
HAL Id: tel-00379394
https://theses.hal.science/tel-00379394

Submitted on 28 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to Spatial and Temporal 3-D
Reconstruction from Multiple Cameras

Andrei Zaharescu

To cite this version:
Andrei Zaharescu. Contributions to Spatial and Temporal 3-D Reconstruction from Multiple Cameras.
Modeling and Simulation. Institut National Polytechnique de Grenoble - INPG, 2008. English. �NNT :
�. �tel-00379394�

https://theses.hal.science/tel-00379394
https://hal.archives-ouvertes.fr


INSTITUT POLYTECHNIQUE DE GRENOBLE
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Abstract

This thesis addresses the necessary steps required to build a framework for

spatial and temporal 3-D reconstruction using multiple camera environments: cam-

era calibration and sparse 3-D reconstruction, dense 3-D reconstruction, sparse

and dense mesh matching. Firstly, a probabilistic formulation is developed in

conjunction with any affine factorization algorithm (3-D point based reconstruc-

tion method based on matrix factorization), able to recover both the extrinsic pa-

rameters of multiple cameras and 3-D coordinates of control points, given their

projected 2-D point correspondences and the intrinsic camera parameters. The

proposed framework is robust to outliers and compares favourably with bundle ad-

justment, a standard non-linear minimization technique, which requires an initial

solution not very far from the optimum. Secondly, a provably correct mesh-based

surface evolution approach is proposed. It is able to handle topological changes

and self-intersections without imposing any mesh sampling constraints. The ex-

act mesh geometry is preserved throughout, except for the self-intersection areas.

Sample applications, including mesh morphing and 3-D reconstruction using vari-

ational methods, are presented. Thirdly, a scene-aware camera clustering method

is developed, able to break large-scale reconstruction tasks in smaller independent

partial reconstructions that are memory tractable. Lastly, a new 3 dimensional

descriptor is proposed, defined on uniformly sampled triangular meshes. It is in-

variant to rotation, translation, scale, being able to capture local geometric and

photometric properties. It is particularly useful in the multi-camera environments,

where the reconstructed meshes benefit from colour information. Nevertheless,

the descriptor is defined generically for any feature available throughout the man-

ifold, colour and curvatures being just some examples. Results in both rigid and

non rigid matching tasks are presented. Additionally, the descriptor is integrated

within a mesh tracking framework, providing dense matches.





Resumé

Cette thèse propose une méthodologie pour construire un système de recon-

struction spatiale et temporelle à partir de plusieurs caméras: étalonnage des

caméras et reconstruction 3-D éparse, reconstruction 3-D dense, reconstruction

temporelle éparse et dense. Tout d’abord, une formulation probabiliste est dévelo-

ppée en association avec des algorithmes de factorisation affine (méthode de re-

construction 3-D fondée sur la factorisation matricielle). Elle permet de récupérer

à la fois les paramètres extrinsèques des caméras et les coordonnées 3-D des points

de contrôle, étant données les correspondances 2-D de leurs projections et les

paramètres intrinsèques des caméras. Le cadre proposé est robuste au bruit et se

compare favorablement avec l’ajustement de faisceaux, une méthode standard de

minimisation non-linéaire, qui exige un bon estimé initial non loin de l’optimum.

Deuxièmement, une méthode d’évolution de maillages est proposée. Elle est ca-

pable de gérer les changements topologiques et les auto-intersections sans imposer

de contraintes d’échantillonnage sur le maillage. La géométrie exacte du maillage

est préservée, à l’exception des parties qui s’auto-intersectent, que l’on retriangu-

larise localement. Des applications sont présentées: le morphing des maillages et

la reconstruction 3-D à partir de plusieurs caméras en utilisant des méthodes vari-

ationnelles. Troisièmement, une méthode de regroupement de caméras qui utilise

l’information de la scène est développée, capable de séparer des reconstructions à

grande échelle qui consomment beaucoup de mémoire en plusieurs petites tâches

indépendantes de reconstructions partielles utilisant moins de ressources. Enfin,

un nouveau descripteur en 3 dimensions est proposé, défini sur des maillages tri-

angulaires échantillonné uniformément. Il est invariant à la rotation, la transla-

tion, l’échelle, étant en mesure de capturer les informations géométriques et pho-

tométriques locales. Il est particulièrement utile dans le cadre multi-caméras, où

les maillages reconstruits bénéficient de la couleur / texture. De plus, le descrip-

teur est défini d’une manière générique pour une fonction quelconque tout au long

de la surface (i.e. la couleur, la courbure). Des résultats de correspondance rigide

et non rigide sont présentés. Finalement, le descripteur est intégré dans un cadre

de suivi temporel dense du maillage.
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Chapter 1

Introduction

All living creatures use their senses in order to experience and perceive the sur-

rounding environment. Vision constitutes one of the most advanced and complex

of the senses. In the primate cortex, more than half of the cells are dedicated to

vision processing. A number of disciplines, such as neurophysiology, psychology

and computer science, study the processes that underlie visual perception.

Computer vision is the branch of computer science that strives to reproduce

the visual capabilities that many living organisms possess: perceiving depth, un-

derstanding the scene geometry, discerning, recognizing and categorizing objects,

tracking movements, to list just a few. In computer vision applications, the input

to the algorithms generally comes from the imaging sensor of digital cameras,

typically replicating the primate eye.

1.1 Motivation

In the recent years multiple camera environments became increasingly available.

This came as a direct consequence of the price drops of commodity hardware.

Synchronized multi-camera environments provide more redundant information,

which can be exploited in order to recover and to interpret the scene geometry.

A first step required for any further processing is accurate multi-camera calibra-

tion. A number of applications were made possible in such scenarios, including

realtime 3-D reconstruction from silhouettes, named visual hulls [49]. The low

latency time permitted such solutions to be integrated with virtual reality environ-

ments, allowing one to provide real-time visual feedback [7].

More accurate 3-D reconstructions can benefit numerous applications, includ-

ing medical and multimedia. Therefore, 3-D reconstruction schemes that exploit

1



2 Chapter 1: Introduction

the photo-consistency across the cameras have been devised [142]. There is a visi-

ble time/accuracy trade-off, which makes the need for better and faster algorithms

a reality.

Another very powerful application, establishing the link across different spa-

tial reconstructions of the same moving object/scene across time, is surface track-

ing. It has numerous applications in the motion capture related industries, such

as the film and television, 3-D modeling and medical. Surface tracking provides

practical solutions, typically using marker-less tracking methods, either model-

based [59, 82, 86] or model-free [34, 160], which can be a powerful alternative to

the more expensive dedicated VICON systems 1.

1.2 Problematics

In this thesis we take the necessary steps towards developing a computer vision

processing pipeline that allows for dense surface tracking using multiple synchro-

nized cameras. We decompose the pipeline into several building blocks. While

solutions exist for each individual step, it is the goal of this thesis to advance the

state of the art and propose improved methods. We will briefly describe each

block, talking about the problems that it poses. Chapter 2 will describe in more

detail each of the building blocks.

Calibration of Multiple-Camera Configurations. The camera calibration prob-

lem consists of recovering the intrinsic/internal and extrinsic/external parameters.

The intrinsic camera parameters characterize the image formation process. In the

case of a standard perspective camera model, it consists of focal length, principal

point, skew and distortion. The extrinsic parameters describe the camera posi-

tion and orientation. A large number of calibration algorithms use calibration

objects/patterns with known geometry in order to recover the camera parameters.

Others use generic scenes, looking for certain geometrical constraints (i.e. lines)

or point correspondences. The calibration procedure that works with a generic

scene is called auto-calibration. In our scenarios, we are interested by setups with

multiple cameras. The above mentioned calibration algorithms are devised for one

camera. In order to obtain the best calibration results in multi-camera settings, al-

gorithms that estimates jointly all the camera parameters should be used. Bundle

adjustment [158] is a standard non-linear minimization technique that provides a

correct solution, given an initial solution that is close enough to the correct one.

Additionally, bundle adjustment does not handle outliers. Factorization methods

1http://www.vicon.com

http://www.vicon.com


1.3 Overview 3

[28] can provide initial solutions for bundle adjustment. Nevertheless, they are

equally affected by the outlier problem and there are no mathematically sound

solutions existent. Random sampling consensus outlier rejection techniques, such

as RANSAC [46], do not easily scale up in the current case, where the number of

parameters to estimate is large.

3-D Reconstruction. The 3-D Reconstruction problem is defined as finding a

3-D representation of the scene, using the images provided by a multiple cam-

era setup. At this stage, we can assume that the camera calibration is known. A

dense 3-D reconstruction captures the underlying surface, which is typically rep-

resented as a mesh. There are numerous approaches to multi-view stereo [142]

and they will be reviewed in more detail in the next chapter. One of groups of

approaches, called variational methods, starts from an initial surface and deforms

it, minimizing an error functional. One of the difficulties when dealing with such

methods is how to properly evolve explicit mesh representations, since topologi-

cal changes and self-intersections need to be handled. One other issue that occurs

when dealing with large reconstruction tasks that become memory prohibitive is

how to properly break down the problem into sub-reconstruction tasks that can be

solved independently.

Surface Matching. The surface matching problem is defined as establishing

correspondences between 3-D representations of the same moving object at dif-

ferent time instances. There exist a number of methods that define interest point

descriptors on surfaces, which can be later on used to find a set of sparse matches.

Until very recently, the surface geometry alone was the information used in or-

der to devise such descriptors. However, in the multi-view stereo context, the

reconstructed meshes benefit from both geometry and texture. This leaves room

for better descriptors to be proposed, taking both geometry and photometric in-

formation into account. Such a sparse correspondence is the starting point for

dense correspondence algorithms, which diffuse the sparse matches throughout,

also taking into account other more global criteria.

1.3 Overview

The goal of the current work is to provide a spatial and temporal 3-D reconstruc-

tion vision system using multiple cameras. Initially, a set of noisy 2-D point

correspondences is obtained, as well as the internal camera parameters. They are
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necessary for the next processing step, which recovers robustly the camera posi-

tions and orientations as well as the 3-D points. Additionally, a initial mesh is

obtained from the 3-D points, which is further on deformed by means of a novel

mesh evolution method using an existing variational multi-stereo approach, in or-

der to obtain a final dense reconstruction. The proposed algorithm is scalable,

being able to deal with a large number of cameras, by using a scene aware cam-

era clustering approach. Next, several dense reconstructions of the same moving

object(s) are obtained at different time steps. An initial set of sparse correspon-

dences is established between meshes at different time-steps using a proposed 3-D

mesh descriptor, which is later on used to obtain a dense set of correspondences.

An overview of the currently proposed approach is presented in Figure 1.1.

In order to obtain such a complex system, the thesis proposes a number of

contributions that serve as building blocks. They will be briefly mentioned in

Section 1.4, further detailed in Section 2.4 and explored in depth in the following

chapters.

1.4 Organization

In Chapter 2 we will discuss in further detail about the problems one needs to

solve in order to obtain a multiple camera system capable of performing spatial

and temporal 3-D reconstruction, establishing the links between the proposed con-

tributions. The main goal of this chapter is not to cover in-depth literature review,

but is to provide a coherent scenario that introduces the problems and places the

proposed contributions in the proper context. Each of the following chapters will

introduce in more detail the related work.

Chapter 4 proposes a sparse reconstruction technique using a bayesian formu-

lation that works in conjunction with any factorization method and makes it robust

to outliers. It provides both extrinsic camera calibration and sparse point based

3-D reconstruction, given intrinsic camera parameters and 2-D point matches. It

provides results comparable with bundle-adjustment, while being a linear method.

Chapter 5 proposes a provably correct geometric approach to explicit surface

evolution using triangular meshes. Applications to 3-D reconstruction and mesh

morphing are demonstrated.

Chapter 6 proposes a content-aware camera clustering algorithm, able to sepa-

rate large multi-camera reconstruction problems into separately independent tasks.

Chapter 7 introduces a novel 3-D mesh descriptor that takes into account both

geometry and photometric information, available when dealing with meshes ob-

tained via 3-D reconstruction algorithms in the context of multi-view stereo. It is
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Input Images 2-D Point Matches

outlier
inliers

Dense 3D Reconstruction
via Mesh Evolution

Dense Temporal 
Reconstruction

Spatial and Temporal 3-D Reconstruction Sytem

Robust Sparse 3D Reconstruction
 + Calibration Ch. 3Ch. 4&5

Ch. 6

time

Sparse Temporal Reconstruction
using a Mesh Descriptor Ch. 6

Figure 1.1: Overview of the proposed Spatial and Temporal Multiple-Camera 3-D

Reconstruction Pipeline proposed in the current work.
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used in order to perform sparse mesh matching. Additionally, the sparse matches

are integrated within a dense temporal matching method.

Chapter 8 will conclude the manuscript with a discussion about future work.

Additionally, a complete list of publications is presented in Appendix B.



Chapter 2

Background

In this chapter we will introduce the challenges that one has to deal with when

devising a multi-view stereo based 3-D reconstruction and shape matching frame-

work. We will discuss about the constituting topics: multiple camera calibration,

3-D reconstruction and shape matching. The main goal of this chapter is not to

cover in-depth literature review, but is to provide a coherent scenario that intro-

duces the problems and places the 4 proposed contributions in the proper context.

Each contribution will be further on discussed in more detail in its own chapter,

which will also include a broader related work section.

2.1 Calibration of Multiple-Camera Configurations

Camera calibration is one of the fundamental problems of computer vision and

tremendous effort has been dedicated to solving it. It consists of finding the rela-

tionship that describes how a 3-D point in the world projects into the image plane.

This relationship is also called the forward projection. Alternatively, the back-

ward projection is the relation that, given a projected image point, provides the

set of possible 3-D points that map to it.

Camera models vary, starting from the affine and perspective camera models,

ending all the way up to generic camera models. The list is rather impressive

[132]: perspective, affine (a linearization of the perspective model, including or-

thographic, weak-perspective, para-perspective), pushbroom (a one dimensional

camera), crossed-slit, fisheye (cameras with very large field of view), catadiop-

tric (perspective cameras with mirrors, which can be planar, conical, spherical,

parabolic, elliptical, hyperbolic), oblique, radially symmetric, 1D radial, rational

7



8 Chapter 2: Background

function and generic. As the camera models become more generic, they can ac-

count for more variability, making fewer assumption (i.e. in the most generic case,

one can consider arbitrary projection rays).

2.1.1 Perspective Camera Model

In the current work we will consider the perspective camera model, due to its sim-

plicity and accuracy with which it can explain the image formation process on

most of the commodity hardware digital cameras and lenses available. Follow-

ing, we shall briefly review perspective camera model. Let us consider the world

coordinate system given by (XW , YW , ZW ), which is typically different from the

camera coordinate system, denoted by (XC , YC , ZC). A point P = [XY Z]⊤ in

word coordinates will project to pixel p = (u, v), with:





αu
αv
α



 =





fu 0 u0

0 fv v0

0 0 1





︸ ︷︷ ︸

K3×3
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R t
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1







(2.1)

where (u0, v0) is the projection of the optical center into the image, also named

the principal point, expressed in pixel coordinates and f is the focal length. In

practice the pixels are not perfect squares, therefore we have two measures fu and

fv as the two focal lengths, measured in terms of the unit lenths along u and v
directions.

The matrix M3×4 = KE is called a calibration matrix. It contains both the

intrinsic parameters K, describing the internal camera geometry, as well as the

extrinsic parameters E, incorporating the change of coordinate system between the

world and the camera. This represents a simplified perspective model that does not

incorporate skew and distortion. In most modern cameras the pixels are square,

but that does not need be the case. Skew models this, by introducing an additional

variable in the intrinsic calibration matrix. Additionally, in an ideal camera there

would be no distortion, meaning that each ray would project unaltered. In practice,

however, the camera optics, i.e. lenses, introduce both geometric and chromatic

aberrations. The geometric distortions represent deviations from the rectilinear

projection model, dictating that straight lines in the scene are preserved in the

image. The most common geometric aberations are the radial distortion, which

can be classified into barrel and pincushion distortion, depending on the effect

generated. Vignetting is the most predominant chromatic distortion and represents
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Figure 2.1: Perspective Camera Model

a reduction in the image brightness or saturation at the periphery, compared with

the image center.

2.1.2 Affine Camera Models

Nevertheless, one has to keep in mind that the projection of a 3-D point in the cam-

era is a non linear operation. This becomes apparent when regarding the equation

(2.1), where, in order to obtain the pixel coordinates (u, v), one has to divide

by the projective depth α. This non-linearity makes certain estimation problems

harder (i.e. factorization methods, see Section 2.2.1). Therefore, a linearization

of the perspective camera model is desirable.

A number of linearized camera models have been proposed: orthographic,

weak perspective and para-perspective [69]. An example of such camera projec-

tion models, as well as how they compare with the perspective camera model, can

be viewed in Figure 2.2. The reader has to keep in mind that such simplified cam-

era models do not hold in cases with strong perspective distortion. Affine camera

models are typically used as an intermediate step, to obtain an initial solution.

They are generally later on improved and upgraded to a full perspective camera

representation.
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Object Plane (average depth) Image Plane 

Camera centre

orthographic

weak perspective

para-perspective

perspective

Figure 2.2: Affine / Perspective Camera Models

2.1.3 Single Camera Calibration

There exist numerous methods able to recover the intrinsic parameters of a per-

spective camera either from 3-D reference objects [45], 2-D planar objects [175],

1-D objects [176] or self-calibration, e.g., from point-correspondences [98], [69],

[99].

2.1.4 Multiple Camera Calibration

Figure 2.3: A Typical Multi-Camera Environment
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As mentioned earlier, we are situating ourselves within the multi-camera en-

vironments, as depicted in Figure 2.3. Estimating the camera parameters individ-

ually for each camera using the techniques briefly mentioned in section 2.1.3 will

produce poorer results than estimating the parameters simultaneously for all the

cameras. In the process of doing so, both the camera calibration and the 3-D con-

trol points will be recovered. It is for this reason that we have decided to include

the discussion about this in Section 2.2.1, dealing with sparse 3-D reconstruction.

2.2 3-D Reconstruction

3-D reconstruction is probably the most central computer vision problem. It con-

sists of trying to recover a 3-D scene, given a number of images. It is in many

aspects the inverse problem of rendering, which is defined in the graphics com-

munity as the process of generating a synthetic image from known 3-D models,

textures and lighting by the means of computer programs.

The 3-D reconstruction from multiple camera problem is typically regarded

as a two-step process: first, a step of sparse points is reconstructed; then, a dense

reconstruction method is initialized from these points and further optimized. Each

of the two steps will be further elaborated below.

2.2.1 Sparse 3-D Reconstruction

In most cases, 2-D point correspondences (of unknown 3-D points) between dif-

ferent cameras are required in order to solve jointly for the camera parameters and

the 3-D points. This would correspond to the points s11, s12 and s13, all being a

projection of the point P 1 in the sample Figure 2.4. In the case of camera cali-

bration, the 2-D point matching problem can be simple, since calibration objects

with known geometry are being used [45]. Alternatively, in the general case with

no scene priors, affine invariant image descriptors, such as SIFT (Scale Invariant

Feature Transform) [97] or MSER (Maximally Stable Extremal Regions) [108],

are chosen for wide baseline matching, or, in the case of nearby cameras, an image

tracker [21]. Similarity measures or other stereo matching techniques [139] can

also be used to provide potential matches.

Given the 2-D correspondences, there are two paradigms for obtaining the 3-

D reconstruction and the calibration: global methods and local methods. Global

methods use all the available correspondences at once, attempting to find a so-

lution that minimizes a joint reprojection error. Local methods attempt to build
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Figure 2.4: Point projections in a multiple camera setup. In this example the point

P 1 projects in cameras C1, C2 and C3 at coordinates s11, s12 and s13, respectively.

a reconstruction gradually, by typically considering pairs or triplets of cameras

which are incrementally merged into a global solution.

Global Methods

Given the 2-D correspondences, bundle adjustment provides both a general method

and practical algorithms for solving this reconstruction problem using maximum

likelihood [158]. Nevertheless, bundle adjustment is non-linear in nature and so-

phisticated optimization techniques are necessary, which in turn require proper

initialization. There have been attempts [27] to incrementally build the solution

using bundle-adjustment, adding one camera at the time.

Consider that we have n 3-D points P i,∀i ∈ [1, n] and c cameras with the

3 × 4 perspective projection matrices Mj,∀j ∈ [1, c]. The points P i will project

at coordinates ŝij , where ŝij = (ûij, v̂ij) and (ûij, v̂ij) is obtained using the per-

spective projection equation (2.1). Such a scenario is depicted in Figure 2.4. Now,

consider that we are only given sij point correspondences, and we are searching

for Mj and P i. This can be formulated as a minimization of the reprojection error:
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min
Mi,Pj

∑

i,j

||ŝij − sij||2 (2.2)

Affine Factorization Methods provide a practical way obtain an initial recon-

struction, which can be further on refined to a perspective camera model us-

ing bundle adjustment. The first practical solution was provided by Tomasi and

Kanade [156] in 1992, in the case of complete data (each 3-D point will have cor-

respondences in all images) under an affine camera model. They observed that, if

all the correspondences are stacked in a data measurement matrix S, then S can be

written as S = MP, where M is the motion matrix representing the cameras, and

P represents the 3-D points. Their solution is based on a singular value decompo-

sition of the S matrix, which in practice solves for the minimum 2-D reprojection

error problem:

min
M,P

||S − MP||F

Since then, numerous other factorization methods have been proposed, being able

to deal with issues such as missing data and uncertainty [1, 29, 62, 13, 155].

Nevertheless, one has to keep in mind that all affine factorization methods

assume a linearized camera model (i.e. orthographic, weak perspective, para-

perspective) in order to be able to decompose the measurement matrix S into a

motion matrix M and the 3-D points P.

This is what motivated the development of factorization frameworks that can

perform affine to perspective upgrades [32]. Alternatively, numerous factorization

methods in the projective space have been devised, followed by Euclidean upgrade

[152, 159, 100, 101, 104, 129, 122]. None of the above-enumerated methods, in-

cluding bundle adjustment, deal intrinsically with outliers and thus, can be greatly

affected by noise in the measurements, since they are trying to minimize the re-

projection error.

RANSAC [46] has been typically used in robust estimation problems in order

to draw random samples from the available data and provide sub-solutions. While

this can be a very effective way to prune outliers, the process becomes very time

consuming when the number of minimum samples required to solve for all the free

parameters becomes large. This is the case when dealing with enough multiple

cameras. As we will see in the next section, when dealing with smaller problems,

RANSAC is a very effective method.

Alternatively, robustness may be achieved through adaptive weighting, i.e., by

iteratively updating a weight matrix W associated with the data, such as it is done

by Aanaes et al. [1]. Their method uses a robust loss function (see Stewart [150]
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and Meer [111] for details) to iteratively get a temporary optimum. Neverthe-

less, the convergence properties of combining iterative factorization algorithms

with robust estimators are not fully understood. Additionally, the robust estimator

tuning parameter (i.e. the cut-off value) is typically chosen by hand.

Local Methods

The philosophy behind the local methods is to incrementally build a global re-

construction by integrating smaller partial results. At first, pairs of cameras are

considered. Given at least 8 matches between the two cameras, the epipolar con-

straint can be recovered [69], relating the two cameras. The epipolar constraint

is a 3 × 3 rank 2 matrix, called the fundamental matrix, that relates the match p1

from the first camera to the match p2 from the second camera via:

p⊤
1 Fp2 = 0 (2.3)

where homogeneous 2-D coordinates have been used, i.e. p⊤ = [x y 1]. The

fundamental matrix can be robustly estimated using RANSAC [46], due to the

small number of model parameters (i.e. 8). In practice, the fundamental matrix

constrains the match of a point p1 in the first image to a line in the second image.

Such a step was employed in [27].

Further on, in a similar spirit, a trifocal tensor [69] can be estimated for triplets

of cameras. The trifocal tensor consists of three 3×3 matrices with 18 independent

degrees of freedom. It represents for triplets of cameras what the fundamental

matrix represents for camera pairs. The tensor can also be robustly estimated using

RANSAC, thus allowing further pruning of the false matches. Such a method was

employed in [105].

Using subsets of cameras, partial reconstructions can be recovered, up to a

scale. The partial reconstructions can be stitched together using control points

that occur across different sets of partial reconstructions [129, 107], or using the

cameras, if the partial reconstructions incorporate at least 4 cameras [106]. Bun-

dle adjustment can be used incrementally to refine each newly added partial re-

construction [27] or as a final step.

The method proposed by [107] is particularly attractive, being able to deal

with large amounts of missing data, large measurement matrices and outliers (for

more details, see [103]). Impressive reconstruction results are shown, specially for

the city paper model dataset, with 2126 images, 660037 reconstructed 3-D points

and 99.85% missing data. The method starts from pairwise perspective recon-

structions. Then, given the pairwise relative rotations, global camera rotations are



2.2 3-D Reconstruction 15

estimated linearly in least squares. Camera translations are then estimation using

an existing convex optimization scheme, which guarantees a global optimum [81].

Robustness is achieved by keeping minimal point configurations for the camera

pairs ( four points chosen), sufficient to represent a pairwise reconstruction, while

providing a important computation speedup. In addition, an iterative removal of

pairwise reconstructions with the largest residual and re-registration removes most

of non-existent epipolar geometries.

Global methods, benefitting from a clean formulation, attempt to obtain a so-

lution that takes into account all data measurements. However, given challenging

noisy configurations, they can diverge. Alternatively, local methods attempt to

progressively obtain more complete reconstruction, having the great advantage of

recovering gracefully, even if local reconstructions fail. Nevertheless, they can

diverge in the merging step. Other algorithms, such as [107], can be thought

of as a hybrid approach between the local and global methods. The proposed

method takes local decisions in obtaining pairwise reconstructions and in choos-

ing representative points robustly, but solves globally for the camera rotations and

translations.

If we consider that the camera calibration is available [53, 54], the 3-D sparse

reconstruction problem becomes easier. Once the false matches have been elimi-

nated using the epipolar constraints the 3-D points can be easily recovered. Given

the projections of a 3-D point into two known cameras, the 3-D coordinate of the

point can be recovered via the process known as triangulation.

2.2.2 Dense 3-D Reconstruction

3-D points are just one of the possible shape representations. We will review the

most popular shape representations, talking about the advantages and disadvan-

tages of each. A shape can be represented as a mesh, a point cloud, a collection

of depth maps, the level set of an implicit function or as an occupancy grid [56].

We will then review at a very high level the 3-D reconstruction algorithms.

Shape Representation

Point Clouds can be used to describe a shape. The Factorization algorithms de-

scribed earlier can provide such a representation. They do not provide exact infor-

mation about the shape boundary information. In order to derive Oriented Point

Clouds, local shape normal orientations can be inferred by local surface fitting

using the neighouring points [127, 39] or taking into account camera visibility

and texture information [54]. Nevertheless, such a representation provides only
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a sampling of a continuous shape representation, which can be discretely repre-

sented either explicitly using meshes, or implicitly using level sets or occupancy

grids.

It is possible to construct a continuous shape representation from point

clouds, either oriented or non-oriented, under the assumptions that there are enough

point samples to unambiguously describe the surface and that the surface is lo-

cally smooth [20, 12, 83, 90, 8, 128]. We shall detail each of the above mentioned

approaches, since they provide the link between the sparse and dense 3-D recon-

struction methods, a key step in the proposed 3-D reconstruction and matching

pipeline. Such methods provide an initial mesh surface, which can be further on

deformed such that it minimizes an energy functional. The first algorithm that

has been proposed with theoretical guarantees in reconstruction, named Crust,

is due to Amenta et al. [10]. This algorithm takes advantage of the structure

of the Voronoi diagram of the input point set in order to reconstruct the surface.

Additionally, Amenta et al. [12] proposed an improved version, named Power

Crust, based on 3-D Delaunay triangulations, Voronoi cells and the medial axis

approximation. Yet another improved version, named Cocone, was proposed by

Amenta et al. in [11]. Boissonnat et al. [20] derive a method to compute smooth

surfaces of arbitrary topology from unorganized 3-D oriented points via natural

neighbour interpolation of distance functions. In related work, Petitjean et al.

[128] propose a reconstruction method from unoriented points based on regular

interpolants, which are polygonal approximations of curves and surfaces satisfy-

ing a new regularity condition. Kazhdan et al. [83] propose another algorithm

to recover a surface from oriented points, casting it as a spatial Poisson problem.

Alliez et al. [8] propose a method that recovers watertight surfaces from unori-

ented point sets using the Voronoi diagram of the input point set and deducing

a tensor field whose principal axes and eccentricities locally represent the most

likely direction of the normal to the surface together with the confidence in this

direction.

Additional constraints can be taken into account if the camera geometry is

known. Labatut et al. [90] propose a space carving approach using graphcuts in

order to eliminate from a triangulation of the space the tetrahedra that violate the

camera visibility constraints (the tetrahedra that lie between the 3-D points and

the cameras). In related work, the visual hull methods exploit the known camera

geometry as well as the silhouette information in order to find the surface that

resides inside the silhouette cone intersections [49, 92].

Meshes are one of the most widely used surface representations, specially in

computer graphics. A mesh is defined by its vertices (3-D points), together with

the connectivity information that defines the facets and edges. A facet can be any

polygon, but typically triangular meshes are among the most widely used. That is
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due to the simplicity of the representation and due to the availability of graphics

hardware that can render triangles lists with very low latency, to name just a few.

Meshes provide a compact representation, allowing for an adaptive resolution.

Differential geometry properties, such as normal and curvature [38, 40] have been

defined. When using meshes as a representation in the context of multi-view 3-D

reconstruction, a considerable number of approaches start from an initial surface,

which they later on deform such that it reduces an error functional (the so called

variational methods). Performing surface evolution using meshes it is a difficult

problem, due to the two main issues that need to be taken into account: self-

intersections and topology changes. In 2000, McInerney and Terzopoulos [109]

introduced topology adaptive deformable curves and meshes, called T-snakes and

T-surfaces. However, in solving the intersection problem, the authors use a spatial

grid, thus imposing a fixed spatial resolution. In addition, only offsetting motions,

i.e. inflating or deflating, were allowed. It is only very recently (2003) that a first

heuristic solution was proposed by Lachaud et al. [91]. Nevertheless, the pro-

posed solution requires equal sampling throughout the mesh (all the triangles to

be of approximately equal size). An elegant alternative method was also proposed

in 2007 by Pons et al. [130], using tetrahedral meshes to represent the shape in-

stead of triangular meshes, together with a restricted 3-D Delaunay triangulation.

However, being a Delaunay based method, it will be affected by undersampling.

Level Sets, originally introduced by Osher and Sethian [125], propose a con-

tinuous shape representation as the zero level set of an implicit function. The

function is negative inside the shape, positive outside, and zero where the surface

resides. The zero level set is also called the interface. Moving the shape reduces

to changing the values of the implicit function. Such a representation overcomes

the typical topological problems encountered when dealing with explicit repre-

sentations. Additionally, due to the fact that a regular grid is typically used to

represent the implicit function, standard finite difference methods can be applied

[123]. The explicit surface has to be extracted at each iteration from the implicit

function using the marching cubes algorithm [94]. Some of the drawbacks of such

a representation are the fact that the original 2-D manifold (the surface) has been

embedded in a higher dimension (3-D), thus requiring more memory in order to

store it. Narrow band representations alleviate this problem [2]. Additionally,

level sets are not suitable to track interface properties, such as texture coordinates.

Occupancy Grids are representations that partition the space into cells. Each

cell can either be inside the shape (thus occupied) or outside (thus empty). Stan-

dard voxel grids [9, 50, 58] or tetrahedra [19] can be used.

Depth Maps are representations associated with one image, typically obtained

from dense two-frame stereo algorithms. For a review of the evaluation of such



18 Chapter 2: Background

algorithms, please see [139] and 1. Each pixel value represents the depth at which

a surface is visible for that particular pixel. Such a representation is not complete,

since it cannot represent closed surfaces. There are several methods that, in the

context of multi-view stereo, fuse multiple depth-maps in order to obtain a robust

representation [57, 168, 112, 169].

3D Reconstruction

There exist a considerable number of 3-D reconstruction methods that have been

developed recently. For a comparison and evaluation of different multi-view

stereo approaches, please consult [142] and 2. They are categorized in roughly

4 categories. The first category operates by computing a cost function on a 3-D

volume, which is later on used to extract a surface from it. It includes the voxel

colouring algorithms [9] and graph cut algorithms [163]. The second class in-

cludes the variational methods and it works by iteratively evolving a surface to

decrease or minimize an error function [131]. Space carving methods [89] pro-

gressively remove inconsistent voxels. The third class of methods combine mul-

tiple depth maps, ensuring a consistent 3-D scene [168, 112, 169]. Finally, the

fourth set of algorithms [52, 129, 54] take a two step approach: firstly, they ex-

tract a set of keypoints that are robustly matched across images; secondly, they

fit a surface to the reconstructed oriented points. The most popular methods

[20, 12, 83, 8, 90, 128] for performing the second step have been reviewed in

the earlier subsection.

An issue of interest that naturally arises in this field is how to efficiently deal

with scenarios where there are lot of images and, due to memory requirements,

they cannot all be processed at the same time.

2.3 Surface Matching

So far we have focused on the necessary steps required to devise a workflow for

obtaining 3-D mesh reconstructions using multiple synchronized cameras. Given

such reconstructions at different time-steps, the natural question that follows is

how can a temporal correspondence be established between the separate surfaces.

In the same spirit as in the 3-D reconstruction framework, this is a two-step pro-

cess: first establish a sparse set of correspondences between keypoints on the

1http://vision.middlebury.edu/stereo/
2http://vision.middlebury.edu/mview/

http://vision.middlebury.edu/stereo/
http://vision.middlebury.edu/mview/
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two meshes; then, densify the matches in order to obtain a one-to-one correspon-

dence between the two surfaces for each of the constituting vertices. Numerous

applications can benefit from the temporal correspondence: mesh reconstructions

can be improved to be temporally coherent; the texture information can be com-

pressed and optimized across the whole sequence; motion segmentation can be

easily performed on the vertex tracks, leading to automatic motion segmentation

and possibly automatic skeletal extraction, in the case of piece-wise rigid motions.

2.3.1 Sparse Surface Matching

A number of surface shape descriptors have been been proposed, describing ei-

ther the local or the global geometry. Among some of the most successful 3-D

surface descriptor, we can enumerate the 3-D Spin Images [78] and 3-D Shape

Contexts [88, 51]. These are descriptors that rely solely on the surface geometry.

For detailed literature surveys, please consult [154, 30]. However, when dealing

with meshes in the multi-view stereo context, colour/texture information is also

available. On the negative side, the 3-D reconstructions from multiple images are

noisier, thus more challenging, than the surfaces used in the graphics community

to perform mesh matching [25]. Often the recovered topology is not necessarily

the correct one and often it cannot be known in advance. Imagine a person, with

his/her arm touching the body, as depicted in Figure 2.5. There has been very little

work [167] in trying to devise a mesh descriptor that incorporates photometric and

geometric information.

2.3.2 Dense Surface Matching

In this section we discuss the problem of capturing the evolution of a moving and

deforming surface, in particular moving human bodies, given multiple videos.

A large variety of directions can be followed, depending on the a priori knowl-

edge of the observed shape, on the representation chosen for surfaces and on

the information taken into account for deformations. Model-based approaches

assume a known model of the observed surface, which is tracked over time se-

quences, hence solving for time correspondences. This model can be locally rigid,

e.g [59, 82, 31], or deformable, e.g. [35, 138]. Unfortunately, exact models need

to be available, which is seldom the case in general situations. In particular, the

topology of the surface can evolve over time as shown in Figure 2.5. As a conse-

quence, approaches in this category are restricted to specific scenarios.

In contrast, non model-based approaches try to find displacement fields be-

tween 2 different instants in the sequence. In this category, scene flow approaches
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(a) (b) (c)

Figure 2.5: An example of a surface for which the topology can hardly be known

in advance. The belt of the dress forms a new protrusion that appears and dis-

appears (a)-(b). (c) Dense point trajectories computed from (a) to (b) using our

proposed method from [160].

consider dense vector fields with various representations including voxels [161,

119], implicit representations [131] or meshes [34]. However, the associated dif-

ferential methods are limited to small displacements between successive frames.

Alternatively, feature-based approaches [14, 26, 148] consider meshes and allow

for larger motions by casting the problem as a labeling between 2 meshes using

local geometric or photometric information. This labeling solves for partial cor-

respondences between 2 frames only and might lose efficiency when applied over

long sequences, in particular as topological changes occur.

An interesting related research direction has been proposed in [4], where a

spatio-temporal reconstruction (thus 4-D) has been obtained from exiting indi-

vidual visual hulls at different time-steps. The 3-D reconstruction at a given time

instant can be obtained by intersecting this 4-D mesh representation with a tempo-

ral plane, thus enabling the interpolation of scene between consecutive available

frames.

Our approach, described in Varanasi et al. [160], is grounded on the obser-

vation that natural surfaces are usually arbitrarily shaped and difficult to model

a priori. In addition, shapes can significantly evolve over a time sequence. For

instance, human bodies are usually covered by clothes, characterized by changing

topology. To handle such deformations, we use meshes which are morphed from

one frame to another. Like feature-based approaches, we use photometric cues
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provided by images and geometric cues provided by the recovered meshes. How-

ever, instead of looking for a dense match between the vertices of the 2 meshes,

we use a sparse, but robust set of matches and its associated displacement vec-

tor field to obtain a complete transfer function from one mesh to another, with

possible topological changes. This approach provides both a consistent surface

evolution over time and dense point trajectories on the surface. While the details

of this approach will not be detailed in the current work, an overview is provided

in Chapter 7.

2.4 Contributions

In the current thesis we propose four contributions. They all integrate as part of

the building blocks needed to devise a spatial and temporal reconstruction system

from multiple cameras. They are the following:

• A Robust Factorization Framework for Simultaneous Extrinsic Cam-

era Calibration and Sparse 3-D Reconstruction: we propose a general

method that works in conjunction with any affine factorization method and

makes it robust to outliers. We cast the problem in the bayesian framework.

We consider a Gaussian/Uniform mixture model, providing a practical so-

lution via the E-M algorithm [17]. This allows us to address the robust pa-

rameter estimation problem within a data clustering approach. In addition,

we show how such a framework can be further embedded into an iterative

perspective factorization scheme. We carry out a large number of experi-

ments to validate our algorithms and to compare them with existing ones.

We also compare our approach with another proposed factorization method

that uses M-estimators. This work will be detailed in Chapter 4.

• A Mesh-Based Topology Adaptive Framework for Surface Evolution:

we propose a new fully geometric method, named TransforMesh, for ex-

plicit mesh-based surface evolution. It gracefully overcomes the limitations

of traditional mesh-based methods, handling self-intersections and topology

changes in a natural manner, while not imposing a uniform mesh sampling.

The method preserves the geometry of the original mesh, except in the ar-

eas that contain self-intersections. We show how such a framework can be

used in the context of multi-view 3-D reconstruction, using it in conjunction

with the variational method proposed by Pons et al. [131]. Additionally, we

present results of using TransforMesh to perform mesh morphing. This

work will be detailed in Chapter 5.
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• A Camera Clustering Framework for Part-based 3-D Reconstruction:

we propose a scene aware approach to partition the camera images, either

semi-automatic, through clustering, or user guided, via a geometric mod-

eling interface. In order to reduce the volume of image data we need to

access simultaneously, we use subsets of the original image set and evolve

the parts of the surface corresponding to those images by maximizing the

photo-consistency. This work will be detailed in Chapter 6.

• A Novel 3-D Mesh Descriptor: we propose a novel 3-D descriptor on tri-

angular meshes that takes into account both surface geometry and photo-

metric information. We name this descriptor MeshHOG (Mesh Histogram

of Oriented Gradients). It represents a generalization of the 2-D HOG (His-

togram of Oriented Gradients) descriptor [33]. The photometric information

is accumulated on each of the mesh vertices using the median colour in the

viewable cameras. Additionally, we introduce a MeshHOG detector on tri-

angular meshes. This new descriptor can be used as the new building block

for obtaining the initial sparse mesh matches within a dense mesh matching

/ tracking framework. We will show how the descriptor is successfully inte-

grated in such a mesh tracking paradigm [160]. This work will be detailed

in Chapter 7.
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Extended Abstract (French)

Ce résumé en français est un aperçu de la thèse, écrite originalement en anglais.

Nous invitons le lecteur à se rapporter au manuscrit anglais pour plus d’informations,

résultats, preuves et précisions.

3.1 Introduction

Dans cette thèse nous présentons les étapes nécessaires pour développer un système

de vision par l’ordinateur qui permet la reconstruction spatiale et temporelle des

surfaces à partir de plusieurs caméras synchronisées. Le pipeline est décomposé

en plusieurs blocs. Bien qu’il existe déjà des solutions pour chaque bloc com-

posant, le but de cette thèse est d’avancer l’état d’art et de proposer nouvelles des

solutions plus performantes.

Initialement, des correspondances bruitées de points 2-D sont obtenues, ainsi

que les paramètres internes des caméras. Ils sont nécessaires pour l’étape suiv-

ante, qui retrouve d’une manière robuste les positions 3-D et les orientations des

caméras, ainsi que les points 3-D. Cette procédure est détaillée dans la Section

3.2. En plus, un maillage initial est obtenu à partir des points 3-D, qui évolue

ultérieurement pour minimiser l’erreur de photo-consistance en utilisant une nou-

velle méthode d’évolution de maillage. Cette partie est décrite dans la Section

3.3. La méthode de reconstruction peux gérer un grand nombre de caméras, en

proposant une méthode de regroupement de caméras qui permet d’effectuer des

calculs localement. L’algorithme de regroupement de caméras est décrit dans la

Section 3.4. Par la suite, plusieurs reconstructions du même objet en mouvement

sont obtenues aux différents instants. Elles sont mises en correspondance en util-

isant un nouveau descripteur 3-D de maillage proposé dans la Section 3.5. Enfin,

23
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les correspondances éparses sont utilisées dans un cadre de suivi de maillage dense

pour obtenir des correspondances denses entre le maillage aux différents instants.

Un résumé de ce pipeline est illustré dans la Figure 3.1.

3.2 Factorisation probabiliste robuste

La factorisation a été introduite par Tomasi & Kanade [156] comme une solution

élégante à la reconstruction affine à partir de plusieurs caméras; leur solution ini-

tiale, basée sur la décomposition en valeurs singulières (SVD), utilise un modèle

de caméra perspective faible. La méthode a été ultérieurement amélioré par Mor-

ris & Kanade [117], Anandan & Irani [13], Hartley & Schaffalitzky [68] et bien

d’autres.

Le problème peut être formulé comme une minimisation de la norme de Frobe-

nius suivante:

θ∗ = arg min
θ

‖S − Ŝ(θ)‖2
F (3.1)

où S = [sij] est la matrice de mesure qui contient les correspondances 2-D des

observations.

Ŝ(θ) = MP est la matrice de prédiction qui peut être factorisée comme la

matrice affine des caméras (aussi appelée la matrice de mouvement) M et la ma-

trice affine des points 3-D (aussi nommée la matrice de forme) P. On dénote par

θ les paramètres de mouvement et de forme.

Dans cette section nous avons exprimé le problème de la factorisation robuste

dans le cadre EM (maximisation de l’espérance) [48]. Nous séparons le problème

de classification des correspondances 2-D observées en deux catégories : données

correctes (inlier) et données erronées (outlier). Ainsi, nous modélisons la prob-

abilité d’observations par un mélange Gaussien/Uniforme. Ceci mène à une for-

mulation du maximum de vraisemblance avec les variables cachées qui peuvent

être résolues avec l’algorithme de EM [37], [110], [48].

Tout d’abord, une formulation probabiliste est développée en association avec

les algorithmes de factorisation affine (méthode de reconstruction 3-D fondée sur

la factorisation matricielle); il permet de récupérer à la fois les paramètres ex-

trinsèques des caméras multiples et les coordonnées 3-D des points de contrôle,

étant donné les correspondances 2-D de leurs projections dans les images et les

paramètres intrinsèques des caméras. Le cadre proposé est robuste au bruit et se

compare favorablement avec l’ajustement de faisceaux, une méthode standard de

minimisation non-linéaire, qui exige à l’origine une bonne initialisation.
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Images d'entrée Points 2D mises-en-correspondance

outlier inliers

 Reconstruction 3D
avec evolution de maillage

Reconstruction
temporelle dense

Systéme de reconstruction spatial et temporel

Reconstruction 3D éparse robuste
 + etalonnage

Sec. 3.2Sec. 3.3 & 3.4

Sec. 3.5

le temps

Reconstruction temporelle éparse
avec descripteur maillage

Sec. 3.5

Figure 3.1: Résumé du pipeline proposé dans cette thèse pour réaliser une recon-

struction dense spatiale et temporelle à partir des plusieurs caméras.
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3.2.1 Modélisation

On considère un ensemble de points dans des images, sij (1 ≤ i ≤ k, 1 ≤
j ≤ n), qui représentent les valeurs observées par un nombre égal de variables

aléatoires sij . On introduit un autre ensemble de variables aléatoires zij , qui at-

tribuent une valeur à chaque catégorie: données correctes et données bruites. Plus

précisément, zij = inlier décrit le fait que sij est correcte et zij = outlier repre-

sente le fait que sij est une donnée bruite.

On définie les probabilités a priori. On considère que la surface de l’image i
est Ai est que toutes les images ont la même surface Ai = A. Si une observation

est correcte, elle est contenue dans une petite vignette circulaire a de rayon σ0,

a = πσ2
0 . La probabilité a priori d’un inlier est la partie de l’image limitée à la

petite vignette circulaire:

P (zij = inlier) =
a

A
(3.2)

D’une manière similaire, si l’observation est un outlier, la probabilité doit ex-

primer le fait que le point reste en dehors de la vignette :

P (zij = outlier) =
A − a

A
(3.3)

De plus, une observation sij , étant donné que c’est un inlier, doit se trouver

dans le voisinage d’une estimation ŝij . Donc, si on modélise la probabilité de

l’observation sij étant donné que c’est un inlier par une gaussienne centré sur ŝij

et de matrice de covariance C de taille 2×2, on obtient:

Pθ(sij|zij = inlier) =
1

2π(det C)1/2
exp

(

−1

2
d2

C(sij, ŝij(θ))

)

(3.4)

où dC est la distance Mahanalobis.

d2

C(sij, ŝij(θ)) = (sij − ŝij(θ))⊤C−1(sij − ŝij(θ)) (3.5)

Quand l’observation est un outlier, elle peut se trouver partout dans l’image.

Donc, on modélise la probabilité d’une observation sij etant donné que c’est un

outlier par une distribution uniforme sur l’image:

P (sij|zij = outlier) =
1

A
(3.6)
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En appliquant la loi de Bayes et après quelques simplifications (i.e. a << A),

la probabilité a posteriori d’être un inlier αin
ij est:

αin
ij = Pθ(zij = inlier|sij) =

1

1 + 2
σ2
0
(det C)1/2 exp

(
1
2
d2

C
(sij, ŝij(θ))

) (3.7)

Si on considère que la matrice de covariance est isotropique, C = σ2I2, (3.7)

devient:

αin
ij = Pθ(zij = inlier|sij) =

1

1 + 2σ2

σ2
0

exp
(

‖sij−ŝij(θ)‖2

2σ2

) (3.8)

-4.8 -4 -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 4 4.8

0.25

0.5

0.75

1

Figure 3.2: Des graphes pour la probabilité a posteriori d’une observation

d’être un inlier, i.e., fσ(x) = 1/(1 + σ2 exp(x2/2σ2)). Cette fonction cor-

respond à eq. (3.8) avec σ2
0 = 2. Lorsque la variance baisse, i.e., σ =

5, 4, 3, 2, 1, 0.5, 0.25, 0.1, 0.05, la fonction devient de plus en plus discriminante.

Maximum de vraisemblance avec des inliers

Le maximum de vraisemblance maximise le logarithme de la vraisemblance jointe

de toutes les mesures Pθ(S), en considérant que toutes les mesures sont dis-

tribuées de manière indépendante et identique:

Pθ(S) =
∏

i,j

Pθ(sij) =
∏

i,j

Pθ(sij|zij = inlier) (3.9)
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Le logarithme de la vraisemblance devient:

QML =
1

2

∑

i,j

(

(sij − ŝij(θ))⊤C−1(sij − ŝij(θ)) + log(det C)

)

(3.10)

Les paramètres des caméras et les points 3-D peuvent être estimées en min-

imisant θ suivant:

θ∗ = arg min
θ

1

2

∑

i,j

(sij − ŝij(θ))⊤C−1(sij − ŝij(θ)) (3.11)

Dès qu’une solution optimale a été trouvée, i.e., θ∗, on peut minimiser eq. (3.10)

suivant la matrice de covariance. Le resultat obtenu est:

C∗ =
1

m

∑

i,j

(sij − ŝij(θ
∗))(sij − ŝij(θ

∗))⊤ (3.12)

où m = kn est le nombre total d’observations pour k images et n points 3-D.

Des formules similaires peuvent être obtenues dans le cas d’une matrice de

covariance isotropique.

Maximum de vraisemblance avec des inliers et des outliers

Quand les outliers sont pris en compte, la méthode précédente ne peut pas être

utilisée. Cependant, on peut utiliser l’estimation de la probabilité jointe des ob-

servations et de leurs valeurs. On obtient:

log Pθ(S, Z) =
∑

i,j

(
δin(zij) log(Pθ(sij|zij = inlier))

+ δout(zij) log(Pθ(sij|zij = outlier)) + const
)

(3.13)

Cette expression ne peut pas être résolu comme précédemment, à cause de

la présence des variables cachées zij . Pour résoudre le problème, on utilise le

formalisme EM (maximisation de l’espérance), qui nous mène à:

QEM =
1

2

∑

i,j

αin
ij

(

(sij − ŝij(θ))⊤C−1(sij − ŝij(θ) + log(det C)

)

(3.14)
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3.2.2 Factorisation Affine avec l’algorithme EM

En combinant la factorisation affine et l’algorithme EM, minµ QEM devient minθ QEM

et inclut C :

θ∗ = arg min
θ

1

2

∑

i,j

αin
ij (sij − ŝij(θ))⊤C−1(sij − ŝij(θ)) (3.15)

En plus, la covariance qui minimise eq. (3.14) est:

C∗ =
1

∑

i,j αin
ij

∑

i,j

αin
ij (sij − ŝij(θ

∗))(sij − ŝij(θ
∗))⊤ (3.16)

Des équations similaires peuvent être dérivées dans le cas où la covariance est

isotrope.

Factorisation Affine avec EM:

Initialisation: Utilisez PowerFactorization [68] pour minimiser

eq. (3.11), qui donne une estimation initiale pour θ (les paramètres

affines de la forme et du mouvement). Estimez C (matrice de covari-

ance) en utilisant eq. (3.12).

Itère, jusqu’à convergence

Expectation: Mise à jour des valeurs de αin
ij selon eq. (3.7) ou

eq. (3.8).

Maximization: Trouvez θ qui minimise QEM (factorization affine)

selon eq. (3.15). Calculez la matrice de covariance C avec

eq. (3.16). Alternativement, les équations pour covariance isotrope

peuvent être utilisées.

Maximum a posteriori: Dès que EM converge, choisissez parmi un in-

lier ou un outlier pour chaque observation, i.e., max{αin
ij ; αout

ij }.
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3.2.3 Factorisation Perspective Robuste

La méthode décrite dans la section précédente est incluse dans un algorithme [32,

173] qui obtient une reconstruction perspective et les paramètres extrinsèques des

caméras à partir des caméras calibrées intrinsèquement. L’algorithme estime la

différence entre le modèle perspectif faible et le modèle perspectif d’une manière

itérative. Les détails de l’algorithme sont omis dans ce manuscrit.

3.2.4 Résultats

On a utilisé l’algorithme décrit dans deux contextes: l’étalonnage multi-caméras

et la reconstruction 3-D éparse à partir de plusieurs caméras.

Étalonnage de plusieurs caméras

La figure 3.3 montre l’organisation partielle de la plate-forme multi-caméras ainsi

que l’objet 1-D utilisé pour l’etalonnage. On utilise trois configurations de caméras,

montrées en Figure 3.4: deux configurations de 30 caméras et une de 10 caméras.

Nous les appelerons Corner Case, Arc Case et Semi-Spherical Case.

(a) (b)

Figure 3.3: (a): Vue partielle du montage de 30 caméras. (b): Les données pour

l’étalonnage sont obtenues en déplaçant un objet unidimensionnel dans le champ

visuel de toutes les caméras.

La figure 3.5 montre l’évolution de l’algorithme à partir de la solution per-

spective faible initiale vers la solution perspective. A la convergence, la solution

trouvée par notre méthode (présentée en bleu-marin) est identique a la solution

trouvée par l’ajustement de faisceaux (présentée en gris).
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Figure 3.4: Résultats d’étalonnage multi-cameras. Gauche: Exemple typique

de données d’entrée associées avec une caméra. Centre: Points 3-D recon-

struits avec notre méthode (bleu-marin) et avec l’ajustement de faisceaux (gris).

Droite: Résultats d’étalonnage obtenus avec notre méthode (bleu-marin) et avec

l’ajustement de faisceaux (gris).
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Figure 3.5: Itérations de l’algorithme de factorisation perspective robuste dans

le cas Arc Case et la comparaison avec l’ajustement de faisceaux . La première

itération correspond au modèle perspectif faible. La solution pour l’ajustement de

faisceaux est montrée en gris.
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Etalonnage multi-caméras Corner Case Arc Case Semi-Spherical Case

Données # Cameras 30 30 10

# Points 3-D 292 232 128

# Prédictions 2-D 8760 6960 1280

# observations manquantes 36% 0% 33%

# Observations 2-D 5527 6960 863

Results # Inliers 2-D 5202 6790 784

# Inliers 3-D 285 232 122

Erreur 2D (pixels) 0.30 0.19 0.48

Erreur 3D (mm) 6.91 2.65 4.57

Erreur rot. (dégrées) 0.13 0.18 0.27

Erreur Tr. (mm) 27.02 9.37 24.21

# iter. aff. (# iter. EM) 7 (2.4) 11 (2) 8 (3.2)

Table 3.1: Résumé de résultats obtenus pour l’étalonnage multi-cameras.

Etalonnage multi-caméras Corner Case Arc Case Semi-Spherical Case

Méthode proposée 0.30 0.19 0.48

L’ajustement de faisceaux 0.58 0.61 0.95

Table 3.2: Comparaison entre la méthode proposée et l’ajustement de faisceaux

pour les trois cas. L’erreur 2-D est mesurée en pixels.

Reconstruction 3-D

Nous avons testé la méthode proposée pour obtenir de reconstructions 3-D à partir

de plusieurs caméras. On a utilisé plusieurs séquences, capturées avec une table

tournante. En particulier, on a utilisé les jeux de données suivantes:

• “Dino” and “Temple” du site d’evaluation de Middlebury 1

• “Oxford dinausor”,2

• “Square Box” .

Nous avons utilisé l’implementation pyramidale OpenCV3 du suiveur de points

proposé par Lucas & Kanade [21], qui nous permet d’obtenir des matrices de

mesures. La Figure 3.6 et le Tableau 3.3 résument des résultats obtenus.

1http://vision.middlebury.edu/mview/data/
2http://www.robots.ox.ac.uk/˜vgg/data/data-mview.html
3http://www.intel.com/technology/computing/opencv/

http://vision.middlebury.edu/mview/data/
http://www.robots.ox.ac.uk/~vgg/data/data-mview.html
http://www.intel.com/technology/computing/opencv/
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Figure 3.6: Les mesures réelles sont présentées en gris et les résultats de la re-

construction sont presentés en bleu marin.
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3-D reconstruction Dino Temple Box Dinausor

Entrée # Vues 12 16 64 36

Taille de matrice S 24×480 32×758 128×560 72×1516

# prédictions 2-D 5760 12128 35840 54576

% d’observations manquantes 11% 21% 17% 85%

# d’observations 2-D 5140 9573 29733 8331

Résultats # inliers 2-D 3124 6811 25225 7645

# inliers 3-D 370 720 542 1437

Erreur 2D (pixels) 0.82 0.93 0.69 0.33

Erreur rot. (degrees) 1.49 2.32 – 0.00

Erreur trans. (mm) 0.01 0.01 – 0.00

# iter. aff.(# iter. EM ) 7 (4) 7 (3.14) 9 (3) 7 (3.29)

Table 3.3: Résumé de la reconstruction.

3.3 Méthode d’évolution de maillages

Dans cette partie, une méthode d’évolution de maillages est proposée. Elle est

capable de gérer les changements topologiques et les auto-intersections sans im-

poser de contraintes d’échantillonnage sur le maillage. La géométrie exacte du

maillage est préservée, à l’exception de parties qui s’auto-intersectent; elles sont

retriangularisées localement. Des applications sont présentées: le morphing des

maillages et la reconstruction 3-D à partir de plusieurs caméras en utilisant des

méthodes variationnelles.

3.3.1 Méthode

Le principe de la méthode, intitulé TransforMesh, est de trouver un triangle racine

initial (seed-triangle), situé à l’extérieur, qui ne s’entrecoupe pas avec des autres

triangles, pour ensuite propager cette information de l’extérieur au moyen de

croissance de région. On appelle un triangle valide un triangle qui est situé a

l’exterieur et qui ne s’entrecoupe pas avec les autres triangles. Un triangle partiel

est un triangle qui s’entrecoupe avec les autres, mais qui a une partie à l’extérieur.

L’algorithme, résumé en Figure 3.7, utilise 3 listes pour cet objectif: une qui

s’appelle V de triangles valides; une qui s’appelle P de triangles partiels et fi-

nalement une qui s’appelle G où tous les triangles et sous-triangles valides seront

stockés avant d’être finalement collés dans un nouveau maillage. Les triangles

partiels sont retriangularisés en utilisant une triangulation Delaunay 2-D avec des

contraintes, où les contraintes sont tous les segments des intersections avec les

autres triangles. Un exemple est illustré dans la Figure 3.8.
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TransforMesh - Entrée: maillage triang. I; Sortie: maillage triang. O

1. Calcul des intersections - calculez toutes les intersections entre tous les tri-

angles qui font partie du maillage I

2. Croissance d’une région valide

2.1. Initialisation - marquez tous les triangles non visités

2.2. Découverte d’un triangle racine initial - trouvez un triangle valide

extérieur en I et ajoutez à V
2.3 Tant que V 6= ∅

a. Tant que V 6= ∅ ou P 6= ∅
a.1. Traitement liste valide - ∀t ∈ V , ajoutez t à G; ajoutez les

voisins valides non-visités de t à V et les voisins partiels à P
en gardant l’arrêt d’entrée.

a.2. Traitement liste partielle - ∀t ∈ P , obtenez une triangulation

Delaunay avec contraintes (intersection segments + arrêtes);

commencez avec l’arrêt d’entrée et sélectionnez des triangles

en les ajoutant à G; arrêtez vous sur les arrêtes avec des con-

traintes; ajoutez les triangles de l’autre côté des arrêtes avec

contraintes à la liste appropriée, si pas encore visités.

b. Découverte d’un triangle racine initial - trouvez un triangle

valide extérieur en I et ajoutez le à V
2.4 Collage de triangles - on calcule le maillage O à partir de G

Figure 3.7: Résumé de l’algorithme. En plus, la Figure 3.8 montre les étapes

principales de la méthode.
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(a) Entrée (ombragé) (b) Entrée (filaire) (c) Intersections des facettes

(d) Segments Delaunay 2-D (e) Découverte d’un triangle

racine initial

(f) Expansion de triangles

valides

(g) Expansion de triangles par-

tielles

(h) Fin d’expansion (i) Sortie(ombragé)

Figure 3.8: Un example de TransforMesh, l’algorithme proposé.
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3.3.2 Evolution de maillage générique

TransforMesh peut être utilisé de manière générique dans les problèmes qui nécessitent

des évolutions de surfaces. L’algorithme est présenté dans Figure 3.9.

Évolution de maillages générique en utilisant TransforMesh

Tant que non terminé

1. Calcul du Champ de Velocité ~F pour chaque sommet du

maillage M, en utilisant l’information spécifique au domaine

d’application.

2. Evolution de maillage M en utilisant le champ de vecteurs ~F et

un pas de temps t, avec un seuil maximal α · eavg(v), où α est un

seuil fixé par l’utilisateur (typiquement dans l’intervale 0.1-0.3) et

eavg(v) est la taille moyenne locale de sommet v.

3. Invoquez TransforMesh sur M pour enlever les problèmes liés

au changement de topologie est auto-intersections.

4. Optimisation du maillage

a) Re-maillage Adaptatif: garantit que toutes les arrêtes sont

dans un intervalle de sûreté, i.e. ∀e ∈ M, e ∈ [e1, e2], en

faisant les opérations d’échange des arrêtes et effondrement

des arrêtes.

b) Optimisation de la valence d’un sommet: en faisant les

opérations d’échange des arrêtes pour qu’il obtienne une va-

lence de 6 pour chaque sommet [87].

c) Lissage Laplacien du maillage: chaque sommet v est mis-a-

jour par v → v − β∆v, où ∆v est la representation discrète

du Laplacien maillage [36, 113].

Figure 3.9: Algorithme d’evolution maillage generique en utilisant TransforMesh.

3.3.3 Résultats

Comme applications, on va utiliser l’algorithme générique dans les contextes

de morphing du maillage et de reconstruction 3-D dense à partir de plusieurs
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caméras.

Morphing du maillage

Dans le morphing du maillage, on commence avec une surface initiale SA qui

évolue vers une surface cible SB. En utilisant le morphing du maillage, on peut

tester différents cas de topologies complexes. Dans cette implémentation, on a

adopté la méthode proposée par Breen et al. [24].

Quelques résultats sont montrés dans la Figure 3.4, 3.6 et le Tableau 3.5.

Réconstruction 3-D dense

La motivation originale pour développer un algorithme qui permet d’enlever les

auto-intersections et qui gère les changements de topologie était de récupérer une

surface 3-D à partir de plusieurs caméras en utilisant des méthodes d’évolution

variationelles.

Dans notre cas, on commence l’évolution à partir de l’enveloppe visuelle,

obtenue avec la méthode décrite en [49], qui utilise l’information de silhouette.

La surface de départ est déformée pour améliorer une fonctionnelle prenant en

compte la photo-consistance. Cette mesure photométrique est détaillé en [131],

où les auteurs utilisent une formulation level-set. Notre but était de remplacer la

méthode implicite utilisée en [131] en gardant la même fonctionnelle d’énergie.

On a testé l’algorithme de reconstruction 3-D sur les données du site Middle-

burry 4 [142] et on a établi le fait que nos résultats sont comparables avec l’état de

l’art, en obtenant une précision sous-millimetrique. Quelques résultats sont aussi

presentés dans le Tableau 3.7. On a aussi inclut les résultats obtenus par Furukawa

et al. [54], Pons et al. [131] et Hernandez et al. [70], considérés comme l’état de

l’art. Les differences sont très faibles, entre 0.01mm et 0.3mm. Des résultats de

reconstruction sont montrés dans la Figure 3.10.

La séquence Leuven 5 contient 7 images de haute résolution 3000 × 2000 de

la Préfecture de Leuven. La reconstruction finale contient un maillage avec plus

de 1.5 million de triangles. Les résultats sont presentés dans la Figure 3.11. Une

procédure de re-maillage adaptative a été utilisée pour que les triangles invisibles

ne soient pas réduits.

4http://vision.middlebury.edu/mview/
5http://cvlab.epfl.ch/data/strechamvs/

http://vision.middlebury.edu/mview/
http://cvlab.epfl.ch/data/strechamvs/
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Genus 3 Toruses Knots In Knots Out

Table 3.4: Exemples de morphing du maillage avec des surfacess fermées.
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Donées Iterations # Facettes # Intersections Temps (intersect.) Temps (total)

Genus 3 54 4764.14 33.88 0.65 sec 1.42 sec

Toruses 37 6296.33 22.67 0.81 sec 1.78 sec

Knots In 119 13244.25 101.52 1.63 sec 3.58 sec

Knots Out 430 3873.11 4.86 0.18 sec 0.89 sec

Table 3.5: Statistiques pour les différents cas preséntés dans le Tableau 3.4 Le

temps de calcul correspondent à une machine avec un processeur Intel Core2Duo

2.6 GHz. Les 4 dernièrs colonnes représentent des mesures moyennes.

Torus

Table 3.6: Résultat du morphing du maillage avec une surface ouverte.

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Méthode

Données Temple Ring Temple Sparse Ring Dino Ring Dino Sparse Ring

Prec. Compl. Prec. Compl. Prec. Compl. Prec. Compl.

Pons et al. [131] 0.60mm 99.5% 0.90mm 95.4% 0.55mm 99.0% 0.71mm 97.7%

Furukawa et al. [54] 0.55mm 99.1% 0.62mm 99.2% 0.33mm 99.6% 0.42mm 99.2%

Hernandez et al. [70] 0.52mm 99.5% 0.75mm 95.3% 0.45mm 97.9% 0.60mm 98.52%

Nos résultats 0.55mm 99.2% 0.78mm 95.8% 0.42mm 98.6% 0.45mm 99.2%

Table 3.7: Résultat de la reconstruction 3-D. Précision: la distance d en mm

qui amène 90% de résultat R proche de la vraie surface G. Complétude: le

pourcentage de G qui se trouve à moins de 1.25mm de R.
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(a) Dino - image (b) Dino - debut (c) Dino - final (d) Dino - de près

(e) Temple - image (f) Temple - debut (g) Temple - final (h) Temple - de près

Figure 3.10: Résultats obtenus dans les cas du temple et du dino.
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La séquence Staty contient 32 images de résolution 720×576. Les résultats de

reconstruction sont présentés dans la Figure 3.12. On montre également la cour-

bure moyenne pour souligner les parties de la reconstruction avec des structures

assez fines, comme le pavé.

Pour faire le lien avec la section précèdente, on a utilisé les reconstructions

éparses de points 3-D obtenues avec la méthode de factorisation perspective ro-

buste présentée dans la Section 3.2. On l’a combiné avec PowerCrust [12], un

algorithme qui génère un maillage à partir de point 3-D, pour obtenir une sur-

face de départ pour l’algorithme de reconstruction 3-D qui prenne en compte la

photo-consistance. Les résultats sont montrés dans la Figure 3.13.

3.4 Regroupement de caméras

Une méthode de regroupement de caméras qui utilise l’information de la scène est

développée, capable de séparer des reconstructions à grande échelle, qui consom-

ment beaucoup de mémoire, en plusieurs petites tâches indépendantes de recon-

structions partielles utilisant moins de ressources.

3.4.1 Méthode

L’idée principale est de générer une matrice de visibilité ∆ obtenue à partir des

points d’une reconstruction éparse pour ensuite créer des regroupements de points

en prenant compte les lignes ou les colonnes de la matrice de visibilité. Chaque

regroupement de caméras est traité ultérieurement d’une manière indépendante.

La méthode proposée peut être utilisée avec n’importe quelle méthode de recon-

struction 3-D à partir de plusieurs caméras étalonnées. Dans notre cas, on a utilisé

la méthode proposée dans la Section 3.3. Un résumé de la méthode est présentée

dans la Figure 3.14.

Regroupement de caméras à partir des caméras

Si on utilise les colonnes de la matrice ∆ quand on calcule le regroupement, on

obtient directement un regroupement de caméras. Des exemples sont montrés

dans la Figure 3.15.
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Regroupement de caméras a partir de la géométrie

Si on utilise les lignes de la matrice ∆, on obtient des regroupements de som-

mets de la géométrie 3-D, il faut donc choisir les caméras avec le plus de votes

pour chaque regroupement. Pour le dernier pas, un seuil α doit être choisi pour

distinguer les caméras les plus discriminatoires. Cette dernière méthode nous per-

met d’avoir des chevauchements sur les regroupements de caméras. Des exemples

sont montrés dans la Figure 3.16.

3.4.2 Résultats

Séquence Dino et Temple. On a utilisé les séquences dino et temple du site

Middleburry [142], qui ont 47 images de taille 640x480. Les résultats pour 2

regroupements sont montrés dans la Figure 3.17 et au Tableau 3.8 (regarder 6

pour plus d’information). Comme on peut l’observer dans le Tableau 3.8, notre

méthode ne perd pas en précision d’un façon significatif en utilisant le regroupe-

ment de caméras, de plus elle gagne visiblement au niveau de la consommation

mémoire.

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Méthode

Données Temple Ring Dino Ring

Prec. Compl. Mem. Durée Prec. Compl. Mem. Durée

Pas de regroupement 0.55mm 99.2% 1031MB 60min 0.42mm 98.6% 962MB 43min

Regroupement 1/2
0.62mm 98.5%

468MB 36 min
0.5mm 98.5%

483MB 33min

Regroupement 2/2 472MB 42 min 476MB 35min

Table 3.8: Résultats pour les données de Middleburry. Précision: la distance d en

mm qui amène 90% de résultat R proche de la vrai surface G. Complétude: le

pourcentage de G qui se trouve a moins de 1.25mm de R. Memoire: le quantité

de mémoire RAM utilisée par le logiciel. Durée: le temps pris par le logiciel pour

finir.

On montre aussi des résultats pour deux autres séquences: parthenon et fontaine.

La séquence parthenon utilise 200 cameras de résolution 640× 480. Les résultats

pour 21 regroupements sont présentés dans la Figure 3.18. En plus, on considère

le cas où au lieu d’avoir beaucoup de caméras avec une résolution moyenne, on a

une quantité moyenne de caméras à haute resolution. Dans la séquence fontaine

il y a 11 caméras à 3072 × 2048. Dans la reconstruction par sous-parties, on a

considéré 4 regroupement. On a utilisé le regroupement sur la géométrie et on a

généré des caméras virtuelles en prenant compte la boite délimitante de tous les

points de chaque encadrement projeté. Les résultats sont montrés dans la Fig-

ure 3.19.

6http://vision.middlebury.edu/mview/eval/



3.5 Descripteur 3-D sur les maillages 45

3.5 Descripteur 3-D sur les maillages

Dans cette section, un nouveau descripteur en 3 dimensions est proposé, défini sur

des maillages triangulaires échantillonnés de façon uniforme. Ce descripteur est

invariant en rotation, translation et échelle et permet de capturer les informations

géométriques et photométriques locales. Il est particulièrement utile dans un envi-

ronnement multi-caméra, où les maillages reconstruits sont dotés avec la couleur /

texture. De plus, le descripteur est défini d’une manière générique pour une fonc-

tion quelconque, définie sur la surface (i.e. la couleur, la courbure). Des résultats

de correspondance rigide et non rigide sont présentés. Finalement, le descripteur

est intégré dans un cadre de suivi temporel dense du maillage.

3.5.1 Méthode

On considère un maillage triangulaire échantillonné de manière uniforme et une

fonction scalaire f(v) quelconque définie sur les sommets v de la surface S. La

fonction peut représenter differents type d’information, comme la couleur (dans

un contexte multi-caméras) ou la courbure moyenne.

On introduit l’opération de convolution (avec un noyau gaussien) de la fonc-

tion f , defini sur le maillage. Le gradient local directionnel de la fonction et le

gradient local moyen de la la fonction f dans le voisinage d’un sommet v sont

aussi définis.

Détecteur de points d’intérêt

On adopte et on adapte le formalisme d’espace d’échelle sur les maillages réguliers

en utilisant l’opération de convolution. Les points d’intérêt considérés sont les

extrémités de l’espace d’échelle. Un seuil est mis en place pour garder les 5%
extrémités les plus importantes . Ultérieurement, les extrémités sont filtré par un

détecteur de coins, en calculant la matrice hessienne des dérivées partielles sec-

ondaires, pour garder les points d’intérêt les plus stables. Un exemple est présenté

dans la Figure 3.20.

Le Descripteur

Le descripteur est une adaptation sur les maillages des descripteurs HOG (His-

togram of Oriented Gradient) [33] ou SIFT(Shift Invariant Feature Transform)

[97], définis sur des images.
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Le descripteur proposé, nommé MeshHOG, est défini sur le maillage pour un

sommet v et un voisinage contenant rn anneaux autour de v. Comme dans le cas

de HOG, l’idée principale est de calculer des histogrammes des gradients locaux

en gardant un niveau de support spatial. Comme dans notre scénario les gradients

locaux sont des vecteurs 3-D, les histogrammes sont aussi définis en 3-D.

Mise en correspondance

On considère deux surfaces a mettre en correspondance pour lesquelles on a cal-

culé les points d’intérêt et les descripteurs associés. Pour chaque descripteur de

la première surface on calcule la distance de tous les descripteurs de l’autre sur-

face, en gardant les deux meilleurs résultats. On considère un seuil minimal sur

le rapport entre les deux meilleures distances, pour imposer une discrimination

minimale.

3.5.2 Résultats

Quelques résultats sont présentés dans la Figure 3.22, où des maillages rigides,

obtenus par des reconstructions 3-D, sont mis en correspondance. Différentes

mesures de qualité, illustrées dans la Figure 3.21, peuvent être utilisées pour la

détection de points d’intérêt et pour le descripteur.

Intégration avec une procédure de suivi de maillage dense

On a aussi integré le descripteur MeshHOG avec une procédure de suivi de mail-

lage dense, qui a été décrit dans [160]. Quelques résultats sont présentés dans la

Figure 3.23.

3.6 Conclusion

Dans cette thèse nous avons proposé de nouvelles solutions pour chacun des com-

posants d’un système de reconstruction spatiale et temporelle à partir des plusieurs

caméras: l’étalonnage de caméras et reconstruction spatiale éparse, la reconstruc-

tion spatiale dense, la reconstruction temporelle éparse et la reconstruction tem-

porelle dense.
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(a) Images d’entrée (3000 × 2000)

(b) Vue d’ensemble

(c) Vue de près (d) Vue d’en haut

Figure 3.11: Résultats obtenus pour la séquence Leuven. Les triangles invis-

ibles sont maintenus fixes, comme on peut observer en (d), ce qui fait que la

représentation reste la plus compacte possible.
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(a) Vue d’ensemble

(b) Vue 1 - texturé (c) Vue 1 - blanc (d) Vue 1 - courbure

(e) Vue 2 - texturé (f) Vue 2 - blanc (g) Vue 2 - courbure

Figure 3.12: Résultats pour la séquence Staty.
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Dino Temple Box Dinausor

Figure 3.13: Résultats de reconstructions dénse montrant le lien avec la section

précédente. Ligne en haut: Exemples des images d’entrée; Ligne au milieu: un

maillage brut obtenu en utilisant PowerCrust [12] avec des points éparses 3-D

qui sont la solution de l’algorithme de factorisation perspective robuste proposé

dans la section précédante. Ligne en bas: reconstructions finales obtenus avec la

méthode proposés dans cette section.
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Regroupement de caméras

1 On détermine une matrice de visibilité ∆ de points :

a) en obtenant une reconstruction 3-D éparse et en projetant tous les

sommets dans les images en prenant compte de la visibilité

b) en trouvant des points d’intérêt et en les mettant en correspondance

au moyen d’un descripteur (i.e. SIFT [97]), comme il a déjà été

proposé en [146]

∆ =








β1,1 β1,2 · · · β1,Nc

β2,1 β2,2 · · · β2,Nc

...
...

. . .
...

βNv ,1 βNv ,2 · · · βNv ,Nc








où Nv est le nombre de sommets et Nc est le nombre de caméras.

2 On obtient des regroupements de caméras en faisant un regroupe-

ment k-means [17] sur les lignes ou les colonnes de matrice ∆.

3 Pour chaque regroupement de caméras, on fait une reconstruction

3-D à haute résolution en gardant les sommets invisibles fixes et en

minimisant seulement les parties visible pour ce regroupement.

Figure 3.14: Méthode de regroupement de caméras
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Figure 3.15: Example de regroupement de caméras à partir des caméras en util-

isant deux ensembles de données, dino et temple, avec 2 et 3 regroupements.
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Figure 3.16: Example de regroupement de caméras à partir de la géométrie en

utilisant deux ensembles de données, dino et temple, avec 2 et 3 regroupements.
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Figure 3.17: Exemple de cas Dino et Temple. La ligne en haut: regroupement des

caméras; la ligne au milieux et la ligne en bas: des reconstructions partielles. Les

sommets invisibles pour chaque regroupement sont présentés en rouge pâle.



54 Chapter 3: Extended Abstract (French)

Figure 3.18: Résultats avec 21 regroupements de la reconstruction de la séquence

du parthenon avec 200 caméras de résolution 640 × 480.
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Figure 3.19: Résultats avec 4 regroupements de la reconstruction de la séquence

de la fontaine avec 11 caméras de résolution 3072× 2048. Des caméras virtuelles

sont générées pour chaque regroupement en projetant les points de la reconstruc-

tion éparse et prenant en compte de la boite délimitante.
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(a) Surface de depart (b) Détection des extremes

(c) 5% les plus grandes extrêmes (d) Coins

Figure 3.20: Les étapes pour trouver les points d’intérêt. La qualité utilisée est

la couleur. Le maillage original a 27240 sommets. Le détecteur des extrémités

trouve 5760 points. En mettant en place un seuil qui garde les 5% plus importants

parmi les sommets, il reste1360 sommets. Après considération des coins, il reste

650 sommets.
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(a) Couleur (b) Courbure moyenne (c) Courbure Gaussiene

(d) Gradient de la couleur (e) Gradient de la courbure

moyenne

(f) Gradient de la courbure

Gaussienne

Figure 3.21: Différentes mesures de qualité pour le Dino.
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(a) Dino - Correspondances
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(d) Temple - Erreurs

Figure 3.22: a) Résultats de mise-en-correspondance pour les cas ou la couleur

a été utilisé pour la détection de points d’intérêt et pour le descripteur ; b) La

distribution d’erreur quand différentes mesures de qualité ont été utilisées pour la

détection de points d’intérêt et pour le descripteur.
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(a) Mise-en-correspondance épars (b) Mise-en-correspondance dense

Figure 3.23: Résultats sur la séquence INRIA Dance-1: Trames 515 - 530
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Chapter 4

Robust Probabilistic Factorization

In this chapter we address the problem of building a class of robust factorization

algorithms that solve for the shape and motion parameters with both affine (weak

perspective) and perspective camera models. We introduce a Gaussian/uniform

mixture model and its associated EM algorithm. This allows us to address param-

eter estimation within a data clustering approach. We propose a robust technique

that works with any affine factorization method and makes it resilient to outliers.

In addition, we show how such a framework can be further embedded into an

iterative perspective factorization scheme. We carry out a large number of experi-

ments to validate our algorithms and to compare them with existing ones. We also

compare our approach with factorization methods that use M-estimators.

4.1 Introduction

The problem of factorization can be formulated as the one of minimizing the fol-

lowing Frobenius norm:

θ∗ = arg min
θ

‖S − Ŝ(θ)‖2
F (4.1)

where matrix S = [sij] denotes the measurement matrix containing matched 2-D

image observations, Ŝ(θ) = MP denotes the prediction matrix that can be fac-

torized into the affine motion matrix M and the affine shape matrix P. Hence, we

denote by θ the affine motion and shape parameters collectively. In the error-free

case, direct factorization of the observation matrix using SVD provides an optimal

solution. More recently the problem of robust affine factorization has received a

lot of attention and powerful algorithms that can deal with noisy, missing, and/or

erroneous data were suggested.

61
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Anandan & Irani [13] extended the classical SVD approach to deal with the

case of directional uncertainty. They used the Mahalanobis norm instead of the

Frobenius norm and they reformulated the factorization problem such that the

Mahalanobis norm can be transformed into a Frobenius norm. This algorithm

handles image observations with covariance up to a few pixels but it cannot cope

with missing data, mismatched points, and/or outliers. More generally, a central

idea is to introduce a weight matrix W of the same size as the measurement matrix

S. The minimization criterion then becomes:

θ∗ = arg min
θ

‖W ⊗ (S − Ŝ(θ))‖2
F (4.2)

where ⊗ denotes the Hadamard product (A = B ⊗ C ⇐⇒ aij = bijcij)

and W = [wij] is a matrix whose entries are weights that reflect the confidence

associated with each image observation. The most common way of minimizing

eq. (4.2) is to use alternation methods: these methods are based on the fact that, if

either one of the matrices M or P is known, then there is a closed-form solution for

the other matrix that minimizes eq. (4.2). Morris & Kanade [117] were the first to

propose such an alternation method. The PowerFactorization method introduced

by Hartley & Schaffalitzky [68], as well as other methods by Vidal & Hartley

[162], and Brant [23] fall into this category. PowerFactorization is based on the

PowerMethod for sparse matrix decomposition [61]. Notice that these techniques

are very similar in spirit with PCA methods with missing data, Wiberg [165],

Ikeuchi, Shum, & Reddy [145], Roweis [137], and Bishop [17]. Another way

to alternate between the estimation of motion and shape is to use factor analysis,

Gruber and Weiss [62], [63].

Alternatively, robustness may be achieved through adaptive weighting, i.e., by

iteratively updating the weight matrix W which amounts to modifying the data S,

such as is done by Aanaes et al. [1]. Their method uses eq. (4.1) in conjunction

with a robust loss function (see Stewart [150] and Meer [111] for details) to itera-

tively approximate eq. (4.2), getting a temporary optimum. The approximation is

performed by modifying the original data S such that the solution to eq. (4.1) with

modified data S̃ is the same as the solution to eq. (4.2) with the original data:

θ∗ = arg min
θ

‖W ⊗ (S − Ŝ(θ))‖2
F = arg min

θ
‖S̃ − Ŝ(θ))‖2

F (4.3)

In [1] the weights are updated via IRLS [150]. This may well be viewed as both

an iterative and an alternation method because the motion matrix M is estimated

using SVD, then the shape matrix P is estimated knowing M, while the image

residuals are calculated and the data (the weights) are modified, etc. A similar

algorithm that performs outlier correction was proposed by Huynh, Hartley, &

Heyden [76]. Indeed, if the observations are noisy, the influence of outliers can be
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decreased by iteratively replacing bad observations with “pseudo” observations.

The convergence of such methods, as [1] or [76] is not proved but is tested through

experiments with both simulated and real data.

An alternative to M-estimators are random sampling techniques developed in-

dependently in computer vision [46] and statistics [135] (see Meer [111] for a

recent overview of these methods). For example, Huynh & Heyden [77] and

Tardif et al. [155] use RANSAC, Trajkovic and Hedley use LMedS [157], and

Hajder and Chetverikov [67] use LTS (Least Trimmed Squares) [136]. The major

drawback of these methods is that they must consider a large number of subsets

sampled from the observation matrix S.

Generally speaking, robust regression techniques, such as the ones that we

briefly discussed, work well in conjunction with affine factorization algorithms.

Factorization was initially designed as a “closed-form solution” to multiple-view

reconstruction, but robust affine factorization methods are iterative in nature, as

explained above. This has several implications and some drawbacks. In the pres-

ence of a large number of outliers, proper initialization is required. The use of an

influence function (such as the truncated quadratic) that tends to zero too quickly

cause outliers to be ignored and hence, this raises the question of a proper choice

of an influence function. The objective function is non-convex implying that IRLS

will be trapped in local minima. The generalization of affine factorization to deal

with perspective implies the estimation of depth values associated with each re-

constructed point. This is generally performed iteratively [152], [32], [100], [101],

[116], [122]. It is not yet clear at all how to combine iterative robust methods with

iterative projective/perspective factorization methods.

In this chapter we cast the problem of robust factorization into the frame-

work of data clustering [48]. Namely, we consider the problem of classifying

the observed 2-D matched points into two categories: inliers and outliers. For

that purpose we model the likelihood of the observations with a Gaussian/uniform

mixture model. This leads to a maximum likelihood formulation with missing

variables that can be solved with the EM algorithm [37], [110], [48]. Notice that

this approach is different than the method proposed by Miller & Browning [115]

requiring both labeled and ulabeled data sets.

We devise an EM algorithm within the framework of 3-D reconstruction and

within the specific mixture model just outlined. Each EM step guarantees that

the likelihood is increased. Hence EM may indeed lead to a local maximum of

the likelihood. We show that in this particular case (normally distributed inliers

and uniformly distributed outliers) the posterior probabilities have a very simple

interpretation in terms of robust regression. We describe an affine factorization

algorithm that uses EM; This algorithm is robust and it shares the convergence
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properties just outlined. We also describe an extension of this algorithm to deal

with the perspective camera model.

We performed several experiments in two different scenarios: multiple-camera

calibration and 3-D reconstruction using turn-table data. Our method was com-

pared to other methods on an equal footing: it performs as well as bundle adjust-

ment to estimate external camera parameters. It performs better than IRLS (used

in conjunction with the truncated quadratic) to eliminate outliers in some difficult

cases.

The remainder of this chapter is organized as follows. Section 4.2 describes

the probabilistic modelling of inliers and outliers using a mixture between a Gaus-

sian and an uniform distribution. Section 4.3 explains how this probabilistic model

can be used to derive an affine factorization algorithm and section 4.4 extends

this algorithm to iterative perspective factorization. Sections 4.5 and 4.6 describe

experiments performed with multiple-camera calibration and with multi-view re-

construction data sets. Section 4.8 compares our approach to M-estimators and

section 4.9 draws some conclusions and gives some directions for future work.

4.2 Probabilistic modelling of inlier/outlier detection

The 2-D image points sij (1 ≤ i ≤ k, 1 ≤ j ≤ n) are the observed values of

an equal number of random variables sij . We introduce another set of random

variables, zij which assign a category to each observation. Namely there are two

possible categories, an inlier category and an outlier category. More specifically

zij = inlier means that the observation sij is an inlier while zij = outlier means

that the observation sij is an outlier.

We define the prior probabilities as follows. Let Ai be the area associated with

image i and we assume that all the images have the same area, Ai = A. If an

observation is an inlier, then it is expected to lie within a small circular image

patch a of radius σ0, a = πσ2
0 . The prior probability of an inlier is the proportion

of the image restricted to such a small circular patch:

P (zij = inlier) =
a

A
(4.4)

Similarly, if the observation is an outlier, its probability should describe the fact

that it lies outside this small patch:

P (zij = outlier) =
A − a

A
(4.5)
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Moreover, an observation sij , given that it is an inlier, should lie in the neigh-

borhood of an estimation ŝij . Therefore, we will model the probability of an

observation sij given that it is assigned to the inlier category with a Gaussian

distribution centered on ŝij and with a 2×2 covariance matrix C. We obtain:

Pθ(sij|zij = inlier) =
1

2π(det C)1/2
exp

(

−1

2
d2

C(sij, ŝij(θ))

)

(4.6)

where we denote by dC the Mahalanobis distance:

d2

C(sij, ŝij(θ)) = (sij − ŝij(θ))⊤C−1(sij − ŝij(θ)) (4.7)

Whenever the observation is an outlier, it may lie anywhere in the image. There-

fore, we will model the probability of an observation sij given that it is assigned

to the outlier category with a uniform distribution over the image area:

P (sij|zij = outlier) =
1

A
(4.8)

Since each variable zij can take only two values, marginalization is straight-

forward and we obtain:

Pθ(sij) = Pθ(sij|zij = inlier)P (zij = inlier) + P (sij|zij = outlier)P (zij = outlier)

=
a

2π(det C)1/2A
exp

(

−1

2
d2

C(sij, ŝij(θ))

)

+
A − a

A2
(4.9)

We already defined the small area a as a disk of radius σ0, a = πσ2
0 and we

assume that a ≪ A. Using Bayes’ formula1, we obtain the posterior conditional

probability of an observation to be an inlier. We denote this posterior probability

by αin
ij :

αin
ij = Pθ(zij = inlier|sij) =

1

1 + 2
σ2
0
(det C)1/2 exp

(
1
2
d2

C
(sij, ŝij(θ))

) (4.10)

The covariance matrix can be written as C = UΛU⊤ where U is a rotation

and Λ is a diagonal form with entries λ1 and λ2. Hence det(C) = λ1λ2. In order

to plot and illustrate the shape of αin
ij as a function of C we consider the case of

an isotropic covariance, i.e., λ1 = λ2 = σ2 and one may notice that the rotation

becomes irrelevant in this case. We have: C = σ2I2. Eq. (4.10) writes in this case:

αin
ij = Pθ(zij = inlier|sij) =

1

1 + 2σ2

σ2
0

exp
(

‖sij−ŝij(θ)‖2

2σ2

) (4.11)

1P (zij = inlier|sij)P (sij) = P (sij |zij = inlier)P (zij = inlier)



66 Chapter 4: Robust Probabilistic Factorization

This posterior probability is shown on Figure 4.1, i.e., the function fσ(x) = 1/(1+
σ2 exp(x2/2σ2)). Here σ takes discrete values in the interval [0.05, 5] and σ2

0 = 2,

i.e., inliers lie within a circle of radius 2 pixels centered on a prediction. It is

worthwhile to notice that, at the limit σ → 0, we obtain a Dirac function:

f0(x) =

{
1 if x = 0
0 if x 6= 0

(4.12)

-4.8 -4 -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 4 4.8

0.25

0.5

0.75

1

Figure 4.1: Various plots of the conditional posterior probability of an ob-

servation to be an inlier, i.e., fσ(x) = 1/(1 + σ2 exp(x2/2σ2)). This func-

tion corresponds to eq. (4.11) with σ2
0 = 2. As the variance decreases, i.e.,

σ = 5, 4, 3, 2, 1, 0.5, 0.25, 0.1, 0.05, the function becomes more and more dis-

criminant. It is worthwhile to notice that limσ→0 fσ(x) is a Dirac.

The posterior conditional probability of an observation to be an outlier is given

by:

αout
ij = Pθ(zij = outlier|sij) = 1 − αin

ij (4.13)

4.2.1 Maximum likelihood with inliers

The maximum likelihood estimator (ML) maximizes the log-likelihood of the

joint probability of the set of measurements, Pθ(S). Assuming that the obser-

vations are independent and identically distributed, we have:

Pθ(S) =
∏

i,j

Pθ(sij) (4.14)
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Since we assume that all the observations are inliers, eq. (4.9) reduces to:

Pθ(sij) = Pθ(sij|zij = inlier) (4.15)

The log-likelihood of the joint probability becomes:

log Pθ(S) = −1

2

∑

i,j

(

d2

C(sij, ŝij(θ)) + log(det C)

)

+ const (4.16)

which can be written as the following criterion:

QML =
1

2

∑

i,j

(

(sij − ŝij(θ))⊤C−1(sij − ŝij(θ)) + log(det C)

)

(4.17)

The shape and motion parameters can be estimated by minimizing the above

criterion with respect to θ:

θ∗ = arg min
θ

1

2

∑

i,j

(sij − ŝij(θ))⊤C−1(sij − ŝij(θ)) (4.18)

Once an optimal solution is found, i.e., θ∗, it is possible to minimize eq. (4.17)

with respect to the covariance matrix which yields (see appendix A.1):

C∗ =
1

m

∑

i,j

(sij − ŝij(θ
∗))(sij − ŝij(θ

∗))⊤ (4.19)

where m = kn is the total number of observations for k images and n 3-D

points.

Alternatively, if one uses an isotropic covariance, i.e., C = σ2I, By minimiza-

tion of QML with respect to θ we obtain:

θ∗ = arg min
θ

1

2

∑

i,j

‖sij − ŝij(θ))‖2 (4.20)

The optimal variance is given by (see appendix A.2):

σ2∗ =
1

2m

∑

i,j

‖sij − ŝij(θ
∗))‖2 (4.21)
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4.2.2 Maximum likelihood with inliers and outliers

In the presence of outliers, the previous method cannot be applied. Instead, one

has to use the joint probability of the observations and of their assignments. Again,

by assuming that the observations are independent, we have:

Pθ(S, Z) =
∏

i,j

Pθ(sij, zij)

=
∏

i,j

Pθ(sij|zij)P (zij)

=
∏

i,j

(
Pθ(sij|zij = inlier)P (zij = inlier)

)δin(zij)

(
P (sij|zij = outlier)P (zij = outlier)

)δout(zij)
(4.22)

The random variables δin(zij) and δout(zij) are defined by:

δin(zij) =

{
1 if zij = inlier

0 otherwise
δout(zij) =

{
1 if zij = outlier

0 otherwise

By taking the logarithm of the above expression and grouping constant terms,

we obtain:

log Pθ(S, Z) =
∑

i,j

(
δin(zij) log(Pθ(sij|zij = inlier))

+ δout(zij) log(Pθ(sij|zij = outlier)) + const
)

(4.23)

This cannot be solved as previously because of the presence of the missing

assignment variables zij . Therefore, they will be treated within an expectation-

maximization framework. For this purpose we evaluate the conditional expecta-

tion of the log-likelihood over the random variables zij , given the observations

S:

EZ

[
log(Pθ(S, Z))|S

]
=

∑

i,j

(
log(Pθ(sij|zij = inlier))EZ [δin(zij)|S]

+ log(P (sij|zij = outlier))EZ [δout(zij)|S]
)

(4.24)
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In this formula we omitted the constant terms, i.e., the terms that do not depend

on the parameters θ and C. The subscript Z indicates that the expectation is taken

over the random variable z. From the definition of δin(zij) we have:

E[δin(zij)] = δin(zij = inlier)P (zij = inlier) + δin(zij = outlier)P (zij = outlier)

= P (zij = inlier)

Hence:

EZ [δin(zij)|S] = P (zij = inlier|S) = P (zij = inlier|sij) = αin
ij

and:

EZ [δout(zij)|S] = 1 − αin
ij

Therefore, after removing constant terms, the conditional expectation becomes:

EZ

[
log(Pθ(S, Z))|S

]
= −1

2

∑

i,j

αin
ij

(

d2

C(sij, ŝij(θ)) + log(det C)

)

(4.25)

This leads to the following criterion:

QEM =
1

2

∑

i,j

αin
ij

(

(sij − ŝij(θ))⊤C−1(sij − ŝij(θ) + log(det C)

)

(4.26)

4.3 Robust affine factorization with the EM algo-

rithm

In this section we provide the details of how the robust affine factorization problem

can be solved iteratively by maximum likelihood via the expectation-maximization

(EM) algorithm [37], and how the observations can be classified into either inliers

or outliers by maximum a-posteriori (MAP).

By inspection of equations (4.17) and (4.26) one may observe that the latter is

a weighted version of the former and hence our formulation has strong simililari-

ties with M-estimators and their practical solution, namely iteratively reweighted

least-squres (IRLS) [150]. Nevertheless, the weights ωij = αin
ij were obtained

using a Bayesian approach: they correspond to the posterior conditional probabil-

ities of the observations (i.e., given that they are inliers), and such that the equality

αin
ij + αout

ij = 1 holds for each observation. The structure and the shape of these

posteriors are depicted by equations (4.10) and (4.11) and shown on Figure 4.1.
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These probabilities are functions of the residual but they are parameterized as

well by the 2×2 covariance matrix C associated with the normal probability dis-

tribution of the observations: One advantage of our formulation over IRLS is that

this covariance is explicitly taken into consideration and estimated within the EM

algorithm.

It is worthwhile to remark that the minimization of eq. (4.18) over the affine

shape and motion parameters, i.e., θ, can be solved using an affine camera model

and a factorization method such that the ones proposed in the literature [1, 68]. In

practice we use the PowerFactorization method proposed in [68]. The minimiza-

tion of eq. (4.26) can be solved in the same way, provided that estimates for the

posterior probabilities αin
ij are available. This can be done by iterations of the EM

algorithm:

• The E-step computes the conditional expectation over the assignment vari-

ables associated with each observation, i.e., eq. (4.25). This requires a cur-

rent estimate of both θ and C from which the αin
ij s are updated.

• The M-step maximizes the conditional expectation or, equivalently, mini-

mizes eq. (4.26) with fixed posterior probabilities. This is analogous, but

not identical, with finding the means µij and a common covariance C of

m = kn Gaussian distributions, with µij = ŝij(θ). Nevertheless, the

means µ = {µ11, . . . ,µkn} are parameterized by the global variables θ. For

this reason, the minimization problem needs a specific treatment (unlike the

classical mixture of Gaussians approach where the means are independent).

Therefore minµ QEM in the standard EM method must be replaced by minθ QEM

and it does depend on C in this case:

θ∗ = arg min
θ

1

2

∑

i,j

αin
ij (sij − ŝij(θ))⊤C−1(sij − ŝij(θ)) (4.27)

Moreover, the covariance that minimizes eq. (4.26) can be easily derived from

[17] and Appendix A.1:

C∗ =
1

∑

i,j αin
ij

∑

i,j

αin
ij (sij − ŝij(θ

∗))(sij − ŝij(θ
∗))⊤ (4.28)

In many practical situations it is worthwhile to consider the case of an isotropic

covariance, in which case the equations above reduce to:

θ∗ = arg min
θ

1

2

∑

i,j

αin
ij ‖sij − ŝij(θ))‖2 (4.29)
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and

σ2∗ =
1

2
∑

i,j αin
ij

∑

i,j

αin
ij ‖sij − ŝij(θ

∗))‖2 (4.30)

This may well be viewed as a special case of model-based clustering [48]. It

was proved [110] that EM guarantees convergence, i.e., that Qq+1
EM < Qq

EM , where

the overscript q denotes the qth iteration, and that this implies the maximization of

the joint probability of the observations: Pθ(S)q+1 > Pθ(S)q. To conclude, the

algorithm can be paraphrased as follows:

Affine factorization with EM:

Initialization: Use the PowerFactorization method to minimize

eq. (4.18). This provides initial estimates for θ (the affine shape and mo-

tion parameters). Estimate C (the covariance matrix) using eq. (4.19).

Iterate until convergence

Expectation: Update the values of αin
ij according to eq. (4.10) or

eq. (4.11).

Maximization: Minimize QEM over θ (affine factorization) using

either eq. (4.27) or eq. (4.29). Compute the covariance C with

eq. (4.28) or the variance σ2 with eq. (4.30).

Maximum a posteriori: Once the EM iterations terminate, choose in

between inlier and outlier for each observation, i.e., max{αin
ij ; αout

ij }.

The algorithm needs initial estimates for the shape and motion parameters

from which an initial covariance matrix can be estimated. This guarantees that,

at the start of EM, all the residuals have equal importance. Nevertheless, “bad”

observations will have a large associated residual and, consequently, the covari-

ance is proportionally large. As the algorithm proceeds, the covariance adjusts to

the current solution while the posterior probabilities αin
ij become more and more

discriminant as depticted on Figure 4.1. Eventually, observations associated with

small residuals will be classified as inliers, and observations with large residuals

will be classified as outliers.
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The overall goal of 3-D reconstruction consists of the estimation of the shape

and motion parameters: As just explained, we embed affine reconstruction in the

M-step. Therefore, with our algorithm, robustness stays outside the factorization

method at hand – is it iterative or not – and hence one can plug into EM any

factorization procedure.

4.4 Robust perspective factorization

In this section we address the problem of 3-D reconstruction using instrinsically

calibrated cameras. Moreover, we consider both the weak-perspective and the

perspective camera models, and we explain how the affine solution provided by

factorization can be upgraded to Euclidean reconstruction. We describe an algo-

rithm that combines the EM affine factorization algorithm described above with

an iterative perspective factorization algorithm [32, 173]. This results in a ro-

bust method for solving the 3-D Euclidean reconstruction problem as well as the

multiple-camera calibration problem.

An image point s = (x, y) is the projection of a 3-D point X̃:

xij =
r

x
i · X̃j + txi

rz
i · X̃j + tzi

=
a

x
i · X̃j + bx

i

εij + 1
(4.31)

yij =
r

y
i · X̃j + tyi

rz
i · X̃j + tzi

=
a

y
i · X̃j + by

i

εij + 1
(4.32)

We introduced the following notations: The rotation matrix R⊤
i = [rx

i r
y
i r

z
i ]

and the translation vector t⊤i = (txi tyi tzi ) correspond to the motion parameters

and they are also denoted the external camera parameters. Dividing the above

equations with the depth tzi we obtain a similar set of scaled equations. We have:

a
x
i = r

x
i /t

z
i , a

y
i = r

y
i /t

z
i , bx

i = txi /t
z
i and by

i = tyi /t
z
i .

We denote by εij the perspective distorsion parameters, namely the following

ratios:

εij =
r

z
i · X̃j

tzi
(4.33)

Finally, the perspective equations, i.e., eqs. (4.31) and (4.32) can be written

as:

sij(1 + εij) = AiXj (4.34)

where X = (X̃, 1) and Ai denotes the following 2×4 matrix:

Ai =

[
ax

i bx
i

a
y
i by

i

]

(4.35)
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From now on we can replace the parameter vector θ with the affine shape

and motion parameters, namely the point set X = {X1, . . . Xj, . . . Xk} and the

matrix set A = {A1, . . . Aj, . . . An}. Using these notations, eq. (4.27) can now be

written as:

min
A,X

1

2

∑

i,j

αin
ij (sij(1 + εij) − AiXj)

⊤C−1(sij(1 + εij) − AiXj) (4.36)

which can be solved via the EM affine factorization algorithm with εij = 0,∀(i, j).
A weak-perspective camera model can then be used for upgrading to Euclidean

reconstruction.

The introduction of the perspective camera model adds non null perspective-

distorsion parameters εij , i.e., eq. (4.33). One fundamental observation is the

following: if estimates for the parameters εij,∀i ∈ [1 . . . k],∀j ∈ [1 . . . n] are

available, then this corresponds to a weak-perspective camera model that is closer

to the true perspective model. If the true values of the perspective-distortion pa-

rameters are available, the corresponding weak-perspective model corresponds

exactly to the perspective model. Hence, the problem reduces to affine factoriza-

tion followed by Euclidean upgrade. Numerous iterative algorithms have been

suggested in the literature for estimating the perspective-distortion parameters as-

sociated with each 2-D observation, both with uncalibrated and calibrated cam-

eras [152], [32], [100], [101], [116], [122] to cite just a few. One possibility is

to perform weak-perspective iterations. Namely, the algorithm starts with a zero

perspective distorsion (or weak-perspective approximation) and then, at each it-

eration, it updates the perspective distorsions using eq. (4.33). To conclude, the

robust perspective factorization algorithm can be summarized as follows:

Robust perspective factorization:

Initialization: Set εij = 0,∀i ∈ [1 . . . k],∀j ∈ [1 . . . n]. Use the same

initialization step as the affine factorization with EM algorithm.

Iterate until convergence:

Affine factorization with EM: Iterate until convergence the E- and

M-steps of the algorithm described in the previous section.

Euclidean upgrade: Recover the rotations, translations, and 3-D

Euclidean coordinates from the affine shape and affine motion pa-

rameters.
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Perspective update: Estimate new values for the parameters

εij,∀i ∈ [1 . . . k],∀j ∈ [1 . . . n]. If the current depth values are

identical with the previously estimated ones, then terminate, else

iterate.

Maximum a posteriori: After convergence choose in between inlier and

outlier for each observation, i.e., max{αin
ij ; αout

ij }.

4.5 Multiple-camera calibration

In this section we describe how the solution obtained in the previous section is

used within the context of multiple-camera calibration. As already described

above, we are interested in the estimation of the external camera parameters, i.e.,

the alignment between a global reference frame (or the calibration frame) and the

reference frame associated with each one of the cameras. We assume that the inter-

nal camera parameters were accurately estimated using available software. There

are many papers available that address the problem of internal camera calibration

either from 3-D reference objects [45], 2-D planar objects [175], 1-D objects [176]

or self-calibration, e.g., from point-correspondences [98], [69], [99].

Figure 4.2 shows a partial view of a multiple-camera setup as well as the one-

dimensional object used for calibration. In practice we used three different camera

configurations as depicted in Figure 4.4: two 30 camera configurations and one

10 camera configuration. These camera setups will be referred to as the Corner

Case, the Arc Case, and the Semi-Spherical Case. Finding point correspondences

accross the images provided by such a setup is an issue in its own right because

one has to solve for a multiple wide-baseline point correspondence problem. We

will briefly describe the practical solution that we retained and which maximizes

the number of points that are matched over all the views. Nevertheless, in prac-

tice there are missing observations as well as badly detected image features, bad

matches, etc. The problem of missing data has already been addressed. Here we

concentrate on the detection and rejection of outliers.

We performed multiple camera calibration with two algorithms: The robust

perspective factorization method previously described and bundle adjustment. We

report a detailed comparison between these two methods. We further compare our

robust method with a method based on M-estimators.
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(a) (b)

Figure 4.2: (a): Partial view of a 30-camera setup. (b): The calibration data are

gathered by moving a one-dimensional object in the common field of view of the

cameras.

As already mentioned, we use a simple 1-D object composed of four identi-

cal markers with known 1-D coordinates. These coordinates form a projective-

invariant signature (the cross-ratio) that is used to obtain 3-D to 2-D matches

between the markers and their observed image locations. With finely syncronized

cameras it is possible to gather images of the object while the latter is freely moved

in order to cover the 3-D space that is commonly viewed by all cameras. In the

three examples below we used 73, 58, and 32 frames, i.e., 292, 232, and 128 3-

D points. The number of cameras in each setup is 30, 30 and 10, respectively.

Therefore, in theory there should be 8760, 6960, and 1280 2-D observations.

Figure 4.3 depicts three possible image configurations: (a) four distinct con-

nected components that correspond without ambiguity to the four markers, (b) a

degenerate view of the markers, due to strong perspective distorsion, that results

in a number of connected components that cannot be easily matched with the four

markers, and (c) only two connected components are visible in which case one

cannot establish a reliable match with the four markers. In practice we perform a

connected-component analysis that finds the number of blobs in each image. Each

such blob is characterized by its center and second order moments, i.e., Figure 4.3

(d), (e), and (f). These blobs are matched with the object markers. In most of the

cases the match is unambiguous, but in some cases a blob may be matched with

several markers.

Let as before, sij denote the center of a blob from image i that matches marker

j. The second order moments of this blob can be used to compute an initial 2×2

covariance matrix C0
ij for each such observation. Moreover, we introduce a binary

variable, µij , which is equal to 0 if the observation sij is missing and equal to 1
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Figure 4.3: Top: These are typical images where the number of connected compo-

nents depend on the position and orientation of the calibrating object with respect

to the cameras. Bottom: Detected blobs with their centers and associated covari-

ance, i.e., second-order moments.

otherwise. The multiple-camera calibration algorithm can now be paraphrased as

follows:

Multiple camera calibration:

Initialization: Use eq. (4.18) to estimate the current affine shape and

motion parameters in the presence of some missing data:

θq = arg min
θ

1

2

∑

i,j

µij(sij − ŝij(θ))⊤(C0
ij)

−1(sij − ŝij(θ))

Estimate the initial covariance matrix using eq. (4.19):

Cq =
1

m

∑

i,j

µij(sij − ŝij(θ
q))(sij − ŝij(θ

q))⊤

Set εij = 0,∀i ∈ [1 . . . k],∀j ∈ [1 . . . n]

Iterate until convergence:
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Affine factorization with EM: Iterate until convergence the E- and

M-steps of the algorithm described in section 4.3.

Euclidean upgrade: Recover the rotations, translations, and 3-D

Euclidean coordinates from the affine shape and affine motion pa-

rameters.

Perspective update: Estimate new values for the parameters

εij,∀i ∈ [1 . . . k],∀j ∈ [1 . . . n]. If the current depth values are

identical with the previously estimated ones, terminate, else iter-

ate.

Both the initialization and the M steps of the above algorithm perform affine

factorization in the presence of uncertainty and missing data. In [173] we com-

pared several such algorithms and we came to the conclusion that the PowerFac-

torization [68] algorithm outperforms the other tested algorithms. This is what

we will be using in order to solved the affine factorization in the presence of un-

certainty and missing data. For more details about the method, please consult

Appendix A.3.

In order to assess quantitatively the performance of our algorithm, we com-

pared it with an implementation of the bundle adjustment method along the lines

described in [69]. This comparison requires the estimation of the rotations and

translations allowing the alignment of the two reconstructed 3-D sets of points

with the cameras. We estimate these rotations and translations using a set of

control points. Indeed, both the robust perspective factorization and the bundle

adjustment algorithms need a number of control points with known Euclidean 3-

D coordinates. In practice, the calibration procedure provides such a set. This set

of control points allows one to define a global reference frame. Let P c
j denote

the 3-D coordinates of the control points estimated with our algorithm, and let Qc
j

denote their 3-D coordinates provided in advance. Let λ, R, and t be the scale,

rotation and translation allowing the alignment of the two sets of control points.

We have:

min
λ,R,t

8∑

j=1

‖λRQc
j + t − P c

j‖2 (4.37)

The minimizer of this error function can be found in closed form either with unit

quaternions [74] to represent the rotation R or with dual-number quaternions [164]
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to represent the rigid motion R, t. Similarly, one can use the same procedure

to estimate the scale λ′, rotation R′, and translation t′ associated with the 3-D

reconstruction obtained by bundle adjustment.

Finally, in order to evaluate the quality of the results we estimated the follow-

ing measurements:

The 2D error is measured in pixels and corresponds to the RMS error between

the observations and the predictions weighted by their posterior probabili-

ties:
(∑

i,j αin
ij ‖sij − ŝij(θ

∗)‖2

∑

i,j αin
ij

)1/2

The 3D error is measured in milimeters and corresponds to the RMS error be-

tween the two sets of 3-D points obtained with our algorithm and with bun-

dle adjustment:
(∑n

j=1 ‖P j − P ′
j‖2

n

)1/2

The error in rotation is measured in degrees and depicts the average angular

error of the rotation matrices over all the cameras. With the same notations

as before, let Ri and R′
i be the rotations of camera i as obtained with our

algorithm and with bundle adjustment. Let v be an arbitrary 3-D vector.

The dot product (Riv) · (R′
iv) is a reliable measure of the cosine of the

angular discrepancy between the two estimations. Therefore the RMS error

in rotation can be measured by the angle:

arccos




180

π

√

v⊤
(∑k

i=1 R⊤
i R′

i

)
v

k





The error in translation is measured in milimeters with:

(∑k
i=1 ‖ti − t′i‖2

k

)1/2

As already mentioned, we used three camera setups. All setups use identical

1024×768 Flea cameras from Point Grey Research Inc.2 The intrinsic parameters

were estimated in advance. Two of the setups use 30 cameras, whereas the third

2http://www.ptgrey.com/products/flea/

http://www.ptgrey.com/products/flea/
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one uses 10 cameras. We denote these setups as Corner Case, Arc Case and

Semi-Spherical Case, based on the camera layout.

The results are summarized on Figures 4.4 and 4.5 and on Tables 4.1 and 4.2.

Let us analyze in more detail these results. In the Corner Case there are 30 cam-

eras and 292 3-D points. Hence, there are 8760 possible predictions out of which

only 5527 are actually observed, i.e., 36% predictions correspond to missing 2-D

data. The algorithm detected 5202 2-D inliers. An inlier is an observation with

a posterior probability greater than 0.4. Next, the outliers are marked as missing

data. Eventually, in this example, 285 3-D points were reconstructed (out of a to-

tal of 292) and all the cameras were correctly calibrated. The number of iterations

of the robust perspective factorization algorithm (refered to as affine iterations) is

equal to 7. On an average, there were 2.4 iterations of the EM algorithm. The

obtained reconstruction has a smaller 2-D reprojection error (0.30 pixels) than the

one obtained by bundle adjustment (0.58 pixels).

In any of the 3 calibration scenarios, the proposed method outperforms bundle

adjustment results, as it can be observed in Table 4.2. This is in part due to the

fact that the bundle adjustment algorithm does not have a mechanism for outlier

rejection.

Figure 4.5 shows the evolution of the algorithm as it iterates from a weak-

perspective solution to the final full-perspective solution. At convergence, the

solution found by our method (shown in blue or dark in the absence of colors) is

practically identical to the solution found by bundle adjustment (which is shown

in grey).

Multi-camera calibration Corner Case Arc Case Semi-Spherical Case

Input # Cameras 30 30 10

# 3-D Points 292 232 128

# 2-D Predictions 8760 6960 1280

# Missing observations 36% 0% 33%

# 2-D Observations 5527 6960 863

Results # 2-D Inliers 5202 6790 784

# 3-D Inliers 285 232 122

2D error (pixels) 0.30 0.19 0.48

3D error (mm) 6.91 2.65 4.57

Rot. error (degrees) 0.13 0.18 0.27

Tr. error (mm) 27.02 9.37 24.21

# Aff. iter. (# EM iter.) 7 (2.4) 11 (2) 8 (3.2)

Table 4.1: Summary of the camera calibration results for the three setups.
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Figure 4.4: Multiple camera calibration results. Left: A typical set of 2-D ob-

servations associated with one camera. Middle: Reconstructed 3-D points with

our method (blue) and with bundle adjustment (grey). Right: Camera calibration

results obtained with our method (blue) and with bundle adjustment (grey) .

Multi-camera calibration Corner Case Arc Case Semi-Spherical Case

Proposed Method 0.30 0.19 0.48

Bundle Adjustment 0.58 0.61 0.95

Table 4.2: Comparison between the proposed method and bundle adjustment for

the three camera calibration setups. The error is measured in pixels and represents

the 2D error.
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Figure 4.5: Iterations of the robust perspective factorization algorithm in the Arc

Case and comparison with bundle adjustment. The first iteration corresponds to

weak-perspective factorization. The bundle adjustment solution is shown in grey.

The bundle adjustment solution does not perform outlier treatment.
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4.6 3-D Reconstruction

The robust perspective factorization algorithm was also applied to the problem

of 3-D reconstruction from multiple views. For this purpose we used images of

objects using a single camera and a turning table. More specifically, we used the

following data sets:

• The “Dino” and “Temple” data sets from the Middlebury’s evaluation of

Multi-View Stereo reconstruction algorithms;3

• The “Oxford dinausor” data set,4 and

• The “Square Box” data set.

We used the OpenCV5 pyramidal implementation of the Lucas & Kanade interest

point detector and tracker [21] to obtain the initial set of matched 2-D observa-

tions. This provides the 2k×n measurement matrix S as well as the missing-data

binary variables µij associated with each observation. Figure 4.6 and Table 4.3

summarize the camera calibration and reconstruction results. For both the Mid-

dlebury data sets (Dino and Temple) and for the Oxford data set (Dinausor) we

compared our camera calibration results with the calibration data provided with

the data sets, i.e., we measured the error in rotation and the error in translation

between our results and the data provided in advance.

3-D reconstruction Dino Temple Box Dinausor

Input # Views 12 16 64 36

Size of S matrix 24×480 32×758 128×560 72×1516

# 2-D predictions 5760 12128 35840 54576

% Missing observations 11% 21% 17% 85%

# 2-D Observations 5140 9573 29733 8331

Results # 2-D Inliers 3124 6811 25225 7645

# 3-D Inliers 370 720 542 1437

2D error (pixels) 0.82 0.93 0.69 0.33

Rot. error (degrees) 1.49 2.32 – 0.00

Trans. error (mm) 0.01 0.01 – 0.00

# Aff. iter. (# EM iter.) 7 (4) 7 (3.14) 9 (3) 7 (3.29)

Table 4.3: Summary of the 3-D reconstruction results for the four data sets.

3http://vision.middlebury.edu/mview/data/
4http://www.robots.ox.ac.uk/˜vgg/data/data-mview.html
5http://www.intel.com/technology/computing/opencv/

http://vision.middlebury.edu/mview/data/
http://www.robots.ox.ac.uk/~vgg/data/data-mview.html
http://www.intel.com/technology/computing/opencv/
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Figure 4.6: Groundtruth data is represented in gray (light) colour, whereas recon-

struction results are represented in blue (dark) colour.
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The first row in Table 4.3 introduces the test cases. The second row corre-

sponds to the number of views. The third and forth rows provide the size of the

measurement matrix based on the number of views and on the maximum number

of observations over all the views. The sixth row provides the number of actually

observed 2-D points while the seventh row provides the number of 2-D inliers (ob-

servations with a posterior probability greater than 0.4). The eighth row provides

the number of actual 3-D reconstructed points. One may notice that, in spite of

missing data and of the presence of outliers, the algorithm is able to reconstruct a

large percentage of the observed points. In the “Dino” and “Temple” example we

compared our camera calibration results with the groundtruth calibration param-

eters provided with the Middlebury multi-stereo dataset. Please note that these

datasets are made available without the groundtruth 3-D data. They are typically

used by the community to compare results for 3-D dense reconstructions. The

rotation error stays within 3 degrees. The translation error is very small because,

in this case we aligned the camera centers and not the 3-D coordinates of some

reconstructed points.

The results obtained with the Oxford “Dinausor” need some special com-

ments. Because of the very large percentage of missing data, we have been unable

to initialize the solution with the PowerFactorization method. Therefore, we pro-

vided the camera calibration parameters for initialization. However, this kind of

problem can be overcome by using an alternative affine factorization algorithm

[155].

4.7 Comparison between different affine factoriza-

tion algorithms

We have run several tests in order to compare the performances of different ex-

isting factorization algorithms. Before providing the list of algorithm, we would

like to make a small parenthesis, explaining the differences between a rank-3 and

a rank-4 formulation for the factorization problem.

Let us recall the equations (4.34) and (4.35) combined:

sij(1 + εij) =

[
ax

i bx
i

a
y
i by

i

]

︸ ︷︷ ︸

Ai(2×4)

[
X̃

1

]

︸ ︷︷ ︸

X(4×1)

We call this a a rank-4 factorization since, since the first matrix contains 4

columns. When stacking all the measurements across all cameras we obtain ma-

trices S = AX , where the last row of matrix X is all 1. This is a constraint that
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has to be explicitly taken into account by the factorization scheme and thus, not

all methods can provide it.

In order to obtain a rank-3 factorization, the image projections bi = (bx
i , b

y
i ) of

the world origin have to be subtracted from the point correspondences. This leads

to:

sij(1 + εij) − bi =

[
ax

i

a
y
i

]

︸ ︷︷ ︸

Ai(2×3)

[

X̃
]

︸ ︷︷ ︸

X(3×1)

In practice, it means that one needs to estimate the projections bi = (bx
i , b

y
i ) of

the world origin. That is typically not known in advance and it is done by taking

the average of all the projected points in each image. However, if not all points

are projecting in all the images, the estimation becomes less accurate. Therefore,

a rank-4 factorization is desirable, if the factorization algorithm can account for

the additional constraint.

We have tested a number of factorization algorithms within the proposed ro-

bust framework, both in the robust affine and the robust perspective factorization

setting. The algorithms tested are the following:

• SVD: the original algorithm proposed by Tomasi et al. [156], based on

singular value decomposition. Since the algorithm does not support missing

data, the empty entries are replaced with the average of the existing ones.

This is a rank-3 factorization algorithm.

• Power Factorization: the Power Factorization with Uncertainty algorithm,

proposed by Hartley [68], also detailed in the Appendix A.3. This is a rank-

4 factorization algorithm.

• Tardif: the batch matrix factorization algorithm proposed by Tardif et al.

[155]. This is a rank-4 factorization algorithm.

• Adaptive Weights: the robust factorization algorithm proposed by Aanæs

et al. [1]. This is a rank-3 factorization algorithm.

• Damped Newton: the Damped Newton algorithm proposed by Buchanan et

al. [29]. This is a rank-3 factorization algorithm. Even though it is consid-

ered a factorization algorithm, it is not a linear method. The minimization

contains a non-linear step.
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• Bundle Adjustment: a sparse bundle adjustment implementation, provided

by Lourakis et at. [96]. This is not a factorization algorithm, but a non-linear

minimization technique. Since the bundle adjustment needs an initial solu-

tion, it was always initialized using the affine PowerFactorization method.
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Figure 4.7: Behavior of various factorization algorithms when an increasing per-

centage of the input data are corrupted by high-amplitude noise, namely σ = 0.2
of the image size.

