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for never giving up teaching me French – Ça va aller !), Laurent L.C., Marc J. (thanks
for the many fruitful conversations, both professional and personal; and the adventurous

v



endeavors together), Marco L. (thanks for the outgoing character), Marion D. (thanks for
all the help with logistics and administration), Mathias H., Mauro E., Maxim Zh. (thanks
for the help and many useful advises), Nicolas L. – Nico (Yep, man! – Konnichiwa!),
Noelle L.B., Olivier D’H., Olivier H., Paul L. (thanks for the eco–education and all the
storage room), Sandra R., Sandrine D. – Sandrinou (merci, Miss Comité Des Fêtes, pour
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Chapter 1

Introduction

The monitoring of the vegetation cover on a large scale is an important issue which is
attracting a lot of research currently. Forest characteristics such as its biomass and species
composition are of a vital importance in forestry and environmental science. Special at-
tention to forest remote sensing has been generated by the explicit notice in the Kyoto
protocol of the impact of forest activity on the global carbon cycle and the climate change,
and of the need for monitoring of forests. The goal is to develop remote sensing tech-
niques to provide accurate, reliable and complete information about forest parameters
on a global scale with high temporal and spatial resolutions. Microwave remote sensing
provides efficient means to accomplish this task, especially by combining polarimetric and
interferometric techniques.
Microwave radar remote sensing is a tested technology which can be operated indepen-
dently of weather conditions and time of the day. Active imaging radars transmit electro-
magnetic wave radiations from an antenna and receive the backscattered signal. Coherent
sampling and processing of the returned signal permits to improve the azimuth resolution
of a moving radar by constructing a synthetic aperture. A radar built on this principle is
called synthetic aperture radar, or simply SAR. SAR interferometry (InSAR) is a tech-
nology, which uses the effect of wave interference between two SAR images. This permits
to obtain additional information about the height dimension of the imaged scene. SAR
polarimetry (PolSAR) is the extension of single–channel SAR technology to acquire the
full polarimetric information about the scattering properties of the medium.
With respect to vegetation, polarimetry is sensitive to the morphology and the dielectric
constant of plants. The dielectric constant is directly related to the water content and with
it the consistency of the plants. Also, polarimetry permits to discriminate contributions,
like for instance the ground and the vegetated parts of a forest. Interferometry can provide
quantitative information about the layered structure of the vegetation, like the depth and
the density. Polarimetric SAR interferometry (PolInSAR) has been envisaged, 10 years
ago, to combine polarimetry and interferometry for enhanced parameter estimation. Since
then, various applications using polarimetric SAR interferometry have been developed; for
vegetation, snow, ice and urban area parameter estimation. For further information, brief
and detailed overviews of polarimetric and interferometric technology and techniques can
be found e.g. in [105,6, 158,10,128,50].
Two singular and most important articles for the developments in this thesis are the works
on the foundations of PolInSAR in the form of “polarimetric vector interferometry” by
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2 Introduction

Shane R. Cloude and Kostas P. Papathanassiou in 1998 [22], and on vegetation properties
as seen by polarimetric radar interferometry by Robert N. Treuhaft and Paul Siqueira in
2000 [154]. Also, to emphasize is the article by Treuhaft et al. in 1996 [153] providing
great insight into the vegetation scattering problem for radar interferometry, and the
PhD thesis of Papathanassiou in 1999 [105] delivering a coherent and valuable approach
to the principles of PolInSAR. But of course many more works from these and other
authors have been crucial in the development of the field under study, as for instance by
Lang [69], Hagberg et al. [54], Askne et al. [5], Freeman and Durden [46], and Colin et
al. [29], to name a few.
The scope of this thesis is to improve the understanding of polarimetric SAR interfer-
ometry observables and their utilization for vegetation parameter estimation. For this
purpose, the thematic range of this thesis varies between mathematical formulations and
derivations, physical reasoning, and experimental validation:

These different approaches are essential for the progress in the polarimetric SAR interfer-
ometry research field, with the physical reasoning component being the core theme in the
center of the presented thesis.
In the first part of the thesis, the theory of polarimetric SAR interferometry is reexamined
and questions are addressed in form of

• Which assumptions on polarimetry and interferometry in dependence of media char-
acteristics can be applied to PolInSAR data? How does it affect PolInSAR observ-
ables?

• What is the mathematical background of PolInSAR coherence sets, and what phys-
ical meaning does it contain?

• What is the difference between different coherence optimization methods? Would
the use of multi–baseline coherence optimization methods improve estimation per-
formance? What could it be used for?

The deliveries of this theoretical PolInSAR analysis are:

• Interpretation of polarimetric stationarity (PS) and interferometrically polarimetric
stationarity (IPS) conditions.

• Presentation of the properties of coherence sets, based on the mathematical numer-
ical range theory and previous contributions by M. Tabb, T. Flynn et al. [143, 42]
and E. Colin et al. [29]: coherence set interrelations with numerical ranges for dif-
ferent definitions, coherence set shape structures classification, statistical coherence
set analysis.

• Development of multi–baseline coherence optimization methods. Evaluation of these
methods on experimental multi–baseline multi–temporal PolInSAR data. These
multi–baseline coherence optimization methods enable us for the first time to use
coherence optimization techniques for polarimetric differential SAR interferometry
applications, as well as for multi–temporal and multi–baseline change monitoring
with PolInSAR data.
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The second part of this thesis deals with forward and inverse modeling of vegetation. The
state–of–the–art in vegetation parameter inversion for PolInSAR data uses the interfer-
ometric coherence dependence on polarization to estimate the linear ground–to–volume
ratio relationship, which makes the inversion of the forest height and the ground topogra-
phy phase possible. Two parameter inversion approaches based on this principle have been
developed at the same time: by Treuhaft and Siqueira [154], in 2000, and by Papathanas-
siou and Cloude [106], in 2001. The scattering–model based approach by Treuhaft and
Siqueira considers simple ground response components and coherence derivations for ran-
dom and oriented volumes. The focus of this approach is on the estimation of structural
parameters, and polarimetry has not been fully exploited, as [citation] ”simply adding
polarimetry adds too many new nonstructural parameters to improve estimation of struc-
tural parameters,” [154], p. 155. The successional model presented by Papathanassiou
and Cloude [106, 23] is simpler and consists only of 3 structural parameters (topography
phase, forest height and extinction) and one additional degree of freedom in dependence
of polarimetry, avoiding explicitly the estimation of the ground response.
This is in contrast to the modeling and parameter estimation approach presented in this
work, where we seek to extend the limits of physical parameter inversion and especially
concentrate on the information contained in polarization properties. The questions to be
addressed are

• Can we improve in general the parameter estimation process performance by intro-
ducing more polarimetry?

• How to build an invertible scattering model that represents reliably the vegetation
structure?

• Are multi–baseline PolInSAR acquisitions mandatory or are single–baseline data
sufficient for accurate results?

• Can we cope with temporal decorrelation?

• Can scattering model based inversion schemes improve the estimation of structural
parameters?

• Are we able to estimate more parameters, e.g. with respect to the vegetation type,
or the underlying surface?

The contribution of this thesis consists in developing a simple invertible model for the veg-
etation layer, taking into account average particle characteristics and the distribution of
particle orientations in the polarization plane. This model enables us to improve the esti-
mation of forest height and ground topography, as well as to invert additional parameters
related to particle anisotropy, the degree of orientation randomness, the main orienta-
tion of the particles, the attenuation coefficient of the canopy, and the ground scattering
properties. The developed parameter inversion approach is validated on simulated and
real air–borne SAR data with comparison to ground–truth measurements. In particular,
it is reasoned that in some areas the obtained experimental results are better than the
available ground–truth measurements in terms of spatial variability.
The presented PolInSAR vegetation model is initially developed for single–pass acquisi-
tions. However, only repeat–pass multi–baseline and multi–temporal real SAR data is
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available to us up to now. Therefore, the model needed to be adapted to repeat–pass
acquisitions, and especially to deal with the temporal decorrelation of the data, which is
the major noise source, caused on the given short temporal scale mostly by wind. In this
thesis, a general parameter inversion framework is developed which is tolerant to temporal
decorrelation and which permits to estimate the degree of temporal decorrelation in any
particular baseline.
Today, there are two common acquisition modes for single–pass across–track SAR in-
terferometry: the single–transmit and the alternate–transmit modes. They have been
already previously combined to acquire single–polarization interferometric dual–baseline
data [154]. In the theoretical study of interferometric coherence constituents in this thesis,
the potential of a combined hybrid PolInSAR mode has been recognized for an improved
separation of surface and double–bounce induced contributions. Up to now, no data is
available which has been acquired in the given mode, which leaves these studies on a
theoretical level.
The organization of the thesis is as follows:

• Chapter 2 outlines the basic theory of electromagnetic wave propagation and scat-
tering, and describes the polarization of a wave. For the modeling of vegetation,
the propagation and scattering in random volumetric media are presented for the
distorted Born approximation. Finally, basic concepts of polarimetry are presented.

• Chapter 3 briefly introduces the functionality of SAR imaging. Data acquisition
and processing methods are outlined in order to derive the system model function.
SAR polarimetry and SAR interferometry are independently presented.

• Chapter 4 presents our own studies on fundamental PolInSAR data properties, its
generic information content and restrictions. The aim is to present common PolIn-
SAR properties, independently of the scattering medium under consideration. At
the beginning of this chapter, PolInSAR data representations are presented as in-
troduced by Cloude and Papathanassiou [22,105], together with the whitened form
and the coherency contraction [22, 105, 84], as well as the concept of polarimetric
stationarity in SAR interferometry, recently formulated by Ferro–Famil and Neu-
mann [39]. The concept of the PolInSAR coherence set, which relies on the works
of Tabb and Flynn [142, 143, 42] and Colin [29], is extended by us to retrieve in-
formation on coherence set geometry, density, and distribution. The last topic of
this chapter deals with PolInSAR coherence optimization. We re-examine the co-
herence optimization problem in order to improve the interpretation of the optimal
coherences and optimal scattering mechanisms. Also, we introduce methods which
extend single–baseline coherence optimization to the multiple baseline case. These
optimization methods are evaluated on real SAR data consisting of 4 images.

• Chapter 5 presents a new polarimetric interferometric model for agricultural and
forestry vegetation. This model has a low complexity in order to be invertible,
but contains important parameters to characterize vegetation structures which are
perceptible by radar polarimetry and interferometry: vegetation particles character-
istics and orientation distribution, ground characteristics, and the vertical structure
of the vegetation. At first, a polarimetric model for first–order scattering com-
ponents is presented. We explicitly consider the modeled parameters under both
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Born and distorted Born approximations. Complementarily, an interferometric co-
herence model for the same components is presented, enabling the construction of
a PolInSAR model. Both single–transmit and alternate–transmit interferometric
acquisition modes are analyzed. Based on the synergy of polarimetry and inter-
ferometry, it is recognized that a hybrid single–pass PolInSAR mode (alternate–
transmit simultaneous–receive) will improve the distinction of surface scattering
and the double–bounce scattering based on the interferometric coherence.

• Chapter 6 discusses at first the scattering inverse problem for vegetation parameter
estimation. The developed model is used to estimate physical parameters based
on the observed data. Four acquisition mode scenarios and two vegetation type
scenarios are determined for further evaluation. Experimental results are presented
for three data sources: synthetic simulations based on the presented forward model,
structural simulations of forest stands by the PolSARPro simulator, and real SAR
data at L–band. As the results indicate, most vegetation parameters can be reliably
retrieved from the data.

• Chapter 7 concludes this thesis.





Chapter 2

Electromagnetic Scattering Basics

Every point in space at any time is pervaded by an electromagnetic field which is char-
acterized by the strengths and the directions of the electric and magnetic forces for any
frequency and polarization. Various frequency bands have been successfully used for re-
mote sensing applications. Microwave frequencies provide the possibility of active remote
sensing almost independently of the time of the day and the weather conditions, since mi-
crowaves are hardly influenced by cloud cover, rainfall or the sunlight level [147,159,157].
This chapter presents basic concepts and definitions of electromagnetic wave propagation
and scattering as well as polarimetry with reference to active microwave remote sensing
of geophysical media.

2.1 Electromagnetic Waves

The concept of electromagnetic wave propagation is derived from Maxwell’s equations.
These differential equations describe how variations of magnetic fields produce electric
fields (Faraday’s law of induction), how currents and changing electric fields produce mag-
netic fields (the Ampere-Maxwell law), how electric charges produce electric fields (Gauss’
law), and the experimental absence of magnetic monopoles (Gauss’ law for magnetism)(1):

Faraday’s law of induction: ∇×E(r,t) = −
∂B(r,t)

∂t
(2.1)

Ampere’s law: ∇×H(r,t) = J(r,t) +
∂D(r,t)

∂t
(2.2)

Gauss’s law: ∇ ·D(r,t) = ρ(r,t) (2.3)
Gauss’s law for magnetism: ∇ ·B(r,t) = 0 (2.4)

where E is the electric field vector in Volt/meter [ Vm ], H the magnetic field vector in Am-
pere/meter [Am ], D the electric displacement vector in Coulomb/meter2 [ C

m2 ], B the mag-
netic flux density vector in Tesla [T = V ·s

m2 ], J the current density vector in Ampere/meter2

[ A
m2 ], and ρ the volume charge density in Coulomb/meter3 [ C

m3 ]. All these quantities are
functions of space and time (r, t).

(1)Throughout the thesis, bold lowercase and capital letters represent vectors and matrices, respectively.
Only a few exceptions are made because of common conventions: electromagnetic vectors (E,H,B,D,J)
are represented by bold capital letters, as is the Jones vector E. The meaning depends on the context.
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8 Electromagnetic Scattering Basics

In addition to Maxwell’s equations, the continuity equation represents the conservation of
charge and the Lorentz force law represents the force on a charge q moving with a velocity
vector v through an electromagnetic field:

Continuity equation: ∇ · J(r,t) = −
∂ρ(r,t)

∂t
(2.5)

Lorentz force: F(r,t) = q(r,t)[E(r,t) + v(r,t) ×B(r,t)] (2.6)

In a linear passive medium, the field vectors are linearly related, as expressed in the
following constitutive relations:

D(r,t) = ε′(r)E(r,t), B(r,t) = µ(r)H(r,t), J(r,t) = σ(r)E(r,t) + Js(r,t) (2.7)

where ε′, µ and σ are the electric permittivity (dielectric constant), magnetic permeability
and conductivity tensors (which represent the time invariant characteristics of a material),
and Js is the current density of an externally applied electric source.
Often, permittivity and permeability are separated into scalar free space terms ε0, µ0 and
dimensionless relative permittivity ε′r and permeability µr, as:

ε′(r) = ε0ε
′
r(r), µ(r) = µ0µr(r) (2.8)

with ε0 = 8.854× 10−12 Farad/meter and µ0 = 4π × 10−7 Henry/meter.
The medium is said to be homogeneous if ε′,µ,σ are constant (ε′(r) = ε′, µ(r) = µ,
σ(r) = σ). In an isotropic medium ε′,µ,σ are independent of the field directions and
they become scalars ε′, µ, σ. The medium is called dispersive if these parameters depend
on frequency. In the following, only linear isotropic electric materials for which µr = 1
will be considered. Anisotropic effects will be taken into account later on and appropriate
expressions using the permittivity tensor will be introduced.
Based on Maxwell’s equations and the constitutive relations for linear materials one
can derive the inhomogeneous scalar wave equation (inhomogeneous Helmholtz equation)
which is caused by localized time–varying charge sources and rules the propagation of
electromagnetic waves:

∇2E(r,t) − ε′µ
∂2

∂t2
E(r,t) = µ

∂

∂t
J(r,t) (2.9)

In source–free medium (J = 0) one obtains the homogeneous wave equation (Helmholtz
equation) [105,159]:

∇2E(r,t) − ε′µ
∂2

∂t2
E(r,t) = 0 (2.10)

Any wave can be expressed as a superposition of single–frequency waves through the
Fourier transform. It is convenient to analyze a single–frequency wave, also called a time–
harmonic or monochromatic wave with a sinusoidal time dependence e±iωt, where ω is
the angular frequency of the harmonic. The electric field is then given by

E(r, t) = Re[E(r)eiωt] (2.11)

where E(r) is the time independent complex field amplitude, also called phasor.
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After differentiating over the time, the inhomogeneous wave equation can thus be refor-
mulated into

∇2E(r) + ω2(ε′ − iσ
ω

)µE(r) = 0 (2.12)

Introducing the complex dielectric constant

ε = ε′ − iσ
ω

= ε′ − iε′′ (2.13)

one can express the inhomogeneous wave equation as

∇2E(r) + k2E(r) = 0 with k = ω
√
εµ (2.14)

where k is the wavenumber of the wave in the medium.
One particular solution of the wave equation leads to plane wave formulation

E(r) = E0e
ik·r (2.15)

where E0 is a constant wave amplitude vector and k = kk̂ is the wave vector. This
relation represents the propagation of the wavefront in the direction of propagation k̂.
In free space, the wavenumber and the wavelength are given by

k0 =
2π
λ

= ω
√
ε0µ0 =

ω

c
=

2πf
c

(2.16)

where c is the absolute speed of light, λ the wavelength, and f the frequency. The index
0 indicates in this case free–space propagation. In general,

k = k0n (2.17)

where n is the complex index of refraction, which for electric materials (µr = 1) is given
by

n = n′ − in′′ =
k

k0
=
√

ε

ε0
(2.18)

The wavenumber k is sometimes also called the propagation constant. For complex dielec-
tric constants the propagation constant is complex, too:

k = k′ + ik′′ = k0n
′ − ik0n

′′ (2.19)

The real part of the complex propagation constant k′ = k0n
′ = ω

v is known as the phase
constant which determines the phase velocity v. The imaginary part k′′ = −k0n

′′ is known
as the attenuation or the extinction coefficient [63]. The reciprocal of the attenuation
constant represents the penetration depth ( 1

k′′ ) of the wave into the medium. This distance
is also called skin depth because the wave magnitude is reduced by a factor of e−1.
The propagation constant can also be decomposed into the sum of the free–space wavenum-
ber and the correction propagation constant κ:

k = k0 + κ (2.20)

For active remote sensing applications it will prove useful to characterize the medium by
the two–way extinction σx = 2k′′ = −2k0n

′′ and the refractivity χx = n′ − 1 [153] so that

κ = k − k0 = k0(n− 1) = k0χx + i
σx
2

(2.21)
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Figure 2.1: Propagation of an elliptically polarized plane wave E(r, t) as a function of
space r for a constant time t = t0 (left), and as a function of time t for a constant position
r = r0 (right). The geometrical locus of the full wave (red) is given by the superposition
of the linear components (green and blue).

2.2 Wave Polarization

Electromagnetic plane waves are transverse waves and satisfy

E(r, t) · k̂ = 0 (2.22)

The plane containing the field oscillation is known as the polarization plane. The electric
wave amplitude E0 at r = 0 (also known as Jones vector) from equation (2.15) can be
represented in the (x,y) orthonormal basis(2) of the polarization plane, cf. Fig. 2.1,
[11, 111,83] and is given by

E0 = x̂E0x + ŷE0y =
[
E0x

E0y

]
=
[
axe

iδx

aye
iδy

]
= aeiδx

[
cosα

sinαeiδ

]
= E0x

[
1
ρ

]
(2.23)

where several common wave polarization representations have been used. A completely
polarized wave can be completely described by 4 real scalar parameters or degrees of
freedom:

• absolute amplitude: a =
√
a2
x + a2

y

• absolute phase: δx

• phase difference δ = δy − δx

• amplitude ratio ad = ay
ax

, or alternatively the amplitude ratio angle α = tan ad

Only the last two determine the polarization state of the wave. The angles α and δ
are also known as Deschamps parameters. Also, a single complex number, the complex
polarization ratio ρ = E0y

E0x
= ade

iδ contains the same information.

(2)However, it is common to use the horizontal—vertical polarization basis and it will be the basis of
choice if not otherwise stated in the following sections and chapters.
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(a) Polarization ellipse (b) Poincaré shpere

Figure 2.2: Geometrical polarization representations.

The polarization state can be represented geometrically in the polarization ellipse, see
Fig. 2.2(a), using the polarization orientation angle ψ ∈ [−π

2 ,
π
2 ] and the polarization

ellipticity angle χ ∈ [−π
4 ,

π
4 ] [11], where

tan 2ψ = tan(2ad) cos(δ), sin 2χ = sin(2ad) sin(δ) (2.24)

In the general case the shape is an ellipse with ψ determining the direction of the major
axis. For χ = 0, the polarization ellipse degenerates to a line and represents linear
polarizations, whereas for χ = ±π

4 it becomes a circle and represents circular polarizations.
The sign of χ determines the sense of rotation in the polarization ellipse: χ > 0 represents
left–handed polarizations, and χ < 0 represents right–handed polarizations.
An orthogonal polarization state (E†

1E2 = 0) in terms of the polarization angles can be
obtained using the substitutions

ψ2 ← ψ1 +
π

2
, χ2 ← −χ1 (2.25)

Also, the complex polarization ratio can be expressed using the polarization angles and
vice versa:

ρ =
cos 2χ sin 2ψ + i sin 2χ

1 + cos 2χ cos 2ψ
, ψ =

1
2

arctan
(

2 Re ρ
1− ρρ∗

)
, χ =

1
2

arcsin
(

2 Im ρ

1− ρρ∗

)
(2.26)

The angles 2ψ and 2χ can be interpreted as the spherical angular coordinates of the polar-
ization state on the Poincaré sphere, as shown in Fig. 2.2(b). The Cartesian coordinates
of the given point are at the same time a geometric representation of the completely
polarized Stokes parameters Q,U, V :

g =


I
Q
U
V

 =


a2

a2
x − a2

y

2axay cos δ
2axay sin δ

 =


a2

a2 cos 2ψ cos 2χ
a2 sin 2ψ cos 2χ

a2 sin 2χ

 (2.27)
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Figure 2.3: Reflection and refraction of a plane wave at a smooth dielectric interface.

2.3 Wave Propagation Phenomena

The main phenomena which might influence the propagation of microwaves are absorp-
tion, scattering, reflection, refraction, interference, and diffraction [11, 41]. The physical
meaning and the effects of these phenomena are briefly discussed in this section.

2.3.1 Absorption and Scattering

As mentioned earlier, the attenuation of a wave propagating in a lossy medium is taken
into account by the imaginary part in the propagation constant. Attenuation is caused
by absorption and scattering by particles in inhomogeneous media.
The incident electromagnetic wave exerts forces on the atoms and electrons in the illumi-
nated medium causing them to move. These motions can absorb energy. At the same time
these motions are the source of new waves. The generation of these new waves is called
scattering [41]. Absorption and scattering are important events for active microwave
remote sensing and will be analyzed in more details in section 2.4.

2.3.2 Reflection and Refraction

Reflection is a special form of scattering at the boundary of two media with different
dielectric properties. The curvature of the boundary needs to be large in comparison to the
wavelength and the spacing of the charge particles small compared with the wavelength.
In such case, the incident wave generates coherent motion in the charge particles in the
second medium which generates a new wave. Under the given conditions, the direction of
this new wave is specular to the incidence wave direction. This is the reflected wave.
Refraction modifies the phase velocity and causes the change of the direction of propa-
gation. Reflection and refraction can be well explained based on the incidence of a plane
wave Ei on a smooth boundary between two homogeneous media with different refractive
indices(3) n1, n2. When an incident plane wave passes from one medium into another, it
may be split into two waves: one reflected wave and one transmitted wave as presented
in Fig. 2.3. According to the law of reflection, the reflected wave is scattered in the
specular direction. Snell’s law, which is a consequence of Fermat’s principle of least time,

(3)At this point the indices of refraction are assumed to be real valued.
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Figure 2.4: Examples of reflectivities representing Brewster’s and critical angles.

determines the angle of refraction θ2 for the given incidence angle θ1:

n2

n1
=

sin θ1
sin θ2

(2.28)

The polarization dependent reflection and transmission coefficients (Rv/h, Tv/h) for the
reflected and refracted waves are given by the Fresnel equations:

Rh =
n1 cos θ1 − n2 cos θ2
n1 cos θ1 + n2 cos θ2

Rv =
n2 cos θ1 − n1 cos θ2
n2 cos θ1 + n1 cos θ2

(2.29)

Th =
2n1 cos θ1

n1 cos θ1 + n2 cos θ2
Tv =

2n1 cos θ1
n2 cos θ1 + n1 cos θ2

(2.30)

so that the reflected Er and transmitted Et waves can be represented by

Er =
[
Rh 0
0 Rv

]
Ei, Et =

[
Th 0
0 Tv

]
Ei (2.31)

If the first medium is free air (n1 = 1) and the second medium is characterized by the
complex relative permittivity εr, using Snell’s law the reflection coefficients become

Rh =
cos θ1 −

√
εr − sin2 θ1

cos θ1 +
√
εr − sin2 θ1

, Rv =
εr cos θ1 −

√
εr − sin2 θ1

εr cos θ1 +
√
εr − sin2 θ1

, (2.32)

For a certain incidence angle, known as Brewster’s angle, the vertically polarized part of
the wave can be perfectly transmitted, with no reflection. This effect appears when the
sum of the incidence and the refracted angles equals 90 degrees.
If the wave passes the boundary to an optically less dense medium (n2 < n1), there exists a
critical angle, above which all energy is reflected and nothing passes through the interface
for all polarizations. Fig. 2.4 shows an example of Brewster’s and critical angles.
Reflection and refraction are very important in layered dense natural media, such as snow
or ice. Reflection is often the main scattering type for extended surfaces with low surface
roughness. Reflection will be encountered as a constituent in the double bounce and the
triple bounce scattering components between ground and vegetation.
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2.3.3 Interference and Diffraction

An interference is caused by the coherent addition of two or more waves. Considering two
monochromatic waves with the same angular frequency ω and different amplitudes and
phases, a1e

iφ1 and a2e
iφ2 , their sum is given by:

b = a1e
iφ1 + a2e

iφ2 (2.33)

The intensity of the combined wave is

bb∗ = a2
1 + a2

2 + 2a1a2 cos(φ2 − φ1) (2.34)

The resulting intensity is the sum of the individual wave intensities plus a correction
term, known as the interference effect. The interference term is called constructive if it
is positive, and destructive if it is negative [41]. If a large number of waves interfere, one
often speaks of diffraction.
In this work, among others, diffraction will be encountered in the form of the speckle
effect, see appendix A.1.1. The wave interference is the fundamental effect which enables
SAR interferometry, as discussed in section 3.4.

2.4 Scattering Process

In active remote sensing, electromagnetic waves are transmitted by an antenna and propa-
gate through some media, get attenuated, refracted and scattered, and finally a small part
of the transmitted energy propagates back to the receiving antenna. The analysis of these
phenomena may reveal some of the characteristics of the illuminated media. One distin-
guishes at the top level between deterministic and random media (also called distributed
targets). This thesis addresses wave propagation and scattering with respect to random
media [62,161,157], which can be classified into two basic categories: random volumetric
media and rough surfaces. These are problems whose random behavior is too complex and
only statistical description can be given for the asymptotic electromagnetic behavior of
the media. In this section, at first single particle scattering is addressed, followed by rough
surface scattering and wave propagation and scattering in random volumetric media.

2.4.1 Deterministic Scattering

Let a single deterministic scatterer, located at position r0, be illuminated by an incident
electromagnetic wave. The total field at any position r is the sum of the incident and
scattered fields:

E(r) = Ei
(r) + Es

(r) (2.35)

If the illuminating source is located far away from the particle, the incidence field can be
approximated by a plane wave

Ei
(r) = Ei

0e
iki·r (2.36)

In the far field of the scatterer, characterized by the Fraunhoffer distance R = |r − r0| >
D2λ [62], the scattered field can be approximated by a spherical wave

Es
(r) =

eikR

R
F(k̂s,k̂i)

Ei
(r0) (2.37)
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where F(k̂s,k̂i)
is the bistatic scattering amplitude matrix representing the scattering be-

havior of the particle, k̂i stands for the direction of propagation of the incident plane wave
and k̂s the considered direction of scattering. In the horizontal–vertical polarization ba-
sis, F is given by

F(k̂s,k̂i)
=

[
fhh(k̂s,k̂i) fhv(k̂s,k̂i)
fvh(k̂s,k̂i) fvv(k̂s,k̂i)

]
(2.38)

where fij are scalar complex scattering amplitudes for different incidence and scattering
polarizations [157]. It is a common convention to arrange the indices from right to left
in relation to the process progression: the first index on the left denotes the considered
scattering polarization channel, whereas the second index denotes the incident one.
The bistatic scattering cross section for a certain combination of transmit and receive
polarizations p, q ∈ {h, v} is given by [62]

σbi
pq(k̂s,k̂i)

= 4π|fpq(k̂s,k̂i)|
2 (2.39)

The backscattering cross section (also known as radar cross section (RCS)) is simply

σpq = σbi
pq(−k̂i,k̂i)

= 4π|fpq(−k̂i,k̂i)|
2 (2.40)

2.4.2 Rough Surface Scattering

The asymptotic electromagnetic properties of a rough surface can be characterized by
its dielectric and roughness properties. The dielectric properties are most influenced by
the moisture content. Surface roughness is described by the probability density and the
autocorrelation functions of surface height with the main characteristics of surface root
mean square (RMS) height s and the correlation length Lc. Since surface scattering
depends on the wavelength of the incident electromagnetic wave, one multiplies s and
Lc with the wavenumber to obtain the relative surface roughness descriptors: ks and
kLc. Two common correlation functions are the Gaussian and the exponential functions.
The Fourier transform of the surface height correlation function represents the (positive,
real valued) power spectral density function Wsurf (kx, ky), where kx, ky are the spatial
wavenumbers.
Surface roughness determines how much of the wave energy is reflected in the specular
direction (specular scattering), and how much is scattered in all directions (diffuse scat-
tering) [62]. For smooth surfaces the specular “coherent” component dominates, whereas
for rough surfaces the diffuse “incoherent” component gets more important. Different
modeling approaches exist which are valid for certain ranges of roughness parameters.
The small perturbation model (SPM) is applicable to slightly rough surfaces where the
RMS height is much smaller than the wavelength (s � λ). Although this condition is
often not satisfied for many natural surfaces, it is often applied because of the simplicity
of the solution. The Kirchhoff model is applicable to surfaces with large curvature radius
(Lc � λ) approximating the surface by a tangent plane. To solve the Kirchhoff model, two
further approximations are applied: the geometrical optics (GO) and the physical optics
(PO) approximations. A more general approach is the integral equation method (IEM)
which fills in between the other approaches in the validity domain, as shown in Fig. 2.5.
An alternative to the theoretical models are empirical models which were derived based
on data analysis (e.g. [103,33]).
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Figure 2.5: Approximate validity domains of common surface scattering models.

SPM Solution at Order 1

Small perturbation solution at first–order is also called Bragg scattering because of the
similarity of phase effects in the solution to Bragg diffraction of x–rays from a crystal
lattice [62]. The solution for an incidence angle θ1 and the soil permittivity εr is given in
terms of the backscattering coefficients and covariances by [62,160]

σpq = 4πk4 cos4 θ1|αpq|2Wsurf (kx, ky)

σpqrs = 4πk4 cos4 θ1(αpqα
∗
rs)Wsurf (kx, ky)

(2.41)

for p, q, r, s ∈ {h, v} and where(4)

αhh =
cos θ1 −

√
εr − sin2 θ1

cos θ1 +
√
εr − sin2 θ1

, αhv = 0 (2.42)

αvv =
(1− εr)(sin2 θ1 − εr(1 + sin2 θ1))

(εr cos θ1 +
√
εr − sin2 θ1)2

, αvh = 0 (2.43)

As it can be seen, the polarimetric properties of the SPM response depend only on the
permittivity of the soil and the incidence angle; the surface roughness influences only the
amplitude of the total backscattered power.

2.4.3 Random Volume Media

A random volumetric medium is a collection of randomly distributed scatterers embedded
in a continuous background medium. Two main problems arise when dealing with random
media: the propagation through the medium and the scattering including multiple order
effects.
Vegetation, the object of study in this thesis, can be considered as partly tenuous medium
at the frequencies used in this thesis. Because the phase is of fundamental importance for
interferometry, the medium needs to be modeled by a coherent technique. A common ap-
proach is to consider the vegetation as a sparse random medium of discrete lossy dielectric
scatterers. Lang [69] employed the Foldy–Lax approximation (also called effective field

(4)These terms are given in the forward scattering alignment (FSA) convention, see section 2.5.1. For
the backscattering alignment (BSA) convention, αvv needs to be multiplied by −1.
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Figure 2.6: Illustration of the first three elements of the Born series for the backscattering
case: zeroth order undisturbed wave propagation, first order taking into account single
scattering, and second order taking into account pair–wise interactions between particles.

approximation (EFA)) [70,43] for the attenuation and the related distorted Born approxi-
mation for particle scattering in order to obtain backscattering coefficients for such media
with random orientations and positions. In the following, the discrete scatterer approach
using the Foldy–Lax and the distorted Born approximations are outlined [69,157,156,110].
The total field E(r) at position r is the sum of the incidence field Ei and the scattered
fields Es

j from all particles j:

E(r) = Ei
(r) +

∑
j

Es
j(r) (2.44)

The scattered field from a particle can be represented using the concept of the single–
particle transition operator T [70, 109,157]:

Es
j(r) = Tj(r)E

e
j (2.45)

This transition operator is a generalization of the scattering matrix and it relates the
exciting field Ee

j of the particle directly to the scattered field in the near or the far field
of the scatterer. The exciting field is composed of the contributions originating from all
the particles withing the medium, whereas Tj(r) is only a function of the particle j itself
and the observation position r. The exciting field of particle j is the total field at position
rj minus the scattered field of particle j:

Ee
j = E(rj) −Es

(rj)
(2.46)

and therefore

Ee
j = Ei

(rj)
+
∑
l 6=j

Es
l(rj)

= Ei
(rj)

+
∑
l 6=j

Tl(rj)E
e
l (2.47)

Equation (2.47) is the self–consistent Foldy–Lax multiple scattering equation.
The Born method, named after Max Born who applied this technique to quantum–
mechanical scattering problems, consists in the iterative solution of (2.47). The zeroth
order solution implies no excitation; the first order solution is given by approximating
the exciting fields by the incidence fields, i.e. neglecting multiple scattering, and so on.
Therefore, the initial condition and the recursive formulation for the exciting field are
given by

Ee(0)
j = 0, Ee(n+1)

j = Ei
(rj)

+
∑
l 6=j

Tl(rj)E
e(n)
l (2.48)
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The scattered field of order n is then given by

Es(n)
(r) =

∑
j

Tj(r)E
e(n)
j(rj)

(2.49)

This is the Born series (also called the Neumann series [11]). Fig. 2.6 presents schemati-
cally the first three components of the series by means of a volume layer and the scattering
contributions of one particle inside the volume. The truncation of the series at the first–
order term is known as the Born approximation. It is a single–scattering approximation
and is only applicable if the dielectric constant of the particles is similar to the dielectric
constant of the background, so that the internal (exciting) field of the particles is similar
to the external field [155].
In the effective field approximation (EFA), also called the Foldy or the Foldy–Lax appro-
ximation, the exciting fields for all scatterers are approximated by the average “effective”
field in the random medium, thus obtaining an effective medium. The index of refraction
of the effective isotropic medium can be related to scatterer properties via [99]

n = 1 +
2πn0

k2
0

〈
f(k̂,k̂)

〉
(2.50)

where
〈
f(k̂,k̂)

〉
is the isotropic average forward scattering amplitude of a single particle

and n0 is the number of particles per unit volume. Therefore, the propagation correction
constant κ from (2.21) for the effective medium can be given by

κ = Miso =
2πn0

k0

〈
f(k̂,k̂)

〉
(2.51)

In case of possibly anisotropic average forward scattering amplitude, the propagation
correction constant can be generalized to a tensor [157,80]

κ =
[
Mhh Mhv

Mvh Mvv

]
=

2πn0

k0

〈
F(k̂,k̂)

〉
, where Mpq =

2πn0

k0

〈
fpq(k̂,k̂)

〉
, p, q ∈ {h, v}

(2.52)

Therefore, the effective field after a propagation of a distance s inside the medium becomes

E(s) =
[
eis(k0+Mhh) eisMvh

eisMhv eis(k0+Mvv)

]
E(s=0) (2.53)

Using the single–scattering Born approximation and considering the attenuation of the
wave in the medium using the effective field is called the distorted Born approximation.
The components of the Born and the distorted Born approximations for a volumetric layer
over the ground are presented schematically in Fig. 2.7.
The presented approximations can only be applied to sparsely distributed scatterers. For
dense media, the interactions between the particles have to be taken into account more
explicitly. One possible approach is the quasi–crystalline approximation (QCA), which
accounts for up to second–order scatterer interactions considering particle pair distribution
functions [157,136].
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Figure 2.7: Illustration of random volume over ground approximations: zeroth order wave
propagation until the ground (surface scattering), and first order scattering components
(direct volume scattering, volume–ground and ground–volume double bounce scattering,
and ground–volume–ground triple bounce scattering).

2.4.4 Forward Scattering Theorem

The forward scattering theorem, also called the optical theorem, states that the total power
loss of a particle due to scattering and absorption, represented by σt, is related to the
imaginary part of the forward scattering amplitude [11,62]:

σt =
4π
k

Im f(k̂i,k̂i)
(2.54)

This theorem is related to (2.50) and it enables the computation of the total cross section.
It will be used to determine the extinction of the wave inside vegetation.

