

ÉCOLE CENTRALE DES ARTS
ET MANUFACTURES

« ÉCOLE CENTRALE PARIS »

THÈSE

Présentée par

Roy AWEDIKIAN

Pour l’obtention du

GRADE DE DOCTEUR

 Spécialité : Génie Industriel

 Laboratoire d’accueil : Laboratoire Génie Industriel

SUJET
Qualité de la conception de tests logiciels: plate-forme de conception et processus de

test

Quality of the design of test cases for automotive software: design platform and
testing process

 Soutenue le : 6 février 2009

 Devant un jury composé de :

J. -P. CALVEZ – Professeur, Polytech’ Nantes Président
J. -M. FAURE – Professeur, Supmeca et ENS de Cachan Rapporteur
A. KOBI – Professeur, Université d’Angers Rapporteur
L. BOUCLIER – Johnson Controls Examinatrice
P. LEBRETON – Johnson Controls Examinateur
H.B. NEMBHARD – Associate Professor, Penn State University Examinatrice
B. YANNOU – Professeur, Ecole Centrale Paris Directeur de thèse
M. MEKHILEF – MCF, HdR, Université d’Orléans Co-directeur de thèse

2009ECAP0007

Laboratoire Génie Industriel

Ecole Centrale Paris

Grande Voie des Vignes

92925 Châtenay-Malabry Cedex

Dedicaces R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
3

DEDICACES

A la mémoire de mon grand-père
« Jean EL-HITTI »

Remerciements R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
5

REMERCIEMENTS

Je remercie Jean-Marc Faure, Professeur à Supmeca et chercheur au LURPA (Ecole Normal
Supérieur de Cachan) et Abdessamad Kobi, Professeur à l’Université d’Angers pour avoir
accepté d’être rapporteurs de mes travaux. Merci également à Jean-Paul Calvez, Professeur à
l’Ecole polytechnique de l’Université de Nantes d’avoir accepté de participer au jury de cette
thèse.

Merci à Bernard Yannou, Professeur à l’Ecole Centrale Paris, qui a accepté de diriger cette
thèse. J’ai apprécié le professionnalisme et l’efficacité de son encadrement pendant ces trois
années. Bernard a su m’apporter son soutien aux moments décisifs et me pousser quand
c’était nécessaire. J’ai beaucoup appris et progressé pendant ces trois années et c’est en
grande partie grâce à toi.

Merci également à mon co-encadrant Mounib Mekhilef pour les précieux conseils qui m’ont
éclairé tout au long de ces années aussi bien sur le plan méthodologique que sur le plan
scientifique.

Je tiens aussi à remercier Harriet Black Nembhard, Associate Professor à Penn State
University pour ses conseils scientifiques et pour avoir accepté de participer au jury en tant
qu’examinatrice.

J’exprime également ma reconnaissance à Claude Mignen, Responsable Europe du service
Quality Engineering Process de la société Johnson Controls et à Tony Jaux, Responsable des
centres européens de Recherche et Développement de Johnson Controls qui m’ont accueilli
parmi leurs équipes et qui ont œuvré pour que cette thèse se passe dans les meilleures
conditions. Un grand merci à eux.

Je voudrais également remercier Line Bouclier (tutrice industrielle de cette thèse à partir de
janvier 2007), Responsable Quality Process de la société Johnson Controls, pour son soutien
technique et administrative auprès de la hiérarchie de la société Johnson Controls. Grâce à sa
confiance et à l’autonomie qu’elle m’a accordé tout au long de cette thèse, j’ai pu planifier et
mener mes activités en toute souplesse.

Toute ma gratitude à Philippe Lebreton (co-tuteur industriel de cette thèse jusqu’en avril
2007), Coordinateur logiciel de la société Johnson Controls (jusqu’à avril 2008), pour son
support technique et professionnel. Philippe a beaucoup contribué à la mise en œuvre et à la
valorisation de nos résultats scientifiques au sein de la société Johnson Controls.

Un remerciement tout particulier à Ludovic Augusto, initiateur et porteur de ce projet de
recherche industrielle. Chef de projet de la société Johnson Controls et premier tuteur
industriel de cette thèse (jusqu’en décembre 2006), j’ai pu bénéficier de ses conseils
professionnels et scientifiques.

Merci aussi à Jean-Claude Bocquet, Directeur du Laboratoire Génie Industriel de l’Ecole
Centrale Paris, pour m’avoir accueilli dans son laboratoire. Je remercie également l’ensemble
du personnel du Laboratoire Génie Industriel pour avoir rendu agréables les moments passés
au laboratoire. Tout particulièrement, merci à Sylvie, Anne, Corinne et Carole.

Je remercie également l’ensemble de mes collègues à Johnson Controls pour leur disponibilité
chaque fois que je les ai sollicités et avec qui j’ai partagé de très agréables moments.

Enfin, une grand merci à ma famille et mes amis qui m’ont toujours soutenu et motivé depuis
le début de cette thèse.

Preface R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
7

PREFACE
« Quand est ce qu’il faut arrêter de tester un produit logiciel ? » « Comment être sûr qu’un
produit logiciel ne contient plus de défauts (bugs) et est prêt à être livré au client » et bien
d’autres questions sur la qualité logicielle m’ont interpellé dès les premiers stages d’Ecole
d’Ingénieur. En effet, diplômé de l’Ecole polytechnique de l’Université de Nantes en 2004,
j’ai effectué 3 stages respectifs en 1ère, 2ème et 3ème années. Durant ces stages, j’ai participé au
développement de produits logiciels destinés à des applications PC mais aussi à des
applications embarquées. A chaque fois qu’on développait un nouveau module logiciel, il
nous fallait le tester. Le mot « tester » en industrie est souvent associé à tout type de
techniques de vérification et de validation logicielle. Ayant appris en Ecole d’Ingénieur une
panoplie de langages de développement informatique (C, C++, …) et notamment comment
concevoir et développer un produit logiciel, les tâches de développement informatique me
paraissaient simples et maîtrisables. Mais, une fois le logiciel développé il faut le tester ; je
me trouvais alors fort dépourvu méthodologiquement ! En effet, les formations actuelles
d’Ingénieur logiciel se focalisent presque exclusivement sur le développement logiciel au
détriment du test logiciel. Depuis les débuts du développement logiciel (Années 70), des
chercheurs ont montré qu’il était illusoire de penser à effectuer un test logiciel exhaustif. Un
Ingénieur doit toujours se contenter de tester un sous-ensemble de cas. Bien que certaines
entreprises (les grandes) ont des processus bien définis pour tester un produit logiciel, la tâche
de comment choisir les cas de test reste en grande partie basée sur l’expérience des
Ingénieurs. Pour cela, et afin de tester les modules logiciels pendant mes stages, je choisissais
certains cas de test en fonction de leur utilité et de leur efficacité mais aussi du temps qu’il me
restait avant de devoir livrer le module.

Après avoir obtenu le diplôme d’Ingénieur en 2004, je me suis intéressé plus généralement à
la question : « Comment sont définis les processus de conception et conçus les méthodes et
outils de conception de produits ». Afin de répondre à cette question, j’ai effectué un Master
Recherche en ingénierie de conception au sein du laboratoire Génie Industriel de l’Ecole
Centrale Paris. Le moment du stage arrivé, je me suis mis à la recherche d’un stage qui
porterait sur l’amélioration des processus, méthodes et outils de conception de test logiciel
pour établir une jonction entre mes domaines de prédilection. Bien heureusement, un stage sur
le sujet était proposé par l’équipementier électronique automobile Johnson Controls.
L’automobile, un secteur où l’électronique et le logiciel représentent plus de 30% du prix d’un
véhicule. Pendant ce stage de 6 mois, nous avons mis en place une nouvelle approche de
conception de cas de test logiciel. Le stage a livré des résultats prometteurs tant au niveau de
la qualité du test logiciel que du temps passé pour tester un produit logiciel. De plus, nous
avons pu identifier plusieurs pistes de recherche prometteuses.

En se basant sur ces pistes de recherche, nous avons formulé un sujet de thèse de doctorat
(avec Bernard Yannou1 et Ludovic Augusto2) que nous avons proposé à la société Johnson
Controls. En effet, il a fallu mettre en avance l’apport scientifique pour le laboratoire Génie
Industriel et surtout l’apport industriel pour la société Johnson Controls qui a financé ce projet
en partenariat avec l’ANR sur un statut CIFRE. Suite à une réunion avec des responsables de
la société et du laboratoire, l’accord pour lancer ce projet de thèse de doctorat a été donné en
janvier 2006. Il est important de noter que la société Johnson Controls (France) n’avait jamais
participé à un projet de thèse de doctorat auparavant.

1 Bernard Yannou, Professeur de l’Ecole Centrale Paris : encadrant de mon stage chez Johnson Controls
2 Ludovic Augusto, Chef de projet chez Johnson Controls : tuteur industriel de mon stage chez Johnson Controls

Résumé R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
9

RESUME

L’électronique dans les voitures devient de plus en plus complexe et représente plus de 30%
du coût global d’une voiture. Par exemple, dans une BMW série 5 modèle 2008, on peut
trouver jusqu’à 80 calculateurs électroniques communiquant ensemble et représentant aux
alentours de 10 millions de lignes de code logiciel. Face à cette montée en complexité, les
constructeurs et équipementiers électroniques de l’automobile s’intéressent de plus en plus à
des méthodes efficaces de développement, vérification et validation de modules électroniques.
Plus précisément, ils focalisent leurs efforts sur la partie logicielle de ces modules puisqu’elle
est à l’origine de plus de 80% des problèmes détectés sur ces produits. Dans ce contexte, nous
avons mené un travail de recherche dont l’objectif est de proposer une approche globale
d’amélioration de la qualité des logiciels embarqués dans les véhicules. Notre recherche part
d’un audit des processus et outils actuellement utilisés dans l’industrie électronique
automobile. Cet audit a permis d’identifier des leviers potentiels d’amélioration de la qualité
logicielle. En se basant sur les résultats de l’audit et en tenant compte de la littérature dans le
domaine de la qualité logicielle, nous avons proposé une approche globale de conception de
cas de test pour les produits logiciels. En effet, nous avons développé une plateforme de
génération automatique de tests pour un produit logiciel. Cette plateforme consiste à
modéliser les spécifications du produit logiciel pour le simuler lors de tests, à se focaliser sur
les tests critiques (ayant une forte probabilité de détecter des défauts) et à piloter la génération
automatique des tests par des critères de qualité ; telles que la couverture du code et de la
spécification mais aussi le coût des tests. La génération de tests critiques est rendue possible
par la définition de profils d’utilisation réelle par produit logiciel, ainsi que par la réutilisation
des défauts et des tests capitalisés sur des anciens projets. En plus des aspects algorithmiques
du test logiciel, notre approche prend en compte des aspects organisationnels tels que la
gestion des connaissances et des compétences et la gestion de projet logiciel. Notre approche
a été mise en œuvre sur deux cas d’étude réels d’un équipementier électronique automobile,
disposant de données de tests historiques. Les résultats de nos expérimentations révèlent des
gains de qualité significatifs : plus de défauts sont trouvés plus tôt et en moins de temps.

Mots clés: Vérification et validation logicielle, Automobile, Processus de test logiciel,
Simulation fonctionnelle, Qualité logicielle, Gestion des connaissances, Prise de décision,
Processus de conception.

Abstract R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
11

ABSTRACT

Nowadays, car electronics become more and more complex and represents more than 30% of
the total cost of a car. For instance, in a 2008 BMW 5 series model, one can find up to 80
electronic modules communicating together and representing 10 million lines of software
code. Facing this growing complexity, carmakers and automotive electronic suppliers are
looking for efficient methods to develop, verify and validate electronic modules. In fact, they
focus on the software part of these modules since it accounts for more than 80% of the total
number of problems detected on these modules. In this context, we achieved our research
project with the aim of proposing a global approach able to improve the quality of automotive
embedded software. We started with an audit of the software practices currently used in
automotive industry and we pinpointed potential levers to improve the global software
quality. Based on the results of the audit and the literature review related to software quality,
we developed a global approach to improve the design of test cases for software products. In
fact, we developed a test generation platform to automatically generate test cases for a
software product. It is mainly based on modeling the software functional requirements in
order to be simulated when testing the software, focusing on critical tests to be done (because
of their higher probability to detect a bug) and monitoring the automatic generation of tests by
quality indicators such as the structural and functional coverage but also the tests cost. The
generation of critical tests is based on the definition of real use profiles by software product
and on the reuse of bugs and test cases capitalized on previous projects. Besides the
computational aspects of software testing, our approach takes into account organizational
matters such as knowledge management, competency management and project management.
Our approach have been implemented in a computer platform and experimented on two
typical case studies of an automotive electronic supplier, with historical test data. The results
of our experiments reveal significant improvement in software quality: more bugs are
detected earlier and in less time.

Keywords: Software verification and validation, Automotive, Software testing process,
Functional simulation, Software quality, Knowledge management, Decision making, Design
process.

Table of contents R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
13

TABLE OF CONTENTS

Dedicaces ... 3

Remerciements .. 5

Preface ... 7

Resume .. 9

Abstract .. 11

Table of contents ... 13

List of abbreviations .. 19

List of tables .. 21

List of figures .. 23

List of Definitions ... 29

GENERAL INTRODUCTION .. 31

I. Context ... 33

II. Research process ... 33
III. Contributions’ overview ... 34
IV. Reading guidelines .. 35

PART I - CONTEXT AND DOMAIN ANALYSIS 37

CHAPTER 1. The need to improve the quality of software products in
automotive industry ... 39

I. Introduction .. 41

II. The phenomena of globalization and outsourcing in automotive industry 41

III. Strong growth forecast for electronic parts in automotive .. 43

IV. Challenges for the automotive electronic suppliers .. 44
A. Lower the production cost ... 45
B. Lower the development time and cost ... 45

V. The role of “software” in automotive electronics ... 45
A. Growth of software size in automotive electronic parts .. 47
B. Software Development Life Cycle .. 47
C. Two complementary approaches to design “bug-free” software ... 51
D. Impacts of detecting bugs later in the software development life cycle .. 55

VI. Industrial needs and expectations ... 56
VII. Conclusion ... 58

Table of contents R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

14

CHAPTER 2. Industrial audit ... 59

I. Introduction .. 61

II. Frame of the audit ... 61
III. The software projects in automotive industry ... 62

A. An incremental software development process ... 62
B. The elementary V-model of the software development process ... 63
C. Functional organization of a software project ... 65

IV. Management of the carmaker requirements related to software 66
A. The carmakers specification of software functional requirements: diversity, typology, evolution ... 67
B. Commitment contract between carmakers and electronic suppliers .. 70
C. Sensitive criteria for carmakers ... 70
D. Snapshot of the Requirements Specification process at Johnson Controls.. 72
E. The Software Requirement Specification model currently used in Johnson Controls 76
F. Quality criteria of a requirement ... 78

V. Software verification and validation activities in automotive industry 79
A. Overview on software verification and validation techniques at Johnson Controls 79
B. Software V&V techniques in Component Development process .. 81
C. Software verification and validation techniques in Integration process .. 88
D. Software verification and validation techniques in Validation process ... 89

VI. The test case design process presently used in automotive industry 92
A. Design test cases for the unit test .. 93
B. Design test cases for the validation test ... 95

VII. Capitalizing bugs in Johnson Controls .. 97
A. Snapshot on the Johnson Controls problems’ tracking tool .. 97
B. The bug’s model currently used in Johnson Controls ... 98
C. Existing techniques to reuse capitalized bugs ... 100

VIII. Managing and reusing test cases in Johnson Controls .. 103

IX. Conclusion .. 104

PART II –PROBLEM STATEMENT AND LITERATURE REVIEW ... 107

CHAPTER 3. Research topic .. 109

I. Introduction .. 111

II. Industrial and academic needs and objectives .. 111
A. Initial industrial needs ... 111
B. Academic objectives ... 112

III. Research scope .. 112
A. Research topic formulation ... 112
B. Research focus .. 112

IV. Hot research issues in software testing ... 113
V. Conclusion: our diagnoses, the scope of our research and the software testing research
issues 114

CHAPTER 4. State-of-the-art ... 117

I. Introduction .. 119

II. Verification and Validation of software products ... 119
A. Principles ... 119
B. Software verification and validation techniques ... 120

III. Software testing techniques .. 123
A. What is “software testing”? ... 123
B. Classification of software testing techniques .. 124

IV. Software testing research issues and solutions ... 127
A. Research issue 1: How to execute test cases on a software product? .. 128
B. Research issue 2: When to decide to stop testing a software product? .. 128

Table of contents R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

15

C. Research issue 3: How to choose the operations to be checked on a software product? 130
D. Research issue 4: How to assess the expected behavior of a software product? 136

V. Conclusion .. 140

PART III – A NEW APPROACH FOR DESIGNING EFFICIENT T EST
CASES FOR A SOFTWARE PRODUCT .. 143

CHAPTER 5. Modeling and simulation of software functional requirements
 145

I. Introduction .. 147

II. Advantages and drawbacks of formal languages in modeling software functional
requirements .. 147

III. Our formal language to model software functional requirements for functional
simulation .. 149

A. Typology of software functional requirements ... 150
B. Two types of modeling elements to model the features of a software functionality 151

IV. The functional simulation process of our software requirements model 155

V. A case study on modeling software functional requirements using our new formal and
simulation language .. 160

VI. Conclusion .. 164

CHAPTER 6. Verification and validation of a software functional requirements
model 165

I. Introduction .. 167

II. A survey on verifying and validating a simulation model .. 167
A. A simplified version of the modeling process ... 168
B. How to decide whether a simulation model is valid or not? .. 170
C. Model Verification and Validation techniques .. 170

III. Using the experts’ knowledge to validate a Conceptual requirements Model
(Conceptual validity) .. 172

IV. A set of integrity rules to verify a Computerized requirements Model 172

V. Three possible scenarios to validate a Computerized requirements Model
(Operational Validity) ... 174

A. First scenario: Animate our requirements model .. 175
B. Second scenario: Simulate the test cases delivered by the carmaker on our requirements model ... 175
C. Third scenario: Compare our requirements model to another valid model of the requirements 176

VI. Conclusion .. 177

CHAPTER 7. Automatic generation of test cases .. 179

I. Introduction .. 180

II. The new concept of “operation matrix” .. 180
III. How to generate a “Test Case”? ... 183

A. Activity 1: A Monte Carlo simulation on the “operation matrix” ... 183
B. Activity 2: A simulation of the software requirements model .. 184

IV. Test generation objectives and constraints ... 186
A. Structural (code) coverage objectives ... 186
B. Functional (requirement specification) coverage objectives ... 186
C. Test execution time and cost constraints ... 188

V. Our stopping aggregated criterion .. 189
A. The objective function combining objectives and constraints ... 189
B. A simple example to illustrate our stopping aggregated criterion ... 191

VI. Our heuristic algorithm to optimize the objective function 192

Table of contents R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

16

A. Process flow .. 192
B. Parameters ... 198

VII. Conclusion ... 198

CHAPTER 8. Refining the operation space description with the driver
behavior’s profile, past bugs and test cases .. 201

I. Introduction .. 203

II. The impossibility of testing exhaustively a software product................................... 203

III. Reduce the operation space ... 204
A. Focusing on recurrent operations done by the end-user of the product ... 204
B. Focusing on specifics operations with high probability to detect bugs ... 204
C. Focusing on specifics operations recurrently done by the test engineers on previous projects 205

IV. Four types of constraints for the definition of a driver behavior’s profile 205
A. Logical constraint .. 205
B. Conditional constraint ... 206
C. Succession constraint .. 206
D. Timing constraint .. 207

V. Reuse of bugs detected on previous projects .. 207
A. A specific format to capitalize the successive operations leading to a bug 208
B. A new typology of software problems .. 211

VI. Reuse of existing test cases from previous projects .. 214

VII. Conclusion ... 216

PART IV – IMPLEMENTATION, VALIDATION AND IMPACTS OF
THE PROPOSED APPROACH .. 217

CHAPTER 9. Prototype implementation .. 219

I. Introduction .. 221

II. A “functional” view of our approach .. 221
III. A “process-role-tool” view of our approach ... 223

A. Processes ... 225
B. Roles.. 225
C. Tools.. 226

IV. Main functionalities of the Test Case Generation tool ... 230
A. Computerize and verify a requirements model.. 230
B. Generate Nominal “operation matrices” automatically ... 232
C. Import “operation matrices” .. 234
D. Set constraints on the input signals of a requirements model and generate automatically the
corresponding “operation matrix” ... 234
E. Simulate a requirements model ... 235
F. Generate test cases automatically .. 236

V. Conclusion .. 241

CHAPTER 10. Modeling and simulating two industrial case studies 243
I. Introduction .. 245

II. Characterization of the two case studies ... 245
III. Characteristics of the software functional requirements of the two functionalities .. 250

IV. Modeling the software functional requirements of the two functionalities 250

V. Verifying the requirements models of the two functionalities 251

VI. Validating the requirements models of the two functionalities 252

VII. Designing “operation matrices” for the two case studies 254

VIII. How to tune the generation of test cases? .. 256

Table of contents R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

17

IX. Generation and execution of the test cases on the software modules of the two
functionalities .. 258

X. Analysis of the results of the two case studies .. 260
A. Detect bugs earlier in the software life cycle .. 260
B. Decrease the time spent in testing a functionality ... 265
C. Quantitative results’ overview: earlier detection of bugs and time saving 268

XI. Conclusion .. 268

GENERAL CONCLUSION ... 271

I. Contributions’ review ... 273
II. Impact of our testing methodology in the company organization 276

III. Research perspectives ... 278
IV. General discussions ... 281

BIBLIOGRAPHY ... 283

APPENDICES ... 293
Appendix A: Verification and Validation static tools ... 295
Appendix B: Test description languages .. 297
Appendix C: Test execution platforms ... 303
Appendix D: Commercial test case design tools (Survey done in 2006)............................ 309

Appendix E: A second-level typology of software problems ... 311

List of abbreviations R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
19

LIST OF ABBREVIATIONS

� CAN: Car Area Network

� CD: Component Development

� Clk: Clock

� CLR: CLarification Request list

� CMMI: Capability Maturity Model® Integration

� CMP: Software component or module

� CON: Constraint

� CPU: Central Processing Unit

� DEV: DEVelopment

� DoE: Design of Experiments

� DT: Decision Table

� DV: Design Verification

� ED: Engineering Development

� Eng: Engineer

� E-Car: Emulated Car

� FCT: Functional

� FSM: Finite State Machine

� GD: Global Design

� GUI: Graphical User Interfaces

� HP: Hewlett-Packard

� HW: Hardware

� IEEE: Institute of Electrical and Electronics Engineers

� INT: Integration

� IP: Intellectual Property

� ISO: International Standard Organization

� JCI: Johnson Controls Inc.

� KLOC: Kilo Line Of code

� LAN: Local Area Network

� LCC: Low Cost Countries

� LOC: Line Of Code

� M&A: Merge and Acquisition

List of abbreviations R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

20

� MMI: Man Machine Interface

� NIST: National Institute of Standards and Technology

� NP: Non-deterministic Polynomial time

� NRE: Non-Recurring Engineering

� ODC: Orthogonal Defect Classification

� OP: Operation

� PM: Project Management

� PPM: Pieces Per Million

� PV: Product Validation

� RAD: Rapid Application Development

� REQ: REQuirement

� RETEX: RETurn of Experience

� RS: Requirement Specification

� R-Car: Real Car

� SC: Software Coordinator

� SD: Software Developer

� SDLC: Software Development Life Cycle

� SEPG: Software Engineering Process Group

� SOP: Start Of Production

� SPICE: Software Process Improvement and Capability dEtermination

� SRS: Software Requirement Specification

� SVE: Software Validation Engineer

� SVP: Software Validation Plan

� SW: Software

� TC: Test Case

� TS: Test Step

� UML: Unified Modeling Language

� VAL: VALidation

� V&V: Verification and Validation

List of tables R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
21

LIST OF TABLES

Table 1.1 – Time and effort spent during the software development life cycle (Brooks 2007,
Le Corre 2006) ... 54

Table 2.1 – Description of the stages of a product project (Johnson Controls source) 62

Table 2.2 – Description of the steps of the high level software life cycle (Mignen 2006a) 63

Table 2.3 – Description of the software processes within Johnson Controls (Mignen 2006a) 64

Table 2.4 – Explicit contract, in terms of bugs’ occurrence, between a carmaker and an
electronic supplier .. 70

Table 2.5 – Process flow of the Requirements Specification process 74

Table 2.6 – Process flow of the Component Development process ... 82

Table 2.7 – Process flow of the verification of a software component 83

Table 2.8 – Process flow of the unit test of a software component .. 87
Table 2.9 – Process flow of the validation test of a software product 90
Table 2.10 – Description of the type of tests used in validation test at Johnson Controls
(Apostolov 2007) .. 91

Table 2.11 – Characteristics of the front wiper functionality implemented in five different
projects since 1997 and till 2007 .. 102
Table 2.12 – Example of a standard test case as developed at Johnson Controls 104

Table 2.13 – List of diagnoses on the software V&V practices in Johnson Controls 105

Table 3.1 – Our diagnoses, the scope of our research and the software testing research issues
 .. 115

Table 4.1 – Advantages and drawbacks of informal, semi-formal and formal specification
languages (Duphy 2000) .. 138

Table 4.2 – Evaluation of the informal, semi-formal and formal specification languages
(Duphy 2000) ... 138

Table 4.3 – Classification of the specification languages (Fraser 1994) 139

Table 5.1 – Advantages and drawbacks of formal languages in modeling/specifying software
functional requirements .. 149

Table 6.1 – Integrity rules for verifying a Computerized requirements Model 174

Table 7.1 – Our heuristic algorithm to optimize the generation of test cases 197

Table 8.1 – Theoretical bugs’ injection and detection phases .. 212
Table 8.2 – Instructions to generate test cases able to detect one specific type of software
implementation problems ... 213

Table 10.1 – Criteria for selecting the two functionalities ... 246
Table 10.2 – Characteristics of the two software modules developed respectively for the two
functionalities under experiment .. 246
Table 10.3 – Severity and Occurrence levels as it was defined by Johnson Controls software
experts (Johnson Controls source) ... 248
Table 10.4 – Characteristics of the software functional requirements of the two functionalities
 .. 250

Table 10.5 – Time spent to design the requirements model of the two functionalities 250

List of tables R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

22

Table 10.6 – Characteristics of the requirements models of the two functionalities 251

Table 10.7 – Constraints designed for the two functionalities ... 255
Table 10.8 – “Operation matrices” designed for the two functionalities 256

Table 10.9 – Guidelines for defining the objectives and constraints of a test case generation
 .. 257

Table 10.10 – Objectives and constraints when generating test cases for the two
functionalities ... 257

Table 10.11 – Optimization parameters when generating test cases for the two functionalities
 .. 258

Table 10.12 – A summary of the results of the two case studies ... 268
Table A.1 – An excerpt of coding rules and recommendations used in Johnson Controls
(Johnson Controls source) .. 295

Table B.1 – An excerpt of the validation test script coding rules and recommendations
(Johnson Controls source) .. 298

Table C.1 – An excerpt from a hardware tool list required for the execution of validation test
cases ... 304

Table C.2 – An excerpt from a software tool list required for the execution of validation test
cases ... 305

Table C.3 – An excerpt from a reused components list required for the execution of validation
test cases ... 305

Table D.1 – Commercial test case design tools (Survey done in 2006) 310

Table E.1 – A second-level typology of software problems .. 313

List of figures R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
23

LIST OF FIGURES

Figure Introduction.1 – Stages of our research process ... 34
Figure Introduction.2 – Document structure .. 36
Figure 1.1 – From part to module to system (Sturgeon 2000) ... 43
Figure 1.2 – A modern vehicle’s network architecture (Leen 2002) 44

Figure 1.3 – Software product versus software component ... 45
Figure 1.4 – Development based on the skills and experience of the individual staff members
performing the work ... 48

Figure 1.5 – Waterfall development model .. 48
Figure 1.6 – V development model (V-model) .. 49
Figure 1.7 – Iterative and incremental development model ... 49
Figure 1.8 – Spiral development model ... 50
Figure 1.9 – General software development life cycle model .. 51
Figure 1.10 – Relation between a mistake, an error, a fault and a failure 52
Figure 1.11 – Rate and cost of bugs introduced and detected across the software development
life cycle (Liggesmeyer 1998) .. 53
Figure 2.1 – Product development system at Johnson Controls - Some parts of this figure are
voluntarily fuzzyfied for confidentiality reasons (Johnson Controls source) 62

Figure 2.2 – Process map implementing the software V-model at Johnson Controls (Mignen
2006a) ... 64

Figure 2.3 – Typical functional organization chart of one software project at Johnson Controls
- Not detailed for confidentiality reasons (Mignen 2006b) .. 65
Figure 2.4 – Evolution of the formalisms used by carmakers to specify the functional
requirements related software .. 68
Figure 2.5 – Growth of the number of changes asked by the carmaker all along a project 69

Figure 2.6 – Interaction of the Requirements Specification process with the other software
processes (Mignen 2008) ... 72

Figure 2.7 – A UML-like data model of the SRS currently used in Johnson Controls 77

Figure 2.8 – Interactions between unit, integration and validation tests 80
Figure 2.9 – Software verification and validation techniques within the Johnson Controls
process map .. 81

Figure 2.10 – Classification of programming rules and recommendations 84

Figure 2.11 – An excerpt from a test case (two test steps) as designed by Johnson Controls
tester engineers ... 86

Figure 2.12 – Potential operation space of a software ... 93
Figure 2.13 – Johnson Controls present approach to design a test case for unit test 93

Figure 2.14 – Code (structural) coverage indicators .. 94
Figure 2.15 – Johnson Controls present approach to design a test case for validation test 95

Figure 2.16 – An excerpt of software functional requirements as defined by a Johnson
Controls engineer ... 96

Figure 2.17 – Screenshot of the problems’ tracking tool ... 98

List of figures R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

24

Figure 2.18 – Bug’s model currently used in Johnson Controls (this figure is voluntarily
uncompleted for confidentiality reasons) ... 99
Figure 2.19 – An excerpt of a bug stored in the problems’ database (this figure is voluntarily
uncompleted for confidentiality reasons) ... 100
Figure 2.20 – Process of creating and updating “Lessons Learned Checklists” for software
skill (Mignen 2005) .. 101

Figure 2.21 – An excerpt of lessons learnt to be checked during the design of the validation
procedure - This figure is voluntarily fuzzyfied for reasons of confidentiality (Fradet 2008)
 .. 101

Figure 2.22 – Classification of the bugs according to the front wiper’s features 102

Figure 2.23 – Classification of the bugs according to a typology of software problems 102

Figure 2.24 – Localization of the diagnoses within the Johnson Controls software organization
 .. 106

Figure 5.1 – “Combinatorial” functional requirement ... 150
Figure 5.2 – “Sequential” functional requirement ... 150
Figure 5.3 – Graphical illustration of our unified formal model to represent software
functional requirements .. 150

Figure 5.4 – The shape of a “Clock” signal ... 151
Figure 5.5 – Characteristics of a “Condition” .. 151
Figure 5.6 – Characteristics of an “Action” ... 152
Figure 5.7 – A Decision Table element .. 153
Figure 5.8 – Not exhaustive vs. exhaustive Decision Table element 153

Figure 5.9 – A graphical illustration of a Finite State Machine element 154

Figure 5.10 – Not exhaustive vs. exhaustive Finite State Machine element 155

Figure 5.11 – An example to illustrate the simulation process of a Decision Table element 157

Figure 5.12 – An example to illustrate the simulation process of a Finite State Machine
element ... 159

Figure 5.13 – The software functional requirements of the functionality “Auto_Light” as they
were specified by the carmaker .. 161
Figure 5.14 – A graphical illustration of the requirements model of the functionality
“Auto_Light” .. 162

Figure 5.15 – Feature 1 modeled using a Decision Table element .. 162

Figure 5.16 – Feature 2 modeled using a Decision Table element .. 162

Figure 5.17 – Feature 3 modeled using a Finite State Machine element – Graphical illustration
 .. 163

Figure 5.18 – Feature 3 modeled using a Finite State Machine element – States, Transitions
and Conditions .. 163

Figure 6.1 – Model confidence (Sargent 2005) .. 168
Figure 6.2 – A simplified version of the modeling process (Sargent 2005) 168

Figure 6.3 – A high level graphical language to computerize a Conceptual requirements
Model ... 173

Figure 6.4 – Animate the requirements model ... 175
Figure 6.5 – Simulate the test cases delivered by the carmaker on our requirements model 176

List of figures R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

25

Figure 6.6 – A graphical interface generated automatically from a formal specification of the
“Front Wiper” software functionality .. 177
Figure 6.7 – Compare our requirements model to another valid model of the requirements 177

Figure 7.1 – An example to illustrate the concept of “operation matrix” 181

Figure 7.2 – An example of a Nominal 1 “operation matrix” .. 181
Figure 7.3 – An example of a Nominal 2 “operation matrix” .. 182
Figure 7.4 – An example of a Nominal 1 “operation matrix” after engineers’ modifications183

Figure 7.5 – The process of generating a test case ... 183
Figure 7.6 – The process of generating a test step ... 185
Figure 7.7 – Functional (requirement specification) coverage indicators 186

Figure 7.8 – Signals domain coverage ... 187
Figure 7.9 – Operation matrix coverage ... 187
Figure 7.10 – Decision Table coverage .. 188
Figure 7.11 – Finite State Machine coverage ... 188
Figure 7.12 – An example of test case ... 189
Figure 7.13 – Panel of the quality, time and cost indicators for monitoring the automatic
generation of test cases ... 190

Figure 7.14 – An excerpt of the report delivered automatically after generating a test case . 192

Figure 8.1 – Acyclic signal .. 206

Figure 8.2 – Cyclic signal .. 206

Figure 8.3 – Conditional constraint .. 206
Figure 8.4 – Succession constraint ... 207
Figure 8.5 – A specific time interval between two operations ... 207
Figure 8.6 – An operation set during a specific time ... 207
Figure 8.7 – A predefined format to fill in the “Problem description” attribute of a bug 208

Figure 8.8 – Process of reusing bugs capitalized in the problems’ database 210

Figure 8.9 – Our new bug classification model ... 212
Figure 8.10 – Process of reusing test cases capitalized on previous projects 215

Figure 9.1 – A “functional” view of our approach ... 222
Figure 9.2 – A “process-role-tool” view of our approach .. 224
Figure 9.3 – Bugs Reuse tool ... 226
Figure 9.4 – Test Cases Reuse tool .. 227
Figure 9.5 – Simplified class diagram of the Test Case Generation tool 228

Figure 9.6 – A screenshot of the C++ code-skeleton generated by Rational Rose 229

Figure 9.7 – A screenshot of the tool after computerizing the requirements model of the
Chapter 5 – Section 5 example .. 231

Figure 9.8 – A screenshot of the tool after generating the Nominal “operation matrices” of the
Ch. 5 – Section 5 example .. 233
Figure 9.9 – A screenshot of the tool after importing “operation matrices” 234

Figure 9.10 – An excerpt on how experts can set constraints on the input signals of a
requirements model .. 235

Figure 9.11 – The simulation toolbox of the Test Case Generation tool 236

Figure 9.12 – The test generation toolbox of the Test Case Generation tool 237

List of figures R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

26

Figure 9.13 – A screenshot of the tool after generating test cases for the Chapter 5 – Section 5
example .. 239

Figure 9.14 – A screenshot of the tool while highlighting the covered zones of a requirements
model .. 240

Figure 10.1 – Distribution across the carmakers’ deliveries of the bugs detected on the two
functionalities ... 247

Figure 10.2 – Distribution across the couple (Severity, Occurrence) of the bugs detected on
the two functionalities .. 248

Figure 10.3 – An estimate of the time spent during each delivery to test the two functionalities
using the conventional testing techniques .. 249
Figure 10.4 – Distribution of violations over the integrity rules .. 252
Figure 10.5 – Cumulated number of nonconformities on the first case study (Second scenario)
 .. 253

Figure 10.6 – Cumulated number of nonconformities on the second case study (First scenario)
 .. 254

Figure 10.7 – Our strategy of generating test cases from the “operation matrices”............... 256

Figure 10.8 – Order of generating and executing test cases for the front wiper functionality259

Figure 10.9 – Order of generating and executing test cases for the fuel gauge functionality 259

Figure 10.10 – Origin of the anomalies detected when executing the generated test cases on
the two functionalities .. 261

Figure 10.11 – Distribution according to the carmakers’ deliveries of the known bugs not
detected by our approach .. 261

Figure 10.12 – Distribution across the couple (Severity, Occurrence) of the known bugs not
detected by our approach .. 262

Figure 10.13 – Origin of the known bugs detected by our approach on the two functionalities
 .. 262

Figure 10.14 – Evolution of the cumulated number of bugs detected by our approach on the
front wiper functionality ... 263

Figure 10.15 – Number and type of bugs detected via each “operation matrix” mode 264

Figure 10.16 – Evolution of the cumulated number of bugs detected by our approach on the
fuel gauge functionality .. 265

Figure 10.17 – An estimate of the total time spent in testing conventionally the two
functionalities ... 266

Figure 10.18 – An estimate of the total time spent in testing unitarily the two functionalities
using our approach ... 267

Figure 10.19 – Reducing the time spent in testing the two functionalities 268

Figure Conclusion.1 – A Design of Experiments to identify the correlations between the
parameters of our approach and the detection of bugs ... 280
Figure A.1 – Screenshot of the static analysis tool (QAC) ... 296
Figure A.2 – Screenshot of the dynamic analysis tool (Polyspace) 296

Figure B.1 – An excerpt of test cases designed for the unit test of a software component
(Johnson Controls source) .. 298

Figure B.2 – Overall structure of a test script program (Johnson Controls source) 299

Figure B.3 – Grammar of the test script language ... 300

List of figures R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

27

Figure B.4 – Screenshot of the test script interpreter (Johnson Controls sources) 301

Figure B.5 – Screenshot of the test script sequencer (Johnson Controls source) 301

Figure C.1 – Abstract model of the unit test execution platform (Johnson Controls source) 303

Figure C.2 – Functional model of a validation test execution platform (Johnson Controls
source) .. 304

Figure C.3 – E-Car environment (Johnson Controls source) ... 306
Figure C.4 – R-Car environment (Johnson Controls source) ... 306
Figure C.5 – X-Car framework (Johnson Controls source) ... 307

List of definitions R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
29

LIST OF DEFINITIONS

Definition 1.1: Globalization (Wikipedia – November 2008) ... 41
Definition 1.2: Software or Software product (IEEE Std. 610-1990) – Abbreviation: SW 45

Definition 1.3: Software component or module (Wikipedia – November 2008) 46

Definition 1.4: Mistake, error, fault, failure/bug (IEEE Std. 610-1990) 52
Definition 1.5: Software quality (IEEE Std. 610-1990) ... 52
Definition 1.6: Software testing and execution (NIST 2002) .. 52
Definition 1.7: Test Case (IEEE Std. 610-1990) – Abbreviation: TC 57

Definition 1.8: Test execution platform ... 57
Definition 1.9. Coverage (IEEE Std. 610-1990) .. 57
Definition 2.1: Project (Wikipedia – November 2008) .. 62
Definition 2.2: Specification (IEEE Std. 610-1990) .. 66
Definition 2.3: Requirement (IEEE Std. 610-1990) ... 66
Definition 2.4: (Software) Functionality (Johnson Controls) .. 66
Definition 2.5: Feature (Johnson Controls) .. 66
Definition 2.6: Requirement (Johnson Controls) ... 67
Definition 2.7: Software code review (IEEE Std. 610 1990) ... 79
Definition 2.8: Static code analysis (IEEE Std. 610 1990) .. 80
Definition 2.9: Dynamic code analysis (IEEE Std. 610 1990) ... 80
Definition 2.10: Software Unit, Integration and Validation test (IEEE Std. 610 1990) 80

Definition 2.11: Test Case, Test Step and Operation (Johnson Controls) 86

Definition 3.1: Software testing (Bertolino 2003) ... 113
Definition 4.1: Verification and Validation (IEEE Std. 610-1990) – Abbreviation: V&V ... 119

Definition 4.2: Software testing (NIST 2002) .. 124
Definition 4.3: Software testing (Myers 1979) .. 124
Definition 4.4: Software testing (IEEE Std. 610-1990, IEEE Std. 829-1998) 124

Definition 5.1: Formal Specification Language (Wing 1990) ... 147
Definition 6.1: Model Verification (Balci 1997) ... 167
Definition 6.2: Model Validation (Balci 1997) .. 167

General introduction R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
31

GENERAL INTRODUCTION

General introduction R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
33

I. Context

Nowadays, electronics represents more than 30% of the global cost of a car. Car electronic
architecture becomes more and more complex and carmakers outsource the design of
electronic modules to automotive electronic suppliers. The software part is the added value of
these modules and they account for more than 80% of the total number of defects detected on
these modules. As automotive electronic products become more and more complex, the size
of software embedded in these products increases drastically. As a consequence, the time
spent in verifying and validating these software has increased exponentially the last 10 years.
Verification and Validation (V&V) activities account now for more than 50% of an
automotive electronic project time and effort. Despite the huge resources spent in verifying
and validating a software product and after each delivery to the carmaker (up to 10 may be
made), some bugs are still detected by the carmaker and forwarded to the supplier who must
react quickly and efficiently. Once an electronic module is launched on the market (e.g.
integrated into a vehicle), an average of one software bug per year is detected by the end-
users, which may becomes dramatic for the electronic supplier in financial and image terms if
the product has to be systematically substituted.

As the automotive market becomes more and more competing, decreasing the development
time of outsourced parts and lowering the number of defects detected later in the process
becomes of major importance for carmakers and, consequently, a major quality indicator for
automotive suppliers. Indeed, the carmakers’ process for assigning new projects to suppliers
is mainly based on feedbacks from previous projects. Consequently, suppliers work on
reducing the development time of their products, delivering on time the products to carmakers
and detecting the maximum number of bugs as early as possible in the development process.

Through our research project (PhD), we were asked by Johnson Controls, one of the world’s
leading suppliers of automotive interior systems, electronics and batteries, to improve the
performance of its software V&V activities. Their main purpose is to improve the quality of
their products and therefore better satisfy the requirements and expectations of their clients. In
our research (Awedikian 2007), we go through this problem with a systemic approach in
order to identify levers in any domains from which we might be able to improve the global
performance of the software V&V activities. The major added value of the present work is to
globally solve the quality issue of the software testing process.

II. Research process

Our research process is based on five main stages:

Stage 1: Industrial audit

The audit of the industrial context aims to identify and determine the overall
environment of our research project. This results in identifying a list of anomalies and
issues in the current verification and validation practices.

Stage 2: Research topic definition

Based on the results of the industrial audit, the definition of our research topic allows
to better determine the scope and focus of our research. This also leads to a better
definition of the state-of-the-art focus.

Stage 3: State-of-the-art

General introduction R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

34

The state-of-the-art on the research issues in the scope of our research pinpoints
existing solutions; their advantages, drawbacks and adaptability to our context. This
results in a list of potential proposals.

Stage 4: New concepts development

The development of new concepts is the result of the three previous stages. Based on
the concepts identified in the literature and taking the requirements of our industrial
context into account, new concepts are developed.

Stage 5: Concepts prototyping and validation

The prototype development aims to implement our new concepts in a computer
platform. This platform gives us the opportunity to validate our concepts on typical
case studies.

Figure Introduction.1 illustrates our research stages all along the three years of the PhD
cursus.

Figure Introduction.1 – Stages of our research process

III. Contributions’ overview

Through our research project, we perform an audit on the current software practices in
automotive industry. The result of the audit is a list of anomalies and lacks (diagnoses) in the
current software V&V activities in automotive industry. Based on the audit results and the
literature review, we propose a new systemic approach to automate efficiently the design of

Time

Industrial
audit

3rd year2nd year1styear

State-of-
the-art

Research topic
definition

New concepts
development

Concepts prototyping and validation

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Proposals

Stage

General introduction R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

35

test cases for software products. Our approach presents a much different workflow than the
one presently used in automotive industry. The new workflow is based on eight activities
which are manual, semi-automatic or automatic and managed by different individuals. These
activities are:

1. Model the software functional requirements using a formal simulation model that we
developed keeping in mind the automotive context and its constraints (Awedikian
2008a).

2. Verify and validate the consistency and compliance of the requirements model
(Awedikian 2008a).

3. Define some behavioral characteristics of a car driver when using the software product
under test (Awedikian 2008b).

4. Reuse the test cases developed in the past for similar software products (Awedikian
2008b).

5. Reuse the bugs detected in the past on similar software products (Awedikian 2008b).
6. Enrich the requirements model with knowledge (from activity 3 to 5) on the driver

recurrent operations and the test engineers’ experience (Awedikian 2008b).
7. Automate the design of test cases from the enriched model of functional requirements

(Awedikian 2008c).
8. Monitor the design of test cases by quality objectives but also time and cost

constraints (Awedikian 2008c).

Processes, roles and tools implementing these activities have been developed. The results of
the experiment of our approach on two typical industrial case studies (within Johnson
Controls) are very promising. We reduce by 70% the number of bugs detected by the
carmakers and by 9% the ones detected by the end-users. Moreover, we reduce by 22% the
time spent in testing a software product. In fact, we detect the bugs earlier in the software
development process and closer to their origin. We also propose to deliver to the carmaker
formal quality indicators on the delivered software. All these results contribute to an
improvement of the customer satisfaction and as a direct impact; the number of tenders will
grow. Unfortunately, estimating the cost of software bugs in an organization is a delicate,
strategic and confidential question and therefore we were not allowed to communicate the
numbers on the bugs’ costs savings via the use of our approach.

As a consequence of these results, managers at Johnson Controls decide to patent our
approach3. However and in order to patent an idea in Johnson Controls, a formal verification
and validation process of the idea is required. In our case and before starting this process,
Johnson Controls has submitted a worldwide Quick Patent4 in order to protect our approach.
A worldwide survey on software testing approaches has been performed by Johnson Controls
patent experts. Moreover, we were formally interviewed by many managers and experts on
the contributions of our approach. The final stage will be the decision of the Johnson Controls
Intellectual Property (IP) committee to patent or not our approach.

IV. Reading guidelines

This dissertation is composed of 4 parts and each part is composed of two or more chapters.
The structure of the document is illustrated in Figure Introduction.2:

3 Including Bernard Yannou and Mounib Mekhilef as co-inventors.
4 In France, we associate a Quick Patent to an “Enveloppe Soleau” (http://www.inpi.fr/fr/services-et-
prestations/enveloppe-soleau.html, Consulted on November 2008).

General introduction R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

36

• Part I develops the research context and the industrial audit (Chapters 1 and 2).
• Part II develops the research topic and the literature review (Chapters 3 and 4).
• Part III develops our new concepts (Chapters 5, 6, 7 and 8).
• Part IV develops the computer implementation and the validation of our new concepts

(Chapters 9 and 10).

Figure Introduction.2 – Document structure

Quality of the design of test cases for automotive software: design platform and testing process
37

PART I - CONTEXT AND DOMAIN
ANALYSIS

The need to improve the quality of software products in automotive industry R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
39

CHAPTER 1. THE NEED TO IMPROVE THE
QUALITY OF SOFTWARE PRODUCTS IN
AUTOMOTIVE INDUSTRY

The need to improve the quality of software products in automotive industry R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
41

I. Introduction

The world of electronics is living a revolution in the way products are imagined, designed and
implemented. The ever growing importance of the internet, the advent of microprocessors of
great computational power, the burden of wireless communication, the development of new
generations of integrated sensors and actuators are changing the world we live and work in.

The car as a self-contained universe is experiencing a similar revolution. We need to rethink
what a “car’ really is and the role of embedded electronics. Electronics is now essential to
control the movements of a car, of the chemical and electrical processes taking place inside, to
entertain the passengers, to constantly be connected with the rest of the world and to ensure
safety. However, the growth of electronics in a car might reduce its reliability. Will
electronics take the major role in car manufacturing and design? How to control the quality
of electronic systems? How to manage the growth of software complexity in automotive
electronic parts? What will an automobile manufacturer’s core competence be in the next few
years? What are the new challenges for automotive electronic suppliers?

Our intent in this chapter is to answer some of these questions. An illustration of the present
automotive industry context facing the globalization and the outsourcing issues is carried out
in Section 2. Then, the electronic architecture of a modern vehicle is described in Section 3,
showing the tendency toward incorporating ever more electronics. An overview of the role of
software and the new challenges in automotive electronics industry is done in Section 4 and 5.
Finally, the industrial needs and expectations as it was expressed for the first time by Johnson
Controls company are summarized in Section 6.

II. The phenomena of globalization and outsourcing in automotive
industry

As we enter the new millennium, globalization has emerged as one of the most salient and
powerful forces shaping domestic and world economies.

Definition 1.1: Globalization (Wikipedia – November 2008)

Globalization in its literal sense is the process of transformation of local or regional things or
phenomena into global ones. It can also be used to describe a process by which the people of
the world are unified into a single society and function together. This process is a
combination of economic, technological, sociocultural and political forces. Globalization is
often used to refer to economic globalization, that is, integration of national economies into
the international economy through trade, foreign direct investment, capital flows, migration,
and the spread of technology.

The automobile industry is typically considered to be at the forefront of globalization.
Evidences supporting this view have been listed by Spatz (Spatz 2002):

• the intricate network of alliances and cross-shareholdings among automobile
companies, within nations and regions but also between regions,

• intensified Mergers and Acquisitions (M&A) activities in the 1990s, involving both
end-producers and automotive input suppliers,

• and the trend towards technologically motivated cooperation agreements, which was
caused, inter alia, by end-producers entering into new forms of partnerships for the
design of principal modules and subsystems.

The need to improve the quality of software products in automotive industry R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

42

The new face of globalization in automotive industry is best revealed by the rise of global
suppliers. Companies such as Johnson Controls, Bosch, Denso, Lear Corporation, TRW,
Magna, and Valeo have become the preferred suppliers for automakers around the world.
Some automakers, particularly American firms, have combined a move to “modular” final
assembly with increased outsourcing, giving increased responsibility to first-tier suppliers5 for
module design and second-tier sourcing. Many first tier-suppliers started to build a vertical
integration (through mergers, acquisitions, and joint-ventures) and to geographically spread
so as to be able to provide their customers with modules on a worldwide basis. At the same
time, it can be simultaneously observed a deverticalization in automaker companies which
leads to create a new global-scale supply-base capable of supporting the activities of final
assemblers on a worldwide basis.

The drivers of increased outsourcing include 1) the rising technological complexity of vehicle
development, 2) rising logistics complexity as more production locations come on-stream, 3)
a desire to “streamline” the final assembly process, 4) a desire to pay for parts only as they are
incorporated into vehicles rather than when they are shipped from suppliers, 5) increasing
competence in suppliers, and 6) a desire to lower costs by moving production to low cost
suppliers.

Twenty years ago, automakers practiced low-level parts assembly within final assembly
plants, purchased parts based on price, and paid minimal attention to quality. Now,
automakers ask suppliers to do more design and sub-assembly work. This refers to as
“modularization” in the automotive industry. For example, vehicle doors can be delivered
with the glass, fabric, interior panels, handles, and mirrors pre-assembled. Dashboards can be
delivered complete with polymers, wood, displays, lights, and switches. The aim of
modularization is to move labor out of the final assembly process (design for
manufacturability can serve the same purpose).

According to Sturgeon (Sturgeon 2000), fifteen modules represent about 75% of vehicle
value. In fact, a supplier can provide groups of related modules, called “module systems”. For
example, seats, interior trim, and cockpit modules could be supplied as a complete “interior
system”. Figure 1.1 provides a graphic representation of the apparent trend from discrete parts
to modules and systems.

5 First-tier supplier means a supplier who directly provides goods and services to the assembly plant of the
product

The need to improve the quality of software products in automotive industry R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

43

Figure 1.1 – From part to module to system (Sturgeon 2000)

III. Strong growth forecast for electronic parts in automotive

The past four decades have known an exponential increase in the number and sophistication
of electronic systems in vehicles. According to Leen (Leen 2002), nowadays, the cost of
electronics in luxury vehicles may amount to more than 23 percent of the total manufacturing
cost. According to Moavenzadeh (Moavenzadeh 2006), a top R&D6 executive from General
Motors said that electronics and software content will account for 40% of the value-added in
the vehicle over the new ten years. Moreover, a recent quote7 from Daimler executives says
that more than 80% of innovation in the automotive domain will be in electronic modules.

The growth of electronic systems has had implications for vehicle engineering. For example,
today’s vehicles may have more than 4 kilometers of wiring, compared to 45 meters in
vehicles manufactured in 1955. In July 1969, Apollo 11 employed a little more than 150
Kbytes of onboard memory to go to the moon and back. Just 30 years later, a family car might
use 500 Kbytes to keep the CD player from skipping tracks.

The resulting demands on power and design have led to innovations in electronic networks for
automobiles. Researchers have focused on developing electronic systems that safely and
efficiently replace entire mechanical and hydraulic applications. Just as LANs8 connect
computers, control networks connect a vehicle’s electronic equipment. These networks
facilitate the sharing of information and resources among the distributed applications. In the
past, wiring was the standard means of connecting one element to another. As electronic

6 R&D: Research and Development
7 http://www.dsp.acm.org/view_lecture.cfm?lecture_id=86 (consulted on November 2008)
8 LAN: Local Area Network

The need to improve the quality of software products in automotive industry R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

44

content increased, the use of more and more discrete wiring hit a technological wall.
Fortunately, today’s control and communications networks, based on serial protocols, counter
the problems of large amounts of discrete wiring. Beginning in the early 1980s, centralized
and then distributed networks have replaced point-to-point wiring.

Figure 1.2 shows the sheer number of systems and applications contained in a modern
automobile’s network architecture.

Figure 1.2 – A modern vehicle’s network architecture (Leen 2002)

The electronics and software content of vehicles relies more on electrical and software
engineers than on the traditional mechanical engineers associated with the automotive
industry. Moavenzadeh (Moavenzadeh 2006) indicates that electronics and software
engineering functions are easier to outsource or offshore than mechanical engineering
functions. Software engineers across an ocean can discuss a few lines of code easier than
mechanical engineers can discuss how to modify the design of a module. Software and
electronic systems also tend to follow a more modular product architecture than mechanical
systems; therefore, it is easier to offshore both low and high value added functions.

IV. Challenges for the automotive electronic suppliers

The overall goal of electronic embedded system design is to balance production costs with
development time and cost in view of performance and functionality considerations. In other
words, engineers are encouraged to shorten the overall design and validation cycle without
compromising quality, reliability, and cost targets.

The need to improve the quality of software products in automotive industry R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

45

A. Lower the production cost

Manufacturing costs mainly depend on the hardware modules of the product. If one considers
an integrated circuit implementation, the size of the chip is an important factor in determining
production cost. Minimizing the size of the chip implies tailoring the hardware architecture to
the functionality of the product. However, the cost of a state-of-the-art fabrication facility
continues to grow up. In addition, the Non-Recurring Engineering (NRE) costs associated
with the design and tooling of complex chips are rapidly growing. As a consequence, a
common hardware platform to be shared across multiple applications may increase the
production volume and decrease the overall cost.

B. Lower the development time and cost

Since the times of ignition car electronics in the 1970s, the complexity of automotive
electronics architecture is still growing. Presently, Leen (Leen 2002) notices that a BMW 5
series model can have up to 80 electronic control units. However, the market dynamics for
automotive electronic systems leads to shorter and shorter development times. Presently, no
matter how complex the design problem is, suppliers don’t have more than six months from
the delivery of the customer requirements to a first and correct implementation. To meet the
design time requirements and ensure a high quality of the delivered product, a design
methodology that favors automation, reuse and early problem detection is essential. This
implies that the design activity must be rigorously defined, so that all stages are clearly
identified and appropriate checks are enforced.

V. The role of “software” in automotive electronics

Lets us start by defining what is a software. In this dissertation, we adopt the definition of
software proposed by the Institute of Electrical and Electronics Engineers9 (IEEE).

Definition 1.2: Software or Software product (IEEE Std. 610-1990) – Abbreviation: SW

Software is a general term used to describe a collection of computer programs, procedures,
and possibly associated documentation and data pertaining to the operation of a computer
system.

Moreover, a software product is composed from a set of software components or modules (Cf.
Figure 1.3).

Figure 1.3 – Software product versus software component

9 http://www.ieee.org/portal/site (Consulted on November 2008)

Software product

Inputs

Outputs

CMP 1 CMP 2

…

CMP 3

CMP 4
CMP n

CMP 5

The need to improve the quality of software products in automotive industry R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

46

Definition 1.3: Software component or module (Wikipedia – November 2008)

A software component or a software module is a system element offering a predefined service
or event, and able to communicate with other components or modules. It is a minimal
software item that can be tested in isolation.

A software product can be dedicated for different types of electronics architecture (computer,
automotive, airplane etc.). In our research, we only consider the software products written for
machines that are not, first and foremost, computers. In software engineering, this type of
software products is called embedded software. For example, it is embedded to electronics in
cars, telephones, audio equipment, robots, appliances, toys, security systems, pacemakers,
televisions and digital watches. This type of software products can become very sophisticated
in applications like airplanes, missiles, process control systems, and so on. Embedded
software is usually written for special purpose electronics architecture. For instance, the
CPUs10 are different from general purpose CPUs that we could find in our desktops or
laptops. Moreover, a real-time operating system is required for managing the simulation of
embedded software. In fact, tasks’ scheduler and priorities are the fundamentals of a real-time
operating system.

The design process of software products shares many technologies with the one of hardware
products. Nevertheless, there are important differences between the two types. In the
following, we identify some of these differences:

• the hardware product quality relies on design, implementation and manufacturing
processes, however the software product quality relies only on design and
implementation processes. The software manufacturing process is mainly based on a
“simple” reproduction activity,

• a software product is able to simulate alternative commands on different inputs which
lead to a high complexity of the product,

• a software product is not a physical entity and therefore, it doesn’t wear out over time.
In fact, since problems are detected and corrected, the quality of a software product
improves over time. However, the correction and/or evolution activities can introduce
new problems in the product,

• software problems cannot be prevented. In fact, specific successive commands on the
inputs of the software product can reveal a problem which was not detected during the
testing activities of the product,

• the easiness and the rapidity which with a software product can be modified lead to the
fact the software development process should be very well monitored and
documented,

• and historically, software modules are not frequently standardized and reused.
Nowadays, there is a trend toward a reuse of software modules in order to lower the
development time and cost.

One more specific concept to software products is the size. Software sizing (Wikipedia –
November 2008) is an important activity in software engineering that is used to estimate the
size of a software module. Size is an inherent characteristic of a software in just like weight is
an inherent characteristic of any tangible material. Historically, the most common software
sizing methodology was counting the Lines Of Code (LOC) written in the application source.
Another famous sizing method is the Function Point analysis. New trends of software sizing
have recently emerged.

10 CPU: Central Processing Unit

The need to improve the quality of software products in automotive industry R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

47

A. Growth of software size in automotive electronic parts

The amount of software in many electronic products is increasing rapidly. For example, the
number of lines of source code in a mobile phone is expected to increase from 2 million today
to 20 million by 2010; a car will contain 100 million lines of code (Charrette 2005).
Consequently, electronics companies no longer find it economically viable to provide all the
software in their products.

In fact, the amount of software in cars grows exponentially. Within only thirty years, the
amount of software in a car has evolved from zero to tens of millions lines of code. A current
premium car, for instance, implements about 270 functions a user interacts with, deployed
over about 70 embedded platforms. Altogether, the software amounts to about 100 megabytes
of binary code. The next generation of upper class vehicles, hitting the market in about 5
years, is expected to run up to 1 gigabyte of software. This is comparable to what a typical
desktop workstation runs today.

A first reason for this growing complexity in software is that software enables the
implementation of functionality deemed impossible just twenty years ago. Another reason is
that electronics in cars helps to reduce gas consumption and increase performance, comfort
and safety, as indicated by the decreasing number of major accidents whereas traffic
increases. Information processing technology cuts across all aspects of the car and is a
persuasive, sophisticated and differentiating value addition to the product. Furthermore,
software enables the car manufacturers and suppliers to tailor systems to particular customers'
needs. In other words, software can help differentiate between cars. At least in principle, it is
the software that also allows hardware to be reused across different cars. Contrarily to
hardware, software has an almost negligible replication cost, which is a further incentive to
bet on software as a potential tool in cost-reduction. However, the growing complexity of
automotive software products leads to a dramatic increase of the software development costs.
In addition, growing complexity is a driver for numerous challenges in the automotive
industries like: definition of key competencies, processes, methods, tools, models, product
structures, division of labor, logistics, maintenance, and long term strategies.

B. Software Development Life Cycle

The Software Development Life Cycle (SDLC) models describe activities of the software cycle
and the order in which those activities are executed. A variety of SDLC models have been
proposed in a paper (Green 1998), most of which focus exclusively on the development
activities: ad-hoc model, waterfall model, V-model, iterative and incremental model,
prototyping model, rapid application development model, exploratory model and spiral
model.

1. Ad-hoc model

Early systems development often took place in a rather chaotic and haphazard manner, relying
entirely on the skills and experience of the individual staff members performing the work (Cf.
Figure 1.4). Today, many organizations still practice Ad-hoc Development either entirely or
for a certain subset of their development (e.g. small projects).

The need to improve the quality of software products in automotive industry R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

48

Figure 1.4 – Development based on the skills and experience of the individual staff

members performing the work

In the absence of an organization-wide software process, repeating results depends entirely on
having the same individuals available for the next project. Success that rests solely on the
availability of specific individuals provides no basis for long-term productivity and quality
improvement throughout an organization.

2. The waterfall model

The waterfall model prescribes a sequential execution of a set of development and
management activities (Cf. Figure 1.5). Some variants of the waterfall model allow revisiting
the immediately preceding activity ("feedback loops") if inconsistencies or new problems are
encountered during the current activity. The waterfall model is the earliest method of
structured system development. Although it has been criticized in recent years for being too
rigid and unrealistic when it comes to quickly meeting customer’s needs, the waterfall model
is still widely used. It provides the theoretical basis for other process models.

Figure 1.5 – Waterfall development model

3. The V-model

A variant of the waterfall model - the V-model - associates each development activity with a
Verification and Validation (V&V) activity at the same level of abstraction (Cf. Figure 1.6).
Each development activity builds a more detailed model of the system than the one before it,
and each V&V activity tests a higher abstraction than its predecessor.

Design

Implementation

Testing

Maintenance

FeedbackRequirements
analysis

The need to improve the quality of software products in automotive industry R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

49

Figure 1.6 – V development model (V-model)

4. The iterative and incremental model

The problems with the waterfall model created a demand for a new method of developing
systems which could provide faster results, require less up-front information, and offer greater
flexibility (Cf. Figure 1.7). With iterative development, the project is divided into small parts.
This allows the development team to demonstrate results earlier in the process and obtain
valuable feedback from system users. Often, each iteration is actually a mini-waterfall process
with the feedback from one activity providing vital information for the design of the next
activity.

Figure 1.7 – Iterative and incremental development model

5. The prototyping model

The prototyping model was developed on the assumption that it is often difficult to know all
of your requirements at the beginning of a project. Typically, users know many of the
objectives that they wish to address with a system, but they do not know all the nuances of the
data, nor do they know the details of the system functionalities and capabilities. The
prototyping model allows for these conditions, and offers a development approach that yields
results without first requiring all information up-front.

When using the prototyping model, the developer builds a simplified version of the proposed
system and presents it to the customer for consideration as part of the development process.
The customer in turn provides feedback to the developer, who goes back to refine the system
requirements to incorporate the additional information.

Requirements
analysis

Design

Implementation
and

Unit testing

Integration and
Integration

testing

Validation
testing

Design

Implementation

Testing

Maintenance

FeedbackRequirements
analysis

The need to improve the quality of software products in automotive industry R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

50

6. The rapid application development model

A popular variation of the prototyping model is called Rapid Application Development (RAD).
RAD focuses on developing a sequence of evolutionary prototypes which are reviewed with
the customer, both to ensure that the system is developing toward the user's requirements and
to discover further requirements. The process is controlled by restricting the development of
each integration to a well-defined period of time, called a time box. Each time box includes
analysis, design, and implementation of a prototype.

7. The exploratory model

In some situations it is very difficult, if not impossible, to identify any of the requirements for
a system at the beginning of the project. Theoretical areas such as Artificial Intelligence are
candidates for using the exploratory model, because much of the research in these areas is
based on guess-work, estimation, and hypothesis. In these cases, an assumption is made as to
how the system might work and then rapid iterations are used to quickly incorporate
suggested changes and build a usable system. A distinguishing characteristic of the
exploratory model is the absence of precise specifications. Validation is based on the
consistency of the end results and not in compliance with existing requirements.

8. The spiral model

The spiral model is similar to the incremental model, with more emphases placed on risk
analysis. The spiral model has some resemblance to Deming’s “Plan, Do, Check, Act” cycle
and has four activities: Planning, Risk Analysis, Engineering and Evaluation (Cf. Figure 1.8).
A software project repeatedly passes through these activities in iterations (called Spirals in
this model). In the planning activity, requirements are gathered and risk is assessed. In the risk
analysis activity, a process is undertaken to identify risk and alternate solutions. A prototype
is produced at the end of the risk analysis activity. Software is produced in the engineering
activity, along with testing at the end of the activity. The evaluation activity allows the
customer to evaluate the output of the project to date before the project continues to the next
spiral.

In the spiral model, the angular component represents progress, and the radius of the spiral
represents cost.

