
HAL Id: tel-00389031
https://theses.hal.science/tel-00389031v2

Submitted on 27 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to Real-Time Reliable Simulations and
Certain Aspects of Scientific Computing

Christophe Prud’Homme

To cite this version:
Christophe Prud’Homme. Contributions to Real-Time Reliable Simulations and Certain Aspects of
Scientific Computing. Mathematics [math]. Université Pierre et Marie Curie - Paris VI, 2005. �tel-
00389031v2�

https://theses.hal.science/tel-00389031v2
https://hal.archives-ouvertes.fr

Université Pierre et Marie Curie, Paris VI École doctorale des Sciences
Mathématiques de Paris Centre
UFR 929

Contributions to Real-Time Reliable
Simulations and Certain Aspects of

Scientific Computing

MÉMOIRE

presented and defended publicly on December 9 2005

for the authorization of

Habilitation à Diriger des Recherches
de l’Université Pierre et Marie Curie – Paris VI

(Spécialité Mathématiques Appliquées)

par

Christophe Prud’homme

Composition du jury

Rapporteurs : Charles-Henri Bruneau
Andreas Griewank
Spencer Sherwin

Examinateurs : Silvia Bertoluzza
Stéphane Cordier
Yvon Maday
Bertrand Maury
Olivier Pironneau

Laboratoire Jacques Louis Lions — UMR 7598

Mis en page avec la classe thloria.

Remerciements

La vie est faite de rencontres et d'opportunités. À y bien ré�échir, j'ai été très bien servi de ce
point de vue. Tout d'abord la rencontre avec Olivier Pironneau et le calcul scienti�que: c'est
en lisant la description de son cours que j'ai immédiatement changé d'orientation pendant mes
études et si je suis ici aujourd'hui à défendre mon habilitation. Il y a ensuite Yvon Maday qui
m'a embarqué dans l'aventure CEMRACS des premières années. Puis il y a ce jour de mois
de mai ou juin 1999 où Olivier en me croisant me dit que Tony Patera est là, à Paris, et qu'il
a peut être un post-doc à proposer. Encore une fois, je ne crois pas m'être donné le temps
de la re�exion et je me suis retrouvé pour une brève discussion avec Tony puis un ou deux
emails plus tard, je me suis retrouvé au MIT �n 1999 dans son groupe. En�n, en juin 2003,
lors de mon séjour au laboratoire Jacques-Louis Lions, Yvon me parle d'un poste chez Al�o
Quarteroni à l'EPFL. Après un séminaire et quelques discussions, je me retrouve en poste à
Lausanne dans le groupe d'Al�o. Au passage en Février 2003, Yvon me propose de postuler
au concours du ministère de la recherche pour la création d'entreprises innovantes avec la
technologie que j'avais commencée à développer au MIT autour des bases réduites. Au mois
de juillet 2003, elle fut récompenser.

À chaque époque de ma carrière, j'ai eu la chance de pouvoir m'impliquer dans divers projets
autour du calcul scienti�que: mon sujet de thèse et FreeFEM avec Olivier, le CEMRACS avec
Yvon, les bases réduites avec Tony et maintenant LifeV avec Al�o. Je tiens ici à tous les
remercier.

Les travaux de cette habilitation ont essentiellement été conduits au MIT dans le groupe
de Tony. À plusieurs reprises aux États-Unis, j'avais entendu parler de la "MIT experience",
je crois avoir e�ectivement vécu une expérience scienti�que et humaine très marquante, ex-
trêmement positive et enrichissante au contact de Tony en particulier et du MIT en général.

Je remercie les rapporteurs de mon habilitation Charles-Henri Bruneau, Andreas Griewank
et Spencer Sherwin qui ont accepté de rapporter dans des délais très courts. Je tiens égale-
ment à remercier Silvia Bertoluzza, Stéphane Cordier et Bertrand Maury qui ont accepté
chaleureusement de faire partie du jury.

J'aimerais adresser une pensée amicale aux di�érents collaborateurs que j'ai côtoyés ces
dernières années, que ce soit au MIT, Martin Grepl, Thomas Leurent, Ivan Oliveira, Dimitrios
Rovas, Karen Veroy, Yuri Solodukhov et surtout Debbie; ou à l'EPFL Erik Burman, Gilles
Fourestey, Nicola Parolini et Christoph Winkelmann.

Je tiens à remercier ma famille pour son soutien constant et surtout Evelyn sans qui
ces dernières années auraient été bien ternes et qui a toujours su trouver les mots justes
d'encouragements. Elle a également accompli la tâche ingrate mais au combien indispensable
de relire ce mémoire aussi bien dans sa version anglaise que française et ceci bien qu'elle vienne
d'un monde complètement di�érent des mathématiques, un grand merci pour ton abnégation.

i

ii

À ma famille
À Evelyn

iii

iv

Résumé

Ce document présente une synthèse des travaux de recherche e�ectués par l'auteur depuis
2000 au Massachusetts Institute Of Technology(MIT) puis à l'École Polytechnique Fédérale
de Lausanne(EPFL). Ces travaux sont essentiellement axés sur les méthodes de bases réduites
avec bornes d'erreur permettant la prédiction rapide et �able de quantités issues de solutions
d'équations aux dérivées partielles. L'implémentation de ces méthodes est complexe et l'auteur
a également proposé et développé des outils innovants a�n de tirer pro�t de celles-ci à moindre
coût en termes de développement. Par ailleurs, ce document présente quelques travaux en
cours et perspectives de recherche.

Abstract

This document presents a synthesis of the research work done by the author since 2000
at Massachusetts Institute Of Technology(MIT) and at École Polytechnique Fédérale de Lau-
sanne(EPFL). This work is essentially focused on the reduced basis output bounds methods
allowing the rapid yet reliable prediction of quantities derived from the solutions of partial dif-
ferential equations. The implementation of these methods is complex and the author has also
proposed and implemented innovating tools in order to use these methods at a low develop-
ment costs. Furthermore, some recent investigations are presented and research perspectives
discussed.

1

2

Introduction

The work which will be presented in this document is primarily justi�ed by the current evolution
and needs for the scienti�c computation in sciences and in particular in engineering.

First, we can observe an increasing demand1 for computations with real-time response, for
example in education, engineering design and control systems: indeed simulations integrated
in components or electronic documents will only be interesting if the interaction is quasi
instantaneous2. There is a lot of work from the scienti�c computing community to increase
the performances of simulation techniques. However, the algorithms and paradigms for real-
time computations are only appearing. One of my contributions was to develop in a more
systematic way mathematical methods for rapid but reliable predictions for a wide class of
problems.

Then, we can also observe a growing trend that uncertainty must be quanti�ed if we
e�ectively want to trust the results of numerical computations; it becomes all the more critical
when we ask integrated interfaces to be accessible by non-specialists while requiring real-time
responses. The later implies or suggests the diminution of the operation counts and degrees
of freedom which can be conceived only if the error estimation is an integral part of the
eventually adaptive prediction process. Similarly to the very rapid prediction methods, general
frameworks for error estimation have been proposed recently and are actively developed. A
second contribution of these research activities was to develop a posteriori error estimations
of outputs of interest, in engineering and in the context of real-time simulations, which means
that the error estimations are also available in real-time.

Finally, distributed and parallel computing as well as the Web have seen many new develop-
ments in various scienti�c domains. We can cite for example the projects such as Seti@home3,
Folding@Home4, Grid.org5, integrals.wolfram.com6, Matlab and its Web server7 and many
other commercial or free environments. Moreover, new infrastructures for distributed and
parallel computing are becoming standards such as Corba8, Globus(Grid)9, Condor10 or Net-
solve11. It is clear that from now on with the set of software available, the control algorithms,
the data and computations can be disseminated on many clients and servers. Another objec-
tive of the research activity was to design and develop an original and cheap infrastructure that
allows very simple interfaces for real-time computations requests through a network. Besides
among the possible interfaces, we focused on electronic documents which replace more and

1A simple check of the major research themes will con�rm this, but I also got the con�rmation that
industrials are indeed interested through a market study.

2The de�nition of quasi instantaneous is fuzzy here, we can distinguish two kinds of real-time : (i) hard
real-time which puts strict constraints on the execution time of a command and (ii) the soft real-time for
multimedia applications where temporal constraints are not enforced but a delay in the later would create a
discomfort.

3http://setiathome.ssl.berkeley.edu/
4http://folding.stanford.edu/
5http://www.grid.org/
6http://integrals.wolfram.com/
7http://www.mathworks.com/products/webserver/
8http://www.omg.org/
9http://www.globus.org/
10http://www.cs.wisc.edu/condor/
11http://icl.cs.utk.edu/netsolve/

3

http://setiathome.ssl.berkeley.edu/
http://folding.stanford.edu/
http://www.grid.org/
http://integrals.wolfram.com/
http://www.mathworks.com/products/webserver/
http://www.omg.org/
http://www.globus.org/
http://www.cs.wisc.edu/condor/
http://icl.cs.utk.edu/netsolve/

more standard archiving methods. It is indeed clear that electronic media o�er new capa-
bilities, in our case integrate text and computations. There are already applications in this
area such as Mathcad, Mathematica or Matlab which have all been developing, in proprietary
formats and so with restricted access, documents with integrated computations. This type of
application is not yet frequently used or used as a standard. We have developed a set of tools
� uniquely based on free software � allowing to write aesthetic documents where equations
are actionable and which allow a user in a natural context to request and present real-time
computations.

In this synthesis, the research work accomplished since 2000 while being at MIT in the
group of A.T. Patera until now at EPFL in the group of A. Quarteroni will be presented in the
coming sections. The main part of the research was done within the group of A.T. Patera. At
the end of my time at MIT and during a few month in the laboratory Jacques Louis Lions in
Paris, I have started the development of a technology which has received the price from the
French Ministry of Research in an innovation contest in 2003 in the category "emergence".
Since then, the technology has evolved and a market study permitted to con�rm the interest
of the industry for such a methodology � the reduced basis output bounds methods � and
technology and to identify the sectors with strong potential. This has also permitted to orient
many research activities: identi�cation and development of generic components, adaptive
algorithms, systematic comparison with similar methods. These activities will be eventually
tested with the European project (STREP) Excalade12.

The document is organized in four parts. In the �rst part, I present the synthesis of my
research work which is divided in three chapters: the �rst one talks about the reduced basis
output bounds methods. The second one presents some work around the programming tools
that have been developped for these methods and the distributed environment in which they
reside. And �nally the third chapter brie�y exposes some projects and research perspectives
regarding the reduced basis. The next two parts contain the articles I contributed to : they
are organized according to the order of the �rst two chapters of the synthesis. And �nally, in
the fourth part, I inserted my bibliography and my curriculum vitae. I will present only very
few numerical results or experiments, albeit there are many of them in the publications, they
mostly corroborate and illustrate the theoritical results.

12Flexible, Competitive and Agile Design of Low-Noise-Emission Aircraft in a Distributed Environment.
Enregistré auprès de la commission européenne sous le numéro: FP6-031016

4

Contents

I Research Work Synthesis 7

1 Reduced Basis Methods 9

1.1 Abstract Framework . 10

1.2 Symmetric Coercive Equations and Compliant Outputs 11

1.2.1 Reduced Basis Approximation . 11

1.2.2 Computational Procedure . 11

1.2.3 A Posteriori Error Estimation . 12

1.3 Non-Symmetric Coercive Equations and Non-Compliant Outputs 14

1.3.1 Reduced Basis Approximation . 14

1.3.2 A Posteriori Error Estimation . 15

1.3.3 O�ine/Online Decomposition . 15

1.4 Generalized Symmetric Eigenvalue Problems 15

1.5 Non-Coercive Equations . 16

1.5.1 Inf-Sup Lower Bound Construction 17

1.6 Non-Linear Equations . 18

1.6.1 Poisson Equation with Cubic Non-Linearity 18

1.6.2 Burgers Equation . 19

1.7 Approximative Parametrization . 22

1.7.1 Formulation . 22

1.7.2 Approximation . 23

1.7.3 Error Estimation . 24

1.7.4 O�ine/Online Decomposition . 25

1.8 Reduced Basis Generation . 26

1.8.1 Bounded Conditioning Number 27

1.8.2 Adaptive Generation . 27

5

CHAPTER 0. CONTENTS

1.9 A Priori Convergence Properties . 27

1.9.1 Proof . 28

1.9.2 Veri�cations . 30

2 Components for Scienti�c Computing 31

2.1 Mathematical Kernel . 32

2.2 A Language for the Resolution of PDE 34

2.3 Distributed System for Real-Time Simulations 37

2.3.1 Real-Time Simulations Repository 37

2.3.2 Clients . 38

2.3.3 API . 38

2.3.4 New Extensions of the API . 40

2.4 Short Presentation of the Technology . 41

3 Research Projects and Perspectives 45

3.1 Reduced Basis Methods . 45

3.2 Mathematical Kernel and Language for the Resolution of PDE 45

II Publications: Reduced Basis Methods 47

4 Reliable Real-Time Solution of Parametrized Partial Di�erential Equa-

tions: Reduced-Basis Output Bound Methods 49

4.1 Introduction . 49

4.2 Problem Statement . 50

4.2.1 Abstract Formulation . 50

4.2.2 Particular Instantiations . 51

4.3 Reduced-Basis Approach . 53

4.3.1 Reduced�Basis Approximation . 53

4.3.2 A Priori Convergence Theory . 54

4.3.3 Computational Procedure . 55

4.4 A Posteriori Error Estimation: Output Bounds 57

4.4.1 Method I . 58

4.4.2 Method II . 61

4.5 Extensions . 63

4.5.1 Noncompliant Outputs and Nonsymmetric Operators 63

6

CHAPTER 0. CONTENTS

4.5.2 Eigenvalue Problems . 67

4.5.3 Further Generalizations . 70

5 A Posteriori Error Bounds for Reduced-Basis Approximation of Parametrized

Noncoercive and Nonlinear Elliptic Partial Di�erential Equations 73

5.1 1 Introduction . 73

5.2 2 Noncoercive Linear Problems: Helmholtz Equation 74

5.2.1 2.1 Preliminaries . 74

5.2.2 2.2 Problem Formulation . 76

5.2.3 2.3 A Posteriori Error Estimation 78

5.2.4 2.4 Improvements . 82

5.2.5 2.5 Numerical Results . 86

5.3 3 Cubically Nonlinear Poisson Problem 92

5.3.1 3.1 Preliminaries . 92

5.3.2 3.2 Problem Formulation . 93

5.3.3 3.3 A Posteriori Error Estimation 94

5.3.4 3.4 Numerical Results . 96

5.4 4. The Burgers Equation . 98

5.4.1 4.1 Preliminaries . 98

5.4.2 4.2 Problem Formulation . 99

5.4.3 4.3 A Posteriori Error Estimation 100

5.4.4 4.4 Numerical Results . 105

5.5 Acknowledgements . 106

6 Reduced-Basis Approximation of the Viscous Burgers Equation: Rigor-

ous A Posteriori Error Bounds 109

7 Reduced-Basis Output Bounds for Approximately Parametrized Elliptic

Coercive Partial Di�erential Equations 111

7.1 Introduction . 111

7.2 Problem Formulation . 112

7.3 Reduced-Basis Approximation . 115

7.3.1 Formulation . 115

7.3.2 A Priori Theory . 116

7.3.3 Computational Strategem: sN(µ) 117

7

CHAPTER 0. CONTENTS

7.4 A Posteriori Error Estimation . 118

7.4.1 Preliminaries: Bound Conditioner C(µ) 118

7.4.2 Error Bound . 119

7.5 Illustrative Application . 127

7.5.1 Problem Statement . 127

7.5.2 Reduced-Basis Output Bound . 134

7.5.3 Numerical Study . 136

8 A Priori Convergence Of Multi-Dimensional Parametrized Reduced Ba-

sis 143

8.1 Introduction . 143

8.2 Low dimensional manifold . 145

8.3 A priori convergence result . 146

8.4 Eigenvalue decay . 148

8.4.1 Preliminaries . 148

8.4.2 Reduced Basis Approximation . 148

8.4.3 Error Estimation . 149

8.4.4 Construction and Eigenvalue Solves 149

8.4.5 Orthonormalization of WN . 149

8.4.6 Properties of the K operator . 149

8.4.7 Higher Precision Approximations 150

8.4.8 Numerical Results . 150

8.4.9 Remarks . 151

8.4.10 Fin example . 154

8.4.11 Validation of the hypothesis . 157

III Publications: Scienti�c Computing and Technology 159

9 A Mathematical and Computational Framework for Reliable Real-Time

Solution of Parametrized Partial Di�erential Equations 161

9.1 Introduction to Reduced Basis Output Bound Methods 162

9.2 Problem Statement . 163

9.2.1 Abstract Formulation . 163

9.2.2 Particular Instantiations . 163

8

CHAPTER 0. CONTENTS

9.3 Reduced-Basis Approach . 166

9.3.1 Reduced�Basis Approximation . 166

9.3.2 A Priori Convergence Theory . 166

9.3.3 Computational Procedure . 168

9.4 A Posteriori Error Estimation: Output Bounds 169

9.4.1 Method I . 170

9.4.2 Method II . 171

9.5 System Architecture . 173

9.5.1 Introduction . 173

9.5.2 Overview of Framework . 173

9.5.3 Clients . 174

9.5.4 Overview Of The Framework . 177

9.5.5 A Simple Client/Server Implementation In C++ 184

9.6 Conclusion . 190

10 A Domain Speci�c Embedded Language in C++ for Automatic Di�eren-

tiation, Projection, Integration and Variational Formulations 191

10.1 Introduction . 191

10.2 Preliminaries on Variational Forms . 193

10.2.1 Mesh . 193

10.2.2 Construction of aT (ψTi , ϕ
T
j) and LT (ψTi) 197

10.3 Language . 201

10.3.1 Expression Evaluation at a Set of Points in a Convex 202

10.3.2 Nodal Projection . 204

10.3.3 Numerical Integration . 206

10.3.4 Variational Formulations . 207

10.3.5 Automatic Di�erentiation . 210

10.3.6 Overview of the Language . 212

10.4 Test Cases . 214

10.4.1 Performance . 214

10.4.2 A Variationnal Inequality . 219

10.4.3 Stokes and Navier-Stokes . 221

10.4.4 Particule in a Shear Flow . 222

9

CHAPTER 0. CONTENTS

IV Annex 227

1 References 229

Bibliography 231

2 Curriculum Vitae 239

10

Part I

Research Work Synthesis

11

Chapter 1

Reduced Basis Methods

The components in mechanical engineering are becoming more and more complex (in topol-
ogy and structure) and multi-functional : indeed, it is only through complexity and multi-
functionality that we can satisfy the stringent performance constraints in many domains such as
for example defense, medicine or embedded systems. However, these complex multi-functional
systems admit no longer an intuitive compromise analysis: we must turn to optimization �
optimal choice of material, con�guration and deployment � to truly bene�t from these new
structures.

The optimization, the control as well as the characterization of these components neces-
sitate the prediction of certain quantities of interest that we shall call outputs � for example
displacements, mean temperatures, heat transfer or drag and lift. � These outputs are typi-
cally expressed as functionals of variables associated with partial di�erential equations which
describe the mechanical behavior of the component or the system. The parameters, which we
shall call inputs, serve to identify a particular con�guration: these inputs can represent the de-
sign such as the geometry during the optimization analysis; control variables such as the power
of a fan, for example in the context of real-time applications; or characterization variables such
as physical properties. It follows then an input/output relationship whose evaluation requires
the resolution of the underlying partial di�erential equations.

The methodology, see [62, 81, 80, 61], has two main components : a very rapid prediction,
yet reliable thanks to a posteriori error estimation, of the behavior of the quantities of interest
� the forward problem; � and very rapid mathematical programming techniques � the
inverse problem.

Regarding the forward problem, the approach comprises three ingredients: (i) rapidly con-
vergent reduced basis approximations � projection on a space WN spanned by the solutions
of parametrized partial di�erential equations selected at N points in the parameter space;
(ii) a posteriori error estimations of the approximation by relaxing the error equation ; (iii)
o�ine/online algorithms � methods allowing to decouple the generation and the projection
of the approximation process and error estimation. As to the inverse problem, the approach
is based on interior point or sequential quadratic programming methods for optimization un-
der constraints � techniques which provide rapid convergence toward an optimal admissible
solution. � These methods are described in more details in [62, 52, 60].

For a restricted class of problems, a�nely or quasi-a�nely parametrized partial di�erential
equations, the algorithmic complexity of the online stage of the forward prediction depends

13

1.1. ABSTRACT FRAMEWORK CHAPTER 1. REDUCED BASIS METHODS

uniquely on N (typically small and less than 100) and on the parametric complexity of the
problem which provide thus a real-time reliable prediction. Moreover, the rapid convergence
of the optimization algorithm allows to preserve to some extent the real-time responses in the
context of the inverse problem; as to the error bounds, they guarantee not only optimal but
also admissible and safe results.

We shall see, in the coming section, the development of these methods � more precisely
the development of the three preceding components: reduced basis approximation, error es-
timation and a�ne decomposition � for certain classes of equations: (i) elliptic symmetric
coercive and compliant � the output functional coincides with the right hand side functional
of the variational equation, � (ii) elliptic non-symmetric and/or non-compliant � the output
functional does not coincide with the right hand side functional of the variational equation,
� (iii) generalized eigenvalue problems, (iv) linear elliptic non-coercive, (v) non-linear, and
�nally (vi) approximately parametrized equations.

I present �rst with few details the methods in the case (i) then for each following type of
equations, I indicate only the crucial ingredients or results. Finally I present a more recent work:
a few indications on the generation of the reduced basis space and an a priori convergence
result for the multi-dimensional reduced basis approximation.

1.1 Abstract Framework

We consider a regular domain Ω ⊂ Rd, d = 1, 2, or 3, and associated functional space
X ⊂ H1(Ω), where H1(Ω) = {v ∈ L2(Ω), ∇v ∈ (L2(Ω))d}, and L2(Ω) is the space of
square integrable function over Ω. The scalar product and norm associated to X are given by
(·, ·)X and ‖·‖X = (·, ·)1/2, respectively. We de�ne also a set of parameters D ∈ RP , whereof
a particulier point is denoted µ. We shall note that Ω does not depend on the parameters in
the sense that Ω is not parametrized topologically.

We introduce now a bilinear form a : X × X × D → R, and the linear forms f : X →
R, ` : X → R. We suppose that a is continuous, a(w, v;µ) ≤ γ(µ) ‖w‖X ‖v‖X ≤
γ0 ‖w‖X ‖v‖X , ∀µ ∈ D.

We require also the linear forms f and ` to be bounded; in what follows, we suppose
that the output is compliant, f(v) = `(v), ∀ v ∈ X � we extend later the results to the
non-compliant case.

We also suppose that a, f and ` depend a�nely on the parameters. In particular, we
suppose that for a �nite integer Q, a can be expressed as

a(w, v;µ) =

Q∑
q=1

σq(µ) aq(w, v), ∀ w, v ∈ X, ∀ µ ∈ D, (1.1)

with σq : D → R and aq : X×X → R, q = 1, . . . , Q. Similarly for f and l although, in what
follows, they won't depend on µ. This hypothesis on a, f and l is crucial to obtain real-time
predictions. A large class of problem admits such a decomposition, and this restriction has
been alleviated recently for certain non-a�ne and locally non-a�ne parametrizations.

Our problem under abstract form reads then as follows: for all µ ∈ D, �nd s(µ) ∈ R given
by

s(µ) = `(u(µ)), (1.2)

14

CHAPTER 1. REDUCED BASIS METHODS 1.2. SYMMETRIC COERCIVE EQUATIONS AND COMPLIANT OUTPUTS

where u(µ) ∈ X is solution of

a(u(µ), v;µ) = f(v), ∀ v ∈ X. (1.3)

In the language of the introduction, a is the partial di�erential equation under weak form,
u(µ) is our solution and s(µ) the output.

1.2 Symmetric Coercive Equations and Compliant Out-

puts

Publication: [62].
In this section, we suppose that a is coercive � we shall present results in the case where

a is not coercive in section 1.5, �

0 < α0 ≤ α(µ) = inf
w∈X

a(w,w;µ)

‖w‖2
X

, ∀ µ ∈ D, (1.4)

and symmetric, a(w, v;µ) = a(v, w;µ), ∀ w, v ∈ X, ∀ µ ∈ D.

1.2.1 Reduced Basis Approximation

We introduce the sampling of the parameter space SN = {µ1, . . . , µN , µi ∈ D}. The con-
struction of this sampling can be done in several ways, we shall see some possible options in
section 1.8.

Then we construct the reduced basis space WN = span {ζn ≡ u(µn), n = 1, . . . , N},
where u(µn) ∈ X is the solution of (1.3) for µ = µn. In practice u(µn) is replaced by a
truth �nite element approximation such that we can equate the �nite element solution with
the exact one.

The reduced basis approximation reads then as follows: for all µ ∈ D, �nd sN(µ) =
`(uN(µ)), où uN(µ) ∈ WN is solution of

a(uN(µ), v;µ) = `(v), ∀ v ∈ WN . (1.5)

A priori convergence properties will be presented in section 1.9. We refer to the tables 4.1
and 4.2 for numerical evidence that the reduced basis approximation is converging very fast.

1.2.2 Computational Procedure

Empirical and theoritical results, see section 1.9, suggest that N can e�ectively be chosen
small � in practice N = O(10). � We develop then two procedures for o�ine and online
computations which shall exploit the reduction in the number of degrees of freedom.

We express naturally uN(µ) in the reduced basis as

uN(µ) =
N∑
j=1

uN j(µ) ζj = (uN(µ))T ζ, (1.6)

15

1.2. SYMMETRIC COERCIVE EQUATIONS AND COMPLIANT OUTPUTS CHAPTER 1. REDUCED BASIS METHODS

where uN(µ) ∈ RN ; we choose the test functions as v = ζi, i = 1, . . . , N . We then obtain
the algebraic representation for uN(µ) ∈ RN ,

AN(µ) uN(µ) = FN , (1.7)

and we evaluate then our output as sN(µ) = F T
N uN(µ). In this case, AN(µ) ∈ RN×N is a

symmetric positive de�nite matrix with its entries as AN i,j(µ) ≡ a(ζj, ζi;µ), 1 ≤ i, j ≤ N ,
and FN ∈ RN has its entries as FN i ≡ f(ζi), i = 1, . . . , N .

We now use the a�ne decomposition (1.1) to write

AN i,j(µ) = a(ζj, ζi;µ) =

Q∑
q=1

σq(µ) aq(ζj, ζi) , (1.8)

or equivalently

AN(µ) =

Q∑
q=1

σq(µ) AqN ,

where AN ∈ RN×N are given by AqN i,j = aq(ζj, ζi), i ≤ i, j ≤ N , 1 ≤ q ≤ Q.
The o�ine/online decomposition is now clear:

• O�ine, we compute u(µn) and we form the AqN and FN : this requires N (expensive)
�a� �nite element solves and O(QN2) scalar products;

• Online, for any given µ we form AN from (1.8), then solve (1.7) for uN(µ), and �nally
evaluate sN(µ) = F T

N uN(µ): this requires O(QN2)+O(2
3
N3) operations and O(QN2)

in memory storage.

We thus have constructed a very fast prediction of s(µ), sN(µ), whose evaluation depends
only on N and Q. The computational gains are particularly important at least O(10), typically
O(100), and often O(1000) if not more.

The originality of this work resides in the systematisation of the reduced basis approximation
and the o�ine/online decomposition for new types of equations as we shall see later. Now,
we turn to the a posteriori error estimation.

1.2.3 A Posteriori Error Estimation

In [62] and the publications presented later in this document, we have developed rigorous
output bounds for s(µ) under the form

sN(µ) ≤ s(µ) ≤ sN(µ) + ∆N(µ) ∀ µ ∈ D (1.9)

where ∆N(µ) is an upper bound for |s(µ)−sN(µ)|. sN is indeed a lower bound of s by applying
symmetry and coercivity of a, as well as the Galerkin orthogonality, see the development 4.9
page 54.

16

CHAPTER 1. REDUCED BASIS METHODS 1.2. SYMMETRIC COERCIVE EQUATIONS AND COMPLIANT OUTPUTS

Method I

The ingredients are (i) a function g(µ) : D → R+, and (ii) a bilinear form symmetric contin-
uous and coercive (independent of µ) â : X ×X → R, such that

α0‖v‖2
X ≤ g(µ) â(v, v) ≤ a(v, v;µ), ∀ v ∈ X, ∀ µ ∈ D (1.10)

for a real positive α0. We then look for ê(µ) ∈ X such that

g(µ) â(ê(µ), v) = R(v;uN(µ);µ), ∀v ∈ X, (1.11)

where for a given w ∈ X, R(v;w;µ) = `(v) − a(w, v;µ) is the weak form of the residual.
The lower and upper bounds can then be evaluated as

s−N(µ) ≡ sN(µ), et s+
N(µ) ≡ sN(µ) + ∆N(µ), (1.12)

respectively, where
∆N(µ) ≡ g(µ) â(ê(µ), ê(µ)) (1.13)

is the bound gap.
Next we prove the following result

1 ≤ ηN(µ) ≤ γ0

α0

, ∀ N. (1.14)

where

ηN(µ) =
∆N(µ)

s(µ)− sN(µ)
(1.15)

is the e�ectivity of the error estimation.
The o�ine/online decomposition procedure can be applied, using superposition, to ∆N(µ)

∆N(µ) =
1

g(µ)

(
c0 + 2

Q∑
q=1

N∑
j=1

σq(µ)uN j(µ)Λq
j +

Q∑
q=1

Q∑
q′=1

N∑
j=1

N∑
j′=1

σq(µ)σq
′
(µ)uN j(µ)uN j′(µ)Γqq

′

jj′

) (1.16)

where c0 = â(ẑ0, ẑ0), Λq
j = â(ẑ0, ẑ

q
j), Γqq′jj′ = â(ẑqj , ẑ

q′
j′) and the ẑ are solutions of â solves.

Again the online stage for error estimation does not depend on the �nite element space
dimension, but only N and Q. The complexity is about O(N2Q2).

Method II

It is not always possible to derive rigorous error bounds for each type of equations, so a less
rigorous method albeit easily applicable has been proposed � the recent developments, see
section 1.9, on the a priori convergence properties of the reduced basis approximation make
this method attractive.

17

1.3. NON-SYMMETRIC COERCIVE EQUATIONS AND NON-COMPLIANT OUTPUTS CHAPTER 1. REDUCED BASIS METHODS

This method is a simple application of the convergence properties of the reduced basis
approximation. We pursue the following construction:

We choose M > N , and we introduce a sampling SM = {µ1, . . . , µM} and the associated
reduced basis space WM = span {ζm ≡ u(µm), m = 1, . . . ,M} ; we require SN ⊂ SM and
thus WN ⊂ WM . We seek uM(µ) ∈ WM such that a(uM(µ), v;µ) = f(v),∀ v ∈ WM ; we
then evaluate sM(µ) = `(uM(µ)); and �nally we construct the error bounds as

s−N,M(µ) = sN(µ), s+
N,M(µ) = sN(µ) + ∆N,M(µ), (1.17)

where ∆N,M(µ), is the bound gap de�ned by

∆N,M(µ) =
1

τ
(sM(µ)− sN(µ)) (1.18)

for τ ∈ (0, 1). The e�ectivity of the estimation is de�ned as follows

ηN,M(µ) =
∆N,M(µ)

s(µ)− sN(µ)
· (1.19)

In practice, we choose M = 2N .
The o�ine/online decomposition is readily obtained.
We prove also that the e�ectivity satis�es the following property, see section 4.4.2.0:

1 ≤ ηN(µ) ≤ const, ∀ N. (1.20)

1.3 Non-Symmetric Coercive Equations and Non-Compliant

Outputs

Publication: [62].
The extension to non-symmetric equations and non-compliant outputs, `(v) 6= f(v) ∀ v ∈

X, is a relatively straightforward extension of the previous section.

1.3.1 Reduced Basis Approximation

In order to reproduce an equivalent construction to the symmetric case, and in particular
recover the convergence properties, we have to introduce the dual problem to the initial
one (1.3) which we shall call the primal problem : for all µ ∈ X, �nd ψ(µ) ∈ X such that

a(v, ψ(µ);µ) = −`(v), ∀ v ∈ X; (1.21)

Then parallel to the primal problem (1.3), we form the reduced basis space associated to
the dual problem at the same sampling points SN , see section 4.5.1.0. Note that two strategies
can be used at this stage: (i) the integrated one which buildsWN = span{(u(µn), ψ(µn)), n =
1, . . . , N/2} or (ii) the non-integrated one which buildsW pr

N/2 = span{(u(µn), n = 1, . . . , N/2}
et W du

N/2 = span {(ψ(µn), n = 1, . . . , N/2}. The second one is more attractive from an im-
plementation and cost point of view, because it allows to treat more easily problems with many
non-compliant outputs, whereas the �rst strategy allow to expose the results more easily.

18

CHAPTER 1. REDUCED BASIS METHODS 1.4. GENERALIZED SYMMETRIC EIGENVALUE PROBLEMS

1.3.2 A Posteriori Error Estimation

Method I

Regarding the rigourous error estimator construction, it follows the same ideas of the previous
section. We introduce only the residual associated to the dual problem, Rdu(v;w;µ) ≡
−`(v)− a(v, w;µ),∀ v ∈ X. We next de�ne the bounds as follows

s̄N(µ) = sN(µ)− g(µ)

2
â(êpr(µ), êdu(µ)), et (1.22)

∆N(µ) =
g(µ)

2
[â(êpr(µ), êpr(µ))]

1
2
[
â(êdu(µ), êdu(µ))

] 1
2 . (1.23)

And we have the following property on the e�ectivity of the error estimation

1 ≤ ηN(µ) ≤ γ2
0

2C α0

. (1.24)

where C is a constant independent of N .

Method II

The extension to the method II to non-compliant and non-symmetric operators follows also
the same ideas as in the symmetric/compliant case, except that we introduce the dual space.

We recover also the good properties for the e�ectivity of the error estimation (greater or
equal than 1 and bounded by a constant independent of N .)

1.3.3 O�ine/Online Decomposition

The o�ine/online decomposition is also obtained, for the prediction as well as the error esti-
mation, by following the same ideas as in the symmetric/compliant case.

1.4 Generalized Symmetric Eigenvalue Problems

Publication: [62].
The generalized eigenvalue problem is written under weak form as follows: �nd (ui(µ), λi(µ)) ∈

X × R, i = 1, . . ., such that

a(ui(µ), v;µ) = λi(µ)m(ui(µ), v;µ), ∀v ∈ X, et m(ui(µ), ui(µ)) = 1. (1.25)

where a is the symmetric, continuous, coercive form introduced earlier in the chapter, and
m is, for example, the L2 scalar product on Ω. The assumptions on a and m imply that the
eigenvalues λi(µ) are real positive. We sort them in increasing order (as well as the associated
eigenvectors ui): 0 < λ1(µ) < λ2(µ) ≤ . . . ; and we suppose that λ1(µ) and λ2(µ) are
distinct.

19

1.5. NON-COERCIVE EQUATIONS CHAPTER 1. REDUCED BASIS METHODS

Our output of interest is s(µ) = λ1(µ) but we can consider other outputs, i.e. other eigenval-
ues.
The construction of the approximation using reduced basis follows the same principles already
presented in previous sections except for the following di�erences:

• if we choose to develop method I for error estimation, we need to construct an approxi-
mation space containing also the second eigenmode (λ2, u2)

• the reduced basis approximation is an upper bound for the output of interest, conversely
from the previous cases.

The properties of the e�ectivity of the error estimation are also obtained (greater than 1 and
bounded by a constant independent of N .) Note that this application is useful to compute for
example the rapid approximation of the coercivity or continuity constants as functions of µ.

1.5 Non-Coercive Equations

Publications: [62, 81].
We now turn to non-coercive equations, see chapter 5. A few ideas and developments

were mentioned in [62], but only the publications [44, 72, 81] present the main results for the
rapid predictions derived from non-coercive equations and the associated error quanti�cation.
Only the results from [81], which are less costly than those in [44], will be presented.
In what follows, a is a non-coercive bilinear form whereof we denote β(µ) the associated
inf-sup constant.
The new ingredient is the construction of a lower bound β̂(µ) for β(µ) that enters the de�nition
of the error bounds as follows:

∆N(µ) ≡ ‖r(· ;µ)‖X′
β̂(µ)

, (1.26)

where
r(v;µ) = f(v)− a(uN(µ), v;µ), ∀ v ∈ X , (1.27)

is the residual associated to uN(µ).
We verify also that the e�ectivity statis�es

1 ≤ ηN(µ) ≤ γ(µ)

(1− τ) εs
, ∀ µ ∈ D , (1.28)

where γ(µ) is the continuity constant, τ ∈]0; 1[and 0 < (1 − τ)εs ≤ β̂(µ) ≤ ˆβ(µ),
see proposition 5 page 78. The relation (1.28) establishes that ∆N provides bounds for the
approximation error.

The o�ine/online doesn't present any particular di�culties or new elements and is very
similar to the previous sections.

20

CHAPTER 1. REDUCED BASIS METHODS 1.5. NON-COERCIVE EQUATIONS

1.5.1 Inf-Sup Lower Bound Construction

The construction of the inf-sup lower bound β̂(µ) such that we have (1.28) is done the following
way : we suppose that we have a set of J parameters, LJ ≡ {µ1 ∈ Dµ, . . . , µJ ∈ Dµ}, to
which we associate the set of polygonal regions Rµj ,τ , 1 ≤ j ≤ J , where

Rµ,τ ≡ {µ ∈ Dµ |Bµq (µ) ≤ τ

CX
β(µ), 1 ≤ q ≤ Q} , (1.29)

CX is a �nite constant, see 5.20 page 76 for more details, and

Bµq (µ) = Γq

P∑
p=1

Dqp |µp − µp| ; (1.30)

where Γq is a "continuity" constant associated to aq and Dqp is de�ned as follows

Dqp = max
µ∈Dµ

∣∣∣∣∂σq∂µp
(µ)

∣∣∣∣ , (1.31)

We further suppose that

J⋃
j=1

Rµj ,τ = Dµ . (1.32)

Then we de�ne J : Dµ → {1, . . . , J} such that, for a given µ,RµJ (µ),τ is the region containing
µ.

The lower bound is then de�ned as follows: given µ ∈ Dµ,

β̂(µ) = β(µJ (µ))− CX BµJ (µ)

max (µ) , (1.33)

Bµmax(µ) = max
q∈{1,...,Q}

Bµq (µ) (1.34)

with Bµq (µ) de�ned by (1.30).
While studying the Helmholtz model problem, some enhancements are proposed. Indeed,

we remark �rst that the number of regions J necessary to construct ˆβ(µ) is about

J(σ∗,Λ, εs, τ) ∼ σ∗ ln(Λ
εs

)

τ
(1.35)

where Λ > εs and σ∗ is an eigenvalue � or resonance frequency � of a1(w, v) =
∫

Ω
∇w ·

∇v relative to a2(w, v) = − ∫
Ω
wv. We then observe that

• the dependency on σ∗ is particularly debilitating, J becomes large and so the construction
of β̂(µ) becomes expensive when σ∗ >> 1 which is the interesting case. To remedy this
issue, we modify the construction of â, see section 5.2.4.0

21

1.6. NON-LINEAR EQUATIONS CHAPTER 1. REDUCED BASIS METHODS

• the dependency on ln(εs) is also a problem because the size of the region paving Dµ
goes to zero as we go near a resonance frequency. To remedy this issue, we modify the
construction of the approximation space using a de�ation technique, see section 5.2.4.0
page 84. This modi�cation has a much lower cost than evaluating the dual norm of the
residual, see (1.26) and (1.27), and is therefore advantageous to solve this issue.

1.6 Non-Linear Equations

Publications: [81, 80].
We turn now to non-linear equations. We apply the methodology to two types of non-

linearities: (i) cubic and (ii) Burgers. In the �rst case, the results are published in [81]. In
the second, preliminary results were published in [81], but the error bounds were not rigorous
in the sense that they were providing a choice regarding the proximity of the reduced basis
solution relative to the �nite element one. A rigorous error bounds construction was published
then in [80].

1.6.1 Poisson Equation with Cubic Non-Linearity

In what follows, for all µ ∈ Dµ ⊂ R2, a(· , · ;µ) : X ×X → R is given by

a(w, v;µ) = aL(w, v;µ) + aNL(w, v), ∀ w, v ∈ X , (1.36)

where

aL(w, v;µ) = µ1

∫
Ω

∇w · ∇v + µ2

∫
∂ΩR

wv , (1.37)

and

aNL(w, v) =

∫
Ω

w3v (1.38)

representing respectively a �Poisson-Robin� operator and a cubic non-linearity. We note
that aL is continuous, coercive and symmetric. The formulation of the problem and in partic-
ular of the reduced basis approximation is identical to the one in section 1.2.

However the a posteriori error estimation construction as well as the o�ine/online decom-
position present some novelties.

A Posteriori Error Estimation

We construct ∆N(µ) as follows:

∆N(µ) ≡ ‖r(· ;µ)‖X′
α̂(µ)

, (1.39)

where α̂(µ) is a lower bound to the coercivity constant of aL such that

α(µ) ≥ α̂(µ) ≥ (1− τ) εs, ∀ µ ∈ Dµ , (1.40)

22

CHAPTER 1. REDUCED BASIS METHODS 1.6. NON-LINEAR EQUATIONS

for all τ ∈]0, 1[and εs > 0.
We show that ∆N(µ) provides indeed a bound for the error, see proposition 7 page 94.

We have used the ingredients from the construction of the error estimation in the non-
coercive case, more precisely the construction of the lower bound of the inf-sup, and we applied
it to the construction of the lower bound of the coercivity constant, α̂(µ). However we are in
a simpler case if we take into account the monotonicity of α(µ), coercivity constant of aL.

O�ine/Online Decomposition and Computing Cost

Our Poisson problem with cubic non-linearity admits an o�ine/online decomposition as well
as the error estimator ∆N . However the di�culty is now the computing cost due to the high
order summations. In particular, we want to make sure that the online cost stays competitive
as regards the �nite element cost. A rapid estimation shows that the approximation cost is
about N4, which is not too depressing, but the evaluation dual norm of the residual ‖r(·;µ)‖X′
is about N6 when applying a naive expansion of the cubic term. If we examine closely the
computation of the dual norm of the residual, we observe that there are many symmetries that
allow to reduce considerably the computing cost. In fact, when expanding the coe�cients
to obtain the a�ne decomposition of the non-linear term aNL, we apply the multinomial
formula13. We then obtain a complexity about N6/72 with the cubic non-linearity which is
considerable for a moderate N with respect to the naive expansion in N6.
To obtain the numerical results, we used for the �rst time an adaptive generation of the
reduced basis approximation space which allowed to reduce the high cost of the prediction and
error estimation, see section 1.8 for more details.

1.6.2 Burgers Equation

Consider now the case of the Burgers equation. The abstract framework is the following:
We consider the domain Ω =]0, 1[. We de�ne X = H1

0 (Ω), and (· , ·)X = (· , ·)H1(Ω),
‖ · ‖X = ‖ · ‖H1(Ω).

We shall consider only one parameter, µ ∈ Dµ ≡ [µmin > 0, µmax] ⊂ RP=1
+ . For all

µ ∈ Dµ. a(· , · ;µ) : X ×X → R is given by

a(w, v;µ) = aL(w, v;µ) + aNL(w,w, v), ∀ v ∈ X , (1.41)

where

aL(w, v;µ) ≡ µa0(w, v) = µ

∫ 1

0

wxvx (1.42)

aNL(w, z, v) = −1

2

∫ 1

0

wzvx (1.43)

are the bilinear and trilinear forms, respectively.

13http://mathworld.wolfram.com/MultinomialSeries.html

23

http://mathworld.wolfram.com/MultinomialSeries.html

1.6. NON-LINEAR EQUATIONS CHAPTER 1. REDUCED BASIS METHODS

For z ∈ X, we de�ne the bilinear form � associated to the derivative of the operator �
da(· , · ; z;µ) : X ×X → R such that

da(w, v; z;µ) = aL(w, v;µ) + 2aNL(z, w, v) . (1.44)

We introduce the operator T z;µ : X → X such that, for all w ∈ X,

(T z;µw, v)X = da(w, v; z;µ), ∀ v ∈ X ; (1.45)

We have the relation

T z;µw = arg sup
v∈X

da(w, v; z;µ)

‖v‖X . (1.46)

Moreover, for

βz(µ) ≡ inf
w∈X

sup
v∈X

da(w, v; z;µ)

‖w‖X ‖v‖X , (1.47)

and

γz(µ) ≡ sup
w∈X

sup
v∈X

da(w, v; z;µ)

‖w‖X ‖v‖X , (1.48)

we have the following inequalities

βz(µ) = inf
w∈X

σz(w;µ) ≤ sup
w∈X

σz(w;µ) = γz(µ) , (1.49)

where

σz(w;µ) ≡ ‖T
z,µw‖X
‖w‖X . (1.50)

The construction follows the Helmholtz case, except that we must now take into account the
linearization point z in the de�nitions

Finally, we suppose that we have a constant ρ such that, for all v ∈ X (= H1
0 (Ω)),

‖v‖L4(Ω) ≤ ρ‖v‖X ; (1.51)

the existence of such a �nite constant is guaranteed by the continuous embedding of X in
L4(Ω) [68].

Reduced Basis Approximation

The steps to construct the reduced basis approximation space are standard: �rst sampling
then Galerkin projection. Note that the existence of bifurcation is not taken into account.

Why Burgers

The advantage of the reduced basis methods in the context of the Burgers equation regard-
ing operation counts is very limited � we are in 1D. � However the construction of the
approximation, then error estimation and a�ne decomposition apply identically to the Navier-
Stokes equations when the geometry is not parametrized: in this case, since the basis functions
associated to the velocity are divergence free, then the reduced basis approximation is also
divergence-free and hence pressure-free. We then recover the Burgers case in the online stage.

24

CHAPTER 1. REDUCED BASIS METHODS 1.6. NON-LINEAR EQUATIONS

Error Estimation

A First Estimation In [81], we propose an error estimator following closely the Helmholtz
case:

∆N(µ) ∼ ‖r(· ;µ)‖X′
β̂(µ)

(1.52)

but we introduce also the following term

ΥN(µ) ∼ 2β̂(µ)

ρ2
; (1.53)

We then proved the following proposition:

Proposition 1. Given µ ∈ Dµ, for N su�ciently large such that

‖r(· ;µ)‖X′ ≤ β̂2(µ)

2ρ2
, (1.54)

either

‖e(µ)‖H1(Ω) ≤ ∆N(µ) , (1.55)

or

‖e(µ)‖H1(Ω) ≥ ΥN(µ) , (1.56)

where ∆N(µ) and ΥN(µ) are given by (1.52) and (1.53), respectively.

This �rst result is not satisfactory because it does not guarantee that ∆N(µ) is a bound
for ‖e(µ)‖H1(Ω).

Rigorous Error Estimation In [80], we construct a rigorous a posteriori error estimation
for reduced basis predictions. The essential ingredient of the result is the usage of the theory
developed by Brezzi-Rappaz and Raviart [15, 19]. We de�ne a new quantity from the one
already de�ned

κ = sup
z∈X

sup
w∈X

sup
v∈X

∫ 1

0
zwvx

‖z‖X ‖w‖X ‖v‖X , (1.57)

which allows us to bound the continuity constant γ(z; ν) ≡ ‖da(z; ν)‖X,X′ the following
way γ(z; ν) ≤ ν+κ‖z‖X . Note that κ, and therefore γ(z; ν), is �nite thanks to the continuous
embedding of H1(Ω) in L4(Ω).

We then construct an upper bound (respectively, lower bound) of κ (respectively of βN(ν)).
An upper bound for κ, κ̃, can be computed a priori and chosen to be κ̃ = 1

4
. Regarding the

lower bound construction of βN(ν), β̃(ν), we introduce a set of parameters UJ ≡ {ν̃1 ∈
D, . . . , ν̃J ∈ D}, a distance d(ν, ν̃;N) ≡ 2βNmax(ν̃)−1[|ν − ν̃|+ 1

2
‖uN(ν)− uNmax(ν̃)‖L2(Ω)],

and a mapping INν ≡ arg minν̃∈UJ d(ν, ν̃;N); we de�ne �nally β̃(ν) ≡ 1
2
βNmax(INν).

We can then show the following lemma:

25

1.7. APPROXIMATIVE PARAMETRIZATION CHAPTER 1. REDUCED BASIS METHODS

Lemma 1. The inf-sup approximation β̃(ν) satis�es 0 < β0/2 ≤ β̃(ν) ≤ βN(ν), ∀ ν ∈
D̃N(UJ), where D̃N(UJ) ≡ {ν ∈ D | d(ν, INν;N) ≤ 1}.

We have thus the con�rmation that β̃(ν), for all ν in D̃N(UJ) ≡ {ν ∈ D | d(ν, INν;N) ≤
1}, is indeed a lower bound for βN(ν).

We now de�ne ∆N(ν) ≡ 3
2
εN(ν)/β̃(ν) and τ(ν) ≡ 3

2
κ̃/β̃(ν), where εN(ν) ≡ ‖G(uN(ν); ν)‖X′

is the dual norm of the residual.
Thanks to the previous lemma and the theory of Brezzi-Rappaz-Raviart [15, 19], ∆N(ν)

is a rigorous and sharp error bound for the reduced basis approximation. The theorem reads
as follows:

Theorem 1.6.1. For ν in D̃N(UJ), and ∆N(ν) ≤ τ(ν)−1, (i) there exists a unique solution to

equation 1.3 page 11, u(ν), in
◦
B (uN(ν), 3

2
τ(ν)−1) such that (ii) ‖u(ν)−uN(ν)‖X ≤ ∆N(ν),

and (iii) ∆N(ν) ≤ ρN(ν) ‖u(ν)− uN(ν)‖X . Where
◦
B (z, r) = {w ∈ X | ‖w − z‖X < r}.

Numerical results corroborate the theorem in two distinct cases : (i) ∆N(ν) ≤ τ(ν)−1

is always veri�ed and (ii) ∆N(ν) ≤ τ(ν)−1 is only veri�ed for N > N0, N0 > 1. We note
also that the rapid convergence of ∆N(ν)/‖u(ν)‖X to 0 and that the e�ectivity of the error
estimation exhibits a good behavior.

1.7 Approximative Parametrization

Publication: [61].
Until now, we have developed a framework for a posteriori error estimation in the context

of equations with exact parametrization. In [61], we focused on the situation where the
mathematical model is incomplete: errors are introduced in the data that de�ne the partial
di�erential operators such as, for example, imperfect speci�cations, measures, computations
or parametrized expansion. This article develops a mathematical framework for the rapid
predictions of outputs of interest and rigorous error estimation. The later incorporates not only
the reduced basis approximation error estimation but also the e�ects of the model truncation.
Numerical tests were conducted on a relatively complex test case to illustrate the theoretical
results.
The development being relatively technical and the exposition complex, only the main ideas
will be presented.

1.7.1 Formulation

Given µ ∈ Dµ, �nd s(µ) = 〈L, u(µ)〉, where u(µ) ∈ X satis�es

〈A(µ) u(µ), v〉 = 〈F, v〉, ∀ v ∈ X . (1.58)

where A(µ) : X → X ′ is our di�erential operator.
As mentioned in the introduction, we know only an approximation of A,A. We have

A(µ) = A(µ) + Â(µ), where Â(µ) is small in a certain sense. We can consider the same for
F : F = F + F̂ .

26

CHAPTER 1. REDUCED BASIS METHODS 1.7. APPROXIMATIVE PARAMETRIZATION

A is coercive and continuous. A and Â admit an a�ne decomposition:

A(µ) =

Q∑
q=1

αq(µ) Aq , (1.59)

and

Â(µ) =

bQ∑
q=1

βq(µ)Bq ; (1.60)

with
βmaxbQ (µ) = max

q∈{1,..., bQ} |βq(µ)| , (1.61)

and
βmaxbQ (µ) ≤ β̂max (1.62)

for β̂max ∈ R+ independent of µ and Q̂ and preferably small . In general, we have only
access to βmaxbQ (µ) � and we shall not have any details about βq(µ).

We next de�ne the scalar product and associated norms on Dq ⊂ Ω, ((· , ·))q and
||| · |||q = ((· , ·))1/2

q , respectively. We suppose that ||| · |||q is uniformly equivalent to
‖ · ‖H1(Dq) for all functions in H

1(Dq). It comes then from these hypothesis that there exists

a �nite positive constant ρ̂Σ � independent of µ and Q̂ � such that

bQ∑
q=1

||| v|Dq |||2q < (ρ̂Σ)2 ‖v‖2
X , ∀ v ∈ X . (1.63)

We introduce also γq : X → R, 1 ≤ q ≤ Q̂, such that

γq(w) ≡ sup
v∈X

〈Bqw, v〉
||| v|Dq |||q

, (1.64)

and we require

sup
w∈X

(bQ∑
q=1

γ2
q (w)

)1/2

‖w‖X ≤ Γ̂ , (1.65)

for Γ̂ ∈ R independent of µ and of Q̂.

1.7.2 Approximation

Two choices are possible concerning the construction of the approximation space: (i) WN =
span {u(µn), n = 1, . . . , N}, where uN(µ) ∈ X satis�es

〈A(µ) uN(µ), v〉 = 〈F, v〉, ∀v ∈ XN . (1.66)

27

1.7. APPROXIMATIVE PARAMETRIZATION CHAPTER 1. REDUCED BASIS METHODS

which does not constrain us to incorporate the details of Â(µ), but obliges us to reconstruct
WN any time we improve A(µ) and (ii) WN = span {u(µn), n = 1, . . . , N} where u(µn) are
solutions of (1.58), but which require that we know the details on βq(µ), 1 ≤ q ≤ Q̂. The
choice of the construction of WN will be problem dependent.

The formulation of the problem then reads as follows: given µ ∈ Dµ, �nd sN(µ) =

L
T

N uN(µ), where uN(µ) ∈ RN satis�es

AN(µ) uN(µ) = FN . (1.67)

where uN(µ) is a standard Galerkin approximation of u(µ) in WN ⊂ X.
We prove the �rst result on the approximation of s(µ), sN(µ):

Proposition 2. for βmaxbQ (µ) and γq(w) satisfying (1.61) and (1.64), respectively,

|s(µ)− sN(µ)| ≤ ‖L‖X′
(
C1 inf

v∈XN
‖u(µ)− v‖X

+ C2 ρ̂Σ β̂
maxΓ̂

)
, ∀ µ ∈ Dµ ; (1.68)

where C1 and C2 depend uniquely on the coercivity and continuity constants and F .

1.7.3 Error Estimation

We introduce �rst a symmetric operator, coercive and continuous C(µ) : X → X ′ satisfying

1 ≤ 〈A
S(µ)v, v〉
〈C(µ)v, v〉 ≤ ρ, ∀ v ∈ X, ∀ µ ∈ Dµ, (1.69)

with ρ ∈ R preferably small and AS(µ) is the symmetric part (positive de�nite) of A(µ),
de�ned by 〈AS(µ)w, v〉 ≡ 1

2
(〈A(µ)w, v〉+ 〈A(µ)v, w〉), ∀ w, v ∈ X.

C(µ) is one of the essential ingredients of the error estimator and will play an identical role
as the bilinear form â in the previous sections.

The a posteriori error estimator of |s(µ)− sN(µ)| is given by:

∆N(µ) ≡ |||L|||X′
(
δN(µ) + δ̂N(µ)

)
, (1.70)

where

|||L|||X′ = sup
v∈X

〈L, v〉
〈C(µ)v, v〉1/2 , (1.71)

and

δN(µ) ≡ 〈C(µ) E(µ), E(µ)〉1/2 , (1.72)

δ̂N(µ) ≡ ρ̂′Σ(µ) βmaxbQ (µ)

(bQ∑
q=1

γ2
q (uN(µ))

)1/2

. (1.73)

28

CHAPTER 1. REDUCED BASIS METHODS 1.7. APPROXIMATIVE PARAMETRIZATION

où E(µ) ∈ X satis�es

〈C(µ) E(µ), v〉 = 〈F, v〉 − 〈A(µ) uN(µ), v〉, ∀ v ∈ X ; (1.74)

and βmaxbQ (µ) ∈ R is the model truncation error (implicitly linked to Q̂ and to βq(µ) through (1.61)).

It is clear that δN(µ) measures the reduced basis discretization error; and δ̂N(µ) measures the
model error truncation � approximation of A(µ) by A(µ).
The following proposition proves that ∆N(µ) thus constructed is indeed a bound for |s(µ)−
sN(µ)|:
Proposition 3. For C : X → X ′ satisfying (1.69), and ρ̂′Σ(µ) such that

bQ∑
q=1

||| v|Dq |||2q ≤ (ρ̂′Σ(µ))2 〈C(µ)v, v〉, ∀ v ∈ X . (1.75)

we then have, |s(µ)− sN(µ)| ≤ ∆N(µ), ∀ µ ∈ Dµ, and ∀N ∈ N.

We also prove that the e�ectivity veri�es 1 ≤ ηN(µ) = ∆N (µ)
|s(µ)−sN (µ)| ≤ Υ, Υ not too large

and we establish hence that ∆N provides a sharp error estimation of the output of interest.

1.7.4 O�ine/Online Decomposition

∆N contains essentially three components: |||L|||X′ ; δN(µ); and δ̂N(µ).
The o�ine/online decomposition of |||L|||X′ and δN(µ) are standards in the context of reduced
basis.
However the o�ine/online decomposition of δ̂N(µ) is not so standard. We introduce

ˆ̂
δ2
N(µ) ≡

bQ∑
q=1

γ2
q (uN(µ)) ,

in terms of which δ̂N(µ) can be calculated as δ̂N(µ) = ρ̂′Σ(µ) βmaxbQ (µ)
ˆ̂
δN(µ).

• The computation of ρ̂′Σ(µ) can be done exclusively o�ine by remarking that ρ̂′Σ(µ) is
the maximum eigenvalue of the Rayleigh quotient:

bQ∑
q=1

||| v|Dq |||2q
〈C(µ)v, v〉 ; (1.76)

and by using the o�ine/online decomposition of C(µ).

• We suppose that βmaxbQ (µ) is given ;

29

1.8. REDUCED BASIS GENERATION CHAPTER 1. REDUCED BASIS METHODS

• Finally we turn to ˆ̂
δN(µ) ≡∑ bQ

q=1 γ
2
q (uN(µ)) , with

γ2
q (uN(µ)) = ||| σq(µ) |||2q , (1.77)

where σq(µ) ∈ Xq satis�es(
(σq(µ), v|Dq)

)
q

= 〈Bq uN(µ), v|Dq〉, ∀ v ∈ X . (1.78)

Here Xq is the space of functions in H1(Dq) which vanish on the part of ∂Dq which
coincide with the Dirichlet part of ∂Ω. If we then de�ne the functions independent of
the parameters σnq ∈ Xq, 1 ≤ n ≤ N , 1 ≤ q ≤ Q̂, such that(

(σnq, v|Dq)
)
q

= 〈Bq ζn, v|Dq〉, ∀ v ∈ X , (1.79)

we then have that, by using the reduced basis expansion, (1.78) and (1.79)

||| σq(µ) |||2q =
N∑
n=1

N∑
n′=1

uNn(µ) uNn′(µ) ((σnq, σn′q))q (1.80)

and thus that

ˆ̂
δ2
N(µ) =

N∑
n=1

N∑
n′=1

uNn(µ) uNn′(µ)

 bQ∑
q=1

((σnq, σn′q))q

 . (1.81)

The o�ine/online decomposition is now clear, we need only to precompute o�ine

Ξnn′ =

bQ∑
q=1

((σnq, σn′q))q 1 ≤ n, n′ ≤ N . (1.82)

and given µ, ρ̂′Σ(µ), and βmaxbQ (µ), evaluate online

δ̂N(µ) = (1.83)

ρ̂′Σ(µ) βmaxbQ (µ)

(
N∑
n=1

N∑
n′=1

uNn(µ) uNn′(µ) Ξnn′

)1/2

. (1.84)

The algorithmic complexity of this term, δ̂N(µ), is only O(N2) and is hence negligible
with respect to the complexity of computing δN(µ).

1.8 Reduced Basis Generation

In preparation: [59]
The construction of the sampling SN has not yet been explained. In most articles [62, 61,

81, 80], SN is generated by sampling log-randomly the parameter space Dµ, and following the
algorithm 1

30

CHAPTER 1. REDUCED BASIS METHODS 1.9. A PRIORI CONVERGENCE PROPERTIES

Algorithm 1 Log-Random generation of the reduced basis space
N := 0
S0 := ∅
Nmax := maximal number of basis functions to be generated
while N < Nmax do
N := N + 1
pick log-randomly µN ∈ Dµ

construct SN := {µN} ∪ SN−1

construct WN := {ξN = u(µN)} ∪WN−1

end while

1.8.1 Bounded Conditioning Number

First a classical problem with the previous approach is that the matrix AN can be extremly ill
conditioned. We can prove that

Proposition 4. for coercive continuous bilinear forms14, when the basis function are orthonor-
malized, the conditioning number of AN(µ), ∀ µ ∈ Dµ is bounded by the ratio between the
continuity constant and the coercivity constant.

cond(AN(µ)) ≤ γ(µ)

α(µ)
(1.85)

This result, particularly important in practice, comes immediately from the application of
the constant de�nition and the orthonormalization of the reduced basis.

1.8.2 Adaptive Generation

Now, we prefer to use rather an adaptive approach which uses the error estimator to determine
the next point to use for the construction of the reduced basis space.

This approach is particularly attractive � ∆N(µ) is really cheap to compute and allows
to sample very �nely Dµ� as it ensures the decrease of maxµ∈Dµ ∆N(µ). Note that or-
thonormalizing the basis functions ensures that the condition number is bounded and that we
can reach a required accuracy ε. Moreover the adaptive procedure guarantee that no basis
functions will be collinear and hence guarantees that the orthonormalization process won't
break.

Various other adaptive sampling strategies of Dµ for di�erent types of equations can be
devised, they will be detailed in a publication in preparation see [59].

1.9 A Priori Convergence Properties

In preparation: [16]
This work, see chapter 8, is very recent � it will be submitted soon in October or November

2005. � It follows the one of T. Patera et al. on the a priori convergence of the reduced

14Similar results could be derived for other types of equations.

31

1.9. A PRIORI CONVERGENCE PROPERTIES CHAPTER 1. REDUCED BASIS METHODS

Algorithm 2 Adaptative generation of the reduced basis space
N := 0
S0 := ∅
ε accuracy to be reached by the reduced basis approximation
while ∆max

N > ε ∆max
N is the maximum error given by reduced basis approximation over a

random sample of parameters do
N := N + 1
if N := 1 then
pick log-randomly µN ∈ Dµ

or alternatively
pick a point µN by hand ∈ Dµ

end if
construct SN := {µN} ∪ SN−1

construct WN := {ξ = u(µN)} ∪WN−1 {Gather statistics on WN :}
∆max
N := maxµ∈Dµ ∆N(µ)

µN+1 := arg ∆max
N

end while

basis methods in 1D with 1 parameter, see [47, 46, 62]: they proved that there is exponential
convergence, result which can be extended to multiple parameters by tensorization, but the
convergence is in e−N

1/P
with P being the dimension of the parameter space (or number of

parameters) and N is the reduced basis space dimension. However we observe in practice
that this result is far from optimal. This recent work, under an hypothesis of exponential
decrease of the eigenvalues of a certain operator validated with numerical tests, recovers the
exponential convergence in e−cN for the reduced basis approximation and thus is independent
of P , see lemma (4) page 29.

1.9.1 Proof

The proof works as follows:
We are interested in the solution u(x, y) of a parametrized partial di�erential equation

de�ned on the geometric domain Ω ⊂ Rd, d = 1, 2, 3 and a parameter domain D ⊂ RP and
the equation reads under abstract form (2.3).

We introduce the operators K and T which are convolutions with the kernels

K(µ, µ′) =

∫
Ω

u(x, µ)u(x, µ′)dx

T (x, x′) =

∫
Dr

u(x, µ)u(x′, µ)dµ.
(1.86)

i.e. the operators

(K f)(µ) =

∫
Dr

K(µ, µ′) f(µ′) dµ′

(T u)(x) =

∫
Ω

T (x, x′) f(x′) dx′
(1.87)

32

CHAPTER 1. REDUCED BASIS METHODS 1.9. A PRIORI CONVERGENCE PROPERTIES

u(x, µ) then can be expanded as follows

u(x, µ) =
∞∑
k=1

√
λkφk(µ)ψk(x). (1.88)

where λk are the eigenvalues of K and T and φk, ψk are the eigenmodes of K and T
respectively. We then make the following hypothesis on λk:

λk ≤ ce−f(k) (1.89)

where f is at least linear such that f(k) ≥ ρk, ρ > 0. This hypothesis has been veri�ed
numerically on a few model problems in 2D.

First we prove that U = {u(., µ);µ ∈ D} is close to a linear space of small dimension Ψk

spanned by the �rst functions ψ1, ..., ψn such that

Ψk = span{ψ1, . . . , ψk} (1.90)

This is the result by the following lemma:

Lemma 2. We de�ne lm =
√∑∞

k=m+1 λk. We have:

∀u ∈ U ‖u− ΠΨk
L2 u‖L2 ≤ C

1/P
k . (1.91)

where ΠΨk
L2 u is the L2 projection of u on Ψk i.e.

ΠΨk
L2 u = arginfψ∈Ψk

‖u− ψ‖L2 .

Once this result obtained and under hypothesis (1.89) we have

∀u ∈ U ‖u− ΠΨk
L2 u‖L2 ≤ Ce−αk (1.92)

with α > ln(2), which means that ρ > 2P ln(2).
We construct then the reduced basis space such that the basis functions are orthogonal

VN = span{u` = u(., µ`), µ` ∈ D, ` = 1 . . . N} and we prove the following lemma

Lemma 3. For each u`, ` ≥ 1, there exists v` ∈ Ψk such that:

‖u` − v`‖ ≤ C2`+1e−αk. (1.93)

Thanks to this last result and to the construction of the u`, we prove the �nal result

Lemma 4.
∃β > 0 | ∀u ∈ U inf

uN∈VN
‖u− uN‖ ≤ Ce−β N . (1.94)

33

1.9. A PRIORI CONVERGENCE PROPERTIES CHAPTER 1. REDUCED BASIS METHODS

1.9.2 Veri�cations

In order to corroborate the hypothesis (1.89), the eigenvalues of the operator K have been
computed on a few academic problems for P = 2, P = 3 and two di�erent geometries in
dimension 2.

