1. Introduction

UNIVERSITÉ PIERRE ET MARIE CURIE, PARIS VI COMMISSARIAT À L'ÉNERGIE ATOMIQUE, CENTRE DE SACLAY

Couplage interfacial de modèles en dynamique des fluides. Application aux écoulements diphasiques.

Thomas GALIÉ

Soutenance de thèse - mardi 31 mars 2009

Annalisa AMBROSO Christophe CHALONS Frédéric COQUEL Yvon MADAY Encadrante CEA Encadrant universitaire Encadrant universitaire Directeur de thèse

- Couplage interfacial de modèles en dynamique des gaz
- 3 Couplage interfacial avec terme source mesure
- Relaxation et approximation numérique d'un modèle bifluide à deux pressions
- Couplage interfacial d'un modèle bifluide avec un modèle de drift-flux

Introduction générale

- 2 Couplage interfacial de modèles en dynamique des gaz
- Couplage interfacial avec terme source mesure
- Relaxation et approximation numérique d'un modèle bifluide à deux pressions
- 6 Couplage interfacial d'un modèle bifluide avec un modèle de drift-flux
- 6 Conclusion et perspectives

6. Conclusion

Introduction générale

Contexte : projet NEPTUNE

- CEA, EDF, Areva-NP, IRSN
- Etablir une plateforme de calcul pour simuler la thermohydraulique dans un réacteur nucléaire à eau sous pression

Constat : différents codes de calculs pour différentes échelles

- CFD : Neptune_CFD (3D libre)
- Composant : FLICA, THYC (3D poreux)
- Système : CATHARE (0D-1D libre/poreux)

Points communs : *écoulements diphasiques, méthodes volumes finis* Validés et qualifiés : les codes fonctionnent en « *boîtes noires* »

Besoin : coupler les codes en espace

- Un code pour une région de l'espace
- Maillages conformes d'un domaine à l'autre (calcul de flux)
- Modélisations différentes : couplage interfacial de modèles

Introduction générale

Collaboration CEA Saclay - Laboratoire Jacques-Louis Lions

• Groupe de travail hebdomadaire au LJLL :

A. Ambroso, B. Boutin, C. Chalons, F. Coquel, T. Galié, E. Godlewski, F. Lagoutière, P.-A. Raviart, J. Segré, N. Seguin

- Etude du couplage interfacial de modèles pour les écoulements diphasiques
- Approche unidimensionnelle (invariance des équations par rotation)
- Interface fixe et mince en x = 0

Modèle de gauche x < 0 Modèle de droite x > 0

- Mise au point de **conditions de couplage** en *x* = 0
- Construction de méthodes numériques consistantes

Introduction générale

Couplage interfacial de modèles en dynamique des gaz

3 Couplage interfacial avec terme source mesure

8 Relaxation et approximation numérique d'un modèle bifluide à deux pressions

Couplage interfacial d'un modèle bifluide avec un modèle de drift-flux

6 Conclusion et perspectives

Problème de couplage

$$\begin{aligned} & \text{Euler } (L), \, x < 0, t > 0 \\ & \begin{cases} \partial_t \rho + \partial_x (\rho u) = 0, \\ \partial_t (\rho u) + \partial_x (\rho u^2 + p_L(\rho, \varepsilon)) = 0, \\ \partial_t (\rho E) + \partial_x (\rho E u + p_L(\rho, \varepsilon) u) = 0, \end{cases} & \begin{cases} \partial_t \rho + \partial_x (\rho u) = 0, \\ \partial_t (\rho u) + \partial_x (\rho u^2 + p_R(\rho, \varepsilon)) = 0, \\ \partial_t (\rho E) + \partial_x (\rho E u + p_R(\rho, \varepsilon) u) = 0. \end{cases} \\ & \end{cases} & \\ & x = 0 \end{aligned}$$

- ho > 0 : densité
- $u \in \mathbb{R}$: vitesse
- $\rho E = \rho u^2/2 + \rho \varepsilon > 0$: énergie totale et ε énergie interne
- $p_{\alpha} \equiv p_{\alpha}(\rho, \varepsilon), \ \alpha = L, R$: pression à gauche et à droite
- Notation contractée

$$\begin{aligned} &\partial_t \mathbf{u} + \partial_x \mathbf{f}_L(\mathbf{u}) = \mathbf{0}, & \text{pour } x < 0, \ t > 0, \\ &\partial_t \mathbf{u} + \partial_x \mathbf{f}_R(\mathbf{u}) = \mathbf{0}, & \text{pour } x > 0, \ t > 0, \end{aligned}$$

où $\mathbf{u} = (\rho, \rho u, \rho E)$ et $\mathbf{f}_{\alpha}(\mathbf{u}) = (\rho u, \rho u^2 + \rho_{\alpha}, \rho E u + \rho_{\alpha} u), \alpha = L, R$

Conditions de couplage

Approche globalement conservative : couplage par flux

Le problème est réécrit sous la forme d'un seul et unique problème global :

$$\partial_t \mathbf{u} + \partial_x \mathbf{f}(\mathbf{u}, x) = \mathbf{0}, \quad x \in \mathbb{R}, \ t > 0, \quad \text{avec} \quad \mathbf{f}(\mathbf{u}, x) = \begin{cases} \mathbf{f}_L(\mathbf{u}), & x < 0, \\ \mathbf{f}_R(\mathbf{u}), & x > 0. \end{cases}$$

- Conservation des grandeurs : $\mathbf{f}_{R}(\mathbf{u}(0^{+},t)) \mathbf{f}_{L}(\mathbf{u}(0^{-},t)) = \mathbf{0}, t > 0$
- Non continuité des variables d'états

Approche non conservative : couplage par état

On impose, via deux conditions de bords du type Dirichlet,

$$\mathbf{v}(0^-,t)=\mathbf{v}(0^+,t),$$

où **v** est un jeu de variables donné

- Continuité des variables
- Non conservation : $\mathbf{f}_R(\mathbf{u}(0^+, t)) \neq \mathbf{f}_L(\mathbf{u}(0^-, t)), t > 0$
- Exemples : $\mathbf{v} := (\rho, u, \rho), \mathbf{v} := (\rho, u, h)$ où $h = \varepsilon + \rho/\rho$ est l'enthalpie

Problème de couplage : approximation numérique

Euler (L), j
$$\leq 0, n \geq 0$$

 $u_{j-1/2}^{n}$ $u_{-3/2}^{n}$ $u_{-1/2}^{n}$ $u_{3/2}^{n}$ $u_{j+1/2}^{n}$
 x_{j} x_{-2} x_{-1} x_{1} x_{2} x_{j} x_{j} x_{j}

- Pas de temps Δt , pas d'espace Δx
- Cellules $C_{j+1/2} = [x_j, x_{j+1}], j \in \mathbb{Z}$ et temps discrets $t^n = n\Delta t, n \in \mathbb{N}$
- Solution constante par morceaux $\mathbf{u}_{\Delta x}(x,t^n) = \mathbf{u}_{j+1/2}^n$, pour $x \in C_{j+1/2}$
- