
HAL Id: tel-00392776
https://theses.hal.science/tel-00392776

Submitted on 9 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On autonomous target tracking for UAVs
Panagiotis Theodorakopoulos

To cite this version:
Panagiotis Theodorakopoulos. On autonomous target tracking for UAVs. Automatic. Université Paul
Sabatier - Toulouse III, 2009. English. �NNT : �. �tel-00392776�

https://theses.hal.science/tel-00392776
https://hal.archives-ouvertes.fr

Thèse

préparée au

Laboratoire d’Analyse et d’Architecture des Systèmes du CNRS

en vue de l’obtention du

Doctorat de l’Université de Toulouse

Spécialité : Automatique

par

Panagiotis THEODORAKOPOULOS

On autonomous target tracking for UAVs

Soutenue le 4 mai 2009

devant le jury composé de :

Anibal OLLERO Rapporteur
Claude PEGARD Rapporteur
Rachid ALAMI Examinateur
Pascal BRISSET Examinateur
Jean Louis CALVET Examinateur
Simon LACROIX Directeur de thèse

LAAS-CNRS
7, Avenue du Colonel Roche
31077 Toulouse Cedex 4

1

Acknowledgements

First of all, I would like to thank the Greek State Scholarship Foundation (I.K.Y.) for
offering me the chance to prepare this Ph.D. in France, by financing this project.

Secondly, I would like to express my gratitude to my supervisor, Simon Lacroix, whose
great sense of humor, expertise, patience, warm leadership skills, and well-targeted ideas
helped me get through this long term project. Simon, thank you a lot, I’ve learned a lot from
you and if I started this Ph.D. all over again, I would still do it with you.

Thirdly, I would like to express my gratitude to Raja Chatila and Rachid Alami for
accepting me in the robotics group, to Jean-Louis Calvet for participating at the defense jury,
to Anibal Ollero and Claude Pegard for reviewing the thesis manuscript and finally to Pascal
Brisset for participating in the jury as well as to the whole ENAC team for producing such a
useful tool as the Paparazzi autopilot/simulator.

Fourthly, I would also like to thank Bertrand Vandeportaele for his valuable support
during the flights, his technical advices and mostly for letting me know what it means to be a
real engineer - I hope that you will invite me to see that house of yours when it is completed.

A big ’thank you’ to Dimitris Fragkoulis for his support, good times spent around our
common washing machine and the laughs we had when we had to drive each other to the
airport - I just learned that we could have used one of the airport parking spots instead.

I also would like to thank Gautier Hattenberger for his help not only in the early phases
of this thesis but also for his support as a member of the Paparazzi autopilot team, as well
as Michel Courdesses for offering some good advises during the early phases of this thesis.

I would like to say a glorious thank you to all the people (and plants) that I’ve spent some
time with in room B67. Viviane Cadenat for her jokes and good times, Tereza Vidal for her
big smile coming from the other side of the desk, Joan Sola for his engaging ideas, talks and
proofreading help, Louis F.Marin for the funny times and proofreading corrections, Norman
Juchler for throwing balls of paper at me, eating all my yogurts and organizing cool parties.
Finally, I should include in this list, the strange cactus named ’Finis-ta-these’ that kept the
atmosphere in the room clean and the spirits high.

A warm thank you to Jerome Manhes, Sara Fleury and the legendary Matthieu Herrb
for helping our robots remain functional. I would like to give a special thank you to An-
thony Mallet for sharing some talks with me in the Japanese garden as well as answering my
programming questions.

Special thank you to: Sébastien Dalibard and Manish Sreenivasa for their corrections and
engaging talks, Mokhtar Gharbi and Xavier Broquère for their help and funny talks, the great
Yi Li for every lunch we had together and for helping me get out of the building the days
that I left my badge home, Alireza Nakhaei Sarvedani for the laughing moments and Mathieu
Poirier for all the drinks and the talks we had together about women. It would be impossible
to leave out Sophie Achte, Camille Cazeuneve and Natacha Ouwanssi as they supported me
in all my strange administration demands.

I would like to thank more than anything my parents Aristotelis and Katerina Theodor-
akopoulos for having worked hard during their lives so that their children can have the chance
to think and enjoy an excellent quality of life. To my sister for finishing her studies and mak-
ing me jealous so that I had to finish my Ph.D. too, to my grand mother for teaching me
what courage means and to my uncle Thanassis for learning me how to think big.

En stor takk til Ida for å lære meg hvordan kjærlighet føles, for henne varmt smil og for

2

hennes støtte alle disse årene. Flyturen fortsetter wingman :)

Toulouse, May 2009

3

Contents

Glossary 2

1 Introduction 15
1.1 Motivations . 15
1.2 Challenges and objectives . 16

1.2.1 Problem characteristics . 16
1.2.2 Thesis objective . 17

1.3 Contributions and Thesis Outline . 17
1.3.1 Outline . 17
1.3.2 Implementation Grid . 18

2 State of the art 20
2.1 Guidance, Navigation and Control . 21

2.1.1 Waypoints VS Continuous Navigation 21
2.1.2 Missile Guidance . 21
2.1.3 Mixed strategy trajectory following . 23
2.1.4 Waypoint Guidance . 24
2.1.5 Potential Fields . 24
2.1.6 On Non-holonomic Aircrafts and Time Optimal Paths 25
2.1.7 UAV Trajectory Optimization for Target Tracking 26
2.1.8 Synthesis of Guidance, Navigation and Control Bibliography 28

2.2 Planning based methods for UAVs . 29
2.2.1 Path Finding for UAVs . 29
2.2.2 Search algorithms . 30
2.2.3 Variants of Potential Fields . 33
2.2.4 Path Finding and Obstacle Avoidance 33
2.2.5 Synthesis of planning methods . 34

2.3 Decision: game theory . 34
2.4 Competitive Approaches . 39
2.5 Cooperative Approaches . 45
2.6 Overall Synthesis of State of the Art . 47

3 Problem Statement and Formulation 48
3.1 UAV . 48

3.1.1 Trajectory . 48
3.1.2 Camera Types . 49

4

3.2 Target . 51
3.3 Environment . 51

3.3.1 No Fly Zones . 51
3.3.2 Visibility Obstructing Obstacles . 52
3.3.3 Road Network . 52

3.4 Mission criteria . 52
3.4.1 Metrics . 53

3.5 Synthesis of the problem . 54

4 Tracking a target on a ground plane 56
4.1 Problem Statement . 56

4.1.1 Overview of our approach . 58
4.2 Lateral Guidance . 58
4.3 Tracking Strategy . 61

4.3.1 Line of sight distance . 61
4.3.2 The lateral target image error xf . 62
4.3.3 Tracking strategy . 62

4.4 Results . 63
4.4.1 Simulations . 63
4.4.2 Stability assessment for a noisy sensor 65
4.4.3 Flight Tests . 67

4.5 Conclusions . 69

5 An adversarial iterative predictive approach to target tracking 72
5.1 Problem Statement . 72
5.2 Overview of the approach . 73
5.3 Evaluation functions . 74

5.3.1 UAV Evaluation Function . 74
5.3.2 Overall path cost . 78

5.4 Prediction and Iterative Optimization . 79
5.4.1 UAV prediction . 79
5.4.2 Target Prediction . 81
5.4.3 Off-road target evaluation function . 84

5.5 Results . 86
5.5.1 Evaluation of optimization methods 86

5.6 Extension to the multiple UAV target tracking case 89
5.6.1 Two UAV visibility . 89
5.6.2 Two UAV strategies . 91
5.6.3 Results of the two UAV approach . 92

5.7 Conclusions . 93

6 A discrete game theoretic approach to target tracking 94
6.1 Introduction . 94
6.2 Overview of the Approach . 95
6.3 Game space discretization . 95
6.4 Analysis . 96

6.4.1 Evaluating Game Configurations . 96

5

6.5 Mono-pursuer decision making . 101
6.5.1 Utility Maximization . 101
6.5.2 Adversarial Searching . 102
6.5.3 Nash equilibria and dominance strategies 103

6.6 Multi-pursuer decision making . 103
6.6.1 Hierarchical VS Consensus based approaches 104
6.6.2 Utility Maximization . 105
6.6.3 Cooperative Nash equilibria . 105
6.6.4 Pareto optimality method . 106

6.7 Realization . 106
6.8 Extension of the evaluation functions: visibility maps 107

6.8.1 Indicator of Stealthiness . 107
6.8.2 Measuring Stealthiness from the air 107

6.9 Results . 109
6.9.1 Evaluating the different approaches . 109
6.9.2 Mono-pursuer decision making . 109
6.9.3 Multi-pursuer decision making . 110

6.10 Conclusions . 110

7 Conclusions 121
7.1 Summary . 121
7.2 Discussion and further work . 121

7.2.1 Iterating on the thesis contributions 121
7.2.2 Beyond the horizon of the thesis . 123

A Implementation 124
A.1 The Paparazzi Flying System . 124

A.1.1 Presentation . 124
A.1.2 Hardware . 125
A.1.3 Software . 127

A.2 Development and Simulation Environments 128
A.2.1 Algorithm encapsulation . 128
A.2.2 Scilab simulation platform . 131

A.3 Aircrafts-Robots . 131
A.3.1 The Nirvana fleet . 131

B Resumé 133
B.1 Motivations . 133
B.2 Les défis et les objectifs . 134

B.2.1 La problématique . 134
B.2.2 Les objectives de la thèse . 135

B.3 La contribution et le plan du thèse . 135
B.4 L’état de l’art . 135
B.5 Synthèse du problème . 136
B.6 Suivre une cible terrestre . 137

B.6.1 Vue d’ensemble de notre approche . 138
B.6.2 Strategie . 138

6

B.7 Une appoche itérative predictive pour suivre la cible 138
B.8 Fonctions d’évaluation . 140

B.8.1 Coût de configuration . 142
B.8.2 Le coût de configuration dans l’ensemble 142

B.9 Une approache pour suivre la cible basée sur la théorie de jeux 144
B.9.1 La prise de la décision pour un seul avion 144
B.9.2 Decision pour drônes multiples . 146

7

Glossary

AI Artificial Intelligence, 20
ANN Artificial Neural Networks, 43

FOV Field of View, 16

GIS Geographical Information Systems, 52
GNC Guidance, Navigation and Control, 20
GPS Global Positioning System, 125

LOS Line of Sight, 22

NFZ No fly zone, an area that the drone cannot fly
over., 16

NMPC Non Linear Model Predictive Control, 39

PF Potential Field, 24
PN Proportional Navigation, 21

Shadow an area for the target where it is not seen by
the UAV (shadows are caused by “visibility
obstacles” or “occluding obstacles”), 17

Target The object moving on the ground to be
tracked by the UAV, also called the “evader”,
16

UAV Unmanned Aerial Vehicle, also called the pur-
suer, 15

8

Chapter 1

Introduction

1.1 Motivations

During the past ten years, there has been a significant increase in interest towards Unmanned
Aerial Vehicles (UAVs) and this is probably because UAVs have come a long way since their
early remote controlled days. Nowadays, UAVs can take off, fly and land almost without
any human intervention. Following this trend, global production of UAVs has increased as
well: while in 2004, the global production of unmanned aircraft systems (UAS) produced 477
different types of UAVs, some civilian but most military and by 2007 that figure had increased
almost by 65% reaching the figure of 789 [International, 2007].

Some of these platforms are by all means impressive: they address many important issues
such as flying capabilities, airspace integration, air worthiness and operational capacities.
However, they seem to be missing one very important: autonomy. There is often a miscon-
ception that as a UAV has the capability to fly by itself during some parts of its mission, it is
autonomous. The distinction should be made immediately: on the one hand, automatic flight
offers a system the capability to perform actions according to a set of predefined rules in a
highly predictable environment, a classical example being the automatic pilot. Whereas on
the other hand, true autonomy offers a drone the capability to act without any supervision in
an environment that changes and that can face a wide range of conditions. An autonomous
system should provide an interface with a very high abstraction level, where the user could
command the aircraft to ”Explore(Area)” or ”GoTo(City)” and the system could be left com-
pletely unsupervised to perform these tasks. In order to get an idea on the level of autonomy
that modern UAVs provide, we should note that for most aerial platforms produced today,
the plan following a communication loss is to command the aircraft to go to some deserted
area and perform circles until communication is re-established or until all fuel are consumed
and the aircraft hard lands.

UAVs have slowly evolved from piloted aircraft and no matter how fast they can fly or
maneuver, they still bear a lot of similarities with their piloted counterparts: there is still
somewhere a pilot taking the decisions and pulling the strings and the fact that he is not
on the aircraft does not change much. On the other hand, robotics research has advanced
significantly the past years and it can now offer many elaborate solutions in artificial vision,
path planning, decision making, obstacle avoidance and environment modeling – all these
work aiming at endowing mobile machines with autonomy. One of the leading motivations of
this thesis is to examine the technologies leading to UAV autonomy and attempt to expand

9

Figure 1.1: Aerosonde: First robotic aircraft to cross the North Atlantic.

some of them.
The second motivation comes from the nature of most UAV applications. They come in

a widening range: airborne surveillance, military information gathering, military offensive
actions, automated search and rescue, gas pipe line monitoring and automated forest fire
surveillance. The common point to most of these applications is that they are defined with
respect to the ground environment: ground target tracking, be the target static, slowly moving
or maneuvering at high speeds, is an essential task for UAVs. For such tasks, fixed wing UAVs
have the advantage over helicopters to reach high speeds at low energy consumption, but their
dynamics constrain the visibility of the ground target. This thesis considers this issue, and
introduces various strategies to achieve ground visual target tracking, aiming at maximizing
the target visibility.

1.2 Challenges and objectives

1.2.1 Problem characteristics

The overall objective of this thesis is to provide methods to endow a drone to autonomously
track a moving ground target, under the following conditions:

• UAV dynamics: we consider fixed wing UAVs. This type of aircraft has motion limita-
tions and dynamic constraints, and behaves as a non-holonomic vehicle. A fixed wing
aircraft cannot stop and change direction as easily as a ground target can do and this
raises difficulties, leading to the UAV being out maneuvered by the target. Also, we
consider that the UAV motions are constrained by the presence of no fly zones.

• Presence of obstacles: UAVs are unlikely to be allowed to fly over all areas and in the
case of a low flying micro drone this assumption is more than often true. One should
consider that there exist areas over which the drone cannot venture either because they
are tagged as no-fly-zones (NFZs), or because there are buildings to avoid. In any of
the above cases one should find ways to pilot the drone in such a manner that it will
maintain visibility without entering in the NFZ.

10

• Field of view restrictions: in many cases, UAVs and especially micro-drones do not
have a full Field of View (FOV) leading to a greater complexity of the problem. We
will examine the consequences of field of view restrictions for the UAV (panoramic full
field of view with respect to limited field of view).

• Target dynamics and behavior: The target may be either moving on an open field or on
a road network, and also has dynamic constraints (the model used in this thesis is that
of a car). It can be neutral or evasive: in the latter case, it can exploit the presence of
obstacles, denoted as “shadows”, to avoid being seen by the UAV, making the problem
akin to a hide and seek game.

1.2.2 Thesis objective

Overall, there is a need for the UAV to anticipate the movements of the target in order to be
”a step ahead”. This brings the interest to the level of the decision process: a target that is
evasive is going to actively attempt to hide behind obstacles and use the road network in a
predictable way. In order to maximize its visibility time, the UAV(s) must be able to predict
such situations and to react or plan before they even happen in order to maintain visibility.

The objectives of the thesis is to provide a decision framework that maximizes the target
visibility under all these constraints. Additionally, the case of two chasing UAVs will also be
considered.

1.3 Contributions and Thesis Outline

The main contributions of this thesis are:

• The presentation of a control based navigation method that permits a UAV to track a
ground target, in the absence of obstacles and shadows

• The presentation of a predictive method that permits a UAV to track a target based on
its position, while avoiding obstacles and areas that the target can use as hiding places.
The method considers the case of an evasive target that moves either in an off road
environment or within a road network, and is extended to the case of two cooperative
drones.

• The presentation of a discrete game theoretic approach that permits a UAV to track a
target based on its position among NFZs and shadowing obstacles, and the extension
of this approach to a two UAV collaboration scheme.

1.3.1 Outline

The thesis is structured in six chapters:

• In the second chapter, we review the state of the art on problems similar to the one at
hand.

• In the third chapter, we present the problem details, i.e. the numerical models and
constraints that we use.

11

• The fourth chapter presents a method that maximizes visibility under the assumption
of a neutral target and a limited visibility, using a reactive navigation approach.

• The fifth chapter introduces a predictive method that tracks non cooperative ground
targets, in an environment with obstacles and shadowing obstacles.

• The sixth chapter tackles the same problem, but using an approach based on classical
game theory.

• Finally, all implementation tools used during this thesis are briefly presented in annex
A.

1.3.2 Implementation Grid

Most of the control based methods presented in the state of the art as well as the one presented
in the fourth chapter are rather control based and thus reactive. The methods presented in
the planning section of the state of the art as well as the approaches proposed in chapters 5
and 6 are more planning based. The figure 1.2 presents how we locate our contributions in
two dimensional “problem complexity” / “solution abstraction” space:

Figure 1.2: Location of our contributions with respect to the state of the art. Note that this
figure does not measure the effectiveness of a method, it only illustrates the tackled problem
complexity and the solution abstraction.

• “Problem complexity” qualifies the number of constraints to satisfy. For instance, a
single UAV tracking a single passive target in an open environment is much less complex
than 2 UAVs tracking an evasive target in an urban environment.

12

• “Solution abstraction” denotes the capacity of a proposed solution to be applied in a
wide variety of applications. Low abstraction means a solution tailored to a very specific
problem, e.g. a given UAV with a specific FOV, whereas a high abstraction solution
mean that it can cope with numerous different problems, such as game theory, which
can be applied in economic theories as well as in UAV ground tracking.

The approach proposed in chapter 4 consists of a double control loop that commands a
trajectory that permits to the drone to maximize visibility. It tackles a problem a bit more
constrained problem than the usual control-based approaches. It however is restricted to open
environment, for UAVs with a limited FOV.

The approach presented in the fifth chapter is based on predicting and evaluating future
UAV/target configurations to select the action that yields the most satisfying results. It is
located a bit more left than the planning solutions on the figure because it has not been
proven to work in very dense areas. It however does not require any preplanning, an adapts
more easily to the problem as long as mission criteria remain the same.

Finally the game theory approach presented in chapter 6 relies on transforming the con-
figuration to a game and then proceeds to find out the best game configurations by using
classical game theory tools. It can easily be used for any kind of robotic applications. It is
though more on the left than some other applications, because in complex environments, the
Nash tabu search will not give always the best solution.

13

Chapter 2

State of the art

This chapter presents work that has been done in domains that are closely related to this
thesis. One must remember that research on UAVs has involved experts from different and
distinct domains. However, most early research programs on UAVs were traditionally attached
to aeronautics university departments and as a result all experts involved at those programs
where some-how related to Guidance, Navigation and Control fields. The result was that
those researchers produced solutions heavily influenced by their research fields. As technology
on UAVs was evolving, the cost and complexity of UAVs greatly diminished, and powerful
and easy-to-use simulators can now be used by almost anyone having a personal computer.
This makes it easier for researchers without any aeronautics background to enter the race:
robotics and artificial intelligence researchers seized this opportunity. With their elaborate
algorithms and with their iterative solutions, they not only provided new ways to tackle the
UAV problems but they also produced new tools.

• The first body of research, is based on Guidance, Navigation and Control. It’s
main interest is how to change a trajectory in order to achieve maximum visibility of
the target. Most of the scientific papers published in this domain also deal with the
control aspects of the problem. However, very few deal with the presence of No-Fly
zones or any other type of visibility obstructing obstacle. The typical scenario is the
following: a target moves in an open field, while the UAV flies at a steady altitude and
with steady speed, while trying to remain close to some ground target.

• The second body of research draws its forces from planning based solutions and
moves a step further to autonomy.

• The third type of work presented in this chapter is game theory, that has been his-
torically one of the most influential in the domain of decision making.

• This chapter would be incomplete without a presentation of multi agent environ-
ments and the two main type of interactions that can arise: competitive interac-
tions in the sense that target and UAV try to outsmart each other and cooperative
interactions in the sense that two or more UAVs may cooperate to maximize some
common utility.

14

2.1 Guidance, Navigation and Control

The first Unmanned Aerial Vehicle to ever fly autonomously was the Hewitt-Sperry Automatic
Aeroplane, also known as the ”flying bomb” [Pearson,]: it performed its first flight on 12
September 1916. Its control was achieved by the use of gyroscopes and signaled the start of the
UAV era. For the following forty years, the research on UAVs remained essentially a research
on control theory. We could define this period as the control and guidance problem phase
of UAV research. The question that researchers were seeking to answer was the following:
How can one make an unmanned aircraft closely follow a predetermined heading, altitude and
speed ?

As electronics and control theory evolved fast, this problem soon became trivial and led
to a new research phase for UAVs: What kind of system should we use on an aircraft, in
order to be able to get from point A to point B successfully and without any form of direct
human control ? This problem was known as the navigation problem and it was especially
interesting when point B was moving.

2.1.1 Waypoints VS Continuous Navigation

The guidance, control and navigation methods can be divided into three different approaches:

• In the waypoint approach, every trajectory is first divided into a series of waypoints
that the drone must attain. Each waypoint is reached, one at a time, before the next
waypoint is fetched from the list. As a result, any desired trajectory must first be
divided in a series of waypoints before it is fed back to the control level.

• On the other hand, in continuous navigation approaches, waypoints are not neces-
sary at all. Instead, a continuous stream of commands is passed directly to the control
level. Most visual servoing [Bourquardez and Chaumette, 2007] and missile guidance
approaches fell under this category. As every guidance law is tuned to optimize some
problem specific criterion, there doesn’t exist any generic method for Continuous Nav-
igation control and as such each problem has to be treated individually.

• There exists also a mixed third type of approaches: mixed strategy. This approach
makes use of both characteristics and shows quite good results in terms of trajectory
following.

2.1.2 Missile Guidance

There are many similarities between UAV guidance and missile guidance. There exist many
missile guidance laws that can assure that, a missile starting from a position A can most
times hit an evading target B, with a reasonable probability.

Missiles are relatively simple flying machines that fly at a maximal (and most of the times,
not controllable) speed. Even if there exist missiles that change their speed as part of their
strategy, in most cases the missile guidance problem involves one control variable only: a
force αm applied normally on the missile’s vector Vm. When the missile reaches a critical
distance from the target, it detonates and this is known as a capture.

Several methods exist that show good results in terms of capture capabilities.

15

Figure 2.1: This is a 2D graph of Proportional Navigation applied on the lateral plan.

Proportional Navigation (PN) (Fig. 2.1) is one of the oldest and most classic method
used by missiles in order to capture targets. The idea has been proved to work so well, that
it remains still in use today, five decades after its first appearance in scientific papers.

PN is based on the fact that two vehicles are on a collision course when their Line-of-
Sight (LOS) angle does not change. In order to achieve that, the normal angle αm remains
proportional to the rate of change of the LOS ρ̇, using the following formula:

αm = Nρ̇

N is a gain that permits to tune the behavior of the missile trajectory: a gain of N = 1
yields a curved trajectory, while a gain of N →∞ guides the missile straight to the position
of the target with no curvature1

Pursuit Guidance (Fig. 2.2 (a)) is a very simple method that makes sure that the missile
always flies towards the evading target. Even if this method can some times be impractical
for closing the final distance and ’capturing’ the target, it still remains an excellent method
for approaching closer to the target.

Deviated pursuit Guidance (Fig. 2.2(b)) is quite similar to the pursuit Guidance with
one significant difference. The missile angle leads the LOS angle with a fixed angle λ. This
is like anticipating where the target will be and thus covering less distance than the target.

Three Point Guidance (Fig. 2.2(c)) makes sure that the missile will always lie some-
where between the target and the target tracker. It is known also as constant bearing guidance.

For a good introduction on these methods, the reader might want to look at the classical
work of Siouris [G.M.Siouris, 2004]. For more details, in [M.Guelman, 1971] one can find
a good study on Proportional Navigation in one of the oldest publications that exist on
the subject. [D.Ghose, 1994] and [Yang and Yang, 1997] treat the problem of a maneuvering
target and they show how proportional navigation achieves capturing evasive targets. Finally,
in [U.S.Shukla and P.R.Mahapatra, 1990] an alternative method of PN is presented, where
the applied force is not normal on the missile speed vector, but on the LOS vector instead.

One very interesting application of PN on a wheeled, ground robot is given in
[F.Belkhouche and B.Belkhouche, 2007], where the authors use a more relaxed version of

the law:
1The curvature should not be confused with unwanted oscillations that may arise. A missile can move along

a given curvature and still have fast oscillations.

16

Figure 2.2: Different forms of missile guidance.

θR = Nρ+ λ

where θR is the robot heading with the reference frame, ρ is the LOS angle and λ is the
lead angle that if different from zero can have the same effect as in deviated pursuit guidance.
It should be noted that during the simulations the robot manages to find its way in the
presence of obstacles.

2.1.3 Mixed strategy trajectory following

Nicolescu [Niculescu, 2001] proposed a lateral track law that manages to hold a UAV very
close to its trajectory. This approach, behaves very well in straight lines. However, a method
that could behave well both on straight lines and on curved trajectories was proposed by Park
et al in [Park et al., 2004].

Park (Fig. 2.3) proposed a nonlinear guidance law that performs better than conventional
Proportional Derivative controllers. This approach has been shown to be mathematically
equivalent to a PN guidance law with a gain of N = 2.

The law of the guidance law is:

αcmd = 2
Vd
L1

sin η

where αcmd is the lateral acceleration command, Vd is the drone speed, L1 is the distance
between the reference point and the drone and finally η is the angle between the drone speed
vector and the UAV / reference point LOS. The method has been used for obstacle avoidance
as we will see later in [Ducard et al., 2007].

17

Figure 2.3: Diagram of Shangyuk Park’s proposed guidance law.

Figure 2.4: Diagram of the ’good helmsman’s’ Guidance.

2.1.4 Waypoint Guidance

One of the most classic methods in the UAV Guidance literature, comes from waypoint
tracking control of ships [Pettersen and Lefeber, 2001]. The idea behind this principle is to
model the behavior of a ’good helmsman’ (Fig. 2.4), the person that has the task to steer
a ship, a submarine or any type of maritime vessel. The idea was presented to the UAV
community by Rysdyk in [Rysdyk, 2003], who fine tuned it for the aircraft case.

2.1.5 Potential Fields

These methods use repulsion from undesired configurations and attraction towards goals in
order to compute a path. A useful method to generate motions is the Potential Field (PF)
(Fig. 2.5) [Latombe, 1991]. The primary advantage is that PF approaches were developed
for real time applications. The idea behind PFs is that every point, which has to be avoided
is surrounded by a repulsion field while every desired goal point is surrounded by a attraction
field. This way the robot will move around the obstacles that repulse it and move towards
the points that attract it. Using this simple formulation the task of path planning becomes
much easier: the robot always moves towards the area that attracts it the most and this can
be done using any greedy local search method like e.g. steepest descent. A similar approach

18

Figure 2.5: Trajectory of a robot that avoids two obstacles while heading for some distant
goal with using a Potential Field method.

uses probability density functions as evaluations functions [Dogan, 2003][Kim et al., 2008].
However, the biggest caveat of this method is that robots can be easily trapped into local

minimum and remain there in the absence of an external aid [Koren and Borenstein, 1991]. A
good mechanism to break cyclic behaviors is proposed in [Dogan, 2003]: Every time a change
in UAV heading is detected a counter measures how much the aircraft has turned: If a full
360 degrees heading change is detected, the behavior is noted as cyclic and the aircraft enters
an exiting pattern. Another solution proposed for overcoming cyclic behavior in potential
field methods is the change of altitude [Helble and Cameron, 2007].

2.1.6 On Non-holonomic Aircrafts and Time Optimal Paths

Aeroplane dynamics are constrained by various laws, spanning from aerodynamics to struc-
tural engineering. However, the most influential law for target tracking are those of lateral
movement, as they can help the selection of a UAV optimal path.

A robot whose configuration space has l dimensions is a non-holonomic robot, if it is
constrained by k non-integrable constraints Gi with i ∈ k and (0 < k < l) of the form :

Gi(q, q′) = 0

An aeroplane behaves exactly as a Non-holonomic vehicle when it is examined with respect
to its lateral movement. A Non-holonomic vehicle is a vehicle whose current posture (position
and orientation) depends on the path it took to get there.

The model that seems to correspond the most is that of the Dubins car as it is known
in the Robotics community from the ground breaking work of L.E.Dubins [Dubins, 1957],
published in 1957. 2

2However, what until recently was not known is that, another researcher under the name of Pecsvaradi
published a paper in 1972, covering the same aspects, arriving at the same results and focusing solely on
aeroplanes. However, as he published in a journal that was read almost only by researchers from the Control and
Guidance community, his work did not reach the Robotics community, until very recently. The two researchers
arrived at the same results but did it using two different approaches: Pecsvaradi used the Pontryagin Maximum
Principle (PMP) and found what guidance law is appropriate, when an aircraft wishes to get from one point
to another, in a time optimal manner. On the other hand, Dubins achieved the same result but this time
using Topology elements, without mentioning the application. For a good introduction on PMP , one can read
[L.M.Hocking, 2001] and for an introduction on Topology, one can look at [Lipschutz, 1968].

19

The term Dubins Aircraft was coined in [Chitsaz and LaValle, 2007], where three dis-
tinct cases where examined all using the Pontryagin Maximum Principle (PMP): what are
the time optimal paths in order to attain three different goals of low, medium and high al-
titude. This type of work has been applied for years in the Robotics community in order to
find optimal paths for ground robots. Good examples can be seen in [Bui et al., 1994] and
[Tang and Ozguner, 2005].

The model of the Dubins aeroplane is given by:

ẋ = v cosψ (2.1)
ẏ = v sinψ (2.2)

ψ = −(g/v) tanφ (2.3)
(2.4)

where x and y are the Cartesian coordinates of the aeroplane, ψ is the heading angle
of the aeroplane, v is the speed of the aeroplane, φ is the bank angle and g is the gravity
acceleration. It should be noted that the bank angle is bounded:

|φ| ≤ φmax
For any aeroplane (or robot) following the above equations, any given initial and final

configuration can be attained using six types of paths (Fig. 2.6), constructed from three
arcs only. This means for every UAV, moving in the absence of obstacles, only three type of
commands are necessary to attain any point on the horizon under any type of heading:

• An arc of a counterclockwise, left circle (L) ψ = −(g/v) tanφmax

• An arc of a clockwise, right circle (R) ψ = (g/v) tanφmax

• A straight line segment (S) ψ = 0

2.1.7 UAV Trajectory Optimization for Target Tracking

Target tracking includes a series of methods that permit a UAV to bring in or to maintain
the target within its camera frame. This is done by adjusting accordingly the UAV trajectories
and camera postures in order for the drone maintains target visibility. The key aspects of
these methods are to maintain target proximity and proper camera orientation.

Lee et al [Lee et al., 2003] propose the following strategy in order to track a ground target:
the UAV enters in two different modes accordingly to the speed of the ground target. If the
target moves too slow, then the UAV enters a loitering mode that looks like a rose curved
trajectory (Fig. 2.8) and by this it remains close to the target. If however the target starts
to move faster, it enters into sinusoidal mode. During this mode the UAV follows a sinusoid
wave pattern trajectory, whose frequency and amplitude depend on the targets speed and
thus staying close to the target. The target’s position is supposed to be known already, while
a full FOV visibility is assumed for the camera. The authors have proved the functionality of
the algorithm in a real flight test.

Stolle et al [Stolle and Rysdyk, 2003] make use of the helmsman’s guidance law in order
to track a ground target. They examine different types of camera visibilities and provide

20

Figure 2.6: Two examples of optimal trajectories for a Dubins aeroplane. Note the different
headings of the waypoints.

Figure 2.7: Different configurations of cameras. We can see cameras that are of static, roll
only and pan-roll, depending of their capabilities to turn on certain axes. β is the roll (or
tilt) axis and α is the pan axis

different type of trajectories. They show that for a full FOV camera, a circular path around
the target will guarantee visibility. However, when the camera has limited camera angles (Fig.
2.7) and it is in the presence of wind, they propose to add a sideslip angle in order to maintain
the target within the camera FOV without changing flying path. They remark the negative
effects of the sun and the wind and they propose segmented circular orbits (Fig. 2.8) around
the target of different radius in order to avoid the angles where visibility is deteriorated.

21

Figure 2.8: Different strategies for tracking a ground target.

Husby during his master thesis added a square wave pattern trajectory that achieves
the same result as the sinusoidal method and demonstrated that the methods presented in
[Stolle and Rysdyk, 2003] work equally well with moving targets.

The case of a roll only camera (Fig. 2.7) has been examined in [Thomasson, 1998] by
Thomasson. He proved that for such a configuration only three type of trajectories are
viable: spirals, circles and ellipses, all depending from the wind vector. He then provided the
guidance laws required for a UAV to perform a search. The author of [Rysdyk, 2003] decided
to work on a ’clock-angle’ frame of reference, with each algorithm evaluating every bearing
angle around the UAV. This time the camera is considered to be of pan and roll type (Fig.
2.7). The author looks for the trajectory that maintains the geometry between target and
drone constant. He then arrives at results similar the roll only camera case. The idea of an
ellipse trajectory that compensates wind presence has been examined in [Sun et al., 2008],
where the authors described the pan, roll camera guidance law. Also in [Rafi et al., 2006]
the authors propose a circular pattern around a target and offer the guidance algorithms to
achieve that.

In [Quigley et al., 2005b] the authors proposed an attraction field generated by a super
critical Hopf bifurcation in order to keep the UAV close to the target. A Hopf bifurcation
is a phenomenon appearing to certain dynamical systems, causing a limit cycle attraction
field. An interesting application of the Dubins aeroplane in order to follow a slower target
(in this case a helicopter) has been presented in [Ryan and Hedrick, 2005] where the methods
reminds us the work on sinusoidal guidance, seen earlier. In [Rathinam and Sengupta, 2004]
the authors assume that a fast moving UAV will not have the time to scan the areas for
threats. So they propose to delay the forward speed using circle trajectories in order to scan
the area.

2.1.8 Synthesis of Guidance, Navigation and Control Bibliography

Missiles, drones and cars all behave as non-holonomic vehicles and as such any law that can
guide successfully one type of engine can guide another one too – when we examine them in
the lateral plane. Missile guidance laws provide a good set of tools that can permit a UAV to
approach a target, a waypoint or a trajectory path. In essence this is what Sanghyuk guidance

22

achieves, as under some circumstances, it closely resembles to proportional navigation.
It was shown that for any UAV, three commands are enough to successfully plan a path.

This can be of great use when graph search algorithms will be implemented.
In the domain of reactive path planning there exist numerous trajectory patterns that can

achieve a good observability. However, these methods depend from the type of camera:

• For roll only cameras, Ellipses and Circles seem to be the trajectories that provide a
good target visibility through the trajectory.

• For full FOV cameras, a circular path seems to track the target the best.

• For 180 degrees FOV cameras, a circular path may not be good enough in the presence
of wind, as it can easily throw the target out of view. Two solutions are proposed:
Either add a sideslip angle if that option is available on the drone or perform an ellipse
based trajectory.

These trajectories are actively constructed with predefined patterns by examining the
Cartesian coordinates of the drone. The knowledge of when to switch from one type to
another is assumed to derive either from the position of the drone or from measuring its
speed. Very few of these cases consider an obstacle that obstructs either the UAV path or
the target image. As a result they can function only under special conditions.

Furthermore there doesn’t exist a comparison that can show us which of these methods
presents the best target tracking score under different target movements.

Another point that varies significantly is the way the target’s position is acquired. In most
cases the position is known via some external source and very few actually test the method
with a real flight camera feedback.

Overall, there seem to exist several methods that address the visibility issues but there
lacks a unification, a single method that can be used in all of the above combinations of
camera types, target position input types and aeroplane types.

2.2 Planning based methods for UAVs

Some of the methods examined in the section are:

• The use of predictive methods in order to select the best future path.

• Research of all possible configurations in order to find the best path possible using
search algorithms.

• Anticipation of target movement in order that the drone will position itself in such a
way that it will be easier to track the target, even if the target tries to avoid capture.
This capability falls under the category of adversarial searching and the applications
arising are known as pursuit evasion games.

2.2.1 Path Finding for UAVs

Path or Motion Planning in Robotics, is the process where a machine produces a collision-
free path from a point A to a goal point B. However, this section does not address only methods
that pre-plan a path, but also expands to methods that simply search to find a near optimal
path under several constraints as obstacle avoidance and target visibility (Fig. 2.9).

23

Figure 2.9: Summary of the tools and application domains presented in the Path Finding
bibliography.

2.2.2 Search algorithms

Despite the real world fluctuations, in the AI world drones are considered to be flying in a
3-D space known as a State Space.

The problem as it is proposed by Path Planning is: What kind of process should a machine
use in order to find an optimal path starting from an initial state towards some desired goal.

Most search algorithms used in the Robotics literature are mainly of graph search type.
[Russell et al., 1995][Korf, 1985] The basic idea behind graph search algorithms is to use the
nodes of a search graph to store information for every state space available. Each node
also stores information regarding the path cost one would use to get to that node, based
on problem related criteria. This way the question of path planning becomes a question of
finding the optimal path within the search tree. After one node is examined and found that
it is not the goal node, all or some of its descendant nodes are generated and examined in
order to see, if any of them is the goal node. The total cost of each candidate path is the sum
of all individual costs of every node participating in the path. Here, some complexity issues
arise as the search tree expands (also known as the depth limit or diameter of the graph), so
do the calculations necessary to complete the process. For an on board computer, this may
bring up issues of memory usage and processor time allocation.

There exist two main categories of search algorithms:

• Informed methods use some form of heuristics in order to select which node will they
open.

• Uninformed methods where no information exists concerning which node should the
algorithm explore next. As a result nodes are opened one by one until an end goal is

24

reached.

Uninformed search algorithms

In this category we find the following algorithms:

• Uniform-cost search algorithm

• Breadth-first search algorithm

• Depth-first search algorithm

• Depth-first iterative deepening search algorithm

Informed search algorithms

• Branch and bound search algorithm

• Dijkstra’s search algorithm.

• A* and all its descendants (IDA*, D* etc)

• Steepest Descent search algorithm

Example 2.1.

Local search algorithm - Tabu search

The tabu search method is an optimization solution that uses local search methods. This
specific search method overcomes local minimum by using a special memory structure known as
the tabu list T . As the algorithm proceeds evaluating different solutions using some termina-
tion condition, it places in the tabu list all solutions that it has already examined. Once a solu-
tion is put in that list the algorithm can no longer reuse it, forcing thus the algorithm to search
for new, alternative solutions. When the algorithm is applied to a graph this leads to constantly
exploring new paths until a solution is found [Gendreau, 2003, Glover and Laguna, 1993].

Example 2.2.

Heuristics graph search - for Robots

A* algorithm is a widespread search algorithms used in Robotics and AI. It is used to
find the least cost path from an initial node to the desired end goal. It is a best first, informed
search algorithm. While most algorithms will expand all nodes one by one until they arrive to
the end goal, A* uses a shortcut in order to arrive to the end goal. This is achieved using an
evaluation function f(x) that helps select only the most promising nodes to expand. For
this reason, the algorithm keeps in memory a whole front of nodes and keeps expanding only
the best one at a time. Once a node has been examined and found not to be the end goal, it is

25

removed from the front and its successors are placed in memory, restarting the whole process
again.

The evaluation function f(x) of every node consists of two parts:

• g(x) where the cost of the path from initial-node-to-the-present-node is stored.

• h(x) a Heuristic function where the estimated-to-the-end-node cost is stored.

In order for A* to be optimal an admissible heuristic h(x) is needed, something that
can be achieved if the heuristic underestimates the actual cost left to reach the goal. In other
words, this means that the heuristic must always be optimistic and a way to do that is by
adopting a relaxed version of the problem. In the case of a robot that seeks to find the
shortest path to a goal, the Cartesian distance between the node in question and the goal is
admissible.

Figure 2.10: Diagram of a robot that uses A* for path planning.

Furthermore A* is complete, meaning it will always find a solution if there exists one.
The worst case for time and space complexity is O(bd) where b is branching factor or the
maximum number of successors of any node and d is the depth of the goal in steps. Fig. 2.10
shows a robot using A* while trying to find the shortest path to some desired goal.

26

2.2.3 Variants of Potential Fields

Another local method that avoids some of the local minimum problems is the vector field
histogram (VFH) [Borenstein and Koren, 1991][Ulrich and Borenstein, 1998]

[Borenstein and Koren, 1990]. This approach constructs a polar histogram containing a
value representing the polar obstacle density in every direction. As the method is bearing
oriented as opposed to Cartesian position oriented, it can avoid some forms of local minimum.
However, this can lead to dead-end situations and exhibit cyclic behaviors, where the robot
moves from one obstacle to another.

2.2.4 Path Finding and Obstacle Avoidance

A classical approach to ground robot path planning is the construction of a traversability map
[Singh et al., 2000] [Gennery, 1999] followed by a graph search method to find the best route
to the desired goal.

A related method is the arcs approach [Lacroix et al., 2002] [Langer et al., 1994], where
a series of arcs is generated and compared one to each other in order to select the one with
the least cost. The robot then chooses steers along its way. The cost function is the sum of
traversability values along its path. This type of search is called greedy as instead of searching
a sequence of commands along the way, it selects the immediate best command. It is situated
somewhere between control and planning.

A commonly used method is that of behavior based algorithms [Langer et al., 1994]
[Seraji and Howard, 2002] where every task in the path planner generates its own heading

and speed setpoints. In the case of a conflict a behavior arbitrator fuses the different setpoints
and finds the common decision.

The organization of path geometry around obstacles is also a quite important subject in
robotics. A very common technique is the use of Voronoi graphs [Latombe, 1991]

[Barraquand et al., 1992] to find the routes between obstacles. Voronoi graphs are used
to separate the neighbor areas from two or more obstacles at equal distances. In UAVs this
has been applied in [Bortoff et al., 2000][Chandler et al., 2001]. This method permits to find
a safe path among two or more obstacles. A very closely related method is the separation of
the space with the Finite Element Method [Pimenta et al., 2005].

A method that searches a route among obstacles is the Roadmap method [Latombe, 1991]
[Isler et al., 2005]. The method creates a graph consisting of lines connecting all edges of an
object (or tangents leading to the object) including: the end goal, the obstacles positions
and the robot position. It then proceeds at finding the optimal path at that graph. In
[Isler et al., 2005] this is done in order to minimize time.

In [Rathinam and Sengupta, 2004] the authors use the Dijkstra’s algorithm along with a
risk map in order to navigate the drone through safe areas. Finally, a very good application
of Park’s lateral guidance law was proposed by Ducart et al in [Ducard et al., 2007]. The
authors proposed the use of tangent lines starting from the drone and touching the security
circle around the obstacle. The points of contact are then used as waypoints for the lateral
guidance law and drive the UAV around the obstacle. This method can be very useful in
the case of a drone that is moving and detecting obstacles in real time as it does not need
beforehand trajectory calculation.

Another method that is lately gaining a lot of ground is that of Rapidly-exploring Ran-
dom Trees (RRTs). This method permits to perform a research in highly multidimensional

27

Figure 2.11: Trajectory of a robot that avoids an obstacles, while heading for some distant
goal with the use the method proposed in [Ducard et al., 2007].

non convex areas and in drones is applied by exploring random arcs and then choosing the
ones that are the closest to the end goal and not in contact with any obstacles. RRTs
perform really well with path planning problems that involve obstacles and differential con-
straints. Work on RRTs can be found in [Tan et al., , LaValle, 1998, Bruce and Veloso, 2003,
Kuffner Jr and LaValle, 2000].

2.2.5 Synthesis of planning methods

The basic tool presented in this section involve variants of potential field methods and graph
searching tools. Robotics provides a set of tools that allow any type of robot to navigate from
one point to another, while avoiding any obstacles that it may encounter. Overall, we can
consider that the solutions are robust enough and with some slight changes they could be
used for fixed-wing UAV path finding. However, one should not forget that fixed wing UAVs
have two very important constraints: in contrast to ground robots and helicopter UAVs, they
cannot stop. Furthermore, small UAVs may have computation limitations. The work that
should be done in this domain would be to adapt somehow the above methods in order to
produce a fixed-wing UAV path-finding algorithm that respects the above constraints.

2.3 Decision: game theory

This section deals with a basic analytic tool of decision theory. Decision theory is a framework
that permits one to take the best decision under a set of rules and based on the information
that the decision maker has at a given moment.

Game theory: introduction

Game theory [Fudenberg and Tirole, 1991, von Neumann and Morgenstern, 1953] is a branch
of applied mathematics that tries to capture behaviors in strategic situations as the ones en-
countered in multi-agent environments. It deals with the decisions that an individual or a
team has to take, when its success depends on the choices of others. It has applications that

28

span in various domains: social sciences, economics, biology, engineering and political science
being some examples.

Example 2.3.
Game theory: Quick Review
A game G is a mathematical object that describes the interaction of a group of players

i ∈ N , where N = 1, ..., n is the set of players. Each player can choose among a set Ai of
actions σi ∈ Ai (aka pure strategies) or among a set of mixed strategies ∆(Ai). Furthermore
the player is considered to be rational and thus seeking to optimize a certain utility or payoff
ui : A→ <.

Games can be found in different categories depending on several parameters:

• Cooperative vs non-cooperative games. In a cooperative game, players can form coali-
tions, as opposed to non-cooperative games, where each player is trying individually to
optimize his own utility.

• Zero sum vs non-zero sum games. A zero sum game is a game where the sum of all
payoffs of all players is equal to zero:

∑N
i ui = 0.

• Sequential vs simultaneous games. During simultaneous games, both players move si-
multaneously as opposed to sequential, where players alternate moves.

• Perfect information sequential games vs imperfect information sequential games. If all
players know all actions performed by other players previously, then the game is said to
be of perfect information.

• Complete information sequential games vs incomplete information sequential games. In
incomplete information games, the players may not know exactly what their or their co
- player’s payoffs may be.

• Discrete vs continuous games. When players can choose actions only from a discrete set
of actions, then the game is said to be discrete as opposed to continuous games, where
players can choose a strategy from a continuous strategy set.

Games can be represented in the following forms:

• The extensive form (Fig. 2.12). Here the games are represented with a tree and each
node (or vertex) represents an action (or decision) taken by a player. The payoffs are
noted at the bottom of the tree. The extended form can represent both sequential and
simultaneous games. For the later case, while one player is moving, there is uncertainty
on what the other players are doing. To symbolize this, one has only to connect the
nodes with a dotted line where this uncertainty arises – or circle them. The connected
nodes represent the possible alternatives of that move and show what information is
missing. This is known as the information set.

To put it alternatively, an information set of a certain player P, is the set of all possible
moves that could have taken place so far, based on the information that player P may
have. For a perfect information game, every such set consists only from singletons: sets
that have only one member.

29

Figure 2.12: A game with imperfect information represented by its extensive form.

Figure 2.13: Normal form of the Prisoner’s Dilemma. Two friends are arrested by the police as
suspects for committing a crime. However, the police does not have enough evidence against
them and decide to separate them in order to offer them a deal: if one testifies (”betrays” his
friend) for the prosecution against the other and the other remains silent, the betrayer goes
free and the silent accomplice receives a full 10-year sentence. If the both remain silent, they
both receive only six months. If each suspect betrays each other, they both receive five years
each.

• The normal or strategic form (Fig. 2.13). Here the games are represented with a
matrix and each cell depicts the outcomes of the moves for each player. Within the
cell, one marks the payoffs of that combination. This representation is used only for
simultaneous games or games of imperfect information.

• The characteristic function form. For games of cooperation, no individual payoffs
are assigned but instead one can use a group payoff v : 2N → < for every coalition S
arising from a set N of players.

Dominance Strategies, Non-cooperative games and Individual Decisions

An event E is mutual knowledge if everybody knows E. E is common knowledge if everybody
knows E, everybody knows that everybody knows that everybody knows E with this pattern
continuing towards infinity.

A strategy σ∗i strictly dominates σi (σ∗i � σi) if:

∀σ−i ∈ ∆(A−i) : ui(σ∗i , σ−i) ≥ ui(σi, σ−i)

In the case of the Prisoner’s Dilemma (Fig. 2.14) the silent strategy is strictly dominated
by the betrayal strategy. Regardless, what the other player may choose, a player will be better
off if he decides to betray his co-player. However, this can mean that he will be trapped in a
sub optimal outcome. This concept shows that rational, selfish decisions are not necessarily
optimal for a player.

Let σ−i ∈ ∆(A−i). α∗i is a pure best reply to σ−i if:

30

Figure 2.14: Strong Nash Equilibrium in Prisoner’s Dilemma: Always betray your friend.

∀αi ∈ Ai : ui(α∗i , σ−i) ≥ ui(σi, σ−i)

A strategy profile σ∗ = (σ∗i , ..., σ
∗
n) ∈ ∆(A1) X ... X ∆(An) is a Nash equilibrium

[Nash, 1950, Nash, 1988] if for any i ∈ N :

∀σi ∈ ∆(Ai) : ui(σ∗i , σ
∗
−i) ≥ ui(σi, σ∗−i)

Coalitions and Cooperative games

A cooperative game is a game where players form coalitions and they compete against other
coalitions for some common utility. In a mathematical form every coalition S of a set N of
players is assigned a payoff value v : 2N → < describing how much value can a group of
players earn by forming that coalition S.

There exist different methods for finding ways to fairly allocate the collective payoff to
players of the coalition. Some of those solution concepts are known as the Core, the stable
set (known as “von Neumann-Morgenstern solution”) [von Neumann and Morgenstern, 1953],
the Shapley value [Shapley, 1953] and many others. However, these methods are interesting
when more than two players are involved, something that is not the case for this thesis where
only two drones cooperate to guarantee visibility of a target.

However, there exists a concept in game theory that can be of interest for cooperation
and that is Pareto efficiency. If one imagines that there is more than one way to distribute
a common good or utility to a group of players, then a movement from one type of wealth
allocation x to another type of allocation y that augments the wealth of one player, with-
out making the situation worse for another player of the coalition, is called a Pareto im-
provement: y � x. Thus, a good allocation is called Pareto optimal or Pareto efficient
[Fudenberg and Tirole, 1991], when no further Pareto improvements are possible within that
set of players. The set of choices within a coalition that are Pareto efficient are known as
the Pareto frontier (Fig. 2.15) or Pareto set. The Pareto frontier describes the maximum
possible welfare for a given group of players. If one returns to the example of the Prisoner’s
Dilemma as it was seen earlier (Fig. 2.14), we can see that while the Betray-Betray strategy
is a Nash Equilibrium, it is not Pareto efficient and that is why it seems so counter intuitive
to us.

Differential games

Classical game theory representations like the matrix form and the extensive form seem to be
excellent tools for formulating and proving the basic theorems of game theory but they seem
to be unsatisfactory tools for solving real life problems.

31

Figure 2.15: This graph depicts the Pareto frontier. Each axis is the welfare of a player, in
an imaginary game where more utility is best. While decision C is better than decision B
for player 1, it is a much worse decision for player 2 as it provides less wealth and thus it is
dominated by point B. As a matter of fact, the only decisions that are not dominated by other
decisions, are the ones that are on the Pareto frontier. In other words, the Pareto frontier
depicts the maximum possible welfare for a given group of players.

Unless the problem is very simple, (e.g. very few players, with few discrete options for
each player) the problem matrix becomes astronomically large, quite difficult to track and
even more difficult to solve. This is why another method is needed to tackle the problems by
analyzing the inner logical patterns of the games and producing some set of equations that
one can solve.

Differential games [Isaacs, 1999] is a branch of game theory where players move sequen-
tially instead of alternatively, and is mostly used in economic applications. It uses notions as
barriers, zones and backward induction to deduce whether a pursuer can ’capture’ an evader
or not. In most cases the strategies are not discrete but continuous and in several cases, it
can provide the control trajectory and use it to optimally guide a pursuer to a capture.

Classical problems for differential games are battles, pursuit-evasion games, dogfights,
football, missiles intercepting aircrafts and many others.

One must bear in mind that in most cases differential games treat two-player zero sum
games with perfect information. While there exist differential games that are discrete, for
most cases differential games are considered to be continuous. This means, that players
are making their decisions by adjusting the values of certain control variables that are the
equivalent to strategies from classical game theory.

These decisions affect the values of certain quantities in the game that are known as state
variables. These variables contain all necessary information for the game so that if one of the
players had to stop and be replaced by a new player during the game, the new player would
have all necessary information in order to continue the game from that point on – without
an external viewer noticing the switch.

32

UAV applications for game theory

In [Sujit and Ghose, 2005, Sujit and Ghose, 2004] the authors present a game theoretic method
for searching an area using N ≥ 2 drones. As utility they use the uncertainty of the existence
of a target in a given area or not.

In [Tomlin et al., 2000, Mitchell et al., 2005] the authors provide an algorithm that based
on the above rationale permits to backwards calculate the initial configurations for collision
avoidance. In [Reimann, 2007] the author provides three ideas related to differential games.
For a multi UAV, multi target scenario he either proposes to decompose the problem in many
mono UAV, mono target problems that he resolves using either differential games or the
principle of maximum.

2.4 Competitive Approaches

When there are more than one agents acting in an environment and when each agent’s success
depends on the other agent’s actions, then we are dealing with a multi-agent environment.
The interactions that can arise in such an environment can be either cooperative, neutral or
competitive.

Tracking a ground target is a multi-agent environment and in the quest for an optimal
decision, the behavior of the target should be taken into account. Here we will consider the
case where the target is trying to evade the drone and as such it enters in the context of game
theory, the game being a zero-sum game [Fudenberg and Tirole, 1991]: if one agent wins
then the other one loses. The notion of winning and losing is evaluated using an evaluation
function which is tied individually to each problem i.e. a common class of problem is that
of pursuit-evasion games, where one group tries to track down another group in a given
environment. Even more both targets are considered to be rational players: they both seek
to play optimally.

Pursuit evasion games

Any problem that involves a group trying to track down another group is called a pursuit
evasion game. In UAV literature the solutions for this class of problems could be divided in
two types: theoretic based and planning based approaches.

the most widely planning based method is a control method known as Non Linear Model
Predictive Control (NMPC). It was used in robotics for the first time in 2000 as an application
for an autonomous submarine that could follow the seabed at a fixed depth.

[Sutton and Bitmead, 2000]
NMPC is a method that was originally designed to be used for control of non-linear

processes using a predictive iterative optimization. It consists of a two step loop:

1. First, a non-linear model projects the future state of the process using the optimal
command found during the previous iteration,

2. An iterative optimization method based on Lagrange multipliers and steepest descent
gradient optimizes a certain cost function, deriving the command that will be used
during the next iteration.

The applications that have used this method include aircraft pursuit-evasion games

33

[Kim and Shim, 2003], helicopter obstacle avoidance, helicopter autonomous navigation
[Shim et al., 2003][Lee et al., 2003][Shim et al., 2005] and path finding for a swarm of ground

vehicles in the presence of obstacles [Xi and Baras, 2007].
The above iterative optimization step can be replaced and one can instead use an approach

based on either Mixed Integer Linear Programming [Richards and How, 2003] or Convex
Quadratic Programming [Singh et al., 2001] to derive the optimal command. These methods
have been applied in spacecraft rendez-vous, automated air traffic control and autonomous
ground robot navigation applications.

Autonomous pursuit is a class of applications where an autonomous drone tracks one or
multiple targets in the presence of areas with threats, obstacles and restricted zones. One
approach to this class of problems is the use of a state prediction in combination with a rule
based method [Zengin and Dogan, 2007].

Studies that examine visual pursuit include the work presented in [Muppirala et al., 2005],
where the pursuer and evader are considered to be connected with an imaginary fixed length
bar. This way, the problem is transformed to a motion planning problem with sole goal to
find a trajectory where the bar does not touch any obstacles.

