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Abstract

This thesis is devoted to two NP-complete combinatorial optimization problems arising
in computational biology, the well-studied multiple sequence alignment problem and the
new formulated interval constraint coloring problem. It shows that advanced mathe-
matical programming techniques are capable of solving large scale real-world instances
from biology to optimality. Furthermore, it reveals alternative methods that provide
approximate solutions.

In the first part of the thesis, we present a Lagrangian relaxation approach for the
multiple sequence alignment (MSA) problem. The multiple alignment is one common
mathematical abstraction of the comparison of multiple biological sequences, like DNA,
RNA, or protein sequences. If the weight of a multiple alignment is measured by the sum
of the projected pairwise weights of all pairs of sequences in the alignment, then finding
a multiple alignment of maximum weight is NP-complete if the number of sequences is
not fixed. The majority of the available tools for aligning multiple sequences implement
heuristic algorithms ; no current exact method is able to solve moderately large instances
or instances involving sequences exhibiting a lower degree of similarity.

We present a branch-and-bound (B&B) algorithm for the MSA problem. We approximate
the optimal integer solution in the nodes of the B&B tree by a Lagrangian relaxation of an
ILP formulation for MSA relative to an exponential large class of inequalities, that ensure
that all pairwise alignments can be incorporated to a multiple alignment. By lifting
these constraints prior to dualization the Lagrangian subproblem becomes an extended
pairwise alignment (EPA) problem : Compute the longest path in an acyclic graph, that
is penalized a charge for entering “obstacles”. We describe an efficient algorithm that
solves the EPA problem repetitively to determine near-optimal Lagrangian multipliers
via subgradient optimization. The reformulation of the dualized constraints with respect
to additionally introduced variables improves the convergence rate dramatically. We
account for the exponential number of dualized constraints by starting with an empty
constraint pool in the first iteration to which we add cuts in each iteration, that are most
violated by the convex combination of a small number of preceding Lagrangian solutions
(including the current solution). In this relax-and-cut scheme, only inequalities from the
constraint pool are dualized.
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ii Abstract

The interval constraint coloring problem appears in the interpretation of experimental
data in biochemistry. Monitoring hydrogen-deuterium exchange rates via mass spec-
troscopy is a method used to obtain information about protein tertiary structure. The
output of these experiments provides aggregate data about the exchange rate of residues
in overlapping fragments of the protein backbone. These fragments must be re-assembled
in order to obtain a global picture of the protein structure. The interval constraint col-
oring problem is the mathematical abstraction of this re-assembly process.

The objective of the interval constraint coloring problem is to assign a color (exchange
rate) to a set of integers (protein residues) such that a set of constraints is satisfied.
Each constraint is made up of a closed interval (protein fragment) and requirements on
the number of elements in the interval that belong to each color class (exchange rates
observed in the experiments).

We introduce a polyhedral description of the interval constraint coloring problem, which
serves as a basis to attack the problem by integer linear programming (ILP) methods
and tools, which perform well in practice. Since the goal is to provide biochemists with
all possible candidate solutions, we combine related solutions to equivalence classes in
an improved ILP formulation in order to reduce the running time of our enumeration
algorithm. Moreover, we establish the polynomial-time solvability of the two-color case
by the integrality of the linear programming relaxation polytope P, and also present
a combinatorial polynomial-time algorithm for this case. We apply this algorithm as
a subroutine to approximate solutions to instances with arbitrary but fixed number of
colors and achieve an order of magnitude improvement in running time over the (exact)
ILP approach.

We show that the problem is NP-complete for arbitrary number of colors, and we
provide algorithms that, given an instance with P 6= ∅, find a coloring that satisfies
all the coloring requirements within ±1 of the prescribed value. In light of our NP-
completeness result, this is essentially the best one can hope for. Our approach is based
on polyhedral theory and randomized rounding techniques.

In practice, data emanating from the experiments are noisy, which normally causes the
instance to be infeasible, and, in some cases, even forces P to be empty. To deal with this
problem, the objective of the ILP is to minimize the total sum of absolute deviations
from the coloring requirements over all intervals. The combinatorial approach for the
two-color case optimizes the same objective function. Furthermore, we use this combi-
natorial method to compute, in a Lagrangian way, a bound on the minimum total error,
which is exploited in a branch-and-bound manner to determine all optimal colorings.
Alternatively, we study a variant of the problem in which we want to maximize the
number of requirements that are satisfied. We prove that this variant is APX -hard even
in the two-color case and thus does not admit a polynomial time approximation scheme
(PTAS) unless P = NP . Therefore, we slightly (by a factor of (1+ǫ)) relax the condition
on when a requirement is satisfied and propose a quasi-polynomial time approximation
scheme (QPTAS) which finds a coloring that “satisfies” the requirements of as many
intervals as possible.



Zusammenfassung

Die vorliegende Dissertation widmet sich zwei NP-vollständigen kombinatorischen Op-
timierungsproblemen aus der Bioinformatik, dem intensiv erforschten Problem des Mul-
tiplen Sequenzalignments (englisch: multiple sequence alignment) sowie dem neu for-
mulierten Intervallinduzierten Färbungsproblem (englisch: interval constraint coloring).
Sie zeigt, dass mithilfe von fortgeschrittenen Methoden der mathematischen Program-
mierung durchaus auch höherdimensionale Probleminstanzen der Biologie exakt gelöst
werden können. Darüberhinaus beschreibt sie alternative Ansätze, die es erlauben, ap-
proximative Lösungen (mit und ohne Garantie bzgl. Approximationsgüte) zu bestimmen.

Im ersten Teil dieser Dissertation stellen wir einen Algorithmus für das Multiple Sequen-
zalignment (MSA) vor, der dem Konzept einer Lagrange-Relaxierung folgt. Das Multiple
Alignment ist eine gebräuchliche mathematische Abstraktion des Vergleichs von meh-
reren biologischen Sequenzen, wie etwa DNA, RNA oder Proteinsequenzen. Berechnet
sich das Gewicht eines Multiplen Alignments als die Summe der Gewichte aller projezier-
ten Sequenzpaare in dem Alignment, so ist die Bestimmung eines Multiplen Alignments
maximalen Gewichtes NP-vollständig, falls die Anzahl der Sequenzen nicht als fest vor-
gegeben betrachtet wird. Die Mehrzahl der verfügbaren Programme verfolgt deshalb
einen heuristischen Ansatz; keine bisher vorgestellte Methode ist in der Lage, moderat
große Instanzen oder Instanzen, die Sequenzen von einem niedrigen Ähnlichkeitsgrad
umfassen, exakt (optimal) zu lösen.

Wir stellen einen exakten Algorithmus für das Problem des Multiplen Sequenzalignments
vor, der auf dem Branch-and-Bound (B&B) Prinzip beruht. Wir approximieren die
optimale ganzzahlige Lösung in den Knoten des B&B Baums durch eine Lagrange-
Relaxierung einer ILP Formulierung von MSA. Wir dualisieren eine Klasse von Un-
gleichungen exponentieller Größe, die sicherstellt, dass alle paarweisen Alignments kon-
fliktfrei zu einem Multiplen Alignment zusammengesetzt werden können. Durch eine
vorangehende Verstärkung dieser Ungleichungen wird das Lagrange-Subproblem zum
Erweiterten Paarweisen Alignment (EPA) Problem: berechne den längsten Pfad in ei-
nem azyklischen Graph, der für das Betreten von “Hindernissen” bestraft wird. Wir
beschreiben einen effizienten Algorithmus, der das EPA Problem wiederholt löst, um
annähernd optimale Lagrange-Multiplikatoren mittels Subgradienten-Verfahren zu be-
stimmen. Die Umformulierung der dualisierten Ungleichungen bezüglich zusätzlich ein-
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iv Zusammenfassung

geführter Variablen verbessert die Konvergenzrate dramatisch. Wir begegnen dem Pro-
blem der exponentiellen Größe der Menge von dualisierten Ungleichungen, indem wir,
beginnend mit einem leeren Constraint-Pool in der ersten Iteration, in jeder weiteren
Iteration diesem Pool Ungleichungen hinzufügen, die von der Konvexkombination einer
kleinen Zahl von vorhergenden Lagrange-Lösungen (einschließlich der aktuellen Lösung)
am stärksten verletzt werden. Dem Relax-and-Cut Schema folgend werden jeweils nur
im Constraint-Pool befindliche Ungleichungen dualisiert.

Das Intervallinduzierte Färbungsproblem taucht in der Biochemie bei der Interpretati-
on von experimentellen Messdaten auf. Die Beobachtung von Wasserstoff-Deuterium-
Austauschraten mittels Massenspektrometrie gibt Hinweis auf die tertiäre Struktur von
Proteinen. Die experimentell ermittelten Daten geben Aufschluss über die Verteilung der
Austauschraten innerhalb von sich überlappenden Fragmenten der Proteinsequenz. Ziel
ist es, den einzelnen Residuen Austauschraten so zuzuordnen, dass sie mit den beobach-
teten Verteilungen konsistent sind. Nur solch hinreichend feingranulare Informationen
lassen den Schluss auf die Lösungsmittel-Zugänglichkeit von Molekülabschnitten, und
damit auf Eigenschaften der tertiären Struktur, zu. Das Intervallinduzierte Färbungs-
problem ist die mathematische Abstraktion dieses Verfeinerungsprozesses.

Das Intervallinduzierte Färbungsproblem verlangt nun, einer Menge von positiven gan-
zen Zahlen (den Residuen), unter Einhaltung von gewissen Bedingungen, eine Farbe
(Austauschrate) zuzuordnen. Dabei gilt eine Bedingung als erfüllt, wenn sich eine erfor-
derlich Anzahl von Elementen jeder Farbklasse (den experimentell beobachteten Aus-
tauschraten) in einem gegebenen geschlossenen Interval (Proteinfragment) befinden.

Wir formulieren das Problem als ganzzahliges lineares Programm (ILP) und wenden
einen impliziten Aufzählungsalgorithmus an, der typische Probleminstanzen aus der Pra-
xis sehr effizient löst. Da man in der Biochemie an allen möglichen Kandidatenlösungen
interessiert ist, fassen wir in einer überarbeiteten ILP Formulierung “ähnliche” Lösungen
in Äquivalenzklassen zusammen und verbessern dadurch das Laufzeitverhalten unseres
Aufzählungsalgorithmus. Gleichzeitig begründen wir die Lösbarkeit des Zweifarbenfalls
in polynomieller Zeit durch die Ganzzahligkeit des durch die lineare Relaxierung beschrie-
benen Polytops P und beschreiben für eben diesen Fall einen kombinatorischen Algorith-
mus mit polynomieller Laufzeit. Dieser Algorithmus dient als Baustein, um Lösungen
von Instanzen mit beliebiger aber fester Anzahl von Farben zu approximieren (ohne
Garantie bzgl. Approximationsgüte). Gegenüber dem (exakten) ILP-Ansatz erzielen wir
dadurch eine Laufzeitverbesserung die im Bereich einer Größenordnung liegt.

Wir beweisen, dass dieses Problem, gegeben eine beliebige Anzahl von Farben, NP-
vollständig ist und beschreiben einen Algorithmus zur Bestimmung einer Färbung, vor-
ausgesetzt P 6= ∅, die von allen Farbanforderungen jeweils um höchstens ±1 abweicht.
Im Angesicht der NP-Vollständigkeit dieses Problems ist mit einem sehr viel stärkeren
Resultat nicht zu rechnen. Unser Ansatz beruht auf Erkenntnissen der Polyedertheorie
und nutzt randomisierte Rundungstechniken.

In der Praxis sind experimentell ermittelte Daten jedoch fehlerbehaftet, was meist zur
Unlösbarkeit des Problems führt und gelegentlich sogar P = ∅ bewirkt. Wir begegnen
diesem Problem zum einen mit der Modellierung der absoluten Abweichung von den
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Farbanforderungen mithilfe zusätzlicher Variablen in dem ganzzahligen linearen Pro-
gramm, deren Summe über alle Intervalle in der Zielfunktion minimiert wird. Der kombi-
natorische Ansatz für den Zweifarbenfall optimiert dabei den gleichen Zielfunktionswert.
Darüberhinaus erlaubt uns eine geeignete Lagrange-Relaxierung des Problems, mithilfe
dieses kombinatorischen Algorithmus eine Schranke für den minimal möglichen Fehler
zu berechnen, der in einem B&B Schema verwendet wird, um alle optimalen Färbungen
zu bestimmen. Als Alternative dazu formulieren wir eine Problemvariante, in der wir die
Anzahl der Intervalle, deren Farbanforderungen erfüllt werden, zu maximieren versuchen.
Wir zeigen, dass diese Problemvariante bereits im Zweifarbenfall APX -hart ist und da-
mit kein polynomielles Approximationsschema (PTAS) zulässt, es sei denn P = NP.
Deshalb relaxieren wir die Erfüllung einer Farbanforderung geringfügig (um einen multi-
plikativen Faktor (1+ǫ)) und führen ein Approximationsschema mit quasi-polynomieller
Laufzeit ein, das die Anforderungen von so vielen Intervallen wie möglich “erfüllt”.
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Résumé

Cette thèse est dédiée à la résolution de deux problèmes d’optimisation combinatoire
NP-complets surgissant en bioinformatique, à savoir le problème classique d’alignement
de séquences, ainsi qu’un problème nouvellement formalisé, le problème de coloration par
contraintes d’intervalles ou Interval Constraint Coloring Problem (ICP). Nous montrons
dans cette thèse qu’il est possible de résoudre des instances réelles et de grande taille
de ces problèmes apparaissant en biologie, et ceci par des méthodes de programma-
tion mathématiques avancées. Nous démontrons également l’existence de méthodes plus
efficaces, permettant d’obtenir des solutions approchées pour ces mêmes problèmes.

Dans la première partie de la thèse, nous présentons un algorithme pour la solution
du problème classique de l’alignement de séquences, basé sur la relaxation lagrangienne.
Le problème de l’alignement de séquences est une abstraction mathématique courante
du problème de comparaison de séquences biologiques, comme l’ADN, l’ARN ou les
séquences de protéines. Si le poids d’un alignement séquentiel multiple est calculé comme
la somme des poids des paires de séquence projetées de l’alignement considéré, alors le
problème de déterminer un alignement de poids maximal est NP-complet, tant que le
nombre de séquences n’est pas fixé. La plupart des logiciels disponibles pour la résolution
du problème d’alignement de séquences se focalisent donc sur des approches heuristiques.
Aucune méthode n’est actuellement capable de résoudre efficacement des instances de
taille moyenne, ou des instances comportant des séquences d’un faible taux de similitude,
de ce problème de manière exacte.

Nous présentons un nouvel algorithme pour la résolution du problème de l’alignement
de séquences, basé sur la technique de séparation et évaluation (branch-and-bound ou
B&B). Nous approchons la solution optimale en nombres entiers dans les nœuds de
l’arbre B&B par une relaxation lagrangienne de la formulation en tant que PLNE
du problème d’alignement de séquences multiples. Un nombre exponentiel d’inégalités
supplémentaires doit alors être vérifié afin de garantir que l’alignement de séquences mul-
tiples peut être reconstruit sans conflits à partir des alignements individuels. En renfor-
cant ces inégalités avant de les dualiser, le sous-problème lagrangien devient le problème
d’alignement par paires étendu : il s’agit alors de trouver le plus long chemin dans un
graphe acyclique, auquel sont ajoutés des pénalités lors du passage à travers certaines
zones “obstacles”. Nous introduisons un algorithme efficace permettant de résoudre ce
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viii Résumé

problème de manière répétitive, afin de trouver une bonne approximation des multipli-
cateurs de Lagrange via optimization du sous-gradient. La reformulation des inégalités
dualisées par rapport à des variables supplémentaires améliore de manière significative
le taux de convergence de l’algorithme. Nous adressons le problème du nombre expo-
nentiel d’inégalités par une approche itérative. L’ensemble des contraintes est vide au
début. Après chaque itération, nous rajoutons à cet ensemble ces inégalités qui sont le
plus violées par la combinaison convexe d’un petit nombre des solutions lagrangiennes
précédentes (y compris la solution courante). Conformément au schéma relax-and-cut,
nous dualisons exclusivement les inégalités présents dans l’ensemble des contraintes décrit
précédemment.

L’ICP est un problème qui se pose lors de l’analyse et l’interprétation de données
expérimentales en biochimie. L’analyse du taux d’échange hydrogène/deutérium par
spectrométrie de masse est une des méthodes utilisées pour obtenir des informations
sur la structure tertiaire des protéines. Les résultats de ces expériences se présentent
sous forme de taux d’échange des résidus dans les segments chevauchés de la protéine.
Ces segments doivent être recollés afin d’obtenir une vision globale de la structure de la
protéine. L’ICP est l’abstraction mathématique de ce process de recombinaison.

L’objectif de l’ICP est d’attribuer une couleur (taux d’échange) à un ensemble d’entiers
(résidus de protéines) de telle manière à ce qu’un ensemble de contraintes est vérifié.
Chaque contrainte représente un intervalle fermé (segment d’une protéine) ainsi qu’un
ensemble d’exigences supplémentaires concernant le nombre d’éléments qui doivent ap-
partenir à chacune des catégories de couleur (taux d’échanges observés lors des expé-
riences).

Nous montrons que le problème peut être résolu par des méthodes de programmation
linéraire en nombres entiers (PLNE), et nous utilisons un algorithme d’énumération im-
plicite qui s’avère efficace pour la plupart des problèmes qu’on rencontre dans la pratique.
Puisque notre motivation est de fournir aux biochimistes une liste exhaustive des solu-
tions potentielles, une version améliorée de notre approche PLNE consiste à regrouper
des solutions similaires dans des classes d’équivalence, ceci afin d’établir une version
améliorée et plus performante de la procédure d’énumération. Nous démontrons ensuite
la solvabilité du cas particulier à deux couleurs par la contrainte de solution en nom-
bres entiers du polytope P, défini à travers la relaxation linéaire, tout en proposant un
algorithme de résolution de complexité polynomielle pour ce cas précis. Cet algorithme
sert ensuite de base pour l’établissement de solutions approchés d’instances de dimen-
sion quelconque mais fixe (pour le moment sans garantie sur la qualité de la solution
obtenue). Nous obtenons ainsi une amélioration d’un ordre de grandeur en termes de
performance par rapport à la solution exacte, basée sur l’approche PLNE.

Nous démontrons que ce problème est NP-complet pour un nombre arbitraire de cou-
leurs. Nous établissons ensuite un algorithme qui, étant donné P 6= ∅, est capable de
déterminer une coloration satisfaisante toutes les contraintes données avec un écart max-
imal de ±1 des valeurs cible. Vue la complexité en NP du problème, il ne semble pas
possible d’obtenir des solutions d’une qualité sensiblement supérieure. Notre approche
est essentiellement basée sur la théorie des polyèdres et des techniques d’arrondissage
randomisés.
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Les données obtenues lors des expériences biologiques réelles sont souvent bruitées, ce qui
entraine le plus souvent l’insolvabilité du problème, voire même P = ∅. Afin d’adresser
ce problème, l’objectif de la PLNE est de minimiser la somme des déviations absolues
des contraintes de coloration sur l’intégralité des intervalles. L’approche particulière
à deux couleurs optimise en effet cette même fonction. En outre, nous utilisons cette
approche combinatoire pour déterminer, d’une façon lagrangienne, une borne sur l’erreur
minimale, qui sera ensuite utilisée dans un algorithme de type branch-and-bound pour
déterminer toutes les colorations optimales. Nous proposons une variante du problème
précédent, dans laquelle nous essayons de maximiser le nombre contraintes qui peuvent
être satisfaits en même temps. Nous démontrons que ce problème est APX -dur et qu’il
ne permet donc pas de schéma d’approximation polynomial sauf si P = NP . C’est
pourquoi nous relaxons légèrement le critère de satisfiabilité (par un facteur (1 + ǫ)) et
décrivons par la suite un schéma d’approximation d’une complexité quasi-polynomiale,
permettant de “satisfaire” le plus grand nombre de contraintes possible.
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Chapter 1
Introduction

”What’s new?” is an interesting and broadening eternal question, but one
which, if pursued exclusively, results only in an endless parade of trivia and
fashion, the silt of tomorrow. I would like, instead, to be concerned with the
question ”What is best?”, a question which cuts deeply rather than broadly,
a question whose answers tend to move the silt downstream.

Robert M. Pirsig
Zen and the Art of Motorcycle Maintenance (1974)

Challenging mathematical problems that arose in the world in which Diophantus of
Alexandria (a.d. c.200 - c.284), often known as “the father of algebra”, lived, found
their way into Arithmetica. In his major work, he collected 130 problems giving numer-
ical solutions of determinate and indeterminate algebraic equations, potentially in the
domain of integer numbers. Most of the problems the work considers lead to quadratic
equations. Diophantus was always satisfied with any positive rational solution; he con-
sidered negative or irrational solutions “useless”, or even “absurd” (how could a problem
lead to −4 books?).

In the work Liber abbaci (1202), Leonardo of Pisa (a.d. c.1170 - c.1240), known as
Fibonacci (from “filio Bonacci”), provided problems and puzzles inspired by everyday
life that often lead to linear equations, for example: “A man buys 30 birds: partridges,
doves and sparrows. A partridge costs three silver coins, a dove two and a sparrow 1/2.
He pays with 30 silver coins. How many birds of each type did he buy?” Assuming
positive integers, the only possible solution is 3, 5, and 22, respectively. For centuries,
especially in contexts like mechanics, astronomy, or economics, linear algebraic equations
and diophantine equations were the tool by which problems could be solved. Frequently
these problems had unique solutions, in other words, no “choice” was involved.

In the more recent past, however, problems arising in mathematics, the biological and
chemical sciences, engineering, and management, allow for a large set of alternative solu-
tions, non of which is “useless” or even “absurd”. Nevertheless, they may be of different
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value, which naturally leads to the question “What is best?”. Informally speaking, we
call such problems, in which we seek to optimize the quality of a solution, an optimization
problem. Especially computational biology is a great source of important and difficult op-
timization problems, that frequently involve huge but discrete solution spaces, so-called
combinatorial optimization problems.

This thesis is devoted to two NP-complete combinatorial optimization problems (and
variants of them) arising in computational biology, the multiple sequence alignment prob-
lem, and in biochemistry, the interval constraint coloring problem. In both problems we
obtain bounds on the best value of a solution by exploiting, in a Lagrangian relaxation
scheme, the special structure embedded in the problem.

1.1 Lagrangian Relaxation

A Combinatorial Alternative to Linear Programming

The first step in the canonical approach to NP-hard combinatorial optimization prob-
lems is to find a “good” integer linear programming (ILP) formulation. From a “good”
formulation one can derive a problem that can be solved effectively, yet yielding a strong
bound on the objective value of the original problem. Since it is the restriction of (a
subset of) variables to take integral values that destroy the convexity of the feasible
region and thus make the problem seemingly harder to solve, the linear programming
(LP) relaxation removes this restriction.

In a second step, a solution to the ILP is obtained by using a general-purpose ILP
solver. Commercial ILP solvers usually rely on implicit enumeration techniques like
branch-and-bound, using LP relaxation to approximate the optimal solution. However,
dropping the integrality condition might alter the structure of the feasible region so
significantly, that the LP solution provides a rather weak bound on the optimal value
of the integer solution. Therefore, one often tries to “cut” from the linear programming
polytope by adding hyperplanes (constraints), so that it closely approximates, at least
in the proximity of the optimal solution, the convex hull of all feasible solutions to the
original problem.

The pioneering work in the area of research on how to describe the convex hull of all
feasible solutions by linear inequalities, called polyhedral combinatorics, was done by
Dantzig, Fulkerson and Johnson (1954) [DFJ54]. They proposed a method for the trav-
eling salesman problem (TSP), the archetypical problem in combinatorial optimization.
In this problem, we want to determine the order, in which a “salesman” has to visit
a number of “cities”, such that all cities are visited exactly once, and such that the
total length of the tour is minimized. They iteratively added valid inequalities (inequal-
ities that are satisfied by all feasible integer points) that “cut off” the fractional linear
programming solution, i.e. hyperplanes that separate the fractional point from the poly-
hedron described by the convex hull of all feasible points. Solving a 49-city instance to
optimality at that time, demonstrates the power of their cutting-plane methodology.
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An alternative approach to approximate the optimal integer solution is based on the
observation, that the structure of many hard integer programming problems allows the
problems to be interpreted as an “easy” to solve subproblem, complicated by additional
constraints. However, relaxing these “complicating” constraints may result in weak
bounds on the optimal value. Lagrangian relaxation resolves this difficulty by penalizing
the violation of the complicating constraints with an associated Lagrangian multiplier in
the objective function. The Lagrangian relaxation method, as it exists today, was first
applied to the traveling salesman problem in 1970 by Held and Karp [HK70]. They pro-
duced a sequence of minimal 1-trees, a slight variant of spanning trees, that increasingly
resemble tours. The sequence of 1-trees is computed via an iterative approach to deter-
mine Lagrangian multipliers that yield a best possible lower bound on the optimal TSP
solution (the Lagrangian dual problem), now known in the literature as subgradient op-
timization. Their technique has served as a basis for many successful branch-and-bound
methods to solve TSP to optimality.

To solve the multiple sequence alignment problem and the interval constraint coloring
problem, introduced in the next two sections, we employ a similar methodology. We iden-
tify “easy” (combinatorial) to solve subproblems, a longest path problem in an acyclic
graph in the former, and a minimum cost network flow problem in the latter problem,
and relax the remaining complicating constraints. The resulting Lagrangian bounds are
exploited in a branch-and-bound fashion to obtain an optimal solution. For a compre-
hensive coverage of the field of molecular biology including an introductory exposition
of basic necessary terminology, the reader is referred to one of the standard text books
in this field, such as [WGWZ92].

1.2 Multiple Sequence Alignment (MSA)

In Chapter 2 of this thesis, we present a Lagrangian relaxation approach for the multiple
sequence alignment problem. A multiple alignment is one common mathematical ab-
straction of the comparison of multiple biological sequences, like DNA, RNA, or protein
sequences. From detected commonalities of a set of sequences (so-called “homologous re-
gions”), one might be able to infer evolutionary trees or deduce structural and functional
properties from proteins with similar sequence.

Problem 1.1 (Multiple Sequence Alignment (MSA)). Given a set of strings S =
{s1, s2, . . . , sk} over an alphabet Σ, an alignment of S is a family A = {s̄1, s̄2, · · · , s̄k},
where s̄i is obtained by inserting gap symbols “−” /∈ Σ into string si, such that all strings
in A have equal length and no column consists entirely of gap symbols. Given an objective
function for alignments, the problem calls for a maximum weight alignment.

Alternatively, instead of maximizing the weight of an alignment, which reflects the sim-
ilarity of the strings, one can also formalize the problem with the objective to minimize
the distances between the sequences. In the context of DNA sequences, alphabet Σ usu-
ally contains the four letters A, C, G, and T, representing the four different nucleotide bases
adenine, cytosine, guanine, and thymine, respectively. For protein sequences, alphabet
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Σ contains 20 letters, representing the 20 naturally occurring amino acids. The following
is an example of an alignment of fragments of five hepatitis proteinase sequences.

GLVRKNLVQFGVGEKNGSVRWVMNALGVKDDWLLVPSHAYKFEKDYEMMEFYFNRG---

KYPYNTIGNVFVK---GQTSATGVLIGK--NTVLTNRHIAKFANGD-PSKVSFRPSINT

ANTVPYQVSLNS----GYHFCGGSLINS--QWVVSAAHCYK-------SGIQVLGE---

---IAGGEAITT---GGSRCSLGFNVVA---HALTAGHCT-------NISAWSIG----

ALKLEADRLFDVKNEDGDVIGHALAMEG---KVMKPLHVK---------GTIDHP----

To be able to find “the best” among all possible alignments, an objective function ex-
presses the quality of an alignment as a numerical value. One of the most commonly used
quality measures for the multiple sequence alignment is the so-called sum-of-pairs (SP)
score (see Carrillo et al. [CL88]), which sums the projected pairwise scores of all pairs
of sequences in the multiple alignment. It is known that finding a multiple alignment of
k sequences with optimal SP score is NP-hard [WJ94]. The problem remains NP-hard
if internal gaps are forbidden and sequences can only be shifted relative to each other
[Jus01]. It can be approximated within a factor 2− l/k, for fixed l < k [BLP97]. It is
unknown, whether it admits a polynomial time approximation scheme for some metric
objective function. For a nonmetric function that does not satisfy the triangle inequality
it has been proven that MSA with SP score is MAX-SNP-hard [Jus01].

A consequence of the hardness of MSA is the predominant use of heuristic methods to
align multiple sequences. One of the most successful exact approaches so far was devel-
oped by Althaus et al. [ACLR06]. They proposed a branch-and-cut algorithm, a variant
of the branch-and-bound method, where the bound in each node of the enumeration tree
is obtained by a cutting plane approach. In the experiments on real-world instances,
they observed, however, that in almost all cases the enumeration tree degenerates to a
single node (the root node), since the optimal LP solution in the root node was either
integer, or its computation time exceeded a given time limit. On the positive side, the
three classes of valid inequalities considered define facets for the convex hull of feasible
integer solutions while being separable in polynomial time. However, even for a rela-
tively small number of sequences solving the linear programs becomes intractable due to
the large number of variables and constraints involved (the considered classes of inequal-
ities are exponentially large). Especially on instances where the sequences exhibit only
a moderate degree of similarity, the bounds are too weak to allow for the elimination
of a significant number of variables in a preprocessing step. The degree of difficulty of
the linear programs is indicated by the fact, that it was more efficient to solve the LPs
using the barrier (or interior point) algorithm “from scratch” than reoptimizing using
the dual simplex after adding violated inequalities to the LP. Even more, the underlying
LP solver CPLEX [ILO06] crashed on one of the instances.

This motivates the application of an alternative method to approximate the optimal
integer solution in the nodes of the branch-and-bound tree. In fact, the ILP formu-
lation [Rei99] used in their branch-and-cut algorithm exhibits a structure that lets a
Lagrangian relaxation approach appear particularly favourable. It can be viewed as
an alignment between all pairs of sequences, further complicated by inequalities that
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ensure that all pairwise alignments can be integrated into a multiple alignment. The
pairwise alignment problem can be solved efficiently by a longest path computation in
an acyclic graph. Dualizing a lifted version of the complicating constraints has a major
impact on the solution process of the Lagrangian relaxation subproblem, the extended
pairwise alignment (EPA) problem; the longest path in the acyclic graph is penalized a
charge for entering certain “obstacles”. Nevertheless, we describe an efficient algorithm
to solve the EPA problem, which is of great importance, since we have to solve these
subproblems repetitively to obtain near-optimal Lagrangian multipliers via subgradient
optimization. To cope with the problem of dualizing an exponential number of inequal-
ities, we adopt the idea that is underlying polyhedral cutting-plane algorithms. In the
relax-and-cut framework [Luc92], we identify and dualize cuts that are violated by the
current Lagrangian solution. Transferred to our context, we start with an empty set of
complicating constraints and add (dualize) most violated inequalities (among the expo-
nentially many constraints available) from iteration to iteration to a dynamic constraint
pool. Instead of taking into account only the current Lagrangian solution, we dualize
constraints that are most violated by the convex combination of the current Lagrangian
solution and a small number of preceding solutions, which increases the convergence
rate dramatically. The separation problem reduces to a shortest path problem on a
graph with positive edge weights and can, therefore, be solved efficiently. This work is
published in part in [AC07, AC08b, AC08a].

