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Contributions of the Thesis

Stability Results

I Conference publications [IFAC World Congress ’08], [ECC07]
I Journal submissions IEEE TAC, Systems & Control Letters

Design Methods

I Conference publications [IFAC World Congress ’08], [ECC07], [IFAC SSSC’07]
I Conference submissions [ECC’09]
I Journal submissions IEEE TAC, Systems & Control Letters

Modeling and Control of Disease Epidemics

I Conference publication [IFAC World Congress ’08]
I Journal Submission [Biomedical Signal Processing and Control]
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LPV Systems

I General expression [Packard 1993, Apkarian 1995, 1998] ẋ(t) = A(ρ(t))x(t) + E(ρ(t))w(t)
ρ(t) ∈ Uρ compact
ρ̇(t) ∈ co{Uν}

+ Approximation of nonlinear and LTV systems

+ Offer interesting solutions for control→ gain scheduling

+ Semi-active suspensions [Poussot 2008], robotic systems [Kajiwara 1999],
turbo-fan engines [Gilbert 2008], and so on. . .

– Eigenvalues computation of A(ρ)
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Stability Analysis of LPV Systems

Time vs. Frequency Domain Methods

I Frequency domain analysis ’inapplicable’
I Time Domain analysis→ Lyapunov theory for LPV systems

Vq(x) = xTPx(t) Vr(x) = xTP(ρ)x(t)

Quadratic vs. Robust Stability

I Quadratic stability
I Unbounded parameter variation rates ρ̇ ∈ (−∞,+∞)
I Necessary Condition : Re[λ(A(ρ))] < 0, ρ ∈ Uρ

I Robust stability
I Bounded parameter variation rates
I Necessary and sufficient condition : Re[λ(A(ρ))] < 0, ρ ∈ Uρ
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Control of LPV Systems

Types of Controllers
State-Feedback Dynamic Output Feedback

Robust Controller u(t) = Kx(t)

[
ẋc(t)
u(t)

]
= K

[
xc(t)
y(t)

]

Gain-Scheduled Controller u(t) = K(ρ)x(t)

[
ẋc(t)
u(t)

]
= K(ρ)

[
xc(t)
y(t)

]
Advantages and Drawbacks of LPV Controllers

+ Flexibility

+ Better performance

– Computation

– Implementation
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Linear Time-Delay Systems

General Expression
ẋ(t) = Ax(t) + Ahx(t− h(t)) + Ew(t)
h(t) constant/time− varying
h(t) bounded/unbounded
dh(t)

dt
bounded/unbounded

+ Approximation of systems with propagation, diffusion or memory phenomena
I Networks, combustion processes, population growth, disease propagation, price

fluctuations. . .

– Infinite number of eigenvalues

– Depend on the delay value
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Stability Analysis of Time-Delay Systems (1)

Two notions of stability

I Delay-independent stability→ unbounded delay
I Delay-dependent stability→ bounded delay

Frequency Domain Methods [Niculescu 2001, Gu 2003]

I LTI systems
I Constant delays

Time-domain Methods [Fridman 2001, Gu 2003, Gouaisbaut 2006]

I LTV, LPV and Nonlinear systems
I Time-varying delays
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Stability Analysis of Time-Delay Systems (2)

Extension of Lyapunov Theory

I Lyapunov-Krasovskii & Lyapunov-Razumikhin
I Large bestiary of Lyapunov-Krasovskii functionals [Fridman 2001, Han 2002, Gu

2003]

Example

I Delay-independent stability [Verriest 1991, Bliman 2000, Gu 2003]

Vi = x(t)TPx(t) +

∫ t

t−h
x(θ)TQx(θ)dθ

I Delay-dependent stability [Han 2005, Gouaisbaut 2006]

Vd = Vi +

∫ 0

−h

∫ t

t+θ
ẋ(η)TRẋ(η)dηdθ
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Control of Time-Delay Systems

Controllers
no memory with memory

State Feedback u(t) = K0x(t) + Khx(t− h)

Dynamic Output Feedback
[
ẋc(t)
u(t)

]
= K0

[
xc(t)
y(t)

]
+ Khxc(t− h)

Advantages & Drawbacks of Memory Controllers

+ Flexibility

+ Better performances

– Needs more memory

– Delay supposed to be exactly known

– Problem of delay measurement/estimation [Belkoura]

Robust controllers with uncertain delay ?
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Defense