Figure 1.8 – Spiral development model

Evaluation

Planning Risk analysis

Engineering

The need to improve the quality of software products in automotive industry R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

51

9. Common framework between software development life cycles

In conclusion, there are a lot of models and many companies adopt their own, but all have
very similar patterns. The general, basic model is shown in Figure 1.9:

Figure 1.9 – General software development life cycle model

Each activity produces deliverables required by the next activity in the life cycle.
Requirements are translated into design. Code is produced during implementation that is
driven by the design. Testing verifies the deliverable of the implementation activity against
requirements.

a. Requirements analysis

Customer requirements are gathered in this activity. Meetings are held in order to determine
the requirements. Who is going to use the system? How will they use the system? What data
should be input into the system? What data should be output by the system? These are general
questions that get answered during a requirements gathering activity. This produces a list of
functionality that the software product must provide.

b. Design

The software system design is produced from the results of the requirements analysis activity.
In this activity, the details on how the system has to work are produced. Architecture
(including hardware and software), communication and software design are all part of the
deliverables of a design activity.

c. Implementation

Code is produced from the deliverables of the design activity during implementation.
Implementation may overlap with both the design and testing activities. Many tools exist to
actually automate the production of code using information gathered and produced during the
design activity.

d. Testing

During testing, the implementation is tested against the requirements to make sure that the
product is actually solving the needs addressed and gathered during the requirements analysis
activity. Unit, integration and validation tests are done during this activity. Unit tests act on a
specific module of the system, while integration and validation tests act on the system as a
whole.

C. Two complementary approaches to design “bug-free” software

Let us start this section by giving a definition for the term bug. In this dissertation, we adopt
the definition proposed by IEEE.

Requirements
analysis Design Implementation Testing

The need to improve the quality of software products in automotive industry R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

52

Definition 1.4: Mistake, error, fault, failure/bug (IEEE Std. 610-1990)

“Mistake” is a human action that produces an incorrect result.

“Error” is a difference between a computed result and the specified or theoretical one.

“Fault” is a defect in a module which is the manifestation of an error.

“Failure” is the inability of a system to perform a required function within specified limits.

The relation between a mistake, an error, a fault and a failure is illustrated in Figure 1.10.

Figure 1.10 – Relation between a mistake, an error, a fault and a failure

The results of a software testing activity is a failure, therefore an analysis activity is
necessary to identify the fault.

In our research, we used the term “bug” rather than “failure”

Software’s complexity and accelerated development schedules make designing “bug-free”
software difficult. In this dissertation, we also adopt the definition of software quality
proposed by IEEE.

Definition 1.5: Software quality (IEEE Std. 610-1990)

(1) The degree to which a system, module, or process meets specified requirements.

(2) The degree to which a system, module, or process meets customer or user needs or
expectations.

A widely accepted premise on software quality is that software is so complex (in
combinatorial terms) that it is impossible to have “bug-free” software. One technique
commonly used in industry to verify and validate a software product is the software testing. In
this dissertation, we adopt the definition of software testing proposed by the National Institute
of Standards and Technology11 (NIST).

Definition 1.6: Software testing and execution (NIST 2002)

Software testing is the process of applying metrics to determine product quality. Software
testing is the dynamic execution of software and the comparison of the results of that
execution against a set of pre-determined criteria. “Execution” is the process of running the
software on a computer with or without any form of instrumentation or test control software
being present. “Predetermined criteria” means that the software’s capabilities are known
prior to its execution. What the software actually does can then be compared against the
anticipated results to judge whether the software behaved correctly. Software testing is a
widespread V&V technique in automotive industry.

In Chapter 8 – Section 2, we demonstrate that the software testing problem is a NP-
Complete12 problem. We often hear maxims like "there's always one more bug", and
"software V&V techniques can reveal the existence of bugs, but never prove their absence".

11 http://www.nist.gov/ (Consulted on November 2008)
12 NP: Non-deterministic Polynomial time

Mistake Error Fault Failure/bug

The need to improve the quality of software products in automotive industry R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

53

The Figure 1.11 released by Liggesmeyer (Liggesmeyer 1998) shows that the main part of
bugs are introduced during the first life cycle of the software development (around 90% in
requirements analysis, design and implementation activities) and detected in the last activities
(around 80% during unit test, validation test and serial production). A study done in 2006 by
a Johnson Controls software expert (Le Corre 2006) on about 15 projects from different types
of products has confirmed the findings of Liggesmeyer.

Figure 1.11 – Rate and cost of bugs introduced and detected across the software

development life cycle (Liggesmeyer 1998)

Therefore, appropriate techniques, methods and procedures must be adopted in order to help
engineers to:

• lower the number of bugs introduced in the software system (prevention approach),
• and detect all the bugs that have been introduced in the software system as soon as

possible (detection approach).

1. Prevention approach (Mays 1990, Gale 1990, McDonald 2007)

Bugs are a consequence of the nature of human factors in the designing task. They arise from
oversights made by engineers during requirements analysis, design, implementation and even
testing. Complex bugs can arise from unintended interactions between different parts of the
software system. This frequently occurs because software systems can be complex - millions
of lines long in some cases - often having been programmed by many people over a great
length of time, so that engineers are unable to mentally track every possible way in which
parts can interact. The software industry has put much effort into finding methods for
preventing engineers from inadvertently introducing bugs while designing a software system.
These methods include:

• Engineers practices
• Standards
• Formal languages
• Prototyping
• Modeling and simulation
• Reuse

Requirements
analysis

Design Implementation Unit test Validation test
Operational

life

Introduced
bugs (in %)

Detected
bugs (in %)

Cost of correction
per bug

in 1,000 US $)

The need to improve the quality of software products in automotive industry R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

54

• Root cause analysis

Even with efficient bugs’ prevention techniques and taking the assumption that human is not
perfect, we conclude that each software system includes bugs. That is why, verifying and
validating the software system before any customer delivery is a necessary activity.

2. Detection approach: V&V techniques (Beizer 1995, Myers 1978, So 2002)

Finding and fixing bugs has always been a major part of designing software systems. Maurice
Wilkes13 , an early computing pioneer, said in the late 1940s (Wilkes 1949) that much of the
rest of his life would be spent finding errors in his own programs. As computer programs
become more complex, bugs become more common and hard to fix. Often programmers
spend more time and effort finding and fixing bugs than writing new code. Theoretical data
proposed by Brooks14 (Brooks 2007) but also the results of a study done in 2006 by a Johnson
Controls software expert (Le Corre 2006) on about 5 projects from different types of products
are presented in Table 1.1. The study points out that the validation test activity takes up to
50% of the total development duration of a project. Moreover, a recent study within Johnson
Controls (2008) has shown that this ratio number has been exceeded.

Table 1.1 – Time and effort spent during the software development life cycle (Brooks

2007, Le Corre 2006)

Usually, the most difficult part of finding a bug is locating the erroneous part of the source
code. Once the error is found, correcting it is usually easy. Programs known as debuggers
exist to help programmers locate bugs. However, even with the aid of a debugger, locating
bugs is something of an art. It is not uncommon for an error in one section of a program to
cause bugs in a completely different section, thus making it especially difficult to track.
Typically, the first step in locating a bug is finding a way to reproduce it easily. Once the bug
is reproduced, the programmer can use a debugger or some other tool to monitor the
execution of the program in the faulty region, and find the point at which the program went
astray. It is not always easy to reproduce bugs. Some bugs are triggered by inputs to the
program which may be difficult for the programmer to re-create.

Therefore, bugs’ detection is still a tedious task requiring considerable manpower. Since the
1990s, particularly following the Ariane 5 Flight 501 disaster, there has been a renewed
interest in the development of effective automated aids to remove bugs but it’s still remaining
much of a work in progress. Presently, bugs’ detection techniques (also called software V&V
techniques) can be classified into two classes:

13 http://www.cl.cam.ac.uk/~mvw1/short-biography.html (consulted on November 2008)
14 Frederick P. Brooks is a pioneer of software engineering, http://www.cs.unc.edu/~brooks/ (consulted on
November 2008)

Software life
cycle

Johnson
Controls (%)

F. Brooks
(%)

Hewlett-
Packard (%)

Requirements
analysis

40 33 37

Design and
implementation 20

17
34

Unit test 25

Integration and
validation test

40 25 29

The need to improve the quality of software products in automotive industry R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

55

• Static techniques (Review and Proof) which do not require the execution of the
software under test (Ayewah 2008)

• Dynamic techniques (Testing) which require the execution of the software under test
(Beizer 1990, Barezi 2006).

Each of these techniques catches different classes of bugs at different points in the
development cycle.

D. Impacts of detecting bugs later in the software development life cycle

According to a newly released study commissioned by the Department of Commerce's
National Institute of Standards and Technology (NIST 2002), software bugs cost the U.S.
economy an estimated $59.5 billion annually, or about 0.6 percent of the gross domestic
product. The study also found that, although all errors cannot be removed, more than a third
of these costs, or an estimated $22.2 billion, could be eliminated by an improved V&V
infrastructure that enables earlier and more effective identification and removal of software
bugs. These are the savings associated with finding an increased percentage of bugs closer to
the development activities in which they are introduced. Currently (Cf. Table 1.1), over half
of all errors are not found until the last testing activity in the development process (validation
test) or during post-sale software use (operational life).

The impact on the software industry due to lack of robust, standardized V&V technology able
to detect bugs closer to where they are introduced can be grouped into three general
categories:

1. Poor quality perceived by the customer

The most troublesome effect of a lack of efficient V&V technology is the increased incidence
of avoidable bugs that emerge after the product has been delivered to the customer. Poor
quality often results in loss of reputation and loss of future business for the company. In
addition, legal actions are undertaken against the supplier when bugs are attributable to
insufficient V&V.

2. Increase of the software development cost

Historically, the process of identifying and correcting bugs during the software development
process represents over half of development costs. Depending on the accounting methods
used, V&V activities account for 30 to 90 percent of labor expended to produce a working
program (Beizer 1990). Software engineers already spend approximately 50 percent of
development costs on identifying and correcting bugs (Cf. Table 1.1). Early detection of bugs
can greatly reduce costs. Bugs can be classified by where they were found or introduced along
the activities of the software development life cycle, namely, requirements analysis, design,
implementation, testing, and operational life activities. Figure 1.11 illustrates that the longer a
bug stays in the program, the more costly it becomes to fix it.

3. Increase of the time to market

The lack of efficient V&V technology also increases the time that it takes to bring a product to
market. Increased time often results in lost opportunities. For instance, a late product could
potentially represent a total loss of any chance to gain any revenue from that product. Lost
opportunities can be just as damaging as post-release product bugs. However, they are

The need to improve the quality of software products in automotive industry R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

56

notoriously hard to measure. If efficient V&V techniques were readily available, engineers
would expend less time developing custom V&V technology.

VI. Industrial needs and expectations

Nowadays, electronics represents more than 30% of the global cost of a car (Sangiovanni-
Vincentelli 2003). Car electronic architecture becomes more and more complex and
carmakers outsource the design of electronic modules to automotive electronic suppliers. The
software part is the added value of these modules and they account for more than 80% of the
total number of problems detected on these modules (Johnson Controls source). As
automotive electronic products become more and more complex, the size of software
embedded in these products increases drastically. In fact, a body controller module managing
the interior function of a car body account for more than 200 KLOC15 (Johnson Controls
source). As a consequence, the time spent in verifying and validating these software has
increased exponentially the last 10 years. V&V activities account now for more than 50% of
an automotive electronic project time and effort (Cf. Table 1.1). Despite the huge resources
spent in verifying and validating a software product and after each delivery to the carmaker,
some bugs are detected by the carmaker and forwarded to the supplier who must react quickly
and efficiently. Once an electronic module is launched on the market (e.g. integrated into a
vehicle), an average of one software bug per year is detected by the end-users, which may
becomes dramatic for the electronic supplier in financial terms if the product has to be
systematically changed. In fact, in term of bug’s occurrence, two types of contract engage
electronics suppliers with car manufacturers:

• Implicit contract: during software development process, each carmaker delivery must
be free of bugs.

• Explicit contract: on launched electronic module, carmaker tolerates a certain number
of defective products expressed in terms of PPM (Pieces Per Million). PPM includes
all software bugs but also electronic, mechanical and production problems.

As the automotive market becomes more and more competing, decreasing the development
time of outsourced parts and decreasing the number of problems detected later in the process
becomes of major importance for carmakers and consequently a major quality indicator for
automotive suppliers. Indeed, the carmakers’ process for assigning new projects to suppliers
is mainly based on feedbacks from previous projects. Consequently, suppliers work on
reducing the development time of their products, delivering on time the products to carmakers
and detecting the maximum number of bugs as earlier as possible in the development process.

Through our research project, we were asked by an automotive electronic supplier namely
Johnson Controls to improve the performance of its software V&V activities. Their main
purpose is to improve the quality of their products and therefore better satisfy the
requirements and expectations of their clients. In Johnson Controls, the software development
life cycle follows a V-model (Cf. Chapter 2 – Section 3.B). Moreover, the validation test
which is the last V&V activity before a carmaker delivery is considered as the ultimate activity
to detect all the bugs and therefore deliver carmakers “bug-free” software. It represents up to
90% of the time spent in the V&V of a software product (Johnson Controls source). Testing a
software product requires two main activities. A detailed specification of these activities is
done in Chapter 2 – Section 5. The first one consists of designing test cases and the second

15 KLOC : Kilo Lines Of Code.

The need to improve the quality of software products in automotive industry R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

57

one of executing these test cases on the software product under test. We adopt the definition
of test case proposed by IEEE.

Definition 1.7: Test Case (IEEE Std. 610-1990) – Abbreviation: TC

IEEE defines test case as follows:

(1) A set of test inputs, execution conditions, and expected results developed for a particular
objective, such as to exercise a particular program path or to verify compliance with a
specific requirement.

(2) Documentation specifying inputs, predicted results, and a set of execution conditions for a
test item.

While the execution activity is often automated via a test execution platform, the test case
design activity remains a manual task that fills in time many engineers. We propose below our
definition of a test execution platform.

Definition 1.8: Test execution platform

A test execution platform is a platform that aims to simulate the environment of and perform
test inputs on the software module or product under test. Therefore, one can verify and
validate the behavior of the software under test in its real environment. For more information
regarding the Johnson Controls test execution platforms, please refer to Appendix C.

Up to 50% of a software project time is dedicated to design test cases (Cf. Table 1.1).
Therefore, for many of software managers and experts in Johnson Controls, automating the
design of test cases seems to be the most adapted solution to reduce the testing time, cost and
resources while improving the code and requirement coverage. We adopt the definition of
coverage proposed by IEEE.

Definition 1.9. Coverage (IEEE Std. 610-1990)

In software engineering, the term “coverage” means the degree, expressed as a percentage,
to which a specified coverage item (code or requirement) has been exercised by a test case.
For the definition of code (structural) and requirement (functional) coverage, please refer to
Chapter 2 – Section 5.F.

In our research, we go through this problem with a systemic approach in order to identify
levers in any domains from which we might be able to improve the global performance of the
software V&V activities. The added value of such an approach is the resolution of the problem
with a global quality viewpoint. Consequently, in Chapter 2, we characterize the software
design environment in automotive industry and point out issues and anomalies (diagnoses). In
Chapter 3, based on our industrial audit, we clearly define the scope of our research and we
formulate our research topic in accordance with the research issues in software testing. In
Chapter 4, we perform a literature review on the existing approaches, techniques and tools in
the field of the V&V of software products. More especially, we focus our research on finding
or adapting “solutions” for the anomalies and lacks (diagnoses) that we identify via our
industrial audit. We identify relevant actions for improving the global performance of the
Johnson Controls V&V activities. In Chapter 5, 6, 7 and 8, we specify our proposed models.
A prototype implementing our models has been developed in Chapter 9. Finally, in Chapter
10, we validate our models through two industrial case studies on historical data.

The need to improve the quality of software products in automotive industry R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

58

VII. Conclusion

Presently, automotive industry is facing significant difficulties in terms of selling new cars.
Therefore, carmakers ask their suppliers to innovate, increase quality, reduce time to market
and decrease the development cost. As electronics represents more than 30% of the global
cost of a car and stands for a big amount of the problems detected on a car, electronic
suppliers are the most concerned. Software technology is at the core of each electronic
product; therefore, electronic suppliers focus their efforts on the improvement of their
software development and V&V practices. Through our research project, we were asked by an
automotive electronic supplier namely Johnson Controls to improve the performance of its
software V&V activities. Their main purpose is to better satisfy the requirements and
expectations of their clients in terms of quality, cost and delay. In our research, we go through
this problem with a systemic approach in order to identify domains from which we might be
able to improve the global performance of the Johnson Controls software V&V activities.

In the following chapter, we perform an industrial audit on the software practices and more
especially on the V&V techniques currently used in automotive industry. We aim to identify
the issues and lacks of the current practices in order to propose relevant improvement actions
well adapted to the industrial context.

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

59

CHAPTER 2. INDUSTRIAL AUDIT

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

61

I. Introduction

The audit of the industrial context permits to identify and determine the overall environment
in which our research project has to be performed. This must results in a better understanding
of what verifying and validating a software product means and what are the necessary changes
to perform.

In this chapter, we perform an industrial audit on the software practices currently used in
automotive industry and more especially in Johnson Controls. The audit is divided into four
parts:

• The process of managing the carmakers’ requirements related to the software domain.
In fact, delivered software products must be compliant with the carmaker’s
requirements.

• The processes of verifying and validating software products. Many Verification and
Validation (V&V) activities are performed on a software product before the delivery to
the carmaker.

• The process of managing and reusing capitalized bugs. Indeed, bugs detected on
previous projects and stored in the problems’ database must be regularly reviewed in
order to avoid similar bugs on new developments.

• The process of managing and reusing capitalized test cases. In automotive industry,
the projects related to the same type of product and car platform of one carmaker have
up to 70% of common functionalities (Johnson Controls source). Therefore, reusing
test cases from one project to another must be done frequently.

For each of these parts, we make our analysis on two stages:

1. A snapshot of the current software practices in Johnson Controls (process, tool,
people)

2. Analysis and diagnoses of these practices.

In the conclusion of this chapter, we summarize the performed diagnoses and we locate them
within the Johnson Controls software organization.

II. Frame of the audit

Our approach to audit the practices currently used in Johnson Controls when verifying and
validating software products can be divided into 7 activities:

• Analyze the documents delivered by the carmakers to their electronic suppliers. Their
formats and their evolutions during the software development life cycle

• Analyze the main activities of an engineer when designing test cases for a software
product. This analysis is performed with a multi point of view: process, tool, and
people

• Audit engineers when designing test cases
• Intervention on the design of test cases for four software projects
• Interview managers on the expectations of the carmakers at each stage of the software

development life cycle
• Interview all types of engineers that can be involved in a software project
• Analyze data on the software testing practices of carmakers

In the following, the results of the audit are presented.

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

62

III. The software projects in automotive industry

A. An incremental software development process

Definition 2.1: Project (Wikipedia – November 2008)

A project is a temporary endeavour undertaken to create a unique product or service. It can
also comprise an ambitious plan to define and constrain a future by limiting it to set goals
and parameters. The planning, execution and monitoring of major projects sometimes
involves setting up a special temporary organization, consisting of a project team and one or
more work teams.

A project consists of a set of coordinated and controlled activities organized to achieve an
objective conforming to specific requirements. Presently, at Johnson Controls, a product
project (hardware, software and mechanical skills) typically represents 24 months of
development and involves around 25 engineers (Johnson Controls source). The five main
stages of a project are illustrated in Figure 2.1 and described in Table 2.1. Each stage is
defined by a procedure that identifies the responsibility, deliverables (inputs, processes and
outputs) and applicable references. The main focus of these stages is the design and testing of
components and assemblies through product launch. It is a customizable process that is to be
applied for all automotive products within Johnson Controls company.

Figure 2.1 – Product development system at Johnson Controls - Some parts of this figure

are voluntarily fuzzyfied for confidentiality reasons (Johnson Controls source)

Table 2.1 – Description of the stages of a product project (Johnson Controls source)

Software
steps

V-model 1st serial
software

Proposal
Prepar
ation

Analysis
& Design

ED
Development

DV
Develop. Testing Adjustment Maintena

nce
PV

Development

100%
functional
software

STAGES PROPOSAL DESIGN & DEVELOPMENT DESIGN VERIFICATION PRODUCTION VALIDATION LAUNCH

1 optional
iteration

1 or more
iterations

1 or more
iterations

1 or more
iterations

1 or more
iterations

1 or more
iterations

1 or more
iterations

1
iteration

Sof tware
change

management

V-model V-model V-model V-model V-model V-model
V-model

PHASES DESCRIPTION

Phase 1: Proposal Responding to customer inquiries regarding new products.
The requirements of the customer are identified and
proposals are submitted for customer approval

Phase 2: Design &
Development

Expanding upon the proposal through the establishment of
the product definition to ensure product feasibility

Phase 3: Design Verification Completing product design resulting in a detailed definition
of both the product and process

Phase 4: Production
Validation

Encompassing the activities required to ensure that the
product meets all customer requirements when produced

Phase 5: Launch Ensuring production preparation to ensure a smooth
transition from production initiation to volume production

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

63

The objective of the milestones of the product development system is to check the status and
the progress of the program. Software skill has to take into account the hardware and
mechanical releases availability and carmaker deliveries requirements of the product project
to define its life cycle and its planning. In Figure 2.1, the steps of the high level software life
cycle are mapped with the product development stages. A detailed description of the software
steps is given in Table 2.2.

Table 2.2 – Description of the steps of the high level software life cycle (Mignen 2006a)

The software life cycle is initialized during the Proposal step and adjusted during the
Preparation step according to carmaker deliveries planning and requirements prioritization
(Cf. Figure 2.1). 100% functional software means that all functionalities are implemented
(carmaker and manufacturing requirements are implemented). If significant changes have to
be implemented for a new release during the Maintenance step, a new software project is
launched and the program remains in stage #5.

B. The elementary V-model of the software development process

Within each step of the software standard life cycle, engineering activities are performed
according to the standard V-model of the software industry (Cf. Figure 1.6) and in an
incremental way in order to take the carmaker constraints and requirements priorities into
account. The number of incrementations per step is defined by the project and adjusted based
on carmaker inputs and project constraints. Based on the SPICE16 model, Johnson Controls
has developed a process map implementing the conventional V-model (Cf. Figure 2.2).

16 SPICE: Software Process Improvement and Capability dEtermination
(http://www.sqi.gu.edu.au/spice/contents.html, Consulted on November 2008).

SOFTWARE
STEPS Description

Proposal Analyze the customer need in order to estimate workload, schedule and resources
needed to perform the software project

Preparation Analyze in detail main customer requirements and deliver a 1st prototype (functionality
level)

Analysis & Design Analyze all customer requirements, define details of software architecture, deliver a
functional release that contains main customer requirements and define the validation
strategy

ED* Development Complete the analysis of remaining requirements and deliver a partially functional
release, with full functional but without diagnostic

DV* Development Complete the global design, deliver a partially functional release without validation and
manufacturing functionalities but with full functional and diagnostic and complete the test
report for DV release

PV* Development Complete the analysis of remaining requirements including validation and manufacturing
requirements, specify and accept testing tools for production line

Testing Perform a full testing of the software, improve the software reliability from customer tests
feedback and complete the test report for PV Release

Adjustment Take into account last minute customer changes and possible software problems and
deliver an industrial release

Maintenance Take into account eventual problems on serial products and customer changes

* ED: Engineering Development
DV: Design Verification
PV: Product Validation

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

64

Figure 2.2 – Process map implementing the software V-model at Johnson Controls

(Mignen 2006a)

Each process or group of processes (Support processes) of the process map is synthetically
described in Table 2.3.

Table 2.3 – Description of the software processes within Johnson Controls (Mignen

2006a)

As illustrated in Figure 2.1, these software processes are carried out before each carmaker
delivery of the software product. Despite the V&V of the software product and after each
delivery to the carmaker, some bugs are detected by the carmaker. This could lead to the
conclusion that carmakers have more efficient testing approaches than their suppliers. But,
carmakers do not communicate on their practices and furthermore, they do not often transmit
test cases to their suppliers. We analyze data on the software testing practices of carmakers
and interview inner experts in touch with the carmakers. As a conclusion, this efficiency in
testing software products can be related to many factors such as:

Project management

Support processes
(Not detailed for confidentiality reasons)

SOFTWARE PROCESS Main activities

Project Management (PM) Plan and monitor the software project
Manage risks and documentation

Requirements Specification (RS) Define, classify and prioritize requirements
Establish traceability after validation

Global Design (GD) Define general software architecture, components and interfaces
Provide traceability and verify global design

Component Development (CD) Develop detailed design, produce and verify components
Develop, review and execute unit test procedures

Integration (INT) Define software integration strategy
Perform incremental integration and execute integration tests

Validation (VAL) Develop software validation strategy
Design, implement and perform validation procedure

Support processes
(Not detailed for confidentiality reasons)

Control changes to configuration items
Plan, track, verify and validate changes / defects
Perform document and project reviews
Perform Software quality and process audits

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

65

• The carmakers benefit from real electronic platforms where the supplier modules are
installed and tested. In fact, the modules are tested in a simulated real environment
with surrounding modules in a global system approach.

• The carmakers use their experience feedback of recurrent bugs to test a given module
with the knowledge of bug probabilities and even end-user behavior’s profiles to
design the most relevant test cases.

Diagnosis 1

Verification and Validation practices and test cases are rarely shared between the
carmakers and their electronic suppliers.

C. Functional organization of a software project

Besides the project leader, the coordination team and the quality team, one can identify two
technical teams in a software project at Johnson Controls (Cf. Figure 2.3):

• One in charge of the development of the software product
• And the other in charge of its validation.

Figure 2.3 – Typical functional organization chart of one software project at Johnson

Controls - Not detailed for confidentiality reasons (Mignen 2006b)

The coordination team is located in so called “front office” sites, close to the carmakers.
Development and validation teams are in general located in Low Cost Countries (LCC).
However, in some cases, they can be spread across several locations. Globally, we have
Software Developer (SD or developers) who develop the software product, Software
Validation Engineer (SVE or validator) who validate the software product before a carmaker
delivery, Software Coordinators (SC) who are responsible for the assignment of the quality,
schedule, cost goals and quality engineers who ensures that project quality commitments are
respected. For confidentiality reasons, we are not allowed to give more details on the roles
within a software project.

Ten years earlier, software V&V was covered only in software engineering courses.
Nowadays, American but also European universities have responded to the importance of the
V&V practices in industry with new independent courses and specialties in verifying and
validating software products (Duernberger 1996). The goal of these courses is to prepare
students for software testing management, testing considerations, designing test cases, and

Technical Project Leader

Software Coordinator

Software
Validation
Architect

Software

Architect

Software

Validation Leader

Software

Development Leader

Software Product

Integrator

Sw Requirements

Engineer

Software

Integrator

Software

Developer

Software

Leader

Software
Validation
Engineer

SW Configuration

Engineer

Customer
Quality Manager

Quality Engineer

Auditor

Safety Manager

SafetyEngineer

Development
team

Validation
team

Quality teamCoordination team

Project leader

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

66

applying various testing tools and methodologies. The fact remains that industrials give value
to software verification and validation roles. In fact, software engineers often prefer
development activities compared with verification and validation activities. This observation
has been confirmed after interviewing software managers within Johnson Controls.

Diagnosis 2

Now, one cannot get a degree in software V&V. Software V&V is incorporated into the
software engineering degree. Moreover, software engineers often prefer development

activities compared with verification and validation activities.

IV. Management of the carmaker requirements related to software

Let us start by defining a common vocabulary on carmakers’ requirements related to the
software domain. In this dissertation, we consider the definition of specification and
requirement proposed by IEEE.

Definition 2.2: Specification (IEEE Std. 610-1990)

A specification is a document that specifies, ideally in a complete, precise and verifiable
manner, the requirements, design, behavior, or other characteristics of a component or
system, and, often, the procedures for determining whether these provisions have been
satisfied.

Definition 2.3: Requirement (IEEE Std. 610-1990)

A requirement is a condition or capability needed by a user to solve a problem or achieve an
objective that must be met or possessed by a system or system component to satisfy a contract,
standard, specification, or other formally imposed document. There are two groups of
requirement:

- Functional requirement: A requirement that specifies a function that a component or system
must perform.

- Non functional requirement: A requirement that does not relate to functionality, but to
attributes such as reliability, efficiency, usability, maintainability and portability.

We also adopt some definition proposed by Johnson Controls software experts.

Definition 2.4: (Software) Functionality (Johnson Controls)

A functionality (called also client or software functionality) is described by some features that
are described by some requirements. For instance, a speedometer is a functionality of a
cluster

The term “Function” is not used in requirement management to avoid misunderstandings
with the coding language.

Definition 2.5: Feature (Johnson Controls)

A feature is a “property” or “behavior” of a software. It describes the particularity of a
device. Each feature is composed from one or more requirements. For instance, a
“Speedometer” is a feature of a cluster. It can be broken down into 3 features:

- Speed display

- Speed computation

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

67

- Conversion from Km to miles

The breakdown granularity has to be adjusted according to the project needs.

Definition 2.6: Requirement (Johnson Controls)

A requirement is something to be done to design the device (it is required). For instance, the
value of the speed shall be calculated using the X data. Each requirement must contain a
subject / object and a predicate:

- Subject = system, user

- Verb / Predicate = action

The whole Requirement needs to define a result. A performance or measurable indication
needs to be included

There are 5 types of requirements:

- FCT: functional requirement (behavior of the software)

- CON: constraint requirement (reliability, safety, quality, process, rules, guidelines …)

- INT: interface requirement (specification of internal and external interfaces)

- DEV: development requirement for internal development support (interface, parameter …)

- MMI: man-machine interface requirement (Menus, buttons …)

Within the customer requirements, the software functional requirements account for
more than 90% (Johnson Controls source). We also validate this proposal by analyzing
the carmaker requirements for 5 different software projects (different products) in
Johnson Controls. Therefore, through our research project, we focus on the software
functional requirements and how one could verify the compliance of a software product
with its functional requirements.

A. The carmakers specification of software functional requirements:
diversity, typology, evolution

At the beginning of a project, automotive suppliers officially receive the electronic product
requirements from the carmakers. In fact, there is no standardization between carmakers and
electronics suppliers on the way requirements must be expressed. Based on this deliverable,
suppliers analyze and identify skill requirements (software, hardware and mechanical).
Afterwards, software requirements are sorted by the software department according to the
typology proposed in Definition 2.5. In our research, we focus on the software functional
requirements on which we identify two main characteristics:

1. Carmakers consider different standards to express the software functional
requirements of a given electronic module. Some carmakers use semi-formal methods,

Example:

The display backlight has to be switched on in less than 1 second after ignition on.

object action result performance/measurable

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

68

such as Statechart or UML17 illustrated respectively in (Harel 1987) and (OMG 2005),
others use natural language. Even, one carmaker could use two or more different
standards according to each department policy. In 2007, we carried out a study on the
evolution of the formalisms used by carmakers to specify software functional
requirements. In Chapter 4 – Section 4.D.1, we do a survey on the formalisms used to
specify the functional requirements of a software product (Dart 1987, Brinkkemper
1990). Three levels of formalism have been identified: informal, semi-formal and
formal. The study was done on eight editions of carmaker requirements documents
spanning from 1997 till 2006. We also considered three different carmakers: two
Europeans and one Japanese but only one type of electronic product. The results of the
study are illustrated in Figure 2.4. We underline the increase of formal methods based
on the requirements simulation and the decrease of informal and semi-formal methods.
Since this conclusion is fully true for the considered type of product, it is partially true
for other types of product where natural language and semi-formal methods are still
widely used. However and according to automotive experts, the trend is toward formal
methods. Through this study, we also noted that software functional requirements are
often expressed in many documents, emails, and even some phone calls.

Figure 2.4 – Evolution of the formalisms used by carmakers to specify the functional

requirements related software

17 UML: Unified Modeling Language (http://www.uml.org/, consulted on November 2008).

0

10

20

30

40

50

60

70

80

1997 1999 2001 2003 2005 2006 2006 2006

%
 o

f t
he

 fo
rm

al
is

m

Edition date of the software functional requirement s

Informal

Formal

Semi-formal

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

69

Diagnosis 3

In automotive industry, semi-formal and formal methods are more and more used to specify
software functional requirements. However, there is a lack of a standard formalism shared

between carmakers and suppliers. In fact, for each project, the supplier has to adapt its
processes to the formalism used by the carmaker.

2. Software functional requirements continuously evolve during development phases and
also during operational life of the product. In 2007, we analyze the evolution on one
project of the carmaker requirements related to software. The studied project started in
2005 and it is considered (by experts) as a typical project in automotive electronics
industry. The Figure 2.5 illustrates the results of the study. We note the growth
number of changes asked by the carmaker after the date of software requirements
freeze. We interview inner software experts and managers, often in contact with the
carmakers, in order to understand this phenomenon. In fact, at the beginning of a
project, the carmaker does not have a 100%-clear view of what each functionality
should perform. It is through the project and after each delivery that the expected
behaviors become clearer. Moreover, suppliers are often more experimented in the
development of automotive electronic products than some carmakers (system
integrator). This leads to the fact that some carmakers lean on the suppliers by letting
them identify inconsistencies and ambiguities in the product specifications.

Figure 2.5 – Growth of the number of changes asked by the carmaker all along a project

Diagnosis 4

Deadlines for carmaker requirements freeze are specified in the carmaker-supplier
contract. Nevertheless, the carmaker’s requirements evolve continuously along the software

development life cycle without complying with these deadlines. Moreover, suppliers must
react quickly by integrating (without regression) the changes in the product.

Software product delivery 1 2 3 4 5 6 7 8 9

Date of deliveries jan-05 mar-05 juin-05 sept-05 jan-06 juin-06 sept-06 jan-07 ma-07

Carmaker software requirements
freeze

jul-04 oct-04 jan-05 juin-05 sept-05 - - - -

Cumulated number of the software
functionalities implemented in the
delivery

9 24 41 49 53 53 53 53 53

Number of the requirements change
requests done by the carmaker once
the date of freeze is passed

0 1 1 20 13 66 14 0 0

9

24

41

49
53 53 53 53 53

0 1 1

20

13

66

14

0 0
0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9

Software product delivery

Cumulated number of the
sof tware functionalities
implemented in the delivery

Number of the requirements
change requests done by
the carmaker once the date
of f reeze is passed

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

70

B. Commitment contract between carmakers and electronic suppliers

As noticed before, a loop-type design process is initiated between the carmaker and the
supplier. About ten intermediary client deliveries are carried out. After each delivery, some
“bugs” are detected by the carmaker and forwarded to the supplier who must react quickly
and efficiently. Once an electronic module is launched on the market (e.g. integrated into a
vehicle), an average of one “bug” per year is detected by the end-users, which may becomes
dramatic for the electronic supplier in financial terms if the product has to be systematically
changed.

We analyze typical contractual documents between carmakers and electronic suppliers.
Moreover, we interview Johnson Controls managers in charge of establishing these contracts.
In fact, in term of bugs’ occurrence, two types of contract engage electronics suppliers with
car manufacturers:

• Explicit contract: on launched electronic module, carmakers tolerate a certain number
of defective products expressed in terms of PPM (Pieces Per Million). PPM includes
all software bugs but also electronic, mechanical and production defects. For instance,
in Table 2.4, when starting production (SOP) the carmaker tolerates X PPM on 0 km
cars. It is logical that the required number of PPM on 0 km cars decreases (Y<X) 4
months after the production has started. The number of PPM is negotiated at the
beginning of a project. The electronic supplier estimation of their capability in term of
PPM number is mainly based on the experience feedback but also on the product
complexity and novelty.

Table 2.4 – Explicit contract, in terms of bugs’ occurrence, between a carmaker and an

electronic supplier

• Implicit contract: implicit aspects are usually disclosed later in the development life
cycle and are generally based on semantic problems. For instance, during the software
development process and even if it was not stated in the contract, the carmaker
expected that each intermediate delivery must be free of bugs. Many other examples
can be cited. In fact, the requirements specifications delivered by the carmakers are
usually and purposely unclear and incomplete in order to be able to add, modify or
remove one or more requirements.

C. Sensitive criteria for carmakers

Carmakers are sensitive to different criteria depending on whether the project is in its
proposal, design and development or operational life phase. In order to identify these criteria
for each phase, we interview 3 project leaders for 3 projects in each of these phases.

SOP* SOP + 4 months SOP + 1 year

0 km X ppm** Y < X ppm Z < Y ppm

3 months

1 year

3 years

*SOP : Start Of Production
**ppm: piece per million

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

71

1. Proposal phase

In proposal phase, carmakers choose their suppliers basically on economic criteria. An
additional cost regarding other suppliers can exist but must be justified on quality and/or delay
levels. Moreover, they strongly used their experience feedbacks on other or previous projects
with each supplier.

Presently, all the automotive electronic suppliers have almost the same knowledge and know
how in the product design, development and maintenance. Therefore, competing with other
suppliers on technical criteria remains very hard.

Finally, the process improvement aspect becomes a major quality criterion for the carmakers.
For instance, the carmakers require now that their suppliers have reached a specific maturity
level within the SPICE or CMMI18 models. These two models are process improvement
approaches that provide organizations with the essential elements of effective processes.

2. Product design and development phase

During the product design and development phase, intermediate deliveries of the product
(including all or part of the product functionalities) are planned. Carmakers are sensitive to:

• Time to delivery: the supplier must respect the planning established at the beginning of
the project.

• Product quality: the supplier must test the product and validate its conformance with
the carmaker requirements before the delivery. “Zero bug” is required by the
carmaker.

• Additional cost: sometimes, the supplier tries to invoice the modification or evolution
requests asked by the carmaker.

3. Operational life phase

We identify three criteria to which carmakers are sensitive during the operational life of a
product. We classify these criteria by priority order:

• Regression risk while modifying or correcting the product: the financial impact on the
supplier can be severe especially when the car product lines are stopped because of its
product. In order to better illustrate this issue, let us consider the following example
excerpted from a real situation. Once, a carmaker required a modification on a product
in operational life phase. The modification as it was expressed by the carmaker was to
“remove” a piece of software code from the product in order to avoid the hacking of
the product and therefore the stealing of the car. The supplier has implemented this
modification by erasing the piece of code, full validated and delivered the new product
version. The carmaker has also made a full validation of the new version of the
product. Unfortunately, when starting the serial car production and when integrating
the product in the cars, a bug related to this modification has occurred and thus
blocked all the car production lines. A deep analysis of the bug has revealed that the
removed piece of code must not be removed from the product but hidden. One more
example on the implicit requirements of the carmakers since the carmaker declared
that when he asked for “removing the code”, he indirectly asked for “hide the code”.

18 CMMI: Capability Maturity Model® Integration (http://www.sei.cmu.edu/cmmi/, Consulted on November
2008).

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

72

• Economic criteria regarding the modification and correction costs.
• Time to deliver the new product version with the modifications and/or corrections

requested.

D. Snapshot of the Requirements Specification process at Johnson Controls

1. Introduction

The purpose of the current Requirements Specification process is to ensure that all software
requirements reflect allocation of carmaker and/or system requirement to software are
identified, documented, maintained, committed and validated to serve as a basis for software
design, implementation and validation. As a result of the Requirement Specification process:

• the software requirements to be allocated to the software components of the system
and their interfaces are defined,

• software requirements are classified and analyzed for correctness and testability,
• the impact of software requirements on the operating environment is evaluated,
• prioritization for implementing the software requirements is defined,
• the software requirements are approved and updated as needed,
• consistency and bilateral traceability are established between system requirements and

software requirements; and consistency and bilateral traceability are established
between system architectural design and software requirements,

• and the software requirements are baselined and communicated to all concerned
people.

2. Interfaces with other software processes

The current Requirements Specification process is considered as the main important process
within the software processes. In fact and as shown in Figure 2.6, this process strongly
interacts with all other processes. Especially, it delivers the software requirements to allocate
them to components (Global Design), to develop these components (Component
Development) and to design associated test cases (Validation).

Figure 2.6 – Interaction of the Requirements Specification process with the other

software processes (Mignen 2008)

Requirements Specification

Global Design

Component Development

Integration

Validation

Quality Assurance

Review & Verification

Change & Defect Management

Configuration Management

Project Management / Documentation Management C
U
s
t
o
m
e
r
/
S
y
s
t
e
m
/
S
a
f
e
t
y

R
e
q
.

Safety Management

Project Management / Documentation Management

Quality Assurance

Review & Verification

Change & Defect Management

Configuration Management

Safety Management

Validation

Integration
Global
Design

Component
Development

C
u
st
o
m
er
/
S
y
st
e
m
/
S
af
et
y

R
e
q

Requirement Specification

Support processes
(Not detailed for confidentiality reasons)

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

73

3. Process flow

Within each step of the software standard life cycle (Cf. Figure 2.1), engineering activities are
performed according to the process map illustrated in Figure 2.2 and in an incremental way in
order to take the carmaker constraints and requirements priorities into account. After
analyzing internal documents related to the definition of the Requirements Specification
process, we identify 6 main activities for the management of software requirements. In fact,
for each design iteration, the Requirements Specification process flow follows the series of
activities defined in Table 2.5.

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

74

Process Comments

Elicit and maintain
needs

Define
requirements

Classify &
prioritize req.

Iteration start

Establish
traceability

Obtain validation
& commitment

Iteration stop

Define validation
criteria

Carmaker documents of requirements are
identified

The activity continues until all requirements in
the scope of iteration are defined). A list is used
to track unclear needs until clarification with the
carmaker

All Software requirements are classified and
prioritized

Special conditions for validating requirements are
defined

Traceability is established with carmaker and/or
system requirements

All the requirements are reviewed by internal and
external concerned people.
Commitment on software requirements is done
with carmaker and system

Table 2.5 – Process flow of the Requirements Specification process

a. Elicit and maintain needs

This activity aims to establish and maintain carmaker and system needs and expectation that
will serve as a basis for specifying requirements allocated to software. The features required
by the carmaker are identified and peer projects for these features are identified for use of
lessons learned.

b. Define requirements

For each feature, software requirements are specified or updated using the Software
Requirement Specification (SRS) model (see next section for the principles of this model).

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

75

Requirement Management tools such as Reqtify19 or Doors20 can be used for managing and
storing requirements. All items that need to be clarified are filled in a CLarification Request
list (CLR) and discussed with concerned people.

c. Classify and prioritize requirements

For each software requirement identified in the SRS, one has to define:

• the type of the requirement (FCT, CON, INT, DEV, MMI),
• the status (new, accepted, confirmed, dropped),
• the priority (high, normal, low),
• the associated feature,
• and the required verification and validation technique (code analysis, code review, unit

test, integration test, validation test).

Other criteria can be added such as safety, revision and so on. A Requirement Management
tool can be used for this classification.

d. Define validation criteria

In order to support the validation team and facilitate test case definition, validation criteria
need to be specified. These criteria consist of defining when the test can be considered as
passed correctly (test case results acceptance). A validation criterion can be applicable on
several requirements or group of requirements. Validation criteria can be based on a lesson
learned. By default, standard validation criteria are the successfully passing of test cases (in
this case, it is not necessary to define specific validation criteria). The validation criteria shall
define special conditions for validating some requirements if their validation deviates from the
standard use of tests cases. For instance:

• Specific criteria to validate (respect of standard, performance criteria, different
situations to validate …).

• Condition for validating the requirement (normal and specific conditions for the test,
stress situations, tools, or negative tests).

• Criteria defining when validation tests can be considered as passed correctly
(including thresholds of performance deviation).

e. Establish traceability

Purpose of this activity is to establish and maintain upward bilateral traceability between user
requirements (carmaker requirements, system requirements) allocated to software and
software requirements in order to verify that all carmaker and system requirements that have
been allocated to software are taken into account in the SRS. The result of this activity is a
matrix called traceability matrix.

f. Obtain requirements validation and commitments

Each time a step of the SRS elaboration is achieved in order to start a part of software
development, the version of SRS is reviewed to make sure the understanding and commitment

19 http://www.geensys.com/?Outils/Reqtify (Consulted on November 2008).
20 http://www.telelogic.com/Products/doors/doors/index.cfm (Consulted on November 2008).

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

76

by the implementation and validation teams. Once the version of SRS is released, it is base
lined and serves as a basis for implementation and validation activities.

E. The Software Requirement Specification model currently used in
Johnson Controls

Automotive electronics suppliers like many software engineering organizations adopt the
Software Requirement Specification (SRS) model to express the various expectations of a
software product. A SRS model is a comprehensive description of the intended purpose and
environment for software under development. The SRS fully describes what the software will
do and how it will be expected to perform. A good SRS defines how an application will
interact with system hardware, other programs and human users in a wide variety of real-
world situations. Parameters such as operating speed, response time, availability,
maintainability, security and speed of recovery from adverse events are evaluated. Methods of
defining an SRS are described by IEEE (IEEE Std. 830-1998).

Johnson Controls has adapted the SRS model to its organization, needs and types of products.
In Figure 2.7, the data model of the SRS currently used is described. The SRS document
serves as a basis for software design and validation plan.

The engineer responsible of managing the carmaker requirements shall update the SRS
document according to the CLarification Request (CLR) answers and input specification
updates as well as change requests. Once the SRS document has been released, the CLR shall
be used to ask question or request or give clarification on SRS (the CLR is used with the
carmaker and internally in the team). The SRS shall be updated with the content of the CLR.
The change of the specification after the specification freeze milestone shall be an exception.
The specification freeze corresponds to the date where in theory no specification change is
allowed.

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

77

Figure 2.7 – A UML-like data model of the SRS currently used in Johnson Controls

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

78

Diagnosis 5

The Software Requirement Specification (SRS) document is often a large document (about
hundreds of pages), difficult to manage, incomplete and not regularly updated.

Diagnosis 6

Sometimes, the SRS document is the official and contractual document between carmaker
and supplier. It is also the main document used by the development and V&V teams in their

activities. It has a standard structure but there are no standards to specify carmakers’
requirements (more especially functional requirements).

F. Quality criteria of a requirement

In order to support reviews and improve the quality of software requirements the following
criteria are defined by Johnson Controls software experts. They must be checked during
reviews and respected during the set up of the SRS document. The review of the SRS
document is supported by a Checklist. It consists of verifying explicitly the criteria listed
hereafter.

1. General criteria

• Use a simple language style to define the requirements.
• Short sentences, not interlocked, need.
• Use present tense.
• Use simple, clear, vocabularies, introduced terms wherever possible
• No multiple definitions.
• Reference what is defined correctly by existing specifications (do not copy).
• Apply SRS template and Requirement Management tool template (Styles, fonts, types

…).
• Do not specify design or implementation. Describe what to do not how to do it.
• In case of complicated conditions use state-, sequence- or flow chart to gain clarity and

remove ambiguity.
• Describe the interface of the device with the environment not the interface of

components within the device. In case of complicated conditions use state-, sequence-
or flow chart to gain clarity.

2. Detailed Quality Criteria

Understandable

• The text is easy to understand and the requirement is clear for the reader.
• Needless or confusing words are not used.

Complete

• The Feature (group of requirements) will contain all the information needed to
implement and test the requirement. No information needed to implement the feature
will be missing.

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

79

Consistent

• There will be no contradictions within a single requirement or between two
requirements.

• Usage of the same terms as used in other definitions.

Necessary

• The definition is needed for the realization of the feature. Removing the requirement
will change the behavior related to the feature and/or will render the feature
incomplete.

• Unambiguous.
• The definition is clear and has only one single interpretation.

Atomic

• A further breakdown of the definition is not possible.

Feasible

• It is possible to implement, fulfill and test the definition (time, budget, know-how?).

Maintainable

• There will be no redundancy. Redundancy is allowed only when removing the
redundant phrase, sentence or requirement will cause ambiguity.

Testable

• It is possible to test the definition / to develop a test case.

V. Software verification and validation activities in automotive industry

A. Overview on software verification and validation techniques at Johnson
Controls

As we shown in Section 3, within each step of the software standard life cycle, engineering
activities are performed in an iterative way according to the standard V-model of the software
industry. The Component Development process is the process where the source code is
developed. Following the code implementation and before any carmaker delivery, a series of
verification and validation techniques have to be applied on the source code in order to check
its correctness and its compliance with the carmaker expectations (software requirement
specification). At Johnson Controls, we identify 3 software inspection techniques (Code
review, static analysis, dynamic analysis) and 3 software test techniques (unit, integration and
validation test). In this dissertation, we adopt the definitions proposed by IEEE for each of
these techniques.

Definition 2.7: Software code review (IEEE Std. 610 1990)

The software code review is a visual examination of a software work product to detect defects,
e.g. violations of development standards and non-conformance to higher level documentation.

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

80

Definition 2.8: Static code analysis (IEEE Std. 610 1990)

The static code analysis is an analysis of source code without execution of that software. A
static code analyzer is tool that carries out static code analysis. The tool checks source code,
for certain properties such as conformance to coding standards, quality metrics or data flow
anomalies.

Definition 2.9: Dynamic code analysis (IEEE Std. 610 1990)

The dynamic code analysis is the process of evaluating behavior, e.g. memory performance,
CPU usage, of a system or component during execution. The dynamic analysis tool provides
run-time information on the state of the software code. These tools are most commonly used to
identify unassigned pointers, check pointer arithmetic and to monitor the allocation, use and
de-allocation of memory and to flag memory leaks.

Definition 2.10: Software Unit, Integration and Validation test (IEEE Std. 610 1990)

Unit test is the test of individual software components.

Integration test is the test performed to expose defects in the interfaces and interaction
between integrated components.

Validation test is the process of testing an integrated software product to verify that it meets
specified requirements.

The interactions between these testing techniques are illustrated in Figure 2.8.

Figure 2.8 – Interactions between unit, integration and validation tests

The location of these techniques within the Johnson Controls software process map is shown
in Figure 2.9.

Unit
test

Unit
test

Unit
test

…

CMP 1

CMP 2

CMP n

Integration
test

Validation
test

Unit tested
components

Integrated
components

Validated
software
product

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

81

Figure 2.9 – Software verification and validation techniques within the Johnson Controls

process map

Each of these techniques must catch different classes of bugs at different points in the
development cycle.

B. Software V&V techniques in Component Development process

The purpose of the Component Development process, as it is defined in Johnson Controls, is
to produce executable software components that properly reflect the global design and
software requirements. Moreover, a strategy has been defined in order to verify and validate
each software component, after it is produced. This strategy is applicable for all the software
components in the projects. For each component in the scope of the V-model, a Component
Development process is used. After analyzing internal documents related to the definition of
the Component Development process, we identify 3 main activities when developing a new
software component (Cf. Table 2.6).

Project management

Support processes
(Not detailed for confidentiality reasons)

Code
review

Static
analysis

Dynamic
analysis Unit test Integration

test
Validation

test

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

82

Process Comments

Develop detailed
design

Produce
component

2

Iteration start

1

OK ?

YES

NO

Iteration stop

OK ?

YES

NO

Unit test
component

Verify
component

All these activities are performed by Software Developers (SD)

Bugs detected on component can lead to
correct detailed design and/or code

The "Verify component" activity consists to:
- Review the code
- Analyze statically the code
- Analyze dynamically the code

“Unit test” of the software component

If the results of the unit test done on the
component are OK, the component is
promoted to integration

Table 2.6 – Process flow of the Component Development process

First activity: Produce component

Produce component activity aims to produce components (source code, code generator data
…) and/or to fix bug(s) detected in next steps of development (verification and unit test
activities). This coding activity is based on global and detailed design and implements the
component design made previously. Coding has to be done in accordance with defined coding
standards, rules and guidelines and with embedded system constraints (memory size,
hardware dependency …).

Second activity: Verify component

In this activity, three software inspection techniques (static V&V techniques) are performed:

• Code review, based on the Review & Verification process.
• Static analysis based on a commercial tool (QAC21).
• Dynamic analysis based on a commercial tool (PolySpace22).

The verify component activity follows a process flow described in Table 2.7.

21 http://www.programmingresearch.com/QAC_MAIN.html (Consulted on November 2008).
22 http://www.mathworks.com/products/polyspace/index.html (Consulted on November 2008).

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

83

Process Comments

Produce
component

1

YES

Static
analysis ?

NO

YES

2

YES

NO

Static
analysis

Dynamic
analysis

Bugs ?

Bugs ?

NO

NO

YES

Dynamic
analysis ?

Verify component

Comp.
review ?

NO

YES

Component
review

YES
Bugs ?

Do we need to review the software
component?

Code review is performed in filling
the nonconformities in an Issue Log.

Do we need to statically analyze the
software component?

Static analysis is performed with a
static analysis tool: QAC.

Do we need to dynamically analyze
the software component?

Dynamic analysis is performed with
a dynamic analysis tool: PolySpace.
It is possible to perform dynamic
analysis only for the whole software

Table 2.7 – Process flow of the verification of a software component

Code reviews are mainly intended for checking respect of coding standard and rules / quality
of comments in a software component. Static analysis is intended to check the compliance of
the source code with the international automotive software coding rules (MISRA-C23).
Dynamic analysis is intended for detecting problems, with a dynamic point of view, early in
the life cycle. This type of problems could be detected by testing activities. Static and
dynamic analysis can be done on the whole software (and not only for each component).

Third activity: Unit test component

This activity consists of testing unitarily each software component. In other words, this
software test technique intends to verify the correctness of all functions / conditions /
decisions / component inputs and outputs / boundaries and limits in a component source code.

23 MISRA-C is a software development standard for the C programming language developed by MISRA (Motor
Industry Software Reliability Association, http://www.misra.org.uk/, Consulted on November 2008).

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

84

To summarize, the software Component Development process within Johnson Controls
performs four V&V techniques on each software component: three inspection techniques
(code review, static and dynamic analysis) and one test technique (unit test). In the
following, we develop each of these techniques as it is practiced at Johnson Controls.

1. Technique 1: Review of a software code

According to the Johnson Controls process, the purpose of the software component review is
to:

• Check whether the source code of the produced component respects the design or not.
• Check whether all remaining problems after automatic static/dynamic analysis are

properly justified in the source code.
• Verify the quality of the comments written in the source code.
• Verify the traceability of the component to software requirements.
• Check whether the source code respects the coding guidelines, especially those rules

that cannot be tested automatically by a tool. Software engineers have to check the
compliance of the inspected code to the rules and recommendations. The
modifications of these rules can be made by a committee, whose members are
appointed by the Software Engineering Process Group24 (SEPG) of the company. The
committee includes representatives of all Johnson Controls sites on which this
document is deployed. In fact, there is a document which defines coding rules and
recommendations for using the C language25 in the development of embedded
software for the automotive industry. The document is organized as a collection of
rules and recommendations illustrated in Figure 2.10:

o A rule is a prescription that has mandatory character. It must be always
followed.

o A recommendation is a prescription that has advisory character. It must be
followed as much as possible.

Figure 2.10 – Classification of programming rules and recommendations

24 The SEPG is a group of software experts.
25 Computer language.

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

85

An excerpt of these rules and recommendations is illustrated in Appendix A. Absolute and
unconditional adherence to these rules and recommendations may not be possible at all times.
However, it must be noted that some general rules is of an outstanding importance – under no
circumstances shall this rule be broken.

In order to perform the code review of a software component, a group of Johnson Controls
software engineers must read the source code and simultaneously fill an Issue Log with the
identified issues. An Issue Log capitalizes the reviewers’ names, the date of reviewing, the
name of the reviewed component, the review load, the reviewed number of Lines Of Code
(LOC) and a list of identified issues. For each issue, reviewers give an ID, the number of the
line where the issue was found, a description of the issue and the status of the decision and
correction.

In 2006, we carried out a study within Johnson Controls on four projects related to two
different electronic products. The aim of this study was to audit the practical implementation
of the code review technique. The main result of this study is that number of code reviewers is
not aware of the coding rules and recommendations. Moreover, we note that code review is
not systematically performed on each new software component. These conclusions were also
validated by inner software experts and managers. In fact, in automotive industry, software
testing is considered to be the main V&V activity which has to detect all the bugs.
Unfortunately and as shown in Figure 1.11, detecting bugs later in the process costs more
than detecting them as soon as they are introduced.

Diagnosis 7

Sometimes, the review of software code is badly done or even ignored. In fact, number of
code reviewers is not aware of the coding rules and recommendations to be checked.

Moreover, the code review is not systematically performed on each new software
component. In consequence, the code review does not often detect all the bugs that must be

detected through this activity.

2. Technique 2: Automatic static analysis of a software code

According to the Johnson Controls process, the goals of the static analysis are to:

• Improve the quality of the source code.
• Improve the robustness of the software.
• Make the source code as much as possible portable.
• Be compliant with MISRA-C.

There are two phases of this analysis, executed separately:

• During the verification activity of a single component. This must be done by the
developers who create/modify the components.

• Overall project static analysis. Done after the integration of all the components. This
task could be delegated to an experienced developer.

The static analysis is performed automatically using a computer tool such as QAC, the most
used in automotive industry. It is recommended to apply this V&V technique in the beginning
of the project in order to be able to detect and fix the issues as early as possible. The criterion
to stop the static analysis of a source code is that all QAC errors and warnings are either fixed
or justified. A screenshot of the QAC tool is illustrated in Appendix A.

3. Technique 3: Automatic dynamic analysis of a software code

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

86

A dynamic analysis of the software code is performed in order to find and fix as early as
possible the software bugs that could possibly occur one executing the software product and
cannot be detected by code reviews and static analysis. The dynamic analysis is performed
automatically thanks to a commercial tool PolySpace. The intention is to get a clear view
about the dynamic behavior of the software early in the process. The earlier detection of
problems reduces the risk of having serious bugs at late project phases. However, the project
has to plan enough time (depending on the project’s size and warnings reported) for warning
analysis. The criterion to stop the dynamic analysis of a source code is that all Polyspace
errors and warnings are fixed or justified. A screenshot of the Polyspace tool is illustrated in
Appendix A.

4. Technique 4: Unit test of a software component

The unit test of a software component is described by the process flow of Table 2.8. After
analyzing many Johnson Controls documents related to the unit test activity and interviewing
inner engineers practicing unit test, we identify three main activities: design the test cases,
review the test cases and finally execute the test cases and analyze the results. We illustrate
below the definition of a test case as it is adopted in Johnson Controls.

Definition 2.11: Test Case, Test Step and Operation (Johnson Controls)

Let us consider a functionality with two input signals: I1(with domain D(I1)={0,1}) and I2
(D(I2)={1,2,3}) and three output signals: O1(D(O1)={0,7,14}), O2 (D(O2)={1,2,3}) and O3
(D(O3)={0,1}). We first call “Operation”, the fact that an input signal is set to a value. For
example, I2=3 is an operation. A “Test Step” is composed from an operation, an inter-
operation time and expected results on the output signals. A “Test Case” is a succession of
“test steps”.

An excerpt from a test case designed is given in the Figure 2.11:

- In test step 96, test engineers wait for 500 ms without carrying out any actions on the
product and check that the outputs of the product haven’t changed.

- In test step 97, test engineers activate a switch (Input_1=1), wait for 200 ms and check that
the concerned outputs are activated according to the expected behavior.

Figure 2.11 – An excerpt from a test case (two test steps) as designed by Johnson

Controls tester engineers

Test Step

Test Step No Test Actions Expected Results

… … …

96
Test # 96
Wait 500 ms

Output_1 = 0
Output_2 = 0

Output_3 = 0

97
Test # 97
Input_1 = 1

Wait 200 ms

Output_1 = 7
Output_2 = 3

… … …

Operation

Inter-operation
time

Expected results
on output signals

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

87

Process Comments

2

YES

YES

Review
test cases

Execute test cases
& analyze results

Bugs ?

Bugs ?

NO

NO

Unit test component

Design
test cases

Iteration stop

Test cases for unit test are manually
designed. The quality of these test cases
is based on the experience of the
developer.

Designed test cases are reviewed

Designed test cases are executed on the
software component under test

If the results of the unit test done on the
component are OK, the component is
promoted to integration

Table 2.8 – Process flow of the unit test of a software component

After developing a software component, software developers design manually test cases for
the unit test of this component. The main purpose of the unit test is to cover at 100% the
source code. It is the main criterion to stop testing unitarily a software component. The
principles of code coverage are developed in Section 6.A. In fact, developers analyze the
structure of the software component and design test cases that must cover all the source code
of the component under test. The test case design process presently used by the engineers at
Johnson Controls is deeply described in Section 6. It is important to note that a software
component is about 2000 LOC (without blanks and comments), a reasonable number of LOC
to be analyzed (according to experts). The technique of designing test cases while having
access to the code of the software under test is called structural or white-box or program-
based test. A survey on software testing techniques (Bernot 1991, Beizer 1995) is provided in
Chapter 4 – Section 3.B.

Presently, in Johnson Controls, the unit test is not responsible to verify the compliance of a
software component with the carmaker requirements. In fact, one software component can be
tested unitarily (100% of code coverage) without fulfilling the behavior required by the
carmaker.

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

88

Diagnosis 8

According to the “To Be” process, the unit test of a software component must ensure a
100% source code coverage. However, this V&V technique is not responsible to verify the
compliance of the component’s behavior with the carmaker requirements. One software

component can be tested unitarily (100% of code coverage) without fulfilling the behavior
required by the customer.

The language used to design test cases for the unit test of a software component is the C
language. A standard unit test structure providing predefined C functions in order to help the
test engineer writing test cases is developed in Appendix B.

The designed test cases are reviewed in order to check:

• the relevance of designed test cases in regard with the tests objectives,
• the reached code coverage,
• and the usefulness of the dummy test cases dedicated only to reach the expected code

coverage.

Finally, all the designed test cases are executed on the software component under test. All the
dependencies and connections between the components are simulated to isolate the tested
component from the project. Test results are analyzed to decide if Component Development
activities have to be restarted, in case of failed tests. The code coverage is recorded and used
as criteria to stop the design of test cases. The unit test execution platform is developed in
Appendix C.

C. Software verification and validation techniques in Integration process

Once a set of components are produced and verified through the Component Development
process, they are integrated together and an integration test (V&V technique) is performed on
the overall software product. In Johnson Controls, the purpose of the Integration process is to
assemble the software product from the software components, ensure that the software
product, as integrated, functions properly, and deliver the tested software product to
Validation process.

1. Technique 5: Integration test of a set of software components

The purposes of the integration test are to ensure that global design requirements work as
expected and the quality of the software allows the execution of the Validation process. To do
this, three steps have been defined by Johnson Controls software experts:

First step: Interface review

The engineer responsible of integrating the software components reviews each component in
order to verify the conformity of interfaces to predefined architecture. According to the
relevance of the review, she/he can decide to setup additional verification by adding test steps
in the functional and/or change test.

Second step: Change test

Change test cases are defined and executed only once, when change is integrated. The first
objective of change test is to verify the good implementation of the requirements involved in
the change. The second objective of change test is to verify the good implementation of the
architecture expectations involved in the change. Change can be either evolution
implementation or bug fixing. For bug fixing, change test cases have to check that bug is not

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

89

reproduced when sequence used for bug detection is re-executed. For evolution, change test
cases have to check main impacts of the change on software requirements.

Third step: Functional test

Functional test cases improve confidence on the verification. The purpose of this test is to
detect regression on a new integration. It has to check a limited list of software requirements.
In this perspective, a set of test cases per software functionality has to be defined.

In conclusion, the criteria to stop the integration test of a software product are rather
subjective. Indeed, the engineer must verify (according to her/his point of view) that a change
does not impact the whole software product and that the main requirements of each
functionality are satisfied.

D. Software verification and validation techniques in Validation process

Once a set of components are integrated together, a validation test (V&V technique) is
performed on the overall software product.

1. Technique 6: Validation test of a set of software components

In Johnson Controls, the purpose of the validation test is to confirm that the integrated
software meets the carmaker requirements related to software. The validation test is activated
at each new iteration when the software product has been successfully integrated. Now, the
validation test is completed when:

• The planned validation procedure is executed. A validation procedure is composed
from a set of test cases.

• All of the requirements (defined in the SRS) in the scope of the delivery are covered.
• And if any testable requirement could not be covered, the reason about it must be

justified. The requirement coverage, as it is currently practiced in Johnson Controls, is
developed in Section 6.B.

For each iteration, the validation test of a software product is described by the process flow of
Table 2.9. After analyzing many Johnson Controls documents related to the validation test
activity and interviewing inner engineers practicing validation test, we identify two main
stages: Preparation of Validation and Execution of Validation.

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

90

Process Comments

Develop software
validation plan

Design validation
procedure

Implement validation
procedure

Iteration start

Perform incremental
validation

Perform full
validation

Iteration stop

NO

YES

OK ?

OK ?

YES

YES

YES

NO

NO

NO

New Integration ?

Final product ?

P
R
E
P
A
R
A
T
I
O
N

E
X
E
C
U
T
I
O
N

The strategy for Software Validation
is defined

Test cases are identified

Test cases are designed

Is there any new software
integration?

Execute the selected test cases on
the new software integration

Is it the final software product?

Execute the whole test cases on the
final software product.

Table 2.9 – Process flow of the validation test of a software product

a. Preparation of validation

Develop the software validation plan

The Software Validation Plan (SVP) describes the validation strategy for a project. It serves
as a guideline for executing validation tasks by project and by scope of delivery. The strategy
of validation may be adjusted for each iteration (according to the delivery content). The SVP
supports the following objectives:

1. Define the validation test execution platform, the necessary equipment and the common
and reused validation components. A detailed description of the validation test execution
platform is performed in Appendix C.

2. Recommend and describe the strategy for validation test application. The SVP indicates,
for each software functionality in the scope of the delivery, the types of validation tests to
be performed and if the execution of the corresponding tests is manual or automatic. In
Table 2.10, a description of the test types is provided.

