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Merci également à toutes les personnes que j’ai pu contacter pour leur poser des questions
sur les travaux qui m’ont toujours répondu avec sympathie, entres autres: Keqin Gu, Emilia
Fridman, Carsten Scherer, Mohammed Darouach. . .

Mes derniers remerciements vont aux auteurs de livre et des cours à disposition gratuite-
ment en ligne qui m’ont permis de progresser dans mes connaissances durant ces trois années
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Summary

This thesis is concerned with the stability analysis, observation and control of LPV time-delay
systems. The main objectives of the thesis are

• the development of adapted and possibly low conservative stability sufficient conditions
for LPV time-delay systems.

• the development of new advanced control/observation strategies for such systems using
new tools developed in the thesis, such as specific relaxation techniques of Linear and
Nonlinear Matrix Inequalities.

For that purpose, this thesis is subdivided is three parts:

• The first part, composed of Chapters 2 and 3, aims at providing a sufficiently detailed
state of the art of the representation and stability analysis of both LPV and time-
delay systems. In both cases, the importance of LMI in stability analysis is strongly
emphasized. Several fundamental results are bridged to each other in order to show the
relations between different theories and this constitutes the first part of the contributions
of this work.

• The second part, composed of Chapter 4, consists in a presentation of several (new)
preliminary results that will be used along the thesis. This part contains most of the
contributions of this work.

• Finally, the third part, composed of Chapters 5 and 6, uses results of the second part in
order to derive efficient observation, filtering and control strategies for LPV time-delay
systems.
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Introduction and Structure of the
Thesis

Context of the Thesis

This thesis is the fruit of a three years work (2005-2008) spent in the GIPSA-Lab1 (former
LAG2) in the SLR3 Team. The topic of the thesis is on Robust/LPV Control and Ob-
servation of LPV Time-Delay Systems under supervision of Olivier Sename (Professor
at Grenoble-INP4, France) and Jean-François Lafay (professor at Centrale Nantes, IRCCyN5

Nantes, France).

This thesis is in the continuity of works of Annas Fattouh [Fattouh, 2000; Fattouh et al.,
1998], Olivier Sename [Sename, 1994, 2001; Sename and Fattouh, 2005] and more deeply
Jean-François Lafay who was the Olivier Sename’s thesis supervisor (the thesis was on the
controllability of time-delay systems).

During the thesis the Rhônes-Alpes Region granted me of a scolarship in order to travel
and collaborate in a foreign laboratory. I went to School of Electrical and Computer Engi-
neering (ECE) in GeorgiaTech (Georgia Institute of technology) to work with Erik I. Verriest
on the topic of time-delay systems with applications in the control of disease epidemics.
The collaboration gave rise to a conference paper ’A New Delay-SIR Model for Pulse
Vaccination’ [Briat and Verriest, 2008] and potentially to a journal version according to
the invitation of the editor of the new Elsevier journal: ’Biomedical Signal Processing and
Control’.

Finally, thanks to Emmanuel Witrant (GIPSA Lab), I incorporated the project on the
control of unstable modes in plasmas in Tokamaks, cores of the promising future (?) energy
production technology exploiting nuclear fusion. The collaboration is done with Erik Olofsson
and Per Brunsell (KTH6) and S-I. Niculescu (LSS7). The work has led to the conference paper
[Olofsson et al., 2008].

1Grenoble Image Parole Signal Automatique Laboratory - Grenoble Image Speech Signal Control Systems
2Laboratoire d’Automatique de Grenoble - Grenoble Control Systems Laboratory
3Systèmes Linéaires et Robustesse - Linear Systems and Robustness
4Grenoble INstitut Polytechnique - Grenoble Institute of Technology
5Institut de Recherche en Communications et Cybernétique de Nantes - Nantes Research Institute in Com-

munications and Cybernetics
6Kungliga Tekniska högskolan - Royal Institute of Technology, Sweden
7Laboratoire des Signaux et Systèmes - Signals and Systems Laboratory
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Introduction and Motivations

At the beginning of the century, Emile Picard (french mathematician) wrote an interesting
remark in the proceedings of the 4th International Mathematician Congress in Rome (the
complete text will be provided at the end of this section). He noticed that while in classical
mechanics equations in which the future is immediately predicted using current information
(speed and position), it is not possible to predict the future in the same way when living beings
are considered. Indeed, the future evolution would depend on the current information but also
on past events. Mathematically speaking, the evolution would consider integral term taken
from past to current time and would describe the heredity. In the 1970s such equations began
to be studied and these studies give rise to several books in the 1980s. Since then, time-delay
systems (which is the modern and usual denomination) have gained more and more interest
both in theoretical problems (stability analysis, control and observation. . . ) and applicative
problems since they arise in engineering, biology, ecology and economics (examples will be
given in Section 3.1). This presence in many different fields has strengthened their importance
in modern theories of dynamical systems and control.

Due to the particular structure of these systems, lots of specific approaches have been de-
veloped or generalized from more simple cases in order to study their stability, controllability
and many other important properties. As a fundamental example, Lyapunov theory has been
extended to this type of systems through two celebrated theorems, namely the Lyapunov-
Krasovskii and Lyapunov-Razumikhin theorems. From these results lots of advances have
been made but many problems remain open.

A great problem in the stability analysis of linear systems is the robustness of the stabil-
ity. In few words, it consists in determining the stability of a linear system whose constant
coefficients belong to a certain interval. Several tools have been developed to study these
systems (e.g. µ-analysis) and have led to important results which have been applied success-
fully to solve challenging engineering problems notably in aerospace. Furthermore, robust
stabilization is also an important research framework and is still an open problem.

Another crucial problem is the existence of systems which are not robustly stabilizable.
To deal with such a problem it seems necessary to develop a novel approach and here comes
LPV control. . . The idea behind LPV control is to use in the control law the knowledge of
the parameters involved in the system. It turns out that, using such a control strategy, the
class of systems which are stabilizable is wider than when the values of the parameters are
considered as uncertainties.

Moreover, LPV systems can be used to approximate nonlinear systems and hence sys-
tematic and generic ’LPV tools’ can be applied to derive nonlinear control laws for nonlinear
systems. Another interest of LPV control is the design of tunable controllers: external pa-
rameters can be added in the design in order to characterize different working modes.

The idea of merging time-delay systems and LPV systems is not new but is rather
marginal. Indeed, only few works are based on the stability analysis and control synthe-
sis. No work exists on the observation and few results are provided for the filtering problem.
At first sight, it seems straightforward to find solutions to problems involving LPV time-delay
systems. Indeed, would it be enough to merge both theories ? Actually it is not so simple,
many results in robust stability analysis and robust control developed for finite dimensional
systems do not work with time-delay systems. This makes the study of LPV time-delay
systems a more complex problem.
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Emile Picard’s original text [Kolmanovskii and Myshkis, 1999]:

”Les équations différentielles de la mécanique classique sont telles qu’il y en résulte que
le mouvement est déterminé par la simple connaissance des positions et des vitesses, c’est à
dire par l’état à un instant donné et à l’instant infiniment voisin”.

”Les états antérieurs n’y intervenant pas, l’hérédié y est un vain mot. L’application de
ces équations où le passé ne se distingue pas de l’avenir, où les mouvements sont de nature
réversibles, sont donc inapplicables aux êtres vivants”.

”Nous pouvons rêver d’équations fonctionelles plus compliquées que les équations clas-
siques parce qu’elles renfermeront en outre des intégrales prises entre le temps passé très
éloigné et le temps actuel, qui apporteront la part de l’hérédité”.

Emile Picard, ”La mathématique dans ses rapports avec la physique, Actes du IVe congrès
international des Mathématiciens, Rome, 1908

English Translation

’Differential equations of classical mechanics are such that the movement is determined
by the only knowledge of positions and speeds, that is to say by the state at a given instant
and at the instant infinitely nearby.

Since the anterior states are not involved, heredity is a vain word. The application of
these equations where the past and future are not distinguishable, where the movements are
by nature reversible, are hence unapplicable to living beings.

We may dream about more complex functional equations than classical equations since
they shall contain in addition integral terms taken from a distant past time instant and the
current time instant, which shall bring the share of heredity.’

Emile Picard, ”La mathématique dans ses rapports avec la physique, Proceedings of the
IVth Mathematicians’ International Symposium, Rome, 1908

Structure of the Thesis

Chapter 1 provides a short summary of the Thesis in French.

Chapter 2 provides an overview of different types of representation for a LPV system. For
each model, several adapted stability tests are presented and relative merits are com-
pared.

Chapter 3 gives an insight of different representations of time-delay systems and several
physical examples show the interest of such systems. Then a large part is concerned
with the stability analysis of these systems in the time domain in which several methods
of the literature are presented and compared. A last section addresses the problem of
the stability in presence of uncertain delay.

Chapter 4 is devoted to the introduction of preliminary notions and important results used
along the thesis. First of all, spaces of delays and parameters are clearly defined.
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Second, new methods of relaxation of parameter dependent LMI and matrix inequalities
with concave nonlinearity are developed and analyzed. Then a method to compute
explicit expression of parameter derivatives in LPV polytopic systems is given using
linear algebra. Finally, several Lyapunov-Krasovskii based techniques are given in order
to show asymptotic stability of LPV systems.

Chapter 5 presents results in observation and filtering of LPV systems using results provided
in Chapter 4. Several types of observers and filters are studied in both certain and
uncertain frameworks.

Chapter 6 concludes on the stabilization of LPV time-delay systems. Several structures for
the controllers are explored according to the presence of a delayed term in the control
law; both state-feedback and dynamic output feedback controllers are synthesized. This
chapter also presents a new type of controllers which is called delay-scheduled controllers
whose gains are smoothly scheduled by the delay value.

Contributions

The contribution of the thesis is plural:

• Methodological contributions

• Theoretical contributions

Methodological contribution

The methodological contribution is based on a common remark by reading journal and con-
ference papers. Why most of the papers concern the stability of time-delay systems only ?
Why are there only few papers on the control and observation or filtering ? The main reason
comes the fact that, when considering time-delay systems, it is not sufficient to substitute
the closed-loop system expression in the stability condition to derive efficient and easy to
compute constructive stabilization conditions (taking generally the form of a set of LMIs).
This is mainly due to the presence of a high number of decision matrices in the stability
conditions.

A global method is to perform a relaxation after substitution of the closed-loop system
(which is the direct and efficient method used for finite dimensional systems). We emphasize
in this thesis that this may be not the right choice since this alters the efficiency of the initial
result. So we preconize to perform a relaxation technique on the initial problem in order to
turn the original stability condition into a form which is more suitable for synthesis purposes.
Hence a step is added in the design methodology and allow to improve the results. One of the
great interests of the relaxation is its adaptability to a wide variety of different LMI stability
conditions.

Theoretical contributions

The theoretical contributions are multiple and address several different topics:

• Concave nonlinearities (involving inverse of matrices) in matrix inequality are quite dif-
ficult to handle and their simplification (or removal) generally results in conservative
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conditions. Bounds involving completion by the squares and using the cone complemen-
tary algorithm can be used but while the former is too conservative, the latter cannot
be used with parameter dependent matrices. To solve this problem we have developed a
new exact relaxation which turns the rational dependence into a bilinear one and allows
for the application of simple iterative algorithm.

• Several LMI tests have been generalized to the LPV case and the relaxation method
have been applied in order to provide new LMI tests better suited for the resolution of
design problems.

• A new Lyapunov-Krasovskii functional has been developed in order to consider systems
with two delays in which the delays satisfy an algebraic constraint. This functional
addresses well the problem of stabilizing a time-delay system with a controller with
memory embedding a delay value which is different from the system one.

• A new strategy to control time-delay systems has been introduced and has been called
’delay-scheduled’ controllers. This type of controllers are designed using a LPV for-
mulation of time-delay systems. Then using LPV design tools, it is possible to derive
controllers whose gain is smoothly scheduled by the delay value, provided that it is
measured or estimated. Since the delay is viewed as a parameter, then it is possible
to consider uncertainties on the delay and perform robust stabilization in presence of
measurement/estimation errors.

• Finally, the last contributions are based on the application of new and adapted stability
tests to observation, filtering and control. Such methods will be shown to lead to
interesting results.
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1.1 Introduction Générale et Motivations . . . . . . . . . . . . . . . . . . . . . . . 1
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7.2 First Padé’s approximants of the function es . . . . . . . . . . . . . . . . . . . 310

xix



xx LIST OF TABLES



List of Publications

Journal Papers

• C. Briat, O. Sename and J.F. Lafay, ’From Stability Analysis to Memory-Resilient
Robust Control of Uncertain LTI/LPV Time-Delay Systems - A Discretized Lyapunov-
Krasovskii Functional Approach’ Submitted to IEEE Transactions on Automatic Con-
trol

• C. Briat, O. Sename and J.F. Lafay, ’Memory Resilient Gain-scheduled State-Feedback
Control of Uncertain LPV Time-Delay Systems with Time-Varying Delays’, Submitted
to Systems and Control Letters

• C. Briat and E. Verriest, ’A New Delay-SIR Model for Pulse Vaccination’, Accepted
with minor changes at Biomedical Signal Processing and Control

• C. Briat, O. Sename and J.F. Lafay, ’H∞ delay-scheduled control of linear systems with
time-varying delays’, Accepted at IEEE Transactions on Automatic Control

• C. Briat, O. Sename and J.F. Lafay, ’Delay-Scheduled State-Feedback Design for Time-
Delay Systems with Time-Varying Delays - A LPV Approach’, Accepted to Systems &
Control Letters

International Conference Papers with Proceedings

• C. Briat and J.J. Martinez, ”Design ofH∞ Bounded Non-Fragile Controllers for Discrete-
Time Systems”, Submitted to 48th Conference on Decision and Control, Shanghai,
China, 2009.

• C. Briat, O. Sename and J.F. Lafay, ”Memory Resilient Gain-scheduled State-Feedback
Control of Time-Delay Systems with Time-Varying Delays”, Accepted at 6th IFAC
Symposium on Robust Control Design, Haifa, Israel, 2009.

• C. Briat, O. Sename and J.F. Lafay, ”H∞ Filtering of Uncertain LPV systems with
time-delays”, Accepted at 10th European Control Conference, Budapest, Hungary, 2009.

• E. Olofsson, E. Witrant, C. Briat, S-I. Niculescu, P. Brunsell, ’Stability Analysis and
Model-Based Control in EXTRAP-T2R with Time-Delay Compensation’, 47th IEEE
Conference on Decision and Control, Cancun, Mexico, 2008

• C. Briat, E. I. Verriest, ’A new delay-SIR Model for Pulse Vaccination’, IFAC World
Congress, Seoul, South Korea, 2008

xxi



xxii LIST OF TABLES

• C. Briat, O. Sename and J.F. Lafay, ’Delay-Scheduled State-Feedback Design for Time-
Delay Systems with Time-Varying delays’, IFAC World Congress, Seoul, South Korea,
2008

• C. Briat, O. Sename and J.F. Lafay, ’Parameter dependent state-feedback control of
LPV time-delay systems with time-varying delays using a projection approach’, IFAC
World Congress, Seoul, South Korea, 2008

• C. Briat, O. Sename and J.F. Lafay, ’A Full-Block S-procedure application to delay-
dependent H∞ state-feedback control of uncertain time-delay systems’, IFAC World
Congress, Seoul, South Korea, 2008

• C. Briat, O. Sename and J.F. Lafay, A LFT/H∞ state feedback design for linear pa-
rameter varying time-delay systems’, European Control Conference, Kos, Greece, 2007

• O. Sename, C. Briat, ’H∞ observer design for uncertain time-delay systems’, European
Control Conference, Kos, Greece, 2007

• C. Briat, O. Sename and J.F. Lafay, ’Full order LPV/H∞ Observers for LPV Time-
Delay Systems’, IFAC Conference on System, Structure and Control, Foz do Iguacu,
Brazil, 2007

• O. Sename, C. Briat, ’Observer-based H∞ control for time-delay systems: a new LMI
solution’, IFAC Conference on Time-Delay Systems, L’Aquila, Italy, 2006

National Conference and Workshop Papers with Proceedings

• C. Briat, O. Sename, J.F. Lafay, ’Filtrage H∞/LPV de systèmes LPV incertains à
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ρ vector of parameters
Uρ Space of parameter values Uρ := ×pi=1[ρ−i , ρ

+
i ] ⊂ Rp

Uν Set of vertices of the polytope containing ρ̇ defined as
Uν := ×pi=1{ν

−
i , ν

+
i } compact of Rp

hull[U ] Convex hull of the set U (smallest convex set containing U)
<(z) Real part of z
=(z) Imaginary part of z
� End of proof
LTI Linear Time-Invariant
LPV Linear Parameter Varying
LTV Linear Time-Varying
TS Takagi-Sugeno
LMI Linear Matrix Inequality
pLMI parametrized Linear Matrix Inequality
NMI Nonlinear Matrix Inequality
BMI Bilinear Matrix Inequality
LFT Linear Fractional Transformation
LFR Linear Fractional Representation
TDS Time-Delay System
PSD Positive Symmetric Definite
CCA Cone Complementary Algorithm
SF State-Feedback
SOF Static Output Feedback
DOF Dynamic Output Feedback
BIBO Bounded-Input Bounded-Output
SISO Single Input-Single Output
MIMO Multi-Input/Multi-Output
SoS Sum-of-Squares
SDP Semidefinite Program



Chapter 1

Introduction et Résumé Détaillé

C
e résumé en Français a pour but de donner un bref aperçu du travail effectué pen-
dant ces trois ans de thèse au sein du GIPSA-Lab, anciennement le Laboratoire
d’Automatique de Grenoble. Cette thèse a été encadrée par Olivier Sename (GIPSA-

Lab) et Jean-François Lafay (IRCCyN, Nantes). Elle porte sur la thématique du contrôle et
de l’observation des systèmes à retards dépendant de paramètres.

Lors de ma deuxième année de thèse, j’ai eu l’opportunité de faire un séjour de 6 mois
à GeorgiaTech (Atlanta, USA) pour collaborer avec Erik Verriest grâce à une bourse de la
région Rhône-Alpes. Cette collaboration a donné lieu à une publication en conférence et une
revue internationale.

Les objectifs de la thèse portaient sur l’élaboration de lois de commande et la synthèse
d’observateurs pour les systèmes à retard dépendant de paramètres. Cette classe de systèmes
mélangeant deux classes de systèmes: les systèmes à retards et les systèmes à paramètres
variants.

1.1 Introduction Générale et Motivations

Cette partie est dédiée à la présentation des systèmes abordés pendant de cette thèse.

1.1.1 Systèmes à Retards

Les systèmes à retards font partie de la famille des systèmes de dimension infinie et peuvent
être définis par différents formalismes. Le plus utilisé actuellement est celui des équations
différentielles fonctionnelles telles que:

ẋ(t) = Ax(t) +Ahx(t− h)
x(θ) = φ(θ), θ ∈ [−hm, 0]

(1.1)

où x ∈ Rn est l’état du système et φ(·) est la condition initiale fonctionnelle. Comme on
peut le voir dans l’équation de la dynamique du système, l’évolution de l’état dépend non
seulement de l’état courant x(t) mais aussi d’une valeur passée de l’état x(t − h) dont le
retard h est (généralement) mal connu et appartient à un intervalle, par exemple [0, hm] où
hm désigne ici la valeur maximale du retard.

L’analyse de stabilité des équations différentielles retardées est possible en utilisant des
généralisations de la théorie de la stabilité de Lyapunov [Lyapunov, 1992]. La stabilité est dans
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ce cas déterminée par l’existence de fonctionnelles de Lyapunov-Krasovskii ou de fonctions de
Lyapunov-Razumikhin. Les fonctionnelles de Lyapunov-Krasovskii conduisent à des résultats
moins conservatifs que les fonctions de Lyapunov-Razumikhin [Gu et al., 2003] et sont donc
beaucoup plus utilisées dans la litérature. Voici un exemple de fonctionnelle de Lyapunov-
Krasovskii qui est utilisée dans cette thèse:

V (xt, ẋt) = x(t)TPx(t) +
∫ t

t−h
x(θ)TQx(θ)dθ

+
∫ 0

−hm

∫ t

t+θ
ẋ(s)TRẋ(s)dsdθ

(1.2)

où P,Q,R sont des matrices définies positives à déterminer de sorte que la dérivée de V le
long des trajectoires du système satisfasse

V̇ ≤ −w(||x(t)||) (1.3)

où w(·) est une fonction positive telle que w(0) = 0. Cela signifie alors que la fonctionnelle
V est décroissante sur les trajectoires du système et V converge vers 0, valeur correspon-
dant à l’équilibre du système. Nous avons donc une condition suffisante pour la stabilité du
système à retard. Ainsi toute la difficulté est de trouver une ”bonne” fonctionnelle qui soit
le moins conservative possible, c’est à dire qui se rapproche le plus d’une condition nécessaire
et suffisante.

Il est possible de définir deux types de stabilité pour les systèmes à retards:

La stabilité indépendante du retard qui permet d’analyser le comportement du système
pour n’importe quelle valeur du retard de 0 à l’infini.

La stabilité dépendante du retard qui ne considère que des retards bornés.

Par exemple, la fonctionnelle de Lyapunov-Krasovskii (1.2) permet de tester la stabilité
du système pour n’importe quel retard compris entre 0 et hm. On a donc un résultat pour la
stabilité dépendante du retard.

Une conséquence importante de l’utilisation de l’approche de Lyapunov-Krasovskii est
l’obtention de conditions de stabilité sous la forme d’Inégalités Linéaires Matricielles (Linear
Matrix Inequalities - LMI) [Boyd et al., 1994]. Ce type de conditions peut être facilement
résolu en utilisant des algorithmes spécialisés comme les algorithmes du point intérieur [Boyd
et al., 1994; Nesterov and Nemirovskii, 1994]. Ainsi, étant donné le système, il est possible
de tester numériquement si il existe des matrices P,Q,R satisfaisant (1.3).

Par exemple, le test de stabilité du système (1.1) en utilisant (1.2) est énoncé dans le
lemme suivant:

Lemme 1.1.1 Le système (1.1) est asymptotiquement stable pour tout retard constant h ∈
[0, hm] si il existe des matrices P,Q,R définies positives telles que la LMI ATP + PA+Q−R PAh +R hmA

TR

? −Q−R hmA
T
hR

? ? −R

 ≺ 0 (1.4)

soit satisfaite.
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Le symbole ≺ signifie que la négativité est considérée en regardant les valeurs propres de la
matrice et les symboles ? indiquent les éléments symétriques de la matrice.

D’un autre côté, depuis quelques années, les retards variant dans le temps ont été de plus
en plus considérés car ils sont induits, par exemple, dans les réseaux de télécommunications.
L’analyse de la stabilité de systèmes avec retards variants dans le temps est beaucoup plus
difficile car les systèmes sont désormais variant dans le temps. Ainsi le rôle de la vitesse de
variation du retard joue un rôle prépondérant dans la stabilité du système.

L’ensemble des lois de contrôle des systèmes à retards est plus riche que pour les systèmes
classiques. En effet, dans ce cas précis, il est possible d’utiliser l’information sur le retard. Si
le contrôleur ne comporte pas de partie retardée, on dit qu’il est ”sans-mémoire”; à l’inverse
s’il en comporte une, on dit qu’il est ”avec-mémoire”. Ces types de correcteurs seront détaillés
un peu plus loin dans ce résumé.

La recherche actuelle sur l’analyse et la commande des systèmes à retards variants dans le
temps est active, cela étant dû, entres autres, à l’intérêt pratique et à la difficulté technique
de ce contexte. Quelques résultats sont présentés dans les articles [Ariba and Gouaisbaut,
2007; Kharitonov and Niculescu, 2003; Papachristodoulou et al., 2007; Shustin and Fridman,
2007].

1.1.2 Systèmes Linéaires à Paramètres Variants

Les systèmes linéaires à paramètres variants (systèmes LPV) sont une classe étendue des
systèmes linéaires classiques. Ce type de systèmes admet une représentation générale de la
forme [Packard, 1994; Scherer, 2001; Wu, 2001a]:

ẋ(t) = A(ρ(t))x(t)
x(0) = x0

ρ ∈ Uρ
ρ̇ ∈ hull[Uν ]

(1.5)

où x est l’état du système, x0 est la condition initiale et ρ(t) est le vecteur de paramètres. Il est
généralement admis que les valeurs des paramètres sont bornées. Cependant, les propriétés
des trajectoires des paramètres, comme la continuité ou la dérivabilité, ne sont pas imposées.
En fonction des cas, les approches sont relativement différentes.

Par la suite, nous allons nous focaliser sur les paramètres dont les trajectoires sont
différentiables ainsi l’ensemble hull[Uν ] est un ensemble compact et connecté.

La stabilité des systèmes LPV peut êre effectuée grâce à une extension des fonctions de
Lyapunov utilisées pour les systèmes temps-invariant:

V (x, ρ) = x(t)TP (ρ)x(t) (1.6)

qui dépend à la fois de l’état du système et des paramètres. En appliquant le théorème de
Lyapunov nous obtenons le résultat suivant [Wu, 2001a]:

Lemme 1.1.2 Le système (1.5) est asymptotiquement stable si il existe une fonction à valeurs
matricielles P (ρ) définie positive pour tout ρ ∈ Uρ telle que la LMI dépendant de paramètres

A(ρ)TP (ρ) + P (ρ)A(ρ) +
∑
i

∂P (ρ)
∂ρi

ρ̇i ≺ 0 (1.7)

pour tout (ρ, ρ̇) ∈ Uρ × Uν .
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Cette LMI a deux particularités:

1. elle dépend des paramètres ρ et ρ̇: on dit qu’elle est semi-infinie;

2. la variable à déterminer est une fonction: on dit que la LMI est de dimension infinie.

Ces deux faits rendent la résolution de cette LMI une tâche plutot difficile qui ne peut
pas être directement traitée par des algorithmes.

Comme la LMI est paramétrisée, nous avons affaire en réalité à une infinité de LMIs.
De nombreuses méthodes ont été développées afin de résoudre de telles LMIs. Le gridding
[Apkarian and Adams, 1998], les méthodes basées sur les ”sum-of-squares”[Scherer, 2008],
etc. . .

Afin de simplifier le domaine de recherche de P (ρ) pour le ramener à un problème de
dimension finie, l’idée est de projeter la fonction sur une base, par exemple:

P (ρ) = P0 + P1ρ+ . . .+ PNρ
N (1.8)

Il est assez difficile de choisir une ”bonne” base et il n’y a pas de théorie générale pour le
faire.

L’aspect intéressant des systèmes LPV n’est pas l’aspect analyse de stabilité des systèmes
mais plutot au niveau des possibilités offertes en terme contrôleurs. En effet, pour stabiliser
le système il est possible de rechercher un correcteur qui dépend lui aussi des paramètres et
permet de stabiliser plus efficacement les systèmes qu’un régulateur classique. On a ainsi une
extension de la théorie du ”gain-scheduling”.

1.1.3 Les systèmes LPV à retards

Les systèmes LPV à retards sont des systèmes qui ont été très peu traités dans la littérature
ce qui fait un sujet de recherche très intéressant car ces systèmes se trouvent à l’intersection
des domaines des systèmes à retards et LPV. Ils hérient donc des difficultés inhérentes à
chaque classe de systèmes mais aussi de nouveaux problèmes émergent. En effet, de nom-
breux résultats dévelopés dans des thémariques de la commande robuste et LPV ne sont plus
applicable pour les systèmes LPV à retards.

La classe générale de systèmes considérée [Wu, 2001b; Zhang and Grigoriadis, 2005] est
définie par les relations suivantes:

ẋ(t) = A(ρ, ρh)x(t) +Ah(ρ, ρh)x(t− h(t)) + E(ρ, ρh)w(t)
z(t) = C(ρ, ρh)x(t) + Ch(ρ, ρh)x(t− h(t)) + F (ρ, ρh)w(t)
x(θ) = φ(θ), θ ∈ [−hmax, 0]

(1.9)

où x ∈ Rn, w ∈ Rm, z ∈ Rp sont respectivement l’état du système, les entrées exogènes
et la sortie contrôlée. Le retard h(t) et les paramètres sont supposés appartenir dans un
certain ensemble ayant certaines propriétés intéressantes pour être utilisées afin de réduire
le conservatisme des aproches utilisées. Ces ensembles ne sont pas précisés ici pour ne pas
complexifier inutilement ce résumé.

Les systèmes LPV retardés ne sont pas uniquement des systèmes abstraits mais peuvent
être obtenus après simplification de systèmes non-linéaires. Par exemple, le système de frais-
age représenté en Figure 1.1 peut être exprimé de telle sorte que son comportement soit régi
par un modèle LPV à retard [Zhang et al., 2002]:
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Figure 1.1: Géométrie simplifiée d’un processus de fraisage

ẋ(t) = (A+Akk +Aγγ +Akγkγ)x(t) + (Ah +Ahkk +Ahγγ +Ahkγkγ)x(t− h) (1.10)

où les paramètres sont les coefficients de raideur des ressorts et γ = cos(2φ + β) ∈ [−1, 1].
Une discussion complète intéressante est donnée dans [Zhang et al., 2002].

1.2 Contributions

Les contributions apportées dans cette thèse peuvent être classée en deux parties:

les contributions méthodologiques qui sont relatives à la technique d’approche et la vi-
sion des problèmes abordés;

les contributions théoriques représentées par l’amélioration des résultats existants, le
développement de nouveaux résultats et idées.

1.2.1 Contributions Méthodologiques

La contribution méthodologique est issue d’une remarque globale faite sur beaucoup de pa-
piers de journaux et de conférences. Pourquoi est-ce que tant de papiers ne traite que le
problème de l’analyse de stabilité des systèmes à retards ? Pourquoi y-a-t-il une aussi faible
proportion de papiers sur le contrôle et l’observation ? La raison principale vient du fait que,
lorsque l’on considère les systèmes à retard, il n’est généralement pas suffisant de remplacer le
système en boucle fermée dans la condition de stabilité pour obtenir facilement à la fois une
condition suffisante efficace (peu conservative) sur l’existence du contrôleur et donnant lieu à
une procédure de construction du contrôleur (solution constructive). Cette difficulté est liée
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au grand nombre de matrices de décision utilisées pour analyser la stabilité des systèmes à
retards.

Une méthode classique est basée sur la relaxation des conditions après la substitution
du système en boucle fermée seulement. Cette méthode correspond à celle utilisée pour les
systèmes linéaires de dimension finie. Dans cette thèse, nous mettons en avant que cette
procédure n’est pas forcément la meilleure puisque qu’elle altère l’efficacité du résultat de
stabilité. Nous préconisons donc de faire la relaxation avant d’injecter le système en boucle
fermée afin de préparer le résultat de stabilité à être utilisé dans un contexte de stabilisation.
Une étape est donc ajoutée dans la méthodologie de synthèse de contrôleurs. Cette procédure
peut être appliquée à de nombreux types de résultats sous forme LMIs différents.

1.2.2 Contributions Théoriques

Le contributions théoriques sont réparties dans différents domaines:

• Les non-linéarités concaves (impliquant des inverses de matrices de décisions) dans les
inégalités matricielles sont assez difficiles à traiter et leur simplification (ou suppression)
résulte généralement en de conservatives conditions. Des bornes basées sur la complétion
des carrés ou sur l’algorithme du cône complémentaire peuvent être utilisées mais tandis
que la première est conservative, la deuxième ne peut pas être utilisée pour des matrices
qui varient en fonction des paramètres (ce qui est assez gênant lorsque l’on travaille avec
des systèmes LPV). Pour résoudre ce problème, nous avons introduit une relaxation
exacte qui transforme le problème rationnel (qui implique l’inverse d’une matrice) en
un problème bilinéaire. Bien que le problème demeure non-linéaire, il est plus facile de
résoudre un problème bilinéaire qu’un problème rationnel en utilisant, par exemple, des
algorithmes du type ”D-K iteration”.

• Plusieurs tests LMI ont été généralisés au cas LPV et la méthode de relaxation a été
appliquée afin de développer de nouveaux tests LMIs dédiés à la synthèse de lois de
commande.

• Un nouveau type de fonctionnelle de Lyapunov-Krasovskii a été développée afin de
considérer des systèmes avec deux retards liés par une contrainte d’inégalité. Cette
fonctionnelle permet de traiter assez bien le problème de stabilisation d’un système à
retard par un contrôleur incorporant un retard qui est différent (mais proche) de celui
du système.

• Une nouvelle stratégie de contrôle de systèmes à retards a également été introduite et
nommé ”controleur séquencé par retard” (delay-scheduled controller). Ces contrôleurs
sont calculés à partir d’une reformulation LPV des systèmes linéaires à retards dans
laquelle le paramètre est une fonction du retard. Ainsi il est possible de calculer un
contrôleur LPV qui sera séquencé par la valeur du retard. Bien entendu, dans ce
contexte il est supposé que le retard est connu. Afin de prendre en compte le fait que
une erreur sur la connaissance du retard peut persister, la non-fragilité du contrôleur
quand il n’utilise qu’une valeur approximative du retard est prise en compte.

• Finalement, les dernières contributions portent sur l’élaboration d’observateurs et filtres
pour les systèmes LPV à retards. Ici aussi, différents cas sont traités avec bien sur le
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cas sans-mémoire, avec mémoire exacte et avec mémoire approximative. Les résultats
sont obtenus avec les tests LMIs généraux préliminaires obtenus dans cette thèse.

1.3 Application à l’Observation et au Filtrage

1.3.1 Observation

L’observation des systèmes dynamiques consiste à estimer l’état (ou une partie de l’état) à
partir de la connaissance (pas forcément exacte) du modèle du système et d’un ensemble
de mesures. Le filtrage est sensiblement identique mais avec les filtres il est théoriquement
possible d’estimer d’autres signaux que l’état au sens de la minimisation d’une certaine norme
et non au sens de l’estimation asymptotique de l’erreur d’observation.

L’apport de la thèse dans ce domaine a été d’étendre les observateurs présentés dans
[Darouach, 2001] au cas des systèmes LPV incertains. L’intérêt de cette méthode est l’approche
purement algébrique qui permet de déterminer un ensemble d’observateurs qui satisfont des
conditions nécessaires, puis avec un test basé sur des LMIs choisir quel observateur est le
meilleur. Dans les cas étudiés, les observateurs sont choisis de telle sorte que l’énergie des
perturbations transmises vers l’erreur d’observation soit la plus atténuée possible (minimisa-
tion de la norme L2 induite des perturbations vers l’erreur).

Les observateurs considérés sont des observateurs d’ordre réduit dont l’objectif n’est
d’estimer qu’une partie de l’état du système:

ξ̇(t) = M0(ρ)ξ(t) +Mh(ρ)ξ(t− h(t)) + S(ρ)u(t) +N0(ρ)y(t) +Nh(ρ)y(t− h(t))
ẑ = ξ(t) +Hy(t)

(1.11)

Les systèmes observés ont l’allure générale suivante:

ẋ(t) = A(ρ)x(t) +Ah(ρ)x(t− h(t)) +B(ρ)u(t) + E(ρ)w(t)
y(t) = Cx(t)
z(t) = Tx(t)

(1.12)

où x est l’état du système, u la commande, w les perturbations, y la sortie mesurée, z la
portion de l’état à estimer, ξ l’état de l’observateur et ẑ l’estimée de z. Les matrices du
systèmes sont supposées incertaines et peuvent être décomposées sous une forme générale

Q0(ρ) +Q1(ρ)∆Q2(ρ) (1.13)

où les matrices Qi(ρ) sont connues et ∆ représente une incertitude structurée ou non, de
norme bornée.

L’objectif est donc de choisir les matrices de l’observateur de telle sorte que

1. La dynamique de l’erreur d’observation e(t) = z(t)− ẑ(t) est stable

2. γ > 0 défini tel que ∫ +∞

0
e(s)T e(s)ds < γ2

∫ +∞

0
w(s)Tw(s)ds (1.14)

avec e(t) = z(t)− ẑ(t) soit minimal.

Les résultats suivants ont été développés en Section 5.1.1.
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Théorème 1.3.1 Il existe un observateur LPV avec mémoire exacte de la forme (1.11) pour
les systèmes de la forme (1.12) si et seulement si les propositions suivantes sont satisfaites:

1. La dynamique autonome de l’erreur ė(t) = M0(ρ)e(t) + Mh(ρ)e(t − h(t)) est asympto-
tiquement stable avec e(t) = z(t)− ẑ(t).

2. (T −HC)A(ρ)−N0(ρ)C −M0(ρ)(T −HC) = 0

3. (T −HC)Ah(ρ)−Nh(ρ)C −Mh(ρ)(T −HC) = 0

4. (T −HC)B(ρ)− S(ρ) = 0

5. L’inégalité ||e||L2 ≤ γ||w||L2 est satisfaite pour un γ > 0 minimal.

Lemme 1.3.2 Il existe une solution M0(ρ),Mh(ρ), N0(ρ), Nh(ρ), S(ρ), H(ρ) aux équations
algébriques données dans le Théorème 1.3.1 si et seulement si la condition de rang ci-dessous
est satisfaite:

rank



T 0
0 T
C 0
0 C

CA(ρ) CAh(ρ)
TA(ρ) TAh(ρ)

 = rank


T 0
0 T
C 0
0 C

CA(ρ) CAh(ρ)

 (1.15)

pour tout ρ ∈ Uρ.

Le résultat ci-dessus permet de savoir si la structure du système autorise un observateur
de la forme (1.11) satisfaisant les égalités algébriques du Théorème 1.3.1. Dans ce cas, il est
possible de déduire une paramétrisation des matrices de l’observateur à travers une unique
matrice L qui devra être déterminée de telle sorte que l’erreur d’observation soit asympto-
tiquement stable:

Lemme 1.3.3 Sous la condition supposée satisfaite du Théorème 1.3.2, les matrices de
l’observateur sont données par les expressions M0 = Θ− LΞ, Mh = Υ− LΩ et H = Φ− LΨ
où L est une matrice libre à déterminer

Θ = TAU − ΛΓ+∆0

[
C
CA

]
U Φ = ΛΓ+∆H

Ξ = −(I − ΓΓ+)∆0

[
C
CA

]
U Ψ = (I − ΓΓ+)∆H

Υ = TAhU − ΛΓ+∆h

[
C
CAh

]
U S = FB

Ω = −(I − ΓΓ+)∆h

[
C
CAh

]
U F = T −HC

N0 = K0 +M0H Nh = Kh +MhH

où la matrice U est défini telle que [
T
T̄

]−1

=
[
U V

]
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avec la matrice de plein rang colonne T̄ telle que
[
T
T̄

]
. Les matrices ∆i sont définies de la

manière suivante:

∆0 =


0 0
0 0
I 0
0 0
0 I

∆h =


0 0
0 0
0 0
I 0
0 I

∆H =


0
0
0
0
I


Le résultat suivant donne une condition suffisante sur l’existence d’un observateur optimal

au sens de la minimisation de la norme L2 induite du transfert des perturbations sur l’erreur
d’observation.

Théorème 1.3.4 Il existe un observateur dépendant des paramètres de la forme (1.11) pour
des systèmes de la forme (1.12) tel que le Théorème 1.3.1 soit satisfait s’il existe une fonction
matricielle continument différentiable P : Uρ → Sr++, une fonction matricielle Z : Uρ →
Rr×(2r+3m), des matrices constantes Q,R ∈ Sr++, X ∈ Rr×r, H̄ ∈ Rr×m et un scalaire positif
γ > 0 tels que la LMI

−(X +XT ) ? ? ? ? ? ?
U21(ρ) U22(ρ, ν) ? ? ? ? ?
U31(ρ) R −Qµ −R ? ? ? ?
U41 0 0 −γIq ? ? ?
0 Ir 0 0 −γIr ? ?
X 0 0 0 0 −P (ρ) ?

hmaxR 0 0 0 0 −hmaxR −R


≺ 0 (1.16)

soit satisfaite pour tout (ρ, ν) ∈ Uρ× Uν avec

U21(ρ) = Θ(ρ)TX − Ξ(ρ)T L̄(ρ)T + P (ρ)
U31(ρ) = Υ(ρ)TX − Ω(ρ)T L̄(ρ)T

U22(ρ, ν) =
∂P (ρ)
∂ρ

− P (ρ) +Q−R

U41(ρ) = (ρ)E(ρ)T (T TX − CT H̄T )

et
L̄(ρ) = (XTΦ(ρ)− H̄)Ψ(ρ)+ + Z(ρ)(I −Ψ(ρ)Ψ(ρ)+) (1.17)

De plus, le gain L est donné par L(ρ) = X−T L̄(ρ) et l’erreur d’estimation satisfait l’inégalité
||e||L2 < γ||w||L2

La méthode est illustrée avec l’exemple suivant:

Exemple 1.3.5 Considérons le système proposé dans [Mohammadpour and Grigoriadis, 2007a]
avec D21 = 0 qui est la matrice correspondant au transfert de w vers y:

ẋ =
[

0 1 + 0.2ρ
−2 −3 + 0.1ρ

]
x(t) +

[
0.2ρ 0.1

−0.2 + 0.1ρ −0.3

]
xh(t) +

[
−0.2
−0.2

]
w(t)

y(t) =
[

0 1
0.5 0

]
x(t)

z(t) = x(t)

(1.18)
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Les matrices Z(ρ) and P (ρ) sont choisies pour être de forme polynomiale de degré 2.
L’application du Théorème 1.3.4 nous donne γ = 0.01. L’évolution des erreurs d’observations
est donnée sur la Figure 1.3 où il est possible de voir que les erreurs convergent bien vers 0.
De plus les matrices de l’observateur sont données ci-dessous:

Figure 1.2: Évolution des erreurs d’observation

M0(ρ) =
[
−0.836ρ2 − 0.836ρ− 0.667 −0.078ρ2 − 0.072ρ+ 0.1345
−0.0376ρ2 − 0.0376ρ− 0.361 −0.396ρ2 − 0.406ρ− 0.800

]

Mh(ρ) =
[
−0.009ρ2 − 0.0002ρ+ 0.00822 −0.007ρ2 − 0.0071ρ+ 0.014
0.016ρ2 − 0.00001ρ− 0.0162 0.0134ρ2 + 0.0134ρ− 0.27

]
N0(ρ) =

[
−0.073ρ2 − 0.063ρ+ 0.326 0.146ρ2 + 0.148ρ+ 0.620
0.076ρ2 + 0.058ρ− 0.684 −0.152ρ2 − 0.156ρ− 1.054

]
Nh(ρ) =

[
0.001ρ2 + 0.001ρ+ 0.040 −0.001ρ2 + 0.019ρ+ 0.046
−0.001ρ2 − 0.27ρ− 0.077 0.002ρ2 − 0.035ρ− 0.088

]
H =

[
0.106 1.788
0.798 0.404

]
Pour la simulation, le retard est choisi constant h = 0.5 < hmax = 0.8. La perturbation en

échelon d’amplitude 10 est appliquée à t = 15s et la trajectoire des paramètres est sinusöıdale
ρ(t) = sin(t).

1.3.2 Filtrage

L’objectif du filtrage est proche de celui de l’observation mais demeure un peu différent.
L’objectif est de rapprocher la sortie du filtre de celle du système le plus possible, au sens
d’une certaine norme.

L’équation générale des filtres est donnée par

ẋF (t) = AF (ρ)xF (t) +AFh(ρ)xF (t− h(t)) +BF (ρ)y(t)
zF (t) = CF (ρ)xF (t) + CFh(t− h(t)) +DF y(t)

(1.19)
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Figure 1.3: Évolution des erreurs d’observation

pour des systèmes de la forme:

ẋ(t) = A(ρ)x(t) +Ah(ρ)x(t− h(t)) + E(ρ)w(t)
z(t) = C(ρ)x(t) + Ch(ρ)x(t− h(t)) + F (ρ)w(t)
y(t) = Cy(ρ)x(t) + Chy(ρ)x(t− h(t)) + Fy(ρ)w(t)

(1.20)

Les matrices du filtre sont choisies de sorte que:

1. le système étendu formé par le filtre et le système soit stable

2. γ > 0 défini tel que ∫ +∞

0
e(s)T e(s)ds < γ2

∫ +∞

0
w(s)Tw(s)ds (1.21)

avec e(t) = z(t)− zF (t) soit minimal.

Voici l’un des théorème donné en Section 5.2.1:

Théorème 1.3.6 Il existe un filtre de la forme (1.19) s’il existe une fonction matricielle
continument différentiable P̃ : Uρ → S2n

++, des matrices constantes Q̃, R̃ ∈ S2n
++, X̂ ∈ R2n×2n,

des fonctions matricielles ÃF , ÃFh : Uρ → Rn×n, B̃F : Uρ → Rn×m, C̃F , C̃Fh : Uρ → Rt×n,
D̃F : Uρ → Rn×m et un scalaire γ > 0 tels que la LMI

−X̂H P̃ (ρ) + Ã(ρ) Ãh(ρ) Ẽ(ρ) 0 X̂T hmaxR̃

? Ψ̃22(ρ, ν) R 0 C̃(ρ)T 0 0
? ? −(1− µ)Q̃− R̃ 0 C̃h(ρ)T 0 0
? ? ? −γIq F(ρ)T 0 0
? ? ? ? −γIr 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃
? ? ? ? ? ? −R̃


≺ 0 (1.22)
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soit satisfaite pour tout ρ ∈ Uρ avec P̃ (ρ) = X̃TP (ρ)X̃, Q̃ = X̃TQX̃, R̃ = X̃TRX̃ et

Ψ22(ρ, ν) = ∂ρP̃ (ρ)ν − P̃ (ρ) + Q̃− R̃ X̂2 = X2X
−1
4 X3 = UTΣV (SVD)

X̂ =
[
X̂1 X̂2

X̂3 X̂3

]
Ẽ(ρ) =

 X̂1E(ρ) + B̃F (ρ)Cy(ρ)
X̂T

2 E(ρ) + B̃F (ρ)Cy(ρ)


C̃(ρ)T =

[
C(ρ)T − Cy(ρ)TDF (ρ)T

−C̃F (ρ)

]
C̃h(ρ)T =

[
Ch(ρ)T − Chy(ρ)TDF (ρ)T

−C̃Fh(ρ)

]

Ã(ρ) =
[
X̂T

1 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)
X̂T

2 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)

]
Ãh(ρ) =

[
X̂T

1 Ah(ρ) + B̃F (ρ)Cyh(ρ) ÃFh(ρ)
X̂T

2 Ah(ρ) + B̃F (ρ)Cyh(ρ) ÃFh(ρ)

]
Dans ce cas, les matrices du filtre sont données par les expressions:[
AF (ρ) AFh(ρ) BF (ρ)
CF (ρ) CFh(ρ) DF (ρ)

]
=

[
U−T ÃF (ρ)U−1Σ−1 U−T ÃFh(ρ)U−1Σ−1 U−T B̃F (ρ)
C̃F (ρ)U−1Σ−1 C̃Fh(ρ)U−1Σ−1 D̃F (ρ)

]
où X̂3 = UΣV . De plus l’inégalité ||e||L2 ≤ γ||w||L2 est satisfaite.

1.4 Application au Contrôle

La partie ”contrôle” est la plus importante dans cette thèse et c’est certainement dans cette
partie que les contributions les plus importantes sont présentes. Le système considéré ici est
de la forme:

ẋ(t) = A(ρ)x(t) +Ah(ρ)x(t− h(t)) +B(ρ)u(t) + E(ρ)w(t)
z(t) = C(ρ)x(t) + Ch(ρ)x(t− h(t)) +D(ρ)u(t) + F (ρ)w(t)
y(t) = Cy(ρ)x(t) + Cyh(ρ)x(t− h(t)) + Fy(ρ)w(t)

(1.23)

où z est la sortie à contrôler, u la commande et y la sortie mesurée.

1.4.1 Contrôleurs par retour d’état

Les contrôleurs par retour d’état sont les plus communs dans le contexte des systèmes à retard
car ce sont les plus simples à synthétiser. Dans cette thèse trois types de retour d’état ont
été considérés pour des systèmes de la forme:

ẋ(t) = A(ρ)x(t) +Ah(ρ)x(t− h(t)) +B(ρ)u(t) + E(ρ)w(t)
z(t) = C(ρ)x(t) + Ch(ρ)x(t− h(t)) +D(ρ)u(t) + F (ρ)w(t)

(1.24)

1. les contrôleurs par retour d’état sans-mémoire:

u(t) = K0(ρ)x(t) (1.25)

2. les contrôleurs par retour d’état avec mémoire-exacte:

u(t) = K0(ρ)x(t) +Kh(ρ)x(t− h(t)) (1.26)
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3. les contrôleurs par retour d’état avec mémoire-approximative

u(t) = K0(ρ)x(t) +Kh(ρ)x(t− d(t)) (1.27)

Les contrôleurs sont donc choisis de telle sorte que:

1. le système en boucle fermée soit asymptotiquement stable;

2. γ > 0 défini tel que ∫ +∞

0
z(s)T z(s)ds < γ2

∫ +∞

0
w(s)Tw(s)ds (1.28)

soit minimal.

Il est important de différencier les trois types de contrôleurs. Les contrôleurs sans-mémoire
sont les plus simples à utiliser car ils ne nécessitent que l’information ”instantanée” de l’état.
Cependant, lorsque la valeur du retard peut être connue alors l’utilisation de contrôleurs
avec mémoire exacte permet d’obtenir de meilleures performances en boucle fermée. Cepen-
dant, comme l’estimation/observation des retards est un problème difficile encore ouvert, les
contrôleurs avec une mémoire exacte ne sont pas utilisables en pratique.

L’introduction dans cette thèse de contrôleurs avec une mémoire ”approximative” est
intéressante car ils permettent d’utiliser seulement une valeur erronée du retard à un instant
donné pourvu que l’erreur entre le retard utilisé dans le contrôleur et le retard du système ne
soit pas trop grande. De tels contrôleurs ont été considérés dans le passé mais les deux retards
étaient considérés comme indépendant alors qu’ils ne le sont pas. En effet, le retard erroné
reste dans une boule autour de la trajectoire du retard du système et cette relation doit être
prise en compte. Elle est prise en compte grâce à l’introduction d’une nouvelle fonctionelle
de Lyapunov-Krasovskii introduite dans la Section 4.7.

Ce théorème démontré dans la Section 6.1.5 donne un résultat sur l’existence d’un contrôleur
avec ou sans mémoire:

Théorème 1.4.1 Il existe un contrôleur de la forme (1.26) qui stabilise le système (1.23) si
il existe une fonction matricielle dontinuement différentiable P̃ : Uρ → Sn++, des fonctions
matricielles V0, Vh : Uρ → Rm×n, des matrices constantes Q̃, R̃ ∈ Sn++, Y ∈ Rn×n et un
scalaire constant γ > 0 tels que la LMI

−(Y + Y T ) U12(ρ) U13(ρ) E(ρ) 0 Y hmaxR̃

? Ũ22(ρ, ν) R̃ 0 U25(ρ) 0 0
? ? Ũ33 0 U26(ρ) 0 0
? ? ? −γIp F (ρ)T 0 0
? ? ? ? −γIq 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃
? ? ? ? ? ? −R̃


≺ 0 (1.29)
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soit satisfaite pour tout (ρ, ν) ∈ Uρ × Uν où Ψ(ρ, ν) est défini par

U12(ρ) = P̃ (ρ) +A(ρ)Y +B(ρ)V0(ρ)
U13(ρ) = Ah(ρ)Y +B(ρ)Vh(ρ)
U25(ρ) = Y TC(ρ)T + [D(ρ)V0(ρ)]T

U26(ρ) = Y TCh(ρ)T + [D(ρ)Vh(ρ)]T

Ũ22(ρ, ν) = −P̃ (ρ) + Q̃− R̃+ ∂ρP̃ (ρ)ν
Ũ33 = −(1− µ)Q̃− R̃

De plus, le contrôleur correspondant peut être calculé grâce à K0(ρ) = V0(ρ)Y −1, Kh(ρ) =
Vh(ρ)Y −1 et le système en boucle-fermée satisfait ||z||L2 < γ||w||L2

Un contrôleur sans mémoire peut être calculé en fixant Yh = 0 dans la condition LMI.

1.4.2 Contrôleurs séquencés par le retard

Les contrôleurs par retour d’état séquencés par le retard sont une nouveauté introduite dans
cette thèse et ont une forme générale

u(t) = K(d(t))x(t) (1.30)

où l’on voit clairement qu’ils sont structurellement différents des contrôleurs avec mémoire
car dans ce cas précis le retard n’est plus vu comme un opérateur mais comme un paramètre.
Dans ce cas, on transforme le système à retards en un système LPV incertain où le paramètre
n’est rien d’autre qu’une fonction du retard. Ainsi en utilisant des outils développés pour
les systèmes LPV, il est possible de développer des contrôleurs séquencés par le retard ou
une valeur approchée. Il est important de souligner que, comme le retard est vu comme un
paramètre, alors une erreur sur le retard est une variation du paramètre, chose plus facile à
traiter que lorsque le retard est vu comme un opérateur. Cette partie est développée dans la
Section 6.1.7.

Introduisons d’abord les ensembles:

H := [hmin, hmax]
U := [µmin, µmax]
Ĥ := [hmin − δ, hmax + δ]
Û := [µmin − νmin, µmax + νmax]

où le premier est l’ensemble des valeurs du retard, le second l’ensemble des valeurs de la
dérivée du retard, le troisième est l’ensemble de valeurs du retard utilisé dans le correcteur
et le dernier est l’ensemble de valeurs de la dérivée du retard utilisé dans le correcteur.

Le théorème suivant donne le résultat sur la stabilisation par contrôleur séquencé par
retard:

Théorème 1.4.2 Le système (1.23) est stabilisable par un contrôleur séquencé par retard
de la forme K(ĥ) = Y (ĥ)X−1(ĥ) si il existe une fonction matricielle X : Ĥ → Sn++, des
fonctions matricielles Y : Ĥ → Rm×n, D̃ : H ×U × Ĥ × Û → Sn++, G̃ : H ×U × Ĥ × Û → Kn
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et une fonction scalaire γ : H × U × Ĥ × Û → R++ tels que la LMI

U11(ĥ, ˙̂
h) U12(ĥ) U13(ĥ, ˙̂

h) αAhD̃(ξ) E

? −γ(ξ)Iq αChG̃
T (ξ) + C̄X(h) αChD̃(ξ) F

? ? − ˙̂
h
∂X(ĥ)

∂ĥ
− D̃(ξ) 0 0

? ? ? −D̃(ξ) 0
? ? ? ? −γ(ξ)Ip


≺ 0 (1.31)

soit satisfaite (h, ḣ, δh, δ̇h) ∈ H × U × [−δ, δ]× [νmin, νmax], où ξ = col(h, δh, ḣ, δ̇h) et

U11(ĥ, ˙̂
h) = − ˙̂

h
∂X(ĥ)

∂ĥ
+ [X(ĥ)ĀT + Y T (ĥ)BT

u ]H

U12(ĥ) = X(ĥ)C̄T + Y T (ĥ)DT
u

U13(ĥ, ˙̂
h) = − ˙̂

h
∂X(ĥ)

∂ĥ
+ ĀX(ĥ) + αAhG̃

T (ξ)

K(ĥ) = Y (ĥ)X(ĥ)−1

Afin de trouver une solution à ce problème LMI, il est nécessaire de fixer une structure à

X(ĥ) (par exemple X(ĥ) = X0 + ĥX1) afin de définir la structure de sa dérivée
∂X(ĥ)

∂ĥ
.

1.4.3 Contrôleurs par retour dynamique de sortie

La synthèse de contrôleurs par retour de sortie dynamique est un problème ouvert dans le
cadre des systèmes à retards. En effet, lorsque l’on cherche un retour de sortie dynamique sans-
mémoire, il est très difficile d’obtenir des conditions sous forme LMI. Seulement les contrôleurs
avec mémoire exacte aboutissent à des conditions LMIs. Dans cette thèse, seulement ces deux
types de contrôleurs sont considérés sous deux formes bien distinctes:

• les contrôleurs pleins qui sont non-structurés comme on peut le trouver dans les articles
[Apkarian and Adams, 1998; Scherer et al., 1997; Scherer, 2001] dont les conditions
peuvent être simplifiées en utilisant un changement de variables spécifique très loin
d’être trivial.

• les contrôleurs basés sur observateur qui sont donc structurés [Sename and Briat, 2006]
qui sont, un peu paradoxalement, plus difficile à synthétiser de par leur structure im-
posée.

Comme exemple de résultats, considérons le contrôleur de retour de sortie dynamique
suivant:

ẋc(t) = Ac(ρ)xc(t) +Ahc(ρ)xc(t− h(t)) +Bc(ρ)y(t)
u(t) = Cc(ρ)xc(t) + Chc(ρ)xc(t− h(t)) +Dc(ρ)y(t)

(1.32)

En utilisant les résultats développés dans cette thèse, nous obtenons le théorème suivant
démontré en Section 6.2.2:
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Théorème 1.4.3 Il existe un retour de sortie dynamique de la forme (1.32) pour le système
(1.23) s’il existe une fonction matricielle continument différentiable P̃ : Uρ → S2n

++, des
matrices constantes W1, X1 ∈ Sn++, Q̃, R̃ ∈ S2n

++, une fonction scalaire α : Uρ → R++ et un
scalaire γ > 0 tels que la LMI

−2X̃ P (ρ) +A(ρ) Ah(ρ) E(ρ) 0 X̃ hmaxR̃

? U22(ρ, ν) R̃ 0 C(ρ)T 0 0
? ? U33 0 Ch(ρ)T 0 0
? ? ? −γI F(ρ)T 0 0
? ? ? ? −γI 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃
? ? ? ? ? ? −R̃


≺ 0 (1.33)

soit satisfaite pour tout (ρ, ν) ∈ Uρ × Uν où U22(ρ, ν) = −P̃ (ρ) + Q̃ − R̃ + ∂ρP̃ (ρ)ν, U33 =
−(1− µ)Q̃− R̃ et

X̃ =
[
W1 I
I X1

]
A(ρ) =

[
A(ρ)W1 +B(ρ)Cc(ρ) A(ρ) +B(ρ)Dc(ρ)Cy(ρ)

Ac(ρ) X1A(ρ) + Bc(ρ)Cy(ρ)

]
Ah(ρ) =

[
Ah(ρ)W1 +B(ρ)Cc(ρ) A(ρ) +B(ρ)Dc(ρ)Cyh(ρ)

Ahc(ρ) X1Ah(ρ) + Bc(ρ)Cyh(ρ)

]
E(ρ) =

[
E(ρ) +B(ρ)Dc(ρ)Fy(ρ)
X1E(ρ) + Bc(ρ)Fy(ρ)

]
C(ρ) =

[
Cy(ρ)W1 +D(ρ)Cc(ρ) Cy(ρ) +D(ρ)Dc(ρ)Cy(ρ)

]
Ch(ρ) =

[
Ch(ρ)W1 +D(ρ)Cyh(ρ) Ch(ρ) +D(ρ)Dc(ρ)Cyh(ρ)

]
F(ρ) =

[
F (ρ) +D(ρ)Dc(ρ)Fy(ρ)

]
Dans ce cas, le contrôleur correspondant est donné par les expressions:[
Ac(ρ) Ahc(ρ) Bc(ρ)
Cc(ρ) Chc(ρ) Dc(ρ)

]
= M1(ρ)−1

([
Ac(ρ) Ahc(ρ) Bc(ρ)
Cc(ρ) Chc(ρ) Dc(ρ)

]
−M2(ρ)

)
M3(ρ)−1

M1(ρ) =
[
X2 X1B(ρ)
0 I

]
M2(ρ) =

[
X1A(ρ)W1 X1Ah(ρ)W1 0

0 0 0

]

M3(ρ) =

 W T
2 0 0

0 W T
2 0

Cy(ρ)W1 Cyh(ρ)W1 I


X−1 =

[
X1 X2

? X3

]−1

=
[
W1 W2

? W3

]
et le système en boucle fermée satisfait ||z||L2 ≤ γ||w||L2.
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1.5 Conclusion

Cette thèse a proposé de nouveaux résultats en rapport au contrôle et à l’observation des
systèmes à retards dépendant de paramètres en utilisant des outils de l’automatique moderne.
Même si le problème demeure ouvert pour certains cas difficiles, le résultats présentés dans
cette thèse ont amémliorés les résultats existants. Le travail a été développé en cinq chapitres.

Les deux premiers chapitres font un état de l’art des systèmes LPV et des systèmes à re-
tards. Le troisième chapitre introduit des résultats préliminaires à partir seront développés les
résultats des chapitres suivant portant respectivement sur l’observation/filtrage et le contrôle
des systèmes LPV retardés.
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Chapter 2

Overview of LPV Systems

L
inear Parameter Varying (LPV) systems are a generalization of the general class
of Linear Time-Varying (LTV) Systems:

SISO LTV System SISO LPV System
ẋ(t) = a(t)x(t) ẋ(t) = a(ρ(t))(t)
x(0) = x0 x(0) = x0

The main difference stems from the particularity that for LPV systems the time-dependence
is, in some words, ’hidden’ into parameters. Generally, when considering LTV systems,
two particular cases can occur: either the trajectories of the time-varying coefficients are
known (e.g. a(t) = sin(t)) or they are unknown but remain in a known interval of values
(a(t) ∈ [amin, amax] and eventually ȧ(t) ∈ [dmin, dmax]). But it is also possible to consider
LPV systems where parameters trajectories are known and exploited to provide matched re-
sults. For instance, periodic systems involve parameters with periodic trajectories [Bittanti
and Colaneri, 2001; Yakubovich, 1986a,b; Yakubovich et al., 2007]. As we shall see later, the
difference between LPV and LTV systems is the possibility of measuring or estimating the
time-varying components of the system. As we may see on Figure 2.1, the larger class of finite

Figure 2.1: Venn diagram of finite dimensional systems

dimensional systems is the class of nonlinear systems. It is possible to approximate nonlinear

19
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systems by a specific class of LPV system called quasi-LPV (qLPV) systems since the param-
eters depend on the state. Such systems are obtained via a direct LPV transformation (e.g.
ẋ(t) = x(t)2 gives ẋ(t) = ρ(t)x(t) with ρ(t) = x(t)) or using a class of representation referred
to as Takagi-Sugeno systems [Castro, 1995; Takagi and Sugeno, 1985]. When the nonlinear
system is linearized around a trajectory using Jacobian linearization we obtain a LTV system
which can be also classified in the family of LPV systems. Finally, when the nonlinear system
is linearized around an operating point, a Linear Time-Invariant (LTI) system is obtained.

The use of the term ’LPV’ suggests that the parameters can be known in real time whereas
’LTV’ means only that the system is non-stationary but nothing is said about the knowledge
of the time-varying components.

Example 2.0.1 For instance, when piloting an aircraft, the angle of attack is determined
by the pilot and therefore can be considered as parameter whose trajectory is unknown in
advance. Hence the aircraft can be viewed as a LPV system since the angle of attack can be
known. However, if a machine tool is considered where a time-varying parameter is related to
the wear of some parts of the machine. In this case, it may be difficult to measure or estimate
the time-varying part and hence, a LTV model is better suited to represent such a system than
a LPV one.

A strict analysis does not fall into the context of this introduction and only LPV systems
will be considered in the remaining of this chapter. For the interested reader about LTV
systems, let us mention for instance the survey on Periodic Systems [Bittanti and Colaneri,
1999] . But, before introducing the interests and motivations for studying LPV systems, let
us provide the expression of a generalized LPV system, taking the form of a non-autonomous
non-stationary system of linear differential equations with algebraic equalities:

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t) + E(ρ(t))w(t)
z(t) = C(ρ(t))x(t) +D(ρ(t))u(t) + F (ρ(t))w(t)
y(t) = Cy(ρ(t))x(t) + Fy(ρ(t))w(t)

(2.1)

where x ∈ X ⊂ Rn×n, u ∈ U ⊂ Rm, w ∈ W ⊂ Rp, z ∈ Z ⊂ Rq and y ∈ Y ⊂ Rt are respec-
tively the state of the system, the control input, the exogenous input, the controlled output
and the measured output. For more details on dynamical systems and related fundamental
results, the reader should refer to [Khalil, 2002; Scherer and Weiland, 2005; Sontag, 1998]

It is clear from (2.1) that the behavior of output signals depends on input signals and
on parameters acting in an internal fashion on the system. It is generally assumed that
the parameter dependent matrices have bounded coefficients and this generally requires the
boundedness of the parameters ρ(t):

ρ(t) ∈ Uρ ⊂ Rk for all t ≥ 0 and Uρ compact

Remark 2.0.2 If some parameters are unbounded, it is generally possible (except for very
special cases) to find a change of variables which defines a new system expression involving
new bounded parameters. If a change of variables cannot be found, approaches such as in
[Scherer, 2008] can be used.
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From these considerations the questions of stability, controllability and observability are not
as ’easy’ as in the LTI case and remain important problems beginning to be solved efficiently
by recent techniques, mainly using LMIs.

The great interest of LPV systems is their ability to model/aproximate a wide variety of
systems, from nonlinear to LTV systems including switched systems; this will be illustrated
in Section 2.1. For instance, we may think to an automotive process where the dampers
have to be controlled. In this case, possible parameters may be the speed of the car and
position/orientation of the car since they are consequences of the driver and road behaviors.
It is clear that the behavior of the vehicle varies for different speeds and road configurations.
Hence it would be more efficient if the dampers control law would depend on these parameters.

The second interest, illustrated in the latter small scenario, resides in the control of LPV
systems: the flexibility and adaptability that LPV control suggests. Indeed, the possibility of
using the parameters in the control law gives rise to an interesting opportunity of improving
system stability and performances. Coming back to our little scenario, if an engineer wishes
to synthesize a control law without any information on the speed and determine a single LTI
controller, this falls into the robust control framework and the process may be difficult to
stabilize or has poor closed-loop performances. On the other hand, if the speed is measured
and ’internally’ used in the control law, the stabilization would be an easier task and the
closed-loop system would certainly have better performances. This is the advantage of LPV
control over robust control, provided that real-time measurement of potential parameters is
possible. It is important to note that LPV control techniques can be easily combined with
recent results on H∞, H2, µ-norm, to produce enhanced control laws with performances and
robustness specifications.

We will conclude this succinct introduction by examples provided in the literature. Since
in many cases heavy computations are performed to turn the nonlinear system formulation
into a LPV dynamical system, only a simple case is detailed hereunder while others are briefly
enumerated with corresponding references.

Inverted Pendulum - robust control and performances This application has been

provided in Kajiwara et al. [1999] where a model is given in the LPV form using a change of
variable. The inverted pendulum depicted in Figure 2.2 is constituted of two arms moving in
the vertical plane. The corresponding LPV model is given by:

d

dt


z
ż
rx
ϕ̇1

 = A(ρ)


z
ż
rx
ϕ̇1

+


0
0
0
Ka

Ta

u
with

A(ρ) =


0 1 0 0
0 0 0 0
0 0 0 0

0 0 0 − 1
Ta

+
3

4`2
g


0
1
0
0

 [ 1 0 −1 0
]

+ ρ


0
0
1
0

 [ 0 0 0 1
]

where ϕ1 is the angle of the first arm, ϕ2 + ϕ1 is the angle of the second arm (with respect
to the ground), ry = 2`1 sin(ϕ1), rx = 2`1 cos(ϕ1), `1 is the half of the length of the arm 1,
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Figure 2.2: Pendulum considered in Kajiwara et al. [1999]

`2 is the half of the length of the arm 2, g is the gravitational acceleration, the parameter
ρ is defined by ρ = ry, Ka, Ta are constant parameters of the actuator (a motor here) and

z := rx
4
3
`2ϕ2 is the change of variable used to formulate the model as a LPV system.

According to Kajiwara et al. [1999], the obtained control law leads to encouraging results
(the paper is from 1999, the beginning of the LPV trend) for the LPV formulation. The LPV
approach has led in this application to an enhancement of the stability and performances.

Automotive Suspension System1 Another application of LPV control is the perfor-

mance adaptation: indeed, parameters can be introduced in Loop Shaping weighting functions
in order to modify in real time the characteristics of the closed-loop systems: the bandwidth,
the weight on the control law. . .

For instance, in [Poussot-Vassal, 2008], control of semi-active suspensions is addressed
in view of performing a global chassis control. Since semi-active suspensions, in which the
damper coefficient is controlled, can only absorb energy but not supply it, the control input is
constrained to belong to a specific set depending on the deflection speed which is the derivative
of the difference the sprung mass (zs) and the unsprung mass zus, i.e. żs − żus. Figures 2.3
and 2.4 represent different kind of suspension systems with associated characteristics. Ideally,
the force produced by the suspension must be positive (negative) if the deflection speed is
positive (negative).

Since in the H∞ control framework such constraint cannot be explicitly specified, the idea
is to use a parameter dependent weighting function on the control input of the form

Wu(s, ρ) = ρ(u− v)
1

s/1000 + 1
1Thanks to Charles Poussot-Vassal who provided the material on this topic
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Figure 2.3: Different types of suspensions, from left to right: passive, semi-active and active
suspensions

Figure 2.4: Characteristics of passive, semi-active (left) and active (right) suspensions

where u is the computed force and v is the achievable force which satisfies the quadrant
constraint. The parameter ρ is chosen to satisfy the following relation

ρ(ε) = 10
µε4

µε4 + 1/µ
)

for sufficiently large µ > 0, e.g. 108. In this case, the parameter belongs to [0, 10] and has the
form depicted on Figure 2.5 and the bode diagram of the inverse of the weighting function is
plotted on Figure 2.6 where it is shown that if ρ is high (i.e. the computed force is far from
the achievable force) the gain applied by the inverse of the filter on the control input is very
small. This has the effect of having a control input which is close to 0, value which is always
achievable.

This example shows the interest of parameter varying systems and parameter varying con-
trol; many other applications of such technique may be developed, for instance let us mention
parameter varying bandwidth of the closed-loop system, parameter dependent disturbance
rejection where the parameter would correspond to the pulsation of the disturbance, and so
on. . .

A wide range of applications

We give here a non-exhaustive list of application of LPV modeling and control in the
literature. In Wei and del Re [2007], the modeling and control of the air path system of
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Figure 2.5: Graph of the parameter ρ with respect to u− v

Figure 2.6: Bode diagram of 1/Wu(s, ρ) for different values of ρ

diesel engines in view of reducing polluting gas is addressed. This paper shows that a LPV
formulation leads to interesting results in terms of simplicity of implementation and system
performances. The control of elements in diesel engines is considered in Gauthier et al.
[2005, 2007a,b]; He and Yang [2006]; Jung and Glover [2006] where the air flow, the fuel
injection and/or the power unit are controlled. In Gilbert et al. [2007]; Reberga et al. [2005],
LPV modeling and synthesis are applied to turbofan engines. Electromagnetic actuators
are piloted in Forrai et al. [2007] while a robotic application is presented in Kwiatkowski and
Werner [2005]. In Liu et al. [2006a,b], LPV controller is applied to power system regulator. In
Lim and How [1999]; Tan and Grigoriadis [2000]; White et al. [2007] LPV control is applied
in the synthesis of missile autopilot. In Lu et al. [2006], the attitude control of an F-16
Aircraft in response of the pilot orders for different angles of attack is addressed. LPV vehicle
suspensions modeling and control is presented in Gaspard et al. [2004]; Poussot-Vassal et al.
[2006, 2008a,b] while global chassis control (attitude control) is handled in Gáspár et al.
[2007]; Poussot-Vassal et al. [2008c]. Finally, the control of nonuniform sampled-data systems
is treated in a LPV fashion in Robert et al. [2006]. This list shows the efficiency and wide
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applicability of LPV control on theoretical and practical applications and motivates further
studies on this topic. It will be shown later in this thesis that LPV methods can be used to
control, in a novel fashion, time-delay systems with time-varying delays [Briat et al., 2007a,
2008a].

2.1 Classification of parameters

The behavior of LPV systems highly depends on the behavior of the parameters. Indeed,
the global system is defined over a continuum of linear systems induced by a continuum
of parameters. If the parameters take discrete values (the set of values is finite) or are
piecewise constant continuous, the system would have a specific behavior and, in general,
a specific denomination is given for these particular kinds of systems over these peculiar
parameter trajectories; this will be deeper detailed further. This motivates the needs for
classifying parameters in order to differentiate every behavior and therefore, any system that
may arise. Two proper viewpoints can be adopted: either a mathematical one, centered on
the analysis on mathematical properties of the parameters trajectories such as continuity and
differentiability; or a physical point of view, focusing on the physical meaning of parameters
such as measurability and computability. Such a classification aims at discussing on the
validity and the meaning of LPV modeling in order to apply control strategies. It is important
to note that while the first classification is important for theoretical considerations on the
choice of stability results, the second is crucial for a rigorous application of LPV control on
physical systems.

2.1.1 Physical Classification

In general, the parameters can be sorted in three types, depending on their meaning and
origin.

2.1.1.1 Parameters as functions of states

The parameters may be defined as functions of states, and such cases arise when LPV systems
are used to approximate nonlinear ones; for instance

ẋ(t) = −x(t)3

can be approximated by the LPV system

ẋ(t) = −ρ(t)2x(t)

where ρ(t) := x(t).

LPV systems in which states appear in the parameters expressions are called Quasi-LPV
systems; see [He and Yang, 2006; Jung and Glover, 2006; Liberzon et al., 1999; Shamma and
Athans, 1990, 1992; Shin, 2002; Tan and Grigoriadis, 2000; Wei and del Re, 2007; White et al.,
2007] for some applications of quasi-LPV systems.

The main difficulty of quasi-LPV comes from the fact that theoretically, the states are
unbounded, while by definition, the parameters are. If, by chance, the functions mapping
the states to the parameter values are bounded for every state values, the problem would
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not occur (but this assumption is too strong to be of interest). On the contrary, if the
functions are unbounded, then a supplementary condition should be added in order to satisfy
the boundedness property of the parameters values. Fortunately, in practice, the states are
generally bounded and such problem only occurs in theoretical considerations.

It is worth noting that generally, several LPV systems correspond to a nonlinear system
and finding the ’best’ LPV model remains a challenging open problem [Bruzelius et al., 2004;
Mehendale and Grigoriadis, 2004; Shin, 2002]. Indeed, in the latter example, ρ(t) = x(t)2

would have be chosen. But the latter example is a simple one since the origin (i.e. x = 0) is
globally asymptotically stable attractive point and hence any parametrization would give an
asymptotically stable LPV system. On the contrary, let us consider the Van-der-Pol equation
(with reverse vector field) considered in [Bruzelius et al., 2004]:

ẋ1(t) = −x2(t)
ẋ2(t) = x1(t)− a(1− x1(t)2)x2(t)

with a > 0. It is well-known that this system has an unstable limit cycle: each trajectory
starting inside the limit-cycle converges to 0 while each trajectory starting outside diverges.
In [Bruzelius et al., 2004], it is shown that a ’good’ LPV approximation, giving the exact
stability region (i.e. interior of the limit cycle), is difficult to obtain.

2.1.1.2 Internal Parameters

The parameters may be used to represent time-varying parts involved in the system expression
(assuming that time-varying terms are bounded), in view of simplifying the stability analysis
and/or using them in advanced control laws. For instance, the LTV system:

ẋ(t) = (a(t) + b sin(t))x(t) , a(t) bounded over time

can be represented by
ẋ(t) = (ρ1(t) + bρ2(t))x(t)

where ρ1(t) := a(t) and ρ2(t) := sin(t). The term internal parameters means that the
information used to compute the parameter values is part of the system dynamical model
and elapsed time. This is to put in contrast with the last class of parameters exposed in the
next section.

2.1.1.3 External parameters

External parameters are involved in control and observation design problems only. Such ’vir-
tual’ parameters can be added in the design (for instance in frequency weighting functions in
H∞ control/observation) in order to modify the behavior of the closed-loop system in real-
time. These external signals may stem from a monitoring system and can be used to represent
states of emergency, working modes [Lu et al., 2006] or anything else, in view of modifying
the behavior of the system, such as the system bandwidth, gains. . .

Let us consider the SISO LTI system

ẋ(t) = x(t) + u(t)
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where x ∈ R and u ∈ R are respectively the system state and the control input. It is
proposed to determine a control law such that the closed-loop system has a variable and
controlled bandwidth. The following control law is thus suggested:

u(t) = −(1− ρ(t))x(t) + ρ(t)r(t), ρ(t) > 0

where r is the reference to be tracked. The interconnection yields:

ẋ(t) = ρ(t)(r(t)− x(t)), ρ(t) > 0

From the latter expression, the external parameter ρ(t) controls the bandwidth of the closed-
loop system and tries to maintain the tracking error to 0. In this scenario, a monitoring
system including heuristics would be able to manage the parameter value with respect to
high-level data.

2.1.2 Mathematical Classification

On the other hand, the mathematical ordering aims at sorting the parameters behavior by
considering mathematical properties of the trajectories. Consequently, these properties will
be taken into account in stability tests in order to provide less conservative results than by
ignoring these characteristics.

2.1.2.1 Discrete vs. Continuous Valued Parameters

The first idea is to isolate the parameters with respect to the type of values they take (or
more precisely the type of the image set of the mapping). Indeed, parameters must be viewed
as functions of time t ∈ R+:

ρ : R+ → ρ(R+)

where ρ(R+) is the image set of R+ by the vector valued function ρ(·). Recall that the image
set of the parameters is always bounded, then one can easily imagine that the image set is
continuous or discrete, for instance

ρ : t→ sin(t)

maps t ∈ T into [−1, 1] continuously while

ρ : t→ [sin(t)]r

where [·]r is the rounding to the nearest integer operator, maps T into {−1, 0, 1}.
The main difference between these image sets is that, while the first one contains an infinite

number of values, the second contains only three. Discrete valued image sets are more simple
to consider since one has to verify the stability at a finite number of points only. Systems
for which parameters take discrete values are called Switched Systems (deterministic case) or
Systems with jump parameters (stochastic case) [Blanchini et al., 2007; Cheng et al., 2006;
Colaneri et al., 2008; Daafouz et al., 2002; Ghaoui and Rami, 1997; Hespanha and Morse,
1999; Liberzon et al., 1999; Mariton, 1990; Verriest, 2005; Xie et al., 2002; Xu and Antsaklis,
2002]. It is clear, from the definition of discrete valued image sets, that the parameters
trajectories are discontinuous (more precisely they are piecewise constant continuous) while
for parameters with continuous image sets, continuity of the trajectories might occur. This
brings us to the idea of considering continuity as a second criterium of classification of the
parameters.
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2.1.2.2 Continuous vs. Discontinuous Parameters

Values of the parameters with continuous image set may evolve within the image set, in two
different ways: either in a continuous or a discontinuous fashion.

Definition 2.1.1 A continuous function f , defined over R+ such that

f : R+ → U

satisfies the following well-known statement:

∀ε > 0, ∃η > 0, |t− t0| ≤ η ⇒ |f(t)− f(t0)| ≤ ε, ∀ t0 ∈ R+

It is worth noting that there exists a large difference between switched systems (systems with
discrete valued parameters) and systems with continuously valued discontinuous parameters.
Let us consider for instance the following general parameter discontinuous trajectory

ρ(t) =
+∞∑
i=0

ρi(H(t− ti)−H(t− ti+1))

where ρi ∈ [ρ−, ρ+] ⊂ R, 0 = t0 < t1 < . . . < ti < . . . < ti+1 and H(·) is the Heaviside
function defined by

H(x) :=
{

0 if x ≤ 0
1 otherwise

Indeed, due to the infinite number of values for ρi, systems involving such a parameter
trajectory cannot be reduced to a finite number of systems. Hence such systems are of greater
complexity than switched systems; these systems are called LPV systems with arbitrarily
fast parameter and will be detailed further. The advantage of continuous parameters is
their potential differentiability and will be the last criterium to classify parameters from a
mathematical viewpoint.

2.1.2.3 Differentiable vs. Non-Differentiable Parameters

The final criterium is the first order differentiability of the parameters. By considering bounds
on the parameter derivatives, it is then possible to characterize the time-varying nature of the
parameters in terms of speed of variation. It is important to note that the speed of variation
has a very harmful effect on the stability of LPV systems. This will be detailed in Section
2.3 on the stability analysis of LPV systems.

Definition 2.1.2 A continuous differentiable function f , defined over R+ such that

f : R+ → U

satisfies the well-known statement

∃f ′ : ∀t0 ∈ R+ : lim
δt→{0−,0+}

f(t0 + δt)− f(t0)
t− t0

= f ′(t0)
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Note that in the classical definition of the derivative, the limit from each side of 0 must coin-
cide. This is clear that discontinuous functions do not satisfy such a condition and hence have
unbounded derivative at discontinuity (with a slight abuse of language). Therefore, no global
bounds can be defined for discontinuous parameters. Moreover, from the differentiability
property above, the parameter ρ(t) defined by

ρ : t→ | sin(t)|, t ≥ 0

does not admit a derivative at points ti = kπ, k ∈ N {0}. Indeed, the derivative value take
the value -1 and 1 respectively by computing the limit from the left and the right: therefore
no function f ′ exists. This is a consequence to the fact that the absolute value function is
not differentiable at 0. The non-existence of the function f ′ is apparently annoying since the
global differentiability property is lost due to the presence of a countable infinite number of
isolated points. Fortunately, since bounds on the parameters derivatives are necessary only,
it is possible to show that this obtrusive troublesome particularity does not introduce any
supplementary difficulty.

In these cases (continuous functions with non-smooth points), it is possible to affect two
bounded values to the derivative at each point where the function is non-differentiable. For
continuous parameters, these two values of the extended derivative are always bounded and
it is possible, by extension, to consider that the ’derivative’ takes simultaneously all values
within a bounded interval (in the preceding example, the interval is [−1, 1]). For discontinuous
functions, the fact that their derivative values are unbounded is retrieved since the ’derivative’
takes all values of R. This ’exotic’ version is not without reminding us of the definition of the
subgradient in nonsmooth analysis [Clarke, 1983], defined presently in less formal way. Since
we are only interested in bounds of the derivative, this definition is sufficient to define them.
This gives rise to the following propositions.

Proposition 2.1.3 For a smooth function f : R+ → U , U compact of R, the bounds on the
derivative is defined by an interval [a, b] where a = min

t∈R+

f ′(t) and b = max
t∈R+

f ′(t).

Proposition 2.1.4 For a continuous nonsmooth (Lipschitz) function we have

a = min{a1, a2} and b = max{b1, b2}

where

a1 = min
t∈T−{ti}i

f ′(t) b1 = max
t∈T−{ti}i

f ′(t)

a2 = min {min{U1}, . . . ,min{UN}} b2 = max {max{U1}, . . . ,max{UN}}

where {ti} is the set of points where f is nonsmooth and the Ui’s are the intervals of values
of the derivative at nonsmooth point ti.

It is important to give an extra discussion on quasi-LPV systems. It is clear that, generally,
the functions involving the states of the system are continuously differentiable with respect
to them. Then, since the states are also differentiable, it is possible to tackle bounds on
the parameter derivatives and these bounds would certainly depend on the bounds on the
derivatives of the states. However, bounding derivative of the states is a problematic task. To
understand why, let us consider that in the synthesis we fix ẋ ∈ [a, b], where x is the state of
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a LPV SISO system. Using these values a controller is computed and the closed-loop system
exhibits state derivatives going out of the bounds a and b; e.g. [a−1, b+1]. This contradictory
situation invalidates the synthesis and it cannot be proved exactly that the system is stable
for state derivative into [a− 1, b+ 1]. Hence the synthesis procedure should be applied again
with an enlargement of the bounds of the state derivative bounds, e.g. [a− 2, b+ 2]. On the
other hand, by expanding to much the derivative bounds (or even considering infinite values),
this may result in a too high conservatism in the approach culminating in bad performances
of the closed-loop system. This is one of the main difficulty while dealing with quasi-LPV
systems which does not occur in any other types of parameters (i.e. internal and external).

2.2 Representation of LPV Systems

The aim of this section is to provide different frameworks used to represent LPV systems with
their respective tools for stability analysis.

2.2.1 Several Types of systems...

Amongst the large variety of LPV systems, it is possible to isolate three main types of LPV
systems based on the dependence on the parameters:

1. Affine and multi-affine systems

2. Polynomial Systems

3. Rational systems

It is worth noting that every LPV systems can be brought back to one of these latter types
by mean of a suitable change of variable (e.g. ρ′1 ← eρ1). In the following, we will use the
notation ρ instead of ρ(t) to lighten the notation.

2.2.1.1 Affine and Multi-Affine Systems

Affine and multi-affine systems are the most simple LPV systems that can be encountered.
Their general expression is given by

ẋ(t) = A(ρ)x(t) + E(ρ)w(t)
z(t) = C(ρ)x(t) + F (ρ)w(t)

where [
A(ρ) E(ρ)
C(ρ) F (ρ)

]
=
[
A0 E0

C0 F0

]
+

N∑
i=1

[
Ai Ei
Ci Fi

]
ρi

Due to the affine dependence, stability of such systems can be determined with a low
degree of conservatism (in some cases there is no conservatism). This will be detailed further
in Section 2.3.2.
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2.2.1.2 Polynomial Systems

Polynomial systems are the immediate generalization of affine systems to a polynomial de-
pendence. Their general expression is given below:

ẋ(t) = A(ρ)x(t) + E(ρ)w(t)
z(t) = C(ρ)x(t) + F (ρ)w(t)

where [
A(ρ) E(ρ)
C(ρ) F (ρ)

]
=
[
A0 E0

C0 F0

]
+

N∑
i=1

[
Ai Ei
Ci Fi

]
ραi

where αi =
[
α1
i . . . αNi

]
and ραi = ρ

α1
i

1 ρ
α2
i

2 . . . ρ
αNi
N . Such systems are slightly more com-

plicated to analyze, but recently, several approaches brought interesting solutions to stability
analysis and control synthesis for this kind of systems. This will be detailed in Section 2.3.3.

2.2.1.3 Rational Systems

The class of rational systems is the last one to be presented:

ẋ(t) = A(ρ)x(t) + E(ρ)w(t)
z(t) = C(ρ)x(t) + F (ρ)w(t)

where A(ρ), E(ρ), C(ρ) and F (ρ) are matrices with coefficients taking the form of rational
functions. Such systems have the advantage to be able to model the largest set of systems
and multi-affine/polynomial systems are special case of this kind. Indeed, according to the
Padé approximation (see Appendix E.3) in order to approximate any function by rational
functions as close as necessary.

2.2.2 But essentially three global frameworks

Even if a LPV system can be classified in several families depending on how the parameters
act on the system, only three global techniques are commonly used (at this time) to deal with
LPV systems.

2.2.2.1 Polytopic Formulation

Polytopic systems are really spread in robust analysis and robust control. They have been
studied in many papers, for instance see [Apkarian and Tuan, 1998; Borges and Peres, 2006;
Geromel and Colaneri, 2006; Jungers et al., 2007; Oliveira et al., 2007; Peaucelle et al., 2000].

A time-varying polytopic system is a system governed by the following expressions

ẋ(t) = A(λ(t))x(t) + E(λ(t))w(t)
z(t) = C(λ(t))x(t) + F (λ(t))w(t)

(2.2)

where [
A(λ(t)) E(λ(t))
C(λ(t)) F (λ(t))

]
=

N∑
i=1

λi(t)
[
Ai Ei
Ci Fi

]
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and
N∑
i=1

λi(t) = 1, λi(t) ≥ 0. The term polytopic comes from the fact that the vector λ(t)

evolves over the unit simplex (which is a polytope) defined by

Γ :=

{
col
i

(λi(t)) :
N∑
i=1

λi(t) = 1, λi(t) ≥ 0

}
(2.3)

This set is depicted on Figure 2.7 for values N = 2 and N = 3. For N = 2, the set takes the
form of a segment on a line; for N = 3, the set is a triangular closed surface on a plane; and
so on. . .

Figure 2.7: Set Γ for N = 2 and N = 3

The polytope Γ can be explicitly defined from the set of its vertices:

V =
N⋃
i=1

Vi

where

Vi =


0(i−1)×1

1
0(N−i)×1


Indeed, in this case, the convex hull of V, denoted hull[V] coincides with Γ. Recall that the
convex hull is the convex envelope of V and is the smallest convex set containing V. The
notion of convex hull is illustrated on Figure 2.8.
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Figure 2.8: Convex hull of a set of points on the plane

Polytopic systems enjoy a nice property exploiting the fact that a polytope is a convex
polyhedral and, as we shall see later, the stability of a polytopic system can be characterized
by the stability of the ’vertex’ systems. It is important to note that any parameter dependent
system can be coarsely turned expressed as a polytopic system. Affine and multi-affine sys-
tems can be equivalently represented as polytopic systems, this is illustrated in the following
example:

Example 2.2.1 Let us consider the LPV system with two parameters ρ1, ρ2:

ẋ(t) = [A1ρ1(t) +A2ρ2(t)]x(t)

with ρi(t) ∈ [ρ−i , ρ
+
i ] for i = 1, 2. The corresponding equivalent polytopic system is then given

by
ẋ = [A1[(λ1 + λ3)ρ−1 + (λ2 + λ4)ρ+

1 ] +A2[(λ1 + λ2)ρ−2 + (λ3 + λ4)ρ+
2 ]]x

with λ1(t) + λ2(t) + λ3(t) + λ4(t) = 1, λi(t) ≥ 0.

It is clear that the polytopic model is not interesting in this case since it involves 4 time-
varying parameters instead of 2 for the original system. This is an obvious fact in multi-
affine systems. However, the transformation of the above multi-affine system into a polytopic
formulation allows to provide somewhat nonconservative stability conditions (depending on
the notion of stability which is considered); this will be detailed in Section 2.3.

On the other hand, the transformation of other LPV systems which are not multi-affine
may be interesting but remains conservative as demonstrated in the following example.

Example 2.2.2 Let us consider the polynomially parameter dependent system

ẋ(t) = (A0 +A1ρ+A2ρ
2)x(t) (2.4)

where ρ ∈ [ρ−, ρ+]. It can be converted into the polytopic system

ẋ(t) = [A0 +A1f1(λ(t)) +A2f2(λ(t))]x(t) (2.5)

with

f1(λ(t)) = (λ1(t) + λ3(t))ρ− + (λ2(t) + λ4(t))ρ+

f2(λ(t)) = λ3(t)(ρ−)2 + λ4(t)(ρ+)2
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Indeed, we have considered

(
ρ

ρ2

)
= λ1

(
ρ−

0

)
+ λ2

(
ρ+

0

)
+ λ3

(
ρ−

(ρ−)2

)
+ λ4

(
ρ+

(ρ+)2

)
(2.6)

6

- ρ

ρ2

ρ− ρ+

Figure 2.9: Comparison between exact set of values (the parabola) and the approximate set
(the interior of the trapezoid)

To see that systems (2.4) and (2.5) are not equivalent it suffices to show that the polytopic
parametrization can generate aberrant parameter values. This is easily visualized on Figure
2.9, aberrant values lie inside the trapezoid but not on the parabola. Then dealing with
the polytopic systems would results in conservative stability conditions. The drawback of
polytopic system as approximants comes from the fact that they decorrelate parameters and
functions of them. Indeed, in the previous example, the dependence between ρ and ρ2 is lost
in the parametrization (2.6); only extremal points are correlated.

In order to reduce this conservatism, it is interesting to reduce the size of the polytope.
This can be done by adding new vertices in order to shape the non-convex dependence between
parameters. For the curve f(x) = x2 it is possible to add new points below the curve to
approximate the curve by tangent straight lines as seen on Figure 2.11. Nevertheless, it is
not possible to approximate (asymptotically) exactly the parameter set (ρ, ρ2). Indeed, since
the domain has to remain convex, the surface above the curve f(x) = x2 (the epigraph) must
be convex too, and thus cannot be reduced more.
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ρ

ρ2

ρ+

6

-

+

Removed part

Figure 2.10: Illustration of Polytope Reduction using epigraph reduction

With the assumptions that ρ− = 0 and ρ+ > 0, the polytope can be reduced by removing
a part of the epigraph. The surface above the line joining the points (0, 0) and (ρ+, (ρ+)2)
can be removed. In this case the new domain is a triangle instead of a rectangle, as depicted
in Figure 2.10.

6

- ρ

ρ2

ρ− ρ+

Figure 2.11: Illustration of Polytope Reduction by straight lines

2.2.2.2 Parameter Dependent Formulation

This formulation is the most direct one, the system is considered in his its primal form.
The stability analysis or control synthesis are performed directly with specific tools. This
formulation is better suited for polynomially parameter dependent systems but can be used
with any type of LPV systems:

ẋ(t) = A(ρ)x(t)

where
A(ρ) = A0 +

∑
i

Aiρ
αi
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with αi =
[
α1
i . . . αNi

]
and ραi = ρ

α1
i

1 ρ
α2
i

2 . . . ρ
αNi
N . It is obvious that the multi-affine case

is a special case of this more general formulation. Moreover, even if the definition is given
for systems with polynomial dependence on parameters only, it also applies to systems with
rational dependence on parameters. However, a more more suitable formulation for such
systems is given in the next section.

2.2.2.3 ’LFT’ Formulation

The last formulation for LPV systems is called, with a slight abuse of language, LFT systems.
Indeed, the term ’LFT’ means ’Linear Fractional Transformation’ and is the transformation
used to convert a LPV/uncertain system into a Linear Fractional Form (LFR). The interest of
this formulation for LPV systems has been emphasized in [Packard, 1994] and this approach
has given rise to many papers, let us mention for instance [Apkarian and Adams, 1998;
Apkarian and Gahinet, 1995; Scherer, 2001]. The major interest of such a formulation is to
embed a large variety of systems in a single class, englobing in a unified way both systems
with polynomial and rational dependence on the parameters.

The key idea of this representation is to split the system in two parts: the parameter-
varying part and the constant part in view of analyzing them separately. It is worth noting
that the idea of separating the system in two connected independent parts is not new. It ac-
tually brings us back to the 50’s when the nonlinearities on the actuators were dealt with such
a representation and lead to Lu’re systems [Lur’e, 1951]. In robust stability analysis, such a
transformation is extensively used as shown in [Scherer and Weiland, 2005; Zhou et al., 1996]
as well as in the well-posedness [Iwasaki and Hara, 1998] or the IQC [Rantzer and Megretski,
1997] frameworks.

As an introductive example, let us consider the LPV system

ẋ(t) = A(ρ)x(t) (2.7)

which is rewritten into an interconnection of two systems

ẋ(t) = Ãx(t) +Bw(t)
z(t) = Cx(t) +Dw(t)
w(t) = Θ(ρ)z(t)

(2.8)

as depicted in figure 2.12. Note that the matrices of the lower system (Ã, B,C,D) are constant
while the parameter varying part is located in the upper system.
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�Θ(ρ)

H(s)-

z(t)w(t)

Figure 2.12: System (2.7) written in a ’LFT’ form corresponding to description (2.8) where
H(s) = C(sI − Ã)−1B +D

Example 2.2.3 Let us consider the LPV system

ẋ =
(

ρ2

ρ2
1 + 1

− 3
)
x (2.9)

It is possible to rewrite it in a ’LFT’ form as shown below
ẋ

z0

z1

z2

 =
[
Ã B

C D

]
x

w0

w1

w2

 (2.10)

with [
Ã B

C D

]
=


−3 1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 (2.11)

and  w0

w1

w2

 =

 ρ2 0 0
0 ρ1 0
0 0 ρ1

 z0

z1

z2

 (2.12)

Once the LPV system is split in two parts, the stability of the system or any other property
can be determined using theorems applying on system interconnections; this will be detailed
in Section 2.3. The matrix Θ(ρ) is constructed in such a way that it gathers diagonally all
the parameters involved in the LPV system (as illustrated in Example 2.2.3):

Θ(ρ) = diag(In1 ⊗ ρ1, . . . , Inp ⊗ ρp) (2.13)

where ni is the number of occurrences of parameter ρi in Θ(ρ) and p is the number of distinct
parameters. Each parameter is repeated enough times as needed to turn system (2.7) into
system (2.8). A complete discussion on the construction of the interconnection is given in
[Scherer and Weiland, 2005; Zhou et al., 1996]. It is generally assumed, for simplicity, that
Θ(ρ)TΘ(t) ≤ I meaning that the parameters ρ belong to the hypercube [−1, 1]p where p
is the number of parameters. It is worth noting that, by a simple change of variable, any
bounded real parameter can be modified to belong to the interval [−1, 1]. To emphasize the
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correspondence between both systems, we will turn the LFT formulation into a ’one-block’
formulation: from (2.8), we have

w(t) = Θ(ρ)z(t)
= Θ(ρ)(Cx(t) +Dw(t))

and then
(I −Θ(ρ)D)w(t) = Θ(ρ)Cx(t)

If the problem is well-posed (i.e. the matrix I − Θ(ρ)D is nonsingular for all ρ ∈ [−1, 1]p)
then we get

w(t) = (I −Θ(ρ)D)−1Θ(ρ)Cx(t)

and finally
ẋ(t) = (Ã+B(I −Θ(ρ)D)−1Θ(ρ)C)x(t)

showing that we have

A(ρ) = Ã+B(I −Θ(ρ)D)−1Θ(ρ)C
= Ã+BΘ(ρ)(I −DΘ(ρ))−1C

Example 2.2.4 We will show here the equivalence between system (2.9) and (2.10)-(2.12).
Applying formula A(ρ) = Ã+B(I −Θ(ρ)D)−1Θ(ρ)C yields

A(ρ) = −3 +

 1
0
0

 1 0 0
0 1 −ρ1

0 ρ1 1

−1  ρ2

0
0


= −3 +

1
1 + ρ2

1

 1
0
0

 1 0 0
0 1 ρ1

0 −ρ1 1

 ρ2

0
0


= −3 +

ρ2

ρ2
1 + 1

2.3 Stability of LPV Systems

In the latter section, three frameworks have been introduced and they cover a wide variety of
LPV systems: affine, polynomial and rational systems. These past years, specific tools have
been developed to deal with stability analysis of systems belonging to each class and gave rise
to interesting results. The aim of the current section is to present these tools and their most
important associated results, but first, some preliminary results on stability of LTI systems
are necessary.

2.3.1 Notions of stability for LTI and LPV systems

It is convenient, for the reader ease, to introduce several notions of stability of LPV systems.
Since LPV systems are defined over a (smooth) continuum of systems, hence the stability may
take several forms at the difference of LTI systems. For more details on stability of dynamical
systems, the reader should read, for instance, [Khalil, 2002; Scherer and Weiland, 2005; Smale,
2004; Sontag, 1998]. This section is devoted to show the complexity of the stability analysis
of LPV systems and introduces ad-hoc notions of stability for this type of systems.
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Before giving specific definitions for the stability of LPV systems, it is convenient to
introduce two fundamental definitions of stability for uncertain systems. These definitions
are also of interest in the framework of LPV systems. In modern systems and control theory,
the stability of a dynamical system is determined by mean of a Lyapunov function and
Lyapunov’s Stability Theory [Lyapunov, 1992]. The key idea behind this theory is that if it
is possible to find a nonnegative function, measuring the energy contained into the system,
which

• is decreasing over time

• has 0 value at the equilibrium

then the system is said to be stable.
Before defining the different notions of stability for LPV systems, the following funda-

mental results on stability of dynamical systems are necessary:

Theorem 2.3.1 (Lyapunov Theorem [Lyapunov, 1992]) Let us consider the general dy-
namical system

ẋ(t) = f(x(t)) (2.14)

such that 0 is an equilibrium point. Then is there exists a function V (x(t))

1. η||x(t)||22 ≤ V (x(t)) ≤ ε||x(t)||22, η, ε > 0

2. the derivative of V along the trajectories solution of the system (2.14) satisfies
∂V

∂x
f(x) ≤

−θ||x(t)||22, θ > 0 and V̇ (0) = 0

then the system is asymptotically stable and V is called a Lyapunov function for (2.14).

Theorem 2.3.2 Let us consider the following LTI system

ẋ(t) = Ax(t)
x(0) = x0

(2.15)

The following statements are equivalent:

1. The system (2.15) is globally uniformly asymptotically stable (i.e. for all x0 we have
||x(t)|| → 0)

2. The system (2.15) is globally uniformly exponentially stable (i.e. for all x0 and for all
t ≥ 0 we have ||x(t)|| ≤ αe−βt, α, β > 0)

3. The matrix A is Hurwitz (the eigenvalues of the matrix A have negative real part)

4. There exist matrices P = P T � 0 and Q = QT � 0 such that the Lyapunov equation

ATP + PA+Q = 0

is satisfied.
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Proof : The equivalence between exponential and asymptotic stability is trivial and is then
omitted. The properties of global stability and uniform stability hold since the system is linear
and time-invariant respectively [Scherer and Weiland, 2005; Sontag, 1998]. It is well known
that if the eigenvalues of the matrix A have negative real part then the system is asymptotically
stable. Computing the explicit expression of the solution x(t) = eAtx0 shows that it converges
to 0 if and only if the function is decreasing. This is verified if and only if the eigenvalues
lie in the complex open left-half plane. So statements 1 to 3 are equivalent. Now we prove
several implications.

Proof of 4⇒ 1

Define the quadratic function V (x(t)) = x(t)TPx(t) with P = P T � 0. Now applying the
Lyapunov’s theorem 2.3.1 and computing the derivative of V along the solutions of system
(2.15) we get the following sufficient condition for stability:

ATP + PA ≺ 0

which is equivalent to the existence of a matrix Q = QT � 0 such that the Lyapunov equation

ATP + PA+Q = 0 (2.16)

is satisfied. Hence the feasibility in (P,Q) ∈ Sn++ × Sn++ of the Lyapunov equation implies
asymptotic stability.

Proof of 4⇒ 2

Suppose (2.16) holds for some (P,Q) ∈ Sn++ × Sn++. Hence we have

λmin(P )||x(t)||22 ≤ V (x(t)) ≤ λmax(P )||x(t)||22
−λmax(Q)||x(t)||22 ≤ dV (x(t))

dt
≤ −λmin(Q)||x(t)||22

Therefore we have ||x(t)||22 ≤ λmax(P )−1V (x(t)) and

dV (x(t))
dt

≤ −λmin(Q)
λmax(P )

V (x(t))

According to the theory of linear differential equations, the solutions are given by

V (t) ≤ exp
[
λmin(Q)
λmax(P )

t

]
V (0)

and hence

||x(t)||22 ≤
1

λmin(P )
exp

[
λmin(Q)
λmax(P )

t

]
x(0)TPx(0)

Hence the exponential convergence is proved.

Proof of 3⇒ 4

Start with the assumption <[λ(A)] < 0 and consider the Lyapunov equation (2.16). The goal
is to show that for any given Q ∈ Sn++, there exists a solution P ∈ Sn++ to the Lyapunov’s
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equation (2.16) provided that <[λ(A)] < 0. Let Q = Q0 and pre and post multiply (2.16) by
eA

T s and eAs respectively:

eA
T sATPeAs + eA

T sPAeAs + eA
T sQ0e

As = 0

This is equivalent to
d

ds
[eA

T sPeAs] + eA
T sQ0e

As = 0

Then summing over [0, t] we get∫ t

0

d

ds
[eA

T sPeAs] + eA
T sQ0e

Asds = 0

eA
T tPeAt − P +

∫ t

0
eA

T sQ0e
Asds = 0

Under the assumption <[λ(A)] < 0, then we have eAt → 0 as t tends to +∞, hence the limit
is well defined for the latter equality and we get

P =
∫ +∞

0
eA

T sQ0e
Asds

Hence, this proves the existence of a solution P ∈ Sn++ to (2.16) under the assumption that
A is Hurwitz.

Remark 2.3.3 There exist several techniques to determine conditions under which the Lya-
punov equation has solutions, for instance methods based on the expansion approaches such as
the Kronecker product approach or the one presented here, methods based on skew-symmetric
matrices, and so on. See for instance the book [Gajić and Qureshi, 1995] and references
therein.

Proof of 4⇒ 3

The goal is to show that the feasibility of the Lyapunov equation (2.16) implies <[λ(A)] < 0.
First define, the eigenvectors (of A) ei ∈ Cn − {0} associated respectively to the eigenvalue
λi ∈ C through the relation

Aei = λiei

Pre and post-multiply (2.16) by e∗i and ei we get

e∗iA
TPei + e∗iPAei + e∗iQei = 0

(λ∗i + λi)e∗iPei + e∗iQei = 0
2<[λi]e∗iPei + e∗iQei = 0

Since e∗iPei > 0 and e∗iQei > 0, the equality holds if and only if

<[λi] < 0

The implication is then proved. �

The notions of stability and Lyapunov function are illustrated in the following
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Example 2.3.4 Let us consider an asymptotically stable LTI system

ẋ(t) = Ax(t), x(0) = x0

According to Theorem 2.3.2, a necessary and sufficient condition for the stability is the exis-
tence of a Lyapunov function of the form:

V (x(t)) = x(t)TPx(t), P = P T � 0 (2.17)

It is clear that the function is positive except at x = 0 where it is 0. Computing the time
derivative of V along the trajectories solution of the system yields

V̇ = ẋ(t)TPx(t) + x(t)TPẋ(t)
= x(t)T

(
ATP + PA

)
x(t)

Since the derivative needs to be negative definite for every x 6= 0, then we must have

ATP + PA ≺ 0, P = P T � 0

Finally, if one can find P = P T � 0 such that ATP+PA ≺ 0 then the system is asymptotically
stable. An explicit solution to such an inequality is provided in the proof of Theorem 2.3.2.

For instance, if A =
[
−1 0
1 −1

]
and P =

[
p1 p2

p2 p3

]
� 0 then we have

ATP + PA =
[

2(p2 − p1) −2p2 + p3

? −2p3

]
≺ 0

This is equivalent to satisfying the following nonlinear system of matrix inequalities (a sym-
metric matrix is positive definite if and only if all its principal minors are positive):

p1 > 0
p3 > 0

p1p3 − p2
2 > 0

p1 − p2 > 0
4p3(p2 − p1)− (p3 − 2p2)2 > 0

A suitable choice is given by

p1 = 3
p2 = 2
p3 = 2

In the framework of uncertain systems, the matrix A depends on (time-invariant/time-
varying) uncertain terms δ and is then denoted by A(δ). Let us focus now, for simplicity,
on constant uncertain parameters taking values in a compact set ∆ ⊂ Rp and the uncertain
system

ẋ(t) = A(δ)x(t)
x(0) = x0

(2.18)

where x and x0 are respectively the system state and the initial condition.
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Remark 2.3.5 We also assume that x = 0 is an equilibrium point for all δ ∈ ∆. This
assumption is fundamental to apply Lyapunov’s theory and is responsible of many errors in
published papers on stability of nonlinear uncertain systems. When the equilibrium point is
nonzero and depends on the value of the uncertain parameters, the following change of variable

x̃(t) = x(t)− xe(δ)

transfers the equilibrium point to 0. It is worth noting that this remark does not hold for
linear systems which always have an equilibrium point at the origin [Vidyasagar, 1993]. The
Lyapunov’s theory allows to show the stability of systems without computing the eigenvalue,
this makes a powerful tool when dealing with LPV systems which have, by definitions, an
infinite number of eigenvalues. Moreover, as we shall see further, the notion of stability of
LPV systems is not equivalent to the negativity of the real part of the eigenvalues.

It is possible to define several types of stability for LPV systems, each of them defined by a
specific Lyapunov function.

Definition 2.3.6 (Quadratic Stability) System (2.18) is said to be quadratically stable if
there exists a Lyapunov function Vq(x(t)) = x(t)TPx(t) > 0 for every x 6= 0 and V (0) = 0
such that

V̇q(t, δ) = x(t)T (A(δ)TP + PA(δ))x(t) < 0

for every x 6= 0 and V̇q(0, δ) = 0 for all δ ∈∆.

Definition 2.3.7 (Robust Stability) System (2.18) is said to be robustly stable if there
exists a parameter dependent Lyapunov function Vr(x(t), δ) = x(t)TP (δ)x(t) > 0 for every
x 6= 0 and V (0) = 0 such that

V̇r(t, δ) = x(t)T (A(δ)TP (δ) + P (δ)A(δ))x(t) < 0

for every x 6= 0 and V̇r(0, δ) = 0 for all δ ∈∆.

Since the Lyapunov function used to determine robust stability depends on the uncertain
constant parameters, it is clear that the robust stability implies quadratic stability. The
converse does not hold in general, indeed it may be possible to find uncertain systems which
are robustly stable but not stable quadratically. The following example illustrates this fact:

Example 2.3.8 Let us consider the uncertain system with constant uncertainty δ ∈ [−1,−1/2]∪
[1/2, 1]:

ẋ = A(δ, τ)x (2.19)

where τ > 0 is a known system parameter and

A(δ, τ) =
[

1 δ
−(τ + 2)/δ −(τ − 1)

]
The characteristic polynomial of the system is given by s2 + τs+ 1 and shows that the eigen-
values of the system do not depend on the uncertain parameter δ ∈ [−1,−1/2] ∪ [1/2, 1].
Moreover, the eigenvalues have strictly negative real part since τ > 0 and this proves that the
system is robustly asymptotically stable for any constant uncertainty δ. We aim at showing
now that the system is not quadratically stable using reductio ad absurdum.
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Let us assume first that the system is quadratically stable, thus there exists a matrix

P =
[
p1 p2

p2 p3

]
� 0 such that the LMI

Lq(δ) := A(δ)TP + PA(δ) ≺ 0

=

[
2p1 − 2

τ + 2
δ

p2 p2 −
τ + 2
δ

p3 + p1δ − p2(τ + 1)

? 2δp2 − 2p3(τ + 1)

]
≺ 0

holds for all δ ∈ [−1,−1/2] ∪ [1/2, 1]. Choosing δ0 ∈ [1/2, 1], we have Lq(−δ0) ≺ 0 and
Lq(δ0) ≺ 0 and hence Lq(−δ0) + Lq(δ0) ≺ 0 also holds. Computing the sum explicitly yields

Lq(−δ0) + Lq(δ0) = [A(−δ0) +A(δ0)]TP + P [A(−δ0) +A(δ0)]

=
[

4p1 −τp2

−τp2 −4(τ + 1)p3

]
which is not negative definite (since p1 > 0 by definition) yielding then a contradiction. This
shows that the system (2.19) is not quadratically stable.

Let us consider now a parameter dependent Lyapunov matrix

P (δ) = P0 + P1δ + P2δ
2 =

[
p1(δ) p2(δ)
p2(δ) p3(δ)

]
It is relatively tough to show analytically that such a matrix allows to prove robust stability
of system (2.19). However, we will show that the contradiction does not occur with such a
Lyapunov matrix P (δ). Let Lr(δ) = A(δ)TP (δ) + P (δ)A(δ) and compute

Lr(δ0) + Lr(−δ0) =
[

2(p1(δ0) + p1(−δ0)) ∗
∗ ∗

]
=

[
4(p2

1δ
2
0 + p0

1) ∗
∗ ∗

]
with pi(δ) = p2

i δ
2 +p1

i δ+p0
i . This LMI might be feasible since the only constraint is p1(δ) > 0

for all δ ∈ [−1,−1/2] ∪ [1/2, 1] which allows p2
1δ

2
0 + p0

1 to take negative values.
Numerical experiment with τ = 2 shows that a suitable choice for P (δ) is given by

P (δ) =
[

2.9218 −0.0017
−0.0017 0.0293

]
+
[

0.0157 1.1383
1.1383 0.0005

]
δ +

[
0.0857 0.0087
0.0087 0.7601

]
δ2 (2.20)

Proposition 2.3.9 Quadratic stability implies robust stability and quadratic stability is a
sufficient condition to stability.

Proof : The see that quadratic stability implies robust stability, it suffices to let Pi = P̄ ,
P̄ = P̄ T � 0 and quadratic stability is then a particular case of robust stability where all
the matrices Pi are identical. Quadratic stability is a sufficient condition for stability since
the Lyapunov function V (x) = xTPx is the most simple one that can be used to determine
stability. Thus if stability is ensured for a simple Lyapunov function then it will also ensured
using more complex ones. �
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Proposition 2.3.10 The negativity of the real part of the eigenvalues of the system is a
necessary condition for quadratic stability.

Proof : The proof is given in Example 2.3.8 where a system having negative real part of
eigenvalues but which is not quadratically stable is constructed. On the other hand, it is pos-
sible to show that if A(δ)TP +PA(δ) ≺ 0 for some P = P T � 0 then the eigenvalues of A(δ)
have strictly real part for any δ ∈∆. The procedure is similar as the one used in the proof of
Theorem 2.3.2. �

If the uncertainties were time-varying, the quadratic stability would check the stability for
unbounded parameter variation rates while the robust stability would consider bounded pa-
rameter variation rates. Indeed, the Lyapunov function derivative becomes in this case

V̇ = x(t)T
(
A(δ)TP (δ) + P (δ)A(δ) +

N∑
i=1

δ̇i
∂P (δ)
∂δi

)
x(t)

Hence robust stability of LPV systems is ensured if

A(δ)TP (δ) + P (δ)A(δ) +
N∑
i=1

δ̇i
∂P (δ)
∂δi

≺ 0 (2.21)

This illustrates the fact that even if an uncertain system with time-varying uncertainties
is stable for each frozen uncertainty, the derivative of the Lyapunov function may not be
negative definite for some values of δ and δ̇ due to the influence of the term

N∑
i=1

δ̇i
∂P (δ)
∂δi

This shows the importance of the rate of variation of the uncertainties in the stability of the
system.

Proposition 2.3.11 The negativity of the real parts of the eigenvalues is a necessary and
sufficient condition for robust stability provided that the rate of variation of the parameters is
sufficiently small.

Proof : The proof is based on the Lyapunov inequality (2.21). Indeed, suppose (2.21) holds
and let λi(δ) be the ith eigenvalue of the matrix A(δ) associated with the eigenvector ei(δ) ∈
Cn − {0}. Pre and post-multiply (2.21) by ei(δ)∗ and ei(δ) respectively we get

(λi(δ) + λi(δ)∗)ei(δ)∗P (δ)ei(δ) + ei(δ)∗
(

N∑
i=1

δ̇i
∂P (δ)
∂δi

)
ei(δ) < 0

Define zi(δ) := ei(δ)∗P (δ)ei(δ) > 0 and yi(δ) = ei(δ)∗
∂P (δ)
∂δi

ei(δ), the latter inequality

rewrites

2<{λi(δ)}zi +
N∑
i=1

δ̇iyi(δ) ≺ 0
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Finally we obtain

<{λi(δ)} < −
N∑
i=1

δ̇i
yi(δ)
2zi(δ)

≺ 0

Since δi is bounded, this implies that δ̇i has to take both negative and positive values (in
general) over time. The minimal value of the right-hand side is then obviously negative and
hence we get

<{λi(δ)} < −
N∑
i=1

κi(δ)

where

κi = sup
δ̇i

[
δ̇i
yi(δ)
2zi(δ)

]
which is attained at a vertex of the polytope where evolves δ̇. This shows that the larger the
bounds on the derivative of δ are, the larger are the real part of the eigenvalues of A(δ) in
absolute value. Moreover, it is important to point out that when the bounds on δ̇ reduce to 0,
the LTI case is retrieved with <{λ} < 0.

On the other hand, it seems important to illustrate that it is possible to find P (δ) =
P (δ)T � 0 for some A(δ) such that <{λi(A(δ))} < α and

A(δ)TP (δ) + P (δ)A(δ) +
N∑
i=1

δ̇i
∂P (δ)
∂δi

+Q(δ) = 0

is satisfied. However, it is quite tough and will be omitted here. An idea would be to use
strong evolution operators of LPV systems which are a generalization of evolution operators
for LTV systems [Curtain and Pritchard, 1977; Daleckĭı and Krĕın, 1974]. �

The following remark is necessary to clarify the ideas:

Remark 2.3.12 When considering systems involving uncertainties with infinite variation
rates, robust stability in the sense of Definition 2.3.7 cannot be defined. Indeed, suppose
that robust stability in the sense of Definition 2.3.7 is sought using a parameter dependent
Lyapunov function of the form V (x, δ) = xTP (δ)x. Due to the affine dependence of the
Lyapunov function derivative V̇ (x, δ, δ̇) on the term δ̇ (with a slight abuse of language since
δ is not differentiable at some points), it is necessary and sufficient to consider only the
vertices of the polytope in which ρ̇ evolves. Since the uncertainties have unbounded parameter
variation rate, then the polytope is the whole space RN including ±∞. This implies that

the term
∂P (δ)
∂δ

δ̇ may reach an infinite value, making the stability condition unfeasible. The

only way to make the matrix inequality feasible again is to have
∂P (δ)
∂δ

= 0 meaning that the

Lyapunov function is independent of δ and thus implying P (δ) = P0. Finally, the Lyapunov
function becomes a Lyapunov function for quadratic stability. This shows that it is not possible
to define a Lyapunov function depending explicitely/smoothly on the parameters. It seems
that only quadratic stability can be defined for such systems but actually it is possible to
define piecewise Lyapunov functions. Indeed, in [Xie et al., 1997] is introduced the piecewise
Lyapunov function:

V (x) = max
i
{x(t)TPix(t)} > 0



2.3. STABILITY OF LPV SYSTEMS 47

with Pi = P Ti � 0. Such function defines another type of stability improving the quadratic
one. However, it leads to quasi-convex problems which are more difficult to solve, especially
when a high number of different matrices Pi is considered.

The following example shows the difference between quadratic and robust stability for LPV
systems:

Example 2.3.13 Let us consider the LPV system [Wu et al., 1996]

ẋ = A(ρ)x

where

A(ρ) =


7 12 cos(ρ) sin(ρ)
6 10 − sin(ρ) cos(ρ)

τ(γ + 7) cos(ρ)− 6τ sin(ρ) 12τ cos(ρ)− (γ + 10) sin(ρ) −τ 0
τ(γ + 7) sin(ρ) + 6τ cos(ρ) 12τ sin(ρ) + τ(10 + γ) cos(ρ) 0 −τ


For τ ≥ 17.1169 and γ > 0, the matrix A(ρ) has negative eigenvalues for all ρ ∈ [−π, π]. For
similar reasons as for the system in Example 2.3.8, the system is not quadratically stable (i.e.
the sum of the right-upper block for ρ = −π and ρ = π is a zero matrix and the right-upper
block matrix is unstable). If ρ is constant then the system is robustly but not quadratically
stable. If ρ is time-varying, which effect have the parameters variation rates on the stability
of the system.

Let us consider the parameter dependent Lyapunov function

V (x, ρ) = xTP (ρ)x

where
P (ρ) = P0 + P1 cos(ρ) + P2 sin(ρ) + P3 cos(ρ)2 + P4 sin(ρ)2

A LMI test is performed in order to find the admissible bound on ρ̇ (i.e. |ρ̇| ≤ ν) with respect
to τ such that the system is robustly stable. The results are depicted on Figure 2.13. A best
fit approach conjectures that ν ∼ −0.0198τ2 + 1.7402τ − 24.3626. In view of interpreting the
non-quadratic stability, note that the matrix A(ρ) can be rewritten as:

A(ρ) =


7 12 cos(ρ) sin(ρ)
6 10 − sin(ρ) cos(ρ)
0 0 −τ 0
0 0 0 −τ

+


0 0
0 0
τ 0
0 τ

K(ρ)

with

K(ρ) =
[
τ(γ + 7) cos(ρ)− 6τ sin(ρ) 12τ cos(ρ)− (γ + 10) sin(ρ) 0 0
τ(γ + 7) sin(ρ) + 6τ cos(ρ) 12τ sin(ρ) + τ(10 + γ) cos(ρ) 0 0

]
The terms K(ρ) and τ play respectively the role of a parameter-dependent state-feedback gain
and the bandwidth of the actuators. By transposition of the preceding analysis to stabilization,
it is clear that it is not possible to find K(ρ) such that the closed-loop is quadratically stabi-
lizable. On the other hand, it is possible to find K(ρ) such that the system is asymptotically
stable provided that ν is sufficiently small (robust stability). From Figure 2.13, we can see
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Figure 2.13: Evolution of the maximal parameter derivative value ν with respect to τ that
preserves stability

that the larger the bandwidth of the actuator τ is, the larger the allowed bound on parameter
derivative ν is.

According to [Wu et al., 1996], the reason for which the system is not quadratically stable
is the particular parameter trajectories that allow to the right-upper block to switch arbitrarily
fast between values I and −I. So regardless of the bandwidth τ of the actuators, the rapidly
varying parameter ρ do not allow for parameter-dependent quadratic stabilization. Hence this
illustrates why ν is allowed to increase as τ (the bandwidth of the actuator) increases.

The difference between stability for unbounded (quadratic stability) and bounded (ro-
bust stability) parameter variation rate has been emphasized in the preceding example. It is
important to note that, for the moment, only values of the parameters and bounds on param-
eters derivative have been considered to study LPV systems stability. The remaining part
extends the discussion when the system matrix A(ρ) has nonnegative eigenvalues for some
parameter values. We will show that under some (sometimes strong) assumptions, the LPV
system may be robustly asymptotically stable even in presence of local parametric instability.
This is done by considering additional properties on trajectories of the parameters.

Definition 2.3.14 Let us consider the LPV system

ẋ(t) = A(ρ)x(t)
x(0) = x0

(ρ, ρ̇) ∈ Uρ × hull[Uν ]
(2.22)

If there exists only a (possibly infinite) countable family of vectors ρi for which A(ρ) has at
least one eigenvalues with zero real part, then system (2.22) is said to be exponentially stable
almost everywhere. This set of values for the parameters is denoted by Ūρ.
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Even if the system has unstable configurations, the system might have a stable behavior.
Indeed, this is ensured if the parameter trajectories lie in the set

U◦ρ := Uρ − Ūρ

It follows that the set U◦ρ is not convex anymore and thus results based on the convexity are not
applicable (see for instance Section 2.2.2.1). Moreover, when considering these systems, it is
clear that the exponential stability depends on the parameter trajectories (and not only their
values). If the trajectories avoid values in Ūρ then the system would be quadratically/robustly
stable over U◦ρ . On the other hand, if the trajectory stops on an unstable parameter values
then the system becomes unstable. This is illustrated on Figure 2.14 and in the following
example.

Figure 2.14: Example of trajectories for which the system is unstable (upper trajectory) and
exponentially stable (lower trajectories) provided that the trajectories cross singular points
sufficiently ’quick’

Example 2.3.15 Let us consider the scalar system

ẋ(t) = [cos(ρ(t)) + 1]x(t)
x0 = x(0) 6= 0

with ρ(t) ∈ [0, 2π]. At singular value 0 for cos(ρ(t))+1, that is when the parameter ρ has values
π/2 and 3π/2, the system has a zero eigenvalues. Hence there exists ’unstable’ trajectories.
For instance the trajectory

ρ(t) =
2t if t ∈ [0, π/4]
π/2 if t > π/4

makes the system non asymptotically stable since during the period [0, π/4] it does not have
enough time to converge to 0.
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On the other hand, if for a particular parameter vector ρ0, the system matrix A(ρ0) has at
least an eigenvalue with strictly positive real part then the family contains an infinite, but
not countable, number of parameter vectors for which the system is unstable (see Figure
2.15). This is a consequence of the continuity of the system eigenvalues with respect to
the parameters provided that the evolution of the matrix coefficient is continuous. Finally,
we arrive at the conclusion that the stability of the system depends on the values of the
parameters and on the behavior of the parameters. If the parameters just cross or avoid the
singular (unstable) parameter values, then the system would be quadratically/robustly stable.
But if one of the parameter remains at an unstable value permanently, then the system would
have an unstable behavior. This brought us to the following idea: if one can characterize
the mean duration of the instability then it is possible to characterize asymptotic stability of
the system. This is called average dwell-time in the switched systems community [Hespanha
and Morse, 1999; Lin and Antsaklis, 2009]. This has been generalized to LPV systems in
[Hespanha et al., 2001; Mohammadpour and Grigoriadis, 2007b]. However, this only works
with discontinuous parameters for technical reasons exposed below.

By average dwell-time argument we mean, if the time spent by the system in an unstable
behavior is greater than the time spent in the stable behavior, then the system will be unstable.
However, the time spent must be weighted by exponential rates of convergence in order to
take into account the speed of the system in each mode. Generally, worst exponential rates are
considered, that is we only consider the eigenvalue with maximal real part. Hence, this means
that due to the continuity of the eigenvalues with respect to the parameters, the maximal
stable exponential rate is close to 0 when the parameters values are close to the boundary
between unstable and stable domains. Thus, since the stable exponential rate is close to
0, hence it will be difficult to conclude on the stability with average dwell-time (the stable
system part is considered as very slow and hence cannot have any effect on the global stability
of the LPV system).
After this brief presentation of different forms of LPV systems stability, some results on their
representation and associated tools are provided. If not stated otherwise, in the following, by
’stability’ we tacitly means quadratic/robust exponential stability.

2.3.2 Stability of Polytopic Systems

This section is devoted to the stability analysis of LPV polytopic systems. Quadratic and
Robust stability are discussed and compared in the polytopic systems framework. In what
follows, the following polytopic LPV system is considered

ẋ(t) =
N∑
i=1

λi(t)Aix(t)

x(0) = x0

(2.23)

where x is the system state and λ(t) ∈ Γ where

Γ :=

{
N
col
i=1

(λi(t)) :
N∑
i=1

λi(t) = 1, λi(t) ≥ 0

}
(2.24)

A necessary and sufficient condition for robust stability is given below:
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Figure 2.15: Example of stability map of a LPV system with two parameters; the grey regions
are unstable regions

Proposition 2.3.16 The LPV polytopic system (2.23) is quadratically stable if and only if
there exists a matrix P = P T � 0 such that

ATi P + PAi ≺ 0 (2.25)

holds for all i = 1, . . . , N .

Proof : Define the Lyapunov function V (x(t)) = x(t)TPx(t) with P = P T � 0. The time-
derivative of the Lyapunov functions computed along trajectories of system (2.2) with w ≡ 0
leads to

V̇ (x(t)) = x(t)T (A(λ(t))TP + PA(λ(t)))x(t)

The quadratic stability of the equilibrium point xeq = 0 of system (2.2) is proved if V̇ (x(t)) ≺ 0
for every x 6= 0. This yields the following parameter dependent LMI

N∑
i=1

λi(t)
(
ATi P + PAi

)
≺ 0 (2.26)

for any λ ∈ Γ.

Sufficiency:

Assume that ATi P + PAi ≺ 0 for all i = 1, . . . , N . Then it is obvious that (2.26) holds since
the sum of negative definite matrices is also a negative definite matrix.

Necessity:
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Since (2.26) must be true for every value of λ(t) ∈ Γ then it must be true at every vertices Vi
of the polytope and this implies

ATi P + PAi ≺ 0

for all i = 1, . . . , N . �

An interesting fact of the previous result is the transformation of the parameter dependent
LMI (2.26) into a set of N LMIs. In other words, a semi-infinite dimensional problem is
reduced to a finite dimensional problem (sometimes huge) independent of the parameters
vector λ(t).

Example 2.3.17 In Example 2.2.1, the multi-affine system

ẋ(t) = (A1ρ1(t) +A2ρ2(t))x(t)

is turned in a polytopic formulation

ẋ = [A1[(λ1 + λ3)ρ−1 + (λ2 + λ4)ρ+
1 ] +A2[(λ1 + λ2)ρ−2 + (λ3 + λ4)ρ+

2 ]]x

with λ1(t) + λ2(t) + λ3(t) + λ4(t) = 1, λi(t) ≥ 0. From this formulation, quadratic stability
is ensured if and only if there exists a matrix P = P T � 0 such that the set of 4 LMIs is
satisfied

(A1ρ
−
1 +A2ρ

−
2 )TP + P (A1ρ

−
1 +A2ρ

−
2 ) ≺ 0

(A1ρ
+
1 +A2ρ

−
2 )TP + P (A1ρ

+
1 +A2ρ

−
2 ) ≺ 0

(A1ρ
−
1 +A2ρ

+
2 )TP + P (A1ρ

−
1 +A2ρ

+
2 ) ≺ 0

(A1ρ
+
1 +A2ρ

+
2 )TP + P (A1ρ

+
1 +A2ρ

+
2 ) ≺ 0

A necessary and sufficient condition to quadratic stability of the multi-affine system is defined
by the stability of the system at each vertex of the orthotope [ρ−1 , ρ

+
1 ]×[ρ−2 , ρ

+
2 ] using a common

Lyapunov function. The exactness of the procedure is a consequence of the fact that an
orthotope is also a convex polyhedral and every convex polyhedral can be exactly parametrized
over the unit simplex Γ.

Example 2.3.18 Let us consider again Example 2.2.2 where a LPV system with quadratic
dependence on a parameter is turned, in a nonequivalent polytopic description recalled below:

ẋ(t) = [A0 +A1[(λ1(t) + λ3(t))ρ− + (λ2(t) + λ4(t))ρ+] +A2[λ3(t)(ρ−)2 + λ4(t)(ρ+)2]]x(t)

with
4∑
i=1

λi(t) = 1, λi(t) ≥ 0. A sufficient condition to stability of such system is hence

given by the feasibility of the set of 4 LMIs

(A0 +A1ρ
−)TP + P (A0 +A1ρ

−) ≺ 0
(A0 +A1ρ

− +A2(ρ−)2)TP + P (A0 +A1ρ
− +A2(ρ−)2) ≺ 0

(A0 +A1ρ
+)TP + P (A0 +A1ρ

+) ≺ 0
(A0 +A1ρ

+ +A2(ρ)+)TP + P (A0 +A1ρ
+ +A2(ρ)+) ≺ 0

As suggested in the proof and illustrated in the examples above, a necessary and sufficient
condition to quadratic stability (or sufficient condition to stability) of (2.26) is the stability
of all Ai (Ai have eigenvalues with strictly negative real part for all i = 1, . . . , N). The main
difficulty comes from the fact that, even if all the matrices Ai are Hurwitz, a common matrix
P satisfying the LMIs may not exist. The robust stability overcomes this problem.
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Proposition 2.3.19 The LPV polytopic system (2.23) is robustly stable if there exists ma-
trices Pi = P Ti � 0, a matrix X and a sufficiently large scalar σ > 0 such that −(X +XT ) Pi +XTAi XT

? −σPi + Pλ̇(t) 0
? ? −Pi/σ

 ≺ 0 (2.27)

holds for all i = 1, . . . , N and all λ̇ ∈ S (compact) where P :=
∂P (λ)
∂λ

=
[
P1 P2 . . . PN

]
.

For simplicity, the compact set S is not detailed here but is the set where the derivative of
λ(t) evolves. More details are provided in Section 4.4.

Proof : The proof is made in three steps, the first step is to provide a relevant parameter
dependent Lyapunov function and differentiate it. The second part aims at defining a relaxed
LMI in order to linearize the dependence on parameters. Finally, the last step turns a param-
eter dependent matrix inequality into a set of matrix inequalities that are independent of the
parameters.

Let us consider the parameter dependent Lyapunov function

V (x(t), λ(t)) = x(t)TP (λ(t))x(t)

where P (λ(t)) =
N∑
i=1

λi(t)Pi, Pi = P Ti � 0. The derivative of V along the trajectories solutions

of system (2.23) is given by

V̇ (x(t), λ(t), λ̇(t)) = x(t)T
(
A(λ(t))TP (λ(t)) + P (λ(t))A(λ(t)) + Pλ̇(t)

)
x(t)

where A(λ(t)) =
N∑
i=1

λi(t)Ai. Since V̇ (·, ·, ·) must be negative (except for x = 0) for all x ∈ Rn,

λ ∈ Γ and λ̇ ∈ S we must have

A(λ(t))TP (λ(t)) + P (λ(t))A(λ(t)) + Pλ̇(t) ≺ 0 (2.28)

The idea would be to use the same proof as for quadratic stability to provide a sufficient con-
dition for robust stability. However, the equivalence holds if only if the dependence on the
parameters is affine. Due to the product A(λ(t))TP (λ(t)) in LMI (2.28) the dependence is
not affine anymore but quadratic. The idea now is to turn LMI (2.28) into an equivalent
formulation where these quadratic terms are removed.

Let us consider the following LMI where X is a constant full matrix of appropriate dimensions −(X +XT ) P (λ) +XTA(λ) XT

? −σP (λ) + Pλ̇ 0
? ? −P (λ)/σ

 ≺ 0 (2.29)
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We aim now at showing that LMI (2.29) implies (2.28). Note that (2.29) can be rewritten in
the expanded form 0 P (λ) 0
? −σP (λ) + Pλ̇ 0
? ? −P (λ)/σ


︸ ︷︷ ︸

Ψ

+

 I
0
0

XT
[
−I A(λ) I

]
+

 −I
A(λ)T

I

X [ I 0 0
]
≺ 0

Since the matrix X is unconstrained (free) then the projection lemma applies (see Appendix
D.18). A basis of the null-space of U1 :=

[
−I A(λ) I

]
and U2 :=

[
I 0 0

]
are given

respectively by

Ker[U1] =

 A(λ) I
I 0
I I

 Ker[U2] =

 0 0
I 0
0 I


Finally the projection lemma yields the following two underlying LMIs

Ker[U1]TΨKer[U1] = Ker[U1]T

 0 P (λ) 0
? −σP (λ) + Pλ̇ 0
? ? −P (λ)/σ

Ker[U1] ≺ 0

=
[
A(λ)TP (λ) + P (λ)A(λ) + σP (λ) + Pλ̇ P (λ)

? −P (λ)/σ

]
≺ 0

Ker[U2]TΨKer[U2] = Ker[U2]T

 0 P (λ) 0
? −σP (λ) + Pλ̇ 0
? ? −P (λ)/σ

Ker[U2] ≺ 0

=
[
−σP (λ) + Pλ̇ 0

? −P (λ)/σ

]
≺ 0

A Schur complement on the first LMI yields

A(λ)TP (λ) + P (λ)A(λ) + Pλ̇ ≺ 0

which is identical to (2.28). The second LMI is satisfied if and only if −σP (λ) + Pλ̇ ≺ 0
and this inequality is verified if σ is sufficiently large. This means that (2.29) implies (2.28).
The final part of the proof is the transformation of the parameter dependent matrix inequal-
ity (2.29) into a set of N matrix inequalities (2.27). This is done in the same way as for
quadratic stability. �

It is worth noting that condition (2.27) is not a LMI condition due to the unknown scalar term
σ > 0. Nevertheless, if σ is fixed, the condition becomes a LMI. This is called a quasi-convex
program. Moreover, σ is not completely unknown since it must be sufficiently large. In this
case, it is possible to determine its value using an increasing linear search. Note also that in
the case of constant λ, the term Pλ̇ is 0 and hence a suitable and simple choice for σ is 1.

Remark 2.3.20 The principle of the polytopic formulation is based on the fact that the sys-
tem and stability conditions (here in a LMI form) have affine dependence on the parameters.
If, for some reason, the affine dependence is lost the stability of the system is not equivalent
to (or implied by) the feasibility of the LMI at each vertex. In [Apkarian and Tuan, 1998;
Jungers et al., 2007; Oliveira et al., 2007] some results are provided for which the dependence
is lost and some sufficient conditions are expressed to relax the parameter dependent LMI
conditions. This is also introduced in Section 4.2.
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In terms of computational complexity, let us consider that a system has N parameters, hence
the number of LMIs to be solved simultaneously is then given by #(LMIs) = 2N . This can
be very time and memory consuming for some applications.

2.3.3 Stability of Polynomially Parameter Dependent Systems

The most simple and intuitive description of polynomially parameter dependent systems or
systems with polynomial of functions of parameters (e.g. cos(ρ), eρ . . . ) is to deal directly
with a primal formulation:

ẋ(t) = A(ρ(t))x(t)
x(0) = x0

ρ ∈ Uρ & RN
(2.30)

as done in Section 2.3.1. In order to avoid repetition on stability of such systems, we will
focus on how to express stability conditions and how solving them. The reader should refer
to Section 2.3.1 to get preliminary results. We only recall here LMIs used to define quadratic
(rate-independent) and robust (rate dependent) stability and then a discussion is provided
on relaxation techniques.

Lemma 2.3.21 System (2.30) is quadratically stable if and only if there exists a matrix
P = P T � 0 such that

A(ρ)TP + PA(ρ) ≺ 0 (2.31)

holds for all ρ ∈ Uρ.

Proof : The proof is an application of the Lyapunov stability theory with V (x) = xTPx as
a Lyapunov function. �

Lemma 2.3.22 System (2.30) is robustly stable if and only if there exists a continuously
differentiable matrix function P (ρ) = P (ρ)T � 0 such that

A(ρ)TP (ρ) + P (ρ)A(ρ) +
N∑
i=1

νi
∂P (ρ)
∂ρi

≺ 0

holds for all ρ ∈ Uρ and all ν =
N
col
i=1

(νi) ∈ Uν where Uν is the set of vertices of the polytope in

which the derivative of the parameters ρ̇ evolves.

Proof : The proof is an application of the Lyapunov stability theory with V (x, ρ) = xTP (ρ)x
as a Lyapunov function. After differentiation, the term ρ̇ enters affinely in the LMI and
hence a polytopic formulation is equivalent for the description of the dependence on ρ̇. Hence
it suffices to consider the vertices of the polytope to consider any value for the derivative of
the parameters within the polytope. �

The LMI for quadratic stability is technically called a semi-infinite dimensional LMI due
to the dependence on parameters. Indeed, a continuum of LMIs is parametrized by ρ. This
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means that it must be satisfied for all ρ ∈ Uρ and the verification of such a LMI constraint is
a challenging problem due to the infinite number of values of ρ.

The LMIs for robust stability is technically called an infinite dimensional semi-infinite
LMI. The term ’infinite dimensional’ comes from the fact that the unknown variable P (ρ) to
be determined is a function (and thus belong to an infinite dimensional space) and the term
’semi-infinite’ comes from the fact that the LMI must be satisfied for all (ρ, ρ̇) ∈ Uρ × Uν .
Solving this LMI is also challenging due to the difficulty of finding a matrix function P (ρ).

The remaining of this section aims at showing different relaxations schemes allowing to
turn these difficult LMI problems into more tractable LMI conditions. Roughly speaking,
primal LMIs are relaxed into a set of finite number of finite dimensional LMIs which is easier
to solve with convex optimization tools. First of all, a method to relax the infinite-dimensional
part into a finite dimensional problem is provided. It is based on projections of functions on a
particular basis of functions. Second, methods to relax the semi-infinite part of the LMIs are
introduced. Some of these methods work for every parameter dependent LMIs independently
of the type of LPV system (affine, polynomial or rational). However, these (more or less)
recent results are rather complicated and remain technically difficult due to large theoretical
background. Nevertheless, they will be explained in broad strokes with a sufficient number
of references if precisions are sought. Three methods will be introduced: the relaxation by
discretization (or commonly called ’gridding’), the ’Sum-of-Squares’ approach and the global
polynomial optimization. They will be illustrated through examples and a discussion on
advantages and drawbacks will be provided. It is important to mention that lots of works
have been provided to relax semi-infinite dimensional part especially for LMIs with quadratic
parameter dependence but not only [Apkarian and Tuan, 1998; Féron et al., 1996; Lim and
How, 2002; Oliveira and Peres, 2002; Oliveira et al., 2007; Sato and Peaucelle, 2007; Scherer,
2005; Scherer and Hol, 2006; Trofino and De Souza, 1999; Tuan and Apkarian, 1998; Tuan
et al., 2001a].

2.3.3.1 Relaxation of matrix functions

The relaxation of the infinite dimensional part can be reduced to a finite dimensional problem
by projecting the function on a finite basis of function; for instance let us consider a polynomial
basis

fαi(ρ) = ραi , i = 1, . . . , Nb

Therefore a choice for the matrix P (ρ) can be

P (ρ) =
Nb∑
i=1

Pifαi(ρ)

where the matrices Pi = P Ti have to be determined. Therefore the robust stability conditions
becomes

Corollary 2.3.23 System (2.30) is robustly stable if and only if there exist matrices Pi = P Ti
such that such that LMIs

A(ρ)T
(

Nb∑
i=1

Pifαi(ρ)

)
+

(
Nb∑
i=1

Pifαi(ρ)

)
A(ρ) +

N∑
i=1

νi

(
Nb∑
i=1

Pi
∂fαi(ρ)
∂ρi

)
≺ 0

Nb∑
i=1

Pifαi(ρ) � 0
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holds for all ρ ∈ Uρ and all ν =
N
col
i=1

(νi) ∈ Uν where Uν is the set of vertices of the polytope in

which the derivative of the parameters ρ̇ evolves.

We have explicitly turned an infinite dimensional problem into a finite dimensional problem
where only Nb matrices are sought. The main difficulty of this relaxation stems from the
difficulty of finding both ’good’ types and number of basis functions. The central idea,
generally admitted, is to mimic the behavior of the system and reproduce the same parameter
dependence for P (ρ). An iterative procedure to find the number of basis function might be
the best technique but remains time consuming.

2.3.3.2 Relaxation of parametrized LMIs by discretization (gridding)

This LMI relaxation is applicable for any type of parametrized LMIs provided that the coef-
ficients of the LMIs are finite for any values in the parameter set. The discretization is the
most intuitive and simple way to make the problem finite dimensional. It proposes to replace
the initial semi-infinite problem by a discretized version involving a finite number of finite
dimensional LMIs. This is illustrated in the following example.

Example 2.3.24 The following generic problem is considered. Let L(x, ρ) be a real symmet-
ric matrix in the unknown variable x ∈ X ⊂ Rn where the parameter vector ρ belongs to some
compact subset Uρ of RN . The problem aimed to be solved is:

Solve L(x, ρ) ≺ 0 for all ρ ∈ Uρ
s.t. x ∈ X

The gridding approach proposes to simplify the latter problem into a discretized version. Let
Ūρ := {ρ1, . . . , ρk} be a set of distinct points belonging to Uρ (i.e. ρj ∈ Uρ for all j = 1, . . . , k.
Hence the problem reduces to

Solve L(x, ρ) ≺ 0 for all ρ ∈ Ūρ
s.t. x ∈ X

This approach is based on the claim that, by discretizing the parameter space, there exists
a density of the grid for which most of critical points are considered. By critical points, we
mean, the points in Uρ for which the LMI is unfeasible in X . However, the density which
has to be considered is unknown and its determination remains a difficult problem. Indeed,
if one wants to find a ’good’ density, the location of unfeasible regions in the parameter
domain is a crucial information. Unfortunately, this information is not accessible since the
knowledge of unfeasible regions is equivalent to the knowledge of the (un)feasibility of the
problem which is actually sought. This paradox shows that probably no method to find a
’perfect’ gridding would be developed someday. However, probabilistic approaches have been
developed to provide probabilistic certificate of feasibility, see for instance [Calafiore et al.,
2000; Tempo et al., 1997].

Remark 2.3.25 It is important to point out that this relaxation is an inner approximation
of the original problem. Indeed, the finite number of values for which the feasibility is tested
is strictly lower than the real set (which contains an infinite number of values). Hence the
feasibility of the relaxed problem is a necessary condition only for the feasibility of the initial
problem. This fact makes this relaxation to be a possible interesting certificate for unfeasibility.
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Example 2.3.26 Let us consider the trivial LPV system

ẋ(t) = (ρ− 1)2x(t)

with ρ ∈ [0, 2]. It is clear that for ρ = 1, the eigenvalue of the system is 0. Hence if
the discretization do not consider explicitly these two values, the system would be considered
as asymptotically stable. It seems very difficult in this case to prove exactly (i.e. find a
’good’ grid) that the system is asymptotically stable and moreover, this cannot be viewed in
simulations since the parameters have to stay, for a long time, at critical values to observe
instability.

Example 2.3.27 Let us consider now the system

ẋ(t) = (ρ2 − 1 + ε)x(t) 0 ≤ ε ≤ 1

with ρ ∈ [−1, 1], there exist an infinite number of parameters for which the system is unstable:
ρ ∈ [−1,−

√
1− ε]∪ [

√
1− ε, 1]. The Lebesgue measure of the interval of values of ρ, for which

the system is unstable, is 2(1−
√

1− ε) and taking a gridding of 5 equally spaced points suffices
to prove instability of the system. The largest ε is, the easiest is the proof of instability (the
measure of the interval grows up). On the contrary, the smallest ε is, the hardest is the proof
of instability.

A second drawback of the approach is the uncertain location of the eigenvalues of the LMI
between gridding points. It is worth noting that the discretization grid can be chosen to
be nonuniform over the whole parameter space. Indeed, in theory of interpolation, it has
been shown, in many works, that an uniform discretization may be far from the best choice.
For instance, in Lagrange polynomial interpolation, if the points are equally spaced, the
interpolated function oscillates above and below the real curve: this is called the Runge’s
phenomenon [Runge, 1901]. This can be a problem since the eigenvalues may change sign
between gridding points. It has been shown that if the gridding points coincide with zeros
the Chebyshev polynomials, the resulting interpolation polynomial minimizes the Runge’s
problem [Burden and Faires, 2004]. For interpolation with function and their derivatives,
Hermite interpolation polynomials should be considered instead [Burden and Faires, 2004].
Although these methods give ideas on the discretization scheme, they lead to complicated
expression for unknown functions since the order of polynomials approximately equals to
the number of discretization points. For more details about these topics, see for instance
[Abramowitz and Stegun, 1972; Bartels et al., 1998].

In terms of computational complexity, let us consider by simplicity that the system has
p parameters whose parameter space are discretized in N + 1 points. This means that the
total number of points is (N + 1)Np . Hence, the number of LMI to be solved simultaneously
is equal to the number of points, and thus we have #(LMIs) = (N + 1)Np . Generally, this
number is quite large since the number of gridding points must be sufficiently large to be
’sure’ to capture the behavior of the system.

2.3.3.3 Relaxation of Parametrized LMIs using methods based on Sum-of-Squares
(SoS)

We show here, in a very simple way, what is the sum-of-squares relaxation; where does it
come from and how to use it in the framework of parameter dependent LMIs. The interested
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reader should refer to [Gatermann and Parrilo, 2004; Helton, 2002; Parrilo, 2000; Prajna et al.,
2004; Scherer and Hol, 2006] and references therein to get more details. This method applies
only for polynomially parameter dependent LMIs (or possibly to some vary special cases of
rationally parameter dependent LMIs).

The idea is to describe the set of parameter values by a set of polynomial inequalities.
Then using an interesting variation of the S-procedure (see Appendix D.10) constraints are
injected in the LMIs. In such a method, the scalar variables introduced by the S-procedure are
not constant anymore but vary with respect to parameters, allowing a more tight relaxation.
Finally, it is aimed to show that the obtained LMI is Sum-of-Squares (SoS). Indeed, showing
the LMI to be SoS shows its positive definiteness. Moreover, testing if a polynomial is SoS
can be cast as a semidefinite programming problem (SDP problem), this is an important fact
demonstrating the interest of such an approach.

Theorem 2.3.28 Let p(x) be a univariate polynomial of order N . p(x) is nonnegative if and

only if it is sum-of-squares, i.e. there exists N polynomials hi(x) such that p(x) =
N∑
i=1

hi(x)2.

Moreover, the degree of p(x) is even and the coefficient of the higher power is positive.

Proof :Necessity:

The necessity is obvious. Suppose that p(x) is SOS thus it writes p(x) =
∑
i

qi(x)2 which is

obviously nonnegative.

Sufficiency:

Since p(x) = pnx
n + . . .+ p1x+ p0 ≥ 0 is univariate then it can be factorized as

p(x) = pn
∏
i

(x− ri)ni
∏
k

(x− αk + jβk)mj (x− αk − jβk)mj

where ri and αk ± jβk are respectively all real and complex roots of p(x) with respective order
of multiplicity ni and mj. It is clear that a univariate polynomial is nonnegative if and only
if pn > 0 and the orders of multiplicity of real roots are even. Let ni = 2n′j and noting that

(x− αk + jβk)(x− αk + jβk) = (x− αk)2 + β2
k

then we have
p(x) = pn

∏
i

(x− ri)2n′i
∏
k

[
(x− αk)2 + β2

k

]mj
In virtue of the property that products of sums of squares are sums of squares (the set of SoS
is closed under multiplication), and that all the expression above are SoS, it follows that p(x)
is SoS. �

To illustrate the fact that the nonnegativity of a polynomial can be expressed as a SDP,
let us consider a SoS nonnegative multivariate (n variables) polynomial p(x) of degree 2d.
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Then we have

p(x) =
∑
i

qi(x)2 ≥ 0

=
∑
i

z(x)TLTi Liz(x) ≥ 0 with qi(x) = Liz(x)

=
∑
i

z(x)TQiz(x) ≥ 0 with Qi = LTi Li

= z(x)TQz(x) ≥ 0 with Q =
∑
i

Qi

where z(x) is a vector containing monomial of degree up to d whose number of components

equals at most
(
n+ d
d

)
and the number of squares equals rank[Q]. Hence the positive

definiteness of Q implies the polynomial p(x) to be Sum-of-Squares.
This can be easily transposed to the matrix case:

Theorem 2.3.29 Let P (x) be a matrix univariate polynomial of order N . P (x) is non-
negative if and only if it is SoS, i.e. there exists N matrix polynomials Hi(x) such that

P (x) =
N∑
i=1

Hi(x)THi(x).

In the univariate case, the positivity of the polynomial is equivalent to the existence of a SoS
decomposition. This is also true for quadratic polynomials and quartic polynomials in two
variables. On the other hand, in the general multivariate case, a positive definite polynomial
is not necessarily SoS in general. Fortunately, the set of SoS multivariate polynomials is dense
in the set of nonnegative polynomials and allows SoS approach to be applied successfully in
many problems. The following example describes a nonnegative polynomial which is not
SoS but whose nonnegativity can be expressed as a SoS decomposition problem through an
equivalent test.

Example 2.3.30 The Motzkin’s polynomial

m(x) = 1 + x2
1x

2
2(x2

1 + x2
2 − 3)

is globally nonnegative but cannot be written as a SoS. It is depicted on Figure 2.16 showing
that it vanishes at |x1| = |x2| = 1 To see that it is globally nonnegative, let us consider
the triplet (1, x2

1x
4
2, x

4
1x

2
2) and in virtue of the arithmetic-geometric mean inequality (i.e. the

arithmetic mean is greater or equal to the geometric mean [Cauchy, 1821; Jensen, 1806]) then
we have

1 + x2
1x

4
2 + x4

1x
2
2

3
≥ 3

√
x6

1x
6
2

⇒ 1 + x2
1x

4
2 + x4

1x
2
2 − 3x2

1x
2
2 ≥ 0

⇒ 1 + x2
1x

2
2(x2

1 + x2
2 − 3) ≥ 0

It is relatively tough to show that the Motzkin’s polynomial is not SoS. On the other hand,
we will show that its nonnegativity can be cast as a SDP problem anyway by turning the
nonnegativity analysis of m(x) into an equivalent problem involving another polynomial which
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Figure 2.16: Motzkin’s polynomial

is SoS. First multiply the Motzkin’s polynomial m(x) by the positive polynomial x2
1 + x2

2 + 1
and we get

m′(x) = (x2
1 + x2

2 + 1)m(x)

It is clear that nonnegativity of m′(x) and m(x) are equivalent. Hence by solving a SDP the
following SOS decomposition of m′(x) is obtained:

m′(x) = (x2
1 + x2

2 + 1)(1 + x2
1x

2
2(x2

1 + x2
2 − 3))

= (x2
1x2 − x2)2 + (x1x

2
2 − x)2 + (x2

1x
2
2 − 1)2 +

1
4

(x1x
3
2 − x3

1x2)2

+
3
4

(x1x
3
2 + x3

1x2 − 2x1x2)2

The SoS approach is explained in the remaining of the section. LetM(ρ) � 0 be a parameter
dependent LMI to be satisfied for every value of ρ in an orthotope I explicitly defined by

I := [ρ−1 , ρ
+
1 ]× . . .× [ρ−p , ρ

+
p ]

This orthotope can defined through a set of polynomial inequalities (a semi-algebraic set):

I = {ρ : gi(ρ) ≥ 0, i = 1, . . . , p}

The following example describes the construction of such polynomials.

Example 2.3.31 For example, let (ρ1, ρ2) ∈ I2 := [−1, 1]× [2, 3] hence we have

g1(ρ1) = −ρ2
1 + 1

g2(ρ2) = −ρ2
2 + 5ρ2 − 6
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The expression of I through polynomial inequalities is not unique. In the example, above we
have chosen to define one polynomial of degree 2 for each parameter. It would also be possible
to define 4 polynomials of degree 1 or also 2 polynomials of degree 4, and so on. Supplementary
constraints can be added in order to specify other relations between parameters. All these
constraints can be combined into a more general semi-algebraic set, say I ′. Hence, by invoking
the full version of the S-procedure we claim that

M′(ρ) =M(ρ)−
N∑
i=1

gi(ρ)Zi − εI � 0 (2.32)

where matrices Zi = ZTi � 0 and a scalar ε > 0 are sought. The idea is to show that ifM′(ρ)
is SoS (i.e. M′(ρ) � 0) for all ρ ∈ I (or I ′) and in this case we should have

M′(ρ) � 0 ⇔ M(ρ)−
N∑
i=1

gi(ρ)Zi − εI � 0

⇒ M(ρ) �
N∑
i=1

gi(ρ)Zi + εI � εI � 0

The second step of the method is based on the expression of the parameter dependent LMI
in a quadratic form. Let B(ρ) be a basis of the multivariate matrix valued polynomialM′(ρ)
such that its spectral factorization is given by

M′(ρ) = B(ρ)TQB(ρ)

where Q is a constant symmetric matrix. Now by stating that Q � 0 then this implies that
M′(ρ) is sum-of-squares. Therefore, the goal is to find matrices Zi = ZTi � 0 such that
Q � 0.

Using this formulation, it may happen that no solution is found even thoughM(ρ) � 0 for
all ρ ∈ I. So, the next idea is to replace the constant positive definite matrices Zi by matrices
Zi(ρ) depending on the parameters which are SoS. This adds extra degrees of freedom and
allows to reduce the conservatism of the approach.
Finally let

B2(ρ)TQ′B2(ρ)

be the spectral factorization of

M(ρ)−
N∑
i=1

gi(ρ)Zi(ρ) (2.33)

where B2(ρ) is a quadratic basis for (2.33) and Q′ is constant symmetric matrix.
It is also possible to add other degrees of freedom based on the kernel of quadratic forms,

indeed there exist matrices K such that

B2(ρ)TKB2(ρ) = 0

where K is constant symmetric matrix. This constraint allows to take into account relations
between monomials in the basis B2(ρ). Thus determining that

Q′ +K − εI � 0
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for some ε > 0 we have

Q′ +K − εI � 0 ⇒ B2(ρ)T (Q′ +K)B2(ρ) � εI, for all ρ ∈ I
⇔ B2(ρ)TQ′B2(ρ) � εI, for all ρ ∈ I

⇔ M−
N∑
i=1

gi(ρ)Zi(ρ) � εI, for all ρ ∈ I

⇔ M �
N∑
i=1

gi(ρ)Zi(ρ) � εI � 0, for all ρ ∈ I

This method leads to more and more precise results by growing up the degree of the matrix
valued polynomials Zi(ρ). Moreover it has been shown that it asymptotically converges to a
necessary and sufficient condition when the degree of Zi(ρ) grows (non conservative condition).
Fortunately, the nonconservative condition is generally attained for reasonable degree values.

This approach suffers from a high computational complexity since

1. the number of variables grows up very quickly while raising the degree of SoS polyno-
mials

2. the size of the LMIs grows up quickly with respect to the order of polynomials involved
in the problem formulation

See for instance [Dietz et al., 2006] for a brief analysis of the increase of the number of decision
variables on a particular case. This is a common fact that good relaxations for parameter
dependent LMIs lead to expensive test from a computational point of view.
The following example ends the part of SOS relaxation.

Example 2.3.32 Let us consider the matrix

M(ρ) :=
[
−(ρ2 − 4) 1

1 −(ρ2 − 4)

]
and ρ ∈ [−1, 1]. The goal is to prove, using SoS, that M(ρ) � 0 for all ρ ∈ [−1, 1]. It is
clear that M(ρ) is not globally positive definite (i.e. for all ρ ∈ R). To see this, remember
that for a univariate polynomial positive definiteness is equivalent to the existence of SoS
decomposition. Hence, if we show that M(ρ) is not SoS then it is not positive definite on R.
A spectral decomposition on M(ρ) yields

M(ρ) = B(ρ)T


4 1 0 0
1 4 0 0
0 0 −1 0
0 0 0 −1

B(ρ)

where B(ρ) =
[
I2

ρI2

]
. In the multivariate case we

M(ρ) � 0 for all ρ ∈ R⇔ Q � 0



64 CHAPTER 2. OVERVIEW OF LPV SYSTEMS

The latter matrix is not globally positive definite since the (2, 2) right-lower block is negative
definite. Now define the set I := [−1, 1]. I can be defined as a semi-algebraic set:

I =
{
x ∈ R : g(x) := −x2 + 1 ≥ 0

}
Introduce

M(ρ)− g(ρ)Z = B(ρ)TQB(ρ)

where Q =


4− z1 1− z2 0 0
1− z2 4− z3 0 0

0 0 −1 + z1 z2

0 0 z2 −1 + z3

 and Z =
[
z1 z2

z2 z3

]
� 0. We can see

that the positive definite matrix Z appears positively in the right-lower block and could make
it positive definite. Now we seek Z = ZT � 0 such that Q � 0. Or equivalently if and only if[

4− z1 1− z2

1− z2 4− z3

]
� 0[

−1 + z1 z2

z2 −1 + z3

]
� 0

Note that the problem is affine in the variable Z and hence can be solved using SDP. From
these inequalities we get

Z � I2[
−1 + z1 z2

z2 −1 + z3

]
� 0

Choosing Z = 2I2 we obtain [
4− z1 1− z2

1− z2 4− z3

]
=
[

2 1
1 2

]
The eigenvalues of the latter matrix are respectively {1, 3} showing that Q � 0. Hence we
have M(ρ)− g(ρ)Z � 0 and finally

M(ρ) � g(ρ)Z � 0

If Q was not found positive definite, then Z would have been chosen as a function of ρ, and
the procedure applied again. This shows that the SoS approach can be used to elaborate finite
dimensional LMI conditions for the positive (negative) definiteness of parameter dependent
matrices in which parameters evolve in a bounded compact set.

2.3.3.4 Global Polynomial Optimization and the Problem of Moments

This approach is dual to the sum-of-squares relaxation. Since the matrix case can be straight-
forwardly turned into the scalar case, we will focus here on the scalar case only for illustration
purpose. The reader should refer to [Henrion and Lasserre, 2004, 2006; Lasserre, 2001, 2007]
and references therein to get more details. This method is based on measure theory and aims
at turning the initial optimization problem over Rn into another optimization problem over
a measure space. Although, the optimization over measure spaces is a rather complicated
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problem, such a reformulation is very general and allows to solve a wide type of optimization
problems, including polynomial optimization problems, using SDP.
Consider the optimization problem

inf c(x) s.t.
x ∈ Rn
gi(x) ≥ 0

(2.34)

where c(x) =
N∑
i=1

βix
αi and gi(x) are scalar multivariate polynomials with αi =

[
α1
i . . . αni

]
and xαi = x

α1
i

1 x
α2
i

2 . . . x
αni
n .

Proposition 2.3.33 Assuming that the set

X := {x ∈ Rn : gi(x) ≥ 0, for all i = 1, . . . , N}

is non empty, then the optimization problem (2.34) is equivalent to the following optimization
problem

inf
µ

∫
X
c(x)dµ(x) s.t.∫

X
dµ(x) = 1

where µ is a probability measure over X .

Proof : To see the equivalence, note that∫
X
c(x)dµ(x) ≥ inf

x∈X
c(x)

∫
X
dµ(x)

≥ inf
x∈X

c(x)

Hence the infimum of (2.34) is lower than the infimum of (2.3.33). Then suppose that x∗ ∈ X
is a global minimizer of c(x) then the corresponding measure is

µ∗(x) = δ(x− x∗)

where δ is the Dirac measure. With this appropriate choice, the infimums of both problems
coincide. �

This shows that the global minimum of problem (2.34) coincides with the global minimum of
problem (2.3.33). Now, the aim is to explain how the measure µ is found since an optimization
problem over a measure space is a nontrivial problem. First note, that a measure is uniquely
characterized by its moments defined by:

mαi(µ) =
∫
X
xαidµ(x)

where αi =
[
α1
i . . . αni

]
and xαi = x

α1
i

1 x
α2
i

2 . . . x
αni
n .

Using the moment formulation, the modified cost writes:∫
X
c(x)dµ(x) =

N∑
i=1

βimαi(µ)
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and then the optimization problem becomes

min
N∑
i=1

βimαi

such that
m[0 0 ... 0] = 1
Mk(m) � 0
Mk−di(gim) � 0

where 2di or 2di − 1 is the degree of polynomial gi(x). Mk(m) � 0 and Mk−di(gim) ≺ 0 are
LMIs constraints in m (the moments) corresponding to respective truncations of moment and
localizing matrices (matrices defining the constraints corresponding to the gi(x) in terms of
moments). The following example should clarify the idea behind the above reformulation.

Example 2.3.34 Let us consider the following polynomial optimization problem

inf
x∈R2

2x1 + 2x2
1 − x1x2 s.t.

g1(x) := 2x2
1 − x2 ≥ 0

g2(x) := −x2
1 − x2

2 + 4 ≥ 0
(2.35)

It is clear that the semi-algebraic set

X :=
{
x ∈ R2 : g1(x) ≥ 0, g2(x) ≥ 0

}
is non convex since it consists in the closed-interior of a ball minus the epigraph of a parabola.
It is illustrated in Figure 2.17. Turning the optimization into the measure formulation, we

Figure 2.17: Representation of the nonconvex set X :=
{
x ∈ R2 : g1(x) ≥ 0, g2(x) ≥ 0

}
considered in the polynomial optimization problem (2.35)

get
inf
m

2m10 + 2m20 −m12 s.t.

2m20 −m01 ≥ 0
−m20 −m02 + 4 ≥ 0
m00 = 1
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where mij =
∫
X
xi1x

j
2dµ. Moreover, let us define the following rank-one matrix:

N1(x) :=

 1
x1

x2

 [ 1 x1 x2

]
=

 1 x1 x2

x1 x2
1 x1x2

x2 x1x2 x2
2

 � 0

Computing the integral of N1(x) over X with measure dµ(x) we get∫
X
N1(x)dµ(x) = M1(m) � 0

where M1(m) =

 1 m10 m01

m10 m20 m11

m01 m11 m02

 � 0 This leads to the first approximation of the

polynomial optimization problem

inf 2m10 + 2m20 −m12 s.t.
2m20 −m01 ≥ 0
−m20 −m02 + 4 ≥ 0
m00 = 1
M1(m) � 0

In order to derive tighter relaxations, note that the matrices g1(x)N1(x) and g2(x)N1(x) are
positive semidefinite since N1(x) � 0 and g1(x), g2(x) ≥ 0. Hence we obtain,

g1(x)N1(x) = (2x2
1 − x2)

 1 x1 x2

x1 x2
1 x1x2

x2 x1x2 x2
2


=

 2x2
1 − x2 2x3

1 − x2x1 2x2
1x2 − x2

2

2x3
1 − x2x1 2x4

1 − x2x
2
1 2x3

1x2 − x2
2x1

2x4
1 − x2x

2
1 2x3

1x2 − x2
2x1 2x2

1x
2
2 − x3

2

 � 0

g2(x)N1(x) = (−x2
1 − x2

2 + 4)

 1 x1 x2

x1 x2
1 x1x2

x2 x1x2 x2
2


=

 −x2
1 − x2

2 + 4 −x3
1 − x2

2x1 + 4x1 −x4
1 − x2

2x
2
1 + 4x2

1

−x3
1 − x2

2x1 + 4x1 −x4
1 − x2

2x
2
1 + 4x2

1 −x3
1x2 − x3

2x1 + 4x1x2

−x4
1 − x2

2x
2
1 + 4x2

1 −x3
1x2 − x3

2x1 + 4x1x2 −x2
1x

2
2 − x4

2 + 4x2
2

 � 0

Computing the integral of g1(x)N1(x) and g2(x)N1(x) over X with measure dµ(x) leads re-
spectively to matrices M1(g1m) and M1(g2m) writing

M1(g1m) =


2m20 −m01 2m30 −m11 2m21 −m02

2m30 −m11 2m40 −m21 2m31 −m12

2m21 −m02 2m31 −m12 2m22 −m03

 � 0

M1(g2m) =

 −m20 −m02 + 4 −m30 −m12 + 4m10 −m40 −m22 + 4m20

−m30 −m12 + 4m10 −m40 −m22 +m20 −m31 −m13 + 4m11

−m40 −m22 + 4m20 −m31 −m13 + 4m11 −m22 −m04 + 4m02

 � 0
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Since higher order moments are present (up to order 4), we construct the higher order relax-
ation matrix M2(m) obtained from the matrix N2(x) = L2(x)L2(x)T :

L2(x) =



1
x1

x2

x2
1

x1x2

x2
2

 M2(m) =



1 m10 m01 m20 m11 m02

m10 m20 m11 m30 m21 m12

m01 m11 m02 m21 m12 m03

m20 m30 m21 m40 m31 m22

m11 m21 m12 m31 m22 m13

m02 m12 m03 m22 m13 m33

 � 0

Finally, the optimization problem becomes

inf
m

2m10 + 2m20 −m12 s.t.

2m20 −m01 ≥ 0
−m20 −m02 + 4 ≥ 0
m00 = 1
M1(g1m) � 0
M1(g2m) � 0
M2(m) � 0

With a similar procedure, it is possible to construct higher order relaxations until obtain
satisfying results.

It has been shown that the global minimum found using the moment-based relaxation asymp-
totically converges to the actual global minimum when the order of relaxation k tends to +∞.
Fortunately, as in the sum-of-squares approach, the global minimizer is found for small values
of k. In order to point out the duality between these two methods, just memorize that raising
k corresponds to raise the degree of SoS polynomials.

The generalization to parameter dependent LMIs is obtained remarking that a parameter
dependent symmetric matrix M(ρ) is negative definite if and only if all its principal minors
are strictly negative. This brings back the matrix problem to a multiple polynomial scalar
problem. Indeed, for a polynomially parameter dependent symmetric matrix of dimension
k, there are k principal minors taking the form of polynomials, which is exactly the form
presented in this section.

However, the formulation of LMI problem is not trivial and this is illustrated in the
following example.

Example 2.3.35 Let L(ρ,M) ≺ 0 be a parameter dependent LMI aimed to be satisfied where
M ∈M represents decision matrices and the parameter vector ρ belongs to a compact set Uρ.
We define the following optimization problem:

inf −t
fi(ρ,M, t) > 0
M ∈M
ρ ∈ Uρ

where fi(ρ,M, t)) are all minors of L(ρ,M)−tI � 0. The scalar t allows to determine whether
the LMI is satisfied or not. If t < 0 then the problem is feasible and there exists M ∈M such
that L(ρ,M) ≺ 0 for all ρ ∈ Uρ. Moreover, the parameter vector for which the minimum is
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attained is also returned by the optimization procedure. On the other hand, if t > 0 then this
means that there exists a parameter vector for which L(ρ,M) ⊀ 0 and the parameter vector
for which maximal eigenvalue of L(ρ,M) is attained is returned.

Consider the scalar inequality f(ρ) = ρ2 − 4 where ρ ∈ [−1, 1]. It is clear that f(ρ) < 0
over that domain. Now consider the optimization problem:

inf −t
ρ2 − 4− t > 0
ρ ∈ [−1, 1]

It is simple to show that topt = −3 for ρ = ±1. Therefore inequality ρ2− 4 < 0 is satisfied for
all ρ ∈ [−1, 1]. Now consider the second optimization problem:

inf −t
ρ2 − 4− t > 0
ρ ∈ [0, 3]

In this case, topt = 5 for ρ = 3. Finally consider the problem of finding k such that ρ2−4+k <
0. In this case, the constraint t < 0 must be added in order to obtain coherent results. The
optimization problem is thus defined by

inf −t
t < 0
ρ2 − 4 + k − t > 0
ρ ∈ [0, 3]

We obtain k = −5 − ε and t = −ε for sufficiently small ε > 0. This example illustrates
that the moment approach can be used in order to prove stability of LPV systems and find
suboptimal stabilizing controllers.

This approach is well-dedicated for small to medium size problems. Indeed, the dimension of
LMIs grows quickly, slowing dramatically the resolution using classical SDP solvers. Hence
the computational complexity is globally the same as of sum-of-squares relaxations.

It is worth noting that, as a by-product, such method can be used to find solutions to
BMIs using either scalarization or directly by considering Polynomial Matrix Inequalities
(PMI) [Henrion and Lasserre, 2006]. Nevertheless, although the theory for matrix valued
optimization problems is ready, it is still experimentally at a very preliminary level [Henrion,
2008].

2.3.4 Stability of ’LFT’ systems

The stability of ’LFT’ systems is still an active research topic. Indeed, ’LFT’ systems pro-
vide an unified way to model LPV systems with every type of parameter dependence: affine,
polynomial and rational. By rewriting LPV systems in ’LFT’ form, the initial system is split
in two interconnected subsystems: one constant and one time-varying. The stability of the
LPV systems is then determined using results on the stability interconnected systems. Most
of these results are summarized in this section.
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Let us recall first the LPV system is a ’LFT’ formulation:

ẋ(t) = Ãx(t) +Bw(t)
z(t) = Cx(t) +Dw(t)
w(t) = Θ(ρ)z(t)

(2.36)

The parameter matrix Θ(ρ) is not detailed here since its structure is not fixed a priori and
depend on stability analysis methods. It is important to note that all the tools provided in
that section have been initially developed for robust stability analysis of linear systems. Due
to the genericity of the ’LFT’ procedure, these tools apply naturally to the LPV case.

2.3.4.1 Passivity

The passivity is a very strong result for LPV systems. It can only be used with positive Θ(ρ)
and the LTI system must satisfy a very constraining inequality. Let H(s) = C(sI−Ã)−1B+D
be the transfer function from w to z corresponding to system (2.36) and assume that Θ(ρ)
is diagonal with bounded nonnegative components. We have the following definition (see for
instance [Khalil, 2002; Scherer and Weiland, 2005; Wyatt et al., 1981])

Definition 2.3.36 System H(s) is (strictly) passive if and only if

H(jω) +H(jω)∗(� 0) � 0, for all ω ∈ R (2.37)

This means that, in the SISO case, that the Nyquist plot of H(jω) must lie within the complex
open right half-plane (which is very constraining for system of order greater than 1). We need
the following result:

Proposition 2.3.37 If a strictly passive system is interconnected with a passive system, then
the resulting system is passive.

As any passive system is asymptotically stable, then the stability of the interconnection is
shown. Hence System (2.36) is asymptotically stable if Θ(ρ) is a passive operator and H(s)
a strictly passive one. Θ(ρ) is passive since it is diagonal and has nonnegative elements and
H(s) is strictly passive if strict inequality (2.37) holds. The following examples illustrate the
approach.

Example 2.3.38 Let us consider the SISO LPV system

ẋ = −(2− ρ)x (2.38)

where ρ ∈ [0, 1]. It is clear that the system is quadratically stable since there exists p > 0 such
that −(2 + ρ)p < 0 for all ρ ∈ [0, 1]. The LPV system is then rewritten into the ’LFT’ form

ẋ = −2x+ w
z = x
w = ρx

The transfer function H(s) corresponding to the LTI system is then given by H(s) =
1

s+ 2
and is strictly passive since

H(jω) +H(jω)∗ =
1

jω + 2
+

1
−jω + 2

=
4

ω2 + 4
> 0, for all ω ∈ R
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Hence the LPV system (2.38) is asymptotically stable.

Example 2.3.39 Let us consider the SISO LPV system

ẋ = −(2 + ρ)x (2.39)

where ρ ∈ [0, 1]. This system is also quadratically stable and the ’LFT’ formulation is then
given by

ẋ = −2x− w
z = x
w = ρx

The transfer function H(s) corresponding to the LTI system is then given by H(s) =
−1
s+ 2

and is strictly passive if and only if H(jω) +H(jω)∗ � 0, for all ω ∈ R. However

H(jω) +H(jω)∗ =
−1

jω + 2
+

−1
−jω + 2

, for all ω ∈ R

=
−4

ω2 + 4
≯, for all ω ∈ R

Since H(s) is not strictly passive then asymptotic stability of system (2.39) cannot be proved
by passivity.

Example 2.3.39 shows that if a system has non minimum phase, the passivity may fail even
in the more simple case of a 1st order system. The fact that a very few systems are (strictly)
passive implies that the stability analysis of LPV systems in ’LFT’ form is very restrictive
and is not considered in the literature. However, passivity is of interest in many applica-
tive problems, e.g. teleoperation [Anderson and Spong, 1989; Hokayem and Spong, 2006;
Niemeyer, 1996], control of Port Hamiltonian Systems [Ortega et al., 2008] and so on [Khalil,
2002; van der Schaft, 1996].

In the above examples, the sign analysis of the sum H(jω) + H(jω)∗ is performed ana-
lytically due to its simple expression. However, if the transfer function is more complex (i.e.
higher order systems and/or MIMO systems), an analytical analysis is far tougher. Fortu-
nately, a LMI test has been provided, for instance, in [Scherer and Weiland, 2005] allowing
to an easy test for MIMO systems.

Theorem 2.3.40 A system (As, Bs, Cs, Ds) is strictly passive if and only if there exists a
matrix P = P T � 0 such the LMI[

ATs P + PAs PBs − CTs
? −(Ds +DT

s )

]
≺ 0

is feasible.

The origin of this LMI is detailed in Appendix D.5.



72 CHAPTER 2. OVERVIEW OF LPV SYSTEMS

2.3.4.2 Small-Gain Theorem

The small-gain theorem is an enhancement of the passivity based stability analysis of inter-
connections since it takes into account variations of energy between inputs and outputs of
dynamical systems involved in the interconnection. A simple energy analysis of loop-signals
suggests that asymptotic stability of the interconnection is equivalent to finiteness of the
energy of the loop-signals involved in the interconnection. Hence the problem remains to
determine whether the energy of these signals is finite or not.

Definition 2.3.41 The energy gain (or L2-gain or L2-induced norm) of a time-invariant
operator T is defined by the relation

γL2 := ||T ||L2−L2

:= sup
w∈L2, w 6=0

||Tw||L2

||w||L2

where L2 is set of bounded energy signal (see appendix B for more details). For instance,
unitary energy inputs give at most γL2 energy outputs. Moreover, the time-invariant operator
is asymptotically stable if and only if γL2 < +∞.

Definition 2.3.42 The H∞-norm of a linear time-invariant operator T is given by

γH∞ := ||T ||H∞
:= sup

w∈R
σ̄(T (jω))

where σ̄(T ) is the maximal singular value of the transfer matrix T (s) (see appendix A.6 for
more details on singular values and singular values decomposition).

In the LTI case, the H∞-norm of a time-invariant operator coincides with the L2-induced
norm (see for instance [Doyle et al., 1990]). As suggested by the definitions, if a LTI system
is asymptotically stable then it has finite H∞-norm.
As an illustration of the approach, let us consider the interconnection of two SISO transfer
functions H1(s) and H2(s) as shown in Figure 2.18.

-

�

?
--

H2(s)

H1(s)
+

−
Hcl(s)- -=⇒

Figure 2.18: Interconnection of two SISO transfer functions

The closed-loop transfer function is then given by the expression

Hcl(s) =
H1(s)

1 +H1(s)H2(s)
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It is clear that the closed-loop system is asymptotically stable if and only if H1(s)H2(s) 6= −1
for all s ∈ C+. From this consideration, by imposing the condition

sup
s∈C+

|H1(s)H2(s)| < 1

it is ensured that H1(s)H2(s) 6= −1 for all s ∈ C+. Finally, noting that

sup
s∈C+

|H1(s)H2(s)| < 1

is equivalent to
||H1H2||H∞ < 1

we get a sufficient condition for stability in term of H∞-norm analysis.

Theorem 2.3.43 (Small-Gain Theorem [Zhou et al., 1996]) The LPV system (2.36)
is asymptotically stable if the inequality

||Θ(ρ)Hw||L2

||w||L2

< 1

holds where Θ(ρ) is a full-matrix depending on the parameters such that Θ(ρ)TΘ(ρ) � I and
H is the LTI operator mapping w to z

ẋ(t) = Ãx(t) +Bw(t)
z(t) = Cx(t) +Dw(t)

from system (2.36).

It is clear that the sufficient condition ||Θ(ρ)Hw||L2 < ||w||L2 may be tough to verify due to
the time-varying nature of the matrix Θ(ρ). Hence, in virtue of the submultiplicative property
of the H∞ norm (or the L2 induced norm), i.e.

||H1H2||H∞ < ||H1||H∞ · ||H2||H∞ (2.40)

then a more conservative sufficient condition is given by

||Θ(ρ)||L2−L2 · ||H||H∞ < 1

This condition is sufficient only since, by considering the norm, we loose all information on
the phase of H1(s)H2(s). Indeed, the sup constraint restricts the bode magnitude plot of
H1(jω)H2(jω) to evolve inside the unit disk ignoring the value of the phase. This results
evidently in a conservative (hence sufficient) stability condition. The following examples
illustrate non-equivalence between these results on asymptotic stability.

Example 2.3.44 Let us consider two asymptotically stable LTI SISO system H1(s) and
H2(s) interconnected as depicted on Figure 2.18 and defined by

H1(s) =
10

(s+ 1)(s+ 2)

H2(s) =
10

(s+ 3)(s+ 4)
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Since both H1(s) and H2(s) are asymptotically stable then H1(s)H2(s) is asymptotically stable
too. Then we have

||H1H2||H∞ = sup
s∈C+

|H1(s)H2(s)|

= sup
ω∈R
|H1(jω)H2(jω)| (by the maximum modulus principle (see Appendix E.4))

= H1(0)H2(0)
= 100/24 > 1

Hence according to the small-gain theorem the interconnection is not asymptotically stable
even though we have

Hbf (s) =
1

1 +H1(s)H2(s)
=

s4 + 10s3 + 35s2 + 50s+ 24
s4 + 10s3 + 35s2 + 50s+ 124

which has poles {−4.8747 + 2.0950i,−4.8747− 2.0950i,−0.1253 + 2.0950i,−0.1253− 2.0950i}
with negative real part, showing that the interconnection is asymptotically stable.

In the latter example, the equality ||H1H2||H∞ = ||H1||H∞ · ||H2||H∞ holds since the transfer
functions H1(s) and H2(s) reach their maximum modulus value at the same argument s = 0.
The following example presents a case for which this equality does not hold:

Example 2.3.45 Let us consider two asymptotically stable LTI SISO system H1(s) and
H2(s) interconnected as depicted on Figure 2.18 and defined by

H1(s) =
1

s2 + 0.1s+ 10
H2(s) =

10
(s+ 3)(s+ 4)

In this case we have

||H1||H∞ =
103

√
99975

at ω =
√

39.98
2

||H2||H∞ =
10
12

at ω = 0

||H1H2||H∞ = 0.7084 at ω = 3.1608

This shows that while the Nyquist plot of H1(jω)H2(jω) remains within the unit disk (asymp-
totic stability of the interconnection). On the other hand, the inequality based on the sub-

multiplicative property of the H∞-norm gives
104

12
√

99975
, which is approximately 2.6356, and

does not allow to conclude on the stability of the interconnection.

Let us now come back to LPV system (2.36). Since, by definition Θ(ρ)TΘ(ρ) � I, we have
||Θ(ρ)||L2−L2 ≤ 1. To see this, let z̃(t) = Θ(ρ)z̄(t) and then the energy of z̃(t) writes∫ +∞

0
z̃(s)T z̃(s)ds =

∫ +∞

0
z̄(s)TΘ(ρ(s))TΘ(ρ(s))z̄(s)ds

≤
∫ +∞

0
z̄(s)T z̄(s)ds
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Finally the stability condition reduces to

||H||H∞ < 1

and can be verified using semidefinite programming through a LMI feasibility test. Indeed,
instead of the initial H∞-norm computation using bisection algorithm [Zhou et al., 1996] or
Hamiltonian matrix [Doyle et al., 1990], the bounded real lemma (see Appendix D.8 and
[Scherer and Weiland, 2005; Scherer et al., 1997; Skelton et al., 1997]) allows to compute the
L2-induced norm of linear (possibly time/parameter varying) systems through an optimization
problem involving a LMI:

Lemma 2.3.46 (Small gain Theorem - Bounded Real Lemma) The interconnected sys-
tem (2.36) is asymptotically stable if there exist a matrix P = P T � 0 and a scalar ε > 0
such that  ÃTP + PÃ PB CT

? −(1− ε)I DT

? ? −(1− ε)I

 ≺ 0

Moreover, we have ||H||H∞ < 1.

The small-gain condition is a simple stability test but is however rather conservative. First
of all, it does not consider the phase and secondly no information is looked out on how the
elements are interconnected, the shape of the intersecting elements are not considered but
only their maximal modulus value. Indeed, as illustrated in Example 2.3.44, if the maximum
values do not occur at the same frequency, the submultiplicative inequality is conservative.
This is far more complicated when dealing with nonlinear or non-stationary elements. The
last example illustrates this.

Example 2.3.47 As an example note that

||2 sin(t)||L∞ < 2∣∣∣∣∣∣∣∣ 1
2 + cos(t)

∣∣∣∣∣∣∣∣
L∞

< 1

Hence we have

||2 sin(t)||L∞ ·
∣∣∣∣∣∣∣∣ 1

2 + cos(t)

∣∣∣∣∣∣∣∣
L∞

< 2

but actually we have
∣∣∣∣∣∣∣∣ 2 sin(t)

2 + cos(t)

∣∣∣∣∣∣∣∣
L∞

< 2/3 which shows that the application of the submul-

tiplicative property may result in very conservative bounds (conditions).

Figure 2.19 provides a geometric representation of the conservatism of the small-gain theorem.
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Figure 2.19: Illustration of the conservatism induced by the use of the H∞-norm. Although,
the pieces of puzzle fit together, the consideration of the H∞ norm says the contrary.

In order to explain Figure 2.19 assume that the free piece is an operator P and let O be
the center of the piece. Since the piece is two-dimensional we assume that it belongs to a two-
dimensional normed vector space. In what follows we will consider that the free piece is an
operator and the remaining of the puzzle constitutes the other operator. The interconnection
of systems is substituted to an interconnection of pieces of puzzle. Moreover, the asymptotic
stability of the interconnection is replaced by the possibility of placing the piece at this place.
The image shows that the piece interlocks perfectly. We show hereafter that by ignoring the
shape of the piece and reducing it to a single value (a norm), the piece and the remaining
cannot be shown to fit together.
The operator P maps any vector v(θ) such that

v(θ) =
[

cos(θ)
sin(θ)

]
to a new vector v′(θ) whose 2-norm equals the length between the center O and the boundary
of the piece in the orientation θ ∈ [0, 2π] (orientation 0 points to the right). Therefore for
every v(θ) we have

Pv(θ) = v′(θ) = λ(θ)v(θ)

since only the norm of the vector is changed. As a comparison the H∞ of an operator is
the largest energy gain that is applied to an input signal entering this operator. It is the
modification of the norm of the input signal where the norm is the energy. It is clear that by
considering the norm

||P || = sup
θ∈[0,2π]

||Pv(θ)||2
||v(θ)||2

(2.41)

the farthest point on the boundary from 0 is taken into account and the piece is considered
as circle shaped with radius ||P ||. In this condition no puzzle can be completed and hence
more sophisticated techniques should be employed to determine if some pieces correspond to
each other.
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The puzzle analogy shows that the shape (the structure) of interconnected elements should
play a crucial role in the stability analysis. It is clear that if the matrix Θ(ρ) is full, then
a priori only norm-information can be extracted. On the other hand, if this matrix has a
specific and known form it is possible to refine the small-gain theorem in a new version.

2.3.4.3 Scaled-Small Gain Theorem

The aim of the scaled-small gain lemma is to reduce the conservatism of the small-gain the-
orem by considering the structure of the parameter-varying matrix gain Θ(ρ). It is generally
assumed that it has a diagonal structure

Θ(ρ) = diag(In1 ⊗ ρ1, . . . , Inp ⊗ ρp) (2.42)

Let us introduce the set of D-scalings defined by

SD(Θ) :=
{
L ∈ Sn̄++ : Θ(ρ)L1/2 = L1/2Θ(ρ) for all ρ ∈ [−1, 1]p

}
(2.43)

where n̄ =
∑
i

ni and L1/2 denotes the positive square-root of L. For more details on the

scalings the reader should refer to [Apkarian and Gahinet, 1995] or Appendix D.12.

