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Introduction

Thanks to high-resolution fabrication and meas@m@ntechniques, one succeeds in
deciphering more and more of the secrets hiddahédword “nano”. Submicron magnetic
systems are now routinely fabricated based on rdifife materials and with precisely
controlled sizes and shapes [Li 2001, Jubert 200&ghniques like scanning tunneling
microscopy and atomic (magnetic) force microscdpyiiing 1986] give access to their
structural and magnetic properties. Nonethelessn evith the high performance of the
available experimental techniques, certain detzfilthe magnetization dynamics in such

magnetic bodies are accessible only through micgm@igc modeling.

When it comes to magnetization dynamics, one eftdpics of most interest in
magnetism nowadays is the spin transfer [Sloncze®886]. The theoretical approaches
dealing with this topic, translated the complex gibgl phenomenon in new terms that
must be included in the dynamic Landau-Lifshitzb®&it equation. In this light, the
purpose of the work presented here was to develqpdo-date micromagnetic simulation
tool that would make possible the treatment of esyst with irregular shape, meeting
certain accuracy and rapidity requirements. In ot ds, our goal is to find solutions of
the Landau-Lifshitz-Gilbert equation, which inclgdéhe spin torque terms specific for

domain wall motion, by means of micromagnetic setiohs.

There are two numerical approaches widely usedimerical micromagnetism: the

finite difference and the finite element approximat/Fidler 2000].

The first method is interesting because of theaigittforwardness of its

implementation and its rapidity, both of these dies arising from a regular space



discretization of the magnetic body. The shortcayof this numerical approach is that,
unfortunately, any finite differences-based alduorit is intrinsically affected by the
roughness of the grid at surfaces [Garcia-Cerve@8]2 A reliable computation can be
assured only for systems bounded by planar surfpeeallel to some axes of the
discretization grid.

One of the solutions that would make possible ake tadvantage, to a certain
extent, of the positive features of the finite éiffnce approximation, while reducing its
negative effects, is to correct the evaluationhef fields in the border cells. However the
implementation of such corrections is not straigihwiard, their accuracy is not entirely
guaranteed and their use can significantly incréaseomputation time.

Another solution, adopted by us, consists in ingathe micromagnetic problem by
applying the finite element approach [Braess 200&ll known for its applications to
engineering problems with complex shapes. The ddganof geometry independence
comes at the cost of a relatively complex matharabtipparatus. The implementation of a
finite element approach is not as clear-cut adittite difference one. Before even starting
the development of a finite element software, oag to rewrite the problem to be solved
(the initial partial differential equation togethesth the boundary conditions) under an
integral form, the so-calledveak formulationOne of the main issues is that this integral

form is not unique.

In the present manuscript, two integral formulasidor the Landau-Lifshitz-Gilbert
equation were derived and implemented. The impoeast choosing a correct integral
form was proved based on the results obtainedefegral 2D test cases.

After the numerous difficulties encountered widkiving the integral form for the
classical Landau-Lifshitz-Gilbert equation and ismpkenting it, it was clear that the
inclusion of the additional spin torque terms wordduire a large amount of time. Firstly,
one has to establish a proper integral form andors#y, this has to be implemented.
Unfortunately, the first step is already a probléos task, as there is no clear criterion

saying what integral form can or cannot be usedvéider, the aim of this work was the



development of up-to-date micromagnetic tools. Batinue this work, we turned our
attention to the finite difference software caléd_FFT, earlier developed in our groupby
Brandusa Kevorkian [Kevorkian 1998]. In this nuroali tool the classical Landau-
Lifshitz-Gilbert equation is integrated. This sofire was tested with several occasions on
various systems and with various purposes. Itsracguand performance is therefore well

established.

As mentioned previously, GL_FFT served firstly ageference, as the results
obtained with the finite element implementationd kabe compared to results issued by a
numerical tool that was known to be accurate. S#lgorencouraged by the growing
interest in the spin torque phenomenon, we constdeteresting and important to include
in this software the spin torque terms, making imbssthe numerical study of spin-
polarized current driven domain wall displacemdiite so-obtained software was named
WALL_ST.

One of the boiling points of this domain wall nwoti topic is: what kinds of
materials are better suited for spintronic appiocet, those in which the magnetization
lays in-plane or those in which an out-of-planeptation is adopted? Before studying this
question, the WALL_ST software was obviously benahkad against analytical results
(concerning out-of-plane magnetized systems) anahemigal results (for the in-plane
magnetized scenario). As the results were encawyagiVALL_ST was employed in

studying the domain wall propagation in system$ wirpendicular magnetization.
This manuscript is organized as follows:

The first chapter contains a short description tleé basic notions used in
micromagnetism. The main interactions occurring danmicromagnetic system are
presented, together with the corresponding enexgyd. Based on these the equilibrium
state is defined. The chapter ends with the ddsmnipf the dynamic Landau-Lifshitz-
Gilbert equation.

The second chapter presents in detail the two noaleapproaches used for

solving the micromagnetic problem: the finite diffiace and the finite element method. In



the description of finite difference-based GL_FFoftware, topics like the space

discretization, integration scheme and the solynacess of the Landau-Lifshitz-Gilbert

equation are treated. In the next paragraph,diggtneral introduction in the finite element
approximation is given. Then we derive two integfatmulations for the dynamic

equation. After testing the first of them on two 2&st cases, we will see what details
should be modified in order to get an improved dpson of the magnetization dynamics.
The resulting second integral formulation is benahkad against the GL_FFT simulation
tool. Finally, after determining the equilibrium rdguration of a FePd thin film, small

excitations are introduced in the system and theorigagnetic resonance spectrum is

determined. The results are compared to experirheata.

The last chapter concerns the magnetic domain eéalhmics in systems with
perpendicular anisotropy. The chapter starts withise of the main theoretical and
experimental results concerning this topic. As micromagnetic simulation tool adapted
for the study of domain wall dynamics is derivednirthe GL_FFT software, in the next
paragraph of this chapter only the features thdttbde added or modified in order to take
into account the effect of a spin-polarized curran¢ presented. Next WALL_ST is
benchmarked against other numerical approachesaalgtical treatments. Then follow
the results, first on ideal systems and in the past of the chapter, trying to approach

reality, several kinds of defects were introdugethe magnetic system.

The conclusions and the prospective close the ataipd.



|. Micromagnetic theory

A ferromagnetic body is rarely uniformly magnetizdn most of the cases, it
consists of small regions with constant magnetiratiectorM, called magnetic domains,
separated by so-called domain walls, where then@ii®on of the magnetization changes
rapidly with the position. A relatively complete derstanding of such magnetic entities
can be obtained using the micromagnetic theorylidffil F. Brown put together the
concepts previously developed by Weiss [Weiss 19D@hdau and Lifshitz [Landau-
Lifshitz 1935], and created a unitary continuousotlty for ferro- and ferrimagnetic
systems that he namendhicromagnetism[Brown 1963]. Micromagnetics addresses
magnetic bodies on a length scale situated bettegremployed by atomistic approaches

and the one used in domain/magnetic microstructoadysis.

The ferro- and ferrimagnetic systems are charnaei@r by a spontaneous
magnetizationMs - a net magnetic moment per unit volume, resulfiogn a magnetic
order even in the absence of an externally apgiedd. Weiss explained this collective
behavior of the individual moments by the “molecuiald”, whose origin, as shown by
Heisenberg, lies in the exchange coupling. Duéhi® interaction, the magnetic moments
tend to be aligned parallel to each other, andetbez the amplitude of the magnetization
vector must be M Introducingm(r,t), the normalized magnetization vector, the first

hypothesis of the micromagnetic theory becomes:

{ M(r,t)=Mgm  ,t)
|

m(r,t)|=1 (1)

The modulus of the magnetization is then knowsoitientation however, cannot
be specified based on the exchange coupling. Inddezl sources of non-uniform
magnetization distribution are forces due to cauyplvith the crystalline structure or due

to magnetostriction, dipolar forces arising frone ttnagnetic “charges” and due to the



presence of an external magnetic field. One camsidenthese forces as secondary, their
effect being as a perturbation of the parallelratignt imposed by the exchange coupling,
which leads to small variations of the orientatainthe magnetization vector. This is the
second hypothesis of the micromagnetic theory.dkes possible the substitution of the
atomic moments by a continuous magnetization Oistion, and all the quantities that

depend on the magnetization will also be contindaastions of position and time.

Depending on the forces, external and internagingaupon a magnetic system,
different equilibrium magnetization configuratioase foreseeable. The micromagnetic
theory is based on the principle that a magneticlibgum state is reached when the total
energy of the system becomes minimal. In orderateela constaritls one has to assume
conditions of constant temperature. In isothermadc@sses, the appropriate energy
functional is theGibbs free energyThis energy functional comports several contrins.
The constituting energy terms, will be defined ime tfollowing together with the
equilibrium equations. In the last part of the dkapthe equation describing the

magnetization dynamics, called the Landau-Lifsi@ilbert equation, is introduced.



[.1. Energy functional

The free energy of a ferromagnetic system of velinand under the influence of
an external magnetic field contains four fundamletsians [Brown 1963]: the exchange,

the magnetocrystalline anisotropy, the demagnetiamd the applied field energy:

E[ot = Eex+ Eanis+ Edem+ Eap (|2)

Exchange energy

This contribution arises from the short-rangenatéion calledexchange coupling
inducing the parallel alignment of the magnetic reaots. Determined by Heisenberg, the
exchange interaction is the strongest coupling megubetween two neighboring spins.

The most common form of the exchange Hamiltoniamsow 2003] is:

H,=-2) J,S 5 (1.3)
ij=1
wherenn stands for the nearest neighbors. The exchange ri S

integralJ; depends on the distance between the interactin

spins, its sign determining a parallel (ferromagneor

anti-parallel (antiferromagnetic) ordering; is related to

the overlap of the magnetic orbitals of adjacentrat and Figyre 1.1 Schemati

to the Pauli exclusion principle. The scalar pradgeS; representation —of
interaction between tw

canbe easily transformed making a few basic assumgtiqgjacent spins ands,

One can suppose that the amplitude of the spicsnistant,

IS|=IS|=S. Moreover, working in the framework of smallvidgions from the parallel

alignment of the atomic moments, the direction eecin;, iCl{1,N}, of the spin system

can be replaced by a continuous functioam(r) with amplitude equal to 1. Taking into

account theses-S reads as:

SIS = 52(1—%[( r-r ) mm(r )Tj (1.4)



with r; the position of the spi§; (Figure 1.1). Substituting (1.4) in (1.3) and codsring an
isotropic exchange interaction);£J), like for example in a simple cubic crystal, a
simplified form is obtained:

H, =-2JS+ Jgi[(ri—rj)m}n (ri)]2 (1.5)

ij=1
Based on (1.5) and on the continuity hypothesishef micromagnetic theory, any

excess resulting from the deviation from the pelyeadigned state is quantified by:

E, =\7[ Aex[(D mx(r))2 +(D my(r ))2 +(0mf ))z} d\ (1.6)

The parameteAcx (J/m) is called thexchange constantn the simple case of a cubic
crystal, Aex is JS/a, with a the crystalline lattice constant. Through its defsnce on the
lattice constant, the exchange constant is alspeesture dependent. A perfect alignment

of the magnetic moments corresponds to a minimuthevéxchange energi4=0 J/n?).

Magnetocrystalline anisotropy energy

So far it has been established that the isotrepahiange interaction is responsible
for the magnitude of the magnetization vector biteg no information about its
orientation. One of the factors that can imposeréam direction oM is the electrostatic
interaction between the orbitals of the electroaetenining the magnetic properties and
the charge distribution of the ions forming thestay lattice. This interaction is quantified
by the magnetocrystalline anisotropy energiyhe name “magnetocrystalline anisotropy”
already suggests the basic idea behind this conehtrespect to the arrangement of the
ions in the crystal structure, certain orientatiamfsthe magnetic moments are more
favorable energetically than others. These axesgalhich it is preferable for the

magnetization to lay are called easy axes.

The magnetocrystalline energy is usually small garad to the exchange energy.
Its definition depends on the symmetry of the @bisie structure [Hubert 1998]. For
instance, one can define uniaxial or hexagonal etagnystalline anisotropy. For the
simplest case of uniaxial anisotropy, the corredpan anisotropy energy has the

expression:



£ = [ K 10 (1)) Jov 07

Where uk is the direction of the easy axis amdns is the temperature dependent

anisotropy constanexpressed in Jfn

In ultrathin layers other types of anisotropy terfsurface, interface and exchange)
can also occur, and these contributions might banasrtant as the magnetocrystalline

one.

Applied field energy

If an external fieldHapp is applied, the magnetizatidvi is submitted to a torque
which tends to align it parallel to the field diten. Due to the misalignment betweldgy,

andM, a supplementary contribution has to be includetthé total energy:

Eﬁpp:_luoj. MSI:m(r)[E.Iapp (r )] dV (|8)
Vm
whereug=4n-10" H/m is the permeability of the vacuum.

Demagnetizing energy

To minimize the last two terms the orientation tbé magnetization vector is
varied. However none of these contributions camdld responsible for the formation of
the magnetic domains. The magnetic domain strucisirerganized so to avoid the
formation of magnetic charges, by closing in thegnaic flux (flux-closure type
domains). It is the magnetization itself that givieg to the field imposing such a behavior.
The contribution inside the magnetic material idlech demagnetizing fieldand the

corresponding energy is named the demagnetizingygne

Similarly with electrostatics, the sources of trenagnetizing field are the volume
or the surface magnetic charges associated to tgnetization distribution inside a
magnet. The magnetic charges are analogous tdebi@ ones, with the difference that
they always appear in pairs, a magnetic chargeghbaimays balanced by one having the
opposite sign.



From a magnetostatic point of view, there areehngportant equations connecting
magnetizationM, applied current densityy, magnetic inductiorB and magnetic fieldH
[Jackson 1999]:

B=t,(H+M) (1.9)

and two of Maxwell’s equations:
Om=0 (1.10)
OxH =j, (1.11)

The magnetic fieldH can be decomposed in two contributions: the agpiield Happ

generated by the curreptand satisfying the relations:

OxH_, =]
w ~Jo (1.12)
Om,, =0
and the demagnetizing fielde, that fulfils the following conditions:
UxHy, =0
(1.13)
OM,.,=-0mM

Together with the differential equations (1.10) afhd 3), boundary conditions are also

imposed on the magnetic induction and the demagngtfield:

n |:qBim _Bext) =0
nx (H dem_int - H dem_ext) = O

where n is the normal vector pointing always outlsathe subscript “int” corresponds to

(1.14)

the magnetic material and “ext” to the surroundimgdium. Furthermore, B is supposed to
cancel at infinity. Based on the equations preskat®ve, the demagnetizing field can be
determined in two ways: using either the magnetialas potential approach or the
magnetic vector potential approach. As from a nugaérpoint of view it is more

advantageous to use the magnetic scalar potepipabach (only one unknown has to be
determined, whereas for the vector potential thteeponents are required), in the

following part this method is shortly presented.



Magnetic scalar potential approach

The magnetic scalar potential approach is basetheirrotational property of the
demagnetizing field. By analogy with electrostatiitsfollows that this field is derived
from a magnetic scalar potentiai
H,. =-0¢ (1.15)

n /,’~\0-m=M'n

dem
determined by Poisson’s equation inside the magneti

system (Figure 1.2):

ACDint = _pm (|16)

Pr=-UM being the volume density of magnetic charges Pr=0M

(Figure 1.2). In the surrounding regio®, is governed byFigure 1.2: Magnetic surfac

the Laplace equation: and volume charges.

AP, . =0 (1.17)
The continuity conditions (1.14) can be turned ipassage conditions fdr.
q)int(r):q)ext(r)’ r DS”H

aq)int _acbext - —
an (r) an (r) Jm(r )’ r DS

(1.18)

m

o,=M @ being the surface density of the magnetic chafgigsire 1.2) ands, represents

the magnetic surface. Finally a condition requirthg cancellation of the scalar potential

at infinity is applied [Brown 1963, Jackson 1999].

The Green function formalism can be applied teeeine the potentiab. The

Green functions associated with Poisson’s equdtiothe 2D and 3D case are:

2D: Gz(r,r'):—%rlnk - |

. (1.19)

3D: G3(r,r’)=—4ﬂ|r -y

The potentiald is then given the following integral formulas:



2D: q)(r):—ZT Pn(r') Inf = ’|dS’—%T.|'am( Yin| £ | dI

S Fm
, , (1.20)
3D: cb(r)_i p”‘(r,)d L Oul ,) ds
4ty |r-r'| 4re f |
Equations (1.20) can be rewritten in a more compach:
IG r=r")p,(')dv +I &+ ')oy( ') dS
(1.21)

-[60p,](r)+[ero ] )

Here G[ja,, andGll, are the convolution products between the Greewgtimm and the
volume and surface density of the magnetic chareswing the scalar potential, its

gradient - the demagnetizing field - is easily deiaed:

Hoen (1) == [ OG{ ") pf ") dV' = IDG( ar( ') ds

Vin (1.22)
=[0G 0o, (r )—[DGDJm]( r)

Before continuing, it is important to note thag first three interactions: exchange,
magnetocrystalline anisotropy and Zeeman couplireg acting on a short range. The
demagnetizing field depends on the magnetizatistribution in the whole volume of the
sample. In computational micromagnetics the catmraof this field is the most

problematic one, especially its cancellation aityf posing many difficulties.

Once the demagnetizing field calculated, the tagulenergyEgemis defined in a

similar way with the applied energy:

E

dem 2/'{0 J. (r)[E-I dem (r )dV (|23)

Vin
This energy is minimal if the density of magnetltarmes is the smallest possible. For
example, the demagnetizing energy of a uniformlygmegized parallelepiped sample
(shown in Figure 1.3 a) can be reduced dividing thagnetic body into anti-parallel
magnetized domains (Figure 1.3 b and c). Howewsendhough the domain formation is
benefic from magnetostatic point of view, it isdonflict with the exchange interaction, as

in the walls separating the domains the magnetizatrientation varies rapidly. A stable



domain structure is therefore based on the eqiufibbetween the energy contributions

present in the magnetic system.
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Figure 1.3: The magnetization and the magnetic pola a rectangular body. a)
corresponds to uniform magnetization, while b)depict domain structures.



[.2. Equilibrium state

Assembling the energy terms derived previouslg,tttal energy in reduced units
(m=M(r)/Mg) is:

)= [ AL ()] ave [ K fi=fu ) ov
) " (1.24)
_\./[’qus[m(r)[E'lapp(r )]dv_\_/[%ﬂoMs[m (f )El dem(n ( ))] av

for the simplest case of a uniaxial material. Téwens presented here are the basic ones.
Eventually, supplementary contributions arisingrirmagnetostriction, surface and shape
anisotropies, RKKY coupling have to be added.

The aim of micromagnetism is to find a distribatiaf magnetic moments:

m={m(r)|r OV,.m|=1 (1.25)

that minimizes the free energy functional (1.24ucl an equilibrium magnetization

distribution satisfies two equilibrium conditions:
3E,, (M) =0
S,y (M) >0

derived from variational principles [Brown 1963, IMt 1994]. The minimization process

(1.26)

has to take into account the constraint of constagnetization magnitude.

Supposing that the magnetizationis varied by a small amounn—m+dm. The
change in the total energy is th&,=Eo(m+3m)-Ei(m).

The variation of the exchange energy term candterchined knowing that, for a
scalarh and a vectow one hass(0A)?=20A-0(51) and O-(w)=0A-v+A0-v, andtherefore
OEexIis:

OE,, = [ 2A,[ Om,Mdm+0 mMs m+0 nflé ny d (1.27)
V,

m

Then replacing

Om,Mom =00omd m)-0 nA n (1.28)



and using the Gauss (divergence) theorem the egeh@nm is transformed into the sum
of two integrals: one covering the magnetic voluare the second over the surface
delimiting it:
[2A,0mmém, dv=[2 A5 m(0 nfn) dS[2 & m mc  (1.29)
Vin S Vin

Finally 6E¢x reads as:

OE,, = [ 2A3m[{Cm D) dS- [ 2 AgmAm dv (1.30)
S

VI‘I‘I

The variation of the next two terms poses no probkte

= j 2K yie(uy ) (U, Bm)dV (1.31)
OE pp == | oM sdMH,, dV (1.32)
Vi
Finally keeping in mind that:J' dmH . dV = Im [8H ,,dV, the demagnetizing term is
Vi A
easily derived:
0By, = ijM M [H g, (M) AV (1.33)

Putting together the components, the first vamatbthe total energyE reads as:

OE = [ 2A,8m G%% ds
> (1.34)

2 2K
_I HoMsdm [E_ ,Uosxs Am + ,uol\jlms(uK [ )UK FHapp FHeem (m )}dV

Vm
To obtain the equilibrium condition, both the swwé and volume integrals are set

to 0. Using the constraint on the magnetizatioif=1, 5m is 5m=50xm, with 56 an
infinitesimal rotation of the magnetization. Thealse product in the surface integral

becomes then:
j 2A,5m B’L ds= j 2 /gx(m x%j [30 dS (1.35)

and the resulting equilibrium condition is:



oam _
on

valid on the magnetic surfa&. In the volume integral, noting:

0 (1.36)

2A 2K .
Hyp = —— 2N anis (yy, [ H,,, +H .37
eff ,UoMs m + /UOM S(uK )uK + app + dem (m ) ( )

the effective field, the second equilibrium conaliti- the torque condition is obtained:

mxH_, =0 (1.38)

The effective field is proportional to the variata derivative of the total energy density:

L% (1.39)
HMg dm

eff —

Because of the constraint on the magnetization i&undel (1.1) the field component along
m plays no role.

Conditions (1.36) and (1.38) were deduced by BrdBrown 1963], and therefore
are called th&rown equationsTheir solution specifies the equilibrium statéeTirst one
is a Neumann boundary condition, which forces tlagmetization to be stationary near the
free surfaceS,. The second equation states that for a magnetizdistribution to be at

equilibrium, the torque from the effective fieldtiag onm must be nil everywhere.



[.3. The Landau-Lifshitz-Gilbert equation

The Brown equations (1.36) and (1.38) are enougtietiine the equilibrium state of
a magnetic system, but they do not specify how difgtem reaches this state. The
magnetization dynamics can be accessed through.ahdau-Lifshitz-Gilbert equation

The starting point in deducing this equation is:

oM
? = _VM XIUOH off (|40)

describing the magnetization’s gyrotropic reaciiothe presence of the fieldes. y is the
gyromagnetic ratio of the free electron (1.7608%6%2 s'T™). From (1.40) the torque from
the field He induces a rotation oM, with an angular velocityn=y uoHe¢. In this
precessional motion, the modulus and the compoaeM along the fieldHex do not
change. Consequently the energy of the systemmistaiot.

The second Brown condition imposes zero torque fitben effective fieldon M at
equilibrium. Equation (1.40) in its present formnoat describe the dissipation process
resulting in a parallel alignment &f.s andM. To include the relaxation &fl towards the
equilibrium state, Gilbert added to the effectivield a supplementary contribution,

S a—M, derived based on a Rayleigh dissipation functiaparoach [Gilbert 2004].

WiMs ot
The resulting dynamic equation read as:

oM o oM
=y (MxH ) +—|M x— .41
6t yluO( eff) MS( at j ( )

This equation is called the Gilbert or Landau-LitatGilbert (LLG hereafter) equation and
a is the dimensionless damping parameter. Accortbnidpis equation, the magnetization
turns around the effective field having a dampedveneent (Figure 1.4 b). Without

damping the precession of the magnetization wooldig endlessly (Figure 1.4 a). The
damping term controls the extent of this precesdiom smaller the value of - the longer

it takes for the system to arrive at equilibriunmeTGilbert form of the dynamic equation
can be easily transformed [Mallinson 1987] into tweviously determined Landau-
Lifshitz form [Landau-Lifshitz 1935]:

(1407 S = =7 (Mg ) =2 [M X0 )] (1.42)



Figure 1.4: a) Precession of the magnetization gedél around the fieldH; without
damping &=0) and damped motiom£0).

In a relaxation process, in the presence of ataohapplied field, the total energy

of a magnetic system can only decrease, the emnksgypation rate being:

dE,, M
—Tot = — H dv. 1.43
=t j o BT (1.43)
Multiplying the LLG equation, by and, respectively b§yM /ot results in:

M_ oM M _1(MmY
Heﬁ%—t_ M. ot M xH ) and 5 M H )= Wo(atj (1.44)

Combining these relationships and then introdutivegresult in (1.43), the rate of change

of the system’s total energy is:

2
By ___o j(aM) dv (1.45)
dt YMg \ ot

This is a very important property of the LLG edoatas it guarantees a proper
evolution towards the equilibrium state correspagdb the minimum of the total energy.
Setting the damping parameter to 0, the energhetystem is preserved just as expected

in the case of a Larmor precession of the magre&tizaround the effective field.

The form (1.41) of the dynamic equation is suitafur describing the evolution of a
micromagnetic system when being under the influeri@n external field. However, since
the first evidence of the effect of an electricreat on the magnetization, this phenomenon

attracted more and more interest. In order to d®scthis new kind of interaction, the LLG



equation has to be adapted. The numerous thedrgicaved that introducing in LLG two
new torques an appropriate description of this phemon is obtained. Obviously, the list
of physical phenomena that can be coupled withamegnetic studies does not stop here.
For example, a very interesting and absolutely sesng step in understanding the
behavior of a magnetic body is the study of therefigcts.



|.4. Towards numerical micromagnetism

The above presented micromagnetic equations (tberBand the LLG equations)
are nonlinear and non-local equations. Nonlinesgitirise because of the constrainit$1
and also if higher order components of the magmgstalline anisotropy energy are taken
into account. The non-local character has its sourdhe definition of the demagnetizing
field. All these make the micromagnetic equatioifcdlt to solve. Analytical solutions
are known for only a few simple cases, none of thetuding non-uniform magnetization
distributions. For example, nucleation processe® li@en described in [Brown 1957, Frei
1957, Aharoni 1963, Eisenstein 1976, Ramesh 19@8yeas in [Stoner-Wohlfarth 1948,
Kikuchi 1956, Albuquerque 2001] tmeacrospinapproximation was employed. In most of

the cases solutions are sought numerically.

From a numerical point of view, if one is inteegstin determining only the
equilibrium state of a certain magnetic body, pgftaside its dynamic behavior, one
proceeds to the minimization of the total energgr Example, in [LaBonte 1969,
Jakubovics 1991, Trouilloud 1987] iterative methads used. Another possibility - giving
information also about the relaxation process sig in solving the LLG equations. It is
important to note that in theoretical and numericalculations the Gilbert damping
parameter is considered to have a constant valae tbe sample, although there are no
experimental proofs for this assumption. It is abin@ertain thata depends in an
undetermined (and most likely non-linear) fashiontloe magnetization distribution. From
ferromagnetic resonance experiences and domainvetgtity measurements it has been
determined that takes values in the interval [£010%]. For dynamic simulations, realistic
values for the damping parameter have to be ushdress to get the same outcome as
from energy minimization, one can solve the LLG a&tpns using high values of the

damping parameter (over-damped regime), for exathpleeven higher.

An important remark has to be made concerning mgaletechniques. These
methods are based on splitting up the magnetiesystto small discretization cells, the
micromagnetic equations being solved for each efsehdiscretization elements. The
choice discretization elements’ size is very imaott as it influences very much the

accuracy of the result. The correct value is setedtased on a physical criterion. This



selection rule was established based on the hygisthteat, in micromagnetism the
exchange interaction is considered to be the lgadime, the other interactions being
viewed as perturbations. Therefore, when choodiegspace step one has to take into
account the extent over which the second orderdat®ns perturb the equilibrium that
would be imposed by the exchange field. Therewoecharacteristic lengths that serve as
reference [Hubert 1998]: thexchange lengtliley) - quantifying the competition between
the exchange and magnetostatic interaction - amBltch length(lg) - the measure of the
competition between exchange and magnetocrystafiteeaction:

o= |2 and 1= [P (1.46)
:uOMS Kanis

Making use of these two quantities, a rule of thuwwds established: in micromagnetic

simulations the maximum discretization element naestsmaller than the minimum of
these two characteristic lengths.
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lI. Numerical micromagnetism

In the present work we are interested in solvirg ltandau-Lifshitz-Gilbert (LLG)
partial differential equation (PDE) describing magmation dynamics. The complexity of
the LLG equation limited the number of analyticalusions, the tendency being to use

numerical methods to determine approximate solation

There are two widely used methods: fimte difference(FD) approximation and
thefinite elemen{FE) approximation [Fidler 2000]. The FD approxtioa is widespread
because it is easy to implement and fast [Schal9&8, INakatani 1989, Zhu 1989,
Scheinfein 1991, Berkov 1993, Kevorkian 1998, Ba@®1, OOMMF-site] due to the
possibility of computing the demagnetizing fieldings the Fast Fourier transforms
[Masuripur 1988, FFTW-site]. The FE method is ayvaffective numerical tool,
especially in engineering problems involving compieometries. In micromagnetism it is
less used [Fredkin 1987, Bagnérés 1991, Schrefd,10@ler 2000] than the FD method,
mostly because of the complex mathematical appafBaess 2001] that it is founded on.

The FD method solves a discrete form of the LLGatigpn, while in the case of the
FE approximation an integral formulation is asstatlaproblem. In the first method the
system is space-discretized by repetition of soegeilar-shaped mesh cell. The periodic
discretization makes possible the replacement efdérivatives occurring in the LLG
equation with expressions derived from a Tayloragmgion. The method is therefore very
easy to implement, but the accuracy of the solutim be affected if complex boundaries
delimitate the domain [Garcia-Cervera 2003]. The dffproximation uses an irregular
discretization. Due to this, the theory behind Bte is much more complicated than the
basis of the FD approximation, but the method i$ mestricted with respect to the

geometry shape.
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The present chapter is dedicated to the presentatithe two numerical methods:

. The FD-based GL_FFT micromagnetic code, develoyerandusa Kevorkian at
the Néel Institute in 1998 under the supervisiod@©fToussaint [Kevorkian 1998],

is shortly presented in the first part.

. Then a description of the FE method is given, fe#d by a first FE approach
developed for the LLG equation, presented togetvidr the results obtained for
two test cases. The FE results are always compaitbdthose obtained by the
GL_FFT software. In the last part of the chapthe tletails and results obtained

with a second FE approach are presented.



[1.1. The finite difference method

In this part, the space discretization and thatie@iships that determine the

effective field in the FD-based GL_FFT micromagosiftware are given.

The first step in numerical calculations is toidesthe magnetic system in small
cells, procedure calledpace-discretizatioror meshing The type of cells used is very
important as it has great influence on the manmewhich the equation is solved. In the
case of the FD approach, the simulated systemdivaded into regular discretization units
(cubic, hexagonal, orthorhombic).

The space discretization in a bi-dimensional systentains Ncells along the Ox
direction and Nl cells along the Oy direction. The mesh cells arenps with rectangular
cross section, covering the surfag@, (infinite along the Oz direction). For the 3D
systems, the mesh consists of<xNyxN,. orthorhombic cells having each the volume

dx0ydz. A 2D and a 3D example of meshing is shown in Fedul:

y“ 82_} - yA
0z
5, BERER
X= 46—> X

Figure 11.1: 2D and 3D finite difference discrettazan

The evaluation of the magnetization is done incrgtre of each cell:

X :(i—%jsx Y; :(j—%jsy zZ :(k——;jész (1.21)
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whereilJ{1, ..., Ny}, jO{1, ..., Ny} and k{1, ..., N;}. Based on this space-discretization,
the vector fieldm(r), rOVny, solution of the LLG equation is in fact the matiregion
distribution {m(i,j,k)} satisfying in each mesh nodma(j,j,k)*=1.

To find the magnetic equilibrium state, one hasvaluate the field and energy
terms. The estimation of the magnetocrystallines@nopy and the applied field energy,
which are simple, local terms, is straightforwa@h the other hand, the exchange field

requires the estimation of the second-order deveatof

the magnetization and the demagnetizing field ®0¢

requires a special treatment. %ﬂJ

To calculate the first and second ord G-1.) -G+,

magnetization derivatives the GL_FFT software ukes

. L . (ij-1)
centered differences approximatjaterived based on thi 1

Taylor expansion of the magnetization. For example, | _
_ o i Figure I1.2: Regular 2D grid
2D case, using the grid in Figure I1.2, the Tayl

expansion of the magnetization gives:

o - om, .\ 1.,0°m, . 3
m(i+1j)=m(i i)+, 200 )+58 S5 )0 (8)

m(i-1)=m(.i)-5, 00 )+ 33 S0 )0 (5

The first and second order derivatives, and alsolLfplacian of the magnetization can

(11.2)

now be evaluated:

%_T(i’j)mm(Hlj)Z;m(i -1j)
?;T(i,j)Dm(i+lj)_m5(i’j)+m(i_”) (113)
P +lj)—2m8(2i,1')+m(i ~4), mbi+3- 2n6(;J J+mij -3

These relationships are applicable to the nodeated inside the magnetic volume.
For the points situated on the surface one hasalcersure that the first Brown equation

(see equation (1.36)), assuring the stationaritthefmagnetization is respected.
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Bearing these in mind, we proceed to the definittd each discrete energy and

field for a bi-dimensional case.

The exchange energy

Replacing the Laplacian of the magnetization witd formula derived from the
Taylor expansion the exchange field is:
2A, | m(i+Lj)=2m(i,j)+m{-1j) m{j +3-2n(j)+mij -3
#oMs Si 65
(1.4)

He(i,1)=

In addition, the exchange energy is:

xxyzz [m i+1, ) - (,11] [mlj+]) mu—ﬂ (1.5)

|Jlxyz X

with i{1, ..., N, jO(L, ..., Ny}

The magnetocrystalline anisotropy contribution

In the case of uniaxial symmetry, the anisotroigydfand the anisotropy energy
can be written as:
2K
HM

ams{l—[m(i, $) g (i ] )]2} (5,3,) (11.7)

i

e (1) =25 m ) B )] v (1) (16)

with i{1, ..., N andjO{1, ..., Ny}.

The applied field energy

After the discretization of the simulated systehe applied field energy takes the

discrete form:

Epp:—,quSiZ[m(i, J) Mo (43)](5,8,) (1.8)

whereil{1, ..., Ny}, JO{1, ..., Ny}
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The demagnetizing term

The long-range character of the magnetostaticaot®n makes the evaluation of
the associated field the most complicated and tooesuming one. However, quite
unexpectedly, using the FD approach, this issuebeasolved quite easily, namely via the
Fast Fourier transforms

The demagnetizing field is the convolution prodoicthe magnetic charge density
functions and the gradient of the Green functigee (squation (1.22)). The theorem of the
convolution gives a helping hand: according to thesorem, the Fourier transform (FT) of
the convolution product between two functiohgndg, is equal to the ordinary product
between their individual FTs:

FT(fDg)=FT(f) FT(9 (1.9)

Using this property, the demagnetizing field evatra may be optimized by using the
following steps:
1. The FT ofJG is calculated.
2. The magnetic charge distributions are estimatedh ftbe magnetization
distribution using (11.10), and then, their FTs asdculated.

pm(i,j)Z—Lz—r;l‘(i y )%—"}6 j )J

qom (i) -m(i-15) _m(Lis)-m(ii-) oo

X y
Jm(i’j)zmsurf(i ’j )m

3. Some ordinary operations are done in the inversees@and finally, the

demagnetizing field is estimated by applying theeinse Fourier transform
(FTY:

Heem = FT[FT(OG) FT(p,)+ FT(O G FT(a,)] (11.11)
As the FD method solves a discrete form of the lddBation, further optimization

can be achieved passing from tentinuousFT to itsdiscreteform. The discrete form of

the algorithm is called Fast Fourier transform (JFBMd has the advantage that it reduces
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the number of operations [FFTW-site]. Another adagg of this method is that the FT of
theJG is computed only one time at the beginning ofsiiheulation [Kevorkian 1998].

Introducing these in the formula for the demagmetj energy density one finds:

Eon = 5 MM [0 1) Han (11)](6.3,) (1.12)

The Landau-Lifshitz-Gilbert equation

The GL_FFT software solves the non-linear LLG diquia (1.42). The time
integration schemes used for this equation arewarifrom forward and backward Euler
[Nakatani 1989], to Crank-Nicholson [Albuquerqueé)2Pand to fourth order Runge-Kutta
schemes [Ferre 1995, Lopez 1999].

The scheme of integration used in the present pfpoach is an explicit method,

preserving unconditionally constant the amplitudetlte magnetization vector. This

scheme was derived replacihgvith r:'uf—ytz and notingH (t)=He(t)+oam(t) xHeq(t).
a
The dynamic equation becomes then:
M (r)xH (r) (11.13)

For sufficiently small time steps, the variationtfis also very small, so th&t can be
considered constant. Then, an exact solution df3)Jican be found, that is in reality the

analytical solution of the equation (1.42) withaamping.

The series expansion of the magnetizamoft+Jt) as a function oim(t) is first
written:
t t)=mit
m{t+at)=m(1)+ 1T
© 2p+l " w 2p
()™ d?"'m +Z(5t) d2’m
S (2p+1)! d**t 4 (2p)! dfP

(I1.14)

:m(t)+

The time derivatives ah(t) can be replaced by:
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dzﬂ _ _Hz)n—l dzm :(_H 2)n—lH Xﬂ

dt®" dt? dt (11.15)
d*"m _ _Hz)nd_m
dt*"* dt
and the Taylor expansion of the magnetizatigitot) takes the form:
N ( )2p+1 2 dm (51:)2’) p-1,,2p-2 dm
t+ot)=m H— S——(-1)" "HP"*Hx— .16
m{t+ o) =m(t* 2 eV Z_(Zp)!( ) o (11O
Finally the following explicit integration schemeabtained:
m(t+5t) =m(t)cos(Ht) + SUHOU (1 1))+
(I.17)

+{1-cog Hat)) M H

H2

In the case of a constant field, the time integratising this scheme is exact [Kevorkian
1998].

The stability analysis permitted to establish iical time step related to the space
discretization (valid for 2D simulations):

-1
_MMg(1, 1)
or = +— | —— 11.18

8A, ( 62} a’+1 ( )

y

At equilibrium the torque on the magnetization iddobe 0 in each discretization
cell. From a numerical point of view, the O-torguezjuirement is replaced by a more
suitable one, namely the equilibrium state is ader&d to be reached, when the maximum
of (MxHeg)/Msis smaller then 1®rad [Kevorkian 1998].

To synthesizé¢his paragraph, the flowchart of tk&_FFT software is presented in
Figure 1.3 The first step is the initialization where theogetrical and the material
parameters are given, together with the initial nedigation distribution. Then the energy
terms and the surface and volume charges are atduland finally the effective field is
obtained. This is then introduced in the LLG equatiAfter solving it, the criterion of
(MxHer)/Ms<10° rad is verified. If fulfilled, the equilibrium statesidetermined and the

simulation stops. Otherwise, the simulation advanodhe next time step.
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Figure 11.3: Flowchart of the GL_FFT software.
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[1.2. The finite element method

The origins of the FE method lay in the need olvisg complex engineering
problems. To its development contributed mathenzats; physicists and engineers. In
1943 Courant [Courant 1943] published the firstreple of a FE approach based on
piecewise continuous functions defined on triangdlamains. Although his work differs
very much from the FE method use nowadays, it issiciered to be revolutionary, as it
constitutes to the base of the modern FE apprad®beloped by scientists as Rayleigh,
Ritz and Galerkin.

Nowadays the FE method has become a well estetlistethod, used fruitfully in
elastic and thermal problems, in hydrodynamicsctedenagnetics, etc. The FE method
uses an integral formulation of the PDE [Braess1208ermolen 2008, Mish 2000]. To
obtain such a formulation two possible paths carfdlewed. Let us exemplify on a

simple 1D pedagogical problem. The solutioof the following PDE is sought:
— =1 (x) (11.19)

defined on an intervab[b], whereu has two continuous derivativas{C*[a,b]) andf(x) is

a given continuous function. Equation (11.19) tdgat with the boundary condition
u(a)=u(b)=0 forms the so-calledtrong formof the problem, the corresponding solution
being calledstrong solution In the first formalism proposed by Ritz and Rate[Mish
2000], a functional is defined, that is in fact tinéegral of the PDE itself. For the PDE

given in (11.19), this functional reads as:

M(u) =%T(%} dx+f f udx (11.20)

a

The solution of (11.19) is the functiam(x) that minimizes (11.20).

The second way of determining the solution of &R®to seek for the solution of

the following integral form:



T(%ﬂh f wj dx=0 (11.22)

This form was obtained by multiplying the initiaDE by so-calledest functionsw (with
w(a)=w(b)}=0), and then integrating over the correspondingnala [Braess 2001,
Vermolen 2008]. Equations like (11.21) are callegak formulationsThe nomenclature
can be easily explained: using the integral form tioé PDE, certain smoothness
requirements on the solution are weakened, andeqoesitly aveak solutionis found. In
the simple example presented above, the strondi@olu is aC? function, whereas the
solution of (1.21) has to be square integrableassure the existence of the integral (the
same is true for the test functioy). The main advantage of the weak form is thagit ¢
easily provide solutions for real world problemsgr in cases when a strong solution
cannot be defined in a classical (non-distributipframework, leaving the integral form
as the only possible way of solving the problemré&béwer, knowing that the weak form is
solved by numerical means; a second advantages agiisee the integral forms are better-

conditioned numerical operations than differenbiads.

This second approach, call&alerkin method is more general than the first one,
as a weak formulation can always be written, wheteadefine a functional, the operators
occurring in the PDE have to meet certain matherab8ymmetry conditions, e.g. they
have to be positive definite and self-adjoint [Vetem 2008], to assure the equivalence
between the integral and differential form. Howewehen both integral forms are

foreseeable their discrete solutions will be theesa

Once the wanted integral formulation is determinedboth methods (the Ritz-
Rayleigh and the Galerkin method) the same step$odowed. The integral equation has
to be transformed into a discrete one. This isi@dmout by approximating the solution, in
the present exampla, using approximation functions that are relatedthe spatial
discretization of the domain of solution. An eqaatis obtained for every mesh element.
Assembling these results in a matrix equation, phavides the solution of the PDE on the

domain of definition.

In the following we present in detail the Galerkmethod. The solving process can
be divided into three steps:
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1. First the weak form of the equation is established.

2. The domaim2 on which the problem is defined is discretized iathumber
Ne of small elements, the so-called finite elemeiitge integral ovef2 can
then be written as the sum of the integrals oveashefinite element.
Moreover, due to the discretization the solution each element is
interpolated.

3. Next, the system obtained by putting together ledl ¢lement-equations is
solved. In the assembling process one takes imtouat the connections
(common nodes) between the elements. The solutiothé initial PDE is

therefore determined.

The purpose of this work is to apply the FE methodolve the LLG equation
numerically. This equation plays a very importavieras it describes the damped motion
of the magnetization around the effective fieldtthats on it. Because of the special
treatment required by the demagnetizing field, sb&ing procedure is divided in two

parts at each time step:

1. First the magnetostatic part is solved.
2. The LLG equation is then integrated.

Following the steps in the resolution of the LLGuation, we apply in the first part

the FE method to the demagnetizing problem, ana ilvéhe LLG equation itself.



[1.2.1. Magnetostatic problem

As described in the paragraph 1.2, the demagnetizeld can be determined using
either a magnetic scalar potential or a magnetitorepotential approach. When the
former approach is used the demagnetizing fielthésgradient of the scalar potentdl

(see equation (1.15)), the latter one being thatgwi of the Poisson equation (see equation

(1.16)).

Weak formulation

In the magnetic scalar potential approach, thenatginductiorB is expressed as:

B =, (-00+M) (11.22)
The FE approach will be applied to:

OB =00-00+M)=0 (11.23)

The weak form of (I11.23) is derived by multiplying by a scalar test functiow and
integrating the obtained equation owér whereV is the domain made up from the

magnetic volumé&/,, and the surrounding vacuum:

JoO-00+M)dv =0 (11.24)

This term can be rewritten as:

[wOf-00+M)dv = [Ofiw(-00+M ) |dV-[Ow{-00 +M ) dV (11.25)

The first volume integral in the right-hand sidendze transformed into a surface integral,

using the Gauss theorem:

[0fw(-00+M)]dV = [of (00 +M )@ | dS (11.26)

S

By using the continuity conditions of the normalngmnent of the induction at the
interfaces and surfaces (see equations (1.14%)téhm is eliminated:
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[@[(-00+M)@ |dS= [ wB @ dS=[w(B, -B,, )0 d$0  (11.27)
(3 s

—
©

The weak form of the demagnetizing problem is thienplified:

jmwuﬂqn dV:.[Dw[M dv (1.28)
\Y \

Comparing (11.23) and (11.28), a first advantagewsiting a weak formulation is revealed.
In the first case, the solution of must be 7\, asA®=0I®d. The use of the weak form
relaxed this condition, as only the integrabilifytioe first derivative is required. Therefore
@ is sought in the Hilbert space'() of square-integrable functions defined on the
domain and whose first derivatives are also squdegrable. The solution space foris
then {®OHY(V): ®(r—w)—0}, while w is chosen from §OHY(V): =0 ond V}. These

conditions assure the existence of the integrahereft side.

Discretization and resolution

In the FE procedure we arrived now to the secotagh: sdiscretization. The
integration domain is divided into a set of &lements, characterized by a certain space
step. In 2D simulations, the most currently useanents are triangles with either three or
six nodes. Based on the N nodes of the discratizath set of N basis (interpolation)
functions 3 is selected, that generates a finite subspacéeofnitial solution space. A
discrete form of the weak formulation is then vemitt by expressing the test function and

the solution as:

N (11.29)

whereg- ¢rj), j0{1, ..., N}.

The next step is to write for each mesh eleméata weak form, meaning that all
the integrals over the domalihare transformed into sums of Mtegrals. Each of the N

“small” integrals is exactly determined in the @sponding mesh elements using the
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Gaussian integration method. By putting these nalsgtogether a matrix equation is

obtained.

In the present case, rewriting the weak formutatiB.28) by taking (11.29) into
account, the following equation is obtained:

[0Bg0Bdv =[04 (in dv (1.30)

with i){1, ..., N}. As one can choose the basis functiond anis a given magnetization
distribution, the unknowns of (11.30) are tigevalues, representing the nodal values of the

scalar potential. Assembling these integrals (ntainto account the eventual common

nodes) the following matrix equation is obtainggy=h;, with A, =jD,B, (Mg dvV and
\

b =ID[ZI [ dV. A; is called thestiffness matrivand plays a very important role as it can
V

give a criterion for the choice of the basis fuoecs. In factA; should be as sparse as

possible as this would increase the efficiencyhef method. To obtain such matrices one

can chose basis functions that satisfy:

ﬁi(rj):{é” i:j (11.31)

Figure 11.4: Schematic representation of 1D and @Bcewise linear test functions.
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In the 2D case, for a mesh consisting of 3-nod@ddles our choice for the basis
functions were the first order {PLagrange polynomials, whereas for 6-noded triesigl
second order @ Lagrange polynomials were chosen [Braess 200iméken 2008]. The
basis functions and the corresponding mesh elensptdisted in the Table Il.1. These
functions satisfy the above condition (11.31).

Table 11.1: First and second order Lagrange basisdtions.

Number

YPe | ¢ nodes The basis function Element
q3

Py 3 pi(x,Y)=ai+bx+cyy, for (x,y)Ce

q; q2

qs3

P2 6 Bi(x.Y)=ay+bx+cy+dpC+exy+y? dod g5

for (xy)te 9 4q9¢4 92

In the last part of the FE procedure, after th@ah of the basis functions has been
made, a matrix equation is obtained. To solvetérative algorithms are employed, for
example the conjugate gradient technique. Thusngnetic scalar potential, and from it,

the demagnetizing field is determined.

11.2.1.1. Condition at infinity

In the FE approximation to calculate the demagirggifield one uses a potential
approach. Based on Maxwell’'s equations, is possiblkeefine both a scalar and a vector
potential. The demagnetizing field can be calcddtem these quantities through simple
derivation. However, one issue comes up, as thelgmodomain extends to infinity, where
the regularity of the potentials is required. lingt clear how one should treat an infinite
system using the FE method, as one cannot meshtehfi Fortunately, several methods
[Bettes 1988, Emson 1988] were proposed to maksilgesthe transformation of such

open boundary problemsnto closed boundary problemsthe truncation method,
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ballooning, “infinite” or “mapped” elements, spatieansformations and hybrid methods
that couple the FE method with integral methods.micromagnetism, the truncation
method [Chen 1997], spatial transformations [Brten@©91, Hertel 2002] and Fredkin and
Kohler's FEM-BEM method [Fredkin 1990, Koehler 19%te the most widely spread
[Scholz 1999, Fidler 2000, Suss 2002, Hertel 2004].

We implemented the truncation method and spe@alia transformations to

determine the demagnetizing field. Both methodsshoetly presented in the following.

The truncation method

The truncation method consists in moving the bamaf the system at distance
that is far enough from the magnetic system. ThachBlet or Neumann boundary
conditions are applied then on this boundary. Thithe most basic method that can be
used. Unfortunately, there are no rules that cdp betablishing this distance - “far
enough”. Additionally, because of the outside ragie several times larger than the
magnetic region, the efficiency of the method cangbite reduced. As the limitation on
the mesh size is valid only in the magnetic regite, method can be optimized using a

coarse mesh in the outside region.

Spatial transformations

Through spatial transformations the open boundaare transformed into closed
ones. The first such transformations were confortiraited to 2D Cartesian coordinates
and to the Laplace equation. It has been showndthd®90a, Imhoff 1990b] that it is not
necessary for the transformations to be conforarad, therefore the method can be applied
to various geometries and equations. An importeatuire of the method is that it does not

alter the solving procedure imposed by the usb®HE method.

The transformation to use depends very much oshbpe of the magnetic system.
For simple geometries ttephericalor theelliptical shell transformations used [Brunotte
1991]. The FEapproaches we will describe later are tested omodgier systems and,

consequently, one has to use transformations #k& into account this feature of the
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geometry. That is why in the following part a neypé of transformation is developed,

adapted specially for the periodic systems stuldits.

Consider a film having the thickness y4 @
2h, with the magnetization varying as shown
in Figure 11.5. The magnetic domains havezan lo _____ } ®l ........ {_,
width of d=2a. Noting T (=2d) - the period of

the structure, the magnetization distribution 2¢ €)

Figure 11.5: Schematic representation ¢
magnetic thin film consisting of perio
origin thanMy is the linear combination o*up” and “down” domains.

can be expanded in Fourier serieQlis the

sinusoidal functions:

M, (x) = Mg

n=0

-1
2n+1

sin(k, ) (1.32)

SEEN

where k|, :%(2n+1). For a mod&, with My(x)=Msin(kx), the generated demagnetizing

field is calculated using the scalar poten®ék,y). The boundary conditions fdr are:

1. ® is nil at infinity

2. The continuity conditions (1.18) are adapted fds tharticular case: if y=h,
at the transition between the regions 1 and 2 ase h

{q)l(x, h)=®,(x h)

3,®,(x, ) =9, ®,(x H=-M,( X (11.33)

Similar relationships are obtained for the traositirom region 2 to 3.

The general solutions of the Laplace equatioraf@D Cartesian problem are well

known:
(%, y)= f(y)cog k¥ + ¢ Y sir( kX (11.34)

with f and g functions depending og. Considering the magnetic charge distribution,
several symmetry conditions can be produc®g:x,y)=-®(x,y) and ®O(x,-y)=-O(x,y),

simplifying the general solution:
P (x,y) = g(y)sin( k> (11.35)
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with g an odd function o§. Therefore solving the Laplace equation is eqeivato finding

a(y) so thataig(y) - k*g( y) =0. In the different regions the solutions of thisiation are:

> inregion 1:g,(y)=a €
> inregion 2:g,(y)=a, st kY
> inregion 3:g,(y)=-a &’

The coefficients aand a are calculated from the continuity conditions yeh, and they

read asia, :%sh( kh anda, :%e‘k“.

The scalar potential in the magnetic system isfaot the sum of all the
contributions, taken for all the modes k:

@, (x y)= X2 e*sh( ky sir{ k3 (11:36)

k

The demagnetizing field, 4, is then:
sh(k y) cogk ¥
Hdem(X’ y) = Z_ Mk e_kh

k

ch(k y) sin(k ¥

(11.37)
sh(k, y) cogk, X

00

4 _1 —k h
=M.—> ——e™
slr§2n+1

ch(k, y) sin(k, X

Based on the exponential variation, the spacefwamation that will cope with the
cancellation ofd at infinity can be simply derived. Two rectangutegions are attached
on the upper and lower side of the magnetic syskeitine upper region the transformation

U T LA

whereas for the lower region one must use:

is:



44

1 Y, +Y
=T(Y)=-¥—-— Log— 11.39
V=T ==Y Log e (11.39) v
Transformed region
The general form of the equation is: Yo
1 Y, —
y=T(Y) =sgn( Y)[E X_E LOHU (1.40)
=% ‘ Magnetic system

The transformations are employed only in the X
light gray regions (Figure I11.6), the superior age Yo

. . Transformed region
bounded by the lines with constaptY, and y

y=Y., the inferior one situated betwegn-Y, and
. _ Figure 11.6: The magnetic syste
y=-Y,. It is easy to see that fof=Yy,y is alsoYy, together with the regions where

while if Y=Y,, then the outer boundary is projectespace transformations are applied.

towards infinity and/=co.

But how do these transformations intervene inrdeolution of the magnetostatic
problem? In the outside regiod,is given by the Laplace equation. The weak formmha

is in this case:

[grad(w) grad (@) dv =0 (11.41)

If one changey into Y the related differential operators are also medifiso thagrad

becomesGRAD. The Jacobian matrix of the transformation is:

0 ox 0y 0z 0
X | |0X 90X aX||dx
o | o ay oz||0 0142)
oY oY 0dY 0Y||0Y

0| |x dy oz||o
0Z 0Z 0Z 9z2)\ oz

Then grad=J'GRAD, and the weak formulation for the magnetostaticbfam in the

“transformed” regions is:

| GRAD(5)GRAD (®)(37)" I det(J) d*R= 0 (1.43)

Vtransf
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The size of the regions where the spatial transitions are applied is much
smaller than the two regions that have to be cdedeto the magnetic region if the

truncation method is applied. Such an approadheiefore more efficient.
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[1.2.2. Classical finite element approach for the Landafshitz-Gilbert

equation “WF1

The FE method in micromagnetism was used botkthiic computations in which
the Gibbs energy minimum is sought [Fredkin 1987edkin 1988] and dynamic
calculations, based on the integration of the LLGuation [Yang 1996, Yang 1998,
Schrefl 1999, Fidler 2000, Scholtz 2002, Hertel208ertel 2004, Bottauscio 2008].

The FE schemes coping with the LLG equation depedoin the group from
Vienna [Schrefl 1999, Scholtz 1999, Siiss 2002} stam the FE discretization of the total
energy. The effective field is then evaluated usimpox methodo that each node has its
magnetic moment and its own effective field. Theaoked expressions are directly
introduced in the LLG equation and solved usingyppropriate integration scheme. In the
approach proposed by the group of the [BottausB@BPRthe Landau-Lifshitz equation is
integrated with the midpoint rule proposed eatbigiD’Aquino et al. in [d’Aquino 2005].

A classicalweak formulation for the LLG equation was proposgdFredkin in
[Yang 1996]. In the following, a similar formulatids presented. The difference between
the two methods is the manner in which the congtian the magnetization is handled: in
Fredkin’'s paper, the constraint is imposed by ndimaton after each time step, whereas

in our approach, a constraint handling method wgdemented.

Lately, the LLG equation gains more and more attenfrom the part of
mathematicians. Methods based geometricintegrators have been proposed [Lewis
2003], interesting as through their use one canidatbe renormalization of the
magnetization, apparently a not very “benefic” mauare. More than this, in [Bartels 2005,
Alouges 2006, Alouges 2008] interesting FE formola and integration schemes were
proposed. The weak form proposed by Alouges [Alsug@06] will be presented later in
this chapter.

In this paragraph we will focus on writing downfiest Galerkin-type weak
formulation for the LLG equations, called WF1 framow on. To treat the constraint a

special method was developed. The accuracy of #thad was tested on two test cases.
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The strong form is made up from the LLG equatiogether with the Brown

boundary condition:

v-a(mxv)=—upy(mxH,) onV,

om (1.44)
—=0, on
on S

and the constraint on the magnetization amplitude:
g(m)=1-m*=0 onV, (11.45)

wherev=0m/at. As a part of the input, an initial magnetizatatistribution that respects the

constraint is chosen.

Before writing down the weak form the solution epashould be defined: is
sought in the &{Vy)® space, withv,, the volume occupied by the magnetic body and its
surface S,. By multiplication of the LLG equation with a vect test functionw,
wOHY(Viy)®, and then integration ovét,, WF1 is obtained:

jw[ﬁv—a(mxv)]dv:—J'ﬂoyw[ﬁmx(Hex+HamS+H 4omTH app)]dv (11.46)
Vi Vin

Generally speaking, for a PDE several weak forarstwe derived, but as a rule of
thumb the optimal one is the one in which the dgron order is reduced as much as

possible. The exchange term:

—jﬂoyw[quHex)dv:—jyﬂw [fm xAm ) dV (11.47)
Vi Vi MS

includes the test functiomw and the second order derivative mf For this case the
equilibration of the derivation order of the magration and of the test function is

advised. Using integration by parts the integraaud lze transformed as follows:

2A,, (mxAm)M:%Z[mx(Amq )]DN:

2
,qus oﬁxs ZAm[(mXQ)DN:I(”l48)

U,

whereg are unit vectors directed along the axes of tleedinate system[1{x,y,z}. (11.48)

can by modified using the divergence theorem:
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Am (mxg)Ov=dif Om{mxe)Ow|-OmI[(mx )Ow], =1, N (1.49)
and then integration leads to:

[ (mxam)iwvdv = [[(Om®)(mxg (w) dS- [ O mID[(mxe)Ow] d\ (11.50)

Vm Vm

The final form of the exchange term is obtainechgghe Gauss theorem and the Brown

boundary condition:
I(mXAm)ENdV:—ZI(mxa—m]BaﬂdV (11.51)
Vi v, a)q a)ﬁ

The other field terms in (11.46) remain unchanged in conclusion the weak form
of the LLG equation reads as:

2 0
V{w[[v—a(mxv)]dV:vamy &X[mxazjﬂggdv—iyyowmmXHr)dV (1.52)

HereH, stands for the sutd anistHdentHapp.
11.2.2.1. Integration scheme and constraint handling

The integration of the dynamic LLG equation corssistdividing the time interval
into small time steps. To evolve from one time stepnother, the linear equation (11.52) is
solved, obtaining this way, and then the magnetization vector at each mesk md

updated using:

w1 MT+0tv

_—‘m“ v (11.53)

wherem" is the magnetization determined at time steprhe normalization allows to
respect the constraint (11.45), that forces the me#igation to remain on a sphere. This
constraint affects also the time derivativef the magnetization, as this must always be in
the tangent plane tm, Tgm)={vOH"(Vy), mi=0}. To obtain a general time integration

procedure, that assures such a behaviorp-s&cheme [Lucquin 1995] has been



implemented. This scheme passes through an intéateed

state m  defined as m"+0d&v (Figure 11.7), with the

-

requirement tham N=0. 0 takes a fixed value in the rang m~
[0, 1].

From (11.53) and the supposition than"[*|=1 the

following condition can be deduced:

(m“+%5tvjﬂ5tv:0 (11.54)

Taking 6=1/2 in them"+0dv, one retrieves exactly the
quantity in the parenthesis, witm -v=0 automatically Figure 11.7: The intermedial

- . magnetization m~ and the
satisfied. In conclusion, 1/2 seems to be the blesice decomposition of into vo anc

for 6. the correctiond y.

More than this well-designed way of handling tleastraint, the)-scheme offers a
second advantage. For an explicit Euler schemeetstable, very small time steps are
required [Kevorkian 1998]. In a FE approach, then-homogeneity of the spatial
discretization makes that the time step is bouriethe square of the size of the smallest
mesh element. This leads to its dramatic reducti, accordingly, to the decreasing of
the method’s efficiency. Adopting the above destib-scheme the loss of efficiency is

avoided.

Making use of the intermediate magnetization the vecton can be decomposed
in two parts (Figure 11.7)vo belonging to Tgh") and a correction that will placeinto
Tg(m):

V=V, +0oty, (11.55)
Rewritingm by taking into account this, one obtains:

2
m’ :m"+%vo+5—;y1 (11.56)

Therefore the conditiom -v=0 gains a new form:
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m" [ :—%Jtvg (11.57)

In the above given formula the termsdf and higher were neglected.

Introducing an intermediate magnetization statethe vectorv was transformed
into a sum of two contributions and a new form ttee conditionm-v has been obtained.
The next step is to rewrite the weak form by takimg account these new elements. The
substitution ofm by m" is done only for the exchange term. In the otheidfiermsm is
replaced bym". After a proper rearrangement of the separateribomipns, WF1 turns

\met(]v—a(m”xv))dv =

m”+15tv0j
2

!
Iz\}[yZAEX (mn+%5tvojx

M. Lﬁwdv—\iwow[@m”XHr(m”))dV

0% 0X

m

m" [V = —%Jt V2
(11.58)

Looking carefully to the above given weak formgamotices that, intervenes in
both the weak form and the constraint\onTherefore a two-step procedure is required:

first vp is determined, and then reintroduced in (11.58)yetv.

Determiningvy

To calculatevy, only the equation containing the terms of orden @iare solved.
The corresponding weak form reads as:
N _ 2A [ o 0m" ) ow N n
jW[EVO—(x(m xvo)]dV—lz\{y M. (m x ox jch‘ dv J;WOWEQm xH, (m ))dV
(11.59)

m

with the constrainmn"v=0.
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Obviously, one searches for the solution of ardigcform of equation (11.59). To
obtain it, the domairV/, is discretized and the magnetization componentstha test

functionsw are interpolated:

w=A (1),
N N ”60
=SB ol )8 ) e, oo

where N is the number of nodes ap¢y{x,y,32. The magnetization can also be
interpolated using the same interpolation functidkgain, first or second order Lagrange
polynomials were employed. Introducing these irgkfed quantities in the weak form

(11.59), the following matrix equation is obtained:
(M+D)v,=L (11.61)
with M (mass matrix)D (damping matrix) andl (load matrix) defined as:

M = [ B B 3,dV
Vm

D=a] A Ae, [{mxg )dv (11.62)
L:I:;);YZ\;[ yZM—A:(g—'fliep[Emnxaa—n):]jdV+\;[lBi ep [@ ' x Hr ( mn)) dv

M andD are 3Nx3N matrices aridis a vector of size 3N, exactly like the solutign

To treat the constraim™vo=0 a Lagrange multiplier approach is used. Asseargbli
(11.61) and the matrix equation for the constraintm”, the following system is obtained,

with the unknowns/, and the Lagrange multipliér

{(M +D)vy+HTA=L
(1.63)

Hv,=0

whereH is the Nx3N matrix made up from the componentsbfn each mesh node:
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m m nf 0O 0 0 O O O
O 0 0 00O O 0 0 O

H=l0 0 O m m nm 0 0 O (1.64)
O 0 0 0O 0O O 0 0 O
0O 0 0 0 0 0 m n

In the first time, the 3Nx2NNull matrix collecting all the vectors dfer(H) is
computed. AsH Null=0, the elements oNull are in reality the vectors of Tmj. A
schematic representation is given in Figure 11.8:

Mg

m;
Figure 11.8: The magnetization in three differenesh nodes, with the corresponding
tangent space and the vecterandy that generate it.

As the constraint asks thidtvo=0, vo can be written allull v, whereV, is a vector to be

determinedSchematicallyNull and v, can be written as:



770 0 0 0 0 O
Y77 0 0 0 0 0 O
n v 0 0 0 0 0 O
O 00 00O 0 0 O
0O 0 0pg 1t 0 O O

Nul={0 0 0 7 z7 O 0 O (11.65)
0O 0 0pg 1z 0O O O
O 00 00O 0O 0 O
O 00 0 0 O0uxf 1
O 00 0 0 0ung 1
0O 00 0 0 0unf 1

and % =((%), (%), o |

<

)i (%)i 0 (%)N (A\%)N). The Null matrix
can be viewed (Figure I1.8) as a tool that tramsforthe vectorv, into its R3

correspondent. Introducindull v, in the first matrix equation we get:
(M +D)Null v, +HTA=L (11.66)

By multiplying the equation byull", the Lagrange multipliek is eliminated and the

vector V, is then obtained:
V, =KZNull'L (1.67)
whereKe=Null (M+D)Null. Now v, can be easily reconstructed:

v, = Nullv, (11.68)

and the resolution of the weak form (11.58) carcheaied out.

Determiningv

Now v is the one expressed as:

v=gﬁj (r)v(n);iﬁj(r)vaeq (11.69)

i=1 q

with gl{ x,y,3. Again a matrix equation is obtained, having $amform as (11.63):
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{(M +D)v+HTA=L
(1.70)

Hv=G(v,)
but with a modified. matrix:

By A am" .
B o o e e
(11.72)

In the constraint equation, the second in (1.706¢, matrixH is the same as before, a@Gd

is given by the values of -1d2v. As the matrixG is not zero (contrarily to the constraint

corresponding t®o), the general solution of (1.70) is expressed as:

v =Null [ +v, (1.72)

with Null given (11.65). To be able to find the solutionthe Lagrange multiplieN is

eliminated, exactly as in the previous case, bytiplying the first equation wittNull™:

Null" (M +D) (Null @ +v,)=Null"L

(1.73)
Hv, = —%& Vi

As from the second equation is clear thats not in Tg(n), one can assume that it has a

component alongn. Therefore in the nodevy reads as:
(vg) :—%Jt(vo)izmi” (1.74)
and then inserting it in the first equation of {B) the vectow is retrieved, and:
V=KL, (1.75)
with Kei defined above anld.¢ equal to:
Lys =NUll"[L=(M +D)v, | (1.76)
Now v can be assembled:

v=Null (KL +V, (11.77)
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The weak formulations for the magnetostatic equaséind the LLG equation were
directly implemented in the Comsol software [Comsile], provided by Comsol
Multiphysics. The flowchart of the solving procdss Comsol is presented in Figure I1.9.
After defining the inputs of the problem, for eatime step the solution of the
micromagnetic problem is determined in two stepsst Bhe magnetostatic part is solved
using a linear solver. TheHhl4em is determined at each Gauss integration point and
introduced into the LLG equation. The so-obtaineedr system irv is solved using a

Comsol solver [Comsaol site].

Geometry and meshing
Material parameterdis, Aex, Kanis, Uk

{m(r.to)}
v
linear solver Weak form form demagnetizings
! v Calculation ofHgem
) v
linear solver Weak form for micromagnetism t=t+ot

with Lagrange

- _ Normalization of the magnetization
constraint handling

/ {mM} equilibriurr \

Figure 11.9: Flowchart for the WF1 implementationder Comsol environment.
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Now that the numerical means for solving the LLGuaion were described, the
WF1 formulation can be tested. Two test cases whosen: a periodic system, the so-
called stripe structure, and an infinite prism. IBohodel systems are presented in the

following, together with results issues by statid @ynamic computations.



[1.2.3. Applications WF1

11.2.3.1. Stripe domains

Weiss [Weiss 1907] was the first one to concludegossibility of non-uniformly
magnetized bodies, and therefore the presence gietia domains. The domain structure
formation is the result of energy minimization. timee absence of an external magnetic
field, the system’s energy is made up from the arge, the magnetocrystalline
anisotropy and the magnetostatic terms, and therdfee equilibrium configuration will

reflect the equilibrium between these contributions

Although domain walls were considered less intergsobjects, simple interfaces
between the magnetic domains, they proved to begsisremarkable as the magnetic
domains themselves. It seems that, several integephenomena originate from these
magnetic objects, one of the most important beimg ¢lectron scattering due to the
presence of the domain wall, predicted theorefidayl Cabrera [Cabrera 1974] and Berger
[Berger 1978] and observed experimentally in systevith uniaxial magnetocrystalline

anisotropy [Gregg 1996]. Such magnetic thin film® @ very exciting topic. The

|

i
11J

depending on the orientation of the easy axis wapect to the N W\ JM

applications based on such materials are varioofr(hation 1S “
storage media, sensors), and even though the dostaicture ;

appears to be rather simple, the fundamental physbind it is | ’

quite complex. Numerous equilibrium configurati@ms possible,

. . . . 3pm X 3 um
film plane, on the thickness of the film, on th@wth conditions Figure 11.10: MFM
and on the magnetic history of the sample [Hub@é3). image of a 50nm thi
Co film, withthe eas
In the following only systems with perpendiculanisotropy axi
anisotropy will be considered. To this category thin films ﬁﬁ;pglgﬂ'ecu'ar to th

belong FePd alloys, Co/Pt multilayers and Co filmEhe
equilibrium configuration consists of domains, fdag from a periodic modulation of the
out-of-plane magnetization component, and regulaciBwalls. This formation is named

stripe domains structure, an example being showhigare 11.10. Stripe domains were
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first discussed by Landau-Lifshitz. Then in a relgiy short interval (1961-1968) several
theoretical and experimental observations were iglddl [Muller 1961, Spain 1963,
Tatsumoto 1968, Puchalska 1967]. Since thesesfiuslies, stripe domains gained a lot of
interest. Numerous studies concern the dependdnitee sgemanent configuration on the
material parameters, film thickness [Hubert 1998brune 1994]. It is a well known fact
that, the complexity of the domain and the wallfauration is strongly influenced by the
competition between the magnetocrystalline aniggtr@and the shape anisotropy,

5
0 S

quantified by the so-callequality factor Q:ZK—IC'I“S Based on the value of Q one can
identify three situations, depicted in Figure IL1fithe perpendicular magnetocrystalline
anisotropy is dominant, Q>>1, the walls separatiregup and down domains are very thin.
For Q<<1 the shape anisotropy forces the magnetzdd lay in-plane. For €1, a

structure of compromise is stabilized. The latteucture includes, in the central part,
domain walls of Bloch type, and near the surfadage closure domains. The stripe

period, pattern and domain size can be determiasddion the material parameters.

R e

Figure 11.11: Domain structure for different value§Q: a) Q>>1, b) Q<<1 and c) G1.

From an experimental point of view, the interestduch materials arises due to the
large number of domain walls and the easy manipmabf the equilibrium period and
domain orientation. Numerically, these systems als very attractive due to two
symmetry properties: the invariance of the systéomgathe stripes’ direction and the
periodicity along the Ox direction (Figure I.12)he first feature makes possible their
study using 2D simulation tools, whereas the pécitdallows to reduce the geometry
from a very large (infinite) system to a finitesiz2D geometry, for example a rectangle
having the thickness of the thin film and the léngtual to its equilibrium period. In the
following we will test the FE approach based on wWeak form WF1 on such a system.

The material parameters used to obtain the follgwasults are given in Table II.2.



Table 11.2: Material parameters.

Acx (3Im) | oMs (T) | Kanis (/M) | lex (nm) | Iz (nm) | Q

2nott 1 5010° 7.08 6.32 | 1.25

Choosing Q=1.25, the system belongs to the lati&zgory (Figure 11.11 c) and
therefore the wall structure is quite complex: Bliae the center of the film with two small
flux closure domains near the upper and lower serf8he equilibrium period of the
system was determined to be around 200 nm, andftiierthe model system consists of a
rectangle having this length and the height 40 Arechematic representation of the model
system is given in Figure 11.12:

Figure 11.12: Schematic representation of the srgructure in a thin film.

To check whether the WFL1 results for this first tease were correct or not, they
were compared with those obtained using the GL_g&dfiware, presented in chapter 11.1.
The mathematical background of the two implemeoiatiis completely different, this
being reflected even in the model systems used.inpsat for the FD software, the
geometry consists only of the magnetic system, ¢ghrectangle of 200nmx40 nm. The FE
model system is more complex because the treatmfrthe magnetostatic problem
requires regularity at infinity. The truncation metl was implemented to cope with this
issue; hence two 200nmx300 nm large vacuum regiere attached to the magnetic
region, on its upper and lower side (Figure 11.13).

The FD discretization consists of squares of @rissize, while the FE mesh

consists of irregular triangles. The choice ofitiesh size is sustained by the rule of thumb
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derived in the chapter 1.3, where the LLG equati@s discussed (see equations (1.46)). In
the two implementations the same mesh size of & %vas used, as this value seemed to
be optimal, in terms of computation time and accyrdesting smaller mesh sizes, for
exampleé=1 nm, showed that the results are not signifigaitiproved, whereas the

computation time is very much increased.

An example of the model systems and the disctedizés shown in Figure 11.13. In
the FE model, beyond the magnetic system, a coofpkeacuum regions must also be
discretized. The mesh in the vacuum region is nobjest to any restriction, because the
variable defined herab, varies smoothly [Brown 1963]. Nevertheless, a imak size of
20 nm was imposed. Despite this large mesh sieeptbésence of these “extra” regions is

not at all advantageous, increasing very much dingpeitation time.

vacuum

20nm

20nm

vacuum

Figure 11.13: On the left size the FD model syst@na on the right side the FE model
system.
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Concerning the boundary conditions:
» in the FE approach the Brown condition (1.36) isunally included in the
weak form.
» to conserve the periodic character of the magrststem, on the left and
right side periodic boundary conditions were impdeted for both

approaches.

As input, besides the material parameters, amlimtagnetization distribution is
also given, chosen so to satisfy the constrairthermagnetization amplitude. For this test

case, the configuration is a perfectly sinusoida,ajiven by the following equations and

. X
snE ztj‘ (11.78)

m, -1 -08-06-04-02 0 02 04 06 08 1
ffllTlTllr

depicted in Figure 11.14:

m, =0, m/:co{ 27%} , m=

gereerereeee
UANRERARRA
1?TAATATAAtt

v LLE
Hilid
z X

Figure I1.14: Initial magnetization distribution.RE arrows represent yyand ny and the
color code stands for the z component.

Static computation

First, a static simulation, where the damping pei@r is set to 1, has been
carried out. An initial comparison between the &uum states obtained with the two
approaches is therefore possible. The equilibritettes are shown in Figure 11.15. The
magnetization lies mainly in the Oxy plane, exdeptwo vortex-like walls separated by a
distance of L/2 4100 nm). A basic qualitative analysis reveals ay\gwod agreement
between the two configurations. The wall structseems to be the same: a central Bloch
part pointing outwards and small flux closure damsairiented along the +Ox direction are

formed near the surface.
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Figure 11.15: Equilibrium magnetization distributioobtained with the FD and the WF1
approaches. The same colour code is used as pryiou

Beyond this simple visual comparison, by samplimg YWF1 results on a regular
grid corresponding to the one used by the FD methbé angle between the

magnetizations could be determined. This quargityepicted in Figure 11.16.

Angle (%) 0 0.1 0.2 0.3 04 0.5 0.6

1
T

I
T

i

Figure 11.16: The angle between the equilibrium metizations.

This analysis revealed that, the main discrepanaieslocalized in the vicinity of the

vortices, where the maximal value of the angle feasd to be around 0.6°.

Until now we looked only to the equilibrium magizetion distribution. Even
though, a good match between the FD and WF1 cardfiigins is very important, it is not
enough to guarantee the correctness of the FE agpré very important indicator is the
relaxation process itself. Eventual flaws of théegmation scheme could surface in the
evolution of the total energy or of the magnet@atcomponents. The progress of these

two quantities versus time process is depictedgare 11.17:



x10°

—FD
— WF1

E_(J/m°)

tot

0.00 0.03 0.06 0.09 0.00 0.02 0.04 0.06 0.08
time(ns) time(ns)

Figure 11.17: Time evolution of the jagnetization component and of the average value
of the total energy density.

The evolutions seem to match almost perfectly.he WF1 approach, the magnetization
component evolves a little differently than in thB approach, but as expected from the
comparison of the equilibrium states, the finaluesl are almost identical. The comparison
of the total energy densities predicts a small gnelifference at equilibrium. To retrieve
the source of this energy gap, the evolution ofdbparate energy terms (Figure 11.18),
exchange, magnetocrystalline anisotropy and dentagrge is checked. The largest
discrepancies occur in the exchange term. Froredghndibrium values, listed in Table 1.3,
the same conclusion can be drawn. The large difteran the exchange energy was
predicted already by the comparison of the equuiir configurations, where the most
important variations laid in the region of the wa(Figure 11.16), that is, in the region
where the exchange is the most perturbed.

Overall, the existing differences are acceptabflgne bears in mind that the
technique of evaluating the energy terms are éntd#ferent: FD uses local estimations
of the magnetization vector and the effective fislthereas in FE the energy expression is
applied to the magnetization field interpolatedeach element.



Table 11.3: Equilibrium values of <gr and the energy densities
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Method | <m,> | Eo (J/INT)-10 | Ee(I/NT)-10" | Eanis (I/MT)-1C | Egem (I/nt)-10
FD 0.1742 -2.1358 6.2365 -4.1812 1.4216
WF1 | 0.1757 -2.1045 6.4789 -4.1697 1.4172
Error | 0.9% 1.5% 3.9% 0.3% 0.3%
, x10* s I
—FD

—WF1

E, (J/m’)

0.03 0.06 0.09 T 0.03

O,E)S
time (ns)

0.09
time

5
15 x10

(J/m’)

Edem

003
time(ns)

Figure 11.18: The exchange, magnetocrystalline attigpy and dipolar energy densities as
a function of time.



Numerical micromagnetism

Dynamic computation

In real stripe domain materials the damping patams around 0.1-0.01. Passing

to such values changes the relaxation process etehpl First of all, the evolution

towards equilibrium takes more time, as the vejooitenergy loss is proportional to the

damping parameter. Second of all, the magnetizatibrhave an oscillatory behavior, and

the duration of the oscillations increases with diminution of . The behavior of the
magnetic system for severalvalues is shown in Figure 11.19.
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Figure 11.19: Details of the relaxation process toof 0.1, 0.05 and 0.03.
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As the value of the damping parameter decreakespscillatory behavior of the
magnetization is accentuated. Figure 11.19 showsyg tre evolution <rg>. For the other
components, <gr and <ny>, a similar behavior is observed. An importantatosion can
be drawn by analyzing these curves: there is éivelagreement between the FD and WF1
results for the first 2-3 oscillations, but thewe ttesults issued by the FE approach seem to
be more damped than the FD evolution. Apparently WF1-based implementation
overestimates the relaxation term. This same behasiobservable in the total energy
versus time curves. For large valuesoofl and 0.1), there is a small gap between the
equilibrium values, even though the path descritheiihg relaxation is very similar. For
realistic, and therefore small values, like 0.050003, the equilibrium state is reached
sooner in the FE simulation than in the FD calcota(at 0.23 ns instead of 0.37 ns for
a=0.05 and 0.3 ns instead of 0.53 nsdv0.03).

11.2.3.2. Exchange coupled magnetic moments in an infini@rpwith

square cross-section

It is necessary to determine the source of ther @damped motion. Even though
not the only one, but probably the main cause efaver damping lays in the complexity
of the weak form. It is very important to keep imahthat, the FE method is based on the
interpolation of the unknown and of the test fuoicti When it comes to interpolation
errors, the exchange term is the most exposed, @iains two interpolated quantities:
the magnetization and its space derivative. To ktdige influence of the exchange term, a
second, mathematical, 2D test case was consideoedisting of an infinite prism with a
square cross-section of 2r8nm, in which the magnetic moments are coupled only

through exchanged(,=1 a.u.).

The initial magnetization configuration consistk a0 sinusoidal distribution. At
equilibrium, as only the exchange interaction issent, all the magnetic moments are

aligned. The initial and equilibrium configuratioase depicted in Figure 11.20
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Figure 11.20: Initial and equilibrium state distritions for an infinite prism with a square
cross section of 2nrR2nm.

The value of the damping parameter was taken @ @2 The dynamics calculated
with WF1 was again compared with that obtainedHgyED approach (Figure 11.21). The

mesh size was of 0.125 nm, resulting, for the Fr@gch in around 1000 elements and
250 elements for the FD discretization.

E /N (Jim’)

0.0 5.0x10° 1.0x10° 1.5x10" 0.0 5.0x10" 1.0x10”
time (s)

1.5x10°
time (s)

Figure 11.21: Evolution of the average value of the,> magnetization component and
the total energy density as a function of time.

The comparison shows that, although the equilibratates are the same, the paths
followed by the magnetization in the relaxationqass are very different, with WF1 the
energy decreases faster than with the FD apprddus.observation is a clear indicator of

the importance of the exchange term, making thetingsis of over damped motion due to
the interpolation errors a very plausible one.
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In conclusion, a classical finite element weakrfasf the Landau-Lifshitz-Gilbert
equations was developed and implemented to dehl 2t micromagnetic systems. This
scheme was benchmarked against the more usualagbpod finite differences. A good
agreement was found for the results in the highlypled regimeot=1, 0a=0.1). For smaller
values of the damping parameter the dynamics cakilby the finite element approach is
altered by a numerical over-damping. Three sourgeghis overestimation of the
relaxation term are conceivable:

1. the integration scheme,
2. the constraint on the magnetization
3. the interpolation errors.

To be able to describe correctly the magnetizatipnamics, an improved weak
form is needed, one derived so that, the above iorett error sources are either
eliminated, or, at least reduced as much as pesditfleasible, the exchange term should
be simplified to reduce interpolation errors, ahd tonstraints o should be eliminated.
Moreover, one has to prove that the time integrgiees a physically correct velocity of
energy dissipation, impossible to show for the @nésase.



[1.2.4. The finite element approachw2

It is clear, from the results showed for the dlzswveak formulation WF1, that in
order to get a correct description of the dynanoica magnetic system, an improved FE
formulation has to be found. The conditions thad trew formulation should meet are: a
simplified exchange, no constraints wand a time integrator that describes a dissipation
scheme. In 2006 Alouges [Alouges 2006, Alouges Pp@dved the feasibility of writing

such a weak form and a corresponding integratiberse.

