Robust Control and Observation of LPV Time-Delay

Systems

=
v
i C. Briat
Ty PhD. defense, November 27th 2008
Grenob »C),N‘, | GIPSA-lab, Control Systems Department, Grenoble, France
/7
Committee:

Rapporteurs:  Sophie Tarbouriech (Directeur de Recherche CNRS, LAAS, Toulouse)
Jean-Pierre Richard (Professor, Ecole Centrale Lille)
Silviu-lulian Niculescu (Directeur de Recherche CNRS, LSS, Gif-sur-Yvette)
Examinateurs:  Erik I. Verriest (Professor, Georgia Institute of Technology, USA)
Andrea Garulli (Professor, Universita’ degli Studi di Siena)
Co-directeurs:  Olivier Sename (Professor INPG, GIPSA-lab)
Jean-Francois Lafay (Professor, Ecole Centrale Nantes)

C. Briat - PhD. defense [GIPSA-lab / SLR team] 1/48



Al
GrcnobLU)INIP

/

Administrative Context

§(Bsa-np

3 years PhD thesis

» Advisors :
> Olivier Sename (GIPSA-Lab)
> Jean-Frangois Lafay (IRCCyN)

» 6 months journey in GeorgiaTech (Rhone-Alpes Region scholarship)
» Work with Erik Verriest

> "Modeling and Control of Disease Epidemics by Vaccination"

C. Briat - PhD. defense [GIPSA-lab / SLR team] 2/48



GrcnobLU)INlP‘
yl

Scientific Context

§(Bsa-np

Nonlinear System

C. Briat - PhD. defense [GIPSA-lab / SLR team] 3/48



Grenoble INlP ‘
= )/I Scientific Context

Parameters

Nonlinear System LPV System
Approximation

C. Briat - PhD. defense [GIPSA-lab / SLR team] 3/48



Grenoble INlP ‘
= )/I Scientific Context

Parameters

Nonlinear System LPV System
Approximation

C. Briat - PhD. defense [GIPSA-lab / SLR team] 3/48



1
GrenobleJINP

/ Scientific Context

e

Parameters

LPV System
Time-Delay System

Delay

Nonlinear System
Large Scale System

Approximation

Approximation

C. Briat - PhD. defense [GIPSA-lab / SLR team] 3/48



1
GrenobleJINP

/ Scientific Context

e

Parameters Parameters

LPV System
Time-Delay System

Delay

Nonlinear System
Large Scale System

Approximation

LPV Time-Delay System

Approximation

C. Briat - PhD. defense [GIPSA-lab / SLR team] 3/48



1
GrenobleJINP

/ Scientific Context

e

Parameters Parameters

LPV System

Time-Delay System

Nonlinear System
Large Scale System

Approximation

LPV Time-Delay System

Approximation

Analysis

Delay

C. Briat - PhD. defense [GIPSA-lab / SLR team] 3/48



1
GrenobleJINP

/ Scientific Context

e

Parameters Parameters

LPV System

Time-Delay System

Nonlinear System
Large Scale System

Approximation

LPV Time-Delay System

Approximation
Stability Analysis
Delay

Relaxations

Synthesis Tools

C. Briat - PhD. defense [GIPSA-lab / SLR team] 3/48



1
GrenobleJINP

/ Scientific Context

e

Parameters Parameters

LPV System

Time-Delay System

Nonlinear System
Large Scale System

Approximation

LPV Time-Delay System

Approximation

Stability Analysis
Delay
Relaxations

Synthesis Tools

Y

‘ Control ‘ ‘ Observation

‘ Filtering ‘

C. Briat - PhD. defense [GIPSA-lab / SLR team] 3/48



1
GrenobleJINP

e

/ Scientific Context

Parameters Parameters

LPV System
Time-Delay System

Delay

Nonlinear System
Large Scale System

Approximation

LPV Time-Delay System

Approximation

Stability Analysis

Relaxations

Thesis

Synthesis Tools

Y

Observation

Filterin

C. Briat - PhD. defense [GIPSA-lab / SLR team]

3/48



vl
Grcnnbtc)lNIP

/

Contributions of the Thesis

§(Bsa-np

Stability Results
» Conference publications [IFAC World Congress '08], [ECC07]

» Journal submissions IEEE TAC, Systems & Control Letters

Design Methods

» Conference publications [IFAC World Congress '08], [ECCO07], [IFAC SSSC'07]
» Conference submissions [ECC’09]

» Journal submissions IEEE TAC, Systems & Control Letters

Modeling and Control of Disease Epidemics

» Conference publication [IFAC World Congress '08]
» Journal Submission [Biomedical Signal Processing and Control]
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4. Conclusion & Future Works
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1. Introduction
> Presentation of LPV systems

> Stability Analysis of LPV systems
> Control of LPV systems
> Presentation of time-delay systems
> Stability Analysis of time-delay systems
> Control of time-delay systems
2.
3.
4.
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» General expression [Packard 1993, Apkarian 1995, 1998]
{ o(t) = Alp()z(t) + E(p(t))w(t)

p(t) € U, compact
pt) € cofUv}
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+ Approximation of nonlinear and LTV systems
+ Offer interesting solutions for control — gain scheduling

+ Semi-active suspensions [Poussot 2008], robotic systems [Kajiwara 1999],
turbo-fan engines [Gilbert 2008], and so on...
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p(t) € U, compact
p) € cofUp}
+ Approximation of nonlinear and LTV systems
+ Offer interesting solutions for control — gain scheduling

+

Semi-active suspensions [Poussot 2008], robotic systems [Kajiwara 1999],
turbo-fan engines [Gilbert 2008], and so on...

Eigenvalues computation of A(p)
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Time vs. Frequency Domain Methods

» Frequency domain analysis ’inapplicable’
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Time vs. Frequency Domain Methods

» Frequency domain analysis ’inapplicable’
» Time Domain analysis — Lyapunov theory for LPV systems

Vy(z) = 2T Pa(t) Vi(z) = 2TP(p)x(t)

Quadratic vs. Robust Stability

» Quadratic stability
> Unbounded parameter variation rates p € (—oo, +00)
> Necessary Condition : Re[A(A(p))] < 0,p € U,

» Robust stability

> Bounded parameter variation rates
> Necessary and sufficient condition : Re[A(A(p))] < 0, p € U,
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Types of Controllers
| State-Feedback | Dynamic Output Feedback

Robust Controller u(t) = Ka(t) [ ’ZC((;)) } _ K{ a;c(gt)) }

Gain-Scheduled Controller | u(t) = K (p)x(t) [ %(%) } - K(p){ v";c((tt)) }
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Types of Controllers
| State-Feedback | Dynamic Output Feedback

Robust Controller u(t) = Ka(t) [ ’ZC((;)) } _ K{ a;c(gt)) }

Gain-Scheduled Controller | u(t) = K (p)x(t) [ %(%) } - K(p){ v";c((tt)) }

Advantages and Drawbacks of LPV Controllers

+ Flexibility

+ Better performance
Computation
Implementation
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General Expression

z(t) = Az(t)+ Apx(t —h(t)) + Fw(t)
h(t) constant/time — varying

h(t) bounded/unbounded

dh(t)

3 bounded/unbounded

+ Approximation of systems with propagation, diffusion or memory phenomena

> Networks, combustion processes, population growth, disease propagation, price
fluctuations. . .
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General Expression

z(t) = Az(t)+ Apx(t —h(t)) + Fw(t)
h(t) constant/time — varying

h(t) bounded/unbounded

dh(t)

3 bounded/unbounded

+ Approximation of systems with propagation, diffusion or memory phenomena

> Networks, combustion processes, population growth, disease propagation, price
fluctuations. . .

— Infinite number of eigenvalues
— Depend on the delay value
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Two notions of stability

» Delay-independent stability — unbounded delay
» Delay-dependent stability — bounded delay

Frequency Domain Methods [Niculescu 2001, Gu 2003]

> LTI systems
» Constant delays

Time-domain Methods [Fridman 2001, Gu 2003, Gouaisbaut 2006]

» LTV, LPV and Nonlinear systems
» Time-varying delays
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Zm» Extension of Lyapunov Theory

> Lyapunov-Krasovskii & Lyapunov-Razumikhin
» Large bestiary of Lyapunov-Krasovskii functionals [Fridman 2001, Han 2002, Gu
2003]
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Zm» Extension of Lyapunov Theory

> Lyapunov-Krasovskii & Lyapunov-Razumikhin
» Large bestiary of Lyapunov-Krasovskii functionals [Fridman 2001, Han 2002, Gu
2003]

Example

» Delay-independent stability [Verriest 1991, Bliman 2000, Gu 2003]
t
Vi = 2(t)T Pa(t) +/ z(0)T Qxz(0)do
t—h
» Delay-dependent stability [Han 2005, Gouaisbaut 2006]

-0 t
Vi=Vi+ / / ()T Ri(y)dnd6
J—h Jt+6

C. Briat - PhD. defense [GIPSA-lab / SLR team] 13/48



Introduction

Al
GrcnobLU)INP

= 7! Control of Time-Delay Systems
% Controllers
\ no memory with memory
State Feedback u(t) = Koxz(t) +  Kpz(t—nh)

Dynamic Output Feedback [ j;c(%) ] = Ko[ g;c(%) ] +  Kpze(t—h)
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% Controllers
\ no memory with memory
State Feedback u(t) = Koxz(t) +  Kpz(t—nh)

Dynamic Output Feedback

M e ]+ mae-n

Advantages & Drawbacks of Memory Controllers

+ Flexibility

+ Better performances

— Needs more memory

Delay supposed to be exactly known

Problem of delay measurement/estimation [Belkoura]

Robust controllers with uncertain delay ?
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@ Delay-robust control of uncertain LPV time-delay systems

u(t) = K(p)z(t) + Kn(p)z(t — d(t))
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» Choice of Lyapunov-Krasovskii functionals
» Derivation of design results
» Delay uncertainties
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» Choice of Lyapunov-Krasovskii functionals

» Derivation of design results
» Delay uncertainties
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[ Delay-robust control of uncertain LPV time-delay systems

u(t) = K(p)z(t) + Kn(p)z(t — d(t))

» Choice of Lyapunov-Krasovskii functionals
» Derivation of design results
» Delay uncertainties

Design of delay-scheduled state-feedback controllers

u(t) = K(d(t))x(t)

» Delay : parameter vs. operator
» Framework
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1.

2. Stability of LPV Time-Delay Systems

> Presentation of LPV time-delay systems
» Choice of Lyapunov-Krasovskii functional
> Reduction of conservatism
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Cutting Process [Zhang 2002]

Y Workpiece

» Nonlinearities

» Delay : time between two successive passes of the blades
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LPV Time-Delay System [Zhang 2002, Wu 2001, Zhang 2005]

(t) = g(p)x(t) + An(p)x(t = h(t)) + E(p)uw(t)
P S
p € cop{U,,} 1)
h(t) € [0, hmaa]
M’ < “w <1
dt -

C. Briat - PhD. defense [GIPSA-lab / SLR team] 18/48



Stability Analysis of LPV Time-Delay Systems
Al
Grenoble]l NIP

7 LPV Time-Delay Systems

LPV Time-Delay System [Zhang 2002, Wu 2001, Zhang 2005]

(t) = g(p)x(t) + An(p)x(t = h(t)) + E(p)uw(t)
P S
p € cop{U,,} 1)
h(t) € [0, hmaa]
M’ < “w <1
dt -

Objectives

» Efficient stability tests

C. Briat - PhD. defense [GIPSA-lab / SLR team] 18/48



Stability Analysis of LPV Time-Delay Systems
Al
Grenoblefl NIP

7 LPV Time-Delay Systems

LPV Time-Delay System [Zhang 2002, Wu 2001, Zhang 2005]

(t) = g(p)x(t) + An(p)x(t = h(t)) + E(p)uw(t)
P S
p € cop{U,,} 1)
h(t) € [0, hmaa]
M’ < “w <1
dt -

Objectives

» Efficient stability tests
» Efficient design tools

C. Briat - PhD. defense [GIPSA-lab / SLR team] 18/48



Stability Analysis of LPV Time-Delay Systems
Al
Grenoblefl NIP

7 LPV Time-Delay Systems

LPV Time-Delay System [Zhang 2002, Wu 2001, Zhang 2005]

(t) = g(p)x(t) + An(p)x(t = h(t)) + E(p)uw(t)
P S
p € cop{U,,} 1)
h(t) € [0, hmaa]
M’ < “w <1
dt -

Objectives

» Efficient stability tests
» Efficient design tools
» Tackle delay uncertainties
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Criteria

v

Simple form (few decision matrices, small size of LMIs)
Avoid model-transformations

v

v

‘Good’ results (estimation of delay margin, system norms. . .)
Stability over an interval of delay values
Parameter dependent

v

v
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Generalization of [Han 2005, Gouaisbaut 2006] to the LPV case

t 0 t
V =z(t)T P(p)xz(t) +(/Hl(t) z(0)T Qz(0)db + hmax ./7h /HG #(s)T Ri(s)dsdf

» Used along with Jensen’s inequality [Han 2005, Gouaisbaut 2006]
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Generalization of [Han 2005, Gouaisbaut 2006] to the LPV case

t 0 t
V =z(t)T P(p)xz(t) +(/Hl(t) z(0)T Qz(0)db + hmax ./7h /HG #(s)T Ri(s)dsdf

» Used along with Jensen’s inequality [Han 2005, Gouaisbaut 2006]

Theorem

The LPV Time-delay system (1) is asymptotically stable if there exists P(p),Q,R > 0
such that the LMI

AT P(p) + P(p)A(p) + @ — R+ "”;Ef) v POAND) 4R hmasA(p)TR

x C1-WQ-R  hmasAn()™R | <0
" A

*

holds for all p € U, andv € U,.
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Example - LTI case