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

91

Table 2.10 – Description of the type of tests used in validation test at Johnson Controls

(Apostolov 2007)

3. Establish the regression strategy. Two kinds of regression strategy are defined: change
oriented and priority oriented. The purpose of the change oriented strategy is to define
how to test a software product after new functionalities or changes are implemented /
applied, in order to ensure that the implementation of not changed requirements is not
impacted by the changes. The aim of the priority oriented strategy is to ensure that the
quality of implementation of requirements having highest priority has not regressed while
adding new capabilities.

Design the validation procedure

The purpose of this activity is to identify the structure of the whole validation procedure and
to establish a link between test cases and requirements. In other words, this activity aims to
identify the number of required test cases and describe the scope of each one. The software
requirements (from the SRS) defined as scope of the following delivery and the SVP are used
as inputs for the design of the validation procedure. In Johnson Controls, a list of good
practices when designing the validation procedure has been established:

• It is recommended that, for each software requirement, at least one test case has to be
defined and one test case could cover more than one requirement.

• One test case can cover only one type of test.
• A test case must cover all the aspects and combinations of a requirement.

Implement the validation procedure

The aim of this activity is to design, in a step by step manner, the test cases of the validation
procedure. Based on each test case scope, validators analyze the carmaker requirements and
design the test case that must verify the compliance of the software product with the
corresponding requirement. The test case design process presently used by the engineers at
Johnson Controls is deeply described in Section 6. It is important to note that validators do
not have access to the source code of the software product under test. It is a considered as a
black-box with a set of inputs and outputs. The technique of designing test cases without

Type of test Description

Functional Ensure the proper functionality of the whole software

Data integrity Ensure the proper functionality of the whole software during Data
treatment

Failover and recovery Ensure the proper functionality of the whole software during
restoration process

Configuration Ensure the proper functionality of the whole software when different

system configurations are set

User interface Ensure the user’s interaction with the software

Performance Ensure time-sensitive requirements: response times, transaction
rates, etc.

Load Ensure time-sensitive requirements: response times, transaction
rates, etc.

Stress Ensure time-sensitive requirements: response times, transaction
rates, etc.

Long term Ensure time-sensitive requirements over a long period of time

Security and data
access control

Ensure the proper access to specific functionalities

Installation Ensure the proper software installation process

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

92

having access to the source code of the software under test is called functional or black-box or
specification-based test. A survey on software testing techniques (Bernot 1991, Beizer 1995)
is provided in Chapter 4 – Section 3.B.

The language used to design test cases for the validation test of a software product depends on
the validation test execution platform. In case of an automatic execution of the test cases, one
uses a script language. It is a Johnson Controls property language very similar to the well-
known Visual Basic26 language. A detailed description of this language is provided in
Appendix B. In case of a manual execution of the test cases, test cases are written in natural
language.

b. Execution of validation

The validation is executed in the following sequence:

1. Configuration and initialization of the validation test execution platform.
2. Execution of the test cases in sequence defined by the regression strategy defined in

the SVP (incremental or full validation).

During the execution of the test cases, “OK” and “NOK” results, which are prepared by
observing and comparing the expected and the observed results, are set for each test step. The
execution of the validation procedure could performed either automatically with the help of a
tool or manually (Cf. Appendix C on the validation test execution platform). In the case of a
“NOK” result, the comment describing the observed situation must be added and a bug has to
be issued in the problems’ tracking tool. A detailed description of the Johnson Controls
problems’ tracking tool is performed in Section 7.

VI. The test case design process presently used in automotive industry

Our audit (Cf. Section 5) on the software V&V activities within Johnson Controls has
confirmed the proposal of the National Institute of Standards and Technology (Cf. Definition
1.5): “Software testing is a widespread V&V technique in automotive industry”. In fact, we
notice that each of the Development (unit test) and Validation (validation test) processes
perform software testing in order to verify and validate the correctness of the software
delivered at the end of the process.

Presently, most of automotive suppliers have a manual test design process. As the software
products become more and more complex (Cf. Chapter 1), it is illusory to be able to check
that the software product responds correctly to all possible operations. In Chapter 8 – Section
2, we further demonstrate that software testing is a NP-Complete problem and therefore it is
impossible to be able to cover all the operation space. In fact, for each software component or
product under test, we can associate a potential operation space (Cf. Figure 2.12). Each
engineer has a different perception of the possible and critical operations (based on her/his
experience). Therefore, based on a common test objective, two engineers could choose
different test cases according to their perception. In Johnson Controls, a software component
or product is always tested against predefined objectives.

26 Computer language (http://msdn.microsoft.com/en-us/library/sh9ywfdk(vs.80).aspx, Consulted on November
2008).

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

93

Figure 2.12 – Potential operation space of a software

A. Design test cases for the unit test

In Johnson Controls, the main purpose when testing unitarily a software component is to
cover at 100% the source code of the component under test. Developers analyze the structure
of the software component under test (White-box test), select one operation within the
potential operation space and choose a time to wait before a next operation (Cf. Figure 2.13).
Afterwards, by analyzing the source code of the component, they assess the expected values
to be checked on some output signals. We note that developers do not check the behavior of
all the output signals of a software after each operation. In fact developers decide to check
only some output signals in relation with the performed operation. In fact, they verify the
expected behavior according to their understanding of the program behavior. If the designed
test steps allow to cover all the source code, developers stop designing test steps. If not,
developers analyze deeply the uncovered pieces of code with the goal of designing one or
more test steps that cover these pieces of code. Sometimes, for time and budget reasons,
managers could decide to stop testing unitary a software component even if the 100% code
coverage is not reached. The principles of code coverage are developed in the next section.

Figure 2.13 – Johnson Controls present approach to design a test case for unit test

In
p

u
t

O
u

tp
u

t

Discrete Domains

Software

component

or product

Engineers vision of

the operation space

Eng1

Eng3

Eng2

Potential operation space

Operation

Developers

Operation and Inter-

operation time

selection based on

the engineers’

experience

100% code coverage

Time and Budget

Stopping

criteria OK

NOK

Test Case

Developers

Human

source code

analysis

Operation

Inter-

operation time

Objective:Cover at 100%

the source code of the

component under test

Operation

What are the expected

results on the output

signals?

Expected

results on

some output

signals

Developers

Human

source code

analysis

Which pieces of code are

not covered?

Test Step No Test Actions ExpectedResults

… … …

96
Test # 96

Wait500 ms

Output_1 = 0
Output_2 = 0

Output_3 = 0

97

Test # 97

Input_1 = 1

Wait200 ms

Output_1 = 7
Output_2 = 3

… … …In
p

u
t

Discrete

Domains

S
o

ft
w

a
re

co
m

p
o

n
e

n
t

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

94

1. Code (structural) coverage

A survey on code coverage based testing tools is done in (Yang 2006). In Johnson Controls,
the code coverage is measured by a commercial tool (C-Cover27). Code coverage is a way to
measure how thoroughly a set of test cases covers a code (Cf. Figure 2.14):

• The coverage rate of statements: This metric reports whether each executable line of
code is encountered.

• The coverage rate of procedures: This metric reports whether the test case invokes
each procedure (or function) of the software. It is useful during preliminary testing to
assure at least some coverage in all areas of the software.

• The coverage rate of decisions: This metric reports whether boolean expressions
tested in control structures (such as the if-statement and while-statement) evaluated to
both true and false. The entire boolean expression is considered one true-or-false
predicate regardless of whether it contains logical-and or logical-or operators.
Additionally, this metric includes coverage of switch-statement cases, exception
handlers, and interrupt handlers.

• The coverage rate of conditions: Condition coverage reports the true or false outcome
of each boolean sub-expression, separated by logical-and and logical-or if they occur.
Condition coverage measures the sub-expressions independently of each other. This
metric is similar to decision coverage but has better sensitivity to the control flow.
However, full condition coverage does not guarantee full decision coverage.

For instance, the piece of code of the Figure 2.14 has: 1 procedure, 1 condition, 2 decisions
and 8 statements.

Figure 2.14 – Code (structural) coverage indicators

These criteria are apparently relevant since the goal of the testing activity is to check if all the
pieces of the software have been visited. But it is not that simple (according to experts)!

In 2006, we analyze the unitary test reports on more than 5 projects related to different type of
products. We also discuss these reports with inner software experts. In fact, even if the 100%
code coverage is not reached, managers can decide to stop testing unitary each software
component for time and budget reasons.

Diagnosis 9

Sometimes, the unit test of a software component is incomplete or even inexistent. In other
words, the source code of the component under test is not covered at 100%. As a

consequence, the uncovered pieces of code could hide critical bugs.

27 http://www.bullseye.com/productInfo.html (Consulted on November 2008).

Procedure AnswerYesNo()
var = « »
While var <> « Yes » ou var <> « No »

Write « Print Yes or No »
Read var

End While
Send var

End Procedure

P
R

O
C

E
D

U
R

E

STATEMENT
(Line of Code)

CONDITION

DECISION

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

95

B. Design test cases for the validation test

Presently, in Johnson Controls, the unit test is not responsible to verify the compliance of a
software component with the carmaker requirements. In fact, once a set of unitarily tested
components are integrated together, validators have the responsibility of verifying the
compliance of the whole software product with the carmaker requirements. To do this,
validators analyze one or more software requirements (Black-box test) and select one
operation within the potential operation space (Cf. Figure 2.15). Afterwards, by analyzing
the carmaker requirements, they assess the expected values to be checked on some output
signals. Idem to the design of a test case for the unit test, validators decide to check only
some output signals in relation with the performed operation. In fact, they verify the expected
behavior according to their understanding of the carmaker requirements. If the designed test
steps allow to cover the carmaker requirements under test, validators stop designing test
steps. If not, validators analyze deeply the considered requirements with the goal of designing
one or more test steps that cover at 100% the requirements under test. Sometimes, for time
and budget reasons, managers could decide to stop validating a software product even if the
100% requirement coverage is not reached. However, the carmaker must be notified on the
uncovered requirements. The requirement coverage, as it is currently practiced in Johnson
Controls, is developed in the next section.

Figure 2.15 – Johnson Controls present approach to design a test case for validation test

In 2007, we analyze the bugs of two different projects related to two different electronic
products. It is important to note that, in Johnson Controls, bugs detected during review and
unit test activities are often not capitalized in the problems’ database (Cf. Section 7). Once a
bug is detected during these activities, it is corrected immediately by the person who detects
it. Therefore, most of the capitalized bugs are detected in validation test. Through our study,
we note that up to 30% of the stored bugs are due to errors in the design of the test cases in
validation test. In fact, validators do not assess correctly the expected values to be checked on
the output signals. This could be explained by the fact that a human assessment of a program
behavior could be inaccuracy since carmaker requirements related to the software domain
become more and more complex.

Validators

100% requirement coverage

Time and Budget

Stopping

criteria OK

NOK

Test Case

Developers

Human

carmaker

software

requirements

analysis

Objective:Cover at 100%

one or more carmaker

software requirements

Operation

What are the expected

results on the output

signals?

Expected

results on

some output

signals

Developers

Which pieces of the

considered requirements

are not covered?

Test Step No Test Actions ExpectedResults

… … …

96
Test # 96

Wait500 ms

Output_1 = 0
Output_2 = 0

Output_3 = 0

97

Test # 97

Input_1 = 1

Wait200 ms

Output_1 = 7
Output_2 = 3

… … …In
p

u
t

Discrete

Domains

S
o

ft
w

a
re

p
ro

d
u

ct

Human

carmaker

software

requirements

analysis

Operation and Inter-

operation time

selection based on

the engineers’

experience

Operation

Inter-

operation time

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

96

Diagnosis 10

When testing a software component or product and after an operation on the input signals,
test engineers do not check the behavior of all the output signals of the component or
product under test. Based on their understanding of the program behavior and/or the

carmaker requirements, test engineers decide to check only some output signals in relation
with the performed operation. In fact, they verify the explicit expected behavior but not the

implicit one.

1. Requirement (functional) coverage

The criterion of code coverage does not directly assess the compliance of the software
component or product with the carmaker requirements; this is a biased indicator. In fact, the
requirement coverage is related to the coverage of the functional requirements of the software
under test. Through a literature review (Dalal 1988, Bontron 2005, Yang 2006), several stop
testing criteria based on covering software requirements have been identified in Chapter 4 –
Section 4.B.1. They primarily deal with the transitions coverage of a graph-based
specification. At Johnson Controls, the carmaker requirements related to the software domain
are referenced and managed using the SRS model and the coverage rate of these requirements
is mainly used as the criterion to stop validation test. Moreover, the requirement coverage is
measured subjectively by the validator. Paradoxically and even a 100% coverage of the
functional requirements has been reached during the testing of a software product, the
carmaker is able to detect a nonconformity between the code and their requirements. In fact,
presently, one requirement can hide two or more other requirements. Let us consider in Figure
2.16 an excerpt of software functional requirements as they were defined by a Johnson
Controls engineer. These requirements have two inputs and one output: I1 (with domain
D(I1)={0,1}), I2 (D(I2)={0,1}), O1 (D(O1{0,1}).

Figure 2.16 – An excerpt of software functional requirements as defined by a Johnson

Controls engineer

During the validation test, one inexperienced validator designs one test case (composed from
two test steps) in order to cover the previous requirements:

- Test step 1: set I1 to 1, I2 to 0 and check if O1 is equal to 0
- Test step 2: set I1, I2 to 1 and check if O1 is equal to 1

Therefore, she/he decides to stop testing these requirements and to set them as covered. In
fact, through test step #1, the validator covers at 100% the first requirement but test step #2
does not cover at 100% the second requirement. Indeed, the second requirement can be split
into three “implicit” requirements to be tested:

• In case of input I1 is equal to 1 and input I2 is equal to 1, therefore the output O2 must
be set to 1 – covered by test step #2

• In case of input I1 is equal to 0 and input I2 is equal to 1, therefore the output O2 must
be set to 1 – not covered by the test case

• In case of input I1 is equal to 0 and input I2 is equal to 0, therefore the output O2 must
be set to 1 – not covered by the test case

Requirement 1:
In case of input I1 is equal to 1 and input I2 is
equal to 0, therefore the output O2 must be set to 0
Requirement 2:
In other cases, Output O2 is always set to 1

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

97

This could lead to the conclusion that the present Johnson Controls definition of a requirement
is not enough refined.

Diagnosis 11

The present definition of a software requirement is not enough refined. In fact, one
requirement can hide two or more implicit requirements. Therefore, inexperienced

validators could miss testing some of the carmaker implicit requirements.

Based on our analysis of the present Johnson Controls approaches to design test cases for unit
and validation test, we do the four diagnoses listed below.

Diagnosis 12

In validation test and after selecting an operation to be performed on the software under
test, test engineers analyze the carmaker requirements in order to assess the expected values

to be checked on some output signals of the software. In fact, this assessment is based on
the engineers’ understanding of the requirements and may lead to errors.

Diagnosis 13

For each software component or product under test, a large potential operation space is
associated. Each engineer has a different perception of the possible and critical operations
based on her/his experience. Therefore, the present strategy to select operations in order to

test a software is irrelevant.

Diagnosis 14

The test cases designed by engineers do not always simulate the real use of the software
product under test. The main purpose of testing activities is to cover the software code and
requirements. As a direct consequence, basic user operations on the product could be not

tested by the supplier before a carmaker delivery.

Diagnosis 15

Presently, the test cases for a software are manually designed by engineers. As the size of
automotive software growth, this task becomes a laborious task and accounts for more than

50% of the total time and budget of a project.

VII. Capitalizing bugs in Johnson Controls

A. Snapshot on the Johnson Controls problems’ tracking tool

Johnson Controls as many other electronic suppliers uses a problems’ tracking tool
(TeamTrack28) in order to manage and store problems detected during a project. A snapshot of
this tool is illustrated in Figure 2.17.

28 http://www.serena.com/products/teamtrack/index.html (Consulted on November 2008).

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

98

Figure 2.17 – Screenshot of the problems’ tracking tool

Problems are classified according to four categories: software, hardware, mechanical and
others. In the following, we focus on software problems, called bugs. The tracking tool has a
database where all the problems are stored by project. In fact, a project is the combination of a
customer (for instance, Renault), a type of product (for instance, a body controller module)
and a car platform (for instance, Laguna platform). The problems’ database has been created
in the late 90’s and now we estimate to tens of thousands the number of capitalized software
bugs. According to experts, about 60% of these bugs are “true” bugs. The remaining 40% are
duplications or without continuation. Moreover, in 2006, we perform a study on the
capitalized software bugs and we come up to the conclusion that up to 90% of these bugs
were detected during the validation test activity. Software experts and managers confirm that
the bugs detected during the other V&V activities (review and unit test) are often not
capitalized in the problems’ database. Once a bug is detected during these activities, it is
corrected immediately by the person who detects it. Most of the capitalized software bugs are
detected in validation test.

B. The bug’s model currently used in Johnson Controls

One of the support processes (Cf. Figure 2.2) has the responsibility of ensuring that all found
software bugs and all changes on the product are identified, analyzed, managed and controlled
to resolution and implementation. In fact, once an engineer has recorded a bug in the
problems’ database, a workflow process is initiated between the team members in order to:

• assess the impacts of the bug,
• make decisions,
• plan and implement the corrections,
• and finally verify and validate the non-regression of the software product.

Apart the evolution of the bug status (dynamic view) since its creation and till its resolution,
we focus on the bug’s model (static view) currently used in Johnson Controls. Fifteen years

List of projects

List of problems by project

Problem details

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

99

ago, Sagem29 software experts developed a bug’s model with the aims of 1) managing the life
cycle of a problem, 2) having traceability of the problems detected internally and by the
carmaker, 3) monitoring a project by the number of detected, corrected and uncorrected
problems and finally 4) reusing (by experts analysis) critical stored problems to avoid similar
problems on future developments. In fact, a total of 111 attributes should be filled in by the
engineers for each capitalized problem. We analyze about 2000 bugs from two different
projects and products and we come up to the conclusion that 75% of these attributes are filled
in; the remaining 25% are systematically unfilled. On the 75% filled attributes, 25% of these
attributes are free fields. In Figure 2.18, we classify the 111 attributes according to the major
aspects of a software bug (Mellor 1992, Fenton 1996): location (9 attributes), timing (28
attributes), symptom (2 attributes), impact (2 attributes), cause (7 attributes), type (14
attributes), severity (7 attributes) and cost (2 attributes). The remaining 71 attributes are
related to Johnson Controls administrative data necessary for the management of the bug.

Figure 2.18 – Bug’s model currently used in Johnson Controls (this figure is voluntarily

uncompleted for confidentiality reasons)

As stated before, some attributes of the bug have free fields in the problems’ tracking tool and
therefore engineers can write anything they want with the main objective of giving as many
information as possible on the bug. In Figure 2.19, an excerpt of a bug stored in the problems’
database is illustrated. Since the attribute Problem Description has a free field, each engineer
has the possibility to fill in this field according to her/his reasoning approach. Technical
language (code variables, electronic and software jargon …) is often used in such case. In
fact, there is no standard format that engineers must respect when describing a bug. Moreover,
attributes such as Cause Type and Description are sometimes not filled in. In fact, through
these attributes, one could identify the responsibility of persons in the problem.

29 In 2001, Johnson Controls buys the electronics business from Sagem Automotive.

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

100

Figure 2.19 – An excerpt of a bug stored in the problems’ database (this figure is

voluntarily uncompleted for confidentiality reasons)

Diagnosis 16

When describing a bug in the problems’ tracking tool, there are too many fields to fill in
(111 attributes), a lot of free fields (about 25%) and a lack of relevant predefined fields (for
instance, a bug’s typology). As the detection of bugs comes later in the process, engineers

do not have enough time to fill in all the fields of a bug (missing information). Moreover, in
case of free fields, an engineer could write anything she/he wants with the main objective of

giving as many information as possible on the bug (irrelevant information). Since
information is missing and/or irrelevant, it remains a difficult problem to reuse bugs in

order to avoid or detect similar problems on future developments.

C. Existing techniques to reuse capitalized bugs

We analyze many internal documents related to the reuse of bugs stored in the problems’
database. We also interview software experts and managers on the current knowledge
management practices. We come up to the conclusion that bugs stored in the problems’
database are rarely used to avoid similar problems on future developments and ensure that
carmakers will not encounter the same problems on two similar products.

Actually, no advanced (formal and automated) techniques have been implemented in order to
reuse stored bugs. Nevertheless, three traditional strategies are currently practiced:

• Create and update “Lessons Learned Checklist” for software developments. The
process of creating and updating lessons learnt is illustrated in Figure 2.20. On the one
hand and once a bug is detected on a project, the project leader decides if this bug
must be verified on other projects or not. The decision process is not formal and is
mainly based on the experience of the decision maker. In case of a reused bug, this
bug is transferred to the Software Engineering Process Group (SEPG) which confirms
or not the possible re-use of this bug. The way of describing a bug in the problems’
database has a major impact on this process. On the other hand, a software forum
exists where engineers can submit their questions, remarks and recommendations to
the SEPG which decides or not to generalize the submitted issue. Finally, each reused
bug or group of bugs and each general issue is summarized in a lesson learnt (a textual
sentence) to be consulted on future developments. In Figure 2.21, an excerpt of a
lessons learned checklist is illustrated.

ATTRIBUTES DESCRIPTION OF THE BUG
… …
Problem description

In intermittent mode, the time between wiping should be computed
from int volume and vehicle speed. (cf ... specification) Test
example. Initial Condition : Ignition = 1 CanData1 = 1
CanData2 = 1 Vehicle_Speed = 0 Wiper_Intermitent = 1
Obtained Result : Intermitent time = 8 s ... Then Vehicle_Speed =
20000 (200 km/h) Obtained Result : Intermitent time = 8s
Expected Result : Intermitent time = 4s ... Tested on E-CAR

… …
Cause type
Cause description
… …
Origin phase Development
… …
Detection Means Validation test
… …

Not filled in by the engineers
Not filled in by the engineers

A “very” technical
description of the

problem

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

101

Figure 2.20 – Process of creating and updating “Lessons Learned Checklists” for

software skill (Mignen 2005)

Figure 2.21 – An excerpt of lessons learnt to be checked during the design of the

validation procedure - This figure is voluntarily fuzzyfied for reasons of confidentiality
(Fradet 2008)

• Use of peer project to check problems on similar products. At the beginning of each
new project, a list of “similar” previous projects (according to experts) is identified.
Then, engineers have to review all the problems (including software bugs) detected on
these projects and identify a list of “critical” problems to be checked on the new
project.

• Increase the reuse of software components from one project to another. A software
product is composed from a set of software components fulfilling different services.
Therefore, the reuse of a component from one project to another must be a usual
process. However, the challenge is to develop components with standard interfaces
and configurations. The reuse of components is advocated since it increases the quality
and productivity. Indeed, lessons learnt are already included in the reused software
components.

However and according to experts, some bugs occur again from one project to another. In
order to confirm this citation, we perform a study on the bugs detected on one software
functionality, the front wiper management functionality, implemented in five different
projects since 1997 and till 2007. In fact and according to experts, all the projects related to
the same type of product and car platform of one carmaker have up to 70% of common
functionalities. In Table 2.11, for each project, we identify the release year of the project, the
number of Lines Of Code (LOC) implementing the front wiper functionality and the number
of bugs detected on this functionality.

Lessons learned Review

Software Engineering
Process Group

ChecklistsLessons learned
Checklists

Bugs’
database

Software web-forum

Engineers

Technical
project
leader

…

F
ilt

er Engineers

BUGS BUGS ISSUESISSUES

SW forum
administrator

F
ilt

er

Checklist
creation or

update

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

102

Table 2.11 – Characteristics of the front wiper functionality implemented in five

different projects since 1997 and till 2007

Through the analysis of these five projects, we note that the front wiper functionality has, in
common, 7 features. On some projects, there are one or more additional features that we
ignored in our study. We make two classifications of the bugs detected on this functionality.
The first one according to the 7 features (Cf. Figure 2.22) and the second one according to a
typology of bugs (Cf. Figure 2.23) borrowed from the literature (Beizer 1990, Chillarege
1992, Grady 1992, IEEE Std. 1044-1993). Then, we make the arithmetic mean by feature and
by type of bugs of the number of bugs detected on projects 1, 2, 3 and 4. In fact, we try to
demonstrate that before developing the front wiper functionality on the project 5, we were
able to predict which feature is the most critical in terms of bugs’ occurrence (feature 3) and
which types of bugs engineers are vulnerable to (Control flow and sequencing).

Figure 2.22 – Classification of the bugs according to the front wiper’s features

Figure 2.23 – Classification of the bugs according to a typology of software problems

Projects Year
Number of Lines Of Code implementing

the front wiper functionality
(without comments and blanks)

Number of bugs
detected on the front

wiper functionality

Project 1 1997 3909 30

Project 2 2001 1457 4

Project 3 2003 889 5

Project 4 2003 1255 16

Project 5 2007 1229 22

0%

10%

20%

30%

40%

50%

60%

70%

%
 o

f d
et

ec
te

d
bu

gs

Features of the front wiper functionality

Arithmetic mean
of the projects 1,
2, 3 and 4

Project 5, 2007

0%

10%

20%

30%

40%

50%

60%

70%

Code
implementation

Control Flow And
Sequencing

Data Processing

%
 o

f d
et

ec
te

d
bu

gs

Type of software bugs

Arithmetic mean
of the projects
1, 2, 3 and 4

Project 5, 2007

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

103

As a conclusion, the thousands of bugs stored in the problems’ database are not
systematically nor efficiently reused to avoid or detect recurrent bugs. To better understand
the reasons for that, we interview software managers who refers to four main issues for
reusing stored bugs:

• Manual analysis by experts of the problems’ database is impossible: thousands of
bugs and 111 attributes by bug.

• Lack of information: 25% of a bug’s attributes are systematically not filled in.
• Ambiguous and incomplete information: 25% of the filled attributes are free field and

these attributes (for instance, problem description) are the most important to detect
recurrent type of bugs.

• Lack of knowledge in data mining processes and tools to perform an automatic
analysis of the problems’ database.

Diagnosis 17

There are no advanced (formal and automated) techniques to reuse bugs stored in the
problems’ database in order to avoid or detect similar bugs on future developments. In fact,

carmakers are unhappy when encountering the same type of problem on two different
products delivered by the same supplier.

VIII. Managing and reusing test cases in Johnson Controls

The languages used for designing test cases in each of the unit and validation test activity are
usually computer languages. Indeed, test cases for unit test are developed in C language and
test cases for validation test are developed in a script language specific to Johnson Controls.
A detailed description of these languages is provided in Appendix B. Presently, the versions of
the software components of a project are managed through a commercial version manager
tool (PVCS30). In consequence, the test cases for unit and validation tests are also versioned
using this tool and stored in the same folder as the related software component or
functionality.

As stated before (Cf. Section 7.C), all the projects related to the same type of product and car
platform of one carmaker have up to 70% of common functionalities. Therefore, using
capitalized test cases seems to be beneficial in automotive context. In other words, when
testing a software functionality that we already implemented in the past on another project, it
is judicious to reuse existing test cases. Unfortunately, in Johnson Controls capitalized test
cases are not always reused from one project to another. We interview software experts and
managers on this phenomenon and we identify two main reasons. The first one is the use of
different formats to specify a test case. Sometimes, engineers specify the test cases
immediately in the computer language (C language, script language) understandable by the
test execution platform. Others use the test case format presented in Figure 2.11. In fact, the
use of computer languages makes the reuse of test cases a difficult task. One has to analyze
and adapt test cases written in a computer language from one project to another. It is
important to note that now, testing a software product of about 200 KLOC (Kilo Lines Of
Code) requires about 1000 KLOC of tests (Johnson Controls source). The second one is the
lack of an automated process to reuse test cases. The manual analysis and adaptation of test
cases from one project to another seems a laborious task. It could be more time consuming to

30 http://www.serena.com/products/pvcs/pvcs-version-manager.html (Consulted on November 2008).

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

104

adapt existing test cases than to design new ones. In this situation, the textual analysis tools
could help but unfortunately such tools are absolutely not known in the company.

Diagnosis 18

Currently, test engineers use different formats to specify a test case. Sometimes, engineers
specify the test cases in a computer language (C language, script language), others use a
more high level test case format (independent from the technology). Moreover, there is a

lack of formal process and tools to manage and reuse test cases from one project to
another.

However, one initiative was launched two years ago and had the purpose to create manually
standard test cases for software validation. An example of a standard test case as it was
developed at Johnson Controls is illustrated in Table 2.12.

VPR ID Type of Test Date Modified
VPR.SPEED.0001.01 Functional 22.03.2006

Goal Initialization of the pointer
Applicable if − The device displays the vehicle speed with pointer
Description of test − The Ignition is switched ON.

− Set the signal concerning the Speed to value > 0 km/h.
− The ignition is switched Off
− Set the signal concerning the Speed to value = 0 km/h.
− The Ignition is switched ON.

Expected behavior − At the second ignition ON the pointer should be on its stop
position.

Additional Comments − If the project contains 2 or more product lines (ex. Low line,
High line) repeat the tests on both lines.

Bug reference (defect ID)
Table 2.12 – Example of a standard test case as developed at Johnson Controls

A set of standard test cases were developed and classified by functionality of product. In fact,
potential bugs by product functionalities are identified and documented in standard test case
patterns. These patterns must be systematically consulted (for the given product type) before
beginning testing stages. This is a conventional RETEX (RETurn of EXperience) strategy, but
which remains to be completed for any product line. The two main difficulties of such an
approach are to 1) describe standard test cases with a suitable language level understandable
by any test engineer and 2) keep the list of these test cases updated without exploding their
number. Two years after, many issues faced this test case reuse strategy and coerced software
managers to stop it. The four main issues are 1) the list of standard test cases is no more
updated due to a lack of resources, 2) an exploding number of standard test cases, 3) all the
standard test cases are stored in the same Word document which becomes unmanageable and
finally 4) most of the standard test cases are too much detailed and therefore not
understandable by a newly-graduated test engineer.

IX. Conclusion

Through our industrial audit, we analyze the current software practices at Johnson Controls
and make diagnoses on the current V&V activities of a software. The performed diagnoses are
listed in Table 2.13. In Figure 2.24, we locate each of these diagnoses within the Johnson
Controls software organization.

In the following chapter, based on our industrial audit, we clearly define the scope of our
research. We also formulate our research topic in accordance with the research issues in
software testing.

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

105

Table 2.13 – List of diagnoses on the software V&V practices in Johnson Controls

Diagnosis
number Diagnosis description

1 Verification and Validation (V&V) practices and testcases are rarely shared betweenthe carmakers and theirelectronic suppliers.

2
Now, one cannot get a degree in software V&V. Software V&V is incorporated into the software engineering degree. Moreover, software engineers often prefer development activities compared
with verification and validation activities.

3
In automotive industry, semi-formal and formal methods are more and more used to specify software functional requirements. However, there is a lack of a standard formalism shared between
carmakers and suppliers. In fact, for each project, the supplier has to adapt its processes to the formalism used by the carmaker.

4
Deadlines for carmaker requirements freeze are specified in the carmaker-supplier contract. Nevertheless, the carmaker’s requirements evolve continuously along the software development life
cycle withoutcomplying with these deadlines. Moreover, suppliers must react quickly by integrating (without regression) the changes in the product.

5 The Software Requirement Specification (SRS)document is often a large document (about hundreds of pages), difficult to manage, incomplete and not regularly updated.

6
Sometimes, the SRS document is the official and contractual document between carmaker and supplier. It is also the main document used by the development and V&V teams in their
activities. It has a standard structure but there are no standards to specify carmakers’requirements (more especially functional requirements).

7
Sometimes, the review of software code is badly done or even ignored. In fact, number of code reviewers is not aware of the coding rules and recommendations to be checked. Moreover, the
code review is not systematically performed on each new softwarecomponent. In consequence, the code review does not often detect all the bugs that must be detected throughthis activity.

8
According to the ”To Be” process, the unit test of a software component must ensure a 100% source code coverage. However, this V&V technique is not responsible to verify the compliance of
the component’sbehavior with the carmaker requirements. One softwarecomponent can be tested unitarily (100% of code coverage) without fulfilling the behavior required by the customer.

9
Sometimes, the unit test of a software component is incomplete or even inexistent. In other words, the source code of the component under test is not covered at 100%. As a consequence, the
uncovered pieces of code could hide critical bugs.

10
When testing a software component or product and after an operation on the input signals, test engineers do not check the behavior of all the output signals of the component or product under
test. Based on their understanding of the program behavior and/or the carmaker requirements, test engineers decide to check only some output signals in relation with the performed operation.
In fact, they verify the explicitexpected behavior but not the implicit one.

11
The present definition of a software requirement is not enough refined. In fact, one requirement can hide two or more implicit requirements. Therefore, inexperienced validators could miss
testing some of the carmaker implicit requirements.

12
In validation test and after selecting an operation to be performed on the software under test, test engineers analyze the carmaker requirements in order to assess the expected values to be
checkedon some output signals of the software. In fact, this assessment is based on the engineers’understanding of the requirements and may lead to errors.

13
For each software component or product under test, a large potential operation space is associated. Each engineer has a different perception of the possible and critical operations based on
his/herexperience. Therefore, the present strategy to selectoperations in order to test a software is irrelevant.

14
The test cases designed by engineers do not always simulate the real use of the software product under test. The main purpose of testing activities is to cover the software code and
requirements. As a direct consequence,basic user operations on the product could be not tested by the supplier before a carmaker delivery.

15
Presently, the test cases for a software are manually designed by engineers. As the size of automotive software growth, this task becomes a laborious task and accounts for more than 50% of
the total time and budget of a project.

16

When describing a bug in the problems’ tracking tool, there are too many fields to fill in (111 attributes), a lot of free fields (about 25%) and a lack of relevant predefined fields (for instance, a
bug’s typology). As the detection of bugs comes later in the process, engineers do not have enough time to fill in all the fields of a bug (missing information). Moreover, in case of free fields, an
engineer could write anything she/he wants with the main objective of giving as many information as possible on the bug (irrelevant information). Since information is missing and/or irrelevant, it
remains a difficult problem to reuse bugs in order to avoid or detectsimilar problems on future developments.

17
There are no advanced (formal and automated) techniques to reuse bugs stored in the problems’ database in order to avoid or detect similar bugs on future developments. In fact, carmakers
are unhappywhen encountering the same type of problem on two different productsdelivered by the same supplier.

18
Currently, test engineers use different formats to specify a test case. Sometimes, engineers specify the test cases in a computer language (C language, script language), others use a more
high level test case format (independent from the technology).Moreover, there is a lack of formalprocess and tools to manage and reuse test cases from one project to another.

Industrial audit R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

106

Figure 2.24 – Localization of the diagnoses within the Johnson Controls software organization

Requirement engineer

Carmaker
Requirements

Mechanical
Software
Hardware

Software
requirement
specification

Validator

Validate the
software product

compliance

Designer

Global design of
the software

product
Integrator

Integrate
software

components

Developer

Design software
components

SW requirements
SW product

SW architecture SW components

Problems’
tracking tool

Code
review

Static
analysis

Dynamic
analysis Unit test Integration

test
Validation

test

Problems’
database

Test Cases’
database

Configuration
management tool

Acceptance
test

Software product release

Bugs

Test Cases

Carmaker requirements

CARMAKERSUPPLIERCARMAKER

Software Verification and Validation techniques

i Diagnosis
number i

1

5

8 9

2

6

7 10

16

17 18

11

18

3

4

12

13 141513 14

2

Legend

10 10

1513 14 15

Quality of the design of test cases for automotive software: design platform and testing process
107

PART II –PROBLEM STATEMENT
AND LITERATURE REVIEW

Research topic R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
109

CHAPTER 3. RESEARCH TOPIC

Research topic R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
111

I. Introduction

In our research, we go through the Johnson Controls problem with a systemic approach in
order to identify domains from which we might be able to improve the global performance of
the software Verification and Validation (V&V) activities. In Chapter 2, we perform an
industrial audit and make diagnoses on the current V&V practices within the company. Based
on the industrial audit, one could isolate critical anomalies and lacks in the current engineers’
practices. A review of related solutions proposed in the literature could help in defining or
adapting relevant solutions to our context.

In this chapter, we clearly define the scope of our research and we formulate our research
topic based on the performed diagnoses and the related research issues in software testing.
The industrial and academic needs and objectives are summarized in Section 2. A
specification of our research topic and focus is done in Section 3. Finally, the main software
testing issues is highlighted in Section 4. In the conclusion of this chapter, we identify the
diagnoses which are in the scope of our research and associate for each of these diagnoses one
or more related software testing issues (as stated in the literature).

II. Industrial and academic needs and objectives

A. Initial industrial needs

Facing the fierce competition within the automotive industry and the strong pressure that
carmakers impose on their suppliers to reduce the cost and the development time, Johnson
Controls is looking for new and innovative engineering solutions to increase its performances
and therefore better satisfy the requirements and expectations of their clients. As said in
Chapter 1 – Section 6, electronic parts represent now up to 30% of the global cost of a car and
software bugs represent more than 80% of the problems detected on such a product.
Therefore, decreasing the development cost and increasing the quality of software product
have become of main interest for carmakers. Johnson Controls as an automotive electronics
supplier has launched many initiatives (this PhD is one of these initiatives) inside its
engineering centers around the world with the aims of:

1. Decreasing the number of bugs detected by the carmaker - Quality
2. Reducing the development time of electronic projects - Delay
3. Reducing the development cost of electronic projects - Cost

Through our research project, we were asked by an automotive electronic supplier namely
Johnson Controls to improve the performance of its software Verification and Validation
(V&V) activities. Their main purpose is to improve the quality of their products and therefore
better satisfy the requirements and expectations of their clients. In Johnson Controls, the
validation test which is the last V&V activity before a carmaker delivery is considered as the
ultimate activity to detect all the bugs and therefore deliver carmakers “bug-free” software. It
represents up to 90% of the time spent in the V&V of a software product (Cf. Chapter 2 –
Section 5). While the test cases execution activity is often automated via a test execution
platform, the test case design activity remains a manual task that fills in time many engineers.
Up to 50% of a software project team is dedicated to design test cases (Cf. Table 1.1).
Therefore, for many of software managers and experts in Johnson Controls, automating the
design of test cases seems to be the most adapted solution to reduce the testing time, cost and
resources while improving the code and requirement coverage.

Research topic R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

112

B. Academic objectives

Since the 1990s, there has been a renewed interest in the development of effective software
testing techniques. In the years, the topic has attracted increasing interest from researchers, as
testified by the many specialized events and workshops, as well as by the growing percentage
of testing papers in software engineering conferences. A recent paper titled “Software Testing
Research: Achievements, Challenges, Dreams” of a software engineering pioneer named
Bertolino (Bertolino 2007) organizes the many outstanding research challenges for software
testing into a consistent roadmap. One of his conclusions was that there is a need to make the
process of software testing more effective, predictable and effortless. In addition, the author
pinpoints the many fruitful relations between software testing and other research areas. In
fact, by focusing on the specific problems of software testing, we may overlook many
interesting opportunities arising at the border between software testing and other disciplines.
Unfortunately, few papers exist in which the problem of software testing is considered with a
systemic approach.

Our primary scientific goal has been to go through this problem with a systemic approach in
order to identify levers in any domains from which we might be able to improve the global
performance of the software V&V activities. The added value of such an approach is the
resolution of the problem with a global quality viewpoint. Therefore, in Chapter 2, we
perform an industrial audit on the software practices currently used in automotive industry
and more especially in Johnson Controls. Through the audit, we characterize the overall
environment of our problem. We understand what verifying and validating a software product
means and we point out the main current issues and lacks in the automotive V&V activities.

III. Research scope

A. Research topic formulation

Through a primary industrial audit at Johnson Controls, we first analyze the V&V “To Be”
processes, activities and techniques. Then, we characterize the software engineers’ practices
(“As Is” processes, activities and techniques) in verifying and validating a software product.
As a conclusion of the audit, we perform a list of diagnoses on the current V&V practices
within the automotive industry and more especially automotive electronic suppliers (such as
Johnson Controls). Based on these diagnoses, our research topic may now be refined through
these two questions:

1. How to detect bugs early in the software development life cycle? In other words,
How to detect bugs closer to where they were introduced?

2. How to detect “all” the bugs of a software product before a carmaker delivery?
Or, at least, how to measure that few bugs remain to be found?

B. Research focus

Let us define a bit more the exact contour of our research. It was defined in accordance with
the Johnson Controls priorities and interests. We were not authorized to intervene within the
software design process in itself to a priori lower the number of bugs. It has been considered
as another issue. In other words, we do not work on avoiding bugs while designing and
developing a software product but on detecting the bugs once the product is developed.

In Chapter 1 – Section 5.C.2, we identify two types of V&V techniques: the static ones and
the dynamic ones (e.g. software testing). In Chapter 4 – Section 2.B.1, we perform a survey

Research topic R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

113

on the static techniques and on how they are adapted or not to the automotive context. Based
on our industrial audit (Cf. Chapter 2 – Section 5.B), Johnson Controls presently performs
most of the review static techniques (technical review, walkthrough, inspection and audit). On
the contrary, the proof static technique is still considered as a non-adapted method to the
automotive and more especially Johnson Controls context. Even if static techniques are
necessary to detect errors earlier in the development process, they are not sufficient. In fact,
these techniques focus on analyzing the static product representation and do not test the
product in its real life (dynamic). This could explain the fact that, in Johnson Controls, V&V
dynamic techniques are considered as the ultimate techniques to detect all the bugs. They
represent up to 90% of the time spent in the V&V of a software product (Cf. Chapter 2 –
Section 5). As a consequence, we focus our research on the V&V dynamic techniques. The
main dynamic V&V technique is the software testing.

Testing a software product requires two main activities. A detailed specification of these
activities is done in Chapter 2 – Section 6. The first one consists of designing test cases and
the second one of executing these test cases on the software product under test. Based on our
industrial audit within Johnson Controls (Cf. Chapter 2 – Section 5), the execution of test
cases is performed thanks to Johnson Controls property test execution platforms. These
platforms are described in Appendix C. On the one hand, the number of bugs related to a
wrong execution of a test case is minor regarding the one related to an irrelevant design of a
test case (1 over 100 – Johnson Controls source). On the other hand, the design of test cases is
a manual task that accounts for up to 50% of a software project time. Therefore, we focus our
research on the design of efficient test cases for software. In fact, we are interested in any
organizational matter that has a positive influence onto the quality of the test case design
process: simulation platform, knowledge management, competency management and
project management.

IV. Hot research issues in software testing

The Bertolino’s definition (Bertolino 2003) of the software testing technique highlights the
four main testing issues (four underlined words in the definition).

Definition 3.1: Software testing (Bertolino 2003)

Software testing consists of the dynamic verification of the behavior of a program on a finite
set of test cases, suitably selected from the usually infinite executions domain against the
specified expected behavior.

Dynamic: testing implies executing the program on (valued) inputs. Since static techniques
(review, inspection …) are useful to evaluate the internal correctness of a software product,
testing is the only technique allowing the assessment of its behavior when executed in its real
environment.

Research issue 1: How to execute test cases on a software product? (This issue is not in
the scope of our research)

Finite: even for simple programs, so many test cases are theoretically possible that exhaustive
testing would require years to execute. Dijkstra (Dijkstra 1972) calculated that the exhaustive
testing of a multiplier of two 27-bit integers taking “only” some tens of microseconds for a
single multiplication would require more than 10000 years. In Chapter 8 – Section 2, we
demonstrate that testing exhaustively a software product is a NP-Complete problem from a
computational viewpoint. Generally, the whole test set can be considered infinite. In contrast,
the number of executions that can realistically be observed must obviously be finite (and
affordable). Clearly, “enough” testing to get reasonable assurance of acceptable behavior must

Research topic R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

114

be performed. This basic need points to well known issues of testing, both technical in nature
(criteria for deciding to stop testing) and managerial in nature (estimating the effort to put in
testing). Testing always implies a trade-off between limited resources and schedules, and
inherently unlimited test requirements.

Research issue 2: When to decide to stop testing a software product?

Selected: many operation selection techniques differ on their strategy to select a finite
number of operations. Test engineers must be constantly aware that different techniques may
lead to quite different quality results; they also may be much dependent of context factors
such as the kind of application, the maturity of the process and the organization, the expertise
of test engineers, the tool platform. How to select the most suitable operations to be
performed on the software under test is a complex issue (Vegas 2001).

Research issue 3: How to choose the “relevant” operations to be checked on a software
product?

Expected: it must be possible (although not always easy) to decide whether the observed
outcomes of program execution are acceptable or not, otherwise, the testing would be useless.
The observed behavior may be checked against specifications and user’s expectations. The
test pass/fail decision is commonly referred in the testing literature to as the oracle problem.

Research issue 4: How to assess the expected behavior of a software product?

V. Conclusion: our diagnoses, the scope of our research and the software
testing research issues

Based on our research focus, we identify in Table 3.1 the diagnoses which are in the scope of
our research (the design of test cases). One diagnosis is related to the static V&V techniques
and three diagnoses are related to the carmakers’ practices on which a supplier can absolutely
not act. We also associate for each of the diagnoses in the scope of our research one or more
related software testing issues (as stated in the literature).

Research topic R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

115

Table 3.1 – Our diagnoses, the scope of our research and the software testing research

issues

In the following chapter, we perform a literature review on the existing approaches,
techniques and tools in the field of the V&V of software products. More especially, we focus
our research on finding or adapting “solutions” for the anomalies and lacks (diagnoses) that
we identify via our industrial audit. In fact, we mainly develop the literature related to the
software testing issues 2, 3 and 4.

Diagnosis
number Diagnosis description (Cf. Table II.13) In the scope of our research

Design of test cases
Related software testing issues

Literature review

1 Verification and Validation (V&V) … NO – related to carmakers’ practices -

2 Now, one cannot get a degree in software V&V … YES Issue 2, 3 and 4

3 In automotive industry,semi-formal and formal … NO – related to carmakers’ practices -

4 Deadlines for carmaker requirements freeze are … NO – related to carmakers’ practices -

5 The Software Requirement Specification (SRS)… YES Issue 2, 3 and 4

6 Sometimes, the SRS document is the official … YES Issue 2, 3 and 4

7 Sometimes, the review of software code is … NO – related to static V&V techniques -

8 According to the ”To Be” process, the unit test … YES Issue 2

9 Sometimes, the unit test of a software … YES Issue 2

10 When testing a software component … YES Issue 4

11 The present definition of a software requirement … YES Issue 2

12 In validation testand after selecting an … YES Issue 4

13 Foreach software component orproduct under… YES Issue 3

14 The test cases designed by engineers do not … YES Issue 3

15 Presently, the test cases fora software are … YES Issue 3 and 4

16 When describing a bug in the problems’tracking … YES Issue 2 and 3

17 There are no advanced(formal and automated)… YES Issue 3

18 Currently, test engineers use different formats … YES Issue 3

Issue 1 is not in the scope of our research

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
117

CHAPTER 4. STATE-OF-THE-ART

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
119

I. Introduction

Constructing reliable products continues to be one of software development’s greatest
challenges. Testing, one of the most crucial tasks along the software development life cycle
can easily exceed half of a project’s total effort. A successful testing approach can save
significant effort and increase product quality, thereby increasing customer satisfaction and
lowering maintenance costs.

Despite these obvious benefits, the state of software testing practice isn’t as advanced as
software development techniques overall. In fact, testing practices in industry are, most of the
time, neither very sophisticated nor effective. This might be due partly to the perceived higher
satisfaction from developing something new as opposed to testing something that already
exists. Also, many software engineers consider test engineers as second-class executives.
They consider testing as a junior or entry position and use it merely as a springboard into
development jobs. However, academia spends significant effort in researching new testing
approaches. Promising approaches have started to find acceptance in industry, but the
technology transfer between testing research and industry is still insufficient. Academics
sometimes say that industry is immature and practitioners are clueless, whereas practitioners
might argue that researchers squander their time developing cool but useless testing
technologies. As it often happens, the truth lies somewhere in between.

In this chapter, we develop the literature related to the software testing issues 2, 3 and 4 and
we focus our research on finding or adapting “solutions” for the anomalies and lacks
(diagnoses) that we identify via our industrial audit. An overview on the software verification
and validation (V&V) techniques is proposed in Section 2. A classification of the software
testing techniques is done in Section 3. Finally, software testing issues and related solutions
are developed in Section 4. We identify lacks in these solutions and propose improvement
actions in order to fit in our context. In the conclusion of this chapter, we summarize the
improvement actions that we propose all along the chapter.

II. Verification and Validation of software products

A. Principles

Verification and Validation (V&V) of software are defined in the present report after the IEEE
Standard Glossary of Software Engineering Terminology (IEEE Std. 610-1990).

Definition 4.1: Verification and Validation (IEEE Std. 610-1990) – Abbreviation: V&V

The V&V process is the process of determining whether the requirements for a product or
component are complete and correct, the products of each development phase fulfill the
requirements or conditions imposed by the previous phase, and the final product or
component complies with the specified requirements. The distinction between verification and
validation has been well-framed by Barry Boehm, who memorably described verification as
“building the product right” and validation as “building the right product”.

Software V&V helps the product designers and test engineers to confirm that a right product is
build right way throughout the development process and improve the quality of the software
product. It makes sure that, certain rules are followed when developing a software product
and also makes sure that the developed product fulfills the required specifications. This
reduces the risk associated with any software project up to certain level by helping in
detection and correction of faults, which are unknowingly done during the development
process.

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

120

The standard definition of verification is: "Are we building the product RIGHT?" e.g.
verification is makes sure that the software product is developed the right way. The software
must confirm to its predefined specifications, as the product development goes through
different stages, an analysis is performed to ensure that all required specifications are met.
The verification part of V&V comes before validation and incorporates software inspections,
reviews, audits, etc. During the verification, the work product (the ready part of the software
being developed and various documentations) is reviewed / examined by one or more persons
in order to find and point out the bugs in it. The verification helps in prevention of potential
bugs.

The standard definition of validation is: "Are we building the RIGHT product?" e.g. a
software product must do what the customer expects it to do. The software product must
functionally do what it is supposed to, it must comply with any functional requirement set by
the customer. Validation occurs at the end of the development process in order to determine
whether the product complies with specified requirements. Validation starts after verification
ends (after coding of the product is completed). Testing methods are basically carried out
during the validation.

B. Software verification and validation techniques

Whatever the size of project, software V&V greatly affects software quality. People are not
infallible, and software that has not been verified has little chance of working. Gibson in
(Gibson 1992) stated that typically, 20 to 50 errors per 1000 Lines Of Code (LOC) are found
during development and 1.5 to 4 per 1000 LOC remain even after validation test. Each of
these errors could lead to an operational failure (bug) or non-compliance with a requirement.
The objective of software V&V is to reduce software errors to an acceptable level. According
to Beizer (Beizer 1990), the effort needed can range from 30% to 90% of the total project
resources, depending upon the criticality and complexity of the software. The V&V techniques
must be applied at each stage in the software process. It has two major objectives 1) the
discovery of bugs in a product and 2) the assessment of whether or not the product is useful
and useable in an operational situation. V&V must establish confidence that the software is fit
for purpose. This does not mean completely free of defects. Rather, it must be good enough
for its intended use and the type of use will determine the degree of confidence that is needed.
Confidence is certainly subjective and depends on many factors such as software criticity,
users and market expectations. The V&V consists of numerous techniques and tools, often
used in combination with one another. Due to the large number of V&V approaches in use, we
cannot address every technique. In fact, software V&V both use static and dynamic techniques
of product checking to ensure that the resulting software product matches with its
specifications and that the software product as implemented meets the expectations of the
customer. In fact, dynamic techniques involve the execution of the software product under
test, whereas static techniques do not:

• Static techniques (Review and Proof) are concerned with analysis of the static product
representation to discover errors throughout all stages of the software life cycle. It may
be complemented by tool-based document and code analysis.

• Dynamic techniques (Testing) are concerned with exercising and observing product
behavior. The product is executed with test data and its operational behavior is
observed.

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

121

1. Static techniques

a. Review

A review is a technique during which a work product, or set of work products, is presented to
project personnel, managers, users, customers, or other stakeholders for comment or approval
(IEEE Std. 610-1990). Review can be used to examine all the products of the software
evolution process. In particular, they are especially applicable and necessary for those
products not yet in machine processable form, such as requirements or specifications written
in lateral language. IEEE (IEEE Std. 610-1990) has identified four kinds of review which are
often used for software verification: technical review, walkthrough, inspection and audit.
These reviews are all “formal reviews” in the sense that all have specific objectives and
explicit rules of procedures. They expect to identify errors and discrepancies of the software
regarding the original specifications, plans and standards.

Technical review

The objective of a technical review is to evaluate a specific set of review items (e.g.
document, source code) and provide management with evidence that 1) they conform to
specifications made in previous phases; 2) they have been produced according to the project
standards and procedures and finally 3) any changes have been properly implemented, and
affect only those products identified by the change specification. Typical conclusions of a
review meeting are 1) authorization to proceed to the next phase, subject to updates and
actions being completed, 2) authorization to proceed with a restricted part of the product and
3) a decision to perform additional work.

Walkthrough

Walkthrough should be used for the early evaluation of documents, models, designs and code.
The objective of a walkthrough is to evaluate a specific review item (e.g. document, source
code). A walkthrough should attempt to identify errors and consider possible solutions. In
contrast with other forms of review, secondary objectives are to educate, and to solve form
errors.

Inspection

Inspection can be used for the detection of errors in detailed designs before coding and during
the coding stage. Inspection may also be used to verify test cases. A study done by Fagan
(Fagan 1986) has shown that inspection could detect over 50% of the total number of errors
introduced in development stages. IEEE (IEEE Std. 610-1990) considers that inspection is a
more rigorous alternative to walkthrough, and is strongly recommended for software with
stringent reliability, security and safety requirements.

Audit

Audit is an independent review that assesses compliance with software requirements,
specifications, baselines, standards, procedures, instructions, codes and contractual and
licensing requirements. To ensure their objectivity, audit should be carried out by people
independent of the development team.

b. Proof

A proof attempts to logically demonstrate that software is correct. Whereas a test empirically
demonstrates that specific inputs result in specific outputs, proof logically demonstrate that all

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

122

inputs meeting defined pre-conditions will result in defined post-conditions being met. Adrion
(Adrion 1986) defines proof as is a collection of techniques that apply the formality and rigor
of mathematics to the task of proving consistency between an algorithm solution and a
rigorous, complete specification of the intent of the solution. This technique is also referred to
as “formal verification”. Proof techniques are normally presented in the context of verifying
an implementation against a specification.

Prowell and Beizer (Powell 1986, Beizer 1990) have identified several limitations to proof
techniques. One limitation is the dependence of each proof technique to a formal specification
language. In fact, in order to use a specific proof technique on a project, the software
requirements of this project must be written in a specific language associated with the
corresponding proof technique. Another limitation has to do with the complexity of using
proof techniques. For large programs, the amount of detail to handle, combined with the lack
of powerful tools may make the proof technique impractical. According to inner software
managers, proof techniques are not suitable to the automotive competitive context and more
especially to Johnson Controls. The four main reasons are:

• Proof techniques are often used on critical software products. They often have precise
and logical specifications with no loopholes and they require being highly reliable,
since failures in this kind of products may lead to deathly consequences. Some areas
where proof techniques have been successful are for the specification and verification
of safe and critical products such as aircraft avionics, nuclear power plant control and
patient monitoring. In Johnson Controls, the developed electronic products are related
to the car interior functionalities and are not considered by the carmakers as critical.

• Automotive engineers are not familiar with proof techniques contrary to aeronautic or
defense engineers. Software testing is a widespread V&V technique in automotive
industry.

• Proof techniques are not widely used in automotive industry (carmakers and Johnson
Controls competitors). This could lead to the conclusion that proof techniques are not
adapted to the automotive context. In fact, the difficulty of expressing software
requirements in the mathematical form necessary for formal proof has restricted a
wider application of this technique.

• Finally, many managers highlight the complexity and the additional effort required
regarding reviewing or testing techniques.

As said in the research focus (Cf. Chapter 3 – Section 3.B), we do not address the static
V&V techniques but we focus our research on the dynamic techniques (e. g. software
testing).

2. Dynamic techniques

Software testing, a V&V dynamic technique is a widespread technique in automotive industry.
In Johnson Controls (Cf. Chapter 2 – Section 5), software testing represents up to 90% of the
total time spent in verifying and validation a software product. Moreover, in the academic
research, the traditional focus of software V&V techniques has been the software testing. In
fact, testing approaches are widely studied in academic research and deployed in software
industry. Therefore, in our literature review, the software testing category has been further
refined. In the following section, we expose the major testing principles, techniques and
issues.

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

123

III. Software testing techniques

A. What is “software testing”?

Harrold (Harrold 2000) has identified several advantages of testing over static-analysis
techniques. One advantage of testing is the relative ease with which many of the testing
activities can be performed. Test cases can be generated automatically. Software can be
instrumented so that it reports information about the executions with the test cases. This
information can be used to measure how well the test cases satisfy the quality objectives.
Output from the executions can be compared with expected results to identify those test cases
on which the software failed. A second advantage of testing is that the software being
developed can be executed in its expected environment. The results of these executions with
the test cases provide confidence that the software will behave as intended. A third advantage
of testing is that much of the process can be automated. With this automation, the test cases
can be reused for testing as the software evolves. Although, testing has a number of
advantages, it also has a number of limitations. Testing cannot highlight the absence of errors;
it can only stress their presence. Additionally, testing cannot show that the software has
certain qualities. Despite these limitations, testing is widely used in industry to provide
confidence in the quality of software. Therefore, the growth of software complexity and the
increased emphasis on software quality, highlight the need for improved testing
methodologies. In the following, we list some citations of software pioneers around the world.

“Quality assurance over test designs and testing is essential to a successful quality effort. [...]
More than the act of testing, the act of designing tests is one of the most effective bug
preventers known. [...] The ideal quality assurance activity would be so successful at this that
all bugs would be eliminated during test design. Unfortunately, this ideal is unachievable. We
are human and there will be bugs. To the extent that quality assurance fails to reach its
primary goal of bug prevention, it must reach its secondary goal of bug detection.”

B. Beizer, (Beizer 1984)

“Reliable Object-Oriented software cannot be obtained without testing.” — R.V. Binder

Binder, (Binder 1995)

“The importance of software testing and its implications with respect to software quality
cannot be overemphasized. [...] It is not unusual for a software development organization to
expend between 30 and 40 percent of total project effort on testing. In the extreme, testing of
human-rated software (e.g. flight control, nuclear reactor monitoring) can cost three to five
times as much as all other software engineering activities combined!”

R.S. Pressman, (Pressman 1997)

 However, several different definitions have been given for the software testing technique.
Some of them are listed below. In this dissertation, we adopt the definition proposed by the
National Institute of Standards and Technology (NIST).

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

124

Definition 4.2: Software testing (NIST 2002)

Software testing is the process of applying metrics to determine product quality. Software
testing is the dynamic execution of software and the comparison of the results of that
execution against a set of pre-determined criteria. “Execution” is the process of running the
software on a computer with or without any form of instrumentation or test control software
being present. “Predetermined criteria” means that the software’s capabilities are known
prior to its execution. What the software actually does can then be compared against the
anticipated results to judge whether the software behaved correctly. Software testing is a
widespread V&V technique in automotive industry.

Definition 4.3: Software testing (Myers 1979)

Software testing is the process of executing a program or system with the intent of finding
errors.

Definition 4.4: Software testing (IEEE Std. 610-1990, IEEE Std. 829-1998)

Software testing is:

(1) the process of operating a software component or product under specified conditions,
observing or recording the results, and making an evaluation of some aspect of the
component or product.

(2) the process of analyzing a software item to detect the differences between existing and
required conditions (that is, bugs) and to evaluate the features of the software items.

While the NIST definition associates the software testing to a quality measurement tool, the
definition of Meyers insists on the fact that testing software must reveal bugs and the IEEE
definition claims the good behavior of the software under test.

B. Classification of software testing techniques

There is an excess of testing methods and testing techniques. Classified by life-cycle phase,
software testing can be categorized as follows: unit test, integration test, validation test and
regression test. Classified by accessibility, software testing can be divided into: white-box test
and black box test. All these test methods can be used (individually or in conjunction) at each
phase of the software life-cycle. In the following, we provide some details on each of these
testing techniques.

1. According to life-cycle phase

During the development lifecycle of a software product, testing is performed at different
levels and can involve the whole product or parts of it. Depending on the process model
adopted, then, software testing activities can be articulated in different phases, each one
addressing specific needs relative to different portions of a product. Whichever the process
adopted, Bernot (Bernot 1991) states that one can at least distinguish in principle between
unit, integration and validation test. These are the three testing levels of a traditional phased
process (such as in Johnson Controls). Pezze (Pezze 1998) considers that these levels are
complementary with different goals and execution procedures. In fact, none of these levels is
more relevant or important than the others. Each level must address a specific typology of
bugs in a software product. The unit test must detect bugs related to the behavior of each

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

125

software component independently from its environment. The integration test focuses on
problems of communications and interfaces that may arise during component integration. And
finally the validation test focuses on the behavior of a software product as a whole.

a. Unit or component or module test

A component is the smallest testable piece of software (Cf. Definition 1.3), which may consist
of hundreds sometimes thousands of LOC, and generally represents the result of the work of
one programmer (developer). Bernot (Bernot 1991) defines the unit test as a V&V technique
to ensure that a software component satisfies its functional specification and/or that its
implemented structure matches the intended design structure. The unit test can also be applied
to check the local data structure (improper typing, incorrect variable name, inconsistent data
type) and the boundary conditions. In other words, go through all the source code of a
software component.

b. Integration test

Generally speaking, integration is the process by which software components are aggregated
to create a software product. Bernot (Bernot 1991) defines the integration test as the
technique that aims at verifying that each component interacts with other components
according to its specifications. In particular, it mainly focuses on the communication
interfaces among integrated components. Even though the single components are individually
acceptable when tested in isolation, in fact, they could still result in incorrect or inconsistent
behavior when combined. For instance, there could be an improper call or return sequence
between two or more components. Fenton (Fenton 2000) has identified two integration test
approach: non-incremental and incremental. In a non-incremental approach the components
are linked together and tested all at once (big-bang testing). In the incremental approach, we
find the classical top-down strategy, in which the modules are integrated one at a time, from
the main program down to the subordinated ones, or bottom-up, in which the tests are
constructed starting from the modules at the lowest hierarchical level and then are
progressively linked together upwards, to construct the whole product. Usually in practice (as
in Jonson Controls), a mixed approach is applied, as determined by external project factors
(e.g. availability of modules, release policy, availability of test engineers and so on).

c. Validation or system test

Validation test involves the whole software product and is defined by Bernot (Bernot 1991) as
the technique that aims at verifying that the whole software behaves according to the
customer requirements. In particular it attempts to reveal bugs that cannot be attributed to
specific components, but they are due to the inconsistencies between components, or to the
planned interactions of components and other objects (which are the subject of integration
test). In (Bertolino 2002), Bertolino summarizes the primary goals of validation test:

• Discovering the bugs that manifest themselves only at system level and hence were
not detected during unit or integration test.

• Increasing the confidence that the developed product correctly implements the
required capabilities.

• Collecting information useful for deciding the release of the product.

Validation test must therefore ensure that each product function works as expected.

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

126

d. Regression test

In (Bernot 1991), the author consider that the regression test is not a separate level of testing,
but may refer to the retesting of a component, a combination of components or a whole
software product after modification, in order to ascertain that the change has not introduced
new errors. As software produced today is constantly evolving, driven by market forces and
technology advances, regression test takes by far the predominant portion of testing effort in
industry. Since both corrective and evolutive modifications may be performed quite often, to
re-run after each change all previously executed test cases would be prohibitively expensive.
Therefore various types of techniques have been developed to reduce regression test costs and
to make it more effective. Fernandez (Fernandez 1996) proposes a selective regression test
techniques based on selecting a (minimized) subset of the existing test cases by examining the
modifications. Other approaches instead prioritize the test cases according to some specified
criterion (for instance maximizing the code coverage).

2. According to accessibility

Testing methods can also be divided into two families, according to the input data from which
test cases are selected (Beizer 1990): black-box test and white-box testing. Black-box test, a
term most likely borrowed from electronic engineers, involves treating software component or
product as a black-box (like an electronic component) to which input can be supplied and
from which the corresponding output can be collected and observed, but whose inner
intermediate workings of the software cannot be seen. White-box test does allow one to
observe the internal workings of the software and to make use of its structural information to
adapt or drive the testing process.

a. Functional or black-box or specification-based test

According to Beizer (Beizer 1995), test cases for functional test are derived from the
functional specification of the software product under test, apart from the code. The criterion
of correctness is the functional specification of the software under test: program behaviors are
compared to those required by the specification. The goal is to select test cases that cover
each requirement described by the functional specification. Functional test is typically the
base-line technique for designing test cases, for a number of reasons. Functional test case
design can (and should) begin as part of the requirement specification process. Even if the
source code of a software is not already developed, one can design functional test cases for
this software based on the software functional requirements. Moreover, functional test is
effective in finding some classes of bugs that typically elude structural test techniques.
Functional test techniques can be applied to any description of program behavior, from an
informal partial description to a formal specification and at any level of granularity, from
software component to product testing.