2.5 Polarimetry

As shown in the previous section, scattering modifies the polarization state of the incidence
wave. These effects are studied by polarimetry in order to characterize the scattering
targets based on their interaction with polarized electromagnetic waves. In the following,
basic definitions of polarimetry are presented.

2.5.1 Backscattering Geometry and Reciprocity

The change in polarization due to scattering by a single particle is represented by the
particle’s scattering amplitude matrix F. When observing a scattering scene from distance
by an instrument (see next chapter) one can also acquire the scattering matrix of the
whole (focused) scene consisting of scattering contributions from different scatterers, wave
propagation effects, and system acquisition and processing effects. To distinguish between
the single particle scattering amplitude matrix and the observed scattering matrix, we will
denote the later by S

S =
[
Shh Shv
Svh Svv

]
(2.55)

There exist two conventions for the scattering coordinate systems alignment. The Forward
Scattering Alignment (FSA) convention is defined with respect to the wave propagation
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direction (the local coordinate systems (ĥ, v̂, k̂) point always in the direction of propaga-
tion) and is best suited for bistatic and multi–scattering problems.
Alternatively, the Backscatter Alignment (BSA) convention is defined with respect to the
transmit and receive antennas so that the local coordinate systems always point away from
the antennas. The backscattering matrices in FSA and BSA conventions are called Jones
matrix and Sinclair matrix, respectively. The scattering matrix transformation between
these two conventions is given by

SFSA =
[
1 0
0 −1

]
SBSA (2.56)

For linear media we can assume scattering reciprocity which states that for the same prop-
agation path the sense of wave propagation does not change the scattering contribution.
Practically, for the two scattering alignment conventions it implies that

FSA: Shv = −Svh BSA: Shv = Svh (2.57)

⇐⇒ FSA: SFSA =
[
Shh Shv
−Shv Svv

]
BSA: SBSA =

[
Shh Shv
Shv Svv

]
(2.58)

For convenience, from now on the BSA convention will be used for all global backscattering
problems together with the matrix S, whereas the FSA convention will be used for single
particle bistatic scattering problems.

2.5.2 Polarimetric Covariance and Coherency Matrices

The scattering matrix can be vectorized using a set of complex basis matrices [16, 24].
Two common matrix sets are the lexicographic ΨL and the Pauli ΨP basis matrices:

ΨL =
{

2
[
1 0
0 0

]
, 2
[
0 1
0 0

]
, 2
[
0 0
1 0

]
, 2
[
0 0
0 1

]}
(2.59)

ΨP =
{√

2
[
1 0
0 1

]
,
√

2
[
1 0
0 −1

]
,
√

2
[
0 1
1 0

]
,
√

2
[
0 −i
i 0

]}
(2.60)

leading to definitions of the scattering vectors (also called target vectors)

kL4 =
1
2

trace(SΨL) =


Shh
Shv
Svh
Svv

 , kP4 =
1
2

trace(SΨP ) =
1√
2


Shh + Svv
Shh − Svv
Shv + Svh
i(Shv − Svh)

 (2.61)

Under the criterion of reciprocity, Shv and Svh are equal in the BSA convention so that
the basis matrices are modified to obtain three element scattering vectors:

kL3 =

 Shh√
2Shv
Svv

 , kP3 =
1√
2

Shh + Svv
Shh − Svv

2Shv

 (2.62)

where the weighting factors of the cross polar terms are adjusted to keep the total scattered
power in all scattering matrices and scattering vectors constant. The Pauli matrix basis
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is particularly useful since it represents canonical scattering mechanisms with physical
significance. The first component represents an ideal odd–bounce scattering mechanism,
the second represents an even–bounce mechanism, and the third component represents a
tilted 45◦even–bounce mechanism.
The two scattering vector representations are related by a unitary transformation

kP3 = DkL3 ⇐⇒ kL3 = D†kP3, where D =
1√
2

1 0 1
1 0 −1
0
√

2 0

 (2.63)

As has been shown in 2.4.3, the scattering of distributed targets consists of a coherent
superposition of many elemental scattering matrices. These scattering mechanisms can be
best represented using second–order statistics under the form of covariance and coherency
matrices. A covariance matrix is defined as

C3 =
〈
kL3k

†
L3

〉
=

 〈
|Shh|2

〉 √
2 〈ShhS∗hv〉 〈ShhS∗vv〉√

2 〈ShvS∗hh〉 2
〈
|Shv|2

〉 √
2 〈ShvS∗vv〉

〈SvvS∗hh〉
√

2 〈SvvS∗hv〉
〈
|Svv|2

〉
 (2.64)

where 〈〉 denotes the expectation operation. The covariance matrix in the Pauli basis is
called the coherency matrix and is given by

T3 =
〈
kP3k

†
P3

〉
(2.65)

=
1
2

 〈
|Shh + Svv|2

〉
〈(Shh + Svv)(Shh − Svv)∗〉 2 〈(Shh + Svv)S∗hv〉

〈(Shh − Svv)(Shh + Svv)∗〉
〈
|Shh − Svv|2

〉
2 〈(Shh − Svv)S∗hv〉

2 〈Shv(Shh + Svv)∗〉 2 〈Shv(Shh − Svv)∗〉 4
〈
|Shv|2

〉


(2.66)

The transformations between covariance and coherency matrices are given by

T3 = DC3D† ⇐⇒ C3 = D†T3D (2.67)

2.5.3 Polarization Synthesis

Wave Polarization Basis Transformation

From the formalism presented in 2.2, the polarization state vector of a wave can be
synthesized from the orientation and the ellipticity angles, ψ, χ, as:

p̂(ψ, χ) =
[
cosψ − sinψ
sinψ cosψ

] [
cosχ
i sinχ

]
(2.68)

Given the whole scattering matrix, the backscattering coefficient for certain transmit and
receive polarizations p̂t, p̂r is given as

Srt = p̂T
r Sp̂t. (2.69)

One can generalize this concept to the representation of a scattering matrix in arbitrary
polarization basis using the special unitary transformation matrix U2 [83]:

SAB = UT
2 SHVU2, U2 =

[
p̂A p̂B

]
=

1√
1 + |ρ|2

[
1 −ρ∗
ρ 1

]
, with U2U

†
2 = I (2.70)

where the orthogonal unitary vectors p̂A, p̂B expressed in the H-V basis determine the
new polarization basis and ρ is the corresponding complex polarization ratio.
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Eigenpolarizations of the Scattering Matrix

The concept of the eigenpolarizations of a scattering matrix is of special importance.
Eigenpolarizations represent polarization states that are not modified by a scatterer, i.e.
incident and scattered waves have the same polarizations [157, 105]. In case of recipro-
cal scattering, the eigenpolarizations are given by the con–eigenvectors of the scattering
matrix, and the con–eigenvalues represent the associated backscattering coefficients [83]:[

λ1 0
0 λ2

]
=
[
p̂e1 p̂e2

]TS
[
p̂e1 p̂e2

]
(2.71)

S =
[
p̂e1 p̂e2

]∗ [λ1 0
0 λ2

] [
p̂e1 p̂e2

]† (2.72)

Furthermore, an effective homogeneous medium can be described by its eigenpolarizations
and the corresponding con–eigenvalues which determine the propagation effects. The
eigenpolarizations and the corresponding backscattering coefficients are sensitive to some
of the scatterer characteristics such as its orientation and its shape. If the scatterer has a
line of symmetry, the eigenpolarizations are linear and the vector elements are real. In this
case the eigenpolarizations will be given by the axes of symmetry and can be characterized
by a single parameter, the orientation angle which rotates the reference polarization basis
into the eigenpolarizations.

Scattering Polarization Basis Transformation

Similarly to the extraction of a single–pol scattering coefficient from a scattering matrix
using two projection vectors for transmit and receive polarizations in (2.69), one can
extract a backscattering coefficient from the scattering vector using a single projection
vector ω (in lexicographic or Pauli basis):

Srt = ω†L/PkL/P (2.73)

The vector ω can be used to represent scattering mechanisms and it is determined by the
receive and transmit polarizations:

ω := ω(ψr, χr, ψt, χt) = ω(p̂r, p̂t) (2.74)

For quad–pol projection vectors in the lexicographic matrix basis ω is given by

ωL = pr ⊗ pt =


pr1pt1
pr1pt2
pr2pt1
pr2pt2

 , where pr/t =
[
p1

p2

]
(2.75)

where pr,pt are determined by (2.68), and ⊗ represents the Kronecker product.
The transformations from the H–V to an A–B polarization basis are given by [15]

kLAB3 = UL3kLHV 3, kPAB3 = UP3kPHV 3 (2.76)

C3AB = UL3CU†
L3, T3AB = UP3TU†

P3 (2.77)
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Figure 2.8: Geometry of the scene representing the polarization of the incidence electro-
magnetic wave and the illuminated medium.

where the unitary transformation matrix can be given in terms of the polarization ratio
ρ or in terms of three orthogonal unitary projection vectors ω1,ω2,ω3:

UL3 =
1

1 + ρρ∗

 1
√

2ρ ρ2

−
√

2ρ∗ 1− ρρ∗
√

2ρ
ρ∗2 −

√
2ρ∗ 1

 =
[
ω1 ω2 ω3

]†
, UP3 = DUL3D† (2.78)

For example, the circular polarization basis is characterized by polarization angles ψ =∞,
χ = ±π

2 , and ρ = ±i and the covariance matrix is given by [74]

Ccirc =
〈
kCk

†
C

〉
=

 〈
|SRR|2

〉 √
2 〈SRRS∗RL〉 〈SRRS∗LL〉√

2 〈SRLS∗RR〉 2
〈
|SRL|2

〉 √
2 〈SRLS∗LL〉

〈SLLS∗RR〉
√

2 〈SLLS∗RL〉
〈
|SLL|2

〉
 (2.79)

where kC is the circular scattering vector expressed in the H–V basis:

kC =

 SRR√
2SRL
SLL

 =
1
2

Shh − Svv + 2iShv√
2i(Shh + Svv)

Svv − Shh + 2iShv

 (2.80)

2.5.4 Scattering Symmetries

Considering bulk ensemble averages, many geophysical media possess symmetry properties
with respect to a plane or axis. In [100], four basic symmetry groups were formulated and
analyzed for remote sensing of geophysical media: the reflection, rotation, azimuthal, and
centrical symmetries. But prior to discuss the symmetries and their effects one needs to
define the reference geometry for the interaction of the wave with the scattering medium.
Fig. 2.8 shows the geometry of the electromagnetic wave incident on a scattering medium
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cell. The (x̂, ŷ) plane defines the horizontal reference plane, containing also the horizontal
wave vector ĥ. x̂ is referred to as the azimuth direction, whereas ŷ represents the ground
range direction. The plane (v̂, k̂) defines the incidence plane containing the line of sight
(LOS) direction vector k̂. θ0 is the incidence angle of the wave inside the incidence plane.
The plane (ĥ, v̂) is the transverse plane (also called the polarization plane) which contains
the Jones vector E.
Reflection symmetry occurs when the medium scattering exhibits mirror reflection about
the incidence plane. This symmetry manifests itself in the covariance and coherency
matrices by the total decorrelation of the co– and the cross–polarized components:〈

ShhShv
†
〉

=
〈
SvvShv

†
〉

= 0 (2.81)

Thus, the covariance and the coherency matrices

CreflSym = a

 1 0 d+ if
0 b 0

d− if 0 c

 , TreflSym = α

 1 δ + iε 0
δ − iε β 0

0 0 γ

 (2.82)

have 5 degrees of freedom: one for the reference intensity and four for the description of
the polarization state.
Rotation symmetry occurs when the medium response is invariant under the rotation
about the LOS axis (k̂). This implies that the rotation of the polarization orientation
angle ψ in the polarization plane does not have any effect on the covariance and coherency
matrices. This enforces strict constraints on the structure of the covariance and coherency
matrices so that they can be parameterized using only three real valued terms [100,24]:

CrotSym = a

 1 ig 1− b
−ig b ig
1− b −ig 1

 , TrotSym = α

1 0 0
0 β iζ
0 −iζ β

 (2.83)

Azimuthal symmetry is the combination of both reflection and rotation symmetries. Under
azimuthal symmetry the medium exhibits mirror reflection symmetry in any plane through
the axis of rotation k̂. In this case only two degrees of freedom are needed:

CazSym = a

 1 0 1− b
0 b 0

1− b 0 1

 , TazSym = α

1 0 0
0 β 0
0 0 β

 (2.84)

Centrical symmetry is given when the medium is invariant to reflection about any plane
containing the scattering cell and to rotation about any axis containing this cell. There-
fore centrical symmetry can be considered as azimuthal symmetry for any incidence and
azimuth angles, so that (2.84) is always valid independently of the wave incidence direc-
tion.
For example, forest canopy with completely randomly oriented particles (spherical orien-
tation distribution) exhibits centrical symmetry. In presence of ground contribution or in
case of preferred orientation effects inside the canopy, the centrical symmetry may not be
verified. If the ground plane is parallel to the azimuth axis, the forest can be assumed to
satisfy the reflection symmetry conditions.
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Orientation Angle Estimation

Most natural media possess reflection symmetry with reference to a plane, which is not
necessary the incidence plane of the electromagnetic wave. Examples include ocean waves
with the wind direction vector laying not exactly in the incidence plane, or azimuth
slopes of vegetated or non–vegetated terrains. If the plane of reflection symmetry can be
obtained by rotating the incidence plane about the line of sight by an angle ψ, then one
can transform the polarization basis of the covariance and coherency matrices into the
reflection symmetric form by rotating the polarization ellipsis by the same angle.
For a single scatterer, if it has an axis of symmetry in the transverse plane, one can
rotate the scattering matrix into the reflection symmetric form with a null cross–polarized
scattering coefficient:

SreflSym =
[
a 0
0 b

]
= RT

S(−ψ)S RS(−ψ), RS(ψ) =
[
cosψ − sinψ
sinψ cosψ

]
(2.85)

where RS(ψ) is the polarization orientation rotation matrix. The rotation of the covariance
and coherency matrices into the reflection symmetric form is given by

TreflSym = RT (−2ψ)T RT
T (−2ψ), RT (2ψ) =

1 0 0
0 cos 2ψ sin 2ψ
0 − sin 2ψ cos 2ψ

 (2.86)

CreflSym = RC(−2ψ)C RT
C(−2ψ), RC(2ψ) = D†RT (2ψ)D (2.87)

where RT (2ψ) and RC(2ψ) are rotation matrices for the polarization orientation angle of
the coherency and covariance matrices and D is given in (2.63).
Several methods have been developed to estimate the polarization orientation angle of the
scattering medium since it can be related to important geophysical parameters like the
wind direction over the see or ocean, or the surface slopes which enables to reconstruct
a digital elevation model (DEM) of the terrain. For example, the orientation angle for a
sloped terrain is related to the azimuth and ground range terrain slopes υaz, υrg via [75]

tanψ =
tan υaz

− tan υrg cos θ0 + sin θ0
(2.88)

There exist several approaches to estimate the main orientation angle from polarimetry:
using polarization signatures [134, 163], using the phase difference between the circular
polarizations [75], using the eigenvalue decomposition of the coherency matrix [24, 25],
and using the Huynen decomposition [75]. Lee et al. [74] showed that the estimation
of orientation angles from polarimetry based on circular polarizations is more robust in
comparison to other approaches. Alternatively, terrain slopes can be obtained with the
help of interferometry.

2.5.5 Separation of Distinctive Components by Means of Polarimetry:
Target Decompositions

The objective of target decompositions is to express the scattering or covariance ma-
trices as sums of contributions having distinctive physical meanings. In general, one
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distinguishes between coherent and incoherent target decompositions. Coherent target
decompositions are applied to the scattering matrix and are adapted to the study of
deterministic responses. The most common coherent decompositions are the Pauli de-
composition, the Krogager (sphere–diplane–helix) decomposition [67], the Cameron de-
composition [14] and the symmetric scattering characterization method (SSCM) by Touzi
and Charbonneau [149, 13]. Incoherent decompositions are adapted to the study of dis-
tributed environments and are applied to polarimetric second order representations. One
may distinct model–based and analytical decomposition approaches. Model based decom-
positions, such as the Freeman–Durden decomposition [46, 45] or the Yamaguchi decom-
position [169], decompose the covariance or coherency matrices into different scattering
types, such as surface scattering, double bounce scattering, volume scattering, and helix
scattering. Another approach relies on the eigendecomposition of the coherency matrix,
namely the Cloude–Pottier decomposition [25,112] which enables to extract the physically
meaningful parameters entropy (degree of polarization randomness), alpha angle (scatter-
ing mechanism type) and anisotropy (significance of secondary scattering mechanisms).

Entropy–Alpha–Anisotropy Decomposition

The Cloude and Pottier Entropy–Alpha–Anisotropy (H-α-A) decomposition [16, 15, 24,
25,112] uses the eigendecomposition of the coherency matrix:

Tωi = λiωi (2.89)

where λi,ωi (i ∈ [1..3]) are the eigenvalues and eigenvectors, respectively. The eigenvec-
tors can be parameterized using the angles α, β, γ, δ, and φ:

ωi = eiφi

 cosαi
sinαi cosβieiδi
sinαi sinβieiγi

 (2.90)

In dependence of the incidence angle and the dielectric properties, the α ∈ [0, 1
2π] angle

can be used to deduce the scattering mechanism type. Whereas β ∈ [0, π] is related to
orientations of the scatterers. δ, γ, φ ∈ [−π, π] are the polarimetric phase difference angles.
The polarization entropy is defined in the von Neumann sense by

H = −
3∑
i=1

pi log3(pi), pi =
λi∑3
j=1 λj

(2.91)

The mean alpha angle is the linear combination of the eigenvector alpha angles:

α =
3∑
i=1

piαi (2.92)

The anisotropy

A =
λ2 − λ3

λ2 + λ3
(2.93)

is a difference measure of the second and third scattering mechanisms.
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Freeman—Durden Decomposition

Assuming reflection symmetry, the Freeman–Durden model [46] attempts to decompose
the covariance matrix into three components related to surface, volume, and double–
bounce scattering:

C = fsCs + fvCv + fdCd (2.94)

where the normalized covariance matrices represent the polarimetry of the different scat-
tering types, and fs, fv, fd represent the |Shh|2 intensities. The surface is modeled by
first–order approximation of the small perturbation model from section 2.4.2

Cs =

 1 0 β
0 0 0
β∗ 0 |β|2

 , with arg(β) ≈ 0 (2.95)

The azimuthal symmetric volume component is represented by a collection of randomly
oriented dipoles

Cv =

1 0 1
3

0 2
3 0

1
3 0 1

 (2.96)

And the double–bounce is given by

Cd =

 1 0 α
0 0 0
α∗ 0 |α|2

 , with arg(α) ≈ ±π (2.97)

In 2007, the volume component model has been extended by Freeman [45] to consider
different particle shapes inside the volume, represented by the parameter ρ ∈ [13 , 1] :

Cv =

 1 0 ρ
0 (1− ρ) 0
ρ∗ 0 1

 (2.98)

Yamaguchi Decomposition

Yamaguchi et al. [169, 170] extended the Freeman–Durden model by allowing a certain
degree of orientation inside the vegetation and introduced a helix component. The dis-
tribution of orientation angles is taken to follow a sine function and a set of covariance
matrices is computed. The helicity is modeled by right and left helix covariance matrices

Ch =

 1 ±i
√

2 −1
∓i
√

2 2 ±i
√

2
−1 ∓i

√
2 1

 (2.99)
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2.6 Conclusions

This chapter presented the basic theory of electromagnetic wave propagation, scattering
and polarization, as well as the scattering processes in random media, and the basic con-
cepts of polarimetry. The introduced basic notions and notations will be used throughout
the whole thesis.
The next chapter will briefly introduce the functionality of synthetic aperture radar (SAR)
imaging, together with the concepts of SAR Polarimetry and SAR Interferometry.



Chapter 3

Synthetic Aperture Radar
Imaging

In the previous chapter, the general properties of electromagnetic wave propagation and
scattering have been presented. In this chapter, instruments and techniques to acquire
electromagnetic wave signals with the help of a synthetic aperture radar (SAR) are dis-
cussed. The principles of SAR raw data acquisition and processing are introduced, as well
as SAR imaging modes including single–channel, polarimetric and interferometric modes.

3.1 SAR Geometry

SAR is an acronym for Synthetic Aperture Radar, where Radar is again an acronym
for RAdio Detection And Ranging. Radar is in the meantime a common term and it
refers to a device and a technique for detection and location of objects [137]. The radar
emits electromagnetic signals (usually in microwave and radio frequencies) and detects
the signal after its interaction with the medium. Radars are said to be monostatic if
the transmitting and receiving antennas are the same and bistatic if the antennas are
spatially separated. In the most basic form the radar consists of a microwave transmitter,
a receiver, a circulator, and an antenna [137,148,158], as shown in Fig. 3.1.
The principle of the radar consists in emitting a wave and recording the received signal
amplitude and possibly the phase as well as the time delay between transmission and
reception. This time delay is proportional to the range distance d between the radar and

Figure 3.1: Basic monostatic radar system configuration consisting of a transmitter, re-
ceiver, circulator and an antenna.

29
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the scattering medium:

∆t =
2d
c

(3.1)

The received signal is a function of the scattering medium properties, the range distance,
and the transmit and receive polarizations.
The technique to generate a two–dimensional image of the scattering medium is called
radar imaging. The diversity required to build an image is provided by the movement
of the radar system or the imaged object. Former radar systems, so called real aperture
radars (RAR), were incoherent radars and did not acquire the phase information, requiring
very large antennas for reasonable resolutions. The synthetic aperture radar (SAR) is able
to use the phase information to construct a synthetically large antenna, which increases
the resolution in the moving direction.
The acquisition geometry of an air–borne radar system is shown in Fig. 3.2. The radar
is a side–looking device mounted on an air–plane. The air–plane is located at position r1

at height h and is moving along v̂ with a velocity v = ‖v‖. The radar emits short pulses
of duration τ in the antenna beam direction with the pulse repetition frequency (PRF ).
When the emitted signal consists in a rectangular pulse, the slant range resolution δsr
depends on the effective transmitted pulse length τ and is given by

δsr =
cτ

2
(3.2)

To improve the resolution, one therefore needs to decrease the pulse length. However, it
is technologically difficult to transmit a very short pulse with a sufficient level of energy.
To overcome this limitation a long but frequency modulated (FM) pulse is transmitted.
Usually, a linear frequency modulated pulse, known as chirp(1), is transmitted (with a
bandwidth Wr) and leads to a range resolution of

δsr =
c

2Wr
. (3.3)

The ground range resolution depends on the incidence angle θ0 and is given by

δgr =
δsr

sin θ0
=

c

2Wr sin θ0
(3.4)

For an antenna width(2) Lx, the half–power beamwidth (3dB) in azimuth may be approx-
imated as

αaz =
λ0

Lx
(3.5)

where λ0 = c
f0

is the carrier wavelength and f0 the carrier frequency. The spatial extent
of the beam (radar footprint width) at range R in the far zone [148] can be given by

δaz = Rαaz = R
λ

Lx
(3.6)

(1)This term comes from an audio signal or rising or falling frequency which is similar to a bird’s chirp [66].
(2)The length of the antenna is called aperture [119].
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Figure 3.2: Air–Borne radar system geometry.

This is the azimuth resolution of a real aperture radar (RAR), which requires a large
aperture for a fine resolution value.
In 1951, it has been noted by Carl Wiley that the motion of the sensor creates a modulation
of the signal in the azimuth direction, similarly to the Doppler effect [148]. This effect can
be used to generate a synthetic aperture Lsa that may be used to improve the azimuth
resolution. The synthetic aperture is then determined by the length of the track over
which a point of the scene is illuminated, in our case the radar footprint.

Lsa = δaz = R
λ

Lx
(3.7)

The spatial resolution of the synthetic aperture considering an additional factor of 2 for
the two–way path difference between synthetic aperture elements is then given by

αsa =
λ

2Lsa
=
Lx
2R

, δsa = Rαsa =
1
2
Lx (3.8)

3.2 SAR Data Acquisition and Focusing

SAR Data Acquisition

Data acquisition can be described as the projection of illuminated objects from the ground
into the collected raw data by a transfer function. The SAR imaging process deals with
the reverse approach and aims to reconstruct the imaged area from the raw data.
The transmitted electromagnetic wave can be described by

Et(t) = p̂tgrg(t)e
iω0t (3.9)

where p̂t represents the polarization of the transmitting antenna. The transmitted pulse
starts at t = t0 and continues for the pulse duration τ , so that the pulse frequency of the
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chirp varies between ω0 −Wr/2 and ω0 +Wr/2. grg(t) is the envelope of the transmitted
signal, given by

grg(t′) = ei
πWr
τ

t′2Π(
t′

τ
) (3.10)

In this function, t′ represents the across–track time (also known as fast–time) [66], Π()
is the rectangular window function, taking into account the limited time duration of the
impulse.
The received scattered wave from a single particle j coming back to the sensor position
r1 is a replica of the transmitted wave modified by the backscattering amplitude matrix
Fj , decreased in magnitude (expressed by Aj) and delayed by ∆tj :

Erj = AjFjp̂tgrg(t−∆tj)eiω0(t−∆tj) (3.11)

The received signal is determined by the receiving antenna polarization p̂r:

u′rj(x, t) = p̂T
r Erj(x, t) (3.12)

The time delay due to two–way range distance is given by

∆tj =
2d(r1, rj)

c
. (3.13)

where d(r1, rj) is the distance between the sensor r1 and the scatterer rj . This distance
varies with the sensor position along the azimuth axis, which is known as range migration.
The function d(r1, rj) describes a hyperbola during the acquisition, and using the first–
order Taylor series expansion around (x1 − xj) it can be approximated by a parabola:

d(r1, rj) =
√

(x1 − xj)2 + (y1 − yj)2 + (z1 − zj)2 (3.14)

=
√

(x1 − xj)2 +R2
j ≈ Rj +

(x1 − xj)2

2Rj
(3.15)

where

Rj =
√

(y1 − yj)2 + (z1 − zj)2 (3.16)

is the closest distance between the sensor and the scatterer, the so called zero–Doppler
range.
Using the parabolic approximation, the received signal from a single scatterer can be
expressed by

u′rj(x, t) = Ajp̂
T
r Fjp̂tgrg(t−∆tj)eiω0te

−2i
ω0
c

(Rj+
(x1−xj)

2

2Rj
)

(3.17)

At the receiver, the carrier frequency is removed by a coherent quadratic demodulation,
eliminating the eiω0t exponential term in (3.17) [10]. Note that the quadratic term due to
azimuth distance difference in the last exponential is a linear frequency modulation. This
enables to introduce the azimuth chirp signal:

gaz(x;Rj) = e
−2ik0

x2

Rj Π(
x

δsa
) (3.18)
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where k0 = ω0
c is the carrier wavenumber and Π( x

δsa
) has been added to represent the

limited extent of the antenna footprint.
Taking everything into account, the final received signal from a single scatterer can be
represented by

urj(x, t) = Ajp̂
T
r Fjp̂tgrg(t−∆tj)gaz(x1 − xj ;Rj)e−2ik0Rj (3.19)

The last exponential term has a constant phase offset determined by the zero–Doppler
range (minimum sensor–scatterer distance). It is essential for multi–channel imaging such
as SAR interferometry.

SAR Image Formation Basics

The obtained raw data consists of information from the imaged scene which is spread
over a certain region. The purpose of image formation is to extract this information by
focusing the data. Three effects have to be accounted for:

• The signal envelope in form of a chirp which enables range compression and the
improvement of range resolution.

• The spatial frequency diversity (so called Doppler spectrum) in the azimuth direc-
tion, which has the form of a chirp and enables the construction of the synthetic
aperture and the improvement of the azimuth resolution.

• The presence of range cell migration, i.e. variation of x1 − xj during the SAR
acquisition, complicates the image formation and requires compensation techniques.

Due to range cell migration, range and azimuth coordinates are not independent any-
more. Each scatterer response is located on a two–dimensional curve in the raw data.
Additionally, the curvature depends on the range distance to the scatterer. There are
several methods for raw data processing in both time– and frequency–domains. The most
common methods are based on matched filtering. In the following the concept of a time–
domain processor, the backprojection algorithm, will be used to illustrate SAR focusing.
The quantity of interest is the scattering amplitude fj = p̂T

r Fjp̂t. In a first step, the
received data can be focused in range without range migration compensation. For this, a
matched filtering operation is performed at the receiver, which consists of correlating the
received chirp signal with the complex conjugate of the replica of the transmitted signal.
This provides the 1D range impulse response function

hrg(R) = (grg ∗ g∗rg)(R) = sinc
(
πR
δsr

)
(3.20)

where sinc(·) is the mathematical sinus cardinal function sinc(x) = sin(x)
x .

Azimuth focusing requires the compensation of range migration effects. This step can
be done by constructing a range–dependent two–dimensional reference function and the
convolution of this function with the range–compressed data. The impulse response for
azimuth compression can thus be represented by a two–dimensional convolution:

haz(x,R) = (gaz ∗ g∗az)(x,R) (3.21)
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Figure 3.3: Flowchart of the time–domain backprojection algorithm. The images on the
left represent the data regions of scattering echoes from 3 objects at different stages of
the focusing procedure.

Fig. 3.3 shows a block diagram of the backprojection algorithm. The two–dimensional
azimuth focusing in the time domain is computationally very intensive. Therefore, several
alternative fast methods have been developed, all working in the frequency domain [30,31].
The earliest and simplest method is the range doppler algorithm [9]. The chirp scaling
algorithm [116,91] is more accurate. The ω − k algorithm [12] provides an exact solution
to the problem of 2–D SAR focusing.
The complete focussing process can be described by the combined SAR impulse response
function

h(x,R) = hrg(R)haz(x,R). (3.22)

For the purpose of this thesis it is sufficient to approximate the SAR imaging process by
decoupling the range and azimuth dependency separating the 2D focusing problem into
two 1D problems. This results in the SAR impulse response function of the form [78,10]

h(x,R) = sinc
(
πx
δaz

)
sinc

(
πR
δsr

)
(3.23)

SAR Image Model

Using the superposition principle and the Born approximation [10], the SAR image can
finally be represented as the integration over an illuminated volume:

s(x,R) =
[
(ur(x, t) + nu) ∗ ∗g∗rg(t′)

]
∗ ∗g∗az(x,R) (3.24)

= A

∫∫∫
p̂T
r F(r′)p̂te

−2ik0R′h(x− x′, R−R′)dV ′ + n (3.25)
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where nu and n represent the additional thermal noise of the radar system before and after
focusing, respectively, and A accounts for amplitude modifications including the two–way
energy loss due to wave propagation.
Under the plane wave approximation in the far field, the sensor–scatterer range distance
can be expressed using the reference range to the resolution cell center R0 [10, 105]:

R = R0 + ∆R ≈ R0 + k̂ · (r − r0) (3.26)

leading to

s(x,R) = Ae−2ik0R0

∫∫∫
p̂T
r F(r′)p̂te

−2ik·(r′−r0)h(x− x′, R−R′)dV ′ + n (3.27)

The focused complex s(x,R) is sometimes referred to as single–look complex (SLC ) data.
It is often the end product of SAR processing of single–channel SAR imagery.

3.3 Polarimetric SAR Imaging

In the previous sections, SAR data acquisition and image formation were presented for a
single channel, where only one element of the polarimetric scattering matrix could be ac-
quired for given emitting and receiving polarizations. In order to reconstruct all elements
of the scattering matrix it is required to emit and receive electromagnetic waves in two
orthogonal polarization states (usually the horizontal H and the vertical V polarizations).
In the simplest monostatic configuration, two antennas are used for alternating transmis-
sion and simultaneous reception. Fig. 3.4 shows a block diagram of such a polarimetric
radar system [158].
A possible timing approach for acquiring all scattering matrix elements could be as follows:
(1) transmit the pulse through the horizontally polarized antenna, (2) receive the scattered
wave simultaneously on both antennas, (3) transmit the pulse through the vertically
polarized antenna, (4) and receive simultaneously. This scheme is shown in Fig. 3.5.
An obvious disadvantage of using polarimetric imaging is the need to double the pulse
repetition frequency (PRF) in comparison to single polarization radars. The processing
of the raw data is similar to the processing of single–pol data and handles every channel
separately.

3.3.1 Polarimetric Calibration

However, in order to reconstruct the scattering matrix correctly, an accurate polarimet-
ric calibration of the relative amplitude and phase between the polarimetric channels is
required. One distinguishes between internal calibration and external calibration. The
internal calibration adjusts the system and sensor parameters, whereas the external cali-
bration uses known target responses to calibrate the already available image [44]. In gen-
eral, four criteria are used for polarimetric calibration: symmetrization of the cross–polar
channels, cross talk correction, channel imbalance correction, and the absolute calibration
of the radiometric calibration factor [44,3, 158].
The final calibrated polarimetric scattering matrix image can be obtained by extending
the single polarization model to full polarimetry:

S(x,R) = Ae−2ik0R0

∫∫∫
F(r′)e−2ik·(r′−r0)h(x− x′, R−R′)dV ′ + N (3.28)
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Figure 3.4: Polarimetric radar system configuration.

Figure 3.5: System timing for polarimetric data acquisition showing how all scattering
matrix elements are acquired.

This model uses again the Born approximation neglecting propagation effects and assum-
ing no system distortion and perfect calibration. The matrix N represents the independent
noise contributions in the different channels.

3.3.2 Partial and Compact Polarimetric SAR Imaging

The reduction of the performance and the increase of the system complexity to acquire
fully polarized scattering matrix elements may be incompatible with space–borne mission
requirements. A compromise is to use so called partial and compact polarimetric modes.
The sensor sends the signal only in one polarization but receives it simultaneously in two
orthogonal polarizations using two antennas. With this technique one acquires two of the
four elements of a transformed scattering matrix. A system model for the observables can
be given by

kL2(x,R) = Ae−2ik0R0

∫∫∫
UL2F(r′)p̂te

−2ik·(r′−r0)h(x− x′, R−R′)dV ′ + N (3.29)

where p̂t represents the transmit polarization, UL2 represents the transformation into
the two receive polarizations, and kL2 represents a two element scattering vector in the
lexicographic matrix basis of the system partial/compact polarizations. The two com-
mon partial polarimetric modes are the HH − V H and the V V − HV modes. Com-
pact polarimetric modes include the π

4 mode [140], the dual circular mode, and circular
transmit–linear receive mode (also called hybrid mode) [117].
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Figure 3.6: Interferometric SAR imaging geometry in the incidence plane.

3.4 Interferometric SAR Imaging

Due to the specific SAR geometry and processing, SAR imaging represents a projection
of the 3D space (x, y, z) into the 2D cylindrical zero–Doppler coordinates (x,R). The
information about one dimension is lost, and two different points with the same range
distances but different heights will be imaged into the same resolution cell. Observing
the scene from two slightly different incidence angles enables the reconstruction of the
lost dimension up to a certain degree. SAR Interferometry (InSAR) uses the combination
of two coherent SAR images acquired from slightly different incidence angles in order to
reconstruct the height information from the phase difference.

