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Introduction

Malgré I'accroissement exponentiel des connaissances scientifiques observé au
siecle dernier, des problemes non résolus dans le domaine des sciences et plus
particulierement en physique n‘ont toujours pas trouvé de solution; les Sursauts
Gamma en constituent un premier exemple récent (2003); le plus grand dispositif
expérimental (Large Hadron Collider) construit pour élucider le “mystere des tous
premiers instants de notre univers” en est un second encore plus récent. De méme, la
compréhension de la Turbulence des Fluides continue a susciter de nombreux débats,
travaux de recherches et expériences. La question de départ ne consiste pas a en donner
une description mathématique appropriée mais plutét de trouver des solutions
analytiques aux équations qui la régissent. Grace aux travaux de Leonhard Euler, Claude
L.M.H. Navier and George D. Stokes nous sommes, en effet, capable d’écrire ces
équations.

Dans les écoulements Turbulents coexistent une tres large gamme d’échelles
spatiales, de I'ordre de 10%>m dans le cas de la galaxie IC1101 jusqu’a 107! m dans un
film de savon. La complexité des écoulements turbulents, associée a cette multiplicité
d’échelles spatiales et temporelles, constitue un enjeu majeur pour les chercheurs
comme pour les ingénieurs. Des progres constants ont été réalisés sur les plans tant
théorique, qu'expérimental et numérique depuis le XIXéme siecle et ont permis de mieux
comprendre lorigine et la complexité inhérentes a ce phénomeéne. Plus
particulierement, au cours des dix derniéres années, les approches numériques et
expérimentales ont connu un essor significatif grace au développement rapide des

moyens de calcul et aux perfectionnements des instruments de mesure.



La plupart des écoulements naturels ou d’origine humaine est de nature
turbulente et, parmi ces écoulements, quelques uns sont chargés de particules. Pour ne
citer que quelques exemples de tels écoulements, on peut mentionner les gouttes de
pluie dans les nuages, la dispersion de polluants en environnement, la dispersion et le
mélange de brouillard dans les chambres de combustion, les réacteurs chimiques, la
dissémination du plancton océanique, etc ... La question qui est posée dans ce contexte
est la suivante : quel est le role joué par la turbulence dans ces écoulements ? La réponse
est simple : comparée a la simple diffusion moléculaire, la turbulence a la propriété
remarquable d’augmenter le mélange de quantité de mouvement, de chaleur et de
masse. Par conséquent, le transport, le mélange et la dispersion de particules en
suspension dans un écoulement porteur dépendent fortement des caractéristiques
turbulentes de 1’écoulement. Par ailleurs, dans certaines situations ces particules
réagissent en retour sur I'écoulement porteur et modifient ses propriétés turbulentes,
un phénomeéne connu sous le nom de Two-Way Coupling, c’est a dire une interaction a
double sens entre les particules transportées et le fluide porteur. Dans ces situations, de
premieres réponses a des problémes simples ont conduit a de nombreuses nouvelles
problématiques. Comment définir les phénomeénes turbulents ? Comment le transport
de particules, leur dispersion et leur mélange sont ils influencés par la turbulence?
Quels sont les mécanismes impliqués dans ces effets? En dépit de plus d’'un siécle et
demi de recherches approfondies, les réponses a ces problemes ne bénéficient toujours
pas d'un cadre de description unifié ce qui limite toujours la précision et la validité des
approches empiriques. La raison en est simple : la plupart des études ont reposé sur une
description Eulérienne des écoulements, description peu adaptée a l'analyse des

phénomenes de transport, de dispersion et de mélange de particules. Pour accéder a des
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informations pertinentes sur ces phénomenes, il est intrinsequement naturel et
essentiel de recourir a une description Lagrangienne de I'écoulement fondée sur le suivi
dans l'écoulement des trajectoires de points ou de particules fluides [98]. Nous
reviendrons en détail, plus loin dans ce chapitre et dans le chapitre suivant, sur
I'importance d’'une description Lagrangienne des écoulements ainsi que sur le role des
mesures Lagrangiennes dans I'étude des écoulements turbulents.

L’étude expérimentale que nous présentons repose sur une étude du transport
turbulent de particules de taille finie par des mesures Lagrangiennes. Notre objectif
principal consistait a explorer I'influence de la taille et de la densité des particules sur
leur dynamique de transport par un écoulement turbulent. Toutes les expériences ont
été menées a un méme nombre de Reynolds et dans la méme configuration
d’écoulement. La taille et la densité relative des particules ayant été variées de facon
systématique, les propriétés statistiques de la vitesse et de I'accélération des particules
ont été mesurées et analysées. Apres une breve introduction a la phénoménologie de la
turbulence dans Chapitre 1 nous discuterons les différents types de particules et les
équations qui régissent leurs dynamiques dans le Chapitre 2 Nous évoquerons
également dans ce chapitre l'influence du nombre de Reynolds particulaire. Quelques
résultats importants concernant l'accélération Lagrangienne des particules seront
passés en revue et discutés dans le contexte de notre étude dans le Chapitre 3. Le
dispositif expérimental, la configuration de I’écoulement, la, technique de suivi des
particules et I'algorithme de traitement des données sont décrits dans le Chapitre 4. Les
Chapitres 3 et 4 sont consacrés a la discussion et a l'analyse des résultats
expérimentaux de ce travail de recherche. Ces chapitres traitent respectivement des

propriétés statistiques de la turbulence en un et deux points (un temps et deux temps).
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Chapitre 1

Ce chapitre de revue présente un bref historique de la turbulence. Les différentes
échelles de la turbulence sont définies et discutées. Nous décrivons la phénoménologie
de Kolmogorov de 1941 (K41) et les lois d’échelles qui en découlent. Ces relations
offrent une premiere caractérisation de la nature multi-échelle du probleme et révelent
les difficultés intrinseques de I'étude de la turbulence. Une étude plus détaillée des
échelles turbulentes est présentée en termes d’'incréments spatiaux (représentation
Eulérienne) et temporels (représentation Lagrangienne) de la vitesse du fluide. Les
prédictions de K41 ne sont vérifiées expérimentalement que pour les fonctions de
structure (moments statistiques des incréments) d’ordre bas ; a titre d’exemple on peut
citer la loi de «4/5eme » et le spectre en «-5/3 ». Pour les fonctions de structures
d’ordre élevé, des déviations par rapport aux prédictions de K41 sont toutefois été
observées. Celles-ci caractérisent le phénomene d’intermittence, qui reste 'une des
grandes énigmes de la turbulence. L’intermittence se traduit notamment par une
signature différente des fluctuations turbulentes selon I'échelle: alors que les
fluctuations des incréments de vitesse a grande échelle (spatiale ou temporelle)
présentent une statistique gaussienne, les incréments a petite échelle sont fortement

non-gaussiens.
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Chapitre 2

Nous présentons une revue détaillée de I'état de l'art sur la question de la
modélisation de la dynamique de particules dispersées en écoulement turbulent. Les
particules sont classées en deux grandes familles selon leur comportement par rapport
a I’écoulement porteur : les traceurs (qui se comportent comme des particules de fluide)
et les particules inertielles (dont la dynamique dévie par rapport a celle de la phase
continue porteuse). Alors que la dynamique des traceurs est décrite par 'équation de
Navier-Stokes, écrire une équation du mouvement pour les particules inertielles reste
une question ouverte pour laquelle des propositions n’existent que dans certains cas
limites. Notamment, dans le cas de particules supposées ponctuelles et avec un nombre
de Reynolds particulaire faible, '’équation BBOT (Basset-Boussinesq-Oseen-Tchen),
revisitée en 1983 par Maxey-Riley et Gatignol, est la plus couramment utilisée. Des
simplifications courantes de cette équation sont ensuite discutées ainsi que diverses
corrections empiriques proposées dans la littérature pour le cas ou le nombre de
Reynolds des particules devient plus grand que 1. Enfin, nous discutons le probléme des
particules de taille finie et la nécessité dans ce cas d’affiner les modeles existants par la
prise en compte de divers facteurs tels que la force d’histoire, les corrections de Faxen

ou encore la force de portance.



Chapitre 3

Nous présentons dans ce chapitre les principaux efforts expérimentaux et
numériques, réalisés au cours des deux dernieres décennies, concernant la
caractérisation des effets de taille et de densité sur l'accélération de particules
inertielles en écoulement turbulent. Ces résultats sont rassemblés dans un diagramme

représentant I'espace des parametres (¢, ") ou ¢ représente le diameétre des particules
considérées adimensionné par I'échelle de kolmogorov de I’écoulement porteur ( D /77)

et I' représente la densité des particules adimensionnée par la densité de I'écoulement
porteur ( p,/py). Dans le cas de particules traceurs (¢ << 1etI = 1) les expériences
comme les simulations numériques trouvent des statistiques d’accélération fortement
non-gaussiennes avec une plus grande probabilité dans les ailes des événements de
forte accélération. Dans le cas de particules inertielles, les principales études existantes
concernent essentiellement les limites (i) de particules de petite taille et de forte densité
(p << letlI’ >> 1) ou (ii) de particules éventuellement de grande taille (¢ > 1)
mais faiblement inertielle (I' = 1). Dans le cas (i) il est observé que, a mesure que
I'inertie des particules augmente, les statistiques d’accélération tendent a devenir
gaussiennes et que leur variance diminue de fagon monotone. Ce comportement est
interprété dans les simulations numériques comme un effet de filtrage temporel de la
dynamique des particules dii a 'augmentation de leur temps de réponse. Dans le cas (ii)
aucun changement significatif de la signature statistique de 1'accélération des particules

ne semble étre observé lorsque leur inertie augmente.
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Chapitre 4

L’étude réalisée dans cette thése vise a compléter I'espace des parametres (¢, ")
présenté dans le chapitre précédent en considérant le cas de particules pouvant étre a la
fois grandes et beaucoup plus denses que le fluide porteur. Plus précisément nous avons
considéré des particules dans les gammes (10 < ¢ < 26) and (1 < I' < 65). Ce chapitre
présente les outils expérimentaux mis en ceuvre pour ce travail : écoulement turbulent
en soufflerie ; production de particules de taille et densité ajustables ; suivi Lagrangien
acoustique des particules. L’écoulement est produit en aval d’'une grille dans une
soufflerie ; le nombre de Reynolds, maintenu constant tout au long de I'étude, est de
I'ordre de 160. Comme particules nous utilisons des bulles de savon gonflées a I'air ou a
I’hélium et dont nous pouvons ajuster indépendamment la taille et la densité dans la
gamme ci-dessus. Enfin le suivi Lagrangienne est assuré par vélocimétrie Doppler
ultrasonore. Nous suivons les particules sur une bonne fraction du temps intégral de
I’écoulement porteur tout en résolvant leur dynamique a petite échelle. La fréquence
instantanée du signal ultrasonore (image de la vitesse des particules) est extraite par un
algorithme paramétrique de type maximum de vraisemblance approchée (MVA). Nous
avons analysé 22 séries de données correspondant a autant de points dans 'espace
(p,I'). Pour chaque série de données plusieurs milliers de trajectoires ont été
enregistrées pour une étude fine des statistiques Lagrangiennes de vitesse et

d’accélération des particules.

vii



Chapitre 5

Dans ce chapitre nous présentons les résultats concernant les statistiques vitesse
et d’accélération en fonction de la taille et de la densité des particules. Dans un premier
temps nous analysons les effets de taille finie pour des particules iso-densité avant de
présenter les effets conjoints de la taille et de la densité. Nous trouvons que les
statistiques de vitesse suivent toujours une distribution gaussienne dont la variance
reste identique a celle de 1’écoulement porteur (mesurée indépendamment par
anémométrie a fil chaud) quelque soit la taille et la densité des particules. Ceci est en
contraste avec les prédictions usuelles basées par exemple sur le modele de Tchen-
Hinze. Un effet clair est toutefois observé lorsque les statistiques sont calculées
localement a I'échelle de chaque trajectoire : prises individuellement les trajectoires
présentent des fluctuations moindres a mesure que la densité des particules augmente.
Ce comportement a petite échelle est confirmé par l'analyse fine des statistiques
d’accélération. L’accélération normalisée a variance 1 présente une distribution
statistique non-gaussienne trés robuste, indépendante de la taille et la densité des
particules, contrairement aux prédictions usuelles dans I'approximation de particules
ponctuelles. Ceci montre que les effets inertiels sur la dynamique particulaire ne sont
pas trivialement reliés a I'intermittence (Eulérienne ou Lagrangienne) de I'écoulement
porteur. Nous observons une influence notable de la taille et de la densité sur la
variance de l'accélération. Dans le cas des particules iso-densité la variance décroit avec
la taille des particules selon une loi en ¢(=2/3), Nous proposons un modéle simple en
accord quantitatif avec ces effets de taille finie, basé sur un effet d’intégration spatiale

du champ de pression de I’écoulement porteur a I’échelle de la particule. Dans le cas des
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particules lourdes a taille fixée, la variance d’accélération décroit avec la densité et
atteint, pour les grandes densités une valeur limite dépendant de la taille des particules.
De facon contre-intuitive, cette valeur limite augmente avec la taille des particules pour
des dimensions proche de I’échelle de Taylor de I'écoulement. Ce comportement ne peut
pas étre interprété simplement en termes d’un effet de filtrage di au temps de réponse
des particules. Nous proposons une explication qualitative en termes d'un effet

d’échantillonnage préférentiel du champ turbulent porteur.
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Chapitre 6

Nous nous intéressons dans ce chapitre a 'étude multi-échelle des statistiques
Lagrangiennes par une étude détaillée des incréments de vitesse. Nous observons que la
dynamique des particules est toujours intermittente (gaussienne a grande échelle et
non-gaussienne a petite échelle) quelque soit la taille et la densité. Nous explorons la
déformation des PDFs des incréments de vitesse a travers les échelles a partir de
’évolution de leur coefficient d’aplatissement en fonction de I'incrément temporel. Nous
trouvons que la signature de l'intermittence Lagrangienne dépend de la nature des
particules considérées. Les particules de forte densité présentent notamment une chute
abrupte du coefficient d’aplatissement pour des incréments temporels proche de
I’échelle de dissipation de I’écoulement porteur. Nous étudions enfin les auto-
corrélations de vitesse et d’accélération. Nous trouvons notamment que pour les
particules iso-densité le temps de corrélation de la vitesse présente un minimum pour
des particules de taille de I'ordre de I'échelle de Taylor de 1 ‘écoulement porteur et que,
a taille fixée, le temps de corrélation augmente avec la densité des particules. L’auto-
corrélation d’accélération nous permet enfin de définir un temps caractéristique du
forgage subit par la particule. Nous montrons que ce temps peut différer par plusieurs
ordres de grandeur du temps de Stokes défini habituellement et qu'il reste toujours
comparable au temps de dissipation de I'écoulement porteur. Ceci explique pourquoi
les modeles basés sur la force de Stokes (tels que ceux couramment employés dans la
limite de particules ponctuelles par exemple) ne peuvent décrire correctement la

dynamique de particules de taille finie.



Conclusion

L’utilisation conjointe d'une nouvelle technique de vélocimétrie Doppler et d’'un
dispositif versatile de production de particules nous a permis d’explorer I'influence de la
taille et de la densité relative (par rapport a celle du fluide porteur) de particules sur
leur dynamique de transport Lagrangien par un écoulement turbulent. Dans le cadre de
cette étude nous avons couvert les domaines, jusque la inexplorés, des particules de
tailles 10 < ¢ < 30 (correspondant au domaine inertiel de la turbulence) et de densités
relatives 1 < I' < 70. En premier lieu, nous avons étudié en détail les statistiques de la
vitesse Lagrangienne et son auto-corrélation. En second lieu, nous nous sommes
intéressés aux propriétés statistiques de l'accélération particulaire, cette derniére
fournissant une image directe des forces exercées par la turbulence sur les particules.
Enfin, nous avons également étudié le phénomeéne d’intermittence Lagrangienne.

Concernant les statistiques de vitesse Lagrangienne, nous montrons que les
distributions statistiques de la composante longitudinale de vitesse suivent une loi de
Gauss pour toutes les classes de particules étudiées. Nous constatons que la vitesse
quadratique des particules ne dépend ni de la taille ni de la densité relative des
particules, contrairement aux prédictions du modele de Tchen & Hinze et a ses
développements ultérieurs [23, 42, 88]. En outre, nous observons que les moments des
statistiques a un point de la vitesse Lagrangienne des particules sont identiques aux
moments statistiques de la vitesse Eulérienne de 1'écoulement porteur. Nos mesures
montrent que 'échelle de temps intégrale de la vitesse Lagrangienne pour une méme
taille de particule dépend de leur densité relative, les particules les plus lourdes ayant

le plus long temps de corrélation. Pour des particules iso densités, le temps de
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corrélation passe par un minimum lorsque le diametre des particules est voisin de la
micro-échelle de Taylor : D ~ A. Ce résultat devra étre confirmé par des expériences
réalisées a différents nombres de Reynolds.

Les lois de distributions de l'accélération Lagrangienne normalisée sont
fortement non Gaussiennes. Apres normalisation, nous montrons que ces lois de
distributions normalisées sont indépendantes de la taille et de la densité relative des
particules dans le domaine que nous avons exploré ce qui confirme la robustesse des
statistiques de I'accélération normalisée. Les lois de distribution statistiques obtenues
dans nos expériences reproduisent celles obtenues par ailleurs avec des particules de
taille inférieure a I’échelle de Kolmogorov (¢ ~ 0.01) dans une expérience analogue en
soufflerie [4]. Ce résultat indique que :

(i) si il existe une influence de la taille des particules sur la distribution
statistique de l'accélération normalisée comme le prédisent les modeles
de particules ponctuelles, celle ci n’est attendue que pour des particules
de taille encore plus petite (comme suggéré dans [5]);

(ii) la loi asymptotique de distribution de l'accélération est atteinte tres
rapidement des que les particules sont de taille finie.

Une autre constatation intéressante concerne le fait que les distributions statistiques de
I'accélération normalisée de particules de taille finie mesurées dans les expériences
menées en soufflerie ne coincident pas avec celles mesurées dans les expériences de
type écoulement de von Karman. Ces résultats soulevent la question de la
(non)universalité de la dynamique de particules de petites tailles : comment les

propriétés a grande échelle de I'écoulement (par exemple I'anisotropie, le confinement)
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affectent elles la dynamique de particules de petite dimensions (petite échelle) ? Cette
question devrait faire I'objet d’études ultérieures.

Contrairement au fait que les distributions statistiques de l'accélération
normalisée ne dépendent ni de la taille ni de la densité des particules, nous observons
clairement un effet de ces deux parametres sur la variance de l'accélération. Nous
constatons que, pour des particules lourdes, les effets de taille finie ne peuvent étre pris
en compte ni par une simple extrapolation de la limite de particules ponctuelles lourdes
ni par une extrapolation de la limite de particules de taille finie et iso densité. En effet,
ces deux limites prédisent une décroissance monotone de la variance de 'accélération
avec les effets d’inertie en désaccord avec la tendance que nous avons observée pour
des particules lourdes et de taille de finie.

Les effets de taille finie et de densité relative des particules ne peuvent étre
expliqués par une simple opération de filtrage associée uniquement a un effet du
nombre de Stokes, comme dans les cas de particules ponctuelles. Un scénario
d’échantillonnage conditionnel, dans 'esprit des mécanismes de sweep-stick parait plus
approprié pour éventuellement décrire l'influence conjointe de la densité et de la taille.
Les mesures d’auto-corrélation de I'accélération obtenues pour I'ensemble des classes
de tailles et de densités de particules, nous conduisent a penser que le temps de réponse
des particules au forcage turbulent est toujours de l'ordre de I'échelle de temps de
Kolmogorov. Ce résultat suggere que le temps de réponse effectif des particules est

distinct du temps de Stokes habituel qui dans nos expériences varie sur plus de trois

ordres de grandeurs.
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Les statistiques de l'accélération Lagrangiennes sont intermittentes pour
I'ensemble des classes de particules étudiées. Le caractere intermittent de I'accélération
dépend de la densité relative des particules. L'influence de la densité relative des
particules sur l'intermittence est révélée par I'évolution du facteur d’aplatissement
(flatness) en fonction de l'incrément temporel sur lequel est calculée la différence de
vitesse Lagrangienne. Quel que soit la densité relative des particules, nous trouvons le
méme facteur d’aplatissement aux plus petites échelles de temps (i.e. I'accélération est
la méme). En revanche, une dépendance en fonction de la densité relative est mise en
évidence lorsque I'incrément temporel augmente : plus les particules sont lourdes, plus
la décroissance du facteur d’aplatissement est rapide lorsque l'incrément temporel
augmente et passe du domaine dissipatif au domaine inertiel. Ce résultat suggére que :

(i) a petite échelle la dynamique Lagrangienne est controlée par le méme
mécanisme de forcage (tres vraisemblablement dominé par le gradient de
pression de I’écoulement porteur) indépendamment de la densité relative
des particules.

(ii)  les effets inertiels associés a la densité relative des particules affectent
principalement la dynamique Lagrangienne aux échelles de temps
caractéristiques du domaine inertiel de 'écoulement porteur.

Notre étude souleve des questions importantes concernant la dynamique du
transport de particules dans les écoulements turbulents. Pour étendre nos résultats il
serait intéressant de répéter des mesures similaires a différents nombres de Reynolds
de I'écoulement porteur afin, par exemple, de confirmer la diminution du temps de
corrélation Lagrangien au voisinage de la condition D ~ A et pour explorer la

dépendance en fonction du nombre de Reynolds de I'écoulement de la forme des lois de

Xiv



distribution statistiques de I'accélération normalisée. En outre, une étude plus détaillée
de l'influence des propriétés a grande échelle de I'écoulement porteur (par exemple
'anisotropie et le confinement) sur la statistique de 'accélération des particules s’avere
nécessaire. Il serait également intéressant d’étudier la dynamique de particules plus
légeres que le fluide porteur (I" < 1). Les mesures de [90], réalisées sur des bulles d’air
dans un écoulement d’eau de type von Karman suggérent que cela pourrait aider a
valider le scénario d’échantillonnage conditionnel mentionné plus haut puisque I'on
peut s’attendre a ce que des particules plus légeres que le fluide se concentrent
préférentiellement dans les régions de plus forte vorticité et échantillonne ainsi des
régions de I'écoulement turbulent complémentaires de celles échantillonnées par les
particules lourdes. Pour conclure, nous espérons que cette étude exhaustive pourra
contribuer a la prise en compte des effets de taille finie et de densité relative dans les

modeles dynamiques existants.
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Introduction

Even with the exponential scientific advancements of the last century, efforts still
continue for deciphering the codes of unresolved problems in the field of science and
more specifically in physics; the recent being Gamma Ray Bursts (2003); the world’s
largest experiment undertaken to unravel, yet another so called unresolved mystery of
the formation of universe. Similarly, Turbulence remains a widely discussed, researched,
and experimented problem still to be deciphered. The primary problem doesn’t lie in its
description, but in finding analytical solution to its governing equations. Thanks to the
efforts made by Leonhard Euler, Claude L.M.H. Navier and George D. Stokes we are at

least able to write them down.

Turbulent flows are confronted at different length scales from 102®m in case of
1C1101 galaxy to 10~ m in soap films. Furthermore, the complex multiple scale nature
of turbulent flows both in time and space, makes its investigation a real challenge for
both scientists and engineers. However, continuous mathematical, experimental and
numerical efforts have been made since nineteenth century to understand its origins
and to comprehend the complexities involved herein. Moreover, during the last decade
or so, numerical and experimental studies have experienced significant advancements
due to the rapid innovation and development of computing and state-of-the-art

experimental measuring equipment.

Most of the natural and manmade flows are turbulent and among these flows,
several are particle laden. Few examples of such flows include raindrops in the clouds,

pollutant dispersion in environment, dispersion and mixing of spray in combustion
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chamber, chemical mixers, plankton in oceans etc. The question arises here is, what role
does turbulence play in these flows? The answer is simple: turbulence has a remarkable
tendency to enhance mixing momentum, heat and mass as compared with simple
molecular diffusion. Therefore the transport, mixing and dispersion of particles
suspended in the carrier flow rely mainly upon the characteristics of turbulent flows. On
the other hand, in some particular cases these particles back-react, on carrier turbulent
flow and modify the turbulent flow characteristics, a phenomenon which is also known
as Two-Way Coupling, i.e. a two way interaction between the transported particles and
the carrier fluid. But, here simple answers have raised extremely different questions
further ahead. How to define these phenomena? How is the particle transport,
dispersion and mixing affected by the turbulence? What are the driving factors which
imply these changes? Despite a century and half of sincere investigations the answers to
these problems still lack basic details and their prediction through empirical
approximations still have limited accuracy and validity. The reason again being simple:
most of the studies were done using Eulerian description of the flow which is
inappropriate to probe the transport, dispersion and mixing phenomena. In order to
extract this relevant information it is natural, inherent and essential to use Lagrangian
description of flow which involves tracking of fluid, point or material particles along
their trajectories [98]. We will revert later to this chapter and the chapter ahead to the
importance of Lagrangian description of flow and the role of Lagrangian measurements

in turbulent flows in detail.

The present experimental study is on the Lagrangian measurement of the finite-
sized particles transported in turbulent flows. Our main objective remained to explore
the effects of particles finite size and density on their dynamics in turbulent flows. All

2
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the experiments were performed at same Reynolds number under same flow
configuration. The particles size and relative density were varied systematically and
their Lagrangian velocity and acceleration statistics were calculated and analyzed. After
briefly introducing the phenomenology of turbulence in Chapter 1, the particles classes
and their dynamical equations are discussed in Chapter 2. We also discuss the particles
finite Reynolds number effects in this chapter. Some important results on the particles
Lagrangian acceleration are reviewed and discussed in the context of present study in
Chapter 0. The experimental setup, flow configuration, particle tracking technique and
data processing algorithm are presented in Chapter 4. Chapter 5 and Chapter 6 are
dedicated to the discussion and analysis of results obtained during the present research

work. These chapters include the one-time and two-time statistics respectively.






Chapter 1

Turbulence:

Eulerian & Lagrangian Viewpoints

1.1 The Ancient Era Turbulence

The study of turbulence dates back to the fifteenth century, when the picture of
turbulence was depicted through an analogy of water surface motion with curly hairs by
Leonardo da Vinci. He not only observed this phenomenon but also named it as

“turbolenza”, his description and sketch on the water surface flow are as under:

“Observe the motion of the surface of the water,
which resembles that of hair,
which has two motions,
of which one is caused by the weight of the hair,
the other by the direction of the curls;
thus the water has eddying motions,
one part of which is due to the principal current,

the other to the random and reverse motion.”

FIG. 1.1 - The description of turbulence and a sketch of free water jet emanating from square hole into a
pool as drawn by Leonardo da Vinci [32].
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It is very well recognized now that Turbulence is a complex problem; it is even
much more complex to define. This is why there exist several definitions of it. Not a
single definition is complete and comprehensive, some attribute it as having
disorganized chaotic and random behavior others as a problem containing multiple
length and time scales, three dimensional and intermittent. Sir Horace Lamb once
expressed his views on the complexity and difficulty of studying and explaining

turbulence flows by saying:

"I am an old man now, and when I die and go to heaven
there are two matters on which I hope for enlightenment.
One is quantum electrodynamics and the other is the turbulent motion of fluids.

And about the former I am rather optimistic."

Despite all these difficulties of defining and explaining turbulence, we can at least
write a mathematical description of the fluid motion which is equally valid for turbulent
flows. These flow equations are considered to be the extension of Euler equations and
are known as Navier-Stokes equations, named after an eminent French engineer and
physicist C.L. Navier and famous British mathematician and physicist G.G. Stokes. These
equations for incompressible Newtonian flows in the absence of body forces look like
(1.1) which must be used with a condition of mass conservation (1.2) and boundary

conditions.
- — =\ — 1_’ -
d: u +(u.V)u = —EVp-i-vAu 1.1)
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where, d,U is the unsteady acceleration, (U.V) U is the convective acceleration (the

nonlinear term). On the r.h.s. we have the gradient of pressure field (Vp ) and diffusion
due to viscosity (v Au). Using L, U and pU? as reference length, reference velocity and

reference pressure respectively, the normalized variables for fluid velocity, position,

. . X tu .
time and pressure are defined as U, = —, x, = ot = and p} = # respectively.

SERS

The non-dimensional form of (1.1), now can be written as:

Opsuy + (uy.V)u, = —Vpi + Re 1A, uy (1.3)

The above equation is completely non-dimensional, where the only parameter
taking into account the flow characteristics is the Reynolds number (Re = UL/v). It can
be noticed that a greater Reynolds number leads to the decay of viscous dissipation
term as compared with non linear convective term on the lLh.s., hence the flow becomes
turbulent due the diminution of viscous damping. The Navier-Stokes equation holds
true even for high Reynolds numbers, even when the flow becomes highly
unpredictable and chaotic. Or in other words, the symmetries on the basis of which N-S
equations were developed are broken in the case of turbulent flows, but these

symmetries are somehow regained in a statistical sense [32].

1.2 Scales in Turbulence and Kolmogorovs Theory

1.2.1 The Notion of Scales

The concept of scales in turbulence was first introduced by Lewis Fry Richardson

in 1922 [80]. He attributed turbulence as a multiple scale phenomenon which contains
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eddies of different sizes and scales. According to him, in turbulent flows the energy is
injected through large eddies which are named as energy containing eddies or also
known as large scale structures. As these eddies become unstable, they split into many
small eddies hence transferring their energy to the smaller ones, this process goes on
until the Reynolds number of smallest scale structures becomes unity, resulting in the
stability of eddies and hence, their energy is damped through viscous dissipation. The
reader naturally ponders here; what are these scales? How these scales are linked to

each other? What are the inside mechanisms driving this energy exchange?

“Big whorls have little whorls PEAUS
W S
That feed on their velocity, 3
And little whorls have lesser whorls
production transfer dissipation

And so on to viscosity”

FIG. 1.2 - Richardson’s description on the notion of scales in turbulence (left) and Kolmogorov’s
illustration of Richardson’s idea as cascade of scales (right) [54].

The idea of multiple scale nature of turbulence was formulated in the form of theory
by A.N. Kolmogorov in 1941. Using a few hypotheses he devised a phenomenological
theory which is known as Kolmogorovs Phenomenology of turbulence or in short as
K41. Before going into the discussion on the Kolmogorovs phenomenology, which was
actually based upon the Richardson’s cascade theory, it is essential to define few

characteristic length scales that are present in turbulent flows.
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il

iil.

Flow length scale or large scale L: This length scale is the characteristic of
turbulence generation mechanism and mostly based upon the flow geometry.

For example, while studying wakes behind a cylinder or sphere, this scale is the
diameter of cylinder or sphere; in case of grid generated wind tunnel flow it is

the mesh size of the grid etc.

Integral length scale l: In the developed turbulent flow region the integral length
scale corresponds to the size of the largest eddy present therein. The integral

length scale can be defined as under:

lo:f Ruu(x)dx (1.4)
0

W' () u' (X+ A%)
' @ u' (@) ’

where, R, (x) is the velocity autocorrelation defined as R,,,,(x) =
which could be measured experimentally through hot-wire measurements at a
fixed point in space and employing Taylor’s frozen turbulence hypothesis for
time transformation in space. The Reynolds numbers based on integral length

may be defined also as Re; = vlo
%

Dissipative or Kolmogorov length scale n: This length scale is considered to be the
smallest length scale present in turbulent flows at which all the injected energy
that was transferred through the intermediate scales dissipates due to viscous

dissipation.
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iv.

Taylor micro-scale (1) : This is an intermediate length scale which is much
smaller than integral length scale and much greater than dissipative length scale.
By definition, the Taylor micro-scale is obtained by fitting the velocity
autocorrelation function at AX ~ 0 by an osculatory parabola. The abscissa

where this parabola intersects the x-axis gives the Taylor micro-scale [77]:

-1
1 0%2Ryy (0)) /2
_(_2 15
A (2 e ) 1)

From the above definition we can observe that the Taylor micro-scale is related

with second order velocity derivative and could also be defined as next:

2u'? w2
Z = ((a) ) (1.6)

One may define another Reynolds number based on Taylor micro-scale
u' 2
as R/'l = T

Most of the complexities and the richness of turbulence lie in the range of

scales between the integral and dissipative lengths. In this range also known as inertial

range; multi-scale structures coexist and interplay in the energy cascade process.

1.2.2 Kolmogorov Theory (K41 Phenomenology)

Kolmogorov’s first hypothesis of local isotropy, states that in the case of fully

developed turbulence the small scales statistics (I «< [;) are independent of their

generation mechanisms [46]. This implies the statistical restoration of symmetries

which actually were broken by the turbulence generation mechanisms. This is valid for

small scale structures away from boundaries. According to this proposition the large

10
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scales may still be anisotropic but the isotropy is recovered at inertial and dissipative

scales.

Furthermore, in his first similarity hypothesis Kolmogorov stated that in the
limit of high Reynolds number, the statistics of turbulent structures having scales much
smaller than integral length scale (I « [;) can be universally determined only by
viscosity v and mean dissipation rate ¢ [47]. In Kolmogorov's phenomenology the
characteristic length, time and velocity scales below which the viscous effects dominate

are determined through classical dimensional analysis as:

n= (3/e)/* (1.7)
T, = (v/e)1/? (1.8)
u, = (ev)¥* (1.9)

These dissipative length, time and velocity scales are often named after his name as

kolmogorov length scale n, kolmogorov time scale 7, and kolmogorov velocity scale

respectively. The Reynolds number based upon these length and velocity scales verifies

the relation:

Re. = — 1 -1 (1.10)

Note, that the above mentioned length, time and velocity are known to be the
smallest scales present in any turbulent flow and these represent the smallest eddies

which dissipate in the form of heat, all of the energy they have received from larger

11
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structures. The Reynolds number based on these scales is unity which conforms to the

energy cascade idea of Richardson.

The second similarity hypothesis of Kolmogorov, states that in every turbulent
flow at sufficiently high Reynolds number, the statistics of the motions at inertial range
scales (ly > | > n) have a universal form independent of viscosity v and uniquely

determined by the energy dissipation rate ¢ [46].
1.2.3 Inter-Scale Relations

In the light of K41 theory, the integral and dissipation length scales along with

the inertial range scales can be related to each other using following fact:
(ep) =(er) =(gp) = ¢
where ¢p is the energy production rate, €1 is the energy transfer rate and ¢, is

the energy dissipation rate. The energy dissipation rate corresponding to integral length

3
scale follows ul—' scaling, whereas the scaling in inertial range with Taylor micro-scale is
0

3 3
given by % and finally for dissipative scales it leads to L;—” scaling. Using the former

scaling, the integral and kolmogorov length scales are related in the following manner:

1 4
I 2 13
u'ly &3l
Re, = — = —2
v v
or
1
3 1
v

12
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which leads to the following relation:

2 ~ Re* (1.11)

The link between the Taylor micro-scale and the kolmogorov length scales may
be given using the definition of kolmogorov length scale and the following definition of

Taylor micro-scale given by [52]:

r2\11/2
A= lwl (1.12)

&

v ur?

AZ

from where it could be written ¢ = and using (1.7) yields:

1/4

then

n N R—1/2

or

A

~R1/2
n A

(1.13)

Using (1.11) and (1.13), we may relate also integral length and Taylor micro-scale as

next:

A RY?
P

t

also from the definition of the two Reynolds numbers,

13
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— = — (1.14)

which leads to the following relation between Taylor micro-scale and integral

length scale:

R, A

Re, 1, (1.15)

Again using (1.13) we may write the scaling between two Reynolds number as under:

R, = Rel’? (1.16)
Thus we obtain:
A
=~ Retl/4
n
or
n~ARe "* (1.17)

Different length scales discussed reveal the multiple scale nature of turbulence,
in addition to which these scales are not independent and linked with each other
through certain relations which have been shown in the current section. Furthermore, it

/2

was found that Taylor micro-scale follows A ~ [y Re, /2 and the kolmogorov length

scale is linked with turbulence Reynolds number withn ~ 4 Ret_l/4. This implies that for
flows with large Reynolds number the inertial range will be much wider than small
Reynolds number case and for Taylor micro-scale which corresponds to inertial
subrange, we will have n < 1 < [,. As from the K41 phenomenology the structures in

inertial subrange are independent of energy production mechanisms and also

14
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independent of energy dissipation. This is why different experiments and numerical
simulations are compared using Reynolds number defined using a scale in the inertial

range i.e. the Taylor micro-scale based Reynolds number (R)).

For a length scale in the inertial subrange such that n < [ < [, , Kolmogorovs
second hypothesis of similarity implies that the statistics of second order velocity
increments depends only on mean dissipation rate e. Where the velocity increments
(longitudinal component) may be defined as the velocity difference between the two

points separated by a distance [ and given as:

Su=ulX+1&)— ulx) (1.18)

Thus according to K41, the second order longitudinal velocity increments (also known

as second order structure function) must be independent of viscosity and follows:

S,(D) = ((8;u)?) = C, £2/312/3 (1.19)

where, C, is a universal constant of proportionality. Similarly, according to K41 for the

higher order moments the velocity structure functions must follow:

S,(D) = ((6;u)P) ~ eP/31% (1.20)
where, the exponent {j, = g.

Furthermore, Kolmogorov derived another famous law for the third order
structure function. This law is considered to be most exact within the assumptions of
homogeneity, isotropy and the finite non-vanishing mean energy dissipation rate «.

This law, known as four-fifth law is given by:

15
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4
S;() = ((6w)?®) = —g el (1.21)

Based upon the K41 phenomenology which resulted in the definition of different
length scales present in turbulent flows and their relationship, a turbulent energy

spectrum can be depicted in the wave number domain. The wave number is defined as

k= Zﬂ/l and the turbulent energy can be related to wave number as q = fooo E(k)dk,

where g is the turbulent kinetic energy which is given by q = % (u; u;). The sketch of

turbulence energy spectrum is shown in (a) in which length scales defined above have
been shown along with their respective wavenumbers. The width of inertial subrange
depends upon the flow Reynolds number, the higher Reynolds number will result in

large inertial subrange and the Taylors micro-scale lays herein. In the inertial subrange

5
the energy spectrum E (k) follows a scaling of k3 which theoretically can also be
shown through simple dimensional analysis. This scaling has been proven correct

through numerous experimental and numerical studies of turbulent flows.

16
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FIG. 1.3 - Turbulence energy spectrum. (a) A sketch showing different length scales (wavenumber
domain). (b) Experimentally measured showing a slope of —5/3 for at least three decades of frequency
[33].

However, in the case of higher order velocity structure functions, if K41
phenomenology is to be considered exact, the exponent {,, must vary linearly with the
order p. The experimental measurements of the velocity increments have shown

deviations from K41 scaling for orders higher than 3 (refer to FIG. 1.4).
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FIG. 1.4 - Variation of exponent ¢, as a function of order p of the Eulerian velocity structure function.

K41 scaling is given in dash-dot line. In shapes are given experimental data which indicates a shift from
K41 scaling [32].

This departure from K41 behavior is named as intermittency. Intermittency may
also be defined as, or attributed to the difference in statistical signature of velocity
increments with respect to their increments or in other words the statistics of velocity
increment change with the spatial increment itself. This statistical difference is often
examined through the probability density function (PDF hereafter) of the velocity
increments. It has been observed that for large spatial increments the distribution is
Gaussian while it deviates from Gaussian (PDF tails tend to spread wider hence
decaying to zero slower than Gaussian) as spatial increment is decreased. This
deformation of Eulerian velocity increments PDFs from gaussian at large scale to non-

gaussian at small scales is clearly inconsistent with K41 predictions. For instance, this

18
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can be easily checked by means of the flatness of the velocity increments (T D=

(Gw)*)
((61w)?)?

). K41 predicts F (1) to be independent of scale [ :

Cu(eD*3 ¢y

FO= Gleorr ™ e

(1.22)

while the change of shape of increments PDF across scales shows that F (1) is a

decreasing function of [.

The K41 phenomenology was further questioned by Landau in 1944 with
objections being mainly raised upon the validity of constant mean dissipation rate
assumption. He stated that the second order longitudinal velocity structure function at a
particular instant may be expressed as a universal function of dissipation rate, at that
particular instant only. He further supported his argument by highlighting the fact that
the energy dissipation rate variations have a characteristic time which is of the order of
integral length scale, which could be different for different flows and hence it could not
be universal. Kolmogorov and Obukhov in 1962 [73] refined the K41 theory to include
intermittency effects, by defining a dissipation rate which was not averaged globally

but locally over the volume of sphere having a radius equal to spatial increment .

1.2.4 Eulerian & Lagrangian Descriptions

Whatever we have discussed so far on the scales of turbulence and the
Kolmogorovs phenomenology is based upon the spatial analysis or spatial description of

turbulent velocity field. This perspective of spatial study of turbulent flows is known to

19



Chapter 1

be an Eulerian description of flow. The turbulence has been studied through Eulerian
viewpoint for long times and it has proven quite useful while predicting the overall flow
field properties. Numerous theoretical, experimental and numerical works have been
done and are available with this particular description of turbulent flows. In the
Eulerian description of flow, the time evolution of flow properties is studied at a fixed

point. These spatial measurements at different fixed points form an Eulerian field, or in
other words Eulerian flow field is a set of streamlines, and it is described by i = ()?, t).

The Eulerian measurements can be done experimentally using hot-wire anemometry,

Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA) etc.

Another perspective of studying turbulent flow is Lagrangian which involves the
temporal tracking of an individual fluid particle along its trajectory or a group of fluid

1

‘fluid particles’

)

particles forming an elemental volume along their trajectories. These
are indexed by their initial positions at any initial time t, by #; = X(#; t,). Hence the
Lagrangian field is a set of pathlines and it can be described by function X (X, t), which

gives, for any time t, the coordinates X of all possible “fluid particles” identified by the
values of some parameter X. For any time t > t, the velocity of the fluid particles is
therefore given by:

L 0X (%,1)

v(x,t) = T (1.23)

The Lagrangian and Eulerian velocities can be related with each other using

following expression:

-

p(X,t) = U(X(%t),t) (1.24)
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Both Eulerian and Lagrangian flow descriptions are important, necessary and
complementary, in order to determine completely the turbulence flow characteristics.
Moreover, it depends mainly upon the nature of problem under consideration that
favors one approach over the other. Eulerian point of view in turbulence is mainly
concerned about the spatial evolution of turbulence, which is dominated by the
sweeping effects, whereas the Lagrangian approach enables to access the temporal
behavior of turbulence. Furthermore, the Lagrangian description of flow is essential in
order to understand basic phenomena which are encountered in turbulent flows. Flows
involving transport of material particles, turbulent mixing, dispersion of pollutants in
the environment, combustion chamber reacting flows, passive scalar etc. As the mixing
of passive scalars and the dispersion of contaminants are dominated by the advection of
disorderly velocity fluctuations in time and space, in order to study the turbulent
transport it is conceptually natural and practically necessary to use the Lagrangian
description of flow, i.e. following the motion of infinitesimal fluid elements or material
particles along their trajectories.

In the case of homogeneous flows it can be shown that the velocity statistics
remain identical both in Eulerian and Lagrangian descriptions. For example if one
measures velocity statistics using an Eulerian technique (as hot-wire anemometry or
PIV for instance) to investigate the flow velocity field or a Lagrangian technique (as
PTV) to investigate velocity along particle trajectories, the values of mean, root mean
square velocities, and more generally the whole velocity PDFs, are the same in both
descriptions. This often serves as an important validating point for Lagrangian velocity

measurements in comparison with more classical Eulerian measurements.
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1.2.5 Lagrangian Predictions of K41
The Kolmogorov phenomenology could also be molded for Lagrangian framework.
The temporal increments of velocity are therefore given as under:
6,0 =v(t+1)— V(t) (1.25)

In a similar fashion than K41 Eulerian predictions we can write the pth order

Lagrangian structure function as following:

Sk = (8D = CL (e1)% (1.26)

where, {; = g according to K41 Lagrangian predictions.

A case with particular interest is when p = 2, as the second order Lagrangian structure

function S} is directly related to important statistical quantities like the Lagrangian

= — L
POrt+D) _ o 5—2) and the Lagrangian

velocity autocorrelation (R,év(r) = OO 2O

energy spectrum EL5 = T.F. (RL,). From the Lagrangian velocity autocorrelation we can

define the Lagrangian integral time scale:

TL=f Ry, (0)(D)dr (1.27)
0

Moreover, it is essential to highlight the time scaling in Lagrangian turbulence

between the integral and kolmogorovs time scales, which in short is given as:

~R; (1.28)

22



Chapter 1

In the context of K41 phenomenology for inertial range time scales (T, < t < 7)) the

second order structure function follows the scaling:

Sk = (8,5)2= Chet (1.29)

which corresponds to Lagrangian energy spectrum:

Cy
E(w) = — w2 (1.30)

This has been observed experimentally and reported by Mordant et al. in [68, 70] and

also shown here in FIG. 1.5.

power spectrum (dB)

0 : 2 3 4
log10 (frequency)

FIG. 1.5 - Lagrangian Turbulence spectrum as obtained by Mordant et al. [68, 70]. Dashed line represents
the Kolmogorovs Lagrangian scaling for energy spectrum of w™2.

Concerning the higher order structure functions experimental and numerical
studies [41, 67, 68, 70, 95] have revealed that for moments p > 2, the K41 scaling for

{5 deviates very quickly from K41 prediction {; =§ (refer to FIG. 1.6). This
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observation gives a notion of Lagrangian intermittency. It has been observed that the

deviation from linearity of exponent (,% are much more pronounced than (5 , though a
relation between (pL and (5 has been proposed in the context of multi-fractal models

[12,11,18].

5 T T T T T
4
_:NS-
b
_:-\-FI- 3
. s * 3 & & 3
a & = x = ]
1- |
0

FIG. 1.6 - Evolution of scaling exponent {,, normalized with scaling exponent of 274 order ¢, as a function
of order p. Solid line indicates the K41 scaling for Lagrangian velocity increments. In circle, triangle and
square are shown the normalized exponents determined from experimentally measured Lagrangian
velocity statistics [95].

Relation (1.28) together with relations ((1.11) and (1.16)) quantify the complex
spatio-temporal multiple scale nature of turbulent flows, and indicate why investigation
of turbulence (in particular Lagrangian measurements) in high Reynolds number flows,
is so difficult. For instance for R; = 1000 to perform an accurate investigation of the
whole range of inertial scales both in space and time these relations show that a
dynamical resolution over 3 decades of time and more than 4 decades in space is

required. Such spatio-temporal higher resolution measurements have only become
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possible in the last decade thanks to the development of state-of-the-art optical and
acoustical techniques. It is worth noting that the same constraints apply to the
numerical simulations. This also explains the difficulties to perform high Reynolds
number Direct Numerical Simulations due to extremely high computational cost and

very long computational time.

We have discussed in the current chapter the Eulerian and Lagrangian
predictions of K41 phenomenology for fluid particles. In most of the particle laden
flows, we encounter the inclusions of ‘material’ particles which possess physical mass,
boundaries and hence volume. In this case the dynamics of material particles is
described by specific governing equations. In the next chapter we review these

governing equations for dispersed particles dynamics in turbulent flows.
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Equations Governing Dispersed Particle

Dynamics in Turbulent Flows

Research on ‘dispersed particle dynamics in continuous phase’, leads to several
diverse situations; known so far, these situations can be mainly characterized by three
parameters. The first, is the nature of carrier flow or continuous phase, the second is
attributed to the kind of particles (dispersed phase) being transported in the flow and
the third is the volume fraction of the dispersed phase. All of these contribute
significantly in defining the particle transport in the flow and hence the physical
phenomena involved herein. In the case of particle motion in a steady and uniform flow
it is easier to write a simple equation of particle motion with certain hypotheses, which
could be fairly justified in most of the cases. On the other hand the spatio-temporal
complexity of the turbulent flows restrains the domain of validity of these equations and
assumptions, as non-linear terms appear in these equations which cannot be neglected.
From the dispersed phase point of view, the problem is even worse. In the limit of fluid
particles or tracers (particles behaving as fluid particles), use of the well known Navier-
Stokes equations provides a good understanding of turbulent forcing. Numerous
questions arise when the particle’s relative velocity and/or its diameter becomes finite.
In addition to that, some more challenges are awaiting attention in cases where
dispersed phase volume fraction is higher than a certain limit; a limit that allows not
only the interaction from turbulent flow to the particle, but also the modulation of the
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continuous phase by the particles itself (i.e. two-way coupling). Particle volume

fractions higher than this limit further complicate these interactions.

In short, the author would like to say that modeling particle dynamics in a
turbulent flow seems to be a very complicated problem. Even if a number of significant
efforts make possible the writing of model particles equation of motion, their range of
applicability is not wide and their validity is not well established. Furthermore, the
hypotheses involved are strongly questioned sometimes always confronting a

researcher’s mind, whether to use these models or not.

In spite of the fact that turbulence is a complex problem, we still know that
turbulent flows are governed by Navier-Stokes equations; but unfortunately we do not
know how to resolve these equations in general. In the case of particle transport in
turbulent flows, the situation becomes even worse, as we do not even know how to

write the equation which describes their dynamics (except for some particular cases).

The main objective of this chapter is to review in detail the models or equations
which govern particle motion in continuous phase. The main question addressed here
will allow us to highlight some important issues while evaluating turbulent forcing
ﬁturb on the transported particle, which is simply written as m,, d = ﬁturb , where m,,
and d are the particle’s mass and acceleration respectively. It should be noted that
particles acceleration gives a direct measure of turbulent forcing experienced by them;
therefore the main emphasis of the experimental and numerical studies has always

been its determination.
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In the next section a brief characterization of particles will be done based upon
their dynamical behavior in the carrier fluid or upon which the models of particle
motion equations are based. We will briefly summarize the literature relevant to our
objectives, along with experimental and numerical efforts done so far, in order to

capture the physical phenomena involved in particle dynamics.

2.1 Particle Types in Turbulence

In the framework of studying particle transport in turbulent flows, the particles
can be coarsely classified into two main types; first which tag the fluid motion perfectly;
and second which resist obeying the fluid particle motion. The first class of particles is
known as fluid tracers as they behave like fluid particles which can be used in
determining the fluid particles velocity field using particle imaging techniques (PIV,
LDV, PTV etc.). The second kind is the one that doesn’t follow fluid motion and has a
tendency of not tracking the fluid particle motion; such type of particles is known as
inertial particles. Of course there are reasons for showing such behavior. In case of fluid
tracers the particles have a density, same as that of the carrier fluid (i.e. neutrally
buoyant) and their size is much smaller than the smallest scale of the corresponding
turbulent flow, the kolmogorov length scale n; this is why the dynamics of these
particles reflects the fluid particles motion. Few examples of tracer particles used in
water flows are small colloids (generally made of polystyrene), which can be
fluorescently tagged (using rhodamine or flourescein for example) or made
phosphorescent. On the other hand there could be several reasons for which the

inertial particles do not tag the fluid particles. First, the inertial particles may have a
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density which is not the same, as compared with the carrier fluid (heavier or lighter
particles); second, their size may be greater than the kolmogorov length scale (finite
size); other reasons may be related to the shape and deformability of the particles in
case the particles are not perfectly rigid such as vesicles. The problem is much more
complex when the particle seeding density is high enough that two-way coupling effects
arise. Several groups studying particle dynamics have used different types of particles,
the choice of which depends upon the nature of experimental setup and the particle
dynamics to be investigated. For example, in case of air being the carrier fluid, in a
vertical wind tunnel flow Snyder & Lumley have used spherical beads of different kinds
like hollow glass, corn pollen, glass and copper [86], Fessler & Eaton have also used
glass and copper spheres [28], another group at Cornell has used water droplets in an
active grid turbulence [4], in our case we have used soap bubbles [78, 79]. In case of
water: gas, fluid and solid particles have been used by different research groups. The
examples include the use of; gas bubbles in the case of [58, 91]; oil emulsion by [31];
glass particles by [70, 90, 94]; glass, steel and tungsten carbide spherical balls in the

experimental setups of [71, 97].