Since, functional test aims at finding any discrepancies between what a software does and
what it is intended to do, one must obviously refer to requirements as expressed by users and
specified by software engineers. An important side effect of test design is highlighting
weaknesses and incompleteness of software functional requirements. A survey on the
formalism degree of the software functional requirements is performed in Section 4.D.1.
Designing functional test cases is an analytical process which decomposes requirement
specifications into test cases. In most cases (as in Johnson Controls), functional test is a
human intensive activity. For instance, when test engineers work from informal specifications
written in natural language, much of the work is in analyzing the specification for identifying

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

127

test cases. Even expert test engineers can miss important test cases. Systematic processes
amplify but do not substitute for skills and experience of the test engineers. In a few cases,
functional test can be fully automated. This is possible for example when requirement
specifications are expressed in a formal language (for instance, a grammar or an executable
model). This approach is known under the name of formal testing or model-based testing and
has been described by Apfelbaum and Robinson in (Apfelbaum 1997, Robinson 1999). The
authors highlight the approach’s advantage of guaranteeing a good and formal coverage of the
requirements specification. In fact, the test engineers’ job is limited to the choice of the test
selection criteria, which defines the strategy for generating test cases. Several experiments
have been performed in testing using formal specifications. A good summary of these
experiments has been done by Gaudel and El-Far in (Gaudel 1995, El-Far 2001).

b. Structural or white-box or program-based test

According to Beizer (Beizer 1995), test cases for structural test are derived from the code of
the software under test. In fact, the structure of the software itself is a valuable source of
information for selecting test cases and determining whether a set of test cases has been
sufficiently thorough. We can check whether a test case has covered a specific part of the
program. In fact, testing can reveal an error only when the execution of the corresponding
erroneous items causes a bug. For instance, if there were an error in the line N of the program,
it could be revealed only with test cases that would cause this line to be executed. Based on
this observation, a program has not been adequately tested if some of its items have not been
executed. An item could be a line of code, decision, condition or procedure (Cf. Chapter 2 –
Section 6.A.1). Unfortunately, a set of correct program executions in which all structural
items are exercised does not guarantee the absence of errors. Execution of an erroneous item
may not always result in a bug. The state may not be corrupted when the item is executed with
some data values, and a corrupted state may not propagate through execution to eventually
lead to a bug. Many software researchers (Jorgensen 1995, Pezze 1998, Woodward 2005)
state that structural information must not be used as the primary answer to the question, “How
shall I choose tests,” but it is useful in combination with other test selection criteria such as
cover the customer requirements.

Based on our industrial audit (Cf. Diagnosis 8), test engineers in Johnson Controls use
the structural approach in the unit test stage and the functional approach in the
validation test stage. The purpose of designing test cases using the structural approach is
to cover at 100% the source code while using the functional approach, test engineers
have to check the compliance of the software with the carmaker requirements. This
leads to the fact that bugs related to the behavior (regarding the requirements) of one
independent software component are detected later in the process (during the validation
test). We propose to perform functional test since the earlier testing stages. One has to
verify the compliance of each software component (independently from its environment)
with the carmaker requirements.

IV. Software testing research issues and solutions

In this section, we develop the software testing issue identified in Chapter 3 – Section 4. In
fact, we analyze the related solutions proposed in the literature, identify lacks in these
solutions and propose improvement actions in order to fit in our context.

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

128

A. Research issue 1: How to execute test cases on a software product?

The execution of a test case can occur in a manual or automated way. In other words, the test
case descriptions that are the result of the test design activity could be manually or
automatically executed against a software product. One issue when automating the test
execution is to transcribe the specified test cases into a computer language. Another issue is
the ability to put the product into a state from which the specified test cases can be launched.
This is sometimes referred to as the test precondition. In fact, before a specific command can
be executed, several runs in sequence are required to put the product in the suitable test
precondition. An effective way to deal with this is to arrange the selected test cases into
suitable sequences, such that each test case leaves the product into a state similar to the
precondition of the next test case. This problem has been early formalized and tackled by
Dick in (Dick 1993). Moreover, a more complex problem arises when testing only one or
more components of a software product (the case of a software unit test). Indeed, the testing
task itself requires a large programming effort. To be able to test one software component of a
large software product we need to emulate the behavior of its peripheral software
components. Fortunately, some commercial test tools exist which can facilitate these tasks.
Finally, when testing reveals a bug, the task of recreating the conditions that made it occur is
called test replay. Exact test replay requires mechanisms for capturing the happening of
synchronization operations, and for forcing the same order of operations when a test is
replayed.

As said in the research focus (Cf. Chapter 3 – Section 3.B), we do not address the
problem of executing test cases on the software product. In fact, we made the assumption
that the present test execution platforms are reliable.

B. Research issue 2: When to decide to stop testing a software product?

Determining when to stop testing and release a product is an important management decision.
It is clear that there is natural trade-off between the decision to continue testing or to stop: (a)
if testing stops too early, many bugs remain. Thus we incur the cost of later bug-fixing and
losses due to customers’ dissatisfaction. The cost of fixing a bug after release is a lot more
than the cost of fixing while testing (Cf. Figure 1.11). (b) if testing continues up to the
maximum permissible time, then there is the cost of testing effort and a loss of market
initiative.

1. Criteria to stop testing a software

Several stopping criteria have been proposed for software testing.

a. Stochastic similarity

A stopping criterion based on stochastic similarity is proposed by Whittaker in (Whittaker
1994) and refined by Sayre in (Sayre 2000). This criterion is based directly on the statistical
properties of a usage and testing chains. The usage chain is a model of ideal testing of the
software; e.g. each arc probability is established with the best estimate of actual usage, and no
failure states are present. The testing chain, on the other hand, is a model of a specific test
history, including bug data. Thus, the usage chain represents what would occur in the
statistical test in the absence of bugs, and the testing chain represents what has occurred.
Dissimilarity between the two models is therefore a useful measure of the progress of testing.
When the dissimilarity is small, the test history is an accurate picture of the usage model.

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

129

Unfortunately, Johnson Controls test engineers are often subjected to time pressure and
therefore test and bug data are note often well organized. Therefore, in this context, the use of
the stochastic similarity model to decide stop testing a software may lead to poor results.

b. Reliability estimation

A stopping criterion based on estimated reliability and confidence is proposed by Littlewood
in (Littlewood 1997). This criterion relies on a target reliability. IEEE (IEEE Std. 610-1990)
defines software reliability as the probability of “bug-free” software operations for a
specified period of time in a specified environment. In fact, during the past 30 years, many
models have been proposed assessing the reliability measurements of software products. A
software reliability model specifies the general form of the dependence of the bug process on
the principal factors that affect it: error introduction, error removal, and the operational
environment. Software reliability modeling forecasts the curve of the bug rate by statistical
evidences. The purpose of this measure is two-fold: 1) to predict the extra time needed to test
the software to achieve a specified objective; 2) to predict the expected reliability of the
software when the testing is finished. The success of a model is often judged by how well it
fits a curve to the observed "number of bugs vs. time" function. It is important to note that all
the software reliability models are based on some assumptions 1) The module under test
remains essentially unchanged throughout testing, except for the removal of errors as they are
found, 2) Removing an error does not affect the chance that a different error will be found, 3)
"Time" is measured in such a way that testing effort is constant and finally 4) All errors are of
equal importance. Unfortunately, none of these assumptions fit with our industrial context and
therefore using such models in deciding when to stop testing a software in Johnson Controls
may lead to poor results. Many of the current software reliability models, techniques and
practices are detailed in the Handbook of Software Reliability Engineering by Lyu (Lyu
1996).

c. Cost benefit estimation

A cost-benefit stopping criteria based on estimates of the errors remaining in the product and
the cost to repair them both before and after release, are proposed by Dalal in (Dalal 1988). A
more sophisticated version which includes costs due to lost market and customer
dissatisfaction is proposed by Chavez in (Chavez 2000). This model remedies all the
assumptions considered by the reliability models. However, this leads to a complex
mathematical problem. Since Johnson Controls test engineers are not familiar with
mathematical theories (which are not the core of their skills), it remains difficult to apply such
a model in our context.

d. Test coverage

A stopping criteria based on test coverage are presented by Offutt in (Offutt 1999a). The
decision of when to stop testing is based on covering a software code or requirements in
various ways. In practice, code coverage is used to decide when to stop structural test, while
requirement coverage is used in a functional test context. On the one hand, researches in code
coverage measurement have reached a high level of maturity and many automated tools were
commercialized. In a survey done by Yang in (Yang 2006), the author studies and compares
17 code coverage measurement tools. In fact, the code coverage measurement helps engineers
detecting “dead code”, piece of code that can be never covered and “non specified code”,
piece of code that does not implement any of the requirements. On the other hand,
requirement coverage measurement is still immature. In fact, the accuracy of a requirement

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

130

coverage measurement depends on the degree of formalism used when specifying a set of
requirements. In Section 4.D.1, we develop the three degrees of formalism (informal, semi-
formal and formal) used to specify software functional requirements. Measuring the coverage
of an informal or semi-formal specification is usually done by a manual approach (Bontron
2005). In fact, all the requirements associated to the software product under test are identified
and when designing a test case, test engineer has to identify the requirement(s) that has (have)
been covered by this test. Obviously, such an approach is imprecise since it strongly depends
on the engineers’ degree of the specification comprehension and interpretation. Measuring the
coverage of a formal specification can be considered as a simple problem that can be easily
automated (Offutt 1999a). However, the coverage measurement criteria are specifics for each
formalism of formal specification. Now, in Johnson Controls, the code coverage is formally
used when testing unitarily each software component. Moreover, in validation test, test
engineers have to ensure a 100% coverage of the software functional requirements. In
Chapter 2 – Section 4.A, we show that semi-formal and formal methods are more and more
used to specify software functional requirements in automotive industry but there is not a
unique standard formalism shared between carmakers and suppliers. As an indirect
consequence and even with formal specifications, test engineers still measuring the
requirement coverage using the tradition manual approach presented in Chapter 2 – Section
6.B.1.

Based on our industrial audit (Cf. Diagnosis 2, 5, 6, 8, 9, 11 and 16), the stopping
criterion used when testing unitarily a software component is the 100% coverage of the
component source code. Sometimes, for time and budget reasons, test engineers stop
testing a component even if the 100% code coverage is not reached. In validation test, the
criterion to stop testing a software product is to cover at 100% the related carmaker
requirements. These requirements are documented in the SRS document, a large
document difficult to manage, incomplete and not regularly updated. Moreover, there
are no standards to specify software requirements and test engineers have to adapt their
coverage practices to each requirement’s formalism. Finally, the present definition of a
software requirement is not enough refined. In fact, one requirement can hide two or
more implicit requirements. Therefore, inexperienced validators could miss testing some
of the carmaker implicit requirements. Based on the literature review, we consider that
ensuring a 100% code coverage is a necessary quality objective when testing a software.
Nevertheless, we propose to formalize the measurement of the requirement coverage. To
do this, one has to specify the requirements using a formal language. Moreover, we
suggest integrating project constraints (test time and cost) in the decision to stop testing a
software product.

C. Research issue 3: How to choose the operations to be checked on a
software product?

Effective testing requires strategies to trade-off between the two opposite needs of amplifying
testing thoroughness on the one side (for which a large number of test cases would be
desirable) and reducing times and costs on the other (for which the fewer the test cases the
better). Given that test resources are limited, how the operations are selected becomes of
crucial importance. Indeed, the problem of operation selection has been the major dominating
topic in software testing research. A decision procedure for selecting the operation is
provided by an operation selection strategy.

A basic strategy is random testing, according to which the operations are randomly chosen
from the whole input domain according to a specified distribution, e.g. after assigning to the

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

131

inputs different “weights” (more properly probabilities). For instance the uniform distribution
does not make any distinction among the inputs, and any input has the same probability of
being chosen. In contrast with random testing, a broad class of operation selection strategies
referred to as partition testing. The underlying idea is that the program input domain is
divided into sub domains within which it is assumed that the program behaves the same, e.g.
for every point within a sub domain the program either succeeds or fails: we also call this the
test hypothesis. Therefore, thanks to this assumption only one or few points within each sub
domain need to be checked, and this is what allows for getting a finite set of operations out of
the infinite domain. Hence a partition testing strategy essentially provides a way to derive the
sub domains. An operation selection strategy yielding the assumption that all operations
within a sub domain either succeed or fail is only an ideal, and would guarantee that any
fulfilling set of operations always detect the same bugs; in practice, the assumption is rarely
satisfied, and different sets of operations fulfilling a same criterion may show varying
effectiveness depending on how the operations are picked within each sub domain. The
relative merits of these two different operation selection philosophies have been highly
debated by Weyuker and Frankl in (Weyuker 1991, Frankl 1998). However, the most
practiced operation selection strategy in industry is probably based on reaching an objective;
in particular code and/or requirement coverage objective. In fact, the test engineer keeps
selecting operations until the predefined objective is reached or her/his manager tells her or
him to stop (for time or budget reasons). This strategy is clearly subjective and based on the
test engineer's intuition and experience. Nevertheless, expert test engineers can perform a very
good selection mechanism taking into account many factors such as the time and cost and the
efficiency of the selected operations (Johnson Controls source). When using this operation
selection strategy, the test engineer’s skill (experienced and skilled) is the factor that mostly
affects test effectiveness in finding bugs.

Many are the factors of relevance when an operation selection strategy has to be chosen. An
important point to always keep in mind is that what makes a test a “good” one does not have a
unique answer, but changes depending on the context, on the specific application, and on the
goal for testing. The most common interpretation for “good” would be “able to detect many
bugs”; but again precision would require to specify what kind of bugs, as Basanieri has shown
in (Basanieri 2002) that different operation selection strategy detect different types of faults.
Paradoxically, operation selection seems to be the least interesting problem for test
practitioners. In 2006, we did a survey on existing commercial tools supporting the operation
selection when testing a software product. We focus our survey on the tools able to select
operations that verify the compliance of a software with its specification (functional
requirements). We identify 6 tools:

1. CONFORMIQ TEST GENERATOR by VERYSOFT – GERMANY
2. MATELO by ALL4TEC – FRANCE
3. PRO-TEST/PRAXIS by DIGITAL COMPUTATIONS, INC – USA
4. REACTIS by REACTIVE SYSTEMS, INC – USA
5. RHAPSODY TESTCONDUCTOR/AUTOMATIC TEST GENERATOR by I-

LOGIX/TELELOGIC – USA
6. T-VEC RAVE/TESTER for Simulink/Stateflow by T-VEC – USA

An overview of the characteristics of each of these tools is given in Appendix D. The major
number of these tools is based on a Model-Based approach. Indeed, the software functional
requirements are represented in a specific format from which operations are selected
automatically. On the one hand, more than 278 tools supporting the software testing process
(test management, test execution and so on) have been referenced in (Legeard 2007) by
Legeard. On the other hand, we have shown through our industrial audit (Cf. Chapter 2 –

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

132

Section 6) that the activity of designing manually test cases for software products becomes
more and more laborious and time consuming. Therefore, one could highlight the lack of tools
supporting the selection of operations when testing a software. 2% (6 over 278) of the
commercial software testing tools are dedicated to the software testing activity that accounts
more than 50% of the total software project time and budget.

Based on our industrial audit (Cf. Diagnosis 2, 5, 6, 13, 14, 15, 16, 17 and 18), the
operation selection strategy currently used in Johnson Controls is a manual subjective
one based the test engineers’ experience and intuition. Their main purpose is to reach a
code or requirement coverage objective. In fact, test engineers do not always select
operations that simulate the real use of the software product under test. Moreover, there
is no formal process to analyze recurrent bugs stored in the problems’ database and
select operations that detect these bugs on future developments. And finally, there is a
lack of formal process and tools to manage and reuse test cases from one project to
another. We propose to formalize the process of selecting operations in order to be
independent as much as possible from the test engineers’ experience. One solution we
propose is to automate this process. One could select operations randomly or, select
operations based on the end-user behavior’s profile or the experience feedback (from bugs
and test cases capitalized on similar projects in the past).

Since 2005 and as the design of test cases for software has reached the 50% of the total time
and budget of a project in Johnson Controls, the automation of the test case design process
became a hot topic. Therefore, inner software experts and managers have evaluated some of
the previous listed tools (evaluation version of the tool). None of these tools are fully adapted
to the Johnson Controls context. Many issues have been identified by the experts and
managers: 1) these tools propose to represent the software requirements in a formal language
which is not adapted to the automotive software context, 2) these tools do not propose a
relevant stop testing criterion based on the test case quality and software project constraints
(test cost and time), 3) some of these tools do not manage the reuse of capitalized bugs and
test cases from one project to another ,4) some of these tools do not propose to generate test
cases with a end-user behavior’s profile and finally 5) the tool licenses and trainings are
expensive.

1. Advantages and drawbacks of automating the design of test cases

The activity of designing test cases for a software product is a major activity in a software
development life cycle. To cut down cost of manual test case design and to increase reliability
of it, researchers and practitioners have tried to automate it. Many managers today expect test
design automation to be a silver bullet; killing the problems of test scheduling, the costs of
testing, defect reporting, and more. However, there are many factors to consider when
planning for test design automation. It usually has broad impacts on the organization such as
the skills needed to design and implement automated tests, automation tools, and automation
environments. Development and maintenance of automated tests is quite different from
manual tests. The job skills change, test approaches change, and testing itself changes when
automation is installed. These impacts have positive and negative components that must be
considered. Automation is only a means to help accomplish our task – testing a product. It
may reduce staff involvement during testing, thus saving time relatively to manually
designing test cases. But, automatic test design may generate a bunch of results that can take
much more staff involvement for analysis, thus costing more than manual test design. Often
the information obtained from automatic test generation is more cryptic and takes longer to
analyze and isolate when bugs are discovered. In fact, successful test automation efforts don’t
focus on eliminating the test team, they focus on doing a more effective and efficient job of

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

133

testing with the human resources available. Automatic test generation can be incredibly
effective, giving more coverage. It also provides us with opportunities for testing in ways
impractical or impossible for manual testing. Indeed, automatic test design can generate
millions of test cases limited only by the machine power and time available for running the
tests. However, Black (Black 2000) notice that automated testing is a huge investment, one of
the biggest that organizations make in testing. Tool licenses are often expensive. Engineers
cannot use alone most of these tools and therefore training, consulting, and expert contractors
can cost more than the tools themselves. Moreover, the test engineers could resist using an
automation tool since they felt that their manual process worked fine. Effort must be invested
in incorporating a new automation tool into the process. As we propose to automate the
design of test cases within Johnson Controls, we must take into account all these
considerations.

2. Design test cases based on end-user behavior’s profile

We propose to define an end-user (driver) behavior’s profile for each software under test.
Therefore, when testing the software, one could select the operations or succession of
operations recurrently performed on the software in real use. In fact, there is no better way to
test a product other than testing it in the way that it will be used. The main work in this field is
the one of Musa in (Musa 1993). Musa has proposed a process to define an operational
profile for a system. This process involves one or more of the following five levels: Client
type list, User type list, System modes, Functional profile and Operational profile. By
customizing this process to our context, we only consider the operational profile level. In fact,
we consider that a software product is dedicated to only one customer (carmaker) and a client
type list is not necessary. The end-users (driver) of an automotive software product can be
classified regarding to criteria such job, climate, sexe, age, culture … In our research, we do
not deal with these criteria and we consider a nominal end-user behavior’s profile. Most
software products have more than one mode of operation (normal mode, factory mode and
diagnostic mode). However, the occurrence probability of the normal mode is about 99%
(Johnson Controls source) and consequently we decide to ignore the other modes. The next
step is to break system modes down into the functionalities. It needs, to create a functionality
list in determining the occurrence probability of each functionality. The best source of data to
determine occurrence probabilities is usage measurements, e.g. frequency measurements of
the users operations, taken on the last release or on similar system. In our context, we don’t
have this type of information (since it is considered as confidential by the carmakers). Finally,
for each functionality, a set of operations and sucession of operations is possible (Cf. Chapter
2 – Section 6). Therefore, for each functionality, experts must identify recurrent operations
and succession of operations and therefore define occurrence probabilities. Barnaghan
(Branaghan 1999) has developed the fundamentals of usability testing. In fact, the usability
testing techniques are widely and often used in testing Graphical User Interfaces (GUI).

3. Design test cases based on experience feedback

We also propose to reuse capitalized bugs and test cases from one project to another.
Therefore, when testing the software, one could use the experience feedback on bugs and test
cases respectively detected and designed on similar software in the past. Presently,
information on stored bugs is missing and/or irrelevant and reusing these bugs in order to
avoid or detect similar problems on future developments remains a difficult problem (Cf.
Diagnosis 16). Therefore, classifying stored bugs and identifying the recurrent type of bugs
detected on a specific type of software could be useful. In the next section, we perform a

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

134

survey on the bug classification models. We propose to define a typology of bugs adapted to
our context and useful to focus the design of test cases on recurrent type of bugs.

a. A survey on the software bugs classification models

In this section, we present one bug classification scheme proposed by IEEE standard and two
industrial schemes: the Hewlett-Packard Scheme (HP) and the Orthogonal Defect
Classification Scheme (ODC) developed by IBM. Classification is performed by assigning a
set of measurement variables (attributes) to discrete values, which are selected, based from a
predefined set of values (attribute values). Therefore, bug classification schemes can differ in
the way different attributes or attributes values relate to each other.

Orthogonal Defect Classification (Chillarege 1992)

The ODC scheme has been developed by IBM. Since its definition, this classification has been
adopted by more and more organizations. In a survey performed in 1999 by Paulk in (Paulk
2000), 14 out of 37 high-maturity software organizations (according to the CMM maturity
model) used this scheme as quantitative analysis practice. The attributes of this scheme are
organized according to two process steps:

• Step OPEN: when a bug has been detected and a bug report is opened in the bug
tracking system.

• Step CLOSE: when the bug has been corrected and the bug report is closed.

Two interesting attributes was taken into account in this scheme: 1) the attribute defect type
which captures the fix that was made to resolve the bug and 2) the attribute trigger which
captures the reason why an error turns into a bug. The entire ODC scheme with attribute
name, meaning and values is described by Chillarege in (Chillarege 1992).

Hewlett-Packard Scheme (Grady 1992)

The HP scheme was developed by HP’s Software Metrics Council in 1986. This scheme is
based on three descriptors for each bug:

• The origin – where was the bug introduced in the product
• The type of the bug
• The mode – whether information was missing, unclear, wrong, changed or done in a

better way

The choice of an attribute value for the attribute Origin defines the possible set of attributes
available for the attribute Type. The entire HP scheme with attributes and attribute values is
developed by Grady in (Grady 1992).

IEEE Standard Classification for Software Anomalies (IEEE Std. 1044-1993)

The IEEE scheme was developed by the Institute of Electrical and Electronics Engineers
(IEEE), the world's leading professional association for the advancement of technology. The
different attributes of the scheme are organized according to a general bug classification
process consisting of four steps:

• First Step: Recognition – the bug is found
• Second Step: Investigation – we identify issues and propose solutions
• Third Step: Action – we establish a plan of action to resolve the problem
• Last Step: Disposition – we complete all required resolution actions and long-term

corrective actions

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

135

The entire IEEE scheme with attributes and attribute values is developed in (IEEE Std. 1044-
1993).

b. Major aspects of a software bug model

The previous survey reveals several valuable elements to be take into account when designing
a new bug classification scheme. Bugs are inserted due to a particular reason into a
particular piece of software at a particular point in time. The bugs are detected at a specific
time and occasion by noting some sort of symptom and they are corrected in specific way.
Each of these aspects might be relevant for a specific measurement and analysis purpose.
Mellor and Fenton in (Mellor 1992, Fenton 1996) have proposed a framework of bug key
elements that capture on high-level aspects of a bug. Each of these key elements can be
refined leading to many attributes that can be captured by means of measurement:

• Location: where in the product? The location of a bug describes where in the product
the bug was detected. This attribute can also contain attribute values describing
different high-level entities of the entire product (Specification, Design, Code,
Documentation …).

• Timing: when in the process phases, we introduce, detect and correct the bug? The
timing of a bug refers to process phase when the bug was created (origin phase),
detected (detection phase) and corrected.

• Symptom: what we observe when the bug occurred? Symptom captures what was
observed when the bug occurred or the activity revealing the bug. For instance, the
ODC attribute Trigger captures the mechanism that allows a bug to occur. Under
symptom it is also possible to classify what is observed during diagnosis or inspection.
For instance, in IEEE classification scheme, the attribute symptom provides a
classification of the symptom.

• End result: what are the impacts of the bug on the company itself, on the customer, on
the end-user? End result describes the failure caused by the bug. For instance, in
ODC, the attribute impact captures the impact of a bug on the customer (performance,
usability, instability …).

• Mechanism: in which activity and how, we introduce, detect and correct the bug?
Mechanism describes how the bug was created, detected and corrected. Creation
describes activity that inserted bug into the system. Detection describes activity that
was performed when the bug was detected (code review, unit test …). Correction
refers to the steps taken to remove the bug.

• Cause: What is the mistake that leads to the bug? Cause describes the mistake leading
to the bug. For instance, in (Mays 1990) the author uses attributes values like
Education, Oversight, Communication, Tools and Transcription for an attribute Cause.
In (Leszak 2000), the author uses different attributes capturing different kind of
causes: Human-related Causes (lack of knowledge, communication problems …),
Project Causes (time pressure, management mistake) and Inspection Causes (no or
incomplete inspection, inadequate participation …).

• Severity: what is the severity of the bug? Severity describes the severity of a resulting
or potential failure on the whole behavior of the product.

• Cost: How much the bug cost the company? Cost captures the time or effort to locate,
isolate and correct an error.

Bug classification scheme often have problems including incomplete, ambiguous and
overlapping attributes and attribute values. To prevent such problems, a bug classification

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

136

scheme needs to be well defined. Freimut in (Freimut 2001) has proposed a list of quality
properties of a good bug classification scheme:

• Orthogonal attributes and orthogonal attributes values: This means that for a
particular bug and for each attribute only one attribute value is appropriate. If the
attribute values are not orthogonal, it may happen that two or more attribute values
may fit so that the engineer has arbitrarily to decide which value to assign. This leads
to inconsistent and unreliable data.

• Complete attribute values: The set of attributes value must be complete so that for all
bugs an appropriate attribute value can be selected. If the set of values are not
complete, engineer may decide not to classify the bug or select the nearest possible
value.

• Small number of attribute values: The scheme must contain a small number of
attributes values, as too large a number can make selection of the appropriate attribute
value difficult and therefore unreliable.

• Clear meaning and definition of attributes and attribute values: The attributes and
attribute values of the scheme need a clear definition. This definition has to be
developed with all engineers who have to use the attributes and need an understanding
of the attribute.

D. Research issue 4: How to assess the expected behavior of a software
product?

An important component of testing is the oracle. Indeed, a test is meaningful only if it is
possible to decide about its outcome (“OK” or “Not OK”). The difficulties inherent to this
task, often oversimplified, had been early articulated by Weyuker in (Weyuker 1982). In
much of the research literature on software testing, the availability of oracles is either
explicitly or tacitly assumed, but applicable oracles are not described. The research literature
on test oracles is a relatively small part of the research literature on software testing. Some
older proposals (Panzl 1978, Chapman 1982) base their analysis either on the availability of
pre-computed input/output pairs or on a previous version of the same program, which is
presumed to be correct. The former hypothesis is usually too simplistic: being able to derive a
significant set of input/output pairs would imply the capability of analyzing the product
outcome. In the current industrial practice of software testing, the oracle is often a human
being. Relying on a human to assess program behaviors has two evident drawbacks: accuracy
and cost. While the human “eyeball oracle” has an advantage over more technical means in
interpreting incomplete, natural-language specifications, humans are prone to error when
assessing complex behaviors or detailed, precise specifications, and the accuracy of the
eyeball oracle drops precipitously with increases in the number of test runs to be evaluated.
Even if it were more dependable, the eyeball oracle is prohibitively expensive for large
volumes of test cases, and so may become a limiting factor when other parts of testing are
accelerated with automation. Therefore, automated oracles could be a well adapted solution
to this problem. Baresi’s (Baresi 2001) survey proposes approaches to automate the test
oracles. In view of these considerations, it must be evident that the oracle might not always
judge correctly. So the notion of relevance of an oracle is introduced to measure its accuracy.
Bertolino in (Bertolino 1997) proposes to measure the oracle accuracy by the probability that
the oracle rejects a test, given that it must reject it.

Based on our industrial audit (Cf. Diagnosis 2, 5, 6, 10, 12 and 15), the oracle currently
used in Johnson Controls is a human being. In fact, after selecting an operation to be
performed on a software, test engineers analyze the source code and/or the carmaker

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

137

requirements of this software in order to assess the expected values to be checked on
some output signals. In fact, this assessment is based on the engineers’ understanding of
the code and/or requirements and may lead to errors. Moreover, as automotive software
becomes more and more complex, this task becomes a laborious task and accounts for
more than 50% of the total time and budget of a project. We propose to automate the
assessment process of all the expected outputs values by developing a simulation model
of the software functional requirements. In fact, test engineers could perform the
selected operation on the requirements model and assess the output values automatically
by simulating the model. Moreover, once developing a simulation model of the software
requirements, one could formally measure the requirement coverage.

1. Modeling and simulation of software functional requirements

a. Types of software requirements

In software domain, several standards organizations (including the IEEE) have identified four
categories of requirements:

• Functional requirements are the main customer requirements. They refer to the
behavior of the product. For instance, in a body controller product31 , the behavior of
the front wiper management functionality is specified by a set of functional
requirements.

• Non functional requirements are the interface requirements between functionalities
and software performances in terms of CPU load and memory capacity. An example of
non functional requirements can be the communication protocols.

• GUI (Graphical User Interface) requirements are the customer requirements related to
user interfaces. This category of requirements is frequent in electronic display product.

• Non technical requirements include all organizational customer requirements.
Confidentiality, return of experience, past defects reviews capitalization is examples of
these requirements.

Johnson Controls has adopted this typology of requirements (Cf. Definition 2.6). As
demonstrated in Chapter 2 - Section 4, the functional requirements account for more than
90% of the carmaker requirements related to the software domain. Therefore, through our
research project, we focus on the software functional requirements and how one could verify
the compliance of a software product with its functional requirements.

b. Formalisms in specifying the functional requirements of a software product

Both Dart and Brinkkemper in (Dart 1987, Brinkkemper 1990) propose same definitions of
informal, semi-formal and formal specification:

• Informal: These techniques do not have complete sets of rules to constrain the models
that can be created. Natural language (written text) and unstructured pictures are
typical instances.

• Semi-formal: These techniques have a defined syntax. Typical instances are
diagrammatic techniques with precise rules that specify conditions under which

31 A body controller module is an automotive electronic module in charge of managing all electrical currents of a
car

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

138

constructs are allowed and textual and graphical descriptions with limited checking
facilities.

• Formal: These techniques have rigorously defined syntax and semantics. There is an
underlying theoretical model against which a description expressed in a mathematical
notation can be verified. Simulation languages are typical instances.

In Table 4.1, Duphy (Duphy 2000) propose a list of advantages and drawbacks for each of the
informal, semi-formal and formal formalism.

Table 4.1 – Advantages and drawbacks of informal, semi-formal and formal specification

languages (Duphy 2000)

In Table 4.2, Duphy (Duphy 2000) has evaluated these three formalisms based on four
criteria: modelling precision, use, communication facility and training cost.

Table 4.2 – Evaluation of the informal, semi-formal and formal specification languages

(Duphy 2000)

In Table 4.3, a classification of the specification languages is proposed by Fraser in (Fraser
1994).

Advantages Drawbacks

Informal Easy to be understand by all the project actors.

No training but need to understand the writing

rules.

Ambiguity.

Incompleteness.

Inconsistency.

Imprecision.

Cannot be easily automated.

Semi-formal Graphical and abstract representation.

Easy to be understood by all the project actors.

Synthetic, structuring and intuitive

representation.

Modularity and reuse.

Better traceability.

Lack in precision.

Sometimes, notationsare ambiguous.

Difficult to be interpreted.

Simulation not possible.

No techniques to verify and validate the model.

Code generation from these models are not reliable.

Formal Precision.

Abstraction levels.

Formalism.

Model verification and validation.

Proof.

Simulation is possible.

Generation of code and test cases from the

specification model.

Avoid imprecision, ambiguities and

contradictions in the customer requirements.

Long term cost reduction.

Trainings are mandatory.

If no trainings, cost and delay increase.

Not easy to be understood .

Used for critical software products.

Lack in tools supporting formal methods.

Rarely used in industry.

Not integrated to the software development process.

Modelling
precision

Use Communication
facility

Training cost

Informal - +++ +++ ++

Semi-formal + ++ ++ +

Formal +++ - --- ---

+++ very positive; ++ positive; + quite positive; - quite negative; -- negative; --- very negative

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

139

Table 4.3 – Classification of the specification languages (Fraser 1994)

In fact, we cannot talk in detail about all the specification languages. In (Davis 1988), the
author discussed a variety of informal, semi-formal and formal languages useful for testing. In
the Section 4.D, we propose to develop a simulation model of the software functional
requirements in order to automate the test oracle and formalize the measurement of the
requirement coverage. Only formal languages could be used to simulate software functional
requirements (Cf. Table 4.1). Therefore, we focus our research on the most useful (according
to the literature) formal languages: Finite State Machines (FSM), Statecharts, Markov Chains
and Decision Tables (DT). An FSM is a hypothetical machine that can be in only one of a
given number of states at any specific time. In response to an input, the machine generates an
output and changes state. Both the output and the new state are purely functions of the current
state and the input. FSMs are applicable to any model that can be accurately described with a
finite number (usually quite small) of specific states. Chow in (Chow 1978) was one of the
earliest researchers addressing the use of FSMs to specify the behavior of a software. Now,
there is work on FSMs in software engineering with varied tones, purposes, and audiences
(Apfelbaum 1997, Robinson 1999, Liu 2000). Statecharts, extensions to FSMs, were
proposed by Harel in (Harel 1987). Statecharts make it even easier to model complex real-
time system behavior with less ambiguity. The extensions provide a notation and set of
conventions that facilitate the hierarchical decomposition of FSMs and a mechanism for
communication between concurrent FSMs. Statecharts are probably easier to read than FSMs,
but they are also nontrivial to work with and require some training upfront. A sample of
software requirements expressed using Statecharts has been proposed by Hong in (Hong
2000). Markov chains are stochastic models proposed by Kemeny in (Kemeny 1976). They
are structurally similar to FSM and can be thought of as probabilistic automata. In fact, a
probability is associated for each transition. The sum of the probabilities associated to the
transitions that get out of the same state must be equal to 1. Many researchers worked on
using the Markov chains in specifying the behavior of a software (Whittaker 1994, Walton
2000). Sometimes there is a need to describe the required external behavior of some aspect of
a system when the FSM approach makes no sense. One simple solution is the Decision Table
proposed by Moret in (Moret 1982). A DT is used to lay out in tabular form all possible
situations on the inputs of a system and to specify which action to take on the outputs in each
of these situations.

Informal Semi-formal Formal

Natural Language Specifications
(Although often used, published
studies are less numerous)

UML
Variations on Data/Control Flow Diagrams
Entity-Relationship Diagrams
DeMarco
Gane and Sarson
PSL/PSA
SADT
SERM
IORL
CORE
SDL
JSD

Finite State Machines
Statecharts
Markov Chain
Decision Tables
Petri Nets
Executable Specifications
GIST
Refine
VDM
Anna
Z
CSP
GIST
Predicate-Transition-Nets

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

140

c. How to choose a language to specify the functional requirements of a software
product?

Many researchers (Davis 1988, Sommerville 1997, El-Far 2001) state that there are no
software specification languages today that fit all intents and purposes. In fact, for each
context decisions need to be made as to what language (or collection of languages) is most
suitable. No large-scale studies have been made to verify the claims of any particular
language. However, in his paper (Davis 1988), Davis has identified five criteria to help
choosing the most adapted specification language for a specific context: 1) understandable to
non computer-oriented customers, 2) used as the main input for the development and
validation teams, 3) automated checks for ambiguity, incompleteness, and inconsistency, 4)
encourage the requirements engineer to think and write in terms of external product
behaviour, not internal product components, and finally 5) provide a basis for automated
source code and test generation.

Based on the study that we performed on the evolution of the formalisms used by carmakers
to specify functional requirements related to software (Cf. Chapter 2 – Section 4.A), we
underline the increase of formal languages and the decrease of informal and semi-formal
languages. However, within the formal languages, there not a unique standard formalism
shared between carmakers and suppliers (70% of FSMs and Statecharts and 20% of DTs). In
fact, for each project, the supplier has to adapt its processes to the formalism used by the
carmaker. Duphy (Duphy 2000) highlights many works that try to complete or combine semi-
formal and formal languages in order to have the fully, consistent and reliable view of a
software. Three categories of combination can be identified: 1) create a new formalism based
on the existing techniques concepts, 2) complete an existing technique with the aim of
reducing its weakness and finally 3) use simultaneously several existing techniques and thus
cumulate their advantages. In our context, we propose to develop a new formal (simulation)
specification language better adapted to the Johnson Controls context. In fact, for each
project, we propose to represent the software functional requirements of the carmaker into this
language. In order to be able to represent all the carmaker requirements (now and in the
future), it could be judicious to base our specification language on a combination between the
FSM (Statechart) and the DT languages; the two languages that carmakers tend to use.

V. Conclusion

We believe that the importance placed on testing will increase as software’s pervasiveness in
everyday life increases. Our dependence on software, from driving cars to shopping on the
Internet, will decrease users’ tolerance of defective software. Although testing isn’t the only
software engineering practice to ensure quality software, it remains an essential component of
the software development’s life cycle. We focus our research on the design of efficient test
cases for improving the quality of software products. In fact, we are interested in any
organizational matter that has a positive influence onto the quality of the test case design
process: simulation platform, knowledge management, competency management and project
management.

In this chapter, we pinpointed the main progress in each of these fields when designing test
cases. Many techniques and approaches have been developed and for each one, we identify
the advantages and drawbacks to be used or adjusted to our context. As a conclusion, we
propose a list of actions that could improve significantly the global performance of the
Johnson Controls company:

State-of-the-art R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

141

• Perform functional test since the earlier testing stages. One has to verify the
compliance of each software component (independently from its environment) with
the carmaker requirements.

• Formalize the measurement of the requirement coverage. To do this, one has to
specify the requirements using a formal language. Moreover, we suggest integrating
project constraints (test time and cost) in the decision to stop testing a software
product.

• Formalize the process of selecting operations in order to be independent as much as
possible from the test engineers’ experience. One solution is to automate this process.
One could select operations randomly or, select operations based on the end-user
behavior’s profile or the experience feedback (from bugs and test cases capitalized on
similar projects in the past).

• Automate the assessment process of all the expected outputs values by developing a
simulation model of the software functional requirements. In fact, test engineers could
perform the selected operation on the requirements model and assess the output values
automatically by simulating the model. Moreover, once developing a simulation model
of the software requirements, one could formally measure the requirement coverage.

Based on our proposals, in the following four chapters (Chapter 5, 6, 7 and 8), we start
specifying our approach to improve the global performance of the Johnson Controls V&V
activities. Firstly, we develop a new simulation model of the software functional
requirements. Secondly, we provide methods and tools to verify and validate the requirements
model. Thirdly, we propose to monitor the generation of test cases by quality objectives and
cost constraints. And finally, we suggest refining the operation space description with the
driver behavior’s profile, past bugs and test cases.

Quality of the design of test cases for automotive software: design platform and testing process
143

PART III – A NEW APPROACH
FOR DESIGNING EFFICIENT
TEST CASES FOR A SOFTWARE
PRODUCT

Modeling and simulation of software functional requirements R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

145

CHAPTER 5. MODELING AND SIMULATION
OF SOFTWARE FUNCTIONAL REQUIREMENTS

Modeling and simulation of software functional requirements R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
147

I. Introduction

Ten years ago, formal methods were rarely used in automotive industry, contrarily to medical,
avionics and railways industries. The main argument of automotive industry managers was
the high cost of deploying and using formal methods. But, as automotive electronic products
becomes more and more complex, automotive industry is required to start adapting existing
formal methods to their context or developing new ones. Actually, the cost of non-quality
(warranty and customer dissatisfaction) exceeds the cost of using formal methods. We still
have to change the engineers’ practices and even adapt the education in software engineering
to the challenge of complex products. Now, in automotive industry, semi-formal and formal
methods are more and more used to specify software functional requirements (Cf. Diagnosis
3). However, there is a lack of a standard formalism shared between carmakers and suppliers.
In fact, for each project, the supplier has to adapt its processes (test case design, requirement
coverage measurement) to the formalism used by the carmaker (Cf. Chapter 2 – Section 6.B).
Most of the automotive electronic suppliers use the SRS (Software Requirement Specification)
model (Cf. Chapter 2 – Section 4.E). This model is mainly used to organize by functionality
and by type the carmakers’ requirements related to software and to tag them.

In this chapter, we develop our new formal language to model software functional
requirements (a simulation model). Advantages and drawbacks of using formal languages in
modeling software functional requirements are summarized in Section 2. Our formal model to
represent software functional requirements is developed in Section 3. We identify two types
of software functional requirements in automotive industry. These types of requirements
could be modeled using a Decision Table element or a Finite State Machine element. The
simulation process of the requirements model is described in Section 4. Finally, a didactic
case study is proposed in Section 5 in order to better illustrate our requirements model.

In the following, we use the shortcut “software specification” to designate the “software
functional requirements specification”.

II. Advantages and drawbacks of formal languages in modeling software
functional requirements

Formal specification is a specification expressed in a language whose vocabulary, syntax, and
semantics are formally defined, and which has a mathematical, usually formal logic and basis.
In this dissertation, we adopt the definition of a formal specification language proposed by
Wing in (Wing 1990).

Definition 5.1: Formal Specification Language (Wing 1990)

A formal specification language provides a formal method’s mathematical basis. …. A formal
specification language provides a notation (its syntactic domain), a universe of objects (its
semantic domain), and a precise rule defining which objects satisfy each specification.

Carmakers consider different standards to express the software functional requirements of a
given electronic module. Based on the study performed in Chapter 2 – Section 4.A, some
carmakers still use semi-formal and informal methods, but most of them start using formal
methods (simulation models). Incompleteness and ambiguity are the main characteristics of
informal and semi-formal methods (Cf. Chapter 4 – Section 4.D.4). More than 30% of the
bugs detected on a software product are related to lacks in and incomprehension of software
functional requirements (Johnson Controls source). In fact, when designing test cases for the
validation test, test engineers should assess the expected values to be checked on the output
signals of the software product under test (Cf. Chapter 4 – Section 4.D). Indeed, a test is

Modeling and simulation of software functional requirements R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

148

meaningful only if it is possible to decide about its outcome. In case of an informal or a semi-
formal representation of functional requirements, the assessment of the expected values on
output signals is always a human being (Cf. Chapter 2 – Section 6D, as in Johnson Controls).
Relying on a human to assess program behaviors has two evident drawbacks: accuracy and
cost. In fact, after choosing the future operation to be performed on the software product, test
engineers analyze the customer requirements and identify the required behavior to be checked
on the product. In case of large volumes of test cases or complex behaviors, the accuracy of
the eyeball oracle drops precipitously. However, in case of a formal representation of
functional requirements, the assessment of the expected values on output signals could be
done automatically (by simulation). The use of formal specification methods is expected to
lead to increased software quality and reliability.

Hall (Hall 1990) suggests that benefits of using formal specifications are obtainable without
an increase in, and possibly in lowering, development costs. However, Sommerville
(Sommerville 1997) indicates that formal specification methods have not been widely
accepted in industrial software development. Nevertheless, a number of strategies have been
proposed for incorporating formal specification methods into the software development
process.

On the one hand, a variety of advantages has been attributed to the use of formal software
specifications. These advantages include understanding of specifications, help in the
verification of specifications and automatic generation of the source code and test cases.
Firstly, according to Wing (Wing 1990), the formal specifications help crystallize the
customer’s vague ideas, and reveal or avoid contradictions, ambiguities, and incompleteness
in the specifications. Sommerville (Sommerville 1997) highlights that, depending on the
formal specification language used, it may be possible to animate (simulate) a formal system
specification to provide a prototype system. The simulation model can be used by inner
engineers and by end-users to gain further insights into the behavior of the specified system.
Secondly, as formal specifications can be analyzed using mathematical operators, many
researchers (Wing 1990, Kemmerer 1990, Fraser 1994) propose to use mathematical proof
procedures to test (and prove) internal consistency and correctness of specifications.
Furthermore, the completeness of the specifications can be checked in the sense that all
enumerated options and combinations have been specified. Thirdly, from an implementation
point of view, as the final problem solution -the implementation- will be in a formal language
(e.g. programming language); it is easier to avoid misconceptions and ambiguities in crossing
the divide from formal specifications to formal implementations. This raises the possibility of
automatic code generation from formal specifications and therefore avoiding the manual and
labor coding of the software. Moreover, formal specifications can be used as a guide to the
test engineers of software components in identifying and generating automatically appropriate
test cases. In our research project, we do not consider the code generation aspect. In
conclusion, the use of formal methods can lead to higher-quality specifications,
implementations and testing.

On the other hand, a number of reasons by various authors have been suggested to explain the
lack of using formal methods in industrial contexts. Firstly, Leveson (Leveson 1990)
pinpoints the lack of methodological and support tool in formal specification research which
makes it difficult to develop, analyze, and process large-scale specifications using formal
specification languages. Secondly, Sommerville (Sommerville 1997) highlights that the
notation and the conceptual grammar of formal specification languages require familiarity
with discrete mathematics and symbolic logic which most practicing software engineers do
not currently have. Thirdly, the very formality which makes formal specifications desirable
during the later phases of software specification makes them an inappropriate tool for

Modeling and simulation of software functional requirements R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

149

communicating with the end-user during the earlier requirement elicitation and confirmation
stages. Finally, Sommerville (Sommerville 1997) suggests that management is generally
conservative and unwilling to use new techniques whose benefits are not yet established.
Given these difficulties in using formal methods, challenges remain in integrating formal
methods with the system development effort and in scaling up formal method techniques to
large-scale real-world development projects.

In Table 5.1, we summarize the main advantages and drawbacks of formal languages in
modeling/specifying software functional requirements.

Table 5.1 – Advantages and drawbacks of formal languages in modeling/specifying

software functional requirements

Unfortunately, within the formal languages currently used in automotive industry, there is not
a unique formalism shared between carmakers and suppliers (Cf. Diagnosis 3). In Chapter 4 –
Section 4.D.4, we pinpoint the benefits of a unified formal (simulation) language able to
model all types of software functional requirements.

III. Our formal language to model software functional requirements for
functional simulation

Nowadays, and according to Davis and El-Far (Davis 1988, El-Far 2001), an international
unified model to specify and simulate software functional requirements doesn’t exist. After
studying a variety of models in literature, we came up with the fact that each model has been
developed for a specific industrial or academic context. Based on the study that we performed
on the evolution of the formalisms used by carmakers to specify functional requirements
related to software (Cf. Chapter 2 – Section 4.A), we underline that, within the formal
languages, there is not a unique standard formalism shared between carmakers and suppliers
(70% of FSMs and Statecharts and 20% of DTs).

In our research project, we define our own formal model, to represent software functional
requirement, keeping in mind the automotive context and its constraints. As defined before
(Cf. Definition 2.4, 2.5 and 2.6), a software functionality is described by some features that
are described by some requirements. In the following, we do not consider the non-functional
requirements and we focus our research on modeling software functional requirements.

Advantages Drawbacks
Avoid contradictions, ambiguities, and
incompleteness in the software
specifications

Lack of methodological and support tool

Automatically Check consistency,
correctness and completeness of software
specifications

Lack of familiarity with discrete
mathematics and symbolic logic that most
practicing software engineers do not
currently have

Automatically generate code for software
product

Inappropriate tool for communicating with
the end user during the earlier
requirements elicitation and confirmation
stages

Automatically generate test cases for
software functional testing

Need to verify and validate the developed
model. Indeed, we have to proove the
conformity between carmaker
requirements and the developed model

Reduce development cost and time

Easy maintenance

Modeling and simulation of software functional requirements R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

150

A. Typology of software functional requirements

Each software functionality has a set of configuration (Config), input (I), output (O) and
intermediate (Int) signals with discrete domains. These signals interconnect the features (F)
of the functionality and each feature is composed from one or more requirements of the same
type. Based on our study of the carmakers’ requirements related to software (Cf. Chapter 2 –
Section 4.A) and the literature review on modeling software specifications (Davis 1988,
Apfelbaum 1997, Robinson 1999), we identify two types of software functional requirements:

• combinatorial (Cf. Figure 5.1) if the values of the requirement output signals at
instant t (O_Reqt) depend on the sole values of the requirement input signals at instant
t (I_Reqt).

Figure 5.1 – “Combinatorial” functional requirement

• Sequential (Cf. Figure 5.2) if the values of the requirement output signals at instant t
(O_Reqt) not only depend on the values of the requirement input signals at instant t
(I_Reqt) but also on the values of the requirement output signals at instant t-1 (O_Reqt-
1).

Figure 5.2 – “Sequential” functional requirement

In Figure 5.3, we provide a graphical illustration of our unified functional requirements
model. This example is the functional requirements model of a software functionality which
has 1 configuration signal, 3 input signals, 4 output signals, 5 intermediate signals and 4
features. Configuration signals allow to parameterize the software functionality (for instance,
by activating or deactivating one feature). Input signals could be switches, sensors or car
environment variables (for instance, the vehicle speed signal). Output signals could be
actuators or any type of command (for instance, the wiper motor command signal). Finally,
intermediate signals allow to manage and share data between two or more features.

Figure 5.3 – Graphical illustration of our unified formal model to represent software

functional requirements

Req
I_Req O_Req

O_Reqt = f(I_Reqt)

Req

O_Reqt = f(I_Reqt, O_Reqt-1)

I_Req O_Req

…

OUPUTSINPUTS

…

OUPUTSINPUTS

OUTPUTS

INPUTS

OUTPUTS

INPUTS

…

OUPUTSINPUTS

…

OUPUTSINPUTS

…

OUPUTSINPUTS

…

OUPUTSINPUTS

OUTPUTS

INPUTS

OUTPUTS

INPUTS

Feature
N°1 Feature

N°3
Feature

N°4

Feature
N°2

Configuration signals

Output signals

Intermediate signals

Clock

Input signals

Modeling and simulation of software functional requirements R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

151

A “Clock” signal (Cf. Figure 5.4) is required since the behavior of a software product is ruled
by synchronism. In fact, a “Clock” is just a signal that alternates between zero and one, back
and forth, at a specific pace (cycle time). It sets the “pace” for the functional simulation of the
model. The value of this “cycle time” depends on some timing characteristics of the software
functional requirements. It should be defined by the modeler once analyzing and designing
the requirements model.

Figure 5.4 – The shape of a “Clock” signal

B. Two types of modeling elements to model the features of a software
functionality

As we stated before, each feature is composed from one or more functional requirements of
the same type (combinatorial or sequential). We propose to model these two types of
functional requirements thanks to two types of modeling elements.

1. Decision table element (DT)

Moret and Chvalovsky (Moret 1982, Chvalovsky 1983) were the first to thoroughly explore
the uses and capabilities of DT. We use a DT element to model a feature composed from one
or more combinatorial functional requirements. A DT is a table (Cf. Figure 5.7) that presents
a set of exclusive conditions on the DT input signals (Cq) and their corresponding set of
actions on the DT output signals (Aq). Each set of conditions (Cq) represents a requirement in
a DT element. The characteristics of a “condition” and an “action” on a signal (Si) are
respectively illustrated in Figure 5.5 and Figure 5.6.

Figure 5.5 – Characteristics of a “Condition”

Time0

1

Cycle time

Clock

The structure of a “Condition” is organized as foll owing:
Condition(Operator Op, String Sig, float Val)

{
Operator = Op; // ANY, EQUAL, NEQUAL, GREATER, LESS, GREATER_EQ, LESS_EQ
Signal = Sig;
Value = Val;

}

Rules of defining a “Condition” on a signal S i:

1- When Operator is set to ANY, then Signal must be set to “ ” and Value must be set to 0

2- When Operator is different from ANY and Signal is different from “ ”, then Value must be set to 0

Examples:

S1: Condition(ANY, “ ”, 0) ↔ no matter the value of the signal S1

S2: Condition(LESS, “S1”, 0) ↔ if the value of the signal S2 is LESS than the value of the signal S1

S3: Condition(EQUAL, “ ”, 10) ↔ if the value of the signal S3 is equal to 10

S4: Condition(GREATER_EQ, “ ”, 5) ↔ if the value of the signal S4 is GREATER than or EQUAL to 5

Modeling and simulation of software functional requirements R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

152

Figure 5.6 – Characteristics of an “Action”

As said before, each software functionality has a set of configuration (Config), input (I),
output (O) and intermediate (Int) signals. These signals interconnect the features (F) of the
functionality. In fact, an input signal of a Decision Table element could be a configuration,
input or intermediate signal of the functionality. While an output signal of a Decision Table
element could be an output or intermediate signal of the functionality. A Decision Table
element is illustrated in Figure 5.7, a. For one set of conditions (for example, C1 in Figure
5.7), it must require that at least one input of the DT is set to a specific value (I1=1), the other
inputs of the DT may be indifferent (ANY).

The structure of a “Action” is organized as followi ng:
Action (GlobalOperatorGOp, float Val1, float Val2, Operator Op, String Sig1, String Sig2)

{
GlobalOperator = GOp; // UNCHANGE, EQUAL
Signal1 = Sig1;
Signal2 = Sig2;
Operator = Op; // NONE, ADD, SOUS, DIV, MULT
Value1 = Val1;
Value2 = Val2;

}

Rules of defining an “Action” on a signal S i:

1- When GlobalOperator is set to UNCHANGE, then Signal1 and Signal2 must be set to “ ”,
Operator must be set to NONE and Value1 and Value2 must be set to 0

2- When GlobalOperator is set to EQUAL and Operator is set to NONE, then Signal2 must be set
to “ ” and Value2 must be set to 0. And if Signal1 is different from “ ”, then Value1 must be set to 0

3- When GlobalOperator is set to EQUAL, Operator is different from NONE and Signal1 and
Signal2 are different from “ ”, then Value1 and Value2 must be set to 0

4- When GlobalOperator is set to EQUAL and Operator is different from NONE, Signal1 is
different from “ ” and Signal2 is equal to “ ”, then Value2 must be set to 0

5- When Operator is equal to DIV and Signal2 is different from “ ”, then the value of the Signal2
must be different from 0

6- When Operator is equal to DIV and Signal2 is equal to “ ”, then Value2 must be different from 0

Examples:

S1: Action(UNCHANGE, “ ”, “ ”, NONE, 0, 0) ↔ no actions to do on S1

S2: Action(EQUAL, “S1”, “ ”, NONE, 0, 0) ↔ S2 must be set to the value of the signal S1

S3: Action(EQUAL, “ ”, “ ”, NONE, 5, 0) ↔ S3 must be set to 5

S4: Action(EQUAL, “S2”, “S3”, ADD, 0, 0) ↔ S4 must be set to the value of (S2 + S3)

S5: Action(EQUAL, “S4”, “ ”, SOUS, 5, 0) ↔ S5 must be set to the value of (S4 – 5)

S6: Action(EQUAL, “ ”, “ ”, MULT, 5, 10) ↔ S6 must be set to the value of (5 x 10)

S7: Action(EQUAL, “S5”, “S6”, DIV, 0, 0) ↔ S7 must be set to the value of (S5 / S6), with S6 ≠ 0

S8: Action(EQUAL, “S7”, “ ”, DIV, 3, 0) ↔ S8 must be set to the value of (S7 / 3)

Modeling and simulation of software functional requirements R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

153

Figure 5.7 – A Decision Table element

Let us consider the DT element illustrated in Figure 5.8. This DT has 2 input signals and 2
output signals: I1, Domain = {0, 1}; I2, Domain = {1, 2, 3}; O1, Domain = {0, 1}; O2,
Domain = {0, 1}. When designing this DT element, designers did not consider all the possible
conditions on the input signals of a DT (3 out of 6 possible conditions, Cf. Figure 5.8a). They
only identify the conditions (Ci) which were explicitly specified in the customer requirements.
In fact, when dealing with a small DT, all the possible conditions can be easily identified. In
Figure 5.8b, we illustrate the exhaustive DT of the one of Figure 5.8a. On the one hand, a
condition could be splitted into 2 or more conditions with the same actions on the output
signals (C1 to C1.1, C1.2 and C1.3). On the other hand, some conditions do not have any
impact on the output signals (C4, UNCHANGE). However, in industrial context, the problem
is a little bit more difficult since the number of the DT input signals can exceed 10 and the
domain length of one signal can exceed 100 (for instance, when sampling the “vehicle speed”
signal). In that case, its remains a very difficult task to identify manually all the possible
conditions and their corresponding actions. Therefore, an automatic generation of all the
possible conditions on the input signals of a DT could be judicious. One could develop a
computer macro able to generate automatically an exhaustive list of conditions for a DT.
Unfortunately, we do not have enough time to develop this macro and in our experiments (Cf.
Chapter 10), we design manually exhaustive DTs.

Figure 5.8 – Not exhaustive vs. exhaustive Decision Table element

2. Finite State Machine element (FSM)

Gill (Gill 1962) introduces FSM theory in 60’s. Since, many applications (Chow 1978) such
as in software engineering have been performed. We use a FSM element to model a feature
composed form one or more sequential functional requirements. In our case and in addition to

Config 1

… O1

…

On3

Int n4

…

Int n5

Config n0

I1
…
In1

Int 1

…
Int n2

C
on

fig
1

…
C

on
fig

n0

I1 … In
1

In
t1 …

In
tn

2

O
1

… O
n3

In
t4 …

In
tn

5

Req1 C1 * * * (EQUAL, “ ”, 1) * * * * * → A1 (EQUAL, “ ”, “ ”, NONE, 10, 0) ** ** ** ** **
… … … … … … … … … … … → … … … … … … …

Reqq Cq … … … → Aq … …
… … … … … … … … … … … → … … … … … … …

Reqn Cn … … … → An … …

n0, n1, n2, n3, n4, n5, q and n ARE integers * = (ANY, “ ”, 0)
** = (UNCHANGE, “ ”, “ ”, NONE, 0, 0)

DT
OUTPUT SIGNALS

R
eq

ui
re

m
en

ts

C
on

di
tio

ns

A
ct

io
ns

DT
INPUT SIGNALS

(a): Not exhaustive (b): Exhaustive

I1 I2 O
1

O
2 I1 I2 O
1

O
2

C1.1 =0 =1 → A1 =0 =0
C1.2 =0 =2 → A2 =0 =0
C1.3 =0 =3 → A3 =0 =0

C2 =1 =1 → A4 =0 =1 C2 =1 =1 → A4 =1 =1
C3 =1 =2 → A5 =1 =1 C3 =1 =2 → A5 =1 =1

C4 =1 =3 → A6 UNCHANGE UNCHANGE

C1 =0 ANY =0 =0→ A1

C
on

di
tio

ns

DT
INPUT SIGNALS

A
ct

io
ns

DT
OUTPUT SIGNALS

C
on

di
tio

ns

DT
INPUT SIGNALS

A
ct

io
ns

DT
OUTPUT SIGNALS

Modeling and simulation of software functional requirements R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

154

the input and output signals of a FSM, each FSM can have a timing signal (FSMTempo) and a
set of internal signals (FSMIntm). The timing signal helps to model timing requirements and
the internal signals characterize the states of a FSM. A graphical illustration of a Finite State
Machine element is illustrated in Figure 5.9. It is composed from:

• an initial state (S0) and a finite number of states (Si) with a set of actions (Ai) on the
FSM output, internal and timing signals. The FSM timing signal is set to 0 each time
the state of the FSM changes. In fact, the FSM timing signal computes the time spent
in each state.

• a set of transitions (Tij) from original state (Si) to destination state (Sj), and for each
transition (Tij), a set of exclusive conditions (Cij,q) on the FSM input, internal and
timing signals. Each set of conditions (Cij,q) represents a requirement in a FSM
element.

For one set of conditions (for example, Cij,1 in Figure 5.9), it must require that at least one
input signal of the FSM or one FSM internal signal or the FSM timing signal is set to a
specific value (I1=1), the other signals of the FSM may be indifferent (ANY).

Figure 5.9 – A graphical illustration of a Finite State Machine element

Let us consider the FSM element illustrated in Figure 5.10. This FSM has 2 input signals, 2
output signals: I1, Domain = {0, 1}; I2, Domain = {1, 2, 3}; O1, Domain = {0, 1}; O2,
Domain = {0, 1}. When designing this FSM element, designers did not consider all the

S0

SjSi

INITIAL STATE (S0)

STATE (Si) …

T0i

Tij

… …

Tj0

FSMInt 1, …, FSMInt n3 are FSM internal signals
FSMTempo is the FSM timing signal

TRANSITION
(Tij)

Config 1

…
Config n0

I1
…
In1

Int 1

…
Int n2

O1

…

On3

Int n4

…

Int n5

FSM
TIMING
SIGNAL

C
on

fig
1

…

C
on

fig
n0

I1 … In
1

In
t1 …

In
tn

2

F
S

M
In

t1

…

F
S

M
In

tn
3

F
S

M
T

em
po

Reqij,1 Cij,1 * * * (EQUAL, “ ”, 1) * * * * * * * * *
… … … … … … … … … … … … … … …

Reqij,q Cij,q … … … …
… … … … … … … … … … … … … … …

Reqij,n Cij,n … … … …

n0, n1, n2, n3, i, j, q and n ARE integers * = (ANY, “ ”, 0)

FSM
INTERNAL SIGNALS

R
eq

ui
re

m
en

ts

C
on

di
tio

ns

FSM
INPUT SIGNALS

FSM
TIMING SIGNAL

O
1

… O
n4

In
tn

5

…

In
tn

6

F
S

M
In

t1

…

F
S

M
In

tn
3

F
S

M
T

em
po

Ai (EQUAL, “ ”, “ ”, NONE, 10, 0) ** ** ** ** ** ** ** ** (EQUAL, “ ”, “ ”, NONE, 0, 0)

n3, n4, n5, n6 and i ARE integers ** = (UNCHANGE, “ ”, “ ”, NONE, 0, 0)

FSM
INTERNAL SIGNALS

A
ct

io
ns

FSM OUTPUTS

Modeling and simulation of software functional requirements R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

155

transitions and conditions. They only consider the transitions (Tij) and conditions (Ci) which
were explicitly specified in the customer requirements (6 out of 8 transitions and 7 out of 9
conditions, Cf. Figure 5.10a). In order to be exhaustive when designing a FSM, modelers
must identify all the transitions and conditions that get out of a state even if they do not allow
to change the state of the FSM (Cf. Figure 5.10b).

Figure 5.10 – Not exhaustive vs. exhaustive Finite State Machine element

IV. The functional simulation process of our software requirements
model

A synchronized functional simulation can be performed on our model of software functional
requirements. The simulation is done with an oriented acyclic logic going from input to output
signals of the software functionality. To better illustrate the simulation mechanism, let us
consider the example of the Figure 5.3. The simulation order of the features has to be defined
when designing the model (Feature 1 then Feature 2 then Feature 3 then Feature 4). The
“Clock” signal synchronizes the behavior of the functional model. Indeed, at each cycle time,
all the features are simulated following the predefined order. Simulating a feature consists of
assessing its output signals values according to its input signals values.

S0

S2
S1

S3

T01

T12

T31
T23

T20

T02

T11

T33

(b): Exhaustive

S0

S2
S1

S3

T01

T12

T31 T23

T20

T02

(a): Not exhaustive

O1 O2
S0 A0 =0 =0
S1 A1 =0 =1
S2 A2 =1 =0
S3 A3 =1 =1

States Actions
FSM

OUTPUT SIGNALS

I1 I2

=2

T31 C1 =1 ANY

T23
C1

C2

ANY

ANY

T20 C1 ANY =3

=1

T12 C1 =0 ANY

T01 =1 ANYC1

T02 C1 =0 ANY

FSM
INPUT SIGNALSConditionsTransitions

I1 I2
C1.1 =1
C1.2 =2
C1.3 =3
C1.1 =1
C1.2 =2
C1.3 =3
C1.1 =1
C1.2 =2
C1.3 =3
C1.1 =1
C1.2 =2
C1.3 =3
C1.1 =0
C1.2 =1
C1.1 =0
C1.2 =1
C2.1 =0
C2.2 =1
C1.1 =1
C1.2 =2
C1.3 =3
C1.1 =1
C1.2 =2
C1.3 =3

=0

=1

=1

=1

=3

=1

=2
T23

T33

T31

T20

=0

T11

T12 =0

T01

T02

Transitions Conditions
FSM

INPUT SIGNALS

Modeling and simulation of software functional requirements R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

156

In case of a feature modeled using a Decision Table element, all conditions (Cq) have to be
checked. There is no specific checking order for these conditions since up to one condition
can be fulfilled at a time. Values on the DT output signals are updated according to the action
associated to the satisfied condition. Note that, in some cases, none of the conditions (Cq) can
be fulfilled and therefore no actions (Aq) have to be done on the DT output signals. In fact,
the DT conditions do not often consider all the possible combinations between the values of
all the DT input signals. Let us consider the DT element of the Figure 5.8a. In Figure 5.11, a
simulation scenario of this DT is shown.

• (Figure 5.11a): After initialization, I1 is set to 0 and I2 is set to 2. On the next front
edge of the “Clock” signal, all the conditions (Ci) are checked following the
predefined order. Once a set of conditions is satisfied (C1), the corresponding actions
(A1) on the DT output signals are performed and the conditions checking is stopped.

• (Figure 5.11b): I1 is set to 1. On the next front edge of the “Clock”, C3 is satisfied.
• (Figure 5.11c): I2 is set to 3. On the next front edge of the “Clock”, none of the

conditions is fulfilled.

Modeling and simulation of software functional requirements R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

157

Figure 5.11 – An example to illustrate the simulation process of a Decision Table
element

In case of a feature modeled using a Finite State Machine element, one state must always be
activated. When simulating a FSM, all conditions of all the transitions that get out of the
activated state have to be checked. There is no specific checking order for transitions and
conditions since they are exclusive and up to one condition (transition) can be satisfied
(crossed) at a time. Therefore, after each FSM simulation, at maximum one transition is
crossed. The origin state of the transition is deactivated, the destination state is activated and
values on output signals are updated. However, in some cases, none of the transitions that get
out of the activated state can be satisfied and therefore the activated state remains the same
and no actions have to be done on the FSM output signals. In fact, the conditions of all the
transitions that get out of the same state do not often consider all the possible combinations

I 1 I 2 O
1

O
2

C1 =0 ANY → A1 =0 =0
C2 =1 =1 → A2 =0 =1
C3 =1 =2 → A3 =1 =1

DT
INPUT

SIGNALS

A
ct

io
ns

DT
OUTPUT
SIGNALS

C
on

di
tio

ns

I 1 I 2 O
1

O
2

C1 =0 ANY → A1 =0 =0
C2 =1 =1 → A2 =0 =1
C3 =1 =2 → A3 =1 =1

C
on

di
tio

ns

DT
INPUT

SIGNALS

A
ct

io
ns

DT
OUTPUT
SIGNALS

I1

I2

C
he

ck
in

g
or

de
r

O1

O2

0

2

0

0

I1

I2

C
he

ck
in

g
or

de
r

O1

O2

1

2

1

1

(a)

(b)

Time0

1

C
lo

ck

Time0

1

C
lo

ck

I1

I2

C
he

ck
in

g
or

de
r

O1

O2

1

3

1

1

(c)

Time0

1

C
lo

ck

I 1 I 2 O
1

O
2

C1 =0 ANY → A1 =0 =0
C2 =1 =1 → A2 =0 =1
C3 =1 =2 → A3 =1 =1

DT
OUTPUT
SIGNALS

C
on

di
tio

ns

DT
INPUT

SIGNALS

A
ct

io
ns

Modeling and simulation of software functional requirements R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

158

between the values of all the FSM input, internal and timing signals. Let us consider the FSM
element of the Figure 5.10a. In Figure 5.12, a simulation scenario of this FSM is shown.

(Figure 5.12a): After initialization, I1 is set to 1 and I2 is set to 1. On the next front edge of
the “Clock” signal, all the conditions (Ci) on all the transitions (T0j) that get out of the
activated state (S0) are checked following the predefined order. Once a set of conditions is
satisfied (T01, C1), the corresponding transitions (T01) is crossed, the origin state (S0) is
deactivated, the destination state (S1) is activated and the action (A1) on the destination state
is performed.

(Figure 5.12b): the activated state is S1. I2 is set to 2. On the next front edge of the “Clock”,
all the conditions (Ci) on all the transitions (T1j) that get out of the activated state (S1) are
checked following the predefined order. Since, none of these conditions is satisfied, the
activated state does not change (S1) and the values on the FSM output signals no more.

(Figure 5.12c): the activated state is S1. I1 is set to 0. On the next front edge of the “Clock”,
the transition (T12) is crossed. The new activated state is (S2).

(Figure 5.12d): the activated state is S2. I2 is set to 1. On the next front edge of the “Clock”,
the transition (T23) is crossed. The new activated state is (S3).

Modeling and simulation of software functional requirements R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
159

Figure 5.12 – An example to illustrate the simulation process of a Finite State Machine element

S0

S2
S1

S3

T01

T12

T31 T23

T20

T02

I1

I2

O1

O2

1

1

0

1

Activated state

S0

S2
S1

S3

T01

T12

T31 T23

T20

T02

I1

I2

O1

O2

1

2

0

1

Activated state

S0

S2
S1

S3

T01

T12

T31 T23

T20

T02

I1

I2

O1

O2

0

2

1

0

Activated state

S0

S2
S1

S3

T01

T12

T31 T23

T20

T02

I1

I2

O1

O2

0

1

1

1

Activated state

(a) (b)

(c) (d)

Time0

1

C
lo

ck

Time0

1

C
lo

ck

Time0

1

C
lo

ck

Time0

1

C
lo

ck

I1 I2
T01 C1 =1 ANY
T02 C1 =0 ANY
T12 C1 =0 ANY
T20 C1 ANY =3
T23 C1 ANY =1

C2 ANY =2
T31 C1 =1 ANY

FSM
INPUT SIGNALSTransitions Conditions

I1 I2
T01 C1 =1 ANY
T02 C1 =0 ANY
T12 C1 =0 ANY
T20 C1 ANY =3
T23 C1 ANY =1

C2 ANY =2
T31 C1 =1 ANY

Transitions Conditions
FSM

INPUT SIGNALS

I1 I2
T01 C1 =1 ANY
T02 C1 =0 ANY
T12 C1 =0 ANY
T20 C1 ANY =3
T23 C1 ANY =1

C2 ANY =2
T31 C1 =1 ANY

Transitions Conditions
FSM

INPUT SIGNALS
I1 I2

T01 C1 =1 ANY
T02 C1 =0 ANY
T12 C1 =0 ANY
T20 C1 ANY =3
T23 C1 ANY =1

C2 ANY =2
T31 C1 =1 ANY

Conditions
FSM

INPUT SIGNALSTransitions

O1 O2
S0 =0 =0
S1 =0 =1
S2 =1 =0
S3 =1 =1

States
FSM

OUTPUT SIGNALS
O1 O2

S0 =0 =0
S1 =0 =1
S2 =1 =0
S3 =1 =1

States
FSM

OUTPUT SIGNALS

O1 O2
S0 =0 =0
S1 =0 =1
S2 =1 =0
S3 =1 =1

States
FSM

OUTPUT SIGNALS
O1 O2

S0 =0 =0
S1 =0 =1
S2 =1 =0
S3 =1 =1

States
FSM

OUTPUT SIGNALS

C
he

ck
in

g
or

de
r

C
he

ck
in

g
or

de
r

C
he

ck
in

g
or

de
r

C
he

ck
in

g
or

de
r

Modeling and simulation of software functional requirements R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
160

V. A case study on modeling software functional requirements using our
new formal and simulation language

In this section, we develop a simple case study in order to illustrate how an engineer can
design a simulation model of a set of software functional requirements. To do this, we
consider a functionality (“Auto_Light”) which has 3 configuration signals, 5 input signals and
2 output signals:

• Config1 (“Auto_Light_Config”), Domain = {0, 1}
• Config2 (“Follow_Me_home_Config”), Domain = {0, 1}
• Config3 (“Follow_Me_home_Calib”), Domain = {5, 10, 15}
• I1 (“Reset”), Domain = {0, 1}
• I2 (“Luminosity_Sensor”), Domain = {0, 1, 2, 3, 4, 5, 6, 7}
• I3 (“Car_Locked”), Domain = {0, 1}
• I4 (“Ignition”), Domain = {0, 1}
• I5 (“Light_Combi_Switch”), Domain = {0, 1}
• O1 (“Head_Lamp”), Domain = {0, 1}
• O2 (“Tail_Lamp”), Domain = {0, 1}

The software functional requirements of this functionality were specified by the carmaker
using the natural language (Cf. Figure 5.13). In fact, this functionality can be decomposed
into 3 features: Feature 1, Feature 2 and Feature 3.

Modeling and simulation of software functional requirements R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

161

Figure 5.13 – The software functional requirements of the functionality “Auto_Light” as

they were specified by the carmaker

Once analyzing the requirements of Figure V13, we came up to the conclusion that Feature 1
and Feature 2 can be modeled using Decision Table elements and Feature 3 can be modeled
using a Finite State Machine element. We also identified two intermediate signals: Int1
(“Luminosity_Level”) and Int2 (“Follow_Me_Home_Activate”). A graphical illustration of
the requirements model of the functionality “Auto_Light” is developed in Figure 5.14.

Feature 1 (“Luminosity_Level_Calculation”)

Req1.1: In case of “Luminosity_Sensor” is equal to 1 or 2, then “Luminosity_Level”
must be equal to 1

Req1.2: In case of “Luminosity_Sensor” is equal to 3, 4 or 5, then “Luminosity_Level”
must be equal to 2

Req1.3: In case of “Luminosity_Sensor” is equal to 6 or 7, then “Luminosity_Level”
must be equal to 3

Req1.4: In other cases, “Luminosity_Level” must be equal to 0

Feature 2 (“Follow_Me_Home_Mode”)

Req2.1: In case of “Car_Locked” is equal to 1 and “Ignition” is equal to 0, then
“Follow_Me_Home_Activate” must be equal to 1

Req2.2: In other cases, “Follow_Me_Home_Activate” must be equal to 0

Feature 3 (“Head_Tail_Activation”)

Req3.1: Once “Reset” is set to 1, “Head_Lamp” and “Tail_Lamp” must be set at 0

Req3.2: In case of “Ignition” is equal to 1 and “Light_Combi_Switch” is equal to 1 and
“Auto_Light_Config” is equal to 1 and “Luminosity_Level” is equal 1 or 2, then
“Head_Lamp” must be equal to 0 and “Tail_Lamp” must be equal to 1

Req3.3: In case of “Ignition” is equal to 1 and “Light_Combi_Switch” is equal to 1 and
“Auto_Light_Config” is equal to 1 and “Luminosity_Level” is equal 3, then “Head_Lamp”
must be equal to 1 and “Tail_Lamp” must be equal to 0

Req3.4: If “Head_Lamp” is equal to 1 or “Tail_Lamp” is equal to 1 and in case of
“Follow_Me_Home_Activate” is equal to 1 and “Follow_Me_home_Config” is equal to 1,
then “Head_Lamp” must be equal to 0 and “Tail_Lamp” must be equal to 1.

If “Ignition” is set to 0, then Req3.5 and Req3.6

Req3.5: In case of “Head_Lamp” was equal to 1, wait “Follow_Me_home_Calib” ms
and then set “Head_Lamp” and “Tail_Lamp” to 0

Req3.6: In case of “Head_Lamp” was equal to 0, than wait “Follow_Me_home_Calib”/2
ms and then set “Head_Lamp” and “Tail_Lamp” to 0

Modeling and simulation of software functional requirements R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

162

Figure 5.14 – A graphical illustration of the requirements model of the functionality

“Auto_Light”

The Decision Table elements of the Features 1 and 2 are developed in Figure 5.15 and Figure
5.16. These DT are exhaustive.

Figure 5.15 – Feature 1 modeled using a Decision Table element

Figure 5.16 – Feature 2 modeled using a Decision Table element

A graphical illustration of the Finite State Machine element of the Feature 3 is developed in
Figure 5.17. This FSM is not exhaustive. Figure 5.18 details the states, transitions and
conditions of this FSM. In fact, the Feature 3 has a sequential behavior since the behavior of
the signals O1 and O2 depends not only on the signals Config1, Config2, Config3, I1, I5, Int1

« Auto_Light »

I2=Luminosity_Sensor

I3=Car_Locked

I4=Ignition

I5=Light_Combi_Switch

Config3=Follow_Me_home_Calib

Config2=Follow_Me_home_Config

Config1=Auto_Light_Config

Int1=Luminosity_Level

Int2=Follow_Me_Home_Activate

O1=Head_Lamp

O2=Tail_Lamp

Feature 2
DT 2

Feature 3
FSM 1

Feature 1
DT 1

I1=Reset

I2=
Luminosity_Sensor

Int1=
Luminosity_Level

Feature 1 - DT 1

DT1
INPUTS

DT1
OUTPUTS

I2 Int1
Req1.4 Req1.4 C1 =0 → A1 =0
Req1.1 Req1.1.1 C2 =1 → A2 =1
Req1.1 Req1.1.2 C3 =2 → A3 =1
Req1.2 Req1.2.1 C4 =3 → A4 =2
Req1.2 Req1.2.2 C5 =4 → A5 =2
Req1.2 Req1.2.3 C6 =5 → A6 =2
Req1.3 Req1.3.1 C7 =6 → A7 =3
Req1.3 Req1.3.2 C8 =7 → A8 =3

Carmaker req ID
Our model

req ID
Conditions Actions

4 carmaker requirements splitted into 8 requirements in our model

Feature 2 - DT 2

I3=
Car_Locked

I4=
Ignition

Int2=
Follow_Me_Home_Activate

DT2
OUTPUTS

I3 I4 Int2
Req2.2 Req2.2.1 C1 =0 =0 → A1 =0
Req2.2 Req2.2.2 C2 =0 =1 → A1 =0
Req2.1 Req2.1 C3 =1 =0 → A3 =1
Req2.2 Req2.2.3 C4 =1 =1 → A4 =0

2 carmaker requirements splitted into 4 requirements in our model

DT2
INPUTSCarmaker req ID Conditions Actions

Our model
req ID

Modeling and simulation of software functional requirements R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

163

and Int2 but also on the current state of the feature. We also define a FSM timing signal
(FSM1Tempo) and one FSM internal signal (FSM1Int1, Domain = {0, 1}) in order to model
the requirements Req3.5 and Req3.6.

Figure 5.17 – Feature 3 modeled using a Finite State Machine element – Graphical

illustration

Figure 5.18 – Feature 3 modeled using a Finite State Machine element – States,

Transitions and Conditions

S0

A1
O1=0
O2=0

FSM1Int1=0

S1S2

S3

A2
O1=0
O2=1

A3
O1=1
O2=0

FSM1Int1=1

A4
O1=0
O2=1

T01
C1:Config1=1, I4=1,I5=1, Int1=1
C2:Config1=1, I4=1,I5=1, Int1=2

T02
C1:Config1=1, I4=1, I5=1, Int1=3

T12
C1:Config1=1, I4=1, I5=1, Int1=3

T21
C1:Config1=1, I4=1, I5=1, Int1=1
C2:Config1=1, I4=1, I5=1, Int1=2

T13
C1:Config2=1, I4=0,

Int2=1

T23
C1:Config2=1, I4=0,

Int2=1

T30
C1: FSM1Int1=1,

FSM1Tempo> Config3/2
C2: FSM1Int1=0,

FSM1Tempo> Config3

Feature 3 - FSM 1

T00
C1:I1=1

T32
C1:Config1=1, I4=1, I5=1, Int1=3

T31
C1:Config1=1, I4=1, I5=1, Int1=1
C2:Config1=1, I4=1, I5=1, Int1=2

T20
C1:I1=1

T10
C1:I1=1

T30
C1:I1=1

Int1=
Luminosity_Level

Int2=
Follow_Me_

Home_Activate

O1=
Head_Lamp

O2=
Tail_LampI4=Ignition

I5=
Light_Combi_Switch

Config3=
Follow_Me_
home_Calib

Config2=
Follow_Me_
home_Config

Config1=
Auto_Light_Config

I1=Reset

Int1=
Luminosity_Level

Int2=
Follow_Me_

Home_Activate

O1=
Head_Lamp

O2=
Tail_Lamp

Feature 3 - FSM 1

I4=Ignition

I5=
Light_Combi_Switch

Config3=
Follow_Me_
home_Calib

Config2=
Follow_Me_
home_Config

Config1=
Auto_Light_Config

I1=Reset

FSM1
Internal
Signals

FSM1
Timing Signal

Config1 Config2 Config3 I1 I4 I5 Int1 Int2 FSM1Int1 FSM1Tempo

Req3.1 Req3.1.1 T00 C1 ANY ANY ANY =1 ANY ANY ANY ANY ANY ANY
Req3.1 Req3.1.2 T10 C1 ANY ANY ANY =1 ANY ANY ANY ANY ANY ANY
Req3.1 Req3.1.3 T20 C1 ANY ANY ANY =1 ANY ANY ANY ANY ANY ANY
Req3.1 Req3.1.4 T30 C1 ANY ANY ANY =1 ANY ANY ANY ANY ANY ANY
Req3.2 Req3.2.1 C1 =1 ANY ANY =0 =1 =1 =1 ANY ANY ANY
Req3.2 Req3.2.2 C2 =1 ANY ANY =0 =1 =1 =2 ANY ANY ANY
Req3.3 Req3.3.1 T02 C1 =1 ANY ANY =0 =1 =1 =3 ANY ANY ANY
Req3.3 Req3.3.2 T12 C1 =1 ANY ANY =0 =1 =1 =3 ANY ANY ANY
Req3.4 Req3.4.1 T13 C1 ANY =1 ANY =0 =0 ANY ANY =1 ANY ANY
Req3.2 Req3.2.3 C1 =1 ANY ANY =0 =1 =1 =1 ANY ANY ANY
Req3.2 Req3.2.4 C2 =1 ANY ANY =0 =1 =1 =2 ANY ANY ANY
Req3.4 Req3.4.2 T23 C1 ANY =1 ANY =0 =0 ANY ANY =1 ANY ANY
Req3.5 Req3.5 C1 ANY ANY ANY =0 ANY ANY ANY ANY =1 >Config3
Req3.6 Req3.6 C2 ANY ANY ANY =0 ANY ANY ANY ANY =0 >Config3 /2
Req3.2 Req3.2.5 C1 =1 ANY ANY =0 =1 =1 =1 ANY ANY ANY
Req3.2 Req3.2.6 C2 =1 ANY ANY =0 =1 =1 =2 ANY ANY ANY
Req3.3 Req3.3.3 T32 C1 =1 ANY ANY =0 =1 =1 =3 ANY ANY ANY

T21

C
on

di
tio

ns

T
ra

ns
iti

on
s

FSM1
INPUT SIGNALSCarmaker

req ID
Our model

req ID

T01

6 carmaker requirements splitted into 17 requirements in our model

T30

T31

FSM1
Internal

Variables

O1 O2 FSM1Int1

S0 A0 =0 =0 =0
S1 A1 =0 =1 UNCHANGE

S2 A2 =1 =0 =1
S3 A3 =0 =1 UNCHANGE

FSM1
OUTPUTSStates Actions

Modeling and simulation of software functional requirements R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

164

Even with instructions and guidelines, we are conscious that two different modelers can
design two different models for the same software functional requirements. To overcome this
problem, we plan to demonstrate that for two or more different models of the same functional
requirements, the generated test cases allow to detect the same bugs (Cf. Chapter 10 – Section
8.B).

VI. Conclusion

Managing the software functional requirements is considered as one of the key issues in the
software development process. In fact, these requirements are the main input for the design
and implementation processes of the software product but also for the verification and
validation processes. Ten years ago, formal methods were rarely used in automotive industry,
contrary to medical, avionics and railways industries. Now, in automotive industry, semi-
formal and formal methods are more and more used to specify software functional
requirements (Cf. Diagnosis 3). However, there is a lack of a standard formalism shared
between carmakers and suppliers. In fact, for each project, the supplier has to adapt its
processes to the formalism used by the carmaker.

In this chapter, we developed our new formal and simulation language to model software
functional requirements (Cf. Diagnosis 6). A simulation model of these requirements could
help to avoid ambiguity, incompleteness and inconsistency in customers’ requirements (Cf.
Diagnosis 5). Development and validation teams could communicate more easily with the
customer and fix specification’s problems (Cf. Diagnosis 2). Moreover, through a simulation
model, one could automate the assessment process of all the expected outputs values of a
software product (Cf. Diagnosis 10, 12 and 15). In fact, when designing test cases, test
engineers could perform the selected operation on the requirements model and assess the
expected output values automatically by simulating the model. Finally, one could formally
measure the coverage of the requirements model (Cf. Diagnosis 11).

In the following chapter, we develop how a modeler can verify and validate the completeness,
the consistency, the accuracy and the compliance of a requirements model with the
carmaker’s requirements.

Verification and validation of a software functional requirements model R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
165

CHAPTER 6. VERIFICATION AND
VALIDATION OF A SOFTWARE FUNCTIONAL
REQUIREMENTS MODEL

Verification and validation of a software functional requirements model R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
167

I. Introduction

Simulation models are increasingly being used in problem solving and in decision making.
The developers and users of these models, the decision makers using information derived
from the results of the models, and people affected by decisions based on such models are all
rightly concerned with whether a model and its results are “correct”. This concern is
addressed through Model Verification and Validation (Model V&V). In this dissertation, we
adopt the definition of Model V&V proposed by Balci in (Balci 1997).

Definition 6.1: Model Verification (Balci 1997)

Model Verification is substantiating that the model is transformed from one form into
another, as intended, with sufficient accuracy. Model verification deals with building the
model right. The accuracy of transforming a problem formulation into a model specification
or the accuracy of converting a model representation from a micro flowchart form into an
executable computer program is evaluated in model verification.

Definition 6.2: Model Validation (Balci 1997)

Model Validation is substantiating that the model, within its domain of applicability, behaves
with satisfactory accuracy consistent with the M&S (Modeling and Simulation) objectives.
Model validation deals with building the right model.

Model V&V are essential parts of the model development process if the model has to be used
by organizations. Model V&V is not a phase or step in the M&S life cycle, but a continuous
activity throughout the entire M&S life cycle. The M&S life cycle should not be interpreted as
strictly sequential. The M&S life cycle is iterative in nature and reverse transitions are
expected. Deficiencies identified by Model V&V activity may necessitate returning to an
earlier process and starting all over again. The Model V&V activity throughout the entire M&S
life cycle is intended to reveal any quality deficiencies that might be present as the M&S
progresses from the problem definition to the completion of the M&S application. Errors
should be detected as early as possible in the M&S life cycle.

In this chapter, we develop scenarios in order to verify and validate a software functional
requirements model developed using our formal simulation language. A survey on verifying
and validating simulation model is performed in Section 2. We consider a simplified version
of the modeling process. We discuss the basic approaches used in deciding model validity.
We also describe various Model V&V techniques. Based on the literature review, techniques
and rules to help modelers in validating the Conceptual Model, verifying the Computerized
Model and finally checking the Operational Validity of a requirements model are respectively
proposed in Section 3, 4 and 5. These proposals take the industrial constraints and the
automotive context into account.

II. A survey on verifying and validating a simulation model

A model should be developed for a specific purpose and its validity determined with respect
to that purpose. If the purpose of a model is to answer a variety of questions, the validity of
the model needs to be determined with respect to each question. Several sets of experimental
conditions are usually required to define the domain of a model’s intended applicability. A
model may be valid for one set of experimental conditions and invalid in another. A model is
considered valid for a set of experimental conditions if its accuracy is within its acceptable
range, which is the amount of accuracy required for the model’s intended purpose. Several

Verification and validation of a software functional requirements model R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

168

versions of a model are usually developed prior to obtaining a satisfactory valid model. The
substantiation that a model is valid (e.g. Model V&V) is generally considered to be a process
and is usually part of the model development process.

It is often too costly and time consuming to determine that a model is absolutely valid over
the complete domain of its intended applicability. Tests and evaluations are conducted until
sufficient confidence is obtained that a model can be considered valid for its intended
application. The relationships of cost (a similar relationship holds for the amount of time) of
performing model validation and the value of the model to the user as a function of model
confidence is proposed by Sargent in (Sargent 2005) and illustrated in Figure 6.1. The cost of
model validation is usually quite significant, particularly when extremely high model
confidence is required.

Figure 6.1 – Model confidence (Sargent 2005)

A. A simplified version of the modeling process

Sargent (Sargent 2005) has proposed a simplified version of the modeling process in Figure
6.2. The Problem Entity is the system (real or proposed), idea, situation, policy, or phenomena
to be modeled; the Conceptual Model is the mathematical/logical/verbal representation of the
Problem Entity developed for a particular study; and the Computerized Model is the
Conceptual Model implemented on a computer. The Conceptual Model is developed through
an analysis and modeling phase, the Computerized Model is developed through a computer
programming and implementation phase, and inferences about the Problem Entity are
obtained by conducting computer experiments on the Computerized Model in the
experimentation phase.

Figure 6.2 – A simplified version of the modeling process (Sargent 2005)

Verification and validation of a software functional requirements model R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

169

In the next three sections, we develop the three Model V&V activities (Conceptual Model
Validity, Computerized Model Verification, Operational Validity) related to the simplified
version of the modeling process presented in Figure 6.2.

1. Conceptual Model Validity

Conceptual Model Validity is determining that 1) the theories and assumptions underlying the
Conceptual Model are correct, and 2) the model representation of the Problem Entity and the
model’s structure, logic, and mathematical and causal relationships are “reasonable” for the
intended purpose of the model. Next, each sub-model and the overall model must be
evaluated to determine if they are reasonable and correct for the intended purpose of the
model. This should include determining if the appropriate detail and aggregate relationships
have been used for the model’s intended purpose, and if the appropriate structure, logic, and
mathematical and causal relationships have been used. The primary validation techniques
used for these evaluations are Face validity and Traces (Cf. Section 2.C for more details on
these techniques). Face validity is based on experts’ evaluation of the Conceptual Model in
order to determine if it is correct and reasonable for its purpose (Problem Entity). This usually
requires examining the flowchart or graphical model, or the set of model equations. The use
of Traces is the tracking of entities through each sub-model and the overall model to
determine if the logic is correct and if the necessary accuracy is maintained. If errors are
found in the Conceptual Model, it must be revised and Conceptual Model Validity performed
again.

2. Computerized Model Verification

Computerized Model Verification ensures that the computer programming and
implementation of the Conceptual Model are correct. To help ensure that a correct computer
program is obtained, program design and development procedures found in the field of
software engineering should be used in developing and implementing the computer program.
One should be aware that the type of computer language used affects the probability of having
a correct program. The use of a special-purpose simulation language generally results in
having fewer errors than if a general-purpose simulation language is used, and using a general
purpose simulation language generally results in having fewer errors than if a general purpose
higher order language is used. Not only does the use of simulation languages increase the
probability of having a correct program, programming time is usually reduced significantly.
After the computer program has been developed and implemented, the program must be
tested for correctness. Main functions but also sub-functions must be tested to see if they are
correct. It is necessary to be aware while checking the correctness of the computer model that
errors may be caused by the Conceptual Model or the computer implementation.

3. Operational Validity

Operational Validity is concerned with determining that the model’s output behavior has the
accuracy required for the model’s intended purpose over the domain of its intended
applicability. This is where most of the validation and evaluation techniques take place. The
Computerized Model is used in Operational Validity, and thus any deficiencies found may be
due to an inadequate Conceptual Model, an improperly programmed or implemented
Conceptual Model (e.g. due to programming errors or insufficient numerical accuracy), or due
to invalid data. All of the Model V&V techniques discussed in Section 2.C are applicable to
Operational Validity. Which techniques to use must be decided by the model development
team and other interested parties. The major attribute affecting Operational Validity is

Verification and validation of a software functional requirements model R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

170

whether the Problem Entity (or system) is observable, where observable means it is possible
to collect data on the operational behavior of the program entity.

Finally, Data Validity is defined as ensuring that the data necessary for model building, model
evaluation and testing, and conducting the model experiments to solve the problem are
adequate and correct.

B. How to decide whether a simulation model is valid or not?

According to Sargent (Sargent 2005), three basic approaches are used in deciding whether a
simulation model is valid or invalid. Each of the approaches requires the model development
team to conduct the Model V&V as part of the model development process:

1. The most common approach is based on the model development team who has to
make the decision whether the model is valid or not. This is a subjective decision
based on the results of the various tests and evaluations conducted as part of the model
development process.

2. Another approach, often called “Independent Verification and Validation” (IV&V),
uses a third (independent) party to decide whether the model is valid. The third party is
independent of both the model development team and the model user(s). After the
model is developed, the third party conducts an evaluation to determine its validity.
Based upon this validation, the third party makes a subjective decision on the validity
of the model. The evaluation performed in the IV&V approach ranges from simply
reviewing the Model V&V conducted by the model development team to a complete
verification and validation effort. According to Wood (Wood 1986), a complete IV&V
evaluation is extremely costly and time consuming for what is obtained.

3. Balci (Balci 1989) proposes an approach based on a scoring model for determining
whether a model is valid or not. Scores (or weights) are determined subjectively when
conducting various aspects of the validation process and then combined to determine
category scores and an overall score for the simulation model. A simulation model is
considered valid if its overall and category scores are greater than some passing
score(s). This approach is infrequently used in practice. Sargent (Sargent 2005) does
not believe in the use of a scoring model for determining validity, because 1) the
subjectiveness of this approach tends to be hidden and thus appears to be objective, 2)
the passing scores must be decided in some (usually subjective) way, 3) a model may
receive a passing score and yet have a defect that needs correction, and finally 4) the
score(s) may cause overconfidence in a model or be used to argue that one model is
better than another.

Several versions of a model are usually developed in the modeling process prior to obtaining a
satisfactory valid model. During each model iteration, Model V&V are performed. A variety
of techniques could be used. In the next section, we develop these techniques.

C. Model Verification and Validation techniques

Taxonomy of more than 77 Model V&V techniques for simulation models is identified in
(Balci 1997). Most of these techniques come from the software engineering discipline and the
remaining are specific to the modeling and simulation field. Details on these techniques are
proposed in (DoD 1996, Balci 1997). The taxonomy used by the authors classifies the Model
V&V techniques into four primary categories: informal, static, dynamic, and formal. The use
of mathematical and logic formalism by the techniques in each primary category increases
from informal to formal. Likewise, the complexity also increases as the primary category

Verification and validation of a software functional requirements model R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

171

becomes more formal. In the following, we describe various techniques used in Model V&V.
Most of the techniques described here are found in the literature (Balci 1984, Sargent 2005),
although some may be described slightly differently (adapted to our context). They can be
used either subjectively or objectively. By “objectively”, we mean using some type of
statistical test or mathematical procedure (e.g. confidence intervals). A combination of
techniques is often used for validating and verifying the sub-models and the overall model.

Animation: The model’s operational behavior is displayed graphically as the model moves
through time.

Comparison to Other Models: Various results (e.g. outputs) of the simulation model being
validated are compared to results of other (valid) models.

Degenerate Tests: The degeneracy of the model’s behavior is tested by appropriate selection
of values of the input and internal parameters.

Event Validity: The events of occurrences of the simulation model are compared to those of
the real system to determine if they are similar.

Extreme Condition Tests: The model structure and output should be plausible for any extreme
and unlikely combination of levels of factors in the system.

Face Validity: Face validity is asking people knowledgeable about the system whether the
model and/or its behavior are reasonable. This technique can be used in determining if the
logic in the Conceptual Model is correct and if a model’s input-output relationships are
reasonable.

Fixed Values: Fixed values (e.g., constants) are used for various model input and internal
variables and parameters. This should allow the checking of model results against easily
calculated values.

Historical Data Validation: If historical data exist (or if data are collected on a system for
building or testing the model), part of the data is used to build the model and the remaining
data are used to determine (test) whether the model behaves as the system does.

Internal Validity: Several replications (runs) of a stochastic model are made to determine the
amount of (internal) stochastic variability in the model. A high amount of variability (lack of
consistency) may cause the model’s results to be questionable and may question the
appropriateness of the system being investigated.

Parameter Variability - Sensitivity Analysis: This technique consists of changing the values of
the input and internal parameters of a model to determine the effect upon the model’s
behavior and its output. The same relationships should occur in the model as in the real
system.

Predictive Validation: The model is used to predict (forecast) the system behavior, and then
comparisons are made between the system’s behavior and the model’s forecast to determine if
they are the same. The system data may come from an operational system or from
experiments performed on the system.

Traces: The behavior of different types of specific entities in the model is traced (followed)
through the model to determine if the model’s logic is correct and if the necessary accuracy is
obtained.

Turing Tests: People who are knowledgeable about the operations of a system are asked if
they can discriminate between system and model outputs.

Verification and validation of a software functional requirements model R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

172

Unfortunately, no algorithms or procedures exist to select which techniques to use. However,
some attributes that affect which techniques to use are discussed by Sargent in (Sargent 1984).
In the next three sections (Section 3, 4 and 5), we specify techniques, rules and scenarios to
help modelers in validating the Conceptual Model, verifying the Computerized Model and
finally checking the Operational Validity of a requirements model. Our proposals take not
only the Sargent’s recommendations into account but also our industrial context.

III. Using the experts’ knowledge to validate a Conceptual requirements
Model (Conceptual validity)

In our context, the Conceptual Model is developed through an analysis and modeling of the
software functional requirements. For each software functionality, modelers draw a sketch of
the requirements model by (Cf. Chapter 5 – Section 3):

1. identifying the input and output signals and their domains,
2. grouping the functional requirements according to their types (combinatorial or

sequential),
3. identifying the elements (DT and FSM) and the intermediate signals and their domains

and
4. finally specifying each element. For a DT, identify the conditions and their associate

actions. For a FSM, identify the states and their associate actions, the transitions and
their associate conditions and if needed the internal and timing signals.

Once the Conceptual Model is designed, each element and the overall model must be
evaluated to determine if they are reasonable, correct and complete regarding the carmaker’s
requirements. We propose to use Face validity and Turing tests in order to valid our
Conceptual Model. In fact, the experts’ knowledge is the main source of validating our
Conceptual Model. People knowledgeable about the system under test are asked to
discriminate between the model and the carmaker’s requirements and to give their confidence
in the model and/or its behavior.

IV. A set of integrity rules to verify a Computerized requirements Model

The Computerized Model is developed through a computer programming and implementation
of the Conceptual Model. We provide modelers a high level graphical language to help them
computerizing their Conceptual requirements Models. The main items of this language are
illustrated in Figure 6.3.

Verification and validation of a software functional requirements model R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

173

Figure 6.3 – A high level graphical language to computerize a Conceptual requirements

Model

Computerized Model Verification ensures that the computer programming and
implementation of the Conceptual Model are correct. The use of a graphical simulation
language generally results in having fewer errors and programming time is usually reduced
significantly. To help ensure that a correct computer model is obtained, we develop a set of
integrity rules to be checked automatically on the computer model. These rules are developed
in Table 6.1.

Config

Clk

I

O

Int

Func

DT

FSM

Inputs Outputs

S

T

Functionality

Clock

Configuration signal

Input signal

Output signal

Intermediate signal

Decision Table element

Finite State Machine element

State

Transitions

Internal Signal FSM internal signal

FSM timing signal

Verification and validation of a software functional requirements model R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

174

Table 6.1 – Integrity rules for verifying a Computerized requirements Model

V. Three possible scenarios to validate a Computerized requirements
Model (Operational Validity)

Computerized Model Verification ensures that mistakes have not been made in the computer
implementation of the Conceptual Model. It does not ensure the compliance of the computer
model with the (original) carmaker requirements. The Operational Validity aims to verify that
the computer model behavior has the accuracy required by the carmaker. To do this, computer
experiments are conducted on the Computerized Model in the experimentation phase. This is
where most of the model deficiencies are detected. Errors may be due to an erroneous
Conceptual Model or to programming errors in computerizing the Conceptual Model. In our
context, all of the Model V&V techniques discussed in Section 2.C are applicable. Which
techniques to use must be decided by the constraints on the system under test but also by the
model development team. In fact, we identify three possible scenarios to help modelers
validating a Computerized requirements Model (Operational Validity). These scenarios can be
used concurrently or separately.

Rule # Rule description

Rule 1 Each functionality must have one clock

Rule 2 Each functionality must have at least 1 input and 1 output signals

Rule 3 Each functionality must have at least one element (a Decision Table or a Finite State
Machine)

Rule 4 All the input signals of the functionality must be inputs of elements

Rule 5 All the output signals of the functionality must be outputs of elements

Rule 6 All the intermediate signals of the functionality must be inputs or outputs of elements

Rule 7 All the inputs and outputs of elements must be input, output or intermediate signals of
the functionality

Rule 8 Each value of an input, output and intermediate signal of the functionality must be
considered in at least one condition or action of an element

Rule 9 Each DT must have at least one condition

Rule 10 Each condition of a DT must have one associated action

Rule 11 Each condition of a DT must have at least one input or intermediate signal of the
functionality

Rule 12 Each action of a DT must have at least one output or intermediate signal of the
functionality

Rule 13 Each FSM must have at least two states and two transitions

Rule 14 Each transition of a FSM must have at least one condition

Rule 15 Each state of a FSM must have one associated action

Rule 16 Each condition of a FSM must have at least one input or intermediate signal of the
functionality

Rule 17 Each action of a FSM must have at least one output or intermediate signal of the
functionality

Rule 18 Each state of a FSM must have at least one transition that gets in the state and one
transition that gets out of the state

Rule 19 Each transition of a FSM must have an origin and a destination state

Verification and validation of a software functional requirements model R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

175

A. First scenario: Animate our requirements model

The most used technique to validate a simulation model is obviously to animate and trace it
(Cf. Figure 6.4). The behavior of intermediate and output signals is provided graphically
through time. However, two questions can be raised when animating a model 1) How do I
choose the input data of the model? and 2) How can I be sure that the model behaves well
(expected output data)? In order to answer the first question, we can refer to some of the
Model V&V techniques provided in Section 2.C (for instance, degenerate tests, extreme
condition tests, fixed values, and parameter variability - sensitivity analysis). The second
question is more related to the formalism of the (original) carmaker requirements. In case of
informal or semi-formal requirements, modelers have to predict the system behavior by
analyzing the requirements. In case of formal and simulated requirements, expected output
data can be assessed automatically by simulating the requirements.

Figure 6.4 – Animate the requirements model

B. Second scenario: Simulate the test cases delivered by the carmaker on
our requirements model

Sometimes, carmakers deliver a set of test cases for the software product under test. These
test cases can be used to valid our requirements model (Cf. Figure 6.5).

Our requirements model

Model Intermediate
and Output data
(by simulation)

Expected Intermediate
and Output data

Input data

Engineer

C
o

m
p

ar
e

Equal?

No

Modifications

Yes

Requirements analysis
OR

Requirements simulation

Verification and validation of a software functional requirements model R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

176

Figure 6.5 – Simulate the test cases delivered by the carmaker on our requirements

model

C. Third scenario: Compare our requirements model to another valid model
of the requirements

Ten years ago, simulation methods were rarely used in automotive industry. Now, automotive
electronics architecture becomes more and more complex and carmakers outsource the design
of electronic products. Therefore, it becomes crucial for carmakers to simulate their global
electronics architecture in order to better integrate and validate different electronic parts from
different suppliers. Presently, in automotive industry, formal (simulation) methods are more
and more used to specify software functional requirements (Cf. Chapter 2 – Section 4.A). In
fact, simulation helps engineers to make better decisions all along the product life cycle and
detect problems early in the development process. Unfortunately, there is a lack of a standard
formalism shared between carmakers and suppliers (Cf. Diagnosis 3). However, some
existing simulation tools (StateMate32, Matlab/Simulink33) are currently used by carmakers
and suppliers to simulate software specifications. A graphical interface generated
automatically from a formal specification (delivered by a carmaker to Johnson Controls) of
the “Front Wiper” functionality is illustrated in Figure 5.6. An engineer can animate this
model manually or simulate a set of input data automatically (set values on the input signals)
and check the expected behavior of the functionality (check values on the output signals).

32 http://www.telelogic.com/products/statemate/index.cfm (Consulted on November 2008)
33 http://www.mathworks.com/products/simulink/ (Consulted on November 2008)

Our requirements model

Model output data
(by simulation)

Output data
(from the test cases)

C
o

m
pa

re

No

Modifications

Yes

Carmaker’s
test cases

TC1
TC2

…

TCn

TC1
TC2

…

TCn

TC1
TC2

…

TCn

Input data

Equal?

Verification and validation of a software functional requirements model R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

177

Figure 6.6 – A graphical interface generated automatically from a formal specification

of the “Front Wiper” software functionality

Once a simulation model of the software functionality under test exists (Cf. Figure 6.7), an
engineer can choose a set of input data (using techniques such as degenerate tests, extreme
condition tests, fixed values, parameter variability - sensitivity analysis) and simulate these
data on the “valid” model (model delivered by the carmaker) and on our requirements model
in order to verify the validity of our model.

Figure 6.7 – Compare our requirements model to another valid model of the

requirements

VI. Conclusion

Assessing credibility of a simulation model is an onerous task. Applying Model V&V
techniques throughout a simulation model is time consuming and costly. However, the Model
V&V activity is extremely important for successful completion of complex and large-scale
Modeling and Simulation (M&S) efforts. Unfortunately, there is no set of specific tests that
can easily be applied to determine the “correctness” of the model. Furthermore, no algorithm
exists to determine what techniques or procedures to use. Every new simulation project

Wiper behaviorIgnition

Wiper switch

Washer switch

OUTPUT
SIGNALS

1
2
3
4

Vehicle speed

Configurations

Vehicle running

Wiper speed

INPUT
SIGNALS

1
2
3
4

Our requirements model

Model output data
(by simulation)

In
pu

t d
at

a

Another requirements model
(for instance, delivered by the carmaker)

Model output data
(by simulation)

C
om

pa
re

No

Modifications

Yes
Equal?

Engineer

Verification and validation of a software functional requirements model R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

178

presents a new and unique challenge. However, there is considerable literature on Model
V&V.

In this chapter, we developed a process to verify and validate a software functional
requirements model. We use proposals developed in the literature as a starting point for
defining methods and techniques more adapted to our context. We consider a simplified
version of the modeling process: Problem Entity, Conceptual Model and Computerized
Model. Firstly, we propose to validate (Conceptual Validity) a Conceptual requirements
Model via experts’ knowledge. Secondly, we define a set of integrity rules to verify a
Computerized requirements Model. Finally, we develop three possible scenarios to validate
(Operational Validity) a Computerized requirements Model.

In the following chapter, we describe how test cases can be generated automatically from a
requirements model.

Automatic generation of test cases R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
179

CHAPTER 7. AUTOMATIC GENERATION OF
TEST CASES

Automatic generation of test cases R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
180

I. Introduction

As the software products become more and more complex (Cf. Chapter 1), it is illusory to be
able to check that the software product responds correctly to all possible operations. In
Chapter 8 – Section 2, we further demonstrate that software testing is a NP-Complete problem
and therefore it is impossible to be able to cover all the operation space. In Johnson Controls,
the current strategy to select operations within the operation space (operation selection
strategy) is a manual subjective one based the test engineers’ experience and intuition (Cf.
Diagnosis 13). After choosing an operation to be performed on the software under test, test
engineers analyze the source code and/or the carmaker requirements of this software in order
to assess the expected values to be checked on some output signals. In fact, this assessment is
based on the engineers’ understanding of the code and/or requirements and may lead to errors
(Cf. Diagnosis 12). In automotive industry, these tasks become laborious tasks that account
for more than 50% of the total time and budget of a software project. In fact, the stopping
criteria used is based on test coverage. Researches in code coverage measurement have
reached a high level of maturity and many automated tools were commercialized (Cf. Chapter
2 – Section 6.A.1). However, requirement coverage is still immature and the accuracy of a
requirement coverage measurement depends on the degree of formalism used when
specifying a set of requirements (Cf. Diagnosis 11). In addition, sometimes, for time and
budget reasons, test engineers stop designing test cases even if 100% coverage is not reached.

In this chapter, we develop our strategy to generate test cases (operations and expected
outputs) automatically from the requirements model. We also describe our stopping
aggregated criterion based on formal measurement of coverage. The test case generation is
based on a new concept named “operation matrix” presented in Section 2. The process of
generating a test case is described in Section 3. The quality objectives and the time and cost
constraints when designing test cases are developed in Section 4. A new stopping aggregated
criterion is proposed in Section 5. Finally, our heuristic algorithm to optimize the generation
of test cases is specified in Section 6.

II. The new concept of “operation matrix”

The generation of operations and inter-operation times for a test case is performed based on
the concept of “operation matrix”. In fact, for each software functionality under test, we
propose to set probabilities and time intervals between all possible successive operations.
Therefore, we build a matrix that we name “operation matrix” which is a square matrix with
all possible operations in columns and in rows. Between the two operations of a pair we
define:

• The probability that the two operations be in sequence. The total of the probabilities
by row must be equal to 1.

• The inter-operation time between these two operations, modeled as an interval of
possible values (a uniform probability).

Let us consider a software functionality with 3 input signals and two output signals: I1,
Domain = {0, 1}; I2, Domain = {1, 2, 3}; I3, Domain = {0, 1}; O1, Domain = {0, 1}; O2,
Domain = {0, 1}. The “operation matrix” associated to this example is illustrated in Figure
7.1.

Automatic generation of test cases R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
181

Figure 7.1 – An example to illustrate the concept of “operation matrix”

Moreover and through the “operation matrix”, engineers can enrich the requirements model
with knowledge on the end-user (driver) recurrent operations and the test engineers’
experience. Indeed, high probabilities and specific inter-operation times can be set between
recurrent and/or critical operations. The use of driver behavior’s profile, past bugs and
existing test cases in order to refine the operation space description is developed in Chapter
8.

One major question is: How an engineer can design an “operation matrix”? The basic solution
is to fill in manually each case of the “operation matrix” by a succession probability and a
time interval. However, a functionality can have more than 20 input signals and 100 possible
values for these signals. In fact, the domain length of an analog input signal (for instance,
vehicle speed) depends on the level of details when sampling the analog domain. In
consequence, the size of an “operation matrix” can easily reach the 10000 cases which
become inconceivable to be filled manually. One solution is to generate the “operation
matrix” automatically. For each functionality under test, we propose to generate two
“operation matrices” automatically. For the two matrices, the time interval can be set
automatically to a “generic” interval defined by experts. Let us consider the same example of
the Figure 7.1. The first matrix called “Nominal 1” (Cf. Figure 7.2) considers that all the
operations have the same succession probability.

Figure 7.2 – An example of a Nominal 1 “operation matrix”

0I1

I2

I3

I1 I2 I3Input
signals

1
1
2
3
0
1

0 1 1 2 3 0 1

1. Succession probability
2. Time interval

Time between 2
operations

TimeTmin Tmax

Domains

Σ(Succession probability) = 1

In
pu

t s
ign

als

I1 I2 I3

D
om

ai
ns

0 1 1 2 3 0 1

0 {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] }

1 {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] }

1 {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] }

2 {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] }

3 {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] }

0 {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] }

1 {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] }

{Succession probability ; Time interval }

I1

I3

I2

0.14 + 0.14 + 0.14 + 0.14 + 0.14 + 0.14 + 0.14 = 1

Defined by experts

Automatic generation of test cases R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
182

The second matrix called “Nominal 2” (Cf. Figure 7.3) considers that the probability to
choose an operation on the input signal Ii is the same than the one on the input signal Ij.

Figure 7.3 – An example of a Nominal 2 “operation matrix”

Moreover, once these matrices are generated automatically, engineers have the possibility to
adjust manually the succession probability and the time interval between some specific
operations. Following the engineers’ modifications, the probability distribution by row is
updated in order to take into account the matrix constraints. For instance, let us consider the
Nominal 1 “operation matrix” of the Figure 7.2. One engineer can decide to:

• set the succession probability between the operation “I1=0” and the operation
“I1=1” to 0.8

• and set all the time intervals after the operation “I3=0” to [X1, Y1]

The modified Nominal 1 “operation matrix” is presented in Figure 7.4.

In
pu

t s
ign

als

I1 I2 I3

D
om

ai
ns

0 1 1 2 3 0 1

0 {0,17 ; [X ;Y] } {0,17 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,17 ; [X ;Y] } {0,17 ; [X ;Y] }

1 {0,17 ; [X ;Y] } {0,17 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,17 ; [X ;Y] } {0,17 ; [X ;Y] }

1 {0,17 ; [X ;Y] } {0,17 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,17 ; [X ;Y] } {0,17 ; [X ;Y] }

2 {0,17 ; [X ;Y] } {0,17 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,17 ; [X ;Y] } {0,17 ; [X ;Y] }

3 {0,17 ; [X ;Y] } {0,17 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,17 ; [X ;Y] } {0,17 ; [X ;Y] }

0 {0,17 ; [X ;Y] } {0,17 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,17 ; [X ;Y] } {0,17 ; [X ;Y] }

1 {0,17 ; [X ;Y] } {0,17 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,11 ; [X ;Y] } {0,17 ; [X ;Y] } {0,17 ; [X ;Y] }

{Succession probability ; Time interval }

I1

I3

I2

Defined by experts

0.17+0.17 = 0.33 0.17+0.17 = 0.330.11+0.11+0.11 = 0.33

0.33+0.33+0.33 = 1

Automatic generation of test cases R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
183

Figure 7.4 – An example of a Nominal 1 “operation matrix” after engineers’

modifications

III. How to generate a “Test Case”?

Generating a test case automatically requires generating a set of test steps until stopping
criterion is validated. The process of generating a test case is illustrated in Figure 7.5.

Figure 7.5 – The process of generating a test case

The definition of our stopping aggregated criterion is developed in Section 5. In the
following, we focus on the generation of a test step. Based on the definition of a test step (Cf.
Definition 2.11), designing a test step requires to choose an operation, an inter-operation time
and assess the expected results to be checked on the output signals of the software under test.
Through our approach, two automated activities are necessary to generate a test step:

A. Activity 1: A Monte Carlo simulation on the “operation matrix”

In order to generate an operation and an inter-operation time, we propose to perform a Monte
Carlo simulation on the “operation matrix”. Two steps are required:

In
pu

t s
ign

als

I1 I2 I3

D
om

ai
ns

0 1 1 2 3 0 1

0 {0,033 ; [X ;Y] } {0,8 ; [X ;Y] } {0,033 ; [X ;Y] } {0,033 ; [X ;Y] } {0,033 ; [X ;Y] } {0,033 ; [X ;Y] } {0,033 ; [X ;Y] }

1 {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] }

1 {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] }

2 {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] }

3 {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] }

0 {0,14 ; [X1 ;Y1] } {0,14 ; [X1 ;Y1] } {0,14 ; [X1 ;Y1] } {0,14 ; [X1 ;Y1] } {0,14 ; [X1 ;Y1] } {0,14 ; [X1 ;Y1] } {0,14 ; [X1 ;Y1] }

1 {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] } {0,14 ; [X ;Y] }
I3

I1

I2

0.8 0.033+ 0.033+ 0.033+ 0.033+ 0.033+ 0.033 = 0.2

0.8+0.2 = 1

Start

Generate a
Test Step

Stopping
Criterion

Yes

No

End

Automatic generation of test cases R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
184

• Step 1: an operation is chosen according to the probabilities on successive operations.
In software testing (Marre 1992), this technique is known under the statistical testing
technique. Before start generating a test case, the input signals of the requirements
model are set to specific values. Therefore, the starting operation of the test case is
randomly chosen among the initial operations (initial values of the input signals).
Sometimes, the starting operation is chosen in order to favor a specific succession of
operations at the beginning of the test case.

• Step 2: the inter-operation time is randomly chosen within the time interval of the
chosen operation.

B. Activity 2: A simulation of the software requirements model

The chosen operation is performed on the requirements model and a simulation of the model
(synchronized by the cycle time of the Clock signal) starts until the inter-operation time ran
out. The values on the output signals of the model are the expected results of the test step. Let
us consider the example of Figure 7.1 with the “operation matrix” of Figure 7.4. The process
of generating a test step is illustrated using this example in Figure 7.6.

Automatic generation of test cases R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
185

Figure 7.6 – The process of generating a test step

0 1 1 2 3 0 1

1
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

2
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

3
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

0
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]

1
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

I1 I2 I3

I3

 0,14
[200,400]

 0,14
[200,400]

 0,14
[200,400]

 0,14
[200,400]

 0,14
[200,400]

 0,14
[200,400]

 0,033
[200,400]

 0,8
[200,400]

 0,033
[200,400]

 0,033
[200,400]

 0,033
[200,400]

 0,033
[200,400]

 0,033
[200,400]

 0,14
[200,400]

I1
0

1

I2

0 1 1 2 3 0 1

1
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

2
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

3
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

0
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]

1
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

 0,14
[200,400]

I2

I3

I1
0

0,033
[200,400]

1
 0,14

[200,400]

I1 I2 I3

0,8
[200,400]

0,033
[200,400]

 0,033
[200,400]

 0,033
[200,400]

 0,033
[200,400]

 0,033
[200,400]

 0,14
[200,400]

 0,14
[200,400]

 0,14
[200,400]

 0,14
[200,400]

 0,14
[200,400]

Start

Activity 1
Monte Carlo

simulation on an
“operation matrix”

Activity 2
Simulation of the

requirements
model

“I1=0“ is the
starting operation

Step1: "I1=1" is the chosen operation (high probability – 0.8)
Step2: An inter-operation time is randomly chosen within [200,400] (250 ms)

Probability=0.14
Time interval=[200,400] (in millisecond)

Choose the next
operation according to

the probabilities

Test Case
Test Step No Test Actions Expected Results

1
I1 = 1
Wait 250 ms

Test Case
Test Step No Test Actions Expected Results

1
I1 = 1
Wait 250 ms

O1=0
O2=1

Software functional
requirements

model

I1=0

I2=1
O1=0

O2=0

{0,1}

{1,2,3}

I3=0
{0,1}

Software functional
requirements

model

I1=1

I2=1
O1=0

O2=0

{0,1}

{1,2,3}

I3=0
{0,1}

Starting values on
the input signals

End

0 1 1 2 3 0 1

1
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

2
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

3
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

0
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]
 0,14

[600,900]

1
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]
 0,14

[200,400]

 0,14
[200,400]

 0,14
[200,400]

 0,14
[200,400]

 0,14
[200,400]

I2

I1 I2 I3

 0,033
[200,400]

 0,8
[200,400]

 0,033
[200,400]

 0,033
[200,400]

 0,033
[200,400]

 0,033
[200,400]

 0,033
[200,400]

 0,14
[200,400]

I1
0

1
 0,14

[200,400]
 0,14

[200,400]

I3

“I1=1“ is the last
chosen operation

Choose the next operation
according to the probabilities

(generation of the next test step)

Software functional
requirements

model

I1=1

I2=1
O1=0

O2=1

{0,1}

{1,2,3}

I3=0
{0,1}

Test Case
Test Step No Test Actions Expected Results

Process
flow Operation matrix

Simulation model
&

Test Case

Automatic generation of test cases R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
186

IV. Test generation objectives and constraints

Testing software exhaustively remains a major problem from the computing point of view.
Therefore, software testing must often be based on specific assumptions and objectives which
help test engineers and managers to decide when to stop the testing protocol. In order to
monitor our automatic generation of test cases, we develop an objective function based on a
formal structural (code) and functional (requirement specification) coverage and the
execution time and cost of generated tests. In our approach, test engineers can generate test
cases according to their quality objectives but also time and cost constraints.

A. Structural (code) coverage objectives

While generating a test case, and for each generation of a test step, we execute the test step on
the software product under test and we evaluate the code coverage in terms of statements,
procedures, conditions and decisions coverage. To do so, we use C-Cover from Bullseye as a
code coverage measurement tool. A detailed description of the code coverage is given in
Chapter 2 – Section 6.A.1. Since the code coverage measurement is already formalized using
commercial tools, we focus our efforts on formalizing the requirement coverage
measurement.

B. Functional (requirement specification) coverage objectives

Once we define a model to formally represent and simulate the software functional
requirements, we consider a formal coverage rate of the requirements model. In Figure 7.7,
we illustrate the functional coverage indicators through the example of Figure 5.3.

Figure 7.7 – Functional (requirement specification) coverage indicators

While generating a test case, test engineers can visualize in real time the covered zones of the
requirements model (Cf. Figure 7.8, 7.9, 7.10 and 7.11).

…

OUPUTSINPUTS

…

OUPUTSINPUTS

OUTPUTS

INPUTS

OUTPUTS

INPUTS

…

OUPUTSINPUTS

…

OUPUTSINPUTS

…

OUPUTSINPUTS

…

OUPUTSINPUTS

OUTPUTS

INPUTS

OUTPUTS

INPUTSElement N°1
Finite
State

Machine

Element N°3
Decision

Table
Element N°4

Finite
State

Machine

Element N°2
Decision

Table

Clock

Finite State Machines coverage

Decision Tables coverage

Signals domain coverage

O
pe

ra
tio

n
m

at
rix

 c
ov

er
ag

e

Automatic generation of test cases R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
187

1. The coverage rate of a signal domain

Each input, output or intermediate signal has a discrete domain. The signal domain coverage
of a requirements model consists of the coverage rate of the domains of these signals. In
addition, since testing the boundary values of a signal often reveals many problems, we also
assess the coverage rate of the minimum and maximum values of each signal. In Figure 7.8,
we illustrate the coverage of a signal by a practical example. After generating a test case,
some values of the signals domains have been highlighted. In fact, the signal “Signal_3” is
covered at 100% while the two values of this signal were visited at least once by the generated
test case. The signal “Signal_1” has a coverage rate of 33,33% (1 value visited over 3 values
in total).

Figure 7.8 – Signals domain coverage

2. The coverage rate of an operation matrix

The operation matrix coverage of a requirements model consists of the coverage rate of all
successions between pairs of operations visited. Once a succession probability is set between
each two operations, we define a coverage rate of the critical successions where the
succession probability is above a certain level defined by the engineer. In Figure 7.9, we
illustrate the coverage of an “operation matrix” by a practical example. After generating a
test case, some cases of the matrix have been highlighted. In fact, in the generated test case,
the operation #4 has followed the operation #1, the operation #2 has followed the operation
#2, the operation #2 has followed the operation #3 and so on. This way, we compute the
coverage rate of successions between pairs of operations (around 38%; 5 successions of
operations were covered over 13 possible successions)

Figure 7.9 – Operation matrix coverage

3. The coverage rate of an element (DT or FSM)

The element coverage of a requirements model consists of the coverage rate of the conditions
of each Decision Table (DT) and the coverage rate of the states, transitions and conditions of
each Finite State Machine (FSM). In Figure 7.10, we illustrate the coverage of a DT by a
practical example. After generating a test case, some conditions of the DT have been
highlighted. In fact, the conditions are covered at 75% (3 conditions visited over 4 conditions
in total).

Signal covered at 100%

Signal covered at 33,33%

Operations Op1 Op2 Op3 Op4

Op1 0,2 – [100;200] 0,1 – [200;200] 0,4 – [100;300] 0,3 – [100;200]

Op2 0 0,5 – [100;200] 0 0,5 – [100;100]

Op3 0,2 – [200;200] 0,4 – [100;200] 0,2 – [100;300] 0,2 – [100;300]

Op4 0,2 – [100;400] 0,2 – [100;200] 0 0,6 – [100;200]

Covered succession
of operations

Non-covered succession
of operations

Automatic generation of test cases R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
188

Figure 7.10 – Decision Table coverage

In Figure 7.11, we illustrate the coverage of a FSM by a practical example. After generating a
test case, some states and transitions of the FSM have been highlighted. In fact, the states are
covered at 75% (3 states visited over 4 states in total). The transitions are covered at 43% (3
transitions visited -different from 0%- over 7 transitions in total). The conditions are covered
at 29% ((50%+0%+100%+0%+50%+0%+0%)/7=29%).

Figure 7.11 – Finite State Machine coverage

Moreover, when designing the requirements model, engineers can affect to conditions, states
and transitions a normalized criticity level between 0 and 1. Consequently, we define a
second set of coverage rates for expressing the degrees of coverage of the most critical
conditions, states and transitions (in fact, this is a weighted coverage of an element).

C. Test execution time and cost constraints

Presently, in the automotive industry, the time and money spent to test a software product is
the major criterion to stop testing. We have time and money spent to analyze carmakers’
requirements, to design test cases and to execute test cases on the software product under test
(Cf. Chapter 2 – Section 6). In our approach, we generate test cases automatically and
therefore, one can have a tendency to generate too many tests. However, executing test cases
on the software product under test and analyzing the results can cost too much time and
money (Cf. Chapter 4 – Section 4.C.1) and more especially when the execution is performed
manually by a test engineer (Cf. Chapter 2 – Section 5.D.1). In our approach, when
generating a test case, test engineers can set targets not to be exceeded (constraints) on time
and cost indicators:

• Indicator 1: Execution time. The time that a test engineer will spend in executing
manually the generated test case on the software product.

• Indicator 2: Number of test steps in the generated test case.

Non-covered condition
Covered condition

Signal_1 Signal_2 Signal_3
Conditions Actions

Covered state

Non-covered state

None of the conditions is covered (0%)
=> Non-covered transition

50% of the conditions are covered
=> Covered transition

Automatic generation of test cases R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
189

• Indicator 3: Number of “distinct” test steps in the generated test case. Two test steps
are distinct if they perform different operations.

Let us consider the test case of the Figure 7.12. The total execution time is 1150 ms
(250ms+200ms+300ms+400ms=1150ms, around 19 seconds). The test case is composed
from 4 test steps and the number of “distinct” test steps is 3 (Test Step 1 and Test Step 4
perform the same operation “I1=1”).

Figure 7.12 – An example of test case

Constraints on time and cost are helpful in case of tight planning and budget on the project. It
can also be useful on projects where the test execution is performed manually. In that case,
the execution time and number of test steps must be reduced and the repetitive test steps or
succession of test steps must be avoided. Typically, when testing a Graphical User Interface
(GUI), test engineers have to check visually the expected results. Nevertheless, new testing
platforms allow even to automate the testing of GUI using a camera system.

V. Our stopping aggregated criterion

A. The objective function combining objectives and constraints

Based on the coverage objectives and the time and cost constraints identified in Section 4, we
develop a panel interface to allow the test engineers to set precise targets on the test
generation objectives and constraints (Cf. Figure 7.13). The quality objectives (code and
requirement specification coverage) are expressed in terms of ratios of coverage and, then,
are normalized which aim to reach a value of 100%. The execution time constraint is
expressed in millisecond (ms). In addition, we define a set of weights (wi) that test engineers
can associate for each defined target: 0 (to be ignored), 1 (not very important), 5 (important),
10 (very important). The panel presented in Figure 7.13 helps test engineers to express their
targets in terms of the required software quality and tests cost and therefore generate test
cases fulfilling their objectives and constraints.

Test Case
Test Step No Test Actions Expected Results

1
I1 = 1
Wait 250 ms

O1 = 0
O2 = 1

2
I2 = 2
Wait 200 ms

O1 = 0
O2 = 1

3
I3 = 1
Wait 300 ms

O1 = 1
O2 = 1

4
I1 = 1
Wait 250 ms

O1 = 0
O2 = 1

Automatic generation of test cases R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
190

Figure 7.13 – Panel of the quality, time and cost indicators for monitoring the automatic

generation of test cases

In fact, through our approach, the automatic generation of tests is monitored by the set of
targets and weights predefined for each of the quality, time and cost indicators. During one
test generation session, the targets may be completed following different orders and the first

Execution

Execution

Automatic generation of test cases R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
191

target completed does not immediately stop the process. We stop only when the aggregated
preference, F, defined as:

where Os are the coverage objectives, Cs are the normalized time and cost constraints and wis
are weights, attains zero or does not decrease for a certain number of successive generated test
steps. This number is one of 8 parameters of the heuristic algorithm used to optimize the
objective function (F) when generating a test case. The algorithm and its parameters are
described in Section 6. Since the objectives Os are normalized to 100% and in order to have a
consistent aggregated preference (F), we normalize to 100% the time and cost constraints
(test case execution time, test step number, distinct test step number). These constraints are
expressed in millisecond (ms) and in number of generated test steps. We illustrate our
normalization process of these constraints through an example. At each time, test engineers
decide to set a constraint ci, the normalized target of this constraint CTarget(ci) is immediately
set to 100%. For instance, once a test engineer decide to generate a test case that the total
execution time do not exceed 108000 ms (value set in the panel of quality, time and cost
indicators, Cf. Figure 7.13), the normalized target of the test execution time constraint is set to
100% (CTarget(test execution time)= 100%). After generating a set of test steps, the normalized
current value of this constraint (CCurrent(ci)) is assessed by calculating the ratio
(current_constraint_value*100/target_constraint_value). In our example, we generate a set of
test steps with a total execution time of 21600 ms. Therefore, CCurrent(test execution time) is
assessed to (21600*100)/108000 (CCurrent(test execution time)= 20%).

B. A simple example to illustrate our stopping aggregated criterion

Let us consider a practical software testing problem in order to illustrate the purpose of our
objective function. Through the experience feedback of the software testing experts, some
software bugs often occur when a signal is set to its boundaries values. Consequently, test
engineers could always decide to generate a test case (a set of test steps) which aims to detect
potential bugs related to the boundaries values. Hereafter, we consider the functionality which
consists in managing the front wiper in a vehicle. The corresponding software component is
made of 1229 Lines Of Code (blank and comment lines excluded), 18 input signals and 8
output signals. We decide to generate a test case fulfilling the following targets and weights
in terms of coverage objectives (Cf. Figure 7.13):

- Cover the boundaries input signals at 85% with a weight of 5
- Cover the boundaries output signals at 85% with a weight of 5
- Cover the boundaries intermediate signals at 85% with a weight of 5

While respecting the constraint:

- Do not exceed 30 minutes (108000 ms) of tests execution with a weight of 10

After generating a test case with the objectives and constraints defined below, a test report is
generated automatically. An excerpt of this report is illustrated in Figure 7.14. In this report,
the reached (current) values on the objective and constraint indicators are illustrated. In fact,
even if the inputs and outputs boundaries coverage have respectively reached and exceeded
their targets (respectively 85% and 94% of coverage), our optimization algorithm did not stop

iCurrentetTiCurrentetT wCCwOOF ×−+×−= ∑∑ argarg

Fobjectives Fconstraints

Automatic generation of test cases R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
192

the generation of test steps expecting that the intermediate boundaries coverage reaches its
target. But once the maximum test execution time which has a weight of 10 (very important)
has been exceeded (110255 ms instead of 108000 ms), the optimization algorithm decides to
stop generating test steps even if the intermediates boundaries coverage is not already
reached. The excess of a constraint out of its bounds is accounted for a penalty that
irremediably increases the overall objective value.

