Robust Control and Observation of LPV Time-Delay Systems

C. Briat

PhD. defense, November 27th 2008 GIPSA-lab, Control Systems Department, Grenoble, France

Committee:

Rapporteurs:	Sophie Tarbouriech (Directeur de Recherche CNRS, LAAS, Toulouse)
	Jean-Pierre Richard (Professor, Ecole Centrale Lille)
	Silviu-Iulian Niculescu (Directeur de Recherche CNRS, LSS, Gif-sur-Yvette)
Examinateurs:	Erik I. Verriest (Professor, Georgia Institute of Technology, USA)
	Andrea Garulli (Professor, Universita' degli Studi di Siena)
Co-directeurs:	Olivier Sename (Professor INPG, GIPSA-lab)
	Jean-François Lafay (Professor, Ecole Centrale Nantes)

Administrative Context

3 years PhD thesis

- Advisors :
 - Olivier Sename (GIPSA-Lab)
 - Jean-François Lafay (IRCCyN)
- 6 months journey in GeorgiaTech (Rhone-Alpes Region scholarship)
 - Work with Erik Verriest
 - "Modeling and Control of Disease Epidemics by Vaccination"

Scientific Context

<□> <@> < E> < E> E のQC

Scientific Context

Grenoble

Scientific Context

Large Scale System

Grenoble

Grenoble INP

Scientific Context

Grenoble

Grenoble

Grenoble INP

GrenobleINP

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Grenoble

<u> ((</u>...))

Contributions of the Thesis

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

- Conference publications [IFAC World Congress '08], [ECC07]
- Journal submissions IEEE TAC, Systems & Control Letters

Design Methods

- Conference publications [IFAC World Congress '08], [ECC07], [IFAC SSSC'07]
- Conference submissions [ECC'09]
- Journal submissions IEEE TAC, Systems & Control Letters

Modeling and Control of Disease Epidemics

- Conference publication [IFAC World Congress '08]
- Journal Submission [Biomedical Signal Processing and Control]

Outline

- 1. Introduction
- 2. Stability of LPV Time-Delay Systems
- 3. Control of LPV Time-Delay Systems
- 4. Conclusion & Future Works

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- 1. Introduction
 - Presentation of LPV systems
 - Stability Analysis of LPV systems
 - Control of LPV systems
 - Presentation of time-delay systems
 - Stability Analysis of time-delay systems
 - Control of time-delay systems
- 2. Stability of LPV Time-Delay Systems
- 3. Control of LPV Time-Delay Systems
- 4. Conclusion & Euture Works

LPV Systems

General expression [Packard 1993, Apkarian 1995, 1998]

 $\begin{cases} \dot{x}(t) &= A(\rho(t))x(t) + E(\rho(t))w(t) \\ \rho(t) &\in U_{\rho} \text{ compact} \\ \dot{\rho}(t) &\in co\{U_{\nu}\} \end{cases}$

- Approximation of nonlinear and LTV systems
- + Offer interesting solutions for control → gain scheduling
- + Semi-active suspensions [Poussot 2008], robotic systems [Kajiwara 1999], turbo-fan engines [Gilbert 2008], and so on...
- Eigenvalues computation of $A(\rho)$

LPV Systems

General expression [Packard 1993, Apkarian 1995, 1998]

$$\begin{cases} \dot{x}(t) = A(\rho(t))x(t) + E(\rho(t))w(t) \\ \rho(t) \in U_{\rho} \text{ compact} \\ \dot{\rho}(t) \in co\{U_{\nu}\} \end{cases}$$

+ Approximation of nonlinear and LTV systems

Ś

- + Offer interesting solutions for control \rightarrow gain scheduling
- + Semi-active suspensions [Poussot 2008], robotic systems [Kajiwara 1999], turbo-fan engines [Gilbert 2008], and so on...
- Eigenvalues computation of $A(\rho)$

LPV Systems

General expression [Packard 1993, Apkarian 1995, 1998]

$$\begin{cases} \dot{x}(t) = A(\rho(t))x(t) + E(\rho(t))w(t) \\ \rho(t) \in U_{\rho} \text{ compact} \\ \dot{\rho}(t) \in co\{U_{\nu}\} \end{cases}$$

- + Approximation of nonlinear and LTV systems
- + Offer interesting solutions for control \rightarrow gain scheduling
- + Semi-active suspensions [Poussot 2008], robotic systems [Kajiwara 1999], turbo-fan engines [Gilbert 2008], and so on...
- Eigenvalues computation of $A(\rho)$

・ロト ・ 四ト ・ ヨト ・ ヨト

Stability Analysis of LPV Systems

Time vs. Frequency Domain Methods

- Frequency domain analysis 'inapplicable'
- ► Time Domain analysis → Lyapunov theory for LPV systems

 $V_q(x) = x^T \mathbf{P} x(t)$ $V_r(x) = x^T \mathbf{P}(\rho) x(t)$

- Quadratic stability
 - Unbounded parameter variation rates $\dot{\rho} \in (-\infty, +\infty)$
 - Necessary Condition : $\mathbf{Re}[\lambda(A(\rho))] < 0, \rho \in U_{\rho}$
- Robust stability
 - Bounded parameter variation rates
 - Necessary and sufficient condition : $\mathbf{Re}[\lambda(A(\rho))] < 0, \rho \in U_{\rho}$

((**6**6a-))

Stability Analysis of LPV Systems

- Frequency domain analysis 'inapplicable'
- \blacktriangleright Time Domain analysis \rightarrow Lyapunov theory for LPV systems

 $V_q(x) = x^T \mathbf{P} x(t)$ $V_r(x) = x^T \mathbf{P}(\boldsymbol{\rho}) x(t)$

- Quadratic stability
 - Unbounded parameter variation rates $\dot{\rho} \in (-\infty, +\infty)$
 - Necessary Condition : $\mathbf{Re}[\lambda(A(\rho))] < 0, \rho \in U_{\rho}$
- Robust stability
 - Bounded parameter variation rates
 - Necessary and sufficient condition : $\mathbf{Re}[\lambda(A(\rho))] < 0, \rho \in U_{\rho}$

Stability Analysis of LPV Systems

Time vs. Frequency Domain Methods

- Frequency domain analysis 'inapplicable'
- \blacktriangleright Time Domain analysis \rightarrow Lyapunov theory for LPV systems

$$V_q(x) = x^T \mathbf{P} x(t)$$
 $V_r(x) = x^T \mathbf{P}(\rho) x(t)$

- Quadratic stability
 - Unbounded parameter variation rates $\dot{\rho} \in (-\infty, +\infty)$
 - Necessary Condition : $\mathbf{Re}[\lambda(A(\rho))] < 0, \rho \in U_{\rho}$
- Robust stability
 - Bounded parameter variation rates
 - Necessary and sufficient condition : $\mathbf{Re}[\lambda(A(\rho))] < 0, \rho \in U_{\rho}$

((esa-)))

Stability Analysis of LPV Systems

- Frequency domain analysis 'inapplicable'
- ► Time Domain analysis → Lyapunov theory for LPV systems

$$V_q(x) = x^T \mathbf{P} x(t)$$
 $V_r(x) = x^T \mathbf{P}(\rho) x(t)$

Quadratic vs. Robust Stability

- Quadratic stability
 - Unbounded parameter variation rates $\dot{\rho} \in (-\infty, +\infty)$
 - Necessary Condition : $\mathbf{Re}[\lambda(A(\rho))] < 0, \rho \in U_{\rho}$

Robust stability

- Bounded parameter variation rates
- Necessary and sufficient condition : $\mathbf{Re}[\lambda(A(\rho))] < 0, \rho \in U_{\rho}$

((esa-)))

Stability Analysis of LPV Systems

- Frequency domain analysis 'inapplicable'
- \blacktriangleright Time Domain analysis \rightarrow Lyapunov theory for LPV systems

$$V_q(x) = x^T \mathbf{P} x(t)$$
 $V_r(x) = x^T \mathbf{P}(\rho) x(t)$

- Quadratic stability
 - Unbounded parameter variation rates $\dot{\rho} \in (-\infty, +\infty)$
 - Necessary Condition : $\mathbf{Re}[\lambda(A(\rho))] < 0, \rho \in U_{\rho}$
- Robust stability
 - Bounded parameter variation rates
 - Necessary and sufficient condition : $\mathbf{Re}[\lambda(A(\rho))] < 0, \rho \in U_{\rho}$

Control of LPV Systems

Types of Controllers

	State-Feedback	Dynamic Output Feedback	
Robust Controller	u(t) = Kx(t)	$\left[\begin{array}{c} \dot{x}_c(t) \\ u(t) \end{array}\right] = K \left[\begin{array}{c} x_c(t) \\ y(t) \end{array}\right]$	
Gain-Scheduled Controller	$u(t) = K(\rho)x(t)$	$\begin{bmatrix} \dot{x}_c(t) \\ u(t) \end{bmatrix} = K(\rho) \begin{bmatrix} x_c(t) \\ y(t) \end{bmatrix}$	

Advantages and Drawbacks of LPV Controllers

- Flexibility
- Better performance
- Computation
- Implementation

Control of LPV Systems

・ロト ・ 四ト ・ ヨト ・ ヨト

Types of Controllers

	State-Feedback	Dynamic Output Feedback	
Robust Controller	u(t) = Kx(t)	$\left[\begin{array}{c} \dot{x}_c(t) \\ u(t) \end{array}\right] = K \left[\begin{array}{c} x_c(t) \\ y(t) \end{array}\right]$	
Gain-Scheduled Controller	$u(t) = K(\rho)x(t)$	$\begin{bmatrix} \dot{x}_c(t) \\ u(t) \end{bmatrix} = K(\rho) \begin{bmatrix} x_c(t) \\ y(t) \end{bmatrix}$	

Advantages and Drawbacks of LPV Controllers

- + Flexibility
- + Better performance
- Computation
- Implementation

E

Control of LPV Systems

・ロト ・ 四ト ・ ヨト ・ ヨト

Types of Controllers

	State-Feedback	Dynamic Output Feedback	
Robust Controller	u(t) = Kx(t)	$\left[\begin{array}{c} \dot{x}_c(t) \\ u(t) \end{array}\right] = K \left[\begin{array}{c} x_c(t) \\ y(t) \end{array}\right]$	
Gain-Scheduled Controller	$u(t) = K(\rho)x(t)$	$\begin{bmatrix} \dot{x}_c(t) \\ u(t) \end{bmatrix} = K(\rho) \begin{bmatrix} x_c(t) \\ y(t) \end{bmatrix}$	

Advantages and Drawbacks of LPV Controllers

- + Flexibility
- + Better performance
- Computation
- Implementation

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

Time-Delay Systems

((**8**6-)))

Linear Time-Delay Systems

$$\begin{array}{lll} \dot{x}(t) &=& Ax(t) + \mathbf{A_h x}(\mathbf{t} - \mathbf{h}(\mathbf{t})) + Ew(t) \\ h(t) & \text{constant/time} - \text{varying} \\ h(t) & \text{bounded/unbounded} \\ \hline \frac{dh(t)}{dt} & \text{bounded/unbounded} \\ \end{array}$$

- + Approximation of systems with propagation, diffusion or memory phenomena
 - Networks, combustion processes, population growth, disease propagation, price fluctuations...
- Infinite number of eigenvalues
- Depend on the delay value

((**8**6a-))

Linear Time-Delay Systems

$$\begin{aligned} \dot{x}(t) &= Ax(t) + \mathbf{A_h x}(\mathbf{t} - \mathbf{h}(\mathbf{t})) + Ew(t) \\ h(t) & \text{constant/time} - \text{varying} \\ h(t) & \text{bounded/unbounded} \\ \frac{dh(t)}{dt} & \text{bounded/unbounded} \end{aligned}$$

- + Approximation of systems with propagation, diffusion or memory phenomena
 - Networks, combustion processes, population growth, disease propagation, price fluctuations...
- Infinite number of eigenvalues
- Depend on the delay value

Stability Analysis of Time-Delay Systems (1)

Two notions of stability

- \blacktriangleright Delay-independent stability \rightarrow unbounded delay
- $\blacktriangleright \text{ Delay-dependent stability} \rightarrow \text{bounded delay}$

Frequency Domain Methods [Niculescu 2001, Gu 2003]

- LTI systems
- Constant delays

Time-domain Methods [Fridman 2001, Gu 2003, Gouaisbaut 2006]

- LTV, LPV and Nonlinear systems
- Time-varying delays

Stability Analysis of Time-Delay Systems (1)

Two notions of stability

- ► Delay-independent stability → unbounded delay
- ► Delay-dependent stability → bounded delay

Frequency Domain Methods [Niculescu 2001, Gu 2003]

- LTI systems
- Constant delays

Time-domain Methods [Fridman 2001, Gu 2003, Gouaisbaut 2006]

- LTV, LPV and Nonlinear systems
- Time-varying delays

Stability Analysis of Time-Delay Systems (1)

Two notions of stability

- \blacktriangleright Delay-independent stability \rightarrow unbounded delay
- ► Delay-dependent stability → bounded delay

Frequency Domain Methods [Niculescu 2001, Gu 2003]

- LTI systems
- Constant delays

Time-domain Methods [Fridman 2001, Gu 2003, Gouaisbaut 2006]

- LTV, LPV and Nonlinear systems
- Time-varying delays

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

((**8**8a-)))

Stability Analysis of Time-Delay Systems (2)

Extension of Lyapunov Theory

- Lyapunov-Krasovskii & Lyapunov-Razumikhin
- Large bestiary of Lyapunov-Krasovskii functionals [Fridman 2001, Han 2002, Gu 2003]

Example

Delay-independent stability [Verriest 1991, Bliman 2000, Gu 2003]

$$V_i = x(t)^T P x(t) + \int_{t-h}^t x(\theta)^T Q x(\theta) d\theta$$

Delay-dependent stability [Han 2005, Gouaisbaut 2006]

$$V_d = V_i + \int_{-h}^0 \int_{t+\theta}^t \dot{x}(\eta)^T R \dot{x}(\eta) d\eta d\theta$$

((86a-))

Stability Analysis of Time-Delay Systems (2)

Extension of Lyapunov Theory

- Lyapunov-Krasovskii & Lyapunov-Razumikhin
- Large bestiary of Lyapunov-Krasovskii functionals [Fridman 2001, Han 2002, Gu 2003]

Example

Delay-independent stability [Verriest 1991, Bliman 2000, Gu 2003]

$$V_i = x(t)^T P x(t) + \int_{t-h}^t x(\theta)^T Q x(\theta) d\theta$$

Delay-dependent stability [Han 2005, Gouaisbaut 2006]

$$V_d = V_i + \int_{-h}^0 \int_{t+\theta}^t \dot{x}(\eta)^T R \dot{x}(\eta) d\eta d\theta$$

<u> [[</u>[][]]]]

Control of Time-Delay Systems

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

Controllers

	no memory		with memory
State Feedback	$u(t) = K_0 x(t)$	+	$K_h x(t-h)$
Dynamic Output Feedback	$\left[\begin{array}{c} \dot{x}_c(t) \\ u(t) \end{array} \right] = K_0 \left[\begin{array}{c} x_c(t) \\ y(t) \end{array} \right]$	+	$K_h x_c(t-h)$

Advantages & Drawbacks of Memory Controllers

- Flexibility
- + Better performances
- Needs more memory
- Delay supposed to be exactly known
- Problem of delay measurement/estimation [Belkoura]

Robust controllers with uncertain delay?