These results are very interesting and original, see section 8.4. Indeed in order to verify
the exponential decay of the eigenvalues, the standard �oating point arithmetic of modern
computers is not su�cient � it is not accurate enough and does not allow to verify (1.89).

We had access to a set of generic scienti�c computing components, see section 2.1 of the
next chapter, for the �nite element, then reduced basis approximation and the veri�cation of
the exponential decay of the eigenvalues of K on a tensorized grid of D. All the computations
have been done in quad-double precision, see [30], in order to have at least 60 signi�cant
digits.

It is important to note that almost all computing steps and data structures (besides the
mesh data structure and the parameters of D) must use this numerical type of quad-double
accuracy including the linear solvers, without which the results would not be more accurate
than the least accurate computing component.

Besides the veri�cation of hypothesis 1.89 on these few particular cases, these results
illustrate the necessity to develop generic tools that would otherwise require heavy and very
speci�c developments and which would be used only in this particular context. That would be
a very good example of non-reuse of scienti�c computing components. These comments are
illustrated further in the next chapter.

34

Chapter 2

Components for Scienti�c

Computing

We have just seen, in the preceding chapter, the mathematical development of the reduced
basis methods with error estimations for various types of equations and their three components:
(i) a prediction of the output of interest by projection on a space of reduced dimension, (ii) a
quanti�cation of the error of approximation and (iii) an o�ine/online decomposition allowing
during the online stage to obtain reliable results quasi-instantaneously. The design and the
implementation of these methods present particularly interesting challenges.

First of all, they not only require to have an overall vision of the standard methods of
approximation but also to control the ingredients necessary to the construction of the three
components for the various classes of equations which we reviewed. These ingredients are
often re-used or slightly modi�ed to adapt to the problem of interest, such as for example
the calculation of the constants of coercivity, continuity and inf-sup. One of the objectives of
my work which will be presented in the coming chapter is the design and development of a
computing environment whose components are generic and can be easily re-used in order to
build new extensions quickly or to rapidly develop new applications.

Then, it is clear that the intrinsic properties of the reduced basis output bounds methods
open new prospects as regards scienti�c computing. In particular, the integration of scienti�c
computations in extremely simpli�ed interfaces speci�cally conceived to solve a particular prob-
lem makes it possible to the non-specialist (computing methods) to use them with con�dence
(error estimation) in the speci�c context of the problem in real-time (fast prediction). We
thus developed modern interfacing tools in the context of the application and in particular, we
were interested in the generation of interactive documents.

Lastly, if the traditional methods to solve partial di�erential equations are not particularly
suited to distributed computing and the client-server paradigm and often require the develop-
ment of heavy data structures, the reduced basis output bounds methods on the other hand
�t very well such architectures. However the speci�c nature of these methods require special
attention: it is not only about treating an input/output relationship, but also to take into
account the uncertainty quanti�cation and a few other properties to allow the construction of
an environment for real-time computing with certi�cate of �delity for (i) repeated evaluation
of the outputs of interest, (ii) the composition of these quantities to create new ones (adimen-
sionalization, dimensionalization, algebraic dependencies, . . .), (iii) sensitivity analysis of the

35

2.1. MATHEMATICAL KERNEL CHAPTER 2. COMPONENTS FOR SCIENTIFIC COMPUTING

output of interest in instantaneously or quasi-instantaneously and �nally (iv) the optimization
and the control in real-time of these quantities. We have implemented such an environment
which is still being developed and incorporates new mathematical improvements in the context
of the reduced basis methods.

Figure 2.1 presents the global architecture and the main components of the computing
environment 15 that have been put in place.

In this chapter, we indeed will explore these di�erent aspects : (i) a mathematical kernel
for the scienti�c computation in general and the solution of partial di�erential equations in
particular, (ii) a language integrated into C++ for numerical integration, the speci�cation of
the variational formulations and automatic di�erentiation and �nally (iii) a preliminary version
of the distributed environment with interactive interfaces. In a last section, a very general
description of the technology which won the contest (along with others) organized by the
French Ministry of research in 2003 regarding innovative technologies is brie�y presented.

2.1 Mathematical Kernel

En préparation: [65]
This section presents some aspects of a library I wrote but whose design has not yet been

published, see [65]. It has nevertheless allowed to obtain original results such as for example
the veri�cation of the exponential decay of the eigenvalues of convolution operators associated
to the reduced basis approximation, see section 1.9 page 27, and it is the mathematical kernel
of the language for partial di�erential equations in the next section.

The components to obtain these results have required the development of a completely
generic framework for the various ingredients in partial di�erential equation resolutions in
the sense that they are independent of the numerical type manipulated: in particular with
respect to the standard �oating point types which were insu�cient in terms of accuracy for
the computations mentioned above.

More precisely, the components are the following(non exhaustive) :

• a generic linear algebra library; a few exist that satisfy the needs of the following ingre-
dients ;

• geometric entities � d simplices with d = 1, 2, 3 and product of simplices of order k
� are not only used to represent the elements of a mesh but also to construct the
polynomial sets, quadrature formulas and �nite elements and thus must be generic ;

• polynomials and their representations; in particular I have used the construction frame-
work presented in [32] ;

• integration methods; in particular I have used the framework presented in [32] ;

15I am actually the coordinator of the LifeV project, www.lifev.org, which is a methodology showcase for
the European project, http://mox.polimi.it/it/progetti/haemodel/. In particular, LifeV implements
and shall implement a number of state of the art applications in the context of the cardiovascular system
simulation. The complexity of these applications requires the development of e�cient scienti�c computing
components for multiscale and multiphysics simulations.

36

www.lifev.org
http://mox.polimi.it/it/progetti/haemodel/

CHAPTER 2. COMPONENTS FOR SCIENTIFIC COMPUTING 2.1. MATHEMATICAL KERNEL

Figure 2.1: Computing kernel and C++ integrated language for partial di�erential equations
resolutions; reduced basis output bounds methods and distributed environment for real-time

simulations; multiscale and multiphysics environment in the LifeV project.

37

2.2. A LANGUAGE FOR THE RESOLUTION OF PDE CHAPTER 2. COMPONENTS FOR SCIENTIFIC COMPUTING

• �nite elements � for example Lagrange element for dimension d with d = 1, 2.3 and
order k �, see [22] and [32] ;

• the geometric transformation between the reference convex and a convex allowing to do
all the computations on the reference convex where the integration formulas and �nite
elements have been constructed ;

• approximation spaces parametrized by the underlying mesh and a �nite element basis ;

• linear and bilinear forms and their representation, they are particularly useful in conjunc-
tion with the language presented in the next section.

We thus obtain a set of basic tools in C++ representing their mathematical counterpart with
no a priori on the arithmetical representation that will be used and without losing performances
for standard numerical types. To reiterate, the design is completely generic and general and
follows the mathematical construction closely. To achieve this, the essential techniques in
C++ are meta-programming, static polymorphism and static computation (static means here
'at compile time').
The supported numerical types that allows to instantiate the computation components are:

• the standard �oating point types in C++

• std::complex<> complex type in C++

• ADtype<.,.> an automatic di�erentiation type, see the next section

• dd_real a double-double precision type from the QD library, see [30]

• qd_real a quad-double precision type from the QD library

• mp_real an arbitrary precision type from the ARPREC library, see [11]

Other numerical types can easily be added : some shall be integrated soon such as an interval
arithmetic type to measure the impact of perturbations of uncertainty in computations. Of
course, some components may be sensible only for certain numerical types, for example the
di�erent representations of a real (double, long double, dd_real, qd_real and mp_real).

2.2 A Language for the Resolution of PDE

submitted: [66]
We have just seen some components for partial di�erential equations solves. In order to

bene�t from these tools, we have developed a language integrated in C++ allowing to de�ne
the problem to be solved under a form very close the mathematical expression. This language
uses many keywords of FreeFEM++, see [29], but design and implementation are entirely
di�erent. The language is written in C++ and is using directly within C++.

38

CHAPTER 2. COMPONENTS FOR SCIENTIFIC COMPUTING 2.2. A LANGUAGE FOR THE RESOLUTION OF PDE

To illustrate further, listing 2.1 shows a small example for the possibilities of the language
which have been taken from [66], where I compare the de�nition of a bilinear form from the
mathematical point of view and the language point of view.

a : Xh ×Xh → R

(u, v) →
∫

Ω

∇u · ∇v + uv
(2.1)

Listing 2.1: Variational Formulation in C++

// a mesh of Ω ⊂ Rd, d = 1, 2, 3
Mesh mesh;
// scalar finite element space PK ,K = 1, 2, 3, . . .
Space <Mesh ,FEM_PK <d,K> > Xh(mesh);
// 2 elements of the Space Xh
Space <Mesh ,FEM_PK <d,K> >:: element_type u(Xh), v(Xh);
// A matrix in CSR format
csr_matrix_type M;
// bilinear form with M as its matrix representation
// with integration over all elements of the mesh
// and a method for exact integration of polynomials of
// degree ≤ K (IM_PK <d,K>)
BilinearForm <Xh> a(u,v,M);
a = integrate(elements(mesh),

dot(gradt(u),grad(v))+idt(u)*id(v),
IM_PK <N,K>());

The example is rather trivial but already exhibits the possibilities of the language. The
technique allowing this kind of high level programming is called expression template, see [77].
The truly innovative aspect of the publication is to be able to share the construction of
the mathematical expressions between di�erent applications � here, projection, numerical
integration, variational formulation and automatic di�erentiation � and to provide di�erent
engines to evaluate the mathematical expressions depending on the context. The second main
result of this article shows that it is indeed possible to build formulations and in particular
mixed formulations whose evaluations during the construction of the bilinear and linear forms
will be optimal without extra cost when evaluating integrals due to terms evaluated to 0
depending on the block being constructed � for example in the case of the Stokes equations,
we have the velocity, pressure and mixed blocks. � This property of the language facilitates
greatly the writing of variational formulations while ensuring that the language in conjunction
with C++ will generate e�cient code.

Besides these two fundamental aspects of the language and the fact that the library is
1-2-3D, the advantages of an embedded language linked directly to the computing library are
several folds :

• the inherent complexity of constructing a compiler/interpreter can be ignored;

39

2.2. A LANGUAGE FOR THE RESOLUTION OF PDE CHAPTER 2. COMPONENTS FOR SCIENTIFIC COMPUTING

• other libraries can easily be coupled with the library and the language which is not the
case for speci�c language such as FreeFEM++ which would then have to develop their
own library system;

• embedded languages inherit the capabilities of the host language, here C++ : debugging,
optimization, strong typing, generic programming. . . ;

• from a teaching point of view, we cumulate the learning of the host language (C++)
and embedded language (variational formulation, numerical integration or automatic
di�erentiation).

In the article, a benchmark of the performances to �ll of matrices or vectors for di�usion
equation (D), di�usion-reaction (DR) and di�usion-advection-reaction (DAR) is presented.
Some interesting properties of the language are displayed:

• the performances in terms of the number of elements grows linearly (in log-log) which
is the expected behavior

• the performance gap at a given number of elements between the di�erent equations D
and DR are very small and in certains cases also with DAR

• the extra cost due to the non-constant coe�cients with respect to the equivalent con-
stant one is very small, either in 2D or 3D. In particular, in the most debilitating case the
ratio is always less than 2 and most often between 1.1 and 1.3. This is to be compared
to the results of [56] where the ratios are comprised between 2 and 5 (5 in the DAR
3D case) and for relatively coarse meshes. The di�erence is that in the later the non-
constant coe�cients are treated using standard C++ functions, whereas in the language,
the non-constant coe�cients are treated by the expression template technique.

These remarks illustrate the relevance of using techniques such as expression template or
meta-programming for scienti�c computing. For more details, see section 10.4.1 page 214.

Moreover, the article proposed some test case which allow to evaluate the possibilities of
the language : a variational inequality, see section 10.4.2 page 219, Stokes equations with
and without stabilization , see section 10.4.3 page 221 and rigid particle in a shear �ow, see
section 10.4.4 page 222. Other application domains have been successfully tested: 2D and
3D linear elasticity, Navier-Stokes 2D and 3D. Listing 2.2 shows an example the speci�cation
for a Stokes problem:

Listing 2.2: Mixed Variational Formulation

// mixed finite element space (P2 velocity , P1 pressure)
// in 3D
typedef MixedFESpace <Mesh_t ,

FEM_PK <3,2,vectorial >,
FEM_PK <3,1,scalar > > fespace_type;

fespace_type V_h;
V_h:: element_type U,V;
// views for U and V
typedef fespace_type :: fespace_1_type X_h;

40

CHAPTER 2. COMPONENTS FOR SCIENTIFIC COMPUTING 2.3. DISTRIBUTED SYSTEM FOR REAL-TIME SIMULATIONS

typedef fespace_type :: element_2_type M_h;
fespace_type :: element_1_type u = U.element1 ();
fespace_type :: element_2_type p = U.element2 ();
fespace_type :: element_1_type v = V.element1 ();
fespace_type :: element_2_type q = V.element2 ();
csr_matrix_type A;
MixedBilinearForm <fespace_type > a(V_h , V_h , A);
a = integrate(elements(mesh),

dot(gradt(u), grad(v)) - idt(p)*div(v) +
id(q)*divt(u) + 1e-6*idt(p)*id(q))+

// 10 identifies a dirichlet boundary
on(10, u, F, Px()*(1 -Px())+Py()*(1-Py()))+
// and 20 too
on(20, u, F, 0);

The mathematical kernel and the language provide thus a powerful development platform
for scienti�c computing and partial di�erential equations solves, which is abstracting the un-
derlying arithmetic until the instantiation of the problem to be solved. They form the basic
blocks for the reduced basis methods implementation, see �gure 2.1.

The results already obtained are very encouraging and there are still many possibilities to
improve the performances and increase the number of application domains while reusing or
extending to the maximum the components already in place.

2.3 Distributed System for Real-Time Simulations

Publication: [67]
In preparation: [60]

We have seen two upstream aspects of the implementation of the reduced basis output
bounds methods. Now we turn to some downstream work. We have been developing an original
and very cheap infrastructure allowing very simple interfaces for real-time computing requests
through Internet. Regarding the interfaces, we were interested in electronic documents that
could replace more standard archiving methods. In particular, we have been developing a set
of tools � only based on open source software � that allows to write aesthetic documents
where equations are actionable and allowing a user in a natural context to request and present
results in real-time.

2.3.1 Real-Time Simulations Repository

The numerical methods proposed in the �rst chapter are rather unique compared to the
standard ways to solve partial di�erential equations. The reduced basis output bounds methods
� in particular the global approximation spaces, a posteriori error estimators, o�ine/online
decomposition � are designed to make partial di�erential equations truly "useful": (i) real-
time regarding operation counts ; (ii) �blackbox" regarding reliability and (iii) appropriate
(customized) to the context regarding the inputs/outputs required by the methods.

But to e�ectively pro�t from this methodology, in particular the creation of an online code
repository, it must reside in a special environment. This environment must allow a user (i) to

41

2.3. DISTRIBUTED SYSTEM FOR REAL-TIME SIMULATIONS CHAPTER 2. COMPONENTS FOR SCIENTIFIC COMPUTING

provide � in a native/natural context � the problem, the output of interest and the inputs
values; and (ii) to receive quasi instantaneously the prediction and associated certi�cate of
�delity.

We have created a very simple distributed environment whose elements are servers mod-
elling the equation

(sN(µ),∆N(µ)) = f(µ), ∀µ ∈ Dµ (2.2)

A general overview of the distributed environment for real-time simulation with a certi�cate
of �delity is presented at the section section 9.5.2 page 173.

2.3.2 Clients

Two client interfaces are brie�y presented: SimTEX and SimLaB.
SimTEX allows to generate interactive PDF documents with actionable equations which

model equation (2.2) to de�ne the "graphical interface", see the actionable equation 9.5.3.0
page 175 for a simple example. See also the section 9.5.3.0 page 174 for a more detailed
description of SimTEX.

SimLaB is aMatLaB interface and allows either to use the simulation servers registered
on the repository, or to create new ones and register them on the server. See section 9.5.3.0
page 175 for a more detailed description of SimLaB.

Since then, new clients have been developed such as a Python client: Python can be used
to manipulate and generate simulation servers like in MatLaB.

2.3.3 API

Now we turn to the application programming interface (API) which allow to build new servers
and clients very easily and quickly. Here is an example which registers in the repository the
simulation Troot associated to the model fin3d (model for a three dimensional thermal �n)
and this is achieved in very few lines of C++ code, see listing 2.3.

Listing 2.3: Piece of C++ code to build a real-time simulation server with a certi�cate of
�delity

#include <SApplicationServer.hpp >
#include <SModelOutput.hpp >

using namespace St;

// simulation server
class Troot: public SModelOutput
{
public:

Troot(SModel* parent , const char* name)
: SModelOutput(parent , name)

{<snip > }
virtual SOutput* run(SParameterSet const& pset)
{

SOutput* output = new SOutput;

42

CHAPTER 2. COMPONENTS FOR SCIENTIFIC COMPUTING 2.3. DISTRIBUTED SYSTEM FOR REAL-TIME SIMULATIONS

// do the computation here for the
// parameter set , pset
. . .
output ->output = <prediction value >;
output ->error = <associated error estimator value >;
return output;

}
};

int main(int argc , char** argv)
{

SCommandLineArguments ::init(argc , argv);
SApplicationServer* server = new SApplicationServer ();
SModel* fin3d = new SModel(0, "fin3d");
SModelOutput* troot = new Troot(fin3d , "Troot");

server ->setMainSimget(fin3d);
server ->run();

}

From the point of view of the client, the interface is also very simple, see listing 2.4.

Listing 2.4: C++ client for a real-time simulation server

#include <SApplication.hpp >
#include <SModelOutput.hpp >
using namespace St;

int main(int argc , char** argv)
{

SCommandLineArguments ::init(argc , argv);
SApplication* client = new SApplication ();

SModelOutput_var fin3d_troot =
client ->resolve("fin3d/Troot");

fin3d_Troot ->setNewParameterSet(pset);
fin3d_Troot ->setRange(range);
fin3d_troot ->run(MultiParameter);

coOutputArray_var results = fin3d_Troot ->getOutputs ();
for(ULong __i = 0;__i < __output_pl ->length ();++ __i)

{
std::cerr << "output(" << __i << ")="

<< result(__i). output << "\n";
std::cerr << "error(" << __i << ")="

<< result(__i).error << "\n";
}

}

43

2.3. DISTRIBUTED SYSTEM FOR REAL-TIME SIMULATIONS CHAPTER 2. COMPONENTS FOR SCIENTIFIC COMPUTING

In this example, we look for the simulation server Troot associated to the model fin3d.
Once found we pass it the parameters µ and retrieve the output of interest and error estimation.

The environment has been designed from the start to be e�cient and to bene�t from all
opportunities to optimize and especially parallelize computations. In particular, (i) the servers
are multi-threaded automatically at two levels: the CORBA server (multi-threaded) and the
simulation server itself which can evaluate for many µ using threads; (ii) the registered servers
to the repository are redundant : several copies are distributed on di�erent computing servers
(hardware) and which may not be on the same sub network ; and �nally (iii) the clients can
send computing requests in parallel in order to bene�t from the strongly distributed/parallel
architecture.

2.3.4 New Extensions of the API

A few particularly interesting extensions extensions have been added to the interface, see [60].
Of course the servers already in place don't support these new interfaces, it is therefore required
to develop a versioning system for the supported interfaces in order to have them evolve while
preserving the legacy servers � until they are ported to the new interface.

Online Control of Accuracy

A �rst extension is the support of the following features

• Online control of the accuracy: the user chooses the accuracy he desires for the predic-
tions that will be done afterwards. Thanks to the developments done in 1.8 page 26,
this requires no online computations at all , everything has been tabulated o�ine and
in particular for all N the corresponding maximum error over Dµ.

• Online control of computing time: the user sends a request to the simulation server to
make the next computations within a time constraint; this kind of application is crucial in
hard real-time where every commands must be executed imperatively within an imparted
time; the computation accuracy is the best possible one within the time constraint.

Automatic Di�erentiation and Optimization

We have seen also that these methods are going to be used in the context of many evalua-
tions such as for example sensitivity analysis or optimization. The interface has been naturally
extended to support automatic di�erentiation, with respect to the parameter set µ see for
example section 2.2, of the online stage of reduced basis methods. The automatic di�eren-
tiation is particularly suited to this context for two reasons: (i) the number of parameters in
the methodology presented in the �rst chapter is typically small(less than 100) and (ii) the
a�ne decomposition of the bilinear and linear forms allow the trivial application of automatic
di�erentiation.

So the blackbox models now

(s
(i)
N (µ),∆

(i)
N (µ),) = f(µ), ∀µ ∈ Dµ et i = 0, 1, 2 (2.3)

44

CHAPTER 2. COMPONENTS FOR SCIENTIFIC COMPUTING 2.4. SHORT PRESENTATION OF THE TECHNOLOGY

where (i) denotes the order of the di�erentiation. Thus the server associated to the blackbox
with this slightly enhanced interface wait forever for new computing requests.

A new type of simulation servers has then been developed: they provide optimization
services by composing forward simulation servers � typically di�erent outputs of interest of
the same model � in order to generate an application for very rapid online design � for the
model associated with the outputs of interest.

2.4 Short Presentation of the Technology

The research activities presented in this and the preceding chapter regarding the various con-
tributions of the research group of for A.T. Patera at MIT led to the development of the
technology that was presented at a contest of the French Ministry of research in 2003 and
received the price in the emergence category. It is brie�y described in a � fact sheet�. The
document inserted in the following pages was carried out in collaboration with a consulting
company and was distributed to 30 companies involved in engineering design and real-time
computing for a marker study. The technology �ts truly in objectives presented in the intro-
duction of this synthesis, see page 3.

The technology evolved/moved since the development of the "fact sheet" and it now
supports among others parabolic equations treatment, the developments as regards adaptive
generation of the reduced basis space and also the recent developments concerning the magic
points method to tackle non-a�ne decomposition.

45

��� �������
	��
��� � �
�����������
������������� ����!�"#��$�%
�'&���(�)�* +�,
! ��-��'.
�
,0/'1�� 2�� �
����$�!�3�+�,
! ��-
�'.���, 405�6�7�8�9 : 7;8�6�<�=?>?@�=405�6�7�8�9 : 7;8�6�<�=?>?@�=405�6�7�8�9 : 7;8�6�<�=?>?@�=405�6�7�8�9 : 7;8�6�<�=?>?@�=?AA AACB�9 8�7;D
8FEB�9 8�7;D
8FEB�9 8�7;D
8FEB�9 8�7;D
8FECAA AA�G
8�: 5�H
H�8�I�8�6�=G
8�: 5�H
H�8�I�8�6�=G
8�: 5�H
H�8�I�8�6�=G
8�: 5�H
H�8�I�8�6�=

%
J�((��)���J�K�����K��)�L���1
M �
��1�� � *��
$�% N�MPO0��� � Q
R
N�����N�M�Q�O0$�� � M �
R����
� � N � MPO0� Q�O0� � S0T M �
��O � S0R
N���% U
N�� � � N�V#W�O0$�X � ���
�F��$��
�
��T ��%�O � 1�O0X�W�O

NODAL CONSULTANTS
Y @�>P9 7Y @�>P9 7Y @�>P9 7Y @�>P9 7 ZZ ZZ [\�][\�][\�][\�] ^^ ^^ [;_�_a`Pb�cad
cFe�c�`?f�g�h'i[;_�_a`Pb�cad
cFe�c�`?f�g�h'i[;_�_a`Pb�cad
cFe�c�`?f�g�h'i[;_�_a`Pb�cad
cFe�c�`?f�g�h'i ^^ ^^ j�k�k�l�knm
o�`Pp q;r0c�d
c
sF_
[j�k�k�l�knm
o�`Pp q;r0c�d
c
sF_
[j�k�k�l�knm
o�`Pp q;r0c�d
c
sF_
[j�k�k�l�knm
o�`Pp q;r0c�d
c
sF_
[
tt tt
uu uu;v wyx�xnz \
{�_y| \}\
[~j�k}k'jv wyx�xnz \
{�_y| \}\
[~j�k}k'jv wyx�xnz \
{�_y| \}\
[~j�k}k'jv wyx�xnz \
{�_y| \}\
[~j�k}k'j}^^ ^^;i
o�s wyx�xnz \
{�_y| \}\
[~j�kF|�|i
o�s wyx�xnz \
{�_y| \}\
[~j�kF|�|i
o�s wyx�xnz \
{�_y| \}\
[~j�kF|�|i
o�s wyx�xnz \
{�_y| \}\
[~j�kF|�|
p ���?�p ���?�p ���?�p ���?� ^^ ^^���o�`Pp q������
d
o v � �P`��o�`Pp q������
d
o v � �P`��o�`Pp q������
d
o v � �P`��o�`Pp q������
d
o v � �P`'^^ ^^C��� �?��� ��������� � ���
d
o v � �P`��� �?��� ��������� � ���
d
o v � �P`��� �?��� ��������� � ���
d
o v � �P`��� �?��� ��������� � ���
d
o v � �P`

� g����� g����� g����� g���� ^^ ^^ [;_�o��
c���b�ca� � m
���a�
p d
��b�h'i[;_�o��
c���b�ca� � m
���a�
p d
��b�h'i[;_�o��
c���b�ca� � m
���a�
p d
��b�h'i[;_�o��
c���b�ca� � m
���a�
p d
��b�h'i ^^ ^^ �
]
| l � � g����ar0c�d
c
sy\ x�
]
| l � � g����ar0c�d
c
sy\ x�
]
| l � � g����ar0c�d
c
sy\ x�
]
| l � � g����ar0c�d
c
sy\ x
tt tt
uu uu;v wyx�xnz \
{ |~j�[�]C_ x [~j�jv wyx�xnz \
{ |~j�[�]C_ x [~j�jv wyx�xnz \
{ |~j�[�]C_ x [~j�jv wyx�xnz \
{ |~j�[�]C_ x [~j�j}^^ ^^;i
o�s wyx�xnz \
{ |~j�[�]C_ x \ x \i
o�s wyx�xnz \
{ |~j�[�]C_ x \ x \i
o�s wyx�xnz \
{ |~j�[�]C_ x \ x \i
o�s wyx�xnz \
{ |~j�[�]C_ x \ x \
p ���?�p ���?�p ���?�p ���?� ^^ ^^ v g����������
d
o v � �P`v g����������
d
o v � �P`v g����������
d
o v � �P`v g����������
d
o v � �P`'^^ ^^C��� �?��� ��������� � ���
d
o v � �P`��� �?��� ��������� � ���
d
o v � �P`��� �?��� ��������� � ���
d
o v � �P`��� �?��� ��������� � ���
d
o v � �P`

�
Christophe Prud’homme, a Research Scientist at the Massachusetts Institute of
Technology, then at the Numerical Analysis Laboratory Jacques-Louis Lions at the
Université Paris 6 and currently Research Assistant in the Lausanne Federal Institute of
Technology (EPFL), has developed a real-time simulation system for mechanical
engineering problems with a certificate of reliability and an accurate control of either
maximum computation time or of maximum error. This system is the product of a
common project between MIT and Université Paris 6. It has been financed by various
institutions, such as Nasa, the US Defense Advanced Research Projects Agency
(DARPA), the US Air Force and the Singapore-MIT Alli ance (Singapore government).

�
The system’s technical architecture makes it possible to produce a vast number of
repetitive calculations on neighbouring structure simulation problems in a very short
time (on the order of 1 ms per calculation), with different numerical values for the input
parameters. The savings in calculation time for this type of problem is on the order of a
factor of 1,000 to 100,000 and more compared with traditional finite element numerical
simulation tools.

�
This extremely thigh calculation speed on closely-related problems opens up the
possibili ty of radically new functions such as:

• reliable and accurate (based upon finite element simulation) instrumentation and
control of on-board (in aircraft, automobiles, pilot less machines) and industrial
(ovens, rolli ng mills, chemical reactors) systems

• reliable and accurate optimisation and sizing, during the initial phases of thermal,
mechanical, fluid and acoustic design and development of industrial objects.

�
A fundamental characteristic of Christophe Prud’homme’s system is the error test. The
results are accompanied by a certificate of reliabili ty delimiting the error applied to the
calculation, computed with respect to the output of the underlying Finite Element
Method used. The engineer can therefore use the results in total confidence.

�
Major benefit comes from pre determination of error bounds or computation time before
calculation. Typically :

• real time constraint implies time bounding

• high reliability constraint implies accuracy and error control
�

Christophe Prud’homme’s real-time simulation system produces outstanding
performances in calculation times and only requires limited online calculation resources
(typically a 500 MHz Pentium PC) due to it storing previous calculation results and
error quantification in a simulation storage area.

�
Christophe Prud’homme’s method is based on:

• A reduction of order of the simulation problem by a “reduced base” mathematical
method. The solution space size therefore moves typically from several tens of
thousands to something of the order of 10. Once the problem is thus reduced, the

Real-time and reliable simulations

Real-time and reliable simulations – Christophe Prud’homme

Fact Sheet

���������	�
�����	
������������

traditional fully reliable finite element simulation algorithms are activated offline
and the generic results obtained are stored in the simulation storage area. The reduction
of order is a complex mathematical operation necessitating top-level scientific skill s. It
relates to a specific type of problem, defined particularly by the geometry of the
objects being simulated , the physical characteristics of the material and / or more
generally the parameterisation of the underlying model equations.

• Computerized automation of the reduction of order mathematical problem. In this
way, a top-level mathematician is no longer necessary to adapt to a new geometry of
the objects being simulated. The tool therefore processes a very wide range of problem
classes, by offering the user the chance to define an object’s geometry himself. This
automation resembles the enabling factor of an industrial product, likely to be used by
a significant number of engineers who are not specialized in the advanced techniques
of numerical analysis.

• Separation between calculations requiring real-time processing (on-line), for each
numerical parameter input vector, and those applying to the simulation storage area
(off-line). The system deduces the output vector and a final quantitative error
estimation in around 1 ms, against several minutes of traditional tool use.

• The use of results from repeated simulation calculations by traditional optimisation
and manufacturing automation tools, and instrumentation and control systems.

�
The Christophe Prud’homme method can simulate the following physical phenomena:

• heat transfer

• elasticity (linear and non linear)

• fluid dynamics

• acoustics

• and more generally those represented by elli ptic equations
�

Integration into the design and optimisation chain goes through the following steps:

• Draw the geometry (eventually with CAD software) of the mechanical piece

• Define the independent boundary conditions that may vary from one simulation run to
the next (pressure, heat flow, vibration amplitude & frequency, etc.)

• Select the independent parameters to be optimised :

- physical characteristics of the material

- independent geometrical parameters

- nature of allowable geometrical transformations (stretch, skew, etc, …)

• Run the simulation generator “offline” once and run “online” simulations as needed,
for each set of (boundary conditions x optimisation parameters) to be investigated

• Retrieve cost function parameters (temperature, heat flow, maximum deflection, etc.)
for each simulation

• Eventually return parameters values for optimal configuration to CAD software

Real-time and reliable simulations – Christophe Prud’homme

Fact Sheet

���������	�
�����	
������������

Stand-alone Distributed-environment

computer on board local storage remote storage

Run offline

Run online

www
enterprise
network

Compute generic results

Store generic results in repository

Compute within
time limitation

Retrieve local or
remote generic results

Input parameters values

Time constraints

Reliability constraints

Input

Input parameters values

Time constraints

Reliability constraints

Input Output parameters estimations

Error estimation
OutputOutput

Optional integration in a loop of multiple simulations
for design optimisation or process control

Geometry and parameters to
be optimised

Input

Simulation generic results

Output

 �

The Christophe Prud’homme Software is interoperable with languages as Perl, Python,
Java, C and C++ and platforms as Matlab (MathWorks), modeFrontier (Esteco). The
Software can stand alone (plug-in style) or be in a distributed environment

Chapter 3

Research Projects and Perspectives

I very brie�y present in this chapter some research projects and perspectives. The long-
term prospects are to build a complete mathematical and data-processing framework for the
reduced basis methods for all kinds of equations to which these methods apply. The computing
framework is built in such a way that these components are easily reusable in other contexts.

3.1 Reduced Basis Methods

I work on four research orientations around the reduced bases: (i) the adaptive generation
of the reduced bases, (ii) the use of methods of stabilization, in particular methods of the
type penalization intérieure [17], in the context of the reduced bases, (iii) the development
of the methods of the bases reduced in the context of the incompressible equations of Euler
and �nally (iv) the application of the methods to industrial problems and in particular for the
design of components of planes.

The two points (iii) and (iv) were proposed in a European project STREP Excalade16

whose principal partners will be Dassault, the DLR, the NLR, the University of She�eld and a
company Suisse SMR. This project will make it possible to clarify the needs for development
and research around the methods of the bases reduced in an industrial context.

3.2 Mathematical Kernel and Language for the Reso-

lution of PDE

Current and future work around the language includes:

• the application to the reduced basis methods and the systematic and automatic a�ne
decomposition of the linear and bilinear forms. Already this language is used in the
context the reduced basis methods and made it possible to obtain the results presented
in section 1.9, however the generation of the a�ne decomposition � standard or using
magic points � is not automated as in the technology presented in section 2.4.

16Flexible, Competitive and Agile Design of Aircraft Low-Noise-Emission in A Distributed Environment.
Recorded near the European Commission under the number: FP6-031016

49

3.2. MATHEMATICAL KERNEL AND LANGUAGE FOR THE RESOLUTION OF PDE CHAPTER 3. RESEARCH PROJECTS AND PERSPECTIVES

• the direction of a student on the implementation of the spectral methods in the context
of the language.

• the use of the language in a context of methods of domain decomposition and in parallel
� one can already implement the overlapping Schwarz method rather easily.

• the use of the language within the framework of multiphysics applications and multiscales
for the project LifeV

50

Part II

Publications: Reduced Basis

Methods

51

Chapter 4

Reliable Real-Time Solution of

Parametrized Partial Di�erential

Equations: Reduced-Basis Output

Bound Methods

Authors: C. Prud'homme, D.V. Rovas, K. Veroy, L. Machiels, Y. Maday, A.T. Patera and G.
Turinici.

4.1 Introduction

The optimization, control, and characterization of an engineering component or system requires
the prediction of certain �quantities of interest,� or performance metrics, which we shall denote
outputs � for example de�ections, maximum stresses, maximum temperatures, heat transfer
rates, �owrates, or lift and drags. These outputs are typically expressed as functionals of
�eld variables associated with a parametrized partial di�erential equation which describes the
physical behavior of the component or system. The parameters, which we shall denote inputs,
serve to identify a particular �con�guration" of the component: these inputs may represent
design or decision variables, such as geometry � for example, in optimization studies; control
variables, such as actuator power � for example in real�time applications; or characterization
variables, such as physical properties � for example in inverse problems. We thus arrive at
an implicit input�output relationship, evaluation of which demands solution of the underlying
partial di�erential equation.

Our goal is the development of computational methods that permit rapid and reliable
evaluation of this partial-di�erential-equation-induced input-output relationship in the limit of
many queries � that is, in the design, optimization, control, and characterization contexts.
The �many query� limit has certainly received considerable attention: from �fast loads� or
multiple right-hand side notions (e.g., [21, 25]) to matrix perturbation theories (e.g., [3, 85])
to continuation methods (e.g., [4, 71]). Our particular approach is based on the reduced�
basis method, �rst introduced in the late 1970s for nonlinear structural analysis [5, 51], and
subsequently developed more broadly in the 1980s and 1990s [13, 14, 26, 55, 58, 70]. The

53

4.2. PROBLEM STATEMENT

CHAPTER 4. RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS: REDUCED-BASIS OUTPUT

BOUND METHODS

reduced�basis method recognizes that the �eld variable is not, in fact, some arbitrary member
of the in�nite-dimensional solution space associated with the partial di�erential equation;
rather, it resides, or �evolves,� on a much lower�dimensional manifold induced by the parametric
dependence.

The reduced�basis approach as earlier articulated is local in parameter space in both prac-
tice and theory. To wit, Lagrangian or Taylor approximation spaces for the low�dimensional
manifold are typically de�ned relative to a particular parameter point; and the associated a
priori convergence theory relies on asymptotic arguments in su�ciently small neighborhoods
[26]. As a result, the computational improvements � relative to conventional (say) �nite ele-
ment approximation � are often quite modest [58]. Our work di�ers from these earlier e�orts
in several important ways: �rst, we develop (in some cases, provably) global approximation
spaces; second, we introduce rigorous a posteriori error estimators; and third, we exploit o��
line/on�line computational decompositions (see [13] for an earlier application of this strategy
within the reduced�basis context). These three ingredients allow us � for the restricted but
important class of �parameter-a�ne� problems � to reliably decouple the generation and pro-
jection stages of reduced�basis approximation, thereby e�ecting computational economies of
several orders of magnitude.

In this expository review paper we focus on these new ingredients. In Section 2 we intro-
duce an abstract problem formulation and several illustrative instantiations. In Section 3 we
describe, for coercive symmetric problems and �compliant� outputs, the reduced�basis approx-
imation; and in Section 4 we present the associated a posteriori error estimation procedures.
In Section 5 we consider the extension of our approach to noncompliant outputs and non-
symmetric operators; eigenvalue problems; and, more brie�y, noncoercive operators, parabolic
equations, and non-a�ne problems. A description of the system architecture in which these
numerical objects reside may be found in [79].

4.2 Problem Statement

4.2.1 Abstract Formulation

We consider a suitably regular domain Ω ⊂ Rd, d = 1, 2, or 3, and associated function space
X ⊂ H1(Ω), where H1(Ω) = {v ∈ L2(Ω), ∇v ∈ (L2(Ω))d}, and L2(Ω) is the space of
square integrable functions over Ω. The inner product and norm associated with X are given
by (· , ·)X and ‖ · ‖X = (· , ·)1/2, respectively. We also de�ne a parameter set D ∈ RP , a
particular point in which will be denoted µ. Note that Ω does not depend on the parameter.

We then introduce a bilinear form a : X × X × D → R, and linear forms f : X → R,
` : X → R. We shall assume that a is continuous, a(w, v;µ) ≤ γ(µ) ‖w‖X ‖v‖X ≤
γ0 ‖w‖X ‖v‖X , ∀µ ∈ D; furthermore, in Sections 4.3 and 4.4, we assume that a is coercive,

0 < α0 ≤ α(µ) = inf
w∈X

a(w,w;µ)

‖w‖2
X

, ∀ µ ∈ D, (4.1)

and symmetric, a(w, v;µ) = a(v, w;µ), ∀ w, v ∈ X, ∀ µ ∈ D. We also require that our
linear forms f and ` be bounded; in Sections 4.3 and 4.4 we additionally assume a �compliant�
output, f(v) = `(v), ∀ v ∈ X.

54

CHAPTER 4. RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS: REDUCED-BASIS OUTPUT

BOUND METHODS 4.2. PROBLEM STATEMENT

We shall also make certain assumptions on the parametric dependence of a, f , and `.
In particular, we shall suppose that, for some �nite (preferably small) integer Q, a may be
expressed as

a(w, v;µ) =

Q∑
q=1

σq(µ) aq(w, v), ∀ w, v ∈ X, ∀ µ ∈ D, (4.2)

for some σq : D → R and aq : X × X → R, q = 1, . . . , Q. This �separability,� or �a�ne,�
assumption on the parameter dependence is crucial to computational e�ciency; however,
certain relaxations are possible � see Section 4.5.3.0. For simplicity of exposition, we assume
that f and ` do not depend on µ; in actual practice, a�ne dependence is readily admitted.

Our abstract problem statement is then: for any µ ∈ D, �nd s(µ) ∈ R given by

s(µ) = `(u(µ)), (4.3)

where u(µ) ∈ X is the solution of

a(u(µ), v;µ) = f(v), ∀ v ∈ X. (4.4)

In the language of the introduction, a is our partial di�erential equation (in weak form), µ is
our parameter, u(µ) is our �eld variable, and s(µ) is our output. For simplicity of exposition,
we may on occasion suppress the explicit dependence on µ.

4.2.2 Particular Instantiations

We indicate here a few instantiations of the abstract formulation; these will serve to illustrate
the methods (for coercive, symmetric problems) of Sections 4.3 and 4.4.

A Thermal Fin

In this example we consider the two- and three-dimensional thermal �ns shown in Figure 4.1;
these examples may be (interactively) accessed on our web site17. The �ns consist of a vertical
central �post� of conductivity k̃0 and four horizontal �sub�ns� of conductivity k̃i, i = 1, . . . , 4.
The �ns conduct heat from a prescribed uniform �ux source q̃′′ at the root Γ̃root through the
post and large-surface-area sub�ns to the surrounding �owing air; the latter is characterized
by a sink temperature ũ0 and prescribed heat transfer coe�cient h̃. The physical model is
simple conduction: the temperature �eld in the �n, ũ, satis�es

4∑
i=0

∫
Ω̃i

k̃i ∇̃ũ · ∇̃ṽ +

∫
∂Ω̃\Γ̃root

h̃ (ũ− ũ0) ṽ =

∫
Γ̃root

q̃′′ ṽ, ∀ ṽ ∈ X̃ ≡ H1(Ω̃), (4.5)

where Ω̃i is that part of the domain with conductivity k̃i, and ∂Ω̃ denotes the boundary of Ω̃.
We now (i) nondimensionalize the weak equations (4.5), and (ii) apply a continuous

piecewise-a�ne transformation from Ω̃ to a �xed (µ-independent) reference domain Ω [42].

17
Fin2D: http://augustine.mit.edu/�n2d/�n2d.pdf and Fin3D: http://augustine.mit.edu/�n3d_1/�n3d_1.pdf

55

http://augustine.mit.edu
http://augustine.mit.edu/fin2d/fin2d.pdf
http://augustine.mit.edu/fin3d_1/fin3d_1.pdf

4.2. PROBLEM STATEMENT

CHAPTER 4. RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS: REDUCED-BASIS OUTPUT

BOUND METHODS

Figure 4.1: Two- and Three-Dimensional Thermal Fins.

The abstract problem statement (4.4) is then recovered for µ = {k1, k2, k3, k4, Bi, L, t},
D = [0.1, 10.0]4× [0.01, 1.0]× [2.0, 3.0]× [0.1×0.5], and P = 7; here k1, . . . , k4 are the ther-
mal conductivities of the �sub�ns� (see Figure 4.1) relative to the thermal conductivity of the
�n base; Bi is a nondimensional form of the heat transfer coe�cient; and, L, t are the length
and thickness of each of the �sub�ns� relative to the length of the �n root Γ̃root. It is readily
veri�ed that a is continuous, coercive, and symmetric; and that the �a�ne� assumption (4.2)
obtains for Q = 16 (two-dimensional case) and Q = 25 (three-dimensional case). Note that
the geometric variations are re�ected, via the mapping, in the σq(µ).

For our output of interest, s(µ), we consider the average temperature of the root of the
�n nondimensionalized relative to q̃′′, k̃0, and the length of the �n root. This output may
be expressed as s(µ) = `(u(µ)), where `(v) =

∫
Γroot

v. It is readily shown that this output
functional is bounded and also �compliant�: `(v) = f(v), ∀v ∈ X.

A Truss Structure

Γc

tc

tfΓ0 3Γ

θ

tt

H

Figure 4.2: A Truss Structure

We consider a prismatic microtruss structure [24, 84] shown in Figure 4.2; this example may
be (interactively) accessed on our web site18. The truss consists of a frame (upper and

18
Truss: http://augustine.mit.edu/simple_truss/simple_truss.pdf

56

http://augustine.mit.edu
http://augustine.mit.edu/simple_truss/simple_truss.pdf

CHAPTER 4. RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS: REDUCED-BASIS OUTPUT

BOUND METHODS 4.3. REDUCED-BASIS APPROACH

lower faces, in dark gray) and a core (trusses and middle sheet, in light gray). The structure
transmits a force per unit depth F̃ uniformly distributed over the tip of the middle sheet Γ̃3

through the truss system to the �xed left wall Γ̃0. The physical model is simple plane�strain
(two-dimensional) linear elasticity: the displacement �eld ui, i = 1, 2, satis�es∫

Ω̃

∂ṽi
∂x̃j

Ẽijkl
∂ũk
∂x̃l

= −
(
F̃

t̃c

)∫
Γ̃3

ṽ2, ∀ v ∈ X̃, (4.6)

where Ω̃ is the truss domain, Ẽijkl is the elasticity tensor, and X̃ refers to the set of functions
in H1(Ω̃) which vanish on Γ̃0. We assume summation over repeated indices.

We now (i) nondimensionalize the weak equations (4.6), and (ii) apply a continuous
piecewise-a�ne transformation from Ω̃ to a �xed (µ-independent) reference domain Ω. The
abstract problem statement (4.4) is then recovered for µ = {tf , tt, H, θ},D = [0.08, 1.0]×
[0.2, 2.0] × [4.0, 10.0] × [30.0◦, 60.0◦], and P = 4; here tf and tt are the thicknesses of the
frame and trusses (normalized relative to t̃c), respectively; H is the total height of the mi-
crotruss (normalized relative to t̃c); and θ is the angle between the trusses and the faces.
The Poisson's ratio, ν = 0.3, and the frame and core Young's moduli, Ef = 75 GPa and
Ec = 200 GPa, respectively, are held �xed. It is readily veri�ed that a is continuous, coercive,
and symmetric; and that the �a�ne" assumption (4.2) obtains for Q = 44.

Our outputs of interest are (i) the average downward de�ection (compliance) at the core
tip, Γ3, nondimensionalized by F̃ /Ẽf ; and (ii) the average normal stress across the critical
(yield) section denoted Γs1 in Figure 4.2. These compliance and noncompliance outputs can
be expressed as s1(µ) = `1(u(µ)) and s2(µ) = `2(u(µ)), respectively, where `1(v) = − ∫

Γ3
v2,

and

`2(v) =
1

tf

∫
Ωs

∂χi
∂xj

Eijkl
∂uk
∂xl

are bounded linear functionals; here χi is any suitably smooth function in H1(Ωs) such that
χin̂i = 1 on Γs1 and χin̂i = 0 on Γs2, where n̂ is the unit normal. Note that s1(µ) is a
compliant output, whereas s2(µ) is �noncompliant.�

4.3 Reduced-Basis Approach

We recall that in this section, as well as in Section 4.4, we assume that a is continuous,
coercive, symmetric, and a�ne in µ � see (4.2); and that `(v) = f(v), which we denote
�compliance.�

4.3.1 Reduced�Basis Approximation

We �rst introduce a sample in parameter space, SN = {µ1, . . . , µN}, where µi ∈ D, i =
1, . . . , N ; see Section 4.3.2.0 for a brief discussion of point distribution. We then de�ne
our Lagrangian [58] reduced�basis approximation space as WN = span {ζn ≡ u(µn), n =
1, . . . , N}, where u(µn) ∈ X is the solution to (4.4) for µ = µn. In actual practice, u(µn)
is replaced by an appropriate �nite element approximation on a suitably �ne truth mesh; we
shall discuss the associated computational implications in Section 4.3.3. Our reduced�basis

57

4.3. REDUCED-BASIS APPROACH

CHAPTER 4. RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS: REDUCED-BASIS OUTPUT

BOUND METHODS

approximation is then: for any µ ∈ D, �nd sN(µ) = `(uN(µ)), where uN(µ) ∈ WN is the
solution of

a(uN(µ), v;µ) = `(v), ∀ v ∈ WN . (4.7)

Non-Galerkin projections are brie�y described in Section 4.5.3.0.

4.3.2 A Priori Convergence Theory

Optimality

We consider here the convergence rate of uN(µ)→ u(µ) and sN(µ)→ s(µ) as N →∞. To
begin, it is standard to demonstrate optimality of uN(µ) in the sense that

‖u(µ)− uN(µ)‖X ≤
√
γ(µ)

α(µ)
inf

wN∈WN

‖u(µ)− wN‖X . (4.8)

(We note that, in the coercive case, stability of our (�conforming�) discrete approximation is not
an issue; the noncoercive case is decidedly more delicate (see Section 4.5.3.0).) Furthermore,
for our compliance output,

s(µ) = sN(µ) + `(u−uN) = sN(µ) +a(u, u−uN ;µ) = sN(µ) +a(u−uN , u−uN ;µ) (4.9)

from symmetry and Galerkin orthogonality. It follows that s(µ) − sN(µ) converges as the
square of the error in the best approximation and, from coercivity, that sN(µ) is a lower bound
for s(µ).

Best Approximation

It now remains to bound the dependence of the error in the best approximation as a function
of N . At present, the theory is restricted to the case in which P = 1, D = [0, µmax], and

a(w, v;µ) = a0(w, v) + µa1(w, v), (4.10)

where a0 is continuous, coercive, and symmetric, and a1 is continuous, positive semi-de�nite
(a1(w,w) ≥ 0, ∀ w ∈ X), and symmetric. This model problem (4.10) is rather broadly
relevant, for example to variable orthotropic conductivity, variable rectilinear geometry, variable
piecewise-constant conductivity, and variable Robin boundary conditions.

We now suppose that the µn, n = 1, . . . , N , are logarithmically distributed in the sense
that

ln
(
λ µn + 1

)
=

n− 1

N − 1
ln
(
λ µmax + 1

)
, n = 1, . . . , N, (4.11)

where λ is an upper bound for the maximum eigenvalue of a1 relative to a0. (Note λ is
perforce bounded thanks to our assumption of continuity and coercivity; the possibility of a
continuous spectrum does not, in practice, pose any problems.) We can then prove [46] that,
for N > Ncrit ≡ e ln(λ µmax + 1),

inf
wN∈WN

‖u(µ)−wN(µ)‖X ≤ (1 + µmax λ) ‖u(0)‖X exp

{−(N − 1)

(Ncrit − 1)

}
, ∀ µ ∈ D . (4.12)

58

CHAPTER 4. RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS: REDUCED-BASIS OUTPUT

BOUND METHODS 4.3. REDUCED-BASIS APPROACH

We observe exponential convergence, uniformly (globally) for all µ in D, with only very weak
(logarithmic) dependence on the range of the parameter (µmax). (Note the constants in (4.12)
are for the particular case in which (·, ·)X = a0(·, ·).)

The proof exploits a parameter�space (non-polynomial) interpolant as a surrogate for the
Galerkin approximation. As a result, the bound is not always �sharp": we observe many cases
in which the Galerkin projection is considerably better than the associated interpolant; op-
timality (4.8) chooses to �illuminate" only certain points µn, automatically selecting a best
�sub�approximation� amongst all (combinatorially many) possibilities � we thus see why
reduced�basis state-space approximation of s(µ) via u(µ) is preferred to simple parameter-
space interpolation of s(µ) (�connecting the dots�) via (µn, s(µn)) pairs. We note, however,
that the logarithmic point distribution (4.11) implicated by our interpolant�based arguments
is not simply an artifact of the proof: in numerous numerical tests, the logarithmic distribution
performs considerably (and in many cases, provably) better than other more obvious candi-
dates, in particular for large ranges of the parameter. Fortunately, the convergence rate is not
too sensitive to point selection: the theory only requires a log �on the average� distribution [46];
and, in practice, λ need not be a sharp upper bound.

The result (4.12) is certainly tied to the particular form (4.10) and associated regularity of
u(µ). However, we do observe similar exponential behavior for more general operators; and,
most importantly, the exponential convergence rate degrades only very slowly with increasing
parameter dimension, P . We present in Table 4.1 the error |s(µ)− sN(µ)|/s(µ) as a function
of N , at a particular representative point µ in D, for the two-dimensional thermal �n problem
of Section 4.2.2.0; we present similar data in Table 4.2 for the truss problem of Section 4.2.2.0.
In both cases, since tensor-product grids are prohibitively pro�igate as P increases, the µn are
chosen �log-randomly� over D: we sample from a multivariate uniform probability density on
log(µ). We observe that, for both the thermal �n (P = 7) and truss (P = 4) problems, the
error is remarkably small even for very small N ; and that, in both cases, very rapid convergence
obtains as N → ∞. We do not yet have any theory for P > 1. But certainly the Galerkin
optimality plays a central role, automatically selecting �appropriate� scattered-data subsets of
SN and associated �good� weights so as to mitigate the curse of dimensionality as P increases;
and the log�random point distribution is also important � for example, for the truss problem
of Table 4.2, a non�logarithmic uniform random point distribution for SN yields errors which
are larger by factors of 20 and 10 for N = 30 and 80, respectively.

4.3.3 Computational Procedure

The theoretical and empirical results of Sections 4.3.1 and 4.3.2 suggest that N may, indeed,
be chosen very small. We now develop o��line/on�line computational procedures that exploit
this dimension reduction.

We �rst express uN(µ) as

uN(µ) =
N∑
j=1

uN j(µ) ζj = (uN(µ))T ζ, (4.13)

where uN(µ) ∈ RN ; we then choose for test functions v = ζi, i = 1, . . . , N . Inserting these

59

4.3. REDUCED-BASIS APPROACH

CHAPTER 4. RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS: REDUCED-BASIS OUTPUT

BOUND METHODS

N |s(µ)− sN(µ)|/s(µ) ∆N(µ)/s(µ) ηN(µ)
10 1.29× 10−2 8.60× 10−2 2.85
20 1.29× 10−3 9.36× 10−3 2.76
30 5.37× 10−4 4.25× 10−3 2.68
40 8.00× 10−5 5.30× 10−4 2.86
50 3.97× 10−5 2.97× 10−4 2.72
60 1.34× 10−5 1.27× 10−4 2.54
70 8.10× 10−6 7.72× 10−5 2.53
80 2.56× 10−6 2.24× 10−5 2.59

Table 4.1: Error, error bound (Method I), and e�ectivity as a function of N , at a particular
representative point µ ∈ D, for the two-dimensional thermal �n problem (compliant output).

N |s(µ)− sN(µ)|/s(µ) ∆N(µ)/s(µ) ηN(µ)
10 3.26× 10−2 6.47× 10−2 1.98
20 2.56× 10−4 4.74× 10−4 1.85
30 7.31× 10−5 1.38× 10−4 1.89
40 1.91× 10−5 3.59× 10−5 1.88
50 1.09× 10−5 2.08× 10−5 1.90
60 4.10× 10−6 8.19× 10−6 2.00
70 2.61× 10−6 5.22× 10−6 2.00
80 1.19× 10−6 2.39× 10−6 2.00

Table 4.2: Error, error bound (Method II), and e�ectivity as a function of N , at a particular
representative point µ ∈ D, for the truss problem (compliant output).

60

CHAPTER 4. RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS: REDUCED-BASIS OUTPUT

BOUND METHODS 4.4. A POSTERIORI ERROR ESTIMATION: OUTPUT BOUNDS

representations into (4.7) yields the desired algebraic equations for uN(µ) ∈ RN ,

AN(µ) uN(µ) = FN , (4.14)

in terms of which the output can then be evaluated as sN(µ) = F T
N uN(µ). Here AN(µ) ∈

RN×N is the SPD matrix with entries AN i,j(µ) ≡ a(ζj, ζi;µ), 1 ≤ i, j ≤ N , and FN ∈ RN is
the �load� (and �output�) vector with entries FN i ≡ f(ζi), i = 1, . . . , N .

We now invoke (4.2) to write

AN i,j(µ) = a(ζj, ζi;µ) =

Q∑
q=1

σq(µ) aq(ζj, ζi) , (4.15)

or

AN(µ) =

Q∑
q=1

σq(µ) AqN ,

where the AN ∈ RN×N are given by AqN i,j = aq(ζj, ζi), i ≤ i, j ≤ N , 1 ≤ q ≤ Q. The
o��line/on�line decomposition is now clear. In the o��line stage, we compute the u(µn) and
form the AqN and FN : this requires N (expensive) �a� �nite element solutions and O(QN2)
�nite-element-vector inner products. In the on�line stage, for any given new µ, we �rst form
AN from (4.15), then solve (4.14) for uN(µ), and �nally evaluate sN(µ) = F T

N uN(µ): this
requires O(QN2) +O(2

3
N3) operations and O(QN2) storage.

Thus, as required, the incremental, or marginal, cost to evaluate sN(µ) for any given new
µ � as proposed in a design, optimization, or inverse-problem context � is very small: �rst,
because N is very small, typically O(10) � thanks to the good convergence properties of
WN ; and second, because (4.14) can be very rapidly assembled and inverted � thanks to the
o��line/on�line decomposition (see [13] for an earlier application of this strategy within the
reduced�basis context). For the problems discussed in this paper, the resulting computational
savings relative to standard (well-designed) �nite-element approaches are signi�cant � at least
O(10), typically O(100), and often O(1000) or more.

4.4 A Posteriori Error Estimation: Output Bounds

From Section 4.3 we know that, in theory, we can obtain sN(µ) very inexpensively: the on�line
computational e�ort scales as O(2

3
N3) + O(QN2); and N can, in theory, be chosen quite

small. However, in practice, we do not know how small N can be chosen: this will depend on
the desired accuracy, the selected output(s) of interest, and the particular problem in question;
in some cases N = 5 may su�ce, while in other cases, N = 100 may still be insu�cient.
In the face of this uncertainty, either too many or too few basis functions will be retained:
the former results in computational ine�ciency; the latter in unacceptable uncertainty �
particularly egregious in the decision contexts in which reduced�basis methods typically serve.
We thus need a posteriori error estimators for sN . Surprisingly, a posteriori error estimation
has received relatively little attention within the reduced�basis framework [51], even though
reduced�basis methods are particularly in need of accuracy assessment: the spaces are ad hoc

61

4.4. A POSTERIORI ERROR ESTIMATION: OUTPUT BOUNDS

CHAPTER 4. RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS: REDUCED-BASIS OUTPUT

BOUND METHODS

and pre-asymptotic, thus admitting relatively little intuition, �rules of thumb," or standard
approximation notions.

Recall that, in this section, we continue to assume that a is coercive and symmetric, and
that ` is �compliant.�

4.4.1 Method I

The approach described in this section is a particular instance of a general �variational� frame-
work for a posteriori error estimation of outputs of interest. However, the reduced-basis
instantiation described here di�ers signi�cantly from earlier applications to �nite element
discretization error [43, 40] and iterative solution error [54] both in the choice of (energy)
relaxation and in the associated computational arti�ce.

Formulation

We assume that we are given a positive function g(µ) : D → R+, and a continuous, coercive,
symmetric (µ-independent) bilinear form â : X ×X → R, such that

α0‖v‖2
X ≤ g(µ) â(v, v) ≤ a(v, v;µ), ∀ v ∈ X, ∀ µ ∈ D (4.16)

for some positive real constant α0. We then �nd ê(µ) ∈ X such that

g(µ) â(ê(µ), v) = R(v;uN(µ);µ), ∀v ∈ X, (4.17)

where for a given w ∈ X, R(v;w;µ) = `(v) − a(w, v;µ) is the weak form of the residual.
Our lower and upper output estimators are then evaluated as

s−N(µ) ≡ sN(µ), and s+
N(µ) ≡ sN(µ) + ∆N(µ), (4.18)

respectively, where
∆N(µ) ≡ g(µ) â(ê(µ), ê(µ)) (4.19)

is the estimator gap.

Properties

We shall prove in this section that s−N(µ) ≤ s(µ) ≤ s+
N(µ), and hence that |s(µ)− sN(µ)| =

s(µ) − sN(µ) ≤ ∆N(µ). Our lower and upper output estimators are thus lower and upper
output bounds; and our output estimator gap is thus an output bound gap � a rigorous bound
for the error in the output of interest. It is also critical that ∆N(µ) be a relatively sharp bound
for the true error: a poor (overly large) bound will encourage us to re�ne an approximation
which is, in fact, already adequate � with a corresponding (unnecessary) increase in o��line
and on�line computational e�ort. We shall prove in this section that ∆N(µ) ≤ γ0

α0
(s(µ) −

sN(µ)), where γ0 and α0 are the N -independent a-continuity and g(µ)â-coercivity constants
de�ned earlier. Our two results of this section can thus be summarized as

1 ≤ ηN(µ) ≤ Const, ∀ N, (4.20)

62

CHAPTER 4. RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS: REDUCED-BASIS OUTPUT

BOUND METHODS 4.4. A POSTERIORI ERROR ESTIMATION: OUTPUT BOUNDS

where

ηN(µ) =
∆N(µ)

s(µ)− sN(µ)
(4.21)

is the e�ectivity, and Const is a constant independent ofN . We shall denote the left (bounding
property) and right (sharpness property) inequalities of (4.20) as the lower e�ectivity and upper
e�ectivity inequalities, respectively.

We �rst prove the lower e�ectivity inequality (bounding property): s−N(µ) ≤ s(µ) ≤
s+
N(µ), ∀µ ∈ D, for s−N(µ) and s+

N(µ) de�ned in (4.18). The lower bound property follows
directly from Section 4.3.2.0. To prove the upper bound property, we �rst observe that
R(v;uN ;µ) = a(u(µ) − uN(µ), v;µ) = a(e(µ), v;µ), where e(µ) ≡ u(µ) − uN(µ); we may
thus rewrite (4.17) as g(µ)â(ê(µ), v) = a(e(µ), v;µ) ∀ v ∈ X. We thus obtain

g(µ)â(ê, ê) = g(µ)â(ê− e, ê− e) + 2g(µ)â(ê, e)− g(µ)â(e, e)

= g(µ)â(ê− e, ê− e) + (a(e, e;µ)− g(µ)â(e, e)) + a(e, e;µ)

≥ a(e, e;µ) (4.22)

since g(µ) â(ê(µ) − e(µ), ê(µ) − e(µ)) ≥ 0 and a(e(µ), e(µ);µ) − g(µ) â(e(µ), e(µ)) ≥ 0
from (4.16). Invoking (4.9) and (4.22), we then obtain s(µ) − sN(µ) = a(e(µ), e(µ);µ) ≤
g(µ) â(ê(µ), ê(µ)); and thus s(µ) ≤ sN(µ) + g(µ) â(ê(µ), ê(µ)) ≡ s+

N(µ), as desired.
We next prove the upper e�ectivity inequality (sharpness property):

ηN(µ) =
∆N(µ)

s(µ)− sN(µ)
≤ γ0

α0

, ∀ N.

To begin, we appeal to a-continuity and g(µ)â-coercivity to obtain

a(ê(µ), ê(µ);µ) ≤ γ0 g(µ)

α0

â(ê(µ), ê(µ)). (4.23)

But from the modi�ed error equation (4.17) we know that g(µ)â(ê(µ), ê(µ)) = R(ê(µ);µ) =
a(e(µ), ê(µ);µ). Invoking the Cauchy-Schwartz inequality, we obtain

g(µ)â(ê, ê) = a(e, ê;µ) ≤ (a(ê, ê;µ))1/2(a(e, e;µ))1/2 ≤
(
γ0

α0

)1/2

(g(µ) â(ê, ê))1/2 (a(e, e;µ))1/2;

the desired result then directly follows from (4.19) and (4.9).
We now provide empirical evidence for (4.20). In particular, we present in Table 4.1 the

bound gap and e�ectivities for the thermal �n example. Clearly ηN(µ) is always greater than
unity for any N , and bounded � indeed, quite close to unity � as N →∞.

Computational Procedure

Finally, we turn to the computational arti�ce by which we can e�ciently compute ∆N(µ) in
the on�line stage of our procedure. We again exploit the a�ne parameter dependence, but
now in a less transparent fashion. To begin, we rewrite the �modi�ed� error equation, (4.17),
as

â(ê(µ), v) =
1

g(µ)

(
`(v)−

Q∑
q=1

N∑
j=1

σq(µ)uN j(µ)aq(ζj, v)

)
, ∀ v ∈ X,

63

4.4. A POSTERIORI ERROR ESTIMATION: OUTPUT BOUNDS

CHAPTER 4. RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS: REDUCED-BASIS OUTPUT

BOUND METHODS

where we have appealed to our reduced�basis approximation (4.13) and the a�ne decom-
position (4.2). It is immediately clear from linear superposition that we can express ê(µ)
as

ê(µ) =
1

g(µ)

(
ẑ0 +

Q∑
q=1

N∑
j=1

σq(µ)uN j(µ)ẑqj

)
, (4.24)

where ẑ0 ∈ X satis�es â(ẑ0, v) = `(v), ∀ v ∈ X, and ẑqj ∈ X, j = 1, . . . , N , q = 1, . . . , Q,
satis�es â(ẑqj , v) = −aq(ζj, v), ∀ v ∈ X. Inserting (4.24) into our expression for the upper
bound, s+

N(µ) = sN(µ) + g(µ)â(ê(µ), ê(µ)), we obtain

s+
N(µ) = sN(µ) +

1

g(µ)

(
c0 + 2

Q∑
q=1

N∑
j=1

σq(µ)uN j(µ)Λq
j +

Q∑
q=1

Q∑
q′=1

N∑
j=1

N∑
j′=1

σq(µ)σq
′
(µ)uN j(µ)uN j′(µ)Γqq

′

jj′

) (4.25)

where c0 = â(ẑ0, ẑ0), Λq
j = â(ẑ0, ẑ

q
j), and Γqq′jj′ = â(ẑqj , ẑ

q′
j′).

The o��line/on�line decomposition should now be clear. In the o��line stage we compute
ẑ0 and ẑqj , j = 1, . . . , N , q = 1, . . . , Q, and then form c0,Λ

q
j , and Γqq

′

jj′ : this requires QN + 1
(expensive) � â� �nite element solutions, and O(Q2N2) �nite-element-vector inner products.
In the on�line stage, for any given new µ, we evaluate s+

N as expressed in (4.25): this requires
O(Q2N2) operations and O(Q2N2) storage (for c0, Λq

j , and Γqq
′

jj′). As for the computation
of sN(µ), the marginal cost for the computation of s±N(µ) for any given new µ is quite small
� in particular, it is independent of the dimension of the truth �nite element approximation
space X.

There are a variety of ways in which the o��line/on�line decomposition and output error
bounds can be exploited. A particularly attractive mode incorporates the error bounds into
an on�line adaptive process, in which we successively approximate sN(µ) on a sequence of
approximation spaces WN ′j

⊂ WN , N
′
j = N02j � for example, WN ′j

may contain the N ′j
sample points of SN closest to the new µ of interest � until ∆N ′j

is less than a speci�ed
error tolerance. This procedure both minimizes the on�line computational e�ort and reduces
conditioning problems � while simultaneously ensuring accuracy and certainty.