Figure 7.14 – An excerpt of the report delivered automatically after generating a test

case

VI. Our heuristic algorithm to optimize the objective function

A. Process flow

In conclusion, for a set of targets and weights on the coverage objectives and the time and
cost constraints, the test engineer can generate one or more test cases fulfilling these
predefined objectives and constraints. Afterwards, the “Optimal” test case is selected
automatically. To do so, we compare the generated test cases in pairs and we select the one
which has the lowest value of the aggregated preference Fobjectives of the quality (coverage)
indicators. If the two test cases have the same value of Fobjectives, we select the one which has
the lowest value of the aggregated preference Fconstraint of the time and cost indicators. If the
two test cases have the same value of Fconstraint, we select the utmost one that respects each
individual constraints going from the higher to the lower weights.

Moreover, a software functionality under test has often configuration signals (Cf. Chapter 5 –
Section 3.A) which allow to parameterize the functionality (for instance, by activating or
deactivating one feature of the functionality). A “Configuration” of a functionality consists to
set all the configuration signals of the functionality to fixed values. Through our algorithm,
two strategies are possible for managing the “Configuration” of a functionality. On the one
hand, test engineers can generate one or more test cases for each specific “Configuration” of
the functionality. The configuration signals are set to fixed values all over a test case. On the
other hand, test engineers can generate one or more test cases where each test case considers a

Test Case Indicators

Functional (specification) coverage objectives

Progress Current Target Weight

Test execution time and cost constraints
Execution

Automatic generation of test cases R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
193

set of predefined “Configurations” of the functionality. In this case, the values of the
configuration signals can change from one test step to another within the same test case.

In Table 7.1, we describe the process flow of our optimization algorithm. The parameters of
this algorithm are identified in Table 7.1 (Parameter i) and described in the next section.

Automatic generation of test cases R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
194

Process flow Brief description

Test engineers can decide to test a functionality under
different “Configurations” (Config1, Config2 …).

We set a new “Configuration” for the functionality under test.

Test engineers have to define the targets and weights for the
coverage objectives and for the time and cost constraints

Test engineers have to set the parameters of the
optimization algorithm.

We start generating a test step by choosing a succession of
operations

Did the test engineer decide to optimize the coverage of the
“operation matrix”?

If NO, we keep the chosen operation

If YES, we check if the chosen operation is already covered
by another test step in the test case

If NO, we keep the chosen operation

If YES, we check if we already made N1 trials and all the
chosen operations were already covered

If NO, we choose a new succession operation

If YES, we keep the last chosen operation

To be continued …

Start

Operation

4

1

Choose a succession of two
operations

Succession already
covered?

Yes

Choose another
succession of

operations

No

Set a new “Configuration” for
the functionality under test

2
Set targets on the quality, time

and cost indicators

Optimize the coverage of
the operation matrix?

Otarget and Ctarget

Yes
4

A

No

N1 trials?
No

Yes

Fixed values on the
configuration signals

Parameter 1

Parameter 2

3
Set the parameters of the

optimization algorithm

ParametersStart generating a
test case

Automatic generation of test cases R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
195

Process flow Brief description

We choose an inter-operation time within the time interval

We set the chosen operation on the requirements model, we
simulate the model during the inter-operation time and we
assess the expected results on the output signals

A new test step is generated

We assess the current values of the coverage objectives
and the execution time and cost constraints

Did the test engineer decide to optimize the number of test
steps in a test case?

If NO, we keep the generated test step

If YES, we check if the aggregated preference F has
decreased

If YES, we keep the generated test step

If NO, we check if we already generated successively N2
test steps with no decrease of the aggregated preference F.

If NO, we delete the last generated test step and we
generate a new one

If YES, we keep the last generated test step

To be continued …

A

Inter-operation time

5

Ocurrent and Ccurrent

7

Test Step

6

Choose an inter-operation time
within the time interval

Simulate the requirements
model and assess the

expected results

Assess the current values of
the quality, time and cost

indicators

F decrease?

Yes

Delete the test
step and generate

a new one

No
Optimize the number of test

steps?

No4

B

Yes

N2 trials?
No

Yes

Parameter 3

Parameter 4

Automatic generation of test cases R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
196

Process flow Brief description

We add the test step to the current test case

The current test case is updated with a new test step

We check if the “set” coverage objectives have reached their
targets (Fobjectives=0)

If YES, we stop generating test steps for the current test
case

If NO, we check if the aggregated preference F has
decreased

If YES, we generate a new test step for the current test case

If NO, we check if the aggregated preference F have not
been decreased with the N3 last test steps of the current test
case

If NO, we generate a new test step

If YES, we stop generating test steps for the current test
case

Did the test engineer decide to cumulate the coverage of
different “Configurations” in order to reach the targets on the
coverage objectives?

If YES, follow C

If NO, follow D
To be continued …

Test Case

8

Yes No

Add the generated test step to
the test case

Cumulate the coverage of
different configurations?

B

F decrease?

No Yes
Fobjectives = 0 ?

No

Last N3 Test Steps?

Yes

Generate a
new test step

4

Yes

No

C D

Parameter 5

Parameter 6

For a set of “Configurations”, we
generate an “Optimal “Test Case
fulfilling the predefined objectives
by accumulating the coverage of

the different “Configurations”

For each “Configuration”, we
generate an “Optimal “Test Case
fulfilling the predefined objectives

Automatic generation of test cases R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
197

Process flow Brief description

Is there other “Configurations” for the
functionality that should be tested?

If YES, we change the “Configuration”
and continue generating test steps for
the same test case

If NO, the current test case is
finalized

We choose the “Optimal” test case
between the current test case and the
previous one.

The “Optimal” test case is chosen

Do we generate N4 test cases in order
to choose the “Optimal” one?

If NO, we generate a new test case for
the set of “Configurations”

If YES, we stop the algorithm and we
deliver the “Optimal” test case for
the set of “ Configurations ”

The current test case is finalized

We choose the “Optimal” test case
between the current test case and the
previous one.

The “Optimal” test case is chosen

Do we generate N5 test cases in order
to choose the “Optimal” one?

If NO, we generate a new test case
with the same “Configuration”

If YES, we check if there is other
“Configurations” for the functionality
that should be tested?

If YES, we change the “Configuration”
and start generating a new set of test
cases

If NO, we stop the algorithm and we
deliver an “Optimal” test case for
each “ Configuration ”

Table 7.1 – Our heuristic algorithm to optimize the generation of test cases

No

Yes
1

9

Other “Configurations”
that should be tested?

Choose the “Optimal” Test
Case between the present test

case and the previous one

“Optimal “Test Case

Yes

No
4

N4 generated Test
Cases?

End

C

Parameter 7

Generate a
new test case

N5 generated Test
Cases?

Yes

No
4

Optimal Test Case

10

Other “Configurations”
that should be tested?

Yes

1

No

End

Choose the “Optimal” Test
Case between the present test

case and the previous one

D

Parameter 8

Generate a
new test case

Automatic generation of test cases R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
198

B. Parameters

In the Table 7.1, we identify 8 parameters that must be set by the test engineer before start
generating test cases:

• Parameter 1: Test engineer can decide to optimize the coverage of the “operation
matrix” . To do so, Parameter 1 must be set to 1. Otherwise, it is set to 0.

• Parameter 2: In order to optimize the coverage of the “operation matrix”, we check if
the chosen succession of operations is already covered or not. When it is already covered,
we propose to choose another succession of operations and so on. However, we have to
avoid the non-stop loop in the algorithm. The Parameter 2 specifies the maximum
number of unsatisfied trials (N1) before the algorithm exists the loop.

• Parameter 3: Test engineer can decide to optimize the number of test steps in a test case.
To do so, Parameter 1 must be set to 1. Otherwise, it is set to 0.

• Parameter 4: In order to optimize the number of test steps in a test case, we check if a
generated test step decreases the aggregated preference F. In case of no decrease of F,
we propose to delete the test step and generate a new one. However, we have to avoid the
non-stop loop in the algorithm. The Parameter 4 specifies the maximum number of
unsatisfied trials (N2) before the algorithm exists the loop.

• Parameter 5: In case of generating one or more test cases for each specific
“Configuration” of the functionality, this parameter allows to stop generating test steps
for each test case. In fact, we check if the aggregated preference F has not been
improved on the last (N3) test steps of the current test case. If it is the case, we stop
generating test steps. It not, we continue generating test steps.

• Parameter 6: Test engineer can generate one or more test cases where each test case
considers a set of predefined “Configurations” of the functionality. To do this, Parameter
6 must be set to 1. When this parameter is set to 0, each generated test case considers
only one specific “Configuration”.

• Parameter 7 (used when Parameter 6 = 1): This parameter defines the number of test
cases (N4) to be generated in order to identify the “Optimal” one.

• Parameter 8 (used when Parameter 6 = 0): This parameter defines the number of test
cases (N5) to be generated in order to identify the “Optimal” one.

VII. Conclusion

In automotive industry, the activity of designing manually test cases for software products
becomes more and more laborious and time consuming. This activity accounts for more than
50% of the total software project time and budget (Cf. Chapter 1 – Section 5.C.2). Despite the
huge time and money spent in testing a software product and after each delivery to the
carmaker, some bugs are detected by the carmaker. Since the late 90’s, the automation of the
test case design process became a hot topic and automotive electronic suppliers are still
looking for a relevant automation of this process.

In this chapter, we developed our strategy to generate test cases automatically from our
formal model to represent software functional requirements (Cf. Diagnosis 15). The selection
of operations is performed based on a Monte Carlo simulation on an “operation matrix” (Cf.
Diagnosis 13). All the expected values on the output signals of the functionality are assessed
through a simulation of the requirements model (Cf. Diagnosis 10 and 12). Moreover, test
engineers could parameterize the generation of test cases in order to take into account quality
objectives but also time and cost constraints. Indeed, the decision to stop designing test cases
is based on a formal measurement of the code and requirement coverage and the test time and

Automatic generation of test cases R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
199

cost (Cf. Diagnosis 11). A heuristic algorithm is in charge of optimizing the generation of test
cases while fulfilling quality objectives and constraints.

In the following chapter, we suggest refining the operation space by focusing on critical
operations or succession of operations. To do this, we define driver behavior’s profile and
propose to reuse bugs and test cases capitalized on similar projects in the past.

Refining the operation space description with the driver behavior’s profile, past bugs and test cases
 R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

201

CHAPTER 8. REFINING THE OPERATION
SPACE DESCRIPTION WITH THE DRIVER
BEHAVIOR’S PROFILE, PAST BUGS AND TEST
CASES

Refining the operation space description with the driver behavior’s profile, past bugs and test cases
 R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

203

I. Introduction

As automotive software products become more and more complex (Cf. Chapter 1), it is
illusory to be able to check that the software product responds correctly to all possible
operations. In other words, it is impossible to cover all the operation space of a software
product (Cf. Chapter 2 – Section 6). In fact, each engineer has a different perception of the
possible and critical operations (based on her/his experience). When designing test cases, test
engineers aim to reach a code or requirement coverage objective. In fact, test engineers do not
always select operations that simulate the real use of the software product under test.
Moreover, they do not formally use capitalized bugs and test cases in order to improve the test
design process on future developments.

In this chapter, we point up how the operation space can be objectively refined by focusing
on critical test scenarios. The complexity of testing exhaustively a software product is
illustrated in Section 2. An overview on our operation space reducing techniques is proposed
in Section 3. In Section 4, 5 and 6, we develop respectively each of these techniques: focusing
on test scenarios regularly done by the end-user of the product, focusing on recurrent types of
bugs through an analysis of the problems’ database and finally focusing on test engineers’
experience feedback by reusing test cases capitalized on previous projects.

II. The impossibility of testing exhaustively a software product

Testing exhaustively a software product is a NP-Complete problem from a computational
viewpoint. In other words, it is very complex to test all the inputs, combinations of inputs and
paths of a software. In computational complexity theory, the complexity class NP-Complete
also known as NP-C or NPC, is a subset of the NP class ("Non-deterministic Polynomial
time" class, (Karp 1972)). They are the most difficult problems in NP. To prove that an NP
problem A is in fact an NP-Complete problem it is sufficient to show that an already known
NP-Complete problem reduces to A. There are more than 3000 known NP-Complete
problems. Most of the problems are listed in Garey and Johnson's seminal book (Garey 1979).
In (Seroussi 1988), Seroussi and Bshouty prove that the design of an optimal exhaustive test
case for an arbitrary logic circuit is an NP-Complete problem. In fact, they demonstrate that
finding the minimal test case (and its size) which covers the logic circuit is an NP-Complete
problem. In order to do this, they first show that the problem can be solved by a
nondeterministic algorithm in polynomial time. Then, they use the standard technique of
reduction to prove that the problem is NP-Complete: for a given problem P (the Graph
Coloring problem34) known to be NP-Complete, they show that if our problem is solvable in
deterministic polynomial time, then so is P. In (Cheng 2003, Hessel 2007), the authors prove
that finding optimal test cases for a software product is an NP-Complete problem. Indeed,
they reduce the problem of generating test cases to the set-covering problem (an NP-Complete
problem).

For our research project, we propose to generate automatically test cases for a software
product. Our approach is based on modeling the software functional requirements and
generating test cases from this model. To guide the design of test cases, code and/or
requirement coverage criteria are used. A coverage criterion can be seen as a set of items
(relations between inputs and outputs) in the source code or requirements model to be
covered. Therefore, our test generation problem can be formulated as a Reachability

34 Graph coloring problem, http://en.wikipedia.org/wiki/Graph_coloring (Consulted on November 2008)

Refining the operation space description with the driver behavior’s profile, past bugs and test cases
 R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

204

problem35 (an NP-Complete problem) which consists to explore the operation space only if it
might increase the total coverage. In fact, a test case is a set of ((TS1,Cov1), (TS2, Cov2),
(TS3, Cov3), … (TSn, Covn)), where TSi is a test step and Covi is the coverage contribution
performed by TSi. Ideally, this set should be reduced so that the total coverage ΣCovi is not
changed, and the length of the test case, e.g. Σ|TSi| is minimized. However and as it was
shown above, designing a subset of test steps with this property is an NP-Complete problem
(the Reachability problem).

A present, all known algorithms for NP-Complete problems require time that is
superpolynomial (for instance, exponential) in the inputs size, and it is unknown whether
there are any faster algorithms. The following techniques can be applied to solve
computational problems in general and they often give rise to substantially faster algorithms:

• Randomization: Use randomness to get a faster average running time, and allow the
algorithm to fail with some small probability.

• Heuristic: An algorithm that works "reasonably well" on many cases, but for which
there is no proof that it is both always fast and always produces a good result. In
Chapter 7 – Section 6, we develop the heuristic algorithm that we use in order to
explore the operation space of a software product and monitor the generation of test
cases.

In the next sections of this chapter, we develop how to reduce the operation space of a
software product by highlighting and eliminating some operations or succession of
operations. Our purpose is to explore the operation space of a software product efficiently.

III. Reduce the operation space

As said in the previous section, selecting operations from the whole operation space in order
to reach a coverage objective is a NP-Complete problem. For that reason, it can be useful to
reduce the operation space by:

A. Focusing on recurrent operations done by the end-user of the product

We analyzed in 2006 a set of software bugs (the number of these bugs is confidential)
detected on different types of products by carmakers and end-users (drivers) and not detected
by Johnson Controls. The conclusion which was validated by Johnson Controls software
experts is that some of these bugs (more than 50%) can only be detected via successions of
operations regularly done by the end-user of the product. Therefore, we propose to generate
test cases that simulate the behavior of the end-user of the product. To do so, test cases must
be generated from “operation matrices” where illogic (from end-users’ viewpoint)
successions of operations are eliminated (for instance, set the vehicle speed at 100 km/h then
open the trunk) and regular successions of operations are favored (for instance, close the
driver door and set the ignition). Our process to define a driver behavior’s profile is
developed in Section 4.

B. Focusing on specifics operations with high probability to detect bugs

We performed in 2007 a study on 70 software bugs detected on the same functionality
developed in Johnson Controls for 5 different projects respectively in 1997 (27 bugs), 2001 (4

35 Reachability problem, http://en.wikipedia.org/wiki/Reachability (Consulted on November 2008)

Refining the operation space description with the driver behavior’s profile, past bugs and test cases
 R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

205

bugs), 2003 (4 bugs), 2003 (13 bugs) and 2007 (22 bugs) (Cf. Chapter 2 – Section 7.C). The
studied functionality has 7 features, so we classified these bugs by project and by feature (Cf.
Figure 2.22). We also classified these bugs by project and by type of problem (Cf. Figure
2.23). In fact, we only consider 4 types of problem (Beizer 1990, Chillarege 1992, Grady
1992, IEEE Std. 1044-1993): code implementation, control flow, data and processing. A full
typology of software bugs is described in Section 5.B. The conclusions which were validated
by Johnson Controls software experts are 1) engineers have the tendency to make errors in
implementing the same features of a functionality (Feature 1, 3 and 7) and 2) these errors are
related to the same types of problem (Control flow and processing). As a consequence and
when testing a functionality, we propose to reuse related stored bugs in order to generate test
cases which verify the nonexistence of recurrent bugs. To do so, test cases must be generated
from “operation matrices” where the successions of operations that reveal the recurrent bugs
are favored. Moreover, classifying the recurrent bugs of a functionality (by feature and/or by
type of problem) could help the test engineers to better focus the generation of test cases on
critical features or on specific types of problem. More details on reusing stored bugs are
provided in Section 5.

C. Focusing on specifics operations recurrently done by the test engineers
on previous projects

Using capitalized test cases seems to be beneficial in automotive context since more than 50%
of functionalities performed by software products are common to any series of cars (Johnson
Controls source). Moreover, test cases management and reuse are considered as one of the
main characteristics of a mature software organization. Therefore, when testing a functionality
that we already implemented in the past on another project, it is judicious to reuse existing test
cases. To do so, we propose to analyze test cases developed in the past for the same
functionality and design “operation matrices” where the operation space is reduced by
focusing on the test scenarios based on our returns of experience. Test cases generated from
these “operation matrices” contain similar successions of operations as in the one designed
manually or generated automatically in the past. More details on reusing capitalized test cases
are provided in Section 6.

IV. Four types of constraints for the definition of a driver behavior’s
profile

We define four types of constraints that test engineers can affect to each input signal of a
requirements model in order to, when generating test cases automatically, eliminate or favor
specific successive operations. Each input signal can have one or more constraints. These
constraints aim to reduce the number of possible combinations on input signals and to more
thoroughly pinpoint which ones are frequently set once the product is launched on the market.
These four constraints are: logical constraint, conditional constraint, succession constraint
and timing constraint.

A. Logical constraint

This constraint forbids that an input signal switches between inadequate values from a use
point of view. In order to illustrate this constraint, let us consider the input signal I1, which
has a domain D(I1)={0,1,2,3}. We classify input signals into two types:

Acyclic (Cf. Figure 8.1): Input signal I1 is acyclic if, at any moment, all the operations (I1=0
or I1=1 or I1=2 or I1=3) on the signal are possible. A practical example of an acyclic signal

Refining the operation space description with the driver behavior’s profile, past bugs and test cases
 R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

206

is the rain intensity signal measured via a sensor. When it is raining so hard (I1=3), it can
stop raining (I1=0) at any moment without a decrease of the raining intensity (I1=3 → I1=2
→ I1=1 → I1=0).

Figure 8.1 – Acyclic signal

Cyclic (Cf. Figure 8.2): Input signal I1 is cyclic if the future operation (I1=0 or I1=1 or I1=2
or I1=3) on the signal depends on the one did in the past. A practical example of a cycle
signal is the wipers’ switch signal. When wiping at a high speed (I1=3), user cannot
immediately switch off the wipers (I1=0) via the switcher. In fact, she/he must progressively
slow down the wiper speed until the complete stop (I1=3 → I1=2 → I1=1 → I1=0).

Figure 8.2 – Cyclic signal

B. Conditional constraint

This constraint characterizes a specific user behavior between two or more correlated input
signals. In other words, when one or more inputs fulfill specific conditions, the domain of
other inputs is adapted (shrinked) automatically. For instance (Cf. Figure 8.3), the vehicle
speed cannot be more than 0 (I1>0), only if the vehicle is running (I2=1) and the vehicle can
be running (I2=1) only if the car engine is switched on (I3=1).

Figure 8.3 – Conditional constraint

C. Succession constraint

In practical use of an electronic product, two or more operations have a high probability to
succeed (sometimes, must intuitively succeed). Through this type of constraint, we favor such
successive operations. For example (Cf. Figure 8.4), when drivers close the driver door
(I1=1), they often (with a probability of 0,75) switch on the car engine (I3=1).

I1 0 1 2 3
0 1 1 1 1
1 1 1 1 1
2 1 1 1 1
3 1 1 1 1

I1 0 1 2 3
0 1 1 0 0
1 1 1 1 0
2 0 1 1 1
3 0 0 1 1

I1 cannot be more than 0 Only if I2 is equal to 1
I1 I2
>0 =1

I2 cannot be equal to 1 Only if I3 is equal to 1
I2 I3
=1 =1

Refining the operation space description with the driver behavior’s profile, past bugs and test cases
 R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

207

Figure 8.4 – Succession constraint

D. Timing constraint

Major Johnson Controls software experts approve that time interval between operations plays
a major role in bugs’ detection. On the one hand, two specific operations can be performed
with a specific time interval (Cf. Figure 8.5). For instance, in case of a taxi driver, the driver
door is closed (I1=1) and the car engine is switched on (I3=1) within a small time interval
([50ms36, 100ms] according to experts).

Figure 8.5 – A specific time interval between two operations

On the other hand, a specific operation can be performed during a specific time (Cf. Figure
8.6). For instance, the ignition is switched off (I3=0) for more than 5 seconds (according to
experts) in order to reset a functionality.

Figure 8.6 – An operation set during a specific time

V. Reuse of bugs detected on previous projects

Each bug stored in the bug’s database has a set of 111 attributes “theoretically” filled by the
engineer while resolving the bug. In Chapter 2 – Section 7.B, we estimate that 75% of these

36 ms: millisecond

0 1 1 2 3 0 1
0 … … … … … … …
1 0,04 0,04 0,04 0,04 0,04 0,04 0,75
1 … … … … … … …
2 … … … … … … …
3 … … … … … … …
0 … … … … … … …
1 … … … … … … …

Probability only

I1 I2 I3

I1

I2

I3

0 1 1 2 3 0 1
0 … … … … … … …
1 … … … … … … [50,100]
1 … … … … … … …
2 … … … … … … …
3 … … … … … … …
0 … … … … … … …
1 … … … … … … …

Inter-operation time interval only

I1 I2 I3

I1

I2

I3

0 1 1 2 3 0 1
0 … … … … … … …
1 … … … … … … …
1 … … … … … … …
2 … … … … … … …
3 … … … … … … …
0 [5000,5000] [5000,5000] [5000,5000] [5000,5000] [5000,5000] [5000,5000] [5000,5000]
1 … … … … … … …

Inter-operation time interval only

I1 I2 I3

I1

I2

I3

Refining the operation space description with the driver behavior’s profile, past bugs and test cases
 R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

208

attributes are filled; the remaining 25% are systematically unfilled. On the 75% filled
attributes, 25% of these attributes are free fields. Moreover, we deduce that the problems’
database in Johnson Controls is mainly used to manage the bugs and keep their traceability.
Unfortunately, none of the 111 attributes is useful to identify critical succession of operations
or recurrent types of problem for a specific functionality. In this section, we propose two
strategies in order to reuse bugs detected on previous projects. The first strategy consists of
defining a specific format to capitalize the initial conditions and the successive operations
which lead to detect a bug. The second strategy aims to define a detailed typology of software
problems.

A. A specific format to capitalize the successive operations leading to a bug

Now at Johnson Controls, engineers describe how the bug was detected by filling a free field
in the problems’ database named “Problem description” (Cf. Figure 2.19). Indeed, apart the
requirement of using the English language, no other requirements or recommendations for
filling this field are given to database users. In fact, each engineer has to describe the way the
bug was detected by giving as much detail as possible. In Figure 8.7, we propose a new
specific format to describe the successive operations leading to a bug.

Figure 8.7 – A predefined format to fill in the “Problem description” attribute of a bug

Let us consider a practical example of a functionality with 3 input signals (I1, Domain = {0,
1}; I2, Domain = {1, 2, 3}; I3, Domain = {0, 1}) and two output signals (O1, Domain = {0,
1}; O2, Domain = {0, 1}). When testing this functionality on a project in 2005, a test engineer

Initial values on input signals
The initial state of the functionality under test. Here, practitioner
must list all the initial values on the functionality input signals

First operation
The first operation. Here, practitioner must put nothing or an input
signal set to a specific value

Inter-operation time (ms)
The waiting time before performing the second operation. Here,
practitioner must put a time in millisecond

Expected values on output signals
The expected values on the functionality output signals. Here,
practitioner must list all the expected values on the functionality
output signals

Observed values on output signals
The observed values on the functionality output signals. Here,
practitioner must list all the observed values on the functionality
output signals

Second operation
Inter-operation time (ms)
Expected values on output signals
Observed values on output signals

ith operation
Inter-operation time (ms)
Expected values on output signals
Observed values on output signals

nth operation
Inter-operation time (ms)
Expected values on output signals
Observed values on output signals

Step n

Problem description

Step 1

Step 2

Step i

Refining the operation space description with the driver behavior’s profile, past bugs and test cases
 R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

209

has detected a bug and added this bug to the bug’s database. In Figure 8.8, we illustrate how
the “Problem description” attribute of this bug was filled in. In Step 6, the observed values on
output signals are different from the expected values (this is the symptom of the bug). For
each bug in the database, the functionality where the bug was detected is specified. Therefore,
when testing the same functionality on a project in 2007 (2 years after), a test engineer could
select from the problems’ database all the bugs detected on this functionality on previous
projects. Based on the predefined format of the “Problem description” attribute, each bug can
be translated automatically into an “operation matrix” (Cf. Figure 8.8). A glossary of the
input signals names on the previous and current projects is necessary. In fact, from one
project to another, the name of an input signal can change even if the use of the signal stills
the same. The test cases generated from this “operation matrix” (Cf. Figure 8.8) allow to
check if the bug that we detected in the past is present or not in our new development of the
functionality.

Refining the operation space description with the driver behavior’s profile, past bugs and test cases R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

210

Figure 8.8 – Process of reusing bugs capitalized in the problems’ database

Initial values on input signals
I1=1
I2=1
I3=0

1st operation I1=0
Inter-operation time (ms) 50
Expected values on outputs O1=0; O2=0
Observed values on outputs O1=0; O2=0

2nd operation I1=1
Inter-operation time (ms) 200
Expected values on outputs O1=0; O2=0
Observed values on outputs O1=0; O2=0

3rd operation I2=2
Inter-operation time (ms) 100
Expected values on outputs O1=1; O2=0
Observed values on outputs O1=1; O2=0

4th operation I3=1
Inter-operation time (ms) 800
Expected values on outputs O1=1; O2=1
Observed values on outputs O1=1; O2=1

5th operation I1=0
Inter-operation time (ms) 200
Expected values on outputs O1=0; O2=1
Observed values on outputs O1=0; O2=1

6th operation I1=1
Inter-operation time (ms) 300
Expected values on outputs O1=1; O2=1
Observed values on outputs O1=1; O2=1

7th operation I3=0
Inter-operation time (ms) 150
Expected values on outputs O1=1; O2=0
Observed values on outputs O1=1; O2=1

Step 7

Step 5

Step 1

Problem description

Step 2

Step 3

Step 4

Step 6

Automatic
generation of an
“operation matrix”

0 1 1 2 3 0 1

0 0
1

[50,200]
0 0 0 0 0

1 0 0 0
 0,5

[200,200]
0

0,5
[300,300]

0

1 0 0 0 0 0 0 0

2 0 0 0 0 0 0
1

[100,100]

3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1
1

[800,800]
0 0 0 0 0 0

I2

I3

I1 I2 I3

I1

I3=0 has
succeeded one

time to I1=1 (50%)

I1=1 has succeeded to
I1=0 with two different
inter-operation times
(50ms and 200ms)

Automatic
generation of
“Test Cases”

I2=2 has
succeeded one

time to I1=1 (50%)

The generated
“Test Cases”

A capitalized bug The generated
“Operation matrix”

Test Step
No

Test Actions Expected Results

1
I1 = 0
Wait 200 ms

To be filled by simulating
the requirements model

2
I1 = 1

Wait 200 ms
To be filled by simulating
the requirements model

3
I2 = 2

Wait 100 ms

To be filled by simulating
the requirements model

4
I3 = 1

Wait 800 ms
To be filled by simulating
the requirements model

5
I1 = 0
Wait 150 ms

To be filled by simulating
the requirements model

6
I1 = 1
Wait 300 ms

To be filled by simulating
the requirements model

7
I3 = 0

Wait 800 ms
To be filled by simulating
the requirements model

… … …

Test Step
No

Test Actions Expected Results

1
I1 = 0
Wait 100 ms

To be filled by simulating
the requirements model

2
I1 = 1
Wait 300 ms

To be filled by simulating
the requirements model

3
I3 = 0

Wait 800 ms

To be filled by simulating
the requirements model

4
I1 = 0
Wait 50 ms

To be filled by simulating
the requirements model

5
I1 = 1
Wait 200 ms

To be filled by simulating
the requirements model

6
I2 = 2
Wait 100 ms

To be filled by simulating
the requirements model

7
I3 = 1

Wait 800 ms
To be filled by simulating
the requirements model

… … …

Test Case 1

Test Case n

Refining the operation space description with the driver behavior’s profile, past bugs and test cases
 R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
211

In conclusion, for each functionality, test engineers can generate a set of test cases from the
bugs detected on the same functionality on previous projects. Once executing these test cases
on the new software of the functionality, test engineers can, at least, guarantee that the new
development is free of the bugs already made in the past.

B. A new typology of software problems

A second way to reuse bugs stored in the problems’ database is to analyze these bugs and
identify the recurrent type of problems when implementing a software product. The “Problem
type” captures the nature of the fix. It addresses the question: “What did the engineer correct
in order to resolve the bug?” With this definition of “Problem type”, the classification is
easier for the engineer, since she/he can almost decide objectively which attribute value to
assign. Presently, Johnson Controls doesn’t have a typology of software problems (Cf.
Chapter 2 – Section 7.B).

In 2007, we participated to a work group on the definition of a new bug classification model
within Johnson Controls. The aim of this new model is to be able to identify process
improvement actions for the development and Verification and Validation (V&V) processes.
In other words, the new bug classification model must answer the question of “which types of
bugs are injected and detected in which process phase?” The classification model currently
used in Johnson Controls (Cf. Chapter 2 – Section 7.B) does not allow to answer this question
since there is no typology of software problems. The new bug classification model that we
propose is summarized in Figure 8.9. It is mainly inspired by the literature on the subject (Cf.
Chapter 4 – Section 4.C.2). The new model is based on three attributes:

• Detection phase: the phase of the process where the bug was detected.
• Injection phase: the phase of the process where the bug was injected.
• Problem/Correction type: this attribute answers the question of “what did you fix in

order to correct the bug?”

For each of these attributes, a set of predefined values was defined in accordance with the
Johnson Controls software process (Cf. Chapter 2):

• Detection phase: Specification review, Design review, Code review, Component test,
Integration test, Manufacturing test, Validation test, System test, Test review,
Customer test.

• Injection phase: System Specification, Specification, System Design, Design,
Implementation, Integration, Manufacturing, Testing phases (Component test,
Integration test, Validation test, System test, Manufacturing test, Customer test).

• Problem/Correction type: A two-level typology of software problems is defined. The
values of the first-level typology are: Specification update, Design update,
Implementation update, Integration update, Manufacturing update, Test case update,
Update none. The second-level typology is detailed in Appendix E.

Refining the operation space description with the driver behavior’s profile, past bugs and test cases
 R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
212

Figure 8.9 – Our new bug classification model

On the one hand, as in HP classification model (Chillarege 1992); the attributes Injection
phase and Problem/Correction type are linked. Indeed, the choice of a value for the attribute
Injection phase defines the possible values for the attribute Problem/Correction type. In
practice, when an engineer is editing a bug in the problems’ database, once she/he defines the
Injection phase of the bug, the list of proposed Problem/Correction type must be adapted
dynamically to the chosen Injection phase. For example, if the bug was injected in the
Specification phase, the list of Problem/Correction type must be (Cf. Appendix E):
requirements incorrect, requirements logic, requirements completeness … If the bug was
injected in the Implementation phase, the list of Problem/Correction type must be (Cf.
Appendix E): data definition, structure, declaration, data access and handling, control flow and
sequencing …

On the other hand, at the end of each design phase, one or more V&V phases have the
responsibility to detect all the type of problems injected in this phase (Cf. Table 8.1). The
validation and system test are the last V&V phases before the software product delivery to the
carmaker. These phases have to check the compliance of the developed software with the
carmaker requirements. They have the responsibility to detect all the type of problems
injected during the design and development phases and not detected by the corresponding
V&V technique.

Table 8.1 – Theoretical bugs’ injection and detection phases

However, some V&V activities (Detection phases) are not enough reliable to detect all related
types of problems. The new bug classification model enables to pinpoint such lacks in the
software process. In fact, managers can identify the density and type of software problems

Detection
phase

System
Spec.

Specificat
ion

System
Design

Impleme
ntation

Design Integration Testing
phases

Specificati
on review

Design
review

Code
review

Component
test

Integration
test

Test
review

Manufact
uring test

Manufac
turing

Problem
type

1st level

Specificati
on update

Design
update

Implementa
tion update

Integration
update

Manufactur
ing update

Test Case
update

Update
none

Injection
phase

Problem
type

2nd level

Customer
test

Cf. Appendix F

Validati
on test

System
test

Bugs injected in Must be detected in
System specification

Specification
System design

Design

Implementation
Code review

Component test
Validation and System test

Integration
Integration test

Validation and System test

Manufacturing
Manufacturing test

Validation and System test
Testing phases Test review

Specification review
Validation and System test

Design review
Validation and System test

Refining the operation space description with the driver behavior’s profile, past bugs and test cases
 R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
213

injected in and detected by each phases of the software development life cycle. Therefore,
improvement actions on the design phases (develop new design or development rules …) and
on the V&V phases (develop new code review rules, a new testing strategy…) can be
performed. The first-level typology of software problems is not enough detailed and the
improvement actions that can be raised from will not be enough efficient. For instance, after
analyzing a set of bugs related to Specification Update problems, one engineer can note that
the total number of these bugs is injected in Specification System and Specification phases and
few of them are detected in Specification Review phase. As a conclusion, the Specification
Review process has to be improved. However, it is a vague action. Engineers need to know
what they have to improve in the review process. Are the requirements unclear? Incorrect? Do
the requirements change often? … We work in collaboration with software experts in order to
define the second-level software problem typology. Based on the literature review (Beizer
1990, Chillarege 1992, Grady 1992, IEEE Std. 1044-1993) and taking into account the
automotive and industrial context, we propose in Appendix E a detailed typology of problems.

Through our research project, a new approach to generate test cases automatically for a
functionality is proposed. The generated test cases have the responsibility to detect all the
bugs injected during the Implementation phase of the source code. Analyzing the bugs
injected during the Implementation phase of the same functionality on previous projects
allows test engineers to better parameterize the generation of test cases. Instructions to
generate test cases able to detect one specific type of software implementation problems (Cf.
Appendix E) are listed in Table 8.2.

Table 8.2 – Instructions to generate test cases able to detect one specific type of software

implementation problems

Types of software
implementation problems

(Cf. Appendix E)

Can this type of
problem be detected by

test cases?

Instructions when generating test
cases in order to detect this type of

problem

Data definition, structure,
declaration

YES

Cover at 100% the input signals domain,
output signals domain, intermediate signals
domain
Cover at 100% the inputs boundaries
domain, outputs boundaries domain,
intermediates boundaries domain

Data access and handling YES
Cover at 100% the input signals domain,
output signals domain, intermediate signals
domain

Control flow and sequencing YES

Cover at 100% the code conditions and
decisions
Cover at 100% the FSM transitions and
conditions

Processing YES

Cover at 100% the input signals domain,
output signals domain, intermediate signals
domain
Cover at 100% the code procedures
Cover at 100% the DT conditions
Cover at 100% the FSM states

Coding and typographical YES Cover at 100% the code statements

Standards violation
NO, code review or other

V&V techniques

Documentation
NO, code review or other

V&V techniques

Refining the operation space description with the driver behavior’s profile, past bugs and test cases
 R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
214

VI. Reuse of existing test cases from previous projects

Test cases on previous projects are versioned by software functionality and stored in a
database. But unfortunately, these test cases are not always reused from one project to
another. Two main reasons are identified (Cf. Chapter 2 – Section 8): 1) the use of different
formats when designing manually test cases. Sometimes, test engineers write the test cases
immediately in a computer language (C language, test script) understandable by the test
execution platform. Others use the test case format presented in Definition 2.11. 2) the lack of
an automated process to reuse these test cases. However, one initiative was launched two
years ago and had the purpose to create manually “Standard Test Cases” for software
validation (Cf. Chapter 2 – Section 8). This is a conventional RETEX (RETurn of EXperience)
strategy and the main difficulty of such an approach is to keep these test cases updated. Two
years after, it is not the case.

Through our research project, we adopt the test case format presented in Definition 2.11 as the
standard format to represent a test case. Our proposal to reuse existing test cases on previous
projects is based on this assumption. When testing a functionality, test engineers could select
from previous projects all the test cases related to the functionality under test. A glossary of
the input signals names on the previous and current projects is necessary. Then, for each test
case (independently from the length of the test case), an “operation matrix” is generated
automatically. This “operation matrix” has high probability on the successive operations
regularly done in the test case. It also contains the set of inter-operation time used between
each couple of operations. Consequently, when generating test cases from these “operation
matrices”, we reduce the operation space by focusing on the test scenarios based on our
returns of experience.

Let us consider a practical example of a functionality with 3 input signals (I1, Domain = {0,
1}; I2, Domain = {1, 2, 3}; I3, Domain = {0, 1}) and 2 output signals (O1, Domain = {0, 1};
O2, Domain = {0, 1}). This functionality was already developed on a previous project in 2005
and one test case has been designed. Therefore, when testing the same functionality on a
project in 2007 (2 years after), a test engineer selects from the database the test case already
designed in the past (2005) for this functionality. Each test case can be translated
automatically into an “operation matrix” (Cf. Figure 8.10). The test cases generated from this
“operation matrix” (Cf. Figure 8.10) focus on specific test scenarios that test engineers have
judged critical to perform in the past.

Refining the operation space description with the driver behavior’s profile, past bugs and test cases R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
215

Figure 8.10 – Process of reusing test cases capitalized on previous projects

Test Step
No

Test Actions Expected Results

1
I1 = 0

Wait 100 ms
To be filled by simulating
the requirements model

2
I3 = 0

Wait 200 ms
To be filled by simulating
the requirements model

3
I1 = 0
Wait 350 ms

To be filled by simulating
the requirements model

4
I2 = 2
Wait 200 ms

To be filled by simulating
the requirements model

5
I3 = 1

Wait 400 ms
To be filled by simulating
the requirements model

6
I2 = 3

Wait 400 ms
To be filled by simulating
the requirements model

7
I1 = 1
Wait 100 ms

To be filled by simulating
the requirements model

… … …

Test Case

Test
Step No

Test Actions Expected Results

1
I1 = 1
Wait 250 ms

O1 = 0
O2 = 1

2
I2 = 2
Wait 200 ms

O1 = 0
O2 = 1

3
I3 = 1
Wait 300 ms

O1 = 1
O2 = 1

4
I2 = 1
Wait 250 ms

O1 = 0
O2 = 1

5
I2 = 3
Wait 900 ms

O1 = 0
O2 = 0

6
I1 = 0
Wait 200 ms

O1 = 0
O2 = 1

7
I3 = 1
Wait 400 ms

O1 = 0
O2 = 1

8
I2 = 3
Wait 200 ms

O1 = 1
O2 = 1

9
I1 = 1
Wait 100 ms

O1 = 0
O2 = 1

10
I2 = 1
Wait 150 ms

O1 = 0
O2 = 0

11
I2 = 3
Wait 500 ms

O1 = 0
O2 = 1

12
I1 = 1
Wait 100 ms

O1 = 1
O2 = 1

13
I3 = 1
Wait 350 ms

O1 = 0
O2 = 1

14
I2 = 2
Wait 700 ms

O1 = 0
O2 = 0

15
I1 = 0
Wait 100 ms

O1 = 0
O2 = 1

16
I3 = 0
Wait 200 ms

O1 = 0
O2 = 0

17
I1 = 0
Wait 200 ms

O1 = 0
O2 = 1

0 1 1 2 3 0 1

0 0 0 0 0 0
0,5

[100,100]
0,5

[200,200]

1 0 0
0,33

[100,100]
0,33

[250,250]
0 0

0,33
[100,100]

1 0 0 0 0
1

[150,250]
0 0

2
0,5

[700,700]
0 0 0 0 0

0,5
[200,200]

3
0,33

[900,900]
0,66

[200,500]
0 0 0 0 0

0
1

[200,200]
0 0 0 0 0 0

1 0 0
0,33

[300,300]
0,33

[350,350]
0,33

[400,400]
0 0

I2

I3

I1 I2 I3

I1

Automatic
generation of an
“operation matrix”

I3=3 has
succeeded one

time to I1=1 (33%)

I1=1 has succeeded to
I2=2 with two different
inter-operation times
(200ms and 500ms)

Automatic
generation of
“Test Cases”

I2=2 has
succeeded one

time to I1=1 (33%)

The generated
“Test Cases”

A Capitalized test case The generated
“Operation matrix”

Test Case 1

Test Case n

I2=1 has
succeeded one

time to I1=1 (33%)

Test Step
No

Test Actions Expected Results

1
I1 = 0

Wait 200 ms
To be filled by simulating
the requirements model

2
I3 = 1

Wait 300 ms
To be filled by simulating
the requirements model

3
I2 = 1

Wait 200 ms

To be filled by simulating
the requirements model

4
I3 = 1

Wait 400 ms
To be filled by simulating
the requirements model

5
I2 = 3
Wait 900 ms

To be filled by simulating
the requirements model

6
I1 = 0
Wait 400 ms

To be filled by simulating
the requirements model

7
I3 = 0
Wait 100 ms

To be filled by simulating
the requirements model

… … …

Refining the operation space description with the driver behavior’s profile, past bugs and test cases
 R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
216

VII. Conclusion

Only exhaustive testing can show that a software product is free from bugs. However,
exhaustive testing of a software product is not practical because variable input values and
variable sequencing of inputs result in too many possible combinations to test. So it would be
useful to concentrate the test on the areas associated with the greatest risks and priorities.
However, we have to identify and analyze these risks and priorities.

In this chapter, we developed three strategies able to reduce the operation space of a software
product. Our main purpose was to focus on test scenarios with a high probability to detect
software bugs. Firstly, we specified four types of constraints that test engineers can set on the
input signals of the functionality under test in order to favor or avoid specific successions of
operations. Secondly, we developed a new “Problem description” format to capitalize the
initial conditions and the successive operations that lead to a bug. Based on this new format,
tester engineers can generate automatically one or more test cases from each capitalized bug.
We also developed a detailed software problem typology that helps test engineers to identify
recurrent types of problems and better address the generation of test cases. Finally, we set up
an automatic process to reuse test cases from one project to another.

In the latest four chapters (Chapter 5, 6, 7 and 8), we specified our approach to improve the
global performance of the Johnson Controls V&V activities. In the following two chapters
(Chapter 9 and 10), we respectively implement our approach in a computer platform
(prototype) and validate it through two industrial case studies.

Quality of the design of test cases for automotive software: design platform and testing process
217

PART IV – IMPLEMENTATION,
VALIDATION AND IMPACTS OF
THE PROPOSED APPROACH

Prototype implementation R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
219

CHAPTER 9. PROTOTYPE IMPLEMENTATION

Prototype implementation R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
221

I. Introduction

After specifying our new approach to generate efficient test cases automatically (Cf. Chapter
5, 6, 7 and 8), we focus in this chapter on the practical use of this approach within an
industrial context. We develop a prototype implementing our models, concepts and theories.
A “ functional” view of our approach is illustrated in Section 2. A “process-role-tool” view of
our approach is proposed in Section 3. The processes are mainly defined in Chapter 5, 6, 7
and 8. Some specific skills which are mandatory when using our approach are detailed. We
also describe the three computer tools that we developed in order to automate the generation
of test cases. The main one is the Test Case Generation tool which is a PC application. The
main functionalities of this tool are developed in details in Section 4.

II. A “functional” view of our approach

In Chapter 2 – Section 6, we describe how Johnson Controls test engineers currently design
test cases for software products. They proceed to a manual design of test cases. The
performance of the design is mainly based on their experience. In Chapters 5, 6, 7 and 8, we
develop our new approach to design test cases automatically. A functional view of our
approach is presented in Figure 9.1. It is based on eight activities. These activities are:

1. Design a simulation model of the software functional requirements of the functionality
under test (Cf. Chapter 5).

2. Verify and validate the requirements model (Cf. Chapter 6).
3. Define some behavioral characteristics of a car driver when using the functionality

under test (Cf. Chapter 8).
4. Perform a statistical analysis on bugs detected in the past on the functionality under

test (Cf. Chapter 8).
5. Perform a statistical analysis on test cases developed (in the past) on the functionality

under test (Cf. Chapter 8).
6. Highlight the relevant, critical and mandatory operations and succession of operations

to be chosen from the operation space of the functionality under test (Cf. Chapter 8).
7. Automate the design of test cases from the requirements model (Cf. Chapter 7).
8. Monitor the design of test cases by quality objectives and time and cost constraints

(Cf. Chapter 7).

Prototype implementation R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
222

Figure 9.1 – A “functional” view of our approach

Capitalized
bugs

Capitalized test
cases

Model the
functional
software

requirements

Analyze statistically
related test cases

Drivers profile

Establish related
drivers profile

Client functionality

Test case patterns

Enhance the
software

requirements
model

…

OUPUTSINPUTS

…

OUPUTSINPUTS

…

OUPUTSINPUTS

…

OUPUTSINPUTS

OUTPUTS

INPUTS

…

…

OUPUTSINPUTS

…

…

OUPUTSINPUTS

OUTPUTS

INPUTS

Activity
N°1 Activity

N°n

Activity
N°i

…

Interesting test space

Automatic
test cases
generation

Decision Maker :
Stop generating tests

Test Cases

Time
&

Cost
constraints

Quality
Objectives

Test case
metrics

Decisions

Recurrent
problems typology

Verify and
Validate the

software
requirements

model

Correction
Potential test space

Software
functional

requirements

Analyze statistically
related bugs

Bug patterns

…

OUPUTSINPUTS

…

OUPUTSINPUTS

…

OUPUTSINPUTS

…

OUPUTSINPUTS

OUTPUTS

INPUTS

…

…

OUPUTSINPUTS

…

…

OUPUTSINPUTS

OUTPUTS

INPUTS

Activity
N°1 Activity

N°n

Activity
N°i

……

OUPUTSINPUTS

…

OUPUTSINPUTS

…

OUPUTSINPUTS

…

OUPUTSINPUTS

OUTPUTS

INPUTS

…

…

OUPUTSINPUTS

…

…

OUPUTSINPUTS

OUTPUTS

INPUTS

Activity
N°1 Activity

N°n

Activity
N°i

…

Test cases’
database

Bugs’
database

CH5 CH6

CH7

CH7

CH8

CH8

Prototype implementation R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
223

III. A “process-role-tool” view of our approach

Our approach presents a much different workflow for designing test cases than the present
one. The new workflow is presented in Figure 9.2. It is composed from seven processes
which are manual, semi-automatic or automatic and managed by different individuals
(experts, modelers and test engineers).

Prototype implementation R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
224

Figure 9.2 – A “process-role-tool” view of our approach

Software functional
requirements of the

functionality under test

Bug 1
Bug 2

…
Bug n

Test Case 1
Test Case 2

…
Test Case n

Test Cases

Bugs’ database

Test cases’
database

Objectives and
constraints

“Bugs”
operation
matrices

Parameters

Related to the
functionality under test

« Auto_Light »

I2=Luminosity_Sensor

I3=Car_Locked

I4=Ignition

I5=Light_Combi_Switch

Follow_Me_home_Calib

Follow_Me_home_Config

Config1=Auto_Light_Config

Int1=Luminosity_Level

Int2=Follow_Me_Home_Activate

O1=Head_Lamp

O2=Tail_Lamp

Feature 2
DT 2

Feature 3
FSM 1

Feature 1
DT 1

I1=Reset

Requirements
model

Bugs reuse process

Constraint 1
Constraint 2

…
Constraint n

Driver profile definition process

Test cases reuse process

Manual

Use of the functionality
under test

Modeling process

“Driver profile”
constraints

“Test Cases”
operation matrices

Model verification and
validation process

Model
problems

Test case generation
process

Problems analysis and model correction

Manual

Automatic

Test Cases
Generation

tool

Test Cases
Reuse tool

Bugs
Reuse tool

Modeler

One or more experts

One or more experts

One or more experts

Modeler

Test engineers

Simulation
results

Model simulation
process

Modeler

C
om

pu
te

riz
at

io
n

Legend

Automatic

Manual

Manual

Manual

Manual

Manual

Manual

AutomaticAutomatic

Automatic Automatic

Automatic

Automatic

Automatic

Test Case

Test
Step No

Test Actions Expected Results

1
I1 = 1
Wait 250 ms

O1 = 0
O2 = 1

2
I2 = 2

Wait 200 ms

O1 = 0

O2 = 1

3
I3 = 1
Wait 300 ms

O1 = 1
O2 = 1

4
I2 = 1

Wait 250 ms

O1 = 0

O2 = 1

5
I2 = 3
Wait 900 ms

O1 = 0
O2 = 0

6
I1 = 0
Wait 200 ms

O1 = 0
O2 = 1

Test Case

Test
Step No

Test Actions Expected Results

1
I1 = 1
Wait 250 ms

O1 = 0
O2 = 1

2
I2 = 2

Wait 200 ms

O1 = 0

O2 = 1

3
I3 = 1
Wait 300 ms

O1 = 1
O2 = 1

4
I2 = 1

Wait 250 ms

O1 = 0

O2 = 1

5
I2 = 3
Wait 900 ms

O1 = 0
O2 = 0

6
I1 = 0
Wait 200 ms

O1 = 0
O2 = 1

Test Case

Test
Step No

Test Actions Expected Results

1
I1 = 1
Wait 250 ms

O1 = 0
O2 = 1

2
I2 = 2

Wait 200 ms

O1 = 0

O2 = 1

3
I3 = 1
Wait 300 ms

O1 = 1
O2 = 1

4
I2 = 1

Wait 250 ms

O1 = 0

O2 = 1

5
I2 = 3
Wait 900 ms

O1 = 0
O2 = 0

6
I1 = 0
Wait 200 ms

O1 = 0
O2 = 1

Prototype implementation R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
225

A. Processes

Our approach is composed of seven processes:

1. Modeling process (manual): models the software functional requirements using our
formal specification language.

2. Driver profile definition process (manual): defines the driver behavior when using the
functionality under test.

3. Bugs reuse process (semi-automatic): establishes a framework in order to reuse the
bugs capitalized in the problems’ database and related to the functionality under test.

4. Test cases reuse process (semi-automatic): establishes a framework in order to reuse
the test cases developed on previous projects and related to the functionality under
test.

5. Model verification and validation process (automatic): verifies and validates the
requirements model consistency and compliance with the carmaker requirements.

6. Model simulation process (automatic): simulates the requirements model
7. Test Case generation process (automatic): monitors the generation of test cases by

quality objectives and time and cost constraints

These seven processes have been developed in details in Chapters 5, 6, 7 and 8.

B. Roles

“Roles” can be allocated to one or more people in a software project provided one has the
time and the required skills. Three types of roles have been identified:

• Modeler: the main tasks of a modeler are to analyze the software functional
requirements, design the requirements model, verify and validate the model and finally
simulate it. A modeler has to be familiar with the behavior of the car’s software
functionalities and a master of the formal specification language. She/he also needs
good communication skills. Indeed, she/he has to interact with the carmakers in order
to eliminate ambiguities and inconsistencies from the requirements. Finally, analysis
skills are necessary for the Verification and Validation (V&V) of the requirements
model.

• Expert: the main tasks of an expert or a group of experts are to define a driver profile
for the functionality under test, to identify related bugs and test cases capitalized on
previous projects and to extract from these bugs and test cases relevant lessons
learned. An expert has to be a master of automotive electronics. She/He needs to have
a global view of all the projects and software practices within the company.

• Test engineer: the main tasks of a test engineer are to parameterize the test generation
algorithm and to set the quality objectives and the time and cost constraints. The
generation of test cases is automatic. However, test engineer has to execute the
generated test cases on the software product under test and analyze the results. A test
engineer has to be familiar with the behavior of the car’s software functionalities and
the formal specification language. Knowledge about optimization is necessary to
better parameterize the optimization algorithm. In addition, she/he has to be a master
in requirements and code coverage in order to set relevant coverage objectives.
Finally, analysis skills are mandatory for the analysis of the test results and reports.

Prototype implementation R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
226

C. Tools

In this section, we develop the three computer tools supporting the semi-automatic and
automatic processes of our approach: Bugs Reuse tool, Test Cases Reuse tool and Test Case
Generation tool.

1. Bugs Reuse tool

In order to reuse the bugs capitalized in the problems’ database, experts have to identify the
relevant bugs related to the functionality under test. In Chapter 8 – Section 5.B, we define a
new format to fill in the “Problem description” attribute of a bug. Based on this format, we
develop an Excel Macro able to analyze the “Problem description” of a bug and to generate
the corresponding “operation matrix” (Cf. Figure 9.3). This matrix is used to generate test
cases able to detect a similar bug on future development. When analyzing a bug and
generating an “operation matrix”, the Excel Macro uses a glossary of input signals names on
the previous and current projects. The Macro has been developed in Visual Basic language.

Figure 9.3 – Bugs Reuse tool

A detailed description of the process of analyzing the bug and generating the “operation
matrix” is given in Chapter 8 – Section 5.A.

2. Test Cases Reuse tool

In order to reuse the test cases from one project (in the past) to another (in the present or
future), experts have to identify the test cases related to the functionality under test. In
Chapter 8 – Section 6, we adopt the test case format defined in Definition 2.11. Based on this
format, we develop an Excel Macro able to analyze a test case and generate the corresponding
“operation matrix” (Cf. Figure 9.4). In this matrix, the operation space is reduced by
focusing on the test scenarios based on the returns of experience. Test cases generated from
this “operation matrix” contain similar successions of operations as in the one designed
manually or generated automatically in the past. A glossary of the input signals names on the
previous and current projects is also necessary. The Macro has been developed in Visual
Basic language.

Initial values on input signals
I1=1
I2=1
I3=0

1st operation I1=0
Inter-operation time (ms) 50
Expected values on outputs O1=0; O2=0
Observed values on outputs O1=0; O2=0

2nd operation I1=1
Inter-operation time (ms) 200
Expected values on outputs O1=0; O2=0
Observed values on outputs O1=0; O2=0

3rd operation I2=2
Inter-operation time (ms) 100
Expected values on outputs O1=1; O2=0
Observed values on outputs O1=1; O2=0

4th operation I3=1
Inter-operation time (ms) 800
Expected values on outputs O1=1; O2=1
Observed values on outputs O1=1; O2=1

5th operation I1=0
Inter-operation time (ms) 200
Expected values on outputs O1=0; O2=1
Observed values on outputs O1=0; O2=1

6th operation I1=1
Inter-operation time (ms) 300
Expected values on outputs O1=1; O2=1
Observed values on outputs O1=1; O2=1

7th operation I3=0
Inter-operation time (ms) 150
Expected values on outputs O1=1; O2=0
Observed values on outputs O1=1; O2=1

Step 7

Step 5

Step 1

Problem description

Step 2

Step 3

Step 4

Step 6

Bug

0 1 1 2 3 0 1

0 0
1

[50,200]
0 0 0 0 0

1 0 0 0
 0,5

[200,200]
0

0,5
[300,300]

0

1 0 0 0 0 0 0 0

2 0 0 0 0 0 0
1

[100,100]

3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1
1

[800,800]
0 0 0 0 0 0

I2

I3

I1 I2 I3

I1

Operation matrix
Excel Macro 1

Prototype implementation R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
227

Figure 9.4 – Test Cases Reuse tool

A detailed definition of the process of analyzing the test case and generating the “operation
matrix” is given in Chapter 8 – Section 6.

3. Test Case Generation tool

Through our research project, we were asked by the automotive electronic supplier Johnson
Controls to automate the design of test cases for software products (Cf. Chapter 1 – Section
6). Therefore, we develop a computer tool, the Test Case Generation tool, able to computerize
our requirements models and therefore generate test cases automatically.

a. Computer implementation

We use the Visual C++ tool37 and the C++ language to develop the Test Case Generation
tool. First, we perform a global design of the tool using the UML38 language, then we generate
automatically the Visual C++ code-skeleton of the developed UML model and finally, we
develop the body of the code-skeleton.

We use the UML editor of Rational Rose (Rational Rose Modeler tool39) in order to perform a
global design of the Test Case Generation tool. A simplified class diagram with all the
classes of the tool is shown in Figure 9.5. Two groups of classes are identified. The first one
is related to the design of the requirements model. The second one deals with the generation
of test cases. The detailed diagram with the attributes and methods of all the classes and the
types of relations between classes is not presented here for confidential reasons.

37 http://msdn.microsoft.com/fr-fr/visualc/default.aspx (Consulter on November 2008)
38 http://www.uml.org/ (Consulter on November 2008)
39 http://www-01.ibm.com/software/awdtools/developer/datamodeler/ (Consulter on November 2008)

Test Case

0 1 1 2 3 0 1

0 0
1

[50,200]
0 0 0 0 0

1 0 0 0
 0,5

[200,200]
0

0,5
[300,300]

0

1 0 0 0 0 0 0 0

2 0 0 0 0 0 0
1

[100,100]

3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1
1

[800,800]
0 0 0 0 0 0

I2

I3

I1 I2 I3

I1

Operation matrix
Excel Macro 2

Test Case

Test
Step No

Test Actions Expected Results

1
I1 = 1
Wait 250 ms

O1 = 0
O2 = 1

2
I2 = 2
Wait 200 ms

O1 = 0
O2 = 1

3
I3 = 1
Wait 300 ms

O1 = 1
O2 = 1

4
I2 = 1
Wait 250 ms

O1 = 0
O2 = 1

5
I2 = 3
Wait 900 ms

O1 = 0
O2 = 0

6
I1 = 0
Wait 200 ms

O1 = 0
O2 = 1

7
I3 = 1
Wait 400 ms

O1 = 0
O2 = 1

8
I2 = 3
Wait 200 ms

O1 = 1
O2 = 1

9
I1 = 1
Wait 100 ms

O1 = 0
O2 = 1

10
I2 = 1
Wait 150 ms

O1 = 0
O2 = 0

11
I2 = 3
Wait 500 ms

O1 = 0
O2 = 1

12
I1 = 1
Wait 100 ms

O1 = 1
O2 = 1

13
I3 = 1
Wait 350 ms

O1 = 0
O2 = 1

14
I2 = 2
Wait 700 ms

O1 = 0
O2 = 0

15
I1 = 0
Wait 100 ms

O1 = 0
O2 = 1

16
I3 = 0
Wait 200 ms

O1 = 0
O2 = 0

17
I1 = 0
Wait 200 ms

O1 = 0
O2 = 1

Prototype implementation R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
228

Figure 9.5 – Simplified class diagram of the Test Case Generation tool

CFunctionality

// Attributes

// Methods

C Clock

// Attributes

// Methods

CFeature

// Attributes

// Methods

CFSMFeature

// Attributes

// Methods

CDTFeature

// Attributes

// MethodsCFuncVariable

// Attributes

// Methods

CVariable

// Attributes

// Methods

COpMatrix

// Attributes

// Methods

CTestCase

// Attributes

// Methods

CStopCriteria

// Attributes

// Methods

CTestStep

// Attributes

// Methods

CFSMState

// Attributes

// Methods

CFSMTransitio

// Attributes

// Methods

CCondition

// Attributes

// Methods

CAction

// Attributes

// Methods

CDTCondition

// Attributes

// Methods

Association
Composition association
Inheritance relationship

Legend

Test Generation classes Requirements model classes

Prototype implementation R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
229

We use the Rational Rose Professional C++ tool40 in order to generate the Visual C++ code-
skeleton from the developed class diagram. When generating code-skeleton, the tool
automatically creates the .h and .cpp files. It generates the classes and adds the attributes to
them. It also creates the methods with empty bodies. Afterwards, we must go in and add the
body of the methods. A screenshot of the code-skeleton generated by Rational Rose is
presented in Figure 9.6.

Figure 9.6 – A screenshot of the C++ code-skeleton generated by Rational Rose

Once the software architecture of the Test Case Generation tool is generated, we start
developing in C++ language the body of each method. We have developed about 12500
Lines Of Codes (excluding comments and blank lines). In fact, we have implemented, using a
computer language, all the models developed in Chapter 5, 6, 7 and 8.

b. List of main functionalities

The main functionalities of the Test Case Generation tool are:

• Computerize and verify a requirements model
• Generate Nominal “operation matrices” automatically
• Import “operation matrices”
• Set constraints on the input signals of a requirements model and generate

automatically the corresponding “operation matrix”
• Simulate a requirements model

40 http://www-01.ibm.com/software/awdtools/developer/rose/visualstudio/support/ (Consulted on November
2009)

List of .h and .cpp files
Each file correspond to a class in the class diagram

CStopCriteria.cpp CStopCriteria.h

Methods to be completed

List of methods

List of attributes

Prototype implementation R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
230

• Generate test cases automatically

Each of these functionalities is developed in the next section.

IV. Main functionalities of the Test Case Generation tool

In this section, the main functionalities of the Test Case Generation tool are detailed.

A. Computerize and verify a requirements model

After sketching “on paper” the requirements model (Cf. Chapter 5 – Section 5), one can
computerize this model using the Test Case Generation tool. One can also verify the
correctness of the computerized model by checking automatically the set of integrity rules
presented in Table 6.1. A screenshot of the tool after computerizing the requirements model
of the Chapter 5 – Section 5 example is illustrated in Figure 9.7.

Prototype implementation R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
231

Figure 9.7 – A screenshot of the tool after computerizing the requirements model of the Chapter 5 – Section 5 example

Test Case generation tool

Prototype implementation R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
232

B. Generate Nominal “operation matrices” automatically

After computerizing the requirements model, one can generate automatically the two Nominal
“operation matrices” (Nominal 1 and Nominal 2, Cf. Chapter 7 – Section 2). One can also
customize these matrices by modifying some succession probabilities or inter-operation time
interval (Cf. Chapter 7 – Section 2).

A screenshot of the tool after generating the Nominal “operation matrices” of the Chapter 5 –
Section 5 example is illustrated in Figure 9.8.

Prototype implementation R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
233

Figure 9.8 – A screenshot of the tool after generating the Nominal “operation matrices” of the Ch. 5 – Section 5 example

Test Case generation tool

Nominal 1

Nominal 2

Prototype implementation R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
234

C. Import “operation matrices”

One can import “operation matrices”. These matrices can be the results of the bugs and test
cases reuse processes. They can also be designed manually by an inner engineer. A
screenshot of the tool after importing “operation matrices” is illustrated in Figure 9.9.

Figure 9.9 – A screenshot of the tool after importing “operation matrices”

D. Set constraints on the input signals of a requirements model and generate
automatically the corresponding “operation matrix”

We develop a computer language that experts can use in order to specify their constraints on
the input signals. Four types of constraints have been proposed in Chapter 8 – Section 4
(Logical, Conditional, Succession and Timing constraints). The Test Case Generation tool
analyzes these constraints and generates automatically the corresponding Driver Profile
“operation matrix”. The generation of test cases from this “operation matrix” fulfills the
predefined constraints on input signals. An excerpt on how experts can set constraints on the
input signals of a requirements model is shown in Figure 9.10.

Test Case generation tool

3 operation matrices generated automatically
from the bugs reuse process

2 operation matrices generated automatically
from the test cases reuse process

1 operation matrix designed manually by an
inner engineer

Prototype implementation R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
235

Figure 9.10 – An excerpt on how experts can set constraints on the input signals of a

requirements model

E. Simulate a requirements model

Once the requirements model is computerized, one can simulate it. Modeler has to define a
simulation period (the cycle time of the Clock signal, Cf. Chapter 5 – Section 3). Modeler has
also to specify the path where the simulation plan is stored. In fact, a simulation plan consists
of a finite number of steps. In each step, at most one operation on the input signals is
performed and an inter-operation time is defined. The result of a simulation is the behavior of

Design of constraints

Constraints description
Constraints definition using the computer language t hat

we developed

The “Ignition” signal is Cyclic // Constraint definition
Constraint1(Cyclic);
// Set the constraint to an input signal
Ignition(Constraint1);

The “Ignition” signal can be
different from 2 only if
"Light_Combi_Switch" is equal to 0

// Constraint definition
Constraint2(NEQUAL, 2, "Light_Combi_Switch", EQUAL, 0);
// Set the constraint to an input signal
Ignition(Constraint2);

Once "Car_Locked" is set to 0, the
“Light_Combi_Switch” signal is set
to 1 with a probability of 0.5

// Constraint definition
Constraint3(1, "Car_Locked", 0, 50);
// Set the constraint to an input signal
Light_Combi_Switch(Constraint3);

Once "Car_Locked" is set to 0, the
“Light_Combi_Switch” signal is set
to 0 with a time interval of
[13000;13000]

// Constraint definition
Constraint4(0, "Car_Locked", 0, 13000, 13000);
// Set the constraint to an input signal
Light_Combi_Switch(Constraint4);

Test Case generation tool

Export the constraints to the
Test Case generation tool

Driver Profile “operation matrix”
generated automatically from the

exported constraints

Manual

Prototype implementation R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
236

the output signals of the requirements model after each step of the simulation plan. The
output data of a model simulation are stored in an Excel file. In Figure 9.11, we illustrate the
simulation parameters and the four modes of simulating a requirements model. The “non-
stop” mode aims to simulate the whole simulation plan nonstop. The “step by step” mode
consists of simulating the simulation plan in a step by step manner. Indeed, after each step’s
simulation, the simulation process is stopped. The “period by period” mode stops the
simulation at each period of the Clock signal. Finally, the “feature by feature” mode stops the
simulation after each feature simulation.

Figure 9.11 – The simulation toolbox of the Test Case Generation tool

F. Generate test cases automatically

The main functionality of the Test Case Generation tool is to generate test cases
automatically. In Chapter 7 – Section 4, we developed a set of test generation objectives and
constraints. A panel interface to allow the test engineer to set precise targets on these
objectives and constraints is presented in Figure 7.13. In Chapter 7 – Section 6, we have
developed a heuristic algorithm to optimize the generation of test cases while fulfilling the
predefined objectives and constraints. A list of 8 parameters that a test engineer should set
before start generating test cases is also introduced.

Through the Test Case Generation tool, one can set targets on the test generation objectives
and constraints and parameterize the test generation algorithm. The generation of test cases is
automatic. Each generated test case and its reached objectives and constraints are stored in an
Excel file. In Figure 9.12, we illustrate the panels where a test engineer can calibrate the
generation of test cases. We also identify the four modes of generating test cases. The “non-
stop” mode aims to generate the set of required test cases nonstop. The “step by step” mode

Test Case generation tool

Time0

1

Cycle time

Clock Cycle time of the Clock signal

Simulation plan

Model simulation parameters

A “non-stop” simulation of
the whole simulation plan

A “step by step” simulation

A “period by period” simulation

A “feature by feature” simulation

Step No Actions

1
Ignition = 0
Wait 200 ms

2
Ignition = 1
Wait 200 ms

3
Luminosity_Sensor= 2

Wait 100 ms

4
Car_Locked = 1
Wait 800 ms

5
Car_Locked = 0
Wait 150 ms

6
Light_Combi_Switch = 1

Wait 300 ms

7
Light_Combi_Switch = 0
Wait 800 ms

… …

Prototype implementation R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
237

consists of generating each test case in a test step by test step manner. Indeed, after each test
step generation, the test generating process is stopped. When designing a test step and after
choosing an operation and an inter-operation time, the “period by period” mode stops the
model simulation (in order to assess the expected outputs) at each period of the Clock signal.
Finally, the “feature by feature” mode stops the simulation after each feature simulation. We
are conscious of the number of parameters (coverage objectives, constraints, optimization
parameters …) required to set our approach. In Chapter 10 – Section 8, we propose two
strategies to help test engineers parameterizing the generation of test cases.

Figure 9.12 – The test generation toolbox of the Test Case Generation tool

Let us consider the example of the Chapter 5 – Section 5. After computerizing and verifying
the requirements model (Cf. Figure 9.7), one decides to generate the Nominal 1 and 2
“operation matrices” (Cf. Figure 9.8). For a specific “Configuration” of the functionality
“Auto_Light” under test (Parameter 6 = 0, Cf. Chapter 7 – Section 6), one decides to generate
test cases that covers at 100% the domain of all the input, output and intermediate signals
(coverage objectives, Cf. Chapter 7 – Section 4 and 5). Nevertheless, the length of these test
cases must not exceed 50 test steps (time and cost constraints, Cf. Chapter 7 – Section 4 and
5). The test cases must be generated from the Nominal 2 “operation matrix”. When
generating the test cases, one decides to avoid already covered successions of operations
(Parameter 1 = 1 and Parameter 2 = 30, Cf. Chapter 7 – Section 6). One also decides to

Test Case generation tool

Generate the test cases fulfilling the
predefined objectives and constraints

Generate “step by step” the test cases fulfilling
the predefined objectives and constraints

After choosing a new operation and inter-operation
time, simulate the model “period by period”

After choosing a new operation and inter-operation
time, simulate the model “feature by feature”

Objectives and Constraints
(Cf. Chapter 7 – Section 5)

Parameters of the optimization algorithm
(Cf. Chapter 7 – Section 6)

Prototype implementation R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
238

optimize the number of test steps by keeping only the ones which contribute to the objectives
fulfillment (Parameter 3 = 1, Parameter 4 = 10, Cf. Chapter 7 – Section 6). After 10
generated test steps with no improvement in the objectives fulfillment, the corresponding test
case must be ended (Parameter 5 = 10, Cf. Chapter 7 – Section 6). And finally, one decides to
generate 5 separate test cases in order to choose the “optimal” one (Parameter 8 = 5, Cf.
Chapter 7 – Section 6). Since Parameter 6 is equal to 0, Parameter 7 has not to be defined
(Cf. Chapter 7 – Section 6.B). A screenshot of the Test Case Generation tool after generating
the test cases for the previous exercise is presented in Figure 9.13. The generated test cases
and their reached objectives are stored in an Excel file. In case the execution of the test cases
on the software product under test is automatic, the generated test cases can be translated into
a computer language understandable by the test execution platform (Cf. Appendix C).
Moreover, while simulating a simulation plan on a requirements model or generating test
cases from a requirements model, one can visualize in real time the covered zones of the
model (Cf. Chapter 7 – Section 4.B). In fact, the Test Case Generation tool highlights the
covered zone of the model (Signals domain, Conditions of Decision Tables, States,
Transitions and Conditions of Finite State Machines and Operation matrices). After
generating a set of test cases from the computerized requirements model presented in Figure
9.7 the covered zones of this model are illustrated in Figure 9.14.

Prototype implementation R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
239

Figure 9.13 – A screenshot of the tool after generating test cases for the Chapter 5 – Section 5 example

5 test cases generated
with the same
configuration of the
functionality under test.

By clicking on a test
case, one can visualize
its characteristics.

All the generated test
cases are stored in
Excel format.

The “optimal”
test case

The last test step of
the selected test case

Waiting time

Operation Expected results

Objectives and
Constraints

-> Fixed targets
-> Reached values

Evolution of the
objective fulfillment

Test Case generation tool

Prototype implementation R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
240

Figure 9.14 – A screenshot of the tool while highlighting the covered zones of a requirements model

Test Case generation tool

An excerpt of the Nominal 2
“operation matrix”

State 1

Prototype implementation R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
241

V. Conclusion

The prototype presented in this chapter takes into account the impacts of our approach on the
processes, roles and tools of the software testing skill within the Johnson Controls
organization. A new process map for generating automatically test cases from the functional
requirements of a functionality is presented. New roles and skills for software engineers in
charge of designing test cases using our approach are developed. And finally, computer tools
automating up to 70% of our approach are described. The development of these tools is not
presently entirely completed. Some improvements can be done and especially on the
Graphical User Interfaces.

In the following chapter, we analyze the results of using this prototype on two industrial case
studies of practical size. We model, simulate and generate test cases for two software
functionalities of a car.

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
243

CHAPTER 10. MODELING AND SIMULATING
TWO INDUSTRIAL CASE STUDIES

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
245

I. Introduction

In order to validate our integrated framework to generate test cases automatically for a
software module or product, we consider, at Johnson Controls, two case studies with
historical data. Through these case studies, we highlight the benefits of using our approach in
the unit test of software modules. In each case study, we consider one functionality that has
already been developed and validated in the past using the software Verification and
Validation (V&V) techniques currently used in Johnson Controls (Cf. Chapter 2 – Section 5).
For each carmaker delivery (Cf. Chapter 2 – Section 3), historical data on the time spent to
verify and validate these functionalities and on the bugs’ detection by Johnson Controls and
by the carmakers are available. We consider the first version of the two software modules
(corresponding to the two functionalities) as it was delivered for the first time by the
development team to the validation team. We also consider the version of the software
functional requirements of these functionalities when delivering the software modules for the
first time to the carmaker. We model, verify, validate and simulate the software functional
requirements and then generate test cases automatically for the unit test of each software
module. These test cases are executed on the first version of the two modules.

Our process to choose the two functionalities under experiment is described in Section 2. A
characterization of the carmakers’ requirements related to the software of these two
functionalities is performed in Section 3. Modeling, verification and validation activities of
the requirements models are respectively presented in Section 4, 5 and 6. A set of “operation
matrices” for each functionality is designed in Section 7. Strategies to tune the generation of
test cases are developed in Section 8. The generation and execution of test cases for the two
functionalities are specified in Section 9. Finally, a deep analysis of the execution results is
illustrated in Section 10.

II. Characterization of the two case studies

We experiment our proposals on two software functionalities of automotive electronic
products developed within Johnson Controls. The choice of these functionalities has been
delicate. Many criteria have guided our choices:

• C1: Recent products
• C2: Two different products
• C3: Two different carmakers
• C4: Two different management teams
• C5: Two different development teams
• C6: Two different validation teams
• C7: Two different levels of complexity (from experts point of view)
• C8: Two different types of software functional requirements
• C9: Functionalities already verified and validated using the tradition process
• C10: Functionalities well documented (historical data)
• C11: Functionalities’ experts still in the company (historical data)

Based on these criteria, we choose two functionalities. The first one is the “front wiper
management” functionality. This functionality is implemented with other functionalities in an
automotive electronic product, named body controller module. The second one is the “fuel
gauge management” functionality. It is implemented with other functionalities in another
automotive electronic product, named dashboard or cluster. The compliance of the chosen
functionalities with the predefined criteria is illustrated in Table 10.1.

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
246

Table 10.1 – Criteria for selecting the two functionalities

These two functionalities have already been developed and validated using the Johnson
Controls present process. Some characteristics of the two software modules developed
respectively for these two functionalities are given in Table 10.2.

Table 10.2 – Characteristics of the two software modules developed respectively for the

two functionalities under experiment

Each software module delivered to the validation team (first version) is considered to be
verified and validated independently from its environment (other software modules). This
means that a code review, a static and dynamic analysis and a unit test (Cf. Chapter 2 –
Section 5) have been performed on each module delivered to the validation team.
Unfortunately, at Johnson Controls, bugs detected during these V&V phases are often not
capitalized in the problems’ database (Cf. Chapter 2 – Section 7.A). Once a bug is detected, it
is corrected immediately by the person who detects it. Moreover, in Johnson Controls, these
phases mainly focus on answering the question: “Are we building the product RIGHT?” and
not on: “Are we building the RIGHT product”. In other words, the compliance with the
carmaker requirements are not verified on the software modules delivered to the validation
team. Presently, when testing unitarily a software module, the main purpose of a test engineer
is to cover at 100% the source code of the module (Cf. Diagnosis 8). The validation team
integrates the set of modules (already tested unitarily) planned for the carmaker delivery and

Selection criteria
Front wiper
functionality

Fuel gauge
functionality

C1
Project starts in 2005.

Start of serial
production in 2007

Project starts in 2005.
Start of serial

production in 2007

C2
Body controller module

of a car
Car Dashboard or

Cluster

C3 Same carmaker

C4 Two different management teams

C5 Two different development teams

C6 Two different validation teams

C7 Quite complex Very complex

C8 Formal Informal

C9
Functionalitiesalready verified and validated

using the traditional process

C10 Historical data are available

C11
At least, one expert of these functionalities is still

in the company

Front wiper functionality Fuel gauge functionality

Number of input signals of
the software module 18 35

Number of output signals
of the software module 9 25

Size of the software module
(Lines Of Code - without
comments and blanks)

1229 1500

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
247

performs validation tests (Cf. Chapter 2 – Section 5.C and 5.D). During the validation test,
test engineers design manually test cases in order to demonstrate the compliance of the whole
software product (integration of at least two software modules) with the carmaker
requirements (Cf. Chapter 2 – Section 6). Bugs detected by inner engineers during the
validate test stage (before the delivery) and by the carmaker engineers (after the delivery) are
capitalized. The distributions of bugs related to the internal behavior of the two functionalities
are illustrated in Figure 10.1. Until the last carmaker delivery, 22 bugs were detected on the
software module of the front wiper functionality and 23 bugs on the one of the fuel gauge
functionality. These bugs were detected, on the two functionalities, before (validation test)
and after (carmaker test) the carmaker deliveries. Unfortunately, we do not have any
information on the bugs detected during the other Johnson Controls V&V activities (code
review, unit test …). In fact, after analyzing the total number of the bugs of Figure 10.1, we
came up to the conclusion that all these bugs could be detected earlier in the process (during
the unit test stage). In fact, during the unit test of a software module and in addition to a 100%
code coverage, test engineers should verify the compliance of each software module with the
carmaker requirements. We call this the functional unit test. In order to comment the Figure
10.1, let us consider the front wiper functionality example. 17 bugs were detected by the
Johnson Controls validation test and 5 bugs by the carmaker after intermediate delivery. It
must be noted that, after developing the software module of the front wiper functionality for
the first time, only 12 bugs were detected during the first validation stage. Therefore, a
delivery was performed and the carmaker immediately detected 2 more bugs. In the meantime
and before the second carmaker delivery, test engineers tried to improve their test cases and
design some new test cases. In consequence, they have been able to detect one more bug and
after the second intermediate carmaker delivery, no new bug was detected by the carmaker.
For the 4th intermediate delivery, no new test cases have been developed. The complete
scenario of bugs’ detection until the last carmaker delivery of the two functionalities is
summarized in the histogram of Figure 10.1.

Figure 10.1 – Distribution across the carmakers’ deliveries of the bugs detected on the

two functionalities

Among the bugs detected on the two functionalities, some of them are considered to be more
critical than others. Severity and Occurrence are two attributes of the current bug model and
are filled at 99% for each capitalized bug (Cf. Chapter 2 – Section 7.B). These attributes are
not free fields. Indeed, a set of predefined values for each attribute has been defined by
Johnson Controls software experts (Cf. Table 10.3).

12

1 1
2

1
2

3

0

2

4

6

8

10

12

14

1 2 3 4 5 6 SOP

N
um

be
r o

f b
ug

s

Deliveries to carmaker

Front wiper functionality

Bugs detected by the Johnson
Controls VALIDATION test

Bugs detected by the carmaker

2

4
5 5

2

4

1

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 SOP

N
um

ve
r o

f b
ug

s

Deliveries to carmaker

Fuel gauge functionality

SOP : Start Of serial Production

All these bugs could be detected (earlier in the process) during
the UNIT test of each software module of the two functionalities

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
248

Table 10.3 – Severity and Occurrence levels as it was defined by Johnson Controls

software experts (Johnson Controls source)

Despite the predefined values and according to experts, the attribution of a severity and an
occurrence for a bug detected internally remains a subjective question. In fact, most of the test
engineers do not have a global view of the system in order to assess the impact of the detected
bug on the end-user. However, the severity and occurrence of bugs detected by the carmakers
are more relevant since they are set by the carmaker itself. The distribution of bugs, detected
on the two functionalities, across the couple (Severity, Occurrence) is presented in Figure
10.2. For the front wiper functionality, up to 76% of the bugs are (Minor, Systematic) and for
the fuel gauge functionality, up to 72% of the bugs are (Major, Systematic). These results
could be explained from two different points of view. The first one confirms the notion of
subjectivity in defining a criticity level for a bug. In fact, the bugs of these two functionalities
were described by two different teams in two different countries. The second one is related to
the fact that the functionality of managing the fuel level in a car is more critical than the one
managing the wipers. As a consequence, bugs on the fuel gauge functionality are considered
to be more critical than the ones of the front wiper functionality. Moreover, bugs detected by
the carmakers are often considered as critical.

Figure 10.2 – Distribution across the couple (Severity, Occurrence) of the bugs detected

on the two functionalities

In Figure 10.3, we illustrate the time spent by the project team in order to debug the software
modules of the two functionalities using the conventional testing techniques (unit test and
validation test, Cf. Chapter 2 – Section 5). The main activities done are:

• Design and execute test cases for the unit test of each software module (Unit test).
• Analyze the carmaker requirements in order to design validation test cases.
• Design and execute test cases for the validation test of each functionality.
• Manage the bugs detected internally and by the carmaker.

We note that up to 50% and 10% of the total time spent in verifying and validating a software
functionality were respectively spent to manually design the test cases and manage the bugs
detected by the carmakers. Using the current Johnson Controls testing practices,

Severity Occurrence

Secondary – cosmetic failure, not customer relevant Once – low probability, unlikely failure

Minor – cosmetic failure, customer relevant Very Rare – low probability, few failures

Major – workaround exists Rare - moderate probability, occasional failures

Critical – no workaround exists Often – high probability, repeated failures

Catastrophic – system crash of the vehicle system (risk of person injury) Systematic – failure unavoidable

2

13

22
1

2

0

2

4

6

8

10

12

14

(Minor,

Once)

(Minor,

Often)

(Minor,

Systematic)

(Major,

Often)

(Major,

Systematic)

N
um

be
r o

f b
ug

s

(Severity, Occurence)

Front wiper functionality

Bugs detected by the
Johnson Controls
VALIDATION test

Bugs detected by the
carmaker

1

4

13

1

4

0

2

4

6

8

10

12

14

(Minor,

Once)

(Minor,

Often)

(Minor,

Systematic)

(Major,

Often)

(Major,

Systematic)

N
um

be
r o

f b
ug

s

(Severity, Occurence)

Fuel gauge functionality

Criticity growth Criticity growth

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
249

approximately 54 eight-hour days were spent to test the front wiper functionality and 50
eight-hour days for the fuel gauge functionality.

Figure 10.3 – An estimate of the time spent during each delivery to test the two

functionalities using the conventional testing techniques

In our experiment, we propose to perform a functional unit test on the software modules
of the two functionalities. In other words, we plan to verify unitarily the compliance of
each software module with its functional requirements. To do this, we use our new
approach to design test cases (Cf. Chapter 5, 6, 7, 8 and 9).

8

0,5 0,5 1 1,5

20

1,5 1,5
2,5

4

2

1 1 1
1

4

0,5
1,75

0

5

10

15

20

25

30

35

1 2 3 4 5 6 SOP

E
ig

ht
-h

ou
r d

ay
s

Deliveries to carmaker

Front wiper functionality

Time to manage bugs detected by Johnson
Controls and by the carmaker
Time to execute test cases for VALIDATION
test
Time to design test cases for VALIDATION
test
Time to analyze customer requirements

Time to design and execute test cases for
UNIT test

55
2 1 1

1

10

5
3 3

1

2

1

1 1

1

0,5

1
3,25

1,25
0,5

0,5
0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 SOP

E
ig

ht
-h

ou
r d

ay
s

Deliveries to carmaker

Fuel gauge functionality

SOP : Start Of serial Production

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
250

III. Characteristics of the software functional requirements of the two
functionalities

The core of our approach is the modeling of software functional requirements. Therefore, one
important criterion while choosing the functionalities of the two case studies was the diversity
of the software functional requirements. In fact, we want to prove that whatever the formalism
used by the carmaker to express the requirements related to software, one can use our
approach to generate test cases automatically. In Chapter 2 – Section 4.A, we present the
result of a study that we performed on the diversity, typology and evolution of these
requirements within Johnson Controls. Moreover, in Chapter 4 – Section 5.C, we identify
three formalisms of software functional requirements (Informal, Semi-formal and Formal).
Some characteristics of the software functional requirements of the chosen functionalities are
presented in Table 10.4.

Table 10.4 – Characteristics of the software functional requirements of the two

functionalities

IV. Modeling the software functional requirements of the two
functionalities

Three stages have been necessary for modeling the software functional requirements. The first
one consists of analyzing and understanding the requirements with our modeling language. A
loop process was initiated with inner experts in order to well understand and clarify the
requirements. The second one consists of sketching “on paper” the requirements models. We
identify the input, output and intermediate signals and the elements (Decision Tables or Finite
State Machines) of each functionality. Then, we develop each element by identifying all the
states, transitions and conditions of the elements (Cf. Chapter 5). The third and last stage has
been the computerization of the requirements models using the Test Case Generation tool that
we developed (Cf. Chapter 9 – Section 4.A). A comparison of the time spent in each of these
stages for the two functionalities is illustrated in Table 10.5.

Table 10.5 – Time spent to design the requirements model of the two functionalities

Front wiper functionality Fuel gauge functionality

Formalism
(Cf. Chapter 4 – Section 4.D.1)

Formal
(Statechart)

Informal
(Natural language specifications)

Size of the software functional
requirements document
(Number of pages in Microsoft
Word format)

30 30

Time in eight-hour days Front wiper functionality Fuel gauge functionality

Time spent to analyze the requirements
before starting modeling task

3 3

Time spent to design “on paper” the
requirements model

5 7

Time spent to computerize the paper
requirements model

12 6

TOTAL 20 16

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
251

In fact, it was more difficult and time consuming to design the requirements of the second
case study (7 eight-hour days) than the first one (5 eight-hour days). The main reason is that
the requirements of the second case study are expressed informally. However, we spent more
time in computerizing the first case study (12 eight-hour days) than the second one (6 eight-
hour days). Indeed, the requirements model of the first case study is bigger than the second
one in terms of number of signals, elements, states, transitions and conditions. In Table 10.6,
we illustrate the characteristics of the requirements models of the two case studies. The
requirements model of the “front wiper” functionality has 19 Decision Tables and 5 Finite
State Machines, while the one of the “fuel gauge” functionality has 2 Decision Tables and 4
Finite State Machines.

Table 10.6 – Characteristics of the requirements models of the two functionalities

V. Verifying the requirements models of the two functionalities

In Chapter 6 – Section 4, we developed a set of integrity rules to be checked on each
requirements model in order to verify its correctness. The verification of the requirements
models of the two functionalities was performed manually and automatically. In fact, when
sketching “on paper” the requirements model, we verify manually the fulfillment of the
integrity rules. Moreover and after computerizing the model, the Test Case Generation tool
(Cf. Chapter 9 – Section 4.A) allows to check automatically these rules. Therefore, the time
spent in verifying these models is integrated to the time of sketching “on paper” and
computerizing the models (Cf. Table 10.5). We stop verifying a requirements model when all
the integrity rules are checked OK on the model. After verifying the developed requirements
models (manually and automatically), around 30 rules violations are detected on each model.
The distribution of these violations over the set of integrity rules is presented in Figure 10.4.
We first model the “front wiper” functionality then the “fuel gauge” one. As a consequence,
violations in Rules 1, 14, 15 and 18 were detected on the first case study and not on the
second. In fact, when modeling the “fuel gauge” functionality, we focus on respecting the
rules already violated on the previous case study. Moreover, up to 80% of the violations on
the first case study (Rule 8) are related to the fact that the domains of the functionality’s input,
output and intermediate signals are not covered by conditions and actions in elements. Since
the requirements model of the second case study is smaller than the one of the first case study
(Cf. Table 10.6), it capitalizes up to 60% of Rule 8 violation. The remaining 40% is shared out
between the Rules 4, 5, 6 and 7. This is due to the fact that the requirements of the “fuel
gauge” functionality are expressed informally (Natural language).

Front wiper functionality Fuel gauge functionality

of input signals 18 6

of output signals 9 8

of intermediate signals 24 31

of Decision Tables 19 2

of Conditions in DT 289 110

of Finite State Machines 5 4

of States in FSM 36 53

of Transitions in FSM 119 158

of Conditions in FSM 154 197

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
252

Figure 10.4 – Distribution of violations over the integrity rules

VI. Validating the requirements models of the two functionalities

Once the requirements models are designed, computerized and verified, we validate these
models. In other words, we verify that the developed requirements models are compliant with
the carmaker requirements related to the software domain. In Chapter 6 – Section 5, we
propose three scenarios to validate a requirements model:

• First scenario: Animate our requirements model
• Second scenario: Simulate test cases delivered by the carmaker on our requirements

model
• Third scenario: Compare our requirements model to another valid model of the

requirements

These scenarios can be used concurrently or separately. However, it is mandatory to have the
data necessary for performing one scenario or another. For instance, in case of the first case
study, the carmaker has delivered a simulation model of the software functional requirements
and one test case (about 10000 test steps). Therefore, the three scenarios are applicable. On
the contrary, the carmaker requirements of the second case study cannot be simulated and no
carmaker test cases are available. For that reason, only the first scenario can be applied in the
second case study. Because of time constraints, we only apply the first and second scenarios
for the first case study and the first scenario for the second case study. One main question is:
When to stop validating a model? In fact, we consider a tradeoff between the quality of the
model and the resources (time, people, and cost) spent in validation (Cf. Chapter 6 – Section
2.B). On the one hand, we spent 5 eight-hour days validating the requirements model of the
first case study and we detect around 15 nonconformities between the model and the
requirements as it was delivered by the carmaker. On the other hand, we spent 20 eight-hour
days validating the second case study and we detect around 50 nonconformities. Even if the
requirements model of the first case study is bigger than the one of the second case study (Cf.
Table 10.6), we spent more time and detected more nonconformities in validating the second
case study. Indeed, the main reason of this result is that the requirements delivered by the
carmaker for the second case study are informal, while the ones for the first case study are
formal. In the following, we detail the validation process of the two requirements models.

5

80

5 5 5
10 10 10 10

60

0

10

20

30

40

50

60

70

80

90
P

ou
rc

en
ta

ge
 o

f
vi

ol
at

io
ns

Integrity rules (Cf. Chapter 6 – Section 4)

Front wiper
functionality

Fuel gauge
functionality

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
253

In case of the first case study, we first simulate on our requirements model the test case (about
10000 test steps) delivered by the carmaker. Once a nonconformity is detected, the
requirements model is corrected before restarting the simulation of the test case. The
cumulated number of nonconformities detected on the first case study is presented in Figure
10.5. After the 2000th test step, no more nonconformities are detected on the model.
Afterwards and in order to increase the confidence in our model, we propose to animate it by
an expert. Two simulation plans of 100 steps each (operations and inter-operation times)
have been designed by an expert and simulated “step by step” on the model (Cf. Chapter 8 –
Section 4.E). No nonconformities have been detected. In consequence, we decide to stop
validating the model.

Figure 10.5 – Cumulated number of nonconformities on the first case study (Second

scenario)

In case of the second case study, we animate the model by an expert. Three simulation plans
of 300 steps each (operations and inter-operation times) have been designed and simulated
successively “step by step” on the model (Cf. Chapter 8 – Section 4.E). Once a
nonconformity is detected, the requirements model is corrected before restarting the
simulation. The cumulated number of nonconformities detected on the second case study is
presented in Figure 10.6. Through the first set of 300 steps, we detect and correct 27
nonconformities. The second one allows to detect and correct 14 nonconformities. The third
one detects 8 nonconformities. The main question was: Are there other nonconformities in the
model? To answer this question, we design a new simulation plan of 50 steps and we simulate
it on the model. In fact, this simulation plan allows to detect new nonconformities. At this
moment, we realize the difficulty of validating at 100% a model and we decide to consider a
tradeoff between the quality of the model and the time spent in validation. In fact, through the
three simulation plans, we spent up to 20 eight-hour days simulating and debugging our
requirements model and we cover at 90% the requirements model (signals and elements).
Therefore, we decide to stop validating the model.

0

2

4

6

8

10

12

14

16

50 60
0

11
50

17
00

22
50

28
00

33
50

39
00

44
50

50
00

55
50

61
00

66
50

72
00

77
50

83
00

88
50

94
00

99
50

N
um

be
r

of
 n

on
co

nf
or

m
iti

es

Number of test steps

Number of
nonconformities

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
254

Figure 10.6 – Cumulated number of nonconformities on the second case study (First

scenario)

VII. Designing “operation matrices” for the two case studies

The generation of test cases is performed based on the concept of “operation matrix” (Cf.
Chapter 7 – Section 2). Through an “operation matrix”, inner engineers can enrich the
requirements model with knowledge on the user (driver) recurrent operations (Cf. Chapter 8 –
Section 4) and the test engineers’ experience (Cf. Chapter 8 – Section 5 and 6). However, one
major question is: How engineers can design an “operation matrix”? Five possible scenarios
are identified (Cf. Chapter 9 – Section 3 and 4):

1. Design manually one or more “operation matrices” and export them to the Test Case
Generation tool.

2. Generate the Nominal “operation matrices” (Nominal 1 and Nominal 2) automatically
via the Test Case Generation tool.

3. Design manually a set of constraints on the input signals of the requirements model,
export them to the Test Case Generation tool and generate a Driver profile “operation
matrix” automatically.

4. Generate via the Bugs Reuse tool one or more Bug “operation matrices” from one or
more capitalized bugs and export them to the Test Case Generation tool.

5. Generate via the Test Cases Reuse tool one or more Test Case “operation matrices”
from one or more capitalized test cases and export them to the Test Case Generation
tool.

The number of cases of an “operation matrix” for the “front wiper” functionality is 9604
(98x98, 98 is the number of possible operations on the functionality). 7921 (89x89) is the one
for the “fuel gauge” functionality. Therefore, it was ridiculous to think of manually designing
“operation matrices” for these functionalities (Cf. Chapter 7 – Section 2).

As a basic solution, we generate, via the Test Case Generation tool, the two Nominal
“operation matrices” for the two functionalities (Cf. Chapter 7 – Section 2, Cf. Chapter 9 –
Section 4.B). According to experts, we define one standard time interval and we affect it to all
successive operations.

0

10

20

30

40

50

60

20 80

14
0

20
0

26
0

32
0

38
0

44
0

50
0

56
0

62
0

68
0

74
0

80
0

86
0

N
um

be
r

of
 n

on
co

nf
or

m
iti

es

Number of operations

Number of
nonconformities

300
steps

27

14

8

300
steps

300
steps

steps

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
255

Moreover, experts design manually a set of constraints on the input signals of each
functionality (Cf. Chapter 8 – Section 4) that we export to the Test Case Generation tool.
Based on these constraints, the Test Case Generation tool generates a Driver Profile
“operation matrix” for each functionality (Cf. Chapter 9 – Section 4.D). The number and
type of the designed constraints is illustrated in Table 10.7.

Table 10.7 – Constraints designed for the two functionalities

Unfortunately, we do not have enough time to analyze bugs and test cases capitalized on
previous projects implementing the “fuel gauge” functionality. In fact, we decide to focus our
effort on the “front wiper” functionality. In Chapter 2 – Section 7.C, we perform a study on
the bugs detected on the “front wiper” functionality through 5 different projects since 1997
and till 2007. Excluding the last project (Project 5) which is the one on which we carry out
our experiments, 55 bugs were detected on this functionality since 1997. In Chapter 8 –
Section 5, we propose two strategies to reuse capitalized bugs. One strategy (Cf. Chapter 8 –
Section 5.A) consists of representing the “Problem description” of bugs in a specific format in
order to generate a Bug “operation matrix” for each bug. One difficult task was to represent
the “Problem description” of the 55 identified bugs into our specific format. Based on the
experts’ advices, we only consider the 10 most critical bugs providing that there exists enough
information related to the “Problem description” of the bug. Afterwards, we generate, via the
Bugs Reuse tool (Cf. Chapter 9 – Section 3.C.1), the corresponding 10 Bug “operation
matrices” that we export to the Test Case Generation tool. A glossary of the input signals
names on the previous and current projects was necessary.

Over the 4 projects implementing the “front wiper” functionality (Cf. Chapter 2 – Section
7.C), only one project P has adopted the test case format presented in Definition 2.11. This
format of test cases is required for generating a Test Case “operation matrix” automatically
for each test case (Cf. Chapter 8 – Section 6). Within P, test engineers have designed one test
case (about 2000 test steps) in order to test the “front wiper” functionality. Based on this test
case, we generate, via the Test Cases Reuse tool (Cf. Chapter 9 – Section 3.C.2), one Test
Case “operation matrix” that we export to the Test Case Generation tool. A glossary of the
input signals names on the previous and current projects was necessary.

A summary of the “operation matrices” designed for the two functionalities is illustrated in
Table 10.8. We also estimate the time spent in designing these “operation matrices”. For the
front wiper functionality, we spent 2 eight-hour days and for the fuel gauge functionality, 0,5
eight-hour days. In fact, identifying and preparing the capitalized bugs and test cases have
taken about 1,5 eight-hour days.

Type of constraints
(Cf. Chapter 8 – Section 4) Front wiper functionality Fuel gauge functionality

Logical 1 1

Conditional 3 1

Succession 2 1

Timing 1 1

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
256

Table 10.8 – “Operation matrices” designed for the two functionalities

VIII. How to tune the generation of test cases?

Three questions have been raised at this stage of the experiment:

• From which “operation matrix” do we start generating test cases?
• How to tune the coverage objectives and the time and cost constraints?
• How to tune the test generation algorithm?

In order to answer the first question, we propose to generate test cases from the “operation
matrices” according to the order presented in Figure 10.7. Firstly, we generate test cases
from the Bug “operation matrices”. At least, we ensure that our software module is free from
bugs similar to the ones already detected in the past. Secondly, we generate test cases from the
Test Case “operation matrices”. These test cases are suitable to detect bugs since they are
based on the test engineers’ experience. Thirdly, we generate test cases from the Driver
Profile “operation matrix”. This aims to check that the software module fulfills the end-user
(driver) expectations. Finally, we generate test cases from the Nominal “operation matrices”.
Improbable successions of operations are generated in order to check the robustness of the
software module. In the previous section, we note that no Bug or Test Case “operation
matrices” have been designed for the second case study. Moreover and according to experts,
simulating random operations (Nominal “operation matrices”) on the fuel gauge
functionality does not make real sense. Therefore, for this case study, we only generate test
cases from the Driver Profile “operation matrix”.

Figure 10.7 – Our strategy of generating test cases from the “operation matrices”

Before generating test cases from an “operation matrix”, we have to define the objectives and
constraints of the generation (Cf. Chapter 7 – Section 5, Cf. Chapter 9 – Section 4.F) but also
the parameters of the optimization algorithm (Cf. Chapter 7 – Section 6, Cf. Chapter 9 –
Section 4.F). In our case studies, we tune these factors based on a try-and-test protocol and on
the experts’ knowledge.

Front wiper functionality Fuel gauge functionality

2 Nominal « operation matrices »
(Nominal 1 and Nominal 2)

2 Nominal « operation matrices »
(Nominal 1 and Nominal 2)

1 Driver Profile « operation matrix » 1 Driver Profile « operation matrix »

10 Bug « operation matrices » -

1 Test Case « operation matrix » -

Bug
“operation matrices”

Test Case
“operation matrices”

Driver Profile
“operation matrix”

Nominal
“operation matrices”
(Nominal1 or/and Nominal2)

Front wiper functionality

Fuel gauge functionality

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
257

According to the type of the “operation matrix”, we propose guidelines for defining the
coverage objectives and the time and cost constraints (Cf. Table 10.9). These guidelines have
been defined based on our analysis of the different “operation matrix” modes. For instance,
in case of a Bug or Test Case “operation matrix” mode, the knowledge extracted from
capitalized bugs or test cases is incorporated in the “operation matrix”. Therefore, it is
necessary to cover at least all the successions of operations of a Bug or Test Case “operation
matrix”. The constraints’ values depend on the context (budget, planning, and resources) of
the project.

Table 10.9 – Guidelines for defining the objectives and constraints of a test case

generation

Based on these guidelines, we set the objectives and constraints of the test cases generation
for the two functionalities (Cf. Table 10.10). Because of technical reasons and based on the
assumption that covering at 100% the requirements model involves that the source code is
covered at 100%, we decide to only set objectives in terms of functional coverage. From the
opposite direction, this assumption is rarely true (Cf. Chapter 7 – Section 4). Moreover, we do
not consider the criticity of the requirements (Critical Successive 2-Operations coverage, DT
Critical Conditions coverage and so on – Cf. Chapter 7 – Section 4.B). Finally, no constraints
are set in terms of number of test steps and execution time of the generated test cases.

Table 10.10 – Objectives and constraints when generating test cases for the two

functionalities

“Operation matrix” from which
the test case has to be generated Objectives guidelines Constraints guidelines

Bug « operation matrix »
At least, cover at 100% the « operation

matrix »
The number of test steps and the
execution time of the generated
test case depend on the context
(budget, planning, resources) of

the project

Test Case « operation matrix »
A least, cover at 100% the « operation

matrix »

Driver Profile « operation matrix »
A least, cover at 100% the domains of

the input signals

Nominal « operation matrix »
At most, cover the requirements model

and the « operation matrix »

Front wiper functionality Fuel gauge functionality
“Operation matrices” Bug Test Case Driver Profile Nominal2 Bug Test Case Driver Profile Nominal2

Objectives

Functional coverage

Inputs domains - - 100-10 100-10 - - 100-10 -

Outputs domains - - - 100-10 - - - -

Intermediates domains - - - 100-10 - - - -

Inputs boundaries - - - 100-10 - - - -

Outputs boundaries - - - 100-10 - - - -

Intermediates boundaries - - - 100-10 - - - -

Successive 2-Operations 100 - 10 100-10 - 100-10 - - - -

DT Conditions - - - 100-10 - - - -

FSM States - - - 100-10 - - - -

FSM Transitions - - - 100-10 - - - -

FSM Conditions - - - 100-10 - - - -

Constraints

Test execution time and cost

Test Execution Time (en ms) - - - - - - - -

Test Step Number - - - - - - - -

Target - Weight

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
258

Once defining objectives and constraints, we have to tune the optimization algorithm of the
test case generation. In Chapter 7 – Section 6, we describe the optimization algorithm and its
parameters. Eight parameters have been identified. In our case studies, we tune these
parameters based on the traditional try-and-test protocol. In fact, we first set the objectives
and constraints of the test case generation, then we set specific values on the optimization
algorithm parameters and finally we generate test cases. Based respectively on the fulfillment
and respect of the objectives and constraints, we adjust the optimization parameters. The
purpose is to better fulfill and respect the coverage objectives and the time and cost
constraints. For each case study and after 10 trials (approximate), the “optimal” values for the
optimization algorithm parameters are identified in Table 10.11. We spent 1 eight-hour day in
adjusting these parameters for the two case studies. Let us consider the first case study. We
have to generate test cases from a Bug “operation matrix”. According to Table 10.9, we first
set the objectives and constraints of the test case generation (Cover at 100% the Bug
“operation matrix”). Afterwards, we tune the parameters of the optimization algorithm (Cf.
Table 10.11). In fact, we decide to optimize the coverage of the Bug “operation matrix”
(Parameter 1 = 1). When choosing a new operation in the “operation matrix”, the
optimization algorithm checks if the corresponding succession of operations is already
covered or not. If it is the case, another operation is chosen until a non-covered succession of
operations is selected. The maximum number of unsatisfied trials, before the algorithm exits
the loop, is 30 (Parameter 2 = 30). Even if the designed test step does not improve the
objectives fulfillment, we decide to add it to the test case under construction (Parameter 3 = 0
and Parameter 4 = 0). After 30 test steps generated without an improvement in the objectives
fulfillment, we decide to stop designing test steps for the corresponding test case (Parameter
5 = 30). According to experts, we decide to generate test cases for only one “Configuration”
of the front wiper functionality (Parameter 6 = 0 and Parameter 7 not defined). In fact, we
choose the basic (by default in a car) “Configuration” of the functionality. Finally, only one
test case has to be generated (Parameter 8 = 1).

Table 10.11 – Optimization parameters when generating test cases for the two

functionalities

IX. Generation and execution of the test cases on the software modules of
the two functionalities

In Section 7, we develop the “operation matrices” designed for the two case studies. In
Section 8, objectives, constraints and optimization parameters for the generation of test cases
for the two functionalities are defined. In this section, we describe the generation and
execution of test cases. The number and characteristics of the generated test cases are
illustrated in Figure 10.8 and 10.9. In fact, the generation of test cases has been carried out
automatically via the Test Case Generation tool (Cf. Chapter 9 – Section 4.F).

Front wiper functionality Fuel gauge functionality
“Operation matrices” Bug Test Case Driver Profile Nominal Bug Test Case Driver Profile Nominal

Parameter 1 1 - - 1

Parameter 2 30 - - 90

Parameter 3 0 - - 0

Parameter 4 0 - - 0

Parameter 5 30 - - 30

Parameter 6 0 - - 0

Parameter 7 - - - -

Parameter 8 1 6 6 6 - - 3

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
259

Figure 10.8 – Order of generating and executing test cases for the front wiper

functionality

Figure 10.9 – Order of generating and executing test cases for the fuel gauge

functionality

As we plan to do a functional unit test of the two functionalities (Cf. Section 2), we execute
the generated test cases on the first version of the two corresponding software modules (as it
was delivered for the first time by the development team to the validation team). In other
words, we isolate the first version of the software module which fulfils the front wiper
functionality and the one of the fuel gauge functionality and we test them through the
generated test cases. To do this, we first translate these test cases, via an inner tool, into the
unit test language. It is a computer language understandable by the unit test execution
platform (Cf. Appendix B and C). The execution is performed following the order defined in
Figure 10.8 and 10.9. Once an anomaly is detected, we analyze it in order to identify its
origin. The origin can be:

• A bug in the requirements model,
• A known bug in the software module. It is a bug that the validation test of Johnson

Controls or the carmaker has already detected (Cf. Figure 10.1),
• An unknown bug in the software module. It is a bug which is not yet detected neither

by the validation test of Johnson Controls nor by the carmaker.

10 Bug
“operation matrices”

10 test cases (1 test case
from each Bug “operation

matrix”)
Each test case, around 10

test steps
For each test case,

objectives are fulfilled at
100%

1 Test Case
“operation matrix”

6 test cases from the Test
Case “operation matrix”
Each test case, around

400 test steps
For each test case,

objectives are fulfilled at
99%

1 Driver Profile “operation
matrix”

6 test cases from the
Driver Profile “operation

matrix”
Each test case, around

1000 test steps
For each test case,

objectives are fulfilled at
70%

Nominal 2
“operation matrix”

6 test cases from the
Nominal 2 “operation

matrix”
Each test case, around

10000 test steps
For each test case,

objectives are fulfilled at
90%

FRONT WIPER FUNCTIONALITY

1 Driver Profile “operation
matrix”

3 test cases from the
Driver Profile “operation

matrix”
Each test case, around

300 test steps
For each test case,

objectives are fulfilled at
90%

FUEL GAUGE FUNCTIONALITY

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
260

Whatever the origin, the bug is corrected before restarting the execution of the test cases.

It is important to note that the time to generate test cases via the Test Case Generation tool
and the time to execution test cases via the unit test execution platform are both trivial from
the automotive industry point of view. It can be respectively estimated to 500 and 1000 test
steps per minute. These estimations are given for reference only because they depend on
many factors (CPU41, inter-operations times of the test steps, parameters of the optimization
algorithm and so on).

X. Analysis of the results of the two case studies

A. Detect bugs earlier in the software life cycle

Once executing all the generated test cases on the software modules of the two functionalities,
a total of 29 anomalies were detected on the first case study and 35 anomalies on the second
one. In fact, it is important to assess the accuracy of the results delivered by our measurement
system. Therefore, we measure (Cf. Figure 10.10):

• The ratio between the number of “false” bugs (bugs in the requirements models)
detected by our approach and the total number of detected anomalies. The “false”
bugs are the anomalies that are not related to bugs in the software module under test
but to bugs in the requirements model itself. As said in Section 6, it is impossible to
validate at 100% a requirements model and therefore bugs in this model could be
detected later when executing the generated test cases on the software under test.

• The ratio between the number of “true” bugs (known bugs in the software modules)
detected by our approach and the total number of detected anomalies.

• The ratio between the number of “new” bugs (unknown bugs in the software modules)
detected by our approach and the total number of bugs in the software module under
test.

About 17% (5 over 29) of the anomalies detected on the front wiper functionality were related
to bugs in the requirements model and up to 49% (17 over 35) on the fuel gauge functionality.
This could be explained by the fact that the requirements models of the two functionalities
could not be exhaustively validated (Cf. Section 6). More especially, the one of the fuel gauge
functionality because of the informal formalism of the carmaker requirements. Around 65%
(19 over 29) of the anomalies detected on the front wiper functionality were related to known
bugs in the software module and up to 51% (18 over 35) on the fuel gauge functionality. We
also detect 5 “minor” bugs (“minor” from experts’ point of view) that neither the conventional
validation test of Johnson Controls nor the carmaker test has detected on the front wiper
functionality. According to experts, these bugs have no impact on the end-user (driver). It
represents 19% (5 over (22+5)) of the total number of bugs in the functionality (22+5).

From another point of view, we were able to detect 86% (19 over 22) of the bugs already
detected by the conventional validation test on the first case study and 78% (18 over 23) on
the second one. These results prove that many of the bugs detected later in the software
life cycle (Validation test) could be detected earlier (Unit test) via our functional unit test.

41 CPU : Central Processing Unit

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
261

Figure 10.10 – Origin of the anomalies detected when executing the generated test cases

on the two functionalities

After analyzing the remaining 3 (22-19) and 5 (23-18) known bugs not detected respectively
on the first and second case studies, we come up to the conclusion that these bugs could be
detected by our platform since we reach a 100% of the functional coverage (which is not the
case, Cf. Section 9). These non-detected bugs are related to some specific functional
requirements that weren’t covered by our generated test cases. Indeed, when generating test
cases from a Nominal “operation matrix”, our computational algorithms didn’t succeed to
reach 100% of the functional coverage (maximum of 90%). To overcome this lack, we have
to improve our computational algorithm in order to focus on covering the non-covered zones
of the requirements model. In Figure 10.11, we identify across the carmakers’ deliveries the
known bugs (Cf. Figure 10.1) not detected by our approach. In Figure 10.12, we illustrate the
criticity (Severity, Occurrence) of the non-detected bugs as it was filled in the problems’
database (Cf. Figure 10.2).

Figure 10.11 – Distribution according to the carmakers’ deliveries of the known bugs

not detected by our approach

5

19

5

17
18

0
0

2

4

6

8

10

12

14

16

18

20

Bugs in the

requirements model

Known bugs in the

software module

Unknown bugs in the

software module

N
um

be
r o

f a
no

m
al

ie
s

Origin of the detected anomalies

Front wiper
functionality

Fuel gauge
functionality

Minor

1
2

0

2

4

6

8

10

12

14

1 2 3 4 5 6 SOP

N
um

be
r o

f b
ug

s

Deliveries to carmaker

Front wiper functionality

Bugs detected by the Johnson
Controls VALIDATION test

Bugs detected by the carmaker

2
1 11

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 SOP

N
um

ve
r o

f b
ug

s

Deliveries to carmaker

Fuel gauge functionality

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
262

Figure 10.12 – Distribution across the couple (Severity, Occurrence) of the known bugs

not detected by our approach

Among the known bugs detected by our approach, some of them are bugs already detected by
the conventional Johnson Controls validation test and others by the carmaker (Cf. Figure
10.13). For the front wiper functionality, we detect 60% (3 over 5) of the bugs detected by the
carmaker and 94% (16 over 17) of the bugs detected by the conventional validation test. For
the fuel gauge functionality, we detect 80% (4 over 5) of the bugs detected by the carmaker
and 78% (14 over 18) of the bugs detected by the conventional validation test.

Figure 10.13 – Origin of the known bugs detected by our approach on the two

functionalities

In the case of the front wiper functionality, the evolution of the cumulated number of known
and unknown bugs that we detect through our approach is illustrated in Figure 10.14. The
evolution is drawn according to the execution order of the generated test cases defined in
Figure 10.8. Once a bug is detected, it is corrected before restarting the execution. Through
the test cases generated from the Bug “operation matrices”, we detect 2 bugs out of the 17
bugs detected by the Johnson Controls software testing processes. The test cases generated
from the Test Case “operation matrix” enable to detect 6 bugs out of the 17 bugs detected by
Johnson Controls, 1 bug out of the 5 bugs detected by the carmaker after intermediate
delivery and 2 new “minor” bugs that were neither detected by Johnson Controls nor by the
carmaker. The test cases generated from the Driver Profile “operation matrix” enable to
detect 1 bug out of the 17 bugs detected by Johnson Controls. And finally, the test cases
generated from the Nominal 2 “operation matrix” enable to detect 7 bugs out of the 17 bugs

Criticity growth Criticity growth

1 1 1

0

2

4

6

8

10

12

14

(Minor,

Once)

(Minor,

Often)

(Minor,

Systematic)

(Major,

Often)

(Major,

Systematic)

N
um

be
r o

f b
ug

s

(Severity, Occurence)

Front wiper functionality

Bugs detected by the
Johnson Controls
VALIDATION test

Bugs detected by the
carmaker

1

3

1

0

2

4

6

8

10

12

14

(Minor,

Once)

(Minor,

Often)

(Minor,

Systematic)

(Major,

Often)

(Major,

Systematic)

N
um

be
r o

f b
ug

s

(Severity, Occurence)

Fuel gauge functionality

60%

80%

94%

78%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Front wiper functionality Fuel gauge functionality

P
er

ce
nt

ag
e

of
 b

ug
s

de
te

ct
ed

 b
y

ou
r

ap
pr

oa
ch

Known bugs
already detected
by the carmaker

known bugs
already detected
by the Johnson
Controls
validation test

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
263

detected by Johnson Controls, 2 bugs out of the 5 bugs detected by the carmaker and 3 new
“minor” bugs that were neither detected by Johnson Controls nor by the carmaker. As
conclusions on the bugs’ detection flow:

• All new detected bugs (5 bugs) have occurred in the Test Case and Nominal 2 test
stages. This could be explained by the fact that these bugs are related to specific
successions of operations, illogical from a use point of view but could probably occur
in the serial life of the software product.

• At the end of each test stage, the number of the detected bugs tends to stabilize.

Figure 10.14 – Evolution of the cumulated number of bugs detected by our approach on

the front wiper functionality

We also execute independently on the first version of the front wiper software module all the
test cases generated from each mode of “operation matrix”. The result of this experiment is
illustrated in Figure 10.15. We identify the number and type of bugs that can be detected by
one or more modes of “operation matrix”. As a conclusion:

• One mode of the “operation matrix” wasn’t able to detect all the bugs already
detected by the present Johnson Controls testing processes and by the carmaker.

• Each mode has at least one bug that can only be detected via this mode.
• The Nominal 2 mode “operation matrix” detects the maximum number of bugs. This

could be explained by the fact that we generate 60000 test steps from this “operation
matrix” and we cover at 90% the requirements model.

0

2

4

6

8

10

12

14

16

18

T
C

1

T
C

2

T
C

3

T
C

4

T
C

5

T
C

6

T
C

7

T
C

8

T
C

9

T
C

1
0

T
C

1

T
C

2

T
C

3

T
C

4

T
C

5

T
C

6

T
C

1

T
C

2

T
C

3

T
C

4

T
C

5

T
C

6

T
C

1

T
C

2

T
C

3

T
C

4

T
C

5

T
C

6

N
um

be
r o

f d
et

ec
te

d
bu

gs

Known bugs already
detected by the supplier
conventional testing phases

Known bugs already
detected by the carmaker

Unknown bugs (Not
detected by the supplier
conventional testing phases
nor by the carmaker)

10 test cases generated from the 10
Bug “operation matrices”

(Each test case from a matrix)

S
ta

bi
lit

y
zo

n
e

S
ta

bi
lit

y
zo

n
e

S
ta

bi
lit

y
zo

n
e

6 test cases
generated from the

Test Case
“operation matrix”

6 test cases
generated from the

Driver Profile
“operation matrix”

6 test cases
generated from the

Nominal 2
“operation matrix”

0

2

8

2

9

2

16

3

1 1

5

0

Execution order of the test cases
- Once a bug is detected, it is corrected before restarting the execution -

Front wiper functionality

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
264

• The Test Case mode “operation matrix” detects up to 80% of the bugs that the Drive
Profile mode can detect. In fact, the capitalized test cases have been designed with an
end-user point of view.

Figure 10.15 – Number and type of bugs detected via each “operation matrix” mode

In the case of the fuel gauge functionality, the evolution of the cumulated number of known
and unknown bugs that we detect through our approach is illustrated in Figure 10.16. Through
the test cases generated from the sole Driver Profile “operation matrix” (Cf. Section 8), we
detect 14 bugs out of the 18 bugs detected by Johnson Controls and 4 bugs out of the 5 bugs
detected by the carmaker. No new bugs have been detected. Comparing to the first case study,
we were able through the Driver Profile mode to detect most of the known bugs. This could
be explained by two facts:

• We cover 90% of the input signals domains in comparison with 70% in the first case
study.

• According to experts, simulating random operations (Nominal “operation matrices”)
on the fuel gauge functionality does not make real sense.

Known bugs already detected by the
conventional validation test

Known bugs already detected by the
carmaker

Unknown bugs (Not detected by the
conventional validation test nor by the
carmaker

Bugs detected via the
Nominal2 “operation matrix”

Bugs detected via the Bug
“operation matrices”

Bugs detected via the Driver
Profile “operation matrix”

Bugs detected via the Test Case
“operation matrix”

Front wiper functionality

Bugs not detected by
our approach

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
265

Figure 10.16 – Evolution of the cumulated number of bugs detected by our approach on

the fuel gauge functionality

B. Decrease the time spent in testing a functionality

On the one hand, we detect bugs earlier in the software life cycle. On the other hand, we
lower the time spent in testing a functionality. Thanks to historical data, the total time spent
in testing conventionally the two functionalities is illustrated in Figure 10.17; e.g. 53.75 eight-
hour days for the front-wiper and 50 days for the fuel gauge. For the front wiper functionality,
no unit test has been performed. During the validation test stages, test engineers spent 11,5
eight-hour days analyzing the carmaker requirements before start designing manually test
cases (29,5 eight-hour days). 6 eight-hour days were spent executing the designed test cases
and analyzing the results. Finally, we estimate at 6,75 eight-hour days the time spent in
managing the bugs detected later in the process. For the fuel gauge functionality, 5 eight-hour
days were spent testing unitarily the functionality. During the validation test stages, test
engineers spent 10 eight-hour days analyzing the carmaker requirements before start
designing manually test cases (22 eight-hour days). 6 eight-hour days were spent executing
the designed test cases and analyzing the results. Finally, we estimate at 7 eight-hour days the
time spent in managing the bugs detected later in the process.

As stated in Section 2, up to 50% and 10% of the total time spent in verifying and validating a
software functionality were respectively spent to manually design the test cases and manage
the bugs detected later in the process.

0

2

4

6

8

10

12

14

16

T
C

1

T
C

2

T
C

3

N
um

be
r o

f d
et

ec
te

d
bu

gs
Known bugs already
detected by the supplier
conventional testing phases

Known bugs already
detected by the carmaker

Unknown bugs (Not detected
by the supplier conventional
testing phases nor by the
carmaker)

3 test cases generated from the driver profile
“operation matrix”

Execution order of the test cases

Fuel gauge functionality

S
ta

bi
lit

y
zo

n
e

14

0

4

14

0

4

12

3

0

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
266

Figure 10.17 – An estimate of the total time spent in testing conventionally the two

functionalities

The total time that we spent in testing unitarily the two functionalities using our approach is
presented in Figure 10.18. It has been approximately spent 39 and 41,5 eight-hour days
testing respectively the front wiper and fuel gauge functionalities. In Section 4, 5, 6, 7 and 9,
we estimate and comment the time spent analyzing the carmaker requirements, modeling,
computerizing, verifying and validating the requirements model, designing the “operation
matrices” and finally generating and executing automatically the test cases. After executing
the generated test cases, we estimate to 10 and 2 eight-hour days the time respectively spent
in analyzing the execution results. It consists, once an anomaly is detected, of answering the
question: “Is it a bug in the requirements model or a bug in the software module?”. The
correction of anomalies is instantaneous. The time spent in analyzing the execution results is
proportional to the number of executed test steps (front wiper: 68500 test steps, fuel gauge:
900 test steps). In fact, the task of manually designing the test cases disappears in favor of
designing, verifying and validating the requirements model. Once the model is developed, the
test design activity is automated but more efforts are necessary to analyze the results of the
tests execution. Indeed, test engineers have to understand the generated test cases in order to
confirm or not a bug. Moreover, we do not detect 3 and 5 known bugs respectively on the first
and second case studies. In Section 10.A, we come up to the conclusion that these bugs could
be detected by our platform since we reach a 100% of the functional coverage (now, it is not

0 11,5 29,5 6 6,75

0 5 10 15 20 25 30 35 40 45 50 55 60

F
ro

nt
 w

ip
er

 fu
nc

tio
na

lit
y

Eight-Hour days

5 10 22 6 7

0 5 10 15 20 25 30 35 40 45 50 55 60

F
ue

l g
au

ge
 fu

nc
tio

na
lit

y

Eight-Hour days

Time to design, execute and analyze the results of test cases for UNIT test
Time to analyze carmaker requirements
Time to design test cases for VALIDATION test
Time to execute and analyze the results of test cases for VALIDATION test
Time to manage bugs detected by Johnson Controls and by the carmaker later in the process

53,75

50

Conventional Johnson Controls testing approach

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
267

the case, Cf. Section 9). Based on the assumption that our computational algorithm was
improved (to be able to reach the 100% functional coverage), we estimate the time required to
detect the remaining bugs on the two case studies. This time take into account the time to
generate and execute the test cases and analyze the results. For the first case study, we already
cover 90% of the requirements model and 3 bugs are remaining. Therefore, we estimate to 2
eight-hour days the time to detect these bugs. For the first case study, we already cover 70%
of the requirements model and 5 bugs are remaining. Therefore, we estimate to 3 eight-hour
days the time to detect these bugs. These estimations could be explained by the fact that:

• The requirements model of the first case study is bigger than the one of the second
case study (Cf. Table 10.6).

• Analyzing the execution results of the second case study takes more time that the one
of the first case study. In fact, the requirements model of the second case study
(Natural language) is less reliable that the one of the first case study (Cf. Section 3
and 6).

Globally, we spent approximately 39 and 41,5 eight-hour days testing respectively the front
wiper and fuel gauge functionalities. In this estimation, we do not consider the time spent in
configuring our test platform using the try-and-test protocol (Cf. Chapter 8.A). In conclusion,
we lower by 27% (39 instead of 53,75 eight-hour days) and 17% (41,5 instead of 50 eight-
hour days) respectively the time spent in testing the front wiper and fuel gauge functionalities.

Figure 10.18 – An estimate of the total time spent in testing unitarily the two

functionalities using our approach

3 5 12 5 2 0 10 2

0 5 10 15 20 25 30 35 40 45 50 55 60

F
ro

nt
 w

ip
er

 fu
nc

tio
na

lit
y

Eight-Hour days

3 7 6 20 0,5 0 2 3

0 5 10 15 20 25 30 35 40 45 50 55 60

F
ue

l g
au

ge
 fu

nc
tio

na
lit

y

Eight-Hour days
Time to analyze the carmaker requirements before starting the modelling task

Time to model "on paper " the software functional requirements (+ manual verification activity)

Time to computerize the "on paper" requirements model (+ automatic verification activity)

Time to validate the requirements model

Time to design "operation matrices"

Time to generate test cases - automated activity

Time to execute and analyze the results of test cases for UNIT test

Time to detect the remaining known bugs

39

41,5

Our approach

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
268

After the first carmaker delivery and for each new delivery, we estimate that an average of 1
eight-hour days can be enough to review and update the test cases of the functionality under
test. In fact, as carmaker requirements is suitable to evolve along the different deliveries (Cf.
Chapter 2 – Section 4.A), it will be easier to test engineers to update the requirements model
and generate automatically a new set of test cases than to update manually the design of test
cases.

C. Quantitative results’ overview: earlier detection of bugs and time saving

Performing a functional unit test, for each functionality (software module), using our
approach to generate test cases automatically leads to notably improved results. In Table
10.12, we summarize the results of the two case studies in terms of detecting bugs earlier in
the software life cycle.

Table 10.12 – A summary of the results of the two case studies

Moreover, we lower by 27% and 17% respectively the time spent in testing the front wiper
and fuel gauge functionalities (Cf. Figure 10.19).

Figure 10.19 – Reducing the time spent in testing the two functionalities

XI. Conclusion

In this chapter, we have experimented our new testing methodology through two typical case
studies on historical data. Potential benefits (quantitative and qualitative) have been
quantified. We reduce by 70% the number of bugs detected by the carmakers and by 9% the
ones detected by the end-users. Moreover, we reduce by 22% the time spent in testing a
software product. We also propose to deliver to the carmaker formal quality indicators
(coverage) on the delivered software. All these results contribute to an improvement of the

Front wiper functionality Fuel gauge functionality
Increase the number of bugs detected
since the first testing phase

100% (from 12 to 24) 800% (from 2 to 18)

Decrease the number of bugs detected by
the carmaker

60% (from 5 to 2) 80% (from 5 to 1)

Increase the number of bugs detected by
Johnson Controls

41% (from 17 to 24) 22% (from 18 to 22)

New bugs detected 18% (5 out of 27) 0% (0 out of 23)

53,75
50

39
41,5

0

10

20

30

40

50

60

Front wiper
functionality

Fuel gauge
functionality

E
ig

ht
-H

ou
r d

ay
s Conventional

Johnson Controls
testing approach

Our approach

-27% -17%

Modeling and simulating two industrial case studies R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
269

customer satisfaction and as a direct impact; the number of tenders will grow. Unfortunately,
estimating the cost of software bugs in an organization is a delicate, strategic and confidential
question and therefore we were not allowed to communicate the numbers on the bugs’ costs
savings via the use of our approach.

In the following chapter, we give an overview on the contributions, impacts and perspectives
of our approach.

General conclusion R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
271

GENERAL CONCLUSION

General conclusion R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
273

I. Contributions’ review

In this research project, we were asked by an automotive electronic supplier, namely Johnson
Controls, to improve the performance of its software V&V activities. Their main purpose is to
improve the quality of their products and therefore better satisfy the requirements and
expectations of their clients. We went through this problem with a systemic approach in order
to identify levers in any domains from which we might be able to improve the global
performance of the software V&V activities. The major added value of the present work is to
globally solve the quality issue of the software testing process. Hereafter, we summarize the
main ten contributions of our research:

Contribution 1: A list of anomalies and lacks in the software verification and validation
(V&V) practices in automotive industry.
Through an industrial audit, we analyze the current software practices in automotive industry.
The audit is divided into four parts: 1) the process of managing the carmakers’ requirements
related to the software domain, 2) the processes of verifying and validating software products,
3) the process of managing and reusing capitalized bugs and finally 4) the process of
managing and reusing capitalized test cases. For each of these parts, we make our analysis in
two stages: 1) a snapshot of the current software practices in automotive industry (process,
tool, people) and 2) an analysis and identification of issues and lacks (diagnoses) in these
practices. Our approach to perform the audit can be divided into 7 activities: 1) analyze the
documents delivered by the carmakers to their electronic suppliers, 2) analyze the main
activities of an engineer when designing test cases for a software product, 3) audit engineers
when designing test cases, 4) intervention on the design of test cases for four software
projects, 5) interview managers on the expectations of the carmakers at each stage of the
software development life cycle, 6) interview all types of engineers that can be involved in a
software project and finally 7) analyze data on the software testing practices of carmakers.
The result of the audit is a list of anomalies and lacks (diagnoses) in the current software V&V
activities in automotive industry.

Contribution 2: A formal specification language to represent and simulate software
functional requirements in automotive industry
Managing the software functional requirements is considered as one of the key issues in the
software development process. In fact, these requirements are the main input for the design
and implementation processes of the software product but also for the verification and
validation processes. Ten years ago, formal methods were rarely used in automotive industry,
contrarily to medical, avionics and railways industries. Now, in automotive industry, semi-
formal and formal methods are more and more used to specify software functional
requirements. However, there is a lack of a standard formalism shared between carmakers and
suppliers. In fact, for each project, the supplier must adapt its processes to the formalism used
by the carmaker. In this context, we develop a new formal and simulation language to model
software functional requirements. A simulation model of these requirements can help to avoid
ambiguity, incompleteness and inconsistency in customers’ requirements. Development and
validation teams can communicate more easily with the customer and fix specification’s
problems. Moreover, through a simulation model, one can automate the assessment process of
all the expected outputs values of a software product. In fact, when designing test cases, test
engineers can perform the selected operation on the requirements model and automatically
assess the expected output values by simulating the model. We then name “operation” the fact
that an input signal of the software product is set to a given value. Finally, one can now
formally measure the coverage of the requirements model, which bring new valuable quality

General conclusion R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
274

indicators in addition of the sole code coverage for better monitoring the software testing
process.

Contribution 3: An automatic process to design test cases for software products
In industry, the activity of manually designing test cases for software products becomes more
and more laborious and time consuming. Despite the considerable time and money spent in
testing a software product and after each delivery to the customer, some bugs are still detected
by the customer. Since the late 90’s, the automation of the test case design process has
become a hot topic and industrials are still looking for a relevant automation of this process.
In this context, we develop a strategy to automatically design test cases with simulations from
our formal model. A test case is a series of operations whose selection is performed based on
a Monte Carlo simulation on an “operation matrix”. Probabilities are expressed for choosing
a next operation and for defining the time interval between both successive operations.
Therefore, we build a matrix that we name “operation matrix” with all possible operations in
columns and in rows; this “operation matrix” becomes central to our test case generation
algorithm. All along the test case generation, the expected values on the output signals of the
functionality are assessed through a simulation of the requirements model.

Contribution 4: An objective function for optimizing the design of test cases for software
products
Testing software exhaustively remains a major problem from the computing point of view.
Therefore, software testing must often be based on specific assumptions and objectives which
help test engineers and managers to decide when to stop the testing protocol. In order to
monitor our automatic design of test cases, we propose an objective function based on a
formal structural (software code) and functional (customer requirement specification)
coverage and the execution time and cost of designed test cases. In software engineering, the
term “coverage” means the degree, expressed as a percentage, to which a specified item (code
or requirement) has been exercised by a test case. In addition, we define an exponential set of
weights that test engineers can associate for each defined coverage, time or cost target: 0 (to
be ignored), 1 (not very important), 5 (important), 10 (very important).