However, in all the above cases it was considered that the UAVs have a complete FOV
which often is not the case. There exist methods that show analytically a way to perform
tracking using pursuit-evasion games [Bopardikar et al., 2007] for ground robots having only
disk visibility. The theoretic case of search under limited visibility has been given an analytic
solution in [Gerkey et al., 2006].

Adversarial searching

Adversarial search is a process that seeks to find the optimal decision for one player, while
taking into account the actions of its opponent. This is done by trying to get the Minimax
value, which is the best achievable payoff against the best possible play of the opponent. The
algorithm that achieves that is the Minimax algorithm which is known to be complete, optimal
(if the opponent is rational), it has a time complexity of O(bm) and a space complexity of
O(bm) for depth first exploration – with b being the branching factor and m the depth of the
calculations.

Another well known method is α − β pruning. It ignores the nodes of the of the search
tree that do not influence the final decision. This way it is possible to compute the correct
minimax decision without having to process the whole search tree.

Example 2.4.
Chess and adversarial searching
Few games have been studied as much as chess. In May 1997, news circled the globe

that world champion Garry Kasparov had been defeated by a computer. The machine, named
Deep Blue, apart from a massive parallel array of processors and custom made VLSI chips,
used adversarial searching as its core algorithm. Deep Blue used an iterative deepening α −
β pruning searching algorithm [Campbell et al., 2002] [Marsland et al., 1991] that permitted
it to calculate an average of 126 million positions per move in a game that has a search
branching factor of 35, leaving no place for resource allocation errors. Only the evaluation
function, included 6000 to 8000 features. To enhance this effect, it searched the top levels
of the chess tree, examining interesting positions and developing them beyond the standard
processing horizon [Campbell et al., 2002].

34

Figure 2.16: During the last, famous sixth game, world champion Garry Kasparov loses
against IBM Deep Blue computer.

Minimax [Norvig, 1992] is an algorithm used very often in adversarial searching. Each
configuration is given a numerical cost using an evaluation function. In the game of chess
that would be the total value of pieces at their current position, plus their possible capability
of taking an opponent’s pawn. Then the algorithm predicts all possible movements and selects
one based on its value. The basic, single depth step is known as a ply.

Figure 2.17: The basic round of any game, is the move of one of the two participants of the
game and it is called a Ply. Here for reasons of simplicity the game is considered to have only
two possible moves. In chess the average branching factor is about 35 and in the case of a
robot path planning it can be all possible directions and speeds of movement. The minimax
algorithm will choose either f1 or f2 (evaluation function costs), depending on whether it
wants to maximize or minimize the outcome of the game at that ply.

Iterative deepening minimax search is a minimax search of N-ply depth that is preceded
by all N separate searches from 1 to N − 1-ply depth. At each round, it either maximizes (if
it is its own round) or it minimizes the evaluation function – if the round belongs to its
adversary.

However, what really won Kasparov was something even more quirky: a form of minimax
algorithm designed to sacrifice short sighted wins in order to win bigger moves further in the
horizon. This was what made Deep Blue ignore the bait of Garry Kasparov, when in a critical

35

move during the third game, he tried to sacrifice a pawn. A minimax algorithm very similar
to this concept was published in [Gordon et al., 2006] and it is known as the Trappy minimax:
a trap is a move that looks good in the short term but has bad consequences in the long term.
The only way to avoid these kind of traps is by performing full width minimax search to a
depth greater than the final negative move. However, because of the branching factor, this is
not easily achievable in every type of game, leaving us with a method that can win even the
very best players in some games.

Stealthy Navigation and Visibility Issues

Stealthy navigation or covert path planning is the process that permits a robot to navigate
covertly in an environment using the route that offers the least visual exposure to adversaries.

In [Teng et al., 1993] the authors propose the use of a two grid cell representation of the
terrain. They then use a point-to-region visibility analysis to calculate for every cell grid the
map where it has visibility on the map. A point is visible to a given viewing point if and only if
the line segment joining them in the three-dimensional space lies completely above the terrain.
Then, each cell is compared to be checked if its elevation angle to the corresponding grid cell
is greater or not than the angle of the line segment described earlier. In [Tews et al., 2004]
the proposed idea is to use potential functions to attract agents in shadowed areas and repel
them from areas where they are visible to adversaries. The construction of a visibility and
accessibility map with the use of of harmonic function is proposed in [Ravela et al., 1994].

Figure 2.18: Stealthy Navigation. In this example, the agent knows the position of the viewer
and decides to use the path that is more occluded, instead of the time minimal path, in order
to get from point A to point B.

In [Marzouqi and Jarvis, 2003b] the authors use of an environment estimated visibility
map with an estimated visibility cost value that represents the degree of exposure of that grid
cell to the entire environment. This map is used together with an obstacle map to generate
the visually optimal path for the robot. In [Marzouqi and Jarvis, 2003a] the same method is
used but this time without recalculating grid cells that have already been treated.

In [Kim and Kim, 2008] a drone that moves in an urban environment tries to optimize
the position of a circular trajectory in order to achieve a better visibility of the target. The
visibility is examined based on the integral of visibility all around the target.

The authors of [LaValle and Hinrichsen, 2001] present an algorithm that permits to search

36

for unpredictable targets moving arbitrarily fast in a simply connected two dimensional curved
environment.The algorithm is based on critical visibility events that occur because of inflec-
tions and tangents to piecewise smooth environments.

Target Trajectory Prediction

One of the most important aspects of adversarial target tracking is to be able to predict
the future trajectory of the target. If one can successfully achieve that then target tracking
becomes much more simpler. However, there is no reason that this information will come
only under the assumption of an evasive target. Furthermore, in some cases this can be also
a false presumption. There exist three other methods that may permit to predict the future
trajectory of a target:

• Prior target knowledge based prediction. This can be made e.g. using a Kalman
filter to predict future trajectories [Berg, 1983]. However, there are some serious draw-
backs with Kalman filtering as in order to describe certain behaviors as human move-
ment or vehicles arriving at crossroads, Kalman filters are not adequate.

[Chong et al., 2000].

However, in [Pannetier, 2006] there has been a serious work to achieve exactly that.
The basic ideas behind this thesis was to use GIS information to transform the road
network to a graph and then use that graph as a Markov chain in order to estimate
the position of a target. The author proposes the use of interacting multiple models in
order to estimate the position of a target on a road network.

• Route Planning.

Route planning software is nowadays used in order to provide a way to get from point A
to point B within the road network while minimizing some form of user defined metric
[Edelkamp and Schrodl, 2003, Letchner et al., 2006]. They first model the road network
as a graph, and then use graph search methods to find a route between two given points.
This could be used in the cases where the target the UAV knows the end destination of
the target.

• Black-box based prediction

Black-box prediction is in essence time series forecasting without the use of a model.
It consists of methods that use previous measurements to predict future trajectories of
the process.

Artificial neural networks (ANN) have been used in [Payeur et al., 1995] and

[Helble and Cameron, 2007] as follows: the ground robot is considered to move in a 2D
space. Each Cartesian axis is treated as an independent time series. In order to forecast
future behavior the time series was then passed to a ANN that successfully forecasted
its future behavior for a given time horizon.

Grey predictors have been used in [Luo et al., 2001] to successfully predict the trajectory
of a ground robot. The authors then used this method to make two robots chase each
other.

37

Figure 2.19: Target trajectory prediction. The trajectory of the ground target is decomposed
in two time series, the Cartesian x and the Cartesian y. Those two time series are then fed
to an ANN or a Grey Predictor that can give the future position without having a model or
prior knowledge of the target.

Synthesis of Competitive Approaches

Target tracking has been studied by roboticists for quite some time, but mostly under the
assumption that the target is not trying to evade. An evading target should be considered as
an agent that will actively try to show intelligent behavior and attempt to maximize a certain
utility.

Multi-agent robotic environments have been studied to some extent but the agents were
known to cooperate. Robotics research is mostly fueled by the nature of the applications it
is called to serve and for the most of the time, they were civilian: joint exploration, search
and rescue, cooperative mapping are some examples of multi-agent robotic applications.

However, UAVs are slowly turning that page and introduce a novel application to robotics
research: conflict. This is due to the fact that UAVs are most often used in some form of
military, surveillance or strategic application where the other agent is assumed to be non
cooperative. A case where AI has touched the study of conflict has been during the study
of automated chess playing that brought results using methods closely related to brute force
calculations: adversarial search is the most successful example.

As a result there is a lot of place for improvement in this domain. In target trajectory
prediction there have been studies that can predict the behavior of a ground target using time
series analysis. However, these algorithms do not take into account the presence of ground
obstacles or of a road network. It would be interesting if one could take into account those
factors and introduce them into the time series analysis in such a way that it could enhance
the forecasting capability of those tools. The idea that can be borrowed from route planning
is to transform the road network to a graph and use that to predict the future position of the
target.

Furthermore, decision theory and game theory could be largely used to maximize the
utility that the UAV tries to maximize, while taking into account the actions of its opponent.
Finally, the tools developed for playing chess could be used in UAV pursuer-evasion games.
This could be done by first predicting what is the best move for the target and then finding
a best response to that move.

38

2.5 Cooperative Approaches

This section covers the work that has been done where multiple drones are trying to cooperate
in order to maximize a certain utility. That utility changes from study to study and it is not
confined to target tracking.

Multi-UAVs are mainly known for their formation flight applications. However, we do not
present this type of applications because they are different from the interest of this thesis.

One first approach to collective target tracking/observation is given by decentralized data
fusion (DDF). The main idea behind this type of methods is to form some form of dis-
tributed Kalman filter or information filter in order to fuse the different information as they
are acquired by every drone [Ridley et al., 2003, Ridley et al., 2002, Grocholsky et al., 2000,
Parker, 2002]. Very close to this idea, we can find the work done in [Campbell and Ousingsawat, 2002]

[Sinha et al., 2005] where the UAVs change position in order to maximize the collective
information gain at every run. When this position is orientated to a better estimation of the
target, organized flocking behavior arises. This was shown in [Olfati-Saber, 2007] by means
of simulations.

The authors of [Tang and Ozguner, 2005] examine ways to maximize cooperative visibility.
They use a steepest descent gradient based law that attempts to minimize the time between
two consecutive observations of the target by forcing the agents to pass next to the targets,
when that is deemed necessary. One very important aspect of the proposed idea is that of
task decomposition to assign the different drones to different tasks – actually traverses that
maximize visibility. Once a drone has finished its traverse, it is assigned a new target.

One very important group of publications comes under the umbrella of multi UAV ex-
ploration. In [Schumacher et al., 2002] the authors propose a method for swarm searching,
where the search allocation is formulated as linear programming problem. The authors of
[Kitamura et al., 1993] propose a search scheme were the searchers search on a graph. In
[Spires and Goldsmith,], space filling curves are used to cover the search space. Finally, in
[Burgard et al., 2002] base the cooperation study on communication between the groups.

A two level control is seen in [Jung and Sukhatme, 2001]: A coarse deployment controller
distributes robots across regions using a topological map and density estimates, and a target-
following controller attempts to maximize the number of tracked targets within a region.

Another type of approaches to cooperative target tracking is provided by game theory. In
[Ganapathy and Passino, 2003] the map is divided at a grid and the authors provide a study
on how to distribute tasks when the drones must go to specified areas. Their metric is the time
it takes to complete the mission and they show that game theoretic cooperative methods lead
to much better times than non cooperative ones. In [Liu et al., 2003] the authors examine
how to org anise a group of cooperative agents when they are facing a common adversary. The
method is based on calculating the minimax formula for one to two steps look ahead evaluation
functions. Finally, in [Li and Payandeh, 2003b, Li and Payandeh, 2003a] the authors show
that manipulation of an object by several fingers can be seen as a game theoretic approach
of cooperation. The methods make use of Nash equilibrium and Pareto optimal agreement
strategies.

Another approach to UAV cooperation is the one proposed in [Beard and McLain, 2003,
Beard et al., 2002, McLain et al., 2002]: first, a Voronoi graph is build around the obstacles
and the threats. Then, it uses the K-best algorithm of [Eppstein, 1994] to find the best path
for every drone. It ignores the paths that do not fulfill the constraints of non collision and
communication distances. However, the authors have shown that the scheme that seems to

39

work the best for the group is to maintain some kind of hierarchy within the group: Every
drone calculates the solution based on what the previous N − 1 UAVs have done. This
way the first drone calculates myopically only its own path while the last one does it by
taking into consideration the missions of the whole group. In [Reimann, 2007] the author
provides a differential games solution for a multi UAV, multi target scenario and proposes
to decompose the problem in many mono UAV, mono target problems that he resolves using
either differential games or the principle of maximum. He also proposes to transform the
problem from a multi UAV to several in smaller minimum time decomposition problems.

In [Jin et al., 2003] the authors propose a simple cooperative approach, based on dis-
tributed assignment mediated through centralized mission status information. Using this in-
formation, each UAV assesses the task opportunities available to it, and makes commitments
through a phased incremental process. The idea to use supervisory control has also been
seen in [Girard et al., 2004, Maza and Ollero, 2004] where the area is divided to sub-areas
where the UAVs are then assigned and act independently. Similarly, in [McLain et al., 2000]
the algorithm proposed there divides the overall task to small sub optimal tasks and assigns
them to each drone. Then each drone tries to find a path that is close to the global group
mission. This is done using cost functions and treating each task as a minimization problem.

Figure 2.20: In this configuration the two drones remain in different clock angles in order to
enhance visibility.

Finally, one very target tracking specific idea is to use a clock angle representation around
the target and make sure that the drones remain on different clock angles around the target,
maximizing thus visibility. In [Frew and Lawrence, 2005] they do exactly that using Lyapunov
(Fig. 2.20).

Synthesis of Cooperative Approaches

Overall, the work of multi UAV target tracking seems to be gathered in two groups: decentral-
ized data fusion and coordinated space search. The other work that has been done remains
in the subject of game theory cooperation and hierarchic supervisory cooperation schemes.
Finally, one should remember to mention the beautiful clock angle representation (Fig. 2.20).

One gets the impression, that as research on UAVs is relatively new, research on multi-
UAVs is even newer in domains related to target tracking and we should expect to see much
of this research to raise in the recent years to come.

40

2.6 Overall Synthesis of State of the Art

The research on UAVs provides a strong framework on Guidance, Navigation and Control.
A UAV can perform very accurate trajectories if that is desired. Furthermore, there ex-
ist several solutions that can provide autonomous target tracking under simple assumptions
(specific camera visibilities and ground target assumption). Planning methods can provide
obstacle avoidance that can also be used in UAVs after they have been adapted to specific
UAV dynamics. game theory offers a strong decision framework so that real autonomy can
exist. Research on cooperative aerial robotics has provided some solutions for different UAV
combined applications and pursuit evasion scenarios have been examined under the non co-
operative multi agent interactions framework.

41

Chapter 3

Problem Statement and
Formulation

The goal of this chapter is to present the hypotheses made to tackle the problem as well
as the associated notations and vocabulary. The first section proceeds by explaining all the
assumptions dealing with the UAV. The second section presents the target assumptions, and
the third section presents the assumptions on the environment. The mission criteria are then
presented.

3.1 UAV

3.1.1 Trajectory

The UAV is considered to be moving with a steady speed vd, in a steady altitude hd. The
model that describes such an agent is the Dubin’s aeroplane as presented earlier in the state
of the art. The model we are using during this thesis is a simplified, kinematic version of the
lateral dynamic of an aeroplane (Fig. 3.1):

Figure 3.1: Figure depicting the different angles used in this model.

n =
1

cos |φd|

42

R =
v2
d

g
√
n)2 − 1

r =
sign(φd)vd

R)

ψd = ψd − r

ẋ = vd cosψd cos θd

ẏ = vd sinψd cos θd

Where ψd is the drone heading, θd is the pitching angle, r is the yawing rotation speed,
φd is the roll angle and vd is the drone speed.

It should be noted that aeroplanes have a bounded turning radius.

ρmin =
v2
d

g tanφmax
An important consequence of this formula is that the minimum turning radius ρmin in-

creases increases with the airspeed vd: as a result the aircraft needs more space to perform a
maneuver.

3.1.2 Camera Types

There are many types of cameras that can be mounted on a UAV. Cameras have different
visibilities, different fields-of-view and they can provide problems as to how far they can detect
a target.

The basic types are the following:

• Pan-tilt camera. This type of camera can pivot around two axes: a vertical and hori-
zontal axis and it can provide a wide FOV but not necessarily a full FOV.

• Roll-only camera. This type of camera can pivot only around the roll axis of the aircraft
and thus it can provide a much more limited FOV.

• Static Cameras. These cameras are fixed and their FOV is defined by the lens focal
length.

Not all UAVs have cameras with full FOVs. Depending of their capacity to see sideways
or not the cameras can be separated in two broad categories: the ones that have a good
sideways visibility and those ones that have a bad sideways visibility (Fig. 3.2).

A constraint that exists in all types of cameras is that of distance. After a certain distance
no camera can detect the target. This aspect of vision is known as disk visibility as the UAV
can see up to a certain distance and not more than that.

The active zone within which the target can see the target is known as the capture zone
(Fig. 3.3).

43

Figure 3.2: Different types of field of view and their sideways visibility

Figure 3.3: Different types of capture zones, depending on the camera visibility

44

3.2 Target

As a target we will consider vehicles and specifically two different types of cars:

1. Off road vehicle. A vehicle moving in a environment as a Dubins car:

ẋt = vt cosφt

ẏt = vt sinφt

|φt| ≤ φmaxt

vmint ≥ vt ≤ vmaxt

2. On road target. Such a target moves linearly along roads, that are modeled as a
graph (see below).

The target can be either neutral or evasive. An evasive target will attempt to maximize
its distance with respect to the target and use any object in the environment to hide itself.

3.3 Environment

Drones are called to fulfill missions over different types of environment: urban, semi-urban
or open environments. However, not all environmental features are of interest for us. This
section attempts to model several of these features that influence the UAV as well as the
target actions.

3.3.1 No Fly Zones

A No Fly Zone (NFZ) is a flying zone where the UAV must not enter. Under this broad title
one can include various environmental features: while for a micro drone flying over a rural
area, NFZs are the buildings that are high enough to reach its flying altitude, for a bigger
UAV it can be the entire city. Depending from the mission, the capacities or the size of the
UAV, the granularity of the No Fly Zones envelope changes (Fig. 3.4). Furthermore, there
should always exist a security blanket around the NFZ to permit the UAV to recover from
an unfortunate maneuver. Whatever the shape and size of those zones is, one thing remains
certain: no autonomous drone should ever enter into such a zone and failure to do so indicates
a problem of the algorithm. The reasons for that are obvious: safety for the inhabitants of
that zone and safety for the flying vehicle itself.

For the rest of this thesis one will assume that despite the NFZs the ground is flat – unless
otherwise is noted. When a NFZ is denoted in the map then the aircraft must avoid it using
lateral maneuvers. Note that a realistic model of NFZs should contain their elevation, but
since we assume the UAV flies at a steady altitude, we model NFZs in 2D, in the flying plane.

45

Figure 3.4: Two different ways to separate the No Fly Zones for the same area. A micro
drone would only use the geographical information of the buildings (a), while a bigger UAV
would have to avoid flying over the entire rural area altogether.

3.3.2 Visibility Obstructing Obstacles

Any obstacle that casts a shadow big enough to hide the target can be considered a Visibility
Obstructing Obstacle or Visibility Obstacle in short (Fig. 3.5). Obstacles can have any shape
or size but their existence is important as they can obstruct visibility from the air and thus
influence the mission of a drone that is trying to track that specific target.

If one knows the exact shape and position of such an obstacle, one can calculate the
position of the shadow using projective geometry. However, these kind of calculations go
beyond the scope of this thesis and for this reason only very simple primitives will be used
to describe the shadowed areas, their shadow being calculated only qualitatively and not
quantitatively.

3.3.3 Road Network

Road network is important because it permits the UAV to predict how will the target move
next. Besides, off road vehicles and humans, most ground vehicles need a road network in
order to move. Under this assumption, one needs to have some form of representation of
the network. For most advanced applications Geographical Information Systems or GIS can
provide detailed maps that include every road on the area of interest.

Road networks are represented using graphs (Fig. 3.6). Nodes with more than two arcs
leading to them signify crossroads and they are important as a UAV trying to anticipate the
movement of the target can move to the wrong road before the target gets there, something
that may lead to a loss of visibility.

3.4 Mission criteria

This thesis considers that the UAV will always try to keep the target within its camera field
of view. In order to validate the algorithms, one must first set the criteria to use in order to
achieve this. For our application, the most important criterion seems to be what percentage
of the overall trajectory does the drone succeed to keep the target within the capture zone. And
as the speed is considered to be steady throughout the whole trajectory: what percentage of
the overall time does the drone succeed to keep the target within the capture zone (Fig. 3.7).

However, this image is quite optimistic as in reality the situation will be quite more

46

Figure 3.5: A visibility obstacle casts a shadow and this provides a good hiding area for the
target.

Figure 3.6: The road network as a graph.

complicated (Fig. 3.8): apart from an evading target, there will be numerous buildings, No
Fly Zones and many, different obstacles that can providing hiding places for the target all
over the landscape. This situation will work in favor of the evader and will make the work of
the UAV quite difficult.

3.4.1 Metrics

In order to measure the trajectory ratio where visibility is maintained we are using the
following formula that measures the mission’s visibility ratio τvis:

τvis =
Tvis
Tm

47

Figure 3.7: The basic mission is to maximize the portion of the UAV trajectory where the
target is within the capture zone

Figure 3.8: In reality the UAV has to face much more difficult situations where it has to
juggle between avoiding obstacles (NFZs), remaining close to the target, having the camera
at the right angle and making sure that no object is hiding the view of the target.

Where Tvis is the target visibility time duration and Tm the overall mission time duration.
This metric gives us an idea for how well does the given drone algorithm manage to maintain
visibility with the target.

3.5 Synthesis of the problem

Overall, the aim of this thesis is to endow a system composed of one or two drones with the
ability to maximize the visibility ration of a ground target. The drone system must be able
to adapt its decisions and its trajectory based on the following information:

48

• The type of cameras that it may be using, which in some cases may not provide a full
field of view.

• The position prediction of a ground target that can change direction and speed.

• The position prediction of a ground target that can be evasive or neutral. An evasive
target may not only try to maximize the distance between the drones and the target
but it may use as well any hiding area in the ground to hide itself from the UAV(s).

• A map of all natural or human made ground obstacles, that can hinder visibility from
a given angle in the air and therefore offer a hiding area for the drone.

• A detailed map of all non fly zones that have to be avoided.

49

Chapter 4

Tracking a target on a ground plane

As seen earlier, most of the UAV target tracking methods are based on Guidance, Navigation
and Control (GNC). This chapter presents a GNC based approach to UAV target tracking
under limited visibility. The following issues are addressed:

• Unification: Provide a method that works with all types of cameras and mountings.

• Good Visibility: Maximise the visibility of an autonomous UAV system.

• Compare existing methods.

4.1 Problem Statement

In this chapter, we consider the case of a UAV that flies at a steady altitude with a steady
speed and attempts to track a neutral moving, ground target. “Neutral” means that the
target is not aware it is being monitored, and so does not try to cooperate or to escape. It is
moving on the ground with variable speed. There are no obstacles that hinder visibility and
in most of the chapter it will be considered that the UAV has full capability of moving in
space (no-NFZs). However, the case of NFZs is briefly covered in order to provide a method
that works under all conditions. Fig. 4.1 introduces some variables that are important in our
approach:

• the 2D distance |
−→
L1| which is the vertical projection on the ground of the target line of

sight, i.e. of the vector that joins the camera optical center to the target,

• the angle η between
−→
L1 and the speed vector

−→
Vd,

• the camera orientation with respect to the plane frame, defined by the two angles (α, β),

• the lateral and vertical tracking errors xf and yf expressed in the image plane. Given
the camera focal length f , the target angular coordinates with respect to the camera
optical axis are (arctan xf

f , arctan yf

f).

50

Figure 4.1: Aircraft/target geometry. Top: projection of the target line of sight on the ground,
and definition of the angle η. Bottom: orientation angles (α, β) of the camera optical axis,
and image coordinates (xf , yf) of the target.

51

4.1.1 Overview of our approach

Here we consider two cases:

• Target out of sight: If the target is out of the current field of view, the UAV uses a
simple strategy that guides it where the target has lastly been seen. In the absence of
information regarding the target location, various search strategies have been proposed
in the literature (e.g. [Quigley et al., 2005a, Wong et al., 2005]).

• Target in sight: When the target is in the current field of view, our approach is to
guide the UAV so as to optimize the target visibility. For that purpose, a two steps
control strategy is defined:

1. An optimal angle η? is computed. “Optimality” means here that η? is set
in order to define a trade-off between the target distance, that must remain in
the [ρmin, Dmax] range and the lateral tracking error xf of the target, which is to
be minimized. Dmax is the maximal detection radius and ρmin is the minimum
turning radius.

2. A Lateral Guidance Law helps the UAV maintain the desired heading
η?. For that purpose, the current η angle and the horizontal distance to the target
L1 are computed, and they are fed to a lateral guidance algorithm, which defines
the roll command ucmd.

Fig.4.2 shows the flow-chart of the approach. The two steps can be seen also as two loops:
one internal and one external. The internal loop consists of a lateral guidance law and the
external loop is a strategy that selects an optimal setpoint for the internal loop to follow.
Note that while the inner loop of guidance loop is quite fast, the outer loop can be slightly
slower – the sampling frequency depending of the camera acquisition capability.

We first present the lateral guidance law (step 2 - internal loop) and then we present the
strategy (step 1 - external loop) that selects the optimal angle η∗.

4.2 Lateral Guidance

When the target is in the field of view of the camera, the visual target tracking algorithm
provides the image coordinates of the target (xf , yf). A lateral guidance law is used to control
the heading of the aircraft (Fig. B.7). A significant advantage of this law is that it mainly
depends on the heading error η?− η, which is straightforward to estimate, as it only depends
on the relative position between the UAV and the target.

We use the variant of proportional navigation tuned for airplanes, introduced in [Park, 2004].
It is shown in [Park, 2004] that it outperforms the more classical methods of cross tracking
[Niculescu, 2001] and proportional derivative guidance, in terms of tracking capability (error
correction, speed of correction and trajectory following). By using this method we manage
to follow the heading with greater accuracy than it would be with more classical means.

According to this law, the lateral acceleration needed to reach a target (Fig. 4.4) is given
by:

ucmd = 2
V 2
d

L1
sin(η? − η) (4.1)

52

Figure 4.2: This is the flowchart of the approach. One can see that the aircraft repeats the
steps 1 and 2 in a sequence.

Where ucmd is the command of the lateral acceleration, Vd is the speed of the UAV and
L1 = |

−→
L1| is the distance between the desired waypoint and the UAV. Considering that the

desired waypoint is the projection of the target in the flying plane, L1 and η are computed
as follows:

• We can estimate the distance L1 between the target and the UAV on the basis of the
target image coordinates, the altitude h0 and the two angles η and δ (Fig. 4.5).

L1 =
h0

tan δ
(4.2)

Where
δ = arctan

yf
f

+ β + φ sin η (4.3)

This relation stands if the UAV pitch angle p is equal to zero, a reasonable hypothesis
since the altitude h0 is a constant regulated value. Naturally, the closer the η angle is
to π

2 , the greater is the influence of the roll φ on L1.

• η can be computed from the target image coordinate xf , the camera focus length f and
the angle alpha as (Fig. 4.4):

η = α− arctan
xf
f

(4.4)

53

Figure 4.3: Lateral Servoing Loop.

Figure 4.4: Lateral guidance Law configuration (top view).

54

Figure 4.5: Calculus of the distance L1.

Note that if the camera rolling angle is controllable, it can can be used to compensate the
changes in the roll angle to minimize yf . A simple proportional derivative controller can be
used for that purpose.

4.3 Tracking Strategy

The setpoint angle η? is defined in order to achieve two goals:

• Keep the lateral tracking error xf as small as possible,

• Maintain the distance between the UAV and the target greater than the minimum flying
radius ρmin.