Delay-robust control of uncertain LPV time-delay systems

u(t) = K(ρ)x(t) +Kh(ρ)x(t− d(t))

I Choice of Lyapunov-Krasovskii functionals
I Derivation of design results
I Delay uncertainties

Design of delay-scheduled state-feedback controllers

u(t) = K(d(t))x(t)

I Delay : parameter vs. operator
I Framework
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Introduction Stability Analysis of LPV Time-Delay Systems Control of LPV Time-Delay Systems

Outline

1. Introduction
2. Stability of LPV Time-Delay Systems

I Presentation of LPV time-delay systems
I Choice of Lyapunov-Krasovskii functional
I Reduction of conservatism

3. Control of LPV Time-Delay Systems

4. Conclusion & Future Works

C. Briat - PhD. defense [GIPSA-lab / SLR team] 16/48



Introduction Stability Analysis of LPV Time-Delay Systems Control of LPV Time-Delay Systems

Example of LPV Time-Delay System

Cutting Process [Zhang 2002]

Workpiece

Blades

I Nonlinearities
I Delay : time between two successive passes of the blades
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Introduction Stability Analysis of LPV Time-Delay Systems Control of LPV Time-Delay Systems

LPV Time-Delay Systems

LPV Time-Delay System [Zhang 2002, Wu 2001, Zhang 2005]

ẋ(t) = A(ρ)x(t) +Ah(ρ)x(t− h(t)) + E(ρ)w(t)
ρ ∈ Uρ
ρ̇ ∈ co{Uν}
h(t) ∈ [0, hmax]∣∣∣∣dh(t)

dt

∣∣∣∣ ≤ µ < 1

(1)

Objectives

I Efficient stability tests
I Efficient design tools
I Tackle delay uncertainties
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Choice of the Lyapunov-Krasovskii functional

Criteria

I Simple form (few decision matrices, small size of LMIs)
I Avoid model-transformations
I ’Good’ results (estimation of delay margin, system norms. . .)
I Stability over an interval of delay values
I Parameter dependent
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Introduction Stability Analysis of LPV Time-Delay Systems Control of LPV Time-Delay Systems

Stability Condition

Generalization of [Han 2005, Gouaisbaut 2006] to the LPV case

V = x(t)TP (ρ)x(t) +

∫ t

t−h(t)
x(θ)TQx(θ)dθ + hmax

∫ 0

−hmax

∫ t

t+θ
ẋ(s)TRẋ(s)dsdθ

I Used along with Jensen’s inequality [Han 2005, Gouaisbaut 2006]

Theorem
The LPV Time-delay system (1) is asymptotically stable if there exists P (ρ), Q,R � 0
such that the LMI A(ρ)TP (ρ) + P (ρ)A(ρ) +Q− R +

∂P (ρ)

∂ρ
ν P (ρ)Ah(ρ) + R hmaxA(ρ)TR

? −(1− µ)Q− R hmaxAh(ρ)TR
? ? −R

 ≺ 0

holds for all ρ ∈ Uρ and ν ∈ Uν .
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Example - LTI case

LTI system with constant delay

ẋ(t) =

[
−2 0
0 −0.9

]
x(t) +

[
−1 −1
0 −1

]
x(t− h)

Comparison with existing results

Method hmax nb. vars
Zhang et al. 2000 6.15 81

Han 2002 4.4721 9 or 18
Xu and Lam 2005 4.4721 17

This result 4.4721 9
Theoretical 6.17 –

+ Computational complexity

+ Competitive

– Gap→ Conservatism
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ẋ(t) =

[
−2 0
0 −0.9

]
x(t) +

[
−1 −1
0 −1

]
x(t− h)

Comparison with existing results

Method hmax nb. vars
Zhang et al. 2000 6.15 81

Han 2002 4.4721 9 or 18
Xu and Lam 2005 4.4721 17

This result 4.4721 9
Theoretical 6.17 –

+ Computational complexity

+ Competitive

– Gap→ Conservatism

C. Briat - PhD. defense [GIPSA-lab / SLR team] 21/48



Introduction Stability Analysis of LPV Time-Delay Systems Control of LPV Time-Delay Systems

Example - LTI case

LTI system with constant delay
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Introduction Stability Analysis of LPV Time-Delay Systems Control of LPV Time-Delay Systems

Origin of Conservatism

I Constant matrices Q,R

V (xt) = x(t)
T
P (ρ)x(t) +

∫ t

t−h(t)
x(θ)