<u> [[</u>[][]]]]

Control of Time-Delay Systems

Controllers

	no memory		with memory
State Feedback	$u(t) = K_0 x(t)$	+	$K_h x(t-h)$
Dynamic Output Feedback	$\left[\begin{array}{c} \dot{x}_c(t) \\ u(t) \end{array}\right] = K_0 \left[\begin{array}{c} x_c(t) \\ y(t) \end{array}\right]$	+	$K_h x_c(t-h)$

Advantages & Drawbacks of Memory Controllers

- + Flexibility
- + Better performances
- Needs more memory
- Delay supposed to be exactly known
- Problem of delay measurement/estimation [Belkoura]

Robust controllers with uncertain delay?
<u> [[</u>[][]]]]

Control of Time-Delay Systems

Controllers

	no memory		with memory
State Feedback	$u(t) = K_0 x(t)$	+	$K_h x(t-h)$
Dynamic Output Feedback	$\left[\begin{array}{c} \dot{x}_c(t) \\ u(t) \end{array}\right] = K_0 \left[\begin{array}{c} x_c(t) \\ y(t) \end{array}\right]$	+	$K_h x_c(t-h)$

Advantages & Drawbacks of Memory Controllers

- + Flexibility
- + Better performances
- Needs more memory
- Delay supposed to be exactly known
- Problem of delay measurement/estimation [Belkoura]

Robust controllers with uncertain delay?

<u> [[</u>[][]]]]

Control of Time-Delay Systems

Controllers

	no memory		with memory
State Feedback	$u(t) = K_0 x(t)$	+	$K_h x(t-h)$
Dynamic Output Feedback	$\left[\begin{array}{c} \dot{x}_c(t) \\ u(t) \end{array}\right] = K_0 \left[\begin{array}{c} x_c(t) \\ y(t) \end{array}\right]$	+	$K_h x_c(t-h)$

Advantages & Drawbacks of Memory Controllers

- + Flexibility
- + Better performances
- Needs more memory
- Delay supposed to be exactly known
- Problem of delay measurement/estimation [Belkoura]

Robust controllers with uncertain delay?

Delay-robust control of uncertain LPV time-delay systems

$$u(t) = K(\rho)x(t) + K_h(\rho)x(t - d(t))$$

- Choice of Lyapunov-Krasovskii functionals
- Derivation of design results
- Delay uncertainties

Design of delay-scheduled state-feedback controllers

u(t) = K(d(t))x(t)

- Delay : parameter vs. operator
- Framework

・ロト ・ 四ト ・ ヨト ・ ヨト

Delay-robust control of uncertain LPV time-delay systems

$$u(t) = K(\rho)x(t) + K_h(\rho)x(t - d(t))$$

Choice of Lyapunov-Krasovskii functionals

- Derivation of design results
- Delay uncertainties

Design of delay-scheduled state-feedback controllers

u(t) = K(d(t))x(t)

- Delay : parameter vs. operator
- Framework

・ロト ・ 四ト ・ ヨト ・ ヨト

Delay-robust control of uncertain LPV time-delay systems

$$u(t) = K(\rho)x(t) + K_h(\rho)x(t - d(t))$$

- Choice of Lyapunov-Krasovskii functionals
- Derivation of design results
- Delay uncertainties

Design of delay-scheduled state-feedback controllers

u(t) = K(d(t))x(t)

- Delay : parameter vs. operator
- Framework

ヘロア 人間 アメヨアメヨア

Delay-robust control of uncertain LPV time-delay systems

$$u(t) = K(\rho)x(t) + K_h(\rho)x(t - d(t))$$

- Choice of Lyapunov-Krasovskii functionals
- Derivation of design results
- Delay uncertainties

Design of delay-scheduled state-feedback controllers

u(t) = K(d(t))x(t)

- Delay : parameter vs. operator
- Framework

・ロト ・ 四ト ・ ヨト ・ ヨト

Delay-robust control of uncertain LPV time-delay systems

$$u(t) = K(\rho)x(t) + K_h(\rho)x(t - d(t))$$

- Choice of Lyapunov-Krasovskii functionals
- Derivation of design results
- Delay uncertainties

Design of delay-scheduled state-feedback controllers

u(t) = K(d(t))x(t)

- Delay : parameter vs. operator
- Framework

(日)

Delay-robust control of uncertain LPV time-delay systems

$$u(t) = K(\rho)x(t) + K_h(\rho)x(t - d(t))$$

- Choice of Lyapunov-Krasovskii functionals
- Derivation of design results
- Delay uncertainties

Design of delay-scheduled state-feedback controllers

u(t) = K(d(t))x(t)

- Delay : parameter vs. operator
- Framework

Delay-robust control of uncertain LPV time-delay systems

$$u(t) = K(\rho)x(t) + K_h(\rho)x(t - d(t))$$

- Choice of Lyapunov-Krasovskii functionals
- Derivation of design results
- Delay uncertainties

Design of delay-scheduled state-feedback controllers

u(t) = K(d(t))x(t)

- Delay : parameter vs. operator
- Framework

Outline

1. Introduction

- 2. Stability of LPV Time-Delay Systems
 - Presentation of LPV time-delay systems
 - Choice of Lyapunov-Krasovskii functional
 - Reduction of conservatism
- 3. Control of LPV Time-Delay Systems
- 4. Conclusion & Future Works

◆□ > ◆□ > ◆三 > ◆三 > ● ○ ○ ○ ○

Example of LPV Time-Delay System

Cutting Process [Zhang 2002]

- Nonlinearities
- Delay : time between two successive passes of the blades

・ロト ・ 四ト ・ ヨト ・ ヨト

LPV Time-Delay System [Zhang 2002, Wu 2001, Zhang 2005]

$$\begin{aligned} \dot{x}(t) &= A(\rho)x(t) + A_h(\rho)x(t-h(t)) + E(\rho)w(t) \\ \rho &\in U_\rho \\ \dot{\rho} &\in co\{U_\nu\} \\ h(t) &\in [0, h_{max}] \\ \left| \frac{dh(t)}{dt} \right| &\leq \mu < 1 \end{aligned}$$

$$(1)$$

- Efficient stability tests
- Efficient design tools
- Tackle delay uncertainties

・ロト ・四ト ・ヨト ・ヨト

LPV Time-Delay System [Zhang 2002, Wu 2001, Zhang 2005]

$$\begin{aligned} \dot{x}(t) &= A(\rho)x(t) + A_h(\rho)x(t-h(t)) + E(\rho)w(t) \\ \rho &\in U_\rho \\ \dot{\rho} &\in co\{U_\nu\} \\ h(t) &\in [0,h_{max}] \\ \left| \frac{dh(t)}{dt} \right| &\leq \mu < 1 \end{aligned}$$

$$(1)$$

- Efficient stability tests
- Efficient design tools
- Tackle delay uncertainties

LPV Time-Delay System [Zhang 2002, Wu 2001, Zhang 2005]

$$\begin{aligned} \dot{x}(t) &= A(\rho)x(t) + A_h(\rho)x(t-h(t)) + E(\rho)w(t) \\ \rho &\in U_\rho \\ \dot{\rho} &\in co\{U_\nu\} \\ h(t) &\in [0,h_{max}] \\ \left| \frac{dh(t)}{dt} \right| &\leq \mu < 1 \end{aligned}$$

$$(1)$$

- Efficient stability tests
- Efficient design tools
- Tackle delay uncertainties

LPV Time-Delay System [Zhang 2002, Wu 2001, Zhang 2005]

$$\begin{aligned} \dot{x}(t) &= A(\rho)x(t) + A_h(\rho)x(t-h(t)) + E(\rho)w(t) \\ \rho &\in U_\rho \\ \dot{\rho} &\in co\{U_\nu\} \\ h(t) &\in [0,h_{max}] \\ \left| \frac{dh(t)}{dt} \right| &\leq \mu < 1 \end{aligned}$$

$$(1)$$

- Efficient stability tests
- Efficient design tools
- Tackle delay uncertainties

Grenoble

Choice of the Lyapunov-Krasovskii functional

Criteria

- Simple form (few decision matrices, small size of LMIs)
- Avoid model-transformations
- 'Good' results (estimation of delay margin, system norms...)
- Stability over an interval of delay values
- Parameter dependent