The first goal ensures a good target visibility, while the second one avoids situations in
which, the target could enter areas that the UAV could not reach without complex maneuvers.
The difficulty comes from the fact that depending on the camera configuration, the two goals
may be contradicting one another.

4.3.1 Line of sight distance

To maintain a stable distance from the target, we must ensure that d
−→
L1
dt = −|

−→
V | cos η stays

as close to zero as possible, where
−→
V =

−→
Vd −

−→
Vt is the relative speed between the UAV speed

and the target speed. For instance, if η = π
2 , then d

−→
L1
dt = 0, which implies that the aircraft is

circling around the target. The following criterion is therefore to be minimised:

J1 = V 2 cos2 η? (4.5)

55

4.3.2 The lateral target image error xf

To maintain a good visibility, i.e. to keep the target as close as possible to the optical axis,
one must minimize the lateral image error xf . Equ. 4.4 gives:

xf = f tan (α− η) (4.6)

The following criterion must therefore be minimized:

J2 = f2 tan2(α− η?) (4.7)

.
Finally, to maintain the target within the field of view, we must satisfy the relation

|αmax − η?| ≤ ||FOV ||
2 where ||FOV || is the camera lateral aperture. Hence the following

constraint must be satisfied:

η? ∈ [αmax −
||FOV ||

2
, αmax +

||FOV ||
2

] (4.8)

The resulting overall criterion to minimize under this constraint is:

J = λV 2
d cos2 η? + f2 tan2(α− η?) (4.9)

where λ is a weight that permits us to give priority to one of the two criteria. Two
interesting consequences arise from the definition of this criteria:

• If the system has a good sideways visibility, i.e. α = π
2 and η? = π

2 , then we have J = 0
and thus a trivial solution for our problem, that consists in performing circles around
the target.

• If the system has poor sideways visibility, then J1 and J2 can not be satisfied concur-
rently. The proposed solution is to use the largest possible η?, which is bounded by
αmax + ||FOV ||

2 . Since η? ≤ π
2 , the resulting trajectory is a spiral.

4.3.3 Tracking strategy

In the trivial solution where good sideways visibility is possible, then η? = π
2 . Otherwise

η? = α ± ||FOV ||2 , depending from the side that the target is approached. One must also
ensure that the target distance remains below the maximal detection radius Dmax, and that
the minimum turning radius ρmin constraint is satisfied. The following strategy is therefore
applied (Fig. 4.6):

loop
Calculate ρmin according to Vd
Calculate Dmax according to h0

if ρ ≥ Dmax then
Move inwards towards the target (ηdesired = 0)

else if ρ ∈ (ρmin, Dmax) then
Spiral inwards with an angle (ηdesired = η?)

else if ρ ≤ ρmin then
while ρ ≤ Dmax do

56

Move outwards radially (ηdesired = π)
end while

end if
end loop

Figure 4.6: The spiral strategy.

Avoiding NFZs

In order to make the above method more robust, an obstacle avoidance algorithm is introduced
into the loop. The algorithm looks for any NFZ that maybe close to the UAV and if there
is more than one then it selects the one that is the closest and forces the UAV to go around
the obstacle using bearing angles. There are two ways of achieving this: the first is presented
in [Ducard et al., 2007] while the other one is a simple obstacle avoidance method presented
here:

loop
if d ≤ Rsec then
ucmd = Kcosθ/d

else if d ≥ Rsec then
Resume previous algorithm

end if
end loop
Where d is the distance between the obstacle and the UAV, θ is the angle between the

LOS of the UAV - obstacle and the
−→
Vd while finally K is a gain.

4.4 Results

4.4.1 Simulations

Simulations allow an easy evaluation of the visibility ratio Tp = TV isibility

TTotal
, where TV isibility is

the accumulated time during which the target lies within the camera field of view, and TTotal
the accumulated flight time.

57

Figure 4.7: Graph depicting the obstacle avoidance setup.

Figure 4.8: Simulation of a UAV avoiding an NFZ.

We compare the visibility ratio provided by our approach with other approaches proposed
in the literature and presented earlier in the state of the art GNC (part 2.2.7):

[Stolle and Rysdyk, 2003] proposes a circular and a segmented arcs approach, [Lee et al., 2003]
uses a double mode approach with the Sinusoidal and a loitering (Rose form) approach,
[Rafi et al., 2006] proposes a simple circular form, [Quigley et al., 2005b] proposes circular
trajectories with attraction fields and [Rysdyk, 2003] works on a clock angle frame. The
comparisons happen for three different target speeds: Vt = 0 (static target), Vt = 0.5Vd and
Vt = 0.9Vd.

To establish these comparisons, we consider a camera mounted so as to exhibit a poor

58

Vt = 0 Vt = 0.5Vd Vt = 0.9Vd
Spiral and SpiralIn 97% 91% 82%

Two Arcs 78% 81% 97%
Circle 67% 69% 81%

Rose Loitering Mode 55% 60% 66%
Target Aim 51% 52% 55%

Table 4.1: Visibility ratio measured in simulations with different target speeds. The
“target aim” scheme is defined by specifying η? = 0. The target was moving in a straight
line with different speeds. SpiralI = [Rysdyk, 2003], Arcs =[Stolle and Rysdyk, 2003],
Circle=[Stolle and Rysdyk, 2003][Quigley et al., 2005b][Rafi et al., 2006], Rose Loitering
Mode = [Lee et al., 2003]

sideways visibility: αmax + ||FOV ||
2 = π

2 . Table B.1 summarizes these comparisons: it shows
that our approach exhibits a good visibility ratio and yields trajectories very similar to the
ones presented in [Rysdyk, 2003], a more complex approach which relies on explicit trajectory
definitions.

An interesting phenomenon arises when we see that for high speeds this strategy is out-
performed by the segmented arc trajectory. This is because in high speeds (Fig. 4.9) the
trajectory almost ’folds’, demanding from the airplane to perform a turn with radius that
is much smaller than its minimum turning radius. The aircraft cannot follow this turn, the
command is saturated, the loop is broken and this leads to a loss of visibility.

Fig.4.9 shows the resulting trajectories generated by our control strategy for different
target speeds, and Fig. 4.10 plots the evolution of the visibility ratio and the target distance
ρ as a function of time.

4.4.2 Stability assessment for a noisy sensor

As the loop is based on a visual sensor, it is important to check how it responds to noisy
measurements and up to what signal to noise ratio (SNR) can the algorithm continue to work.

In order to do this we add noise to our simulations, simulating a sensor that does not give
good measures. Noisy and corrupt measurements are very common in robotics.

The definition of SNR is given by Eq. 4.10:

SNR = (
Asignal
Anoise

)
2

(4.10)

Where Asignal is the amplitude of the signal, Anoise is the amplitude of the noise. This
measure was achieved by taking the average of the signal and noise over a time interval. The
noise was a randomly produced white noise with variable amplitude that was added on the
estimation of η.

Table 4.2 shows that as the SNR diminishes so does the visibility of the system as well.
We see that when the SNR falls under 10 the behavior of the pursuit deteriorates. When it
goes under 1 the algorithm becomes unstable and the UAV clearly behaves as if it has no clue
for where the target is.

One could interpret such a SNR as the percentage of the overall time that the sensor gives
a correct reading. When the sensor corrupts more than 50% of the measures (SNR=1) the

59

Figure 4.9: Trajectory generated by our approach, for three different target speeds. The
trajectory is overlapped by big red points when the target is not in sight. One should notice
that in the high speed version the aircraft cannot follow the command given by the trajectory
strategy as the desired turning radius is smaller than the minimum turning radius.

60

Figure 4.10: Evolution of the visibility ratio and the target distance ρ as a function of time.
The target is static.

algorithm becomes unstable.

4.4.3 Flight Tests

We evaluated our approach with a hobby aircraft and a simulated target1. According to the
position of the simulated target and the measured position of the UAV, the software could
log the target visibility and distance measures. The motivation to develop such a hybrid
real aircraft / simulated target experiment is to validate whether our strategy can cope with
realistic conditions.

Our hobby aircraft has a 1m wingspan and a 0.80m length. We use the Paparazzi au-
1Integration of vision on board our aircraft in under way in the laboratory.

SNR Visibility (%) Comments
No Noise 69% Good

25.8 63% Good
0.7 51% Not Good Enough
0.4 41% Unstable

Table 4.2: Visibility ratio versus the signal to noise ratio of the sensor signal. One can see
that as the noise increases the quality of the pursuit deteriorates. When the SNR drops under
1 the system starts to behave bad.

61

Figure 4.11: Different Strategies proposed in the literature, with a static target. The Rose
approach (up left) was proposed in [Lee et al., 2003] and the Two Arcs approach (down left)
was proposed in [Stolle and Rysdyk, 2003]. The top right trajectory is the application of
circular trajectory scheme, with small wind perturbations: it exhibits less than 50% visibility
in these conditions. The bottom right trajectory is the application of our lateral control
law with η? = 0. The target was static and located at 400,0. The FOV of the aircraft was
such that offered visibility only when the target was situated at the front 180 degrees of the
aircrafts.

62

topilot, that regulates the speed, altitude and heading variables (see appendix A). Besides
flight control, our software is run on a ground laptop, linked to the UAV autopilot by a serial
modem.

Once airborne, the UAV is put under the autopilot guidance, and set to fly at a h0 = 80m
altitude, at a cruising speed of 10m/s. Figures 4.12 and 4.13 show the resulting trajectories
resulting from the tracking of a fixed target. Even with quite important wind speeds (up to
7m/s) , the UAV performs well, achieving a visibility ratio of up to 70%.

Fig. 4.14 plots the logged visibility ratio and UAV/target distance. One can notice that in
the first 500 seconds the overall visibility ratio is sensitive to whether the drone is approaching
or not the target. This effect is due to the shape of the UAV’s FOV. The specific FOV can see
an object only if it lies in front of the UAV’s path. However, as time passes by, these effects
do not influence the overall average. This is because of the nature of the slow approaching -
fast moving out nature of the algorithm.

Figure 4.12: A static target tracking trajectory over our test field. The target is static sitting
in the middle of the field. The red dots at the right part are rendez vous point that help
initiate the experiment.

4.5 Conclusions

We presented a control strategy that allows a UAV to maintain good visibility of a ground
target [Theodorakopoulos and Lacroix, 2008]. Stating the problem with simple geometric
equations, our approach defines an optimal heading which is tracked using a lateral control
law. The approach yields a good visibility ratio in poor sideways visibility conditions. Simu-
lations compare the result with previous contributions, and actual flight tests showed that it

63

Figure 4.13: An other static target tracking trajectory, in more windy conditions (wind speed
attained up to 7m/s). The trajectory is plotted in blue when the visibility is ensured, with
red dots otherwise.

Figure 4.14: Visibility-ρ during a spiral real flight test

64

works even in the presence of unmodeled phenomena.
This work relies on the assumption that the target is not trying to evade the UAV. We

will discard this assumption, and aim at tackling the problem within a pursuer / evader
framework.

65

Chapter 5

An adversarial iterative predictive
approach to target tracking

The work in this chapter is inspired by the different predictive and iterative solutions pre-
sented earlier in sections 2.3 - 2.5. This chapter adapts and slightly changes those ideas so
that they can be used for UAV / evasive ground target tracking applications. However, the
aforementioned approaches often demand an analytical preparation using Lagrange multipli-
ers to find the optimal solution. Our conviction is that when one has to deal with hide and
seek games, this analytical step may not be necessary. One can instead use classical iterative
search methods to find a near optimum solution that can perform successful hide and seek
games in real time and then apply this type of approach to UAV ground target tracking.

While classical pursuit-evasion approaches are based on an agent approaching very close
to another agent in order to achieve a capture, the case examined here is slightly different:
the goal is to place the pursuer UAV in a good visibility position. Inversely, the evader is
trying to hide itself in areas that are hidden by occluding obstacles. Such a decision depends
on the position of those obstacles and the shape of the UAV’s FOV: a UAV that has a camera
with only a limited - side FOV view will approach the target very differently from a UAV that
has a full FOV. While the case of a limited FOV has been studied in some theoretical based
approaches [Gerkey et al., 2006, Bopardikar et al., 2007], it has not been used in predictive
approaches.

Furthermore, a predictive method can also be used to attempt and guess the future tra-
jectory of the target and thus anticipate its position, avoiding thus configurations that could
cause a loss of target visibility to the pursuer. Lastly, one can expand this type of methods to
include a second UAV into the loop, something that can enhance the target’s visibility ratio.

5.1 Problem Statement

In this chapter we will consider a UAV that flies at a steady altitude with a steady speed and
attempts to track an evasive ground target. Naturally, the target will attempt to use any
ground obstacles to hide from the UAV. All ground obstacles are considered to be domes of a
fixed radius. Furthermore, the UAV will have to respect the presence of certain NFZs, which
it will have to avoid at all costs. The UAVs are considered to have a sphere visibility FOV
(full FOV up to a certain maximal distance).

The target is considered under two different behaviors: either moving freely in an open

66

Figure 5.1: The algorithm is a two step process. In the first step a prediction of how the target
should behave is calculated and according to that information the second step is initiated.
During the second step the UAV chooses the optimum path according to the predicted target
trajectory and according to a series of criteria that define the cost function. Both steps make
use of an iterative optimization scheme where different paths are compared in terms of payoff
value (cost function).

area or moving in an urban along a local road network. This information is important to
predict the position of the target as well as commanding the target when designing a hide
and seek simulation.

Finally, during the second part of the chapter, the case of two cooperating UAVs is
considered.

5.2 Overview of the approach

The basic approach consists of a two step loop (Fig. B.8):

• Target prediction: The UAV tries to predict what will the target’s path be in the near
future (the prediction horizon), or it uses its actual position (estimated or well known),

• UAV prediction: During the prediction horizon, the UAV must choose a future path
that maximizes the target capture, respecting the presence of restricted no-fly zones
(NFZs), and optimizing an observation distance.

This is achieved by assigning a cost value Jp at each candidate path, that is produced by
integrating the costs Ji(xUAVi , xtargeti) of each position along the path computed on the basis
of the relative UAV/target positions (a configuration): Jp =

∑
N Ji, where N denotes the

number of configurations that constitute a path – the prediction horizon. Each configuration
cost naturally takes into account the target visibility and the obstacles for the UAV. This
is done with the use of specially designed potential functions that encode all mission related
constraints and criteria – distance, visibility and obstacle avoidance.

67

However, it is numerically daunting to calculate all possible paths and costs in real time
for any useful horizon. Hence, the optimization method must include a way that will permit
the UAV to calculate and select a good path without having to calculate every single path.

We propose two methods here for deciding that path:

• Greedy method : This approach projects different paths that use the same bank angle
φ all along that path. The approach is named greedy because the same command φ
is used throughout the entire path. After all paths have been examined, the process
returns the path with the least cost J.

• Informed Search method : This approach considers all possible paths as if they belong
to an imaginary graph. Each vertex of that graph is a possible position of the UAV in
space and it has a cost value J. A path on that graph has a total path value equal to
the sum of all the cost values of all vertexes on that path. Instead of using the same
command φ for the entire path, we use a different command at every node. The method
then returns the value with the best cost value J.

5.3 Evaluation functions

In this section we are using the term agent to describe either the UAV or the target. Their
position and pose are known as the state xk of the agent at moment k. Depending on how the
surrounding objects and agents are positioned in relationship to this agent, one can assign a
numerical value at that configuration. This configuration cost is known as J(xUAVk , xTargetk).

Now, depending on the way that one chooses to assign values to configurations, one can
guide the agents to pursuit certain configurations, while avoiding others. This type of encoding
can promote any kind of behavior simply by directly rewarding the desired configurations and
by penalizing the opposite ones. A smaller value will result to a better visual tracking.

5.3.1 UAV Evaluation Function

In this subsection, we will present the different elements one may want to control during the
flight of a target tracking UAV. The list of UAV evaluation functions is:

• NFZ avoidance evaluation function.

• UAV / Target range evaluation function that maintains the UAV at certain distances
from the target.

• Shadowed areas avoidance evaluation function. This function helps at maintaining the
UAV away from zones that the target cannot be seen.

• Correct FOV orientation. Function that is useful if the UAV does not have a full FOV.

No-Fly Zones

We saw earlier that NFZs are modeled as a collection of cylindrical obstacles. In order
to guarantee that the UAV has enough space to reverse direction in front of any obstacle
configuration, we use a Minimum Critical Distance Rcr. The value of this distance is defined
by the UAV dynamics, and acts as a safety blanket surrounding the obstacles (Fig. 5.2).

68

Figure 5.2: A set of circular obstacles is used to represent a dead-end for the UAV. The
distance Rcr is set so that the UAV can perform a 180◦-turn when facing any obstacle con-
figuration.

Avoiding NFZs is achieved by forming a repulsive field around each object (Fig. 5.3). The
equation that describes such a repulsive field is the following:

Jo =
∑
i

((max(Rcr +Robsi − di, 0))2) (5.1)

Where di is the distance between the UAV and the obstacle i, and Robsi is the radius of
obstacle i.

UAV / Target range

The relative distance between target and the UAV is quite important and should be kept
within certain limits: a) If the UAV flies too far away from the target, then visibility degrades
seriously. This distance is known as Rmax. b) If a limited visibility UAV flies right above the
target position there is a risk that it will be outmaneuvered by the target. This is due to the
greater maneuvering capability of the target that can alter directions easier than the UAV.
A ground vehicle can stop and change directions at any moment. As a result when the target
is right under the UAV all it takes to lose visual contact is a sudden target deceleration and
the UAV will fly over it, completely losing it from sight (Fig. 5.4). The minimum distance is
known as Rmin. The cost function that describes this can be seen here:

κ = max(d−Rmax + ε, 0) (5.2a)
λ = max(Rmin − d, 0) (5.2b)
Je = max(κ, λ) (5.2c)

69

Figure 5.3: The result of using an evaluation function in the presence of a double obstacle.

Figure 5.4: Graph of the evaluation function element that keeps the UAV within a certain
area around the target but not over it.

Where d is the distance between target and UAV and ε is a small constant that when
used with Rmax it makes sure that the UAV changes position before it arrives at the limit
distance Rmax.

Avoiding zones that do not permit a direct LOS with the target

The ground surface is rarely flat and obstacles are common. Hence, there is a need to know
when a certain configuration puts the target in a zone that cannot been seen from some areas
in the sky, because of some ground obstacle. This is achieved by knowing the exact positions
of the agents, the obstacles, the size of the obstacles. By using a simple approximation one
can calculate the position of the center of the shadow and thus deduce whether or not the

70

Figure 5.5: This diagram shows a simple way to approximate the center position of the
shadow.

target is within that zone.
The exact shape of the obstacles is not important as we only want to quantitatively

calculate the center and size of the shadow. Shadowing or occluding obstacles are represented
on the ground (Fig. 5.5) as domes of given radius. The idea behind this method is that
it is not necessary to know the ’exact’ position and geometry of the shadow, just a simple
approximation will be adequate to reproduce the behavior of a shadow-seeking agent.

The position of the center of the shadow can be calculated by considering that a point is
between two other points. If one then considers that the point in between is closer to one of
the two points, one can arrive at the following formulas:

c1xs + xp
c1 + 1

= xo (5.3a)

c1ys + yp
c1 + 1

= yo (5.3b)

Where (xs, ys),(xp, yp),(xo, yo) are the coordinates of the shadow center, the UAV’s and
that of the obstacle’s respectively.

The above set of equations can easily be transformed to:

xs =
c1 + 1
c1

xo −
xp
c1

(5.4a)

ys =
c1 + 1
c1

yo −
yp
c1

(5.4b)

Where c1 is used to fine tune the simulated distance between the obstacle and the center
of the shadow. By trial and error we found that a value like c1 = 3 is satisfactory. Adding
the point {xs, ys} as a repellant to the potential field makes sure that the agent avoids areas
from which the target cannot be seen.

Jdsh =
∑
i

max(Rshi − dshi , 0)
2

(5.5)

Where dshi is the distance between the ith shadow center point {xs, ys} and the target,
while Rshi is the radius of the ith shadow that is typically connected to the obstacle size and
here is considered as a constant. It should be noted here that the position of the shadow

71

Figure 5.6: The area to be avoided by the UAV is the area most probable to get obscured
by the obstacle. Notice that we have simplified the calculations of the shadow by creating
a circular potential field around the center point of the shadow. The alternative would be
to construct a more complicated potential field that would calculate the exact shape of the
shadow. This is not necessary as the agents still move towards the directed area.

depends from the positions of the obstacle and the UAV. As a result the position of the
shadow changes as the UAV changes positions. By measuring the distance dshi we know how
far is the target from the shadow center.

Correct FOV visibility orientation

Not all UAVs have the capability of a full FOV. If that is the case then some special care
must be taken to ensure that the UAV will have a correct orientation. The basic idea is to
ensure that the target remains as close as possible to the center vertical line of the camera
image. If for example the aircraft has a static camera that is positioned sideways, then the
cost function will always penalize the aircraft poses that do not have a target at the side of
the aircraft. The cost function that describes this configuration is:

Jf = cos2 θf (5.6)

Where θf is the horizontal angle difference between the camera axis and the target bearing.
As a side note, it should be noted that we consider a camera that has at least the capability
to pivot in the aircraft roll axis, and thus offsetting the rolling angle of the UAV.

5.3.2 Overall path cost

UAV path cost integration

At every iteration a cost function is calculated. The overall cost value for that specific path
is the sum of all the cost values of every point in that path as it is given by the following

72

equations:

Jdi = weJe + woJo + wfJf + wshJ
d
sh (5.7)

Jp =
N∑
i=1

Jdi (5.8)

Where N is the number of nodes in that path p, we, wo, wsh are weights that are selected
in order to put higher priorities in some mission criteria than others i.e. NFZ avoidance. Je
is the evaluation function that permits to guard the distance between the UAV and target
within a given range Rmax−Rmin, Jo is the evaluation function that keeps the drone in a safe
distance from NFZs, Jf is the distance that forces to the UAV to have a correct coordination
towards the target and finally Jdsh is the evaluation function that assures that the UAV will
stay away from configurations where the target is behind of some ground obstacle.

Target path cost integration

The same process takes place for the case of the off-road target. Here are the equations:

J ti = winJin + wgoJgo + wshJ
t
sh (5.9)

Jp =
∑
N

J ti (5.10)

History Horizon Considerations

Finally, we have been experimenting with multiplying each cost Ji with different weights
according to the depth of the prediction. This means that a prediction that is closer to the
present moment will have greater influence to the overall cost function than another prediction
that has been made more far in the future.

Jp =
∑
N

wiJi (5.11)

Where N is the length of the overall path in steps.

wi = α ∗ wi−1 (5.12)

and α ∈ [0, 1]
Such a scheme can make the behavior of the UAV more elastic, something that gives

higher value to obstacles that are closer to the agent.

5.4 Prediction and Iterative Optimization

5.4.1 UAV prediction

The goal of this step is to find a series of bank-angle commands that minimize the cost
function Jp for a given prediction horizon. Once that path is found the first step of that path
is passed as a command to the UAV and the whole process is repeated. For an on board UAV

73

Figure 5.7: The Greedy Method: Different trajectories are projected in the future and the
one with the least cost is selected

computer the task of finding that optimal path may be costly in terms of calculations. If the
decision-action cycle is not fast enough, the UAV may start to oscillate or even worse, it may
enter some NFZ. For this reason all calculations must remain as simple as possible.

At every moment the UAV discretizes the command configuration space [φmin, φmax] in
D discrete commands and it does that for a horizon of N steps. To calculate all the possible
configurations becomes a problem of O(DN+1) complexity.

The method includes two steps: a) First, we use a Greedy method to predict the position
of the target for a horizon of M steps from the present moment and b) We use that predicted
position to find where the UAV should go and we do that using one of the two proposed
methods.

Greedy approach

According to this method, we discretize the roll command [φmin, φmax] in D different intervals.
We then predict the cost function along the path of these D commands. This is done for N
steps of a fixed time interval δT . In other words, the prediction horizon is N X δT . Each such
path is examined and its cost value J is noted. We repeat this process until all D different
values of roll have been examined. The algorithm then returns the path with the least cost J.
We use thus D different values of φ. These values remain the same throughout each of those
paths. This method is the simplest and fastest in terms of calculations but it has a limitation
in terms that the same command is applied all along the path, lacking thus some flexibility.
(Fig. 5.7)

Informed search approach

A more rich path finding scenario would be to use a classical path finding algorithm like A*
(Sec 2.2.2) . It should be reminded that there is no fixed end node. Instead, all that is known
is that the prediction will move to a depth of N iterations. The solution proposed here is to
set a imaginary end node that is connected to all end points with a zero cost function path
which permits the algorithm to run Fig.5.8.

74

Figure 5.8: The A* Method applied to UAV path planning.

As a heuristic, we use the Greedy algorithm with some of the criteria of the cost function
relaxed. This is to ensure optimality. According to [Russell et al., 1995] in order for A* to
be optimal the heuristic must be more optimistic than the actual cost function of the path.
In this case, we decided to form a cost function with very few criteria: obstacle avoidance,
correct FOV orientation and shadow visibility.

Let’s imagine that A* is currently at a specific prediction depth and wants to predict up
to a given future prediction horizon. In order to do that it will keep moving along a path
while examine nodes on that path (Fig.5.8). Every node it meets it evaluates the value of
the cost to get to that node plus the heuristic of what it will cost to get to the end of the
prediction horizon.

5.4.2 Target Prediction

The ground target model is used as a prediction for the future trajectory of the target. There
are two main models that are in use here: a) A target model that moves within the road
network, following strictly the geometry of the road and b) A model that evolves on an open
flat surface and has thus much more freedom of movement than the previous model. The
first model evolves only forward with different speeds and always within the road geometry,
while the second model moves on a flat surface and closely resembles that of a Dubins car.
For our simulations the second model (Off-Road) uses the same greedy iteration mechanism
as the UAV to choose its path.

This part is based on the assumption of game-theoretically rational players, which means
that the target will always try to move in such a way that it will avoid capture. This is related
to the minimax algorithm, where the UAV selects the action that yields the best results in
terms of cost function optimization, given that the target will do whatever is possible to avoid
capture.

Overall, we study three types of targets:

• A target where no knowledge exists apart from its current (estimated) position.

• A target that moves on a Road Network (Urban and Semi-Urban environment).

75

Figure 5.9: Midpoint rendez-vous: In order to be able to anticipate the movement of a moving
target on a road, the UAV aims at the point between the future waypoint (hk) and the actual
position of the target. When the target, gets closer than a certain margin distance from a
waypoint, that waypoint is considered as the current one until a new waypoint is approached.
This way, the future position of the target can be predicted without having to estimate the
target speed.

• A target that moves on an open space (Off-road vehicles) in the presence of ground
obstacles.

I) A target where no knowledge exists apart from its current (estimated) position.
This is the simplest case, where no prediction is made and the UAV simply reacts to the

decisions of the target without any power of anticipating its movements.
II)) A target that moves within a Road Network (Urban and Semi-Urban environment).
This type of target, constantly follows the road and the only decision it has to take is

which road it will follow when it arrives at a crossroad. In order to achieve this, it is already
assumed that the road network is known a priori and it can be discretized in a series of
waypoints. The whole structure is actually a graph that has two types of waypoints:

a) Simple-Waypoints, which are connected to only two other waypoints, one before and
one after.

In order to be able to anticipate the position of the target, we use as coordinates the
method of midpoint rendez-vous: at any given moment, the UAV aims at the midpoint
between the target’s actual position and that of the target’s following waypoint. This way
we do not need to estimate the speed of the target: If the target decides to stop, then the
midpoint will also stop, while the UAV will continue to close the distance, relieving us from
the burden of estimating the speed of the target. When the UAV finds that the target has
approached close enough to a waypoint, the next waypoint is fetched from the list and the
process starts all over again. This idea is related to missile Deviated Pursuit Guidance as it
was seen in 2.2.2 (Fig. 2.2(b)), where the missile aims at a point in advance of the target
current position, as well as to the missile Three Point Guidance(Fig. 2.2(c)) , where the
missile aims for a point between the launcher and the target.

b) Decision-Waypoints (Fig. 5.10), which are connected to three or more other waypoints.
The way a decision is made is by looking which path is most distant from the UAV and

uses that knowledge to understand which side of the obstacle the UAV resides. As there will
be only one side of the obstacle that is not visible by the current UAV position the target
then chooses that side. The question of whether the target will get to the shadow before the

76

Figure 5.10: Decision-Waypoints: The target is trying to decide which path to follow (h1 or
h2). Its decision is based on which side is more possible to provide a hiding area. The way it
does that is by finding out which of the two paths is the most distant for the UAV to reach.

shadow moves depends only from the difference of distances d2 and s1 and the speed of the
two agents.