We present the results obtained in the Arc Case and Corner Case in Figure 4.7,

where we have progressively noised the matches with Gaussian noise (σ = 0.20 of

the image size). The PowerFactorization provides the best overall results among

the chosen methods. It is our method of choice used when presenting any of the

other results in this chapter.

4.8 Comparison with other methods

As already mentioned in section 4.3, our robust ML estimator has strong sim-

ilarities with M-estimators and their practical implementation, i.e., IRLS [150].

Previous work on robust affine factorization has successfully used the following

reweighting function φ that corresponds to the truncated quadratic:

φ(x) =

{
1 if |x| < k
√

k2

x2 otherwise
(4.38)

It is therefore tempting to replace the EM procedure of our algorithm with an

IRLS procedure, which amounts to replace the posterior probabilities of inliers
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αin
ij given by eq. (4.10) with the weights φij given by eq. (4.38). The latter tends

to zero most quickly allowing aggressive rejection of outliers. One caveat is that

the efficiency of IRLS depends on the tuning parameter k. Unfortunately, the

latter cannot be estimated within the minimization process as is the case with the

covariance matrix. However, we noted that the results that we obtained do not

depend on the choice of k. In all the experiments reported below, we used k = 1,

The plot of the truncated quadratic for different k values is plotted in Figure 4.8.
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Figure 4.8: Reweighting function for k = 0.1, 0.5, 1, 2, 5, 10.

We compared the two robust methods (our EM-based robust perspective fac-

torization algorithm and an equivalent IRLS-based algorithm) with five data sets

for which we had the ground truth: Three multiple-camera calibrations data sets

(the Corner Case, the Arc Case and the Semi-Spherical Case) and two multi-view

reconstruction data sets (Dino and Temple). The results of this comparison are

summarized in Table 4.4.

In the Corner case the quality of the results are very similar: our algorithm

accepted 94% of the total number of observations as inliers and reconstructed

99.3% of the total number of 3-D points, while IRLS accepted all the observations

as inliers and reconstructed all the 3-D points. Similar results are obtained in

the Arc and Semi-Spherical cases, where the proposed method performs slightly

better. Both algorithms were able to reconstruct the Dino and the Temple, but

our algorithm yields more accurate results. Outlier detection is summarized in

Table 4.5.

A more thorough comparison with robust as well as non robust 3-D recon-

struction methods is provided in Figure 4.9. The proposed algorithm is denoted

by ”Persp. Power Factorization (Bayesian)”, while the IRLS method is named

”Persp. Power Factorization (IRLS - Truncated Quadratic)” and the non-robust



88 Chapter 4: Robust Probabilistic Factorization

Dataset Method 2-D Inliers 3-D Inliers 2-D err. 3-D err. Rot. err. Trans. err.

Corner EM 5202 (5527) 285 (292) 0.30 6.91 0.13 27.02

IRLS 5526 (5527) 288 (292) 0.40 6.91 0.14 26.61

Arc EM 6790 (6960) 232 (232) 0.19 2.65 0.18 9.37

IRLS 6960 (6960) 232 (232) 0.22 2.54 0.16 8.78

Semi- EM 784 (863) 122 (128) 0.48 4.57 0.27 24.21

Spherical IRLS 862 (863) 128 (128) 0.62 4.66 0.29 23.91

Dino EM 3124 (5140) 370 (480) 0.82 – 1.49 0.01

IRLS 3411 (5140) 390 (480) 2.57 – 2.13 0.01

Temple EM 6811 (9573) 720 (758) 0.93 – 2.32 0.01

IRLS 7795 (9573) 731 (758) 1.69 – 2.76 0.03

Table 4.4: Comparison between robust perspective factorization results using EM

and IRLS. The figures in paranthesis correspond to the total number of obser-

vations (third column) and to the total number of expected 3-D points (fourth

column).

Corner Arc Semi-Spherical Dino Temple

EM 6% 2% 9% 39% 29%

IRLS 0% 0% 0% 34% 19%

Table 4.5: Percentage of outliers detected by the two algorithms.

method is called ”Persp. Power Factorization (Not Robust)”. Affine factorization

algorithms are also presented, together with the results of bundle adjustment. The

bundle adjustment method was always initialized using the PowerFactorization

method. The robust perspective factorization method proposed in this chapter

is the most resilient to high-amplitude noise. It generally performs better than

the IRLS method and provides a clear advantage against the non-robust methods,

which exit the graphs as soon as the noise level increases. As it can be observed,

in the Semi-Spherical Case, the solution deteriorates a lot faster in the presence

of noise, due to the lack of the redundancy in the data (128 3-D points and 10

cameras, versus 292 points and 30 cameras in the Corner Case and 232 points

and 30 cameras in the Arc Case).

Figure 4.10 compares our method (a), with the bundle adjustment method (b),

in the Arc Caseand when 20% of the input data was corrupted by high-amplitude

noise (σ = 0.20 of the image size). On both figures the ground truth is shown in

grey and the result of the algorithm is shown in blue (or dark in the absence of

color). Notice that with this level of data perturbation, bundle adjustment com-

pletely failed to find the correct solution.
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Figure 4.9: Behavior of various robust and non robust algorithms when an increas-

ing percentage of the input data are corrupted by high-amplitude noise, namely

σ = 0.2 of the image size.
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Figure 4.10: Calibration results in the Arc Case for (a) the proposed method and

for (b) bundle adjustment method, when 20% of the input data are corrupted with

high-amplitude noise, namely σ = 0.2 of the image size. The 2-D reprojection er-

ror is of 0.71 pixels for (a) and 15.84 pixels for (b). The groundtruth is represented

in gray.

4.9 Conclusions

In this chapter we described a robust factorization method based on data cluster-

ing and on the EM algorithm. First we recalled the classical maximum-likelihood

approach within which all the observations are supposed to be independent and

identically distributed. This amounts to classify all the observations in one clus-

ter – inliers. Next we considered a mixture model within which the likelihood

of the inlier class has a normal distribution and the likelihood of the outlier class

has a uniform distribution. This naturally leads to ML with missing variables

which is solved in practice via the Expectation-Maximization algorithm. We for-

mally derived the latter in the specific case of 3-D reconstruction and of a Gaus-

sian/uniform mixture; This allowed us to rely on EM’s convergence properties.

Moreover, we devised two shape and motion algorithms: (i) affine factoriza-

tion with EM and (ii) robust perspective factorization, the former residing in the

inner loop of the latter. These two algorithms are very general since they can

accomodate with any affine factorization and with any iterative perspective fac-

torization methods.

We performed extensive experiments with two types of data sets: multiple-

camera calibration and 3-D reconstruction. We compared the calibration results

of our algorithm with the results obtained using other methods such as the bundle

adjustment technique and IRLS. It is interesting to notice that there is almost no
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noticeable quantitative difference between our algorithm and a non-linear opti-

mization method such as bundle adjustment. The 3-D reconstruction results ob-

tained with a single camera and objects lying on a turntable are also very good.

Whenever possible, we compared our results with ground-truth data, such as the

external camera parameters provided by the Middlebury multi-view stereo data

set. In order to further assess the 3-D reconstruction results, we used the output

of the robust perspective factorization method, namely a cloud of 3-D points, as

input of a mesh-based reconstruction technique.

Our Gaussian/uniform mixture model and its associated EM algorithm may

well be viewed as a robust regression method in the spirit of M-estimators. We

compared our method with IRLS using a truncated quadratic loss function. The

results show that our method performs slightly better, although we believe that

these results are only preliminary. A thorough comparison between outlier detec-

tion using mixture models on one side, and robust loss functions on the other side

is a topic in its own right. In the future we plan to extend our method to deal the

more difficult problem of multiple-body factorization.
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Chapter 5

Mesh-Based Surface Evolution

In this chapter we explore a new mesh based solution to surface evolution. Nu-

merous shape modeling applications use surface evolution in order to improve

shape properties, such as appearance or accuracy. Both explicit and implicit rep-

resentations can be considered for that purpose. However, explicit mesh represen-

tations, while allowing for accurate and compact surface modelling, suffer from

the inherent problems of not being able to reliably deal with self-intersections

and topology changes. As a consequence, a majority of methods choose implicit

representations of surfaces, e.g. level set methods, that naturally overcome these

issues. Nevertheless, these methods rely on space discretizations which introduce

an unwanted precision-complexity trade-off. In this chapter we explore an ex-

plicit mesh-based evolution scheme that robustly handles topology changes and

removes self intersections, therefore overcoming the traditional limitations of this

type of approaches. To demonstrate its efficiency, we present results in the con-

text of mesh morphing, as well as multi-view stereo 3-D reconstruction, modeling

with real and noisy data obtained from images.

5.1 Introduction

In the process of modeling shapes, several applications resort to surface evolution

to improve shape properties. For instance, shape surfaces are evolved so that their

appearances are improved, as when smoothing shapes, or so that they best explain

given observations as in image based modeling. The interest arises in several fields

related to shape modeling: computer graphics, computer vision, medical imaging

and visualization among others. Surface evolution is usually formulated as an

optimization process that seeks for a surface with maximal energy with respect

93
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to the desired properties. To this aim, surfaces can be represented in different

ways, from implicit to explicit representations, and deformed in an iterative way

during optimization. Polygonal meshes, while being one of the most widely used

representation in shape modeling, turn out to be more problematic in evolution

schemes. The main reasons for that is the inherent difficulty to handle topological

changes and self-intersections that can occur during evolution. In this chapter, we

introduce a novel method and an intuitive and efficient algorithm that solves this

issue and allows for meshes to be deformed in a consistent way.

5.1.1 Related Works

Surface evolution has been widely studied over the last decades and two main di-

rections have been followed with respect to the representation which is considered

for surfaces: Eulerian and Lagragian methods.

Eulerian methods formulate the evolution problem as time variation over

sampled spaces, most typically fixed grids. In such a formulation, the surface,

also called the interface, is implicitly represented. One of the most successful

methods in this category, the level set method [123, 125], represents the inter-

face as the zero set of a function higher dimensional function. A typical function

used is the signed distance function of the explicit surface, discretized over the

volume. At each iteration the whole implicit function is moved. The explicit sur-

face is recovered by finding the 0-level set of the implicit function [94]. Such

an embedding within an implicit function allows to automatically handle topol-

ogy changes, i.e. merges or splits. In addition, such methods allow for an easy

computation of geometric properties, such as curvatures, and benefit from viscos-

ity solutions - continuos weak solutions that admit provably consistent numerical

schemes. These advantages explain the popularity of level set methods in com-

puter vision [124] as well as in other fields, such as computational fluid dynamics

[153] as well as computer animations of fluids [44]. Nevertheless, implicit repre-

sentations exhibit limitations resulting from the grid discretization. In particular,

the precision/complexity trade-off inherent to the grid has a significant impact on

the computational efficiency and the proposed narrow-band solutions [2] or oc-

tree based implementations [95] only partially overcome this issue. In addition,

as shown by Enright et al. [43], the level set method is strongly affected by mass

loss, smearing of high curvature regions and by the inability to resolve very thin

parts. Another objection is that level set methods are not appropriate for tracking

surface properties, such as color or texture coordinates, which can be desirable

in many image-based approaches (i.e. motion tracking). Thus, while providing a
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solution for the intersection and topological issues within surfaces, implicit rep-

resentations introduce a new set of issues for which careful solutions need to be

crafted.

Lagrangian methods propose an approach where surfaces have explicit rep-

resentations which are deformed over time. Such representations, meshes for

instance, present numerous advantages, among which adaptive resolution and

compact representation, as well as the ability to directly handle non-geometric

properties over the surface, e.g. textures, without the necessity to reconstruct

the interface. On the other hand, they raise two major issues when evolved over

time, namely self-intersections and topology changes, which make them diffi-

cult to use in many practical scenarios. This is why typically non-intersections

and fixed topology were explicitly enforced [126, 70]. As a consequence, and

in spite of their advantages, they have often been neglected in favor of implicit

representations which provide practical solutions to such issues. Nevertheless,

solutions to these issues have been proposed. McInerney and Terzopoulos [109]

introduced topology adaptive deformable curves and meshes, called T-snakes and

T-surfaces. However, in solving the intersection problem, the authors use a spatial

grid, thus imposing a fixed spatial resolution. In addition, only offsetting motions,

i.e. inflating or deflating, are allowed. Another heuristic method was proposed by

Lauchaud et al. [91] for mesh deformations. Merges and splits are performed in

near boundary cases: when two surface boundaries are closer than a threshold and

facing each other, an artificial merge is introduced; a similar procedure is applied

for a split, when the two surface boundaries are back to back. Self-intersections

are avoided in practice by imposing a fixed edge size. A similar method was also

proposed by Duan et al. [41]. Alternatively, Pons et al. [130] proposed a mesh

approach based on a restricted 3-D Delaunay triangulation. A deformed mesh is

obtained by triangulating the moved vertices and assuming that the tetrahedra cat-

egorization, i.e. inside and outside, remains after the deformation. While being a

robust and elegant solution, it nevertheless relies on the assumption that the input

mesh is sufficiently dense such that the Delaunay triangulation will contain a good

approximation of the surface.

Solid Modeling technologies are also worth mentioning, since they provide

practical tools to represent and manipulate surface primitives. Methods in this

domain fall into two categories: Constructive Solid Geometry (CSG) [47, 75] and

Boundary Representation (B-Rep) [15, 22]. CSG methods represent shapes as a

combination of elementary object shapes based on boolean operations. Alterna-

tively, B-Rep methods adopt the more natural approach to represent the object

boundary using vertices, edges and facets [5, 134]. Each representation has its ad-
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vantages. While boolean operations on CSG objects are straightforward, a lot of

effort is required to efficiently render CSG objects [133, 60]. On the other hand, it

is much more difficult to implement boolean operations on boundary representa-

tions (multiresolution surfaces) [16, 118], whereas interactive rendering is trivial.

While these methods propose solution for computing boolean operations of sur-

faces, to the best of our knowledge they do not deal with any extension needed

to address self-intersecting meshes. Generally, the methods are mostly concerned

with proper rendering of the resulting geometry than with the generation of correct

manifolds in the case of self-intersections.

5.1.2 Contributions

We propose a novel mesh-based self-intersection removal algorithm with direct

application to surface evolution, which has its origins in the works of Aftosmis et

al. [3] and Jung et al. [80]. In [3] the interest is to recover the outside ”wetted”

surface obtained from multiple intersecting meshes. The output mesh is obtained

by identifying facets, or part of facets, which are on the exterior. The work of

[80] uses the same idea, applied in the context of mesh offseting. We extend these

approaches to the more general situation of any mesh deformation, including topo-

logical changes (i.e. joins and splits). The main contribution is a method that is

guaranteed to provide a mesh surface, i.e. a 2-D compact oriented manifold, given

a mesh surface that has been deformed by an arbitrary deformation field defined

over the mesh vertices. To this purpose, we identify all the degenerate cases that

can occur when locating the outside facets. We introduce the topological split

operation as a natural extension. Additionally, we introduce a novel seed trian-

gle finding procedure required to locate an initial facet outside the surface. The

robustness and flexibility of the algorithm is illustrated in the context of mesh mor-

phing, showing several challenging examples. In addition, we have successfully

applied our approach to surface reconstruction using multiple cameras. Recent

methods in image based modeling [142] make use of surface evolution to obtain

precise 3D models from multiple images. Our approach contributes in this field

by providing an unconstrained mesh-based solution that allows for facets of all

sizes as well as for topology changes, with the goal of increasing precision with-

out sacrificing complexity.

The remainder of the chapter is organized as follows. Section 5.2 introduces

TransforMesh, our proposed method that handles self-intersection and topology

changes. Different aspects of the approach, such as topological changes, guaran-

tees, numerical stability, time complexity and implementation notes are detailed

in section 5.3. Section 5.4 introduces a generic mesh evolution algorithm that
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uses TransforMesh. Results in the context of mesh morphing are detailed in Sub-

section 5.4.1, showing different challenging topological scenarios. Additionally,

results in the context of multi view 3-D surface reconstruction are presented in

Subsection 5.4.2, making comparisons with state-of-the-art approaches. Finally,

we conclude in section 5.5.

5.2 The Method

As stated earlier, the main limitations preventing many applications from using

meshes are self-intersections and topology changes, which can occur frequently

during surface evolution. In this chapter, we show that such limitations can be

overcome using a very intuitive geometrically-driven solution. In essence, the

approach preserves the mesh consistency, i.e. 2-D manifoldness, by detecting

self-intersections and considering the subset of the original mesh surface that is

outside with respect to the mesh orientation. The input mesh should be a compact

oriented 2-D manifold. More rigorously, the mesh should satisfy the following

criteria: every edge belongs to exactly two flat faces; every vertex is surrounded

by a single cycle of edges and faces. Non-orientable manifolds, such as the Klein

bottle, depicted in Figure 5.1, cannot be considered, since following the normal

information one could pass from the exterior of the surface onto the interior.

Figure 5.1: A Klein bottle - a typical example of a non-orientable 2-D manifold.

By taking into account the normal orientation of a face and following it, one could

pass from the exterior of the surface onto the interior.

Our proposed method, TransforMesh, has the great advantage of dealing with

topological changes naturally, much in the same fashion as the Level-Set based
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solutions, making it a viable robust alternative to surface evolutions with meshes.

The requirements are that the input surface is a correct mesh surface, i.e. a 2-

D compact oriented manifold, and that there exists an outside triangle without

intersections for each connected component that needs to be recovered.

The idea behind the method is to find an initial seed triangle that is on the

exterior, and then to propagate the exterior information by means of region grow-

ing. We call a valid triangle a triangle that is on the exterior without intersections

and a partial triangle a triangle with intersections, that has one part the exterior.

The algorithm, outlined in Figure 5.2, uses 3 queues for that purpose: one named

V , of valid triangles, i.e. triangles outside and without intersections; one named

P of partially valid triangles, i.e. only part of the triangle is outside, and finally

one named G, where all the valid triangles will be stored until stitched together

into a new mesh. The partial triangles are re-triangulated using a constrained 2-D

Delaunay triangulation. An example is illustrated in Figure 5.3.

5.2.1 Self-intersections

The first step of the algorithm consists of identifying self-intersections, i.e. edges

along which triangles of the mesh intersect.

This information will later on be needed in the computations, since it delimits

the outside regions. We consider that triangles that share a simplex (edge or ver-

tex) do not intersect. In the general situation, one would have to perform O(n2)
checks to verify all triangle intersections, which can become quite expensive when

the number of facets is large. In order to decrease the computational time, we use

a bounding box test to determine which bounding boxes (of triangles) intersect,

and only for those perform a triangle intersection test. We use the fast box in-

tersection method implemented in [84] and described in [177]. The complexity

of the method is O(n logd(n) + k) for the running time and O(n) for the space

occupied, where n is the number of triangles, d the dimension (3 in the current

case), and k the output complexity, i.e., the number of pairwise intersections of

the triangles.

5.2.2 Valid region growing

The second step of the algorithm consists of identifying exterior triangles in the

mesh. A valid region growing approach is used to propagate validity labels on

triangles that composed the outside of the mesh. Alternatively, it can be viewed as

a ”painting” procedure, as it was described in [3]. Following this idea, we present
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TransforMesh - Input: triangular mesh I; Output: triangular mesh O

1. Compute Self-Intersections (sec. 5.2.1) - compute all intersections bew-

teen triangles of I

2. Valid Region Growing (sec. 5.2.2)

2.1. Initialization (sec. 5.2.2) - mark all triangles as not visited

2.2. Seed Triangle Finding (sec. 5.2.2) - find a valid outside triangle in I
and add it to V

2.3 While V 6= ∅
a. While V 6= ∅ or P 6= ∅

a.1. Valid Queue Processing (sec. 5.2.2) - ∀t ∈ V , add t to

G, add valid unvisited neighbours to V and partial unvisited

neighbours to P together with entrance edge.

a.2. Partial Queue Processing (sec. 5.2.2) - ∀t ∈ P , perform a

constrained 2-D Delaunay triangulation (intersection segments

+ edges), start from the entrance edge and select triangles to

add to G, stopping on constraint edges. Add corresponding

triangles on the other side of the constraint edges to the appro-

priate queue, if not already visited.

b. Seed Triangle Finding (sec. 5.2.2) - find a valid outside triangle

in I and add it to V
2.4 Triangle Stitching (sec. 5.2.3 ) - compute mesh O from G

Figure 5.2: Algorithm layout. Each of the main steps of the algorithm corresponds

to a section (marked in brackets) which details the necessary steps. In addition,

Figure 5.3 outlines the region growing main steps.
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(a) Input (shaded) (b) Input (wireframe) (c) Facet Intersections

(d) 2-D Delaunay Segments (e) Seed Triangle Finding (f) Valid Triangle Expansion

(g) Partial Triangle Expansion (h) End of Region Growing (i) Final Output (shaded)

Figure 5.3: An example of TransforMesh. The algorithm starts by computing all

the self-intersections (c), followed by the valid region growing, which consists of

first identifying a seed triangle (e) (marked in red), expanding on the neighbour-

ing valid triangles (f) (marked in green) and selecting the correct subparts of the

partially valid triangles (g) (marked in blue). The geometry of partial triangles is

locally defined using a 2-D Delaunay triangulation (d). The procedure ends when

all the valid and partially valid triangles have been visited (h).
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here the sub-steps of the region-growing procedure. A seed-triangle finding algo-

rithm is introduced, which is aimed at detecting start-up triangles without inter-

sections that reside on the exterior. In the valid queue processing step this infor-

mation is propagated by expanding on neighboring valid triangles (triangles with

no intersections) until partial triangles (triangles with intersections) are reached.

The partial queue processing steps details how to traverse the valid subparts of

intersection triangles as well as how to ”cross” from one intersecting triangle to

the other. The local subparts are triangulated using a constrained 2-D Delaunay

triangulation. The underlying idea is to propagate the normal information from

the seed triangles guided at the same time by the local geometry.

Initialization

Initially, all the triangles are marked as non-visited.

Seed-triangle Finding

A seed-triangle is defined as a non-visited triangle without intersections that re-

sides on the exterior. This corresponds to Figure 5.3(e). The method determining

if a triangle is on the exterior will be detailed below. In other words, a seed-

triangle is a triangle that is guaranteed to be on the exterior. This triangle is cru-

cial, since it constitutes the starting point for the valid region growing. If found,

the triangle will be added to V and marked as valid; otherwise, the algorithm will

jump to the next stage (section 5.2.3).

Proposed method: In order to verify if a triangle is on the exterior, we pro-

pose a new method, that extends the traditional ”point in polygon” test [66]. The

original algorithm is formulated in 2-D and proposes that, given a point and a

polygon, take a ray, originating at the given point, and count the number of times

it intersects the polygon. If the number of times is even, then the point is on the

exterior. A straight-forward extension to 3-D for our problem would be to con-

sider a triangle, take a ray originating from the triangle centre along its normal

and count the number of times it intersects other triangles. However, since in

our scenario we deal with self-intersecting surfaces, the simple assumption that

the line will pierce surfaces in and then immediately out does not hold. Such

a counter-example is illustrated in Figure 5.4(a). Therefore, we propose to also

take into account the orientation that each pierced facet makes with the incident

ray. If there is an equal number of intersections between a ray, originating in the

triangle centre along the normal direction, and facets oriented in each of the two

directions, then the triangle is on the exterior (thus a valid seed triangle). A proof
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follows from the fact that, as the original surface is closed, along any ray that

pierces it there must be an equal number of intersections with both orientations.

Then a squeeze or a twist of the surface will just add an even number of pairs of

intersections with opposite directions along the line. We consider the regularized

intersection, which ignores boundary cases, therefore considering that in the tan-

gential case there is no intersection. In other words, given that the the oriented

line intersects a triangle whose orientation is opposite, it must necessarily inter-

sect later on another triangle whose orientation is alongside. The sign of the dot

product between the two orientations is used in practice to determine the orienta-

tion. The proposed approach correctly finds the seed triangles even for surfaces of

genus greater than zero, as it can be viewed in Figure 5.4(b), in the torus example.

In practice, in order to accelerate the test between a ray and a triangle, we

compute the bounding box of the surface and its intersection with the ray, after

which we sub-segment the obtained segment in smaller e1 parts of length equal

e2 the average mesh edge size. This allows one to use the fast box-intersection

test described earlier to compute the intersections between each sub-segment and

other triangles. Therefore, it will take O(e1 log(n)) expected time to test if a

triangle is a seed triangle, where n is the number of triangles of the surface.

Extension: It is straightforward to extend the seed-triangle finding algorithm

to take into consideration valid sub-parts of partial triangles. In order to keep the

presentation clear, we will detail this extension in Subsection 5.3.3, after having

introduced the algorithm.

Valid Queue Processing

Region growing is performed using the V queue, stopping on the intersections.

Thus, while V is not empty, pop a triangle t from the queue, add it to G and for

each neighbouring triangle N(t) perform the following: if N(t) is non-visited and

has no intersections, then add it to V; if N(t) is non-visited and has intersections,

then add it to P together with the entrance segment and direction, corresponding

in this case to the oriented half-edge. (see Figure 5.3(f)).

Partially-Valid Queue Processing

Proper processing of regions containing intersections is ensured, with local ge-

ometry being generated. Thus, while P is not empty, pop a triangle t from the

queue, together with the entrance half-edge ft. Also, we have previously calcu-

lated all the intersection segments between this triangle and all the other triangles.

Let St = {sti} represent all the intersection segments between triangle t and the
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Figure 5.4: Seed Triangle Examples: (a) Example that illustrates why keeping

track of triangle normal orientations is important when computing the number of

intersections. Even though the number of the intersections between AB is even

(||{I1, I2}|| = 2), the triangle, shown in red, is on the interior. (b) Example

that illustrates different interesting seed triangle scenarios as well as the proposed

solution. If a triangle is a seed triangle, the number of the projected normals

of the intersection triangles (the red arrows) pointing inwards and outwards with

respect to the original triangle normal should be equal. This is the case both for

A0 (||{A2, A4}|| = ||{A1, A3}|| = 2) and B0 (||{B1}|| = ||{B2}|| = 1)

.
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other triangles. In addition, let Ht = {htj|for j = 1..3} represent the triangle

half-edges. A constrained 2-D triangulation is being performed in the triangle

plane, using [71], to ensure that all segments in both St and Ht appear in the

new mesh structure and that propagation can be achieved in a consistent way. A

fill-like traversal is performed from the entrance half-edge to adjacent triangles,

stopping on constraint edges, as depicted in Figure 5.5. Choosing the correct

side of continuation of the ”fill” like region growing when crossing from a par-

tially valid triangle to another is a crucial aspect in ensuring a natural handling of

topological changes. The correct orientation is chosen such that, if the original

normals are maintained, the two newly formed sub-triangles would preserve the

water-tightness constraint of the manifold. This condition can also be casted as

following: the normals of the two sub-triangles should be opposing each other

when the two sub-triangles are ”folded” on the common edge. A visual represen-

tation of the two cases is shown in Figure 5.6. The triangles on the other side of

the exit constraint edges will be added to the appropriate P or V queues, based on

whether they contain any intersections or not.

Note that it is possible to visit a partial triangle multiple times, depending on

whether there are multiple isolated (non-connected) exterior components. The

simplest example to image is a cross, formed out of two intersecting parallelip-

ipeds. There will be partial triangles appearing on both sides. This is why in

practice we mark the sub-parts of the triangulation already visited and allow for

the re-visiting of partial triangles, if starting on a new sub-triangle.

5.2.3 Triangle Stitching

The region growing algorithm described previously will iterate until all the tri-

angles have been selected.This corresponds to Figure 5.3(h). At this stage, what

remains to be done is to stitch together the 3-D triangle soup (G queue) in order

to obtain a valid mesh which is manifold. We adopt a method similar in spirit

to [64, 144]. In most cases this is a straightforward operation, which consists of

identifying the common vertices and edges between facets, followed by stitching.

However, there are three special cases, in which performing a simple stitching

will violate the mesh constraints and produce locally non-manifold structures.

The special cases, shown in Figure 5.7, arise from performing stitching in places

where the original structure should have been maintained. We adopt the naming

convention from [64], calling them the singular vertex case, the singular edge case

and the singular face case. All cases are easily identifiable by performing local

operations.

Singular Vertex Case (Figure 5.7(a)): a vertex is shared by two or more dif-
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Figure 5.5: Partial Triangle Traversal. (a)The intersections with all other triangles

are computed for each partial triangles. (b) The example shown here is for the

bottom partial triangle presented in (a). The local geometry is re-defined using

a constrainted 2-D Delaunay triangulation, where the constraints are the origi-

nal triangle edges, the intersection segments and any of their intersections. The

traversal follows the entrance edge and stops on constraint edges. To decide on

which side to exit the constraints obtained from intersection segments, the partial

triangle crossing procedures illustrated in Figure 5.6 is employed.

ferent regions. In this case, the manifold property stating that for each manifold

point, there is a single neighbourhood, does not hold. Such situations occur in

practice in rather convoluted topological situations, when a triangle gets inverted

and intersects other facets. An example has been created to illustrate such a sce-

nario and it is shown in Figure 5.8. The algorithm to detect these cases proceeds

simply by checking that all facets incident to a vertex are within one neighbour-

hood. The steps are: mark all the facets incident to the vertex v as non-visited;

starting from a facet of v, mark it visited and do the same with its non-visited

neighbours that are also incident to v (neighbour as chosen based on half-edges);

the process is repeated until all the neighbouring facets are processed; if by doing

so we exhausted all the neighbouring facets, vertex v is non singular, otherwise it

is singular, so a copy of it is created and added to all the remaining non-visited

facets.

Singular Edge Case (Figure 5.7(b)): an edge is shared by two or more dif-

ferent regions, hence the manifold property does not hold. Such cases can be

detected by counting the number of triangles that share an edge. If it is bigger

than 2, then this is a singular edge case and two additional vertices and a new

edge will be added to account for it. In practice, only the singular vertex cases

appear.