Zm» LTI system with constant delay

. —2 0 -1 -1
z(t) = { 0 —09 } z(t) + { 1 } z(t — h)
Comparison with existing results
Method | hmaz | nb.vars
Zhang et al. 2000 6.15 81
Han 2002 4.4721 9or18
Xu and Lam 2005 | 4.4721 17
This result 4.4721 9
Theoretical 6.17 -
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Method | hmaz | nb.vars
Zhang et al. 2000 6.15 81
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+ Computational complexity
+ Competitive
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Zm» LTI system with constant delay

y'c(t):{ PR }x(t)+{ P }m(tfh)

Comparison with existing results

Example - LTI case

Method | hmaz | nb.vars
Zhang et al. 2000 6.15 81
Han 2002 4.4721 9or18
Xu and Lam 2005 | 4.4721 17
This result 4.4721 9
Theoretical 6.17 -

+ Computational complexity
+ Competitive

— Gap — Conservatism
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@ > Constant matrices Q, R

V) =@ P@sO + [1 a0 Qa0 + e |

Origin of Conservatism

/1’ i(s)T Ri(s)dsdo
t+0

hmaz
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@ > Constant matrices Q, R

V(xe) = :D(t)TP(p)z(t) + /tt—h(t) z(@)TQg:(O)dQ + hmax/o

Origin of Conservatism

/t i(s)T Ri(s)dsdo
t+0

hmax
» Jensen’s inequality

> Bound of an integral term over a finite interval
» For illustration : Conservatism = surface between curves

time
—
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F
@m» > Constant matrices Q, R

V) =@ P@sO + [1 a0 Qa0 + e |

Origin of Conservatism

/1’ i(s)T Ri(s)dsdo
t+0

hmax
» Jensen’s inequality

> Bound of an integral term over a finite interval
» For illustration : Conservatism = surface between curves

time
t-h(t) th(t)/3 t-2h(t)/3 t
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@™ Generalization of the functional [Han 2008]

Reduction of Conservatism

v o= z@®)TP(p)a(t) +/ 93(9 (9)1(0)(10-1—/ /+ &(s)T R(0)&(s)dsdo

hmaz -
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2

@™ Generalization of the functional [Han 2008]

Reduction of Conservatism

v o= z@®)TP(p)a(t) +/ 93(9 (9)1(0)(10-1—/ /+ &(s)T R(0)&(s)dsdo

hmag -
Discretization

Q(-), R(-) : piecewise constant continuous [Gu 2001, Han 2008]

t—ih(t)/N
Vv = z@®)TP(p)z()+ Z/

(i+1)A(t)/N
N-—1

h —ihmaz /N "t T
+ === / / #(s)T R;2(s)dsdo
N ;) J=(i+Dhmax /N Jt+0

z(0)T Q;z(0)do
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2

@™ Generalization of the functional [Han 2008]

Reduction of Conservatism

v o= z@®)TP(p)a(t) +/ 93(9 Q(G)z(@)d@-i—/ /jre &(s)T R(0)&(s)dsdo

hmaaz Jt
Discretization
Q(-), R(-) : piecewise constant continuous [Gu 2001, Han 2008]

v = z@®)TP(p) m(t-l—Z/

(i+1)A(t)/N
hmaz N 1

—ihmaz /N rt T
#(s)" Riyx(s)dsd
N ;) -/7(i+1)h,,m/zv v/t+0

t—ih(t)/N
z(0)T Q;z(0)do

Synergy of fragmentation and discretization
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/ Stability result for N = 2

=
3
@ Theorem

The LPV Time-delay system (1) is asymptotically stable if there exists
P(p),Q1,Q2, R1, Ra > 0 such that the LMI

hmax hmaz
Mii(p,p)  Ri  P(p)An(p) —=ZA(p)" Ry A(p)" Rz

2 2

* U1 R2 0 0
hmaz h"VTLG/I

* * U, 5 Ah(/J)TRl TA}L(/J)TRQ <0

* * * —Rq 0

* * * * —Rs

holds for all p € U, and v € U,, with
. IOP(p
Miso.d) = Q)P+ P(IAG) + Q= Ra+ 7
Ui = —-Q1+Q2—Ri—Re

Uz = —-Q2-R2
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7 Example - LTI case (cont’d)

§(Bsa-np

Comparison with existing method using fragmentation [Peaucelle et al. 2007]

Method hmaz nb. vars nb vars. Peaucelle et al.
Zhang et al. 2000 6.15 81 -
N=1 4.4721 9 9
N=2 5.1775 15 16
N =3 5.9678 21 27
N =4 6.0569 27 42
N=9 6.149 57 177
N =30 6.171 183 1836
Theoretical 6.172 — -

— Zhang et al. 2000 : constant time-delays only
— Approach of Peaucelle et al. based on translation of the state
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/7 Outline

§(Bsa-np

1.
2.