3.4.1 Interferometric SAR Geometry

There are many approaches for interferometric data acquisition and application. In
across–track interferometry two general modes are considered. In single–transmit mode,
one antenna transmits the signal and both antennas receive the scattered signal simulta-
neously. In alternate–transmit mode, each antenna transmits and receives the signal, see
Fig. 3.7. Whereas the single–transmit mode is only possible for single–pass interferometry,
the alternate–transmit mode is possible in single–pass and in repeat–pass acquisitions.
For all across–track interferometric modes, the geometry is represented in Fig. 3.6. The
two sensors r1, r2 are separated by the baseline B = ‖b‖ in the incidence plane perpen-
dicular to the along–track direction:

b = r2 − r1 = B

 0
cosαB
sinαB

 = Bh

0
1
0

+Bv

0
0
1

 (3.30)

where αB is the baseline inclination angle. The baseline can be separated into the per-
pendicular part B⊥ (also called effective baseline) and the parallel part B‖

B⊥ = B cos(θ1 − αB), B‖ = B sin(θ1 − αB) (3.31)

where θ1 is the incidence angle from the first sensor.
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Given a point scatterer at position r, the range distances from the two sensors are given
by R1 = |r1 − r| and R2 = |r2 − r| = R1 + ∆R. For two received signals at the baseline
ends

s1(x,R) = |s1(x,R)|eiφ1(x,R), s2(x,R) = |s2(x,R)|eiφ2(x,R) (3.32)

the complex interferogram is given by

v(x,R) = s1(x,R)s∗2(x,R) = |s1(x,R)||s2(x,R)|eiφ(x,R) (3.33)

where φ = φ1 − φ2 is the interferometric phase. For a point scatterer, the signal phase is
composed of the range delay and the object phase induced by scattering:

φ1 = −2k0Rj1 + φobj , φ2 = −2k0(Rj1 + ∆R) + φobj . (3.34)

where the factor of 2 corresponds to the alternate–transmit mode, due to the two–way
range distance difference. Taking the difference, the interferometric phase is therefore
given by

φ = φ1 − φ2 = 2k0∆R = 2k0(R2 −R1) (3.35)

Using the cosine law, R2 and ∆R can be expressed by

R2
2 = R2

1 +B2 − 2R1B cos(
π

2
− (θ1 − αB)) = R2

1 +B2 − 2R1B sin(θ1 − αB) (3.36)

∆R = R2 −R1 = −B sin(θ1 − αB) +
B2

2R1
− ∆R2

2R1
(3.37)

Since the baseline B and the range difference ∆R are very small in comparison to R1,
the last two terms of the last equation can be neglected. This leads to the plane wave
approximation in the far–field (sometimes also called parallel ray approximation):

∆R ≈ −B sin(θ1 − αB) = −B‖ (3.38)

The interferometric phase is then proportional to the parallel component of the baseline.
Noting that

cos θ0 =
h− z
R

(3.39)

where z and R are the coordinates of a scatterer in the incidence plane and h is the
height of the sensor, one can derive the partial derivatives of (3.35) with reference to local
coordinates R, z and x.
Locally, in the surrounding of the resolution cell center, the phase dependence on range
and height coordinates (R, z) (defining range and height sensitivities of the interferometric
phase) can be obtained by a first–order Taylor expansion of the phase difference [127,153]
using (3.38) and (3.39):

kr ≈
∂φ

∂R

∣∣∣∣
r=r0

= 2k0
∂∆R
∂R

∣∣∣∣
r=r0

= 2k0
B⊥

R0 tan θ0
(3.40)

kz ≈
∂φ

∂z

∣∣∣∣
r=r0

= 2k0
∂∆R
∂z

∣∣∣∣
r=r0

= 2k0
B⊥

R0 sin θ0
(3.41)

kx ≈
∂φ

∂x

∣∣∣∣
r=r0

= 2k0
∂∆R
∂x

∣∣∣∣
r=r0

= 0 (3.42)
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Figure 3.7: Interferometric single–transmit (left) and alternate–transmit (right) modes.

where θ0 = θ1+θ2
2 and R0 = R1+R2

2 are the average incidence angle and the average range
distance.
kz is often referred to as the vertical wavenumber . Alternatively, the 2π height ambiguity
z2π expresses the height difference leading to an interferometric phase change of 2π:

z2π =
2π
kz

(3.43)

The major observable of SAR interferometry, next to the interferometric phase, is the
complex coherence

γ = |γ|eiφ =
〈s1s∗2〉√
〈s1s∗1〉 〈s2s∗2〉

(3.44)

The absolute value of γ is the degree of interferometric coherence and it ranges between
zero and one. It is also an indicator of the phase information quality.
The slightly different sensor positions cause the sampling of two slightly different spectral
slices. As shown in Fig. 3.8 for the ground range and height, the spectra slices will have
one common part which is shifted, and non–correlated parts. The system bandwidth Wr

limits the maximal possible perpendicular baseline, called the critical baseline, given by

B⊥,crit =
WrλR

c
tan θ0 (3.45)

The degree of range decorrelation is determined by the non–overlapping parts in the spec-
tra. If only surface scattering is present, this decorrelation can be reduced by wavenumber
shift filtering [49]. However, the presence of a vertical distribution of scatterers will cause
volume decorrelation which cannot be compensated in the data.

3.4.2 Interferometric Model for One Homogeneous Layer

The model for an interferometric SAR image pair, after perfect calibration and coregis-
tration and under the Born approximation is given by [54,10]

s1(x,R1) = A

∫∫∫
f(r′)e−2ik0R′1h(x− x′, R1 −R′

1)dV
′ + n1 (3.46)

s2(x,R2) = A

∫∫∫
f(r′)e−2ik0R′2h(x− x′, R2 −R′

2)dV
′ + n2 (3.47)

(3.48)
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Figure 3.8: The reflectivity spectral slices of a pair of InSAR images. fy and fz represent
the ground and the height spectra, while fr1, fr2 are the slant range spectra of two SAR
images in dependence of the incidence angle. The green region of the ground spectrum is
the overlapping correlated part, and the red and blue are non–overlapping uncorrelated
parts of image spectra.

where we have assumed that the amplitude variations are negligible (A1 = A2 = A) and
where Ri, R′

i are given by |ri−r|, |ri−r′| and f(r′) = p̂T
r Fp̂t. The scattering amplitudes

are assumed to follow independent circular complex Gaussian distributions, as discussed
in appendix A, so that〈

f1(r)f∗1 (r′)
〉

=
〈
f2(r)f∗2 (r′)

〉
= σv(r′)δ(r − r′) (3.49)〈

f1(r)f∗2 (r′)
〉

= σve(r′)δ(r − r′) (3.50)

where σv is the backscattering coefficient and σve is the temporally stable backscattering
coefficient (also called the effective backscattering coefficient).
Assuming perfect coregistration, the interferometric cross–correlation is given by

〈s1s∗2〉 = A2

∫∫∫
σve(r′)|h(...)|2e2ik0(R′2−R′1)dV ′ (3.51)

Using the first–order Taylor expansion of the phase term (3.35) from (3.40)–(3.42) [153]

2ik0(R2 −R1) ≈ 2ik0(R20 −R10) + ikr(R−R0) + ikz(z − z0) (3.52)
= iφ0 + ikr(R−R0) + ikz(z − z0) (3.53)

the cross–correlation becomes

〈s1s∗2〉 = A2eiφ0

∫∫∫
σve(r′)|h(...)|2eikr(R

′−R0)eikz(z
′−z0)dV ′ (3.54)

where φ0 = 2k0(R20 −R10) is the reference phase.
Let σve and σv be homogeneous along the horizontal plane and let them be dependent
only on height:

σve(r′) = σ0
veρ(z

′), σv(r′) = σ0
vρ(z

′) (3.55)
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where σ0
v , σ

0
ve are the average backscattering coefficients and ρ(z) is the normalized dis-

tribution of the scatterers with
∫
ρ(z′)dz′ = 1. Then one can separate the integral (3.54)

into

〈s1s∗2〉 = A2eiφ0σ0
ve

∫∫
|h(...)|2eikr(R′−R0)dR′dx′

∫
ρ(z′)eikz(z

′−z0)dz′ (3.56)

= A2eiφ0σ0
veIrxIz (3.57)

where Irx and Iz represent the corresponding integrals over the range and azimuth, and
over the height dimensions, respectively.
The autocorrelation of the received signal is given by [54,153,5, 10]

〈sis∗i 〉 = A2

∫∫∫
σv|h(...)|2dV ′ + σn = A2σ0

v

∫∫
|h(...)|2dR′dx′

∫
ρ(z′)dz′ + σn (3.58)

= A2σ0
vI

0
rxI

0
z + σn (3.59)

where σn =
〈
|n|2

〉
is the noise variance.

The complex coherence for this layer can thus be given by

γ =
〈s1s∗2〉√
〈|s1|2〉 〈|s2|2〉

= eiφ0
σ0
ve

σ0
v

Irx
I0
rx

Iz
I0
z

σ0

σ0 + σn
, where σ0 = A2σ0

vI
0
rxI

0
z (3.60)

= eiφ0γtempγrγzγtherm (3.61)

This simple model enables to split the coherence into several physically meaningful com-
ponents: the temporal decorrelation, the range decorrelation, the volume decorrelation,
and the thermal decorrelation. The interferometric phase is determined by the ground
reference phase φ0 and a possible offset due to the present volume, arg(γz). Additionally
it is possible to include into this model decorrelation effects due to coregistration, calibra-
tion, temporal coherent and incoherent changes, multiple layers, attenuation, refraction,
inhomogeneities, topography variations, Doppler centroid, atmosphere propagation, etc.
(see e.g. [78,171,127,10,86,128,57,126,92]).

3.4.3 Separation of Independent Layers by Means of Interferometry

As presented in the previous section, one can decompose the coherence term into a product
of several meaningful decorrelation sources. In this section we demonstrate the separability
of medium induced decorrelation sources (temporal and volume coherences), either from a
vertical structure of the layers, or due to the fact that layers have uncorrelated scattering
mechanism components.

Spatially Separated Layers

Let consider the case of two spatially separated layers l1, l2. Let these layers be homoge-
neous in the horizontal direction and let the backscattering structure be given by

σve(r′) =

{
σ0
ve1ρ1(z′) z1b ≤ z′ < z1t

σ0
ve2ρ2(z′) z2b ≤ z′ < z2t

(3.62)
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and

σv(r′) =

{
σ0
v1ρ1(z′) z1b ≤ z′ < z1t

σ0
v2ρ2(z′) z2b ≤ z′ < z2t

(3.63)

where zib, zit are bottom and top heights of these layers. The backscattering coefficients
can be equal (σ0

ve1 = σ0
ve2, σ

0
v1 = σ0

v2), but the layers are assumed to be non–overlapping,
so that z1t ≤ z2b. Then we can rewrite the cross–correlation and the autocorrelation from
equations (3.56) and (3.58) to

〈s1s∗2〉 = A2eiφ0

∫∫
|h(...)|2eikr(R′−R0)dR′dx′× (3.64)(

σ0
ve1

∫
ρ1(z′)eikz(z

′−z0)dz′ + σ0
ve2

∫
ρ2(z′)eikz(z

′−z0)dz′
)

(3.65)

= A2eiφ0Irx(σ0
ve1Iz1 + σ0

ve2Iz2) (3.66)

〈sis∗i 〉 = A2

∫∫
|h(...)|2dR′dx′

(
σ0
v1

∫
ρ1(z′)dz′ + σ0

v2

∫
ρ2(z′)dz′

)
+ σn (3.67)

= A2I0
rx(σ

0
v1I

0
z1 + σ0

v2I
0
z2) + σn (3.68)

The complex coherence for this two–layer structure can thus be given in analogy to (3.60)
by

γ =
〈s1s∗2〉√
〈|s1|2〉 〈|s2|2〉

= eiφ0
Irx
I0
rx

(
σ0
ve1Iz1 + σ0

ve2Iz2
σ0
v1I

0
z1 + σ0

v2I
0
z2

)
σ0

σ0 + σn
(3.69)

where

σ0 = A2I0
rx(σ

0
v1I

0
z1 + σ0

v2I
0
z2) (3.70)

The inner fraction containing the sums represents the temporal and the volume decorre-
lation sources of the two layers. There are two ways to represent them as independent
coherences. One involves the intensity ratio of the two layers

∆ =
σ0
v1I

0
z1

σ0
v2I

0
z2

(3.71)

and the other involves the intensity weightings of the layers

c1 =
σ0
v1I

0
z1

σ0
v1I

0
z1 + σ0

v2I
0
z2

=
∆

∆ + 1
, c2 =

σ0
v2I

0
z2

σ0
v1I

0
z1 + σ0

v2I
0
z2

=
1

∆ + 1
= 1− c1 (3.72)

with c1 + c2 = 1.
Using these definitions, one can decompose the layer decorrelation sources so that (3.69)
becomes

γ = eiφ0γr

(
∆γtemp1γz1 + γtemp2γz2

∆ + 1

)
γtherm (3.73)

= eiφ0γr(c1γtemp1γz1 + c2γtemp2γz2)γtherm (3.74)
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This two layer structure can be generalized to multiple layers:

γ = eiφ0γr

(∑N
i=1 ∆1

i γtemp,iγz,i∑N
i=1 ∆1

i

)
γtherm (3.75)

= eiφ0γr

(
N∑
i=1

ciγtemp,iγz,i

)
γtherm (3.76)

where ∆1
i is the intensity ratio of layer 1 to layer i, and ci is the normalized intensity of

layer i (
∑
ci = 1).

Uncorrelated Layers

In equivalence to (3.62) and (3.63) one can express the backscattering coefficients as a
sum of two uncorrelated scattering components

σve(r′) = σ0
ve1ρ1(z′) + σ0

ve2ρ2(z′) (3.77)

σv(r′) = σ0
v1ρ1(z′) + σ0

v2ρ2(z′) (3.78)

without any restrictions on ρ1, ρ2. Inserting these definitions into (3.56) and (3.58) one ob-
tains the same formulations for cross–correlation, autocorrelation and complex coherence
functions as in the previous derivations (3.64)–(3.76).
An often used two–layers structure consists of a ground layer l1 = lg and the vegeta-
tion volume layer l2 = lv. In this case, ∆ is called the ground–to–volume ratio and
|γz1| = 1 [154, 106]. In [154], the volumetric coherence expressions for surface, random
(and oriented) volume, and double–bounce scattering components were derived and the
surface–volume and double–bounce–volume coherence combinations were presented for
the random volume case. The double–bounce–volume coherence combination for the ori-
ented volume case has been explicitly computed in [7]. All these approaches assume
single–pass interferometric data acquisition and neglect temporal decorrelation.

3.5 Conclusions

In this chapter, the principles of synthetic aperture radar data acquisition and process-
ing were presented. Single–channel, polarimetric and interferometric SAR imaging modes
have been examined. In particular, an interferometric coherence model has been derived
and the decomposition of the coherence into independent decorrelation sources and inde-
pendent media structures has been demonstrated.





Chapter 4

PolInSAR Coherence Set
Characteristics

Polarimetric SAR interferometry (PolInSAR) is a relatively new technique with ongoing
research activities. Based on the previous works on PolInSAR, this chapter will present
our studies on fundamental PolInSAR data properties, its generic information content
and restrictions. The aim is to present common PolInSAR properties, independently of
the scattering medium under consideration.
At the beginning of this chapter, PolInSAR data representations are presented as intro-
duced by Cloude and Papathanassiou [22, 105], together with the whitened form and the
coherency contraction [22, 105, 84], as well as the concept of polarimetric stationarity in
SAR interferometry, recently formulated by Ferro–Famil and Neumann [39]. The concept
of PolInSAR coherence set, which relies on the works of Tabb and Flynn [142,143,42] and
Colin [29], is extended by us to retrieve information on coherence set geometry, density,
and distribution. The last topic of this chapter deals with PolInSAR coherence opti-
mization. We re-examine the coherence optimization problem in order to improve the
interpretation of the optimal coherences and optimal scattering mechanisms. Then, we
introduce methods which extend single–baseline coherence optimization to the multiple
baseline case.

4.1 Polarimetric SAR Interferometry

A PolInSAR image is a coherent combination of two polarimetric images by means of
interferometry:

kP =
[
kP1

kP2

]
, T =

〈
kPk

†
P

〉
=
[
T11 Ω12

Ω†
12 T22

]
(4.1)

kL =
[
kL1

kL2

]
, C =

〈
kLk

†
L

〉
=
[
C11 Q12

Q†
12 C22

]
(4.2)

where Cii,Tii are the common polarimetric covariance and coherency matrices corre-
sponding to polarimetric scattering vectors kLi,kPi and Q12,Ω12 are the cross–correlation
matrices describing the polarimetric and interferometric relationship between the two im-
ages. PolInSAR covariance matrix dimensions is 8×8 in the case of the general quad–pol

45
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data, 6× 6 in case of reciprocity, and 4× 4 in case of partial or compact polarimetry. In
the following, for the sake of compactness, we will use only the coherency matrix form in
the Pauli basis assuming reciprocity, if not otherwise stated.
In order to obtain usual scalar interferometric coherences and phases one can use the
unitary projection vectors ω1 = ωpq,ω2 = ωab where the indices pq, ab represent cer-
tain transmit and receive polarizations, as presented in section 2.5.3. Scalar scattering
coefficients can thus be obtained by

µ1 = ω†1kP 1, µ2 = ω†2kP 2 (4.3)

The common polarimetric intensities and interferometric cross–correlations are obtained
using equal projection vectors (ω1 = ω2 = ω)〈

µiµ
†
i

〉
=
〈
ω†kP ikP

†
iω
〉

= ω†
〈
kP ikP

†
i

〉
ω = ω†Tiiω i ∈ {1, 2} (4.4)〈

µ1µ
†
2

〉
=
〈
ω†kP 1kP

†
2ω
〉

= ω†
〈
kP 1kP

†
2

〉
ω = ω†Ω12ω (4.5)

Using non–equal projection vectors one can obtain polarimetric correlations, as well as
combined polarimetric and interferometric cross–correlations. Similarly, the concept of
the scalar interferometric coherence can be generalized to the vector expression for the
complex PolInSAR coherence [22,105]

γ = |γ|eiφ = γ(ω1,ω2) =
ω†1Ω12ω2√

ω†1T11ω1ω
†
2T22ω2

(4.6)

It is usually assumed that the projection vectors do not introduce phase offsets, i.e.
arg(ω†1ω2) = 0. If this is not the case, the PolInSAR coherence phase is disturbed by the
additional phase offset.
In general, using the projection vectors one aims to estimate the interferometric phase or
the degree of coherence for the same object or scattering mechanism as observed from two
different times and/or positions. It is reasonable to use equal projection vectors assuming
equal polarization signatures of the object in the two data sets. However, there are also
several possible causes to use non–equal projection vectors for the coherence estimation:
temporal changes (e.g. [86, 126]), atmosphere propagation effects (e.g. Faraday rotation
[125, 167, 47]), processing and calibration distortions, radio frequency interferences [120],
and effects due to slightly different incidence angles.
It is convenient to visualize the coherences in the complex coherence plane, as shown on an
example in Fig. 4.1. The axes represent the real and imaginary parts of the coherences.
All coherences are located inside the unitary circle. A glance at the locations of the
individual coherences enables an easy interpretation: the closer the locations are to the
origin, the more decorrelated the signal at the given polarization. Phase difference for
two polarizations represents the separation of the scattering responses.

PolInSAR Basis Transformation

Any polarimetric scattering vector or polarimetric coherency matrix can be transformed
from the given form into another polarization or matrix basis, as shown in section 2.5.3:

kP
′
i = UikP i → T′

ii = UiTiiU
†
i , Ω′

ij = UiΩ′
ijU

†
j (4.7)
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Figure 4.1: Examples of PolInSAR coherences in the complex coherence plane.

To transform the whole PolInSAR coherency matrix, one can construct the generalized
PolInSAR transformation matrix U:

U =
[
U1 0
0 U2

]
(4.8)

so that

T′ = UTU†. (4.9)

If U1 6= U2 then the two data sets are transformed into two individual bases. This can
be useful for instance for calibration purposes.

Whitened PolInSAR Representations

One can isolate the coherence information of the coherency matrix using the whitened
PolInSAR representation [105]

T̃6 =
[

I Π
Π† I

]
= RT6R, R =

[
T−1/2

11 0
0 T−1/2

22

]
(4.10)

where
Π = T−1/2

11 Ω12T
−1/2
22 (4.11)

is a coherency contraction matrix [59,84,26], since by definition σmax(Π) ≤ 1 where σmax
is the largest singular value of Π.
With substitutions

vi =
√

Tiiωi

ω†i
√

Tiiωi
, ωi =

T−1/2
ii vi

v†iT
−1/2
ii vi

(4.12)

the coherence equation (4.6) becomes:

γ = γ(v1,v2) = v†1Πv2, with v†ivi = 1 (4.13)

Polarization basis transformation applies to the coherency contraction in the same way
as to the full PolInSAR coherency matrix since

T′ = UTU† → Π′ = U1ΠU†
2 (4.14)
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Hadamard Coherence Formulation

In [83], the PolInSAR information is represented using the Hadamard products of scat-
tering vectors:

z = kP1 ◦ kP2 =

s11s21s12s
2
2

s13s
2
3

 , CH =
〈
zz†

〉
(4.15)

Assuming a lack of correlation between kP1 and kP2, it follows

CH0 :=
〈
kP1k

†
P1

〉
◦
〈
kP2k

†
P2

〉
(4.16)

If on the contrary the scattering vectors are fully correlated, one obtains

CH∞ :=
〈
z∞z

†
∞

〉
, z∞ = kP1 ◦ kP1 ∝ kP2 ◦ kP2 (4.17)

This allows to define the Hadamard coherency indicator γH using largest singular values:

γH =
σ1(CH)− σ1(CH0)
σ1(CH∞)− σ1(CH0)

(4.18)

We note this PolInSAR coherency indicator for completeness, but it has been hardly used
up to now.

4.2 Multi–Baseline Polarimetric SAR Interferometry

Single–baseline (SB) PolInSAR data analysis can be readily generalized to multi–baseline
(MB) PolInSAR by scaling the data space and the processing techniques. Multi–baseline
data with n acquisitions consists of 1

2n(n−1) direct baselines. Assuming no zero–baselines,
the number of spatially distinct baselines is between n− 1 and 1

2n(n− 1) in dependence
of the regularity of the tracks, where the limits are given for the cases of all tracks being
regularly and irregularly spaced, respectively. The MB coherency matrix is thus given by

TMB =
〈
kPk

†
P

〉
=

T11 . . . Ω1n
...

. . .
...

Ω†
1n . . . Tnn

 , with kP =

kP1
...
kPn

 (4.19)

and the whitened MB coherency matrix is

T̃MB =
〈
kPk

†
P

〉
=


I Π12 ... Π1n

Π†
12 I ... Π2n

...
...

. . .
...

Π†
1n Π†

2n ... I

 = RMBTMBRMB (4.20)

where

RMB =

T
−1/2
11 ... 0

...
. . .

...
0 ... T

−1/2
nn

 (4.21)
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Basis transformation can also be generalized to

T′
MB = UMBTU†

MB, UMB =

U1 . . . 0
...

. . .
...

0 . . . Un

 (4.22)

The interferometric coherence between two data sets i and j is given in analogy to (4.6)
and (4.13) by

γij =
ω†iΩijωj√

ω†iTiiωiω
†
jTjjωj

= v†iΠijvj , i, j ∈ [1, n], i 6= j (4.23)

To quantify the overall degree of correlation of all data sets for one given set of projection
vectors ω1, ...,ωn one can use for instance the geometrical coherence mean

ρgeom(ωMB) =

 n∏
i=1

n∏
j=i+1

|γij(ωi,ωj)|

 2
n(n−1)

ωMB =

ω1
...
ωn

 (4.24)

where ωMB represents the multi–baseline projection vector containing the individual pro-
jection vectors. Alternatively, the arithmetical coherence mean can be used:

ρarithm(ωMB) =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

|γij(ωi,ωj)| (4.25)

The relationship between these multi–baseline coherence indicators is given by

0 ≤ ρgeom(ωMB) ≤ ρarithm(ωMB) ≤ 1 ∀ ωMB (4.26)

While in general one can use individual projection vectors ωi for every track, often a
single projection vector is used (ωi = ωj = ω).

4.3 Polarimetric Stationarity Conditions

One often used assumption of interferometry is the stationarity of the scattering mecha-
nisms: in the absolute scattering mechanism amplitude and phase as well as the relative
polarization. This assumption, also known as polarimetric stationarity hypothesis [39,40],
can usually be expected to hold in case of distributed media, but it does not apply in case
of significant temporal changes and for certain scattering media (e.g. urban areas or few
strong point scatterers) with large incidence angle differences.
First and foremost, polarimetric stationarity (PS) expresses itself in equal polarimetric
coherency matrix expectations:

E[T11] = E[T22] (4.27)

Ferro-Famil proposed in [39] the normalized maximum likelihood (ML) ratio test for PS:

ΛPS =

√
|T11|

√
|T22|

|T̂3|
, with T̂3 =

T11 + T22

2
(4.28)
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where T̂3 is the ML estimate of E[T11] = E[T22].
Thus, the coherence can be computed by

γPS(ω1,ω2) =
ω†1Ω12ω2√

ω†1T̂3ω1ω
†
2T̂3ω2

⇐⇒ γPS(v1,v2) = v†1Π̃v2 (4.29)

where Π̃ = T̂−1/2
3 Ω12T̂

−1/2
3 .

For equal projection vectors, ω1 = ω2 = ω, (4.29) can be reduced to

γPS(ω,ω) =
ω†Ω12ω

ω†T̂3ω
⇐⇒ γPS(v,v) = v†Π̃v (4.30)

so that

|γPS(ω,ω)| ≤ |γ(ω,ω)| and arg γPS(ω,ω) = arg γ(ω,ω) (4.31)

since the numerators of γ(ω,ω) and γPS(ω,ω) are the same while the denominators differ,
and since the geometrical mean is less or equal to the arithmetical mean:

2

√
(ω†T11ω)(ω†T22ω) ≤ (ω†T11ω) + (ω†T22ω)

2
= ω†T̂3ω (4.32)

One useful property of this assumption is the equality of the scattering mechanism pro-
jection vectors for both the general coherency matrix and the coherency contraction (cf.
(4.12)):

PS → (ω1 = ω2 ⇐⇒ v1 = v2) (4.33)

This means that if the projection vectors of the PolInSAR coherency matrix are equal,
the projection vectors of the coherency contraction are equal too. Otherwise it is possible
that although ω1 = ω2, the contraction matrix projection vectors are not equal, vi 6= vj ,
and vice versa.
However, the constraint (4.27) does not simplify the form of Ω. Even more, under the PS
condition (4.27) the degree of coherence depends on the ordering of projection vectors,
i.e. the polarization projection vectors at the two images might not commute under the
degree of coherence generation function:

|γPS(ωi,ωj)| 6= |γPS(ωj ,ωi)|, where ‖ωi‖ = ‖ωj‖ = 1, arg(ω†iωj) = 0 (4.34)

This means that despite of the equality of polarimetric signatures of the two images, the
coherence magnitude will be in general different if one exchanges the polarizations in the
two images. This is to a certain degree counter–intuitive and needs further examination.
Let the interferometrically polarimetric stationarity (IPS) condition be given by

E[γPS(ω1,ω2)] = E[γPS(ω2,ω1)] (4.35)

which can be reduced to

ω†1E[Ω12]ω2 = ω†2E[Ω12]ω2, arg(ω†1ω2) = 0 (4.36)



4.3 Polarimetric Stationarity Conditions 51

Condition T11 = T22 |γ(ω1,ω2)| = |γ(ω2,ω1)|
General case - -
Polarimetric Stationarity (PS) X -
Not relevant - X
Interf. Pol. Stationarity (IPS) X X

Table 4.1: Polarimetric stationarity conditions.

Using the singular value decomposition

E[Ω12] = UΛV†, UU† = VV† = I, Λ = diag(λi) (4.37)

one can show that (4.35) is valid if and only if

UV† = I (4.38)

so that

E[Ω12]E[Ω†
12] = E[Ω†

12]E[Ω12] (4.39)

This shows that for IPS to be valid, the expectation of Ω12 needs to be a normal matrix.
Similarly one can show that the expectation of Π also needs to be a normal matrix for
IPS.
The normalized ML ratio test for IPS is given by [39]

ΛIPS = ΛPS
|I− P̂|

|I− Π̃Π̃
†
|
, with Π̃ = T−1/2

3 ΩT−1/2
3 , P̂ =

Π̃Π̃
†
+ Π̃

†
Π̃

2
(4.40)

The proper examination of the implications of IPS requires the introduction of coherence
sets and coherence optimization methods, which are presented in the following sections.
To summarize the common configuration of PolInSAR data, Table 4.1 presents the per-
mutations of polarimetric stationarity conditions and their denotations.

4.3.1 Media Symmetries in PolInSAR Data

Polarimetric reciprocity and scattering symmetries are often taken for granted to focus
on the most valuable information in the data. In this thesis, the media of interest will be
considered to fulfil the reciprocity and the reflection symmetry conditions (after calibration
and transformation into the reflection symmetric form). A single PolSAR coherency
matrix has therefore the expectation matrix

E[T3] =

 A D + iE
D − iE B 0

0 0 C

 (4.41)

A PolInSAR coherency matrix under such conditions has 20 degrees of freedom and the
expectation matrices [89]

E[T11] =

 A1 D1 + iE1 0
D1 − iE1 B1 0

0 0 C1

 , E[T22] =

 A2 D2 + iE2 0
D2 − iE2 B2 0

0 0 C2

 , (4.42)
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E[Ω12] =

F + iG L+ iM 0
N + iO H + iI 0

0 0 J + iK

 (4.43)

Naturally, under the PS, reciprocity and reflection symmetry conditions, the number of
degrees of freedom of E[T] is reduced to 15.

4.4 Coherence Set Theory

InSAR provides the possibility to measure a single scalar complex coherence value de-
pending on the system acquisition geometry and the transmit and receive polarizations.
PolInSAR provides the possibility to measure the coherence value for any polarization
combination. Up to now we have considered PolInSAR coherences as scalar values in
dependence of polarization. The continuous polarization space enables us to use the po-
larization diversity and to consider the set of all coherences as a continuous entity. We
will refer to the set of all coherences in the following as the coherence set. It has been
identified that the coherence set is directly connected with the mathematical concept of
the numerical range (also known as field of values) of the contraction matrix.
This section aims to present some theoretical aspects of the PolInSAR coherence set. The
first part of this section deals with the different definitions of the numerical range. The
second and third parts present principles to extract information about the coherence set
geometry and density in the complex coherence plane.

4.4.1 The Numerical Range

In a series of conference proceedings papers, Tabb and Flynn presented techniques for
analyzing and processing PolInSAR data based on the numerical range of the contrac-
tion matrix. They presented methods to extract the shape of the coherence region in
the complex plane [42], a decomposition based on interferometric phase diversity [143],
a decomposition of the shape into principal sub–shapes [142], and the reduction of SNR
decorrelation in the coherence shape [142]. Colin analyzed the numerical range for deter-
ministic targets and high resolution imagery [29,28]. The numerical radius has been used
to optimize the coherence magnitude [29,95]. Approaches have also been developed to ex-
tract from coherence sets and coherence shapes parameters related to physical properties
of scattering media [97,96,81].
All of these methods assumed at least the polarimetric stationarity. However, the theoret-
ical aspects behind these methods were often presented in an insufficient form. To fill this
gap, mathematical basics of the numerical range in relation to the PolInSAR coherence
set have been independently presented at the same time by Colin [27] and Neumann et
al. [98].
Based on the conditions of coherence computation, one can distinguish the following
coherence set definitions.

Two Scattering Mechanisms (2SM) Coherence Sets

The set of all coherences for all possible polarization projection vectors ω1,ω2 is given by

Γ = {γ(ω1,ω2) : ω1,ω2 ∈ C3,ω†1ω1 = ω†2ω2 = 1}
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= {v†1Πv2 : v1,v2 ∈ C3,v†1v1 = v†2v2 = 1} (4.44)

This is the most general coherence set formulation without any mathematical constraints.
Its equivalent in mathematics is a union of q–numerical ranges [98]:

Γ =
⋃

q∈C,|q|≤1

Wq(Π) (4.45)

where Wq(A) is the q–numerical range of a matrix A [59]:

Wq(A) = {y†Ax : x,y ∈ Cn,y†y = x†x = 1,y†x = q} (4.46)

As it can be seen, (4.44) and (4.45) are equivalent (substitute x,y with v1,v2 and A
with Π). This set is represented by a filled disk in the complex coherence plane, as
shown in Fig. 4.2.a). This implies that we loose the interferometric phase sensitivity
since it is possible to introduce an arbitrary phase shift θ between the projection vectors:
arg q = arg v†1v2 = θ. This problem has also been recognized in [22]. In order to break
the phase ambiguity the constraint arg(v1,v2) = 0 was introduced. This corresponds to
the restriction of q to the non–negative real space.
Introducing into the coherence computation (4.13) the constraint arg v†1v2 ∈ R≥0 one can
define the most general phase ambiguity free coherence set Γ2SM . The subscript expresses
the usage of two scattering mechanisms (SM) for coherence computation.

Γ2SM =
⋃

q∈R,0≤q≤1

Wq(Π) = {v†1Πv2 : v1,v2 ∈ C3, q ∈ [0, 1],v†1v1 = v†2v2 = 1,v†1v2 = q}

(4.47)

Although this given coherence set is phase ambiguity free, it is still not the best repre-
sentation of the PolInSAR data set. For instance, this coherence set always includes the
zero–coherence point independently of the contraction matrix Π. This is due to the fact
that for every vector v2 one can always find a vector v1 so that v1 is orthogonal to the
vector Πv2 leading to v†1Πv2 = 0.

One Scattering Mechanism (1SM) Coherence Sets

2SM coherence sets contain not only meaningful information but also irrelevant coherence
set regions (coherences at zero and around). In addition, coherence sets with 2 projection
vectors are more complex to handle and to interpret. Therefore, usually the projection
vectors are forced to be equal (ω1 = ω2), to obtain a single scattering mechanism (1SM)
coherence set. In the general case, using equal projection vectors, the 1SM coherence is
given by

γ1SM(ω) =
ω†Ω12ω√

ω†T11ωω†T22ω
, ω†ω = 1 (4.48)

Setting v =
√

T22ω
4
√
ω†T11ωω†T22ω

and H = T
− 1

2
22 T

1
2
11, (4.48) can be reformed into:

γ1SM(v) = v†HΠv, |v†Hv| = 1 (4.49)

(4.48) and (4.49) are general coherence definitions restricting the parameter space to equal
projection vectors ω and v. No approximations are involved up to now. In numerical range
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(a) Γ (blue) (b) Γ2SM (red) over Γ

(c) Γ1SM (brown) over Γ2SM and Γ (d) ΓPS (green) over Γ1SM , Γ2SM and
Γ

Figure 4.2: Coherence sets according to different definitions: (a) general phase-ambiguous
2SM coherence set Γ (blue), (b) phase–ambiguity free 2SM coherence set Γ2SM (red), (c)
1SM coherence set Γ1SM (brown), (d) 1SM coherence set under PS assumption ΓPS
(green). ΓPS perfectly overlaps Γ1SM showing that the PS assumption is valid for this
data point.
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theory, the coherence set Γ1SM of all γ1SM can be represented by the generalized inner
product numerical range

WH(A) = {x†HAx : x ∈ Cn, |x†Hx| = 1} (4.50)

so that
Γ1SM = {v†HΠv : v ∈ C3, |v†Hv| = 1} =WH(Π) (4.51)

Note that H is in general neither Hermitian nor positive definite. However, T11 and T22

are both positive definite after the appropriate multi–looking and have over natural envi-
ronments very similar eigenvectors. Hence, H is in practice positive definite (min(Reλi) >
0). Even more, H is very close to Hermitian since the eigenvalues λi(i ∈ {1, 2, 3}) of H
fulfil |Reλi| � |Imλi|.
In case of polarimetric stationarity (E[T11] = E[T22]) the matrix H tends towards the
identity matrix and the condition (4.33) is valid. The coherence set

ΓPS = {γPS(v) : v ∈ C3, ‖v‖ = 1} =W(Π) (4.52)

is then equivalent to the standard numerical range W(A), defined as

W(A) = {x†Ax : x ∈ Cn,x†x = 1} (4.53)

The standard numerical range (in the following it will be just called numerical range)
of a matrix is a well developed concept in matrix analysis [59], where methods exist to
interrelate properties of a matrix and its numerical range. Therefore, in the next sections
only coherence sets consisting of the numerical range of a polarimetrically stationary (PS)
PolInSAR coherency matrices will be presented.
One may note that if the PS condition is not fulfilled, the matrix Π can be slightly
modified in order to use numerical range analysis techniques. The coherence set is then
given by

Γ1SM =WH(Π) ≈ W(Π̃), with Π̃ = SΠS−1 (4.54)

where S is obtained from [98]

1
2
(H + H†) = S†S (4.55)

The potential additional validity of IPS does not require the modification of coherence set
definitions. The IPS condition does influence the form of Π and the resulting coherence
set, but not the definition.

4.4.2 Coherence Set Geometry

The PolInSAR coherence set can be understood as the projection of the PolInSAR co-
herency contraction onto the complex coherence plane. Based on the properties of Π and
its numerical range, the geometrical properties of the coherence set region in the complex
coherence plane can be predicted.
Two important characteristics of the numerical range of a matrix A are the numerical
radius

rW(A) = max{|z| : z ∈ W(A)} (4.56)
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Figure 4.3: Coherence set ΓIPS under the IPS condition over ΓPS , Γ1SM , Γ2SM , Γ with
reference to Fig. 4.2.

and the minimal distance to the origin denoted by

r̃W(A) = min{|z| : z ∈ W(A)} (4.57)

Numerical algorithms exist to compute rW(A) and r̃W(A) (e.g. [165, 87]). Within a
coherence set, the numerical radius is the maximal possible degree of coherence, and
methods based on numerical radii have been developed to obtain optimal polarizations
and coherences [29,95].
The numerical range has always a convex filled shape and is always continuous, except in
the trivial case of one discrete point. Numerical approaches for the computation of the
numerical range boundary S(A) [59] have also been applied to PolInSAR data to obtain
the coherence set shape and region [42]. This method computes a predefined number of
points on the outer border of the coherence region.
The phase diversity method [143] is connected with the angular numerical range:

W ′(A) = {x†Ax : x ∈ Cn,x 6= 0} (4.58)

In the complex plane, this set has an unbounded cone–shaped form with the vertex in the
origin. The aim of phase diversity is to compute the phase extremes and the corresponding
polarizations. These phases, φW1 and φW2 , define the border rays of the angular numerical
range.
The numerical range radii and phase extrema are real valued quantities. With the knowl-
edge of the related projection vectors one can compute the complex coherence values of
these quantities and their locations in the complex coherence plane γrW , γerW , γφW1

, γφW2
.

Using the Schur decomposition of A, the numerical range can be decomposed into ba-
sic ellipsoid structures [142]. However, this decomposition into ellipses depends on the
polarization basis of the matrix: although the ellipse foci are invariant to polarization
basis transformations, the ellipticities are polarization basis dependent. All ellipse foci
represent the set of eigenvalues of A.
Some further numerical range properties help to relate the PolInSAR coherency matrix
structure to the coherence set shape:
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• The numerical range of a matrix includes the numerical ranges of principal sub–
matrices.

• The numerical range of a direct sum of matrices is the convex hull of these matrices.

• The numerical range of a complex 2 × 2 matrix has always the shape of an ellipse
(possibly degenerated into a line segment or a point). Ellipse characteristics like its
position, orientation and ellipticity can be directly read out from the matrices.