Stability Condition

Generalization of [Han 2005, Gouaisbaut 2006] to the LPV case

$$V = x(t)^T P(\boldsymbol{\rho}) x(t) + \int_{t-h(t)}^t x(\theta)^T Q x(\theta) d\theta + h_{max} \int_{-h_{max}}^0 \int_{t+\theta}^t \dot{x}(s)^T R \dot{x}(s) ds d\theta$$

Used along with Jensen's inequality [Han 2005, Gouaisbaut 2006]

Theorem

The LPV Time-delay system (1) is asymptotically stable if there exists $P(\rho), Q, R \succ 0$ such that the LMI

$$\begin{bmatrix} A(\rho)^T P(\rho) + P(\rho)A(\rho) + Q - R + \frac{\partial P(\rho)}{\partial \rho}\nu & P(\rho)A_h(\rho) + R & h_{max}A(\rho)^T R \\ & \star & -(1-\mu)Q - R & h_{max}A_h(\rho)^T R \\ & \star & -R \end{bmatrix} \prec 0$$

holds for all $ho \in U_{
ho}$ and $u \in U_{
u}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへの

Stability Condition

Generalization of [Han 2005, Gouaisbaut 2006] to the LPV case

$$V = x(t)^T P(\boldsymbol{\rho}) x(t) + \int_{t-h(t)}^t x(\theta)^T Q x(\theta) d\theta + h_{max} \int_{-h_{max}}^0 \int_{t+\theta}^t \dot{x}(s)^T R \dot{x}(s) ds d\theta$$

Used along with Jensen's inequality [Han 2005, Gouaisbaut 2006]

Theorem

The LPV Time-delay system (1) is asymptotically stable if there exists $P(\rho), Q, R \succ 0$ such that the LMI

$$\begin{bmatrix} A(\rho)^T P(\rho) + P(\rho)A(\rho) + Q - R + \frac{\partial P(\rho)}{\partial \rho}\nu & P(\rho)A_h(\rho) + R & h_{max}A(\rho)^T R \\ & \star & -(1-\mu)Q - R & h_{max}A_h(\rho)^T R \\ & \star & -R \end{bmatrix} \prec 0$$
holds for all $\rho \in U_0$ and $\nu \in U_{max}$

Stability Condition

Generalization of [Han 2005, Gouaisbaut 2006] to the LPV case

$$V = x(t)^T P(\boldsymbol{\rho}) x(t) + \int_{t-h(t)}^t x(\theta)^T Q x(\theta) d\theta + h_{max} \int_{-h_{max}}^0 \int_{t+\theta}^t \dot{x}(s)^T R \dot{x}(s) ds d\theta$$

Used along with Jensen's inequality [Han 2005, Gouaisbaut 2006]

Theorem

The LPV Time-delay system (1) is asymptotically stable if there exists $P(\rho), Q, R \succ 0$ such that the LMI

$$\begin{bmatrix} A(\rho)^T P(\rho) + P(\rho)A(\rho) + Q - R + \frac{\partial P(\rho)}{\partial \rho}\nu & P(\rho)A_h(\rho) + R & h_{max}A(\rho)^T R \\ & \star & -(1-\mu)Q - R & h_{max}A_h(\rho)^T R \\ & \star & -R \end{bmatrix} \prec 0$$
holds for all $\rho \in U_0$ and $\nu \in U_{max}$

Example - LTI case

$$\dot{x}(t) = \begin{bmatrix} -2 & 0\\ 0 & -0.9 \end{bmatrix} x(t) + \begin{bmatrix} -1 & -1\\ 0 & -1 \end{bmatrix} x(t-h)$$

Comparison with existing results

Method	h_{max}	nb. vars
Zhang et al. 2000	6.15	81
Han 2002	4.4721	9 or 18
Xu and Lam 2005	4.4721	17
This result	4.4721	9
Theoretical	6.17	-

- Computational complexity
- + Competitive
- Gap → Conservatism

Example - LTI case

イロト イヨト イヨト イヨト 三日

LTI system with constant delay

$$\dot{x}(t) = \begin{bmatrix} -2 & 0\\ 0 & -0.9 \end{bmatrix} x(t) + \begin{bmatrix} -1 & -1\\ 0 & -1 \end{bmatrix} x(t-h)$$

Comparison with existing results

Method	h_{max}	nb. vars
Zhang et al. 2000	6.15	81
Han 2002	4.4721	9 or 18
Xu and Lam 2005	4.4721	17
This result	4.4721	9
Theoretical	6.17	-

- + Computational complexity
- + Competitive
- Gap → Conservatism

Example - LTI case

LTI system with constant delay

$$\dot{x}(t) = \begin{bmatrix} -2 & 0\\ 0 & -0.9 \end{bmatrix} x(t) + \begin{bmatrix} -1 & -1\\ 0 & -1 \end{bmatrix} x(t-h)$$

Comparison with existing results

Method	h_{max}	nb. vars
Zhang et al. 2000	6.15	81
Han 2002	4.4721	9 or 18
Xu and Lam 2005	4.4721	17
This result	4.4721	9
Theoretical	6.17	-

- + Computational complexity
- + Competitive
- Gap \rightarrow Conservatism

((**6**6--)))

Origin of Conservatism

$$V(x_t) = x(t)^T P(\rho)x(t) + \int_{t-h(t)}^t x(\theta)^T Q x(\theta) d\theta + h_{max} \int_{-h_{max}}^0 \int_{t+\theta}^t \dot{x}(s)^T \mathbf{R} \dot{x}(s) ds d\theta$$

- Jensen's inequality
 - Bound of an integral term over a finite interva
 - For illustration : Conservatism ≡ surface between curves

Origin of Conservatism

Constant matrices Q, R

$$V(x_t) = x(t)^T P(\rho)x(t) + \int_{t-h(t)}^t x(\theta)^T Q x(\theta) d\theta + h_{max} \int_{-h_{max}}^0 \int_{t+\theta}^t \dot{x}(s)^T \mathbf{R} \dot{x}(s) ds d\theta$$

- Jensen's inequality
 - Bound of an integral term over a finite interval
 - For illustration : \check{C} onservatism \equiv surface between curves

((**8**6-)))

Origin of Conservatism

$$V(x_t) = x(t)^T P(\rho)x(t) + \int_{t-h(t)}^t x(\theta)^T Q x(\theta) d\theta + h_{max} \int_{-h_{max}}^0 \int_{t+\theta}^t \dot{x}(s)^T R \dot{x}(s) ds d\theta$$

- Jensen's inequality
 - Bound of an integral term over a finite interval
 - For illustration : \check{C} onservatism \equiv surface between curves

((**8**6-)))

Origin of Conservatism

$$V(x_t) = x(t)^T P(\rho)x(t) + \int_{t-h(t)}^t x(\theta)^T Q x(\theta) d\theta + h_{max} \int_{-h_{max}}^0 \int_{t+\theta}^t \dot{x}(s)^T R \dot{x}(s) ds d\theta$$

- Jensen's inequality
 - Bound of an integral term over a finite interval
 - For illustration : \check{C} onservatism \equiv surface between curves

(**()**(9(a-))

Reduction of Conservatism

Generalization of the functional [Han 2008]

$$V = x(t)^T P(\rho) x(t) + \int_{t-h(t)}^t x(\theta)^T \frac{Q(\theta)}{Q(\theta)} x(\theta) d\theta + \int_{-h_{max}}^0 \int_{t+\theta}^t \dot{x}(s)^T \frac{R(\theta)}{R(\theta)} \dot{x}(s) ds d\theta$$

Discretization

▶ $Q(\cdot), R(\cdot)$: piecewise constant continuous [Gu 2001, Han 2008]

$$V = x(t)^{T} P(\rho) x(t) + \sum_{i=0}^{N-1} \int_{t-(i+1)h(t)/N}^{t-ih(t)/N} x(\theta)^{T} Q_{i} x(\theta) d\theta + \frac{h_{max}}{N} \sum_{i=0}^{N-1} \int_{-(i+1)h_{max}/N}^{-ih_{max}/N} \int_{t+\theta}^{t} \dot{x}(s)^{T} R_{i} \dot{x}(s) ds d\theta$$