Singular Triangle Case (Figure 5.7(c)): a triangle is shared by two or more
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Incoming

Outgoing

(a)

Outgoing

Incoming
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Figure 5.6: Partial Triangle Crossing Cases. Given the incoming triangle and its

orientation, the outgoing triangle will be chosen such that the normals do not flip

when attempting to cross them via the intersection segment.

different regions, hence the manifold property does not hold. Such situations

never occur in practice. In any case, even if they did, they would be solved by

the singular vertex processing phase, which would detect each of the 3 singular

vertices that constitute the singular triangle.

(a) Singular Ver-

tex

(b) Singular

Edge

(c) Singular Face

Figure 5.7: Special cases encountered while stitching a triangle soup.
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(a) Original Mesh (view 1) (b) Original Mesh (view 2)

(c) Resulting Mesh (view 1) (d) Resulting Mesh (view 2)

Figure 5.8: (a) (b) An example of how a singular vertex occurs in a typical self-

intersection removal situation, due to an inverted triangle (marked in red). (c) (d)

The singular vertex is circled in the resulting mesh. The coloring from the result-

ing mesh is corresponding to the color scheme used to exemplify TransforMesh.
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5.3 Algorithm Features

Having introduced the algorithm in the previous section, we will detail some of its

important aspects, including the handling of topological changes, the guarantee

to output a valid mesh, given a valid input mesh, numerical stability and time

complexity.

5.3.1 Topological Changes

We consider compact surfaces. In the general case, the topological chances that

can occur are: appear, disappear, join, split and genus change. The partial-triangle

crossing technique described earlier in Section 5.2.2 and detailed in Figure 5.6

ensures a natural handling of the problematic topological changes, i.e. splits and

joins, that plagued the mesh approaches until now. Representative cases are il-

lustrated in Figure 5.9. The join case scenario, shown in Figure 5.9(a), coincides

in spirit with the union boolean set operation ∪∗ and it is very easy to concep-

tualize. Less intuitive is the split operation, which will typically occur during a

mesh evolution process, when certain parts will thin out up to the moment when

some triangles from opposite sides will cross each other. Such a case is depicted

in Figure 5.9(b), in a mesh morphing scenario, where the initial surface is one

sphere and the destination is represented by two spheres. One additional example

is presented in Figure 5.9(c), where an inverted geometry self-intersects the origi-

nal mesh. The recovered surface is also a valid 2-D compact oriented manifold. A

genus change can by tpyically viewed as the side-effect of a split / join operation.

Additional examples will be presented in Section 5.4.1.

5.3.2 Guarantees

Given that the input mesh is a 2-D compact oriented manifold that has been de-

formed by a motion field and assuming exact computations (see section 5.3.4),

TransforMesh will recover 2-D compact oriented manifold components. The

number of components depends on the number of seed triangles detected. The

algorithm will always finish, because it does not revisit already traversed subparts.

In addition, it is guaranteed to always find the exterior surface, since it starts from

a valid seed triangle (thus on the exterior) and it always rests that way, by prop-

agating the normal information. The particular choice of the initial seed triangle

does not influence the output of the method for that particular connected compo-

nent. The computed output is manifold by construction, since it traverses a valid

input manifold and accounts for the manifold violations (the degenerate cases). It
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(a) Join Case (b) Split Case (c) Inside Carving Case

Figure 5.9: Different topological changes examples (2-D simplified view). The

outline of the final surface obtained after self-intersection removal is outlined in

bold blue.

is compact, since the original input surface has no borders and the algorithm does

not build any (i.e. there is always a way outside a triangle intersection).

In addition, the 2-D manifold correctness is guaranteed by identifying and cor-

recting all the possible 2-D manifold neighborhood violations when performing

triangle stitching (singular vertex, singular edge and singular facet).

The algorithm preserves the geometry of the input mesh, with the exception

of the self-intersection areas, where local triangulations redefine the geometry.

5.3.3 Seed-Triangle Finding Procedure Extension

The seed triangle finding procedure can be easily extended to take into account

sub-triangles from partial triangles (triangles obtained from a 2-D constrained

Delaunay triangulation on partial triangles and their intersection segments). This

is possible thanks to the seed triangle finding method, described earlier, which

will correctly identify the valid sub-triangles. If the seed-triangle is a valid sub-

triangle, then it will be added to the partial queue P . The rest of the overall

algorithm would remain the same. In most of the typical scenarios this will not

make any difference. Nevertheless, one could imagine some specifically designed

examples (i.e. two opposite tetrahedrons centered within the same sphere), where

the traditional algorithm will fail to find any connected component, due to the fact
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that no start-up valid triangles can be found.

5.3.4 Numerical Stability

The numerical stability is critical, in order to be able to guarantee that the output is

valid. It is ensured by using exact arithmetic predicates when computing intersec-

tions. Additionally, degenerate triangle intersection cases are explicitly handled.

Special boundary cases between two intersection triangles are the following:

1. the intersection is a point;

2. the intersection is a 2-D polygon (when the two triangles are co-planar);

3. the intersection is a segment that lies on one of the original triangle edges.

The first and the second cases are boundary cases, therefore, by considering

the regularized intersection operation ∩∗, we assume that there is no intersec-

tion between the triangles. In typical mesh evolution scenarios such situations

do not occur, but it might be the case in CAD-designed datasets, where sepa-

rate connected components are exactly arranged such that they overlap on a ver-

tex/edge/facet. The third case, when the intersection is a segment lying on a orig-

inal edge, turns out not to need a special treatment, due to the fact that the 2-D

constrained Delaunay triangulation implementation of CGAL [18] properly deals

with such situations, where constraints intersect.

One last possible degenerate scenario is when multiple triangle-triangle inter-

sections take place at the same element. This situation can be disambiguated using

the Simulation of Simplicity technique of virtual perturbations [42].

The rest of the numerical stability issues related to fixed numerical precision

are handled by using exact geometrical predicates in CGAL. These are issues re-

lated to the fact that, due to fixed machine precision, newly computed intersection

segments might not be strictly co-planar with the original triangles. Similarly,

degenerate triangles could be generated by the 2-D Delaunay triangulation.

In practice, we also eliminate triangles having area close to zero, should they

occur. In order to remove those triangles, two operations are performed: edge

collapse and edge flip.

5.3.5 Time Complexity

The time complexity of the algorithm depends on the number and relative sizes of

facets and it is of O(n log(n)) for the generic case. Most of the time will be spent
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computing the intersections. Even if there are no intersections, the same relative

time will be spent, since each triangle needs to be checked and each check will

take an amortized time of O(log n). In practice, more than 80% of the running

time is spent computing the self-intersections. Typically, the running time for

performing the self-intersections test is under 1 second for a mesh with 50, 000
facets on a 2.6 GHz Intel Core2Duo (no multi-threading), where exact arithmetic

is used for triangle intersections and the self-intersections are in the range of 100.

5.3.6 Comparison with a static algorithm

Alternatively, one could use the seed triangle finding procedure, described in Sec-

tion 5.2.2, in order to devise another static algorithm, which will test all the ex-

isting valid triangles and partial subtriangles obtained from local Delaunay trian-

gulations. The meothod will only choose the triangles that pass the seed triangle

test, thus residing on the exterior, after which it will proceed to the final triangle

stitching step.

However, this static algorithm would take a considerable longer time, since it

requires the same initial time O(n log n) to compute all the triangle intersections

and local Delaunay triangulations. It will require an additional n1e2 log n, where

n1 is the number of n1 > n is the total number of valid triangles and partial sub-

triangles obtained from Delaunay triangulations, and e2 is the average number of

segments that a ray was chopped into, when performing the seed triangle test,

as described in Section 5.2.2. On the positive side, this static algorithm is much

simpler to implement than the proposed one.

5.3.7 Extension to Open Surfaces

The currently proposed method extends without any modifications to open sur-

faces (i.e. triangular meshes with holes), since the algorithm relies on local normal

information in order to infer the interior and exterior. However, the seed-triangle

finding procedure can potentially miss correct triangles or choose incorrect ones

in specially designed cases. The seed-triangle finding procedure assumes closed

surfaces when performing the counting of the number of intersections. An alter-

native ”safer” seed-triangle procedure method can be employed, choosing only

the triangles whose normal extension does not intersect any other triangles. Nev-

ertheless, in practice, in typical scenarios, the algorithm can be used as presented,

as it will be shown in Section 5.4.1.



112 Chapter 5: Mesh-Based Surface Evolution

5.3.8 Implementation Notes

In our implementation we have made use of CGAL (Computational Geometry

Algorithms Library) C++ library [18], which provides guaranteed implementa-

tions for various algorithms. We have used the following CGAL modules: n-

dimentional fast box intersections, 2-D constrained Delaunay triangulation, trian-

gular meshes and support for exact arithmetic kernels.

5.4 Applications

TransforMesh can be easily incorporated within a generic mesh evolution para-

digm, as illustrated in Figure 5.10. Within each evolution iteration, there are four

steps. Firstly, a velocity vector field ~F is computed for each vertex of the mesh

M. This step is application specific. Secondly, the mesh is evolved (moved) us-

ing the computed velocity vector field ~F and a small time step t, thresholded by

a maximum movement α · eavg(v), where α is a user-set threshold (typically be-

tween 0.1-0.3) and eavg(v) represents the local average edge length for a vertex v.

Thirdly, TransforMesh is invoked in order to clean the potential self-intersections

and topological problems introduced by the second step. The fourth step involves

mesh optimization, with the goal of ensuring good mesh properties. Ideally, a

mesh should consist of triangles as close to equilateral as possible, which allows

for better computations of local mesh properties, i.e. curvature, normal. To this

purpose, a number of sub-steps are being performed: adaptive remeshing, vertex

valence optimization and Laplacian smoothing. The adaptive remeshing steps en-

sures that all edges are within an safety zone interval (e1, e2), user-defined. This

prevents edges from reaching close to zero sizes. In practice, this is obtained

via edge collapse or edge swap operations. The accumulation of edge collapses

is prevented, as suggested in [87], by collapsing towards the vertex with higher

valence. Vertex valence optimization step performs edge swaps in an attempt to

ensure an overall vertex valence of 6 [87]. Vertex valence is defined as the num-

ber of triangles shared by a vertex. The ideal vertex valence of 6 is desirable

because, assuming that the manifold is generally locally planar, it is equivalent

to obtaining 60◦ for each of the sharing triangle angles, thus optimizing for equi-

lateral triangles. The Laplacian smoothing is attained by computing the discrete

mesh Laplacian [36, 113] (i.e. the Laplace-Bertrami operator) ∆v for each vertex

v of the mesh. Furthermore, the mesh is smoothed using v → v − β∆v. These

four main steps are repeated until the mesh has reached the desired final state, also

application specific.

We will present below two examples, one for Mesh Morphing in Section 5.4.1



5.4 Applications 113

and the other for Multi-View 3-D Reconstruction in Section 5.4.2. In both cases,

the application specific information is detailed in order to compute the vector

fields ~Fmorphing and ~Freconstruction, which plug directly within the generic mesh

evolution framework presented in Figure 5.10.

Generic Mesh Evolution using TransforMesh

While Not Finished

1. Compute Velocity Vector Field ~F of velocities for each vertex of

the mesh M, using application specific information.

2. Evolve Mesh M using the vector field ~F and a small time-step

t, thresholded by a maximum α · eavg(v), where α is a user-set

threshold (typically set between 0.1-0.3) and eavg(v) is the local

average edge length for a vertex v.

3. Invoke TransforMesh on M in order to clean self-intersections

and topological problems

4. Mesh Optimization

a) Adaptive Remeshing: ensures that all edges are within a safety

zone interval, i.e. ∀e ∈ M, e ∈ [e1, e2], by performing edge

swaps or edge collapses.

b) Vertex Valence Optimization: perform edge swaps such that

each vertex will be shared by 6 triangles [87].

c) Perform Mesh Laplacian Smoothing: each vertex v is updated

by v → v − β∆v, where ∆v represents the discrete mesh

Laplacian [36, 113].

Figure 5.10: Generic Mesh Evolution Algorithm using TransforMesh.

5.4.1 Mesh Morphing

A first and straight-forward application of our algorithm is surface morphing, that

is starting from a source surface SA and evolving it towards a destination sur-

face SB. This will allow us to test thoroughly various cases of topology changes.

Surface morphing has been widely described in the literature. We will adopt the
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method proposed by Breen et al. [24]. We will summarize the reasoning that leads

the surface evolution equation.

Methodology

A metric that quantifies how much two surfaces overlap is defined (source surface

SA and destination surface SB). A natural choice of such a metric is the signed

distance function γB of the destination mesh SB’, defined as in the level set litera-

ture as being negative inside the shape SB, zero on the surface, and positive on the

exterior. By considering the volume integral MSB
(SA) over any surface SA with

respect to γB (thus SB), one can see that it will achieve the maximum when the

two surfaces overlap. By taking the first variation of the metric MSB
(SA) with

respect to the surface SA and a small displacement field and differentiating with

respect to the vector field, one obtains the following evolution equation using a

hill climbing strategy for each vertex x along its normal N(x):

~Fmorphing =
∂S

∂t
= −γB(x)N(x) (5.1)

The evolution strategy described above will converge to a local minimum.

Given the surface of departure SA and the destination surface SB, SA will correctly

find all the connected components of SB that are included in the original surface

SA. That is to say that, if SA represents a surface outside the destination surface

SB, SA will converge to an empty surface. We keep this result in mind when

choosing the initial surface SA.

Complexity Issues and Mesh Discretisation

In the general case, in order to calculate an exact distance function γB, one would

have to consider the projection of a query point to the planes defined by each

facet of the mesh (representing the surface SB) and to see if the projection lies

within the interior of the facet, keeping the closest distance. This lookup will

take O(NF ), where NF represents the number of facets. This is a fairly expensive

computation, which will have to be performed at each iteration throughout the

evolution for every vertex.

One approximate solution used in the level-set literature [123] is to obtain a

space discretized signed distance function using a 3-D grid, by computing the in-

tersections of the mesh with the grid (thus finding the 0 level set) and performing

fast marching [79] in order to fill out the 3-D grid. This solution, while benefitting
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Figure 5.11: Mesh Morphing evolution step. The surface SA evolves from time

t to time t + 1 towards SB. For point pt, the closest point is q. The evolution

equation for point pt is given by (pt − q) · N(pt)

from a O(1) lookup cost, it uses memory proportional to the space discretiza-

tion and it takes O(G) to initialize the distance function, where G represents the

number of grid elements. This approximation is valid up to grid cell size.

Alternatively, as an in-between tradeoff, we propose a approximation/heuristic

using the distance to the closest vertex point. This speeds up computation dras-

tically, since, if proper search structures are being used, the search time for the

nearest neighbour is O(log(NV )), where NV to represent the number of vertices.

There is an initial overhead of O(NV log(NV )) of building the search tree. In prac-

tice, we have used the implementation of [72] available in CGAL. Please note that

if the target surface SB contains a good enough mesh resolution, this approxima-

tion is very close to the true signed distance function.

In the case of sufficient sampling, the current approximation will return a ver-

tex belonging to the closest triangle where the true projection would be. Thus,

the error bound is the distance between the vertex and the projection. In practice,

however, we do not use the actual distance, but its sign, in order to establish the

direction of the evolution. This makes the current approximation fit for our pur-

pose. Alternatively, one could easily verify all the incident triangles to the closest

vertex to establish the true distance function, if the application requires it, keeping

in mind that the sufficient sampling condition still applies. Alternatively, in order

to obtain accurate results, a full distance field implementation can be considered.

A comprehensive review of such methods can be found in [79].

The proposed solution has the great advantage of being able to be applied in

the current formulation, not only to meshes, but also to oriented 3-D points. The

source surface to be evolved is still a mesh, but the destination surface can be

represented by oriented 3-D points. If orientation information is not available,
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it can be estimated from neighboring points using principal component analysis

[73]. Alternatively, in the context of multi-view stereo, it can be obtained via a

minimization scheme [54].

Results

In Table 5.1 we present results obtained with four test cases, entitled ”Genus 3”,

”Toruses”, ”Knots In” and ”Knots Out”. As it can be observed, the algorithm

successfully deals with topology joins and splits as well as handling multiple con-

nected components. The average computation time per iteration on a 2.6 GHZ

Intel Core2Duo processor varies between 0.2 to 1.6 seconds, depending on the

number of facets and on the number of intersections. More detailed statistics are

presented in Table 5.2.

In Table 5.3 we present additional evolution results obtained when using open

surfaces, in order to show that our method deals gracefully with surfaces with

holes, without explicitly modeling it.

In terms of parameters setting with respect to the generalized mesh evolution

framework depicted in Figure 5.10 within which we casted the current mesh mor-

phing algorithm, we considered t = 1 for the timestep, α = 0.2 the average edge

size eavg for maximum movement amplitude and β = 0.1 for the smoothing term.

Additionally, the original meshes had a constant mesh resolution. Hence, we set

the edge thresholds to e1 = 0.7 · eavg and e2 = 1.5 · eavg.

5.4.2 Multiple Camera 3-D Reconstruction

Our original motivation in developing a mesh self-intersection removal algorithm

was to perform mesh evolutions, in particular when recovering 3-D shapes from

multiple calibrated images. As stated earlier, few efforts have been put in mesh-

based solutions for the 3-D surface reconstruction problem, mostly due to the

topological issues raised by mesh evolutions. However, meshes allow one to fo-

cus on the region of interest in space, namely the shape’s surface and, as a result,

lower the complexities and lead to better precisions with respect to volumetric ap-

proaches. In this section we present the application of TransforMesh to the surface

reconstruction problem. Often such a problem is casted as an energy minimiza-

tion over a surface. We start from exact visual hull reconstructions, obtained with

[49] using silhouette information and further improve the mesh using photometric

constraints by means of an energy functional described in [131]. In their original

implementation, [131] used a level set formulation. Our goal is to maintain the

energy functional, while replacing the surface evolution method.
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Genus 3 Toruses Knots In Knots Out

Table 5.1: Mesh Morphing Examples with Closed Surfaces. Different steps during

for various test cases. Each test case is presented in a column. The first row

represents the first iteration, whereas the last row represents the last iteration.
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Dataset Iterations Avg. # Facets Avg. # Intersections Avg. Time (SIR) Avg. Time (total)

Genus 3 54 4764.14 33.88 0.65 sec 1.42 sec

Toruses 37 6296.33 22.67 0.81 sec 1.78 sec

Knots In 119 13244.25 101.52 1.63 sec 3.58 sec

Knots Out 430 3873.11 4.86 0.18 sec 0.89 sec

Table 5.2: Mesh Morphing Statistics for different datasets. The running time

is recorded on a 2.6 GHz Intel Core2Duo processor. SIR in the table header

denominates self-intersection removal (TransforMesh).

Torus

Table 5.3: Mesh Morphing Example with an Open Surface. The evolution starts

from an open plane surface, going towards a torus. Each row represent the evolu-

tion at different steps, shown from a different point of view.
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Methodology

The initial mesh surface corresponds to an extended bounding box obtained using

image silhouettes and a geometric approach that involves cone intersections in 3-D

(see [49] for details). Such a mesh is only a coarse approximation of the observed

surface. One main limitation of visual hull approaches is that they do not recover

concave regions. The initial surface can be improved by considering photometric

information in the images. The principle is that with a correct geometry (and

under the Lambertian light assumption) the mesh should be photo-consistent, i.e.

its projections in the images should have similar photometric information [9].

We adopt the formalism proposed by Jean-Philippe Pons et al. [131] as well

as the gradient computation code kindly made available to us by the authors. The

photometric constraints are casted as an energy minimization problem using sim-

ilarity measure between pairs of cameras that are close to each other. We denote

by S ⊂ R
3 the 3-D surface. Let Ii : Ωi ⊂ R

2 → R
d be the image captured by

camera i (d=1 for grayscale and d=3 for color images). The perspective projection

of camera i is represented as Πi : R
3 → R

2. Since the method uses visibility, con-

sider Si as part of surface S visible in image i. In addition, the back-projection of

image from camera i onto the surface is represented as Π−1
i : Πi(S) → Si.

Armed with the above notation, one can compute a similarity measure Mij

of the surface S as the similarity measure between image Ii and the reprojection

of image Ij into the other camera i via the surface S. Summing across all the

candidate stereo pairs, one can write:

M(S) =
∑

i

∑

j 6=i

Mij(S) (5.2)

Mij(S) = M |Ωi∩Πi(Sj)

(
Ii, Ii ◦ Πi ◦ Π−1

j,S

)
(5.3)

Finally, the surface evolution equation at a vertex point x is given by:

~Freconstruction =
∂S

∂t
= Eimg(x)N(x) (5.4)

where N represents the surface normal and Eimg is a photoconsistency term

that is a summation across pairs of cameras which depends upon derivatives of

the similarity measure M, of the images I , of the projection matrices Π and on

the distance xz (see [131] for more details). We have used the normalized cross

correlation as the similarity measure, with a support of 5 pixels.
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In the original paper [131], the surface evolution equation was implemented

within the Level-Set framework. We adapt it to meshes using the TransforMesh

algorithm. The original solution performs surface evolution using a coarse to fine

approach in order to escape local minima. Traditionally, in Level-Set approaches,

the implicit function that embeds the surface S is discretized evenly on a 3-D

grid. As a side-effect, all the facets of recovered surface are of approximately

equal triangle size. In contrast, mesh based approaches do not impose such a

constraint and allow facets of all sizes on the evolving surface. This is particularly

useful when starting from visual hulls, for which the initial mesh contains triangles

of all dimensions. In addition, the dimension of visual facets appears to be a

relevant information since regions where the visual reconstruction is less accurate,

i.e. concave regions on the observed surface, are described by bigger facets on the

visual hull. Thus, we adopt a coarse to fine approach in which bigger triangles

are moved until they stabilize, after which the whole process is repeated at a finer

scale.

Results

We have tested the mesh evolution algorithm with the datasets provided by the

Multi-View Stereo Evalutation site [142] (http://vision.middlebury.edu/mview/)

and our results are comparable with state-of-the-art, attaining sub-milimeter ac-

curacy. Detailed results are extracted from the website and are presented in Table

5.4. We have also included results by Furukawa et al. [54], Pons et al. [131]

and Hernandez et al. [70], considered to be the state of the art. The differences

between all methods are very small, ranging between 0.01mm to 0.3mm. Some

of our reconstruction results are shown in Figure 5.12.

In terms of parameters setting with respect to the generalized mesh evolution

framework depicted in Figure 5.10 within which we casted the current multi-view

stereo reconstruction algorithm, we considered t = 0.001 for the timestep, α =
0.1 the average edge size eavg for maximum movement amplitude and β = 0.1 for

the smoothing term. The meshes had an adaptive mesh resolution. As mentioned

earlier, we ran the algorithm at different scales, starting from scale smax to smin =
1 in λ =

√
2 decrements. For each scale si, the input images and camera matrices

are downscaled accordingly. The appropriate edge size interval is set to e1 =
edgeSize(1, 1) e2i = edgeSize(5, i), where edgeSize(p1, p2) is a function that

computes the desired edge size such that it has p1 pixels in images, where the

images have been downscaled by p2. The startup scale smax is computed such

that the larger edges of the startup mesh measure 5 pixels when projected into the

images at scale smax. When the finer scale is reached, new iterations are run by

decreasing e2 from edgeSize(5, 1) to edgeSize(2, 1) in λ =
√

2 decrements.
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❳
❳

❳
❳

❳
❳

❳
❳

Paper

Dataset Temple Ring Temple Sparse Ring Dino Ring Dino Sparse Ring

Acc. Compl. Acc. Compl. Acc. Compl. Acc. Compl.

Pons et al. [131] 0.60mm 99.5% 0.90mm 95.4% 0.55mm 99.0% 0.71mm 97.7%

Furukawa et al. [54] 0.55mm 99.1% 0.62mm 99.2% 0.33mm 99.6% 0.42mm 99.2%

Hernandez et al. [70] 0.52mm 99.5% 0.75mm 95.3% 0.45mm 97.9% 0.60mm 98.52%

Our results 0.55mm 99.2% 0.78mm 95.8% 0.42mm 98.6% 0.45mm 99.2%

Table 5.4: 3-D Rec. Results. Accuracy: the distance d in mm that brings 90% of

the result R within the ground-truth surface G. Completeness: the percentage of

G that lies within 1.25mm of R.

The algorithm converges to a good solution without the presence of a silhou-

ette term in the evolution equation. In a typical evolution scenario, there are some

self-intersections at the beginning, but, as the algorithm converges, intersections

rarely occur. Additionally, in the temple case, we performed a test where we have

started from one big sphere as the startup condition, in order to check whether the

topological split operation of TransforMesh performs properly. Proper converges

was obtained.

(a) Dino - Input (b) Dino - Start (c) Dino - Results (d) Dino - Closeup

(e) Temple - Input (f) Temple - Start (g) Temple - Results (h) Temple - Closeup

Figure 5.12: Reconstruction results obtained in the temple and in the dino case.

We present some additional results obtained for the Dance-2 sequence pub-
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licly available from the Multiple-Camera/Multiple-Video Database of the PER-

CEPTION group 1 in Figure 5.13.

Figure 5.13: Results for the Dance-2 sequence from INRIA. We present results

for frames 500 to frame 575 in jumps of 5 frames.

1https://charibdis.inrialpes.fr/html/index.php

https://charibdis.inrialpes.fr/html/index.php


5.5 Conclusion 123

The Leuven 2 sequence consists of 7 high resolution images 3000 × 2000 im-

ages of Leuven’s City Hall. The final reconstruction contains a mesh with over

1.5 million triangles. Results are presented in Figure 5.14. An adaptive remeshing

procedure has been applied in order not to further refine the invisible triangles.

The Staty sequence consists of 32 images of resolution 720× 576. The recon-

struction results are presented in Figure 5.15. We have also presented a mean cur-

vature view in order emphasize some of the high detail structures reconstructed,

such as the cobblestone.

In order to make the link with the previous chapter, we used the 3-D recon-

structed points obtained using the robust perspective factorization method pre-

sented in chapter 4 and combined it with the PowerCrust algorithm [12] in order

to obtain an initial mesh surface, which was later on evolved using the currently

presented scheme. The results are shown on Figure 5.16.

5.5 Conclusion

We have presented a fully geometric efficient Lagrangian solution for triangular

mesh evolutions able to handle topology changes in an intuitive and efficient way.

We have tested our method both in the context of mesh morphing in order to

validate the method with challenging topological cases, as well as in the context of

multi-view stereo 3-D reconstruction, where we have obtained top ranking results,

comparable with state-of-the-art methods in the literature. Our contribution with

respect to the existing mesh evolution methods is to provide a purely geometric

mesh-based solution with proof of correctness, that does not constrain meshes and

that allows for facets of all sizes as well as for topology changes.

2http://cvlab.epfl.ch/data/strechamvs/

http://cvlab.epfl.ch/data/strechamvs/
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(a) Input Images (3000 × 2000)

(b) Front view

(c) Close-Up (d) Top view

Figure 5.14: Reconstruction results for the Leuven sequence. Invisible triangles

are not further refined, as it can be observed in (d), maintaining the representation

as compact as possible.
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(a) Overview

(b) View 1 - Textured (c) View 1 - White (d) View 1 - Curvature

(e) View 2 - Textured (f) View 2 - White (g) View 2 - Curvature

Figure 5.15: Reconstruction results for the Staty sequence.
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Dino Temple Box Dinausor

Figure 5.16: Additional dense reconstruction results demonstrating the connection

with the previous chapter. Top Row: Sample Input Image; Middle: A rough mesh

obtained from the 3-D reconstructed points using PowerCrust [12] Bottom: the

final dense reconstruction after surface evolution using the method described in

the current chapter.



Chapter 6

Camera-Clustering

In this chapter we propose a framework for piecewise mesh-based 3D reconstruc-

tion from a set of calibrated images. Most of the existing approaches consider

all available images at once. However, this is not tractable with very large sets

of cameras. Therefore, we use subsets of images and evolve parts of the surface

corresponding to those images. Our main contribution is an approach to parti-

tion the camera images, either semi-automatic, through clustering, or user guided,

via a geometric modeling interface. The sub-parts of the surface corresponding

to camera subsets are independently evolved at multiple mesh resolutions. This

allows to handle large scenes and to increase the mesh resolution in surface parts

containing high levels of detail at reduced memory and computational costs. We

demonstrate the versatility of our approach on different data sets and with differ-

ent camera layouts. Finally, comparing the piecewise and global reconstructions

with groundtruth, we find no significant loss in the overall reconstruction quality.

6.1 Introduction

Recent advances in multi-view 3D reconstruction from a set of calibrated cameras

produced impressive results. The visual and measured quality is getting compara-

ble to that of the laser scans. An issue of interest that naturally arises in this field

is how to efficiently deal with scenarios where there are lot of images and, due

to memory requirements, they cannot all be processed at the same time. In order

to reduce the volume of image data we need to access simultaneously, we use

subsets of the original image set and evolve the parts of the surface correspond-

ing to those images by maximizing photo-consistency. The main contribution of

our method is an approach to partitioning of the camera images which can be ei-

ther semi-automatic, through clustering, or user guided, via a geometric modeling

127
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interface. The sub-parts of the surface corresponding to the camera subsets are

independently evolved at multiple mesh resolutions. This allows for an increase

of the mesh resolution in surface parts containing high level of detail at reasonable

memory and computational costs.

The problem of content-aware camera clustering and reconstruction by parts

did not receive considerable attention in the past. Simon et al. [146] address an

orthogonal problem to ours: scene summarization. In their scenario, they have

a lot of images covering a scene and they are interested in the canonical views

that can best describe it. They choose a representative exemplar from within each

camera cluster, which is computed using visibility information for SIFT matches.

There exist a a number of 3-D reconstruction methods [65, 54, 112] that can deal

with large number of images, thus overcoming the apparent need for such a re-

construction by parts. As we shall see, they implicitly define heuristic camera

clusters and they could benefit from the currently proposed algorithm. [112] casts

the problem in a tracking framework and thus uses a temporal prior (sliding win-

dow). [65, 54] compute a set of sparse 3-D points from image correspondences,

which are later on used to infer the full geometry. In order to reduce the search

space for a given image/camera, the other image/camera is selected among the

ones sharing the same viewing direction and rotation orientation. All these meth-

ods can benefit from our camera clustering method for special cases: revisiting

the same sub-scene for [112]; camera panning scenarios for [65, 54].