The key idea is to define a matrix L ∈ S(Θ) to embed information on the structure of the
parameter matrix, through a commutation property. This additional matrix will then be
introduced in the bounded-real lemma and provides an extra degree of freedom leading to a
reduction of the conservatism [Packard and Doyle, 1993].

Example 2.3.48 Consider the following parameter matrix Θ(ρ) = diag(ρ1I5, ρ2I2) then a
suitable matrix L ∈ S(Θ) is given by

L =
[
L1 0
0 L2

]
where L1 ∈ S5

++ and L2 ∈ S2
++.

Since L ∈ SD(Θ) is positive definite, let us define a dual parameter matrix

Θ̃(ρ) = L1/2Θ(ρ)L−1/2

It is clear that, in virtue of the definition of set SD(Θ), the following identity holds

Θ̃(ρ) = Θ(ρ)

In what follows, we aim at showing that the feasibility of the scaled-bounded real lemma
implies asymptotic stability of the interconnection. To this aim, let w2 and z2 be L2 signals
satisfying w2(t) = Θ̃(ρ)z2(t). First, let us show that operator Θ̃(ρ) has unitary energy gain.
Suppose that it is has energy gain of γθ > 0, then the following integral quadratic function
must be nonnegative.∫ +∞

0

[
w2(s)
z2(s)

]T [
γ2
θI 0
0 −I

] [
w2(s)
z2(s)

]
ds =

∫ +∞

0
z(s)TΞ(ρ, L)z(s)ds
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with
Ξ(ρ, L) = γ2

θI − L−1/2Θ(ρ)TLΘ(ρ)L−1/2

and z2(t)/w2(t) are respectively the input and output of operator Θ̃(ρ). The latter integral
quadratic form is nonnegative for all z if and only if

γ2
θI − L−1/2Θ(ρ)TLΘ(ρ)L−1/2 � 0

and, according to the definition of the set SD(Θ) by (2.43), if and only if

γ2
θI −Θ(ρ)TΘ(ρ) � 0 (2.44)

Since Θ(ρ)TΘ(ρ) � I then γθ = 1 is the minimal value such that (2.44) holds. This shows
that it is not aberrant to consider Θ̃(ρ) instead of Θ(ρ).

Finally, in virtue of these considerations, if the interconnection

ẋ(t) = Ãx(t) + Ew(t)
z(t) = Cx(t) +Dw(t)
w(t) = Θ̃(ρ)z(t)

(2.45)

is asymptotically stable, then (2.36) is asymptotically stable. It is worth noting that, by
introducing notations z2(t) = L−1/2z(t) and w(t) = L1/2w2(t) we get the following system:

ẋ(t) = Ãx(t) +BL1/2w2(t)
z2(t) = L−1/2(Cx(t) +DL1/2w(t))
w2(t) = Θ(ρ)z2(t)

(2.46)

Finally, applying the bounded-real lemma on scaled system (2.46) we get the matrix inequality
in P and L1/2:  ÃTP + PÃ PBL1/2 CTL−1/2

? −I L1/2DTL−1/2

? ? −I

 ≺ 0

Performing a congruence transformation with respect to matrix diag(I, L1/2, L1/2) yields the
following result:

Lemma 2.3.49 (Scaled-Bounded Real Lemma) System (2.36) is asymptotically stable
if there exist P = P T � 0 and L ∈ SD(Θ) such that ATP + PA PBL CT

? −L LDT

? ? −L

 ≺ 0

Note that, if L = I, the condition of the small-gain theorem is retrieved.

Another vision of the scaled-small gain lemma, is the problem of finding a linear bijective
change of variable for signals involved in the interconnection, such that the system behavior
is unchanged (role of the commutation). A suitable change of variable is then given by
matrices L1/2 and L−1/2. Several different approaches can be used to establish such a result,
for instance using the S-procedure (see the next section and Appendix D.13), or the bounding
lemma (see appendix D.15).
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The scaled-small gain theorem leads to less conservative result than the small-gain but
only considers the structure of the parameter varying matrix Θ(ρ). This is the reason why, for
a small number of uncertainties, the result is necessary and sufficient as proved in [Packard
and Doyle, 1993]. In this paper, it is shown that D-scaling provides a necessary and sufficient
condition if and only if the sum of the number repeated scalar blocks and the unrepeated full-
blocks is lower than 3. For larger uncertainties, not enough information is taken into account
on how the two subsystems are interconnected. Indeed, this information is destroyed again
by the use of norms which gathers multiple data (each entry of matrices) into one unique
positive scalar value (see the Examples 2.3.44, 2.3.45 and 2.3.47).

The next idea would be to find a better framework in which the shape of the operators can
be better characterized and considered, avoiding then the use of coarse norms (e.g. the H∞).
The next section on the full-block S-procedure and the notion of well-posedness of feedback
systems, partially solves this problem.

2.3.4.4 Full-Block S-procedure and Well-Posedness of Feedback Systems

Both recent results have brought many improvements in the field of LPV system analysis and
LPV control. We have chosen to present them simultaneously since they are two facets of the
same theory but are proved using different fundamental theories.

Full-Block S-procedure

The full-block S-procedure has been developed in several research papers [Scherer, 1996,
1997, 1999, 2001; Scherer and Hol, 2006] and has been applied to several topics [Münz et al.,
2008; Wu, 2003]. In [Briat et al., 2008b], we have developed a delay-dependent stabiliza-
tion test using the full-block S-procedure and is an extension of [Wu, 2003] where delay-
independent stability is considered only.

This approach is based on the theory of dissipativity of dynamical systems (see appendix
D.1 and [Scherer and Weiland, 2005] for more details on dissipativity) but to avoid too much
(and sometimes tough) explanations, the fundamental result of the full-block S-procedure
will be retrieved here through a simple application of the S-procedure (see appendix D.10
and [Boyd et al., 1994]).

Let us consider system (2.36) where Θ(ρ) has possibly a full structure. We also relax the
image set of the parameters to a more general compact set, we hence assume that

ρ ∈ Uρ := ×pi=1[ρ−i , ρ
+
i ]

The key idea of the full-block S-procedure is to characterize the parameter matrix Θ(ρ) in
a more complex way allowing for a tighter approximation of the set in which the parameter
matrix Θ(ρ) evolves. Namely, the set is characterized by an ellipsoid (instead of a simple ball)
possibly not including zero. This is performed using an integral quadratic constraint (IQC).
Indeed assume that there exists a bounded matrix function of time MΘ(t) = MΘ(t)T such
that ∫ t

0

[
z(s)
w(s)

]T
MΘ(s)

[
z(s)
w(s)

]
ds � 0 (2.47)

for all t > 0 and w(t) = Θ(ρ)z(t). The latter IQC is equivalent to∫ t

0
z(s)T

[
I

Θ(ρ(s))

]T
MΘ(s)

[
I

Θ(ρ(s))

]
z(s)ds � 0 (2.48)
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It is clear that the matrix MΘ has, a priori, no imposed inertia. It will be shown at the end
of this section that it is possible to define specific matrices MΘ for which passivity, small-gain
and scaled small-gain results are retrieved.
Hence, the following Lyapunov function (viewed here as a storage function) is considered

V (x(t)) = x(t)TPx(t) > 0

with constraint on input and output signals w and z taking the form of the IQC (2.47).
Thus, by invoking the S-procedure (see Appendix D.10) or the theory of dissipative systems
(see [Scherer and Weiland, 2005; Willems, 1972] or Appendix D.1), the following function is
constructed

H(x,w) = x(t)TPx(t)−
∫ t

0

[
z(s)
w(s)

]T
MΘ(s)

[
z(s)
w(s)

]
ds

= x(t)TPx(t)−
∫ t

0
z(s)T

[
I

Θ(ρ(s))

]T
MΘ(s)

[
I

Θ(ρ(s))

]
z(s)ds

Since, the integrand of (2.48) is a quadratic form and the parameters ρ are allowed to have
any trajectory in the set Uρ, then inequality (2.48) holds if and only if[

I
Θ(ρ(t))

]T
MΘ(t)

[
I

Θ(ρ(t))

]
� 0

for any trajectories of ρ(t) ∈ Uρ and all t > 0. Finally, computing the time-derivative of H
leads to the result:

Theorem 2.3.50 System (2.36) is asymptotically stable if and only if there exist a matrix
P = P T � 0 and a bounded matrix function MΘ : R+ → Snw+nz such that the LMIs[

ATP + PA PE
? 0

]
+
[
C D
0 I

]T
MΘ(t)

[
C D
0 I

]
≺ 0[

I
Θ(ρ(t))

]T
MΘ(t)

[
I

Θ(ρ(t))

]
� 0

hold for all t > 0 and for all ρ ∈ Uρ.

Proof : A complete proof with meaningful discussions can be found in [Scherer, 1997, 1999,
2001]. �

The main difficulty of such a result resides in the computation of LMI (2.49). Even if MΘ

is chosen constant, we are faced to a problem involving infinitely many inequalities since the
inequality should be satisfied for any parameter trajectories. Methods for dealing with such
parameter dependent LMIs have been introduced in Sections 2.3.3.2, 2.3.3.3 and 2.3.3.4 where
gridding, SOS and global polynomial optimization approaches are introduced.

It is important to point out that, due to the losslessness of the S-procedure (see Appendix
D.10 and [Boyd et al., 1994]), the conservativeness of the approach stems from the choice of
MΘ(s) satisfying LMI (2.49).

Well-Posedness Approach
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The well-posedness approach is now compared to the full-block S-procedure. This ap-
proach has been initially introduced in [Iwasaki and Hara, 1998] and deployed in many frame-
works [Gouaisbaut and Peaucelle, 2006a, 2007; Iwasaki, 1998, 2000; Langbort et al., 2004;
Peaucelle and Arzelier, 2005; Peaucelle et al., 2007]. The key idea behind well-posedness is
the notion of topological separation [Safonov, 2000; Teel, 1996; Zames, 1966] and is explained
in what follows.

Consider two interconnected linear operators H1 ∈ Rnz×nw and H2 ∈ Rnw×nz such that

z = H1(w + u1)
w = H2(z + u2)

(2.49)

where u1, u2 are exogenous signals as described in Figure 2.20.

H1

z(t)w(t)

H2

?
--

6

� �

u1(t)

u2(t)
+

+

Figure 2.20: Setup of the well-posedness framework

It is convenient to introduce here the definition of well-posedness:

Definition 2.3.51 The interconnection depicted in Figure 2.20 is said to be well-posed if and
only if the loop-signals z, w are uniquely defined by the input signals u1, u2 and initial values
of the loop-signals (z(0, w(0)). In other terms, it is equivalent to the existence of positive
scalars γ, η > 0 such that the energy of loop signals is bounded by a function of the energy of
input signals and initial values of the loop signals, i.e.∣∣∣∣∣∣∣∣(zw

)∣∣∣∣∣∣∣∣
L2

≤ γ
∣∣∣∣∣∣∣∣(u1

u2

)∣∣∣∣∣∣∣∣
L2

+ η

∣∣∣∣∣∣∣∣(z(0)
w(0)

)∣∣∣∣∣∣∣∣
2

The latter definition says that if for any finite energy input signals, we get finite energy loop-
signals then the system is well-posed. Recall that the notion of stability is not defined yet
since operators H1 and H2 are linear operators.

The idea behind well-posedness is to prove well-posedness of the interconnection when
the interconnection describes a dynamical system. In this case, well-posedness is equivalent
to asymptotic stability or equivalently L2−L2 stability. The following example shows how a
dynamical system can be represented in an interconnection as of Figure 2.20.

Example 2.3.52 Let us consider the trivial linear dynamical system described by ẋ = A(x(t)+
v(t)) where v(t) is an external input.. First, note that by imposing H1 = A and H2 = s−1

where s is the Laplace variable, then the interconnection depicted in Figure 2.21 is equivalent
to system ẋ = A(x(t) + v(t)).
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�s−1I

A

ẋ(t)x(t)

?--v(t) +

Figure 2.21: Representation of a linear time invariant dynamical system in the well-posedness
framework

Now suppose that the interconnection is well-posed: the future evolution of x(t) for t > t0
is uniquely defined by x(t0) and signal v(t) for all s ∈ C+. We aim now to illustrate that
well-posedness in this case is equivalent to asymptotic stability. From Figure 2.21 we have

ẋ = A(x+ v)

which is equivalent to
sx = A(x+ v) + x(t0)

and thus
(sI −A)x = Av + x(t0)

Therefore if x(t) is uniquely defined by v(t) and x(t0) for t > t0, this means that (sI − A) is
nonsingular for all s ∈ C+. This condition is equivalent to saying that A has no eigenvalues
in the complex right-half plane and that A is a Hurwitz matrix.

On the other hand, suppose that A is Hurwitz then this means that sI −A is non singular
for all s ∈ C+ and hence x is uniquely defined by v(t) and x(t0). Thus the interconnection is
well-posed.

We aim now at introducing how well-posedness can be proved efficiently (using numerical
tools), at least for linear dynamical systems. This is performed through nice geometrical
arguments. Coming back to the setup depicted in Figure 2.20, let G1 and G−2 be respectively
the graph of H1 and the inverse graph of H2 defined as:

G1 :=
{(

z
w

)
∈ Rnw+nz : z = H1w

}
= Im

(
H1

I

)
G−2 :=

{(
z
w

)
∈ Rnw+nz : w = H2z

}
= Im

(
I
H2

)
where nw and nz denote respectively the dimension of w and z. We have the following
important result:

Proposition 2.3.53 Interconnection (2.49) is well-posed if and only if the following relation
holds:

G1 ∩ G−2 = {0}
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In order to visualize this crucial result, let us consider the case where z = H1(w + u1) and
w = H2(z + u2), H1 ∈ Rnz×nw and H2 ∈ Rnw×nz . The graphs are then given by

G1 = Im
(
H1

1

)
G−2 = Im

(
1
H2

)
We aim now at finding the intersection of these sets and we get the following system of linear
equations

H1w − z = 0
w −H2z = 0

(2.50)

which, compacted to a matrix form, becomes

H

[
z
w

]
= 0 (2.51)

with H =
[
−Inz H1

−H2 Inw

]
. If det(H) = 0 then there exists a infinite number of vectors

[
z
w

]
such that (2.51) is satisfied and thus the interconnection is not well-posed. Moreover, in this

case we have det(I − H2H1) = 0 and the null-space is spanned by
(
H1

I

)
. If the matrix H

is non singular, then the null-space reduces to the singleton {0} and the system is well-posed
since the intersection of the graphs is {0}. It is important to point out that the following
relation holds in any case

G1 ∩ G−2 = Null
(
−Inz H1

−H2 Inw

)
Therefore, the problem of determining if an interconnection of systems is well-posed is crucial
in the framework of interconnected dynamical systems and reduces to the analysis of the
intersection of graphs (or equivalently to matrix algebra on linear mappings H1 and H2).
The idea now is to find a simple way to prove that the graphs do not intersect except at 0.
In what follows, the framework is restricted to linear mappings and in this case, the graphs
become convex sets, which is an interesting property. First, recall a fundamental result on
convex analysis called the Separating Hyperplane Theorem; [Boyd and Vandenberghe, 2004,
p. 46].

Theorem 2.3.54 (Separating Hyperplane Theorem) Suppose C1 and C2 are two con-
vex sets that do not intersect (i.e. C1 ∩ C2 = ∅). Then there exist a 6= 0 and b such that
aTx ≤ b for all x ∈ C1 and aTx ≥ b for all x ∈ C2. In other words, the affine function
aTx− b is nonpositive on C1 and nonnegative on C2. The hyperplane

{
x : aTx = b

}
is called

a separating hyperplane for the sets C1 and C2, or is said to separate the sets C1 and C2.

This results says that two convex sets are disjoints if and only if one can find a linear function
which is positive on one set and negative on the other one. The latter result applied to
the separation of graphs G1 and G−2 leads to the following theorem proved in [Iwasaki, 2000;
Iwasaki and Hara, 1998]:

Theorem 2.3.55 (Quadratic Separation Theorem) The following statements are equiv-
alent:
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1. The interconnection is well-posed

2. det(I −H2H1) 6= 0

3. There exist M = MT such that

(a)
[
I H1

]
M

[
I
H∗1

]
≺ 0

(b)
[
H2 I

]
M

[
H∗2
I

]
� 0

The following example illustrates the method.

Example 2.3.56 Let us consider again the LTI system of Example 2.3.52 and define H1 := A
and H2 := s−1I. From Theorem 2.3.55, the system is asymptotically (exponentially) stable if
and only if the LMIs hold

[
I A

]
M

[
I

AT

]
≺ 0 and

[
s−1I I

]
M

[
s−∗I
I

]
� 0

As in Example 2.3.52, the well-posedness of the interconnection is sought for all s ∈ C+.
Indeed, this would mean that A has no eigenvalues in C+ implying that the system is asymp-
totically stable. It is clear that if M is chosen to be

M :=
[

0 X
X 0

]
with X = XT � 0, then

[
s−1I I

] [ 0 X
X 0

] [
s−∗I
I

]
= (s−1 + s−∗)X = 2<[s−1]X � 0 since s ∈ C+

Note that the matrix M is the only one which can be define implicitly the set of complex num-
ber with nonnegative real part. No quadratic function can be positive on the closed complex
right-half plane and negative of the open complex right-half plane.

Therefore, the stability of system ẋ = Ax is ensured if and only if

[
I A

] [ 0 X
X 0

] [
I

AT

]
≺ 0

which is equivalent to
AX +XAT ≺ 0⇔ PA+ATP ≺ 0 (2.52)

where P = X−1. The well-known LMI condition obtained from Lyapunov theorem is retrieved.
Moreover the equivalence with Lyapunov inequality shows that the choice of the matrix M
provides a necessary and sufficient condition in the well-posedness framework. This can be
also shown using the results on the losslessness of D-scalings [Packard and Doyle, 1993]
extended to a more general framework. This is explained in the following.
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List of scalings

We aim now at defining several scalings/separators that may be used in both full-block
S-procedure and well-posedness approaches; [Iwasaki and Hara, 1998]. First of all, let us
introduce the P -separator. Suppose that H2 is block diagonal and satisfies[

H2 I
] [ M11 M12

? M22

] [
H∗2
I

]
� 0

with fixed matrices Mij . Then under the assumption that M22 � 0 and M11−M12M−1
22 M

T
12 ≺

0, the P -separator defined as (⊗ denotes the Kronecker product):

P ⊗M =
[
P ⊗M11 P ⊗M12

? P ⊗M22

]
provides a nonconservative condition if 2c + f ≤ 3 where c is the number of repeated scalar
blocks in H2 and f is the number of unrepeated full-blocks in H2 [Iwasaki and Hara, 1998;
Packard and Doyle, 1993]. For instance, in example 2.3.56, c = 1 (only s−1 is repeated)
and f = 0 (no full-blocks). Hence a necessary and sufficient condition to stability of system
ẋ = Ax is obtained considering

M =
[

0 X
X 0

]

Example 2.3.57 Let us consider again Example 2.3.52. The set of values of s ∈ C+ can be
defined in an implicit way

C+ :=
{
s ∈ C :

[
s−1 1

] [ 0 1
1 0

] [
s−∗

1

]
≥ 0
}

Using the P -separator we get the matrix M =
[

0 X
X 0

]
, X = XT � 0 and since we have

one repeated scalar block then the P -separator provides a nonconservative stability condition.

The following (non-exhaustive) list enumerates specific scalings/separators for different types
of operators H2:

1. The constant scaling M =
[

0 I
I 0

]
for positive operators results in a passivity based

test.

2. The constant scaling M =
[
I 0
0 −I

]
for unitary norm bounded operators results in a

test based on the bounded real lemma.

3. The constant D-scalings M =
[
D 0
0 −D

]
for D = DT > 0 (for unitary norm bounded

operators) are the most simple ones and the result of the scaled-bounded real lemma
are retrieved.

4. The constant D-G scalings M =
[
D G
G∗ −D

]
for D = DT > 0 and G + G∗ = 0 (for

unitary norm bounded operators) are a generalization of the constant D-scalings to a
more general case.
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5. LFT scalings: M =
[
R S
S∗ Q

]
with R ≺ 0 and

[
Θk I

]
M

[
ΘT
k

I

]
� 0 for k =

1, . . . , 2α (time-invariant and time-varying parameters evolving on a set with vertices
Θk).

6. Vertex separators M =
[
R S
S∗ Q

]
with Rii � 0 and

[
Θk I

]
M

[
ΘT
k

I

]
� 0 for

k = 1, . . . , 2α (time-invariant and time-varying parameters).

These separators lead to less and less conservative results despite of increasing the compu-
tational complexity. Moreover, the LFT scalings and vertex separators work for parameters
only and not operators.

After this brief description of well-posedness, we wish now to supply a LPV system description
in the well-posedness framework. Let us rewrite the LPV system (2.36) into the form:

[
z(t)
ẋ(t)

]
=
[
D C
B A

]
︸ ︷︷ ︸

H1

[
w(t)
x(t)

]

with
[
w(t)
x(t)

]
=
[

Θ(ρ) 0
0 s−1I

]
︸ ︷︷ ︸

H2

[
z(t)
ẋ(t)

]
for all s ∈ C+.

Following the previous results, well-posedness of the latter system is equivalent to the asymp-
totic (exponential) stability of system (2.36). In this case, M can be chosen as

M :=


M11 0 M12 0

0 0 0 P

MT
12 0 M22 0

0 P 0 0


where P = P T � 0, M11 = MT

11, M12 and M22 = MT
22 are free matrices to be determined.

Note that the matrix M contains both a P -separator involving the matrix P = P T � 0 (for
the stability condition) and a full-separator M = [Mij ]i,j (for the parameter consideration).
Applying Theorem 2.3.55, we get

[
I 0 D C
0 I B A

]
M11 0 M12 0

0 0 0 P

MT
12 0 M22 0

0 P 0 0




I 0
0 I

DT BT

CT AT

 ≺ 0

[
Θ(ρ) 0 I 0

0 s−1I 0 I

]
M11 0 M12 0

0 0 0 P

MT
12 0 M22 0

0 P 0 0




Θ(ρ) 0
0 s−1I

I 0
0 I

 � 0
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Expanding the relations, we get

<[s−1]P � 0[
Θ(ρ) I

] [ M11 M12

MT
12 M22

] [
Θ(ρ)T

I

]
� 0[

0 CP
? AP + PAT

]
+
[
I D
0 B

] [
M11 M12

? M22

] [
I 0
DT BT

]
≺ 0

Inequality (2.53) is satisfied by assumption therefore only inequalities (2.53) and (2.53) have
to be (numerically) checked.

Equivalence of well-posedness and full-block S-procedure approaches

In order to bridge results from full-block S-procedure and well-posedness, we will show
that inequalities (2.53) and (2.53) are equivalent to (2.49) and (2.49) which are obtained from
the full-block S-procedure . Note that (2.53) can be rewritten into the form

0 C
I A

I D
0 B


T 

0 P 0 0
P 0 0 0
0 0 M11 M12

0 0 MT
12 M22




0 C
I A

I D
0 B

 ≺ 0 (2.53)

It is possible to show that the dualization lemma applies (see Appendix D.14 or [Iwasaki and
Hara, 1998; Scherer and Weiland, 2005; Wu, 2003]) and then LMI (2.53) is equivalent to

−A −B
I 0
−C −D
0 I


T 

0 P̃ 0 0
P̃ 0 0 0
0 0 M̃11 M̃12

0 0 M̃T
12 M̃22



−A −B
I 0
−C −D
0 I

 � 0

where P̃ = P−1 and
[
M̃11 M̃12

M̃T
12 M̃22

]
=
[
M11 M12

MT
12 M22

]−1

. By expanding the latter inequality

we get [
−AT P̃ − P̃A −P̃B

? 0

]
+
[
−C −D
0 I

]T [
M̃11 M̃12

M̃T
12 M̃22

] [
−C −D
0 I

]
� 0

or equivalently[
−AT P̃ − P̃A −P̃B

? 0

]
+
[
C D
0 I

]T [
M̃11 −M̃12

−M̃T
12 M̃22

] [
C D
0 I

]
� 0 (2.54)

Moreover, in virtue of the dualization lemma again, we have

[
Θ(ρ) I

] [ M11 M12

MT
12 M22

] [
Θ(ρ)T

I

]
� 0⇐⇒

[
−I Θ(ρ)T

] [ M̃11 M̃12

M̃T
12 M̃22

] [
−I

Θ(ρ)

]
≺ 0

and equivalently [
I Θ(ρ)T

] [ M̃11 −M̃12

−M̃T
12 M̃22

] [
I

Θ(ρ)

]
≺ 0 (2.55)
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Finally, by multiplying inequalities (2.54) and (2.55) by -1, we get[
AT P̃ + P̃A P̃B

? 0

]
+
[
C D
0 I

]T [ −M̃11 M̃12

M̃T
12 −M̃22

] [
C D
0 I

]
≺ 0[

I Θ(ρ)T
] [ −M̃11 M̃12

M̃T
12 −M̃22

] [
I

Θ(ρ)

]
� 0

By identification these latter relations are identical to (2.49) and (2.49) obtained by applica-

tion of the full-block S-procedure where MΘ =
[
−M̃11 M̃12

M̃T
12 −M̃22

]
and P̃ plays the role of the

Lyapunov matrix used to define the quadratic Lyapunov function.

This emphasizes the similarities between the results obtained from the full-block S-procedure
and the well-posedness approach. It is important to point out that in every methods presented
up to here, only quadratic stability was considered and may result in conservative stability
conditions. Robust stability is addressed here in the framework of well-posedness of feedback
systems. The procedure used here can be applied to any approach presented in preceding
sections. The main reasons for presenting robust stability for LFT systems at this stage only
is due to the simplicity of the well-posedness approach in this context. Moreover, as we shall
see later, it is possible to connect these results to parameter dependent Lyapunov functions
results introduced in Section 2.3.3.

LPV systems as implicit systems

The following method has been developed in [Iwasaki, 1998] but some other methods have
been developed in order to define a LPV system as an implicit system [Masubuchi and Suzuki,
2008; Scherer, 2001]. It is convenient to introduce the following result on well-posedness of
implicit systems. This is the generalization of well-posedness theory for dynamical system
governed by expressions of the form[

A− sI B
C D

]
ζ = 0 (2.56)

where s is the Laplace variable and ζ are signals involved in the system. Such an expression
describes a linear-time invariant dynamical system coupled with a static equality between
signals. This type of systems is not without recalling singular systems in which static relations
are captured in a matrix E factoring the time-derivative of x (e.g. Eẋ = Ax). As an
illustration of the formalism, system (2.56) represents the wide class of systems governed by
equations:

ẋ = Ax+ Bw
0 = Cx+Dw

when ζ = col(x,w) which in turn can be rewritten in the singular system form[
I 0
0 0

] [
ẋ
ẇ

]
=
[
A B
C D

] [
x
w

]
Some fundamental definitions on implicit systems are recalled here for informational purpose.



2.3. STABILITY OF LPV SYSTEMS 89

Definition 2.3.58 The implicit system (2.56) is said to be regular if the following conditions
hold:

1. There is no impulsive solution, i.e. the system is impulse free [Verghese et al., 1981];

2. for each x(0−), the solution, if any, is unique.

One of the particularities of such systems is that under certain circumstances (i.e. according
to system matrices), the state trajectories may contain Dirac pulses of theoretically infinite
amplitude. Moreover, it is also possible that no solutions exist or may be non unique. It
is then important to characterize the regularity of implicit systems. The following lemma,
proved in [Iwasaki, 1998], gives a necessary and sufficient condition for the system to be
regular.

Lemma 2.3.59 Implicit system (2.56) is regular if and only if D has full column rank.

Definition 2.3.60 System (2.56) is said to be stable if it is regular and for each x(0−) the
solution, if any, converges to zero as t tends to +∞.

The latter definition generalizes the notion of stability of linear differential systems to linear
differential systems with static equalities constraints. The following lemmas [Iwasaki, 1998]
provide necessary and sufficient conditions for stability and robust stability of (uncertain)
implicit systems.

Lemma 2.3.61 Consider implicit system (2.56). The following statements are equivalent:

1. The system is stable;

2. The matrix
[
A− sI B
C D

]
has full-column rank for all s ∈ C+ ∪ {∞};

3. C(sI −A)−1B +D has full-column rank for all s ∈ C+ ∪ {∞}.

Let us consider now the uncertain implicit system governed by[
A− sI B 0
C D ∆

]
ζ = 0 (2.57)

where ∆ ∈ ∆ is an unknown but constant matrix and ζ contains all signals involved the
uncertain system. Under some technical assumptions and results which are not detailed here
[Iwasaki, 1998], we have the following result on robust stability.

Lemma 2.3.62 Consider the implicit system (2.57) where ∆ ∈∆. The following statements
are equivalent:

1. Implicit system (2.57) is stable for all ∆ ∈∆.

2. for each ω ∈ R ∪ {∞}, there exists an Hermitian matrix Π(jω) such that

[C(jωI −A)−1B +D]TΠ(jω)[C(jωI −A)−1B +D] ≺ 0
∆TΠ(jω)∆ � 0, for all ∆ ∈∆
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These inequalities have to be satisfied for all ω ∈ R∪ {∞} and may be difficult to solve. The
reader should refer to Sections 2.3.3.1, 2.3.3 and 2.3.3.3 for more details on such parameter
dependent LMIs. On the other hand if a constant matrix Π(jω) := Π0 is sought then the
variable ω can be eliminated using an extension of the Kalman-Yakubovich-Popov lemma
[Iwasaki, 1998]. In [Scherer, 2008], another interesting approach (leading to the same result)
to remove the variable ω is also developed.

Finally, the following sufficient condition, given in terms of quadratic separation, is ob-
tained for stability analysis of uncertain implicit systems.

Lemma 2.3.63 Consider the uncertain implicit system (2.57). If there exist P = P T and
Π ∈ Π such that  A B

C D
I 0

T  0 0 P
0 Π 0
P 0 0

 A B
C D
I 0

 ≺ 0

where Π :=
{

Π : ∆TΠ∆ � 0, ∀ ∆ ∈∆
}

then the system is stable for all constant ∆ ∈ ∆
provided that there exists at least one ∆0 such that (2.57) is stable. Moreover, if P � 0 then
the system is stable for all time-varying ∆(t) ∈ ∆ even if there is no ∆0 such that (2.57) is
stable.

From these results we are able to provide a robust stability test for LPV systems. First of
all, let us show how parameter variations can be taken into account. Differentiating z and w
channels in (2.36) yields

ż = Cẋ+Dẇ

= CÃx+ CBw +Dẇ

ẇ = Θ̇z + Θż

Finally defining φ = Θ̇z we have

ẋ
ẇ

z
ż
z

Θz
Θż
Θ̇z


=



Ã B 0 0
0 0 I 0
C D 0 0
CÃ CB D 0
C D 0 0
0 I 0 0
0 0 I −I
0 0 0 I




x
w

ẇ
φ



Hence letting Θ̄ = diag(Θ,Θ, Θ̇) ∈ Θ̄, ∆ =
[
I
Θ̄

]
and ζ = col(x,w, ẇ, φ,−z,−ż,−z) then

form (2.57) is retrieved; i.e.

Ã− sI B 0 0 0 0 0
0 −sI I 0 0 0 0
C D 0 0 I 0 0
CÃ CB D 0 0 I 0
C D 0 0 0 0 I
0 I 0 0 Θ 0 0
0 0 I −I 0 Θ 0
0 0 0 I 0 0 Θ̇





x
w

ẇ
φ

−z
−ż
−z


= 0
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This leads to the following theorem [Iwasaki, 1998]:

Theorem 2.3.64 LPV system (2.36) is robustly stable for all Θ̄ = diag(Θ,Θ, Θ̇) ∈ Θ̄ if
there exist real symmetric matrices P and Π̄ that

Ã B 0 0
0 0 I 0
C D 0 0
CÃ CB D 0
C D 0 0
0 I 0 0
0 0 I −I
0 0 0 I

I 0 0 0
0 I 0 0



T

 0 0 P
0 Π̄ 0
P 0 0





Ã B 0 0
0 0 I 0
C D 0 0
CÃ CB D 0
C D 0 0
0 I 0 0
0 0 I −I
0 0 0 I

I 0 0 0
0 I 0 0


≺ 0



I 0 0
0 I 0
0 0 I

Θ(ρ) 0 0
0 Θ(ρ) 0
0 0 Θ(ρ̇)



T

Π̄



I 0 0
0 I 0
0 0 I

Θ(ρ) 0 0
0 Θ(ρ) 0
0 0 Θ(ρ̇)

 � 0

provided that Ã is Hurwitz.

The interest of the following theorem is that the symmetric matrix P is not necessarily positive
definite and it provides a less conservative conditions than by considering usual positivity
requirement. We aim at showing now that this stability condition can be interpreted in terms
of a parameter dependent Lyapunov function depending on Θ(ρ). First of all, the LPV system
(2.36) is rewritten in the compact form

ẋ = AΘx := [Ã+B(I −Θ(ρ)D)−1Θ(ρ)C]x

It is well-known that this system is stable if (I − Θ(ρ)D) is invertible for all Θ(ρ) ∈ Θ
and if there exists a parameter dependent Lyapunov function V (x,Θ) = xTPΘx such that
PΘ = P TΘ � 0 and

ṖΘ + PΘAΘ +ATΘPΘ ≺ 0

for all Θ ∈ Θ. Let NΘ be the matrix NΘ := (I − ΘD)−1ΘC such that we have w = NΘx.
Differentiating w yields

ẇ = ṄΘx+NΘẋ

where ṄΘ = (I − ΘD)−1Θ̇(I − ΘD)−1C. Now construct a parameter dependent Lyapunov
function V (x) = xTPΘx with

PΘ =
[

I
NΘ

]T
P

[
I
NΘ

]
(2.58)

Then we have

ṖΘ =
[

0
ṄΘ

]T
P

[
I
NΘ

]
+
[

I
NΘ

]T
P

[
0
ṄΘ

]
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and hence the Lyapunov inequality is given by

V̇ (x) = xT (ṖΘ +ATΘPΘ + PΘAΘ)x < 0

for all x 6= 0. Moreover note that

ẋ = AΘx

= Ãx+Bw

= (Ã+BNΘ)x
ẇ = ṄΘx+NΘAΘx

= ṄΘx+NΘ(Ãx+Bw)
=

(
ṄΘ +NΘ(Ã+BNΘ)

)
x

Hence V̇ becomes

V̇ (t) = xT

([
0
ṄΘ

]T
P

[
I
NΘ

]
+
[

I
NΘ

]T
P

[
0
ṄΘ

]
+
[

I
NΘ

]T
P

[
I
NΘ

]
(Ã+BNΘ)

+(Ã+BNΘ)T
[

I
NΘ

]T
P

[
I
NΘ

])
x < 0

= xT

([
Ã+BNΘ

ṄΘ +NΘ(Ã+BNΘ)

]T
P

[
I
NΘ

])S
x < 0

The following equalities hold[
Ã+BNΘ

ṄΘ +NΘ(Ã+BNΘ)

]
x =

[
Ã B 0
0 0 I

] x
w
ẇ


[

I
NΘ

]
x =

[
I 0 0
0 I 0

] x
w
ẇ


And finally we get

V̇ (t) =

 x
w
ẇ

T  ÃT 0
BT 0
0 I

P [ I 0 0
0 I 0

]
+

 I 0
0 I
0 0

P [ Ã B 0
0 0 I

] x
w
ẇ

 < 0

It is worth noting that in the latter condition, no information is taken into account about the
parameters and their derivative. This is captured by the following static relations:

w = NΘx

= (I −ΘD)−1ΘCx
⇒ 0 = ΘCx+ (ΘD − I)w

w = Θz = Θ(Cx+Dw)
⇒ ẇ = Θ̇z + ΘCẋ+ ΘDẇ

= η + ΘCÃx+ ΘCBw + ΘDẇ
⇒ 0 = ΘCÃx+ ΘCBw + (ΘD − I)ẇ

η = Θ̇(Cx+Dw)
⇒ 0 = Θ̇Cx+ Θ̇Dw − η
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where η = Θ̇z. Hence gathering the

ΘCx+ (ΘD − I)w = 0
ΘCÃx+ ΘCBw + (ΘD − I)ẇ = 0
Θ̇Cx+ Θ̇Dw − η

into a compact matrix form yields

 ΘC ΘD − I 0 0
ΘCÃ ΘCB ΘD − I I

Θ̇C Θ̇D 0 −I


︸ ︷︷ ︸

Ψ(Θ)


x
w
ẇ
η

 = 0 (2.59)

Then it follows that the Lyapunov inequality becomes
x
w
ẇ
η


T 


I 0
0 I
0 0
0 0

P [ Ã B 0 0
0 0 I 0

]
S 

x
w
ẇ
η

 < 0 (2.60)

for all signals col(x,w, ẇ, η) 6= 0 such that (2.59) holds. Now rewrite (2.59) as a matrix
product

Ψ(Θ) =

 Θ 0 0 −I 0 0
0 Θ 0 0 −I 0
0 0 Θ̇ 0 0 −I




C D 0 0
CÃ CB D 0
C D 0 0
0 I 0 0
0 0 I −I
0 0 0 I


It follows that the Lyapunov inequality is equivalent to (2.60) for all non zero vector col(x,w, ẇ, η)
such that

 Θ 0 0 −I 0 0
0 Θ 0 0 −I 0
0 0 Θ̇ 0 0 −I




C D 0 0
CÃ CB D 0
C D 0 0
0 I 0 0
0 0 I −I
0 0 0 I



x
w
ẇ
η

 = 0

holds for some Θ̄ ∈ Θ̄ with Θ̄ = diag(Θ,Θ, Θ̇). This problem falls into the framework of the
generalized Finsler’s lemma (see Appendix D.17). It follows that the Lyapunov inequality
feasibility is equivalent to the existence of symmetric matrices P and Π̄ such that



I 0
0 I
0 0
0 0

P [ Ã B 0 0
0 0 I 0

]
S

+



C D 0 0
CÃ CB D 0
C D 0 0
0 I 0 0
0 0 I −I
0 0 0 I



T

Π̄



C D 0 0
CÃ CB D 0
C D 0 0
0 I 0 0
0 0 I −I
0 0 0 I

 ≺ 0
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Ker

 Θ 0 0 −I 0 0
0 Θ 0 0 −I 0
0 0 Θ̇ 0 0 −I

T

Π̄Ker

 Θ 0 0 −I 0 0
0 Θ 0 0 −I 0
0 0 Θ̇ 0 0 −I

 � 0

hold.

The first LMI is identical to

Ã B 0 0
0 0 I 0
C D 0 0
CÃ CB D 0
C D 0 0
0 I 0 0
0 0 I −I
0 0 0 I

I 0 0 0
0 I 0 0



T

 0 0 P
0 Π̄ 0
P 0 0





Ã B 0 0
0 0 I 0
C D 0 0
CÃ CB D 0
C D 0 0
0 I 0 0
0 0 I −I
0 0 0 I

I 0 0 0
0 I 0 0


≺ 0 (2.61)

while the second one is identical to

I 0 0
0 I 0
0 0 I
Θ 0 0
0 Θ 0
0 0 Θ̇



T

· Π̄ ·



I 0 0
0 I 0
0 0 I
Θ 0 0
0 Θ 0
0 0 Θ̇

 � 0 (2.62)

These LMIs (2.61) and (2.62) are equivalent to LMIs provided in Theorem 2.3.64. This shows
that the feasibility of the Lyapunov inequality implies the feasibility of LMIs of Theorem
2.3.64. By following the development backaward, this shows that feasibility of LMIs of Theo-
rem 2.3.64 implies the existence of a parameter Lyapunov function V (x) = xTPΘx where PΘ

is defined in (2.58).
We have shown in this section that full-block S-procedure and well-posedness approach are

equivalent. Moreover, they embed preceding methods such as passivity and small-gain results.
Using a variation of the well-posedness results extended to implicit systems a robust stability
test has been developed. Moreover, the well-posedness allows for an explicit construction of
a (parameter dependent) Lyapunov function proving the stability of the LPV system. It is
worth noting that this Lyapunov function has the same dependence on parameters than the
system.

In Lemma 2.3.62, the separator Π(jω) depends on the frequency variable ω and is relaxed
to a constant matrix in order to provide tractable conditions. However, this simplification
introduces some conservatism in the approach and it would be interesting to keep this depen-
dence on ω in order to characterize, in the frequency domain, additional information on the
parameters. Next sections are devoted to the introduction of methods in which constraints
in the frequency domain are allowed: the first one to be presented is the extension of the
full-block S-procedure to allow for frequency dependent scaling while the second one uses In-
tegral Quadratic Constraints (IQC) which try to confine the stability conditions into a least
conservatism domain.
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2.3.4.5 Frequency-Dependent D-Scalings

The use of frequency-dependent scalings with full-block S-procedure is very recent and has
been proposed in [Scherer and Köse, 2007a,b]. The idea is to replace the constant D-scalings
by frequency-dependent scalings playing the role of dynamic filters, which will characterize
the uncertainties/parameters in the frequency domain. Indeed, constant D-scalings allow to
characterize the H∞ (or induced L2 norm) over the whole frequency domain and results in
conservative conditions if the parameters belong to a specific frequency domain (note that in
certain cases, D-scalings are lossless as emphasized in [Iwasaki and Hara, 1998; Packard and
Doyle, 1993] and Section 2.3.4.4 in the list of scalings).

Let us consider system (2.36) and suppose that

Θ = diag(Θ1(ρ), . . . ,Θq(ρ))

and ||Θ(ρ)||H∞ ≤ 1. Frequency dependent D-scalings will consider the set Q of matrices
structured as

Q(s) = diag(q1(s)I, . . . , qm(s)I) (2.63)

in correspondence with the structure of Θ(ρ) where the components qi are SISO transfer
functions, real valued and bounded on the imaginary axis C0. The stability of the LPV
system is then guaranteed if there exists some multiplier Q ∈ Q for which[

H(s)
I

]∗ [
Q(s) 0

0 −Q(s)

] [
H(s)
I

]
≺ 0, Q(s) � 0 on C0 (2.64)

The key idea is to approximate any filter by a finite basis of elementary filters of the form

f1,κ(s) =
[

1 f1(s) f2(s) . . . fκ(s)
]

f2,κ(s) =
[

1 f1(s)∗ f2(s)∗ . . . fκ(s)∗
]

where f1,κ(s) and f2,κ(s) are respectively stable and anti-stable rows with f(s)∗ = f(−s)T . Let
us recall that an anti-stable transfer function has all its poles in C+. Hence for sufficiently large
κ any filter stable (anti-stable) can be uniformly approximated on C0 by f1,κ(s)l1 (f2,κ(s)l2)
for suitable real-valued columns vectors l1 (l2) (see [Boyd and Barrat, 1991; Pinkus, 1985;
Scherer, 1995]). This implies that Q(s) can be approximated by

Ψ1(s)∗MΨ1(s) = Ψ2(s)∗MΨ2(s) (2.65)

where Ψj := diag(I ⊗ fTj,κ, . . . , I ⊗ fTj,κ) and M is a symmetric matrix such that M :=
diag(I ⊗M1, . . . , I ⊗Mm) in which the M i’s have to be determined. We give here the main
stability result which has been initially introduced in [Scherer and Köse, 2007a,b]:

Theorem 2.3.65 A is stable and (2.64) holds for Q represented as (2.65) if and only if the
following LMIs are feasible: I 0

Ap Bp
Cp Dp

T  0 X 0
? 0 0
? ? diag(M,−M)

 I 0
Ap Bp
Cp Dp

 ≺ 0
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 I 0
AΨ1 BΨ1

CΨ1 DΨ1

T  0 Y 0
? 0 0
? ? M

 I 0
Ap Bp
Cp Dp

 � 0

[
X11 − Y X13

? X33

]
� 0

where
[
AΨ1 BΨ1

CΨ1 DΨ1

]
is a minimal realization of Ψ1 and

[
Ap Bp
Cp Dp

]
:=


AΨ1 0 BΨ1C D

0 AΨ2 0 BΨ2

0 0 A B

CΨ1 0 DΨ1 DΨ1D
0 CΨ2 0 DΨ2


is a minimal realization of

[
Ψ1G
Ψ2

]
.

The idea in this approach is to choose a basis of transfer functions from which the matrix Q(s)
will be approximated. The conservatism of the approach thus depends on the complexity (the
completeness) of the basis and on the type of scalings used (here D scalings). This result is
very close to results based on integral quadratic constraints which are presented in the next
section.

2.3.4.6 Analysis via Integral Quadratic Constraints (IQC)

This section is devoted to IQC analysis and is provided for informative purposes only [Rantzer
and Megretski, 1997]. The key ideas, which are very similar to the well-posedness and full-
block S-procedure, are briefly explained hereafter.

The central idea of the IQC framework is identical to the well-posedness: the loop signals
must be uniquely defined by the inputs; for bounded energy inputs, we get bounded energy
loop signals (L2 internal stability). The first step is to define any blocks and signals involved
in the interconnection by means of integral quadratic constraints of the form∫ +∞

−∞

[
w(t)
z(t)

]T
Mq

([
w(t)
z(t)

])
dt ≥ 0

where Mq is a bounded self-adjoint operator on the L2 space. With such an IQC, it is
possible to capture and characterize many behaviors of operators and signals (see [Rantzer
and Megretski, 1997] for a nonexhaustive list of such IQCs). Using Parseval equality (see
Appendix D.21), the latter IQC has a frequency dependent counterpart∫ +∞

−∞

[
ẑ(jω)
ŵ(jω)

]∗
Mq(jω)

[
ẑ(jω)
ŵ(jω)

]
dω ≥ 0

where ẑ and ŵ denote respectively the Fourier transform of z and w.



2.3. STABILITY OF LPV SYSTEMS 97

The aim of the IQC is to study stability of interconnected systems by defining all signals
and operators involved in the interconnection using IQCs, expressed as well in the frequency
domain as in the time-domain. These IQCs include extra degree of freedom and this is the
reason why the larger the number of IQCs is, the smaller is the conservatism. Moreover,
it is worth noting that a wide class of operators and signals can be characterized using
IQC: periodic signals, constant signals, norm-bounded operators, constant and time-varying
uncertainties, static nonlinearities or even operators with memory (such as delay operators). . .

Example 2.3.66 Let us consider the LPV system under ’LFT’ form:

ẋ(t) = Ax(t) +Bw(t)
z(t) = Cx(t) +Dw(t)
w(t) = Θ(t)z(t)

where Θ(t) is a diagonal matrix gathering the parameters involved in the system. According
to the type of set where the parameters evolve, it is possible to define an IQC to define such
sets. For instance, if the parameters evolve within the internal [−α, α], then the signals w
and z satisfy the following IQC∫ +∞

−∞

[
z(θ)
w(θ)

]T [
α2Q 0

0 −Q

] [
z(θ)
w(θ)

]
dθ

for some Q = QT ≺ 0. More generally, we can retrieve the results of the full-block S-procedure
by considering that the values of parameter matrix Θ(ρ) evolve within an ellipsoid, i.e. if we
have [

I
Θ(ρ)

]T [
Q S

ST R

] [
I

Θ(ρ)

]
≺ 0

By pre and post multiplying the latter inequality by z(t)T and z(t) and noting that w(t) =
Θ(ρ)z(t) we have [

z(t)
w(t)

]T [
Q S

ST R

] [
z(t)
w(t)

]
≺ 0

Taking the integral from −∞ to +∞ we get∫ +∞

−∞

[
z(t)
w(t)

]T [
Q S

ST R

] [
z(t)
w(t)

]
dt ≺ 0

which is an IQC corresponding to the supply-rate of full-block S-procedure approach or the
multiplier used in the well-posedness approach.

Once all signals and operators have been defined through IQCs, then by invoking the Kalmna-
Yakubovicth-Popov lemma (see Appendix D.3), it is possible to obtain a LMI where the sum
of all IQC’s are involved in. The methodology is illustrated hereafter by considering the sta-
bility analysis of a LPV system.

Let us consider system (2.36) with transfer function H mapping w to z. We assume that
signals z and w satisfy all the following IQCs:∫ +∞

−∞

[
ẑ(jω)
ŵ(jω)

]∗
Πq(jω)

[
ẑ(jω)
ŵ(jω)

]
dω ≥ 0
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for all q = 1, . . . , N when Πq(jω) are Hermitian frequency dependent matrices defining the
IQC’s. In this case, there exist matrices Ã, B̃, C̃, D̃ and a set of symmetric real matrices
M1, . . . ,MN to be determined such that[

H(jω)
I

]∗
Πq(jω)

[
H(jω)
I

]
=
[
C̃(jωI − Ã)−1B̃ + D̃

I

]∗
Mq

[
C̃(jωI − Ã)−1B̃ + D̃

I

]
for all q = 1, . . . , N . By application of the Kalman-Yakubovitch-Popov Lemma (see appendix
D.3 and references [Rantzer, 1996; Scherer and Weiland, 2005; Willems, 1971; Yakubovitch,
1974]), it follows that there exists a matrix P = P T � 0 such that[

ÃTP + PÃ PB̃
? 0

]
+

N∑
i=1

[
C̃T 0
D̃T I

]
Mq

[
C̃ D̃
0 I

]
≺ 0

For instance, let N = 1 and define Π1 =
[
−M 0

0 M

]
where M = MT � 0 is a matrix to be

determined. If all the parameters ρ take values in the interval [−1, 1] and signals w and z are
defined such that w = Θ(ρ)z. Then it is clear that∫ +∞

−∞

[
z(jω)
w(jω)

]∗
Π1

[
z(jω)
w(jω)

]
dω ≥ 0 (2.66)

Thus Π1 defines an IQC for the loop signals z and w. Since Π1 does not depend on the
frequency then (Ã, B̃, C̃, D̃) = (A,B,C,D) and hence we get the LMI[

ATP + PA PB

BTP 0

]
+
[
CT 0
DT I

] [
M 0
0 −M

] [
C D
0 I

]
≺ 0 (2.67)

which is equivalent to the existence of P = P T � 0 and M̃ = M̃ � 0 such that ATP + PA PB CTM

BTP −M DTM
MC MD −M

 ≺ 0 (2.68)

Above, we may recognize the scaled-bounded real lemma and this points out that results
obtained from full-block multipliers and well-posedness can be retrieved with an appropriate
choice of the multipliers Πq(jω). The main difference between the full-block S-procedure
extended to frequency dependent D-scalings and the IQC approach resides in the choice of
the filters: Q(s) and Π(jω) for the full-block S-procedure and the IQC analysis respectively.
In the full-block S-procedure a basis is chosen and a suitable filter is computed by SDP while
in the IQC framework the filter is computed by hand and then degrees of freedom are inserted
in the IQCs which are solved numerically. It is worth mentioning that, at this stage, only
D-scalings have been extended to depend on the frequency but one can easily imagine to
extend a more general case of scalings leading then to a framework, closer to IQC analysis.
In such a case, we can strongly think that filters initially computed for IQC can be used in
the full-block S-procedure .

This concludes the part on stability analysis of LPV systems in ’LFT’ formulation. Several
methods have been presented and relations between results emphasized. The methods provide
less and less conservative results. It is important to note that while IQC analysis is currently
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one of the most powerful technique for stability analysis, it is generally difficult to derive
stabilization conditions in terms of LMIs without restricting too much the type of IQCs. On
the other hand, the full-block S-procedure is well-dedicated to LPV control of LPV systems
as emphasized in [Scherer, 2001; Scherer and Köse, 2007a] and (almost) always results in LMI
conditions.

2.4 Chapter Conclusion

This chapter has provided an overview of LPV systems. First, a precise definition of param-
eters is given and several classes of parameters have been isolated: discontinuous, continuous
and differentiable continuous parameters. It is highlighted that some classes enjoy nice prop-
erties which can be exploited to provide more precise stability and synthesis tools, leading,
for instance, to different notions of stability.

Second, three types of LPV systems are presented: polytopic LPV systems, polynomial
LPV systems and ’LFT’ systems. While the first one is particularly adapted for systems with
an affine dependence on the parameters, it leads generally to a conservative representation of
systems with non-affine parameter dependence. Examples are given to show the interest of
such a representation. On the second hand, polynomial systems are better suited to deal with
more general representation excluding rational dependence. Finally, ’LFT’ systems are the
most powerful representation since they allow to consider any type of parameter dependence,
including rational relations.

Third, stability analysis techniques for each type of LPV systems are presented. It is
shown that LMIs have a crucial role in stability analysis of LPV systems. Indeed, they
provide an efficient and simple way to deal with the stability of LPV systems as well as for
LTI systems. However, due to the time-varying nature of LPV systems the LMIs are also
parameter-varying and hence more difficult to verify.

It has been shown that in the polytopic framework this infinite set of LMIs can be equiva-
lently characterized by a finite set by considering the LMIs at the vertices of the polytope only.
This is a powerful property that makes the polytopic approach widely used in the literature.

On the other hand, when considering polynomial systems, LMIs are far more complicated:
they include infinite-dimensional decision variables (decision variables which are functions)
and we are confronted to parameter dependent LMIs. In this case, relaxations play a central
role in order to reduce this computationally untractable problem into a tractable one. The
infinite-dimensional variables are projected over a chosen basis (generally polynomial) in or-
der to bring back the problem to a finite-dimensional one. Since the parameter dependence is
nonlinear, it is not sufficient (in general) in this case to consider the LMI at the vertices of the
set of the parameters, except for very special cases. This is why several relaxation approaches
have been developed. Among others, the gridding, Sum-of-Squares and polynomial optimiza-
tion approaches. The first one proposes to grid the space of parameters and to consider the
LMI at these points only. Although simple, this method is shown to be computationally very
expensive and is only a necessary condition for stability. The second one, is based on recent
results on Sum-of-Squares polynomials and is very efficient but may be very expensive from a
computational point of view. The third one is based on the application of a recent result on
polynomial optimization problems solved by a sequence of LMI relaxations. The two latter
methods are in fact equivalent but are based on different frameworks.

Finally, stability analysis of LPV systems under ’LFT’ form is developed. Several ap-
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proaches are presented and the different results are linked to each others using underlying
theories and by emphasizing common results. Passivity, small-gain and scaled-small gain re-
sults are described and generalized through the full-block S-procedure and the dissipativity
framework. The well-posedness approach based on topological separation is then shown to
be equivalent to the full-block S-procedure . A generalization of the full-block S-procedure
involving frequency-dependent scalings is then provided and is put in contrast with the IQC
approach which consider Integral Quadratic Constraints in order to specify the types of signals
involved in the interconnection.



Chapter 3

Overview of Time-Delay Systems

T
ime-delay systems (also called Hereditary Systems) are a particular case of infinite
dimensional systems in which the current evolution of the state is affected not only by
current signal values but also by past values. Such systems have suggested more and

more interest these past years due to their applicability to communication networks and many
other systems. The other interest of time-delay resides in their ability to model transport,
diffusion, propagation phenomena [Niculescu, 2001]. They can be viewed as an approximation
of distributed systems governed by partial differential equations. For instance, it has been
shown that the Dirichlet’s control problem (boundary control of systems governed by partial
differential equations) can be approximated by delay differential systems; see for instance
Hayami [1951]; Moussa [1996]; Niculescu [2001].

This chapter provides some background on time-delay systems, mainly on stability anal-
ysis. The chapter will focus especially on the stability analysis of delay differential equations
using several modern techniques such as Lyapunov-Krasovskii functionals, the interconnection
of systems and Integral Quadratic Constraints (IQC).

Section 3.1 will provide different formalisms to represent time-delay systems where espe-
cially functional differential equations are detailed. Several types of time-delay systems are
isolated, depending on the type of delays (constant or time-varying) and how they act on
system signals.

Section 3.2 is devoted to stability analysis of time-delay systems. Indeed, this large amount
of works has led to a wide arsenal of techniques for modeling, stability analysis and control
design that need to be introduced to give an insight on the whole field. Only key and original
results will be explained due to space limitations and redundant approaches will be avoided.
Indeed, many results, although formulated differently, are completely equivalent and in this
case a single version will be provided with references to equivalent approaches.

The readers discovering the field of time-delay systems are heavily encouraged to read this
chapter carefully to get the necessary background to read this thesis. The interested readers
will find several references in each section to deepen their understanding of the domain.

Most of this chapter is based on the books [Dugard and Verriest, 1998; Gu et al., 2003;
Kolmanovskii and Myshkis, 1999; Niculescu, 2001] and several published papers which will
be cited when needed.
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3.1 Representation of Time-Delay Systems

Three different representations are commonly used for modeling time-delay systems:

1. Differential equation with coefficients in a ring of operators:

This framework has been developed early to study time-delay systems in [Conte and
Perdon, 1995, 1996; Conte et al., 1997; Kamen, 1978; Morse, 1976; Perdon and Conte,
1999; Picard and Lafay, 1996; Sename et al., 1995].

A linear time-delay system is governed by a following linear differential equation with
coefficient in a module, e.g.

ẋ(t) = A(∇)x(t)

where in the general case ∇ = col
i

(∇i) is the vector of delay operators such that x(t−
hi) = ∇ix(t). In this case, the coefficient of the A matrix is a multivariate polynomial
in the variable ∇. Since the inverse of ∇ (the predictive operator x(t+ hi) = ∇−1

i x(t))
is undefined from a causality point of view, the operators ∇i of the matrix A belong
thus to a ring.

2. Differential equation on an infinite dimensional abstract linear space:

This type of representation stems from the application of infinite dimensional systems
theory to the case of time-delay system. This type of system is completely characterized
by the state

x̃ =
[
x(t)
xt(s)

]
for all s ∈ [−h, 0] and xt(s) = x(t+ s). The state-space is then the Hilbert space

Rn × L2([−h, 0],Rn)

One can easily see that the state of the system contains a point in an Euclidian space x(t)
and a function of bounded energy , xt(s), the latter belonging to an infinite dimensional
linear space. This motivates the denomination of ’Infinite Dimensional Abstract Linear
Space’ [Bensoussan et al., 2006; Curtain et al., 1994; Iftime et al., 2005; Meinsma and
Zwart, 2000]. In that state space, the system rewrites

d

dt

[
y(t)
xt(·)

]
= A

[
y(t)
xt(·)

]
where the operator A is given by

A
[
y(t)
xt(·)

]
=

 Ay(t) +Ahxt(−h)
dxt(θ)
dθ


The operator A is the infinite dimensional counterpart of the finite dimensional operator
A in linear systems described by ẋ = Ax, and many tools involved in the theory of
finite dimensional systems have been extended to infinite dimensional systems (e.g. the
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exponential of matrix, eigenvalues and eigenfunctions, the fundamental matrix or also
the explicit solution). The readers should refer to [Bensoussan et al., 2006] to get more
details on infinite dimensional systems and a complete characterization of time-delay
systems as systems in a Banach functional space.

3. Functional Differential equation: evolution in a finite Euclidian space or in a functional
space.

Since only functional differential equations will be used throughout this thesis, only this
one will be deeper explained.

3.1.1 Functional Differential Equations

The most spread representation is by the mean of functional differential equations [Bellman
and Cooke, 1963; Gu et al., 2003; K.Hale and Lunel, 1991; Kolmanovskii and Myshkis, 1962;
Niculescu, 2001]: several types of time-delay systems can be considered according to the
worldly accepted denomination introduced by Kamenskii [Kolmanovskii and Myshkis, 1999]:

1. System with discrete delay acting on the state x, inputs u or/and outputs y, e.g.

ẋ(t) = Ax(t) +Ahx(t− hx) +Bu(t) +Bhu(t− hu)
y(t) = Chx(t− hy)

where hx, hu and hy are respectively the delay state, the input delay and the measure-
ment delay.

2. Distributed delay systems where the delay acts on state x or inputs u in a distributed
fashion, e.g.

ẋ(t) = Ax(t) +
∫ 0

−hx
Ah(θ)x(t+ θ)dθ +Bu(t) +

∫ 0

−hu
Bh(θ)xu(t+ θ)dθ

3. Neutral delay systems where the delay acts on the higher-order state-derivative, e.g.

ẋ(t)− Fẋ(t− h) = Ax(t)

The following paragraphs are devoted to a brief emphasis of the difference between these
classes of systems through illustrative application examples. These examples are borrowed
from [Briat and Verriest, 2008; Kolmanovskii and Myshkis, 1999; Niculescu, 2001; Verriest
and Pepe, 2007].

Systems with discrete delays

Systems with discrete delays are systems which remember locally past signals values,
at some specific past time instants. An interesting example presented in [Niculescu, 2001]
considers an irreversible chemical reaction producing a material B from a material A. Such
a reaction is neither instantaneous nor complete and in order to resolve enhance the quantity
of reacted products, a classical technique is to use a recycle stream. The streaming process
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does not take place instantaneously and the whole process (i.e. reaction + streaming) can be
modeled by a system of nonlinear delay differential equations with discrete delay:

Ȧ(t) =
q

V
[λA0 + (1− λ)A(t− τ)−A(t)]−K0e

−Q
T A(t)

Ṫ (t) =
1
V

[λT0 + (1− λ)T (t− τ)− T (t)]
∆H
Cρ
−K0e

−Q
T A(t)− 1

V Cρ
U(T (t)− Tw)

where A(t) is the concentration of the component A, T (t) is the temperature (A0, T0 corre-
spond to these values at initial time t = 0) and λ ∈ [0, 1] is the recycle coefficient, (1− λ)q is
the recycle flow rate of the unreacted A and τ is the transport delay. The others terms are
constants of the system.

The description of economic behaviors is another application of functional differential equa-
tions [Belair and Mackey, 1989; Kolmanovskii and Myshkis, 1999, 1962; Niculescu, 2001]. For
instance, the following discrete delay model has been used for describing interactions between
consumer memory and price fluctuations on commodity market:

ẍ(t) +
1
R
ẋ(t) + ẋ(t− τ) +

Q

R
x(t) +

1
R
x(t− τ) = 0

where x denotes the relative variation of the market price of the commodity and Q,R, τ are
parameters of the model. In particular, τ is the time that must elapse before a decision to
alter production is translated into an actual change in supply. Actually, this model is obtained
by differentiating the following dynamical model involving a distributed delay:

ẋ(t) +
Q

R

∫ 0

−∞
e−θ/Rx(t+ θ)dθ + x(t− τ) = 0

Note that this operation cannot be always performed, more details on this procedure can be
found for instance in [Verriest, 1999].

Other applications of time-delay systems with discrete delays arise in heat exchanger dy-
namics, traffic modeling, teleoperation systems, networks such as internet, modeling of rivers,
population dynamics. . . Delays also appear in neural networks, any systems with delayed mea-
surement, system controlled by delayed feedback and in this case, delays are a consequence
of technological constraints.

The reader should refer to the following papers/books and references therein to get more
details on pointwise delay systems:

Stability analysis: [Bliman, 2001; Chiasson and Loiseau, 2007; Dugard and Verriest, 1998;
Fridman and Shaked, 2001; Gouaisbaut and Peaucelle, 2006b; Goubet-Batholoméus
et al., 1997; Gu et al., 2003; Han, 2005a, 2008; Han and Gu, 2001; He et al., 2004;
Jun and Safonov, 2001; Kao and Rantzer, 2007; K.Hale and Lunel, 1991; Kharitonov
and Melchor-Aguila, 2003; Kharitonov and Niculescu, 2003; Kolmanovskii and Myshkis,
1962; Michiels and Niculescu, 2007; Moon et al., 2001; Niculescu, 2001; Park et al., 1998;
Richard, 2000; Sipahi and Olgac, 2006; Verriest and Ivanov, 1991, 1994a,b; Xu and Lam,
2005; Zhang et al., 1999, 2001]

Control Design: [Dugard and Verriest, 1998; Ivanescu et al., 2000; Meinsma and Mirkin,
2005; Michiels and Niculescu, 2007; Michiels et al., 2005; Mirkhin, 2003; Mondié and
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Michiels, 2003; Niculescu, 2001; Seuret et al., 2009a; Suplin et al., 2006; Verriest, 2000;
Verriest et al., 2002; Verriest and Ivanov, 1991, 1994a,b; Verriest and Pepe, 2007; Verriest
et al., 2004; Witrant et al., 2005; Wu, 2003; Xie et al., 1992; Xu et al., 2006]

Observers: [Darouach, 2001; Fattouh, 2000; Fattouh and Sename, 2004; Fattouh et al., 1999,
2000a,c; Germani et al., 2001; Picard et al., 1996; Sename, 1997, 2001; Sename et al.,
2001]

Distributed delay Systems

Distributed delay systems are systems where the delay does not have a local effect as
in pointwise delay systems but acts in a distributed fashion over a whole interval. For in-
stance, consider the following SIR-model [Anderson and May, 1982, 2002; Hethcote, 2002;
van den Driessche, 1999; Wickwire, 1977] used in epidemiology [Briat and Verriest, 2008]

Ṡ(t) = −βS(t)I(t)

İ(t) = βS(t)I(t)− β
∫ ∞
h

γ(τ)S(t− τ)I(t− τ)dτ

Ṙ(t) = β

∫ ∞
h

γ(τ)S(t− τ)I(t− τ)dτ

where S is the number of susceptible people, I the number of infectious people and R the
number of recovered people. The distributed delay here taking value over [h,+∞] is the time
spent by infectious people before recovering from the disease. This delay me be different from
a person to another but obeys a probability density represented by γ(τ) which tends to 0 at
infinity and whose integral over [h,+∞] equals 1. It is assumed here that once recovered from
the disease, people become resistant and therefore remain within the set of recovered people.
It can be easily shown that Ṡ + Ṙ + İ = 0, showing that the system is Hamiltonian (energy
preserving) and hence stable.

Another example of systems governed by distributed delay differential equations are combus-
tion models [Crocco, 1951; Fiagbedzi and Pearson, 1987; Fleifil et al., 1974, 2000; Niculescu,
2001; Zheng and Frank, 2002] involved in propulsion and power-generation. Delay in such
models can have destabilizing effects but it has been shown these recent years that this delay
can be used in advantageous manner. The following example is taken from [Niculescu, 2001;
Niculescu et al., 2000].

ẍ(t) + 2ζωẋ(t) + ω2
i x = c1x(t− τc)− c2

∫ t−τc

0
x(ξ)dξ

For more details and some results on systems with distributed delays, the readers should refer
to [Chiasson and Loiseau, 2007; Fattouh et al., 2000b; Fiagbedzi and Pearson, 1987; Fridman
and Shaked, 2001; Gu et al., 1999, 2003; Ivanescu et al., 1999; K.Hale and Lunel, 1991;
Kolmanovskii and Richard, 1997; Münz and Allgöwer, 2007; Münz et al., 2008; Niculescu,
2001; Richard, 2000; Tchangani et al., 1997; Verriest, 1995, 1999; Zheng and Frank, 2002] and
references therein.

Neutral Delay Systems

Finally, neutral delay systems, arising for instance in the analysis of the coupling between
transmission lines and population dynamics, are systems where discrete delays act on the
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higher order derivative of the dynamical system. (See [Brayton, 1966; K.Hale and Lunel,
1991; Kuang, 1993]. The origin of the term ’neutral’ is unclear while the other terms are easy
to understand.

An example of dynamical system governed by neutral delay equation is the evolution
of forests. The model is based on a refinement of the delay-free logistic (or Pearl-Verhulst
equation [Murray, 2002; Pearl, 1930; Verhulst, 1938]) where effects as soil depletion and
erosion have been introduced

ẋ(t) = rx(t)
[
1− x(t− τ) + cẋ(t− τ)

K

]
(3.1)

where x is the population, r is the intrinsic growth rate and K the environmental carrying
capacity. See Gopalsamy and Zhang [1988]; Pielou [1977]; Verriest and Pepe [2007] for more
details.

More information on neutral delay systems can be found in [Bliman, 2002; Brayton, 1966;
Fridman, 2001; Gopalsamy and Zhang, 1988; Han, 2002, 2005b; K.Hale and Lunel, 1991;
Kolmanovskii and Myshkis, 1962; Niculescu, 2001; Picard et al., 1998; Verriest and Pepe,
2007] and references therein.

3.1.2 Constant Delays vs. Time-Varying Delays and Quenching Phenomenon

In the latter examples of time-delay systems represented in term of a functional differential
equations, the delay is assumed to be constant. In some applications (networks, sampled-data
control. . . ) the delay is time-varying, making the system non-stationary. At first sight, it
may appear as a technical detail but, actually, it leads to a phenomena called Quenching (see
[Louisell, 1999; Papachristodoulou et al., 2007]). Indeed, as well as for uncertain LTI and
LTV/LPV systems for which there is a gap of stability when where the rate of variation of
the parameters play a central role (see Section 2.3.1), there is also a stability gap between
systems with constant and time-varying delays. Indeed, it is possible to find systems which
are stable for constant delay h ∈ [h1, h2] but unstable for time-varying delay belonging to the
same interval. In such a phenomenon, the bound on the delay derivative plays an important
role [Kharitonov and Niculescu, 2003; Papachristodoulou et al., 2007] similarly to as the rate
of variation of the parameters in LTV/LPV systems.

In some systems, the delay may be a known function of time or depend on some parame-
ters. Moreover, methods to estimate the delay in real time are currently developed [Belkoura
et al., 2007, 2008; Drakunov et al., 2006; Veysset et al., 2006]. In these cases, one can imagine
to use this information to study stability and design specific control laws.

It is also possible to define systems in which the delay is a function of the state. This
makes the stability analysis of the system extremely harder and only very few (uncomplete)
results have been provided on that topic. See for instance [Bartha, 2001; Feldstein et al.,
2005; Louihi and Hbid, 2007; Luzianina et al., 2000, 2001; Verriest, 2002; Walther, 2003] and
references therein.

3.2 Stability Analysis of Time-Delay Systems

The stability analysis of time-delay systems is a very studied problem and has led to lots of
approaches which can be classified in two main framework: the frequency-domain and time-
domain analysis [Gu et al., 2003; Niculescu, 2001]. While the first one deals with characteristic
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quasipolynomial (the generalization of characteristic polynomial to TDS [Gu et al., 2003]) of
the system, the second one considers directly the state-space domain and matrices. Before
entering in more details, some preliminary definitions are necessary.

Definition 3.2.1 (Delay-Independent Stability) If a time-delay system is stable for any
delay values belonging to R+, the system is said to be delay-independent stable.

The term delay-independent stable has been introduced for the first time in [Kamen et al.,
1985] and became commonly used in the time-delay community.

Example 3.2.2 A delay-independent stable time-delay system with constant time-delay is
given by

ẋ(t) =
[
−5 1
0 −5

]
x(t) +

[
−1 0
1 −2

]
x(t− h) (3.2)

It seems obvious that if a system is delay-independent stable, then it is necessary stable for
h = 0 and h→ +∞ which means that A and A+Ah are necessary Hurwitz (all the eigenvalues
lie in the open left-half plane). On the second hand, for any value of h from 0 to +∞), the
system must be stable too. It is shown in [Gu et al., 2003] that a supplementary sufficient
condition is given by

ρ̄[(jω −A)−1Ah] < 1, ∀ω ∈ R
where ρ̄(·) denotes the spectral radius (i.e. max

i
|λi(·)|). By verifying these conditions we find

λ(A) = {−5,−5}

λ(A+Ah) =

{
−13±

√
3

2

}
ρ̄[(jω −A)−1Ah] ∼ 0.4739 < 1

The system is confirmed to be delay-independent stable.

Definition 3.2.3 (Delay-Dependent Stability) If a time-delay system is stable for all
delay values belonging to a compact subset D of R+ then the system is said to be delay-
dependent stable.

Example 3.2.4 A well-known system being delay-dependent stable [Gouaisbaut and Peau-
celle, 2006b] is given by

ẋ(t) =
[
−2 0
0 −0.9

]
x(t) +

[
−1 0
−1 −1

]
x(t− h) (3.3)

and is stable for any constant delay belonging to [0, 6.17]. To see this note that A + Ah is
Hurwitz and hence the system is stable for zero delay. On the other hand, A − Ah is not
Hurwitz (has eigenvalues {−1, 0.1}) and shows that for some values of the delay the system
has positive eigenvalues. This is explained further in [Gu et al., 2003] where quasipolynomials-
based methods are introduced.

When the lower bound of the interval of delay is 0, the term ’delay-margin’ is often referred to
the upper bound of the interval. It is possible to find systems for which the lower bound of the
interval is non zero and in this case these systems are referred to as systems with non-small
delay or interval-delay systems.
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Example 3.2.5

ẋ(t) =
[

0 1
−2 0.1

]
x(t) +

[
0 0
1 0

]
x(t− h)

This system is not stable for h = 0 since the matrix A + Ah is not Hurwitz. Indeed, in
[Gouaisbaut and Peaucelle, 2006a; Gu et al., 2003], it is shown that the system is stable for
all constant delay in the interval [0.10016826, 1.7178].

Other systems may exhibit (almost) periodicity in the intervals of stability: there exists a
(finite or infinite) countable sequence of disjoint intervals for which the system is stable. Such
a behavior most often occurs in systems with several delays. Moreover, in the case of multiple
delay systems the stability map (the set of delays for which the system is stable) can be very
complicated as presented for instance in [Knospe and Roozbehani, 2006; Sipahi and Olgac,
2005, 2006]. The following example is borrowed from [Knospe and Roozbehani, 2006].

Example 3.2.6 Let us consider the system with 2 delays

ẋ(t) =
[
−3.0881 2.6698
−9.7383 2.8318

]
x(t)+

[
0.5645 0.0178
1.2597 0.8020

]
x(t−h1)+

[
0.4176 0.0144
0.9432 0.5976

]
x(t−h2)

(3.4)
The stability map for this system is depicted on Figure 3.1. On this figure, it is possible to
see that the there are notches which show that the stability set is not as regular as for system
with single delay. The boxes are approximations of the stability set obtained using method of
[Knospe and Roozbehani, 2006].

Figure 3.1: Stability regions of system (3.4) w.r.t. to delay values (source: [Knospe and
Roozbehani, 2006])

In the case of time-varying delays, the stability may depend or not on the rate of variation
of the delay (the derivative of the delay) and in these cases, a similar vocabulary has been
introduced.
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Definition 3.2.7 (Rate-Dependent Stability) For a stable time-delay system with time-
varying delays, if the stability depends on the rate of variation, then the system is said to be
rate-dependent stable.

Definition 3.2.8 (Rate-Independent Stability) For a stable time-delay system with time-
varying delays, if the stability does not depend on the rate of variation, then the system is
said to be rate-independent stable.

In most of the cases the bound on the rate of variation of the delay is closely related to the
delay-margin, the greater the absolute value of the rate is, the lower is the delay-margin.
Papachristodoulou et al. [2007] have shown that system

ẋ(t) = −x(t− h(t)) (3.5)

is unstable for a delay-rate bound greater than approximately 0.86 even though for a constant
delay, the system is stable for h < π/2.

In [Kharitonov and Niculescu, 2003], analytical methods are provided to deal with uncertain
delays around a known constant value. With such an approach it is possible to quantify and
give bounds on the variation of the delay. For instance, the relevant example considered in
Kharitonov and Niculescu [2003]

ẋ(t) =
[

0 1
−1 −2

]
x(t) +

[
0 0
−1 −1

]
x(t− h(t))

is stable for a delay equal to 1. Using the method of [Kharitonov and Niculescu, 2003] where
the time-varying delay is written as

h(t) = h0 + η(t) ḣ(t) = η̇(t)

it is shown that the stability is preserved for every |η(t)| ≤ η0 and |η̇(t)| ≤ η̇0 such that

η0 <
1

640
µ0 η̇0 < 1− 8µ0

with µ0 ∈ (0, 1/40). From these inequalities we can see that the larger η̇0 is, the smaller
η0 must be to preserve stability. This illustrates the effect of a time-varying delay on the
stability of time-delay systems.

3.2.1 Time-Domain Stability Analysis

Several frequency domain approaches have been provided in literature and lead for more or
less difficult stability analysis techniques for time-delay systems with constant delay. These
methods cannot be applied (except for very special cases) to systems with time-varying de-
lays or even to time-varying systems, uncertain systems with time-varying uncertainties and
nonlinear systems (except locally). The advantage of time-domain approaches compared to
frequency-domain techniques is their wide applicability to any type of systems. Many ap-
proaches have been developed these past years and amongst them, the extension of Lyapunov
theory and Lyapunov functions play a central role.
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This section is devoted to a presentation of many time-domain approaches. On the first
hand, the extensions of Lyapunov theory through the celebrated Lyapunov-Krasovskii and
Lyapunov-Razumikhin theorems are introduced. On the second hand, an historical review
is developed in which the use of model transformations is introduced and justified. The
concept of additional dynamics is then shown as a consequence of model transformations
and as a limitation of some approaches. Still in the context of model transformations, the
problem of the bounding of cross-terms is explained and solved in different manners exposed
chronologically. To conclude on the part on extensions of Lyapunov’s theory, recent results
does not involving model transformations are provided.

Finally more ’exotic’ stability tests not directly based on extension of Lyapunov’s theory
but relying on well-posedness theory (Section 2.3.4.4), integral quadratic constraint theory
(IQC) (Section 2.3.4.6) or even small-gain theorems (Sections 2.3.4.2 and 2.3.4.3) are intro-
duced as an opening to new promising methods.

Remark 3.2.9 All the definitions of stability of finite-dimensional systems can be generalized
to time-delay systems by introducing the continuous norm || · ||c defined by

||φ||c := max
a≤θ≤b

||φ(θ)||2

where φ ∈ Ca([a, b],Rn) which is the set of absolutely continuous functions mapping [a, b] to
Rn.

3.2.1.1 On the extension of Lyapunov Theory

Throughout this part, we will focus on the stability analysis of the general single delayed
system

ẋ(t) = f(xt, t)
xt0 = φ

(3.6)

where xt(θ) = x(t + θ) and φ ∈ C([−h, 0],R) is the functional initial condition. We also
assume that x(t) = 0 identically is a solution to (3.6), that will be referred to as the trivial
solution.

As in the study of systems without delay, the Lyapunov method is an effective approach.
For a system without delay, it consists in the construction of a Lyapunov function V (t, x(t)),
which is some sense is a potential measure quantifying the deviation of the state x(t) from the
trivial solution 0. Since, for a delay-free system, x(t) is needed to specify the system future
evolution beyond t, and since in a time-delay system the ’state’ at time required for the same
purpose is the value of x(θ) in the interval θ ∈ [t − h, t] (i.e. xt), it is natural to expect
that for a time-delay system, the corresponding Lyapunov function be a functional V (t, xt)
depending on xt, which also should measure the deviation of xt from the trivial solution 0.
Such a functional is known as the Lyapunov-Krasovskii functional.

More specifically, let V (t, φ) be differentiable, and let xt(τ, φ) be a solution of (3.6) at time t
with the initial condition xτ = φ. We may calculate the derivative of V (t, xt) with respect to
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t and evaluate it at t = τ . This gives rise to

V̇ (τ, φ) =
d

dt
V (t, xt)

∣∣∣∣
t=τ, xt=φ

= lim sup
∆t→0

1
∆t

[V (τ + ∆t, xt+∆t(τ, φ))− V (τ, φ)]

Intuitively, a nonpositive V̇ indicates that xt does not grow with t, which in turn means that
the system under consideration is stable in light of remark 3.2.9. The more precise statement
of this observation is the following theorem.

Theorem 3.2.10 (Lyapunov-Krasovskii Stability Theorem)
Suppose f : R×C([−h, 0],Rn)→ Rn in (3.6) maps R×(bounded sets of C([−h, 0],Rn)) into
bounded sets of Rn, and u, v, w : R̄+ → R̄+ are continuous nondecreasing functions, u(s) and
v(s) are positive for s > 0, and u(0) = v(0) = 0. If there exists a continuous differentiable
functional V : R× C → R such that

u(||φ(0)|| ≤ V (t, φ) ≤ v(||φ||c)

and
V̇ (t, φ) ≤ −w(||φ(0)||)

then the trivial solution of (3.6) is uniformly stable. If w(s) > 0 for s > 0, then it is uni-
formly asymptotically stable. If, in addition, lim

s→+∞
u(s) = +∞, then it is globally uniformly

asymptotically stable.

Complete Lyapunov-Krasovskii Functional

In the special case of linear time-delay systems, it is possible to give a generic ’complete’
Lyapunov-Krasovskii functional [Fridman, 2006a; Gu et al., 2003; Papachristodoulou et al.,
2007]. The term complete means that, if computed exactly, it provides necessary and sufficient
conditions to the delay-dependent stability for such systems. Let us consider the following
LTI time-delay system:

ẋ(t) = Ax(t) +Ahx(t− h)
x(θ) = φ(θ), θ ∈ [−h, 0]

(3.7)

where x ∈ § ⊂ Rn, φ ∈ C[−h, 0] and h ∈ R+ are respectively the system state, the functional
initial condition and the constant time-delay.

Theorem 3.2.11 The system (3.7) is delay-dependent asymptotically stable for a constant
time-delay h if and only if there exist a constant matrix P = P T ∈ Rn×n, a scalar ε > 0 and
continuously differentiable matrix functions

Q(ξ) : [−h, 0]→ Rn×n

R(ξ, η) = R(η, ξ)T , with R(ξ, η) : [−h, 0]2 → Rn×n

S(ξ) = S(ξ)T : [−h, 0]→ Rn×n

such that

V (xt) = x(t)TPx(t) + 2x(t)T
∫ 0

−r
Q(ξ)x(t+ ξ)dξ +

∫ 0

−r
x(t+ ξ)TS(ξ)x(t+ ξ)dξ

+
∫ 0

−r

[∫ 0

−r
x(t+ ξ)TR(ξ, η)x(t+ η)dη

]
dξ ≥ ε||x(t)||2
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is a Lyapunov-Krasovskii functional. Moreover its time derivative satisfies

V̇ (xt) = x(t)T [PA+ATP +Q(0) +QT (0) + S(0)]x(t)− x(t− h)TS(−h)x(t− h)

−
∫ 0

−h
x(t+ ξ)T Ṡ(ξ)x(t+ ξ)dξ + 2x(t)T [PAh −Q(−h)]x(t− h)

−
∫ 0

−h
dξ

∫ 0

−h
x(t+ ξ)T

[
∂

∂ξ
R(ξ, η) +

∂

∂η
R(ξ, η)

]
x(t+ η)dη

+2x(t)T
∫ 0

−h
[ATQ(ξ)− Q̇(ξ) +R(0, ξ)]x(t+ ξ)dξ

+2x(t)T
∫ 0

−h
[AThQ(ξ)−R(−h, ξ)]x(t+ ξ)dξ ≤ −ε||x(t)||2

In practice, it is numerically difficult to check the existence of such a quadratic functional.
Indeed, it describes an infinite dimensional problem since decision variables are functions (i.e.
Q,R, S). To overcome this problem a discretization scheme may be adopted [Fridman, 2006b;
Gu et al., 2003; Han and Gu, 2001] or a Sum-of-Squares based relaxation [Papachristodoulou
and Prajna, 2002; Papachristodoulou et al., 2005, 2007; Prajna et al., 2004]. Section 4.6.1
will be devoted to a particular discretized Lyapunov-Krasovskii functional.

Note that the Lyapunov-Krasovskii functional requires the state variable x(t) in the interval
[−h, 0] and involves the manipulation of functionals, this consequently makes the applica-
tion of the Lyapunov-Krasovskii theorem rather difficult. This difficulty may sometimes be
circumvented using the Razumikhin theorem, an alternative result invoking only functions
rather than functionals. The key idea behind the Razumikhin theorem also focuses on a
function V (x) representative of the size of x(t). For such a function,

V̄ (xt) = max
θ∈[−h,0]

V (x(t+ θ))

serves to measure the size of xt. If V (x(t)) < V̄ (xt), then V̇ (x) > 0 does not make V̄ (xt)
grow. Indeed, for V̄ (xt) to not grow, it is only necessary that V̇ (x(t)) is not positive whenever
V (x(t)) = V̄ (xt). The precise statement is as follows.

Theorem 3.2.12 (Lyapunov-Razumikhin Stability Theorem)
Suppose f : R × C([−h, 0],Rn) → Rn in (3.6) takes R × (bounded sets of C([−h, 0],Rn))
into bounded sets of Rn, and u, v, w : R̄+ → R̄+ are continuous nondecreasing functions,
u(s) and v(s) are positive for s > 0, and u(0) = v(0) = 0, v strictly increasing.

If there exists a continuously differentiable function V : R× Rn → R such that

u(||x||) ≤ V (t, x) ≤ v(||x||), for t ∈ R and x ∈ Rn

and the derivative of V along the solution x(t) of (3.6) satisfies

V̇ (t, x(t)) ≤ −w(||x(t)||) whenever V (t+ θ, x(t+ θ)) ≤ V (t, x(t)) (3.8)

for θ ∈ [−h, 0], then the system (3.6) is uniformly stable.
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Moreover, if w(s) > 0 for s > 0, and there exists a continuous nondecreasing function p(s) > s
for s > 0 such that condition (3.8) is strengthened to

V̇ (t, x(t)) ≤ −w(||x(t)||) if V (t+ θ, x(t+ θ)) ≤ p(V (t, x(t)))

for θ ∈ [−h, 0], then the system (3.6) is uniformly asymptotically stable. If in addition
lim

s→+∞
u(s) = +∞, then the system (3.6) is globally uniformly asymptotically stable.

Lyapunov-Krasovskii and Lyapunov-Razumikhin are the most famous results concerning sta-
bility of time-delay systems in the time-domain. However, there exists several others results,
see for instance [Barnea, 1969]. In Sections 3.2.1.4 and 3.2.1.5 different stability tests will be
derived using both theorems.

3.2.1.2 About model transformations

Model-transformations have been introduced early in the stability analysis of time-delay sys-
tems. They allow to turn a time-delay system into a new system, which is referred to as a
comparison system. Finally, the stability of the original system is determined through the
stability analysis of the comparison model. They are generally used to remove annoying terms
in the equations or to turn the expression of the system in a more convenient form. Com-
parison systems may be of different types, (uncertain) finite dimensional linear systems (see
[Gu et al., 2003; Knospe and Roozbehani, 2006, 2003; Roozbehani and Knospe, 2005; Zhang
et al., 1999, 2001]), time-delay systems (see [Fridman and Shaked, 2001; Gu et al., 2003]). In
our papers [Briat et al., 2007a, 2008a], a time-delay system is turned into an uncertain finite
dimensional LPV systems from which a new control strategy is developed; this will developed
in Section 6.1.7.

Some model transformations are introduced here, although the list is non exhaustive due
to the important work that has been done in that field, it will be focused on two initial first-
order model transformations [Goubet-Batholoméus et al., 1997; Kolmanovskii and Richard,
1997, 1999; Kolmanovskii et al., 1998; Li and de Souza, 1996; Niculescu, 1999; Niculescu and
Chen, 1999; Su, 1994; Su and Huang, 1992] and a recent one [Fridman, 2001; Fridman and
Shaked, 2001] which will be detailed in the following. The motivation for which only three
model transformations have been chosen to be presented, comes from the fact that both first
ones are simple but may induce some conservatism. It will be shown in Section 3.2.1.3 than
the third one is less conservative than the others despite of its apparent complexity.

First of all, let us consider the linear time-delay system

ẋ(t) = Ax(t) +Ahx(t− h)
x0 = φ

(3.9)

where A,Ah are given n× n real matrices and φ is the functional initial condition.

The three model transformations to be analyzed are given below:

Newton-Leibniz formula : The Newton-Leibniz formula is the oldest model transforma-
tion which has been introduced [Goubet-Batholoméus et al., 1997; Kolmanovskii and
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Richard, 1997, 1999; Li and de Souza, 1996; Su, 1994; Su and Huang, 1992] and is still
in use for different purposes [Gu et al., 2003; He et al., 2004; Niculescu, 2001]:

x(t− h) = x(t)−
∫ t

t−h
ẋ(θ)dθ

It allows to turn the time-delay system with discrete delay (3.9) into the following
system with distributed delay:

ẋ(t) = (A+Ah)x(t)−Ah
∫ t

t−h
[Ax(s) +Ahx(s− h)]ds

Parametrized Leibniz-Newton formula : This model transformation [Kolmanovskii et al.,
1998; Niculescu, 1999; Niculescu and Chen, 1999] improves the result obtained from the
Leibniz-Newton formula by introducing a free parameter C to be chosen adequately:

Cx(t− h) = Cx(t)− C
∫ t

t−h
ẋ(θ)dθ

where C ∈ Rn×n is a free matrix. It allows to turn the time-delay system with discrete
delay into a system with distributed delay:

ẋ(t) = (A+ C)x(t) + (Ah − C)x(t− h)− C
∫ t

t−h
[Ax(s) +Ahx(s− h)]ds

Note for particular values for C, previous system expressions are recovered:

• C = 0: the original system is recovered

• C = Ah: the system obtained from Leibniz-Newton formula is recovered.

This model transformation [Fridman, 2001; Fridman and Shaked, 2001] allows to turn
a time-delay system into a singular system with distributed delay[

I 0
0 0

] [
ẋ(t)
ẏ(t)

]
=
[

0 I
A+Ah −I

] [
x(t)
y(t)

]
+
∫ t

t−h

[
0 0
0 −Ah

] [
x(s)
y(s)

]
ds

where y(t) = ẋ(t). By substituting the expression of y(t) defined by the second row in
the first row, the original system (3.9) is retrieved.

Many other model transformations have been provided in the literature and the readers should
refer, for instance, to [Gouaisbaut and Peaucelle, 2006a,b, 2007; Goubet-Batholoméus et al.,
1997; Gu et al., 2003; Kao and Rantzer, 2007; Knospe and Roozbehani, 2006, 2003; Kol-
manovskii and Myshkis, 1962; Kolmanovskii and Richard, 1997, 1998; Kolmanovskii et al.,
1998; Li and de Souza, 1996; Niculescu, 2001, 1997, 1999; Niculescu and Chen, 1999; Roozbe-
hani and Knospe, 2005; Su, 1994; Su and Huang, 1992; Zhang et al., 1999]. Many of model
transformations introduced in the latter references have not been introduced in same spirit
as the model-transformations detailed above, but in view of turning the system into another
form in order to analyze it using different tools. This will be detailed in Sections 3.2.1.4 to
3.2.1.8.
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3.2.1.3 Additional Dynamics

Stability tests obtained from comparison systems are, in most of the cases, outer approxima-
tions of the original system only. This means that if the comparison model is stable then the
original system is stable too but the converse does not necessary hold. The following devel-
opment is borrowed from [Gu and Niculescu, 1999, 2000; Gu et al., 2003; Verriest, 1999] and
some precisions on additional dynamics can also be found in [Kharitonov and Melchor-Aguila,
2003] and references therein.

For instance the simpler model transformation (i.e. the Leibniz-Newton formula) leads to the
comparison system

ż(t) = (A+Ah)z(t)−Ah
∫ t

t−h
[Az(t) +Ahz(s− h)]ds

where the instantaneous state is set to z to emphasize the difference between the original
and comparison model. The characteristic quasipolynomial of the latter comparison system
is then given by

∆c(s) := det
[
s2I − (A+Ah)s+AhA(1− e−sh) +A2

he
−sh(1− e−sh)

]
while the quasipolynomial of the original system is

∆o := det(sI −A−Ahe−sh)

Therefore, as the quasipolynomial of both systems are different, it seems evident that the
qualitative behavior of both systems might be different. To see this, note that the quasipoly-
nomial of the transformed system can be factorized as

∆c(s) = ∆o(s)∆a(s)

where

∆a(s) := det
(
I − 1− e−sh

s
Ah

)
Hence the quasipolynomial of the transformed system exhibits supplementary zeros which
are responsible of additional dynamics. It is clear that if the real part of these zeros are
nonnegative, the comparison system is unstable, even if the original system is stable (zeros of
∆o(s) have negative real part). Some results on this stability analysis are presented below.
Note that

∆a(s) =
n∏
i=1

(
1− λi

1− e−sh

s

)
where λi is the ith eigenvalue of matrix Ah and let s = sik, k = 1, 2, 3, . . . be all the solutions
of the equation

1− λi
1− e−sh

s
= 0

Then sik, i = 1, . . . , n, k = 1, 2, 3, . . . are all the additional poles of the comparison system.
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Descriptor Model Transformation : Proposition 3.2.13 For any given Ah, all the additional
poles satisfy

lim
h→0+

<(sik) = −∞

As a result, all the additional poles have negative real part for sufficiently small h. As h
increases, some of the additional poles may cross the imaginary axis. It turns out that the
exact crossing value can be analytically calculated.