Our main concern in this chapter is to probe and discuss the forces exerted by
the carrier flow on the particles and how this forcing changes as we change particle
types. Furthermore, we want to discuss the models that already exist for predicting

particle motion and briefly discuss their limitations.
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2.2 Particle Dynamics Equations
2.2.1 Fluid Particles or Tracers

The dynamics of fluid particles or tracers (i.e. the particles having density
the same as that of carrier fluid and size smaller or equal to the kolmogorov length scale
of turbulence) is governed by simplified Navier-Stokes equation. Particle acceleration
and hence the forcing experienced by these particles is given as:

9 Vp ,
a=—?+ v AD (2.1)
In the above particular situation, the particles act as fluid tracers and experience
large magnitudes of accelerations. The DNS of [89] have also shown that fluid particle
acceleration can be described through (2.1). They have also observed that the
contribution of this acceleration due to viscous forces term is very small compared with
the pressure gradient contribution in (2.1), being only 7.6% for small Reynolds case
they have studied (R; = 21) and this reduces gradually with the increase in Reynolds
number and drops to only 1.6% in case of R; = 235. These results attribute the
intermittent behavior of fluid particle acceleration to pressure gradients. Same
behavior for tracer particles acceleration has also been observed in the experimental
studies of [49, 66, 91, 92]. Large magnitudes of accelerations observed by the particles
are due to the fact that being neutrally buoyant and having size smaller or equal to
kolmogorov length scale, these particles experience velocity fluctuations of all scales, up
to dissipative ones. Several numerical and experimental results on fluid particles and

tracers acceleration along with their interpretations will be discussed and compared
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with other particle types in the next chapter; here we will restrict ourselves up to

dynamical equations only.

2.2.2 Inertial Particles

For particles with diameter in sub-kolmogorov scale range, the inertial
effects are observed if the particle density is not the same as that of carrier fluid. In case
of heavier particles, these particles resist or tend to resist the velocity fluctuations
exerted by the fluid on them. Particles with size greater than kolmogorov scale do not
behave as fluid particles too, even if their density is same as that of carrier fluid i.e. the
neutrally buoyant finite-sized particles are not tracers [92]. They exhibit inertial effects
which are mainly due to their finite size. Further complications to such size and density
effects are related to the collective effects; a special case in which either the inertial
particles are seeded into the flow with high frequency or the seeded particles sample
themselves in the carrier flow in a specific way hence forming high particle
concentration zones, in which they start interacting with each other in addition to the
carrier flow [2]. These collective effects result in increase of particles settling velocity
and modulation of turbulent flow due to their presence. We will cover these effects in a
bit more detail in the next chapter; here our emphasis will only be on reviewing their
dynamical equations and models. As mentioned earlier, the particles can show inertia
due to two main reasons or effects:

i.  Density Effects: Particle density being different than the carrier phase, p, # py.

ii.  Size Effects: Particle size larger than the smallest scale of turbulence, d,, > 7.

In case of inertial particles there exist certain models that can approximate

particle dynamics in an unsteady non uniform flow. One of the main parameters in this
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study is the particles Reynolds number Re,, , which is the Reynolds number based upon

the relative velocity of the spherical particle and the fluid velocity at the position of
particle’s center as if the particle is not present in the flow and its diameter:

— dp ”77 B ﬁp”

Re, (2.2)

vr

where, d, is the particle diameter, (17 - ﬁp) is the particles velocity relative
with the carrier flow or slip velocity and v¢ is the kinematic viscosity of the fluid. In the
limit of creeping flows i.e. Re, < 1, we fall to the simplified case of Stokes flow (steady
solution), where the force exerted on the particle is only the viscous drag in the absence
of non linear advection term in the Navier-Stokes equations. This condition of
Re, <1 could hold true only if the particle diameter is sufficiently small and/or its
relative velocity is adequately small. Most efforts concerning the modeling of particles
dynamics have been carried in the limit of small particles (point like particles) with

Re, < 1. We will first describe this limit before discussing the finite size corrections.

2.2.2.1 Point or Numerical Particles

The first transient equation for the particle motion in a uniform flow was derived
by Basset (1888) [8], Boussinesq (1885) [13] and Oseen (1927) [74] also known as BBO
equation (BBO hereafter). The BBO equation is however valid only for an isolated, non-
rotating, small (point), rigid, and spherical particle under the hypothesis of creeping
flow. Several corrections were made to BBO equation by Odar & Hamilton [39] in case

of finite particles Reynolds number 0 < Re, < 62, which we will address later in this
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section. The most rigorous equation for the dynamics of point particles in a non uniform
creeping flow with zero initial relative velocity is considered to be the one given by

Gatignol [34] and Maxey-Riley [55]:

L1 ﬁ
dﬁp_ 3mitd (_)_ﬁ +id2v2—’>+l d(u—vp+ﬁdgvzu)+ D_ﬁ’
Mo g T TS (W T T g B VT szl dt " Dt
3 e d(i-0,+ 57 d3V) gy
3 2 f -
ty ey | o m+(mp me) g

3
dp

where, my = ppm - is the mass of the fluid displaced by the particle and py is

the carrier fluids dynamic viscosity. The terms on the r.h.s. in the order of appearance

are:

e The Stokes drag force, which is due to the relative velocities of particle and fluid.

e The added mass force (also known as virtual mass force), purely an inertial force
which is the force exerted by the fluid displaced by the particle resisting particles
acceleration and deceleration.

e The pressure gradient term, this is equivalent to the fluid particle acceleration at
the position of the particle center.

e The history term, which takes into account the entire history of the particle
motion in the carrier fluid up to time instant t and it mainly takes into account
the interaction of the particle with its own wake.

e The Archimedes force, which is the net force due to gravity and buoyancy.
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N av di , . . .
The derivatives % and d—? are taken along the material particle trajectories,

DU . . . N . .
whereas D—I: is the material or Lagrangian derivative representing the fluid element

. . . : - 1 -
acceleration along fluid particles. One can notice an additional term 7 df, ViU

appearing with the relative velocity terms which is firstly due to the non-uniformity of
the fluid velocity field and secondly, due to the disturbances created in the flow field by
the particle. These second order corrections for the curvature of the flow field are

known as Faxén terms or Faxén corrections proposed by Faxén in 1922 [25], indeed

, . d3
taken into account in 1983. On the other hand the Faxén terms has a scaling of L—s

(where L is the characteristic length scale of the unperturbed flow) which in case of
dL—p &« 1 can be easily neglected. The spatial derivatives in the preceding equation are

calculated at the particle center, which in case of uniform velocity fields becomes zero,

hence reducing above equation to BBO equation.

The Gatignol and Maxey-Riley equations for point particles looks very complex to
model, therefore, different groups doing DNS [9, 10, 17, 49, 83, 90] have proposed
simplified models taking into account only the Stokes drag force or in some cases the

added mass force too [90].

dv pu 1
LB —+ —(i-7 2.4
T T T, (@-1,) (24)

where, B = 3ps/(pf + 2 p,) is the coefficient taking into account added mass and
pressure gradient forces and 7, = df, /(12p V) is the particle viscous response time.

When the above equation is made dimensionless with kolmogorov length, time and

velocity scales i.e. 1, 7, and u,, respectively; it resembles the following form:
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(2.5)

In above dimensionless equation, St = 7, / 7, is the particle Stokes number,

and acceleration is in non-dimensional units, given also by Heisenberg-Yaglom [65]

famous relation based upon kolmogorov phenomenology,

(a?)

£3/2 y-1/2 (26

ag =

where, a, is also known as normalized acceleration variance. We can observe from

(2.5) that point particles acceleration is mainly described by two dimensionless
parameters £ and St. The degree of the particles inertness is described with the help of
Stokes number, which is the ratio of particles response time and the appropriate flow
characteristics time scale (7, in present case). The greater the particle response time
or Stokes number, the greater will be the inertness exhibited by the particle. The role of
parameter [ is to take into account the particle density effect in the added mass term,
for the particle density equal to, or close to carrier fluid's (p, ~ py), this term reduces
to fluid particle acceleration. On the other hand for p, > p; it becomes very small but
could be still compared with Stokes drag force. In case of bubble flows with particles
lighter than carrier fluid this term becomes dominant. Whereas, the particle’s response

to fluid velocity fluctuations is taken into account using Stokes number.
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2.2.2.2 Finite Reynolds Number Effects

The Gatignol and Maxey-Riley equation is considered to be the most accurate for
describing particle motion in a non-uniform creeping flow, assuming reasonable
hypotheses that will be satisfied under most of the two-phase flows experienced in
physical and engineering world. However, there are some particular situations where
the particles Reynolds number is finite or moderate. This could either be due to the
large particles relative velocity and/or large particles size (i.e. particle diameter larger
than kolmogorovs length scale). The case of finite particles Reynolds number was first
addressed in 1964 by Odar & Hamilton and up until the present this has been area of

prime interest. We will discuss these effects term by term:

I. DragForce (FD)

The drag force can generally be written as:

.1 o
Fp = g Cp(u— Up) T dzz, Pr ”u — Up” (u — Vp) @2.7)

We have omitted the Faxén corrections for the time being, the steady drag
coefficient in above expression can be obtained from standard drag curve. In case of
finite Reynolds number, this drag coefficient is invalid and becomes particles Reynolds

number dependent. The modified form of drag force is hence given by:
- 1 2 — - — -
Fp = 5 Co(Rey) mdj pr i - ,||(@ - 3,) (2.8)

Several empirical relations for particle Reynolds number based drag coefficient
exist. Among them the best fit to the experimental observations for a range of particle

Reynolds number is the one given by Clift et al [19]. Clift et al have given seven different
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expressions for drag coefficients for different ranges of particles Reynolds number. The

only disadvantage of their correlations is the unavailability of a single expression which

could be valid for the whole range of particles Reynolds number. These coefficients for

first three Reynolds number ranges are given as:

( 24 3 for

+ R
Re, = 16

] 24 |1+ 01315 Re, (0F27005 logno ke )| for
Re, ' :

24
— [1 4 0.1935 Re,, **3%°]
\ Re, for

Re, < 0.01

0.01 < Re, <20

20 < Re, <260 (2.9)

Mei & Klausner [61] have also proposed an empirical correlation based upon

their numerical study, however, the most effective is considered to be the one given by

Brown & Lawler [14]. In their review of drag and settling velocity of spherical particles,

they have fitted all the data available and they have also found that best fit of drag

coefficient is obtained through empirical relations proposed by Clift et al. Moreover,

they have proposed another expression for drag coefficient which satisfactorily fits the

data for particles Reynolds up to 2 x 10°:

o o 0.407
Cp = 7 [1+0150Re, "]+ ——e
p 1+ R
€p

Re, <2 X 105 (2.10)

Using above empirical correlation for drag coefficient, we can have a better

estimate of drag force exerted on the particle for large range of particles Reynolds

number.
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I. Added Mass Force (F )

Omitting again the Faxén corrections of the Gatignol and Maxey-Riley equations;
the added mass force is given by:

Faw =2 ™y (E‘E)

The above term was same in the case of BBO equation, the first correction to
above term was made by Odar & Hamilton [39] for finite Reynolds number 0 < Re,, <
62, by determining experimentally the added mass coefficient for sudden and gradual

particle accelerations in a viscous fluid.

B c du dﬁp 212)
am = My La \ e T de '
where, C, is the added mass coefficient determined to be €, = 1.05 — %,

- = 12 JE—
. - dfju- . . . .
with A, = lz d”p” / IIudtvaI being the acceleration number taking into account the
p

particles acceleration effects on the added mass coefficient. Auton et al in 1988 [3] have
proposed the following form of added mass term:
Du dv,

ﬁAM = mg Cy (E—E> (2.13)

Auton et al have also proposed a value of 4, = % for spherical particles. Another

important difference is the use of fluid acceleration calculated following a fluid element,

rather than following the particles trajectory. This difference i.e. (L;—f— Z—f) is

considered to be negligible in creeping flows, but could become significant in the case of
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finite particles Reynolds number case, because particles contain inertia which could not
be neglected. This difference vanishes also in uniform flow case too. Further
discussions on the added mass force for finite Reynolds number case could be found in
[60]. The results of Numerical simulations of Rivero et al 1991 [81], Mei et al 1991 [64],
and Chang & Maxey 1994 [15] have shown that added mass force for finite Reynolds

number flows is same as that of creeping and potential flows which is also given by

Auton et al. with ¢4 = %

In a recent numerical simulation Wakaba & Balachandar [7] have also studied
the dependence of added mass coefficient on particles Reynolds and acceleration
number. For a range of acceleration numbers studied, they have shown that irrespective
of Re, and A, the added mass coefficient for a sphere is 0.5, within an accuracy of 0.1%.
They have also claimed that the added mass coefficient is shape-dependent rather than
on Re, and A.. These results were supported in detail, with discussions for three
different cases, drastic particle acceleration, gradual small acceleration and abrupt
particle deceleration. The acceleration or deceleration was applied in a very short time
interval of At = 2.5 X 103. The reason for obtaining same added mass coefficient
value for the above three cases was due to the prevailing effects of potential flow over
the sphere. In their studied case of quick particle acceleration (Fig. 2 a-f in [7]), they
have found that the wake which was present behind the sphere before applying particle
acceleration first moves to the rear after shrinking of separation line and then as the
time passes the wake is completely detached from the sphere without being reversing
towards the sphere. Later on this circulation zone becomes very small and escapes from

the flow domain. A new wake is supposed to form corresponding to new particles
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Reynolds number (after being accelerated), this development however takes place on
slow viscous time scale. In the second case, where the particle was gradually accelerated
to a small value by increasing particle Reynolds number from 50 to 50.625 in a very
short time, they observed the wake which was present on the back of the sphere (Fig. 3
a-c in [7]) before accelerating is tends to detach and then finally detaches from sphere
later at a time which correspond the end time of acceleration application. After the
particle underwent the applied acceleration the wake again reattached to the sphere
and remained attached to it. Even when the recirculation zone detaches from the sphere
it never moves rear and remains close to the sphere and after the end of acceleration
application it reattaches which means no significant change in flow topology is observed
which will lead to a changed magnitude of added mass coefficient. In their last case i.e.
of quick deceleration by decreasing particles Reynolds number from 50 to 37.5, they
have observed an interesting phenomenon. The wake which was present behind the
sphere, on the application of sudden deceleration moves upstream and surrounds the
whole sphere and the flow topology behave as a potential flow, while the sphere is being
enveloped by the recirculation zone (Fig. 3 a-c in [7]). After reaching the final Reynolds
number and attaining the steady conditions this recirculation zone retracts and again
over the viscous time scale reaches its settled state corresponding to final Re,,. These
observations have proven quite useful verifying the concepts and findings of Rivero et
al. [81], Mei et al. [64] and Chang & Maxey [15, 16] and known so far to be the recent

development on the Reynolds and acceleration number effect on added mass force.
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Ill. History Force (F)

From BBO, Gatignol and Maxey-Riley equations it can be observed that the

. . -1
memory of particle acceleration decays as (t — 1) /2.

, 3 td(@-1v,) dr
— 2 a2 P
FH = 2 dp T pf ,Llf Loo dr m (2.14)

Odar and Hamilton have proposed a coefficient for this diffusive history force too
which is also a function of particle acceleration number. Mei et al. [64], Mei & Adrian
[63] and Mei 1994 [62] have been studying the motion of rigid spherical particles and

bubbles having finite Reynolds numbers. Mie et al. in 1991 have observed that for
particles having finite Reynolds number the history force decays as (t — T)_l/ 2 at short

time, but for large times, the decay is much faster than (t — T)_l/z. From the equation of
spherical particles proposed by Mei & Adrian 1994; the history force terms is given

below:

-

t
Fy = Bnufdpf K(t—1,7)

d(u—17,)
dt

dr (2.15)

where, the history kernel is given by,

1/2
(t — 1)? (2.16)

4 (t—1) vfll/“ N [TL’ lu() - vp(r)|3

dz d, vr fii (Rey)

K(it—1,1)= I
P

where f; (Re;) = 0.75 + 0.105 Re,(7); Re.(7) = d, ||u(r) — 1,(7) || /vf. The

history kernel given above, decays slowly as (t — T)_l/ 2 for short times and then for

long time this decays is much drastic which follow the law (t —t)72. These

42



Chapter 2

observations were further confirmed during experimental measurements of Mordant et
al. [71] and Abbad & Souhar [1] while studying settling of spherical finite sized particles

in water.

The Maxey-Riley equation was derived under the assumption of zero initial
relative velocity of the particle. However, in the case when particle’s initial relative
velocity is non-zero Maxey in 1993 [56] added another term in Gatignol and Maxey-
Riley equations for creeping flows. This additional term 1is given by
3/2 df,\/m (u(0) — v,(0))/t*/2. This term is however valid only for creeping
flows. In the case of finite particle Reynolds and acceleration numbers Kim et al. 1998
have proposed another history force term kernel. Their expression for history kernel is
very robust and reduces to the one given by Mei & Adrian for high acceleration
numbers. On the other hand, for low values of acceleration number their history term
reduces to Basset history force term. Based upon their DNS results, Kim et al. [45] have
also catered for particles finite Reynolds and acceleration numbers into the term added
by Maxey in 1993. The reader is referred to their paper for further details and

discussion.

IV. Shear Lift Force (F,)

Another force which was actually present neither in BBO nor in Gatignol and
Maxey-Riley equations is the shear lift force. As turbulent flows contain eddies and
velocity gradients at different scales, the lift force becomes important if particles size is
of the order or greater than the kolmogorov length scale. Due to the presence of this

velocity gradient the particle is subjected to a shear lift force which is also known as
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Saffman’s lift force named after his work [82]. The expression for Saffman lift force is

hence given by:

- 1
Fy_sarr = 1.615 py vf/z d2 || Gi — B,)|| Vdu/dy sin(du/dy) (2.17)
2
The expression (2.17) was assumed to hold valid for Re, < 1,Re; = Gvdp <1,
f

0d3 JR .
where G = |Z—;|, Req = v—p « 1and Re, < ,/Re; ore = R:G > 1, where Q is the
f P

particles spin velocity. Dandy & Dwyer 1990 [21] studied the shear lift force for finite

Reynolds number (0.1 < Re,, < 100) and finite shear rate (0.005 < Re,, < 0.4) defined
as,

dp |du/dy| _ lR 2 (2.18)

a= — = e, €
2 ” (u_vp)x” 27

They have shown that the Saffmans shear lift force expression is equally valid
for Re, > 1, Re; > 1 and Re, > /Re;. However Mei (1992) [59] found some

differences in Dandy & Dwyers and Safmans results and proposed following expression

for finite Reynolds number of the particles:

F,
Fi sarr

= (1-0.3314 a'/?) exp(—Re,/10) + 0.3314a'/? for  Re, <40

= 0.0524 (a Re,) /2 for Re,>40 (219)

The above expressions are considered to be most accurate for finite Reynolds

numbers of spherical particles. However, care should be exercised in using these
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expressions only for non-rotating particles i.e. Reg = 0. In case of particles rotation on
its own axis or if particles relative rotating velocity is non-zero then another
contribution of lift force should be taken into account which is also known as Magnus

lift Force.

In this chapter we have briefly overviewed the equations which govern
dispersed spherical particles motion in continuous phase. The equations given by
Gatignol and Maxey-Riley are considered to be the most complete and most well known
in the limit of creeping flows along with certain assumptions. We have also tried to
present the key modifications made in these equations for the case of finite particles
Reynolds and acceleration numbers. In the following chapter we will discuss the
numerical and experimental results obtained while studying the particle dynamics in
turbulent flows. Our emphasis will mainly rely upon the Lagrangian measurements of
particles acceleration, as it directly provides the answer to the question of finding

turbulent forcing on the particle.
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Chapter 3
Lagrangian Acceleration Statistics:

Experimental & Numerical Investigation

In the previous chapter we have reviewed the equations governing dispersed
particles dynamics in turbulent flows. Models which already exist for describing
dynamics of several particle classes being transported in continuous phase were
discussed, along with corrections made into Gatignol and Maxey-Riley equations. Also,
discussed in the first chapter in order to obtain particle instantaneous acceleration it is
essential to track these particles along their trajectories or in other words, Lagrangian

measurements are unavoidable in these circumstances.

In the current chapter, we will outline key experimental and numerical
Lagrangian measurements done so far for the determination of particle acceleration.
After, presenting a brief review of histories of these types of measurements, we will
discuss in moderate detail the results obtained in the past two decades. It has been
observed that the inertial particle acceleration results in their accumulation into specific
zones of the flow known as preferential concentration. This will be briefly reviewed,
before diverting our discussion towards the main interest and motivation of the present

research work.
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In order to have an overview of key results obtained through experimental
efforts done in the area of Lagrangian measurements of particle dynamics in turbulent
flows, we start with presenting FIG. 3.1. In this figure, we show, in (¢, ') space different
cases studied experimentally both in von Kd&rman and grid generated turbulent flows.
Here ¢, is the particle diameter to kolmogorov length scale ratio, D /TI and T is the
particle density to carrier fluid density ratio p,/ps. The color intensity indicates the
particles Stokes number, which is also the ratio of the particles response time and an

appropriate flow characteristic time as defined in equation (3.8) of section 3.2.2.
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FIG. 3.1 - Some examples of experiments in Lagrangian measurements of particle dynamics in
(¢,T) space where ¢ and I are the particle diameter to kolmogorov length scale and particle density to
carrier fluid density ratios respectively. The color intensity shows the magnitude of particles Stokes
number, blue being low and red being high particle Stokes number. Iso-Stokes lines are shown in curve
dotted lines with their corresponding Stokes number.
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| review experiments in (¢, ') space in chronological order. Voth et al. in 2002
[92] have studied in von Karman water flow the particles Lagrangian acceleration using
optical tracking technique. The types of particles studied were; tracers (¢ ~ 0.15 - 1)
for 140 < R, < 970; and finite-sized particles (¢ ~1.44 — 26) in fully developed
turbulence with R; = 970. Later on Mordant et al. in 2003 [67]; have also investigated
the Lagrangian statistics of neutrally buoyant finite-sized particles again in von Karman
water flow at three Reynolds numbers of 312, 740 and 1100, but here they employed
Acoustic Doppler Velocimetry as measuring technique. Ayyalasomayajula et al. [4, 5]
have studied in a different flow configuration (active grid turbulence) the dynamics of
inertial particles (tiny water droplets in air) having very small ¢ and very high values
of I"at R; = 250, again the optical particle tracking method was used. Recently in 2008,
Volk et al. [90] have studied the dynamical behavior of tracers, neutrally buoyant and
heavy particles. They also studied the acceleration statistics of lighter bubbles. All of
their experiments were performed at R; = 850 in von Karman water flow as well,
using novel measuring technique of Extended Laser Doppler Velocimetry. The (¢,I’)
space was further filled by Xu et al. [94] tracking small tracers, finite-sized neutrally
buoyant and slightly heavier particles optically at two different Taylor based Reynolds
numbers of 370 and 460. Xu et al. also proposed a modified definition of particles Stokes

number which we will discuss in the upcoming section.

On the basis of results obtained during the Lagrangian determination of particles
acceleration we can classify particles dynamics into different categories. In the

subsequent sections we will discuss in detail these results, class by class, including some
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DNS and a few other experimental results, which were omitted in FIG. 3.1 for the reason

of clarity.

3.1 Fluid Particle Acceleration

Dynamics of fluid particles and tracers is described by (2.1). The DNS of Vedula &
Yeung, Gotoh & Fukayama and Biferale et al. [10, 37, 89], have observed wide spread
tails and intermittent dynamics of fluid particles. Specifically, Vedula & Yeung have
shown that the normalized acceleration variance a, follow a scaling of ay Ri/ 2
for R; > 40. They have also observed that the contribution of this normalized
acceleration variation; due to viscous forces term is very small as compared with
pressure gradient contribution in (2.1). They have shown the contribution of pressure
gradient term in a, is one order of magnitude greater than the viscous force term in
(2.1). Moreover this pressure gradient term contribution becomes greater and greater
as they increased the R; and becomes two orders of magnitude greater than the viscous
force term contribution for R; = 235, the highest Reynolds number they have studied.
They have further supported their results by studying PDFs of pressure gradients,
which is also shown in FIG. 3.2(a) where pressure gradient is normalized with its
standard deviation, symbols A to D represent R; of 38, 90, 140 and 235 respectively.
The Reynolds number dependence of pressure gradient PDFs can be clearly observed in
FIG. 3.2(a), with wider stretched tails for higher Reynolds number. It is to be noted that
for the highest R, the PDF decays more slowly than the exponential. These results

attribute the intermittent behavior of fluid particle acceleration to pressure gradients.

Biferale et al. [10] in their DNS study for fully developed turbulent 3D flow at

R, = 284 have obtained intermittent dynamics of fluid particles Lagrangian velocity
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increments. The PDF of their Lagrangian velocity increments for difference time lag is
shown in FIG. 3.2(b). For the smallest time lag the velocity increment reflects fluid
particles acceleration. It has also been observed that the fluid particle acceleration has
wide spread tails. They have assigned this behavior due to the trapping of fluid particle
in vortex filaments (FIG. 3.3(a)). Because of the trapping of fluid particles in vortex
filaments, the particle observes intense acceleration and velocity fluctuations, and
undergoes acceleration up to 30 the rms value. On the other hand, in an experimental
study of fluid particles acceleration, La Porta et al [49] have seeded neutrally buoyant
particles with size of the order of kolmogorov length scale ¢ ~2.5 for R; = 970 (the
highest Reynolds number case they have studied in a stirred tank von Karman flow).
The three dimensional particle trajectories, resolved in time, were tracked using high
temporal resolution technique, an example of which is shown in FIG. 3.3(b). It can be
seen that the particle experience intense acceleration magnitudes of the level of 12000
m.s2. For all studied Reynolds numbers 140 < R; < 970, the normalized acceleration
PDFs have wide stretched tails with maximum value up to 40 rms (FIG. 3.4(a)) and

particles undergo accelerations up to 16000 m.s2.
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FIG. 3.2 - (a) PDF of pressure gradients, symbols from A-D show R, of 38, 90, 140 and 235 respectively.
Gaussian distribution PDF is shown in dashed lines [89]. (b) Velocity increments and acceleration PDFs
computed at different time lags (97, 24, 6, 0.7) 7, from inner to outer PDF, acceleration is in the
outermost curve [10].