In the weak form WF1 the unknown belonged to the tangent space of the
magnetizationm, whereas the test functions were classRal vectors, without any
restriction on the orientation. Whether this isiaaportant factor or not, it is difficult to
determine, as a weak formulation should be valid day continuous test function.
Nevertheless, selecting test functions belonginthéotangential space ai could have a
benefic effect. Based on this, Alouges developedrainal weak formulation for the LLG
equations, but taking into account only the excleategm. Notingw', the vector function
such thaim,w',w) form a direct trihedron, one can replace in WF#, tést functiorw by
mxw', knowing thatmiw'=0. Here we present a weak form for the LLG equustiderived

on the basis of Alouges’s work, including all theld terms.

By replacing in (11.46w by mxw', the following weak form, noted hereafter WF2,

is obtained:

jaw’@dv+jw'[@mxv)dv:jﬂoyw'DH dv (1.79)
Vi Vi

Vm
The exchange term becomes:

[w' AmdV = [ O(w'[Mm) dV- [ Ow'Om dV=-{Ow'Om dV (11.80)
the weak form transforming into:

IaW'WdV+IW' [@mxv)dv=—.|'2'|\};xwa'D]]m dV+IﬂOyW'D}4 dv (1.81)
V,

VITI m Vm s \471
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where the solution space i8QH*(Vi)*: my=0} and the test functions are vectors chosen
from { w OHY(Vi)®: miv'=0}.

Analyzing WF2, one can easily notice several athges:

1. The first one is that, the constraints, either tiatthe magnetization, or the one
imposed onv in WF1, were eliminated. Thus the process of sgiViVF2 is
straightforward in comparison with solving WF1, wheseveral steps had to be
covered before arriving to the final solution.

2. The second advantage lies in the simplicity ofékehange term. As seen earlier,
in the case of the WF1 formulation, this term wasyvsensitive to interpolation
errors. Using WF2, one is less exposed to this kihdumerical artifacts, as the
exchange term in WF2 contains onlyn. These advantages make us believe that

this weak form is better adapted for dynamic corapois than the first one.

To retrieve the magnetization, one proceeds exé#k# in the previous case, the
vectorm™? is reconstructed using"™*=m"™+& v and must be normalized at each mesh

node.

Three sources of over-damped dynamics were idettih WF1. Using WF2 two
of them - the exchange term and the constraintsre wliminated. The last one, related to
the integration scheme, will be treated in thediwihg.

The same classicitscheme is used as before. The magnetization iextleange
term is expressed ag'+0 v, modifying the weak formulation (11.81) as follows
] I n 2'%)( I —
o[ w VAV + [w fm"xv) dv+05t[ y 0w’ MvdV =
Vin Vin Vin M

S

j oA | n (11.82)
= [ 7 Ow m dv + [ yugw' tH, {m"} dv
Vi S Vin

with 0<6<1. In particular, foro=0 one retrieves an explicit scheme, 6511/2 a Crank-

Nicholson-like scheme, and finalbg1 represents an implicit integration scheme.
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11.2.4.1. @integration scheme for the exchange term

The relaxation process of magnetic systems igedstithe total energy difference,

oE, between two consecutive time steps:
OE = E(m™) - E(m") = E(m" +otv)-E(m") (11.83)

is always negative. From a numerical point of viewe behavior ofdE can give
information about the accuracy and the correctrefsshe integration scheme, help
determinining eventual constraints on the time sieg finding the most convenient value
for the 6 parameter.E refers to the total energy, the sum of the excbang
magnetocrystalline, demagnetizing and applied fiefchs. For sake of simplicity, in a first
time only the exchange term is taken into accobath for the weak form and for the
energy. The necessary stability conditions willdetermined for a first order integration
scheme. Next, the same procedure is applied kalt tbe terms in the weak form. Finally,
the requirements for a second order integratioersehare determined.

Before proceeding to the treatment of the exchagagy density, an important

n+1

remark about the calculation &m ™) has to be made. Prior to the calculation of this

term, the magnetizatiom™* has to be normalized. Therefore, when calculating

n

+ : .
stands form—vo_t, or written under a simpler form:
|mn +v5t|

n+1 n+1l

expression oE(m™" ), m

m””=m“+vc§t—%mr\/2c5t2 (11.84)

Taking these into account when writing down thechemge energy

E..(m)= J' A,(Om)*dV for m™* one obtains:

S
Vm
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E..(m™)= [ A\ex{m(mwv&—%m”vzatzﬂ dv
= [ A, (Om")" dv+at[ 2 A, OvOm" dv+ 3 | A,{(Dv)z— \%(Dm”)z} d\

=E, (m")+8t[ 2A,QvIm"dv+ 5t | A{(Dv)z— \?(Dm”)z} av
m (1.85)

In the energy expression above the termétirand higher were neglected. The exchange

energy differencéEcx between two consecutive time stepsndn+1 is then:

JE, =5t [ 2A, VM "dV+S¢ | A{(Dv)z— \?(Dm"ﬂ dv (11.86)

Several contributions arise:

> one combines and the magnetization”
» one containing only
> one using onlyn".
To eliminate the first contribution, the weak foration (11.82) is written only for the
exchange field:
[ aw [@v+(mn xv))dv +00t| » 22 Oy vy = - [ » 22 Oy Omedv (11.87)
V, vV, MS V, M S
In (11.87), the substitution o' by v, is a mathematically valid operation, as these two

vectors belong to the same subspace. The weak(fb8m) reduces then to:

S S

2A0 (V2 v = — [ 2P "
javzdvmdtv_[nyM—(Dv) dv = ijyM—DvDDm dv (11.88)

VITI
and the first term ofEc« is obtained. (11.86) becomes:

o, == s viav=(0- Lo [ 28, (00) vt A, v(om) vl
v, Vi Vin

m

It is readily seen that, by choosi@g[1/2, 1] the system’s energy is guaranteed to daere
in time. The integration scheme obtained abovefidéirst order. The accuracy of the

integration scheme can be improved tuning the vafuke® parameter. For example, to
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obtain a more precise scheme the valu@ isfset exactly to 1/2. Doing so, the second term

on the right-hand-side of (11.89) is eliminated:

:—5tj Ms 2y - 5t2j A (Om") dv (1.90)

Taking® to be 1/2 is equivalent with the substitutiomofwith m"+1/2v ét. This scheme
seems to be close to a second order one, howeraméins still of first order, because a
St? term it is still present in the variation of theeegy.

11.2.4.2.  First order integration scheme including all theld terms

Introducing in the weak formulation for the excbarthe rest of the field terms,
(keeping however, th@ formalism only for the exchange field), new staépitonditions
will be deduced for the integration scheme. To mieitee the requirements for having a
correct dissipation process for all the energy $erthe above described procedure is
followed.

Magnetocrystalline anisotropy term

To determine the expression of the anisotropy ggneat time n+1, in

anis

E .(m):—j Kams((m mK)Z)dV, m is replaced again byll.84). Then Egngm™%)
Vin

becomes:
Eanis(mn+l) = Eanls( ) 5t.|. 2 Kanls( mjK )(V mjK ) dV

”‘ , (11.91)
~0t° [ Ko (VI )" AV + 08 [ Koo (" [y ) dV

Vm Vm
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The applied field energy term

The energy term arises when a magnetic field agt the system. This energy

term is given by Eapp(m):—J',quS(m [H-Iapp)dv. Writing this term form™" the
Vin
following relationship is obtained:
n+ n 1 n
Eapp(m 1)= Eapp(m )—th ,uOMS(v EH-Iapp)dV+§512J',uo Ms\f(m [H-Iapp) dv (11.92)
Vin Vin

Demagnetizing energy

To be able to follow a similar path in the treatmef the demagnetizing energy, it
iS more convenient to first write the demagnetiZiletd under a different form. ABlgem

depends linearly om, one can write it asMd.m, wherelL is a symmetricl(=L) and

positive Iv[ll_(v)zo operator. The demagnetizing energy density takea the form

Eem(M) :% I H,M?mL(m)dV. Replacingn by the normalizean"* one obtains:
Vm

Edem(m”+1) = Eden(m“) +%5t\); i Mzg(v El_(m") +m" EL(V)) dv

+%5t2\);,u0M52vEI.(v)dV——;JtZJm,uOMSZVZm” L(m") av o
If L is a symmetric operator, then:
m" L (v)+vL(m")=vL(m")+v@L(m")=2vL(m") (1.94)
and (1.93) becomes:
Egen(M™) = Eger(m") + 6t[ s, M%y L (m") aV
" (1.95)

+%5t2.[yoMévD_(v)dV—%dtzjyoMszvzm” [(m") dv
Vin Vin

In the energy expressions above the termi’imnd higher were neglected. The next step

Is to assemble all the energy contributions (iniclgdhe exchange):



SE=ot[ 2A,OvIIm"dv+3E [ A(Ov)’ dv-5¢[ A, ¥(0m")" dv

=0t [ 2K e (", )(viD, )V - 5F | Kams[(v )+ v (m" )2} av
" - (11.96)
+5tvjm oM ZVIL(m")dv +%5tzvjm #oMZ[vIL(v)=vin" [L(m") | dv

#3 [ 1M (VT )V + 8 [ oMoV (m" ) GV
Vin Vin

Like in the simplified case of the exchange tergmia three contributions are identified:
terms combining the magnetization at timeandv, contributions based only onand
eventually those containing only". The combined term can be eliminated if one
transforms the weak form (11.81) by substituting tkst functiow' by v:
2 X n n n
ijiDv[ujm AV = [ 9115V [fH g (" T YU =M L (") 4 H,, )V
Vo, S Vi,
5 (1.97)
:—ajvzdv—eatjyﬁ(mv)2 dv
Vi \VA M

S

with H :%. Introducing this in (11.96), a simpler form 6E is obtained:

anis
0'"'s

JE:—tha%dev
v Y

m

—5t2(e—%j [ A (ov) av-a¢] A, ¥(Om")" av

=0t [ Ko (VI ) AV + 0 [ K07 (m" m, ) dv (1.98)
\V V.

m m

s oL v afr) o

+%5tzvjm HMV? (m"H,, ) dV

Knowing that J'A?X\F(Dm”)2 dv and J',qu§v2m“EL(m“)dV are both positive

Vm Vm

guantities, an upper limit f@iE is established:
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M 1 2
OE < -0t —SVZdV—é_tZ(O——j Ov) dVv
ija : S| Aov)

VI'I‘I

Ot [ Ko (v, )’ dv+%5t2.|. Lo M2V L (V) dV (11.99)
Vin Vi
+%5t2.[ MV (m"H,,) ) dv
Vi

From (11.99) a first order integration scheme isigaestablished. Such a scheme should

meet the following requirements:
» 060[1/2, 1] to assure a dissipative behavior of thehaxge term

& ’d
\}[a ) vedV
—ij K gois (VI ) AV +;me,u0M§v L(v) dv+;512vjmyo M, V(m"H,,,) dV

stability.

> ot< for

The condition on the time step plays a very imgmartrole. The demagnetizing
contribution is the most problematic, as it nedagss the evaluation of this field not based
on the magnetization, but basedwThis problematic condition can be removed if ibyfu

second order integration scheme is used.
11.2.4.3. Second order integration scheme for the excharedg fi

The steps to follow when deriving a second ordategration scheme are
demonstrated again only on the exchange term. Anseorder integration scheme
supposes the extra termdtf to be removed from (11.90). Jaisson [Jaisson] psewl to do

this modifying the weak formulation as follows:
1. the6 parameter is set to 1/2

2. aterm that depends on the exchange energy demsitgiuded in (11.87), resulting
in a new weak form that looks like:
] — 2’6}9 ] —_— — Ae n 2 /]
jaw [fv+(mxv))dv +ij—XDw mm dv_thyM—X(Dm )" w' v dV (11.100)
Vi Vin Vi

S S
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Here m stands fom"™+1/2vét. It is easily seen that, using this weak form valeate the
terms combiningy andm", the variation of the exchange energy betweendwsecutive

time steps agrees with the physical energy loss:

JE, = ot | oMs \2gy (11.101)
y
Vm

After exemplifying the procedure of deriving a aed order scheme for the
exchange term we pass now to the next step: detergnihe terms to be added in the weak

form in order to have such an integration schemalfdhe field terms.
11.2.4.4. Second order integration scheme for all the fielahrts

In a first time, the explicit field expressioneantroduced the in the weak form
andw' is substituted withv:
2 ~
[aviav=| y%Dva V= [ pp V[ Hoe (M Jue =M Lm+H,, Jdv - (11.102)
Vi Vi S Vin
m is then replaced witm"+1/2v 6t:
2

_ A, n 1 2A, 2
J;OWZdV_\;[yM_SDVDm dV+555|;yM—s(Dv) dv

n 1
_J. /“07 Hanis(VI——mk )(m |]’lk )dV _EJtJ. :uoy Hanis(v |——l'uK )2 dV
Vi Vi (11.103)
+j uoyMsvD:m”dV+%5tI oy MgV L vdV
Vi Vin

_J. ﬂoy MSVDHapp dV

V,

m

Comparing withJE as given in (11.96), one sees that titeterms combiningy andm" and
those containing only disappear indeed. However, the termsmif remain. For that

reason, in the weak formulation some supplementaryns are introduced. Noting

m=m" +%5t v the appropriate weak formulation is:
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a.[wEQv+rT\><v)dV+_[y%DWDDm—IWOWEQHamS(m [, )u, - Msﬂrﬁ+Happ)dV=
Vi, Vi, s va
:%Jt\;[w@[hzﬂ—ty(Dm”)z—Hanis(m”mK)2+W0MSm”[I:(m”)—y,ljo(m”[H-lapp)JdV

(1.104)
for which oE =—5tja%v2dv+8(513). The terms on the right-hand-side correspond
4
Vm

in fact to the total energy density in the casaroéxial magnetocristallyne anisotropy.

For the moment, in the WF2 implementation, only tinst order scheme with all
the terms is included. The implementation of theosd order scheme is left for future
work, as the demagnetizing term raises some seiSeuss.

The WF2 implementation was carried out using tRer Canguage. The solving
process comports the same steps as those presentde flowchart for the WF1
implementation (Figure 11.9). However a few partasities appear: when solving the
demagnetizing problem first a preconditionner isdug¢lLU from the GMM++ library).
The GMRES solver (from the GMM++ library) is themgoyed for determiningddgem.
For the micromagnetic part the use of a preconti#o was not necessary, the solution
being sought using the same GMRES solver [GMM+&] sit

In the next part, the WF2 implementation will lested, first on the two model
systems used to benchmark the WF1 approach. Tien stripe domain structures, with
more or less complex geometries, will be analybeth by WF2-based static and dynamic
simulations.



[1.2.5. Applications WF2

11.2.5.1. Infinite prism

To check the performance of the WF1 approach &gb ¢ases were chosen. The
importance of calculating a correct exchange terms been revealed by the simple
geometry consisting of a square-sectioned infiptssm 2nnx2nm, with only the
exchange interaction acting upon the magnetic mesné&or this simple test case already,
an unphysically over-damped motion was calculateith WF1. Figure 11.22 shows a
comparison between the results obtained applyiegW2 and the FD approach to the

LLG equation. The WF1 results are also remindeé.her

2.5
2.0 —— WF1
——WF1 E\DH
WF2 1 °
A o FD '
E L)
v § 10}
s
w s
- ' . 0.0} , :
0.0 5.0x10° 1.0x10™ 1.5x10™ 0.0 5.0%10° 1.0x10* 1.5x10™
time (s) time (s)

Figure 11.22: Time evolution of the <p magnetization component and the total energy
density for a damping paramete+0.02.

The simulations were carried out using the samehmse=e, the approximate number of
mesh elements in the FE approaches reaching 104 fer the FD case their number
rises up to 250. Figure 11.22 shows clearly that,this simple test case, the WF2 and FD
results are in a very good agreement. The equilibstate values are very close: 1 was the
value obtained for gnat equilibrium, with all three approaches, wheréasthe energy
density the final value is basically 810 for FD and=10" for WF1 and WF2). Both for
the <m> magnetization component and the energy densieyWF2 and FD curves are
perfectly superposed, and consequently, equalliaried from the over-damped WF1
curve. Therefore, one can presume that WF2 is terbeandidate for micromagnetic



8C

simulations that WF1. Nevertheless, before jumpimgconclusions, the results of the
second test case will also be examined.

11.2.5.2. Stripe domains structure

For the second test case, the stripe domainsake sure that the WF1 issued over-
damped motion is not reproduced, the relaxatiorcgs® for several small values of the
damping parameter was investigated in detail. Bsealts for these dynamic computations
(the damping parameter equal to 0.05 and 0.03)rasented in Figure 11.23.
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Figure 11.23: Evolution of the <g» magnetization distribution and the average total
energy density versus time #6¢0.05 anda=0.03.

The comparison is very satisfying as WF2 followprapriately the dynamics given by the
FD approach, for all given values of the dampingapeeter. Even though, from time to
time small differences appear in the gnversus time curves, the characteristic times are

the correct ones and the equilibrium states matbh.time evolution of the total energy is
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consistent with a dissipation process towards #xjitim. The evolutions of the separate
energy terms (depicted in Figure 11.24) preseritralar good agreement:

) 32 x10°
. N
12 — [ —r
| AL
G ' A AnA] -3 / W bl e
£ " E ak '|‘|.1W1w;9~'
= 3 / [V vy
§ 1 . 1
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0.0 0.5 1.0 15 2.0 0.0 05 1.0 15 2.0
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3
E, (J/m’)

1 2
time (ns)

Figure 11.24: The exchange, magnetocrystalline atiigpy and demagnetizing energy
densities versus time. The value of the dampingrpater is 0.03.

The values of the average, magnetization value and the energy densities at
equilibrium, together with the relative differenaee listed in Table 11.4:

Table I1.4: Equilibrium values of <gr and the energy densities.

<m> | Bt (IMP)-10 | Ee(IInT)-10" | Eanis 3/nT)-1C | Egem (I/nT)-10
FD | 0.1742 -2.1358 6.2365 -4.1812 1.4216

WF2 | 0.1771| -2.1258 6.1941 -4.1672 1.4219

Error | 1.6% 0.5% 0.7% 0.3% 0.02%

For the WF2 approach, when determining the dentemmg field, both methods

dealing with the condition at infinity on the magoescalar potential (the truncation
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method and the method based on space transforrepticere implemented. The model
system used for the truncation method is the sasria &igure 11.13, whereas the model
system used for the geometrical transformationsdfileed in the paragraph 11.2.1.1) is
presented in Figure 11.25. This consists of the mesig system and four smaller regions,
with a dimension of 200nk60 nm, attached two - to the upper side and tveothé lower
side of the magnetic system. The mesh size in #mgnetic system was 2.5 nm, whereas in
the vacuum regions that are the closest to the etagsystem the mesh size was 4 nm and

in the exterior vacuum regions the size of the eleim goes as high as 7.5 nm.
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Figure 11.25: FE model system and mesh used whewlllrey the regularity condition of
the scalar potential at infinity with space transfations.

The WF2 results shown in Figure 11.23 and Figur24 were obtained using spatial
transformations. We showed only these, as it s¢batghe results are little dependent on
the method used for handling the boundary condiibmfinity. Figure 11.26 shows the
evolution of several elements (magnetization cormeptsy and total energy density)

obtained applying the two different methods for deenagnetizing field:



0.010

0.006 |-

truncation method

—— space transformations —— truncation method
2 —— space transformations

0.005
0.003

A
£ >
E £ o0.000
vV v
-0.005
-0.003
-0.010 1 1 1
0 1 2 ) 4
x10"
06| b 12
truncation method — truncation method
— space transformations — space transformations
04t
-15
]
A
N —
£ 02 3
v s -18
L
004
21 F
_072 1 1 1 1
0.0 0.5 1.0 0.0 0.5 1.0 1.5
time (ns) time (ns)

Figure 11.26: Comparison of the results obtainedings the truncation method, and
respectively space transformations for handlingdhrcellation of® at infinity. The value
of the damping parameter was set to 0.05.

For the <m> and the <n» magnetization components the differences are stimo
inexistent. The same is true for the total energgsity. For the <g» contribution, due
mostly to the magnetization in the domains, a gatvéen the two methods is found, but
this is of the order of 1

Besides the comparison of averaged values, magtieta distributions taken at
specified times were also examined. Several cordigans are presented in Figure 11.27.
On the left-hand side are the FD configurationserghs on the right-hand side - the WF2
results are shown. A simple qualitative observatereals the same good agreement as the
one seen before from the relaxation process. Tagsepted configurations were obtained
for a damping parameter equal to 0.03 and they ghewery important changes that the
magnetic system goes through during the relaxgtimcess (see for example the third
configuration, where the vortex core extends ongra couple of mesh elements).
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Figure 11.27: Magnetization distributions taken gpecified time steps. The color scale
corresponds to the yjmagnetization component.

Sampling the WF2 results on the grid correspondiinthe FD method, the angle

between the equilibrium magnetizations was evatljateown in Figure 11.28

0 02 0.0 1 1.4 1.8

ange)  EENTT T TN

Figure 11.28: The angle between the FD and the Wi&gnetization vectors.
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This angle varies between 0.03°and 1.8° The magsbitant differences are in the regions
where the domain walls are placed, understandableei takes into account the significant

changes affecting all the energy terms in thes®mnsg

The conclusion of this study, based on the corsparof the evolution of averaged
values and the comparison of magnetic configuratiaken at certain time steps, is that,
the stripe domain structure characterized by theenah parameters given in Table 1.2 is
accurately described by the FE approach basedeowdhk formulation WF2.

11.2.5.3. Stripe domains structure with moderate magnetoahyse
anisotropy

The good results obtained for the first two temdes encouraged us to apply the
WF2 approach to a second stripe domain configuratabharacterized by the material
parameters presented in Table 1.5. They corresponthct, to a FePd material with the
equilibrium period of 110 nm [Gehanno 1997, HubhE®©8, Ebels 1999, Vukadinovic
2000].

Table 11.5: Material parameters

Aex (IM) | £6Ms (T) | Kanis (/) | lex(nm) | Ig (nm) | Q

o.7mo*t | 1.31 2.410 3.2 54 | 0.35

The same initial magnetization distribution is dises before. The equilibrium
configuration, depicted in Figure I1.29, differsgsificantly from the previous stripe
domain system. The vortices are rather circulat,ahengated, allowing the flux closure
domains to occupy a large surface. This appeamsuisecof the moderate value of the out-

of-plane anisotropy and it is imposed by the im@orimagnetostatic interactions.
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Figure 11.29: Equilibrium configuration for a strgp domain system characterized by the
material parameters listed in Table I11.5. The cokurface represents the, momponent,
whereas the arrows correspond tq amd ny.

Since the damping parameter for this system isvkne=0.02, we are interested,
primarily, in verifying if for this a the dynamics calculated with the FD and WF2
approaches corresponds. The evolution of,><mand of the total energy density is

represented in Figure 11.30, indicating a very gagdeement.
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Figure 11.30: The evolution of <gr and of the total energy density versus timeofed.02.

For the magnetization component, the oscillatisegn in the FD curve are
reproduced in a great part by the WF2 approach.iddbly, differences are expected to
appear because of the entirely dissimilar anatohtlgeotwo methods. Still the equilibrium
states are very close, the energy gap betweenDhen# the WF2 state being around 2%.
The evolution of the exchange, anisotropy and dewi@gng energy densities, presented
in Figure 11.31, sustain the same conclusion ofoadgdescription of this stripe domain

structure.
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Figure 11.31: Relaxation of the separate energyrsifor a damping parameter of 0.02.

The equilibrium state values and the relative défice between them are given in Table
1.6.

Table 11.6: Equilibrium state values.

<m> | Bt (IIN)-10" | EoI/nT)-108 | Eanis (3/NT)-10" | Egem (I/nT)-10*
FD | 0.33975  -4.2303 4.6022 -14.1681 5.3355
WF2 | 0.34506|  -4.1320 4.5612 -14.0776 5.3843
Error 1.6% 2.3% 0.9% 0.6% 0.9%

Evaluating averaged quantities revealed a goodrddoetween the FD and WF2
approaches. Still, the equilibrium states haveetedmpared. Based on the same procedure
as before, the WF2 was sampled on a grid correspgrid the FD mesh. Figure 11.32
represents the angle formed by the FD and WF2 ntiagtien vectors determined in each

mesh node:
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Figure 11.32: Angle between the FD magnetizatiorctoe and the WF2 magnetization
sampled on a grid corresponding to the FD spacerdiszation.

The maximal angle is of 1.7°, situated again in tleetices’ neighborhood. Small
differences (up to 1°) are also observable in dggon surrounding the magnetic domains.
In the domains and the quite large flux-closure dm® the orientation of the
magnetization is uniform over a relatively largearwhereas in the walls and around the

domains the magnetization is turning, and therefanall differences are acceptable.

One can conclude that, based on the comparistimeaklaxation process and also
of equilibrium configurations, the agreement betwdlee two results is very good and

therefore the WF2 description of this second sthipmain structure is accurate.

11.2.5.4. Constricted stripe domains

Until now, our FE approach based on the weak fovA2 was tested only on
simple rectangular geometries. We apply it now tmastricted system, as such magnetic

systems are very common in experiments, and theréieir study is of large interest.

The main advantage of the FE method is that itoseg no restrictions on the
geometry to be simulated. In principle, the FD disization can more difficultly reproduce
surface roughness, as the round boundaries arecsubj thestaircase approximation
[Garcia-Cervera 2003].

The test case chosen consists of a thin film vpéniodic constrictions. The
constrictions are quite large and smooth, so thatgeometry is still rather far from the

rough samples occurring in experiments. The moysiems (for the FE case only the



magnetic system is represented), after discretizasre shown in the Figure 11.33. It is

clear that the curved boundaries are much betsarithed using a finite element mesh.

INE.

Figure 11.33: FD and FE meshing of a constrictedntfilm. A zoom on the surface shows
how the constriction is reproduced by the mesh.

The geometrical characteristics of the systemlargth 110 nm, full thickness 65 nm and
thickness at the base of the constriction 40 nne. Mhaterial parameters considered for this
system are the same as before (Table I1.5). Thiengtanagnetization configuration is the

same as the one considered for the regular geometry

A comparison between the two relaxation procesdeained by FD and WF2
calculations is shown in Figure 11.34 for a dampjppayameter equal to 0.02. The £m
magnetization component is represented, togethértiwe total energy density and also the
separate energy terms. There are certain discriggabetween the evolutions, related,
most likely, to the different geometrical descryptiof the system. The results presented
above were obtained using an FD mesh size of 1winte for the WF2 implementation
the mesh consisted of elements of 2.2 nm (the muagmetic rule of thumb imposes a
space step smaller than 3 nm). Increasing the Ebesgtep to 2.2 nm results in a dramatic
decrease of the concordance between the resuksmigmatch is important especially in
the demagnetizing energy, where the relative diffee becomes two times larger than the

value obtained for the finer mesh.
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Figure 11.34: The evolution of theymagnetization component and the energy densdies f
the constricted thin film. The damping parametesas0.02.

The equilibrium state values are listed in Talblé (the relative difference marked
in italic). The big discrepancy in the demagnetizienergy is a clear indicator of the
negative influence of the staircase approximatiostuced by the regular discretization
used in the FD method. It is known that, the mastaging effects appear for the
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demagnetizing and exchange terms [Garcia-Cervef8]2herefore, while for the
previous test cases, the FD result was always talsemeference, for this constricted
geometry the WF2 approach should be consideredatfiect one.

Table 11.7: Equilibrium state values.