A short review of the 3-D reconstruction methods was provided in Section

2.2.2. We will motivate the particular choice of the reconstruction algorithm,

keeping in mind that the proposed camera clustering framework is very gen-

eral and can thus be used in combination with any 3-D reconstruction method.

Variational methods can adopt either an implicit surface (Eulerian) representation

[123, 41, 131] or a mesh-based (Lagrangian) [109, 91, 80, 170, 130] point of view.

They look for a surface which minimizes a global photo-consistency error func-

tion. The level-set implicit representation [131] requires dense regular sampling

on a grid of the initial bounding volume, thus fixing the mesh resolution to the

cell grid size. One advantage of such representations is the straightforward han-

dling of topology changes at the cost of increased memory requirements. Evolv-

ing meshes directly calls for more elaborate schemes to handle topology changes

and self-intersections, but offers a much more compact representation and can

have an adaptive resolution compared to the implicit representations. Due to the

smoothing energy terms, they tend to offer better resistance to outliers than dense

multi-stereo approaches. The proposed recent advances in mesh-based methods,

described in detail in Chapter 5, provide a solution to these problems and will be

used. As opposed to the other Lagrangian methods, it does not constrain meshes

to a fixed resolution and it allows for faces of all sizes. This approach to mesh
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evolution, coupled with multi-resolution strategy on the surface parts, efficiently

recovers objects of different complexity with the targeted precision on the more

detailed surface parts.

We tested our approach on different data sets including single-compact ob-

jects, outdoor architectural sites filmed in high resolution, and a long synthetic

sequence. Finally, we analysed quantitatively our results and compared our piece-

wise and global reconstructions to the laser scans, showing very little loss in the

overall reconstruction quality.

In the reminder of the chapter we will describe our method, show the results

of the experimental evaluation and finally conclude, talking about future work.

6.2 Method

Our objective is to evolve the complete surface by parts. This is an important as-

pect, if we want to reduce memory costs and computational time imposed when

using all images at once. We rely on the recent mesh-based evolution method of

Zaharescu et al. [170], which efficiently handles mesh topological changes and

allows meshes with variable facet sizes. The mesh is evolved in parts over time

by minimizing the photo-consistency error function proposed by Pons et al. [131].

For more details, consult [170], [131]. The mesh parts to be evolved are defined

according to the partitioning algorithm discussed below. The camera clustering

method that will be presented can work in combination with any 3-D reconstruc-

tion algorithm.

Camera Clustering. In general, if the positioning of the cameras is arbitrary

and the rough initial geometry is known we can cluster original camera set C into

a given number k of camera subsets Cm, m = 1..k. To do this, we first recover the

geometry of the object/scene at a coarse resolution from down-sampled images

using all cameras ci, i = 1..Nc. For each camera ci, we name Si the set containing

all the vertices from the scene set S which are visible.

We then define an intuitive distance function between two cameras cp and cq

as the cardinal of the symmetric difference of Sp and Sq:

dS(cp, cq) = |Sp △ Sq| (6.1)

= |(Sp ∪ Sq) \ (Sp ∩ Sq)| (6.2)

In practice we use OpenGL depth maps [141] to evaluate the visibility and

accumulate the information into the Nv × Nc visibility matrix defined as:



130 Chapter 6: Camera-Clustering

∆ =








β1,1 β1,2 · · · β1,Nc

β2,1 β2,2 · · · β2,Nc

...
...

. . .
...

βNv ,1 βNv ,2 · · · βNv ,Nc








where βi,j is 1 or 0 depending on whether the jth vertex is visible in the camera

ci.

Instead of using a coarse mesh, one could also use potential SIFT matches in

the image and accumulate them in the visibility matrix ∆, as it has been proposed

by [146].

Camera-based clustering consists of performing k-means clustering [17] on

the columns of ∆, where k represents the number of desired camera sub-sets. Each

of these columns represent one camera, encapsulating visibility information for all

the mesh vertices. Using these binary vectors, computing the distance function we

defined in (6.2) is equivalent to computing the sum of squared differences :

dS(cp, cq) = ||∆(:, p) − ∆(:, q)||2E (6.3)

Note that each 3-D surface point has its contribution in the distance function,

based on whether it is visible in both cameras. This simple formulation takes

into account the geometry of the object and the layout of the cameras implicitly,

by using the visibility information. We present some of the clustering results in

Figure 6.1. Please note how the clustering correctly delineates the parts of the

objects that share less visibility information (the two sides of the dinosaur, or the

facets of the temple).

Geometry-based clustering Alternatively, one could address the dual problem

and perform clustering on the rows of the matrix ∆, thus on the geometry of

the scene. 1 Once the vertex clusters have been obtained, the set of the most

discriminant cameras for each cluster has to be selected. This is done in practice

by a voting method, imposing a minimum camera voting threshold of α times the

average score among the camera with positive votes within each cluster. Using this

dual formulation implies some tuning the α parameter, but has the great advantage

of allowing potential camera overlaps, meaning that the same camera might be

used by different vertex clusters. We present some of the clustering results in

Figure 6.2. We have chosen α = 0.90 in the dino case and α = 0.70 in the temple

case.

1The normalized point coordinates and the normal information can be added to the ∆ matrix

in order to take more geometric information into account.
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Figure 6.1: Illustration of camera-based camera clustering using two data sets,

dino (first 2 images) and temple (next 2 images), with two and three clusters.
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Figure 6.2: Illustration of geometry-based camera clustering using two data sets,

dino (first 2 images) and temple (next 2 images), with two and three clusters.
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Part-Based Surface Reconstruction. For each of the obtained clusters we

run the algorithm described in [170], allowing only the vertices visible in the cur-

rent camera cluster to evolve. In practice, we impose a minimum vertex visibility

threshold γ. In order to avoid the issues related to merging partial reconstructions,

we run one camera cluster at a time. The output of algorithm for one cluster is

used as the input for the subsequent cluster. However, this approach comes at the

expense of being unable to parallelize the approach in the current formulation.

Alternatively, we could use algorithms such as [83] to merge the reconstructions

and process all the clusters in parallel.

6.3 Results

We demonstrate the possibility of manually selecting vertices in a geometric mod-

eling interface, in order to recover the surface regions of interest in high resolution.

We also present the results of 3D reconstructions using our camera partitioning

method. To demonstrate the versatility of our approach, we use different data

sets, shown in Figure 6.3. When minimizing each subset, only the visible parts of

the mesh are being sub-divided and minimized, while the others are blocked. We

impose a minimum vertex visibility of γ = 3 in all cases.

(a) Dino (b) Parthenon (c) Temple

(d) Herz-Jesu (e) Fountain

Figure 6.3: Original images from the datasets used in our experiments.
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6.3.1 User Guided Multi Resolution Scenario

The User Guided Multi Resolution results are presented on the ”Herz Jesu” and

the ”Fountain” sequences of [151]. These experiments make use of user-defined

regions of interest to increase the mesh resolution.

These sequences illustrate the interest of evolving directly a mesh representa-

tion of the reconstructed geometry when assisting a 3D artist in the task of visual

modeling. The user can manually select a region of interest by selecting the cor-

responding vertices in the current approximation of the geometry and then ask

the system for a further improvement of this part of the mesh. The higher reso-

lution part can then be automatically evolved to maximize the photo-consistency

accross the input image set. Virtual cameras are thus generated, representing the

relevant input image sub-parts. In practice, cropping an image at coordinates

(x1, y1, x2, y2) modifies the associated camera projection matrix by translating op-

tical center by (x1, y1).

The Herz Jesu Sequence consists of 8 high resolution (3072 x 2048 pixels) pic-

tures. The general view of the coarse reconstruction can be found in Figure 6.4(a).

The scene was very interesting in the validation of our algorithm, because it in-

volved different parts which had very different levels of detail. The wall can be

represented by a coarser resolution mesh, whereas the door and the sculpted rep-

resentation of Jesus above it are regions of interest that can benefit from a higher

resolution reconstruction. The sculpture, in particular, is a region that a user might

want to recover, but would not be able to quickly model it using simple geometric

primitives. Our method allows to rapidly select the corresponding vertices and

to let the algorithm maximize the photo-consistency. In addition, we have also

obtained from the author groundtruth data for a part of the reconstruction, which

was acquired via laser-scanning. The error measurements are presented in Table

6.1.

Level Avg. DistanceError Completeness (0.05m) Avg.Edge Size Avg.Edge Size No. Triang.

Level 1 0.0270m 83.36% 0.1347m 21.04 pixels 2,136

Level 2 0.0177m 92.90% 0.0703m 10.98 pixels 8,592

Level 3 0.0164m 94.17% 0.0232m 3.62 pixels 82,490

Groundtruth 0.0000m 100.00% 0.0064m 1 pixel 1,693,914

Table 6.1: Information about Herz Jesu reconstructions. The errors are measured

in meters. The completeness is measured with respect to a threshold of 0.05m.1

pixel corresponds to an edge size of 0.0064m.

The Fountain Sequence consists of 11 pictures of size 3072 x 2048 pixels, tak-

ing up 64.4 Mb in compressed format. It involves very fine 3D details and was
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(a) 3-D view (b) level 1 (c) level 2

(d) level 3 (e) groundtruth

Figure 6.4: The Herz-Jesu sequence
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(a) (b)

Figure 6.5: The Fountain sequence. The parts shown in color are reconstructed in

higher resolution. (a) Further minimization on the fish; (b) Further minimization

on the whole fountain.

therefore a good stress test. We pushed the algorithm to a very high resolution

of 4 pixels per triangle. We ran two tests on this dataset. The first test was to

reconstruct the whole fountain at a high level of detail, leaving only the wall be-

hind in a coarser state. The algorithm needed 894 minutes to finish. We then ran

the algorithm on the fish sculpture only and got a result after 83 minutes. This

validates our approach in the sense that evolving a subpart of the reconstructed

geometry independently from the rest allowed us to stay away from swapping and

other memory problems. In both cases, we started the algorithm from a coarser

reconstruction that was performed with all images at half the original image size.

The results are presented also in Table 6.2.

Level Img. Input Size Avg.Edge Avg.Edge No. Triang. Time

Coarse 64.4Mb 0.0750 m 20.83 pixels 75,904 129 mins.

Close-up Fish 5.4Mb 0.0161 m 4.44 pixels 151,564 129 + 83 = 212 mins.

Close-up Fountain 40.6Mb 0.0160 m 4.44 pixels 660,540 129+894 = 1,023 mins.

Table 6.2: Information about Fountain reconstructions. 1 pixel corresponds to an

edge size of 0.0036 m. The image input size value represents the total compressed

size of the input images, which can be further sub-sampled, depending upon the

resolution used.

6.3.2 Camera Partitioning

The camera partitioning algorithm is presented on two very different types of

sequences. We first validate the method on a typical turntable situations, where
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the object bounding volume projects inside all the images of the sequence. The

Dino and Temple datasets are presented. We then present the Parthenon dataset,

which involves one long image sequence covering a large object. In this case, each

image only contains a small portion of the reconstructed geometry. We have used

the camera-based clustering in all results shown below. The point-based camera

clustering leads to very similar results. Due to the inherent overlap between views,

we decided to use the simplest method.

Dino and Temple Sequence. These sequences were obtained from the Middle-

burry Multi-View Stereo dataset [142]. It consists of 47 images of size 640x480.

The coarse surfaces were evolved from the visual hull using all down-sampled im-

ages at 320x240 resolution. The reconstruction results for two clusters are shown

in Figure 6.6 and Table 6.3 (see 2 for more). Our proposed method does not lose

significant accuracy with respect to the original method [170] (which uses all the

cameras), while reducing the memory requirements in half and maintaining com-

parable time processing times.

❳
❳

❳
❳

❳
❳

❳
❳

Paper

Dataset Temple Ring Dino Ring

Acc. Compl. Mem. Time Acc. Compl. Mem. Time

Zaharescu et al [170] 0.55mm 99.2% 1031MB 60min 0.42mm 98.6% 962MB 43min

Our method - cluster 1
0.62mm 98.5%

468MB 36 min
0.5mm 98.5%

483MB 33min

Our method - cluster 2 472MB 42 min 476MB 35min

Table 6.3: Middleburry 3-D Rec. Results. Accuracy: the distance d in mm that

brings 90% of the result R within the ground-truth surface G. Completeness: the

percentage of G that lies within 1.25mm of R. Memory: the amount or RAM used

by the program. Time: the duration for the program to finish.

The parthenon sequence consists of 200 images of size 640x480. Each of

these cameras covered only about 1/10th of the overall structure. This sequence

is synthetic and was generated using Blender3 and the textured models obtained

from the Parthenon scuplture gallery website4. We have employed various camera

cluster sizes, with k = 2, 4, 8, 20. The camera path can be observed in Figure 6.7

where we also show the camera clusters in different colors. The original surface

was a parallelepiped of 4472 facets. In Figure 6.8 we show reconstruction results

throughout the evolutions of different clusters.

We measured the reconstruction precision with respect to the groundtruth as

shown in Table 6.4. As it can be observed, there is negligible loss in precision

2http://vision.middlebury.edu/mview/eval/
3http://www.blender.org/
4http://projects.ict.usc.edu/graphics/parthenongallery/index.html



138 Chapter 6: Camera-Clustering

Figure 6.6: Dino and Temple Sequence reconstruction results. The top row

presents the camera partitioning, whereas the middle and bottom row show the

partial reconstructions for the two clusters. The invisible vertices within each

cluster are coloured in light red. The reconstructions are made at 5 pixels per edge

size.
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Figure 6.7: Different camera clustering for Parthenon sequence with the num-

ber of clusters being k = 2, 4, 8, 10. Cameras belonging to the same cluster are

colored in the same color.

of 5mm when performing subset-based reconstruction versus when using all the

cameras at the same time. One has to bear in mind that the laser error for the given

distance is also around 5mm.

Level Avg. Dist. Err. Compl.. (0.05m) Avg.Edge (m) Avg.Edge (pixels)

21 Clusters - Low Res. 0.0344 m 76.98% 0.2528 m 16.20 pixels

All Cameras - Low Res. 0.0265 m 84.83% 0.2885 m 18.49 pixels

2 Clusters - High Res. 0.02006 m 92.50% 0.1629 m 10.44 pixels

4 Clusters - High Res. 0.0209 m 91.59% 0.1641 m 10.52 pixels

8 Clusters - High Res. 0.0201 m 92.35% 0.1599 m 10.25 pixels

21 Clusters - High Res. 0.0205 m 92.36% 0.1331 m 8.53 pixels

All Cameras - High Res. 0.0153 m 95.73% 0.1102 m 7.20 pixels

Groundtruth 0.0000m 100.00% 0.0841m 5.39 pixels

Table 6.4: The Parthenon reconstructions error measures, compared to the laser

scan ground truth. The errors are measured in meters. The completeness (compl.)

is measured with respect to a threshold of 0.05m. 1 pixel corresponds to an

edge size of 0.0156m. Note there is negligible loss in precision when perform-

ing subset-based reconstruction versus when using all the cameras at the same

time.

Virtual Fountain Sequence In the fountain sequence , since we are dealing

with very high resolution images (3072 x 2048), we have generated virtual cam-

eras such that the original image is cropped into a 2x2 grid (hence 4 virtual cam-

eras for each real camera). We are pleased to report that, performing camera-
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Figure 6.8: Parthenon reconstruction using 200 cameras and 21 clusters of cam-

eras. We show partial reconstructions where parts of the surface are reconstructed

using cameras belonging to one cluster at a time.
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Figure 6.9: 4 Cluster View for the Virtual Fountain dataset.

subset clustering, the 4 correct subsets were found. Results can be observed in

Figure 6.9. The reconstruction results per cluster are presented in Figure 6.10.

Figure 6.10: Results for the partial reconstructions in the virtual fountain scene.
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Future Work. One other possible scenario that we plan on investigating is, in-

stead of pre-generating virtual cameras and performing clustering, to generate

the virtual cameras post-clustering, limiting the virtual cameras to the bounding

boxes. Also, we plan on exploring automatic mesh segmentation methods that

take into account more mesh properties, which will in turn allow for the selec-

tion/generation of the proper cameras. Finally, we plan on integrating a photo-

consistency based threshold for adaptive mesh resolution. It would adaptively de-

termine if a facets represents the geometry well enough, based on the reprojection

error measure. It was not currently implemented due to time constraints and do to

the fact that in practice we calculate only the derivative of the photo-consistency

measure, not the measure itself.

6.4 Conclusion

In this chapter we addressed the problem of piecewise 3D surface reconstruc-

tion from multiple calibrated cameras. We showed that, starting from the coarse

initial geometry, the original set of cameras can be partitioned into a number of

camera subsets, each of which is observing a part of the surface to reconstruct.

Independent reconstructions of surface parts require less memory than when us-

ing all cameras as in global approaches. We also showed the possibility of using

these techniques in a graphical modeling interface, when regions of interest have

to be reconstructed in high resolutions. We have demonstrated that the proposed

method does not lose significant accuracy with respect to global methods, while

offering several advantages with respect to the time and to the memory require-

ments.
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3-D Mesh Descriptor

In this chapter we revisit local feature detectors/descriptors developed for 2-D im-

ages and extend them to the more general framework of scalar fields defined on

2-D manifolds. We provide methods and tools to detect and describe features on

surfaces equiped with scalar functions, such as photometric information. This is

motivated by the growing need for matching and tracking photometric surfaces

over temporal sequences, as a number of recent approaches allow their estima-

tions using multiple cameras. To this purpose we propose a 3-D feature detector

(MeshDOG) and a 3-D feature descriptor (MeshHOG) for uniformly triangulated

meshes. The descriptor is robust to changes in rotation, translation, and scale and

it is able to capture the local geometric and/or photometric properties in a succinct

fashion. Moreover, the descriptor is defined generically, it is valid with any scalar

function, e.g., local curvature. Results with rigid and non-rigid mesh matching

demonstrate the interest of the proposed framework. Lastly, it is shown how the

approach integrates directly within a mesh tracking framework.

7.1 Introduction

The detection, characterization, and matching of various 2-D or 3-D features from

visual observations is of great importance for a large variety of applications such

as modeling, tracking, or recognition, indexing, etc. The vast majority of exist-

ing methods detect features using either photometric information available with

2-D images or geometric information available with 3-D surfaces. However, re-

cent progress in image based 3-D modeling and rendering allows to recover both

photometric and geometric information from multiple images [142]. Whenever

such models are available, photometric 2-D features or geometric 3-D features, if

143
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(a) (b) (c) (d)

Figure 7.1: The feature detection method described in this chapter can be applied

to any scalar function defined over a 2-D manifold such as the meshed surface

shown here: photometric data (a) and associated points of interest (b); mean sur-

face curvature (c) and the detected features (d).

taken separately, have limited informative capabilities with respect to the potential

richness of the data. Consequently, even though observations from several view-

points are available, matching features is still challenging in several situations.

This is the case, for example, with deformable and/or articulated objects, since

image appearance is only partially robust to motions and geometric properties by

themselves are not always robust, e.g., the topology of the model can change con-

siderably with varying object poses. Therefore, we believe that photometric and

geometric information need to be handled in a consistent and simultaneous man-

ner. To this purpose, we observe that photometric 3-D models can be viewed as

scalar functions defined over 2-D manifolds and, as such, represent a generaliza-

tion of planar image domains to non-planar domains. We can thus build on the

existing theories and body of work on extracting image feature, and investigate

their extensions to 2-D manifolds.

The contribution of this chapter is twofold: first we develop a methodology for

feature-based characterization using operators acting on scalar functions defined

over 2-D manifolds; second, we derive a novel family of interest point detectors

and descriptors that take into account both the surface geometry and the photo-

metric information. To this aim, operators such as the discrete convolution and

the discrete gradient, are defined for scalar functions on discrete surfaces, i.e.,
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meshes, thus taking into account both the functions’ values as well as the sur-

faces’ geometry. Based on these operators, a new interest point detector and a

new local descriptor are introduced, namely MeshDOG and MeshHOG. Mesh-

DOG is a generalization of the DOG operator [102, 97] and it seeks the extrema

of the Laplacian of a scale-space representation of any scalar function defined on

a discrete manifold. MeshHOG is a generalization of the histogram of oriented

gradients (HOG) descriptor recently introduced for describing 2-D images [33].

The new descriptor is defined with respect to the measurements available at each

of the discrete surface’s vertices and it can work with features such as colour,

curvature, or geodesic integral, among others.

As is the case with the more classical image operators, detectors and descrip-

tors are not uniquely defined over surfaces and MeshDOG and MeshHOG were

chosen in light of their quasi-invariance to transformations such as rotation and

scale. In addition, they exhibit a number of attractive properties:

• There are no perspective distortions, since computations are achieved in 3-

D;

• There are no false detections due to occlusions;

• The descriptor captures both the local 3-D geometry and the local gradient

information of the scalar function;

• Within a multiple-camera setting, the descriptor can fuse the photometric

information coming from different images in order to provide more robust

image-invariant photometric information.

The organization of the chapter is as follows. Section 7.2 discusses related

works. Section 7.3 describes the mathematical formulation allowing us to build a

number of operators on discrete manifolds. Section 7.4 and 7.5 introduce the local

feature detector and descriptor, respectively. Section 7.6 presents and discusses

the results, before concluding in section 7.7.

7.2 Related Work

Photometric functions over planar domains (local image features): Devel-

oping robust 2-D features, invariant under changes in illumination, viewpoint,

scale and orientation has been one of the long term research goals in computer

vision. Currently, SIFT [97] and HOG (histogram of oriented gradients) [33] are
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among the most widely used descriptors for their robustness to the transforma-

tions just cited. Interest points may coincide to the extrema of the Laplacian of

the photometric function, and they are detected at various resolution scales us-

ing the difference of Gaussians (DOG) approximation of the Laplacian, see [114]

for a detailed review. Alternatively, spatio-temporal descriptors have also been

proposed [166, 85], by considering the 3-D spatio-temporal volume defined by

a short image sequence over time. Such space-time features can be seen as lo-

cal features defined over 3-D grids. We extend the DOG operator to non-planar

surfaces instead of dealing with volumetric grids.

Geometric functions over surfaces (local geometric features): 3-D spin im-

ages [78] and 3-D shape contexts [88, 51] are among the most successful surface

descriptors. These are descriptors that rely solely on the surface geometry. See

[154, 30] for a detailed survey. Typically these descriptors characterize the neigh-

bourhood of a specified surface region. A number of methods have been proposed

for automatic identification of interest regions on surfaces, taking into account

geometrical features. Scale-space extrema based on the averaged mean curvature

flow are proposed in [140]. Alternatively, [120] defines the scale space in a planar

parametrization of the surface using the normal information and searches for the

extrema. Photometric information is not taken into account by these methods.

Photometric functions over surfaces (local augmented surface features):

In [167] a SIFT-based descriptor on 3-D oriented patches is proposed, i.e., VIP

(Viewpoint Invariant Patches), which was used for 3-D model matching. It con-

stitutes a first attempt to devise a descriptor that includes both geometry (normal

orientation) and photometric information. In [148] the authors propose a concate-

nated surface descriptor taking into account both geometry (a region descriptor

based on geodesic-intensity histograms), and photometric information (edge and

corner descriptors that take into account the local isometric mapping to R
2). The

approach proposed in this chapter is similar in spirit to [167], but extended to

consider full 3-D gradients and histograms.

Many applications make use of local features, in particular in the context of

surfaces: surface registration, non-rigid shape matching and object recognition.

For instance [121] proposes an image-based descriptor using the local R
2 embed-

ding of the curvature information on the mesh in order to perform surface regis-

tration. Also a recent number of works, e.g. [55, 6, 34, 160], address the non-rigid

mesh matching problem using observations from multiple views. The vast major-

ity of the proposed methods (the only notable exception being [55]) uses both ge-

ometric information extracted from surfaces and photometric data available with

images. The latter is first extracted using 2-D image descriptors (such as SIFT

[97]), and subsequently backprojected onto the mesh. This sparse description is

generally used to bootstrap dense matching. Surface descriptors may well be used
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for 3-D object recognition, as it has been already done in [143] using the Princeton

shape benchmarking database 1. Our work contributes to these efforts by improv-

ing the 3-D local feature extraction and description methodologies, as required by

an increasing number of challenging applications.

7.3 Problem formulation

Let S denote the set of all possible discrete parametrizations of the admissible

2-D manifolds in R
3. We will consider in particular uniformly sampled triangu-

lated meshes S ∈ S, namely meshes whose facets are triangles of approximately

the same size and whose vertices’ valence is close to 6. We notice that such an

uniform mesh can be obtained from a non-uniform mesh through simple mesh

operations, as proposed in [87]. This absolves us of the necessity of complex

techniques that ensure proper samplings of scalar fields over S, while keeping

generality. It is interesting to notice that an image can be viewed as a “flat” uni-

formly sampled mesh, i.e., a grid of vertices with valence 4 and whose facets are

squares or rectangles.

S can also be viewed as a graph S(V, E), where V = {vi}1≤i≤N is the set of

mesh vertices and E = {eij} is the set of mesh edges between adjacent vertices.

We denote by eavg the average edge length. We associate a 3-D point v ∈ R
3

with each vertex v. The ring of a vertex rg(v, n) is the set of vertices that are at

distance n from v on S, where the distance n is the minimum number of edges

between two vertices. Thus rg(v, 0) is v itself and rg(v, 1) is the set of direct

neighbours of v (see Figure 7.2). The neighbourhood Nn(v) is then the set of

rings {rg(v, i)}0≤i≤n. We further denote −→
n v the normal direction at v computed

as the average direction of the normals of the triangles incident to v.

We consider a scalar function f : S → R. In order to be able to estimate

discrete gradient information, we recall the definition of the directional derivative

of a scalar function on a manifold:

Definition 1 (Directional Derivative) Let ∇Sf denote the gradient operator of f
on S, the directional derivative of f at v ∈ S is defined as:

D−→u f(v) = ∇Sf(v) · −→u , (7.1)

for any direction −→u in the tangent plane of S at v.

Using the fact that up to first order: f(vj) − f(vi) = ∇Sf(vi) · (vj − vi)
around vi, we propose the following definition:

1http://shape.cs.princeton.edu/benchmark/

http://shape.cs.princeton.edu/benchmark/


148 Chapter 7: 3-D Mesh Descriptor

v

v1

v2

v3v4

v5

v6
1st ring

2nd ring

rings

v

3rd ring

4th ring

5th ring

6th ring

Figure 7.2: A vertex v and its rings (left) and the first ring of v (right).

Definition 2 (Discrete Directional Derivative) The discrete directional derivative

of f is defined as:

D−→eij
f(vi) =

1

||−−→vivj||
(f(vj) − f(vi)), (7.2)

∀eij ∈ E and where ||−−→vivj|| = ||vj − vi||.

∇Sf(vi) is by definition a vector in the tangent plane at vi and the above def-

inition allows us to estimate its directional values around vi. Hence, two such

non-null local directional gradients are, in principle, sufficient to estimate the gra-

dient ∇Sf(vi) at vi. This is a generalization of the classical way of computing

gradients in the image using two orthogonal directions. In practice however, we

prefer to use all the directional gradients provided by the first ring of a vertex:

indeed, this redundancy guarantees a more robust operator:

Definition 3 (Discrete Gradient) the gradient operator ∇Sf(vi) of f at vi ∈ S is

defined as:

∇Sf(vi) =
∑

vj∈rg(vi,1)

(wijD−→eij
f(vi))

−→uij, (7.3)

where wij weighs the contribution of D−→eij
and −→uij is the normalized projected

direction of −−→vivj in the tangent plane at vi.

The weights wij should be chosen in order to balance the contributions of the local

directional derivatives with respect to their associated directions in the tangent

plane. Assuming that S is uniformly sampled and thus that neighbours around vi

are equally spaced we get: wij = 1
val(vi)

where val(vi) is the valence of vi. For
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non uniformly sampled meshes, the weights are a function of the angles between

the directions −→uij around vi in the tangent plane at vi
2.

Finally, we define the discrete convolution operator on a mesh:

Definition 4 (Discrete Convolution). The convolution of the function f with a

kernel k is:

(f ∗ k)(vi) =
1

K

∑

vj∈Nn(vi)

k(||−−→vivj||)f(vj), (7.4)

where the kernel weighs the participation of neighbouring vertices vj as a function

of their distances from vertex vi and K =
∑

vj∈Nn(vi)
k(||−−→vivj||) is a normalization

factor. Notice that, as for the discrete gradient, we assume a uniformly sampled

mesh and thus that contributions of neighbouring vertices vj in the above expres-

sion are equally weighted with respect to their spatial arrangements. Another

remark is that, generally, we use the above definition with the first ring only, i.e.,

n = 1.

7.4 Feature Detector (MeshDOG)

Feature detection is comprised of three steps, as illustrated in Figure 7.3. First, the

extrema of the function’s Laplacian (DOG) are found across scales using a one-

ring neighbourhood. Second, the extrema thus detected are thresholded. Third,

the unstable extrema are eliminated, thus retaining those mesh locations exhibiting

some degree of cornerness.

Scale Space Extrema. We propose a scale-space representation of scalar

function f defined on a mesh. We consider the convolution operation on meshes

(see Definition 4) using a Gaussian kernel, defined as:

gσ(x) =
exp (−x2/2σ2)

σ
√

2π
.

The scale space of f is built progressively: f0 = f , f1 = f0 ∗ gσ, f2 = f1 ∗ gσ,

etc. Convoluted functions are subtracted, e.g., DOG1 = f1−f0, DOG2 = f2−f1,

etc., in order to obtain the difference of Gaussian operator.