LaPorta et al. have also observed that flatness of particle acceleration PDF
increases as R, increases and probably saturates to a constant value for R;~ 500 (see
inset of FIG. 3.4(a)). The evolution of normalized acceleration constant a, (given by
equation (2.6) as a function of R, is shown in FIG. 3.4(b), the open circles and squares
indicate transverse and axial components of normalized acceleration, whereas filled
triangles and circles show the normalized acceleration values computed by Vedula &
Yeung and Gotoh & Fukayama respectively. It has been detected that in comparison
with DNS studies of Vedula & Yeung and Gotoh & Fukayama; LaPorta et al. have

observed higher values for a,.
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FIG. 3.3 - (a) Three dimensional trajectory of a fluid particle trapped in a vortex filament [10]. (b) Three
dimensional trajectory of a neutrally buoyant seeded particle resolved in time [49], colors show the
acceleration magnitude.
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FIG. 3.4 - (a) Acceleration PDFs normalized to variance 1, for R; 290, 690 and 970, Gaussian distribution
is shown in dashed curve. The inset shows the acceleration flatness as a function of R; [49]. Normalized
acceleration variance for transverse (open red circles) and axial (open red squares) components as a
function of R;, in the inset the ratio of normalized transverse and axial acceleration variances as a
function of R, [49].
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The ratios of transverse and axial components of normalized acceleration are
shown in the inset of FIG. 3.4(b). Higher values for normalized transverse acceleration
components were obtained, as compared to the normalized axial ones, which signify the
small scale anisotropy of the von Karman flows. However, this small scale anisotropy
decreases with increasing Reynolds number with ratio that reaches near to 1

asymptotically for highest Reynolds number studied.

Moreover, Mordant et al. [68] have also measured the Lagrangian velocity
statistics in fully developed turbulence with R; = 740, in a counter-rotating water flow
experiment. They have used neutrally buoyant particles of diameter 250um and
observed high levels of particle acceleration. Their PDFs of Lagrangian velocity
increments, scaled with its standard rms value (FIG. 3.5(a)), also have stretched tails,
which for the largest time increment has Gaussian distribution and becomes wider and
wider while decreasing the time increment. However, they observed that the tails for
smallest time increment are not exponential, like the one obtained for fluid particle
acceleration by LaPorta et al., a fact which at that epoch was considered to be possibly

due to the filtering effects of the finite-sized particles.

In another experimental study yet again in von Karman flow at Cornell, Mordant
et al. [66] have obtained very high magnitudes of normalized acceleration, where the
acceleration flatness reaches up to 55 or even higher, up to 100 [69] (FIG. 3.5(b)). The
Reynolds number being R; = 690, near to their previous experiments the high levels of
acceleration magnitudes could be due to the smaller particle diameter as compared with

kolmogorov length scale.
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FIG. 3.5 - (a) Lagrangian velocity increments PDFs normalized with rms values for time increments of
0.15, 0.3, 0.6, 1.2, 2.5, 5, 10, 20 and 40 ms (from top to bottom) [68]. Curves are shifted vertically
downwards for clarity. The red dashed line represents acceleration obtained by LaPorta et al. (b) PDFs of
normalized acceleration for tracers at R; = 690 [66], the red solid line represents the exponential fit
given by LaPorta et al,, the inset shows the plot in linear coordinates.

In this section we have very briefly reviewed some numerical and experimental
results obtained for fluid and tracer particles acceleration. It has been observed that the
acceleration PDFs have wide spread exponential tails as particles undergo intense
acceleration magnitudes up to 55 times the root mean square value. It has also been
learned that Lagrangian velocity statistics are intermittent and the velocity increments
PDFs change their shape from Gaussian, for the largest time lag, to have wide spread
exponential tails for smallest time increment. Biferale et al. have credited these intense
acceleration values as being due to the trapping of fluid or tracer particles in a vortex
filament. Not all of the results are discussed here; a few remaining results on fluid
particles and tracers acceleration will be discussed in subsequent sections, while

comparing these particles with inertial material or point particles.
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3.2 Inertial Particles Acceleration

Inertial particles are named after their inert behavior which they exhibit by not
following the fluid solicitations perfectly. This could be due to the carrier fluids and
particles density mismatch or due to the larger particles diameter than kolmogorov
length scale. It is well known now, that the dynamics of finite size neutrally buoyant
particles is not the same as that of tracers, again some exceptions exist which have been

demonstrated in several experiments.

The dynamics of these inertial particles has been a subject of interest since 1971
and several efforts have been made in order to explore heavy particles behavior in
turbulent flows [20, 27, 50, 51, 55, 85, 86]. It has been observed numerically [87, 93,
96] that the inertial particles have a tendency to accumulate in low vorticity and high
strain regions of turbulent flow. This has resulted in the formation of zones with high
particle concentration, the phenomenon also named as preferential concentration. The
question has been raised, whether this preferential concentration of particles due to

turbulence, reduces or restricts heavy particles mixing or not?

Wang & Maxey [93] have observed that in the presence of gravity turbulence has
a mean effect of sweeping particles in the downward direction thus increasing the
settling velocity of these particles. Furthermore, Aliseda et al. [2] have also observed the
increase in settling velocity of the inertial particles as a function of stokes number (FIG.
3.6(a)). They have obtained high values of settling velocity near particles Stokes
number of unity. Their further investigation on the concentration fields of the particles
has revealed that the particles do not sample the turbulent flow homogeneously. They

tend to concentrate preferentially into the low vorticity zones in the flow. This
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preferential concentration of particles into the flow results in the formation of clusters
of particular size (FIG. 3.6(b)). They have also given a notion of the size of these clusters

which is of the order of 10 — 151 based upon the study of particles concentration using

digital imaging.
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FIG. 3.6 - (a) Variation in particles settling velocity normalized by fluctuating velocity of the flow as a
function of Stokes number for three different volume fractions of seeded particles. One can observe the
high values of near Stokes number of unity [2]. (b) The image showing particles concentration field, high
particle concentration results in the formation of cluster with characteristic size of 10 — 157 [2].

3.2.1 Point Particles Acceleration

In the case of numerical simulations the inertial particle dynamics is taken into
account through (2.4), which includes Stokes drag term, which in turn, includes
particles response time and the added mass term that takes into account the inertial
effects due to particles added mass. When the particles are considered to be very small
in diameter and much heavier than the continuous phase, the added mass term has been

mostly neglected [9, 17] and the equation used in this case has the following form:
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dvy, _

1. .
It g [u(xp ,t) — vp(t)] (3.1)

where, 9, (t) is the particles velocity at its position x,, at time t and #i(x,, , t) is the
fluid velocity field. In this limiting case, which can also be named as point or numerical
particles case, the particles dynamical behavior is mainly described by their response
time or in case of normalized equation; by Stokes number. This non-dimensional

number is defined as:

(3.2)

1
Stlzf_pzip_pdée/zzip_p&_p)z
i 18 pr %2 18 pr \ 1

. : 1 p
where particles response time, taken here as 1, = — 2%

dZ
v -2 and the
18 pr v

characteristic time scale of flow is the kolmogorov time scale, 7, = (V/g)l/z. The
validity of (3.1) is limited to particles diameter smaller than dissipative length scale and
high particles densities, as compared with carrier flow. Several questions arise upon the
effectiveness of (3.1) when particle size becomes large and/or particle density is

comparable with carrier fluids density.

Bec et al. [9] have done DNS of point particles in homogeneous isotropic
turbulence flow with different resolutions giving R; = 65,105 and 185. The particle
inertia was taken into account by attributing them a particular particle response time
and covered a range of particles stokes number as defined in of (3.2) 0 to 3.5, i.e. from
fluid particles to heavy inertial particles. They have shown for R, = 185 that the PDF
tails of normalized Lagrangian acceleration diminish from fluid tracers to inertial heavy

particles, as the Stokes number was increased. The PDF tails suppress very quickly with
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increasing particles inertia even for Stokes number of 0.16 (FIG. 3.7(a)). They have also
observed a drop in normalized acceleration variance with increasing Stokes number for
all of the three Reynolds numbers they studied. However, this drop in normalized
acceleration variance is very sharp even for very small Stokes numbers of 0 to 0.5 (FIG.
3.7(b)). Furthermore, they have explored that for St; = 0.5 the particles tend to form
clusters by accumulating in particular zone of large strain or low vorticity regions, even
if the particles were seeded homogeneously in the numerical domain. This was obvious
for all the three Reynolds number studied, the maximum clustering (shown by
minimum of correlation dimension D, in (FIG. 3.8(a)) was observed around Stokes of
0.5. They have also observed that the particle’s normalized acceleration variance
matches very well with fluid particles acceleration calculated at particles position
for St; < 0.4, this indicates that this inertial particles dynamics is due to their
preferential concentration in the low vorticity regions which would be the same even
for fluid particles if evaluated not homogeneously in space but at the position of these
particles. However, this conditioned fluid particle acceleration attains a minimum
around St; = 0.5, a value where particles were found to mostly concentrate in the low
vorticiy regions of the flow and as the Stokes number increases it starts increasing again
to take higher values and attain fluid particles acceleration again. Bec et al. have claimed
that for higher Stokes number the particles acceleration is somewhat defined by the
acceleration of fluid tracers calculated along the particle trajectories and low pass

filtered by particles response time.
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FIG. 3.7 - (a) DNS results on the acceleration PDFs of passive point particles normalized with its rms
value for different stokes numbers studied. The PDF tails contract from fluid particles acceleration
(St = 0) to heavy inertial particles as the Stokes number increases (R, = 185) [9]. (b) Evolution of
normalized acceleration variance as a function of Stokes number for three different R; studied
numerically.

By doing so, they have observed that for St; > 1 the two accelerations tend to
become the same as the Stokes number increases, this has led Bec et al. to a partial
conclusion that preferential concentration effects are less important for Stokes greater
than unity and that the inertial particle acceleration statistics could be defined by low
pass filtering of fluid particles acceleration by inertial particles response time. They
were however unable to conclude the physical phenomena which define the

acceleration statistics around St; = 1.
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FIG. 3.8 - (a) The correlation dimension D, as a function of Stokes number for three Reynolds number
cases. This correlation dimension describes the distance between two particles; a minimum indicates that
two particles at the particular Stokes number are much nearer to each other [9]. (b) Normalized
acceleration variance of particles (squares), fluid particle acceleration conditioned at the particles
position (+) and fluid particle acceleration filtered with particles response time.

On the experimental exploration of tiny and very heavy inertial particles
acceleration, Ayyalasomayajula et al. [4] have conducted experiments in active grid
turbulence at moderately high Reynolds number of 250. Water droplets with sizes in
microns, were injected in the flow and tracked using high speed cameras moving along
the wind tunnel test section at mean flow velocity. The mean diameters of injected
particles distribution were found to be of the order of 17.1 and 21.4um giving ¢ of 0.04
and 0.05, and approximate Stokes number of 0.09 and 0.15 respectively.
Ayyalasomayajula et al. compared their wind tunnel inertial particle acceleration
statistics with tracers in von Karman swirling flow. The normalized acceleration PDFs
for these inertial particles were found to have narrower tails as compared with fluid
particles acceleration PDFs (FIG. 3.9(a) and (b)), this difference in normalized

acceleration PDF is much pronounced for magnitudes greater than 4. Furthermore, the
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acceleration variance of these inertial particles was also found to be reduced in
comparison with fluid particles; being 0.8 times the fluid particles acceleration variance
in the case of particles with stokes number of 0.15. They attributed the drop in
acceleration variance of inertial particles due to the linear damping of the fluid
acceleration and the change in shape of the normalized PDFs by virtue of non-uniform
sampling of carrier fluid by these particles which has already been shown by Chen et al.

and Bec et al.
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FIG. 3.9 - (a) PDFs of normalized acceleration (normalized with corresponding rms values) for particles
having mean Stokes of 0.09 and 0.15 shown by (x) and (+) respectively R, = 250. The solid line
represents the fluid particle acceleration PDF obtained by Mordant et al. [66]. (b) Normalized
acceleration PDFs compared with inertial particle PDFs computed by Bec et al. [9] for Stokes number of
0.16 (dashed line), the solid black line stands for fluid particle acceleration. Both figures are taken from

[4]-

Further investigation on the behavior of much smaller size water droplets in the
same experimental setup, at same Reynolds number i.e. R; = 250 was done by

Ayyalasomayajula et al. [5]. The mean diameter of particle size distribution was of the
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order of 7um, which corresponds to ¢ = 0.016 and St = 0.01. With these specifications
the particles were assumed to behave as tracers, which was further endorsed by the
comparison of normalized acceleration PDFs of these minute particles with the fluid
particles acceleration of (However the PDFs were not seem to be fully converged). They
are compared with DNS results by Bec et al. computed atR; = 185; and the
experimental results of Mordant et al. at R; = 690 (FIG. 3.10). The longitudinal and
transverse components of normalized acceleration were found to fit well with that of
Bec et al,, however the fluid particles acceleration PDF tails given by Mordant et al. were
found to be more stretched (for acceleration values greater than 10 times the rms) than
the rest, which could be due to the higher flow Reynolds number (R; = 690).
Ayyalasomayajula et al. have observed that acceleration statistics of small water
droplets resembles that of point particles models in DNS [9], both for tiny droplets
(¢ = 0.016,St = 0.01) which reflect the statistics of fluid particles (St = 0) in case of
DNS; and for relatively higher droplet sizes giving ¢ = 0.04, 0.05 and St = 0.09,0.15
respectively, the acceleration statistics were well described by point inertial particles

having St = 0.16.
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FIG. 3.10 - The normalized acceleration variance components (filled circles: x-component, open circles: y-
component) of small 7um water droplets having Stokes number of 0.01 [5]. Solid black line is fluid
particle acceleration PDF (St = 0) from Bec et al. Ry = 185 case [9]. In grey continuous line is the fluid
particle acceleration observed by Mordant et al. [66] for experiments at Ry = 690.

3.2.2 Finite-Sized Particles

It was Voth et al. [92] who first studied experimentally, the size and density
effects of particles on their acceleration. The experiments were done in fully developed
turbulence at R; = 970 under the same flow configuration as in the case of small tracer
particles. Though the large particles were also named as tracers in their paper, but here
the author wants to rename it as neutrally buoyant finite-sized particles. The two main
mechanisms which could be held responsible for the difference between tracers and
large particles acceleration were identified to be the density-dependent and density-
independent effects. First, being due to particle and carrier fluid density mismatch as a
result of which the particles will not be affected by fluid accelerations due to their inert

behavior. Second highlights the spatial and temporal filtering of the carrier flow which
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is by virtue of carrier fluid modifications due to the finite volume of these large size
particles. The particle size effects on their acceleration were taken into account by
studying four different sized particles with relative density or I' of 1.06. The particle
diameters studied were 26,46,135 and 450um which corresponds to
1.44,2.55,7.5 and 26 values of ¢ respectively. The Stokes number as defined in (3.2)
comes out to be 0.12, 0.38, 3.3 and 37.5 respectively from smallest to largest particle
diameter studied. The relative density (I varying from 0.96 to 1.06) influences were
explored by doing experiments in NaCl solution for 450um diameter particles. The size
range studied by Voth et al. seems to be large as compared with density range they were

capable of investigating.

In FIG. 3.11(a) the normalized acceleration PDFs are shown for particles relative
sizes and densities (¢, I') data sets of (2.55, 1.06), (26, 1.06) and (26, 0.96) represented
by open, filled circles and triangles respectively. These normalized acceleration PDFs
illustrate no major difference for three data sets presented, especially up to acceleration
magnitudes of 10 times the root mean square value. However, the accelerations
standard deviation itself shows big differences in all the three data sets presented here,
being three times smaller for large size particles in comparison with the smallest one.
This particular effect was further explored by Voth et al. and is shown here in FIG.
3.11(b), where normalized acceleration variance is plotted as a function of particle size.
Not much difference has been observed in acceleration variance for two smaller size
particles (¢ <5), it remains same within the experimental error, however, the
normalized acceleration variance drops drastically for ¢ = 7.5 to ¢ = 26 and up to

70% between the smallest and largest particle size studied. For particles with ¢ > 5,
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Voth et al. have proposed a d~2/3 scaling for acceleration variance, which results from
K41 phenomenology by arguing that for a finite-sized particle, the particle acceleration
is only due to the flow structures larger than the particles diameter. They further
argued that this scaling holds quite well for large particles, but for smaller particles the
acceleration becomes independent of particle size. The normalized acceleration
variation decreases, as the relative density increases for the same finite size of the
particle. However, this drop was found to be small and Voth et al. have concluded that
the main discrepancy between the tracers and finite size particles is due to their size
and not because of their relative density. Here I point out the small variation of relative

densities studied by Voth et al. for the same particle size.
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FIG. 3.11 - (a) Particles density and size effects on acceleration PDFs normalized with its standard
deviation. Filled, open circles and triangles stand for (¢ = 2.55,T = 1.06), (¢ = 26,I' =1.06) and
(p = 26,T = 0.96) respectively [92]. (b) Particle size effects on normalized acceleration variance (a;);
open circles signify I' = 1.06, filled circles show I' = 0.96 [92]. The solid line indicates d~%/3 scaling. All
results in (a) and (b) are for Ry = 970.
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In a recent extensive study done by Volk et al. [90], a comparison of numerical
and experimental results on the Lagrangian acceleration of tracers, large neutrally
buoyant, small heavy particles and large but very light air bubbles has been done. All
the experiments were conducted at R; = 850 in a counter-rotating disk flow, where
particle tracking was done using Extended Laser Doppler Velocimetry. Neutrally
buoyant polystyrene particles (I' = 1.06) of diameter 31 and 250um were used, which
were considered to behave as tracers and large size neutrally buoyant particles. The
corresponding particle size normalized with Kolmogorov scale i.e. ¢ was of the order of
1.82 and 14.7 respectively. For heavy particles, small PMMA (Arcylic Glass) spheres
with diameter of 43um were used which are slightly heavier than water having I' = 1.4
and ¢ = 2.53. The last type of particle studied by them was air bubbles in water, with
diameter of 150um corresponding to ¢ = 8.82, which is relatively larger than tracers
and heavy particles, but smaller than neutrally buoyant polystyrene particles. The
relative density of these bubbles was of the order of 1073. The Stokes number (as
defined in previous chapter) for tracers, heavy, large neutrally buoyant and bubbles

were found to be 0.24, 0.58, 16 and 1.85 respectively.

In the numerical simulations, Volk et al. have used the model equation (2.4) that
we have already discussed in last chapter. This equation is an extension of simple point
particles model equation (3.1) and includes the added mass and pressure gradient
effects. In experiments, the normalized acceleration PDFs of all particles studied by Volk
et al. were found to be same; up to 10 times the rms acceleration value (FIG. 3.12(a)).
For high acceleration magnitudes the tracers were found to have more stretched PDF

tails than rest of the particle types; however the difference remains within the
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measurement errors and hence considered to be negligible. In comparison with DNS,
the normalized acceleration PDFs were underestimated by the numerical results for
tracers, heavy and finite size neutrally buoyant particles whereas the PDF was
overestimated in the case of bubbles. For three former cases, this could be due to the
small Reynolds number of the DNS (R; = 180) as compared with the experiments
where the Reynolds number was quite high (R; = 850). In the case of bubbles
acceleration the difference was due to the fact that lighter bubbles undergo lift and
gravitational forces which were not taken into account in the used particle dynamics
model. On the other hand the DNS were not able to differentiate the normalized
acceleration PDFs of tracers and large neutrally buoyant particles (FIG. 3.12(b)) as the
two curves match each other almost perfectly. This highlights the inability of the model
equation to take into account the finite size and hence physical volume effects of
particles. A much appropriate model is still required to take into account these effects so
as to reproduce the experimental results. However PDF tails of heavy particles were

seemed to be suppressed as compared with the other particle types.
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FIG. 3.12 Normalized acceleration PDFs [90] (a) Experiments (R; = 850) (b) DNS (R, = 180).
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Some differences were observed in the normalized acceleration variance a, of
the particles. For tracers, this was found to be 6.4 which were also observed by Voth et
al. for fluid particles. The a, drops very much from tracers value in case of large
neutrally buoyant particles, being 2.2. For heavy small particles it doesn’t drop that
much (a, = 4.3). The short time statistics, for all the types of particles were studied
through acceleration autocorrelation. Volk et al. have observed that lighter particles
acceleration de-correlate quickly as compared with other particle types, whereas, large
neutrally buoyant particles have longest correlation time for acceleration. The tracers
were found to de-correlate around 2.27,. The heavier particles were reported to have
correlation times a bit longer than the tracers, which is normal due to their large
response time. The DNS on the other hand reproduce well the bubbles acceleration
correlation, the heavier particles acceleration was found to remain correlated for time
longer than what Volk et al. have observed in experiments. Another interesting finding
was the inability of model equations to differentiate between tracers and large neutrally
buoyant particles short time statistics, as both have same correlation times. This
further prompts the scientific community to improve the existing point particle models
by taking into account Faxén corrections and material particle finite volume and

physical boundaries effects for large size particles.
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FIG. 3.13 - Acceleration autocorrelation normalized with its variance [90] (a) Experiments (R; = 850) (b)

DNS (R; = 180).

Recently, Xu and Bodenschatz [94] have studied and compared the dynamics of

small size tracers and large size neutrally buoyant and heavy particles in von Kdrman

flow for Taylors Reynolds numbers of 370 and 460. Polystyrene particles of sizes 26

and 220um, were used as tracers and large neutrally buoyant particles with T' = 1.06,

whereas spherical glass particles of diameter 138um were used as large sized heavy

particles with a relative density I of 2.5. The kolmogorov length scale was of the order

of 61 and 43um for R; = 370 and 460 respectively. For tracers, large size neutrally

buoyant and heavy particles, this gives ¢ of around 0.43, 3.6, 2.26 respectively in the

case for R; =370 case; and ¢ of 0.6, 5.12, 3.2 respectively, for R; = 460 flow

configuration. Furthermore, in order to take into account the particles finite size and

finite Reynolds number they have defined two more Stokes numbers which could

represent appropriately the dynamics of particles fulfilling these conditions. For finite

size particles, the kolmogorov length scale was not considered to be the appropriate
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time scale, instead the time scale of turbulent eddies was chosen; this corresponds to

the particles diameter, which according to the phenomenology of K41 was given as:

d2 1/3
Ty = (_p> (3.3)

&

This defined another Stokes number, using 7, as flow time scale:

4/
St,= 2= 1 (P (&) ; (3.4)
g 18 \py n

This definition of particles Stokes number seems to be more appropriate for
finite particles size, as the flow time scale derived from particles size scale gives better
notion of time, when compared with particles response time. Or in other words, the
finite size particles experience fluid velocity fluctuations, which has a characteristic time
scale given by (3.3), that should be compared with particles response time. Moreover,
the particle response time used in (3.2) and (3.4) is the viscous relaxation time (z,) of
the particles in creeping flow i.e. for Re, < 1. Therefore, in case of large size particles,
finite Reynolds number corrections should be made. The particles response time under

these conditions is related with viscous relaxation time as:

T, = Tp/ Cf (3.5)

Cp Rep
24

)

where Cf =

The drag coefficient corrections for different particles Reynolds number have
already been defined in previous chapter. Which are also given by (2.9) for different

ranges of particles Reynolds number and by
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(2.10) for Re, <2 x10°. Xu and Bodenschatz have defined the particles

Reynolds number as under using turbulent flows fluctuating velocity:

/3

udy, (¢ dp)1/3 dp _ (ﬁ)

Re, =
RN G DYCEAY

(3.6)

Hence, another Stokes number for large size particles having finite Reynolds number

was defined as following:

o __ 1 (p (dp>4/3 24 .
T ¢, 18 pr) \ 1 Re,Cp (37

where, an appropriate expression for drag coefficient (Cp) should be chosen

from (2.9) corresponding to particles Reynolds number or simply (2.10) should be used
in case of Re, <2 X 10°. Taking the particles response time as defined and used by
Volk et al. [90] and accommodating these finite particles size and Reynolds number

corrections we can also define another Stokes number,

Tp 1 (dp)%’ 24

St, = —
4 n Re,Cp

=128 (3.8)

The above definition of particles Stokes number holds true for all types of
particles considered so far including the description of the correct behavior of spherical
bubbles taking along the added mass effects in particles response time. Xu and
Bodenschatz have already observed that for large particles St;is smaller than St,
which itself is further smaller than St ;. We have found that St, is smaller than St; and

St, but greater than St .
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FIG. 3.14 - (a) Normalized acceleration PDFs for experiments at R, = 460 [94], the dashed line indicates
the results obtained by Mordant et al. [66] at R; = 690. (b) Acceleration autocorrelation coefficients for
experiments at R, = 460 [94].

The experiments of Xu and Bodenschatz have shown that the normalized
acceleration PDFs (FIG. 3.14(a)) have same form in case of large neutrally buoyant and
heavy particles as compared with tracers for both Reynolds numbers they studied. They
have found however slight reduction of PDF tails in case of large particles even at high
Reynolds number, the case in which particles Stokes number St;increases too.
Furthermore they have indicated that the use of new definition of particles Stokes
number is much appropriate as compared with its classic definition. As in the case of
spherical glass particles the classic Stokes number St; for glass particles is a bit
smaller than polystyrene particles, but the modified Stokes number St; for spherical
glass particles is greater than polystyrene particles, which is well translated also by the
suppression of normalized acceleration PDF tails of spherical glass particles. The
difference in stretching of tails is not enormous and the thesis author presumes here

that the normalized acceleration PDFs remain same within the statistical errors.
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Moreover the effects of particles larger size is less pronounced as compared with heavy
and small or point particles. As in the case of Ayyalasomayajula et al. [4] and Bec et al.
[9] where they have observed significant drop in particles normalized acceleration even
at small particles Stokes number of the order of 0.1. On the other hand, acceleration
variance in the present experiments was observed to be same for all of the three
particles at same Reynolds number. This could be due to the fact that for the range of ¢
explored by Xu and Bodenschatz lies where (¢ < 5) no effect on particles acceleration
variance can be observed due to their size variation, this has already been discovered by
Voth et al. [92]. The findings of Voth et al. can be further cemented by the experimental
results of Volk et al. [90] in which they have observed reduction in normalized
acceleration variance of large neutrally buoyant particles (¢ = 14.7) as compared with
small size tracers (¢ = 1.82), where tracers normalized acceleration variance is nearly
the same as observed by Voth et al. Moreover, in our present study [78] we have
observed the variation in neutrally buoyant particle acceleration variance due to their
finite size, where the particles sizes were varied in the range of 10 < ¢ < 26. These
results will be presented and discussed in Chapter 5 in detail. The acceleration
autocorrelations were found to be the same for all the three particle types, the
correlation time was found to be of the order of 2.27,. Contrary to the observation of
Bec et al. that particles acceleration variance decreases for heavy point particles with
increasing Stokes number, Xu and Bodenschatz have observed same acceleration
variance for tracers (St; = 0.02), finite size neutrally buoyant (St; = 0.15) and slightly
heavier particles (St; = 0.23). Bec et al. have attributed this drop in acceleration
variance to the preferential concentration of inertial particles in the low vorticity high

strain regions for particles with St; < 0.4. Xu and Bodenschatz have observed that even
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the large neutrally buoyant particles do not observe this acceleration variance drop
therefore; they have proposed that unlike the heavy point particles as reported by Bec
et al, large particles may not escape from high vorticity zones and undergo same
accelerations as that of tracers. Or in other words large size particles sample the flow in
the same fashion as that of tracers, and the effect on particle acceleration difference is
due to the filtering of flow fluctuations due to their finite size. A substantial remark
should be made here that a comparison of Lagrangian acceleration statistics in von
Karman flow (Xu and Bodenschatz) is done with DNS and active grid turbulence, which
are different flow types. It would have been even better if a comparison is made with
similar flow types especially in the case of acceleration variance and acceleration

autocorrelations.