Etot Eex Eanis Edem
<m,>
@/im?)-1¢ | I/nt)-10" | A/n)-10 | @Q/n?)-10
FD 0.2692 -8.3446 45152 -1.5444 2.588
WF2 0.2726 | -8.5949 4.5648 -1.5471 2.7906
mesh size 1nm| 1.3% 3% 1.1% 0.15% 7.8%
WF2 0.2795| -8.8777 4.5829 -1.5479 3.0210
mesh size 2.2nm 3.8% 6.4% 1.5% 0.2% 16.7%

Concerning the equilibrium states, given in Figlr85, it is a quite surprising

situation:

m, -1 -08 -06-04-02 0

Figure 11.35: Equilibrium state: on the left the F&nfiguration and on the right the WF2
result.

02 04 06 08 1

One would have expected the domain walls to trémsthuring relaxation, placing

themselves in the constricted region. Normallys thould minimize the wall surface, and
consequently the wall energy. In the present dasegever, such a positioning, instead of
reducing the total energy of the magnetic systeamyauld increase it, because of the
important magnetostatic effects that would app&athe system’s surface. Comparing the

FD and the WF2 equilibrium states, they are quitelar. Small differences appear in the
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vortices, as they seem to be slightly wider in Bi2 configuration. Also in the regions
where the domains are situated, close to the lawetonstricted boundary, the yellow

parts are less enhanced in the FD state than iREhegjuilibrium configuration.

Proceeding to the sampling the WF2 results ongtite corresponding to the FD
discretization, a more quantitative comparisondssible. The values of the angle formed

by the magnetization vectors are shown in the [EidiuB6.

Angle (°) _
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fffffffffffffff
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Figure 11.36: The angle formed by the two equilibri magnetization vectors.

The comparison concords with the qualitative obstgons based on the simple “naked
eye” analysis of the equilibrium states. It sholhat the main discrepancies are localized at
the surface of the constricted region and in theezmeighboring the vortices’. The angle
goes up to 6.4°. Like in the previous cases, thidue to the strong perturbation of the
exchange interaction, as the magnetization vaapsglly in the region where the walls are
placed, and also to the demagnetizing term plagingry important role in this system
(J=1.37T).

11.2.5.5. Numerical ferromagnetic resonance

Continuing to test the WF2 approach, this last pancerns further studies of the
magnetization dynamics in FePd materials. The eftdcsmall perturbations will be
studied. From such data interesting information banextracted about the value of the
damping parameter. In the following, we will cheitkthe WF2 properly reproduces
previous experimental and numerical findings [Vukagsiic 2000a, Vukadinovic 2000Db,
Vukadinovic 2001, Ebels 2001] on a simple FePd thim. Then, the same type of
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simulations is carried out on the thin film withrelical constrictions. These results are

presented in the last part of this paragraph.

Nowadays two experimental techniques are usedterminen, either based on the
broadening of the linewidth in ferromagnetic reswea(FMR) experiments or measuring
the domain-wall mobility [Malozemoff 1979, Bokov 98j. It is worth noting that the
values determined with these two methods are ysukilerent, [Dourlat 2008]being
difficult to name which of the two methods is th@rect one. In the following paragraph
the principle of the FMR technique is presentecetiogr with the numerical approaches
treating this topic.

The FMR technique is a very powerful tool for istigating magnetization
dynamics in thin films. In FMR experiments a non#iQrium magnetization state is
induced by applying a small external field. Thicigation induces the precession of the
magnetic moments around their equilibrium state$pag as the local torque is not nil. As
due to energy dissipation, the system would finedigain its initial equilibrium state, to
maintain the precession, periodically energy habe@umped into the system. Using an
external excitation whose frequency coincides witle system’s eigenfrequency, a

resonance process can be observed.

Non-uniformly magnetized system, like the casethef stripe domain structure
presented before, are very interesting, as beiegaisembly of magnetic domains and
complex walls structures, the local field insides tsample is highly non-uniform.
Consequently, the domain walls have different rasoa frequencies than the magnetic
domains. By means of FMR measurements one cansativese “localized” frequencies
and the oscillation modes, exciting different regioby applying differently oriented
magnetic fields. Once the resonance spectrum d¢etrabrom the FMR data, the
interpretation of each separate resonance pealughsin analytical models [Kittel 1948,

Ramesh 1988] or, when these fail, by means of nicalesimulation.

Once the equilibrium state of the magnetic systitermined, numerically the

ferromagnetic resonance experiments can be repeddaodwo ways.
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Method 1:Calculating the dynamic susceptibilizy obtained from the linearized
LLG equations [Vukadinovic 2001]. This first tecjoe uses a small alternating magnetic
field dhex. The outcome of this excitation is a small vadatof the magnetizatiosm. To
determine the susceptibility, one replaceér,t) and H(r,t) in the LLG equation by
Meg(r)+oM(r,t), and respectively by eq(r)+ohex(t)+Her(dM). Heremegq and Heq are the
equilibrium magnetization distribution and the esponding effective field. Considering a
harmonic time dependence iex; anddm, and $hex| «Heg, Herf(dM)|«Hegl and dm|«jm|

the following linear system is obtained:
iw
(—m | +D,-D,D, Jﬁm =Dsh,, (11.105)

with | the unit matrix. Considering a vectarthe matrice®;, D, andDy are defined as:

Dv=mgxV
D2v=[Heq+i|ameeqjxv (11.106)
D,V =H, (v)

Solving the (11.105), the susceptibiliyin every mesh node can be calculated from:

ekl Rl (11.107)

The implementation of the first method in a finglement framework requires a
weak form to be established for the modified dymarmaquation and then solved as

presented in previous chapters.

Method 2:Applying a small rotation to all the magnetic monseis equivalent to
the effect of a magnetic field. The magnetizatisrihien left to relax until a stable state is
reached. Applying the Fourier transform to the nedigation versus time curve, the
resonance frequencies are calculated. This secatidorh presents the advantage that it
does not require any further development of the W&&ed simulation tool, as only simple
equilibrium state computations have to be carriel ®bviously the damping parameter

for the first step - the calculation of the equililn state - can be set as high as needed,



9%

while in the second part, the susceptibility speotis determined carrying out simulations

with an appropriate value for the damping parameter

This second approach will be applied to the Féfid film. This type of magnetic
systems was previously explored by experimentalnsiethe resonance modes being
calculated using the FD-based approach describgdragraph 1.1 [Vukadinovic 2001a,
Vukadinovic 2001, Toussaint 2002]. The WF2 reswith be therefore compared with

these data.

Simple FePd thin film

Starting with an equilibrium configuration (corpemding to the last magnetization
distribution in Figure 11.27), we proceeded to aafimotation of the magnetization with
respect to the Oy axis (along the direction of iiegnetic domains). After the relaxation
towards equilibrium (witha=0.02) has come to an end, the Fourier transfornthef
dynamic response of the ssnmagnetization is computed. The real and imagiparys of
the magnetization’s response, issued both by theaRD the WF2 approaches, are
represented below in Figure 11.37. From this figuree might conclude that there is a very
good agreement between the FD and the WF2 respoAsedyzing the resonance
spectrum, four resonances are observed. The FD\&Rifrequencies are given in Table
11.8.
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Figure 11.37: The real and imaginary parts of th@ufier transform obtained from the
response of the magnetization to a small excitation

Small differences can be observed, for exampldeénamplitude of the last three

peaks, which are also a little bit shifted towalndgher frequencies with respect to the FD
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peaks. The relative differences between the resenfirquencies are also given in Table
[1.8 (the values marked in italic).

Table 11.8: The resonance frequencies for a thim fof FePd when the field is applied
along the Oy axis

Method | f (GHz) | £ (GHz) | (GHz) | f(GHz)
FD 4.42 9.33 15.53 19.68
WF2 4.42 9.47 15.68 19.86
Error 1.5% 1% 1%

To be able to tell what element of the magnetiacstire (the domains or parts of
the walls) resonates at which frequency, the resmanodes were also calculated. The
most intensive modes, corresponding to the fingelrequencies, obtained by the FD and
the WF2 approach, are shown in Figure 11.38. Thegnsto correspond perfectly.

FD Bml WF2 oml
f1 — max - mav
0 0
fo
fa

Ny
Figure 11.38: Resonance modes of a FePd thin filmhickness 40 nm and equilibrium
period of 110 nm.

The origin of these oscillation modes was deteeahipreviously [Vukadinovic
2001]. The first one appears to be a demagnetiangg as the oscillation amplitude is the

most important in the surface of the domains (maxmvalue marked in italic, minimum
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in blue). The cores of the Bloch walls seem to gbuate also, but to a lesser extent. For
the second resonance, energy is pumped both iddimains’ surfaces and in the Bloch
walls. Therefore, the area covered by red regionseases. Moreover, in this mode the
highly resonating regions are clearly delimitedthg magnetic domains, which are not
influenced by the external field, as they are dadralong its direction. In comparison with
the first two modes, the third one is similar tanswave mode. It is almost exclusively a

surface mode, as important resonance is obsertbé atrfaces of the domains.

Both the FD resonance spectrum and the vibratiodes are reproduced by the
WF2 approach accurately. We can conclude thenthisafirst system is well described by
this FE approach. This good agreement was howekedligtable, as the rectangular
geometry is known to be well described by both miraé techniques. To gain further
information about the performance of the FD and \W#2 methods, it is interesting to
explore a more complex geometry, for example thestted thin film, presented in

paragraph 11.2.5.4.

Constricted FePd Thin film

The same principle was used to carry out a fergmagc resonance simulation on
this system: knowing the equilibrium state, the nedgation is rotated with respect to the
Oy axis. Applying the Fourier transform to the eumn of the np magnetization
component, the resonance frequencies given in ThBlare obtained:

Table 11.9: The resonance frequencies for a coonttd thin film of FePd when the field is
applied along the Oy axis

Method | % (GHz) | % (GHz) | 5 (GHz) | %4, (GHz) | 5(GHZz)
FD 4.56 7.19 9.52 11.95 19.94
WF2 4.62 7.1 9.59 12.29 20.31
Error 1.3% 1.2% 0.7% 2.8% 1.8%

The resonance spectrum is presented in Figure. IABA first glance the FD and the WF2
spectra look almost identical. Although the mateparameters used in this simulation

were the same as the ones used for the simplengedar FePd stripe, the geometry leaves



Numerical micromagnetism 98

its mark on the resonance spectrum. From the ddéallin Table 11.9 it is clear that some
differences occur between the FD and WF2 resultshe last resonance peaks are shifted
towards high frequencies. Still the discrepancyaias quite small.

15.0 T T T 30

—FD
—WF2

—FD
—WF2

=
wm
1
N
o
T

real part (a.u.)

-~
(4]
i

imaginary part (a.u.)

-15.0 . . . 0 h M A
0 5 10 15 20 0.0 50 100 15.0 20.0

frequency (GHz) frequency (GHz)

Figure 11.39: The real and imaginary parts of theuier transform obtained for the
constricted stripe domains.

The modes corresponding to theff and f, frequencies are shown in Figure 11.40.

WEF2

Figure 11.40: Resonance modes for the frequengids &nd .

As for the simple stripe, the first mode seems ¢oabsurface mode. The vibration is
localized in most part at the lower, not curvedfare of the magnetic domains and to a
lesser extent in the domain walls, or to be morcHig in their core. Even though, the

modes are similar, the differences between the KO the WF2 results become
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perceptible. Looking to the WF2 and FD configuratipthe maximum obn| is localized

in the same zone, but the green areas are faremteaded in the FD case than in the WF2
image. For the second mode the situation is ever marming. Here, even to establish a
clear localization of the vibrations becomes diffic On one hand, the FD mode is quite
symmetric, with the oscillations localized on thafaces and in the regions where the
walls are situated. On the other hand, the WF2igordtion is somehow asymmetric, with
the surface of the central domain and the rightBlaall being more influenced by the
excitation that the other similar parts of the netgnconfiguration. Therefore it is not
clear if this mode is characteristic to all the times and the domain surfaces, or is a
“coupled” vibration of a vortex core and an adjdcaurface. The third mode is a coupled
oscillation of the vortex cores and the surfacesalSdifferences occur, but over all there
is a good agreement between the two approachdsased. Bearing in mind that for this
system the equilibrium states determined with the &pproaches comported differences
(see for example Table 1.7 or Figure 11.36), ittiean understandable for the resonance

phenomenon to show such small differences.

The present results demonstrate that the WF2 apbroan provide a relatively
good description of the magnetization dynamics e 1imit of small oscillations.
Nevertheless, an explanation for the differencéhm second resonance mode has to be
found. Also the study has to be completed, by d@teng all the resonance modes,
including those excited by fields along the Ox #mel Oz directions.
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In conclusion, our first attempt (named WF1) tealep a weak form for the LLG
equation does not provide a correct descriptiothefmagnetization dynamics in the limit
of small damping parameters<0.1). The second approach,WF2, based on the voeak f
proposed by Alouges, characterized by the use sf fienctions that belong to the
tangential space tm, seems to be more successful in the descriptiomaxgjnetization

dynamics in 2D micromagnetic systems.

This second scheme was successfully benchmarkethsagthe more usual
approach of finite differences. Several test caga® taken into account: an infinite prism
with square cross-section where the magnetic masneete coupled only through the
exchange interaction. Next a couple of stripe dongjistems were studied, both with
strong and moderate magnetocrystalline anisotrdpg. magnetization dynamics produced
by the finite difference method, considered asfareace, is reproduced for both cases

with great accuracy by the WF2-based finite elenag@piroach.

In the last part, the results for a constrictegpetdomain were presented. For the
rectangular stripes the differences were visiblestigofor the exchange term. For this
complex-shaped test case, the discrepancies armdke visible for the demagnetizing
term. The reason is that the curved boundariesataie less efficient character of the

regular discretization employed by the finite diffiece method.

The last part of the chapter concerned reprodusomge dynamical results, but
situated now in the limit of small perturbationer®magnetic resonance spectra were
calculated, together with the vibration modes, dosimple and a constricted thin film of
FePd. The results were compared with experimemtdl (&nite differences) numerical

findings and a very good agreement was found.

All these seem to indicate that the WF2 weak fdation is well adapted for study

of magnetization dynamics in 2D micromagnetic syste
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[1l. Domain wall motion

The identity card of the electron is known fronmdotime: an electric charge of
1.6010"° C, a mass of approximately 9:1@* kg and spin 1/2. The electron as a charge
carrier has been exploited for a long time by datad®lectronics in numerous applications.
Recently, scientists turned their attention to haotproperty of the electron, namely its
spin, and a new topic is emerging callgaintronics[Prinz 1998, Wolf 2001, Chappert
2008]. Spintronic applications concern informati@echnology, promising advantages of
low power dissipation, nonvolatility and high intagon density. The giant
magnetoresistance [Tsymbal 2001] and the tunnetiagnetoresistance [Tsymbal 2002]
are already used in hard disk read heads, theimére being the magnetic random access
memories [Tehrani 2003, MRAM site]. Related to thekately, new approaches for
switching such magnetic nanostructures are soudgi@.conventional method employs an
external magnetic field. Since the first demongirabf current-induced switching [Myers
1999, Katine 2000] through the spin transfer effdds alternate procedure has attracted a
lot of interest. The use of an electric currentead of a magnetic field has the advantage
that it simplifies the design of spintronic devicas the circuits that generate the magnetic
field required for the switching are eliminated. fdover using electric current the problem
of selectivity is eliminated, as one is able to radd localized memory cells, without

influencing the neighbors.

Domain wall (DW) displacement comes into play &soffers new ways of
manipulating information. DW motion is achievedhett by magnetic field or spin-
polarized current. For example, Allwood et al. [#tlod 2002] confirmed the possibility of
performing logical NOT operations using DWs thatv@ainder the effect of an external

magnetic field applied parallel to a 200xBmm Permalloy nanowire. Grollier et al.



[Grollier 2001] showed that it is possible to swita spin valve by moving a DW across

the structure using a spin-polarized current.

DW motion has been studied both by theoretical exgerimental means. From
theoretical point of view, the details of fieldsden displacement are all very well known.
On the other hand, the effect of a spin-polarizeédent, although predicted almost in the
same period as the studies on field-induced moi®mstill a controversial subject. One
thing to bear in mind is that in most part of thedretical/numerical studies ideal systems
are treated. The predictions are truthful, esplgced far as the mechanism of DW motion
is concerned, comparison with experimental dataltiag in a good qualitative agreement.
Although several possibilities were foreseen thatlad help to approach real systems
(spatial variation of materials parameters, surfemgghness, geometrical constrictions,
intrinsic pinning), however, up to now, it is notear which are the predominant

mechanisms and how exactly should one take intowstdhese.

From experimental point of view, the trend in ttopic is dictated by the possible
applications and consequently, changes quite mapMihile in the beginning, field-
induced motion was explored, the first proof of #ypplicability of current-induced wall
motion in logic devices made everybody turn théergtion in this direction. This is why,
the number of publications on field-driven DW despment is small in comparison with
the studies on spin torque and DWs. The large sityeof results on current-driven motion
(many of them contradictory) testifies once agadouw the difficulties and the need of a

better understanding of the spin torque effectWD

There is also a trend related to the materiald tséabricate the samples. The most
extensively studied systems, for the moment, aee dhes consisting of Permalloy
(NigoFex). This material presents advantages as: low anjgptand magnetization, high
Curie temperature. The numerous experimental papéisate that the critical current for
starting DW motion in such systems goes up tf 20m? (10°A/cm?), which is not very
appealing from the viewpoint of applications. Doetlte dominant shape anisotropy, the
magnetization inside the sample lies in-plane, evitiie walls have a complex three-
dimensional structure, being either transverse mtex, depending on the geometrical
characteristics of the system considered [McMicH&887, Nakatani 2005]. As the DWs



are wide £100 nm), when it comes to pinning they are not \saysitive. Therefore these
systems cannot serve for distinguishing betweermpdssible causes of the high threshold
current, information that is absolutely necessapy & Dbetter theoretical/numerical
treatment of this topic. On the other hand, recestilts have been reported on magnetic
semiconductors [Yamanouchi 2006] and also system#h wgtrong out-of-plane
magnetocrystalline anisotropy [Ravelosona 2005.eResona 2006, Tanigawa 2008]. The
interest in out-of-plane magnetized systems istdube smaller threshold current required
for DW propagation than the one found for the ian@ geometry. The DWs in CoPt
multilayers [Ravelosona 2005] extend over 10-15and can be considered almost ideal
1D Bloch walls. This has both advantages and desidhges. The simple structure and the
narrowness of the walls make them adequate modgérsg for studying the effect of
pinning, intrinsic defects or internal magnetic Datffness. On the contrary, the high

sensibility to pinning gives to the wall displacerhprocess a highly random character.

In the following part, the existent theoreticaldaaxperimental results will be
shortly presented as well as the numerical resigtsxd in the literature. Next the
micromagnetic simulation tool developed to study DWgtion is described briefly. The
chapter closes with the numerical results obtafoethe case of a system with strong out-
of-plane magnetocrystalline anisotropy.



[11.1. State of the art

111.1.1. Theory
[11.1.1.1. Theory of field-driven domain wall motion 74
Consider a Bloch wall, defined by the polar anglesnd

¢, as shown in Figure Ill.1. Its dynamics is desedibby the
classical LLG equation.

Walker was the foremost to investigate the dynanaft _.
g y Figure Il1:  The

such magnetic entities, deriving the first anabftolution for the anglesd and¢ used t:
motion of a Bloch wall in a uniaxial bulk mater{&chryer 1974] characterize the wall.
under the influence of an applied field5l He predicted the existence of two motion

regimes:
a) the steady motion regime, extending up to a ctifield value (Walker field)
b) the precessional regime, corresponding to high fralues.

The accuracy of this relatively basic approach theen confirmed experimentally [Beach
2005]. Slonczewski and Malozemoff [Malozemoff 197§3neralized this 1D model,
reasoning in terms of two generalized coordindtesposition of the DW centiggand the
azimuth angle of the wall (y=¢). A pair of differential equations is then set up:
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whereAo=(Ae/Kanig 2. These two equations have very simple physicatjmetations. The
first one, calledorque equation of wall motigrindicates that in order to have a non-zero
wall velocity a torque must be acting upon the DWe second equation represents the

pressure equation of the wall motiohhe pressure on the DW arises from any field that

lowers the energy of one domain with respect toahergy of the opposite one. This



second equation describes the in-plane precessitie onagnetization inside the wall, the
precession frequency is=yHne, Where He is the effective field along the Oz direction.
These equations are more general than the onesatbty Walker, as they are convenient
for the description of complex wall structures, ewmall deformations of a DW can be
considered. These results were determined basethemssumption that only four
fundamental interactions are present in the magsgstem: exchange, magnetocrystalline
anisotropy, demagnetizing and Zeeman. Considerdditianal terms the torque on the
wall can be enhanced.

Doring studied the DW dynamics by introducing thall mass concept [Déring
1948]. Thiele [Thiele 1973, Thiele 1974] rewrotee tHynamic LLG equation under a
generalized form, so that the dynamics of variousramagnetic entities can be easily
calculated. He defined static and dynamic forcest thust equilibrate each other. The
dynamic contribution is made up from two parts: y@ofyopic component generating a
force perpendicular to the velocity of the walldahe dissipation dyadic, responsible for

the relaxation of the system.

In most of the theoretical paper simple Bloch wallere considered. Recently,
Thiaville et al. and Porter et al. published papehere they treat systems with in-plane
magnetization, where the magnetic domains are aegzhiby transverse DWs. In both
cases, the analytical results are supported byomi&agnetic simulations. The group of
Thiaville carried out calculations for nanowires siall diameter (a few exchange
lengths), showing that the DW dynamics in suchesystis close to the one predicted by
Walker for 1D Bloch walls [Thiaville 2002]. Portest al. [Porter 2004] went further,
deriving the dependence of the driving demagndifirld on the film thickness and
width.

[11.1.1.2. Theory of domain wall motion under spin-polarizedrent
The process of field and current-induced DW motwas first studied in the

1970's. Although the field-driven wall motion reved most of its secrets, the effect of

spin-polarized current on DWs still raises a lotgofestions. It is a commonly accepted



idea that, current-induced wall motion is due te thansfer of spin angular momentum,

associated with the current flow through a magnmstidy.

Berger predicted in the 1970’s that, a spin-pa&ticurrent should apply a torque
to a magnetic DW. In his papers [Berger 1973, Bef®¥4, Berger 1978, Berger 1984,
Berger 1992], he gave a meticulous description igf ision on this phenomenon,
including, in addition, the first experimental obsstions of DW displacement [Freitas
1988, Hung 1988].

According to Berger, two types of interactions caour if a current is injected in a
sub-micron-sized magnetic system. The first is hiydromagnetic drag [Berger 1973,
Berger 1974]. Considering a thin film, the currénés are displaced towards one side of
the sample due to the Hall effect. This interaci®mominant only for film thicknesses
larger than 100 nm. The second manner in whickctheent can interact with the DW is
through thes-d exchange interactidiBerger 1984, Berger 1992]. Berger derived thedor
on the wall, proportional to the carrier drift veity, the wall velocity and the wall
mobility. Furthermore he calculated the torque ®crby a spin-polarized current,

resulting in the canting of the wall magnetizatiowards the hard axis.

More recently, there is a tendency to describesthie transfer effect by inclusion
of new terms in the LLG equation. Slonczewski [Sloewski 1996] was the first who
derived such a spin torque term for a 3 layer gegnfevo magnetic layer separated by a
non-magnetic spacer). In his approach the magnietizes considered to be uniform in the
two ferromagnetic layers, and thus is not adaptethie case of DWs. The dynamics of the
magnetization is supposed to be slow comparedatoaithe conduction electrons. Based
on this assumption, the hypothesisadfiabaticity states that, the spin of the conduction
electrons follows the direction of the local magnetoment, transferring completely their
angular momentum to the latter one. Several totgumes were proposed [Bazalyi 1998, Li
2004, Thiaville 2004] founded on this assumptioowdver, it was rapidly proven, using
micromagnetic simulations, that a completely adiabapproximation does not give a
correct description of the wall displacement. Ipegars that using this approach the wall

motion can not be sustained solely by a currennemw the influence of the mistracking



of the electrons must be included in theoreticadet® In the LLG equation two new

torque terms are therefore added: an adiabati@armh-adiabatic one.

In a very short period, less than a year, fouugsopresented formulations of the

adiabatic and the non-adiabatic torques:

1. Tatara and Kohno [Tatara 2004] separated the effeet current in two
contributions. There is a contribution due to teection of the conduction
electrons (linear momentum transfer), giving riseatforce on the wall. A
second contribution, thspin torque appears when angular momentum is
transferred from the conduction electrons to thegymeéic electrons. The
authors pointed out the fact that, depending onwhk width, there is a
threshold current for DW motion even in the abseat@inning due to
sample roughness. For thick walls, where the ati@l@gproximation is
valid, the pinning does not affect the motion, atrimsic critical drive
current arising due to the hard-axis magnetoctystahnisotropy K,). For
narrow walls, the wall displacement is controllegd mmomentum transfer,

the threshold current being related to the waliktasty.

2. Viret et al. [Waintal 2004, Vanhaverbeke 2007] presd in their approach
the Larmor precession of the spin of the conducetactrons around an
effective local magnetization. The torque on the Di¥¥pending on the
conduction electrons spins’ relative direction, &&@nnil or at its maximum.
Like the previous papers, two contributions wereniified: one (adiabatic)
that deforms the wall, and a second one that applipressure on the wall,

pushing it in the direction of the current.

3. Starting with the s-d HamiltoniarHsg=-Jes'S, wheres and S are the
dimensionless spins of conduction and localizedtelas, andle, is the
exchange integral coupling them, Zhang and Li [£h&004] derived a
dynamic equation containing four terms. Two of tharnse from the time
variation of the magnetization and two other, prtipoal to the current
density, originate from the variation in space & tmagnetization. The

terms defining the spin transfer effect are weidhty two coefficientd;



andc; related to the current, the magnetization andrarpeteré defined as
the ratio between thexchange timete,=//SJex, and thespin-flip lifetime

1st. Both parameterd; andc; have the units of velocity. The predominant
term is the adiabatic oneyb;=0.01). They demonstrated, on the simple
example of a Néel wall, the role of each of thegi& sorque terms. The
adiabatic term causes the wall distortion, beirigvent only in the initial
motion. The terminal velocity of the DW is closelglated to the non-
adiabatic term.

4. Almost in the same time with the publication of Aba Thiaville et al.
[Thiaville 2005] introduced a phenomenological rahiabatic term in the
LLG equation. Their approach is presented in dekaiér on, as our
micromagnetic simulation tool is based on this fafthe LLG equation.



[11.1.2. Experiments

[11.1.2.1. Field induced motion

A quick overview of the experimental studies rdgeagreat variety of results. DW
motion under applied field was a topic o greatrete The most significant part of the
measurements has been carried out on thin filmfh Wie purpose of studying the
magnetoresistance effect and depinning phenomelsa, Asing ferromagnetic resonance
experiments, material parameters like the dampargrpeter were determined.

In the nanowire geometry field-induced DW dynamieas extensively studied.
One of the parameters widely used when talking &l displacement is the wall
mobility, defined as the rate of change of walloo#ly with the field. A few of the most
important findings in such systems are presentédariollowing.

In 1999, Ono [Ono 1999] measured velocities, inavdres made of NiFe/Cu/NiFe
trilayers using the GMR effect (at temperaturesveen 100K and 160K). They found
relatively low wall mobilities.

In 2003 Atkinson at al [Atkinson 2003] used a MOKtagnetometer to determine
whether the switching of a nanowire, made this toha single layer of NiFe, by means of
DW displacement was successful or not. The measntsmwere carried out at room
temperature. In this case values for the wall nitybivere several times larger than those
found by the Japanese group.