T
Qx(θ)dθ + hmax

∫ 0

−hmax

∫ t

t+θ
ẋ(s)

T
Rẋ(s)dsdθ

I Jensen’s inequality
I Bound of an integral term over a finite interval
I For illustration : Conservatism ≡ surface between curves
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Rẋ(s)dsdθ

I Jensen’s inequality
I Bound of an integral term over a finite interval
I For illustration : Conservatism ≡ surface between curves

time

t-h(t) t

C. Briat - PhD. defense [GIPSA-lab / SLR team] 22/48



Introduction Stability Analysis of LPV Time-Delay Systems Control of LPV Time-Delay Systems

Origin of Conservatism

I Constant matrices Q,R

V (xt) = x(t)
T
P (ρ)x(t) +

∫ t

t−h(t)
x(θ)

T
Qx(θ)dθ + hmax

∫ 0

−hmax

∫ t

t+θ
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Rẋ(s)dsdθ

I Jensen’s inequality
I Bound of an integral term over a finite interval
I For illustration : Conservatism ≡ surface between curves

time

t-h(t) tt-h(t)/2

C. Briat - PhD. defense [GIPSA-lab / SLR team] 22/48



Introduction Stability Analysis of LPV Time-Delay Systems Control of LPV Time-Delay Systems

Origin of Conservatism

I Constant matrices Q,R

V (xt) = x(t)
T
P (ρ)x(t) +

∫ t

t−h(t)
x(θ)

T
Qx(θ)dθ + hmax

∫ 0

−hmax

∫ t

t+θ
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Introduction Stability Analysis of LPV Time-Delay Systems Control of LPV Time-Delay Systems

Reduction of Conservatism

Generalization of the functional [Han 2008]

V = x(t)
T
P (ρ)x(t) +

∫ t

t−h(t)
x(θ)

T
Q(θ)x(θ)dθ +

∫ 0

−hmax

∫ t

t+θ
ẋ(s)

T
R(θ)ẋ(s)dsdθ

Discretization

I Q(·), R(·) : piecewise constant continuous [Gu 2001, Han 2008]

V = x(t)TP (ρ)x(t) +

N−1∑
i=0

∫ t−ih(t)/N

t−(i+1)h(t)/N
x(θ)TQix(θ)dθ

+
hmax

N

N−1∑
i=0

∫ −ihmax/N
−(i+1)hmax/N

∫ t

t+θ
ẋ(s)TRiẋ(s)dsdθ

Synergy of fragmentation and discretization
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ẋ(s)TRiẋ(s)dsdθ

Synergy of fragmentation and discretization

C. Briat - PhD. defense [GIPSA-lab / SLR team] 23/48



Introduction Stability Analysis of LPV Time-Delay Systems Control of LPV Time-Delay Systems

Stability result for N = 2

Theorem
The LPV Time-delay system (1) is asymptotically stable if there exists
P (ρ), Q1, Q2, R1, R2 � 0 such that the LMI

M11(ρ, ρ̇) R1 P (ρ)Ah(ρ)
hmax

2
A(ρ)TR1

hmax

2
A(ρ)TR2

? U1 R2 0 0

? ? U2
hmax

2
Ah(ρ)TR1

hmax

2
Ah(ρ)TR2

? ? ? −R1 0
? ? ? ? −R2

 ≺ 0

holds for all ρ ∈ Uρ and ν ∈ Uν with

M11(ρ, ρ̇) = A(ρ)TP (ρ) + P (ρ)A(ρ) +Q1 −R1 +
∂P (ρ)

∂ρ
ν

U1 = −Q1 +Q2 −R1 −R2

U2 = −Q2 −R2

C. Briat - PhD. defense [GIPSA-lab / SLR team] 24/48



Introduction Stability Analysis of LPV Time-Delay Systems Control of LPV Time-Delay Systems

Example - LTI case (cont’d)

Comparison with existing method using fragmentation [Peaucelle et al. 2007]

Method hmax nb. vars nb vars. Peaucelle et al.
Zhang et al. 2000 6.15 81 –

N = 1 4.4721 9 9
N = 2 5.1775 15 16
N = 3 5.9678 21 27
N = 4 6.0569 27 42
N = 9 6.149 57 177
N = 30 6.171 183 1836

Theoretical 6.172 – –

– Zhang et al. 2000 : constant time-delays only

– Approach of Peaucelle et al. based on translation of the state
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Introduction Stability Analysis of LPV Time-Delay Systems Control of LPV Time-Delay Systems