In this chapter, we have briefly reviewed the Lagrangian acceleration statistics
for three types of particle. First, very small and neutrally buoyant particles which are
also called as fluid particles or tracers. It has been observed that PDF of these particles
have very wide spread exponential tails and have intermittent dynamics. Second class of
particles reviewed have minute size and very high density, we observed suppressed
PDF tails for these particles as compared with tracers. Their acceleration variance was
also found to have diminished, which was due to the flow sampling of the particles and
filtering of particles acceleration by their response time. The third type of particles
reviewed were large neutrally buoyant and slightly heavy particles for which we have
seen no change in normalized acceleration PDFs but reduction in their acceleration

variance was noticed.
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In our experimental work, we have carefully explored the Lagrangian
acceleration statistics of finite sized (10 < ¢ < 26) neutrally buoyant (I'= 1) and
large heavy particles (10 < ¢ <26)and (1 <TI' < 65). Our study will help in
investigating the physical phenomena involved in the transport of these finite sized

neutrally buoyant and heavy particles in turbulent flows.
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Experimental Setup

Lagrangian tracking of particles in turbulent flow has always been a challenge
both for physicists and engineers alike. In spite of rapid technological growth and
ensuing experimental and numerical advancements made in the area of
microelectronics and microprocessors, the scientific community is still unable to
completely resolve the multiple scale nature of turbulence, both in time & space and the
study of particles dynamics in a turbulent flow still remains in infancy. Numerical and
experimental research work had been carried out in Lagrangian tracking of particles,
but we still lack a comprehensive understanding of this domain. The dispersion of
pollutants in the environment, movement of rain drops in clouds, combustion chamber
mixing and mixing in chemical mixers is not yet understood in detail. It is the chaotic
nature of turbulent flows that has made it difficult to understand completely their

dynamics and physics.

Amongst several experimental efforts made by different groups in the research
of Lagrangian particle tracking, we have also studied the dynamics of material particle
in wind tunnel turbulence. As particles we have used soap bubbles inflated either with
helium or air or carbon dioxide, in order to obtain a combination of size and densities.
We have named the particles as ‘material’, because unlike fluid or point particles
conventionally used in numerical simulations these material particles possess physical

boundaries and hence a physical mass and volume. A state-of-the-art, Ultrasonic
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Doppler Velocimetry has been employed using a pair of identical electro-acoustic
transducers that permits us to track these material particles in the wind tunnel with
high mean flow velocity, while simultaneously resolving the smallest and the largest
time scale of turbulence. Employing a versatile particle generator enabled us to perform
experiments with a wide range of particle sizes and densities. This in turn enabled us to
study particle dynamics and its behavior for particles ranging from neutrally buoyant to

inertial ones.

4.1 Flow

4.1.1 Wind Tunnel

All experiments were conducted in a closed circuit wind tunnel where a
turbulent flow is generated downstream a grid. Two counter-rotating fans, powered by
two continuous current motors of 25 kilowatts (max) each, generate the flow. The
motor speed achieve high rpms enabling us achieve a mean flow velocity of the order
of 20 m.s™! The test section has a length of 4 meters with 75 X 75 cm? cross section
and contains four windows of length one meter each. The wind tunnel schematic is

presented in the FIG. 4.1.
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FIG. 4.1 - Wind tunnel schematics.

Ultrasonic Doppler Velocimetry made it necessary to isolate test section walls
acoustically in order to avoid reverberations. The sides and bottom walls of last three
meters of the test section were isolated with the help of carton sheets. Reverberation
effects on the first meter length were expected not to interfere with particle tracking,

therefore these walls were left acoustically un-isolated.

The grid comprises of a set of 10 horizontal and 10 vertical square composite
bars of 15mm side, which were glued using epoxy resin adhesive. It resulted in a mesh
size (M) of 60mm. The solidity ratio; which is the ratio of the area occupied by the grid
and the total cross section area, was found to be 0.36. The actual picture of grid is given

in FIG. 4.2.
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FIG. 4.2 - Grid placed at start of the test section.

The test section is equipped with rails on which is mounted a small trolley powered
by three step motors that can transport the trolley both longitudinally and
transversally. Two motors responsible for longitudinal and span-wise movements could
cover the whole length and span of test section respectively, but the range of vertical
movement is somewhat limited. A provision of attaching supports for hot-wire and pitot
tube on the trolley made it possible to perform hot-wire anemometry and also allowed
us to obtain the mean velocity flow fields and velocity fluctuations not only throughout
the test section length but also on cross sections at different mesh distances from the

grid.

4.1.2 Flow Characterization

The turbulence generated downstream a passive grid may be visualized in FIG. 4.3.
Before performing measurements in the wind tunnel it was absolutely essential to
characterize the turbulence generated by the grid. This involved determination of

turbulence decay power law, measurement of turbulence intensity, determination of
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spatial and temporal scales of turbulence at different mesh distances from grid and also

at different points at a particular cross section.

Developed Turbulence
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FIG. 4.3 - Turbulence generated downstream a passive grid, different zones are turbulence are indicated.
Figure taken from [24].

To achieve the objective of flow characterization the hot-wire anemometry results of
[57] were used. In his work, the evolution of axial mean flow velocity field was studied,
at the center of cross section, for two Reynolds number based on mesh size Rey, of

4.7 x 10*and 8.2 x 10%*. The general form of decaying power law is given by,

2
((3—2) = A(% — fw—o) _"), where (u?) is the variance of velocity fluctuations, U is the mean
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Table 4.1: Flow characteristics at start center and end of measurement volume, for two mean flow

velocities.
Flow velocity 14 m.s1 15 m.s1
Distance from grid & average
values 42M 48M 54M | Average | 42M 48M 54M | Average
Turbulence intensity (%) 3.12 2.88 2.68 2.9 3.12 2.88 2.68 2.9
Integral Length Scale, L
(mm) 58.2 61.5 64.6 61.4 58.2 61.5 64.6 61.4
Taylor miscroscale, A (mm) 5.5 5.9 6.2 5.9 5.3 5.7 6 5.7
Kolmogorov dissipative
scale, n(um) 226 246 266 246.0 215 234 252 233.7
Taylors, Ry 159.5 157.5 | 155.6 157.5 165 163 161 163.0
Energy dissipation rate, €
(m?s3) 1.2878 | 0.9157 | 0.6789 0.96 1.584 | 1.1263 | 0.8351 1.18
Integral time scale, 1; (sec) 0.1331 | 0.1528 | 0.1724 0.15 | 0.1243 | 0.1426 | 0.1609 0.14
Kolmogorov time scale, 7,
(ms) 3.4 4 4.7 4.03 31 3.6 4.2 3.63

flow velocity, A and n are the decay law’s empirical constants, x is the distance from the
grid and x, is the virtual origin of turbulence. These decay laws were determined by

linearly fitting the experimentally measured data for Re, of 4.7 x 10*and 8.2 X

x -1.21 x -1.12
10* which are given by 0.081 (ﬁ - 2) and 0.065 (ﬁ - 2) respectively. As all of

our experiments were run for Re,, ~ 6 X 10*, the decay power law corresponding to

-1.17
this Reynolds number was obtained by interpolation which is 0.073(% - 2) . The

turbulence intensity at distance 42M, is of the order of 3.3% which decays up to 2.8%
at 54M; in between lies our measurement zone. In the same manner the interpolated
integral length scale dependency on longitudinal distance from the grid was found to

follow a particular law of L = 0.041(x — x,)°*°. The Reynolds number based on
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Taylor’s micro-scale was determined from third order structure function

using (S3max = 0.82 + 848 R;ZB) [57], from where the Taylor micro-scale was
determined from the definition R; = u’A/v. The flow properties at start, center and the
end of measurement zone and their averages are given in Table 4.1, for mean flow

velocities of 14 and 15 m. s~ 1.

4.2 Particles
4.2.1 Bubble Generation Machine

As stated earlier, the particles we used are soap bubbles inflated with gas which
could either be helium, air or carbon dioxide. The filling gas selection depended upon
the required relative densities. With the help of the versatile bubble generator, we were
able to study a range of relative densities and bubble sizes. The bubble generator was
developed in laboratory and served during the Lagrangian tracking of particles in axi-
symmetric jet [35]. In FIG. 4.4, the picture of bubble generation machine is shown. The
machine comprises a container in which liquid soap is stored. This reservoir is kept
under constant air pressure that can be regulated with pressure regulating knob and the
corresponding pressure could be read on pressure gauge. We have three regulating
parameters; liquid soap, external air and inner gas flow rates. These three flow rates
directly affect the bubble formation through injector nozzle the details of which are

shown in following paragraphs.
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FIG. 4.4 - Bubble generation machine.

4.2.2 Injector Nozzle

The regulated supplies of liquid soap, air and inner gas to the injector nozzle
ensure the bubble formation. The injector nozzle comprises of a set of coaxial tubes that

can be observed in FIG. 4.5.
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FIG. 4.5 - Injector nozzle (a) Cross section view (b) without conical nozzle

From the above presented views we can observe a few concentric tubes. Around
the periphery of outer most concentric tube is an array of small tubes which laminarize
the external airflow. The two inner tubes are prolonged for several millimeters,
amongst the inner most tube flows the gas which is responsible to inflate the bubble,
and around this tube we have a continuous supply of liquid soap, which forms a thin
soap film around the inner most tube. This thin soap film is inflated in the form of
bubble by the inner gas flow, thus the frequency of bubble generation depends mainly
on inner gas flow rate; the higher the flow rate the greater will be the bubble generation
frequency and vice versa. Whereas the flow in the remaining staggered tubes and the

spaces in between them are responsible for detaching the bubble from injector.
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Inner gas

Liquid soap

FIG. 4.6 - Injector nozzle flow scheme

For a given inner gas type, a contrast of diameter and relative densities can be
obtained by changing the relative flow rates of inner gas, liquid soap and external air.
The bubble sizes range from 1.7mm to 6mm, whereas the densities were varied from
neutrally buoyant up to 65 times heavier than the environmental air. For neutrally
buoyant bubbles helium gas was used so as to compensate the weight of the soap film.
For heavier bubbles either air or carbon dioxide was used, the choice depends upon the
stable bubble generation state required!. For small bubble sizes, high external air flow
is necessary so as to detach the bubble quickly from forming tubes, without allowing
sufficient bubble growth. In this case, in order to keep the bubble generation continuous
and uniform (which is our prime objective) higher flow rates of soap and inner gas are
required, which result in formation of bubbles with high frequencies and numbers. As
the signal processing algorithm that we have used in our case limits us to track an

individual particle at a time, i.e. the velocity signal of passage of only a single bubble at a

1 Experiments with CO, were not taken into account because the life of bubbles inflated
with €0, was too short; this could be because of solubility of CO, in water due to which the gas
diffuse very quickly through the soap film thickness resulting in the bubble breakup.
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time in the measurement zone can be useful for statistical calculations. Therefore these
bubbles were destroyed using a chopper, placed in front of injector that reduces the
bubbles quantity and ensured tracking of more individual particles in the measurement
volume downstream. The injector itself in case of neutrally buoyant bubbles was placed
far upstream at the start of convergent section of wind tunnel. The bubble’s life was
long enough to track them in the measurement volume few meters downstream, while

it was being transported with the mean flow.

To repeatedly find a particular bubble diameter and density production state, is a
bit of a tricky task, especially in the case of heavy bubbles; to achieve stable bubble
generation with a particular size and density combination is tiresome and need a lot of
practice in regulating the three flow rates. As our study is based on the effects of size
and density on dynamics of particles employing Lagrangian tracking, therefore it is
essential to know particle’s accurate size, dispersion and relative densities. The
methods devised for size and density measurements are explained in the following

sections.

4.2.3 Size Measurements

The exact measurement of bubble sizes and their dispersion was ensured with
the help of a home-designed bubble size measurer. Two small lasers are fixed on a strip
beaming at a particular angle, which in the absence of bubbles are not detected by their
respective photodiodes that are fixed on the other face of strip. The strip itself is
mounted on injector at the time of measurements. Whenever a bubble crosses the laser
beam it is reflected by the soap film twice, first when bubble enters in the path of laser

beam second when the same bubble leaves it. The same happens while this bubble
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crosses the second laser beam. As a result we obtain for each bubble a double peak
signal for each set of laser-photodiode. The schematics of bubble size measurer is
shown in FIG. 4.7(a) where different positions of the same bubble are shown with signal
peaks as shown in FIG. 4.7(b). The time between the double peaks of first signal Tj, is
the ratio of the bubble diameter D and its speed V. Whereas, the time between the
corresponding peaks of two signals 7> is the ratio between the distance the bubble has
traveled during this time and its speed. Here we make a justified assumption that the
bubble speed does not vary in between, as the two photodiodes are very near to each

other.

Lasers

Ampltude (o)
- B

Photodiodes Timwe (sec)

(a) (b)

FIG. 4.7 - (a) Bubble size measurer scheme (b) corresponding recorded signal
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Thus the bubble diameter is expected to be given by:

Dx T,/T, (41)

Possible small deviations to this linear scaling might exist due to a small
systematic variation of bubbles velocity between the two photodiodes or because of the
effects of the bubble curvature on the deviation of the laser beam. We will therefore

consider a more general calibration relation of the form:

D=P(T,/T) (42)

with P a polynomial function. As shown next, the calibration law is best fitted by

a quadratic law, though a linear relation still remains a very good approximation.

For a range of bubble sizes (1.7mm to 6mm) photodiode signals were recorded
in parallel with high speed imaging (FIG. 4.8(a)). Raw images were processed in order
to extract bubble diameter. From the raw images containing a bubble a reference image
was subtracted and then the bubble edges were determined using canny algorithm. By
correlating the processed image with prescribed circles of known diameter, the outer
edge diameter of the processed image (FIG. 4.8(b)) was determined within one pixel
accuracy (2.4% to 1.3% for bubble sizes of 3mm to 6mm respectively). This procedure
was repeated for all the recorded images (around 100 images with bubbles were used
for diameter calculation for each setting of bubble generation machine), hence the

bubble diameter and dispersion was determined.
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Nozzle edge

(a) (b)
FIG. 4.8 - (a) raw image of a bubble leaving nozzle (b) processed image of a bubble showing bubble edges
after using canny algorithm.

A calibration curve was traced by linear and quadratic fitting and relative errors
were estimated (FIG. 4.9(a) and (b)) respectively. Both linear and quadratic fits well
with the experimental measurements however we have used quadratic fit in our
calculations. The percent dispersion in bubble sizes was found to be of the order of 3%
for all the bubble generation machine settings except in the case of 1.7mm diameter
bubble this percent dispersion was as high as 35% which was mainly due to unstable
bubble generation state. This is why we have discarded the 1.7mm diameter data set for
concluding results; however for rest of the diameters the bubbles are mono-dispersed, a
fact that has permitted us to precisely study the effect of particle size on their dynamics

in a turbulent flow.
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FIG. 4.9- Calibration curve with error estimation (a) linear fit (b) quadratic fit.
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4.2.4 Density Measurements

As discussed earlier, the bubbles are formed by inflating a soap film with the help
of inner gas of different kinds depending on the desired bubble density. Therefore, the
overall density of a bubble p,, is given by:

My Mt My My M

= - —-— = +
=, v v,

(4.3)

where, M}, and V,, are the bubble total mass and volume respectively; M and M,
are the total soap and inner gas masses respectively. As the soap film thickness is very
small, compared to bubble’s radius (e/R~10"*) [35], we assume the volume of gas
equal to the bubble volume of same diameter D. Hence the bubble density can be
estimated as:

Yy + pg =6 —=+
Pp = Vg Pg 3T Pg = D3 Pg (4.4)

"4 D
37 (3)
Knowing the inner gas density pg, we only need to measure the mass of soap M,

in each bubble and its diameter D in order to determine bubble’s overall density p,.

We have already shown in the previous section how to determine the particle
diameter D. We only needed then to determine the mass of soap carried in each bubble.
This task was achieved by measuring simultaneously with the bubble generation the
soap volume flow rate Q¢ and the bubble generation frequency F;. F}, is easily obtained
from the photodiode signal used to measure the bubble diameter. Measuring the soap
flow rate turned to be a much complex issue, as it was very small indeed (1 X

107° L. s™1). The final solution consisted using a graduated pipette in which soap flows
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from reservoir to the injector and we recorded the change of the volume in the pipette
with time. The circuit diagram of heavy bubble generation is given in FIG. 4.10).
Measurements over 90 seconds at least were required in order to obtain a change of
volume significant enough to be measured accurately. This procedure only allows
measuring the average flow rate of soap in time. In order to relate this to the actual
quantity of soap in the bubbles a special attention was therefore made to ensure that
the bubble generator was operated in a stable state and that no soap was ejected from

the injector nozzle without creating a bubble.

Knowing the soap flow rate Q, , the bubble generation frequency F,, and the soap
solution density p; (ps = 1 g.cm™3 in the entire study), the average mass of soap in

each bubble, and their corresponding density are given by:

QSpS
_ (4.5)
M F,
Qs Ps
_ (4.6)
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FIG. 4.10- Flow circuit diagram for heavy bubble generation when inflated with air. Air from the
compressor (1) is maintained at a specific pressure with the help of pressure relief valve (3), the
corresponding pressure can be read on pressure gauge (2). Later on the flow is divided with the help of
flow dividers (4 and 5). The soap reservoir (10) is kept under constant air pressure; the soap from
reservoir is filled into the pipette with the help of gate (9) and non-return (8) valves. At the moment of
pipette filling the plug (6) is removed and the soap supply to the injector nozzle (18) is cut using switch
(13). After filling the pipette the plug (6) is switched on and the valve (9) is closed so as to avoid any flow
from pipette to reservoir. The switch (13) is opened which permits the soap flow from pipette to injector
nozzle after filtering (11) and regulating (12) it. Two air supplies (one for inner gas other for external air)
from flow divider (5) are regulated by regulators (14 and 16) and supplied also to injector nozzle; in this
manner the heavy bubbles are formed.

From the above equations, it is obvious that the bubble density depends upon the
mass of liquid soap in each bubble and the inner gas density; however the first term is
dominant in increasing the bubble density. In experiments with heavier bubbles the
main challenge is to find a continuous and uniform bubble formation state with close to
desired diameter and relative densities. Air and Carbon dioxide were used as inner
gases in order to achieve the above objective. This process sometimes took hours to
attain or sometimes all efforts were in vain and the next day one has to start from

scratch. However, we do not gain much in term of bubble relative densities either using
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CO, or even SF, (that we have not used) as inner gas. Knowing the relative densities of
C0O, and SFg are of the order of ~1.4 and ~5.1 respectively, the maximum bubble
relative densities that could be obtained would be around 66 and 68 using CO, and SF,
respectively as compared with 65, which we have obtained with air as inner gas, for
same mass of liquid soap. Moreover, the bubbles inflated with C0O,, a gas having a good
solubility in water, were not stable and a continuous, uniform state of bubble generation
was difficult to attain. In the end, for most of our heavy bubble experiments air was used

as inner gas, and density was made higher by increasing the soap mass per bubble.

For neutrally buoyant particle tracking experiments with particular bubble
diameter, their density was not measured but adjusted visually. We can clearly observe
that by changing Helium flow rate the bubbles become heavier or lighter than
surrounding air. For particular helium flow rate we can observe that the bubbles
neither have a tendency to rise nor to fall, this bubble generation setting was employed

for neutrally buoyant experiments.

4.3 Particle Tracking

The instantaneous particle tracking was done employing Ultrasonic Doppler
Velocimetry. This technique permitted us to track particles in wind tunnel turbulent
flow with high mean velocity, resolving simultaneously the smallest and a good fraction
of the largest time scale of turbulence. Before going into the details of our tracking
technique and its characteristics it is necessary to highlight some basic physical

principles involved.
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4.3.1 Acoustic Scattering

Whenever a sound wave encounters an obstacle or inhomogeneity along its
propagation path, it is deflected from its original course. This deflected sound wave is
called as scattered wave and hence the phenomenon is named as acoustic scattering.
The obstacle or inhomogeneity could be, fish or plankton in the ocean, red blood
corpuscles in the bloodstream, vortex in a turbulent flow, water droplets or soap
bubbles in air flow, or any object with any form and shape offering a contrast of acoustic
impedance with respect to ambient propagating medium. The wave scattered due to
these obstructions spread out in all directions, could distort and interfere with the
incident wave. In general the nature of acoustic scattering depends upon the frequency
of incident wave, shape and size of the obstacles and their velocities. If the obstacle is
very large compared with the incident wavelength, half of this scattered wave spreads
out in all directions whereas, the other half is concentrated behind the obstacle, creating
a sharp-edged shadow there. On the other hand for obstacles very small, compared
with the wavelength, the entire scattered wave propagates out in all directions with no
sharp-edged shadow. In the cases of obstacle sizes comparable with wavelength a
variety of curious interference phenomenon can occur. Expressions of scattering from
various obstructions like cylinder, inhomogeneities, turbulence, rigid sphere, non rigid
sphere, porous sphere etc exist in the literature but here only scattering from rigid

sphere will be discussed.
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4.3.1.1 Scattering by a Sphere

Consider a plane harmonic pressure wave propagating in a direction parallel to

the Z-axis (as shown in FIG. 4.11).

Y
Point
P
VA
r /
Plane Incident
Wavefront ™ Rigid Sphere

FIG. 4.11 - Geometrical scheme showing acoustic scattering of plane wave by a rigid sphere.

The expression for plane pressure wave is given as:

pi(t) = poetact=2 (4.7)

where, p, is the pressure amplitude, q is the wave number, z is the Z coordinate

and t represents time. This incident pressure wave is scattered by sphere, and the
scattered pressure field at any point P in space is given by the difference of total and

incident pressure as following:

ps(t) = (P0%/,,) et f (qa) (4.8)
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where, a; denotes the sphere’s radius, r is the position vector of point P and
f(qa) is the reflection form function of the sphere. This form function however depends
upon the coordinates of r and 8 of the point P but not on ¢, due to symmetry. For rigid

sphere the form function is following:

f(qa) = =2 (%) etar Z(—i)”+1 h,(lz)(qr) P,(cos@)(2n + 1) sinn, e’ (4.9)
S n=0

where, B,(cosf) is the nth degree Legendre polynomial, and n,, is parametrical

defined as

. (n + 1)jn (qa) - (qa)jn—l(qa)
(n + Dy, (qa) — (qa)yn—1 (qa)

tann, =

h;z) , Jn and y,, are the spherical Bessel functions.

4.3.2 Ultrasonic Transducers
4.3.2.1 Construction and Mounting

The ultrasonic emission and reception was accomplished with the help of two
identical plane circular piston type radiators (Sell Type transducers), one serving as

emitter while the other performing the reverse operation i.e. reception.

FIG. 4.12 shows a transverse view of a transducer: basically it is a capacitor with
a fixed conductor (a circular zinc plate) and a mobile membrane (a Mylar sheet

metalized on the outer face).
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Mylar sheet

Zinc disc

PVC ring

Copper base plate

FIG. 4.12 - Electro-acoustic transducer schematics.

These transducers are homemade, developed under the premises of L.E.G.I,
except the zinc disc. The surface of the zinc disc facing the insulated side of the Mylar
sheet was photo etched for having micro-structure square dot patterns of sizes 100um
and a depth of 120um each. Each of these cavities behaves as a small plane piston
radiator. This zinc disc is mounted on a pvc ring, which is screwed with a copper plate,
with no connection between zinc and copper plate. On PVC ring a Mylar sheet of 12
microns thickness is glued, one side of which is conductor, whereas the other is an
insulator. This PVC ring and glued Mylar is attached with transducer’s main body with
an aluminum ring. The connection between Mylar conducting surface and copper base
plate is made with the help of aluminum ring and screws. The polarization of zinc disc

and Mylar sheet creates capacitance between the elemental cavities on the zinc disc and
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insulated side of Mylar sheet. As a result the Mylar sheet is stretched. In the case of the
emitter, whenever a sinusoidal excitation is made while the Mylar is stretched, it
vibrates with the excited frequency hence propagating sound wave in the direction
perpendicular to the transducer surface. The transducer is reversible and can be used as
a receptor as well: whenever a sound wave vibrates the stretched Mylar sheet, the
resulting change of the capacitance between Mylar and elemental cavities generates a
modulation of the polarization point; which is at the frequency of the incident wave.
Contrary to piezo-electric transducers an interesting property of Sell type transducer is

that they can be operated over a wide range of frequencies.

4.3.2.2 Field Characteristics

In order to know and optimize measurement zone’s dimensions and to ensure
correct particle tracking, it is necessary to know the acoustic field generated by these

transducers.