Theorem 3.2.14 Corresponding to an eigenvalue λi of Ah, =(λi) 6= 0, there is an additional
pole si,k on the imaginary axis if and only if the time delay satisfies

h = hi,k =
kπ + arg(λi)
=(λi)

> 0, k = 0,±1,±2, . . .

Corresponding to a positive real eigenvalue λi of Ah, there is an additional pole on the imag-
inary axis if and only if

h =
1
λi

No additional poles corresponding to a negative real eigenvalue λi of Ah will reach the imagi-
nary axis for any finite delay.

Therefore, if all the eigenvalues of the matrix Ah are real and negative, then the original
and comparison system are equivalent for this particular model transformation. On the other
hand, if the matrix Ah does not satisfy this strong assumption, it seems necessary to use
another model transformation. Here comes the parametrized model transformation for which
it can be shown that the additional poles are solutions of the equation

det
(
I − C 1− e−sh

s

)
= 0

This shows that for a judicious choice of the free matrix C, no unstable dynamics are gener-
ated which emphasizes the interest of the parametrized model transformation.

Finally, let us consider now the descriptor model transformation, the comparison model is
governed by[

I 0
0 0

] [
ẋ(t)
ẏ(t)

]
=
[

0 I
A+Ah −I

] [
x(t)
y(t)

]
+
∫ t

t−h

[
0 0
0 −Ah

] [
x(s)
y(s)

]
ds

The corresponding characteristic polynomial is

∆cd(s) := det

 sI −I

−(A+Ah) I +Ah
1− e−sh

s


:= det

(
sI −A−Ahe−sh

)
and is identical to the quasipolynomial of the original system (using the determinant formula
(see Appendix A.1)). This is the great advantage of this model transformation. However
the system is changed in a singular system with distributed delay which may introduce some
difficulties in the stability analysis.
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3.2.1.4 Stability Analysis: Lyapunov-Razumikhin Functions

This section is devoted to simple stability tests using Lyapunov-Razumikhin theorem and both
delay-dependent and delay-independent tests are provided. Let us consider here a general
linear time-delay system of the form

ẋ(t) = Ax(t) +Ah(t− h)
x(t+ θ) = φ(θ), θ ∈ [−h̄, 0]
h ∈ [0, h̄]

(3.10)

Delay-independent stability test via Lyapunov-Razumikhin theorem

A simple test on delay-independent stability using the quadratic Lyapunov-Razumikhin
function

V (x(t)) = x(t)TPx(t)

is provided here. The time-derivative of V along the trajectories solutions of system (3.10) is
given by

V̇ (x(t)) =
[

x(t)
x(t− h)

]T [
ATP + PA PAh

AThP 0

] [
x(t)

x(t− h)

]
Applying the Lyapunov-Razumikhin Theorem 3.2.12, V̇ (x(t)) must be negative whenever
V (x(t + θ)) < pV (x(t)) for some p > 1 and for all θ ∈ [−h, 0]. Since the latter inequality
holds for all θ ∈ [−h, 0] then we have V (x(t − h)) < pV (x(t)) and by application of the
S-procedure (see [Boyd et al., 1994] or appendix D.10), we get[

ATP + PA+ τpP PAh
AThP −τP

]
≺ 0 (3.11)

with τ > 0. Finally let p = 1 + δ, for a small δ > 0, we get the following result

Theorem 3.2.15 System (3.10) is asymptotically stable independent of delay if there exists
P = P T � 0 and a scalar τ > 0 such that[

ATP + PA+ τP PAh
AThP −τP

]
≺ 0 (3.12)

Note that the feasibility of matrix inequality (3.12) implies the feasibility of matrix inequality
(3.11).

It is clear that the latter inequality provides a delay-independent stability test since the matrix
inequality does not depend on the delay. Moreover, it is worth noting, that (3.12) is not a LMI
due to bilinear term τP but fall into the framework of generalized eigenvalues problem [Boyd
et al., 1994; Gu et al., 2003; Nesterov and Nemirovskii, 1994]. Nevertheless, the problem is
quasi-convex since if τ is fixed, then (3.12) becomes a LMI. This means that a suitable value
for τ can be found using an iterative line search.

Delay-dependent stability test via Lyapunov-Razumikhin theorem

We give an example of delay-dependent result obtained from the application of the Lyapunov-
Razumikhin theorem 3.2.12. The proof can be found in [Gu et al., 2003] and is omitted since
it requires preliminary results on stability of distributed delay which are not of interest.
However, it is important to say that it is based on the Leibniz-Newton model transformation.
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Theorem 3.2.16 System (3.10) is delay-dependent asymptotically stable is there exists P =
P T � 0 and scalars α, α0, α1 > 0 such that M P (αI −Ah)A P (αI −Ah)Ah

? −α0P − αh̄AT0 PA0 −αh̄ATPAh
? ? −α1P − αh̄AThPAh

 ≺ 0

holds with M =
1
h̄

[
P (A+Ah) + (A+Ah)TP

]
+ (α0 + α1)P

A discussion on the choice of scalars α, αi, i = 0, 1 is provided in [Gu et al., 2003]. As
previously, the computation of P, α, αi, i = 0, 1 is not an easy task since the resulting condition
is not a LMI. The problem is quasi-convex and an iterative procedure should be performed
in order to find suitable values for α, αi, i = 0, 1. However, this iterative procedure is more
difficult than in the delay-independent case since the search has to be performed over a three-
dimensional space (instead of a one-dimensional), which is more involved from a algorithmic
and computational point of view.

3.2.1.5 Stability Analysis: Lyapunov-Krasovskii Functionals

Despite of the simplicity of Lyapunov-Razumikhin functions, they generally lead to nonlinear
matrix inequalities and to conservative results due to the use of non-equivalent model trans-
formations. The use of Lyapunov-Krasovskii functionals, even if historically were used with
identical model-transformations, have led to more and more accurate LMI results by apply-
ing either more precise bounding techniques of cross-terms [Park, 1999; Park et al., 1998],
more exact model transformations [Fridman, 2001; Fridman and Shaked, 2001] or also other
methods without any model transformations [Briat et al., 2009; Gouaisbaut and Peaucelle,
2006b; Han, 2005a; Xu and Lam, 2007; Xu et al., 2006].

This section is devoted to the introduction (in a chronological order) of different results
on delay-independent and delay-dependent stability based on Lyapunov-Krasovskii Theorem
3.2.10. First, a simple delay-dependent stability test will be provided and then a delay-
dependent stability test will be developed. The delay-dependent stability test is based on the
Leibniz-Newton model transformation and induces cross terms in the equations. These terms
involving products of signals at time t and the integral of same signals over the [t− h, t] are
of great difficulty. Different bounds have been provided in the literature to avoid/overcome
these difficulties and are of interest since they had led to more and more accurate results.
Finally, several other stability tests not based on model transformation and avoiding them
are introduced.

Delay-Independent stability test via Lyapunov-Krasovskii theorem

Consider the Lyapunov-Krasovskii functional given by

V (xt) = x(t)TPx(t) +
∫ t

t−h
x(θ)TQx(θ)dθ (3.13)

where P,Q ∈ Sn++ are constant decision matrices. Computing the derivative of the Lyapunov-
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Krasovskii functional V (xt) along the trajectories solutions of system (3.9) yields

V̇ (xt) = ẋ(t)TPx(t) + x(t)TPẋ(t) + x(t)TQx(t)− x(t− h)TQx(t− h)
= [Ax(t) +Ahx(t− h)]T Px(t) + x(t)TP [Ax(t) +Ahx(t− h)]

+x(t)TQx(t)− x(t− h)TQx(t− h)

=
[

x(t)
x(t− h)

]T [
ATP + PA+Q PAh

AThP −Q

] [
x(t)

x(t− h)

]
By enforcing the latter quadratic form to be negative definite we get[

ATP + PA+Q PAh
AThP −Q

]
≺ 0

Moreover by continuity of the eigenvalues this is equivalent to say that[
ATP + PA+Q+ εI PAh

AThP −Q

]
≺ 0

for some ε > 0. This implies that V̇ (t) ≤ −ε||x(t)||2 and the Lyapunov-Krasovskii Theorem is
satisfied. We then obtain the following result which was first proven in [Verriest and Ivanov,
1991, 1994a]:

Theorem 3.2.17 System (3.10) is asymptotically stable for any delay if there exist matrices
P = P T � 0 and Q = QT � 0 such that[

ATP + PA+Q PAh
? −Q

]
≺ 0

holds.

It is worth noting that the structure reminds the matrix inequality obtained from the ap-
plication of the Lyapunov-Razumikhin Theorem, but is LMI in the current case. Moreover,
this test is less conservative than the delay-independent Lyapunov-Razumikhin test since
matrix Q is free and independent of P in the Lyapunov-Krasovskii test while the matrix
is τP is the Lyapunov-Razumikhin test and strongly correlated to P . As a conclusion the
Lyapunov-Krasovskii based test includes the Lyapunov-Razumikhin test as a particular case
Q = τP .

Delay-Dependent stability test via Lyapunov-Krasovskii theorem

Many studies have dealt with the problem of determination of the delay-margin for time-
delay systems. The aim of this paragraph is to provided an evolutive point of view of meth-
ods used to determine the delay-margin of a time-delay through the use of the Lyapunov-
Krasovskii theorem 3.2.10. In this objective, model transformations have played a central role
(and sometimes still play an important role in certain approaches). Despite of their conser-
vatism they have facilitated the derivation of delay-dependent stability conditions. However,
additional dynamics are not the only difficulties they induce, they also generate cross-terms
in the the mathematical proofs of the stability conditions. While additional dynamics are a
’hidden problem’ which is not viewed directly in the mathematical proof of stability tests,
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cross-terms are mathematical difficulties that have needed to be overcome or avoided.

Let us consider the following Lyapunov-Krasovskii functional

V (xt, ẋt) = V1(xt) + V2(xt) + V3(xt, ẋt)
V1(xt) = x(t)TPx(t)

V2(xt) =
∫ t

t−h
x(θ)TQx(θ)dθ

V3(xt, ẋt) =
∫ 0

−h

∫ t

t+θ
ẋ(η)TZẋ(η)dηdθ

with P = P T , Q = QT , Z = ZT � 0. According to Leibniz-Newton transformation, system
(3.9) is turned into

ẋ(t) = (A+Ah)x(t)−
∫ t

t−h
x(θ)dθ

Computing the derivative of V along the trajectories solutions of the latter system yields

V̇1(xt) = ẋ(t)TPx(t) + x(t)TPẋ(t)

= x(t)T [(A+Ah)TP + P (A+Ah)]x(t)−2x(t)TPAh

∫ t

t−h
ẋ(θ)dθ︸ ︷︷ ︸

cross term
= x(t)T [(A+Ah)TP + P (A+Ah)]x(t)

−2x(t)TPAh

∫ t

t−h
[Ax(θ) +Ahx(θ − h)]dθ︸ ︷︷ ︸

cross term
V̇2(xt) = x(t)TQx(t)− x(t− h)TQx(t− h)

V̇3(xt, ẋt) = hẋ(t)TZẋ(t)−
∫ t

t−h
ẋ(θ)TZẋ(θ)dθ

It is possible to see that a cross-term appears in V̇1 and is a coupling between the state at
time t and an integral of Ax(θ) + Ahx(θ − h) over [t − h, t]. This annoying term must be
bounded in order to decouple the integral term from x(t). A simple bound can be provided
by noting that

∫ t

t−h

 x(t)
x(θ)

x(θ − h)

T  PAh
AT

ATh

Z
 PAh

AT

ATh

T  x(t)
x(θ)

x(θ − h)

 dθ ≥ 0

for some Z = ZT � 0 and hence

−2x(t)TPAh

∫ t

t−h
ẋ(θ)dθ = −2x(t)TPAh

∫ t

t−h
Ax(θ) +Ahx(θ − h)dθ

≤
∫ t

t−h
x(t)TPAhZ−1AThPx(t)dθ +

∫ t

t−h
ẋ(θ)TZẋ(θ)dθ

≤ hx(t)TPAhZ−1AThPx(t) +
∫ t

t−h
ẋ(θ)TZẋ(θ)dθ
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And thus we have

V̇ ≤ x(t)T [(A+Ah)TP + P (A+Ah) +Q]x(t) + hx(t)TPAhZ−1AThPx(t)
−x(t− h)TQx(t− h) + hẋ(t)TZẋ(t)

Finally since

hẋ(t)TZẋ(t) = h

[
x(t)

x(t− h)

]T [
ATZA ATZAh
? AThZAh

] [
x(t)

x(t− h)

]
we get

V̇ ≤
[

x(t)
x(t− h)

]T [ Ψ hATZAh
? −Q+ hAThZAh

] [
x(t)

x(t− h)

]
where Ψ = (A+ Ah)TP + P (A+ Ah) +Q+ hATZA+ hPAhZ

−1AThP and therefore system
(3.9) is delay-dependent stable with delay margin h if there exists symmetric positive definite
matrices P,Q,Z such that the LMI (A+Ah)TP + P (A+Ah) +Q+ hATZA hATZAh +hPAh

? −Q+ hAThZAh 0
? ? −hZ

 ≺ 0

holds.

Through the use of the Lyapunov-Krasovskii theorem 3.2.10 and the Leibniz-Newton model
transformation we have developed a delay-dependent stability test. This model transfor-
mation has introduced cross terms which have been bounded by a technique based on a
completion of the squares. This bound allowed to compensate the integral term coming the
differentiation of V3 and then remove the annoying integral term∫ t

t−h
ẋ(θ)TZẋ(θ)dθ

from the expression of V̇ .

Obviously, the bound on cross-terms is very conservative since, while the left-hand side of the
inequality may be negative, the right-hand side is always nonnegative. One of the great im-
provement of the Lyapunov-Krasovskii based methods was the introduction of better bounds
on cross-terms. Some additional material is detailed in Appendix E.2 on bounding cross-
terms.

Park’s Bounding Method

A seminal result on time-delay system (from my point of view) is provided here and has been
introduced in [Park, 1999; Park et al., 1998]. The idea was based on a more accurate bounding
of cross terms in the derivative of the Lyapunov-Krasovskii functional (see appendix E.2 or
[Park, 1999; Park et al., 1998]).

In [Park, 1999], the authors introduced the following lemma:
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Lemma 3.2.18 Assume that a(α) ∈ Rnx and b(α) ∈ Rny are given for α ∈ Ω. Then, for any
positive definite matrix X ∈ Rnx×nx and any matrix M ∈ Rny×ny , the following holds

−2
∫

Ω
b(α)Ta(α)dα ≤

∫
Ω

[
a(α)
b(α)

]T
Ψ
[
a(α)
b(α)

]
dα

with

Ψ =
[

X XM

MTX (MTX + I)X−1(XM + I)

]
The bound provided in the latter lemma is able to provide a tighter bound on the cross term
radically improving the contemporary results. The following Lyapunov-Krasovskii functional

V (xt, ẋt) = x(t)TPx(t) +
∫ t

t−h
x(θ)TQx(θ)dθ +

∫ 0

−h

∫ t

t+θ
ẋ(η)TAThRAhẋ(η)dηdθ (3.14)

used along with the Park’s bounding theorem leads to the theorem

Theorem 3.2.19 System (3.10) is asymptotically delay-dependent stable for all h ∈ [0, h̄] if
there exist P = P T � 0, Q = QT � 0, R = RT � 0, V = V T � 0 and W such that

M11 −W TAh ATAThV h̄(W T + P )
? −Q AThA

T
hV 0

? ? −V 0
? ? ? −V

 ≺ 0

holds with M11 = (A+Ah)TP + P (A+Ah) +W TAh +AThW + V .

Although this technique allows to consequently reduce the conservatism of the method by
finding a more accurate bound on cross-terms, it is still limited by the use of the Leibniz-
Newton model-transformation (which may introduce additional dynamics) and hence it would
be more convenient to use Park’s bounding method with a model transformation which does
not generate additional dynamics.

Descriptor Model Transformation This model transformation has been introduced
in [Fridman, 2001; Fridman and Shaked, 2001] and as shown in Section 3.2.1.3, it does not
introduce any additional dynamics. It is briefly recalled here for system (3.10):

E
[
ẋ(t)
ẏ(t)

]
= A

[
x(t)
y(t)

]
+Ah

∫ t

t−h

[
x(s)
y(s)

]
ds

where E =
[
I 0
0 0

]
, A =

[
0 I

A+Ah −I

]
and Ah =

[
0 0
0 −Ah

]
. One of the earliest

results in this framework considers the Lyapunov-Krasovskii functional

V (xt, yt) =
[
x(t)
y(t)

]T
ETP

[
x(t)
y(t)

]
+
∫ 0

−h

∫
t+θ

y(s)TRy(s)dsdθ

where P =
[
P1 0
P2 P3

]
, ETP = P TE, P1 = P T1 � 0 and R = RT � 0. It is proved in [Fridman

and Shaked, 2001] that such a Lyapunov-Krasovskii functional leads to the following theorem
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Theorem 3.2.20 System (3.10) is delay-dependent asymptotically stable for all h ∈ [0, h̄] if
there exists matrices P1 = P T1 � 0, R = RT � 0, P2, P3 such that the LMI (A+Ah)TP2 + P T2 (A+Ah) P1 − P T2 + (A+Ah)TP3 h̄P T2 Ah

? −P3 − P T3 + hR h̄P T3 Ah
? ? −h̄R

 ≺ 0

holds.

This results is based on a bounding technique of cross terms involving a positive matrix
as on page 119. However, results of [Fridman and Shaked, 2002b] involves Park’s bounding
technique and leads to less conservative stability conditions coupled with complete Lyapunov-
Krasovskii functional [Fridman, 2006a]. Although this method is interesting and leads to
results of quality, it still leads to cross terms which are difficult to bound and result in
conservative conditions from an absolute point of view.

Method of Free Weighting Matrices

The following approach has been introduced in [He et al., 2004] and consists in injecting
additional constraints into the LMI in order to tackle relations between signals involved in
the system. These constraints involve additional free variables adding extra-degree of freedom
into the LMI and this motivates the denomination of free weighting matrices approach. The
Lyapunov-Krasovskii functional used in [He et al., 2004] is

V (xt, ẋt) = x(t)TPx(t) +
∫ t

t−h
x(θ)TQx(θ)dθ +

∫ 0

−h

∫ t

t+θ
ẋ(η)TRẋ(η)dηdθ (3.15)

and is very similar to (3.14).
It is important to note that the following equality holds for all signals ẋ, x, xh governed

by the expression of system (3.9).

2
[
x(t)TN1 + x(t− h)TN2 + ẋ(t)N3

]
·
[
x(t)− x(t− h)−

∫ t

t−h
ẋ(s)ds

]
= 0

2
[
x(t)TT1 + x(t− h)TT2 + ẋ(t)T3

]
· [ẋ(t)−Ax(t)−Ahx(t− h)] = 0

h̄

 x(t)
x(t− h)
ẋ(t)

T X
 x(t)
x(t− h)
ẋ(t)

− ∫ t

t−h

 x(t)
x(t− h)
ẋ(t)

T X
 x(t)
x(t− h)
ẋ(t)

 dθ ≥ 0

for any matrices Ni, Ti and X = XT � 0

Indeed, the first constraint defines the Leibniz-Newton integral formula, the second constraint
defines the model of the system and the last one defines h̄ as the maximal value of the time-
delay h. The key idea in this method is to differentiate the Lyapunov-Krasovskii functional
without substituting ẋ by its explicit value. The constraints are then added and this leads to
a quadratic form in col(ẋ(t), x(t), x(t − h)) involving an integral quadratic term with vector
col(ẋ(t), x(t), x(t− h), ẋ(s)). By an appropriate choice of the matrix X the integral term can
be neglected and finally by a Schur complement the following result is obtained:

Theorem 3.2.21 System (3.10) is delay-dependent asymptotically stable for all h ∈ [0, h̄]
if there exists matrices P = P T � 0, Q = QT � 0, R = RT � 0, X = XT � 0
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N1, N2, N3, T1, T2, T3 such that the LMI
Q+NS1 − (T1A)S NT

2 −N1 −ATT T2 − T1Ah P +NT
3 + T1 −ATT T3 h̄N1

? −Q−NS2 − (T2Ah)S −NT
3 + T2 −AThT T3 h̄N2

? ? h̄R+ TS3 h̄N3

? ? ? −h̄R

 ≺ 0

(3.16)
holds.

While the addition of free variables is an advantage in the stability analysis (especially for
robust stability analysis [He et al., 2004]), it becomes a drawback in synthesis problems
since these decision variables are coupled to the system matrices (hence to the controller of
observers gain) preventing to find a linearizing change of variable. A usual method consists
in assuming a common simplification Ti = εiK where εi are chosen fixed scalars and K is a
decision matrix which considerably reduces the efficiency of the approach.

Approach using Jensen’s inequality

We describe here a result which is not based on any model transformation but relies on the
use the Jensen’s inequality (see Appendix E.1) avoiding the cross-terms. It has been provided
in different papers for instance in [Gouaisbaut and Peaucelle, 2006b; Han, 2005a].

Let us consider the Lyapunov-Krasovskii functional (3.15) and computing its time-derivative
along the trajectories solutions of system (3.9) gives

V̇ =
[

x(t)
x(t− h)

]T [
ATP + PA+Q PAh

AThP −Q

] [
x(t)

x(t− h)

]
+ hẋ(t)TRẋ(t)

=
[

x(t)
x(t− h)

]T [
ATP + PA+Q+ hATRA PAh + hATRAh

AThP + hAThRA −Q+ hAThRAh

] [
x(t)

x(t− h)

]
−
∫ t

t−h
ẋ(θ)TRẋ(θ)dθ

At first sight the integral term could be neglected (bounded above by 0) but this will result
in a too conservative condition. A more tight solution is the use of the Jensen’s inequality
on this integral term. The Jensen’s inequality allows to establish the following bound on the
integral term

−
∫ t

t−h
ẋ(s)TRẋ(s)ds ≤ −h̄−1

(∫ t

t−h
ẋ(s)ds

)T
R

(∫ t

t−h
ẋ(s)ds

)
leading then to the following result:

Theorem 3.2.22 System (3.10) is delay-dependent asymptotically stable for all h ∈ [0, h̄] if
there exists matrices P = P T � 0, Q = QT � 0, R = RT � 0 such that the LMI[

ATP + PA+Q− h̄−1R+ h̄ATRA PAh + h̄−1R+ h̄ATRAh
? −Q− h̄−1R+ h̄AThRAh

]
≺ 0 (3.17)

holds.
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As a remark, it is important to note that this result is identical to the method of free weighting
matrices presented in the previous paragraph on page on page 123. Indeed, LMI (3.16) can
be written as

Ψ + UTZV + V TZTU ≺ 0 (3.18)

where

Ψ =


Q 0 P 0
? −Q 0 0
? ? h̄R 0
? ? ? −h̄R

 Z =

 T1 N1

T2 N2

T3 N3

 U =

 I 0 0 0
0 I 0 0
0 0 I 0


and

V =
[
−A −Ah I 0
I −I 0 h̄I

]
Here the matrix Z is an unconstrained matrix and hence the projection lemma applies (see
appendix D.18). It states that there exist at least one solution Z to (3.18) if and only if the
two following underlying LMIs hold

Ker[U ]TΨKer[U ] ≺ 0
Ker[V ]TΨKer[V ] ≺ 0

These basis of null-spaces can be expressed as

Ker[U ] =


0
0
0
I

 Ker[V ] =


I 0
0 I
A Ah
−h̄−1 h̄−1I


The leads to

Ker[U ]TΨKer[U ] = −h̄R

which is negative definite by definition of R � 0. This means that feasibility of (3.18) is
equivalent to the feasibility of the second underlying LMI:

Ker[V ]TΨKer[V ] =
[
ATP + PA+Q− h̄−1R+ h̄ATRA PAh + h̄−1R+ h̄ATRAh

? −Q− h̄−1R+ h̄AThRAh

]
The latter LMI is identical to (3.17) showing that the approaches are equivalent. The ad-
vantage of formulation (3.16) is the decoupling between Lyapunov matrices P,Q,R and data
matrices A,Ah which allows to provide interesting robust stability result for polytopic type
uncertainties [Gouaisbaut and Peaucelle, 2006b; He et al., 2004]. For stability analysis, crite-
rion (3.17) is more interesting since it has low computational complexity (due to the absence
of ’slack’ variables and therefore a lower number of decision matrices).

Actually, many results in time-delay systems are related to each others modulo congruence
transformations, Schur complements or through the use of other theorems. This is empha-
sized in [Xu and Lam, 2007]. Other Lyapunov-Krasovskii based approaches avoiding model
transformation have been provided in many research papers, see for instance [Xu et al., 2006].
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3.2.1.6 Stability Analysis: (Scaled) Small-Gain Theorem

Different results based on Lyapunov-Krasovskii functionals have been introduced. It is aimed
here at showing that similar results can be retrieved through the use of (scaled) small-gain
theorem. Indeed, it is possible to provide delay-independent and delay-dependent stability
tests based on the use of the small-gain theorem as emphasized for instance in [Zhang et al.,
2001].

We will consider in the following the operators:

Dh : x(t)→ x(t− h)

Sh : x(t)→
∫ t

t−h
x(s)ds

Delay-Independent Stability Test using Scaled Small-Gain Theorem

This paragraph is devoted to delay-independent stability test using scaled-small gain the-
orem. First, the system (3.9) must be rewritten as an interconnection of two subsystems (i.e.
a linear finite dimensional systems and the delay operator Dh) according to the framework of
small-gain theorem. Hence (3.9) is rewritten in an ’LFT’ form:

ẋ(t) = Ax(t) +Ahw(t)
z(t) = x(t)
w(t) = Dh(z(t))

(3.19)

It has been shown that the operator Dh(·) is asymptotically stable and therefore has finite
H∞-norm. Indeed, if the input of the operator has finite L2-norm then the output, which is
the delayed input with a constant delay, will have finite energy too; this shows stability. In
order to determine the value of the H∞-norm of Dh(·) it suffices to compute the ratio of the
output energy over the input energy:∫ +∞

0
w(θ)Tw(θ)dθ =

∫ +∞

0
z(θ − h)T z(θ − h)dθ

=
∫ +∞

−h
z(θ′)T z(θ′)dθ′

with the change of variable θ′ = θ − h. Hence assuming zero initial conditions (i.e. z(t) = 0
for all t < 0) we get ∫ +∞

0
w(θ)Tw(θ)dθ =

∫ +∞

0
z(θ′)T z(θ′)dθ′

showing that the operator Dh(·) has unitary H∞-norm. Using this result it is possible to
apply the small-gain theorem in the dissipativity framework and to this aim we define the
Hamiltonian function:

H(xt) = S(x)−
∫ t

0
s(x(τ), x(τ − h))dτ

where S(x) = x(t)TPx(t) is the storage function with supply-rate:

s(x(t), x(t− h)) =
[

x(t)
x(t− h)

]T [ −L 0
0 L

] [
x(t)

x(t− h)

]
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In the dissipativity framework, if the derivative Ḣ of the Hamiltonian function H is negative
definite then this means that the interconnected system (3.19) is asymptotically stable and
hence (3.9) is delay-independent stable. Differentiating H along the trajectories solution of
system (3.19) gives

Ḣ :=
[

x(t)
x(t− h)

] [
ATP + PA+ L PAh

? −L

] [
x(t)

x(t− h)

]
≺ 0

This leads to the following theorem:

Theorem 3.2.23 System (3.10) is delay-independent asymptotically stable if there exist ma-
trices P = P T � 0 and L = LT � 0 such that the LMI[

ATP + PA+ L PAh
? −L

]
≺ 0

holds.

It is easy to recognize the LMI obtained by application of the Lyapunov-Krasovskii theorem
with Lyapunov-Krasovskii functional

V (xt) = x(t)TPx(t) +
∫ t

t−h
x(θ)TLx(θ)dθ (3.20)

as detailed in paragraph on page 118. This suggests that the Hamiltonian functionH coincides
with the above Lyapunov-Krasovskii functional. This is proved in what follows.

Comparison with the Delay-Independent Lyapunov-Krasovskii Functional

First of all rewrite H as

H(xt) = x(t)TPx(t) +
∫ t

0
(x(s)TLx(s)− x(s− h)TLx(s− h))ds

= x(t)TPx(t) +
∫ t

0

∫ s

s−h
Y (τ)dτds

where Y (t) =
d

dt
(x(t)TLx(t)). Defining τ ′ = τ − s+ h we get

H(xt) = x(t)TPx(t) +
∫ t

0

∫ h

0
Y (τ ′ + s− h)dτ ′ds

Now exchanging the order of integration yields

H(xt) = x(t)TPx(t) +
∫ h

0

∫ t

0
Y (τ ′ + s− h)dsdτ ′

= x(t)TPx(t) +
∫ h

0

(
x(τ ′ + t− h)TLx(τ ′ + t− h)− x(τ ′ − h)TLx(τ ′ − h)

)
dτ ′

Assuming zero initial conditions (i.e. x(s) = 0 for all s ≤ 0 thus Y (s) = 0 for all s ≤ 0) then
we have ∫ h

0
x(τ ′ − h)TLx(τ ′ − h)dτ ′ = 0
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and hence H(xt) reduces to

H(xt) = x(t)TPx(t) +
∫ h

0
x(τ ′ + t− h)TLx(τ ′ + t− h)dτ ′

Finally let θ = τ ′ + t− h, we obtain

H(xt) = x(t)TPx(t) +
∫ t

t−h
x(θ)TLx(θ)dθ

and Lyapunov-Krasovskii functional (3.20) is retrieved.

In [Zhang et al., 2001] the relation between Lyapunov-Krasovskii and small-gain results for
time-delay, in general, is also emphasized. In [Bliman, 2001], less delay-independent stability
tests are provided, based on extension of Lyapunov-Krasovskii functions which can also be
viewed as an extension of small-gain based results introduced in this paragraph.

Delay-Dependent Stability Test using Scaled Small-Gain Theorem

While a delay-independent test can be obtained using Dh, Sh can be used to derive a
delay-dependent test. According to operator Sh(·), system (3.9) is rewritten as

ẋ(t) = (A+Ah)x(t)−Ahw(t)
z(t) = (A+Ah)x(t)−Ahw(t)
w(t) = Sh(z(t))

(3.21)

This reformulation is identical to the Leibniz-Newton model transformation (see Section
3.2.1.2) and then adds additional dynamics (see Section 3.2.1.3). Hence systems (3.9) and
(3.21) are not equivalent. The operator Sh is a stable LTI system; therefore it has finite H∞
norm. First, note that the corresponding transfer function is given by

Ŝh(s) =
1− e−sh

s

The H∞ norm γ∞ is defined as

γ∞ := sup
s∈C+

∣∣∣∣1− e−shs

∣∣∣∣ = sup
ω∈R

∣∣∣∣∣1− e−jωhjω

∣∣∣∣∣
= sup

ω∈R

∣∣∣1− e−jωh∣∣∣
ω

= lim
ω→0+

∣∣∣1− e−jωh∣∣∣
ω

= h ≤ h̄

For any h ∈ [0, h̄], the worst-case H∞ norm of the operator Sh is h̄. This interesting fact
allows to express delay-dependent result from scaled small-gain theorems. Define the storage
function S(x) = xTPx and the supply-rate

s(ẋ(t), x(t), x(t− h)) =
[

ẋ(s)
x(s)− x(s− h)

]T [ −h̄2L 0
0 L

] [
ẋ(s)

x(s)− x(s− h)

]
(3.22)

to construct the Hamiltonian function

H(ẋ, xt) = S(x)−
∫ t

0
s(ẋ(τ), x(τ), x(τ − h))dτ (3.23)
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Finally differentiating H along the trajectories solution of system (3.21) leads to the following
theorem.

Theorem 3.2.24 System (3.10) is delay-dependent asymptotically stable for all h ∈ [0, h̄] if
there exist matrices P = P T � 0 and L = LT � 0 such that the LMI (A+Ah)TP + P (A+Ah) −PAh h̄(A+Ah)TL

? −L −h̄AThL
? ? −L

 ≺ 0 (3.24)

holds.

Proof : The proof is only sketched. Differentiating the Hamiltonian function and using the
Leibniz-Newton formula we obtain

Ḣ ≤
[
x(t)
y(t)

]T [ (A+Ah)TP + P (A+Ah) −PAh
? 0

] [
x(t)
y(t)

]
+
[

x(t)
x(t)− x(t− h)

]T [
h̄2L 0
? −L

] [
ẋ(t)

x(t)− x(t− h)

] (3.25)

with y(t) =
∫ t

t−h
ẋ(s)ds. In virtue of the Leibniz-Newton formula we have

[
ẋ(t)

x(t)− x(t− h)

]
=
[
A+Ah −Ah

0 I

] [
x(t)
y(t)

]
(3.26)

Hence, substituting (3.26) into (3.25) and using the Schur complement we get the LMI of
Theorem 3.2.24. �

Similarly as for the delay-independent test, it is possible to show the existence of a rela-
tionship between the latter result and a Lyapunov-Krasovskii functional.

Connection with a Lyapunov-Krasovskii functional

To connects these results, we will show that the supply-rate is equal to a functional that can
be added to the function S(x) = xTPx. First let us consider the opposite of the supply rate
s(·) (3.22) can be rewritten as

−s(·) =
∫ t

0

[
ẋ(s)∫ s

s−h ẋ(θ)dθ

]T [
h̄2L 0

0 −L

] [
ẋ(s)∫ s

s−h ẋ(θ)dθ

]
ds

= h̄2

∫ t

0
ẋ(s)TLẋ(s)ds−

∫ t

0

(∫ s

s−h
ẋ(θ)dθ

)T
L

(∫ s

s−h
ẋ(θ)dθ

)
Moreover, let

Vi = h̄

∫ 0

−h̄

∫ t

t+θ
ẋ(s)TLẋ(s)dsdθ

= h̄2

∫ t

0
ẋ(s)TLẋ(s)ds− h̄

∫ t

t−h̄

∫ θ

0
ẋ(s)TLẋ(s)dsdθ
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We can see that the first term in the right-hand side are identical, hence it remains to show
the relation between the terms

I1 :=
∫ t

0

(∫ s

s−h
ẋ(θ)dθ

)T
L

(∫ s

s−h
ẋ(θ)dθ

)
and

I2 := h̄

∫ t

t−h̄

∫ θ

0
ẋ(s)TLẋ(s)dsdθ

Invoking the Jensen’s inequality (Appendix E.1) we get the relation

I2 ≤ I1

This shows that the same result can be obtained using the scaled-bounded real and a par-
ticular Lyapunov-Krasovskii functional provided that the Jensen’s Inequality is used. Some
other connections between Lyapunov-Krasovskii functionals and small-gain results are also
provided, for instance, in [Bliman, 2000; Zhang et al., 2001].

3.2.1.7 Stability Analysis: Padé Approximants

Still in the family of approaches considering a time-delay system into an interconnection of two
subsystems, namely a finite dimensional system and a delay operator, the method provided
in [Zhang et al., 1999] is of great interest. This method actually holds only for constant delay
but leads to very interesting delay-dependent stability results that deserve to be presented.
The system that will be considered is given below

ẋ(t) = Ax(t) +Ahx(t− h)
x(θ) = φ(θ), θ ∈ [−h, 0]

(3.27)

It is rewritten as in an ’LFT’ form:

ẋ(t) = Ax(t) +Ahw(t)
z(t) = x(t)
w(t) = Dh(z(t))− z(t)

(3.28)

Since Dh is a time-invariant linear operator, the corresponding transfer function is given by

Hd(s) :=
W (s)
Z(s)

= e−sh − 1

Due to the complexity of exponential term, it is proposed in Zhang et al. [1999] to approximate
the delay operator by a parameter dependent filter coinciding with the Padé approximant of
e−sh (see Appendix E.3). The idea of using Padé approximants to deal with time-delay is not
new and the reader should refer for instance to [Lam, 1990; Saff and Varga, 1975]) but the
current solution is interesting since it involves LMIs.

Formally, Padé approximants aim at approximating continuous functions, over a certain
domain, by a rational function and this is the reason why they are interesting tools in systems
and control theory. Indeed, as a transfer function should be (strictly) proper, power series
for instance cannot be applied as approximants but Padé approximants can.
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From this approximation, the system can be rewritten into an interconnection of a finite
dimensional LTI system and a parameter dependent filter (i.e. the Padé approximation).

Let us consider system (3.27) and define the matrices Ā = A + Ah and Ah = HF where
H,F are full-rank factors of Ah. Let Ψ(s, h) = det(sI − A − Ahe−sh) be the characteristic
quasipolynomial of (3.27). It is well-known that system (3.27) is asymptotically stable for all
h ∈ [0, h̄] if and only if

Ψ(jω, h) 6= 0, ∀ω ≥ 0, h ∈ [0, h̄]

Assuming that G = F (sI − Ā)−1H and Φ(hs) = (e−hs − 1)I, it is possible to rewrite the
system as an interconnection of these subsystems and the delay-dependent stability condition
becomes equivalent to the following statement:

det[I −G(jω)Φ(jωh)] 6= 0, ∀ω ≥ 0, h ∈ [0, h̄]

Since this statement is very difficult to be checked exactly, the idea is then to provide an inner
and outer approximation of the set defining the set of delay-operators for each delay from 0
to h̄

ΩA(ω, h̄) :=
{
e−jωh : h ∈ [0, h̄]

}
Using the Padé approximation, the inner and outer sets are given by

ΩB(ω, h̄) :=
{
Rm(jθαmω) : θ ∈ [0, h̄]

}
ΩC(ω, h̄) :=

{
Rm(jθω) : θ ∈ [0, h̄]

}
where Rm(s) =

Nm(s)
Nm(−s)

is the mth order (m ≥ 3) Padé approximation of es and

αm :=
1

2π
min{ω > 0 : Rm(jω) = 1}

The following lemma, proved in [Zhang et al., 1999], is useful for comprehensive purpose

Lemma 3.2.25 For every integer m ≥ 3, the following statements hold:

1. All poles of Rm(s) are in the open left half complex plane.

2. ΩC(ω, h̄) ⊆ ΩA(ω, h̄) ⊆ ΩB(ω, h̄), ∀ω ≥ 0.

3. lim
m→+∞

αm = 1

This result says that the Padé approximmation Rm(s) is a stable operator but, overall that
the greater the order is, the better the approximation of the set is. Indeed, the condition

det[I −G(jω)Rm(jθω)] 6= 0, ∀ω ≥ 0, θ ∈ [0, h̄]

is a necessary condition for stability since ΩC(ω, h̄) is included in ΩA(ω, h̄). On the other
hand, since ΩB(ω, h̄) contains ΩA(ω, h̄), therefore

det[I −G(jω)Rm(jθαmω)] 6= 0, ∀ω ≥ 0, θ ∈ [0, h̄]
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is a sufficient condition only. But when m→ +∞ then αm → 1 and hence the sets ΩB(ω, h̄)
and ΩC(ω, h̄) converge to each other, to finally coincide with ΩA(ω, h̄) showing that, at in-
finity, the stability of the interconnected system over ΩA(ω, h̄), ΩB(ω, h̄) and ΩC(ω, h̄) are
equivalent.

Since we are interested in a delay-dependent stability sufficient condition, the set ΩB(ω, h̄)
is considered. Let (AP , BP , CP , DP ) be the minimal realization of P (s) := (Rm(αms) − 1)I
and denote nP be the order of AP . Note that in P (s) the set ΩB(ω, h̄) is considered due to
the presence of αm. Also introduce As := Ā + HDPD, Bs := BPF and Cs := HCP . Using
this formulation, Zhang et al. [1999] provide this very interesting result:

Theorem 3.2.26 System (3.27) is delay-dependent asymptotically stable for all h ∈ [0, h̄] if
there exist matrices X0 ∈ Sn++, X22 ∈ SnP++ and X1 ∈ Rn×n, X12 ∈ RnP×nP such that

Π(0) ≺ 0, Π(h̄) ≺ 0

and [
X0 + h̄X1 h̄X12

? h̄X22

]
� 0

where

Π(θ) :=
[

Π11(θ) Π12(θ)
? Π22(θ)

]
with

Π11(θ) := (X0 + θX1)As +X12Bs +ATs (X0 + θX1)T +BT
s X

T
12

Π12(θ) := (X0 + θX1)Cs +X12AP + θATsX12 +BT
s X22

Π22(θ) := θXT
12Cs + θCTs X12 +X22AP +ATPX22

Considering the system (3.3) and using the latter theorem with m = 5 the delay margin is
estimated as h̄ = 6.150 while the actual delay margin is 6.172. The computed delay-margin is
very close to the theoretical one. This result drastically improved contemporary ones and is
still competitive with recent works. Many results based on ’complete’ discretized Lyapunov-
Krasovskii functionals lead to similar result but with a larger computational complexity.

It is worth noting that in this approach a model transformation is used (expressed through
the operator e−sh − 1) but does not introduce any conservatism (i.e. additional dynamics).
The only constraint imposed by the method is the asymptotic stability of the system for zero
delay (since the matrix Ā needs to be Hurwitz). This is not a problem since stability over an
interval including 0 is sought. For a more general approach using similar results, the reader
should refer to [Knospe and Roozbehani, 2006, 2003; Roozbehani and Knospe, 2005].

3.2.1.8 Stability Analysis: Integral Quadratic Constraints

The approach based on Integral Quadratic Constraints (IQC) [Rantzer and Megretski, 1997]
has led to more and more works since they provide an efficient way to study stability of a
wide variety of systems, including time-delay systems [Fu et al., 1998; Jun and Safonov, 2001,
2002; Kao and Rantzer, 2007]. The key idea behind IQC analysis is the L2 stability of an
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interconnected system. Indeed, if for any exogenous L2 inputs, the loop-signals have bounded
energy this means that the interconnection of systems is stable. The reader should refer to
Section 2.3.4.6 for some brief explanations on IQC method.

Part of the results of [Kao and Rantzer, 2007] (in the constant-delay case) is presented
here. Indeed, Kao and Rantzer [2007] has provided very efficient criteria for stability analysis
of time-delay systems which lead efficient results, sometimes very close to the theoretical ones
(at least for constant time-delays). Let us consider the delay-operators

x(t)− x(t− h) := Sh(x(t))
x(t− h) := Dh(x(t))

Note that these delay operators are equivalent to those proposed, for instance, in [Zhang et al.,
1999] where Padé approximants are used. However the operators above can be extended to
the time-varying delay case while the use of Padé approximation restricts the approach to
constant delay case. This suggests that the IQC approach provided by Kao and Rantzer [2007]
can be viewed as a generalization of the approach of [Zhang et al., 1999] to the time-varying
delay case, although different techniques are used to study stability. Another comparison can
be made between results that can be obtained with scaled-small gain, IQC techniques [Jun
and Safonov, 2001, 2002] and Lyapunov-Krasovskii functionals which lead to similar (some-
times identical) stability tests.

Using these operators, time-delay system (3.27) can be rewritten as an interconnection of two
subsystems:

ẋ(t) = (A+Ah)x(t)−Ahw(t)
z(t) = x(t)
w(t) = Sh(z(t))

In the IQC analysis, the operators involved in the interconnections are defined by their in-
put/output behavior through IQC. The following propositions introduce one IQC for each
operator:

Proposition 3.2.27 The operator Dh satisfies the IQC defined by∫ +∞

−∞

[
v(t)

Dh(v(t))

]T [
X1 0
0 −X1

] [
v(t)

Dh(v(t))

]
dt ≥ 0

for any X1 = XT
1 � 0.

Proposition 3.2.28 Suppose h ∈ [0, h̄], then the operator Sh satisfies any IQC defined by∫ +∞

−∞

[
v(t)

Sh(v(t))

]T [ |ψ(jω)|2X2 0
0 −X2

] [
v(t)

Sh(v(t))

]
dt ≥ 0

for any X2 = XT
2 � 0 and where |ψ(jω)| ≥ g(ω) + δ, for all ω ∈ R. The function g(ω) is

defined below

g(ω) :=


2 if |ω| > π

h̄

2| sin
(
ωh̄

2

)
if |ω| ≤ π

h̄
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µ 0 0.1 0.2 0.5 0.8 0.999
[Kim, 2001] 1 0.974 0.883 0.655 0.322 0.001

[Wu et al., 2004] 4.4772 3.604 3.033 2.008 1.364 1.001
[Fridman and Shaked, 2002a] 4.4772 3.604 3.033 2.008 1.364 1.001

[Kao and Rantzer, 2007] 6.117 4.4714 3.807 2.280 1.608 1.360

Table 3.1: Comparison of different stability margins of system (3.29) with respect to the
upper bound µ on the derivative of the delay h(t)

A good example of ψ(s) satisfying the above conditions is

ψ(s) = 2
h̄2s2 + ch̄s

h̄2s2 + ah̄+ b
+ δ

where a =
√

6.5 + 2b, b =
√

50, c =
√

12.5 and δ is an arbitrary small positive number.

Using these IQCs, the criterium obtained from the KYP Lemma (see Appendix D.3 and
Section 2.3.4.6) leads to a very accurate computation of the theoretical the delay margin for
system (3.3). This result is very effective since the model transformation used to rewrite the
time-delay system as an interconnection of a linear system and the delay operator Sh(x(t))
does not introduce any additional dynamics. Hence the interconnected system is completely
equivalent to the original system. Moreover, the characterization of the operator Sh in terms
of IQCs is sufficiently tight to remove most of the conservatism for system (3.3).

This makes, at this time and from my point of view, the best numerical tool to analyze
stability of a time-delay system since, compared to approaches such as discretized functionals
(see [Gu et al., 2003]) or Padé approximation (see [Zhang et al., 1999]), the computational
complexity is very low and the method allows for an easy extension to time-varying delays.

Example 3.2.29 As an example let us consider the system

ẋ(t) =
[
−2 0
0 −0.9

]
x(t) +

[
−1 0
−1 −1

]
x(t− h(t)) (3.29)

where the delay satisfies ḣ ≤ µ. It is shown in [Kao and Rantzer, 2007] that the IQC approach
presented above leads to the results of Table 3.2.29 using the IQCβ toolbox [Jonsson et al.,
2004]. Clearly, the result obtained for µ = 0 is very close to the theoretical one and is computed
with only two decision variable introduced by the use of two IQCs. This demonstrates the
possibilities of the approach both in terms of computational complexity and efficiency.

3.2.1.9 Stability Analysis: Well-Posedness Approach

The section on stability analysis of time-delay systems concludes with the stability analysis
through well-posedness analysis of interconnections; see Section 2.3.4.4, on page 80 or [Iwasaki
and Hara, 1998] for more details on well-posedness of feedback systems.

The result provided here is borrowed from [Gouaisbaut and Peaucelle, 2006a] and is an
application of results on well-posedness to the interconnection of an uncertain matrix and
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an implicit linear transformation [Peaucelle et al., 2007]. Let us consider the interconnected
system:

w = ∆(z + v)
Ez = H(w + u)

(3.30)

where w, z are loop signals, u, v exogenous input signals and ∆ an uncertain matrix. The
corresponding set-up is depicted in Figure 3.2.

Ez = H(w + u)

∆

u?--

u�

6

�

u

v

z

w +

+

+

+

Figure 3.2: Interconnection of an uncertain matrix ∆ and the implicit linear transformation
Ez = H(w + u)

The following result on stability of (3.30) has been proved in [Peaucelle et al., 2007].

Theorem 3.2.30 The closed-loop system (3.30) is well-posed if and only if there exists an
Hermitian matrix X = X∗ such that[

EE~ −H
]∗
⊥X

[
EE~ −H

]
⊥ � 0 (3.31)[

0 I
∆E⊥ ∆E~

]∗
X

[
0 I

∆E⊥ ∆E~

]
� 0 for all ∆ ∈∆ (3.32)

where ∆ is the set of uncertainties, E◦ denotes a full-rank matrix whose columns span the
same space as the columns of E and E~ = E◦∗. Moreover, if E and H are real, the equivalence
still holds for X restricted to be real.

We aim here at developing a simple delay-dependent stability result from the latter theorem.
Define

E =

 In 0 0
0 In 0
In 0 −In

 H =

 A Ah 0
In 0 0
−In In hIn



∆(s) =


s−1In 0 0

0 e−shIn 0

0 0
1− e−sh

sh
In


Substituting these matrices into (3.30) it can be shown that system (3.27) is retrieved. It
is sought to find sufficient condition for the stability of system (3.27) using Theorem 3.2.30.
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Note that inequality (3.32) is always verified if X is chosen as

X =



0 0 0 −P 0 0
? −Q 0 0 0 0
? ? −R 0 0 0
? ? ? 0 0 0
? ? ? ? Q 0
? ? ? ? ? R


where P = P T � 0, Q = QT � 0 and R = RT � 0. In this case, (3.31) is equivalent
to LMI (3.17) obtained with Lyapunov-Krasovskii functional (3.15). This result has been
extended, in a similar fashion as of [Bliman, 2002], to obtain a more accurate delay margin
in [Gouaisbaut and Peaucelle, 2006a,b] by considering higher order derivatives. However this
has been provided for constant delays only and Ariba and Gouaisbaut [2007] have extended
the results to the time-varying delay case.

The key idea in well-posedness based results is the use of Taylor expansions to approximate
the time-varying delay operator and the greater the order of the Taylor expansion is, the
smaller the conservatism is. While the approach of Zhang et al. [1999] considers the frequency
domain, the approach of Ariba and Gouaisbaut [2007]; Gouaisbaut and Peaucelle [2006b] lies
in the time-domain and hence allows for the study of systems with time-varying delays.

3.2.2 Robustness with respect to delay uncertainty

Stability with respect to delay uncertainty is still unsolved completely. Some papers are de-
voted to or use results on robust stability analysis with respect to delay uncertainty [Fridman,
2006a; Kharitonov and Niculescu, 2003; Michiels et al., 2005; Sename and Briat, 2006; Seuret
et al., 2009b; Verriest et al., 2002]. The idea (interest) behind of robust stability of systems
with uncertain delay is multiple:

• Assuming that the stability of the system (3.33) is known for a nominal delay value h0

the maximal deviation δ from this nominal value for which the system remains is stable
is sought. Therefore the system will be shown to be stable for any delay belonging to
[h0 − δ+, h0 − δ−]. In the case of a time-varying delay, the bound on the derivative of
the variation η can also be considered.

ẋ(t) = Ax(t) +Ah(x− h0 + θ(t)), θ(t) ∈ [δ−, δ+], |θ̇| < η (3.33)

• Assuming that a controlled time-delay system (with delay h) by a controller with mem-
ory but involving a different time-delay value, say hc, takes the form (3.34). The im-
plemented delay hc can be decomposed into a sum of the real delay h and an uncertain
value θ, representing the knowledge error on the delay value. In this case, the closed-
loop system (3.34) involves two-delays which are interrelated by an inequality. Here
also, the delays can be chosen time-varying and bounds on the derivatives η, ν can be
taken into account:

ẋ = Ax(t) +A1
hx(t− h(t)) +A2

hx(t− h(t)− θ(t))
h(t) ∈ [0, hmax], |ḣ| < η, θ(t) ∈ [−δ, δ], |θ̇| < υ

(3.34)



3.2. STABILITY ANALYSIS OF TIME-DELAY SYSTEMS 137

In both case, some solutions exist and can be expressed in both frequency and time domains:
the frequency domain approaches are restricted to deal with constant time-delay (except
for special cases) while time-domain are not. In the following, we aim at providing several
methods covering the latter scenarii.

3.2.2.1 Frequency domain: Matrix Pencil approach

The approach provided here has been introduced in the nice paper proposed by [Kharitonov
and Niculescu, 2003]. The idea is to analyze the stability of perturbed delay system, assuming
the stability of the nominal one. The interest of this approach is to provide necessary and suf-
ficient conditions in terms of generalized eigenvalue distribution of some (finite dimensional)
constant matrix pencil.

Let us consider system (3.33) with constant delays h − θ which is assumed to be stable
for θ = 0. Hence this means that the characteristic quasipolynomial

det(sIn −A−Ahe−sh) = 0

has no solutions with <(s) ≥ 0. Consider now

det(sIn −A−Ahe−s(h−θ)) = 0

and in this case we are interested to find all terms ζ := h− θ such that

det
(
jωI −A−Ahe−jωζ

)
6= 0, ∀ω ∈ R (3.35)

Note that if (3.35) is guaranteed for all ζ ≥ 0 then the system is delay independent stable and
else we have a delay-dependent stability result. The following theorem proved in [Kharitonov
and Niculescu, 2003] is based on matrix pencils [Chen et al., 1995; Niculescu, 2001] and
provides a necessary and sufficient condition to stability of uncertain system (3.35).

Theorem 3.2.31 The linear time-delay system (3.33) with constant delay perturbation θ is
robustly stable if and only if the nominal system (3.33) is stable (i.e. for θ = 0) and the
following inequality hold

h− inf{β : (β, α) ∈ Πh,+} < θ < h− sup{β : (β, α) ∈ Πh,−}

where

Π(z) = z

[
Ip 0
0 φ⊗(Ah, In)

]
+
[

0 −Ip
φ⊗(In, ATh ) φ⊕(A,AT )

]
Πh,+ =

{
(hki , αk) : hki =

αk
ωki

> h : e−jαk ∈ σ̃(Π), jωki ∈ σ̃
(
A+ e−jαkAh

)
− {0},

1 ≤ k ≤ 2p, 1 ≤ i ≤ n
}

Πh,− =
{

(hki , αk) : hki =
αk
ωki

< h : e−jαk ∈ σ̃(Π), jωki ∈ σ̃
(
A+ e−jαkAh

)
− {0},

1 ≤ k ≤ 2p, 1 ≤ i ≤ n
}

where σ̃(·) denotes the set of (generalized) eigenvalues of corresponding matrix (pencil) and
φ⊗, φ⊕ correspond to the following special matrix tensor product and sum (see Appendix A.5
or [Niculescu, 2001]).

This result might be used to analyze stability for systems of the form where two delays are
interrelated by an equality/inequality and this deserves future attention. . .
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3.2.2.2 Frequency domain: Rouché’s Theorem

The Rouché’s Theorem, a celebrated result of complex analysis [Levinson and Redheffer,
1970] allows to compute a bound on the maximal deviation from a delay nominal value for
systems of the form (3.34). It provides a sufficient condition only and a bound can be easily
deduced from the computation of norms of some multivariable transfer functions. It has been
used successfully in [Dugard and Verriest, 1998; Sename and Briat, 2006; Verriest et al., 2002].

The Rouché’s Theorem [Levinson and Redheffer, 1970] is recalled for reader ease and the
proof is provided in Appendix E.6:

Theorem 3.2.32 Given two functions f and g analytic (holomorphic) inside and on a con-
tour γ. If |g(z)| < |f(z)| for all z on γ, then f and f + g have the same number of roots
inside γ.

Let us consider system (3.34) with constant delay. We tacitly assume that it is asymptotically
stable system for h = hc, i.e.

ẋ(t) = Ax(t) + (A1
h +A2

h)x(t− h)

is asymptotically stable. Since we have hc = h+ θ hence we can write

e−shc = e−sh + (e−s(h+θ) − e−sh) = e−sh(1−∆(s))

where ∆(s) = 1− e−sθ. The characteristic quasipolynomial of the closed-loop system is given
by

χ(s) = det(sI −A−A1
he
−sh −A2

he
−shc)

= det(sI −A−A1
he
−sh −A2

he
−sh(1−∆(s)))

= det((sI −A−A1
he
−sh −A2

he
−sh) +A

(2)
h e−sh∆(s))

= det(Ψ(s)) det(I + Ψ(s)−1A2
he
−sh∆(s))

where Ψ(s) = sI − A −
(
A1
h +A2

h

)
e−sh. Since the ’exact’ design gives a stable system then

det(Ψ(s)) does not change sign when s sweeps the imaginary axis. Then the perturbed closed-
loop remains stable if det(1 + Ψ(s)−1A2

h∆(s)) does not change sign for all s = jω, ω ∈ R.

Invoking Rouché’s theorem (see appendix E.6) it follows that a stability condition is∣∣∣∣∣∣Ψ(s)−1A2
he
−sh∆(s)

∣∣∣∣∣∣
∞
< 1

First recall that |∆(s)| ≤ |δhs| for all s = jω, ω ∈ R and where δh is an upper bound on the
absolute value of delay uncertainty. Finally we have∣∣∣∣∣∣Ψ(s)−1A2

he
−sh∆(s)

∣∣∣∣∣∣
∞
≤ δh

∣∣∣∣∣∣Ψ(s)−1A2
he
−shs

∣∣∣∣∣∣
∞

and gives the following bound preserving stability

δh < 1/||Ψ(s)−1A
(2)
h e−shs||∞

Hence, for any θ ∈ [−δh, δh], the determinant has fixed sign, implying the absence of zero
crossings, and henceforth the stability of the perturbed system (provided the nominal one is
stable). This approach allows to give an analytic bound on the delay error value but, in the
stabilization framework, it is difficult to address a robust stabilization problem directly since
the analysis has to be done a posteriori (on the closed-loop system). For this reason, the
development of an iterative algorithm which optimizes δh seems to be a difficult task.
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3.2.2.3 Time-Domain: Small Gain Theorem

Time-domain methods have interesting properties, first they allow for time-varying delays
and second it is possible to consider the uncertainty on the delay in the synthesis framework,
guaranteeing a prescribed bound on the delay uncertainty. The first method to be investigated
is an application of the small-gain theorem. Note that it is possible to rewrite system (3.34)
using Leibniz-Newton transformation as

ẋ(t) = Ax(t) + (A1
h +A2

h)x(t− h(t))− δhA2
hw(t)

z(t) = ẋ(t)

w(t) =
1
δh

∫ t−h(t)

t−hc(t)
z(s)ds

With a similar argument as the one in [Gu et al., 2003], the H∞ norm of the integral operator
can be bounded by δh and hence a simple application of the scaled small gain theorem allows
to provide a robustness analysis by considering the Hamiltonian function

H(xt) = S(xt)−
∫ t

0

[
x(s− h(s))− x(s− hx(s))

ẋ(s)

]T [
L 0
0 −L

]
(?)T

where S(x) is the storage function and the integral is the supply-rate condition related to
the scaled-small gain. Note that any Lyapunov-Krasovskii functional may play the role of
the storage function S(x). Similar results have been provided in [Gu et al., 2003; Jiang and
Han, 2006, 2005] where a time-varying delay is approximated by a constant one and where
the uncertainty represents the time-varying part.

3.2.2.4 Time-Domain: Lyapunov-Krasovskii functionals

Since the scaled-small gain theorem may lead to conservative results it would be more conve-
nient to use a Lyapunov-Krasovskii approach to deal with such a problem of stabilization with
incorrect delay value. Considering again system (3.34), the Lyapunov-Krasovskii functional

V (xt) = Vn(xt) + Vu(xt)

Vn(xt) = x(t)TPx(t) +
∫ t

t−h
x(s)TQx(s)ds+

∫ 0

−h

∫ t

t+β
ẋ(s)TRx(s)dsdβ

Vu(xt) =
∫ t

t−hc
x(s)TSx(s)ds+

∫ δ+

δ−

∫ t

t+β−h
ẋ(s)T ẋ(s)dsdβ

can lead to a robust stability analysis criterium for system (3.34). This will be detailed in
Section 4.7. Note that Kharitonov and Niculescu [2003] have also provided a solution in terms
of a complete Lyapunov-Krasovskii functional for such a goal in the single delay framework.

3.3 Chapter Conclusion

A brief first section has been devoted to different types of time-delay systems representations:
systems over a ring, infinite-dimensional systems over a abstract space and functional differ-
ential equations. The latter representation has been chosen to be considered since many tools
are available to study them (e.g. Lyapunov-Krasovskii theorem) and can be easily extended
to LPV case.
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There exist several frequency domain methods that work for system with constant time-
delays and some of these methods might provide necessary and sufficient conditions for sta-
bility. Since these methods cannot be extended to time-varying systems and systems with
time-varying delays, time-domain approaches have been privileged in this chapter since they
extend to LPV time-delay systems. Even if all examples of criteria have been developed for
systems with constant delays, most of them can be, more or less easily, extended to time-
varying delays (except Padé approximation which is actually extended, in a somewhat certain
sense, either in [Gouaisbaut and Peaucelle, 2006a] or [Kao and Rantzer, 2007] as explained in
the above section).

Among time-domain techniques, fundamental theorems extending Lyapunov’s theory have
been provided and illustrated through examples of stability tests. While Lyapunov-Razumikhin
Theorem is a simple test involving to the use of function, the Lyapunov-Krasovskii employs
functionals. However, while Lyapunov-Razumikhin tests are not LMIs, Lyapunov-Krasovskii
tests are shown to be LMIs and thus provide more general results. As an example, the
Lyapunov-Razumikhin delay-independent stability test is a particular case of the Lyapunov-
Krasovskii one. The evolution of Lyapunov-Krasovskii criteria has been discussed by a suc-
cessive introduction of model transformations, additional dynamics and the problem of cross-
terms.

Scaled-small gain theorem can be used to develop stability criteria for time-delay systems
and a connection between Lyapunov-Krasovskii results has been emphasized. Moreover, these
results have also been derived in the IQC framework in [Jun and Safonov, 2001].

A technique based on a an approximation of the delay element by Padé approximants has
been presented and shown as an interesting and efficient technique but unfortunately limited
to constant delay-case.

In order to relieve this lack, IQC techniques using the efficient input/output behavior
point of view provide a very tight solution to the stability analysis of time-delay systems
using same operators as in [Zhang et al., 1999] but extended in the time-varying case. A
recent result based on well-posedness has been introduced and is related to recent results
based on Lyapunov-Krasovskii functionals.

Finally, results on robust stability of systems with respect to delay uncertainty have been
provided as an anticipation of future use in this thesis. Both frequency and time domain
techniques have been provided as point of comparison.

All the time-domain techniques have not been introduced in this section and, as an in-
sight, the reader should refer to [Briat et al., 2007a, 2008a; Gouaisbaut and Peaucelle, 2007;
Han and Gu, 2001; He et al., 2007; Jiang and Han, 2006, 2005; Kharitonov and Niculescu,
2003; Knospe and Roozbehani, 2006, 2003; Michiels et al., 2005; Roozbehani and Knospe,
2005] and references therein for other techniques. Among them it is important to distinguish
range-stability analysis which addresses the problem of finding a compact set of delay value
(possibly excluding 0) for which the system is stable (similarly as for robustness analysis with
delay uncertainty). Most of these results are based on Lyapunov-Krasovskii functionals or
approximation of delay elements.



Chapter 4

Definitions and Preliminary Results

T
his chapter aims at introducing some basic concepts and fundamental results used
along the thesis. Section 4.1 provides redundant notions such as delay and parameter
spaces and the class of LPV time-delay systems under consideration throughout this

thesis. These definitions are quite standard and their relevance will be briefly emphasized as
a justification. Finally an example of LPV time-delay systems is given in order to motivate
the interest of our work on this kind of systems.

Section 4.2 will provide a relaxation method for polynomially parameter dependent Linear
Matrix Inequalities. Indeed, it is well known that parametrized LMIs consist in an infinite
(uncountable) number of LMIs that have to be satisfied. When the dependence is affine, a
convexity argument, as in the polytopic approach (see Section 2.3.2), allows to conclude on
the feasibility of the whole set of LMIs only by considering a particular finite set of LMIs
(more precisely the LMIs evaluated at the vertices of the convex polyhedral set containing pa-
rameters values). On the other hand, when the dependence is polynomial, it is not necessary
and sufficient to consider only the vertices of the set of values of the parameters [Apkarian
and Tuan, 1998; Oliveira and Peres, 2006; Trofino and De Souza, 1999; Tuan and Apkarian,
1998; Tuan et al., 2001a] except for very special simple or conservative cases. Indeed, such
a relaxation can only be considered under certain strong assumptions on the degree of poly-
nomials and involved matrices. There exists different approaches to solve very efficiently and
accurately this type of problems (see Sections 2.3.3.2, 2.3.3.3 and 2.3.3.4). We will provide
here an approach based on spectral factorization of parameter dependent matrices and the
Finsler’s lemma (Appendix D.16). This approach will turn the polynomially parameter de-
pendent LMI into a slightly more conservative LMI involving ’slack’ variables. Such an LMI
will have the interesting feature of having an affine parameter dependence on which convex
relaxations can be applied without any conservatism. Such an approach has been introduced
in [Briat et al., 2008a; Sato, 2006; Sato and Peaucelle, 2007].

Section 4.3 is devoted to the development of a new relaxation for concave nonlinearity of
the form −αTβ−1α with β = βT � 0 in negative definite LMIs. Several approach to deal
with such non linearities have been provided in the literature: the hyperplane bound and an
application of the cone complementary algorithm. While the first one is too conservative since
it corresponds to the linearization of the nonlinearity around some fixed point, the second
one cannot be applied on parameter-varying matrices. These two limitations motivated us to
introduce a new method based on the introduction of a ’slack’ variable with the drawback of
keeping a nonlinear structure of the problem (the problem becomes BMI). However, even if
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the structure remains complex and cannot be efficiently solved by interior point algorithms
as LMIs, it has a nicer form that the initial problem and can be efficiently solved with
iterative LMIs procedures. A discussion is then provided in order to explain the algorithm,
its initialization step and optimality gap compared to the initial problem.

Section 4.4 aims at providing a simple algebraic approach in order to compute bounds
on the rate of variation of parameters in the polytopic framework. Indeed, in the literature,
most of the approaches consider LPV polytopic systems with unbounded parameter variation
rates which is rather conservative since it considers constant Lyapunov functions concluding
then on quadratic stability. When a general parameter dependent system is turned into a
polytopic formulation, the values and the dependence is ’hidden’ into the new parameters
since a ’mixing’ of all parameters is performed. From this consideration it is difficult to make
a correspondence between the derivative of the initial parameters and the derivative of the
polytopic parameters. This section provides then a simple methodology to compute these
bounds.

Section 4.5 aims at providing a simple stability/performances test expressed through pa-
rameter dependent LMIs for LPV time-delay systems. This approach is based on the gener-
alization of a simple Lyapunov-Krasovskii functional introduced for instance in [Gouaisbaut
and Peaucelle, 2006b; Han, 2005a]. This result has the benefit of being interesting from a
computational point of view since it involves a few matrix variables and no model transfor-
mation is employed. However, it is difficult to use it for synthesis purposes and this motivates
the development of an associated relaxation leading to another LMI which can be efficiently
used for design objectives.

Section 4.6 extends the ’simple’ approach to a discretized version of a more complex
Lyapunov-Krasovskii functional. The same relaxation scheme is then applied in order to get
an LMI adapted to design objectives.

Finally, Section 4.7 develops a new Lyapunov-Krasovskii functional for systems with two
delays where the delays satisfy an algebraic constraint. Such a configuration occurs whenever
a time-delay system is controlled/observed by a controller/observer implementing a delay
which is different from the system one. In this case it is important to take into account this
specific problem in order to ensure robustness of the closed-loop stability/performances.

4.1 Definitions

This section is devoted to the introduction of the definitions which will be used along the
thesis. First of all, delay spaces under consideration will be defined. Restrictions on these
sets will be introduced and justified through simple examples. Second, parameters sets will
be introduced and a particular class, the delayed parameters, will be introduced and their
properties analyzed (continuity, differentiability, set of values. . . ). Finally, the class of LPV
systems which will be analyzed in the thesis will be introduced with an example of a milling
process borrowed from [Zhang et al., 2002].

4.1.1 Delay Spaces

Even if only one type of delays will be considered in this thesis, it seems important to define
common sets that can be encountered in the literature. Each delay-space considers a particular
stability result: delay-dependent/independent and rate dependent/independent. Due to the
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large diversity of these spaces, only some of them are described below:

H1 :=
{
h ∈ C1(R+, [hmin, hmax]) : |ḣ| < µ

}
which defines bounded delay with bounded derivative. It is assumed that when µ = 0 then
the delay is constant. We will denote further the set H ◦

1 the particular case when hmin = 0:

H ◦
1 :=

{
h ∈ C1(R+, [0, hmax]) : |ḣ| < µ

}
(4.1)

The set
H2 := {h : R+ → [hmin, hmax]}

defines the set of bounded delays with unbounded derivatives. However, unbounded deriva-
tives may lead to causality problems as commented in [Ivanescu et al., 2003]. We will denote
further the set H ◦

2 the particular case when hmin = 0. Then,

H3 :=
{
h ∈ C1(R+,R+) : |ḣ| < µ

}
defines the set of unbounded delays with bounded derivatives. Finally,

H4 := {h : R+ → R+}

corresponds to the set of unbounded delays with unbounded derivatives.

Among them, the most relevant and useful sets are H1 and H2. In many cases, H2 is
useful when no information is available on the rate of variation of the delay. On the second
hand, when dealing with delays with bounded derivatives the Lyapunov-Krasovskii functional
approach can only be used whenever the delay derivative in less than 1 (or in some cases
between -1 and 1), which is very constraining since it appears to be difficult to deal with
between delay derivatives between 1 and +∞. Model transformations can be used in order
to deal with such cases; see for instance [Gu et al., 2003; Jiang and Han, 2005; Shustin and
Fridman, 2007].

The argument that the delay derivative must be greater than −1 can be justified by
considering input delay systems and is not of interest in the case of state-delayed system.
However this will be explained for completeness. To see this, consider the problem of Figure
4.1 where an transmitter sends data to a receiver continuously (the data is a continuous flow).
The data are driven through a medium of length ` with with a finite variable speed v(t)
depending on the time instant of emission (as in a network where the speed of propagation
depends on the occupation of the servers). Hence, the time of transmission is given by
h(t) = `v(t). When a data is transmitted at times t and t+ δt, they will be received at times
t+ h(t) and t+ δt+ h(t+ δt) respectively. The causality principle claims that if a data value
is emitted at time t, it will reach the receiver before the data emitted at time t+ δt for every
δt > 0. This is translated in the formal expression

t+ h(t) < t+ δt+ h(t+ δt)

then we have
−δt < h(t+ δt)− h(t)
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-

-

t t+ h(t)
delay h(t)

delay h(t+ δt)
t+ δt t+ δt+ h(t+ δt)

Transmitter Receiver
?

time

Figure 4.1: Illustration of continuous data transmission between two entities

and thus
−1 <

h(t+ δt)− h(t)
δt

Since the inequality is true for every δt > 0 then we get

−1 < ḣ(t)

This condition ensures that once emitted the data will be received in a correct order. Note
that it might not be the case when considering the control of system over a network using
packet switching. In such a case, since the data might not follow the same path, it is not
guaranteed that the data will be received in a correct order (this is the reason why the TCP
protocol implements a packet counter allowing to reorganize the packets once received).

The second idea, which is important for state-delayed systems, is to look at the evolution
of the function f(t) = t − h(t) compared to t. It is clear that f(t) ≤ t which means that
h(t) ≥ 0 but it is also interesting to have f(t) increasing. Indeed, having f(t) increasing
means that there exists an inverse function f−1(·) and in some applications and computa-
tions this property is important. If for some time values t, f(t) is locally decreasing, then this
means that there exist t1 < t2 such that t2 − h(t2) = t1 − h(t1). This would mean that the
same data is considered at different times which may be incorrect (depending on the context).

Let t2 = t1 + δt with δt > 0 and thus we have t1 + δt − h(t1 + δt) = t1 − h(t1) which is
equivalent to

δt− h(t1 + δt) = −h(t1)

and finally

1 =
h(t1 + δt)− h(t1)

δt

If δt tends to 0, we get
1 = ḣ(t)

This shows that if the delay derivative reaches 1 at some time-instants, then the same data
will be used at these different times. If this has to be avoided, by continuity, it suffices to
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restrict ḣ to satisfy the inequality
ḣ(t) < 1 (4.2)

Such a function t− h(t) satisfying this property is depicted on Figure 4.2.

6

-
t

t

t− h(t)

�
-

Figure 4.2: Illustration of the nondecreasingness of the function t− h(t)

In some specific applications, for instance control of systems with varying sampling-rate
(sampled-data systems) [Fridman et al., 2004; Suplin et al., 2007] time delay systems having
a derivative equals to 1 almost everywhere are used. Indeed, systems with zero-order hold
on the input are turned into input time-varying delay systems where the time-varying delay
describes the zero-order hold with variable sampling period. Since a zero-order hold maintains
a specific value during a certain amount of time (the period) it seems obvious that h(t) = 1
all over the period (in this case all works as if the time was frozen over the period).

4.1.2 Parameter Spaces

This section is devoted to the description of the considered parameter sets. Only common
sets will be briefly introduced since more details have been given in Section 2.1. Along
this thesis we will mainly focus on continuous parameters (smooth and nonsmooth). In
some applications, delayed parameters are encountered and basic properties (continuity and
differentiability) of such parameters will be discussed hereafter. First of all, let us introduce
the following sets:

Uρ := ×Npi=1[ρ−i , ρ
+
i ] compact of RNp

where Np > 0 is the number of parameters and

Uν := ×Npi=1{ν
−
i , ν

+
i }

The set Uρ is the set of values taken by the parameters and is supposed to be a bounded
orthotope of RNp . On the second hand, the set Uν is a discrete set of RNp containing 2Np

values. It contains the set of vertices of the orthotope where the parameter derivative values
evolve. Hence this orthotope is defined as the convex hull of the points contained in Uν and
is denoted hull[Uν ].

In some applications, the delay might act on some parameters or the use of particular
Lyapunov-Krasovskii functionals introduces delayed parameters [Zhang et al., 2002]. Thus it
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seems important to introduce this important case. Obviously, the set of values of the delayed
parameters must be included into the set of non-delayed parameters. In an absolute point of
view they coincide but it will be shown in the following that this set of delayed parameters
values can be smaller than the set of initial parameters.

Let us consider the case Np = 1 (for simplicity) and define the delayed parameter as ρ(t−h(t)).
Moreover, without loss of generality let ν := ν+ = −ν− and ρ̄ = ρ+ = −ρ−. Since the
parameter is supposed to be continuous and differentiable almost everywhere then it satisfies
the so-called Lipschitz condition

|ρ(t2)− ρ(t1)| ≤ ν|t2 − t1|

for any t1 6= t2, t1, t2 ∈ R+. Hence assuming that t2 > t1 then we have

−ν(t2 − t1) ≤ ρ(t2)− ρ(t1) ≤ ν(t2 − t1)

Let t2 = t and t1 = t− h(t) then we obtain

−νh(t) ≤ ρ(t)− ρ(t− h(t)) ≤ νh(t)

and hence we obtain
ρ(t)− νh(t) ≤ ρ(t− h) ≤ ρ(t) + νh(t)

Since in most of the cases the current value of the delay h(t) ∈ [hmin, hmax] is generally
unknown then it is more convenient to consider

ρ(t)− νhmax ≤ ρ(t− h) ≤ ρ(t) + νhmax

This shows that the set of values of the delayed parameters depends on the rate of variation
of the parameters ν and the maximal delay value hmax. Hence for sufficiently small ν and
hmax the set of values of the delayed parameters does not coincide with Uν and is reduced
to a neighborhood of the value of ρ(t) at time t. This neighborhood, in the one dimensional
case, is an interval centered around ρ(t) with radius νh.

Proposition 4.1.1 If νhmax ≥ 2ρ̄ then the set of value of ρ(t − h) coincides with Uρ for
every t ≥ 0.

A direct analysis shows that if the parameters are discontinuous (i.e. unbounded derivatives)
and/or the delay is unbounded (i.e. hmax = +∞), then the set of delayed-parameters coincide
with the set of non-delayed parameters.

Proposition 4.1.2 If νhmax < 2ρ̄ then the set of value of ρ(t−h) is included in Uρ for every
t ≥ 0 and is depicted in Figure 4.3.

The set of generalized parameters (ρ, ρh) where ρh is the delayed parameter is a polyhedral
with 6 vertices and 6 edges. Moreover the set of values of the delayed parameter ρh can be
parametrized by ρ:

Uρh(ρ) := {y ∈ R : |y − ρ| ≤ νh} ∩ Uρ
Hence the set of all values for ρh is given by

Ūρh := {y ∈ R : |y − x| ≤ νh, x ∈ Uρ} ∩ Uρ
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Figure 4.3: Set of the values of ρ(t− h) (in grey) with respect to the set of value of ρ(t) (the
horizontal interval [−ρ̄, ρ̄]

and the whole set Ūρ of values of (ρ, ρh) is defined by

Ūρ := {(ρ1, ρ2) : ρ1 ∈ Uρ, ρ2 ∈ Uρh(ρ1)}

Let us consider now the derivative of the delayed parameters for the particular case of con-
tinuous parameters. In the case of constant delay, the set of delayed parameter derivative
values coincides with the set [−ν, ν] = hull[{−ν, ν}] since the delay is constant, i.e.

d

dt
ρ(t− h) = ρ′(t− h) ∈ [−ν, ν]

However, in the case of a time-varying delay two cases may occur according to the type of the
rate of variation (bounded or unbounded) of the delay. Assume first that the rate is bounded
and then we have

d

dt
ρ(t− h(t)) = (1− ḣ(t))ρ′(t− h(t))

and hence we have

−(1 + µ)ν ≤ d

dt
ρ(t− h(t)) ≤ (1 + µ)ν

This shows that the set of values of the rate of variation of delayed parameters is larger
than for the nondelayed ones. Finally, if the delay derivative is unbounded then the rate of
variation of delayed parameters is unbounded too.
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4.1.3 Class of LPV Time-Delay Systems

Throughout this thesis, the following class of LPV time-delay systems [Wu, 2001b; Zhang and
Grigoriadis, 2005] will be considered if not stated otherwise:

ẋ(t) = A(ρ)x(t) +Ah(ρ)x(t− h(t)) + E(ρ)w(t)
z(t) = C(ρ)x(t) + Ch(ρ)x(t− h(t)) + F (ρ)w(t)
x(θ) = φ(θ), θ ∈ [−hmax, 0]

(4.3)

where x ∈ Rn, w ∈ Rm, z ∈ Rp are respectively the system state, the exogenous input and the
controlled output. Such a class captures a wide class of LPV time-delay systems. Moreover,
the delay is assumed to belong to H ◦

1 with hmin = 0 and the Np parameters ρ ∈ Uρ, ρ̇ ∈ Uν .
Such systems arise in many nonlinear physical systems with delay approximated using

LPV systems. For instance, in [Zhang et al., 2002] a milling process is modeled as a LPV
time-delay systems as shown below: The corresponding model is given by the expressions

Figure 4.4: Simplified geometry of a milling process

m1ẍ1 + k1(x1 − x2) = f
m2ẍ2 + cẋ2 + k2(x2 − x1) + k2x2 = 0
f = k sin(φ+ β)z(t)
z(t) = za + sin(φ)[x1(t− h)− x1(t)]

where k1 and k2 are the stiffness coefficients of the two springs, c is the damping coefficient,
m1 is the mass of the cutter, m2 is the mass of the ’spindle’. The displacements of the blade
and tool are x1 and x2 respectively. The angle β depends on the particular material and tool
used, and is constant. The angle φ denotes the angular position of the blade and k is the
cutting stiffness. za is the average chip thickness (here assumed, without loss of generality,
za = 0) and h = π/ω is the delay between successive passes of the blades. This system can
be modeled as a LPV system with delay of the form

ẋ(t) = (A+Akk +Aγγ +Akγkγ)x(t) + (Ah +Ahkk +Ahγγ +Ahkγkγ)x(t− h) (4.4)
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where the parameters are the stiffness k = k1 = k2 and γ = cos(2φ + β) ∈ [−1, 1]. An
interesting discussion about this process is provided in [Zhang et al., 2002].

4.2 Relaxation of Polynomially Parameter Dependent LMIs

In this section, we present a method of relaxation of polynomially parameter dependent LMIs
which has been also provided in [Sato, 2006; Sato and Peaucelle, 2007]. It will be used to
deal with parameter dependent LMIs (also called ’robust LMIs’) that arise, for instance, in
the (robust) stability analysis of uncertain and LPV systems.

Since several years, many results on relaxation of polynomially parameter dependent LMIs
have been provided in the literature. Even if many were applied to polynomial of degree 2,
arising for instance in gain-scheduled state-feedback controller for polytopic systems, most of
them can be applied to polynomial of higher degree. For instance, let us mention the following
works on this topic [Apkarian and Tuan, 1998; Geromel and Colaneri, 2006; Oliveira and Peres,
2002, 2006; Oliveira et al., 2007; Scherer, 2008; Tuan and Apkarian, 1998, 2002].

The approach provided in this section is close to the Sum-of-Squares relaxation in the
sense that the matrix of polynomials is represented in a spectral form (See Section 2.3.3.3).
But at the difference of the classical SOS approach, this method does not involve any choice
or decision of the designer (such as the degree of polynomials) except the choice of the basis
in which the polynomial is expressed (by basis we mean the outer factor of the spectral form).
We will also see that this method linearizes the dependence on the parameters, and thus turns
a polynomially parameter dependent LMI into a conservative affine version involving a slack
variable.
Let us consider the parameter dependent LMI M(x, ρ) defined by

M(x, ρ) :=M0(x) +
N∑
i=1

Mi(x)ui(ρ) (4.5)

where Mi(x) ∈ Sn, x ∈ Rd denotes the vector of decision variables and ui(ρ) are monomials
in ρ = col

i
(ρi) ∈ Uρ.

The following result details the transformation of the polynomially parameter dependent
LMI into an affine form:

Theorem 4.2.1 Let us consider a polynomially parameter dependent matrix inequality of the
form (4.5). It can be written into a spectral form

Θ⊥(ρ)TM(x)Θ⊥(ρ) ≺ 0 (4.6)

where M is a parameter independent symmetric matrix constructed from M0(x), Mi(x) and
Θ⊥(θ) a rectangular matrix gathering monomials occurring in the parameter dependent LMIs
(e.g. Θ⊥(ρ) = col(1, u1(ρ), . . . , un(ρ))). Then (4.6) is feasible in x ∈ Rd for all ρ ∈ Uρ if
there exists x ∈ Rd and a matrix P of appropriate dimensions such that

M(x) + PTΘ(ρ) + Θ(ρ)TP ≺ 0

holds for all ρ ∈ Uρ and Θ(ρ)Θ⊥(ρ) = 0. Moreover, with an appropriate choice of Θ⊥(ρ) then

Θ(ρ) =
N∑
i=1

Θiρi is affine in ρi.
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Proof : The proof is a simple application of the Finsler’s lemma to the parameter dependent
LMIs. Consider first the parametrized LMI in its spectral form (4.6) and then invoking the
Finsler’s lemma (see Appendix D.16), we can claim that this is equivalent to the existence of
P(ρ) such that

M(x) + P(ρ)TΘ(ρ) + Θ(ρ)TP(ρ) ≺ 0

holds. However, since the aim of the procedure is the linearization of the parameter dependence
then by restricting P to be parameter independent we get

M(x) + P(ρ)TΘ(ρ) + Θ(ρ)TP(ρ) ≺ 0⇒ Θ⊥(ρ)TM(x)Θ⊥(ρ) ≺ 0

We aim to show now that, for any polynomial, it is possible to construct a corresponding Θ(ρ)
to Θ⊥(ρ) such that Θ(ρ) is affine in ρ. To show this, note that the trivial basis for univariate
polynomials Θ⊥(ρ) = col(1, ρ, ρ2, . . . , ρn) admits

Θ(ρ) =



−ρ 1 0 0 0 . . . 0
0 −ρ 1 0 0 . . . 0
0 0 −ρ 1 0 . . . 0
0 0 0 −ρ 1 . . . 0
...

. . . . . .
0 0 0 0 0 −ρ 1


Hence since the trivial basis is the kernel of an affine parameter dependent matrix then it is
possible to find an affine Θ(ρ) for every univariate polynomial. This generalizes directly to
the multivariate case. �

It is worth noting that using the trivial functions ui(ρ) = ρi in Θ⊥(ρ) (for the univari-
ate case) is not the best choice in general. Indeed, the most intuitive choice is to choose
Θ⊥(ρ) = col(1, ρ1, . . . , ρN , ρ

2
1, . . .) which will give an affine Θ(ρ) but with increased complex-

ity since the dimension of M is larger than in the case of taking the ui(ρ)’s. Hence, it is
important to point out the properties of a nontrivial basis Θ⊥(ρ) (reduced dimension) for
which Θ(ρ) is affine. Actually, if the polynomials (may not be exclusively monomials) vi(ρ)
components of Θ⊥(ρ) are chosen to satisfy

vi(ρ) =
n∑
j

pij(ρ)vj(ρ)

where the pij(ρ)’s are affine polynomials in ρ and N is the size of the basis, then there exists
an affine Θ(ρ). The latter equality can be rewritten into the compact form

v(ρ) = P (ρ)v(ρ)

where v(ρ) = col
i

(vi(ρ)) and P (ρ) =

 p11(ρ) . . . p1N (ρ)
...

. . .
...

pN1(ρ) . . . pNN (ρ)

 or equivalently

(I − P (ρ))v(ρ) = 0
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which is kind of a generalized eigenvalue problem. It is worth mentioning that the computa-
tional complexity of the procedure depends on the number N of functions ui(ρ). Hence the
problem results, for a given M(X, ρ), in finding the minimal N such that

det(I − P (ρ)) = 0
v(ρ) ∈ Ker[I − P (ρ)]

M(x, ρ) :=
N∑
i=1

Mi(x)vi(ρ)

for some Mi(x) and for all ρ ∈ Uρ with P (ρ) affine in ρ. Indeed, if this condition is satisfied
this means that there exists a Θ⊥(ρ) which is a basis of the null space of an affine matrix
Θ(ρ). This optimization problem is non trivial since it is a semi-infinite dimensional problem
where the cost is the dimension of a basis. This gives rise to interesting optimization problem
that will not be treated here but belongs to further works and investigations.

Coming back to theorem (4.2.1), it is possible to derive an important result for LMI
involving quadratic polynomial dependence, useful in polytopic systems.

Corollary 4.2.2 The following parameter dependent matrix inequality is feasible

M(λ) =M0 +
N∑
i=1

λiMi +
N∑

i,j=1

λiλjMij ≺ 0 (4.7)

provided that
N∑
i=1

λi = 1, λi ≥ 0 if there exists Z such that

M̃+ ZTΠ(λ) + Π(λ)TZ < 0

is feasible for all λ ∈ Λ where

Π(λ) =


−λ1I I 0 . . . 0
−λ2I 0 I . . . 0

...
...

. . . 0
−λNI 0 0 . . . I



M̃ =


M0 M1/2 . . . MN/2
? M11 . . . (M1N +MN1)/2
...

...
. . .

...
? ? . . . MNN


The latter LMI is feasible if and only if

M̃+ ZTΠi + ΠT
i Z < 0

where Π(λ) =
N∑
i=1

λiΠi.

The following example shows the interest of the approach:
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Example 4.2.3 Let us consider the univariate polynomial

p(x) = −x4 + 4x3 + 43x2 − 58x− 240

whose graph is depicted on Figure 4.5

Figure 4.5: Graph of the polynomial p(x) over x ∈ [−6, 9]

The goal is to find the supremum of p(x) over the interval [−6, 9], hence we are looking
for the minimal value of γ such that

p(x) ≤ γ ∀x ∈ [−6, 9]

which is equivalent to the following optimization problem

min γ s.t.
p(x)− γ ≤ 0
x ∈ [−6, 9]

First of all, p(x) − γ is rewritten in the spectral form (the repartition of the terms along
anti-diagonals is arbitrary):

p(x) =

 1
x

x2

T  −γ − 240 −29 20
? 3 2
? ? −1

 1
x

x2

 ≤ 0

Applying Theorem 4.2.1, we get the following LMI −γ − 240 −29 20
? 3 2
? ? −1

+NTΘ(x) + Θ(x)TN � 0

where N is a free matrix variable belonging to R2×3 and Θ(x) is defined such that

Θ(x)

 1
x

x2

 = 0
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A suitable choice is given by

Θ(x) =
[
x −1 0
0 x −1

]
Finally we get the parameter dependent LMI with linear dependence in x:

P(γ, x) =

 −γ − 240 −29 20
? 3 2
? ? −1

+NT

[
x −1 0
0 x −1

]
+
[
x −1 0
0 x −1

]T
N � 0

Hence with a polytopic argument, the optimization problem becomes

min γ s.t.
P(γ,−6) � 0
P(γ, 9) � 0

Solving this SDP we get γopt = 529.6340928975 found with

N =
[
−10.0347 5.4752 0.2318
−3.6163 −0.0356 −0.03792

]
The theoretical result is given by s := sup

x∈[−6,9]
p(x) = 529.63265619463 and the computation

error is
ε := γ − s = 0.001436702914

We can see that the computed maximum is very close to the theoretical one. This shows that
this relaxation may lead to interesting results.

4.3 Relaxation of Concave Nonlinearity

Concave nonlinearities are the most difficult nonlinearities to handle in the LMI framework.
They may appear in many problems especially when congruence transformations are per-
formed and occur for instance in the problems studied in [Briat et al., 2008c; Chen and
Zheng, 2006; Daafouz et al., 2002; Gao and Wang, 2003; Geromel et al., 2009] and certainly
in many others. First of all, known solutions will be presented and explained and finally the
new ’exact’ relaxation will be provided. Indeed, it is well known that, even if the following
problem in ε, α and β is nonlinear

ε+ αTβ−1α ≺ 0, ε = εT ≺ 0, β = βT � 0

the problem is convex since the nonlinearity αTβ−1α is convex. A Schur complement (Ap-
pendix D.4) on this matrix inequality yields the matrix[

ε αT

α −β

]
≺ 0

which is affine (and then convex) in the decision variable. But the question is what happens
when the sign ’+’ is turned into a sign ’-’ ? In such as a case, the convex nonlinearity becomes
concave and the Schur complement does not apply anymore. The following section aims at
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providing solutions on the relaxation of such nonlinearity.

Let us consider now the following nonlinear matrix inequality

ε− αTβ−1α ≺ 0, ε = εT , β = βT � 0 (4.8)

Note that the negative definiteness of ε is not assumed anymore. This suggests that the non-
linear term is necessary for the negative definiteness of the sum. Indeed, if ε ≺ 0 there exists
a trivial (conservative) bound on the nonlinear term which is 0 (since the nonlinear term is
positive semidefinite). Moreover, the matrix α is not necessarily square and these facts show
the wide adaptability of the proposed approach.

The following result has been often used in the literature to bound the nonlinear term, e.g.
in [Daafouz et al., 2002].

Lemma 4.3.1 The following inequality

−αTβ−1α � −α− αT + β

holds.

Proof : Since β � 0, then define the inequality

(I − β−1α)Tβ(I − β−1α) � 0

and thus we have
β − αT − α+ αTβ−1α � 0

which implies
−αTβ−1α � β − αT − α

This concludes the proof. �

A direct extension of the latter results yields

Lemma 4.3.2 The following relation

−αTβ−1α � −ω(α+ αT ) + ω2β

holds for any ω > 0.

Using these lemmas, the nonlinearity is bounded by an hyperplane as seen on figure 4.6 where
the scalar case is considered with ω = 1. Actually these results are a simple linearization of
the nonlinearity around some particular point. Hence, such a bound will be conservative
when the computed matrices are far from the linearization point. In the second result, ω has
the role of a tuning parameter which ’moves’ the linearization point in order to decrease the
conservatism of the bound.