The essential advantage of the approach described in this section is the guarantee of
rigorous bounds. There are, however, certain disadvantages. The �rst set of disadvantages
relates to the choice of g(µ) and â. In many cases, simple inspection su�ces: for example,
in our thermal �n problem of Section 4.2.2.0, g(µ) = minq=1,...,Q σq(µ) and â(w, v) =∑Q

q=1 aq(w, v) yields the very good e�ectivities summarized in Table 4.1. In other cases,
however, there is no self-evident (or readily computed [44]) good choice: for example, for the
truss problem of Section 4.2.2.0, the existence of almost�pure rotations renders g(µ) very small
relative to γ(µ), with corresponding detriment to ηN(µ). The second set of disadvantages
relates to the computational expense � the O(Q) o��line and the O(Q2) on�line scaling
induced by (4.24) and (4.25), respectively. Both of these disadvantages are eliminated in the
�Method II� to be discussed in the next section; however �Method II� only provides asymptotic
bounds as N →∞. The choice thus depends on the relative importance of absolute certainty
and computational e�ciency.

64

CHAPTER 4. RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS: REDUCED-BASIS OUTPUT

BOUND METHODS 4.4. A POSTERIORI ERROR ESTIMATION: OUTPUT BOUNDS

4.4.2 Method II

As already indicated, Method I has certain limitations; we discuss here a Method II which
addresses these limitations � albeit at the loss of complete certainty.

Formulation

To begin, we set M > N , and introduce a parameter sample SM = {µ1, . . . , µM} and
associated reduced�basis approximation space WM = span {ζm ≡ u(µm), m = 1, . . . ,M} ;
for both theoretical and practical reasons we require SN ⊂ SM and thereforeWN ⊂ WM . The
procedure is very simple: we �rst �nd uM(µ) ∈ WM such that a(uM(µ), v;µ) = f(v),∀ v ∈
WM ; we then evaluate sM(µ) = `(uM(µ)); and, �nally, we compute our upper and lower
output estimators as

s−N,M(µ) = sN(µ), s+
N,M(µ) = sN(µ) + ∆N,M(µ), (4.26)

where ∆N,M(µ), the estimator bound gap, is given by

∆N,M(µ) =
1

τ
(sM(µ)− sN(µ)) (4.27)

for some τ ∈ (0, 1). The e�ectivity of the approximation is de�ned as

ηN,M(µ) =
∆N,M(µ)

s(µ)− sN(µ)
· (4.28)

For our purposes here, we shall consider M = 2N .

Properties

As for Method I, we would like to prove the e�ectivity inequality 1 ≤ ηN,2N(µ) ≤ Const,
∀ N . However, we will only be able to demonstrate an asymptotic form of this inequality.
Furthermore, the latter shall require � and we shall make � the hypothesis that

εN,2N(µ) ≡ s(µ)− s2N(µ)

s(µ)− sN(µ)
→ 0, as N →∞. (4.29)

We note that the assumption (4.29) is certainly plausible: if our a priori bound of (4.12) in
fact re�ects asymptotic behavior, then s(µ) − sN(µ) ∼ c1e

−c2N , s(µ) − s2N(µ) ∼ c1e
−2c2N ,

and hence εN,2N(µ) ∼ e−c2N , as desired.
We �rst prove the lower e�ectivity inequality (bounding property): s−N,2N(µ) ≤ s(µ) ≤

s+
N,2N(µ), as N → ∞. To demonstrate the lower bound we again appeal to (4.9) and the
coercivity of a; indeed, this result (still) obtains for all N . To demonstrate the upper bound,
we write

s+
N,2N(µ) = s+

(
1

τ
− 1

)
(s(µ)− sN(µ))− 1

τ
(s(µ)− s2N(µ)) (4.30)

= s+

(
1

τ
[1− εN,2N(µ)]− 1

)
(s(µ)− sN(µ)). (4.31)

65

4.4. A POSTERIORI ERROR ESTIMATION: OUTPUT BOUNDS

CHAPTER 4. RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS: REDUCED-BASIS OUTPUT

BOUND METHODS

We now recall that s(µ)− sN(µ) ≥ 0, and that 0 < τ < 1 � that is, 1/τ > 1; it then follows
from (4.31) and our hypothesis (4.29) that there exists a �nite N∗ such that

s+
N,2N(µ)− s(µ) ≥ 0, ∀ N > N∗. (4.32)

This concludes the proof: we obtain asymptotic bounds.
We now prove the upper e�ectivity inequality (sharpness property). From the de�nitions

of ηN,2N(µ), ∆N,2N(µ) and εN,2N(µ), we directly obtain

ηN,2N(µ) =
1

τ

s2N(µ)− sN(µ)

s(µ)− sN(µ)
=

1

τ

(s2N(µ)− s(µ))− (sN(µ)− s(µ))

(s(µ)− sN(µ))
(4.33)

=
1

τ
(1− εN,2N(µ)). (4.34)

It is readily shown that ηN,2N(µ) is bounded from above by 1/τ for all N : we know from (4.9)
that εN,2N(µ) is strictly non-negative. It can also readily be shown that ηN,2N(µ) is non-
negative: since WN ⊂ W2N , it follows from (4.8) (for (·, ·)X = a(·, ·;µ)) and (4.9) that
s(µ) ≥ s2N(µ) ≥ sN(µ), and hence εN,2N(µ) ≤ 1. We thus conclude that 0 ≤ ηN,2N(µ) ≤
1/τ for all N . Furthermore, from our hypothesis on εN,2N(µ), (4.29), we know that ηN,2N(µ)
will tend to 1/τ as N increases.

The essential approximation enabler is exponential convergence: we obtain bounds even
for rather small N and relatively large τ . We thus achieve both �near" certainty and good
e�ectivities. We demonstrate this claim in Table 4.2, in which we present the bound gap and
e�ectivity for our truss example of Section 4.2.2.0; the results tabulated correspond to the
choice τ = 1/2. We clearly obtain bounds for all N ; and we observe that ηN,2N(µ) does,
indeed, rather quickly approach 1/τ .

Computational Procedure

Since the error bounds are based entirely on evaluation of the output, we can directly adapt
the o��line/on�line procedure of Section 4.3.3. Note that the calculation of the output
approximation sN(µ) and the output bounds are now integrated: AN(µ) and FN(µ) (yielding
sN(µ)) are a sub-matrix and sub-vector of A2N(µ) and F 2N(µ) (yielding s2N(µ), ∆N,2N(µ),
and s±N,2N(µ)), respectively. In the o��line stage, we compute the u(µn) and form the Aq2N and
F 2N : this requires 2N (expensive) �a� �nite element solutions, and O(4QN2) �nite-element-
vector inner products. In the on�line stage, for any given new µ, we �rst form AN(µ), FN and
A2N(µ), F 2N , then solve for uN(µ) and u2N(µ), and �nally evaluate s±N,2N(µ): this requires
O(4QN2) + O(16

3
N3) operations and O(4QN2) storage. The on�line e�ort for this Method

II predictor/error estimator procedure (based on sN(µ) and s2N(µ)) will thus require eightfold
more operations than the �predictor-only� procedure of Section 4.3.

Method II is in some sense very naïve: we simply replace the true output s(µ) with a �ner�
approximation surrogate s2N(µ). (There are more obscure ways to describe the method � in
terms of a reduced�basis approximation for the error � however there is little to be gained
from these alternative interpretations.) The essential computation enabler is again exponen-
tial convergence, which permits us to choose M = 2N � hence controlling the additional
computational e�ort attributable to error estimation � while simultaneously ensuring that

66

CHAPTER 4. RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS: REDUCED-BASIS OUTPUT

BOUND METHODS 4.5. EXTENSIONS

εN,2N(µ) tends rapidly to zero. Exponential convergence also ensures that the cost to com-
pute both sN(µ) and s2N(µ) is �negligible.� In actual practice, since s2N(µ) is available, we
can of course take s2N(µ), rather than sN(µ), as our output prediction; this greatly improves
not only accuracy, but also certainty � ∆N,2N(µ) is almost surely a bound for s(µ)− s2N(µ),
albeit an exponentially conservative bound as N tends to in�nity.

4.5 Extensions

4.5.1 Noncompliant Outputs and Nonsymmetric Operators

In Sections 4.3 and 4.4 we formulate the reduced-basis method and associated error estimation
procedure for the case of compliant outputs, `(v) = f(v), ∀v ∈ X. We brie�y summarize here
the formulation and theory for more general linear bounded output functionals; moreover, the
assumption of symmetry (but not yet coercivity) is relaxed, permitting treatment of a wider
class of problems � a representative example is the convection-di�usion equation, in which
the presence of the convective term renders the operator nonsymmetric. We �rst present the
reduced-basis approximation, now involving a dual or adjoint problem; we then formulate the
associated a posteriori error estimators; and we conclude with a few illustrative results.

As a preliminary, we �rst generalize the abstract formulation of Section 4.2.1. As before,
we de�ne the �primal� problem as in (4.4), however we of course no longer require symmetry.
But we also introduce an associated adjoint or �dual� problem: for any µ ∈ X, �nd ψ(µ) ∈ X
such that

a(v, ψ(µ);µ) = −`(v), ∀ v ∈ X; (4.35)

recall that `(v) is our output functional.

Reduced-Basis Approximation

To develop the reduced-basis space, we �rst choose � randomly or log-randomly as de-
scribed in Section 4.3.2 � a sample set in parameter space, SN/2 = {µ1, . . . , µN/2}, where
µi ∈ D, i = 1, . . . , N/2 (N even); we next de�ne an �integrated� Lagrangian reduced-basis
approximation space, WN = span {(u(µn), ψ(µn)), n = 1, . . . , N/2}.

For any µ ∈ D, our reduced basis approximation is then obtained by standard Galerkin
projection ontoWN (though for highly nonsymmetric operators minimum residual and Petrov-
Galerkin projections are attractive � stabler � alternatives). To wit, for the primal problem,
we �nd uN(µ) ∈ WN such that a(uN(µ), v;µ) = f(v), ∀ v ∈ WN ; and for the adjoint
problem, we de�ne (though, unless otherwise indicated, do not compute) ψN(µ) ∈ WN such
that a(v, ψN(µ);µ) = −`(v), ∀v ∈ WN . The reduced-basis output approximation is then
calculated from sN(µ) = `(uN(µ)).

Turning now to the a priori theory, it follows from standard arguments that uN(µ) and
ψN(µ) are �optimal� in the sense that

‖u(µ)− uN(µ)‖X ≤
(

1 +
γ(µ)

α(µ)

)
inf

wN∈WN

‖u(µ)− wN‖X ,

‖ψ(µ)− ψN(µ)‖X ≤
(

1 +
γ(µ)

α(µ)

)
inf

wN∈WN

‖ψ(µ)− wN‖X .

67

4.5. EXTENSIONS

CHAPTER 4. RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS: REDUCED-BASIS OUTPUT

BOUND METHODS

The best approximation analysis is then similar to that presented in Section 4.3.2. As regards
our output, we now have

|s(µ)− sN(µ)| = |`(u(µ))− `(uN(µ))|
= |a(u− uN , ψ;µ)|
= |a(u− uN , ψ − ψN ;µ)|
≤ γ0‖u− uN‖X‖ψ − ψN‖X

(4.36)

from Galerkin orthogonality, the de�nition of the primal and the adjoint problems, and the
Cauchy-Schwartz inequality. We now understand why we include the ψ(µn) in WN : to ensure
that ‖ψ(µ) − ψN(µ)‖X is small. We thus recover the �square� e�ect in the convergence
rate of the output, albeit (and unlike the symmetric case) at the expense of some additional
computational e�ort � the inclusion of the ψ(µn) in WN ; typically, even for the very rapidly
convergent reduced-basis approximation, the ��xed error-minimum cost� criterion favors the
adjoint enrichment.

For simplicity of exposition (and to a certain extent, implementation), we present here
the �integrated� primal-dual approximation space. However, there are signi�cant computa-
tional and conditioning advantages associated with a �non-integrated� approach, in which we
introduce separate primal (u(µn)) and dual (ψ(µn)) approximation spaces for u(µ) and ψ(µ),
respectively. Note in the �non-integrated� case we are obliged to compute ψN(µ), since to pre-
serve the output error �square e�ect� we must modify our predictor with a residual correction,
f(ψN(µ))− a(uN(µ), ψN(µ);µ) [44]. Both the �integrated� and �non-integrated� approaches
admit an o��line/on�line decomposition similar to that described in Section 4.3.3 for the com-
pliant, symmetric problem; as before, the on�line complexity and storage are independent of
the dimension of the very �ne (�truth�) �nite element approximation.

Method I A Posteriori Error Estimators

We extend here the method developed in Section 4.4.1.0 to the more general case of noncom-
pliant and nonsymmetric problems. We begin with the formulation.

We �rst �nd êpr(µ) ∈ X such that

g(µ) â(êpr(µ), v) = Rpr(v;uN(µ);µ), ∀ v ∈ X,
where Rpr(v;w;µ) ≡ f(v)− a(w, v;µ), ∀ v ∈ X; and êdu(µ) ∈ X such that

g(µ)â(êdu(µ), v) = Rdu(v;ψN(µ);µ), ∀ v ∈ X,
where Rdu(v;w;µ) ≡ −`(v)− a(v, w;µ),∀ v ∈ X. We then de�ne

s̄N(µ) = sN(µ)− g(µ)

2
â(êpr(µ), êdu(µ)), and (4.37)

∆N(µ) =
g(µ)

2
[â(êpr(µ), êpr(µ))]

1
2
[
â(êdu(µ), êdu(µ))

] 1
2 . (4.38)

Finally, we evaluate our lower and upper estimators as s±N(µ) = s̄N(µ)±∆N(µ). Note that,
as before, g(µ) and â still satisfy (4.16); and that, furthermore, (4.16) will only involve the

68

CHAPTER 4. RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS: REDUCED-BASIS OUTPUT

BOUND METHODS 4.5. EXTENSIONS

symmetric part of a. We de�ne the e�ectivity as

ηN(µ) =
∆N(µ)

|s(µ)− sN(µ)| ; (4.39)

note that s(µ)− sN(µ) now has no de�nite sign.
We now prove that our error estimators are bounds (the lower e�ectivity inequality):

s−N(µ) ≤ s(µ) ≤ s+
N(µ), ∀ N . To begin, we de�ne ê±(µ) = êpr(µ) ∓ 1

κ
êdu(µ), and note

that, from the coercivity of â,

κg(µ)â(epr − 1

2
ê±, epr − 1

2
ê±) = κg(µ)â(epr, epr) +

κg(µ)

4
â(ê±, ê±)− κg(µ)â(ê±, epr) ≥ 0,

(4.40)
where epr(µ) = u(µ)−uN(µ), edu(µ) = ψ(µ)−ψN(µ), and κ is a positive real number. From
the de�nition of ê±(µ) and êpr(µ), êdu(µ), we can express the �cross-term� as

g(µ)â(ê±, epr) = Rpr(epr;uN ;µ)∓ 1

κ
Rdu(epr;ψN ;µ) = a(epr, epr;µ)∓ 1

κ
a(epr, edu;µ)

= a(epr, epr;µ)± 1

κ
(s(µ)− sN(µ)), (4.41)

sinceRpr(epr;uN ;µ) = a(u, epr;µ)−a(uN , e
pr;µ) = a(epr, epr;µ), Rdu(epr;ψN ;µ) = a(epr, ψ;µ)−

a(epr, ψN ;µ) = a(epr, edu;µ), and `(µ)−`(uN) = −a(u−uN , ψ;µ) = −a(u−uN , ψ−ψN ;µ)
(by Galerkin orthogonality) = −a(epr, edu;µ). We then substitute (4.41) into (4.40) to obtain

±(s(µ)−sN(µ)) ≤ −κ (a(epr, epr;µ)− g(µ)â(epr, epr))+
κg(µ)

4
â(ê±, ê±) ≤ κg(µ)

4
â(ê±, ê±),

since κ > 0 and a(epr(µ), epr(µ);µ)− g(µ)â(epr(µ), epr(µ)) ≥ 0 from (4.16).
Expanding ê±(µ) = êpr(µ)∓ 1

κ
êdu(µ) then gives

±(s(µ)− sN(µ)) ≤ g(µ)

4

[
κâ(êpr, êpr) +

1

κ
â(êdu, êdu)∓ 2â(êpr, êdu)

]
,

or

±
(
s(µ)− (sN(µ)− g(µ)

2
â(êpr, êdu))

)
≤ κg(µ)

4
â(êpr, êpr) +

g(µ)

4κ
â(êdu, êdu). (4.42)

We now choose κ(µ) as

κ(µ) =

(
â(êdu(µ), êdu(µ))

â(êpr(µ), êpr(µ))

) 1
2

so as to minimize the right-hand side (4.42); we then obtain

|s(µ)− s̄N(µ)| ≤ ∆N(µ), (4.43)

and hence s−N(µ) ≤ s(µ) ≤ s+
N(µ).

We now turn to the upper e�ectivity inequality (sharpness property). If the primal and dual
errors are a-orthogonal, or become increasingly orthogonal as N increases, then the e�ectivity

69

4.5. EXTENSIONS

CHAPTER 4. RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS: REDUCED-BASIS OUTPUT

BOUND METHODS

will not, in fact, be bounded as N →∞. However, if we make the (plausible) hypothesis that
|s(µ)− sN(µ)| ≥ C‖epr(µ)‖X‖edu(µ)‖X , then it is simple to demonstrate that

ηN(µ) ≤ γ2
0

2C α0

. (4.44)

In particular, it is an easy matter to demonstrate that g1/2(µ) (â (êpr(µ), êpr(µ)))1/2 ≤ γ0

α
1/2
0

‖epr(µ)‖X
(note we lose a factor of γ1/2

0 relative to the symmetric case); similarly, g1/2(µ)
(
â
(
êdu(µ), êdu(µ)

))1/2 ≤
γ0

α
1/2
0

‖edu(µ)‖X . The desired result then directly follows from the de�nition of ∆N(µ) and our

hypothesis on |s(µ)− sN(µ)|.
Finally, turning to computational issues, we note that the o��line/on�line decomposition

described in Section 4.4.1 for compliant symmetric problems directly extends to the noncom-
pliant, nonsymmetric case � except that we must compute the norm of both the primal and
dual �modi�ed errors,� with a concomitant doubling of computational e�ort.

Method II A Posteriori Error Estimators

We discuss here the extension of Method II of Section 4.4.2 to noncompliant outputs and
nonsymmetric operators.

To begin, we setM > N ,M even, and introduce a parameter sample SM/2 = {µ1, . . . , µM/2}
and associated �integrated� reduced-basis approximation spaceWM = span{u(µm), ψ(µm),m =
1, . . . ,M/2}. We �rst �nd uM(µ) ∈ WM such that a(uM(µ), v;µ) = f(v), ∀v ∈ WM ; we
then evaluate sM(µ) = `(uM(µ)); and �nally, we compute our upper and lower output esti-
mators as

s±N,M(µ) = sN(µ) +
1

2τ
(sM − sN)± 1

2
∆N,M(µ), (4.45)

∆N,M(µ) =
1

τ
|sM(µ)− sN(µ)|, (4.46)

for τ ∈ (0, 1). The e�ectivity of the approximation is de�ned as

ηN,M(µ) =
∆N,M(µ)

|s(µ)− sN(µ)| . (4.47)

We shall again only consider M = 2N .

As in Section 4.4.2, we would like to prove that 1 ≤ ηN,2N(µ) ≤ Const for su�ciently
large N ; and, as in Section 4.4.2, we must again make the hypothesis (4.29). We �rst consider
the lower e�ectivity inequality (bounding property), and prove that

s−N,2N(µ) ≤ s(µ) ≤ s+
N,2N(µ), as N →∞. (4.48)

70

CHAPTER 4. RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS: REDUCED-BASIS OUTPUT

BOUND METHODS 4.5. EXTENSIONS

N |s(µ)− sN(µ)|/s(µ) ∆N,2N(µ)/s(µ) ηN,2N(µ)
20 2.35× 10−2 4.67× 10−2 1.99
40 1.74× 10−4 3.19× 10−4 1.83
60 5.59× 10−5 1.06× 10−4 1.90
80 1.44× 10−5 2.73× 10−5 1.89
100 7.45× 10−6 1.40× 10−5 1.88

Table 4.3: Error, error bound (Method II), and e�ectivity as a function of N , at a particular
representative point µ ∈ D, for the truss problem (noncompliant output).

In particular, simple algebraic manipulations yield

s−N,2N(µ) = s(µ)− 1

1− εN,2N |sN(µ)− s2N(µ)| × (4.49){
1 s2N(µ) ≥ sN(µ)
1
τ
(1− εN,2N)− 1 s2N(µ) < sN(µ)

, (4.50)

s+
N,2N(µ) = s(µ) +

1

1− εN,2N |sN(µ)− s2N(µ)| × (4.51){
1
τ
(1− εN,2N)− 1 s2N(µ) ≥ sN(µ)

1 s2N(µ) < sN(µ).
(4.52)

The desired result then directly follows from our hypothesis on εN,2N , (4.29), and the range
of τ .

The proof for the upper e�ectivity inequality (sharpness property) parallels the derivation
of Section 4.4.2.0. In particular, we write

ηN,2N(µ) =
1
τ
|s2N − sN |
|s− sN | =

1
τ
|s2N − s+ s− sN |
|s− sN | (4.53)

=
1

τ
|1− εN,2N |; (4.54)

from our hypothesis (4.29) we may thus conclude that ηN,2N(µ) → 1
τ
as N → ∞. Note in

the noncompliant, nonsymmetric case we can make no stronger statement.
We demonstrate our e�ectivity claims in Table 4.3, in which we present the error, bound

gap, and e�ectivity for the noncompliant output (s2(µ), average stress) of the truss example
of Section 4.2.2.0; the results tabulated correspond to the choice τ = 1/2. We clearly obtain
bounds for all N ; and the e�ectivity rather quickly approaches 1/τ (for N ≥ 120, ηN,2N
remains �xed at 1/τ = 2.0).

4.5.2 Eigenvalue Problems

We next consider the extension of our approach to symmetric positive de�nite eigenvalue
problems. The eigenvalues of appropriately de�ned partial-di�erential-equation eigenproblems

71

4.5. EXTENSIONS

CHAPTER 4. RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS: REDUCED-BASIS OUTPUT

BOUND METHODS

convey critical information about a physical system; in linear elasticity, the critical buckling
load; in dynamic analysis of structures, the resonant modes; in conduction heat transfer,
the equilibrium timescales. Solution of large-scale eigenvalue problems is computationally
intensive: the reduced-basis method is thus very attractive.

The abstract statement of our eigenvalue problem is: �nd (ui(µ), λi(µ)) ∈ X × R, i =
1, . . ., such that

a(ui(µ), v;µ) = λi(µ)m(ui(µ), v;µ), ∀v ∈ X, and m(ui(µ), ui(µ)) = 1. (4.55)

Here a is the continuous, coercive, symmetric form introduced earlier, and m is (say) the
L2 inner product over Ω. The assumptions on a and m imply the eigenvalues λi(µ) will be
real and positive. We order the eigenvalues (and corresponding eigenfunctions ui) such that
0 < λ1(µ) < λ2(µ) ≤ . . . ; we shall assume that λ1(µ) and λ2(µ) are distinct. We suppose
that our output of interest is the minimum eigenvalue,

s(µ) = λ1(µ); (4.56)

other outputs may also be considered.
Following [37], we present here a reduced-basis predictor and a Method I error estimator for

symmetric positive-de�nite eigenvalue problems; we also brie�y describe the simpler Method II
approach.

Reduced-Basis Approximation

We sample � randomly or log-randomly � our design space D to create the parameter sample
SN/2 = {µ1, . . . , µN/2}; we then introduce the reduced-basis space WN = span{u1(µ1),
u2(µ1), . . . , u1(µN/2), u2(µN/2)}, where we recall that u1(µ) and u2(µ) are the eigenfunctions
associated with the �rst (smallest) and second eigenvalues λ1(µ) and λ2(µ), respectively. Note
thatWN has good approximation properties both for the �rst and second lowest eigenfunctions,
and hence eigenvalues; this is required by the Method I error estimator to be presented below.
Our reduced-order approximation is then: �nd (uN i(µ), λNi(µ)) ∈ WN × R, i = 1, . . . , N ,
such that

a(uN i(µ), v;µ) = λN i(µ)m(uN i(µ), v;µ), ∀v ∈ WN , and m(uN i(µ), uN i(µ)) = 1; (4.57)

the output approximation is then sN(µ) = λN 1(µ).
The formulation admits an on�line/o��line decomposition [37] very similar to the approach

described for equilibrium problems in Section 4.3.

Method I A Posteriori Error Estimators

As before, we assume that we are given a positive function g(µ) : D → R+ and a continuous,
coercive, symmetric bilinear form â(w, v) : X × X → R, that satisfy the inequality (4.16).
We then �nd ê(µ) ∈ X such that

g(µ)â(ê(µ), v) = [λN 1m(uN 1(µ), v;µ)− a(uN 1(µ), v;µ)] , ∀v ∈ X, (4.58)

72

CHAPTER 4. RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS: REDUCED-BASIS OUTPUT

BOUND METHODS 4.5. EXTENSIONS

N |λ1(µ)− λN 1(µ)|/λ1(µ) ∆N(µ)/λ1(µ) ηN(µ)
10 1.19× 10−2 6.66× 10−2 5.63
20 1.08× 10−3 7.19× 10−3 6.65
30 6.20× 10−4 3.19× 10−3 5.17
40 1.72× 10−4 1.55× 10−3 9.44
50 3.47× 10−5 4.06× 10−4 11.74

Table 4.4: Error, error bound (Method I), and e�ectivities as a function of N , at a particular
representative point µ ∈ D, for the thermal �n eigenproblen.

in which the right-hand side is the eigenproblem equivalent of the residual. We then evaluate
our estimators as

s+
N(µ) = λN 1(µ), s−N(µ) = λN 1(µ)−∆N(µ),

∆N(µ) =
g(µ)

τδ(µ)
â(ê(µ), ê(µ)),

where δ(µ) = 1− λN 1(µ)
λN 2(µ)

and τ ∈ (0, 1). The e�ectivity is de�ned as ηN(µ) = ∆N (µ)
λN 1(µ)−λ1(µ))

.
We now consider the lower and upper e�ectivity inequalities. As regards the lower e�ectivity

inequality (bounding property), we of course obtain s+
N(µ) ≥ λ1(µ), ∀ N . The di�cult

result is the lower bound: it can be proven [37] that there exists an N∗(SN/2, µ) such that
s−N(µ) ≤ λ1(µ), ∀N > N∗. In practice, N∗ = 1, due to the good (theoretically motivated)
choice for δ(µ); there is thus very little uncertainty in our (asymptotic) bounds. We also prove
in [37] a result related to the upper e�ectivity inequality (sharpness property); in, practice,
very good e�ectivities are obtained. To demonstrate these claims we consider the eigenvalue
problem associated with (the homogenous version) of our two-dimensional thermal �n example
of Section 4.2.2.0. We present in Table 4.5.2.0 the error, error bound, and e�ectivity as a
function of N at a particular point µ ∈ D. We observe rapid convergence, bounds for all N ,
and good e�ectivities.

Finally, we note that our output estimator admits an o��line/on�line decomposition similar
to that for equilibrium problems; the additional terms in (4.58) are readily treated through our
a�ne expansion/linear superposition procedure.

Method II A Posteriori Error Estimators

For Method II, we no longer require an estimate for the second eigenvalue. We may thus
de�ne SN = {µ1, . . . , µN}, WN = span{u1(µi), i = 1, . . . , N}, and (for M = 2N) S2N =
{µ1, . . . , µ2N} ⊃ SN , W2N = span{u1(µi), i = 1, . . . , 2N} ⊃ WN . The reduced basis
approximation now takes the form (4.55), yielding sN(µ) = λN 1(µ) and (for N → 2N)
s2N(µ) = λ2N 1(µ). Our estimators are then given by

s+
N,2N(µ) = λN 1(µ), s−N,2N = λN 1(µ)−∆N,2N(µ),

∆N,2N(µ) =
1

τ
(sN(µ)− s2N(µ)) (4.59)

73

4.5. EXTENSIONS

CHAPTER 4. RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS: REDUCED-BASIS OUTPUT

BOUND METHODS

for τ ∈ (0, 1). The e�ectivity ηN,2N(µ) is de�ned as for Method I.
For the lower e�ectivity inequality (bounding property), we of course retain s+

N,2N(µ) >

λ1(µ), ∀N. We also readily derive s−N,2N(µ) = λ1− (λN 1− λ1)(1
τ
(1− εN,2N)− 1); under our

hypothesis (4.29), we thus obtain asymptotic bounds as N → ∞. For the upper e�ectivity
inequality (sharpness property), we directly obtain ηN,2N = 1

τ
(1 − εN,2N). By variational

arguments it is readily shown that 0 ≤ εN,2N ≤ 1: we thus conclude that 0 ≤ ηN,2N ≤ 1
τ
, ∀N .

Additionally, under hypothesis (4.29), we deduce that ηN,2N → 1
τ
as N →∞.

4.5.3 Further Generalizations

In this section we brie�y describe several additional extensions of the methodology. In each
case we focus on the essential new ingredient; further details (in most cases) may be found in
the referenced literature.

Noncoercive Linear Operators

The archetypical noncoercive linear equation is the Helmholtz, or reduced�wave, equation;
many (e.g., inverse scattering) applications of this equation arise, for example, in acoustics
and electromagnetics. The essential new mathematical ingredient is the loss of coercivity of
a. In particular, well�posedness is now ensured only by the inf�sup condition: there exists
positive β0, β(µ), such that

0 < β0 ≤ β(µ) = inf
w∈X

sup
v∈X

a(w, v;µ)

‖w‖X ‖v‖X , ∀ µ ∈ D. (4.60)

Two numerical di�culties arise due to this �weaker� stability condition.
The �rst di�culty is preservation of the inf�sup stability condition for �nite dimensional

approximation spaces. To wit, although in the coercive case restriction to the space WN

actually increases stability, in the noncoercive case restriction to the space WN can easily
decrease stability: the relevant supremizers may not be adequately represented. Loss of stability
can, in turn, lead to poor approximations � the inf�sup parameter enters in the denominator
of the a priori convergence result. The second numerical di�culty is estimation of the inf�sup
parameter, which for noncoercive problems plays the role of g(µ) in Method I a posteriori
error estimation techniques. In particular, β(µ) can not typically be deduced analytically,
and thus must be evaluated (via an eigenvalue formulation) as part of the reduced�basis
approximation. Our resolution of both these di�culties involves two elements [44]: �rst,
we consider projections other than standard Galerkin; and second, we consider �enriched�
approximation spaces.

In one approach [44], we pursue a minimum�residual projection: the (low-dimensional)
in�mizing space contains both the solution u(µ) and also the inf�sup in�mizer at the µn
sample points; and the (high-dimensional) supremizing space is taken to be X. Stability is
ensured and rigorous (sharp) error bounds are obtained � though technically the bounds are
only asymptotic due to the approximation of the inf�sup parameter; and, despite the presence
ofX, the on�line complexity remains independent of the dimension ofX � as in Section 4.3.3,
we exploit a�ne parameter dependence and linear superposition to precompute the necessary
inversions. In a second suite of much simpler and more general approaches (see [44] for one

74

CHAPTER 4. RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS: REDUCED-BASIS OUTPUT

BOUND METHODS 4.5. EXTENSIONS

example in the symmetric case), we exploit minimum-residual or Petrov-Galerkin projections
with in�mizer�supremizer enriched, but still very low�dimensional, in�mizing and supremizing
spaces. Plausible but not yet completely rigorous arguments, and empirical evidence, suggest
that stability is ensured and rigorous asymptotic (and sharp) error bounds are obtained.

In [44] we focus entirely on Method I a posteriori error estimator procedures; but Method II
techniques are also appropriate. In particular, Method II approaches do not require accurate
estimation of the inf-sup parameter; we thus need be concerned only with stability in designing
our reduced�basis spaces.

Parabolic Partial Di�erential Equations

The next extension considered is the treatment of parabolic partial di�erential equations of the
form m(ut, v;µ) = a(u, v;µ); typical examples are time-dependent problems such as unsteady
heat conduction � the �heat� or �di�usion� equation. The essential new ingredient is the
presence of the time variable, t.

The reduced-basis approximation and error estimator procedures are similar to those for
noncompliant nonsymmetric problems, except that we now include the time variable as an
additional parameter. Thus, as in certain other time-domain model-order-reduction methods
[6, 73], the basis functions are �snapshots� of the solution at selected time instants; however,
in our case, we construct an ensemble of such series corresponding to di�erent points in
the non-time parameter domain D. For rapid convergence of the output approximation, the
solutions to an adjoint problem � which evolves backward in time � must also be included
in the reduced-basis space.

For the temporal discretization method, many possible choices are available. The most
appropriate method � although not the only choice � is the discontinuous Galerkin method
[39]. The variational origin of the discontinuous Galerkin approach leads naturally to rigorous
output bounds for Method I a posteriori error estimators; the Method II approach is also di-
rectly applicable. Under our a�ne assumption, o��line/on�line decompositions can be readily
crafted; the complexity of the on�line stage (calculation of the output predictor and associated
bound gap) is, as before, independent of the dimension of X.

Locally Non�A�ne Parameter Dependence

An important restriction of our methods is the assumption of a�ne parameter dependence.
Although many property, boundary condition, load, and even geometry variations can indeed
be expressed in the required form (4.2) for reasonably small Q, there are many problems �
for example, general boundary shape variations � which do not admit such a representation.
One simple approach to the treatment of this more di�cult class of non-a�ne problems is (i)
in the o��line stage, store the ζn ≡ u(µn), and (ii) in the on�line stage, directly evaluate the
reduced�basis sti�ness matrix as a(ζj, ζi, µ). Unfortunately, the operation count (respectively,
storage) for the on�line stage will now scale as O(N2 dim(X)) (respectively, O(N dim(X)),
where dim(X) is the dimension of the truth (very �ne) �nite element approximation space:
the resulting method may no longer be competitive with advanced iterative techniques; and,
in any event, �real�time� response may be compromised.

75

4.5. EXTENSIONS

CHAPTER 4. RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS: REDUCED-BASIS OUTPUT

BOUND METHODS

We prefer an approach which is slightly less general but potentially much more e�cient.
In particular, we note that in many cases � for example, boundary geometry modi�cation �
the non�a�ne parametric dependence can be restricted to a small subdomain of Ω, ΩII . We
can then express our bilinear form a as an a�ne/non�a�ne sum,

a(w, v;µ) = aI(w, v;µ) + aII(w, v;µ). (4.61)

Here aI , de�ned over ΩI � the majority of the domain � is a�nely dependent on µ; and
aII , de�ned over ΩII � a small portion of the domain � is not a�nely dependent on µ. It
immediately follows that the reduced�basis sti�ness matrix can be expressed as the sum of
two sti�ness matrices corresponding to contributions from aI and aII respectively; that the
sti�ness matrix associated with aI admits the usual on�line/o��line decomposition described
in Section 4.3.3; and that the sti�ness matrix associated with aII requires storage (and inner
product evaluation) only of ζi|ΩII (ζi restricted to ΩII). The non�a�ne contribution to the
on�line computational complexity thus scales only as O(N2 dim(X|ΩII)), where dim(X|ΩII)
refers (in practice) to the number of �nite-element nodes located within ΩII � often extremely
small. We thus recover a method that is (almost) independent of dim(X), though clearly the
on�line code will be more complicated than in the purely a�ne case.

In the above we focus on approximation. As regards a posteriori error estimation, the non�
a�ne dependence of a (even locally) precludes the precomputation and linear superposition
strategy required by Method I (unless domain decomposition concepts are exploited [38]);
however, Method II directly extends to the locally non-a�ne case.

Acknowledgements We would like to thank Mr. Thomas Leurent (formerly) of MIT for
his many contributions to the work described in this paper; thanks also to Shidrati Ali of the
Singapore-MIT Alliance and Yuri Solodukhov of MIT for very helpful discussions. We would
also like to acknowledge our longstanding collaborations with Professor Jaime Peraire of MIT
and Professor Einar Rønquist of the Norwegian University of Science and Technology. This
work was supported by the Singapore-MIT Alliance, by DARPA and ONR under Grant F49620-
01-1-0458, by DARPA and AFOSR under Grant N00014-01-1-0523 (Subcontract 340-6218-3),
and by NASA under Grant NAG-1-1978.

76

Chapter 5

A Posteriori Error Bounds for

Reduced-Basis Approximation of

Parametrized Noncoercive and

Nonlinear Elliptic Partial Di�erential

Equations

Authors: K. Veroy, C. Prud'homme, D.V. Rovas, A.T. Patera.

5.1 1 Introduction

The optimization, control, and characterization of an engineering component or system requires
the prediction of certain �quantities of interest,� or performance metrics, which we shall denote
outputs � for example de�ections, heat transfer rates, or drags. These outputs are typically
expressed as functionals of �eld variables associated with a parametrized partial di�erential
equation which describes the physical behavior of the component or system. The parameters,
which we shall denote inputs, serve to identify a particular �con�guration" of the component.
We thus arrive at an implicit input-output relationship, evaluation of which demands solution
of the underlying partial di�erential equation.

Our goal is the development of computational methods that permit rapid and reliable
evaluation of this partial-di�erential-equation-induced input-output relationship in the limit of
many queries � that is, in the design, optimization, control, and characterization contexts.
Our particular approach is based on the reduced-basis method, �rst introduced in the late
1970s for nonlinear structural analysis [5, 51], and subsequently developed more broadly in
the 1980s and 1990s [13, 14, 26, 55, 58, 70]. The reduced-basis method recognizes that the
�eld variable is not, in fact, some arbitrary member of the in�nite-dimensional solution space
associated with the partial di�erential equation; rather, it resides, or �evolves,� on a much
lower-dimensional manifold induced by the parametric dependence.

The reduced-basis approach as earlier articulated is local in parameter space in both practice
and theory [26]. As a result, the computational improvements � relative to conventional

77

5.2. 2 NONCOERCIVE LINEAR PROBLEMS: HELMHOLTZ EQUATION

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

(say) �nite element approximation � are often quite modest [58]. Our work [37, 44, 46, 62,
82, 61] di�ers from these earlier e�orts in several important ways: �rst, we develop global
approximation spaces; second, we introduce rigorous a posteriori error estimators; and third,
we exploit o�-line/on-line computational decompositions (see [13] for an earlier application
of this strategy.) These three ingredients allow us � for the restricted but important class
of �parameter-a�ne� problems � to reliably decouple the generation and projection stages of
reduced-basis approximation, thereby e�ecting computational economies of several orders of
magnitude.

In this paper we develop new a posteriori error estimation procedures for noncoercive linear,
and certain nonlinear, problems that � unlike our earlier �asymptotic� techniques [44, 62] �
yield rigorous error statements for all N . We consider three particular examples: the Helmholtz
(reduced-wave) equation (Section 2); a cubically nonlinear Poisson equation (Section 3); and
Burgers equation (Section 4) � a model for incompressible Navier-Stokes. The Helmholtz
(and Burgers) example introduce our new lower bound constructions for the requisite inf-
sup (singular value) stability factor; the cubic nonlinearity exercises symmetry factorization
procedures necessary for treatment of high-order Galerkin summations in the (say) residual
dual-norm calculation; and the Burgers equation illustrates our accommodation of potentially
multiple solution branches in our a posteriori error statement. Numerical results are presented
that demonstrate the rigor, sharpness, and e�ciency of our proposed error bounds, and the
application of these bounds to adaptive (optimal) approximation.

5.2 2 Noncoercive Linear Problems: Helmholtz Equa-

tion

5.2.1 2.1 Preliminaries

We consider a suitably regular domain Ω ⊂ Rd, 1 ≤ d ≤ 3, with boundary ∂Ω. We then
introduce a Hilbert space Y with associated inner product, (· , ·)Y , and induced norm, ‖ · ‖Y .
We shall assume that H1

0 (Ω) ⊂ Y ⊂ H1(Ω), where H1(Ω) ≡ {v ∈ L2(Ω), ∇v ∈ (L2(Ω))d},
H1

0 ≡ {v ∈ H1(Ω) | v|∂Ω = 0}, and L2(Ω) is the space of square-integrable functions over Ω.
We shall further assume that

(· , ·)Y = (· , ·)H1(Ω) ,

‖ · ‖Y = ‖ · ‖H1(Ω) ,
(5.1)

where

(w, v)H1(Ω) ≡
∫

Ω

∇w · ∇v + wv, ∀ w, v ∈ H1(Ω) ,

‖v‖H1(Ω) ≡
∫

Ω

|∇v|2 + v2, ∀ v ∈ H1(Ω) .

(5.2)

More general inner products and norms can (and should) be considered, as discussed in Sec-
tion 2.4.2.

We shall denote by Y ′ the dual space of Y . For a g ∈ Y ′, the dual norm is given by

‖g‖Y ′ = sup
v∈Y

g(v)

‖v‖Y . (5.3)

78

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 5.2. 2 NONCOERCIVE LINEAR PROBLEMS: HELMHOLTZ EQUATION

If we introduce the �representation� operator Y : Y ′ → Y such that, for any g ∈ Y ′,

(Yg, v)Y = g(v) , (5.4)

then
‖g‖Y ′ = ‖Yg‖Y ; (5.5)

this is simply a statement of the Riesz representation theorem.
We now introduce our parametrized bilinear form. We �rst de�ne a parameter set Dµ ⊂

RP , a typical point in which � our input P -tuple � shall be denoted µ; we can then de�ne,
for any µ ∈ Dµ, our bilinear form a(· , · ;µ) : Y × Y → R. We shall assume that a satis�es
a continuity and inf-sup condition for all µ ∈ D, as we now state more precisely.

It shall prove convenient to state our hypotheses in terms of a �supremizing� operator
T µ : Y → Y . In particular, for any given µ ∈ Dµ, and any w ∈ Y ,

(T µw, v)Y = a(w, v;µ), ∀ v ∈ Y ; (5.6)

it is readily shown that

T µw = arg sup
v∈Y

a(w, v;µ)

‖v‖Y . (5.7)

Furthermore, if we de�ne the inf-sup (singular value) and continuity constants as

β(µ) ≡ inf
w∈Y

sup
v∈Y

a(w, v;µ)

‖w‖Y ‖v‖Y (5.8)

and

γ(µ) ≡ sup
w∈Y

sup
v∈Y

a(w, v;µ)

‖w‖Y ‖v‖Y , (5.9)

then,

β(µ) = inf
w∈Y

σ(w;µ) , (5.10)

γ(µ) = sup
w∈Y

σ(w;µ) , (5.11)

where

σ(w;µ) ≡ ‖T
µw‖Y
‖w‖Y . (5.12)

Our assumptions are then: for some positive constant εs, εs ≤ β(µ) ≤ γ(µ) <∞, ∀ µ ∈ Dµ.
We next de�ne the bilinear form b(· , · ;µ) : Y × Y → R as

b(w, v;µ) = (T µw, T µv)Y , ∀ w, v ∈ Y . (5.13)

We then introduce the eigenproblem: Given µ ∈ Dµ, �nd χi(µ) ∈ Y, λi(µ) ∈ R, i = 1, . . . ,∞,
such that

b(χi(µ), v;µ) = λi(µ)(χi(µ), v)Y , ∀ v ∈ Y , (5.14)

‖χi(µ)‖Y = 1 . (5.15)

79

5.2. 2 NONCOERCIVE LINEAR PROBLEMS: HELMHOLTZ EQUATION

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

We shall, for convenience, assume that the spectrum is discrete (in actual practice we require
only that the �rst few modes belong to the discrete component). In that case, we may assume
that

b(χi(µ), χj(µ);µ) = λi(µ)(χi(µ), χj(µ))Y = λi(µ)δij , (5.16)

where δij is the Kronecker-delta symbol; that 0 < λ1(µ) ≤ λ2(µ) ≤ · · · ; and that Y =

span {χi(µ), i = 1, . . . ,∞}. Note that, from (5.10)-(5.14), β(µ) =
√
λ1(µ); furthermore,

γ(µ) is an upper bound for the spectrum.
We shall make the further assumption that a is �a�ne in the parameter� in the sense that,

for some �nite Q,

a(w, v;µ) =

Q∑
q=1

Θq(µ) aq(w, v) , (5.17)

where Θ: Dµ → RQ are di�erentiable parameter-dependent coe�cient functions, and the
aq : Y × Y → R, 1 ≤ q ≤ Q, are parameter-independent bilinear forms. We de�ne, for future
reference,

Dqp = max
µ∈Dµ

∣∣∣∣∂Θq

∂µp
(µ)

∣∣∣∣ , (5.18)

for 1 ≤ q ≤ Q, 1 ≤ p ≤ P . Furthermore, we assume that the aq are continuous in the sense
that there exist positive �nite constants Γq, 1 ≤ q ≤ Q, such that

|aq(w, v)| ≤ Γq |w|q |v|q ; (5.19)

here | · |q : H1(Ω)→ R are seminorms that satisfy(
Q∑
q=1

|v|2q
)1/2

≤ C
1/2
Y ‖v‖Y , ∀ v ∈ Y , (5.20)

where CY is a �nite constant.
Finally, it directly follows from (5.6) and (5.17) that, for any w ∈ Y , T µw ∈ Y may be

expressed as

T µw =

Q∑
q=1

Θq(µ) Tqw , (5.21)

where, for any w ∈ Y , Tqw, 1 ≤ q ≤ Q, is given by

(Tqw, v)Y = aq(w, v), ∀ v ∈ Y . (5.22)

Note that the operators Tq : Y → Y are independent of the parameter µ.

5.2.2 2.2 Problem Formulation

2.2.1 Weak Statement

We introduce an output functional ` ∈ Y ′ and �data� functional f ∈ Y ′. Our weak statement
of the partial di�erential equation is then: Given µ ∈ Dµ, �nd

s = `(u(µ)) , (5.23)

80

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 5.2. 2 NONCOERCIVE LINEAR PROBLEMS: HELMHOLTZ EQUATION

where u(µ) ∈ Y satis�es
a(u(µ), v;µ) = f(v), ∀ v ∈ Y . (5.24)

In the language of the introduction, s(µ) is our output, and u(µ) is our �eld variable.
In actual practice, we shall replace (5.23)�(5.24) with a truth approximation: Given µ ∈

Dµ, �nd
sN (µ) = `(uN (µ)) ,

where uN (µ) ∈ Y N ⊂ Y satis�es

a(uN (µ), v;µ) = f(v), ∀ v ∈ Y N , (5.25)

and Y N is a �nite element approximation subspace. We assume that N is chosen su�ciently
large that sN (µ) and uN (µ) may be e�ectively equated with s(µ) and u(µ), respectively. We
shall thus distinguish between Y N and Y only in our discussion of computational complexity.
(Note that issues associated with a possible continuous component to the spectrum of (5.14)
may be addressed by considering Y as the limit of Y N , N →∞.)

2.2.2 Reduced-Basis Approximation

The focus of the current paper is a posteriori error estimation. We shall thus take our
reduced-basis approximation as given. In particular, we assume that we are provided with a
reduced-basis approximation to u(µ), uN(µ) ∈ WN , where

WN = span {ζn ≡ u(µn), 1 ≤ n ≤ N} , (5.26)

SN = {µ1 ∈ Dµ, . . . , µN ∈ Dµ}, and u(µn) satis�es (5.24) (in practice, (5.25)) for µ = µn.
It follows that uN(µ) may be expressed as

uN(µ) =
N∑
n=1

uNn(µ) ζn . (5.27)

The reduced-basis approximation to the output s(µ), sN(µ), is given by sN(µ) = `(uN(µ)).
For the purposes of this paper, we shall consider only standard Galerkin projections:

a(uN(µ), v;µ) = f(v), ∀ v ∈ WN . However, the discrete inf-sup parameter associated with
the latter may not be �good,� with corresponding detriment to the accuracy of uN(µ) and
hence sN(µ). More sophisticated minimum-residual [44, 72] and in particular Petrov-Galerkin
[45, 72] approaches restore (guaranteed) stability, albeit at some additional complexity and
cost.

2.2.3 Error Estimation: Objective

We now wish to develop a posteriori error bounds ∆N(µ) and ∆s
N(µ) such that

‖e(µ)‖H1(Ω) ≤ ∆N(µ) , (5.28)

and
|s(µ)− sN(µ)| = |`(e(µ))| ≤ ∆s

N(µ) , (5.29)

81

5.2. 2 NONCOERCIVE LINEAR PROBLEMS: HELMHOLTZ EQUATION

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

where e(µ) ≡ u(µ) − uN(µ). For the purposes of this paper, we shall focus on the H1(Ω)
bound, ∆N(µ), in terms of which ∆s

N(µ) can be expressed as ‖Y`‖Y ∆N(µ); the latter may
be signi�cantly improved by the introduction of adjoint techniques [28, 62].

It shall prove convenient to introduce the notion of e�ectivity, de�ned (here) as

ηN(µ) ≡ ∆N(µ)

‖e(µ)‖H1(Ω)

. (5.30)

Our certainty requirement (5.28) may be stated as ηN(µ) ≥ 1, ∀ µ ∈ Dµ. However, for
e�ciency, we must also require ηN(µ) ≤ Cη, where Cη ≥ 1 is a constant independent of
N and µ; preferably, Cη is close to unity, thus ensuring that we choose the smallest N �
and hence most economical � reduced-basis approximation consistent with the speci�ed error
tolerance.

5.2.3 2.3 A Posteriori Error Estimation

2.3.1 Error Bound

We assume that we are given a β̂(µ) such that, for the given inner product (·, ·)Y ≡ (·, ·)H1(Ω)

(which in our previous papers [82, 61] would be denoted a �bound conditioner�),

β(µ) ≥ β̂(µ) ≥ (1− τ) εs, ∀ µ ∈ Dµ , (5.31)

where τ ∈]0, 1[. We then de�ne our error bound as

∆N(µ) ≡ ‖Yr(· ;µ)‖Y
β̂(µ)

, (5.32)

where
r(v;µ) = f(v)− a(uN(µ), v;µ), ∀ v ∈ Y , (5.33)

is the residual associated with uN(µ). Note it follows from (5.24) that (5.33) may be restated
as

a(e(µ), v;µ) = r(v;µ), ∀ v ∈ Y , (5.34)

where we recall that e(µ) ≡ u(µ)− uN(µ).
We can then state

Proposition 5. For the error bound ∆N(µ) of (5.32), the e�ectivity satis�es

1 ≤ ηN(µ) ≤ γ(µ)

(1− τ) εs
, ∀ µ ∈ D , (5.35)

for all N ∈ N.

Proof It follows from (5.4), (5.6), and (5.34) that

‖Yr(· ;µ)‖Y = ‖T µe(µ)‖Y . (5.36)

82

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 5.2. 2 NONCOERCIVE LINEAR PROBLEMS: HELMHOLTZ EQUATION

Furthermore, from (5.12) we know that

‖e(µ)‖Y =
‖T µe(µ)‖Y
σ(e(µ);µ)

, (5.37)

and hence from (5.1), (5.30), (5.32), (5.36), and (5.37)

ηN(µ) =
σ(e(µ);µ)

β̂(µ)
. (5.38)

The result then directly follows from (5.10), (5.11), (5.31), and (5.38). �

We note that our proof (or bound) does not exploit any special properties of e(µ) (or uN(µ)).
It remains to develop our lower bound construction, β̂(µ), and to demonstrate that both

β̂(µ) and ‖Yr(· ;µ)‖Y may be computed e�ciently (that is, in complexity independent of
N).

2.3.2 Inf-Sup Lower Bound Construction

Many of the most obvious eigenvalue approximation concepts are not relevant here, since we
require a lower, not upper, bound. We thus develop a construction particularly suited to our
context.

We assume that we are given a set of J parameter points, LJ ≡ {µ1 ∈ Dµ, . . . , µJ ∈ Dµ},
and associated set of polygonal regions Rµj ,τ , 1 ≤ j ≤ J , where

Rµ,τ ≡ {µ ∈ Dµ |Bµq (µ) ≤ τ

CY
β(µ), 1 ≤ q ≤ Q} , (5.39)

and

Bµq (µ) = Γq

P∑
p=1

Dqp |µp − µp| ; (5.40)

we further assume that
J⋃
j=1

Rµj ,τ = Dµ . (5.41)

We then de�ne J : Dµ → {1, . . . , J} such that, for a given µ, RµJ (µ),τ is that region (or a
selected region) which contains µ.

Our lower bound is then: Given µ ∈ Dµ,

β̂(µ) = β(µJ (µ))− CY BµJ (µ)

max (µ) , (5.42)

where
Bµmax(µ) = max

q∈{1,...,Q}
Bµq (µ) (5.43)

for Bµq (µ) de�ned in (5.40).
We can now state

83

5.2. 2 NONCOERCIVE LINEAR PROBLEMS: HELMHOLTZ EQUATION

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Proposition 6. The construction β̂(µ) of (5.42) satis�es the inequality (5.31).

Proof We �rst note that, for given µ and µ ∈ Dµ, and any w ∈ Y ,

T µw = T µw +

Q∑
q=1

(Θq(µ)−Θq(µ)) Tqw ,

where we have appealed to (5.21). It thus follows from (5.10), (5.12), and the triangle
inequality that

β2(µ) ≥ inf
w∈Y

{[
σ(w;µ)

−

∥∥ Q∑
q=1

(Θq(µ)−Θq(µ)) Tqw
∥∥
Y

‖w‖Y

]2}
.

(5.44)

It is then a simple matter to show, from (5.22), (5.18), (5.19), the Cauchy-Schwarz inequality,
and (5.20), that ∥∥∥∥ Q∑

q=1

(Θq(µ)−Θq(µ)) Tqw

∥∥∥∥
Y

≤ CY Bµmax(µ) ‖w‖Y ; (5.45)

it thus follows from (5.10), (5.11), and (5.44), (5.45) that

β2(µ) ≥ inf
t∈[β(µ),γ(µ)]

{[
t− (CY Bµmax(µ))

]2}
. (5.46)

Recall that (5.46) is valid for any µ and µ ∈ Dµ.
We now choose, for any given µ, µ = µJ (µ). We thus obtain

β2(µ) ≥ inf
t∈[β(µJ (µ)),γ(µJ (µ))]

{[
t− (CY BµJ (µ)

max (µ))
]2
}
. (5.47)

However, from (5.39) and (5.43) we know that

CY BµJ (µ)

max (µ) ≤ τ β(µJ (µ)) ; (5.48)

the in�mizer of (5.47) is thus β(µJ (µ)), yielding

β(µ) ≥ β(µJ (µ))− CY BµJ (µ)

max (µ) . (5.49)

The desired result, (5.31), immediately follows from (5.49), (5.42), (5.48), and β(µ) ≥ εs. �

It should be clear that our bound of |Θ(µ)−Θ(µ)| is rather crude; a more careful treatment
of this term, leading to correspondingly larger regions Rµj ,τ , and hence smaller J , is described
elsewhere.[50]

It may appear paradoxical to combine a linear approximation � in particular, with O(1)
error � to β(µ) with an exponentially convergent reduced-basis approximation � with very
small error � to u(µ). In fact, it is not inconsistent: |β(µ)−β̂(µ)|/β(µ) ∼ O(1) is manifested
as a 100% �error in the error� � and is acceptable; in contrast, |s(µ)−sN(µ)|/s(µ) ∼ O(1) is
manifested as a 100% error in the solution � and is thus clearly unacceptable. In essense, the
equation for the error e(µ), (5.34), permits relaxations � and hence rigorous yet inexpensive
bounds � that can not be directly applied to the original equation for u(µ), (5.24).

84

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 5.2. 2 NONCOERCIVE LINEAR PROBLEMS: HELMHOLTZ EQUATION

2.3.3 O�ine/Online Computational Procedure

Summary . The central computational aspect of our reduced-basis approach is an o�ine/on-
line computational decomposition which separates the requisite calculations into two distinct
stages. The complexity of the o�ine � or preprocessing � stage will depend on N (large),
N , Q, and J ; however, the complexity of the online stage � in which, given a new value of
µ, we evaluate sN(µ) and ∆s

N(µ) � will depend only on N , Q, and J . The absence of N
dependence in the online stage translates, in many cases, into real-time response.

It is simple to show[62] that, for our Galerkin approximation, the online cost to evaluate
uNn(µ), 1 ≤ n ≤ N , and sN(µ) is O(QN2) + O(N3) and O(N), respectively. We develop
here similar estimates for ∆N(µ) (and hence ∆s

N(µ)). In particular, we shall show that, in
the online stage, ‖Yr(· ;µ)‖Y and β̂(µ) may be calculated in only O(Q2N2) and O(P log J)
operations, respectively. We also brie�y address the associated o�ine complexity.

Calculation of the Dual Norm of the Residual . We �rst invoke (5.17) and (5.27) to write
the residual (5.33) as

r(v;µ) = f(v)−
Q∑
q=1

N∑
n=1

Θq(µ)uNn(µ)aq(ζn, v) . (5.50)

It then follows from linear superposition that

Yr(· ;µ) = ẑ00 −
Q∑
q=1

N∑
n=1

Θq(µ)uNn(µ)ẑqn (5.51)

where (ẑ00, v)Y = f(v), ∀ v ∈ Y , and

(ẑqn, v)Y = aq(ζn, v), ∀ v ∈ Y , (5.52)

for 1 ≤ q ≤ Q, 1 ≤ n ≤ N . We now insert the expression for Yr(· ;µ) of (5.51) into the
de�nition of the ‖ · ‖Y norm to obtain

‖Yr(· ;µ)‖2
Y = (ẑ00, ẑ00)Y

− 2

Q,N∑
q,n=1

Θq(µ)uNn(µ)(ẑqn, ẑ00)Y

+

Q,N∑
q,n=1

Q′,N ′∑
q′,n′=1

Θq(µ)Θq′(µ)uNn(µ)uNn′(µ)(ẑqn, ẑq′n′)Y .

The o�ine/online decompostion is now clear.
In the o�ine stage, we evaluate and store (ẑ00, ẑ00)Y , (ẑqn, ẑ00)Y , and (ẑqn, ẑq′n′)Y , 1 ≤

q, q′ ≤ Q, 1 ≤ n, n′ ≤ N : the cost is O(NQ2N2) operations. Then, in the online stage, to
compute ‖Yr(· ;µ)‖Y � given any new value of µ � we need only perform summations over
Q and N : the cost is O(Q2N2) operations. (In many cases, domain decomposition may be
exploited to further reduce the Q dependence � from quadratic to linear [74].) As required,
the complexity of the online stage is independent of N .

85

5.2. 2 NONCOERCIVE LINEAR PROBLEMS: HELMHOLTZ EQUATION

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Calculation of the Inf-Sup Lower Bound . The o�line/online decomposition for β̂(µ) follows
directly from the construction. In the o�ine stage, we must solve J �inf-sup� eigenproblems
� calculate

√
λ1(µ) from (5.14) for µ = µj, 1 ≤ j ≤ J : the cost is O(N tJ) for some

exponent t ≥ 1. In the online stage, we need only determine J (µ) and then evaluate (5.42):
the cost for the former is O(P log J) for a suitable indexing of the Rµj ,τ , 1 ≤ j ≤ J ; the cost
for the latter is O(PQ). We explore the dependence of J on Dµ, εs, τ , and P in Sections 2.4
and 2.5 in the context of particular examples.

We implicitly assume in our estimates above that we know, a priori , how to choose LJ
such that (5.41) will be satis�ed. In practice, that will not be the case, and hence additional
inf-sup eigenproblems (5.14) will need to be solved. However, for purposes of constructing the
sample LJ , we may exploit a reduced-basis approximation to (5.14) [72]; this inexpensive yet
accurate surrogate greatly reduces the design costs.

5.2.4 2.4 Improvements

2.4.1 Model Helmholtz Problem: P = 1

To motivate our improvements, we consider a very simple Helmholtz problem: Ω ⊂ Rd,
Y = H1

0 (Ω), P = 1, and

a(w, v;µ) =

∫
Ω

∇w · ∇v − µ︸︷︷︸
ω2

∫
Ω

wv . (5.53)

This model represents harmonic forcing of a �pinned� membrane at frequency ω =
√
µ. We

may also identify Q = 2, Θ1(µ) = 1, Θ2 = µ, a1(w, v) =
∫

Ω
∇w · ∇v, a2(w, v) = − ∫

Ω
wv;

furthermore, for |w|21 =
∫

Ω
|∇w|2, |w|22 =

∫
Ω
w2, we readily calculate Γ1 = 1, Γ2 = 1, and

CY = 1. Recall that the latter are for the case in which (·, ·)Y = (·, ·)H1(Ω), ‖·‖Y = ‖·‖H1(Ω).
It is clear that (5.53) exhibits resonances at σ1, σ2, . . ., where 0 < σ1 ≤ σ2 < . . . are

the real positive eigenvalues of a1(· , ·) relative to −a2(· , ·) (for example, for Ω =]0, 1[,
σk = k2π2). It can be further shown that the spectrum of (5.14) is indeed discrete, and that
β(µ) is piecewise linear � a �sawtooth.� More quantitatively, we obtain

β(µ) =
|σk − µ|
σk + 1

(5.54)

for µ in a neighborhood of σk.
For purposes of illustration, we shall consider Dµ = [σ∗(1−Λ), σ∗(1− εs)] for some small

Λ > εs and for some σ∗ ≡ σj∗ � 1. It is then readily shown from (5.39), (5.40), and (5.54)
that J � the number of regions Rµj ,τ required to satisfy our �coverage� constraint, (5.41)
� is given by

J(σ∗,Λ, εs, τ) ∼ σ∗ ln(Λ
εs

)

τ
(5.55)

for su�ciently large σ∗. Recall that τ ∈]0, 1[.

86

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 5.2. 2 NONCOERCIVE LINEAR PROBLEMS: HELMHOLTZ EQUATION

2.4.2 Bound Conditioner

The �rst evident problem with (5.55) is the dependence on σ∗ � in particular, since σ∗

large will often be the case of interest. This can be remedied by better choice of our bound
conditioner. To wit, we now de�ne (· , ·)Y = (· , ·)µ̃, ‖ · ‖Y = ‖ · ‖µ̃, where

(· , ·)µ̃ ≡
∫

Ω

∇w · ∇v + µ̃

∫
Ω

wv , (5.56)

and ‖ · ‖2
µ̃ ≡ (· , ·)µ̃; we require that µ̃ ≥ 1. In what follows subscript µ̃ refers to quantities

(previously introduced but now) de�ned relative to the (· , ·)Y = (· , ·)µ̃ and ‖ · ‖Y = ‖ · ‖µ̃
inner product and norm, respectively.

We �rst note that ‖e(µ)‖H1(Ω) ≤ ‖e(µ)‖µ̃ (since µ̃ ≥ 1). We next note that, from the
de�nition of the dual norm, (5.4)-(5.5),

‖Yr(· ;µ)‖µ̃2 ≤ ‖Yr(· ;µ)‖µ̃1 (5.57)

for µ̃2 ≥ µ̃1. Finally, it can be shown that (5.54) must now be replaced with

βµ̃(µ) =
|σk − µ|
σk + µ̃

. (5.58)

Assuming (for our purposes here) that βµ̃(µ)/β̂µ̃(µ) does not depend on µ̃, it follows from
(5.32), (5.57), and (5.58) that ∆N,µ̃=σ∗ ≤ 2∆N,µ̃=1. Therefore, if we bound ‖e(µ)‖H1(Ω) by
∆N,µ̃=σ∗ � which from Proposition 1 is a bound for ‖e(µ)‖µ̃=σ∗ and hence ‖e(µ)‖H1(Ω) �
rather than by ∆N,µ̃=1 (as before), the e�ectivity should increase by no more than roughly a
factor of two.

However, there will be a signi�cant decrease in the requisite J . In particular, we can now
take |w|21 =

∫
Ω
|∇w|2, |w|22 = µ̂

∫
Ω
w2, in terms of which Γ1 = 1, Γ2 = 1/µ̂, and CY = 1. It

then follows from (5.39), (5.40) and (5.58) that

Jµ̂=σ∗(σ
∗,Λ, εs, τ) ∼ 2 ln(Λ

εs
)

τ
; (5.59)

we have successfully eliminated the σ∗ dependence, at little detriment to the e�ectivity. The
reason is simple: χ1(µ) is high-wavenumber, and thus we may add a signi�cant L2 contribution
to our bound conditioner without adversely a�ecting the inf-sup parameter; this additional L2

term does, however, signi�cantly improve our continuity constants � on which our lower
bound construction is critically dependent. These arguments apply to Helmholtz problems
generally; however, for larger ranges of frequency, we will need di�erent bound conditioners
for di�erent subdomains of Dµ � if we wish to retain the Dµ-independence of J .

2.4.3 De�ation

The second debilitating aspect of (5.55) is the − ln(εs) dependence. This, too, can be elimi-
nated, albeit at slightly increased e�ort. The strategy is de�ation: remove the most dangerous
components of the error � those near χ1(µ), χ2(µ), . . ., � thereby increasing the e�ective

87

5.2. 2 NONCOERCIVE LINEAR PROBLEMS: HELMHOLTZ EQUATION

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

inf-sup parameter. The latter should improve our bounds and e�ectivity; but, more impor-
tantly, it will remove the εs dependence from (5.55) � our regions will be generally larger, and
will not shrink to zero as we approach resonances (or, at most, except very near resonances).