The field established by circular piston type radiator is rather complicated and
difficult to determine at all distances and angles. However, the pressure amplitude on

the axis of the piston can be given by the following expression [48]:

P(r,0=0)= 2p,cU, |si L 1+(a)2 1
1,0 =0)= 2pocUp [sin y5qr (4.10)

where, p, is the density of the fluid, c is the celerity of sound, U, is the speed

amplitude at piston surface, q is the wave number, r the axial distance from piston
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center and a is the radius of the piston. For a case with r/a > 1 and also r/a > qa
the pressure amplitude on the piston axis has an asymptotic form which is given as:

1 a
P(r,6=0)= 3 pOCUO;ka (411)

In our experiments, the excitation frequency is 80 kHz that gives a wave number
q ~1465 m' and the radius of transducers is 3.5cm. In FIG. 4.13, the normalized
pressure amplitude (normalized with 2 p, c U, ) as a function of axial distance from
transducer is plotted (solid blue line plot). For small values of r we can observe
amplitude fluctuations from zero to unity, at some distance 7. = 0.3m, these
oscillations stop and a final peak is reached, which is regarded as the end of “near-field”
pressure amplitude region or the boundary between near-field and “far-field”. For
values greater than 7, the pressure amplitude falls steadily. The normalized asymptotic
pressure amplitude is also shown in FIG. 4.13 as red dashed lines. It can be noticed that
the two plots match well for large axial distances from piston. The same normalized
pressure amplitude is plotted in FIG. 4.14 as a function of axial distance normalized by

transducer radius. The axial pressure amplitude is given in following figures.
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FIG. 4.13 - Normalized pressure amplitude as a function of axial distance from circular piston type
transducer of radius 3.5mm while excited with a frequency of 80 kHz. In red dashed line the normalized
asymptotic pressure amplitude is plotted. Inset shows the near field region.
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FIG. 4.14 - Normalized pressure amplitude as a function of axial distance normalized with radius of
circular piston transducer. In red dashed line is shown the normalized asymptotic pressure amplitude.
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The directional effects are taken into account by a directional factor, which
multiplied by axial pressure amplitude gives the total pressure field as a function of

distance and angle (8) from piston axis.

P(r,6) = P(r,0 = 0)H(6) (4.12)

2J1(qasin@)

where, the directional factor is given by, H(6) = qasing

, J; is the Bessel

function of first kind with order one. In FIG. 4.15, the functional behavior of directional
factor is plotted, we can observe atf = 0; the factor is unity which corresponds to
pressure amplitude at the piston axis. The factor then starts decreasing indicating the
decrease in pressure amplitude with increasing angle until it reaches zero which
indicates the pressure node with vortex at the piston surface. In between these angles
lies the principle lobe. The next relative maximums correspond to maximum pressure
amplitudes of secondary lobes; whereas the successive zeros correspond to the
pressure nodes of secondary lobes. It can be noticed that there is a factor of 10 between

the pressure amplitudes of principal and first secondary lobe.
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FIG. 4.15 - Functional behavior of H(6).

The variation of intensity level with angle; also called as directivity pattern is
defined as b(8) = 20 log H(6). The beam pattern for circular piston with ga = 51.3 is
plotted in FIG. 4.16, we can observe the principal lobe is one order of magnitude greater
than the first secondary lobe. It can also be noticed that the transducers have high

directivity with principal lobe forming between angles +4.3°.

It was the high directivity of transducers that allowed us to track the particles
only while passing through the measurement volume formed by intersecting the emitter

and receiver principal lobes.
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FIG. 4.16 - Beam pattern for a circular piston for ga = 51.3.

4.3.3 Ultrasonic Doppler Velocimetry

After having discussed acoustic scattering, electro-acoustic transducers, their
characteristics and geometrical arrangements for particle tracking; we will now
consider the tracking principle in detail. An ultrasonic sinusoidal wave emanating from
ultrasonic emitter propagates with frequency 9,, in a particular direction7i, . This wave
is scattered by a particle which is entered in its propagation zone. As long as the particle
remains in measurement volume this scattered wave is being recorded by receiver in a

particular direction 77 with scattering angle 6,.,; as shown in

FIG. 4.17. The scattered signal is received with an instantaneous frequency
shift 659(t) = 9(t) — 9,, due to Doppler effect. By definition, the scattered wave vector

is given as following:
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S R 5 2m9 2md,
Qscat = qn — qn, = —— N — Ny (4.13)
C C
Qscat = c (n - nO) (4.14)

Ultrasonic
Emitter

Receiver

FIG. 4.17 - Ultrasonic Doppler Velocimetry scheme.

where an assumption was made that the emitted and received frequencies are
close to each other ie. §9 = 9 — 9, K 9, which is almost true in our case as the
frequency of emission is 80kHz and the received frequency fluctuates around 87kHz.
The instantaneous frequency shift expression derived from Doppler effect principle is

given by,
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1, 4.15
59(6) = 9() = B = 5= Gscar -E(O) e

After some geometrical calculations following expression can be derived from

equation (4.15),

w// () = —— 9(t) (4.16)

2m0,Sin (2352

From equation (4.16), we can easily observe that particle’s instantaneous
longitudinal velocity is directly proportional to the instantaneous frequency shift. If we
are capable of determining the instantaneous frequency shift then we can also obtain
particle’s instantaneous velocity along its trajectory throughout its passage in the
measurement volume. In order to determine this frequency shift several methods exist,

these methods are discussed in the upcoming sections.

4.3.3.1 Measurement Zone

As described earlier, the measurement zone is formed by the intersection of
emitter and receiver principal lobes. Its dimensions depend upon several factors like;
the diameter of transducers, excitation frequency, and angle between emitter and
receiver. The larger the transducer diameter the greater will be the measurement
volume converse is the case with excitation frequency. While increasing the angle
between emitter and receiver the longitudinal dimension of measurement zone
increases too. Similarly the location of measurement zone depends upon the center

distance and angle between transducers, and the position where emitter and receiver
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are placed in the wind tunnel. Knowing the placement window constraints, and to
locate the measurement volume in a region where the turbulence is nearly
homogeneous and isotropic, required these parameters adjusting accordingly. The
transducers were placed in the divergent section after the 4 meters test section so as to
have minimum hindrance with the flow. A special attention was made for the alignment
of the transducers so as to have the center of measurement volume at the center line of
wind tunnel’s longitudinal axis. Thanks to the rail and trolley setup the location and
dimension of measurement volume was determined. A metallic rod was held vertically
in the trolley which was then moved downstream with a constant speed along the axis
of test section. At First, the measurement was done placing the rod at the cross section
center and the resulting scattered signal was recorded. The rod was then shifted
transversally and moved with the same speed. From the recorded signals the intensity

of scattered signal was determined and plotted as an image which is given in FIG. 4.18.

Measurement Zone
(75cm)

Grid position

Receiver

Emitter

275 cm

FIG. 4.18 - Experimental determination of the measurement zone in the wind tunnel (figure not to scale).

From FIG. 4.18, we observe the position of the measurement zones from the grid

and its size. On the zone of acoustic wave propagation, just before the measurement
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zone, we can see the field which results from the emitter’s/receiver’s principle lobe
interference with receiver’s/emitter’s secondary lobes. This however is much clear in
the case of interference with emitter’s principle lobe with receiver’s secondary lobes.
For a comparison we have also calculated the theoretical acoustic field generated by the
interference of emitters and receivers acoustic fields while keeping the geometrical and
emission parameters approximately the same. This interference pattern is shown in FIG.
4.19. The calculations were done by the discrete integration of Huyghens-Fresnel
principle. Qualitatively same patterns have been observed when compared with
experimental measurements, with measurement volume having a size of around 60 cm
and here the interference of one transducer’s principle lobe with the secondary lobes of
the other one is identical, which should be the same due to the identical nature of the

two transducers.

Y (cm)

X(cm)

FIG. 4.19 - Acoustic field resulting from emitter and receiver field’s interference. The acoustic field is
calculated using Huyghens-Fresnel discrete integration.
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4.4 Data acquisition and processing

4.4.1 Data acquisition

The acoustic wave emission, reception and acquisition are done with the help of

a number of pieces of equipment. The general scheme is given in FIG. 4.20.

A wave form generator of HP 33120A type was used for the emission of a plane
sinusoidal wave at a frequency of 80 kHz and amplitude of 5 volts in the test section of
wind tunnel. In order to compensate the vibrating membrane inertia and electrical to
mechanical energy conversion losses, the signal power is increased by amplifying it
using a NF Electronics 4005 high speed power amplifier with a gain of the order of 20.
After passing through the emitter polarization box the signal excites the emitter and

hence a plane sinusoidal wave is produced and propagates in a particular direction.

On the other hand the receiver which is also polarized with the help of receiver
polarization box detects the signal scattered by the particle passing by the measurement
zone with a frequency shift. The signal received with a frequency shift is band pass
filtered using NI 3628 dual channel programmable filter. The filtered signal is visualized
on SRS 2 channel dynamic spectral analyzer screen. Heterodyning of emitted and
received signal is done by multiplying the two signals and low-pass filtering. This
process enables to shift emission frequency i.e. 80 kHz to zero so as to digitize shifted
signal at relatively low sampling frequencies. An Agilent HP E1401B series High Power
VXI Mainframe with E1430A VXI 23-bit digitizer and 743 VME High-Performance

Precision Architecture Board and an external hard disk is used for data acquisition and
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storage. Acquisitions were done at a sampling rate Fs = 32768 Hz. For a each particular

size and density of particle, several thousands of trajectories were recorded.
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Reciever
Polarizing Box

Emitter
Polarizing Box

A

Acoustic

Y

o i Power
Band Pass Filter Amplifier
A
v v
Dgl_a . Dynamic Waveform
Acquisition Spectral .
Generator
System Analyser
Y
Controller > AD

Conversion

Y

Data Storage

FIG. 4.20 - Flow diagram from acoustic signal generation to data receiving and storage
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4.4.2 Data Processing

After the heterodyne down-mixing, the complex signal scattered by an individual
particle has an amplitude and instantaneous frequency shift information. The

expression for the recorded complex signal can be written as under:

z(t) = A(D)e'®™ Jy 89(t"yat’ (4.17)

In FIG. 4.21(a), a typical example of the amplitude of the signal is plotted versus
time; the amplitude peaks represent the passage of either a single or many bubbles in
the measurement zone. In FIG. 4.21(b), zoom of an individual bubble passing the
measurement volume is presented; the high amplitude peak indicates the bubble
passage in far field region, whereas the two subsequent lower peaks signify its passage
in the near field region. In FIG. 4.22, the power spectrum of the portion of signal
corresponding to the selected bubble (whose amplitude is shown in figure FIG. 4.21(b))
shows that Doppler shift information is centered around the frequency of 6.7 kHz,
which correspond to the mean velocities of bubbles. From the width of the Doppler peak
we can see that the required information of particle’s instantaneous velocity resides in
the frequency range of 6.4-7 kHz (note that the total width of the shift is due not only to
the turbulent fluctuations of particle velocity but also to the finite time length of the
signal). Our prime objective is to determine the instantaneous frequency shift and hence
instantaneous velocity, in order to actually resolve in time the turbulent fluctuations of

the velocity.
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FIG. 4.21 - (a) Complex signal plot amplitude v/s number of points (time), the amplitude peaks indicates
the passage of an individual or many bubbles in the measurement zone. (b) Zoom of a single bubble
passage, the main peak represents the bubble passage in far field, whereas the two secondary peaks
signify its passage in near field region.
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FIG. 4.22 - Power spectrum of the recorded signal, the emission frequency peak has already been shifted
to zero by heterodyning signal, the bubbles passage signals are represented by peaks around frequency of
~ 6.7 kHz, which corresponds to mean flow velocities of the bubbles.
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There exist several methods that can be used for determining the instantaneous
frequency shift, among which are phase differential, time frequency and parametric
algorithms. The choice depends upon the signal to noise ratio of the data, resolution
required, processing time and adaptability to our recorded signals. For example the
phase differential method is very sensitive to signal to noise ratio and only an individual
particle’s frequency information can be extracted. On the other hand time frequency
analysis based on, short-time Fourier transform method has resolution limitations and
there is a tradeoff between the resolution in time and instantaneous frequency
(Heisenberg wuncertainty principle). Enhanced methods, based on reallocation
algorithms has been developed [30] to overcome this limitation, however, these
approaches remain extensively time consuming in terms of numerical calculation and

also it takes long calculation times.

An interesting alternative is offered by parametric approaches, such as Maximum
Likelihood Algorithm (MLA), which has already been used by Nicolas Mordant during
his PhD work [57] to achieve Lagrangian tracking of particles in a von Karman swirling
flow of water. In our study we have used the same algorithms. Here we will not enter
into the depth and details of this approach (which can be found in [57]) however its
basic methodology, regulating parameters and the modifications we made to the

method according to our application will be discussed.

The idea of this algorithm is to overcome the Heisenberg uncertainty principle,
by introducing in the time-frequency analysis some known information of the signal.
For instance, when the emitted sinusoidal wave with known frequency and amplitude is

scattered by a particle, the corresponding signal received is also expected to be
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sinusoidal although its amplitude and instantaneous phase are time dependant;
moreover the signal may be affected by acoustic and electronic noise as well as noise
due to turbulence. The algorithm generates a synthetic signal with a sinusoidal wave
and random noise. The resulting synthetic signal is then matched (amplitude and
frequency serve as matching parameters) with the original signal recorded, the
residuals are determined named here as a Hessian. A threshold for Hessian which is
defined by the user determines whether or not to accept the whole or part of the

synthetic signal’s instantaneous frequency.

In practice, we apply the MLA to the recorded acoustic signal filtered around the
Doppler peak, in order to keep only the frequency information pertinent for our study.
In particular, we suppress the large central peak (at f = 0 Hz) corresponding to residual
signal (echoes and other reflections, from the direct acoustic wave from the emitter) as

well as the large frequency noise.

In order to determine the limits of the filter width to be used around the Doppler
peak to conserve the relevant frequency information, we have implemented an iterative

version of MLA:

We first proceed to a coarse band-pass filtering of the Doppler peak where the low
cut-off frequency, f.., is chosen at the minimum of the spectra between the central peak
and the Doppler peak (for instance f. ~ 5 kHz in FIG. 4.22) and the high cut-off
frequency, F., is chosen as the symmetric of f. with respect to the maximum of the

Doppler peak (F. ~ 8.4 kHz in FIG. 4.22).
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We then apply the MVA algorithm to the resulting filtered signal with a high level of

modeled noise (in order to keep the noise in the extracted signal). This leads to a first

estimation of the instantaneous frequency of the Doppler signal, which present rapid

fluctuations attributed to noise. We have represented in FIG. 4.23 a comparison of the

instantaneous Doppler shift §9,(t) between classical time-frequency based on Fourier

analysis and maximum likelihood algorithm (in both cases we have used an analysis

window short enough to resolve the rapid noisy fluctuations).

1.

From this first estimation, we can see that the actual relevant frequency ranges
for §9y(t) is much narrower than the coarse estimation [f,, F. | from step 1. We
therefore use the result from the first MLA estimation to narrow the width of the
pass-band filter around the Doppler shift based on the maximum ¥, and
minimun 9,, frequency from §9,(t) . We then band-pass filter the original
acoustic signal with cut-off frequencies 9,, and 9, and proceed to a new MLA
estimation 69, (t). This procedure ensures an adaptive filtering for each
individual particle detected. Note that because we have kept the noise level high
in the first estimation, we are sure that the new filter width still keeps all the
relevant Doppler information. The procedure can be iterated i times again to
estimate 69, (t). The question which arises here, how many times should the
iterations run? FIG. 4.24 represents the successive spectra of the Doppler signal
at different iterations. We see that the most important effect is at the first
iteration. FIG. 4.25 and FIG. 4.26 respectively show the MLA estimations 89, (t)
and the corresponding Hessian, after i iterations, for i = 0 > 5. We observe

that the first iteration significantly reduces the rapid noisy fluctuations and that
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the Hessian level drops drastically, indicating a much better MLA estimation (we
have moreover checked from the first iteration, the MLA estimation becomes
essentially insensitive to the noise level given as input parameter of the
algorithm). The forthcoming iterations (i > 1) tend then to smooth further the
Doppler shift time evolution, but we notice that for first iteration the hessian
reduces remarkably whereas if we iterate further it starts increasing again
suggesting that the estimation is poorer. This is probably due to the fact that
iterations for i > 1 tend to filter too much the signal and to eliminate part of the

actual signal. In the following we will therefore use only one iteration step.
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FIG. 4.23 - Comparison of Time-Frequency and MLA.
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FIG. 4.24 - Power spectrum of particle’s signal after first run and successive iterations of MLA.
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FIG. 4.26 - Hessian of the corresponding signal, for first run and successive iterations of MLA.

In order to test further the iterative MLA, we show an example from a
synthetically generated Doppler signal with similar dynamical properties to the signal

scattered by our particles in the wind tunnel. The synthetic acoustic signal is defined as:

2(t) = A()e ¥ 4 02n(t) (4.18)

where the signal amplitude has been taken as a hamming window, in order to model the
profile of the amplitude of the scattered signal as a particle travels across the
measurement volume (as in FIG. 4.27(b)) and n(t) is a random Gaussian noise (we have
also considered the case where some noise is also added in the amplitude A(t) which

doesn’t change the discussion below).
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The “physical” Doppler shift §9(t) has been modeled as an offset §J,rfse; plus

sinusoidal fluctuation at frequency f;:

09(t) = 89ypser (1 + asin(2rfyt)) (4.19)

The offset represents the average Doppler shift due to the mean velocity of the particle

(here we have taken &9,frse¢ = 7kHz while the sinusoidal fluctuation models the
turbulent component of the velocity. The amplitude of the fluctuation has therefore
been taken equal to a = 0.01 of §Y,fs. (the typical fluctuation level of individual

trajectories is of 1% as it will be shown in section 5.4) and f, has been chosen to

represent a time scale in the inertial range of our turbulent flow here we have

taken f, =50 Hz.

The goal of the exercise is now to extract the most accurately the “physical”
Doppler information &9(t) from the acoustic signal z(t) synthetized as in (1). FIG.
4.27(a) represents the evolution with time of the original “physical” signal (2) in black,
the results from the first MLA estimation (i = 0) from z(t) in blue, and the first iteration
(i = 1) in magenta (we have also represented in red color the estimated Doppler signal
using a single MLA path but with an optimized value of the modeled noise level as input
parameter); FIG. 4.27(c) shows the corresponding Hessian. We see that the first
iteration is almost indistinguishable from the “physical” signal. FIG. 4.27(b) represents
relative error between the “physical” signal and the different estimations (first
estimation in blue, first iteration in magenta, single path with optimized modeled noise

level in red). The iterated estimator clearly gives the best result with less than 0.1%
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error. Though it approaches well the desired “physical” signal, the single MLA path with

the optimized modeled noise level is not as good as the iterated estimator.
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FIG. 4.27 - An example of the application of iterative MLA on a synthetic signal.

A special attention was made to ensure the selection of individual particle signal by
selecting only high peak amplitude events and amongst them only those events were
chosen for statistical calculations which met very strict Hessian criteria. Thousands of

velocity signals for each set of particle size and density were recorded and their

Lagrangian statistics were determined.
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Single Time Statistics

This chapter describes the parameter space (in terms of particles sizes and
densities) that we have explored. Also, presented is a detailed analysis on Lagrangian
velocities and acceleration statistics for whole data set explored while investigating the
finite size and density effects. The actual experimentation began following the
configuration, testing and verification of the Ultrasonic Doppler Velocimetry; and after
having adjusted the data acquisition and processing parameters. First the finite size
effects of the neutrally buoyant particles were explored. Later on our emphasis was to
determine the inertial effects of these finite size particles, resulting from increase in

their density relative to the carrier fluid.

5.1 Studied Data Set

As particles we use soap bubbles of adjustable size and density. These particles have an
extremely small Weber number? as a result; they do not deform and behave as rigid

spheres. The seeding density is extremely low, therefore the particles (injected

2 The Weber number compares the kinetic energy of the surrounding fluid to the cohesive energy of the

2
soap film. It can be estimated as We = pt D, where p is the fluid density, u is the characteristic relative

velocity, D is the diameter of the particle and ¢ is the soap film surface tension. The upper bound Weber
number found for our bubbles using measured rms velocity of the particle (see section 5.2.1) as the
characteristic velocity is of the order of 5 x 1072
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individually) can be considered as isolated and does not back-react on the carrier flow.
The particles are therefore characterized by two parameters: ¢ and I', where the former
is the ratio of particles diameter D to dissipative length scale of flow n (¢ = D/n), and
the latter is defined by the ratio of particle and carrier flow density (F = pp/ pf). These
parameters for the data set studied and analyzed are listed in Table 5.1, and can also be
visualized in FIG. 5.1. In addition to these parameters, we have also listed parameters
such as; the modified particle stokes number and particle response time as defined in

(3.8) and total number of samples for each data.

Firstly, the size effects of neutrally buoyant particles were investigated. The
particle size was varied while keeping the relative density of particles approximately
same as that of environmental air (measurements along I' = 1 constant-line in FIG. 5.1).
We then considered particles with densities higher than that of the carrier flow,
enabling us to explore and characterize inertial effects. Our exploration of parameter
space (FIG. 5.1) shows a particularly well resolved data set of density effects at constant
size around ¢ = 16.5 and three relatively resolved data sets of size effects at constant
density for ' =1, I' = 5and I' = 60. Put altogether these measurements give a coarse
mapping of the parameter space in the range I' = [1; 70] and ¢ = [10; 30]. For each set
of particle size and density, several millions of samples were recorded and analyzed.
The velocity and acceleration statistics were also determined and will be presented and

discussed in the following sections.
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10°

FIG. 5.1 - Pictorial representation of the data set studied in phi and gamma space along with modified
Stokes number of particles. The color intensities from green to red show the increase in particles
modified Stokes number.

Before presenting our results, it is interesting to place again our exploration of
(p,T) parameter space in the context of prior research or experimentation. For this
purpose, we have represented in FIG. 5.2 an extended parameter space summarizing
most of the existing studies of Lagrangian dynamics of inertial particles. It can be seen
that previous studies have considered either very small (sub-kolmogorov) and very
heavy particles (it is the case of the studies carried in Z. Warhaft group, referred in FIG.
5.2 as Ayyalasomayajula et al. [4, 5], who studied acceleration statistics of small water
droplets in a grid generated turbulence in wind tunnel experiments) or large (up
to ¢ = 30) but weak inertial particles (I' < 2.5) in von Karman flows of water (Volk et

al. [90]). Our study complements these by considering particles which can be both large
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and significantly denser than the carrier fluid. The results presented and discussed in

the present work will enhance our understanding of these finite-sized inertial particles
dynamics in turbulent flows.

10
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FIG. 5.2- Experimental and numerical studies on Lagrangian dynamics of inertial particles in (¢, I') space

127



Chapter 5

Table 5.1 - Details of particles studied, where ¢ is the particle diameter to kolmogorov scale ratio, I' is
particles relative density St, is the modified Stokes number of particle and N, represents the number of
samples in millions.

S.No. ) r Sty Ng(millions) | T, (ms)
1. 8.3 1 0.6610 4.92 10.4
2. | 1254 1 0.9269 4.93 12.596
3. | 1446 1 1.0390 5.23 15.917
4. | 16.58 1 1.1558 5.26 19.245
5. | 18.72 1 1.2674 5.02 22.705
6. | 20.82 1 1.3714 4.4 26.393
7. | 22.93 1 1.4710 4.56 30.071
8. | 25.06 1 1.5674 7.39 33.919
9. | 1346 | 634 | 44734 3.64 93.214
10. | 15.30 | 4.67 | 3.7427 2.7 80.405
11. | 16.71 | 4.58 | 3.9380 3.3 90.093
12. | 1845 | 591 | 5.3560 5.42 131.714
13. | 20.70 | 4.23 | 4.3059 2.23 110.781
14. | 22.80 | 4.01 | 4.4027 1.74 120.815
15. | 12.40 | 46.98 | 29.0752 5.76 595.036
16. | 16.77 | 2.71 | 2.4937 7.16 51.313
17. | 16.86 | 12.63 | 10.2500 1.0 246.257
18. | 16.77 | 29.73 | 23.4950 2.31 588.642
19 | 16.38 | 49.45 | 38.1266 1.63 965.347
20 | 16.81 | 65.48 | 51.3775 2.0 1293.844
21. | 19.04 | 52.19 | 45.0850 4.7 1200.032
22. | 21.05 | 41.10 | 38.3331 3.81 1078.183
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However, it should be notice that due to experimental specificities, not all these
measurements can be quantitatively compared. For instance, von Karman flows have
very different isotropy and confinement properties compared to grid generated
turbulence (von Karman flows are closed and highly anisotropic while wind tunnel
experiments are open flows with higher isotropy level). Since these properties are
known to affect Lagrangian statistics [44] comparison between von Karman and wind
tunnel experiment will only be considered qualitatively. Moreover, one should keep in
mind that the parameter space shown in FIG. 5.2 is only a projection of a higher
dimension parameter space where several other axes should in principle be considered;
for instance points which appear nearby in the (¢,I) projection might correspond to
experiments at very different Reynolds number, making an unambiguous quantitative
comparison quite difficult. We will however consider the measurements by
Ayyalasomayajula et al. [4, 5] for quantitative comparison with ours, as they were
carried in similar experimental configurations (grid generated turbulence in wind
tunnel experiments at similar Reynolds number). This will allow us to compare

Lagrangian statistics for sub-kolmogorov and finite size inertial particles.
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Neutrally Buoyant Particles

5.2 Velocity Statistics
5.2.1 Turbulence Intensity

As mentioned earlier, due to the difficulties in precise regulation of the wind
tunnel’s mean flow velocity, a minor difference in velocity for each data set was
observed. This difference is shown in FIG. 5.3 for all neutrally buoyant particle data sets.
In the color bar on right, particles modified Stokes number Sty is shown. The mean
velocity varies between 14.43 and 14.67 m.s', this variation (of the order of 1% with
mean at 14.56) is however very small. We can see a small increase in mean velocity
setting for experiments with particle sizes ¢=14.46 to 25.1, this small variation simply
reflects the small experimental uncertainty on the regulation of the wind tunnel

velocity.

FIG. 5.4 represents the evolution of the root mean square velocity (v,.,s) for
different sizes of neutrally buoyant particles. The root mean square velocities were
determined calculating ensemble average of all velocity signals from all particles after
having placed them from end to end. For each dataset we consider the ensemble of
velocity values v,; were the subscript a identifies a given particle trajectory and the
subscript i denotes the time along the trajectory; we denote the total length of a given
trajectory by L,, N represents the total number of trajectories per dataset. The

ensemble average operator is defined as:
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FIG. 5.3 - Mean flow velocity of each data set as a function of ¢ with corresponding St,, .