In [Chen and Zheng, 2006; Gao and Wang, 2003] it has been proposed to use the Cone
Complementary Algorithm [Ghaoui et al., 1997] as a relaxation result. Initially, this algo-
rithm was developed to deal with static output feedback design or more generally to matrix
inequality based problems involving both matrices and their inverse. At the light of [Chen
and Zheng, 2006; Gao and Wang, 2003], it turns out that it can also be applied efficiently
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Figure 4.6: Evolution of the concave nonlinearity and the linear bound in the scalar case with
fixed α = p = 1, β = q and ω = 1

to relax concave nonlinearity of the form −αTβ−1α. To adapt this algorithm to a relaxation
scheme, let υ ≤ αT β̄α and an inversion produces ῡ ≥ ᾱβᾱT where ᾱα = I, β̄β = I and
ῡυ = I. Finally, we get the problem of finding X = (ε, α, β, υ, ᾱ, β̄, ῡ) such that

ε− υ ≺ 0[
ῡ ᾱT

ᾱ β̄

]
� 0

ᾱα = I
β̄β = I
ῡυ = I

(4.9)

which is a nonconvex problem due to nonlinear equalities. It is clear that the latter problem is
identical to the initial one. The Cone Complementary Algorithm allows to solve problem (4.8)
by the following iterative procedure based on a relaxed version of the optimization problem:

Algorithm 4.3.3 Adapted Cone Complementary Algorithm:

1. Initialize i = 0, and X0 := (ε0, α0, β0, υ0, ᾱ0, β̄0, ῡ0) solution of

ε− υ ≺ 0
[
ῡ ᾱT

ᾱ β̄

]
� 0

2. Find Xi+1 solution of

γi+1 := minX trace(υiῡ + ῡiυ + αiᾱ+ ᾱiα+ βiβ̄ + β̄iβ)

such that

ε− υ ≺ 0
[
ῡ ᾱT

ᾱ β̄

]
� 0
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3. if γi+1 = 6n then STOP: Solution Found
else if i > imax then STOP: Infeasible problem (too many iterations)
else i = i+ 1, goto Step 2.

Although this algorithm does not converge systematically to a global optimum of the opti-
mization problem, it gives quite good results in practice. However, this efficient approach
suffers from two drawbacks:

1. It can be applied with square matrices only since the procedure needs the inversion of
the matrix α.

2. It can only deal with constant matrices since they are needed to be inverted and the
inverse of parameter dependent matrices cannot be expressed in a linear fashion with
respect to the unknown matrices. As an examples, the inverse of the matrix P (ρ) =
P0 + ρP1 is defined by

P (ρ)−1 = P−1
0 − P−1

0 (P−1
0 − P−1

1 ρ−1)−1P−1
0

and cannot be expressed linearly for instance P (ρ)−1 = S0 + S1u(ρ) where u(ρ) is a
particular function.

The parameter dependent matrix case should be treated with the lemma 4.3.1 and 4.3.2 with
a possibly parameter varying ω(ρ). However, due to the high conservatism of this bound,
we have been brought to develop the following result to overcome these problems. Such a
result has been published in [Briat et al., 2008c] and allows for a ’good’ relaxation of the
nonlinearity by bilinearities.

Theorem 4.3.4 Consider a symmetric positive definite matrix function β(·), a matrix (non
necessarily square) function α(·) and a symmetric matrix function ε(·) then the following
propositions are equivalent:

a) ε(·)− αT (·)β−1(·)α(·) ≺ 0

b) There exists a matrix function of appropriate dimensions η(·) such that[
ε(·) + α(·)T η(·) + η(·)Tα(·) ?

β(·)η(·) −β(·)

]
≺ 0

Proof : b)⇒ a)
First we suppose there exists η(·) such that (4.3.4) holds. Hence using Schur complement

there exists η(·) such that

ε(·) + [ηT (·)α(·)]H + ηT (·)β(·)η(·) ≺ 0

Completing the squares, this is equivalent to

ε(·) + ζT (·)β−1(·)ζ(·)− αT (·)β−1(·)α(·) ≺ 0

with ζ(·) = α(·) + β(·)η(·). Finally we obtain

ε(·)− αT (·)β−1(·)α(·) ≺ −ζT (·)β−1(·)ζ(·) (4.10)
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Since β(·) > 0 then the right-hand side of equation (4.10) is negative semidefinite for all η(·).
Then we can conclude that if there exist a η(·) such that (4.10) is satisfied then a) is true.
Moreover when ζ(·) vanishes identically then no conservatism is induced and the bound equals
the nonlinear term. That means that when η(·) = −β−1(·)α(·) the relaxation is exact.

a)⇒b)
First consider the matrix

Θ(·) =
[
ε(·) α(·)T
α(·) β(·)

]
with β(·) � 0 and ε(·) − α(·)Tβ(·)−1α(·) ≺ 0. Let dim(ε(·)) = n and dim(β(·)) = l and note
that Θ(·) may be rewritten as

Θ(·) =

[
δ(·)1/2 α(·)Tβ(·)−1/2

0 β(·)1/2

] [
−In 0

0 Il

][
δ(·)1/2 0

β(·)−1/2α(·) β(·)1/2

]

where δ1/2(·) and β1/2(·) define the symmetric positive definite square root of matrices δ(·)
and β(·) with δ(·) = −ε(·)+α(·)Tβ−1(·)α(·). From this equality it is clear the matrix Θ has n
negative eigenvalues and l positive eigenvalues since Θ(·) is congruent to diag(−In, Il). Then
there exists a subspace with maximal rank of the form

Λ(·) =
[
θ(·)
η(·)

]
with rank Λ(·) = n (4.11)

with θ(·) ∈ Rn×n and η(·) ∈ Rl×n such that Λ(·)TΘ(·)Λ(·) < 0. Expand the latter inequality
leads to (dropping the dependence (·)):

θT εθ + θTαT η + ηTαθ + ηTβη ≺ 0 (4.12)

Rearranging the terms using the fact that β(·) � 0 is symmetric leads to

θT (ε− αTβ−1α)θ + (αθ + βη)Tβ−1(αθ + βη) ≺ 0 (4.13)

Since ε− αTβ−1α ≺ 0 and β(·) � 0 then it implies that θT (ε− αTβ−1α)θ ≺ 0. Hence θ is of
full rank. Now let K be the set such that

K := {κ : θT (ε− αTβ−1α)θ + κTβ−1κ ≺ 0} (4.14)

It is clear that the set K is nonempty since it includes κ = 0. It is not reduced to a singleton
since it exists a neighborhood N centered around κ = 0 for which (4.14) is satisfied for all
κ ∈ N . Now we will show that for all nonsingular θ there exist values for κ (and hence values
for η) for which (4.14) holds. First note that β � 0 is nonsingular, then the equation

αθ + βη = κ (4.15)

for given θ and κ has the solution η = β−1(κ−αθ). Hence this means that for given ε, β, α, θ
such that ε − αTβ−1α ≺ 0, β � 0, rank(θ) = n, there exist η such that (4.13) is satisfied.
The existence of such a η is thus shown.

Now fix θ = I for simplicity and consider (4.13) we obtain

ε+ αT η + ηTα+ ηTβη ≺ 0 (4.16)
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Apply the Schur’s Lemma to obtain[
ε+ αT η + ηTα ηTβ

βη −β

]
≺ 0 (4.17)

This concludes the proof. �

This theorem has the benefit to allow for the consideration of parameter varying matrices
and nonsquare α, this is a great improvement compared to previous methods. Moreover, it
involves only feasibility problems and this can be directly extended to optimization prob-
lems. This is not the case for the cone complementary algorithm which already involves
an optimization problem (i.e. the trace cost is aimed to be minimized). Hence, if minimal
L2-performances are sought then we would be in presence of a multi-objective optimization
problem (the costs would be a weighted sum of the trace and the norm) which is not a trivial
problem. The tradeoff between the costs shall be done with care, in order to not too penalize
the trace cost which is the most important one.

Since (4.3.4) is bilinear (BMI) then no efficient algorithm is available to solve it in reason-
able time. Indeed, noting that by fixing the value of η the problem is convex in ε, α and β and
vice-versa (this is a quasiconvex problem), it seems interesting to develop such an algorithm
matching this particular form of BMI. Due to this property an algorithm in two steps can
be used to find a solution iteratively such as the D-K iteration algorithm used in µ-synthesis
[Apkarian et al., 1993; Balas et al., 1998]. It is important to precise that the D-K algorithm is
a general algorithm but there exist lots of algorithms to solve BMIs, see for instance Henrion
and Lasserre [2006]; Ibaraki and Tomizuka [2001]; Tuan et al. [1999].

Since any iterative optimization procedure needs to find an initial feasible point in order
to converge to a local/global minimum, the remaining problem is to find this initial feasible
point. In the proof of theorem 4.3.4, it is shown that the relaxation is exact if and only if
η = −β−1α and hence finding an initial η0 is equivalent to finding an initial α0 and β0. If
all the matrices are square then lemmas 4.3.1 and 4.3.2 can be used to find an initial feasible
point. If α is rectangular, then a nondeterministic approach can be used to find a ’good’
(random) value for η0.

Finally, if parameter dependent matrices ε(ρ) and α(ρ) are considered, then according to
the exact relation η(ρ) = −β−1α(ρ), the matrix η(ρ) has the same parameter dependence
as α(ρ). For simplicity of initialization, it is possible to define a constant η0 which does not
depend on the parameters but when the optimization procedure in η is launched a second
time then η shall be defined as parameter dependent.

Algorithm 4.3.5

1. Let i = 0, fix ηi(ρ)

2. Solve for (εi(ρ), αi(ρ), βi(ρ)) solutions of[
ε(ρ) + ηi(ρ)α(ρ) + α(ρ)T ηi(ρ) ηi(ρ)Tβ(ρ)

? −β(ρ)

]
≺ 0 (4.18)

3. Let i = i+ 1, solve for ηi solution of[
εi−1(ρ) + ηi(ρ)αi−1(ρ) + αi−1(ρ)T ηi(ρ) ηi(ρ)Tβi−1(ρ)

? −βi−1(ρ)

]
≺ 0 (4.19)
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4. If stopping criterion is satisfied then STOP else go to Step 2.

It will be shown in Section 6.1.3 that such an algorithm might lead to good results in a small
number of iterations (between 1 and 4).

4.4 Polytopic Systems and Bounded-Parameter Variation Rates

In many papers, only parameter dependent polytopic system with arbitrary fast-varying pa-
rameter variation rate (unbounded rate of variation) are considered (see for instance [Oliveira
et al., 2007]). However, some of them consider robust stability instead of quadratic stability
[de Souza and Trofino, 2005]. In this section, an easy way to consider bounded parameter
variation rate in the polytopic domain is introduced. The main difference between stabil-
ity conditions expressed for arbitrary fast varying system and bounded rate parameters, is
the presence, or not, of parameter derivatives into these conditions. The main difficulty is
that derivatives of the polytopic variables have a non-straightforward relation with parameter
derivatives. As an example, let us consider the following polytopic LPV system with N = 2s

polytopic variables where s is a positive integer:

ẋ(t) = A(λ)x(t) + E(λ)w(t)
z = C(λ)x(t) + F (λ)w(t)

The robust bounded-real lemma (see Section 2.3.2) is then given by the LMI condition P (λ)A(λ) +A(λ)TP (λ) + P[λ̇(t)⊗ I] P (λ)E(λ) C(λ)T

? −γI F (λ)T

? ? −γI

 ≺ 0 (4.20)

where P =
[
P1 P2 . . . PN

]
. Now rewrite the matrix A(λ) as the following:

A(λ) =
N∑
i=1

λi(t)ViAi

where the time-varying parameters are given by ρ(t) =
N∑
i=1

λi(t)Vi where the Vi are the vertices

of the polytope in which ρ(t) evolve and λi(t) the time-varying polytopic coordinates evolving
over the unit simplex Γ:

Γ :=

{
λ(t) ∈ [0, 1]N :

N∑
i=1

λi(t) = 1, t ≥ 0

}

The extremal values of ρ(t) are the Vi, i = 1, . . . , N but, on the other hand, provided that
bounds on the rate of variation are known, then it is possible to define a polytope containing
the parameter derivatives, i.e. ρ̇(t) ∈ hull[D]. Indeed, differentiating the parameters ρ(t) we
get

ρ̇(t) =
N∑
i=1

λ̇i(t)Vi
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and from this expression, the relation between the values λ̇i(t) and D is unclear. What are
the extremal values for λ̇i(t) ? A way to find them is to define

ρ̇(t) :=
N∑
i=1

λ′i(t)Di

where Di, i = 1, . . . , N are the vertices of the polytope containing all possible values of
the parameter derivatives (D = hull[Di]) and λ′i(t) the time-varying polytopic coordinates
evolving over the unit simplex Γ. In this case, we have the following equality

N∑
i=1

λ̇i(t)Vi =
N∑
i=1

λ′i(t)Di

which is equivalently written in a compact matrix form

V λ̇(t) = Dλ′(t) (4.21)

with V =
[
V1 V2 . . . VN

]
, D =

[
D1 D2 . . . DN

]
, λ̇(t) = col(λ̇i(t)) and λ′ =

col(λ′i(t)). Note that we have the following equality constraints

N∑
i=1

λ′i(t) = 1

N∑
i=1

λ̇i(t) = 0

Combined to (4.21), we get[
V

1 1 . . . 1

]
λ̇(t) =

[
D

1 1 . . . 1

]
λ′(t)−

[
0
1

]
which is rewritten compactly as

V̄ λ̇(t) = D̄λ′(t)− C

with V̄ =
[

V

1 1 . . . 1

]
, D̄ =

[
D

1 1 . . . 1

]
and C =

[
0
1

]
. Such an equation

has solutions in λ̇(t) if and only if one of the following statements holds (see Appendix A.8
or Skelton et al. [1997]):

1. (I − V̄ V̄ +)(D̄λ′(t)− C) = 0

2. D̄λ′(t)− C = V̄ V̄ +(D̄λ′(t)− C)

In this case the set of solutions is given by

λ̇(t) = V̄ +(D̄λ′(t)− C) + (I − V̄ +V̄ )Z (4.22)

where Z is an arbitrary matrix with appropriate dimensions. It is clear that V ∈ Rlog2(N)×N

and then rank[V ] = dim(ρ) = log2(N). Finally, due to the structure of V , we have rank[V̄ ] =
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log2(N)+1, hence V̄ is a full row rank matrix and admits a right pseudoinverse V̄ + such that
V̄ V̄ + = I. This shows that the first statement above holds for every D̄Λ′(t) − C and hence
all the solutions of the problem write:

λ̇(t) = V̄ +(D̄λ′(t)− C) + (I − V̄ +V̄ )Z

for a free matrix Z of appropriate dimensions. It is worth noting that the solution is affine in
λ′(t) (which seems logical since the equation is linear) and that Z can be removed from the
solution since only a solution is needed. Z can be tuned in order to modulate the values of
the vector −V̄ +C but it is not of great interest and then the term Z can be set to 0.

Finally, substituting λ̇(t) = Mλ′(t)+N with M = V̄ +(D̄ and N = −V̄ +D̄C into the LMI
(4.20) we get a new condition in terms of the λi and λ′i: P (λ)A(λ) +A(λ)TP (λ) + P[(Mλ′(t) +N)⊗ I] P (λ)E(λ) C(λ)T

? −γI F (λ)T

? ? −γI

 ≺ 0

The following example illustrates the approach.

Example 4.4.1 Consider a two parameter problem with (ρ1, ρ2) ∈ [−1, 1] × [−2, 3] and
(ρ̇1, ρ̇2) ∈ [−2, 3]× [−5, 6]. We have the following matrices

V =
[
−1 −1 1 1
−2 3 −2 3

]
D =

[
−2 −2 3 3
−5 6 −5 6

]
Thus we can choose

V̄ + =
1
10


−2.5 −1 3
−2.5 1 2
2.5 −1 3
2.5 1 2


then

V̄ +D̄ =


1.3 0.2 0.05 −1.05
0.2 1.3 −1.05 0.05
0.3 −0.8 1.55 0.45
−0.8 0.3 0.45 1.55

 and V̄ +C =


0.3
0.2
0.3
0.2


Finally using (4.22) we get

λ̇(t) =


1.3 0.2 0.05 −1.05
0.2 1.3 −1.05 0.05
0.3 −0.8 1.55 0.45
−0.8 0.3 0.45 1.55

λ′(t)−


0.3
0.2
0.3
0.2


This ends the section on computing the bounds on polytopic parameter derivatives in terms
of another polytopic variables.
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4.5 H∞ Performances Test via Simple Lyapunov-Krasovskii
functional and Related Relaxations

In this section, simple Lyapunov-Krasovskii functionals are considered as in [Gouaisbaut and
Peaucelle, 2006b; Han, 2005a]. Fundamental results are recalled and generalized for LPV
systems with time-varying delays. The type of Lyapunov-Krasovskii functionals proposed in
these papers allows to avoid any model transformations or any bounding of cross terms. The
only conservatism of the method comes from the initial choice of the Lyapunov-Krasovskii
functionals (which is not complete) and the use of the Jensen’s inequality (see [Gu et al.,
2003] or Appendix E.1) used to bound an integral term in the Lyapunov-Krasovskii functional
derivative. The main advantage of these functionals is based on their simplicity and the small
number of involved Lyapunov-Krasovskii variables, thus minimizing products between data
matrices and decision variables, making them potentially interesting criteria for stabilization
problem.

As we shall see later, in the case of a simple Lyapunov-Krasovskii functional, two matrix
products occur and thus a relaxation scheme must be performed in order to get tractable
LMI condition for the stabilization problem. In the framework of a discretized Lyapunov-
Krasovskii functional, many couplings would appear corresponding to the order of discretiza-
tion that has been considered.

We will consider in this section the following LPV time-delay system:

ẋ(t) = A(ρ)x(t) +Ah(ρ)x(t− h(t)) + E(ρ)w(t)
z(t) = C(ρ)x(t) + Ch(ρ)x(t− h(t)) + F (ρ)w(t)

(4.23)

where x ∈ Rn, w ∈ Rp, z ∈ Rq are respectively the system state, the exogenous inputs and
the controlled outputs. The delay h(t) is assumed to belong to the set H ◦

1 , the parameters
ρ satisfy ρ ∈ Uρ and ρ̇ ∈ hull[Uν ].

4.5.1 Simple Lyapunov-Krasovskii functional

The main result of this subsection is based on the use of the following parameter dependent
Lyapunov-Krasovskii functional [Gouaisbaut and Peaucelle, 2006b; Han, 2005a]:

V (t) = V1(t) + V2(t) + V3(t)
V1(t) = x(t)TP (ρ)x(t)T

V2(t) =
∫ t

t−h(t)
x(θ)TQx(θ)dθ

V3(t) =
∫ 0

−hmax

∫ t

t+θ
ẋ(η)ThmaxRẋ(η)dηdθ

(4.24)

from which the following results is derived:

Lemma 4.5.1 System (4.23) is asymptotically stable for all h ∈ H ◦
1 and satisfies ||z||L2 ≤

γ||w||L2 if there exist a continuously differentiable matrix function P : Uρ → Sn++, Q,R ∈ Sn++
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and γ > 0 such that the LMI
Ψ11(ρ, ν) P (ρ)Ah(ρ) +R P (ρ)E(ρ) C(ρ)T hmaxA(ρ)TR

? −(1− µ)Q−R 0 Ch(ρ)T hmaxAh(ρ)TR
? ? −γIm F (ρ)T hmaxE(ρ)TR
? ? ? −γIp 0
? ? ? ? −R

 ≺ 0 (4.25)

with
Ψ11(ρ, ν = A(ρ)TP (ρ) + PA(ρ) + ∂ρP (ρ)ν +Q−R (4.26)

holds for all (ρ, ν) ∈ Uρ × Uν .

Proof : Computing the time-derivative of (4.24) along the trajectories solutions of system
(4.3) leads to

V̇1(t) = ẋ(t)TP (ρ)x(t) + x(t)P (ρ)ẋ(t) + x(t)T∂ρP (ρ)ρ̇x(t)
V̇2(t) = x(t)TQx(t)− (1− ḣ)x(t− h(t))TQx(t− h(t))

V̇3(t) = h2
maxẋ(t)TRẋ(t)−

∫ t

t−hmax
ẋ(θ)ThmaxRẋ(θ)dθ

Since |ḣ| < 1, we have −(1− ḣ) ≤ −(1− µ) and since h(t) ≤ hmax then

−
∫ T

t−hmax
ẋ(θ)ThmaxRẋ(θ)dθ ≤ −

∫ t

t−h(t)
ẋ(θ)ThmaxRẋ(θ)dθ

Finally using the Jensen’s inequality (see Appendix E.1) it is possible to bound the integral
term in V̇3(t) as follows:

V̇3(t) ≤ h2
maxẋ(t)TRẋ(t)−

∫ t

t−h(t)
ẋ(θ)thmaxRẋ(θ)dθ

≤ h2
maxẋ(t)TRẋ(t)− hmax

h(t)

(∫ t

t−h(t)
ẋ(θ)dθ

)T
R

(∫ t

t−h(t)
ẋ(θ)dθ

)
= h2

maxẋ(t)TRẋ(t)− hmax
h(t)

[x(t)− x(t− h(t))]T R [x(t)− x(t− h(t))]

It is proved now that the previous expression is well-posed when h(t) tends to zero. First let
ti be the time-instants for which h(ti) = 0 and we aim at proving that when t → ti then the
quantity

1
h(t)

(x(t)− x(t− h(t)))T R (x(t)− x(t− h(t))) (4.27)

remains bounded. Rewrite it in the form

h(t)
(
x(t)− x(t− h(t))

h(t)

)T
R

(
x(t)− x(t− h(t))

h(t)

)
When t → ti we have

x(t)− x(t− h(t))
h(t)

→ ẋ(ti) since x(t) is differentiable. Moreover, as

ẋ(t) is finite for all t ∈ R+ this proves that (4.27) remains bounded when t → ti. Finally

bounding −hmax
h(t)

by −1 we get

V̇3(t) ≤ h2
maxẋ(t)TRẋ(t)− [x(t)− x(t− h(t))]T R [x(t)− x(t− h(t))]
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Gathering all the derivative terms V̇i we get the following quadratic inequality:

V̇ (t) ≤ X(t)TΨ(ρ, ρ̇)X(t) < 0

with

Ψ(ρ, ρ̇) =

 Ψ11(ρ, ρ̇) P (ρ)Ah(ρ) +R P (ρ)E(ρ)
? −(1− µ)Q−R 0
? ? 0

+ h2
maxT (ρ)TRT (ρ)

X(t) = col(x(t), x(t− h(t)), w(t))
T =

[
A(ρ) Ah(ρ) E(ρ)

]
Ψ11(ρ, ρ̇) = A(ρ)TP (ρ) + P (ρ)A(ρ) +Q−R

L2 performances are introduced in the criterium through the Hamiltonian function H defined
by

H(t) = V (t)−
∫ t

0
γw(θ)Tw(θ)− γ−1z(θ)T z(θ)dθ

If the hamiltonian function satisfies Ḣ < 0 for all nonzero X(t) then have

lim
t→+∞

H(t) = lim
t→+∞

V (t)−
∫ t

0
γw(θ)Tw(θ)− γ−1z(θ)T z(θ)dθ < 0

Assuming that the system is asymptotically stable ( lim
t→+∞

V (t) = 0) then we get

lim
t→+∞

H(t) = −
∫ +∞

0
γw(θ)Tw(θ)− γ−1z(θ)T z(θ)dθ < 0

Finally we have ∫ +∞

0
γw(θ)Tw(θ)− γ−1z(θ)T z(θ)dθ > 0

which is equivalent to
γ||w||2L2

− γ−1||z||2L2
> 0

and thus
||z||L2

||w||L2

< γ2

Expanding z(t) into the expression of Ḣ leads to

Ḣ ≤ V̇ − γw(t)Tw(t) + γ−1X(t)T


C(ρ)T

Ch(ρ)T

F (ρ)T

 [ C(ρ) Ch(ρ) F (ρ)
]
X(t)

Finally performing a Schur complement onto term

−

 C(ρ)T hmaxA(ρ)TR
Ch(ρ)T hmaxAh(ρ)TR
F (ρ)T hmaxE(ρ)TR

[ −γ−1I 0
0 −R−1

] [
C(ρ) Ch(ρ) F (ρ)

hmaxRA(ρ) hmaxRAh(ρ) hmaxRE(ρ)

]
leads to LMI (4.25). Finally, noting that ρ̇ ∈ hull[Uν] enters affinely in the LMI, it suffices
to check the LMI only at the vertices which are the elements of Uν . This concludes the proof.
�
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4.5.2 Associated Relaxation

It is clear from the expression of LMI (4.25) that this criterium is not suited for stabilization
purposes due to the multiple product terms PA and RA. Indeed, by introducing the closed-
loop system state-space into LMI conditions, due to coupling terms, the linearization is an
impossible task without considering (strong) assumptions. In many problems, the common
simplification would be to consider ’proportional’ matrices in the sense that

R = εP or P (ρ) = ε(ρ)R

where ε > 0 is a chosen fixed scalar. It is clear that such a simplification is very conservative
since the initial space of decision

(P (ρ), Q,R) ∈ Sn++ × Sn++ × Sn++

is reduced to

(P,Q, ε) ∈ Sn++ × Sn++ × R++ or (ε(ρ), Q,R) ∈ R++ × Sn++ × Sn++

The idea we propose here is, rather simplifying the stabilization conditions after introducing
the closed-loop system expression, we turn the initial LMI condition into a form which better
fits the stabilization problem [Tuan et al., 2001b]. Roughly speaking, a LMI is efficient for
a stabilization problem if there is only one coupling between a decision matrix and system
variables. This decision matrix is not a Lyapunov variable but is a ’slack’ variable introduced
by applying the Finsler’s Lemma (see Appendix D.16). Using this lemma we obtain the
following relaxation to LMI (4.25):

Lemma 4.5.2 System (4.23) is asymptotically stable for all h ∈ H ◦
1 and satisfies ||z||L2 ≤

γ||w||L2 if there exist a continuously differentiable matrix function P : Uρ → Sn++, constant
matrices Q,R ∈ Sn++, a matrix function X : Uρ → Rn×n and γ > 0 such that the LMI

−X(ρ)H Ξ12 X(ρ)TAh(ρ) X(ρ)TE(ρ) 0 X(ρ)T hmaxR

? Ψ22(ρ, ν) R 0 C(ρ)T 0 0
? ? −Qµ −R 0 Ch(ρ)T 0 0
? ? ? −γIm F (ρ)T 0 0
? ? ? ? −γIp 0 0
? ? ? ? ? −P (ρ) −hmaxR
? ? ? ? ? ? −R


≺ 0

(4.28)
with Qµ = (1− µ)Q, Ξ12 = P (ρ) +X(ρ)TA(ρ) and

Ψ22(ρ, ν) = ∂ρP (ρ)ν − P (ρ) +Q−R (4.29)

holds for all (ρ, ν) ∈ Uρ × Uν .

Proof : The proof is inspired from Tuan et al. [2001b]. Rewrite (4.28) as

M(ρ, ν) +
[
P(ρ)TX(ρ, ρh)Q

]H ≺ 0
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with

M(ρ, ν) =



0 P (ρ) 0 0 0 0 hmaxR
? Ψ22(ρ, ν) R 0 C(ρ)T 0 0
? ? −(1− µ)Q(ρh)−R 0 Ch(ρ)T 0 0
? ? ? −γI F (ρ)T 0 0
? ? ? ? −γI 0 0
? ? ? ? ? −P (ρ) −hmaxR
? ? ? ? ? ? −R


P(ρ) =

[
−I A(ρ) Ah(ρ) E(ρ) 0 I 0

]
Q =

[
I 0 0 0 0 0 0

]
Noting that explicit basis of the null-space of P and Q are given by

Ker(P(ρ)) =



A(ρ) Ah(ρ) E(ρ) I 0 0
I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 0 I 0
0 0 0 I 0 0
0 0 0 0 0 I


Ker(Q) =



0 0 0 0 0 0
I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I


and applying the projection lemma (see Appendix D.18) we get the two underlying LMIs

Ψ11(ρ) P (ρ)Ah(ρ) +R P (ρ)E(ρ) C(ρ)T P (ρ) hmaxA(ρ)TR
? −(1− µ)Q−R 0 Ch(ρ)T 0 hmaxAh(ρ)TR
? ? −γI F (ρ)T 0 hmaxE(ρ)TR
? ? ? −γI 0 0
? ? ? ? −P (ρ) 0
? ? ? ? ? −R

 ≺ 0 (4.30)



Ψ22(ρ, ν) R C(ρ)T 0 0 0
? −(1− µ)Q−R Ch(ρ)T 0 0 0
? ? −γI F (ρ)T 0 0
? ? ? −γI 0 0
? ? ? ? −P (ρ) −hmaxR
? ? ? ? ? −R

 ≺ 0 (4.31)

LMI (4.30) is equivalent to (4.28) modulo a Schur complement (see Appendix D.4). Hence
this shows that feasibility of (4.28) implies feasibility of (4.30) and (4.31). This concludes the
proof. �

Although (4.28) implies (4.25), it also implies LMI (4.31) which is not always satisfied. Thus
conservatism is induced while imposing supplementary constraints: among others the left-
upper block gives −P (ρ) + Q(ρ) − R + ∂ρP (ρ)ν < 0 and the 2 × 2 right-bottom block gives
−P (ρ) + h2

maxR < 0 (invoking the Schur’s complement) which restrict the initial set for
decision variables.
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4.5.3 Reduced Simple Lyapunov-Krasovskii functional

Another result based on a simple Lyapunov-Krasovskii functional is provided. This results
aims at reducing the computational complexity of the stability test obtained from Lyapunov-
Krasovskii functional (4.24) when the matrices Ah and Ch take the following form:

Assumption 4.5.3 The matrices Ah and Ch are assumed to have the following form:

Ah(ρ) =
[
A11
h (ρ) 0

A21
h (ρ) 0

]
Ch(ρ) =

[
C ′h(ρ) 0

]
Indeed, as illustrated above, the second part of the state is not affected by the delay and thus
this state information can be removed from the part of the Lyapunov-Krasovskii functional
dealing with the stability analysis of the delayed part. It is interesting to note that such a
representation occurs in the filtering problem of time-delay systems using a memoryless filter
[Zhang and Han, 2008] or by controlling a time-delay system using a memoryless dynamic
controller. Indeed, in each of this case, the second part of the state is either the filter or con-
troller state, which are not affected by the delay (provided that no delay acts on the control
input of the system).

It is possible to write Ah(ρ) = A′h(ρ)Z and Ch(ρ) = C ′h(ρ)Z where

Z =
[
I 0

]
A′h(ρ) =

[
A11
h

A21
h

]
Hence there is no increase of conservatism by considering the Lyapunov-Krasovskii functional

V (t) = V1(t) + V2(t) + V3(t)
V1(t) = x(t)TP (ρ)x(t)

V2(t) =
∫ t

t−h(t)
x(θ)TZTQ(ρ(θ))Zx(tθ)dθ

V3(t) =
∫ 0

−hmax

∫ t

t+θ
ẋ(η)TZTRZẋ(η)dηdθ

(4.32)

which gives rise to the following result:

Lemma 4.5.4 System (4.23) with assumption 4.5.3 is asymptotically stable for all h ∈ H ◦
1

and satisfies ||z||L2 ≤ γ||w||L2 if there exist matrix a continuously differentiable matrix func-
tion P : Uρ → Sn++, constant matrices Q,R ∈ Sn++ and a scalar γ > 0 such that the LMI

Ψ′11(ρ, ν) P (ρ)A′h(ρ) +R P (ρ)E(ρ) C(ρ)T hmaxA(ρ)TZTR
? −(1− µ)Q(ρh)−R 0 C ′h(ρ)T hmaxA

′
h(ρ)TZTR

? ? −γIm F (ρ)T hmaxE(ρ)TZTR
? ? ? −γIp 0
? ? ? ? −R

 ≺ 0 (4.33)

with
Ψ′11(ρ, ν = A(ρ)TP (ρ) + PA(ρ) + ∂ρP (ρ)ν + ZT (Q(ρ)−R)Z (4.34)

holds for all (ρ, ρh, ν) ∈ Uρ × Uρh × Uν .
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Proof : Similarly as in the proof of Lemma 4.5.1, the time-derivative of the Lyapunov-
Krasovskii functional (4.32) can be expressed and bounded as follows

V̇1(t) = ẋ(t)TP (ρ)x(t) + ẋ(t)P (ρ)x(t)T + x(t)T∂ρP (ρ)ρ̇x(t)
V̇2(t) ≤ x(t)TZTQ(ρ)Zx(t)− (1− µ)x(t− h(t))TZTQ(ρh)Zx(t− h(t))
V̇3(t) ≤ h2

maxẋ(t)TZTRZẋ(t)− (x(t)− x(t− h(t)))TZTRZ(x(t)− x(t− h(t)))

Gathering all the derivative terms V̇i we get the following quadratic inequality:

V̇ (t) ≤ X(t)TΨ′(ρ, ν)X(t) < 0

Ψ′(ρ, ν) =

 Ψ′11(ρ, ρ̇) P (ρ)A′h(ρ) + ZTR P (ρ)E(ρ)
? −(1− µ)Q−R 0
? ? 0

+ h2
maxT (ρ)TRT (ρ)

X(t) = col(x(t), Zx(t− h(t)), w(t))
T (ρ) =

[
A(ρ) A′h(ρ) E(ρ)

]
Ψ11(ρ, ρ̇) = A(ρ)TP (ρ) + P (ρ)A(ρ) + ZTQZ − ZTRZ

Adding the constraint ∫ t

0
γw(η)Tw(η)− γ−1z(η)T z(η)dη > 0

to the Lyapunov function in view of constructing the Hamiltonian function we get

Ḣ ≤ V̇ − γw(t)Tw(t) + γ−1X(t)T

 C(ρ)T

C ′h(ρ)T

F (ρ)T

 [ C(ρ) C ′h(ρ) F (ρ)
]
X(t)

Finally performing a Schur complement onto term

−

 C(ρ)T hmaxA(ρ)TZTR
C ′h(ρ)T hmaxA

′
h(ρ)TZTR

F (ρ)T hmaxE(ρ)TZTR

[ −γ−1I 0
0 −R−1

] C(ρ)T hmaxA(ρ)TZTR
C ′h(ρ)T hmaxA

′
h(ρ)TZTR

F (ρ)T hmaxE(ρ)TZTR

T

leads to LMI (4.33). Finally, noting that ρ̇ ∈ hull[Uν] enters affinely in the LMI, it suffices
to check the LMI only at the vertices which are the elements of Uν. This concludes the proof.
�

4.5.4 Associated Relaxation

Similarly as for lemma 4.5.1, it is convenient to construct a relaxed result which will be of
interest further in the thesis.

Lemma 4.5.5 System(4.23) with assumption 4.5.3 is asymptotically stable for all h ∈ H ◦
1

and satisfies ||z||L2 ≤ γ||w||L2 if there exist a continuously differentiable matrix function
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P : Uρ→ Sn++, a matrix function X : Uρ → Rn×n, constant matrices Q,R ∈ Sn++ and γ > 0
such that the LMI



−X(ρ)H Ξ12 X(ρ)TAh(ρ) X(ρ)TE(ρ) 0 X(ρ)T hmaxZ
TR

? Ψ′22(ρ, ν) R 0 C(ρ)T 0 0
? ? −Qµ −R 0 Ch(ρ)T 0 0
? ? ? −γIm F (ρ)T 0 0
? ? ? ? −γIp 0 0
? ? ? ? ? −P (ρ) −hmaxZTR
? ? ? ? ? ? −R


≺ 0

(4.35)
with Ξ12 = P (ρ) +X(ρ)TA(ρ), Qµ = (1− µ)Q and

Ψ′22(ρ, ν) = ∂ρP (ρ)ν − P (ρ) + ZT (Q−R)Z (4.36)

holds for all (ρ, ν) ∈ Uρ × Uν .

Proof : The proof is similar to the proof of lemma 4.5.2. �

This concludes the section on results based on simple Lyapunov-Krasovskii functionals. The
interest of such functionals, despite of their conservatism, is the avoidance of any model trans-
formation and any bounding of cross-terms. The next section generalizes these functionals to
a more general form in order to obtain less conservative results.

4.6 Discretized Lyapunov-Krasovskii Functional for systems
with time varying delay and Associated Relaxation

The current section aims at improving previous results based on simple Lyapunov-Krasovskii
functionals of the form (4.24) and (4.32). It is clear that, compared to complete Lyapunov-
Krasovskii functionals defined in [Fridman, 2006a; Gu et al., 2003; Han, 2005b], the con-
servatism comes from the fact that the matrices Q and R are constant with respect to the
integration parameter. Moreover, another advantage of the discretization approach is to di-
vide the delay into smaller fragments in order to reduce the conservatism induced by the
Jensen’s inequality. To see this, let us consider the following example:

Example 4.6.1 In this example we will consider the function ẋ(θ) = θ and we will analyze
the gap between the following integral

I1 := −
∫ t

t−h
ẋ(θ)2dθ

I2 := −1
h

(∫ t

t−h
ẋ(θ)dθ

)2
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were h > 0 and t ∈ R+. Then we have

I1 = −
∫ t

t−h
θ2dθ

=
1
3

((t− h)3 − t3)

=
1
3

(3th2 − 3t2h− h3)

I2 = −1
h

(∫ t

t−h
ẋ(θ)dθ

)2

= − 1
4h

(t2 − (t− h)2)2

=
1
4

(4th2 − 4t2h− h3)

The Jensen’s inequality claims that I2 ≥ I1 and hence the conservatism gap is given by the
positive difference between I2 and I1, namely δI21:

δI21 := I2 − I1

=
1
4

(4th2 − 4t2h− h3)− 1
3

(3th2 − 3t2h− h3)

=
1
12
h3

This shows that the gap between the initial integral term and its corresponding bounds varies
proportionally to the cube of the delay value. Hence, this suggests that by considering smaller
delay values it might be possible to reduce the conservatism of the approach. First of all,
decompose I1 into

I1 =
∫ t−h/2

t−h
ẋ(θ)2dθ +

∫ t

t−h/2
ẋ(θ)2dθ

Let us consider the sum of the Jensen’s bound of each integral term

I3 := −2
h

(∫ t−h/2

t−h
ẋ(θ)dθ

)2

+

(∫ t

t−h/2
ẋ(θ)dθ

)2


Using the explicit expression of ẋ(θ) we get

I3 = − 2
4h

[(
(t− h/2)2 − (t− h)2

)2 +
(
t2 − (t− h/2)2

)2]
= −t2h+ th2 − 5

16
h3

The corresponding gap δI31 := I3 − I1 is then given by

δI31 =
1
48
h3

By fragmenting the delay up to order 3 we get

I4 := − 3
4h

[(
(t− 2h/3)2 − (t− h)2

)2 +
(
(t− h/3)2 − (t− 2h/3)2

)
+
(
t2 − (t− h/3)2

)2]
= −t2h+ th2 − 35

108
h3
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and the resulting gap δI41 := I4 − I1 is given by

δI41 =
1

108
h3

This example shows that by increasing the order of the fragmentation it should possible to
reduce the conservatism brought by the use of the Jensen’s inequality. It is interesting to
note that since the gap evolves as a polynomial of degree 3 and for each fragmentation the
degree will remain to 3 (this is an intrinsic property related to the fact that ẋ(θ) is of degree
1). Fragmenting the delay will decrease the coefficient, only meaning that for a greater order
of fragmentation the conservatism will be reduced. This has been also noticed in [Gouaisbaut
and Peaucelle, 2006a,b; Han, 2008]. As a conjectural result, it can be shown that

δIN1 := IN − I1

=
1

12N2
h3

where N is the fragmentation order and IN is given by the expression

IN := −N
4h

N−1∑
i=0

[(
t− N − i− 1

N
h

)2

−
(
t− N − i

N
h

)2
]2

Although this reduction of conservatism is shown here in a special case, this is a general fact.

4.6.1 Discretized Lyapunov-Krasovskii functional

According to latter remarks, we introduce the following Lyapunov-Krasovskii functional which
is a generalization of [Han, 2008]:

V (xt, ẋt) = V1(x(t)) + V2(xt) + V3(ẋt)
V1(x(t)) = x(t)TP (ρ)x(t)

V2(xt) =
N−1∑
i=0

∫ t−ihN (t)

t−(i+1)hN (t)
x(θ)TQix(θ)dθ

V3(ẋt) =
N−1∑
i=0

∫ −ih̄
−(i+1)h̄

∫ t

t+θ
ẋ(η)T h̄Riẋ(η)dηdθ

(4.37)

with hN (t)
4
=
h(t)
N

and h̄
4
=
hmax
N

. This Lyapunov-Krasovskii functional gives the following
result:

Lemma 4.6.2 System (4.23) is asymptotically stable for all h ∈ H ◦
1 and satisfies ||z||L2 ≤

γ||w||L2 if there exist a continuously differentiable matrix P : Uρ → Sn++, constant matrices
Qi, Ri ∈ Sn++, i ∈ {0, . . . , N − 1} and a scalar γ > 0 such that the LMI

M11 Γ2(ρ)T h̄Γ1(ρ)TR0 . . . h̄Γ1(ρ)TRN−1

? −γI 0 . . . 0
? ? −h̄R0

? ?
. . .

? ? −h̄RN−1

 ≺ 0 (4.38)
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holds for all (ρ, ν) ∈ Uρ × Uν where µN = µ/N

M11 =



M11 R0 0 0 . . . P (ρ)Ah(ρ) P (ρ)E(ρ)
? N

(1)
1 R1 0 . . . 0 0

? ? N
(1)
2 R2 0 0

. . . . . .
...

...
. . . RN−1 0

N (2) 0
? ? ? . . . 0 0 −γI


(4.39)

M11 = A(ρ)TP (ρ) + P (ρ)A(ρ) + ∂ρP (ρ)ν +Q0 −R0

N
(1)
i = −(1− iµN )Qi−1 + (1 + iµN )Qi −Ri−1 −Ri

N (2) = −(1− µ)QN−1 −RN−1

Γ1(ρ) =
[
A(ρ) 0 0 0 . . . Ah(ρ) E(ρ)

]
Γ2(ρ) =

[
C(ρ) 0 0 . . . Ch(ρ) F (ρ)

]
Proof : Computing the derivative of (4.37) along the trajectories solutions of system (4.3) and
with similar arguments as for the proof of lemma 4.5.1 we get:

V̇ (t) ≤ Y (t)T



M11 R0 0 0 . . . P (ρ)Ah(ρ) P (ρ)E(ρ)
? N

(1)
1 R1 0 . . . 0 0

? ? N
(1)
2 R2 0 0

. . . . . .
...

...
. . . RN−1 0

N (2) 0
? ? ? . . . 0 0 0


Y (t)

+h̄
N−1∑
i=0

Y (t)TΓT1 (ρ)Γ1(ρ)Y (t)

with

M11 = A(ρ)TP (ρ) + P (ρ)A(ρ) + ∂ρP (ρ) +Q0(ρ0)−R0

N
(1)
i = −(1− iµN )Qi−1 + (1 + iµN )Qi −Ri−1 −Ri

N (2) = −(1− µ)QN−1 −RN−1

Γ1(ρ) =
[
A(ρ) 0 0 0 . . . Ah(ρ) E(ρ)

]
Y (t) = col(x(t), x1(t), x2(t), . . . , xN (t), w(t))
xi(t) = x(t− ihn(t))
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The time-derivative of the Hamiltonian function is negative definite if and only if

Ḣ(t) ≤ Y (t)T



M11 R0 0 0 . . . P (ρ)Ah(ρ) P (ρ)E(ρ)
? N

(1)
1 R1 0 . . . 0 0

? ? N
(1)
2 R2 0 0

. . . . . .
...

...
. . . RN−1 0

N (2) 0
? ? ? . . . 0 0 −γI


Y (t)

+h̄
N−1∑
i=0

Y (t)TΓT1 (ρ)Γ1(ρ)Y (t) + γ−1Y (t)TΓT2 (ρ)Γ2(ρ)Y (t)

with
Γ2(ρ) =

[
C(ρ) 0 0 . . . Ch(ρ) F (ρ)

]
Then in virtue of the Schur complement with respect to terms

+h̄
N−1∑
i=0

Y (t)TΓT1 (ρ)Γ1(ρ)Y (t) + γ−1Y (t)TΓT2 (ρ)Γ2(ρ)Y (t)

we get 
M11 Γ2(ρ)T h̄Γ1(ρ)TR0 . . . h̄Γ1(ρ)TRN−1

? −γI 0 . . . 0
? ? −h̄R0

? ?
. . .

? ? −h̄RN−1

 ≺ 0

with

M11 =



M11 R0 0 0 . . . P (ρ)Ah(ρ) P (ρ)E(ρ)
? N

(1)
1 R1 0 . . . 0 0

? ? N
(1)
2 R2 0 0

. . . . . .
...

...
. . . RN−1 0

N (2) 0
? ? ? . . . 0 0 −γI


This concludes the proof. �

This result allows to obtain less conservative results than by using lemma 4.5.1 since:

1. extra degrees of freedom are added by fragmenting the delay which is equivalent to
choose piecewise constant continuous functions Q(θ) and R(θ)

2. the fragmentation of the delay reduces the conservatism of the Jensen’s inequality

It is also important to notice that similar results are obtained in [Gouaisbaut and Peaucelle,
2006b; Peaucelle et al., 2007]. However, these results are based on translation of the state by
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N 1 2 3 4
hmax Lemma 4.6.2 4.4721 5.7175 5.9678 6.0569

nb vars Lemma 4.6.2 9 15 21 27
hmax [Gouaisbaut and Peaucelle, 2006b] 4.4721 5.71 5.91 6.03

nb vars [Gouaisbaut and Peaucelle, 2006b] 9 50 147 324
hmax [Peaucelle et al., 2007] 4.4721 5.71 5.96 6.05

nb vars [Peaucelle et al., 2007] 9 16 27 42

Table 4.1: Comparison of the results obtained using different methods based on delay frag-
mentation

fragmented time-invariant delays which makes the problems more difficult when time-varying
delays are considered but not unsolvable [Ariba et al., 2008]. The approach provided here
is not based on any translation of the state and hence the problem of time-varying delays
does not hold. The derived results are based on the application of the Lyapunov-Krasovskii’s
theorem using the functional (4.37), as done in [Han, 2008].

Example 4.6.3 Let us consider the time-delay system [Gouaisbaut and Peaucelle, 2006b]

ẋ(t) =
[
−2 0
0 −0.9

]
x(t) +

[
−1 0
−1 −1

]
x(t− h) (4.40)

where the delay h is constant. The analytical maximal delay value for which the system is
asymptotically stable is hanalytical = 6.17. Table 4.1 provides results using lemma 4.6.2. For
N = 1, lemma 4.6.2 coincides with lemma 4.5.1.

On the other hand, by increasingN , the bound on the delay margin is less and less conservative
which illustrates the effect of the delay fragmentation. Compared to results of [Gouaisbaut and
Peaucelle, 2006b], the results are roughly identical for each fragmentation order. However,
the number of decision variables is larger using the methods provided in [Gouaisbaut and
Peaucelle, 2006b; Peaucelle et al., 2007] for each fragmentation number. On the other hand,
since in [Gouaisbaut and Peaucelle, 2006b] the state of the system is augmented in order
to gather every fragmented delayed state, then the number of decision matrices grows very
quickly. Besides, this is an underlying problem of the Lyapunov approach where the Lyapunov

matrix grows in
n(n+ 1)

2
which is numerically expensive for large values of n. A way to

avoid this problem is to consider an alternative approach based on nonsmooth analysis and
optimization as described for instance in [Apkarian and Noll, 2006, 2007; Apkarian et al.,
2007; Burke et al., 2006; Clarke, 1983; Clarke et al., 1998; Lewis, 2005, 2007]. Indeed, the
number of decision variables with lemma 4.6.2 is given by

1
2

(2N + 1)n(n+ 1) (4.41)

and a size of LMI constraint (4.38)

n(2N + 1)× n(2N + 1) (4.42)

where n is the dimension of the system and N the order of fragmentation. For instance, the
number of variables is 27 for a system dimension n = 2 and a discretization order of N = 4;
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as shown in the previous example. On the other hand, the approach in [Gouaisbaut and
Peaucelle, 2006b] results in a number of decision variables

1
2
Nn(1 + 2N)(Nn+ 1)

and a size of the principal LMI of
2Nn× 2Nn

For instance, the number of variables is 27 for a system dimension n = 2 and a discretization
order of N = 4; as shown in the previous example. The method of [Peaucelle et al., 2007]
also results in a larger number of decision matrices.

When solving LMI problems with interior point algorithms [Henrion, 2008; Nesterov and
Nemirovskii, 1994], the complexity (and thus the time of computation) of the algorithm
highly depend on the size of LMIs. Hence, the size of LMIs is an important criterium to
compare different methods. Actually, the LMI (4.38) can be reduced to a lower size by a
Schur complement (see Appendix D.4) which results in a LMI of size n(N + 1) × n(N + 1)
which is smaller than the LMI obtained in [Gouaisbaut and Peaucelle, 2006a].

4.6.2 Associated Relaxation

As for lemma 4.5.1, due to the multiple products between Lyapunov matrices P (ρ) and Ri
for i = 0, . . . , N − 1 and data matrices A,Ah and E, the linearization procedure is a difficult
task in the control synthesis problems. A relaxed version is provided in order to decouple
these terms by introducing a slack variable.

Lemma 4.6.4 System (4.23) is asymptotically stable for all h ∈ H◦1 and satisfies ||z||L2 ≤
γ||w||L2 if there exist a continuously differentiable matrix function P : Uρ → Sn++, a matrix
function X : Uρ → Rn×n, constant matrices Qi, Ri ∈ Sn++, i ∈ {0, . . . , N − 1} and a scalar
γ > 0 such that the LMI

−X(ρ)H U12(ρ) 0 X(ρ)T h̄R0 . . . h̄RN−1

? U22(ρ, ν) U23(ρ) 0 0 . . . 0
? ? −γI 0 0 . . . 0
? ? ? −P (ρ) −h̄R0 . . . −h̄RN−1

? ? ? ? −diag
i
Ri

 ≺ 0 (4.43)

holds for all (ρ, ν) ∈ Uρ × Uν and where

U22 =



U ′11 R0 0 0 . . . 0 0
? N

(1)
1 R1 0 . . . 0 0

? ? N
(1)
2 R2 0 0

. . . . . .
...

...
. . . RN−1 0

N (2) 0
? ? ? . . . 0 0 −γI


(4.44)
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U ′11 = ∂ρP (ρ)ρ̇− P (ρ) +Q0 −R0

N
(1)
i = −(1− iµN )Qi−1 + (1 + iµN )Qi −Ri−1 −Ri

N (2) = −(1− µ)QN−1 −RN−1

U12(ρ) =
[
P (ρ) +X(ρ)TA(ρ) 0 0 X(ρ)TAh(ρ) . . . 0 X(ρ)TE(ρ)

]
U23(ρ) =

[
C(ρ) 0 . . . 0 Ch(ρ) F (ρ)

]T
Proof : The proof is similar to the proof of Lemma 4.5.2. �

4.7 Simple Lyapunov-Krasovskii functional for systems with
delay uncertainty

We consider here LPV time-delay systems of the form

ẋ(t) = A(ρ)x(t) +A1
h(ρ)x(t− h(t)) +A2

h(ρ)x(t− hc(t)) + E(ρ)w(t)
z(t) = C(ρ)x(t) + C1

h(ρ)x(t− h(t)) + C2
h(ρ)x(t− hc(t)) + F (ρ)w(t)

(4.45)

where the delays h(t) and hc(t) are assumed to satisfy the relation hc(t) = h(t) + θ(t) where
θ(t) ∈ [−δ, δ], δ > 0. The problem addressed in this section is the development of a delay-
dependent test for a time-delay system involving two-delays which are related by an algebraic
equation. This problem arises when stabilization, observation or filtering of a time-delay
systems by a process (controller, observer or filter) involving a delay which is different from
the system is sought. In this problem the objectives can be:

1. Given hmax, find the maximal uncertainty bound δ for which the system remains stable

2. Given δ find the delay value hmax for which the system remains stable

When dealing with performances criterium such as H∞ level γ. Other combinations can be
considered:

1. Given hmax and γ, find the maximal uncertainty bound δ such that the LMI conditions
remain feasible

2. Given δ and γ, find the delay value hmax such that the LMI conditions remain feasible

3. Given hmax and δ, find the minimal L2 performances index γ for which the LMI condi-
tions remain feasible.

The following sections address the problem of finding a Lyapunov-Krasovskii functional cap-
turing both the stability/performances of system (4.45) and the algebraic equality hc(t) =
h(t) + θ(t). The last equality makes of this problem a new open problem which is has not
been addressed in the literature (to our best knowledge).
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4.7.1 Lyapunov-Krasovskii functional

The main idea in this problem is to capture both the maximal delay value for h but also
capture the fact that the relation hc(t) = h(t) + θ(t) exists with θ(t) ∈ [−δ, δ].

If a Lyapunov-Krasovskii functional of the form

V (xt, ẋt) = V1(xt) + V2(xt) + V3(xt) + V4(ẋt) + V5(ẋt)
V1(xt) = x(t)TPx(t)

V2(xt) =
∫ t

t−h(t)
x(θ)TQ1x(θ)dθ

V3(xt) =
∫ t

t−hc(t)
x(θ)TQ2x(θ)dθ

V4(ẋt) =
∫ 0

hmax

∫ t

t+θ
ẋ(η)TR1ẋ(η)dηdθ

V5(ẋt) =
∫ 0

hmax+δ

∫ t

t+θ
ẋ(η)TR2ẋ(η)dηdθ

(4.46)

were considered, it is clear that only the condition hcmax = hmax + δ would be taken into
account, but the ’global’ constraint h(t) = hc(t) + θ(t) would not. In such a case, the
delays would be considered as independent and only their maximal amplitude (i.e. hmax and
hmax+δ) would be mutually dependent. This shows that a new specific Lyapunov-Krasovskii
functional should be considered instead:

V (xt) = Vn(xt) + Vu(xt)
where

Vn(xt) = x(t)TP (ρ)x(t) +
∫ t

t−h(t)
x(s)TQ1x(s)ds+

∫ 0

−hmax

∫ t

t+β
ẋ(s)ThmaxR1x(s)dsdβ

Vu(xt) =
∫ t

t−hc(t)
x(s)TQ2x(s)ds+

∫ δ

−δ

∫ t

t+β−h(t)
ẋ(s)R2ẋ(s)dsdβ

(4.47)
The main difference compared to previous functionals is presence of the term last term of
Vu(xt) which introduces terms in t−h(t) + δ and t−h(t)− δ which can be bounded by terms
involving hc(t). This will be better explained in the proof of the following theorem:

Theorem 4.7.1 System (4.45) is delay-dependent stable with h(t) ∈ [0, hmax], hc(t) = hc(t)+
θ(t), θ(t) ∈ [−δ, δ], |ḣ(t)| < µ and |ḣc(t)| < µc such that ||z||L2 ≤ γ||w||L2 if there ex-
ists a continuously differentiable matrix function P : Uρ → Sn++ and symmetric matrices
Q1, Q2, R1, R2 � 0 and a scalar γ > 0 such that

Ψ11(ρ, ρ̇) P (ρ)Ah(ρ) +R1 P (ρ)E(ρ) hmaxA(ρ)TR1 A(ρ)TR2 C(ρ)T

? −(1− µ)(Q1 +Q2)−R1 0 hmaxAh(ρ)TR1 Ah(ρ)TR2 Ch(ρ)T

? ? −γI hmaxE(ρ)TR1 E(ρ)TR2 F (ρ)T

? ? ? −R1 0 0
? ? ? ? −(2δ)−1R2 0
? ? ? ? ? −γI


≺ 0

(4.48)
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

Ψ11(ρ, ρ̇) P (ρ)A1
h(ρ) +R1 P (ρ)A2

h(ρ) P (ρ)E(ρ) hmaxA(ρ)TR1 A(ρ)TR2 C(ρ)T

? Ψ22 (1− µ)R2/δ 0 hmaxA
1
h(ρ)TR1 A1

h(ρ)TR2 C1
h(ρ)T

? ? Ψ33 0 hmaxA
2
h(ρ)TR1 A2

h(ρ)TR2 C2
h(ρ)T

? ? ? −γI hmaxE(ρ)TR1 E(ρ)TR2 F (ρ)T

? ? ? 0 0 0 0
? ? ? ? −R1 0 0

? ? ? ? ? −R2

2δ
0

? ? ? ? ? ? −γI


≺ 0

(4.49)
hold for all ρ ∈ Uρ and ν = col(νi) ∈ Uν where

Ψ11(ρ, ν) = A(ρ)TP (ρ) + P (ρ)A(ρ) +Q1 +Q2 +
N∑
i=1

∂P

∂ρi
νi −R1

Ψ22 = −(1− µ)(Q1 +R2/δ)−R1

Ψ33 = −(1− µc)Q2 − (1− µ)R2/δ

Ah = A1
h +A2

h

Ch = C1
h + C2

h

Proof : Differentiating (4.47) along the trajectories solutions of the system (4.45) yields:

V̇n ≤ Y (t)T




Ψ11(ρ, ρ̇)−Q2 P (ρ)A1
h(ρ) +R1 P (ρ)A2

h(ρ) P (ρ)E(ρ)
? −(1− ḣ)Q1 −R1 0 0
? ? 0 0
? ? ? 0


+h2

max


A(ρ)T

A1
h(ρ)T

A2
h(ρ)T

E(ρ)T

R1

[
A(ρ) A1

h(ρ) A2
h(ρ) E(ρ)

]Y (t)

V̇u = x(t)TQ2x(t)− (1− ḣc)x(t− hc(t))TQ2x(t− hc(t)) + 2δẋ(t)TR2ẋ(t)

−(1− ḣ(t))
∫ t+δ−h(t)

t−δ−h(t)
ẋ(s)TR2ẋ(s)ds

(4.50)

where Ψ11(ρ, ρ̇) = A(ρ)TP (ρ)+P (ρ)A(ρ)+Q1 +Q2 +
∂P

∂ρ
ρ̇−R1 and Y (t) =


x(t)

x(t− h(t))
x(t− hc(t))

w(t)

.

Moreover, note that we have the inequality

−
∫ t+δ−h(t)

t−δ−h(t)
ẋ(s)TR2ẋ(s)ds ≤ − sgn(h(t)− hc(t))

∫ t−hc(t)

t−h(t)
ẋ(s)TR2ẋ(s)ds

≤ − 1
|h(t)− hc(t)|

(∫ t−hc(t)

t−h(t)
ẋ(s)ds

)T
R2

(∫ t−hc(t)

t−h(t)
ẋ(s)ds

)

≤ −1
δ

(∫ t−hc(t)

t−h(t)
ẋ(s)ds

)T
R2

(∫ t−hc(t)

t−h(t)
ẋ(s)ds

)
(4.51)
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This shows that two cases must be treated separately:

1. either when hc(ti) = h(ti) for some ti ≥ 0 and in this case x(ti− h(ti)) = x(ti− hc(ti)),
or

2. when hc(t) 6= h(t) for all t ≥ 0 and t 6= ti.

Case. 1: When hc(ti) = h(ti) the derivative of the Lyapunov-Krasovskii functional
reduces to

V̇ ≤ X(ti)T

 Ψ11(ρ, ρ̇) P (ρ)Ah(ρ) +R1 P (ρ)E(ρ)
? −(1− ḣ(ti))(Q1 +Q2) 0
? ? 0


+


 hmaxA(ρ)T hmaxA(ρ)T

hmaxAh(ρ)T hmaxAh(ρ)T

hmaxE(ρ)T hmaxE(ρ)T

[ R1 0
0 2δR2

] hmaxA(ρ)T hmaxA(ρ)T

hmaxAh(ρ)T hmaxAh(ρ)T

hmaxE(ρ)T hmaxE(ρ)T

T
X(ti)

where X(t) = col(x(t), x(t − h(t)), w(t)) and Ah(ρ) = A1
h(ρ) + A2

h(ρ). And finally, a Schur
complement yields LMI

X(ti)T



Ψ11(ρ, ρ̇) P (ρ)Ah(ρ) +R1 P (ρ)E(ρ) hmaxA(ρ)TR1 A(ρ)TR2

? −(1− ḣ(ti))(Q1 +Q2)−R1 0 hmaxAh(ρ)TR1 Ah(ρ)TR2

? ? 0 hmaxE(ρ)TR1 E(ρ)TR2

? ? ? −R1 0
? ? ? ? −(2δ)−1R2

X(ti) ≺ 0

Adding the input/output constraint

−γw(ti)Tw(ti) + γ−1z(ti)T z(ti) = −γw(ti)Tw(ti) + γ−1X(ti)T

 C(ρ)T

Ch(ρ)T

F (ρ)T

 C(ρ)T

Ch(ρ)T

F (ρ)T

T X(ti)

with Ch(ρ) = C1
h(ρ) + C2

h(ρ). A Schur complement leads to the final LMI for the case 1:



Ψ11(ρ, ρ̇) P (ρ)Ah(ρ) +R1 P (ρ)E(ρ) hmaxA(ρ)TR1 A(ρ)TR2 C(ρ)T

? −(1− ḣ(ti))(Q1 +Q2)−R1 0 hmaxAh(ρ)TR1 Ah(ρ)TR2 Ch(ρ)T

? ? −γI hmaxE(ρ)TR1 E(ρ)TR2 F (ρ)T

? ? ? −R1 0 0
? ? ? ? −(2δ)−1R2 0
? ? ? ? ? −γI


≺ 0
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Case. 2: When t ≥ 0 and t 6= ti then we have

V̇ ≤ Y (t)T




Ψ11(ρ, ρ̇) P (ρ)A1
h(ρ) +R1 P (ρ)A2

h(ρ) P (ρ)E(ρ)
? −(1− ḣ(t))Q1 −R1 0 0
? ? −(1− ḣc(t))Q2 0
? ? ? 0


+


A(ρ)T A(ρ)T

A1
h(ρ)T A1

h(ρ)T

A2
h(ρ)T A2

h(ρ)T

E(ρ)T E(ρ)T

[ hmaxR1 0
0 2δR2

] [
A(ρ) A1

h(ρ) A2
h(ρ) E(ρ)

A(ρ) Ah(ρ) A2
h(ρ) E(ρ)

]Y (t)

−(1− ḣ(t))
δ

Y (t)T


0 0 0 0
? R2 −R2 0
? ? R2 0
? ? ? 0

Y (t)

and this leads to

Ψ11(ρ, ρ̇) P (ρ)A1
h(ρ) +R1 P (ρ)A2

h(ρ) P (ρ)E(ρ) hmaxA(ρ)TR1 A(ρ)TR2

? Ψ22 (1− ḣ(t))R2/δ 0 hmaxA
1
h(ρ)TR1 A1

h(ρ)TR2

? ? Ψ33 0 hmaxA
2
h(ρ)TR1 A2

h(ρ)TR2

? ? ? 0 hmaxE(ρ)TR1 E(ρ)TR2

? ? ? 0 0 0
? ? ? ? −R1 0
? ? ? ? ? −(2δ)−1R2


≺ 0

where Ψ22 = −(1− ḣ(t))Q1 − (1− ḣ)R2/δ −R1 and Ψ33 = −(1− ḣc(t))Q2 − (1− ḣ(t))R2/δ.
Finally, adding the same input/ouput constraint as for the case 1, yields

Ψ11(ρ, ρ̇) P (ρ)A1
h(ρ) +R1 P (ρ)A2

h(ρ) P (ρ)E(ρ) hmaxA(ρ)TR1 A(ρ)TR2 C(ρ)T

? Ψ22 (1− ḣ(t))R2/δ 0 hmaxA
1
h(ρ)TR1 A1

h(ρ)TR2 C1
h(ρ)T

? ? Ψ33 0 hmaxA
2
h(ρ)TR1 A2

h(ρ)TR2 C2
h(ρ)T

? ? ? −γI hmaxE(ρ)TR1 E(ρ)TR2 F (ρ)T

? ? ? 0 0 0 0
? ? ? ? −R1 0 0
? ? ? ? ? −(2δ)−1R2 0
? ? ? ? ? ? −γI


≺ 0

Bounding −(1 − ḣ(t)) ≤ −(1 − µ) and −(1 − ḣ(t)) ≤ −(1 − µc) leads to the proposed result.
Finally considering that ρ̇ belongs to the polytope hull(Uν), the dependence on ρ̇ is relaxed. �

4.7.2 Associated Relaxation

Similarly as previously, we provide a relaxed version of the results.
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Theorem 4.7.2 System (4.45) is delay-dependent stable with h(t) ∈ [0, hmax], hc(t) = hc(t)+
θ(t), θ(t) ∈ [−δ, δ], |ḣ(t)| < µ and |ḣc(t)| < µc such that ||z||L2 ≤ γ||w||L2 if there ex-
ists a continuously differentiable matrix function P : Uρ → Sn++ and symmetric matrices
Q1, Q2, R1, R2 � 0, a matrix X : Uρ → Rn×n and a scalar γ > 0 such that

−X(ρ)H P (ρ) +X(ρ)TA(ρ) X(ρ)TAh(ρ) X(ρ)TE(ρ) 0 X(ρ)T hmaxR1 R2

? Θ11(ρ, ν) R1 0 C(ρ)T 0 0 0
? ? Θ22 0 Ch(ρ)T 0 0 0
? ? ? −γI F (ρ)T 0 0 0
? ? ? ? −γI 0 0 0
? ? ? ? ? −P (ρ) −hmaxR1 −R2

? ? ? ? ? ? −R1 0

? ? ? ? ? ? ? −R2

2δ


≺ 0

and [
Π11(ρ, ν) Π12(ρ)

? Π22(ρ)

]
≺ 0

hold for all ρ ∈ Uρ and where

Π11(ρ, ν) =


−X(ρ)H P (ρ) +X(ρ)TA(ρ) X(ρ)TA1

h(ρ) X(ρ)TA2
h(ρ) X(ρ)TE(ρ)

? Θ11(ρ, ν) R1 0 0
? ? Ψ22 (1− µ)R2/δ 0
? ? ? Ψ33 0
? ? ? ? −γI



Π12(ρ) =



0 X(ρ)T hmaxR1 R2

C(ρ)T 0 0 0
C1
h(ρ)T 0 0 0

C2
h(ρ)T 0 0 0
F (ρ)T 0 0 0

 Π22(ρ) =


−γI 0 0 0
? −P (ρ) −hmaxR1 −R2

? ? −R1 0

? ? ? −R2

2δ



Θ11(ρ, ν) = −P (ρ) +Q1 +Q2 +
N∑
i=1

∂P

∂ρi
νi −R1 Θ22 = −(1− µ)(Q1 +Q2)−R1

Ψ22 = −(1− µ)(Q1 +R2/δ)−R1 Ψ33 = −(1− µc)Q2 − (1− µ)R2/δ

Ah = A1
h +A2

h Ch = C1
h + C2

h

Proof : The proof is similar as for other relaxations. �

4.8 Chapter Conclusion

In this chapter, preliminary results which will be used in the remaining of the thesis have been
presented. First of all, fundamental definitions for the set of the delay and the parameters
have been detailed and explained.
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Second, a method to relax polynomially parameter dependent LMIs have been provided.
It has the benefit of turning the initial LMI condition into a new LMI condition whose
dependence is linear only with respect to the parameters, at the expense of an increase of the
computational complexity through the addition of a ’slack’ variable.

Then a novel relaxation for concave nonlinearity has been presented which finds its interest
where the cone complementary algorithm cannot apply, i.e. when the involved matrices are
not constant. This method will be applied successfully in Section 6.1.3.

The following section has been devoted to the computation of the bounds on parameter
derivatives in the polytopic case and allows to deal easily with robust stability and synthesis
in the LPV polytopic approach.

A simple Lyapunov-Krasovskii has been introduced with its associated relaxation. This
functional has proven its efficiency despite of its simplicity and this has motivated its use in
this thesis. The associated relaxation finds its interest in the design problems which greatly
simplifies the problem.

In order to improve latter results based on a simple functional, the following section
has been devoted to a discretized version of this functional where the decision matrices are
functions. Using this ’complete’ version it is possible to refine the results until reach theoretical
delay margin. Its associated relaxation allows to transfer the quality of the results from the
stability analysis to design purposes

Finally, a new Lyapunov-Krasovskii functional has been provided in order to analyze the
stability of a system with two delays which are coupled through an algebraic inequality. Such
case occurs when a time-delay systems is observed or controlled by an observer or a controller
with memory but implementing a delay different from the system one. This will be used in
Sections and 5.1.2 and 6.1.6.



Chapter 5

Observation and Filtering of LPV
time-delay systems

O
ne of the objectives of systems theory is to provide tools on observation and filter-
ing of systems. The objectives of observation and filtering is to estimate unmeasured
signals or clean signals from eventual noises and/or disturbances provided that a

model of the system is available. However, conceptual differences remain between the notion
of filters and observers and will be emphasized in the introduction of this chapter.

An observer aims at estimating signals of a system by finding observer matrices such
that the state estimation error is asymptotically stable. This means that, for any initial
conditions of the observer, the autonomous observation error will tend to zero, in other words,
the autonomous linear differential equation governing the observation error is asymptotically
(exponentially) stable. Moreover, it is important to note that a good observer should be able
to observe whatever the value of the state of the system is and hence the observation error
should be independent of the system state. However, this can be handled in the certain case
only since in the uncertain case the observation error depends on the current state. However,
it is possible to construct nonlinear observers which makes the error converge to zero even if
the state is nonzero [Boutayeb and Darouach, 2003; Gu and Poon, 2001]. As a final remark,
the use of observers is better suited for control purposes since the observer estimates the
system state, allowing the use of a state-feedback.

On the other hand, the filtering of system does not require any stability of a ’filtering
error’ but aims at guaranteeing a minimal attenuation, in some norm sense, of a residual
computed from the difference of a desired estimated signal and the estimate under action of
disturbances. In this case, the quality of the estimation would depend on the current state of
the system.

At first sight, it seems that filtering is less relevant than observation but actually each way has
its own benefits and drawbacks. While many observation approaches work well for LTI and
certain systems, when dealing with LPV systems, the problem is far more difficult. Moreover,
the class of systems that can be treated by observation theories is not as wide as for filtering
ones. Filtering approaches can address a large variety of systems and the resulting problem is
generally more simple to handle and for this reason, only filtering of LPV systems is generally
provided in the literature [Mohammadpour and Grigoriadis, 2006a,b, 2007a,b, 2008].

When dealing with time-delay systems, the diversity of observers and filters is slightly

183
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larger than for finite-dimensional linear dynamical systems. Indeed, it is possible to consider
the additional information on the delay when it is available. This gives rise to the notion of
filters/observers with memory and memoryless observers/filters. It may seems uninteresting
to design memoryless observers and filters but actually, for two reasons, it is important to
consider them. First of all, implementing a delay in the observer/filter needs memory space
which can be incompatible with embedded applications; secondly, the real-time estimation
of the value of the current delay of a physical system remains a challenging open problem
[Belkoura et al., 2007, 2008; Drakunov et al., 2006].

In this chapter, we will be interested in both observation and filtering of LPV time-delay
systems. Observers that will be designed for the LPV case are based on an algebraic approach,
initially developed for LTI time-delay systems [Darouach, 2001, 2005]. Reduced-order as well
as full-order observers will be designed for LPV time-delay systems. Necessary and sufficient
conditions for their existence will be provided in terms of algebraic matrix equalities and
the stability of a functional differential equation. The computation of observer matrices will
be performed through the computation of solutions of LMIs. An example of filter design
for uncertain LPV systems will also be introduced and is a generalization of the method
presented in [Tuan et al., 2001b, 2003] to time-delay systems and it will be shown that
interesting performances are achieved.

It is important to point out that, in both filtering and observation case, only memory
processes with exact delay value is addressed and generally no robustness analysis is given in
presence of uncertainty on implemented delay. In [Sename and Briat, 2006; Verriest et al.,
2002], a robustness analysis is performed a posteriori in the case of constant delay according to
an application of the Rouché’s theorem (see Section 3.2.2 and Appendix E.6). In this section,
robust filtering/observation with respect to delay uncertainty and parametric uncertainties
will be addressed and therefore the designed processes will remain stable even in presence of
(time-varying) delay-uncertainty provided that the delay implementation error remains in a
ball whose radius is a priori fixed or maximized by an optimization algorithm based on LMIs.
This problem has never been addressed in the literature and is one of the main points on this
section. In [Briat et al., 2007c], an Luenberger observer has been developed for LPV time-
delay systems using a free weighting approach [He et al., 2004]; the results are not presented
here since we will focus on more interesting observer synthesis techniques.

Hereunder, a non exhaustive bibliography on observation and filtering of time-delay systems
and LPV systems is given for informational purpose:

• For pioneering works on observation of delay systems see [Bhat and Koivo, 1976; Fat-
touh, 2000; Fattouh et al., 1998; Gressang and Lamont, 1975; H.-Hashemi and Leondes,
1979; Lee and Olbrot, 1981; Ogunnaike, 1981; Pearson and Fiagbedzi, 1989; Sename,
2001]

• Concerning observers for nonlinear delay systems see [Germani et al., 1998, 1999, 2001,
2002; Pepe, 2001]

• Recent works on observation of linear time-delay systems [Chen, 2007; Koenig and Marx,
2004; Koenig et al., 2004, 2006; Picard and Lafay, 1996; Picard et al., 1996; Sename,
1997; Sename and Briat, 2006; Sename et al., 2001; Verriest et al., 2002]
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• Recent works on the filtering of time-delay systems [DeSouza et al., 1999; Fridman et al.,
2003a,b; Zhang and Han, 2008]

• Filtering of LPV systems [Borges and Peres, 2006; Tuan et al., 2001b, 2003]

• Filters for LPV time-delay systems [Mohammadpour and Grigoriadis, 2006a,b, 2007a,
2008; Wu et al., 2006]

5.1 Observation of Unperturbed LPV Time-Delay Systems

This section is devoted to the design of observers and filters for LPV time-delay systems with-
out uncertainties. Several approaches will be provided depending on the type of filter/observer
(with or without memory) and the knowledge of the delay (exactly known, approximately
known and unknown).

The observers designed in this section are based on the extension to the LPV case of the
method of Darouach [2001, 2005]. Throughout this section on observers the following class of
LPV time-delay system will be considered:

ẋ(t) = A(ρ)x(t) +Ah(ρ)x(t− h(t)) +B(ρ)u(t) + E(ρ)w(t)
z(t) = Tx(t)
y(t) = Cx(t)

(5.1)

where x ∈ Rn, y ∈ Rm, u ∈ Rp, w ∈ Rq and z ∈ Rr are respectively the system state, the
system control input, the system measurements, the system exogenous inputs and the signal
to be estimated. In this framework, the observer aims at estimating as close as possible the
signal z(t) which is a linear combination of the state variables of the system. The matrix T
is assumed to have full row-rank and whenever rank(T ) = n then T = I. The delay h(t) is
assumed to belong to the set H ◦

1 recalled below:

H ◦
1 :=

{
h ∈ C1(R+, [0, hmax]) : |ḣ| < µ

}
The corresponding general observer is governed by the following expressions:

ξ̇(t) = M0(ρ)ξ(t) +Mh(ρ)ξ(t− d(t)) +N0(ρ)y(t) +Nh(ρ)y(t− d(t)) + S(ρ)u(t)
ẑ(t) = ξ(t) +Hy(t)

(5.2)

where ξ ∈ Rr, ẑ ∈ Rr are respectively the observer state and the estimated output. The
delay d(t) is unconstrained at this stage and precisions will be given in each forthcoming
sections depending on the context and on the type of observer considered. The matrices
M0(ρ), Mh(ρ), N0(ρ), MH(ρ) and H are matrices of appropriate dimensions which define the
observer. Note that H is a constant matrix and ẑ is a linear combination of the observer state
and the measurement vector y.

It is worth mentioning that when dealing with such an observer, it is difficult to consider
a disturbance term on the measured output since during the design procedure, the measured
output needs to be differentiated. If it would depend on the disturbance w, then a term ẇ
would appear in the equations and then the disturbance vector should be augmented in order
to contain both w and ẇ (e.g. w̃ = col(w, ẇ)). This is a straightforward generalization of the
current method and is then not explored in the thesis.
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Definition 5.1.1 If r = n then the observer is called full-order observer while if T = Tr ∈
Rr×n such as rank(Tr) = r < n then the observer is called reduced-order observer.

The aim of the observer is to decouple the system state from the error e(t) = z(t) − ẑ(t) as
in [Darouach, 2001], that is we should have an equation of the form

ė(t) = f(et) + g(η(t))

where f(·) is a functional and g(·) is a function gathering other signals (such as disturbances)
excluding the state of the system. In this case, it is clear that if f(·) describes a stable vec-
tor field then the observation error has stable dynamics. Moreover, for every trajectories of
the system, the error will have the same behavior in terms of rate of convergence, response
time. . . We will see that this ideal behavior can be only be achieved when the delay imple-
mented in the observer is identical to the delay involved in the system and when the system
is perfectly known (no uncertainties). Therefore such a behavior cannot be obtained from a
practical point of view.

It is important to note that when the observation error cannot be isolated from the state
of the system, only stable LPV time-delay system can be observed. Indeed, suppose that the
error obeys the following dynamical model

ė(t) = f(et) + g(xt) + h(η(t))

where f(·), g(·) are functionals and h(·) is a function gathering other signals. From this
expression even if f(·) is a stable vector field, then the error will remains bounded around 0
if and only if the other terms are bounded too (BIBO stability). However, if the system is
unstable then we might have g(xt) → +∞ as t → +∞ and hence e(t) → +∞ as t → +∞.
Such a behavior arises when dealing with observer involving a delay which is different from
the system one or using memoryless observers. An immediate choice would be to consider the
term g(xt) as a disturbance term and in many frameworks it would be correct, for instance in
a pure stabilization or α-stabilization problems where it is assumed that the system is stable
or controlled (i.e. x(t) does not tends to +∞ as t goes to ∞).

In the H∞ problem where an observer minimizing the influence of the disturbances onto the
observation error (in the L2 sense) is sought, we cope with two possibilities:

1. either the vector of disturbances is augmented to contain both the initial disturbances
vector η(t) and the term g(xt) but in this case a loss of information occurs since the
relation between the disturbances η(t) and x(t) is not taken into account; or

2. the system is augmented in order to contain both the state of the system and the
observation error and in this case, the H∞ analysis/synthesis is more tight.

This is the latter approach which will be considered throughout this section on observers.

5.1.1 Observer with exact delay value - simple Lyapunov-Krasovskii func-
tional case

In this section, the problem of observation of a LPV time-delay system with an observer
involving a delay identical to the system one is solved; see [Darouach, 2001] for the LTI case.
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Even if this observer may be not implementable, the design approach is interesting and can be
extended to implementable cases. The observer to be designed is then given by the equations:

ξ̇(t) = M0(ρ)ξ(t) +Mh(ρ)ξ(t− h(t)) +N0(ρ)y(t) +Nh(ρ)y(t− h(t)) + S(ρ)u(t)
ẑ(t) = ξ(t) +Hy(t)

(5.3)

where ξ ∈ Rr, ẑ ∈ Rr are respectively the observer state and the estimated output. The
following theorem provides a necessary and sufficient condition to the existence of such an
observer.

Theorem 5.1.2 There exists an LPV/H∞ observer with memory (5.3) for system of the
form (5.1) if and only if the following statements hold:

1. The autonomous error dynamical expression ė(t) = M0(ρ)e(t) + Mh(ρ)e(t − h(t)) is
asymptotically stable where e(t) = z(t)− ẑ(t) and h ∈H ◦

1 .

2. (T −HC)A(ρ)−N0(ρ)C −M0(ρ)(T −HC) = 0

3. (T −HC)Ah(ρ)−Nh(ρ)C −Mh(ρ)(T −HC) = 0

4. (T −HC)B(ρ)− S(ρ) = 0

5. The inequality ||e||L2 ≤ γ||w||L2 holds for some γ > 0

Proof : First let e(t) = z(t)− ẑ(t) be the estimation error. The latter equality reduces to

e(t) = (T −HC)x(t)− ξ(t) (5.4)

according to the definition of ẑ(t) in (5.3). Computing the time derivative of e(t) we get

ė(t) = (T −HC)ẋ(t)− ξ̇(t)
= (T −HC) [A(ρ)x(t) +Ah(ρ)x(t− h(t)) +B(ρ)u(t) + E(ρ)w(t)]
− [M0(ρ)ξ(t) +Mh(ρ)ξ(t− h(t)) +N0(ρ)y(t) +Nh(ρ)y(t− h(t))
+S(ρ)u(t)]

= [(T −HC)A(ρ)−N0(ρ)C]x(t) + [(T −HC)Ah(ρ)−Nh(ρ)C]x(t− h(t))
+[(T −HC)B(ρ)− S(ρ)]u(t)−M0(ρ)ξ(t)−Mh(ρ)ξ(t− h(t))
+(T −HC)E(ρ)w(t)

Using ξ(t) = (T −HC)x(t)− e(t) obtained from (5.4) we get

ė(t) = [(T −HC)A(ρ)−N0(ρ)C −M0(ρ)(T −HC)]x(t)
+[(T −HC)Ah(ρ)−Nh(ρ)C −Mh(ρ)(T −HC)]x(t− h(t))
+[(T −HC)B(ρ)− S(ρ)]u(t) +M0(ρ)e(t) +Mh(ρ)e(t− h(t))
+(T −HC)E(ρ)w(t)

According to the discussion at the beginning of Section 5.1, we wish to obtain an error e whose
dynamical model is independent of the the control input, the current and delayed state of the
system. Hence by imposing

(T −HC)A(ρ)x(t)−N0(ρ)C −M0(ρ)(T −HC) = 0 (5.5)
(T −HC)Ah(ρ)x(t− h(t))−Nh(ρ)C −Mh(ρ)(T −HC) = 0 (5.6)

(T −HC)B(ρ)− S(ρ) = 0 (5.7)
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the error dynamical model reduces to

ė(t) = M0(ρ)e(t) +Mh(ρ)e(t− h(t)) + (T −HC)E(ρ)w(t) (5.8)

and is actually independent of the system state and control input. Finally, if the latter dynami-
cal model defines stable dynamics then it is possible to find a γ > 0 such that ||e||L2 ≤ γ||w||L2.
This concludes the proof. �

A theorem providing necessary and sufficient conditions for the existence of an observer of
the form (5.4) for systems (5.1) has been developed. It is worth noting that such a design can
be extended to H2, L∞-L∞ problems and so on. However, such a result is not constructive
and then Theorem 5.1.2 cannot be directly used for synthesis purposes. It can be divided in
two parts:

1. the first one involves nonlinear algebraic equations (statements 2 to 4) which are ’static’

2. the second part involves dynamic related conditions related to the stability of a system
and its worst-case energy gain

The first step of the solution is to explicitly define the set of all matrices satisfying statements
2 to 5. This is performed in the following lemma where it considered that the matrix H(ρ)
depends on the parameters while it should be constant. This condition will be relaxed when
the LMI conditions for gain computation will be provided.

Lemma 5.1.3 There exists a solution M0(ρ),Mh(ρ), N0(ρ), Nh(ρ), S(ρ), H(ρ) to equations
(5.5), (5.6) and (5.7) if and only if the following rank equality holds

rank



T 0
0 T
C 0
0 C

CA(ρ) CAh(ρ)
TA(ρ) TAh(ρ)

 = rank


T 0
0 T
C 0
0 C

CA(ρ) CAh(ρ)

 (5.9)

for all ρ ∈ Uρ.

Proof : Equation (5.7) is explicit since it suffices to find H then S is obtained by the
explicit expression

S(ρ) = (T −HC)B(ρ)

On the other hand, the two equalities (5.5) and (5.6) are nonlinear due to terms M0(ρ)(T −
HC) and Mh(ρ)(T −HC). However rewriting them into the form

(T −H(ρ)C)A(ρ)x(t) + (M0(ρ)H(ρ)−N0(ρ))C −M0(ρ)T = 0
(T −H(ρ)C)Ah(ρ)x(t) + (Mh(ρ)H(ρ)−Nh(ρ))C −Mh(ρ)T = 0

shows that the change of variable

K0(ρ) = N0(ρ)−M0(ρ)H(ρ)
Kh(ρ) = Nh(ρ)−Mh(ρ)H(ρ)

(5.10)
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linearizes the expressions into

(T −H(ρ)C)A(ρ)x(t)−K0(ρ)C −M0(ρ)T = 0
(T −H(ρ)C)Ah(ρ)x(t)−Kh(ρ)C −Mh(ρ)T = 0

(5.11)

It is important to note that the change of variable is bijective and hence no conservatism
is introduced. Indeed, the set of matrices (M0(ρ),Mh(ρ),K0(ρ),Kh(ρ), H(ρ)) defines in a
unique way the set (M0(ρ),Mh(ρ), N0(ρ), Nh(ρ), H(ρ)) due to the change of variable (5.10).
Rewriting equalities (5.11) in a more compact matrix expression leads to

∇(ρ)Γ(ρ) = Λ(ρ)

where

∇(ρ) =
[
M0(ρ) Mh(ρ) K0(ρ) Kh(ρ) H(ρ)

]
: Uρ → Rr×2r+3m

Γ(ρ) =



T 0
0 T
C 0
0 C

CA(ρ) CAh(ρ)

 Λ(ρ) =
[
TA(ρ) TAh(ρ)

]

According to [Darouach, 2001; Koenig et al., 2006; Lancaster and Tismenetsky, 1985; Mitra
and Mitra, 1971], there exist solutions with H(ρ) to this expression if and only if

rank
[

Γ(ρ)
Λ(ρ)

]
= rank Γ(ρ)

which is exactly (5.9). This concludes the proof. �

Whenever Lemma 5.1.3 is satisfied then it is confirmed that there exists at least one solution
to equations (5.5), (5.6) and (5.7). The number of solution is either 1 or is infinite. We are
interested in the case of an infinite number of solutions since it is not guaranteed that the
unique solution gives a stable error dynamical model.

Remark 5.1.4 A sufficient condition for an infinite number of solutions is that the number
of unknown variables (the number of coefficients in the unknown matrices) exceeds the number
of equations (the number of coefficients in matrices of dimension equals to the order of the
observer). Hence, it suffices that the following condition

2 dim(z) dim(x) ≤ dim(z)2 + 3 dim(z) dim(y) (5.12)

holds. From this inequality it is possible to give more relevant conditions for the existence of
an infinite number of solutions, indeed we must have

dim(y) ≥ 2
3

(dim(x)− dim(z))

dim(z) ≥ dim(x)− 3
2

dim(y)
(5.13)
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The first inequality provides a lower bound on the number of sensors that must be used for
a given system dimension and observer order. The second inequality provides the minimal
observer order that can be used for some given system dimension and output dimension. It
is worth noting that the problem may be unsolvable since no consideration on the stability of
the error is taken into account in these conditions.

When the number of solution is infinite, the objective (and interest) is to parametrize the set
of solution. The following lemma provides such a parametrization provided that lemma 5.1.3
is satisfied.

Lemma 5.1.5 Under conditions of Theorem 5.1.3, the observer matrices are given by the
expressions M0 = Θ − LΞ, Mh = Υ − LΩ and H = Φ − LΨ where L is a free matrix of
appropriate dimensions and

Θ = TAU − ΛΓ+∆0

[
C
CA

]
U Ξ = −(I − ΓΓ+)∆0

[
C
CA

]
U

Υ = TAhU − ΛΓ+∆h

[
C
CAh

]
U Ω = −(I − ΓΓ+)∆h

[
C
CAh

]
U

Φ = ΛΓ+∆H Ψ = (I − ΓΓ+)∆H

N0 = K0 +M0H Nh = Kh +MhH
F = T −HC S = FB

where U is defined such that [
T
T̄

]−1

=
[
U V

]
, T̄ is a full column rank matrix such that

[
T
T̄

]
is nonsingular and

∆0 =


0 0
0 0
Im 0
0 0
0 Im

∆h =


0 0
0 0
0 0
Im 0
0 Im

∆H =


0
0
0
0
Im


Proof : Provided that lemma 5.1.3 is verified, all the solutions of equation ∇(ρ)Γ(ρ) = Λ(ρ)
are given by the expression (see Appendix A.8 or [Darouach, 2001; Skelton et al., 1997]):

∇s(ρ) = Λ(ρ)Γ+(ρ)− L(ρ)(I − Γ(ρ)Γ+(ρ))

where Γ+ is the Moore-Penrose pseudoinverse of Γ and L(ρ) is a free variable giving the
parametrization of the set of solutions which will be referred to as the generalized observer
gain. It is of interest to express these relations as functions of the generalized gain L(ρ) which
leads to [

K0(ρ) H(ρ)
]

= ∇s(ρ)∆0[
Kh(ρ) H(ρ)

]
= ∇s(ρ)∆h

H(ρ) = ∇s(ρ)∆H
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where ∆0, ∆h and ∆H are defined above. Hence (5.5) and (5.6) can be rewritten into the
form:

M0(ρ)T = TA(ρ)−
[
K0(ρ) H(ρ)

] [ C
CA(ρ)

]
Mh(ρ)T = TAh(ρ)−

[
Kh(ρ) H(ρ)

] [ C
CAh(ρ)

]
Since T is a full row rank matrix then there exists a full row rank matrix T̄ such that

det
[
T
T̄

]
6= 0

Hence the latter matrix is invertible and its inverse is denoted by
[
U V

]
. Then by right

multiplying expressions (5.14) and (5.14) by
[
U V

]
we get

M0(ρ) = TA(ρ)U −
[
K0(ρ) H(ρ)

] [ C
CA(ρ)

]
U

Mh(ρ) = TAh(ρ)U −
[
Kh(ρ) H(ρ)

] [ C
CAh(ρ)

]
U

which are explicit formulae for observer matrices M0(ρ) and Mh(ρ). Hence M0(ρ) = Θ(ρ)−
L(ρ)Ξ(ρ), Mh(ρ) = Υ(ρ) − L(ρ)Ω(ρ) and H(ρ) = Φ(ρ) − L(ρ)Ψ(ρ) with matrices defined in
theorem 5.1.5. This concludes the proof. �

The problem of finding five distinct matrices (M0(·), Mh(·), N0(·), Nh(·), H(ρ)) under the
algebraic equality constraints (5.5), (5.6) and (5.7) has been turned into a problem of finding
a free ’generalized’ gain L(ρ) which parametrizes the set of all solutions to equations (5.5),
(5.6) and (5.7).

This transformation is the keypoint of this algebraic approach and makes the final problem
to be the determination of a ’good’ generalized gain. It is clear that some elements in the set
of all observer matrices would give unstable error dynamics. Hence a ’good’ choice is synonym
to a choice giving good convergence properties, good disturbances rejection. We have chosen
in this thesis to consider the L2-induced norm of the transfer from the disturbances w(t) to
the observation error e(t) as a criterium to minimize for the choice of L(ρ) (i.e. we aim at
finding L(ρ) such that ||e||L2 ≤ γ||e||L2 where γ > 0 is as small as possible). It is clear that
other performances criteria could be used such as H2 or L∞ induced norm. Such a search
is difficult to perform analytically and it will be shown a bit later that such an optimization
problem can be cast as an SDP.

Now noting that by considering lemma 5.1.5 the state estimation error dynamics are
governed by the expression

ė(t) = (Θ(ρ)− L(ρ)Ξ(ρ))e(t) + (Υ(ρ)− L(ρ)Ω(ρ))eh(t) + FE(ρ)w(t) (5.14)

with F = T −HC = T − (Φ− LΨ)C.

It is important to point out that if FE = 0 then the observer totally decouples the state
estimation error e from the exogenous inputs w and thus the state estimation error is au-
tonomous. Observers having this property are called unknown input observers and some
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additional material can be found in [Koenig and Marx, 2004; Koenig et al., 2004; Sename,
1997; Sename et al., 2001] and references therein.

In the following we will consider that FE 6= 0 and the objective is to minimize the impact
of the disturbances w(t) onto the error e(t) (in the L2 sense) by an appropriate choice of
the matrix L(ρ). Note that if there exists L(ρ) such that ||FE|| = 0 or is close to 0, the
algorithms would find it out.