If no obstacle is close to the crossroad then the target will still select the path that is the
furthest from the target, hoping that it can evade capture by adding more distance between
the target and the UAV.

hidec = max(di2, d
i
2) (5.13)

Where i is the ith node-waypoint where a decision needs to be taken. This type of
navigation is known as Stealthy Navigation (Fig. 5.11).

It is clear that the above approach does not assure success. How can one know how exactly
a human driven car will behave under such circumstances ? No user studies on this matter
exist, so we can only make assumptions. One can hope that the UAV can be positioned in
such a way that visibility can be assured whatever the choice of the target is. This is one
of the approaches used in the next chapter. However, the case that was examined in this
chapter is that if the UAV makes the opposite decision from the target and take the other
route than the one chosen by the target, a visibility loss will occur. Under this assumption
the only model that remains is that of a rational player that always tries to hide behind an
obstacle whenever it has the chance.

III) A target that moves in a open space (Off-road vehicles).
For this kind of target, the same greedy algorithm that decides the path of the UAV is

used. The target evaluation function has been presented in an earlier section. Here the target
is considered to move with a steady speed and in some simulations would either move or stop.

77

Figure 5.11: An example of Stealthy Navigation: A target moving along a road network arrives
at a crossroad. There it has to choose between route A and route B. The latter being more
’stealthy’ will be considered to be its final choice and this will help the UAV to anticipate it’s
movement and make sure it has visibility before the target hides behind the two obstacles.

5.4.3 Off-road target evaluation function

When the target is moving in an open terrain, its position can be predicted using the same
approach as in the case of the UAV. Hence, the target evaluation function shares many
common elements with the UAV. However it should be noted that the use of a target evaluation
function is only for the case of a target that doesn’t use a road network as the case of a target
that moves on a road network can best be described using graphs as it will be shown later.
This it is because a target that moves in a road network does not have the option to exit
from the road network. Once on the road network it will behave in very predictable manners
e.g. Drive straight in straight highways, turn in crossroads etc. The list of target evaluation
functions is:

• Ground obstacle avoidance evaluation function.

• Shadowed areas attraction evaluation function. This function forces the target to move
into areas that are hidden from the UAV point of view.

• Direction inertia. This maintains the movement of the target towards the same direction
it was moving earlier.

78

Ground obstacle avoidance

Avoiding ground obstacles is done also using the same type of formula used in UAVs for NFZs
by forming a repulsive field around each ground object:

Jgo =
∑
i

max(Rcr +Robsi − di, 0)
2

(5.14)

Where di is the distance between the target and the ith obstacle while Robsi is the horizontal
radius of ith obstacle.

Attraction towards zones that do not permit a direct LOS with the UAV

Here, the target uses the different shadow coordinates and selects the ones that are the closest
to the moment of the decision. It then moves towards that shadowed area. The equation that
attracts the target to the shadow is:

J tsh = max(di −Rshi , 0)
2

(5.15)

Figure 5.12: The shadowed area is the area that the target is attracted the most.

where di is the distance between the closest shadow zone {xs, ys} and the target, while
Rsh is the radius of that shadow that is typically connected to the obstacle size and here is
considered as a constant.

Direction inertia

This element maintains the speed towards the direction that the target was moving already.
In other words, it encodes a kinematic constraint and this is done to ensure that the target
prediction will maintain the same direction as previously.

Jin = |(θt(k)− θt(k − 1))|2 (5.16)

Where θt is the target direction.

79

5.5 Results

For our application, the most important criterion seems to be what percentage of the overall
time Ttotal does the UAV keep the target within the capture zone. Therefore, we use an
additive criterion that increases when there is a visibility loss and diminishes when visibility
has re-established: The smaller the value of the cost, the better was the algorithm in terms
of visibility and obstacle avoidance.

This kind of payoff is seen only in games of degree where the game ends with a score, as
opposed to games of a kind where the payoff is Boolean (capture or not capture). Furthermore,
special penalties are established, for the moments where the UAV approaches too close to a
NFZ.

5.5.1 Evaluation of optimization methods

In order to evaluate every algorithm, every scenario was left to unfold for a fixed time Ttotal
and then the overall score Vis of that run would be noted down.

This can be calculated either using a length ratio or a time ratio:

Vis = 100
TNoCapture

Ttotal
+
∑

Flags

Where Flags is a penalization for every time the UAV comes too close to an obstacle,
TNoCapture is a time interval where the UAV had lost visibility with the target and Ttotal is the
total duration of the test run. The lower the ratio Vis ∈ [0, 1] is, the better the algorithm is.

Preliminary Simulations

We conducted a first simulation to see qualitatively how the algorithm behaves in a very
simple environment where the target and UAV are contained within a small area. In a first
series of simulations, the target was ignoring the presence of the UAV and it was moving with
a steady speed in a large circle. The UAV had to maintain visual contact with the target by
being within the radius of a hundred meters, while avoiding obstacles and making sure not
to fall within the shadowed region of a fourth, visibility occluding obstacle.

For 90 min of simulated flight, the A* based algorithm scored 142 units which was far
better than the Greedy algorithm that scored 245 units. As a side note, however, we should
say that the A* really pushed the capabilities of our machine and the decision branches of
every node had to be cropped to 6, when in the Greedy case were around 40. As a result,
the movement of the aircraft was more abrupt and aggressive in terms of maneuvering. If we
tried to use more than 6 child nodes, the code would become slow and the trajectory would
oscillate as delays would appear in the decision process.

It is understood that the maximum prediction horizon for such a system can be calculated
as follows: in order for the system to remain stable it must be that Tcalc < Tcr, where Tcalc
is the calculation time and Tcr is the system critical period that guarantees stability for the
aircraft. The worst case scenario for A* is that it will open all nodes in its path. This
produces a time complexity of O(bd) where b is the branching factor and d is the depth of
the search - the horizon depth in simulation steps. So for the worst case scenario if it takes
Te to examine a node then it will need bdTe seconds to examine a certain depth. Hence, from
the above formula one can infer that:

80

Figure 5.13: The behavior that systematically emerged in the off-road target scenario, was
a hide-and-seek game around the shadow-casting-obstacle (Here, obstacle D) that at some
extreme cases would stabilize in a circle, with the target hunting the shadow and with the
UAV hunting the target. Both UAV and target where obliged to stay within a virtual area of
about 300 meters radius. The pre-conditions that can trigger such a behavior can be either
algorithmic or speed/distance related. The algorithmic conditions are related to whether the
target is seeking a local solution or a global one. A global solution would make the target
switch obstacle, something that would brake the pattern. On the other hand the pattern
could brake if the UAV was close and fast enough to capture the target.

dmax = logb(
Tcr
Te

)

Where dmax is the maximum number of iterations that the graph search can search.

Simulations

In a second series of simulations, the target actively tries to avoid the capture whenever this
is possible. The following cases are examined:

• Greedy VS Informed Search Approach

• Target Prediction VS No Target Prediction. In the first case the drone attempts to
predict the position of the target while in the second it would use the actual target
position.

• Off Road Target VS Target on Road Network

• Different Road Complexities (number of bifurcations)

81

Figure 5.14: Graph showing the complex road network. The target was moving on that
network changing directions without notifying the UAV, which was trying to anticipate the
target’s next move at every moment.

When, the target moves in a road network it often comes to crossroads. When this happens
it has to face two or more possible routes. Most of the times an obstacle will be between the
two routes. If the target moves on path A while the UAV moves on path B then a visibility
loss will occur as the obstacle will be between them. As a result its score will deteriorate.

In order to observe the behavior of the different algorithms in various road complexities
5.14), we use three types of road networks with different complexities (Tables 5.4). By
complex, we mean that the bifurcations and obstacles vary, obliging the UAV to take more
decisions as to where the target may go next. More decisions mean a greater possibility for
errors for the UAV and thus making it more difficult to maintain visibility throughout the
experiment.

As can be seen (Tables: (B.1),(5.2),(5.3)), in a general manner the A* algorithm dominates
the Greedy algorithm. Similarly, the algorithms that use a target prediction step behave better
than the algorithms that simply use the actual position of the UAV as input, if the target is
moving on a road network. However this comes with a cost, as ’better’ algorithms tend to
use more computer resources.

An interesting feature is that, as the road complexity increases so does the difference
between the score of the algorithm that uses a target prediction step to its counterpart that
does not use a target prediction step. The reason for this is the following:

Every time the UAV fails to follow the target at a crossroad, especially in the presence
of an obstacle that casts a shadow, it suffers a temporary loss of visibility. An algorithm
that does not predict how the target will move next, is much more probable to take wrong
decisions of that nature. Now, if that happens during a long simulation, errors and visibility

82

Figure 5.15: The UAV pursuing the target on a road, using the greedy method.

losses tend to accumulate, giving poorer results than its target predicting counterparts.
One can also see that when the system predicts the target behavior it gets much better

results than when it simply inputs the current target position. This should not come as a
surprise as in the first case the UAV has more time to maneuver into position and thus can
track the target for longer intervals.

However, it becomes clear that for the case of the off road moving target the behavior
shows the opposite signs: no-prediction works better than prediction. This happens because
predicting the trajectory of an off road target is much more difficult than the case of the road
network moving target. As a result, moves in the wrong direction quite often and this costs
visibility as it takes time to get back in visibility distance.

5.6 Extension to the multiple UAV target tracking case

There is no doubt that however effective mono-UAV strategies may be, there will always be
some configurations where visibility is lost. It is also very straightforward that the introduc-
tion of one or more UAVs will increase the target visibility. This section propose an extension
to our approach to the case of several UAVs (Fig. 5.16).

5.6.1 Two UAV visibility

Obstacles cast shadows that diminish the total visibility area for every UAV. As a result, each
UAV has a visibility area that depends on its own position. It is clear , that the presence
of a second UAV can enhance the overall group visibility if the UAVs do not share the same

83

Greedy (G) A*
Road + Target Prediction 133.2 118.2

Road + No Target Prediction 167.2 145.7
Off-Road + Target Prediction 194.7 139.2

Off-Road + No Target Prediction 183.0 120.0

Table 5.1: Algorithm scores in a very Simple Complexity road network. Each simulation
lasted about one hour and during that time, the UAV met about 60 bifurcations and 200
obstacles.

Greedy (G) A*
Road + Target Prediction 155.2 143.2

Road + No Target Prediction 205.7 206.1

Table 5.2: Different algorithm scores in a Medium Complexity road network: 120 bifurcations
and 200 obstacles.

Greedy (G) A*
Road + Target Prediction 310.1 150.2

Road + No Target Prediction 324.3 221.5

Table 5.3: Different algorithm scores in an even more Complex road network: 120 bifurcations
and 300 obstacles.

Greedy (G) G A*
Simple Road Network 34.0 27.5

Medium Road Network 50.5 64.9
Complex Road Network 14.2 71.3

Table 5.4: Greedy - A* Score differences for different Road Complexities

84

Figure 5.16: The two UAVs hierarchical scheme. Whenever UAV I is about to lose visibility
with the target, UAV II positions itself in such away that will make sure it has visibility while
the first one is in the shadow.

position. In the case of two or more UAVs the total visibility of the system is the Boolean
OR of all individual visibility areas:

V total
is =

⋃
i

V i
is (5.17)

One very basic principle of multi-UAV target tracking is that in order to maximize the
overall visibility one has to make sure that the UAVs have different positions. This no-overlap
principle ensures that all UAVs have a different viewing angle to the target.

5.6.2 Two UAV strategies

The approach we take is hierarchical:

• The first UAV ignores the presence of the second UAV and continues to perform as it
was described earlier

• It is the task of the second UAV to anticipate the movement of both the moving target
and that of the first UAV and to react accordingly. Thus the second UAVs uses the
position of the first UAV and the position of target as an input, when deciding its
future position. If the first UAV looses visual contact with the target for any reason,
the second UAV gets in a position to continue viewing the target while the first UAV
maneuvers out of that low visibility position. In a sense, the second UAV acts as a
visibility safeguard, as it always tries to compensate for the loss of visibility of the first
UAV.

The reason we decided to use this type of approach is because we believe that it is a good
compromise between the communication load and the calculation load. The first UAV has
only to find a configuration that is effective for itself while the second UAV has only to know
the position of the first UAV and has to calculate its position based on the first UAV. An

85

Figure 5.17: This graph shows the visibility loss of each approach vs the time of the exper-
iment. The target was moving in a simulated area with ground obstacles. The blue graph
shows what happens when there is only one UAV tracking the target and as expected, that is
when the most visibility loss occurs. The red graph shows, what happens when there is one
UAV actively tracking the target and a second UAV randomly moving in the area but with
active target detection. As expected, the visibility loss time diminishes. Finally, one can see
that when both UAVs actively track the target, the least time of visibility loss occurs.

1 UAV 2 UAVs (UAV2: Random) 2 UAVs (UAV2: Hierarchical)
Vis Loss (sec) 93 69 48

Table 5.5: Visibility loss time for different UAV tracking combinations: One UAV, One active
tracking UAV and a randomly maneuvering UAV and finally, two hierarchically moving UAVs.

alternative would be that the first UAV has to solve a maximization problem using an opti-
mization method and then assign the future trajectories for all UAVs. This kind of approach
has been used mainly in formation flight and it has been observed [Hattenberger, 2008] that in
large formations the stability of the trajectory becomes problematic. This would be because
of the calculation load as each UAV should take into account the position of all other UAVs.

5.6.3 Results of the two UAV approach

A series of simulations was conducted to find out what are the effects of adding a second
UAV into the loop. Two scenarios were used: During the first one a UAV follows a random
trajectory in the airspace, while during the second scenario a second UAV uses the hierarchical
approach described above to enhance the overall system visibility (Fig. 5.17). The results
show that by adding a second UAV there is a significant improvement on the overall visibility
even when the UAV is moving randomly. However, the real improvement appears when the
second UAV uses an hierarchical predictive approach. The improvement is of the order of
50% for the cooperating UAVs and of 34% for the randomly moving two UAVs.

86

Figure 5.18: Here, two UAVs are chasing a target that is maneuvering, trying to get out of
visibility.

5.7 Conclusions

This chapter presented an iterative predictive method that permits a UAV to track an evading
ground target [Theodorakopoulos and Lacroix, 2009]. It uses a model of the target to predict
into the future and two different methods to find the best suited route by optimizing mission
related evaluation functions.

The method behaves quite well in simulations. Since the simulating tools are quite realistic
(they are part of the actual flight system used to fly our real model aircrafts, see appendix
A), we are confident that even if there will be an overall score quite deteriorated because of
the presence of noise and delays in a real setup, one would obtain a similar behavior in real
flight testing as in simulated flights.

The method has been extended to the case of two UAVs tracking a ground target. The
chapter then proceeds to show how the different agents behave, using simulations. The
cooperating approach is not by any means a perfect one. However, it is simple and efficient,
and does not call for a centralized coordination. As a result one could add several UAVs that
would be all independent and thus modular. Finally, it is clear that real flight testing would
show exactly how things work. Such experiments are under way and the results should show
how the method behaves in realistic conditions.

87

Chapter 6

A discrete game theoretic approach
to target tracking

6.1 Introduction

As shown during the state of the art, game theory provides a strong framework for decision
making. This chapter uses the tools provided by game theory to produce a novel approach
to UAV target tracking. Before one engages in such a type of study, one should examine
whether game theory is appropriate for this type of missions.

Many scholars and psychologists have argued that humans do not always behave accord-
ingly to game theory models i.e. when a lighter version of prisoner’s dilemma was put to the
test, only 60% of the participants behaved accordingly to the model [Tversky, 2004]. How-
ever, when humans try to take decisions in risky situations, they tend to approach much
more the game theoretic model [Kahneman and Tversky, 2004], with business, politics, and
biology being the best examples1. This means that a ground vehicle driven by humans can
use different trajectories than an unmanned ground robot. However, for most cases both are
expected to behave (or play) rationally and i.e. attempt to use a road that is covered by
vegetation instead of a road that is on the open and thus easily tracked from the air.

Furthermore, for many situations game theory can provide decisions that are dominant
no matter what the other opponent may choose. It can analyze and decide whether a kind of
play is optimal for the pursuer even if the target is not actively trying to evade. This type of
decision making can put the pursuer in a good configuration without having to predict the
opponent’s play. This chapter attempts to provide algorithms that will permit the evader to
escape, when followed by a pursuer. This combination of a pursuing UAV and an evading
target will form a dual that is very frequent in pursuer-evader games.

One cannot know how much information will the evader have: does it have full information
or not ? As this fact will probably remain unknown, one will assume that he knows best the
areas that surround him. If for example the target has to make the choice between two areas
that can provide stealthy navigation, it will prefer to use the closest one.

1The entire cold war era, with its nuclear deterrence plans and arms race, is based exactly on that model:
a single game known as ”Chicken”. By both USSR and USA having the capability of a second devastating
nuclear strike to each other, the Nash equilibrium of that game was not to attack and for over thirty years
proved to be true.

88

Figure 6.1: The three step process of this approach.

Figure 6.2: The board of the game.

6.2 Overview of the Approach

This section presents the overview of the proposed method. The method applied for each
player consists of a loop of three distinct steps (Fig. 6.1):

1. Game space discretization: This steps consists of creating a virtual discrete world based
on the real world configuration in order that a game theoretic analysis may take place.
This step takes as input the positions of pursuers, evaders, obstacles, NFZs and outputs
a virtual discrete map that will be known as the board of the game (Fig. 6.2). This
map is local and updated as the drone is moving.

2. Analysis and decision: This step analyses the board, compares the ratio of forces and
decides an optimal move for each agent i.e. if the architecture is used for one drone
solely then an optimal move will be calculated for that drone only.

3. Execution of the discrete command: This block outputs a roll command for the drone
(or a turn command if the algorithm is used for the ground evader) that will bring it to
the desired area.

6.3 Game space discretization

The first challenge of a classical game theoretic approach is the way one would attempt to
formalize the problem. While classical game theory tools are discrete, in reality such type of
aero-terrestrial games are highly continuous and very demanding in terms of control frequency:
the aircraft(s) and the evader are moving constantly and their position, speed and heading
are only known as continuous figures. Furthermore, those commands need to be refreshed
periodically in order to keep the agents on the right trajectories.

This continuous reality must somehow be transformed into a discrete one and this should
be done in such a way that one can tell with a certain, quantitative way, when is the game
in favor of the pursuer team and when it is in favor of the evader. Furthermore, this type

89

Figure 6.3: Discretization of the game space using a grid. Each cell is assigned information
regarding the real game space situation.

of mapping should also be able to be reversed both ways, from discrete to continuous space
and vice-versa with little or no error. In a more formal way, one must achieve a mapping
f : E → D, where E is the continuous configuration space that includes all the states of both
pursuers and evaders plus the variables that they control (roll command etc.) and D is the
discrete configuration space for the same type of variables and players.

The most natural idea is to decompose the area where the game evolves in many cells of
equal size and thus create a two dimensional grid. To each cell Cd ∈ D one can assign an
area of Cartesian coordinates (xd, yd) ∈ E . Such a discretization of space assigns to cells all
necessary information to make sure that the game is played in the same way that it would
be played in the continuous world. Areas that include NFZs are be marked impassable, areas
that provide shadows are marked as shadows etc. (Fig. 6.3).

6.4 Analysis

6.4.1 Evaluating Game Configurations

The first step for any game theoretic approach is to examine the outcome of every decision
combination: the utilities of each player. While some configurations may yield a positive
outcome for one player or team they may yield a negative outcome for the other team – or
player, we will use these terms alternatively. One notion should be made clear: one does not
try to evaluate individual positions but instead one attempts to evaluate entire configuration
areas of the game space from the perspective of a specific player or even that of the whole
team. Therefore, there may be configurations that may be costly for one team while they are
completely indifferent for the other team i.e. a pursuer occupying the same cell with a NFZ
may be costly for a pursuer, but this configuration will not influence the evader.

At this point, we define the board Bt of the game, which we will use whenever we want
to address the two dimensional discrete space game configuration. The game configuration is
the position of all obstacles, players and shadows at a given instant.

As such each board configuration will have a certain value (or payoff) Pi(Bt) ∈ < for every
player (or team) i ∈ {1, ..., N} where N is the number of players (or teams). Therefore, each
team i can evaluate any board configuration Bt and calculate the value Pi of that configuration

90

Figure 6.4: The Shadow map is a map that depicts all the shadowed areas on the board.

from the perspective of that team.
There exist two types of evaluations functions:

1. Individual agent’s evaluation functions.

2. Entire team evaluation functions.

Individual pursuer evaluation function

The evaluation function, uses several matrices in order to calculate the value of a given board
configuration from the perspective of a given agent: here it is from the perspective of a
pursuer. It achieves that by calculating the positions of all shadows on the map based on the
position of each pursuer and the position of each visibility obstacle. (Fig. 6.4). This map will
be known as the shadows map where

Cshj =
{
ushadow if there is a shadow in that cell

0 if there is no shadow in that cell
(6.1)

Where C is a cell of a board and ushadow is the utility (payoff) of the shadow.
This type of shadow map assumes that the drone can see up to infinity and with a full

field of view. However, this is rarely the case. In order to encode more details of the camera
capabilities, the shadow map should be manipulated as shown Fig. 6.5.

Similarly to the way the Shadows map is formed, one can form the rest of the evaluation
function matrices as well: the pursuers map Csh depicts the areas where there are pursuers,
the evader map Cev depicts the areas where there are evaders and the NFZ map Cnfz can show
which areas are allowed to fly over and which not. Each cell of the map contains a positive
value assigned to it only if in the same real area there is the matrix associated instance. In
all other cases the matrix cell is equal to zero.

An exception to the rule is a special type of matrix known as the distance Matrix. The
distance matrix forms a kind of potential field around a given matrix and this allows to reward
certain areas that are closer or further from a given type of agent or instance. An example
is given for the pursuer’s distance Matrix in (Fig. 6.6). Other common types of distance
matrices are the Center distance Matrix Cdistcenter that gives greater values in position close to

91

Figure 6.5: The camera field of view information can be encoded within the game by manip-
ulating the shadow zones, within the shadow map. The brown cells, depict areas where the
pursuer does not have visibility.

Figure 6.6: The pursuer distance Matrix rewards the configurations where the evader is closer
to the pursuer.

the game board center and the evader’s distance Matrix Cdistev that rewards positions close to
the evader.

Then these matrices are used to calculate the value of the board from the perspective of
the given player by using the equations 6.2, 6.3, 6.4 and 6.5. In these formulas we use weights
for the different types of instances - an obstacle will not have the same weight as a shadow
for example. We then sum up all the cells in a given map to find a given payoff. For the
visibility payoff for example, we will sum up all the cells that are occupied by both an evader
and a shadow. If such a sum is zero, then it means that no evader occupies the same space
with a shadow.

Calculation of the visibility value of the board:

P visP =
∑
j

wshadowC
shadow
j wEC

E
j (6.2)

92

Figure 6.7: Formation of the pursuer’s team value or payoff - simple version. Two pair of
matrices are multiplied cell by cell and then added in order to form scalars that form the
value. If a pursuer map’s cell and its analog on the NFZ’s map have both a non zero value
then the result will be a non zero scalar.

Calculation of the traversability value:

P traP =
∑
j

wnfzC
nfz
j wPC

P
j (6.3)

Calculation of the agents proximity to each other value of the board:

P proxPE
=
∑
j

wprox(CdistE j + CEj)CPj (6.4)

Calculation of the agent’s proximity to the board center value:

P proxPc
=
∑
j

CdistcenterjC
P
j (6.5)

The sum of those values give us the total value of a given board for the team of pursuers
(Fig. 6.7):

PP = −P traP − P visP + P proxPE
+ P proxPc

(6.6)

The weights set the priorities, i.e. whether the drone should move into a NFZ or let the
evader slid into a shadowed zone. In order to make sure that the drone will prefer the latter,
one should make sure that wnfzwP ≥ wshwE .

93

Team pursuer evaluation function

This type of evaluation function assigns a value based on the team’s outcome and not only
based on the outcome of an individual pursuer. The payoff function is calculated as in the
individual case, using cell multiplications and then normalizing the different parts using proper
weight selection.

The overall team payoff is given by the following formulas:

V pursuer
team = −P trap − P visP + P proxPE

+ P proxPc
(6.7)

Where P trap is the OR traversability of the team configuration:

P trap =
∑
j

(CP1
j + CP2

j)wnfzC
nfz
j (6.8)

Where P visP is the AND visibility of both pursuers positions. This means that in order for
the visibility to be lost, both pursuers must be in zones that lack evader visibility:

P visP =
∑
j

CshadowP1 j
CshadowP2 j

CEj (6.9)

P proxPE
offers an element that rewards positions that bring the evader close to any of the

drones.

P proxPE
=
∑
j

(CP1
j + CP2

j)wproxCEj (6.10)

Lastly, the use of P proxpc rewards positions close to the center of the board. This was
done because during our simulations, we had to keep the game contained within an area and
decided to do so using this formula.

P proxPC
=
∑
j

(CP1
j + CP2

j)Cdistcenterj (6.11)

Evader’s evaluation function

The evaluation function is quite similar for the evader with some slight differences.
Calculation of the visibility value of the board:

P visE =
∑
j

wshadowC
shadow
j wEC

E
j (6.12)

Calculation of the traversability value of the board:

P traE =
∑
j

wgroundC
ground
j wEC

E
j (6.13)

Calculation of the agents proximity to each other value of the board:

P proxPE
=
∑
j

wprox(CdistE j + CEj)CPj (6.14)

94

Figure 6.8: Formation of the evader’s payoff.

Calculation of the agent’s proximity to the board center value:

P proxEc
=
∑
j

CdistcenterjC
E
j (6.15)

The total board value for the evader is the following:

PE = −P traE + P visE − P proxPE
+ P proxPc

(6.16)

Notice that the sign of the visibility and the sight of the intra-agent proximity values are
inverted here showing that the same configurations that maximize the pursuer’s utilities are
the same that minimize the evader utilities and vice versa. (Fig. 6.8).

6.5 Mono-pursuer decision making

This section presents the solutions for one pursuer tracking one ground evader. Therefore the
words team and player have here the exact same meaning. The objective of this section is to
use different game theoretic tools to take decisions for each team.

6.5.1 Utility Maximization

This is the simplest method: the pursuer examines all possible alternatives (cells on the board)
and decides to use the one that offers the highest payoff argmax(PP) using its evaluation
function based on the current evader position.

95

6.5.2 Adversarial Searching

The most promising method in adversarial searching is the minimax algorithm as it was
presented in the state of the art chapter. Using this method one can either solve the tree
using local methods i.e. examining as probable destinations only the cells next to the cell
under question, or considering all the cells as options. The minimax solution is known to be
a mixed strategy and for zero sum games is equivalent to the Nash equilibrium solution.

Local Adversarial Searching

During this method each leaf node expands only to its closest neighbors. The maximum
branching factor of such a search tree is 9, including the option of remaining on the same
cell. Therefore, the maximum time complexity of the minimax algorithm is O(bm) where b
is the branching factor and m the depth and the space complexity is O(bm). However, the
algorithm will examine the neighbor cells and if an obstacle is occupying one of those cells,
that cell will not be added to the initial node’s children.

Global Adversarial Searching

This method is more exhaustive than the local version and it uses a branching factor equal
to the number of cells of a specific game area (or even the entire board) minus the cells that
are occupied by obstacles. However, if the optimal decision for a player is more than a cell
away then it means that it will take some time to get there and in the meantime the ratio
of forces may change. Furthermore, there is no guarantee that the opponent can see in the
space horizon that the algorithm is predicting. In the latter case the pursuer may find itself
in a far away cell, anticipating a movement that his opponent will never make because he
simply cannot predict that far.