N S R ) % ~ A [N S e
N R R T
D...I. ~ ~ ~ ~ ~ ~ ~ ~ S
o)
T T T T T T T T N

| | | | | | | |

| | | | | | | |

| | | | | | |

| | | ,‘, | | |

| | | | | | | |

| | | | | | | |
B U R (Y NN N B
| | | | | | | | N

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | ,‘, | |

| | | | | | | |

| | | | | | | |
\\\1\\J\\\ﬂ\\\,\\\4\\\7\\4\\\7\\\H

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | ‘ | | |

| | | | | | | |

| | | | | | | |
B [ A (N NN N o}
| | | | | | | | N

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | b | | | | |

| | | | | | | |

| | | | | | | |
\\\7\\J\\\ﬂ\\\,\\\4\\\7\\4\\\7\\\o.M

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | ] | | |

| | | | | | | |
[ Y ) Y U IR .~
| | | | | | | | ™~

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |
| | | ,‘, | | | ~
il el Rl el Bl diti i el S R

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | ,‘, | |
O Y N AN R NN o\
| | | | | | | | ™~

| I I I I | I I
N X+ N La % ) X+ N +
N s Y Y Y YIS

S S S S S S S

RY//%]
(sym) A

FIG. 54 - Root mean square velocity for neutrally buoyant data sets as function of ¢ with

corresponding St,,.

131



Chapter 5

As shown in FIG. 5.4 the root mean square velocity follows no systematic trend
with increasing particle normalized size ¢. We have also represented the turbulence

intensity for these data sets, which is determined by the ratio of root mean square

velocity and the mean velocity (Urms/ ); this is shown in FIG. 5.5. It is found to

vmean

slightly fluctuate around 3.3% with no specific trend with particle size. This value is in
agreement with Eulerian hot-wire anemometry measurements [57], and indicates that
particles fluctuation level is identical to that of the carrier flow itself (this point will be

further discussed in the next paragraph).

We therefore conclude that velocity fluctuation level is not affected by the size or
loading of the particles. Even particles as large as 26 1 (which here represents a

significant fraction of the injection scale L) present the same fluctuation level as the

fluid itself.
St
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FIG. 5.5 - Turbulence rate for neutrally buoyant particles data sets in percentage.
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5.2.2 Velocity Probability Density Functions

The velocity PDFs were determined from the histogram of velocity signals
for each data set. For our measurements this served us as a first check for data
processing parameters. The velocity PDF in true units for data set ¢ = 12.54 is given in
FIG. 5.6 with a Gaussian fit of same mean value and standard deviation. The normalized
velocity PDFs for all neutrally buoyant particle data sets are shown in FIG. 5.7. A

Gaussian with same mean and width is plotted in dashed lines.
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o [T

Velocity ( m.s™t )

FIG. 5.6 - Probability density function of velocity for ¢p =12.54 and I = 1. In the dashed lines is a Gaussian
distribution with same mean value and standard deviation.
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For all data sets we found that velocity PDFs are Gaussian and identical to that of
previous hot-wire Eulerian measurements. Such gaussianity is the characteristic of
homogeneous turbulence, a case in which Eulerian and Lagrangian velocity statistics are
indeed expected to be identical for fluid particles. In case of our smallest particles
(which can be expected to behave as tracer) the agreement between classical Eulerian

anemometry and our acoustical Lagrangian measurements validates our technique.

Moreover, we do not observe any specific trend for velocity PDF with particle
size. This shows that even non tracers particles (we will indeed show later that large
neutrally buoyant particles do not behave as tracers) may have velocity statistics

identical to that of the carrier flow itself.
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5.3 Acceleration Statistics

Determination of acceleration statistics have been the main focus and prime objective of
our studies; the reason being that acceleration is the quantity that directly gives the
measure of forcing that particles have experienced, while being transported by the
turbulent carrier flow. In the first step we were keen to explore how particle’s

acceleration statistics vary with its size.

The acceleration was determined by convoluting the Lagrangian velocity signals with a
differentiated Gaussian kernel. This process simultaneously differentiates and filters
the signal from possibly remaining experimental noise [66, 75]. This Gaussian kernel is

given as under:

n

d 1 —72
K, (1) = | o exp|— (5.2)

where, n is the order of the derivative to be calculated. To obtain acceleration

from velocity signals v(t) first order Gaussian kernel «x; should be used:

a(t) = foov(t — DKy (t)dT (5.3)

In practice, as the velocity signals are of finite duration we obviously cannot integrate
from —co0 — o and have to truncate the Gaussian kernel to a finite width T. The

truncation process requires the Gaussian kernel x; to be renormalized as:

Kqo(1) = Ay Texp (F) + B, (5.4)
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in order to obtain a good approximation of acceleration as:

T
a(t) = j v(t — 1)k, (T)dT (5.5)

-T

The coefficients A, and B, are obtained by imposing the conditions that,

fTKa(T)dT =0

-T

and

T
f (t—Dry,(t)dr=1

-T

which are the requirements for the derivative of a constant to be zero and the
derivative of t to be 1. Hence from these conditions the two coefficients are found to

be:

Ay = E w? (a) v erf (g) - 2Te_T2/w2>]_1 (5.6)

and

B, =0 (5.7)
To minimize errors due to truncation we use a minimum kernel width T = 5w [75].

The noise level of our data is extremely low, thanks to the iterative MLA
procedure, for the time-frequency analysis used to extract the Doppler shift from the

acoustic signal. Therefore, a very short Gaussian width (of the order of 5 points only)

136



Chapter 5

was used for the convolution kernel (the convolution window was then truncated to 25

points).

In FIG. 5.8(a), PDF of non-normalized acceleration (in true units) has been plotted
for all neutrally buoyant data sets. We observe that the acceleration PDF narrows and
peaks around zero for increasing particle size. This narrowing of non-normalized
acceleration PDFs, suggests its slight dependence on particle size and it also points out
the fact that particles experience the turbulent forcing with different intensity; larger

the particles less sensitive they are to extreme turbulent events.
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FIG. 5.8 - Acceleration PDF (a) Non-normalized in actual units. (b) Normalized by a,,,s with log normal
fit in dashed lines.

When we plot the acceleration PDF normalized to variance 1, we notice that all
the PDFs collapse to the same curve (within statistical error bars). This can be noticed
from FIG. 5.8(b) in which the PDF of longitudinal acceleration a, normalized with its
standard deviation a, .., is plotted for all neutrally buoyant experiments. Therefore the

global shape of normalized acceleration PDFs (normalized to have variance 1) remains
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essentially unaffected with particle size. Furthermore we find that the shape of

normalized acceleration PDF is well described by the expression,

el In(|x/V3|) + 232>l
Plx) = —4\5 1 erf( T2s (5.8)

This PDF form for an acceleration component was previously suggested by
Mordant et al. [69] in the case of fluid tracer particles having sizes comparable to
dissipative length scale n. Under the condition of isotropic turbulence this PDF shape
was also shown to be related with a lognormal distribution (of variance s? ) of the
whole vector acceleration magnitude [65]. In our case this function form is also found to
correctly describe the acceleration component statistics of finite size particles.
Considering good isotropic conditions, as is the case here, this suggests that acceleration

magnitude can be expected to be reasonably lognormal. Best fitting parameters were

found to be s~ 0.62 which gives distribution flatness F = e*s* ~ 8.4. This flatness

vl | o

value is however significantly smaller than the values previously reported for fluid
tracers (of the order of 20) at a similar Reynolds number in von Karman flows [49, 68,
92]. However a quantitative comparison with these experiments is difficult due to
intrinsic differences in the flow configurations (in particular isotropy and confinement
conditions are significantly different as von Karman flows are closed and highly
anisotropic while our flow is open and isotropic). The influence of such experimental

specificities remains an open question to be addressed in forthcoming studies.

It is an interesting and somehow puzzling finding to observe that the same,

identical and non-Gaussian acceleration PDF is conserved even for large particle sizes.
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From the classical image of Eulerian intermittency of the carrier turbulent field in which
the velocity increments are non-Gaussian at small scales and tend to become Gaussian
continuously, as we move to large scales. One might have expected a monotonic trend of
particle acceleration statistics towards a Gaussian as the particle size approaches large
scales. Similarly, one might have expected the acceleration statistics of particles of size
D to be somehow related with the Lagrangian velocity increment statistics calculated
along fluid tracer trajectories at a time lag t, which is eddy turnover time at scale D,
which because of Lagrangian velocity intermittency would also tend continuously
toward a Gaussian at large scales, as predicted for instance by point particle models.
Since this is not the case, therefore we can conclude that the turbulent forcing on finite
size particles with inertial range sizes is not trivially related to turbulent velocity field
intermittency around the particle (neither Eulerian nor Lagrangian). As a consequence
the acceleration PDF for particles with a given size cannot be simply deduced from
statistics of Eulerian velocity increments at scales corresponding to the particle size. It
can neither be deduced, from statistics of Lagrangian velocity increments at time scale

corresponding to particle response time or eddy turnover time at particle scale.

Actually, a possible explanation for the absence of trivial relation between
velocity increments and size effects on acceleration statistics is that from dynamical
point of view, acceleration reflects the forcing undergone by the particle, which for
inertial range scales is mainly due to turbulent fluctuations of the pressure gradients in
the vicinity of the particle. Under an ergodic assumption, particle acceleration statistics
can therefore be related to Eulerian pressure increments statistics, which are indeed

not trivially related to velocity increment statistics [40].
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To further explore the possible relation between acceleration statistics of finite
size particles and pressure increments statistics, we note that since the normalized
acceleration PDF is found to be independent of particle size, such a dependence can only
affect the variance of acceleration itself. We have developed a simple phenomenological
model based on the equation of motion of a finite size particle forced by the turbulent
pressure fluctuations around it and have related the variance of acceleration to known
properties of pressure increments statistics in turbulent flows3. In this context, by
integrating pressure forces exerted by the carrier flow on the surface of the particles,

the acceleration variance of a particle with diameter D can be related to the second

. C1 sy
moment of pressure increments at the scale of the particle i.e.(aZ)pqarticie(D) D—zz ,

where SP(r) = ([p( + ) — p(¥)]?) is the Eulerian second order structure function
(which only depends upon r = || in homogeneous and isotropic conditions). At first
order this can be further explained with the help of the simple phenomenology
proposed in FIG. 5.94. Considering that a particle’s acceleration in the z direction a, is
due to the force exerted by the carrier flow on the particle in that direction i.e. F,. This

force can be modeled (refer to FIG. 5.9) as the force due to pressure increments in the z

3 In this simple approach we neglect the viscous forces, which have been shown for tracers in DNS to have
a contribution to the global acceleration variance almost two orders of magnitude smaller than that of
pressure gradients [VedulaPoF1999].

4 A complete calculation based on the integration of the pressure forces at the surface of spherical

2
. . . SpP?
particles gives the more complete relation : (a2) = <i> ¢ ZS ) % f,

81 Py

wheref = [, [, f(p f(p, b P((Gg':l)ig‘;(zi ©') sin(20) sin(20") d6 dO'd¢p d¢' is a correction factor related to

the angular correlation of pressure increments around the particle. In this calculation, the average on the
left hand side should be understood as an average over an ensemble of particles. Under an ergodicity
assumption, it can be interpreted as a spatial average for the pressure increments term on the right hand
side so that acceleration variance calculated over an ensemble of particles can be related to the Eulerian
second order structure function of the pressure.
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direction at a scale correspond to diameter of the particle i.e. F, =%,0D3 a, <

D?[P(z + D) — P(z)]. From these arguments we can find that the acceleration variance
in z direction is directly proportional to Eulerian second order pressure structure

function and inversely proportional to square of the particle’s diameter.

a ™
Acceleration = Pressure increments

P(z) ey — ﬁ— Pz+D)  —

™

F.=¢ pD3a, o< D? [P(z + D) — P(2)]
- /

FIG. 5.9 - Proposed model linking particle acceleration with pressure increments at a scale of particle
diameter.

In the frame of K41 phenomenology, the classical inertial scaling for S¥'(r) is
(er)*/3 [65, 72] (or equivalently for pressure spectrum in wave number space k,
P(k) « &3 k~7/3), Although this scaling is still controversial as reported in [37, 89],
there is experimental and numerical evidence that suggest it is most likely correct in
ranges of Reynolds numbers and scales consistent with our flow and particle sizes [38].
As a result, the acceleration variance of particles with diameter D in inertial range scales

should follow scaling,
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<a§)particle(D) = a6 g*/3p~2/3 (5.9)

where a; is a dimensionless proportionality constant. Though we have not consider in
our study the role of Reynolds number (which is certainly important), in a more general

context a; has to be very likely considered as Reynolds number dependenti.e. aj(Re).

The above scaling is just phenomenological and it can be obtained by simple
dimensional analysis too. It is therefore naturally consistent with previous predictions,
based on other arguments, for instance by Monin-Yaglom [65] and Voth et al. [92]. In
the limit of very small particles (of the order or smaller than the kolmogorov scale)
acceleration variance should saturate to an asymptotic value corresponding to the
intrinsic acceleration variance of the turbulent flow itself. In this limit, scaling (5.9
which has been derived from inertial range considerations should be replaced by its
equivalent small scale (dissipative) form, given by the usual Heiseinberg-Yaglom

relation for fluid particles [65]:

(a2) fruia = ag €*3n7%/3 (5.10)

Several groups studying Lagrangian turbulence have determined different values

for constant a, , which is known to be Reynolds number dependent.

For the studied neutrally buoyant particles the scaling given in (5.10) is observed
for sizes 15 < ¢ < 25 within the measurement errors. The constant aj for acceleration
is found to be of the order of 18 at the working Reynolds number. This is shown in FIG.
5.10(a) and (b) where acceleration variance normalized with &%/ 317_2/ 3 and the

proportionality constant a; is determined for different particle sizes respectively. For
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sizes ¢ <15 we can notice the deviation from inertial scaling; the normalized
acceleration variance tend to saturate to approach a constant value close to that of fluid
particle acceleration, of the order of a, = 3, which was determined by Voth et al. at

similar Reynolds number, though in a different experimental flow (von Karman flow).

The crossover from the D_2/3scaling to the dissipative limit occurs around ¢ ~ 10 —

15; for the smallest particles.
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FIG. 5.10 - (a) Normalized acceleration variance as a function of particle size. (b) Acceleration variation
normalized with scaling proposed in equation 4.2.
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Heavy Particles

After having characterized size effects for neutrally buoyant particles, we consider
now the influence of density on the dynamics of inertial particles. Experiments with
heavy particles are listed in Table 5.1 (S.No. 9-22), where firstly the particle dynamics is
explored for relative densities around I' ~ 5 (S.No. 9-14, Table 5.1) and secondly for a
fixed particle size ¢ =~ 16.8, for several relative densities (S.No. 16-20,Table 5.1). In the
end different sizes were studied for high relative density range (S.No. 13, 21 & 22, Table

5.1).
5.4 Velocity Statistics
5.4.1 Turbulence Intensity

The mean flow velocities are shown as a function of size and relative densities in
FIG. 5.11. There is a relative variation of only 1% with mean around 14.5 m.s~1, which

is due to the small uncertainty in the regulation of the wind speed.

In FIG. 5.12 the turbulence intensity for all data sets is shown. The turbulence
intensity was found to be of the order of 3.2% with scattering®> up to 10%, though very

few data sets are found with very high or very low scattering. As compared with

5 It should be noticed that such a scatter for velocity statistics is not surprising: as discussed in chapter 5,
velocities correlation time are of the order of several tens of milliseconds which is in general longer than
the duration of the recorded tracks. This means that for velocity statistics, each represents of the order of
a single statistical sample. As for each set of (¢,[') parameters we have a few thousands track, the
estimation of velocity statistics is done only over a few thousands samples.

144



Chapter 5

neutrally buoyant experiments the turbulent intensity is slightly lower with no

significant trend.
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FIG. 5.11- Mean flow velocity as a function of normalized particle size ¢ for all data sets studied. The
color shows particle’s relative density as shown in the color side bar.

The turbulence intensity level for each data set was here determined as the
ensemble average from all trajectories put one after the other. One may however
wonder whether the fluctuation level of each particle taken individually (rather than as
an ensemble) is affected by particle size. For this purpose, we define the individual
average operator:

25 0)

= zi=1/ 5.11
(a = L, (5.11)

as well as the average individual fluctuation intensity :
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n 1
1 (v — @))?)?
Tina = .20 ). (5.12)

FIG. 5.13 represents the evolution of t;,; with particle size and density. Not
surprisingly, the individual turbulence level is much smaller than the ensemble
turbulence level (this could be already visualized in FIG. 5.14 from the velocity tracks).
Contrary to the ensemble turbulence level, the individual turbulence level presents
systematic trends with particle density. A clear decrease of the individual fluctuation
rate of individual tracks can be observed for heavier particles as compared to neutrally
buoyant. In particular, the set at fixed size (¢ = 16.8) shows a monotonic decrease of
Tina With increasing particles density. While the ensemble turbulence level only changed
about 10% over the entire parameter space of particles, the individual turbulence level

is found to change almost about 100%.

The decrease of the individual fluctuation level can be seen as a first clear
influence of inertia on the particles dynamics. It reflects the intuitive fact that, as
particles have more inertia, their trajectories tend to be smoother and the velocity along

its trajectory tends to be less fluctuating (low-pass time filtering effect).

It should be noticed however that the notion of individual fluctuation level is not
well defined, as it clearly depends on the length of the recorded tracks for instance. If
tracks were much longer than the velocity correlation time, we could expect the
individual fluctuations to reflect the ensemble fluctuation, as a particle would explore
ergodically the ensemble. In the present case, as the tracks are much shorter than the
velocity correlation time, the individual calculation of the turbulence level is somehow

related to particle’s small scale dynamics while the ensemble average over uncorrelated
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tracks is related to the large scale dynamics. The difference observed between the
ensemble and the individual calculation tells us that the large scale statistics (such as
the root mean square velocity of the average kinetic energy) of the particles remain
essentially unchanged and identical to that of the carrier flow itself, regardless of the
particle size and density. On the contrary, small scale statistics (such as acceleration

ones) might be expected to be affected by size and density effect®.
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FIG. 5.12 - Turbulent intensity for all data sets studied as a function of ¢ and I.

6 This was already the case for the study of neutrally buoyant particles, where we have shown that
velocity statistics weren’t affected by particles size, while acceleration statistics were.
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FIG. 5.13 - Turbulence Intensity calculated from the average of individual particles for heavy particle data

sets as function of ¢ and T
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FIG. 5.14 - Individual particle velocity signals for data set ¢ = 16.5,T = 1.
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5.4.2 Particle-Turbulence Interaction

Particle dispersion in isotropic homogeneous turbulence has been studied by
various groups since 1940s. The Tchen & Hinze theory named after their work on the
said domain in 1940 [88] and 1959 [42] respectively was compared with the DNS data
and Sawford’s stochastic model [84] by Pierre FEVRIER [29] and Pascal FEDE [26].
Tchen modeled particle dynamics in turbulent flow with certain assumptions and Hinze
in 1975 found the results based on Tchen’s theory and obtained following relation
between particle movement and the fluid velocity fluctuations through spectral
analysis:

E, (w) = Ef (w) (5.13)

1+ w?1}

where, E;, and Ef are the Fourier transforms of the particle’s and the fluid’s

Lagrangian velocity autocorrelations. The above relation led us to propose the

following relationship between turbulent kinetic energy of particle and fluid:

Ty
T, + 1,

a5 = 4f (5.14)

where, qg is the turbulent kinetic energy of the particle, quc is the turbulent kinetic

energy of the fluid and T}, is the Lagrangian integral time scale of fluid. The time T} is
estimated from the Lagrangian velocity autocorrelation of our smallest size neutrally
buoyant experiment, which was found to be the order of 85ms and particle response
time 7, was determined from equation (3.8), which is also listed in Table 5.1. The

results are plotted in FIG. 5.15, where the smallest size neutrally buoyant experiment
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turbulent kinetic energy was used as the fluid’s turbulent kinetic energy. We can
observe that our experimental data doesn’t fit well with Tchen & Hinze theory. In
particular the data doesn’t fall in the range where the turbulent kinetic energy ratio
saturates and doesn’t change. This deviation could be due to the relatively less
appropriate estimation of particles response time which itself changes two orders of

magnitudes within our data sets.

If we look further into the details, the Tchen & Hinze theory was based on the
assumption that the particles Reynolds number is very small such that the only force
acting on the particle is the Stoke’s drag. In addition to that, their theory was limited to
particles with sizes smaller than kolmogorov length scale such that the particles do not
filter turbulent energy fluctuations. In comparison with the theory, in our case the
particles possess finite size and volume. For these particles, even if the finite Reynolds
number effects were taken into account in the particles response time, they somehow
filter the turbulent kinetic energy corresponding to their size and density. As a
preliminary conclusion, there exist drawbacks and limitations both in Tchen and Hinze
theory (however the particle Reynolds effects were addressed by Deutsch in 1992 [22],
which slightly modifies the theoretical curve) and the calculation of particle response
time (this point is further discussed in Chapter 6). Clearly what we measure includes the
particles finite size and effects, which means it includes all forces that the particle has
been undergoing during its Lagrangian tracking, and the turbulent kinetic energy

filtering due to its finite size.

150



Chapter 5

0.8

0.2

FIG. 5.15 - Comparison of Tchen & Hinze theory with our experimental data, when plotted using
conventional definition of particle response time.

5.4.3 Velocity Probability Density Functions

In FIG. 5.16 (a), (b) and (c), some individual velocity PDFs are shown with a
Gaussian fit of same mean value and standard deviation. We notice that the velocity

distribution remains Gaussian for all particle sizes and densities explored.
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FIG. 5.16 - Velocity PDFs in true units for three data sets (a) ¢ = 13.5,' =16.4 (b) ¢ = 6.71,[ = 4.58
and (c) ¢ =16.4,T = 49.5 along with respective Gaussian fits having same mean value and standard
deviation.

All velocity PDFs are plotted in FIG. 5.17. We can see that these PDFs do not have
same mean value which is due to the difference in flow mean velocities (though the
difference is only of the order of 1%). Finally, we have superimposed in FIG. 5.18
velocity PDFs centered and normalized to variance 1 for all particles we have studied as

well as a normalized Gaussian which correctly fits all the data sets statistics.
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FIG. 5.17 - Velocity PDFs for all data sets in true units.
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FIG. 5.18 - Normalized velocity PDFs for all data sets. In black dashed line is a Gaussian fit.
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5.4.4 Acceleration Statistics

5.4.4.1 Normalized PDFs

In FIG. 5.19, the normalized acceleration PDFs (normalized to variance 1)
P(a,) of streamwise acceleration component a, are shown. For all studied data sets
acceleration statistics are well converged at least up to fourth order, this can be seen in

FIG. 5.20, where a;P(a,) are shown.

Remarkably we find that, within the statistical error bars in the rare event tails,
all the PDFs almost collapse onto a single curve. This indicates that normalized
acceleration statistics depends neither on particle size nor on particle density. In
particular the flatness of the PDFs, keep a constant value F = 8.4 + 10%. This result
extends in the case of heavy particles. The robustness of the acceleration PDF reported
for neutrally buoyant particles in previous section is maintained. Our result is
qualitatively consistent with recent measurements in a water von Karman flow for
particles with densities varying in the range 0.5 < T < 2 [90, 91] although a rigorous
quantitative comparison cannot be made due to experimental specificities as grid
turbulence and von Karman flows are have very different large scale anisotropy and
confinement characteristics which are known to affect particles Lagrangian dynamics

[44, 76].

A quantitative comparison is however possible with recent measurements
obtained by Z. Warhaft's group at Cornell University in grid generated turbulence with
comparable characteristics (both are wind tunnel experiments with similar isotropic

levels), although at a slightly higher Reynolds number (R; ~ 250). Using high speed
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optical tracking, they have measured acceleration statistics of sub-kolmogorov water
droplets (¢ ~5 X 107%; T'~ 1000; St ~ 0.1), a state we cannot reach at present due to
technical limitations of our bubble generator. In black dashed lines (FIG. 5.19) these
measurements have been superimposed on normalized acceleration PDFs obtained
from our results. We notice that it is almost indistinguishable from our measurements

with larger particles. This suggests that acceleration of inertial particles as small as

@~ 5 x 1072 already exhibit the same robust statistical signature as finite size particles.
Point particle models may therefore only apply to even smaller particles [5]. Using
smaller water droplets than in their first experiment, Z. Warhaft group has indeed
measured that ¢ ~ 1.6 X 1072 (St ~ 0.01) acceleration PDF might become wider in
agreement with point particle models predictions (better statistical convergence would
however be probably required to be absolutely conclusive). Our measurements show
however, the claimed trend for acceleration PDF to become Gaussian as their Stokes
number increases, predicted by these models, cannot be extrapolated to finite size
inertial particles. Very rapidly, acceleration PDF seems to reach a limit of non Gaussian
shape, and even particles with a Stokes number as high as 40 (for our largest and
heaviest particle) the acceleration PDF is clearly non Gaussian. More generally, this is a
first indication that real particles cannot be simply characterized in terms of just a

Stokes number (this will be further discussed later).
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FIG. 5.19 - Normalized acceleration PDFs (normalized to variance 1) of stream wise acceleration
component a, for all data sets studied. The dashed lines represent the experimental measurements of
Ayyasomayalula et al. [4] for water droplets (with size ¢~ 5 X 1072 and I'~ 1000 ). The dot-dashed line
shows a fit by relation given in (5.8) associated with lognormal distribution of the acceleration amplitude.
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5.4.4.2 Acceleration Variance

For a deeper insight into specific effects associated with particles size and density, one
has to investigate acceleration variance. Since the statistics of acceleration normalized
to variance is essentially found independent of particles size and density, an effect of
those parameters can indeed only be expected to affect acceleration variance < a? >
itself. This effect can indeed be observed from FIG. 5.22, where PDFs of non-normalized
acceleration in true units are shown. Green tones indicate neutrally buoyant particles
and red tones represent heavy particles. It can be noticed, for heavy particles that

acceleration variance decreases and the PDF peaks rises.
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FIG. 5.22 - Non-normalized acceleration PDFs in true units for all studied data sets. Neutrally buoyant
particles are shown in green tone, whereas in red tone heavier particles are presented.
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A closer analysis of acceleration variance shows a non-trivial dependence with
size and density. We report in FIG. 5.23, the acceleration variance for all the
measurements we have performed. In the following, we consider the dimensionless

acceleration variance normalized according to Heisenberg-Yaglom's scaling:

Ao(p,T) =< a2 > e72/3y1/2 (5.15)

The mapping of the (¢, ") parameter space that we have been able to achieve,
allows us to infer a rough interpolation of the evolution of A,(¢, '), represented by the
surface in FIG. 5.23. Though only course tendency of this interpolation is relevant,
several important qualitative features can still be observed. For small and close to
neutral particles A, ~ 2.8, a value which is consistent with previous measurements [92]
and DNS [37, 89] for particles in the fluid tracer limits. If we consider the effect of an
increasing density at a fixed particle size (along ¢ = constant lines), 4, is always found
to decrease and to apparently saturate to a finite limit (noted ay’(¢)) for the largest
densities. This is better quantified in a 2D projection (FIG. 5.24). The ¢ ~ 16.5 set of
measurements which is our most complete set of density effects at fixed size, shows that
the evolution of acceleration variance with density exhibits two different regimes which
can be seen in the inset of FIG. 5.24: (i) for low densities Ay(@,T) = ay(@) T'%, (ay(p))
corresponds to size effects for the neutrally buoyant case which we have discussed
earlier with @ ~ 0.6 (ii) for larger densities A, saturates to the finite limit ay’ ~ 0.7; the
transition between these two states occurs for a characteristic density ratio I'" ~ 10.
Although we don't have as many systematic measurements for varying densities for

other values of ¢, the few available points are compatible with the existence of such two
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regimes (FIG. 5.24), with a size dependent saturation value ag’(¢) and very likely a size

dependent transition density ratio I'*(¢).

