'(\phi) \, dx$$

► Mouvement par courbure moyenne conservé : $V_n = -H + \bar{H}$ [Bronsard & Stoth 1997]

Un mot sur l'équation de Cahn-Hilliard

Équation de Cahn-Hilliard :

$$\varepsilon \frac{\partial \phi}{\partial t} - \Delta \left(-\varepsilon \Delta \phi + \frac{1}{\varepsilon} W'(\phi) \right) = 0$$

• Mouvement par diffusion de surface : $V_n = \Delta_{\partial\Omega} H$

▶ Différence avec l'équation précédente : conservation locale du volume

▲□ > ▲圖 > ▲目 > ▲目 > → 目 → のへで

Simulations avec conservation du volume

Traitement des conditions aux limites :

périodiques

Dirichlet

forme initiale

Neumann hom.

► Un exemple en 3D :

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < @

Mouvement par courbure moyenne forcé

Motivations :

- couplage avec une équation décrivant la physique du problème
- transport d'interfaces

▶ Forçage normal à l'interface : [Bellettini & Paolini 1996]

 $V_n = -H + g$

$$\varepsilon \frac{\partial \phi}{\partial t} - \varepsilon \Delta \phi + \frac{1}{\varepsilon} W'(\phi) = \lambda_W g$$

Forçage vectoriel :

$$\boldsymbol{V} = -H\boldsymbol{n} + \boldsymbol{g}$$
$$\varepsilon \frac{\partial \phi}{\partial t} - \varepsilon \Delta \phi + \frac{1}{\varepsilon} W'(\phi) - \lambda_W \boldsymbol{g} \cdot \frac{\nabla \phi}{|\nabla \phi|} = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Simulations avec forçage normal à l'interface

Coalescence (forçage constant) :

> Croissance de dendrites (forçage dépendant de la variable d'espace) :

・ロト ・ 四ト ・ 日ト ・ 日ト

Simulations avec forçage vectoriel

$$g(x_1, x_2) = \frac{(-x_2, x_1)}{|x|}$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Définition de l'anisotropie

Énergie de surface anisotrope (ou périmètre anisotrope) :

$$E_{\gamma}(\Omega) = \int_{\partial\Omega} \gamma(\mathbf{n}) \, ds$$

γ : « anisotropie » du problème

• régulière : C^2 sur $\mathbb{R}^N \setminus \{0\}$

• positivement homogène de degré un : $\gamma(\lambda \mathbf{p}) = |\lambda| \gamma(\mathbf{p})$

• convexe : $\nabla^2 \gamma(\boldsymbol{p}) \boldsymbol{q} \cdot \boldsymbol{q} \geq \gamma_0 |\boldsymbol{q}|^2$

Diagramme de Frank et forme de Wulff :

$$\mathcal{F} = \left\{ \boldsymbol{p} \in \mathbb{R}^N \mid \gamma(\boldsymbol{p}) \leq 1 \right\} \quad \text{et} \quad \mathcal{W} = \left\{ \boldsymbol{q} \in \mathbb{R}^N \mid \gamma^*(\boldsymbol{q}) \leq 1 \right\}$$

avec

$$\gamma^*(\boldsymbol{q}) = \sup_{\boldsymbol{p} \in \mathbb{R}^{\boldsymbol{N}} \setminus \{0\}} \frac{\boldsymbol{p} \cdot \boldsymbol{q}}{\gamma(\boldsymbol{q})}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへ⊙

Mouvement par courbure moyenne anisotrope

► Normale anisotrope :
$$\boldsymbol{n}_{\gamma} = \nabla \gamma(\boldsymbol{n})$$

• Courbure moyenne anisotrope :
$$H_{\gamma} = \operatorname{div}_{\partial\Omega} \boldsymbol{n}_{\gamma}$$

Mouvement par courbure moyenne anisotrope :

$$V_{n_{\gamma}} = -H_{\gamma}$$
 ou $V_n = -H_{\gamma}\gamma(n)$

Équation d'Allen–Cahn anisotrope :

$$\varepsilon \frac{\partial \phi}{\partial t} - \varepsilon \operatorname{div} \left(\gamma(\nabla \phi) \nabla \gamma(\nabla \phi) \right) + \frac{1}{\varepsilon} W'(\phi) = 0$$

[Wheeler & McFadden 1996, Elliott & Schätzle 1997]

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● 三 ● ● ● ●

Discrétisation de l'équation d'Allen–Cahn anisotrope

Schéma en temps totalement explicite (pas de refactorisation) :

$$\frac{\varepsilon}{\Delta t}(\phi^{n+1}-\phi^n)-\varepsilon\operatorname{div}(\gamma(\nabla\phi^n)\nabla\gamma(\nabla\phi^n))+\frac{1}{\varepsilon}W'(\phi^n)=0$$

Discrétisation en espace par éléments finis P₁ :

$$m(\phi^{n+1},\psi) = m\left(\phi^n - \frac{\Delta t}{\varepsilon^2}W'(\phi^n),\psi\right) - b\left(\Delta t\,\gamma(\nabla\phi^n)\,\nabla\gamma(\nabla\phi^n),\psi\right)$$

• formes bilinéaires : $m(\phi, \psi) = \int_{Q} \phi \psi \, dx$, $b(\boldsymbol{u}, \psi) = \int_{Q} \boldsymbol{u} \cdot \nabla \psi \, dx$

▶ Condition de stabilité classique : $\Delta t \leq Ch^2$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Exemples de simulations anisotropes (1/2)

Anisotropies strictement convexes :

 $\gamma(\boldsymbol{p}) = |\boldsymbol{p}|_{I^4}$

Anisotropies cristallines :

γ(**p**) = γ_{hexagon}(**p**) < □ > < @ > < ≧ > < ≧ > ≧ - ∽ < ♡ < . ♡

 $\gamma(\boldsymbol{p}) = |\boldsymbol{p}|_{\boldsymbol{I}^{\infty}}$

 $\gamma(\boldsymbol{p}) = |\boldsymbol{p}|_{l^1}$

Exemples de simulations anisotropes (2/2)

► Anisotropies non convexes :

◆□ > ◆□ > ◆三 > ◆三 > 三 のへの

Plan de l'exposé

Mouvement par courbure moyenne

Définition, méthode numérique, simulations Conservation du volume Termes de forçage Anisotropie

Instabilité de Grinfeld

Description du phénomène et modèle Discrétisation et simulations Un modèle incluant le substrat

Évolution des surfaces vicinales

Problème modèle Recherche du minimum global

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

Croissance épitaxiale

▶ Épitaxie par jet moléculaire :

Différentes échelles :

(sources : Lagally Research / O. Pierre-Louis)

Mécanisme de l'instabilité de Grinfeld

▶ Désaccord de maille entre les réseaux du film et du substrat

- Énergie élastique induite dans le film
- > Diffusion des adatomes en surface pour relaxer cette énergie
- ► Formation d'îlots

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々で

Modèle variationnel [Bonnetier & Chambolle 2002]

▶ Énergie libre : (K = épaisseur moyenne du film)

$$E(\Omega, \boldsymbol{u}) = \frac{K}{\int_{\Omega}} \boldsymbol{A} e(\boldsymbol{u}) : e(\boldsymbol{u}) \, dx + L(\partial \Omega)$$

Énergie de surface :

$$L(\partial\Omega) = \sigma_f \left(\mathcal{H}^1(\partial\bar{\Omega} \cap Q^+) + 2\sum_{x \in S^1} \left(\bar{h}(x) - h(x)\right) \right) + \min(\sigma_f, \sigma_s) \mathcal{H}^1(\partial\bar{\Omega} \setminus Q^+)$$

 σ_f

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Compétition entre les deux énergies :

- K petit : formes d'équilibre planes
- K grand : présence d'îlots

Approximation par champ de phase

Énergie approchée :

$$E_{\varepsilon}(\phi, \boldsymbol{u}) = \mathcal{K} \int_{Q} (\phi + \eta_{\varepsilon}) \boldsymbol{A} \boldsymbol{e}(\boldsymbol{u}) : \boldsymbol{e}(\boldsymbol{u}) \, d\boldsymbol{x} + \sigma_{f} \int_{Q} \left(\frac{\varepsilon}{2} |\nabla \phi|^{2} + \frac{1}{\varepsilon} W(\phi) \right) \, d\boldsymbol{x}$$

$$\int_{Q}^{y} \frac{\nabla \phi \cdot \boldsymbol{n} = 0}{\boldsymbol{A} \boldsymbol{e}(\boldsymbol{u}) \cdot \boldsymbol{n} = 0}$$

$$\int_{Q}^{y} \frac{\nabla \phi \cdot \boldsymbol{n} = 0}{\boldsymbol{A} \boldsymbol{e}(\boldsymbol{u}) \cdot \boldsymbol{n} = 0}$$