In 2005 the group of Beach et al. [Beach 2005] W first to identify,
experimentally, the two motions regimes predictgd\Wsalker. Single layer Permalloy
nanowires were measured using a MOKE magneton@&t displacement was induces
applying field pulses. The experimental findingsreva in a good qualitative agreement

with Walker’s analytical predictions.

The above presented results refer all to in-plaagnetized wires. Depending on
the relative positioning of the occurring pinnirggdes and the force arising from external

sources (like an applied field on current), theawedr of the DW can be placed either in a



creep and thus pinning dominated regime, or iflav regime, where the DW moves
almost freely, without feeling the obstacles sedisprder. The materials characterized by
narrow DWs (CoPt for example) are very interestnogn this point of view. If the DW is
only a few nanometers wide, the pining forces gctipon it are very strong, the creep
behavior being the leading one at low fields. Oa tontrary the Permalloy materials

presenting wide DWSs, the creep motion is less lasib

In 2007 by Metaxas et al. [Metaxas 2007] studiedy\thin films (0.5-0.8 nm) of
Pt/Co/Pt characterized by strong perpendicular retgnystalline anisotropy. Their
conclusions were founded on wall displacements targe distances (larger than 10 um),
and consisted in identifying experimentally theegrend flow regimes and in determining
the DW mobility. This value served as a base fdcutating the value of the damping
parameter, that was found to be consistent withesadetermined via other measurement

techniques.

[11.1.2.2. Current driven domain wall motion

Since the first experimental evidence of curramtesh DW motion, presented
almost 30 years ago by Berger [Freitas 1985, H@88B]l researches have been trying to
gain deeper insight in the anatomy of this phenamen various ways. The materials are
the same as the ones used for field-driven mosorgle or multilayer structures of NiFe

and different systems with out-of-plane magnetozati

The various measurement methods (AMR, GMR, MFM, K] the multiple
geometries that were tested (simple wire connetbeducleation pads with different
shapes, ring, U shaped, L shaped, constrictiongphaicate the difficulty of drawing a
clear conclusion about how the two spin torque semmtervene in the displacement of a
DW. 1t is still not clear how one can discrimindtetween the different factors that could
assist or counter the DW motion: spin torque, Jdwdating, pinning and depinning

mechanisms, current generated Oersted field.

Although, the interest in systems with out-of-garientation of the magnetization

grows, up to now the most extensively studied ntés still the Permalloy. Due to the



wideness of the walls in this material the adiabapproximation should be valid [Tatara
2004, Thiaville 2005]. Following the tendency impds by theory, in the early
experiments, the signature of this first spin terderm was sought. The group of Klaui
[Rothman 2001, Klaui 2001, Klaui 2002] made (amgpic) magnetoresistance
measurements on Permalloy rings. This geometrythmsdvantage that it makes easier
the manipulation of a single head-to-head (orttatlail) domain. Using dc currents, with
the density going up to 7-8/m? (and later current pulses of 20ps and similaresfior
the current densities), they observed that, thenetagfield required to displace a DW can
be tuned by changing the direction of the dc cdrr8milar experiments were presented
by Vernier et al. [Vernier 2004]. They showed tlsapossible to move a DW only with an
electric current, using a MOKE magnetometer to meashe magnetization in a “U”
shaped wire. An interesting detail was that, theyenable to estimate the pressure on the
wall per unit current density, finding values cldeethose determined by Berger. Another
testimony about the role of the spin transfer cdroen Tsoi et al. [Tsoi 2004]. They
carried out both AMR and MFM measurements on Cadfeowires, moving a transverse
DW between two constrictions. The current thresholdepin the DW was found to be in

agreement with values given previously [Gan 2000].

The first velocity values were produced by Yamdmet al. [Yamaguchi 2004]
using an L-shaped MFegwire. To detect wall motion, an MFM was employedir@nt
pulses of different lengths were used to move tNgsDIt has been determined that the
distance over which the DW is propagated incredisesrly with the pulse duration,
indicating a constant wall velocity e8 m/s. The wall velocity was measured as a function
of the intensity of the current pulse, showing aoréase when the current intensity is
amplified. The critical current required for intitlag motion is 6.7- 18 A/m?.

Trying to explain the above described experimeimaings including a single spin
torque term in the LLG equation, numerical simualas were carried out by Thiaville and
the group of Klaui. The latter group found a relaly good agreement when simulating
motion of transverse walls, however, for vortex lajaa factor of 3 was found between
experiment and calculation. Thiaville et al. fouthdeshold currents an order of magnitude
higher that the experimental ones. These incomside appear as the adiabatic term is

equivalent to a hard-axis field, and consequerdly not sustain the motion, only if the



current density exceeds a certain value, thatgkdrithan the intrinsic depinning threshold
current. Adding the non-adiabatic term, a certairrent is still required to free the wall
from the local pinning sites, but then the DW motmccurs normally. Numerical studies
[Thiaville 2005] predict that, similarly to fieldrtben motion, two motion regimes exist: a
regime, where the velocity varies linearly with therent, and a second regime, where the
wall structure goes through essential changes dretesthe wall velocity is characterized
by an oscillatory motion. In 2005, the group of Hil§rovided experimental evidence of
the transformation of a transverse wall into aewmvall [KI&ui 2005]. Later on the group
of Hayashi et al. [Hayashi 2007] was able to dertratesthat the chirality of the transverse
DWs changes periodically.

From the results presented above, we may conthatehe numerical simulations
provide a relatively good qualitative descriptiof the current-driven DW motion.
However, there is still an important discrepancyween the theoretically predicted
velocity values and those retrieved from experimledata. To determine its origin, one
should be able to verify the existence of the twatiam regimes. This implies applying
high current densities, quite difficult to achieeeperimentally because the effect of the
Joule heating becomes non-negligible and, almostlysuthe samples are destroyed.
Instead of looking directly to the dependence efitblocity on the injected current, a more
successful alternative is to study the modificagitimat occur when both the force from a
magnetic field and a spin-polarized current are tpgether to move DWSs. Several such
experiments were done, resulting again in a lagyeety of conclusions. As demonstrated
by the group of Parkin, this technique can be eggaao retrieve information about the
non-adiabatic spin transfer parameter [Thomas 2B8@§ashi 2007]. Adding short current
pulses to the effect of a magnetic field, the vtleg are profoundly influenced; however,
the value of the Walker field does not seem toéesible to such an exterior factors. The
conclusion that can be drawn from these experinhebtervations is that, the value of the
non-adiabatic spin transfer paramet@ris close to the value of the Gilbert damping
parameter. Similar results were found by Beach let[Beach 2006, Beach 2008].
Moreover, they found a strange dependence of tHewetcity on the injected current,
which can be decomposed into a linear and a quadraimponent. The exact cause of

such an unconventional behavior is still under teebidlaui et al. [Heyne 2008] deduced,



based on the displacement of a vortex core undeert) thatp and o are different.

Nevertheless, they were not able quantify the imidietween the two parameters.

A less exploited process, that could shed sonta kg the spin torque, is the
depinning process. Using nanosecond-long currelsepyThomas 2006], it was shown
that DWs can exit local confining potentials at 8eracurrent densities than those seen
when dc current is used. The probability of depignwas found to vary with the pulse
length. The issue of pinning was considered algeeipendicular-to-the-plane magnetized
systems. Ravelosona et al. [Ravelosona 2005] showatdhe spin transfer efficiency is
rather high in spin valve structures consisting@d/Pt)/Cu/(CoPt) layers. Here, the DWs
can be approximated by 1D Bloch walls. Based oraexdlinary Hall effect measurements,
they were able to conclude that th&0 nm wide Bloch walls can be moved with current

densities smaller than $0A/m?, despite the large pinning field.

A last result that should be mentioned is the bmatent density required for DW
motion reported in magnetic semiconductors. Closethte ferromagnetic transition
temperature (90K), Yamanouchi et al. [Yamanouchd&0measured a record current
density of 18 A/m? in GaMnAs wires. The small value is explained bg tow Ms To
continue with the results on GaMnAs systems, rég¢Dburlat 2008], both the steady and
precessional flow regimes were observed, in layats a perpendicular easy axis. The
value of the damping parameter was calculated twrDW displacement measurements
(based on magneto-optical imaging and a magnetid fiulse technique) and was found to

be 30 times larger than the one deduced from feagortic resonance.

The results presented above underline clearly #satar as the interaction between
a spin-polarized current and a DW is concernedspite of the impressive quantity of
experimental findings, the number of unknowns idl sery large. The theoretical
approaches give a relatively correct descriptiothefbehaviors presented above, although
the agreement is unfortunately more qualitativantiuantitative. Details concerning the
value and the origin of thg parameter are still required. The effect of Jdwdating has to
be further explored, together with the Oersteddfiébr the moment neglected in most

cases.



[11.2. Numerical approaches

[11.2.1. State of the art

The effect of spin-polarized currents on DWs wamlyed firstly from a
theoretical point of view, followed by experimen&lidence supporting or not the view of
theoreticians. Besides the pure theoretical approanother possibility of investigating
this matter is by means of numerical simulatiortse Thicromagnetic theory, described in

chapter I, stands at the base of such numericdéemgntations.

Field induced motion is relatively easy to handethis process is described by the
classical LLG equation (paragraph 1.3). The firatmerical studies on DW motion were
carried out by Walker [Schryer 1974]. He develomedlD model that describes the
evolution of a Bloch wall in a bulk system, suppagtthe theoretical predictions by results
issued by numerical simulations. Later H. N. Bentif¥uan 1991] looked to the evolution
under an easy/hard axis field of an asymmetric Blwall in Permalloy films. Two motion
regimes were identified. For small field valuesplégrl along the easy axis, a uniform wall
structure is conserved during translation at conistalocity. At high fields however, the
wall velocity develops an oscillatory behavior,pasdicted by the 1D model of Walker. In
this oscillatory motion regime, depending on thiekthess of the Permalloy film several
modifications of the wall structure are foreseeabBlar thin films (500 A), the precessional
motion is accompanied by a periodical change framex to asymmetric Néel wall and
then again to vortex, but with an opposed chiraftyr thicker films (for example 2000 A)
instead of Bloch-Néel transitions, the initial \vettwall breaks up into three vortices with
different chiralities. The explanation is that,timck films it is energetically favorable to
accommodate a certain number of vortices, wheredisinner films both vortex and Néel
walls are forseeable as they are energeticallyeatpnt. Applying fields along the in-plane
hard axis, an irreversible hysteretic behavior wlserved, characterized by two different
transition fields, one from Bloch to Néel and agetone for the opposite case, from Néel
to Bloch. Both fields increase with film thicknes&he conclusion of this study was that

the Walker’'s 1D model is not accurate enough fer diescription of such systems. The



discrepancies arise mainly because of complexith@fwall structure is not entirely taken
into account in the 1D model, and such an apprtaas no notice of the influence of the

finite thickness of the film on demagnetizing istetions.

Thiaville [Thiaville 2002] reduced furthermore thgstem’s dimension, looking to
the behavior of nanowires with diameters smallentb0 nm. The magnetization lies in-
plane and head-to-head DWs are expected. He fdwaida relatively correct description
of such systems can be obtained adapting Walkevdeideveloped for Bloch walls. He
included a second degree (uniaxial) transverseotoy K (besidesKanis), the adapted
Walker field being then Ha K/Ms.

Until now, only ideal geometries were consideréd.such wires, two motion
regimes are defined: the viscous and the turbweset In the turbulent regime the wall
velocity oscillates between positive and negatiaies, following the modifications that
appear in the wall structure. During motion, beeaas the asymmetric wall shape (the
wall looks like a V), an antivortex appears in toener of the V. It crosses the wire width,
during this time the wall velocity decreases asedhergy supplied by the field is absorbed
by this transverse motion. Once the antivortex Begea new V-shaped wall becomes
visible and the velocity increases. In the contifmmof this study, the influence of surface
roughness was explored [Nakatani 2003]. As the Blogn material considered in these
studies is polycrystalline, the edge roughness geserated based on the grain size.
Numerical simulations revealed that, in such systdire wall moves faster as, the
occurrence of the antivortex is prevented by thgeednperfections. The antivortex
nucleation is replaced by spin wave emission ahd, énergy that would have been
invested in translating this wall across the windttvis now spent in displacing the wall.
Therefore the wall velocity does not drop, but motigoes on at a maximal speed.
However, the amplitude of the edge fluctuationg/gla very important role. In order to
have this enhanced-velocity behavior, the sizenefroughness should be larger than the
exchange length. For smaller values, the ideal\neh& retrieved, while if the surface is

too rough, the DW can be pinned.

It is well known that in field-driven motion theethagnetizing field of the wall
plays a key role. D. G. Porter and M. J. Donahuwetf? 2004] carried out micromagnetic



simulations to see how geometrical features infleernhis central parameter. The
dependence of this field on the simulated geometgs considered through the
demagnetizing factors, calculated for the regioengtthe wall is placed. The Walker field
is defined now as #a max{Hp}, wherea is the Gilbert damping parameteéris the out-

of-plane tilt angle due to the torque from the agpfield and H is the component of the

demagnetizing field perpendicular to the magnetpain the wall.

Recent numerical studies [Fukami 2008] on perpmiaily magnetized systems
indicate that, the critical current for precesslamation in perpendicular anisotropy strips
is much smaller than that of strips with in-plamésatropy. This current density was found
to decrease when the thickness of the wire is estluboreover, simulations of the
depinning from a small notch showed that, the d&pom current of perpendicular systems
is quite small, in comparison with the value foufod the in-plane geometry. On the
contrary, the magnetic field required to releagewtall from the same notch was higher in
the perpendicular material.

These are the most significant results reportediedd-driven DW motion. When
experimental evidence of the effect of spin-pokedizurrent on DWs started to appear,
first, complex theoretical approaches were develppased on the pioneering work of
Berger. However soon enough it was clear that nizalestudies are required to fully
understand this phenomenon. Based on Slonczewdkgsof including a spin torque term
in the LLG equation, approach that he developedpan-valve structures, several forms of
spin torque terms were added to the dynamic equalitmst of these where presented in
the paragraph 111.1.1.2, covering the existing tledioal approaches.

The biggest part of the numerical studies is dudhiaville and his group. The
results we will present in the following chaptereres obtained using a micromagnetic
simulation tool that employs the form of the LLGuatjon proposed by Thiaville et al. in
[Thiaville 2005]. Therefore their approach will Ipeesented in detail in the following

paragraph.



[11.2.2. Domain wall dynamics under spin-polarized currestpgaoposed by

Thiaville et al.

Based on the first hypotheses, as in most of #ses; Thiaville and collaborators
included [Thiaville 2004], in the first time, onlyhe adiabatic torque term in the LLG
equation. The adiabatic term was derived from ardmagjan form of the dynamic
equations, combining the micromagnetic energy dgmsid a dissipation function. Field-
driven and current-assisted motion was then siradlabth in ideal and rough Permalloy
wires. The conclusion of this study was that no Biion can be observed in the absence
of a magnetic field, which is contrary to the expemtal findings. Therefore, either the
adiabatic torque has to be written under anothen far, a second spin torque term must be
attached to the LLG. Simulations carried out ingligda phenomenological non-adiabatic
spin torque term provided better agreement withegrpents. They proposed the following

form for the LLG equation including the effect o§gin-polarized current:

%_T :_ﬂoy(mxHeﬁ)m(m xaa—Tj—(u )m +Bm x| (u M)m | (1.2)

On the right side, one identifies firstly the wklloewn precession term describing the
rotation of the magnetization around the effectielel Het, and secondly the cross product
that counts for Gilbert damping, leading to a datalignment ofm andHe«. The third
term describes the adiabatic contribution of thie $prque, whereas the last term stands
for the non-adiabatic torque. This term, weighted tbe non-adiabatic spin transfer
parametef, accounts for the conduction electrons’ mistragkivhen passing through the
wall. The value of thifl coefficient depends on how one defines the ad@biamit.
Several possibilities were presented before. Inajygroach of Tatara [Tatara 2004] the
characteristic length is the Fermi wavelength. £hpthang 2004] relates tHefactor to
the exchange and spin-flip time, while in the medaé¢scribed in papers by Viret et al.
[Vanhaverbeke 2007, Waintal 2004], the characterlshgth in the Larmor wavelength.
Despite the large variety of definitions, all thgns indicate that the value pfis smaller
than 1, close to the value of the damping parameéteally, in (111.2) the vectou has the

unit of a velocity and is parallel to the directiohelectron flow:
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Hereg=2 is the free electron’s Landé factas is the Bohr magnetongy is the current

density,P is the current polarization rateg®<1) ande is the electron charge.

All the results that will be presented in the daling paragraph were obtained
solving numerically the equation (ll.2), implemedtin the micromagnetic software that
we called WALL_ST (the details of the numerical levpentation will be presented later
on). However, before passing to the study of systeuith out-of-plane orientation of the
magnetization, the accuracy and performance ofiraptementation had to be tested. As
the interest in such systems is recent, and therafo test cases were available, our
micromagnetic simulation tool was benchmarked agaime results provided by Thiaville
et al. for an ideal Permalloy nanowire [Thiavilleds]. In the following we present shortly

the results obtained be Thiaville et al. superppdeailable, with our own results.

The simulations concern a defect-free nanowire Ndfe with the material
parameters listed in Table I11.1:

Table 111.1: Material parameters used for the siatitns concerning the NiFe nanowire:

Ms (KA/M) | Aex(I/m) | Kans@IN?) |«

800 10t 0 0.02

The computation region consists of a rectangutenpof 2000nM120nnMx5nm.

The numerical discretization consists of elemeh#ox4nnmx5nm.

The first step was to find the equilibrium wallugtture, in the absence of magnetic
field or spin-polarized current. An isolated traese wall is obtained, showed in Figure
[11.2. All the magnetization configurations preseahtin the following were obtained using
the WALL_ST software.
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Figure 111.2: Equilibrium magnetization distributioin a Permalloy wire. The head-to-
head domains are separated by a V-shaped trans\g¥ge The size of the system is of
2000nMmx120nmx<5 nm.

Then several simulations were carried out for sdveurrent values taking=0 and
=0.01. The results found by Thiaville et al. anerogluced in the Figure 111.3:
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Figure II.3: Evolution of the wall velocity versuhe injected current. To test the
WALL_ST simulation tool we carried out simulatidmstwo values of thg parameter: O
(plotted in red line) and 0.01 (the green curvehigiville 2005].

The filled and empty green stars depict the vejoeitlues obtained with WALL_ST. It is
readily seen that our approach reproduces accyrelresults obtained by Thiaville, and

one can therefore foresee its further use.



1D motion equations

Taking a closer look to the numerical results smaw Figure 111.3, a behavior
similar to the one seen for field-driven motiondbserved. Two motion regimes are
identified: a steady regime going up to a criticairent density, and, then at high current
densities, a precessional regime. This similaréy be easily understood transposing the
LLG equation in the framework proposed by SloncdeWsee equation (111.1)). Using,
the wall angle, and q, the coordinate of the walitoe, the equation (l11.2) transforms into:

9 = yH, sing cosy +E+aAa—[/j

ot A ot (11.4)
6_[// :BE—E%

ot A Aot

Here K is a transverse anisotropy,Hx standing for K/(uoMs), and

anis + K Sin( Zﬂ)

termsu/(yA), the non-adiabatic term being precede@bZomparing these equations with

A(z//) :\/K A . The terms arising from the current intervenenaglane field

the ones describing the wall evolution under fi@ee equation (111.1)), it is clear that, an
applied field and injected current have completéfferent influence on a DW. An applied
field induces an in-plane rotation of the magneitrg the “pressure” being provided by
the resulting demagnetizing field. In field-drivemotion the displacement direction was
imposed by the direction ¢t4em (resulting, in the precessional regime, in a bt forth
shift of the wall). In the case on the current-iogd motion, there is, again, a
demagnetizing field arising from the non-adiababatribution 3 u/A). However, it is not
the sole drive force acting on the wall, as the tnmmportant part of the force from the
current (the adiabatic one) is invested, direcity,changing q. AsW/A has a constant
direction, and is, presumably, stronger tHg.m, the wall moves always in the same
direction, that is - the direction of the electftow.

The critical value ofi, for which a steady solution is valid, is:

_y Kk
VAN 1.5
lu| 2 Y4l (111.5)



The wall velocity is connected to the quantitiearelaterizing the spin-polarized curremt,

B and to the Gilbert damping parameter via the imahips:

Vsteady:E u (|||6)
_1+op
(Vose) =57 (I11.7)

The numerical results revealed another intered@agure of current-induced DW
motion, namely the very important role played bg fifparameter. Depending on its value,
in a velocity-versus-current density diagram, oh¢he motion regimes mentioned above

might be present or not. Three possible scenarmfoaeseeable:

1. In the case wheB+o and#0, both a steady and a precessional regime can be
identified. In the steady motion, the misalignmieetween the conduction electrons
and the wall results in a non-zepoangle. In the first moments of the motion the
wall velocity increases. Then, the wall translagtsadily with a tilted structure and
constant velocity. For values abovethie wall has a precessional motion. Here, the
torque from the current dominates the demagnetiaimd damping ones. During
motion, on the narrower end of the transverse \aall antivortex makes its
appearance. As the wall moves forward, the an&xottaverses the wire width,
being expelled on the edge - opposite to the onerevit entered the wire. The
configurations presented in Figure 1.4 exemplifys behavior. The antivortex
appears periodically. During the change in the wg#lucture, the wall velocity
oscillates between a (positive) minimum and maximitsr average value being

different from O.

2. If B=a a new kind of motion is discerned. The criticatreat limiting the steady
motion is infinite, the wall moving with a velocitgqual to the velocity-like
quantity u. The spins in the wall do not tilt, because then-adiabatic term

compensates perfectly the damping term resultipgra translation regime.

3. For B=0 a threshold current density i$ required for sustained DW motion. If
Jpr<Je the magnetization in the DW tilts towards the hasds, but instead of

accelerating it slows down. As only the adiabatogtie acts on the wall, the
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motion is blocked and the wall velocity going taaeFor Jpp>J the precessional

motion described for the previous case is seen.
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Figure 1ll.4: Several configurations taken during\WD displacement, showing the
modifications that occur in the wall structure. tlre fourth image the antivortex makes its
first appearance in the lower part of the wire. Tlast configurations present how the
antivortex grows and evolves towards the upper pathe wire

Whereas field-induced DW motion has revealed &llit® interesting features,
looking at the various possibilities that occur eleging on thed value and its positioning
relatively to the value of the damping parametee cealizes that, certain details are still
needed for a complete understanding of currentéeddDW motion. The exact origin and

value of the non-adiabatic spin transfer paramaterstill to be determined. Also it would



be interesting to determine the possibilities diacing the effect of the spin torque on a
DW.

The observations presented above are valid foal idgstems. Very important
influences in real systems have for example pinwihthe DWs and thermal effects. The
sources of pinning are various: surface roughnemsations of the material parameters
(Kanis for example). Also different type of constrictionan be considered. Joule heating

due to the high current densities can eventually Hepinning, but these effects have not
been studied in detail for the moment.



[11.2.3. The WALL ST micromagnetic tool

The micromagnetic simulation tool is based onfitiée difference approximation.
WALL_ST is derived from the code GL_FFT, whose mé&atures were presented in
paragraph 1.1. Here we will mention a few adaptadi that had to be made, in order to
take into account the effect of the current andi@ss correct description of the studied

magnetic systems.

A complete overview of field and current-inducedtion implies a profound
understanding of the role of each intervening facBesides the external factors (the
applied field and the injected current), it is imamt to identify the internal elements that
must be taken into account. One of these is theadastizing field of the wall. To get
some information about the behavior of this coniiitmn, known to be dependent on the
shape and size of the magnetic system, simulatire carried out on three types of
geometries: bulk, thin film and wire with rectanaulcross section. The hypothesis of
uniform magnetization along the Oy and Oz direct®rconsidered for the bulk system
and along Oy for the film. It is clear then thattaen special “effects” have to be used in
order to cope with the infiniteness of the modedtegn, as one can not simulate infinity.
To treat the infinite length, a common feature HWfthe three cases, the geometry is

decomposed in several parts as depicted in Figjube |

» The “real” computation region is made of a rectdagyrism of finite

length. The magnetization is fixed on the left aigtit surfaces.

» Two semi-infinite regions, connected to the leftdanght side of the
computation region. In these regions the magnatizas uniform, and has
the direction imposed by the magnetization of tekksoon the lateral sides
of the computation region. The field generatedh®yragnetization in these
regions is calculated analytically. Thus the denetigmg field Hgem
includes the stray field radiated by these two sefimite regions and the

stray field radiated from the computation regicelt.
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Figure 111.5: Definition of the computation regioftolored in blue). While its length is
fixed (L=512nm), its width w and thickness t miglet varied. On the lateral surfaces,
where the computation region meets the semi-igfiderx and Digne regions, the
magnetization is fixed. Periodic boundary condis@an be applied on the front and back,
respectively upper and lower surface.

In the case of the thin film and the bulk systemBniteness along other directions
than Ox has to be taken into account. This requergns assured by the use of periodic
boundary conditions, on both the Oy and the Ozctoe for the bulk and only on the Oy
direction for the film.

The computation region is split up RN, XN, discretization cells. The initial wall
position corresponds to,R. During the simulation, the wall is left to tedwvalong the Ox
direction. Due to the finite size of the computatregion, precautions have to be taken, as
the moving wall might approach to closely the lateurfaces, where the magnetization is
fixed, and thus its dynamics could be altered. ideo to prevent this, a scheme was
implemented that maintains the DW in a region whame can be sure that no parasite
effects occur. The wall position is constantly ntored (the methods for determining this
parameter are described later on). If its valugmsller than W4 or bigger than 3 the
wall is translated so that its center is placeN,&. The distance of X2 on which the wall
is allowed to move, was determined based on obsensa of the magnetization
distribution inside the wall. The wall occupieseteain volume, over which the transverse
magnetization components smoothly attenuate, t@rbecfinally zero in the domains’
region. By placing the wall such that, its centerat a distance of Nt from the lateral



borders of the computation region, one can be thatethese fixed-magnetization surfaces
will not influence the wall dynamics. It is impontato note that the criterion ofyM might
be valid only for the present case. For a differsvdll structure, magnetization

configuration, or sample size the optimal value tioase re-evaluated.

Discretization: The length of the computation region is fixed (518), independently on
the type of the geometry (bulk, film or wire). Ometother directions, the size is varied
based on which kind of system is simulated: bulkp for wire. Generally speaking, in
numerical micromagnetism the size of the discrébmaelements is subject to certain
constraints. Namely the lateral size of the eleswemist be smaller than the minimum of
the exchange and Bloch lengths, which in the ptesase sets a limit of 8 nm. As the
length of the computation region is constant, h#ie restriction on the space step is
respectedgpy being set to 4 nm in all the following simulatiorresulting in 128 mesh
elements. However, taking into account the spetyfiof the simulated geometries,
together with the width and heiglat, ands, have to be also adapted. In the following the
geometrical features and the numerical parametersen for each of the three geometries

are presented.

a) Bulk systemTo have a realistic approximation of the bulke tmagnetization is
supposed to be invariant along the width and thghtbtef the computation region.
In addition to the periodic boundary conditions ospd along the concerned
directions, Oy and respectively Oz, a single disradon element was considered
along these directions. Therefore the mesh consisi28x1x1 cells, the size of a

cell being 4nm10pmx10pum.

b) Thin film The thin film is considered to be infinitely widdo respect this
hypothesis, the same method was used as for thie Ipefiodic boundary
conditions are imposed along Oy and the width efrttesh element is very large.
The thickness of the film (and also the wire) istgueduced, 11 nm, very close to
the characteristic lengths. As far as the spage &tés concerned, a study was
carried out to see whether using a sole mesh ele(hnl), a result accurate

enough is obtained. Two sets of results are predemt Figure I11.6. The first
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image shows the evolution of the grmmagnetization component while the second
one represents the wall position as a functionroét The results, obtained using
one or four mesh cells along the Oz direction,iara very good agreement, the

differences being unnoticeable.
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Figure IIl.6: The average gmagnetization component and the wall position &snation
of time for one, respectively four mesh elememsgthe Oz direction.