If we look more closely size effects at fixed particle density (along I' = constant
lines), as seen in FIG. 5.23, the scenario is rather complex, since depending on the
density ratioI, A, can either decrease or increase with particle size. For neutrally
buoyant particles (I' = 1), A, starts to deviate from the fluid tracer value for particles

larger than about ¢ ~ 15 and then decreases monotonically as ¢ ~2/3.

As we have already shown in the neutrally buoyant particle section that this is
the expected scaling for inertial range size particles when the main forcing simply
comes from the spatial pressure differences of the unperturbed flow around the
particle. As we move to larger density ratios, we then observe a continuous transition
toward a drastically changed size dependence for the largest densities (I' > I'") where
ay (¢) experience a sudden increase for sizes around 17 < ¢ < 19. Outside this
transition region (i.e. for ¢ < 17and¢@ = 19), ay does not exhibit significant
dependence on ¢ (at least in the accessible range of sizes) as also seen on FIG. 5.24,

where we have ay’(13) = ay’(16.5) and a3’ (19) = a3 (21).
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100 49 12 @

FIG. 5.23 - Acceleration variance in the (¢,I') parameter space (dots) for all studied data sets. The
surface represents a rough interpolation based on the available measurements. The dot dashed lines
materialize the interpolation along the best resolved constant ¢-lines and I'-lines. For the I' = 1 set, the
dot-dashed line coincides with a ¢~%/3 decay for ¢ = 15.
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FIG. 5.24 - 2D-Projection on the (I' — 4,) plane of measurements data points on FIG. 5.23, showing the
evolution of acceleration variance with density ratio I for different particle sizes (¢ ~ 16.5 set (circles) is
the best resolved). The inset shows the same data in log-log plot. Errorbars are mostly due to
experimental uncertainties in the determination of particle size and density.
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5.5 Discussion

In terms of the development of accurate models for the turbulent transport of
inertial finite sized particles, important conclusions can be drawn from our
measurements. The robustness of normalized acceleration PDF, regardless of particles
size and density, and the non trivial size and density dependence of acceleration
variance impose strong constraints on the statistical properties of the forcing terms to
be included in the equation of motion of particles. For instance models based on Maxey
& Riley equation [34, 55] for inertial point particles are contradictory with our
observations as they predict a continuous trend of acceleration PDF to gaussianity as
well as a monotonic decrease of acceleration variance [6, 9, 90]. In the context of these
point particle models, for moderate and large Stokes numbers both of these trends are
mostly consequence of a filtering effect due to increasing particles response time. Our
findings therefore show that turbulent transport of inertial finite sized particles cannot
be simply described in terms of Stokes number and filtering effects only. The concrete
statistical constraints that we have identified give a first clear experimental diagnose of
point-particle models limitations (already analyzed theoretically by Lumley in 1978
[53], and of the requirement for density and finite size effects to be modeled

simultaneously and specifically.

A simple qualitative phenomenology for the observed trends of acceleration
variance can be suggested based on the idea that particles tend to reside longer in the
quietest regions of the flow. This intuitive statement can be related to the tendency of

inertial particles to preferentially concentrate in low vorticity and low acceleration
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regions of the carrier turbulent field along which they are then advected following a

sweep-stick scenario [17, 36].

In this context, the decrease of particles acceleration variance naturally results
from the under sampling of intense regions of the carrier flow. Then, a possible
interpretation for the increase of acceleration variance with particle size observed for
high density ratios can be that while small enough particles can indeed be expected to
efficiently hide in the quietest regions of the flow, when particles become larger than the
typical size L* of these regions, the sampling effect is damped, as particles start
experiencing again the influence of more active regions of the turbulent field. Though
the existence of such a typical scale is still controversial, recent measurements of
preferential concentration suggest that the quiet sticking regions might have a
characteristic size L* in the range of 10n — 207 [2] consistent with the 17 < ¢ < 19

range for which we observe the sudden increase of ag’ (¢).

Our measurements of inertial effects for finite size particles can therefore be
consistently interpreted as a dominant role of sampling rather than filtering, contrary to
the point particle case [6, 9]. The dominant role of sampling is also consistent with the
fact that velocity statistics of our particles (not shown here) are found identical to that
of the carrier flow (obtained from classical hotwire anemometry), a feature also shown
numerically in the context of sweep-stick mechanism [36] but which is at odds from

usual predictions based for instance on the Tchen & Hinze theory or its extensions [23].
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Two Time Statistics

In the Lagrangian study of particle transport in turbulent flow, we are not only
concerned with the particle’s statistical properties but are also keen to investigate and
explore the multiple-time scale nature of these statistical properties. Here the specific
area of focus is to determine how these statistics change with the change in time scale.
In this chapter we will study different properties of particle dynamics, determined at

different time scales and present the discussions on their multiple-time scale behavior.

6.1 Lagrangian Velocity Increments

The velocity increments are used to characterize the temporal evolution of
particle dynamics i.e. the particle’s velocity statistics from integral to dissipative scales

and it is defined as:

Sv(t) = v(t+1)— v(t) (6.1)
where, T characterizes the time lag at which statistics are calculated.
In order to characterize in detail the Lagrangian statistics of particle velocities
we have determined the PDFs of velocity increments for all studied data sets. These

velocity increments PDFs for three neutrally buoyant experiment data sets are shown in

FIG. 6.1 (a), (b) and (c) for particles sizes 12.5, 21 and 25.1 respectively and for heavy
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particles data sets @ = 13.5, =6.34; ¢ =124, =47 and @ = 21.05,T = 41.1 are
shown in figures FIG. 6.1 (d), (e) and (f) respectively. The logarithm of PDFs is plotted
against velocity increments normalized with its variance. The PDFs are shifted vertically
in order to increase the readability of the viewer. It can be observed that regardless of
particle size and relative density, the Lagrangian statistics are intermittent i.e. the shape

of velocity PDFs depends upon the time scale on which they are determined.
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(c) (d)

@=21.05,T=411 ‘ ; ; 75X : @=124,I=47 -
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L()g”, (PDF)

(e) (0

FIG. 6.1 - Normalized probability density functions of velocity increments (a) ¢ = 12.54,I' ~1 (b)
o =21, I'~1(c)p =251,I'~1(d)p =135 TI=634(e) p =21.05 I'=411(f) o =124and ' =
47.

For all presented velocity increment PDFs we can clearly notice that, for the
largest time increment, the PDFs are Gaussian (as the two signals tend to become
independent). As we decrease the time increment the PDFs start to deviate from
Gaussian and tend to have spread tails for the small increments indicating the
intermittent statistics of Lagrangian velocities. For the smallest time scale, when the
time lag tends to zero, increments represent the acceleration of the particles, the
corresponding PDFs show the events of very high acceleration which occur with a
probability much greater than in a Gaussian distribution. However it is essential to
investigate the manner in which PDF tails spread with time lag from that of Gaussian to

wide tails.
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6.2 Flatness

The spreading of PDF tails is represented by flatness and its evolution with time
lag . In FIG. 6.2, the flatness of all neutrally buoyant data set has been plotted as a
function of time increments normalized with dissipative time scale. We can see that for
small time increments, all sets have flatness in between 7.2 and 9, corresponding to
acceleration flatness. As the time increment is increased the flatness decreases
gradually and for large time increments it tends to achieve an asymptotic value of 3
which is the flatness of a Gaussian distribution. We also noted that some kind of “hump”
can be observed at time lags close to T,,. However, we couldn’t find any systematic trend
of the evolution of the flatness with neutrally buoyant particle size. The spreading of the
curves shown in FIG. 6.2 is most likely due to statistical uncertainties in the estimation

of the flatness of the PDFs.

We have, however, identified a clear effect of particles density on the evolution of
the increments flatness with 7. An example of this behavior is shown in FIG. 6.3, in
which the evolution of flatness with time for same size particles ¢ ~ 16.6 with different

relative densities is shown.
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FIG. 6.2 - Flatness variation as a function of time increments normalized with dissipative time scale, the

flatness of Gaussian in dashed line.
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FIG. 6.3 - Variation of flatness as a function of time increments for three different relative densities

(I' ~1,2.5and 12.5) of a particular particle size ¢ ~ 16.6.
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From FIG. 6.3, it can be observed that the flatness variation pattern for
neutrally buoyant and heavy particles is not the same. For neutrally buoyant particles,
there is a kind of “hump” where the flatness first decreases unless a trough is reached
which is followed by an inflexion near 7,. From this point on, the flatness gradually
decreases until it reached a plateau around 3 which is the flatness of Gaussian
distribution. In the case of heavy particles with relative density I' ~ 2.5, the initial
decrease or fall in flatness is greater than neutrally buoyant particles. Like neutrally
buoyant this fall is followed by a hump again near 7, and later on the flatness decreases
gradually and tends to attain flatness of Gaussian distribution for large time increments.
For particles with relative density I' ~ 12.5, we did not observe the hump effect; first the
flatness decreases quickly with time and then starts decreasing slowly like in other
cases, similar behavior has been observed for high relative density particles. If we
consider the flatness of these increments for smallest time increments then no specific
trend is observed in the entire size and relative density range that has been studied.
However, we did observe some systematic trends in the initial decrease in flatness AF
as we increase particle relative density. We have studied this initial fall of flatness; the
change in flatness AF is plotted for all data sets in FIG. 6.4, and for data sets having size

@ ~ 16.6 with different relative densities in FIG. 6.5.
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From FIG. 6.4, we can clearly notice that the fall in flatness is much greater for

heavier particles as compared with neutrally buoyant particles. This means that heavy

FIG. 6.5- Initial fall in flatness for different relative densities of particle size @~ 16.6.
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particle velocity increment PDFs remain near Gaussian for most of the time lags and
then suddenly deforms to have spread tails for small time increments and is contrary to
the case with neutrally buoyant particles where this initial flatness fall was not adverse
and velocity PDFs turned Gaussian gradually. This trend somehow reminds the
prediction from point particle models, where acceleration tends to become Gaussian as
inertia increases. Our results show that such a trend is effectively not observed for
acceleration (or very small scale increments), but is present for increments at a larger
scale, around 7,. This suggests that one of the limitations of point particles models is
their inability to reproduce the intense small scale dynamics of the particles, which in

spite of an apparently large Stokes number remains present.

6.3 Lagrangian Velocity Autocorrelations

The Lagrangian velocity autocorrelations for all the data sets were calculated in

the following manner:

(v(®v(t + 1))
((w(®))?)

Ry (7) = (6.2)

Note that for each individual track, velocity is centered using the ensemble
average velocity and correlation is normalized using the ensemble velocity variance.
After having repeated the same procedure for all velocity signals of the particular data
set, the ensemble average was calculated for these autocorrelations. In FIG. 6.6, some
typical velocity autocorrelations are shown for different particle sizes and densities. We
can notice the correlations do not converge for long time scales, which is due to the fact
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that the particles are not tracked for long times because of the limited measurement

volume and the high mean flow velocity.
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FIG. 6.7 - Logarithmic plot of a specimen of Lagrangian velocity autocorrelation w.r.to time, we can

observe an exponential decay. Straight line shows the region where the correlation decays exponentially.
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In FIG. 6.7, where logarithm of autocorrelation is plotted w.r.to time, we can see
the initial curve at short time scale and then a straight line which indicates an
exponential decay. This is characteristic of a two time scale dynamics, one short time
scale T, and the other corresponding to the particles Lagrangian de-correlation time

scale T;.

For real tracers, the small time scale is usually ascribed to dissipation and finite
Reynolds number effects [84]. In the present case of inertial particles, the small time
scale curvature is believed to be due to the finite sizes and inertia of the particle and it
corresponds to turbulent kinetic energy filtering by its diameter. This in case of fluid
tracers i.e. for particles smaller than kolmogorov length scale and having the same
density as that of carrier fluid, is equivalent to dissipative or kolmogorov time scale t,,.
The long time scale on the other hand gives an idea of integral time scale of the carrier
fluid as experienced by the particles. Both of these characteristic time scales were
believed to change with particle size and density. FIG. 6.8 and FIG. 6.9 show a variation
in small and large time scales w.r.to size and density. Therefore, there was a need for a
systematic study in order to have a clear picture how these time scales vary and which
scaling do they follow, if there is any. For this purpose, all the autocorrelations were
matched by fitting Sawford’s two-time-stochastic model [84] which is based upon the
second order Lagrangian stochastic equation. The velocity autocorrelation function
form corresponding to Sawford’s model is given as under:

T e~ 1tl/TL — T,e~1Tl/T
TL— T

(6.3)

Ry, (1) =
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where, in spite of t,, T, was used which represents the turbulent fluctuation

filtering of the energy spectrum at scales corresponding to particles diameter in order

to take into account finite size effects.
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FIG. 6.8 - Lagrangian velocity autocorrelation for three different sizes of neutrally buoyant data sets,

showing the variation in small time scale with respect to size.
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FIG. 6.9 -Particle density effects on Lagrangian velocity autocorrelation for particle size ¢ = 16.6.
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An example of fitting this autocorrelation function with our data is shown in FIG.
6.10, it can be seen that a good extent of curve fitting has been achieved which ensures
good estimation of correlation times. The data fitting was done for different time
periods, the corresponding time scales were noted and then their mean values and
errors were determined. These results for neutrally buoyant, ' ~5, and I' ~ 50 are
shown in FIG. 6.11 to FIG. 6.19. The results that we have obtained by fitting the
autocorrelations do not devise a theory or any methodology; even then it is worth

mentioning.

T T T T
1 777777777777777777 - - - - - — = - - - - - - - - = - — - — — — — L
| | | | | - =12.54,T'=1
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FIG. 6.10 - Fitting the Lagrangian velocity autocorrelation with Sawford’s two-times stochastic model.

In FIG. 6.11, we observe a gradual increase in small time scale T, and then
saturation near ¢ ~ 18.7 around a value of 3.8 ms, and then we observe a sudden

increase in it. On the other hand the integral time scale (see FIG. 6.12) remains nearly
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constant up to ¢ ~ 18.7 and, then we see a sudden drop in Lagrangian integral time
scale which rises again and attains the constant time value. The Lagrangian Taylor
micro-scale t; = \/TLTZ (which corresponds to the curvature of the autocorrelation at
zero time lag), is plotted in FIG. 6.13. We observe a linear increase in t; with particle
diameter, with a possible inflection around ¢ ~ 18.7. The trend of the correlation time
T, is particularly appealing. It presents a minimum for ¢ ~ 20. In our flow this
corresponds precisely to the Taylor microscale A of the carrier flow. Though further
systematic studies at different Reynolds number would be required to be conclusive,
our measurements therefore suggest that neutrally buoyant particles with size
A decorrelate significantly faster, as a result of stronger turbulent fluctuations occurring

at this scale [42].

FIG. 6.11 - The small time scale obtained through fitting the autocorrelations with Sawford’s model for all
neutrally buoyant data sets as function of particle diameter.
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FIG. 6.12 - The integral time scale obtained through fitting the autocorrelations with Sawford’s model for
all neutrally buoyant data sets as function of particle diameter.
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FIG. 6.13 - Taylor micro-scale calculated from small and large time scales which were obtained fitting the
autocorrelations with Sawford’s model for all neutrally buoyant data sets as function of particle diameter.
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If we consider the evolution of these time scales with relative density for a fixed
particle size, some interesting phenomena are observed; which are to some extent
compatible with the particle’s acceleration which we have discussed in the previous
chapter. Both for T, and t;, we observe initially a gradual and approximately linear
increase with particle relative density until I' ~ 12.5 (FIG. 6.14 (a) and (b)), which is
near to the transition relative density I'*(¢) around which lies two different regimes of
particle acceleration (refer to FIG. 5.24), which for the considered particle size is
considered to be near 10. Above this relative density these time scales decrease and

tend to saturate an asymptotic value for high relative densities.

As for the de-correlation time T} (FIG. 6.14 (c)), we observe that it first increases
rapidly with density, then drops around I'*(¢) and increases again. This particular
trend is in good agreement with FIG. 6 of the DNS by Jung et al. [43] on the behavior of
suspended heavy particles and fluid particles as seen by the fluid in which they have
plotted the Lagrangian integral time of the fluid seen by the particle for a range or

particle stokes number.
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FIG. 6.14 - Evolution of time scales for fixed particle size as a function of particle density (a) T, (b) 7,

() T,.

6.4 Acceleration Autocorrelation

In FIG. 6.12, an example of the acceleration autocorrelation of z component is

shown and defined by following relation:
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FIG. 6.15 - The autocorrelation of acceleration component a, for data set ¢ 22.8,' = 4.01.

It has been observed that the acceleration autocorrelation decays to zero for
neutrally buoyant experiments in between 37, » 41, and 41, - 77, for heavier
particles. We notice that the decay to zero is not continuous; at first the acceleration de-
correlates with large slope and then decays further to zero with relative lesser slope. In
order to quantify the acceleration decorrelation we have determined a time named as

integral acceleration time 7;,; which is defined as next:

Tine = f Re(2)dz 65)
0
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where, 7, is the time when the acceleration autocorrelation decays to zero. The time 7;;,;
which is equivalent to the area under the acceleration autocorrelation curve gives us a
direct idea of the particles response to turbulent forcing. In FIG. 6.16, we have plotted
time 7;,, normalized with dissipative time scale 7, for neutrally buoyant particles data
set. We observe for first three data sets (¢ = 2.54, ¢ = 14.45and ¢ = 16.6 the

normalized time remains constant and then it increases in general with particle size.
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FIG. 6.16 - Normalized integral acceleration time for different particle sizes of neutrally buoyant data sets.
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FIG. 6.17 - Normalized integral acceleration time for all data sets as a function of particle size and relative
density.

6.5 Discussion

An important and interesting remark that can be made here is on the variation of
integral acceleration time 7;,,; , which when normalized with 7, varies up to only 7%
with a mean value of around 1.06 or in absolute terms it remains always of the same
order of magnitude with a minimum, mean and maximum of 2.5, 3.6 and 4.5
milliseconds respectively. As we have pointed out earlier that t;,; reflects the real
response time of the particles to the turbulent forcing that includes all the
hydrodynamic forces being acting upon them. We have learned from our results that
even if we vary the particle size from nearly 12n — 26n; and the particle relative
density from neutrally buoyant to nearly 70 the particle response time to the turbulent

forcing doesn’t vary much. On the contrary, the modified particle response time t,,
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which was determined after taking into account the finite particle Reynolds number
approximation in order to have a better estimation of drag force, vary itself two orders
of magnitudes for our data sets. This large variation in particles response time leads us
to a Stokes number varying from 0.9 — 52 which correspond from tracer to inertial
particles (see FIG. 6.18 for comparison). If we consider our case in the framework of
point particle models one should expect a great differences in particle dynamics for this

range of stokes numbers, but this is not the case.
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FIG. 6.18 - Comparison of particles Stokes number St with the experimentally observed effective Stokes
number.

In fact the finite size effects cannot be taken into account only by one parameter
i.e. Stokes number defined using classical or modified particles response time. Thus, we

define an effective or experimental stokes number St ;r which is based upon the actual
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response time of the particles 7;,;. For our data sets this effective stokes number varies
from 0.1 — 0.2, which seem quite reasonable if we want to interpret particle dynamics
from point particle models point of view in a sense that particle dynamics do not change
much because effective stokes number is almost constant. This can be further
understood if we again compare Tchen & Hinze theory with actual particle response
time 7;,,;. This is shown in FIG. 6.19, from where we observe that using particles real
response time our data falls in the region where particle and fluid fluctuations doesn’t

vary with stokes and seem to be in good accordance with theoretical predictions.

On the other hand the point particle models lack in capturing the physics of finite
size particle dynamics. For example in case of finite size particles, the added mass force,
Faxén corrections, lift and history forces are believed to play an important role and a

proper model taking into account these forces need to be develop.
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this figure the particle response time 7;,, was deduced from their acceleration component
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Conclusion

The novel Ultrasonic Doppler Velocimetry along with versatile particle
generation machine has allowed us to explore the material particle’s finite size and
density effects on their Lagrangian dynamics in turbulent flow. In the context of present
research work, we have covered the so far unexplored range of particles sizes
10 < ¢ < 30 (which lie in the inertial range scales of turbulence) and the particle
relative densities of 1 < T' < 70. First, we have studied in detail the statistics of
Lagrangian velocity and its autocorrelations. Second, the acceleration statistics were
explored, as acceleration reflects a direct measure of turbulent forcing experienced by

the particles. In addition to that we also studied the Lagrangian intermittency.

Concerning the Lagrangian velocity statistics, we have observed that the PDFs
remain Gaussian for all the studied data sets. The root mean square velocity was found
neither depending upon particle size nor on particle density in contrast with usual
predictions based for instance on Tchen & Hinze theory and its extensions [88, 42, 23].
Furthermore, the Lagrangian velocity statistics of the particles were observed to be
identical to the Eulerian velocity statistics of the carrier flow. The Lagrangian integral
time scale for same particle size was observed to depend upon the particles density,
with heavier particles having longer correlation times. In the case of neutrally buoyant
particles a minimum of correlation time was observed for particle size around D ~ A.

This should be further verified by doing experiments at different Reynolds numbers.

The normalized Lagrangian acceleration PDFs were found to be strongly non-

Gaussian. These PDFs for the entire range of investigated particle sizes and relative
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densities were observed to be the same, which shows the robustness of normalized
acceleration statistics. Our normalized acceleration PDFs were found to match that of
sub-kolmogorov size (¢ ~ 0.01) inertial particles obtained by [4] in a similar wind
tunnel experiment. This indicates that (i) if there is any change in particles normalized
acceleration PDFs as predicted by point particle models, it might only be expected to
occur for even smaller particles (as also suggested by [6]); (ii) an asymptotic
acceleration PDF is rapidly reached as particles become finite sized. Another interesting
observation is that the normalized acceleration PDFs for finite size particles measured
in wind tunnel experiments does not match the PDFs measured in von Karman flows.
These findings raise the question of the (non)universality of the small scale particles
dynamics: how do large scale properties of the carrier flow (for instance anisotropy and
confinement) affect the dynamics of the particles? This question should be addressed in

the forthcoming studies.

Contrary to normalized acceleration PDFs which were found independent of
particles size and density, clear effects of these two parameters were observed on
particle’s acceleration variance. It was found that, for heavy particles, finite size effects
can be trivially extrapolated neither from the heavy point particle limit nor from the
finite size neutrally buoyant case as both of these limits predict a monotonic decrease of
acceleration variance with increasing inertia, contradictory with the trends measured
for finite size heavy particles. Observed finite size and density effects cannot be
accounted by simple filtering arguments based only upon Stokes number effects as in
the point particle case. A sampling scenario, in the spirit of sweep-stick mechanisms

seems more adequate to possibly describe the simultaneous influence of density and
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size. From the acceleration autocorrelations it was remarked that for the entire particle
sizes and densities data sets, their response time to the turbulent forcing was always of
the order of Kolmogorov’s time scale. This infers that the actual particles forcing time
differs from the conventional Stokes time which, within our data sets, would be

expected to change over more than three orders of magnitude.

The Lagrangian acceleration statistics were found to be intermittent for the
entire data sets studied. The signature of intermittency was noticed to depend upon
particles density. This has been analyzed in terms of the time evolution of the flatness of
the Lagrangian velocity increments. For all particle densities, the flatness was found
identical at the smallest scales (i.e. acceleration doesn’t change). However density
dependence is observed for increasing time increments: the heavier the particles the
more rapidly the flatness drops when the time scale increases from dissipative to
inertial range. This suggests that : (i) at small scales, the Lagrangian dynamics results
from the same forcing mechanism (very likely dominated by the pressure gradients of
the carrier flow) regardless of particle density ; (ii) inertial effects associated with
particle density mostly affect the Lagrangian dynamics at time scales corresponding to

inertial range scales of the carrier flow.

The present study has given birth to important questions regarding finite size
particles dynamics in turbulent flows. In order to further endorse our results it would
be interesting to repeat similar measurements at different Reynolds numbers, to
examine, for example, the diminution of Lagrangian velocity correlation time around

D ~ A and to explore the Reynolds number dependence of the normalized acceleration
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PDFs form. Moreover, a much deeper investigation of the influence of large scale
properties of the carrier flow (for e.g. anisotropy and confinement) on particles
acceleration PDFs is required. It would also be interesting to study the dynamics of
particles lighter than fluid (I' < 1). Measurements by Volk et al. [90], with air bubbles in
a water von Karman flow, suggest that this could help exploring the relevance of the
sampling scenario mentioned above as lighter particles should accumulate in high
vorticity regions and sample complementary regions of the flow compared with heavy
particles. Finally, it is our hope that this exhaustive study will help the integration of

particles finite size and density effects in existing dynamical models.
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