Outline

1. Introduction

2. Stability of LPV Time-Delay Systems
3. Control of LPV Time-Delay Systems

I Principle of delay-robust stabilization
I Stabilization test - Relaxations
I Example

4. Conclusion & Future Works
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Principle of delay-robust stabilization

Nominal stabilization of LPV time-delay systems

I Gain-scheduled memoryless controller :

u(t) = K0(ρ)x(t)

I Gain-scheduled exact memory controller :

u(t) = K0(ρ)x(t) +Kh(ρ)x(t− h(t))

Delay-robust stabilization of LPV time-delay systems

I Gain-scheduled approximate memory controller :

u(t) = K0(ρ)x(t) +Kh(ρ)x(t− d(t)) with |h(t)− d(t)| ≤ δ

Few studied in the literature
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Introduction Stability Analysis of LPV Time-Delay Systems Control of LPV Time-Delay Systems

Recall of stability test for N = 1

Theorem
System (1) is asymptotically stable if there exists P (ρ), Q,R � 0 such that the LMI A(ρ)TP (ρ) + P (ρ)A(ρ) +Q− R +

∂P (ρ)

∂ρ
ν P (ρ)Ah(ρ) + R hmaxA(ρ)TR

? −(1− µ)Q− R hmaxAh(ρ)TR
? ? −R

 ≺ 0

holds for all ρ ∈ Uρ and ν ∈ Uν .

Goal

I Derive efficient design results
I Tackle delay uncertainty
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Stabilization test for N = 1

System and Controller

ẋ(t) = A(ρ)x(t) +Ah(ρ)x(t− h(t)) +B(ρ)u(t)
u(t) = K0(ρ)x(t) +Kh(ρ)x(t− h(t))

Theorem
The system is asymptotically stabilizable by a control law with exact memory if there
exists P (ρ), Q,R � 0 and K0(ρ),Kh(ρ) such that the LMI[

Acl
TP + PAcl +Q− R + Ṗ PAhcl + R hmaxAcl

TR

? −(1− µ)Q− R hmaxAhcl
TR

? ? −R

]
≺ 0

holds for all ρ ∈ Uρ and ν ∈ Uν with Acl= A+BK0 and Ahcl= Ah +BKh.

Convexity

– Bilinear matrix inequality→ non-convex

– Single terms in R and multiple products→ Linearization not possible ! !
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Introduction Stability Analysis of LPV Time-Delay Systems Control of LPV Time-Delay Systems

Preliminary Relaxations

Common Relaxations
I Remove single terms in R

I Avoid Jensen’s inequality
– High increase of conservatism

I Set P (ρ) = ε(ρ)R
– Difficult choice of ε(ρ)
– High increase of conservatism
– Increase of computational complexity

Relaxation of [Briat. IFAC World Congress 2008]

I Use of adjoint system and projection lemma
+ Non conservative
– Nonlinear optimization problem (expensive, local convergence)

High increase of conservatism and/or computational complexity
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Introduction Stability Analysis of LPV Time-Delay Systems Control of LPV Time-Delay Systems

Proposed Relaxation

Origin of the Problem

I Substitution of the closed-loop but convexity not preserved
I Relaxation done after substitution

Proposed Methodology

I Test modification→ ’convexity preserving’ form
I Relaxation done before substitution
I Orientation of the relaxation

Relaxation features
I Decoupling multiple matrix products

I Introduction of a new variable
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Introduction Stability Analysis of LPV Time-Delay Systems Control of LPV Time-Delay Systems

Relaxed stability test for N = 1

Theorem
System (1) is asymptotically stable if there exists P (ρ), Q,R � 0, X(ρ) and
K0(ρ),Kh(ρ) such that the LMI
−X(ρ)−X(ρ)T X(ρ)TA(ρ) + P (ρ) X(ρ)TAh(ρ) X(ρ)T hmaxR

? −P (ρ) +Q− R + Ṗ R 0 0
? ? −(1− µ)Q− R 0 0
? ? ? −P (ρ) −hmaxR
? ? ? ? −R

 ≺ 0

holds for all ρ ∈ Uρ and ν ∈ Uν .

I Additional variable X(ρ)

I No multiple products anymore
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Relaxed stabilization test for N = 1

I Stabilization of system (1) by an exact memory control law :

u(t) = K0(ρ)x(t) +Kh(ρ)x(t− h(t)) (2)

I After some manipulations. . .