Synergy of fragmentation and discretization

Reduction of Conservatism

Generalization of the functional [Han 2008]

$$V = x(t)^T P(\rho) x(t) + \int_{t-h(t)}^t x(\theta)^T Q(\theta) x(\theta) d\theta + \int_{-h_{max}}^0 \int_{t+\theta}^t \dot{x}(s)^T \frac{R(\theta)}{r} \dot{x}(s) ds d\theta$$

Discretization

▶ $Q(\cdot), R(\cdot)$: piecewise constant continuous [Gu 2001, Han 2008]

$$V = x(t)^{T} P(\rho) x(t) + \sum_{i=0}^{N-1} \int_{t-(i+1)h(t)/N}^{t-ih(t)/N} x(\theta)^{T} Q_{i} x(\theta) d\theta + \frac{h_{max}}{N} \sum_{i=0}^{N-1} \int_{-(i+1)h_{max}/N}^{-ih_{max}/N} \int_{t+\theta}^{t} \dot{x}(s)^{T} R_{i} \dot{x}(s) ds d\theta$$

Synergy of fragmentation and discretization

1

Reduction of Conservatism

(a)

Generalization of the functional [Han 2008]

$$V = x(t)^T P(\rho) x(t) + \int_{t-h(t)}^t x(\theta)^T Q(\theta) x(\theta) d\theta + \int_{-h_{max}}^0 \int_{t+\theta}^t \dot{x}(s)^T R(\theta) \dot{x}(s) ds d\theta$$

Discretization

▶ $Q(\cdot), R(\cdot)$: piecewise constant continuous [Gu 2001, Han 2008]

$$V = x(t)^{T} P(\rho) x(t) + \sum_{i=0}^{N-1} \int_{t-(i+1)h(t)/N}^{t-ih(t)/N} x(\theta)^{T} Q_{i} x(\theta) d\theta + \frac{h_{max}}{N} \sum_{i=0}^{N-1} \int_{-(i+1)h_{max}/N}^{-ih_{max}/N} \int_{t+\theta}^{t} \dot{x}(s)^{T} R_{i} \dot{x}(s) ds d\theta$$

Synergy of fragmentation and discretization

C. Briat - PhD. defense [GIPSA-lab / SLR team]

1

Stability result for N = 2

Theorem

The LPV Time-delay system (1) is asymptotically stable if there exists $P(\rho), Q_1, Q_2, R_1, R_2 \succ 0$ such that the LMI

holds for all $\rho \in U_{\rho}$ and $\nu \in U_{\nu}$ with

$$\mathcal{M}_{11}(\rho, \dot{\rho}) = A(\rho)^T P(\rho) + P(\rho) A(\rho) + Q_1 - R_1 + \frac{\partial P(\rho)}{\partial \rho} \nu$$
$$U_1 = -Q_1 + Q_2 - R_1 - R_2$$
$$U_2 = -Q_2 - R_2$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Example - LTI case (cont'd)

Comparison with existing method using fragmentation [Peaucelle et al. 2007]

Method	h_{max}	nb. vars	nb vars. Peaucelle et al.
Zhang et al. 2000	6.15	81	-
N = 1	4.4721	9	9
N = 2	5.1775	15	16
N = 3	5.9678	21	27
N = 4	6.0569	27	42
N = 9	6.149	57	177
N = 30	6.171	183	1836
Theoretical	6.172	-	-

- Zhang et al. 2000 : constant time-delays only
- Approach of Peaucelle et al. based on translation of the state

Outline

- 1. Introduction
- 2. Stability of LPV Time-Delay Systems
- 3. Control of LPV Time-Delay Systems
 - Principle of delay-robust stabilization
 - Stabilization test Relaxations
 - Example
- 4. Conclusion & Future Works

((**8**8a-)))

Principle of delay-robust stabilization

Nominal stabilization of LPV time-delay systems

Gain-scheduled memoryless controller :

$$u(t) = K_0(\rho)x(t)$$

Gain-scheduled exact memory controller :

$$u(t) = K_0(\rho)x(t) + K_h(\rho)x(t-h(t))$$

Delay-robust stabilization of LPV time-delay systems

Gain-scheduled approximate memory controller :

 $u(t) = K_0(\rho)x(t) + K_h(\rho)x(t - d(t)) \quad \text{with } |h(t) - d(t)| \le \delta$

Few studied in the literature

((**8**8a-)))

Principle of delay-robust stabilization

Nominal stabilization of LPV time-delay systems

Gain-scheduled memoryless controller :

$$u(t) = K_0(\rho)x(t)$$

Gain-scheduled exact memory controller :

$$u(t) = K_0(\rho)x(t) + K_h(\rho)x(t-h(t))$$

Delay-robust stabilization of LPV time-delay systems

Gain-scheduled approximate memory controller :

$$u(t) = K_0(\rho)x(t) + K_h(\rho)x(t - d(t)) \quad \text{with } |h(t) - d(t)| \le \delta$$

Few studied in the literature

・ ロ ト ・ 雪 ト ・ ヨ ト ・

((**8**6a-))

Recall of stability test for N = 1

Theorem

System (1) is asymptotically stable if there exists $P(\rho)$, $Q, R \succ 0$ such that the LMI

$$\begin{bmatrix} A(\rho)^T P(\rho) + P(\rho)A(\rho) + Q - R + \frac{\partial P(\rho)}{\partial \rho} \nu & P(\rho)A_h(\rho) + R & h_{max}A(\rho)^T R \\ * & -(1-\mu)Q - R & h_{max}A_h(\rho)^T R \\ * & * & -R \end{bmatrix} \prec 0$$

holds for all $\rho \in U_{\rho}$ and $\nu \in U_{\nu}$.

Goal

- Derive efficient design results
- Tackle delay uncertainty

$$\begin{aligned} \dot{x}(t) &= A(\rho)x(t) + A_h(\rho)x(t-h(t)) + B(\rho)u(t) \\ u(t) &= K_0(\rho)x(t) + K_h(\rho)x(t-h(t)) \end{aligned}$$

Theorem

The system is asymptotically stabilizable by a control law with exact memory if there exists $P(\rho), Q, R \succ 0$ and $K_0(\rho), K_h(\rho)$ such that the LMI

$$\begin{bmatrix} A_{cl}^{T}P + PA_{cl} + Q - R + \dot{P} & PA_{hcl} + R & h_{max}A_{cl}^{T}R \\ \star & -(1-\mu)Q - R & h_{max}A_{hcl}^{T}R \\ \star & \star & -R \end{bmatrix} \prec 0$$

holds for all $\rho \in U_{\rho}$ and $\nu \in U_{\nu}$ with $A_{cl} = A + BK_0$ and $A_{hcl} = A_h + BK_h$.

Convexity

- Bilinear matrix inequality → non-convex
- Single terms in R and multiple products \rightarrow Linearization not possible !!

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

$$\begin{aligned} \dot{x}(t) &= A(\rho)x(t) + A_h(\rho)x(t-h(t)) + B(\rho)u(t) \\ u(t) &= K_0(\rho)x(t) + K_h(\rho)x(t-h(t)) \end{aligned}$$

Theorem

The system is asymptotically stabilizable by a control law with exact memory if there exists $P(\rho), Q, R \succ 0$ and $K_0(\rho), K_h(\rho)$ such that the LMI

$$\begin{bmatrix} A_{cl}^{T}P + PA_{cl} + Q - R + \dot{P} & PA_{hcl} + R & h_{max}A_{cl}^{T}R \\ \star & -(1-\mu)Q - R & h_{max}A_{hcl}^{T}R \\ \star & \star & -R \end{bmatrix} \prec 0$$

holds for all $\rho \in U_{\rho}$ and $\nu \in U_{\nu}$ with $A_{cl} = A + BK_0$ and $A_{hcl} = A_h + BK_h$.

Convexity

- Bilinear matrix inequality \rightarrow non-convex
- Single terms in R and multiple products \rightarrow Linearization not possible !!