Contribution 5: A hybrid heuristic algorithm for optimizing the design of test cases for
software products
When testing a software product, test engineers have to execute the designed test cases on the
software under test. The execution could be manual or automatic and is often time and
resource consuming. The main purpose of a test engineer is to detect the maximum number of
bugs in minimum laps of time. Therefore, optimizing the number and length of test cases
while fulfilling predefined objectives and constraints is critical to reach the quality, schedule
and cost goals of a software project. To overcome this problem, we propose a heuristic
algorithm in charge of optimizing the design of test cases while fulfilling quality objectives
and time constraints. In this algorithm, we implement two types of optimization strategies:
Look Back and Look Ahead. In fact, when designing test cases, we avoid similar and
repetitive operations or successions of operations (Look Back) and we focus on the ones
which improve the objective fulfillment (Look Ahead).

Contribution 6: A software bug classification model and a detailed typology of software
problems
Each software organization uses a problems’ tracking tool in order to manage and store
problems detected during a software project. Moreover, the tracking tool has a database where
all the problems are stored. Such databases hold thousands of software bugs and are difficult
to be analyzed. In fact, when describing a bug in the problems’ tracking tool, there are often

General conclusion R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
275

too many fields to fill in, a lot of free fields and a lack of relevant predefined fields. Moreover
and as the detection of bugs comes later in the process, engineers do not have enough time to
fill in all the fields of a bug. Therefore, analyzing these databases in order to pinpoint issues in
the development processes and propose improvement actions is a complicated task. In this
context, we propose a new bug classification model. The aim of this model is to be able to
identify process improvement actions for the development and V&V processes. In other
words, the new bug classification model answers the question of “which types of software
problems are injected and detected in which process phase?” To do this, we propose a detailed
software problem typology taking the industrial context into account. In addition, identifying
recurrent type of software problems allows test engineers to focus the design of test cases on
detecting these problems.

Contribution 7: A process to define software users’ profiles in order to design test cases that
simulate the real use of a software product
There is no better way to test a product other than testing it in the way that it will be used. The
major number of bugs detected by the end-users of a software product is related to specific
operations or successions of operations recurrently performed on the software in real use.
Therefore, testing a software product with an end-user point of view seems beneficial. We
propose to define an end-user behavior’s profile for each software under test. This profile can
be used by test engineers when designing test cases. In fact, we define four types of
constraints that test engineers can affect to each input signal of a software product in order to
eliminate or favor specific successive operations. Each input signal can have one or more
constraints. These constraints aim to lower the number of possible combinations on input
signals and to more thoroughly pinpoint which ones are frequently set once the product is
launched on the market. These four constraints are: logical constraint, conditional constraint,
succession constraint and timing constraint.

Contribution 8: An automatic and formal process to use capitalized software bugs in the
design of test cases suitable to detect similar bugs on a new software development
Only exhaustive testing can show that a software product is free from bugs. However,
exhaustive testing of a software product is not practical because variable input values and
variable sequencing of inputs result in too many possible combinations to test. So it is useful
to concentrate the test on the areas associated with the greatest risks and priorities. In this
context, we propose to design test cases which have a high probability to detect software
bugs. Therefore, we specify a new format for the “Problem description” attribute of a bug
capitalized in the problems’ database. This format consists of describing the initial conditions
and the successive operations that lead to the capitalized bug. Based on this new format, we
propose an automated process able to design one or more test cases from each capitalized
bug. These test cases are suitable to detect bugs recurrently done by test engineers on specific
software functionalities.

Contribution 9: An automatic and formal process to reuse capitalized test cases for one
project to another
Reusing capitalized test cases from one project to another seems to be beneficial in an
industrial context. In other words, when testing a software functionality that has already been
implemented in the past on another project, it is judicious to reuse existing test cases. But
unfortunately, test cases are not often reused from one project to another. Two potential main
reasons are: 1) the use of different formats when designing manually test cases. Sometimes,
test engineers write the test cases immediately in a computer language (C language …)
understandable by the test execution platform. Others use a more high level language. 2) the
lack of an automated process to reuse the test cases. To overcome this problem, we propose to

General conclusion R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
276

use one specific format as the standard format to represent a test case. Based on this new
format, we develop an automated process able to design one or more test cases from each
capitalized test case. In fact, the designed test cases focus on test scenarios based on the
returns of experience from previous projects.

Contribution 10: Promising results of the experiment of our testing methodology on two
typical case studies within an automotive electronic supplier
Through our research project, we propose a new systemic approach to automate efficiently the
design of test cases for software products. Apart from the computational aspects of software
testing, the approach takes into account organizational matters (Cf. Contributions 2, 3, 4, 5, 6,
7, 8 and 9) such as functional simulation, knowledge management, competency management
and project management. Our testing methodology has been implemented in a computer
platform and experimented on two typical case studies of Johnson Controls for which
historical data are available. Consequently, we reduce by 70% of the number of bugs detected
by the carmakers and by 9% the ones detected by the end-users. Moreover, we reduce by 22%
the time spent in testing a software product. In fact, we detect the bugs earlier in the software
development process and closer to their origin. We also propose to deliver to the carmaker
formal quality indicators on the delivered software. All these results contribute to an
improvement of the customer satisfaction and as a direct impact; the number of tenders will
grow. Unfortunately, estimating the cost of software bugs in an organization is a delicate,
strategic and confidential question and therefore we have not been allowed to communicate
the numbers on the bugs’ costs savings via the use of our methodology.

Contribution 11: A patent on our approach to design test cases for software products
The promising results of the deployment of our testing methodology within the industrial
context have motivated the automotive electronic supplier Johnson Controls (who grants this
PhD) to patent this approach. Presently, the company patent experts are assessing the
economical profit of patenting our approach. In the meantime, a worldwide Quick Patent42
(for a preliminary protection of the idea) has been submitted by the company.

II. Impact of our testing methodology in the company organization

Estimating the cost of bugs in a software organization is a delicate, strategic and confidential
question. In 2002, the National Institute of Standards and Technology (NIST) has estimated
that software bugs cost U.S. economy 59,5 billion dollars annually43. In Johnson Controls,
there is no model to estimate the cost of software bugs. Unfortunately, these data are
confidential. However, the number of software bugs detected by the carmakers during
intermediate deliveries or by the end-users after the Start Of Production (SOP) is estimated
each month. As the automotive market becomes more and more competing, decreasing the
development time of outsourced parts and decreasing the number of problems detected later in
the process becomes of major importance for carmakers and consequently a major quality
indicator for automotive suppliers. Indeed, the carmakers’ process for assigning new projects
to suppliers is mainly based on feedbacks from previous projects. Through our testing
methodology (Cf. Table 10.12), we reduce by 70% ((60+80)/2, 60% and 80% respectively on
the first and second case studies) the number of software bugs detected by the carmakers after
intermediate deliveries. Making the assumption that the new “minor” bugs that we detect

42 In France, we associate a Quick Patent to an “Enveloppe Soleau” (http://www.inpi.fr/fr/services-et-
prestations/enveloppe-soleau.html, Consulted on November 2008).
43 http://www.nist.gov/public_affairs/releases/n02-10.htm (Consulted on November 2008)

General conclusion R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
277

through our methodology and which were neither detected by Johnson Controls nor by the
carmaker have been detected by an end-user, we can state that we reduce by 9% ((18+0)/2,
18% and 0% respectively on the first and second case studies) the number of software bugs
detected by the end-users once the product is launched on the market. Moreover, we propose
to deliver to the carmaker quality indicators related to code coverage (already done in the
industry) but also formal requirements coverage, which may increase its confidence about
the quality of the software products. Presently, the measurement of requirements coverage is
informal (Cf. Chapter 2 – Section 6.B.1). In conclusion, across our testing methodology, the
image of the company (Johnson Controls) in front of its customers (carmakers) will be
improved and as a direct impact of the customer satisfaction, the number of tenders will
grow.

Moreover, the validation test stage accounts for more than 50% of the project time and
resources (Cf. Chapter 1 – Section 5.C.2). In fact, bugs related to the internal behavior of one
software module could be detected in unit test stage (earlier in the process). Unfortunately, it
is not the case and such bugs are detected later in the validation test stage. Of course,
analyzing the origin of a bug in validation test stage (all the software modules are integrated
together) is more difficult and time consuming than analyzing the bug’s origin in a specific
software module. Through our testing methodology (Cf. Figure 10.20), we reduce by 22%
((27+17)/2, 27% and 17% respectively on the first and second case studies) the time spent in
testing a functionality. While lowering the number of bugs detected by carmakers and end-
users, we lower the resources required for testing a software product.

However, we are conscious of the impact of our testing methodology (model and design
platform) on the current software organization in case of an industrial deployment.
Indeed, an investment but also personal commitments of all the software players within the
company are mandatory for the success of such change of practices. In Chapter 9, we develop
a “process-people-tool” view of our testing methodology. Based on this view, we identify
three streams of actions necessary for integrating our methodology within the current software
organization of the company:

• Integrate the processes of our methodology (Cf. Figure 9.2) within the global software
process map of the company (Cf. Figure 2.2).

• Train the software engineers to the new testing methodology. Test automation has
broad impacts on an organization such as the skills needed to design and implement
automated tests, automation tools, and automation environments. The test engineers’
practices, roles and competencies change when automation is installed. These impacts
have negative aspects that must be considered. When introducing a new methodology
and tool to the testing program, mentors and trainings are very important. Even with
training, automation skills take time and experience to acquire. The best automation
tool in the world will not help the test efforts if the test team resists using it. The test
engineers may feel that 1) their manual process works fine, and they don’t want to
bother with the additional setup work for introducing an automation tool and 2) they
may lose their know how in designing manually test cases for software products.
Indeed, test engineers’ technical skills will have to switch from a manual design to a
high level modeling of the test scenarios and objectives in using in a flexible manner
our design platform. Nevertheless, based on the literature (Bunse 2007), model-based
software development approaches are slowly superseding traditional ways of
developing software products and software engineers’ required skills tend toward
modeling and automation tool monitoring.

• Improve the Man Machine Interfaces of the computer tools that we developed to
support our testing methodology (Cf. Chapter 8 – Section 3.C and 4). In fact,

General conclusion R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
278

ergonomic user interfaces play a major role in the practitioners’ use and perception of
a computer tool.

III. Research perspectives

The open perspectives of this research project are listed by topic.

Perspective 1: Related to the formal language to specify software functional requirements
The perspectives concerning our formal language to specify software functional requirements
are:

• Perform a broad survey on the carmakers’ specification of the software functional
requirements. The purpose is to fill out our formal specification language in order to
be able to specify any carmakers’ software functional requirement.

• Develop a list of rules and recommendations to help modelers using efficiently our
specification language and therefore develop consistent requirements model at the first
attempt.

• Develop more efficient strategies to validate the compliance of a requirements model
developed using our specification language with the (original) carmaker requirements.
One solution could be to validate the model by the carmaker itself.

• Develop an editor tool to support modelers in designing a requirements model using
our specification language. For instance, when designing a DT element, designers can
not consider all the possible conditions on the input signals. In fact, in an industrial
context, the number of the DT input signals can exceed 10 and the domain length of
one signal can exceed 100 (for instance, when sampling the “vehicle speed” signal). In
that case, its remains a very difficult task to identify manually all the possible
conditions and their corresponding actions. Therefore, an automatic generation of all
the possible conditions on the input signals of a DT could be judicious. The editor tool
could perform such functionality.

Perspective 2: Related to the knowledge management in terms of capitalized bugs and test
cases
On the one hand, we propose to reuse capitalized bugs in order to verify the nonexistence of
recurrent bugs. To do this, we develop a new bug classification model with a detailed
typology of software problems and a specific format to describe the initial conditions and the
successive operations that lead to detect a bug. We propose to generate automatically test
cases that verify the nonexistence of recurrent (capitalized) bugs on each software
functionality (for instance, front wiper) of a new development. To do this, for each software
functionality of a product family, a glossary of the functionality’s input signals names on
previous and new projects are necessary. A family of product is defined by a customer (for
instance, Renault), a type of product (for instance, a body controller module) and a car
platform (for instance, Laguna platform). We experiment these proposals on two industrial
case studies with historical data. However, it could be judicious to experiment our bug
classification model (software problems typology and description formalism of a bug) and the
inputs glossary on new software projects. Therefore, we could adjust our proposals in order to
take practical considerations into account.
On the other hand, we propose to reuse test cases from one project to another. To do this, we
define a new formalism to represent a test case and based on this formalism, we develop an
automatic process to generate one or more test cases that focus on operations or successions
of operations regularly done in a capitalized test case. In fact, we propose to reuse test cases
when testing a software functionality that we already tested in the past. Therefore, a test cases
library should be specified in order to capitalize the test cases by software functionality and

General conclusion R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
279

family of product. Moreover, for each software functionality of a product family, a glossary of
the functionality’s input signals names on previous and new projects are necessary.

Perspective 3: Related to the test case generation algorithm
Through our experiment, we show that our computational algorithm does not successfully
reach 100% of functional coverage (the maximum was 90%). Consequently, we were not able
to detect bugs related to the non-covered functional requirements. To overcome this
deficiency, we plan to develop a new test case generation algorithm that focuses on covering
non-covered zones of a requirements model. In fact and instead of selecting operations via a
Monte Carlo simulation on the input signals of a model, we propose to synthesize the
operations that lead in covering a specific item (for instance, a state of an FSM, a condition of
a DT …) of the model. In other words, one has to select the item that should be covered and
the algorithm will propose a list of successive operations to be performed on the model in
order to cover this item. We already start a global design of this algorithm but unfortunately,
we had not enough time to implement it in our approach.

Perspective 4: Related to the strategy for tuning the generation of test cases

We are conscious of the variability or subjectivity of our current strategy (try-and-test) to set
coverage objectives and optimization parameters when generating test cases. In fact, there are
a lot of parameters to set. As a consequence, we plan to propose a new strategy to help test
engineers to parameterize the generation of test cases. In fact, when testing a software
product, the main purpose of a test engineer is to detect the maximum number of bugs in
minimum laps of time. Therefore, we have to identify the correlations between the
optimization algorithm parameters, the functional coverage, the execution time of the
generated test cases and the number and type of detected bugs. Based on these correlations,
we might define rules and recommendations to help test engineers parameterizing the
generation of test cases. Moreover, we plan to develop parameterization profiles that test
engineers could adopt according to the test stage objectives. A parameterization profile
consists of a set of predefined optimization parameters, coverage objectives and time
constraints. To do this, we plan to perform a Design of Experiments (DoE) on our approach
(Cf. Figure Conclusion.1). We set all the functional coverage objectives to 100% with no
time or cost constraints. We decide to generate test cases for only one “Configuration” of the
functionality under test (Parameter 6 = 0, Parameter 7 not to be defined). We plan to
generate one test case for each combination of the parameters (Parameter 8 = 1). The five
remaining parameters of the optimization algorithm (Parameter 1, 2, 3, 4 and 5) represent the
factors of the DoE. Two factors (Parameter 1 and 3) have two levels (0, 1) and three factors
(Parameter 2, 4 and 5) have n levels (n integer). Based on our experience, we sample the
domain of these factors into four levels (30, 60, 90 and 120). Consequently, a complete DoE
accounts for 256 combinations and a partial one for 16 combinations. We decide to perform
the partial DoE. After generating one or more test cases for each combination, we have to
measure the reached functional coverage. And after executing independently each test case on
the software module under test, we have to assess the number and type of detected bugs and
the time spent to execute the test case. Once all the combinations of the DoE are achieved, the
experiment results must be analyzed and correlations identified. In fact, we expect that the
results of the DoE can help test engineers to configure the test platform in a short time
(around 1 hour) instead of 1 eight-hour day using a try-and-test strategy (Cf. Chapter 10 –
Section 8). We start performing the DoE but unfortunately, we had not enough time to
complete it.

General conclusion R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
280

Figure Conclusion.1 – A Design of Experiments to identify the correlations between the

parameters of our approach and the detection of bugs

Perspective 5: Related to the consistency and reliability of our experiment’s results
Our approach to design test cases for software products can be identified to a measurement
system which has to measure the number of bugs in a software product. As a consequence, we
have to check the statistical properties of a reliable measurement system: repeatability and
reproducibility. We start performing this task but unfortunately, we had not enough time to
complete the experiments.

• Reproducibility: In our testing methodology, the two main activities depend on the
operator (e.g. human intervention). The first one is the design of the requirements
model and the second one is the definition of a set of targets and weights for the test
case generation. Therefore, the reproducibility of our experiment results must be
verified. In fact, two operators must independently model the same carmaker
requirements. Rules and recommendations have to be defined in order to help
operators configure the generation of test cases. Each operator has to generate
automatically a set of N test cases fulfilling the predefined targets. After executing
independently each set of N test cases, one has to assess the ratio of bugs
simultaneously detected by the two sets of test cases.

• Repeatability: Since our generation of test cases is partly based on a stochastic
process, the repeatability must be verified. Consequently, we propose to generate two
or more sets of N test cases from the same requirements model and with the same
objectives, constraints and optimization parameters. After executing independently
each set of N test cases, one has to assess the ratio of bugs simultaneously detected by
two or more sets of test cases.

Coverage objectives
Time and cost constraints

Parameters

Number of detected bugs
Type of detected bugs

Simulation time of the test case

Reached functional
coverage

Our approach

100% of
functional
coverage

and

No
constraints

For each generated test case

Correlation

Correlation

Parameter 1 2 levels

Parameter 2 4 levels

Parameter 3 2 levels

Parameter 4 4 levels

Parameter 5 4 levels

Parameter 6 Set to 0

Parameter 7 Not to be defined

Parameter 8 Set to N

5 factors:
2 factors with 2 levels
3 factors with 4 levels

Design of Experiment
Complete : 256 combinations

Partial : 16 combinations

?

?

Cf. Chapter 7 – Section 6.B

General conclusion R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
281

Perspective 6: Related to the monitoring of our test case design process
We also plan to monitor the quality of our new testing process. To do so, it seems that within
the Design for Six Sigma (DFSS) framework, the Define, Measure, Analyze, Design,
Optimize, and Verify (DMADOV) methodology is the appropriate approach. This will allow us
to put the proper focus on the up front design of the testing process. Therefore, we need to
establish the set of measurable, customer-oriented attributes, which can be defined, measured,
analyzed, optimized and verified (DMADOV) in the software testing process. These attributes
need to be directly built into the testing process so that it is specifically geared to producing
pre-defined quality limits. This means embedding specific design intent within the software
testing algorithm to meet specific and understood, customer-facing performance metrics.
Below, we identify two types of critical-to-customer metrics concerning the software testing
process. We plan to assess the following metrics on each software project that undergoes
testing:

• Critical-to-Quality (CTQ) metrics:
Y1. The capacity to reduce the number of bugs detected by the carmaker: the ratio

between the number of bugs detected by carmakers and the total number of bugs
Y2. The capacity to reduce the number of bugs detected by the end-user: the ratio

between the number of bugs detected by the end-users and the total number of
bugs

• Critical-to-delivery (CTD) metrics:
Y3. The number of versions of each software module or product
Y4. The capacity to deliver software free of bugs since the first delivery: the ratio

between the number of bugs detected in the first testing phase and the total number
of bugs

Since we place a high premium on reducing the number of bugs detected by carmakers and
end-users (Y1 and Y2), one solution could be to increase the structural and functional
coverage. But, experiments reveal that some bugs cannot be detected even if our requirements
model and source code are covered at 100%. This leads to the realization that we need to
refine our functional coverage model. Typically, we can consider the coverage rate of the
succession of two transitions in a FSM element.

IV. General discussions

In this section, we discuss three major topics related to the deployment and the durability of
our testing methodology within an industrial context.

Since 2003, carmakers, suppliers and other companies from the electronics, semiconductor
and software industry have been working on the development and introduction of an open,
standardized software architecture for the automotive industry (AUTOSAR - AUTomotive
Open System ARchitecture). One of the key features of this consortium is the modularity and
configurability of automotive software products. This leads to increase the reuse of software
components from one project to another. As a consequence, reused software components
would reach a high reliability degree and do not require to be tested unitarily after each reuse.
Integration and validation test will be of major importance. Nevertheless, the unit test of
software components will remain necessary since 1) the reused software components
represent around 50% of the total components of an automotive software product and 2) these
reused component will evolve continuously (new functionalities and features) and therefore
need to be tested unitarily.

Presently, many researches and industrial projects deal with the automatic generation of the
source code of a software product. The main purposes of these actions are to 1) reduce the

General conclusion R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
282

software development time and 2) avoid some software problems injected by the software
engineer when designing and coding the software product. As for the automatic generation of
test cases, a formal representation of the software specification is required. Most of the formal
specification languages found in the literature attempt to be useful for the code and test case
generation. Therefore, it could be useful to explore the automatic generation of source code
from our functional requirements model of a software product. Considering the following two
assumptions 1) the requirements model is validated at 100% and 2) the generation of the
source code is reliable at 100%, the generated source code of a software product does not
need to be tested. Unfortunately, it is not the case and a software product needs always to be
tested (verified and validated).

Although our testing methodology has been customized to software embedded in cars
(carmaker requirements formalisms, automotive constraints …), the use of this approach in
industries such as aeronautic, railway, medical, telecommunication … seems beneficial. In
these industries, software products properties and architectures are similar to the automotive
industry. However, software requirements formalisms and priorities in testing software
products could be different. For instance, contrarily to automotive industry, in aeronautic
industry, constraints on software project planning and budget are less important than software
quality objectives. This could be explained by the fact that avionics software requires being
highly reliable, since failures in this kind of products may very likely lead to deathly
consequences. One more point is the applicability or adaptability of our testing methodology
to computers applications; for instance, testing software products such as the Microsoft Word
software.

Bibliography R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
283

BIBLIOGRAPHY

My publications

International Conferences
(Yannou 2005) Yannou B., Awedikian R., 2005, “A Plug-And-Contract Mechanism for a
Robust Assessment of Design Concepts.” Proceedings of the ASME Design Engineering
Technical Conferences / Design Automation Conference - DETC/DAC 2005, Long Beach,
CA, USA, DETC2005/85457.

(Awedikian 2007) Awedikian R., Yannou B., Mekhilef M., Bouclier L. and Lebreton P.,
2007, “Proposal for a holistic approach to improve software validation process in automotive
industry.” Proceedings of the 16th International Conference on Engineering Design - ICED
2007, pp. 695-696, Paris, France.

(Awedikian 2008a) Awedikian R., Yannou B., Mekhilef M., Bouclier L. and Lebreton P.,
2008, “A simulated model of software specifications for automating functional tests design.”
Proceedings of the 10th International Design Conference - DESIGN 2008, Dubrovnik,
Croatia.

(Awedikian 2008b) Awedikian R., Yannou B., Mekhilef M., Bouclier L. and Lebreton P.,
2008, “A Radical improvement of software defects detection when automating the test
generation process.” Proceedings of the 10th International Design Conference - DESIGN
2008, Dubrovnik, Croatia.

(Awedikian 2008c) Awedikian R., Yannou B., 2008, “An objective function for optimizing
the generation of test cases for automotive software product.” Proceedings of IDMME -
Virtual Concept 2008 - IDMME 2008, Beijing, China.

(Yannou 2008) Yannou B., Dihlmann M., Awedikian R., 2008, “Evolutive design of car
silhouettes.” Proceedings of the ASME Design Engineering Technical Conferences / Design
Automation Conference - DETC/DAC 2008, New York City, NY, USA, DETC2008/49439.

International Journals
(Awedikian 2009a) Awedikian R., Yannou B., 2009. “A formal language to simulate the
software functional requirements in automotive industry.” Submitted on January 2009 in the
“Computers In Industry” Journal.

(Awedikian 2009b) Awedikian R., Yannou B., 2009. “Automatic generation of relevant test
cases: A practical model-based testing approach.” Submitted on January 2009 in the
“Software Testing, Verification and Reliability” Journal.

Bibliography R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
285

(Adrion 1986) Adrion, W. R., M. A. Branstad, and J. C. Cheriavsky, 1986, “Validation,
Verification and Testing of Computer Software.” In Software Validation, Verification,
Testing, and Documentation, S. J. Andriole, ed. Princeton, N. J.: Petrocelli, 81-123.

(Apfelbaum 1997) Larry Apfelbaum and J. Doyle, 1997, “Model-based testing.” Proceedings
of the 10th International Software Quality Week (QW 97).

(Apostolov 2007) Zhivko Apostolov, 2007, “Types of software tests.” Internal document,
Johnson Controls.

(Ayewah 2008) N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh, 2008.
“Experiences using static analysis to find bugs.” Software, IEEE, 25(5).

(Balci 1984) Balci, O. and R. G. Sargent, 1984, “A Bibliography on the Credibility
Assessment and Validation of Simulation and Mathematical Models.” Simuletter, 15, 3, pp.
15–27.

(Balci 1989) Balci, O., 1989, “How to Assess the Acceptability and Credibility of Simulation
Results.” Winter Simulation Conference 1989, pp. 62–71.

(Balci 1997) Osman Balci, 1997, “Verification, Validation and Accreditation of Simulation
Models.” Winter Simulation Conference 1997: 135-141.

(Barezi 2006) Luciano Baresi, Mauro Pezzè, 2006, “An Introduction to Software Testing.”
Electronic. Notes Theoretical. Computer Science 148(1): 89-111.

(Basanieri 2002) Basanieri, F., Bertolino, A., Marchetti, E., 2002, “The Cow_Suite Approach
to Planning and Deriving Test Suites in UML Projects.” Proceedings 5th International
Conference UML 2002, Dresden, Germany. LNCS 2460 383-397.

(Beizer 1984) Boris Beizer, 1984, “Software System Testing and Quality Assurance.” Van
Nostrand Reinhold.

(Beizer 1990) B. Beizer, 1990, “Software Testing Techniques.” Van Nostrand Reinhold, 2nd
edition.

(Beizer 1995) Boris Beizer, 1995. “Black-Box Testing: Techniques for Functional Testing of
Software and Systems.” John Wiley & Sons, ISBN 0471120944.

(Bernot 1991) Bernot, G., Gaudel M. C., Marre, B., 1991, “Software Testing Based On
Formal Specifications: a Theory and a Tool.” Software Engineering Journal 6 387-405.

(Bertolino 1997) Bertolino, A., Marré, M., 1997, “A General Path Generation Algorithm for
Coverage Testing.” Proceedings 10th International Software Quality Week, San Francisco,
Ca. paper 2T1.

(Bertolino 2002) Bertolino, A., Polini, A., 2002, “Re-thinking the Development Process of
Component-Based Software.” ECBS 2002 Workshop on CBSE, Lund, Sweden.

(Bertolino 2003) Bertolino, A., 2003, “Software Testing Research and Practice”, Invited
presentation at 10th International Workshop on Abstract State Machines ASM 2003,
Taormina, Italy, March 3-7, 2003, LNCS 2589, p. 1-21.

(Bertolino 2007) Bertolino, A., 2007, "Software Testing Research: Achievements,
Challenges, Dreams," fose, pp.85-103, Future of Software Engineering (FOSE '07).

(Binder 1995) Robert V. Binder, 1995, “Object-oriented testing: Myth and reality.” Object
magazine.

Bibliography R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
286

(Black 2000) Rex Black, 2000, “Shoestring Manual Testing.” In 6th International Conference
on Practical Software Quality Techniques (PSQT'00 South).

(Bontron 2005) Pierre BONTRON, 2005, “Les schémas de test : une abstraction pour la
génération de tests de conformité et pour la mesure de couverture.” PhD dissertation, Joseph-
Fourier University, Grenoble, France.

(Branaghan 1999) Branaghan, R., 1999, “Testing, one -- two -- three: Fundamentals of
usability testing.”

(Brinkkemper 1990) Brinkkemper, J.N., 1990, “Formalization of Information Systems
Modelling.” Katholieke Universiteit te Nijmegen, The Netherlands, doctoral dissertation
published by Thesis Publishers.

(Brooks 2007) Brooks, Jr., F.P., 2007, “The Mythical Man-Month: Essays on Software
Engineering.” 20th Anniversary Edition. Reading, MA: Addison-Wesley, 322 pages.

(Bunse 2007) Christian Bunse, Hans-Gerhard Gross, Christian Peper, 2007, “Applying a
Model-Based Approach for Embedded System Development.” Report TUD-SERG-2007-020,
Software Engineering Research Group, Department of Software Technology, Faculty of
Electrical Engineering, Mathematics and Computer Science, Delft University of Technology.

(Chapman 1982) D. Chapman, 1982, “A Program Testing Assistant.” Communications of
the ACM.

(Charrette 2005) Robert N. Charrette, 2005, “Why Software Fails?” IEEE Spectrum, pp. 42-
49.

(Chavez 2000) Tom Chávez, 2000, “A decision-analytic stopping rule for validation of
commercial software systems.” IEEE Transactions on Software Engineering, 26(9):907– 918.

(Cheng 2003) C. Cheng, A. Dumitrescu, P. Schroeder, 2003, “Generating Small
Combinatorial Test Suites to Cover Input-Output Relationships.” Proceedings of 3rd Quality
Software International Conference (QSIC '03) pp. 76-82.

(Chillarege 1992) Ram Chillarege, Inderpal S. Bhandari, Jarir K. Chaar, Michael J. Halliday,
Diane S. Moebus, Bonnie K. Ray, Man-Yuen Wong, 1992, “Orthogonal Defect Classification
- A Concept for In-Process Measurements.” IEEE Transactions on Software Engineering,
Vol. 18 N°11, pp.943-956.

(Chow 1978) Chow, T. S., 1978, “Testing software design modeled by finite state machines.”
IEEE Transactions on Software Engineering, Vol. 4, No. 3, pp. 178-187.

(Chvalovsky 1983) Chvalovsky, V., 1983, “Decision tables.” Software: Practice and
Experience, Vol. 13, No.5, pp. 423-429.

(Dalal 1988) S. R. Dalal and C. L. Mallows, 1988, “When should one stop testing software.”
Journal of the American Statistical Association, 83(403):872–879.

(Dart 1987) Dart, S.A., Ellison, R.J., Feiler, P.H., and Habermann, A.N., 1987, “Software
development environments.” IEEE Computer, 18-28.

(Davis 1988) Alan M. Davis, 1998, “A Comparison of Techniques for the Specification of
External System Behavior.” In Communications of the ACM. ACM 31(9): 1098-1115.

(Dick 1993) Dick, J., Faivre, A., 1993, “Automating the Generation and Sequencing of Test
cases From Model-Based Specifications.” Proceedings FME’93, LNCS 670 268-284.

(DoD 1996) Department of Defense, 1996, “Validation and Accreditation (VV&A)
Recommended Practices Guide.” Defense Modeling and Simulation Office, Alexandria,

Bibliography R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
287

VAb(Coauthored by: O. Balci, P. A. Glasow, P. Muessig, E. H. Page, J. Sikora, S. Solick, and
S. Youngblood).

(Dijkstra 1972) E.W. Dijkstra, 1972, “The humble programmer.” In Communications of the
ACM, vol. 15, pp. 859–866. Turing Award Lecture.

(Duernberger 1996) P.M. Duernberger, 1996, “Software testing applications in a computer
science curriculum.” Northcon/96, 4-6, pp. 291 – 293.

(Duphy 2000) Sophie Duphy, 2000, “Couplage de notations semi-formelles et formelles pour
la spécification des systèmes d'information.” PhD dissertation, Joseph-Fourier University,
Grenoble, France.

(El-Far 2001) I. K. El-Far and J. A. Whittaker, 2001, “Model-Based Software Testing.”
Encyclopedia of Software Engineering (edited by J. J. Marciniak). Wiley.

(Fagan 1986) M. E. Fagan, 1986, “Advances in Software Inspections.” IEEE Transactions on
Software Engineering, Vol. SE-12, No. 7.

(Fenton 1996) Fenton, N E, Pfleeger, SL, 1996, "Software Metrics: A Rigorous and Practical
Approach." Book 2nd Edition, pp. 638, International Thomson Computer Press, London and
Boston.

(Fenton 2000) Fenton, N. E., Ohlsson, N., 2000, “Quantitative Analysis of Faults and
Failures in a Complex Software System.” IEEE Transaction on Software Engineering, 26(8)
797-814.

(Fernandez 1996) Fernandez, J.-C., Jard, C., Jeron, T., Nedelka, L., Viho, C., 1996, “Using
On-the-fly Verification Techniques for the Generation of Test Suites.” Proceedings of the 8th
International Conference on Computer Aided Verification.

(Fradet 2008) Frederick Fradet, 2008, “Software Validation Plan - Quality Control
Checklist.” Internal document, Johnson Controls.

(Frankl 1998) Frankl, P. G., Hamlet, R. G., Littlewood, B., Strigini, L., 1998, “Evaluating
Testing Methods by Delivered Reliability.” IEEE Transaction on Software Engineering, 24(8)
586-601.

(Fraser 1994) M.D. Fraser, K. Kumar, and V.K. Vaisnavi, 1994, “Strategies for Incorporating
Formal Specifications in Software Development.” In Communications of the ACM,
37(10):74–86.

(Gale 1990) Gale, J.L., Tirso, J.R., and Burchfiels, C.A., 1990, “Implement the defect
prevention process in the MVS interactive programming organization.” IBM Systems Journal,
vol. 29, no. 1, 33-43.

(Garey 1979) Garey, M. and D. Johnson, 1979, “Computers and Intractability: A Guide to the
Theory of NP-Completeness.”

(Gass 1987) Gass, S. I. and L. Joel, 1987, “Concepts of Model Confidence.” Computers and
Operations Research, 8, 4, pp. 341–346.

(Gaudel 1995) Marie-Claude Gaudel, 1995, “Testing can be formal, too.” In Peter D. Mosses,
Mogens Nielsen, and Michael I. Schwartzbach, editors, TAPSOFT’95: Theory and Practice of
Software Development, vol. 915 of LNCS (Lecture Notes in Computer Sciences), pp. 82–96,
Aarhus, Denmark. Springer Verlag.

(Gibson 1992) R.Gibson, 1992, “Managing Computer Projects” Prentice-Hall.

Bibliography R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
288

(Gill 1962) Gill, A, 1962, “Introduction to the theory of finite-state machines.” McGraw Hill,
NJ.

(Grady 1992) Grady, R., 1992, “Practical Software Metrics for Project Management and
Process Improvement.” Prentice-Hall, Englewood Cliffs, NJ.

(Green 1998) Darryl Green and Ann DeCaterino, 1998, “A Survey of System Development
Process Models.” Center for Technology in Government University at Albany / SUNY.

(Hall 1990) Hall, A., 1990, “Seven myths of formal methods.” IEEE Software (7,5), 11-19.

(Harel 1987) Harel, D., 1987, “Statecharts: a Visual Formalism for Complex Systems.”
Journal of Science of Computer Programming, 8, pp. 231-274.

(Harrold 2000) Harrold M. J., 2000, “Testing: A Roadmap.” Future of Software Engineering,
22nd International Conference on Software Engineering.

(Hessel 2007) Anders Hessel and Paul Pettersson, “A Global Algorithm for Model-Based
Test Suite Generation.” Third Workshop on Model-Based Testing, Braga, Portugal, Satellite
workshop of ETAPS 2007.

(Hong 2000) Hyoung Seok Hong, Young Gon Kim, Sung Deok Cha, Doo Hwan Bae and
Hasan Ural, 2000, “A Test Sequence Selection Method for Statecharts.” The Journal of
Software Testing, Verification & Reliability, 10(4): 203-227.

(IEEE Std. 610-1990) IEEE Standard Glossary of Software Engineering Terminology, IEEE
Std. 610-1990, IEEE Standards Software Engineering, Vol. 1; The Institute of Electrical and
Electronics Engineers, ISBN 0-7381-1559-2.

(IEEE Std. 1044-1993) IEEE Standard Classification for Software Anomalies, IEEE Std.
1044-1993; The Institute of Electrical and Electronics Engineers, 1993.

(IEEE Std. 829-1998) Software Test Documentation, IEEE Std. 829-1998; The Institute of
Electrical and Electronics Engineers, 1998.

(IEEE Std. 830-1998) IEEE Recommended Practice for Software Requirements
Specifications (SRS), IEEE Std. 830-1998; The Institute of Electrical and Electronics
Engineers, 1998.

(Jorgensen 1995) P. C Jorgensen, 1995, “Software Testing a Craftsman’s Approach.” CRC
Press.

(Karp 1972) R. M. Karp, 1972, “Reducibility among combinatorial problems.” In Thomas J.,
editor, Complexity of Computer Computations, Proceedings Symp., pp. 85–103. IBM.

(Kemeny 1976) J. G. Kemeny and J. L. Snell, 1976, “Finite Markov chains.” Springer-
Verlag, New York.

(Kemmerer 1990) Kemmerer, R.A., 1990, “Integrating formal methods into the development
process.” IEEE Software, 37-50.

(Sayre 2000) Kirk D. Sayre and Jesse H. Poore, 2000, “Stopping criteria for statistical
testing.” Information and Software Technology, 42(12):851–857.

(Le Corre 2006) Pascal Le Corre, 2006, “AUTOCODE : C-Code generation from Statemate
impact.” Internal document, Johnson Controls.

(Leen 2002) Gabriel Leen, Donal Heffernan, 2002, “Expanding Automotive Electronic
Systems.” IEEE Computer 35(1): 88-93.

Bibliography R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
289

(Legeard 2007) Bruno Legeard, 2007, “Software testing course.” Computer laboratory,
Franche-Comté University, France.

(Leszak 2000) Marek Leszak, Dewayne E. Perry, Dieter Stoll, 2000, “A case study in root
cause defect analysis.” Proceedings of the 22nd International Conference on Software
Engineering, June 4-11, pp. 428-437.

(Leveson 1990) Leveson, N.G., 1990, “Formal methods in software engineering.” IEEE
Transaction on Software Engineering, 16, 9, 929-931.

(Liggesmeyer 1998) P. Liggesmeyer, M. Rothfelder, M. Rettelbach, and T. Ackermann,
1998, “Qualitatssicherung Software-basierter Technischer Systeme--Problembereiche und
Lösungs-ansätze.” Informatik Spektrum, 21(5):249--258.

(Littlewood 1997) B. Littlewood and David Wright, 1997, “Some Conservative Stopping
Rules for the Operational Testing of Safety-Critical Software.” IEEE-TSE, Vol. 23, No.11.

(Liu 2000) Chang Liu and Debra J. Richardson, 2000, “Using application states in software
testing.” Proceedings of the 22nd International Conference on Software Engineering (ICSE
2000), p. 776, ACM, Cambridge, MA, USA.

(Lyu 1996) M.R Lyu, 1996, “Handbook of Software Reliability Engineering.” McGraw-Hill.

(Marre 1992) Marre B., Thévenod-Fosse P., Waeselynck H., Le Gall P. and Crouzet Y, 1992,
“An experimental evaluation of formal testing and statistical testing.” In Safety of Computer
Control System, SAFECOMP ’92, Zurich, Switzerland, pp. 311-316 (Heinz H. Frey edition).

(Musa 1993) Musa J. D., 1993, “Operational Profiles in Software-Reliability Engineering.”
IEEE Software, 10(2), pp. 14-32 (IEEE Computer Society Press).

(Mays 1990) Mays, R.G., Jone, C.L., Holloway, G.J., and Sudinski, D.P., 1990, “Experiences
with defect prevention.” IBM Systems Journal, vol. 29, no. 1, 4-32.

(McDonald 2007) McDonald, Marc; Musson, Robert; Smith, Ross, 2007, “The Practical
Guide to Defect Prevention.” Microsoft Press, 480. ISBN 0735622531.

(Mignen 2005) Claude Mignen, 2005, “Lessons Learned Training.” Internal document,
Johnson Controls.

(Mignen 2006a) Claude Mignen, 2006, “Software development work instructions.” Internal
document, Johnson Controls.

(Mignen 2006b) Claude Mignen, 2008, “Software role description.” Internal document,
Johnson Controls.

(Mignen 2008) Claude Mignen, 2008, “Software process description – Requirements
specification work instruction.” Internal document, Johnson Controls.

(Mellor 1992) Mellor P., 1992, “Failures, faults, and changes in dependability measurement.”
Information and Software Technology 1992, 34(10), pp.640-54.

(Moavenzadeh 2006) Moavenzadeh, J., 2006, “Offshoring Automotive Engineering:
Globalization and Footprint Strategy in the Motor Vehicle Industry.” National Academy of
Engineering.

(Moret 1982) Moret, B., 1982, “Decision Trees and Diagrams.” ACM Computing Surveys
(CSUR), Vol.14, No.4, pp.593-623.

(Myers 1978) Myers, G. J., 1978, “A controlled experiment in program testing and code
walkthroughs/inspections.” Communications of the ACM, vol. 21, no. 9, pp. 760-768.

Bibliography R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
290

(Myers 1979) G.J. Myers, 1979, “The Art of Software Testing.” John Wiley and Sons, New
York.

(NIST 2002) National Institute of Standards and Technology, 2002, “The economic impacts
of inadequate infrastructure for software testing: final report.” Planning report 02-3.
Gaithersburg, MD: NIST.

(OMG 2005) Object Management Group, 2005, “Unified Modeling Language:
Superstructure.” version 2.0.

(Panzl 1978) D.J. Panzl, 1978, “Automatic Software Test Drivers.” Computer, 11(4):44–50.

(Paulk 2000) Paulk, M.C., Goldenson, D., White, D.M., 2000, “The 1999 survey of high
maturity organizations.” Software Engineering Institute, Carnegie Mellon University,
CMU/SEI-2000-SR-002.

(Pezze 1998) Mauro Pezze, Michal Young, 1998, “Software Testing and Analysis: Problems
and Techniques.” Proceedings of the 20th International Conference on Foundations on
Software Engineering (FSE'98), Orlando.

(Powell 1986) Powell, P. B, 1986, “Planning for Software Validation, Verification, and
Testing.” In Software Validation, Verification, Testing and Documentation, S. J. Andriole, ed.
Princeton, N. J.: Petrocelli, 3-77.

(Pressman 1997) R.S. Pressman, 1997, “Software Engineering - A Practitioner’s approach.”
McGraw-Hill, Fourth Edition.

(Robinson 1999) Harry Robinson, 1999, “Finite state model-based testing on a shoestring.”
Proceedings of the 1999 International Conference on Software Testing Analysis and Review
(STARWEST 1999), Software Quality Engineering, San Jose, CA, USA.

(Sangiovanni-Vincentelli 2003) Alberto Sangiovanni-Vincentelli, 2003, “Electronic-System
Design in the Automobile Industry.” IEEE Micro, vol. 23, no. 3, pp. 8-18.

(Sargent 1984) Sargent, R. G., 1984, “Simulation Model Validation, Simulation and Model-
Based Methodologies: An Integrative View.” Edition Oren, et al., Springer-Verlag.

(Sargent 2005) Sargent, R. G., 2005, “Verification and validation of simulation models.”
Winter Simulation Conference 2005: 130-143.

(Seroussi 1988) Seroussi, N. H. Bshouty, 1988, “Vector sets for exhaustive testing of logic
circuits.” IEEE transaction on information theory, vol. 34, pp. 513-522.

(Sommerville 1997) Ian Sommerville and Pete Sawyer, 1997, “Requirements Engineering: A
Good Practice.” Wiley.

(So 2002) So, S. S., Cha, S. D., Shimcall, T. J., and Know, Y. R., 2002, “An empirical
evaluation of six methods to detect faults in software.” Software Testing, Verification and
Reliability, vol. 12, no. 3, pp. 155-171.

(Spatz 2002) Julius Spatz & Peter Nunnenkamp, 2002, “Globalization of the Automobile
Industry - Traditional Locations under Pressure?” Kiel Working Papers 1093, Kiel Institute
for the World Economy.

(Sturgeon 2000) Sturgeon, Timothy & Florida, Richard, 2000, “Globalization and Jobs in the
Automotive Industry.” MIT Center for Technology, Policy, and Industrial Development.

(Walton 2000) G. H. Walton and J. H. Poore, 2000, “Measuring complexity and coverage of
software specifications.” Information and Software Technology, 42(12):815-824.

Bibliography R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
291

(Weyuker 1982) Elaine J.Weyuker, 1982, “On testing non-testable programs.” Computer
Journal, 25:465–470.

(Weyuker 1991) Weyuker, E. J., Jeng, B., 1991, “Analyzing Partition Testing Strategies.”
IEEE Transaction Software Engineering, 17(7) 703-711.

(Whittaker 1994) James A. Whittaker and Michael G. Thomason, 1994, “A Markov chain
model for statistical software testing.” IEEE Transactions on Software Engineering,
20(10):812-824.

(Wilkes 1949) Wilkes, M. V., 1949 “Progress in High-Speed Calculating Machine Design.”
Nature vol. 64 page 341.

(Wing 1990) Wing, J.M., 1990, “A specifier’s introduction to formal methods.” IEEE
Computer 23, 9, 8-24.

(Wood 1986) Wood, D. O., 1986, “MIT Model Analysis Program: What We Have Learned
About Policy Model Review.” Proceedings. of the 1986 Winter Simulation Conference,
Washington, D.C., pp. 248–252.

(Woodward 2005) Martin R. Woodward and Michael A. Hennell, 2005, “Strategic benefits
of software test management: a case study.” Journal of Engineering and Technology
Management, Vol. 22, Issues 1-2, pp. 113-140.

(Yang 2006) Yang O., Jenny Li J. and Weiss D., 2006, “A Survey of Coverage Based Testing
Tools.” In International workshop on Automation of Software Test, AST ’06, Shanghai,
China, pp. 99-103.

Appendices R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
293

APPENDICES

Appendix A: Verification and Validation static tools R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
295

Appendix A: Verification and Validation static tools

In Johnson Controls, there is a document which defines coding rules and recommendations
for using the C language44 in the development of embedded software. These rules and
recommendations are defined and updated by a committee, whose members are appointed by
the Software Engineering Process Group (SEPG) of the company. The committee includes
representatives of all Johnson Controls sites on which this document is deployed. An excerpt
of the coding rules and recommendations is illustrated in Table A.1.

Rule
number

Rule type Rule description

Rule 1 General Optimization objectives must be defined before coding. These objectives define
priorities between optimization ways (memory…).

Do not optimize unless it is planned.

It has been demonstrated many times that the programmers spend a considerable
amount of energy to optimize a piece of code that will almost never be used.
Before starting to optimize always identify the exact nature of the problem.

Rule 2 Comments Comments shall be written in US English language.

Rule 3 Code layout Each variable must be declared on a separate line.

Rule 4 Naming rules Never use names that differ only by uppercase/lowercase.

Rule 5 Functions A function must never return a pointer to one if it is a local function. Doing so,
would rather be a bug than just a rule break.

Rule 6 Flow control Give all loops a fixed upper bound.

Rule 7 Variables No multiple assignments

a=b=c=d;

Table A.1 – An excerpt of coding rules and recommendations used in Johnson Controls
(Johnson Controls source)

The static analysis is performed automatically using a computer tool such as QAC45, the most
used in automotive industry. The criterion to stop the static analysis of a source code is that
all QAC errors and warnings are either fixed or justified. A screenshot of the QAC tool is
illustrated in Figure A.1.

44 Computer language
45 http://www.programmingresearch.com/QAC_MAIN.html (Consulted on November 2008)

Appendix A: Verification and Validation static tools R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
296

Figure A.1 – Screenshot of the static analysis tool (QAC)

The dynamic analysis is performed automatically thanks to a commercial tool PolySpace46.
The criterion to stop the dynamic analysis of a source code is that all Polyspace errors and
warnings are fixed or justified. A screenshot of the Polyspace tool is illustrated in Figure A.2.

Figure A.2 – Screenshot of the dynamic analysis tool (Polyspace)

46 http://www.mathworks.com/products/polyspace/index.html (Consulted on November 2008)

Software code to be analyzed

List of errors and warnings

Software code to be
analyzed

List of errors
and warnings

Errors and warning details

Appendix B: Test description languages R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
297

Appendix B: Test description languages

As developed in Chapter 2 – Section 5, three techniques of software testing are performed
before a software delivery to the customer: unit, integration and validation test. In case of unit
test, the execution of test cases is always automated using a test execution platform (Cf.
Appendix C). The language used for describing test cases for unit test is the C language.
However, the language used to design test cases for the validation test of a software product
depends on the validation test execution platform. In case of an automatic execution of the
test cases, one uses a script language. It is a Johnson Controls property language very similar
to the well-known Visual Basic47 language. In case of a manual execution of the test cases,
test cases are written in natural language.

1. Unit test language

A standard unit test structure provides predefined C functions in order to help test engineers
writing test cases for the unit test of a software component:

• Function 1: TSTStartPhase(Title), display Title.
o The test cases should be broken down in phases to facilitate the test results

interpretation.
• Function 2: TSTWaitMs(Delay), wait Delay.

o This function is essential because the time is only simulated when this function
is called. The time is executed at the maximum speed.

o Delay should be in milliseconds.
• Function 3: mTSTCheck(Condition), generate an error if Condition is false.

o Condition is a boolean.
• Function 4: TSTTerminate(), display Final results of the test

o List the number of checked points.
o List the number of bugs.
o Indicates Test NOK or Test OK if an error has been detected or not.

An excerpt of test cases designed for the unit test of a software component is illustrated in
Figure B.1.

47 Computer language (http://msdn.microsoft.com/en-us/library/sh9ywfdk(vs.80).aspx, Consulted on November
2008).

Appendix B: Test description languages R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
298

Figure B.1 – An excerpt of test cases designed for the unit test of a software component

(Johnson Controls source)

2. Integration and Validation test language (when automating the test case execution)

The test script language developed in Johnson Controls is mainly based on the universal
Visual Basic language. A set of coding rules and recommendations to be taken into account
when designing test cases using the test script language has been defined. An excerpt of these
rules and recommendations is illustrated in Table B.1.

Rule number Description

Rule 1 The “include” files must not have the full access path indicated.

Example (in C):

#include "../../h/defs.h" is OK

#include "defs.h" is OK

#include <defs.h> is OK

#include "c:\sources/h/defs.h" is NOK

Rule 2 The validation procedures titles must be the same as the title of the SW function (functionality)
which is testing

Example: Odometer, Trip meter, Diagnostic, Engine Speed, Vehicle speed, Warnings, etc.

Rule 3 Any Test Step having state NOK, must refer to defect reference.

Rule 4 Random values in Test Actions and Preconditions are not allowed in any circumstances. Please
note: Arbitrary values are allowed. Such test types are part of many test procedures. To develop
more efficient Validation Procedures loop operators shall be used instead linear programming.

Table B.1 – An excerpt of the validation test script coding rules and recommendations
(Johnson Controls source)

Appendix B: Test description languages R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
299

The test script is made of a set of statements organized in a processes, sub-programs and
functions structure. The overall structure is described in Figure B.2.

Figure B.2 – Overall structure of a test script program (Johnson Controls source)

The grammar of the test script language is developed in Figure B.3.

Header

Includes

Declarations
(Variables, constants,

Sub-programs and

Processes.)

Main process

// Comments

Scenario “Proba”

Version 02.00

Include “Models.mvl”

Include “Library.hvl”

Const Int State = 0

ByteArray Values[5] = {0,1,2,3,4}

Int Counter = 0

Process Odometer

// Statements

End Process

Process main

// The main process

End Process
Single Empty Line

Appendix B: Test description languages R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
300

Figure B.3 – Grammar of the test script language

Appendix B: Test description languages R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
301

As developed in Appendix C, a computer platform (X-Car) has been developed in order to
execute test cases for the integration and validation test of a software product. This platform
has a test language interpreter tool which allows to perform initial check for test script
correctness, run automation test script, handle data automatically by script and derive output
for reporting. A screenshot of the script language interpreter tool is illustrated in Figure B.4.

Figure B.4 – Screenshot of the test script interpreter (Johnson Controls sources)

Another tool is the test script sequencer which allows to manage a list of test scripts in order
to execute them automatically and consecutively in a specified order. Each script in the list
has a status and it can be activated or deactivated. Several action can be executed before each
script (reset the software, reload the software, launch an initialization script). A screenshot of
the test script sequencer tool is illustrated in Figure B.5.

Figure B.5 – Screenshot of the test script sequencer (Johnson Controls source)

Load
Script

Play
Script

Reload
Script

Stop
execution

Save
Output

About

Script 1 Script 2 Script 3

Execution
status

Appendix C: Test execution platforms R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
303

Appendix C: Test execution platforms

1. Unit test execution platform

During the unit test of a software component, the designed test cases are executed on the
component automatically via the unit test execution platform. In fact, all the dependencies and
connections between the components are simulated on computer in order to isolate the tested
component from the project. Test results are analyzed to decide if Component Development
activities have to be restarted, in case of failed tests. The code coverage is recorded and used
as criteria to stop the design of test cases. The abstract model of the unit test execution
platform is illustrated in Figure C.1.

Figure C.1 – Abstract model of the unit test execution platform (Johnson Controls

source)

The unit test uses the inputs and outputs of the software component under test. Test cases
should know expected output F when input A is applied. The presently produced output has to
be compared with the expectation. If they do not match, an error should be generated in the
test report.

2. Integration and Validation test execution platform

During the integration and validation tests of a software product, the test execution platform
could be manual or automatic. For each project, managers (in close cooperation with the
carmaker) decide to automate or not the execution of the validation test cases. In case of an
automatic execution, test cases are designed in a script language (Cf. Appendix B). In case of
a manual execution, test cases are written in natural language. The manual execution aims to
perform operations manually on the software product via a set of switches and to check
visually (by an engineer) the behavior of the output signals (lamps, actuators …). In the
following, we develop the automatic test execution platform.

The Software Validation Plan (SVP) supports the definition of the validation test execution
platform (Cf. Chapter 2 – Section 5.D.1): the necessary equipments and the common and
reused validation components. The functional model of a validation test execution platform is
shown in Figure C.2.

Software component
under test

(internal state z)
Test Cases

Input A

Output F(A, Z)

Appendix C: Test execution platforms R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
304

Figure C.2 – Functional model of a validation test execution platform (Johnson Controls

source)

An excerpt of a list of hardware and software tools required for the execution of validation
test cases is illustrated in Table C.1 and C.2.

ID Tool Type Name Mandatory Comment

[HW_T1] Power supply Constant/variabl
e/programmable

Y/N Information on the tool configuration

Specific inputs, outputs and features required

Work instructions for the tool

[HW_T2] <Measuring
instrumentation
>

Oscilloscope Y/N

… … … … …

Table C.1 – An excerpt from a hardware tool list required for the execution of validation
test cases

Device under test

Direct device inputs
(Buttons, Analogue
and Digital signals)

Real device on CAN
BUS(*)

Real device on CAN
BUS

Simulation and monitoring
PC

CAN(*)
Network

BUS load or monitoring
PC

Variable power supply

(*) Controller Area Network (or CAN) is the latest communication system within the
automotive world. At its simplest level, it can be thought of as a means of linking all of
the electronic systems within a car together to allow them to communicate with each
other (http://www.semiconductors.bosch.de/en/20/can/index.asp Consulted on
November 2008)

Appendix C: Test execution platforms R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
305

ID Tool Type Name Mandatory Comments

[SW_T1] Report generator
to

Reporter

Y/N
Information for the tool configuration

Specific input, output and feature required

Work instruction for the tool

If related with any HW, mention it.

If standard guideline/work instruction for the
tool is available, put it as reference document.

[SW_T2] Test tool 1 R-car
Intermat

Y/N

… … … … …

Table C.2 – An excerpt from a software tool list required for the execution of validation
test cases

Finally, an excerpt of a list of reused components for the execution of validation test cases is
illustrated in Table C.3.

ID Tool Type Name Mandatory Comment

[SW_V1] Source code Library for
programming
power supply

Y/N
Brief description

If related with any HW or SW, mention it.

Path to the original Configuration management
base

Work instruction for the tool

[SW_V2] Test script Test cases for
<Functionality
i>

Y/N

… … … … …

Table C.3 – An excerpt from a reused components list required for the execution of
validation test cases

The aim of the software validation test is to test the functional behavior of a software product
in its real environment. Therefore, we need to simulate this environment (hardware, other
electronic devices, network …). For that purpose, Johnson Controls has developed two types
of test execution platform:

E-Car (Emulated Car – Cf. Figure C.3) is a simulation on computer of the entire electronic
automotive network with all the electronic devices. This platform simulates also the hardware
on which the software product under test must perform. It composes network frames on
specified periods, fills them with the appropriate signals and sends them on a virtual network
bus. It also simulates pressing of buttons and reaction of sensors in the car.

Appendix C: Test execution platforms R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
306

Figure C.3 – E-Car environment (Johnson Controls source)

R-Car (Real Car – Cf. Figure C.4) is a hardware - software interface used when the hardware
of the software product under test is real physical target. It transforms the parametric signals
into real electric signals and sends them on the specified channels in the appropriate format.

Figure C.4 – R-Car environment (Johnson Controls source)

X-Car is the base framework which allows the running of E-Car or R-Car plus some
additional programs to support the validation execution (Cf. Figure C.5):

• Network viewer: This tool allows to trace or spy different types of data’s exchange via
the network.

• Test language interpreter: It allows to run automation test scripts and to perform
initial check for script correctness. It handles data automatically by script and derives
output for reporting.

• Bench tool: This tool simulates the inputs and outputs of the device under test. It
shows data output state, handles data input state and shows data access status.

• Display simulator: It shows output state by switching between two pictograms,
simulate pointer indicator on a dashboard and simulate dot matrix display.

Computer

Hardware

Device

n

Device
under test

Device

1

Network

Software

Device
under test

Device

i

Computer Device
under test

Software

Device
under test

Hardware
Device

n

Device

1

Network

Device

i

Appendix C: Test execution platforms R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
307

Figure C.5 – X-Car framework (Johnson Controls source)

The core of X-Car is the Communication Center where all the signals present in the vehicle
network are stored. Every program that attempt to modify or to check the value of a signal
will go in there. Another important component is the Scheduler which manages in time the
platform.

Integration test may be executed on E-Car; however, validation test may be executed either
on E-Car or on R-Car. When a bug is detected on E-Car, it must be confirmed on R-Car. In
fact, E-Car is a simulation on computer while the R-Car is the real physical environment and
therefore the behavior of the real hardware can differ from the behavior of the simulation
hardware.

E-Car or R-Car
Device

under test Communication Center

Scheduler

X-Car

Appendix D: Commercial test case design tools (Survey done in 2006) R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
309

Appendix D: Commercial test case design tools (Survey done in 2006)

Tool name Company
name

Company
location Description Input Output Free

trial
Application

domain

CONFORMIQ
TEST
GENERATOR

VERYSOFT Germany
Conformiq Test Generator is a solution for
dynamic model-based test generation and
automatic test execution

Graphical test
model which
uses extended
UML
statecharts

A system adapter
translates the test cases
provided by Conformiq
Test Generator into a
format understood by the
test execution platform

YES
Automotive,

Aircraft,
Telecommunication

MATELO ALL4TEC France
MaTeLo generates, according to several
optimization algorithms, test cases from a
usage model

Usage model

Test cases are generated
in XML/HTML format
for manual execution or
in TTCN-3 and
TestStand 2.0 for
automatic execution

NO
Telecommunication,

Automotive,
Railway, Aerospace

PRO-
TEST/PRAXIS

DIGITAL
COMPUTA
TIONS, INC

USA

Pro-Test is a Windows based stand-alone
tool implementing HTT approach. The goal
of HTT is to ensure all pairs test case
coverage with a minimal number of test
cases
Praxis is a new service-based HTT solution.
Praxis offers a custom application of HTT to
problem based upon specific needs

Software
input/level
listing

Test cases can be
exported in a variety of
formats including XML,
Excel, and HTML

YES

Telecommunication,
Railway, Aerospace,

Defense, PC
Software editor

REACTIS
REACTIVE
SYSTEMS,

INC
USA

Reactis automates the generation of test data
from Simulink and Stateflow models

Simulink and
Stateflow
model

Test Cases are saved in a
special format (“.rst”)

YES
Automotive,

Telecommunication,
Aerospace, Medical.

RHAPSODY
TESTCONDU
CTOR/AUTO
MATIC TEST
GENERATOR

I-
LOGIX/TEL

ELOGIC
USA

Rhapsody TestConductor is a UML
compliant, scenario-based test generation for
real-time embedded applications. With
Rhapsody TestConductor, developers can
test a design against its requirements
Rhapsody Automatic Test Generator is a
UML model-based testing solution. ATG
allows engineers to define and test
individual components for specific purposes
such as state and transition coverage

UML diagram UML diagram NO

Automotive,
Telecommunication,
Aerospace, Medical,

Defense

… To be continued

Appendix D: Commercial test case design tools (Survey done in 2006) R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process
310

Tool name Company
name

Company
location Description Input Output Free

trial
Application

domain

T-VEC
RAVE/TESTE
R for
Simulink/Statefl
ow

T-VEC USA

T-VEC RAVE solution is a method and
integrated toolset for requirement-based
defect prevention and automated testing.
System requirements are modeled and
analyzed with RAVE before design and
coding
T-VEC Tester analyzes Simulink and
Stateflow models for errors, and generates
comprehensive test cases for verifying the
models and their implementations

T-VEC
RAVE: T-
VEC Tabular
model
T-VEC
Tester:
Simulink and
Stateflow
model

T-VEC RAVE:
Test cases can be
transformed in test
drivers in any
programming language
or test scripts for any test
execution tool
T-VEC Tester:
Test scripts or drivers are
automatically generated
for executing tests in
Matlab simulator

YES

Automotive,
Telecommunication,
Aerospace, Medical,
Client-Server, Web

Table D.1 – Commercial test case design tools (Survey done in 2006)

Appendix E: A second-level typology of software problems R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

311

Appendix E: A second-level typology of software problems

Problem/Correction type
First-level Second-level Second-level : description

Specification
update

Requirements incorrect The requirement or a part of it is incorrect

Requirements logic The requirement is illogical or unreasonable

Requirements completeness The requirement as specified is either ambiguous, incomplete, or overly specified

Requirements verifiability
Specification bugs having to do with verifying that the requirement was correctly
or incorrectly implemented

Requirements presentation
Bugs in the presentation or documentation of requirements. The requirements are
presumed to be correct, but the form in which they are presented is not.

Requirements changes
Requirements, whether or not correct, have been changed between the time
programming started and testing ended

Design update
… To be continued

Design correctness Having to do with the correctness of the design

Design completeness, Feature Having to do with the completeness with which features are designed

Design completeness, Requirement Having to do with the completeness of requirements within features

Domains
Processing requirements or feature depends on a combination of input values. A
domain bug exists if the wrong processing is executed for the selected input-value
combination

User messages and diagnostics
User prompt or printout or other form of communication is incorrect. Processing
is assumed to be correct: e.g., a false warning, wrong message

Exception conditions mishandled
Exception conditions such as failure modes, which require special handling, are
not correctly handled or the wrong exception-handling mechanisms are used

Diagnostic conditions mishandled Diagnostic conditions, which require special handling, are not correctly handled

Appendix E: A second-level typology of software problems R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

312

Design update

or the wrong diagnostic-handling mechanisms are used

Software architecture Architectural problems

Performance
Bugs related to the throughput-delay behavior of software under the assumption
that all other aspects are correct

Partitions and overlays
Memory or virtual memory is incorrectly partitioned, overlay to wrong area,
overlay or partition conflicts

Environment Wrong operating system version, or other host environment problem

External and other third-party
software

Bugs in the interface to third-party software or other software developed
externally. Due to a misunderstanding or wrong interpretation of the features and
operation of the third-party software; or due to problems in the third-party
software which the vendor does not correct

Implementation
update
… To be continued

Data definition, structure,
declaration

Bugs in the definition, structure and initialization of data: e.g., Type,
Dimension, Initial values, default values, Duplication, Scope (local, global),
Static/dynamic resources

Data access and handling Having to do with access and manipulation of data objects that are presumed to
be correctly defined: e.g. Type, Dimension, Duplication, Resources, Access

Control flow and sequencing Bugs specifically related to the control flow of the program or the order and
extent to which things are done, as distinct from what is done

Processing Bugs related to processing under the assumption that the control flow is correct

Coding and typographical

Bugs which can be clearly attributed to simple coding and typographical bugs. If
a programmer believed that the correct variable was "ABCD" instead of
"ABCE" but she/he changed D to E because of a typewriting bug, then it
belongs to this correction type

Standards violation Bugs having to do with violating or misunderstanding the applicable
programming standards and conventions (MISRA, Johnson Controls rules …).

Appendix E: A second-level typology of software problems R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

313

Implementation
update

The software is assumed to work properly

Documentation Bugs in the documentation associated with the code or the content of comments
contained in the code

Integration
update

Internal interfaces

Bugs related to the interfaces between communicating components with the
program under test. The components are assumed to have passed their component
level tests. In this context, direct or indirect transfer of data or control information
via a memory object such as tables, dynamically allocated resources, or files,
constitute an internal interface (e. g. Component invocation, Interface parameter,
Component invocation return, Invocation in wrong place, Duplicate invocation,
...)

External interfaces and timing
Having to do with external interfaces, such as I/O devices and/or drivers, or other
software not operating under the same control structure (e. g. Interrupts, Devices
and drivers, I/O timing)

Manufacturing
update

Manufacturing bugs Bugs related to the manufacturing process

Test Case update

Test design bugs Bugs in the design of tests

Test execution bugs Bugs in the execution of tests

Test documentation Documentation of test case or verification criteria is incorrect or misleading

Test case completeness Cases required to achieve specified coverage criteria missing

Update none None None of the proposed types of problem is applicable

Table E.1 – A second-level typology of software problems

END R. AWEDIKIAN

Quality of the design of test cases for automotive software: design platform and testing process

314