To begin, we de�ne the �trial� and �test� spaces UM(µ), VM(µ), with UM(µ) = span{φi(µ), 1 ≤
i ≤ M}, VM(µ) = span{ξi(µ), 1 ≤ i ≤ M}. We next introduce the correction δDM(µ) ∈
UM(µ) through the Petrov-Galerkin projection,

a(δDM(µ), v;µ) = r(v;µ), ∀ v ∈ VM(µ) . (5.60)

We can then de�ne the �de�ated� reduced-basis approximation as

uDN,M(µ) = uN(µ) + δDM(µ) , (5.61)

with corresponding output sDN,M(µ) = `(uDN,M(µ)). The associated residual is now given by

rD(v;µ) ≡ f(v)− a(uDN,M(µ), v;µ), ∀ v ∈ Y ; (5.62)

and thus
a(eD(µ), v;µ) = rD(v;µ), ∀ v ∈ Y , (5.63)

where the de�ated error is de�ned as eD(µ) ≡ u(µ)− uDN,M(µ).
For the purposes of this paper, we shall consider a particular set of spaces UM(µ), VM(µ):

for a given µ (which shall ultimately depend on µ), we set

UM(µ) = span {χ1(µ), . . . , χM(µ)} , (5.64)

VM(µ) = span {T µχ1(µ), . . . , T µχM(µ)} . (5.65)

We then note that, from (5.61)�(5.63), (5.6), and (5.13),

b(eD(µ), v;µ) = r(T µv;µ)− a(δDM(µ), T µv), ∀ v ∈ Y . (5.66)

It then follows from (5.60), (5.64), and (5.65) that

b(eD(µ), v;µ) = 0, ∀ v ∈ UM(µ) , (5.67)

and therefore eD(µ) ∈ ZM(µ) where ZM(µ) = {v ∈ Y | b(v, χm(µ);µ) = 0, 1 ≤ m ≤ M}.
We conclude from (5.12), (5.13), and (5.67) that

‖eD(µ)‖Y ≤ ‖T
µeD(µ)‖Y
βM(µ)

,

where
βM(µ) ≡ inf

w∈ZM (µ)
σ(w;µ) . (5.68)

It follows from (5.4), (5.63), and (5.6) that

‖YrD(· ;µ)‖Y = ‖T µeD(µ)‖Y

88

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 5.2. 2 NONCOERCIVE LINEAR PROBLEMS: HELMHOLTZ EQUATION

and therefore ‖eD(µ)‖Y ≤ ∆N,M(µ) where

∆N,M(µ) ≡ ‖Yr
D(· ;µ)‖Y
β̂M(µ)

,

and β̂M(µ) is a lower bound for βM(µ).
It remains to construct β̂M(µ). Revisiting the arguments in the proof of Proposition 2, we

note that

β2
M(µ) ≥ inf

w∈ZM (µ)

{[
σ(w;µ)

−

∥∥ Q∑
q=1

(Θq(µ)−Θq(µ)) Tqw
∥∥
Y

‖w‖Y

]2}
.

(5.69)

It then follows from (5.68), (5.11), (5.69), and (5.45), that for any µ and µ ∈ Dµ,

β2
M(µ) ≥ inf

t∈[βM (µ),γ(µ)]

{[
t− (CY Bµmax(µ))

]2}
.

It thus follows that, if µ ∈ Rµ,τ
M where

Rµ,τ
M ≡ {µ ∈ Dµ | Bµq (µ) ≤ τ

CY

√
λM+1(µ),

1 ≤ q ≤ Q} ,
(5.70)

then
β̂M(µ) ≡

√
λM+1(µ)− CY βµmax(µ) (5.71)

satis�es βM(µ) ≥ β̂M(µ) ≥ (1 − τ)
√
λM+1(µ); here we have invoked (5.16) to deduce that

β(µ) =
√
λM+1(µ). This result is much improved over (5.31) since

√
λM+1(µ) (M ≥ 1) will,

generically, remain much larger than εs � indeed, O(1) � for all µ.
In terms of our model problem of Section 2.4.1, we completely eliminate the εs dependence

of (5.55) (or (5.59)) � J is now O(1). For this model problem a simple de�ation M = 1
su�ces. However, for more complicated problems � that exhibit mode-crossing � M = 2
or even M = 3 (near where, say, three modes intersect) higher-order de�ations will prove
bene�cial; we shall observe such a case in Section 2.5.

It remains to address two issues concerning δDM(µ). First, we must show that ‖δDM(µ)‖H1(Ω) ≤
Const ‖e(µ)‖H1(Ω). This is readily demonstrated � for a Const typically considerably better
that ε−1

s � thanks to the choice of perforce stable Petrov-Galerkin spaces, (5.64), (5.65).
Second, we must show that δDM(µ) can be calculated e�ciently online. This is indeed the
case. The matrix associated with the left-hand side of (5.60) can be expressed, for the spaces
(5.64), (5.65), as

a(χi(µ), T µχj(µ);µ) =

Q∑
q=1

Θq(µ)aq(χ
i(µ), T µχj(µ))

=

Q∑
q=1

Q∑
q′=1

Θq(µ) Θq′(µ) aq(χ
i(µ), Tq′χ

j(µ)) ,

(5.72)

89

5.2. 2 NONCOERCIVE LINEAR PROBLEMS: HELMHOLTZ EQUATION

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

which may thus be formed in O(Q2M2) operations; here we have invoked (5.17) and (5.21).
Similar arguments indicate that the right-hand side of (5.60) may be formed in O(Q2MN)
operations. We conclude that the additional online complexity is negligible (e.g., compared to
calculation of ‖Yr(· ;µ)‖Y).†

5.2.5 2.5 Numerical Results

2.5.1 Model Helmholtz Problem: P = 2

We consider a model problem which illustrates a potential application of our methodology:
real-time, reliable solution of partial di�erential equations in the service of non-destructive
evaluation (and adaptive mission design) �in the �eld.�

vibration

actuator

vibration

sensor

N
E

U
M

A
N

N
DIRICHLET

Figure 5.1: Membrane with crack of length Loc under harmonic excitation at frequency ω.

Our domain Ωo(Loc) is a rectangular membrane [0, 3
2
]× [0, 1] with a �crack� Γocrack of length

Loc, as shown in Figure 1. We assume that the boundary of the memrane is �pinned� except on

†
The o�ine expense will be increased somewhat, not so much due to the λ2(µj), χ2(µj) (say for M = 1)

� in particular, since J will now be much smaller � but rather due to the JQ2(M2 + MN)N opera-
tions required for the inner products associated with the de�ation correction (5.60). Relatedly, the online
storage will also increase, by JQ2(M2 + MN). This e�ect can be very signi�cantly reduced if we replace
χ1(µ), χ2(µ), . . . in UM (µ), VM (µ) with a reduced-basis approximation to these quantities [72]; however, there
will be a concomitant slight increase in online cost.

90

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 5.2. 2 NONCOERCIVE LINEAR PROBLEMS: HELMHOLTZ EQUATION

the �stress-free� crack. The membrane is forced over a patch Ωo
in at frequency ω; the response

is measured over the patch Ωo
out. Our problem statement is then: Given Loc and ω2, �nd

s(ω2, Loc) =
1

|Ωo
out|

∫
Ωoout

uo(ω2, Loc) (5.73)

where uo(ω2, Loc) ∈ Xo(Loc) satis�es∫
Ωo(Loc)

∇uo(ω2, Loc) · ∇v − ω2uo(ω2, Loc) v

=
1

|Ωo
in|
∫

Ωoin

v, ∀ v ∈ Xo(Loc) ;
(5.74)

here Xo(Loc) = {H1(Ωo(Loc)) |v|∂Ωo(Loc)\Γocrack
= 0}. Clearly, an elastic plate (and more realistic

outputs) would be a much more relevant model; our methodology directly applies to this case
as well.

We now map Ωo(Loc) to a reference domain independent of Loc, Ω ≡ Ωo(Loc = 1
2
), through

piecewise-a�ne subdomain co-ordinate tranformations. The resulting equations can then be
cast in the desired form (5.23), (5.24), and (5.17) for P = 2, µ = (ω2, Loc), Dµ = {µ ∈
[25, 50] × [.3, .7] | β(µ) ≥ εs ∼= 0.005}, and Q = 8. (Note the relatively large value of Q,
relative to P , originates in the (accuracy) requirement that Ωo

in and Ωo
out map to invariant

images in Ω, the reference domain.) We do not give here the detailed expressions for either
the Θq(µ) or aq(· , ·), 1 ≤ q ≤ Q.

We brie�y comment on the structure of this model problem. For a given Loc, the bilinear
form is, apart from several scaling factors, identical to (5.53) of Section 2.4.1. We conclude
that, for any given (ω2, Loc), the spectrum of (5.14) is discrete; and furthermore that, for
given L

o

c, β(ω2, L
o

c) is a piecewise-linear function of ω2. However, if we now permit Loc to also
vary, the behavior of β(ω2, Loc) is no longer trivial. In particular, unlike in Section 2.4, we can
no longer characterize β(ω2, Loc) in terms of a few (more generally, denumerable) �resonance�
eigenvalues � our lower bound constructions are now required. We show in Figure 2 a contour
plot of β(ω2, Loc) over Dµ; the dark lines indicate �excluded regions� that contain resonances
� lines (more generally, P − 1 dimensional manifolds) along which β(µ) vanishes. (The
resonances will be eliminated if we incorporate damping or radiation into our model; however,
the inf-sup parameter may still remain small.)

2.5.2 The Inf-Sup Lower Bound

For this �rst set of tests we do not consider a complete �paving� of Dµ; rather LJ ≡ LTEST
J

comprises 25 points µ1, . . . , µJ equidistributed along a segment (25, 0.4)(50, 0.6) in Dµ. We
shall consider the following cases:

I ‖ · ‖Y = ‖ · ‖H1(Ω), no de�ation;
II ‖ · ‖Y = ‖ · ‖µ̃=ω2

min=25, no de�ation;
III ‖ · ‖Y = ‖ · ‖µ̃=ω2

min=25, de�ation, M = 1;
IV ‖ · ‖Y = ‖ · ‖µ̃=ω2

min=25, de�ation, M = 2;
V ‖ · ‖Y = ‖ · ‖µ̃=ω2

min=25, de�ation, M = 3.

91

5.2. 2 NONCOERCIVE LINEAR PROBLEMS: HELMHOLTZ EQUATION

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

25
 30
 35
 40
 45
 50

0.3

0.4

0.5

0.6

0.7

Figure 5.2: Contours of β(ω2, Loc) over Dµ for the (cracked membrane) model Helmholtz
problem.

92

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 5.2. 2 NONCOERCIVE LINEAR PROBLEMS: HELMHOLTZ EQUATION

For the de�nition of ‖ · ‖µ̃ and of de�ation see Sections 2.4.2 and 2.4.3, respectively. In all
cases, we choose τ = 3/4.

We plot in Figure 3 the polygons Rµj ,τ for cases I, II, III, and V. Note we shift vertically
the regions for cases I (highest), II, and III for purposes of easy comparison. (In actual fact,
for given j, the center of Rµj ,τ for all cases (I, II, II, and V) is µ = µj; in Figure 3, only
Rµj ,τ for case V is honestly (vertically) located.) First, we observe that the �correct� bound
conditioner (I → II) considerably increases the size of the regions; furthermore, this e�ect will
be even more dramatic for higher frequency ranges. Second, we observe that some de�ation
(II → III) further improves the situation; and su�cient de�ation (III → V) greatly improves
the situation, in particular as we approach resonance. Note that although IV performs better
than III, only with V do we have su�cient de�ation in the sense that all dangerous modes
are neutralized � it is clear from Figure 3 that three modes are �active� near the end of our
segment (25, 0.4)(50, 0.6). Increasing M beyond 3 has little e�ect as all modes now appear
�far away.�

25
 30
 35
 40
 45
 50

0.3

0.4

0.5

0.6

0.7

Figure 5.3: Polygons Rµj ,τ for cases I, II, III, and V.

In short, a combination of �tuned� bound conditioners and su�cient de�ation greatly
increases the size of our regions � in particular at high frequencies and near resonance,
respectively � such that we can expect J to be roughly independent of Dµ and εs. We
show in Figure 4, for case V, a (more or less) complete paving of Dµ by regions Rµj ,τ ,

93

5.2. 2 NONCOERCIVE LINEAR PROBLEMS: HELMHOLTZ EQUATION

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

25
 30
 35
 40
 45
 50

0.3

0.4

0.5

0.6

0.7

Figure 5.4: A (more or less) complete �paving� of Dµ for case V.

94

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 5.2. 2 NONCOERCIVE LINEAR PROBLEMS: HELMHOLTZ EQUATION

1 ≤ j ≤ J = 625. Note we anticipate that J can be further reduced by roughly 5�10 based
on less conservative polygons which exploit the monotonicity of the Θq(µ) [50].

The result of Figure 4 is disappointing in one aspect. In actual fact, β(µ) varies signi�cantly
(locally) only in the one direction perpendicular to the P−1 dimensional �resonance� manifolds.
Our construction, even with de�ation, remains isotropic, and thus J ∼ (Const > 1)P . In
contrast, an anisotropic construction would be relatively insensitive to P . Unfortunately, at
present, we see no way to capture this anisotropy e�ciently while maintaining the requisite
lower bound property.

2.5.3 Error Bounds and E�ectivity

We consider here a point µTEST which lies within a region Rµj ,τ for all cases I, II, III, IV, and
V. This point, µTEST = (42.95, 0.55), is quite close to a resonance.

We present in Tables 5.1 and 5.2 ‖e(D)(µTEST)‖H1(Ω)/ ‖u(µTEST)‖H1(Ω) and ηN(µTEST),
respectively, as a function of N for Cases I, II, and V. Note SN , our reduced-basis approxi-
mation sample, is chosen here log-randomly over Dµ; see Sections 3 and 4 for discussion of
better optimal/adaptive alternatives for sample design. As expected from the arguments of
Section 2.4.2, the bound conditioner has little (detrimental) e�ect on the e�ectivity. And, as
expected from the arguments of Section 2.3.3, de�ation has a modest (respectively, signi�cant)
positive e�ect on the error (respectively, e�ectivity).

‖e(D)(µTEST)‖H1(Ω)/‖u(µTEST)‖H1(Ω)

N I II V

4 2.7× 10−1 2.7× 10−1 8.4× 10−2

8 9.6× 10−2 9.6× 10−2 3.0× 10−2

12 6.2× 10−2 6.2× 10−2 5.8× 10−2

16 9.0× 10−3 9.0× 10−3 8.5× 10−3

20 3.5× 10−4 3.5× 10−4 3.5× 10−4

24 2.7× 10−4 2.7× 10−4 2.7× 10−4

28 1.2× 10−4 1.2× 10−4 1.2× 10−4

32 2.1× 10−5 2.1× 10−5 2.1× 10−5

36 8.9× 10−6 8.9× 10−6 8.9× 10−6

40 3.0× 10−6 3.0× 10−6 3.0× 10−6

Table 5.1: The normalized error as a function of N for cases I, II, and V.

We close with two related remarks. First, even if the regionsRµj ,τ include a resonance, this
does not imply that the error (or error bound) remains �nite as we approach the resonance.
Second, round-o� errors will become increasingly important, and ultimately dominant, in the
very immediate vicinity of resonances; in particular, as we approach extremely close to a
resonance, we may observe e�ectivities below unity. The reason is clear: our error bound
assumes (5.67); however, in �nite precision, this condition will be violated � and the resulting
�round-o�� error ampli�ed by 1/β(µ). Exact orthogonalization recovers the theoretical result
� ηN(µ) ≥ 1; in more realistic models, damping will provide the necessary �cut-o�.�

95

5.3. 3 CUBICALLY NONLINEAR POISSON PROBLEM

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

ηN(µ)

N I II V

4 26.7 35.3 9.0
8 29.3 41.1 10.1

12 129.4 145.1 12.2
16 101.3 132.0 11.0
20 98.2 141.0 11.1
24 97.9 143.1 11.2
28 100.6 148.3 11.6
32 102.8 153.5 12.0
36 103.2 154.2 12.1
40 102.3 153.0 12.0

Table 5.2: The e�ectivity ηN(µ) as a function of N for cases I, II, and V.

5.3 3 Cubically Nonlinear Poisson Problem

5.3.1 3.1 Preliminaries

We consider a suitably regular domain Ω ⊂ R2 with boundary ∂Ω = ∂ΩR ∪ ∂ΩN. We set
Y = H1(Ω), and (· , ·)Y = (· , ·)H1(Ω) and ‖ · ‖Y = ‖ · ‖H1(Ω) (as de�ned in (5.2)). The dual
space of Y will be denoted Y ′, with norm de�ned as in (5.3) or, equivalently, (5.4), (5.5).

We next de�ne our parameter set (µ1, µ2) ∈ Dµ ≡ [µmin
1 > 0, µmax

1]× [µmin
2 > 0, µmax

2] ⊂
RP=2

+ . Then, for any µ ∈ Dµ, a(· , · ;µ) : Y × Y → R is given by

a(w, v;µ) = aL(w, v;µ) + aNL(w, v), ∀ w, v ∈ Y , (5.75)

where

aL(w, v;µ) = µ1

∫
Ω

∇w · ∇v + µ2

∫
∂ΩR

wv , (5.76)

and

aNL(w, v) =

∫
Ω

w3v (5.77)

represent a �Poisson-Robin� operator and cubic nonlinearity, respectively.
We note that aL is continuous,

sup
w∈Y

sup
v∈Y

aL(w, v;µ)

‖w‖Y ‖v‖Y ≤ γ(µ) <∞, ∀ µ ∈ Dµ , (5.78)

symmetric, and coercive,

0 < εs ≤ α(µ) = inf
w∈Y

aL(w,w;µ)

‖w‖2
Y

, ∀ µ ∈ Dµ . (5.79)

Furthermore, aL(· , · ;µ) depends a�nely on the parameter µ � the expansion (5.17) applies
with Q = 2 and Θq = µq. In fact, our treatment of this section applies to any continuous,
coercive, a�ne aL(· , · ;µ).

96

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 5.3. 3 CUBICALLY NONLINEAR POISSON PROBLEM

5.3.2 3.2 Problem Formulation

3.2.1 Weak Statement

We introduce an output functional ` ∈ Y ′ and �data� functional f ∈ Y ′; for our model problem
we take `(v) = f(v) =

∫
∂ΩN

v. Our weak statement of the partial di�erential equation is then:
Given µ, �nd

s = `(u(µ)) , (5.80)

where u(µ) ∈ Y satis�es

a(u(µ), v;µ) = f(v), ∀ v ∈ Y . (5.81)

In the language of the introduction, s(µ) is our output, and u(µ) is our �eld variable. It can
be shown [19] that (5.75), (5.81) admits a unique solution.

As for our Helmholtz problem, in actual practice we replace s(µ) and u(µ) with corre-
sponding �truth� Galerkin approximations sN (µ) and uN (µ), respectively (see Section 2.2.1).

3.2.2 Reduced-Basis Approximation

The focus of the current paper is a posteriori error estimation. We shall thus take our
reduced-basis approximation as given. In particular, we assume that we are provided with a
reduced-basis approximation to u(µ), uN(µ) ∈ WN , where

WN = span {ζn ≡ u(µn), 1 ≤ n ≤ N} , (5.82)

SN = {µ1 ∈ Dµ, . . . , µN ∈ Dµ}, and u(µn) satis�es (5.81) for µ = µn. It follows that uN(µ)
may be expressed as

uN(µ) =
N∑
n=1

uNn(µ) ζn . (5.83)

The reduced-basis approximation to the output s(µ), sN(µ), is given by sN(µ) = `(uN(µ)).
For our equations (5.75), (5.81), standard Galerkin projection is the best choice � as

we shall see, there are no stability issues � and we thus select this (simplest) option:
a(uN(µ), v;µ) = f(v), ∀ v ∈ WN .

3.2.3 Error Estimation: Objective

As for Helmholtz, we wish to provide an a posteriori error bound ∆N(µ) for ‖e(µ)‖H1(Ω) such
that the e�ectivity, (5.30), satis�es

1 ≤ ηN(µ) ≤ Cη , (5.84)

for Cη independent ofN and µ� and preferably close to unity. Error bounds for |s(µ)−sN(µ)|
may also be developed.

97

5.3. 3 CUBICALLY NONLINEAR POISSON PROBLEM

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

5.3.3 3.3 A Posteriori Error Estimation

3.3.1 Error Bound

We assume that we are given an α̂ : Dµ → R+ such that

α(µ) ≥ α̂(µ) ≥ (1− τ) εs, ∀ µ ∈ Dµ , (5.85)

for given τ ∈]0, 1[. We then de�ne our error bound as

∆N(µ) ≡ ‖Yr(· ;µ)‖Y
α̂(µ)

, (5.86)

where
r(v;µ) ≡ f(v)− a(uN(µ), v;µ), ∀v ∈ Y , (5.87)

is the residual.
We can then state

Proposition 7. For the error bound ∆N(µ) of (5.86),

‖e(µ)‖H1(Ω) ≤ ∆N(µ), ∀ µ ∈ Dµ , (5.88)

for all N ∈ N.

Proof We know from (5.75), (5.76), (5.77) that (5.87) may be written as

aL(e(µ), v;µ) +

∫
Ω

(
u3(µ)− u3

N(µ)
)
v = r(v;µ), ∀ v ∈ Y , (5.89)

where e(µ) ≡ u(µ)− uN(µ). We now take v = e(µ), note that∫
Ω

(
u3(µ)− u3

N(µ)
)

(u(µ)− uN(µ)) ≥ 0 , (5.90)

and invoke (5.79) and (5.85) to obtain

α̂(µ)‖e(µ)‖2
Y ≤ r(e(µ);µ) . (5.91)

The desired result then follows from (5.5) and (5.91) (recall that ‖ · ‖Y ≡ ‖ · ‖H1(Ω)). �

We do not include here a uniform upper bound for the e�ectivity; however, it is clear from
(5.89) that, as ‖r(· ;µ)‖Y ′ → 0, ηN(µ) ≤ γ(µ)/(1− τ)εs.

3.3.2 Coercivity Lower Bound Construction

Our approach to the inf-sup lower bound, described in Section 2.3.2, can also be adapted to
general coercive problems [50]. For our purposes here, however, we consider a simple variant
that exploits the monotonicity of α(µ).

In particular, it can be shown that, for aL(· , · ;µ) as de�ned in (5.76), α(µ1) ≤ α(µ2)
for µ2 ≥ µ1 (in the sense of each component); the proof follows directly from the Rayleigh

98

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 5.3. 3 CUBICALLY NONLINEAR POISSON PROBLEM

quotient de�nition, (5.79). Thus, given a sample LJ ≡ {µ1 = µmin, . . . , µJ}, we may de�ne
a lower bound as

α̂(µ) ≡ max
{j∈{1,...,J} | µj≤µ}

α(µj) . (5.92)

The best distribution of points � to minimize J given τ and our requirement (5.85) � is
logarithmic. Further details on these and related bound conditioners for coercive problems
may be found elsewhere.[82]

3.3.3 O�ine/Online Computational Procedure

Summary . Our nonlinear problem admits an o�line/online decomposition quite similar to that
for linear problems. The key new issue is the higher order summations that perforce arise
within the Galerkin context. Our focus here will be on e�cient (or as e�cient as possible)
treatment of these new terms.

By way of summary, the online complexity to calculate uNn(µ), 1 ≤ n ≤ N , and sub-
sequently sN(µ) = `(uN(µ)), scales as K iter(2N2 + N3 + N4); here K iter is the number of
Newton iterations required to solve for uNn(µ), 1 ≤ n ≤ N . The N4 dependence � which
arises due to the nonlinearity � is not pleasant, but for reasonably small N , not debilitating.
In constrast, the online complexity to calculate ∆N(µ) scales, to leading order for �large� N ,
as C6N

6; the N6 dependence � which arises due to the nonlinear contribution to the dual
norm of the residual � is now more daunting. Fortunately, C6 = 1/72, and thus, again for
modest N , e�ciency is preserved.

We focus our attention here on the dual norm calculation, and in particular on the origin
of the constant C6.

Calculation of the Dual Norm of the Residual . We �rst invoke (5.75), (5.76),(5.77), and
(5.83) to write

r(v;µ) = f(v)−
N∑
n=1

uNn(µ) aL(ζn, v;µ)

−
N∑

n,n′,n′′=1

uNn(µ)uNn′(µ)uNn′′(µ)

∫
Ω

ζnζn′ζn′′v .

(5.93)

It thus follows from (5.76), (5.93) and linear superposition that

Yr(· ;µ) = ẑL
00 − µ1

N∑
n=1

uNn(µ)ẑL
1n − µ2

N∑
n=1

uNn(µ)ẑL
2n

−
N∑

n,n′,n′′=1

uNn(µ)uNn′(µ)uNn′′(µ) ẑNL
nn′n′′ ,

(5.94)

where (for example) ẑNL
nn′n′′ ∈ Y satis�es

(ẑNL
nn′n′′ , v)Y =

∫
Ω

ζnζn′ζn′′v, ∀ v ∈ Y . (5.95)

99

5.3. 3 CUBICALLY NONLINEAR POISSON PROBLEM

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

We thus obtain

‖Yr(· ;µ)‖2
Y = · · ·+

N∑
n,n′,n′′=1

N∑
m,m′,m′′=1

uNn(µ) · · ·uNm′′(µ) (ẑNL
nn′n′′ , ẑ

NL
mm′m′′)Y ,

(5.96)

where we shall focus only on the highest order (and hence most expensive) summations.
Obviously, naïve treatment of (5.96) directly yields N6 operations. However, there are

many symmetries that can be exploited. In particular, we note from (5.95) that ẑNL
nn′n′′ =

ẑNL
mm′m′′ for any mm

′m′′ triplet which is a permutation of nn′n′′. We denote by PN3 the set of
unique ordered 3-tuples of integers j ∈ {1, . . . , N} � (j, j′, j′′) such that j ≤ j′ ≤ j′′; by T
the cardinality of PN3 ; and by Πk = (Π1

k,Π
2
k,Π

3
k), 1 ≤ k ≤ T , the members of PN3 . We can

thus write our sum of (5.96) as

T∑
k=1

T∑
k′=1

CΠkCΠk′
uNΠ1

k
(µ)uNΠ2

k
(µ)uNΠ3

k
×

uNΠ1
k′

(µ)uNΠ2
k′

(µ)uNΠ3
k′

(ẑNL
Πk
, ẑNL

Πk′
)Y ,

(5.97)

where the CΠk are multiplicity constants.
The online complexity of (5.97) clearly scales as T 2/2. It is readily shown that the cardi-

nality of PNκ , the set of unique ordered κ-tuples of integers j ∈ {1, . . . , N} is given by

T(N, κ) =
((N − 1) + κ)!

(N − 1)! κ!
. (5.98)

In our particular case, T = T(N, 3) ∼ N3/6 for N large; our sum (5.97) may thus be
performed in N6/72 operations � a considerable improvement over the naïve estimate of N6.
In general, T(N, κ) ∼ N6/κ!: in relative terms, higher order (e.g., uκ) nonlinearities thus
enjoy greater economies; however, in absolute terms, T(N, κ) will grow very rapidly with N
for larger κ. We must be content with relatively low-order (or low-order approximations of)
nonlinearities.

5.3.4 3.4 Numerical Results

3.4.1 Model Problems

Our model problem has already been speci�ed in Sections 3.1 and 3.2. It remains only to
specify the physical domain, Ω ⊂ R2 � a �tee�-shaped region with ∂ΩN at the root � and
the parameter domain � µmin

1 = .1, µmax
1 = 10, µmin

2 = .01, µmax
2 = 1. Note the nonlinearity

will be most signi�cant for µ1 and µ2 small.

3.4.2 Adaptive Reduced-Basis Approximation

Given the higher powers of N that now appear in our complexity estimates, it is crucial (both
as regards online and o�ine e�ort) to control N more tightly. To this end, we may gainfully
apply our a posteriori error bounds adaptively.

100

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 5.3. 3 CUBICALLY NONLINEAR POISSON PROBLEM

We �rst construct, o�ine, an approximation that, over most of the domain, exhibits an
error (say, here, in theH1-norm) less than εprior

d : we begin with a �rst sample point µ1(SN ′=1 =
{µ1}); we next (inexpensively) evaluate ∆N ′=1(µ) over a large test sample of parameter points
in Dµ,Ξprior; we then choose for µ2 (and hence SN ′=2 = {µ1, µ2}) the maximizer of ∆N ′=1(µ)
over Ξprior; we now repeat this process until the maximum of ∆N ′=Nprior(µ) over Ξprior is less
than εprior

d . Then, online, given a new value of the parameter, µ, and an error tolerance
εpost
d (µ), we essentially repeat this adaptive process � but now our sample points are drawn
from SNprior , and the test sample is a singleton � µ. We typically choose εprior

d � εpost
d (µ)

since our prior test sample is not exhaustive; and therefore, typically, Npost(µ) ≤ Nprior.
We present in Table 5.3 the normalized error ‖e(µ∗)‖Y /‖u(µ∗)‖Y , as a function of N , for

the (log) random and adaptive sampling processes (note that, in the results for the random
sampling process, the sample SN is di�erent for each N). We also indicate in Table 5.3
the online computational time,

†
which is largely independent of the sampling process but

very strongly dependent on N (see Section 3.3.3). Here µ∗ = µ∗(N) is the point in Ξprior

at which the maximum error bound ∆N(µ) occurs � note µ∗(N) will be di�erent for the
di�erent sampling strategies. We observe that the adaptive sampling procedure yields higher
accuracy at lowerN ; and that even these modest reductions inN can translate into measurable
performance improvements. For purposes of comparison, calculation of sN (µ) requires 50
seconds � and thus, even for an accuracy of 2.0%, the reduced-basis approach is two to three
orders of magnitude faster (marginally) than conventional techniques.

N
‖e(µ∗)‖Y
‖u(µ∗)‖Y

�Random�

‖e(µ∗)‖Y
‖u(µ∗)‖Y

�Adaptive�

Time
(ms)

2 5.47× 10−1 4.38× 10−1 10.9
4 2.17× 10−1 1.28× 10−1 11.4
6 8.55× 10−2 7.27× 10−2 13.4
8 1.68× 10−1 5.10× 10−2 18.6
10 1.06× 10−1 2.09× 10−2 32.6

Table 5.3: Error bound for the cubically nonlinear Poisson problem for random and adaptive
samples.

Of course, in actual practice, the savings indicated in Table 5.3 can only be realized if
our error estimators are true bounds (ηN(µ) ≥ 1), and good bounds (ηN(µ) ≈ 1). We show
in Table 5.4 the (normalized) error bound ∆N(µ∗)/‖u(µ∗)‖Y , and e�ectivity, ηN(µ∗), as a
function of N (for the adaptive case); as before, µ∗ is the point in Ξprior at which the maximum
error bound occurs. We observe that we do indeed obtain bounds, but that the bounds are
not too sharp.

The main cause of the higher e�ectivities is the relatively small value of α(µ) (and hence
α̂(µ)) for low µ1 and µ2. We present in Table 5.5 the e�ectivities for three test points,
µTEST,1 = (0.01, 0.1), µTEST,2 = (0.1, 1), and µTEST,3 = (1, 10), for the N = 10 adaptive
sample; except near µ2 = .01, the e�ectivities are quite close to unity. Numerous remedies
exist for low µ1, µ2; we thus do not dwell on this further here.

†
The calculations were performed on a Pentium R©4 2.4GHz processor.

101

5.4. 4. THE BURGERS EQUATION

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

N ∆N (µ∗)
‖u(µ∗)‖Y

ηN(µ∗)

2 7.42× 10+1 169.3
4 1.01× 10+1 79.3
6 4.11× 10+0 56.6
8 1.16× 10+0 22.8
10 5.34× 10−1 25.6

Table 5.4: Error bound and e�ectivity for the cubically nonlinear Poisson problem for an
adaptive sample.

µ ‖e(µ)‖Y
‖u(µ)‖Y

∆N (µ)
‖u(µ)‖Y

ηN(µ)

µTEST,1 1.45× 10−4 5.18× 10−3 35.7
µTEST,2 7.37× 10−3 4.33× 10−2 5.9
µTEST,3 6.91× 10−3 1.52× 10−2 2.2

Table 5.5: Error, error bound, and e�ectivity for the cubically nonlinear Poisson problem
for the N = 10 adaptive sample; µTEST,1 = (0.01; 0.1), µTEST,2 = (0.1; 1), and µTEST,3 =

(1; 10).

5.4 4. The Burgers Equation

5.4.1 4.1 Preliminaries

We consider the domain Ω =]0, 1[. We set Y = H1
0 (Ω), and (· , ·)Y = (· , ·)H1(Ω),

‖ · ‖Y = ‖ · ‖H1(Ω). The dual space of Y will be denoted Y ′, with the norm de�ned as in (5.3),
or, equivalently, (5.4), (5.5).

In this case we have a single parameter, µ ∈ Dµ ≡ [µmin > 0, µmax] ⊂ RP=1
+ . For any

µ ∈ Dµ. a(· , · ;µ) : Y × Y → R is given by

a(w, v;µ) = aL(w, v;µ) + aNL(w,w, v), ∀ v ∈ Y , (5.99)

where

aL(w, v;µ) ≡ µa0(w, v) = µ

∫ 1

0

wxvx (5.100)

and

aNL(w, z, v) = −1

2

∫ 1

0

wzvx (5.101)

are bilinear and trilinear forms, respectively.
For a given z ∈ Y , we de�ne the bilinear form � associated to the derivative of our

operator � d(· , · ; z;µ) : Y × Y → R as

d(w, v; z;µ) = aL(w, v;µ) + 2aNL(z, w, v) . (5.102)

102

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 5.4. 4. THE BURGERS EQUATION

It shall prove convenient to introduce the supremizing operator T z;µ : Y → Y such that, for
any w ∈ Y ,

(T z;µw, v)Y = d(w, v; z;µ), ∀ v ∈ Y ; (5.103)

it is readily shown that

T z;µw = arg sup
v∈Y

d(w, v; z;µ)

‖v‖Y . (5.104)

Furthermore, for

βz(µ) ≡ inf
w∈Y

sup
v∈Y

d(w, v; z;µ)

‖w‖Y ‖v‖Y , (5.105)

and

γz(µ) ≡ sup
w∈Y

sup
v∈Y

d(w, v; z;µ)

‖w‖Y ‖v‖Y , (5.106)

we readily derive
βz(µ) = inf

w∈Y
σz(w;µ) ≤ sup

w∈Y
σz(w;µ) = γz(µ) ,

where

σz(w;µ) ≡ ‖T
z,µw‖Y
‖w‖Y . (5.107)

The development parallels Helmholtz except that we must include our linearization point z in
the de�nitions.

Finally, we assume that we are given a constant ρ such that, for all v ∈ Y (= H1
0 (Ω)),

‖v‖L4(Ω) ≤ ρ‖v‖Y ; (5.108)

the existence of a �nite ρ (for Ω ⊂ Rd=1,2,3) is guaranteed by the continuous embedding of
Y in L4(Ω) [68]. In R1 we also have Y ⊂ L∞(Ω); we thus readily derive, from the Cauchy-
Schwarz inequality, ρ = 1

2
. In higher dimensions it is not di�cult to develop bounds for ρ in

general geometries.

5.4.2 4.2 Problem Formulation

4.2.1 Weak Statement

We introduce an output functional ` ∈ Y ′ and �data� functional f ∈ Y ′. Our weak statement
of the partial di�erential equation is then: Given µ, �nd

s(µ) = `(u(µ)) , (5.109)

where u(µ) ∈ Y satis�es
a(u(µ), v;µ) = f(v), ∀ v ∈ Y . (5.110)

Equations (5.99), (5.100), (5.101), (5.110) are a very good model for the incompressible
Navier-Stokes equations (see below), which is our ultimate goal. For su�ciently large µ,
(5.99), (5.110) � and the incompressible Navier-Stokes equations � have a unique solution;
for smaller µ, we can encounter non-uniqueness � multiple solution branches may exist.

As for our Helmholtz problem, in actual practice we replace s(µ) and u(µ) with corre-
sponding �truth� Galerkin approximations sN (µ) and uN (µ), respectively (see Section 2.2.1).

103

5.4. 4. THE BURGERS EQUATION

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

4.2.2 Reduced-Basis Approximation

We assume that we are provided with a reduced-basis approximation to u(µ), uN(µ) ∈ WN ,
where

WN = span {ζn ≡ uI(µn), 1 ≤ n ≤ N} , (5.111)

SN = {µ1 ∈ Dµ, . . . , µN ∈ Dµ}, and uI(µn) satis�es (5.110) for µ = µn. It follows that
uN(µ) may be expressed as

uN(µ) =
N∑
n=1

uNn(µ) uI(µn) . (5.112)

The reduced-basis approximation to the output s(µ), sN(µ), is given by sN(µ) = `(uN(µ)).
Note uI(µn) refers to solutions of (5.99), (5.110), which are assumed to reside on a ��rst�
(particular) branch; although we do not dwell here on possible bifurcation structure, other
�parametric manifolds� (say, uII(µ)) may, in general, exist.

For the purposes of this paper, we shall consider only standard Galerkin projections:
a(uN(µ), v;µ) = f(v), ∀ v ∈ Y . However, the discrete inf-sup parameter associated with
the latter may not be �good,� with corresponding detriment to the accuracy of uN(µ) and
hence sN(µ). More sophisticated minimum-residual [44, 72] and in particular Petrov-Galerkin
[45, 72] approaches restore (guaranteed) stability, albeit at some additional complexity and
cost.

We comment that, for the case in which geometry is �xed and only viscosity varies, our
reduced-basis approximation (and associated error estimation) procedure for the Burgers equa-
tion directly translates to the full incompressible Navier-Stokes equations � in particular, a
divergence- (and hence pressure-) free formulation of the incompressible Navier-Stokes equa-
tions.

4.2.3 Error Estimation: Objective

As for the cubically nonlinear Poisson problem, we would like to provide an error bound ∆N(µ)
for ‖e(µ)‖H1(Ω) (and, relatedly, bound ∆s

N(µ) for |s(µ) − sN(µ)|) such that the e�ectivity
satis�es (5.84). However, as we shall see, our error statement will no longer be unquali�ed �
there will be a �choice� that re�ects the possible existence of multiple solution branches.

5.4.3 4.3 A Posteriori Error Estimation

4.3.1 Preliminaries

We �rst de�ne, in a slight abuse of notation, T µ ≡ T uN (µ);µ where T z;µ is given by (5.103);
relatedly, we de�ne β(µ) ≡ βuN (µ)(µ), γ(µ) ≡ γuN (µ)(µ), and σ(w;µ) = σuN (µ)(w;µ),
for βz(µ), γz(µ), and σz(w;µ) de�ned in (5.105), (5.106), and (5.107). We assume that
β(µ) ≥ εs, ∀ µ ∈ Dµ. In what follows, we will explicitly highlight the N -dependence of
β(µ), γ(µ), and σ(w;µ) only in those places where this dependence is either not obvious or
potentially problematic.

104

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 5.4. 4. THE BURGERS EQUATION

We shall also require operators Tn : Y → Y , 0 ≤ n ≤ N : for any w ∈ Y ,

(Tnw, v)Y = an(w, v), ∀ v ∈ Y , (5.113)

where

a0(w, v) =

∫ 1

0

wxvx , (5.114)

and
an(w, v) = 2aNL(ζn, w, v), 1 ≤ n ≤ N . (5.115)

It follows from (5.102), (5.103), (5.113), (5.114), and (5.115) that

T µw = µT0w +
N∑
n=1

uNn(µ) Tnw .

Note that T0 and the Tn are parameter-independent.

4.3.2 Error Bound

We assume that we are given a β̂(µ) such that

β(µ) ≥ β̂(µ) ≥ (1− τ) εs, ∀ µ ∈ D , (5.116)

where τ ∈]0, 1[. As before, ‖Yr(· ;µ)‖Y is the dual norm of the residual,

r(v;µ) ≡ f(v)− a(uN(µ), v;µ), ∀ v ∈ Y .

We then de�ne, for ‖Yr(· ;µ)‖Y ≤ β̂2(µ)
2ρ2 ,

∆N(µ) ≡ [β̂(µ)− (β̂2(µ)− 2ρ2‖Yr(· ;µ)‖Y)1/2]/ρ2

(5.117)

ΥN(µ) ≡ [β̂(µ) + (β̂2(µ)− 2ρ2‖Yr(· ;µ)‖Y)1/2]/ρ2 .

(5.118)

We note that, as ‖Yr(· ;µ)‖Y → 0,

∆N(µ) ∼ ‖Yr(· ;µ)‖Y
β̂(µ)

and

ΥN(µ) ∼ 2β̂(µ)

ρ2
;

thus, ∆N(µ)→ 0 but ΥN(µ)→ Const as the residual vanishes.
We can then state

105

5.4. 4. THE BURGERS EQUATION

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Proposition 8. Given µ ∈ Dµ, for N su�ciently large such that

‖Yr(· ;µ)‖Y ≤ β̂2(µ)

2ρ2
, (5.119)

either

‖e(µ)‖H1(Ω) ≤ ∆N(µ) , (5.120)

or

‖e(µ)‖H1(Ω) ≥ ΥN(µ) , (5.121)

where ∆N(µ) and ΥN(µ) are given by (5.117) and (5.118), respectively.

Proof It is a simple matter to show that e(µ) = u(µ)− uN(µ) satis�es

d(e(µ), v;uN(µ);µ) = r(v;µ)− aNL(e(µ), e(µ), v),

∀ v ∈ Y .
(5.122)

Since from (5.101) and (5.108)∣∣aNL(w,w, v)
∣∣ ≤ 1

2
‖w‖2

L4(Ω) ‖v‖Y
≤ 1

2
ρ2 ‖w‖2

Y ‖v‖Y ,

it follows from (5.122) (with v = T µe(µ)), (5.103), (5.105), and (5.116) that

1
2
ρ2‖e(µ)‖2

Y − β̂(µ)‖e(µ)‖Y + ‖Yr(· ;µ)‖Y ≥ 0 . (5.123)

The desired result directly follows from solution of this quadratic equation for ‖e(µ)‖Y . �

We note that an alternative proof � which directly places a restriction on ‖e(µ)‖Y that is
subsequently self-consistently determined from the strength of the nonlinearity � is applicable
to much more general nonlinearities. However, in the quadratic case, the proof above is simpler
and slightly sharper.

We do not include here a uniform upper bound for the e�ectivity, however, it is clear from
(5.123) that, as ‖Yr(· ;µ)‖Y → 0, ηN(µ) ≤ γ(µ)/(1− τ)εs (recall that both γ(µ) and εs(µ)
may depend on uN(µ)).

We now turn to an interpretation of the �choice� (5.120), (5.121). It is clear that, given
WN , (5.111) (and hence (5.112)), all evidence would suggest that, as ‖Yr(· ;µ)‖Y → 0,
uN(µ) should well approximate uI(µ); thus (5.120) � note ∆N(µ) → 0 as N → ∞ � is
the most obvious choice for ‖uI(µ)− uN(µ)‖Y . However, equally clearly, if a second branch,
uII(µ), exists, there is no reason that uN(µ) should � in fact, there is every reason that
uN(µ) should not � well approximate uII(µ); thus, for this (possible) second branch, (5.121)
� note ΥN(µ)→ Const as N →∞ � is the most obvious choice. In short, the error bound
�sees� only the residual, which in turn �sees� only the branch-independent projection of uI(µ)
(or uII(µ)), f(v). Thus, absent other a priori information, the ΥN(µ) option is a nonlinear

106

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 5.4. 4. THE BURGERS EQUATION

necessity � a re�ection of the potential existence of distinct multiple solutions.
†
Consistent

with these arguments, we note that if d(· , · ;uN(µ);µ) is coercive � certainly the case for
su�ciently large µ � then it follows directly from (5.122), since aNL(e(µ), e(µ); e(µ)) = 0,
that we may obtain an unconditional bound on the error in uN(µ) relative to the perforce
single branch, u(I)(µ).

However, there is a dark side: we can not rigorously preclude the possibility that ‖uI(µ)−
uN(µ)‖Y ≥ ΥN(µ). Although this is extremely unlikely as N →∞� since ΥN(µ)→ Const
as N → ∞ � it can not be unambiguously ruled out for any �xed N . Clearly, in actual
practice, the relative (and absolute) magnitude of ΥN(µ) will directly a�ect our comfort level
in choosing (5.120). We discuss this again in the context of our numerical results.

4.3.2 Inf-Sup Lower Bound Construction

We assume that we are given a set of J parameter points, LJ ≡ {µ1 ∈ Dµ, . . . , µJ ∈ Dµ},
and associated segments Rµj ,τ , 1 ≤ j ≤ J , where

Rµ,τ ≡ {µ ∈ Dµ | Bµ(µ) ≤ τ β(µ)} , (5.124)

and
Bµ(µ) = |µ− µ|+ ρ‖uN(µ)− uN(µ)‖L4(Ω) ; (5.125)

we further assume that
J⋃
j=1

Rµj ,τ = Dµ . (5.126)

We then de�ne J : Dµ → {1, . . . , J} such that, for a given µ, RµJ (µ),τ is that segment (or a
segment) which contains µ.

Our lower bound is then: Given µ ∈ Dµ,
β̂(µ) ≡ β(µJ (µ))− BµJ (µ)

(µ) , (5.127)

for Bµ(µ) de�ned in (5.125).
We can now state

Proposition 9. The construction β̂(µ) of (5.127) satis�es the inequality (5.116).

Proof (Sketch) The proof is almost identical to the proof of Proposition 2 for the Helmholtz
inf-sup lower bound construction. We need only replace the relation (5.44) and (5.45) with

β2(µ) ≥ inf
w∈Y

{[
σ(w;µ)−

∥∥(µ− µ)T0w +
N∑
n=1

(uNn(µ)− uNn(µ))Tnw
∥∥
Y

‖w‖Y

]2}
.

(5.128)

†
Note if we include both (say, in the case of two branches) branches, uI(µn), uII(µn), in WN , then we

will typically obtain good reduced-basis approximations to both branches � uIN (µ), uIIN (µ). In this case our
single bound ∆N (µ) (→ 0) would apply to both ‖uI(µ) − uIN (µ)‖Y and ‖uII(µ) − uIIN (µ)‖Y , and ΥN (µ)
(→ Const) would apply to both ‖uI(µ)− uIIN (µ)‖Y and ‖uII(µ)− uIN (µ)‖Y .

107

5.4. 4. THE BURGERS EQUATION

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

and ∥∥∥∥(µ− µ)T0w +
N∑
n=1

(uNn(µ)− uNn(µ))Tnw

∥∥∥∥
Y

≤ (|µ− µ|+ ρ‖uN(µ)− uN(µ)‖L4(Ω)

) ‖w‖Y ,

(5.129)

respectively. The continuity result (5.129) follows from (5.113)�(5.115), from

|a0(w, v)| ≤ ‖w‖Y ‖v‖Y , ∀ w, v ∈ Y ,

(recall ‖ · ‖Y ≡ ‖ · ‖H1(Ω)), and from∣∣∣∣ N∑
n=1

(uNn(µ)− uNn(µ))an(w, v)

∣∣∣∣
=

∣∣∣∣ ∫ 1

0

(uN(µ)− uN(µ))wvx

∣∣∣∣
≤ ‖uN(µ)− uN(µ)‖L4(Ω)ρ‖w‖Y ‖v‖Y .

To derive this last expression we invoke (5.112), (5.115), Cauchy-Schwarz, and (5.108). It
thus follows from (5.105), (5.106), (5.128), and (5.129) that

β2(µ) ≥ inf
t∈[β(µ),γ(µ)]

{[
t− (|µ− µ|

+ρ‖uN(µ)− uN(µ)‖L4(Ω))
]2}

.

(5.130)

We now choose, for any given µ, µ = µJ (µ). We then note that, from (5.124) and (5.125),
the in�mizer of (5.130) is β(µJ (µ)); it thus follows that

β(µ) ≥ β(µJ (µ))− BµJ (µ)

(µ) . (5.131)

The desired result, (5.116), immediately follows from (5.131), (5.127), (5.124), and β(µ) ≥ εs.
�

4.3.3 O�ine/Online Computational Procedure

All the elements of the o�ine/online procedure for the construction of Burgers a posteriori
error bounds have already been introduced in the context of the Helmholtz and cubically
nonlinear Poisson problems. We thus restrict ourselves to a few brief comments.

First, in forming the segments Rµj ,τ , 1 ≤ j ≤ J , we do not need to (and could not. . .)
exhaustively verify that for all µ ∈ Rµj ,τ , |µ − µj| + ρ‖uN(µ) − uN(µj)‖L4(Ω) ≤ τβ(µj).
Rather, we can make plausible continuity assumptions to construct these intervals, and then
verify this condition, a posteriori , online. Second, the computationally most intensive online
calculation (for large N) is precisely this ‖uN(µ) − uN(µj)‖L4(Ω) evaluation; however, by
invoking the symmetry summation techniques developed in Section 3.3.3, we can reduce the

108

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 5.5. ACKNOWLEDGEMENTS

relevant operation count to 1
24
N4 � typically not dominant for the small N realized by our

adaptive sampling process. Third, for Burgers equation in R1, our reduced-basis approach
is not competitive (even as regards marginal cost) with standard techniques, that is, direct
computation of sN (µ). However, our complexity estimates also apply to incompressible Navier-
Stokes in R2,3, in which case we e�ect very considerable savings relative to �nite element
calculation of sN (µ).

5.4.4 4.4 Numerical Results

Our model problem is given by (5.99)�(5.101) and (5.110); we need only specify f(v) =
∫ 1

0
v,

and Dµ = [µmin = .01, µmax = 10]. All results presented are for the adaptive sampling
procedure.

To begin, we present in Figure 5 β(µ) and β̂(µ) as a function of µ; we also indicate, on
the log(µ)-axis, the segments Rµj ,τ=3/4, 1 ≤ j ≤ J = 55. There is clearly some deterioration
in the length of our segments as µj decreases � it would appear that J increases more
rapidly than ln(µmax/µmin). For problems with P > 1, this growth would probably not be
tolerable. It is possible that de�ation techniques � similiar to those introduced in the context
of the Helmholtz problem in Section 2.4.3 � could considerably increase the e�ective inf-sup
parameter, and hence considerably decrease J .

The �rst test case we consider is µ = 1.0. We present in Table 5.6 ‖e(µ)‖Y /‖u(µ)‖Y ,
∆N(µ)/‖u(µ)‖Y , ηN(µ), and ΥN(µ)/‖u(µ)‖Y as a function of N . We observe that the
reduced-basis approximation converges very rapidly; that at least in this particular case, the
�good� choice, (5.120), obtains � ‖e(µ)‖Y ≤ ∆N(µ), ∀ N ∈ N; that the e�ectivities are, as
desired, quite close to unity; and that ΥN(µ) is (constant and) very large. From the latter we
could very plausibly select (5.120) over (5.121) even if � as will be the case in practice �
we do not have access to the true error, ‖e(µ)‖Y .

We now turn to µ = 0.01. We present in Table 5.7 ‖e(µ)‖Y /‖u(µ)‖Y , ∆N(µ)/‖u(µ)‖Y ,
ηN(µ), and ΥN(µ)/‖u(µ)‖Y as a function of N . We observe two di�culties not encountered
for µ = 1.0. First, although the reduced-basis approximation in fact converges rather quickly,
we can only begin to make an a posteriori error statement for N ≥ 11 � for N < 11, condition
(5.119) is not satis�ed. (Recall that these results are for the adaptive sampling procedure; in
the case of a random sample, condition (5.119) is not satis�ed for all N .) Second, although
the �good� choice, (5.120), in fact obtains � ‖e(µ)‖Y ≤ ∆N(µ) with e�ectivities O(5�10)
for N ≥ 11 � the value of ΥN(µ) is not as large as desirable; it would thus be di�cult in
practice (when ‖e(µ)‖Y is not known) to unambiguously rule out the �bad� choice (5.121).
The origin of both these di�culties is the small value of β(µ = 0.01) (and β(µ), µ small,
generally). We are hopeful that de�ation ideas similar to those successful in the Helmholtz
case (see Section 2.4.3) will also prove bene�cial here � increasing the e�ective β(µ), and
thereby increasing both our threshold in (5.119) and the value of ΥN(µ) in (5.118), (5.121).

5.5 Acknowledgements

We would like to acknowledge our longstanding collaborations with Professor Yvon Maday
of University of Paris VI and Professor Jaime Peraire of MIT. We would also like thank

109

5.5. ACKNOWLEDGEMENTS

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

–2 –1.5 –1 –0.5 0 0.5 1
–3

–2.5

–2

–1.5

–1

–0.5

0

0.5

1

Figure 5.5: The inf-sup parameter β(µ), lower bound β̂(µ), and segments Rµj ,τ=3/4 =
[µj, µj+1] for the model Burgers problem.

N ‖e(µ)‖Y
‖u(µ)‖Y

∆N (µ)
‖u(µ)‖Y

ηN(µ) ΥN (µ)
‖u(µ)‖Y

3 1.9× 10−2 2.2× 10−2 1.17 19.4
6 4.7× 10−3 5.6× 10−3 1.17 19.4
9 2.9× 10−3 3.4× 10−3 1.18 19.4
12 2.6× 10−4 3.0× 10−4 1.18 19.4
15 2.9× 10−5 3.4× 10−5 1.18 19.4

Table 5.6: Error, error bounds, and e�ectivity as a function of N for the Burgers problem
with µ = 1.0.

110

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 5.5. ACKNOWLEDGEMENTS

N ‖e(µ)‖Y
‖u(µ)‖Y

∆N (µ)
‖u(µ)‖Y

ηN(µ) ΥN (µ)
‖u(µ)‖Y

11 3.3× 10−6 1.3× 10−5 3.9 1.6× 10−4

12 1.8× 10−6 5.4× 10−6 3.1 1.6× 10−4

13 7.1× 10−9 1.5× 10−8 2.0 1.7× 10−4

14 7.1× 10−9 1.3× 10−8 1.9 1.7× 10−4

15 7.2× 10−9 1.8× 10−8 2.5 1.7× 10−4

Table 5.7: Error, error bounds, and e�ectivity as a function of N for the Burgers problem
with µ = .01.

Mr. Nguyen Ngoc Cuong of the National University of Singapore for helpful discussions.
This work was supported by DARPA and AFOSR under Grant F49620-01-1-0458 and by
the Singapore-MIT Alliance.

111

5.5. ACKNOWLEDGEMENTS

CHAPTER 5. A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATION OF PARAMETRIZED NONCOERCIVE AND

NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

112

Chapter 6

Reduced-Basis Approximation of the

Viscous Burgers Equation: Rigorous

A Posteriori Error Bounds

Authors: K. Veroy, C. Prud'homme, A.T. Patera.

113

CHAPTER 6. REDUCED-BASIS APPROXIMATION OF THE VISCOUS BURGERS EQUATION: RIGOROUS A POSTERIORI ERROR BOUNDS

114

Chapter 7

Reduced-Basis Output Bounds for

Approximately Parametrized Elliptic

Coercive Partial Di�erential

Equations

Authors: C. Prud'homme, A.T. Patera.

7.1 Introduction

The optimization, control, and characterization of an engineering component or system requires
the prediction of certain �quantities of interest,� or performance metrics, which we shall denote
outputs � for example de�ections, maximum stresses, maximum temperatures, heat transfer
rates, �owrates, or lifts and drags. These outputs are typically expressed as functionals of
�eld variables associated with a parametrized partial di�erential equation which describes the
physical behavior of the component or system. The parameters, which we shall denote inputs,
serve to identify a particular �con�guration" of the component: these inputs may represent
design or decision variables, such as geometry � for example, in optimization studies; control
variables, such as actuator power � for example, in real-time applications; or characterization
variables, such as physical properties � for example, in inverse problems. We thus arrive at
an implicit input-output relationship, evaluation of which demands solution of the underlying
partial di�erential equation.

Our goal is the development of computational methods that permit rapid and reliable
evaluation of this partial-di�erential-equation-induced input-output relationship in the limit of
many queries � that is, in the design, optimization, control, and characterization contexts.
The �many queries� limit has certainly received considerable attention: from �fast loads� or
multiple right-hand side notions (e.g., [21, 25]) to matrix perturbation theories (e.g., [3, 85])
to continuation methods (e.g., [4, 71]). Our particular approach is based on the reduced-
basis method, �rst introduced in the late 1970s for nonlinear structural analysis [5, 51], and
subsequently developed more broadly in the 1980s and 1990s [13, 14, 26, 55, 58, 70]. The
reduced-basis method recognizes that the �eld variable is not, in fact, some arbitrary member of

115

7.2. PROBLEM FORMULATION

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS

the in�nite-dimensional solution space associated with the partial di�erential equation; rather,
it resides, or �evolves,� on a much lower dimensional manifold induced by the parametric
dependence.

The reduced-basis approach as earlier articulated is local in parameter space in both prac-
tice and theory. To wit, Lagrangian or Taylor approximation spaces for the low�dimensional
manifold are typically de�ned relative to a particular parameter point; and the associated a pri-
ori convergence theory relies on asymptotic arguments in su�ciently small neighborhoods [26].
As a result, the computational improvements � relative to conventional (say) �nite-element
approximation � are often quite modest. Our work [37, 44, 46, 62, 82] di�ers from these
earlier e�orts in several important ways: �rst, we develop (in some cases, provably) global
approximation spaces; second, we introduce rigorous a posteriori error estimators; and third,
we exploit o��line/on�line computational decompositions (see [13] for an earlier application
of this strategy within the reduced-basis context). These three ingredients allow us, for the
restricted but important class of (approximately) �parameter-a�ne� problems, to reliably de-
couple the generation and projection stages of reduced-basis approximation, thereby e�ecting
computational economies of several orders of magnitude.

In this paper we address the situation in which our parametrized mathematical model is
not exact or �complete�: we permit error or imprecision in the data that de�ne our partial
di�erential equation. This error may be introduced, for example, by imperfect speci�cation,
measurement, calculation, or parametric expansion of a coe�cient function. Our goal is
to develop both accurate predictions for the outputs of interest and associated rigorous a
posteriori error bounds; and we require that the latter incorporate both numerical discretization
and �model truncation� e�ects. The method we propose can be viewed as a �many parameters
of small variation� extension to our earlier reduced-basis output bound approaches. (For an
alternative treatment � based on additive Schwarz domain-decomposition bound conditioners
� of many parameters, in particular �many parameters of small support,� see [74]; this method
is relevant, for example, to non-a�ne boundary shape variations.)

In Section 7.2 we present the general problem formulation. In Section 7.3 we develop our
reduced-basis approximation, and prove associated a priori error estimates. In Section 7.4 we
describe our a posteriori error estimators, and demonstrate the necessary e�ectivity results.
And �nally, in Section 7.5 , we present detailed numerical results for a (reasonably) realistic
application.

7.2 Problem Formulation

We consider a suitably regular domain Ω ⊂ Rd, d = 1, 2, or 3, with boundary ∂Ω, and associ-
ated function space X such that H1

0 (Ω) ⊂ X ⊂ H1(Ω), where H1(Ω) = {v ∈ L2(Ω), ∇v ∈
(L2(Ω))d}, H1

0 (Ω) = {v ∈ H1(Ω) | v|∂Ω = 0}, and L2(Ω) is the space of square-integrable
functions over Ω. The inner product and norm associated with X are given by (· , ·)X and
‖ · ‖X = (· , ·)1/2

X , respectively. The dual space to X is denoted X ′, with norm ‖ · ‖X′ ; and
the associated duality pairing is expressed as X′ 〈 · , · 〉X = 〈 · , · 〉. We also de�ne a closed,
bounded parameter set Dµ ∈ RP , a particular point in which will be denoted µ. Note that Ω
is a reference domain, and hence does not depend on the parameter.

We next introduce our distributional (second-order partial di�erential) operatorA(µ) : X →

116

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS 7.2. PROBLEM FORMULATION

X ′, which we shall assume is uniformly continuous and coercive over Dµ (with coercivity con-
stant CA � 〈A(µ)v, v〉 ≥ CA
‖v‖2

X , ∀ v ∈ X, ∀ µ ∈ Dµ); and we further de�ne two linear, bounded functionals, F ∈ X ′
and L ∈ X ′. Our exact problem statement is then: Given µ ∈ Dµ, �nd s(µ) = 〈L, u(µ)〉,
where u(µ) ∈ X satis�es

〈A(µ) u(µ), v〉 = 〈F, v〉, ∀ v ∈ X . (7.1)

We may on occasion further abbreviate (7.1) as A(µ) u(µ)
= F , to be interpreted in the distributional sense. In the language of the introduction,
A(µ) is our partial di�erential operator, µ is our parameter, F is our data (which for simplicity
we assume does not depend on µ), u(µ) is our �eld variable, L is our output functional, and
s(µ) is our output of interest.

As indicated in the introduction, it will often be the case that we have access only to an
approximation of A,A: more precisely, A(µ) = A(µ) + Â(µ), where Â(µ) is in some sense
small. (We may also consider error in the data, F = F +F̂ ; see [78].) We shall assume that A
remains coercive (with, for simplicity, coercivity constant CA = CA). Our �model-truncated�
problem is thus: Given µ ∈ Dµ, �nd s(µ) = 〈L, u(µ)〉, where u(µ) ∈ X satis�es

〈A(µ) u(µ), v〉 = 〈F, v〉, ∀ v ∈ X . (7.2)

In Sections 7.3 and 7.4 we shall quantify s(µ)−s(µ) in terms of the size, though not necessarily
the details, of Â(µ); but we must �rst provide more information on the structure of Â(µ).
(For a concrete instantiation of the quantities and assumptions introduced below, the reader
may refer to Section 7.5.1.)

We shall �rst make the assumption of a�ne parameter dependence. In particular we shall
suppose that

A(µ) =

Q∑
q=1

αq(µ) Aq , (7.3)

and

Â(µ) =

bQ∑
q=1

βq(µ)Bq ; (7.4)

here α : Dµ → RQ, β : Dµ → R bQ are parameter dependent functions, and Aq : X → X ′,
1 ≤ q ≤ Q, Bq : X → X ′, 1 ≤ q ≤ Q̂, are parameter-independent operators.

†
We shall

further suppose that Q is relatively small, for example O(10�100); but that Q̂ may be quite

†
In many cases, the Bq will depend (a�nely) on µ,

Bq(µ) =
eQ∑

q′=1

gqq′(µ)Bqq′ , 1 ≤ q ≤ Q̂ ,

where the gqq′ : Dµ → R, 1 ≤ q ≤ Q̂, 1 ≤ q′ ≤ Q̃, are parameter-dependent functions, and theBqq′ : X → X ′,

1 ≤ q ≤ Q̂, 1 ≤ q′ ≤ Q̃, are parameter-independent operators. Our method extends readily to this case;
however, for simplicity of exposition, we shall assume here that the Bq do not depend on µ.

117

7.2. PROBLEM FORMULATION

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS

large � indeed Q̂ will in many cases tend to in�nity. Note that, in contrast to our earlier
work, our assumption that Q is small is now more general � in the sense that the �remainder�
may now be absorbed in Â(µ).

In actual practice, we replace (7.1) and (7.2) with a �truth approximation� de�ned over
a �nite element space XN of dimension N ; this also ensures that Q̂ may be presumed �nite
without loss of generality. We assume thatXN is su�ciently rich such that uN , sN and uN , sN

are indistinguishable from u, s and u, s, respectively; we thus anticipate that, in general, N
(and potentially Q̂) will be very large. For the purposes of this paper we shall e�ectively
equate X and XN (and hence the �exact� and �truth approximation� problem statements)
except as regards two points. First, in our computational estimates, we shall verify that the
�on-line� computational complexity is independent of N (and Q̂). Second, in our analyses,
we shall verify that our numerical results � for example, our error bounds � are stable and
convergent as N (and potentially Q̂) tends to in�nity.

In preparation for the latter, we shall require certain hypotheses on βq(µ) and Bq in the
case in which (i) these quantities depend on Q̂, and (ii) Q̂ tends to in�nity. (Note we assume
that, in all cases, Q is �xed � or, in any event, independent of N .) By way of preliminaries,
we �rst introduce Q̂ suitably regular open subdomains, Dq ⊂ Ω, 1 ≤ q ≤ Q̂. We assume
that a given subdomain Dq intersects only �nitely many other subdomains Dq′ (as Q̂→∞).
We next de�ne parameter-independent inner products and norms over Dq, ((· , ·))q and
||| · |||q = ((· , ·))1/2

q , respectively. We assume that ||| · |||q is uniformly equivalent to
‖ · ‖H1(Dq) for all functions in H

1(Dq) in the sense that the relevant (ratio) constants may

be bounded independent of µ and Q̂. It then follows from our assumptions that there exists
a positive �nite constant ρ̂Σ � independent of µ and Q̂ � such that

bQ∑
q=1

||| v|Dq |||2q < (ρ̂Σ)2 ‖v‖2
X , ∀ v ∈ X . (7.5)

Note that, if ‖ · ‖X = ‖ · ‖H1(Ω) and ||| · |||q = ‖ · ‖H1(Dq), then ρ̂Σ is bounded from above
by Cmult, the maximum number of subdomains Dq in which any point in Ω may reside.

We now de�ne

βmaxbQ (µ) = max
q∈{1,..., bQ} |βq(µ)| , (7.6)

and require that

βmaxbQ (µ) ≤ β̂max (7.7)

for β̂max ∈ R+ independent of µ and Q̂ � and preferably small . We shall presume that, in
general, we have access only (and directly) to βmaxbQ (µ) � and that we need not appeal to the

individual βq(µ). We next de�ne γq : X → R, 1 ≤ q ≤ Q̂, as

γq(w) ≡ sup
v∈X

〈Bqw, v〉
||| v|Dq |||q

, (7.8)

118

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS 7.3. REDUCED-BASIS APPROXIMATION

and require that

sup
w∈X

(bQ∑
q=1

γ2
q (w)

)1/2

‖w‖X ≤ Γ̂ , (7.9)

for Γ̂ ∈ R independent of µ and Q̂. Note that our condition (7.9) implies, and hence we may as-
sume, that 〈Bqw, v〉
= 〈Bqw, v|Dq〉, ∀ v ∈ X: we may (often) interpret βq(µ) as the error in our data over a
small region Dq; and βq(µ)〈Bqw, v〉 as the contribution of this error to our remainder term,
Â(µ).

7.3 Reduced-Basis Approximation

7.3.1 Formulation

We �rst introduce a sample SN = {µ1 ∈ Dµ, . . . , µN ∈ Dµ}. We then de�ne XN =
span {ζn ≡ u(µn), n = 1, . . . , N}, where u(µn) satis�es (7.2) for µ = µn (Option I); or
XN = span {ζn ≡ u(µn), n = 1, . . . , N}, where u(µn) satis�es (7.1) for µ = µn (Option
II). Our reduced-basis approximation for the model-truncated problem is then: Given µ ∈ Dµ,
�nd sN(µ) = 〈L, uN(µ)〉, where uN(µ) ∈ XN satis�es

〈A(µ) uN(µ), v〉 = 〈F, v〉, ∀v ∈ XN . (7.10)

Thus uN(µ) is the standard Galerkin approximation of u(µ) over the space XN ⊂ X.
We can also express this approximation in terms of our particular basis: Given µ ∈ Dµ, �nd

sN(µ) = L
T

N

uN(µ), where uN(µ) ∈ RN satis�es

AN(µ) uN(µ) = FN . (7.11)

Here, LN i = 〈L, ζi〉, FN i = 〈F, ζi〉, 1 ≤ i ≤ N ; and AN i,j = 〈A(µ) ζj, ζi〉, 1 ≤ i, j ≤ N .
Note that

uN(µ) =
N∑
n=1

uNn(µ) ζn = uN(µ)T ζ , (7.12)

where uN = (uN1 · · · uNN)T and ζ = (ζ1 · · · ζN)T ; here T refers to algebraic transpose.
As noted, we in fact have two options for the construction of our reduced-basis space.