Experiments show that the strength of the Lagrangian bounds obtained in the nodes
of the branch-and-bound tree combined with the effectiveness of our solution method
enables us to solve larger instances to optimality, even if the sequences exhibit a lower
degree of similarity.

1.3 Interval Constraint Coloring

In Chapter 3 of this thesis, we introduce the interval constraint coloring problem, a
problem arising in the interpretation of experimental data in biochemistry. One possi-
ble method to gain information about the tertiary structure of a protein is to monitor
its hydrogen-deuterium exchange rate in a D2O diluted solution via mass spectrome-
try. These experiments provide aggregate data of the exchange rate of residues within
overlapping fragments of the protein. We need to find an assignment of exchange rates
to individual residues that is consistent with the observed experimental data to obtain
information about the solvent accessibility of various parts of the protein. The interval
constraint coloring problem is the mathematical abstraction of this information refine-
ment process.

Problem 1.2 (IntervalColoring). Given a set of intervals I ⊆ { [i, j] | 1 ≤ i ≤
j ≤ n} defined on the set V = {1, . . . , n}, a set of color classes [k] = {1, . . . , k}, and a
requirement function r : I × [k] → Z+ with

∑
c∈[k] r(I, c) = |I| for all I ∈ I, compute a

coloring χ : V → [k], if one exists, such that for every I ∈ I we have

∣∣{i ∈ I | χ(i) = c}
∣∣ = r(I, c) for all c ∈ [k].
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For an explanation of notation see next section. A closely related problem is broadcast
scheduling, where a server must decide which data item to broadcast at each time step in
order to satisfy client requests. The literature in broadcast scheduling is vast, and many
variations of the problem have been studied (see [CEGK08, GKPS06] and references
therein). In the variant we are concerned with here, a client request is specified by a time
window I and a data type A. The request is satisfied if A is broadcast at least once in I.
The similarities between the two problems should be clear with time steps, time windows
and data types in broadcast scheduling playing the respective roles of positions, intervals
and colors in interval constraint coloring. There are, however, important differences.
First, whereas in broadcast scheduling it does not hurt to broadcast an item more times
than the prescribed number, in our problem it does. Second, an interval is satisfied only
if all the requirements for that interval are satisfied exactly, which, undoubtedly, makes
our problem significantly harder.

We show that deciding whether a coloring χ as stated in Problem 1.2 exists is NP-
complete if the number of colors k is considered to be part of the input. Following
the canonical approach outlined above, we formulated the problem as an integer linear
program and solved it using a branch-and-bound algorithm based on LP relaxation.
The goal, however, is to provide biochemists with all possible candidate solutions, that
can be validated in a second step by protein structure prediction tools and by manual
inspection. We therefore combine related solutions to equivalence classes in an improved
ILP formulation to reduce the running time of our enumeration algorithm. From the total
unimodularity of the constraint matrix in the two-color case we conclude that the LP
relaxation polytope P is integral and provide a combinatorial polynomial-time algorithm
for this case. However, the complexity status of problem IntervalColoring for three
or more colors remains open. For k ≥ 3 the total unimodularity of the constraint matrix
is destroyed, that is, there are instances with fractional vertices. If the length of the
intervals is bounded by a constant, an optimal coloring can be determined in polynomial
time by a dynamic programming algorithm.

The mathematical model of assigning colors to elements in a set V defines an abstrac-
tion of a re-assembly process on peptic fragments. It is based on data (especially, the
requirement function r), that are obtained only indirectly through monitoring an in-
crease in mass of each of the fragments as the deuteron is added. Physical experimental
limitations like deuterium for hydrogen back-exchange, as well as the discretization of
the experimental data, e.g. the definition of exchange rates, require the instance data
to be approached with caution. Furthermore, the interpretation of the final results with
respect to the tertiary structure of the protein is subject to a certain degree of inaccu-
racy. This motivated the development of algorithms that find solutions that are “close
to” the optimal solution.

Provided the LP relaxation polytope P is not empty, we show how to round a fractional
solution to produce a coloring where all the requirements are satisfied within a mere ad-
ditive error of one. In light of our result that IntervalColoring is NP-complete, this
is essentially the best one can hope for. Alternatively, we propose a pure combinatorial
approach that is based on the polynomial-time algorithm for the two-color case. Due to
its heuristic nature, it does not give any guarantee on the quality of the solution. Nev-
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ertheless, for instances with arbitrary but fixed number of colors, it provides solutions
that approximate the optimal solution well in practice. Compared to the (exact) ILP
approach, it achieves an order of magnitude improvement in running time.

Since the data collected in the real experiments usually contain some noise, the problem
instance might be infeasible or polytope P might be even empty. This again leads to the
question of “what is the best” coloring that we can get, i.e. what is the coloring exhibiting
a minimal possible error? To deal with this problem, we capture the error of a solution by
means of additional variables and constraints in the ILP formulation and seek a solution
with minimum error. The combinatorial approach for the two-color case optimizes the
same objective function. Furthermore, in a Lagrangian relaxation approach for the
general case of an arbitrary number of colors, we dualize constraints in such a way, that
the resulting Lagrangian subproblem can be solved by the combinatorial approach for the
two-color case. Exploiting the resulting bounds in a branch-and-bound algorithm yields
exact (optimal) solutions to the general (NP-complete) problem involving an arbitrary
number of colors.

Alternatively, we study a variant of the problem where we are asked to find a coloring
satisfying the requirements of as many fragments as possible. We prove that this variant
is APX -hard even in the two-color case and thus does not admit a polynomial time
approximation scheme (PTAS) unless P = NP . The existence of a quasi-polynomial time
approximation scheme (QPTAS) would imply that NP ⊆ DTIME[npolylog(n)], which
is widely thought not to be the case. We, therefore, allow a coloring to violate the
requirement r by a factor (1+ǫ) and introduce a QPTAS that finds such a coloring for any
ǫ > 0 in quasi-polynomial time. This work is published in part in [ACE+08a, ACE+08b].

1.4 Notation

We use N, Z and R to denote the sets of natural numbers, integers, and real numbers,
respectively. With M+ we refer to the set of nonnegative numbers in M for M ∈ {Z,R}.
The cardinality of a finite set S is denoted by |S|. The set that contains the first n
natural numbers is denoted by [n], that is,

[n] = {1, 2, . . . , n}.

For any integer numbers a and b, we define the closed interval [a, b] by

[a, b] = {x ∈ Z | a ≤ x ≤ b}.

We denote by 〈vi〉n0 a sequence of n+ 1 elements vi, ordered from i = 0 to i = n.

For an arbitrary set R, n ∈ N, we use the notation

Rn

to indicate the set of all n-tuples with components from R. We always consider a n-
dimensional vector x = (xi)i=1,...,n ∈ R

n, usually denoted by a lower case boldface
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character, to be a column vector, that is,

x =



x1
...
xn


 .

Additionally, we will also use the more convenient notation x = (x1, x2, . . . , xn). The
transpose of a columns vector is a row vector, which will be denoted by x′.

If x and y are two vectors in R
n, then we call

y′x :=

n∑

i=1

xiyi

the inner product of x and y. We use 0 to denote the zero vector and 1 to denote the
vector with all components equal to 1, i.e.

0 =




0
...
...
...
0




, 1 =




1
...
...
...
1




.

The dimension of the vectors 0 and 1 will be clear from the context.

For a vector x, we denote by ‖x‖ its Minkowski L2-norm, i.e. ‖x‖ =
√
x′x. For two

vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), their Minkowski distance of order
1 is defined as:

‖x− y‖1 =

n∑

i=1

|xi − yi|.

For a set R and m,n ∈ N, we denote by

Rm×n

the set of m × n matrices (m rows, n columns) with entries from R. We will denote a
matrix A ∈ Rm×n by upper case boldface characters and refer to its (i, j)th entry by aij

such that A is of the following form:

A =




a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn




We use the notation ai to indicate the vector formed by the entries of the ith row of
matrix A, that is, ai = (ai1, ai2, . . . , ain). The transpose of a m × n matrix A will be
denoted by A′. We denote by I the identity matrix, a square matrix whose diagonal
entries are equal to one and whose entries are equal to zero elsewhere.
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Chapter 2
A Lagrangian Relaxation Approach for

MSA

2.1 Introduction

The importance of multiple sequence comparison (of DNA, RNA, or protein sequences)
in computational biology is evidenced by the large number of programs that have been
developed for the multiple sequence alignment (MSA) problem, one common formaliza-
tion (see next section) of the multiple sequence comparison.

Multiple alignment programs may detect biologically important, yet subtle, similarities
in a set of sequences, that might not be apparent when comparing two sequences alone.
From these commonalities one might be able to infer evolutionary trees or to group
proteins into structurally or functionally related families.

On the other hand, multiple alignment can be associated with solving problems that
are inverse to the ones addressed by pairwise sequence comparisons [Gus97]. Pairwise
alignments are mostly used to find sequences in a database that share certain patterns
with a query sequence, but which might not be known to be biologically related. The
inverse problem is to deduce common patterns from known biological relationships.

The alignment method we propose is guided by an objective function that scores a mul-
tiple alignment by summing the similarity measures of all induced pairwise alignments.
This is known as the sum of pairs (SP) scoring scheme and is formally defined in the
next section. The goodness of a pairwise alignment is measured by summing the scores
of opposing characters in the alignment, obtained by a pairwise scoring matrix. Taking
into account the construct of gaps, which is a maximal, consecutive run of characters
in one sequence that are not aligned with any character in the other sequence (formal
definition below), the model of the multiple sequence alignment problem becomes more
powerful. The approach we present is able to deal with affine gap costs, one of the most
commonly used gap cost models in the molecular biology literature. This model charges

13
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a penalty for the existence of a gap (gap opening cost) and a further constant penalty
for the extension of a gap by one character (gap extension cost).

Computing an alignment of k sequences that is optimal in the described model quickly
becomes computationally intractable as k increases. For example, dynamic programming
algorithms find an optimal alignment of sequences with mean length n in time and space
O
(
nk
)

[GKS95b, LR00, CL88]. Even more, these methods encounter difficulties when
using truly affine gap costs and thus consider a simplification instead, the so-called quasi-
affine gap costs. More complex gap cost functions (nonlinear) add a polylog factor to
this complexity [Epp90, LS90].

If the number k of sequences is not fixed, it has been proven by Wang and Jiang [WJ94]
by a reduction from shortest common supersequence [GJ79b] that the problem of finding
the multiple alignment of k sequences with optimal SP score is NP-complete. Hence,
it is unlikely that polynomial time algorithms exist and, depending on the problem size,
various heuristic approaches have been applied to solve the problem approximately (see,
e.g., [NHH00, THG94b, BCG+03]).

In [ACLR06], Althaus et al. proposed a (exact) branch-and-cut algorithm for the mul-
tiple sequence alignment problem based on an integer linear programming (ILP) formu-
lation of MSA. Since solving the LP relaxation is by far the most expensive part of the
algorithm and becomes intractable even for moderately large instances, we propose a
Lagrangian relaxation approach to approximate the integer linear program and utilize
the resulting bounds on the optimal value in a branch-and-bound framework. We shall
assume that the reader is familiar with the Lagrangian relaxation approach to approx-
imate integer linear programs and refer to the seminal work of Held and Karp [HK70]
for a detailed exposition. A detailed description of the branch-and-bound technique can,
for example, be found in [Wol98].

This chapter is organized as follows. After introducing a formal definition of the mul-
tiple sequence alignment problem in the following subsection, we review the polyhedral
description of the MSA problem in Section 2.2. In Section 2.3 we relax a slightly mod-
ified ILP formulation in a Lagrangian manner in order to obtain upper bounds on the
optimal alignment value by solving an extended pairwise alignment problem for each
pair of sequences. After giving preliminaries concerning the pairwise alignment problem
in Section 2.4, we describe in Section 2.5 how to solve the extended pairwise alignment
problem via dynamic programming (DP). We reduce the complexity of the DP graph in
two steps and proof the correctness of the final algorithm, that uses a bypass graph. In
Section 2.6 we improve the upper bounds obtained from the Lagrangian relaxation by
a modified subgradient optimization method, which we finally exploit in a branch-and-
bound algorithm to solve real-world instances in Section 2.7. Finally, in Section 2.8, we
conclude our work by a comparison with existing methods and point out future work.
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2.1.1 Formal Problem Definition

Although we motivated the multiple alignment problem by a comparison of biological
sequences (DNA, RNA, or protein sequence), we will generally use the term “string”
instead of “sequence”, since pure computer science issues are discussed. A string is an
ordered list of characters. For a string s, we denote the substring of s that starts at
position i and ends at position j by si, . . . , sj. A prefix of a string s is a substring that
starts at position 1.

Let S = {s1, s2, . . . , sk} be a set of k > 2 strings over an alphabet Σ and let Σ̄ = Σ∪{−}.
Given a string s, ‖s‖ denotes the number of characters in the string and sl the lth
character of s, for l = 1, . . . , ‖s‖. We define n :=

∑k
i=1 ‖si‖.

A (global) multiple alignment of S is a set A = {s̄1, s̄2, · · · , s̄k} of strings over the
alphabet Σ̄, where each string can be interpreted as a row of a two dimensional alignment
matrix. A has to satisfy the following properties (see Figure 2.1(a)):

(P1) The strings in A all have the same length.

(P2) Ignoring dashes (“−”), string s̄i is identical to string si.

(P3) No column of the alignment matrix consist entirely of dashes.

We say two characters s̄i
l and s̄j

m are aligned by A if l = m, i.e. they are placed in
the same column of the alignment matrix. For a given pairwise scoring matrix w on
letters from alphabet Σ̄, the sum of pairs (SP) score for a multiple alignment A is the
sum of the scores of all pairwise projections [CL88]. If the score of a pairwise alignment
is obtained by summing the score contributed by each pair of aligned characters, the
overall score of the multiple alignment is given by c(A) =

∑k−1
i=1

∑k
j=i+1

∑l
h=1w(s̄i

h, s̄
j
h),

where l denotes the (equal) length of strings in A and w(−,−) := 0.

Depending on the definition of the scoring matrix w, the score of an alignment can be
naturally interpreted as distances between strings or as a measure of similarity of strings.
In the description of our approach, we will formally cast the multiple alignment problem
as a maximization (“of weights”) problem.

To create biologically meaningful alignments, our objective function includes a term
that reflects the notion of a gap. For a given alignment A, a gap in s̄i with respect
to s̄j is a maximal, consecutive run of dashes in s̄i in the projection of A to strings s̄i

and s̄j. Associated with each of these gaps is a cost. In the affine gap cost model the
cost of a single gap of length q is given by the affine function copen + qcext, i.e. such a
gap contributes a weight of −copen − qcext = wopen + qwext to the total weight of the
alignment, while w(x,−) = w(−, x) := 0 for any x ∈ Σ.

Given a multiple alignment A, the induced pairwise alignment of two strings si and
sj is obtained from A by extracting the two rows for si and sj from the alignment
matrix, from which any two opposing dashes are removed subsequently. Let #gapsij

and #dashesij denote the number of gaps, respectively the total number of dashes, in
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the induced alignment of strings si and sj. Then we can state the multiple sequence
alignment problem with SP score and (truly) affine gap costs formally as follows.

Problem 2.1 (Multiple Sequence Alignment (MSA)). Given a set of k strings
over an alphabet Σ, a pairwise scoring matrix w and parameters wopen, wext of an affine
gap weight function, the problem calls for an alignment A with maximal SP score

k−1∑

i=1

k∑

j=i+1

(
l∑

h=1

w(s̄i
h, s̄

j
h) + wopen(#gapsij) + wext(#dashesij)

)
.

We refer to this variant of the problem simply as multiple sequence alignment (MSA)
throughout the rest of the chapter.
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2.2 A Polyhedral Description of MSA

In [ACLR06] Althaus et al. investigate the polyhedral structure of the convex hull of
the set of feasible solutions to the integer linear programming (ILP) formulation of the
multiple sequence alignment problem as given by Reinert in [Rei99].

For ease of notation, they define the gapped alignment graph, a mixed graph whose node
set corresponds to the characters of the strings and whose edge set is partitioned into
undirected alignment edges and directed positioning arcs, as follows: G = (V,EA ∪AP )
with V = V i ∪ · · · ∪ V k and V i = {ui

j | 1 ≤ j ≤ ‖si‖}, EA = {uv | u ∈ V i, v ∈ V j , i 6= j}
and AP = {(ui

l , u
i
l+1) | 1 ≤ i ≤ k and 1 ≤ l < ‖si‖} (see Figure 2.1(b)). Furthermore,

G = {(u, v, j) | u, v ∈ V i, j 6= i} denotes the set of all possible gaps.

An edge in EA is realized by an alignment if its endpoints are placed into the same column
of the alignment matrix, i.e the corresponding characters are aligned. Accordingly, a gap
(ui

l , u
i
m, j) is realized by an alignment if the substring of si from position l to position m

is aligned to gap characters “−” in string sj, whereas both si
l−1 and si

m+1 are aligned to
characters in sj. Arcs in Ap represent the consecutivity of characters within the same
string and are independent of the alignment.

In [Rei99], Reinert calls pairs (E′,G′), for which there exists an alignment A such that
E′ and G′ are the set of edges in EA, respectively gaps in G, that are realized by A,
gapped traces. Each edge ui

lu
j
m ∈ EA is assigned a weight w

ui
l
u

j
m

:= w(si
l , s

j
m) and each

gap (ui
l , u

i
m, j) is assigned the weight w(ui

l
,ui

m,j) := wopen + (m − l + 1) · wext, which
represents the benefit of realizing that edge or gap. Notice that different alignments
might correspond to the same gapped trace (E′,G′), but all such alignments have the
same score

∑
e∈E′ we +

∑
g∈G′ wg.

The ILP formulation uses a binary variable xe for every alignment edge e ∈ EA, and a
binary variable yg for every possible gap g ∈ G, indicating whether edge e, respectively
gap g, is realized. Reinert [Rei99] showed that the incidence vectors of the gapped traces
are exactly the {0, 1}-assignments to the variables such that

(PwA) we have pairwise alignments between every pair of strings,

(MixCyc) there are no mixed cycles M , i.e. in the subgraph of the gapped alignment
graph consisting of the positioning arcs AP and the realized edges {e ∈ EA | xe =
1} there is no cycle that respects the direction of the arcs of AP (and uses the
edges of EA in either direction) and contains at least one arc of AP (see Figure
2.1(c)):

∑

e∈M∩EA

xe ≤ |M ∩ E| − 1,

(Trans) transitivity is preserved, i.e. if u is aligned with v and v with w, then u is
aligned with w, for u, v,w ∈ V .
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A B C

A − C

−

−

AC−B

(a) Alignment of in-
put sequences

(b) Gapped align-
ment graph

(c) Ordering conflict

Figure 2.1: (a) A possible alignment A of the input strings S = {ABC,AC,BCA}. A is
represented by 3× 4 alignment matrix. (b) The gapped alignment graph for the strings
in S. The thick edges specify alignment A. (c) The alignment edges can not be realized
at the same time in an alignment. Together with appropriate arcs of AP , they form a
mixed cycle.

These three conditions are easily formulated as linear constraints (see [ACLR06]). Intu-
itively, mixed cycles can be considered as a generalization of crossing edges that have to
be avoided in a bipartite matching representing a pairwise alignment. Given weights we

associated with variables xe, e ∈ EA, and gap weights wg associated with variables yg,
g ∈ G, we denote the problem of finding a solution satisfying conditions (PwA), (Mix-
Cyc), and (Trans) (a gapped trace) of maximum weight as (P ) and its optimal value as
v(P ).

As the number of inequalities is exponential, Althaus et al. use a cutting plane framework
to solve the LP relaxation (all inequalities have a polynomial-time separation algorithm).
In the experiments, they observed that the number of iterations in the cutting plane
approach can be reduced if they use additional variables z(u,v) for u ∈ V i, v ∈ V j , i 6= j,
with the property that z(u,v) = 1 iff at least one character of the string of u lying (not
strictly) right of u is aligned to a character of the string of v lying (not strictly) left of
v, i.e. z

(ui
l
,u

j
m)

= 1, iff there is l′ ≥ l and m′ ≤ m with x
ui

l′
u

j

m′
= 1. This condition is

captured by the inequalities

0 ≤ z ≤ 1, z
(ui

‖si‖
,u

j
1)

= x
ui

‖si‖
u

j
1
,

z
(ui

l
,u

j
m)
≥ z

(ui
l+1,u

j
m)

+ x
ui

l
u

j
m

and (2.1)

z
(ui

l
,u

j
m)
≥ z

(ui
l
,u

j
m−1)

+ x
ui

l
u

j
m
.

Notice that indicator variables xe are associated with undirected edges e = uv, whereas
variables za are associated with directed arcs a = (u, v). In the following, we describe
the inequalities used in [ACLR06] to enforce (MixCyc). We refrain from explicitly spec-
ifying the inequalities enforcing (PwA) and (Trans), as they are not crucial for the
understanding of our approach.

Using the additional z-variables, we can define facets that guarantee (MixCyc) as follows.
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We model the mixed cycles as introduced above by letting AA = {(u, v) | u ∈ V i, v ∈
V j, i 6= j}, i.e. for each undirected edge uv ∈ EA, we have the two directed arcs (u, v)
and (v, u) in AA. Then a directed cycle M ⊆ AA ∪AP in (V,AA ∪AP ) that contains at
least one arc of AP uniquely defines a mixed cycle. With a slight abuse of terminology,
we drop the distinction between the term mixed cycle in its original meaning, namely
cycles as defined in condition (MixCyc) having both undirected and directed edges, and
their corresponding cycles in (V,AA ∪AP ), consisting exclusively of directed arcs. The
set of all mixed cycles is denoted by M. We show, that for a mixed cycle M ∈ M the
inequality

∑

e∈M∩AA

ze ≤ |M ∩AA| − 1 (2.2)

is valid. Assume
∑

e∈M∩AA
ze = |M ∩AA|. Consider an arbitrary arc (ui

l, u
j
m) ∈M∩AA.

Since positioning arcs are directed “from left to right”, the arc from AA preceding
(ui

l , u
j
m) on cycle M must terminate in a node ui

l′ with l′ ≤ l. Similarly, the arc from AA

succeeding (ui
l, u

j
m) on cycle M must originate in a node uj

m′ with m′ ≥ m. According
to the definition of variable z

(ui
l
,u

j
m)

, there is l′′ ≥ l and m′′ ≤ m with x
ui

l′′
u

j

m′′
= 1. Thus

by replacing every arc (ui
l , u

j
m) ∈M ∩AA by a (possibly empty) sequence of positioning

arcs (ui
l , u

i
l+1), . . . , (u

i
l′′−1, u

i
l′′), followed by edge ui

l′′u
j
m′′ , followed by a (possibly empty)

sequence of positioning arcs (uj
m′′ , u

j
m′′+1), . . . , (u

j
m−1, u

j
m), we can construct a mixed

cycle, all of which (undirected) alignment edges can not be realized at the same time
and which thus represents an ordering conflict (see Figure 2.1(c)). Therefore, (2.2)
must hold. These inequalities imply (MixCyc) as z(u,v) ≥ xuv, and they are used in
[ACLR06] to model a lifted variant of constraints (MixCyc). In the following discussion,
with a mixed cycle inequality we refer to inequalities of the form (2.2), unless explicitly
mentioned otherwise. They define facets under appropriate technical conditions.

In particular, a mixed cycle inequality can only define a facet if M contains exactly one
positioning arc of AP . Assume a mixed cycle M contains at least two arcs of AP and let
(ui

l , u
i
l+1) be one such arc that is succeeded by an alignment edge. Let M ′ be the cycle

obtained from M by replacing arcs (v, ui
l), (u

i
l , u

i
l+1), (u

i
l+1, w) by arcs (v, ui

l) and (ui
l, w).

Then the mixed cycle inequality for M ′ implies the mixed cycle inequality for M since
z(ui

l
,w) ≥ z(ui

l+1,w). The constraints (2.2) can be formulated similarly without using the

additional z-variables.

Based on the new z-variables, we derive from problem (P ) problem (Pz) by adding
constraints (2.1) and replacing (MixCyc) by constraints (2.2) and denote its optimal
value by v(Pz).
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2.3 The Extended Pairwise Alignment Problem (EPA)

Our Lagrangian relaxation approach is based on the integer linear program (Pz) outlined
in previous section. Since a single variable xuv, y(u,v,j), or z(u,v) involves exactly two
strings, we can partition the three classes of variables into sets Xi,j , Y i,j, and Zi,j,
respectively, that contain variables involving sequences si and sj. We observe, that for
an arbitrary but fixed pair of strings si, sj, variables xe ∈ Xi,j and yg ∈ Y i,j in a solution
to the ILP yield a description of a pairwise alignment of strings si and sj, along with
appropriate values for the variables in Zi,j that satisfy (2.1). The constraints (MixCyc)
and (Trans) guarantee that all pairwise alignments together form a multiple sequence
alignment. We call an assignment of {0, 1}-values to variables in (Xi,j , Y i,j , Zi,j) such
that (Xi,j , Y i,j) imposes a pairwise alignment, and Zi,j satisfies inequalities (2.1), an
extended pairwise alignment (EPA) of strings si and sj.

Problem 2.2 (Extended Pairwise Alignment (EPAmax)). Given weights for the
variables in Xi,j , Y i,j and Zi,j, problem EPAmax calls for an extended pairwise alignment
of strings si and sj of maximum total weight.

We denote by (P ′
z) the problem resulting from relaxing condition (Trans) in (Pz) (during

the experiments, it turned out that relaxing condition (Trans) is more efficient in practice
than dualizing them). Then the Lagrangian relaxation of (P ′

z) relative to the constraints
for condition (MixCyc), i.e. inequalities (2.2), with nonnegative Lagrangian multipliers
λ, is an extended pairwise alignment problem. More precisely, for Lagrangian multipliers
λM ≥ 0 associated with each mixed cycle inequality of M ∈ M, we have to solve the
Lagrangian relaxation problem

∑

M∈M

λM (|M ∩AA| − 1) +

maximize
∑

e∈EA

wexe +
∑

g∈G

wgyg −
∑

M∈M

λM

∑

e∈M∩AA

ze

such that (Xi,j , Y i,j, Zi,j) forms an EPA ∀ 1 ≤ i < j ≤ k.

(LRλ)

Its optimal value, denoted by v(LRλ), is an upper bound on v(P ′
z) and therefore also on

v(Pz) and v(P ).
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2.4 Pairwise Alignment Preliminaries

Recall how a pairwise alignment with arbitrary gap weights is computed for two strings
s and t of length ns and nt, respectively (without loss of generality we assume nt ≤ ns)
[Gus97]. By a simple dynamic programming algorithm, we compute for every 1 ≤ l ≤ ns

and every 1 ≤ m ≤ nt the optimal alignment of prefixes s1 . . . sl and t1 . . . tm that aligns
sl and tm, and whose score is denoted by D(l,m). This can be done by comparing all
optimal alignments of prefixes s1 . . . sl′ and t1 . . . tm′ for l′ < l and m′ < m, adding
the appropriate gap weight to the score w(sl, tm) obtained for aligning sl and tm. If
the weight of a gap is an arbitrary function w(q) of its length q, the determination of
the optimal alignment value maxx≤ns,y≤nt [D(x, y) + w(ns − x) + w(nt − y)], takes time
O
(
n2

sn
2
t

)
1.

In the affine gap weight model (a single gap of length q contributes weight wopen+qwext),
we can restrict the dependence of each cell in the dynamic programming matrix to
adjacent entries in the matrix by associating more than one variable with each entry
as follows. Besides computing D(l,m), we compute the score of the optimal partial
alignment of prefixes s1 . . . sl and t1 . . . tm that aligns character sl to a character tk with
k < m, denoted by V (l,m), and the one that aligns tm to a character sk with k < l,
denoted by H(l,m). Intuitively, a value V (l,m) already includes the opening cost for the
gap in string t, and therefore the recurrence that relates V (l,m) to V (l,m+1) only adds
wext, but not wopen. Each of the terms D(l,m), V (l,m) and H(l,m) can be evaluated by
a constant number of references to previously determined values, and thus the running
time reduces to O (nsnt).

The pairwise alignment problem can be interpreted as a longest path problem in an
acyclic graph, having three nodes D(l,m), V (l,m), and H(l,m) for every pair of prefixes
s1 . . . sl and t1 . . . tm. To reflect the structure of the dynamic programming matrix, three
nodes D(l,m), V (l,m) and H(l,m) form a cell (l,m) and are drawn at coordinates (l,m)
in the plane. Each recurrence relation is represented by a weighted (directed) arc in the
graph, which we call the dynamic programming graph. Figure 2.2 shows three cells of
the dynamic programming graph along with arcs between the respective nodes. In the
following discussion, the term S (l,m), with S ∈ {D,V,H}, is used interchangeably to
refer both to a node in the dynamic programming graph and to the score of the specific
type of alignment it represents.

Each pairwise alignment corresponds to a path through the dynamic programming graph
from node D(0, 0) to a node of cell (ns, nt). Every arc of the path represents a certain
kind of column in the alignment matrix, determined by the type of its target node
(Figure 2.2): an alignment arc from an arbitrary node in cell (l − 1,m − 1) to node
D(l,m) corresponds to an alignment of characters sl and tm. Accordingly, a gap arc has
a target node V (l,m) or H(l,m) and represents a gap opening (denoted by a dashed
line in Figure 2.2) or a gap extension. We refer to gap arcs from a node of a cell (i, j) to
a node of cell (i, j+1) as horizontal (gap) arcs, to gap arcs from a node of a cell (i, j) to
a node of cell (i+ 1, j) as vertical (gap) arcs, and we call alignment arcs diagonal arcs.

1The running time can be reduced to O
`

n2
snt

´

by distinguishing three different types of alignments.
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D

D D

V

V V

H

H H

(i, j)

(i, j + 1) (i+ 1, j + 1)

Figure 2.2: Three cells of the dynamic programming graph, each containing three nodes.
The type of a node (D, H, or V ) represents a certain kind of partial alignment. Note
that dependencies (arcs) are only between specific nodes: alignment arcs always run
“diagonally”, denoted by a thick solid line, while gap arcs only run “vertically” or “hor-
izontally”. Arcs representing the opening of a gap are illustrated by a dashed line, while
gap extension arcs are drawn with a thin solid line.

2.5 EPAmax via Dynamic Programming

In the further discussion, we will always assume that the extended pairwise alignment
problem involves strings s := si and t := sj, for arbitrary but fixed 1 ≤ i < j ≤ k.