$$\int_{Q}^{y} \frac{\varphi \cdot \boldsymbol{n} = 0}{\int_{Q}^{y} \varphi \cdot \boldsymbol{n} = 0}$$

$$\int_{Q}^{y} \frac{\varphi \cdot \boldsymbol{n} = 0}{\int_{Q}^{y} \varphi \cdot \boldsymbol{n} = 0}$$

$$\int_{Q}^{y} \frac{\varphi \cdot \boldsymbol{n} = 0}{\int_{Q}^{y} \varphi \cdot \boldsymbol{n} = 0}$$

$$\int_{Q}^{y} \frac{\varphi \cdot \boldsymbol{n} = 0}{\int_{Q}^{y} \varphi \cdot \boldsymbol{n} = 0}$$

$$\int_{Q}^{y} \frac{\varphi \cdot \boldsymbol{n} = 0}{\int_{Q}^{y} \varphi \cdot \boldsymbol{n} = 0}$$

► Convergence vers l'énergie précédente [Bonnetier & Chambolle 2002]

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● ○ ○ ○

Algorithme de résolution

Données : $\phi^0 \in H^1(Q)$ **Résultat** : $(\phi^{\infty}, \boldsymbol{u}^{\infty})$ minimum de E_{ε} sur $H^{1}(Q) \times H^{1}(Q; \mathbb{R}^{2})$ pour n > 0Calculer \boldsymbol{u}^n solution de $-\operatorname{div}\left((\phi+\eta_{\varepsilon})\boldsymbol{A}e(\boldsymbol{u})\right)=0 + \mathrm{C.L.}$ Calculer ϕ^{n+1} solution stationnaire de $\varepsilon \frac{\partial \phi}{\partial t} - \varepsilon \Delta \phi + \frac{1}{\varepsilon} W'(\phi) + q = -K \mathbf{A} e(\mathbf{u}) : e(\mathbf{u}) + \text{C.L.}$ fin

Problème de minimisation statique : t = temps « fictif »

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Résultats numériques obtenus pour K grand

Champ de phase au cours des itérations :

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Recherche d'une épaisseur moyenne critique

▶ Hauteur de la forme d'équilibre en fonction de K, pour différents ε :

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Recherche d'une période optimale

▶ Énergie de la forme d'équilibre en fonction de la période :

Prise en compte de l'élasticité du substrat

Domaine et équations :

$$-\operatorname{div}((\phi + \eta_{\varepsilon})A_{f}e(u_{f})) = 0 \text{ dans } Q_{f}$$
$$-\operatorname{div}(A_{s}e(u_{s})) = 0 \text{ dans } Q_{s}$$
$$u_{s} = u_{f} \text{ sur } \Gamma$$
$$(\phi + \eta_{\varepsilon})A_{f}(e(u_{f}) - e_{0}) \cdot n = A_{s}e(u_{s}) \cdot n \text{ sur } \Gamma$$
$$A_{f}e(u_{f}) \cdot n = 0 \text{ sur } \Gamma_{haut}$$
$$u_{s} = 0 \text{ sur } \Gamma_{bas}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Formulation variationnelle :

.

$$\int_{Q} \boldsymbol{A} e(\boldsymbol{u}) : e(\boldsymbol{v}) \, d\boldsymbol{x} = \int_{\Gamma} \left((\phi + \eta_{\varepsilon}) \boldsymbol{A}_{f} e_{0} \cdot \boldsymbol{n} \right) \cdot \boldsymbol{v} \, ds$$

• e₀ : désaccord de maille

Résultats obtenus avec FreeFem++

▶ Influence de *e*⁰ sur les formes d'équilibre :

▶ Existence d'un seuil de *e*0

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

Plan de l'exposé

Mouvement par courbure moyenne

Définition, méthode numérique, simulations Conservation du volume Termes de forçage Anisotropie

Instabilité de Grinfeld

Description du phénomène et modèle Discrétisation et simulations Un modèle incluant le substrat

Évolution des surfaces vicinales

Problème modèle Recherche du minimum global

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

Surfaces vicinales au cours de la croissance

- 1. au départ (couche mince) :
 - direction de croissance unique
- 2. intervention de phénomènes complexes :
 - effets élastiques volumiques, effets cinétiques, relaxations, etc.
 - mise en paquet de marches
- 3. instabilités de forme :
 - nouvelles directions de croissance
 - surfaces vicinales multiples, facettes
 - formation d'îlots

Modéliser la croissance au-delà des premières instabilités

・ロト ・ 四ト ・ 日ト ・ 日ト

Un modèle variationnel

Énergie de surface :

$$E_{\alpha}(\Omega) = \int_{\partial\Omega} \left((1-\alpha)\gamma(\boldsymbol{n}) + \alpha \boldsymbol{f} \right) ds$$

Mélange d'effets

- macroscopiques : densité y associée à une forme de Wulff (facettes)
- microscopiques : potentiel en « boîte-à-œufs » f lié aux marches

Transition dans les formes d'équilibre arbitrée par α?