On the other hand, this method allows us to take more strategic decisions using less
computer resources i.g. for a solution that lies 5 cells away from the current agent position,
the local method may need to examine up to 95 nodes before it finds it as it has a space
complexity of O(bm), while the global method will see the solution with much less nodes
opened. A board can have as much cells as one wishes to examine, depending on the horizon
around the drone one wishes to examine plus the number of cells that one wants to include.

In this game the branching factor is equal to the number of possible alternatives and this
is the number of free cells on the game board. One can easily understand that a search tree
of this type cannot be explored in a greater depth: Already at b=100 and one has to evaluate
10K combinations before a conclusion is reached.

Furthermore, predicting further than one decision step for each player would not offer as
much as one would think as it would mean that the evader would not select the most easily
accessible area but some other more elaborated solution. One can simply not expect that the
evader will think as far as that decision horizon.

However, as the moves are considered to be somewhat simultaneous when it has to do with
one movement ahead, it is not important who plays first. Hence, if one keeps the decision
adversarial tree at one step ahead for each player, it does not matter who plays first.

It suffices if first the evader decides for its optimum movement and then based on that
decision to find the best response for the pursuer (Fig. 6.9). This form of minimax algorithm
has only O(2b) space complexity - b is always the branching factor of the decision tree .

96

Figure 6.9: The minimax algorithm used in this type of game: First, one examines the
alternatives of the evader given the current pursuer position and a decision is made. Based
on that speculative decision, pursuer is making his own choice.

6.5.3 Nash equilibria and dominance strategies

This approach attempts to find the Nash equilibria for a non cooperative game. The game
matrix is constructed as follows: we consider two players P and E and each cell of the
matrix denotes the payoffs for both players {P κλP , P κλE }. Each player has to choose between
m strategies, where each strategy is a cell Cd ∈ Bt belonging to the board. The number
of strategies each player has at its disposition is equal to the number of cells on the board.
Player’s P strategy is κ and player’s E strategy is λ.

A pair of strategies {κ∗, λ∗} is called a Nash equilibrium if
∀κ = 1, ..., Cm and ∀λ = 1, ..., Cm:

P κ
∗λ∗

P ≥ P κλ∗P (6.17)

and

P κ
∗λ∗

E ≥ P κ∗λE (6.18)

Finding the Nash equilibrium is considered to be NP hard even if it has not been proved yet
[Porter et al., 2008]. The algorithm used in this thesis can be found in [Sureka and Wurman, 2005]
– and has been sketched in section 2.2.2. The algorithm is a tabu, gradient based search al-
gorithm on the game’s matrix. Therefore, if there are multiple Nash equilibria, the found
equilibrium will depend on the position from which the search was initiated. It is better to
initiate the search from the actual position of the agents, as distances in the matrices have a
direct relationship with real world distances.

The reason we chose this algorithm is because this game;s matrix is quite big: 10000
elements for a board of 100 cells and only this algorithm provides a fast searching method
to localize a pure Nash equilibrium, without having to compute all the payoffs of the matrix
- their number being around the figure of 20K. Other popular algorithms can be found in
[Lemke and Howson, 1964, Porter et al., 2008].

6.6 Multi-pursuer decision making

During this section, we are going to examine the methods that permit to two pursuer to
collaborate optimally using game theoretic tools in order to maximize evader visibility.

97

Figure 6.10: Two approaches are proposed for the collaboration of two pursuers. According to
the consensus based approach both drones take each others presence for granted and attempt
to find a common solution that maximizes group utility. On the hierarchical approach the
leader drone ignores the presence of the second and continues selfishly to maximize its own
utility, while the follower drone attempts to position itself in such a way that maximizes group
utility and not its own. This way it kind of acts like a visibility safeguard.

6.6.1 Hierarchical VS Consensus based approaches

When dealing with two drones, one no longer evaluates the position of a single player but the
entire team’s configuration. The first question to answer the role of each pursuer. There are
indeed two ways of tackling this problem:

• Either consider both pursuers as equals and thus make sure that both pursuers have
to change positions in order to maximize their team utility (both players arrive at a
common consensus). The behavior then will arise through local interactions,

• Or use an hierarchical scheme and thus while the first pursuer will behave as it is by
its own, the second will do all the extra calculations in order to maximize the team’s
position even if the first pursuer is blind to its actions.

Consensus based methods need not to be centralized: by running the same analysis and
decision algorithms in both pursuers, it is almost sure that the same decisions will be taken
– if the same information is available to both agents. However, as this is not always the
case, one can also profit by letting the two agents communicating either the information or
by running the process in one of the two agents and deciding for both. If consensus methods
are used, then the same type of multi-pursuer decision algorithm is guiding both drones.

98

Hierarchical scheme is a scheme that can add as many drones as needed without having
to change the decision process of the drones already in the mission: if one adds a N-th
pursuer to the loop, then all N-1 previous players are not aware of its efforts but the N-th
pursuer has to take into account all their positions and to make sure that the team utility is
maximized. If hierarchical methods are used then one drone will continue to use mono-pursuer
decision methods, while the second or any other drone above that layer will use multi-decision
techniques to draw its decisions. In one sense the drone that uses mono-decision techniques
is considered a leader and all other drones followers.

drones. There are two main alternatives: a) Use a leader that decides all the future
positions of every drone in the group, by solving a global optimisation problem or b) Let the
behavior arise through local interactions. The first method is based on the communications
between the different agents. The leader has to establish a communication channel with every
other drone of the group and send through it, the future flight plans.

In both cases we believe the proposed hierarchical approach is a good compromise that
minimizes the communication burden without risking the stability of the group formation.

6.6.2 Utility Maximization

This is the same method as it was presented for the mono-pursuer case but this time applied
to the entire pursuer team. The pursuer examines all possible alternatives (cells on the board)
and decides to use the one that offers the highest payoff using its team evaluation function
based on the current evader position.

Cdec = argmaxP teamP (6.19)

6.6.3 Cooperative Nash equilibria

This approach attempts to find the Nash equilibria for a cooperative game, this means that
both pursuers were commanded but without a coordinated command. The game matrix is
constructed as follows: we consider two players P1 and P2 and each cell of the matrix denotes
the payoffs for both players {P κ1κ2

P1
, P κ1κ2

P2
}. Each player has to choose between m strategies,

where each strategy is a cell Cd ∈ Bt belonging to the board. The number of strategies each
player has at its disposition is equal to the number of cells in the board. Player’s P strategy
is κ1 and player’s E strategy is κ2.

A pair of strategies {κ∗1, κ∗2} is called a Nash equilibrium if
∀κ1 = 1, ..., Cm and ∀κ2 = 1, ..., Cm:

P
κ∗1κ

∗
2

P1
≥ P κ1κ∗2

P1
(6.20)

and

P
κ∗1κ

∗
2

P2
≥ P κ

∗
1κ2

P2
(6.21)

In order to find the Nash equilibrium we use the same method used in the mono-pursuer
decision case. In this approach the two agents are two drones that try to cooperate while in
the previous Nash use one agent was a pursuer and the other was the ground evader.

99

Figure 6.11: Making sure that the decision is properly executed is a task of the Realization
block. During this step the set point cell Cset is passed along with the current drone cell Cpos
to the A* algorithm who finds a clear, shortest route from Cpos → Cset. Cnext, the first step
of that route, is passed to a block that returns its Cartesian coordinates. Those coordinates
are then passed on to a lateral control loop, that using a guidance law and a position feedback
brings the aircraft there.

6.6.4 Pareto optimality method

The Pareto optimality method, as presented in section 2.3, examines the individual payoffs
UP1 , UP2 of every player and then tries to maximize the collective payoff:

Select {κ∗1, κ∗2} s.t. argmax{Uκ
∗
1

P1
+ U

κ∗2
P2
}

Once again one has to avoid to calculate all possible payoffs from every possible combina-
tion so some search method must be used. We decided to use a tabu, search method in order
to find the optimal points.

6.7 Realization

As during the discretization step there exists a discontinuity between the abstract, game
theoretic world and the continuous real one. The output of the analysis and decision step is a
cell. However, if the agent is not on that cell, as in most cases it will not be, some procedure
must make sure to bring it there. The Realization step achieves that using two steps (Fig.
6.11).

1. Path Finding: It first finds the shortest route from the current cell Cpos until the desired
cell Cset, while avoiding any obstacles or NFZs on the way. It achieves that by using an
A* search algorithm. It then takes the first cell Cnext of that optimal route and passes
it on to the next step.

2. Lateral Control Loop: This step takes as input the current position of the aircraft and
a desired cell. It transforms the cell position in Cartesian coordinates (xset, yset) and
uses those coordinates along with some guidance algorithm to navigate the agent there.

100

6.8 Extension of the evaluation functions: visibility maps

In this section we present an extension of the method that permit to guess how the evader
will move next without having to take into account the present position of the pursuer or
the evader. It also provides a way for the evader to avoid capture without having exact
information for where the pursuer is at every given moment.

The method consists of calculating a priori the areas on a map that visibility can be
hindered and then using this map as a guess for how the evader will move next.

Under certain circumstances, one can safely consider that the evader will actively try to
select positions in the environment that cannot be seen easily from the air. This subject
arises several questions:

• Is there any way to measure how visible is a point from the sky ?

• Which factors affect the visibility of a point from the sky ?

In this section we examine these elements and we provide a simple way to examine all
points on the map and determine, how well they can be seen from the sky. This produces a
map that can be superimposed to a real one and offer a visibility measure for all points on
that map. If this map is known beforehand, one can assume that a well informed evader will
always try to find a cover close to those areas. This may prove useful for the pursuer as it
describes the possible safe destinations. It should also be noted that this map is independent
of the position of the pursuer and this can be useful for the evader that does not have the
means to know constantly at every moment the position of the drone.

6.8.1 Indicator of Stealthiness

The first criterion that helps us understand how well an area can hide a evader, is the overall
percentage of the FOV from which the evader can be visible. An area that is surrounded by 4
buildings is far better hiding area than an a field with only one building. The second criterion
is the proximity of obstacles to the area under examination: the more obstacles are around a
certain area the more probable it is for the evader to find an area to hide itself there.

To understand this, lets visualize the following example (Fig. 6.12): on the one hand, we
have a castle with a huge garden and on the other hand, a forest with a small road passing
through. While, both configurations probably conceal the evader from almost any point in
the horizon, things change drastically when the observer (pursuer) approaches and starts to
circle around the evader. In the case of the castle, almost 100% visibility can be achieved
if the garden of the castle is big enough to allow the drone to circle within or close to the
boundaries of the external walls. However, this would not be the case for the forest road.
Here, the opening is so small that an airplane circling the area would not manage to see the
evader all of the time. In the same sense it is better to be closer to a wall than further away.

In order to put this into a formula that will permit us to evaluate a point on the map as
to what extent it can hide the evader, we use the approach that follows.

6.8.2 Measuring Stealthiness from the air

The size of a shadow depends from the height of the object, the distance of the observer
from the area in question and from the altitude of the observer – in this case the pursuer.

101

However, one of the simplifications we did during the problem statement of this thesis was
that the altitude of the pursuer would remain constant during the whole mission and that we
will consider the height of all obstacles identical.

Lsh = f(deyeobs , hobs, heye) (6.22)

The above formula states that the size of a shadowed area that an obstacle of fixed size
casts depends from the height of the obstacle, the altitude of the eye (pursuer) and the
distance between the two of them.

Throughout, this chapter we constantly measured the positions of the different agents
and tried to calculate the position of the shadow. This approach does something different: it
assigns visibility values to the different cells without knowing where the drone may be - the
distance deyeobs which is presumed fixed and within the average camera FOV distance.

The algorithm then takes that value and divides the map into cells of size Lsh.
It then proceeds, cell by cell, to test how many of the neighbor cells are occupied with

obstacles. It then assigns a value from 0 to 9 to that cell, with 0 being a complete open area
and 9 being an area that is shadowed from all directions. The algorithm steps can be seen in
Fig.6.14.

loop
Select Lsh
Divide the map into cells of equal size Lsh
for (each cell Cj in Bt) do

if (within the cell area there is an obstacle) then
Cj = 1

else
Cj = 0

end if
end for
for (each cell Cj) do
Nj = 0
for i = 0 to i = 9 do

add the values of the surrounding cells
Nj = Nj + Cj

end for
end for

end loop
The map that is then produced can be used in the evaders evaluation function as it was

seen earlier and offer an alternative as to where the evader may go next. The basic idea is
that the evader can use the closest hiding area to the evader as a hideout and thus the pursuer
must assume a position that will find the evader.

The positive point is that the above calculation can be done offline before the start of the
mission and thus it will not provide an extra burden to a real time calculation.

102

Nash Minimax Utility Max Test Case (Random Movement)
τvis 96% 93% 92% 83%

Vis Loss (sec) 15 30 32 66

Table 6.1: Visibility ratios τvis for a low obstacle density map

6.9 Results

6.9.1 Evaluating the different approaches

In order to simulate an evasive evader, we presumed that the evader uses a decision method
that maximizes its utility.

All algorithms are coded in C ANSI and are interfaced with the open source flight platform
known as Paparazzi. Paparazzi uses quite realistic models and permits us to use the exact
same code in simulation and real flight testing. Finally, all graphs were passed on to Scilab,
an open source program developed by INRIA.

The number of obstacles can vary and it is assumed that an approach that behaves rel-
atively well when there are not many obstacles and thus shadows in an area, it may find a
hard time to produce results when there are many obstacles in the area. In order to avoid the
necessity of building huge maps, we decided to close an area and force the agents to move in
that closed arena. This means that the agents will be forced to meet the same obstacles over
and over again. In that sense, what is important is not the number of obstacles an area has
but their relative density. For our testing, we used three type of maps of light, medium and
heavy density. Finally, each test lasted approximately 7.5 minutes. All these elements are
exactly the same conditions we encounter when we fly real aircrafts, were we have a limited
airspace to work with, different battery limitations and random air conditions. This was done
to ensure similarities between simulations and real flight testing.

6.9.2 Mono-pursuer decision making

During the first series of tests (Fig. 6.15), we used a medium obstacle map. There the
approach that behaved the best was the minimax approach that lost the evader only for 9
seconds in a test of duration of 450 seconds. However it should be said that those figures
are simply demonstrative as the size and type of real shadows will differ greatly from these
simulations. The ratio of such a method is 98%.

The method that behaves a little less well was the Nash equilibrium with a ratio of 96%
and third comes the utility max with a ratio of 92%. In order to give an image of how the
method calculates the payoffs functions one can see figure 6.16 a snapshot of calculating the
payoff of all the cells of the map. Each cell represents an area of about 5m by 5m.

During the second series of simulations (Fig. 6.17), we use also a test approach to compare
the methods with. During this test approach the drone is commanded to perform pseudo-
random arcs around the area. In these simulations the density of obstacles is very low. In
low densities the probability that a random moving aircraft will capture the evader is about
83% as it was proved by this run. However other test took the number down even to 70%.

The classification of the three methods plus the test case can be seen table 6.1.
In a third series of simulations (Fig. 6.18) the agents found themselves in a high obstacle

density environment and the results can be seen in table 6.2.

103

Nash Minimax Utility Max Test Case (Random Movement)
τvis 98% 97% 95% 93%

Vis Loss (sec) 5 12 19 23

Table 6.2: Visibility ratios τvis for a high obstacle density map

6.9.3 Multi-pursuer decision making

In the multi-pursuer scenario, two drones cooperated together to find out how the two drones
can augment the team visibility. Just by adding a second drone, the number of shadowed
areas diminishes significantly as now there are far less areas that cannot be seen from both
pursuers. However, as it is shown there are approaches that behave much better than others.

In the following test, three approaches were tested in a high obstacle environment (Fig.
6.19), and found out that they behave much better than the test method as it was presented
earlier. Specifically, the method of cooperative Nash approach behaved equally well with the
hierarchical Utility max method by losing the evader from sight of view for only 7 seconds.
This is a significant improvement from the mono-pursuer approach of the same map that lost
the evader for about 22 seconds. These figures of course are simply for comparison reason as
in reality, the shadow formations are very different and the lengths of flights are longer, so
errors do accumulate. Third, the Pareto approach scored less because of the tendency of the
method to bring some times the two drones in close positions and falling in visibility traps.
Something logical if someone considers the way that the Pareto method chooses its positions:
by summing up the individual interests of two agents.

6.10 Conclusions

This chapter presents a game theoretic approach to UAV ground target tracking. The method
works well as long as the evader behaves evasively. It consists of creating a discrete grid map
of the real world and then analyzing the situation using game theoretic tools.

The approach uses evaluation functions to form payoffs according to each agent’s perspec-
tive. The tools used for the mono pursuer case are:

• a maximization of the utilities of each player,

• a Nash equilibrium for two competitive players: pursuer and evader,

• a global adversarial search.

A second UAV is added and the approach is expanded to the two pursuers scenario. The
two pursuers attempt to maximize the team utility. This is achieved by using the following
tools:

• a maximization of the utilities of each team,

• a Nash equilibrium for two cooperative players: pursuer1 and pursuer2,

• a global adversarial search.

104

The approach has been tested using simulations. The software platform used for simulat-
ing is the same platform used for real flight testing and the models are very similar to real
ones. Hence, one should expect that the behavior of the UAVs during real flights would be
similar as in simulation but maybe of different quality.

105

Figure 6.12: Aircraft/evader geometry. Top: aircraft trajectory (red) around an area with
poor Indicator of Internal Stealthiness (Here a castle) something that would permit an aircraft
to track a evader (black circle in the middle) by circling over it and within the wall limits.
Bottom: obstacle structure with good Indicator of Internal Stealthiness (Here a forest road).
An airplane circling over the evader would not manage to hold visibility with it 100% of the
time.

106

Figure 6.13: The indicator of stealthiness of a given point depends on different parameters
as what percentage of the total FOV around it is open or not. In order to calculate that it is
needed to know how far the shadow of an obstacle can reach.

107

Figure 6.14: The algorithm that detects places on the map that have a good stealthiness
indicator.

108

Figure 6.15: This is a simulation at a medium obstacle map. The three approaches (Nash,
Utility Max and Minimax) are tested one against another: the result is measured by the
amount of time that the pursuer looses sight of the evader during a 450 second duration test.
The smaller graphs (red) show the visibility of the evader in a boolean manner: if the evader
is seen, the value is equal to one.

109

Figure 6.16: A snapshot of the pursuer’s and evader’s evaluation landscape for an area of 100
cells, during simulations. One can clearly see that what is for the evader a well and thus an
attractive area, in exactly the opposite for pursuer: The area down left.

Figure 6.17: This is a simulation at a light obstacle map. The three approaches (Nash, Utility
Max, Minimax and Random) are tested one against another: the result is measured by the
amount of time that the pursuer looses sight of the evader during a 450 second duration test.
It is clear that the Nash approach behaves better than all the others followed by the Utility
Maximization approach, the Minimax and finally the Random test case is shown for reasons
of comparison.

110

Figure 6.18: This is a simulation at a high obstacle map. The three approaches (Nash, Utility
Max, Minimax and Random) are tested one against another: the result is measured by the
amount of time that the pursuer looses sight of the evader during a 450 second duration test.
It is clear that the Nash approach behaves better than all the others followed by the Utility
Maximization approach, the Minimax and finally the Random test case is shown for reasons
of comparison.

111

Figure 6.19: This is a simulation with only four visibility obstructing obstacles in the field and
the drones in cooperating mode. The three approaches (Nash, Utility Max and Pareto) were
compared with each other: the pursuer was performing random arcs around the obstacles,
while the evader was actively trying to avoid visibility exposure. The results were measured
in how much time did the pursuer loose the evader from sight. The Nash equilibrium method
showed the best results.

112

Figure 6.20: Snapshot of the pursuer while chasing the evader,while both using a max-utility
approach. One can observe the limit cycles that are formed while the evader tries to hide
itself behind the center obstacle.

Figure 6.21: This is a picture showing how the shadow moves with the pursuer and thus
causing an interesting hide and seek game around the obstacle.

113

Figure 6.22: Here, one can observe the same type of game but as the Nash equilibrium method
is used the switch between two equilibrium causes the move to be more ’square’ as opposed
to fluent, as we saw it in the utility max method.

114

Chapter 7

Conclusions

7.1 Summary

We have proposed three approaches for the autonomous target tracking bu UAVs.

• We started by tackling the problem from a very practical point of view for the case of
a UAV that uses a camera with a limited FOV. We proposed a simple approach that
permits a UAV not only to maximize its observation time but also to deal with NFZs,
on the basis of a visual target pose estimation.

• We then proceeded by considering that the target is evasive. We used a predictive,
iterative approach for this approach with an adversarial twist: before the UAV decides
its future trajectory, it attempts to find the future target trajectory. We considered that
the target tries to find the most covert path, by calculating the zones unseeable for the
UAV. This scenario has been expanded to the case of two UAVs cooperating with each
other, using a hierarchical approach in which the first UAV does not alter its decisions
and the second UAV helps to maximize the overall tracking capability.

• Lastly, we tackled the problem from a game theoretic point of view, using a discrete
representation of the environment. We used classical tools of game theory: Nash equi-
librium, minimax algorithms, utility maximization and Pareto group optimality. This
approach was then also expanded for the case of two UAVs.

7.2 Discussion and further work

7.2.1 Iterating on the thesis contributions

This thesis presents three different approaches. The first approach has very little to do with
the other two, both of which are a bit more interconnected.

The main flaw of the first approach is that it addresses a very specific and simplified case,
and not very scalable to more complex conditions, e.g. urban environments. Indeed, as the
target moves on an open field and thus the UAV has enough space to perform its trajectories
without having to avoid many NFZs. This however is not always the case. Although it may
seem very specialized and obvious, it showed to behave better than other existing solutions,
and complies with restricted FOVs, a constraint often encountered in UAV designs. Keeping

115

with a control based approach in an open environment, an interesting extension would be to
control the flight altitude, e.g. to recover target sight after it escaped the FOV.

The second approach tackles a more complex problem: it can handle more obstacles, covert
areas, road networks and occluding obstacles that we find in a real environment. While it
addresses mostly evasive targets, it was shown that by omitting the target prediction step,
we can also handle a neutral target. Its serious drawback is that it needs a precise UAV
and target pose estimate with respect to the environment, which is can be a limit in some
applications contexts. It does, however, offer a framework to combine safe navigation and
evasive target tracking. A good point is that one does no needs to make an offline optimization
before the application starts, a bad point is that it is platform oriented: one needs to know
the exact model of the agent before the method is applied in order for the approach to work.

Possible future work in this framework could be the following:

• Integrate a system that estimates the position of the target that can replace the need
for full information. This way one UAV would be enough for tracking a ground target
without any external support - satellites etc.

• Perform a more in depth study for the case of limited FOVs.

• Assess the application in real flight using cameras that detect the target and can thus
provide a realistic test of this approach.

• Consider a more realistic 3D environment model (either for the obstacles and the oc-
cluding obstacles), and extend the UAV control to the altitude.

The expansion for the two UAVs case is promising, but there still is plenty space for
improvement of the framework by testing other type of cooperation schemes.

We then invested in game theory, aiming at finding more rational decision oriented solu-
tions to the problem. The main advantage of the third approach is that it can be applied
to a much larger field of applications than autonomous pursuit for fixed wing UAVs. The
approach could be applied to multiple ground robots, to UAVs that can hover or any other
form of robot that participates in some form of cooperation or competition. By manipulat-
ing the payoff functions one can achieve very different behaviors that can be used in various
applications. One positive point of this approach is that it is independent of platform and
of the number of players, since one can define payoff functions for individual players or for
group of players.

Dealing with a group of players one could use game theoretic tools of much more advanced
or complex cooperation schemes than the ones presented in this thesis: the Core, the stable
set and the Shapley value come into mind. Similarly, there could exist an expansion of
the minimax search depth to more complicated scenarios as well as the capability to apply
algorithms as the trappy minimax into aero-terrestrial applications. There is a great potential
for using game theoretical approaches to team cooperation or any other type of game that
can be encoded to rules. The fact of using computers to find how games are played is not
new, but it has not yet been used enough in robotics.

Finally, it should be mentioned that this approach should be tested with real flights, the
only way to assess their practical efficiency.

116

7.2.2 Beyond the horizon of the thesis

During these three years we experimented other solutions without obtaining enough satisfac-
tory results. The first domain of interest is target trajectory prediction: there exist numerous
approaches to this problem (e.g. grey predictors, artificial neural networks...). These methods
have both been proven to work well and they could be used to provide a prediction of the
future position of the target without the need to know if it is neutral or evasive.

The second approach is differential game theory. There is a lot of work to be done within
this domain: theoretical studies that include shadowed areas calculation could provide an
insight of how to predict the movement of a target, application of algorithms that calculate
a good position for the UAV under specific game rules and use of well known solutions
differential games problems such as the game of two cars.

117

Appendix A

Implementation

This chapter presents the tools and platforms (hardware and software) we used to achieve
the developments and experiments in this thesis.

A.1 The Paparazzi Flying System

A.1.1 Presentation

Figure A.1: The basic elements needed for the Paparazzi system to operate.

Paparazzi [Brisset et al.,] is a free and open-source hardware and software project in-
tended to create a powerful and versatile autopilot system. The project includes not only
the airborne hardware and software, from voltage regulators and GPS receivers to Kalman
filtering code, but also an ever-expanding array of ground hardware and software including
modems, antennas, and a highly evolved user-friendly ground control software interface (Fig.
A.1).

All hardware and software is open-source and freely available to anyone under the GNU
licensing agreement. Several vendors are currently producing and selling Paparazzi autopilots
and popular accessories, making the system easy and affordable to all.

118

The key feature of the paparazzi autopilot is its unique combination of infrared thermopiles
and inertial measurement for attitude sensing, providing a robust attitude estimate that
requires no ground calibration and can recover from any launch attitude (Fig. A.4).

A.1.2 Hardware

Controller Board

The early versions of the hardware autopilot card were developed using Atmel-AVR and
Philips ARM7 LPC microcontrollers. The actual versions are using one processor (Model
Tiny Fig. A.2) or two processors (Model Classix). Every card has input lines for the sensors,
output lines for the servos, a radio command receptor (R/C) and a radio modem.

Figure A.2: The hardware card used on board the aircrafts and its GPS.

Sensors and Attitude decomposition

• Infrared Sensors: The Paparazzi auto pilot uses thermopiles (Fig. A.3) to estimate
the posture of the aircraft by measuring the temperature difference between the sky
and the ground .

• GPS: The global position of the aircraft is obtained using a GPS antenna.

Figure A.3: The posture infrared sensor.

Aircraft

Small R/C off the shelf aircrafts can be modified as follows in order to be able to be used by
the Paparazzi autopilot (Fig. A.5):

119

Figure A.4: The principle of function of the sensors: By measuring the temperature difference
one can deduce the posture of the aircraft in any axis.

Figure A.5: Configuration of electronics on a Paparazzi aircraft

• Autopilot Control Board

• Battery

• Datalink Radio-Modem and Antenna

• GPS Receiver

• IR Sensor Board

• Motor and Controller

• RC Receiver and Antenna

• Servos

• Payload = Camera and Video Transmitter

120

A.1.3 Software

On-board Software

The auto-pilot uses three basic loops that can be seen in Fig. A.6 The first stabilizes the
aircraft and maintains the desired posture. The second one controls the heading, the altitude
and the position of the aircraft. Finally, the third keeps track of different indices like battery
level etc.

Figure A.6: Architecture and communication links of the Paparazzi system.

Ground Station

A graphic interface permits to control the flight plans of several airplanes simultaneously.
The principal display permits to have a quick look at the position of the aircrafts and to fine
tune fast the different gains of the system. The principle elements of the ground station are:

• Link. The Link enables the communication between the aircraft by using the different
available modems.

• Server. This agent permits to store the different messages and distribute them to the
relevant agents.

• GCS. This is the graphic interface of the ground station (Fig. A.7).