Compared to the general pairwise alignment problem discussed in previous section, in
the EPAmax problem we are confronted with the difficulty of additional z-variables in
the objective function. Therefore, assume some variable z(u,v) is multiplied by a non-
zero value in the objective function, as the arc (u, v) ∈ AA is contained in at least
one mixed cycle M , to which a non-zero Lagrangian multiplier λM is associated. Recall
that the coefficient of variable z(u,v) in the objective function is −∑M∈M|(u,v)∈M λM (see
(LRλ)). Then this coefficient is added to the value of the extended pairwise alignment A,
or equivalently, to the length of the corresponding path p in the dynamic programming
graph, if A realizes at least one edge, respectively p traverses at least one alignment arc,
that enforces z(u,v) = 1. Let u = ui

l and v = uj
m. Then z(u,v) = 1 iff there is l′ ≥ l and

m′ ≤ m such that x
ui

l′
u

j

m′
= 1 (see definition of variables z(u,v) in (2.1)). In the dynamic

program graph, this corresponds to alignment arcs whose target node lie in the lower
right rectangle from cell (l,m), to which we will refer as blue obstacle.

Definition 2.1 (Blue Obstacle). For a cell (l,m) in the dynamic programming graph,
a blues obstacle Ob(l,m) contains all cells (l′,m′), in notation (l′,m′) ∈ Ob(l,m), with
l′ ≥ l and m′ ≤ m.

Analogously, if u lies in string sj and v in string si, this corresponds to alignment arcs
whose target node lie in an upper left rectangle, which we will call red obstacles.
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Definition 2.2 (Red Obstacle). For a cell (l,m) in the dynamic programming graph, a
red obstacle Or(l,m) contains all cells (l′,m′), in notation (l′,m′) ∈ Or(l,m), with l′ ≤ l
and m′ ≥ m.

Definition 2.3 (Origin). For a blue obstacle Ob(l,m) or a red obstacle Or(l,m), cell
(l,m) is called its origin.

To simplify notation, we use variable o to refer to an obstacle of arbitrary “color” and
with arbitrary origin. Let the set of all blue and red obstacles that arise from z-variables
with non-zero coefficients be denoted by Ob and Or, respectively, and let O = Ob ∪ Or.
Then the extended pairwise alignment problem is solvable by a dynamic program in
O
(
n2

sn
2
t |O|

)
time, following the same approach as above: we compute the best extended

alignment of all pairs of prefixes s1 . . . sl and t1 . . . tm that aligns sl and tm, based on all
best extended alignments of strings s1 . . . sl′ and t1 . . . tm′ , for l′ < l and m′ < m. We add
the appropriate gap weight to w(sl, tm) and add the coefficients of all z-variables that
are enforced to be 1 by setting x

ui
l
u

j
m

= 1 (i.e., by aligning characters sl and tm) but that

are 0-valued if x
ui

l
u

j
m

= 0 and x
ui

l′
u

j

m′
= 1 (see (2.1) for the definition of z-variables). In

the dynamic programming graph, these z-variables correspond to obstacles o ∈ O with
(l,m) ∈ o but (l′,m′) /∈ o.

Notice that the information that sl′ and tm′ are the last two characters aligned in A,
that is, A restricted to sl′+1 . . . sl−1 and tm′+1 . . . tm−1 is a maximal, consecutive run
of alternate gaps in either string, suffices to determine the set of z-variables whose
coefficients have to be added to the objective value when aligning sl and tm.

As introduced above, z-variables with non-zero coefficients in the integer linear program-
ming formulation (LRλ) map to obstacles in the dynamic programming graph. Since
non-zero coefficients of z-variables are negative, we will refer to these coefficients as
penalties and associate their absolute value with the corresponding obstacles o, denoted
by Λ(o). We say we charge (the penalty of) or pay for an obstacle, when we really mean
that we add the negative coefficient of the corresponding z-variable to the objective
value. With a slight abuse of notation, we say a node u of the dynamic programming
graph is contained in an obstacle o, denoted by u ∈ o, if u lies in a cell (l,m) ∈ o.

2.5.1 Reducing the Dynamic Programming Graph

Similar as in the affine gap weight model of the general pairwise alignment problem, we
reduce the complexity of the dynamic program by decreasing the alignment’s history,
necessary to determine the benefit of any possible continuation in a partial alignment.
The determination of the set of obstacles, whose associated penalty we have to pay when
traversing an alignment arc (u, v) in the dynamic programming graph, poses the major
problem. A subset of obstacles that node v lies in might have been charged already
before, namely those obstacles, that contain the target node of the preceding alignment
arc on the current path. However, this arc can not be precomputed in a straightforward
way, since the longest path in this context does not have optimal substructure. The
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dynamic programming approach from previous section eludes this difficulty by comparing
all possible choices of preceding alignment arcs.

Here we will follow a different approach and try to exploit the relation between computed
scores in adjacent cells to reduce the dependency on previous nodes of the dynamic
programming graph.

Informally, we say that we enter an obstacle o with an arc (u, v) if node v lies within
obstacle o, but source node u is not contained in o, i.e. v ∈ o but u /∈ o. Then the key
idea is to charge the associated penalty Λ(o) as soon as we enter an obstacle o along
an arc a, independent of the type of a. In case of an alignment arc, we indeed have
to penalize the score by Λ(o), but if a is a gap arc, the path might leave this obstacle
without traversing any alignment arc in between. We therefore have to add new nodes
and edges to the dynamic programming graph that allow the optimal path to bypass
obstacles in which it does not traverse any alignment arc. On the positive side, the
weight of an alignment arc a does no longer depend on the structure of the previous
path, as this strategy allows us to assume that all obstacles that contain the source node
of a have already been charged. We only have to pay for obstacles that we enter along
a.

To be more precise, when traversing an alignment arc with target node D(x, y), we pay
for red obstacles with origin (x′, y) for x′ ≥ x and blue obstacles with origin (x, y′) for
y′ ≥ y. Concerning the traversal of a gap arc (u, v) we observe, that the remainder of the
path will not traverse an alignment arc whose target node is contained in an obstacle o
if v is a node in the origin of o. In this case, the length of the path must not be reduced
by Λ(o). Thus, for using the gap arc from a node in cell (x− 1, y) to node H(x, y), we
only charge the penalties of blue obstacles having origin (x, y′) with y′ > y. Similarly,
for using the gap arc from a node in cell (x, y − 1) to node V (x, y) the penalties of
red obstacles with origin (x′, y) with x′ > x are charged. This motivates the following
definition.

Definition 2.4 (Enclosing Obstacles). The set of enclosing blue obstacles Qb(p) of a
cell p = (x, y) contains all blue obstacles Ob(l,m) with l ≤ x,m > y. Accordingly,
Qr(p) = {Or(l

′,m′) | l′ > x,m′ ≤ y}. Furthermore, we define the overall set of enclosing
obstacles by Q(p) = Qb(p) ∪ Qr(p).

We say that an obstacle o encloses a node u if o encloses the cell that contains u. With
a slight abuse of notation we denote the set of enclosing obstacles of a node u by Q(u),
where it is clear from the context whether u refers to a cell or to a node. For a cell (x, y),
we will use the more convenient notation Q(x, y) instead of Q((x, y)).

Using the notion of enclosing obstacles, the set of obstacles that have to be charged when
traversing a gap arc (u, v) is given by Q(v) \ Q(u), i.e. the set of obstacles that enclose
node v but not source node u.

To summarize, we need to refine our definition of entering an obstacle: We enter an
obstacle o along an alignment arc (u, v) if v ∈ o but u /∈ o (as defined above). But we
enter an obstacle o along a gap arc (u′, v′) if o ∈

(
Q(v′)\Q(u′)

)
. Where it is not crucial
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for the understanding of our approach, we will not explicitly point out whether we enter
an obstacle along an alignment arc or along a gap arc.

Notice that the set of obstacles enclosing a cell (x, y) contains exactly those obstacles
whose associated penalties have to be charged due to the traversal of an alignment arc
from a node in cell (x, y) to node D(x + 1, y + 1), but which already have been taken
into account by the reduced weight of previous arcs (that entered the obstacles).

Clearly, while traversing a path through the dynamic programming graph, we might
leave obstacles that we have entered before:

Observation 2.1. For arbitrary cells p, q, r in the dynamic programming graph we have(
Q(q) \ Q(p)) ∪ (Q(r) \ Q(q)

)
⊇ Q(r) \ Q(p).

If the preceding alignment arc on the path was always known when traversing an align-
ment arc a (as is the case with the dynamic programming approach from previous
section), the set of obstacles that we additionally have to charge when using arc a could
be defined in terms of enclosing obstacles as follows:

Observation 2.2. For l′ < l and m′ < m let A be an alignment that aligns character
sl′ with character tm′ and character sl with character tm, with gaps in between. The set
of obstacles whose penalties have to be charged additionally for the alignment of sl and
tm is equal to the union of Q(l − 1,m − 1) \ Q(l′,m′) and the set of obstacles entered
with the alignment arc having target node D(l,m).

Clearly, we charge the penalty of an obstacle at most once, namely when we enter it.
Furthermore, from Observations 2.1 and 2.2 it follows that the set of obstacles we pay
for contains all obstacles whose penalties indeed have to be subtracted from the score
(as the corresponding z-variable takes the value 1). However, we even charge Λ(o) for
an obstacle o if the path enters o but traverses exclusively gap arc in o. In that case, the
corresponding z-variable takes value 0, and we therefore underestimate the length of the
path. Hence, we have to ensure that the optimal path is able to “bypass” obstacles in
which it does not traverse any alignment arc and which thereby do not have to be paid
for.

We accomplish this by adding new nodes and arcs to the dynamic programming graph.
Additionally, we compute, for every pair of prefixes s1 . . . sl and t1 . . . tm, a fourth value
B(l,m) denoting the value of the optimal extended alignment that aligns either character
sl to “-” strictly left from tm or character tm to “-” strictly left from sl. This new value
B(l,m) is represented by a new B-node in cell (l,m) in the dynamic programming graph.
In other words, when proceeding from a B-node along a gap arc (u, v), we assume that
the gap opening weight for either string was already added, and therefore the weight of
such an edge will only account for the extension weight of that gap (plus the penalties
of possible obstacles entered along (u, v)). We extend the definition of gap arcs to arcs
having a target node of type B.

Before we introduce the new edges formally, we need some basic definitions.
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(a) Conflicting obstacles
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Figure 2.3: (a) A pair of conflicting obstacles, together with its base b and its tail t . (b)
Obstacle Ob(l0,m0) dominates obstacles Ob(l1,m1) and Ob(l2,m2). Obstacle Ob(l1,m1)
is minimal in D(Ob(l0,m0)).

Definition 2.5 (Conflicting Obstacles). We call a pair of a blue obstacle Ob(l,m) and
a red obstacle Or(l

′,m′) conflicting if l′ ≥ l and m′ ≤ m.

Definition 2.6 (Base, Tail). The base b(Ob(l,m),Or(l
′,m′)) of a pair of conflicting

obstacles is defined as cell (l − 1,m′ − 1), the tail t(Ob(l,m),Or(l
′,m′)) as cell (l′,m).

Definition 2.7 (Dominating Obstacle). We say a cell (l,m) dominates a cell (l′,m′),
denoted by (l,m) < (l′,m′), if l < l′ and m < m′

(
(l,m) ≤ (l′,m′), if l ≤ l′ and m ≤ m′

)
.

Accordingly, a blue (red) obstacle Ob(r)(l,m) dominates an obstacle Ob(r)(l
′,m′) iff origin

(l,m) dominates origin (l′,m′).

Definition 2.8 (Minimal Obstacle). A blue (red) obstacle is minimal in set Ôb ⊆ Ob

(Ôr ⊆ Or) if it is not dominated by any other obstacle in Ôb (Ôr).

We denote the set of obstacles that are dominated by a given obstacle o by D(o). Figures
2.3(a) and 2.3(b) illustrate the newly introduced notion.

For a path p corresponding to a given alignment A we formally define the set of obstacles
which p is not allowed to enter.

Definition 2.9 (Forbidden Obstacle). Given an extended alignment A, we call the set
of obstacles whose corresponding z-variable is 0 under A the forbidden obstacles with
respect to A.

Note that foribidden obstacles are exactly those obstacles that we do not have to pay,
provided the path traverses exclusively alignment arcs with target nodes D(l,m) such
that alignment edge ui

lu
j
m is realized by A.
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Our modification of the underlying dynamic programming graph is based on the following
observation. For an optimal extended alignmentA of strings s and t let l′ < l andm′ < m
be such that A restricted to sl′+1 . . . sl−1 and tm′+1 . . . tm−1 is a maximal, consecutive
run of alternate gaps in either string. We have to ensure the existence of a path from
node D(l′,m′) to the appropriate node of cell (l − 1,m − 1) that does not enter any
forbidden obstacle. The type of node v in cell (l− 1,m− 1) the optimal path will hit is
determined as follows:

v =





B(l − 1,m− 1) if l′ < l,m′ < m

H(l − 1,m− 1) if l′ < l,m′ = m

V (l − 1,m− 1) if l′ = l,m′ < m

Starting from node D(l′,m′), we traverse gap arcs in the original dynamic programming
graph (extended by the B-nodes indicating that we have added the opening weight of
gaps in both strings) until we would enter with any of the outgoing gap arcs a forbidden
obstacle. This motivates the addition of a B-node to each cell, as it allows us to use gap
arcs in either string alternatively without adding the gap opening weight multiple times
(see Figure 2.4).

Notice that we cannot enter and leave an obstacle using exclusively gap arcs of one
type, e.g. with horizontal gap arcs, we can enter blue obstacles, but not leave them.
In particular, if l′ < l and m′ = m or if l′ = l and m′ < m, the path can reach node
H(l−1,m−1), respectively node V (l−1,m−1), without entering any forbidden obstacle.

Therefore, consider the case where l′ < l and m′ < m, that is, we want to reach node
B(l − 1,m − 1). Let us further assume that we cannot proceed from a node in cell
(lb ,mb), lb < l, mb < m, without entering a forbidden obstacle (see Figure 2.4). Clearly,
(lb ,mb) is the base of a pair of conflicting forbidden obstacles. More precisely, lb is the
smallest value with lb ≥ l′ such that there is a pair of conflicting forbidden obstacles
with base (lb ,m

′′). Similarly, mb is the smallest value with mb ≥ m′ such that there
exists a pair of conflicting forbidden obstacles with base (l′′,mb). In other words, for
the base (l′

b
,m′

b
) of every pair of conflicting forbidden obstacles with (l′,m′) ≤ (l′

b
,m′

b
),

it holds (lb ,mb) ≤ (l′
b
,m′

b
).

Analogously, we can argue that there is a tail (lt ,mt ) with (l′,m′) < (lt ,mt ) ≤ (l −
1,m− 1) of a pair of conflicting obstacles from which we can reach node B(l− 1,m− 1)
without entering a forbidden obstacle (see Figure 2.4). From the transitivity of “≤” and
the fact that the base of a pair of conflicting obstacles always dominates the tail of that
pair it follows (lb ,mb) < (lt ,mt ).

Therefore, the insertion of arcs from the four nodes of the base of every pair of conflicting
obstacles (ob, or) to the B-node of the target of every pair (o′b, o

′
r) such that b(ob, or) ≤

b(o′b, o
′
r) and t(ob, or) ≤ t(o′b, o

′
r), would enable us to “jump over” obstacles that we do

not have to pay. The weights for these arcs are determined by the cost of the gaps leading
from b(ob, or) to t(o′b, o

′
r) plus the penalties implied by obstacles enclosing t(o′b, o

′
r), but

not b(ob, or).
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t

s

(l′,m′)

(l − 1,m− 1)

b1 b2

t1

t2

Figure 2.4: In this illustration of the dynamic programming graph, cells are contracted
to single points, such that arcs appear between cells instead of nodes. The path (solid
thick line) can bypass the dashed obstacles within the graph, as they are not in conflict
with any other obstacle. The dotted obstacle is not a forbidden obstacle since it contains
the diagonal alignment arc with target node D(l,m). From base b1 = (lb,mb) the path
cannot proceed along a gap arc without entering any forbidden obstacle. A new arc from
B-node in cell b1 to B-node in cell t2 = (lt,mt) allows the path to avoid obstacles whose
penalty it does not have to pay.

The overall structure of the resulting graph, whose longest path from node D(0, 0) to
a node in cell (ns, nt) determines the score C(ns, nt) of the optimal extended pairwise
alignment (see recurrence 2.8), can be described in terms of the following recurrences.
The base case is:

D(0, 0) = 0 (2.3)

V (l, 0) = l · wext + wopen −
∑

o∈Q(l,0)

Λ(o) (2.4)

H(0,m) = m · wext +wopen −
∑

o∈Q(0,m)

Λ(o) (2.5)

B(l, 1) = (l + 1) · wext + 2 · wopen −
∑

o∈Q(l,1)

Λ(o) (2.6)

B(1,m) = (m+ 1) · wext + 2 · wopen −
∑

o∈Q(1,m)

Λ(o) (2.7)

D(l,m) is undefined when exactly one of l and m is 0; or in other words, there is no
alignment arc with a target node D(l, 0), l > 0, or with a target node D(0,m), m > 0.
The same holds for gap arcs with target node V (l, 1), H(1,m), B(l, 0), or B(0,m). In
the following general recurrences we set an undefined value to −∞, which translates
to an empty set of outgoing arcs from a node in the dynamic programming graph that
corresponds to an undefined value.
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C(l,m) = max {D(l,m), V (l,m),H(l,m), B(l,m)} (2.8)

with

D(l,m) = C(l − 1,m− 1) +w(sl, tm)−
∑

o=Or(i,m),i≥l

Λ(o)−
∑

o=Ob(l,j),j≥m

Λ(o) (2.9)

V (l,m) = max

{
D(l,m− 1) + wext + wopen

V (l,m− 1) + wext

}
−

∑

o=Or(i,m),i>l

Λ(o) (2.10)

H(l,m) = max

{
D(l − 1,m) + wext + wopen

H(l − 1,m) +wext

}
−

∑

o=Ob(l,j),j>m

Λ(o) (2.11)

B(l,m) = max





J(l,m)
B(l − 1,m) + wext −

∑
o=Ob(l,j),j>m Λ(o)

B(l,m− 1) + wext −
∑

o=Or(i,m),i>l Λ(o)

V (l − 1,m) + wext + wopen −
∑

o=Ob(l,j),j>m Λ(o)

H(l,m− 1) + wext +wopen −
∑

o=Or(i,m),i>l Λ(o)

(2.12)

where

J(l,m) = max
(l′,m′)∈Bl,m





D(l′,m′) + qwext + 2wopen

V (l′,m′) + qwext + wopen

H(l′,m′) + qwext + wopen

B(l′,m′) + qwext




−

∑

o∈Q(l,m)\Q(l′m′)

Λ(o), (2.13)

if cell (l,m) is the target of a pair of conflicting obstacles, and J(l,m) := −∞ otherwise.

We denote by q the Minkowski’s L1 distance between the cells containing the source
node, respectively target node, of a newly inserted arc, i.e. q = ‖(l,m) − (l′,m′)‖1.
Provided (l,m) = t(ob, or) for some pair of conflicting obstacles (ob, or), set

Bl,m = {b(o′b, o
′
r) | b(o′b, o

′
r) ≤ b(ob, or) and t(o′b, o

′
r) ≤ (l,m)}.

As the number of conflicting obstacles is at most |O|2, the number of additional arcs is

at most O
(
|O|4

)
, and hence the running time of the dynamic programming algorithm

is O
(
nsnt + |O|4

)
.
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2.5.2 The Bypass Graph

To further reduce the number of additional arcs (dependencies) in our dynamic program-
ming graph, we augment the original dynamic programming graph with a bypass graph
(BPG), which is correlated to the transitive reduction of the induced subgraph on the
set of arcs added in last section.

The nodes of the bypass graph (formal definition below) represent pairs of conflicting
obstacles. In the following, the base b(v) and the target t(v) of a node v in the BPG
will denote the base or target, respectively, of the pair of conflicting obstacles node v
represents (see Definition 2.6). Intuitively, reaching a node v in the bypass graph along a
path p, with b(v) = (l,m) and t(v) = (l′,m′), can be interpreted as having a consecutive
run of alternate gaps sg+1, . . . , sl′ and th+1, . . . , tm′ , for some g ≤ l and h ≤ m. In
particular, there is an arc of weight 0 from each node v in the BPG to the B-node of cell
t(v). Note that in this case, the last alignment arc on path p has target node D(g, h).

The major difficulty lies in the assignment of weights to the arcs in the bypass graph. As
the overall goal is to minimize the number of additional arcs, the weight of an arc must
not be based on any “global” assumption concerning the preceding alignment arc on the
current path. Instead, the weight of an arc can only incorporate “local” information of
the form (g, h) ≤ (l,m) with D(g, h) being the target node of the preceding alignment arc
and (l,m) being the base of the corresponding pair of conflicting obstacles (see above).

Recall that for cells (i, j) and (l,m), ‖(i, j) − (l,m)‖1 denotes Minkowski’s L1 distance
between points (i, j) and (l,m) in the plane. An arc (v,w) between BPG nodes v and
w models the extension of a gap in exactly one of the two strings by ‖t(w) − t(v)‖1
characters, i.e. by traversing an arc (v,w) in the BPG tail t(v) moves vertically upwards
or horizontally to the right towards t(w). Contrariwise, the corresponding base moves
simultaneously to the right, respectively upwards. Therefore, the weight of a BPG arc
(v,w) must take into account

(a) the cost of extending a gap by ‖t(w) − t(v)‖1 characters,

(b) the penalties associated with obstacles in Q(t(w)) \ Q(t(v)),

(c) a compensation for penalties associated with forbidden obstacles that we are leaving
when proceeding from t(v) to t(w).

The third part is required due to the fact that no assumption can be made when travers-
ing a BPG arc (v′, w′) concerning the continuation of the path from t(w′), and therefore
the penalty of a forbidden obstacle might have been payed in (b) by a previous arc
(v′, w′). At the same time, the inexact information that the last alignment arc is “to
the lower left” of b(v) does not allow us to decide for every obstacles we are leaving in
(c) whether it is a forbidden obstacle. Only those among the obstacles we are leaving in
(c) can be identified as forbidden obstacles with certainty that are not enclosing b(v).
Even more, when continuing from node w, we must not make any assumptions about
the incoming arc along which the path hit node w and thus we will have to further relax
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our constraint concerning the position of the last alignment arc to that it is to the lower
left of b(w). As a consequence, we have to ensure, that the length of the path leading to
w is not penalized by any forbidden obstacle that encloses both b(w) and t(w). Such an
obstacle o would not be compensated in (c) for edge (v,w), and for any subsequent arc
it could not be decided whether o is a forbidden obstacle. This is illustrated in Figure
2.5. As we will see below, the definition of the arc set ensures the there always exists of
a path through the BPG along which penalized and compensated obstacles cancel out
each other in such a way, that exactly the non-forbidden obstacles remain paid for.

Definition 2.10 (Bypass Graph). We define the Bypass Graph (BPG) G = (V, E , l)
with edge set E ⊂ V × V and length function l : E → R as follows. The vertex set V
contains a node v for all pairs of conflicting obstacles. Let vb and vr denote the blue,
respectively red obstacle of the pair of conflicting obstacles represented by v. E = Eb∪Er,
where Eb = {(v,w) | vr = wr and wb is minimal in D(vb)} and Er = {(v,w) | vb =
wb and wr is minimal in D(vr)}. Every edge (v,w) ∈ Eκ, κ ∈ {b, r}, is assigned a
length

l((v,w)) = wext · ‖t(w) − t(v)‖1 −
∑

o∈Q−(v,w)

Λ(o) +
∑

o∈Q+(v,w)

Λ(o),

where

Q−(v,w) = Q(t(w)) \ Q(t(v)) and

Q+(v,w) = {Oκ(i, j) ∈ Qκ(t(v)) \ Qκ(t(w)) | wκ = Oκ(l,m), i ≥ l, j ≤ m}.

The length of an arc (v,w) ∈ Eb in the BPG is motivated in Figure 2.6. We connect
the bypass graph to the original dynamic programming graph (including B-nodes) by
arcs as follows: If (i, j) is the base of a pair of conflicting obstacles with corresponding
node v ∈ V in the BPG, we add arcs from all nodes in cell (i, j) to v (recursion formula
(2.15)) and by arcs from all v ∈ V to the B-node of tail t(v) (formula (2.14)).

The overall structure of the resulting graph can be described by the same recurrence
relations as in previous section, except that nodes of type B might be the target of arcs
originating in a node of the bypass graph:

B(l,m) = max





maxv∈V :t(v)=(l,m){δ(v)}
B(l − 1,m) + wext −

∑
o=Ob(l,j),j>m Λ(o)

B(l,m− 1) + wext −
∑

o=Or(i,m),i>l Λ(o)

V (l − 1,m) + wext + wopen −
∑

o=Ob(l,j),j>m Λ(o)

H(l,m− 1) + wext + wopen −
∑

o=Or(i,m),i>l Λ(o)

(2.14)

where

δ(v) = max





maxu:(u,v)∈E {δ(u) + l((u, v))}



D(b(v)) + qwext + 2wopen

V (b(v)) + qwext +wopen

H(b(v)) + qwext + wopen

B(b(v)) + qwext




−∑o∈Q(t(v))\Q(b(v)) Λ(o),

(2.15)
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R1R2

R3

b(v) b(w)

t(v)

t(w)

(l,m)

Figure 2.5: Assume a path traverses arc (v,w) in the BPG and returns to the original
DP graph at node B(l,m). Only cells are shown, and the contained nodes are omitted.
When proceeding from t(v) to t(w) red obstacles whose origin lie in R1 are entered
and hence their penalties have to be charged. At the same time, blue obstacles that
originate in rectangle R2 are left. Since the last alignment arc is “to the lower left”
of b(v), those obstacles are forbidden obstacles, and we thus compensate (add) their
associated penalties. After reaching node w, we have to relax the constraint concerning
the location of the last alignment arc to be “to the lower left” of b(w). As a consequence,
we would not be able to decide whether we have to compensate the penalty of obstacles
originating in R3. Thus, there have to exist arcs in the BPG that enable us to reach node
B(l,m) on a path, on which these regions do not contain the origins of any obstacles.

with q = ‖t(v) − b(v)‖1. Values D, V , and H are defined by recurrences (2.9)-(2.11),
the base cases by relations (2.3)-(2.7). The longest path from node D(0, 0) to a node in
cell (ns, nt) determines the score C(ns, nt) of the optimal extended pairwise alignment.

Complexity

Since there are at most |O|2 conflicting pairs of obstacles, the number of additional
nodes |V| is at most |O|2. From Definition 2.10 it follows immediately that the number

of additional arcs |E| is at most O
(
|O|3

)
, as an edge of the BPG is defined by three

obstacles. Therefore, the running time to compute an optimal solution to problem

EPAmax involving strings s and t with ‖s‖ = n and ‖t‖ = m is O
(
nm+ |O|3

)
.

We improve the practical performance of our algorithm for solving the extended pairwise
alignment problem by applying an A∗-approach: Notice that the scores D(l,m), V (l,m),
H(l,m), and B(l,m) for an arbitrary Lagrangian multiplier vector (λM )M∈M ≥ 0 can
be at most the scores when all multipliers λM are set to 0. Therefore, the length of a
longest path from a node in any cell (l,m) to a node in cell (ns, nt) determined for λ = 0
provides a heuristic estimate for all instances with λ ≥ 0, which is monotonic, and thus
the first path found from (0, 0) to (ns, nt) is optimal.
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R1R2R3

b(v) b(w)

t(v)

t(w)

Figure 2.6: Nodes v and w in the BPG corresponding to pairs of conflicting obstacles.
If no blue obstacle with origin in R3 exists, wb is minimal in D(vb) and thus (v,w) ∈ Eb.
In this example, Q−(v,w) contains exclusively red obstacles with origin in R1 (obstacles
we are entering), and Q+(v,w) contains blue obstacles with origin in R2 (obstacles we
are leaving).

2.5.3 Proof of Correctness

The overall dynamic programming graph is obtained by augmenting the original dynamic
programming graph (extended by the B-nodes) with the bypass graph introduced in the
previous section. In the following, we will refer to the original dynamic programming
graph extended by the B-nodes simply as the dynamic programming graph (DP graph).
A reference to the overall construction will be explicitly characterized as such.

Let p be a path starting at D(0, 0) through the DP graph and the bypass graph ending
at a node D(i, j). Furthermore, let D(l,m) be the last node of type D on p preceding
D(i, j), and let p̂ be the prefix of p up to node D(l,m). If d denotes the score of
the alignment of prefixes s1 . . . sl and t1 . . . tm induced by p̂, the score of the alignment
induced by p is

d+ w(si, tj) + wext · ‖(i− 1, j − 1)− (l,m)‖1 + r · wopen −
∑

o∈R

Λ(o)−
∑

o∈B

Λ(o),

where

r =





0 if (i− 1, j − 1) = (l,m),

2 if i− 1 > l and j − 1 > m,

1 otherwise,

and

R = {Or(i
′, j′) | i ≤ i′,m < j′ ≤ j},

B = {Ob(i
′, j′) | j ≤ j′, l < i′ ≤ i}.
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The following theorem shows that the optimal extended pairwise alignment of s and t
can be determined by iterating over all D(x, y), 1 ≤ x ≤ ns and 1 ≤ y ≤ nt, adding
the appropriate weight for the remaining gaps. Alternatively, the score of the opti-
mal extended pairwise alignment of s and t corresponds to the maximum of D(ns, nt),
V (ns, nt), H(ns, nt), and B(ns, nt).

Theorem 2.1. Given strings s and t of length ns and nt, respectively, D(x, y), for
1 ≤ x ≤ ns and 1 ≤ y ≤ nt, is equal to the score of an optimal extended pairwise
alignment of prefixes s1 . . . sx and t1 . . . ty that aligns sx with ty.

Proof. Consider arbitrary but fixed indices 1 ≤ l < l′ < ns and 1 ≤ m < m′ < nt and
assume that D(l,m) and D(l′ +1,m′ +1) are the targets of two realized alignment edges
with gaps in between. We will show in Lemma 2.2 and Lemma 2.3 that

(a) there is a path of length wext ·‖(l′,m′)−(l,m)‖1 +2 ·wopen−
∑

o∈Q(l′,m′)\Q(l,m) Λ(o)

between D(l,m) and B(l′,m′),

(b) any path between D(l,m) and B(l′,m′) that does not traverse any alignment arc
has length at most wext · ‖(l′,m′)− (l,m)‖1 + 2 · wopen −

∑
o∈Q(l′,m′)\Q(l,m) Λ(o).

Similar assumptions can be made if l = l′ or m = m′, in which case we add the gap
opening weight at most once and the path ends at a node of type H, V or D.

Using these two facts, we can prove the statement of the theorem by induction over x
and y. For x = 1 and y = 1 there is nothing to show. Consider x, y ≥ 1 with x+ y > 2.

Assume in the optimal extended pairwise alignment that aligns sx and ty the last align-
ment arc preceding the one with target D(x, y) has target D(l,m). If such an alignment
arc does not exist, we set l = 0 and m = 0. Using fact (a) and the induction hypothesis,
we obtain, by setting q := ‖(x− 1, y − 1)− (l,m)‖1 and using r as defined above,

D(x, y) ≥ D(l,m) + q · wext + r · wopen −
∑

o∈Q(x−1,y−1)\Q(l,m)

Λ(o) +

+ w(sx, ty)−
∑

o=Or(i,y),i≥x

Λ(o)−
∑

o=Ob(x,j),j≥y

Λ(o) (2.16)

= D(l,m) + q · wext + r · wopen −
∑

o∈Ôr∪Ôb

Λ(o),

where Ôr = {Or(i, j) | x ≤ i,m < j ≤ y} and Ôb = {Ob(i, j) | y ≤ j, l < i ≤ x}. This
value is equal to the score of the optimal extended pairwise alignment of prefixes s1 . . . sx

and t1 . . . ty that aligns sx and ty.