• After Schur decomposition, the foci of the 2 × 2 principal matrix ellipses are equal
to the pair–wise eigenvalues of Π, determining the orientation of the ellipses. Since
the Schur decomposition is not invariant to polarization, the ellipticities of these
ellipses depend on the polarization basis.

• Any vertices on the outer boundary of the numerical range shape correspond to
normal eigenvalues of the matrix.

• The numerical range shape of a normal matrix is given by the convex hull of its
eigenvalues. For matrices with up to four dimensions, this relationship can be re-
versed. Note that a scalar can also be interpreted as a normal matrix. For instance,
to obtain a line structured coherence set requires therefore a normal Π matrix.

• The numerical range is invariant to unitary basis transformations.

Based on these properties one can reason about the coherence set geometry of the PolIn-
SAR coherency matrix. Fig. 4.4 shows all possible coherence set shapes using equal
projection vectors and assuming polarimetric stationarity (ΓPS). This figure shows the
outer coherence shapes S(Π), as well as the inner coherence set shapes of 2× 2 principal
sub–matrix ellipses after the Schur decomposition and the eigenvalues of Π which are at
the same time the foci of the ellipses. 6 classes of coherence shapes are identified:

• Type A: general case

• Type B: Π has one normal eigenvalue, leading to a vertex at the border. This means
the matrix Π can be brought into block–sum form consisting of a 2× 2 matrix and
a scalar. These two blocks are related to orthogonal polarization spaces and the
coherences of these blocks do not correlate with each other.

• Type C: Π is a normal matrix which is diagonalizable by a unitary transformation.
The coherences are uncorrelated for the given orthogonal eigenpolarizations.

• Type D: The outer shape is an ellipse of a 2×2 sub–matrix. The third eigenvalue is
located inside the ellipse and it can be a normal or a non–normal eigenvalue. This
shape is a special case of both Type A and Type B shapes.

• Type E: Π is a normal matrix with co–linear normal eigenvalues. This means that
all interferometric coherences are linear combinations of two coherence locations, in
dependence of the polarization.

• Type F: The coherence shape degenerates to a single point, implying that the in-
terferometric coherence is independent of polarization.
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(a) Type A (b) Type B (c) Type C

(d) Type D (e) Type E (f) Type F

Figure 4.4: Possible coherence set shapes S(Π) in the complex coherence plane.

Assumption Possible Coherence Shapes
Reflection symmetry B, C, D, E, F
Rotation symmetry B, C, D, E, F
Azimuthal symmetry C, E, F
Centrical symmetry C, E, F
PS A, B, C, D, E, F
IPS C, E, F

Table 4.2: Relations between coherence shape types and PolInSAR approximations.

Under the common assumptions of reciprocity and reflection symmetry the coherency
contraction is given by

E[Π] =

γ11 ρ12 0
ρ21 γ22 0
0 0 γ33

 = E ⊕ x (4.59)

where E is the 2× 2 linearly co–polarized coherency ellipse matrix, x the cross–polarized
coherence, and γ̃ = 1

3 traceE[Π] the center of the coherence set. The whole coherence set
shape is formed as the convex hull over E and x, as shown on an example in Fig. 4.5. The
eigenvalues of E provide the foci f1, f2 of the ellipse, and the spectrum (set of eigenvalues)
of E[Π] is given by {f1, f2, x}.
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Figure 4.5: An example of a general coherence set geometry for a monostatic acquisition
with reflection symmetry. The angular numerical range is shown in blue with the phase
extrema φW1 , φW2 , the coherence set shape in green.

Under the IPS condition the coherency contraction is a normal matrix. Therefore, it
is unitary equivalent to a diagonal matrix which can be obtained by polarization basis
transformation:

UE[ΠIPS ]U† =

γ11 0 0
0 γ22 0
0 0 γ33

 (4.60)

The diagonal elements are the eigenvalues of E[ΠIPS ] and span the coherence set in the
complex coherence plane. Therefore, the coherence set under IPS is given in the general
form by a triangle (possibly degenerated to a line or a point), where the vertices are given
by the eigenvalues of Π. For the example from Fig. 4.2, the coherence set under the IPS
condition is shown in Fig. 4.3.
Summarizing, Table 4.2 presents the possible coherence set shape types for different media
symmetries and polarimetric stationarity conditions.
To quantify the coherence set region shape using a few values, we proposed in [97] to
approximate the coherence shape by an ellipsis in order to extract the important shape
parameters, namely pseudo–ellipticity, radial/tangential standard deviation relationship,
and outward tendency. Other parameter sets are possible.
However, despite the strong mathematical background of the numerical range properties
of the PolInSAR coherence set geometry, interpretations of its properties might lead to
unreliable conclusions and should be applied with precautions to physical problems. The
extension of the coherence set region is more influenced by coherences with high noise (low
backscattering energy, high phase noise, large coherence set region) than by coherences
with low noise (high backscattering energy, low phase noise, compact coherence set region).
Especially r̃W , but also φW1 , φW2 can be distorted by coherences for polarizations with
high degree of noise. Therefore, it is important to consider instead the coherence set
density with respect to both polarization and energy.
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4.4.3 Coherence Set Density

Coherence set density is defined with respect to a frequency function. One approach
is to consider the density of coherences in dependence of polarization density. It is the
inverse of the coherence signature concept, as named by Sagués [130,129], which images the
coherence value over the polarization angles. However, the interpretation of the coherence
signature is less intuitive.
The polarization coherence set density is the imaging of the coherence density in the
complex coherence circle in dependence of the polarization density. Given the polarization
density fΨ(ω) which is defined over the scattering polarization space Ψ and is independent
of the scattering medium, the coherence polarization density is thus

fγΨ(γ) =
∫
ω
δ(γ−γ(ω))fΨ(ω)dΨ (4.61)

where δ(γ−γ(ω)) represents the delta function.
More reasonable is to consider coherence set density with respect to the backscattered
energy. This approach can be related to the imaging of polarization signatures. Polar-
ization signature, as introduced by van Zyl et al. in [163], image backscattered energy
over the polarization angles. Coherence set densities image the backscattered energy (or
polarization density) over the complex coherence plane. This imaging technique makes it
possible to obtain a qualitative, visual interpretation of the constituents of the resolution
cell: the spatial locations of dominant scattering centers and their polarization states.
The formal definition of the coherence energy density can be given by

fγσ(γ) =
∫
ω
δ(γ−γ(ω))

σ(ω)

σtot
fΨ(ω)dΨ (4.62)

where

σ(ω) = ω†T3ω (4.63)

is the scattered energy at given polarization and

σtot =
∫
ω
σ(ω)fΨ(ω)dΨ = traceT3 (4.64)

represents the total scattered energy or the span of the resolution cell. σ(ω)

σtot
represents the

normalized polarization signature [163] if the scattering polarization space Ψ is given in
terms of the polarization angles.
In practice, due to unavailability of closed form expressions for fγΨ(γ) and fγσ(γ), these
functions need to be computed numerically in form of histograms of complex coherences
over the defined parameter space.
However, the observed PolInSAR coherence set is only one realization of the true coher-
ence set and needs further statistical assessment in order to evaluate the confidence in
the coherences. Based on the SAR statistics in appendix A, we have derived a numerical
approach for statistical coherence set analysis with respect to the polarization density
which is presented in section A.2 [96]. As of now, the computation of coherence set den-
sities and coherence set probability distributions (a–priori or a–posteriori) is prohibitively
expensive and is, therefore, presented only briefly. To note is an alternative approach by
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O. Stebler [141], where a rough region of confidence is drawn based on the amplitude and
phase statistics of a few extrema coherences.
In summary, Fig. 4.6 shows different imaging possibilities of polarimetric and interfer-
ometric information of a single coherency matrix: (a) the polarization signature, (b)
the coherence magnitude signature, (c) the coherence phase signature, (d) the coherence
set geometry, (e) the coherence energy density, (f) the coherence set probability density
function for 50 looks, (g) and the corresponding confidence regions corresponding to con-
fidence levels αi = 1− erf(i/

√
2), for i ∈ {1, 2, 3, 4}, where erf() is the error function (i.e.

1− αi ∈ {68.27%, 95.45%, 99.73%, 99.994%}).

4.5 Coherence Optimization

By varying the transmission and reception polarization states, optimal scattering mecha-
nisms with the highest interferometric coherence can be obtained. Optimizing the coher-
ence provides the possibility to reduce the uncertainty in the interferometric phase esti-
mation. Polarimetric coherence optimization can also be applied to vertically structured
media to resolve the dominant scattering centers, as e.g. done for vegetation in [168] and
for urban areas in [29]. Further on, coherence optimization techniques have been applied
for phase unwrapping [101], DEM generation [129], forest mapping and classification [37],
and polarimetric differential SAR interferometry [122,123].
An optimization problem consists of three components:

• The object function f(x), which has to be optimized (maximized or minimized).

• A set of unknown variables x = {x1, ..., xn} which represents the degrees of freedom
of the object function.

• A set of constraints g(x) = {g1(x), ..., gm(x)} which restricts the range of the vari-
ables (search space), enforcing reasonable (in our case physically possible) solutions.
Constrained problems can often be transformed into unconstrained problems (mod-
ifying f and x, while setting g(x) = {}) with the help of Lagrange multipliers.

In these notations, a maximization problem can thus be given by

maximize
x

{f(x) : g1(x), ..., gm(x)} (4.65)

Different methods exist for solving optimization problems. One distinguishes between
constrained vs. unconstrained optimization, global vs. local, analytical vs. iterative,
linear vs. non–linear, continuous vs. discrete, etc. The goal is to find/develop an effective
optimization method which suits the application needs. In case of SAR remote sensing
data, the foremost priority is the optimization speed, as the optimization has to be applied
for every pixel independently. In this section, we will at first review available coherence
optimization methods, and later we will introduce and evaluate two new methods for
multi–baseline coherence optimization.

4.5.1 Single–baseline Coherence Optimization

Most of the current airborne and spaceborne PolInSAR systems acquire data with spatial
and temporal baseline separations. Two main coherence optimization criteria can be
identified, depending on the baseline properties.
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(a) Polarization signature

(b) Coherence magnitude signature

(c) Coherence phase signature

(d) Coherence set geometry (e) Coherence energy den-
sity

(f) A–priori probability dis-
tribution

(g) Confidence regions

Figure 4.6: Imaging of polarimetric and interferometric information of one single data set:
(a) the polarization signature, (b) the coherence magnitude signature, (c) the coherence
phase signature, (d) the coherence set geometry, (e) the coherence energy density, (f)
the coherence set probability density function for 50 looks, (g) and the corresponding
confidence regions.
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Optimization Criterion Single Baseline (SB) Multi Baseline (MB)
MSM section 4.5.1, [21, 22] section 4.5.2 [95]
ESM section 4.5.1 [29] section 4.5.2 [95]

Table 4.3: Table of Polarimetric Interferometric Coherence Optimization Techniques.

In certain cases it is meaningful to use slightly different polarizations (multiple scatter-
ing mechanisms, MSM) for different tracks to estimate the coherence of the dominant
scattering centers. As an example, changes in the scattering behavior, caused by me-
teorological influences or vegetation growth between the acquisition times, will induce
different polarization signatures for the same scattering structures. Also, a change of the
incidence angle can slightly change the polarization of the optimal scattering mechanism.
The optimization problem with a distinctive projection vector for every track is given by

MSM: maximize
ω1,ω2

{|γ(ω1,ω2)| : ω1,ω2 ∈ C3,ω†1ω1 = ω†2ω2 = 1, argω†1ω2 = 0} (4.66)

Therefore, the search range space is given by the Γ2SM coherence set, as presented in
section 4.4.1 and shown for an example in Fig. 4.2.(b).
With more proximate baseline properties (insignificant changes in incidence angles and
temporal variations with respect to media polarization properties) polarimetric station-
arity of the medium can be assumed. Therefore, the induced polarization differences
between the data sets are assumed to be only due to the thermal noise. To reduce the
sensitivity of the optimization procedure to this noise, it is reasonable to use equal scat-
tering mechanisms (ESM) for the coherence optimization. In this case the optimization
problem is given by

ESM: maximize
ω

{|γ(ω)| : ω ∈ C3,ω†ω = 1} (4.67)

The search range space of this optimization is restricted to the region of the ΓPS coherence
set, as presented in section 4.4.1 and in Fig. 4.2.(d).
Another reason to use a single projection vector for the optimization problem is a common
desire to concentrate only on a minimal set of parameters with highest significance.
With the introduction of PolInSAR, an analytical method for MSM coherence optimiza-
tion was presented by Cloude and Papathanassiou [21]. Since then, several other meth-
ods [130, 51, 115] have been proposed to solve the ESM coherence optimization problem.
However, these methods deliver sub–optimal solutions. Finally, Colin et al. [29] presented
a general iterative optimization routine for the ESM problem which computed the nu-
merical radius of the coherency contraction matrix under the polarimetric stationarity
assumption.

SB–MSM Optimization 1: Complex Lagrangian Approach

The first single–baseline PolInSAR coherence optimization procedure has been introduced
by Cloude and Papathanassiou [21, 22, 105]. It optimizes the modulus of the covariance
ω†1Ω12ω2 for two datasets, while keeping the variances ω†1T11ω1 and ω†2T22ω2 constant.
In [21], the modulus of the complex Lagrangian L is maximized by introducing the real
valued multipliers λ1, λ2:

L = ω†iΩ12ω2 − λ1(ω
†
1T11ω1 − 1)− λ2(ω

†
2T22ω2 − 1) (4.68)
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As it has been shown, the solution can be obtained by setting the partial derivatives of L
with respect to variables λ1, λ2,ω1,ω2 to zero:

∂L
∂λ1

= ω†1T11ω1 − 1 = 0 (4.69)
∂L
∂λ2

= ω†2T22ω2 − 1 = 0 (4.70)
∂L

∂ω†1
= Ω12ω2 − λ1T11ω1 = 0 (4.71)

∂L†

∂ω†2
= Ω†

12ω1 − λ∗2T22ω2 = 0 (4.72)

Optimal SMs and the corresponding coherences are obtained from the resulting eigenvalue
problems:

T−1
22 Ω†

12T
−1
11 Ω12ω2 = νω2 (4.73)

T−1
11 Ω12T−1

22 Ω†
12ω1 = νω1 (4.74)

where ν = λ1λ
∗
2. Since T11 and T22 are non–singular, the inverses of these matrices exist.

One can show that λ1 = λ2 = λ by left multiplying (4.71) and (4.72) with ω†1 and ω†2,
and using (4.69), (4.70). The eigenanalysis of (4.73) and (4.74) provides three positive
real–valued eigenvalues νi which are related to pairs of eigenvectors ω1i ,ω2i . The square
roots of the eigenvalues is equal to the optimized coherence moduli:

|γopti | =
√
νi (4.75)

After phase ambiguity removal, the eigenvectors can be used to obtain the optimized
complex coherences and the optimal phases.
In the following, two additional coherence optimization approaches will be presented.
Method 2 reformulates the optimization problem to maximize the square of the coherence
magnitude. Method 3 uses the phase ambiguity between the projection vectors to reduce
the optimization problem of complex L in (4.68) to a real valued problem. All three
optimization approaches lead to the same results.

SB–MSM Optimization 2: Cauchy–Schwartz Approach

Ferro-Famil et al. [38] presented an alternative derivation of the SB–MSM coherence
optimization problem based on the Cauchy–Schwarz inequality. This derivation uses the
coherency contraction matrix. The optimization of the coherence magnitude is equivalent
to the optimization of the square of the coherence magnitude:

argmax
v1,v2

(|γ(v1,v2)|) = argmax
v1,v2

(|γ(v1,v2)|2) (4.76)

Note that vi are directly related to ωi via (4.12) and the optimization in v is equivalent
to optimization in ω vectors. This optimization problem is related to the singular value
decomposition (SVD) of the contraction:

SVD: Π = W1Σ
1/2W†

2, Σ =

ν1 0 0
0 ν2 0
0 0 ν3

 (4.77)
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where W1,W2 are unitary and contain the left and right eigenvectors of Π and Σ contains
the non–negative real–valued singular values of Π, i.e. the eigenvalues of ΠΠ† and Π†Π.
Using the coherency contraction matrix the square of the coherence magnitude is given
by

ν = |γ(ω1,ω2)|2 = γ(ω1,ω2)γ
†
(ω1,ω2) = v†1Πv2v

†
2Π

†v1 ≤ v
†
1ΠΠ†v1 (4.78)

= γ†(ω1,ω2)γ(ω1,ω2) = v†2Π
†v1v

†
1Πv2 ≤ v

†
2Π

†Πv2 (4.79)

where the inequality is due to the Cauchy–Schwarz inequality [58,39]. Equality is achieved
when the inner vector v2 is equal to one of the right eigenvectors of Π, w2i , or if v1 is
equal to one of the left eigenvectors of Π, w1i . This leads to two eigenvalue problems

ΠΠ†v1 = νv1 (4.80)

Π†Πv2 = νv2 (4.81)

where v1,v2 are the left and right eigenvectors of Π and ν is the singular value of ΠΠ†.
The optimal complex coherences are computed using the eigenvectors.

SB–MSM Optimization 3: Canonical Correlation Analysis (CCA) Approach

An alternative interpretation of the SB–MSM optimization has been presented by us
[93, 95] which is based on the canonical correlation analysis (CCA) [61]. The complex
Lagrange function (4.68) can be represented using a real valued function:

L2 =
2∑
i=1

2∑
j=1 6=i

ω†iΩijωj − λ
2∑
i=1

(ω†iTiiωi − 1) (4.82)

This function is real valued due to the fact that the first term of L stands for the sum
of Re(ω†iΩijωj) for all i 6= j, since ω†iΩijωj = (ω†jΩjiωi)†. This modification uses the

phase ambiguity between ωi and ωj , arg(ω†iωj), to cause a shift of coherence phases
towards zero. The second term in (4.82) is real valued since it contains quadratic forms
of Hermitian matrices.
Setting the partial derivatives of (4.82) to zero leads to a generalized eigenvalue problem
(4.83) that optimizes a linear combination of coherences (i = {1, 2}).

2∑
j=1 6=i

Ωijωj = λTiiωi ⇐⇒
[

0 Ω12

Ω†
12 0

] [
ω1

ω2

]
= λ

[
T11 0
0 T22

] [
ω1

ω2

]
(4.83)

The optimized coherence modulus is equal to the largest eigenvalue in (4.83) and the
square root of the largest eigenvalues in (4.73) and (4.74). Furthermore, the phase of the
single–baseline optimized coherence is equal to − arg(ω†1ω2) (= arg(ω†2ω1)) from (4.83),
since (4.82) automatically deals with the phase ambiguity issue:

γopt1 = λ1e
−i arg(ω†11

ω21
) (4.84)
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SB–ESM Optimization: Polarimetric Stationarity

Assuming stationary polarimetric behavior in the data sets and requiring equal scattering
mechanism vectors ω1 = ω2, the coherence optimization problem is equivalent to the
problem of computing the numerical radius of the matrix Π, as shown by Colin et al.
[29, 26]. Because no analytical methods exist for the solution of the general numerical
radius problem, an iterative method is presented. It is based on the fact that [77]

max
v
|γ(v)| = r(Π) = max

θ
{λmax

(
H(Πe−iθ)

)
: θ ∈ [0, 2π]} (4.85)

where λmax(A) represents the largest eigenvalue of A and H(A) = 1
2(A + A†) is the

Hermitian part of the matrix A. This means that the optimal coherence is given by the
numerical radius which is equal to the largest eigenvalue of the Hermitian part of the
phase shifted matrix Π. The phase angle θ which leads to the numerical radius is the
phase of the optimal coherence, and the eigenvector of the involved eigenproblem is the
optimal projection vector.
In [29], an iterative gradient ascend optimization algorithm for this problem is presented.
The process flow consists of simultaneous search for the optimized coherence phase and
the corresponding optimal projection vector [165]. After asymptotic convergence, the
optimal coherence is given by

γopt = λmaxe
iθ (4.86)

This method converges towards a local maximum which might be not the global maxima.
To avoid sub–optimal maxima, one can perform several optimizations with different initial
phase shifts. Another approach is an effective strategy for initialization. Since the coher-
ence set describes a simple, convex filled region in the unitary complex coherence plane,
the phase shift angles θ can be initialized with the trace phase of Π. Such an initializa-
tion significantly improves the optimization performance with respect to the number of
iterations and to the robustness.

4.5.2 Multi–baseline Coherence Optimization

The extension of single–baseline PolInSAR to multiple baselines increases the observation
space. Analyzing a series of coherent polarimetric datasets enables more advanced and
more accurate applications. The range varies from polarimetric differential interferometry
(PolDInSAR) to parameter inversion techniques with more complex physical models. It
is also of importance to identify the most coherent scattering center in all datasets, thus
minimizing phase uncertainty.
Given a multi–baseline dataset, coherences can be optimized independently for every
baseline. This reproduces the results of the SB case, and leads to different dominant
scattering centers depending on the chosen pair of images. A better approach to find the
most coherent and dominant scattering center is a simultaneous optimization of all multi–
baseline coherences. This approach generally leads to lower coherence magnitudes, but
the corresponding scattering mechanisms and their interferometric phases are estimated
on the basis of all available information and thus more accurately. And, most important,
the interferometric phases and the degrees of coherence from the different baselines are
related to each other as they represent the same scattering structure.
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We have developed two methods for the MB PolInSAR coherence optimization problem,
one general and one adapted to the polarimetric stationarity assumption.
The methods aim to optimize the sum of the coherence magnitudes over all direct base-
lines:

MB–MSM: maximize
ω1,...ωn

{
n∑
i=1

n∑
j=1 6=i

|γij(ωi,ωj)| : ∀i, j ωi ∈ C3,ω†iωi = 1, argω†iωj = 0}

(4.87)

MB–ESM: maximize
ω

{
n∑
i=1

n∑
j=1 6=i

|γij(ω)| : ω ∈ C3,ω†ω = 1} (4.88)

MB–MSM Optimization: Multiset Canonical Correlation Analysis (MCCA)
Approach

The general multi–baseline multiple scattering mechanisms (MB–MSM) method assigns a
distinct scattering mechanism to each track. This approach permits to optimize the coher-
ence for SMs that might have different polarimetric signatures in different datasets. This
optimization problem is related to the multiset canonical correlation analysis (MCCA)
problem [60,65,102]. As it is well known from MCCA theory, there is no exact analytical
method applicable for the simple optimization problem presented in (4.87). However, one
algorithm will be presented that achieves a similar goal, namely the weighted optimization,
by solving a single eigenvalue problem.
Scaling the single–baseline Lagrangian optimization function (4.82) to multiple baselines
leads to

L =
n∑
i=1

n∑
j=1 6=i

ω†iΩijωj − λ
n∑
i=1

(ω†iTiiωi − 1) (4.89)

This function is real valued due to the fact that the first term of L stands for the sum
of Re(ω†iΩijωj) for all i 6= j, since ω†iΩijωj = (ω†jΩjiωi)†. This modification uses the

phase ambiguity between ωi and ωj , arg(ω†iωj), to cause a shift of coherence phases
towards zero. The second term in (4.89) is real valued since it contains quadratic forms
of Hermitian matrices.
Equation (4.89) can be interpreted as a weighted optimization of coherences, since it refers
to optimizing the sum of covariances ω†iΩijωj , while keeping the sum of variances ω†iTiiωi
constant. It is a standard optimization problem in MCCA theory, called SUMCOR for the
optimization of the sum of correlations. Setting the partial derivatives of (4.89) to zero
leads to the generalized eigenvalue problem (4.90) that optimizes a linear combination of
coherences (i ∈ [1, . . . , n]).

AωMB = λBωMB (4.90)

⇐⇒
n∑

j=1 6=i
Ωijωj = λTiiωi (4.91)

⇐⇒

 0 Ω12 ... Ω1n
Ω21 0 ... Ω2n

...
...

. . .
...

Ωn1 Ωn2 ... 0

[ ω1
ω2

...
ωn

]
= λ

T11 0 ... 0
0 T22 ... 0
...

...
. . .

...
0 0 ... Tnn

[ ω1
ω2

...
ωn

]
(4.92)



68 PolInSAR Coherence Set Characteristics

Note that in contrary to the single–baseline case, the largest eigenvalue of (4.90) does not
correspond to the optimized coherence modulus any longer, but rather to the weighted sum
of the optimized coherence moduli. The weights are included in the norms of individual
projection vectors ωi from the eigenvector ωMB.
MB–MSM coherence optimization can be summarized by the following algorithm:

1. Obtain eigenvectors from the generalized eigenvalue problem (4.90):

AωMB = λBωMB, where A = T − B, B =
n⊕
i=1

Tii, and
⊕

is the direct sum

operator.

2. Normalize the projection vectors from ωMB = [ω1, . . . ,ωn]T so that for all i ∈
[1, n] : ω†iωi = 1.

3. Remove the phase shift from these vectors with respect to an arbitrary track m ∈
[1, n], so that for all i ∈ [1, n] : arg(ω†mωi) = 0.

MB–ESM Optimization: Joint Numerical Radius Approach

The method for single–baseline coherence optimization under polarimetric stationarity
can be extended to multiple baselines. Instead of a single phase shift angle θ for single–
baseline ESM, we have to introduce n(n−1)

2 phase shifts θij (with θji = −θij), one for every
direct baseline. Using the optimization problem formulation (4.88), one can show that

max
v

n∑
i=1

n∑
j=1 6=i

|γ̃ij(v)| ≥ max
v

n∑
i=1

n∑
j=1 6=i

γ̃ij(v)e
−iθij (4.93)

The maximum of the left side depends on the given set of phase shift variables {θij}, while
the maximum on the right side is constant. Equality is achieved when phase shifts are
equal to the phases of optimal coherences, so that the real parts of the phase shifted op-
timal coherences are equal to the coherence moduli. Therefore, the optimization process
consists in the simultaneous search for the optimized coherence phases and the corre-
sponding optimal scattering mechanism. An efficient iterative optimization method that
converges in a few (i.e. 2–5) iterations is presented in Fig. 4.7.
An estimate for the optimal scattering mechanism can be obtained from the eigenvector
associated with the largest eigenvalue of the Hermitian matrix H in

Hv = λv, where H =
n∑
i=1

n∑
j=1 6=i

Πije
−iθij (4.94)

Estimates for optimal phase shifts are in turn obtained from

θij = arg(v†Πijv) (4.95)

Phase shifts can then be reintroduced to (4.94) to obtain an improved estimate of the
optimal vector v. By iteratively adjusting the phase shifts θij one obtains progressively
better estimates of v. Optimal coherences can then be computed with the converged
vector v and (4.6).
This method may lead to a sub–optimal local maximum. To avoid this, one can perform
several optimizations with different initial phase shifts. Another approach is an effective
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Figure 4.7: Iterative MB–ESM coherence optimization algorithm.

strategy for initialization. Since the polarimetric coherence sets of every matrix Πij

describe simple, convex filled regions in the unitary complex coherence plane, phase shift
angles θij can be initialized with the trace phases of Πij . Such an initialization significantly
improves the optimization performance with respect to the number of iterations and to
the robustness.
It should be noted that when the PolSAR matrices Tii differ significantly, the ESM
coherence optimization might fail to converge on the global optimum. In such cases, the
MSM coherence optimization method should be preferred.
Finally, the steps involved in the proposed MB–ESM coherence optimization algorithm
are given by:

1. Initialization: θij = arg(traceΠij); λ̂ = 0

2. Computation of H and v from (4.94) with current estimates of optimal phase shifts
θij . v is the eigenvector corresponding to the highest eigenvalue λmax.

3. Improved estimation of θij using computed v via (4.95).

4. Termination criterion: λmax − λ̂ ≤ ε, where ε is an arbitrary small constant. If the
criterion is not met, then λ̂ = λmax and go to step 2).

5. The optimal SM vector ω and corresponding optimal coherences are calculated from
v using (4.6) and 4.12.

4.6 Experimental Results: Multi–Baseline Coherence Op-
timization

For the experimental evaluation of single–baseline and multi–baseline PolInSAR coherence
optimization methods, a multi–temporal airborne data set at L–band has been used. The
fully–polarimetric 4 tracks data were acquired by the German Aerospace Center’s (DLR)
E–SAR sensor in 2000 and 2001 over the test–site Oberpfaffenhofen. Tracks 1 and 2 were
both acquired on the 27th August, 2001, with a temporal baseline of 12 minutes. Track 3
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# Tracks Bt B⊥

1 1 × 2 12 min 2.4–17.5 m
2 1 × 3 438 days -1.4–13.9 m
3 2 × 3 438 days —
4 1 × 4 346 days 0.2–5.9 m
5 2 × 4 346 days —
6 3 × 4 92 days -1.7–11.4 m

Table 4.4: Baseline characteristics. For the 3rd and 5th baselines, the exact range of
perpendicular baselines is not available, but it is as well in the range of 0–15 meters.

was acquired on the 15th June, 2000, and track 4 on the 4th September, 2000 [124, 123].
Fig. 4.9 shows color–coded intensity images of the test–site, together with 5 defined regions
of interest (ROI). The ROI are: (1) low and sparse vegetation, (2) forest of medium hight
and density, (3) agricultural field, (4) bare surface (pasture/meadow and runway), (5)
urban area.
The combination of the four tracks enables us to construct a 12× 12 MB–PolInSAR co-
herency matrix TMB. TMB has 6 direct baselines with temporal baselines (Bt) between
12 minutes and 438 days, nominal spatial baselines of 0 meters and real spatial perpen-
dicular baselines (B⊥) between 0 and 17 meters, with a mean below 10 meters [124], as
summarized in Table 4.4.
A pre–processing step including flat–earth removal and range spectral filtering is applied
prior to coherence optimization. After the construction of the coherency matrix image,
the image was shrunk by a factor of 3 in range and 8 in azimuth to obtain averaged
coherency matrices and to reduce the image size, obtaining an image size of 482×2048
pixels (range × azimuth) and 24 looks per pixel. The choice of 3 × 8 = 24 looks is
caused by the recommendation of a minimum number of looks of an N × N covariance
matrix equal to 2N [118], which in our case is 2 ∗ 12 = 3 ∗ 8 = 24. In order to evaluate
the coherence optimization performance using two different numbers of looks, two images
were generated: the first is the original high–resolution image with 24 spatial looks, and
the second image has been extensively speckle filtered using the Simulated Annealing(1)

filter [133] which creates very homogeneous areas with an equivalent number of looks larger
than 500. Due to the large differences in the filtering approaches and the numbers of looks,
we denote the first image as “non–filtered” and the second as “filtered”. These two choices
represent extreme cases of a high–resolution image with a low number of looks versus a
widely smoothed one with a large number of looks. One might assume that intermediate
multi–looking strategies will lead to results lying between these extreme cases.

4.6.1 Qualitative Observations

Figures 4.10–4.13 present the color–compositions of lexicographic coherences and opti-
mized coherences using SB–MSM, SB–ESM, MB–MSM, and MB–ESM methods for the
first (1× 2, Bt : 12min) and the second (1× 3, Bt: > 1year) baselines.

(1)To note is, the Simulated Annealing filtering criterion was based only on the intensities and did not
consider interferometric correlations.



4.6 Experimental Results: Multi–Baseline Coherence Optimization 71

Figure 4.8: Optical image of the Oberpfaffenhofen test site (Source: googleearth).
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Figure 4.9: Intensity images of the first track. Left: non–filtered; Right: filtered.
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Figure 4.10: Non–filtered data: Coherence over the first baseline (1× 2, Bt=12 minutes).
From top to bottom: Lexicographic basis (RGB: [HH, VV, HV]), SB–MSM, SB–ESM,
MB–MSM, MB–ESM (RGB: [γopt2, γopt1, γopt3]).
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Figure 4.11: Filtered data: Coherence over the first baseline (1 × 2, Bt=12 minutes).
From top to bottom: Lexicographic basis (RGB: [HH, VV, HV]), SB–MSM, SB–ESM,
MB–MSM, MB–ESM (RGB: [γopt2, γopt1, γopt3]).
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Figure 4.12: Non–filtered data: Coherence over the second baseline (1× 3, Bt=438 days).
From top to bottom: Lexicographic basis, SB–MSM, SB–ESM, MB–MSM, MB–ESM.
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Figure 4.13: Filtered data: Coherence over the second baseline (1 × 3, Bt=438 days).
From top to bottom: Lexicographic basis, SB–MSM, SB–ESM, MB–MSM, MB–ESM.
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From the lexicographic basis coherences one can for example observe the incidence angle
dependency of the coherences and of the polarizability of the coherences, as it is clearly
visible from the change of color along the runway. This effect is due to thermal decorrela-
tion, since the reflectivity of bare surfaces decreases with larger incidence angles, also in
dependence of polarization.
Within the first baseline (shortest temporal baseline of 12 minutes), the surfaces and
agricultural fields have very high coherence, especially in the near range. High forests
decorrelate significantly, partly due to volume decorrelation, and, to a big extent, due to
temporal decorrelation caused mostly by wind. In the second baseline (longest temporal
baseline of 438 days), we can observe that the coherence is preserved over the artificial
structures (such as the highway, the railroad, and the urban areas, especially some large
building structures) and bare surfaces (such as the runway, the pastures and the meadows).
Over the low and high forest a certain degree of coherence is preserved as well, even over
this large time span. A complete loss of coherence is observed over cultivated agricultural
fields.
The visual qualitative interpretation of the optimized coherences indicates the main prop-
erties of the optimization methods. SB–MSM optimization maximizes the coherences
for a single baseline independently of other baselines and achieves the maximal possible
coherence. The pre–dominant light green color indicates a very high optimal coherence
and a large distance to the second and third optimal coherences. Almost white colors
indicate that all three coherences are very high, whereas very dark colors indicate that all
coherences are low.
SB–ESM method enforces equal scattering mechanisms in both tracks. The obtained
optimal coherences are lower in comparison to SB–MSM. The additional constraint of
equal scattering mechanisms caused several agricultural fields to become more yellowish,
indicating that the first and the second optimal coherences are both relatively high in
comparison to the third one.
The MB methods optimize the coherences considering all baselines. Therefore, these
methods are much more constrained and achieve smaller coherence values as compared
to the SB methods. Since the optimal projection vectors are found from all baselines, the
computed coherences corresponding to the first optimal projection vector at an individual
baseline might be not optimal, as the red and blue colored areas indicate. The optimization
criterion is the sum of coherences from all baselines, and therefore, only

∑
|γopt1 | ≥∑

|γopt2 | ≥
∑
|γopt3 | is guaranteed, but not |γopt1 | ≥ |γopt2 | ≥ |γopt3 |.

It can be observed that using MB vs. SB optimization methods as well as ESM vs. MSM
methods improves the contrast of the optimal coherences. This can be best seen over the
images with a low number of looks (see the coherence images of the non–filtered data set
in the appendix).

4.6.2 Quantitative Observations

For quantitative analysis of the optimization methods, several performance indicators
have been developed and applied to the data over different regions of interest. The results
are presented and discussed below.
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(a) ROI 1: Low and sparse vegetation

(b) ROI 2: High forest

(c) ROI 3: Agricultural field

(d) ROI 4: Bare surface: pasture and runway

(e) ROI 5: Urban area

(f) Whole image

Figure 4.14: Histograms of coherence moduli for the first (left two graphs) and the second
(right two graphs) baselines. For each case, the first graph is for the 16 looks data, and
the second graph is for the speckle filtered (Simulated Annealing) data. Presented are the
coherence distribution histograms for all regions of interest as well as for the whole image,
representing the coherences in the lexicographic basis (γHH , γV V , γHV ), and the maximal
coherences for the different optimization methods (γSB−MSM

opt1
, γSB−ESMopt1

, γMB−MSM
opt1

,
γMB−ESM
opt1

).
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Optimized Coherence Histograms

Comparing non-filtered and filtered data, we see that after Simulated Annealing filtering,
the coherence distribution histograms, as shown in Fig. 4.14, do not anymore corre-
spond to the theoretical coherence distribution, due to the adaptive nature of the filtering
approach, which filters different positions in the data with different number of looks in
dependence of the local homogeneity.
The histograms show that in all cases the optimized coherences are higher than the lex-
icographic coherences. For most cases, the following coherence magnitude order can be
observed:

|γMB−xxx
opt1

| ≤ |γSB−xxxopt1
| and |γxx−ESMopt1

| ≤ |γxx−MSM
opt1

| (4.96)

Observations:

• Non–filtered coherences are too high, since they have been generated using a low
number of looks, and, therefore are biased. It is important to note, that no coherence
bias removal techniques [150] have been applied to the data. It is not of importance
for the filtered coherences as they are estimated from data with a very high number
of looks (ENL ≥ 500). However, the bias might be severe for the non–filtered data,
which have only a spatial averaging using 24 looks, and the ENL for the whole image
has been estimated around 8.

In the second baseline, as an example, the agricultural field (ROI 3) should be
completely decorrelated (see Fig. 4.14.c.3). Lexicographic coherences have low
values, and after coherence bias removal they will be even much lower, but the
optimized coherence histograms wrongly depict a relatively highly coherent region.
This indicates that the coherence optimization is performed in this case over noise.

• The potential for coherence optimization is higher for images with a lower number
of looks. This is related to the previous point.