All agents communicate between them using an intermediate bus, known as Ivy 1. It is
a simple communication layer that permits connect different agents. This bus served as the
connection between our C modules and the Paparazzi autopilot.

1http ://www.tls.cena.fr/products/ivy

121

Figure A.7: The graphic interface of the Ground Station.

One very important aspect of the Paparazzi system apart from flying airplanes, is that it
can also be used in simulation mode. During this mode, the software allows to simulate very
realistic aircraft dynamics and to add randomly generated windy conditions. This greatly
diminishes the differences in aircraft behavior from simulation to real flight.

A.2 Development and Simulation Environments

A.2.1 Algorithm encapsulation

Genom

Most of the algorithms developed during this thesis were coded using C ANSI. However, the
algorithms were encapsulated using a specific architecture used in LAAS/CNRS that is known
as Genom.

Genom [Alami et al., 1998] is a development framework that allows the definition and the
production of modules that encapsulate algorithms. A module is a standardized software
entity that is able to offer services which are provided by the algorithms. Modules can start
or stop the execution of these services, pass arguments to the algorithms and export the data
produced. In permits to easily integrate programming code without having to worry about
operating system requirements and can greatly accelerate coding time.

Its use involves seven distinct steps (Fig. A.8):

1. Describe the module.

2. Generate the server.

122

Figure A.8: Genom development cycle.

3. Compile.

4. Write the codels that will invoke the algorithms.

5. Compile the codels.

6. Link with the server.

7. Test and use the module

Each module has a structure that allows it to communicate with its environment either
by control requests, by exporting data in a poster, by reading the posters of other modules
or by exchanging data through the hardware’s I/O ports (Fig. A.9).

Figure A.9: Module structure.

123

It should be noted that much of the hierarchical part of the software uses scripts and
widgets programmed using the scripting language package of Tcl/Tk 2. This scripting lan-
guage permits a fast programming loop as it does not need to be compiled and permits the
different software parts to communicate with each other and to synchronize using a high level
programming structure.

GDHE

GDHE is a tool for 3D visualization of robotic applications that uses the OpenGL library
to display the 3D primitives. In order to program something one needs to use the scripting
language of Tcl/Tk.

Figure A.10: The GDHE environment.

GDHE allows to build a 3D representation of the geometrical model of an environment
and make it change with time. In order to achieve this, GDHE acts as a server that receives
requests from a set of client processes. These requests describe the evolution of the model.
Clients can be either modules that control a real system and that send data about the state
of this system or simulation processes producing a simulated state of a virtual system. .

Overall Software Structure

Overall the architecture structure can be seen in (Fig. A.11). All decision algorithms were
encapsulated within the tracking module and passed on their commands to a control and
guidance layer. From there they communicated with the Paparazzi autopilot using an IVY

2http://tcl.sourceforge.net/

124

bus. At the same moment a Tcl script was coordinating all actions, by initializing different
variables and by exporting all necessary information to the 3D simulation environment of
GDHE. Finally, all decisions, simulations and guidance of the target were taking place within
the target module.

Figure A.11: Overall software organization of the modules.

A.2.2 Scilab simulation platform

Part of the work done in this thesis was done using the Scilab3 free of cost numerical compu-
tational package developed by researchers from the INRIA and the Ecole nationale des ponts
et chaussees (ENPC). Using this software, we performed all graphs contained in this thesis,
we tested algorithms before we code them in C ANSI and checked that they give satisfying
results.

A.3 Aircrafts-Robots

A.3.1 The Nirvana fleet

For most of our experiments we used some of the 3 Minimag aircrafts that the laboratory has
obtained from the company Multiplex and we equipped them with the Paparazzi auto pilot
system (hardware and software). Each of the aircrafts were connected via radio link with
a laptop on the ground that gave all the commands using the software platforms presented
earlier. The have a wing span of 1010 mm and a total length of 820 mm. Their stall airspeed
is at about 6.1m/s and with a throttle of 70% they will travel with an airspeed of 8.4m/s.

3http://www.scilab.org/

125

Figure A.12: The 3 Minimag model aircrafts known as the Nirvana fleet were the most
frequent platforms for testing this thesis algorithms.

126

Appendix B

Resumé

B.1 Motivations

Pendant les dix dernières annéés, il y a eu une augmentation significative d’ intérêt vers les
drones. Ce temps-ci , les UAVs peuvent décoller, voler et atterrir sans aucune intervention
humaine. Suivant cette tendance, la production mondiale des drones (UAVs) a aussi aug-
menté: la production mondiale des UAVs a produit 477 types différents de UAVs , parmi eux,
quelques sont civils mais la plupart sont militaires, alors que par 2007 cette figure a augmenté
un peu prés de 65% en atteignant le chiffre 789 [International, 2007].

Certaines de ces plates-formes sont certainement impressionnantes, ils abordent beaucoup
de questions importantes comme la capacité de vol, l’intégration d’espace aérien et les ca-
pacités opérationnelles . Cependant ils semblent manquer un point important : l’autonomie.
Il existe souvent une idée fausse que comme un UAV a la capacité de voler avec un façon
automatique pendant quelques parties de sa mission, que ceci est autonomie. La distinction
doit être faite immédiatement ; D’une parte, le vol automatique offre à un système, la ca-
pacité d’exécuter des actions selon une série de règles prédétermines dans un environnement
fortement prévisible, un exemple classique étant le pilote automatique . Tandis que d’autre
part, la vraie autonomie offre à un UAV la capacité d’agir sans aucune surveillance dans un
environnement qui change et qui peut agir face a une vaste gamme des conditions. Un système
autonome devrait fournir un interface au niveau d’abstraction très élevé, L’utilisateur pour-
rait commander l’avion a “Explore (Area)” or “GoTo(City)” et le système pourrait être laissé
complètement non surveillé afin d’exécuter ces taches. Pour obtenir une idée sur le niveau
d’autonomie que les UAVs modernes fournissent, nous devrions remarquer que la plupart des
plates-formes aériennes produites de nos jours, le plan après une perte de communication est
de commander que l’avion aille à un certain secteur désert et exécutent des cercles jusqu’à
ce que la communication soit rétablie ou jusqu’à ce que tout le carburant soit consommé et
l’avion tombe.

L’avion s’est développé de l’avion piloté et peu importe leur vitesse et leur capacités
a manœuvrer , ils ressemblent beaucoup aux leurs avions pilotés: il y a toujours quelque
part un pilote qui prend les décisions et le fait qu’il n’est pas sur l’avion ne change pas
beaucoup des choses. D’une part, la recherche de robotique s’est avancée significativement
au cours des années passées et il peut maintenant offrir plusieurs solutions élaborées dans
le domaine de la vision artificielle, la recherche du chemin, la prise de décision, l’action
d’éviter les obstacles et la modélisation d’environnement - tous travaillent en visant à équiper

127

Figure B.1: Aerosonde: Premier robot aérien de survoler l’océan Atlantique.

les machines mobiles avec l’autonomie. L’un des principales motivations de cette thèse est
d’examiner les technologies menant a l’autonomie d’avion et essaient de développer certains
d’entre d’eux.

La deuxième motivation vient de la caractéristique de la plupart des applications d’UAVs.
Ils sont disponible dans une vaste gamme: la surveillance aérienne, reconnaissance militaire,
les actions militaires offensives, la recherche et la sauvetage autonome, le contrôle des lignes
qui emmenant le gaz naturelle et la surveillance autonome des incendies des forets .

Le point commun de toutes ces applications consiste en ce qu’ils sont définis par rapport
au sol: le repérage du cible terrestre est une tache essentielle pour les UAVs. Pour telles
taches, les avions de voilure fixe ont un avantage sur des hélicoptères pour atteindre des
grandes vitesses avec une consommation faible , mais leur dynamique contrainte la visibilité
de la cible . Cette thèse prend en considération ce problème , et introduit des stratégies variés
pour obtenir le repérage visuel de la cible terrestre visant à optimiser la visibilité de cible.

B.2 Les défis et les objectifs

B.2.1 La problématique

Dans l’ensemble, l’objectif de cette thèse est de fournir des méthodes pour équiper un UAV
pour tracer automatiquement une cible mobile, terrestre, selon les conditions ci-dessous.

• La dynamique d’UAV: On considéré les UAVs de voilure fixe. Ce type d’avion a la
limitation de mouvement et la contrainte dynamique et l’avion se comporte comme un
véhicule non-holonome.Un avion d’aile fixé ne peut pas s’arrêter et changer la direction
aussi facilement qu’une cible terrestre et cela provoke des difficultés. On considère aussi
que le mouvement des UAV est contrainte par la présence de zones de vol interdites.

• La présence des obstacles: Il est improbable que les UAVs soient permis de voler dans
tous les régions et dans le cas des micro UAVs volant à une altitude basse , cette
supposition est plus souvent vraie. Il faudrait considérer qu’il existent des zones sur
lequel l’avion ne peut pas s’aventurer parce qu’il y a de zones de vols interdites (NFZs)
ou parce qu’il y a des bâtiments à éviter. Dans chacun des cas mentionnés ci-dessus , on

128

devrait trouver une méthode de piloter l’ UAV d’une telle façon pour qu’il maintienne
la visibilité sans entrer dans une NFZ.

• Les limitations du champ de vision: Dans beaucoup des cas, les UAVs et spécialement
les micro-UAVs n’ont pas un champ de vue (FOV) menant à un problème de plus grand
complexité. Nous examinerons les conséquences de la limitation du champ de vision
pour le UAV (panoramique vue entière du champ par rapport a vue de champ limite).

• La dynamique de la cible et le comportement: La cible pourrait être mobile dans un
terrain ouvert ou sur un réseau routière , et il a aussi les contraints dynamiques (le
modèle utilise dans ce thèse est une voiture). Cela peut être neutre ou évasive : dans
le deuxième cas, il peut profiter de la présence des obstacles, nommé “les ombres”, afin
d’éviter d’être vu par le UAV, faisant le problème apparente au jeu du cache cache .

B.2.2 Les objectives de la thèse

Globallement, c’est nécessaire que le UAV prevoit les mouvements de la cible afin d’être “
un pas en avant ”. Cela évoque l’intérêt au niveau du processus de la décision : une cible
évasive va essayer vivement à cacher derrière des obstacles et utiliser le réseau de la rue d’une
manière prévisible. Afin de maximiser le temps de la visibilité, les UAVs doivent être capables
de prévoir tells situations et réagir ou se préparer avant qu’il arrive pour maintenir la visibilité.

L’objectif du thèse est de fournir une structure de décision qui optimise la visibilité de la
cible face à ces contraints. En plus, on va aussi considérer le cas de deux UAVs qui coopèrent
pour la poursuite de la cible.

B.3 La contribution et le plan du thèse

Les contributions principales de cette thèse sont :

• La présentation d’une méthode de la navigation contrôle, qui permet au UAV de tracer
une cible terrestre , à l’absence des obstacles et des ombres .

• La présentation d’une méthode prédictive qui permet à un UAV de tracer une cible
basée sur la position , en évitant les obstacles et des régions que la cible peut utiliser
comme des cachettes. La méthode considére le cas d’une cible évasive qui se déplace,
soit dans un environnement tout terrain soit dans un réseau de route et est prolongé
vers les cas de deux UAVs coopératives.

• La présentation de l’approche de théorie des jeux qui permet a l’UAV de tracer une
cible basée sur la position parmi les NFZs et les obstacles indistincts et l’extension de
cette approche de collaboration de l’UAV.

B.4 L’état de l’art

• La premiere partie de recherche est basée sur la Guidace, la Navigation et le Contrôle.
Son intérêt principal consiste de changer une trajectoire afin d’atteindre la visibilité
maximum de la cible. La plupart des articles scientifiques dans ce domaine s’occupent

129

Figure B.2: Graphe des contributions de cette thèse: le graphe démontre la complexité et l
abstraction des solutions.

aussi de cet aspect de contrôle du problème . Cependant, peu de ces articles s’occupent
de la présence des zones de vols interdites (NFZs) ou d’autre type des obstacles cachant
la visibilité. Le scénario typique est le suivant: une cible se déplace dans un terrain
ouvert , alors que le UAV vole à une altitude constante et à une vitesse régulié , en
essayant d’être proche d’une cible terrestre .

• La deuxième partie de recherche tire ses forces des solutions basées sur le planning et
s’approche un pas vers l’autonomie.

• La troisième partie de travail présenté dans ce chapitre consiste la théorie des jeux ,
celui qui est historiquement l’un des plus influentielles dans le domaine de la prise de
décision.

• Ce chapitre serait incomplète sans la présentation de l’environnement des multi-agents
et les deux types principales des interactions qui peuvent soulever: les interactions
compétitives , dans ce sens , la cible et l’UAV essaient de se jouer au plus fin et les
interactions coopératives , dans ce sens, deux ou plus de deux UAVs peuvent coopérer
afin d’optimiser une utilité commune.

B.5 Synthèse du problème

Dans l’ensemble, le but de cette thèse est d’équiper un système composé d’un ou deux UAV
capable d’optimiser la visibilité ration d’une cible terrestre. Le système de l’UAV doit être

130

capable de s’adapter ses décisions et sa trajectoire basée sur l’information suivante.

• Le type de caméra qu’il pourrait utiliser, celle qui dans certains cas ne pourrait pas
assurer un champ de vision plein.

• La prédiction de la position de la cible terrestre qui peut changer la direction et la
vitesse.

• La prédiction de la position de la cible terrestre peut être évasive ou neutre. Non
seulement une cible évasive pourrait essayer de maximiser la distance entre les UAVs et
la cible , mais il peut aussi utiliser n’importe quel obstacle afin de se cacher des UAVs.

• Une carte de tous les obstacles naturels ou humains terrestres est contruite , qui peuvent
empêcher la visibilité de l’air et donc fournit des endroits que la cible peut se cacher
des UAVs.

• Une carte en détail de tous les Zones de Vols Interdites que l’on doit éviter .

Figure B.3: En réalité l’UAV doit trouver des situations plus difficiles et doit joggler entre
NFZs, la proximité de la cible, d’avoir une camera a la bonne angle et que aucun obstacle
cache la cible.

B.6 Suivre une cible terrestre

Dans cette partie, nous considérons le cas d’un UAV qui vole a une altitude constante et a
une vitesse stable et essaient de suivre la trajectoire d’une cible mobile et neutre . ‘Neutre’,
cela veut dire, la cible n’est pas consciente d’être surveillé, et donc, elle n’essaie pas ni de
coopérer ni de échapper d un UAV. Il se déplace terrestre à une vitesse variable. Il n’y a

131

pas d’obstacles qui empêchent la visibilité et dans la plupart des chapitres , on considérera
que l’UAV a la capacité totale de déplacement dans l’espace (pas NFZs). Cependant, le cas
de NFZs est traité brevement , pour apporter une méthode qui marche bien dans tous les
conditions. Fig. B.4

B.6.1 Vue d’ensemble de notre approche

On considéré deux cas ici:

• La cible hors de la vue : Si la cible est hors du champ de vision actuel, le UAV utilise
une stratégie simple qui le guide vers la dernière position que la cible était vue la dernière
fois . En absence des informations quant à l’emplacement de la cible, on a proposé
des stratégies de recherche diverses dans la littérature . (e.g. [Quigley et al., 2005a,
Wong et al., 2005]).

• La cible en vue: Quand la cible est dans la vue de champ actuel , notre approche
consiste a guider l’ UAV afin d’optimiser la visibilité de la cible. Dans ce but, une
stratégie de contrôle en deux étapes est définie :

1. Une angle optimale η? est calculé. Le mot ‘Optimalité’ veut dire que η? est
mis en ordre pour définir un commerce entre le distance de la cible , ce qui doit
rester dans la [ρmin, Dmax] portée et l’erreur de dépistage latérale xf de la cible
qui doit être réduite au minimum. Dmax est le rayon de détection maximal et ρmin
c’est le minimum rayon tournant.

2. Une loi d’orientation latérale aide le UAV à maintenir le titre désirable
η?. Dans ce but, l’angle actuel η et la distance horizontale à la cible L1 sont
calculés, et ils sont insérés dans un algorithme de contrôle latéral qui définit la
commande roulis ucmd.

Fig.B.5 demontre le flow-chart de l’approche.

B.6.2 Strategie

Dans le cas le plus simple, la ou il y a visibilité; on a η? = π
2 . Ailleurs; η? = α ± ||FOV ||2 , ca

depend de la coté que la cible est approché. On doit aussi guarantir la distance maximale
Dmax, et le rayon de tournage ρmin qui est contraint peut se satisfaire. (Fig. B.6):

B.7 Une appoche itérative predictive pour suivre la cible

Dans ce chapitre, on considère un UAV qui vole à une altitude constante et à une vitesse stable
et essaye de suivre la trajectoire d’une cible évasive terrestre. Naturellement, la cible essayera
d’utiliser n’importe quels obstacles terrestre pour se cacher de l’UAV. Tous les obstacles
terrestre sont considérés comme dômes d’un rayon fixé. De plus, l’UAV doit respecter la
présence de certains NFZs, qu’il devra éviter a tout prix. On considère les UAVs d’avoir une
visibilité de type ’sphère’ jusqu’à ce que certaine distance maximale.

L’approche fondamentale consiste en un boucle de deux étapes (Fig. B.8):

132

Figure B.4: Géométrie Avion-cible. Top: projection de la ligne de vue au sol et définition
de l’angle η. Bottom: orientation des angles (α, β) de l’axe vision de la camera, et des
coordonnees des images (xf , yf) de la cible.

133

Figure B.5: Flow-chart de l’approche.

• La prédiction de la cible: L’ UAV essaie de predire la voie de la cible dans l’avenir proche
(l’horizon de prédiction) , ou cela utilise sa position réelle (estimée ou bien-connue).

• La prédiction d’UAV : Au cours de la prédiction d’horizon, le UAV doit choisir un chemin
futur qui maximise la prise de la cible, en respectant la présence d’observation.

B.8 Fonctions d’évaluation

Nous utilisons le mot ‘agent’ à décrire le UAV ou la cible. Leur position et leur pose sont connu
comme l’état xk de l’agent au moment k. Étant donne la position des objets environnants et les

Vt = 0 Vt = 0.5Vd Vt = 0.9Vd
Spiral and SpiralIn 97% 91% 82%

Two Arcs 78% 81% 97%
Circle 67% 69% 81%

Rose Loitering Mode 55% 60% 66%
Target Aim 51% 52% 55%

Table B.1: Ratios de visibilités en simulations pour des vitesses dif-
ferentes: SpiralI = [Rysdyk, 2003], Arcs =[Stolle and Rysdyk, 2003],
Circle=[Stolle and Rysdyk, 2003][Quigley et al., 2005b][Rafi et al., 2006], Rose Loitering
Mode = [Lee et al., 2003]

134

Figure B.6: L strategie spirale.

Figure B.7: La boucle d’asservisement laterale.

135

Figure B.8: The algorithm is a two step process. In the first step a prediction of how the target
should behave is calculated and according to that information the second step is initiated.
During the second step the UAV chooses the optimum path according to the predicted target
trajectory and according to a series of criteria that define the cost function. Both steps make
use of an iterative optimization scheme where different paths are compared in terms of payoff
value (cost function).

agents en relation avec cet agent, on peut attribuer une valeur numérique à cette configuration
de la cible d’UAV. Ce coût de la configuration est connu comme J(xUAVk , xTargetk).

Maintenant, selon la méthode que l’on veut assigner une valeur aux configurations, on
peut guider les agents à poursuivre certaines configurations, en évitant d’autres méthodes.
Ce type de codage peut promouvoir n’importe quel comportement simplement en recomposant
les configurations souhaitables et en pénalisant les contraires . Une valeur petite entrainera
à une meilleure repérage d’une cible.

• Fonctions d’évaluations d’évasion de NFZ.

• UAV / Fonction d’evaluations de la distance cible.

• Fonction qui protege le drone de configuration ou la visibilite est perdue.

• L’orientation correct de FOV. La fonction qui est utile si l’UAV n’a pas de FOV entière.

B.8.1 Coût de configuration

À chaque itération un coût est calculé pour ce manoeuvre. Le coût général estime pour ce
chemin spécifique consiste en la somme de la valeur de tous les coûts de chaque point.

B.8.2 Le coût de configuration dans l’ensemble

Le but de cette étape est de trouver une série des commandes de roulis qui minimisent le coût
de fonction Jp pour un horizon de prédiction donné. Une fois que ce chemin est trouvé , la

136

Figure B.9: The Greedy Method: Different trajectories are projected in the future and the
one with the least cost is selected

Figure B.10: The A* Method applied to UAV path planning.

première étape de ce chemin est passée comme une commande au UAV et la procedure est
répété .

Dans l’ensemble, on étudie trois types de cibles:

• Une cible qu’on connait que sa position actuelle(estimée).

• Une cible qui se déplace sur un réseau routiere (Urbaine et semi-urbaine)

• Une cible qui se deplace dans un éspace ouvert (les véhicules tout terrain) dans la
présence des obstacles terrestre.

Il n’y a pas de doute que n’importe quel serait le niveau d’efficacité de stratégies de mono-
UAVs, il y aura toujours certaines configurations où la visibilité est perdue. Il est aussi très
évident que l’introduction de l’un ou plus UAVs augmentera la visibilité de cible. Cette partie
propose une rallonge de notre approche aux cas de plusieurs UAVs. (Fig. B.12).

137

Figure B.11: Decision-Waypoints: La cible essaye de decider quel chemin elle doit prendre
(h1 or h2). Sa decision est basée sur la possibilité de mieux se cacher.

B.9 Une approache pour suivre la cible basée sur la théorie
de jeux

Cette partie présente une vue d’ensemble de la méthode proposée . La méthode appliqué à
chaque joueur consiste en une boucle de trois étapes distinctes .

(Fig. B.13):

1. La discrétisation des espaces des jeux: Cette étape consiste de créer un monde virtuel
discret basé sur la configuration du monde réel pour qu’une analyse de jeu théorique
puisse se passer. Cette étape considère comme les données les positions de poursuiveurs
, d’obstacles, NFZs et comme le rendement une carte virtuelle discrète qui sera connu
comme le tableau de jeu. (Fig. B.14). Cette carte est locale et est remis a jour quand
l’UAV se déplace.

2. L’analyse et la décision : Cette étape analyse le tableau, compare la proportion de
forces et décide un manœuvre optimal pour chaque agent , c’est a dire, si l’architecture
est utilisée pour un UAV seul ,on va calculer un manœuvre optimal pour cet UAV seul.

3. L’exécution de commande discrète: Ce bloc produit une commande de roulis pour
l’UAV(ou une commande tournant si l’algorithme est utilise pour la cible terrestre qui
s’échappe) ce qui va apporter à la region souhaitable.

B.9.1 La prise de la décision pour un seul avion

Cette partie présente les solutions pour un poursuivant suivant une cible terrestre. Donc, les
mots ‘équipe’ et ‘joueur’ ont exactement le même sens . L’objectif de cette partie est d’utiliser

138

Figure B.12: La cooperation multi drones: Chaque fois que UAV I va perdre la cible, UAV
II guarantiee la visibilité.

Figure B.13: La approche en trois étapes.

Figure B.14: Le tableau du jeu.

de différents outils de théorie de jeux afin de prendre des décisions pour chaque équipe .

• La maximisation d’utilité C’est la méthode la plus simple: Le poursuivant examine
tous les autres possibilités (les cellules sur le tableau) et décide d’utiliser celle qui
offrir le plus haut récompense possible argmax argmax(PP) en utilisant sa fonction
d’évaluation basée sur la position actuelle de la cible .

• La recherche antagonique La méthode la plus encourageant dans le domaine de la
recherche antagonique est l’algorithme minimal comme est déjà présenté dans le chapitre
de la technologie de pointe. En utilisant cette méthode , soit on peut résoudre l’arbre
en utilisant les méthodes locales, c’est a dire , l’examination des destinations probables,
seulement les cellules a cote de cellule en question, soit considéré tous les cellules comme

139

les options.

• Nash equilibria et les stratégies de dominance Trouver le Nash équilibre est
considéré d’êtree NP hard ,même si cela n’est pas prouve encore[?]. L’algorithme utilisé
dans ce thèse peut être se trouver dans [Porter et al., 2008]. . L’algorithme utilisé dans
ce thèse peut être se trouver dans [Sureka and Wurman, 2005] - et il est présenté dans
la partie 2.2.2. l’algorithme est un tabou, gradient algorithme de recherche basé sur la
matrice de jeu.

B.9.2 Decision pour drônes multiples

Ici les drônes cooperent en utilisant:

• La maximisation d’utilité

• La recherche antagonique

• Une approche d’optimalité Pareto

140

Bibliography

[Alami et al., 1998] Alami, R., Chatila, R., Fleury, S., Ghallab, M., and Ingrand, F. (1998).
An Architecture for Autonomy. The International Journal of Robotics Research, 17(4):315.

[Barraquand et al., 1992] Barraquand, J., Langlois, B., and Latombe, J. (1992). Numerical
potential field techniques for robot path planning. Systems, Man and Cybernetics, IEEE
Transactions on, 22(2):224–241.

[Beard and McLain, 2003] Beard, R. and McLain, T. (2003). Multiple UAV cooperative
search under collision avoidance and limited range communication constraints. In Deci-
sion and Control, 2003. Proceedings. 42nd IEEE Conference on, volume 1.

[Beard et al., 2002] Beard, R., McLain, T., Goodrich, M., and Anderson, E. (2002). Coordi-
nated target assignment and intercept for unmanned air vehicles. Robotics and Automation,
IEEE Transactions on, 18(6):911–922.

[Berg, 1983] Berg, R. (1983). Estimation and prediction for maneuvering target trajectories.
Automatic Control, IEEE Transactions on, 28(3):294–304.

[Bopardikar et al., 2007] Bopardikar, S., Bullo, F., and Hespanha, J. (2007). Sensing limi-
tations in the Lion and Man problem. Proceedings of American Control Conference, New
York, page 5958.

[Borenstein and Koren, 1990] Borenstein, J. and Koren, Y. (1990). Real-time obstacle avoid-
ance for fast mobile robots in cluttered environments. Robotics and Automation, 1990.
Proceedings., 1990 IEEE International Conference on, pages 572–577.

[Borenstein and Koren, 1991] Borenstein, J. and Koren, Y. (1991). The vector field
histogram-fast obstacle avoidance for mobile robots. Robotics and Automation, IEEE
Transactions on, 7(3):278–288.

[Bortoff et al., 2000] Bortoff, S., Center, U., and Hartford, E. (2000). Path planning for
UAVs. American Control Conference, 2000. Proceedings of the 2000, 1(6):364–368.

[Bourquardez and Chaumette, 2007] Bourquardez, O. and Chaumette, F. (2007). Visual ser-
voing of an airplane for auto-landing. Intelligent Robots and Systems, 2007. IROS 2007.
IEEE/RSJ International Conference on, pages 1314–1319.

[Brisset et al.,] Brisset, P., Drouin, A., Gorraz, M., Huard, P., and Tyler, J. The Paparazzi
Solution. http://paparazzi.enac.fr.

141

[Bruce and Veloso, 2003] Bruce, J. and Veloso, M. (2003). Real-Time Randomized Path Plan-
ning for Robot Navigation. Lecture Notes in Computer Science, pages 288–295.

[Bui et al., 1994] Bui, X., Souer̀es, P., Boissonnat, J., and Laumond, J. (1994). The shortest
path synthesis for non-holonomic robots moving forward. Technical report, INRIA.

[Burgard et al., 2002] Burgard, W., Moors, M., and Schneider, F. (2002). Collaborative Ex-
ploration of Unknown Environments with Teams of Mobile Robots. Lecture Notes in Com-
puter Science, pages 52–70.

[Campbell et al., 2002] Campbell, M., Hoane, A., and Hsu, F. (2002). Deep Blue. Artificial
Intelligence, 134(1-2):57–83.

[Campbell and Ousingsawat, 2002] Campbell, M. and Ousingsawat, J. (2002). On-line Esti-
mation and Path Planning for Multiple Vehicles in an Uncertain Environment. In Proceed-
ings of the 2002 AIAA Conference on Guidance.