Now let p be the longest path ending in D(x, y). Notice that the last arc on path p is
an alignment arc. Let D(l,m) be the target of the last alignment arc on p preceding
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D(x, y). Using fact (b) and the induction hypothesis, we can simply replace “≥” in
equation (2.16) by “≤” to obtain analogously

D(x, y) ≤ D(l,m) + q · wext + r · wopen −
∑

o∈Ôr∪Ôb

Λ(o),

where q, r, Ôr and Ôr are as defined above. This value corresponds to the score of the
extended pairwise alignment of prefixes s1 . . . sx and t1 . . . ty that aligns sx with ty and sl

with tm. Furthermore, it is based on the optimal extended pairwise alignment of prefixes
s1 . . . sl and t1 . . . tm that aligns sl with tm. Clearly, the score of this specific alignment is
bounded from above by the score of the optimal extended alignment of prefixes s1 . . . sx

and t1 . . . ty that aligns sx with ty.

It remains to show the correctness of assumptions (a) and (b) and their modifications
for the case l′ = l or m′ = m used in the proof. If l′ = l and m′ = m, there is nothing to
show. If l′ = l or m′ = m and the other inequality is strict, we use exclusively horizontal,
respectively, exclusively vertical gap arcs, and we therefore do not leave obstacles that
we enter. Hence, we do not need to enter the bypass graph and can proceed simply in
the DP graph. Correctness of assumptions (a) and (b) still need to be shown for the
case where l′ < l and m′ < m. Assumption (a) mainly relies on the existence of a path
through the bypass graph that represents a consecutive run of alternate gaps in either
string and that is penalized only by newly entered obstacles:

Lemma 2.1. Given a node v ∈ V of the BPG, b(v) = (lb ,mb), and a cell (l′,m′) with
t(v) < (l′,m′), there exists a node vn ∈ V and a path p through the BPG from every
source node S (lb ,mb), S ∈ {D,V,H,B}, to the node B(t(vn)) of length

wext · ||t(vn)− b(v)||1 + r · wopen −
∑

o∈Q(t(vn))\Q(b(v))

Λ(o),

such that Q(t(vn)) \ Q(b(v)) ⊆ Q(l′,m′), i.e. obstacles enclosing t(vn) but not b(v) also
enclose (l′,m′). Thereby r = 2 if S = D, r = 1 if S ∈ {H,V } and r = 0 if S = B.

In the following proof of Lemma 2.1 we use functions ξ and ψ that are defined for an
obstacle o = Oκ(l,m) as ξ(o) = l and ψ(o) = m. Furthermore, we denote by A ⊎ B the
union of disjoint sets A and B.

Proof. We construct a sequence 〈vi〉n0 of pairs of conflicting obstacles as follows (see
Figure 2.7(a)): We select v0 = (vb

0, v
r
0) with maximal ξ(vr

0) and ψ(vb
0), such that b(v0) =
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(l′, m′)

(a) Sequence construction
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(lb , mb)

t(v1)

t(v2)

b

t(v0)

(l′, m′)

(b) Example sequence

Figure 2.7: Given base (lb ,mb) and a cell (l′,m′) as in Lemma 2.1. (a) The initial node
v0 in the BPG is determined by the shaded rectangle. Note that ψ(vb

0) > ψ(b1). In the
example, set Q0

b contains blue obstacles b2, b3, b4, but not b5, since b5 encloses (l′,m′).
b3 is a leftmost obstacle in Q0

b (min. property) and ψ(b3) > ψ(b2) (max. property) and
therefore v1 = (b3, v

r
0). (b) An example sequence 〈vi〉20 depicted by the sequence of its

tail cells, (v0, v1) ∈ Eb, (v1, v2) ∈ Er. The sequence terminates at v2 as b encloses (l′,m′).

(lb ,mb) and vb
0, v

r
0 /∈ Q(l′,m′). Let Qi

b be the set of blue obstacles that enclose the tail
of vi but neither cell (l′,m′) nor (lb ,mb), i.e. Qi

b = Qb(t(vi)) \
(
Qb(b(v0)) ∪ Qb(l

′,m′)
)
.

Accordingly, Qi
r = Qr(t(vi)) \

(
Qr(b(v0))∪Qr(l

′,m′)
)
. Then for i ≥ 1, if Qi−1

b 6= ∅, vi is

obtained from vi−1 by picking the uppermost among the leftmost blue obstacles in Qi−1
b

while keeping the red obstacle unchanged, i.e. vi = (Ob(g, h), v
r
i−1), with Ob(g, h) ∈ Qi−1

b

such that ∀g′, h′, Ob(g
′, h′) ∈ Qi−1

b : g ≤ g′ (min. property) and ∀h′, Ob(g, h
′) ∈ Qi−1

b :
h > h′ (max. property). Similarly, if Qi−1

b = ∅ but Qi−1
r 6= ∅, we retain the blue

obstacle and choose the rightmost among the lowermost red obstacles in Qi−1
r , i.e. we set

vi = (vb
i−1,Or(g, h)), with Or(g, h) ∈ Qi−1

r such that ∀g′, h′, Or(g
′, h′) ∈ Qi−1

r : h′ ≥ h
and ∀g′, Or(g

′, h) ∈ Qi−1
r : g′ < g. The sequence terminates at vn if Qn

b = Qn
r = ∅

(Figure 2.7(b)).

In the following, we show that nodes in the bypass graph representing pairs of conflicting
obstacles in 〈vi〉n0 lie on a path p̂ that can be easily extended to a path p having the
required properties. It can be easily verified that there exists an arc between nodes
corresponding to two consecutive pairs of obstacles in 〈vi〉n0 : the min. and max. properties
of our construction of sequence 〈vi〉n0 ensure vb

i ∈ D(vb
i−1) if Qi−1

b 6= ∅, and vr
i ∈ D(vr

i−1)
otherwise. Furthermore, the existence of an obstacle v̂κ ∈ D(vκ

i−1) with v̂κ < vκ
i would

be in contradiction to the min. property of vκ
i , meaning vκ

i is minimal in D(vκ
i−1) and

thus (vi−1, vi) ∈ Eκ, for all 1 ≤ i ≤ n, κ ∈ {b, r}.

We will argue by induction on the number of arcs k, 1 ≤ k ≤ n, on a prefix of the path
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Figure 2.8: Consider (v0, v1) ∈ Eb lying on a path p̂ through the BPG as described in
Lemma 2.1. Nodes v0, v1 are represented by their corresponding tails and by obstacles
drawn by solid lines. Obstacles in Q+(v0, v1) originate in the shaded rectangle. The
existence of obstacle b1 is in contradiction to the maximality of ψ(vb

0), b2 is in conflict with
the min. property of ξ(vb

1). According to the definition of an arc in the BPG, vb
1 is minimal

in D(vb
0), and therefore obstacle b3 cannot exist. It follows that Q+(v0, v1) = Q+(1).

induced by sequence 〈vi〉n0 , that

k∑

i=1

l((vi−1, vi)) = wext · ||t(vk)− t(v0)||1 −
∑

o∈Q−(k)

Λ(o) +
∑

o∈Q+(k)

Λ(o), (2.17)

with Q−(k) = Q(t(vk)) \ Q(t(v0)) and Q+(k) = Q(t(v0)) \ (Q(b(v0)) ∪ Q(t(vk))). In
other words, the length of path p̂ going from v0 to vk accounts for the extension cost of
gaps between cells t(v0) and t(vk) and is penalized by obstacles enclosing t(vk) but not
t(v0). Additionally, penalties of obstacles that p̂ leaves are compensated if they enclose
t(v0) but not b(v0). Note that these obstacles are being paid for when traversing an
arc connecting a node in cell b(v0) of the dynamic programming graph with BPG node
v0. Also, the weight of this arc incorporates any necessary gap opening costs, depending
on the type of its source node. A crucial observation in this context is, that penalties
assigned to obstacles that p̂ enters along one arc and leaves along a subsequent arc cancel
out each other.

For the base case (k = 1) it suffices to show that Q+(1) = Q+(v0, v1) (compare equation
(2.17) for k = 1 with the length of an arc in the BPG, Definition 2.10). Without
loss of generality, assume that (v0, v1) ∈ Eb (see Figure 2.8). Note that for general
(vi−1, vi) ∈ Eb every red obstacle enclosing t(vi−1) also encloses t(vi) (e.g. red obstacle
r in Figure 2.8) and thus Q(t(vi−1)) \ Q(t(vi)) ⊆ Ob. For every element o ∈ Q+(v0, v1)
it holds o /∈ Q(b(v0)) and o /∈ Q(t(v1)) by definition, and thus Q+(v0, v1) ⊆ Q+(1). In
order to show that Q+(v0, v1) ⊇ Q+(1), consider an arbitrary element Ob(g, h) ∈ Q+(1).
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(b) ∃1 ≤ i ≤ k (vi−1, vi) ∈ Er

Figure 2.9: (a) Obstacles in Q−(k) are from Or and enclose t(vk+1), see obstacle r1.
Therefore, Q−(k + 1) is obtained by simply adding obstacles that enclose t(vk+1), but
not t(vk), like obstacle r2. Obstacles in Q+(k + 1) can be divided into two subsets,
depending on whether they enclose t(vk) (obstacle b1) or not (obstacle b2). The latter
one coincides with set Q+(k). The first subset is equal to set Q+(vk, vk+1), as the
min. and max. properties of elements of sequence 〈vi〉 imply the shaded rectangle to
be empty. (b) Obstacles in Q−(k) must not enclose t(vk+1) (e.g. obstacle b1) and thus
have to be removed from Q−(k) ⊎Q−(vk, vk+1) to obtain Q+(k+ 1). Note that no blue
obstacle originates in rectangles R1 (an arc in Er is traversed only if there is no outgoing
arc in Eb) or R2 (min. and max. properties of elements of 〈vi〉). Therefore, obstacles
enclosing t(vk) but not t(vk+1) do not enclose t(v0), and Q+(k + 1) = Q+(k) follows
(obstacles enclosing t(v0) but not t(vk) do not enclose t(vk+1)).

From Ob(g, h) /∈ Q(b(v0)) and Ob(g, h) ∈ Q(t(v0)) it follows that g ≥ ξ(vb
0). Furthermore,

g = ξ(vb
0) and h = ψ(vb

1) are contradictory to the max. property of vb
0 and the min.

property of vb
1, respectively (see obstacle b1 and b2 in Figure 2.8). At the same time,

ξ(vb
0) < g < ξ(vb

1) and ψ(vb
0) < h < ψ(vb

1) are in contradiction to the minimality of vb
1 in

D(vb
0) (obstacle b3 in Figure 2.8), from which we conclude that g ≥ ξ(vb

1) and h ≤ ψ(vb
1),

and thus Q+(1) ⊆ Q+(v0, v1).

Now assume that equation (2.17) is true for some k with 1 ≤ k < n. Then the path
obtained by appending arc (vk, vk+1) has length

qkwext −
∑

o∈Q−(k)

Λ(o) +
∑

o∈Q+(k)

Λ(o) + l(vk, vk+1)

= qk+1wext −
∑

o∈Q−(k)⊎Q−(vk ,vk+1)

Λ(o) +
∑

o∈Q+(k)⊎Q+(vk ,vk+1)

Λ(o),

where qi = ||t(vi)− t(v0)||1.

Now assume (vk, vk+1) ∈ Eb (for (vk, vk+1) ∈ Er a symmetric argument applies). Then it
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is easy to see, that

Q−(k + 1) = Q−(k) ⊎ Q−(vk, vk+1) and (2.18)

Q+(k + 1) = Q+(k) ⊎ Q+(vk, vk+1) (2.19)

if (vi−1, vi) ∈ Eb, ∀1 ≤ i ≤ k (see Figure 2.9(a)), and

Q−(k + 1) = (Q−(k) ⊎ Q−(vk, vk+1)) \ Q+(vk, vk+1) and (2.20)

Q+(k + 1) = Q+(k) (2.21)

otherwise (see Figure 2.9(b)). In both cases, (2.17) follows by induction.

Now let again qn = ||t(vn)− t(v0)||1 and q̂n = ||t(vn)− b(v0)||1. Then by extending path
p̂ by an arc from an appropriate base node S (b(v0)), S ∈ {D,H, V,B}, to BPG node
v0, we obtain a path p of desired length

q̂nwext + r · wopen −
∑

o∈Q(t(vn))\Q(b(v0))

Λ(o),

where the number r of gaps we are opening in cell b(v0) is determined by the type S

of the base node in which path p originates. More precisely, r = 2 if S = D, r = 1 if
S ∈ {H,V } and r = 0 if S = B.

Note that the termination condition of sequence 〈vi〉n0 implies ∀o ∈ Q(t(vn)) \Q(b(v0)) :
o ∈ Q(l′,m′), and therefore the claim of the lemma follows.

Lemma 2.2. Given strings s and t of length ns and nt, respectively, consider arbitrary
but fixed indices 1 ≤ l < l′ < ns and 1 ≤ m < m′ < nt. There is a path from D(l,m) to
B(l′,m′) of length

wext · ||(l′,m′)− (l,m)||1 + 2 · wopen −
∑

o∈Q(l′,m′)\Q(l,m)

Λ(o).

Proof. Starting from node D(l,m), traversing exclusively gap arcs, we enter the BPG
from a node in cell (lb ,mb), from which we cannot proceed without entering a forbidden
obstacle. Cell (lb ,mb) must be the base of a pair of conflicting obstacles (see Figure
2.3(a)). We thus construct a sequence 〈vi〉n0 of pairs of conflicting obstacles as described
in the proof of Lemma 2.1 to determine the path through the BPG. If we now can find
a path from the B-node in cell t(vn) to node B(l′,m′) using exclusively gap arcs that
are not entering any forbidden obstacles, the overall path from D(l,m) to B(l′,m′) has
desired length wext · ||(l′,m′)− (l,m)||1 + 2 · wopen −

∑
o∈Q(l′,m′)\Q(l,m) Λ(o). Otherwise,

we again reach the base of a pair of conflicting forbidden obstacles, and we apply Lemma
2.1 again to bypass forbidden obstacles.
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Finally, we show that we do not overestimate the optimal path length.

Lemma 2.3. Given strings s and t of length ns and nt, respectively, consider arbitrary
but fixed indices 1 ≤ l < l′ < ns and 1 ≤ m < m′ < nt. Any path from D(l,m) to
B(l′,m′) that uses only gap arcs has length at most

wext · ||(l′,m′)− (l,m)||1 + 2 · wopen −
∑

o∈Q(l′,m′)\Q(l,m)

Λ(o).

Proof. For the sake of simplicity, consider an arbitrary path that enters the BPG only
once from a node S (lb ,mb) and returns to the original dynamic programming graph at
a node B(tn). Then obstacles in Q(l′,m′)\Q(l,m) can be subdivided into three disjoint
groups. Obstacles that enclose (lb ,mb), obstacles in Q(tn)\Q(lb ,mb), and obstacles that
do not enclose tn. Obstacles from first and third group must be entered and thus paid
by the sequence of gap arcs leading from D(l,m) to S (lb ,mb) (formulas (2.10)-(2.11)
and (2.14)), and from B(tn) to B(l′,m′) (formula (2.14)), respectively. The length of an
arbitrary path p′ from S (lb ,mb) to B(tn) through the BPG differs from path p induced
by sequence 〈vi〉n0 and constructed in Lemma 2.1 only in two aspects. First, for an arc
(vk, vk+1) on path p̂ we have to relax (2.19) to Q+(k + 1) ⊇ Q+(k) ⊎ Q+(vk, vk+1) and
equation (2.20) to Q−(k + 1) ⊆ Q−(k) \ Q+(vk, vk+1). Intuitively, when traversing arc
(vk, vk+1) ∈ Eb in Figure 2.9(a), the shaded rectangle may still contain obstacles. And
second, (Q(tn)\Q(lb ,mb)) ⊆ Q(l′,m′) (see termination condition of sequence 〈vi〉n0 ) does
not necessarily hold. As a consequence, obstacles that contribute to the penalty of path
p also contribute to the penalty of p̂, and the claim follows.
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2.6 Improving the Lagrangian Relaxation Bound

Recall that (LRλ) is the Lagrangian relaxation of (P ′
z) relative to the mixed cycle con-

straints, with nonnegative Lagrangian multipliers λ. The original ILP formulation for
MSA is (P ). Furthermore, v(LRλ) is the score of the optimal extended pairwise align-
ment for given λ ≥ 0.

Since the optimal score v(LRλ) is an upper bound on the optimal score of (P ) (the
optimal alignment score) for all multiplier vectors λ ∈ R

m
+ , m = |M|, we are interested

in solving the Lagrangian dual of (P ′
z) relative to the mixed cycle constraints, namely

min
λ≥0

v(LRλ), (LR)

to obtain tighter bounds for our branch-and-bound algorithm. If λ∗ is an optimal solution
to (LR), then v(LR) denotes its optimal value v(LRλ∗).

2.6.1 Subgradient Optimization

It is well known [Fis04] that the Lagrangian function f(λ) = v(LRλ) (in our case, where
MSA is a maximization problem) is a convex function of λ, but it is not differentiable at
points, where the optimal solution to (LRλ) is not unique. A commonly used approach
to determine near-optimal Lagrangian multipliers efficiently is based on the vector of
subgradients g(λ) ∈ R

m, associated with a given λ. The set ∂f(λ0) of all subgradients of
f(λ) at a point λ0 is always nonempty, and it is apparent that the vector g = (g

M
)M∈M

of slacks of the mixed cycle constraints

g
M

(λ0) = |M ∩AA| − 1−
∑

e∈M∩AA

z̄e, M ∈M,

is contained in ∂f(λ0), where z̄ is an optimal solution to (LRλ0). The iterative approach
proposed by Held and Karp [HK71] generates a sequence λ0, λ1, . . . of Lagrangian mul-
tipliers by taking at iteration k + 1 a step in the direction opposite to a subgradient of
f(λk), projecting the resulting point onto the nonnegative orthant (λ must be nonneg-
ative):

λk+1
M = max

{
0, λk

M − θ ·
v(LRλk)− LB
‖g(λk)‖2 g

M
(λk)

}
, M ∈M, (2.22)

where LB is a previously computed lower bound on v(LR), and θ is a step size parameter
assuming values in {x ∈ R | 0 < x ≤ 2}. We obtain LB by applying a heuristic to (P ).
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More precisely, given an optimal solution (x̄, ȳ, z̄) to (LRλ) for arbitrary λ ≥ 0, we select
in a greedy fashion edges from the set {e ∈ EA | x̄e = 1} that satisfy conditions (PwA),
(MixCyc), and (Trans).

Concerning the adaption of scalar step size θ, our approach differs from the classical
Held-Karp method, which reduces parameter θ by a factor of 2 whenever there is no
upper bound improvement for a certain number of consecutive iterations. If the best
and worst upper bounds computed in the last p iterations differ by more than 1%, we
suspect that we are “overshooting”, and thus we halve the current value of θ. If, in
contrast, the two values are within 0.1% from each other, we overestimate v(LR) and
therefore increase θ by a factor of 1.5. Similarly to [CFT99], we experienced a faster
convergence to near optimal multipliers using this strategy, compared to the classical
approach.

As (2.2) involves exponentially many mixed cycle inequalities that would have to be
dualized, formula (2.22) can not be applied in a straightforward way, but we use the
relax-and-cut framework outlined below.

2.6.2 Relax-and-Cut

In the traditional case of the subgradient method (SM), when the number of dualized
constraints is not too large, Beasley [Bea93] reported good practical convergence to
v(LR), when arbitrarily setting subgradient components gi = 0 whenever gi ≥ 0 and
λi = 0. In other words, subgradient entries were arbitrarily set to 0 if the corresponding
dualized inequality is not violated by the current solution and has Lagrangian multiplier
0 associated.

Following [Luc92, Luc93], we extend this idea to our context, by setting g
M

= 0 for all
M ∈M with λM = 0 whose corresponding mixed cycle inequalities are not violated by
the current Lagrangian solution. These multipliers would remain zero valued at the end
of the current iteration and thus would not directly contribute to v(LRλ). We call the
corresponding constraints inactive inequalities. Conversely, we call inequalities, whose
associated multiplier may directly contribute to the Lagrangian objective function, active
inequalities. These are the constraints (2.2) that are violated by the Lagrangian solution
and those inequalities that have nonzero Lagrangian multipliers associated with them.

As a consequence, only active inequalities will be used in (2.22) to determine the step
size. The typically huge number of mixed cycle inequalities with strictly positive slack
would result in an extremely small step size. Lagrangian multipliers would remain
nearly unchanged throughout the iterations and thus imply a high numerical risk for
the convergence of SM.

This dynamic scheme, where the pool of active inequalities may continuously change,
heavily relies on the ability to identify, at every iteration of SM, inequalities that are
violated by the Lagrangian solution. In our case, the separation problem reduces to a
shortest path problem with nonnegative edges weights and thus can be solved efficiently
using Dijkstra’s algorithm [CLRS01].
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In the first iteration, we set all Lagrangian multipliers to 0 and initialize a constraint
pool to be empty. At any given SM iteration, we identify mixed cycle inequalities that
are most violated by the average of the last h solutions, and add these constraints to
the pool. More precisely, the most violated mixed cycle that contains a positioning arc
(u, v) is obtained by a shortest path computation from node v to node u, where the
weight of an alignment edge ui

lv
j
m is defined as 1− x

h
if si

l and sj
m were aligned in x out

of the last h extended pairwise alignments between strings si and sj. Positioning arcs
are assigned weight 0. This conservative strategy prevents the pool of active constraints
from growing too rapidly. Notice that active inequalities may become inactive again and
thus have to leave the constraint pool.

A general flow chart of the overall branch and bound algorithm based on the proposed
Lagrangian relaxation approach is given in Figure 2.10.
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Figure 2.10: Flow chart of the proposed B&B algorithm
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2.7 Experiments

We have implemented our Lagrangian approach in C++ using the LEDA library [MN95].
To solve the extended pairwise alignment problem, an A∗ search algorithm determines
the longest path through the dynamic programming graph (augmented with the bypass
graph). The upper bounds were improved by a relax-and-cut modification to the sub-
gradient method and used in a branch-and-bound (B&B) framework to prune the search
space in order to find an optimal multiple alignment. In each node of the branch-and-
bound tree, a lower bound is computed by selecting, in a greedy fashion, alignment edges
realized in the current Lagrangian solution that satisfy conditions (PwA), (MixCyc), and
(Trans). We set wext = −4 and wopen = −6, i.e. the gap arcs were assigned a weight that
was computed as −4q−6, where q is the number of characters in the corresponding gap.
The weights for the alignment edges in EA were obtained by the BLOSUM62 amino acid
substitution matrix.

We tested our implementation , which we call LASA (LAgrangian Sequence Alignment),
on a set of instances of the BAliBASE library [TPP99], including reference alignments
from last inception, version 3. The benchmark alignments from reference 1 (R1) contain 4
to 6 sequences and are subdivided into three groups of different length (short, medium,
long). They are further categorized into three subgroups by the degree of similarity
between the sequences (group V1 : identity < 25%, group V2 : identity 20− 40%, group
V3 : identity > 35%). In BAliBASE 3 two datasets are prepared: The homologous region
set, which is similar to BAliBASE 2, and the full length set, where sequences contain
non-homologous residues.

2.7.1 Algorithmic Issues

The purpose of the experiments presented in this subsection is to evaluate various deci-
sions made in the design of our algorithm.

First, we give computational evidence for the effectiveness of our novel approach to
select violated inequalities to be added to our constraint pool. Considering the average
of the last h solutions to the extended pairwise alignment problem instead of taking into
account only the current solution (h = 1) dramatically reduces the number of iterations
(see Table 2.1). Only short sequences of high identity (short, V3 ) could be solved for
h = 1. Moreover, this table shows that the extended pairwise alignment problems are
solved at least twice as fast when applying the A∗ approach, instead of a standard
dynamic programming algorithm.

The columns in Table 2.1 have the following meaning:

Instance: Name of the instance in BAliBASE, along with an indication (k, n) of the
number of sequences k and the overall number of characters n.

h = ∗ : The number of solutions that were considered in an average Lagrangian solu-
tion.
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Table 2.1: We give the number of iterations needed by our approach for different numbers
h of solutions that were considered in an average Lagrangian solution. The default is
h = 10. The last column gives the time spent in the root node of the B&B tree if the
A∗ search is replaced by a simple dynamic programming algorithm.

h = 1 h = 2 h = 20 h = 30 LASA (A*, h = 10) DynProg, h = 10

Instance #Iter #Iter #Iter #Iter #Iter Time Time

1aho (5/320) 748,470 2,496 1,194 1,283 1,089 10 22

1csp (5/339) 17 14 19 19 17 <1 <1

1dox (4/374) 80,001 271 211 207 253 1 5

1fkj (5/517) 316,072 849 707 676 348 9 25

1fmb (4/400) 1,372 14 14 14 13 <1 <1

1krn (5/390) 191,281 634 148 155 104 1 8

1plc (5/470) 232,591 489 642 513 218 6 14

2fxb (5/287) 16,425 15 11 11 11 <1 <1

2mhr (5/572) 60,005 93 116 177 65 3 8

9rnt (5/499) 54 49 40 40 39 1 3

LASA: Default version of LASA, i.e. h = 10 and using the A∗ approach.

DynProg: LASA based on a simple dynamic programming scheme, instead of A*
search.

#Iter: Number of SM iterations needed by a specific variant of LASA.

Time: Total running time in seconds needed by a specific variant of LASA.

We have developed an efficient algorithm for the extended pairwise alignment problem in
three steps. First, we presented in Section 2.5 a direct dynamic programming approach,
to which we refer as simple algorithm in the following. Then, we reduced the complexity
of the dynamic programming (DP) graph by inserting arcs only between dominating
bases and dominated targets. We call the algorithm that is based on the resulting DP
graph improved algorithm (see Section 2.5.1). Finally, we augmented the original DP
graph with a bypass graph, which is correlated to the transitive reduction of the induced
subgraph on the set of newly added arcs (see Section 2.5.2). We distinguish the latter
algorithm from the previous by explicitly mentioning whether the DP graph is based on
a “transitive reduction”.

In doing so, we were able to reduce the running time for finding an optimal extended
alignment between strings s and t with ‖s‖ = n and ‖t‖ = m from O

(
n2m2 |O|

)
for

the simple algorithm, over O
(
nm+ |O|4

)
for the improved algorithm without “transi-

tive reduction”, to O
(
nm+ |O|3

)
for the algorithm based on the bypass graph. Notice
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however, that the implicit bound |O| ∈ O (nm) foils this theoretic improvement. Thus,
we tried to assess the practical performance of the simple algorithm and both versions
of the improved algorithm (with and without “transitive reduction”) by considering the
size of the underlying graph structure after the last iteration in the root node of the
branch-and-bound tree. Table 2.2 indicates that for a BPG G = (V, E), O

(
|O|2

)
and

O
(
|O|3

)
are rather pessimistic estimates for |V|, respectively |E|, and therefore we ex-

pect the running time of the simple algorithm to be significantly larger than the running
time of the improved algorithm using the bypass graph. Moreover, the “transitive re-
duction” obtained by introducing the bypass graph reduces the number of additional
arcs considerably.

In the experiments that follow, we compare our implementation (LASA) with various
existing methods for the multiple alignment problem. The purpose of these experiments
is twofold. On the one hand, we want to evaluate the complexity of instances our
current implementation is able to solve in reasonable time. On the other hand, we
want to assess the quality of alignments that are optimal in our model of the multiple
sequence alignment problem. For the latter we additionally used reference alignments
from three different sets: SABmark [WLW05], PREFAB [Edg04] and artificially created
alignments using Rose [SEM98]. We used the original benchmarking measures proposed
by its respective database. A score between 0 and 1 indicates the degree of accordance
with the reference alignment.
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Table 2.2: For the first four benchmark alignments of each subgroup of short and medium
sized instances we compare the size of the underlying graphs of the simple respectively
improved algorithm (with and without “transitive reduction”). The figures show a snap-
shot after the last iteration in the root node of the branch-and-bound tree. We give the
average number of obstacles between each pair of strings (#Obst), the average number
of nodes in the bypass graph (#BPG-Nodes), the average number of arcs of the BPG
(#BPG-Arcs), including arcs connecting the BPG to the original DP graph, and the
average number of additional arcs needed when no BPG is used (#Arcs).

Instance #Obst #BPG-Nodes #BPG-Arcs #Arcs

Reference 1 Short, V3

1aho (5/320) 32 7 42 205

1csp (5/339) 6 0 0 0

1dox (4/374) 18 3 18 56

1fkj (5/517) 29 6 35 137

Reference 1 Short, V2

1aab (4/291) 18 3 18 51

1csy (5/510) 57 11 58 333

1fjlA (6/398) 13 2 13 33

1hfh (5/606) 61 17 91 760

Reference 1 Short, V1

1aboA (5/297) 63 40 236 4047

1tvxA (4/242) 82 61 373 8979

1idy (5/269) 51 21 120 1314

1r69 (4/277) 74 29 165 1934

Reference 1 Medium, V3

1amk (5/1241) 17 1 7 9

1ar5A (4/794) 39 10 56 258

1ezm (5/1515) 24 5 26 83

1led (4/947) 65 13 72 468

Reference 1 Medium, V2

1ad2 (4/828) 51 11 61 360

1aym3 (4/932) 54 21 122 1286

1gdoA (4/988) 104 22 121 1168

1ldg (4/1240) 67 14 76 491
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2.7.2 Quantitative Evaluation

We compared the performance of our implementation with the non-heuristic methods
MSA [LAK89] (its improved version [GKS95a]) and COSA [ACLR06]. The multiple
sequence alignment program MSA is based on dynamic programming and uses the so
called quasi-affine gap cost model, a simplification of the (truly) affine gap cost model
(used by our approach). The branch-and-cut algorithm COSA is based on the same ILP
formulation as introduced in Section 2.2 and uses CPLEX [ILO06] as LP-solver.

We ran the experiments on a system with a 2,39 GHz AMD Opteron Processor with
8 GB of RAM. Any run that exceeded a CPU time limit of 13 hours was considered
unsuccessful, indicated by “−” in Table 2.3.

Tables 2.3-2.5 report our results on short, medium sized and long instances from the
BAliBASE library, reference 1. The columns have the following meaning:

Instance: Name of the instance in BAliBASE, along with an indication (k, n) of the
number of sequences k and the overall number of characters n.

Heur: Value of the initial feasible solution found by COSA or MSA.

PUB: An upper bound on the optimal score obtained by summing over all optimal
pairwise scores.

Root: Value of the Lagrangian upper bound at the root node of the branch-and-bound
tree.

Opt: The score of an optimal solution.

#Nodes: Number of branch-and-bound subproblems solved.

#Iter: Total number of iterations needed by the subgradient optimization method.

Time: Total running time needed to find an optimal solution.