• For some regions, the optimal coherences have similar distributions as obtained for
lexicographic polarizations. For example, over bare surfaces (ROI 4), the optimal
coherences (filtered data) have a very similar distribution as the VV coherences,
for both baselines (Figs. 4.14.d.2 and 4.14.d.4). This behavior agrees with the
theoretically higher backscattering (and with it lower thermal decorrelation) over
bare surfaces for the VV polarization than for HH and HV polarizations. A similar
effect is observed over low forestry vegetation (ROI 1), where optimal coherences are
only slightly higher than for the HH polarization (Figs. 4.14.a.2 and 4.14.a.4). For
more complex environments, such as the urban area (ROI 5), coherence optimization
identifies the most coherent scattering mechanism, which can hardly be guessed from
standard coherences.

Optimized Phase Correlation

SB and the MB optimization methods show significantly different behavior. Since single–
baseline methods optimize coherences independently, they reach higher coherence values,
but the corresponding phases and scattering mechanisms are different, relating to different
dominant scattering centers. Such an effect can be examined in relation to interferometric
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(a) ROI 1: Low and sparse vegetation

(b) ROI 2: High forest

(c) ROI 3: Agricultural field

(d) ROI 4: Bare surface: pasture and runway

(e) ROI 5: Urban area

(f) Whole image

Figure 4.15: Correlation of the optimized interferometric phase over the spatial averaging
window: on the left for the first baseline (12 minutes), and on the right for the second
baseline (438 days) (solid lines: filtered; dashed lines: non–filtered).
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phases of optimized coherences and their spatial variance. The examination of the local
phase correlation over homogeneous areas reveals the improvement of the phase stability
with a higher number of baselines. The correlation of optimized phases ρφ is computed
from the already optimized coherence phases over a local window of N pixels around the
pixel i:

ρφ(i) = |
〈
eiφ
〉
| = | 1

N

N∑
j=1

eiφ(j) |, where φ(j) = arg γopt1(j) (4.97)

Fig. 4.15 presents ρφ over different number of looks for the first and the second baselines.
The spatial averaging of the optimized phases ranges from N = 32 = 9 to N = 112 = 121.
Observations:

• The phase stability indicator for filtered data is quite stable, and similar for all
optimization methods. This has been expected since data have been largely spatially
smoothed prior to coherence optimization.

• Over the bare surface area (ROI 4, Fig. 4.15.d), which is the most coherent and
homogeneous region along all baselines, one can observe two main properties of
the phase stability indicator: (1) MB optimized coherence phases are locally more
stable than SB optimized ones and (2) ESM optimized phases are more stable too,
compared with the MSM ones. (1) can be related to the fact, that the data over
which one optimizes has more looks in the MB case as in the SB case, i.e. we
have additionally a kind of interferometric multi–looking operation. (2) can be
reasoned to be due to additional constraints on ESM optimization, avoiding the
void optimization over the noise subspace.

• For other ROIs the result interpretation is less straightforward, partly since the
regions are less homogeneous and partly due to the large temporal decorrelation.

Scattering Mechanisms Correlation

In a similar way to the optimized phase stability, the local variation of the optimal scatter-
ing mechanism vectors is examined. The local scattering mechanisms similarity indicator
can be computed via

ρω(i) =
1
N

N∑
j=1

|ω†opt1(i)ωopt1(j)| (4.98)

where the index j runs over a local neighborhood of N pixels. However, since all opti-
mization methods but the MB–ESM, deliver several optimal scattering mechanisms, this
metric needs to adapted to all optimization methods. The numbers of obtained optimal
scattering mechanism vectors for the general case and for the experimental data set with
4 tracks are presented in Table 4.5.
Comparing only the corresponding scattering mechanism vectors, and not their similarity
between each other leads to

ρω(i) =
1

N nω

N∑
j=1

nω∑
k=1

|ωk†opt1(i)ω
k
opt1(j)| (4.99)

where nω is given in Table 4.5 in dependence of the optimization method.
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Figure 4.16: Non–filtered data: Local scattering mechanisms correlation ρω images for
N = 72. From top to bottom: SB–MSM, SB–ESM, MB–MSM, MB–ESM.
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Figure 4.17: Filtered data: Local scattering mechanisms correlation ρω images for N = 72.
From top to bottom: SB–MSM, SB–ESM, MB–MSM, MB–ESM.
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(a) ROI 1: Low and sparse vege-
tation

(b) ROI 2: High forest (c) ROI 3: Agricultural field

(d) ROI 4: Bare surface: pasture
and runway

(e) ROI 5: Urban area (f) Whole image

Figure 4.18: Local scattering mechanisms correlation ρω over the spatial averaging window
size N . Solid lines correspond to filtered data, while dashed lines correspond to non–
filtered data.

Method nω: Number of ωopt1 vectors Example with 4 tracks
SB–MSM 2 per baseline 12
SB–ESM 1 per baseline 6
MB–MSM 1 per track 4
MB–ESM 1 1

Table 4.5: Number of optimized scattering mechanism vectors nω for different optimiza-
tion methods.
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Similarly to ρφ, ρω ∈ [0, 1]. The results for N = 72 = 49 for the different optimization
methods is shown in Figs. 4.16 and 4.17. A qualitative examination of the images shows
significant differences between the optimization methods, which can also be quantitatively
validated, by computing the average ρω over the regions of interest and using different N ,
as shown in Fig. 4.18.
Observations:

• In comparison to ρφ, ρω is much more sensitive to the averaging window size N and
to the optimization method.

• As expected, the filtered data delivers much higher correlation of the scattering
mechanism vectors than the non–filtered data because of the previous smoothing
operation.

• Over most ROI one can observe that ρω is higher for MB optimization methods
and for ESM optimization methods. This re-confirms the observations and the
interpretations of the ρφ indicator.

4.6.3 Summary and Discussion

It has been observed that enforcing simultaneous MB coherence optimization, it is still
possible to achieve very high coherences close to SB optimized ones. It has been shown
that the utilization of multiple baselines for the optimization of coherences has certain
advantages over SB optimization with regard to accuracy improvement in the estima-
tion of dominant phase centers, scattering mechanism vectors, and coherence contrast
improvement, which may be related to the optimal coherence bias reduction.
The following conclusions can be formulated about the properties of different coherence
optimization methods

• By definition, single–baseline optimized coherences are always higher than multi–
baseline optimized coherences

|γMB−xxx
opt1

| ≤ |γSB−xxxopt1
| (4.100)

due to additional constraints for MB optimization.

• For the same reason, MSM optimized coherences are higher than ESM optimized
coherences:

|γxx−ESMopt1
| ≤ |γxx−MSM

opt1
| (4.101)

• The optimized phases and scattering mechanism vectors are locally more stable after
MB optimization (in comparison to SB optimization), partly due to the increased
number of observables.

• The optimized phases and scattering mechanism vectors are locally more stable
after ESM optimization (in comparison to MSM optimization), partly due to the
additional constraints and reduced search space (which comprises also the void noise
subspace).
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• The filtering approach and the number of looks is important. If not enough looks
are used for the estimation of the PolInSAR coherency matrix, the optimization is
partly performed over the noise subspace, delivering highly biased coherences. This
is especially an issue for MSM optimization. Using ESM and/or multi–baseline
optimization reduces this effect.

• The potential of coherence optimization is higher for images with a lower number
of looks.

• In the absence of both changes between polarimetric responses and noise, MSM
and ESM methods should deliver the same results. Therefore, non–similarity of the
results indicates either noise contributions, or changes in the scattering mechanisms,
or both.

• Only multi–baseline optimization methods can be used meaningful for multi–image
data sets , as e.g. for differential SAR interferometry, multi–temporal change mon-
itoring.

To simplify the choice of one of the optimization methods we propose the following guide-
lines:

• Sort out completely decorrelated images.

• If multiple baselines are available, use all data for coherence optimization.

• If computational speed is an issue, MSM methods should be preferred.

• In presence of significant changes of polarimetric signatures (responses), MSM meth-
ods ought to be preferred to the ESM methods.

• In other cases, if possible, ESM optimization should be used due to the reduced
parameterization space with easier physical interpretation, and the reduced search
space which suppresses the void optimization over noise significantly.

The extension of polarimetric optimization to the MB case has potential practical uses
in various areas. The presented methods provide coherence optimization techniques to
applications with more than one baseline for the first time. New application fields are,
for instance, PolDInSAR, permanent scatterer determination, classification, or change
monitoring and detection over multi–temporal and multi–baseline data sets. Furthermore,
utilizing more than two data sets, if available, will improve the robustness in determining
the most coherent SMs and is useful even for SB applications, such as digital elevation
model extraction or parameter inversion.

4.7 Conclusions

In this chapter we have presented our own works on the theory of PolInSAR. These
studies are largely based on the theoretical framework of polarimetric SAR interferometry,
as developed by S. Cloude and K. Papathanassiou [22, 105]. In addition, the works on
coherence set theory and optimization were built on the contributions by M. Tabb and
T. Flynn et al. [42, 143,142], and E. Colin et al. [29].
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Based on the named contributions, we have analyzed the concepts of polarimetric station-
arity, as initially proposed by L. Ferro–Famil and M. Neumann [39].
The mathematical concept of the numerical range of a matrix is related to the PolInSAR
coherence set. We have presented its most important properties and analyzed the rela-
tionships between the properties of the PolInSAR contraction matrices and the shapes of
the coherence sets in the complex coherence plane. All possible coherence set shapes have
been classified and related to possible media symmetries and polarimetric stationarity
conditions. We have also presented a numerical framework for the density examination
and the statistical analysis of the coherence sets, with respect to both the polarization
density and the backscattered energy density. Some of the results on coherence set theory
were presented by us also as in [98,96,97].
Finally, PolInSAR coherence optimization techniques have been investigated. Based on
the analysis of the developed single–baseline coherence optimization methods we have
developed and presented PolInSAR coherence optimization methods for multiple baselines.
Two most reasonable optimization criteria were considered: (1) coherence optimization
using multiple scattering mechanism vectors (MSM), and (2) optimization using equal
scattering mechanism vectors (ESM). The methods have been evaluated on real SAR
data, and the properties of the optimization methods and obtained optimized coherences,
phases and scattering mechanism vectors were evaluated for different scattering media
types.
The initial results on coherence optimization performance were already reported by us
in [95]. The multi–baseline coherence optimization methods are expected to have an im-
pact on multi–temporal and multi–baseline PolInSAR change monitoring, persistent scat-
terers identification, and polarimetric differential interferometry (PolDInSAR). A. Reigber
et al. [122, 123] used the multi–baseline coherence optimization methods for polarimet-
ric differential SAR interferometry (PolDInSAR) applications to obtain and to analyze
differential phases over vegetated areas.
Also, it is to expect, that these methods will be very useful for dual– and full–polarization
space–borne SAR data. Given the long repeat pass cycles and the resulting temporal
decorrelation, coherence optimization will be able to enhance time–series analyses. Since
in dual–pol mode the physical interpretation is less important, the use of coherence op-
timization to reduce phase noise for any kind of application which uses second–order
statistics will become very reasonable.





Chapter 5

Polarimetric Interferometric
Vegetation Scattering Model

In this chapter we present a polarimetric interferometric scattering model for agricultural
and forest vegetation. The presented model is kept as simple as possible to facilitate its
inversion, but still contains important parameters for the characterization of vegetation
structures which can be discriminated by radar polarimetry and interferometry: vege-
tation particles characteristics, orientation distribution, ground characteristics, and the
vertical structure of the vegetation. At first, a polarimetric model for first–order scatter-
ing components is presented. We explicitly consider the modeled parameters under both
Born and distorted Born (Born+EFA) approximations. Complementarily, an interfero-
metric coherence model for the same components is presented enabling the construction
of a PolInSAR model. Both single–transmit and alternate–transmit interferometric ac-
quisition modes are analyzed. Based on the synergy of polarimetry and interferometry, it
is recognized that a hybrid mode (alternate–transmit simultaneous–receive) will improve
the distinction between surface scattering and the double–bounce scattering based on the
interferometric coherence.
In this chapter, individual elements of the model will be considered in general. As a
specific example, a model which will be used in the next chapter for forest parameter
retrieval consists of ground, trunk, and canopy layers, as shown in Fig. 5.1.
Table 5.1 presents an overview of the parameters for the volume and ground layers incor-
porated in the modeling approach. Explicitly denoted is either these parameters affect the
polarimetric or interferometric properties. These parameters will be explained in more
detail in the course of this chapter.

Figure 5.1: Three layer model for forests: ground, trunks, and canopy.

89
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Volume layer Pol In

ψ̃ Main orientation of vegetation particles *
τ Orientation randomness *
δ Particle scattering anisotropy (backscattering) *
δ′ Bi–static particle scattering anisotropy *
σ Extinction [dB/m] *

∆σ Difference in extinction * *
∆χ Difference in refractivity * *
hv Vegetation layer depth *
zv0 Layer bottom height *
rh Canopy–fill–factor *

Ground layer Pol In
vaz Terrain azimuth slope *
vrg Terrain ground range slope *
z0 Ground topography height *

β, β vv
hh
, β hv

hh
Surface backscattering parameters *

η Fresnel reflection coefficients ratio *
Re εr Surface permittivity under SPM approximation *
α Double–bounce parameter (replaces η, δ′) *

Table 5.1: Model parameters for a single volumetric layer over the ground (some of them
are complex and some are derivable from others).

5.1 Vegetation Structure

Vegetated areas like forests or agricultural fields can be modeled in a simple way by a
set of possibly overlapping volume layers over the ground, where every layer has its own
distinguishing characteristics. In the most simple case a single volume layer over the
ground is considered. The electromagnetic scattering from the volume might be modeled
by considering an equivalent continuous medium or a medium consisting of discrete scat-
terers. In the continuous case, the medium is characterized by a fluctuating permittivity
function ε(r) [62, 157]. In the discrete case, the medium consists of a collection of ran-
domly distributed scatterers [69]. The response of discrete media can be modeled using
the incoherent radiative transfer theory or the coherent wave theory. Radiative transfer
deals with the transport of intensity through the scattering medium. The wave theory,
also called the multiple scattering theory, starting from Maxwell’s equations, derives the
solution for a single scatterer, and then considers multiple scattering effects, as presented
in chapter 2 and especially in section 2.4. In this study, the vegetation medium is modeled
by a coherent discrete scatterer approach using the distorted Born approximation.

5.1.1 Particle Scattering Anisotropy

The direct backscattering from a simplified volumetric vegetation layer can be character-
ized by a collection of discrete scatterers whose electromagnetic properties are governed by
the probability density functions (pdf) of their positions, shapes, sizes, dielectric constants,
and orientations. The polarimetric coherency matrix for the volume can be represented
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by

T =
∫∫∫

T̂(r,Ξ,D,εr,ν,ψ) p(r,Ξ,D,εr,ν,ψ) dr dΞ dD dεr dν dψ (5.1)

where T̂ is the coherency matrix of a single scatterer and p(r,Ξ,D,εr,ν,ψ) represents the joint
pdf of scatterer positions r, shapes Ξ, sizes D, permittivities εr, and tilt ν and orientation
ψ angles with respect to the polarization plane.
Inside of the homogeneous layer, the scatterers are assumed to be randomly distributed,
with a uniform pdf of positions (pr(r) = const) having a density of n0 scatterers per unit
volume.
Furthermore, assuming the independence of the scatterers orientations from other char-
acteristics allows to write

T =
∫ [∫∫∫

T̂(r,Ξ,D,εr,ν,ψ) p(Ξ,D,εr,ν) dΞ dD dεr dν p(r) dr

]
p(ψ) dψ (5.2)

=
∫

RT (2ψ)

[∫∫∫
T̂(r,Ξ,D,εr,ν) p(Ξ,D,εr,ν) dΞ dD dεr dν p(r) dr

]
RT
T (2ψ)p(ψ) dψ (5.3)

=
∫

RT (2ψ)

[
P̂ T̂δ

]
RT
T (2ψ)p(ψ) dψ (5.4)

(5.5)

where RT (2ψ) is the orientation angle rotation matrix, P̂ is the normalization factor for
the scattered power, and T̂δ is the normalized coherency matrix describing the scattering
properties in the polarization plane independently from the particle orientation. T̂δ has
the form  1 δ 0

δ∗ |δ|2 0
0 0 0

 (5.6)

where δ is the effective particle scattering anisotropy, determined by the average scattering
properties of the particles (shapes, sizes, permittivities, and the tilt angles).
δ represents simple scatterers, assuming the existence of an axis of symmetry. One may
represent the backscattering matrix of the effective (average) particle in the BSA conven-
tion in the eigenpolarizations p̂a, p̂b by

S =
[
Saa 0
0 Sbb

]
(5.7)

The particle scattering anisotropy is therefore determined from the backscattering coeffi-
cients independently of orientation and scattered power via

δ =
(
Saa − Sbb
Saa + Sbb

)∗
(5.8)

Using δ, the backscattering matrix can also be expressed by

S =
Saa + Sbb

2

[
1 + δ∗ 0

0 1− δ∗
]

(5.9)
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Figure 5.2: Spheroidal particle extension and orientation in the global coordinate system
k̂, ĥ, v̂.

The particle scattering anisotropy is a characteristic of the effective shape of an average
particle and depends on the particle and background permittivities. If the particle per-
mittivity is similar to the background (i.e. air) permittivity, εr ≈ 1, the particle scattering
anisotropy tends towards 0 independently of the real shape of the particle [157, 20], and
the scattering effectively vanishes. In the other case (εr � 1), assuming simple ellipsoid
particles, one can make the following predictions about the effective particle shapes: as
|δ| → 0, the average effective particle shape approaches an isotropic sphere/disk, whereas
for |δ| → 1 the effective shape of the scattering particle in the polarization plane tends
towards a dipole. In the line of sight direction of the wave, the particles axis of symmetry
tends to be horizontal if Re δ > 0 and vertical if Re δ < 0, with respect to the polarization
basis of the particle scattering amplitude matrix.

5.1.2 Spheroidal Particles

The particle scattering anisotropy is a measure of the effective shape of the particle, as
observed in the polarization plane. Using the spheroid particle model from [162,82,20,1],
one can relate δ to real physical characteristics, assuming the model corresponds to the
illuminated particle.
Let the spheroid particle be characterized by the half–axes a and b and the polar angles
(Euler angles) ψ and ν which describe orientation and tilt of the particle with respect to
the line of sight (LOS) and the incidence plane, as shown in Fig. 5.2. For such an ellipsoid
particle, the abstract shape and size indicators Ξ and D become the concrete dimensions
a× a× b. The polarizabilities along the main axes are given by [162]

αa =
V

4π(La + 1/(εr − 1))
, αb =

V

4π(Lb + 1/(εr − 1))
(5.10)

where V is the particle volume, εr is the permittivity, and La, Lb are given by

La =
∫ ∞

0

ab2

2(s+ a2)3/2(s+ b2)
ds (5.11)

Lb =
∫ ∞

0

ab2

2(s+ a2)1/2(s+ b2)2
ds (5.12)
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La, Lb are related to the particle dimensions via

La
Lb
≈ b

a
, and La + 2Lb = 1 (5.13)

=⇒ Lb =
a

2a+ b
, La =

b

2a+ b
(5.14)

The backscattering matrix elements can be given in terms of the particle polarizabilities
and orientation angles by [162,20]

Shh = αa sin2 ν cos2 ψ + αb(sin2 ψ + cos2 ν cos2 ψ) (5.15)

Svv = αa sin2 ν sin2 ψ + αb(cos2 ψ + cos2 ν sin2 ψ) (5.16)

Shv = (αa + αb) sin2 ν sinψ cosψ (5.17)

After rotation of the polarization basis p̂h, p̂v into the eigenbasis p̂a, p̂b of the particle
(ψ → 0), one obtains

Sp̂ap̂b = RT
S(ψ)Sp̂hp̂vRS(ψ) (5.18)

Saa = αa sin2 ν + αb cos2 ν (5.19)
Sbb = αb (5.20)
Sab = 0 (5.21)

Using the shape indicators [20,17]

m =
b

a
∝ La
Lb


m < 1 prolate

m = 1 spherical

m > 1 oblate

(5.22)

B =
αb
αa

=
La + 1/(εr − 1)
Lb + 1/(εr − 1)

=
La(εr − 1) + 1
Lb(εr − 1) + 1

(5.23)

=
mεr + 2
m+ εr + 1

(5.24)

the particle scattering anisotropy for a spheroid is given by

δ∗ =
Saa − Sbb
Saa + Sbb

=
1−B

1 +B + 2B cot2 ν
(5.25)

The equation (5.25) provides the relationship between the particle scattering anisotropy
and the particle characteristics. Whereas the forward model is simple, the inversion is not
straightforward due to the non–linearity and the abundance of parameters.

5.1.3 Volume Layer

For the distribution of orientation angles in the polarization plane, a circular unimodal
probability density function is assumed. Thus, this function can be characterized by
two parameters: the mean orientation of the particles ψ̃, and the degree of orientation
randomness τ . It is assumed that the orientation of vegetation particles is independent
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Figure 5.3: Orientation of a particle in the polarization plane, showing the mean orienta-
tion ψ̃, and the individual departure of a single particle from the average ∆ψ.

Figure 5.4: Schematic representation of effective shapes and orientations of particles in the
line of sight (LOS) for different degrees of particle scattering anisotropy δ and orientation
randomness τ .

of other particle characteristics. The mean orientation ψ̃ ∈ [−π
2 ,

π
2 [ is defined as the

average orientation angle of the major axis of the particle in the polarization plane with
respect to the horizontal axis, as shown in Fig. 5.3. The major axis corresponds to the
eigenpolarization axis with the highest scattering coefficient (max{|a|, |b|}). p(ψ − ψ̃) is
defined over [−π

2 ,
π
2 [ and is in general a circular probability density function. The degree

of orientation randomness τ is defined in the range from zero to one. As τ → 0 the volume
becomes strongly aligned in the preferred orientation direction, whereas for τ → 1 the
particle orientations become completely random. Fig. 5.4 visualizes volume particles in
the direction of the line of sight (LOS) in dependence of the degrees of particle scattering
anisotropy and orientation randomness. Note that the degree of orientation randomness
becomes meaningless for (effectively) isotropic scatterers (δ = 0).

Distribution of Orientation Angles

In the past, the volume orientation has been modeled either as completely random (e.g.
[46, 106]), or by a few discrete states [169] or has been given in an integral form (e.g.
[134, 20]. However, it has been recognized that orientation effects in the vegetation can
often be significant. Therefore, in this study the orientation properties of vegetation are
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examined and closed form solutions are presented for the covariance and coherency matrix
elements.
Under the central limit theorem condition, given a large number of scatterers, the orien-
tations of these scatterers in the polarization plane are normally distributed [108], and
follow the von Mises distribution (also known as the circular normal distribution) [2]
which is the circular analogue of the Gaussian distribution(1):

pψ(ψ) = pC(ψ|ψ̃, κ) =
eκ cos(2(ψ− eψ))

πI0(κ)
(5.27)

where κ is the degree of concentration (analogous of the inverse of the standard deviation),
and I0(κ) is the modified Bessel function of order 0.
For completeness, orientation distributions based on truncated Gaussian and truncated
uniform pdf’s will be presented, as these distributions have been considered previously and
might represent an approximation to the von Mises distribution. A close approximation
of the von Mises distribution is the truncated Gaussian distribution

pψ(ψ) = p
G(ψ| eψ,σ)

=


p
G(ψ| eψ,σ)R π/2

−π/2 pG(ψ′| eψ,σ)
dψ′

−π
2 ≤ ψ ≤

π
2

0 otherwise
(5.28)

where

p
G(ψ| eψ,σ)

=
e−

(ψ− eψ)2

2σ2

σ
√

2π
(5.29)

is the non–truncated centered Gaussian probability density, and σ is the variance of the
non–truncated Gaussian distribution.
The most simple approximation is the truncated uniform distribution as proposed in [20]

pψ(ψ) = p
U(ψ| eψ,Ψ)

=

{
1
Ψ |2(ψ − ψ̃)| ≤ Ψ
0 otherwise

(5.30)

with the parameter Ψ determining the width of orientation angle distribution.
The degree of orientation randomness τ is defined independently of the orientation angle
pdf as the area under p(ψ − ψ̃) divided by the area of the smallest enclosing box in the
range ψ ∈ [−π

2 ,
π
2 [. Since the integral over the probability density function equals 1, and

the maximum of p(ψ) is at ψ̃, one obtains:

τ =
∫
pψ(ψ − ψ̃)dψ
πmax pψ(ψ)

=
1

πpψ(ψ̃)
(5.31)

This definition is chosen because it normalizes the degree of orientation randomness to
the range [0, 1] and because it provides a simple geometrical interpretation.

(1)The common definition for the von Mises distribution is

pC(x|µ, κ) =
eκ cos(x−µ)

2πI0(κ)
(5.26)

which is circular over 2π. We have modified it in (5.27) to be circular over 1π.
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(a) von Mises PDF pC(ψ − eψ) (b) Truncated Gaussian PDF

pG(ψ − eψ)

(c) Truncated Uniform PDF

pU (ψ − eψ)

Figure 5.5: The orientation angle probability density functions pC(ψ), pG(ψ), pU (ψ) for
different degrees of orientation randomness (τ = {1

5 ,
2
5 ,

3
5 ,

4
5}). For τ = 1, the orientation

angles are uniformly distributed over the whole range [−π
2 ,

π
2 ], whereas for τ = 0, the

distribution resembles a delta impulse at ψ = ψ̃.

The degrees of orientation randomness for the analyzed distributions can thus be given
by:

τC = I0(κ)e−κ, τG =

√
2σ2

π
erf
(

π√
8σ

)
, τU =

Ψ
π

(5.32)

where erf(·) is the error function.
Examples for these distributions for different degrees of orientation randomness are shown
in Fig. 5.5. As it can be seen, only the von Mises distribution is truly continuous circular.
The truncated Gaussian pdf has a discontinuity at ψ = ψ̃± π

2 and the truncated uniform
has two discontinuities at ψ = ψ̃ ± Ψ

2 .

5.1.4 Complete Vegetation Structure

Further assumptions for the presented model are

• Ground: The direct surface backscattering is not constrained excepted for the
assumed reflection symmetry about the incidence plane. For the double– and triple–
bounce scattering components, the specular surface scattering is modeled using a
first–order approximation.

• Volume layer: The vegetation volume is assumed to be homogeneous, using the
Foldy–Lax approximation for the computation of the extinction σ and refractivity
χ, as presented in section 2.4.3. The distorted Born approximation is used, rep-
resenting single scattering in an effective field. The layer is assumed to be sparse:
with negligible multiple–scattering, and no correlations between particle scattering
fields.

• Layer structure: The normal vector of the ground terrain is assumed to be in
the plane of the volume eigenpolarizations, so that both surface and volume share
a common eigenpolarization basis (same azimuthal orientation). Terrain slopes can
be accounted for. For simplicity, we will assume that the polarimetric second–order
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Figure 5.6: Zeroth and first order scattering components for a volume layer over the
ground: surface (s), volume (v), double–bounce (d), and triple–bounce (t).

matrices can be transformed into the reflection symmetric form (cf. sections 2.5.4).
The different layer components are assumed to be independent between each other.

• Resolution cell: The dimensions of the resolution cell are large, so that the coher-
ent phase summation is uniformly distributed.

5.2 Polarimetric First–Order Model Components

The main zeroth and first order scattering contributions for a volumetric layer over a sur-
face are presented in Fig. 5.6. These contributions include the direct surface scattering,
the direct volume scattering, the double–bounce (volume–ground and ground–volume)
scattering, and the triple–bounce (ground–volume–ground) scattering. Since these contri-
butions are statistically independent, the covariance matrix can be decomposed into four
components

C = fsCs + fvCv + fdCd + ftCt (5.33)

where covariance matrices are normalized with respect to the 〈ShhS∗hh〉 terms, and fs,
fv, fd, ft represent the individual 〈ShhS∗hh〉 terms. The indices s, v, d, t stand for surface,
volume, double bounce, and triple bounce scattering components.
The individual components are presented in the following. It will prove beneficial to use
covariance matrix as well as coherency matrix representations due to the fact that different
scattering and propagation effects may be better represented in one of the two forms.

5.2.1 Attenuation–Free Medium (Born Approximation)

Surface Scattering Contribution

The normalized direct ground scattering contribution can be represented for a horizontal
surface using the following parametric form:

Cs =

 1 0 β
0 β hv

hh
0

β∗ 0 β vv
hh

 (5.34)

where β hv
hh

and β vv
hh

are real–valued whereas β is complex.
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In order to reduce the complexity of this scattering component, the surface response
might be modeled using the first–order small perturbation method (SPM, see section
2.4.2), which is applicable over slightly rough surfaces. The covariance matrix elements
for this model are given by (2.41), so that the normalized covariance matrix becomes

Cs =

 1 0 β
0 0 0
β∗ 0 |β|2

 , with β =
(
αvv
αhh

)∗
(5.35)

where αhh, αvv are defined in (2.42) and depend on both the incidence angle and the
dielectric constant εr of the soil. As proposed in [154, 90], the imaginary part of εr
can be made dependent on the real part: Im εr = 0.15 Re εr. This would reduce the
parameterization of surface scattering polarimetry to only one real–valued coefficient.

Volume Scattering Contribution

The polarimetric scattering and coherency matrices of a single simple scatterer with
backscattering anisotropy δ =

(
a−b
a+b

)∗
and orientation angle ψ are proportional to

Sv ∝ RT
S(ψ)

[
a 0
0 b

]
RS(ψ), RS(ψ) =

[
cosψ sinψ
− sinψ cosψ

]
(5.36)

T̂v(ψ) ∝ RT (2ψ)

 1 δ 0
δ∗ |δ|2 0
0 0 0

RT
T (2ψ), RT (2ψ) =

1 0 0
0 cos 2ψ sin 2ψ
0 − sin 2ψ cos 2ψ

 (5.37)

where RS(ψ) and RT (2ψ) are rotation matrices for the polarization orientation angle of
the scattering and coherency matrices. Given the orientation angle distribution pψ(ψ) one
can obtain the ensemble averaged coherency matrix after integration over the orientation
angles:

Tv =
∫ π/2

−π/2
pψ(ψ)T̂v(ψ)dψ (5.38)

=
∫ π/2

−π/2
pψ(ψ)

 1 δ cos 2ψ −δ sin 2ψ
δ∗ cos 2ψ |δ|2 cos2 2ψ −|δ|2 cos 2ψ sin 2ψ
−δ∗ sin 2ψ −|δ|2 cos 2ψ sin 2ψ |δ|2 sin2 2ψ

 dψ. (5.39)

where the integration is performed element-wise. The solution is in general non reflection
symmetric. However, since pψ(ψ) is a circular pdf, symmetric around the mean vegetation
orientation ψ̃, one can rotate the polarization orientation angle by ψ̃ to obtain a reflection
symmetric form.
Using trigonometric identities and the functions

g =
∫ π/2

−π/2
pψ(ψ) cos 4ψ dψ (5.40)

gc =
∫ π/2

−π/2
pψ(ψ) cos 2ψ dψ (5.41)
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equation (5.38) can be integrated over all elements to obtain the coherency matrix for a
volumetric vegetation layer under reflection symmetry

Tv = R
T (2 eψ)

 1 gcδ 0
gcδ

∗ (1+g)
2 |δ|

2 0
0 0 (1−g)

2 |δ|
2

RT
T (2 eψ)

(5.42)

The final values for g and gc are determined by the orientation angle pdf.
Integrating over the von Mises distribution, one obtains

g =
I2(κ)
I0(κ)

, gc =
I1(κ)
I0(κ)

(5.43)

where In are the modified Bessel functions of n–th order. This result is obtained using [2]
(p. 376, def. 9.6.19)

In(κ) =
1
π

∫ π

0
eκ cos(2ψ) cos(n2ψ)dψ =

1
π

∫ π
2

−π
2

eκ cos(2ψ) cos(n2ψ)dψ (5.44)

with n = 2, 1 for g and gc.
Using the truncated Gaussian distribution (5.28), the integrals in (5.41), (5.40) can be
reformulated (with n = 2 for gc and n = 4 for g) into

gc/g =

(∫ π/2

−π/2
e−

ψ2

2σ2 +inψdψ +
∫ π/2

−π/2
e−

ψ2

2σ2−inψdψ

)[∫ π/2

−π/2
e−

ψ′2

2σ2 dψ′

]−1

(5.45)

Using the substitutions u′ = 1√
2σ
ψ′ for the denominator integral, u1 = 1√

2σ
(ψ− in) for the

first summand integral, and u2 = 1√
2σ

(ψ+ in) for the second, one can obtain the solution

g =
e−8σ2

[
erf(π−8iσ2

σ
√

8
) + erf(π+8iσ2

σ
√

8
)
]

2 erf( π
σ
√

8
)

gc =
e−2σ2

[
erf(π−4iσ2

σ
√

8
) + erf(π+4iσ2

σ
√

8
)
]

2 erf( π
σ
√

8
)

(5.46)

where erf(·) is the Gauss error function

erf(x) =
2√
π

∫ x

0
e−t

2
dt. (5.47)

For the truncated uniform distribution (5.30) the solution is given by

g = sinc(2πτ), gc = sinc(πτ). (5.48)

Since in the following it will prove more useful to work in the lexicographic matrix basis,
one can obtain the normalized covariance matrix for the volume scattering using (2.67):

Cv =

 1 0 vc
0 vx 0
v∗c 0 vo

 , with


vx = 2(1−g)|δ|2

2+(1+g)|δ|2+4gc Re δ

vo = 2+(1+g)|δ|2−4gc Re δ
2+(1+g)|δ|2+4gc Re δ

vc = 2−(1+g)|δ|2−4igc Im δ
2+(1+g)|δ|2+4gc Re δ

(5.49)

where the indices in vo, vx, vc stand for the normalized co–polar variance, cross–polar
variance, and the co–polar correlation.
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Figure 5.7: Geometry of double bounce scattering.

Double–Bounce Contribution

The double–bounce component is characterized by the specular reflection at the ground
and a bistatic scattering at the volume particles [34, 32]. To derive the polarimetric
covariance matrix of the double–bounce component one needs to coherently combine two
scattering contributions: one path consisting of a specular reflection on the ground and
another specular reflection on a volume particle, and the other path in the other direction,
as shown in Fig. 5.7.
Coherently combining both scattering paths and accounting for the particle orientation
leads to the following formulation in the BSA coordinates:

Sd =
[
Rh 0
0 Rv

]
RS(ψ)

[
a′ 0
0 b′

]
RT
S(ψ) + RS(ψ)

[
a′ 0
0 b′

]
RT
S(ψ)

[
Rh 0
0 Rv

]
(5.50)

where Rh, Rv are the Fresnel reflection coefficients. This matrix can be separated into
volume and ground factor matrices

Sd =
(
RS(ψ)

[
a′ 0
0 b′

]
RT
S(ψ)

)
◦
[

2Rh Rh +Rv
Rh +Rv 2Rv

]
(5.51)

where ◦ represents element–wise matrix multiplication (Hadamard product). For sim-
plicity, we will again characterize the scattering processes by complex scalar values, the
ground reflection coefficients ratio

η =
(
Rv
Rh

)∗
(5.52)

and the bistatic particle scattering anisotropy

δ′ =
(
a′ − b′

a′ + b′

)∗
(5.53)

Since the volume and the ground characteristics are uncorrelated, the polarimetric covari-
ance matrix can be obtained by integrating over the volume orientation independently
of the specular ground contribution. Since the main orientation of the particles is as-
sumed to be either perpendicular or parallel to the surface, the orientation statistics for
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Figure 5.8: Geometry of triple bounce scattering.

the bistatic volume are the same as for the direct volume component leading to the same
degree of orientation randomness (τ ′ = τ). Therefore, the volume part can be integrated
over the orientation angle probability density as presented in the previous section. In the
lexicographic matrix basis, the resulting double bounce covariance matrix has the form

Cd =

 1 0 ηv′c
0 |1+η2 |

2v′x 0
(ηv′c)

∗ 0 |η|2v′o

 (5.54)

where the v′i coefficients can be related to the vi coefficients by replacing the backscattering
particle scattering anisotropy δ by the bistatic particle scattering anisotropy δ′.
The Freeman and Durden model for the double bounce scattering can be obtained with
perfectly aligned scatterers (τ = 0), leading to

Cd =

 1 0 α
0 0 0
α∗ 0 |α|2

 (5.55)

where α is a product of specular reflection coefficients of the ground and the volume
particles (α = η( b

′

a′ )
∗) [46]. For anisotropic and vertically aligned scatterers the bistatic

particle scattering becomes actually a specular reflection. If in addition the surface is
relatively smooth with high soil moisture content leading to strong reflection and low
attenuation in the volume, the double bounce contribution can dominate over all other
contributions.

Triple–Bounce Contribution

The triple–bounce component is characterized by two specular ground reflections and
backscattering towards the ground at the volume particles. Since the volume particle
characteristics are symmetrical with reference to the horizontal plane, the backscattering
in the ground direction is in average equal to the backscattering in the radar direction
(same δ and τ). The scattering matrix can thus be represented by

St =
[
Rh 0
0 Rv

]
RT
S(ψ)

[
a 0
0 b

]
RS(ψ)

[
Rh 0
0 Rv

]
(5.56)
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=
(
RT
S(ψ)

[
a 0
0 b

]
RS(ψ)

)
◦
[
R2
h RhRv

RhRv R2
v

]
(5.57)

The reflection coefficients ratio, η, determined by the Fresnel reflection coefficients of the
surface, is the same as for the double–bounce component. Also, due to horizontal plane
reflection symmetry of the scattering matrix, the backscattering coefficient is the same as
for the volume component.
Similarly to the previous cases, the integration over the orientation angles leads to the
normalized triple–bounce covariance matrix whose form is given by

Ct =

 1 0 η2vc
0 |η|2vx 0

(η2vc)∗ 0 |η|4vo

 (5.58)

The triple bounce component does not introduce any new parameters with respect to
the volume and the double–bounce components, except of the intensity weighting. It
becomes important in case of low extinction and very flat reflective ground, and in the
limit it approaches the volume scattering component.