Stabilization test for N = 1

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

$$\dot{x}(t) = A(\rho)x(t) + A_h(\rho)x(t - h(t)) + B(\rho)u(t) u(t) = K_0(\rho)x(t) + K_h(\rho)x(t - h(t))$$

Theorem

The system is asymptotically stabilizable by a control law with exact memory if there exists $P(\rho), Q, R \succ 0$ and $K_0(\rho), K_h(\rho)$ such that the LMI

$$\begin{bmatrix} A_{cl}^{T}P + PA_{cl} + Q - R + \dot{P} & PA_{hcl} + R & h_{max}A_{cl}^{T}R \\ \star & -(1-\mu)Q - R & h_{max}A_{hcl}^{T}R \\ \star & \star & -R \end{bmatrix} \prec 0$$

holds for all $\rho \in U_{\rho}$ and $\nu \in U_{\nu}$ with $A_{cl} = A + BK_0$ and $A_{hcl} = A_h + BK_h$.

Convexity

- Bilinear matrix inequality \rightarrow non-convex
- Single terms in R and multiple products \rightarrow Linearization not possible !!

Common Relaxations

- Remove single terms in R
 - Avoid Jensen's inequality
 - High increase of conservatism
- Set $P(\rho) = \varepsilon(\rho)R$
 - Difficult choice of $\varepsilon(\rho)$
 - High increase of conservatism
 - Increase of computational complexity

Relaxation of [Briat. IFAC World Congress 2008]

- Use of adjoint system and projection lemma
 - Non conservative
 - Nonlinear optimization problem (expensive, local convergence)

High increase of conservatism and/or computational complexity

((ec----))))

Common Relaxations

- Remove single terms in R
 - Avoid Jensen's inequality
 - High increase of conservatism
- Set $P(\rho) = \varepsilon(\rho)R$
 - Difficult choice of $\varepsilon(\rho)$
 - High increase of conservatism
 - Increase of computational complexity

Relaxation of [Briat. IFAC World Congress 2008]

- Use of adjoint system and projection lemma
 - Non conservative
 - Nonlinear optimization problem (expensive, local convergence)

High increase of conservatism and/or computational complexity

((bea-)))

Common Relaxations

- Remove single terms in R
 - Avoid Jensen's inequality
 - High increase of conservatism
- Set $P(\rho) = \varepsilon(\rho)R$
 - Difficult choice of $\varepsilon(\rho)$
 - High increase of conservatism
 - Increase of computational complexity

Relaxation of [Briat. IFAC World Congress 2008]

- Use of adjoint system and projection lemma
 - + Non conservative
 - Nonlinear optimization problem (expensive, local convergence)

High increase of conservatism and/or computational complexity

ヘロト 人間 トイヨト イヨト

((bea-)))

Common Relaxations

- Remove single terms in R
 - Avoid Jensen's inequality
 - High increase of conservatism
- Set $P(\rho) = \varepsilon(\rho)R$
 - Difficult choice of $\varepsilon(\rho)$
 - High increase of conservatism
 - Increase of computational complexity

Relaxation of [Briat. IFAC World Congress 2008]

- Use of adjoint system and projection lemma
 - + Non conservative
 - Nonlinear optimization problem (expensive, local convergence)

High increase of conservatism and/or computational complexity

C. Briat - PhD. defense [GIPSA-lab / SLR team]

30/48

Proposed Relaxation

Origin of the Problem

- Substitution of the closed-loop but convexity not preserved
- Relaxation done after substitution

Proposed Methodology

- ► Test modification → 'convexity preserving' form
 - Relaxation done before substitution
 - Orientation of the relaxation

Relaxation features

- Decoupling multiple matrix products
 - Introduction of a new variable

Proposed Relaxation

Origin of the Problem

- Substitution of the closed-loop but convexity not preserved
- Relaxation done after substitution

Proposed Methodology

- Test modification \rightarrow 'convexity preserving' form
 - Relaxation done before substitution
 - Orientation of the relaxation

Relaxation features

- Decoupling multiple matrix products
 - Introduction of a new variable

Proposed Relaxation

Origin of the Problem

- Substitution of the closed-loop but convexity not preserved
- Relaxation done after substitution

Proposed Methodology

- Test modification \rightarrow 'convexity preserving' form
 - Relaxation done before substitution
 - Orientation of the relaxation

Relaxation features

- Decoupling multiple matrix products
 - Introduction of a new variable

((aca-)))

Relaxed stability test for N = 1

Theorem

System (1) is asymptotically stable if there exists $P(\rho), Q, R \succ 0, X(\rho)$ and $K_0(\rho), K_h(\rho)$ such that the LMI

$$\begin{bmatrix} -\mathbf{X}(\rho) - \mathbf{X}(\rho)^{\mathrm{T}} & \mathbf{X}(\rho)^{T} A(\rho) + P(\rho) & \mathbf{X}(\rho)^{T} A_{h}(\rho) & \mathbf{X}(\rho)^{T} & h_{max} R \\ * & -P(\rho) + Q - R + \dot{P} & R & 0 & 0 \\ * & * & -(1-\mu)Q - R & 0 & 0 \\ * & * & * & * & -P(\rho) & -h_{max} R \\ * & * & * & * & * & -R \end{bmatrix} \prec 0$$

holds for all $\rho \in U_{\rho}$ and $\nu \in U_{\nu}$.

- Additional variable $\mathbf{X}(\rho)$
- No multiple products anymore

((**8**8a-)**)**

Relaxed stabilization test for N = 1

Stabilization of system (1) by an exact memory control law :

$$u(t) = K_0(\rho)x(t) + K_h(\rho)x(t - h(t))$$
(2)

After some manipulations...

Theorem

System (1) is stabilizable using (2) if there exists $P(\rho)$, $Q, R \succ 0$, X and $Y_0(\rho)$, $Y_h(\rho)$ such that the LMI

holds for all $\rho \in U_{\rho}$ and $\nu \in U_{\nu}$ with $\overline{R} = h_{max}R$. Suitable controller gains are given by $K_0(\rho) = Y_0(\rho)X^{-1}$ and $K_h(\rho) = Y_h(\rho)X^{-1}$. (**8**8a-)**)**

Relaxed stabilization test for N = 1

Stabilization of system (1) by an exact memory control law :

$$u(t) = K_0(\rho)x(t) + K_h(\rho)x(t - h(t))$$
(2)

After some manipulations...

Theorem

System (1) is stabilizable using (2) if there exists $P(\rho), Q, R \succ 0, X$ and $Y_0(\rho), Y_h(\rho)$ such that the LMI

$$\begin{bmatrix} -X - X^{T} & A(\rho)X + B(\rho)Y_{0}(\rho) + P(\rho) & A_{h}(\rho)X + B(\rho)Y_{h}(\rho) & X^{T} & \tilde{R} \\ \star & -P(\rho) + Q - R + \dot{P}(\rho) & R & 0 & 0 \\ \star & \star & & -(1-\mu)Q - R & 0 & 0 \\ \star & \star & \star & \star & -P(\rho) & -\tilde{R} \\ \star & \star & \star & \star & \star & -R \end{bmatrix} \prec 0$$

holds for all $\rho \in U_{\rho}$ and $\nu \in U_{\nu}$ with $\tilde{R} = h_{max}R$. Suitable controller gains are given by $K_0(\rho) = Y_0(\rho)X^{-1}$ and $K_h(\rho) = Y_h(\rho)X^{-1}$.

.