Option I, XN = span {u(µn), n = 1, . . . , N}, does not require us to incorporate the details
of Â(µ) � in particular, the βq(µ), 1 ≤ q ≤ Q̂ � in our formation of XN ; but does require
us to reform XN each time we improve A(µ) (so as to reduce Â(µ)). In contrast, Option
II, XN = span {u(µn), n = 1, . . . , N}, does require us to incorporate the details of Â(µ) �
the βq(µ), 1 ≤ q ≤ Q̂ � in our formation of XN ; but does not (necessarily) require us to
reform XN each time we improve A(µ) (so as to reduce Â(µ)). Clearly, the best choice will
be problem-dependent.

119

7.3. REDUCED-BASIS APPROXIMATION

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS

7.3.2 A Priori Theory

We wish to bound s(µ)− sN(µ). We do so in

Proposition 10. For βmaxbQ (µ) and γq(w) satisfying (7.7) and (7.9), respectively,

|s(µ)− sN(µ)| ≤ ‖L‖X′
(
C1 inf

v∈XN
‖u(µ)− v‖X

+ C2 ρ̂Σ β̂
maxΓ̂

)
, ∀ µ ∈ Dµ ; (7.13)

here C1 and C2 depend only on coercivity and continuity constants and on the data F .

Proof. We �rst introduce e(µ) = u(µ) − uN(µ), and further de�ne e(µ) = u(µ) − uN(µ),
ê(µ) = u(µ) − u(µ), such that e(µ) = e(µ) + ê(µ). We can thus write |s(µ) − sN(µ)| =
|〈L, e(µ)〉| ≤ ‖L‖X′ ‖e(µ)‖X , and hence

|s(µ)− sN(µ)| ≤ ‖L‖X′ (‖e(µ)‖X + ‖ê(µ)‖X) , (7.14)

by the triangle inequality.
It immediately follows from standard Galerkin theory that

‖e(µ)‖X ≤ C1 inf
v∈XN

‖u(µ)− v‖X , (7.15)

where C1 depends only on the coercivity and continuity constants associated with A(µ).
It remains only to bound ‖ê(µ)‖X ; we apply the techniques �rst developed for analysis of

�variational crimes� within the �nite element context [75]. In particular, we �rst note that

〈A(µ)(u(µ)− u(µ)), v〉 = −〈Â(µ) u(µ), v〉, ∀ v ∈ X .

Expanding Â(µ), and choosing v = ê(µ) ≡ u(µ)− u(µ), we obtain

〈A(µ) ê(µ), ê(µ)〉 = −
bQ∑

q=1

βq(µ)〈Bq u(µ), ê(µ)〉

≤
bQ∑

q=1

|βq(µ)|
(

sup
v∈X

〈Bq u(µ), v〉
||| v|Dq |||q

)
||| ê(µ)|Dq |||q (7.16)

≤ βmaxbQ (µ)

(bQ∑
q=1

γ2
q (u(µ))

)1/2

(bQ∑
q=1

||| ê(µ)|Dq |||2q
)1/2

(7.17)

≤ β̂max Γ̂ ‖u(µ)‖X ρ̂Σ ‖ê(µ)‖X ,

120

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS 7.3. REDUCED-BASIS APPROXIMATION

from (7.4), (7.8), the Cauchy-Schwarz inequality, (7.7), (7.9), and (7.5). Finally, we obtain

‖ê(µ)‖X ≤ C2 ρ̂Σ β̂
max Γ̂ , (7.18)

where C2 is simply ‖F‖X′ divided by C2
A.

We now assemble (7.14), (7.15), and (7.18); this completes the proof. �

We expect that our bound should be reasonably sharp � except in the case in which A
is symmetric and L → F . In particular, for A symmetric and L = F , 〈L, e〉 = 〈F, e〉 =
〈Au, e〉 = 〈Ae, u〉 = 〈Ae, e〉 (by Galerkin orthogonality) � |s−sN | thus converges quadrat-
ically, not linearly, with ‖e‖X for this special �compliance� case. Note that we can, in fact,
recover quadratic convergence (in ‖e‖X) for general A, L, by introduction of the reduced-basis
adjoint techniques described in [62].

In general, we observe that the error in the best approximation, inf
v∈XN

‖u(µ)−v‖X , vanishes
very rapidly.
Indeed, in certain special cases, we can prove that inf

v∈XN
‖u(µ) − v‖X vanishes exponentially fast as N → ∞ [46].

†
It thus follows that N may

be chosen quite small. However, we must still develop a computational approach that exploits
this dimension reduction.

7.3.3 Computational Strategem: sN(µ)

The essential point to note [37, 62] is that, thanks to the a�ne parameter dependence of
A(µ), (7.3), we may write

AN i,j(µ) ≡ 〈A(µ) ζj, ζi〉

=

Q∑
q=1

αq(µ) 〈Aq ζj, ζi〉

=

Q∑
q=1

αq(µ) [AN q]i,j (7.19)

where AN q ∈ RN×N is given by [AN q]i,j = 〈Aq ζj, ζi〉, 1 ≤ q ≤ Q. An o�-line/on-line
decomposition can now be readily identi�ed.

In the o�-line stage, we compute the ζn ≡ u(µn) (say, in Option I) and then form the
AN q, 1 ≤ q ≤ Q (and FN , LN); this requires N expensive �A� �nite element solutions and
O(QN2) �nite-element-vector (O(N)) inner products. In the on-line stage, for any given
new µ, we �rst form AN(µ) from (7.19), then solve (7.11) for uN(µ), and �nally evaluate

sN(µ) = L
T

N uN(µ): this requires only O(QN2) + O(N3) operations, and only O(QN2)

†
In Option I, infv∈XN

‖u(µ)−v‖X → 0 as N →∞; hence, for �xed β̂max, we expect the model truncation
contribution to the error (estimate) to dominate the reduced-basis discretization contribution to the error as

N → ∞. In Option II, infv∈XN
‖u(µ) − v‖X will approach a constant � presumably O(β̂max) � as

N →∞; hence, we expect the model truncation contribution to the error and the reduced-basis discretization
contribution to the error to be roughly commensurate as N →∞.

121

7.4. A POSTERIORI ERROR ESTIMATION

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS

storage. Thus, as desired, the incremental cost to evaluate sN(µ) for any given new µ �
as proposed, on-line, in a characterization, optimization, or control context � is very small;
we can, in many cases, achieve real-time response. (See [13] for an earlier application of this
strategy within the reduced-basis context.)

7.4 A Posteriori Error Estimation

Although we can, in theory, choose N small, we do not yet know, in practice, just how small
we can choose N ; similarly, we do not yet know, in practice, how large we can choose (or
tolerate) βmaxbQ (µ). Conversely, for any given N and βmaxbQ (µ), we do not yet have an e�ciently

calculable bound for the error s(µ) − sN(µ), and hence we can not determine whether N
(respectively, βmaxbQ (µ)) is su�ciently large (respectively, su�ciently small) for our purposes.

We develop here the necessary a posteriori error bounds � a necessity for both e�ciency and
certainty.

7.4.1 Preliminaries: Bound Conditioner C(µ)

We introduce a symmetric, coercive, continuous bound conditioner [37, 62, 82] C(µ) : X → X ′

that satis�es

1 ≤ 〈A
S(µ)v, v〉
〈C(µ)v, v〉 ≤ ρ, ∀ v ∈ X, ∀ µ ∈ Dµ, (7.20)

for some (preferrably small) constant ρ ∈ R. Here AS(µ) is the symmetric (positive-de�nite)
part of A(µ), de�ned as 〈AS(µ)w, v〉 ≡ 1

2
(〈A(µ)w, v〉+ 〈A(µ)v, w〉), ∀ w, v ∈ X. It follows

from the coercivity of C(µ) that there exists a bound ρ̂′Σ(µ), independent of Q̂, such that

bQ∑
q=1

||| v|Dq |||2q ≤ (ρ̂′Σ(µ))2 〈C(µ)v, v〉, ∀ v ∈ X . (7.21)

Indeed, we may require

ρ̂′Σ(µ) ≤ ρ1/2

C
1/2
A

ρ̂Σ, ∀ µ ∈ Dµ , (7.22)

since

(ρ̂Σ)2 ≥
(

min
v∈X

bQ∑
q=1

||| v|Dq |||2q
〈C(µ)v, v〉

)
(

min
v∈X

〈C(µ)v, v〉
〈AS(µ)v, v〉

)(
min
v∈X

〈AS(µ)v, v〉
‖v‖2

X

)
;

recall that CA is the coercivity constant of A(µ).
In addition to the spectral condition (7.20), we also require a �computational invertibility�

hypothesis. In particular, we shall require that C−1(µ) be of the form

C−1(µ) = C−1
J (µ) , (7.23)

122

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS 7.4. A POSTERIORI ERROR ESTIMATION

where J : Dµ → {1, . . . , J} is a parameter-dependent indicator function, and the Cj : X →
X ′, 1 ≤ j ≤ J , are parameter-independent symmetric, coercive operators. (Note the re-
quirement (7.23) is a special case of the more general computational invertibility condition
described in [82].) We shall not dwell here on the many possible fashions in which bound
conditioners can be constructed (see [62, 82]); however, we shall give a particular example of
a (simple) bound conditioner in our application of Section 7.5.

In what follows, we will require the following simple lemma related to our bound conditioner:

Lemma 5. Given any G ∈ X ′, C : X → X ′ satisfying (7.20), and U ∈ X,W ∈ X satisfying
〈AU, v〉 = 〈G, v〉, ∀ v ∈ X, and 〈CW, v〉 = 〈G, v〉, ∀ v ∈ X, respectively, then 〈ASU,U〉 ≤
〈CW,W 〉.
Proof. We have that 〈AU, v〉 = 〈CW, v〉, ∀ v ∈ X; choosing v = U thus gives

〈ASU,U〉 = 〈AU,U〉
= 〈CW,U〉
≤ 〈CW,W 〉1/2 〈CU,U〉1/2
≤ 〈CW,W 〉1/2 〈ASU,U〉1/2 ,

by the Cauchy-Schwarz inequality and our spectral condition (7.20). Thus 〈ASU,U〉 ≤
〈CW,W 〉, as desired. �

7.4.2 Error Bound

Estimator ∆N(µ)

Our error estimator for |s(µ)− sN(µ)| is given by

∆N(µ) ≡ |||L|||X′
(
δN(µ) + δ̂N(µ)

)
, (7.24)

where

|||L|||X′ = sup
v∈X

〈L, v〉
〈C(µ)v, v〉1/2 , (7.25)

and

δN(µ) ≡ 〈C(µ) E(µ), E(µ)〉1/2 , (7.26)

δ̂N(µ) ≡ ρ̂′Σ(µ) βmaxbQ (µ)

(bQ∑
q=1

γ2
q (uN(µ))

)1/2

. (7.27)

Here E(µ) ∈ X satis�es

〈C(µ) E(µ), v〉 = 〈F, v〉 − 〈A(µ) uN(µ), v〉, ∀ v ∈ X ; (7.28)

and βmaxbQ (µ) ∈ R is the given model truncation error (implicitly related to Q̂ and the βq(µ)

through (7.6)). It is clear that δN(µ) measures the error due to discretization � reduced-basis
approximation of u(µ) ∈ X by uN(µ) ∈ XN ; and δ̂N(µ) measures the error due to model
truncation � approximation of A(µ) by A(µ).

123

7.4. A POSTERIORI ERROR ESTIMATION

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS

Analysis of ∆N(µ)

We now show that our estimator ∆N(µ) is, in fact, a rigorous upper bound for |s(µ)−sN(µ)|:
Proposition 11. For C : X → X ′ satisfying (7.20)

†
, and ρ̂′Σ(µ) satisfying (7.21), |s(µ) −

sN(µ)| ≤ ∆N(µ), ∀ µ ∈ Dµ, and ∀N ∈ N.

Proof. We �rst note that our error e(µ) = u(µ)− uN(µ) satis�es

〈A(µ) e(µ), v〉 = 〈F, v〉 − 〈A(µ) uN(µ), v〉
− 〈Â(µ) uN(µ), v〉, ∀ v ∈ X .

We next de�ne ε(µ) ∈ X and ε̂(µ) ∈ X by

〈A(µ) ε(µ), v〉 = 〈F, v〉 − 〈A(µ) uN(µ), v〉, ∀ v ∈ X , (7.29)

and
〈A(µ) ε̂(µ), v〉 = −〈Â(µ) uN(µ), v〉, ∀ v ∈ X , (7.30)

such that e(µ) = ε(µ) + ε̂(µ). We thus obtain

〈AS(µ) e(µ), e(µ)〉1/2 ≤ 〈AS(µ) ε(µ), ε(µ)〉1/2
+ 〈AS(µ) ε̂(µ), ε̂(µ)〉1/2 , (7.31)

by the triangle inequality.
We now write

|s(µ)− sN(µ)| = |〈L, e(µ)〉|

≤
(

sup
v∈X

〈L, v〉
〈AS(µ)v, v〉1/2

)
〈AS(µ) e(µ), e(µ)〉1/2

≤
(

sup
v∈X

〈L, v〉
〈C(µ)v, v〉1/2

)(
〈AS(µ) ε(µ), ε(µ)〉1/2

+ 〈AS(µ) ε̂(µ), ε̂(µ)〉1/2
)

(7.32)

from (7.20) and (7.31). We next note from Lemma 5, (7.29), and (7.28), that

〈AS(µ) ε(µ), ε(µ)〉1/2 ≤ 〈C(µ) E(µ), E(µ)〉1/2 . (7.33)

It remains only to treat 〈AS(µ) ε̂(µ), ε̂(µ)〉1/2.
We �rst de�ne Ê(µ) ∈ X as the solution to

〈C(µ) Ê(µ), v〉 = −〈Â(µ) uN(µ), v〉, ∀ v ∈ X ;

†
In fact, for this bound proof, we only require the �left� spectral condition of (7.20), 1 ≤ 〈AS(µ)v,v〉

〈C(µ)v,v〉 ,

∀ v ∈ X, ∀ µ ∈ Dµ.

124

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS 7.4. A POSTERIORI ERROR ESTIMATION

it thus follows from Lemma 5 that 〈AS(µ) ε̂(µ), ε̂(µ)〉 ≤ 〈C(µ) Ê(µ), Ê(µ)〉. We now note
that

〈C(µ) Ê(µ), Ê(µ)〉 = −
bQ∑

q=1

βq(µ)〈Bq uN(µ), Ê(µ)〉

≤
bQ∑

q=1

|βq(µ)| γq(uN(µ)) ||| Ê(µ)|Dq |||q

≤ βmaxbQ (µ)

 bQ∑
q=1

γ2
q (uN(µ))

1/2

 bQ∑
q=1

||| Ê(µ)|Dq |||2q

1/2

≤ ρ̂′Σ(µ) βmaxbQ (µ)

 bQ∑
q=1

γ2
q (uN(µ))

1/2

〈C(µ) Ê(µ), Ê(µ)〉1/2 ,
from (7.4), (7.8), (7.6), the Cauchy-Schwarz inequality, and (7.21). We conclude that

〈AS(µ) ε̂(µ), ε̂(µ)〉1/2 ≤

ρ̂′Σ(µ) βmaxbQ (µ)

 bQ∑
q=1

γ2
q (uN(µ))

1/2

. (7.34)

It follows from (7.32), (7.33), and (7.34) that ∆N(µ) of (7.24)�(7.27) is, indeed, an upper
bound for |s(µ)− sN(µ)|. �

Of course we wish not only that ∆N(µ) is an upper bound for |s(µ) − sN(µ)|, but also
that ∆N(µ) is a good (sharp) upper bound for |s(µ)− sN(µ)|. In particular, if we de�ne the
e�ectivity, ηN(µ), as the ratio of the estimated error to the true error,

ηN(µ) ≡ ∆N(µ)

|s(µ)− sN(µ)| ,

we would like to prove not only, as in Proposition 11, that 1 ≤ ηN(µ) � thus establishing
bounds � but also that ηN(µ) ≤ Υ, Υ not too large � thus establishing good bounds.

It is clear from our a priori and a posteriori bounds for the error, (7.32), (7.13), and
(7.24)�(7.27), respectively, that

|||L|||X′
‖L‖X′ ≤ Υ1 , (7.35)

125

7.4. A POSTERIORI ERROR ESTIMATION

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS

for Υ1 independent of µ and N ,

δN(µ)

〈AS(µ) ε(µ), ε(µ)〉1/2 ≤ Υ2 , (7.36)

for Υ2 independent of µ and N , and

δ̂N(µ)

C2 ρ̂Σ β̂max Γ̂
≤ Υ3 , (7.37)

for Υ3 independent of µ, N , and Q̂, are meaningful necessary conditions for good e�ectivities.
We now prove that (7.35)�(7.37) are, indeed, satis�ed:

Proposition 12. For C : X → X ′ satisfying (7.20)
†
,

βmaxbQ (µ) satisfying (7.7), and ρ̂′Σ(µ) satisfying (7.22),

|||L|||X′
‖L‖X′ ≤ ρ1/2

C
1/2
A

, ∀ µ ∈ Dµ, ∀N ∈ N, (7.38)

δN(µ)

〈AS(µ) ε(µ), ε(µ)〉1/2 ≤ C3 ρ
1/2,

∀ µ ∈ Dµ, ∀N ∈ N, (7.39)

and

δ̂N(µ)

C2 ρ̂Σ β̂max Γ̂
≤ C

1/2
A ρ1/2 ,

∀ µ ∈ Dµ, ∀N ∈ N, ∀ Q̂ ∈ N , (7.40)

where CA is the coercivity constant of A, C2 is de�ned as in Proposition 10, and C3 is a
continuity constant.

Proof. To demonstrate (7.38), we simply note that

sup
v∈X

〈L, v〉
〈C(µ)v, v〉1/2

= sup
v∈X

(〈L, v〉
‖v‖X

‖v‖X
〈AS(µ)v, v〉1/2

〈AS(µ)v, v〉1/2
〈C(µ)v, v〉1/2

)
≤ C

−1/2
A ρ1/2 ‖L‖X′ ,

from our spectral condition (7.20) and the coercivity of A.
†
In fact, for this e�ectivity proof, we only require the �right� spectral condition of (7.20), 〈A

S(µ)v,v〉
〈C(µ)v,v〉 ≤ ρ,

∀ v ∈ X, ∀ µ ∈ Dµ.

126

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS 7.4. A POSTERIORI ERROR ESTIMATION

To demonstrate (7.39), we �rst de�ne

C3 = sup
µ∈Dµ

sup
v∈X, w∈X

〈A(µ)w, v〉
〈AS(µ)w,w〉1/2 〈AS(µ)v, v〉1/2 ,

which is perforce �nite due to the continuity and coercivity of A. We then note that

〈C(µ) E(µ), E(µ)〉 = 〈A(µ) ε(µ), E(µ)〉
≤ C3 ρ

1/2〈AS(µ) ε(µ), ε(µ)〉1/2〈C(µ) E(µ), E(µ)〉1/2 ,
from (7.28), (7.29), and (7.20). The desired result (7.39) immediately follows.

Finally, to demonstrate (7.40), we note that

βmaxbQ (µ) ≤ β̂max ,

 bQ∑
q=1

γ2
q (uN(µ))

1/2

≤ ‖uN(µ)‖X Γ̂ ≤ C2 CA Γ̂ ,

and

ρ̂′Σ(µ) ≤ ρ1/2

C
1/2
A

ρ̂Σ ,

from (7.7), (7.9) and the de�nition of C2 in Proposition 10, and (7.22), respectively. The
desired result then directly follows from the de�nition of δ̂N(µ), (7.27). �

We thus observe that good bound conditioners are a prerequisite for good e�ectivities � in
particular, we expect that ηN(µ) will scale with ρ, the constant associated with the �upper�
spectral condition of (7.20). In practice, it is often possible to develop (e.g., multipoint [82])
bound conditioners in which ρ is O(10) or better.

We re-emphasize that (7.38)�(7.40) are only necessary conditions for good e�ectivities,
and thus the estimate ηN(µ) ≤ O(ρ) is not rigorous. In particular, (7.38)�(7.40) relate not
to the ratio of ∆N(µ) to the true error, but rather to the ratio of ∆N(µ) to our a priori
bounds for the true error; if the latter are not sharp, our e�ectivities may be worse than O(ρ).
One such situation is the compliance case, A = AS and L → F , in which, indeed, we will
not obtain good e�ectivities as N → ∞ (unless we modify our estimators accordingly �
adjoint methods automatically provide the necessary correction [62]). In general, however, our
necessary conditions should be meaningful.

Computational Strategem: ∆N(µ)

We indicate here the o�-line/on-line treatment of each of the three ingredients that compose
∆N(µ): |||L|||X′ ; δN(µ); and δ̂N(µ).

Calculation of |||L|||X′(µ). We �rst note that |||L|||X′ can be expressed as

|||L|||X′(µ) = 〈C(µ)wL(µ), wL(µ)〉1/2 ,
= 〈L,wL(µ)〉1/2 ,

127

7.4. A POSTERIORI ERROR ESTIMATION

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS

where wL(µ) ∈ X satis�es

〈C(µ)wL(µ), v〉 = 〈L, v〉, ∀ v ∈ X .

We now invoke our �computational invertibility� hypothesis on C(µ), (7.23), to write

wL(µ) = C−1
J (µ) L ;

and hence |||L|||X′(µ) can be evalulated as

|||L|||X′(µ) = 〈L, C−1
J (µ) L〉1/2 .

The o�-line/on-line decomposition is now clear.
In the o�-line stage, we compute the µ-independent quantities ωj ≡ 〈L, C−1

j L〉1/2, 1 ≤
j ≤ J . (Note in this paper we shall not give detailed complexity estimates for the o�-line
stage of the bound calculations; our focus here will be on the on-line stage.) Then, in the
on-line stage, given any new value of µ, we simply evaluate

|||L|||X′(µ) = ωJ (µ) .

The on-line complexity is thus O(1) (and certainly independent of N).
Calculation of δN(µ). We �rst note from (7.26) and (7.28) that δN(µ) may be expressed
as

δN(µ) = 〈R(µ), E(µ)〉1/2 ,
where E(µ) ∈ X satis�es

〈C(µ)E(µ), v〉 = 〈R(µ), v〉, ∀v ∈ X ,

and
〈R(µ), v〉 = 〈F, v〉 − 〈A(µ) uN(µ), v〉, ∀v ∈ X ,

is the �reduced-basis� part of the residual.
We now invoke (7.12), the a�ne dependence of (7.3), and the computational invertibility

hypothesis (7.23) to express R(µ) and E(µ) as

R(µ) = F −
N∑
n=1

Q∑
q=1

uNn(µ) αq(µ) Aqζn ,

and

E(µ) = C−1
J (µ) F

−
N∑

n′=1

Q∑
q′=1

uNn′(µ) αq′(µ) C−1
J (µ) Aq′ζn′ ,

128

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS 7.4. A POSTERIORI ERROR ESTIMATION

respectively. We can thus evaluate δN(µ) of (7.26) as

δN(µ) =〈
F −

N∑
n=1

Q∑
q=1

uNn(µ) αq(µ) Aqζn,

C−1
J (µ)F −

N∑
n′=1

Q∑
q′=1

uNn′(µ) αq′(µ) C−1
J (µ) Aq′ζn′

〉1/2

.

The o�-line/on-line decomposition is now clear.
In the o�-line stage, we compute the µ-independent inner products

Λ0
j = 〈F, C−1

j F 〉, 1 ≤ j ≤ J ,
Λ1
j : nq = −2〈F, C−1

j Aqζn〉, 1 ≤ j ≤ J1 ≤ n ≤ N1 ≤ q ≤ Q ,
Λ2
j : nqn′q′ = 〈Aqζn, C−1

j Aq′ζn′〉, 1 ≤ j ≤ J1 ≤ n, n′ ≤ N1 ≤ q, q′ ≤ Q .

Then, in the on-line stage, given any new value of µ, we simply perform the sum

δN(µ) =(
Λ0
J (µ) +

N∑
n=1

Q∑
q=1

uNn(µ) αq(µ)

(
Λ1
J (µ) : nq

+
N∑

n′=1

Q∑
q′=1

uNn′(µ) αq′(µ) Λ2
J (µ) : nqn′q′

))1/2

.

The on-line complexity is thus, to leading order, O(Q
2
N2) � and hence independent of N .

Furthermore, for Q small � certainly plausible given our A(µ) = A(µ) + Â(µ) decompo-
sition � the on-line complexity will be small not only in relative, but also in absolute, terms.
However, were we to treat the Â(µ) terms similarly, the resulting complexity � O(Q̂2N2) �
would be prohibitive, since we may anticipate Q̂ ≈ O(N) in many situations. It is for this
reason � and the fact that we may not have detailed knowledge of the βq(µ) � that we must
treat the model truncation a posteriori contribution, δ̂N(µ), di�erently from the discretization
a posteriori contribution, δN(µ).

Calculation of δ̂N(µ). We �rst de�ne

ˆ̂
δ2
N(µ) ≡

bQ∑
q=1

γ2
q (uN(µ)) ,

in terms of which δ̂N(µ) can be computed as δ̂N(µ) = ρ̂′Σ(µ) βmaxbQ (µ)
ˆ̂
δN(µ). We shall

not discuss in detail the (solely o�-line) calculation of ρ̂′Σ(µ): it may either be determined
by inspection (see our example of Section 7.5); or computed more precisely as ρ̂′Σ(µ) =

129

7.4. A POSTERIORI ERROR ESTIMATION

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS

λΣ,max
J (µ) , where λΣ,max

j , 1 ≤ j ≤ J , is the maximum eigenvalue associated with the parameter-
independent Rayleigh quotient bQ∑

q=1

||| v|Dq |||2q
〈Cjv, v〉 .

Finally, we shall assume, as discussed earlier, that we are directly given βmaxbQ (µ).
†
We shall

thus focus our attention on ˆ̂
δN(µ).

It is a simple matter to show that

γ2
q (uN(µ)) = ||| σq(µ) |||2q ,

where σq(µ) ∈ Xq satis�es(
(σq(µ), v|Dq)

)
q

= 〈Bq uN(µ), v|Dq〉, ∀ v ∈ X . (7.41)

Here Xq is the space of functions in H1(Dq) that vanish on that part of ∂Dq that coincides
with the Dirichlet part of ∂Ω. If we thus de�ne the parameter-independent functions σnq ∈ Xq,
1 ≤ n ≤ N , 1 ≤ q ≤ Q̂, as(

(σnq, v|Dq)
)
q

= 〈Bq ζn, v|Dq〉, ∀ v ∈ X , (7.42)

it follows from (7.41), (7.12), and (7.42) that

||| σq(µ) |||2q =
N∑
n=1

N∑
n′=1

uNn(µ) uNn′(µ) ((σnq, σn′q))q

and hence

ˆ̂
δ2
N(µ) =

N∑
n=1

N∑
n′=1

uNn(µ) uNn′(µ)

 bQ∑
q=1

((σnq, σn′q))q

 .

Note that for Dq a small region of Ω, (7.42) is essentially local (in practice, of course, we need
only test on functions v ∈ Xq), and hence very inexpensive. The o�-line/on-line decomposition
is now clear.

In the o�-line stage, we form the µ-independent quantity

Ξnn′ =

bQ∑
q=1

((σnq, σn′q))q 1 ≤ n, n′ ≤ N .

Then, in the on-line stage, given µ, ρ̂′Σ(µ), and βmaxbQ (µ), we evaluate

δ̂N(µ) =

ρ̂′Σ(µ) βmaxbQ (µ)

(
N∑
n=1

N∑
n′=1

uNn(µ) uNn′(µ) Ξnn′

)1/2

.

†
Note that there may be o�-line calculations required for subsequent rapid on-line calculation of βmaxbQ (µ)

� we consider this problem-dependent collateral computation as �external� to our general procedure. We
discuss this further in Section 7.5.

130

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS 7.5. ILLUSTRATIVE APPLICATION

The on-line complexity is thus O(N2), and hence independent of Q̂ (and N).
†
Indeed, the

fraction of the on-line computational cost attributable to δ̂N(µ) is typically negligible.

7.5 Illustrative Application

We consider here a three-dimensional conjugate (solid-�uid) heat transfer application � a
model system for multifunctional (thermostructural) microtrusses relevant, for example, to
lightweight walls for regeneratively cooled combustion chambers. The mathematical model is
a coupled Poisson-Convection Di�usion problem in a �nite-thickness-wall rectangular duct.

This problem will serve two functions. First, in its generality, it will serve as an example
of (some of) the ways in which our framework may, in practice, be applied. Second, in one
particular case, it will serve as a vehicle for numerical evidence to support the theoretical claims
of earlier sections.

7.5.1 Problem Statement

Governing Equations

The domain is given by Ω =]0, Lx[×]0, Ly[×]0, Lz[; we further de�ne the �uid domain as Ωf =

]twx , Lx − twx [×]twy , Ly − twy [×]0, Lz[, and the solid domain as Ωs = Ω\Ωf
(where here refers

to closure); we shall also require Ω2d =]0, Lx[×]0, Ly[, Ωf
2d =]twx , Lx − twx [×]twy , Ly − twy [,

and Ωs
2d = Ω2d\Ωf

2d. The geometry is depicted in Figure 7.1.
We next de�ne the requisite function spaces. We �rst introduceX ≡ {v ∈ H1(Ω)|v|(x,y)∈Ωf2d, z=0 =

0}. We shall also require Xf ≡ H1
0 (Ωf) = {v ∈ H1(Ωf) | v|∂Ωfside

= 0}, where ∂Ωf
side = ∂Ωf

2d ×]0, Lz[, and ∂Ωf
2d is the boundary of Ωf

2d; and we shall need
Xf

2d ≡ H1
0 (Ωf

2d) = {v ∈ H1(Ωf
2d) | v|∂Ωf2d

= 0}. In addition, we shall require the space

L∞(Ωf
2d) of functions v for which ‖v‖L∞(Ωf2d) ≡ ess sup(x,y)∈Ωf2d

|v(x, y)| is �nite.
We now present the exact problem statement: For speci�ed µ ≡ (µ1, µ2) ∈ Dµ ⊂ RP=2,

�nd s(µ) = 〈L, u(µ)〉, where u(µ) ∈ X satis�es

〈A(µ) u(µ), v〉 = 〈F, v〉, ∀ v ∈ X .

Here

〈L, v〉 ≡
∫

x=Lx
0<y<Ly , 0<z<Lz

v , (7.43)

〈F, v〉 ≡
∫

y=Ly
0<x<Lx, 0<z<Lz

v , (7.44)

†
Note in the situation in which Bq depends on µ a�nely through (say) Q̃ parameter functions (see

Section 7.2, Footnote †), our on-line complexity for δ̂N (µ) will now be O(Q̃2N2); the calculation remains

tractable if Q̃ is not too large.

131

7.5. ILLUSTRATIVE APPLICATION

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS

x

y

twy

x

Heat Flux

Lz

twx

Flow

Lx

y

Ly z

Figure 7.1: Three-dimensional �nite-thickness-wall duct.

132

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS 7.5. ILLUSTRATIVE APPLICATION

and

〈A(µ) w, v〉 ≡∫
Ωf
∇w · ∇v + θ

∫
Ωf

U(µ)
∂w

∂z
v

+ µ1

∫
Ωs
∇w · ∇v + µ2

∫
Ωs

y ∇w · ∇v ; (7.45)

θ and U will be de�ned below.
We thus have conduction in the solid, and conduction and convection in the �uid. As

regards the former, we assume that the thermal conductivity (normalized relative to the �uid
conductivity) is given by µ1 + µ2y. As regards the latter, we assume that the viscous �ow
is (laminar and) fully developed such that the velocity U(µ) ∈ (Xf)3 can be expressed as
U(x, y, z;µ) = U(x, y;µ) ẑ (here ẑ is the unit normal in the z direction) for U(µ) ∈ Xf

2d;
we shall also assume that U(µ) is non-negative and bounded over Ωf

2d. The velocity U(µ)
is de�ned relative to a unit pressure gradient; θ ∈ R+ thus determines the importance of
convection (the conventional Peclet number is given, roughly, by θL3

x), or, more precisely, the
entrance length associated with the developing thermal boundary layer on ∂Ωf

side. In actual
practice, for our particular problem, U(µ) will not be a function of µ; but we retain this
dependence in our exposition since more generally (e.g., if µ re�ects piecewise-continuous
a�ne geometric transformations) U(µ) will depend on µ.

Our essential and natural boundary conditions on the temperature u are implicit in F , A(µ),
and X. In particular, we impose inhomogeneous Neumann (prescribed heat �ux) on the top
external side wall; homogeneous Neumann (insulated) on the bottom, left, and right external
side walls, as well as on (x, y) ∈ Ωs

2d, z = 0, and (x, y) ∈ Ω2d, z = Lz; and homogeneous
Dirichlet (zero temperature) at �in�ow,� (x, y) ∈ Ωf

2d, z = 0. Continuity of temperature and
�ux are imposed on the internal walls, ∂Ωf

side. The output of interest, s(µ) = 〈L, u(µ)〉, is
the average temperature over the left external side wall.

Model Truncation and Interpretations

We now assume that we are given some low-dimensional (but presumably reasonably accurate)
approximation to U(µ), UM(µ) ∈ Xf

2d, of the form

UM(x, y;µ) =
M∑
m=1

UMm(µ) ξm(x, y) = UM(µ)T ξ , (7.46)

where UM(µ) = (UM1(µ) · · · UMM(µ))T ∈ RM , and ξ = (ξ1 . . . ξM)T ∈ (Xf
2d)

M . We further
assume that we are given a bound for the L∞-norm of the error in the velocity, EM(µ), such
that

‖U(µ)− UM(µ)‖L∞(Ωf2d) ≤ EM(µ) . (7.47)

Finally, we shall also suppose (plausibly) that UM(x, y;µ) is non-negative for all (x, y) ∈ Ωf
2d.

133

7.5. ILLUSTRATIVE APPLICATION

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS

We then de�ne our model-truncated form (for given M) as

〈A(µ)w, v〉 =∫
Ωf
∇w · ∇v + θ

∫
Ωf

UM(µ)
∂w

∂z
v

+ µ1

∫
Ωs
∇w · ∇v + µ2

∫
Ωs

y ∇w · ∇v , (7.48)

with remainder

〈Â(µ) w, v〉 = θ

∫
Ωf

(U(µ)− UM(µ))
∂w

∂z
v . (7.49)

Clearly, we recover A(µ) = A(µ) + Â(µ), as desired.
We now consider the scenarios � contexts � in which the decomposition (7.48)�(7.49)

might be relevant. These scenarios are not just pertinent to our particular problem; however,
our problem will serve as a concrete vehicle with which to motivate the scenarios. Three
scenarios relate to e�cient approximation and associated error control:

1. The convection velocity, U(µ), is known, but the dependence on the parameter µ is not

a�ne. We may thus choose to approximate U(µ) by
M∑
m=1

UMm(µ)ξm � thereby rendering

A(µ) a�ne (see Section 7.5.1.0); and to absorb the remainder, U(µ) − UM(µ), in Â(µ) �
thereby �controlling� the associated error. (In this case, Option II is preferred for XN .)

2. The (partial di�erential) equation governing the convection velocity is known, but there is
no analytical expression available for U(µ). We may thus choose to calculate U(µ) by a (say)

collateral reduced-basis approximation, UM(µ) =
M∑
m=1

UMm(µ)ξm � thereby permitting pre-

diction of the temperature; and to absorb the remainder, U(µ)− UM(µ), in Â(µ) � thereby
assessing the e�ect of the error in U(µ) on the error in the temperature. (Again, Option II is
preferred for XN .)

3. The convection velocity is speci�ed (in a device) or measured (in a process), but only to
within some known experimental error, EM(µ). We may thus choose to approximate U(µ)

by the mean of the measurements ξm, UM(µ) = 1
M

M∑
m=1

ξm � thereby permitting numeri-

cal prediction of the temperature; and to absorb the remainder, U(µ) − UM(µ), in Â(µ) �
thereby assessing the e�ect of experimental characterization errors on subsequent numerical
results (and system performance). (Here, Option I is preferred.)

The fourth scenario relates to sensitivity, in which the model error is synthetic � in this case
our method can be interpreted as rigorous �sensitivity di�erences�:

4. The convection velocity U(µ) is known in detail, but certain aspects of the pro�le (e.g.,
high wavenumber components) are arguably unimportant. We may thus choose to propose

134

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS 7.5. ILLUSTRATIVE APPLICATION

a dimension reduction, U(µ) ≈ UM(µ) =
M∑
m=1

UMm(µ) ξm � thereby permitting rapid eval-

uation and optimization; and to absorb the remainder, U(µ) − UM(µ), in Â(µ) � thereby
con�rming (or denying) our hypothesis through a posteriori error estimation. (Here, Option
II is again preferred.)

In Section 7.5.3 we present numerical results for a model version of the second scenario above.

Truth Approximation

We �rst introduce a quasi-uniform, regular sequence of triangulations [68] of]0, Lx[×]0, Ly[,
T h2d

2d , that honors the solid and �uid subdomains in the sense that ∂Ωf
2d intersects no (open)

triangle of T h2d
2d ; here h2d is the diameter of the triangulation. We then take the tensor product

of this two-dimensional (x, y) triangulation with a one-dimensional uniform segmentation in
z to construct a triangular-prismatic elemental decomposition of Ω, T h2d,hz

3d ; here hz is the
length of the triangular prisms in z. The associated N -dimensional linear �nite element space
is denoted XN .

The nodes of our (quasi-uniform, regular) triangulation T h2d
2d that reside in Ωf

2d (not includ-

ing ∂Ωf
2d) engender a linear �nite element approximation space (Xf

2d)
N f2d of dimensionN f

2d. We

can also write (Xf
2d)
N f2d =

span {ϕ1, . . . , ϕN f2d
}, where ϕj is the nodal basis function associated with the jth node,

xj = (x, y)j, of T h2d
2d in Ωf

2d. For future reference we de�ne the support of ϕj � a nodal
patch of area O(h2

2d) � as Rj; we show in Figure 7.2 a typical node/nodal patch of T h2d
2d . We

require now that the ξm, 1 ≤ m ≤M , of (7.46) reside in (Xf
2d)
N f2d ; and we take for our truth

approximation to U(µ) an appropriate (i.e., H1
0 (Ωf

2d)-�equivalent�) projection of the convec-

tion velocity U(µ) onto the space (Xf
2d)
N f2d , UN

f
2d(µ). We then rede�ne our error estimate of

(7.47) to read,

‖UN f2d(µ)− UM(µ)‖L∞(Ωf2d) ≤ ENM (µ) . (7.50)

We suppose that ‖U(µ)−UN f2d(µ)‖L∞(Ωf2d) → 0, and hence ENM (µ)→ EM(µ), asN (and hence N f
2d) →

∞.
Our truth approximation is thus: Given µ ∈ Dµ, �nd sN (µ) = 〈L, uN (µ)〉, where uN (µ) ∈

XN satis�es
〈AN (µ) uN (µ), v〉 = 〈F, v〉, ∀ v ∈ XN ,

and

〈AN (µ)w, v〉 ≡∫
Ωf
∇w · ∇v + θ

∫
Ωf

UN
f
2d(µ)

∂w

∂z
v

+ µ1

∫
Ωs
∇w · ∇v + µ2

∫
Ωs

y ∇w · ∇v .

We then write AN (µ) = AN (µ) + ÂN (µ), where AN (µ)

135

7.5. ILLUSTRATIVE APPLICATION

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS

Rj

xj

Figure 7.2: A node/nodal patch in T h2d
2d .

= A(µ) (we commit no variational crimes), and

〈ÂN (µ)w, v〉 ≡ θ

∫
Ω

(UN
f
2d(µ)− UM(µ))

∂w

∂z
v .

Finally, we replace our subproblem space Xq associated with (7.41) with a corresponding
truth-approximation space (Xq)

Nq (of dimension Nq = O(Lz
hz

), independent of h2d).
It should be patently clear that, as N → ∞, uN (µ) → u(µ), and sN (µ) → s(µ). The

central issue is stability of our a posteriori error bounds, in particular of δ̂N(µ), as N tends to
in�nity.

Veri�cation of Hypotheses

A�ne Structure. We show here that AN (µ) and ÂN (µ) admit the a�ne decompositions
of (7.3) and (7.4), respectively.

For AN (µ), it is immediately clear that Q = 1 + P (= 2) + M , where α1(µ) = 1,
α2(µ) = µ1, α3(µ) = µ2, and αq(µ) = UM(q−3)(µ) for q = 4, . . . ,M + 3; and that

〈A1 w, v〉 =

∫
Ωf
∇w · ∇v ,

〈A2 w, v〉 =

∫
Ωs
∇w · ∇v ,

〈A3 w, v〉 =

∫
Ωs
y ∇w · ∇v ,

〈Aq w, v〉 = θ

∫
Ωs
ξq−3

∂w

∂z
v, q = 4, . . . ,M + 3 .

We thus verify (7.3).

136

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS 7.5. ILLUSTRATIVE APPLICATION

For ÂN (µ), we �rst note that UN
f
2d(µ)− UM(µ) may be expressed (for given M) as

UN
f
2d(µ)− UM(µ) =

N f2d∑
q=1

βq(µ) ϕq(x, y) .

It thus directly follows that Q̂ = N f
2d; that βq(µ) is the value of the error UN

f
2d(µ) − UM(µ)

at node xq = (x, y)q, and

〈Bqw, v〉 = θ

∫
Ωf

ϕq(x, y)
∂w

∂z
v, q = 1, . . . , Q̂ , (7.51)

thus con�rming (7.4); and that Dq = Rq ×]0, Lz[� small prisms, or �pencils.� Note that,
as N →∞, N f

2d →∞ (h2d → 0), and hence Q̂→∞.

Stability and Continuity. Under the assumptions that µ1 > 0, µ2 ≥ 0, and U(x, y) ≥ 0,
UM(x, y) ≥ 0, ∀(x, y) ∈ Ωf

2d, it is standard to show that A and A are coercive and continuous
over X; the proof of coercivity is contained within Proposition 14. It remains to verify (7.7)
and (7.9).

As regards, (7.7), we know from the nodal interpretation of the βq(µ) that we may simply
take βmaxbQ (µ) = ENM (µ) and β̂max = sup

µ∈Dµ
EM(µ). The existence of an N - (and hence Q̂-)

independent bound for the L∞-norm of the error, EM(µ), must of course be veri�ed on a
case-by-case basis; see Section 7.5.3.0 for further discussion. As regards, (7.9), we provide

Proposition 13. For Bq as de�ned in (7.51), and (for simplicity) ‖ · ‖X = ‖ · ‖H1(Ω),

sup
w∈X

(bQ∑
q=1

γ2
q (w)

)1/2

‖w‖2
X

≤
√

3 θ C4 ,

where C4 = sup
q∈{1,..., bQ}(sup

v∈H1(Dq)

‖v‖H1(Dq)

||| v |||q).

Proof. We note that

〈Bqw, v〉 = θ

∫
Dq

ϕq(x, y)
∂w

∂z
v

≤ θ ‖ϕq‖L∞(Rq) ‖w‖H1(Dq) ‖v‖H1(Dq)

= θ ‖w‖H1(Dq) ‖v‖H1(Dq)

≤ θ C4 ‖w‖H1(Dq) ||| v |||q ,

from the Cauchy-Schwarz inequality, ‖ϕq‖L∞(Rq) = 1 (for linear nodal basis functions), and
the de�nition of C4. (Note that C4 must be �nite from our assumption that ||| · |||q and
‖ · ‖H1(Dq) are uniformly equivalent.)

137

7.5. ILLUSTRATIVE APPLICATION

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS

It then follows that γq(w) ≤ θ C4 ‖w‖H1(Dq), and hence

bQ∑
q=1

γ2
q (w) ≤ θ2 C2

4

bQ∑
q=1

‖w‖2
H1(Dq)

≤ 3 θ2 C2
4 ‖w‖2

H1(Ω) ,

since each point of Ω appears in at most Cmult = 3 regions Dq (each triangle of T h2d
2d has

three nodes). This concludes the proof. �

Note it follows from Proposition 13 that we may take Γ̂ of (7.9) to be
√

3 θ C4.

7.5.2 Reduced-Basis Output Bound

Here we must select our bound conditioner and, relatedly, our inner products and norms over
the Dq. We �rst de�ne

〈C0w, v〉 ≡
∫

Ωf
∇w · ∇v + µmin

1

∫
Ωs
∇w · ∇v

+ µmin
2

∫
Ωs
y ∇w · ∇v, ∀ w, v ∈ X , (7.52)

where µmin
1 = max{t∈R+ | Dµ⊂[t,∞[×R} t and µmin

2 =
max{t∈R+ | Dµ⊂R×[t,∞[} t. One possible choice for our bound conditioner � which we shall
denote BC1 � is then C(µ) = C ≡ C0. Relatedly, we choose

((w, v))q =

∫
Dq

∇w · ∇v ,

and

|||v|||2q =

∫
Dq

|∇v|2 ;

we may thus satisfy (7.21) with the choice ρ′Σ(µ) =
√

3. It can readily be shown that,
as desired, BC1 veri�es both the computational invertibility condition (7.23) (for j = 1,
J (µ) = 1, and C1 = C) and our spectral condition (7.20). However, BC1 and the associated
inner product ((· , ·))q can, in other circumstances, prove problematic: well-posedness of the
�pencil� problems (and relatedly, uniform equivalence of ||| · |||q and ‖ · ‖H1(Dq)) relies on the
presence of the Dirichlet boundary at z = 0.

We thus introduce a second bound conditioner � denoted BC2 � which is stable even
for all-Neumann pencils. We �rst introduce

†

λmin = min
v∈X

〈C0v, v〉∫
Ω
v2

, (7.53)

†
Of course, λmin is strictly positive precisely because of the Dirichlet part of ∂Ω; but, in general, for BC2

(unlike BC1), we no longer require that this Dirichlet part of the boundary intersect the Dq.

138

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS 7.5. ILLUSTRATIVE APPLICATION

and then de�ne C(µ) = C as

〈Cw, v〉 ≡ 1

2

(
〈C0w, v〉+ λmin

∫
Ω

wv

)
, ∀ w, v ∈ X . (7.54)

Relatedly, we choose

((w, v))q ≡ 1

2

(∫
Dq

∇w · ∇v + λmin

∫
Dq

wv

)
, 1 ≤ q ≤ Q̂ ,

and hence

||| v |||2q ≡
1

2

(∫
Dq

|∇v|2 + λmin

∫
Dq

v2

)
, 1 ≤ q ≤ Q̂ , (7.55)

for our subdomain inner products and norms, respectively; we may thus satisfy (7.21) with the
choice ρ′Σ(µ) =

√
3.

It is clear that our computational invertibility condition, (7.23), is satis�ed: we may take
J = 1, J (µ) = 1, and C1 = C. Note that C (and hence C1) does not depend on µ; and, in
particular, that λmin (or, more precisely, our truth approximation to λmin, (λmin)N) does not
depend on µ, and hence may be computed o�-line. It thus remains only to verify (7.20). We
do so in

Proposition 14. For µmin
1 strictly positive, µmin

2 non-
negative, and U(x, y;µ) a non-negative function in
L∞(Ωf

2d),

1 ≤ 〈A
S(µ)v, v〉
〈Cv, v〉 ≤ ρ, ∀v ∈ X , (7.56)

for ρ independent of µ and N . Here C is de�ned in (7.52)�(7.54).

Proof. We �rst consider the �left� inequality associated with the spectral condition (7.56). In
particular, from (7.45) and the de�nition of X we obtain

〈AS(µ)v, v〉 = 〈A(µ)v, v〉

=

∫
Ωf
|∇v|2 +

θ

2

∫
z=Lz

(x,y)∈Ω
f
2d

U(x, y;µ) v2

+ µ1

∫
Ωs
|∇v|2 + µ2

∫
Ωs

y |∇v|2 ; (7.57)

coercivity of A(µ) then directly follows from our hypotheses on µ and U(x, y). Furthermore,
we immediately observe from (7.52) that 〈C0v, v〉 ≤ 〈AS(µ)v, v〉, ∀ v ∈ X; and since from
(7.53) λmin

∫
Ω
v2 ≤ 〈C0v, v〉, ∀ v ∈ X, it follows that

〈Cv, v〉 =
1

2
〈C0v, v〉+

λmin

2

∫
Ω

v2

≤ 〈C0v, v〉
≤ 〈AS(µ)v, v〉, ∀ v ∈ X ,

139

7.5. ILLUSTRATIVE APPLICATION

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS

thus verifying the left inequality of (7.56).
†

We now consider the right inequality of (7.56). We �rst recall from the Trace Theorem [68]
and Poincaré-Friedrichs inequality that∫

z=Lz

(x,y)∈Ω
f
2d

U(x, y;µ) v2

≤ Ctr ‖U(µ)‖L∞(Ωf2d)

∫
Ωf
|∇v|2, ∀ v ∈ Xf ;

for some constant Ctr that depends only on Ωf . The desired result then follows with (crudely)

ρ =
max
µ∈Dµ

max(1, Ctr
θ
2
‖U(µ)‖L∞(Ωf2d), µ1, Lyµ2)

1
2

min(1, µmin
1)

;

ρ is bounded thanks to our hypotheses on Dµ. �

We note that our bound conditioner can be improved, for example, by considering the multi-
point extensions described in [82].

The bound procedure then follows the outline of Section 7.4.2.0. We assume that, given
a new µ in the on-line stage, ρ̂′Σ(µ) (=

√
3), UM(µ), and βmaxbQ (µ) = ENM (µ) can be rapidly

calculated � as rapidly as sN(µ) and ∆N(µ). This will be the case, for example, in Scenario 2
of Section 7.5.1.0, in which UM(µ) and ENM (µ) are the result of a collateral reduced-basis
approximation (see also Section 7.5.3.0).

7.5.3 Numerical Study

Particular Examples

We consider a particularly simple case of Scenario 2 of Section 7.5.1.0. We assume that the
�ow is laminar and fully-developed. The exact velocity �eld U ∈ Xf

2d thus satis�es a Poisson
problem, ∫

Ωf2d

∇U · ∇v =

∫
Ωf2d

v, ∀ v ∈ Xf
2d ;

and the truth approximation UN
f
2d ∈ (Xf

2d)
N f2d ⊂ Xf

2d then satis�es∫
Ωf2d

∇UN f2d · ∇v =

∫
Ωf2d

v, ∀ v ∈ (Xf
2d)
N f2d .

We observe that UN
f
2d does not depend on µ, and hence the reduced-basis approximation

(M = 1, UM1 = 1, ξ1 = UN
f
2d) will be exact, and will not exercise the model truncation terms

†
In this case, since the errors βq(µ) multiply lower-order derivatives in the �right� way, they do not contribute

to (in)stability; more generally, for example, if the βq(µ) multiply the higher derivatives, C(µ) may need to
re�ect βmaxbQ (µ) in order to satisfy (7.20).

140

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS 7.5. ILLUSTRATIVE APPLICATION

that are the focus of this paper. In order to introduce a non-zero model truncation error, we
thus take M = 1, UM1 = 1, and ξ1 = UM

f
2d , where UM

f
2d is a �nite element approximation

to U(µ) de�ned on a triangulation that is (signi�cantly) coarser than the coarsest truth
triangulation to be considered. As regards many of the critical points we wish to address
here (for example, stability of δ̂N(µ)), our simple surrogate su�ces. In Section 7.5.3.0 we
brie�y discuss the main new complication that arises when U(µ) does depend on µ: on-line
calculation of ENM (µ), our bound for the L∞ error in U(µ).

In what follows, we consider Lx = 10, Ly = 10, Lz = 10, twx = 1, twy = 1, and θ = 1.
For these values (note ‖U‖L∞(Ωf2d) ≈ 4), the thermal boundary layer is just developed at

the channel exit (z = Lz), and thus convection e�ects are, indeed, important. (Our ultimate
interest is high-Prandtl number hydrocarbons, and thus the assumption of fully-developed �ow
� but not fully-developed heat transfer � is not unreasonable.) We consider the parameter
domain Dµ = [.1, 10]× [.1, 10], that is .1 ≤ µ1, µ2 ≤ 10.

We shall label our truth meshes by [K1, K2], where K1 is the number of nodes in T h2d
2d

(most of which are in Ωf
2d), and K2 is the number of segments in z; hence the total degrees

of freedom number N ≈ K1K2. We shall consider two truth meshes: MeshI = [1969, 11],
corresponding to NI = 21659; and a re�nement, MeshII = [7681, 11], corresponding to
NII = 84491. (Note that we re�ne only in (x, y) so as to provide the largest possible variation
in Q̂; in actual practice, we would also re�ne in z.) TheMf

2d = 142-node coarse mesh which

serves to de�ne UM
f
2d is a de-re�nement of the (x, y) triangulation associated with MeshI.

For MeshI, ENI
M = 0.389, whereas for MeshII, ENII

M = 0.398 (the slight increase of the latter
relative to the former is largely an arti�ce of our surrogate � ENM vanishes as N f

2d approaches
Mf

2d); these errors are readily calculated o�-line.
As regards our reduced-basis approximation, we �rst sample 30 points (a, b)i randomly from

a bi-variate uniform probability distribution over [ln .1, ln 10.] ×
[ln .1, ln 10.]; we next de�ne (a, b)i = (eai , ebi), i = 1, . . . ,
30. (The particular advantage of this log-random distribution is described in [46, 62], and will
be demonstrated empirically below.) We then de�ne S30 = {(a, b)1, . . . ,
(a, b)30}, and subsequently form S1 ⊂ S2 ⊂ · · · ⊂ S30 as nested random subsamples (i.e., S29

is S30 with one point randomly removed, S28 is S29 with one point randomly removed, . . .). Fi-
nally, these samples SN , N = 1, . . . , 30, induce our reduced-basis spaces XN , N = 1, . . . , 30;
we elect Option I here simply because this choice more cleanly decouples the discretization and
model truncation contributions to the error. The results below are (mostly) for BC2; similar
results obtain for BC1.

Numerical Results

We present in Table 7.1, for N = 5 and MeshI, sN(µ), |sN (µ)−sN(µ)|, ∆N(µ), and ηN(µ) for
�ve di�erent points µ ∈ Dµ; the latter is hereafter referred to as the �test sample.� We observe
that sN(µ) does vary nontrivially over the parameter domain; that the error |sN (µ)− sN(µ)|
is already reasonably small at this very modest N ; that |sN (µ)−sN(µ)| ≤ ∆N(µ) (and hence
ηN(µ) ≥ 1) � we obtain strict bounds, as expected; but that, for the larger values of µ, the
e�ectivities are much larger than desired � we grossly overestimate the error.

To better understand the undesirably large e�ectivites, we present in Table 7.2 the ratios

141

7.5. ILLUSTRATIVE APPLICATION

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS

(µ1, µ2) sN(µ) |sN (µ)− sN(µ)| ∆N(µ) ηN(µ)

(1.0e-01, 1.0e-01) 9.67e-01 6.85e-02 6.16e-01 8.98e+00
(1.0e-01, 1.0e+00) 5.92e-01 2.51e-02 4.93e-02 1.96e+00
(1.0e-01, 1.0e+01) 1.67e-01 1.93e-03 3.76e-02 1.94e+01
(5.0e+00, 5.0e+00) 2.45e-01 4.04e-03 1.12e-01 2.77e+01
(1.0e+01, 1.0e+01) 1.44e-01 8.08e-04 1.77e-01 2.19e+02

Table 7.1: Numerical results for an N = 5 reduced-basis approximation and the MeshI truth
approximation. Note that, for our particular output functional, bound conditioner, and MeshI

truth approximations, |||L|||X′ = 0.312.

(µ1, µ2)
|||L|||X′δN(µ)

|sN (µ)− sN(µ)|
|||L|||X′ δ̂N(µ)

|sN (µ)− sN (µ)|
(1.0e-01, 1.0e-01) 3.08e+01 1.58e+00
(1.0e-01, 1.0e+00) 6.84e+01 1.76e+00
(1.0e-01, 1.0e+01) 1.67e+02 4.74e+00
(5.0e+00, 5.0e+00) 2.48e+02 3.50e+00
(1.0e+01, 1.0e+01) 2.20e+02 5.62e+00

Table 7.2: Numerical results for the discretization and model truncation �e�ectivities� for an
N = 5 reduced-basis approximation and the MeshI truth approximation.

|||L|||X′δN(µ)/|sN (µ)−sN(µ)| and |||L|||X′ δ̂N(µ)/|sN (µ)−sN (µ)|, which may be interpreted
as the (reduced-basis) discretization �e�ectivity� and the model truncation �e�ectivity,� respec-
tively. The discretization e�ectivities can be quite large for the larger µ values. There are two
causes: the nonsymmetric (convection) contributions to A(µ) that are perforce not present
in C(µ); and the departure of µ from µmin, the point at which the symmetric part of A(µ)
is best represented by C(µ). The former are more di�cult to mitigate; however, the latter �
more signi�cant here, judging from the µ-dependence of the discretization e�ectivity � can
be readily treated by a multi-point bound conditioner [82]. In general, the model truncation
e�ectivity is quite good � O(10) at worst � perhaps due to more explicit incorporation of
the convection continuity contributions.

We now investigate the e�ect of N . We consider the particular parameter point µ =
(0.1, 0.1) so as to minimize the (remediable) �symmetric� contribution to the discretization ef-
fectivity. We present in Table 7.3 (for µ = (0.1, 0.1)) |sN − sN |, |||L|||X′δN , |||L|||X′ δ̂N , ∆N ,
and ηN , for N = 5, 10, 20, and 30. We observe that the model truncation contribution to the
error bound, |||L|||X′ δ̂N , is largely insensitive to N , as expected; and that the (reduced-basis)
discretization contribution to the error bound, |||L|||X′ δN , decreases quite rapidly with N �
such that for N = 10 the model truncation e�ect,
|||L|||X′ δ̂N , already dominates. For large N , the discretization contribution to the error

142

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS 7.5. ILLUSTRATIVE APPLICATION

N |sN − sN | |||L|||X′δN |||L|||X′ δ̂N ∆N ηN

5 6.85e-02 5.35e-01 8.11e-02 6.16e-01 8.98e+00
10 4.39e-02 6.28e-02 8.01e-02 1.43e-01 3.25e+00
20 5.10e-02 7.54e-03 7.99e-02 8.75e-02 1.71e+00
30 5.12e-02 2.27e-05 8.00e-02 8.00e-02 1.56e+00

Table 7.3: Numerical results (for µ = (0.1, 0.1)) for the error and error bound for N =
5, 10, 20, and 30 reduced-basis approximations and the MeshI truth approximation.

N
|||L|||X′δN
|sN − sN |

|||L|||X′ δ̂N
|sN − sN |

5 3.08e+01 1.58e+00
10 8.62e+00 1.56e+00
20 5.44e+01 1.56e+00
30 3.21e+01 1.56e+00

Table 7.4: Numerical results (for µ = (0.1, 0.1)) for the discretization and model truncation
e�ectivities for N = 5, 10, 20, and 30 reduced-basis approximations and the MeshI truth

approximation.

is negligible.
†

In an actual calculation we would exploit our a posteriori information to avoid this com-
putationally wasteful discretization error�model truncation error imbalance (and associated
stagnation of |sN − sN |(µ) and ∆N(µ)). In particular, we would simultaneously improve both
sN (increase N) and UM (�increase M �) so as to maintain δN(µ) ≈ δ̂N(µ); and we would
terminate this double re�nement when ∆N(µ) reaches the desired tolerance. Note the latter
will yield an e�cient approximation only if the individual (discretization and model truncation)
e�ectivities are relatively small and, in particular, insensitive to N ; this is, indeed, roughly the
case, as we see in Table 7.4 � a summary (for µ = (0.1, 0.1)) of |||L|||X′δN/|sN − sN | and
|||L|||X′ δ̂N/|sN − sN | for N = 5, 10, 20, and 30.

We now consider the e�ect of the truth approximation resolution, N , on δ̂N(µ). In
particular, we present in Table 7.5, again for our test sample, |||L|||X′ δ̂N(µ)/ENM for the
truth approximations MeshI and MeshII. (Table 7.5 is for the case N = 5 � the results are
quite insensitive to N � and for BC1.) We observe very little variation in |||L|||X′ δ̂N(µ)/ENM
as we increaseN (and hence Q̂), consistent with our theoretical predictions. Table 7.5 provides
empirical evidence that our method is indeed stable as Q̂ tends to in�nity; we may thus choose
N as large as deemed necessary to ensure adequate �delity of the truth approximation.

As regards on-line complexity, we know that the on-line computational e�ort (and storage)

†
Our convergence results here, and the re�nement strategy proposed, re�ect our �Option I� choice for XN .

Option II will yield slightly di�erent convergence behavior, and hence require a slightly di�erent re�nement
strategy.

143

7.5. ILLUSTRATIVE APPLICATION

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS

(µ1, µ2)
|||L|||X′ δ̂N(µ)

ENIM
|||L|||X′ δ̂N(µ)

ENIIM

(1.0e-01, 1.0e-01) 1.56e-01 1.70e-01
(1.0e-01, 1.0e+00) 8.52e-02 9.26e-02
(1.0e-01, 1.0e+01) 1.91e-02 2.05e-02
(5.0e+00, 5.0e+00) 2.99e-02 3.22e-02
(1.0e+01, 1.0e+01) 1.69e-02 1.82e-02

Table 7.5: Numerical results for the model truncation contribution to the error bound for
an N = 5 reduced-basis approximation and the MeshI (second column) and MeshII (third

column) truth approximations.

is also independent of N and Q̂. In particular, for N = 10, our on-line prediction of sN(µ) and
∆N(µ) is 1,000-fold (respectively, 10,000-fold) faster than the corresponding direct calculation
of sN (µ) on MeshI (respectively, MeshII). We may thus predict a rigorous and tight range
for sN (µ), sN(µ) −∆N(µ) ≤ sN (µ) ≤ sN(µ) + ∆N(µ), at a very small fraction of the cost
of direct prediction of sN (µ); furthermore, our framework identi�es the source of the �bound
gap� so that adaptive re�nement can be e�ciently pursued.

The L∞ Error Bound

As indicated earlier, with the introduction of geometric variations (e.g., in tw. , L.), U(µ) will
now depend on µ, and the reduced-basis approximation UM(µ) will now be nontrivial � these
calculations, which fully exercise all aspects of our framework, are reported elsewhere. We
brie�y discuss here the main new complication that arises: on-line calculation of ENM (µ), a
bound for ‖UN f2d(µ) − UM(µ)‖L∞(Ωf2d). (Note that, even in the case of geometry variations,

Ωf
2d � a reference domain � is independent of µ.)
To make our discussion su�ciently precise, we assume that U(µ) ∈ Xf

2d satis�es

〈F(µ) U(µ), v〉Xf
2d

= 〈1, v〉Xf
2d
, ∀ v ∈ Xf

2d , (7.58)

where 〈 · , · 〉Xf
2d
is the duality pairing associated with Xf

2d, and F(µ) : Xf
2d → (Xf

2d)
′ is a (say)

symmetric, coercive, continuous operator with a�ne parameter dependence. The correspond-
ing truth approximation UN

f
2d(µ) ∈

(Xf
2d)
N f2d satis�es (7.58) with (Xf

2d) replaced by (Xf
2d)
N f2d . We now apply the techniques

of Sections 7.3 and 7.4 to develop a reduced-basis approximation UM(µ), and associated error
bound in the energy norm, ∆U

M(µ), such that

〈F(UN
f
2d(µ)− UM(µ)), UN

f
2d(µ)− UM(µ)〉1/2 ≤ ∆U

M(µ) . (7.59)

We know that UM(µ) and ∆U
M(µ) admit an e�cient o�-line/on-line computational procedure,

and that the bound (7.59) will be relatively sharp.

144

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS 7.5. ILLUSTRATIVE APPLICATION

Unfortunately, for D ⊂ R2, H1(D) is not continuously embedded in L∞(D), and thus we
can not hope to develop an L∞ error bound of the form ENM (µ) = CL∞,H1 ∆U

M(µ) for CL∞,H1

independent of h2d (and hence N and Q̂). Fortunately, for functions in (Xf
2d)
N f2d , the inverse

inequality is relatively benign for D ⊂ R2: it can be shown [83] that

CL∞,H1(h2d) ≤ C ln

(
1

h2d

)
,

where

CL∞,H1(h2d) = sup

v∈(Xf
2d)
Nf

2d

‖v‖L∞(Ωf2d)

〈F(µ)v, v〉1/2 ,
†

(7.60)

and C is independent of h2d. We must thus violate one of our conditions: either β̂max (and
hence δ̂N(µ)) will increase slightly with Q̂; or M (and hence Q) must increase slightly with
N (so as to decrease ∆U

M(µ) and hence maintain β̂max constant). But, the e�ect is only
logarithmic, and thus presumably not cause for great concern. (We do not yet have numerical
results for CL∞,H1(h2d), and hence we can not report representative values for C.)

However, for D ⊂ R3, the constant in the inverse inequality is worse than logarithmic. In
this case, our approach will undoubtedly need to be modi�ed. One possibility is to treat the
summation over q in (7.16) di�erently: to work in a weighted `2, rather than `∞, norm for the
βq(µ) (related to an L2 error estimate for UM(µ)), and in an `∞, rather than `2, norm for the
γq; the latter can perhaps be bounded thanks to the greater regularity of u(µ) (and uN(µ))
[41]. Future work will explore this approach further, and develop associated o�-line/on-line
computational procedures.

Acknowledgements. We would like to thank Professor Yvon Maday of the University of
Paris VI for a careful critique of an earlier approach; his analysis stimulated the revised and
much-improved technique presented here. We also thank Ivan Oliveira, Dimitrios Rovas, and
Karen Veroy for their careful reading of the manuscript and many helpful recommendations.
This work was supported by DARPA and AFOSR under Grant F49620-01-1-0458 and by the
Singapore-MIT Alliance.

†
It is a simple matter to develop an o�-line bound, CUB

L∞,H1 , for CL∞,H1 : we �rst introduce a (say)

µ-independent bound conditioner for F , CF ; and we then calculate

CUB
L∞,H1(h2d) = max

q∈{1,..., bQ}
(

sup
v∈(Xf

2d)N

v(xq)
〈CFv, v〉1/2

)
,

where we recall that the xq are the nodes of T h2d

2d that reside in Ωf2d.