In Figure 111.7 several configurations taken afeliént time steps are compared.
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Figure IIl.7: Comparison between magnetization agunfations obtained using N1 or
N=4. Considering the values of the, rmagnetization component, the differences are
negligible.



The configurations on the left-hand-side were ot#diusing a single mesh cell
along Oz, whereas the groups of four layers orritjfte-hand side, correspond to
the situation when 4. Each one of the colored surfaces representstihe
magnetization in one of the four mesh layers alGag Only the @ component is
represented, as if differences occur in the magagdn distribution along the film
thickness, for this quantity they are the mostblesi Looking at the mvalues it is
clear that the discrepancy is insignificant. Ona t@erefore conclude that using
N~=1 the description of the thin film (and the wiig)accurate enough. The space
discretization is then based on ¥281 cells, each of them occupying a volume of

4Anmx10pmx1inm.

c) Nanowire The mesh size along the Ox direction is set tom# Along the Oz
direction it has been shown that setting a mesk siz11nm, the system is
appropriately described. Along the remaining az@sresponding to the wire width,
several possibilities were explored. Taking intocat the rule of thumb limiting
the mesh size, a mesh size of 4, respectively 8wan,tested (resulting in,N30
and N=15 elements). However, assuming an invariant magi®n along Oy,
one is allowed to use a single mesh element aleagvire width (with the volume
4nmx120nmx11nm) and quasi-1D simulations can be carried d@duthough
essentially the accuracy of such calculations issganable, still it can provide a

general idea about how the system behaves withsoreble computation time.

Determining the wall centeSeveral ways of determining the wall center westetd one
can either calculate the wall's center of masok|lto the value of the ;yqmagnetization
component. Both approaches were tested showingsveajl, almost irrelevant differences
between the results.

Integration schemeConcerning the integration scheme used for solthed LG equation,
a predictor-corrector Heun scheme was implementkd.time scale of the magnetization

dynamics imposes a very small time step, of theroofl 1fs.



Initial magnetization distributiontn order to determine the effect of a magnetiafiet a

spin-polarized current one has to find, firstlye #quilibrium state of the magnetic system
without any of these external factors. The equilifor state is calculated based on the LLG
equations, using the material parameters charatteto the magnetic system. However,
as the dynamics it is not the point of interestiis first part, the damping parameter is set
to 1. Once the equilibrium state is found, the wigd magnetization distribution is set as
initial configuration for the field/current-driveDW motion simulations. For these, the real

value of the damping parameter is employed.

Field/current distribution:There are several possibilities to initiate DW raoti Besides
continuous field/current, the external excitaticas take the form of pulses with different
duration and shape. Also, one can choose eithaifaron field/current distribution or, if
required spatially varying distributions can be sidered. The choice of generating non-
uniform distribution for the material parametefg;, Ms andK,,i, was also implemented
Even more, besides the simplest geometry of a mguatar prism, constrictions with
different shape and size can be created. Theseugapiossibilities are all generated before

starting the simulation using simple subroutinethefWALL_ST simulation tool.

Output: The results contain an evolution file, where thduga of the magnetization
components, the energy terms and the total enehgywall position and velocity at
consecutive time steps are recorded. Moreover, camechose to export magnetization

configurations at certain time steps.

Knowing these, in the next part the results oleifor out-of-plane magnetized
systems will be presented. This chapter is organaefollows: first the results obtained
for the bulk system are presented, both for fiehdl @urrent-driven motion. Then, the
influence of the geometry on the critical valuesd ann the mechanisms of DW
displacement was studied, by reducing the systestlyfi to a thin film, and then to a
nanowire. Ending the simulations on ideal systamshe last part of this chapter several

kind of pinning possibilities were considered.



[11.3. Results

111.3.1. Bulk system

The bulk system represents the second test désethee Permalloy wires. The first
test case proved that our implementation can remedccurately the results obtained
previously for in-plane magnetized systems by theug of Thiaville [Thiaville 2005].
However, for the moment, this conclusion is validlyofor systems with such a
magnetization orientation, and the validation oé tWVALL_ST simulation tool for

perpendicular domain configuration is still reqdire

As the topic of perpendicularly magnetized systénelatively new, the amount
of numerical results concerning such systems iy \w&mall and therefore the only
possibility we had to verify the performance of t#WALL ST solver was to look at
analytical solutions [Schryer 1974]. Even thougis ttenchmarking step seems trivial, it is
absolutely necessary. The eventual good agreemiéimtWalker’'s analytical predictions

for field-driven motion assures the correctnestheffuture findings.

The study of bulk system has a second role atsserves as a reference for the
results obtained for systems with reduced dimendika the thin film and the wire, where

the magnetostatic effects are modified with respeethat occurs in the bulk.

For all the simulations reported below the mateparameters [Rodmacq 2006]
used are listed in Table III.2.

Table 111.2: Material parameters:

Ms (kA/m) Aex (I/M) | Kanis (3/nT) o | P

254.54 127270
1011 001 1

(Ms=0.32 T) (Hanis=1T)

Besides the spontaneous magnetization, the exchasigftness constant, the

magnetocrystalline anisotropy constant and the dagngarametera, the current



polarization is also included. For the non-adiabapin transfer parameter several values

were considered.

In a spherical coordinate system [Hubert 1998] EW& can be defined as the
region where the angk varies between 0° (&) and 180° ([gn) (Figure 111.5).¢ is the
angle of the wall with the plane (yOz): ¢f is zero the wall is of Bloch type and when

¢=90° the wall is of Néel type (Figure Il11.1).

[11.3.1.1. Domain wall motion under applied field in a bullsigm

In an infinite magnetic system, divided in two dons separated by a Bloch wall,
an external field, applied along the domains’ dieetwill tend to extend the domain that
is oriented along its direction at the expensehefdnti-parallel domain. The growth is in
fact achieved via displacement of the wall sepagathe two domains. If the wall is
defined by the anglegsando (the latter one being 0 in the initial state, Fegll.1), then,
looking only to the central spin, the wall displaent can be viewed as happening

whenever a change (rotation)fignreOCCUrS.

Under the influence of the field, the magnetizatio the wall tries to align itself
parallel with the field, describing a damped prstc@sal motion. Depending on the

strength of the external field several scenariespassible:

1. If the field is small, the torque arising from & not strong enough to orient the
magnetization, its sole effect being a tilting awsym the original direction, the angie
attaining a certain value different from zero. Resobtained by our numerical approach
sustain this. As shown in Figure 111.8 the “equilibn” value of thep increases with the
applied field. It is important to note that the oba in¢ engages modification in the wall
width. However these are less significant, as tagimal change, fop=45° represents less
than 10%.
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Figure 111.8: The behavior of the angle and the DW width as a function of field for the
bulk system in the steady motion regime.

The pure Bloch wall is magnetic charge free, boy ahange inp (supposed
constant throughout the wall) gives rise to magneliarges, and therefore to an in-plane
demagnetizing field4em, perpendicular to the wall. The fields and torquesuoring are
shown schematically in Figure Ill.$4em adds up to the damping that tends to align the
magnetization with the applied field and, provides torque necessary to produce a
change i, and therefore to push the wall forward.
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Figure I11.9: The fields and torques responsible flte movement of a DW. The applied
field rotates the magnetizatioM from position 0 to 1. Then the torque from the
demagnetizing field rotateéd towards the Oz axis, from position 1 to 2.

The displacement occurs as follows: simultaneousdtly the increase op due to

the applied torque, the wall velocity also increases shown in Figure I11.10.
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Figure I11.10: The variation of the wall velocityeksus time for several values of the
applied field. The evolution comport two partsssfithe wall accelerates up to a final
velocity, and then the motion occurs steadily.

The magnetization tilts until equilibrium betwedre tapplied and the damping torques is
reached (the first nanoseconds on the curves dgivdfigure 111.10). Once the rotation
ceases, the wall moves on steadily, having annmddiate Bloch-Néel structure. The wall
velocity depends on the strength of the drivingéor that is - the demagnetizing field. As
this field is limited, reaching its peak wher45°, the wall velocity is also bounded by a

maximal value given by:

A
Vsteady: y(; Happ (|||8)

The critical field value under which this steadyaeior occurs was defined by Walker as:
_ oMy

¢ 2

For values higher than the one issued by (111183, éxternal field drives the in-plane wall

H (111.9)

magnetization to angles larger thgm45°. Torque equilibrium is not possible in thiseas
and the in-plane magnetization does not stop psetgsmround the z-component of the
effective field. Instead, it covers periodicallyetmterval [0, 360°], taking the wall through
Bloch and Néel configurations. The evolution of thand ¢ angles during a cycle of

Bloch-Néel transitions is shown in Figure 111.11:
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Figure 111.11: The angle® andé during a complete cycle of Bloch-Néel transforiodi

As the driving field is generated by the magneharges, the provided torque is affected
by the structural modifications of the wall, chamgyidirection every time whep is equal

to a multiple of 90°. This can be recognized in liedavior of the wall position and the
wall velocity, depicted in Figure I11.12. The waltoves back-and-forth, while the wall

velocity attains both positive and negative valuEse maximal, respectively minimal

values that the velocity can attain &.=Ve, respectivelywmi=ve, wherev, is the velocity

attained for Hy=Hc:
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Figure 111.12: Wall position and velocity for valaef Hy, higher than K.

The velocity is zero when the wall is either putedd or pure Néel type. When transiting
between the two structure types, the velocity es®leither towards a maximum/minimum
value. Higher the applied field, higher the ostitla frequency ofp. The oscillation period

of the anglep was determined to be twice the oscillation peabthe wall velocity.



Walker predicted the existence of two linear-véloenotion regimes. The first
extends until B,=H., followed by a transient regime, where wall motioocurs by
precession, the DW going through periodical char{@sch to Néel and vice-versa). In
this transition regime, although it is known thhe taverage velocity has a decreasing
tendency, no relationship between this quantity #red applied field could be derived.
Nevertheless, at fields much larger thay) tHe average velocity increases again. The net
effect of the demagnetizing field on the displacetnaf the wall is zero. The damping
torque is the one that - trying to align the magradion with the applied field - sets the

wall in motion. The average velocity tends towatds asymptotic limit:
_ o
<Vosc>_yOAmHapp (I“lO)

The two motion regimes for the bulk system areesgnted in Figure 111.13.
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Figure 111.13: Two motion regimes identified by \k&l: the steady and the precessional
regime. In both these regimes the wall velocitgpestively its average value, increases
linearly with the applied field. A transition regipwhere the average velocity decreases,
separates the two linear motion regimes.

The value of the critical field determined by sietidn was compared to the one calculated
using (I11.9). The two values are very close&infdaior=1.58mT, whereas, dfuyic=1.6mT.
Furthermore, the simulations reproduced accuratedy details concerning the in-plane
angle ¢ and the wall velocity of DW motion given in [Sclery1974]. An important
conclusion can be drawn from the above presentadtse Based on the good agreement
with the analytical results provided by Walker's aiey the WALL_ST simulation tool



seems to be well adapted for the study of fieldwrent-induced DW motion in materials

with perpendicular magnetization orientation.
111.3.1.2. Domain wall motion under spin-polarized currentiulk system

Similarly with the case of field-induced DW dispéament, two motion regimes are
defined: a steady and a precessional regime, delinby a critical current;JMougin
2007]:

3 =M o
g4,P"" [B-al

(I1.11)

The steady motion regime covers the interval gf 10, X]. It is followed by a
transition region, exactly like in field-induced tram, and then by the precessional regime,
at high current densities. The wall velocity is weated to the quantities characterizing the
spin-polarized current) andp and to the damping parametgvia the relationships (111.6)
and (I11.7). The difference between field and catrenduced motion is that, whereas in the
first case, the direction of the wall motion chasmgeth respect to the direction of the
demagnetizing field, if wall displacement is duesfon-polarized current, the DW follows
always the direction of the electron flow.

In the paragraph presenting the results on then&kry nanowire, it was shown
that the value of th@ parameter determined the presence or absencesaffdhe above
mentioned regimes in a velocity-versus-current@diag This is true for the present system
also. As shown in Figure 111.14 three different diaf curves are present.3£0 for Jp<Xk
the wall velocity is zero. When the precessionaime is reached the average velocity

increases linearly with the current.
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Figure I11.14: Summary of the behavior of a Blochlkg velocity in current driven DW
motion, showing clearly the important role playgdtbe non-adiabatic parametgr

If B=a the wall moves always steadily, as the criticatent density for Walker breakdown
is infinite. The pure Bloch wall (see in Figure.1’ that the angle® remains constant

during motion independently on the current valuahslates with a velocity equal tio
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Figure II1.15: The variation of the angle as a function of u and the value of the
parameter. While fopp=0.02 a field-like behavior is observed,ffa, the wall remains
pure Bloch during the whole duration of the motion.

For B#0 and#a, both the steady and oscillatory regimes are pteséhe behavior is
similar with the field-driven one, with a terminaklocity (in the steady regime) and,
respectively, an average velocity (in the precesgioegime) that increases linearly with

the current.



Although analytical solutions for the bulk werergn only for field-driven motion,
the experimental observations and the numerousdaheal/numerical predictions prove

that the above described behavior is correct.

This first part of the results had a pure pedaggigourpose. The good agreement
found for this second test case shows that ouramagnetic simulation tool reproduces
the analytical results for out-of-plane magnetizegstems accurately. Therefore the
treatment of systems with reduced geometries (timm and the nanowire) is, for the

moment at least justified, and as it will be shdater, also accurate.

Comparing the motion of such a 1D Bloch wall wiitle displacement of transverse
walls, one remarks that the two processes are guntgar. Obviously, the wall velocity
values and the critical breakdown field/current atiéerent, but the wall motion
mechanism apparently respects the same rules. t€adysmotion extends to a threshold
field/current value, above which the changes invih# magnetization impose the cyclical
modification of the wall structure, and consequenperiodic variations of the wall
velocity. For in-plane materials the wall structuscillates between a transverse and an
antivortex structure, while in the second caseydtes between Bloch and Néel type walls.
The direction of motion either changes, followimg tdemagnetizing field - in the case of
field-driven motion, or stays constant when thelwabtion is due to a spin-polarized
current. These conclusions are valid for the bylitesm. In experiments, however, mostly
systems with reduced dimension are used, e.g.filnis or wires with different cross
sections. The question that arises now is how ¢deation of the geometry’s dimension

influences the process of DW motion.



111.3.2. Size effects
111.3.2.1. Size effects in the framework of quasi-1D simufegtio

Modifying the lateral size means changing theorbBtween the geometric features.
While the exchange and magnetocrystalline anisgttepns are insensible to such factors,
a strong influence on the wall's demagnetizingdfies expected. The most natural way to

look at this problem is by making use of the denediging factors of the wall.

Two systems with reduced dimension were considesethin film with infinite
length and width and a thickness of 11nm, and @y an infinitely long nanowire

with a width of 120nm and a thickness of 11nm.

In the first time, the hypothesis of a uniform matjzation along the Oy direction
was taken into account. Based on this, a singlehmreémment along the geometry width
was used. Therefore these simulations can be vieagedjuasi-1D, where the local
demagnetizing field is replaced by its value, ageda over the cell. The material
parameters, inclusively the damping parameigerare those considered for the bulk

material. Figure 111.16 shows a comparison betwienwall velocity versus applied field

and versus injected current (8+0.02) for the three systems.

250 . ——h ; . 600
! —u— bulk
. 200f A —o— film |
7 " —%— wire —_
E [ '&3 400 -
~ 150} = | e £
> | \ -
g e z
S 100} | 1 © —=—bulk
o / = 0 —o—film
" © 200 - .
= LN > —%— wire
@® 50 |-* ~a 4 —_
2 ] © g
5 =
0 “O'kf* ————— ¢ Q—
0 2 4 400 450 500 0 x L ‘ s - E
0 200 400 600
HH,,, (mT) u (m/s)

Figure I11.16: Wall velocity versus applied fieleh@d injected current for the three systems:
bulk, thin film and wire. The parametgris 0.02.



It is clear that, modifying the geometry, leadsaim essential decrease of the critical
field/current. The values are assembled in Talhld. I

Table 111.3 Critical field and current density fdine three studied systems

System| H(MmT) | HA/m?)
Bulk 1.60 9510
Film 0.30 2210"
Wire 0.25 1810"

A detailed study revealed that the behavior ofdhglesd and¢ show the same
features as those seen for the bulk. This indicdtes the displacement mechanism
remains the same: slight tilting of the magnetiameats in the steady motion regimes and
cyclical transformation between Bloch and Néeldtres in the precessional regimes.

Working with the approximation of uniform magnetion along Oy placed us in
the framework of analytical approaches coping witle dependence of the critical
field/current on the geometry. Several papers asa already this topic for the case of
in-plane magnetization [Thiaville 2002, Porter 2DOXlougin et al [Mougin 2007]
considered also the case of out-of-plane magnet&estems, giving formulas for the
“reduced” critical field/current. They take into caunt the size effect through the

demagnetizing factors:
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We compared the results obtained by simulatiom wdlues calculated with the
the DW was
approximated either by a uniformly magnetized sbipl [Osborn 1945] or rectangular

expressions above. In order to determine the deetagry factors,
prism [Aharoni 1998]. The dimensions used to apjnate with corresponding geometric
bodies are: the length is equal to the DW widt®7%m for the film and 9.92 nm for the
wire), the width equal to infinity for the thin fil and 120nm for the wire, and height of
11nm.



Independently on the method used to calculated#reagnetizing factors, a very
important discrepancy is found between the analitand the numerical values. The
simulated values are more than 2.5 times smalkan those predicted by eq.(l11.12). For
example, for the nanowirectdbtained by simulation is 0.25 mT, while from #zalytical
formula one obtains {#0.75 mT. The same discrepancy occurs for thecatitturrent
density: Jimulaio=1910"°A/m?, while Janayi=5810'°A/m?. However, we observed that by
taking the length of the geometrical object to& instead ofA, as in the approach
proposed in [Porter 2004], the agreement betweenréults is improved, the values
obtained for the nanowire are+0.27 mT and £2110'°A/m?. The relative difference for

these new values is around 10%, and thus acceptable

Even though, tuning the DW width results seeminglpetter agreement between
analytical and numerical solutions, this methodagrs an artificial one. Based on results
provided by real 3D micromagnetic simulations, il we shown, that the hypothesis of
uniformly magnetization along the wire width is rappropriate and results in an erronated

estimation of the critical field/current.
[11.3.2.2. Size effects revisited: framework of 3D simulations

3D micromagnetic simulations were carried outth@ nanowire. The 3D character
is assured by the use of a large number of digetéin elements along the wire width.
This will help better capturing the eventual vadas of the magnetization along this
direction. Several space discretizations were dest8<15x1 cells, each of them

occupying the volume of 4nx8nmx11nm, and 12830x1 cells of 4Anm4nnx11nm each.

The purpose of this study was to see the influesfcéhe discretization on the
Walker field (or the equivalent current densitydahe on the wall velocity. The results

obtained are presented in the Figure 111.17:
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Figure 111.17: Wall velocity versus applied fieldrfseveral values of N

From Figure IIl.17 it is clear that, there is arwemportant dependence of the
critical field on the discretization along Oy. lact, the value obtained for the critical field
using the 1D approximation gives an upper boundndJa mesh of 12815x1 cells, the
critical field decreases from 0.25 mT to approxieha0.13 mT, and for a mesh consisting
of 128x30x1 cells the Walker breakdown occurs at a field d20mT. Here only two
discretizations were considered, but one can béiymshat a further refinement of the
mesh would result in an even smaller critical fiditevertheless, the two 3D values are

relatively close, showing that we are approachimg“torrect” value.

The reduction factor of 2, found between the 1@ #ime 3D Walker field, is
retrieved also for value of the critical currenhdiey required for Walker breakdown in the
current-driven motion. The computation time for tB® simulations is very large,
especially in the steady motion regime where theukitions had to be run during several
weeks, in order to be sure that a steady stataished. This is why, in this case only the
discretization consisting of 1280x1 cells was tested. The critical current for precesl

motion decreases from 20*4@/m? to approximately 7-18 A/m?.

One must determine the source of the discrepartyden the quasi-1D and the
3D results. The inaccuracy of the 1D approximatisnrelated to the fact that the
magnetization in the wall is not invariant along t®y direction. Figure 111.18 shows a

magnetization distribution obtained using a spacgretization of 12830x1 cells,



together with the magnetization profile on the fromiddle and back chain of mesh
elements. After a simple “naked eye” analysis ef ttagnetization distribution one might
be mislead, as this reveals a rather uniform magatein. Nevertheless, comparing thg m
value calculated in the center of the wall, onlitbeders and the central part, a variation of
33% was found, while for pithe relative difference is only of 6%.
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Figure I11.18: The final magnetization configuratioobtained for a discretization of

128x30x1 for a field of 0.1 mT together with the magneiocraprofile in the middle of the
wire and on the front and back surfaces.

The presence of a certain number of mesh elenadong the wire width was seen
to reveal inhomogeneities in the magnetizationrithstion. The same effect is observed
for the demagnetizing field of the wall, depictedFigure 111.19. Here only the values on
the surfaces and the centre of the wire are reptege
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Figure 111.19 The variation of the x component loé demagnetizing field inside the wall.

As more than a single cell along Oy is taken, whalculating the demagnetizing field,

one has to take into account the existence of nimgalearges on the front/back surface
that do not arise inside the sample volume. Theceftf these charges is more than a
simple change in the value of the field: the peotf the demagnetizing field is drastically
modified (Figure 111.19). On the surfacdd4em has an asymmetric behaviour. This

asymmetry attenuates, as one moves towards theakcpatt of the nano-wire.

The value of the demagnetizing field in the walhte was found to be equal to the
value found in the quasi-1D simulation. The valirethe mesh elements situated close to
the surface are modified. Consequently, the avensgae of the “effective” field
responsible for pushing the DW will be differemdaherefore the Walker field is as well
modified. When approximating the DW by an ellipsad a rectangular prism, this
demagnetizing field “distribution” is not detectapland that is why the use of the

demagnetizing factors is not accurate enough.

A very interesting remark concerns the wall valpadne would have expected this
quantity to be influenced also by the discretizatidowever, the values remain close to
those issued by quasi-1D simulations. This is duthé fact that, the only change in the
wall velocity comes from the DW width, and the magnetostatic effects alter only slightly
this quantity. The wall width for the bulk, film dnthe wire (obtained by quasi-1D
simulations) for several field values is shown belorhe values of the wall width
calculated from 3D simulations (not shown) are velnse to those found by assuming a

uniform magnetization along Oy.
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Figure 111.20: Variation of the wall width as theegmetry changes from bulk to nanowire.

In this first part, field/current-driven DW motiofin perfect systems with
perpendicular magnetocrystalline anisotropy wadistuusing micromagnetic simulations.
The critical field and current for steady motionsadetermined for a bulk, thin film and a
nanowire. For the first two systems, 1D micromagnsimulations were carried out,
whereas the latter was treated both by an 1D an@@oach. The comparison of these
results shows that, the finite size effect of tiexiktization along the wire width is rather
important, as far as the value of the criticaldieurrent density is concerned. In fact, a
factor of 2 exists between the 1D and the 3D resulhe discrepancy resides in the
approximation of the DW by a uniformly magnetizegstem. The detailed analysis of
magnetic configurations, issued by the 3D micrometignsimulations, showed that the
magnetization and the demagnetizing field can diffarprisingly much between the
surfaces and the central part of the wire. Nevérise the importance of the 1D
simulations is not to be neglected, as they hageattvantage of a very short computation
time and provide a good description of the mecmar$ DW motion. For example, in
Figure Ill.21 a comparison between the andleand ¢ determined from the 1D and,
respectively, the 3D results, for a complete cyofeBloch-Néel transformations, is
presented. Note that the 3D values represent tleeaged values of the angles. The

agreement is very satisfying.
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Figure 111.21: Thed and¢ angles during a complete cycle of Bloch-Néel tfamsations.
The filled symbols are issued by quasi-1D simutejovhile the empty ones correspond to
the values obtained using 3D micromagnetic simoheti

The motivation for using 3D simulations becomesaclat high fields/currents. In
Figure 111.22 several configurations are shown. yheepresent the magnetization
configuration in the magnetic system when an exslédiiald of 0.5 mT (the images on the
left side) or 90 mT (the images on the right sidedpplied. For the small field, the ends
and the central part of the wall move in a somehowelated way. For the field of 90 mT,
the wall is similar to a deformed elastic objecithwts ends acting in a different way than
the central part. It is interesting to notice thhough the wall center and it edges seem to
be detached, thecal wall position being different, on the surface® fgosition of the wall
center is always the same. At some moments theoeater is in advance, other times the
ends seem to pull the central part. All this carekglained based on the non-uniformity of

the demagnetizing field.
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Figure 111.22: configurations showing the passageni Bloch to Néel and vice versa for
two field values. As kj, grows the non-uniformity of the magnetization desthe wall
becomes more important.



[11.3.3. The role of disorder in the displacement of Blodilsv

DW maotion is interesting from the point of view applications. Memory devices
based on this phenomenon were proposed [Parkin].2004e able to draw conclusions
about the feasibility and the operation mode othsdevices, an exhaustive study of the
phenomenon of DW motion must be carried out. Umdav the displacement of Bloch
walls in ideal out-of-plane magnetized systems amalyzed in detail. We saw that one
can propagate such walls either using a magnetid fir a spin-polarized current. The

characteristics of the propagation process wererahted for each case.

Real world devices do not incorporate such ideadomwires, as in practice such a
perfect quality of the samples is impossible toi@of Several imperfections might occur.
Some of them are intrinsic to the material, somehein are due to the manufacturing
process and, there can be also provoked, artifmms. In the first category one can
include the spatial variations of the intrinsic eral parameters, occurring due to the
polycrystalline structure of the samples. For tlasecstudied here, namely a nanowire
characterized by strong out-of-plane magnetochys¢abnisotropy, it is interesting to see
how the modulation of the anisotropy constant apisn the DW propagation. The length
scale of the modulation d€,,;s is dictated by the grain size. The same lengtlestan

characterize the surface roughness due to thepateorocess.

The devices based on the displacement of a DWosapihat one is able to position
the wall in certain stable location. To stabilizecls a magnetic object, different kind of
traps might be created: geometrical constrictidosal reduction of one of the material
parameters (for example the orientation or the made of the magnetocrystalline

anisotropy), demagnetizing field traps, etc.

In the following, some insight will be gained dmetinfluence of some of these
factors. In the first time, the issue of spatiallgrying magnetocrystalline anisotropy is
investigated. Results, obtained for an ideal (umfdK,,g) CoPt-like nanowire, are
compared to those obtained for wires in which thkie ofK,,;s varies randomly. To get a
somehow complete overview, several distributionstied anisotropy value have been

considered. In the next step different kinds ofnpig sites are introduced in the ideal



systems, in order to examine the depinning procEss.issue of the influence of tifie
parameter in the depinning of the wall was alsse@iwith this occasion. Results for both

geometrical constrictions and anisotropy defeatssaown.