LPV time-delay system [Zhang et al., 2005]

$$\begin{split} \dot{x}(t) &= \begin{bmatrix} 0 & 1 + 0.1\rho(t) \\ -2 & -3 + 0.2\rho(t) \end{bmatrix} x(t) + \begin{bmatrix} 0.2\rho(t) \\ 0.1 + 0.1\rho(t) \end{bmatrix} u(t) \\ &+ \begin{bmatrix} 0.2\rho(t) & 0.1 \\ -0.2 + 0.1\rho(t) & -0.3 \end{bmatrix} x(t - h(t)) + \begin{bmatrix} -0.2 \\ -0.2 \end{bmatrix} w(t) \\ z(t) &= \begin{bmatrix} 0 & 10 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0.1 \end{bmatrix} u(t) \\ \rho(t) &= \sin(t) \end{split}$$

Goal

Find a controller such that such that the closed-loop system

- 1. is asymptotically stable for all $h(t) \in [0,h_{max}]$ with $|\dot{h}(t)| \leq \mu < 1$ and
- 2. satisfies

$$||z||_{\mathcal{L}_2} \leq \gamma ||w||_{\mathcal{L}_2}$$

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

LPV time-delay system [Zhang et al., 2005]

$$\begin{split} \dot{x}(t) &= \begin{bmatrix} 0 & 1+0.1\rho(t) \\ -2 & -3+0.2\rho(t) \end{bmatrix} x(t) + \begin{bmatrix} 0.2\rho(t) \\ 0.1+0.1\rho(t) \end{bmatrix} u(t) \\ &+ \begin{bmatrix} 0.2\rho(t) & 0.1 \\ -0.2+0.1\rho(t) & -0.3 \end{bmatrix} x(t-h(t)) + \begin{bmatrix} -0.2 \\ -0.2 \end{bmatrix} w(t) \\ z(t) &= \begin{bmatrix} 0 & 10 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0.1 \end{bmatrix} u(t) \\ \rho(t) &= \sin(t) \end{split}$$

Goal

- Find a controller such that such that the closed-loop system
 - 1. is asymptotically stable for all $h(t) \in [0, h_{max}]$ with $|\dot{h}(t)| \le \mu < 1$ and
 - 2. satisfies

$$||z||_{\mathcal{L}_2} \le \gamma ||w||_{\mathcal{L}_2}$$

Case 1 : $\dot{h}(t) \le 0.5$, $h(t) \in [0, 0.5]$

Design of a memoryless state-feedback control law

$$u(t) = K_0(\rho)x(t)$$

	minimal \mathcal{L}_2 gain
[Zhang et al. 2005]	$\gamma^{*} = 3.09$
[Briat et al. IFAC WC 2008]	$\gamma^* = 2.27$
N = 1	$\gamma^* = 1.90$

$$K_0(\rho) = \begin{bmatrix} -1.0535 - 2.9459\rho + 1.9889\rho^2 \\ -1.1378 - 2.6403\rho + 1.9260\rho^2 \end{bmatrix}^T$$

- Better performances
- Lower controller gains
- Lower numerical complexity

・ロト ・四ト ・ヨト ・ヨト

Case 1 : $\dot{h}(t) \le 0.5$, $h(t) \in [0, 0.5]$

Design of a memoryless state-feedback control law

$$u(t) = K_0(\rho)x(t)$$

	minimal \mathcal{L}_2 gain
[Zhang et al. 2005]	$\gamma^{*} = 3.09$
[Briat et al. IFAC WC 2008]	$\gamma^* = 2.27$
N = 1	$\gamma^* = 1.90$

$$K_0(\rho) = \begin{bmatrix} -1.0535 - 2.9459\rho + 1.9889\rho^2 \\ -1.1378 - 2.6403\rho + 1.9260\rho^2 \end{bmatrix}^T$$

- Better performances
- Lower controller gains
- Lower numerical complexity

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Case 2 : $\dot{h}(t) < 0.9$, $h(t) \in [0, 10]$

Synthesis of both memoryless and exact memory controllers

 $u(t) = K_0(\rho)x(t)$ $u(t) = K_0(\rho)x(t) + K_h(\rho)x(t-h(t))$

	minimal \mathcal{L}_2 gain
Memoryless Controller	$\gamma^* = 12.8799$
Exact Memory Controller	$\gamma^{*} = 4.1641$

- Delayed term important
- Needs the exact value of the delay at any time
- Problem of delay estimation [Belkoura et al. 2008]

Robust synthesis w.r.t. delay uncertainty on implemented delay

Case 2 : $\dot{h}(t) \le 0.9$, $h(t) \in [0, 10]$

Synthesis of both memoryless and exact memory controllers

$$u(t) = K_0(\rho)x(t) \qquad u(t) = K_0(\rho)x(t) + K_h(\rho)x(t - h(t))$$

	minimal \mathcal{L}_2 gain
Memoryless Controller	$\gamma^* = 12.8799$
Exact Memory Controller	$\gamma^* = 4.1641$

+ Delayed term important

- Needs the exact value of the delay at any time
- Problem of delay estimation [Belkoura et al. 2008]

Robust synthesis w.r.t. delay uncertainty on implemented delay

Case 2 : $\dot{h}(t) < 0.9, h(t) \in [0, 10]$

Synthesis of both memoryless and exact memory controllers

$$u(t) = K_0(\rho)x(t) \qquad u(t) = K_0(\rho)x(t) + K_h(\rho)x(t - h(t))$$

	minimal \mathcal{L}_2 gain
Memoryless Controller	$\gamma^* = 12.8799$
Exact Memory Controller	$\gamma^* = 4.1641$

- + Delayed term important
- Needs the exact value of the delay at any time
- Problem of delay estimation [Belkoura et al. 2008]

Robust synthesis w.r.t. delay uncertainty on implemented delay

Case 2 : $\dot{h}(t) \le 0.9$, $h(t) \in [0, 10]$

Synthesis of both memoryless and exact memory controllers

$$u(t) = K_0(\rho)x(t) \qquad u(t) = K_0(\rho)x(t) + K_h(\rho)x(t - h(t))$$

	minimal \mathcal{L}_2 gain
Memoryless Controller	$\gamma^* = 12.8799$
Exact Memory Controller	$\gamma^* = 4.1641$

- + Delayed term important
- Needs the exact value of the delay at any time
- Problem of delay estimation [Belkoura et al. 2008]

Robust synthesis w.r.t. delay uncertainty on implemented delay

System and Controller

$$\begin{aligned} \dot{x}(t) &= A(\rho)x(t) + A_h(\rho)x(t - h(t)) + B(\rho)u(t) \\ u(t) &= K_0(\rho)x(t) + K_h(\rho)x(t - d(t)) \end{aligned}$$

with $|d(t) - h(t)| \leq \delta$.

Objectives

- Given maximal error δ on the delay knowledge, find a controller such that the closed-loop system
 - 1. is asymptotically stable for all $h(t) \in [0, h_{max}]$ with $|h(t)| \leq \mu < 1, |d(t) h(t)| \leq \delta$ and
 - 2. satisfies the input/output relationship

$$||z||_{\mathcal{L}_2} \le \gamma ||w||_{\mathcal{L}_2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

((**8**8a-)))

$$\begin{array}{lll} \dot{x}(t) &=& A(\rho)x(t) + A_h(\rho)x(t-h(t)) + B(\rho)u(t) \\ u(t) &=& K_0(\rho)x(t) + K_h(\rho)x(t-d(t)) \end{array}$$

with $|d(t) - h(t)| \leq \delta$.

Objectives

- \blacktriangleright Given maximal error δ on the delay knowledge, find a controller such that the closed-loop system
 - 1. is asymptotically stable for all $h(t)\in [0,h_{max}]$ with $|\dot{h}(t)|\leq \mu<1,$ $|d(t)-h(t)|\leq \delta$ and
 - 2. satisfies the input/output relationship

$$||z||_{\mathcal{L}_2} \leq \gamma ||w||_{\mathcal{L}_2}$$

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ↓ □ ▶ ● ● ● ● ●

Closed-loop system

System with two constrained delays

$$\dot{x}(t) = A_{cl}(\rho)x(t) + A_h(\rho)x(t - h(t)) + B(\rho)K_h(\rho)x(t - d(t)) A_{cl}(\rho) = A(\rho) + B(\rho)K_0(\rho)$$

with $|d(t) - h(t)| \leq \delta$

How to consider the relation between the delays?