145

7.5. ILLUSTRATIVE APPLICATION

CHAPTER 7. REDUCED-BASIS OUTPUT BOUNDS FOR APPROXIMATELY PARAMETRIZED ELLIPTIC COERCIVE PARTIAL DIFFERENTIAL

EQUATIONS

146

Chapter 8

A Priori Convergence Of

Multi-Dimensional Parametrized

Reduced Basis

Authors: A. Bu�a, Y.Maday, A.T. Patera, C. Prud'homme, G. Turinici.

8.1 Introduction

The purpose of this work is to prove a priori convergence of the reduced basis schemes for the
situation when the parameters are multi-dimensional. In previous works [48, 49, 63] exponential
convergence with respect to the number N of basis functions is proved for one dimensional
parameters case and the proof there can be extended by tensorization to obtain behavior that
scales as e−N

1/P
where P is the dimension of the parameter space and N is the number of

reduced basis functions. But the numerical experiments show much faster convergence [7]
which leads us to inquire for di�erent, much stronger estimations. Such a result is provided
here which, under assumption (8.13) shows that exponential convergence is recovered as e−cN

and thus is independent of the dimension P of the parameter space.
Let us introduce the notations: u(x, µ) ∈ Y is the solution of a parametrically dependent

partial di�erential equation (PDE) set on a spatial domain Ω ⊂ Rd and on a parametric domain
D ⊂ RP . Here Y ⊂ L2(Ω) is a functional space adapted to the PDE, e.h. Y = H1

0 (Ω). We
will suppose D to be compact, but we take no other hypothesis on Ω than those required by
the PDE itself.

Our partial di�erential equation under weak form reads as follows: given µ ∈ Dµ, �nd
u(µ) ∈ Y which satis�es

A(u(µ), v;µ) = 0 ∀v ∈ Y (8.1)

where the form A encodes the description of the PDE.
For reasons that will become clear in Section 8.2 we will in fact suppose that we can de�ne

u(x, µ) for µ in some neighborhood Dr of D

Dr = ∪µ∈DBµ(r) = {µ ∈ Rd|dist(µ,D) ≤ r} (8.2)

147

8.1. INTRODUCTION CHAPTER 8. A PRIORI CONVERGENCE OF MULTI-DIMENSIONAL PARAMETRIZED REDUCED BASIS

where Ba(r) is the ball of center a and radius r. Note that since D is compact Dr will also
be compact for any r ≥ 0. In particular the �xed constant r can be as small as we want.

Remark 8.1.1. This construction is not unique, for all that follows even D would have been
enough provided it satis�es some additional geometric properties on which we do not want to
elaborate here.

The dependence of u on µ is also supposed smooth enough, but at least Lipschitz of
constant L i.e.

‖u(x, µ)− u(x, µ′)‖Y ≤ L‖µ− µ′‖RP . (8.3)

We will introduce the operators K and respectively T which are convolution with the
kernels

K(µ, µ′) =

∫
Ω

u(x, µ)u(x, µ′)dx (8.4)

T (x, x′) =

∫
Dr

u(x, µ)u(x′, µ)dµ (8.5)

i.e. the operators that ct by

(Kf)(µ) =

∫
Dr

K(µ, µ′)f(µ′)dµ′ (8.6)

(Tu)(x) =

∫
Ω

T (x, x′)f(x′)dx′ (8.7)

It is immediate to show that both operators are self-adjoint. We also introduce the set W
which is the L2 closure of the set of all solutions u(x, µ) for µ ∈ Dr.

W = {u(x;µ);µ ∈ Dr} (8.8)

We can prove the following properties concerning the operators T and K
- T (x, x′) ∈ L2(Ω×Ω) (this follows from the boundedness properties of the solutions u(µ)
- T (x, x′) is positive and compact (from the Lebesgue theorem weak L2 convergence of

fn to f implies strong L2 convergence of Tfn to Tf)
- Ker(T) = W⊥ and Ran(T) ⊂ W
Thus T is a symmetric, positive de�nite compact operator from W to W . As such it

admits a spectral decomposition in terms of its eigenfunctions (ψk(x))∞k=1 corresponding to
the eigenvalues (λk)

∞
k=1:

Tf =
∞∑
k=1

λk < f, ψk > ψk (8.9)

Same considerations of compacteness hold for operator K too. Let us remark that

φk(µ) =
1√
λk

∫
Ω

u(x, µ)ψk(x)dx

148

CHAPTER 8. A PRIORI CONVERGENCE OF MULTI-DIMENSIONAL PARAMETRIZED REDUCED BASIS 8.2. LOW DIMENSIONAL MANIFOLD

are eigenfunctions of the operator K which correspond to the same eigenvalues λk. Both
φk(µ), ψk(x) are normalized in L2. We have thus

Kφk = λkφk (8.10)

Tψk = λkψk (8.11)

Then the following summation formula holds:

u(x, µ) =
∞∑
k=1

√
λkφk(µ)ψk(x). (8.12)

It was numerically veri�ed (see section 8.4) that for some parametric PDEs the following
estimation is valid

λk ≤ ce−f(k), (8.13)

where the function f is at least linear f(x) ≥ ρk for some ρ > 0.
Among others (see Section 8.2), eqns. (8.12) and (8.13) imply the existence of a space of

small dimension that contains
U = {u(·, µ)|µ ∈ D}. (8.14)

Remark 8.1.2. Note that in the de�nition of U we only consider parameters in D. The
convergence proof will in fact only work for them and not for parameters in Dr.

Because µ belongs to a compact space and u comes from a PDE we can suppose that
each u ∈ U is bounded (in L2

x) by some constant M > 0.

8.2 Low dimensional manifold

The purpose of this section is to show that U is close to a linear space of small dimension Ψk

spanned by �rst functions ψ1, ..., ψn:

Ψk = span{ψ1, . . . , ψk} (8.15)

Under this assumption, we prove that Ψk is exponentially approximating. However, due to
some technicalities (basically we want a L∞ norm but we only have a L2 norm) the proof is
not completely trivial.

Lemma 6. De�ne lm =
√∑∞

k=m+1 λk. Then:

∀u ∈ U ‖u− ΠΨk
L2 u‖L2 ≤ C

1/P
k . (8.16)

where ΠΨk
L2 u is the L2 projection of u on Ψk i.e.

ΠΨk
L2 u = arginfψ∈Ψk

‖u− ψ‖L2 .

149

8.3. A PRIORI CONVERGENCE RESULTCHAPTER 8. A PRIORI CONVERGENCE OF MULTI-DIMENSIONAL PARAMETRIZED REDUCED BASIS

Proof. Denote for µ ∈ Dr

fm(µ) = ‖u(x, µ)−
m∑
k=1

√
λkφk(µ)ψk(x)‖L2

x
(8.17)

It is immediate to see that
‖fm(µ)‖L2

µ(Dr) ≤ lm (8.18)

and thus, the measure of the set of µ where fm(µ) is large can be bounded:

meas{µ ∈ Dr|fm(µ) > l1/2m } ≤ lm (8.19)

Let µ ∈ D be such that fm(µ) > l
1/2
m . Denote by z the distance from this point µ to the

closest point µ′ with fm(µ′) ≤ l
1/2
m . Then, Bz(µ) ⊂ {µ ∈ Dr|fm(µ) > l

1/2
m } and thus, by

passing to measures: zP ≤ clm (c is a constant depending on the dimension P). Thus, there
exists a point µ′ at distance z ≤ cl

1/P
m with fm(µ′) ≤ l

1/2
m . It follows from the Lipschitz

property (8.3) that

‖u(x, µ)−
m∑
k=1

√
λkφk(µ

′)ψk(x)‖L2
x
≤ ‖u(x, µ)− u(x, µ′)‖

+‖u(x, µ′)−
m∑
k=1

√
λkφk(µ

′)ψk(x)‖L2
x
≤ c(lm)1/P + l1/2m , (8.20)

hence the conclusion.

8.3 A priori convergence result

We give in this section details on the exponentially accurate approximation of U by Ψk Ac-
cording to hypothesis (8.13) we suppose thereafter that the function f in (8.13) is such that

∀u ∈ U ‖u− ΠΨk
L2 u‖L2 ≤ Ce−αk (8.21)

with α > ln(2). This amounts to asking that ρ > 2P ln(2).
We construct the following reduced basis:

µ1 = argsupµ∈D‖u(·, µ)‖L2
x

u1 = uµ1 = u(·, µ1) (8.22)

µi+1 = argsupµ∈D‖u(·, µ)− Piu(·, µ)‖L2
x
ui+1 = u(·, µi+1)− Piu(·, µi+1) (8.23)

where Pi is the orthogonal projection onto Vi = span{u1, . . . , ui}. Note that:
1. The functions {ui}i≥1 are orthogonal, but not orthonormal.

2. The projection Piu(·, µ) veri�es the following:

Piuµ =
i∑

`=1

α`(µ)u`, α` =

∫
Ω
uµu`

‖u`‖2
.

150

CHAPTER 8. A PRIORI CONVERGENCE OF MULTI-DIMENSIONAL PARAMETRIZED REDUCED BASIS8.3. A PRIORI CONVERGENCE RESULT

Indeed, α`‖u`‖2 =
∫

Ω
u`(uµ −

∑`−1
m=1 βmum), since

∫
Ω
u`um = 0, for all m < `. Thus:

α` ≤ ‖u`‖−1 inf
{βm}
‖uµ −

`−1∑
m=1

βmum‖

≤ ‖u`‖−1‖uµ` − P`−1uµ`‖ ≤ 1

(8.24)

where in the last estimate we have used the very de�nition of µ`, and u`. Indeed, we
may improve the next estimation by proving that ∃ᾱ such that α` ≤ ᾱ < 1, for all ` �
in particular, one might weaken the assumption α ≥ 1.

Lemma 7. For each u`, ` ≥ 1, there exists a v` ∈ Ψk such that:

‖u` − v`‖ ≤ C2`+1e−αk. (8.25)

Proof. Given uµ we denote by vµ the best �t which realizes (8.21). Note that, if we expand
recursively u2 , u3 , u4 . . . we obtain:

u2 = uµ2 − α2
1uµ1 (8.26)

u3 = uµ3 − α3
1uµ1 − α3

2(uµ2 − α2
1uµ1) (8.27)

u4 = uµ4 − α4
1uµ1 − α4

2(uµ2 − α2
1uµ1)− α4

3(uµ3 − α3
1uµ1 − α3

2(uµ2 − α2
1uµ1))(8.28)

u5 = . . . (8.29)

We set v1 = vµ1 , v2 = vµ2 − α2
1vµ1 . . . and so on. It is a matter of checking to see that, given

u`, the term uµi , i < ` is appearing 2`−i times. Thus, choosing v` as just explained, making
use of (8.24) (namely αji ≤ 1), and triangle inequality, we obtain:

‖u` − v`‖ ≤
∑̀
i=1

2`−i‖uµi − vµi‖ ≤ 2`+1e−αk.

Thus, take k = n − 1, this results is saying the reduced basis functions are exponentially
approximated by the space Ψn−1 in the following sense:

∃γ > 0 ‖u` − v`‖ ≤ Ce−γ n ∀ ` ≤ n.

Lemma 8.

∃β > 0 | ∀u ∈ U inf
un∈Vn

‖u− un‖ ≤ Ce−β n. (8.30)

Proof. Fixed n, let v1 , . . . vn be the approximation of u1 , . . . , un in Ψn−1. Thus, there exist
coe�cents βi, ‖β‖ = 1, such that

∑n
i=1 βivi = 0. We then know, by means of Lemma 7, that

‖
n∑
i=1

βiui‖ = ‖
n∑
i=1

βi(ui − vi)‖ ≤
√
ne−γ n

151

8.4. EIGENVALUE DECAY CHAPTER 8. A PRIORI CONVERGENCE OF MULTI-DIMENSIONAL PARAMETRIZED REDUCED BASIS

We know that there exists a j such that βj > 1/n. Thus,

‖uj + β−1
j

∑
i<j

βiui + β−1
j

∑
i>j

βiui‖ ≤ Cn3/2e−γ n.

Now, since the functions ui are orthogonal, we obtain:

‖uj‖ ≤ n3/2e−γ n.

Recalling the very de�nition of uj, we have that, for all µ ∈ D,

‖uµ − Pj(uµ)‖ ≤ ‖uj‖ ≤ Cn3/2e−γ n.

Thus, the result is true.

8.4 Eigenvalue decay

8.4.1 Preliminaries

The results of the previous section build on the assumption that the eigenvalues λk of the
operators T and K decay at least linearly and with a slope greater than 2P ln(2). We purpose
of this section is to bring numerical evidence to support this hypothesis.

To test our hypothesis, we introduce the elliptic coercive bilinear form a(·, ·;µ) : Y × Y ×
Dµ → R:

a(u, v;µ) =

∫
Ω

∇u · ∇v + g(x;µ)u v, ∀u, v ∈ Y (8.31)

where g : Ω× R→ R.
We introduce the functional f ∈ Y ′. Our partial di�erential equation under weak form

reads as follows: Given µ ∈ Dµ, �nd u(µ) ∈ Y which satis�es

a(u(µ), v;µ) = f(v) ∀v ∈ Y (8.32)

In actual practice, we use a �nite element approximation: Given µ ∈ Dµ, �nd uN (µ) ∈
Y N ⊂ Y which satis�es

a(uN (µ), v;µ) = f(v) ∀v ∈ Y N (8.33)

8.4.2 Reduced Basis Approximation

Following the methodology proposed in [64], we develop a reduced basis approximation to
uN (µ), uN(µ) ∈ WN , where

WN = span{ξn ≡ u(µn), 1 ≤ n ≤ N}, (8.34)

SN = {µ1 ∈ Dµ, . . . , µN ∈ Dµ}, and u(µn) satis�es (8.33). We have that

uN(µ) =
N∑
n=1

uNn(µ)ξn (8.35)

which is solution of the following equation using a standard Galerkin projection

a(uN(µ), v;µ) = f(v) ∀v ∈ WN (8.36)

152

CHAPTER 8. A PRIORI CONVERGENCE OF MULTI-DIMENSIONAL PARAMETRIZED REDUCED BASIS 8.4. EIGENVALUE DECAY

8.4.3 Error Estimation

We used the error estimations proposed in [64] albeit slightly modi�ed to provide online rapid
error bounds of the reduced basis approximation with respect to the �nite element approxi-
mation. As we shall see later, this was necessary for a number of results. We developed error
bounds for ‖uN (µ)− uN(µ)‖Y which we shall denote ∆N(µ).

8.4.4 Construction and Eigenvalue Solves

In order to construct K, we generate a cartesian grid Gµ of Dµ such that we have at least
the extrema in each parameter direction. If L points are constructed in each direction of RP ,
we have de�ned M = LP points µ that are used to compute K entries. We shall denote
SM(µ) = {µ ∈ Gµ}.

8.4.5 Orthonormalization of WN

Orthonormalisation is also for reduced basis approximation as it can be shown that the con-
dition number of the reduced matrix is bounded for all µ ∈ Dµ. In particular, rounding errors
due to ill conditionning are reduced.

If we orthonormalize the basis functions ofWN using the L2 norm, we have that the entries
of K take the following form

KL2(µm, µn) = KL2
m,n =

N∑
i=1

ui(µ
m) ui(µ

n), µm, µn ∈ Dµ (8.37)

We can also orthonormalize with respect to the energy norm � at the minimum parameter
value over Dµ.

8.4.6 Properties of the K operator

Let's de�ne M as the dimension of K, as in section 8.4.4.
Since K is symmetric we use a QR symmetric algorithm to compute its eigenvalues.
Also note that if M ≤ N and SM(µ) ⊂ SN(µ), K entries are formed by the L2 scalar

product of the basis functions of WM , and if the basis functions of WM are L2 normalized
then K is the identity matrix.

Proof. This is easily proven by using the fact that the components of the basis functions of
WM are the canonic vectors of RM .

It follows that rank(K) ≤ N . See for example section 8.4.10.0 and �gure 8.8 for numerical
evidence.

Proof. First we consider the simple case where M ≤ N . We make a change of reduced
basis(without loss of generality) : we use SM(µ) to constructWM , we orthonormalize its basis
functions and use the above property.

Now we turn to M > N . Again we make a change of reduced basis : we use SM(µ) to
construct WM , we orthonormalize its basis functions �

∫
Ω
ξi ξj = δij.

153

8.4. EIGENVALUE DECAY CHAPTER 8. A PRIORI CONVERGENCE OF MULTI-DIMENSIONAL PARAMETRIZED REDUCED BASIS

We have that

Kmn =
N∑
i=1

N∑
j=1

ui(µ
m) uj(µ

n) (8.38)

We note that for m,n ≤ N , ui(µm) = emi and uj(µn) = enj where ek, k ≤ M is the k-th
canonical vector of RM .

Now K is made of four blocks as follows

K =

(
(1)N,N (unm)m=1,N ;n=N+1,M

(umn)m=N+1,M ;n=1,N (
∑N

i=1 u
m
i uni)m=N+1,M ;n=N+1,M

)
(8.39)

Using for example the Chio pivotal condensation to compute the determinant of K, we have
immediately that det(K) = 0 and rank(K) = N .

8.4.7 Higher Precision Approximations

When applying the reduced basis methodology in a standard way to compute the eigenvalues
of K, we do observe very rapid decay of the eigenvalues. However we get only very few
eigenvalues to check properly that the decay is indeed exponential.

To address this problem, we used a generic �nite element framework [FIXME: CP/LIFEV]
that allows to use numerical types with higher precision � more digits � albeit at a signi�cant
performance loss. We use coarser �nite element approximations to alleviate the cost of using
high order precision numerical types. Whatever computation related to approximation � �nite
element and reduced basis � and the eigenvalue solves must be done using high precision
types, otherwise precision will �saturate� at double precision � Mesh node coordinates and
parameter in Dµ need not use this particular numerical type. �

We have used the QD library [30] that provides quad-double precision type (approximately
64 decimal bits) particularly suited for use in C++ code.

8.4.8 Numerical Results

Remark 8.4.1. On most �gures that are shown in the following pages, we plot blog10(λk)c
where b·c is the �oor function. The rationale is that we are only interested in the general
decay behavior of λk.

d]-∆u+ µ(x)u = f on [0.1]d

We conducted numerical tests for two di�erent instances of the bilinear form a as in
equation (8.31) using g(x;µ) = µ1 + µ2x where µ = (µ1, µ2) ∈ Dµ ⊂ [0.01; 100]2 (Case
P = 2) and g(x;µ) = µ1 + µ2x + µ3xy where µ = (µ1, µ2, µ3) ∈ Dµ ⊂ [0.01; 100]3 (Case
P = 3). The geometrical domain is the same in all cases, Ω = [0; 1]2.

A function of the form y = A − BkC is �tted to the data (λk) using a least square
procedure to show the decayrate.

154

CHAPTER 8. A PRIORI CONVERGENCE OF MULTI-DIMENSIONAL PARAMETRIZED REDUCED BASIS 8.4. EIGENVALUE DECAY

Reduced Basis Approximation

In all cases, a database is built o�ine thanks to the readily a�ne decomposition of a(·, ·;µ)
that will be used for all the results later on. The �gures show the worst error bounds ∆N(µ)
over a sample of 200 random parameters in Dµ for P = 2 and P = 3 respectively, see
�gure 8.1. We can observe the convergence of the worst error (behaves like exp(−N1/2)).

−12.5

−10

−7.5

−5

−2.5

0

lo
g 1

0
(m

ax
µ
(∆

N
))

lo
g 1

0
(m

ax
µ
(∆

N
))

0 4 8 12 16 20 24 28 32 36

NN

log10(maxµ(∆N))

0.992− 1.779 ∗N0.552

(a) P = 2

−15

−12.5

−10

−7.5

−5

−2.5

0

lo
g 1

0
(m

ax
µ
(∆

N
))

lo
g 1

0
(m

ax
µ
(∆

N
))

0 8 16 24 32 40 48 56 64

NN

log10(maxµ(∆N))

1.640− 2.668 ∗N0.438

(b) P = 3

Figure 8.1: Worst error over a sample of 200 random parameters for cases P = 2 and P = 3.

Case P = 2

In �gure 8.2, we display blog10(λk)c. We have that C > 1 which shows that we have indeed
exponential decay.

Case P = 3

In �gure 8.3, we display blog10(λk)c. We have that C > 1 which shows that we have indeed
exponential decay.

8.4.9 Remarks

Orthornormalization of WN

Rounding errors due to ill conditioning have been observed for the computations without
orthonormalisation.

If we orthonormalize the basis functions of WN using the L2, we have that the entries of
K take the following form

KL2(µm, µn) = KL2
m,n =

N∑
i=1

ui(µ
m) ui(µ

n) (8.40)

KL2 has the same construction and has similar eigenvalues decay as K, see �gure 8.4

155

8.4. EIGENVALUE DECAY CHAPTER 8. A PRIORI CONVERGENCE OF MULTI-DIMENSIONAL PARAMETRIZED REDUCED BASIS

−10

−8

−6

−4

−2

blo
g 1

0
(λ
k
)c

blo
g 1

0
(λ
k
)c

4

kk

blog10(λk)c
−2.549− 0.621 ∗ k1.672

(a) N = 4

−20

−15

−10

−5

0

blo
g 1

0
(λ
k
)c

blo
g 1

0
(λ
k
)c

4 8

kk

blog10(λk)c
−3.396− 0.430 ∗ k1.627

(b) N = 9

−30

−25

−20

−15

−10

−5

0

blo
g 1

0
(λ
k
)c

blo
g 1

0
(λ
k
)c

4 8 12 16

kk

blog10(λk)c
−2.377− 0.907 ∗ k1.185

(c) N = 16

−40

−30

−20

−10

0

blo
g 1

0
(λ
k
)c

blo
g 1

0
(λ
k
)c

4 8 12 16 20 24

kk

blog10(λk)c
−2.609− 0.963 ∗ k1.087

(d) N = 25

−50

−40

−30

−20

−10

0

blo
g 1

0
(λ
k
)c

blo
g 1

0
(λ
k
)c

4 8 12 16 20 24 28 32 36

kk

blog10(λk)c
−3.825− 0.680 ∗ k1.138

(e) N = 36

Figure 8.2: K eigenvalues decay for various reduced basis space dimension for P = 2

156

CHAPTER 8. A PRIORI CONVERGENCE OF MULTI-DIMENSIONAL PARAMETRIZED REDUCED BASIS 8.4. EIGENVALUE DECAY

−12

−10

−8

−6

−4

−2

lo
g 1

0
(λ
k
)

lo
g 1

0
(λ
k
)

8

kk

log10(λk)

−2.549− 0.892 ∗ x1.096

(a) N = 8

−30

−25

−20

−15

−10

−5

0

lo
g 1

0
(λ
k
)

lo
g 1

0
(λ
k
)

8 16 24

kk

log10(λk)

−3.036− 0.740 ∗ x1.015

(b) N = 27

Figure 8.3: K eigenvalues decay for various reduced basis space dimension for P = 3

−50

−40

−30

−20

−10

0

blo
g 1

0
(λ
k
)c

blo
g 1

0
(λ
k
)c

4 8 12 16 20 24 28 32 36

kk

blog10(λk)c
−3.825− 0.680 ∗ k1.138

(a) P = 2, N = 36, no orthornormalization

−50

−40

−30

−20

−10

0

blo
g 1

0
(λ
k
)c

blo
g 1

0
(λ
k
)c

4 8 12 16 20 24 28 32 36

kk

blog10(λk)c
−3.721− 0.711 ∗ k1.125

(b) P = 2, N = 36, L2-orthornormalization

Figure 8.4: K eigenvalues decay with and without L2 orthonormalization for test case P = 2

157

8.4. EIGENVALUE DECAY CHAPTER 8. A PRIORI CONVERGENCE OF MULTI-DIMENSIONAL PARAMETRIZED REDUCED BASIS

Without orthonormalization, then the eigenvalues of the matrix (
∑N

i=1 ui(µ
m) ui(µ

n))m,n=1...N

decay is as exp(−cN2), see �gure 8.5

−30

−20

−10

0

10

lo
g 1

0
(λ
k
)

lo
g 1

0
(λ
k
)

4 8 12 16 20 24 28 32 36

kk

log10(λk)

2.766− 0.003 ∗ k2.514

(a) P = 2, N = 4

−10

−7.5

−5

−2.5

0

2.5

5

lo
g 1

0
(λ
k
)

lo
g 1

0
(λ
k
)

4 8

kk

log10(λk)

2.265− 0.114 ∗ k2.059

(b) P = 2, N = 9

−15

−10

−5

0

5

10

lo
g 1

0
(λ
k
)

lo
g 1

0
(λ
k
)

4 8 12 16

kk

log10(λk)

3.840− 0.138 ∗ k1.699

(c) P = 2, N = 16

−30

−20

−10

0

10

lo
g 1

0
(λ
k
)

lo
g 1

0
(λ
k
)

4 8 12 16 20 24 28 32 36

kk

log10(λk)

2.766− 0.003 ∗ k2.514

(d) P = 2, N = 36

Figure 8.5: Eigenvalues decay of (
∑N

i=1 ui(µ
m) ui(µ

n))m,n=1...N with and without L2 or-
thonormalization for test case P = 2

Some tests were also conducted using a(·, ·;µmin) orthonormalization. Results of the K
eigenvalues decay are displayed in �gure 8.6.

8.4.10 Fin example

We consider now a 2D �n with one stage as shown on �gure 8.4.10

−∆u+ µ(x)u = f

First, we conducted numerical tests by de�ning the bilinear form a as in equation (8.31) using
g(x;µ) = µ1 + µ2x where µ = (µ1, µ2) ∈ Dµ ⊂ [0.1; 10]2 (Case Fin P = 2)

The results are presented on Figure 8.7. Again the assumption is con�rmed.

158

CHAPTER 8. A PRIORI CONVERGENCE OF MULTI-DIMENSIONAL PARAMETRIZED REDUCED BASIS 8.4. EIGENVALUE DECAY

−50

−40

−30

−20

−10

0

blo
g 1

0
(λ
k
)c

blo
g 1

0
(λ
k
)c

4 8 12 16 20 24 28 32 36

kk

blog10(λk)c
−3.825− 0.680 ∗ k1.138

(a) P = 2, N = 36, no orthornormalization

−50

−40

−30

−20

−10

0

blo
g 1

0
(λ
k
)c

blo
g 1

0
(λ
k
)c

4 8 12 16 20 24 28 32 36

kk

blog10(λk)c
−1.879− 0.650 ∗ k1.142

(b) P = 2, N = 36, a(·, ·;µmin)-
orthornormalization

Figure 8.6: K eigenvalues decay with and without a(·, ·;µmin) orthonormalization for test
case P = 2.

0.5k̃1

2

Γ̃root

Ω̃ ⊂ IR2

k̃1

Bi

k̃0

q̃′′

159

8.4. EIGENVALUE DECAY CHAPTER 8. A PRIORI CONVERGENCE OF MULTI-DIMENSIONAL PARAMETRIZED REDUCED BASIS

−10

−8

−6

−4

−2

blo
g 1

0
(λ
k
)c

blo
g 1

0
(λ
k
)c

4

kk

blog10(λk)c
−3.029− 0.258 ∗ k2.365

(a) Fin P = 2, N = 4, L2-orthornormalization

−20

−15

−10

−5

0

blo
g 1

0
(λ
k
)c

blo
g 1

0
(λ
k
)c

4 8

kk

blog10(λk)c
−2.469− 0.940 ∗ k1.247

(b) Fin P = 2, N = 9, L2-orthornormalization

−30

−25

−20

−15

−10

−5

0

blo
g 1

0
(λ
k
)c

blo
g 1

0
(λ
k
)c

4 8 12 16

kk

blog10(λk)c
−2.384− 1.063 ∗ k1.101

(c) Fin P = 2, N = 16, L2-orthornormalization

Figure 8.7: K eigenvalues decay for −∆u+ µ(x)u = f on a �n geometry

160

CHAPTER 8. A PRIORI CONVERGENCE OF MULTI-DIMENSIONAL PARAMETRIZED REDUCED BASIS 8.4. EIGENVALUE DECAY

We also verify that the matrix K has its rank ≤ N , see �gure 8.8.

−30

−25

−20

−15

−10

−5

0

blo
g 1

0
(λ
k
)c

blo
g 1

0
(λ
k
)c

4 8 12 16

kk

blog10(λk)c

(a) Fin P = 2, N = 16,nrows(K) = 4, L2-
orthornormalization

−80

−60

−40

−20

0

blo
g 1

0
(λ
k
)c

blo
g 1

0
(λ
k
)c

4 8 12 16 20 24

kk

blog10(λk)c

(b) Fin P = 2, N = 16,nrows(K) = 5, L2-
orthornormalization

Figure 8.8: K spectrum for −∆u+ µ(x)u = f on a �n geometry with nrows(K) ≥ N

Heat Transfer in a 2D Thermal Fin

Case P = 2 The �n consists of a vertical central �post� of conductivity k̃0 and four horizontal
�sub�ns� of conductivity k̃1. The �ns conduct heat from a prescribed uniform �ux source q̃′′ at
the root Γ̃root through the post and large-surface-area sub�ns to the surrounding �owing air;
the latter is characterized by a sink temperature ũ0 and prescribed heat transfer coe�cient h̃.
The physical model is simple conduction: the temperature �eld in the �n, ũ, satis�es

1∑
i=0

∫
Ω̃i

k̃i ∇̃ũ · ∇̃ṽ +

∫
∂Ω̃\Γ̃root

h̃ (ũ− ũ0) ṽ =

∫
Γ̃root

q̃′′ ṽ, ∀ ṽ ∈ X̃ ≡ H1(Ω̃), (8.41)

where Ω̃i is that part of the domain with conductivity k̃i, and ∂Ω̃ denotes the boundary of Ω̃.
We now (i) nondimensionalize the weak equations (8.41), and (ii) apply a continuous

piecewise-a�ne transformation from Ω̃ to a �xed (µ-independent) reference domain Ω [42].
The abstract problem statement (8.1) is then recovered for µ = {k1, Bi}, Dµ = [0.1, 10.0]2,
and P = 2; here k1 is the thermal conductivity of the �sub�n� (see Figure 8.4.10) relative
to the thermal conductivity of the �n base; Bi is a nondimensional form of the heat transfer
coe�cient; It is readily veri�ed that a is continuous, coercive, and symmetric as required by
the preliminaries in section 8.4.1;

The decay of the eigenvalues of K show on

8.4.11 Validation of the hypothesis

The previsous results showed that the hypothesis of the exponential decay with slope ρ >
2Pln(2) is realistic, as in all cases superlinear decay has been observed. Although complete

161

8.4. EIGENVALUE DECAY CHAPTER 8. A PRIORI CONVERGENCE OF MULTI-DIMENSIONAL PARAMETRIZED REDUCED BASIS

−25

−20

−15

−10

−5

0

blo
g x

(λ
k
)c

blo
g x

(λ
k
)c

4

kk

blog2(λk)c
2.609− 3.169 ∗ k1.491

bloge(λk)c
0.574− 1.210 ∗ k1.899

blog10(λk)c
−0.031− 0.816 ∗ k1.562

(a) Fin P = 2, N = 4, L2-orthornormalization

−200

−150

−100

−50

0

blo
g x

(λ
k
)c

blo
g x

(λ
k
)c

4 8

kk

blog2(λk)c
−2.446− 0.033 ∗ k3.908

bloge(λk)c
−1.800− 0.024 ∗ k3.893

blog10(λk)c
−1.098− 0.009 ∗ k3.949

(b) Fin P = 2, N = 9, L2-orthornormalization

Figure 8.9: K eigenvalues decay the 2D thermal �n

theoretical explanation of this property is not currently available, we expect the decay to
depend on the nature of the PDE itself.

162

Part III

Publications: Scienti�c Computing

and Technology

163

Chapter 9

A Mathematical and Computational

Framework for Reliable Real-Time

Solution of Parametrized Partial

Di�erential Equations

Authors: C. Prud'homme, D. Rovas, K. Veroy and A.T. Patera

Abstract. We present in this article two components: these components can in fact serve
various goals independently, though we consider them here as an ensemble. The �rst compo-
nent is a technique for the rapid and reliable evaluation prediction of linear functional outputs
of elliptic (and parabolic) partial di�erential equations with a�ne parameter dependence. The
essential features are (i) (provably) rapidly convergent global reduced�basis approximations �
Galerkin projection onto a space WN spanned by solutions of the governing partial di�erential
equation at N selected points in parameter space; (ii) a posteriori error estimation � relax-
ations of the error�residual equation that provide inexpensive yet sharp and rigorous bounds
for the error in the outputs of interest; and (iii) o��line/on�line computational procedures �
methods which decouple the generation and projection stages of the approximation process.
This component is ideally suited � considering the operation count of the online stage �
for the repeated and rapid evaluation required in the context of parameter estimation, design,
optimization, and real�time control. The second component is a framework for distributed
simulations. This framework comprises a library providing the necessary abstractions/concepts
for distributed simulations and a small set of tools � namely SimTEX and SimLaB� al-
lowing an easy manipulation of those simulations. While the library is the backbone of the
framework and is therefore general, the various interfaces answer speci�c needs. We shall
describe both components and present how they interact.

165

9.1. INTRODUCTION TO REDUCED BASIS OUTPUT BOUND METHODS

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS

9.1 Introduction to Reduced Basis Output Bound Meth-

ods

The optimization, control, and characterization of an engineering component or system requires
the prediction of certain �quantities of interest,� or performance metrics, which we shall denote
outputs � for example de�ections, maximum stresses, maximum temperatures, heat transfer
rates, �owrates, or lift and drags. These outputs are typically expressed as functionals of
�eld variables associated with a parametrized partial di�erential equation which describes the
physical behavior of the component or system. The parameters, which we shall denote inputs,
serve to identify a particular �con�guration" of the component: these inputs may represent
design or decision variables, such as geometry � for example, in optimization studies; control
variables, such as actuator power � for example in real�time applications; or characterization
variables, such as physical properties � for example in inverse problems. We thus arrive at
an implicit input�output relationship, evaluation of which demands solution of the underlying
partial di�erential equation.

Our goal is the development of computational methods that permit rapid and reliable
evaluation of this partial-di�erential-equation-induced input-output relationship in the limit of
many queries � that is, in the design, optimization, control, and characterization contexts.
The �many query� limit has certainly received considerable attention: from �fast loads� or
multiple right-hand side notions (e.g., [21, 25]) to matrix perturbation theories (e.g., [3, 85])
to continuation methods (e.g., [4, 71]). Our particular approach is based upon the reduced�
basis method, �rst introduced in the late 1970s for nonlinear structural analysis [5, 51], and
subsequently developed more broadly in the 1980s and 1990s [14, 26, 55, 58, 70]. The reduced�
basis method recognizes that the �eld variable is not, in fact, some arbitrary member of the
in�nite-dimensional space associated with the partial di�erential equation; rather, it resides,
or �evolves,� on a much lower�dimensional manifold induced by the parametric dependence.

The reduced�basis approach as earlier articulated is local in parameter space in both prac-
tice and theory. To wit, Lagrangian or Taylor approximation spaces for the low�dimensional
manifold are typically de�ned relative to a particular parameter point; and the associated a
priori convergence theory relies on asymptotic arguments in su�ciently small neighborhoods
[26]. As a result, the computational improvements � relative to conventional (say) �nite
element approximation � are quite modest [58]. Our work di�ers from these earlier e�orts
in several important ways: �rst, we develop (in some cases, provably) global approximation
spaces; second, we introduce rigorous a posteriori error estimators; and third, we exploit o��
line/on�line computational decompositions. These three ingredients allow us � for a restricted
but important class of problems � to reliably decouple the generation and projection stages
of reduced�basis approximation, thereby e�ecting computational economies of several orders
of magnitude.

In this expository review paper we focus on these new ingredients. We begin in Section 2 by
introducing an abstract problem formulation and several illustrative instantiations. In Section 3
we describe the reduced�basis approximation for coercive symmetric problems and �compliant�
outputs; associated a posteriori estimators are then developed in Section 4.

166

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS 9.2. PROBLEM STATEMENT

9.2 Problem Statement

9.2.1 Abstract Formulation

We consider a suitably regular domain Ω ⊂ Rd, d = 1, 2, or 3, and associated function space
X ⊂ H1(Ω), where H1(Ω) = {v ∈ L2(Ω), ∇v ∈ (L2(Ω))d}, and L2(Ω) is the space of
square integrable functions over Ω. The inner product and norm associated with X are given
by (· , ·)X and ‖ · ‖X = (· , ·)1/2, respectively. We also de�ne a parameter set D ∈ RP , a
particular point in which will be denoted µ. Note that Ω does not depend on the parameter.

We then introduce a bilinear form a : X × X × D → R, and linear forms f : X → R,
` : X → R. We shall assume that a is continuous, a(w, v;µ) ≤ γ(µ) ‖w‖X ‖v‖X ≤
γ0 ‖w‖X ‖v‖X , ∀µ ∈ D; furthermore, in Sections 9.3 and 9.4, we assume that a is coercive,

0 < α0 ≤ α(µ) = inf
w∈X

a(w,w;µ)

‖w‖2
X

, ∀ µ ∈ D, (9.1)

and symmetric, a(w, v;µ) = a(v, w;µ), ∀ w, v ∈ X, ∀ µ ∈ D. We also require that our
linear forms f and ` be bounded; in Sections 9.3 and 9.4 we additionally assume a �compliant�
output, f(v) = `(v), ∀ v ∈ X.

We shall also make certain assumptions on the parametric dependence of a, f , and `.
In particular, we shall suppose that, for some �nite (preferably small) integer Q, a may be
expressed as

a(w, v;µ) =

Q∑
q=1

σq(µ) aq(w, v), ∀ w, v ∈ X, ∀ µ ∈ D, (9.2)

for some σq : D → R and aq : X × X → R, q = 1, . . . , Q. This �separability,� or �a�ne,�
assumption on the parameter dependence is crucial to computational e�ciency; however,
certain relaxations are possible � see [62]. For simplicity of exposition, we assume that f and
` do not depend on µ; in actual practice, a�ne dependence is readily admitted.

Our abstract problem statement is then: for any µ ∈ D, �nd u(µ) ∈ X such that

a(u(µ), v;µ) = f(v), ∀ v ∈ X; (9.3)

and s(µ) ∈ R given by
s(µ) = `(u(µ)). (9.4)

In the language of the introduction, a is our partial di�erential equation (in weak form), µ is
our parameter, u(µ) is our �eld variable, and s(µ) is our output.
For simplicity, we may suppress the µ-dependence along the article when there is no possible
confusion.

9.2.2 Particular Instantiations

We indicate here a few instantiations of the abstract formulation; these will serve to illustrate
the methods (for coercive, symmetric problems) of Sections 9.3 and 9.4.

167

9.2. PROBLEM STATEMENT

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS

Figure 9.1: Two- and Three-Dimensional Thermal Fins.

A Thermal Fin

In this example we consider the two- and three-dimensional thermal �ns shown in Figure 9.1;
these examples may be (interactively) accessed on our web site

†
. The �ns consist of a vertical

central �post� of conductivity k̃0 and four horizontal �sub�ns� of conductivity k̃i, i = 1, . . . , 4;
the �ns conduct heat from a prescribed uniform �ux source, q̃′′, at the root, Γ̃root, through the
post and large-surface-area sub�ns to the surrounding �owing air; the latter is characterized
by a sink temperature ũ0, and prescribed heat transfer coe�cient h̃. The physical model is
simple conduction: the temperature �eld in the �n, ũ, satis�es

4∑
i=0

∫
Ω̃i

k̃i ∇̃ũ · ∇̃ṽ +

∫
∂Ω̃\Γ̃root

h̃ (ũ− ũ0) ṽ =

∫
Γ̃root

q̃′′ ṽ, ∀ ṽ ∈ X̃ ≡ H1(Ω̃), (9.5)

where Ω̃i is that part of the domain with conductivity k̃i, and ∂Ω̃ denotes the boundary of Ω̃.
We now (i) nondimensionalize the weak equations (9.5), and (ii) apply a continuous

piecewise-a�ne transformation to map Ω̃ to a �xed reference domain Ω [42]. The ab-
stract problem statement (9.3) is then recovered [72] for µ = {k1, k2, k3, k4, Bi, L, t},
D = [0.1, 10.0]4× [0.01, 1.0]× [2.0, 3.0]× [0.1×0.5], and P = 7; here k1, . . . , k4 are the ther-
mal conductivities of the �sub�ns� (see Figure 9.1) relative to the thermal conductivity of the
�n base; Bi is a nondimensional form of the heat transfer coe�cient; and, L, t are the length
and thickness of each of the �sub�ns� relative to the length of the �n root Γ̃root. It is readily
veri�ed that a is continuous, coercive, and symmetric; and that the �a�ne� assumption (9.2)
obtains for Q = 16 (two-dimensional case) and Q = 25 (three-dimensional case). Note that
the geometric variations are re�ected, via the mapping, in the σq(µ).

For our output of interest, s(µ), we consider the average temperature of the root of the �n
nondimensionalized relative to q̃′′, k̃0, and the length of the �n root. This output is calculated

†
Fin3D: http://augustine.mit.edu/�n3d_1/�n3d_1.pdf and Fin2D:

http://augustine.mit.edu/�n2d/�n2d.pdf

168

http://augustine.mit.edu
http://augustine.mit.edu/fin3d_1/fin3d_1.pdf
http://augustine.mit.edu/fin2d/fin2d.pdf

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS 9.2. PROBLEM STATEMENT

as s(µ) = `(u(µ)), where `(v) =
∫

Γroot
v. It is readily shown that this output functional is

bounded and also �compliant�: `(v) = f(v), ∀v ∈ X.

A Truss Structure

Γc

tc

tfΓ0 3Γ

θ

tt

H

Figure 9.2: A Truss Structure

We consider a prismatic microtruss structure [24, 84] shown in Figure 9.2; this example may be
(interactively) accessed on our web site

†
. The truss consists of a frame (upper and lower faces,

in dark gray) and a core (trusses and middle sheet, in light gray); the structure transmits a force
per unit depth F̃ uniformly distributed over the tip of the middle sheet, Γ̃3, through the truss
system to the �xed left wall, Γ̃0. The physical model is simple plane�strain (two-dimensional)
linear elasticity: the displacement �eld ui, i = 1, 2, satis�es∫

Ω̃

∂ṽi
∂x̃j

Ẽijkl
∂ũk
∂x̃l

= −
(
F̃

t̃c

)∫
Γ̃3

ṽ2, ∀ v ∈ X̃, (9.6)

where Ω̃ is the truss domain, and X̃ refers to the set of functions in H1(Ω̃) which vanish on
Γ̃0. We assume summation over repeated indices.

We now (i) nondimensionalize the weak equations (9.6), and (ii) apply a continuous
piecewise-a�ne transformation to map Ω̃ to a �xed reference domain Ω. The abstract problem
statement (9.3) is then recovered [78] for µ = {tf , tt, H, θ},D = [0.08, 1.0] × [0.2, 2.0] ×
[4.0, 10.0] × [30.0◦, 60.0◦], and P = 4; here tf and tt are the thicknesses of the frame and
trusses, respectively; H is the total height of the microtruss; and θ is the angle between the
trusses and the faces. The Poisson's ratio, ν = 0.3, and the frame and core Young's moduli,
Ef = 75 GPa and Ec = 200 GPa, respectively, are held �xed. It is readily veri�ed that a
is continuous, coercive, and symmetric; and that the �a�ne" assumption (9.2) obtains for
Q = 44; Q is larger than for the �n examples due to the more complex (sheared) a�ne
geometry mappings.

Our outputs of interest are (i) the average downward de�ection (compliance) at the core
tip, Γ3, nondimensionalized by F̃ /Ẽf ; and (ii) the average normal stress across the critical
(yield) section denoted Γs1 in Figure 9.2. These compliance and noncompliance outputs are
written as s1(µ) = `1(u(µ)) and s2(µ) = `2(u(µ)), respectively, where `1(v) = − ∫

Γ3
v2, and

`2(v) =
1

tf

∫
Ωs

∂χi
∂xj

Eijkl
∂uk
∂xl

†
Truss: http://augustine.mit.edu/virg_1/virg_1.pdf

169

http://augustine.mit.edu
http://augustine.mit.edu/virg_1/virg_1.pdf

9.3. REDUCED-BASIS APPROACH

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS

are bounded linear functionals; here χi is any suitably smooth function in H1(Ωs) such that
χin̂i = 1 on Γs1 and χin̂i = 0 on Γs2, where n̂ is the unit normal.

9.3 Reduced-Basis Approach

We recall that in this section, as well as in Section 9.4, we assume that a is continuous,
coercive, symmetric, and a�ne in µ � see (9.2); and that `(v) = f(v), which we denote
�compliance.�

9.3.1 Reduced�Basis Approximation

We �rst introduce a sample in parameter space, SN = {µ1, . . . , µN}, where µi ∈ D,
i = 1, . . . , N ; see Section 3.2 for a brief discussion of point distribution. We then de�ne our La-
grangian [58] reduced�basis approximation space asWN = span{ζn ≡ u(µn), n = 1, . . . , N},
where u(µn) ∈ X is the solution to (9.3) for µ = µn. In actual practice, u(µn) is replaced by
a �nite element approximation on a suitably �ne truth mesh; we shall discuss the associated
computational implications in Section 9.3.3. Our reduced�basis approximation is then: for any
µ ∈ D, �nd uN(µ) ∈ WN such that

a(uN(µ), v;µ) = `(v), ∀ v ∈ WN ; (9.7)

we then evaluate sN(µ) = `(uN(µ)). (Non-Galerkin projections are brie�y described in [62].)

9.3.2 A Priori Convergence Theory

Optimality

We consider here the convergence rate of uN(µ)→ u(µ) and sN(µ)→ s(µ) as N →∞. To
begin, it is standard to demonstrate optimality of uN(µ) in the sense that

‖u(µ)− uN(µ)‖X ≤
√
γ(µ)

α(µ)
inf

wN∈WN

‖u(µ)− wN‖X . (9.8)

(We note that, in the coercive case, stability of our (�conforming�) discrete approximation is
not an issue; the noncoercive case is decidedly more delicate (see [62].) Furthermore, for our
compliance output,

s(µ) = sN(µ) + `(u−uN) = sN(µ) +a(u, u−uN ;µ) = sN(µ) +a(u−uN , u−uN ;µ) (9.9)

from symmetry and Galerkin orthogonality. It follows that s(µ) − sN(µ) converges as the
square of the error in the best approximation and, from coercivity, that sN(µ) is a lower bound
for s(µ).

170

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS 9.3. REDUCED-BASIS APPROACH

Best Approximation

It now remains to bound the dependence of the error in the best approximation as a function
of N . At present, the theory is restricted to the case in which P = 1, D = [0, µmax], and

a(w, v;µ) = a0(w, v) + µa1(w, v), (9.10)

where a0 is continuous, coercive, and symmetric, and a1 is continuous, positive semi-de�nite
(a1(w,w) ≥ 0, ∀ w ∈ X), and symmetric. This model problem (9.23) is rather broadly
relevant, for example to variable orthotropic conductivity, rectilinear geometry variations,
piecewise-constant conductivity variations, and variable Robin boundary conditions.

We now suppose that the µn, n = 1, . . . , N , are logarithmically distributed in the sense
that

ln
(
µn + λ

−1
)

= lnλ
−1

+
n− 1

N − 1
ln

(
µmax + λ

−1

λ
−1

)
, n = 1, . . . , N, (9.11)

where λ is the maximum eigenvalue of a0 relative to a1. (Note λ is perforce bounded thanks to
our assumption of continuity and coercivity; the possibility of a continuous spectrum does not,
in practice, pose any problems.) We can then prove [46] that, for N > Ncrit ≡ 2e ln(λµmax +
1),

inf
wN∈WN

‖u(µ)− wN(µ)‖X ≤
√
γ

α
‖u(0)‖X exp

{ −N
2e ln(λ µmax + 1)

}
, ∀ µ ∈ D . (9.12)

We observe exponential convergence, uniformly (globally) for all µ in D, with only very weak
(logarithmic) dependence on the range of the parameter (µmax).

The proof exploits the (parameter�space) interpolant as a surrogate for the Galerkin ap-
proximation. As a result, the bound is not �sharp": we observe many cases in which the
Galerkin projection is considerably better than the associated interpolant; optimality (9.8)
chooses to �illuminate" only certain points µn, automatically selecting a best �sub�approximation�
amongst all possibilities � we thus see why reduced�basis state-space approximation of s(µ)
via u(µ) is preferred to simple parameter-space interpolation of s(µ) (�connecting the dots�)
via (µn, s(µn)) pairs. Nevertheless, the logarithmic point distribution (9.11) implicated by our
interpolant�based arguments is not simply an artifact of the proof: in numerous numerical
tests, the logarithmic distribution performs considerably better than other obvious candidates,
in particular for large ranges of the parameter. Fortunately, the convergence rate is not too
sensitive to point selection: the theory only requires a log �on the average� distribution [46];
and, in practice, λ in (9.12) may be replaced with any �reasonable� value.

The result (9.12) is certainly tied to the particular form (9.23) and associated regularity of
u(µ). However, we do observe similar exponental behavior for more general operators; and,
most importantly, the exponential convergence rate degrades only very slowly with increasing
parameter dimension, P . We present in Table 9.1 the error |s(µ)− sN(µ)|/s(µ) as a function
of N , at a particular representative point µ in D, for the two-dimensional thermal �n problem
of Section 9.2.2.0; we present similar data in Table 9.2 for the truss problem of Section 9.2.2.0.
In both cases, since tensor-product grids are prohibitively pro�igate as P increases, the µn are

171

9.3. REDUCED-BASIS APPROACH

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS

N |s(µ)− sN(µ)|/s(µ) ∆N(µ)/s(µ) ηN(µ)
10 1.29× 10−2 8.60× 10−2 2.85
20 1.29× 10−3 9.36× 10−3 2.76
30 5.37× 10−4 4.25× 10−3 2.68
40 8.00× 10−5 5.30× 10−4 2.86
50 3.97× 10−5 2.97× 10−4 2.72
60 1.34× 10−5 1.27× 10−4 2.54
70 8.10× 10−6 7.72× 10−5 2.53
80 2.56× 10−6 2.24× 10−5 2.59

Table 9.1: Error, error bound, and e�ectivity as a function of N , at a particular representative
point µ ∈ D, for the two-dimensional thermal �n problem (compliant output).

N |s(µ)− sN(µ)|/s(µ) ∆N(µ)/s(µ) ηN(µ)
10 3.26× 10−2 6.47× 10−2 1.98
20 2.56× 10−4 4.74× 10−4 1.85
30 7.31× 10−5 1.38× 10−4 1.89
40 1.91× 10−5 3.59× 10−5 1.88
50 1.09× 10−5 2.08× 10−5 1.90
60 4.10× 10−6 8.19× 10−6 2.00
70 2.61× 10−6 5.22× 10−6 2.00
80 1.19× 10−6 2.39× 10−6 2.00

Table 9.2: Error, error bound, and e�ectivity as a function of N , at a particular representative
point µ ∈ D, for the truss problem (compliant output).

chosen �log-randomly� over D: we sample from a multivariate uniform probability density on
log(µ). We observe that for both the thermal �n (P = 7) and truss (P = 4), the error is
remarkably small even for very small N ; and, in both cases, very rapid convergence obtains
as N →∞. We do not yet have any theory for P > 1. But certainly the Galerkin optimality
plays a central role, automatically selecting �appropriate� scattered-data subsets of SN and
associated �good� weights so as to mitigate the curse of dimensionality as P increases; and
the log�random point distribution is also important � for example, for the truss problem of
Table 9.2, a (non�log) uniform random point distribution yields errors which are larger by
factors of 20 and 10 for N = 30 and 80, respectively.

9.3.3 Computational Procedure

The theoretical and empirical results of Sections 9.3.1 and 9.3.2 suggest that N may, indeed,
be chosen very small. We now develop o��line/on�line computational procedures that exploit
this dimension reduction.

172

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS 9.4. A POSTERIORI ERROR ESTIMATION: OUTPUT BOUNDS

We �rst express uN(µ) as

uN(µ) =
N∑
j=1

uN j(µ) ζj = (uN(µ))T ζ, (9.13)

where uN(µ) ∈ RN ; we then choose for test functions v = ζi, i = 1, . . . , N . Inserting these
representations into (9.22) yields the desired algebraic equations for uN(µ) ∈ RN ,

AN(µ) uN(µ) = FN (9.14)

in terms of which the output can then be evaluated as sN(µ) = F T
N uN(µ). Here AN(µ) ∈

RN×N is the SPD matrix with entries AN i,j(µ) ≡ a(ζj, ζi;µ), 1 ≤ i, j ≤ N , and FN ∈ RN is
the �load� (and �output�) vector with entries FN i ≡ f(ζi), i = 1, . . . , N .

We now invoke (9.2) to write

AN i,j(µ) = a(ζj, ζi;µ) =

Q∑
q=1

σq(µ) aq(ζj, ζi) , (9.15)

or

AN(µ) =

Q∑
q=1

σq(µ) AqN ,

where AqN i,j = aq(ζj, ζi), i ≤ i, j ≤ N , 1 ≤ q ≤ Q. The o��line/on�line decomposition is
now clear:

In the o��line stage, we compute the u(µn) and form the AqN and FN : this requires N
(expensive) �a� �nite element solutions and O(QN2) �nite-element-vector inner prod-
ucts.

In the on�line stage, for any given new µ, we �rst form AN from (9.15), then solve (9.14)
for uN(µ), and �nally evaluate sN(µ) = F T

N uN(µ): this requires O(QN2) + O(2
3
N3)

operations and O(QN2) storage.

Thus, as required, the incremental, or marginal, cost to evaluate sN(µ) for any given new µ
� as proposed in a design, optimization, or inverse-problem context � is very small: �rst,
because N is very small, typically O(10) � thanks to the good convergence properties of
WN ; and second, because (9.14) can be very rapidly assembled and inverted � thanks to the
o��line/on�line decomposition. For the problems discussed in this paper, the resulting compu-
tational savings relative to standard (well-designed) �nite-element approaches are signi�cant
� at least O(10), typically O(100), and often O(1000) or more.

9.4 A Posteriori Error Estimation: Output Bounds

From Section 9.3 we know that, in theory, we can obtain sN(µ) very inexpensively: the on�line
stage scales as O(N3) + O(QN2); and N can, in theory, be chosen quite small. However,
in practice, we do not know how small N can be chosen: this will depend on the desired

173

9.4. A POSTERIORI ERROR ESTIMATION: OUTPUT BOUNDS

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS

accuracy, the selected output(s) of interest, and the particular problem in question; in some
cases N = 5 may su�ce, while in other cases, N = 100 may still be insu�cient. In the face
of this uncertainty, either too many or too few basis functions will be retained: the former
results in computational ine�ciency; the latter in unacceptable uncertainty � particularly
egregious in the decision contexts in which reduced�basis methods typically serve. We thus
need a posteriori error estimators for sN . Surprisingly, a posteriori error estimation has received
relatively little attention within the reduced�basis framework [51], even though reduced�basis
methods are particularly in need of accuracy assessment: the spaces are ad hoc and pre-
asymptotic, admitting relatively little intuition, �rules of thumb," or standard approximation
notions.

Recall that, in the section, we continue to assume that a is coercive and symmetric, and
` is �compliant.�

9.4.1 Method I

The approach described in this section is a particular instance of a general �variational� frame-
work for a posteriori error estimation of outputs of interest. However, the reduced-basis
instantiation described here di�ers signi�cantly from earlier applications to �nite element dis-
cretization error [43, 40] and iterative solution error [54, 53] both in the choice of (energy)
relaxation and in the associated computational arti�ce.

Formulation

We assume that we are given a function g(µ) : D → R+, and a continuous, coercive, symmetric
(µ-independent) bilinear form â : X ×X → R, such that

α0‖v‖2
X ≤ g(µ) â(v, v) ≤ a(v, v;µ), ∀ v ∈ X, ∀ µ ∈ D. (9.16)

We then �nd ê(µ) ∈ X such that

g(µ) â(ê(µ), v) = R(v;uN(µ);µ), ∀v ∈ X (9.17)

where for a given w ∈ X, R(v;w;µ) = `(v) − a(w, v;µ) is the weak form of the residual.
Our lower and upper output estimators are then evaluated as

s−N(µ) ≡ sN(µ), and s+
N(µ) ≡ sN(µ) + ∆N(µ), (9.18)

respectively, where
∆N(µ) ≡ g(µ) â(ê(µ), ê(µ)) (9.19)

is the estimator gap.

Computational Procedure

Finally, we turn to the computational arti�ce by which we can e�ciently compute ∆N(µ) in
the on�line stage of our procedure. To begin, we rewrite the �modi�ed� error equation, (9.17),
as

â(ê(µ), v) =
1

g(µ)

(
`(v)−

Q∑
q=1

N∑
j=1

σq(µ)uN j(µ)aq(ζj, v)

)
, ∀ v ∈ X

174

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS 9.4. A POSTERIORI ERROR ESTIMATION: OUTPUT BOUNDS

where we have appealed to our reduced�basis approximation (9.13) and the a�ne decom-
position (9.2). It is immediately clear from linear superposition that we can express ê(µ)
as

ê(µ) =
1

g(µ)

(
ẑ0 +

Q∑
q=1

N∑
j=1

σq(µ)uN j(µ)ẑqj

)
; (9.20)

where ẑ0 ∈ X satis�es â(ẑ0, v) = `(v), ∀ v ∈ X, and ẑqj ∈ X, j = 1, . . . , N , q = 1, . . . , Q,
satis�es â(ẑqj , v) = −aq(ζj, v), ∀ v ∈ X. Inserting (9.20) into our expression for the upper
bound, s+

N(µ) = sN(µ) + g(µ)â(ê(µ), ê(µ)), we obtain

s+
N(µ) = sN(µ) +

1

g(µ)

(
c0 + 2

Q∑
q=1

N∑
j=1

σq(µ)uN j(µ)Λq
j +

Q∑
q=1

Q∑
q′=1

N∑
j=1

N∑
j′=1

σq(µ)σq
′
(µ)uN j(µ)uN j′(µ)Γqq

′

jj′

) (9.21)

where c0 = â(ẑ0, ẑ0), Λq
j = â(ẑ0, ẑ

q
j), and Γqq′jj′ = â(ẑqj , ẑ

q′
j′). The o��line/on�line decomposi-

tion should now be clear.

In the o��line stage we compute ẑ0 and ẑqj , j = 1, . . . , N , q = 1, . . . , Q, and then

form c0,Λ
q
j , and Γqq

′

jj′ : this requires QN +1 (expensive) � â� �nite element solutions, and
O(Q2N2) �nite-element-vector inner products.

In the on�line stage, for any given new µ, we evaluate s+
N as expressed in (9.21): this

requires O(Q2N2) operations; and O(Q2N2) storage (for c0, Λq
j , and Γqq

′

jj′).

As for the computation of sN(µ), the marginal cost for the computation of s±N(µ) for any
given new µ is quite small � in particular, independent of the dimension of the truth �nite
element approximation space X.

There are a variety of ways in which the o��line/on�line decomposition and output error
bounds can be exploited. A particularly attractive mode incorporates the error bounds into
an on�line adaptive process, in which we successively approximate sN(µ) on a sequence of
approximation spaces WN ′j

⊂ WN , N
′
j = N02j � for example, WN ′j

may contain the N ′j
sample points of SN closest to the new µ of interest � until ∆N ′j

is less than a speci�ed
error tolerance. This procedure both minimizes the on�line computational e�ort and reduces
conditioning problems � while simultaneously ensuring accuracy and certainty.

9.4.2 Method II

As already indicated, Method I has certain limitations; we discuss here a Method II which
addresses these limitations � albeit at the loss of complete certainty.

Formulation

To begin, we set M > N , and introduce a parameter sample SM = {µ1, . . . , µM} and
associated reduced�basis approximation space WM = span {ζm ≡ u(µm), m = 1, . . . ,M} ;

175

9.4. A POSTERIORI ERROR ESTIMATION: OUTPUT BOUNDS

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS

both for theoretical and practical reasons we require SN ⊂ SM and thereforeWN ⊂ WM . The
procedure is very simple: we �rst �nd uM(µ) ∈ WM such that a(uM(µ), v;µ) = f(v),∀ v ∈
WM ; we then evaluate sM(µ) = `(uM(µ)); and, �nally, we compute our upper and lower
output estimators as

s−N,M(µ) = sN(µ), s+
N,M(µ) = sN(µ) + ∆N,M(µ), (9.22)

where ∆N,M(µ), the estimator bound gap, is given by

∆N,M(µ) =
1

τ
(sM(µ)− sN(µ)) (9.23)

for some τ ∈ (0, 1). The e�ectivity of the approximation is de�ned as

ηN,M(µ) =
∆N,M(µ)

s(µ)− sN(µ)
· (9.24)

For our purposes here, we shall consider M = 2N .

Computational Procedure

Since the error bounds are based entirely on evaluation of the output, we can directly adapt
the o��line/on�line procedure of Section 9.3.3. Note that the calculation of the output
approximation sN(µ) and the output bounds are now integrated: AN(µ) and FN(µ) (yielding
sN(µ)) are a sub-matrix and sub-vector of A2N(µ) and F 2N(µ) (yielding s2N(µ), ∆N,2N(µ)
and s±N,2N(µ)) respectively.

In the o��line stage, we compute the u(µn) and form the Aq2N and F 2N : this requires
2N (expensive) �a� �nite element solutions, and O(4QN2) �nite-element-vector inner
products.

In the on�line stage, for any given new µ, we �rst form AN(µ) and A2N(µ) then solve for
uN(µ) and u2N(µ), and �nally evaluate s±N,2N(µ): this requires O(4QN2) + O(16

3
N3)

operations and O(4QN2) storage.

The on�line e�ort for this Method II predictor/error estimator procedure (based on sN(µ)
and s2N(µ)) will require eightfold more operations than the predictor procedure of Section x.

Method II is in some sense very naive: we simply replace the true output s(µ) with a �ner�
approximation surrogate s2N(µ). (There are more obscure ways to describe the method � in
terms of a reduced�basis approximation for the error � however there is little to be gained
from these alternative interpretations.) The essential computation enabler is again exponen-
tial convergence, which permits us to choose M = 2N � hence controlling the additional
computational e�ort attributable to error estimation � while simultaneously ensuring that
εN,2N(µ) tends rapidly to zero. Exponential convergence also ensures that the cost to com-
pute both sN(µ) and s2N(µ) is �negligible�. In actual practice, since s2N(µ) is available, we
can of course take s2N(µ), rather than sN(µ), as our output prediction; this greatly improves
not only accuracy, but also certainty � ∆N,2N(µ) is almost surely a bound for s(µ)− s2N(µ),
albeit an exponentially conservative bound as N tends to in�nity.

176

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS 9.5. SYSTEM ARCHITECTURE

9.5 System Architecture

9.5.1 Introduction

The numerical methods proposed are rather unique relative to more standard approaches to
partial di�erential equations. Reduced�basis output bound methods � in particular the global
approximation spaces, a posteriori error estimators, and o��line/on�line computational de-
composition � are intended to render partial�di�erential-equation solutions truly �useful�:
essentially real�time as regards operation count; �blackbox� as regards reliability; and di-
rectly relevant as regards the (limited) input�output data required. But to be truly useful,
the methodology � in particular the inventory of on�line codes � must reside within a
special framework. This framework must permit a User to specify � within a native ap-
plications context � the problem, output, and input value of interest; and to receive �
quasi�instantaneously � the desired prediction and certi�cate of �delity (error bound). We
describe such a (fully implemented, fully functional) framework here: we focus primarily on
the User point of view;

9.5.2 Overview of Framework

Fin3D/Troot

Truss/Deflection

Fin2D/Troot

Truss/Stress

Fin3D/Troot μ

Directory
Service

S3

S2

S1

2

Fin3D/Troot

Truss/Deflection

Fin2D/Troot

Truss/Stress

Fin3D/Troot

Truss/Deflection

Fin2D/Troot

Truss/Stress

2

2

1

1

1

C3

C2

SimTEX

(sN ,∆N)

Fin3D/Troot µ

contains

contains

(sN ,∆N)

SimTEX

C1

Directory Service

uses

uses

uses

MatLab
Truss/

Stre
ss µ

contains

(sN ,∆N)

Truss/Deflection µ
(sN

,∆N
)

Fin2D/Troot µ

(sN ,∆
N)

Figure 9.3: A Sample Use Case of the Framework

We show in Figure 9.3 a virtual schematic of the framework. The key components are
the User, Computers, Network, Client software, Server software, and Directory Service. Each
User interacts with the system through a selected Client (interface) which resides, say, on
the User's Computer; we shall describe brie�y below two Clients. Based on directives from
the User, the Client broadcasts over the Network a Problem Label (e.g., Fin3D), Output
Label (e.g., Troot) Pair. This Pair is received by the Directory Service � a White Pages
� which informs the Client of the Simulation Resource Locator "SRL" � physical location

177

9.5. SYSTEM ARCHITECTURE

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS

on a particular Computer � of a Server which can respond to the request. The Client then
sends the Input (µ P�tuple Value) to the designated SRL. The Server � essentially a suite
of on�line codes and associated input�output utilities � is awaiting queries at all times; upon
receipt of the Input it executes the on�line code for the designated Output Label and Input
Value, and responds to the Client with the Output Value (sN) and Error Bound Gap (∆N).
The Client then displays or acts upon this information, and the cycle is complete.

Typically many identical (as well as di�erent) Servers will be available, typically on many
di�erent Computers: there are multiple instances of the on�line codes. The Directory Service
indicates to the Client the least busy Server so as to provide the fastest response possible.
In some cases Clients may issue Input Value which are in fact a vector of input values �
that is, L P�tuples. In this case the Directory Service will distribute the calculations over
multiple (e.g., as many as L) Servers � in particular Servers on multiple Computers � so
as respond more quickly to this multiple�input query. Our framework is clearly an example of
�grid� computing, similar to GLOBUS, NetSolve, and Seti@HOME, to name but a few. Indeed,
we exploit several generic tools upon which grid and network computing applications may be
built; for example, we appeal to CORBA

†
(standardized by OMG

†
) to seamlessly manipulate

the Server software as if it resided on the Client Computer. We remark that our reduced�basis
output bound application is particularly well�suited to grid computing: the computational load
on participating Computers (on which the Servers reside) is very light; and the Client�Server
input/output load on the Network is very light. The network computing paradigm also serves
very well the archival, collaboration, and integration aspects of standardized input�output
objects.