Although MSA reduces the complexity of the problem by incorporating quasi-affine
gap costs into the multiple alignment, it could hardly solve instances with a moderate
degree of similarity. In contrast, our implementation LASA outperforms the CPLEX
based approach COSA, which is, to the best of our knowledge, the only existing method
besides LASA that is able to optimize the sum of pairs score with truly affine gap
costs of a multiple alignment. COSA was not able to solve any of the medium sized
or long benchmark alignments, while LASA found the optimal solution within minutes.
This is mainly because the LPs are quite complicated to solve. In their experiments,
Althaus et al. [ACLR06] noticed that it is more efficient to solve the LPs using the
barrier algorithm “from scratch” than reoptimizing using the dual simplex after adding
violated inequalities to the LP. This indicates the degree of difficulty of the involved
LPs. Moreover, one instance crashed as CPLEX was not able to solve an LP (see Table
2.3).
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The running time of LASA and COSA strongly depends on tight initial lower bounds.
For example (see Table 2.5), it took LASA about 13 hours to find an optimal solution
for the long instance 3pmg when the weaker bound obtained by the heuristic method
MSA was used. In contrast, an optimal multiple alignment could be found in roughly
one hour, if the score of an optimal solution was known in advance.
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Table 2.3: Results on short instances from BAliBASE reference 1, subdivided according
to their degree of similarity intro groups V1, V2 and V3. The running time is given in
the format hh:mm:ss, mm:ss or otherwise simply in seconds. A “−” indicates that no
solution was found within 13 hours of CPU time.

LASA COSA MSA

Instance Heur PUB Root Opt #Nodes #Iter Time Time Time

Reference 1 Short, V3

1aho (5/320) 877 987 884 881 7 1,089 <1 01:29 -

1csp (5/339) 1,457 1,473 1,457 1,457 1 17 <1 1 <1

1dox (4/374) 749 782 751 750 3 253 3 30 <1

1fkj (5/517) 1,578 1,675 1,585 1,578 3 348 13 6:04 -

1fmb (4/400) 1,333 1,353 1,333 1,333 1 13 <1 2 <1

1krn (5/390) 1,523 1,558 1,523 1,523 1 104 1 6 6

1plc (5/470) 1,736 1,824 1,736 1,736 1 218 6 04:24 20:14

2fxb (5/287) 1,341 1,352 1,341 1,341 1 11 < < 1 <1

2mhr (5/572) 2,364 2,406 2,364 2,364 1 65 3 2 17

9rnt (5/499) 2,550 2,573 2,550 2,550 1 39 1 4 <1

Reference 1 Short, V2

1aab (4/291) 231 257 231 231 1 100 <1 4 < 1

1csy (5/510) 649 769 649 649 1 393 17 03:01 -

1fjlA (6/398) 674 731 676 674 5 561 12 34 -

1hfh (5/606) 903 1,067 911 903 3 411 33 - -

1hpi (4/293) 386 439 386 386 1 298 4 53 7

1pfc (5/560) 994 1,139 1,004 994 11 1,387 01:48 37:46 -

1tgxA (4/239) 247 317 247 247 1 566 9 53 -

1ycc (4/426) 117 309 202 200 7 1,865 02:19 - -

3cyr (4/414) 515 615 522 515 7 983 38 -∗ 45

Reference 1 Short, V1

1aboA (5/297) −685 −476 −604 −676 3,497 417,260 11:04:02 - -

1aboA (5/297) −676 −476 −604 −676 2953 349792 09:13:49 - -

1tvxA (4/242) −409 −260 −358 −405 777 122,785 01:59:44 - -

1idy (5/269) −420 −273 −356 −414 4,193 678,592 12:00:48 - -

1idy (5/269) −414 −273 −352 −414 3529 594746 10:27:30 - -

1r69 (4/277) −326 −207 −289 −326 253 54,668 58:40 - -

1ubi (4/327) −372 −246 −330 −372 215 43,620 01:12:57 - -

1wit (5/484) −198 −25 −186 −197 15 4,221 07:42 - -

2trx (4/362) −182 −88 −178 −182 5 2,186 03:04 - -

*With the COSA-code, the instance 3cyr crashed after about one hour of computation time as the
LP-solver was not able to solve the underlying LP.
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Table 2.4: Results on medium sized instances from BAliBASE reference 1. The running
time is given in the format hh:mm:ss, mm:ss or otherwise simply in seconds. COSA and
MSA were not able to solve any of these benchmark alignments. Results on group V1
are omitted, since LASA was not able to solve these instances in the allowed time frame.

Instance Heur PUB Root Opt #Nodes #Iter Time

Reference 1 Medium, V3

1amk (5/1241) 5,668 5,728 5,669 5,669 1 60 8

1ar5A (4/794) 2,303 2,357 2,304 2,303 3 262 20

1ezm (5/1515) 8,378 8,466 8,378 8,378 1 105 23

1led (4/947) 2,150 2,282 2,158 2,150 33 1,435 03:54

1ppn (5/1083) 4,718 4,811 4,729 4,724 23 925 03:10

1pysA (4/1005) 2,730 2,796 2,732 2,730 3 223 28

1thm (4/1097) 3,466 3,516 3,468 3,468 3 233 30

1tis (5/1413) 5,854 5,999 5,874 5,856 83 2,993 18:31

1zin (4/852) 2,357 2,411 2,361 2,357 13 625 01:03

5ptp (5/1162) 4,190 4,329 4,233 4,205 193 8,337 35:48

Reference 1 Medium, V2

1ad2 (4/828) 1,195 1,270 1,197 1,195 7 419 42

1aym3 (4/932) 1,544 1,664 1,551 1,544 17 1,060 02:37

1gdoA (4/988) 980 1,201 1,003 984 459 31,291 02:38:36

1ldg (4/1240) 1,526 1,640 1,539 1,526 41 2,160 08:32

1mrj (4/1025) 1,461 1,608 1,473 1,464 27 1,681 05:29

1pgtA (4/828) 683 808 691 690 9 926 02:05

1pii (4/1006) 1,099 1,256 1,103 1,100 23 1,320 04:54

1ton (5/1173) 1,550 1,898 1,609 1,554 807 44,148 05:32:47

Table 2.5: Results on long instances from BAliBASE reference 1. The running time is
given in the format hh:mm:ss. Only three instances could be solved by LASA. MSA
and COSA were not able to solve any of these benchmark alignments. Instance 3pmg
was solved once with an initial lower bound obtained by MSA (7363) and once with the
optimal value (7418) computed by LASA itself.

Instance Heur PUB Root Opt #Nodes #Iter Time

1ad3 (4/1746) 5355 5424 5358 21 734 00:04:25

actin (5/1924) 8018 8178 8039 8022 45 2138 00:19:41

3pmg (4/2224) 7363 7602 7460 7418 1397 53350 12:50:50

3pmg (4/2224) 7418 7602 7448 7418 119 4789 01:08:37
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2.7.3 Qualitative Evaluation

In terms of alignment quality, we compared our implementation LASA with the heuristic
methods T-COFFEE [NHH00], CLUSTALW [THG94a], MAFFT [KiKTM05], MUSCLE
[Edg04], DIALIGN [Mor04] and POA [LGS02].

Our primary goal was to develop a new non-heuristic algorithm that allows to solve
instances to optimality, that were too complex for previous methods to obtain optimal
solutions. Nevertheless, we evaluated the quality of the alignments produced by LASA.
Our approach ranks among the best programs implemented so far (see Table 2.6 and
Table 2.7 ). The quality could be probably improved by a more careful choice of the ob-
jective function. In our current implementation we use a fixed objective for all instances,
independent of their level of identity.

Table 2.6: Average score of the alignments computed by different programs. Only
instances that have been solved by LASA in less than 2 hours were considered. In
BAliBASE 3.0, full length sequences (full) and instances from the homologous region set
(hom) are distinguished.

Group LASA T-COFFEE CLUSTALW MAFFT MUSCLE

BAliBASE 2.0

Short V1 0.969 0.968 0.984 0.988 0.970

Short V2 0.865 0.819 0.936 0.948 0.811

Short V3 0.512 0.340 0.562 0.882 0.537

Medium V1 0.944 0.952 0.943 0.969 0.969

Medium V2 0.933 0.886 0.911 0.901 0.895

Long V1 0.960 0.941 0.933 0.976 0.982

BAliBASE 3.0

Ref1 V1 full 0.942 0.966 0.935 0.939 0.952

Ref1 V1 hom 0.795 0.672 0.764 0.819 0.780

Ref1 V2 full 0.918 0.900 0.918 0.919 0.905

Ref1 V2 hom 0.894 0.876 0.895 0.882 0.888
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Table 2.7: Rows show the average developer (fD) score and modeler (fM ) score for
the “Superfamily”(≤ 50% identity) and “Twilight Zone” (≤ 25% identity) sets in the
SABmark database, respectively the quality (Q) score and total column (TC) score
for PREFAB instances and for reference alignments created by Rose, achieved by each
aligner. The latter are grouped according to their average evolutionary distance. The
number of sequences in each set is given in parenthesis.

Group/Score LASA T-COFFEE CLUSTALW MAFFT MUSCLE DIALIGN POA

SABmark (405)

Superfam. fD 79.56 80.50 81.04 82.32 80.80 75.50 69.41

Superfam. fM 61.11 62.50 62.39 62.88 62.28 60.57 63.69

Twilight fD 47.82 46.84 50.3 48.72 47.91 40.64 29.74

Twilight fM 33.43 33.13 34.25 34.26 33.43 31.23 34.66

PREFAB (161)

Q 0.71 0.69 0.69 0.69 0.71 0.63 0.57

TC 0.71 0.69 0.69 0.69 0.71 0.63 0.57

Rose (264)

Dist100 Q 0.91 0.90 0.88 0.91 0.92 0.87 0.79

Dist100 TC 0.86 0.86 0.82 0.88 0.88 0.81 0.67

Dist150 Q 0.78 0.76 0.80 0.81 0.83 0.72 0.55

Dist150 TC 0.70 0.67 0.72 0.71 0.75 0.59 0.38

Dist200 Q 0.67 0.60 0.62 0.63 0.67 0.51 0.34

Dist200 TC 0.50 0.44 0.46 0.50 0.54 0.32 0.18

Dist250 Q 0.58 0.46 0.55 0.49 0.53 0.39 0.29

Dist250 TC 0.37 0.23 0.36 0.28 0.35 0.18 0.11
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2.8 Conclusion

We have presented a Lagrangian relaxation approach for the multiple sequence alignment
problem with the sum of pairs scoring scheme, that allows us to obtain strong bounds
on the optimal solution by solving a generalization of the pairwise alignment problem.
We are able to deal with truly affine gap costs, which is, to the best of our knowledge,
possible so far only with COSA [ACLR06]. Due to a huge expense in computational
resources, quasi-affine gap costs are usually computed instead, as it is the case for the
alignment tool MSA. We strengthen the obtained Lagrangian relaxation bound by a
slightly modified relax-and-cut variant of the subgradient optimization method. Experi-
ments have shown, that the strategy to dualize constraints that are most violated by the
convex combination of the current Lagrangian solution and a small number of preceding
solutions increases the convergence rate dramatically. By utilizing the resulting bounds
on the optimal ILP value in a branch-and-bound manner we achieve running times that
significantly outperform state-of-the-art exact or almost exact methods like COSA and
MSA. Furthermore, we are able to solve instances with a degree of difficulty that none
of the previous exact methods was able to solve.

Compared to the branch-and-cut approach COSA, we obviously profit from the efficiency,
with which we are able to compute a longest path in an acyclic graph that avoids
obstacles. In contrast, the running time of COSA is dominated by solving a general linear
program with an exponential number of variables and constraints. Even for moderately
difficult instances the LPs become too large to be solvable in reasonable time.

Concerning the quality of the alignments, our results rank among the best alignments
computed so far. Nevertheless, we believe that a more careful abstraction of the under-
lying biological problem, in particular concerning the objective function, can improve
the quality of the alignments considerably.

An important issue concerning a further improvement of the proposed algorithm is to
evaluate the applicability of recent developments (see [Lem01]) in the field of nondif-
ferentiable optimization methods to the solution of the Lagrangian dual problem. A
more sophisticated Lagrangian heuristic for computing lower bounds in the nodes of the
branch-and-bound tree will be necessary to be able to solve instances of larger size and
a higher degree of difficulty.
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Chapter 3
Interval Constraint Coloring

3.1 Introduction

A challenging and important problem in biochemistry is to determine protein-protein
and protein-ligand interactions. A decisive role in this interaction plays the tertiary
structure of a protein, i.e. the spatial arrangement, which is indispensable for its function.
There are various laboratory-driven approaches, each with advantages and drawbacks.
One method that provides information about the tertiary structure in terms of solvent
accessibility is the so-called hydrogen-deuterium exchange, abbreviated by HDX. This is
a chemical reaction where a hydrogen atom of the protein is replaced by a deuterium
atom, or vice versa. To this end, the protein solution is diluted with D2O. Intuitively,
the exchange process happens at a higher rate at amino acids, or residues, that are more
exposed to the solvent. Put differently, the exchange rates for residues at the outside of
the complex are higher than inside, with the exception of proline, which does not possess
an amide hydrogen atom. Note that though deuterium is heavier than hydrogen, they
are almost identical from a chemical point of view. Hence, the exchange rate may be
monitored by mass spectroscopy while the tertiary structure remains unaffected by the
process. Comparing the solvent accessibility of the isolated protein and the protein-
protein (or protein-ligand) complex reveals the interaction interface, that can be feeded
into computer docking tools subsequently.

However, this method does not deliver that fine grained information that would allow
the exchange rate for each residue to be determined directly. Rather, we get aggregate
information for several overlapping fragments covering the whole protein. For example,
the experimental data only tell us how many residues of such a fragment react at low,
medium, and high exchange rate, respectively. Moreover, we know the exact location and
size of each fragment in the protein. It remains to find a valid assignment of exchange
rates to all residues that matches the experimentally found bulk information. If the
solution is not unique, we want to enumerate all valid assignments or a representative
subset thereof as a basis for further chemical considerations.
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This chapter is organized as follows. After giving some biochemical background to the
problem and introducing the problem formally in the next subsections, we present an
ILP approach in Section 3.2. A combinatorial approach for the 2-color case is described
in Section 3.3, which is used as a subroutine to approximate the optimal solution to the
general case of an arbitrary but fixed number of colors in Section 3.4. The Lagrangian
relaxation approach to enumerate all optimal colorings is introduced in Section 3.5. We
compare the performance of the different methods in experiments on real-world instances
in Section 3.6. An algorithm that rounds a fractional solution to obtain a coloring that
satisfies all the requirements within an error of ±1 is presented in Section 3.7. After
introducing a Quasi-PTAS for the maximization variant of the problem in Section 3.8,
we give hardness results in Section 3.9. Finally, in Section 3.10, we conclude our work
with a evaluation of our results together with a short outlook on possible future work.

3.1.1 Biochemical Motivation

Determination of protein-protein interactions is best accomplished by X-ray crystal
diffraction and NMR [Zui02] since both methods provide the highest resolution of the
sites of interaction. On the downside, these methods require large (milligram) quantities
of protein. Other techniques to determine protein-protein interactions rely on chemical or
photo-induced reactions with MS analysis [LC02, KHJ+06] and reveal functional groups
that are exposed to the solvent. These methods also suffer from physical experimental
limitations.

Another group of methods utilizes hydroxyl radical reactions with alkyl C-H bonds.
The OH group tends to react mainly with surface-exposed residues providing a good
footprint of the solvent exposed surface of the protein(s) [GCA00, SBH04]. The mod-
ification is covalent and thus irreversible, but each modification can potentially change
the conformation of the protein, thus skewing results.

Exchange of labile hydrogens for deuteriums (HDX) as a probe of protein surface accessi-
bility does not change the conformation of the protein. Advantages over NMR and X-ray
crystallography structural determination are the ability to work at low concentration and
high molecular weight.

Figure 3.1 shows the schematic of an HDX experiments. The experiment is initiated
by dilution of the protein solution into a biological buffer made with D2O. Solvent ac-
cessible hydrogens are exchanged with deuterium. The exchange is quenched (greatly
slowed) by dropping the pH to between pH 2.3 and pH 2.5 and lowering the temper-
ature to approximately 0◦ C. The protein complex is digested with a protease that is
active under quench conditions (such as pepsin) and on-line liquid chromatography is
performed directly to the FT-ICR MS (Fourier transform ion cyclotron resonance mass
spectrometry). Deuterium incorporation is monitored by the increase in mass of each
peptic fragment as the deuteron is added.

The data sets produced are large and each spectrum has hundreds of overlapping pep-
tic fragments. From these data, the exchange rate is easily determined for the same
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Figure 3.1: Schematic diagram of HDX experiment. The experiment starts by diluting
the protein solution 10 fold into deuterated buffer, after which exchange occurs for pre-
determined time points, and is then quenched by lowering the temperature and dropping
the pH. The protein is then digested and injected onto the HPLC (High-performance
liquid chromatography) for separation and mass analysis.

peptic fragments from the protein and the protein-protein complex [LLE+02]. When
peptic fragments are not directly comparable, but are overlapping (see Table 3.1 for an
example), manual interpretation must be performed to assign exchange rates to individ-
ual residues. HDX data analysis is the real bottle neck in these experiments, thus an
automated computational method for HDX rates is necessary.

Furthermore, we are interested in all possible exchange rate assignments, as we want to
determine protein conformation, protein-protein interaction, and protein-ligand interac-
tions. These data will be useful in the design and synthesis of small molecules to be used
as therapeutic agents.

3.1.2 Formal Problem Definition

The problem of assigning exchange rates to residues as arising in the HDX experiments,
can be rephrased in mathematical terms as follows. We are given a protein of n residues
and a set of peptic fragments, which correspond to intervals of [n]. The fragments cover
the whole protein and may overlap. Furthermore, there are k possible exchange rates to
which we refer as colors in the following. The goal is to assign a color to the elements in
set [n] using k colors such that a given set of requirements is satisfied. Each requirement
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Table 3.1: Overlap of peptic fragments as seen in an HDX of the model protein myo-
globin. It shows the total number of amide hydrogens exchanged in each peptide (All)
and the number of amide hydrogens predicted to be either Slow, Medium or Fast by maxi-
mum entropy method (MEM) evaluation of the H/D exchange rate distribution [ZGM97].

No Amino acid sequence All Slow Medium Fast

1 GLSDGEWQQV LNV WGKV EADIAGHGQEV L 28 15 8 5

2 GLSDGEWQQV L 10 7 2 1

3 NV WGKV EAD 8 5 2 1

4 V LNV WGKV EADIAGHGQE 17 12 1 4

5 NV WGKV EA 7 5 1 1

6 WQQV LNV WGKV EADIAGHGQEV L 15 11 1 3

7 GLSDGEW 6 4 1 1

8 WQQV L 4 3 1 0

9 IAGHGQEV L 8 7 1 0

is made up of a closed interval I ⊆ [n] and a complete specification of how many elements
in I should be colored with each color.

Interval Constraint Coloring More formally, in an idealized setting we consider
the following problem. We are given a set of intervals I ⊆ {[i, j] | 1 ≤ i ≤ j ≤ n}
with |I| = m defined on the set V = [n], a set of color classes [k], and we are given a
requirement function r : I × [k] → Z+ such that

∑
c∈[k] r(I, c) = |I| for all I ∈ I. We

represent elements in V by vertices numbered from 1 to n. A coloring χ : V → [k] of
the vertices is said to be feasible if for every I ∈ I we have

|{i ∈ I |χ(i) = c}| = r(I, c) for all c ∈ [k]. (3.1)

Problem 3.1 (IntervalColoring). Given an instance (V, I, k, r), compute a feasible
coloring χ : V → [k], if one exists.

Where the meaning is clear from the context, we will simply use the term vertex to
refer to the integer in V it represents, such that intervals in I contain vertices. We use
Nχ(I, c) to denote the number of vertices in interval I colored c by χ, that is,

Nχ(I, c) := |{i ∈ I |χ(i) = c}|. (3.2)

Error-Minimal Interval Constraint Coloring However, data collected in real ex-
periments usually contain some noise, such that a feasible coloring does not necessarily
exist. In this case, we would like to compute a (all) coloring(s) that minimize(s) the
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total sum of errors. We define the error of a coloring χ in interval I ∈ I with respect to
color c by

eI,c :=
∣∣r(I, c) −Nχ(I, c)

∣∣. (3.3)

Problem 3.2 (IntervalColoringmin). Given an instance (V, I, k, r), an optimal col-
oring minimizes ∑

I∈I

∑

c∈[k]

eI,c. (3.4)

We denote by ec = (eI,c)I∈IP
the vector of errors with respect to color c. Since in our

application domain optimal assignments of exchange rates (colors) are evaluated in a
second step by biochemists, we also describe algorithms, that are able to enumerate all
optimal solutions to problem IntervalColoringmin.

Maximizing Interval Constraint Coloring Another way of dealing with instances
that do not admit a feasible coloring is to compute a coloring that maximizes the num-
ber of intervals satisfying (3.1). More generally, we assume a nonnegative weight w(I)
associated with intervals in I, and seek a maximum weight subset of intervals for which
a feasible coloring exists.

Problem 3.3 (IntervalColoringmax). Given an instance (V,I, k, r) and nonnegative
weights w(I) associated with each interval I ∈ I, find a subset I ′ ⊆ I, maximizing
w(I ′) :=

∑
I∈I′ w(I), such that there exists a coloring of V satisfying (3.1) for each

I ∈ I ′.

Due to the one-to-one correspondence between residues and vertices in V , between pep-
tic fragments and intervals in I, and between exchange rates and colors, we use the
respective terms interchangeably, whenever it is not crucial for the understanding to
focus either on the biological data or on the mathematical abstraction.
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3.2 A Polyhedral Approach

In this section, we present a polyhedral description of the interval constraint coloring
problem, which will serve as a basis for an enumerative algorithm similar to branch-and-
bound.

In an initial binary (0-1) integer programming (BIP) formulation of the problem, we
encode the choice of coloring a vertex with a certain color by a binary variable. In our
experiments it turns out, however, that by using this formulation, a single integer solu-
tion (coloring) can be found efficiently, whereas finding all colorings can become a very
time-consuming task. This is mainly due to the large number of feasible colorings, which
we combine to equivalence classes in an improved integer linear programming (ILP) for-
mulation. Since integer variables in the new ILP formulation introduced in Section 3.2.2
provide aggregate information about the distribution of colors within certain intervals,
the number of solutions to the improved ILP formulation is just a fraction of the num-
ber of solutions to the original BIP formulation. Furthermore, colorings contained in an
equivalence class can be easily derived from the corresponding solution to the new ILP.

3.2.1 A Binary IP Formulation

The interval constraint coloring problem (IntervalColoring) is captured by the bi-
nary integer program (BIP) given below, i.e. the feasible solutions of this program cor-
respond to feasible colorings.

Let χ : V → [k] be an assignment of colors to residues in V = [n] and let xi,c be an
indicator variable denoting whether i is colored c or not. More precisely, for i ∈ V and
c ∈ [k], xi,c = 1 if χ(i) = c, and xi,c = 0 otherwise. We let xc = (x1,c, x2,c, . . . , xn,c) be
the vector of binary variables modeling the assignment of color c and let x = (xc)c∈[k],

x ∈ {0, 1}kn.

The first constraint in integer program (3.5) ensures that exactly one color is assigned
to each residue. Feasible colorings are in one-to-one correspondence with assignments of
0-1 values to components of x, if they furthermore satisfy the second constraint, i.e. if
every requirement imposed by the intervals is satisfied.

∑
c∈[k] xi,c = 1, ∀ i ∈ [n],
∑

i∈I xi,c = r(I, c), ∀ I ∈ I, c ∈ [k], (3.5)

xi,c ∈{0, 1}, ∀ i ∈ [n], c ∈ [k].

In problem IntervalColoringmin, the error minimization variant of the interval con-
straint coloring problem, we aim to minimize a sum of absolute values (3.4). If we
translate the definition of the error that we make when coloring residues in interval I
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with color c (see (3.3)) into the context of 0-1 assignments to variables xc, we are dealing
with the problem of minimizing

∑

I∈I

∑

c∈[k]

∣∣r(I, c)−
∑

i∈I

xi,c

∣∣.

We observe that |r(I, c) −∑i∈I xi,c| is the smallest number eI,c that satisfies r(I, c) −∑
i∈I xi,c ≤ eI,c and −r(I, c) +

∑
i∈I xi,c ≤ eI,c, and we obtain the integer linear pro-

gramming formulation

minimize
∑

I∈I

∑
c∈[k] eI,c (3.6)

subject to
∑

c∈[k] xi,c = 1, ∀ i ∈ [n], (3.7)
∑

i∈I xi,c − r(I, c) ≤ eI,c, ∀ I ∈ I, c ∈ [k], (3.8)

−∑i∈I xi,c + r(I, c) ≤ eI,c, ∀ I ∈ I, c ∈ [k], (3.9)

xi,c ∈ {0, 1}, ∀ i ∈ [n], c ∈ [k]. (3.10)

We refer to this integer linear program as basic-BIP. The number of solutions to the basic-
BIP is typically very large (see Table 3.2 in Section 3.6). Intuitively, there are relatively
long intervals in which no fragment starts or ends. Clearly, feasibility and the respective
objective value are invariant under the permutation of colors within these intervals.
Solutions derived by such permutations from each other are put into equivalence classes
in the next section.

3.2.2 An Improved ILP Formulation

From a feasible solution to the binary integer program formulation introduced above one
can easily obtain a new feasible solution that is equivalent in the following sense.

Definition 3.1 (Equivalent Coloring). Let PI be the partition of [n] into a minimal
number of intervals, such that for each interval J ∈ PI and each interval I ∈ I either
J ⊆ I or J ∩ I = ∅. We call two feasible colorings χ and χ′ equivalent, if they differ
only by a permutation of colors within intervals of PI .

See Figure 3.2 for an example partition PI of 9 vertices into 4 intervals.

Thus, from a coloring χ any equivalent coloring χ′ can be produced by a sequence of
transpositions restricted to intervals in PI . Thereby a coloring χ2 is obtained from a
coloring χ1 by a transposition τ = (i, j), i, j ∈ J , J ∈ PI , if χ2(i) = χ1(j), χ2(j) = χ1(i)
and χ2(l) = χ1(l) for l ∈ J , l 6= i, j. Note that equivalent colorings exhibit the same
total error.
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1 2 3 4 5 6 7 8 9

J1 J2 J3 J4

Figure 3.2: In this example, partition PI of vertex set [9] implied by intervals
[1, 4], [3, 7], [5, 9] ∈ I, as introduced in Definition 3.1, contains intervals J1, J2, J3, and
J4.

To prevent our branching approach (see Section 3.2.3) from enumerating all equivalent
solutions, we modify the proposed basic-BIP as follows. For c ∈ [k] and I ∈ PI , we
replace the binary variables xi,c with i ∈ I by a single integer variable yI,c with yI,c :=∑

i∈I xi,c. From now on, we assume that intervals Ii ∈ I are numbered from i = 1 to
i = m and intervals Jj ∈ PI are numbered from j = 1 to j = |PI |. Moreover, we let A
be the (0, 1)-matrix of inclusions for intervals in partition PI versus intervals in I, i.e.
A is a |I| × |PI | matrix where for every Ii ∈ I and Jj ∈ PI the corresponding entry is
given by

ai,j =





1 if Jj ⊆ Ii,
0 otherwise.

(3.11)

In the following, we let vector yc = (yI,c)I∈PI
and vector rc =

(
r(I, c)

)
I∈PI

denote the
number of residues colored c, respectively the number of residues required to be colored
c by the instance. In matrix notation, constraints (3.8) and (3.9) then become

−Ayc + ec ≥ −rc

Ayc + ec ≥ rc

for all c ∈ [k]. Hence our integer linear program can be rewritten as

minimize
∑

I∈I

∑
c∈[k] eI,c

such that −Ayc + ec ≥ −rc, ∀ c ∈ [k], (3.12)

Ayc + ec ≥ rc, ∀ c ∈ [k], (3.13)
∑

c∈[k] yc = p (3.14)

y ≥ 0

y integer.
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where p is the vector that contains |J | for each interval J ∈ PI and y = (yc)c∈[k]. We
refer to this integer linear program as improved-ILP. Note that a feasible nonnegative
integer solution y to (3.12)-(3.14) represents an equivalence class of feasible colorings.

3.2.3 Enumerating all Optimal Colorings

We now discuss a divide-and-conquer approach to generate all optimal colorings to prob-
lem IntervalColoringmin, i.e. all colorings that are optimal with respect to cost cri-
terion (3.4). Merely for simplicity of notation, we base the presentation of our algorithm
on the basic-BIP formulation using indicator variables x. Essentially, however, all the
ideas carry over to the improved-ILP formulation using integer variables y as defined
above.

The enumerative relaxation method we propose is adapted from the the standard branch-
and-bound algorithm, which is described in detail in [Wol98]. We first determine the
minimum possible total error e of any coloring by a standard branch-and-bound algo-
rithm that uses linear programming relaxations to obtain lower bounds on the total
error. If we then add the constraint

∑

I∈I

∑

c∈[k]

eI,c ≤ e (3.15)

to constraints (3.7)-(3.10), we are faced with the problem of computing all feasible
solutions of an integer linear program. Here our approach differs from the standard
branch-and-bound algorithm in terms of storing integer solutions, pruning criteria, and
branching. Nevertheless, it solves a linear programming relaxation in the nodes of an
enumeration tree.

Instead of storing an integer solution only if it improves on the cost of the best feasible
solution so far, we store all integer solutions we encounter in the enumeration tree. In
particular, any feasible solution satisfies (3.15) and thus is optimal in the original sense
(3.6).

In standard branch-and-bound, a node of the enumeration tree is pruned whenever the
subproblem it defines cannot yield an improving integer solutions. In contrast, we can
prune a node only if the corresponding subproblem does not admit any additional feasible
integer solution, that can be guaranteed only if the corresponding linear programming
relaxation is infeasible.

While in the standard branch-and-bound algorithm only fractional variables are chosen
to be branched on, we might have to branch on variables that are integral too. Suppose
the optimal solution x∗ to the linear programming relaxation is integral and x∗i,c = 0,
i ∈ [n], c ∈ [k]. Furthermore, assume variable xi,c has not been branched on in any
previous node. As there might exist some solution with xi,c = 1, we need to create a
child node in which we set xi,c = 1. At the same time, there might exist integer solutions
with xi,c = 0, but which differ from x∗ in the other variables. Therefore, we also need
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INITIALIZATION

Determine minimum possible total error e.

Form root node by adding constraint (3.15)

to (3.7)-(3.10) and add root node to Nodelist.

Nodelist empty?

Solution integral or
LP infeasible?

integral
PRUNE NODE

infeasible

otherwise

BRANCHING
Select new variable xi,c and add 2 nodes to

Nodelist formed by adding constraint xi,c = 0

and xi,c = 1, respectively, to ILP of current node.

SELECT NODE

Choose and remove node from Nodelist.

SOLUTION POOL

Store solution in pool of optimal

solutions if no duplicate.

EXIT

Found all optimal solutions.

LP RELAXATION

Solve linear relaxation of current node.

Y

N

Figure 3.3: Flow chart of the B&B algorithm to enumerate all optimal solutions

to create a child node where we fix xi,c to 0. Notice however, that this branch contains
the same integer solution as the parent and thus some care has to be taken to avoid
duplicate solutions. Nevertheless, our algorithm will terminate, as there is only a finite
number of variables to branch on. A simplified flow chart of the proposed algorithm is
given in Figure 3.3.

On the theory side, the feasibility problem for general integer linear programs is NP-
complete. Although state-of-the-art ILP solvers perform well in practice, they exhibit
exponential runtime in the worst case. Nevertheless, we were able to exploit the specific
structure of the interval constraint coloring problem in the special case of two colors
and give a combinatorial, strongly polynomial-time algorithm in the next section. This
algorithm will serve as a building block for an approximation algorithm for the case of
three and more colors in Section 3.4 and will also play a decisive role in the Lagrangian
relaxation approach presented in Section 3.5.
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3.3 A Combinatorial Approach for the 2-Color Case

In this section, we present a combinatorial algorithm that finds an optimal coloring for
the special case of problem IntervalColoringmin where k = 2 in strongly polynomial
time. If we distinguish only between two colors, constraint (3.14) becomes yI,1+yI,2 = |I|
for all I ∈ PI . This allows us to simplify the integer linear program considerably.
Replacing yI,2 by |I|−yI,1 in constraints (3.12) and (3.13) and omitting the color subscript
of the y-variables yield constraints

−Ay + e1 ≥ −r1 Ay + e2 ≥ f − r2

Ay + e1 ≥ r1 −Ay + e2 ≥ −f + r2
(3.16)

where f is the vector of fragment lengths, i.e. lengths of intervals in I. We can eliminate
half of the constraints based on the following observation. Let r := max{r1, f − r2} and
r̄ := min{r1, f−r2}, where the maximum and the minimum is taken componentwise. Let
y ≥ 0 be an arbitrary integer solution to constraints (3.16) with total error

∑
I∈I eI,1 +

eI,2. We may consider the error of the given solution y within each interval independently.
From error vectors e1 and e2, we construct new vectors e = (eI)I∈I and ē = (ēI)I∈I ,
respectively, by swapping certain components between them, depending on the value of
the corresponding component of r and r̄:

eI :=




eI,1 if rI = r(I, 1),

eI,2 otherwise.
ēI :=




eI,1 if r̄I = r(I, 1),

eI,2 otherwise.

Concerning the contribution of each interval I = Ii ∈ I to the total error subject to the
new error vectors e and ē, we distinguish between three different cases:

eI,1 + eI,2 =





rI − r̄I if r̄I ≤ a′
iy ≤ rI ,

2eI + rI − r̄I if a′
iy > rI ,

2ēI + rI − r̄I if a′
iy < r̄I .

Since eI and ēI are relevant only in the second, respectively third case, it is sufficient to
require vector e to be at least Ay−r and vector ē to be at least r̄−Ay. Hence, a coloring
with minimum total error is an optimal integer solution to the linear programming
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relaxation

minimize
∑

I∈I eI + ēI

such that −Ay + e ≥ −r

Ay + ē ≥ r̄

−y ≥ −p

e, ē ≥ 0

y ≥ 0.

(3.17)

whose constraint matrix is totally unimodular [NW99] and whose right hand side is in-
tegral. Therefore, all its basic feasible solutions are integral [NW99]. The corresponding
dual linear program is given by

maximize −r′ue + r̄′uē − p′up

such that −A′ue + A′uē − up ≤ 0

0 ≤ ue,uē ≤ 1

0 ≤ up,

(3.18)

which is equivalent to (multiplying the objective function by −1 and introducing slack
variables us)

−minimize r′ue − r̄′uē + p′up

such that −A′ue + A′uē − up + us = 0

0 ≤ ue,uē ≤ 1

0 ≤ up,us.

(3.19)

We will show next that solving dual program (3.19) reduces to finding a minimum
cost circulation in a directed graph. To this end, let M be the matrix formed by the
coefficients of the equality constraints in the linear program (3.19), i.e.

M :=
(
−A′ A′ −I I

)
.

Notice that the 1’s in each column of constraint matrix M appear consecutively while
all remaining entries are 0. Therefore, we can transform M by row-operations like in
Gaussian elimination into a node-arc incidence matrix of a directed graph as follows: We
add the dummy constraint 0 = 0 at the end and subtract from each row its predecessor
to obtain a matrix M̃. The columns of matrix M̃ have only two nonzero elements, a +1
in the row corresponding to the source node and a −1 in the row corresponding to the
target node of an edge. Since the right hand side remains unchanged, we get a minimum
cost circulation problem on a directed graph G with |PI | + 1 nodes and O (|I|+ |PI |)
arcs [AMO93].
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1 2 3 4 5 6 7 8

Figure 3.4: A directed graph G with |PI | = 7 as obtained from the reduction to a
minimum cost circulation problem. The arcs (1, 4), (2, 6), (3, 7), (5, 8) map to intervals
in I by the following rule: if (i, j) is an arc in G, then there exists an interval [i′, j′] ∈ I
such that i′ is the leftmost node spanned by interval Ii ∈ PI , and j′ is the rightmost
node in interval Ij−1 ∈ PI .

More precisely, let the nodes in G be identified by the number of the row in incidence
matrix M̃ they correspond to. Furthermore, we number intervals Ii ∈ PI from i = 1 to
i = |PI | such that interval Ii corresponds to the ith row of matrix M, or equivalently, to
the ith column of A (see definition of matrix A in (3.11)). Notice that this numbering
scheme naturally associates intervals Ii, and implicitly also variables yIi

, with nodes i
for all 1 ≤ i ≤ |PI |. Node |PI | + 1 plays a dedicated role, as it arises from the dummy
constraint 0 = 0. Then graph G contains, for each variable yIi

, Ii ∈ PI , two arcs (i, i+1)
and (i+1, i) corresponding to the constraints 0 ≤ yIi

≤ |Ii| and for each interval [i, j] ∈ I
the arcs (i′, j′ + 1) and (j′ + 1, i′), where i is the leftmost node in interval Ii′ ∈ PI and j
the rightmost node spanned by interval Ij′ ∈ PI . Note that the number of fragments |I|
is an implicit upper bound on the capacity of edges (i, i+ 1) and (i+ 1, i), 1 ≤ i ≤ |PI |:
Every negative cost cycle contains at least on edge (j′+1, i′) of capacity 1 corresponding
to an interval [i, j] ∈ I. Figure 3.4 shows such a graph G with |IP | = 7 and |I| = 4.

Two fundamental algorithms for solving the minimum most circulation problem are
the cycle-canceling algorithm and the successive shortest path algorithm (see [AMO93]
for further reference). The former maintains a feasible circulation at every step and
attempts to attain optimality. The basic scheme is to start with the zero flow and
repeatedly augment flow along negative cost directed cycles in the residual network
until no negative cycle remains. Since the residual network with respect to an optimal
circulation does not contain a negative cost (directed) cycle, we can obtain optimal
node potentials π = (πi)1≤i≤|PI+1|, i.e. the corresponding dual solution, by solving a
shortest path problem using the Bellman-Ford algorithm in time O (|I| · |PI |) [CLRS01].
The difference in the potential of two neighboring nodes then yields the value of the
corresponding y-variable, i.e. yi = πi − πi+1. The values for the variables in the original
improved-ILP formulation can be obtained for all I ∈ PI by yI,1 = yI for color 1 and
by yI,2 = |I| − yI for color 2. Given an optimal solution y, its total error is obtained
in a straightforward way by summing up, over all intervals I ∈ I, the deviation of a
coloring contained in the equivalence class represented by y from requirements r(I, 1)
and r(I, 2). If there exists a solution without an error this approach yields a solution
within the running time of the Bellman-Ford algorithm.

In contrast, the node potentials π play a decisive role in the successive shortest path
algorithm. In a preprocessing step, we transform the minimum cost circulation prob-
lem into a minimum cost flow problem by saturating all negative cost arcs, which will
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create excess nodes and deficit nodes. Then the algorithm maintains, at every step, a
solution u = (ue,uē,up,us) to (3.19) violating only the equality constraints and node
potentials π that satisfy the reduced cost optimality condition and attempts to achieve
feasibility. Since in our case the total excess supply is upper bounded by |PI |, the al-
gorithm terminates in at most |PI | iterations. By using Dijkstra’s algorithm [CLRS01]
to solve a shortest path problem with nonnegative arc lengths in each iterations, the

overall complexity of this algorithm is O
(
|PI | · |I|+ |PI |2 log |PI |

)
.

In the next section we show, how we can obtain an approximate solution (without
performance guarantee) to general instances with arbitrary but fixed number of colors
by repetitively solving a special case involving only 2 colors.
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3.4 An Approximation for the General Case

We present an algorithm that uses our combinatorial approach for the 2-color case from
previous section as a subroutine to provide approximate solutions (without performance
guarantee) for instances of problem IntervalColoringmin with arbitrary but fixed
number of colors. The general idea is to reduce the problem to the 2-color case by
merging all but one color, say color i, to a single color and solve the resulting problem
by an algorithm for the minimum cost circulation problem, as described in Section 3.3.
We remove nodes colored i by the obtained solution and solve the coloring problem on
the remaining nodes using k − 1 colors recursively.

Procedure ApproxGeneral shows below the pseudocode describing our algorithm.
It takes as parameter an instance of problem IntervalColoringmin and uses two
subroutines: 2ColorsSpecial computes for the special case of 2 colors, i.e. k =
2, an integer solution (y1,y2) to constraints (3.12)-(3.14) with minimum total error.
ReduceInstance removes all nodes colored i according to given solution vector yi and
adapts all intervals and coloring requirements to the new set of vertices.

Algorithm 1: ApproxGeneral(V , I, k, r)
Data: An instance (V,I, k, r) of IntervalColoringmin

Result: Colorings χ : V 7→ [k] with small total error, represented by solution
vector (yc)c∈[k]

if k = 2 then1

(y1,y2)← 2ColorsSpecial(V,I, r)2

return (y1,y2)3

r̄I,1 ←
∑k−1

c=1 rI,c, ∀I ∈ I4

r̄I,2 ← rI,k, ∀I ∈ I5

(ȳk−1,yk)← 2ColorsSpecial(V,I, r̄)6

(V ′,I ′, k − 1, r′)← ReduceInstance(yk)7

(yc)c∈[k−1] ← ApproxGeneral(V ′,I ′, k − 1, r′)8

return (yc)c∈[k]9

Initially, let |V | = n and r : I × [k]→ Z+. Provided that k > 2, the instance is reduced
to the 2-color case with new requirement function r̄ : I × [2]→ Z+ in lines 4 and 5. For
the ease of notation, colors 1 to k − 1 are merged to a new color 1, while color k is kept
unchanged as color 2 in the new instance.

Based on solution vector yk for color k derived from the dual solution of a minimum
cost circulation problem in line 6, we construct an instance (V ′,I ′, k − 1, r′) in line 7,
in which from every I ∈ PI exactly yI,k residues are removed. Those residues will be
colored k in the final solution to the original instance. Therefore, |V ′| = n−∑I∈PI

yI,k

and we remove empty intervals in I. Furthermore, the boundaries of the remaining
intervals are shifted to the left to account for deleted residues. Color 1 is split into its
k − 1 constituting colors again.
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From the recursive call in line 8 we obtain an approximate solution (yc)c∈[k−1] to the
reduced problem with k − 1 colors which we can finally combine with yk to an overall
solution (yc)c∈[k] to the original instance.

For the sake of illustration, we applied one specific strategy to merge colors in line 4.
Namely, in each recursive call we merge colors in {1, . . . , k − 1} to a new color 1 and
keep color k as new color 2. Clearly, the combinatorial algorithm does not dependent
on the strategy being pursued when merging k− 1 colors. For a fixed (small) number of
colors one could therefore evaluate all possible orders in which colors are fixed as new
color 2 and output the minimum overall error.

In the next section we use the combinatorial approach for the 2-color case to compute,
in a Lagrangian fashion, a bound on the minimum total error, which is exploited in a
branch-and-bound manner to determine all optimal colorings.
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3.5 A Lagrangian Relaxation Approach

In this section we propose a Lagrangian relaxation approach for finding all optimal solu-
tions to problem IntervalColoringmin. It is based on the improved-ILP formulation
introduced in Section 3.2.2:

minimize
∑

I∈I

∑
c∈[k] eI,c (3.20)

such that −Ayc + ec ≥ −rc, ∀ c ∈ [k], (3.21)

Ayc + ec ≥ rc, ∀ c ∈ [k], (3.22)
∑

c∈[k] yc = p (3.23)

y ≥ 0

y integer,

where p is the vector that contains the length of intervals in PI and y = (yc)c∈[k].
The problem can be considered to contain independent structures for each color c ∈ [k],
namely the set of positive integer vectors yc satisfying (3.21) and (3.22) under the
objective (3.20), that are linked by constraints (3.23). Therefore, dualizing the linking
constraints (3.23), with Lagrangian multipliers λ, splits the problem into an independent
problem for each color c ∈ [k]:

minimize
∑

I∈I

∑
c∈[k] eI,c + λ′

(∑
c∈[k] yc − p

)

such that −Ayc + ec ≥ −rc, ∀ c ∈ [k],

Ayc + ec ≥ rc, ∀ c ∈ [k], (IP (λ))

0 ≤ yc ≤ p, ∀ c ∈ [k],

y integer.

Neglecting the constant term −λ′p in the objective function and replacing error variable
e by e + ē we have to determine, for every color c ∈ [k], an optimal integral solution to
the following linear program:

minimize
∑

I∈I(eI,c + ēI,c) + λ′yc

such that −Ayc + ec ≥ −rc (3.24)

Ayc + ēc ≥ rc (3.25)

ec, ēc ≥ 0 (3.26)

0 ≤ yc ≤ p.

Note that we added constraint (3.26) to enforce eI,c or ēI,c to be zero if ēI,c, respectively
eI,c, corresponds to the absolute value of the error, i.e. if the constraint (3.25), respec-
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tively the constraint (3.24), for interval I is tight. Similar as for linear program (3.17),
its dual is given by (omitting the color subscript c):

−minimize r′ue − r′uē + p′up

such that −A′ue + A′uē − up + us = λ

0 ≤ ue,uē ≤ 1

0 ≤ up,us,

(3.27)

This linear program differs from LP (3.19) in Section 3.3 only in the right-hand side of
the equality constraints. Instead of a minimum cost circulation problem (right-hand side
is 0), we have to solve the more general minimum cost flow problem [AMO93] where
the supplies and demands λ̄ of the nodes are determined by the difference of Lagrangian
multipliers, i.e. λ̄ is of dimension |PI |+ 1 and λ̄i = λi − λi−1 for 2 ≤ i ≤ |PI |, λ̄1 = λ1

and λ̄|PI |+1 = −λ|PI |. A feasible flow of minimum cost can be computed efficiently by,
e.g., the cycle-canceling algorithm and the successive shortest path algorithm, as well as
variants of them, like the capacity scaling algorithm [AMO93].

3.5.1 Solving the Lagrangian Dual

Let v(IP (λ)) denote the optimal value of IP (λ). Then for any vector λ of Lagrangian
multipliers, the (nondifferentiable) Lagrangian function

z(λ) = v(IP (λ))

provides a lower bound on the minimum total error, see objective function (3.20). To
profit from the sharpest possible bound in the branch-and-bound framework we are
interested in solving the Lagrangian dual problem

z∗ = max
λ

z(λ).

Similar as for the multiple sequence alignment problem (see Section 2.6.1), we apply
the subgradient method to obtain near-optimal Lagrangian multipliers. Following the
approach by Held and Karp [HK71] we iteratively determine values λℓ+1 for ℓ = 0, 1, . . . ,
of the Lagrangian multipliers by moving in the direction of a subgradient with “step
length” µℓ:

λℓ+1 = λℓ + µℓ

(
∑

c∈[k]

yℓ
c − p

)
,

where (yℓ
c)c∈[k] is any optimal solution to IP (λℓ). In comparison to the update formula

(2.22), Lagrangian multipliers λ are not constrained to be nonnegative, since we are
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dualizing equality constraints. The heuristic for computing the step length does not
differ from the one used in (2.22):

µℓ =
θℓ

(
UB − z(λk)

)

‖∑c∈[k] y
ℓ
c − p‖2 .

However, we experienced a faster convergence to near-optimal Lagrangian multipliers
when following the classical Held-Karp method to choose the step size scalar θ: We start
with θ0 = 2 and half θℓ whenever the best Lagrangian bound v(IP (λ)) found so far
has not increased in a certain number of iterations. As soon as the step size scalar falls
below a specified threshold or the number of iterations exceeds a certain limit (which is
adaptive with respect to the depth of the B&B node), we branch on a variable yI,c such
that ȳI,c− ⌊ȳI,c⌋ is close to 0.5, where ȳI,c is the average value of variable yI,c in the last
h = 10 Lagrangian solutions. Since we aim to find all optimal colorings, we also branch
on variables that are integral. Section 3.2.3 describes the modifications required by the
standard B&B algorithm in order to enumerate all optimal solutions. In particular, the
LP relaxation in the flow chart given in Figure 3.3 has to be replaced by the proposed
Lagrangian relaxation approach.

Experiments show (see Section 3.6.4), that incorporating the Lagrangian approach as
a lower bounding scheme into a branch-and-bound framework, allows to enumerate all
optimal colorings significantly faster than the B&B method based on LP relaxation.
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3.6 Experiments

We have implemented the exact branch-and-bound (B&B) method based on the LP
relaxation of the basic-BIP and the improved-ILP (see Section 3.2.3), the B&B approach
based on the Lagrangian relaxation of the improved-ILP (see Section 3.5), as well as the
combinatorial algorithm providing approximate solutions to the general case (see Section
3.4), in C++ using the LEDA library [MN95]. In the implementation of the former we
used the C++ library SCIL [ABE+02] to solve integer linear programs. SCIL is based
on libraries LEDA and SCIP [Ach04], which in turn uses CPLEX [ILO06] or SoPlex
[Wun96] as solver for linear programs. We applied our solution methods to several
instances obtained from real experiments as well as to randomly generated problem
instances.

3.6.1 Basic-BIP versus Improved-ILP

Table 3.2 reports the results of our ILP-based branching approach on real-world in-
stances, which contained between 28 and 57 residues and between 16 and 50 fragments.
Residue proline was removed from the protein sequences, since it does not possess an
amide hydrogen atom. The instances distinguish low, medium, and high exchange rates,
i.e. k = 3. A coloring with minimum total error could be computed in less than 0.1
second for all those instances. All nonequivalent colorings (see Definition 3.1) with
minimum total error, between 6 and 62 in number, could be determined in less than
5 seconds, where the running time greatly depends on the actual number of solutions.
Using the improved-ILP instead of the basic-BIP formulation reduces the time required
to compute all solutions significantly.

Instance Basic-BIP Improved-ILP

n |I| |PI | ǫ T(One) T(All) #Sol T(One) T(All) #Sol

28 16 12 19 0.02 418.75 102600 0.02 0.13 11

57 34 28 10 0.05 >3600 > 300000 0.02 0.32 6

57 50 37 35 0.06 215.13 8568 0.04 4.32 62

37 17 16 9 0.03 2084.12 4529151 0.01 0.22 18

Table 3.2: The characteristics of the instances are given by the number of residues n,
the number of fragments |I|, the size of the partition |PI |, and the minimum possible
total error of a coloring ǫ. For the basic-BIP and the improved-ILP formulation we give
the solution times for finding one optimal coloring T(One) and for finding all optimal
colorings T(All) in seconds, as well as the number of solutions #Sol found. The number
of solutions to the improved-ILP is considerably smaller than the number of solutions
to the basic-BIP since equivalent colorings are considered only once.

The results for the real-world instances are very promising as the small number of easily
interpretable classes of equivalent solutions can be used in protein structure prediction
tools and for manual inspection.
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3.6.2 Improved-ILP on Random Instances

To be able to evaluate the performance of our B&B approach based on the improved-
ILP formulation more accurately, we additionally created random instances as follows.
We generated a sequence with a given number of residues. For each residue, we chose
a color at random independently of one another. In our model, a color representing
a low exchange rate is assigned with probability 0.6, whereas a color corresponding
to medium or high exchange rate is selected with probability 0.2. These probabilities
approximately reflect the numbers we observed in the real-world problem instances. The
random fragments are obtained by selecting, n/2 times, i, j ∈ {1, . . . , n} with i < j at
random. In our experiments we use n = 50, 100, 150, 200, 250, 300, 500, 1000. Note that
the actual number of variables in the improved-ILP formulation is less than n. However,
the difference is only marginal due to our random choice of the relatively high number of
fragments. For each fragment, we counted the numbers of residues having a certain color
and added a random Gaussian noise to reflect the errors arising from the experimental
measurements. We generated one series of instances without noise and three further
series with Gaussian noise of mean 0 and different standard deviations. Care must be
taken when using those artificial instances to support quantitative analysis, since they
are generated by a rather simple model of the real experiments.

Figure 3.5 relates the computation time of our improved-ILP-based B&B approach re-
quired to find one optimal coloring for problem IntervalColoringmin to the number
of variables used in our model. We observe a growing effect of noise the more variables
are required to capture the instance. The lines fitting the data in the log-log plot of each
series indicate that the running time obeys a power law. For the sake of illustration, we
only show the straight line that supposedly best fits the running times for the instances
without noise. It demonstrates, however, that the data points tend to follow a slight con-
vex curvature. Moreover, the slope of this straight-line fit is roughly 2.1, whereas for the
other series the exponent of the best fit power law tends towards 3 with growing noise.
Although solving integer linear programs requires exponential time in general, this is
apparently not the case for our approach in the considered range n ≤ 1000. The overall
running time of our branching algorithm seems to be dominated by the time needed to
solve the linear programming relaxations. Since this involves solving systems of linear
equations, we expect the number of variables and the running times to be related by a
cubic polynomial for instances with growing noise. In fact, Figure 3.5 shows that the
cubic-polynomial fit provides a good approximation to the running times on instances
with high noise.

The effect of noise on the running times of the B&B approach becomes more apparent
when we enumerate all optimal colorings (see Figure 3.6). Intuitively, a higher minimum
total error admits a larger number of optimal colorings. Besides, the number of optimal
colorings also grows with an increasing number of variables. The straight lines in the
log-log plot are fits of power laws to the running times with exponents ranging from
roughly 3.2 to about 4.3.
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Figure 3.5: Running time of the improved-ILP-based B&B algorithm on two data sets.
A straight line is fitted to the data on instances without noise. The curve fitted to the
running times on instances with very high noise is a polynomial of degree 3.

3.6.3 Improved-ILP versus Combinatorial Approach

In the following, we compare our branching approach from Section 3.2.3 based on
the improved-ILP formulation with the combinatorial method (see Section 3.3) pro-
viding approximate solutions. In the implementation of the latter, we refined algorithm
ApproxGeneral to allow for different strategies of merging colors in line 4. We ap-
plied the modified version of our algorithm for all three possibilities of merging two out of
three colors and took the minimum overall error over all three objective function values.
Note that while in the original formulation procedure ApproxGeneral merges colors
1 and 2 in line 4, it can easily be adapted to the other cases.

In Figure 3.7 we evaluate the running times of the two approaches needed to find one
optimal coloring. The log-log plot shows that both running times are in good agreement
with the signature of a power law. However, the combinatorial approximation approach
is considerably faster as its running time follows a power law with a scaling exponent of
1.2, while the running time of the ILP-based method scales with an exponent of roughly
2.6.

It remains to show that the advantage of the combinatorial approach with respect to the
running time is not too much on the expense of the quality of the solution. To this end,
we present a histogram in Figure 3.8 giving the number of instances (in percentage) for
which the approximate solution has an error that differs from the minimum total error
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Figure 3.6: Time required by the improved-ILP-based B&B algorithm to enumerate all
colorings with minimum error. For the sake of illustration, we only show the average
running times on similarly large instances.

by a certain amount. Our combinatorial approach finds the optimal coloring in 78% of
all instances, and in about 86% of the instances the error of our coloring exceeds the
minimum total error by at most 2. It comes as no surprise that the error of our solution
always deviates from the optimum by an even number. Intuitively, changing the color
of a residue in an optimal coloring involves an increase or decrease in error with respect
to two colors per fragment spanning that residue.

Moreover, the experiments show that if there exists a coloring with total error 0, then the
combinatorial algorithm finds a optimal coloring in more than 99.5% of these cases. If the
minimum total error is strictly positive, our approach achieves an average approximation
ration of 1.01 and 11

9 in the worst case. We conclude that the combinatorial approach
is well suited for practical purposes. In particular, it can be integrated into a B&B
framework to enumerate several “good” solutions if we allow a slight deviation from the
minimal total error. Since it achieves an order of magnitude improvement in running
time over the (exact) ILP approach, we can afford to enumerate a significantly higher
number of nodes in the search tree.

An ultimate assessment of the practical performance of both approaches requires further
experiments on real-world problem instances. However, creating instances by real ex-
periments involves a considerable effort. For the sake of completeness, we briefly explain
the applied techniques in Section 3.6.5
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Figure 3.7: Comparison of running times of the branching method based on the
improved-ILP formulation and the combinatorial approach.

3.6.4 B&B based on Lagrangian Relaxation

We have implemented the Lagrangian relaxation approach introduced in Section 3.5
in C++. We used the LEDA library [MN95] to solve the Lagrangian subproblem, a
set of minimum cost flow problems, by an algorithm based on capacity scaling and
successive shortest path computation [AMO93]. We improve the resulting bounds by
the subgradient optimization method described in Section 3.5.1 and incorporate the
overall approach into a branch-and-bound algorithm as the lower bounding scheme. In
the experiments it turns out, that initializing the vector of Lagrangian multipliers λ0

to the length p of the corresponding intervals in PI increases the convergence rate
dramatically.

We applied the Lagrangian approach to the four data sets of random instances, whose
generation is described in detail in Section 3.6.2. Although the running times required to
compute one optimal coloring seem to obey a power law (Figure 3.9), with the exponent
ranging from roughly 2.1 to 2.5, they are significantly higher than the computation times
of the branching approach based on the improved-ILP formulation (see Figure 3.5). This
comes as no surprise, since the linear programs in the B&B nodes can be solved relatively
efficient while providing strong bounds on the minimal total error.

Nevertheless, the advantage of determining a bound on the minimal error by a com-
binatorial algorithm becomes apparent when enumerating all optimal colorings. The
slopes of the straight-line fits in Figure 3.10 range from roughly 1.9 for instances with-
out noise (compared to 3.2 for the improved-ILP-based branching method) to roughly
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Figure 3.8: For even numbers x between 0 and 20, the histogram shows the percentage
of instances for which the error of the approximate solution exceeds the minimum total
error by x.

2.7 for instances with high noise (compared to 4.3). Since the enumeration of all optimal
solutions requires a high number of nodes in the search tree to be evaluated, we profit
from the efficiency of algorithms to solve a minimum cost flow problem compared to a
general purpose algorithm for solving a linear program.

3.6.5 HDX - Experimental Setting

The entire HDX experiment was automated with a LEAP robot (HTS PAL, Leap Tech-
nologies, Carrboro, NC). Automation of the experiment reduces human error and re-
duces deuterium for hydrogen back-exchange. All time points where interlaced and
performed in triplicate to ensure experimental reproduceability. After digestion, the
protein digest was injected from a 10 µL loop to either a 1 mm x 50 mm C5 column
(Phenomenex) or a Pro-Zap Prosphere HP C18 HR 1.5u 10 mm x 2.1 mm (Alltech). A
rapid gradient 2% B to 95% B in 1.5 min (A: acetonitrile/H2O/formic acid 5/94.5/0.5,
B: acetonitrile/H2O/formic acid 95/4.5/0.5) was used to elute peptides. The eluent was
post-column split and infused by microelectrospray ionization into a custom built 14.5
T LTQ FT-ICR mass spectrometer.
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Figure 3.9: Running time of the Lagrangian-based B&B algorithm needed to compute
one optimal coloring for the four sets of random instances. For the sake of illustration,
we only show the average running times on similarly large instances.
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Figure 3.10: Running time of the Lagrangian-based B&B algorithm needed to compute
all optimal colorings for the four sets of random instances. For the sake of illustration,
we only show the average running times on similarly large instances.
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3.7 A ±1 Guarantee

In this section, we present an algorithm that rounds a fractional solution to the LP
relaxation polytope of ILP (3.5) in order to obtain an approximate solution to problem
IntervalColoring that satisfies all coloring requirements (second constraint in ILP
(3.5)) within a mere additive error of one.

Let P be the polytope obtained by relaxing the integrality constraint in integral problem
(3.5). That is, P is the set of values of x obeying

∑
c∈[k] xi,c = 1, ∀ i ∈ [n],
∑

i∈I xi,c = r(I, c), ∀ I ∈ I, c ∈ [k],

0 ≤ xi,c ≤ 1, ∀ i ∈ [n], c ∈ [k].

Let x be a fractional solution in P. We use the scheme of Gandhi et al. [GKPS06] to
round x to an integral solution x̂.

Theorem 3.1. Given a fractional solution x ∈ P, we can construct in polynomial time
an integral solution x̂ with the following properties

(P1) For every i ∈ [n] there exists c ∈ [k] such that x̂i,c = 1 and x̂i,d = 0 for all d 6= c.

(P2) For every I ∈ I and c ∈ [k] we have |∑i∈I x̂i,c − r(I, c)| ≤ 1.

(P3) Every I ∈ I is satisfied with probability at least γk =
k(k+1−Hk−1)

(k+1)! .

In other words, each position gets exactly one color (P1 ), every coloring requirement
is off by at most one from the prescribed number (P2 ), and all the requirements for a
given interval I are satisfied exactly (

∑
i∈I x̂i,c = r(I, c) for all c ∈ [k]) with probability

at least γk (P3 ). An interesting corollary of this theorem is that if P is non-empty then
there always exists a coloring satisfying at least γk|I| intervals, and such a coloring can
be found in polynomial time.

The high level idea is to simplify the polytope P into another integral polytope with
basic solutions satisfying (P1 ) and (P2 ). Then we show how to select a basic solution
satisfying (P3 ). This is done by defining a set of blocks and then setting up an assignment
problem instance between [n] and the set of blocks, whose polytope is integral.

For each color class c ∈ [k] we choose a real number αc ∈ [0, 1], to be specified shortly.
Let us define blocks Bc

1, B
c
2, . . . , B

c
bc

: For color c and j = 2, . . . , bc − 1

Bc
j =

[
min{t | ∑i≤t xi,c > j − 2 + αc}, min{t | ∑i≤t xi,c ≥ j − 1 + αc}

]
.

The first and last blocks, Bc
1 and Bc

bc
, are defined similarly, but starting at 1 and ending

at n respectively.
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Figure 3.11: The construction of blocks Bc
j . The xi,c values appear on top and the yi,(c,j)

values appear on the edges. Note that a block can only overlap with its predecessor or
successor. In this case αc = 0.7.

For each i ∈ Bc
j we define a variable yi,(c,j). If i belongs to a single block Bc

j of color
c, then we set yi,(c,j) = xi,c. Otherwise, i belongs to two adjacent blocks Bc

j+1 and Bc
j ,

in which case we set yi,(c,j+1) =
∑

t≤i xt,c − (j − 1 + αc) and yi,(c,j) = xi,c − yi,(c,j+1).
See Figure 3.11 for an example of how the blocks and the solution y are constructed.
Another, equivalent, way to define y is to ask that xi,c =

∑
j yi,(c,j),

∑
i∈Bc

1
yi,(c,1) = αc

and
∑

i∈Bc
j
yi,(c,j) = 1 for every 1 < j < bc. Thus y defines a feasible fractional assignment

between [n] and the set of blocks. Let Q be the polytope of this assignment problem,
namely,

∑
Bc

j∋i yi,(c,j) = 1, ∀ i ∈ [n], (3.28)
∑

i∈Bc
j
yi,(c,j) = 1, ∀ c ∈ [k] and 1 < j < bc, (3.29)

∑
i∈Bc

j
yi,(c,j) ≤ 1, ∀ c ∈ [k] and j ∈ {1, bc}, (3.30)

yi,(c,t) ≥ 0, ∀ i ∈ [n], c ∈ [k], t ∈ [bc]. (3.31)

Because Q is integral, any fractional solution y ∈ Q can be turned into an integral
solution ŷ ∈ Q; this can even be done in polynomial time. Notice that an integral
solution ŷ to Q induces an integral solution x̂ by setting x̂i,c = 1 if and only if yi,(c,j) = 1.
Constraint (3.28) implies that x̂ satisfies (P1 ). Furthermore, x̂ also satisfies (P2 ).

Lemma 3.1. Let ŷ be an integral solution for Q and let x̂ be the coloring induced by ŷ.
Then |∑i∈I x̂i,c − r(I, c)| ≤ 1 for all I ∈ I and c ∈ [k].

Proof. Since
∑

i∈I xi,c = r(I, c), the number of blocks of color c that intersect I is either
r(I, c) or r(I, c)+1. Furthermore, at least r(I, c)−1 of these blocks lie entirely within I,
and at most two blocks intersect I partially. Due to constraints (3.28) and (3.29), each
internal block will force a different position in I to be colored c. On the other hand,
the fringe blocks, if any, can force at most two additional positions in I to be colored c.
Hence, the lemma follows.
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It only remains to prove that x̂ obeys (P3 ). To do so, we need to introduce some
randomization in our construction. First, we will choose the offset αc of each color c ∈ [k]
independently and uniformly at random. Second, instead of choosing any extreme point
of Q, we choose one using a randomized rounding procedure.

Gandhi et al. [GKPS06] showed that any fractional solution y ∈ Q can be rounded to
an integral solution ŷ ∈ Q such that the probability that ŷi,(c,j) = 1 is exactly yi,(c,j). It
is important to note that these events are not independent of each other.

Lemma 3.2. Let ŷ be the solution output by the randomized rounding procedure and x̂
the coloring induced by it. For any interval I ∈ I, the probability that

∑
i∈I x̂i,c = r(I, c)

for all c ∈ [k] is at least
k(k+1−Hk−1)

(k+1)! .

Proof. Let I be an arbitrary, but fixed, interval throughout the proof and for the time
being let us concentrate on a fixed, but arbitrary, color c ∈ [k]. Let f and l be the indices
of the first and last blocks of color class c that intersect I and define βc =

∑
i∈I∩Bc

f
yi,(c,f),

or, equivalently,
∑

i∈I∩Bc
l
yi,(c,l) = 1− βc.

Intuitively, the probability that
∑

i∈I x̂i,c = r(I, c) should be greater when the blocks
of c are aligned with I (when βc is close to 0 or 1) and it should be low when they are
not (when βc is around 0.5). By choosing αc uniformly at random, βc also becomes a
random variable uniformly distributed in [0, 1]. Thus, we have a decent chance of getting
a “good value” of βc.

Let us formalize and make more precise the above idea. Denote with ξf and ξ l the events∑
i∈I∩Bc

f
ŷi,(c,f) = 1 and

∑
i∈I∩Bc

l
ŷi,(c,l) = 1 respectively. Let β = (β1, . . . , βk) be the

vector of offset for the color classes. For brevity, we denote Pr [ ξ | β ] with Prβ [ ξ ].

Prβ
[∑

i∈I x̂i,c 6= r(I, c)
]

= Prβ
[
ξf ξ l ∨ ξf ξ l

]

= Prβ [ ξfξ l ] + Prβ

[
ξf ξ l

]

≤ min{Prβ [ ξf ] ,Prβ [ ξ l ]}+ min{Prβ

[
ξf
]
,Prβ

[
ξ l

]
}.

Since Prβ [ ξf ] = βc and Prβ [ ξ l ] = 1− βc, it follows that

Prβ

[∑
i∈I x̂i,c 6= r(I, c)

]
≤ 2 min {βc, 1− βc} . (3.32)

We first show that the probability that all requirements for I are fulfilled is at least
1

(k+1)! . Denote with τ the event ∀c :
∑

i∈I x̂i,c = r(I, c). Recall that the vector β is

distributed uniformly over the domain D = [0, 1]k . Conditioning on β and averaging
over D gives the desired result.
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Pr [ τ ] =

∫

D

Prβ
[
∀c :

∑
i∈I x̂i,c = r(I, c)

]
dβ1 · · · dβk

≥
∫

D

1−∑c∈[k] Prβ

[∑
i∈I x̂i,c 6= r(I, c)

]
dβ1 · · · dβk

≥
∫

D

max
{

0, 1− 2
∑

c∈[k] min {βc, 1− βc}
}

dβ1 · · · dβk

= 2

∫

D

max
{

0, 1
2 −

∑
c∈[k] min {βc, 1− βc}

}
dβ1 · · · dβk.

The second inequality follows from the union bound and the third follows from (3.32).
A moment’s thought reveals that the function inside the integral is symmetrical in the
2k orthants around the point (1

2 , . . . ,
1
2) ∈ D. Therefore, setting D′ = [0, 1

2 ]k we get

Pr [ τ ] ≥ 2k+1

∫

D′

max
{
0, 1

2 −
∑

c∈[k] βc

}
dβ1 · · · dβk.

The right hand side of the above inequality can be interpreted as the volume of a (k+1)-
dimensional simplex.

Pr [ τ ] ≥ 2k+1 Vol
(
λ ∈ Rk+1

+

∣∣∣
∑

i∈[k+1] λi ≤ 1
2

)

= 2k+1 (1
2)k+1

(k + 1)!

=
1

(k + 1)!
.

In order to get the stronger bound in the statement of the lemma, we need several
improvements. First, we claim that we only need to condition on fulfilling k− 1 require-
ments: Since

∑
c∈[k] r(I, c) = |I|, once we get k − 1 colors right, the kth requirement

must be satisfied as well. Second, since we can condition on any k − 1 colors, we had
better condition on the ones with smallest offset, that is, those that are close to 0 or 1.

Pr [ τ ] =

∫

D

Prβ
[
∀c :

∑
i∈I x̂i,c = r(I, c)

]
dβ1 · · · dβk

≥
∫

D

max
d∈[k]

{
1−∑c 6=d Prβ

[∑
i∈I x̂i,c 6= r(I, c)

]}
dβ1 · · · dβk

≥
∫

D

max
d∈[k]

{
max

{
0, 1− 2

∑
c 6=d min {βc, 1− βc}

}}
dβ1 · · · dβk

= 2k

∫

D′

max
d∈[k]

{
max

{
0, 1 − 2

∑
c 6=d βc

}}
dβ1 · · · dβk

= 2k+1

∫

D′

max
{
0, 1

2 −
∑

c∈[k] βc + maxd∈[k] βd

}
dβ1 · · · dβk.
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The last integral can be simplified by assuming that the maximum βd is attained by the
last variable. Of course, the maximum can be any of the k variables, thus these two
quantities are related by a factor of k.

Pr [ τ ] ≥ k 2k+1

∫ 1
2

0

[∫

[0,z]k−1

max
{
0, 1

2 −
∑

c∈[k−1] βc

}
dβ1 · · · dβk−1

]
dz.

Let T (z) denote Vol
(
λ ∈ Rk

+

∣∣∣
∑k

i=1 λi ≤ 1
2 and λ1, . . . , λk−1 ≤ z

)
. Then we can rewrite

the above integral as

Pr [ τ ] ≥ k 2k+1

∫ 1
2

0
T (z) dz. (3.33)

The volume computed by T (z) is not a simplex, but it can be reduced to a summation
involving only the volume of simplices using the principle of inclusion-exclusion.

Let V (ρ) denote the volume Vol
(
λ ∈ Rk

+

∣∣∣
∑k

i=1 λi ≤ ρ
)

and recall that V (ρ) = ρk

k! .

Consider what happens when z ∈ {x ∈ R | 1
4 ≤ x < 1

2}; clearly T (z) < V (1
2) since V (1

2)
includes points λ ∈ R

k
+ such that λi > z for exactly one coordinate i ∈ [k − 1] (since

z ≥ 1
4). Notice that

Vol
(
λ ∈ Rk

+

∣∣∣
∑k

i=1 λi ≤ 1
2 and λi > z

)
= V (1

2 − z).

Thus T (z) = V (1
2 ) − (k − 1)V (1

2 − z) for z ∈ {x ∈ R | 1
4 ≤ x ≤ 1

2}, but T (z) >
V (1

2) − (k − 1)V (1
2 − z) for z ∈ {x ∈ R | 0 ≤ x < 1

4} since the volume of points y
such the constraint λi ≤ z is violated for two coordinates is subtracted twice. To avoid
cumbersome notation, assume V (ρ) = 0 if ρ ≤ 0. A simple inclusion-exclusion argument
yields

T (z) =
k−1∑

i=0

(
k − 1

i

)
(−1)i V (1

2 − iz). (3.34)

Plugging (3.34) into (3.33) we get
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Pr [ τ ] ≥ 2k+1k

(∫ 1
2

0
V (1

2 ) dz +
k−1∑

i=1

(
k − 1

i

)
(−1)i

∫ 1
2i

0
V (1

2 − iz) dz

)

= 2k+1k

(∫ 1
2

0

(1
2)k

k!
dz +

k−1∑

i=1

(
k − 1

i

)
(−1)i

∫ 1
2i

0

(1
2 − iz)k
k!

dz

)

= 2k+1k


 1

k!2k
z

∣∣∣∣
1
2

0

+

k−1∑

i=1

(
k − 1

i

)
(−1)i

(1
2 − iz)(k+1)

(k + 1)!(−i)

∣∣∣∣∣

1
2i

0




= 2k+1k

(
1

k!2(k+1)
+

k−1∑

i=1

(
k − 1

i

)
(−1)i

(k + 1)! 2k+1 i

)

=
k

(k + 1)!

(
k + 1 +

k−1∑

i=1

(
k − 1

i

)
(−1)i

i

)
.

Using induction on k, it is straightforward to show that the sum in the last line adds
up exactly to −Hk−1, where Hk−1 is the (k − 1)th harmonic number. This gives us the
desired bound of γk.
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3.8 A Quasi-PTAS for IntervalColoringmax

In this section, we describe how to compute an approximate solution to the problem
IntervalColoringmax in quasi-polynomial time. Let Opt ⊆ I be a maximum weight
subset of intervals for which a feasbile coloring exists. For α ∈ (0, 1] and β ≥ 1, an (α, β)-
approximation of the problem is given by a pair (χ,I ′) of a subset I ′ ⊆ I, and a coloring
χ : V 7→ [k], such that

∑
I∈I′ w(I) ≥ α · w(Opt), and 1

β
r(I, c) ≤ Nχ(I, c) ≤ βr(I, c),

where Nχ(I, c) is the number of positions in I colored c by χ, see (3.2).

Theorem 3.2. Consider an instance (V,I, k, r) of IntervalColoringmax with |V | = n

and |I| = m. Then we can find a (1, 1 + ǫ)-approximation in time nO(k2

ǫ
log n log m), for

any ǫ > 0.

Note that the above bound is quasi-polynomial for k = polylog(n,m). To prove Theo-
rem 3.2 we use a similar technique as in [ESZ07]. Our approach is based on two parts: (i)
reducing the search space to ǫ-partial assignments (to be defined), an effective abstrac-
tion of colorings that behave similarly with respect to quality of approximation and (ii)
a divide-and-conquer (D&C) algorithm that finds the best ǫ-partial assignments whose
intersection represents a nonempty set of colorings. We explain these two steps in more
detail in the next subsections.

3.8.1 Reducing the Search Space

Let ǫ > 0 be a given constant. For a vertex u ∈ V and a set of intervals I on V , denote
respectively by IL(u), IR(u) and I(u), the subsets of intervals of I that lie to the left
of u, lie to the right of u, and span u, that is

IL(u) = {[s, t] ∈ I : t ≤ u− 1},
IR(u) = {[s, t] ∈ I : s ≥ u+ 1},
I(u) = {[s, t] ∈ I : s ≤ u ≤ t}.

Denote by VL(u) and VR(u) the sets of vertices that lie to the left and right of u ∈ V ,
respectively: VL(u) = {i ∈ V : i < u} and VR(u) = {i ∈ V : i ≥ u}.

Definition 3.2 (Assignment). Let V ′ = {p, p+1, . . . , q}. An assignment on V ′ is a pair
A = (I, r) of intervals I on V ′ and a function r : I × [k] 7→ {0, 1, . . . , |V ′|} such that

(C1) r(I, c) ≤ r(I ′, c) for all I, I ′ ∈ I with I ⊆ I ′ and all c ∈ [k], and

(C2)
∑

c∈[k] r(I, c) = |I| for every I ∈ I.

A is called a left-assignment (respectively, right-assignment) if all intervals in I start
at p (respectively, end at q).
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Definition 3.3 (ǫ-Partial Assignment). Let u∗ ∈ V ′ be a given vertex of V ′ = {p, p +
1, . . . , q}. A set of h1 + h2 + 2 intervals I = IL ∪ IR, IL = {I1, . . . , Ih1 , Ih1+1} and
IR = {I ′1, . . . , I ′h2

, I ′h2+1}, together with a function r : I × [k] 7→ {0, 1, . . . , |V ′|}, such
that

(R1) all intervals start or end at u∗: Ij = [uj, u
∗] for j ∈ {1, 2, . . . , h1}, Ih1+1 = [p, u∗],

I ′j = [u∗, u′j ] for j ∈ {1, 2, . . . , h2}, and I ′h2+1 = [u∗, q], where uh1 < uh1−1 < · · · <
u1 < u∗ < u′1 < u′2 < · · · < u′h2

,

(R2) (IL, r) is a right-assignment on {p, . . . , u∗}, and (IR, r) is a left-assignment on
{u∗, . . . , q},

(R3) for every I ∈ I \ {Ih1+1, I
′
h2+1} there exists a color c ∈ [k] and an integer i ∈ Z+

such that r(I, c) =
⌈
(1 + ǫ)i

⌉
, and

(R4) for every c ∈ [k] and i ∈ Z+ with i ≤ ⌊(log r(Ih1+1, c)/ log(1 + ǫ)⌋, there exists
I ∈ IL such that r(I, c) =

⌈
(1 + ǫ)i

⌉
; likewise, for every c ∈ [k] and i ∈ Z+ with

i ≤
⌊
(log r(I ′h2+1, c)/ log(1 + ǫ)

⌋
, there exists I ′ ∈ IR such that r(I ′, c) =

⌈
(1 + ǫ)i

⌉
.

will be called an ǫ-partial assignment with respect to u∗, denoted by P = (u∗,I, r).

From property (C2 ) of an assignment (with |I| ≤ n) and property (R3 ) of an ǫ-
partial assignment it follows h1, h2 ≤ ⌈k log n/ log(1 + ǫ) − 1⌉. In Figure 3.12 ver-
tices {p, p + 1, . . . , u∗} ⊆ V ′ are shown along with four intervals from IL, all end-
ing at u∗ (R1 ). Note that intervals Ij1 , Ij2 and Ijh

satisfy condition (R4 ) for color
c ∈ [k], since r(Ij1, c) =

⌈
(1 + ǫ)1

⌉
, r(Ij2, c) =

⌈
(1 + ǫ)2

⌉
and r(Ijh

, c) =
⌈
(1 + ǫ)h

⌉
, for

h =
⌈
(log r(Ih1+1, c)/ log(1 + ǫ)− 1

⌉
.

The total number µ(n) of possible ǫ-partial assignments with respect to a given vertex
u∗ ∈ V with |V | = n can be bounded as follows: There are at most nh1+h2 possi-
ble choices for the vertices u1, u2, . . . , uh1 , u

′
1, u

′
2, . . . , u

′
h2

. For each interval I ∈ I, the
number of nonnegative integer requirements r(I, c), c ∈ [k], satisfying (C2 ) is

(|I|+ k − 1

k − 1

)
=

k−1∏

i=1

(
1 +
|I|
i

)

≤
(

1

k − 1

k−1∑

i=1

(
1 +
|I|
i

))k−1

=

(
1 +

|I|
k − 1

Hk−1

)k−1

=

(
1 +

|I|
k − 1

(1 + ln(k − 1))

)k−1

,

where Hk−1 is the (k − 1)th harmonic number. Letting i1 = |I1|, ij = |Ij \ Ij−1|, for
2 ≤ j ≤ h1 + 1, and similarly i′1 = |I ′1| − 1, i′j = |I ′j \ I ′j−1|, for 2 ≤ j ≤ h2 + 1, and
ζ := (k − 1)(h1 + h2 + 2), we observe by (C1 ) and (C2 ) in Definition 3.2 that
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⌈
(1 + ǫ)1

⌉

⌈
(1 + ǫ)2

⌉

⌈
(1 + ǫ)h

⌉

u∗uj1uj2ujh

Ij1

Ij2

Ijh

Ih1+1

p

Nχ([u, u∗], c)

Figure 3.12: The number of vertices in interval [u, u∗] colored c ∈ [k] by χ is mono-
tonically increasing on u − p. According to (R4 ), an ǫ-partial assignment consis-
tent with χ has to contain intervals Ij1, Ij2 and Ijh

with r(Ij1, c) =
⌈
(1 + ǫ)1

⌉
,

r(Ij2, c) =
⌈
(1 + ǫ)2

⌉
and r(Ijh

, c) =
⌈
(1 + ǫ)h

⌉
, for h = ⌈(log r(Ih1+1, c)/ log(1 + ǫ)− 1⌉.

Interval Ih1+1 = [p, u∗], see (R1 ).

µ(n) ≤ nh1+h2

h1+1∏

j=1

(
ij + k − 1

k − 1

) h2+1∏

j=1

(
i′j + k − 1

k − 1

)

≤ nh1+h2

h1+1∏

j=1

(
1 +

ij
k − 1

(ln k + 1)

)k−1 h2+1∏

j=1

(
1 +

i′j
k − 1

(ln k + 1)

)k−1

≤ nh1+h2




∑h1+1
j=1

(
1 +

ij
k−1(ln k + 1)

)
+
∑h2+1

j=1

(
1 +

i′j
k−1(ln k + 1)

)

h1 + h2 + 2




ζ

= nh1+h2

(
1 +

ln k + 1

k − 1
· n

h1 + h2 + 2

)(k−1)(h1+h2+2)

≤ n
2k2 log n

log(1+ǫ)
+4k−2 ·

(
2 · ln k + 1

k − 1

)(k−1)
“

2k
log n

log(1+ǫ)
+4

”

, (3.35)

which is npolylog(n) for every fixed ǫ > 0 and k = polylog(n). Note that in the last step
of the calculation the +1 summand in big brackets can be replaced by a multiplicative
factor of 2 for sufficiently large n.
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Definition 3.4 (Consistent Assignment). Let χ : V 7→ [k] be a coloring of V . We say
that an assignment A = (I, r) is consistent with χ if Nχ(I, c) = r(I, c) for all c ∈ [k]
and I ∈ I. Two assignments A1 and A2 are said to be consistent if there exists a
coloring χ with which both are consistent.

Lemma 3.3. Let χ be a coloring of V ′ and u∗ ∈ V ′ be an arbitrary vertex. Then there
exists an ǫ-partial assignment P = (u∗,I, r) on V ′ with respect to u∗ that is consistent
with χ.

Proof. Assume that V ′ = {p, p + 1, . . . , q}. Clearly, for every c ∈ [k] the function
Nχ([u∗, u], c) is monotonically increasing on u ≥ u∗ with a smallest positive increment
of 1. This allows us to define P as follows. Let u′0 = u∗. For j = 1, 2, . . . , h2 let

u′j = min
{
u > u′j−1 | ∃ i ∈ Z+, c ∈ [k] : Nχ([u∗, u], c) =

⌈
(1 + ǫ)i

⌉}
. (3.36)

The highest index j for which such an u′j < q exists determines the value of h2. In
accordance with condition (R1 ), we set I ′j = [u∗, u′j ] for j = 1, 2, . . . , h2 and Ih2+1 =
[u∗, q]. In a similar way, we define h1 and the intervals Ij for j = 1, 2, . . . , h1 + 1 (see
Figure 3.12). Finally, we define r(I, c) = Nχ(I, c) for all c ∈ [k] and I ∈ I, which
naturally satisfies (C1 ) and (C2 ). The definition of interval endpoints according to
(3.36) guarantees (R3 ) and (R4 ).

We observe that an ǫ-partial assignment P is an effective abstraction of the set of
colorings that P is consistent with:

Observation 3.1. Let P = (u∗,IP, rP) be an ǫ-partial assignment on V . Given an
interval I = [s, t] ∈ I of the problem instance with u∗ ∈ I, we let j(I,P) and ℓ(I,P)
be, respectively, the smallest and largest indices such that [uj(I,P), u

′
ℓ(I,P)] ⊆ I, i.e.

j(I,P) = min{i : ui ≥ s} and ℓ(I,P) = max{i : u′i ≤ t} (see Figure 3.13). If
either of these indices does not exist, we set the corresponding value of rP(Iℓ(I,P), c) or
rP(Ij(I,P), c) to 0. Then by property (R4 ) of an ǫ-partial assignment

rP(Iℓ(I,P), c)+rP(Ij(I,P), c) ≤ Nχ′(I, c) ≤ (1+ǫ)
(
rP(Iℓ(I,P), c)+rP(Ij(I,P), c)

)
(3.37)

holds for any c ∈ [k] and coloring χ′ : V 7→ [k] such that P is consistent with χ′.

In the next section we show how to compute an assignment that represents (1, 1 + ǫ)-
approximate colorings by recursively merging consistent ǫ-partial assignments.
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I = [s, t]

u∗ u′1 u′2 u′3 u′h2
u1u2u3u4u5uh1

j(I,P) = 4 ℓ(I,P) = 2

Figure 3.13: For an ǫ-partial assignment P with respect to u∗ and a given interval I ∈ I
of the problem instance, j(I,P) and ℓ(I,P) are defined to be the smallest and largest
indices, respectively, such that [uj(I,P), u

′
ℓ(I,P)] ⊆ I. The ui and u′j are as described in

(R1 ) in Definition 3.3 of an ǫ-partial assignment.

3.8.2 A Divide-and-Conquer Algorithm

The pseudocode describing our divide-and-conquer (D&C) algorithm is presented be-
low as a procedure called MaxColApprox, which takes as parameters an instance
(V,I, k, r) of problem IntervalColoringmax and consistent left- and right-assignments
L and R. To compute an (1, 1 + ǫ)-approximation, we set L and R to be empty in
the initial call. To simplify notation, we omit parameters k and r in the signature of
procedure MaxColApprox as they are assigned identical values in all recursive calls.

Following the D&C paradigm, the algorithm picks a vertex u∗ in the middle of V and
evaluates all intervals containing u∗ to determine whether they should be taken into the
solution. To do this evaluation conservatively, the procedure iterates over all ǫ-partial
assignments P with respect to the middle vertex u∗ that are consistent with L and R,
then recurses on the subsets of intervals to the left and right of u∗.

Procedure MaxColApprox uses two subroutines: MaxColSpecial checks whether
a pair of a left- and a right-assignment is consistent, and if so, returns a feasible col-
oring; Reduce (VL(u∗),P,L ,R)

(
Reduce (VR(u∗),P,L ,R)

)
combines the assign-

ments P,L and R into left- and right-assignments L ′,R′ on VL(u∗)
(
respectively, on

VR(u∗)
)
. For a more detailed description of the two subroutines see below.

From the recursive calls in lines 7 and 8 we obtain two independent colorings χ1 :
VL(u∗) 7→ [k] and χ2 : VR(u∗) 7→ [k], which are combined in line 9 into a coloring
χ = χ1 ∪ χ2 defined in the obvious way: χ(u) = χ1(u) if u ∈ VL(u∗) and χ(u) = χ2(u)
if u ∈ VR(u∗).

Given a left-assignment L = (IL , rL ), a right-assignment R = (IR, rR), and an ǫ-
partial assignment P = (u∗,IL ∪ IR, rP) on a vertex set V ′ = {p, . . . , q}, procedure
Reduce constructs, considering the recursive call on V ′

L(u∗) in line 7, a left-assignment
L ′ = (IL

′ , rL
′) and right-assignment R ′ = (IR

′ , rR
′) on vertex set {p, . . . , u∗} by

cutting intervals at u∗ as follows (see Figure 3.14):
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Algorithm 2: MaxColApprox(V , I, L , R)

Data: An instance (V,I, k, r) of IntervalColoringmax

Result: An (1, 1 + ǫ)-approximation (χ,J )
if |I| = 0 then1

χ←MaxColSpecial(L ,R)2

return (χ, ∅)3

let u∗ ∈ V be such that |IL(u∗)| ≤ m/2 and |IR(u∗)| ≤ m/24

forall ǫ-partial assignments P = (u∗,IP, rP) do5

if P is consistent with L and R then6

(χ1,J1)← MaxColApprox
(
VL(u∗),IL(u∗),Reduce(VL(u∗),P,L ,R)

)
7

(χ2,J2)← MaxColApprox
(
VR(u∗),IR(u∗),Reduce(VR(u∗),P,L ,R)

)
8

χ← χ1 ∪ χ29

K ← {I ∈ I(u∗) : r(I,c)
(1+ǫ) ≤ rP(Iℓ(I,P), c) + rP(Ij(I,P), c) ≤ r(I, c) ∀ c ∈ [k]}10

J ← K ∪ J1 ∪ J211

store (χ,J )12

return the recorded solution with largest w(J ) value13

(a) IL
′ = {[p, t] ∈ IL | t ≤ u∗},

(b) IR
′ = IL ∪ {[s, u∗] | ∃ [s, q] ∈ IR : s < u∗},

(c) rL
′(I, c) = rL (I, c) for I ∈ IL

′ and rR
′(I, c) = rP(I, c) for I ∈ IL, ∀ c ∈ [k],

(d) rR
′([s, u∗], c) = rR([s, q], c) − rP([u∗, q], c) + 1 for [s, q] ∈ IR, s < u∗, ∀ c ∈ [k].

In the recursive call in line 8, procedure Reduce combines the given assignments ac-
cording to a symmetric schema. Notice that IL = ∅ in the leftmost and IR = ∅ in the
rightmost path of the recursion tree.

{ {

{ {

p qu∗

IL IR

IL IR

Figure 3.14: For given left-assignment L = (IL , rL ), right-assignment R = (IR, rR)
and an ǫ-partial assignment P = (u∗,IL ∪ IR, rP), in the recursive call on VL(u∗)
procedure Reduce cuts intervals on the vertical line at index u∗ such that the new left-
and right-assignments L ′ and R′ contain the intervals shown by solid lines. Interval
[p, q], contained both in IL and IR, is omitted.
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In the following Lemma 3.4 and Theorem 3.3 we show how procedure MaxColSpecial
can check consistency of assignments L = (IL , rL ) and R = (IR, rR) on vertex set V
in line 2 in time O (|IL |+ |IR|). Note that sets IL and IR each contain an interval
spanning all vertices in V . This is due to intervals Ih1+1 and I ′h2+1 in Definition 3.3 of
an ǫ-partial assignment and due to the specific structure of the assignments constructed
by procedure Reduce (see Figure 3.14)

Following the terminology introduced in Section 3.1.2 we call a coloring χ feasible for an
assignment A = (I, r), if Nχ(I, c) = r(I, c) for all c ∈ [k] and I ∈ I. In other words, χ is
feasible for A , if A is consistent with χ. We call two assignments A and A ′ equivalent,
if a coloring χ is feasible for A if and only if χ is feasible for A ′.

Lemma 3.4. Let A = (I, r) be an assignment on V = {1, 2, . . . , n}, where set I can be
partitioned into two sets I1 and I2, such that for p ∈ {1, 2} it holds

(P1) Ii ∩ Ij = ∅, ∀Ii, Ij ∈ Ip, i.e. intervals are disjoint and

(P2)
⋃

I∈Ip
I = [1, n], i.e. the intervals span all vertices.

Then it can be decided in time O (|I|) whether a feasible coloring χ : V 7→ [k] for A

exists.

Proof. We represent interval set I1 as sequence
(
[s1, t1], [s2, t2], . . . , [sl, tl]

)
and set I2 as

sequence
(
[s̄1, t̄1], [s̄2, t̄2], . . . , [s̄m, t̄m]

)
, where si = ti−1 + 1 for 2 ≤ i ≤ l, and similarly

s̄i = t̄i−1 + 1 for 2 ≤ i ≤ m. Property (P2 ) implies s1, s̄1 = 1 and tl, t̄m = n. For
1 ≤ i ≤ l, we denote [si, ti] by Ii, and for 1 ≤ i ≤ m, we denote [s̄i, t̄i] by Īi.

From assignment A we construct an equivalent assignment A ′ = (I ′, r′), where intervals
in I ′ are disjoint and therefore feasibility of A ′ can be determined by verifying for every
interval [s, t] ∈ I ′ that ∑

c∈[k]

r′([s, t], c) = t− s+ 1.

We define I ′ to be the partition of {1, 2, . . . , n} into a minimal number of intervals,
such that for each interval I ′ ∈ I ′ and each element I ∈ I either I ′ ⊆ I or I ′ ∩ I = ∅
(see Figure 3.15(a)). We represent I ′ by sequence

(
[s′1, t

′
1], [s

′
2, t

′
2], . . . , [s

′
r, t

′
r]
)

and again
denote [s′i, t

′
i] by I ′i for 1 ≤ i ≤ r.

What remains is the assignment of requirements to intervals in I ′, i.e. the definition
of r′ : I ′ × [k] 7→ {1, 2, . . . , n}. We will define function r′ recursively, i.e. for c ∈ [k]
the value r′(I ′i, c) might depend on values r′(I ′j , c) for j < i. Due to the minimality of

I ′, t′1 = min(t1, t̄1) and interval I ′1 will coincide with either I1 or Ī1. In Figure 3.15(a)
the latter case holds. Therefore any coloring χ feasible for assignment A will satisfy
Nχ(I ′1, c) = r′(I ′1, c), if and only if r′(I ′1, c) = r(I1, c), respectively r′(I ′1, c) = r(Ī1, c), for
all c ∈ [k]. Now consider an interval I ′i for arbitrary 2 ≤ i ≤ r. If I ′i ∈ I1 or I ′i ∈ I2,
as e.g. I ′4 ∈ I2 in Figure 3.15(a), for assignment A ′ to be equivalent with assignment
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I1

I2

I ′

s1 t1 sl tl

s̄1 t̄1 s̄m t̄m

s′1 t′1 s′r t′r
I ′4

(a) Definition of intervals

Iq

Īq′

I ′i

sq tq

s′i t′i

s̄q′ t̄q′

I ′p

s′p
(b) Definition of coloring requirements

Figure 3.15: (a) Set I1 and I2 satisfy (P1 ) and (P2 ) in Lemma 3.4. For each interval
I ′ ∈ I ′ and each element I ∈ I, I = I1 ∪ I2, either I ′ ⊆ I or I ′ ∩ I = ∅. (b) In the
construction of an equivalent assignment A ′ in the proof of Lemma 3.4 the number of
vertices that have to be colored c in interval I ′i is obtained by equation (3.38).

A it must hold r′(I ′i, c) = r(I ′i, c), for all c ∈ [k]. Otherwise, without loss of generality
assume s′i = sq for some Iq ∈ I1 and t′i = t̄q′ for some Īq′ ∈ I2. Let p be such that
I ′p ∈ I ′ and s′p = s̄q′ (see Figure 3.15(b)). If we assume that any coloring χ feasible for
A satisfies Nχ(I ′j , c) = r′(I ′j , c) for all intervals I ′j with 1 ≤ j ≤ i− 1, then χ will satisfy
Nχ(I ′i, c) = r′(I ′i, c) if and only if

r′(I ′i, c) = r(Īq′ , c)−
i−1∑

j=p

r′(I ′j , c), for all c ∈ [k]. (3.38)

Clearly the above lemma can be generalized to the case where I can be partitioned into
an arbitrary number of sets, each satisfying conditions (P1 ) and (P2 ).

Theorem 3.3. Let V = {1, 2, . . . , n}. For given left assignment L = (IL , rL ) with
[1, n] ∈ IL and right assignment R = (IR, rR) with [1, n] ∈ IR, it can be decided in
time O (|IL |+ |IR|) whether L and R are consistent.

Proof. Let set IL =
(
[1, t1], [1, t2], . . . , [1, tp]

)
with tp = n and IR =

(
[s1, n], [s2, n], . . . ,

[sq, n]
)

with s1 = 1 be sorted with respect to “⊆” and “⊇”, respectively, in non-
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decreasing order. Then assignments L and R are consistent if and only if the following
assignments L ′ = (IL

′ , rL
′) (see Figure 3.16) and R′ = (IR

′ , rR
′) are consistent:

(a) IL
′ =

(
[1, t1], [t1 + 1, t2], . . . , [tp−1 + 1, tp]

)
,

(b) rL
′([1, t1], c) = rL ([1, t1], c) and rL

′([ti−1 + 1, ti], c) = rL ([1, ti], c) − rL ([1, ti−1], c),
for 2 ≤ i ≤ p and c ∈ [k].

(c) IR
′ =

(
[s1, s2 − 1], [s2, s3 − 1], . . . , [sq, n]

)
.

(d) rR
′([sq, n], c) = rR([sq, n], c) and rR

′([si, si+1−1], c) = rR([si, n], c)−rR([si+1, n], c),
for 1 ≤ i < q and c ∈ [k].

Interval sets IL
′ and IR

′ satisfy conditions (P1 ) and (P2 ) in Lemma 3.4 and therefore
the claim follows.

{
1 t1 t2 t3 t4 t5 = n

IL

IL
′

Figure 3.16: Left-assignment L = (IL , rL ) can be transformed into an equivalent
assignment L ′ = (IL

′ , rL
′). For every interval in IL

′ \ {[1, t1]} its requirement rL
′ is

equal to the difference between the requirements rL of its defining intervals in IL (see
proof of Theorem 3.3).

Since intervals in I ′ of assignment A ′ in the proof of Lemma 3.4 are disjoint, procedure
MaxColSpecial can determine coloring χ in line 2 on vertices in each interval I ′ ∈ I ′
independently, respecting only Nχ(I ′, c) = r′(I ′, c) for all colors c ∈ [k]. Therefore
procedure MaxColSpecial runs in time O (|V |).

In line 6 of procedure MaxColApprox, consistency of an ǫ-partial assignment P =
(u∗,IL ∪ IR, rP) and left- and right-assignments L and R has to be verified. From the
definition of an ǫ-partial assignment (see Definition 3.3) it follows that (IL, rP) forms a
right-assignment on VL(u∗) and (IR, rP) forms a left-assignment on VR(u∗), where every
vertex is spanned by at least one interval. As such, similar as in the proof of Theorem 3.3,
they can be transformed into equivalent assignments containing only disjoint intervals.
As intervals in IL and IR only intersect in u∗, this transformation results in a single
set of intervals Ĩ satisfying conditions (P1 ) and (P2 ) in Lemma 3.4. As shown above
in the description of procedure MaxColSpecial, checking consistency of assignments
L and R can be reduced to a feasibility problem of an assignment A ′ = (I ′, r′) (see
proof of Lemma 3.4), where I ′ itself satisfies (P1 ) and (P2 ) in Lemma 3.4. In summary,
consistency of P, L and R can be verified in line 6 by applying Lemma 3.4 to sets Ĩ
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and I ′ in time O
(
|Ĩ|+ |I ′|

)
, which is, since intervals in the respective sets are disjoint,

O (|V |).

Theorem 3.4. Given an instance (V,I, k, r) of IntervalColoringmax with |V | = n

and |I| = m, algorithm MaxColApprox runs in time T (n,m) = nO(k2

ǫ
log n log m).

Proof. The number of possible ǫ-partial assignments is at most µ(n), bounded in (3.35).
This gives the recurrence

T (n,m) ≤ poly(n,m) + 2µ(n) · T
(m

2

)
.

The theorem follows by the master theorem [CLRS01].

Theorem 3.5. Given an instance (V,I, k, r) of IntervalColoringmax, algorithm
MaxColApprox returns a coloring χ : V 7→ [k] and a subset of intervals J ⊆ I
such that w(J ) ≥ w(Opt) and for all I ∈ J and c ∈ [k]

r(I, c)

(1 + ǫ)
≤ Nχ(I, c) ≤ (1 + ǫ) r(I, c).

Proof. Let the pair (χ∗,Opt) be an optimal solution to instance (V,I, k, r) of problem
IntervalColoringmax. By Lemma 3.3, there is an ǫ-partial assignment P consistent
with χ∗, which will be eventually considered by the algorithm in line 5. If I ∈ Opt(u∗),
then Nχ∗(I, c) = r(I, c) for all c ∈ [k] and thus (3.37) implies, for χ′ = χ∗, that I
belongs to the set K selected by the algorithm in line 10, i.e. Opt(u∗) ⊆ K, and hence
w(K) ≥ w

(
Opt(u∗)

)
. Since P is consistent with the coloring χ obtained in line 9, we

also know, by using χ′ = χ in (3.37), that

r(I, c)

(1 + ǫ)
≤ Nχ(I, c) ≤ (1 + ǫ) r(I, c) for I ∈ K.

By induction, we have w(J1) ≥ w
(
OptL(u∗)

)
and w(J2) ≥ w

(
OptR(u∗)

)
. Furthermore,

we know that

r(I, c)

(1 + ǫ)
≤ Nχ1(I, c) ≤ (1 + ǫ) r(I, c) for I ∈ J1

and
r(I, c)

(1 + ǫ)
≤ Nχ2(I, c) ≤ (1 + ǫ) r(I, c) for I ∈ J2.

The theorem follows.
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1 2 3 4 5 6 7

(1, 1, 1)
(1, 1, 2)

(1, 1, 1)
(1, 1, 2)

Figure 3.17: An interval coloring instance with |V | = 7, |I| = 4, and k = 3. For each
interval I, the coloring requirements are denoted by a triplet

(
r(I, 1), r(I, 2), r(I, 3)

)
.

Then a fractional vertex of the polytope obtained by relaxing the integrality constraint in
(3.5) is given by x1 =

(
1
2 , 0,

1
2 , 0,

1
2 , 0,

1
2

)
, x2 =

(
1
2 ,

1
2 , 0,

1
2 , 0,

1
2 ,

1
2

)
, x3 =

(
0, 1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 , 0
)
.

3.9 Hardness

Since the constraint matrix of the integer linear program (3.17) capturing the 2-color
case is totally unimodular, the corresponding polytope P is integral for k = 2. For k ≥ 3,
the total unimodularity of the constraint matrix is destroyed by constraints (3.7) in the
basic-BIP and by constraints (3.14) in the improved-ILP, i.e. there are instances with
fractional vertices (see Figure 3.17 for an example).

The complexity status of the interval constraint coloring problem for three or more
colors remains open. If the length of the intervals is bounded by a constant, an optimal
coloring can be computed in polynomial time by a dynamic programming algorithm.
However, in this section we show that deciding whether a feasible coloring exists is NP-
complete when k is part of the input. Moreover, we show that the maximization variant
IntervalColoringmax with k = 2 colors is APX -hard and hence does not admit a
PTAS (unless P = NP), even if the intervals are required to intersect in at least one
residue.

3.9.1 NP-Completeness of IntervalColoring

Theorem 3.6. The problem of testing the feasibility of an instance of the interval con-
straint coloring problem is NP-complete when the number of colors is part of the input.

Proof. Clearly, the problem belongs to NP . To prove that the problem is NP-hard, we
reduce a known NP-hard problem to it using the approach of Chang et al. [CEGK08].
In the exact coverage problem, we are given a ground set U and a collection S of subsets
of U , and we want to know whether there exists a subcollection C ⊆ S of size t, which
forms a partition of U ; that is,

⋃
A∈C A = U and for any two elements A,B ∈ C if A 6= B

then A ∩ B = ∅. It is well known that the exact coverage problem is NP-complete
[GJ79a] even when the cardinality of sets in S is 3.

Let u = |U| and s = |S|. We map the exact coverage instance to an instance of the
coloring problem, by dividing V = [n] into u blocks B1, . . . , Bu each of length s; thus,
n = us and Bi = [(i− 1)s+ 1, i s]. Each color c ∈ [k] is associated with a specific set Sc
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in S; therefore, k = s. Let U = {x1, . . . , xu} and suppose that xi is contained in ri sets.
For every i ∈ [u] we have

Ii = [s (i− 1) + 1, s i] and r(Ii, c) = 1 for all c ∈ [k],

I ′′i = [s i− t− ri + 2, s i− t+ 1] and r(I ′′i , c) = 1 if and only if xi ∈ Sc,

and for every i ∈ [u− 1] we have

I ′i = [s i− t+ 1, s (i+ 1)− t] and r(I ′i, c) = 1 for all c ∈ [k].

Realize that any coloring satisfying all the Ii and I ′i intervals must use the same set of t
colors for the last t vertices of every block and the remaining s− t colors for the first s− t
vertices of every block. We therefore encode the partition C with the last t colors of each
block (see Figure 3.18). To enforce C to be a partition, i.e. every element xi ∈ U to be
contained in exactly one set of C, we include the interval I ′′i = [s i− t− ri + 2, s i− t+ 1]
and require r(I ′′i , c) = 1 if and only if xi ∈ Sc. Clearly, a feasible coloring encodes a
solution for the exact coverage problem and vice versa. It follows that testing feasibility
is NP-hard.

Ii

I ′i

I ′′i

Figure 3.18: Interval Ii spans the vertices of block Bi. The colors assigned to the t = 5
vertices in the intersection of intervals Ii and I ′i encode the partition C. The color of the
single vertex in the intersection of intervals I ′i and I ′′i (denoted by the filled vertex) will
correspond to the unique set in C that contains xi.

3.9.2 APX -Hardness of IntervalColoringmax

In this section, we show that IntervalColoringmax with k = 2 colors is APX -hard.
The reduction is from Max2SAT, whose input is a boolean formula ϕ in conjunctive nor-
mal form in which each clause is a disjunction of 2 literals (2CNF). Literals are variables
and their negations taken from a ground set of boolean variables X = {x1, x2, . . . , xn}.
The optimization problem asks for the maximum number of clauses which can be satis-
fied by any truth assignment to variables inX. It is known that Max2SAT is APX -hard
[H̊as97].

In other words, Max2SAT is NP-hard to approximate to within a certain factor, i.e.,
its approximability exhibits a certain gap. We propose a gap preserving reduction τ
from Max2SAT to IntervalColoringmax with k = 2. The construction part of our
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reduction uses some ideas from [ERRS08] where the authors show APX -hardness for
the maximum feasible subsystem problem where the constraint matrix is a clique.1 In
particular, we use variable gadgets to locally replace variables of a boolean formula ϕ
by a set of intervals of an IntervalColoringmax instance τ(ϕ) and clause gadgets to
translate the clauses of a Max2SAT instance ϕ into intervals of τ(ϕ) that intersect
intervals of the corresponding variable gadgets in an appropriate way.

In the following, we describe how we construct from a 2CNF formula ϕ containing m
clauses an instance τ(ϕ) containing 14m intervals.

Variable Gadgets

Each variable xi in the boolean formula ϕ is represented by a collection of 3 intervals
in instance τ(ϕ), defined on a vertex set V , as depicted in Figure 3.19. Intervals Ia
and Ib span the same set of vertices and require 4 vertices more to be colored in color 1,
respectively in color 2, than in the other color. Interval Ic symmetrically extends intervals
Ia and Ib by a total of 4 vertices and establishes parity of vertices colored 1 and 2. More
precisely, if interval Ia (Ib) spans vertices {p, p + 1, . . . , q} with q − p + 1 = 4(2i − 1),
then Ic spans vertices {p− 2, . . . , q + 2}.

(4i, 4(i − 1))

(4(i − 1), 4i)

(4i, 4i)

Ia

Ib

Ic

Figure 3.19: The variable gadget for variable xi consists of 3 intervals. Associated with
each interval I is a tuple (x, y) that defines the requirement function on I by x = r(I, 1)
and y = r(I, 2). The requirement is a function of the index of the corresponding variable.

Lemma 3.5. There are exactly two optimal solutions to IntervalColoringmax for a
variable gadget, both consisting of two intervals.

Proof. Since intervals Ia and Ib span an identical set of vertices but impose different
requirements, there exists no coloring of V satisfying (3.1) for both intervals Ia and Ib.
At the same time, any coloring of vertices spanned by Ia (Ib) that satisfies (3.1) for either
Ia or Ib can be extended to a coloring of vertices spanned by interval Ic that satisfies
(3.1) for Ic.

1The maximum feasible subsystem problem is defined as follows. Given a linear system c ≤ Ax ≤ b,
we want to find the largest system of inequalities that can be simultaneously satisfied. In [ERRS08], the
authors show that even when the matrix A is a 0/1 matrix with the consecutive ones property, such that
the underlying graph is a clique, the problem remains APX -hard.
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Definition 3.5 (true/false state). For the optimal solution satisfying (3.1) for in-
tervals Ia and Ic we call the variable gadget to be in true state, and for the solution
satisfying (3.1) for intervals Ib and Ic to be in false state.

In the following, we denote the number of clauses variable xi appears in by mi, and
interval Ia (Ib, Ic) of the gadget representing variable xi by Ii

a (respectively Ii
b, I

i
c). To

simplify terminology, we call an interval satisfied if really equation (3.1) is satisfied for
that interval.

When putting the variable gadgets together, each gadget is replicated 2mi times, that is,
there are a total of 2mi gadgets of the type shown in Figure 3.19 representing xi, where
each replicated interval spans the same set of vertices. For every j > i, intervals in the
gadgets for variable xj symmetrically extend intervals in the gadgets for variable xi, i.e. if

Ii
c spans vertices {p, p+ 1, . . . , q}, then Ij

c spans vertices {p− 4(j − i), . . . , q + 4(j − i)}.
In the illustration in Figure 3.20 the replicated gadgets are omitted.

x1

x2

xn−1

xn

Figure 3.20: Putting variable gadgets together. Replicated gadgets are omitted.

Let a coloring χ : V 7→ {1, 2} of vertices V = {1, 2, . . . , n} with two colors be denoted by
string χ(1)χ(2) . . . χ(n). Then a coloring for which the gadget representing variable x1 is
in true or false state is given by string 22111122, respectively 11222211. Now assume
that gadgets for variables x1, . . . , xi−1 are in true or false state under some coloring
χ. It can be easily verified that a coloring χ′ extending χ to the 8 vertices spanned by
interval Ii

c but not by interval Ii−1
c has to be of the form 2211 . . . 1122 or 1122 . . . 2211

to cause the gadget representing variable xi to be in true or false state, respectively.

The next lemma shows that the state of the variable gadgets can indeed be chosen
independently of each other.

Lemma 3.6. Let the ground set of boolean variables be X = {x1, x2, . . . , xn}. Then for
every boolean assignment ν : X 7→ {true, false} there exists a coloring χ such that for
all 1 ≤ i ≤ n the variable gadget representing xi is in true state if ν(xi) = true and in
false state if ν(xi) = false.
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Proof. We proof the claim of the lemma by induction on the index of the variables. To
variable x1 Lemma 3.5 directly applies, and we color the vertices spanned by I1

c such that
the state of the variable gadget reflects the value of x1. Now assume variable gadgets
representing x1, . . . , xi−1 are all in true or false state, in accordance with the boolean
assignment to the variables. From the definition of a true/false state we know that
interval Ii−1

c is satisfied. Therefore, we can satisfy interval Ii
a or Ii

b by coloring the four
vertices spanned by Ii

a and Ii
b but not by Ii−1

c all in color 1 or all in color 2, respectively.
In accordance with the proof of Lemma 3.5, we can extend χ such that it satisfies interval
Ii
c at the same time.

Clause Gadgets

What remains is the definition of gadgets that translate the clauses of a Max2SAT
instance containing exactly two literals into a set of constraints of an instance of problem
IntervalColoringmax, i.e. into intervals imposing certain coloring requirements. The
four different types of clauses involving variables xi and xj, namely (xi ∨xj), (¬xi∨xj),
(xi ∨ ¬xj) and (¬xi ∨ ¬xj), are represented by the clause gadgets shown in Figures
3.21(a)-3.21(d).

Each clause gadget is made up of two intervals Iα and Iβ that span the same set of
vertices. Since they impose different coloring requirements, they cannot be satisfied at
the same time. The intuitive idea behind the clause gadgets is that in any optimal
solution to τ(ϕ) the variable gadgets will be in either true or false state and thus
result in a vertex coloring which would satisfy exactly one of the intervals Iα or Iβ if and
only if the corresponding clause is satisfied. This is shown in the next lemma.

Lemma 3.7. Let C be a clause involving variables xi and xj . A coloring χ that causes
variable gadgets representing xi and xj to be either in true or false state satisfies
exactly one interval of the clause gadget corresponding to C if clause C is satisfied by
the same boolean assignment. Otherwise none of the intervals of the clause gadget can
be satisfied.

Proof. The proof of the lemma follows immediately from Tables 3.22(a)-3.22(d). They
show, for the four different types of clauses and all possible truth assignments, the
number of vertices colored 1 and 2 in intervals Iα and Iβ , respectively. The last column
shows that only if the clause is not satisfied under the given assignment, neither Iα nor
Iβ is satisfied. In all other cases, exactly one interval is satisfied.

The following theorem captures the central statement of this section. For a 2CNF
formula ϕ we let Max2SAT(ϕ) denote the maximum fraction of clauses that is satisfied
by any truth assignment. IntervalColoringmax

(
τ(ϕ)

)
is the maximum number of

intervals in instance τ(ϕ) that can be satisfied by any vertex coloring.

Theorem 3.7. There is a fixed ǫ > 0 such that IntervalColoringmax is NP-hard to
approximate to within a multiplicative factor (1 + ǫ) unless P = NP.



104 Hardness

Proof. We show that reduction τ from Max2SAT to IntervalColoringmax described
above is gap-preserving. From the fact that Max2SAT is MAX-SNP-hard [PY88] it fol-
lows that there exist ǫ, δ > 0 such that given an 2CNF ϕ containing m clauses, it is NP-
hard to distinguish the cases when Max2SAT(ϕ)≥ (1− ǫ)m and when Max2SAT(ϕ)<
(1− ǫ− δ)m.

So let ϕ be a 2CNF formula that contains m clauses. From a truth assignment ν that
satisfies k clauses we construct a coloring χ for τ(ϕ) that satisfies 8m + k intervals as
follows. We choose χ such that for all 1 ≤ i ≤ n variable gadget representing xi is in
true state if ν(xi) = true and in false state if ν(xi) = false (see Lemma 3.6). From
Definition 3.5 it follows that each variable gadget, including its 2mi copies, contributes
2·2mi satisfied intervals. Furthermore, in each gadget corresponding to a satisfied clause
in ϕ exactly one interval is satisfied by χ. So in total χ satisfies 4

∑n
i=1mi + k = 8m+ k

intervals.

Now consider a coloring for τ(ϕ) that maximizes the number of satisfied intervals. Under
this coloring, each variable gadget is in either true or false state and thus contributes
2 satisfied intervals per copy. Otherwise, we lose for every interval in a variable gadget
that we do not satisfy also its 2mi − 1 copies, that cannot be satisfied either in this
case. Note that according to Lemma 3.5, no more than 2 intervals can be satisfied per
variable gadget. At the same time, satisfying less than 2 intervals in a variable gadget for
xi could lead to at most mi additional satisfied intervals in clause gadgets that involve xi

(at most one interval can be satisfied per clause gadget). Thus in any optimal solution
the variable gadgets and their copies contribute 8m satisfied intervals in total. From
Lemma 3.7 it follows that k satisfied intervals from clause gadgets in τ(ϕ) result in k
satisfied clauses in ϕ under the corresponding truth assignment.

In other words, polynomial time reduction τ from Max2SAT to IntervalColoringmax

ensures that, for every boolean formula ϕ:

MAX-2SAT(ϕ) ≥ (1− ǫ)m ⇒ IntervalColoringmax

(
τ(ϕ)

)
≥ (9− ǫ)m

MAX-2SAT(ϕ) < (1− ǫ− δ)m ⇒ IntervalColoringmax

(
τ(ϕ)

)
< (9− ǫ− δ)m

Since τ(ϕ) in general contains Θ(m) intervals the reduction is gap-preserving and the
claim follows.
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xi

xj

(2i + 2j − 2, 2i+ 2j − 4)

(2i + 2j − 3, 2i+ 2j − 3)
Iα

Iβ

(a) Clause (xi ∨ xj)

xi

xj

(2j − 2i− 1, 2j − 2i− 1)

(2j − 2i, 2j − 2i− 2)
Iα

Iβ

(b) Clause (¬xi ∨ xj)

xi

xj

(2j − 2i− 1, 2j − 2i− 1)

(2j − 2i− 2, 2j − 2i)
Iα

Iβ

(c) Clause (xi ∨ ¬xj)

xi

xj

(2i + 2j − 4, 2i+ 2j − 2)

(2i + 2j − 3, 2i+ 2j − 3)
Iα

Iβ

(d) Clause (¬xi ∨ ¬xj)

Figure 3.21: The clause gadgets encode the respective clauses.
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xi xj xi ∨ xj Nχ(Iα, 1) Nχ(Iα, 2) Interval satisfied

T T T 2i+ 2j − 2 2i+ 2j − 4 Iα

T F T 2i+ 2j − 3 2i+ 2j − 3 Iβ

F T T 2i+ 2j − 3 2i+ 2j − 3 Iβ

F F F 2i+ 2j − 4 2i+ 2j − 2 −

(a) Clause (xi ∨ xj)

xi xj ¬xi ∨ ¬xj Nχ(Iα, 1) Nχ(Iα, 2) Interval satisfied

T T F 2i+ 2j − 2 2i+ 2j − 4 −
T F T 2i+ 2j − 3 2i+ 2j − 3 Iβ

F T T 2i+ 2j − 3 2i+ 2j − 3 Iβ

F F T 2i+ 2j − 4 2i+ 2j − 2 Iα

(b) Clause (¬xi ∨ ¬xj)

xi xj ¬xi ∨ xj Nχ(Iα, 1) Nχ(Iα, 2) Interval satisfied

T T T 2j − 2i− 1 2j − 2i− 1 Iα

T F F 2j − 2i− 2 2j − 2i −
F T T 2j − 2i 2j − 2i− 2 Iβ

F F T 2j − 2i− 1 2j − 2i− 1 Iα

(c) Clause (¬xi ∨ xj)

xi xj xi ∨ ¬xj Nχ(Iα, 1) Nχ(Iα, 2) Interval satisfied

T T T 2j − 2i− 1 2j − 2i− 1 Iα

T F T 2j − 2i− 2 2j − 2i Iβ

F T F 2j − 2i 2j − 2i− 2 −
F F T 2j − 2i− 1 2j − 2i− 1 Iα

(d) Clause (xi ∨ ¬xj)

Figure 3.22: Intervals satisfied in gadget corresponding to the respective clause. A T
in column xi (xj) denotes ν(xi) = true (ν(xj) = true), a F in column xi (xj) denotes
ν(xi) = false (ν(xj) = false).
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3.10 Conclusion

We have introduced an ILP approach to assign exchange rates to individual residues
based on aggregate data with respect to peptic fragments. For all instances provided by
our collaborator from biochemistry, we were able to determine a coloring with minimum
total error in less than 0.1 second. For the case of two different colors (exchange rates)
we propose a combinatorial polynomial-time algorithm, by reducing the problem to a
minimum cost network flow problem. It serves as a subroutine in a heuristic approach
that improves upon the running time of the exact enumeration algorithm significantly
while providing solutions, that are close to the optimum.

Furthermore, in a Lagrangian relaxation approach for the general case of an arbitrary
number of colors, we dualize linking constraints in such a way, that the resulting La-
grangian subproblem becomes a set of independent two-color interval coloring instances.
Exploiting the Lagrangian bounds, strengthened by the subgradient method, in a branch-
and-bound algorithm yields exact (optimal) solutions to the general (NP-complete)
problem involving an arbitrary number of colors.

In our application domain, the goal usually is not to find a single solution, but to gener-
ate a number of candidate solutions and let the user choose the one that he finds most
interesting or relevant for the specific application. It requires only a minor modification
to the standard branch-and-bound (B&B) technique to be able to enumerate all pos-
sible solutions, independent of whether the bounds are based on LP relaxation or on
Lagrangian relaxation. Experiments show however, that the efficiency of algorithms to
solve a minimum cost network flow problem, compared to a general purpose algorithm
for solving a linear programming relaxation, allows us to enumerate all optimal colorings
considerably faster. Even the randomized rounding approach yielding a coloring that
satisfies all coloring requirements within ±1 of the prescribed value is amenable to this
task since there are very efficient algorithms to enumerate all the integral solutions of
the assignment polytope [Uno01].

Moreover, both the B&B algorithms and the combinatorial approach can deal with noise
in the experimental data; the randomized rounding method underlies the intrinsic limi-
tation that the LP relaxation polytope must not be empty. Besides capturing the noise
by additional variables and constraints in the ILP formulation, we proposed an alterna-
tive approach especially suited for the case of an empty LP relaxation polytope. Since
we can show that finding the maximum number of intervals whose coloring requirements
are satisfied is APX -hard even in the two-color case, we introduced an approximation
scheme that violates the requirements by a factor (1 + ǫ) and runs in quasi-polynomial
time.

For a fixed number of colors greater or equal than three, the complexity of the interval
constraint coloring problem remains open. The total unimodularity of the constraint
matrix is destroyed, i.e. there are instances with fractional vertices. Moreover, the
integrality gap is infinite, since there is an instance with strictly positive error but whose
LP relaxation has optimal value 0.
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Chapter 4
Conclusion

The need for exact methods for NP-hard problems in the biological context is often
called into question. On the one hand, solving the combinatorial optimization problem
is indeed not equivalent to answering the underlying biological question. It always
defines a mathematical abstraction only of specific aspects of a biological process and
as such captures the underlying biological problem at most to an extend, to which
it is understood by biologists. The interval constraint coloring problem, for example,
emphasizes on the aspect of solvent accessability to obtain information about the tertiary
structure of a protein. Therefore, one might ask whether it is worth the computational
effort to find a solution to highly restricted instances that is optimal only in a given
model, but whose interpretation does not necessarily coincide completely with what is
observed in the real world.

Nevertheless, exact methods are important in their own right. They might provide
results, based on which heuristic approaches can be benchmarked, or even serve as a
constituent for heuristic methods. Also, new insights into the underlying problem can
lead to relevant problem instances of a smaller size. For example, the tertiary structure
of a protein might be influenced only by a few key subsequences of residues. If these key
subsequences would be well-preserved they might be detected by an alignment of only a
small number of (short) sequences. Not to forget, that for a fixed number of sequences,
the multiple alignment problem is solvable in polynomial time.

This thesis has shown, that practical relevant problem instances can be solved to opti-
mality in reasonable time, if we exploit the specific structure of the problem. Solving a
relaxation of the multiple alignment problem by a slightly modified longest path compu-
tation for each pair of sequences is much more efficient than solving a linear programming
relaxation that involves an exponential number of variables and constraints by a general-
purpose LP solver. Similarly, in the interval constraint coloring problem we profit from
the relaxation of the integer linear program to a set of network flow problems compared
to solving the LP relaxation.

Alternatively, this thesis proposed approximation algorithms (with and without perfor-
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mance guarantee) for the interval constraint coloring problem. Not only the restrictions
imposed by the mathematical abstraction but also the inaccuracy of the experimental
data might justify a slight violation of the coloring requirements, or in some cases make
it even necessary. Whether it is more appropriate to minimize (exactly or approximate)
the total deviation from the requirements than to generally allow a violation of all re-
quirements by either a factor (1 + ǫ) or by an additive error ±1, has to be evaluated by
biologists and biochemists. For the multiple sequence alignment, many heuristics and
approximation algorithms have been proposed in the literature.

In essence, we consider it to be of great importance to provide biologists with vari-
ous alternative methods, both exact and approximate. Their interpretation of our re-
sults within a biological context can lead to new insights into the underlying biological
problem, which in turn can help to improve our mathematical models. This constant
interaction with biologists is crucial for the advance in this research area.
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Algorithms - ESA 2002 : 10th Annual European Symposium, volume 2461
of Lecture Notes in Computer Science, pages 75–87, Rom, Italy, September
2002. Springer.

[AC07] Ernst Althaus and Stefan Canzar. A Lagrangian relaxation approach for the
multiple sequence alignment problem. In Andreas W. M. Dress, Yinfeng
Xu, and Binhai Zhu, editors, COCOA, volume 4616 of Lecture Notes in
Computer Science, pages 267–278. Springer, 2007.

[AC08a] Ernst Althaus and Stefan Canzar. A Lagrangian relaxation approach for
the multiple sequence alignment problem. Journal of Combinatorial Opti-
mization, 16(2), August 2008.

[AC08b] Ernst Althaus and Stefan Canzar. LASA: A tool for non-heuristic alignment
of multiple sequences. In Proceedings of the 2nd Workshop on Algorithms
in Molecular Biology (ALBIO 2008), Vienna, Austria, July 2008.

[ACE+08a] Ernst Althaus, Stefan Canzar, Khaled M. Elbassioni, Andreas Karrenbauer,
and Julián Mestre. Approximating the interval constrained coloring prob-
lem. In Joachim Gudmundsson, editor, SWAT, volume 5124 of Lecture Notes
in Computer Science, pages 210–221. Springer, 2008.

[ACE+08b] Ernst Althaus, Stefan Canzar, Mark R. Emmett, Andreas Karrenbauer,
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approximability of the maximum feasible subsystem problem with 0/1 co-
efficients. submitted, 2008.
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Italy, 1993.
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