Model Transformation

$$\nabla(\eta) := \frac{1}{\delta} \int_{t-h(t)}^{t-d(t)} \eta(s) ds$$

- Linear dynamical time-varying operator $||\nabla||_{\mathcal{L}_2-\mathcal{L}_2} \leq 1$
- $\succ \nabla(\dot{x}) = \frac{1}{\delta} (x(t-d(t)) x(t-h(t))) \Rightarrow x(t-h(t)) = x(t-d(t)) + \delta \nabla(\dot{x})$

C. Briat - PhD. defense [GIPSA-lab / SLR team]

System with two constrained delays

$$\dot{x}(t) = A_{cl}(\rho)x(t) + A_h(\rho)x(t - h(t)) + B(\rho)K_h(\rho)x(t - d(t)) A_{cl}(\rho) = A(\rho) + B(\rho)K_0(\rho)$$

with $|d(t) - h(t)| \leq \delta$

How to consider the relation between the delays?

Model Transformation

$$\nabla(\eta) := \frac{1}{\delta} \int_{t-h(t)}^{t-d(t)} \eta(s) ds$$

- Linear dynamical time-varying operator $||\nabla||_{\mathcal{L}_2-\mathcal{L}_2} \leq 1$
- $\mathbb{P} \ \nabla(\dot{x}) = \frac{1}{\delta} (x(t-d(t)) x(t-h(t))) \Rightarrow x(t-h(t)) = x(t-d(t)) + \delta \nabla(\dot{x}) +$

C. Briat - PhD. defense [GIPSA-lab / SLR team]

System with two constrained delays

$$\dot{x}(t) = A_{cl}(\rho)x(t) + A_h(\rho)x(t - h(t)) + B(\rho)K_h(\rho)x(t - d(t)) A_{cl}(\rho) = A(\rho) + B(\rho)K_0(\rho)$$

with $|d(t) - h(t)| \leq \delta$

How to consider the relation between the delays?

Model Transformation

$$\nabla(\eta) := \frac{1}{\delta} \int_{t-h(t)}^{t-d(t)} \eta(s) ds$$

▶ Linear dynamical time-varying operator $||\nabla||_{\mathcal{L}_2 - \mathcal{L}_2} \leq 1$

$$\triangleright \ \nabla(\dot{x}) = \frac{1}{\delta} (x(t-d(t)) - x(t-h(t))) \Rightarrow x(t-h(t)) = x(t-d(t)) + \delta \nabla(\dot{x})$$

System with two constrained delays

$$\dot{x}(t) = A_{cl}(\rho)x(t) + A_h(\rho)x(t - h(t)) + B(\rho)K_h(\rho)x(t - d(t)) A_{cl}(\rho) = A(\rho) + B(\rho)K_0(\rho)$$

with $|d(t) - h(t)| \leq \delta$

How to consider the relation between the delays?

Model Transformation

$$\nabla(\eta) := \frac{1}{\delta} \int_{t-h(t)}^{t-d(t)} \eta(s) ds$$

 \blacktriangleright Linear dynamical time-varying operator $||\nabla||_{\mathcal{L}_2-\mathcal{L}_2} \leq 1$

$$\blacktriangleright \nabla(\dot{x}) = \frac{1}{\delta} (x(t-d(t)) - x(t-h(t))) \Rightarrow x(t-h(t)) = x(t-d(t)) + \delta \nabla(\dot{x}) + \delta \nabla(\dot{$$

Transformed Closed-Loop System

$$\begin{array}{lll} \dot{x}(t) & = & A_{cl}(\rho)x(t) + A_{hcl}(\rho)x(t-d(t)) + \delta A_h w_0(t) \\ z_0(t) & = & \dot{x}(t) \\ w_0(t) & = & \nabla(z_0(t)) \end{array}$$

- Uncertain system with one delay
- System stable for if
 - nominal system stable ($\delta = 0$)
 - $||z_0||_{\mathcal{L}_2} < ||w_0||_{\mathcal{L}_2} \text{ for } \delta \neq 0 \text{ (small gain)}$

▶ Previous results : $\gamma = 12.8799$ (Memoryless), $\gamma = 4.1641$ (Exact Memory)

Delay-robust synthesis

FIG.: Best \mathcal{L}_2 performance γ vs. maximal error uncertainty δ

- Characterization of intermediate performances
- Direct generalization of the previous approach

- Example (1)
- ▶ Previous results : $\gamma = 12.8799$ (Memoryless), $\gamma = 4.1641$ (Exact Memory)

Delay-robust synthesis

FIG.: Best \mathcal{L}_2 performance γ vs. maximal error uncertainty δ

- Characterization of intermediate performances
- Direct generalization of the previous approach

Towards Delay-Scheduled Controllers (1)

Drawbacks of memory controllers

- Memory size (store past values)
- Implementing time-varying delays

Delay-scheduled controllers

 $u(t) = K(\rho, h(t))x(t)$

- + Still using delay information
- Less memory
- Difficult synthesis

Towards Delay-Scheduled Controllers (1)

Drawbacks of memory controllers

- Memory size (store past values)
- Implementing time-varying delays

Delay-scheduled controllers

 $u(t) = K(\rho, h(t)) x(t)$

- + Still using delay information
- + Less memory
- Difficult synthesis

Towards Delay-Scheduled Controllers (1)

Drawbacks of memory controllers

- Memory size (store past values)
- Implementing time-varying delays

Delay-scheduled controllers

 $u(t) = K(\rho, h(t)) x(t)$

- + Still using delay information
- + Less memory
- Difficult synthesis

Towards Delay-Scheduled Controllers (2)

Comparison Models

$$\begin{aligned} \dot{x}(t) &= (A+A_h)x(t) - A_h w_0(t) \\ z_0(t) &= (h(t) + h_{max} - h_{min})\dot{x}(t) \\ w_0(t) &= \nabla_1(\dot{x}(t)) \end{aligned}$$

Towards Delay-Scheduled Controllers (2)

Comparison Models

$$\begin{aligned} \dot{x}(t) &= (A + A_h)x(t) - A_h\sqrt{h(t)}h_{max}w_0(t) \\ z_0(t) &= \dot{x}(t) \\ w_0(t) &= \nabla_2(x(t)) \end{aligned}$$

Outline

1. Introduction

- 2. Stability of LPV Time-Delay Systems
- 3. Control of LPV Time-Delay Systems
- 4. Conclusion & Future Works

æ

ヘロア ヘロア ヘビア ヘビア

Conclusion

- Methodology to derive stabilization results from stability results
 - Based on LMI relaxation
 - Generalizes to discretized versions of Lyapunov-Krasovskii functionals
 - Synthesis of memoryless and memory controllers
 - Synthesis of delay-robust controllers using either a adapted functional or (scaled) small gain results.

Future works

- Improve the results for system with time-varying delays
- Generalize to system with non small-delays $(h_{min} > 0)$
- Develop new model transformations for delay-scheduled controller synthesis
- Enhance results on delay-scheduled controllers

・ロト ・四ト ・ヨト ・ヨト

Thank you for your attention

Vi ringrazio per l'attenzione

Merci de votre attention

GrenobleINP

 \mathcal{L}_2 induced norm of \mathcal{D}_h

$$\int_0^{+\infty} \int_{t-h(t)}^t \phi(t)\eta(s)dsdt = \int_0^{+\infty} \int_{q(s)}^s \phi(t)\eta(s)dtds$$

Grenoble INP

Synthesis problem

Find $Z(\rho), \mathcal{X}(\rho)$ such that

$$\Psi(\rho, \dot{\rho}, \mathcal{X}(\rho)) + \mathcal{U}(\rho)Z(\rho)\mathcal{V}(\rho) + (\star)^T \prec 0$$

Existence and Unicity of controller/observers (1)

holds for all $(\rho, \dot{\rho}) \in I_{\rho} \times co\{U_{\nu}\}.$

Controller existence - Projection Lemma

$$Ker[\mathcal{U}(\rho)]\Psi(\rho,\dot{\rho})Ker[\mathcal{U}(\rho)]^T \prec 0 \quad Ker[\mathcal{V}(\rho)]^T\Psi(\rho,\dot{\rho})Ker[\mathcal{V}(\rho)] \prec 0$$

Controller construction

- Implicit
- ► Explicit [lwasaki] : $Z = f(U, V, \Psi, M)$ for every matrix $M \in \mathcal{M}$ to be chosen