3. Control of LPV Time-Delay Systems

> Principle of delay-robust stabilization
> Stabilization test - Relaxations
> Example

C. Briat - PhD. defense [GIPSA-lab / SLR team] 26/48
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7 Principle of delay-robust stabilization

§(Bsa-np

Nominal stabilization of LPV time-delay systems

» Gain-scheduled memoryless controller :

u(t) = Ko(p)x(t)

» Gain-scheduled exact memory controller :

u(t) = Ko(p)a(t) + Kn(p)a(t — h(t))
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7 Principle of delay-robust stabilization

§(Bsa-np

Nominal stabilization of LPV time-delay systems

» Gain-scheduled memoryless controller :

u(t) = Ko(p)x(t)

» Gain-scheduled exact memory controller :
u(t) = Ko(p)z(t) + Kn(p)z(t — h(t))
Delay-robust stabilization of LPV time-delay systems
» Gain-scheduled approximate memory controller :

u(t) = Ko(p)z(t) + Kn(p)x(t —d(t))  with [h(t) —d(t)| <6

Few studied in the literature
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= 7 Recall of stability test for N =1
>
Theorem
System (1) is asymptotically stable if there exists P(p),Q, R > 0 such that the LMI
oP
A(p)TP(p)+ P(p)A(p) +Q — R+ 8/(3!)) v P(p)An(p)+ R hmaaA(p)TR
* —(1=w)Q—R  hmazAn(p)TR <0
* * — v

holds for all p € U, andv € U,.

Goal

» Derive efficient design results
» Tackle delay uncertainty

C. Briat - PhD. defense [GIPSA-lab / SLR team] 28/48
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= / Stabilization test for N =1

Zm» System and Controller

A(p)z(t) + An(p)z(t — h(t)) + B(p)u(t)
Ko(p)x(t) + Kn(p)(t — h(t))

Theorem

The system is asymptotically stabilizable by a control law with exact memory if there
exists P(p),Q, R >~ 0 and Ko(p), Kn(p) such that the LMI

AqTP+PAL+Q—R+P PApa + R RmacAca” R

* _(1_#)Q_R hmamAhclTR <0
* *

holds for all p € U, andv € U, with A;;= A+ BKq and A= Ap + BKj},.
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= / Stabilization test for N =1

Zm» System and Controller

A(p)z(t) + An(p)z(t — h(t )2

+ Blp)ul(?)
Ko(p)e(t) + Kn(p)a(t — h(t))

)

Theorem
The system is asymptotically stabilizable by a control law with exact memory if there
exists P(p),Q, R >~ 0 and Ko(p), Kn(p) such that the LMI

A TP+ PAL+Q—-R+P PApa + R BmasAc” R

* _(1_#)Q_R hmamAhclTR <0
* *

holds for all p € U, andv € U, with A;;= A+ BKq and A= Ap + BKj},.
Convexity

— Bilinear matrix inequality — non-convex
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= / Stabilization test for N =1

Zm» System and Controller

A(p)z(t) + An(p)z(t — h(t )2

+ Blp)ul(?)
Ko(p)e(t) + Kn(p)a(t — h(t))

)

Theorem
The system is asymptotically stabilizable by a control law with exact memory if there
exists P(p),Q, R >~ 0 and Ko(p), Kn(p) such that the LMI

A TP+ PAL+Q—-R+P PApa + R BmasAc” R

* _(1_#)Q_R hmamAhclTR <0
* *

holds for all p € U, andv € U, with A;;= A+ BKq and A= Ap + BKj},.
Convexity
— Bilinear matrix inequality — non-convex

— Single terms in R and multiple products — Linearization not possible !!
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/

Preliminary Relaxations

§(psa-np

Common Relaxations

» Remove single terms in R
> Avoid Jensen’s inequality
— High increase of conservatism
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Preliminary Relaxations

§(psa-np

Common Relaxations

» Remove single terms in R
> Avoid Jensen’s inequality
— High increase of conservatism
> Set P(p) = e(p)R
— Difficult choice of £(p)
— High increase of conservatism
— Increase of computational complexity
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Preliminary Relaxations

§(psa-np

Common Relaxations

» Remove single terms in R
> Avoid Jensen’s inequality
— High increase of conservatism
> Set P(p) = e(p)R
— Difficult choice of £(p)
— High increase of conservatism
— Increase of computational complexity

Relaxation of [Briat. IFAC World Congress 2008]

» Use of adjoint system and projection lemma
+ Non conservative

— Nonlinear optimization problem (expensive, local convergence)
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/

Preliminary Relaxations

§(psa-np

Common Relaxations

» Remove single terms in R
> Avoid Jensen’s inequality
— High increase of conservatism
> Set P(p) = e(p)R
— Difficult choice of £(p)
— High increase of conservatism
— Increase of computational complexity

Relaxation of [Briat. IFAC World Congress 2008]