[Chandler et al., 2001] Chandler, P., Pachter, M., and Rasmussen, S. (2001). UAV coopera-
tive control. American Control Conference, 2001. Proceedings of the 2001, 1.

[Chitsaz and LaValle, 2007] Chitsaz, H. and LaValle, S. (2007). Time-optimal paths for a
dubins airplane. Decision and Control, 2007 46th IEEE Conference on, pages 2379–2384.

[Chong et al., 2000] Chong, C., Garren, D., Grayson, T., Allen, B., and Inc, H. (2000).
Ground target tracking-a historical perspective. In Aerospace Conference Proceedings, 2000
IEEE, volume 3.

[D.Ghose, 1994] D.Ghose (1994). True proportional navigation with maneuvering target.
Aerospace and Electronic Systems, IEEE Transactions on, 30(1):229–237.

[Dogan, 2003] Dogan, A. (2003). Probabilistic approach in path planning for UAVs. Intelli-
gent Control. 2003 IEEE International Symposium on, pages 608–613.

[Dubins, 1957] Dubins, L. (1957). On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal positions and tangents. American
Journal of Mathematics, 79(3):497–516.

[Ducard et al., 2007] Ducard, G., Kulling, K., and Geering, H. (2007). A simple and adap-
tive on-line path planning system for a uav. Control and Automation, 2007. MED ’07.
Mediterranean Conference on, pages 1–6.

[Edelkamp and Schrodl, 2003] Edelkamp, S. and Schrodl, S. (2003). Route Planning and
Map Inference with Global Positioning Traces. Lecture Notes in Computer Science, pages
128–151.

[Eppstein, 1994] Eppstein, D. (1994). Finding the k Shortest Paths. In Annual Symposium
on Foundations of Computer Science, volume 35, pages 154–154. IEEE Computer Society
Press.

[F.Belkhouche and B.Belkhouche, 2007] F.Belkhouche and B.Belkhouche (2007). Wheeled
mobile robot navigation using proportional navigation. Advanced Robotics, 21(3-4):395–
420.

142

[Frew and Lawrence, 2005] Frew, E. and Lawrence, D. (2005). Cooperative stand-off tracking
of moving targets by a team of autonomous aircraft. In AIAA Guidance, Navigation, and
Control Conference.

[Fudenberg and Tirole, 1991] Fudenberg, D. and Tirole, J. (1991). Game Theory. Mit Press.

[Ganapathy and Passino, 2003] Ganapathy, S. and Passino, K. (2003). Agreement strategies
for cooperative control of uninhabited autonomous vehicles. In American Control Confer-
ence, 2003. Proceedings of the 2003, volume 2.

[Gendreau, 2003] Gendreau, M. (2003). An Introduction to Tabu Search. International Series
In Operations Research and Management Science, pages 37–54.

[Gennery, 1999] Gennery, D. (1999). Traversability Analysis and Path Planning for a Plane-
tary Rover. Autonomous Robots, 6(2):131–146.

[Gerkey et al., 2006] Gerkey, B., Thrun, S., and Gordon, G. (2006). Visibility-based Pursuit-
evasion with Limited Field of View. The International Journal of Robotics Research,
25(4):299.

[Girard et al., 2004] Girard, A., Howell, A., and Hedrick, J. (2004). Border patrol and surveil-
lance missions using multiple unmanned air vehicles. In Decision and Control, 2004. CDC.
43rd IEEE Conference on, volume 1.

[Glover and Laguna, 1993] Glover, F. and Laguna, M. (1993). Tabu search, Modern heuristic
techniques for combinatorial problems.

[G.M.Siouris, 2004] G.M.Siouris (2004). Missile Guidance and Control Systems. Springer-
Verlag New-York, Inc.

[Gordon et al., 2006] Gordon, V., Reda, A., and CSU, S. (2006). Trappy Minimax-using
Iterative Deepening to Identify and Set Traps in Two-Player Games. Computational Intel-
ligence and Games, 2006 IEEE Symposium on, pages 205–210.

[Grocholsky et al., 2000] Grocholsky, B., Durrant-Whyte, H., and Gibbens, P. (2000). An
Information-Theoretic Approach to Decentralized Control of Multiple Autonomous Flight
Vehicles. In Proceedings of SPIE, volume 4196, pages 348–359. SPIE.

[Hattenberger, 2008] Hattenberger, G. (2008). Vol en formation sans formation: contrôle et
planification pour le vol en formation des avions sans pilote. PhD thesis, University of
Toulouse.

[Helble and Cameron, 2007] Helble, H. and Cameron, S. (2007). 3-D Path Planning and
Target Trajectory Prediction for the Oxford Aerial Tracking System. Proceedings of the
IEEE International Conference of Robotics and Automation (ICRA’07).

[International, 2007] International, U. (2007). Unmanned aircraft systems - the global per-
spective 2007/2008.

[Isaacs, 1999] Isaacs, R. (1999). Differential Games: A Mathematical Theory with Applica-
tions to Warfare and Pursuit, Control and Optimization. Courier Dover Publications.

143

[Isler et al., 2005] Isler, V., Sun, D., and Sastry, S. (2005). Roadmap Based Pursuit-Evasion
and Collision Avoidance. Proc. Robotics, Systems, & Science.

[Jin et al., 2003] Jin, Y., Minai, A., and Polycarpou, M. (2003). Cooperative real-time search
and task allocation in UAV teams. In Decision and Control, 2003. Proceedings. 42nd IEEE
Conference on, volume 1.

[Jung and Sukhatme, 2001] Jung, B. and Sukhatme, G. (2001). A Region-based Approach
for Cooperative Multi-Target Tracking in a Structured Environment. In Proceedings of
2002 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[Kahneman and Tversky, 2004] Kahneman, D. and Tversky, A. (2004). Prospect theory: an
analysis of decision under risk. Preference, Belief, and Similarity: Selected Writings.

[Kim and Shim, 2003] Kim, H. and Shim, D. (2003). A flight control system for aerial robots:
algorithms and experiments. Control Engineering Practice, 11(12):1389–1400.

[Kim and Kim, 2008] Kim, J. and Kim, Y. (2008). Moving ground target tracking in dense
obstacle areas using UAVs. Proceedings of the 17th World Congress.

[Kim et al., 2008] Kim, Y., Gu, D., and Postlethwaite, I. (2008). Real-time path planning
with limited information for autonomous unmanned air vehicles. Automatica, 44(3):696–
712.

[Kitamura et al., 1993] Kitamura, Y., Chauang, Z., Tatsumi, S., Okumoto, T., and Deen, S.
(1993). A cooperative search scheme for dynamic problems. In Systems, Man and Cy-
bernetics, 1993.’Systems Engineering in the Service of Humans’, Conference Proceedings.,
International Conference on, pages 120–125.

[Koren and Borenstein, 1991] Koren, Y. and Borenstein, J. (1991). Potential field methods
and their inherent limitations for mobile robot navigation. Robotics and Automation, 1991.
Proceedings., 1991 IEEE International Conference on, pages 1398–1404.

[Korf, 1985] Korf, R. (1985). Depth-First Iterative-Deepening: An Optimal Admissible Tree
Search. Artificial Intelligence, 27(1):97–109.

[Kuffner Jr and LaValle, 2000] Kuffner Jr, J. and LaValle, S. (2000). RRT-connect: An effi-
cient approach to single-query path planning. In Robotics and Automation, 2000. Proceed-
ings. ICRA’00. IEEE International Conference on, volume 2.

[Lacroix et al., 2002] Lacroix, S., Mallet, A., Bonnafous, D., Bauzil, G., Fleury, S., Herrb, M.,
and Chatila, R. (2002). Autonomous Rover Navigation on Unknown Terrains: Functions
and Integration. The International Journal of Robotics Research, 21(10-11):917.

[Langer et al., 1994] Langer, D., Rosenblatt, J., and Hebert, M. (1994). A behavior-based sys-
tem for off-road navigation. Robotics and Automation, IEEE Transactions on, 10(6):776–
783.

[Latombe, 1991] Latombe, J. (1991). Robot Motion Planning. Kluwer Academic Publishers.

[LaValle, 1998] LaValle, S. (1998). Rapidly-exploring random trees: A new tool for path
planning. Computer Science Dept, Iowa State University, Tech. Rep. TR, pages 98–11.

144

[LaValle and Hinrichsen, 2001] LaValle, S. and Hinrichsen, J. (2001). Visibility-based
pursuit-evasion: the case of curved environments. Robotics and Automation, IEEE Trans-
actions on, 17(2):196–202.

[Lee et al., 2003] Lee, J., Huang, R., Vaughn, A., Xiao, X., Hedrick, J., Zennaro, M., and
Sengupta, R. (2003). Strategies of Path-Planning for a UAV to Track a Ground Vehicle.
AINS Conference.

[Lemke and Howson, 1964] Lemke, C. and Howson, J. (1964). Equilibrium points of bimatrix
games. Journal of the Society for Industrial and Applied Mathematics, 12(2):413–423.

[Letchner et al., 2006] Letchner, J., Krumm, J., and Horvitz, E. (2006). Trip Router with
Individualized Preferences (TRIP): Incorporating Personalization into Route Planning. In
Proceedings of the International Conference on Artificial Intelligence, volume 21, page 1795.
Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.

[Li and Payandeh, 2003a] Li, Q. and Payandeh, S. (2003a). Multi-agent cooperative manip-
ulation with uncertainty: a neural net-based game theoretic approach. In Robotics and
Automation, 2003. Proceedings. ICRA’03. IEEE International Conference on, volume 3.

[Li and Payandeh, 2003b] Li, Q. and Payandeh, S. (2003b). Planning for dynamic multiagent
planar manipulation with uncertainty: a game theoretic approach. Systems, Man and
Cybernetics, Part A, IEEE Transactions on, 33(5):620–626.

[Lipschutz, 1968] Lipschutz, S. (1968). Schaum’s Outline of General Topology. McGraw-Hill.

[Liu et al., 2003] Liu, Y., Simaan, M., and Cruz Jr, J. (2003). Game theoretic approach to
cooperative teaming and tasking in the presence of an adversary. In American Control
Conference, 2003. Proceedings of the 2003, volume 6.

[L.M.Hocking, 2001] L.M.Hocking (2001). Optimal Control: An Introduction to the theory
with applications. Oxford University Press.

[Luo et al., 2001] Luo, R., Chen, T., and Su, K. (2001). Target tracking using a hierarchical
grey-fuzzy motion decision-making method. Systems, Man and Cybernetics, Part A, IEEE
Transactions on, 31(3):179–186.

[Marsland et al., 1991] Marsland, T., of Computing Science, D., and of Alberta, U. (1991).
Computer Chess and Search. Dept. of Computing Science, University of Alberta.

[Marzouqi and Jarvis, 2003a] Marzouqi, M. and Jarvis, R. (2003a). Covert path planning for
autonomous robot navigation in known environments. Proc. Australasian Conference on
Robotics and Automation, Brisbane.

[Marzouqi and Jarvis, 2003b] Marzouqi, M. and Jarvis, R. (2003b). Covert robotics: Covert
path planning in unknown environments. Proceedings of the Australasian Conference on
Robotics and Automation, Canberra, Australia.

[Maza and Ollero, 2004] Maza, I. and Ollero, A. (2004). Multiple UAV cooperative search-
ing operation using polygon area decomposition and efficient coverage algorithms. In 7th
International Symposium on Distributed Autonomous Robotic Systems. Springer.

145

[McLain et al., 2002] McLain, T., Beard, R., and Kelsey, J. (2002). Experimental Demon-
stration of Multiple Robot Cooperative Target Intercept.

[McLain et al., 2000] McLain, T., Chandler, P., and Pachter, M. (2000). A decomposition
strategy for optimal coordination of unmanned airvehicles. In American Control Confer-
ence, 2000. Proceedings of the 2000, volume 1, pages 369–373.

[M.Guelman, 1971] M.Guelman (1971). A qualitative study of proportional navigation.
Aerospace and Electronic Systems, IEEE Transactions on, AES-7(4):637–643.

[Mitchell et al., 2005] Mitchell, I., Bayen, A., and Tomlin, C. (2005). A time-dependent
Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. Automatic
Control, IEEE Transactions on, 50(7):947–957.

[Muppirala et al., 2005] Muppirala, T., Hutchinson, S., and Murrieta-Cid, R. (2005). Opti-
mal Motion Strategies Based on Critical Events to Maintain Visibility of a Moving Target.
Robotics and Automation, 2005. Proceedings of the 2005 IEEE International Conference
on, pages 3826–3831.

[Nash, 1950] Nash, J. (1950). Equilibrium points in n-person games. Proceedings of the
National Academy of Sciences of the United States of America, 36(1):48–49.

[Nash, 1988] Nash, J. (1988). Non-cooperative games. Cournot Oligopoly: Characterization
and Applications.

[Niculescu, 2001] Niculescu, M. (2001). Lateral track control law for aerosonde uav. Aerospace
Sciences Meeting and Exhibit, 39th, Reno, NV.

[Norvig, 1992] Norvig, P. (1992). Paradigms of Artificial Intelligence Programming: Case
Studies in Common Lisp. Morgan Kaufmann.

[Olfati-Saber, 2007] Olfati-Saber, R. (2007). Distributed Tracking for Mobile Sensor Networks
with Information-Driven Mobility. In Proc. of the 2006 American Control Conference, July.

[Pannetier, 2006] Pannetier, B. (2006). Fusion des données pour la surveillance du champ de
bataille. PhD thesis, Univ. Joseph Fourier - Grenoble 1.

[Park, 2004] Park, S. (2004). Avionics and control system development for mid-air rendezvous
of two unmanned aerial vehicles. PhD thesis, MIT.

[Park et al., 2004] Park, S., Deyst, J., and How, J. (2004). A new nonlinear guidance logic for
trajectory tracking. In AIAA Guidance, Navigation, and Control Conference and Exhibit,
Providence, Rhode Island.

[Parker, 2002] Parker, L. (2002). Distributed Algorithms for Multi-Robot Observation of
Multiple Moving Targets. Autonomous Robots, 12(3):231–255.

[Payeur et al., 1995] Payeur, P., Le-Huy, H., and Gosselin, C. (1995). Trajectory prediction
for moving objects using artificial neural networks. Industrial Electronics, IEEE Transac-
tions on, 42(2):147–158.

[Pearson,] Pearson, L. Developing the Flying Bomb.

146

[Pettersen and Lefeber, 2001] Pettersen, K. and Lefeber, E. (2001). Way-Point Tracking Con-
trol of Ships. IEEE Conference on Decision and Control, 1:940–945.

[Pimenta et al., 2005] Pimenta, L. C. A., Fonseca, R. R., Pereira, G. A. S., Mesquita, R. C.,
Silva, E. J., Caminhas, W., and Campos, M. F. M. (2005). On computing complex navi-
gation functions. In in Proc. IEEE Int. Conf. Robot. Automat., 2005, pages 3463–3468.

[Porter et al., 2008] Porter, R., Nudelman, E., and Shoham, Y. (2008). Simple search meth-
ods for finding a Nash equilibrium. Games and Economic Behavior, 63(2):642–662.

[Quigley et al., 2005a] Quigley, M., Barber, B., Griffiths, S., Goodrich, M., and UT, B. Y.
U. P. (2005a). Towards Real-World Searching with Fixed-Wing Mini-UAVs.

[Quigley et al., 2005b] Quigley, M., Goodrich, M., Griffiths, S., Eldredge, A., and Beard, R.
(2005b). Target Acquisition, Localization, and Surveillance Using a Fixed-Wing Mini-UAV
and Gimbaled Camera. Robotics and Automation, 2005. Proceedings of the 2005 IEEE
International Conference on, pages 2600–2605.

[Rafi et al., 2006] Rafi, F., Khan, S., Shafiq, K., and Shah, M. (2006). Autonomous target
following by unmanned aerial vehicles. Proceedings of SPIE, 6230:325–332.

[Rathinam and Sengupta, 2004] Rathinam, S. and Sengupta, R. (2004). A safe flight algo-
rithm for unmanned aerial vehicles. In Aerospace Conference, 2004. Proceedings. 2004
IEEE, volume 5.

[Ravela et al., 1994] Ravela, S., Weiss, R., Draper, B., Pinette, B., Hanson, A., and Rise-
man, E. (1994). Stealth navigation: Planning and behaviors. Proceedings of ARPA Image
Understanding Workshop, 10931100.

[Reimann, 2007] Reimann, J. (2007). Using Multiplayer Differential Game Theory to Derive
Efficient Pursuit-Evasion Strategies for Unmanned Aerial Vehicles. PhD thesis, Georgia
Institute of Technology.

[Richards and How, 2003] Richards, A. and How, J. (2003). Model predictive control of ve-
hicle maneuvers with guaranteed completion time and robust feasibility. American Control
Conference, 2003. Proceedings of the 2003, 5.

[Ridley et al., 2003] Ridley, M., Nettleton, E., Goktogan, A., Brooker, G., Sukkarieh, S., and
Durrant-Whyte, H. (2003). Decentralised Ground Target Tracking with Heterogeneous
Sensing Nodes on Multiple UAVs. Lecture Notes in Computer Science, pages 545–565.

[Ridley et al., 2002] Ridley, M., Nettleton, E., Sukkarieh, S., and Durrant-Whyte, H. (2002).
Tracking in decentralised air-ground sensing networks. In Information Fusion, 2002. Pro-
ceedings of the Fifth International Conference on, volume 1.

[Russell et al., 1995] Russell, S., Norvig, P., Canny, J., Malik, J., and Edwards, D. (1995).
Artificial intelligence: a modern approach. Prentice Hall Englewood Cliffs, NJ.

[Ryan and Hedrick, 2005] Ryan, A. and Hedrick, J. (2005). A mode-switching path planner
for UAV-assisted search and rescue. Decision and Control, 2005 and 2005 European Control
Conference. CDC-ECC’05. 44th IEEE Conference on, pages 1471–1476.

147

[Rysdyk, 2003] Rysdyk, R. (2003). Uav path following for constant line-of-sight. In Proc.
2nd AIAA Unmanned Unlimited Conf.

[Schumacher et al., 2002] Schumacher, C., Chandler, P., and Rasmussen, S. (2002). Task allo-
cation for wide area search munitions. In American Control Conference, 2002. Proceedings
of the 2002, volume 3.

[Seraji and Howard, 2002] Seraji, H. and Howard, A. (2002). Behavior-based robot navi-
gation on challenging terrain: A fuzzylogic approach. Robotics and Automation, IEEE
Transactions on, 18(3):308–321.

[Shapley, 1953] Shapley, L. (1953). A value for n-person games. The Shapley value-Essays in
Honor of Lloyd S. Shapley, pages 31–40.

[Shim et al., 2005] Shim, D., Chung, H., Kim, H., and Sastry, S. (2005). Autonomous Explo-
ration in Unknown Urban Environments for Unmanned Aerial Vehicles. AIAA Guidance,
Navigation, and Control Conference and Exhibit,(San Francisco, CA), Aug, pages 2005–
6478.

[Shim et al., 2003] Shim, D., Kim, H., and Sastry, S. (2003). Decentralized reflective model
predictive control of multiple flying robots in dynamic environment. Proceedings of the
IEEE Conference on Decision and Control.

[Singh et al., 2001] Singh, L., Fuller, J., Center, U., and Hartford, E. (2001). Trajectory
generation for a UAV in urban terrain, using nonlinearMPC. American Control Conference,
2001. Proceedings of the 2001, 3.

[Singh et al., 2000] Singh, S., Simmons, R., Smith, T., Stentz, A., Verma, V., Yahja, A., and
Schwehr, K. (2000). Recent progress in local and global traversability for planetaryrovers.
Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on,
2.

[Sinha et al., 2005] Sinha, A., Kirubarajan, T., and Bar-Shalom, Y. (2005). Autonomous
Ground Target Tracking by Multiple Cooperative UAVs. In Aerospace, 2005 IEEE Con-
ference, pages 1–9.

[Spires and Goldsmith,] Spires, S. and Goldsmith, S. Exhaustive Geographic Search with
Mobile Robots Along Space-Filling Curves.

[Stolle and Rysdyk, 2003] Stolle, S. and Rysdyk, R. (2003). Flight path following guidance
for unmanned air vehicles with pan-tilt camera for target observation. Digital Avionics
Systems Conference, 2003. DASC’03. The 22nd, 2.

[Sujit and Ghose, 2004] Sujit, P. and Ghose, D. (2004). Search Using N-person Game Models.

[Sujit and Ghose, 2005] Sujit, P. and Ghose, D. (2005). Search by Two UAVs with Flight
Time Constraints Using Game Theoretical Models.

[Sun et al., 2008] Sun, M., Zhu, R., and Yang, X. (2008). UAV Path Generation, Path Fol-
lowing and Gimbal Control. Networking, Sensing and Control, 2008. ICNSC 2008. IEEE
International Conference on, pages 870–873.

148

[Sureka and Wurman, 2005] Sureka, A. and Wurman, P. (2005). Using tabu best-response
search to find pure strategy nash equilibria in normal form games. In Proceedings of the
fourth international joint conference on Autonomous agents and multiagent systems, pages
1023–1029. ACM New York, NY, USA.

[Sutton and Bitmead, 2000] Sutton, G. and Bitmead, R. (2000). Computational implementa-
tion of NMPC to nonlinear submarine. Nonlinear Model Predictive Control, pages 461–471.

[Tan et al.,] Tan, C., Sutton, R., and Chudley, J. Quasi Random Manoeuvre Based Motion
Planning Algorithm for Autonomous Underwater Vehicles. In Proceedings in the 16th IFAC
World Conference.

[Tang and Ozguner, 2005] Tang, Z. and Ozguner, U. (2005). Motion planning for multitarget
surveillance with mobile sensor agents. Robotics, IEEE Transactions on [see also Robotics
and Automation, IEEE Transactions on], 21(5):898–908.

[Teng et al., 1993] Teng, Y., DeMenthon, D., and Davis, L. (1993). Stealth terrain navigation.
Systems, Man and Cybernetics, IEEE Transactions on, 23(1):96–110.

[Tews et al., 2004] Tews, A., Mataric, M., and Sukhatme, G. (2004). Avoiding detection in
a dynamic environment. Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings.
2004 IEEE/RSJ International Conference on, 4.

[Theodorakopoulos and Lacroix, 2008] Theodorakopoulos, P. and Lacroix, S. (2008). A strat-
egy for tracking a ground target with a UAV. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, Nice (France).

[Theodorakopoulos and Lacroix, 2009] Theodorakopoulos, P. and Lacroix, S. (2009). UAV
target tracking using an adversarial iterative prediction. In IEEE/RSJ International Con-
ference on Robotics and Automation, Kobe (Japan).

[Thomasson, 1998] Thomasson, P. (1998). Guidance of a Roll-Only Camera for Ground Ob-
servation in Wind. Journal of Guidance, Control and Dynamics, 21:39–44.

[Tomlin et al., 2000] Tomlin, C., Lygeros, J., and Shankar Sastry, S. (2000). A game theoretic
approach to controller design for hybrid systems. Proceedings of the IEEE, 88(7):949–970.

[Tversky, 2004] Tversky, A. (2004). Preference, Belief, and Similarity: Selected Writings.
Bradford Books.

[Ulrich and Borenstein, 1998] Ulrich, I. and Borenstein, J. (1998). VFH+: reliable obstacle
avoidance for fast mobile robots. Robotics and Automation, 1998. Proceedings. 1998 IEEE
International Conference on, 2.

[U.S.Shukla and P.R.Mahapatra, 1990] U.S.Shukla and P.R.Mahapatra (1990). The propor-
tional navigation dilemma-pure or true? Aerospace and Electronic Systems, IEEE Trans-
actions on, 26(2):382–392.

[von Neumann and Morgenstern, 1953] von Neumann, J. and Morgenstern, O. (1953). The-
ory of Games and Economic Behavior. New York.

149

[Wong et al., 2005] Wong, E., Bourgault, F., and Furukawa, T. (2005). Multi-vehicle
Bayesian Search for Multiple Lost Targets. In Robotics and Automation, 2005. Proceedings
of the 2005 IEEE International Conference on, pages 3169–3174.

[Xi and Baras, 2007] Xi, W. and Baras, J. (2007). MPC based motion control of car-like
vehicle swarms. Control & Automation, 2007. MED’07. Mediterranean Conference on,
pages 1–6.

[Yang and Yang, 1997] Yang, C.-D. and Yang, C.-C. (1997). Optimal pure proportional nav-
igation for maneuvering targets. Aerospace and Electronic Systems, IEEE Transactions on,
33(3):949–957.

[Zengin and Dogan, 2007] Zengin, U. and Dogan, A. (2007). Real-Time Target Tracking for
Autonomous UAVs in Adversarial Environments: A Gradient Search Algorithm. IEEE
Transactions on Robotics, 23(2):294.

150

	Glossary
	Introduction
	Motivations
	Challenges and objectives
	Problem characteristics
	Thesis objective

	Contributions and Thesis Outline
	Outline
	Implementation Grid

	State of the art
	Guidance, Navigation and Control
	Waypoints VS Continuous Navigation
	Missile Guidance
	Mixed strategy trajectory following
	Waypoint Guidance
	Potential Fields
	On Non-holonomic Aircrafts and Time Optimal Paths
	UAV Trajectory Optimization for Target Tracking
	Synthesis of Guidance, Navigation and Control Bibliography

	Planning based methods for UAVs
	Path Finding for UAVs
	Search algorithms
	Variants of Potential Fields
	Path Finding and Obstacle Avoidance
	Synthesis of planning methods

	Decision: game theory
	Competitive Approaches
	Cooperative Approaches
	Overall Synthesis of State of the Art

	Problem Statement and Formulation
	UAV
	Trajectory
	Camera Types

	Target
	Environment
	No Fly Zones
	Visibility Obstructing Obstacles
	Road Network

	Mission criteria
	Metrics

	Synthesis of the problem

	Tracking a target on a ground plane
	Problem Statement
	Overview of our approach

	Lateral Guidance
	Tracking Strategy
	Line of sight distance
	The lateral target image error xf
	Tracking strategy

	Results
	Simulations
	Stability assessment for a noisy sensor
	Flight Tests

	Conclusions

	An adversarial iterative predictive approach to target tracking
	Problem Statement
	Overview of the approach
	Evaluation functions
	UAV Evaluation Function
	Overall path cost

	Prediction and Iterative Optimization
	UAV prediction
	Target Prediction
	Off-road target evaluation function

	Results
	Evaluation of optimization methods

	Extension to the multiple UAV target tracking case
	Two UAV visibility
	Two UAV strategies
	Results of the two UAV approach

	Conclusions

	A discrete game theoretic approach to target tracking
	Introduction
	Overview of the Approach
	Game space discretization
	Analysis
	Evaluating Game Configurations

	Mono-pursuer decision making
	Utility Maximization
	Adversarial Searching
	Nash equilibria and dominance strategies

	Multi-pursuer decision making
	Hierarchical VS Consensus based approaches
	Utility Maximization
	Cooperative Nash equilibria
	Pareto optimality method

	Realization
	Extension of the evaluation functions: visibility maps
	Indicator of Stealthiness
	Measuring Stealthiness from the air

	Results
	Evaluating the different approaches
	Mono-pursuer decision making
	Multi-pursuer decision making

	Conclusions

	Conclusions
	Summary
	Discussion and further work
	Iterating on the thesis contributions
	Beyond the horizon of the thesis

	Implementation
	The Paparazzi Flying System
	Presentation
	Hardware
	Software

	Development and Simulation Environments
	Algorithm encapsulation
	Scilab simulation platform

	Aircrafts-Robots
	The Nirvana fleet

	Resumé
	Motivations
	Les défis et les objectifs
	La problématique
	Les objectives de la thèse

	La contribution et le plan du thèse
	L'état de l'art
	Synthèse du problème
	Suivre une cible terrestre
	Vue d’ensemble de notre approche
	Strategie

	Une appoche itérative predictive pour suivre la cible
	Fonctions d’évaluation
	Coût de configuration
	Le coût de configuration dans l’ensemble

	Une approache pour suivre la cible basée sur la théorie de jeux
	La prise de la décision pour un seul avion
	Decision pour drônes multiples