Finally, according to the latter results on the family of observers with infinite cardinal, the
following theorem provides a constructive sufficient condition on the existence of an optimal
observer minimizing the L2-induced norm of the transfer from w(t) to e(t):

Theorem 5.1.6 There exists a parameter dependent observer (5.3) for LPV time-delay sys-
tem (5.1) such that Theorem 5.1.2 is satisfied for all h ∈ H ◦

1 if there exist a continuously
differentiable matrix function P : Uρ → Sr++, a matrix function Z : Uρ → Rr×(2r+3m), con-
stant matrices Q,R ∈ Sr++, X ∈ Rr×r, H̄ ∈ Rr×m and a positive scalar γ > 0 such that the
following matrix inequality

−(X +XT ) ? ? ? ? ? ?
U21(ρ) U22(ρ, ν) ? ? ? ? ?
U31(ρ) R −Qµ −R ? ? ? ?
U41 0 0 −γIq ? ? ?
0 Ir 0 0 −γIr ? ?
X 0 0 0 0 −P (ρ) ?

hmaxR 0 0 0 0 −hmaxR −R


≺ 0 (5.15)

holds for all (ρ, ν) ∈ Uρ× Uν with

U21(ρ) = Θ(ρ)TX − Ξ(ρ)T L̄(ρ)T + P (ρ)
U31(ρ) = Υ(ρ)TX − Ω(ρ)T L̄(ρ)T

U22(ρ, ν) =
∂P (ρ)
∂ρ

− P (ρ) +Q−R

U41(ρ) = (ρ)E(ρ)T (T TX − CT H̄T )

and
L̄(ρ) = (XTΦ(ρ)− H̄)Ψ(ρ)+ + Z(ρ)(I −Ψ(ρ)Ψ(ρ)+) (5.16)

Moreover, the gain is given by L(ρ) = X−T L̄(ρ) and we have ||e||L2 < γ||w||L2

Proof : Since the dynamical model of the observation error is a LPV time-delay system,
in order to derive constructive sufficient conditions for its stability, it is possible to consider
Lemma 4.5.2 which consider such systems by providing a relaxation to the simple Lyapunov-
Krasovskii functional. Substituting the model of the estimation error (5.14) into LMI of
Lemma 4.5.2 where the matrices C, Ch and F are respectively set to I, 0 and 0 (in order to
minimize the impact of the disturbances w onto the observation error e only) leads to

−(X +XT ) ? ? ? ? ? ?
V21(ρ) V22(ρ, ν) ? ? ? ? ?
V31 R −Qµ −R ? ? ? ?
V41 0 0 −γIq ? ? ?
0 Ir 0 0 −γIr ? ?
X 0 0 0 0 −P (ρ) ?

hmaxR 0 0 0 0 −hmaxR −R


≺ 0
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with

V21(ρ) = (Θ(ρ)− L(ρ)Ξ(ρ))TX + P (ρ)
V31(ρ) = V31(ρ) = (Υ(ρ)− L(ρ)Ω(ρ))TX
V41 = E(ρ)T [T − (Φ(ρ)− L(ρ)Ψ(ρ))C]TX

V22(ρ, ν) =
∂P

∂ρ
− P (ρ) +Q−R

By considering the change of variable L̄(ρ) = XTL(ρ), the problem is linearized and results
in the following LMI:

−(X +XT ) ? ? ? ? ? ?
W21(ρ) V22(ρ, ν) ? ? ? ? ?
W31(ρ) R −Qµ −R ? ? ? ?
W41(ρ) 0 0 −γIq ? ? ?

0 Ir 0 0 −γIr ? ?
X 0 0 0 0 −P (ρ) ?

hmaxR 0 0 0 0 −hmaxR −R


≺ 0 (5.17)

with

W21(ρ) = Θ(ρ)TX − Ξ(ρ)T L̄(ρ)T + P (ρ)
W31(ρ) = V31(ρ) = Υ(ρ)TX − Ω(ρ)T L̄(ρ)T

W41 = E(ρ)T [XT (T − Φ(ρ)C) + L̄(ρ)Ψ(ρ)C]T

Actually the problem is still unsolved since in the reconstruction of the observer, the matrix H
may depend on ρ. Indeed, in the definition of the observer (5.2), H is a constant matrix but
in the construction procedure provided in Lemma 5.1.5, H is allowed to be parameter varying
which is an aberrant result. Hence, an extra constraint is needed in order to enforce H as
a constant matrix while using Lemma 5.1.5. This is developed in the following. Since from
lemma 5.1.5, H satisfies the relation

H = Φ(ρ)− L(ρ)Ψ(ρ) (5.18)

which implies

L(ρ)Ψ(ρ) = Φ(ρ)−H
L̄(ρ)Ψ(ρ) = XTΦ(ρ)− H̄

with H̄ = XTH, L̄(ρ) = XTL(ρ) and since Ψ(ρ) is a full column rank matrix then the solution
of the equality is given by

L̄(ρ) = (XTΦ(ρ)− H̄)Ψ(ρ)+ + Z(ρ)(I −Ψ(ρ)Ψ(ρ)+) (5.19)

for any Z(ρ) of appropriate dimensions (see Appendix A.8). This expression will guaran-
tee that for any matrix Z(ρ), the resulting H will be parameter independent. Moreover by
replacing the new expression of L̄ into the expressions

XTΘ(ρ)− L̄(ρ)Ξ(ρ)
XTΥ(ρ)− L̄(ρ)Ω(ρ)
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of LMI (5.17) then we ensure that H is a constant in the expression of matrices M0(ρ) and
Mh(ρ). Finally, the problem reformulated in a LMI optimization problem (5.15) where the
matrix Z(ρ) is the new parametrizing (decision) matrix. �

Remark 5.1.7 It is important to note that the choice of the structure of the matrices P (ρ)
and Z(ρ) is crucial in such a problem. Actually, according to [Apkarian and Adams, 1998],
the idea is to ’mimic’ the dependence of the system on the parameters but no complete theory
is available to choose the structure of parameter dependent matrices.

On the other hand, it is possible to derive a detectability test by eliminating the matrix
Z(ρ) from (5.15) using the projection lemma (see Appendix D.18). However, this test will
only provide a sufficient optimal condition which is independent of the controller. Following
Appendix A.9, it is possible to construct an optimal gain Z(ρ) from the existence condition
obtained using the projection lemma. It is important to notice that the the optimal gain is
non-unique according to Appendix A.9. The resulting controller may depend on the derivative
of the parameters making the observer non-implementable in practice.

Finally, the analysis of the detectability of the system for given structure of P (ρ) and Z(ρ)
is a difficult problem due to the time-varying nature of the parameters and the delay. Hence,
no criteria as rank conditions are allowed in this case.

To conclude on this remark, a rigorous analysis of the choice of the structure of Z(ρ) or
the impact of the choice of Z(ρ) on the existence of the controller is a very difficult problem in
the case of LPV time-delay systems with time-varying delays. The development of the solution
of such a problem needs new technical tools which are, to my best knowledge, unavailable at
this time.

This section concludes on the following example:

Example 5.1.8 Let us consider the system proposed in [Mohammadpour and Grigoriadis,
2007a] with D21 = 0 which is the transfer from w to y:

ẋ =
[

0 1 + 0.2ρ
−2 −3 + 0.1ρ

]
x(t) +

[
0.2ρ 0.1

−0.2 + 0.1ρ −0.3

]
xh(t) +

[
−0.2
−0.2

]
w(t)

y(t) =
[

0 1
0.5 0

]
x(t)

z(t) = x(t)

The matrices Z(ρ) and P (ρ) are chosen to be polynomial of degree 2. For simulation purpose,
the delay is assumed to be constant and set to h = 0.5 < hmax = 0.8. A step disturbance
w(t) of magnitude 10 is applied on the system at time t = 15s and the parameter trajectory is
given by ρ(t) = sin(t). Applying Theorem 5.1.6, we compute an observer for which we have
||e||L2 ≤ 0.01||w||L2. Figure 5.1.8 shows the evolution of the observation errors where we can
see that the errors converge to 0 and remain close to even in presence of disturbances. Since
heavy symbolic computation are necessary to compute such an observer (e.g. pseudo-inverse
of parameter dependent matrices. . . ) the solutions for matrices are rational functions with
high degrees but by analyzing the zeroes and the poles of each coefficient, it appears that several
pairs of zeroes/poles are very near. Hence using a least mean square approximation of these
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Figure 5.1: Evolution of the observation errors

polynomial coefficients we get the following observer matrices (energy error between initial
and approximants) less than 10−6):

M0(ρ) =
[
−0.836ρ2 − 0.836ρ− 0.667 −0.078ρ2 − 0.072ρ+ 0.1345
−0.0376ρ2 − 0.0376ρ− 0.361 −0.396ρ2 − 0.406ρ− 0.800

]

Mh(ρ) =
[
−0.009ρ2 − 0.0002ρ+ 0.00822 −0.007ρ2 − 0.0071ρ+ 0.014
0.016ρ2 − 0.00001ρ− 0.0162 0.0134ρ2 + 0.0134ρ− 0.27

]

N0(ρ) =
[
−0.073ρ2 − 0.063ρ+ 0.326 0.146ρ2 + 0.148ρ+ 0.620
0.076ρ2 + 0.058ρ− 0.684 −0.152ρ2 − 0.156ρ− 1.054

]

Nh(ρ) =
[

0.001ρ2 + 0.001ρ+ 0.040 −0.001ρ2 + 0.019ρ+ 0.046
−0.001ρ2 − 0.27ρ− 0.077 0.002ρ2 − 0.035ρ− 0.088

]

H =
[

0.106 1.788
0.798 0.404

]
As a conclusion of the approach, observers designed with this approach lead to interesting
results due to their good performances. As the model of the system is exact such observers
can be designed on unstable systems and the delay-margin of the observation error can be
larger than the delay-margin of the system. However, such properties are not of interest since
in practice the system is not known exactly: uncertainties on the delay and on the coefficient
of the system are generally encountered. These problems are (partially) answered in the
following sections.



196 CHAPTER 5. OBSERVATION AND FILTERING OF LPV TIME-DELAY SYSTEMS

5.1.2 Observer with approximate delay value

From the dynamical equations of the observer, it is clear that the exact knowledge of the delay
is a crucial condition to the design of the observer of the latter sections. However, estimating
or measuring the delay in real time is a challenging open problem [Belkoura et al., 2007, 2008;
Drakunov et al., 2006]. Therefore, it seems convenient to consider the case when the delay is
not exactly known and thus the design of an observer with approximate delay value.

The considered observer is given by:

ξ̇(t) = M0(ρ)ξ(t) +Mh(ρ)ξ(t− d(t)) +N0(ρ)y(t) +Nh(ρ)y(t− d(t))
ẑ(t) = ξ(t) +Hy(t)

(5.20)

where d(t) is the delay implemented in the observer. The idea is to impose a relationship
between the real and implemented delays:

d(t) = h(t) + ε(t)

where ε(t) ∈ [−δ, δ], δ > 0 denotes a bounded error. Whenever the delays are locally equal
(in time), then the error dynamical model is identical to (5.8). On the other hand, if the
delays are different then we have the following extended model:[

ẋ(t)
ė(t)

]
= A(ρ)

[
x(t)
e(t)

]
+Ah(ρ)

[
x(t− h(t))
e(t− h(t))

]
+Ad(ρ)

[
x(t− d(t))
e(t− d(t))

]
+ E(ρ)w(t)

A(ρ) =
[

A(ρ) 0
(T −HC)A(ρ)−N0(ρ)C −M0(ρ)(T −HC) M0(ρ)

]
Ah(ρ) =

[
Ah(ρ) 0

(T −HC)Ah(ρ) 0

]
Ad(ρ) =

[
0 0

−Mh(ρ)(T −HC)−Nh(ρ)C Mh(ρ)

]
E(ρ) =

[
E(ρ)

(T −HC)E(ρ)

]
(5.21)

where we have assumed without loss of generality that the control input is 0 (i.e. u(t) ≡ 0)
since the solution S(ρ) of the observer gain is trivial.

Conditions of Lemmas 5.1.3 and 5.1.5 are supposed to be fulfilled and thus we have

(T −HC)A(ρ)−N0(ρ)C −M0(ρ)(T −HC) = 0
(T −HC)Ah(ρ)−Mh(ρ)(T −HC)−Nh(ρ)C = 0

Then matrices A(ρ) and Ad(ρ) in model (5.21) can be rewritten as

A(ρ) =
[
A(ρ) 0

0 M0(ρ)

]
Ad(ρ) =

[
0 0

−(T −HC)Ah(ρ) Mh(ρ)

]
Similarly as in the latter section, it is possible to provide nonconstructive necessary and
sufficient conditions taking the form of the following theorem:
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Theorem 5.1.9 There exists an LPV/H∞ observer with memory of the form (5.20) for
system of the form (5.2) if and only if the following statements hold:

1. The autonomous error dynamical expression η̇(t) = A(ρ)η(t) + Ah(ρ)e(t − h(t)) +
Ad(ρ)η(t − d(t)) is asymptotically stable where η(t) = col(x(t), e(t)) with e(t) = z(t) −
ẑ(t), d(t) = h(t) + ε(t), |ε(t)| ≤ δ and h ∈H ◦

1 .

2. (T −HC)A(ρ)x(t)−N0(ρ)C −M0(ρ)(T −HC) = 0

3. (T −HC)Ah(ρ)x(t− h(t))−NhC −Mh(ρ)(T −HC) = 0

4. The inequality ||e||L2 ≤ γ||w||L2 holds for some γ > 0

Due to the form of the dynamical model of the observation error, we can easily recognize the
general structure considered in Section 4.7. From the results of this section, the following
Theorem is derived:

Theorem 5.1.10 There exists a parameter dependent observer of the form (5.20) such that
Theorem 5.1.9 holds for all h ∈ H ◦

1 , d(t) = h(t) + ε(t) with ε(t) ∈ [−δ, δ] is satisfied if
there exist a continuously differentiable matrix function P : Uρ → Sr++, a matrix function
Z : Uρ → Rr×(2r+3m), constant matrices Qi, Ri ∈ Sr+n++ , i = 1, 2, X1 ∈ Rn×n, X2 ∈ Rn×r,
X3 ∈ Rr×r, H̄ ∈ Rr×m and a positive scalar γ > 0 such that the following LMIs



−XH P (ρ) + Ã(ρ) Ãd(ρ) + Ãh(ρ) Ē(ρ) 0 XT hmaxR1 R2

? Θ11(ρ, ν) R1 0 IT 0 0 0
? ? Θ22 0 0 0 0 0
? ? ? −γI 0 0 0 0
? ? ? ? −γI 0 0 0
? ? ? ? ? −P (ρ) −hmaxR1 −R2

? ? ? ? ? ? −R1 0

? ? ? ? ? ? ? −R2

2δ


≺ 0

(5.22)
and [

Π11(ρ, ν) Π12(ρ)
? Π22(ρ)

]
≺ 0 (5.23)
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hold for all (ρ, ν) ∈ Uρ × Uν and where

Π11(ρ, ν) =


−XH P (ρ) + Ã(ρ) Ãh(ρ) Ãd(ρ) Ē(ρ)
? Θ11(ρ, ν) R1 0 0
? ? Ψ22 (1− µ)R2/δ 0
? ? ? Ψ33 0
? ? ? ? −γI



Π12(ρ) =


0 XT hmaxR1 R2

IT 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 Π22(ρ) =


−γI 0 0 0
? −P (ρ) −hmaxR1 −R2

? ? −R1 0

? ? ? −R2

2δ


X =

[
X1 0
X2 X3

]
Θ11(ρ, ν) = −P (ρ) +Q1 +Q2 +

N∑
i=1

∂P

∂ρi
(ρ)νi −R1

Θ22 = −(1− µ)(Q1 +Q2)−R1

Ψ22 = −(1− µ)(Q1 +R2/δ)−R1

Ψ33 = −(1− µc)Q2 − (1− µ)R2/δ

I =
[

0 Ir
]

L̄(ρ) = (XT
3 Φ(ρ)− H̄)Ψ(ρ)+ + Z(ρ)(I −Ψ(ρ)Ψ(ρ)+)

Ã(ρ) =
[
XT

1 A(ρ) 0
XT

2 A(ρ) XT
3 Θ(ρ)− L̄(ρ)Ξ(ρ)

]
Ãh(ρ) =

[
XT

1 Ah(ρ) 0
XT

2 Ah(ρ) +XT
3 (T − Φ(ρ)C)Ah(ρ) + L̄(ρ)Ψ(ρ)CAh(ρ) 0

]
Ãd(ρ) =

[
0 0

−XT
3 (T − Φ(ρ)C)− L̄(ρ)Ψ(ρ)C XT

3 Υ(ρ)− L̄(ρ)Ω(ρ)

]
Ē(ρ) =

[
XT

1 E(ρ)T

(XT
2 T − H̄C)E(ρ)T

]
Moreover, the gain is given by L(ρ) = X−T3 L̄(ρ) and we have ||e||L2 < γ||w||L2

Proof : Let us consider LMIs (4.48) and (4.49) of lemma 4.7.1. Let us define the matrices

Ã(ρ) = XTA(ρ) =
[
XT

1 A(ρ) 0
XT

2 A(ρ) XT
3 Θ(ρ)− L̄(ρ)Ξ(ρ)

]
Ãh(ρ) = XTAh(ρ) =

[
XT

1 Ah(ρ) 0
XT

2 Ah(ρ) +XT
3 (T − Φ(ρ)C)Ah(ρ) + L̄(ρ)Ψ(ρ)CAh(ρ) 0

]
Ãd(ρ) = XTAd(ρ) =

[
0 0

−XT
3 (T − Φ(ρ)C)− L̄(ρ)Ψ(ρ)C XT

3 Υ(ρ)− L̄(ρ)Ω(ρ)

]
Ẽ(ρ) = XTE(ρ) =

[
XT

1 E(ρ)
XT

2 E(ρ) +XT
3 (T − Φ(ρ)C) + L̄(ρ)Ψ(ρ)C

]
Now substituting these expressions in the LMIs (4.48) and (4.49) of Lemma 4.7.1 we get
LMIs (5.22) and (5.23). Since the matrix H has to be chosen independent of the parameter
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ρ it suffices to parametrize L̄ by Z(ρ) as

L̄(ρ) = (XT
3 Φ(ρ)− H̄)Ψ(ρ)+ + Z(ρ)(I −Ψ(ρ)Ψ(ρ)+)

for some Z(ρ) of appropriate dimensions. Now denoting Ē(ρ) =
[

XT
1 E(ρ)T

(XT
2 T − H̄C)E(ρ)T

]
concludes the proof. �

5.1.3 Memoryless Observer

As a final design technique, we consider here the case where the delay is not known and
therefore no information on the delay can be used in the observer. This motivates the choice
of the following observer:

ξ̇(t) = M(ρ)ξ(t) +N(ρ)y(t)
ẑ(t) = ξ(t) +Hy(t)

(5.24)

In this case the extended system containing both the dynamical model of the system and the
observer is then given by[

ẋ(t)
ė(t)

]
= A(ρ)

[
x(t)
e(t)

]
+Ah(ρ)

[
x(t− h(t))
e(t− h(t))

]
+ E(ρ)w(t)

A(ρ) =
[

A(ρ) 0
(T −HC)A(ρ)−M(ρ)(T −HC)−N(ρ)C M(ρ)

]
Ah(ρ) =

[
Ah(ρ) 0

(T (HC)Ah(ρ) 0

]
E(ρ) =

[
E(ρ)

(T −HC)E(ρ)

]
(5.25)

From this expression, it is possible to provide the following theorem:

Theorem 5.1.11 There exists an LPV/H∞ observer with memory of the form (5.24) for
system of the form (5.1) if and only if the following statements hold:

1. The unforced extended dynamical system ζ̇(t) = A(ρ)(ρ)ζ(t) + A(ρ)h(ρ)ζ(t − h(t)) is
asymptotically stable where ζ(t) = col(x(t), e(t)) and e(t) = z(t)− ẑ(t)

2. (T −HC)A(ρ)−M(ρ)(T −HC)−N(ρ)C = 0

3. The inequality ||e||L2 ≤ γ||w||L2 holds for some γ > 0

The next results are the memoryless counterparts of Lemmas 5.1.3 and 5.1.5 dealing with
observers with memory.

Lemma 5.1.12 There exists a solution M(ρ), N(ρ), H(ρ) to the equation of statement 2 if
and only if the following rank equality holds

rank


T
C

CA(ρ)
TA(ρ)

 = rank

 T
C

CA(ρ)

 (5.26)
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Proof : The proof is similar as for lemma 5.1.3. �

In the case when lemma 5.1.12 is verified then it is possible to find matrices M(ρ) and
N(ρ) such that equation of theorem 5.1.11, statement 2 is verified.

Lemma 5.1.13 Under condition of Lemma 5.1.12, the observer matrices are parametrized
with respect to a free matrix L(ρ) according to the following expressions

M(ρ) = Θ(ρ)− L(ρ)Ξ(ρ)
H = Φ(ρ)− L(ρ)Ω(ρ)

Θ(ρ) = TA(ρ)U − Λ(ρ)Γ(ρ)+∆M

[
C

CA(ρ)

]
U

Ξ(ρ) = −(I − Γ(ρ)Γ(ρ)+)∆M

[
C

CA(ρ)

]
U

Φ(ρ) = Λ(ρ)Γ(ρ)+∆H

Ψ(ρ) = −(I − Γ(ρ)Γ(ρ)+)∆H

S(ρ) = (T −HC)B(ρ)
N(ρ) = K(ρ) +M(ρ)H
K(ρ) =

[
Λ(ρ)Γ(ρ)+ + L(ρ)s(I − Γ(ρ)Γ(ρ)+)

]
∆K

and

∆M =

 I
0
0

 ∆K =

 0
I
0

 ∆H =

 0
0
I


Proof : The proof is similar as for lemma 5.1.5 �

Whenever Lemma 5.1.12 is satisfied and according to matrix definitions of lemma 5.1.13,
system (5.25) rewrites

[
ẋ(t)
ė(t)

]
= A(ρ)

[
x(t)
e(t)

]
+Ah(ρ)Z

[
x(t− h(t))
e(t− h(t))

]
+ B(ρ)u(t) + E(ρ)w(t) (5.27)

A(ρ) =
[
A(ρ) 0

0 Θ(ρ)− L(ρ)Ξ(ρ)

]
Ah(ρ) =

[
Ah(ρ)

[T − Φ(ρ)C + L(ρ)Ω(ρ)C]Ah(ρ)

]
B(ρ) =

[
B(ρ)

0

]
E(ρ) =

[
E(ρ)

[T − Φ(ρ)C + L(ρ)Ω(ρ)]E(ρ)

]
Y =

[
In 0

]
Finally we have the following theorem:

Theorem 5.1.14 There exists a parameter dependent observer of the form (5.24) such that
theorem 5.1.11 for all h ∈ H ◦

1 is satisfied if there exist a continuously differentiable matrix
function P : Uρ → Sr++, a matrix function Z : Uρ → Rr×(2r+3m), constant matrices Q,R ∈
Sr+n++ , X1 ∈ Rn×n, X2 ∈ Rn×r, X3 ∈ Rr×r, H̄ ∈ Rr×m and a positive scalar γ > 0 such that
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the following LMI

−XH P (ρ) +XT Ã(ρ) XT Ãh(ρ) XT Ẽ(ρ) 0 XT hmaxY
TR

? Ψ′22(ρ, ν) R 0 IT 0 0
? ? −(1− µ)Q−R 0 0 0 0
? ? ? −γIm 0 0 0
? ? ? ? −γIr 0 0
? ? ? ? ? −P (ρ) −hmaxY TR
? ? ? ? ? ? −R


≺ 0

holds for all (ρ, ν) ∈ Uρ × Uν where

Ψ′22(ρ, ν) =
∂

∂ρ
P (ρ)ν − P (ρ) + Y T (Q−R)Y Y =

[
In 0

]
X =

[
X1 X2

0 X3

]
I =

[
0 Ir

]
L̄(ρ) = (XT

3 Φ(ρ)− H̄)Ψ(ρ)+ + Z(I −Ψ(ρ)Ψ(ρ)+)

Moreover the generalized observer gain L(ρ) is given by the relation L(ρ) = X−T3 L̄(ρ) and we
have ||e||L2 < γ||w||L2.

Proof : Due to the structure of Ah(ρ) it is clear that such a problem falls into the framework of
Section 4.5.3 which considers the stability of time-delay systems where the delay acts on only
a specific subpart of the system state (i.e. on the state of the system only). Hence injecting
the extended system into LMI (4.35) we get with

−XH P (ρ) +XTA(ρ) XTAh(ρ) XTE(ρ) 0 XT hmaxY
TR

? Ψ′22(ρ, ν) R 0 IT 0 0
? ? −(1− µ)Q−R 0 0 0 0
? ? ? −γIm 0 0 0
? ? ? ? −γIr 0 0
? ? ? ? ? −P (ρ) −hmaxY TR
? ? ? ? ? ? −R


≺ 0

with R ∈ Sn++, Z =
[
In 0

]
, I =

[
0 Ir

]
and

Ψ′22(ρ, ν) = ∂ρP (ρ)ν − P (ρ) + Y T (Q−R)Y

Choosing X =
[
X1 X2

0 X3

]
then we have the following relations:

Ã(ρ) = XTA(ρ) =
[
XT

1 A(ρ) 0
XT

2 A(ρ) XT
3 Θ(ρ)− L̄(ρ)Ξ(ρ)

]
Ãh(ρ) = XTAh(ρ) =

[
XT

1 Ah(ρ)
XT

2 Ah(ρ) +XT
3 (T − Φ(ρ)C) + L̄(ρ)Ω(ρ)CAh(ρ)

]
Ẽ(ρ) = XTE(ρ) =

[
XT

1 E(ρ)
XT

2 E(ρ) +XT
3 (T − Φ(ρ)C) + L̄(ρ)Ω(ρ)E(ρ)

]
where L̄(ρ) = XT

3 L(ρ).
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An interesting fact of such a Lyapunov-Krasovskii functional of the form (4.24) is the embed-
ding of an information on the structure of the system (the delay does not act on some part of
the state) and allows to reduce the number of decision variables. Finally, since a constant H
matrix is sought (as in proof of Theorem 5.1.6), then by choosing L̄ such that

L̄(ρ) = (XT
3 Φ(ρ)− H̄)Ψ(ρ)+ + Z(ρ)(I −Ψ(ρ)Ψ(ρ)+)

where Z(ρ) is a free matrix with appropriate dimension and H̄ = XT
3 H. This completes the

proof. �

5.2 Filtering of uncertain LPV Time-Delay Systems

This section is devoted to the filtering of LPV time-delay systems and we are interested in
finding a LPV filter of the form

ẋF (t) = AF (ρ)x(t) +AFh(ρ)x(t− d(t)) +BF (ρ)y(t)
zF (t) = CF (ρ)x(t) + CFh(ρ)x(t− d(t)) +DF (ρ)y(t)

(5.28)

for systems of the form

ẋ(t) = (A(ρ) + ∆A(ρ, t))x(t) + (Ah(ρ) + ∆Ah(ρ, t))x(t) + (E(ρ) + ∆E(ρ, t))w(t)
z(t) = (C(ρ)x(t) + ∆C(ρ, t))x(t) + (Ch(ρ)x(t) + ∆Ch(ρ, t))x(t− h(t))

+(F (ρ)x(t) + ∆F (ρ, t))w(t)
y(t) = (Cy(ρ)x(t) + ∆Cy(ρ, t))x(t) + (Cyh(ρ)x(t) + ∆Cyh(ρ, t))x(t− h(t))

+(Fy(ρ)x(t) + ∆Fy(ρ, t))w(t)
(5.29)

where x ∈ Rn, xF ∈ Rr, w ∈ Rm, y ∈ Rp, z, zF ∈ Rt are respectively the system state, the
filter state, the system measurements, the system exogenous inputs, the signal to be estimated
and its estimate. The time-varying delay h(t) is assumed to belong to the set H ◦

1 and the
filter delay d(t) is unconstrained at this time.

Definition 5.2.1 When r < n the filter is said to be a reduced-order filter while if r = n it
is a full-order filter.

We will consider in the following only full-order filters (i.e. r = n). It is possible to generalize
the results to the case of reduced-order filters by considering, for instance, the approach of
[Tuan et al., 2001b].

The uncertain terms are assumed to obey ∆A(ρ, t)) ∆Ah(ρ, t)) ∆E(ρ, t))
∆C(ρ, t)) ∆Ch(ρ, t)) ∆F (ρ, t))
∆Cy(ρ, t)) ∆Cyh(ρ, t)) ∆Fy(ρ, t))

 =

 Gx(ρ)
Gz(ρ)
Gy(ρ)

∆(t)
[
Hx(ρ) Hxh(ρ) Hw(ρ)

]
(5.30)

with ∆T∆ � I where all matrices are of appropriate dimensions provided that the uncertain
terms are all defined.
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5.2.1 Design of robust filters with exact delay-value - simple Lyapunov-
Krasovskii functional

This section is devoted to the design of filter with exact delay-value (i.e. d(t) = h(t) for all
t ≥ 0). Even if such a filter are difficult to realize they allow to give a lower bound on the
best achievable H∞ norm. Using such a filter, the extended system describing the evolution
of both the system and filter states is given by[

ẋ(t)
ẋF (t)

]
= (A(ρ) + ∆A(ρ, t))

[
x(t)
xF (t)

]
+ (Ah(ρ) + ∆Ah(ρ, t))

[
x(t− h(t))
xF (t− h(t))

]
+(E(ρ) + ∆E(ρ, t))w(t)

e(t) = z(t)− zF (t)

= (C(ρ) + ∆C(ρ, t))
[

x(t)
xF (t)

]
+ (Ch(ρ) + ∆Ch(ρ, t))

[
x(t− h(t))
xF (t− h(t))

]
+(F(ρ) + ∆F(ρ, t))w(t)

(5.31)
where

A(ρ) =
[

A(ρ) 0
BF (ρ)Cy(ρ) AF (ρ)

]
∆A(ρ, t) =

[
∆A(ρ, t) 0

BF (ρ)∆Cy(ρ, t) 0

]
=
[

Gx(ρ)
BF (ρ)Gy(ρ)

]
∆(t)

[
Hx(ρ) 0

]
Ah(ρ) =

[
Ah(ρ) 0

BF (ρ)Cyh(ρ) AFh(ρ)

]
∆Ah(ρ, t) =

[
∆Ah(ρ, t) 0

BF (ρ)∆Cyh(ρ, t) 0

]
=
[

Gx(ρ)
BF (ρ)Gy(ρ)

]
∆(t)

[
Hxh(ρ) 0

]
E(ρ) =

[
E(ρ)

BF (ρ)Fy(ρ)

]
∆E(ρ, t) =

[
∆E(ρ, t) 0

BF (ρ)∆E(ρ, t) 0

]
=
[

Gx(ρ)
BF (ρ)Gy(ρ)

]
∆(t)Hw(ρ)

C(ρ) =
[
C(ρ)−DF (ρ)Cy(ρ) −CF (ρ)

]
∆C(ρ, t) =

[
∆C(ρ, t)−DF (ρ)∆Cy(ρ, t) 0

]
= (Gz(ρ)−DF (ρ)Gy(ρ))∆(t)

[
Hx(ρ) 0

]
Ch(ρ) =

[
Ch(ρ)−DF (ρ)Cyh(ρ) −CFh(ρ)

]
∆Ch(ρ, t) =

[
∆Ch(ρ, t)−DF (ρ)∆Cyh(ρ, t) 0

]
= (Gz(ρ)−DF (ρ)Gy(ρ))∆(t)

[
Hxh(ρ) 0

]
F(ρ) = F (ρ)−DF (ρ)Fy(ρ)

∆F(ρ, t) = ∆F (ρ)−DF (ρ)∆Fy(ρ) = (Gz(ρ)−DF (ρ)Gy(ρ))∆(t)Hw(ρ)

This leads to the following theorem which is a consequence of the relaxation theorem developed
in Section 4.5.

Theorem 5.2.2 There exists a full-order filter of the form (5.28) with d(t) = h(t), h(t) ∈H ◦
1

if there exists a continuously differentiable matrix function P̃ : Uρ → S2n
++, symmetric matrices

Q̃, R̃ ∈ S2n
++, X̂ ∈ R2n×2n, matrix functions ÃF , ÃFh : Uρ → Rn×n, B̃F : Uρ → Rn×m,
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C̃F , C̃Fh : Uρ → Rt×n, D̃F : Uρ → Rn×m and scalars γ, ε > 0 such that the LMI[
Ψ(ρ, ν) + εH(ρ)TH(ρ) G̃(ρ)T

? −εI

]
≺ 0 (5.32)

holds for all ρ ∈ Uρ with Ψ22(ρ, ν) = ∂ρP̃ (ρ)ν−P̃ (ρ)+Q̃−R̃, P̃ (ρ) = X̃TP (ρ)X̃, Q̃ = X̃TQX̃,
R̃ = X̃TRX̃,

Ψ(ρ, ν) =



−X̂H P̃ (ρ) + Ã(ρ) Ãh(ρ) Ẽ(ρ) 0 X̂T hmaxR̃

? Ψ̃22(ρ, ν) R 0 C̃(ρ)T 0 0
? ? −(1− µ)Q̃− R̃ 0 C̃h(ρ)T 0 0
? ? ? −γIq F(ρ)T 0 0
? ? ? ? −γIr 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃
? ? ? ? ? ? −R̃



Ã(ρ) =
[
X̂T

1 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)
X̂T

2 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)

]
X̂ =

[
X̂1 X̂2

X̂3 X̂3

]
Ãh(ρ) =

[
X̂T

1 Ah(ρ) + B̃F (ρ)Cyh(ρ) ÃFh(ρ)
X̂T

2 Ah(ρ) + B̃F (ρ)Cyh(ρ) ÃFh(ρ)

]

Ẽ(ρ) =

 X̂1E(ρ) + B̃F (ρ)Cy(ρ)
X̂T

2 E(ρ) + B̃F (ρ)Cy(ρ)

 C̃(ρ)T =
[
C(ρ)T − Cy(ρ)TDF (ρ)T

−C̃F (ρ)

]
C̃h(ρ)T =

[
Ch(ρ)T − Chy(ρ)TDF (ρ)T

−C̃Fh(ρ)

]
X̂2 = X2X

−1
4 X3 = UTΣV (SVD)

H(ρ)T =



0
0

Hx(ρ)T

0
Hxh(ρ)T

0
Hw(ρ)T

0
0
0
0
0



G̃(ρ)T =



X̂T
1 Gx(ρ) + B̃F (ρ)Gy(ρ)
X̂TGx + B̃F (ρ)Gy(ρ)

0
0
0
0
0

Gz(ρ)−DF (ρ)Gy(ρ)
0
0
0
0


Moreover the filter matrices are computed using[

AF (ρ) AFh(ρ) BF (ρ)
CF (ρ) CFh(ρ) DF (ρ)

]
=

[
U−T ÃF (ρ)U−1Σ−1 U−T ÃFh(ρ)U−1Σ−1 U−T B̃F (ρ)
C̃F (ρ)U−1Σ−1 C̃Fh(ρ)U−1Σ−1 D̃F (ρ)

]

where X̂3 = UΣV and we have ||e||L2 ≤ γ||w||L2.
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Proof : Substitute the model (5.31) into LMI (4.28) we get

−XH P (ρ) +XT Ā(ρ) XT Āh(ρ) XT Ē(ρ) 0 XT hmaxR

? Ψ22(ρ, ν) R 0 C̄(ρ)T 0 0
? ? −(1− µ)Q−R 0 C̄h(ρ)T 0 0
? ? ? −γIq F̄ (ρ)T 0 0
? ? ? ? −γIr 0 0
? ? ? ? ? −P (ρ) −hmaxR
? ? ? ? ? ? −R


≺ 0

with

Ψ22(ρ, ν) = ∂ρP (ρ)ν − P (ρ) +Q−R
Ā(ρ) = A(ρ) + ∆A(ρ)
Āh(ρ) = Ah(ρ) + ∆Ah(ρ)
Ē(ρ) = E(ρ) + ∆E(ρ)
C̄(ρ) = C(ρ) + ∆C(ρ)
C̄h(ρ) = Ch(ρ) + ∆Ch(ρ)
F̄ (ρ) = F(ρ) + ∆F(ρ)

The latter inequality can be rewritten in the following form

M(ρ, ν) +DTG(ρ)T∆(t)H(ρ) +H(ρ)T∆(t)TG(ρ)D ≺ 0

where D = diag(X, I, . . . , I),

M(ρ, ν) =



−XH P (ρ) +XTA(ρ) XTAh(ρ) XTE(ρ) 0 XT hmaxR

? Ψ22(ρ, ν) R 0 C(ρ)T 0 0
? ? −(1− µ)Q−R 0 Ch(ρ)T 0 0
? ? ? −γIq F(ρ)T 0 0
? ? ? ? −γIr 0 0
? ? ? ? ? −P (ρ) −hmaxR
? ? ? ? ? ? −R



H(ρ)T =



0
0

Hx(ρ)T

0
Hxh(ρ)T

0
Hw(ρ)T

0
0
0
0
0



G(ρ)T =



Gx(ρ)
BF (ρ)Gy(ρ)

0
0
0
0
0

Gz(ρ)−DF (ρ)Gy(ρ)
0
0
0
0


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Then invoking the bounding lemma (see Appendix D.15), we get the following equivalent
matrix inequality [

M(ρ, ν) + εH(ρ)TH(ρ) G(ρ)T

? −εI

]
≺ 0 (5.33)

where ε > 0 is unknown variable to be designed. Since the latter matrix inequality is nonlinear,
it cannot be solved efficiently in a reasonable time. The remaining of the proof is devoted to the

linearization of such an inequality. To this aim, let us define the matrix X̃ =
[
In 0
0 X−1

4 X3

]
then we get

Ã(ρ) = X̃TXTA(ρ)X̃ =
[
X̂T

1 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)
X̂T

2 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)

]
Ãh(ρ) = X̃TXTAh(ρ)X̃ =

[
X̂T

1 Ah(ρ) + B̃F (ρ)Cyh(ρ) ÃFh(ρ)
X̂T

2 Ah(ρ) + B̃F (ρ)Cyh(ρ) ÃFh(ρ)

]
Ẽ(ρ) = X̃TXTE(ρ)X̃ =

[
X̂1E(ρ) + B̃F (ρ)Cy(ρ)
X̂T

2 E(ρ) + B̃F (ρ)Cy(ρ)

]
C̃(ρ)T = X̃TC(ρ) =

[
C(ρ)T − Cy(ρ)TDF (ρ)T

−C̃F (ρ)

]
C̃h(ρ)T = X̃TCh(ρ) =

[
Ch(ρ)T − Chy(ρ)TDF (ρ)T

−C̃Fh(ρ)

]
G̃1(ρ) = X̃TXT

[
Gx(ρ)

BF (ρ)Gy(ρ)

]
=

[
X̂T

1 Gx(ρ) + B̃F (ρ)Gy(ρ)
X̂TGx + B̃F (ρ)Gy(ρ)

]
X̂ = X̃TXX̃ =

[
X̂1 X̂2

X̂3 X̂3

]
=
[

X1 X2X
−1
4 X3

XT
3 X

−1
4 X3 XT

3 X
−1
4 X3

]
ÃF (ρ) = XT

3 AF (ρ)X−1
4 X3

ÃFh(ρ) = XT
3 AFh(ρ)X−1

4 X3

B̃F (ρ) = XT
3 BF (ρ)

C̃F (ρ) = CF (ρ)X−1
4 X3

C̃Fh(ρ) = CFh(ρ)X−1
4 X3

Then perform a congruence transformation on (5.33) with respect to diag(X̃, X̃, X̃, Iq, Ir, X̃, X̃, I)
we get LMI (5.32). Now let us focus on the computation of the filter matrices. Note that

[
ÃF (ρ) ÃFh(ρ) B̃F (ρ)
C̃F (ρ) C̃Fh(ρ) D̃F (ρ)

]
=
[
XT

3 0
0 I

] [
AF (ρ) AFh(ρ) BF (ρ)
CF (ρ) CFh(ρ) DF (ρ)

] X−1
4 X3 0 0
0 X−1

4 X3 0
0 0 I


Thus it suffices to construct back the matrix X in order to compute the observer gain. A
singular values decomposition (SVD, see Appendix A.6) on X̂3 allows to compute the matrices
X3 and X4 which are necessary to construct the filter matrices. Indeed, we have X̂2 = UTΣV
and hence

X2 = UT

X4 = Σ−1

X3 = V
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and finally we have

[
AF (ρ) AFh(ρ) BF (ρ)
CF (ρ) CFh(ρ) DF (ρ)

]
=

[
V T 0
0 I

]−1 [
ÃF (ρ) ÃFh(ρ) B̃F (ρ)
C̃F (ρ) C̃Fh(ρ) D̃F (ρ)

] ΣV 0 0
0 ΣV 0
0 0 I

−1

=
[
U−T ÃF (ρ)V −1Σ−1 U−T ÃFh(ρ)V −1Σ−1 U−T B̃F (ρ)
C̃F (ρ)V −1Σ−1 C̃Fh(ρ)V −1Σ−1 D̃F (ρ)

]
�

5.2.2 Design of robust memoryless filters

This last section is devoted to the synthesis of robust memoryless filters. The resulting syn-
thesis condition are based on the application of the reduced Lyapunov-Krasovskii functional
introduced in Section 4.5.3 which applies on systems where the delay acts only on a subpart
of the state. In this case, only the state of the system is affected by the delay.

Theorem 5.2.3 There exists a full-order filter of the form (5.28) with AFh = 0 and CFh = 0
with h(t) ∈ H ◦

1 if there exists a continuously differentiable matrix function P̃ : Uρ → S2n
++,

symmetric matrices Q̃, R̃ ∈ S2n
++, X̂ ∈ R2n×2n, matrix functions ÃF : Uρ → Rn×n, B̃F : Uρ →

Rn×m, C̃F : Uρ → Rt×n, D̃F : Uρ → Rn×m and scalars γ, ε > 0 such that the LMI[
Ψ(ρ, ν) + εH(ρ)TH(ρ) G(ρ)T

? −εI

]
≺ 0 (5.34)

holds for all (ρ, ν) ∈ Uρ ×Uν where Ψ̃′22(ρ, ν) = ∂ρP̃ (ρ)ν − P̃ (ρ) +ZT (Q(ρ)−R)Z, C̃h(ρ)T =
Ch(ρ)T − Chy(ρ)TDF (ρ)T , X̂3 = X2X

−1
4 X3 = UTΣV (SVD),

Ψ(ρ, ν) =



−X̂H P̃ (ρ) + Ã(ρ) Ãh(ρ) Ẽ(ρ) 0 X̂T hmaxZ
TR

? Ψ̃′22(ρ, ν) R 0 C̃(ρ)T 0 0
? ? −(1− µ)Q−R 0 C̃h(ρ)T 0 0
? ? ? −γIm F(ρ)T 0 0
? ? ? ? −γIp 0 0
? ? ? ? ? −P̃ (ρ) −hmaxZTR
? ? ? ? ? ? −R



X̂ =
[
X̂1 X̂2

X̂3 X̂3

]
Ã(ρ) =

[
X̂T

1 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)
X̂T

2 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)

]

Ãh(ρ) =
[
X̂T

1 Ah + B̃F (ρ)Cyh(ρ)
X̂T

2 Ah + B̃F (ρ)Cyh(ρ)

]
Ẽ(ρ) =

 X̂1E(ρ) + B̃F (ρ)Cy(ρ)
X̂T

2 E(ρ) + B̃F (ρ)Cy(ρ)


C̃(ρ)T =

[
C(ρ)T − Cy(ρ)TDF (ρ)T

−C̃F (ρ)

]
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H(ρ)T =



0
0

Hx(ρ)T

0
Hxh(ρ)
Hw(ρ)T

0
0
0
0


G(ρ)T =



X̂T
1 Gx(ρ) + B̃F (ρ)Gy(ρ)
X̂TGx + B̃F (ρ)Gy(ρ)

0
0
0
0

Gz(ρ)− D̃F (ρ)Gy(ρ)
0
0
0


Moreover the filter matrices are computed using[

AF (ρ) BF (ρ)
CF (ρ) DF (ρ)

]
=

[
U−T ÃF (ρ)V −1Σ−1 U−T B̃F (ρ)
C̃F (ρ)V −1Σ−1 D̃F (ρ)

]
and we have ||e||L2 ≤ γ||w||L2.

5.2.3 Example

We will show the effectiveness of the approach compared to existing ones through the following
example. Let us consider the following system Mohammadpour and Grigoriadis [2007a]:

ẋ =
[

0 1 + 0.2ρ
−2 −3 + 0.1ρ

]
x+

[
0.2ρ 0.1

−0.2 + 0.1ρ −0.3

]
xh

+
[
−0.2
−0.2

]
w

z =
[

0.3 1.5
−0.45 0.75

]
x+

[
0.5ρ −0.5

]
w

y =
[

0 1
0.5 0

]
x+

[
0 1 + 0.1ρ

]
w

(5.35)

where ρ(t) = sin(t) ∈ [−1, 1] and ρ̇(t) ∈ [−1, 1]. Parameter dependent matrices are expressed
onto a basis defined by the functions

f0(ρ) = 1 f1(ρ) = ρ (5.36)

We use Theorems 5.2.2 and 5.2.3 with an uniform gridding of 11 points over the whole
parameter space and the results are verified on a denser grid (around 100 points).

Results of Mohammadpour and Grigoriadis [2007a] are depicted in Figure 5.2. In Figure
5.3, the evolution of the worst case performance for the delayed filter computed with The-
orem 5.2.3 and the memoryless one computed with Theorem 5.2.2. As a first analysis, the
delayed filter gives better performance than the memoryless one which seems obvious since
the information on the delay is used in the delayed filter. As a comparison with the results in
Mohammadpour and Grigoriadis [2007a], our results are less conservative and then improves
the existing ones (see result of Mohammadpour and Grigoriadis [2007a] in Figure 5.2 and
proposed results in Figure 5.3). It is possible to see that for small delay values both solutions
leads to very similar results. The main difference appears for larger delay values for which
the worst case disturbance gain is drastically different. Figure 5.4 shows the evolution of the
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Figure 5.2: Evolution of the worst case L2 gain for the delayed filter (dashed) and the mem-
oryless filter (plain) in Mohammadpour and Grigoriadis [2007a]

Figure 5.3: Evolution of the worst case L2 gain for the delayed filter (dashed) and the mem-
oryless filter (plain)
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Figure 5.4: Evolution of z(t)− zF (t) for the delayed filter (dashed) and the memoryless filter
(plain)

error z(t) − zF (t) for a delay h = 3 and a step disturbance of amplitude 20. We can easily
see that the delayed filter gives better results than the memoryless one. Consider now system
(5.35) with uncertainties defined by: according to the notation (5.30). The evolution of the
worst-case performance L2-gain is depicted in Figure 5.5.

Figure 5.6 shows the evolution of the error z(t) − zF (t) for a delay h = 4.5, ∆(t) =
sin(10t)I2 and a step disturbance of amplitude 20. The delayed filter achieves a L2 perfor-
mance gain of γdel = 0.59 and the memoryless of γml = 0.78.

5.3 Chapter Conclusion

This chapter has been devoted to the design of observer and filters for both unperturbed and
uncertain LPV time-delay systems.

Three types of observers have been synthesized: observers with memory, with both exact
and approximate delay value knowledge, and memoryless observers. They have been devel-
oped using an algebraic approach generalized from [Darouach, 2001] to the LPV framework.
The matrices of the observers are chosen such that the system state and the control input do
not affect the evolution of the observation error and that the disturbances are attenuated in
the L2 sense. The set of observers decoupling the error from the system state and the control
input is parametrized through an algebraic equation involving a free parameter to be chosen.
This parameter is chosen as a solution of an LMI optimization problem where the L2 gain
from the disturbances to the observation error is minimized. This approach is better suited
for certain systems since the matrices acting on the system state in the observation error
dynamical model can be set to zero by an appropriate choice of the observer matrices. How-
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Figure 5.5: Evolution of the worst case L2 gain for the delayed filter (dashed) and the mem-
oryless filter (plain)

Figure 5.6: Evolution of z(t)− zF (t) for the delayed filter (dashed) and the memoryless filter
(plain)
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ever, in the uncertain case, these matrices cannot be set to zero due to uncertain terms and,
inevitably, the observer has much poorer performances. Such observers have been developed
but are not exposed in this thesis for brevity.

On the second hand, the problem of designing filters for uncertain systems has been
addressed in the second section of the chapter. Two types of filters have been considered:
memoryless filters and filters with memory (exact delay value knowledge). The design of
filters is more simple and more direct than observer design, since it is not sought to obtain an
estimation error which is independent of the state variables of the system. The constructive
existence conditions are given in terms of a convex optimization problem involving LMIs where
the L2 attenuation gain from the disturbances to the filtering error is minimized. Other filters
can also be derived using this very general approach.



Chapter 6

Control of LPV Time-Delay
Systems

T
his chapter is devoted to the control of (uncertain) LPV time-delay systems. Despite
of its apparent simplicity the control of LPV time-delay systems is still an open prob-
lem. Indeed, in the LMI based approaches, conservatism induced by relaxations (as

bounding techniques, model transformations, relaxations of nonlinear terms. . . ) is respon-
sible of bad results. A major problem is the presence of multiple products (e.g. KR, KP
where P,K,R are decision variables) occurring very often in many design concerning time-
delay systems and preventing the linearization of BMIs into LMIs. For instance, in the
descriptor approach [Fridman, 2001], the coupled terms KP1 and KP2 (when considering
a state-feedback control law) must be relaxed and then the relaxation P2 = εP1 is usually
performed where ε is a fixed chosen scalar. This type of relaxation is also needed when the
design is done using the free-weighting approach [He et al., 2004]. Most of the approaches are
done using the same procedure as follows:

1. Elaborate a stability/performance test based on some method for the open-loop system

2. Substitute the closed-loop system into the LMI conditions

3. Simplify the obtained BMIs

4. Linearize by congruence and change of variable to obtain LMIs.

In this chapter we will propose another strategy by adding a step into this methodology:

1. Develop a stability/performances test for an open loop system

2. If the obtained conditions involve potential coupled terms, they are relaxed using for
instance the Finsler’s lemma (see Appendix D.16) in order to remove these coupled
terms.

3. Substitute the closed-loop system expression in the relaxed version of the stability/performances
LMI test.

4. Linearize immediately/use of congruence transformations.

213
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It will be shown in this chapter that this methodology gives rise to good results, not only
for LTI systems but also for LPV system. Since the number of results for uncertain
LTI systems is larger than those for LPV systems, the methods will be compared with

both LTI and LPV methods.
It is worth mentioning that even if the relaxed version of the test without coupled terms

is not equivalent to the original test, the conservatism is generally not worse than using
classical relaxations and is a good point of the provided methods. Moreover, the relaxation
is use allows for generalizations to discretized versions of Lyapunov-Krasovskii functionals.

A new approach for the control of time-delay systems with time-varying delays is developed
in this chapter. This method allows to find a memoryless controller where the gains of
the controller are smoothly scheduled by the delay value or an approximate one. Due to
the similarity with gain-scheduled controller synthesis in the LPV framework, this type of
controllers is referred to as delay-scheduled controllers. Such a controller is hence midway
between memoryless and with memory since it embeds an information on the delay value
without any delayed terms in the control law expression.

Several of our results have been detailed in the following papers:

• [Briat et al., 2007a] a delay-scheduled state-feedback strategy is designed based on a
specific model transformation. In this paper, the computed controller is LPV depends
on the value of the delay in a LFT fashion. A paper version [Briat et al., 2007b] is still
under review at IEEE Transactions on Automatic Control (2nd round).

• [Briat et al., 2008a] an enhanced delay-scheduled controller approach is developed where
the model transformation has been improved and the controller is not in LFT form. The
results are then less conservative. A journal version is in revision at Systems and Control
Letters.

• A full-block S-procedure approach is provided in [Briat et al., 2008b] where the control
of uncertain time-delay systems is solved.

• LPV control for time-delay systems is detailed in [Briat et al., 2008c] where a projection
approach is used to provide constructive sufficient conditions for a stabilizing controller.

Some key references to modern control techniques for time-delay systems are recalled below
(see also Chapter 3):

Robust control of LTI time-delay systems: [Fu et al., 1998], [Souza and Li, 1999], [Ivanescu
et al., 2000], [Moon et al., 2001], [Fridman and Shaked, 2002a], [Wu, 2003], [Suplin et al.,
2004], [Jiang and Han, 2005], [Fridman, 2006a], [Suplin et al., 2006], [Fridman, 2006b],
[Fridman and Shaked, 2006], [Jiang and Han, 2006], [Xu et al., 2006], [Chen, 2007].

LPV control of LPV/LTI time-delay systems: [Wu and Grigoriadis, 2001], [Wu, 2001b],
[Zhang and Grigoriadis, 2005]

The first section will be concerned to the synthesis of state-feedback control laws, both mem-
oryless and with memory state-feedback controllers synthesis will be explored. Moreover,
the uncertainty on the delay-knowledge using state-feedback with memory will be taken into
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account through a specific Lyapunov-Krasovskii functional. Finally the synthesis of delayed-
scheduled state-feedback will be solved. The last section will be devoted to the synthesis of
dynamic output feedback controllers. Both observer-based and full-block controllers will be
synthesized.

6.1 State-Feedback Control laws

In this section the stabilization of general uncertain LPV time-delay systems of the form

ẋ(t) = (A(ρ) + ∆A(ρ, t))x(t) + (Ah(ρ) + ∆Ah(ρ, t))x(t− h(t))
+(B(ρ) + ∆B(ρ, t))u(t) + (E(ρ) + ∆E(ρ, t))w(t)

z(t) = C(ρ)x(t) + Ch(ρ)x(t− h(t)) +D(ρ)u(t) + F (ρ)w(t)
(6.1)

using a general control law of the form

u(t) = K(ρ)x(t) +Kh(ρ)x(t− d(t)) (6.2)

where x ∈ Rn, u ∈ Rm, w ∈ Rp, z ∈ Rq and h(t) ∈ H ◦
1 are respectively the state of the

system, the control input, the disturbances, the controlled outputs and the system delay. The
set H ◦

1 is given by
H ◦

1 :=
{
h ∈ C1(R+, [0, hmax]) : |ḣ| < µ

}
The controller delay d(t) = h(t) + ε(t), ε(t) ∈ [−δ, δ] is not defined a priori and may admit
fast variations. The uncertain terms are given as:[

∆A(ρ) ∆Ah(ρ) ∆B(ρ) ∆E(ρ)
]

= G(ρ)∆(t)
[
HA(ρ) HAh(ρ) HB(ρ) HE(ρ)

]
where matrices G(ρ), HA(ρ), HAh(ρ), HB(ρ), HE(ρ) are full rank matrices and ∆(t)T∆(t) � I.

Definition 6.1.1 Whenever Kh(·) = 0, the controller is said to be memoryless while when
Kh(·) 6= 0, it is said to be with memory.

Problem 6.1.2 The problem is to find a control law of the form (6.2) which asymptotically
stabilizes system (6.1) for all h ∈ H ◦

1 and all ∆(t) such that ∆(t)T∆(t) � I and minimizes
γ > 0 such that

||z||L2 ≤ γ||w||L2

In the following the following main problems will be addressed:

1. The stabilization of the system by a memoryless state-feedback control law of the form
u(t) = K(ρ)x(t).

2. The stabilization of the system by a state-feedback control law with memory of the form
u(t) = K(ρ)x(t) +Kh(ρ)x(t− h(t)) with exact delay value.

3. The stabilization of the system by a state-feedback control law with memory of the form
u(t) = K(ρ)x(t) +Kh(ρ)x(t− h(t)) with approximate delay value.

4. The stabilization of the system using delay-scheduled controllers.



216 CHAPTER 6. CONTROL OF LPV TIME-DELAY SYSTEMS

In this chapter, the following terminology will be used: by relaxed we mean that the
initial stability and performances test has been modified in order to remove all potential
coupled terms. The term simple means that the Lyapunov-Krasovskii functional is ’simple’
in the sense that the structure of the functional involves constant matrices only. This term
has to be put in parallel with the term complete. Finally, the term discretized means that
a (complete or not) Lyapunov-Krasovskii functional involving function as decision variables
has been discretized in order to get tractable stability conditions [Fridman, 2006b; Gu et al.,
2003; Seuret et al., 2009a].

6.1.1 Memoryless State-Feedback Design - Relaxed Simple Lyapunov-Krasovskii
functional

The most simple state-feedback controller that can be designed is the memoryless one (i.e.
when Kh(·) = 0), where only the instantaneous state x(t) is used to compute the control
input u(t). In such a case, the closed-loop system is governed by

ẋ(t) = (A(ρ) + ∆A(ρ, t) + [B(ρ) + ∆B(ρ, t)]K(ρ))x(t)
+(Ah(ρ) + ∆Ah(ρ, t))x(t− h(t)) + (E(ρ) + ∆E(ρ, t))w(t)

z(t) = (C(ρ) +D(ρ)K(ρ))x(t) + Ch(ρ)x(t− h(t)) + F (ρ)w(t)
(6.3)

The solution is given using the relaxed version of the LMI condition obtained from the simple
Lyapunov-Krasovskii functional as described in Section 4.5.2. Hence after a substitution of
the closed-loop into the relaxed LMI, a simple existence test of the controller can be provided
in terms of parameter dependent LMIs.

Theorem 6.1.3 There exists a state-feedback control law of the form u(t) = K(ρ)x(t) which
asymptotically stabilizes system (6.1) with h(t) ∈ H ◦

1 if there exist a continuously differen-
tiable matrix function P̃ : Uρ → Sn++, constant matrices Y ∈ Rn×n, Q̃, R̃ ∈ Sn++, a scalar
γ > 0 and scalar function ε : Uρ → R++ such that the LMIs

Ũ11(ρ) Ah(ρ)Y E(ρ) 0 Y hmaxR̃ 0
? Ũ33 0 Y TCh(ρ)T 0 0 Y THAh(ρ)T

? ? −γIpF (ρ)T 0 0 HE(ρ)T

? ? ? −γIq 0 0 0
? ? ? ? −P̃ (ρ) −hmaxR̃ 0
? ? ? ? ? R̃ 0
? ? ? ? ? ? −ε(ρ)I


≺ 0

and
Ker[U1(ρ)]TΞ(ρ, ν)Ker[U1(ρ)] ≺ 0

hold for all (ρ, ν) ∈ Uρ × Uν where Ξ(ρ, ν) is defined by

Ũ11(ρ) P̃ (ρ) +A(ρ)Y Ah(ρ)Y E(ρ) 0 Y hmaxR̃ 0
? Ũ22(ρ, ν) R̃ 0 Y TC(ρ)T 0 0 Y THA(ρ)T

? ? Ũ33 0 Y TCh(ρ)T 0 0 Y THAh(ρ)T

? ? ? −γIpF (ρ)T 0 0 HE(ρ)T

? ? ? ? −γIq 0 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃ 0
? ? ? ? ? ? R̃ 0
? ? ? ? ? ? ? −ε(ρ)I


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Ũ11(ρ) = −(Y + Y T ) + ε(ρ)G(ρ)G(ρ)T

Ũ22(ρ, ν) = −P̃ (ρ) + Q̃− R̃+ ∂ρP̃ (ρ)ν
Ũ33 = −(1− µ)Q̃− R̃
U1(ρ) =

[
B(ρ)T 0 0 0 D(ρ)T 0 0 HB(ρ)T

]
U2 =

[
0 I 0 0 0 0 0 0

]
In this case a suitable controller is given by the expression:

K(ρ, ρ̇) = −τU1(ρ)Ψ(ρ, ρ̇)UT2 (U2Ψ(ρ, ρ̇)UT2 )−1Y −1

τ > 0
(6.4)

such that Ψ(ρ, ρ̇) = (τU1(ρ)TU1(ρ)− Ξ(ρ, ρ̇))−1 � 0 or by solving the LMI

Ξ̃(ρ, ν) + B̄(ρ)K(ρ)Y C̄ + [B̄(ρ)K(ρ)Y C̄]T ≺ 0 (6.5)

in K(ρ). Moreover with such a control law, the closed-loop system satisfies ||z||L2 ≤ γ||w||L2.

Proof : The proof is based on an application of lemma 4.5.2. Substituting matrices of the
closed-loop system (6.3) into LMI (4.28), we get

Ψ̄(ρ, ν) + Ḡ(ρ)T∆(t)H̄(ρ) + (?)T ≺ 0 (6.6)

where Ψ̄(ρ, ν) is defined by

−XH U12(ρ) XTAh(ρ) XTE(ρ) 0 XT hmaxR

? U22(ρ, ν) R 0 U25(ρ)T 0 0
? ? U33(ρ) 0 Ch(ρ)T 0 0
? ? ? −γIp F (ρ)T 0 0
? ? ? ? −γIq 0 0
? ? ? ? ? −P (ρ) −hmaxR
? ? ? ? ? ? −R


with

U12(ρ) = P (ρ) +XT (A(ρ) +B(ρ)K(ρ))
U25(ρ) = (C(ρ) +D(ρ)K(ρ))

U22(ρ, ν) = −P (ρ) +Q−R+ ∂ρP (ρ)ν
U33 = −(1− µ)Q−R
Ḡ(ρ) =

[
G(ρ)TX 0 0 0 0 0 0

]
H̄(ρ) =

[
0 HA(ρ) +HB(ρ)K(ρ) HAh(ρ) HE(ρ) 0 0 0

]
Due to the structure of LMI (6.6) it is possible to apply the bounding lemma (see Appendix
D.15) and hence we obtain the following LMI

Ψ̄(ρ, ν) + ε(ρ)Ḡ(ρ)T Ḡ(ρ) + ε(ρ)−1H̄(ρ)T H̄(ρ)T ≺ 0

which involves an additional scalar function ε(ρ). Then performing a congruence transforma-
tion with respect to matrix diag(Y, Y, Y, I, I, Y, Y ) where Y = X−1 and using the change of
variable V (ρ) = K(ρ)Y we get the inequality:

Ψ(ρ, ν) + ε(ρ)G(ρ)TG(ρ) + ε(ρ)−1H(ρ)TH(ρ) ≺ 0 (6.7)
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where Ψ(ρ, ν) is defined by

−(Y + Y T ) Ũ12(ρ) Ah(ρ)Y E(ρ) 0 Y hmaxR̃

? Ũ22(ρ, ν) R̃ 0 U25(ρ) 0 0
? ? Ũ33 0 Y TCh(ρ)T 0 0
? ? ? −γIp F (ρ)T 0 0
? ? ? ? −γIq 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃
? ? ? ? ? ? −R̃


in which P̃ (ρ) = Y TP (ρ)Y , Q̃ = Y TQY , R̃ = Y TRY

Ũ12(ρ) = P̃ (ρ) +A(ρ)Y +B(ρ)V (ρ) Ũ25(ρ) = [C(ρ)Y +D(ρ)V (ρ)]T

Ũ22(ρ, ν) = −P̃ (ρ) + Q̃− R̃+ ∂ρP̃ (ρ)ν Ũ33 = −(1− µ)Q̃− R̃

G(ρ) =
[
G(ρ)T 0 0 0 0 0 0

]
H(ρ) =

[
0 HA(ρ)Y +HB(ρ)V (ρ) HAh(ρ)Y HE(ρ) 0 0 0

]
The latter inequality is not a LMI due to the term ε(ρ)−1H(ρ)TH(ρ) but using the Schur
complement(see Appendix D.4) we get the following equivalent LMI formulation:[

Ψ(ρ, ν) + ε(ρ)G(ρ)TG(ρ) H(ρ)T

? −ε(ρ)

]
≺ 0

Now rewrite the latter LMI as

Ξ(ρ, ν) + U1(ρ)TV (ρ)U2 + (?)T ≺ 0 (6.8)

where Ξ(ρ, ν) is defined by

Ũ11(ρ) Ũ12(ρ) Ah(ρ)Y E(ρ) 0 Y hmaxR̃ 0
? Ũ22(ρ, ν) R̃ 0 Y TC(ρ)T 0 0 Y THA(ρ)T

? ? Ũ33 0 Y TCh(ρ)T 0 0 Y THAh(ρ)T

? ? ? −γIpF (ρ)T 0 0 HE(ρ)T

? ? ? ? −γIq 0 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃ 0
? ? ? ? ? ? R̃ 0
? ? ? ? ? ? ? −ε(ρ)I


with

Ũ11(ρ) = −(Y + Y T ) + ε(ρ)G(ρ)G(ρ)T

Ũ12(ρ) = P̃ (ρ) +A(ρ)Y
U1(ρ) =

[
B(ρ)T 0 0 0 D(ρ)T 0 0 HB(ρ)T

]
U2 =

[
0 I 0 0 0 0 0 0

]
Since V (ρ) is a free variable then the projection lemma applies (see appendix D.18) and we
get conditions of Theorem 6.1.3. The controller can be constructed using either

Ξ(ρ, ν) + U1(ρ)TV (ρ)U2 + (?)T ≺ 0
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or by applying the algebraic relations given in Appendix A.9. �

The latter theorem is a theorem stating the existence of a parameter dependent matrix gain
K(ρ) such that system (6.3) is asymptotically stable and ||z||L2 ≤ γ||w||L2 . The advantage
of such a result is the possibility of constructing the controller from algebraic equations in-
volving only known matrices computed from the solution of the LMI problem. The explicit
formula leads to a controller which ensures exactly the predicted performances. On the other
hand, such a controller may depend on the parameter derivative (as emphasized by the relax-
ation (6.4)) making the controller (in most of the cases) unimplementable in practice. Three
solutions are offered to overcome this difficulty:

1. Choose a constant matrix P : this removes the parameter derivative term but increas-
ing the conservatism of the approach by tolerating arbitrarily fast varying parameters
(quadratic stability).

2. Construct the controller using SDP (6.5): in this case a specific structure must be
affected to the controller (for instance polynomial in ρ) which may result in a deterio-
ration of performances. Moreover, since the structure of the controller is chosen by the
designer after solving for the other matrices (i.e. P̃ , Q̃, R̃, Y ), then the SDP may have
no solution if the controller is not sufficiently complex.

This nonequivalence is a consequence of the parameter varying nature of the matrices involved
in the LMIs and the will of considering robust stability. The following result solves this
problem of non-equivalence between the set of LMIs of Theorem 6.1.3 and the SDP (6.5) by
providing a global approach where only one LMI has to be solved.

Theorem 6.1.4 There exists a state-feedback control law of the form u(t) = K(ρ)x(t) which
asymptotically stabilizes system (6.1) with h(t) ∈ H ◦

1 if there exist a continuously differen-
tiable matrix function P̃ : Uρ → Sn++, a matrix function V (ρ) : Uρ → Rm×n, constant matrices
Y ∈ Rn×n, Q̃, R̃ ∈ Sn++, a scalar γ > 0 and a scalar function ε : Uρ → R++ such that the LMI

[
Ψ(ρ, ν) + ε(ρ)G(ρ)TG(ρ) H(ρ)T

? −ε(ρ)I

]
≺ 0

holds for all (ρ, ν) ∈ Uρ × Uν where Ψ(ρ, ν) is defined by



−Y H Ũ12(ρ) Ah(ρ)Y E(ρ) 0 Y hmaxR̃

? Ũ22(ρ, ν) R̃ 0 U25(ρ) 0 0
? ? Ũ33 0 Ch(ρ)T 0 0
? ? ? −γIp F (ρ)T 0 0
? ? ? ? −γIq 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃
? ? ? ? ? ? −R̃


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Ũ12(ρ) = P̃ (ρ) +A(ρ)Y +B(ρ)V (ρ)
Ũ25(ρ) = [C(ρ)Y +D(ρ)V (ρ)]T

G(ρ) =
[
G(ρ)T 0 0 0 0 0 0

]
H(ρ) =

[
0 HA(ρ)Y +HB(ρ)V (ρ) HAh(ρ) HE(ρ) 0 0 0

]
Ũ22(ρ, ν) = −P̃ (ρ) + Q̃− R̃+ ∂ρP (ρ)ν

Ũ33 = −(1− µ)Q̃− R̃

In this case, a suitable control law is given by u(t) = K(ρ)x(t) where K(ρ) = V (ρ)Y −1 and
the closed-loop system (6.3) satisfies

||z||L2 ≤ γ||w||L2

Proof : The proof follows the same lines as for the proof of Theorem 6.1.3 but stops just before
the application of the projection lemma. �

As for Theorem 6.1.3, the structure of the controller is fixed by the designer through the
choice of the structure of V (ρ) and may result in conservative results if the structure is suffi-
ciently complex or not. On the other hand, Theorem 6.1.4 is easier to use since the controller
synthesis is made in one step only while the number of steps for controller computation
using Theorem 6.1.3 is two. The interest of Theorem 6.1.3 is to provide in the first step
(the solution of the projected inequalities) the minimal γ that can be expected using this
Lyapunov-Krasovskii functional (modulo the conservatism induced by the relaxation) what-
ever the structure of the controller is. Hence, this result may be used to tune the complexity
of the controller using Theorem 6.1.4.

Remark 6.1.5 Another result has been developed in [Briat et al., 2008b] for uncertain LTI
time-delay systems using the full-block S-procedure approach [Scherer, 2001; Wu, 2003]. The
results of [Briat et al., 2008b] can be extended to the LPV framework by authorizing a param-
eter dependent Lyapunov function and parameter dependent scalings.

6.1.2 Memoryless State-Feedback Design - Relaxed Discretized Lyapunov-
Krasovskii functional

The Lyapunov-Krasovskii functional used to derive conditions of Theorems 6.1.3 and 6.1.4
is simple (in the sense that the decision matrices are in small finite number). Thus latter
results can be enhanced by considering more complex functionals. Due to the difficulty to
find numerically such functions, the matrix functions are then approximated and the obtained
functional is called ’the discretized version’ of such a functional.

The following result is obtained by the use of the relaxation of the discretized Lyapunov-
Krasovskii functional described in Theorem 4.6.4 of Section 4.6.2. The applied methodology
is as usual: substitute the closed-loop system in the LMI and then turn the BMI problem
into a LMI one through the use of congruence transformation.

Theorem 6.1.6 There exists a state-feedback control law of the form u(t) = K(ρ)x(t) which
asymptotically stabilizes system (6.1) with h(t) ∈ H ◦

1 if there exist a continuously dif-
ferentiable matrix function P̃ : Uρ → Sn++, constant matrices Y ∈ Rn×n, Q̃i, R̃i ∈ Sn++,
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i = 0, . . . , N − 1, a matrix function V : Uρ → Rm×n, a scalar γ > 0 and a scalar function
ε : Uρ → R++ such that the LMIs[

Ψ(ρ, ν) + ε(ρ)G(ρ)TG(ρ) H(ρ)T

? −ε(ρ)I

]
≺ 0 (6.9)

holds for all (ρ, ν) ∈ Uρ × Uν and where

Ψ(ρ, ν) =


−Y H Ũ12(ρ) 0 Y h̄R̃0 . . . h̄R̃N−1

? Ũ22(ρ, ν) Ũ23(ρ) 0 0 . . . 0
? ? −γI 0 0 . . . 0
? ? ? −P̃ (ρ) −h̄R̃0 . . . −h̄R̃N−1

? ? ? ? −diagi R̃i



Ũ22 =



Ũ ′11 R̃0 0 0 . . . 0 0
? Ñ

(1)
1 R̃1 0 . . . 0 0

? ? Ñ
(1)
2 R̃2 0 0

. . . . . .
...

...
. . . R̃N−1 0

Ñ (2) 0
? ? ? . . . 0 0 −γI


and h̄ = hmax/N , µN = µ/N ,

Ũ ′11 = ∂ρP̃ (ρ)ν − P̃ (ρ) + Q̃0 − R̃0

Ñ
(1)
i = −(1− iµN )Q̃i−1 + (1 + iµN )Q̃i − R̃i−1 − R̃i

Ñ (2) = −(1− µ)Q̃N−1 − R̃N−1

Ũ12(ρ) =
[
P̃ (ρ) +A(ρ)Y +B(ρ)V (ρ) 0 . . . 0 Ah(ρ)Y . . . 0 E(ρ)

]
Ũ23(ρ) =

[
C(ρ)Y +D(ρ)V (ρ) 0 . . . 0 Ch(ρ) F (ρ)

]T
G(ρ) =

[
0 G(ρ)T 0 . . . 0 0 0 0 0 . . . 0

]
H(ρ) =

[
0 HA(ρ)Y +HB(ρ)V (ρ) 0 . . . 0 HAh(ρ)Y HE(ρ) 0 0 . . . 0

]
Proof : The proof is similar as for the proof of theorem 6.1.4 but using lemma 4.6.4. �

6.1.3 Memoryless State-Feedback Design - Simple Lyapunov-Krasovskii
functional

The approach developed in this section is based on the properties of the adjoint system of a
time-delay system [Bensoussan et al., 2006; Suplin et al., 2006]. The interest of adjoint systems
is to allow for the computation of controllers without any congruence transformation on the
matrix inequalities. While this is not always interesting for finite dimensional linear systems,
it is of great importance for time-delay systems for which a large number of decision matrices
are involved in the stability conditions. Indeed, linearizing congruence transformations on
matrix inequalities might not exist in time-delay system framework (for instance there exists
no linearizing congruence transformation for state-feedback design using LMI (4.25) of Lemma
4.5.1). The use of adjoint systems partially overcomes this problem.
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6.1.3.1 About adjoint systems of LPV systems

The first property of adjoint system of a LTI system is that the stability of the adjoint is
equivalent to the stability of the original system. Moreover, the H∞-norm is also preserved by
considering the adjoint. However, does that statement hold when the system is time-varying
(LTV or LPV) ? Actually, this is not a trivial equation since the outputs are computed by
integrating time-varying matrices and then for a given input, the outputs of the original and
the adjoint systems are different. Thus they have different L2 norms.

However, in the light of the use of the dualization lemma (see Appendix D.14) for
LTV/LPV systems expressed under LFT forms, it turns out that the L2-induced norm is
preserved by considering the adjoint. However, the worst-case input signal (the signal for
which the L2-induced norm is effectively attained) will be different for the original and the
adjoint system.

Let us consider the system

ẋ(t) = A(ρ)x(t) + B(ρ)w1(t)
z1(t) = C(ρ)x(t) +D(ρ)w1(t)

(6.10)

which is rewritten in an ’LFT’ form

ẋ(t) = Ax(t) +B0w0(t) +B1w1(t)
z0(t) = C0x(t) +D00w0(t) +D01w1(t)
z1(t) = C1x(t) +D10w0(t) +D11w1(t)
w0(t) = Θ(ρ)z0(t)

(6.11)

For such a system, the adjoint is given by the expression:

˙̃x(t) = AT x̃(t) + CT0 w̃0(t) + CT1 w̃1(t)
z̃0(t) = BT

0 x̃(t) +DT
00w̃0(t) +DT

10w̃1(t)
z̃1(t) = BT

1 x̃(t) +DT
01w̃0(t) +DT

11w̃1(t)
w̃0(t) = Θ(ρ)T z̃0(t)

(6.12)

Since any LPV system can be turned into an equivalent ’LFT’ system, this approach is very
general to demonstrate that the L2-norm of (6.11) and (6.12) coincides. The following results
shows the identity:

Theorem 6.1.7 Let us consider system (6.10) and (6.11), then the following statements are
equivalent:

1. The LPV system is quadratically stable if and only if there exist P ∈ Sn++, F ∈ S2n0

and a scalar γ > 0 such that following LMIs

I 0 0
A B0 B1

0 I 0
C0 D00 D01

0 0 I
C1 D10 D11



T 
0 P 0 0 0
P 0 0 0 0
0 0 F 0 0
0 0 0 −γI 0
0 0 0 0 γ−1I





I 0 0
A B0 B1

0 I 0
C0 D00 D01

0 0 I
C1 D10 D11

 ≺ 0 (6.13)
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[
Θ(ρ)
I

]T
F

[
Θ(ρ)
I

]
� 0 (6.14)

holds for all ρ ∈ Uρ. In this case, the system satisfies ||z||L2 < γ||w||L2.

2. LPV system is quadratically asymptotically stable if and only if there exist P̃ ∈ Sn++,
F̃ ∈ S2n0 and a scalar γ > 0 such that following LMIs



AT CT0 CT1
I 0 0
BT

0 DT
00 DT

10

0 I 0
BT

1 DT
01 DT

11

0 0 I



T 
0 P̃ 0 0 0
P̃ 0 0 0 0
0 0 F̃ 0 0
0 0 0 −γ−1I 0
0 0 0 0 γI





AT CT0 CT1
I 0 0
BT

0 DT
00 DT

10

0 I 0
BT

1 DT
01 DT

11

0 0 I

 � 0

(6.15)[
−I

Θ(ρ)T

]T
F

[
−I

Θ(ρ)T

]
� 0

holds for all ρ ∈ Uρ. In this case, the system satisfies ||z||L2 < γ||w||L2.

Moreover, we have the following relations between the matrices:

P̃ = P−1

F̃ = F−1

Proof : Statement 1 can be obtained by applying the full-block S-procedure on LFT system
(6.11) (Appendix D.13, Section 2.3.4.4 or [Scherer, 2001]). Statement 2. can be proved ap-
plying the dualization lemma (Appendix D.14 or [Scherer, 2001]) on LMIs (6.13) and (6.14).
�

Actually, it is difficult to see that it suffices to replace the original system matrices by
adjoint matrices into the matrix inequality (6.13) to obtain (6.15). This motivates the intro-
duction of the following corollary where we have assumed that we have Θ(ρ)TΘ(ρ) ≤ I and
F = diag(−In0 , In0):

Corollary 6.1.8 Let us consider system (6.10) and (6.11), then the following statements are
equivalent:

1. The LPV system is quadratically stable if there exist P ∈ Sn++ and a scalar γ > 0 such
that following LMIs 

PA+ATP PB0 PB1 CT1 CT0
? −I 0 DT

10 DT
00

? ? −γI DT
11 DT

01

? ? ? −γI 0
? ? ? ? −I

 ≺ 0
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2. The LPV system is quadratically stable if there exist P̃ ∈ Sn++ and a scalar γ > 0 such
that following LMIs

PAT +AP PCT0 PCT1 B1 B0

? I 0 D01 D00

? ? −γI DT
11 D10

? ? ? −γI 0
? ? ? ? −I

 ≺ 0

Proof : The proof is done by expanding the inequalities and the above matrix inequalities are
obtained modulo Schur complement arguments (see Appendix D.4). �

From this result, it is possible to conclude that the L2-induced norm is identical for a time-
varying system and its adjoint since the same LMI structure is feasible for both system.
Roughly speaking, it suffices to substitute the adjoint system in the original stability condi-
tion. This suggests it might also be the case for time-delay systems. This has been done in
the case of LTI system in [Suplin et al., 2006] and implies that it also holds for uncertain
LTI time-delay systems with constant uncertainties. In the case of time-varying uncertain-
ties it has been shown in [Wu, 2003] using the dualization lemma (see Appendix D.14) that
the delay-independent stability with L2 performances is preserved by considering the adjoint
system. Although the dualization lemma provides an efficient and strong theoretical way to
deal correctly with adjoint systems, the rank condition (see Appendix D.14) is unfortunately
rarely satisfied when considering time-delay systems and this makes the use of the adjoint a
difficult problem in the context of LPV time-delay systems.

6.1.3.2 LPV Control of LPV time-delay systems using adjoint

One of our papers [Briat et al., 2008b], provides a solution to the state-feedback stabiliza-
tion problem of uncertain time-delay systems. It is shown that adjoint of delay systems
may involve delayed uncertainties and delayed loop inputs creating then difficulties and lead-
ing to some conservatism when the delayed state is affected by uncertainties. A solution is
provided using the projection lemma (see Appendix D.18) and the cone-complementary algo-
rithm [Ghaoui et al., 1997] used here to relax a non-convex (even concave) term in a matrix
inequality similarly as in [Chen and Zheng, 2006]. Since this paper only deals with constant
uncertain systems but not LPV, this will not be explained here but such an approach can
be generalized to the LPV framework by introducing parameter dependent matrices in the
Lyapunov-Krasovskii functionals and authorizing the scalings (separators) to be parameter
dependent. On the other hand, this makes the cone complementary algorithm unapplicable
since this algorithm can only be applied on constant matrices while we are in presence of
parameter dependent matrices. In such a case, the algorithm provided in Section 4.3 shall be
used.

In what follows, we propose a method to solve this problem which has been proposed
in [Briat et al., 2008c]. The idea of the method is the following: first of all the LMI (4.25)
of Lemma 4.5.1 (Section 4.5.1), obtained from a simple parameter dependent Lyapunov-
Krasovskii functional, is considered. This LMI has two coupled terms P (ρ)A(ρ) and RA(ρ)
which means that if the closed-loop is substituted into, then exact linearization by congruence
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transformations is not possible (i.e. P (ρ)(A(ρ)+B(ρ)K(ρ)) and R(A(ρ)+B(ρ)K(ρ))). Since
we wish to avoid the too conservative simplification P (ρ) = α(ρ)R for instance, another way
is considered. This way is the use of the projection lemma whose action is to remove the
controller matrix from the inequalities. If the projection lemma were applied directly on the
original system then it would lead to a projection with respect to a basis of the kernel of
matrices

M1 =
[
I 0 0 0 0

]
M2(ρ) =

[
B(ρ)TP (ρ) 0 0 D(ρ)T hmaxB(ρ)TR

]
since we have an inequality of the form

Ψo(ρ, ρ̇) +M2(ρ)TK(ρ)M1 + (?)T ≺ 0.

From the expression of M2(ρ) we can see that

Ker[M2(ρ)] = J(ρ)Z(ρ)

with
J(ρ) = diag(P (ρ)−1, I, I, I, h−1

maxR
−1)

Z(ρ) = Ker
[
B(ρ)T 0 0 D(ρ)T B(ρ)T

]
and hence a congruence transformation with respect to diag(P (ρ)−1, I, I, I, h−1

maxR
−1) has

to be performed and leads to nonlinear terms in the resulting conditions. Moreover, these
nonlinear terms cannot be relaxed since the kernel Z(ρ) surrounds the matrix NL(·) :=
J(ρ)TΨ0(ρ, ρ̇)J(ρ) containing the (non)linear terms X(ρ), Q, R, X(ρ)QX(ρ), X(ρ)RX(ρ),
R−1, X(ρ)R, ρ, ρ̇:

Z(ρ)TNL()̇Z(ρ) ≺ 0

where X(ρ) = P (ρ)−1 Such a configuration prevents any congruence transformations which
have been used to linearize the inequality and the high number of nonlinear terms indicates
that considering the original system with this stability/performance test is not a good idea.

Let us consider now the adjoint system instead: in this case, the projection must be done
with respect to a basis of the kernel of matrices

M1(ρ) =
[
P (ρ) 0 0 0 hmaxR

]
M2(ρ) =

[
B(ρ)T 0 D(ρ)T 0 0

]
since we have inequality

Ψa(ρ, ρ̇) +M2(ρ)TK(ρ)M1 + (?)T ≺ 0

We can see that no congruence transformation is needed and it is possible to project imme-
diately: this is the interest of the use of the adjoint. After that, since the matrix P (ρ) and
R are nonsingular, there exist an infinite number of values for Ker[M1(ρ)] belonging to a set
which can be defined implicitly. The next step of the approach resides in the choice of a
’good’ kernel basis for M1(ρ). It is shown that a good basis is given by

I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

−h−1
maxR

−1P (ρ) 0 0 0


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and such a choice limits the number of nonlinearities: there is only one concave nonlinearity
of the form −h2

maxP (ρ)R−1P (ρ). Concave nonlinearities are one of the most difficult non-
linearities that can be encountered in convex programming. The remaining of the approach
consists in relaxing exactly this concave nonlinearity by a BMI involving a ’slack’ variable
(see Section 4.3) which is more simple to solve than the ’rational’ matrix inequality involving
the matrix R and its inverse. Using this, we get the following result:

Theorem 6.1.9 There exists a state-feedback control law of the form u(t) = K(ρ)x(t) which
asymptotically stabilizes nominal system (6.1) (with Ch(·) = 0 and ∆ = 0) with h(t) ∈ H ◦

1

if there exist a continuously differentiable matrix function P : Uρ → Sn++, constant matrices
Q,R ∈ Sn++, a scalar γ > 0 and scalar function ε : Uρ → R++ such that the matrix inequalities

Q−R+ ∂ρP (ρ)ν − h−2
maxP (ρ)R−1P (ρ) R 0 E(ρ)

? −(1− µ)Q−R 0 0
? ? −γI 0
? ? ? −γI

 ≺ 0 (6.16)

Ker[U(ρ)]TΨ(ρ, ν)Ker[U(ρ)] ≺ 0

holds for all (ρ, ν) ∈ Uρ × Uν with

Ψ(ρ, ν) =


Ψ11(ρ, ν) P (ρ)Ah(ρ)T +R P (ρ)C(ρ)T E hmaxA(ρ)R

? −(1− µ)Q−R 0 0 hmaxAh(ρ)R
? ? −γI F (ρ) hmaxC(ρ)R
? ? ? −γI 0
? ? ? ? −R


U(ρ) =

[
B(ρ)T 0 D(ρ)T 0 0

]
where Ψ11(ρ, ν) = A(ρ)P (ρ)+P (ρ)A(ρ)P T +Q−R+∂ρP (ρ)ν Moreover, in this case a suitable
control law can be computed by solving the following SDP in K(ρ)

Ψ(ρ, ν) + U(ρ)TK(ρ)V (ρ) + (?)T ≺ 0

with V (ρ) =
[
P (ρ) 0 0 0 hmaxR

]
and the closed-loop system satisfies ||z||L2 ≤ γ||w||L2.

Proof : The proof is based on an application of Lemma 4.5.2 which considers the stability
and L2 performance for general time-delay systems using a simple Lyapunov-Krasovskii func-
tional. Substituting matrices of the closed-loop system (6.3) into LMI (4.28) with Ch(·) = 0
and ∆ = 0 we get:

Φ̃11(ρ, ν) P (ρ)Ah(ρ)T +R P (ρ)Ccl(ρ)T E(ρ) hmaxAcl(ρ)R
? −(1− µ)Q−R 0 0 hmaxAh(ρ)R
? ? −γI F (ρ) hmaxCcl(ρ)R
? ? ? −γI 0
? ? ? ? −R

 ≺ 0

with Φ̃11(ρ, ν) = Acl(ρ)P (ρ) + P (ρ)Acl(ρ)T + Q − R + ∂ρP (ρ)ν, Acl(ρ) = A(ρ) + B(ρ)K(ρ)
and Ccl(ρ) = C(ρ) +D(ρ)K(ρ). The latter inequality can be rewritten as

Ψ(ρ, ν) + U(ρ)TK(ρ)V (ρ) + V (ρ)TK(ρ)TU(ρ) ≺ 0 (6.17)
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where Ψ(ρ, ν) is defined by
Ψ11(ρ, ν) P (ρ)Ah(ρ)T +R P (ρ)C(ρ)T E hmaxA(ρ)R

? −(1− µ)Q−R 0 0 hmaxAh(ρ)R
? ? −γI F (ρ) hmaxC(ρ)R
? ? ? −γI 0
? ? ? ? −R


U(ρ) =

[
B(ρ)T 0 D(ρ)T 0 0

]
V (ρ) =

[
P (ρ) 0 0 0 hmaxR

]
The projection lemma applies and we get the following underlying matrix inequalities:

Ker[U(ρ)]TΨ(ρ, ν)Ker[U(ρ)] ≺ 0
Ker[V (ρ)]TΨ(ρ, ν)Ker[V (ρ)] ≺ 0

While Ker[U(ρ)] cannot be computed exactly in the general case, Ker[V (ρ)]can since it involves
unknown decision matrices P (ρ) and R whose properties are known. The whole null-space of
V (ρ) is spanned by

Ker[V (ρ)] =


P1(ρ) 0 0 0

0 I 0 0
0 0 I 0
0 0 0 I

P2(ρ) 0 0 0


where P1(ρ) and P2(ρ) are such that P (ρ)P1(ρ) + hmaxP2(ρ)R = 0. Since the matrices P (ρ)
and R are positive definite (nonsingular) then there exists an infinite number of solutions
(P1(ρ), P2(ρ)). Choosing P1(ρ) = I and P2(ρ) = −h−1

maxR
−1P (ρ) we get the following basis

for the nullspace of V (ρ):

Ker[V (ρ)] =


I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

−h−1
maxR

−1P (ρ) 0 0 0


Finally applying the projection lemma we get inequality Ker[V (ρ)]TΨ(ρ, ν)Ker[V (ρ)] ≺ 0
which is equivalent to

Q−R+ ∂ρP (ρ)ν − h−2
maxP (ρ)R−1P (ρ) R 0 E(ρ)

? −(1− µ)Q−R 0 0
? ? −γI 0
? ? ? −γI

 ≺ 0

We thus obtain a sufficient condition for the existence of a stabilizing controller. The com-
putation of the controller can be done by SDP. Indeed, after solving the existence conditions,
the variables P (ρ), Q,R, γ are known and hence the matrix inequality (6.17) is linear in K(ρ)
and is a LMI problem. �

It is worth mentioning that matrix inequality (6.16) is strongly nonconvex due to the
term −h−2

maxP (ρ)R−1P (ρ) which is a concave nonlinearity. In [Briat et al., 2008b; Chen and
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Zheng, 2006; Gao and Wang, 2003] such a nonlinearity is relaxed by considering the inverse
of matrix P (which is parameter independent in their case) and hence such a problem can
be solved using the cone complementary algorithm [El-Ghaoui and Gahinet, 1993]. However,
in the present case, such a relaxation scheme cannot be considered due to the parameter
dependence of P (ρ) which is a matrix function. Hence, new relaxation schemes should be
developed.

The first one, just mentioned for completeness (see also Section 4.3), proposes to bound
the concave function by an hyperplane (which is an affine function). This is done using a
completion by the squares (see Section 4.3) and we get

−h−2
maxP (ρ)R−1P (ρ) � −2P (ρ) + h2

maxR

Actually this method is very conservative since it corresponds to the linearization of the
nonlinearity around a certain point and hence the approximation is correct in a neighborhood
of the linearization point only. This motivates the development of the more general relaxation
described in Section 4.3. Such a relaxation turns the rational nonlinearity into a bilinear
nonlinearity in which the products involve a ’slack’ variable.

Theorem 6.1.10 There exists a state-feedback control law of the form u(t) = K(ρ)x(t) which
asymptotically stabilizes nominal system (6.1) (with Ch(·) = 0 and ∆ = 0) for all h(t) ∈H ◦

1

if there exist a continuously differentiable matrix function P : Uρ → Sn++, a matrix function
Λ : Uρ → Rn×n, constant matrices Q,R ∈ Sn++, a scalar γ > 0 and scalar function ε : Uρ →
R++ such that the matrix inequalities

Υ11(ρ, ν) R 0 E(ρ) Λ(ρ)TR
? −(1− µ)Q−R 0 0 0
? ? −γI 0 0
? ? ? −γI 0
? ? ? −? −h2

maxR

 ≺ 0 (6.18)

Ker[U(ρ)]TΨ(ρ, ν)Ker[U(ρ)] ≺ 0 (6.19)

holds for all (ρ, ν) ∈ Uρ ×Uν where Υ11(ρ, ν) = Q−R+ ∂ρP (ρ)ν + Λ(ρ)TP (ρ) + P (ρ)Λ(ρ)T ,
Ψ11(ρ, ν) = A(ρ)P (ρ) + (?)T +Q−R+ ∂ρP (ρ)ν,

Ψ(ρ, ν) =


Ψ11(ρ, ν) P (ρ)Ah(ρ)T +R P (ρ)C(ρ)T E hmaxA(ρ)R

? −(1− µ)Q−R 0 0 hmaxAh(ρ)R
? ? −γI F (ρ) hmaxC(ρ)R
? ? ? −γI 0
? ? ? ? −R


Moreover, in this case a suitable control law can be computed by solving the following SDP in
K(ρ)

Ψ(ρ, ν) + U(ρ)TK(ρ)V (ρ) + (?)T ≺ 0

with V (ρ) =
[
P (ρ) 0 0 0 hmaxR

]
, U(ρ) =

[
B(ρ)T 0 D(ρ)T 0 0

]
and the closed-

loop system satisfies ||z||L2 ≤ γ||w||L2.
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Proof : The relaxation is done using Theorem 4.3.4 on the matrix inequality[
Φ11 − h2

maxP (ρ)R−1P (ρ) Φ12(ρ)
? Φ22

]
≺ 0

where

[
Φ11(ρ) Φ12(ρ)
? Φ22

]
=


Q−R+ ∂ρP (ρ)ν R 0 E(ρ)

? −(1− µ)Q−R 0 0
? ? −γI 0
? ? ? −γI


and η(ρ) = Λ(ρ), α(ρ) = P (ρ) and β = h−2

maxR. �

Although this approach preserves the nonlinearity of the problem, the numerical difficulty
is reduced due to the fact that the problem is bilinear only (while before it was rational).
Hence more simple algorithmic tools can be used to obtain local optimal solutions. One of the
interest of this ’slack’ variable is to decouple Lyapunov matrices products (PR−1P ) which
allows then to solve for them simultaneously. Indeed in the first nonlinear problem P (ρ)
and R needed to be solved separately. Moreover, matrices R and R−1 appear in the same
inequality which complicates the resolution. Note that several algorithms have been provided
in the literature to solve for matrix inequalities where matrices and their inverse are involved
[Ghaoui et al., 1997; Iwasaki and Skelton, 1995b; Skelton et al., 1997]. So, even if the problem
is still nonlinear, the nonlinearities are much ’nicer’.