Theorem
System (1) is stabilizable using (2) if there exists P (ρ), Q,R � 0, X and Y0(ρ), Yh(ρ)
such that the LMI
−X −XT A(ρ)X + B(ρ)Y0(ρ) + P (ρ) Ah(ρ)X + B(ρ)Yh(ρ) XT R̃

? −P (ρ) +Q− R + Ṗ (ρ) R 0 0
? ? −(1− µ)Q− R 0 0

? ? ? −P (ρ) −R̃
? ? ? ? −R

 ≺ 0

holds for all ρ ∈ Uρ and ν ∈ Uν with R̃ = hmaxR.
Suitable controller gains are given by K0(ρ) = Y0(ρ)X−1 and Kh(ρ) = Yh(ρ)X−1.
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u(t) = K0(ρ)x(t) +Kh(ρ)x(t− h(t)) (2)

I After some manipulations. . .

Theorem
System (1) is stabilizable using (2) if there exists P (ρ), Q,R � 0, X and Y0(ρ), Yh(ρ)
such that the LMI
−X −XT A(ρ)X + B(ρ)Y0(ρ) + P (ρ) Ah(ρ)X + B(ρ)Yh(ρ) XT R̃

? −P (ρ) +Q− R + Ṗ (ρ) R 0 0
? ? −(1− µ)Q− R 0 0

? ? ? −P (ρ) −R̃
? ? ? ? −R

 ≺ 0

holds for all ρ ∈ Uρ and ν ∈ Uν with R̃ = hmaxR.
Suitable controller gains are given by K0(ρ) = Y0(ρ)X−1 and Kh(ρ) = Yh(ρ)X−1.
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Example (1)

I LPV time-delay system [Zhang et al., 2005]

ẋ(t) =

[
0 1 + 0.1ρ(t)
−2 −3 + 0.2ρ(t)

]
x(t) +

[
0.2ρ(t)

0.1 + 0.1ρ(t)

]
u(t)

+

[
0.2ρ(t) 0.1

−0.2 + 0.1ρ(t) −0.3

]
x(t− h(t)) +

[
−0.2
−0.2

]
w(t)

z(t) =

[
0 10
0 0

]
x(t) +

[
0

0.1

]
u(t)

ρ(t) = sin(t)

Goal
I Find a controller such that such that the closed-loop system

1. is asymptotically stable for all h(t) ∈ [0, hmax] with |ḣ(t)| ≤ µ < 1 and
2. satisfies

||z||L2 ≤ γ||w||L2
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Example (2)

Case 1 : ḣ(t) ≤ 0.5, h(t) ∈ [0, 0.5]

I Design of a memoryless state-feedback control law

u(t) = K0(ρ)x(t)

minimal L2 gain
[Zhang et al. 2005] γ∗ = 3.09

[Briat et al. IFAC WC 2008] γ∗ = 2.27
N = 1 γ∗ = 1.90

K0(ρ) =

[
−1.0535− 2.9459ρ+ 1.9889ρ2

−1.1378− 2.6403ρ+ 1.9260ρ2

]T
I Better performances
I Lower controller gains
I Lower numerical complexity
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Example (3)

Case 2 : ḣ(t) ≤ 0.9, h(t) ∈ [0, 10]

I Synthesis of both memoryless and exact memory controllers

u(t) = K0(ρ)x(t) u(t) = K0(ρ)x(t) +Kh(ρ)x(t− h(t))

minimal L2 gain
Memoryless Controller γ∗ = 12.8799
Exact Memory Controller γ∗ = 4.1641

+ Delayed term important

– Needs the exact value of the delay at any time

– Problem of delay estimation [Belkoura et al. 2008]

Robust synthesis w.r.t. delay uncertainty on implemented delay
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Delay-Robust Controllers (1)

System and Controller

ẋ(t) = A(ρ)x(t) +Ah(ρ)x(t− h(t)) +B(ρ)u(t)
u(t) = K0(ρ)x(t) +Kh(ρ)x(t− d(t))

with |d(t)− h(t)| ≤ δ.