5.2.2 Attenuating and Refracting Medium (Distorted Born Approxima-
tion)

In this section, attenuation and refractivity effects on the covariance matrices and in-
terferometric coherences are derived. During the propagation of the wave through the
vegetation, it gets attenuated and refracted due to absorption and scattering. Up to now,
extinction and refractivity of the vegetation have been assumed to be equal for all po-
larizations, and were included in the power coefficients. However, in case of orientation
preference of vegetation particles (τ < 1), extinction and refractivity might be different
for the different polarizations.
As discussed in sections 2.1, 2.4, and 2.5.3, the wave propagation along one of the eigen-
polarizations of the effective medium, p̂a, p̂b, is characterized by the effective propagation
constant ka/b = k0 + κa/b = k0 + (k0χa/b + i

σa/b
2 ), where χ is the real part of the complex

index of refraction minus one [153], and σ is the two–way extinction. If the effective
medium is not isotropic, as it is the case for oriented volumes, the propagation constants
are not equal. In this case, of importance for polarimetry and interferometry are the mean
extinction σ, and the differences in extinction and refractivity ∆σ, ∆χ:

σ =
σa + σb

2
, ∆σ =

σa − σb
2

, ∆χ = χa − χb, ξ = −∆σ + ik0∆χ (5.59)

where the indices a, b refer to the eigenpolarizations of the medium.
It will prove useful to introduce the function f�(s) (� ∈ [a, b, c, 0])

f�(s) =
e(−2σ+2x)s∫ hv

cos θ0
0 e−2σs′ds′

, x =


0 for � = 0
−∆σ for � = a

+∆σ for � = b

ik0∆χ for � = c

(5.60)

which represents the normalized effective density (with respect to a medium with mean
extinction σ) of the volume as seen by the radar at a certain polarization state. f0
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(� = 0) is the effective density for the random volume case which represents an isotropic
medium with equal extinction and refractivity values at all polarizations. fa, fb, and
fc (� = a, b, c) represent the normalized effective density accounting for differences in
extinction and refractivity at the eigenpolarizations.
The covariance and coherency matrices accounting for the differences in the propagation
constants for forth and back propagation of a distance s in a homogeneous medium can
be represented by

C′ = e−2σsPL(s)CP†
L(s), T′ = e−2σsPP (s)TP†

P (s) (5.61)

where the matrices PL and PP [152] represent the effects due to different propagation
constants at the eigenpolarizations

PL(s) =

eξs 0 0
0 1 0
0 0 e−ξs

 , PP (s) =

cosh ξs sinh ξs 0
sinh ξs cosh ξs 0

0 0 1

 (5.62)

Therefore, the attenuation in the volume for the direct ground and the double bounce
components can be readily accounted for using (5.61). After normalization, the correc-
tion factors can be represented using the element–wise matrix multiplication (Hadamard
product):

Cs/d ← Cs/d ◦

 1 0 ζ
0 |ζ| 0
ζ∗ 0 |ζ|2

 (5.63)

where ζ = e2ξs, and s = hv/ cos θ0 for a volume layer of depth hv.
For the volume term one needs to integrate over the whole propagation path to obtain
the polarization change induced by different propagation constants. One obtains

Cv ←
∫ hv

cosθ0

0
e−2σsPL(s)CvP

†
L(s)ds ∝ Cv ◦

qa 0 qχ
0 1 0
q∗χ 0 qb

 (5.64)

where ◦ is the element–wise multiplication and the q factors express the normalized change
due to extinction and refractivity:

qa/b/χ/0 =
∫ hv

cos θ0

0
f�(s)ds (5.65)

Note that the co–polar variances depend only on the extinction difference, whereas the
co–polar correlation depends only on the refractivity difference. Naturally, if one of the
differences approaches zero, one obtains unity for the corresponding correction factors.
The attenuation and refractivity of the triple–bounce component is twofold, since it gets
attenuated due to wave propagation till the ground plus the additional wave propagation
from the ground into the volume, resulting in

Ct ← Ct ◦

 1 0 qc
qa
ζ

0 1
qa
|ζ| 0

( qcqa ζ)
∗ 0 qb

qa
|ζ|2

 (5.66)
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Figure 5.9: Normalized coherency matrix elements as functions of τ for different |δ|. Von
Mises distribution of orientation angles.

Figure 5.10: Normalized coherency matrix elements as functions of |δ| for different τ . Von
Mises distribution of orientation angles.

In summary, the covariance matrices for the four basic scattering components considering
orientation and attenuation effects can be represented by

Cg =

 1 0 βζ
0 0 0

(βζ)∗ 0 |βζ|2

 , Cv =

 1 0 qc
qa
vc

0 1
qa
vx 0

( qcqa vc)
∗ 0 qo

qa
v0

 (5.67)

Cd =

 1 0 ηζv′c
0 |1+η

2 |
2|ζ|v′x 0

(ηζv′c)
∗ 0 |ηζ|2v′o

 , Ct =

 1 0 η2 qc
qa
ζvc

0 |η|2 1
qa
|ζ|vx 0

(η2 qc
qa
ζvc)∗ 0 |η|4 qbqa |ζ|

2vo


(5.68)

5.3 Interpretation of the δ/τ Model

The coherency matrix form (5.42), as derived in section 5.2.1, deserves further inspec-
tion. The coherency and covariance matrix elements as a function of particle scatter-
ing anisotropy and the degree of orientation randomness are shown in Figs. 5.9–5.12.

Figs. 5.9 and 5.10 present the normalized coherency matrix elements tv22 = 〈|Shh−Svv |
2〉

〈|Shh+Svv |2〉 ,

tv33 =
2〈|Shv |2〉

〈|Shh+Svv |2〉 , and |tv12| = | 〈(Shh+Svv)(Shh−Svv)∗〉
〈|Shh+Svv |2〉 | with circular normal distribution of

orientation angles. Figs. 5.11 and 5.12 show the normalized covariance matrix elements

cv33 = 〈|Svv |
2〉

〈|Shh|2〉
, cv22 =

2〈|Shv |2〉
〈|Shh|2〉

and |cv13| = | 〈ShhS
∗
vv〉

〈|Shh|2〉
| in dependence of τ and δ. Note

that the elements corresponding to the cross–polar terms (c22, t33) are not equal since the
normalization factors (|HH|2, |HH + V V |2) are not the same. Figs. 5.13 and 5.14 show
a 3-D view of the same parameters using the whole (τ, |δ|) space. For comparison, the
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Figure 5.11: Normalized covariance matrix elements as functions of τ for different |δ|.
Von Mises distribution of orientation angles.

Figure 5.12: Normalized covariance matrix elements as functions of |δ| for different τ .
Von Mises distribution of orientation angles.

parameter space and the range of the Freeman–Durden decomposition [46] is presented
by the blue circle, and that of the Freeman II decomposition by the red curve.
The orientation effects in the volume have been derived from the formulations in [46], as-
suming a non–uniform orientation angle distribution. As it has been identified afterwards,
similar derivation approaches have been previously undertaken by Cloude et al. [20] and
Schuler et al. [135]. Cloude et al. [20] (1999) presented the integral form (5.38) and used
the truncated uniform orientation angle distribution for data analysis. Schuler et al. [135]
(2002) extended this approach and obtained a form similar to (5.42) but having 3 real and
1 complex variables (reducible to 2 real and 1 complex variables as in our case), using a
Gaussian pdf for the orientations (not the truncated Gaussian distribution) to represent
surface slopes. Yamaguchi et al. [169, 170] (2005, 2006) used a sine function to represent
the orientation angle distribution and computed a discrete set of oriented coherency matri-
ces to enhance the decomposition of the data into main scattering components. Recently,
Freeman extended in 2007 [45] the Freeman–Durden decomposition [46] to account for
different particle shapes using the parameter ρ which is the related to the particle scat-
tering anisotropy |δ|. In comparison to these approaches, we have derived the general
form of the volume coherency matrix making the dependence of the polarimetry on the
main physical parameters (particle scattering anisotropy δ and orientation randomness τ)
explicit and identifying the von Mises circular normal distribution as the most probable
unimodal distribution of orientation angles under the central limit theorem.

Scattering Mechanism

The δ/τ model decomposition of the polarimetric coherency matrix was originally intended
for volumetric distributed targets in terms of second order statistics for a large number of
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(a) c33 =
〈|Svv|2〉
〈|Shh|2〉 (b) c22 =

〈|Shv|2〉
〈|Shh|2〉 (c) |c13| =

|〈ShhS
∗
vv〉|

〈|Shh|2〉

Figure 5.13: Normalized covariance matrix elements (c33, c22, |c13|) over τ and |δ|. Von
Mises distribution of orientation angles. The blue point and the red line correspond to
the parameter space of the Freeman–Durden and the Freeman II models, respectively.

(a) t33 =
〈|Shv|2〉

〈|Shh+Svv|2〉 (b) t22 =
〈|Shh−Svv|2〉
〈|Shh+Svv|2〉 (c) |t12| =

|〈(Shh+Svv)(Shh−Svv)∗〉|
〈|Shh+Svv|2〉

Figure 5.14: Normalized coherency matrix elements (t33, t22, |t12|) over τ ∈ [0, 1] and
|δ| ∈ [0, 1]. Von Mises distribution of orientation angles. The blue point and the red line
correspond to the parameter space of the Freeman–Durden and the Freeman II models of
the volume component, respectively.
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scatterers under the Born approximation. Closer inspection shows that this decomposition
scheme can be related to other models and scattering mechanism types.
In particular, the particle scattering anisotropy magnitude |δ| is directly related to Cloude’s
α angle [25]:

|δ| = tanα (5.69)

Also, it can be expressed using Freeman’s shape parameter ρ [45]:

|δ| = 2
1− ρ
1 + ρ

(5.70)

Considering now |δ| as a general scattering mechanism indicator, and not only as an
effective particle scattering anisotropy, one can extend the range of |δ| to [0,∞].
The common ideal canonical scattering mechanism types can therefore be represented by

sphere/surface dipole dihedral/helix
|δ| 0 1 ∞
α 0 1

4π
1
2π

ρ 1 1
3 0

In all cases, the tilt angle distribution is already integrated into these parameters. In order
to obtain indicators related to the real particle shape, permittivity, and tilt distribution
characteristics, one needs to have additional a–priori information.
Under the assumptions of reciprocity, reflection symmetry, and independence of scattering
mechanism types from orientation angles in the polarization plane, the general coherency
matrix form is therefore given by

T =

 1 gcδ 0
gcδ

∗ (1+g)
2 |δ|

2 0
0 0 (1−g)

2 |δ|
2

 (5.71)

where, under the Central Limit Theorem, g and gc are given by (5.40) and (5.41).
With reference to surface scattering, this model is related to the X–Bragg model [55, 56,
135] assuming truncated uniform or Gaussian orientation angles distributions.

Linear Approximation of Orientation Randomness

Fig. 5.15 shows g and gc as functions of the degree of orientation randomness for the
different orientation distribution functions. A simple approximation for g and gc can
be deduced from this figure since g and gc appear to be almost linearly related to τ in
the range τ ∈ [0, 0.5] and τ ∈ [0, 1], respectively. This suggests a very simple linear
approximation of these functions (compare Fig. 5.16)

g(τ) =

{
1− 2τ τ ≤ 1

2

0 τ > 1
2

, gc(τ) = 1− τ (5.72)

which can be readily inverted. This linear approximation can be used to obtain coarse
estimates of the orientation randomness, since it represents the dynamic range of the
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Figure 5.15: Graphs of g, gc for von Mises, Gaussian, and uniform distributions.

Figure 5.16: Graphs of g, gc for the von Mises distribution and the linear approximation.

degree of orientation randomness. If more accurate results are required, e.g. for forward–
modeling, then the von Mises distribution results should be preferred.
Using the linear approximation for the orientation distribution, one obtains two linear
models for the coherency matrix form:

T =



 1 (1− τ)δ 0
(1− τ)δ∗ (1− τ)|δ|2 0

0 0 τ |δ|2

 τ ≤ 1
2 1 (1− τ)δ 0

(1− τ)δ∗ 1
2 |δ|

2 0
0 0 1

2 |δ|
2

 τ > 1
2

(5.73)

For low degree of orientation randomness (τ ≤ 1
2), one observes a trade–off between

the co–polar terms and the cross–polar HV component. For no orientation randomness
(τ = 0), a common first–order coherency matrix form is obtained.
For high degree of orientation randomness (τ > 1

2), which is the case for most vegetation
types at large ranges of incidence angles, the diagonal elements appear to be saturated, and
one observes sensitivity to the orientation randomness only in the off–diagonal correlation
(Shh + Svv)(Shh − Svv)∗.
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Inversion

Once the volume response has been separated from the other contributions, and after
transformation to the coherency matrix form and normalization, the magnitude and the
phase of the particle scattering anisotropy δ can be obtained independently of the degree
of orientation randomness via

|δ| =
√
tv22 + tv33 =

√
〈|Shh − Svv|2〉+ 4 〈|Shv|2〉

〈|Shh + Svv|2〉
(5.74)

arg δ = arg(tv12) = arg(〈(Shh + Svv)(Shh − Svv)∗〉) (5.75)

g and gc are computed using δ. From g and gc it is possible to obtain the degree of orien-
tation randomness by inverting (5.43) or (5.72). For the linear approximation, the degree
of orientation randomness can be more easily retrieved from the co–polar correlation

τ = 1− |tv12|
|δ|

= 1− 1
|δ|
|〈(Shh + Svv)(Shh − Svv)∗〉|

〈|Shh + Svv|2〉
(5.76)

Alternatively, for relatively aligned particles the diagonal elements of the coherency matrix
can be used for an estimation of τ . The equations (5.74) and (5.76) offer two basic
and easy indicators for particle scattering anisotropy (scattering mechanism type) and
orientation randomness if the coherency matrix is dominated by volume scattering. Using
appropriate models (e.g. [20]) one is able to invert more physical parameters, if a–priori
knowledge about the permittivity, the shape and the tilt angles distribution of the particles
is available.

5.4 Interferometric First–Order Model Components

In analogy to the polarimetric model of C in (5.33), the interferometric behavior of the
main scattering contributions from a layer of random volume vegetation over the ground
can be modeled by a linear combination of polarimetric interferometric cross–correlation
matrices.

Q = Qs + Qv + Qd + Qt (5.77)

If the attenuation inside the vegetation is independent of the polarization, the volume
decorrelation terms become polarization independent, too. If in addition the decorrelation
is caused only due to the volumetric structure of the vegetation, then (5.77) can be
expressed by

Q = fsCsγs + fvCvγv + fdCdγd + ftCtγt (5.78)

where γs, γv, γd, γt are the volume coherence terms for the given scattering mechanism
types.
Alternatively, (5.78) can be analogously represented by a coherence model:

γ(ω) = cs(ω)γs + cv(ω)γv + cd(ω)γd + ct(ω)γt (5.79)
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where the ci coefficients are the normalized polarimetric power coefficients:

ci(ω) = fi
ω†Ciω

ω†Cω
, i ∈ {s, v, d, t}, ∀ ω :

∑
i

ci(ω) = 1 (5.80)

In the next section, the constituents of this model are presented assuming constant extinc-
tions and refractivities over all polarizations. Later on, the case of polarization dependent
extinctions and refractivities will be considered.

5.4.1 Volume Coherences: Polarization Independent Attenuation

Single–Pass Alternate–Transmit Mode or Repeat–Pass

In section 3.4.3, we have shown that the interferometric coherence can be decomposed
into a product of constituents induced by acquisition system and scattering medium. The
medium induced constituents can be further decomposed into a weighted linear combi-
nation of coherences which correspond either to spatially separated layers or components
with uncorrelated scattering characteristics. In the following we present the main, zeroth–
and first–order, scattering contributions from a random volume over ground. Assuming
single–pass acquisition with no temporal decorrelation (γtemp,i = 1), the volume coherence
for any polarization ω can be decomposed into uncorrelated coherence components due
to surface, volume, double–bounce, and triple–bounce scattering components which were
presented in section 2.4.3:

γz = csγz,s + cvγz,v + cdγz,d + ctγz,t (5.81)

The modified van Cittert-Zernike theorem states that the volume coherence can be ob-
tained as the Fourier transform of the spatial distribution of the scatterers [127,52]. This
theorem validates the volume coherence expression derived in (3.60), where the spatial
distribution is represented by ρ(z) in dependence of height z. Thus, the volume coherence
γz for any component i ∈ {s, v, d, t} can be computed by (see (3.60))

γz,i =
Iz,i
I0
z,i

=
∫
ρi(z′)eikz(z

′−z0)dz′∫
ρi(z′)dz′

, i ∈ {s, v, d, t} (5.82)

Since, by definition, ρ(z′) is normalized to unity, the volume coherence can be given by

γz,i =
Iz,i
I0
z,i

=
∫
ρi(z′)eikz(z

′−z0)dz′ (5.83)

Note that the reference phase is not included in these formulations.
It is of importance to understand the meaning of ρ(z′). It represents the effective nor-
malized backscattering strength of the given scattering type component. Here, effective
implies two aspects. One includes the attenuation effects, so that for the same density
of scatterers, in the presence of extinction the backscattering strength from the lower
layer will be weaker than from the upper layer (ρ(z1) ≤ ρ(z2) for z1 < z2). The other
implies that z has to be regarded not as the true height coordinate of the scatterer, but
the apparent height, relating the range delay to a straight ray without reflections at the
ground. This concept is visualized in Fig. 5.17, showing the true wave paths (in black)
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(a) Surface scattering (b) Volume scattering

(c) Double–bounce scattering (d) Triple–bounce scattering

Figure 5.17: Zeroth and first–order scattering components as seen by the radar in the
repeat–pass acquisition (or in the alternate transmit mode of single pass acquisition) .
The wave propagation paths are represented in black arrows. The effective paths, i.e. the
assumed paths based on the range delay, are represented in red. The ẑ–axis is marked
red for the height range of integration for the given scattering components. Two range
resolution cells are denoted.

and the effective paths (in red) for the different component types. The apparent effec-
tive range of heights, as it will be visible to a repeat–pass interferometer, is denoted in
red along the ẑ–axis. As it can be seen, for the surface and volume components the
apparent heights correspond to the true scatterer heights, whereas for the double–bounce
and the triple–bounce components the apparent heights are located either at the ground
level or underneath, due to the specular reflections at the ground. The effective relative
backscattering strength functions depend on height and are given by

ρs(z) =

{
1 z = z0

0 else
ρv(z) =


e

2σ
cos θ0

(z0+hv−z)

z0+hvR
z0

e
2σ

cos θ0
(z0+hv−z′)

dz′
z ∈ [z0, z0 + hv]

0 else

(5.84)

ρd(z) =

{
1 z = z0

0 else
ρt(z) =


e

2σ
cos θ0

(z0−z)

z0R
z0−hv

e
2σ

cos θ0
(z0−z′)dz′

z ∈ [z0 − hv, z0]

0 else

(5.85)

where the Foldy–Lax approximation for the effective medium has been applied to include
the height dependence on the extinction. Inserting ρi(z) into the volumetric coherence
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function, one obtains the following decorrelation sources

γs = ρs(z)eikz(z−z0) = 1 (5.86)

γv =
∫ z0+hv

z0

ρv(z)eikz(z−z0)dz =
∫ hv

0
f0( z

cos θ0
)eikzzdz, where f0(s) =

e2σs∫
e2σs′ds′

(5.87)

γd = 1 (5.88)

γt =
∫ z0

z0−hv
ρt(z)eikz(z−z0)dz =

∫ hv

0
f∗0 ( z

cos θ0
)e−ikzzdz (5.89)

where in the volume and the triple–bounce coherence terms, the spatial scatterer distribu-
tion function (height dependent) ρi(z) has been replaced by the travel distance dependent
function f0(s) from (5.60). f∗0 (s) is the complex conjugate of f0(s). For completeness, all
these coherence terms need to be multiplied with the eiφ0 which represents the baseline
dependent ground reference phase.
Note that, if the range resolution is much smaller than the height of the volume, the first
order scattering contributions from the same scatterers will fall into different resolution
cells. This is for example the case for L–band remote sensing of forests, or S, C, and
X–bands for agricultural vegetation.

Single–Pass Single–Transmit Mode

In the single–transmit mode the acquisition geometry is different causing modified volume
coherence values. At first, sending at one antenna and receiving at another is already
a bistatic configuration. However, the difference in positions of the two antennas in
comparison to the range distance is quite small for the considered applications, so that
this aspect has no effects on backscattering coefficients and polarimetry of the response,
except of the phase. Second, the interferometric phase difference is effectively halved (but
not always, since it can only be assumed for direct scattering contributions) because the
two–way range difference is only half of the two–way range difference of a repeat–pass
acquisition mode. Thus, the vertical wavenumber kz needs to be computed accordingly
(compare with kz in repeat pass mode in equation (3.41)):

Single–transmit mode: kz = k0
B⊥

R0 sin θ0
(5.90)

In particular, it has been pointed out by Treuhaft and Siqueira [154], that the vertical
wavenumber for the double–bounce contribution needs to be computed in rectangular co-
ordinates. This results in the following term for the double–bounce coherence (combining
the two propagation paths):

γd =
1

2hv

[∫ hv

0
ei sin

2(θ0)kzzdz +
∫ hv

0
e−i sin

2(θ0)kzzdz

]
= sinc(sin2(θ0)kzhv) (5.91)

and is independent of the extinction since the scattering center is still located at the
ground. The term sin2(θ0)kz represents the vertical wavenumber with respect to the
rectangular coordinate system, contrary to the cylindrical coordinate system, as required
for the double bounce phase difference computation [154].
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In summary, the volume coherence terms for the single–transmit acquisition mode are
given by

γs = ρs(z)eikz(z−z0) = 1 (5.92)

γv =
∫ hv

0
f0( z

cos θ0
)eikzzdz (5.93)

γd = sinc(sin2(θ0)kzhv) (5.94)

γt =
∫ hv

0
f∗0 ( z

cos θ0
)e−ikzzdz (5.95)

5.4.2 Polarization Dependent Attenuation and Refractivity

Oriented volume with extinction or refractivity differences will have different effective
densities of the same volume at different polarizations. The interferometric surface and
double–bounce coherences are hardly affected by extinction magnitude and difference
because the propagation path distance in the vegetation is the same and the phase center
is always located at the ground level independent of the extinction. Only the phase can
slightly vary given perceptible difference in indices of refractivity, which might also cause
a minor degradation of coherence magnitude. On the contrary, the volume scattering and
the triple–scattering coherence terms become polarization dependent and require further
modifications for accurate modeling and estimation.
The polarization dependent volume coherence can be obtained as a linear combination of
the coherences corresponding to the eigenpolarizations:

γv(ω) = ca(ω)γva + cb(ω)γvb + cc(ω)γvc, ∀ω : cva(ω) + cvb(ω) + cvc(ω) = 1 (5.96)

where γva, γvb, γvc represent the volume scattering coherences with the adjusted effective
density functions fa, fb, fc, instead of f0 for the random volume case (see equation 5.60).
The indices a, b indicate the co–polarized eigenpolarizations, while c indicates the cross–
polarized eigenpolarization. The triple–bounce coherence is modified in the same way:

γt(ω) = ca(ω)γta + cb(ω)γtb + cc(ω)γtc (5.97)

One can obtain the expressions for ca/b/c(ω) in terms of eigenvalues and eigenvectors of
Cv. These eigenvectors can be obtained after eigendecomposition of the direct volume
covariance matrix:

Cva = λa
vav

†
a

v†ava
, Cvb = λb

vbv
†
b

v†bvb
, Cvc = λc

vcv
†
c

v†cvc
, with Cva + Cvb + Cvc = Cv (5.98)

λa/b =
1
2

[
v11 + v33 ±

√
4|v13|2 + (v11 − v33)2

]
, (5.99)

va/b = [v11 − v33 ±
√

4|v13|2 + (v11 − v33)2, 0, 1]T (5.100)

λc = v22, vc = [0, 1, 0]T (5.101)

where the vij are the elements of the volume covariance matrix Cv.
Since the eigenpolarizations of the ground and the volume are assumed to be collinear,
one can use for the eigendecomposition also the whole polarimetric covariance matrix C.
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Figure 5.18: Schematic representations of the coherence plane with the locations of the
dominant coherence centers for the single transmit mode (left) and the alternate transmit
mode (right).

Figure 5.19: Schematic representation of the variance of the coherence components in the
single–transmit mode with coherence magnitude, phase, and incidence angle.

5.4.3 Combining the Coherence Contributions

Interferometry provides additional means (with respect to polarimetry) to separate the dif-
ferent scattering contributions, increasing the number of observables and their sensitivity
to vegetation parameters. However, the degree of separability depends on the acquisition
system geometry, and needs careful performance analysis and a selective choice of the
baseline.
Fig. 5.18 shows an example of the coherence components in the complex coherence plane,
together with an example of the coherence set region, representing the linear combina-
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(a) αB = 45◦ (b) αB = 0◦

Figure 5.20: Random volume and double bounce coherence magnitudes (single transmit
mode) in dependence of vegetation height and incidence angles. Vegetation extinction
σ = 0dB, wavelength λ = 23cm, platform attitude H = 3.5km, baseline B = 20m. The
vertical wavenumber is modified with the change of the incidence angle. Left: baseline
inclination angle αB = 45◦, right: αB = 0◦. Note the hv range change between the two
images.

tions of coherences for different polarizations. For several vegetation scenarios the single–
transmit mode is of special importance, since it is able to separate all major scattering
contributions, either by the interferometric phase, or by the degree of coherence, or both.
That is, the volume and the triple–bounce contributions have the same degree of coherence
but different phases, whereas the surface scattering and the double–bounce contributions
have the same phase but different coherence magnitudes. In general it can be assumed
that for vegetation the first three components will be the dominant ones. Designing the
system geometry parameters in a way that the ground and the double–bounce coherences
are maximally separated allows to separate these three major components and to esti-
mate the vegetation and surface parameters. The triple–bounce component, although not
strong, can still be of influence as seen in Fig. 5.18. For example in the repeat–pass
mode, in absence of γt all coherences would lie on a line between the ground and the
volume coherence as assumed in the RVoG model, but in presence of the triple–bounce
contribution the line structure gets distorted.
Comparing the double–bounce coherence magnitudes to volume coherence magnitude for
the zero extinction case (see Fig. 5.19), one can see that the coherence degrees are equal
in case the incidence angle is equal to 45◦(sin2(θi) = 1/2). For incidence angles < 45◦,
the pure volume decorrelates more than the double–bounce term, for incidence angle
> 45◦, the double bounce term is more decorrelated. With increasing extinction, the
pure volume term tends to be less decorrelated, while the double–bounce coherence is
independent of the extinction. The maximum DB decorrelation is given at an incidence
angle of 45◦, which provides the optimal separation between the double–bounce and the
ground coherence. With the change of incidence angle the perpendicular baseline also
changes and with it the vertical wavenumber. This can cause significant variance of
volume coherence over one image for the same vegetation height. However, as shown
exemplary in Fig. 5.20, which compares the degree of double–bounce coherence with
volume coherence as a function of the vegetation height and the incidence angle (keeping
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the perpendicular baseline constant), the double–bounce coherence is much less sensitive
to incidence angle change as the volume coherence.
The combination of single–transmit and alternate–transmit modes could be of special
interest. It would provide the advantages of both modes, enabling a more accurate sepa-
ration of the main scattering contributions.

5.5 Conclusions

In this chapter we derived the expressions for polarimetric and interferometric components
and presented a new polarimetric model which takes into account orientation effects in-
side of the volume and extends with it the Freeman II model. Providing simple volume
coherence expressions as derived by Treuhaft and Siqueira we have identified the po-
tential of a single–pass hybrid mode PolInSAR system to improve the separation of the
surface scattering from the double–bounce scattering, which would enable us to improve
the accuracy of soil moisture and surface roughness estimation. The modeled vegetation
parameters include the effective particle scattering anisotropy, the vegetation orientation,
the degree of orientation randomness, the vegetation height, extinction, refractivity, and
the ground topography. This model has been kept as simple as possible but still contains
the most import geophysical parameters needed to describe the vegetation layers in order
to be invertible. This model is not restricted to the vegetation (agriculture and forests),
and can be applied to a number of various geophysical random volumetric media (if the
distorted Born approximation is valid), such as snow, ice and dry soil, in dependence
of the frequency. If the volume component significantly dominates over the others, then
several characteristic parameters could be directly extracted from the polarimetric co-
herency matrix. These parameters are of importance for identification, characterization
and classification of the vegetation and random volumes.
In the following chapter, the presented model is used for vegetation parameter retrieval.



Chapter 6

Vegetation Parameter Retrieval

In the previous chapter, a model for polarimetric interferometric vegetation scattering
components has been presented. It is related to the forward problem (or direct model)
which aims to model electromagnetic data from geophysical parameters, in contrast to
the inverse problem which aims to estimate model parameters from data observables.
The inverse problem theory is an interdisciplinary research field with strong roots in
mathematics, geophysics, remote sensing, medical imaging and many others [139,138,144].
The general principle is outlined in Fig. 6.1. There, G, representing the forward problem,
is an abstract operator which aims to predict a set of data observables d = {...} on the
basis of a set of model parameters m = {...}. The inverse problem is represented by the
operator G−1 which estimates the model parameters on the basis of data observables.
In this chapter, the inverse problem for vegetation parameter retrieval is discussed. The
model that has been developed in the last chapter is used to estimate some physical
parameters based on the observed data. The vegetation parameter retrieval problem
is analyzed and four acquisition mode scenarios and two vegetation type scenarios are
determined for further evaluation. Experimental results are presented using three data
sources: simulations based on the presented forward model perturbed by Gaussian noise,
PolInSAR imagery simulations of forest stands by the PolSARPro simulator, and real
SAR data at L–band. As the results indicate, several modeled vegetation parameters can
be reliably retrieved from the data.

Figure 6.1: General framework of a forward and an inverse problem.

117
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Figure 6.2: Parameter estimation problem.

6.1 Parameter Retrieval Goals

Fig. 6.2 outlines the general parameter inversion problem. In abstract terms, data acqui-
sition and processing combine searched (modeled) and hidden parameters with the noise
to deliver the observables. Based on forward modeling and additional a–priori information
the searched parameters are estimated.
The model aims to relate some fundamentally important vegetation parameters to the
observables. It is not intended and cannot represent exactly the true scattering process
which is usually too complex. Approximations have to be taken into account, and the
modeling process can be considered as a low–pass filter of the information, accounting
for the most influential parameters and neglecting small and rapidly varying parameters.
The quality of parameter estimation is mainly driven by the accuracy, relevance and
representativity of the forward model.
This section examines the dimensionality, i.e. the number of degrees of freedom, of the
forward and the inverse problems for different PolInSAR data acquisition modes and for
two different types of vegetation, forests and agricultural fields.

Data Dimensionality

In the previous chapter, a general model has been developed for direct ground and all
first–order scattering contributions from a volume layer above the ground. While a general
model consisting of all contributions can be set up, it is not very promising due to the
profusion of variables, related to the different physical processes involved. It is more
auspicious to adjust the model to the vegetation type under consideration. For instance,
due to its low associated intensity, the triple–bounce contribution is often neglected. The
double–bounce contribution, on the other hand, is very strong for straight vertical trunks,
but may be neglected for the canopy layer, especially in strongly attenuating vegetation.
As discussed in section 4.3, under reciprocity, reflection symmetry and polarimetric sta-
tionarity conditions generally assumed for distributed media, the covariance matrix has
the following form:

C6 =
[
C Q
Q† C

]
, C =

 A 0 D + iE
0 B 0

D − iE 0 C

 , Q =

F + iG 0 L+ iM
0 H + iI 0

N + iO 0 J + iK


(6.1)
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and can be parameterized using 15 real–valued coefficients(1). A,B,C,D,E are the polari-
metric parameters, where only four of them determine the polarization state, and one
represents the total power. F , G, H, I, J , K, L, M , N , O are the interferometric
parameters obtained through polarization diversity. Therefore, the set of independent
observables for a single–baseline PolInSAR covariance matrix under reciprocity, reflection
symmetry and polarimetric stationarity consist in the general case of 1 for the total power,
4 describing the normalized polarimetric information, and 10 for the response related to
interferometry. The same considerations apply to both, single–transmit and alternate
transmit acquisition modes. Under the same assumptions, a multi–baseline dataset with
nB distinctive baselines will have 10nB distinctive data observables for polarimetric in-
terferometry in addition to the polarimetric parameters. In terms of Fig. 6.1, the set of
all these data observables is represented by d.
Four characteristic acquisition mode scenarios are examined:

1. AT: Single–baseline alternate–transmit (ping–pong) mode (in single–pass or repeat–
pass): 15 observables.

2. ST: Single–baseline single–transmit (standard) mode (single–pass): 15 observables.

3. HY: Dual–baseline alternate–transmit simultaneous–receive (hybrid) mode (single–
pass): 25 observables.

4. MB: Multi–baseline mode in repeat–pass. The number of distinctive baselines nB is
between n− 1 and 1

2n(n− 1) for n acquisition tracks, where the limits are given for
all tracks being completely regularly or completely irregularly spaced, respectively.
The resulting dimensionality is 5+10nB observables for nB distinctive baselines.

In addition, one can consider multiple baselines in the single–transmit mode, as it is a
possible configuration for instance in the cart–wheel satellite scenario. The dual–baseline
hybrid mode can also be extended to a repeat–pass multi–baseline configuration.

Model Dimensionality

The complete characterization of a single volume layer over the ground in reflection sym-
metric form, according to the forward model presented in the last chapter, consists of 21
real valued parameters:

m = {τ,Re δ, Im δ,Re δ′, Im δ′, σ,∆σ,∆χ, hv, rh, z0,
Reβ, Imβ, βvv, βhv,Re η, Im η, fs, fv, fd, ft}

For completeness, the individual backscattering power components can be computed by

Ps = trace(fsCs), Pv = trace(fvCv), Pd = trace(fdCd), Pt = trace(ftCt) (6.2)

Pg = trace(fgCg) = Ps + Pd

In order to reduce the dimensionality of the model, further assumptions can be made:

(1)One degree of freedom has to be additionally accounted for the rotation of the polarization basis into
the reflection symmetric form.
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• The triple–bounce component (ft) may be neglected: for vegetated areas it is usually
negligibly small and becomes more important for man–made structures.

• Difference in refractivity (∆χ) may be neglected: whether the difference in refrac-
tivity is of importance for vegetation parameter estimation and whether it can be
retrieved from PolInSAR data has to be examined.

• The surface scattering coefficients may be simplified (Reβ, Imβ, βvv, βhv → Reβ,
Imβ → Re εr): if appropriate, using a first–order SPM approximation for rela-
tively flat surfaces can reduce the number of surface parameters to 2. Further on,
in [154] it has been pointed out that an approximate linear relationship for soils
(Im εr ≈ 0.15 Re εr) might be used, so that the permittivity and the whole surface
scattering contribution can be effectively described by a single real–valued parame-
ter. However, the validity constraints for SPM are almost never met for the surface
scattering under forests and agriculture (except perhaps over rice fields or wetlands
which are flooded with water), and its usage would introduce erroneous estimates.

• The double–bounce component might be simplified (Re δ′, Im δ′, Re η, Im η → Reα,
Imα): The double–bounce component can be modeled by a first–order solution (as
e.g. in the Freeman–Durden model) using only the complex parameter α.

• Combination of surface and double–bounce component in the alternate–transmit
mode (β, α→ β′, β, βhv, βvv, η, δ′ → β′, β′hv, β

′
vv): In the alternate–transmit mode,

the interferometric coherences are not distinguishable for surface and double bounce
scattering components. This enables us to combine these two components and to
further reduce the modeled degrees of freedom.

• Extinction difference (∆σ) might be neglected in some cases; for instance, in media
with a high degree of orientation randomness or where the overall extinction is
already very low. This condition may apply to many forests at L–band.

These have been general considerations about the number of observables and the degree
of freedom of the model. In dependence of the acquisition geometry and the vegetation
scenario, the model has to be adapted to the observations. However, there is no one–to–one
correspondence between the degrees of freedom of the observables and the model. Some
modeled parameters are ambiguous to a certain extent leading to the same observables,
and some observables (especially in the MB–case) might be redundant.

6.2 Vegetation Models

The main characteristics of two considered vegetation types are given below. These models
represent basic examples and more complex structured media models can be constructed.

Forest Scenario

The forest is modeled by two layers over the ground (Fig. 6.3.a). The canopy consists of
partly oriented branches which are often more horizontally oriented for coniferous trees
and more vertically aligned for deciduous trees. This statement is of course very coarse
and cannot be applied to all tree species. The trunk layer might overlap with the canopy



6.2 Vegetation Models 121

(a) Forest model. (b) Agriculture model.