The following algorithm describes how to solve this nonlinear optimization problem:

Algorithm 6.1.11

1. Generate an initial symmetric constant matrix Λ0 such that ΛT0 P + PΛ0 ≺ 0, choose
a common structure for P (ρ) and Λ(ρ) e.g. Z(ρ) = Z0 + Z1ρ + Zρ2 with Z(ρ) =
{P (ρ),Λ(ρ)}.

2. Solve the optimization problem

min γ
such that P (ρ), Q,R � 0, γ > 0
(6.18) and (6.19)

If the problem is unfeasible then go to step 1.

3. Solve the optimization problem

min
γ,Λ(ρ),Q

γ

such that Q � 0, γ > 0
(6.18) and (6.19)

4. If stopping criterion is satisfied then STOP else go to step 2.
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Although this algorithm does not guarantee any global convergence, if the stabilization prob-
lem is feasible it turns out that it is easy to find an initial feasible point Λ0 which can be
defined here by Λ0 = −εI with ε > 0. Moreover, several experiments seem to emphasize that
a small number of iterations are sufficient to converge to a local optimum. Advantages of
such an approach is to deal directly with initial bounded real lemma without any relaxation
at the expense of a larger computational complexity. For more details on this relaxation, the
readers should refer to Section 4.3.

Example 6.1.12 In this example we will compare the proposed method expressed through
Theorem 6.1.10 with an existent one proposed in [Zhang and Grigoriadis, 2005]. Let us
consider the system

ẋ(t) =
[

0 1 + φsin(t)
−2 −3 + δsin(t)

]
x(t) +

[
φsin(t) 0.1

−0.2 + δsin(t) −0.3

]
xh(t)

+
[

0.2
0.2

]
w(t) +

[
φsin(t)

0.1 + δsin(t)

]
u(t)

z(t) =
[

0 10
0 0

]
x(t) +

[
0

0.1

]
u(t)

(6.20)

which is borrowed from [Wu and Grigoriadis, 2001] and has been modified by [Zhang and
Grigoriadis, 2005].

Case φ = 0.2 and δ = 0.1:

Choosing ρ(t) = sin(t) as parameter, it can be easily deduced that ρ, ρ̇ ∈ [−1, 1]. The
parameter space is gridded over Np = 40 points uniformly spaced.

Choosing, as in [Zhang and Grigoriadis, 2005], hM = 0.5, µ = 0.5, P (ρ) = Pc and
Λ(ρ) = Λc (quadratic stability), we find γ∗ = 1.8492 in 4 iterations of the algorithm for which
the initial point has been randomly chosen. It is important to note that the first iteration gives
a maximal bound on γ of 1.89 which is also a better result than those obtained before (See [Wu
and Grigoriadis, 2001; Zhang and Grigoriadis, 2005]), for instance in Zhang and Grigoriadis
[2005], an optimal value γ = 3.09 is found. In our case, the resulting a controller is given by
K(ρ) = K0 +K1ρ+K2ρ

2 where K0 =
[
−5.9172 −16.3288

]
, K1 =

[
−53.1109− 32.4388

]
and K2 =

[
−8.4071 3.0878

]
.

It is worth noting that after computing the controller, the L2-induced norm achieved is now
γr = 2.2777 corresponding to an increase of 23.17%. Better performances should be obtained
while considering a more complex controller form but we are limited by the fact that we do
not consider rational controllers.

The values of each coefficient of the gain K(ρ) w.r.t. parameter values are represented at
the top of figure 6.1. The bottom of figure 6.1 describes the gain computed by the method of
[Zhang and Grigoriadis, 2005].
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Figure 6.1: Simulation 1 - Gains controller evolution with respect to the parameter value -
theorem 6.1.10 (top) and method of [Zhang and Grigoriadis, 2005]

Note that despite of lower controller gain values, we obtain better results than in the
previous approaches, this is a great advantage of the proposed method.

For simulation purposes let h(t) = 0.5| sin(t)| and ρ(t) = sin(t) and we will differentiate
two cases: the stabilization with non-zero initial conditions and zero inputs and the stabiliza-
tion with zero initial conditions and non-zero inputs.

Simulation 1: Stabilization (x(0) 6= 0 and w(t) = 0):

We obtain results depicted in Figures 6.2-6.4. We can see that the rate of convergence is
very near but using our method the necessary input energy to make the system converge to 0
is less than in the case of [Zhang and Grigoriadis, 2005].
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Figure 6.2: Simulation 1 - State evolution - theorem 6.1.10 in full and [Zhang and Grigoriadis,
2005] in dashed

Figure 6.3: Simulation 1 - Control input evolution - theorem 6.1.10 in full and [Zhang and
Grigoriadis, 2005] in dashed
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Figure 6.4: Simulation 1 - Delay and parameter evolution

Simulation 2: Disturbance attenuation (x(0) = 0 and w(t) 6= 0)

We consider here a unit step disturbance and we obtain the following results depicted in
Figures 6.5-6.7. We can see that our control input has smaller bounds and that the second
state is less affected by the disturbance than by using method of [Zhang and Grigoriadis,
2005]. Remember than the control output z contains the control input and the second state
only, this is the reason why the first state is more sensitive to the disturbance than in [Zhang
and Grigoriadis, 2005].



234 CHAPTER 6. CONTROL OF LPV TIME-DELAY SYSTEMS

Figure 6.5: Simulation 2 - State evolution - theorem 6.1.10 in full and [Zhang and Grigoriadis,
2005] in dashed

Figure 6.6: Simulation 2 - Control input evolution - theorem 6.1.10 in full and [Zhang and
Grigoriadis, 2005] in dashed
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Figure 6.7: Simulation 2 - Delay and parameter evolution

Then we check, the delay upper bound for which a parameter dependent stabilizing con-
troller exists and guarantees γ∗ < 10 with µ = 0.5 and we find hM = 79.1511, for γ∗ < 2
we find hM = 1.750. In [Zhang and Grigoriadis, 2005], the delay upper bound for which a
stabilizing controller exist is hM = 1.65. This shows that our result is less conservative.
Case φ = 2 and δ = 1:

Using the results of [Zhang and Grigoriadis, 2005] no solution is found. With lemma
6.1.10, we find that there exists a controller such that the closed-loop system has a L2-induced
norm lower than γ = 6.4498.

6.1.4 Memoryless state-feedback - Polytopic approach

Let us consider the polytopic LPV time-delay system:

ẋ(t) =
N∑
i=1

(Aix(t) +Ahix(t− hi(t)) +Biu(t) + Eiw(t))

z(t) =
N∑
i=1

(Cix(t) + Chix(t− hi(t)) +Diu(t) + Fiw(t))

(6.21)

where x ∈ Rn, u ∈ Rm, w ∈ Rp, z ∈ Rq and h(t) ∈ H ◦
1 are respectively the state of

the system, the control input, the disturbances, the controlled outputs and the delay of the
system. The goal is to stabilize the system with a LPV polytopic state-feedback control law
of the form:

u(t) =
N∑
i=1

Kix(t)
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where the Ki are the gains to be designed. The parameters λi are assumed to evolve within
a unitary polytope (unit simplex) characterized by

Λ :=

{
λi(t) ∈ [0, 1], λi(t) ≥ 0,

∑
i

λi(t) = 1

}

When robust stability is addressed it is convenient to define the set in which the parameters
derivative evolve

Us :=

{
λ̇i(t),

∑
i=1

λ̇i(t) = 0

}
⊂ RN

The idea of the approach is to define a parameter dependent Lyapunov-Krasovskii functional
similar to those used before. Then we use a relaxation in order to remove multiple products
and we substitute the closed-loop system into the relaxed stability/performances conditions.
Since the whole polytopic approach is based on the linear dependence on the parameters, it
is not possible here to consider only the vertices since there are quadratic terms in λ(t) in the
LMIs due to the terms B(λ)K(λ) and D(λ)K(λ). We provide here a solution based on the
linearizing result introduced in Section 4.2 and more precisely given in Corollary 4.2.2.

Theorem 6.1.13 There exists a state-feedback control law of the form u(t) =
N∑
i=1

Kix(t)

which asymptotically stabilizes the system (6.21) for all h ∈ H ◦
1 if there exist matrices

P̃i, Q̃, R̃ ∈ Sn++, Y ∈ Rn×n, Vi ∈ Rm×n and a scalar γ > 0 such that the parameter depen-
dent LMI:

Ω0 +
N∑
i=1

λiΩi +
N,N∑
i,j=1

λiλjΩij ≺ 0 (6.22)
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holds for all λi such that
N∑
i=1

λi = 1, λi(t) ≥ 0, λ̇ ∈ Us and where

Ω0 =



−Y H 0 0 0 0 Y hmaxR̃

? Ũ0
22(λ̇) R̃ 0 0 0 0

? ? Ũ0
33 0 0 0 0

? ? ? −γIp 0 0 0
? ? ? ? −γIq 0 0
? ? ? ? ? 0 −hmaxR̃
? ? ? ? ? ? −R̃



Ωi =



0 P̃i +AiY AhiY Ei 0 0 0
? Ũ i22 0 0 [CiY ]T 0 0
? ? 0 0 CThi 0 0
? ? ? 0 F Ti 0 0
? ? ? ? 0 0 0
? ? ? ? ? −P̃i 0
? ? ? ? ? ? 0



Ωij =



0 BiVj 0 0 0 0 0
? 0 0 0 [DiVj ]T 0 0
? ? 0 0 0 0 0
? ? ? 0 0 0 0
? ? ? ? 0 0 0
? ? ? ? ? 0 0
? ? ? ? ? ? 0



with Ũ22(λ̇)0 =
N∑
i=1

λ̇i(t)Pi + Q̃− R̃, Ũ i22 = −Pi + Q̃− R̃ and Ũ33 = −(1− µ)Q̃− R̃. In this

case, the controller matrices are given by Ki = ViY
−1 and the closed-loop system satisfies

||z||L2 ≥ γ||w||L2.

Proof : Consider the following Lyapunov-Krasovskii functional

V (xt, ẋt) = V 1(xt) + V 2(xt) + V 3(ẋt)

V 1(xt) =
N∑
i=1

x(t)TPix(t)

V 2(xt) =
∫ t

t−h(t)
x(θ)TQx(θ)dθ

V 3(xt) =
∫ 0

−hmax

∫ t

t+θ
ẋ(η)T (hmaxR)x(η)dηdθ

Since the form is very similar to the Lyapunov-Krasovskii functionals developed in Section
4.5, get the following LMI

Ω0 +
N∑
i=1

λiΩi +
N,N∑
i,j=1

λiλjΩij ≺ 0 (6.23)
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which is the polytopic LPV counterpart of LMI (4.35) on which a congruence transformation
with respect to the matrix diag(Y, Y, Y, I, I, Y, Y ) with Y = X−1 and the change of variable
Vi = KiY have been performed. �

A direct way to solve LMI would be to impose

Ω0 ≺ 0
Ωi ≺ 0

Ωij ≺ 0

for i, j = 1, . . . , N . Despite of its simplicity this method is very conservative. This is the
reason why relaxations like SOS-relaxation, polynomial optimization and linearization ap-
proaches should be employed instead. The reader should refer to sections 4.2 and 2.3.3.1 to
get more explanations about these approaches. We have chosen to employ here the lineariza-
tion approach detailed in Section 4.2.

The principle is to turn the polynomial parameter dependence into a new affine parameter
dependent LMI involving ’slack’ variables. This new LMI is not equivalent to the first one
but still leads to interesting results:

Theorem 6.1.14 There exists a state-feedback control law of the form u(t) =
N∑
i=1

Kix(t)

which asymptotically stabilizes the system (6.21) for all h ∈ H ◦
1 if there exist matrices

P̃i, Q̃, R̃ ∈ Sn++, Y ∈ Rn×n, Vi ∈ Rm×n, a scalar γ > 0 and a matrix Z such that the LMIs

K̃ + ZTΠi + ΠT
i Z < 0

hold for all (λ, λ̇) ∈ Λ× Us, i = 1, . . . , N , Π(λ) =
N∑
i=1

Πiλi and where

Π(λ) =


−λ1I I 0 . . . 0
−λ2I 0 I . . . 0

...
...

. . . 0
−λNI 0 0 . . . I

 K̃ =


Ω0 Ω1/2 . . . ΩN−1/2
? Ω11 . . . (Ω1N + ΩN1) /2
...

...
. . .

...
? ? . . . ΩNN


In this case suitable controller matrices are given by Ki = ViY

−1 and the closed-loop system
satisfies ||z||L2 ≥ γ||w||L2

Proof : This is a straightforward application of Corollary 4.2.2 to LMI (6.22). �

6.1.5 Hereditary State-Feedback Controller Design - exact delay value case

We consider in this section the design of state-feedback control laws embedding a delayed
information:

u(t) = K0(ρ)x(t) +Kh(ρ)x(t− h(t)) (6.24)

It is clear that such a control law will lead to better results than memoryless control laws.
We will consider first that the delay used in the controller is identical to the delay involved
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in the system dynamical model. The next section will be devoted to the case when the delay
of the controller and the system are different.

The approach of this section is similar to the one proposed for the design of memoryless
control laws (see Theorem 6.1.4 for a similar proof) and leads to the following theorem:

Theorem 6.1.15 There exists a stabilizing control law of the form (6.24) for system (6.1)
with h ∈ H ◦

1 if there exists a continuously differentiable matrix function P̃ : Uρ → Sn++,
matrix functions V0, Vh : Uρ → Rm×n, constant matrices Q̃, R̃ ∈ Sn++, Y ∈ Rn×n, a constant
scalar γ > 0 and a scalar function ε : Uρ → R++ such that the LMI[

Ψ(ρ, ν) + ε(ρ)G(ρ)TG H(ρ)T

? −ε(ρ)I

]
≺ 0 (6.25)

holds for all (ρ, ν) ∈ Uρ × Uν where Ψ(ρ, ν) is defined by

−(Y + Y T ) U12(ρ) U13(ρ) E(ρ) 0 Y hmaxR̃

? Ũ22(ρ, ν) R̃ 0 U25(ρ) 0 0
? ? Ũ33 0 U26(ρ) 0 0
? ? ? −γIp F (ρ)T 0 0
? ? ? ? −γIq 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃
? ? ? ? ? ? −R̃


and

U12(ρ) = P̃ (ρ) +A(ρ)Y +B(ρ)V0(ρ) U13(ρ) = Ah(ρ)Y +B(ρ)Vh(ρ)
U25(ρ) = Y TC(ρ)T + [D(ρ)V0(ρ)]T U26(ρ) = Y TCh(ρ)T + [D(ρ)Vh(ρ)]T

G(ρ) =
[
G(ρ)T 0 0 0 0 0 0

]
Ũ22(ρ, ν) = −P̃ (ρ) + Q̃− R̃+ ∂ρP̃ (ρ)ν

Ũ33 = −(1− µ)Q̃− R̃

H =
[

0 HA(ρ)Y +HB(ρ)V0(ρ) HAh(ρ)Y +B(ρ)Vh(ρ) HE(ρ) 0 0 0
]

Moreover a suitable control gains are given by K0(ρ) = V0(ρ)Y −1 and Kh(ρ) = Vh(ρ)Y −1 and
the closed-loop satisfies ||z||L2 < γ||w||L2

6.1.6 Hereditary State-Feedback Controller Design - approximate delay
value case

This section is devoted to the design of control of the form (6.2) in which the delay d(t) is
different from the delay h(t) of the system. In this case, we have the following control law:

u(t) = K0(ρ)x(t) +Kh(ρ)x(t− d(t)) (6.26)

The approach is again similar to the others, the main difference lies in the choice of the
Lyapunov-Krasovskii functional. Since the closed-loop will involve two delayed terms (x(t−
h(t)) and x(t− d(t))) which are coupled together by the algebraic equality d(t) = h(t) + ε(t)
with |ε(t)| ≤ δ. This equality constitutes a difficulty in the design since the Lyapunov-
Krasovskii functional must embed this information in order to characterize correctly the
system stability. This is done using the Lyapunov-Krasovskii defined in Section 4.7 and the
algorithm to obtain relaxed LMIs as design solutions. Using this we get the Theorem:
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Theorem 6.1.16 There exists a state-feedback control law of the form (6.26) if there exist
a continuously differentiable matrix function P : Uρ → Sn++, matrix functions V0, Vh : Uρ →
Rm×n, Q̃1, Q̃2, R̃1, R̃2 ∈ Sn++, a scalar γ > 0 and a scalar function ε : Uρ → R++ if the
following LMIs



U11(ρ) U12(ρ) U13(ρ) E(ρ) 0 X̃ hmaxR̃1 R̃2 0
? U22(ρ, ν) R̃1 0 U25(ρ) 0 0 0 U29(ρ)
? ? U33 0 U35(ρ) 0 0 0 U39(ρ)
? ? ? −γI F (ρ)T 0 0 0 HE(ρ)T

? ? ? ? −γI 0 0 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃1 −R̃2 0
? ? ? ? ? ? −R̃1 0 0

? ? ? ? ? ? ? −R̃2

2δ
0

? ? ? ? ? ? ? 0 −ε(ρ)I


≺ 0

(6.27)

 Π11(ρ, ν) Π12(ρ) Π13(ρ)
? Π22(ρ) 0
? ? −ε(ρ)I

 ≺ 0

hold for all (ρ, ν) ∈ Uρ × Uν where U22(ρ, ν) = −P̃ (ρ) + Q̃1 + Q̃2 +
N∑
i=1

∂P̃

∂ρi
νi − R̃1 and

U11(ρ) = −X̃(ρ)H + ε(ρ)G(ρ)G(ρ)T U12(ρ) = P̃ (ρ) +A(ρ)X̃ +B(ρ)V0(ρ)
U13(ρ) = Ah(ρ)X̃ +B(ρ)Vh(ρ) U33 = −(1− µ)(Q̃1 + Q̃2)− R̃1

U25(ρ) = U25(ρ)[C(ρ)X̃ +D(ρ)V0(ρ)]T U29(ρ) = [HA(ρ)X̃ +HB(ρ)V0(ρ)]T

U35(ρ) = [Ch(ρ)X +D(ρ)Vh(ρ)]T U39(ρ) = [HAh(ρ)X̃ +HB(ρ)Vh(ρ)]T

Π11(ρ, ν) is defined by


−X̃(ρ)H + ε(ρ)G(ρ)G(ρ)T P̃ (ρ) +A(ρ)X̃ +B(ρ)V0(ρ) Ah(ρ)X̃ B(ρ)Vh(ρ) E(ρ)

? Θ̃11(ρ, ν) R̃1 0 0
? ? Ψ̃22 (1− µ)R̃2/δ 0
? ? ? Ψ̃33 0
? ? ? ? −γI


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and Ψ̃22 = −(1− µh)(Q̃1 + R̃2/δ)− R̃1, Ψ̃33 = −(1− µd)Q̃2 − (1− µ)R̃2/δ

Π12(ρ) =



0 X̃(ρ) hmaxR̃1 R̃2[
C(ρ)X̃ +D(ρ)V0(ρ)

]T
0 0 0[

Ch(ρ)X̃
]T

0 0 0

[D(ρ)Vh(ρ)]T 0 0 0
F (ρ)T 0 0 0



Π13(ρ) =



0[
HA(ρ)X̃ +HB(ρ)V0(ρ)

]T
0

[HB(ρ)Vh(ρ)]T

0


Π22(ρ) =


−γI 0 0 0
? −P̃ (ρ) −hmaxR̃1 −R̃2

? ? −R̃1 0

? ? ? −R̃2

2δ



6.1.7 Delay-Scheduled State-Feedback Controllers

This section is devoted to the development of a new technique to control time-delay systems
with time-varying delays provided that the delay can be measured or estimated in real-
time. The difference between state-feedback with memory and delay-scheduled state-feedback
controllers comes from the fact that the former uses the delayed state into the control law
expression while the latter the instantaneous state only. On the other hand, while the former
uses constant gains (in the LTI case), the latter involves a matrix gain which depends on the
delay value, as in the LPV framework. Hence, a delay-scheduled state-feedback control law
is defined by

u(t) = K(ĥ)x(t) (6.28)

Since the gain scheduling technique is a well-established method in the LPV framework
through different approaches such as LPV polytopic systems, polynomial systems and ’LFT’
systems, it seems important to develop an application of LPV theory to time-delay systems.
This section will consider the following time-delay system

ẋ(t) = Ax(t) +Ah(t− h(t)) +Bu(t) + Ew(t)
z(t) = Cx(t) + Chx(t− h(t)) +Du(t) + Fw(t)

(6.29)

where x ∈ Rn, u ∈ Rn, w ∈ Rp, z ∈ Rq are respectively the system state, the control input,
the exogenous inputs and the controlled outputs.

In [Briat et al., 2007a], a model transformation has been introduced in order to turn a
time-delay system into an uncertain LPV system. However, this model transformations suffer
from two main problems: the first one is the singularity of the L2 norm of the operator for
0 delay values. The second one is the conservatism induced by the computation of the L2-
induced norm of that operator. The model transformation presented below authorizes zero
delay values and the L2-induced norm computation is tighter.
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Let the operator
Dh : L2 → L2

η(t) → 1√
h(t)hmax

∫ t

t−h(t)
η(s)ds

This operator enjoys the following properties:

1. Dh is L2 − L2 stable.

2. Dh has an induced L2 − L2 norm lower than 1.

Proof : Let us prove first that for a L2 input signal we get a L2 output signal. Assume
that η(t) is continuous and denote by ηp(t) the signal satisfying dηp(t)/dt = η(t) then we have

Dh(η(t)) =
ηp(t)− ηp(t− h(t))√

h(t)hmax
(6.30)

Note that as h(t) is always positive then (6.30) is bounded since η(t) is continuous and belongs
to L2 (and hence to L∞). The main problem is when the delay reaches 0. Suppose now that
there exist a (possibly infinite) family of time instants ti+1 > ti ≥ 0 such that h(ti) = 0. Since
ηp(t) is continuously differentiable and hence we have

limt→ti
ηp(t)− ηp(t− h(t))√

h(t)hmax
=

√
h(ti)
hmax

η(ti)

As η(t) is continuous and belongs to L2, we can state that η(ti) is always finite and then the
output signal remains bounded even if the delay reaches zero. This proves that Dhhas a finite
L∞-induced norm (no singularities). Let us prove now that it has a finite induced L2-norm
using a similar method as in Gu et al. [2003]:

||Dh(η)||2L2
:=
∫ +∞

0

dt

h(t)hmax

∫ t

t−h(t)
ηT (θ)dθ ·

∫ t

t−h(t)
η(θ)dθ

Then using the Jensen’s inequality (see [Gu et al., 2003]) we obtain

||Dh(η)||2L2
≤
∫ +∞

0

dt

hmax

∫ t

t−h(t)
ηT (θ)η(θ)dθ (6.31)

To solve the problem we will exchange the order of integration under the assumption η(θ) = 0
when θ ≤ 0. First note that the domain is contained in t− hM ≤ θ ≤ t, θ ≥ 0 and is bounded
by lines θ = t and θ = p(t) := t − h(t). Since p(θ) is a non-decreasing function then the set
of segments where θ = p(t) is constant is countable. Hence for almost all θ the function p(t)
is increasing and the inverse t = q(θ) := p−1(θ) := is well-defined and then we have

||Dh(η)||2L2
≤ 1

hmax

∫ +∞

0
ηT (θ)η(θ)dθ

∫ q(θ)

θ
dt

=
1

hmax

∫ +∞

0
ηT (θ)η(θ)(q(θ)− θ)dθ
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Hence using the fact that θ = t − h(t) and that t = q(θ) then we have the equality θ =
q(θ)− h(q(θ)) and hence we have q(θ)− θ = h(q(θ)). This leads to

||Dh(η)||2L2
≤ 1

hmax

∫ +∞

0
ηT (θ)η(θ)h(q(θ))dθ

≤ ||η||2L2

We have then proved that Dhdefines a L2−L2 stable operator with an L2-induced norm lower
than 1. �

We show now how to use this operator to transform a time-delay system into an uncertain
LPV system. Consider system (6.29) and note that xh(t) = x(t − h(t)) = Dh(ẋ(t)) then
substituting this expression into system (6.29) we get the following ’LFT’ system:

ẏ(t) = Āy(t)− α(t)Ahw0(t) +Buu(t) + Ew(t)
z0(t) = ẏ(t)
z(t) = C̄y(t)− α(t)Chw0(t) +Duu(t) + Fw(t)
w0(t) = Dh(z0(t))
Ā = A+Ah
C̄ = C + Ch

(6.32)

where α(t) =
√
h(t)hM and y(t) is the new state of the system emphasizing that the trans-

formed model is not always equivalent to the original one.

This system is then obviously:

• uncertain due to the presence of the ”unknown” structured norm bounded LTV dynamic
operator Dh. For this part we will use results of robust stability analysis and robust
synthesis.

• parameter varying (even affine in α(t)). We will use parameter dependent Lyapunov
functions to tackle this time-varying part.

It is clear that this system is not equivalent to (6.29) due to the model transformation in-
troducing additional dynamics (see Section 3.2.1.3 and [Gu and Niculescu, 1999, 2000; Gu
et al., 2003]). Just note that additional dynamics may be a source of conservatism in stability
analysis. Nevertheless, in the stabilization problem this is less problematic since we aim to
stabilize the system and hence we stabilize these additional dynamics (assuming they are
stabilizable).

Before introducing the main results of this section based on this model transformation it
is necessary to introduce the following sets

H := [hmin, hmax]
U := [µmin, µmax]
Ĥ := [hmin − δ, hmax + δ]
Û := [µmin − νmin, µmax + νmax]
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The set H corresponds to the set of values of the delay, the set U defines the set of values of the
delay derivative. The sets Ĥ and Û represent respectively the set of values of the measured
delay and its derivative. It is worth mentioning that the measurement error belongs to [−δ, δ]
while its derivative remains within [νmin, νmax].

6.1.7.1 Stability and L2 performances analysis

This section is devoted to the stability analysis of the transformed system using robust and
LPV stability analysis tools. The robustness with respect to the operator Dh will be ensured
using the full-block S-procedure [Scherer, 1996, 1999, 2001] while the stability with respect to
the parameter varying part will be tackled using a parameter dependent Lyapunov function.
The full-block S-procedure is used with parameter dependent D scalings, D(·) being the
decision variables, as shown below:

Lemma 6.1.17 System (6.32) without control input (i.e. u(t) = 0) is asymptotically stable
for h ∈ H and satisfies the H∞-norm property ||z||2/||w||2 < γ(h, ḣ) if there exist a smooth
matrix function P : H → Sn++, matrix functions D : H × U → Sn++ and a function γ :
H × U → R++ such that the LMI

[ĀTP (h)]H +
dP

dh
ḣ −αP (h)Ah P (h)E C̄T ĀTD(h, ḣ)

? −D(h) 0 −αCTh −αAThD(h, ḣ)
? ? −γ(h, ḣ)Ip F T ETD(h, ḣ)
? ? ? −γ(h, ḣ)Iq 0
? ? ? ? −D(h, ḣ)

 ≺ 0 (6.33)

holds for all h ∈ H and ḣ ∈ U with α =
√
hmaxh.

Proof : Let us consider system (6.32), it is possible to apply the full-block S-procedure in
order to develop an efficient stability test. Combining with L2 performances we obtain the
following LMI 

∂P

∂h
ḣ+ ĀTP (h) + P (h)Ā −αPAh PE

? 0 0
? ? −γ(h, ḣ)I


+

 0 ĀT

I −αATh
0 ET

f(h, ḣ)
[

0 I 0
Ā −αAh E

]

+γ−1(h, ḣ)

 C̄T

−αATh
F T

 C̄T

−αATh
F T

T ≺ 0

(6.34)

where f(h, ḣ) satisfies

∫ t

0

[
Dh(η)
η

]T
f(h, ḣ)

[
Dh(η)
η

]
ds > 0 for all η ∈ L2
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The separator f(h, ḣ) = f∗(h, ḣ) is chosen noting ||Dh||∞ < 1 then Dh may satisfy∫ t

0

[
Dh(η)
η

]T [ −1 0
0 1

]
︸ ︷︷ ︸

f1

[
Dh(η)
η

]
ds > 0 for all η ∈ L2

Hence a set of separators can be parametrized as f = f1 ⊗ D where D = D∗ > 0. But the
set of separators is limited to be Hermitian and the signal are real valued then the separator
becomes

f(h, ḣ) :=
[
−D(h, ḣ) 0

? D(h, ḣ)

]
(6.35)

where D : H ×U → Sn++. Then expand (6.34) and perform a Schur complement on quadratic
term

−


C̄T ĀTD(h, ḣ)
−αCh −αAhD(h, ḣ)
F ETD(h, ḣ)

[ −γ−1(h, ḣ)Iq 0
0 −D−1(h, ḣ)

]
C̄T ĀTD(h, ḣ)
−αCh −αAhD(h, ḣ)
F ETD(h, ḣ)


T

leads to inequality (6.33). �

The LMI provided in the latter theorem can be easily solved using classical LMI solvers.
Moreover, if the parameter dependence is linear then a polytopic relaxation will be exact.
However, if the dependence is polynomial then a more complex relaxation scheme should be
adopted. For more details about these relaxations, the readers should refer to Sections 2.3.3.2,
2.3.3.3, 2.3.3.4 and 4.2.

6.1.7.2 Delay-Scheduled state-feedback design

We provide in that section the computation of a delay-scheduled state-feedback of the form
(6.28) for system (6.29). In this case, the closed-loop system is then given by

ẏ(t) = Ācl(h, δh)y(t)−Ahα(t)w0(t) + Ew(t)
z(t) = C̄cl(h, δh)y(t)− Chα(t)w0(t) + Fw(t)
z0(t) = ẏ(t)
w0(t) = Dh(z0(t))

(6.36)

with ĥ = h + δh, a state feedback of the form K(h + δh) and closed-loop system matrices
Ācl(h, δh) = Ā + BuK(ĥ), C̄cl(h, δh) = C̄ + DuK(ĥ). As shown in previous sections, there
exist several ways to compute this controller:

1. Use an approach involving congruence transformations and change of variable. Using
this approach, it is possible to fix a desired form to the controller.

2. Elaborate a stabilizability test (independent of the controller) based on the projection
lemma (see Appendix D.18). A suitable controller is then deduced either through a
LMI problem or an explicit algebraic equality.
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We will only provide here a solution based on a change of variable but a solution based on
the projection lemma can also be employed (see Section 6.1.1 for details, differences and
interests of these approaches). This approach allows to fix the controller structure which can
be independent of the delay derivative. However, the result may be conservative since it is
difficult to choose adequately the controller structure. The approach using the projection
lemma is interesting since it allows to compute the minimal L2 performances gain that can
be reached using this approach but the controller which is computed from algebraic equations
might depend on the delay-derivative.

Theorem 6.1.18 The system (6.32) is stabilizable with a delay-scheduled state feedback K(ĥ) =
Y (ĥ)X−1(ĥ) if there exists a smooth matrix function X : Ĥ → Sn++, matrix functions
Y : Ĥ → Rm×n, D̃ : H ×U × Ĥ × Û → Sn++ and a scalar function γ : H ×U × Ĥ × Û → R++

such that the LMI

U11(ĥ, ˙̂
h) U12(ĥ) U13(ĥ, ˙̂

h) αAhD̃(ξ) E

? −γ(ξ)Iq αC̄X(h) αChD̃(ξ) F

? ? − ˙̂
h
∂X(ĥ)

∂ĥ
− D̃(ξ) 0 0

? ? ? −D̃(ξ) 0
? ? ? ? −γ(ξ)Ip


≺ 0 (6.37)

holds for all h ∈ H, ḣ ∈ U , δh ∈ ∆ and δ̇h ∈ ∆ν , where ξ = col(h, δh, ḣ, δ̇h) and

U11(ĥ, ˙̂
h) = − ˙̂

h
∂X(ĥ)

∂ĥ
+ [X(ĥ)ĀT + Y T (ĥ)BT

u ]H

U12(ĥ) = X(ĥ)C̄T + Y T (ĥ)DT
u

U13(ĥ, ˙̂
h) = − ˙̂

h
∂X(ĥ)

∂ĥ
+ ĀX(ĥ)

K(ĥ) = Y (ĥ)X(ĥ)−1

Proof : First note that the real unknown delay is h(t) and the estimated one is ĥ(t) =
h(t)+ δh(t). X must depend on ĥ(t) only since the controller gain is a function of X. Indeed,
if X depends on h(t), then the controller would also depend on h(t) which is not possible
since h(t) is unknown. Nevertheless, other variables may depend on all the parameters (i.e.
h(t), δh(t), ḣ(t), δ̇h(t)). From here let ξ = col(h, δh, ḣ, δ̇h) for simplicity. First note that LMI
(6.34) can be rewritten in the following form

I 0 0
Ā −αAh E

0 I 0
Ā −αAh E

0 0 I
C̄ −αCh F



T

M(h, ḣ)



I 0 0
Ā −αAh E

0 I 0
Ā −αAh E

0 0 I
C̄ −αCh F


︸ ︷︷ ︸

S

≺ 0 (6.38)

where M(h, ḣ) =

 ḣ
dP (h)
dh

P (h)

P (h) 0

 ⊕ f(h, ḣ) ⊕ [−γ(h, ḣ)Ip] ⊕ [γ−1(h, ḣ)Iq]. First inject

the closed-loop system into (6.38). Note that dim(M) = 4n + p + q and n−(M) = 2n + p
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(where n−(M) is the number of negative eigenvalues of the symmetric matrix M , n = dim(x),
p = dim(w) and q = dim(z)) and the latter equals the rank of the subspace S (defined in
(6.38)). Then it is possible to apply the dualization lemma and we obtain

−ĀTcl(ĥ) −C̄T (ĥ) 0
In 0 In
αATh αCTh 0

0 0 −In
−ET −F T 0

0 Iq 0



T

M−1(ξ)



−ĀTcl(ĥ) −C̄T (ĥ) 0
In 0 In
αATh αCTh 0

0 0 −In
−ET −F T 0

0 Iq 0


︸ ︷︷ ︸

S+

� 0 (6.39)

where M−1(ξ) =

[
dP (ĥ)
dt P (ĥ)
? 0

]−1

⊕ f−1(ξ)⊕ [−γ−1(ξ)]⊕ [γ(ξ)].

Let X = P−1 and then
dX(ĥ)
dt

= −XdP (ĥ)
dt

X

and thus  dP (ĥ)
dt

P (ĥ)

? 0

−1

=

 0 X(ĥ)

?
dX(ĥ)
dt


Denote also f−1(ξ) =

[
−D̃(ξ) G̃T (ξ)
? D̃(ξ)

]
with D̃ ∈ Sn++. Moreover f−1(·) satisfies the

inequality [
−In
DTh (·)

]T [ −D̃(ξ) G̃T (ξ)
? D̃(ξ)

] [
−In
DTh (·)

]
≺ 0 (6.40)

Then expand (6.39) and notice that R̃(h, ḣ) < 0, the Schur complement can be used on the
quadratic term:

−

 αAhD̃ E

αChD̃ F
0 0

[ D̃−1 0
0 γ−1(ξ)Ip

] αAhD̃ E

αChD̃ F
0 0

T (6.41)

Finally multiplying the LMI by -1 (to get a negative definite inequality) we obtain inequality
(6.37) in which Y (ĥ) = K(ĥ)X(ĥ) is a linearizing change of variable. �

We have expressed the stability and stabilizability problems as polynomially parametrized
LMIs (6.33) and (6.37). Moreover the L2-induced norm is expressed as a positive function of
the parameters and its minimization is not a well-defined problem since we cannot minimize
a function. We detail below how to turn this problem into a tractable one.

Since the cost to be minimized needs to be unique for every parameters, the idea is here,
to provide an idea on how to turn the semi-infinite number of cost (defined for each value of
the parameters) into a single one. This step is performed by an integration procedure with
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respect to some specific measures.

Let us illustrate this on the elementary cost γ(ξ), ξ = col(h, δh, ḣ, δ̇h). It is possible to define
several ’general’ costs J (·):

Jθ(γ) :=
∫
H×U×H̄×Û

γ(ξ)dθ(ξ) (6.42)

where dθ(ξ) is a probability measure over H × U × H̄ × Û
(

i.e.
∫
H×U×H̄×Û

dθξ = 1
)

.

We propose here some interesting values of the measure dθ(·, ·):

• dθ1(ξ) = µ(H × U × H̄ × Û)−1 where µ(·) is the Lebesgue measure.

• dθ2(ξ) = δ(
f∏
i=1

(ξ − ξi)) with δ(t) is the Dirac distribution.

• dθ3(ξ) = p(ξ) where p(·) denotes for instance a probability density function.

The first one minimizes the volume below the hypersurface defined by the application γ :
H ×U × H̄ × Û → R+ with equal preference for any parameter values. The second one aims
to minimize the H∞-norm, specifically for certain delay, errors and their derivative values.
This may be interesting for systems with discrete valued delays. The third one is dedicated
when we have a stochastic model of the delay (and eventually a model for its derivative)
attempts for instance to minimize in priority the H∞-norm for high probable delay values.

6.2 Dynamic Output Feedback Control laws

This section is devoted to the stabilization of time-delay systems by dynamic output-feedback.
Two different laws control will be developed:

1. ’observer based control laws’ which means that the controller is composed by an observer
which estimate the system state and a state-feedback control law which generate the
control input from the estimated state;

2. full-block controllers where all the matrices are sought such that the closed-loop system
is asymptotically stable.

Each approach has its own benefits and drawbacks and rather than enumerating them just
retain that:

1. The main difficulty in the synthesis of observer-based control laws is the fact that, first
of all, it is not possible to exactly linearize the conditions by congruence transformations
and change of variables due to a low number of degrees of freedom (two for observer
based-control laws). However, the obtained controller is rather simple and then easy to
implement.

2. In the full-block output-feedback control law framework, congruence transformations
and change of variable are possible. Moreover, this approach leads to exact LMI con-
ditions when dealing with output-feedback with memory (when the delay is exactly
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known). Nevertheless, such a case almost never occurs since the delay is generally not
exactly known except in some vary special cases (for instance when the delay represents
a variable sampling period [Fridman et al., 2004; Suplin et al., 2007]). This is the reason
why memoryless controller are often preferred but are more difficult to design due to
the presence of bilinear terms (non-linearizable) in the resulting conditions.

In [Sename and Briat, 2006], the problem of finding a observer-based control law for LTI
time-delay systems is derived through iterative LMI conditions. The result is provided in
the delay-independent framework only. This section will consider delay-dependent results
with both memoryless and with memory controllers. It is also possible to elaborate delay-
scheduled dynamic output feedback control laws based on the approach detailed in Section
6.1.7 but tractable conditions can only be obtained using more simple scalings than D scalings.
Otherwise, iterative LMI procedures would deal with such problems.

6.2.1 Memoryless observer based control laws

This section aims at developing sufficient conditions to the existence of a memoryless observer-
based control law of the form

ξ̇(t) = A(ρ)ξ(t) +B(ρ)u(t) + L(ρ)(y(t)− Cy(ρ)ξ(t))
u(t) = −K(ρ)ξ(t)

(6.43)

for LPV time-delay systems

ẋ(t) = A(ρ)x(t) +Ah(ρ)x(t− h(t)) +B(ρ)u(t) + E(ρ)w(t)
z(t) = C(ρ)x(t) + Ch(ρ)x(t− h(t)) +D(ρ)u(t) + F (ρ)w(t)
y(t) = Cy(ρ)x(t) + Fy(ρ)w(t)

(6.44)

where x ∈ Rn, ξ ∈ Rn, u ∈ Rm, y ∈ Rp, w ∈ Rq and z ∈ Rr are respectively the system state,
the controller state, the control input, the measured output, the exogenous inputs and the
controlled outputs. The delay h(t) is assumed to belong to the set H ◦

1 and the parameters
ρ ∈ Uν with ρ̇ ∈ hull[Uν ]. In such a case, the closed-loop system can be expressed by the
equations[

ė(t)
ẋ(t)

]
=

[
A(ρ)− L(ρ)Cy(ρ) 0

B(ρ)K(ρ) A(ρ)−B(ρ)K(ρ)

] [
e(t)
x(t)

]
+
[

0 Ah(ρ)
0 Ah(ρ)

] [
e(t− h(t))
x(t− h(t))

]
+
[
E(ρ)− L(ρ)Fy(ρ)

E(ρ)

]
w(t)

and we define an extended output vector z̃(t) =
[
Te(t)
z(t)

]
with T full row rank. The role of

the matrix T is to weight the observation error in order to reduce the impact of the distur-
bances on the observation error.

Before introducing the main result of the section, known methodologies will be briefly in-
troduced here. A common methodology is to assume that the Lyapunov matrix multiplied
with system matrices are block-diagonal and each block corresponds to a specific part of the
augmented system (i.e. the observation error and the system-state).
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Remark 6.2.1 It is worth mentioning that since the design matrices K(ρ) and L(ρ) are
not multiplied in the same fashion with system matrices (L(ρ) is free from the left while
K(ρ) is free from the right) then this suggests that congruence transformations would lead to
nonlinear terms without possibility of linearization. Hence, in order to overcome this problem,
a commutation approach has been introduced [Chen, 2007; Daafouz et al., 2002] where a block
of Lyapunov matrix is constrained such that it commutes with a system matrix. For instance,
the Lyapunov matrix X is constrained such that it commutes with the system measurement
matrix Cy, i.e. CyX = X̂Cy where rank[Cy] = p. In this case, the change of variable L̂ = LX̂
is allowed but this considerably increases the conservatism of the approach. However, in the
H∞ observer-based control problem, this is more difficult since the observer gain appears in
different places (e.g. A − LCy and E − LFy) and hence this approach fails in the studied
problem.

In the presented method no congruence transformations are applied but we use a simple
approach based on linear bounds on nonlinear terms. Using this approach we get the following
result:

Theorem 6.2.2 There exists an observer-based control law of the form (6.43) which asymp-
totically stabilizes system (6.44) for all h ∈H ◦

1 if there exist a continuously differentiable ma-
trix P : Uρ → Sn++, matrix functions X0, Xc : Uρ → Rn×n, K : Uρ → Rm×n, Lo : Uρ → Rn×p,
constant matrices Q,R ∈ Sn++, scalar functions α1, α2 : Uρ → R++ and a constant scalar
γ > 0 such that the following LMI


−(X +XT ) Ω2(ρ)T Ω3(ρ)T Ω5(ρ)T

? Ω4(ρ, ρ̇) Ω6(ρ)T 0 ΩT
c

? ? Ω8(ρ) 0
? ? ? Ω10(ρ)
? ? ? ? −Ωd

 ≺ 0
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holds for all (ρ, ν) ∈ Uρ × Uν where

Ω2(ρ) =

 P (ρ) +
[
A(ρ)TXo(ρ)− Cy(ρ)TLo(ρ)T 0

0 A(ρ)TXc

]
[

0 0
Ah(ρ)TXo(ρ) Ah(ρ)TXc(ρ)

]


Ω3(ρ) =


E(ρ)TXo(ρ)− Fy(ρ)TLo(ρ)T

E(ρ)TXc(ρ)
0
0


Ω5(ρ) =

[
X

hmaxR

]

Ω6(ρ) =


0 0 0 0
0 0 0 0
T 0 0 0

D(ρ)K(ρ) C(ρ)−D(ρ)K(ρ) 0 Ch(ρ)


Ω8(ρ) =

[
−γ(ρ)Iw F (ρ)T

? −γ(ρ)Iz

]
Ω10(ρ) =

[
−P (ρ) −hmaxR
? −R

]

Ωc(ρ) =



0 0 0 0
α1(ρ)Xc(ρ)TB(ρ) α1(ρ)Xc(ρ)TB(ρ) 0 0

0 0 K(ρ)T 0
0 0 0 K(ρ)T

0 0
0 0
0 0
0 0



Ωd(ρ) =


α1(ρ)I 0 0 0
? α2(ρ)I 0 0
? ? α1(ρ)I 0
? ? ? α2(ρ)I


Moreover the observer gain L(ρ) = Xo(ρ)−TLo(ρ) and the closed-loop satisfies ||z̃||L2 ≤
γ||w||L2.

Proof : First of all we assume that the matrix X is structured as follows:

X = diag(Xo, Xc)

Since we are interested in a simple stabilization test, we will consider the Lyapunov-Krasovskii
functional of Section 4.5.1 whose relaxation is provided in Section 4.5.2. After substitution
of the extended system in the LMI of Lemma 4.5.2 we get

Ξ =


−(X(ρ) +X(ρ)T ) Ξ2(ρ)T Ξ3(ρ)T Ξ5(ρ)T

Ξ2(ρ) Ξ4(ρ, ρ̇) Ξ6(ρ)T 0
Ξ3(ρ) Ξ6(ρ) Ξ8(ρ) 0
Ξ5(ρ) 0 0 Ξ10(ρ)


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Ξ2(ρ) =

 P (ρ) +
[
A(ρ)TXo(ρ)− Cy(ρ)TLo(ρ)T −K(ρ)TB(ρ)TXc(ρ)

0 A(ρ)TXc −K(ρ)TB(ρ)TXc(ρ)

]
[

0 0
Ah(ρ)TXo(ρ) Ah(ρ)TXc(ρ)

]


Ξ3(ρ) =


E(ρ)TXo(ρ)− Fy(ρ)TLo(ρ)T

E(ρ)TXc(ρ)
0
0


Ξ5(ρ) =

[
X

hmaxR

]

Ξ6(ρ) =


0 0 0 0
0 0 0 0
T 0 0 0

D(ρ)K(ρ) C(ρ)−D(ρ)K(ρ) 0 Ch(ρ)


Ξ8(ρ) =

[
−γ(ρ)Iw F (ρ)T

? −γ(ρ)Iz

]

Ξ10(ρ) =
[
−P (ρ) −hmaxR
? −R

]

Ξ4(ρ, ρ̇) =

 ∂P (ρ)
∂ρ

ρ̇− P (ρ) +Q−R R

? −(1− µ)Q−R


The main difficulty comes from the bilinear term Xc(ρ)TB(ρ)K(ρ). It is worth mentioning
that in this case it is not possible to find a linearizing congruence transformation. However,
it is possible to use the well-known bound on cross-terms heavily used in time-delay systems
(see Appendix E.2):

−2xT3 Xc(ρ)TB(ρ)K(ρ)x2 ≤ α1(ρ)xT3 Xc(ρ)TB(ρ)B(ρ)TXc(ρ)x3 + α1(ρ)−1xT2 K(ρ)TK(ρ)x2

−2xT4 Xc(ρ)TB(ρ)K(ρ)x2 ≤ α2(ρ)xT4 Xc(ρ)TB(ρ)B(ρ)TXc(ρ)x4 + α2(ρ)−1xT2 K(ρ)TK(ρ)x2

for any real valued vectors x2, x3, x4 of appropriate dimensions and real valued positive scalar
functions α1(·), α2(·). Using these inequalities it is possible to show that the following inequal-
ity implies Ξ ≺ 0:

Υ =


−(X +XT ) + Y1 Υ2(ρ)T Ξ3(ρ)T Ξ5(ρ)T

Υ2(ρ) Υ4(ρ, ρ̇) Ξ6(ρ)T 0
Ξ3(ρ) Ξ6(ρ) Ξ8(ρ) 0
Ξ5(ρ) 0 0 Ξ10(ρ)

 ≺ 0

with

Y1 =
[

0 0
0 (α2(ρ) + α1(ρ))[Xc(ρ)TB(ρ)B(ρ)TXc(ρ)]

]
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Υ2(ρ) =

 P (ρ) +
[
A(ρ)TXo(ρ)− Cy(ρ)TLo(ρ)T 0

0 A(ρ)TXc

]
[

0 0
Ah(ρ)TXo(ρ) Ah(ρ)TXc(ρ)

]


Υ4(ρ, ρ̇) = Ξ4(ρ, ρ̇) + Y2

Y2 =
[
α1(ρ)−1K(ρ)TK(ρ) 0

0 α2(ρ)−1K(ρ)TK(ρ)

]
Finally since

Y1 =
[

0 0
α1(ρ)Xc(ρ)TB(ρ) α2(ρ)Xc(ρ)TB(ρ)

] [
α1(ρ)−1I 0

0 α2(ρ)−1I

]
(?)T

Y2 =
[
K(ρ)T 0

0 K(ρ)T

] [
α1(ρ)−1I 0

0 α2(ρ)−1I

]
(?)T

where (?)T stands for the symmetric part of the quadratic term, then Υ may be rewritten into
the form

Υ =


−(X +XT ) Υ2(ρ)T Ξ3(ρ)T Ξ5(ρ)T

Υ2(ρ) Ξ4(ρ, ρ̇) Ξ6(ρ)T 0
Ξ3(ρ) Ξ6(ρ) Ξ8(ρ) 0
Ξ5(ρ) 0 0 Ξ10(ρ)



+



0 0 0 0
α1(ρ)Xc(ρ)TB(ρ) α1(ρ)Xc(ρ)TB(ρ) 0 0

0 0 K(ρ)T 0
0 0 0 K(ρ)T

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

Υc(ρ)

Υd(ρ)−1(?)T ≺ 0

with Υd(ρ)−1 =


α1(ρ)−1I 0 0 0

? α2(ρ)−1I 0 0
? ? α1(ρ)−1I 0
? ? ? α2(ρ)−1I

. And finally applying Schur

complement we get
−(X +XT ) Υ2(ρ)T Ξ3(ρ)T Ξ5(ρ)T

Υ2(ρ) Ξ4(ρ, ρ̇) Ξ6(ρ)T 0 ΥT
c

Ξ3(ρ) Ξ6(ρ) Ξ8(ρ) 0
Ξ5(ρ) 0 0 Ξ10(ρ)

Υc Υd

 ≺ 0

which is linear in Xo, Xc, Lo,K, P,Q,R �
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Remark 6.2.3 The procedure is similar as for the design of observer-based control law with
memory:

ξ̇(t) = A(ρ)ξ(t) +Ah(ρ)ξ(t− h(t)) +B(ρ)u(t)
s+ L(ρ)(y(t)− Cy(ρ)ξ(t)− Cyh(ρ)ξ(t− h(t)))

u(t) = −K(ρ)ξ(t)−Kh(ρ)ξ(t− h(t))
(6.45)

Indeed, in this case, the extended system would be[
ė(t)
ẋ(t)

]
=

[
A(ρ)− L(ρ)Cy(ρ) 0

B(ρ)K(ρ) A(ρ)−B(ρ)K(ρ)

] [
e(t)
x(t)

]
+
[
Ah(ρ)− L(ρ)Cyh(ρ) 0

B(ρ)Kh(ρ) Ah(ρ)−B(ρ)Kh(ρ)

] [
e(t− h(t))
x(t− h(t))

]
+
[
E − LFy

E

]
w(t)

6.2.2 Dynamic Output Feedback with memory design - exact delay case

This section is devoted to the design of a dynamic output feedback controller with memory.
The delay is assumed to be exactly known. The advantage of such controllers resides in the
existence of congruence transformations and linearizing change of variables. However, they
are difficult to implement in practice due to the imprecision on the delay value knowledge.
Section 3.2.2 presents methods allowing to deal a posteriori on delay uncertainty that can be
used in order to give a bound on the maximal error on the delay value knowledge that can
be tolerated.

The class of systems under consideration is given by:

ẋ(t) = A(ρ)x(t) +Ah(ρ)x(t− h(t)) +B(ρ)u(t) + E(ρ)w(t)
z(t) = C(ρ)x(t) + Ch(ρ)x(t− h(t)) +D(ρ)u(t) + F (ρ)w(t)
y(t) = Cy(ρ)x(t) + Cyh(ρ)x(t− h(t)) + Fy(ρ)w(t)

(6.46)

for which the following stabilizing controllers have to be designed

ẋc(t) = Ac(ρ)xc(t) +Ahc(ρ)xc(t− h(t)) +Bc(ρ)y(t)
u(t) = Cc(ρ)xc(t) + Chc(ρ)xc(t− h(t)) +Dc(ρ)y(t)

(6.47)

where x ∈ Rn, xc ∈ Rn, u ∈ Rm, y ∈ Rp, w ∈ Rq and z ∈ Rr are respectively the system state,
the controller state, the control input, the measured output, the exogenous inputs and the
controlled outputs. The delay h(t) is assumed to belong to the set H ◦

1 and the parameters
ρ ∈ Uν with ρ̇ ∈ hull[Uν ]. The closed-loop system is given by

˙̄x(t) =
[
A+BDcCy BCc

BcCy Ac

]
︸ ︷︷ ︸

Acl

x̄(t) +
[
Ah +BDcCyh BChc

BcCyh Ahc

]
︸ ︷︷ ︸

Ahcl

x̄(t− h(t))

+
[
E +BDcFy

BcFy

]
︸ ︷︷ ︸

Ecl

w(t)

z(t) =
[
C +DDcCy DCc

]︸ ︷︷ ︸
Ccl

x̄(t) +
[
Ch +DDcCyh DChc

]︸ ︷︷ ︸
Chcl

x̄(t− h(t))

+ (F +DDcFy)︸ ︷︷ ︸
Fcl

w(t)
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with x̄(t) = col(x(t), xc(t)) and where the dependence on the parameters has been dropped
in order to improve the clarity.

The methodology to develop the main theorem is a bit different than for the other methods
and is inspired from [Scherer and Weiland, 2005; Scherer et al., 1997]. The method is based
on a LMI relaxation of a Lyapunov-Krasovskii based approach. After substitution of the
closed-loop system, a congruence transformation and a linearization change of variable are
performed.

Theorem 6.2.4 There exists a dynamic output feedback of the form (6.47) for system (6.46)
with h(t) ∈ H ◦

1 if there exist a continuously differentiable matrix function P̃ : Uρ → S2n
++,

constant matrices W1, X1 ∈ Sn++, Q̃, R̃ ∈ S2n
++, a scalar function α : Uρ → R++ and a scalar

γ > 0 such that the LMI



−2X̃ P (ρ) +A(ρ) Ah(ρ) E(ρ) 0 X̃ hmaxR̃

? U22(ρ, ν) R̃ 0 C(ρ)T 0 0
? ? U33 0 Ch(ρ)T 0 0
? ? ? −γI F(ρ)T 0 0
? ? ? ? −γI 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃
? ? ? ? ? ? −R̃


≺ 0

holds for all (ρ, ν) ∈ Uρ × Uν with U22(ρ, ρ̇) = U22(ρ, ν) − P̃ (ρ) + Q̃ − R̃ + ∂ρP̃ (ρ)ν, U33 =
−(1− µ)Q̃− R̃ and

X̃ =
[
W1 I
I X1

]
A(ρ) =

[
A(ρ)W1 +B(ρ)Cc(ρ) A(ρ) +B(ρ)Dc(ρ)Cy(ρ)

Ac(ρ) X1A(ρ) + Bc(ρ)Cy(ρ)

]
Ah(ρ) =

[
Ah(ρ)W1 +B(ρ)Cc(ρ) A(ρ) +B(ρ)Dc(ρ)Cyh(ρ)

Ahc(ρ) X1Ah(ρ) + Bc(ρ)Cyh(ρ)

]
E(ρ) =

[
E(ρ) +B(ρ)Dc(ρ)Fy(ρ)
X1E(ρ) + Bc(ρ)Fy(ρ)

]
C(ρ) =

[
Cy(ρ)W1 +D(ρ)Cc(ρ) Cy(ρ) +D(ρ)Dc(ρ)Cy(ρ)

]
Ch(ρ) =

[
Ch(ρ)W1 +D(ρ)Cyh(ρ) Ch(ρ) +D(ρ)Dc(ρ)Cyh(ρ)

]
F(ρ) =

[
F (ρ) +D(ρ)Dc(ρ)Fy(ρ)

]
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In this case the corresponding controller is given by[
Ac(ρ) Ahc(ρ) Bc(ρ)
Cc(ρ) Chc(ρ) Dc(ρ)

]
= M1(ρ)−1

([
Ac(ρ) Ahc(ρ) Bc(ρ)
Cc(ρ) Chc(ρ) Dc(ρ)

]
−M2(ρ)

)
M3(ρ)−1

M1(ρ) =
[
X2 X1B(ρ)
0 I

]
M2(ρ) =

[
X1A(ρ)W1 X1Ah(ρ)W1 0

0 0 0

]

M3(ρ) =

 W T
2 0 0

0 W T
2 0

Cy(ρ)W1 Cyh(ρ)W1 I


X−1 =

[
X1 X2

? X3

]−1

=
[
W1 W2

? W3

]
and the closed-loop system satisfies ||z||L2 ≤ γ||w||L2.

Proof : First of all we rewrite the closed-loop system under the form

[
Acl Ahcl Ecl
Ccl Chcl Fcl

]
= Θ +

 0 B
I 0
0 D

Ω

 0 I 0 0 0
0 0 0 I 0
Cy 0 Cyh 0 Fy


Θ =

 A 0 Ah 0 E
0 0 0 0 0
C 0 Ch 0 F


Ω =

[
Ac Ahc Bc
Cc Chc Dc

]
For simplicity we restrict X to be a symmetric positive definite matrix such that

X =
[
X1 X2

XT
2 X3

]
W := X−1 =

[
W1 W2

W T
2 W3

]
By injecting the closed-loop system in LMI (4.35) of Theorem 4.5.5 we get

−2X P (ρ) +XTAcl(ρ) XTAhcl(ρ) XTEcl(ρ) 0 X hmaxR

? U22(ρ, ρ̇) R 0 Ccl(ρ)T 0 0
? ? U33 0 Chcl(ρ)T 0 0
? ? ? −γI Fcl(ρ)T 0 0
? ? ? ? −γI 0 0
? ? ? ? ? −P (ρ) −hmaxR
? ? ? ? ? ? −R


≺ 0

with U22(ρ, ρ̇) = −P (ρ)+Q−R+∂ρP (ρ)ν, U33 = −(1−µ)Q−R. To linearize this inequality, a
congruence transformation is performed with respect to the matrix diag(ZT , ZT , ZT , I, I, ZT , ZT )
where

Z :=
[
W1 I

W T
2 0

]
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Then we get

−2ZTXZ V12(ρ) V13(ρ) ZTXTEcl(ρ) 0 ZTXZ hmaxR̃

? V22(ρ, ν) R̃ 0 ZTCcl(ρ)T 0 0
? ? V33 0 ZTChcl(ρ)T 0 0
? ? ? −γI Fcl(ρ)T 0 0
? ? ? ? −γI 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃
? ? ? ? ? ? −R̃


≺ 0

with V33 = −[(1− µ)Q̃+ R̃], P̃ (ρ) = ZTP (ρ)Z, Q̃ = ZTQZ, R̃ = ZTRZ and

V12(ρ) = P̃ (ρ) + ZTXTAcl(ρ)Z
V13(ρ) = V13(ρ)ZTXTAhcl(ρ)Z

V22(ρ, ν) = V22(ρ, ν)− P̃ (ρ) + Q̃− R̃+ ∂ρP̃ (ρ)ν)Z

Note that

ZTX =
[

I 0
X1 X2

]
ZTXZ =

[
W1 I
I X1

]
and then defining

Z =
[
ZTXAclZ ZTXAhclZ ZTXEcl
CclZ ChclZ Fcl

]
we get

Z =

 AW1 A AhW1 A E
0 X1A 0 X1Ah X1E

CyW1 Cy ChW1 Ch F

+ Θ1

[
Ac Ahc Bc
Cc Chc Dc

]

Θ1 =

 0 B
I 0
0 D

 Θ2 =

 I 0 0 0 0
0 0 I 0 0
0 Cy 0 Cyh Fy


[
Ac Ahc Bc
Cc Chc Dc

]
=

[
X1AW1 X1AhW1 0

0 0 0

]
+ Ω1

[
Ac Ahc Bc
Cc Chc Dc

]
Ω1 =

[
X2 X1B
0 I

]
Ω2 =

 W T
2 0 0

0 W T
2 0

CyW1 CyhW1 I


Finally we get

Z =

 AW1 +BCc A+BDcCy AhW1 +BCc A+BDcCyh E +BDcFy
Ac X1A+ BcCy Ahc X1Ah + BcCyh X1E + BcFy

CyW1 +DCc Cy +DDcCy ChW1 +DCyh Ch +DDcCyh F +DDcFy


which shows that the equations are linearized with respect to the new variables (Ac, Ahc, Bc,
Cc, Cch, Dc). Finally replacing the linearized values into the inequality leads to the result. The
construction of the controller is performed by the inversion of the change of variable. �
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Remark 6.2.5 The design of a memoryless controller of the form

xc(t) = Acxc(t) +Bcy(t)
u(t) = Ccxc(t) +Dcy(t)

(6.48)

is more involved since the matrix Z is in this case defined by

Z =

 AW1 A AhW1 Ah E
0 X1A X1AhW1 X1Ah X1E

CW1 C ChW1 Ch F


+

 0 B
I 0
0 D

[ Ac Bc
Cc Dc

] [
I 0 0 0 0
0 Cy 0 0 Dy

] (6.49)

is nonlinear due to the term X1AhW1. The change of variable is given by[
Ac Bc
Cc Dc

]
=
[
X1AW1 0

0 0

]
+
[
X2 X1B
0 I

] [
Ac Bc
Cc Dc

] [
W T

2 0
CyW1 I

]
(6.50)

Finally we would have

Z =

 AW1 +BCc A+BDcCy AhW1 A E +BDcFy
Ac X1A+ BcCy X1AhW1 X1Ah X1E + BcFy

CyW1 +DCc Cy +DDcCy ChW1 Ch F +DDcFy

 (6.51)

and the problem would be nonconvex. However it can be relaxed using the same bounding
technique as for the observer based control law:

2xTX1AhW1y ≤ xTXXx+ yTW1A
T
hAhW1y (6.52)

6.3 Chapter Conclusion

We have developed in this chapter several control laws to stabilize LPV time-delay systems
with L2 performances optimization. Both state-feedback and dynamic output feedback con-
trol laws have been developed in both memoryless and with-memory structures. We have
emphasized the interest of the relaxations of LMI with multiple coupling in the synthesis
problem in terms of computational complexity and conservativeness. Although the bilinear
approach gives better results it is difficult to extend it to the case of discretized Lyapunov-
Krasovskii functional due to the high number of products between system data matrices and
decision variables: for a discretization of order N it would result in the introduction of N
’slack’ variables and hence 2N bilinearities which complexifies the initialization of the iter-
ative LMI algorithm. A new type of controllers has been introduced, the ’delay-scheduled’
state-feedback controllers whose gain is smoothly scheduled by the delay value, in a similar
way as for gain-scheduling strategies used in the LPV control framework.

It is important to note that the design of such control laws is still an open problem in the
framework of time-delay systems.



Conclusion and Future Works

Summary and Main Contributions

This thesis has considered the control and observation of LPV time-delay systems using a
part of the arsenal of modern control tools. Even if the problem remains open for several
complex cases, the results presented in this thesis has brought several results in this domain.
The work has been presented in five chapters.

• In the first chapter, a state of the art on LPV systems is presented in which different
types of representation coupled with their specific stability tests have been introduced.

• The second chapter, a (non-exhaustive) state of the art of time-delay systems is ad-
dressed with a particular focusing on time-domain methods, especially Lyapunov-Krasovskii
functionals, small-gain, well-posedness and IQC based methods.

• The third chapter gathers parts of the theoretical contributions of this work. Two
methods of relaxations for parameter dependent matrix inequalities and for matrix
inequalities with particular concave nonlinearities are presented. Known Lyapunov-
Krasovskii functionals are generalized to the LPV case and relaxed using a specific
approach in order to get ’easy-to-use’ condition in the synthesis framework. Finally, a
new Lyapunov-Krasovskii functional has been expressed in order to consider the special
case of systems with two delays, in which the delays satisfy an equality, arising in
the problem of stabilization of a time-delay system with a controller implementing a
different delay.

• The fourth chapter uses results of chapter three in order to construct observers and
filters which have been shown to lead with interesting results.

• The fifth and last chapter used results of chapter 3 in order to derive different control
laws: memoryless /with memory state-feedback/dynamic output feedback controllers.
Moreover, a new design technique based on a LPV representation of time-delay systems
has been applied to construct a new type of controller called ’delay-scheduled’ controller
where the controller gain depend on the delay. Using this technique, the robustness
analysis with respect to delay knowledge uncertainty can be performed easily since the
delay is not viewed anymore as an operator but as a scheduling parameter.

Future Works

As a perspective of the results developed in this thesis we can mention:
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• The provided results only considers systems with are stable/stabilizable/detectable for
zero delay (i.e. A+Ah Hurwitz) and hence they may be conservative while considering
systems which are not stable/stabilizable/detectable for zero delay but only from hmin 6=
0. Hence, it seems interesting and important to consider delay-range stability [He
et al., 2007; Jiang and Han, 2005; Knospe and Roozbehani, 2006, 2003; Roozbehani
and Knospe, 2005]. Note also that only few results exists on discretized Lyapunov-
Krasovskii functionals for such systems.

• Two types of controllers have been developed in this thesis: state-feedback and dynamic
output feedback control laws. It seems important to extend these results to the static-
output feedback case [Li et al., 1998; Michiels et al., 2004; Peaucelle and Arzelier,
2005; Sename and Lafay, 1993; Seuret et al., 2009a; Syrmos et al., 1995]. It is worth
mentioning that despite of its simplicity, the static output feedback case is difficult
to develop to the NP-hardness of its necessary and sufficient existence condition [Fu,
2004]. The method proposed in [Prempain and Postlethwaite, 2005] deserves attention
and shall be generalized to time-delay systems and LPV systems. Moreover, delayed
static-output feedback control is able to stabilize systems which are not stabilizable by
instantaneous static-output feedback as noticed in [Niculescu and Abdallah, 2000]. In
such a control law, the delay is an extra degree of freedom.

• Since many control systems have bounded inputs, it may be interesting to develop
control laws in presence of saturations on the inputs [da Silva and Tarbouriech, 2005;
Ferreres and Biannic, 2007; Henrion and Tarbouriech, 1999; Henrion et al., 2005; Wu
and Lu, 2004; Wu and Soto, 2004].

• The generalization of such approach to :

– input/output delayed systems, distributed and neutral delay systems

– systems with delayed parameters

– systems with parameter dependent delays

• The extension of the current work to more complex parameter-dependent Lyapunov-
Krasovskii functional, e.g.

V (xt, ẋt) = V1(x, ρ) + V2(xt, ρt)
V1(x, ρ) = x(t)TP (ρ)x(t)

V2(xt, ρt) =
∫ t

t−h(t)
x(θ)TQ(ρ(θ))x(θ)dθ

in order to reduce the conservatism of the approach.

• The application of such control strategies on physical systems, currently, the stabiliza-
tion of unstable modes in fusion plasmas [Olofsson et al., 2008].



Chapter 7

Appendix

A Technical Results in Linear Algebra

This appendix is devoted to the introduction of some fundamentals on matrix algebra. It is
supposed that matrix multiplication and inversion are known. Determinants of block matrices,
notion of eigenvalues and eigenvectors, inverse of block matrices, notion of order in the set
of symmetric matrices, singular value decomposition, Moore-Penrose pseudo-inverse and the
resolution of specific matrix equalities and inequalities will be considered.

A.1 Determinant Formulae

We give here several important relations concerning the determinant. For a square matrix
A ∈ Cn×n, its determinant is denoted det(A). If A and B are both square matrices of same
dimensions, then it can be shown that

det(AB) = det(A) det(B) = det(BA)

Another well-known fact is

det
([

A B
0 D

])
= det(A) det(D) (A.1)

where both A and D are square. If A is square and nonsingular, then we can use the latter
relations and the equality:

det
([

A B
C D

])
=
[

I 0
CA−1 I

] [
A B

0 D − CA−1B

]
to get the equality

det
([

A B
C D

])
= det(A) det(D − CA−1B)

which is known as the Schur (determinant) complement or the Schur formula. This formula
has been introduced in the papers [Schur, 1917a,b] which have been translated to English in
[Gohberg, 1986]). For more details see [Zhang, 2005].

261



262 CHAPTER 7. APPENDIX

Similarly, if D is nonsingular, we can show

det
([

A B
C D

])
= det(D) det(A−BD−1C)

If A = I and D = I and BC is a square matrix, we arrive at the following very useful identity

det(I −BC) = det(I − CB)

A.2 Eigenvalues of Matrices

Definition A.1 For a square matrix M ∈ Rn×n, the spectrum of M (the set of eigenvalues
of M) is denoted λ(A) = col

i
(λi) each one of these zeroes the characteristic polynomial defined

as
χM (λ) = det(λI −M)

where det(M) is the determinant of M .

We have the following relations:
n∑
i=1

λi = trace(A)

n∏
i=1

λi = det(A)

For the special cases n = 1, 2 and 3 the characteristic polynomial is given by the expressions

n = 1: χM (λ) = λ−M

n = 2: χM (λ) = λ2 − trace(M)λ+ det(M)

n = 3: χM (λ) = λ3 − trace(M)λ2 + trace[Adj(M)]λ+ det(M)

where trace(M) and Adj(M) are respectively the trace and the adjugate matrix of M . Let

us consider now symmetric matrices, i.e. matrices such that M = M∗ (or M = MT if M is
a real matrix). It can be shown that in this case all the eigenvalues of M are real [Bhatia,
1997]. Moreover, we have the following definition:

Definition A.2 The eigenvectors of a symmetric square matrix M are defined to be the
nonzero full column rank matrices vi such that

(A− λi)vi = 0

In this case, the matrix M ′ = PMP−1 exhibits all the eigenvalues of M on the diagonal:

M ′ = diag
i

(λiImi)

where the eigenvalues are repeated as many times as their order of multiplicity mi. The matrix
P is defined as P =

[
v1 . . . vn

]
. This decomposition is called spectral decomposition.
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Remark A.3 This suggests that for a symmetric matrix M with eigenvalues λj with order
of multiplicity mj, there exists mj eigenvectors vk such that (A−λj)v = 0. It is important to
emphasize that it is not the always the case for general matrices. In such a case, the matrix
may be non-diagonalizable but can be reduced to a Jordan matrix. Any algebra book or course
should detail this correctly.

The fact that every symmetric matrix can be diagonalized in an orthonormal basis is an
interesting fact and makes symmetric matrices a useful tools in many fields. The interest of
symmetric matrices is the ability to generalize the notion of positive and negative number
to the matrix case. Indeed, since the eigenvalues of symmetric matrices are all real then it
is possible to define positive and negative matrices, hence a relation of order in the cone of
symmetric matrices.

Definition A.4 A symmetric matrix M is said to be positive (semi)definite if all its eigen-
values are positive (nonnegative). This is denoted by M � 0(� 0).

Definition A.5 A symmetric matrix M is said to be negative (semi)definite if all its eigen-
values are negative (nonpositive). This is denoted by M ≺ 0(� 0).

The notion of positivity and negativity of a symmetric matrix M is related to its associated
quadratic form xTMx where x is a real vector.

Proposition A.6 A n× n symmetric matrix M is positive (semi)definite if and only if the
quadratic form xTMx > 0(≥ 0) for all x ∈ Rn − {0}.

Proof :
Sufficiency:
Suppose all the eigenvalues of M are nonnegative. Define now the quadratic form Q(x) =

xTMx and since M is nonnegative, then in virtue of the Cholesky decomposition of symmet-
ric nonnegative matrices we have Q(x) = xTLTLx which is equal to ||Lx||2 and is obviously
nonnegative.

Necessity:
Suppose now that Q(x) = xTMx ≥ 0 for all x ∈ Rn. A well-known result says that if

a quadratic form is positive semidefinite then it is sum-of-squares (see Section 2.3.3.3) and
writes as Q(x) =

∑
i

qi(x)2. Now introduce line vectors Li such that qi(x) = Lix and therefore

we have qi(x)2 = xTLTi Lix. Finally denoting

L :=

 L1
...
Ln


then we have Q(x) = xTLTLx where LTL � 0. This concludes the proof. �

Proposition A.7 A n× n symmetric matrix M is negative (semi)definite if and only if the
quadratic form xTMx < 0(≤ 0) for all x ∈ Rn − {0}.
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A.3 Exponential of Matrices

Definition A.8 The exponential of a square matrix A is given by the expression

eM = exp(M) :=
+∞∑
i=1

M i

i!

Theorem A.9 (Cayley-Hamilton Theorem) Any square matrix M ∈ Rn×n satisfies the
equality

χM (M) = 0

where χM (λ) is the characteristic polynomial of M .

This theorem shows that for a matrix M of dimension n, Mn can be computed as a linear
combination of all other lower powers Mk, 0 ≤ k < n. For instance for n = 2 we have

M2 = trace(M)M − det(M)I

It allows to compute any powers of M using a linear combination of all powers of M from 0
to n− 1. For instance,

M3 = trace(M)M2 − det(M)M
= trace(M)(trace(M)M − det(M))− det(M)M
= [trace(M)2 − det(M)]M − det(M)

One of the most important applications of this theorem is the obtention of the rank condition
for controllability and observability of linear systems. Indeed, since any power of M can be
expressed in through a linear combination of powers from 0 to n − 1 therefore any sum of
power of matrices can be written is such a manner.

Proposition A.10 The exponential of a matrix M , by virtue of the Cayley-Hamilton theo-
rem, can be expressed as

exp(M) =
n−1∑
i=0

αiM
i

where the αi satisfies the linear system

n−1∑
i=0

αiλ
i
j = eλj for all j = 1, . . . , n

The infinite sum has been amazingly converted into a finite sum where the coefficients are
determined by solving a system of linear equations.

A.4 Generalities on Block-Matrices

Let us consider the matrix

M =
[
A B
C D

]
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Definition A.11 Assuming that M is square and invertible then the inverse of M is given
by

M−1 =
[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
These formulae are called Banachiewicz inversion formulae [Banachiewicz, 1937]. For more
details see [Zhang, 2005].

The first formula is well-defined if A is invertible while the second when D is invertible. By
identification of the blocks we get the well-known matrix inversion lemma which has been
first introduced in [Duncan, 1917]:

Lemma A.12 (Duncan inversion formulae)

(A−BD−1C)−1 = A−1 +A−1B(D − CA−1B)−1CA−1

or also
(A−BDC)−1 = A−1 +A−1B(D−1 − CA−1B)−1CA−1

We also have the identity:

A−1B(D − CA−1B)−1 = (A−BD−1C)−1BD−1 (A.2)

For more details about these formulae and refer to [Zhang, 2005].

A.5 Kronecker operators and Matrix Tensor Sum and Product

This sections aims at providing some elementary definitions about Kronecker product and
sum. The Kronecker product is defined by

A⊗B =

 a11B . . . a1nB
...

. . .
...

ap1B . . . apnB


We have the following relations where α is a scalar:

1⊗A = A⊗ 1 = A
A⊗ (B + αC) = A⊗B + αA⊗ C
A⊗ (B ⊗ C) = (A⊗B)⊗ C
(A⊗B)(C ⊗ C) = (AC)⊗ (BD)
(A⊗B)−1 = A−1 ⊗B−1

(A⊗B)T = AT ⊗BT

λ(A⊗B) = {νiµj ∀(i, j)} where λ(A) = ν, λ(B) = µ
trace(A⊗B) = trace(A) trace(B)
det(A⊗B) = det(A)n det(B)n, n = dim(A)
rank(A⊗B) = rank(A) rank(B)
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The Kronecker sum of two matrices A ∈ Rn×n and B ∈ Rm×m is defined by

A⊕B = A⊗ Im + In ⊗B

Moreover we have the following properties

eA⊕B = eA ⊗ eB
λ(A⊕B) = λ(A) ∪ λ(B)

It is convenient to introduce the tensor product and sum φ⊗, φ⊕ : Cm×m × Cm×m → Cp×p.
Let us consider P,Q ∈ Cm×m with m ≥ 2 and

p = m2 :
{
φ⊗(P,Q) = P ⊗Q
φ⊕(P,Q) = P ⊕Q

p =
m(m− 1)

2
:
{
φ⊗(P,Q) = P ⊗̃Q
φ⊕(P,Q) = P ⊕̃Q

where⊕ and⊗ are Kronecker sum and product define above. On the other hand, the operators
⊕̃ and ⊗̃ are defined as follows [Qiu and Davidson, 1991]:

P ⊗̃Q = [ci,j ] ∈ Cp×p

where ci,j = (pi1,j1qi2,j2 + pi2,j2qi1,j1 − pi2,j1qi1,j2 − pi1,j2qi2,j1 where (i1, i2) is the ith pair
of sequence (1, 2), (1, 3), . . . , (1,m), (2, 3), . . . , (2,m), . . . , (m,m) and (j1, j2) is generated by
duality. For P ⊕̃Q the classical definition is extended in

P ⊕̃Q = P ⊕̃Im + Im⊕̃Q

Algebraic properties of these tensor product and sum can be found in [Marcus, 1973; Qiu and
Davidson, 1991].

A.6 Singular-Values Decomposition

The eigenvalue decomposition of a square matrix is the problem in finding a basis in which
the matrix has an expression where the eigenvalues are located on the diagonal: this is the
spectral decomposition. We provide here a kind of generalization of such a procedure when
the matrix M is not necessarily square: this is called the singular-value decomposition. A
unitary matrix U is defined as U∗U = I = UU∗ where the superscript ∗ denotes the complex
conjugate transpose.

Theorem A.13 Let M ∈ Ck×n be a matrix of rank r. Then there exist unitary matrices U
and V such that

M = UΣV ∗

where U and V satisfy

MM∗U = UΣΣ∗ M∗MV = V Σ∗Σ

and Σ has the canonical structure

Σ =
[

Σ0 0
0 0

]
, Σ0 = diag(σ1, . . . , σr) ≺ 0

The numbers σi > 0, i = 1, . . . , r are called the nonzero singular values of M .
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Proof : The proof is given in Skelton et al. [1997] and for more on singular value decom-
position see Horn and Johnson [1990] or many other books on linear algebra. �

A.7 Moore-Penrose Pseudoinverse

Let M ∈ Rn×n be a nonsingular matrix (i.e. det(M) 6= 0), then there exists a matrix inverse
denoted M−1 such that MM−1 = M−1M = I. We provide here the generalization of this
procedure to rectangular matrices. It has been shown that any n × m matrix M can be
expressed as a singular value decomposition M = UΣV ∗.

Theorem A.14 For every matrix M ∈ Rn×m, there exist a unique matrix M+ ∈ Rm×n, the
Moore-Penrose pseudoinverse of M , which satisfies the relation below:

MM+M = M M+MM+ = M+

(MM+)∗ = MM+ (M+M)∗ = M+M

Moreover, M+ is given by

M+ := V

[
Σ−1

0 0
0 0

]
U∗

Moreover consider the matrix M ∈ Rn×m then

• if M has full row rank n then M+ = M∗(MM∗)−1

• if M has full column rank m then M+ = (M∗M)−1M∗

A.8 Solving AX = B

The solution X of equation AX = B is trivial when A is a nonsingular matrix. We aim
here at showing that there exists an explicit expression to X when A is a rectangular matrix
sharing specific assumptions with B.

Theorem A.15 Let A ∈ Rn1×n2 , X ∈ Rn2×n3 and B ∈ Rn1×n3. Then the following state-
ments are equivalent:

1. The equation AX = B has a solution X.

2. A and B satisfy AA+B = B.

3. A and B satisfy (I −AA+)B = 0.

In this case all solutions are
X = A+B + (I −A+A)Z

where Z ∈ Rn1×n3 is arbitrary and A+ is the Moore-Penrose pseudoinverse of A.
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A.9 Solving BXC + (BXC)∗ + Q ≺ 0

Such equation arises in the many design problems and it is important to provide material
about it.

Theorem A.16 Let matrices B ∈ Cn×m, C ∈ Ck×n and Q = Q∗ ∈ Hn be given. Then the
following statements are equivalent:

1. There exists a X satisfying

BXC + (BXC)∗ +Q < 0

2. The following two conditions hold

Ker[B]QKer[B]∗ ≺ 0 or BB∗ � 0
Ker[C]∗QKer[C] ≺ 0 or C∗C � 0

Suppose the above statements hold. Let rb and rc be the ranks of B and C, respectively,
and (B`, Br) and (C`, Cr) be any full rank factors of B and C (i.e. B = B`Br and
C = C`Cr). Then all matrices X in statement 1. are given by

X = B+
r KC

+
` Z −B

+
r BrZC`C

+
`

where Z is an arbitrary matrix and

K := −R−1B∗`ΦC∗r (CrΦC∗r )−1 + S1/2L(CrΦC∗r )−1/2

S := R−1 −R−1B∗` −R−1B∗` [Φ− ΦC∗r (CΦ
r C
∗
r )−1CrΦ]B`R−1

where L is an arbitrary matrix such that ||L|| < 1 (i.e. σ̄(L) < 1) and R is an arbitrary
positive definite matrix such that

Φ := (B`R−1B∗` −Q)−1 � 0

The solution X is quite complicated and can be approximated by a more simple expression. If
one of statements above holds, then more simple solutions are given by each of the expressions
[Iwasaki and Skelton, 1995a]:

XB := −τBB∗ΨBC
T (CΨBC

∗)−1

XC := −τC(B∗ΨCB)−1B∗ΨCC
∗

where τB, τC > 0 are sufficiently large scalars such that

ΨB := (τBBB∗ −Q)−1 � 0
ΨC := (τCC∗C −Q)−1 � 0

B Lq and Hq Spaces

This appendix is devoted to the introduction of very important signals and systems spaces.
Let us consider here linear systems of the form

ẋ(t) = Ax(t) + Ew(t)
z(t) = Cx(t) + Fw(t)

(B.3)

where x ∈ X ⊂ Rn, w ∈ W ⊂ Rp and z ∈ Z ⊂ Rq are respectively the state, the inputs and
the outputs of the system.
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B.1 Norms for Signals

The functions of time x(t), w(t) and z(t) are generally referred as signals since these functions,
whatever they represent (temperature, speed, position. . . ), are considered in an abstract space
where the physical signification is not useful anymore. This is the reason why spaces of signals
must be considered and these spaces are called Lnq defined hereunder:

Lq :=

{
u ∈ F([0,+∞),Rn) :

(∫ +∞

0
||u(t)||qqdt

)1/q

<∞

}
Only signals with support [0,+∞] are considered here by simplicity but is possible to define
such sets for signals evolving on the more general support [t0, t1].

It is possible to associate a norm to each one of this signals set and is denoted by || · ||Lq
and called Lq norm. Recall that a norm satisfies all the following properties:

1. ||u||Lq ≥ 0

2. ||u||Lq = 0⇔ u(t) = 0 for all t ≥ 0

3. ||αu||Lq = |α| · ||u||Lq where α is a constant

4. ||u+ v||Lq ≤ ||u||Lq + ||v||Lq
The Lq norm is then defined as

||u||Lq :=
(∫ +∞

0
||u(t)||qqdt

)1/q

(B.4)

and hence a signal u(t) belongs to the space Lnq if and only if its Lq-norm is bounded. There
are three main norms for signals

L1-norm The 1-norm of a signal u(t) is the integral of its absolute value

||u||L1 :=
∫ +∞

0
||u(t)||1dt (B.5)

In some papers and books, the L1 norm is treated as an electrical consumption.

L2-norm The 2-norm of a signal u(t) is

||u||L2 :=
(∫ +∞

0
||u(t)||22dt

)1/2

(B.6)

From a physical point of view, the L2 norm represents the energy of a signal.

L∞-norm The L∞ norm of a signal is the larger upper bound of the absolute value

||u||L∞ := max
i

sup
t∈[0,+∞)

|ui(t)| (B.7)

The L∞ norm of a signal is the maximum value that the signals under some input values.
This norm is useful when the amplitude of signals needs to be constrained. Sometimes
the following alternative definition for the L∞-norm is utilized:

||u||L∞ := sup
t∈[0,+∞)

√
u(t)Tu(t) (B.8)
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F([0,+∞),Rn)

Ln∞

Ln1

Ln2

Figure 7.1: Inclusion of Signal Sets

Note that in the scalar case, the two definitions coincide. However, the first version
denotes the maximal amplitude of a component of a signal while the second one coincides
with the maximal power of a signal.

Remark B.1 If the second property of norms (i.e. there exists u(t) 6= 0 such that ||u||Lq = 0)
is not satisfied, the term semi-norm is used instead of norm. For instance the power of a signal
is a semi-norm and is referred in the literature as the power semi-norm:

||y||P := lim
T→+∞

1
T

∫ T

0
y(t)∗y(t)dt (B.9)

These spaces enjoy a non trivial inclusion relationship described by the Venn diagram
depicted in Figure 7.1 inspired from Doyle et al. [1990].

B.2 Norms for Systems

While physical magnitudes can be viewed as signals only, the relation between these signals
and how they evolve in time (dynamical behavior) is called system. A system may be viewed
as a physical process but also as a (linear) operator mapping a function space to another.
For instance, system (B.3) maps the Euclidian space W to Z. Note that these spaces are
not function spaces but Euclidian space containing values taken by input and output signals.
However, by considering these Euclidian spaces, only few information is considered and it is
possible (and more interesting) to capture greater information on the operator by considering
function spaces instead. This is the role of Lq spaces: rather than considering function spaces
where no constraints apply on elements, Lq spaces consider elements with a specific (desired)
behavior, allowing to tackle more information on the system and its related signals.

By considering these norms, it seems interesting to develop a similar framework for systems
and this brings us to the notion of norms for systems denoted Hq. The letter H stands for
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Hardy space and is defined for functions holomorphic over D as

Hq :=

{
f ∈ F(D,C) : f holomorphic over D and sup

0<r<1

(
1

2π

∫ 2π

0
[f(reıθ)]pdθ

)1/p

<∞

}
(B.10)

For 0 < p < q < ∞, it can be shown that Hq is a subset of Hp. Variations of the latter
definition exists for other domains than the unit open disc D, in our case the domain which
has to be considered in the right-half plane C+.

Definition B.2

H2-norm The H2-norm of a signal u(t) is

||H||H2 :=
(

trace
1

2π

∫ +∞

0
H(jω)H(jω)∗dω

)1/2

(B.11)

The H2 norm can be viewed as the energy of the impulse response of the system.

H∞-norm The H∞-norm of a signal is the least upper bound of its absolute value

||H||H∞ := max σ̄(H(jω)) (B.12)

The H∞ norm can be viewed as the maximal energy gain from the inputs to the outputs.

An important property of the H∞-norm is the submultiplicative property:

||M1M2||H∞ ≤ ||M1||H∞ ||M2||H∞ (B.13)

which has important consequences in robustness analysis and robust control synthesis. Note
that some system norms do not satisfy such a property, for instance the H2 does not.

It is worth noting that the H2 norm is the same as in Definition B.2. By the way, both
definitions coincide in the SISO case but the induced-norm version (norm of a system induced
by the norm of the input and output spaces) holds in the MIMO case and therefore defines
a generalization of Definition B.2. This is the reason why this extended version is called
Generalized H2 norm or L2 − L∞ induced norm.

To conclude this section, the great interest of induced norms are their domain of validity.
Indeed, the system norms are generally expressed in terms of functions over the frequency
domain (restricting the validity of the definitions over LTI systems only) and the signal
norms over the time domain (quite general framework). Hence, this duality allows for the
computation of norms of systems which are neither time-invariant nor linear by considering
the quotient of norms of the output signals space over norms of the input signal spaces. This
opens the doors to gain analysis of time-varying, parameter varying, nonlinear and distributed
systems. Therefore, the energy gain of time-varying system will then be referred to as its L2-
gain. The correspondence between signal and system norms is summarized in Table 7.1.

||w||L2 ||w||L∞
||z||L2 ||H||H∞ ∞
||z||L∞ ||H||H2 ||H||H1

Table 7.1: Correspondence between norms of signals and systems
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C Linear Matrix Inequalities

This appendix aims at providing a brief overview of Linear Matrix Inequalities (LMIs). A brief
history is given, then some preliminary definitions and methods to solve them are introduced.
For a short story of automatic control see [Åström, 1999].

C.1 Story

Historically, the first LMI appeared in the pioneering work of Lyapunov (actually its Ph.D
thesis in 1890) which was on the ’General Stability of Motion’ where is exposed what is called
’the Lyapunov’s theory’. His thesis has been translated from Russian to French at the impulse
of Henry Poincaré and has been finally translated from French to English [Lyapunov, 1992].
In this work, the stability of a linear time-invariant dynamical systems ẋ = Ax is equivalent
to the feasibility of the Linear Matrix Inequality:

ATP + PA ≺ 0 P = P T � 0

In his work Lyapunov introduced notions that are still in use in modern control theory and
since then, many results have been grafted over it. Indeed, in 1940, Lur’e, Postnikov et al.
applied Lyapunov’ s theory to control problems involving nonlinearity in the actuator. This
has lead to Lur’e systems which are defined as

ẋ = Ax+Bφ(x) (C.14)

where φ(·) is a nonlinear function of x. Although the stability criteria were not in an LMI
form (in reality they were polynomially frequency dependent inequalities), they actually were
equivalent to an LMI formulation. The bridge, which was unknown at this time, between
frequency dependent inequalities and LMI has been emphasized in an important result derived
by Yakubovich, Popov, Kalman, Anderson. . . and is called the Positive Real Lemma (some
precision on it and its link to passivity are introduced in Appendix D.5). This positive real
lemma, reduces the solution of an LMI into simple graphical criterion in the complex plane
(which is linked to Popov, circle and Tsypkin criteria). In 1962, Kalman derived one of the
most important work of this century: the ’Kalman-Yakubovitch-Popov’ Lemma which bridges
completely graphical tests in the complex plane and a family of LMIs (see Appendix D.3)
and allows by now to switch easily from frequency domain to time-domain criteria.

In 1970, Willems focused on solving algebraic equations such as Lyapunov’s or Ricatti’s
equations (ARE), rather than LMIs. Indeed, the solvability was not well established at this
time and the numerical algebra was developed to solve algebraic equations rather than LMIs.
To understand the power of LMIs, it has been necessary to develop complex mathematical
tools and algorithms to solve them.

In 1919, the ’Ellipsoid Algorithm’ of Khachiyan was the first algorithm to exhibit a poly-
nomial complexity (polynomial bound on worst-case iteration count) for Linear Programming.
Linear Programming problems are optimization problems where the optimization cost and
constraints are all affine in the unknown variables. In 1984, Karmarkar introduced ’Interior
Point’ methods for LP which has led to lower complexity and better efficiency than ellipsoidal
methods.

The particularity of LMIs is that, although the cost and the constraints are affine on the
unknown variables, the inequalities are not componentwise but represent the location of the
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eigenvalues of the matrix inequality. Therefore, the problem is obviously non linear since the
location of the eigenvalues of a symmetric matrix depend on the sign of its principal minors.
By computing the principal minors of a LMI, it appears that we obtain a set of polynomial
scalars inequality and therefore is nonlinear. However, although the optimization problem
is non linear, it can be shown that the optimization problem is a convex problem, one of
the most studied field in optimization [Boyd and Vandenberghe, 2004] and hence now LMI
benefits of a huge arsenal of solid tools.

In 1988, Nesterov, Nemirovskii and Alizadeh [Nesterov and Nemirovskii, 1994] extend IP
methods for Semidefinite Programming (SDP) which is the class of problems where LMIs
belong. Since then, IP methods have been heavily developed and is now the most powerful
tools to solve numerically LMIs.

Finally, in 1994, the research effort on application of LMI to control culminated in [Boyd
et al., 1994] where many other authors brought important contributions, for instance Apkar-
ian, Bernussou, Gahinet, Geromel, Peres. . .

Since then many solvers for SDP have been developed for instance SeDuMi [Sturm, 1999,
2001], DSDP, SDPT3. . . Since all this solvers have been developed for the mathematical frame-
work of SDP and since the representation of LMI in the field of automatic control is based on
a matrix representation, softwares called ’parsers’ have been developed as interface between
these notations, for instance SeDuMi Interface and the best one: Yalmip [Löfberg, 2004].