Mélange des échelles?

Approximation par champ de phase

Énergie approchée :

$$E_{\alpha,\varepsilon}(\phi) = \int_{Q} f_{\alpha}\left(\frac{\varepsilon}{2} |\nabla \phi|^{2} + \frac{1}{\varepsilon} W(\phi)\right) dx, \qquad f_{\alpha} = (1 - \alpha) + \alpha f$$

• Résultat de **F**-convergence [Bellettini 1997]

Équation d'Allen–Cahn correspondante :

$$\varepsilon \frac{\partial \phi}{\partial t} - \varepsilon \operatorname{div}(f_{\alpha} \nabla \phi) + \frac{1}{\varepsilon} f_{\alpha} W'(\phi) - \frac{1}{\varepsilon} \frac{1}{|Q|} \int_{Q} f_{\alpha} W'(\phi) \, dx = 0$$

> Discrétisation « réaction explicite » (pas de refactorisation) :

$$m(\phi^{n+1},\psi) + \Delta t \, a_{\alpha}(\phi^{n+1},\psi) = m \left(\phi^n - \frac{\Delta t}{\varepsilon^2} f_{\alpha} W'(\phi^n) + \frac{\Delta t}{\varepsilon^2} \frac{1}{|Q|} \int_Q f_{\alpha} W'(\phi^n) \, dx, \psi \right)$$

• forme bilinéaire :
$$a_{\alpha}(\phi, \psi) = \int_{Q} f_{\alpha} \nabla \phi \cdot \nabla \psi \, dx$$

Influence de la donnée initiale sur la forme d'équilibre

► Formes obtenues :

► Difficulté : présence de très nombreux minima locaux

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

Un algorithme inspiré du recuit simulé

▶ ldée : initialiser les calculs avec une valeur élevée de ε , puis la faire décroître au cours des itérations

Données : $\phi^0 \in H^1(Q)$, $\varepsilon_0 > 0$ **Résultat** : ϕ^{∞} réalisant le minimum global de $E_{\alpha,\epsilon}$ pour n > 0Calculer ϕ^{n+1} solution de $m(\phi^{n+1},\psi) + \Delta t a_{\alpha}(\phi^{n+1},\psi)$ $= m \left(\phi^n - \frac{\Delta t}{\varepsilon_{\perp}^2} f_{\alpha} W'(\phi^n) + \frac{\Delta t}{\varepsilon_{\perp}^2} \frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} f_{\alpha} W'(\phi^n) \, d\mathsf{x}, \psi \right).$ si $\varepsilon_n > \varepsilon_{min}$ et $\|\phi^{n+1} - \phi^n\|_{H^1(Q)} \leq tol$ Poser $\varepsilon_{n+1} = \rho \varepsilon_n$. sinon Poser $\varepsilon_{n+1} = \varepsilon_n$. fin fin

Résultats obtenus avec le nouvel algorithme

• Choix de paramètres :
$$\rho = 0.99$$
, $\varepsilon_{min} = 2h$

► Formes d'équilibre indépendantes de la donnée initiale :

C. I.
$$\alpha = 0.1$$
 $\alpha = 0.3$ $\alpha = 0.5$ $\alpha = 0.7$ $\alpha = 0.9$

Mêmes formes finales qu'avec la donnée initiale circulaire

▶ Interprétation : pour ε suffisamment grand, les effets du quadrillage ne se font pas sentir

Conclusion et perspectives

► Un outil complet et flexible pour la simulation numérique des mouvements d'interfaces

• extension : équation de Cahn-Hilliard

anisotropies non convexes : comparaison avec les résultats obtenus par E.
 Bretin au LJK

- Étude approfondie du modèle pour l'instabilité de Grinfeld
 - présence d'un seuil critique K_c
 - pas de période optimale
 - poursuivre l'étude du modèle incluant le substrat
 - utiliser l'équation de Cahn-Hilliard
- Couplage des échelles dans le modèle pour les surfaces vicinales
 - proposer un modèle plus physique
 - étude de l'algorithme d'optimisation globale