Figure 6.3: Simplified forest and agricultural field vertical structures.

layer. The canopy layer is assumed to be responsible only for the volume contribution,
whereas the trunk layer is responsible only for the double–bounce contribution.
The ground is characterized by the topography height z0 and the backscattering param-
eters β, βvv, βhv. The trunk layer is assumed to be strictly aligned (τ = 0), with a given
height of hd and specular bistatic scattering anisotropy δ′. The canopy layer is character-
ized by the particle scattering anisotropy δ, the degree of orientation randomness τ , the
extinction σ, the bottom height of the layer zv0 (not necessary equal to z0 +hd), the total
vegetation height hv, and the canopy–fill–factor ratio rh ∈ [0, 1], which can be expressed
as

rh =
hv − (zv0 − z0)

hv
(6.3)

The general forward model G(m) can be represented by the models of the polarimetric
covariance matrix C, the cross–correlation matrix Q and the coherences γ. For the single–
transmit mode the forward model is given by

GST(m) :



C = fsCs(β, βvv, βhv) + fvCv(δ, τ) + fdCd(δ′, η, τ)
Q = fsCs(β, βvv, βhv)γs(φ0s) + fvCv(δ, τ)γv(φ0s, hv, rh, σ)

+fdCd(δ′, η, τ)γd(φ0s, hd)
γ(ω) = cs(ω;β, βvv, βhv, fs)γs(φ0s) + cv(ω; δ, τ, fv)γv(φ0s, hv, rh, σ)

+cd(ω; δ′, η, τ, fd)γd(φ0s, hd)

(6.4)

For the alternate–transmit mode, the surface scattering and the double–bounce scattering
components are combined which leads to

GAT(m) :


C = fgCg(β′, β′vv, β

′
hv) + fvCv(δ, τ)

Q = fgCg(β′, β′vv, β
′
hv)γg(φ0a) + fvCv(δ, τ)γv(φ0a, hv, rh, σ)

γ(ω) = cg(ω;β′, β′vv, β
′
hv, fg)γg(φ0a) + cv(ω; δ, τ, fv)γv(φ0a, hv, rh, σ)

(6.5)

The hybrid alternate–transmit simultaneous–receive mode contains both GST and GAT :

GHY(m) =

{
GST(m)

GAT(m)

(6.6)
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Agricultural Vegetation Scenario

The agricultural field model (Fig. 6.3.b) is characterized by a single layer of relatively
oriented particles. The double–bounce contribution can be significant, as well as the
surface and the volume contributions. The radar frequency is expected to be S– or C–
band. The canopy fill factor is 1, i.e. the volume layer extends till the ground. The
orientation effects can be significant in dependence of the crop type, with preference in
the vertical direction, most pronounced in far range and less in near range. For agricultural
fields flooded with water one might be able to use the SPM model for the surface scattering
component.
The forward models can again be represented using the G operator:

GST(m) :



C = fsCs(β, βvv, βhv) + fvCv(δ, τ) + fdCd(δ′, η, τ)
Q = fsCs(β, βvv, βhv)γs(φ0s) + fvCv(δ, τ)γv(φ0s, hv, rh, σ)

+fdCd(δ′, η, τ)γd(φ0s, hd)
γ(ω) = cs(ω;β, βvv, βhv, fs)γs(φ0s) + cv(ω; δ, τ, fv)γv(φ0s, hv, rh, σ)

+cd(ω; δ′, η, τ, fd)γd(φ0s, hd)

(6.7)

GAT(m) :


C = fgCg(β′, β′vv, β

′
hv) + fvCv(δ, τ)

Q = fgCg(β′, β′vv, β
′
hv)γg(φ0a) + fvCv(δ, τ)γv(φ0a, hv, rh, σ)

γ(ω) = cg(ω;β′, β′vv, β
′
hv, fg)γg(φ0a) + cv(ω; δ, τ, fv)γv(φ0a, hv, rh, σ)

(6.8)

6.3 Parameter Inversion Framework

Due to the higher complexity and non–linear effects, a linear method, like for instance
presented in [46,23,169] cannot be applied in the given inverse problem. An iterative non–
linear parameter estimation method is required. The goal is to estimate model parameters
m which minimize the distance between the data observables d and the predicted observ-
ables based on the forward model G(m). Therefore, the inverse problem operator G−1

(d)
can be represented by

G−1
(d) : minimize

m
‖d−G(m)‖ (6.9)

which closes the circle in Fig. 6.1.
We use the Nelder–Mead simplex method [114] for the minimization/optimization task,
which does not guarantee the optimal solution, but which, even with repeated trials, is
computationally effective. The usage of a more sophisticated optimization method, like
simulated annealing or genetic algorithms, would provide better results but the compu-
tation cost will be enormous in this case. The implementation includes hard and soft
constraints: hard for physically possible solutions, and soft for initial regions.
The optimization function ‖·‖ is chosen to be the L2 vector norm (root mean square error)
of a set of covariance matrix and scalar coherence elements.
Simulated and real SAR data have been used to evaluate and validate the presented model
and the parameter retrieval technique. Two types of simulated data were generated. In
a first series of experiments, the validity of the parameter inversion method is examined.
Assuming the best case scenario, data has been simulated by the Monte Carlo method
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true ST AT HY SUM
δ 2/3 0.7 (0.1) 0.66 (0.05) 0.67 (0.07) 0.68 (0.05)
τ 0.9 0.9 (0.08) 0.88 (0.09) 0.9 (0.08) 0.89 (0.07)
ψ̃ H H H H H

hd [m] 14 10.52 (6.66) - 11.45 (7.01)
rh 2/3 0.67 (0.08) 0.66 (0.036) 0.66 (0.04) 0.66 (0.04)

hv [m] 18 18.2 (0.77) 17.92 (0.46) 17.9 (0.42) 18 (0.4)
RMSE(hv) [m] 0.79 0.47 0.43 0.58
σ [dB/m] 0.1 0.1 0.1 0.1 0.1
Pv/Ptotal 0.48 0.48 0.49 0.48 0.48

Table 6.1: Parameter estimation performance for the trees scenario, using a–priori extinc-
tion coefficients.

according to the presented forward models for forest and for agricultural vegetation, and
parameter inversion has been carried out.
In the second series of experiments, electromagnetic simulations of the SAR imagery of
tree and forest structures have been generated with the PolSARPro simulator [166]. In
this case, data can be simulated only for the forest model in the alternate–transmit mode,
but for two different tree species: pine trees, and deciduous trees. The goal of this second
series of tests is to evaluate in a controlled manner, either the presented model is able
to capture the structure of complex trees and either it is possible to invert parameters
related to tree morphology. Parameter inversion performance tests have been carried out
with respect to the different forest types, the number of looks, the incidence angle, and
the baseline length.
The real data set consists of a multi–baseline multi–temporal air–borne acquisition at
L–band over the Traunstein test site. Because it is a repeat–pass acquisition, a parameter
retrieval method has been developed which is robust against temporal decorrelation, as
will be presented in section 6.6.1.

6.4 Parameter Retrieval from Forward Model Simulations

The first scenario consists of a distribution of idealized trees corresponding to the model
1 in Fig. 6.3, with a layer of vertical trunks extending from z0 to z0 + hd, and a canopy
layer with depth rhhv and minimum height zv0. The total vegetation height is, therefore,
hv. The vegetation is characterized by a very wide distribution of orientation angles, with
a slight preference for the horizontal direction.
This scenario is realized at L–band, assuming a strong volume component from the canopy,
a strong double–bounce component from the trunks, and a medium strength surface scat-
tering component.
The second scenario represents agricultural crops (maize) corresponding to the configu-
ration depicted in model 2 in Fig. 6.3, with a single layer of strongly vertically oriented
stems. The degree or orientation randomness is low. This model is realized at C–band,
with the crops layer having similarly strong volume and double–bounce contributions as
the surface scattering.
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true ST AT HY SUM
δ 2/3 0.68 (0.09) 0.67 (0.04) 0.68 (0.5) 0.68 (0.05)
τ 0.9 0.89 (0.08) 0.9 (0.08) 0.9 (0.08) 0.9 (0.06)
ψ̃ H H H H H

hd [m] 14 10.43 (6.45) - 9.19 (7.39) -
rh 2/3 0.65 (0.06) 0.67 (0.04) 0.69 (0.05) 0.67 (0.03)

hv [m] 18 18.15 (0.86) 18.05 (0.58) 18.08 (0.83) 18.10 (0.57)
RMSE(hv) [m] 0.85 0.57 0.82 0.76
σ [dB/m] 0.1 0.07 (0.1) 0.09 (0.07) 0.12 (0.13) 0.09 (0.06)
Pv/Ptotal 0.5 0.48 0.49 0.49

Table 6.2: Parameter estimation performance for the trees scenario.

For simplicity, the surface and double–bounce responses are realized using only first–order
approximation terms β and α, and the imaginary parts of β, α, δ have been neglected.
Monte Carlo simulations were conducted using the Cholesky decomposition to generate
correlated data samples according to the model. For final experiments, covariance matrices
with 100 looks were used.
Tables 6.1–6.4 show the parameter retrieval performance for the vegetation parameters.
Two tables (6.1 and 6.3) depict the results using a–priori knowledge about the extinction
coefficient, whereas the other tables (6.2 and 6.4) show results with no a–priori knowledge.
For both cases, the performance for the single–transmit (ST), alternate–transmit (AT),
hybrid (HY), and the combination of all three modes (SUM). The last mode assumes data
acquisition in HY mode, but the parameter retrieval is carried out for all three modes
independently and are averaged afterwards. Per mode, 100 parameter inversion trials
have been conducted on independently simulated samples, in order to show the average
of the estimated parameters and their standard deviation (SDEV) in the parentheses.
From top to bottom, the tables represent the true and the estimated values for canopy par-
ticles anisotropy δ, degree of orientation randomness τ , preferred orientation (horizontal
H or vertical V ), trunk layer height hd (where applicable), canopy–fill-factor rh (where
applicable), vegetation height hv, root mean square vegetation height estimation error
RMSE(hv), extinction coefficient σ, and the normalized volume backscattering power.
The main orientation direction ψ̃ is estimated from the particle scattering anisotropy δ,
with ψ̃ = H for δ > 0, and ψ̃ = V for δ < 0. Further parameters related to the surface
and the double–bounce scattering are estimated but are not presented here because of the
emphasis on vegetation parameters.
In all cases the polarimetric vegetation characteristics (degree of randomness, particle
scattering anisotropy, preferred orientation, volume backscattering power) could be reli-
ably estimated.
The total vegetation height hv could also be accurately estimated in all acquisition modes
independently of the estimation of the extinction and the trunk layer height.
For the forest scenario, the canopy–fill–factor rh was reliably estimated, too.
The estimation of the extinction coefficients was noisy, with high standard deviation. As
of now, the problem of extinction estimation is insufficiently solved and needs further
analysis.
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true ST AT HY SUM
δ -0.5 -0.5 (0.07) -0.5 (0.02) -0.5 (0.05) -0.5 (0.04)
τ 0.25 0.25 (0.05) 0.24 (0.04) 0.25 (0.06) 0.25 (0.03)
ψ̃ V V V V V

hv [m] 2 2.02 (0.08) 2.05 (0.33) 2.01 (0.10) 2.03 (0.13)
RMSE(hv) [m] 0.08 0.33 0.10 0.21
σ [dB/m] 0.3 0.3 0.3 0.3 0.3
Pv/Ptotal 0.35 0.34 0.34 0.34

Table 6.3: Parameter estimation performance for the crops scenario, using a–priori ex-
tinction coefficients.

true ST AT HY SUM
δ -0.5 -0.51 (0.08) -0.49 (0.1) -0.5 (0.05) -0.5 (0.05)
τ 0.25 0.26 (0.04) 0.26 (0.04) 0.28 (0.06) 0.26 (0.04)
ψ̃ V V V V V

hv [m] 2 2.03 (0.08) 1.94 (0.14) 2.01 (0.11) 1.99 (0.07)
RMSE(hv) [m] 0.09 0.15 0.11 0.12
σ [dB/m] 0.3 0.24 (0.11) 0.18 (0.11) 0.38 (0.25) 0.27 (0.12)
Pv/Ptotal 0.35 0.34 0.34 0.34

Table 6.4: Parameter estimation performance for the crops scenario.

Figure 6.4: Structure of simulated coniferuous trees.

The depth of the trunk layer has also been estimated with high standard deviation, but
approaching the correct values with an underestimation of 2 to 5 meters.

6.5 Parameter Retrieval from Structural Forest Simulations

For the next experiments, forest stand simulations have been used [166]. The surface and
the trees structure and scattering properties are based on observed distributions of real
trees. Every tree has an individual structure consisting of a trunk, and several levels of
branches. The simulation of wave propagation and scattering is based on the discrete
scatterer approach with the Foldy–Lax approximation.
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Figure 6.5: Structure of simulated deciduous trees.

Pine Forest Simulations

The pine trees are characterized by very straight stems with branches usually radiating
perpendicular from the stem (compare Fig. 6.4). The simulated forest stand with pine
trees has a relatively smooth ground with medium soil moisture. The forest stand is dense
with about 300 trees per hectare. The total height of the forest is about 18 meters, and
the interferometric ground phase is at about 0 degree.
The deciduous trees have a much larger canopy volume per tree and therefore a rela-
tively sparse forest stand is generated with only 30 trees per hectare. This results in
non–homogeneous spatial distribution of trees with many gaps between the trees with
unattenuated surface scattering and many layover and shadow effects. The stems of the
deciduous trees are often slightly tilted and the angles of the branches are more varying
(compare Fig. 6.5).
To estimate the main vegetation parameters, the presented forest model in the alternate–
transmit mode is used. The parameter inversion process consists in optimizing the error
function and estimating the physical parameters δ, τ, z0, zv0, hv, σ, fv, fg, β, βvv, and βhv.
Since in the presence of noise the vertical structure parameters zv0, hv, σ cannot be de-
termined ambiguity–free from single–baseline data, a constraint has been introduced to
reduce the variance: the canopy layer depth is set to 2

3 of the total vegetation height.
This constraint restricts the beginning of the canopy layer above the ground to the given
height. The final PolInSAR coherence model for this scenario can be given by

γ(ω) = cg(ω;β,βvv ,βhv ,fg)γg(z0) + cv(ω;δ,τ,fv)γv(z0,hv ,σ) (6.10)

Fig. 6.6 presents the parameter inversion performance for the pine forest stand over the
effective number of looks L. The acquisition is done in L–band. One look corresponds
to one sample pixel, which has a slant range resolution of about 1 meter and an azimuth
resolution of 1.5 meters. The incidence angle is 45 degrees and the height of the aperture
is 3km above the ground. The height sensitivity is given by the vertical wavenumber
which is about 0.16. This corresponds to 2π height ambiguity of about 40 meters. In
the experiments, for any given L, 100 independent samples have been generated and the
graphs show the mean value and the standard deviation of the estimated parameters.
The results indicate that in average the canopy particles can be described as prolonged
ellipsoids (|δ| ≈ 0.7), the orientation randomness is high (τ ≈ 0.75), the preferred ori-
entation direction is horizontal (Re δ > 0), extinction is around 0.02dB/m, the total
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Figure 6.6: Parameter estimation for the pine forest scenario. The experiments consisted
in parameter inversion for different number of looks L. For every L, 100 samples have
been generated.

vegetation height is around 18 meters, the ground phase is around 0 radians, and the
canopy backscattering power is about 0.35 of the total power.

Deciduous Trees Forest Simulations

Fig. 6.7 shows in comparison the parameter inversion results for another type of forest
structure, the deciduous trees. Due to the less homogeneous structure, the variance of
estimated parameters increases. In the limit of large number of looks, the particle scatter-
ing anisotropy tends towards -0.8 indicating in average more thinner particles than in the
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Figure 6.7: Parameter estimation for the deciduous forest scenario. The experiments
consisted in parameter inversion for different number of looks L. For every L, 100 samples
have been generated.

pine forest, and a preference for slightly vertical direction. The orientation randomness is
with 0.85 also a bit higher. The tree height is estimated to be around 18 meters and the
ground phase around 0 radians. Extinction is higher for the deciduous trees, too, as well
as the normalized volume power. This can be explained with the stronger double–bounce
component in case of the pine forest stand. Since the stems of the deciduous trees are
less straight, they contribute less locally focused double bounce scattering. Also, a single
deciduous tree has in general a much richer canopy with many more branches than the
pine trees.
It can be observed that most parameters are biased with reference to the number of looks.



6.5 Parameter Retrieval from Structural Forest Simulations 129

Figure 6.8: Residual errors for the pine (left) and deciduous (right) forest scenarios.

The estimation of the degree of orientation randomness requires an adequate number of
looks. The particle scattering anisotropy is very unstable for the deciduous trees scenario
due to a spatially highly non–homogeneous stand. In general, with low number of looks
the results exhibit strong variance, and only with 400 or better 1600 looks does one obtains
relatively stable estimates. Therefore, the following tests are carried out with 1600 looks.
Fig. 6.8 shows in addition the residual errors and their variances for the different number
of looks for both forest stands. As it can be seen, in the limit of a large number of looks
the residual errors approach very low values. This probably indicates that the model is
able to represent the structure of the forest.

Multiple Incidence Angles Simulations

Fig. 6.9 presents the results of parameter inversion for different incidence angles (30, 45, 60
degrees) while keeping all other parameters constant, including the vertical wavenumber.
As the results show, the variance of estimated parameters and the residual error are
improved for steeper incidence angles. The degree of orientation randomness gets higher
with steeper incidence angles, as expected for volumes with preferred horizontal particles.
At nadir incidence, the orientation randomness should be equal to 1. The estimation
of extinction and vegetation height is constant, with a slight improvement of variance
with steeper incidence angles. The ground phase is overestimated in the near range. The
relative volume contribution to the power decreases with larger incidence angles. This can
to some extent be explained with the orientation of the scatterers. The backscattering
for more horizontally aligned scatterers is stronger for steeper incidence angles, while for
more vertically aligned scatterers the backscattering would be stronger at larger incidence
angles.

Multiple Baselines Simulations

Fig. 6.10 presents the results of parameter inversion for different baselines. The 2π height
ambiguities are 30, 40 and 50 meters, which correspond to vertical wavenumbers of π

25 , π
20

and π
15 , and perpendicular baselines of 16.3, 12.2 and 9.78 meters, respectively. In general,

the estimated parameters keep constant over the different baselines. To point out is the
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Figure 6.9: Parameter estimation for different incidence angles. Number of looks: 1600;
100 samples per incidence angle.
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variance of the vegetation height estimation, which improves for larger baselines. This is
as expected since with larger baselines one obtains higher height sensitivity.

Discussion

As these results indicate, the polarimetric interferometric model based parameter inversion
performed better over the pine trees, probably because of the more structured and oriented
branches. In particular a strong double bounce at L–band could be obtained even over
partly rough surfaces. This indicates that polarimetric interferometry might be very
powerful over boreal forests. The performance over deciduous trees simulation has led
to worse results because at L–band the response is more depolarized and the volume
scattering power is widely dominant over double–bounce and surface scattering. If the
ground phase could be obtained by other means, e.g. other frequency bands, or LIDAR, or
gaps in the forests, then the structural parameters of the forest could be better estimated.
However, the characterization of the deciduous trees canopy performed very well, as also
for the pine trees.
These experiments have been presented in order to evaluate and demonstrate the pa-
rameter retrieval performance over complex tree structures in a controlled environment.
The obtained results showed that main characteristics of the given forest stands could be
retrieved, and physical interpretations could be provided to all estimated parameters.

6.6 Parameter Retrieval from Repeat–Pass Real SAR Data
over Forests

The application of the developed parameter retrieval techniques for real SAR data is
conducted on a mountainous temperate forested region in the Traunstein test site. This
test site is located near the city Traunstein in the south of Germany. The evaluation
test site is shown in Figs. 6.11 – 6.13, depicting the scene in L–band and X–band SAR
imagery, and in optical imagery, respectively(2). The topography of the forest stands
is relatively flat with only a few steep slopes, as seen in the DEM in Fig. 6.14. The
ground truth data is available for 20 validation stands covering 123 hectares, which are
delimited in Fig. 6.11. These individual stands were delineated in order to achieve high
homogeneity in terms of tree species, height, biomass, and stadium [88]. Quantitative
ground truth information has been generated from the forest inventory in 1998 based on a
100 × 100 meters (1 hectare) grid. It should be noted that the selection of homogeneous
areas is subjective. The provided quantitative parameters, as presented in Table 6.5,
are naturally subject to variance. The growth stadium of the forest stand is related to
the age and the current condition of the trees, classifying the stands into the classes of
Growth, Mature and Regenerating. The forest stands can in general be characterized as
mixed forests. Table 6.5 also presents the dominant tree species as well as up to two other
significant tree kinds. 17 of the 20 stands are dominated by coniferous tree species, and
only 3 stands are dominated by deciduous tree species. The average tree heights of the
evaluation stands range between 12.46 and 36.10 meters with spatial variations inside of
the stands of up to 8.6 meters.

(2)Note that all three images depict the scene at different times and therefore do not necessary image
exactly the same scene. The images are not coregistrated between each other.
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Figure 6.10: Parameter estimation for different baselines. Number of looks: 1600; 100
samples per baseline.
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Figure 6.11: Test site Traunstein: L–band SAR image in Pauli basis with delineated forest
stands (slant range).

Fully polarimetric and interferometric data at L–band have been acquired by the German
Aerospace Center (DLR)’s E–SAR sensor in 2003 in a repeat–pass configuration. The ac-
quisition times and nominal baselines of the four data sets used in this study are presented
in Table 6.6. Further characteristics are shown in Table 6.7.

6.6.1 Multi–baseline Multi–Temporal Parameter Inversion Framework

The repeat–pass acquisition mode induces temporal decorrelation which can have signif-
icant effects on PolInSAR data coherence and parameter retrieval performance. At the
scale of minutes and hours the strongest source of temporal decorrelation over forests is
due to wind [76]. Wind is in general non–stationary neither temporally nor spatially.
The temporal decorrelation can be higher than all other decorrelation sources. This
makes accurate parameter inversion using a single baseline in the repeat–pass configura-
tion practically an impossible task. However, using multiple baselines and assuming that
the temporal decorrelation does not affect the ground makes the parameter inversion pos-
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Figure 6.12: Test site Traunstein: high–resolution X–band SAR image acquired by DLR’s
F–SAR sensor in 2007.

Figure 6.13: Test site Traunstein: optical image.
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Stand Stadium Dom. species Dom. type All species Avg. height ± height
1 G Fi con Fi-Ta-Bu 12.46m ±2.3m
2 G Fi con Fi 13.00m ±0m
3 G Ah dec Ah-Bu-Fi 13.05m ±0m
4 R Fi con Fi-Bu 18.66m ±3.6m
5 G Ta con Fi-Ta-Bu 19.68m ±8.6m
6 G Fi con Fi-Bu-Ei 26.3m ±1.5m
7 G Fi con Fi-Bu-Ei 26.93m ±2.3m
8 G Bu dec Bu-Ah-Es 27.20m ±3.1m
9 G Bu dec Bu-Fi-La 27.32m ±0m
10 M Fi con Fi-Bu-La 27.43m ±2.2m
11 G Fi con Fi-Bu-La 27.62m ±2.2m
12 M Fi con Fi-Bu-Ta 28.43m ±1.6m
13 M Fi con Fi-Bi-Bu 30.13m ±2.7m
14 M Fi con Fi-Bu-Es 32.49m ±1.6m
15 R Fi con Fi-Bu-Ta 33.14m ±2.7m
16 R Fi con Fi-Bu-Ah 34.34m ±1.8m
17 M Fi con Fi-Bu-Ei 34.59m ±2.5m
18 R Fi con Fi-Ta-Ki 34.66m ±1.4m
19 R Fi con Fi-Ta-Bu 35.23m ±1.2m
20 R Fi con Fi-Bu 36.10m ±1.8m

Table 6.5: Main ground truth characteristics of the 20 forest stands. From left to right:
stand number, stadium (G=growth, M=mature, R=regenerating), dominant species
(Fi=north spruce, Ki=Scots pine, Ta=white fir, La=Eur. larch, Bu=Eur. beech,
Es=ash, Ah=maple, Ei=oak, Bi=birch), type of the dominant species (con=coniferous,
dec=deciduous), all significant species, average height, height variation. (Source: [88])

Track Date and time of acquisition Nominal baseline
1 11.11.2003, 09:00 master
2 11.11.2003, 08:50 5 m
3 11.11.2003, 08:40 10 m
4 11.11.2003, 08:01 0 m

Table 6.6: Acquisition times and nominal baselines of the SAR data sets.

sible. In the following, a method for multi–baseline multi–temporal parameter inversion
will be presented.
For real data, the overall repeat–pass PolInSAR coherence model for baseline i can be
represented by

γi(ω) = γsys

(
cg(ω;β,βvv ,βhv ,fg)γg(φ0i

) + cv(ω;δ,τ,fv)γv(φ0i
,hv ,rh,σ;kzi)γtempi

)
(6.11)

where we have explicitly denoted the dependence of some parameters on the vertical
wavenumber kzi. Since the reference ground phase is different for the different base-
lines, we have for every baseline a distinctive φ0i , which replaces the ground topography
height z0. Internally, the PolInSAR coherency matrix is normalized from the beginning,
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Figure 6.14: Digital elevation model (DEM) of the scene. The topography varies from
600 to 650 meters above the sea level, with only a few steep slopes.

Wavelength 23 cm
Polarizations HH, HV, VV, VH
Bandwidth 100 MHz
Altitude (above ground) 3 km
Slant range resolution 1.5 m
Azimuth resolution 95 cm

Table 6.7: Characteristics of the SAR imagery.

and the parameters fg, fv are replaced by a single parameter, the ground–to–volume ra-
tio at HH + V V polarization mV = fv

fv+fg
. The system decorrelation (consisting of

thermal, mis–coregistration, mis–calibration and other decorrelation sources) is assumed
to be baseline–independent, as are the intensity weights cg, cv. The ground is assumed
to be temporally stable, whereas the volume experiences additional baseline–dependent
temporal decorrelation γtempi . This coherence expression resembles the one proposed by
Papathanassiou et al. in 2000 [107]. Note, that we do not require a model for temporal
decorrelation and assume the most general case.
It can be seen that with every baseline we obtain two additional model parameters; the
reference ground phase and the temporal decorrelation. At the same time, one obtains
with every baseline 10 additional observables (the elements of the Πi matrix). The model
predicts that all coherences from a single baseline are linearly dependent.
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Figure 6.15: PolInSAR forest model properties: polarimetric signatures accounting for
ground (surface + double–bounce) and volume scattering; interferometric phase profile
for the main scattering contributions.

In summary, the parameter inversion problem consists of the task to retrieve from the
data, given in reflection symmetric form, 15 unknowns m (for a single baseline)

m = {fg,Reβ, Imβ, β22, β33, fv,Re δ, Im δ, τ, hv, rh, σ, γsys, γtemp, φ0} (6.12)

where the first 9 represent the intensities and polarimetric signatures of the ground and
the volume layers, and the last 6 represent the interferometric structural parameters. A
scheme of considered model properties is presented in Fig. 6.15. Difference in extinction
and refractivity is neglected, together with the triple–bounce contribution.
The critical point of the whole parameter retrieval framework is to estimate the inter-
ferometric structural parameters correctly. With the knowledge of acquisition system
properties, γsys, which is usually dominated by thermal decorrelation, will be assumed to
be known a priori. Hence, φ0 is estimable from γg.
However, γv, a complex–valued term, still depends on additional 4 parameters, hv, rh, σ
and γtemp. Since in the data we can estimate only γv, that provides only two degrees
of freedom (|γv|, arg γv), the parameters hv, rh, σ and γtemp are ambiguous in a single–
baseline acquisition and need further examination.
In addition, the magnitude of γv cannot be used for structural parameter estimation since
it is perturbed by the unconstrained temporal decorrelation γtemp. Therefore, the retrieval
of hv, rh and σ needs to be performed solely on the phase of γv. One approach is to use
multiple baselines in order to increase the number of equations.
The direct model G(m), that is related to the forward problem in Fig. 6.1, is given in
terms of the coherency matrices by

d = G(m) ⇐⇒


T = fgTg(β, β22, β33) + fvTv(δ, τ)
Ω = fgTg(β, β22, β33)γg(φ0, γsys)+

fvTv(δ, τ)γv(φ0, γsys, γtemp, hv, rh, σ)

(6.13)

where the ground coherency matrix Tg =
[

1 β 0
β∗ β22 0
0 0 β33

]
combines the contributions of

surface and double–bounce scattering.
The inverse model is represented as a minimization problem, subject to a set of constraints
c:

m = G−1(d) ⇐⇒ m = argmin
m|c

‖d−G(m)‖ (6.14)
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The norm ‖·‖ is given by the L2 vector norm of the argument (root mean square misfit
minimization). G−1 is a multi–dimensional non–linear optimization problem with local
minima and possibly non–physical solutions. The set of constraints c is provided to enforce
physically reasonable solutions. It proved useful to include into d, next to the elements
of the PolInSAR coherency matrix, several coherence values with distinctive polarizations
to enhance the sensitivity of the parameter retrieval method to structural parameters.
While the problem formulation is straightforward, finding a solution is an art in itself.
Using brute–force optimization might lead to undesirable results, and a physically refined
approach is recommended (in the manner of [23]). Based on these considerations, a
possible multi–stage parameter retrieval framework for a multi–baseline data set has been
developed and is presented below(3).

Initial Processing

i. SAR image preprocessing: data generation, calibration, coregistration, range spec-
tral filtering, flat earth removal, topography removal, multi–looking operation.

ii. Estimation of the reflection symmetric and polarimetric stationary form.

iii. Estimation of thermal decorrelation and possibly other system decorrelation sources,
as for example the coherence bias [151] in case of low number of looks.
The estimated PolInSAR coherence set is shown in Fig. 6.16.(a).

Parameter retrieval

1. Determine the linear structures of the PolInSAR coherence sets (see Fig. 6.16.(b)).
Independently for every baseline:

(a) Fit a line Li through the PolInSAR coherence set, in analogy to the three–stage
inversion process [23].

(b) Determine the ground phase φ0i .

2. Determine the degree of orientation randomness in the data (see Fig. 6.16.(c)).
For all baselines simultaneously:

(a) Find δ′, τ ′, f ′g, f
′
v, β

′, β′22, β
′
33 which minimize (6.14), neglecting for the moment

the structural parameters, and only enforcing all γgi , γvi to be on the lines Li.
(b) Keep only τ = τ ′ for future computation.

3. Determine the structural parameters and temporal decorrelation together with other
remaining parameters (see Fig. 6.16.(d)):

(a) Find common hv, σ, rh as well as δ, fg, fv, β, β22, β33 and the baseline depen-
dent γtempi which approximate the linear structure of the coherences and the
polarimetric coherency matrix.

(3)Note that for the previous results, only a single numerical optimization has been carried out. When
applied to parameter inversion problem with real multi–temporal data, this approach proved to be not
robust enough.
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(a) Initial coherence set. (b) Linear structure estimation.

(c) Estimation of polarimetric signatures,
ground–to–volume ratio, and the total coher-
ence of the volume contribution.

(d) Structural parameters estimation.

Figure 6.16: Representation of information extraction from the PolInSAR coherence set
in the process of parameter retrieval.
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4. If the retrieved parameters are physically not meaningful, either restart using dif-
ferent initialization, or mark this pixel as non–inverted and continue.

For step 1.a) we propose to use the eigenvalues of the contraction matrix Π

Π = T− 1
2 ΩT− 1

2 (6.15)

to estimate the linear structure of the coherences. The line function is estimated in polar
coordinates.
Step 1.b) is very important as errors in determining all ground phases correctly will result
in erroneous parameter retrieval. Used criteria for identifying the ground phase [23]: (1)
polarimetric ordering of coherences, (2) maximal phase distance between the ground and
the volume coherence. Other criteria are possible.
Step 2) has been introduced to make the procedure more robust. Theoretically, after
step 2) the structural parameters can be directly retrieved from γvi , but using the full
parameter inversion in step 3) (except τ) provides possibility of further fine–adjustment.
The Nelder–Mead simplex method [114] has been used for the optimization problems in
steps 3.(a) and 5.(a). Same comments apply to this optimization strategy, as in section
6.3.
The optimization has been constrained to deliver physically meaningful results, as pre-
sented in Table 6.8.

A–priori contraints Optimization constraints
0.2 ≤ mV ≤ 0.98

0 ≤ |δ| ≤ 1.5
γsys = 0.96 0dB/m ≤ σ ≤ 0.4dB/m

0.4 ≤ rh ≤ 1
0.25 ≤ γtempi ≤ 1
5m ≤ hv ≤ 45m

Table 6.8: A–priori and optimization constrains used for the experimental parameter
retrieval.

6.6.2 Experimental Results

To guarantee good estimates of the covariance matrices and the coherences, the first se-
ries of test is conducted using 1800 looks, which with the given slant range and azimuth
resolutions correspond to an area of 0.25 ha (slant range geometry). Later on results will
be presented for 450, 900 and 1350 looks (1/16, 1/8, 3/16 ha). 3 baselines are used: 1–2,
1–3 and 1–4. The system coherence, which includes thermal, mis–coregistration, mis–
calibration and other decorrelation sources, as well as possible temporal decorrelation of
the ground contributions was set a–priori to 0.96 independently of the polarization. In
reality, this value will be different, and polarization dependent. Using additional informa-
tion about the acquisition system, data processing and the surface media characteristics,
this value can be estimated more precisely. However, the influence of this parameter on
the overall parameter estimation is minimal.
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(a) Ground–truth forest height.

(b) Estimated forest height.

Figure 6.17: Forest height estimation: ground–truth and estimated height images.
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(a) Scatter plot: estimated height (y–axis) over the
ground–truth height (x–axis).

(b) Ground–truth height, estimated vegetated
height and canopy layer depth.

Figure 6.18: Forest height estimation: evaluation stand analysis.

Vegetation Height Estimation

Figs. 6.17.(a) and (b) show the ground–truth forest heights and the estimated heights.
Fig. 6.18.(a) shows the corresponding scatter plot of the heights. These images indicate
already that the heights are estimated close to the ground truths, while in some stands the
forest heights vary continuously indicating certain inhomogeneities inside the stands. Fig.
6.18.(b) shows the forest heights and the canopy–fill-ratios for the 20 individual evaluation
stands. The red line in this plot represents the ground–truth height. The green line
represents the estimated heights with the error bars representing the standard deviation
of the estimations. The brown line delimits the canopy layer from the non–canopy layer
above the ground, and represents the canopy–fill-factor, normalized to the total vegetation
height. In average, the forest height is underestimated by 1.6 meters, the average absolute
error (|hvest − hvtrue|) is 3.97 meters, the average root mean square error (RMSE) is 4.97
meters, and the standard deviation of the height is 4.33 meters. It is interesting to see
that the lowest height error (-32cm, RMSE: 1.5m; stand 2) corresponds to the only forest
stand which is dominated by a single tree species without other significant species.
The highest error corresponds to stand number 20. The forest heights seems to be un-
derestimated by over 5 meters with RMSE of 7.75 meters. After examination of the
characteristics of this stand, we could identify two possible reasons for the high errors.
First, the ellipticity of the coherence sets is very high, and the coherence sets are often
shrunk to small circles, making it difficult to estimate the linearity of the coherences and
introducing severe errors in the estimation of ground phases. Second, looking at the opti-
cal image (Fig. 6.13) and at the X–band high–resolution SAR image (Fig. 6.12), one can
see that there are several clear–cuts and roads going through this forest stand without
being delimited. It is very likely that between the forest inventory in 1998, on which base
the evaluation stands have been defined, and the date of radar data acquisition in 2003,
there have been significant changes in the spatial structure of this stand. Note that the
first indication, the high coherence set ellipticity, can be well explained by the heteroge-
neous spatial structure of this evaluation stand. Under this evidence (optical and X–band
images), it seems likely that the “ground–truth” measurements do not correspond to the
true forest height of this stand, which appears to be quite heterogeneous.
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Figure 6.19: Estimation of the extinction and the canopy–fill–factor.

Extinction and Canopy–Fill–Factor Estimation

It was instrumental to introduce the canopy–fill–factor rh into the model and the param-
eter estimation procedure to increase the robustness of the procedure. However, together
with extinction and the temporal decorrelation this parameter is ambiguous to a certain
degree. As can be seen in Fig. 6.19, the canopy–fill–factor is partly correlated with the
extinction. Both parameters are very volatile in their ranges. The background colors of
the bars represent the forest species type and the growth stadium. The blue bars repre-
sented evaluation stands with dominantly deciduous trees. The coniferous (green) stands
are in addition classified according to the growth stadium: light green for growth, medium
green for mature, and dark green for regenerating forest stands. No binding conclusions
could be drawn up to now, except that the only maple dominated forest stand (3) has
quite high canopy–fill–factor. However, both parameters are quite volatile in their ranges
and it is to early to draw conclusions based on these results.

Orientation Randomness Estimation

Fig. 6.20 presents the performance of the estimation of the orientation randomness. As
seen in Fig. 6.20.(b), the standard deviation of this parameter is very low and it enables
clear discrimination between the evaluation stands. As discussed in the theoretical part,
this parameter depends mostly on the morphology of the tree structures and the incidence
angle. The incidence angle dependence is clearly observable in the scatter plot of τ over
the incidence angles in Fig. 6.20.(c). Furthermore, one can observe that the young trees
(growth stadium) have a steeper slope of τ with incidence angle; e.g. follow τ in the
sequence of growth stands: 11, 1, 5, 6, 7 (with stand 2 being the only one “outlying”
stand).

Effective Particle Scattering Anisotropy Estimation

Surprisingly, the magnitude of the effective particle scattering anisotropy of the vegetation
has been estimated to be larger than 1, as shown in Fig. 6.21.(a). It is also quite
independent of the evaluation stand and the incidence angle. The estimation is robust with
very low variance (average standard deviation is 0.035). However, the particle scattering
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(a) Orientation randomness image.