C.2 Definitions

A Linear Matrix Inequality (LMI) is an inequality of the form

L(x) := L0 +
m∑
i=1

Lixi � 0 (C.15)

where x ∈ Rm is the variable and the symmetric matrix Li ∈ Sn, i = 1, . . . , n are given
data. The inequality symbol � means that L(x) is positive definite (i.e. yTL(x)y > 0 for all
y ∈ Rn−{0}. This inequality is equivalent to m polynomial inequalities corresponding to the
leading minor of L(x).

The LMI (C.15) is a convex constraint on x: the subset {x ∈ Rm : L(x) � 0} is convex.
Multiple LMI L(1)(x) � 0, . . . ,L(q)(x) � can be expressed as a single LMI diag(L(1)(x) �

0, . . . ,L(q)(x)) � 0. This shows that the intersection of LMI constraints is also a LMI con-
straint. This can be connected with the property that the intersection of convex sets is also
a convex set.

Notation (C.15) is the ’mathematical’ notation while the following is the notation used in
the field of automatic control and system theory

ATP + PA ≺ 0 P = P T � 0 (C.16)

where the matrix P = P T � 0 is the variable and A ∈ Rn×n a given data. It is not possible
to give a general formulation of LMIs where matrices are variable since there is a large
variety of different forms. Nevertheless, any LMI in ’matrix variable’ form can be written
into the mathematical form (but the converse is not necessarily true). To write this, just
decompose P = P T � 0 over a basis of symmetric matrices of dimension n denoted by Pi.

Hence P := P (x) =
m∑
i=1

Pixi with m =
n(n+ 1)

2
. Finally by identification we get L0 and

Li = −ATPi − PiA.
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Definition C.1 An LMI M(x) � 0 is feasible if and only if there exists x such that M(x) �
0. It is said to be strictly feasible if and only if there exists x such that M(x) ≺ 0.

C.3 How to solve them ?

Several approaches allowing the determination of the solution of LMIs are presented here.

Algebraic Methods

In order to solve simple LMI, algebraic methods can be used using linear algebra. This
is possible when dealing with only few decision matrices. For instance, let us consider the
well-known Lyapunov stability LMI condition for linear time-invariant systems:

ATP + PA ≺ 0 (C.17)

Assume there exists P = P T � 0 such that the LMI is satisfied, i.e. the system ẋ(t) =
Ax(t) is asymptotically stable (all the eigenvalues of A lie in the left half complex plane). Let

P0 =
∫ +∞

0
eA

T tQeAtdt with some matrix Q = QT � 0 and inject the expression of P0 into

the latter LMI, we get∫ +∞

0
AT eA

T tQeAt + eA
T tQeAtAdt =

∫ +∞

0

d

dt

[
eA

T tQeAt
]
dt

= lim
t→+∞

eA
T tQeAt −Q

Since the system is asymptotically stable then lim
t→+∞

eA
T tQeAt = 0 an then a parametrization

of the solutions of the LMI (C.17) is given by P0. It is clear that this method may become
very complicated while dealing with LMIs of high dimensions and with a large number of
decision matrices. There exist many other methods as detailed for instance in [Gajić and
Qureshi, 1995].

Algorithms

At this time, Interior Points algorithms are mainly used. Simple algorithms are presented
in [Boyd et al., 1994] while the complete theory of IP algorithms with barrier function, in an
unified framework, is detailed in the (very difficult to understand in detail for nonspecialists)
book [Nesterov and Nemirovskii, 1994]. The idea of barrier function is briefly explained here:

Consider the optimization problem:

min
x∈Rn

cTx

s.t. Fi(x) � 0, i = 1, . . . , p
(C.18)

where c ∈ Rn, x ∈ Rn and Fi(x) are respectively the cost vector, the decision variable and
the LMIs constraints. It is important to note that any LMI optimization problem can be
rewritten in the latter form. The idea of interior point algorithm with barrier function, is to
turn a constrained optimization problem into an unconstrained one. By introducing the set

Xf := {x ∈ Rn : Fi(x) � 0, i = 1, . . . , p} (C.19)



C. LINEAR MATRIX INEQUALITIES 275

the optimization problem (C.18) is equivalent to

min
x∈Xf

cTx (C.20)

The key idea to define implicitly the set Xf (since it is difficult and time consuming to define
it explicitly) is to define a function which is small in the interior of Xf and tends to infinity
for each sequence of points converging to the boundary of Xf . This function is called a barrier
function. It also important, for mathematical purpose, that this barrier function be analytic
(differentiable), convex and self-concordant. Indeed, if the barrier function is convex then the
optimization problem will be convex and hence the theory of convex optimization applies. The
differentiability of the barrier function (actually it must be C3) allows for the computation
of gradient and hessian in the iterative optimization procedure. Finally, the self-concordance
of a barrier function is a property, which has been introduced specifically in the framework
of SDP optimization, which guarantees nice convergence properties of the Newton algorithm
used to solve these unconstrained optimization problems. This notion has been introduced in
the book [Nesterov and Nemirovskii, 1994] and the definition is given below:

Let F (x) by function which is convex and analytic. It is said to be self-concordant with
parameter a if

|D3F (x)[h, h, h]| ≤ 2a−1/2(D2F (x)[h, h])3/2

in a metric defined by the hessian itself and

|DF (x)[h]| ≤ b(D2F (x)[h, h])3/2

where DkF (x)[h1, . . . , hk] is the kth differential of F taken at x along the collection of direc-
tion [h1, . . . , hk]. The first inequality defines the Lipschitz continuity of the Hessian of the
barrier with respect to the local Euclidian metric defined by the Hessian itself. The second
inequality defines the Lipschitz continuity of the barrier itself with respect to the same local
Euclidian structure. The signification of term self-concordant is not easy to understand. The
first idea could be that the absolute value of the third derivative is bounded by a function of
the second one. This establishes a link between them and shows that the third order term in
the Taylor expansion can always be bounded by the second order term. Another idea is that
the third order derivative can be approximated by an expression involving the the Hessian.

A good barrier function for SDP is the logarithmic barrier

f(x) = − log detF (x) = log detF (x)−1

This function is analytic, convex and self-concordant on {x : F (x) � 0}.
Finally the constrained optimization problem (C.18) (and equivalently (C.20)) is converted

into the unconstrained optimization problem

min
x∈Rn

cTx+ log detF−1(x) (C.21)

The Newton algorithm is then used to find the solution of the optimization problem (C.21). It
can be shown that the optimum of (C.21) coincides with the optimum of (C.20) and therefore
no modification of the problem is done when adding the self-concordant barrier function to
the cost.
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The Newton algorithm aims to find zeros of functions, say f(x) and the iteration procedure
is

xk+1 = xk − [∇2f(x)]−1∇f(x) (C.22)

where ∇2f(x) and ∇f(x) are respectively the Hessian and the gradient of f evaluated at x.
Despite of its apparent simplicity, this iteration procedure converges quadratically provided
that the initial condition x0 belongs satisfies

L

2m2
||f ′(x0)||2 < 1 (C.23)

where L is the Lipschitz continuity constant of the Hessian and m is defined as hT f ′′(x)h ≥
m||h||22. It can be shown that in the case of unconstrained optimization with self-concordant
barrier functions, the Newton procedure can compute very efficiently the global optimum of
optimization problems (C.18)-(C.21).

In [Nesterov and Nemirovskii, 1994], it is shown that for every allowable xi (i.e. xi ∈ Xf )
the next value xi+1 remains in Xf (is allowable too) and f(xi+1) ≤ f(xi). Then for a good
initialization of the iterative procedure, it suffices to find a point in Xf . For this purpose,
most solvers implement an initialization procedure resulting in the determination of an initial
feasible point from which the optimum of the optimization problem can be easily computed.

D Technical Results in Robust Analysis, Control and LMIs

This appendix aims at providing a catalog of important definitions and theorems extensively
used in the literature. Let us consider a multivariable finite dimensional linear time-invariant
systems of the form:

Z(s) = H(s)W (s) (D.24)

where s stands for the Laplace variable, H(s) the transfer function of the system and W (s),
Z(s) are respectively the input and the output. Assume that (D.24) admits the following
minimal realization Σl:

ẋ(t) = Ax(t) +Bw(t)
z(t) = Cx(t) +Dw(t)

(D.25)

where x ∈ X ⊂ Rn, w ∈ W ⊂ Rp and z ∈ Z ⊂ Rq are respectively the state, the inputs and
the outputs.

D.1 Dissipative Systems and Supply Rates

The dissipativity is a theory devoted to study the stability of non-autonomous dynamical
systems and has been introduced by Willems [Willems, 1972]. The main principle of the
theory is really simple: if the system stores less energy than we supply to it, then this means
that the difference of energy is dissipated by the system.

Let us consider the general system Σ governed by the equations

ẋ(t) = f(x,w)
z(t) = h(x,w)

(D.26)

where x ∈ X ⊂ Rn, w ∈ W ⊂ Rp and z ∈ Z ⊂ Rq are respectively the state, the inputs and
the outputs.
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Let s(w, z) be a mapping from W × Z → R. It is assumed that for any t0, t1 ∈ R and
for all input-output pairs (w, z) satisfying (D.26), the function s(w, z) is absolutely integrable

(i.e.
∫ t1

t0

|s(w(t), z(t))|dt < ∞). This mapping is referred to as the supply function and its

meaning will be detailed just after the following definition:

Definition D.1 The system (D.26) with supply function s is said to be dissipative if there
exists a function V : X → R such that

V (x(t0)) +
∫ t1

t0

s(w(t), z(t))dt ≥ V (x(t1)) (D.27)

for all t0 ≤ t1 and all signals (w, x, z) which satisfies (D.26). The pair (Σ, s) is said to be
conservative if the equality holds for all t0 ≤ t1 and all signals (w, x, z) which satisfies (D.26).
In such as case, V is called a Storage Function. Storage Function

The supply-rate s should be interpreted as the supply delivered to the system. This means
that s(w, z) represents the rate at which supply circulates into the system if the pair (w, z) is

generated. Hence, when the integral
∫ T

0
s(w(t), z(t))dt is positive then the work is done on

the system while the work is done by the system when the integral is negative. The function V
is called the storage function and generalizes the notion of an energy for a dissipative system.

Thanks to this interpretation, inequality (D.27) says that for any interval [t0, t1], the
change of internal storage V (x(t1)) − V (x(t0)) will never exceed the amount of supply that
flows into the system. This means that part of what is supplied is stored while the remaining
part is dissipated.

For more details on dissipativity and dissipative systems, please refer to [Scherer and
Weiland, 2004; Willems, 1972].

D.2 Linear Dissipative Systems and Quadratic Supply Rates

We detail here the special case of linear system governed by expressions (D.25). Suppose that
x∗ = 0 is the point of neutral storage and consider quadratic supply functions s :W×Z → R
defined by

s(w(t), z(t)) =
[
w(t)
z(t)

]T [
Q S

ST R

] [
w(t)
z(t)

]
(D.28)

We provide here the essential result about dissipativity of linear systems with quadratic supply
rate.

Theorem D.2 Suppose that system Σl defined by (D.25) is controllable and let the supply
function be defined by (D.28). Then the following statements are equivalent:

1. (Σl, s) is dissipative

2. (Σl, s) admits a quadratic storage function V (x) = xTPx with P = P T

3. There exists P = P T such that

F (P ) :=
[
ATP + PA PB

? 0

]
−
[

0 I
C D

]T [
Q S

ST R

] [
0 I
C D

]
� 0
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4. For all ω ∈ R with det(jωI − A) 6= 0, the tranfer function H(s) = C(sI − A)−1E + F
satisfies [

I
H(jω)

]∗ [
Q S

ST R

] [
I

H(jω)

]
� 0

The proof can be found in [Scherer and Weiland, 2005].

D.3 Kalman-Yakubovich-Popov Lemma

The Kalman-Yakubovich-Popov lemma shows that, amongst others, the frequency condition
given by Popov in [Popov, 1961] is equivalent to the existence of a Lyapunov function [Kalman,
1963]. Initially, this result has been developed to solve the problems of stability of nonlinear
systems initiated by Lur’e in [Lur’e, 1951]. The Kalman’s result strengthens and generalizes
the Yakubovich’s result proved in [Yakubovitch, 1962].

The Lur’e problem was to analyze the stability of the (closed-loop) system

ẋ1(t) = Ax1(t) + bϕ(y(t))
ẋ2(t) = −ϕ(y(t))
y(t) = cTx1(t) + ρx2(t)

(D.29)

where ρ > 0 and ϕ(·) is a nonlinear continuous function which satisfies the sector condition
ψ ∈ Aκ where

Aκ :=
{
ϕ : 0 < yϕ(y) < κy2, ϕ(0) = 0

}
In [Popov, 1961], the following result is proved:

Theorem D.3 (Theorem of Popov) Assume that A is stable and that ρ > 0 then (D.29)
is globally asymptotically stable if the condition

Re(2αρ+ jωβ)[cT (jωI −A)−1b+ ρ/jω] ≥ 0 (D.30)

holds for all real ω with 2αρ = 1 and some β ≥ 0.

Popov also studied, but did not resolve, the question of existence of a Lyapunov function
which assures that (D.29) is globally asymptotically stable when (D.30) holds. To this aim,
he also introduced the following candidate Lyapunov function for (D.29):

V (x1, y) = xT1 Px1 + α(y − hTx1)2 + β

∫ y

0
ϕ(s)ds (D.31)

with α, β real.

The result introduced by Kalman in [Kalman, 1963] allows to solve the problem of Lur’e by
showing that the condition (D.30) is equivalent to the existence of a Lyapunov function of
the form (D.31):

Lemma D.4 (Kalman-Yakubovich-Popov Lemma) Let us consider the real constant
γ ≥ 0 and the SISO transfer function H(jω) = cT (jωI − A)−1b such that the pair (A, b)
is completely controllable then a symmetric matrix P and a vector q satisfying
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1. ATP + PA = −qqT

2. Pb− c =
√
γq

exist if and only if
γ + 2Re[cT (jωI −A)−1b] ≥ 0

Moreover the set
{
x : xTPx = 0

}
is the unobservable subspace for the pair (A, b).

The latter lemma allows to state the result:

Theorem D.5 (Main Theorem of [Kalman, 1963]) Consider system (D.29) where A is
stable, (A, b) is completely controllable and (A, cT ) is completely observable. We seek a suitable
Lyapunov function V of the form (D.31).

1. V > 0 and V̇ ≤ 0 for any ϕ(·) ∈ A∞ if and only if there exist real constant α ≥ 0,
β ≥ 0, α+ β ≥ 0 and (D.30) holds.

2. Suppose V satisfies the preceding conditions. Then V is a Lyapunov function which
assures global asymptotic stability of (D.29) if and only if either (a) α 6= 0 or (b) α = 0
and the equality sign in (D.30) occurs at those values of ω where Re[cT (jωI−A)−1b] ≥ 0

3. There is an constructive procedure for computing V .

Finally, the constants α, β can be computed using:

√
γq = Pb− αρc− βAT c/2

γ = β(ρ+ cT b)

The KYP lemma used to prove the latter theorem has become more famous that the theorem
itself. Since then, it has been generalized to a more general framework using the notion
of dissipativity (among others). However, despite of its different form, it still establishes a
relation between a frequency domain condition and the existence of a Lyapunov function.
Some important considerations are provided in [Rantzer, 1996; Scherer and Weiland, 2005;
Willems, 1971; Yakubovitch, 1974] and references therein.

Lemma D.6 (Modern Kalman-Yakubovich-Popov Lemma) For any triple of matri-

ces A ∈ Rn×n, B ∈ Rn×m and M =
[
M11 M12

MT
12 M22

]
∈ Sn+m, the following statements are

equivalent:

1. There exists a symmetric matrix P = P T such that

M +
[
I 0
A B

] [
0 P
P 0

] [
I 0
A B

]
≺ 0

2. M22 ≺ 0 and for all ω ∈ R and complex vectors col(x,w) 6= 0

[
A− jωI B

] [ x
w

]
= 0 implies

[
x
w

]∗
M

[
x
w

]
< 0
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If (A,E) is controllable, the corresponding equivalence also holds for non-strict inequalities.
Finally, if

M = −
[

0 I
C D

]T [
Q S

ST R

] [
0 I
C D

]
then statement 2 is equivalent to the condition that for all ω ∈ R, with det(jωI − A) 6= 0 we
have [

I

C(jωI −A)−1B +D

]∗ [
Q S

ST R

] [
I

C(jωI −A)−1B +D

]
� 0

This lemma proves that geometric considerations is the complex plane (such as Popov’ cri-
terion, circle criterion. . . ) have time-domain counterparts in terms of Lyapunov functions.
These conditions may in turn be expressed through linear matrix inequalities, or equivalently,
by algebraic Ricatti inequalities. Another great interest of this result is to allow for the gen-
eralization of some definitions from the time-invariant to the time-varying case. The final
important fact is that, it turns a semi-infinite matrix inequality (due to the frequency vari-
able ω ∈ [0,+∞)) into a finite dimensional matrix inequality involving a finite dimensional
variable P = P T � 0.

Several other versions of the KYP-lemma has been also developed in different frameworks,
see for instance [Hencey and Alleyne, 2007; Iwasaki et al., 1998; Paré et al., 1999].

D.4 Schur complement

The term Schur complement has been introduced by Emilie Virginia Haynsworth in [Hayn-
worth, 1968] and in the same article she proved the inertia addivity formula which is called
now Haynsworth inertia additivity formula. In some words, she proved that the inertia is ad-
ditive on the Schur complement and is a direct consequence of the Guttman rank additivity
formula [Guttman, 1946]. For more details, please refer to [Zhang, 2005].

In the context of LMIs the inertia additivity formula can be written into the form [Boyd et al.,
1994]

Lemma D.7 The following statements are equivalent:

1.
[
M11 M12

MT
12 M22

]
≺ 0

2. M11 ≺ 0 and M22 −MT
12M

−1
11 M12 ≺ 0

3. M22 ≺ 0 and M11 −M12M
−1
22 M

T
12 ≺ 0

This lemma allows to exhibit convex linear matrix inequalities from nonlinear matrix in-
equality. Indeed, it is difficult to see that statements 2 and 3 provide convex inequalities. But
according to this lemma, they can be turned into an affine LMI.

It is important to say that when a matrix is positive definite then all its Schur complement
must be positive definite. The following example illustrates a trap of the Schur complement.

Example D.8 Let us for instance consider the following LMI: −ETPE −Q ATP Q
? −P 0
? ? −Q

 ≺ 0
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where P = P T � 0, Q = QT � 0 and E,A are square. Is this LMI can be satisfied ? First
of all, the diagonal terms must be negative definite: this is the case, due to the assumptions
on the matrices P and Q. However, by performing the Schur complement with respect to the
right-lower block we obtain the two underlying inequalities:

−Q ≺ 0[
−ETPE ATP

? −P

]
≺ 0

While the first equality is satisfied, the second may be not satisfied if E is not of full rank since
in this case the term ETPE would have zero eigenvalues. This is the case when considering
discrete-time singular systems of the form Ex(k + 1) = Ax(k).

This example shows that Schur complements should be used with care.

There also exists a non-strict version of the Schur complement [Boyd et al., 1994].

Lemma D.9 The following statements are equivalent:

1. M =
[
M11 M12

MT
12 M22

]
� 0

2. The following relations hold

R � 0, M11 −M12M
+
22M

T
12 � 0, S(I −M22M

+
22) = 0

where M+
22 is the Moore-Penrose pseudoinverse of M22.

D.5 Positive real lemma

The positive real lemma is highly related to the passivity of a system and has played a crucial
role in questions related to the stability of interconnected systems and synthesis of passive
electrical networks.

An LMI formulation to passivity can be derived using the dissipativity framework by
considering the supply function s(w, z) = zTw + wT z. This leads to:

Lemma D.10 System (D.25) is passive (or positive real) if and only if there exists a matrix
P ∈ Sn++ such that [

ATP + PA PB − CT
? −(D +DT )

]
≺ 0 (D.32)

Then for all ω ∈ R with det(jωI −A) 6= 0 one has H(jω)∗ +H(jω) � 0.

Moreover, V (x) = xTPx defines a quadratic storage function.

Proof : The proof is an application of the Kalman-Yakubovich-Popov lemma with quadratic
supply function s(w, z) = wT z + zTw. �



282 CHAPTER 7. APPENDIX

D.6 H2 Performances

The H2 norm of a system measures the output energy in the impulse responses of the system.
The H2 norm of a system described by H(s) is given (under certain assumptions) by

||H||2H2
=

1
2π

trace
∫ +∞

−∞
H(jω)H(jω)∗dω

Lemma D.11 Suppose system (D.25) with D = 0 is asymptotically stable. Then ||H||H2 < ν
if and only if there exists P ∈ Sn++, Z ∈ Sq++ and ν > 0 such that[

ATP + PA PB

BTP −Ip

]
≺ 0

[
P CT

C Z

]
� 0 trace(Z) < ν2

Proof : Let ei be the ith vector of the standard basis of the input space Rp, we define the
input w(t) as

w(t) =
p∑
i=1

wi(t)

where wi(t) = δ(t)ei and δ(t) is the Dirac distribution. Define the impulse responses with zero
initial condition

zi(t) = C

∫ t

0
eA(t−s)Bwi(s)ds

= CeAtBei

The total energy (the sum of the energy of each zi) equals the H2-norm. Hence we have

p∑
i=1

||zi||2L2
=

p∑
i=1

∫ +∞

0
eTi B

T eA
T tCTCeAtBei

= trace
(∫ +∞

0
BT eA

T tCTCeAtBdt

)
= trace

(∫ +∞

0
CeAtBBT eA

T tCTdt

)
since trace(AB) = trace(BA). Using Parseval equality (Appendix D.21) it is possible to show
that

p∑
i=1

||zi||2L2
=

1
2π

trace
(∫ +∞

−∞
H(jω)H(jω)∗dω

)
= ||H||2H2

Now letting W =
∫ +∞

0
eAtBBT eA

T tdt be the controllability grammian which satisfies

AW +WAT +BBT = 0

This can be retrieved using results of Appendix C.3. Note also that

||H||2H2
= trace[CWCT ] = ν2
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Since rank[B] = p ≤ n, hence BBT � 0 and W � 0. Since A is Hurwitz, this means that
there exists X �W such that

AX +XAT +BBT ≺ 0 CXCT ≺ Z traceZ < ν2

Pre and post multiplying by P := X−1 we get

PA+ATP + PBBTP ≺ 0 CP−1CT ≺ Z traceZ < ν2

A Schur complement yields LMIs[
PA+ATP PB

? −Ip

]
≺ 0

[
Z C
? P

]
� 0 trace[Z] < ν2

This concludes the proof. �

D.7 Generalized H2 performances

The generalized H2 performance is defined as the L2 − L∞ induced norm of a system. The
system is then defined as an operator from the set of signals of bounded energy to set of
signals with finite amplitude (energy to peak norm). In the scalar case, L2 − L∞ induced
norm coincides with the H2 norm which is the reason for calling it the generalized H2 norm.

Lemma D.12 Suppose system (D.25) with F = 0 is asymptotically stable. Then ||H||L2,L∞ <
ν if and only if there exists P ∈ Sn++ and ν > 0 such that[

ATP + PA PB

BTP −Ip

]
≺ 0

[
P CT

C ν2Iq

]
� 0 (D.33)

Proof : First, let us consider the input behavior of the system in the L2-norm sense. To
this aim define the storage function V (x) = xTPx with the supply-rate s(w, z) = wTw. The
dissipativity constraint yields

V̇ − s(w, z) < 0

or equivalently [
ATP + PA PB

? −Ip

]
≺ 0

Moreover we have

x(t)TPx(t) ≤
∫ t

0
w(s)Tw(s)ds

= ||w||2L2

The output z satisfies
z(t)T z(t) = x(t)TCTCx(t)

≤ ν2x(t)TPx(t)
≤ ν2||w||2L2

(D.34)

for some ν > 0 satisfying P − ν−2CTC � 0 or equivalently[
P CT

? ν2Iq

]
� 0
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Finally taking the supremum on the left hand side of (D.34) we get

sup
t≥0

z(t)T z(t) ≤ ν2||w||2L2

and thus
||z||L∞ ≤ ν||w||L2

This concludes the proof. �

D.8 Bounded-Real Lemma - H∞ Performances

The bounded real lemma is a well known lemma allowing for the computation of the H∞
norm of a linear system. It can be obtained in the dissipativity framework while considering
the supply function s(w, z) = γwTw − γ−1zT z.

Lemma D.13 System (D.25) is asymptotically stable if and only if there exists P ∈ Sn++ and
γ > 0 such that  ATP + PA PB CT

? −γI DT

? ? −γI

 ≺ 0 (D.35)

Then for all ω ∈ R with det(jωI − A) 6= 0 one has H(jω)∗H(jω) � γ2I. Moreover, V (x) =
xTPx defines a quadratic storage function.

Proof : The proof is a trivial application of the Kalman-Yakubovich-Popov lemma with
quadratic supply function s(w, z) = γwTw − γ−1zT z. �

This result is extremely important and has led to important improvements in systems and
control theory. As a first interpretation, it is equivalent to the following input/output signals
inequality:

||z||L2 ≤ γ||w||L2

meaning that γ is the energy gain (L2-gain) of the system. This means that for an input of
unit energy, the energy of the output is less than γ. Moreover, in the time-invariant case, it
is possible to show that the L2 induced norm coincides with the H∞ norm of the system.

Property D.14 (Submultiplicativity) The bounded real lemma is a useful tool in robust
control since the H∞ norm is sub-multiplicative which means that for two asymptotically stable
transfer functions M1(s) and M2(s), the following relation holds:

||M1(s)M2(s)||∞ ≤ ||M1(s)||∞ · ||M2(s)||∞

This can be modified to have the useful implication for α, β > 0:

||M1(s)||∞ < β/α and ||M2(s)||∞ < α⇒ ||M1(s)M2(s)||∞ < β

which is the basis of small-gain theorem (see Appendix D.11).
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D.9 L∞ − L∞ Performances

The L∞ induced norm is also called peak-to-peak norm since it considers the system as an
operator mapping the space of signals with finite amplitude (power) to itself (modulo the
dimension of the space). This norm is also called L1-norm and is defined using the second
version of the L∞-norm (B.8) corresponding to the maximal power.

Lemma D.15 Consider system (D.25) then if there exists P = P T > 0 and scalars β, β, δ >
0 such that [

ATP + PA+ αP PB

BTP −βI

]
� 0

 αP 0 CT

0 (δ − β)I DT

C D δI

 � 0

then the peak-to-peak norm of the system is lower than δ, that is ||H||L∞−L∞ < δ.

Proof : The first inequality implies

x(t)T [ATP + PA+ αP ]x(t) + x(t)TPBw(t) + w(t)TBTPw(t)− βw(t)Tw(t) < 0

or equivalently
d

dt
x(t)TPx(t) + αx(t)TPx(t)− βw(t)Tw(t) < 0

Denoting V = x(t)TPx(t) hence we have the linear differential inequality

V̇ + αV − βwTw < 0

and hence we have

V < e−αtV (0) + β

∫ t

0
e−α(t−s)w(s)Tw(s)ds

Assuming x(0) = 0 and w(t)Tw(t) ≤ 1 yields

V ≤ β

∫ t

0
e−α(t−s)ds

=
β

α

(
1− e−λt

)
≤ β

α

Taking a Schur complement of the second inequality yields that[
αP 0
? (δ − β)Ip

]
− 1
δ

[
CT

DT

] [
C D

]
� 0

and hence
αx(t)TPx(t) + (δ − β)w(t)Tw(t)− 1

δ
z(t)T z(t) < 0

or equivalently
z(t)T z(t) < δ

(
x(t)TPx(t) + (δ − β)w(t)Tw(t)

)
With the assumption w(t)Tw(t) ≤ 1 we thus have

z(t)T z(t) < δ(β + δ − β)
= δ2

Consequently, the peak-to-peak gain is smaller than δ �
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Remark D.16 It is important to note that this result is a sufficient condition only, that is,
the minimal δ is only an upper bound on the real peak-to-peak gain. Moreover, it is also
important to note that the conditions are not convex (actually quasiconvex) due to the term
αP .

D.10 S-procedure

The S-procedure allows to deal easily with implications in the LMI framework (but not only).
Indeed, we aim to express the following problem

for all ξ ∈ Rn such that ξTMiξ ≤ 0, i = 1, . . . , N ⇒ ξTM0ξ < 0 (D.36)

as an LMI problem.

Lemma D.17 (S-procedure) If there exist scalars τ1, . . . , τN ≥ 0 such that

M0 −
N∑
i=1

τiMi ≺ 0 (D.37)

then (D.36) holds. The converse is not true in general unless N = 1 for real valued problems
or N = 2 for complex valued problems.

Despite of its conservatism, it is a very useful tool in robust analysis and control theory
and plays a crucial role in the full-block S-procedure (in some sense) [Scherer, 2001], IQC
techniques [Rantzer and Megretski, 1997], Lur’e systems [Lur’e and Postnikov, 1944]. . .

Historically, the first result of this kind was obtained by Finsler in [Finsler, 1937] (see
Appendix D.16) and was later generalized by Hestenes and McShane in [Hestenes and Mac-
Shane, 1940]. In the field of automatic control, the idea was certainly first used by Lur’e and
Postnikov in [Lur’e and Postnikov, 1944].

The theoretical background was developed some 30 years later by Yakubovich: in the
early 70’s he proved a theorem known as the S-lemma [Yakubovich, 1971, 1977] using an old
theoretical result of Dines [Dines, 1941] on the convexity of homogeneous quadratic mappings.
The simplicity of the method allowed rapid advances in control theory. Later, Megretski
and Treil extended the results to infinite dimensional spaces giving rise to more general
applications [Megretski and Treil, 1993]. Articles written since then mainly discuss some
new applications, not new extensions to the theory. Yakubovich himself presented some
applications [Yakubovich, 1979], which were followed by many others [Boyd et al., 1994],
including contemporary ones [Goldfarb and Iyengar, 2003; Luo, 2003; Rantzer and Megretski,
1997; Scherer, 1997], spanning over a broad range of engineering, financial mathematics and
abstract dynamical systems.

Although the result emerged mainly from practice, Yakubovich himself was aware of the
theoretical implications of the S-lemma [Fradkov and Yakubovich, 1979]. The theoretical
line was then continued by others (see e.g., [Boyd et al., 1994], or recently, [Derinkuyu and
Pinar, 2005; Luo et al., 2004; Sturm and Zhang, 2003] but apart from a few exceptions such
as [Ben-Tal and Nemirovskii, 2001; Boyd et al., 1994; Iwasaki et al., 1998; Luo, 2003] or
[Jönsson, 2001] the results did not reach the control community. The term S-method was
coined by Aizerman and Gantmacher in their book [Aizerman and Gantmacher, 1963], but
later it changed to S-procedure.
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The S-method tries to decide the stability of a system of linear differential equations by
constructing a Lyapunov matrix. During the process an auxiliary matrix S (for stability) is
introduced. This construction leads to a system of quadratic equations (the Lure’e resolving
equations, [Lur’e and Postnikov, 1944]). If that quadratic system can be solved then a suitable
Lyapunov function can be constructed.

The term S-lemma refers to results stating that such a system can be solved under some
conditions; the first such result is due to Yakubovich [Yakubovich, 1971]. For a complete
survey of the S-lemma, see [Pólik and Terlaky, 2007].

D.11 Small Gain Theorem

Let us consider the interconnection depicted on figure 7.2

H(s)

∆(s) �

?
--

−

+
-

Figure 7.2: Interconnection of systems

It is clear that the closed-loop system Hcl(s) =
H(s)

1 + ∆(s)H(s)
and hence the H∞ norm of

the closed-loop system is bounded if and only if

∆(jω)H(jω) 6= 1

for all ω ∈ R. A sufficient condition can be given in terms of the H∞-norm of the product
∆(s)H(s):

||∆(s)H(s)||H∞ < 1

Indeed, the norm of the whole transfer is bounded by

||Hcl||H∞ ≤
||H||H∞

1− ||∆H||H∞
(D.38)

The latter implies that ||Hcl||H∞ is bounded provided that ||∆(s)H(s)||H∞ < 1.
It is well-known that the closed-loop system is stable if and only if ||∆H||H∞ < 1. It is

not difficult to verify that ∆H satisfies this property by using standard LMI arguments (see
the computation of H∞-norm in Appendix D.8). Let us assume, for some reasons, that the
computation of the H∞-norm of the product ∆H cannot be performed. Since the H∞-norm
is submultiplicative then the inequality

||Hcl||H∞ ≤
||H||H∞

1− ||H||H∞ · ||∆||H∞
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implies (D.38) and hence the closed-loop is asymptotically stable if ||H||H∞ · ||∆||H∞ < 1.

We are able to state the small-gain theorem in a very general fashion:

Theorem D.18 (Small-Gain Theorem) Let us consider a general interconnection of two
blocks, say a transfer function H(s) and a general block ∆ ∈ Rnδ×nδ such that ||∆||H∞ < 1.
The interconnected system is stable if the H∞-norm of H(s) satisfies

||H(s)||H∞ < 1

Moreover, if ∆ is unstructured with elements in C, the latter condition is necessary and
sufficient.

Proof : A complete and rigorous proof is given in [Zhou et al., 1996]. �

Assuming that H(s) admits realization (A,B,C,D), it is easy to determine the stability
sufficient condition is given by the Small-Gain Thorem:

Theorem D.19 (LMI expression of the Small-Gain Theorem) The closed-loop system
is stable if there exist P = P T � 0 and α ∈ [0, 1) such that the LMI holds ATP + PA PB CT

? −αI DT

? ? −αI

 ≺ 0

D.12 Scalings and Scaled-Small Gain theorem

In order to reduce the conservatism of the small-gain theorem which takes into account
norms only, some scalings may be introduced in the loop. These scalings do not modify
the interconnection but allow for a reduction of conservatism. Let us consider an uncertain
square matrix ∆ containing, for simplicity, unknown real valued parameters ρi and full-blocks
gathered on the diagonal:

∆ = diag(∆s,∆f )
∆s := diag

i
(ρiIsi)

∆f := diag
i

(Fi)

where si is the number of occurrence of scalar parameter ρi and Fi are full-blocks. The idea
is to capture the structure of the uncertain matrix ∆ by a matrix commutation property

L∆ = ∆L

which can also be defined by an identity relation

∆ = L−1∆L

The set of scalings corresponding to the uncertain structure ∆ is defined by

S(∆) := {L ∈ S++ : L∆ = ∆L}

This set enjoys the following properties:
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1. I ∈ S(∆) and therefore the small-gain is a particular case (more conservative) of this
approach.

2. L ∈ S(∆) =⇒ LT ∈ S(∆)

3. L ∈ S(∆) =⇒ L−1 ∈ S(∆)

4. L1 ∈ S(∆), L2 ∈ S(∆) =⇒ L1L2∆ = ∆L1L2 note that the matrix L1L2 is not neces-
sarily symmetric.

5. S(∆) is a convex subset of Rk where k is the dimension of ∆.

The structure of L ∈ S(∆) can be expressed easily by

L = diag(Ls, Lf )
Ls = diag

i
(Lsi ), L

s
i ∈ S

si
++

Lf = diag
i

(liIni)

where ni is the size of square full-block Fi. Using this scaling it is possible modify the
small-gain theorem into another refined version called Scaled-Small Gain Theorem

Theorem D.20 The closed-loop system is stable if there exist P = P T � 0 and L ∈ S(D)
such that the following LMI holds ATP + PA PB CTL

? −L DTL
? ? −L

 ≺ 0 (D.39)

Despite of the conservatism reduction, this result is still conservative since it stills considers
the norm of the operator and it would be more interesting to capture a more complex (com-
plete) set of uncertainty. Actually the scaled-small gain can be obtained in the dissipativity
framework by considering a supply-function:

s(w(t), z(t)) = w(t)TLw(t)− z(t)TLz(t)

for some L which satisfies
L−∆TL∆ � 0 (D.40)

Thus this means that ∆ is contained into a ball centered about 0 but using the scaling L, a
degree of freedom is added and is expected to reduce the conservatism.

Remark D.21 It is important to note that D-scalings may provide a nonconservative stabil-
ity condition under the assumption the the number of full-blocks nf and the number of repeated
scalar blocks ns in the uncertainty ∆ satisfy the inequality

ns + nf ≤ 3

See for instance the very complete paper [Packard and Doyle, 1993] on the complex structured
singular value.

However, two main difficulties remains:

1. 0 is always included in the set of values for ∆

2. ∆ is again restricted to lie within a ball

The full-block S-procedure solves this problems by translating the uncertainty and considering
ellipsoids instead of balls.
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D.13 Full-Block S-procedure

The Full-Block S-procedure unifies all the frameworks of scalings into a single one, where
small-gain and scaled-small gain results are particular cases only. It allows to consider a
large class of uncertainties possibly not including 0 and provides bounds taking the form of
ellipsoids instead of balls.

The full-block S-procedure considers a full-block supply-function of the form

s(w(t), z(t)) =
[
w(t)
z(t)

]T [
Q S

ST R

] [
w(t)
z(t)

]
such that ∫ +∞

0
s(w(t), z(t))dt ≥ 0

We have the following theorem:

Theorem D.22 The closed-loop system is stable if there exist P = P T � 0, Q = QT ≺ 0
and R = RT � 0 and S such that the LMIs[

ATP + PA PB
? 0

]
+
[

0 CT

I DT

] [
Q S
? R

] [
0 I
C D

]
≺ 0

[
∆
I

]T [
Q S
? R

] [
∆
I

]
� 0 (D.41)

hold.

Proof : A proof is given in Section 2.3.4.4 or in [Scherer, 1999]. �

To see that the full-block S-procedure allows to consider more general uncertainties, let us
consider the LMI (D.41) and try to express in a form similar to (D.40).

(D.41) is equivalent to
∆TQ∆ + ∆TS + ST∆ +R � 0

Completing the squares we get

(∆T + STQ−1)Q(∆ +Q−1S) +R− STQ−1S � 0

where it is possible to see that

1. the uncertainty is translated by Q−1S

2. the latter expression is clearly the expression of a general ellipsoid.

Moreover, for a given ellipsoid (∆0, Z,W ):

(∆−∆0)T (−Z)(∆−∆0) �W

it is possible to determine the values Q,S,R using the relations:

Q = Z
S = Q∆0

R = W −∆T
0 Z∆0
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D.14 Dualization Lemma

The dualization lemma (which has been introduced simultaneously but separately in [Scherer,
1999] and [Iwasaki and Hara, 1998] allows to turn an LMI into another equivalent one provided
that some strong assumptions are satisfied. First we need the following result:

Proposition D.23 Let P ∈ Rn×n a nonsingular matrix and define two matrices Sk ∈ Rn×k
and S` ∈ Rn×` satisfying det

([
Sk S`

])
(i.e. forms a basis of Rn) with n = k+ `. We have

the following fact:
If STk PSk ≺ 0 and ST` PS` � 0 then P has exactly k negative and ` positive eigenvalues.
Conversely, if P has exactly k negative and ` positive eigenvalues, then there exist Sk ∈

Rn×k and S` ∈ Rn×` satisfying det
([

Sk S`
])

.

Proof : The proof is provided in [Scherer and Weiland, 2005]. �

Lemma D.24 (Dualization Lemma) Let M ∈ Sn nonsingular and S ∈ Rn×p with rank(S) =
p < n such that the number n−(M) of negative eigenvalues of M satisfies n−(M) = rank(S) =
p. In this case, the following statements are equivalent:

1. The LMI STMS ≺ 0 holds

2. The LMI S⊥TM−1S⊥ ≺ 0 holds where S⊥ is a basis of the orthogonal complement of
Im(S) (i.e. STS⊥ = 0).

Proof : The proof is provided in [Scherer and Weiland, 2005]. �

At first sight, this result may seem superfluous, but actually it is very useful in the robust/LPV
control context. Indeed, when using multipliers to study systems expressed through LFR, it
has the property of decoupling data matrices from multipliers and Lyapunov matrix, making
the problem convex [Scherer, 1999; Wu, 2003].

However, the rank constraint is a very strong condition and such lemma is difficult to apply
in general. For instance, by considering time-delay systems and the Lyapunov-Krasovskii
theorems, the rank condition is generally not satisfied due to the presence of a high number
of Lyapunov matrices.

D.15 Bounding Lemma

The bounding lemma [de Souza and Li, 1999; Khargonekar et al., 2001; Petersen, 1987; Xie
et al., 1992] is used to remove uncertainties from matrix inequalities in the robust analy-
sis/control framework. It deals with both real and complex parameter uncertainties. We
provide here the real version of the result:

Lemma D.25 Let Ψ ∈ Sn a symmetric matrix and P ∈ Rm×n, Q ∈ Rp×n and ∆(t) ∈ ∆ be
an uncertain matrix (possibly time-varying) satisfying

∆(R) := {∆(t) ∈ Rm×p : p ≤ m, ∆T∆ ≤ R, R > 0}

then the following statements are equivalent:
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1. The LMI
Ψ + P T∆(t)Q+QT∆(t)TP ≺ 0 (D.42)

holds for all ∆(t) ∈∆(R)

2. There exists a scalar ε > 0 such that the LMI

Ψ + εP TP + ε−1QTRQ ≺ 0

holds.

Proof : It seems interesting to provide the proof of this result. It is actually an old (and
interesting result) and then the proof is not easy to find since, generally, provided references
are not the original one. The original paper where this result has been provided for the first
time is [good question, I am still looking for it]. Moreover, most of the technical results
involved in the proof can be found in [Khargonekar et al., 2001; Petersen, 1987]. Without
loss of generality, let us consider for simplicity here that R = I.

Sufficiency:

Assume that matrices Ψ, P and Q contain decision matrices such that (D.42) is an LMI.
Assume there exist Ψ0, P0, Q0 and ε0 > 0 such that Ψ0 + ε0P

T
0 P0 + ε−1QT0 Q0 ≺ 0 holds.

We immediately need the following well-known fact:

Proposition D.26 For any matrices X and Y with appropriate dimensions, we have XTY +
Y TX � βXTX + β−1Y TY, for any β > 0. The latter inequality is a consequence of the
inequality (β−1/2X − βY )T (β−1/2X − β1/2Y ) � 0.

Whatever the inertia of the matrix inequality Ψ + P T∆(t)Q + QT∆(t)TP , there always a
scalar ε > 0 such that

Ψ + P T∆(t)Q+QT∆(t)TP � Ψ + εP TP + ε−1QT∆T∆Q
preceq Ψ + εP TP + ε−1QTQ for some ε > 0

Hence by assumption, the left-hand side is negative definite if we choose ε = ε0, P = P0,
Q = Q0 and Ψ = Ψ0. The sufficiency is shown.

Necessity:

Before showing the necessity we need the following results proved in [Petersen, 1987].

Lemma D.27 Given any x ∈ Rn we have

max
∆(t)∈∆(I)

{
(xTM1M2∆(t)M3x)2

}
= xTM1M2M

T
2 M1xx

TMT
3 M3x

where M1 = MT
1 .

Lemma D.28 Let X,Y and Z be given r × r matrices such that X � 0, Y ≺ 0 and Z � 0.
Furthermore, assume that

(ξTY ξ)2 − 4(ξTXξξTZξ) > 0

for all ξ ∈ Rr with ξ 6= 0. Then there exists a constant λ > 0 such that

λ2X + λY + Z ≺ 0
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The proof of necessity follows the same lines as the proof of Theorem 2.3 of [Petersen, 1987]
and is recalled here. Assume that there exists Ψ0, Q0 and P0 such that

Ψ0 + P T0 ∆(t)Q0 +QT0 ∆(t)TP0 ≺ 0

holds. Assume also the LMI is satisfied for the nominal system (i.e. ∆(t) = 0), therefore
Ψ0 ∈ Sn−− and we have

Ψ0 ≺ −P T0 ∆(t)Q0 −QT0 ∆(t)TP0

xTΨ0x < −2xTP T0 ∆(t)Q0x, for allx ∈ Rn
xTΨ0x < −2 max

∆(t)∈∆(I)
{xTP T0 ∆(t)Q0x}

(xTΨ0x)2 > 4 max
∆(t)∈∆(I)

{(xTP T0 ∆(t)Q0x)2}

By application of Lemma D.27 with M1 = I, M2 = P T and M3 = Q, we get

(xTΨx)2 > 4xTP TPxxTQTQx
(xTΨx)2 − 4xTP TPxxTQTQx > 0

Note that P T0 P0 � 0, QT0 Q0 � and Ψ0 ≺ 0 hence Lemma D.28 applies with Y = Ψ0, X =
P T0 P0 and Z = QT0 Q0. Therefore there exists λ > 0 such that

λ2P T0 P0 + λΨ0 +QT0 Q0 ≺ 0

Finally, multiplying the latter inequality by λ−1 and letting ε = λ−1 we get inequality

Ψ0 + εP T0 P0 + ε−1QT0 Q0 ≺ 0

This concludes the proof of sufficiency. �

There also exist a ’dual’ version of the previous lemma where the uncertainty satisfies ∆(t)∆(t)T <
R in the case m ≤ p. In this case we obtain

Lemma D.29 Let Ψ ∈ Sn a symmetric matrix and P ∈ Rm×n, Q ∈ Rp×n and ∆(t) ∈ ∆′ be
an uncertain matrix (possibly time-varying) with

∆′ := {∆(t) ∈ Rm×p : m ≤ p, ∆∆T ≤ R, R > 0}

then the following statements are equivalent:

1. The LMI
Ψ + P T∆(t)Q+QT∆(t)TP ≺ 0

holds for all ∆(t) ∈∆′

2. There exists a scalar ε > 0 such that the LMI

Ψ + εP TRP + ε−1QTQ ≺ 0

holds.
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The bounding lemma can neither be used to deal with rational uncertainties nor dynamical
operators (such as dynamical systems or infinite dimensional operators. . . ). This is the main
drawback of the bounding lemma but, on the other hand, it provides simple and easy to use
results in many cases and this motivates its utilization in many works. The bounding-lemma
provides the same result as the scaled-small gain for one single full uncertainty block. We aim
to show now that with this framework it is possible to retrieve small-gain and the full-block
multiplier results. Extensions have also been provided in [Shcherbakov and Topunov, 2008].

Equivalence with scaled-small gain

In the scaled-small gain result, the uncertainty are assumed to satisfy the commutative
relation

L∆ = L∆, L = LT � 0 (D.43)

and therefore we have ∆ = L−1∆L. Finally, we get the following result:

Lemma D.30 Let Ψ ∈ Sn a symmetric matrix and P ∈ Rm×n, Q ∈ Rm×n and ∆(t) ∈ ∆ be
an uncertain matrix (possibly time-varying) with

∆1 := {∆(t) ∈ Rm×m : ∆T∆ ≤ I}

then the following statements are equivalent:

1. The LMI
Ψ + P T∆(t)Q+QT∆(t)TP ≺ 0

holds for all ∆(t) ∈∆

2. The LMI
Ψ + P TL−1∆(t)LQ+QTLT∆(t)TL−TP ≺ 0

holds for all ∆(t) ∈∆1 and some L ∈ S(∆).

3. There exists a scalar L̃ ∈ S(∆) such that the LMI[
Ψ + P T L̃P QT L̃

? −L̃

]
≺ 0 (D.44)

holds.

Proof : The equivalence between the first and second statement is done by replacing ∆ by
L−1∆L. The third statement is obtained by similar argument than for obtaining statement
two of lemma D.29. Then a change of variable L̃ ← εL and a Schur’s complement leads to
LMI (D.44). �

To see clearly the equivalence with the scaled-small gain, let us consider system

ẋ = (A+B∆C)x

which can be rewritten as an interconnection depicted in Figure 7.2 where H(s) = C(sI −
A)−1B. The robust stability of the system is ensured if there exists Z = ZT � 0 such that
the LMI

(A+B∆C)TZ + Z(A+B∆C) ≺ 0
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holds. This LMI can be rewritten in the form

Ψ + PT∆(t)Q+QT∆(t)TP ≺ 0

where Ψ = ATZ + ZA, PT = ZB and Q = C. Apply lemma D.30, we obtain[
Ψ + ZT L̃Z QT L̃

? −L̃

]
≺ 0

which is identical to [
ATP + PA+ PBL̃BTP CT

? −L̃

]
≺ 0

A Schur complement on the latter inequality and letting L̃′ = L̃ (see properties of the set
S(∆)) yields  ATP + PA PB CT L̃′

? −L̃′ 0
? ? −L̃′

 ≺ 0

which is exactly the scaled bounded real lemma.

Equivalence with full-block S-procedure

Let us consider the set of uncertainties ∆q defined by

∆q :=

{
∆ ∈ Rm×p : p ≤ m,

[
∆
I

]T [
U V
? W

] [
∆
I

]
� 0

}

Now consider equation (D.42) and rewrite it into

Ψ +
[
P T QT

] [ 0 ∆(t)
∆(t)T 0

] [
P
Q

]
≺ 0 (D.45)

We need to transform the quadratic inequality defining the set ∆q. Note that in virtue of the
dualization lemma ([Scherer, 1999] or Appendix D.14) we have[

−I
∆T

]T [
xU V
? W

]−1 [ −I
∆T

]
≺ 0

Let
[
U V
? W

]−1

=
[
Ũ Ṽ

? W̃

]
and expand the latter inequality

[
−I
∆T

]T [
Ũ Ṽ

? W̃

] [
−I
∆T

]
= Ũ − Ṽ∆T −∆Ṽ T + ∆W̃∆T ≺ 0

= (∆− Ṽ W̃−1)W̃ (∆T − W̃−1Ṽ T ) + Ũ − Ṽ W̃ Ṽ T ≺ 0

Since W̃ � 0 and Ũ ≺ 0 then Ũ − Ṽ W̃ Ṽ T ≺ 0. Let U ′ = Ũ − Ṽ W̃ Ṽ T , V ′ = Ṽ W̃−1 and
W ′ = W̃−1 hence the latter inequality is equivalent to

(∆− V ′)(W ′)−1(∆T − V ′T ) + U ′ ≺ 0
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A Schur complement yields [
U ′ ∆− V ′
? −W ′

]
≺ 0

and finally we have [
0 ∆
? 0

]
≺
[
−U ′ V ′

? W ′

]
Now substitute the bound on matrix

[
0 ∆
? 0

]
into inequality (D.45) leads to

Ψ +
[
P T QT

] [ −U ′ V ′

? W ′

] [
P
Q

]
≺ 0

Despite of the apparent difference with results obtained from the full-block S-procedure, they
are actually identical. We have used a linearization procedure which has turned the quadratic
definition of the uncertainty set into a linear definition. This linear definition has been used
to bound the uncertainty into the LMI. A similar result has been provided in Scherer [1996].

D.16 Finsler’s Lemma

The Finsler’s lemma [Finsler, 1937; Jacobson, 1977; Pólik and Terlaky, 2007; Skelton et al.,
1997] is a very useful tool in robust control to deal with LMI-defined constraints. Initially
provided in [Finsler, 1937], the lemma was stated as follows

Lemma D.31 Let S1 and S2 by symmetric matrices of the same dimension such that xTS2x =
0 with x 6= 0 implies xTS1x > 0 then there exists y ∈ R such that S1 +yS2 is positive definite.

In control theory, it is defined in a very general manner which consists in an assembly of
related results:

Lemma D.32 The following statements are equivalent:

1. xTMx < 0 for all x ∈ X := {x ∈ Rn − {0} : Bx = 0}

2. There exists a scalar τ ∈ R such that M − τBTB ≺ 0 and if such τ exists, it must
satisfy

τ > τmin := λmax([DT (M −MB⊥(BT
⊥MB⊥)−1B⊥M)D]

where D := (BrBT
l )−1/2B+

l with (Br, Bl) is any full rank factor of B (i.e. B = BlBr)
and B⊥ is any basis of the nullspace of B.

3. There exists a symmetric matrix X such that M −BTXB ≺ 0 holds.

4. There exists an unconstrained matrix N such that

M +NTB +BTN ≺ 0

5. The LMI BT
⊥MB⊥ ≺ 0 holds where B⊥ is any basis of the nullspace of B.

6. There exists a matrix W ∈ Sn+m
+ and a scalar τ > 0 such that[

M BT

B −τIm

]
≺W rank(W ) = m
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In statements 1) and 2), we can recognize the original Finsler’s lemma where S1 = M and
S2 = BTB. Statement 3) is the ’matrix version’ of the Finsler’s lemma which is defined
in [Skelton et al., 1997]. Statements 3) and 4) can be shown equivalent using elementary
algebra. Statement 5) can be retrieved from 4) using the projection lemma (Appendix D.18)
or conversely, 4) can be obtained from 5) through the creation lemma (inverse procedure of
the elimination/projection lemma). Finally, statement 6) has been recently added in Kim and
Moon [2006] to deal with reduced-order output feedback and constrained controllers [Kim and
Moon, 2006; Kim et al., 2007] (e.g. decentralized controllers).

Remark D.33 Let us point out that if the matrix N is constrained (has a specific structure)
then the equivalence is lost and statement 4 implies the others only.

D.17 Generalization of Finsler’s lemma

A generalization of the Finsler’s lemma has been provided in [Iwasaki, 1998; Scherer, 1997]
and is recalled here. Indeed, the Finsler’s lemma is generally applicable when the matrix B
is known and hence the basis of the null-space can be easily computed. This generalization
allows for the use of unknown matrices.

Lemma D.34 Let matrices M = MT , B and a compact subset of real matrices K be given.
The following statements are equivalent:

1. for each K ∈ K
xTMx < 0, ∀ x 6= 0 s.t. KFx = 0

2. there exists Z = ZT such that

M + F TZF ≺ 0
Ker[K]TZKer[K] � 0 ∀ K ∈ K (D.46)

Proof : Suppose 1) holds. Choose K ∈ K arbitrarily then in virtue of the Finsler’s lemma
(Appendix D.16) there exists a real scalar τ such that

M + τF TKTKF ≺ 0

Since K is compact then τ can be chosen independently of K. Hence we have

M ≺ −F TSF ∀ S ∈ {τKTK : K ∈ K}

It has been shown in [Iwasaki, 1998] that the latter inequality is equivalent to the existence of
a symmetric matrix Z such that

M + F TZF ≺ 0 and − Z � τKTK, ∀ K ∈ K

Then performing a congruence transformation on the second inequality with respect to Ker[K]
yields

Ker[K]TZKer[K] � 0 ∀ K ∈ K
Suppose now 2) holds. Set x 6= 0 and K ∈ K such that KFx = 0. Then it is possible to

find η such that Fx = Ker[K]η and hence we have

xT (M + F TZF )x < 0
xTMx < −xTF TZFx < −ηTKer[K]TZKer[K]η ≤ 0



298 CHAPTER 7. APPENDIX

and we get 1). �

D.18 Projection Lemma

The projection lemma is used to remove a decision matrix and gives a necessary and sufficient
condition to the existence of such a matrix. Generally, the controller matrix is removed to
obtain LMIs instead of a BMI [Apkarian and Gahinet, 1995; Scherer, 1999]. It is also called
the elimination lemma since it is used to eliminate decision matrices. The reverse operation
is generally referred to as the creation lemma and is useful in robust analysis [Gouaisbaut
and Peaucelle, 2006b].

Lemma D.35 Let Ψ ∈ Sn and P,Q matrices of appropriate dimensions, then the following
statements are equivalent:

1. There exists an unconstrained matrix Ω such that

Ψ + P TΩQ+QTΩTP ≺ 0

2. The two following underlying LMIs hold

Ker[P ]TΨKer[P ] ≺ 0
Ker[Q]TΨKer[Q] ≺ 0

3. There exists two scalars τ1, τ2 ∈ R such that

Ψ− τ1P
TP ≺ 0

Ψ− τ2Q
TQ ≺ 0

Proof : The proof is based on the proof of Gahinet and Apkarian. First it is aimed to show
that 1) is equivalent to 2). The equivalence between 2) and 3) is a consequence of the Finsler
Lemma (Appendix D.16).

1) ⇒ 2) This implication is trivial. It suffices to pre and post-multiply by both Ker[P ]

and Ker[Q]. This yields statement 2).

1) ⇒ 2)

This part of the proof is more involved but is based on elementary linear algebra and LMIs.
Let us consider the following matrix

B =
[
BPQ BP BQ

]
in which KPQ is a basis of the kernel of [P ]∩ [Q]. The matrices KP and KQ are defined such
that NP =

[
KPQ KP

]
and NQ =

[
KPQ KQ

]
are respectively the basis of the null-spaces

of P and Q respectively. Finally, define Kr such that

T :=
[
KPQ KP KQ Kr

]
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is invertible. In this case,
Ψ + P TΩQ+QTΩTP ≺ 0

is equivalent to
T T
[
Ψ + P TΩQ+QTΩTP

]
T ≺ 0

Define PT =
[

0 0 P1 P2

]
and QT =

[
0 Q1 0 Q2

]
then we have

Ψ + P TΩQ+QTΩTP =


Ψ11 Ψ12 Ψ13 Ψ14

? Ψ22 Ψ23 + ΥT
11 Ψ24 + ΥT

21

? ? Ψ33 Ψ34 + Υ12

? ? ? Ψ44 + Υ22 + ΥT
22


where

T ΩT =


Ψ11 Ψ12 Ψ13 Ψ14

? Ψ22 Ψ23 Ψ24

? ? Ψ33 Ψ34

? ? ? Ψ44


and [

Υ11 Υ12

Υ21 Υ22

]
:=
[
P T1
P T2

]
Ω
[
Q1 Q2

]
Using the Schur complement, we get the two underlying LMIs

Λ :=

 Ψ11 Ψ12 Ψ13

? Ψ22 Ψ23 + ΥT
11

? ? Ψ33

 � 0

Ψ44 + Υ22 + ΥT
22 −

 Ψ14

Ψ24 + ΥT
21

Ψ34 + Υ12

T Λ−1

 Ψ14

Ψ24 + ΥT
21

Ψ34 + Υ12

 ≺ 0

Note that given Υ11, Υ12 and Υ21 such that Λ ≺ 0, it is always possible to find Υ22 such that
the second LMI is satisfied. �

The assumption that Ω is unconstrained plays a central role in the proof and in the
equivalence between the two statements. This means that when dealing with constrained
controllers having a given structure, equivalence is lost and statement 2 may admit a solution
while statement 1 does not (but this is not always the case). For instance, in some papers,
the authors remove uncertain or symmetric terms invoking the projection lemma. This is
uncorrect since, for the first case, the projection lemma provides an existence condition of
the removed matrix and it is not sought to find an uncertainty for which the condition is
satisfied. . . the feasibility of the LMI must be satisfied for all uncertain terms belonging in a
known defined set; in the second case, the matrix is symmetric and hence constrained which
does not fall into the projection lemma conditions of application.

D.19 Completion Lemma

This theorem shows that it is possible to construct a matrix and its inverse from only block
of each only. It has consequences in the construction of Lyapunov matrices in the dynamic
output feedback synthesis problem [Packard et al., 1991].
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Theorem D.36 Let X ∈ Sn++ and Y ∈ Sn++. There exist X2 ∈ Rn×r, X3 ∈ Rr×r, Y2 ∈ Rn×r
and Y3 ∈ Rr×r such that[

X X2

XT
2 X3

]
� 0 and

[
X X2

XT
2 X3

]−1

=
[
Y Y2

Y T
2 Y3

]
if and only if [

X In
In Y

]
� 0 and rank

[
X In
In Y

]
≤ n+ r

Proof : The proof is based on simple linear algebra.

Sufficiency:

From LMI [
X In
? Y

]
we can state that X − Y −1 � 0. Then it is possible to set a matrix X2 ∈ Rn×r such that
X2X

T
2 = X − Y −1 and hence we have X −X2X

T
2 � 0 which is equivalent to the LMI[

X X̃2

? Ir

]
� 0

Performing a congruence with respect to diag(In, X̃T
3 ) with X̃3 nonsingular yields[

X X2

? X3

]
� 0

with X2 = X̃2X̃3 and X3 = X̃T
3 X̃3. This shows that it is possible to complete the matrix with

X2 and X3 such that the completed matrix is positive definite. According to the Banachiewicz
inversion formula (see [Banachiewicz, 1937] or Appendix A) it is then possible to define the
inverse of this matrix. This proves sufficiency.

Necessity:

Using the Banachiewicz inversion formula we can state that

Y = X−1 +X−1X2(X3 −XT
2 X

−1X2)−1XT
2 X

−1

. Moreover, since rank[X3 −XT
2 X

−1X2] = r then we have

X−1X2(X3 −XT
2 X

−1X2)−1XT
2 X

−1 ∈ Sn+

and this implies Y � X−1 and rank[Y −X−1] ≤ r. Finally, we can conclude that[
X In
? Y

]
� 0

and rank[X] + rank[Y − X−1] ≤ n + r. According to the Guttman rank additivity formula
[Guttman, 1946] the rank condition is equivalent to

rank
[
X In
? Y

]
≤ n+ r



D. TECHNICAL RESULTS IN ROBUST ANALYSIS, CONTROL AND LMIS 301

Necessity is proved. �

Due to the rank condition, the problem is not convex. This problem occurs when fixed-
order controllers of order r < n are sought and is responsible of the difficulty of synthesizing
such controllers. However, it turns out that when full-order controllers are considered, the
problem becomes convex. Indeed, when r = n, we have the following corollary which does
not contain any rank condition anymore:

Corollary D.37 Let X ∈ Sn++ and Y ∈ Sn++. There exist X2, X3, Y2, Y3 ∈ Rn×r such that[
X X2

XT
2 X3

]
� 0 and

[
X X2

XT
2 X3

]−1

=
[
Y Y2

Y T
2 Y3

]
if and only if [

X In
In Y

]
� 0

As a final remark on the completion lemma for r = n, it is important to say that for any given
X,Y � 0, the set of admissible values for X2, X3, Y2 and Y3 is not reduced to a singleton but
contains an infinite number of solution. To see this, let us consider the matrix equation[

X X2

? X3

] [
Y Y2

? Y3

]
= I2n

or equivalently

a) XY +X2Y2 = In b) XY2 +X2Y3 = 0
c) XT

2 Y +X3Y
T

2 = 0 d) XT
2 Y2 +X3Y3 = In

Assume that the matrices X,Y are known and that X2 is invertible, then

a) ⇒ Y T
2 = X−1

2 (In −XY )
Y2 = (In − Y X)X−T2

Since rank[Y −X−1] = n then In −XY is nonsingular implying that Y2 is invertible.

b) ⇒ Y3 = −X−1
2 XY2

= −X−1
2 X(In − Y X)X−T2

c) ⇒ X3 = −XT
2 Y Y

−T
2

= −XT
2 Y (In − Y X)−1X2

Then substituting the explicit values of Y2, Y3 and X3 into XT
2 Y2 +X3Y3 should be equal to

In. If it does not, this means that X2 should be chosen as nonsingular. If it does, this would
mean that any nonsingular X2 can be chosen to complete the matrices.

XT
2 Y2 +X3Y3 = XT

2 (In − Y X)X−T2 +XT
2 Y (In − Y X)−1X2X

−1
2 X(In − Y X)X−T2

= XT
2

[
In + Y (In − Y X)−1X

]
[In − Y X]X−T2

Using the Duncan inversion formulae (Appendix A or [Duncan, 1917]), it is easy to show that

(In −XY )−1 = In + Y (In − Y X)−1X
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and hence
XT

2 Y2 +X3Y3 = In

This shows that by choosing any nonsingular matrix X2, it is possible to complete the matrices
adequately. The same reasoning holds when Y2 is chosen first instead of X2. Hence, the
completed matrices are given by[

X X2

? X3

]
=

[
X X2

? −XT
2 Y (In − Y X)−1X2

]
[
Y Y2

? Y3

]
=

[
Y (In − Y X)X−T2

? −X−1
2 X(In − Y X)X−T2

]
From a computational point of view, it is important to compute matrices X and Y whose
product is far from identity in order to have the eigenvalues of the matrix In −XY far from
0. Hence, it is interesting to replace the LMI[

X In
? Y

]
� 0 by

[
X αIn
? Y

]
� 0

for some positive scalar α. By maximizing α, the minimal eigenvalue of XY is maximized and
hence pushes it away from 1. This allows to avoid bad conditioning when inverting I − Y X.

D.20 Application of the Projection Lemma

This appendix shows an application of the Projection Lemma in the context of the synthesis
of a parameter dependent dynamic output feedback. The synthesis is performed using the
scaled-small gain theorem.

Let us consider the following LPV system in ’LFT’ form

ẋ = Ax(t) +B0w(t) +B1u(t)
z(t) = C0x(t) +D00w(t) +D01u(t)
y(t) = C1x(t) +D10w(t)

where x, u, w, z and y are respectively the system state, the control input, the parameters
input, the parameters output and the measured output. We seek a controller of the form: ẋc(t)

zc(t)
u(t)

 = Ω

 xc(t)
wc(t)
y(t)


where xc, wc and zc are respectively the controller state, the parameter input and the param-
eter output. The parameters input and output are defined by[

w(t)
wc(t)

]
= diag(Θ(ρ),Θ(ρ))

[
z(t)
zc(t)

]
From this description, the system is scheduled by the parameters through the signals w and
z while the controller is scheduled through the signals wc and zc. We introduce the scaling L
is defined such that

Ldiag(Θ(ρ),Θ(ρ)) = diag(Θ(ρ),Θ(ρ))L
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It is possible to rewrite the system as

ẋ
ẋc
z
zc
xc
wc
y


=



A 0 B0 0 0 0 B1

0 0 0 0 I 0 0
C0 0 D00 0 0 0 D01

0 0 0 0 0 I 0
0 I 0 0 0 0 0
0 0 0 I 0 0 0
C1 0 D10 0 0 0 0





x
xc
w
wc
ẋc
zc
u


The closed-loop system is given by[

˙̄x(t)
z̄(t)

]
=
[

Ā+ B̄1ΩC̄1 B̄0 + B̄1ΩD̄10

C̄0 + D̄01ΩC̄1 D̄00 + D̄01ΩD̄10

]
where

Ā =
[
A 0
0 0

]
B̄0 =

[
B0 0
0 0

]
B̄1 =

[
0 0 B1

I 0 0

]
C̄0 =

[
C0 0
0 0

]
D̄00 =

[
D00 0

0 0

]
D̄01 =

[
0 0 D01

0 I 0

]
C̄1 =

 0 I
0 0
C1 0

 D̄10 =

 0 0
0 I
D10 0


The stability of the closed-loop system is ensured, in virtue of the scaled-small gain theorem
if the following nonlinear matrix inequality is satisfied (Ā+ B̄1ΩC̄1)TP + P (Ā+ B̄1ΩC̄1) P (B̄0 + B̄1ΩD̄10) (C̄0 + D̄01ΩC̄1)T

? −L (D̄00 + D̄01ΩD̄10)T

? ? −L−1

 ≺ 0

which can be rewritten into ĀTP + PĀ PB̄0 C̄T0
? −L D̄T

00

? ? −L−1

+

 PB̄1

0
D̄01

Ω
[
C̄1 D̄00 0

]
+ (?)T ≺ 0

Let

P =
[
P11 P12

? P22

]
X = P−1 =

[
X11 X12

? X22

]
L =

[
L11 L12

? L22

]
J = L−1 =

[
J11 J12

? J22

]
A basis of the null space of

[
C̄1 D̄10 0

]
is given by

Ker

 0 I 0 0 0 0
0 0 0 I 0 0
C1 0 D10 0 0 0

 =



N1 0 0
0 0 0
N2 0 0
0 0 0
0 I 0
0 0 I


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with C1N1 +D10N2 = 0 and a basis of the null space of

 PB̄1

0
D̄01

T is given by

Ker


P

[
0
I

] [
0
0

]
P

[
B1

0

]
0 0 0
0 0 0
0 0 D01

0 I 0



T

= diag(X, I, I)



M1 0 0
0 0 0
0 I 0
0 0 I

M2 0 0
0 0 0


where BT

1 M1+DT
01M2 = 0. Hence, in virtue of the projection lemma we get the two underlying

matrix inequalities:

N1 0 0
0 0 0
N2 0 0
0 0 0
0 I 0
0 0 I



T  ĀTP + PĀ PB̄0 C̄T0
? −L D̄T

00

? ? −L−1




N1 0 0
0 0 0
N2 0 0
0 0 0
0 I 0
0 0 I

 ≺ 0



M1 0 0
0 0 0
0 I 0
0 0 I

M2 0 0
0 0 0



T  XĀT + ĀX B̄0 XC̄T0
? −L D̄T

00

? ? −L−1




M1 0 0
0 0 0
0 I 0
0 0 I

M2 0 0
0 0 0

 ≺ 0

Removing lines and columns corresponding to zero lines and columns to null-spaces leads to
N1 0 0
N2 0 0
0 I 0
0 0 I


T 

ATP11 + P11A PB̄0 C̄T0 0
? −L11 DT

00 0
? ? −J11 −J12

? ? ? −J22



N1 0 0
N2 0 0
0 I 0
0 0 I

 ≺ 0


M1 0 0
0 I 0
0 0 I

M2 0 0


T 

X11A
T +X11A B̄0 0 X11C̄

T
0

? −L11 −L12 D̄T
00

? ? −L22 0
? ? ? −J11



M1 0 0
0 I 0
0 0 I

M2 0 0

 ≺ 0

Reorganize columns and rows yields
N1 0 0
N2 0 0
0 I 0
0 0 I


T 

ATP11 + P11A PB̄0 C̄T0 0
? −L11 DT

00 0
? ? −J11 −J12

? ? ? −J22



N1 0 0
N2 0 0
0 I 0
0 0 I

 ≺ 0


M1 0 0
M2 0 0
0 I 0
0 0 I


T 

X11A
T +X11A X11C̄

T
0 B̄0 0

? −J11 D00 0
? ? −L11 −L12

? ? ? −L22



M1 0 0
M2 0 0
0 I 0
0 0 I

 ≺ 0
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Finally applying Schur’s complement (see Appendix D.4), we get[
N1

N2

]T ([
ATP11 + P11A PB̄0

? −L11

]
+
[
C̄T0 0
DT

00 0

] [
L11 L12

? L22

]
(?)T

)[
N1

N2

]
≺ 0[

M1

M2

]T ([
X11A

T +X11A X11C̄
T
0

? −J11

]
+
[
B̄0 0
D00 0

] [
J11 J12

? J22

]
(?)T

)[
M1

M2

]
≺ 0

and equivalently[
N1

N2

]T ([
ATP11 + P11A PB̄0

? −L11

]
+
[
C̄T0
DT

00

]
L11

[
C̄T0
DT

00

]T)[
N1

N2

]
≺ 0[

M1

M2

]T ([
X11A

T +X11A X11C̄
T
0

? −J11

]
+
[
B̄0

D00

]
J11

[
B̄0

D00

]T)[
M1

M2

]
≺ 0

The above matrix inequalities are LMIs. Indeed, by considering only one block of each
matrix and their inverse, the condition is LMI. Moreover, the whole matrices P,X,L, J can
be constructed from these blocks using singular value decomposition (Appendix A.6) and
completion lemma (Appendix D.19).

To illustrate this, we will construct P . Note first that it is possible to construct P12 and
X12 from P11 and X11 using the singular value decomposition. Indeed, we have

P11X11 + P12X
T
12 = I

and perform a singular value decomposition on I−P11X11 = UTΣV , by identification we can
choose

P12 = UTΣ1/2 and X12 = V TΣ1/2

Finally, P is the solution of the algebraic equation

P

[
X11 I

XT
12 0

]
=
[
I P11

0 P T12

]
In an identical way, the other matrices can be computed.

D.21 Parseval’s Theorem

The Parseval’s theorem allows to bridge the energy of a signal in the time-domain to an
expression into the frequency domain. It has been first proven by Marc-Antoine Parseval
des Chênes in his thesis [Parseval des Chênes, 1806] pertaining on the resolution of linear
second order partial differential equations with constant coefficients. This equality is heavily
used in IQC analysis [Rantzer and Megretski, 1997] where it is used to connect time-domain
properties and frequency domain properties of signals.

Theorem D.38 Let x(t) be a L2 signal and define its Fourier transform as X(ω) where
ω = 2πf and f is the frequency then the following equality holds∫ +∞

−∞
||x(t)||22dt =

1
2π

∫ +∞

−∞
||X(ω)||22dω
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Proof :∫ +∞

−∞
||x(t)||22dt =

∫ +∞

−∞
x(t)∗x(t)dt

=
∫ +∞

−∞

[(
1

2π

∫ +∞

−∞
X(ω′)∗e−jω

′tdω′
)(

1
2π

∫ +∞

−∞
X(ω)ejωtdω

)]
dt

=
1

2π

∫ +∞

−∞

[
X(ω′)

1
2π

∫ +∞

−∞

(
X(ω)

(∫ +∞

−∞
ej(ω−ω

′)tdt

))
dω

]
dω′

Note that
∫ +∞

−∞
ej(ω−ω

′)tdt = 2πδ(ω − ω′) by the definition of the Dirac pulse δ and the Fourier

transform. This leads to∫ +∞

−∞
||x(t)||22dt =

1
2π

∫ +∞

−∞

[
X(ω′)

1
2π

∫ +∞

−∞

(
X(ω) · 2πδ(ω − ω′)

)
dω

]
dω′

=
1

2π

∫ +∞

−∞

[
X(ω′)

∫ +∞

−∞

(
X(ω)δ(ω − ω′)

)
dω

]
dω′

=
1

2π

∫ +∞

−∞
X(ω)∗X(ω)dω

=
1

2π

∫ +∞

−∞
||X(ω)||22dω

�

We have the following corollary where a symmetric matrix M is inserted in the energy ex-
pression:

Theorem D.39 Let x(t) be a L2 signal and define its Fourier transform as X(ω) where
ω = 2πf and f is the frequency then the following equality holds∫ +∞

−∞
x(t)∗Mx(t)dt =

1
2π

∫ +∞

−∞
X(ω)∗MX(ω)dω

Proof : The proof follows the same lines as for the standard version of the Parseval’s theorem.
�

It is possible to consider a more complete form for the Parseval’s theorem which consider
a frequency weighting through the use of the frequency dependent weighting matrix M̂(jω):

Theorem D.40 Let x(t) be a L2 signal and define its Fourier transform as X(ω) where
ω = 2πf and f is the frequency then the following equality holds∫ +∞

−∞
σ(x(t), xf (t))∗dt =

1
2π

∫ +∞

−∞
X(ω)∗M̂(jω)X(ω)dω

where σ(x(t), xf (t)) is a quadratic form and ẋf (t) = Afxf (t) +Bfx(t).

For example, if σ(x(t), xf (t)) =
[
x(t)
xf (t)

]T
M

[
x(t)
xf (t)

]
then M̂(jω) is given by

M̂(jω) =
[
I B∗f (jωI −Af )−∗

]
M

[
I

(jωI −Af )−1Bf

]
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E Technical Results in Time-Delay Systems

In this Appendix, we will give the reader further results used in the time-delay stability
analysis framework. We will consider, in the following, the time-delay system

ẋ(t) = Ax(t) +Ah(x(t− h(t))) + Ew(t)
z(t) = Cx(t) + Chx(t− h(t)) + Fw(t)

(E.47)

E.1 Jensen’s Inequality

This inequality has been first proven in [Jensen, 1806] and has been inspired from the inequal-
ity of arithmetic and geometric means introduced by Cauchy in [Cauchy, 1821]. The Jensen’s
result has found many applications in statistical physics, information theory through the
Gibbs’ inequality, in statistics through the well-known Rao-Blackwell Theorem [Blackwell,
1947; Durrett, 2005; Øksendal, 2003; Rao, 1945, 1973], in automatic control and stability
analysis of dynamical systems [Gouaisbaut and Peaucelle, 2006b; Gu et al., 2003] and almost
surely in many other fields.

Definition E.1 Let φ be a convex function and f(x) is integrable over [a, b], a < b. Then
the following inequality holds

φ

(∫ b

a
f(x)dx

)
≤ (b− a)

∫ b

a
φ(f(x))dx

The Jensen’s inequality is often used in the H∞ norm analytical computation of integral
operators in time-delay systems framework. It is also used in approaches based on Lyapunov-
Krasovskii functionals as an efficient bounding technique. An example of application is given
below: (∫ t

t−h
ẋ(θ)dθ

)T
P

(∫ t

t−h
ẋ(θ)dθ

)
≤ h

∫ t

t−h
ẋ(θ)TPẋ(θ)dθ

with P = P T � 0. The convex function is φ(z) = zTPz and f(t) = ẋ(t).

E.2 Bounding of cross-terms

The use of model-transformations for stability analysis and control synthesis of time-delay
systems may lead to annoying terms referred to as cross-terms, generally involving products
between signals and integrals. A common cross-term is

−2x(t)TATPAh

∫ t

t−h
ẋ(s)ds

and appears, for instance, when the Newton-Leibniz model-transformation is used with a
quadratic Lyapunov-Razumikhin function of the form V (x(t)) = x(t)TPx(t).

Proposition E.2 For any Z = ZT � 0 we have

±2x(t)TATPAh

∫ t

t−h
ẋ(s)ds ≤ x(t)TATZAx(t) +

(∫ t

t−h
ẋ(s)ds

)T
AThPZ

−1PAh

(∫ t

t−h
ẋ(s)ds

)
≤ x(t)TATZAx(t) + h

∫ t

t−h
ẋ(s)TAThPZ

−1PAhẋ(s)ds

≤ hx(t)TATZAx(t) +
∫ t

t−h
ẋ(s)TAThPZ

−1PAhẋ(s)ds
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Proof : The idea is to use completion by the squares, the first line is obtained by writing Z−1/2Ax(t)

±Z−1/2Ah

∫ t

t−h
ẋ(s)ds

T  Z−1/2Ax(t)

±Z−1/2Ah

∫ t

t−h
ẋ(s)ds

 ≥ 0

for some Z = ZT � 0. Expand the latter expression leads to first inequality. Then apply
Jensen’s inequality onto the quadratic integral term leads to second inequality. Finally, the
last inequality is obtained by completion of the squares too but in another fashion:

∫ t

t−h

[
Z−1/2Ax(t)

±Z−1/2Ahẋ(s)ds

]T [
Z−1/2Ax(t)
±Z−1/2Ahẋ(s)

]
≥ 0

Expanding the latter quadratic form leads to the last inequality. �

The latter bounding technique is relatively inaccurate since the cross terms may admits
negative values while the right-hand side term is always positive. This drove Park to introduce
a new bound [Park, 1999; Park et al., 1998] and is generally referred to as Park’s bound. The
idea is to use a more complete completion by the squares and is given below in the original
Park’s terminology:

Lemma E.3 Assume that a(α) ∈ Rnx and b(α) ∈ Rny are given for α ∈ Ω. Then, for any
positive definite matrix X ∈ Rnx×nx and any matrix M ∈ Rny×ny , the following holds

−2
∫

Ω
b(α)Ta(α)dα ≤

∫
Ω

[
a(α)
b(α)

]T [
X XM

MTX (MTX + I)X−1(XM + I)

] [
a(α)
b(α)

]
This model transformation has led to a great improvement of results at this time (see com-
parison with contemporary results in Park [1999]; Park et al. [1998]). The obtained result is
presented in Section 3.2.1.5. Inspired from the latter bound, another one has been employed
in Moon et al. [2001] and is sometimes referred as Moon’s inequality.

Lemma E.4 Assume that a(·) ∈ Rna, b(·) ∈ Rnb and N (·) ∈ Rna×na are defined on the
interval Ω. Then, for any matrices X ∈ Rna×na, Y ∈ Rna×nb and Z ∈ Rnb×nb, the following
holds

−2
∫

Ω
a(α)TN b(α)dα ≤

∫
Ω

[
a(α)
b(α)

]T [
X Y −N
? Z

] [
a(α)
b(α)

]
where [

X Y
? Z

]
≥ 0

Proof : See Moon et al. [2001]. �

Although this result is less accurate than the Park’s bound, its more simple form allows
for easy design techniques than using Park’s inequality.
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E.3 Padé Approximants

This appendix introduces the Padé approximation of a continuous function. This approxima-
tion is of great interest in the framework of time-delay systems [Zhang et al., 1999]. System
(E.47) with constant time-delay h can be rewritten as an interconnection of two subsystems:

ẋ(t) = Ax(t) +Ahw0(t)
z0(t) = x(t)
z(t) = Cx(t) + Chw0(t)
w0(t) = z0(t− h)

which can be written in the frequency domain as

H1(s) = C(sI −A)−1B

H2(s) = e−sh

using the interconnection of Figure 7.2.
In order to analyze stability of the interconnection it may be interesting to approximate

the operator e−sh by a proper (stable) transfer function. Power series cannot be used since the
transfer function would be not proper. The Padé approximants play here an important role
by approximating a function by a rational function with arbitrary degree for the denominator
and numerator.

Let us consider a function f(x) which is sought to be approximated by a rational function
Rm,n(x) defined as

Rm,n(x) :=
Pm(x)
Qn(x)

=
∑m

i=0 aix
i∑n

i=0 bix
i

where polynomials Pm(x) and Qn(x) are of degree m and n respectively. These polynomials
can be found using a relation linking the truncated power series of f(x) and polynomials
Pm(x) and Qn(x). The truncated power series Zm(x) of f(x) of degree m is given by

Zm(x) :=
m∑
i=0

cix
i

In this case we look for ai and bi such that

m∑
i=0

cix
i =

Pm(x)
Qn(x)

or equivalently

Qn(x)
m∑
i=0

cix
i = Pm(x)

This results into an homogenous system of n+m+ 1 equations with n+m+ 2 unknowns and
so admits infinitely many solutions. However, it can be shown that the generated rational
functions Rm,n(x) are all the same (the obtained polynomials are not prime at a constant
factor). Table 7.2 summarizes few of Padé approximants for the exponential function ez with
complex argument z:
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HH
HHHHm

n
1 2 3

0
1

1− z
1

1− z +
1
2
z2

1

1− z +
1
2
z2 − 1

6
z3

1
1 +

1
2
z

1− 1
2
z2

1 +
1
3
z

1− 2
3
z +

1
6
z2

1 +
1
4
z

1− 3
4
z +

1
4
z2 − 1

24
z3

2
1 +

2
3
z +

1
6
z3

1− 1
3
z

1 +
1
2
z +

1
12
z2

1− 1
2
z +

1
12
z2

1 +
2
5
z +

1
20
z2

1− 3
5
z +

3
20
z2 − 1

60
z3

3
1 +

3
4
z +

1
4
z2 +

1
24
z3

1− 1
4
z

1 +
3
5
z +

3
20
z2 +

1
60
z3

1− 2
5
z +

1
20
z2

1 +
1
2
z +

1
10
z2 +

1
120

z3

1− 1
2
z +

1
10
z2 − 1

120
z3

Table 7.2: First Padé’s approximants of the function es

The column n = 0 has been omitted since it coincides with the truncated power series.
A particularity of Padé approximants of the exponential is the regularity of the numerator

and the denominator when m = n. Indeed, denote Nm(z) the numerator of Rm,m(z) and then
we have

Rm(z) := Rm,m(z) =
Nm(z)
Nm(−z)

It is proved in [Zhang et al., 1999] that the proper transfer function is asymptotically stable
for all m ≥ 0, that is the polynomial Nm(−z) has all its roots in the complex left-half plane.

E.4 Maximum Modulus Principle

The maximum modulus principle is an interesting result very useful in complex analysis which
is necessary to study the bounded of some function norms. See for instance [Levinson and
Redheffer, 1970].

Definition E.5 A complex function is said to be holomorphic at z = z0 if it is complex
differentiable at z = z0, i.e. if the limit

lim
z→z0

f(z)− f(z0)
z − z0

exists.

A widely used synonym for ’holomorphic’ is analytical which is very used by physicists,
engineers. . . Mathematicians prefer the term ’holomorphic function’ or ’holomorphic map’.
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Definition E.6 A complex function is holomorphic on some set U if it is holomorphic at
every point z0 ∈ U .

Theorem E.7 Let f be a holomorphic function on come connected open subset D ⊂ C and
taking complex values. If z0 is a point such that

|f(z0)| ≥ |f(z)| (E.48)

for all z in any neighborhood of z0, then the function f is constant on D.

This can viewed otherwise, if f is an holomorphic function f over a connected open subset
D, then its modulus cannot |f | exhibit a true local maximum on D. Hence the maximum
modulus is attained on the boundary of ∂D. This has strong consequences in system theory,
as illustrated in the following example:

Example E.8 This example shows how the maximum modulus principle can be used in order
to prove the stability of a system. Let us consider for simplicity a SISO system H(s) =
N(s)/D(s) where N(s) and D(s) are arbitrary. The system is proper if the degree of N(s)
is lower than the degree of D(s) and it is asymptotically stable if all the zeros of D(s) have
negative real part (H(s) has all its poles located in C−). Hence this means that the modulus
of H(s) denoted by |H(s)| is bounded for all C+∪C0. By the maximum modulus principle the
maximum cannot be reached in the interior of C+ hence it suffices to consider the boundary
∂C+ only to check the boundedness of |H(s)| over C+ only. Noting that ∂C+ = C0 ∪ {+∞}
(the boundary of C+ is constituted of the imaginary axis C0 and a point at infinity) then this
means that if |H(s)| is bounded over ∂C+ we have

• |H(jω)| < +∞ for all ω ∈ R and hence H(s) has no poles on the imaginary axis.

• |H(+∞)| < +∞ then the transfer function H(s) is proper.

This implies that the stability of a system can be checked only by verifying the boundedness
of the transfer function over the boundary of C+. This can be easily generalized to MIMO
systems by considering the modulus of singular values. This is the definition of the H∞-norm
and this justifies that the following equality for a strictly proper MIMO transfer function:

sup
s∈C+

σ̄(H(s)) = sup
ω∈R

σ̄(H(jω))

For more information about the maximum modulus principle please refer for instance to
[Krantz, 2001; Levinson and Redheffer, 1970; Solomentsev, 2001; Titchmarsh, 1939].

E.5 Argument principle

The winding number of a closed-curve C in the plane around a given point z0 is number
representing the total number of times that curve travels counterclockwise around the point
z0. The winding number depends on the orientation of the curve, and is negative if the curve
travels around the point clockwise. This notion has given rise to the celebrated Nyquist
criterion and is also a first step towards the elaboration of the Rouché’s theorem presented
in Appendix E.6.
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Figure 7.3: This curve has winding number two around the point p

Theorem E.9 (Nyquist Criterion) Let us consider an open-loop transfer function Hol(s)
with N unstable poles. The corresponding closed-loop system is asymptotically stable if and
only if the open-loop transfer function Hol(s) travels N times around the critical point −1
counterclockwise when s sweeps the imaginary axis.

More generally we have the following theorem which is also called the argument principle:

Theorem E.10 Let f(z) be a function and C be a closed contour on C such that no poles
and zeros are on C but C may contain any poles and zeros (f(z) is meromorphic inside C),
then the following formula holds: ∮

C

f ′(z)
f(z)

dz = 2πj(N − P ) (E.49)

denote respectively the number of zeros and poles of f(z) inside the contour C, with each zero
and pole counted as many times as its multiplicity and order respectively.

More generally, suppose that C is a curve, oriented counter-clockwise, which is contractible
to a point inside an open set D in the complex plane. For each point z ∈ D, let n(C, z) be
the winding number of C around the point z. Then∮

C

f ′(z)
f(z)

dz = 2πj

(∑
a

n(C, a)−
∑
b

c(C, b)

)
(E.50)

where the first summation is over all zeros a of f counted with their multiplicities, and the
second summation is over the poles b of f . This makes a connection between the maximal
principle and the winding number of a function of a complex variable. For more information
about this please refer to [Levinson and Redheffer, 1970].

E.6 Proof of Rouché’s theorem

This theorem is important in complex analysis and has important consequence in the stability
analysis of time-delay systems. It can be used in order to get some information on the number
of zeros of a function on a compact set without computing them.

The theorem is recalled below for readability:
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Figure 7.4: Illustration of the meaning of the Rouché’s theorem

Theorem E.11 Given two functions f and g analytic (holomorphic) inside and on a contour
C. If |g(z)| < |f(z)| for all z on C, then f and f + g have the same number of roots inside
C.

Let us define the function h such that h = f + g. It is holomorphic since it is the sum of
two holomorphic functions. From the argument principle (see appendix E.5), we have

Nh − Ph = Ih(C, 0) =
1

2πj

∮
C

h′(z)
h(z)

dz

where Nh is the number of zeroes of h inside C, Ph is the number of poles, and Ih(C, 0) is the
winding number of h(C) about 0. Since h is analytic inside and on C, it follows that Ph = 0
and then

Nh = Ih(C, 0) =
1

2πj

∮
C

h′(z)
h(z)

dz

One has that
h′(z)
h(z)

= D[log(h(z))], where D denotes the complex derivative. Keeping in mind
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that h = f + g, we find

Nh =
1

2πj

∮
C

h′(z)
h(z)

=
1

2πj

∮
C
D[log(h(z))]dz

=
1

2πj

∮
C
D[log(f(z) + g(z))]

=
1

2πj

∮
C
D
[
log
(
f(z)

(
1 +

g(z)
f(z)

))]
dz

=
1

2πj

∮
C

f ′(z)
f(z)

+
1

2πj

∮
C

D(1 + g(z)/f(z))
1 + g(z)/f(z)

dz

= If (C, 0) + I1+g(z)/f(z)(C, 0)

The winding number of 1 + g/f over C is zero. This is because we supposed that |g(z)| <
|f(z)|, so g/f is constrained to a circle of radius 1, and adding 1 to g/f shifts it away from
zero, and thus 1 + g/f is constrained to a circle of radius 1 about 1, and C under 1 + g/f
cannot wind around 0. Finally we get

Nh = If (C, 0)

which equals to Nf or the number of zeros of f . This concludes the proof.�

Example E.12 An example of application is the determination of the number of roots of a
3th order polynomial, say z3 + z2− 1, contained in the disk |z| < 2. The idea is to remove the
higher order term to use it as a bound on the rest of the polynomial. Indeed, define f(z) = z3

and g(z) = z2 − 1, the contour is defined by |z| = 2. Hence for all z on this contour we have
|g(z)| ≤ 5 and |f(z)| = 8 showing that we have |g(z)| < |f(z)| for any z such that |z| = 2.
This shows that z3 and z3 + z2 − 1 have the same number of zeros in the disc |z| < 2, which
is 3.

For more information about the Rouché’s theorem, please refer to [Levinson and Redheffer,
1970].
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J.C. Geromel, A.P.C. Gonçalves, and A.R. Fioravanti. Dynamic output feedback control of
discrete-time markov jump linear systems through linear matrix inequalities. SIAM Journal
on Control and Optimization, 48(2):573–593, 2009.

L. El Ghaoui and M. Ait Rami. Robust state-feedback stabilization of jump linear systems
via LMIs. International Journal of Robust and Nonlinear Control, 6(9-10):1015–1022, 1997.

L. El Ghaoui, F. Oustry, and M. Ait Rami. A Cone Complementary linearization algorithm
for static output-feedback and related problems. IEEE Transactions on Automatic Control,
42:1171–1176, 1997.

W. Gilbert, D. Henrion, and J. Bernussou. Polynomial LPV synthesis applied to turbofan
engines. In IFAC symposium on Automatic Control in Aerospace, Toulouse, France, 2007.

I. Gohberg. Schur Methods in Operator Theory and Signal Processing. Operator Theory:
Advances and Applications. Birkhauser Verlag, Basel, 1986.

D. Goldfarb and G. Iyengar. Robust portfolio selection problems. Mathematics of OR, 28:
1–38, 2003.

K. Gopalsamy and B.G. Zhang. On a neutral delay-logistic equation. Dynamics and stability
of systems, 2:183–195, 1988.

F. Gouaisbaut and D. Peaucelle. Stability of time-delay systems with non-small delay. In
Conference on Decision and Control, San Diego, California, 2006a.

F. Gouaisbaut and D. Peaucelle. Delay dependent robust stability of time delay-systems. In
5th IFAC Symposium on Robust Control Design, Toulouse, France, 2006b.

F. Gouaisbaut and D. Peaucelle. Robust stability of time-delay systems with interval delays.
In 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 2007, 2007.
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