111.3.3.1. Effect of anisotropy distribution

In Permalloy nanowires it was shown that the swfeoughness prevented the
formation of antivortices. This resulted in a fastetion of the walls than in ideal wires.
However, these “geometrical” defects might be ate possibility of generating pinning
potentials. Besides surface roughness, the spatiition of the material parameters must
be also considered when talking about pinning. Bf¢éine DW does not remain trapped
due to this kind of defects, it can be heavily defed, its motion taking place in a less
“smooth” manner than for perfect wires. It is tHere interesting, and also necessary, to
study DW motion occurring in systems in which sdeffects are present.

In out-of-plane magnetized systems, such an agraegt of the magnetization
might appear due to two causes: either very smafimatization or strong perpendicular
magnetocrystalline anisotropy. Here we considerlatier case. Comparing the in-plane
and out-of-plane magnetized systems, it is cleatr tte former ones are affected by much
weaker pinning fields. Bearing in mind the presente strong anisotropy, whereas in
materials with in-plane magnetization #g,s material parameter is very small or zero, the
spatial variations of this material characteristimld be he explanation of the strength of

the pinning potentials in out-of-plane systems.

Following this idea, in this first study, we cadiout simulations to see the effect
of an anisotropy distribution on the DW motion. Tdigection of the anisotropy field was
kept constant but the value of the magnetocrystakinisotropy constam,ns was varied
in each mesh cell. As experimentally the grain gizpolycrystalline films was measured
and it is known to be between 5-10 nm [Rodmacq RQaking anisotropy “cells” equal to
the discretization cells seems to be an appropdatéce. Small values of the anisotropy
will attract the wall, keeping it fix, whereas thegions with important anisotropy will be

avoided by it.



To create a disorder in the system, random valfiése anisotropy constamtere
generated, varying between [0.5,KL};s - distribution D1- and [0.5, 1.%xnis - called D2,
and then distributed in the mesh ceKsy;s is the value in the ideal wire. A distribution
corresponding to the first category is shown iruFeglll.23:

0.65 0.77 0.89 1.01 1.13 1.25

| D 10
120 INE ui A T

g -
= 80 5
= 1
=
L 408
=]

vy B :

00 100 200 300 400 500
Wire length (nm)
_—

Figure 111.23: Random anisotropy distribution opy D1.

Once these distributions generated, they are @asednhput of the WALL_ST
simulation tool. Three current densities have beemsidered: 5-18 20.18° and
50-13°A/m?. All these current values are above the currensitie corresponding to the
Walker breakdown.

During displacement, the wall is translated whenat approaches to closely the
lateral surfaces of the computation region. Evenetwhen such a translation occurs, the
anisotropy distribution is regenerated, making stihrat it is kept the same in the
neighborhood of the wall. This way, the motion loé¢ wall is happening in a wire with a
truly random distribution of anisotropy values.

The wall is left to evolve during several tensnainoseconds. The magnetization
components and the wall position are all monitatedughout the motion duration. The
curves obtained for the systems where disorderimteduced (traced in colored lines) are
compared to the evolution obtained in the ideakywplotted in black. In Figure I11.24 the
results for g=5-1G°A/m? (on the left side) and,p}=50-13°A/m? (on the right side) are
shown.
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Figure 111.24: The <ny> magnetization component and the wall positiorsusrtime for a
current density of 5-1® A/nf and 50-18 A/nf.

The in-plane magnetization components give theclBlor Néel character of the
wall. As both current values are above the critMé&llker breakdown current, the Bloch
and Néel structures should be equally observedortinfately, the presence of the random
anisotropy distribution prevented the periodic appace of Bloch/Néel configurations.
Even more, for the smallest value of the curremisdg, two kinds of behaviors were
observed for the wall position. The wall can eith@wve, more or less steadily (the red
curve for J,7=5-13° A/m?, or it can reach a plateau, meaning that the veatiains
trapped on some local pinning site. For the higleestent density, however, the DW
displacement seems to be less disturbed by thetewpy distribution. For the intermediate

current density of 20-18A/m? the behavior is similar with the one seen for BA/m?.

Configurations taken at consecutive time stepguféi 111.25) reveal the cause of

the oscillations in the in-plane magnetization comgnts.
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Figure 111.25: Magnetization configuration taken aeveral time steps showing the
deformations occurring as the wall moves througé wire with a random anisotropy
distribution of type D1. The current density i56f13° A/nf and$=0.02.

These images show that, at some moments the neggimt along the wire width
is nearly aligned, like in the second and fourthfrguration. Nevertheless, the wall is not
straight but a little bit deformed. At other mongn{see configurations 1, 3 and 5) the
orientation of the magnetization in the wall varg®atly between the edges and the

central part. All these features explain the disobserved in the evolution of sm



Concerning the wall velocity, for the smallest remt density, when the wall
remains pinned, its final velocity tends toward$=6r the two other current densities the

wall velocity varies as shown in Figure [11.26:
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Figure 111.26: The variation of the wall velocityexsus time. Comparison between the
evolution in an ideal wire (the black curve) ane thire in which disorder is introduced
(red curve corresponds to a distribution of type, B green curve - to D2).

As foreseeable from the behavior of the&nmagnetization component, the oscillatory
behavior of the wall velocity observed in the ideale cannot be reproduced if an
anisotropy distribution is considered. The averagecities in the wire with anisotropy
distribution were also calculated and comparedht alue obtained in the ideal wire.
These values seem to be less affected by the éisdfdr example, ifJ=50-16° A/m?,
the velocity in the ideal wire is 113 m/s, wheremsing D1 or D2 a value of 126 m/s,
respectively 103 m/s is obtained. The same is foue¢he smaller current ofapl,=20-16°
A/m?, where the values are: for the ideal wire 51 mit) D1 37 m/s and with D2 45 m/s.

The results presented above demonstrate the iamtadle that anisotropy defects
can play in the displacement of a Bloch wall. As thall propagates through the wire it
meets several pinning sites. Depending on the wuwaue, the wall can either be trapped,
or continue its motion, the effect of the pinnirtes being to distort the DW or locally
perturb the magnetization orientation to a ceréaitent. On one hand, for small currents, it
seems that the pinning force and the force from dheent are comparable, as the
probability of the DW being trapped can be quit@amant. The task of determining on
what exactly the DW remains pinned is difficultidtnot clear whether the wall is strongly



attracted by clusters with reduced anisotropy, tawngly repulsed by those where the
anisotropy is higher than the average. On the otlaed, the current densities, which
belong to the interval where precessional moticex{gected, appear to be strong enough to
move the wall with velocities close the ones meadun ideal wires. At this point it is
worth noting that recent experimental results [Buwes 2008], exploring field-induced

depinning suggest the same kind of stochastic hehsor small values of the field.



[11.3.4. Depinning from geometrical or anisotropy defects

In DW-motion-based devices the walls are usuallyved between two stable
positions. To find the better manner in which thallwean be positioned in a specific
location, several scenarios are foreseeable. Wat theere only two possibilities:
geometrical constrictions and pinning due to anignt defects - regions where the

anisotropy is reduced with a certain ratio.

[11.3.4.1. Geometrical constrictions

Four types of geometrical constrictions were thss@own in Figure 111.27:

GC1 GC2 C3

Figure 111.27: The four types of geometrical comgions.
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The size of the constrictions is given in Tabledll

Table 111.4: Size of the geometrical constrictions

Name | Width (nm)| Depth (hm) Thickness (nm)
GC1 8 4 11
GC2 8 8 11
GC3 8 12 11
GC4 20 4 11

In the beginning of the simulation, the wall wdaged exactly in the centre of the
constricted region. The aim of these simulations wa identify the current density

required to expel the wall from the constriction.



Four values of the non-adiabatic spin transferapater were tested3=0,
=0.01=, B=0.02, and finally a quite exotic value @E1, chosen based on recent
experimental results that demonstrate that suafifignt values of this parameter can be
observed in special materials [Miron 2008]. Theautssobtained when the first constriction

is used are presented in Figure 111.28:
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Figure 111.28: The wall position versus current d#ly, as a function of the value gfFor
the first three values the behavior is almost idmt For =1 the depinning current
decreases from 9-10A/nfto 8-16° A/nt.

As predicted already in theoretical studies, tywon dorques act upon a DW. The
first spin torque term is known to be responsilde the DW distortion, its effect being
visible in the beginning of the motion. The nonaddditic torque term describes the
influence of the mistracked electrons on the DWiamtThis term is the one responsible
for displacing of the DW, giving its terminal velgc By comparing the above showed
images, one observes that, apparently, the valu¢hef non-adiabatic spin transfer
parameter has limited influence on the depinning processarBg in mind that the
evolution of the wall is followed only throughoutet first 4-5 ns of the motion this
conclusion turns out to be quite normal, as we rbesdituated, most likely, in the interval
in which the adiabatic term plays the dominant ,r¢éhe non-adiabatic torque having a

negligible influence.



A detailed analysis of the curves in Figure IlIr28eals that for the smallest values
of B (0, 0.01 and 0.02), there is nearly no differebeeveen the velocity versus-current-
curves, the depinning current being around ¥.-A0m?. If p=1 the depinning occurs at a
slightly smaller current value: 8-£0A/m?. This decrease of around 10% shows that if the
value of the} parameter approaches unity, the two torques hales of equal importance

in the depinning process.

For the other constrictions the behavior is simiga shown in Figure 111.29.
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Figure 111.29: the wall position versus time foretlgeometrical constrictions GC2, GC3
and GC4. The figures on the left side were obtase#tings=0.02, while on the right side
the evolutions fop=1 are shown.



Here only the3=0.02 and thg=1 curves are shown, the ones obtaine@#@r andp=0.01
being identical with the first one. Although the &5&nhd GC3 constrictions are deeper than
GC1, while the GC4 is wider having the same deptle&1, the depinning current is not
very affected by the variation of the constrict®size. For CG2, the depinning current is
9.13°/m? for all thep values. For the third case, GC3, the depinningeatirdensity
varies between 8-1%\/m? obtained iff=1 and 9-18A/m? for the other values. For the
last constriction, as this is wide but not very glethe depinning current goes down to
6-10°A/m? for p=1 and remains 8-1%/m? for small values of the non-adiabatic spin

transfer parameter.

The depinning process

Both Figure 111.28 and Figure II1.29 reveal thatcartain threshold current is
required to expel the Bloch wall from the cons#&@ttregion. For currents smaller than this
value, the wall remains in the constricted regiad ascillates in this “stable” position, as
shown in Figure 111.30. The oscillation amplitudecdeases in time, because of the
damping. Overall, it takes 35-40 ns for the walttonpletely stop moving.

The magnetization distributions shown in Figule30 were obtained for a current
density of 8-18 A/m? using the GC2 configuration, and they represeattito stable
positions between which the wall oscillates. Theosd configuration is characterized by

the tilt angley that increases as the current becomes higher.
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Figure 111.30: Configurations obtained using thecsad type of geometrical constriction.
A current density of was used 848/nf and$=0.02.

Increasing the current density, the force from therent manages to tip the
magnetization in the wall to 90° and depinning @scin the first time the wall bends and
then one of the ends slowly detaches itself froendbnstricted region, pulling the rest out

after itself. An example is given in Figure 111.31.



| I

mz -1 -08-06-04-02 0 02 04 06 08 1

0 ns

0.87 ns

1.17 ns

1.44 ns

1.68 ns

For the depinning current and current densitiesaaiately above this value, the
presence of the constriction is still visible dgrithe motion period. In Figure I11.28 for
example, the curves with,,F9-13°A/m? and J,=10-13°A/m? (for $=0, p=0.01 and
p=0.02) and }=8-10°%A/m? and J,=9-1G°A/m? (for f=1) present important oscillations.
At higher current densities, the evolution of thallwosition takes up a smoother form,
varying almost linearly in time. To explain thisneo must take into account that, after
leaving the constricted region, the wall is spptio three parts: the upper and lower ends
and its center. The two ends move in a somehowugded manner, as there are moments
when the upper end is ahead, and other times wiesfower is the leading one, pulling
after itself the rest of the wall. When the walthe most distorted, the extremes of its two
ends can be separated by a distance of around 3Gamhigher current values however
after leaving the constriction the wall moves lessformed, less disturbed by the

constriction, the wall position varying almost larly in time.



When working with geometrical constrictions, therent density is not uniform in
the entire wire, namely in the constricted regian proportional increase of the current is
expected and taken into account in the simulatidhss is why, a small sensitivity of the
depinning current with respect to the size of tlastriction was observed. It is also
important to note that, such reduced-width regi@mesent “hot spots”, and the influence

of a non-uniform temperature distribution is reqdito complete this study.

The above presented results show that it is plessibdepin a Bloch wall with
relatively small current densities. A decrease €d4D%) of the depinning current is
obtained ifp approaches unity. This decrease of the depinnimgect can be interpreted
as: while for small values - it is the adiabatimtee only that frees the wall, for high values
of B - it is both the spin torques that act on depigrime wall. A similar conclusion was
drawn by He et al. [He 2005] after carrying out gliations for a nanowire with in-plane
magnetization. They introduced a trapezoidal castgin and looked to the depinning of

transverse DW.

111.3.4.2. Crystalline defects

Similarly with the four types of pinning sites @eated by geometrical
constrictions, four types of anisotropy defectstédoAD) were introduced in the nanowire
and their effect is investigated in the followingaragraph. The value of the
magnetocrystalline anisotropy constant was reduiceal strip extending over the whole
wire width. The characteristics of the four anieply defects are given in Table III.5:
Table I11.5: Value of the anisotropy constant,Kand the size of the strip

Defect Kanis value Width (nm)
AD1 Kanid4 8
AD2 Kanid 2 8
AD3 3 Kanidd 8
AD4 3-Kanid4 andKnid 2 16




The anisotropy profiles corresponding to each tgperystalline constriction is given in
Figure 111.32:
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Figure 111.32: Anisotropy defects introduced in therfect wire. AD1, AD2 and AD3 have
the same width, whereas AD4 is two times larger.

The purpose of this study was again to deternmheectirrent required to move the
Bloch wall away from the low-anisotropy region. Siations were carried out for three
values of the non-adiabatic spin transfer paraméted.01 and 1. The results obtained for
the first anisotropy defect are shown in Figure3Bl

B=0 B=0.01
J_ (Am?) J,,, (Am?)
pp app
8+1010 8*1010
| 9+1010 1 91010
15+1010

1541010

wall position (nm)
wall position (nm)

120 L L L 120
0 0

time (ns) time (ns)

2
JaﬂD (A/m’)

71010
1 81010

1541010

wall position (nm)

120
0

time (ns)

Figure 111.33: The wall position versus current é#ty, as a function of the value f



The curves are somehow similar to those seen whemeirical constrictions were used.
The =0 andp=0.01 are again for the most part equivalent, tlgirdhing current being
around 9-18A/m?2 Using 1 forp, changes the behavior of the wall, the depinnimgent
decreasing to 8-1%/m? The data obtained for these scenarios are plttEityure 111.34.

Because of the equivalence of fiwd andp=0.01 cases, only the results withO andp=1
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Figure 111.34: The wall position versus time curves the crystalline constrictions of type
AD2, AD3 and AD4.

The value depinning current necessary for detacline Bloch wall from the

geometrical constrictions varied in the same rangeparently, although by nature



completely different, the reaction of the wall teese two types of pinning sites is quite
comparable. If pinned, the wall position descripesiodic oscillations, with decreasing
amplitude. At high current values, the wall is selesto the presence of the low anisotropy
region only until complete depinning occurs. Snaiditortions of the wall are observable,

but as the current increases the wall starts tpggate more and more smoothly.

The depinning process

Independently on the anisotropy defect used, riwaller current densities than the
threshold depinning value, the DW oscillates betwee pure and a tilted Bloch
configuration. If the wall is pinned, everythinggpeens exactly like with the geometrical
constrictions (see Figure 111.30). On the otherdyahe depinning process takes a slightly
different course than what was seen for the pretetsse, as shown in Figure 111.35:
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Figure 111.35: The depinning process from a cordidn of type AD1. The black rectangle
corresponds to the region where the value gk reduced.



In geometrically pinned scenario, because of W donstrictions, the ends of the
wall were somehow trapped in this region. Thereftne current acted firstly on the free
part of the DW - its center. The wall bend, takiqya semi-circular shape. The presence of
a reduced-anisotropy region does not induce sistgraficant deformation of the wall. In
fact, in the first part of the motion, when the lak a part of it, is still in the vicinity of
the anisotropy defect, the magnetic moments imtlémove relatively coherently. As the
magnetization in the wall makes a complete 3601, ttive force from the current succeeds
in pushing a part of the wall out of the pinningesiThen one of the ends frees itself
completely. After this partial freeing, the proptiga of the wall is similar with the one
seen in the presence of geometrical constrictionthe next step, the remaining part of the
wall is extracted from this region by the alreaitetated part. Once the wall is completely
free, the ends alternatively take the leading noldéjng the rest of the wall after them.

It is worth noting that, in addition to examinirtbe depinning process, the
magnetostatic field acting on the wall was analyz@tviously, the inclusion of an
anisotropy defect in the nanowire does not chahgedemagnetizing field distribution, as
the geometry is the same as for the ideal wire. the contrary, the geometrical
constrictions modify the local value of the demammeg field. Depending on the
constriction sizeH4em On the surfaces is modified by 5% (for GC4) andaup0% (GC3).

Before concluding this part, a remark concernimg \talues off parameter, has to
be made. It is known that fifis O, motion occurs only above a certain critmairent, even
for perfect wires. The current densities used laeeeall above this critical value, that was
determined to be smaller that 7*48/m?. Therefore the use @£0 is justified.

The above presented results permit to draw sewaatlusions. First of all,
assuming thap is around 18, using only current to depin and propagate the [iw,
adiabatic torque plays the leading role in the wiejpig process. Testing the case wfet
showed that, now the spin torque terms work togetihdree the DW. Second of all, it
seems from the data examined above, that small gfeonconstrictions or localized
anisotropy defects can both act as pinning sitée freeing of the wall from these
locations happens in similar manners and also tieewt densities are contained in the

same interval.



[11.3.5. Current pulses and Bloch wall displacement

In applications, continuous currents are rareklydutor DW propagation, as these
would heat and eventually, destroy the sample.ifjeetion of current pulses of different
shapes and amplitudes is more adapted for suchogesp Current pulses offer also a
solution for the “hot spots” created by geometricahstrictions. Because of the variation
of the sample size, the local current density chswgions can be much increased, leading
to more important temperature effects. Trying telese a little bit the possibilities, a
study of the Bloch wall displacement under the affef short (nanosecond and sub-

nanosecond) pulses was carried out. The resuligrasented in the following.

First, the case of an ideal wire is considereduig 111.36 shows the evolution of
the wall position in time as a function of the gulength, when 4J=10-13° A/m? and
Jop=50-16° A/m?, with the pulse length varied from 0.5 ns to 1s2 n
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Figure 111.36: The wall position versus time for dwcurrent values and several pulse
lengths.

For both current values, the wall is displaced @veertain distance, distance that increases
with the pulse length. The wall propagates in theation of the electron flow as long as
the current is present. When the external excitasaremoved, the wall still continues to
move, but in opposite direction, returning towaitdsoriginal position. After the excitation
energy is dissipated, the overall displacementhefwall is quite small, for the longest



pulse (1.2 ns) of 10-1DA/m? the wall stops at a distance of 5 nm from itsinggposition

and, respectively 27 nm for a current of 56°/m?.

Taking a much larger current,,=100-16° A/m? one would expect a likewise
behavior. As shown in Figure 111.37, in this casspending on the pulse length the wall
either returns or continues the initial motion. Tpm@pagation continues until damping

halts the motion:
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Figure 111.37: The variation of the wall positiomif a current pulse of 100-1bA/nf and
several pulse lengths.

To understand this strange aspect, the spin torgumes must be revisited. The
adiabatic torque has the role of tilting the mara¢ion in the DW. For the same current
density, longer current pulses tilt the magnetaratnore. The tilt angle can be followed by
monitoring the in-plane magnetization components.éxample, the variation of the s
for Jp=50-16° A/m® and J,,=100-18° A/m?, for the pulse length set to 0.7 or 1.2 ns is

shown in Figure [11.38:
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Figure 111.38: The evolution of the <m magnetization component.



For two different current densities, if the pulsadth is the same, the value of gnjust
before the current stops is different. In Figude3B, for the smaller current, considering
the cycle of Bloch-Néel transitions, the wall idl shtermediate Bloch, with the initial
chirality. For the current density of 100*4@/m? the pulse of 1.2 ns (the same is true for
a pulse length f 1 ns) tilts the magnetization saim that the wall structure became Néel.
Nevertheless, these observation still do not expilae forth or retrograde wall motion.
Going further in the analysis of the wall propagatprocess, after the current is stopped,
the only force acting upon the wall comes fromatsal demagnetizing field, arising due to
the alteration of the pure (magnetic-charge-frelcB structure. Whereas the orientation
of the demagnetizing field is imposed by the maigagbn, the direction in which the wall
will be displaced, after the current is eliminatexdgiven by both the orientation 6fgem
and the chirality of the wall. If the wall struceudid not undergo a Bloch-Néel transition,
both the chirality and the orientation Hfem remain constant, the wall being pushed by
this force towards its initial position. If the gelis longer, the tilt angle of the wall attains
values beyond 90°, the chirality is therefore clemhgnd so is the effect of the couple
Hgemrwall chirality. Consequently, the wall continueds iforward motion, the
magnetization turning until a Bloch structure igamted. At this moment as the torque on

the wall is nil, the motion stops.

These preliminary results indicate that in ordehave control over a Bloch wall
using a current pulse, for the case of an ideabwae, two quantities have to be known.
The first is the critical current for Walker brealeh. It is clear that for values lower that
this critical current the wall returns towardsiitgial position, as the wall remains quasi-
Bloch for such currents. FogdJ, like the values given above, Bloch-Néel transiiare
expected. To be able to precisely manipulate the IDW necessary to know at which
times do the Bloch-Néel transitions occur. In othverds the oscillation frequency of the
magnetization should be determined. Depending enrd¢hative positioning of the pulse
length with respect to this Bloch-Néel structuragiam, one would be able to tell in what

direction is the wall moving after the currenttispped.

In the applications based on DW propagation, tmpgse is to be able to move the

wall between two stable positions. To obtain sutdssgeometrical constrictions can be



created, with a certain periodicity. In the follengi some results concerning DW

propagation between two such constrictions, by m@&icurrent pulses, are given.

Earlier in this chapter, the depinning currentuiegd to expel the DW from
geometrical constrictions with different sizes wietermined. Based on this study, two
constrictions of type GC1 (Table 111.4) situatedaatlistance of 40nm, and respectively 80
nm, are introduce in the perfect wire. The wallipos versus time is presented in Figure

111.39 for these two scenarios.
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Figure 111.39: The evolution of the wall positidor two constriction of type GC1 situated
at a distance of 40nm (left) and 80 nm respectijraiyt).

For the first case the situation is simple. App#ye a perfect combination of pulse
length and distance between the constrictions wasd, as after the wall is depinned, the
DW remains stuck on the second constriction. Onother hand, for the second scenario,
the DW can propagate and stay on the second ottigtror return to its original position.
While the current is present, somehow disregartlwegpresence of the constrictions the
orientation of the magnetization remains relativetyform. Therefore the explanation for

forth or backward wall motion in the ideal wirendae used also for this scenario.

The above described results show how importasttd know what basic physical
phenomena stand behind current-induced displacenaetdetails of wall displacement,
like the behavior in the linear velocity regimestloe oscillation period in the precessional
motion, might seem trivial. Nevertheless, when entpulses are injected, they turned out

to be very important factors.



Although this is not a complete study, and quatitie conclusions cannot be
drawn from the data presented above, it has bemomgrated that is possible to displace
a Bloch wall between two small geometrical consittits by means of short current

pulses.
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Conclusions

The purpose of the work presented here is twofold.

The first task was to provide a simulation toosdx on the finite element method,
which would make possible the treatment of microngdig systems regardless of their
shape. Two finite element formulations were testada first time, the classical path in
deriving a finite element formulation for the dynantandau-Lifshitz-Gilbert equation
was followed. Two simple test cases were chosennfamte prism where the magnetic
moments are coupled only through the exchangeaictien, and a well-known magnetic
structure, the so-called stripe domains, wherefalhe four most relevant interactions are
included. The finite element results were compaweth those obtained by a finite
difference approach, previously developed in omugr Based on this comparison, it was
shown that the magnetization dynamics is not atelyralescribed by this classical finite

element approach, as apparently it overestimageddamping term.

Making use of the geometrical interpretation af tonstraint on the amplitude of
the magnetization vector, that forces the magn@iizao move on a sphere, a second
integral formulation was derived and implementedr &ll the test cases, both the static
and the dynamic results provided by the finite etdhce software were accurately
reproduced.

The interest in the finite element method arisesnity because it allows treating
complex geometries. To obtain some information altbe performances of this second
finite element implementation, a stripe system wériodic constrictions was next
considered. The curved surfaces are known to Isedesurately described by the regular
space discretization used by the finite differertban by the irregular mesh used in the
finite element method. Again the magnetization dyita is correctly described by the

second finite element formulation.

The previous test cases proved the high accuradyparformance of the finite

element method. Therefore in the last part of theapter concerning numerical
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micromagnetism, a more physical result was predenWe studied magnetization
dynamics in the limit of small perturbations, reguoing ferromagnetic resonance spectra
and calculating the resonance modes on both a eianpd a constricted FePd thin film.
Comparing the finite elements results with previpuund experimental and finite
difference-based simulations a very good agreemast found for the simple structure.
For the constricted geometry some small discreparamie found, especially when looking

at the resonance modes, but overall the resultsadisfactory.

The second part of the manuscript concerns thadystfi magnetic domain wall
displacement in systems with perpendicular magmngstalline anisotropy. We were
mostly interested in current-driven wall propagatidheoretical papers model the spin
transfer by means of two new torque terms includedhe Landau-Lifshitz-Gilbert
equation. Therefore, further development of thatdirdifference implementation was
required. After the obligatory benchmarking phasga{nst other numerical approaches
and analytical treatments), carried out succegsfideal systems were first studied. First a
bulk system has been studied, as the value of taeNfield and of the critical current
density can be calculated analytically. Next thaetsion of the system was reduced to a
thin film, and after that to a nano-wire. Consedlyerthe critical current/field values are
decreasing, their reduction being related to thgmatostatic field within the wall. The
mechanism of the domain wall motion does not seerbet affected by the geometry
change. The importance of the space discretizati®ed in the simulations was also
addressed, namely we showed that it is difficukt\taluate the critical field/current exactly
because of the finite size effects of the disca¢itim. The micromagnetic simulations tend
to prove that analytical models are not accuratugh in the estimation of the critical
field/current.

In the last part of the chapter concerning domeall displacement, several types
of defects were introduced in the perfect nanowimeorder to explore their effect on
magnetization dynamics. Firstly the amplitude o& tmagnetocrystalline anisotropy
constant was varied randomly in the wire. It wasvah that for small current densities the
wall propagation is mostly dominated by the intignginning. At high current densities
however the spin transfer torque overcomes thengitr pinning, the movement being

governed by the spin transfer. Finally, the depignicurrent from geometrical and
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crystalline defects was determined. This paragipb shed some light on the depinning
process, showing that for small values of the ndiakmtic spin transfer parameter the
adiabatic torque is responsible for the depinnifhthe wall. Increasingg, the role played

by the non-adiabatic torque becomes more importaatdepinning current decreasing by
a certain amount. In the last paragraph a prelimirsiudy concerning domain wall

displacement by injection of nanosecond-long curperises is presented. The possibility
of moving a domain wall between two geometrical stootions by such short current

pulses was demonstrated.