(b) Orientation randomness for all stands. (c) Orientation randomness over the incidence an-
gle. Only coniferous trees.

Figure 6.20: Estimation of the degree of orientation randomness.

anisotropy phase (see Fig. 6.21.(b)) has a large dynamic range of about 2
5π over the

different evaluation stands.
The similarity of the particle scattering anisotropy magnitude over the evaluation stands
might be explained with the fact that we observe relatively mixed forests consisting of
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(a) Magnitude (b) Phase

Figure 6.21: Effective particle scattering anisotropy: magnitude and phase estimation.

several tree species in every evaluation stand. Given the different tree species in one sam-
ple, one has also to account the distribution of particle shapes, i.e. the range of branches
from trunk–like cylinders to medium–thickness branches to thin twigs. The distribution
of permittivities of the branches will probably vary slightly between the different tree
species, but not in a large extent. It is to expect that the permittivity will be much more
affected by the time of the day/year and meteorological aspects than by the differences of
given tree species mixes in the evaluation stands which grow under the same conditions.
Therefore, it is to expect that one will obtain higher dynamical range of particle scatter-
ing anisotropy magnitudes for forests either under different meteorological conditions or
at different times of the day or year; also, distinctively different plant morphologies (e.g.
agricultural vegetation) should result in distinctive anisotropy magnitudes.
In theory, the particle scattering anisotropy magnitude under the Born approximation
for a cloud of simple ellipsoid shapes is assumed to be restricted to the range of [0, 1].
The leaving of this range might have one of the following causes. First, it might be an
indication for multiple scattering effects in the canopy which are neglected by the Born
approximation, but which could result in |δ| > 1. Second, it might be due to other
un–modeled effects like a particular distribution of shapes. Third, it might be due to
the non–perfectly separated contributions from the ground. Fourth, mis–calibration or
processing artifacts can cause this behavior(4).
The phase of particle scattering anisotropy is more related to the orientation direction
of the particles. In the parameter retrieval from simulated SAR data of coniferous and
deciduous trees in section 6.5 we saw a clear distinction of the two tree types in the
anisotropy phase. Observing the results in Fig. 6.21.(b) one can see a similar distinction:
forest stands dominated by deciduous trees (stands 3, 8, 9; blue background) have positive
(or very close to be positive in case of stand 9) phases, whereas the stands dominated
by coniferous trees (green background) have negative phases. Since this parameter is
related to orientations, it is to expect that it is also sensitive to the incidence angle. This

(4)The E–SAR sensor increases the power for the measurement of the polarimetric cross–channels in
comparison to co–polar channels. If this system aspect is not completely calibrated in the acquired data,
it could lead to higher HV intensity. By dividing the HV intensity by 2 we already obtained |δ| values
inside the theoretical borders of 0 and 1.
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Figure 6.22: Grount–to–volume power ratio estimation.

Figure 6.23: Ground scattering components.

hypothesis can be verified, e.g. looking at the first three coniferous stands in the near
range, 17, 11, 19, which all have distinctively low phases.

Ground–to–volume Power Ratio Estimation

Fig. 6.22 presents the estimated ground–to–volume power ratios Pg
Pv

for all forest stands.
This parameter is relatively volatile and has a standard deviation of 0.1. The maximal
power ratio is about three times higher than the minimal power ratio. No definitive
conclusions about relationships between this parameter and the tree species, or the growth
stadium, or the hight could be drawn up to now. An examination of distinctively different
forest types and/or different meteorological conditions could be advantageous for further
analysis.

Ground Scattering Components Estimation

Fig. 6.23 shows the relative ground scattering components in the Pauli basis for all
evaluation stands. Blue corresponds to HH + V V , red to HH − V V , and green to
HV intensities. Although surface and double–bounce terms are larger, the cross–polar
component is significant, too. This is an additional indication that the simple first–order
Bragg (SPM) model and the first–order double bounce model are insufficient for modeling
the ground contributions under the forest.
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(a) γtemp1 (b) γtemp2

(c) γtemp3 (d) Temporal decorrelation for all stands.

Figure 6.24: Temporal decorrelation estimation.

Temporal Decorrelation Estimation

The images and the graphs of the estimated temporal decorrelation are shown in Fig.
6.24. The three baselines (1–2, 1–3, 1–4) have nominal perpendicular baselines of 5,
10 and 0 meters, and temporal baselines of 10, 20 and 60 minutes. Over these short
temporal periods, the number of minutes between the acquisitions is not authoritative.
The temporal decorrelation of the volume at these scales is mostly caused by wind which
is non–stationary, neither temporally nor spatially. Because of this behavior, our attempts
to model the temporal decorrelation, e.g. by Brownian motion or Markovian model [126],
failed. It does not mean that it is not possible, but given the few temporal samples, and
the high resolution requirements, the models could not be applied successfully. These
effects have to be studied using a larger space of spatial and temporal samples. Therefore,
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Figure 6.25: Relative number of inverted pixels (blue) and the average normalized residual
errors (red).

# of looks Bias Abs. error RMSE SDEV
1800 looks -1.51 3.97 4.97 4.33
1350 looks -1.60 4.34 5.43 4.77
900 looks -1.75 4.47 5.61 4.88
450 looks -2.13 4.74 5.87 5.10

Table 6.9: Height estimation statistics for different numbers of looks.

we limited our study to the estimation of the temporal decorrelation (assuming it affects
only the canopy layer on the given short time scale), in order to remove it and to estimate
reliably the vegetation parameters.
As it can be seen, in average the temporal decorrelation is between 0.5 and 0.95. The
main observation is: the temporal baseline appears to be less important than the spatial
baseline. This behavior is in contrast to previous models of temporal decorrelation, which
were based mostly on Brownian motion [171,126], and needs to be further investigated.

Inversion Performance and Residual Errors

Fig. 6.25 shows the average normalized residual errors and the relative number of inverted
pixels. The criteria of acceptance were based on the residual error value and on the success
of the inversion procedure to achieve physically reasonable results. This was not always
the case due to several reasons. For instance, the inversion process was sometimes trapped
in a local optimum or failed to converge, although a reasonable solution existed. It is also
possible that the model used for inversion in these given pixels was inappropriate due to
significant departure of the medium structure from the modeled medium.
It is expected that by modification of the parameter estimation algorithm and by making it
more robust, the performance could be further improved and the number of non–inverted
pixels further reduced.

6.6.3 Tests on the Number of Looks

Figures 6.26 and 6.27 show the parameter estimation performance using different numbers
of looks with respect to the retrieved forest height and the residual errors, respectively.
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(a) 1800 looks (b) 1350 looks

(c) 900 looks (d) 450 looks

Figure 6.26: Forest height estimation for all forest evaluation stands using different number
of looks.

Figure 6.27: Normalized residual errors for all forest evaluation stands using 1800, 1350,
900, and 450 looks for the sample averaging operation.



150 Vegetation Parameter Retrieval

Baselines Bias Abs. error RMSE SDEV
1x2, 1x3, 1x4 -1.51 3.97 4.97 4.33
1x2, 1x3, 2x3 -1.62 4.18 5.17 4.48

1x2 2.18 4.08 5.03 4.09

Table 6.10: Height estimation statistics for different baseline combinations.

Table 6.9 presents the results for the forest height estimation errors for the four case sce-
narios. The bias is given by the average difference between the estimated and the ground–
truth forest height

〈
hv

est − hvgt
〉
, the absolute error is similarly defined

〈
|hvest − hvgt|

〉
,

the RMSE (root mean square error) is
√〈
|hvest − hvgt|2

〉
, and SDEV is the common stan-

dard deviation of the estimated height, independent of the ground–truth height. These
values have been computed independent for every forest stand and in this table the average
values over all stands are presented.
The results are according to the expectations: the forest height estimation errors, the
height standard deviation, and the residual errors are reduced with a higher number of
looks. Reducing the number of looks by a factor of 4 (from 1800 to 450), the RMSE is
worsened only by 15-20%. Over some evaluation stands (like stand numbers 2, 3, 4) one
obtains always good results, independent of the number of looks, which is an indication
for the homogeneous structure and these stands. For the lowest number of looks we see a
trend for underestimation of high forest stands.

6.6.4 Tests on the Baseline Choice

Figures 6.28–6.30 and Table 6.10 present the parameter estimation performance using dif-
ferent baselines. In comparing 3–baseline and single–baseline parameter retrieval results,
one can observe that the single–baseline results are more biased and overestimated. This
indicates, that using a single–baseline it is difficult to estimate the degree of temporal
decorrelation; the temporal decorrelation gets underestimated, which results in appar-
ently lower volume coherence values and higher forest height estimates. However, we were
still able to obtain very robust and relatively accurate results with an average standard
deviation of 4 meters inside an evaluation stand. The same single–baseline data set 1× 2
has been analyzed for forest height and biomass estimation in the thesis of T. Mette [88]
using the RVoG model and inversion approach [23,106].

6.7 Conclusions

In this chapter we have at first analyzed the inverse problem of vegetation parameter
retrieval from single– and multi–baseline polarimetric interferometric SAR observables. A
simple inversion model has been presented which enables us to invert the key vegetation
parameters. The model has been evaluated and validated on simple forward modeling
simulations, on PolSARPro simulations of coniferous and deciduous forests, and on real
SAR data at L–band. The results validated the modeling and the parameter retrieval
approach but also opened new questions which need to be addressed.
The limitations for the presented parameter estimation method are determined by model
assumptions. Most severe are:
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(a) Baselines: 1x2, 1x3, 1x4

(b) Baselines: 1x2, 1x3, 2x3

(c) Baseline: 1x2

Figure 6.28: Forest height estimation for all forest evaluation stands using different base-
line combinations.

• Terrain slope is assumed to be constant over the region of the averaged samples.

• Vegetation eigenpolarizations and the terrain normal are orthogonal in the polar-
ization plane.
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Figure 6.29: Normalized residual errors for all forest evaluation stands for different baseline
combinations.

• Simplified vegetation structure assuming vertically uniform and horizontally homo-
geneous layers.

• Assumption of the average effective particle shape being representable for all parti-
cles, and being independent of height and orientation.

The main data set for parameter retrieval evaluation from real SAR data consisted of 3
baselines, 1–2, 1–3, and 1–4, with nominal spatial baselines of 5, 10, and 0 meters and
temporal baselines of 10, 20, and 60 minutes, respectively. After pre–processing, 1800
look samples were generated for the evaluation of the parameter retrieval procedure. The
evaluation resulted in the following conclusions:

• Despite the temporal decorrelation of the data, relatively good forest height esti-
mates could be achieved with an average underestimation of 1.67m, average absolute
error of 3.97m, RMS error of 4.97m, and height standard deviation of 4.33m.

• Based on external observations (X–band and optical images) and the comparison
with the retrieved forest heights, it is found that the given rather uniform ground–
truth data does not always represent the data correctly. At several evaluation stands
it has been observed that the fluctuations in forest height correspond to fluctuations
in X–band and optical images but are not represented in the ground–truth data. It
is related to the fact that the ground–truth data comes from a forest inventory which
was conducted 5 years before the radar data acquisition (although the forest heights
have been adapted using appropriate forest growth models [88]). This leaves us with
the conclusion that the retrieved forest height parameters are actually better than
reported in the previous point.

• The estimated extinction and the canopy–fill–factor have still relatively high stan-
dard deviations, partly because these parameters, together with temporal decorre-
lation, have a non–negligible degree of ambiguity. It might be possible to resolve
this ambiguity by using single–pass acquisitions.

• The degree of orientation randomness has been reliably estimated with low variance.
It has shown, as predicted, sensitivity to the incidence angle. This parameter has
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(a) Ground–truth forest height.

(b) Estimated forest height using 3 baselines: 1× 2, 1× 3, 1× 4.

(c) Estimated forest height using 1 baseline: 1 × 2.

Figure 6.30: Comparison of forest height estimation using 3 and 1 baselines.
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the potential to discriminate different vegetation media, in dependence of their mor-
phology. As an example, the only one evaluation stand dominated by young maple
trees showed significantly higher degree of orientation randomness than other tree
species in the radar mid–range. Multi–angular experiments using this parameter
would be very beneficial.

• The retrieved effective particle scattering anisotropy results were surprising since
its magnitude was always higher than 1. This might indicate multiple scattering
effects inside the canopy. Other possible reasons are the non–removed fractions from
ground contributions or mis–calibration of the cross–polar channel. The estimates
were reliable with low variances over all evaluation stands. The particle scattering
anisotropy magnitude proved to be independent of the incidence angle. It should be
dependent on the morphology and the dielectric constant of the vegetation. Particle
scattering anisotropy phase helped to discriminate between forest stands dominated
by deciduous and coniferous tree species. The phase seems also to be sensitive to
the incidence angle.

• The temporal coherence has been estimated for its compensation. At a short tem-
poral scale (minutes to some hours) the temporal decorrelation is mostly caused by
wind, which is temporally and spatially non–stationary. The results revealed that at
this short time scale the data decorrelates more for larger spatial baselines and for
higher forests. In particular, over a larger baseline the data was more decorrelated
even if the temporal baseline was smaller.

• Additionally, the ground–to–volume power ratio, the ground scattering components
and the ground topography phases have been estimated, and require further analysis.

• For evaluation of the effect of the number of looks, parameter estimation has been
performed with additionally 450, 900, and 1350 looks keeping all other procedure
parameters the same as for the main evaluation. The experimental results showed
that by an increase of the number of looks from 450 to 1800 by a factor of 4, the
vegetation height estimation performance could be improved by about 20%. All
height estimation performance indicators (bias, absolute error, RMSE, standard
deviation) decreased monotonically with increasing number of looks.

• Similarly to the previous point, different baseline combinations have been tried out
for parameter retrieval. The results showed that 5 meter single–baseline parameter
estimation was able to retrieve forest height with similar RMSE as when using 3
baselines. However, the absolute bias was higher. The forest height results were
overestimated and the temporal decorrelation was underestimated. Never the less,
the obtained results over a single–baseline data set have been better than previously
reported in literature (e.g. in [88]).



Chapter 7

Conclusions

7.1 Summary

This dissertation addresses several topics with the aim to improve the understanding of
polarimetric radar interferometry and to provide techniques for vegetation parameter re-
trieval for remote sensing applications. The basic principles, on which this work is built,
are presented in a concise way in the first two chapters. Chapter 2 covers the topics
of electromagnetic wave propagation and scattering in random media, and polarimetry
principles for scattering media characterization. In Chapter 3, SAR data processing is pre-
sented together with system models for single–channel, polarimetric and interferometric
SAR imaging modes.
The first part of this thesis focuses on the theoretical framework of polarimetric SAR
interferometry (PolInSAR), as it is investigated in Chapter 4. Up to now, the theoreti-
cal foundations of polarimetric interferometry, and especially of the PolInSAR coherence
set, have not been fully studied and understood. In this study, the mathematical the-
ory of numerical ranges, which governs the coherence set properties, is described and
related to properties of PolInSAR covariance matrices, given some common conditions
with respect to the illuminated media. Based on these studies, among others, two multi–
baseline PolInSAR coherence optimization methods were developed, one unconstrained,
using multiple scattering mechanism vectors (MSM), and one constrained using equal
scattering mechanism vectors (ESM). These techniques enable us for the first time to use
the coherence optimization for polarimetric differential SAR interferometry applications,
as well as for multi–temporal and multi–baseline change monitoring with PolInSAR data.
The optimization methods were evaluated on multi–baseline multi–temporal data and re-
sults were presented in dependence of the filtering technique and the scattering media
under consideration.
The second part of the thesis aims to develop a polarimetric interferometric model for
characterizing radar response from vegetation which would permit vegetation parameter
retrieval from PolInSAR observables.
The state–of–the–art in vegetation parameter inversion for PolInSAR data has been the
utilization of the interferometric coherence variation in dependence of polarization to es-
timate the linear ground–to–volume ratio relationship, which makes the inversion of the
forest height and the ground topography phase possible. However, the polarimetric infor-
mation and the synergy of polarimetry and interferometry have not been used to the full
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extent. In Chapter 5, a new model is developed which combines previous PolInSAR–RVoG
modeling and inversion approaches with a model–based polarimetric decomposition. The
vegetation layer, modeled as a cloud of discrete particles, takes into account the effec-
tive particle scattering anisotropy (a parameter incorporating shape, tilt, and dielectric
properties of the particles) and the distribution of particle orientations. This model in-
corporates all zeroth– and first–order scattering contributions for a volumetric layer over
the ground, accounting for attenuation and refractivity, as derived for polarimetric and
interferometric responses. Therefore, the polarimetric part of the presented model repre-
sents a generalization of the Freeman type models. The interferometric part is founded
on the derivations by Treuhaft and Siqueira, and Cloude and Papathanassiou.
For the moment, there are two common acquisition modes for single–pass across–track
interferometry: the single–transmit and the alternate–transmit modes. They have been
already previously combined to acquire single–polarization interferometric dual–baseline
data. Furthermore, the theoretical study of interferometric coherence constituents has
revealed the potential of a combined hybrid PolInSAR mode (alternate–transmit both–
receive) to enhance the separation of surface and double–bounce induced contributions,
which is not possible using polarimetry only.
In the final chapter, Chapter 6, the developed forward model is adapted to meet demands
to retrieve vegetation parameters from radar observables. In comparison to other ap-
proaches, this model enables us to improve the estimation of forest height and ground
topography, as well as to retrieve additional parameters related to particle scattering
anisotropy, the degree of orientation randomness, the main orientation of the particles,
and the ground scattering characteristics.
To deal with repeat–pass PolInSAR required the adaption of the parameter estimation
method to temporal decorrelation in the data, which is the major noise source, caused
on the given short temporal scale mostly by wind. The final multi–baseline PolInSAR
parameter estimation framework is robust against temporal decorrelation and allows to
estimate the degree of temporal decorrelation in any particular baseline.
The developed parameter estimation approach has been evaluated on simulated and real
airborne SAR data with comparison to ground–truth measurements. The examination of
the experimental results (3 baselines, 1800 looks) led to the following main conclusions:

• Forest height estimates: underestimation bias of 1.67m, absolute error of 3.97m,
RMS error of 4.97m, and height standard deviation of 4.33m.

• In some regions the retrieved forest heights seem more reasonable than the ground–
truth data acquired 5 years before the SAR data acquisition.

• The degree of orientation randomness has been reliably estimated with low variance.
It has shown, as predicted, sensitivity to the incidence angle and to the morphology
of the trees.

• The retrieved effective particle scattering anisotropy results were surprising due
to the fact that the anisotropy magnitude was always higher than 1. This might
indicate multiple scattering effects inside the canopy (other possible reasons: resid-
ual ground contributions, mis–calibration of the cross–polar channel, or other non–
modeled effects).
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• The particle scattering anisotropy magnitude proved to be independent of the inci-
dence angle. It should be dependent on the morphology and the dielectric constant
of the vegetation particles. Particle scattering anisotropy phase helped to discrimi-
nate between forest stands dominated by deciduous and coniferous tree species. The
phase seems also to be sensitive to the incidence angle.

• The temporal decorrelation has been estimated: it scales with the effective baseline
and the height of the vegetation, which is reasonable. On the short temporal scale
(10–60 minutes) the time duration was not very important.

• Further estimated parameters which need further analysis: extinction, canopy–fill–
factor, ground–to–volume power ratio, ground scattering components and ground
topography phases.

• Increase of the number of looks by a factor of 4 (from 450 to 1800) resulted in height
estimation performance improvement of about 20%.

• Single–baseline data showed very good height estimation results, only with an in-
creased overestimation bias, caused by underestimation of the temporal decorrela-
tion.

The accomplishments that have been made in this thesis can be summarized as follows

• Coherence set theory: connection to the numerical range concept. Relationship
between the PolInSAR covariance/coherency matrix properties and their projection
on the complex coherence plane.

• Multi–baseline PolInSAR coherence optimization: development of two methods
which optimize a sum of PolInSAR coherences under the conditions of multiple dif-
ferent or equal projection vectors. Evaluation on a multi–baseline multi–temporal
data set.

• Formulation of a polarimetric interferometric vegetation model: zeroth– and first–
order scattering contributions of a volume layer over the ground. Parameterization:
degree of orientation randomness, main orientation, particle scattering anisotropy,
volume layer depth, canopy volume attenuation and refractivity, canopy–fill–factor,
ground topography, surface scattering, specular scattering.

• Suggestion for a hybrid single–pass PolInSAR system for enhanced distinction be-
tween surface and double–bounce scattering contributions.

• Multi–baseline multi–temporal vegetation parameter retrieval framework for forests.
Evaluation on simulated and real data.

7.2 Perspectives

The results of this thesis lead to a variety of different research and application directions:
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• The direction for the theoretical studies on coherence set properties is, as of now,
uncertain, and only the future can show how it will develop. It was one of the most
challenging task of this thesis, partly because it was (and still is) not clear where
it leads to. But it was definitively very useful to develop an understanding and an
intuition for the PolInSAR coherence set as something whole and not mere as a
collection of a few discrete coherences corresponding to a few polarizations.

• Multi–baseline PolInSAR coherence optimization methods are going to be applied
to multi–channel PolInSAR data, as for example for differential PolInSAR, multi–
temporal and/or multi–baseline change monitoring and detection, permanent scat-
terer identification, and classification. Reigber et al. [123, 122] already presented
initial optimization results for differential polarimetric interferometry for vegetated
areas. Also, it is to expect, that these methods will be very useful for dual– and
full–polarization space–borne SAR data. Given the long repeat pass cycles and the
resulting temporal decorrelation, coherence optimization will be able to enhance
time–series analyses. Especially since in dual–pol mode the physical interpretation
is less important, the use of coherence optimization to reduce phase noise for any
kind of application is very reasonable.

• The research and application directions for the presented vegetation model and the
parameter estimation framework are numerous. Based on this simple model, already
a lot of information could be obtained about the evaluated forest stands.
Even despite the temporal decorrelation; even with a single baseline!
The presented basic model components are universal and can be applied to various
frequencies and for different volumetric media, which provides a wide range of ideas
for future research:

– Vegetation parameter estimation and classification: different tree species, agri-
cultural crops, etc.

– Evaluation on multiple frequencies, incidence angles, altitudes, etc.

– Inclusion of multiple various data sources (e.g. multi–baseline, multi–frequency,
multi–angular, multi–altitude, etc.) in a single model and parameter retrieval
framework for improved robustness and accuracy.

– Estimation of surface parameters under vegetation, such as soil moisture and
surface roughness.

– Other volumetric structures (with adjusted frequency, and if distorted Born
approximation applies): snow, ice, dry soil/sand, precipitation, etc.

– Combination with conventional or polarization coherence tomography (e.g.
[121, 145, 18, 19]) for an improved information extraction from multi–baseline
configurations.

– Multi–temporal monitoring of ecosystem dynamics.

• The presented polarimetric model generalizes the Freeman type polarimetric de-
compositions. Development of a simple and general framework for a polarimetric
decomposition based on the presented model might be advantageous.
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• The theoretical prediction of the potential of a single–pass PolInSAR data in a hybrid
interferometric mode to enhance the separation of all main scattering components
(surface, double–bounce, volume) needs to be evaluated and validated on real data.

In retrospective, probably the most important contribution of this thesis is the formula-
tion of the polarimetric interferometric vegetation model, the theoretical demonstration
of meaningfulness and interpretability of this model on simulated data, and, finally, its
experimental validation on real data. Some of the main aspects of the model and the
parameter retrieval approach include the possibility of multi–source inclusion, robustness
against temporal decorrelation, and physical interpretability, which can be useful for var-
ious fields in geophysical remote sensing. This approach represents a logical continuation
of previous research in this field performed by various authors. It opens up new research
and application opportunities and at the same time brings up a number of new questions,
which need to be addressed in the future studies.





Appendix





Appendix A

SAR Statistics

A.1 Statistical Distributions of Scattering Signals

This appendix presents briefly the statistics of single– and multi–channel SAR signals for
distributed targets. The single–channel scattering coefficients Si and their multi–channel
counterparts in form of scattering vectors k = [S1, S2, . . . , Sq] have to be considered as
random variables. The multi–channel scattering vector is composed of q elements, which
can be related to polarimetric and interferometric measurements. Considering distributed
targets as a random collection of scatterers simplifies the statistical analysis given the
assumptions: (1) large number of scatterers, (2) homogeneous spatial distribution with
uncorrelated positions, (3) large resolution cell dimensions in comparison to the wavenum-
ber. Under these assumptions the scattered phase has a uniform distribution and under
the central limit theorem the backscattering coefficients S = x + iy follow the complex
circular Gaussian distributions with zero mean and identical variances σ2

x for the real and
imaginary parts [53]:

p(s|σ2
x) = p(x, y) =

1
2πσ2

x

e
−x2+y2

2σ2
x (A.1)

The joint probability density function for the amplitude a and phase ψ (S = aeiψ) is given
by (a ≥ 0):

p(a, ψ|σ2
x) =

a

2πσ2
x

e
− a2

2σ2
x (A.2)

One obtains the distribution of the amplitude by marginalizing the previous function by
integration over the phase in the range −π and π. This delivers the Rayleigh distribution:

p(a|σ2
x) =

a

σ2
x

e
− a2

2σ2
x (A.3)

The expected value of the amplitude is given by:

E[a] =
∫ ∞

0
ap(a|σ2

x)da =
√
π

2
σ2
x (A.4)

The distribution of the phase is given by integrating the joint pdf over the amplitude in
the range [0,∞] which delivers a uniform distribution for ψ ∈ [−π, π]:

p(ψ) =
1
2π

(A.5)
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This shows that a and ψ are uncorrelated (independent), since

p(a, ψ|σ2) = p(a|σ2)p(ψ) (A.6)

The intensity I = a2 follows the exponential distribution

p(I|σx) =
1

2σ2
x

e
− I

2σ2
x (A.7)

and its expected value is given by

E[I] = 2σ2
x (A.8)

The scattering vector k follows the multivariate complex circular Gaussian distribution:

p(k|Σ) =
1

πq|Σ|
e−k

†Σ−1k (A.9)

where q is the dimensionality of the scattering vector (usually =3) and Σ = E[kk†] is the
true covariance matrix.
Since S and k have zero mean

E[S] = 0, E[k] = 0 (A.10)

their description requires higher–order statistical characteristics, namely second–order
statistics in form of the covariance matrix. If the random medium is homogeneous (the
random scattering process can be described as stationary in space), the expect value
operation can be replaced by spatial averaging to obtain the estimated (sample) covariance
matrix

C =
1
N

N∑
i=1

kik
†
i (A.11)

where N is the number of looks (or pixels) used for the average.
The joint probability of N independent sample scattering vectors ki can be given by [36]

p(k1, ...,kN ) =
L∏
i=1

p(ki|Σ) =
1
πqL

(
1
|Σ|L

e−L trace(Σ−1C)

)
(A.12)

where C is the sample covariance matrix and L is the true effective number of looks
(ENL), see section A.1.2. After variable substitution (k1,k2, . . . ,kN → C) one obtains
the complex Wishart distribution for the estimated covariance matrix [53,73]:

p(C|Σ, L) =
LLq|C|L−q

Γq(L)

(
1
|Σ|L

e−L trace(Σ−1C)

)
(A.13)

with

Γq(L) = πq(q−1)/2
q∏
j=1

Γ(L− j + 1) (A.14)
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where Γ(z) is the Gamma function and Γq(z) is the generalized Gamma function for the
multivariate case.
One can represent a two–by–two subset of the covariance matrix C via [64]

C[ij] =
[

cii
√
ciicjjdije

iφij

√
ciicjjdije

−iφij cjj

]
(A.15)

where cii, cjj , cij are single elements of C, dij represents the sample degree of coherence (or
correlation) and φij represents the sample phase difference. C[ij] also follows the complex
Wishart distribution. By marginalizing it one can obtain the distributions of the degree
of coherence and of the phase φ (which can be the interferometric phase, or polarimetric
phase difference). Integrating C[ij] over cii, cjj in the range [0,∞], and over φij in the
range [−π, π], one obtains the distribution of the degree of coherence:

p(dij |Dij , L) = 2(L− 1)(1−D2
ij)

Ldij(1− d2
ij)

L−2
2F1(L,L; 1;D2

ijd
2
ij) (A.16)

where Dij is the true degree of coherence, and 2F1(·, ·; ·; ·) is the Hypergeometric function.
It is important to note and to keep in mind that the first moment (expectation value) of
(A.16) is biased [150] and requires bias–removal operation.
The distribution of the phase is given by:

p(φij |αij , Dij , L) =
(1−D2

ij)
L

2π

(
2F1(1, L;

1
2
;β2) +

Γ(1/2)Γ(L+ 1/2)
Γ(L)

β(1− β2)−(L+1/2)

)
(A.17)

where β = Dij cos(φij − αij), and αij is the true phase. To improve computational costs,
the Hypergeometric function can be replaced by trigonometric and algebraic functions for
small number of looks.
The difference between polarimetric and interferometric phases ∆φij,kl = φij−φkl is of im-
portance for multi–baseline and multi–temporal PolInSAR applications. Its distribution
can be given as a convolution [64]

p(φij,kl|∆αij,kl, Dij , Dkl, L) =
1
Z
p(φij |0, Dij , L)⊗ p(φkl|αij,kl, Dkl, L) (A.18)

where Z is the normalization factor.

A.1.1 Speckle Filtering

The scattered signal from a random medium is a superposition of scattering contributions
from all elements, as expressed in equation (2.44). This coherent summation introduces
the so called speckle effect, which lets the image appear granular. It is a deterministic inter-
ference/diffraction effect which is of major importance for polarimetry and interferometry.
However, it is often undesired and is considered as noise. In order to reduce the speckle
effect and to estimate the covariance matrices over homogeneous areas and to preserve
the borders between different regions, various filters have been developed. Filters based
on statistical LLMMSE (local linear minimum mean square error) minimization include
the Lee, Kuan [68], Frost filters. More complex locally adaptive filter techniques include
the refined Lee filter [72], the Simulated Annealing filter [133], the IDAN filter [164], the
Jäger filter, etc.
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A.1.2 Estimation of the Equivalent Number of Looks

In section A.1 a distinction has been drawn between the number of looks used for the
averaging operation to estimate second order statistics and the true number of looks, the
effective (sometimes called equivalent) number of looks (ENL).
Over homogeneous regions ENL is defined by

L =
E[I]2

var[I]
(A.19)

Using single polarization data, the conventional (CV) estimation is based on the sample
mean and the sample variance of the intensity [104,4]

L(CV ) : L =
〈I〉2

〈I2〉 − 〈I〉2
(A.20)

where 〈·〉 denotes the sample averaging. An alternative (numerical) estimator of L which
is based on fractional moments (FM) of the intensity has been presented in [48]. Recently,
ENL estimators were presented which use the full covariance matrix and with it the full
available polarization information [4]. The multivariate generalization of the conventional
single–pol estimator is the trace moment (TM) estimator

L(TM) : L =
trace(Σ)2

〈trace(ZZ)〉 − trace(ΣΣ)
(A.21)

where Σ̂ = 〈C〉 and Z = C. Additionally a maximum likelihood (ML) estimator for ENL
for multivariate data is derived in [4] assuming Wishart distribution of the covariance
matrices. This estimator requires as well a numerical solution.

A.2 PolInSAR Coherence Set Statistics

In the following, a numerical approach for statistical coherence set analysis is presented
with respect to the polarization density. It should be noted, that the analysis of the coher-
ence set with respect to backscattering energy (cf. section 4.4.3) is probably physically
more meaningful and the derived expressions can be extended to this case straightfor-
wardly.
To analyze the probability density of PolInSAR coherences in the complex plane, it will
prove useful to derive the marginal probability of the complex coherence with respect to
the polarization state. But prior to this, one needs to define the joint distribution of
the complex coherence and the transmit/receive polarizations. Using the Bayes’ theorem,
the joint probability density function (PDF) of the sample coherence (γ = deiφ) and
the scattering polarization vector Ψξ, which determines the true coherence ξ = Deiβ =
fξ(Σ,ω(ψξ)), can be expressed by

p(γ,ψξ|Σ, L) = p(γ|ψξ,Σ, L) p(ψξ). (A.22)

This PDF can be interpreted as the joint probability of the sample and the true coherence,
γ and ξ(ψξ), for a single polarization.
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The conditional probability density for the coherence, given the true coherence, has been
derived in [151]:

p(γ|ψξ,Σ, L) = p(γ|ξ(ψξ), L) =
(1−D2)L

πΓ(L)Γ(L− 1)
d(1− d2)L−2

×
[
Γ2(L)2F1(L,L; 1/2, d2D2 cos2(φ− β))

+ 2Γ2(L+ 1/2)dD cos(φ− β) 2F1(L+ 1/2, L+ 1/2; 3/2; d2D2 cos2(φ− β))]
]

(A.23)

where L is the effective number of looks (ENL), Γ is the Gamma function, and 2F1 is the
Gauss’s Hypergeometric function. This PDF is the “usual” single–pol coherence PDF.
The density of scattering polarizations is determined by the assumption of joint uniform
distribution of polarization angles in their domains.
The marginal probability of the complex coherence, which represents the coherence density
over all polarizations, is obtained by integrating (A.22) over the polarization space:

p(γ|Σ, L) =
∫∫∫∫

p(γ|ξ(ψξ), L)p(ψξ)dψξ. (A.24)

With similar reasoning one can derive the expression for the a–posteriori PDF of the true
coherence, given the sample covariance matrix and assuming (in the absence of better
knowledge) a uniform prior distribution:

p(ξ|C, L) =
∫∫∫∫ [∫∫

p(γ(ψγ)|ξ′, L)dξ′
]−1

p(γ(ψγ)|ξ, L)p(ψγ)dψγ (A.25)

where the outer integral is taken over the scattering polarization state domain, and the
inner, representing the marginal data PDF, is taken over the complex coherence domain,
i.e. over the amplitude and phase of the unitary disc in the complex coherence plane.
No analytical forms for the integrals (A.24) and (A.25) can be given at the moment and
they need to be solved numerically.

A.3 PolInSAR ML Estimators and Hypotheses Tests

L. Ferro-Famil presented several maximum likelihood (ML) estimators and tests for com-
mon PolInSAR assumptions [39]. The test for weak polarimetric stationarity is given by
the normalized ML ratio test:

Λstat,weak =

√
|T11|

√
|T22|

|T3|
, with T3 =

T11 + T22

2
(A.26)

The normalized ML ratio test for strong polarimetric stationarity is

Λstat,strong = Λstat,weak
|I− P̂|

|I− Π̃Π̃
†
|
, with Π̃ = T−1/2

3 ΩT−1/2
3 , P̂ =

Π̃Π̃
†
+ Π̃

†
Π̃

2

(A.27)
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Résumé

Ce travail concerne différent thèmes qui ont pour objectif d’améliorer la compréhension
de l’Interférométrie Polarimétrique Radar (Pol-InSAR) ainsi que de proposer de nou-
velles techniques permettant la reconstruction de paramètres liés à la végétation, dans le
cadre d’applications de Télédétection. Des études théoriques sont menées afin de définir
rigoureusement et d’analyser l’ensemble de cohérences Pol-InSAR ainsi que de développer
et d’interpréter les techniques d’optimisation de cohérences à lignes de base multiples.
Un modèle interférométrique polarimétrique phénoménologique est développé pour tenir
compte d’un milieu volumique situé au dessus d’un sol. Dans le cas de forêts observées en
bande L, ce modèle tient compte de la topographie du sol, de la canopée, de la hauteur
totale des arbres, de l’atténuation de l’onde, de la réflectivité au sein de la canopée, de
la morphologie des arbres prise en compte par la distribution statistique des orientations
des branches et leur forme efficace, de la contribution du sol et enfin de l’interaction en-
tre le sol et les troncs. Une méthodologie d’inversion des paramètres de végétation est
développée dans le cas des acquisitions monopasse ou multipasses. Dans ce dernier cas,
la méthode d’inversion tient compte de la décorrélation temporelle et permet ainsi une
estimation pour chaque ligne de base. La performance de l’estimation des paramètres de
végétation est évaluée à partir de données SAR simulées et réelles aéroportées en bande
L, pour les deux cas de configurations en lignes de base simple ou multiple.

Mots-clés: Télédétection, radar à ouverture synthétique, polarimétrie radar, interférométrie,
estimation de paramètres de végétation.

Abstract

This dissertation concerns different topics with the aim to improve the understanding
of polarimetric SAR interferometry (PolInSAR) and to provide techniques for vegetation
parameter retrieval for remote sensing applications. Theoretical studies are conducted to
rigorously define and analyze the PolInSAR coherence set, and to develop and interpret
multi–baseline coherence optimization techniques. A phenomenological polarimetric inter-
ferometric model, designed for geophysical parameter retrieval, is derived for volumetric
media over ground. For forest vegetation observed at L–band, this model accounts for the
ground topography, canopy layer and total tree heights, wave attenuation and refractivity
in the canopy, tree morphology in the form of the orientation distribution and effective
shapes of the branches, surface scattering contribution, and double–bounce ground–trunk
interactions. A parameter retrieval framework is developed for single– and repeat–pass
acquisitions which is, in the latter case, robust against the temporal decorrelation and
permits its estimation in every baseline. The parameter estimation performance is evalu-
ated on simulated and real airborne L–band SAR data in both single– and multi–baseline
configurations.

Keywords: Remote sensing, synthetic aperture radar (SAR), radar polarimetry, SAR
interferometry, vegetation parameter estimation.
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