» Use of adjoint system and projection lemma
+ Non conservative

— Nonlinear optimization problem (expensive, local convergence)

High increase of conservatism and/or computational complexity

C. Briat - PhD. defense [GIPSA-lab / SLR team] 30/48
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/

Proposed Relaxation

§(Bsa-np

Origin of the Problem

» Substitution of the closed-loop but convexity not preserved
» Relaxation done after substitution
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Proposed Relaxation

§(Bsa-np

Origin of the Problem

» Substitution of the closed-loop but convexity not preserved
» Relaxation done after substitution

Proposed Methodology
» Test modification — ’convexity preserving’ form

> Relaxation done before substitution
> Orientation of the relaxation
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/

Proposed Relaxation

§(Bsa-np

Origin of the Problem

» Substitution of the closed-loop but convexity not preserved
» Relaxation done after substitution

Proposed Methodology

» Test modification — ’convexity preserving’ form
> Relaxation done before substitution

> Orientation of the relaxation
Relaxation features

» Decoupling multiple matrix products
> Introduction of a new variable

C. Briat - PhD. defense [GIPSA-lab / SLR team] 31/48
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)/’ Relaxed stability test for N — 1

§(Bsa-np

Theorem

System (1) is asymptotically stable if there exists P(p),Q, R > 0, X (p) and
Ko(p), Kn(p) such that the LMI

-X(p) =X(P)T  X(PTAP)+Plp)  X()TAulp)  X(PT  hmaR

* —P(p)+Q—-R+P R 0 0

* * —(1—-pwQ—R 0 0 <0
* * * —P(p) —hmaezR

* * * * —R

holds for all p € U, andv € U,.

» Additional variable X(p)
» No multiple products anymore

C. Briat - PhD. defense [GIPSA-lab / SLR team] 32/48
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7 Relaxed stabilization test for N =1

§(Bsa-np

» Stabilization of system (1) by an exact memory control law :

u(t) = Ko(p)z(t) + Kn(p)x(t — h(t)) ()
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7 Relaxed stabilization test for N =1

=
2

Tmm > Stabilization of system (1) by an exact memory control law :

u(t) = Ko(p)z(t) + Kn(p)x(t — h(t)) ()

» After some manipulations. ..

Theorem
System (1) is stabilizable using (2) if there exists P(p),Q, R > 0, X and Yo(p), Yn(p)
such that the LMI
-X - XT A(p)X + B(p)Yo(p) + P(p) An(p)X + B(p)Yn(p) X7 R
* —P(p)+Q— R+ P(p) R 0 0
* * —-(1—-p)Q—-R 0 0 <0
* * * —P(p) —R
* * * * R

holds forall p € U, and v € U, with R = humaz R.
Suitable controller gains are given by Ko(p) = Yo(p)X ~1 and K, (p) = Ya(p)X 1.
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= 7 Example (1)
am » LPV time-delay system [Zhang et al., 2005]

. 0 1+0.1p(t 0.2p(t

) = { —2 73+0.2p,£(1) }WH{ 0.1+g.(1)p(t) }”(t)

0.20(t) 0.1 ~0.2
+[ C0240.1p(t) 03 }z(t_h(t)H —02 |
At = { o }:}c(t)+{ o }u(t)
pt) = sin(t)
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= 7 Example (1)
am » LPV time-delay system [Zhang et al., 2005]

. 0 140.1p(t 0.2p(t

) = { —2 73+0.2p,£(1) }WH{ 0.1+g.(1)p(t) }”(t)

0.20(t) 0.1 0.
+[ C0240.1p(t) 03 }z(t_h(t)H —02 |
At = { o }:}c(t)+{ o }u(t)
pt) = sin(t)
Goal

» Find a controller such that such that the closed-loop system

1. is asymptotically stable for all A () € [0, hmaz] With [A(t)] < p < 1 and
2. satisfies

l12lley < Allwlley

C. Briat - PhD. defense [GIPSA-lab / SLR team] 34/48
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Example (2)

a@m® Case 1: i(t) < 0.5, h(t) € [0,0.5]
» Design of a memoryless state-feedback control law
u(t) = Ko(p)xz(t)

| minimal £ gain
[Zhang et al. 2005] ~* =3.09

[Briat et al. IFAC WC 2008] At =227
N=1 A% =1.90

Ko(p) = | ~1:0935 = 2.9450p + 1.9889p2 17
OWP) =1 _1.1378 — 2.6403p + 1.9260p2

C. Briat - PhD. defense [GIPSA-lab / SLR team] 35/48
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Example (2)

a@m® Case 1: i(t) < 0.5, h(t) € [0,0.5]
» Design of a memoryless state-feedback control law
u(t) = Ko(p)xz(t)

| minimal £ gain

[Zhang et al. 2005] ¥ =3.09
[Briat et al. IFAC WC 2008] ¢ =2.27
N=1 v+ =1.90
—1.0535 — 2.9459p + 1.9889p2 |7
Ko(p) = ’ :

—1.1378 — 2.6403p + 1.9260p2

» Better performances
» Lower controller gains
» Lower numerical complexity
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Control of LPV Time-Delay Systems

Grenoble INlP ‘
)/’ Example (3)

§(Bsa-ap

Case 2 : h(t) < 0.9, h(t) € [0,10]
» Synthesis of both memoryless and exact memory controllers

u(t) = Ko(p)z(t) u(t) = Ko(p)z(t) + Kn(p)x(t — h(t))
| minimal £; gain

Memoryless Controller ~v* =12.8799

Exact Memory Controller y* = 4.1641
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Case 2 : h(t) < 0.9, h(t) € [0,10]
» Synthesis of both memoryless and exact memory controllers

u(t) = Ko(p)a(t) u(t) = Kolp)e(t) + Kn(p)(t — h(t))

| minimal £; gain
Memoryless Controller ~v* =12.8799
Exact Memory Controller y* = 4.1641

+ Delayed term important
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§(psa-np

Case 2 : h(t) < 0.9, h(t) € [0,10]
» Synthesis of both memoryless and exact memory controllers

u(t) = Ko(p)a(t) u(t) = Kolp)e(t) + Kn(p)(t — h(t))

| minimal £; gain
Memoryless Controller ~v* =12.8799
Exact Memory Controller y* = 4.1641

+ Delayed term important

— Needs the exact value of the delay at any time
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)/’ Example (3)

§(psa-np

Case 2 : h(t) < 0.9, h(t) € [0, 10]
» Synthesis of both memoryless and exact memory controllers
u(t) = Ko(p)z(t) u(t) = Ko(p)z(t) + Kn(p)x(t — h(t))
| minimal £; gain

Memoryless Controller ~v* =12.8799
Exact Memory Controller y* = 4.1641

+ Delayed term important
— Needs the exact value of the delay at any time
— Problem of delay estimation [Belkoura et al. 2008]

Robust synthesis w.r.t. delay uncertainty on implemented delay

C. Briat - PhD. defense [GIPSA-lab / SLR team] 36/48
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7 Delay-Robust Controllers (1)

§(Bsa-np

System and Controller

A(p)z(t) + An(p)z(t — h(t)) + B(p)u(t)
Ko(p)x(t) + Kn(p)a(t — d(t))

(1)
u(t)
with |d(t) — h(t)| < 6.
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7 Delay-Robust Controllers (1)

§(Bsa-np

System and Controller

A(p)z(t) + An(p)z(t — h(t)) + B(p)u(t)
Ko(p)x(t) + Kn(p)a(t — d(t))

(t)
u(t)
with |d(t) — h(t)| < 6.
Objectives
» Given maximal error ¢ on the delay knowledge, find a controller such that the
closed-loop system

1. is asymptotically stable for all h(t) €
and

2. satisfies the input/output relationship

[0, Rynaz] With [A(1)] < p < 1, |d(t) — h(t)| < &

zllzy < llwlle,

C. Briat - PhD. defense [GIPSA-lab / SLR team] 37/48
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2

Zm» Closed-loop system

Delay-Robust Controllers (2)

» System with two constrained delays

i(t)
Acl (p)
with [d(t) — h(t)| <

Act(p)a(t) + An(p)x(t — k(1)) + B(p) Kn(p)z(t — d(t))
A(p) + B(p)Ko(p)
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= / Delay-Robust Controllers (2)

Zm» Closed-loop system

» System with two constrained delays

i(t)
Acl (p)
with [d(t) — h(t)| <

Act(p)a(t) + An(p)x(t — k(1)) + B(p) Kn(p)z(t — d(t))
A(p) + B(p)Ko(p)

How to consider the relation between the delays ?
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= / Delay-Robust Controllers (2)

Zm» Closed-loop system

» System with two constrained delays

i(t)
Acl (p)
with [d(t) — h(t)| <

Act(p)a(t) + An(p)x(t — k(1)) + B(p) Kn(p)z(t — d(t))
A(p) + B(p)Ko(p)

How to consider the relation between the delays ?
Model Transformation

1 t—d(t)
Vn) =5 n(s)ds
Jt—h(t)

> Linear dynamical time-varying operator ||V||z,—z, <1
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= / Delay-Robust Controllers (2)

Zm» Closed-loop system

» System with two constrained delays

i(t)
Acl (p)
with [d(t) — h(t)| <

Act(p)a(t) + An(p)x(t — k(1)) + B(p) Kn(p)z(t — d(t))
A(p) + B(p)Ko(p)

How to consider the relation between the delays ?
Model Transformation

1 t—d(t)