Such an example can be observed in Figure 7.4, where the model used is

the Stanford bunny 3 and the mean curvature is chosen as a feature. Additional

2details are provided in an associated research report.
3http://www-graphics.stanford.edu/data/3Dscanrep/

http://www-graphics.stanford.edu/data/3Dscanrep/
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(a) (b)

(c) (d)

Figure 7.3: Feature detection shown with photometric data. (a) The original mesh

has 27240 vertices. (b) There are 5760 extrema detected. (c) After thresholding

there are 1360 vertices left. (d) 650 vertices with “cornerness” are eventually

retained.
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results are presented in Figures 7.5, 7.6 and 7.7 using the pop2lock sequence made

available to us via the Surface Motion Capture project at the University of Surrey

[149], where colour, mean curvature and guassian curvature have been used as

features. An important observation is that, when building the scale space, the

mesh geometry does not change, but the different scalar functions defined on the

mesh, i.e. f1, f2, DOG1, DOG2.

(a) f4 (b) f8 (c) f16 (d) f64

(e) DOG4 (f) DOG8 (g) DOG16 (h) DOG64

Figure 7.4: Scale space representation, where the shape is the Stanford bunny and

the feature f is the mean curvature.

Each octave of σ0 = eavg is subdivided in 3 steps, choosing σ = 2
1
3 σ0 =

2
1
3 eavg. In the 2-D image case, after covering an octave, the original image is sub-

sampled first, before continuing to the next octave. In order to obtain the similar

effect on triangular meshes, mesh simplification operations [93] can be performed,

by imposing the new average edge to be eavg∗1.5. In order to cover the new octave,

the σ0 should be chosen to reflect the new average edge length. Due to the cost

of the mesh simplification operation, alternatively, we chose not to simplify the

mesh, but to continue convolving with the same original kernel, keeping in mind

that, in order to cover another octave, twice as many convolutions are necessary.

The feature points are selected as the maxima of the scale space across scales,

followed by non-maximum-suppression, using the one ring neighbourhood, in the

current and in the adjacent scales.
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(a) f2 (b) f16 (c) f32 (d) f64

(e) DOG2 (f) DOG16 (g) DOG32 (h) DOG64

Figure 7.5: Scale space representation, where the shape is the pop2lock frame 30

and the feature f is the colour.

(a) f2 (b) f16 (c) f32 (d) f64

(e) DOG2 (f) DOG16 (g) DOG32 (h) DOG64

Figure 7.6: Scale space representation, where the shape is the pop2lock frame 30

and the feature f is the mean curvature.
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(a) f2 (b) f16 (c) f32 (d) f64

(e) DOG2 (f) DOG16 (g) DOG32 (h) DOG64

Figure 7.7: Scale space representation, where the shape is the pop2lock frame 30

and the feature f is the gaussian curvature.

Thresholding. From the extrema of the scale space, only the top β = 5% of

the maximum number of vertices are being considered, sorted by magnitude. We

have chosen a percentage value versus a hard value threshold in order to keep the

detector flexible, no matter which feature is being considered, without the need

for normalization.

Corner Detection. Additionally, in order to eliminate more non-stable re-

sponses, we retain the features that exhibit corner characteristics. As proposed in

[97] this can be done using the Hessian operator: :

H(v) =

[
dxx(v) dxy(v)
dyx(v) dyy(v)

]

, (7.5)

where dxx, dxy and dyy are second partial derivatives. We estimate them by apply-

ing the definition of directional derivatives (7.1) twice, e.g. dxy = ∇SD−→x f(v) · −→y ,

where the gradient is computed using (7.3). The directions −→x and −→y represent

here a local coordinate system in the tangent plane of v, typically the gradient

direction for −→x and its orthogonal direction for −→y . The ratio between the largest

λmax and the lowest λmin eigenvalues of the Hessian matrix is a good indication

of a corner response. We typically use λmax/λmin = 10 as a minimum value to

threshold responses.
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7.5 Feature Descriptor (MeshHOG)

The descriptor for vertex v is computed using a support region, defined using

a neighbourhood ring size r, as depicted in Figure 7.2. For each vertex from

the neighbourhood vi ∈ Nr(v), the gradient information ∇Sf(vi) is computed

using (7.3). As a first step, a local coordinate system is chosen, in order to make

the descriptor invariant to rotation. Then, a histogram of gradient is computed,

both spatially, at a coarse level, in order to maintain a certain high-level spatial

ordering, and using orientations, at a finer level. Since the gradient vectors are 3

dimensional, the histograms are computed in 3-D.

Neighborhood Size. The number of rings r for the support region is chosen

adaptively based on a more global measure, such that the descriptor is robust to

different spatial samplings and to scaling. The value of r is chosen such that it

covers a proportion αr from the the total mesh surface, where αr ∈ (0, 1). By

denoting AS as the total surface area of the mesh S, which can be computed as

the sum of all triangle areas, the ring size r is:

r = round

(

1

eavg

√

αrAS

Π

)

, (7.6)

assuming that the surface covering the ring neighbourhood can be approximated

with a circle and that the mesh S is equally sampled, with the average edge size

eavg. In practice, we use an r corresponding to αr = 1%.

Local Coordinate System. A local coordinate system can be devised using

the normal −→n v and two other unit vectors, residing in tangent plane Pv of v. Given

a unit vector −→a v ∈ Pv, the local coordinate system is given by {−→a v,
−→
n v,

−→
a v ×−→

n v}. Vector −→a v is computed as the direction associated to the dominant bin in

a polar histogram, with ba = 36 bins. The histogram is computed by considering

the projected vertices vi in Pv and taking into account their gradient magnitudes.

We weigh ||∇Sf(vi)|| by a Gaussian with σ = eavgr/2, based on the geodesic dis-

tance from v. In order to reduce aliasing and boundary effects of binning, votes

are interpolated bilinearly between neighbouring bins when computing the his-

tograms. We use the same weighting and interpolation technique for any further

binning.

Histograms. Instead of computing full 3-D orientation histograms, as pro-

posed in [85], we project the gradient vectors to the 3 orthonormal planes, de-

scribing the local coordinate system. This provides us with a more compact rep-

resentation of the descriptor. For each of the three planes, we compute a 2 level

histogram. Firstly, the plane is divided in bs = 4 polar slices, starting with an

origin and continuing in the direction dictated by the right hand rule with respect
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(a) (b)

`
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4

5 6

7

8

axis

(c) (d)

Figure 7.8: a) 3-D Histogram - polar mapping used for creating histograms via

binning of 3-D vectors; b) Choosing 3 orthogonal planes onto which to project

the 3-D Histogram. c) Polar Coordinate system used for creating histograms via

binning of 2-D vectors, shown in this example with 8 polar slices. d) Example

of a typical spatial and orientation histograms, using 4 spatial polar slices and 8

orientation slices.

to the other orthonormal axis vector. When projected onto the plane, each vertex

vi will fall within one of the spatial slices. For each spatial slice, we compute

orientation histograms with bo = 8 bins for each of the projected gradient vectors

∇Sf(vi) of the vertices vi that projected onto that spatial slice, as shown in Figure

7.8(d).

Descriptor. The final descriptor is obtained by concatenating bs×bo histogram

values for each of the three planes, followed by L2 normalization.

7.6 Mesh Matching

We are validating the proposed detector and descriptor using a mesh matching

approach. Let us consider two meshes S1 and S2 of the same object. The two

meshes do not necessarily have the same number of vertices. Using the proposed

approach, n1 interest points are detected on S1, which are characterised by de-

scriptors t(1,i), with i ∈ [1..n1]. Similarly, n2 interest points are detected on S2,

characterised by descriptors t(2,j), with j ∈ [1..n2].

Matching. We use the following Greedy heuristic in order to select the a set

of best matches. Let the Euclidean distance dij = ||t(1,i) − t(2,j)|| represent the

matching score between descriptor t(1,i) from surface S1 and descriptor t(2,j) from

S2. Now, for each descriptor t(1,i), consider the best two matches t(2,b(1,t(1,i))) and

t(2,b(2,t(1,i))) from S2, in terms of the defined matching score, where the function

b(x, t(1,i)) returns the index of the xth best match among the descriptors of S2. The
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putative match (t(1,i), t(2,b(1,t(1,i)))) will be considered a good match only if it is sig-

nificantly better than the second best match, that is if di,b(1,t(1,i))γ > di,b(2,t(1,i)),

with γ = 0.7. Additionally, cross validation is performed, by checking that

t(2,b(1,t(1,i)))’s best match among the descriptors of S1 is indeed t(1,i). This is not

meant to fully solve the matching problem, as would a global approach [148]. It

is merely intended for validation and for evaluation of our detector and descriptor.

Datasets. In our evaluation we consider the following scenarios: (i) the two

meshes are representations of the same rigid object, which can thus be aligned

using a rotation, translation and scale; (ii) the two shapes are representations of

the same non-rigid object, i.e. a moving person. In this context, we are introducing

the datasets.

• Rigid Matching: we are considering reconstructions of the same object us-

ing different camera sets. In particular, we are using meshes obtained em-

ploying the method described in [170], using the publicly available datasets

from the Middleburry Multi-View Stereo site [142]. The Dino datasets con-

tains two meshes, one with 27240 vertices obtained from 16 cameras and

the other of 31268 vertices generated from 47 cameras. Similarly, the Tem-

ple datasets contains two meshes, one with 78019 vertices obtained from 16

cameras and the other of 80981 vertices generated from 47 cameras.

• Non Rigid Matching from Synthetic Data: we consider a synthetically gen-

erated dataset entitled Synth-Dance of a human mesh with 7061 vertices

moving across 200 frames.

• Non-Rigid Matching from Real Data: additionally, we use frames 515-550

from the INRIA Dance-1 sequence, where the same reconstruction method

[170] was employed to recover models using 32 cameras. The models have

vertices ranging between 16212 and 18332.

Photometric information. The colour of each vertex of the surface is com-

puted by considering the median colour in the visible images. We assume that the

colours of a vertex follow a non-Gaussian distribution, due to errors that can occur

around occluding contours. In the Synth-Dance dataset the vertices are randomly

coloured.

7.6.1 Rigid Matching

We present our results on the Dino and Temple datasets in Figure 7.9, where we

have run tests where the colour and the mean curvature were used as features,
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(d) Temple - Errors

Figure 7.9: Rigid matching results - Dino and Temple datasets. (a) (c) Matching

results when using the colour both as a detector and as a feature; (b) (d) Error

distribution when using different combinations of features for both detection and

matching.
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as well as cases in which we have created a new descriptor by concatenating the

MeshHOG descriptors for colour and mean curvature. In order to provide the

reader with an intuition behind the different choices for features, we include Fig-

ure 7.10, which displays the colour, the mean curvature and the Gaussian curva-

ture, as well as the above measure derivative magnitudes.

(a) (b) (c)

(d) (e) (f)

Figure 7.10: Different measures for the Dino dataset: (a) colour; (b) mean curva-

ture; (c) Gaussian curvature; (d) colour gradient magnitude; (e) mean curvature

gradient magnitude; (f) Gaussian curvature gradient magnitude.

The results are interesting. Even when just curvature is used for the descrip-

tor, there seems to be enough discriminability to account for a number of correct

matches varying between 10-30, depending on the detector and the dataset. Both

the Dino and the Temple datasets are rather challenging, due to the fact that, at

a first glance, they do not have a large number of distinguishing non-repetitive

features in terms of their visual aspect. Additionally, it seems that using just the

colour as a feature provides the best results in terms of the number of matches.
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This is so, we can argue, because the descriptor inherently incorporates certain

mesh geometry information by design of the operators.

These are the only results presented in the chapter where different features

were used for the descriptor. All the other results are generated using colour

information.

7.6.2 Non Rigid Matching

Comparison with Back-Projected 2-D Features. We present a comparison be-

tween the proposed mesh matching framework using MeshHOG descriptor with

another framework, currently employed in a number of mesh matching meth-

ods (see Section 7.2), that uses back-projected image descriptors. In the image

based framework, the matching is performed in the images and only then is back-

projected onto the surface. In our comparisons, we used the SIFT image descrip-

tor. When matching the two surfaces, only matches from the same cameras are

considered. In order to be able to carry such a comparison for the Synth-Dance

dataset, we have generated images for 16 virtual cameras, distributed in a circular

pattern around the object.

Synthetic comparative results are presented in Figure 7.11. The mesh in the

first frame was matched with the mesh at any of the other 199 frames across the

sequence. As it can be observed, the MeshHOG descriptor generates very few

false positives in comparison with the SIFT equivalent, clearly demonstrating the

advantages of the proposed approach.

In addition, we present empirical results in Figure 7.12 for for the INRIA

Dance-1 sequence. As it can be observed, the second second best match ra-

tio threshold γ = 0.7 tends to be more aggressive for SIFT. There are only 54

matched found using the SIFT back-projected method between frame 525 and

526, whereas MeshHOG finds 119 matches. Even when matching across distant

frames (530 and 550), our proposed method finds 13 correct matches, versus the

SIFT descriptor, that fails to find any match. It is to be expected, since most of the

inter-frame matches are due to local creases formed by the clothes.The head is the

only unique feature that can be robustly matched across time.

7.6.3 Resilience to Noise

There are two kinds of uniformly distributed noise being applied: geometry noise

(changing the vertices v) and colour noise (changing values f(v) held in each

vertex). The colour noise relates to % of the total amount of a maximum 255
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(a) MeshHOG
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(b) MeshHOG
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(c) MeshHOG

(d) SIFT
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(e) SIFT
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(f) SIFT

Figure 7.11: Non Rigid matching using synthetic data - dancer-synth dataset.

Comparison between MeshHOG and SIFT matching results. Matches between

frames 1 and 50 are visually depicted in (a),(d). There are 364 matches for Mesh-

HOG and 343 matches for SIFT. They are also quantified in the error histograms

(b),(e). The histogram bins are of size equal to eavg. The last bin groups all the

errors greater than 20∗ eavg. Additionally, the average histogram errors are shown

in (c),(f) for matching frame 1 with x, where x ∈ [2..200].
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(a) MeshHOG (b) MeshHOG (c) MeshHOG

(d) SIFT (e) SIFT (f) SIFT

Figure 7.12: Non Rigid matching using real data - Dance-1 sequence. Comparison

between MeshHOG and SIFT matching results. Matches between frames 525 and

526 are visually depicted in (a), (d). There are 119 matches for MeshHOG and 54

matches for SIFT. Matches between frames 530 and 531 are visually depicted in

(b), (e). There are 122 matches for MeshHOG and 2 matches for SIFT. Matches

between frames 530 and 550 are visually depicted in (c), (f). There are 13 matches

for MeshHOG and 0 matches for SIFT.
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RGB value noise, whereas the geometry noise relates to the % of the total amount

of a maximum eavg noise level. As it can be observed in Figure 7.13, the method

does not generate more false positives when the amount of noise increases. The

Dino dataset has a larger number of false positives, since the two meshes are not

perfectly identical, being the result of a 3-D reconstruction method from multiple

images, which introduces some errors. In the Synth-dance dataset, the colour

noise influences the descriptor accuracy more than the geometry noise, whereas

in the Dino dataset the situation is reversed. This stems from the fact that the

meshes in the two datasets have a relatively different number of vertices, which

will in turn directly influence the ring neighbourhood size r (r = 7 for Synth-

dance, and r = 15 and r = 16 for Dino), always chosen to represent αr of the

total mesh area.

The running time of computing such a descriptor depends on the descriptor

neighbourhood size. For example, in the synth-dance dataset, computing 706 de-

scriptors using a neighbourhood size r = 7 took under 1 second, while computing

2724 descriptors using a ring neighbourhood size r = 15 took 35 seconds. The

machine used for the test was a Core2Duo 2.4GHz Intel with 2 Gigs or RAM

running Mac OS.X. The code has been developed in C++.

7.6.4 Integration with a Mesh Tracking Framework

We have integrated the MeshHOG descriptor within an existing mesh tracking ap-

proach, described in [160]. The approach has three stages: finding a set of initial

sparse matching, densifying the matches and mesh morphing. The set of initial

matches consists of two steps: at first, the extremities are located and matched

using the maxima of the geodesic integral and colour information. Secondly,

new sparse correspondences are established using back-projected SIFT descrip-

tors, together with additional geometric (elastic stretch and twist) and protrusion

information. The sparse matches are diffused across, using laplacian process-

ing. Lastly, mesh morphing is employed in order to handle potential topological

changes and to guarantee convergence. The currently proposed MeshHOG de-

scriptor is used in order to provide the set of initial sparse matches, replacing the

back-projected SIFT descriptors. Some results are presented in Figure 7.14.

7.7 Conclusion

We have introduced MeshDOG and MeshHOG, a new 3-D interest point detector

and a new 3-D descriptor, defined on uniformly sampled triangular meshes. The
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(d) Dino - FP
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(f) Dino - FP Ratio

Figure 7.13: Resilience to noise measurements. There are two kinds of noise be-

ing applied: geometry noise (changing the vertices v ) and colour noise (changing

values f(v) held in each vertex). Results are shown for the Synth-dance dataset

(frame 1 and 50) in (a), (c), (e) and for the Dino dataset in (b), (d) (f). Graphics

are presented for the True Positives (TP), the False Positives (FP) and the False

Positive Ratio.
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(a) (b)

Figure 7.14: INRIA Dance-1 Sequence: Frames 515 - 530. (a) Sparse Matching

Results; (b) Final Tracking Results.
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descriptor is able to capture the local geometric and/or photometric properties in

a succinct fashion. It is robust to changes in orientation, rotation, translation and

scale. We have presented results of matching various rigid and non rigid datasets,

both on real sequences and on synthetically generated data. They demonstrate

that local features detected on meshes using both photometric and geometric in-

formation are more robust than traditional purely photometric features detected

in images. Lastly, we have shown how the above mentioned approach integrates

within a mesh tracking framework.
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Chapter 8

Conclusion

8.1 Summary

In this thesis we have addressed the necessary steps necessary to build a mesh-

tracking framework using multiple camera environments: camera calibration and

sparse 3-D reconstruction, dense 3-D reconstruction, sparse and dense mesh match-

ing.

Firstly, we have developed a bayesian framework that works in conjunction

with any affine factorization algorithm, able to recover both the extrinsic param-

eters of multiple cameras and 3-D coordinates of control points, given their pro-

jected 2-D point correspondences and the intrinsic camera parameters. The pro-

posed framework is robust to outliers and compares favourably with bundle ad-

justment, a standard non-linear minimization technique, which requires an initial

solution not very far from the optimum.

Secondly, we have proposed TransforMesh, a provably correct mesh-based

surface evolution approach, able to handle topological changes and self-intersections

without imposing any mesh sampling constraints. The exact mesh geometry is

preserved throughout, except for the self-intersection areas. Sample applications,

including mesh morphing and 3-D reconstruction using variational methods, are

presented. Numerous examples are provided, proving its robustness. The link

thus between sparse and dense 3-D reconstruction methods is established.

Thirdly, we have developed a scene-aware camera clustering method, able to

break large scale reconstruction tasks in smaller independent partial reconstruc-

tions that are memory tractable. The method works by building a visibility matrix

of feature points projections in the available cameras, thus being applicable either

167
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when a rough geometry of the scene is available or key-point matches. By per-

forming clustering on the transpose of the visibility matrix, regions of the scene

can be clustered, instead of the cameras, which can be a very useful tool to gen-

erate virtual cameras in the scenarios where few high resolution images are avail-

able.

Lastly, we proposed a new 3 dimensional descriptor, entitled MeshHOG, de-

fined on uniformly sampled triangular meshes, which is invariant to rotation,

translation, scale, being able to capture local geometric and photometric prop-

erties. It is particularly useful in the multi-camera environments, where the re-

constructed meshes benefit from colour/texture information. Nevertheless, the

descriptor is defined generically for any feature available throughout the mani-

fold, colour and curvatures being just some examples. Results in both rigid and

non rigid matching tasks are presented. Additionally, the descriptor was integrated

within a mesh tracking framework, providing dense matches.

The contributions follow intuitively the necessary steps required for a desired

mesh tracking framework. Looking in retrospect, I think that the most valuable

contribution that this thesis proposes is TransforMesh, which provides a provably

correct method for triangular mesh surface evolution that does not suffer from

sampling issues. I also consider the newly proposed mesh descriptor a valuable

tool, applicable in a variety of mesh matching scenarios.

8.2 Future Work

The first two contributions (robust factorization and the surface evolution meth-

ods) have been thoroughly explored throughout this thesis and we do not envision

any extensions in the near future. Nevertheless, the camera clustering and the 3-D

mesh descriptor are both areas that can benefit from further enhancements. We

will detail each of the proposed future contributions below.

8.2.1 Camera Clustering

In terms of camera clusterings, one area of future research is how to properly join

together efficiently partial reconstructions obtained using separate camera sub-

clusters. In the current implementation of the content aware clustering algorithm,

one 3-D representation is used, which is subsequently minimized by each partic-

ipating cluster. As a consequence, one cannot benefit from parallelism directly,

not being able to run the minimization process on the camera clusters in parallel.

While a number of methods [20, 12, 83, 90, 8, 128] able to reconstruct surface
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representations from oriented point sets already exist and have been discussed in

the introduction section, this issue will nevertheless pose problems when dealing

with regions that suffer from not-sufficient samplings. Additionally, one should

take into account the local mesh connectivity provided by each partial reconstruc-

tion. Given the fact that the proposed surface evolution technique works with

open meshes, a possible solution is to run multiple minimization simultaneously

by blocking the borders, followed by a merging step.

On a slightly different but related topic, the whole SLAM (Simultaneous Lo-

calization and Mapping) framework can benefit from some improvements that

take camera clustering into account. In SLAM, a typical scenario is to have one

camera video stream used in order to progressively cover a scene. The cameras

and a sparse world representation are gradually recovered. They are to be inte-

grated with an already dense representation of the world and cameras. When in-

corporating the new information, a camera clustering approach can dictate which

existing cameras should be used in conjunction with the new ones in order to

densely refine the world representation.

8.2.2 3-D Mesh Descriptor

There are a number of possible applications that can benefit from the proposed 3-

D mesh descriptor. One possible application is to perform alignment of different

partial reconstructions. On of the main drawbacks of SLAM like algorithms is the

fact that over long sequences a certain amount of drift is accumulated, mainly due

to the fact that only local minimizations are taken into account. Let us consider

a scenario where one surrounds a building filming it. When recovering the 3-D

scene using a SLAM like approach, the start and end point will not coincide. This

could be corrected if, based on 3-D mesh descriptors, one detected that in fact the

two scenes are the same, and therefore re-aligned them. Such an approach was

proposed in [167] in conjunction with a different descriptor.

Alternatively, MeshHOG could be used as the building block in a 3-D ob-

ject/category recognition framework, as it has been already done with other de-

scriptors in [143], using the freely available Princeton Shape Benchmarking database
1. The standard approach used in such scenarios is the so called bag-of-words

approach [147]. Objects are characterized by a number of relevant descriptors,

which are later on used for learning and classification. As future work, we plan

on integrating our descriptor within the proposed framework and compare it with

already existing approaches. There are over 12 shape descriptors already existent

and currently implemented in [143].

1http://shape.cs.princeton.edu/benchmark/

http://shape.cs.princeton.edu/benchmark/
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One other possible extension of the current work would be to adapt the MSER

(Maximally Stable Extremal Regions) interest point detector [108] to triangular

meshes. As an advantage, this would also provide the neighbourhood size for the

descriptor, which is otherwise selected based on a percentage of the total surface

area.
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Appendix: Factorization

A.1 Derivation of equation (4.19)

We recall eq. (4.17):

QML =
1

2

∑

i,j

(

(sij − ŝij(θ))⊤C−1(sij − ŝij(θ)) + log(det C)

)

Taking the derivative with respect to the entries of the 2×2 matrix C we obtain:

∂QML

∂C
=

1

2

∑

i,j

(

− C−⊤(sij − ŝij(θ))(sij − ŝij(θ))⊤C−⊤ + C−⊤

)

(A.1)

= −C−⊤

(
1

2

∑

i,j

(sij − ŝij(θ))(sij − ŝij(θ))⊤
)

C−⊤ +
m

2
C−⊤ (A.2)

where m = kn. By setting the derivative to zero we obtain eq. (4.19):

C =
1

m

∑

i,j

(sij − ŝij(θ))(sij − ŝij(θ))⊤

A.2 Derivation of equation (4.21)

When considering isotropic covariance, C = σ2I, hence det C = σ4, and the

equation becomes:

171
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QML =
1

2

∑

i,j

(
1

σ2
‖sij − ŝij(θ)‖2 + 2 log(σ2)

)

(A.3)

By taking the derivative with respect to σ2, we obtain:

∂QML

∂σ2
=

1

2

∑

i,j

(

− 1

(σ2)2
‖sij − ŝij(θ)‖2 + 2

1

σ2

)

(A.4)

=
1

2

∑

i,j

(
2σ2 − ‖sij − ŝij(θ)‖2

σ2

)

(A.5)

By setting the derivative to zero, we obtain eq. (4.21):

σ2 =
1

2m

∑

i,j

‖sij − ŝij(θ
∗))‖2

where m = kn.

A.3 Affine Power Factorization with Uncertainty

In the affine factorization step, λij and wij are considered known. We also recall

the definition sweak
ij = (ǫij + 1)sij . In addition, we introduce the variables wij =

µijα
in
ij , combining the inlier information. Thus, the affine factorization problem

to be solved becomes:

min
M,P

∑

ij

‖wij(s
weak
ij − MiPj)‖2

Σij
(A.6)

In order to solve the minimization problem stated in (A.6), we will employ

a variant of the Power Factorization, namely Rank-4 Power Factorization with

Uncertainty [68], which solves the following:

min
M,P

∑

ij

‖sweak
ij − MiPj‖2

Σwij
(A.7)

We define:

Σwij
=

1

w2
ij

Σij (A.8)



A.3 Affine Power Factorization with Uncertainty 173

and show how eq. (A.6) can be reduced to eq. (A.7):

F = min
M,P

∑

ij

‖wij(s
weak
ij − MiPj)‖2

Σij

= min
M,P

∑

ij

[
wij(s

weak
ij − MiPj)

]T
Σ−1

ij

[
wij(s

weak
ij − MiPj)

]

= min
M,P

∑

ij

[
sweak

ij − MiPj

]T
w2

ijΣ
−1
ij

[
sweak

ij − MiPj

]

= min
M,P

∑

ij

[
sweak

ij − MiPj

]T
[

1

w2
ij

Σij

]−1
[
sweak

ij − MiPj

]

= min
M,P

∑

ij

[
sweak

ij − MiPj

]T
Σ

−1
wij

[
sweak

ij − MiPj

]

= min
M,P

∑

ij

‖sweak
ij − MiPj‖2

Σwij

(A.9)

The Method

Below we will present the solution to the PowerFactorization with Uncertainty

algorithm presented in [68], as stated in eq. (A.7). We believe that it is important

to include the solution here, in order to provide the reader with a clear complete

understanding of the overall technique.

The solution of the PowerFactorization method falls within the alternation

methods, which solve linearly for one of the matrices M or P, considering the

other matrix known. The algorithm iterates until convergence (when the values

do not change anymore). An attractive feature of the PowerFactorization method

is that it converges in few iterations, starting from a random matrix.

We have Σ−1
wij

= VT
ijVij , since Σ−1

wij
is symmetric and positive semi-definite.

Thus:

F = min
M,P

∑

ij

‖sweak
ij − MiPj‖2

Σwij

= min
M,P

∑

ij

[
sweak

ij − MiPj

]T
Σ

−1
wij

[
sweak

ij − MiPj

]

= min
M,P

∑

ij

[
sweak

ij − MiPj

]T
VT

ijVij

[
sweak

ij − MiPj

]

= min
M,P

∑

ij

‖Vij(s
weak
ij − MiPj)‖2

E

(A.10)
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Solving for the Mi. Assume that all the points Pj are known, and the following

notations:

2×4

Mi ×
4×1

Pj =

(
m1

i

m2
i

)

Pj =

2×8[
PT

j 0T

0T PT
j

]

︸ ︷︷ ︸
¯Pj

×

8×1(

m1
i
T

m2
i
T

)

︸ ︷︷ ︸

m̄i

= P̄jm̄i (A.11)

With this notation, the function becomes:

F = min
M,P

∑

ij

‖Vij(s
weak
ij − MiPj)‖2

E = min
M,P

∑

ij

‖Vijs
weak
ij − VijP̄jm̄i)‖2

E

which is minimized by solving the normal equations, leading to:

m̄i =

(
∑

j

P̄
T
j Σ−1

wij
P̄j

)−1(∑

jP̄
T
j Σ−1

wij
sweak

ij

)

(A.12)

Solving for the Pj . Assume that all the points Mi are known, and the following

notations:

2×4

Mi ×
4×1

Pj =
(

2×3

M̃i

2×1

ti

)(
P̃j

1

)

(A.13)

With this notation, the function becomes:

F = min
M,P

∑

ij

‖Vij(s
weak
ij − MiPj)‖2

E = min
M,P

∑

ij

‖Vij(s
weak
ij − ti) − VijP̃jm̃i)‖2

E

which is minimized by solving the normal equations, leading to:

P̃j =

(
∑

i

M̃
T

i Σ−1
wij

M̃i

)−1
[
∑

i

M̃
T

i Σ−1
wij

(sweak
ij − ti)

]

(A.14)
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• A. Zaharescu, E. Boyer, and R. P. Horaud. Transformesh: a topology- adap-

tive mesh-based approach to surface evolution. In Proceedings of Asian

Conference on Computer Vision, 2007. [170]

• K. Varanasi, A. Zaharescu, E. Boyer, and R. P. Horaud. Temporal surface

tracking using mesh evolution. In Proceedings of European Conference on

Computer Vision, 2008 [160]

• A. Zaharescu, C. Cagniart, S. Ilic, E. Boyer, and R. Horaud. Camera- clus-

tering for multi-resolution 3-D surface reconstruction. In ECCV Workshop

on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applica-

tions, 2008 [172]

Journal Articles:

• A. Zaharescu and R. P. Horaud. Robust factorization methods using a gaus-

sian/uniform mixture model. International Journal of Computer Vision, ac-

cepted, to appear in 2009 [174]
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• A. Zaharescu, E. Boyer, and R. P. Horaud. A mesh-based topology-adaptive

self-intersection removal algorithm for surface evolution. IEEE Transac-

tions on Visualization and Compute Graphics, accepted subject to revisions

[171]
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