Objectives

I Given maximal error δ on the delay knowledge, find a controller such that the
closed-loop system

1. is asymptotically stable for all h(t) ∈ [0, hmax] with |ḣ(t)| ≤ µ < 1, |d(t)− h(t)| ≤ δ
and

2. satisfies the input/output relationship

||z||L2 ≤ γ||w||L2
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Delay-Robust Controllers (2)

Closed-loop system

I System with two constrained delays

ẋ(t) = Acl(ρ)x(t) +Ah(ρ)x(t− h(t)) +B(ρ)Kh(ρ)x(t− d(t))
Acl(ρ) = A(ρ) +B(ρ)K0(ρ)

with |d(t)− h(t)| ≤ δ

How to consider the relation between the delays ?

Model Transformation

∇(η) :=
1

δ

∫ t−d(t)

t−h(t)
η(s)ds

I Linear dynamical time-varying operator ||∇||L2−L2 ≤ 1

I ∇(ẋ) =
1

δ
(x(t− d(t))− x(t− h(t)))⇒ x(t− h(t)) = x(t− d(t)) + δ∇(ẋ)
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Transformed Closed-Loop System

 TDS

ẋ(t) = Acl(ρ)x(t) +Ahcl(ρ)x(t− d(t)) + δAhw0(t)
z0(t) = ẋ(t)
w0(t) = ∇(z0(t))

I Uncertain system with one delay
I System stable for if

I nominal system stable (δ = 0)
I ||z0||L2 < ||w0||L2 for δ 6= 0 (small gain)
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Example (1)

I Previous results : γ = 12.8799 (Memoryless), γ = 4.1641 (Exact Memory)

Delay-robust synthesis

4.1658

12.7176

FIG.: Best L2 performance γ vs. maximal error uncertainty δ

I Characterization of intermediate performances
I Direct generalization of the previous approach
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Towards Delay-Scheduled Controllers (1)

Drawbacks of memory controllers

I Memory size (store past values)
I Implementing time-varying delays

Delay-scheduled controllers

u(t) = K(ρ, h(t))x(t)

+ Still using delay information

+ Less memory

– Difficult synthesis
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Towards Delay-Scheduled Controllers (2)

Model Transformations

Uncertain LPV

[ECC 07] ∇1(η) =

∫ t

t−h(t)

1

h(s) + hmax + hmin
η(s)ds

Comparison Models

ẋ(t) = (A+Ah)x(t)−Ahw0(t)
z0(t) = (h(t) + hmax − hmin)ẋ(t)

w0(t) = ∇1( ˙x(t))
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Towards Delay-Scheduled Controllers (2)

Model Transformations

Uncertain LPV

[IFAC WC 08] ∇2(η) =

√
1

h(t)hmax

∫ t

t−h(t)
η(s)ds

Comparison Models

ẋ(t) = (A+Ah)x(t)−Ah
√
h(t)hmaxw0(t)

z0(t) = ẋ(t)

w0(t) = ∇2( ˙x(t))
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Outline

1. Introduction

2. Stability of LPV Time-Delay Systems

3. Control of LPV Time-Delay Systems

4. Conclusion & Future Works
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Conclusion

I Methodology to derive stabilization results from stability results
I Based on LMI relaxation
I Generalizes to discretized versions of Lyapunov-Krasovskii functionals
I Synthesis of memoryless and memory controllers
I Synthesis of delay-robust controllers using either a adapted functional or (scaled)

small gain results.
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Future works

I Improve the results for system with time-varying delays
I Generalize to system with non small-delays (hmin > 0)
I Develop new model transformations for delay-scheduled controller synthesis
I Enhance results on delay-scheduled controllers
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Thank you for your attention

Vi ringrazio per l’attenzione

Merci de votre attention
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L2 induced norm of Dh
∫ +∞

0

∫ t

t−h(t)
φ(t)η(s)dsdt =

∫ +∞

0

∫ s

q(s)
φ(t)η(s)dtds

with q := p−1.
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Existence and Unicity of controller/observers (1)

Synthesis problem
Find Z(ρ),X (ρ) such that

Ψ(ρ, ρ̇,X (ρ)) + U(ρ)Z(ρ)V(ρ) + (?)T ≺ 0

holds for all (ρ, ρ̇) ∈ Iρ × co{Uν}.

Controller existence - Projection Lemma

Ker[U(ρ)]Ψ(ρ, ρ̇)Ker[U(ρ)]T ≺ 0 Ker[V(ρ)]TΨ(ρ, ρ̇)Ker[V(ρ)] ≺ 0

Controller construction

I Implicit
I Explicit [Iwasaki] :Z = f(U ,V,Ψ,M) for every matrix M ∈M to be chosen
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