V(n): n(s)ds

- S t—h(t)
> Linear dynamical time-varying operator ||V||z,—z, <1

> V(i) = %(w(t —d(t)) —z(t — h(t))) = z(t — h(t)) = z(t — d(t)) + 6V (z)

C. Briat - PhD. defense [GIPSA-lab / SLR team] 38/48
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7 Transformed Closed-Loop System

e

§(Bsa-np

wolt) ﬂ

TDS 20(t) = &(t)

m(t) = AL:I(p)x(t) + Ah(:l (p)x(t - d(t)) + 6Ahw0 (t)
() = ()
wo(t) = V(zo(t)

» Uncertain system with one delay
» System stable for if

> nominal system stable (§ = 0)
> |lzollz, < [lwollz, foré # 0 (small gain)
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7 Example (1)

> Previous results : v = 12.8799 (Memoryless), v = 4.1641 (Exact Memory)

§(psa-np

Delay-robust synthesis

12.7176

Fi1G.: Best £, performance ~ vs. maximal error uncertainty §
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7 Example (1)

§(psa-np

> Previous results : v = 12.8799 (Memoryless), v = 4.1641 (Exact Memory)
Delay-robust synthesis

’ 12.7176

Fi1G.: Best £, performance ~ vs. maximal error uncertainty §

» Characterization of intermediate performances
» Direct generalization of the previous approach

C. Briat - PhD. defense [GIPSA-lab / SLR team]

40/48
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7 Towards Delay-Scheduled Controllers (1)

§(Bsa-ap

Drawbacks of memory controllers

» Memory size (store past values)
» Implementing time-varying delays

C. Briat - PhD. defense [GIPSA-lab / SLR team] 41/48



Control of LPV Time-Delay Systems

Al
GrcnobLU)INIP

7 Towards Delay-Scheduled Controllers (1)

§(Bsa-ap

Drawbacks of memory controllers

» Memory size (store past values)
» Implementing time-varying delays

Delay-scheduled controllers
u(t) = K(p, h(t))z(t)

+ Still using delay information
+ Less memory
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7 Towards Delay-Scheduled Controllers (1)
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Drawbacks of memory controllers

» Memory size (store past values)
» Implementing time-varying delays

Delay-scheduled controllers
u(t) = K(p, h(t))z(t)
+ Still using delay information

+ Less memory
— Difficult synthesis
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‘i"_%” / Towards Delay-Scheduled Controllers (2)

@ Model Transformations

Zo(t)

Vi

Uncertain LPV

t 1
ECC07] V :/ d
[ ] 1(77) t—h(t) h(s) + hmaz + Pmin 77(5) ®

Comparison Models

() = (A+Ap)x(t) — Apwo(t)
20 (t) = (h(t) + hmaz — h/m'i,n)it(t)
wo(t) = Vi(z(t))
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7 Towards Delay-Scheduled Controllers (2)

=
2

@ Model Transformations

wo(t) v ZO(t)

Uncertain LPV

1 t
[IFACWC 08] Va(n) = \/h(t)h /tih(t) n(s)ds

Comparison Models

2(t) = (A4 Ap)z(t) — Ap /RO hmazwo(t)
zo(t) = ()
wo(t) = Va(x(t))
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. Conclusion & Future Works
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/ Conclusion
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» Methodology to derive stabilization results from stability results

» Based on LMI relaxation

» Generalizes to discretized versions of Lyapunov-Krasovskii functionals
» Synthesis of memoryless and memory controllers

» Synthesis of delay-robust controllers using either a adapted functional or (scaled)
small gain results.
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/ Future works

§(Bsa-np

» Improve the results for system with time-varying delays

» Generalize to system with non small-delays (h,in > 0)

» Develop new model transformations for delay-scheduled controller synthesis
Enhance results on delay-scheduled controllers

v
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Thank you for your attention

Vi ringrazio per I'attenzione

NV
| __VIN

Merci de votre attention

C. Briat - PhD. defense [GIPSA-lab / SLR team] 46/48



Control of LPV Time-Delay Systems

Al
GrcnobLU)INIP

f‘? / L induced norm of Dj,
/ /t " n(s)dsdt = / /q(s> )n(s)dtds
with ¢ := p~— L.
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‘g” ! Existence and Unicity of controller/observers (1)
g
Synthesis problem

Find Z(p), X (p) such that

V(p, p, X(p)) +UP)Z(p)V(p) + ()T <0

holds for all (p, p) € I, x co{U,}.

Controller existence - Projection Lemma

Kerl(p)]¥(p, p)KerU(p)]" <0 Ker[V(p)]"¥(p, p)Ker[V(p)] < 0

Controller construction
» Implicit

» Explicit [lwasaki] :Z = f(U,V, ¥, M) for every matrix M € M to be chosen
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