9.5.3 Clients

We describe here two Clients: SimTEX, which is a PDF�based �dynamic text� interface for
interrogation, exploration, and display; and SimLaB, which is a MATLAB�based �mathemati-
cal� interface for manipulation and integration. A third client has been developed: WebLaB;
however it is a direct application of the MatLaB client using the MatLaB Web Server
Toolbox.

SimTEX

SimTEX combines several standardized tools so as to provide a very simple interface by which
to access the Servers. A particularly nice feature of SimTEX is the natural context which it
provides � in essence, de�ning the input�output relationship and problem de�nition in the
language of the application. The SimTEX Client should prove useful in a number of di�erent
contexts: textbooks and technical manuscripts; handbooks; and product speci�cation and
design sheets.

The SimTEX Client consists of an authoring component, a display and interface com-
ponent, and an �intermediary� component. The authoring component is � a standard in
scienti�c typesetting � enhanced (via hyperref) with a new acteq environment which per-

†
Common Object Request Broker Architecture � http://www.corba.org
†
Object Management Group � http://www.omg.org

178

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS 9.5. SYSTEM ARCHITECTURE

mits the inclusion of actionable equations. The acteq environment links an equation to a
Problem Label, Output Label(s) and Input Value template. The output is a PDF document:
the PDF document serves as the display, graphics, and (rudimentary) interface component of
SimTEX. The PDF document contains a form which accepts the Input Values, and an �equal
sign� button which initiates the Client�Directory Services Client�Server dialogue described in
the previous document. Upon completion of the cycle, the PDF document is updated to
display the values of the output and error bound for the Input Values submitted; in cases in
which multiple input values or outputs are selected, appropriate graphics are presented using
the Figure button. Finally, since PDF is not a programming language, and Client�Server
intermediary is required: a CGI script serves to parse the PDF form, communicate with the
Server, and �nally update the Client.

As an example, we include here an actionable equation � the actual SimTEX user interface
� for the several outputs (the root temperature, tip temperature, volume) associated with
the three�dimensional thermal �n example:


Troot

Ttip

Volume

 = F



k1 =

k2 =

k3 =

k4 =

Bi =

t =

L =


= ±

FIGURE

The input list corresponds to the µ vector described in Section 9.2.2.0; the input values
must lie in the parameter domain D described in Section 9.2.2.0. The notation Output =
F(Input) is a description of the input�output relationship s(µ) implied by s = `(u(µ)). The
actionable PDF version of this entire paper (in which is embedded the actionable equation)
may be found on our web site

†
; readers are encouraged to access this electronic version of the

paper and exercise the SimTEX interface, a brief users manual for which may be found again
on our web site

†
.

SimLaB

The main drawback of SimTEX is the inability to manipulate the on�line codes. SimLaB is
a suite of tools that permit Users to incorporate Server on�line codes as MATLAB functions
within the standard MATLAB interface; and to generate new Servers and on�line codes from
standard MATLAB functions (which themselves may be built upon other on�line codes). In
short, SimLaB permits the User to treat the inputs and outputs of our on�line codes as

†
http://augustine.mit.edu/jfe/jfe.pdf
†
http://augustine.mit.edu/guided_tour.pdf

179

http://augustine.mit.edu/jfe/jfe.pdf
http://augustine.mit.edu/guided_tour.pdf

9.5. SYSTEM ARCHITECTURE

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS

mathematical objects that are the result of, or an argument to, other functions � graphics,
system design, or optimization � and to archive these higher level operations in new Server
objects available to all Clients once registered in the Directory Service.

For example, to incorporate the Fin3D input�output relationship into MATLAB, we �rst
generate the needed MATLAB functions using a MATLAB script called st2m. This script,
by default, generates automatically a MATLAB function for each Output registered in the
Directory Service. It is also possible to ask for a speci�c Problem and Output using the
following command in MATLAB: st2m -model fin3d -output Troot� however it implies
that one knows the name of the Problem and Output. Then, to set the values for the seven
components of the parameter vector, we enter

p.values (1). value =0.8;
p.values (1). name=’k1’;
p.values (2). value =2;
p.values (2). name=’k2’;
p.values (3). value =14;
p.values (3). name=’k3’;
p.values (4). value =3;
p.values (4). name=’k4’;
p.values (5). value =0.2;
p.values (5). name=’Bi’;
p.values (6). value =0.1;
p.values (6). name=’t’;
p.values (7). value =2.5;
p.values (7). name=’L’;

within the MATLAB command window. To determine the output value and bound gap for
this value of the 7�tuple parameter, we then enter

[Troot , Bound_Troot] = fin3d_Troot(p)

which returns

Troot = 1.06869419906058
Bound_Troot = 1.06869419906058

It is also now possible of course to �nd all values of Troot greater than 1.05 for t in the range
[0.1, 0.5] and all other parameters �xed as in the list above. To wit, we enter

i=1;
while(i < 1000)

p.values (6). value =0.1+i*(0.4)/1000;
t(i)=p.values (6). value;
[o(i),e(i)] = fin3d_Troot(p);
i=i+1;

end
plot(x(o<1.05) ,o(o<1.05) ,’b’); hold on; grid on;
plot(t(o>=1.05) ,o(o>=1.05) ,’r’);
line([max(t(o >1.05)) max(t(o>1.05))] , [1 1.1]); %% L1

which generates the �gure 9.4. Where the line L1 splits the domain [0.1; 0.5] at tmax = max(t(o > 1.05)) = 0.1380

180

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS 9.5. SYSTEM ARCHITECTURE

Figure 9.4: Plot

between the values of Troot greater than 1.05 (t < tmax) and the values of Troot less then
1.05 (t ≥ tmax). To be more certain that Troot was truly greater than 1.05, we could easily
ask for those values of t for which sN−∆N ≥ 1.05; again readily e�ected by a simple function
call. Obviously, once the on�line code is within the MATLAB environment, we have the full
functionality of MATLAB at our disposal; and the rapid response of the reduced�basis out-
put bounds maintains the immediate response expected of an interactive environment, even
though we are in fact solving � and solving reliably � three�dimensional partial di�erential
equations.

9.5.4 Overview Of The Framework

Introduction

The main current trend in computing and scienti�c computing is Distributed Objects � see
for example the .NET, Mono, Globus, Netsolve, Seti@Home technologies and as mentioned
earlier, we use Corba as the underlying technology for our Framework.

Corba is the Distributed Objects technology developed and standardized by the OMG. As
envisioned by Corba, Distributed Objects are the melding of concepts from two paradigms,
Client-Server(or more precisely Distributed Computing) and Object Orientation(OO) with
some slight di�erences: (i) a Client knows an object by its interface; (ii) objects are not
always local with respect to their Clients; (iii) dynamic composition may compose objects
into new application; (iv) objects hide many of the underlying di�erences(between Client and
Server) in architecture through encapsulation.

The combination of the Client-Server and OO models gives us the best features: ability

181

9.5. SYSTEM ARCHITECTURE

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS

to distribute risk(fault tolerance), rightsizing system development with small composable sub-
tasks and having looser coupling thanks to well-de�ned integration and interfaces. Another
advantage is also that we can have much more complicated topologies � see, for example,
the Figure 9.3 � than typically found in the Client-Server paradigm: a Client request com-
putation from a Server which is itself a composition of several other Servers; in this context,
our requested object is a Client-Server � a Server for the Client and a Client for the Servers
composing it.

It is interesting to note that although there is generally a many-to-one relation for Client
to Server, Clients may want to have access to more than one Server for a given purpose.
In the overview of our Framework we have seen that it was e�ectively the case � see Fig-
ure 9.3. Indeed, if a single source can be bene�cial, it can also be expensive : risk of central
outage(single point failure), too little specialization(resource utilization is suboptimal) long
queues for services and large distances over which products chip and so on.

Development costs may rise also: distribution introduces more di�cult problems such as,
for example, the logistics of coordinating multiple sites. Two other particularly serious issues
are the network latency and the scalability. They are di�cult to determine beforehand and
they can undermine gravely the deployment of the Framework.

Those issues are partly addressed by the numerical methods proposed � see Section 9.5.1.
Only partly because the network latency is a di�cult issue and reducing it is by no means
easy � see the Akamai technology

†
. And regarding the scalability, the numerical methods

proposed are not su�cient � although lots of problems(scheduling, monitoring,. . .) arising
when using more conventional methods are of no concern in the Reduced-Basis Output Bound
methods context,� therefore an adequate design for our Framework is also a requirement to
ensure scalability.

The Framework relies on a library, St
†
, which sits on top of CORBA � see Figure 9.5

� and its associated services. Three Clients � SimTEX, SimLaB, WebLaB� have been
developed with St.

The Main Actors Of St

The design of St shares similar concepts to the one that can be found in modern Graphical User
Interface (GUI) libraries : the SApplication class and the SSimget class and their respective
subclasses. Corba is a complex middle-ware speci�cation and through simple coarse grain
interfaces and high level concepts St encapsulates all Corba aspects � standard Corba
calls or Corba Services � inside its classes. In the following section, we shall describe brie�y
some aspects of the Framework.

SApplication As shown on Figure 9.5, St sits on top of Corba and the Corba Ser-
vices : it encapsulates all Corba and associated components into a small set of classes
with well de�ned behavior. Central to this design is the St::SApplication which encap-
sulates initialization of Corba, determines the available services and, in Server mode using
St::SApplicationServer subclass, drives the execution �ow of the application through its

†
http://www.akamai.com
†
Simulation Toolkit

182

http://www.akamai.com

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS 9.5. SYSTEM ARCHITECTURE

CORBA
Services

CORBA

Operating System and Network

St

Framework

SimTeX, SimLaB, WebLaB

Clients

Figure 9.5: St and Corba

183

9.5. SYSTEM ARCHITECTURE

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS

St::SApplicationServer::run() method which is basically an in�nite loop waiting for
new requests from Clients, see Section 9.5.5.0. A SApplication, and subclasses, follows the
Singleton pattern to ensure that there exists only one instance of this class per process. It is
possible to check for the availability on the Directory Service Server � see Figure 9.3 � of three
standard Corba Services through the member functions bool hasNamingService(), bool
hasTradingService() and bool hasImplementationRepository() and have access to
each to these Services through there associated class, SNamingService, STradingService
and SImplementationRepository.

In practice, accessing the Corba Services directly from a Client or a Server is neither
needed nor recommended, it is usually taken care of by the objects that represent the Simulation
objects, the Simgets.

An issue arising inevitably in Distributed Computing is Security. The most basic Security
action that can be taken is related to the protection of the computers running the Servers:
the processes associated to the Servers must have the lowest permissions on the system. On a
Unix system for example, such a process would belong to the nobody user and group. By doing
so, if someone with ill-intent manages to enter the operating system using those processes, he
cannot do any harm. That is the least that has to be done. Unfortunately, ill-intended people
can still do harm to the Framework. In order to avoid this, we use an authentication layer
on top of the Framework using the Secure Sockets Layer (SSL). It has also the advantage to
have some statistics on the Framework usage. The inclusion of the MicoSec which is an
implementation of the Corba Security Services (CORBASec) Level 2 version 1.7

†
is underway.

The current and future security features are/will be built-in SApplication.

Figure 9.6: The Simget Collaboration Diagram

SSimget As described on the collaboration diagram 9.6, a Simget is a SObject, base class
for all St objects, and also a Corba object through the interface POA_St::coSimget. It
contains a reference to the reference of the SApplication running in order to have access to

†
http://www.micosec.org/

184

http://www.micosec.org/

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS 9.5. SYSTEM ARCHITECTURE

the Corba Services to be able to register itself automatically in each of them, provided that
some of the Services are available. A Simget is a rather complex object which is following the
Composite pattern : it can be either a standalone computational object or a composite object
of Simgets.

The constructor of the SSimget class and subclasses follows the prototype

#include <SSimget.hpp >
SSimget(SSimget* parent , const char* name);

class A
: public St:: SSimget

{
public:
A(St:: SSimget* parent , const char* name)
: St:: SSimget(parent , name)

{}
};

where parent is the parent Simget and name is the name of the object passed to SObject

� every SObject has a name. � Then, using this composite or tree, it is possible to
de�ne a directory of Simgets in the various Corba Services. The name of the Simget and
its relationship with the other ones will be used to de�ne its location in the Services. For
example, if the following code is executed

St:: SApplicationServer *app = new St:: SApplicationServer;
A * a = new A(0, "a");
A * b = new A(a, "b");
A * c = new A(b, "c");
A * d = new A(a, "d");
app ->setMainSimget(a);

then the Naming Service will contain the following references

console > nsadmin -ORBNamingAddr \
inet:<directory service computer >:<port of the service >

> ls
a.a/
> ls a.a
b.b/
d.d/
> ls a.a/b.b
c.c/

nsadmin is a tool provided by Mico that allows to browse the Naming Service using the
UNIX-like tools like ls or rm.

The SSimget is very general and is the base class for all Simgets. In the context of
the Reduced-Basis methods and the Framework we built for them, we added other concepts
which could be used to other kind of problems. First, we de�ned a model which is an object
describing the model or problem being considered, for example Fin3D. The associated class
is St::SModel. Then, we de�ned a model component which represents a general concept

185

9.5. SYSTEM ARCHITECTURE

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS

of model part. The associated class is SModelComponent. Finally, various subclasses of
SModelComponent arise like SModelOutput, SModelOutputSet, and SModelField which are
associated with the computation respectively of one output and associated error estimation
if available, of a set of di�erent outputs and associated error estimations, or a �eld � say
a Finite Element �eld associated with a Finite Element simulation. � Each of these objects
are CORBA objects and follow a relatively simple IDL

†
interface that allows their remote

manipulation from a Client program. Here is the IDL interface for a SModelComponent

interface coModelComponent : coSimget
{

//! get the name of the Model
string getModelName ();

//! set the new parameter set
void setParameterSet(in coParameterSeq pset);

//! set a new Range
void setRange(in coRangeSeq range);

};

and SModelComponent is de�ned as a subclass of SSimget which implements the interface
coModelComponent. The other classes, SModelOutput, SModelOutput and SModelField,
have similar simple CORBA interfaces with further speci�cation. For example a SModelCom-

ponent and subclasses have the following constructor

SModelComponent(SModel* parent , const char* name);

which means that a model component has to have a model as a parent Simget. The relation-
ship model/component is enforced through this explicit constructor. For an implementation
example see the Section 9.5.5.0.

SMonitor While monitoring is not an important issue for our Framework since we deal with
black-box real-time response simulations, it is interesting however to collect statistics or to
provide such a tool for future Simgets that will need monitoring. Monitors are Clients and
Servers for the Framework, they are implemented using the Observer and Memento design
pattern. The base class for monitors is SMonitor which encapsulates the commonalities for
all monitors which are here the interfaces following the above-mentioned design patterns.

The abstraction is that a Simget sends messages stored in a Memento upon special Events
to the current Observers/monitors of the Simget. Monitors are Simgets which are Clients to
the Simulation Simgets. Here is a short code snippet to describe how it works

St:: SApplicationServer* app = new St:: SApplicationServer;
St:: SMonitorOutput* mon =

new St:: SMonitorOutput(0, "monitor", SYSLOG);
mon ->setMonitor(St:: MONITOR_TIME |

St:: MONITOR_RESULT |
St:: MONITOR_PARAMETERS);

†
Interface De�nition Language

186

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS 9.5. SYSTEM ARCHITECTURE

app ->setMainSimget(mon);
app ->run();

the second line creates a monitor for all Simgets in the Directory Services which will use syslog
to log events like computation time, results from the Simgets and parameters passed to the
Simgets. In order to create a model speci�c monitor for the Fin3D model and its outputs, we
use the following code for example

St:: SApplicationServer* app = new St:: SApplicationServer;
St:: SModel* model = new SModel(0, "fin3d");
St:: SMonitorOutput* mon =

new St:: SMonitorOutput(fin3d , "monitor", SYSLOG);
mon ->setMonitor(St:: MONITOR_TIME |

St:: MONITOR_RESULT |
St:: MONITOR_PARAMETERS);

app ->setMainSimget(model);
app ->run();

A monitor can just log events but it provides also a CORBA interface that allows Clients like
SimTEX for example to access statistics of the Simget being called. Note that this Monitor
design pattern is not only used by St to provide monitoring of the Simget but it is also used
for all kind of objects that requires monitoring like solvers, preconditioners, iterative processes
in general. The monitor design pattern is a non trivial application of several design patterns
and is a reusable component/strategy in scienti�c computing libraries. We just provided an
application in the context of the Framework and Distributed Computing.

XML XML
†
is another trendy technology and it is often associated with Distributed Comput-

ing � see SOAP
†
or XML-RPC

†
. � The eXtended Markup Language is used in the Framework

as a meta-data language to describe the Simgets. If it exists at the creation of a Simget, an
associated XML �le is loaded and is available through the CORBA interface of the Simget.
In the current implementation, the XML data contain only static information like the name of
the Simget, the model name, some parameter set data � like the name of the parameters,
their minimum and maximum values, and a description � and a description of the Simget.
Here is a simple XML example

<!DOCTYPE St>
<St>
<SModelOutput name="Troot" parent="fin3d" model="fin3d">
<Author firstname="Christophe" lastname="Prud’homme"/>
<Basis db="fin3d_Troot.bb" N="20" Nused="20"></Basis >
<ParameterSet name="D" dimension="7">

<Parameter ub="10" lb=".1" name="k1">k1 </Parameter >
<Parameter ub="10" lb=".1" name="k2">k2 </Parameter >
<Parameter ub="10" lb=".1" name="k3">k3 </Parameter >
<Parameter ub="10" lb=".1" name="k4">k4 </Parameter >

†
http://www.w3.org/XML/
†
http://www.w3.org/TR/SOAP/
†
http://www.xmlrpc.com/spec

187

http://www.w3.org/XML/
http://www.w3.org/TR/SOAP/
http://www.xmlrpc.com/spec

9.5. SYSTEM ARCHITECTURE

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS

<Parameter ub="1" lb=".01" name="Bi">Bi </Parameter >
<Parameter ub="3" lb="2" name="L">L</Parameter >
<Parameter ub=".5" lb=".1" name="t">t</Parameter >

</ParameterSet >
<Description >

Troot computes the temperature at the root
of the 3D Thermal Fin.

BlackBox: O(Q^2) in compliant case.

See http:// augustine.mit.edu/simtex/fin3d.pdf
for more details.

</Description >
</SModelOutput >
</St>

This is particularly helpful for automatic generation of Clients for the Framework. For
example SimLaB uses this feature to automatically generate .m �les for the Simgets registered
in the Directory Service � see Section 9.5.3.0. Without having to communicate with the
Server, the Client can for instance provide documentation about the Simget, and checks that
the parameter set which will be sent to the Server is contained in D � see Section 9.3.1.

In the future an automatic C++ code generator for the Clients will be implemented using
the XML meta-data provided by the Simgets registered in the Directory Service. At present
only SimLaB does automatic code generation using the XML meta-data.

9.5.5 A Simple Client/Server Implementation In C++

In a Client-Server paradigm, we have a Server side and a Client Side. In the next sections, we
are going to present a sample code of a Server running the Simget computing the temperature
at the root of the 3D thermal �n and one possible � while very simple � Client code in C++
accessing the code and the equivalent in MatLaB using SimLaB in order to compare the
amount of work needed. Some knowledge of C++ is required, however some of the general
ideas and concepts appear in the code.

Server Side

First look at what the main program looks like from the server point of view:

#include <SApplicationServer.hpp >
using namespace St;

int main(int argc , char** argv)
{

SCommandLineArguments ::init(argc , argv);
SApplicationServer* server = new SApplicationServer ();

server ->run();
}

188

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS 9.5. SYSTEM ARCHITECTURE

The line 6 initializes the command line parsing system. Then, we de�ne the St Server
application using the SApplicationServer class. Unfortunately this example does nothing
but running forever. Indeed the server->run() is an in�nite loop, where the server is
waiting for new requests.

Now we need to feed the server with Simgets.

SApplicationServer* server = new SApplicationServer ();
SModel* fin3d = new SModel(0, "fin3d");
server ->setMainSimget(fin3d);
server ->run();

With the two new lines 2 and 3, we have created a possibly new Model in the St Ser-
vices(Naming and Trading). First we de�ne the "fin3d" model � second argument � which
has no parent in the current SApplicationServer � �rst argument. Again this server is not
very helpful, since it does not do any real computation.

We can add for example a Simget which compute the temperature at the root of the
three-dimensional thermal �n � see line 2 in the next listing.

SModel* fin3d = new SModel(0, "fin3d");
SModelOutput* troot = new Troot(fin3d , "Troot");
server ->setMainSimget(fin3d);

The work in the main program is �nished and doesn't need further work. when server->run()
is executed the server will provide the Troot Simget associated with the model fin3d.

Now let us see what the Troot looks like:

#include <SModelOutput.hpp >
using namespace St;
class Troot: public SModelOutput
{
public:

Troot(SModel* parent , const char* name)
: SModelOutput(parent , name)
{<snip > }
virtual SOutput* run(SParameterSet const& pset)
{

SOutput* output = new SOutput;
// do the computation here for the parameter set pset
. . .
output ->output = <prediction value >;
output ->error = <associated error estimator value >;
return output;

}
};

The last step is the execution of the Server :

fin3d_Troot --server augustine.mit.edu --daemon

The -server option tells the SApplicationServer to register the Simgets in augustine.mit.edu.
Whereas the -daemon tells SApplicationServer to detach from its parent process and run
forever in the background.

189

9.5. SYSTEM ARCHITECTURE

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS

Under Unix/Linux, a database and the init.d system are used to start and stop automat-
ically the Servers used and registered on one computer. The advantage is that if a computer
containing Simgets is rebooted or shutdown for some reason then the Simgets will be cleanly
shutdown. Indeed, one of the major di�culty with Distributed Computing is the fact that the
Object have external references and they need to be deleted properly if the corresponding is
being shutdown.

Looking back at the example presented above, it would seem that it is possible to have
only one Simget per process. Recall the tree structure of the SObject/Simget classes plugged
into SApplicationServer using its setMainSimget() member function, then enabling new
Simgets in the same process as the one presented earlier is a one-liner per Simget provided
that each Simget has been implemented like Troot for example.

SModel* fin3d = new SModel(0, "fin3d");
SModelOutput* troot = new Troot(fin3d , "Troot");
SModelOutput* ttip = new Troot(fin3d , "Ttip");
SModelOutput* volume = new Troot(fin3d , "Volume");
server ->setMainSimget(fin3d);

The code shown above adds two Simgets to the Framework � in this case the temperature
at the tip of the 3D �n and the volume of the 3D �n. � As one can see, in one process we
can register one or more components for a given Model in the various services available and
the associated code and programming time are reduced.

A Note On Parallelism Finally. let us present a possible extension for the Server part: the
various registered Simgets in one process are often independent from each other � eventually
a Simget could depend on the computation done by another one. For example a Simget
providing a dimensional Troot would depend on the non-dimensional Troot counterpart :
this kind of dependency requires generally simple algebra while the non-dimensional Troot
would require an Online Code as described in the sections 9.3 and 9.4. � The Simget could
be accessed by several users at the same time, and it appears that exploiting parallelism is
important in this case to make sure that the Framework is responsive enough with respect to
multiple Clients and provide Real-Time response for each Client. We implement parallelism
at two levels on the Server side. Firstly, we use a multi-threaded CORBA implementation �
MICO/MT

†
which is about to be or already merged with MICO

†
� that enables us to answer

�simultaneously� to concurrent requests. Secondly, we implement thread-safe Simgets so that
when the Client asks for multiple evaluations � say a thousand randomly chosen parameters,
� we use the interface of SModelOutput which provides multiple parallel evaluations � see
SModelOutput::run(MultiParameter) in the next section. � In order to control the level
of parallelism for many outputs, the SApplication base class provides a way of de�ning the
number of possible multiple threads.

SApplicationServer* __app = new SApplicationServer;

// tell thread -aware classes (SModelOutput for example)

†
http://micomt.sf.net
†
http://www.mico.org

190

http://micomt.sf.net
http://www.mico.org

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS 9.5. SYSTEM ARCHITECTURE

// and their subclasses to use up to 3 threads for
// many outputs evaluations
__app ->setNumberOfProcessors(3);

The Framework provides a simple way to allow multi-threaded classes. The developer has
to use the class SThread as the base class for a multi-thread enabled class. Here is an example

#include <iostream >
#include <SThread.hpp >

class A : public St:: SThread
{
public:
// a possible default constructor
A(int __no = 1) : St:: SThread(), _M_no(__no) {}

protected:
// run() method has to be re-implemented
void run()
{

St:: SMutex __mutex;
if (__mutex.tryLock ())

{
std::cerr << "run thread number " << _M_no

<< std::endl;
}

else
{

;// locking did not work
}

// __mutex.unlock () is called by destructor automatically
// so no need to call it here

}
private:
int _M_no;

};

Note the utilization of the mutex class SMutex � which is provided by SThread.hpp �
to ensure that the output will be written sequentially in the console instead of having both
threads outputs being mixed up. Then the controller program can do the following

int main(int argc , char** argv)
{

St:: SCommandLineArguments ::init(argc , argv);
St:: SApplication* __app = new St:: SApplication;
// can either use NPROCS environment variable or
// SApplication :: setNumberOfProcessors(n)
// to set the number of threads
int __nprocs = __app ->getNumberOfProcessors ();
A** __threads = new A*[__nprocs];

191

9.5. SYSTEM ARCHITECTURE

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS

for(int __i = 0; __i < __nprocs; ++__i)
{

// start a new thread and call thread1.run()
__threads[__i] = new A(__i);
__threads[__i]->start ();

}
// wait for all threads to finish
for(int __i = 0; __i < __nprocs; ++__i)

{
__threads[__i]->wait ();

}
}

The environment variable NPROCS controls the number of threads than can be used, it is over-
ridden by the SApplication::setNumberOfProcessors(int) member function. When
running the above code, we get the following expected console output :

console > export NPROCS =4
console > test_thread
run thread number 0
run thread number 1
run thread number 2
run thread number 3

The various classes handling the Online Codes computation uses SThread which eases the use
of multi-thread programming by encapsulating all the pthread library.

To summarize, parallelism is achieved at two levels on the Server side: at the ORB level
using a multi-threaded ORB and at the Simget level. Note that it is transparent to the
Framework user except for the part he has to provide the number of threads and that his code
has to be thread-safe in order to be used in this multiple threads (> 1) environment. If it
is not thread-safe then the Framework user can still fall back to a single thread environment
which is the default and conservative behavior. There is a Client parallel counterpart which is
discussed in the next section which uses yet another feature of the Framework.

Client Side

On the client side, the Client developer has access to the Naming and Trading services in order
to �nd the object he is looking for. In the next listing, we present a client using the Naming
service. The way the Simget in general are stored in the Naming service resembles a directory
tree where / is the root of the tree. Under the fin3d model appears the Troot, Ttip and
Volume Simgets. In the following example, we retrieve a reference to the Troot Simget and
use its interface to do some computations:

#include <SApplication.hpp >
#include <SModelOutput.hpp >
using namespace St;

int main(int argc , char** argv)

192

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS 9.5. SYSTEM ARCHITECTURE

{
SCommandLineArguments ::init(argc , argv);
SApplication* client = new SApplication ();

SModelOutput_var fin3d_troot =
client ->resolve("fin3d/Troot");

fin3d_Troot ->setNewParameterSet(pset);
fin3d_Troot ->setRange(range);
fin3d_troot ->run(MultiParameter);

coOutputArray_var results = fin3d_Troot ->getOutputs ();
for(ULong __i = 0;__i < __output_pl ->length ();++ __i)

{
std::cerr << "output(" << __i << ")="

<< result(__i). output << std::endl;
std::cerr << "error(" << __i << ")="

<< result(__i).error << std::endl;
}

}

The only non standard C++ statement is the call to client->resolve() which will lookup
in the naming service in order to get an handle on the corresponding simulation which was
de�ned earlier. The other statements are classical object manipulation, setting the parameter
set, set the range if needed, run the simulation and then retrieve the results.

Writing a client for the framework is relatively easy task, however providing a graphical
user interface to the client code certainly comes with some e�orts, that one of the reason why
we based SimTEX and SimLaB Clients upon existing standards(MatLaB and PDF) � to
alleviate the work in programming user interfaces.

Now it remains to execute the Client program:

fin3d_Troot_client --server augustine.mit.edu

This command line tells the Client to contact augustine.mit.edu for Simget lookups.

A Note On Parallelism Parallelism is/can be also implemented on the Client side. However
it is not an automatic builtin feature of the Client. The Framework allows to implement a Client
which takes advantage of certain of its properties. The starting point is that, as mentioned in
the previous Section, the ORB is multi-threaded and recall that several instances of the same
Model/Simget can exist in the CORBA Services � namely the Naming or the Trading Services,
� so with those two features one can build a Client which access several instances of the same
Simget or several di�erent Simgets at the same time in di�erent threads. The SThread class
presented in the section 9.5.5.0.0 can be used to implement such a multi-threaded Client.
Another important part here is the load balancing system of the Services which ensures that
the least used instance will be selected by the Service to answer each new request.

To summarize the parallelism aspects of the Framework, both Server and Client sides, we
achieved a three levels parallelism which ensures real-time response � with the certi�cates of
�delity developed in the �rst sections of the paper � in the context of many evaluations and
many users.

193

9.6. CONCLUSION

CHAPTER 9. A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR RELIABLE REAL-TIME SOLUTION OF PARAMETRIZED

PARTIAL DIFFERENTIAL EQUATIONS

9.6 Conclusion

This framework is likely to be extended in the next few months, and will certainly enjoy some
improvements. It has already been tested on many problems already available online on our
web site http://augustine.mit.edu. The component-wise design of the overall system is
very �exible, scales well as the number of Online Codes increases and is an elegant solution
as a platform for engineering design, research and education. Regarding the mathematical
framework, it has been extended to several problem categories: non-coercive partial di�er-
ential equations, parabolic equations, generalized eigenvalue problems, non-symmetric and
non-compliant cases, see [62].

Acknowledgements We would like thank Thomas Leurent (formerly of MIT), Shidati Ali
of the Singapore-MIT Alliance and Yuri Solodukhov for very helpful discussions. We would
also like to acknowledge our longstanding collaborations with Professor Jaime Peraire of MIT
and Professor Einar Rønquist of the Norwegian University of Science and Technology. This
work was supported by the Singapore-MIT Alliance, by DARPA and ONR under # F49620-01-
1-0458, by DARPA and AFOSR under Grant N00014-01-1-0523 (Subcontract # 340-6218-3),
and by NASA under Grant # NAG-1-1978.

194

http://augustine.mit.edu

Chapter 10

A Domain Speci�c Embedded

Language in C++ for Automatic

Di�erentiation, Projection,

Integration and Variational

Formulations

Author: C. Prud'homme

10.1 Introduction

Numerical analysis tools such as di�erentiation, integration, polynomial approximations or
�nite element approximations are standard and mainstream tools in scienti�c computing. Many
excellent libraries or programs provide a high level programming interface to these methods :
(i) programs that de�ne a speci�c language such as the Freefem software family [29, 57], the
Fenics project [35, 34], Getdp [23] or Getfem++ [69], or (ii) libraries or frameworks that supply
some kind of domain speci�c language embedded in the programming language � hereafter
called DSEL � such as LifeV (C++) [1, 56], Sundance (C++) [36], Analysa (Scheme, which
is suited for embedding sub-languages like other Lisp based languages) [10].

These high level interfaces or languages are desirable for several reasons: teaching purposes,
solving complex problems with multiple physics and scales or rapid prototyping of new methods,
schemes or algorithms. The goal is always to hide (ideally all) technical details behind software
layers and provide only the relevant components required by the user or programmer.

The DSEL approach has advantages over generating a speci�c language like in case (i)
: compiler construction complexities can be ignored, other libraries can concurrently be used
which is often not the case of speci�c languages which would have to also develop their
own libraries and DSELs inherit the capabilities of the language in which they are written.
However, DSELs are often de�ned for one particular task inside a speci�c domain [76] and
implementation or parts of implementation are not shared between di�erent DSELs.

This article proposes a DSEL for automatic di�erentiation, projection, integration or vari-

195

10.1. INTRODUCTION

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS

ational formulations. The language implementation uses expression templates [76] and other
meta-programming techniques [2]. Related works are [56] and [36], but they di�er with the
proposed DSEL in many aspects: the former was designed only for variational formulations
and requires to write the expression object by hand which can become complicated and error
prone, while the latter implements the DSEL in an object oriented way without relying on
meta-programming or expression templates.

Other objectives of our DSEL implementation are that it should (i) be e�cient enough to
integrate high performance/parallel software, (ii) be generic enough to accommodate di�erent
numerical types � for example arbitrary precision, see [65] but we won't discuss these aspects
here. � A performance benchmark is available in section 10.4.1.

To illustrate further what the DSEL achieves, here is a comparison between a mathematical
formulation of a bilinear form (10.1) and its programming counterpart, see listing 10.1.

a : Xh ×Xh → R

(u, v) →
∫

Ω

∇u · ∇v + uv
(10.1)

Listing 10.1: Variational Formulation in C++; the t extension of gradt and idt identi�es
the trial functions

// a mesh of Ω ⊂ Rd, d = 1, 2, 3
Mesh mesh;
// Finite element scalar space PK ,K = 1, 2, 3, . . .
Space <Mesh ,FEM_PK <d,K> > Xh(mesh);
// two elements of the Space Xh
Space <Mesh ,FEM_PK <d,K> >:: element_type u(Xh), v(Xh);
// A matrix in CSR format
csr_matrix_type M;
// bilinear form with M as its matrix representation
// with integration over all elements of the mesh
// and a method for exact integration of polynomials of
// degree ≤ K (IM_PK <d,K>)
BilinearForm <Xh,Xh> a(Xh,Xh,M);
a = integrate(elements(mesh),

dot(gradt(u),grad(v))+idt(u)*id(v),
IM_PK <N,K>());

We clearly identify in listing 10.1 the variational formulation stated in equation (10.1).
We shall describe the various steps to achieve this level of expression with as little overhead
as possible. In section 10.2, we present some concepts concerning mainly integration and
variational formulations, then in section 10.3 we present the main points about the DSEL.
Finally in section 10.4, we present some non-trivial examples to exercise the language.

This article contains many listings written in C++ however most of them are not correct
C++ in order to simplify the exposition. In particular, C++ keywords like typename or inline
are often not present. Also many numerical ingredients such as polynomial approximations,

196

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS 10.2. PRELIMINARIES ON VARIATIONAL FORMS

numerical integration methods used in this article are not described or only very roughly,
another publication will cover the mathematical kernel used by the DSEL in more details [65].

10.2 Preliminaries on Variational Forms

In what follows, we consider a domain Ω ⊂ Rd, d = 1, 2, 3 and its associated mesh T � out
of d-simplices and product of simplices.

10.2.1 Mesh

We present �rst some tools that will be used later, namely how to extract parts of a mesh
and the geometric mapping that maps a convex of reference � where polynomial sets and
quadratures are constructed � to any convex of the mesh.

Mesh Parts Extraction

While applying integration and projection methods, it is common to be able to extract parts
of the mesh. Hereafter we consider only elements of the mesh and elements faces. We wish
to extract easily subsets of convexes out the total set consituting T .

To do this out mesh data structure which is by all means fairly standard uses the Boost.Multi_index
library

†
to store the elements, elements faces, edges and points. This way the mesh entities are

indexed either by their ids, their markers � material properties, boundary ids. . . , � their lo-
cation � whether the entity is internal or lies on the boundary of the domain. � Other indices
could be certainly de�ned, however those three allow already a wide range of applications

†
.

Thanks to Boost.Multi_index, it is trivial to retrieve pairs of iterators over the entities �
elements, faces, edges, points � containers depending on the usage context. The pairs of
iterators are then turned into a range, see Boost.Range

†
, to be manipulated by the integration

and projection tools that will be presented later.
A number of free functions are available that hide all details about the mesh class to

concentrate only on the relevant parts.

• elements(<mesh>) the set of convexes constituting the mesh

• idedelement(<mesh>, <id>) the convex with id <id>

• idedelements(<mesh>, <lower bound>, <upper bound>) iterator range of con-
vexes whose ids are in the range given by the predicates <lower bound> and <upper bound>,
for example idedelements(mesh,1000<=_1,_1<5000)

†

• markedelements(<mesh>, <marker>) iterator range over elements marked with marker

†
http://www.boost.org/libs/multi_index/doc/index.html
†
Another useful type of indexation could be the process id in a parallel framework.
†
http://www.boost.org/libs/range/index.html
†
_1 is part of Boost.Lambda.

197

http://www.boost.org/libs/multi_index/doc/index.html
http://www.boost.org/libs/range/index.html

10.2. PRELIMINARIES ON VARIATIONAL FORMS

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS

• markedelements(<mesh>, <lower bound>, <upper bound>) iterator range over el-
ements whose markers are in the range given by the predicates <lower bound> and
<upper bound>, for example

markedelements(mesh,1<=_1,_1<5)

• faces(<mesh>) iterator range over all mesh element faces

• markedfaces(<mesh>,<marker>) iterator range over mesh element faces marked with
marker

• markedfaces(<mesh>,<lower bound>, <upper bound>) iterator range over mesh

element faces whose markers are in the range given by the predicates <lower bound>

and <upper bound>, for example

markedfaces(mesh, 1<=_1,_1<5)

• bdyfaces(<mesh>) iterator range over all boundary mesh element faces

• internalfaces(<mesh>) iterator range over all internal mesh element faces

Geometric Mapping

Functional spaces and quadrature methods, for example, are derived from polynomial sets
or families that have to be constructed over the convexes of T . Instead of doing this, it
is common to construct these polynomials over a reference convex T̂� segment, triangle,
quadrangle, tetrahedron, hexahedron, prism or pyramid � and provide a geometric mapping
or transformation from the reference convex T̂ to any convex T ∈ T ⊂ RP , P ≤ d. We need
to be able also to transform subentities, such as faces or points, of the reference element to
the corresponding entities, faces and points respectively, in the real element.

x

x̂ X

Y
Z

T̂

T

(1, 0, 0)(0, 0, 0)

(0, 0, 1)
(0, 1, 0)

x = τ (x̂)

p2

p3

p1

p4

Figure 10.1: Geometric mapping τ from the
reference tetrahedron T̂ to a real tetrahedron

T in 3D.

From now on, we denote with a (ˆ) the quan-
tities de�ned on the reference element. We de�ne
τ : RP → RN that maps T̂ to T . We shall de-
note Kτ its gradient, Bτ its pseudo-inverse and
Jτ its jacobian. The geometric mapping is de-
scribed by (i) a ng components polynomial vec-
tor {φg(x̂)}g=1...ng and (ii) the geometric points
{pg}g=1...ng of T such that

x = τ(x̂) =
∑

g=1...ng

φg(x̂) pg (10.2)

We denote by G = (p1, . . . , png) the N × ng
matrix of geometric nodes. Equation (10.2) and

198

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS 10.2. PRELIMINARIES ON VARIATIONAL FORMS

quantities mentioned above are computed as fol-
lows, for any x̂ ∈ T̂

x = τ(x̂) = G φ(x̂)
Kτ (x̂) = G ∇ φ(x̂)

Jτ (x̂) =

{
det(Kτ (x̂)) if P = N
det(Kt

τ (x̂)Kτ (x̂))1/2 if P 6= N

Bτ (x̂) =

{
K−tτ (x̂) if P = N
Kτ (x̂)(Kt

τ (x̂)Kτ (x̂))−1 if P 6= N

(10.3)

where Kt
τ (x̂) denotes the transpose of Kτ (x̂).

Equipped with the geometric mapping concept, we compute an integral on T as an integral
on T̂ : if f is a function de�ned on T ,∫

T

f(x)dx =

∫
T̂

f(τ(x̂))Jτ (x̂)dx̂ (10.4)

and using a quadrature formula:∫
T̂

f(τ(x̂))Jτ (x̂)dx̂ ≈
∑

q=1...Q

ŵq f(τ(x̂q))Jτ (x̂q) (10.5)

where {x̂q, ŵq}q=1...Q are quadrature nodes and quadrature weights de�ned in the reference
element.

In our framework, the geometric mapping is not used directly by the developer but rather
what we call the geometric mapping context which is a subclass of the geometric mapping class.
The geometric mapping context is linked to an element T of the mesh such that, given a set
of points {x̂ ∈ T̂}, it provides information for each point in the set {x;x ∈ T and x = τ(x̂)}
such as the jacobian value Jτ (x̂), the gradient Kτ (x̂) of the mapping, the pseudo-inverse
Bτ (x̂) of the gradient; or if the point x̂ is on a face of x̂, then x is on a face of T and the
context provides the normal to the face at this point. A shortened interface of the Context

class is presented in the listing 10.2.

Listing 10.2: Geometric mapping context class

class GeoMap :: Context {
public:

...
/**
* constructor
* G is column oriented matrix: each column contains
* the coordinate of a geometric point of T
* P is column oriented matrix: each column contains
* the coordinate of the points in reference element
*/

Context(matrix_node_type G, matrix_node_type P);
/** return the dimension of the real element */
int N ();

199

10.2. PRELIMINARIES ON VARIATIONAL FORMS

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS

/** return the dimension of the reference element */
int P ();
/** get the q-th node of P in the reference element */
node_type const& xRef (int q) const;
/** get the q-th node in the real element */
node_type const& xReal (int q) const;
/** get the value of the jacobian at the q-th node

in the reference element */
double J (int q) const;
/** get the value of the gradient at q-th node */
matrix_type const& K (int q) const;
/**get the value of the pseudo -inverse at q-th node */
matrix_type const& B (int q);
/** get the coordinates of the geometric nodes */
matrix_node_type const& G ();};

Another subclass of the geometric mapping class is Inverse which as its name state does
the inverse of the transformation : given a point x in T ⊂ RN computes its location in the
reference element x̂ in T̂ ⊂ RP . Inverse is particularly useful for interpolation purposes.

We de�ne a bilinear form a : X×Y → R and a linear form ` : X → R, where X and Y are
suitable function spaces de�ned on Ω. The �nite element method discretizes X and Y using
polynomials spaces de�ned on T . We denote by NX and NY the dimension of the discrete
spaces X and Y

†
and by {ψi}i=1...NX and {ϕi}i=1...NY a basis for X and Y respectively. For

any v ∈ X, we have v =
∑

i=1...N viψi, and similarly for the functions of Y . We can then
write the entries Aij, i = 1 . . .NX , j = 1 . . .NX of the matrix A associated with a and the
entries Li, i = 1 . . .NX of the vector L associated with ` as follows:

Aij = a(ψi, ϕj) i = 1 . . .NX , j = 1 . . .NY
Li = `(ψi) i = 1 . . .NX (10.6)

To construct A and L, we follow a standard assembly process that iterates over the elements
T of T since a(v, u) can be written as

∑
T∈T aT (v, u) and similarly with ` and L. We then

introduce (i) the restriction of the basis functions to T , {ψTi }i=1...NX and {ϕTi }i=1...NY where i
is a local numbering over T , and (ii) the local to global mappings ιX(·, ·) and ιY (·, ·) between
the local numbering of the degrees of freedom and the global one. For example ιX(T, i) is the
global degree of freedom to which the i-th local degree of freedom of T contributes to. The
assembly process is described in the algorithm 3.

In standard �nite element software, the assembly is often split into two steps : (i) the
local matrix AT = (aT (ψTi , ϕ

T
j))i=1...NX ,j=1...NY and vector LT = (`T (ψTi))i=1...NX are �rst

constructed and (ii) the local to global mapping is used to add the contribution of the element
T to A and L. This splitting is often used to optimize the local to global mappings [12] or
optimize the local matrix and vector computation [34]. We will also follow this strategy in the
remaining sections.

†
X and Y will also be named as the test space and the trial space respectively.

200

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS 10.2. PRELIMINARIES ON VARIATIONAL FORMS

Algorithm 3 Standard assembly procedure for A and L.
A = 0
for T ∈ T do
for i = 1 . . . NX do
for j = 1 . . . NY do
AιX(T,i)ιY (T,j) = AιX(T,i)ιY (T,j) + aT (ψTi , ϕ

T
j)

end for
LιX(T,i) = LιX(T,i) + `T (ψTi)

end for
end for

10.2.2 Construction of aT (ψTi , ϕ
T
j) and LT (ψTi)

We focus now on the construction of the elementary contribution aT (ψTi , ϕ
T
j) and `T (ψTi)

which is the heart of our methodology.

Basis Functions

We turn to the treatment of the basis functions in our framework, and in particular we describe
the computation of f(τ(x̂)) for any x̂ ∈ T̂ as in equation (10.5). We de�ne the �nite element
basis functions on the reference element. If f belongs to X, then we have for a given T ∈ T
and its associated geometric mapping τ :

f(τ(x̂)) =
∑

i=1,...,NX

fi ψi(x) (10.7)

=
∑

i=1,...,NX

fi ψ̂i(x̂) (10.8)

= F t︸︷︷︸
Expansion coe�cients

ψ̂(x̂)︸︷︷︸
Computation on T̂

(10.9)

where F t = [f1, . . . , fNX] and ψ̂(x̂) = [ψ̂1(x̂), . . . , ψ̂NX (x̂)]t. The gradient reads

∇ f(τ(x̂)) = F t∇ψ(x) (10.10)

= F t Bτ (x̂) ∇̂ ψ̂(x̂)︸ ︷︷ ︸
Computation on T̂

(10.11)

Similar computations, albeit more involved, might be derived for the second order derivatives.
The basis function concept we developed is similar to the geometric mapping. In our

framework, the degrees of freedom are associated with the elements of the mesh. More
precisely they are ordered with respect to the geometric subentities of the elements � vertices,
edges, faces and volumes � for global continuous functions to ensure a continuous expansion
whereas in the case of global discontinuous functions it does not matter how the degress of
freedom are ordered or organized within the element. This allows for �exible construction
of polynomial sets such as Lagrange, Raviart-Thomas or modal basis with global continuous

201

10.2. PRELIMINARIES ON VARIATIONAL FORMS

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS

expansion or not. The article [65] presents these aspects in details. Essentially the Basis base
class, see listing 10.3, provides an interface for obtaining the value of the basis function and
its derivatives at any given point in the reference element. Similar to the geometric mapping,
we also de�ne a Context subclass that provides information on the basis functions at a given
set of points {x̂; x̂ ∈ T̂}.

Listing 10.3: Basis functions interface

class Basis
{

public:
// access to precomputed basis functions values and
// derivatives at a given set of points
class Context
{

public:
...
// value of the i-th basis function at the q-th node
// in the reference element : ϕi(x̂q)
double phi(int q, int i);
// gradient of the i-th basis function at the q-th node

// Bq
τ (x̂q) ∇̂ ψi(x̂q)

node_Type const& dphi(int i);
...

}
};

Equipped with these tools and concepts and if we consider a function f ∈ X, we have∫
T

f(x) dx =
∑

q=1...Q ŵq
∑

i=1...NX
fi ψ̂i(x̂q) Jτ (x̂q)∫

T

∇f(x) dx =
∑

q=1...Q ŵq
∑

i=1...NX
fi Bτ (x̂q) ∇̂ψ̂i(x̂q) Jτ (x̂q)

(10.12)

Approximation Space

We de�ne the notion of approximation space in C++ that maps closely the mathematical coun-
terpart. An approximation space is a template class parametrized by a mesh class and the basis
functions type � for example the standard Lagrange �nite elements. � An approximation
space wraps the mesh, the table of degrees of freedom (DoF), the basis function type and
provides access to all them. Note that the geometric mapping is provided by the mesh class.

Listing 10.4: Approximation Space Interface

template <typename Mesh , typename Basis_t >
class Space
{

// get the mesh
Mesh const& mesh() const;
// get the dof data structure

202

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS 10.2. PRELIMINARIES ON VARIATIONAL FORMS

Dof const& dof();
// get the basis function data structure
Basis_t const& basis() const;
// get the geometric mapping
Mesh:: GeoMap const& geomap () const;

};
// P1 finite element space in 2D
Space <Mesh , FEM_PK <2,1,scalar > > Xh(mesh2d);
// P23 finite element space in 3D
Space <Mesh , FEM_PK <3,2,vectorial > > Xh(mesh3d);

A Space de�nes its own element type as a subclass: it ensures coherence and consistency
when manipulating �nite element functions. An Element derives from your preferred numerical
vector type: we use uBLAS

†
for our linear algebra data structures and algorithms. The interface

is roughly described in the listing 10.5.

Listing 10.5: Approximation Space Interface

enum ComponentType { X = 0, Y, Z };
template <typename Mesh , typename Basis_type >
class Space
{
...
// Element subclass
template <typename T>
class Element : public ublas::vector <T>
{

public:
...
space_type const& space() const;
component_space_type const& compSpace () const;

// get the component of the vector
component_type comp(ComponentType) const;
// interpolation of the function at a given point
T operator ()(node_type const&) const;

// Sobolev norms
double normL2 () const;
double normH1 () const;
...

};
};

An extension of the Space concept, is the MixedSpace which is a product of two spaces.
This can actually be extended to a product of several spaces of di�erent types � implemented
using the MPL [2]. � This concept is useful for mixed formulations. MixedSpace de�nes also
its own element type with some extra member to retrieve the underlying space elements.

†
http://www.boost.org/libs/numeric/ublas/doc/index.htm

203

http://www.boost.org/libs/numeric/ublas/doc/index.htm

10.2. PRELIMINARIES ON VARIATIONAL FORMS

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS

Listing 10.6: Mixed Space Example

// P2− P1 approximation space in 2D
typedef mpl::vector <FEM_PK <2,2,vectorial >,

FEM_PK <2,1,scalar > > SpaceList;
typedef MixedSpace <Mesh , SpaceList > space_t;
space_t Vh(mesh);
space_t :: element_type U(Vh);
// FEM_PK <2,2,vectorial >
space_t :: element_1_type u = U.element1 ();
// FEM_PK <2,1,scalar >
space_t :: element_2_type u = U.element2 ();

// extract a view of the X component of u
space_t :: element_1_type :: component_type ux = u.comp(X);

At the moment, MixedSpace is concept for a product of two functional spaces. Extending
this concept to a product of N functional spaces would be useful.

Linear and Bilinear Forms

One last concept needed to have the language expressive is the notion of forms. They follow
closely their mathematical counterparts: they are template classes with arguments being the
space or product of spaces they take their input from and the representation we can make
out of these forms. In what follows, we consider only the case where the linear and bilinear
forms are represented by vectors and matrices respectively. In a future work, we will eventually
propose the possibility to have vector-free and matrix-free representations: that would require
to store the de�nition of the forms.

Listing 10.7 displays the basic interface and usage of the form classes.

Listing 10.7: Forms

Mesh mesh;
// P3(Ω ⊂ R3)
typedef Space <Mesh ,FEM_PK <3,3> > Space_t;
Space_t X_h(mesh);
Space_t :: element_type u(X_h), v(X_h);

// Linear forms
template <typename Space , typename Rep >
class LinearForm
{

LinearForm(Space const&, Rep& rep) {...}
LinearForm& operator =(Rep const&) {...}
template <typename Expr >
LinearForm& operator =(Expr const&) {...}

};

204

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS 10.3. LANGUAGE

typedef ublas::vector <T> linearform_rep;
Linearform_rep F;
LinearForm <Space_t ,linearform_rep > f(X_h ,F);
f=integrate(elements(mesh),id(v));

// BiLinear forms
template <typename Space1 , typename Space2 ,

typename Rep >
class BiLinearForm
{

BilinearForm(Space1 const&, Space2 const&,
Rep& rep) {...}

BilinearForm& operator =(Rep const&) {...}
template <typename Expr >
BilinearForm& operator =(Expr const&) {...}

};

typedef ublas:: compressed_matrix <T> bilinearform_rep;
Bilinearform_rep M;
BilinearForm <Space_t ,Space_t ,bilinearform_rep > a(X_h ,X_h ,

M);
a=integrate(elements(mesh),idt(u)*id(v));

Note that the linear and bilinear form classes are the glue between their representation and
the mathematical expression given by Expr, it will

• �ll the matrix with non-zero entries depending on the approximation space(s) and the
mathematical expression;

• allow a per-component/per-space construction(blockwise);

• check that the numerical types of the expression and the representation are consistent

• when operator=(Expr const&) is called, the expression is evaluated and will �ll the
representation entries

The concepts of MixedLinearForm and MixedBilinearForm that would correspond to
mixed linear and bilinear forms respectively � taking their values in the product of two func-
tional spaces � exist also and follow the same ideas.

With the high level concepts described we can now focus on the language.

10.3 Language

The expression template technique won't be described as it is nowadays a mainstream tech-
nique [76, 2, 8, 9, 56]. The construction of the expression template objects in the coming
sections is standard.

205

10.3. LANGUAGE

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS

10.3.1 Expression Evaluation at a Set of Points in a Convex

Let C be a convex in Rd, d ≤ 1, 2, 3 � a n-simplex n ≤ d like lines, triangles or tetrahedrons
or products of simplices like quadrangles, hexahedrons or prisms, � and Ĉ be a convex of
reference in Rd, d ≤ 1, 2, 3 associated to C where we de�ne quadrature points for integration or
points to construct polynomials for �nite elements and other approximation methods, see [22,
32].

Figure 10.2: Expression template graph for f : x →
cos(πx)sin(πy)

We wish to evaluate f(x),∀x ∈
τ(ŜP) = {x1, . . . , xP} ⊂ C, ŜP =
{x̂1, . . . , x̂P} ⊂ Ĉ, f is a real-value func-
tion C → R and τ is the geometric map-
ping Ĉ → C, see 10.2.1.0.

In our code f is represented by an ex-
pression template � and not a standard
C++ function or a functor, � see [76].
For example, consider f : x ∈ C →
cos(πx) sin(πy), we write it in C++ as
cos(π*Px())*sin(π*Py()). The expres-
sion graph is shown on �gure 10.2. Here
Px() and Py() are free functions that
construct objects that are evaluated as
the x and y coordinates of the points
x;x ∈ C.

Constructing the C++ object that rep-
resents the expression is done with standard expression template approach. However evaluating
the expression is problematic as some ingredients are not known yet to the expression object
such as the geometric mapping. So using a standard expression template approach certainly
allow high level expressivity but cannot be applied to evaluate the expression.

To remedy this issue, we propose a very simple but very powerful solution which delegates
the evaluation of the expression to another object than the expression object itself. In our
case, the evaluation is delegated to a sublass of each object of the expression.

The Expression class, which is the glue between the various object types forming the
expression template, is roughly sketched in listing 10.8.

Listing 10.8: Evaluation Delegation to Subclass

template <typename Expr >
class Expression
{

typedef Expression <Expr > self_type;
Expr const& expression () const { return expr; }

template <typename GeoContext_t >
class Eval
{

typedef Expr::Eval <GeoContext_t > evaluator_type;

206

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS 10.3. LANGUAGE

// construct the evaluator for expression Expr.
Eval(self_type const& _expr ,

GeoContext_t const& gmc)
: evaluator(_expr.expression ,gmc) {}

// evaluatate at the q-th node used to build the
// the finite element
double operator ()(int q) const { return eval(q); }
evaluator_type eval; }; // Eval

Expr expr; }; // Expression

Expression<Expr>::Eval is a template class parametrized by the geometric mapping context
associated with each geometric element of the mesh. The constructor takes the expression
Expr and the geometric mapping context as arguments to pass geometric data � coordinates
of the current point, normals, measure of the element � down to all objects of the expression
so that they can use it as needed. As already mentioned, Px() constructs a C++ class that
returns the x coordinate of the points where the evaluation is e�ected. Its implementation is
presented in2 listing 10.9.

Listing 10.9: Current Evaluation Point Coordinates

class PointX
{

typedef PointX self_type;

template <typename GeoContext_t >
class Eval
{

// construct the evaluator for expression Expr.
Eval(self_type const& /*_expr*/,

GeoContext_t const& gmc)
: _M_gmc(gmc) {}

// returns the x coordinate of the q-th node
// stored in the geometric mapping context
double operator ()(int q) const
{ return gmc.xReal(q)[0]; }
GeoContext_t gmc;

}; // Eval
}; // Expression
Expression <PointX > Px()
{ return Expression <PointX >(PointX ()); }

Py() is implemented in a similar way. Regarding the mathematical functors cos and sin, they
also follow the same idea as shown in listing 10.10.

Listing 10.10: Current Evaluation Point Coordinates

template <typename Expr >
class Cos

207

10.3. LANGUAGE

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS

{
typedef Cos <Expr > self_type;

template <typename GeoContext_t >
class Eval
{

typedef Expr::Eval <GeoContext_t > eval_expr_type;
// construct the evaluator for expression Expr.
Eval(Expr const& _expr ,

GeoContext_t const& _gmc)
: eval_expr(_expr ,gmc) {}

// returns the cosinus of the expression at the q-th
// node stored in the geometric mapping context
double operator ()(int q) const
{ return cos(eval_expr(q)); }
eval_expr_type eval_expr;

}; // Eval
}; // Expression
template <typename Expr >
Expression <Cos <Expr > > cos(Expr const& e)
{ return Expression <Cos <Expr > >(Cos <Expr >(e)); }

10.3.2 Nodal Projection

We described the mechanism to evaluate an expression at a set of points in a convex, we
now turn to nodal projection of a function f onto an approximation space X � for example
X = {u ∈ Pk(T)} where T is a triangulation of Ω and Pk is the set spanned by the Lagrange
polynomials of degree ≤ k. � We denote πXf the nodal projection of f onto X.

The nodal projection is an extension of the previous section at a set of convexes and ŜP
being the set of coordinates of the degrees of freedom (DoF) associated with X. The nodal
projection is described by algorithm 4.

Algorithm 4 Nodal projection on X
ιX is the local/global correspondance table
for T ⊂ T do
p̂i = 1, . . . , NX points coordinates associated with the DoF in T
c← {T,G, (p̂i)i=1...NX} geometric mapping context, see 10.2.1.0
for i = 1, . . . , NX points coordinates associated with the DoF do
c.x̂← p̂i
πXfιX(T,i) = f(c.x)

end for
end for

We de�ne a free function project(<space>,[elements,]<expression>) that takes two or
three arguments : the approximation space onto which we project the function, the expression

208

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS 10.3. LANGUAGE

representing the function we want to project and optionally a range of elements that restricts
the projection to this set of elements, see section 10.2.1.0. project() constructs an template
class parametrized by the arguments types passed to project(), see listing 10.11.

Listing 10.11: Nodal Projection

// Space_t type of approximation space
// Erange range of iterators over the elements that
// restricts the projection
// Expr_t expression to project
template <typename Space_t , typename Erange ,

typename Expr_t >
class Projector
{

Projector(Space_t const& X, Erange const& erange ,
Expr_t const& E);

Space_t :: element_type operator ()() const {...};
};
template <typename Space_t , typename Expr_t >
Space_t :: element_type
project(Space_t const& X, Expr_t const& E)
{

// projection of E over all elements of the mesh
return project(X, elements(X.mesh()), E);

}
template <typename Space_t , typename ERange ,

typename Expr_t >
Space_t :: element_type
project(Space_t const& X, ERange const& erange ,

Expr_t const& E)
{

Projector <Space_t , Expr_t > P(X, erange , E);
return P();

}

Listing 10.12 shows an example of nodal projection.

Listing 10.12: Nodal Projection Example

Mesh mesh; // mesh of Ω ⊂ Rd

// Space of cubic lagrange element
Space <Mesh ,FEM_PK <d,3> > X(mesh);
X:: element_type u;
// project cos(πx) sin(πy) on P3(Ω)
u = project(X, cos(π*Px())* sin(π*Py());

Other types of projection like L2 or H1 projections require other ingredients presented in
the coming sections.

209

10.3. LANGUAGE

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS

10.3.3 Numerical Integration

We now turn to numerical integration of
∫

Ω
f(x)dx where f is the function to be integration

over Ω. Numerical integration requires the evaluation of the function f at quadrature points in
the convexes of the mesh associated to Ω. In our code, we used the quadrature constructions
presented in [32] for n-simplices and simplices products.

The integration process is described by algorithm 10.3.3

Algorithm 5 Integration over a mesh T of a domain Ω ⊂ Rd using a Quadrature Method
(ŵq, x̂q)q=1,...Q be the set of quadrature nodes and weights
for T ⊂ T do
Set c← {T,G, (x̂q)q=1...Q} geometric mapping context, see section 10.2.1.0∫

Ω
f(x)+ =

∑
q=1,...Q ŵqf(τ(x̂q)) {τ(x̂q) is given by c.xReal(q)}

end for

We introduce a new keyword to re�ect the integration action, see listing 10.13, which is
a free function instantiating an integrator parametrized by (i) the set of geometric elements,
see section 10.2.1.0, where the integration is done, (ii) the expression to integrate and (iii)
the integration method, see listing 10.14.

Listing 10.13: integrate prototype

integrate(<elements >, <expr >, <integration method >)

Listing 10.14: Integrator class and integrate free function

template <typename EIter , typename Expr_t ,typename Im_t >
class Integrator
{

Integrator(Elist const& elist , Expr_t const& E,
Im_t const& im);

double operator ()() const {...};
};
template <typename EIter , typename Expr_t ,typename Im_t >
double
integrate(EIter const& eiter ,

Expr_t const& e,
Im_t const & im)

{
Integrator <EIter , Expr_t , Im_t > I(eiter , e, im);
return I();

}

Listing 10.15 shows an example of the syntactic sugar brought by the language.

Listing 10.15: Integration Syntax

// mesh of [0, 1]d, d = 1, 2, 3 made of simplices
// of dimension d
Mesh mesh;

210

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS 10.3. LANGUAGE

// Gauss Legendre integration of Order 10
// over simplex of dimension d
IM_PK <d,10> im;
//

∫
[0,1]d cos(‖x‖2) where || · ‖2 is the Euclidean norm

// elements(mesh) provides the list of all elements
// in the mesh data structure
v=integrate(elements(mesh), cos(norm2(P())), im);
//

∫
∂[0,1]d cos(‖x‖2)

// bdyfaces(mesh) provides the list of the element faces
// on the boundary of the mesh
v=integrate(bdyfaces(mesh), cos(norm2(P())), im);

10.3.4 Variational Formulations

The framework, presented in the last sections, can be extended to handle variational for-
mulation with only minor changes to the evaluation class. We consider for now a convex
C ⊂ Rd, d = 1, 2, 3 and its associated reference convex Ĉ, an approximation space X � for
example Pk(C) � a bilinear form a X ×X → R de�ned by

a(u, v) =

∫
C

u v ∀ u, v ∈ X (10.13)

Listing 10.16 shows the C++ counterpart of equation (10.13).

Listing 10.16: Variational Integration
// integrate over element with id 1
integrate(idedelement(mesh ,1), idt(u)*id(v));

The t in idt(.) allows to distinguish trial and test functions: for example, id(.) identi�es
the test function values whereas idt(.) identi�es the trial function values.

Given u, v ∈ X, we wish to compute the value a(u, v) which can be approximated as
follows

a(u, v) ≈
∑

i=1...NX

∑
j=1...NX

ui vj
∑

q=1...Q

ŵq ψ̂i(x̂q) ψ̂j(x̂q)J(x̂q) (10.14)

where (ŵq, x̂q)q=1...Q are the quadrature nodes and weights de�ned in Ĉ, J(x̂q) is the jacobian
of the geometric transformation between Ĉ and C at the point x̂q and (ψ̂i)i=1...NX is the basis
of X.

Recall section 10.2.2.0, we have the basis context subclass that allows to store values and
derivatives of basis functions at a set of points. In the case of equation (10.14), the basis
context subclass stores and provides an interface to (ψ̂i(x̂q))q=1...Q,i=1...NX .

Again the basis functions context is not known to the expression object. In order to
accommodate the language with these concepts, it su�ces to add new template parameters
to the evaluation subclass of each classes allowed in an expression. However these parameters
have default values that allows to handle the case of the previous section as well as linear
forms and bilinear forms, see listing 10.17. In particular test basis functions context type
are defaulted to boost::none_t

†
and trial basis functions context type to the test ones. If

†
See boost/none_t.hpp

211

10.3. LANGUAGE

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS

boost::none_t is used, then no language keyword may be used in the expression that will
need basis functions operators such as id(.) or idt(.).

Listing 10.17: Evaluation subclass modi�cations for Variational Formulations
template <typename Expr >
class Expression
{

typedef Expression <Expr > self_type;
Expr const& expression () const { return expr; }

template <typename GeoContext_t ,
typename Basis_test_t = boost::none_t ,
typename Basis_trial_t = Basis_test_t >

class Eval
{

typedef Expr::Eval <GeoContext_t > evaluator_type;

// construct the evaluator for expression Expr.
Eval(self_type const& _expr ,

GeoContext_t const& gmc ,
Basis_trial_t const& u
Basis_test_t const& v)

: eval(_expr.expression ,gmc ,u,v) {}

// construct the evaluator for expression Expr.
Eval(self_type const& _expr ,

GeoContext_t const& gmc ,
Basis_test_t const& v)

: eval(_expr.expression ,gmc ,v) {}

...

// evaluatate at the ith -basis function and
// j-th basis function at the q-th node used
// to build the finite element
double operator ()(int q, int i, int j) const
{ return eval(q, i, j); }

// evaluatate at the ith -basis function and
// j-th basis function at the q-th node used
// to build the finite element
double operator ()(int q, int i, int j) const
{ return eval(q, i); }

...

evaluator_type eval; }; // Eval

212

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS 10.3. LANGUAGE

Expr expr; }; // Expression

Let's examine for example the implementation of the operator dx(<element:u>) which pro-
vides the �rst component of the �rst derivative of the basis function associated with u, see
listing 10.18.

Listing 10.18: Operator dx(.)

template <typename Element >
class OpDx
{

typedef Element element_type;
typedef Element :: basis_type basis_type;

template <typename GeoContext_t ,
typename Basis_test_t ,
typename Basis_trial_t = Basis_test_t >

class Eval
{

typedef Expr::Eval <GeoContext_t > evaluator_type;

// construct the evaluator for expression Expr.
Eval(self_type const& _expr ,

GeoContext_t const& gmc ,
Basis_trial_t const& u
Basis_test_t const& v)

: test_basis(v) {}
// construct the evaluator for expression Expr.
Eval(self_type const& _expr ,

GeoContext_t const& gmc ,
Basis_test_t const& v)

: test_basis(v) {}
...
// if the data type for test basis functions
// are the same then
// return the first component of the first
// derivative
// otherwise return 0
double operator ()(int q, int i, int j) const
{

// the if disappears at compile time since
// the condition is known
if (boost::is_same <basis_type ,

Basis_test_t >:: value)
return test_basis.dphi(q,j)[0];

else
return 0;

}
double operator ()(int q, int i) const

213

10.3. LANGUAGE

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS

{ same as above }
...
Basis_test_t test_basis; }; // Eval

Expr expr; }; // Expression

The types of the test and trial basis functions, Basis_test_t and Basis_trial_t are tested
with respect to the basis function type basis_type of the element passed to the operator.
If the types are not the same then at compile time the evaluation of this operator returns
0. At �rst glance for standard scalar equations � heat equation say � it allows just to
ensure that the evaluation makes sense, however when dealing with mixed formulation �
e.g. Stokes equations � this feature becomes very important if not crucial for correctness
and performance-wise. Indeed it will disable automatically the terms associated with the
basis functions which are not evaluated during local assembly of the mixed formulation : for
example when �lling the block corresponding to the velocity space, all the others terms �
velocity-pressure and pressure terms � are evaluated to 0.

An immediate remark is that we may have lots of computation for nothing, i.e. computing
0. However a simple check with g++ -O2 --save-temps shows that g++ optimizes out
expressions containing 0 at compile time and removes the corresponding code. The compile
time check of the basis functions types is then crucial to get the previous g++ optimization

†
.

As mentionned in the introduction, DSEL inherits the capabilities of the underlying lan-
guage; we have shown here a very good illustration of this statement.

Now that we know how to do integrate a variational form on a convex, it is easy to extend
it to a set of convexes.

10.3.5 Automatic Di�erentiation

Automatic di�erentiation as described in [9, 8] operates di�erently from the previous algorithms
when evaluating an expression template. We are no longer evaluating an expression at a set
of points but rather dealing with expressions that manipulate a di�erentiation numerical type
ADType<P,N> � P is the number of parameters and N the order of di�erentiation � holding
a value and corresponding derivatives � in pratice up to order N = 2 and P ≤ 100 �

To implement the automatic di�erentiation engine, we construct the expression object as
before. However the evaluation is changed: in our case we create a new subclass for evaluating
the di�erentiation. Each class which could be possibly used for automatic di�erentiation need
to implement this subclass. Listing 10.19 shows an excerpt of the implementation of the
expression templates glue class Expression.

Listing 10.19: Automatic di�erentiation subclass

template <typename Expr >
class Expression
{

typedef Expression <Expr > self_type;
Expr const& expression () const { return expr; }

†
This g++ optimization is a combination of at least two optimization strategies: (i) constant folding and

(ii) algebraic simpli�cations & Reassociation, see http://www.redhat.com/software/gnupro/technical/
gnupro_gcc.html for more details

214

http://www.redhat.com/software/gnupro/technical/gnupro_gcc.html
http://www.redhat.com/software/gnupro/technical/gnupro_gcc.html

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS 10.3. LANGUAGE

// evaluation of expression at a set of point
template <...> class Eval {};

// differentiate expression
class Diff
{

typedef Expr::Diff diff_type;

// construct the differentiator for expression Expr.
Diff(self_type const& _expr)
: diff(_expr.expression ()) {}

double value() const
{ return diff.value (); }

double grad(int __ith) const
{ return diff.grad(__ith); }

double hessian(int __i , int __j) const
{ return diff.hessian(__i , __j); }

diff_type diff; }; // Diff
Expr expr; }; // Expression

The automatic di�erentiation evaluation engine does not need to be much further dis-
cussed as it follows ideas already published elsewhere, see [9]. We just demonstrate here that
decoupling expression construction from its evaluation allows to share the code constructing
the expression template object.

A Remark on mixing automatic di�erentiation and variational formulations We
could actually push the envelop quite a lot and use the automatic di�erentiation type within
a variational formulation to di�erentiate with respect to some parameters for sensitivity anal-
ysis, optimization or control of engineering components. That is to say, mix the two eval-
uation engines : �rst the integral expression is evaluated and during the integral evalua-
tion, the automatic di�erentiation language takes over to �nalize it. The enabler of the
second stage in the evaluation would be the automatic di�erentation data type and its
operator=(Expr const&). This is truly what meta-programming is about � code that
generates code that generates code. . . � However this has not been tested in the examples
shown in section 10.4 and in particular performance could be a concern depending on the
quality of the generated code. This is one of the topics for future research as it may open
important areas of applications for the language such as the ones mentionned previously �
sensitivity analysis, optimization and control.

This leads to another advantage of sharing the expression object construction: it ensures
that we have the same set of supported mathematical functions or functors for automatic
di�erentation on the one hand and projection, integration on the other hand which means less
development work and less bugs.

215

10.3. LANGUAGE

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS

10.3.6 Overview of the Language

The implementation of the language itself, the construction of the expression object is done
in a very standard way conceptually, see [76]. However from a technical point, it uses state of
the art tools such as the Boost.Mpl [2] and Boost.Preprocessor [2, 33].

In particular the Boost.preprocessor library is extremely useful when it comes to generate
the objects and functions of the language from a variety of numerical types and operators �
using for example the macro

BOOST_PP_LIST_FOR_EACH_PRODUCT.

Regarding the grammar of the language, it follows the C++ one for a speci�c set of
keywords wich are displayed in tables 10.1, 10.2 and 10.3. The keywords choice follows closely
the Freefem++ language, see [29].

H() diameter of the current element
Hface() diameter of the current face

Emarker() current element marker
Eid() current element id
N() unit outward normal at the current node of the current face

Nx(),Ny(),Nz() x, y and z component of the unit outward normal
P() coordinates of the current node

Px(),Py(),Pz() x, y and z component of current node

Table 10.1: Tables of geometric/element operators available at the current element, face
and node

A note on the supported numerical types The language supports the standard ones
available in C++� boolean, integral and �oating-point types � and some additional ones

• std::complex<> complex data type

• ADtype<.,.> the automatic di�erentiation type

• dd_real double-double precision data type from the QD library, see [30]

• qd_real quad-double precision data type from the QD library

• mp_real arbitrary precision data type from the ARPREC library, see [11]

Other data types can be relatively easily supported thanks to Boost.Preprocessor. There
are plans for example to support an interval arithmetic data type � the one provided by
Boost.Interval, � which would be interesting to measure, for example, the impact of small
perturbations or uncertainty on the results.

216

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS 10.3. LANGUAGE

*,+,/,-,!,||,&&,... standard unary and binary operations
cos(<expr>) trigonometric/hyperbolic functions
sin(<expr>)

...

exp(<expr>) exponential function
log(<expr>) logarithmic function
abs(<expr>) absolute value of expression

floor(<expr>) �oor of expression
ceil(<expr>) ceil of expression
chi(<expr>) Heaviside step function

min(<expr>,<expr>) min/max
max(<expr>,<expr>)

pow(<expr>,<expr>) expression to the power
<expr>^(<expr>)

dot(<expr>,<expr>) dot product of two
vectorial expressions

jump(<expr>) jump of an expression
across a face of an element

avg(<expr>) average of an expression
across a face of an element

Table 10.2: Tables of mathematical functions that can be applied to expressions

id(<element:u>) basis functions associated to u

grad(<element:u>) gradient of the basis
functions associated to u

dx(<element:u>) x,y and z components of the gradient of the
dy(<element:u>) basis functions associated to u

dz(<element:u>)

dxx(<element:u>) components of the hessian of the basis
dyy(<element:u>) functions associated to u

...

grad(<element:u>) gradient operators of basis
functions associated to u

div(<element:u>) divergence operator of basis
functions associated to u

idt(<element:u>)... the previous operators with a su�x t

to specify the trial basis functions

Table 10.3: Tables of Operators for variational formulations

217

10.4. TEST CASES

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS

10.4 Test Cases

We present now various examples to illustrate the techniques developed previously. We shall
show only the relevant part of each examples. Also, for each example, we shall present di�erent
possible formulations.

10.4.1 Performance

In the following section, various results are presented with some timings for the construction
of bilinear and linear forms. The calculations have been conducted on an AMD64 opteron

†

running linux 2.6.9 and GNU/Debian/Linux.
The g++-4.0.1 compiler was used to compile the code with the following options

Listing 10.20: g++ options for optimization

standard options
-march=opteron -fast -math -O2
-funroll -loops
aliasing
-fstrict -aliasing -fargument -noalias -global

These options are relatively standard and give good results all the time. Other optimization
options have been tried but did not yield signi�cant performance improvements.

We consider various Advection-Di�usion-Reaction problems to evaluate the performance
of our framework proposed in [56].

µ∆u = 0 D, (10.15)

µ∆u+ σu = 0 DR, (10.16)

µ∆u+ β∆∇u+ σu = 0 DAR (10.17)

on a unit square and cube domain.
For each problem we consider both the case of constant and space-dependent coe�cients.

The following expressions were assumed for the space-dependent coe�cients

µ(x, y, z) =

{
x3 + y2 (2D)

x3 + y2z (3D)
(10.18)

β(x, y, z) =

{
(x3 + y2z, x3 + y2) (2D)

(x3 + y2z, x3 + y2, x3) (3D)
(10.19)

σ(x, y, z) =

{
x3 + y2 (2D)

x3 + y2z (3D)
(10.20)

The corresponding C++ code for the 3D is presented in listing 10.21. The C++ for the 2D
cases is very similar but simpler.

†
AMD Opteron(tm) Processor 248, 2.2Ghz, 1MB cache, 8GB ram

218

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS 10.4. TEST CASES

Listing 10.21: Benchmark for elliptic problems

#define gradugradv(u,v) (dxt(u)*dx(v) + dyt(u)*dy(v) + \
dzt(u)*dz(v))

#define agradu(a,b,c,u) ((a)*dxt(u) + (b)*dyt(u) + \
(c)*dzt(u))

// D
D = integrate(elements(mesh), gradugradv(u,v));
D = integrate(elements(mesh), (Px ()^(3)+ Py ()^(2)* Pz())*

gradugradv(u,v));

// DR
DR = integrate(elements(mesh), gradugradv(u,v) +

idt(u)*id(v));
DR = integrate(elements(mesh), (Px ()^(3)+ Py ()^(2)* Pz())*

(gradugradv(u,v) + idt(u)*id(v)));

// DAR
DAR = integrate(elements(mesh), gradugradv(u,v) +

idt(u)*id(v) + agradu(1,1,1,u)*id(v));
DAR = integrate(elements(mesh),

(Px ()^(3)+ Py ()^(2)* Pz())*(gradugradv(u,v) +
idt(u)*id(v))+
agradu ((Px ()^(3)+ Py ()^(2)* Pz()),

(Px ()^(3)+ Py()^(2)) ,
(Px()^(3)) ,u) * id(v));

Results

The benchmark table, see 10.4, reports the timings for �lling the matrix entries associated
with the problems D, DR and DAR. Lagrange element of order 1 � 3 dof in 2D, 4 in 3D �
and order 2 � 6 dof in 2D, 10 dof in 3D � have been tested. The integration rule changes
depending on the polynomial order we wish to integrate exactly. For P1 Lagrange elements 3
quadrature points are used in 2D, 4 in 3D and for P2 Lagrange elements 4 are used in 2D and
15 in 3D.

Analysis

In order to facilitate the study of these timing results, they are displayed on �gures 10.3
and 10.4 for the 2D cases and 3D cases respectively with each time the matrix assembly time
with respect to the number of elements along with the ratio between the cst timings and xyz

timings for P1 and P2 cases. We can observe a few things:

• matrix assembly time versus number of elements is linear (in log− log) which is no
surprise,

219

10.4. TEST CASES

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS

Dim NEls Pk NDoF
D DR DAR

const xyz const xyz const xyz

2D

20742
P1 10570 0.08 0.13 0.08 0.13 0.13 0.17
P2 41881 0.2 0.23 0.2 0.23 0.25 0.29

82460
P1 41 629 0.36 0.48 0.37 0.48 0.51 0.66
P2 165717 0.81 0.99 0.83 1.02 1.07 1.42

330102
P1 165850 1.47 2 1.5 2 2.06 2.6
P2 661801 3.38 4.06 3.42 4.22 4.22 5.45

517454
P1 259726 2.44 3.25 2.48 3.24 3.29 4.28
P2 1036905 5.5 6.57 5.86 7.17 6.98 8.78

3D
8701

P1 1723 0.06 0.07 0.06 0.07 0.08 0.11
P2 12825 0.42 0.46 0.43 0.48 0.49 0.58

69602
P1 12239 0.49 0.73 0.5 0.75 0.69 1.09
P2 96582 3.47 3.77 3.6 4.22 4.3 4.9

554701
P1 92071 4.05 5.88 4.55 6.36 5.96 8.55
P2 748575 31.27 34.42 32.35 36.16 35.82 42.08

1085910 P1 178090 8.59 12.32 8.96 12.62 11.74 17.54

Table 10.4: Language Performances in [0, 1]2 and [0, 1]3. Timings are in seconds.

• the di�erence of performances between the di�erent equations D, DR and DAR are
quite small even with the DAR and the 3D cases which means that we do a good job at
sharing as much computations as possible between the di�erent terms of the equation,

• the overhead due to non-constant coe�cients is very small in all cases. which is not
the case for example in [56]. In particular, as shown by the ratio �gures, the ratios
are always less than 2 and in most cases � among them the most expensive ones �
they are in [1.1; 1.3]. In [56] they used functions or functors to treat the non constant
coe�cients, they get factors between 2 and 5 (5 in the worst case 3D P2). This means
that the expression templates mechanism and the g++ optimizer do a very good job at
optimizing out the expression evaluation.

These results illustrate very well the pertinence of using meta-programming in general and
expression templates in particular in demanding scienti�c computing codes. Also note that
there was no particular optimization based on some knowledge of the underlying equation terms
with respect to the local matrix assembly, so there is room for improvements � for example
the symmetry of the bilinear form or the precomputation of sti�ness, mass and convection
matrices on the reference element, see [34].

Regarding compilation time, it is certainly true that using expressions template and meta-
programming has an impact on the compile time. However if most of the library is templatized
then the compile time cost is usually paid when compiling the end-user application and no
more when compiling the library itself. To give an idea, the performance benchmark code was
compiled with all cases : P1 and P2 in 2D and 3D for all problems D, DR and DAR. In other
words, a single executable was generated to run all the cases presented earlier. On an AMD64

220

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS 10.4. TEST CASES

0.01

0.1

1

10

100

T
im

e
(i

n
s)

:
T

T
im

e
(i

n
s)

:
T

1 · 104 2 · 104 5 · 104 1 · 105 2 · 105 5 · 105 1 · 106

Number of Elements: NNumber of Elements: N

D
DR
DAR
T = 0.03 + 1.0e− 06 ∗N1.12

(a) P1: cst

0.1

1

10

100

T
im

e
(i

n
s)

:
T

T
im

e
(i

n
s)

:
T

1 · 104 2 · 104 5 · 104 1 · 105 2 · 105 5 · 105 1 · 106

Number of Elements: NNumber of Elements: N

D
DR
DAR
T = 0.04 + 1.9e− 06 ∗N1.09

(b) P1: xyz

0.1

1

10

100

T
im

e
(i

n
s)

:
T

T
im

e
(i

n
s)

:
T

1 · 104 2 · 104 5 · 104 1 · 105 2 · 105 5 · 105 1 · 106

Number of Elements: NNumber of Elements: N

D
DR
DAR
T = 0.04 + 3.5e− 06 ∗N1.08

(c) P2: cst

0.1

1

10

100
T

im
e

(i
n
s)

:
T

T
im

e
(i

n
s)

:
T

1 · 104 2 · 104 5 · 104 1 · 105 2 · 105 5 · 105 1 · 106

Number of Elements: NNumber of Elements: N

D
DR
DAR
T = 0.03 + 5.5e− 06 ∗N1.06

(d) P2: xyz

1

1.2

1.4

1.6

1.8

2

R
at

io
x
y
z
/
cs
t

R
at

io
x
y
z
/
cs
t

1 · 104 2 · 104 5 · 104 1 · 105 2 · 105 5 · 105 1 · 106

Number of Elements: NNumber of Elements: N

D
DR
DAR

(e) P1: ratio xyz/cst

1

1.2

1.4

1.6

1.8

2

R
at

io
x
y
z
/
cs
t

R
at

io
x
y
z
/
cs
t

1 · 104 2 · 104 5 · 104 1 · 105 2 · 105 5 · 105 1 · 106

Number of Elements: NNumber of Elements: N

D
DR
DAR

(f) P2: ratio xyz/cst

Figure 10.3: Cases P1 and P2 in 2D. Matrix assembly time versus number of elements and
ratios between non-constant coe�cients assembly and constant coe�cients assembly

221

10.4. TEST CASES

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS

0.01

0.1

1

10

100

T
im

e
(i

n
s)

:
T

T
im

e
(i

n
s)

:
T

103 104 105 106 107

Number of Elements: NNumber of Elements: N

D
DR
DAR
T = 0.06 + 1.4e− 06 ∗N1.12

(a) P1: cst

0.01

0.1

1

10

100

T
im

e
(i

n
s)

:
T

T
im

e
(i

n
s)

:
T

103 104 105 106 107

Number of Elements: NNumber of Elements: N

D
DR
DAR
T = 0.07 + 2.7e− 06 ∗N1.10

(b) P1: xyz

0.1

1

10

100

T
im

e
(i

n
s)

:
T

T
im

e
(i

n
s)

:
T

103 104 105 106

Number of Elements: NNumber of Elements: N

D
DR
DAR
T = 0.05 + 2.4e− 05 ∗N1.06

(c) P2: cst

0.1

1

10

100

T
im

e
(i

n
s)

:
T

T
im

e
(i

n
s)

:
T

103 104 105 106

Number of Elements: NNumber of Elements: N

D
DR
DAR
T = 0.06 + 2.4e− 05 ∗N1.07

(d) P2: xyz

1

1.2

1.4

1.6

1.8

2

R
at

io
x
y
z
/
cs
t

R
at

io
x
y
z
/
cs
t

103 104 105 106

Number of Elements: NNumber of Elements: N

D
DR
DAR

(e) P1: ratio xyz/cst

1

1.2

1.4

1.6

1.8

2

R
at

io
x
y
z
/
cs
t

R
at

io
x
y
z
/
cs
t

1 · 103 2 · 103 5 · 103 1 · 104 2 · 104 5 · 104 1 · 105

Number of Elements: NNumber of Elements: N

D
DR
DAR

(f) P2: ratio xyz/cst

Figure 10.4: Cases P1 and P2 in 3D. Matrix assembly time versus number of elements and
ratios between non-constant coe�cients assembly and constant coe�cients assembly

222

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS 10.4. TEST CASES

opteron
†
, the compilation takes between 2 and 3 minutes using the compiler options from

listing 10.20. The book by David Abrahams and Aleksey Gurtovoy [2] provides a complete
discussion on meta-programming and its impact on compile time.

10.4.2 A Variationnal Inequality

This test case is described in [20]. We consider a rectangular tank of length a = 0.1m, and
height b = 0.05m. A cylindrical tube crosses it with a diameter of 0.015m. The tank is �lled
with ice and there is a thin layer of solid/liquid polymer on top of it. For symmetry reason, we
consider only half of the tank � a = 0.05m. � The problem is formulated as follows: The
temperature θ is solution of the parabolic equation∫

Ω

β(θ)
∂θ

∂t
v − ∇ · (µ(θ)∇θ) = 0 (10.21)

where
µ(θ) = χy<b−3p[µ1χθ>ε + µ2χθ<0] + µ3χy>b−3p, (10.22)

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

1

2

3

5

4

a=0.05m

b=0.05mD=0.015m

4

Ice + Water

Polymer

Figure 10.5: Variational Inequality

β(θ) = χy<b−3p[c1χθ>ε + c2χθ<0 +
1

ε
L1χ0<θ<ε]+

χy>b−3p[c3χθ>ε + c4(χθ>ε + χθ<0) +
1

ε
L2χ0<θ<ε],

(10.23)
and ε = 0.05. β(θ) is the volumetric heat

capacity and µ(θ) is the thermal conductivity.
Finally, χ represent the characteristic func-
tion.

We impose the following conditions:

• θ = 0 on boundaries 1 and 2

• ∂θ
∂n

= 0 on boundary 3 and 4

• θ = −0.1+0.05t on boundary 5 where
t represents the time

The actual code reads as follows :

Listing 10.22: Variational Inequality

Mesh mesh;
fespace_type P1;
P1:: element_type u,v;
LinearForm <fespace_type > f(P1, F);

f = integrate(elements(mesh),

†
AMD Opteron(tm) Processor 248, 2.2Ghz, 1MB cache, 8GB ram

223

10.4. TEST CASES

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS

// term: β(θ) θ v
id(P1,θ)*id(v)*

// χy<b−3p[c1χθ>ε + c2χθ<0 + (L1/ε)χ0<θ<ε]
(chi(Py()<b-3*p)*

(c1*chi(id(P1,θ)>epsilon)+
c2*chi(id(P1,θ)<0)+
(L1/epsilon)*(chi(id(P1,θ)>0)*

chi(id(P1,θ)<epsilon)))+
// χy>b−3p[c3χθ>ε + c4(χθ>ε + χθ<0) + (L2/ε)χ0<θ<ε]

chi(Py()>=b-3*p)*(c3*chi(id(P1,θ)>0.5+ epsilon)+
c4*chi(id(P1,θ) <0.5)+

(L2/epsilon)*chi(id(P1,θ) >0.5)*
chi(id(P1,θ)<0.5+ epsilon))));

BilinearForm <fespace_type > a(u, v, A);
a = integrate(elements(mesh),
// term: β(θ) θ v

id(θ)*id(v)*
// χy<b−3p[c1χθ>ε + c2χθ<0 + (L1/ε)χ0<θ<ε]

(chi(Py()<b-3*p)*
(c1*chi(id(P1,θ)>epsilon)+
c2*chi(id(P1,θ)<0)+
(L1/epsilon)*(chi(id(P1,θ)>0)*

chi(id(P1,θ)<epsilon)))+
// χy>b−3p[c3χθ>ε + c4(χθ>ε + χθ<0) + (L2/ε)χ0<θ<ε]

chi(Py()>=b-3*p)*(c3*chi(id(P1,θ)>0.5+ epsilon)+
c4*chi(id(P1,θ) <0.5)+

(L2/epsilon)*chi(id(P1,θ) >0.5)*
chi(id(P1,θ)<0.5+ epsilon)))+

// term: dt µ(θ) ∇ θ · ∇ v
dt*dot(grad(θ),grad(v))*(

// χy<b−3p[µ1χθ>ε + µ2χθ<0] + µ3χy>b−3p

(chi(Py()<b-3*p)*(\ mu_1*chi(id(P1,θ)>epsilon)+
mu2*chi(id(P1,θ)<0))+
mu3*chi(Py()>b-3*p)));

// boundary conditions
a += on(1,θ,F, -0.1)+

on(2,θ,F, -0.1)+
on(5,θ,F , -0.1+0.05*t);

Figure 10.6 shows the contour lines of the temperature at various time steps and the mesh
colored by the thermal conductivity over the entire domain: we see that the ice is melting and
transformed into water � in red the ice and light blue the water.

224

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS 10.4. TEST CASES

10.4.3 Stokes and Navier-Stokes

We consider here the standard driven cavity test case with the following setting described by
the �gure 10.7.
First we use a stable mixed approximation for the velocity and pressure spaces � say the
Taylor-Hood element (P2 − P1). � The variational formulation reads as follows:
Find (u, p) ∈ Xh ×Mh such that for all (v, q) ∈ Xh ×Mh∫

Ω

∇u · ∇v −
∫

Ω

∇ · v p = 0 (10.24)∫
Ω

∇ · u q = 0 (10.25)

u|Y=1 = (1, 0)T in 2D (10.26)

u|Z=1 = (1, 0, 0)T in 3D (10.27)

Listing 10.23: Mixed Variational Formulation

// mixed finite element space (P2 velocity , P1 pressure) in 3D
typedef MixedSpace <Mesh_t ,

FEM_PK <3,2,vectorial >,
FEM_PK <3,1,scalar > > space_type;

space_type V_h;
V_h U,V;
// views for U and V
typedef space_type :: space_1_type X_h;
typedef space_type :: element_2_type M_h;
space_type :: element_1_type u = U.element1 ();
space_type :: element_2_type p = U.element2 ();
space_type :: element_1_type v = V.element1 ();
space_type :: element_2_type q = V.element2 ();
//
csr_matrix_type A;
MixedBilinearForm <space_type > a(V_h , V_h , A);
// block wise construction
a(u, v) = integrate(elements(mesh), dot(grad(u), grad(v)));
a(p, v) = integrate(elements(mesh), -id(p)*div(v));
a(u, q) = integrate(elements(mesh), id(q)*div(u));
a(p, q) = integrate(elements(mesh), 1e-6*id(p)*id(q))+

// 10 identifies the lid
on(10, u, F, oneX())+
// 20 = ∂Ω\10
on(20, u, F, 0);

// or could be done this way. less expensive:
// only one loop over the elements
a = integrate(elements(mesh),

dot(gradt(u), grad(v)) - idt(p)*div(v) +
id(q)*divt(u) + 1e-6*idt(p)*id(q))+

225

10.4. TEST CASES

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS

// 10 identifies the lid
on(10, u, F, oneX())+
// 20 = ∂Ω\10
on(20, u, F, 0);

We can also use an equal order approximation � say P1 − P1 � and add a stabilization
term like the jump of the pressure gradient over the internal faces as proposed in [18]. The
formulation reads then as follows: Find (u, p) ∈ Xh ×Mh such that ∀ (v, q) ∈ Xh ×Mh∫

Ω

∇u · ∇v −
∫

Ω

∇ · v p = 0 (10.28)

∫
Ω

∇ · uq +
∑
F∈Ωh

∫
F

[∂p
∂n

][∂q
∂n

]
= 0 (10.29)

u|Y=1 = (1, 0)T in 2D (10.30)

u|Z=1 = (1, 0, 0)T in 3D (10.31)

where [·] denotes the jump of the quantity across a face. Codewise we operate just a slight
modi�cation of listing 10.23, see the listing 10.24.

Listing 10.24: Mixed Variational Formulation

// can be of equal order for velocity and pressure spaces
MixedBilinearForm <space_type > a(V_h , V_h , A, false);
a = integrate(elements(mesh),

dot(gradt(u), grad(v)) - idt(p)*div(v) +
id(q)*divt(u) + 1e-6*idt(p)*id(q))+

// add the jump of the normal derivatives of the pressure
// where Γp is a constant. One can take Γp = 2.5e−2

integrate(internalfaces(mesh),Γp*(Hface ()^3)* jump(dnt(p))*
jump(dn(q)))+

// 10 identifies the lid
on(10, u, F, oneX())+
// 20 = ∂Ω\10
on(20, u, F, 0);

10.4.4 Particule in a Shear Flow

We consider now a rigid particule in a shear Stokes �ow treated using a penalization method,
see [31].

Denote Ω = [−1, 1]2, we consider a cirular particule positionned at (xp = 0, yp = 0) ∈ Ω
of radius rp = 0.1 and a penalization parameter ε. Denote χp the characteristic function of
the particule de�ned as χp = χ((x−xp)2 + (y− yp)2 > rp). We seek (u, p) ∈ Xh×Mh such

226

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS 10.4. TEST CASES

that ∀(v, q) ∈ Xh ×Mh∫
Ω

(1 + χp/ε)(∇u+∇uT)(∇v +∇vT)−
∫

Ω

∇ · v p = 0 (10.32)∫
Ω

∇ · u q = 0 (10.33)

u|∂Ω = (0, x) (10.34)

where X and M are sub-spaces of H1(Ω) and L2(Ω) respectively. Listing 10.25 shows the
corresponding C++ code.

Listing 10.25: Particular in a shear Stokes �ow
// (xp,yp) are the coordinates of the center of the particule
// rp is the radius of the particule
//

∫
[−1,1]2(1 + χ(x−xp)2+(y−yp)2>r/ε)(∇u+∇uT)(∇v +∇vT)

MixedBilinearForm <Space_t > a(P2P1 ,P2P1 ,A);
a = integrate(elements(mesh),

(1+chi(rp^2>(Px()-xp)^2+(Py()-yp)^2)/ eps)*
dot(gradt(u)+ gradTt(v),grad(v)+gradT(v))-
idt(p)*div(v) + idt(q)*divt(u),
IM_PK <2,2>())+

// Dirichlet boundary conditions for the shear flow
on(7, uy, F, Px())+
on(7, ux, F, 0);

Figure 10.8 shows the velocity vector �eld and identi�es the particule in the mesh using
its characteristic function χp.

Conclusion

We have developed a uni�ed DSEL for di�erent aspects of numerical analysis, namely di�eren-
tiation, integration, projection and variational formulations. The main results of this article are
that (i) such a DSEL is feasible: an implementation has been done and exercised with some
non-trivial test cases and (ii) decoupling the expression object construction from its evaluation
using a delegate subclass allows for very powerful notations in C++: one unique engine is used
for the expression construction and as many engines as needed for the expression evaluation �
we have seen two di�erent engines: one for projection, integration and variational formulations
and one for automatic di�erentiation. � This technique can certainly be successfully used in
other contexts.

Future developments will include a study whether the work done in [34] can be applied
to accelerate the assembly steps during integration. Also, although vectorial notations in the
language can be used, they need to be formalized within the language to avoid ambiguities
that would yield wrong results.

Acknowledgments

The DSEL was developed within a development branch of the LifeV project, see [65, 1].

227

10.4. TEST CASES

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS

X

Y

Z

(a) T = 1s

X

Y

Z

(b) T = 5s

X

Y

Z

(c) T = 10s

X

Y

Z

(d) T = 20s

Figure 10.6: Temperature and thermal conductivity in the tank at various time steps

228

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS 10.4. TEST CASES

u = (1, 0)T

u
=

(0
,0

)

u = (0, 0)

u
=

(0
,0

)

(1, 0)

(1, 1)

X

Y

(0, 0)

(a) 2D

u = (1, 0, 0)T

(0, 0, 0) (1, 0, 0)

(0, 0, 1)

X

Z
Y

(0, 1, 0)

(b) 3D

Figure 10.7: Driven Cavity

(a) Velocity vector �eld (b) Close-up

Figure 10.8: Particule in shear Stokes �ow

229

10.4. TEST CASES

CHAPTER 10. A DOMAIN SPECIFIC EMBEDDED LANGUAGE IN C++ FOR AUTOMATIC DIFFERENTIATION, PROJECTION, INTEGRATION

AND VARIATIONAL FORMULATIONS

230

Part IV

Annex

231

Chapter 1

References

233

CHAPTER 1. REFERENCES

234

Bibliography

[1] Lifev: a �nite element library. http://www.lifev.org.

[2] David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogramming : Concepts,
Tools, and Techniques from Boost and Beyond. C++ in Depth Series. Addison-Wesley
Professional, 2004.

[3] M. A. Akgun, J. H. Garcelon, and R. T. Haftka. Fast exact linear and non-linear struc-
tural reanalysis and the Sherman-Morrison-Woodbury formulas. International Journal for
Numerical Methods in Engineering, 50(7):1587�1606, March 2001.

[4] E. Allgower and K. Georg. Simplicial and continuation methods for approximating �xed-
points and solutions to systems of equations. SIAM Review, 22(1):28�85, 1980.

[5] B. O. Almroth, P. Stern, and F. A. Brogan. Automatic choice of global shape functions
in structural analysis. AIAA Journal, 16:525�528, May 1978.

[6] A.C. Antoulas and D.C. Sorensen. Approximation of large-scale dynamical systems: An
overview. Technical report, Rice University, 2001.

[7] S. Sugata A.T. Patera. Reduced basis approximation and a posteriori error estimation
for many-parameter problems. MIT Disertation, 2004.

[8] Pierre Aubert and Nicolas Di Césaré. Expression templates and forward mode automatic
di�erentiation. In George Corliss, Christèle Faure, Andreas Griewank, Laurent Hascoët,
and Uwe Naumann, editors, Automatic Di�erentiation of Algorithms: From Simulation to
Optimization, Computer and Information Science, chapter 37, pages 311�315. Springer,
New York, NY, 2001.

[9] Pierre Aubert, Nicolas Di Césaré, and Olivier Pironneau. Automatic di�erentiation in
C++ using expression templates and application to a �ow control problem. Computing
and Visualisation in Sciences, 2000. Accepted.

[10] Babak Bagheri and Ridgway Scott. Analysa. http://people.cs.uchicago.edu/ ridg/al/aa.ps,
2003.

[11] David H. Bailey, Yozo Hida, Karthik Jeyabalan, Xiaoye S. Li, and Brandon Thomp-
son. C++/fortran-90 arbitrary precision package. http://crd.lbl.gov/~dhbailey/

mpdist/.

235

http://crd.lbl.gov/~dhbailey/mpdist/
http://crd.lbl.gov/~dhbailey/mpdist/

CHAPTER 1. BIBLIOGRAPHY

[12] Satish Balay, Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh Kaushik,
Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc
users manual. Technical Report ANL-95/11 - Revision 2.1.5, Argonne National Labora-
tory, 2004.

[13] E. Balmes. Parametric families of reduced �nite element models: Theory and applications.
Mechanical Systems and Signal Processing, 10(4):381�394, 1996.

[14] A. Barrett and G. Reddien. On the reduced basis method. Z. Angew. Math. Mech.,
75(7):543�549, 1995.

[15] F. Brezzi, J. Rappaz, and P.A. Raviart. Finite dimensional approximation of nonlinear
problems. Part I: Branches of nonsingular solutions. Numerische Mathematik, 36:1�25,
1980.

[16] A. Bu�a, Y.Maday, A.T. Patera, C. Prud'homme, and G. Turinici. A priori convergence
of multi-dimensional parametrized reduced basis, 2005. In preparation, To be submitted
in October or November.

[17] E. Burman. A uni�ed analysis for conforming and nonconforming stabilized �nite element
methods using interior penalty. SIAM J. Numer. Anal., 2005. in press.

[18] Erik Burman and Peter Hansbo. Edge stabilization for the generalized Stokes problem:
a continuous interior penalty method. Comput. Methods Appl. Mech. Engrg., 2005. in
press.

[19] G. Caloz and J. Rappaz. Numerical analysis for nonlinear and bifurcation problems. In
P.G. Ciarlet and J.L. Lions, editors, Handbook of Numerical Analysis, Vol. V, Techniques
of Scienti�c Computing (Part 2), pages 487�637. Elsevier Science B.V., 1997.

[20] Nicolas Di Césaré and Oliver Pironneau. Hatfem, une bibliothèque de manipulation des
fonctions chapeaux. http://nicolas.dicesare.free.fr/Fac/R97033.ps.gz and
http://www.ann.jussieu.fr/~pironneau/.

[21] T. F. Chan and W. L. Wan. Analysis of projection methods for solving linear systems
with multiple right-hand sides. SIAM Journal on Scienti�c Computing, 18(6):1698, 1721
1997.

[22] Philippe G. Ciarlet. The �nite element method for elliptic problems, volume 40 of Clas-
sics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2002. Reprint of the 1978 original [North-Holland, Amsterdam;
MR0520174 (58 #25001)].

[23] Patrick Dular and Christophe Geuzaine. Getdp: a general environment for the treatment
of discrete problems. http://www.geuz.org/getdp.

[24] A. G. Evans, J. W. Hutchinson, N.A. Fleck, M. F. Ashby, and H. N. G. Wadley. The
topological design of multifunctional cellular metals. Progress in Materials Science, 46(3-
4):309�327, 2001.

236

http://nicolas.dicesare.free.fr/Fac/R97033.ps.gz
http://www.ann.jussieu.fr/~pironneau/

CHAPTER 1. BIBLIOGRAPHY

[25] C. Farhat, L. Crivelli, and F.X. Roux. Extending substructure based iterative solvers
to multiple load and repeated analyses. Computer Methods in Applied Mechanics and
Engineering, 117(1-2):195�209, July 1994.

[26] J. P. Fink and W. C. Rheinboldt. On the error behavior of the reduced basis technique
for nonlinear �nite element approximations. Z. Angew. Math. Mech., 63:21�28, 1983.

[27] L. Formaggia, J.F. Gerbeau, and C. Prud'homme. LifeV Developer Manual. The LifeV
Project. http://www.lifev.org/documentation/lifev-dev.pdf.

[28] M. B. Giles and N. A. Pierce. Superconvergent lift estimates through adjoint error analysis.
Technical report, Oxford University Computing Laboratory, 1998.

[29] Frédéric Hecht and Olivier Pironneau. FreeFEM++ Manual. Laboratoire Jacques Louis
Lions, 2005.

[30] Yozo Hida, Xiaoye S. Li, and David H. Bailey. Quad-double arithmetic: Algorithms, imple-
mentation, and application. Technical Report LBNL-46996, Lawrence Berkeley National
Laboratory, Berkeley, CA 9472, Oct. 2000. http://crd.lbl.gov/~dhbailey/mpdist/.

[31] Joao Janela, Aline Lefebvre, and Bertrand Maury. A penalty method for the simulation
of �uid - rigid body interaction. In ESAIM proceedings, 2005. submitted.

[32] George Em Karniadakis and Spencer J. Sherwin. Spectral/hp element methods for CFD.
Numerical Mathematics and Scienti�c Computation. Oxford University Press, New York,
1999.

[33] Vesa Karvonen and Paul Mensonides. The boost library preprocessor subset for c/c++.
http://www.boost.org/libs/preprocessor/doc/.

[34] Robert C. Kirby and Anders Logg. A compiler for variational forms. Technical report,
Chalmers Finite Element Center, 05 2005. www.phi.chalmers.se/preprints.

[35] A. Logg, J. Ho�man, R.C. Kirby, and J. Jansson. Fenics. http://www.fenics.org/,
2005.

[36] Kevin Long. Sundance: Rapid development of high-performance parallel �nite-element
solutions of partial di�erential equations. http://software.sandia.gov/sundance/.

[37] L. Machiels, Y. Maday, I. B. Oliveira, A. T. Patera, and D. V. Rovas. Output bounds for
reduced-basis approximations of symmetric positive de�nite eigenvalue problems. C. R.
Acad. Sci. Paris, Série I, 331(2):153�158, July 2000.

[38] L. Machiels, Y. Maday, and A. T. Patera. A ��ux-free� nodal Neumann subproblem
approach to output bounds for partial di�erential equations. C. R. Acad. Sci. Paris, Série
I, 330(3):249�254, February 2000.

[39] L. Machiels, A. T. Patera, and D. V. Rovas. Reduced basis output bound methods for
parabolic problems. Computer Methods in Applied Mechanics and Engineering, 2001.
Submitted.

237

http://www.lifev.org/documentation/lifev-dev.pdf
http://crd.lbl.gov/~dhbailey/mpdist/
http://www.boost.org/libs/preprocessor/doc/
www.phi.chalmers.se/preprints
http://www.fenics.org/

CHAPTER 1. BIBLIOGRAPHY

[40] L. Machiels, J. Peraire, and A. T. Patera. A posteriori �nite element output bounds for
the incompressible Navier-Stokes equations: Application to a natural convection problem.
Journal of Computational Physics, 172:401�425, 2001.

[41] Y. Maday. Private communication.

[42] Y. Maday, L. Machiels, A. T. Patera, and D. V. Rovas. Blackbox reduced-basis out-
put bound methods for shape optimization. In Proceedings 12th International Domain
Decomposition Conference, pages 429�436, Chiba, Japan, 2000.

[43] Y. Maday, A. T. Patera, and J. Peraire. A general formulation for a posteriori bounds for
output functionals of partial di�erential equations; Application to the eigenvalue problem.
C. R. Acad. Sci. Paris, Série I, 328:823�828, 1999.

[44] Y. Maday, A. T. Patera, and D. V. Rovas. A blackbox reduced-basis output bound method
for noncoercive linear problems. In D. Cioranescu and J.-L. Lions, editors, Nonlinear
Partial Di�erential Equations and Their Applications, Collége de France Seminar Volume
XIV, pages 533�569. Elsevier Science B.V., 2002.

[45] Y. Maday, A. T. Patera, and D.V. Rovas. Petrov-Galerkin reduced-basis approximations
to noncoercive linear partial di�erential equations. In progress.

[46] Y. Maday, A. T. Patera, and G. Turinici. Global a priori convergence theory for reduced-
basis approximation of single-parameter symmetric coercive elliptic partial di�erential
equations. C. R. Acad. Sci. Paris, Série I, 335(3):289�294, 2002.

[47] Y. Maday, A. T. Patera, and G. Turinici. A priori convergence theory for reduced�
basis approximations of single-parameter elliptic partial di�erential equations. Journal of
Scienti�c Computing, 17(1�4):437�446, December 2002.

[48] Y. Maday, A.T. Patera, and G. Turinici. A priori convergence theory for reduced-basis
approximations of single-parametric elliptic partial di�erential equations. Journal of Sci-
enti�c Computing, 17(1-4):437�446, 2002.

[49] Yvon Maday, T. Patera, Anthony, and Gabriel Turinici. Global a priori convergence theory
for reduced-basis approximations of single-parameter symmetric coercive elliptic partial
di�erential equations. C. R. Acad. Sci., Paris, Sér. I, Math., 335:289�294, 2002.

[50] N. C. Nguyen. Reduced-Basis Approximation and A Posteriori Error Bounds for Nona�ne
and Nonlinear Partial Di�erential Equations: Application to Inverse Analysis. PhD thesis,
Singapore-MIT Alliance, National University of Singapore., 2005. In progress.

[51] A. K. Noor and J. M. Peters. Reduced basis technique for nonlinear analysis of structures.
AIAA Journal, 18(4):455�462, April 1980.

[52] I. B. Oliveira and A. T. Patera. Reliable real-time optimization of nonconvex systems
described by parametrized partial di�erential equations. In Proceedings Singapore-MIT
Alliance Symposium, January 2003.

238

CHAPTER 1. BIBLIOGRAPHY

[53] A. T. Patera and E. M. Rønquist. A general output bound result: Application to dis-
cretization and iteration error estimation and control. Mathematical Models and Methods
in Applied Science, 2000. MIT FML Report 98-12-1.

[54] A. T. Patera and E. M. Rønquist. A general output bound result: Application to dis-
cretization and iteration error estimation and control. Math. Models Methods Appl. Sci.,
11(4):685�712, 2001.

[55] J. S. Peterson. The reduced basis method for incompressible viscous �ow calculations.
SIAM J. Sci. Stat. Comput., 10(4):777�786, July 1989.

[56] Daniele A. Di Pietro and Alessandro Veneziani. Expression templates implementation of
continuous and discontinuous galerkin methods. Submitted to Computing and Visualiza-
tion in Science, 2005.

[57] Stéphane Del Pino and Olivier Pironneau. FreeFEM3D Manual. Laboratoire Jacques
Louis Lions, 2005.

[58] T. A. Porsching. Estimation of the error in the reduced basis method solution of nonlinear
equations. Mathematics of Computation, 45(172):487�496, October 1985.

[59] C. Prud'homme. Adaptative reduced basis space generation and approximation. In prepa-
ration, 2005.

[60] C. Prud'homme. Automatic di�erentiation for real-time optimization in the context of
the reduced-basis output bound methods for parametrized partial di�erential equations.
In preparation, 2005.

[61] C. Prud'homme and A. T. Patera. Reduced-basis output bounds for approximately param-
eterized elliptic coercive partial di�erential equations. Comput. Vis. Sci., 6(2-3):147�162,
2004.

[62] C. Prud'homme, D. V. Rovas, K. Veroy, L. Machiels, Y. Maday, A. T. Patera, and
G. Turinici. Reliable real-time solution of parametrized partial di�erential equations:
Reduced-basis output bound methods. Journal of Fluids Engineering, 124(1):70�80,
2002.

[63] C. Prud'homme, D.V. Rovas, K. Veroy, L. Machiels, Y. Maday, A.T. Patera, and
G. Turinici. Reduced�basis output bound methods for parametrized partial di�erential
equations. In Proceedings SMA Symposium, January 2002.

[64] C. Prud'homme, D.V. Rovas, K. Veroy, L. Machiels, Y. Maday, A.T. Patera, and
G. Turinici. Reliable real-time solution of parametrized partial di�erential equations:
Reduced-basis output bound methods. Journal of Fluids Engineering - Transactions of
the ASME, 124(1):70�80, March 2002.

[65] Christophe Prud'homme. A generic library for variational methods. In preparation.

239

CHAPTER 1. BIBLIOGRAPHY

[66] Christophe Prud'homme. A domain speci�c embedded language in c++ for automatic
di�erentiation, projection, integration and variational formulations. Scienti�c Program-
ming, 2005. Submitted.

[67] Christophe Prud'homme, Dimitrios V. Rovas, Karen Veroy, and Anthony T. Patera. A
mathematical and computational framework for reliable real-time solution of parametrized
partial di�erential equations. M2AN (Math. Model. Numer. Anal.), 36(5):747�771, 2002.

[68] A. Quarteroni and A. Valli. Numerical Approximation of Partial Di�erential Equations.
Springer, 2nd edition, 1997.

[69] Yves Renard and Julien Pommier. Getfem++: Generic and e�cient c++ library for �nite
element methods elementary computations. http://www-gmm.insa-toulouse.fr/getfem/.

[70] W. C. Rheinboldt. On the theory and error estimation of the reduced basis method
for multi-parameter problems. Nonlinear Analysis, Theory, Methods and Applications,
21(11):849�858, 1993.

[71] W.C. Rheinboldt. Numerical analysis of continuation methods for nonlinear structural
problems. Computers and Structures, 13(1-3):103�113, 1981.

[72] D.V. Rovas. Reduced-Basis Output Bound Methods for Parametrized Partial Di�erential
Equations. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, October
2002.

[73] L. Sirovich and M. Kirby. Low-dimensional procedure for the characterization of human
faces. Journal of the Optical Society of America A, 4(3):519�524, March 1987.

[74] Y. Solodukhov. Reduced-Basis Methods Applied to Locally Non-A�ne Problems. PhD
thesis, Massachusetts Institute of Technology, 2004. In progress.

[75] G. Strang and G.J. Fix. An Analysis of the Finite Element Method. Prentice-Hall, 1973.

[76] Todd Veldhuizen. Using C++ template metaprograms. C++ Report, 7(4):36�43, May
1995. Reprinted in C++ Gems, ed. Stanley Lippman.

[77] Todd L. Veldhuizen. Expression templates. C++ Report, 7(5):26�31, June 1995.
Reprinted in C++ Gems, ed. Stanley Lippman.

[78] K. Veroy. Reduced-Basis Methods Applied to Problems in Elasticity: Analysis and Ap-
plications. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 2003.
June.

[79] K. Veroy, T. Leurent, C. Prud'homme, D. Rovas, and A. T. Patera. Reliable real�time
solution of parametrized elliptic partial di�erential equations: Application to elasticity. In
Proceedings Singapore-MIT Alliance Symposium, January 2002.

[80] K. Veroy, C. Prud'homme, and A. T. Patera. Reduced-basis approximation of the viscous
Burgers equation: Rigorous a posteriori error bounds. C. R. Acad. Sci. Paris, Série I,
337(9):619�624, November 2003.

240

CHAPTER 1. BIBLIOGRAPHY

[81] K. Veroy, C. Prud'homme, D. V. Rovas, and A. T. Patera. A posteriori error bounds
for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic par-
tial di�erential equations (AIAA Paper 2003-3847). In Proceedings of the 16th AIAA
Computational Fluid Dynamics Conference, June 2003.

[82] K. Veroy, D. Rovas, and A. T. Patera. A Posteriori error estimation for reduced-basis
approximation of parametrized elliptic coercive partial di�erential equations: �Convex
inverse" bound conditioners. Control, Optimisation and Calculus of Variations, 8:1007�
1028, June 2002. Special Volume: A tribute to J.-L. Lions.

[83] W.L. Wendland. Elliptic Systems in the Plane. Pitman, 1979.

[84] N. Wicks and J. W. Hutchinson. Optimal truss plates. International Journal of Solids
and Structures, 38(30-31):5165�5183, July-August 2001.

[85] E. L. Yip. A note on the stability of solving a rank-p modi�cation of a linear system
by the Sherman-Morrison-Woodbury formula. SIAM Journal on Scienti�c and Statistical
Computating, 7(2):507�513, April 1986.

241

CHAPTER 1. BIBLIOGRAPHY

242

Chapter 2

Curriculum Vitae

243

CURRICULUM VITAE

Christophe PRUD'HOMME

Addresse Chemin du Chasseron 5
CH-1004 Lausanne
Suisse

Téléphone +41 21 647 0645

Mobile +41 76 525 6414

Email prudhomm@gmail.com

Nationalité Française
Date/Lieu de Nais-
sance

20 Août 1972, Versailles (78), France

Statut Marital Célibataire

Expériences Professionnelles

09/2006 � Professeur des Universités en mathématiques appliquées à l'université Jo-
seph Fourier Grenoble I dans le laboratoire de Modélisation et Calcul Scien-
ti�que

09/2004 � 08/2006 Membre des comités de pilotage et technique pour le calcul scienti�que
hautes performances à l'EPFL � http://hpc.epfl.ch

10/2003 � 08/2006 Chercheur dans la chaire de modélisation et calcul scienti�que à
l'EPFL (Suisse) sous la direction d'A. Quarteroni

11/2001 � 09/2003 Chercheur dans le Département d'Ingénierie Mécanique au MIT (USA)
dans le groupe de A.T. Patera

02/2003 � 08/2003 Chercheur invité au Laboratoire Jacques Louis Lions, Univ. Paris
VI (France) dans le groupe de recherche d'Y. Maday

12/1999 � 10/2001 Postdoctorant dans le Département d'Ingénierie Mécanique au MIT (USA)
dans le groupe de A.T. Patera

1998 � 1999 Assistant de cours en calcul scienti�que (Maîtrise et DESS)

1995/11 � 1996/10 Scienti�que du contingent lors du service militaire au LIMSI,
CNRS (France)

1995/04 � 1995/10 Stage de DEA à l'INRIA en France

Éducation

09/12/2005 Habilitation à diriger les recherches en mathématiques appliquées de l'Uni-
versité Pierre et Marie Curie

11/1996 � 11/1999 Doctorant en mathématiques appliquées aux Laboratoires d�Analyse Nu-
mérique (Université Pierre et Marie Curie)

10/1990 � 10/1995 Scolarité à l'Université Pierre et Marie Curie Paris VI en mathématiques et
mathématiques appliquées

Prix et Nominations

ANVAR Gagnant de la 5ème édition du concours du ministère de la Recherche
en 2003 pour aider la création d'entreprises développant des technologies
innovantes

1

FIRTECH 3 ans de �nancement FIRTECH entre Octobre 1996 et Septembre 1999
� FIRTECH est un consortium d'entreprises françaises, de centres de
recherche et d'universités

Développement de Logiciels

LIFE V Librairie Élément Fini développée conjointement par l'EPFL, le Politecnico
di Milano et l'INRIA/Rocquencourt.

GST Un toolkit pour le calcul scienti�que : Algèbre linéaire, Méthodes éléments
Finis, élments joints et bases réduites avec bornes d'erreur, Environnement
distribué pour simulations temps-réel

DEBIAN Développeur pour le calcul scienti�que et mainteneur de paquets dans
Debian/Gnu/Linux BOOST, FREEFEM, FREEFEM3D, ARPACK, AR-
PACK++, GMSH, SUPERLU, UMFPACK, CORELINUX, QD, ARPREC

FREEFEM Un langage et logiciel pour la méthode élément �ni � Plus de 13000
télé-chargements depuis Juillet 2000

A�liations

ACM Membre depuis 2005

DEBIAN Membre o�ciel et développeur de Debian/GNU/Linux depuis 2001

IEEE Membre depuis 2005

Compétences

Design UML Très bonne connaissance de l'UML [+4years]

Patterns Très bonne connaissance des design patterns et leur appli-
cation au calcul scienti�que [+8years]

Refactoring Très bonne connaissance des techniques de refactoring
[+4years]

XP Très bonne connaissance des techniques d'extreme pro-
gramming [+3years]

Calcul Parallèle Très bonne connaissance des librairies de calcul parallèle
� MPI, PVM � et des environnements � clusters Linux,
calculateurs parallèles en général [+6years]

Distribué Très bonne connaissance des environnements distribués
tels que CORBA(MICO,Qedo) et (XML-)RPC [+6years]

Langages Info. C/C++ Connaissance parfaite [+12 years]

Fortran Tres bonne connaissance[+12years]

Matlab Très bonne connaissance [+6years]

Octave Très bonne connaissance [+6years]

Maple Très bonne connaissance [+6years]

ML Très bonne connaissance des langages à balise tels que
HTML, XML et des outils de publications associés
[+6years]

Langues Étrangères Anglais Lu, écrit, parlé couramment

Allemand Compétences de bases

2

LISTE DES PUBLICATIONS ET SÉMINAIRES

Christophe PRUD'HOMME

Publications : Méthodes des Bases Réduites avec Bornes d'Erreur

[1] C. Prud'homme and A. T. Patera. Reduced-basis output bounds for approximately parameterized
elliptic coercive partial di�erential equations. Comput. Vis. Sci., 6(2-3) :147�162, 2004.

[2] C. Prud'homme, D. Rovas, K. Veroy, Y. Maday, A. T. Patera, and G. Turinici. Reliable real-
time solution of parametrized partial di�erential equations : Reduced-basis output bound methods.
Journal of Fluids Engineering, 124(1) :70�80, March 2002.

[3] C. Prud'homme, D. V. Rovas, K. Veroy, L. Machiels, Y. Maday, A. T. Patera, and G. Turinici.
Reduced�basis output bound methods for parametrized partial di�erential equations. In Proceedings

Singapore-MIT Alliance Symposium, January 2002.

[4] Christophe Prud'homme, Dimitrios V. Rovas, Karen Veroy, and Anthony T. Patera. A mathemati-
cal and computational framework for reliable real-time solution of parametrized partial di�erential
equations. M2AN (Math. Model. Numer. Anal.), 36(5) :747�771, 2002.

[5] K. Veroy, T. Leurent, C. Prud'homme, D. Rovas, and A. T. Patera. Reliable real�time solution
of parametrized elliptic partial di�erential equations : Application to elasticity. In Proceedings

Singapore-MIT Alliance Symposium, January 2002.

[6] K. Veroy, C. Prud'homme, and A. T. Patera. Reduced-basis approximation of the viscous Burgers
equation : Rigorous a posteriori error bounds. C. R. Acad. Sci. Paris, Série I, 337(9) :619�624,
November 2003.

[7] K. Veroy, C. Prud'homme, D. V. Rovas, and A. T. Patera. A posteriori error bounds for reduced-basis
approximation of parametrized noncoercive and nonlinear elliptic partial di�erential equations (AIAA
Paper 2003-3847). In Proceedings of the 16th AIAA Computational Fluid Dynamics Conference,
June 2003.

3

Publications : Méthodes de Décomposition de Domaine

[1] Gassan Abdoulaev, Yves Achdou, Jean-Claude Hontand, Yuri Kuznetsov, Olivier Pironneau, and
Christophe Prud'homme. Domain decomposition for Navier-Stokes equations. In ICIAM 99 (Edin-

burgh), pages 191�204. Oxford Univ. Press, Oxford, 2000.

[2] Gassav S. Abdoulaev, Yves Achdou, Yuri A. Kuznetsov, and Christophe Prud'homme. On a parallel
implementation of the mortar element method. M2AN Math. Model. Numer. Anal., 33(2) :245�259,
1999.

[3] Yves Achdou, Gassan Abdoulaev, Jean-Claude Hontand, Yuri A. Kuznetsov, Olivier Pironneau, and
Christophe Prud'homme. Nonmatching grids for �uids. In Domain decomposition methods, 10

(Boulder, CO, 1997), volume 218 of Contemp. Math., pages 3�22. Amer. Math. Soc., Providence,
RI, 1998.

[4] C. Prud'homme. A strategy for the resolution of the tridimensionnal incompressible navier-stokes
equations. In Hermes, editor,Méthodes itératives de décomposition de domaines et communications

en calcul parallèle, volume 10 of Calculateurs Parallèles Réseaux et Systèmes répartis, pages 333�
468. Hermes, 1998.

[5] C. Prud'homme. Décomposition de domaines, application aux équations de Navier-Stokes tridimen-

sionnelles incompressibles. PhD thesis, University Pierre et Marie Curie, Paris VI, 2000.

Publications : Calcul Scienti�que

[1] D. Bernardi, F. Hecht, O. Pironneau, and C. Prud'homme. The GFEM Documentation Manual :

A Finite Element Method Language. Laboratoire d'analyse numérique de Paris VI, 1996.

[2] I. Mallabiabarrena, C. Prud'homme, A. Radaelli, V. Rigamonti, and D. Sage. From medical images
to numerical blood �ow simulations in human vessels. In Proceedings of the 2005 Annual Meeting

of the Swiss Society for Biomedical Engineering (SSBE'05), page F21, Lausanne VD, Switzerland,
September 1-2, 2005.

[3] Christophe Prud'homme. A domain speci�c embedded language in c++ for automatic di�erentia-
tion, projection, integration and variational formulations. Scienti�c Programming, 2005. Accepted.

4

Publications : Soumises

[1] C. Prud'homme, G. Fourestey, N. Parolini, A. Quarteroni, and G.Rozza. Matematica in volo.
Matematica e Cultura, 2006. Submitted.

Publications : En Préparation

[1] A. Bu�a, Y.Maday, A.T. Patera, C. Prud'homme, and G. Turinici. A priori convergence of multi-
dimensional parametrized reduced basis, 2005. In preparation.

[2] C. Prud'homme. Adaptative reduced basis space generation and approximation. In preparation,
2005.

[3] C. Prud'homme. Automatic di�erentiation for real-time optimization in the context of the reduced-
basis output bound methods for parametrized partial di�erential equations. In preparation, 2005.

[4] C. Prud'homme. A benchmark for reduced basis output bounds methods. In preparation, 2005.

[5] C. Prud'homme. A comparison between reduced basis output bounds methods and some response
surface methods. In preparation, 2005.

[6] Christophe Prud'homme. A modern and uni�ed c++ implementation of �nite element and spectral
element methods in 1, 2 and 3d. In preparation.

Rapporteur pour des Journaux

2003 Journal of Computing and Visualisation in Sciences � Springer

2004 Comptes Rendus de l'Académie des Sciences

2005 Journal of Scienti�c Computing � Springer

5

Séminaires Invités 2003-2006

[1] C. Prud'homme. Méthodes de bases réduites : Aspects mathématiques et informatiques.
LMC/IMAG, Grenoble, July 2003.

[2] C. Prud'homme. Méthodes de bases réduites pour quelques problèmes en mécanique : Aspects
mathématiques et informatiques. EPFL, Lausanne, Switzerland, June 2003.

[3] C. Prud'homme. Méthodes de bases réduites pour quelques problèmes non linéaires : Aspects
mathématiques et informatiques. Laboratoire Jacques Louis Lions, Univ. Paris VI, June 2003.

[4] C. Prud'homme. Reduced basis output bounds methods : Theory. IMATI, CNR/Pavia, Italy,
December 2003.

[5] C. Prud'homme. Reduced basis output bounds methods : Theory and applications. MOX, Poli-
tecnico di Milano, Italy, December 2003.

[6] C. Prud'homme. Simulations temps réel avec certi�cat de �abilité : des systèmes embarqués à la
grille de calcul. Laboratoire Jacques Louis Lions, Univ. Paris VI, July 23 2003.

[7] C. Prud'homme. Solar impulse, optimization framework and reduced basis. ModeFrontier User-
Meeting '04, Trieste, Italy, September 2004.

[8] C. Prud'homme. Evolution of the lifev project in the context of haemodynamics. Keynote lecturer
MODELLING OF PHYSIOLOGICAL FLOWS � MPF 2005 � http://www.math.ist.utl.pt/

~mpf2005/, April 2005.

[9] C. Prud'homme. Une implémentation moderne et uni�ée des méthodes d'éléments �nis et des mé-
thodes spectrales en dimension 1, 2 et 3. Seminaire du Laboratoire Jacques-Louis Lions Universite
Pierre et Marie Curie (Paris VI), January 2006.

[10] C. Prud'homme. Une implémentation moderne et uni�ée des méthodes d'éléments �nis et des
méthodes spectrales en dimension 1, 2 et 3. Seminaire du Laboratoire J.A. Dieudonné, Février
2006.

6

Seminaires et Conférences 2003-2006

[1] C. Prud'homme. A mathematical and computational framework for Real-Time Reliable simulations.
A Day with Ivo Babuska, Laboratoire Jacques Louis Lions, Univ. Paris VI, February 2003.

[2] C. Prud'homme. Real-time reliable distributed simulations : Framework, repository and interfaces.
Advanced Environments and Tools for High Performance Computing/ Abstracts, ESF, Albufeira
(Algarve), Portugal, June 2003.

[3] C. Prud'homme. The life project. Talk given at the Heamodel European Project Meeting in Graz,
April 2004.

[4] C. Prud'homme. A variational formulation language embedded in c++. Talk given at POOSC'05
a conference on parallel/high performance object oriented scienti�c computing in Scottland, July
2005.

7

LISTE DE RÉFÉRENCES

Christophe PRUD'HOMME

Références

Y. Maday maday@ann.jussieu.fr � Université Pierre et Marie Curie, Paris France
� Laboratoire Jacques-Louis Lions

A.T. Patera patera@mit.edu � Massachusetts Institute of Technology, Cambridge
USA � Mechanical Engineering Department

O. Pironneau pironneau@ann.jussieu.fr � Université Pierre et Marie Curie, Paris
France � Laboratoire Jacques-Louis Lions

A. Quarteroni alfio.quarteroni@epfl.ch � École Polytechnique Fédérale de Lau-
sanne � SB-IACS-CMCS

8

	Couverture
	Remerciements
	Dédicace
	Résumé
	Abstract
	Contents
	I Research Work Synthesis
	Reduced Basis Methods
	Abstract Framework
	Symmetric Coercive Equations and Compliant Outputs
	Reduced Basis Approximation
	Computational Procedure
	A Posteriori Error Estimation
	Non-Symmetric Coercive Equations and Non-Compliant Outputs
	Reduced Basis Approximation
	A Posteriori Error Estimation
	Offline/Online Decomposition
	Generalized Symmetric Eigenvalue Problems
	Non-Coercive Equations
	Inf-Sup Lower Bound Construction
	Non-Linear Equations
	Poisson Equation with Cubic Non-Linearity
	Burgers Equation
	Approximative Parametrization
	Formulation
	Approximation
	Error Estimation
	Offline/Online Decomposition

	Reduced Basis Generation
	Bounded Conditioning Number
	Adaptive Generation
	A Priori Convergence Properties
	Proof
	Verifications

	Components for Scientific Computing
	Mathematical Kernel
	A Language for the Resolution of PDE
	Distributed System for Real-Time Simulations
	Real-Time Simulations Repository
	Clients
	API
	New Extensions of the API

	Short Presentation of the Technology
	Research Projects and Perspectives
	Reduced Basis Methods
	Mathematical Kernel and Language for the Resolution of PDE

	II Publications: Reduced Basis Methods
	Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods
	Introduction
	Problem Statement
	Abstract Formulation
	Particular Instantiations

	Reduced-Basis Approach
	Reduced--Basis Approximation
	A Priori Convergence Theory
	Computational Procedure
	A Posteriori Error Estimation: Output Bounds
	Method I
	Method II

	Extensions
	Noncompliant Outputs and Nonsymmetric Operators
	Eigenvalue Problems
	Further Generalizations

	A Posteriori Error Bounds for Reduced-Basis Approximation of Parametrized Noncoercive and Nonlinear Elliptic Partial Differential Equations
	1 Introduction
	2 Noncoercive Linear Problems: Helmholtz Equation
	2.1 Preliminaries
	2.2 Problem Formulation
	2.3 A Posteriori Error Estimation
	2.4 Improvements
	2.5 Numerical Results

	3 Cubically Nonlinear Poisson Problem
	3.1 Preliminaries
	3.2 Problem Formulation
	3.3 A Posteriori Error Estimation
	3.4 Numerical Results

	4. The Burgers Equation
	4.1 Preliminaries
	4.2 Problem Formulation
	4.3 A Posteriori Error Estimation
	4.4 Numerical Results

	Acknowledgements
	Reduced-Basis Approximation of the Viscous Burgers Equation: Rigorous A Posteriori Error Bounds

	Reduced-Basis Output Bounds for Approximately Parametrized Elliptic Coercive Partial Differential Equations
	Introduction
	Problem Formulation
	Reduced-Basis Approximation
	Formulation
	A Priori Theory
	Computational Strategem: sN ()

	A Posteriori Error Estimation
	Preliminaries: Bound Conditioner C ()
	Error Bound

	Illustrative Application
	Problem Statement
	Reduced-Basis Output Bound
	Numerical Study

	A Priori Convergence Of Multi-Dimensional Parametrized Reduced Basis
	Introduction
	Low dimensional manifold
	A priori convergence result
	Eigenvalue decay
	Preliminaries
	Reduced Basis Approximation
	Error Estimation
	Construction and Eigenvalue Solves
	Orthonormalization of WN
	Properties of the K operator
	Higher Precision Approximations
	Numerical Results
	Remarks
	Fin example
	Validation of the hypothesis

	III Publications: Scientific Computing and Technology
	A Mathematical and Computational Framework for Reliable Real-Time Solution of Parametrized Partial Differential Equations
	Introduction to Reduced Basis Output Bound Methods
	Problem Statement
	Abstract Formulation
	Particular Instantiations

	Reduced-Basis Approach
	Reduced--Basis Approximation
	A Priori Convergence Theory
	Computational Procedure
	A Posteriori Error Estimation: Output Bounds
	Method I
	Method II
	System Architecture
	Introduction
	Overview of Framework
	Clients
	Overview Of The Framework
	A Simple Client/Server Implementation In C+.4ex++

	Conclusion
	A Domain Specific Embedded Language in C+.4ex++ for Automatic Differentiation, Projection, Integration and Variational Formulations
	Introduction
	Preliminaries on Variational Forms
	Mesh
	Construction of aT(Ti, Tj) and LT(Ti)
	Language
	Expression Evaluation at a Set of Points in a Convex
	Nodal Projection
	Numerical Integration
	Variational Formulations
	Automatic Differentiation
	Overview of the Language

	Test Cases
	Performance
	A Variationnal Inequality
	Stokes and Navier-Stokes
	Particule in a Shear Flow

	IV Annex
	References

	Bibliography
	Curriculum Vitae

	Troot: Yes
	Ttip: Off
	Volume: Off
	param_k1: 0.4
	param_k2: 0.6
	param_k3: 0.8
	param_k4: 1.2
	param_Bi: 0.1
	param_t: 0.3
	param_L: 2.8
	Submit:
	output:
	prediction:
	image:

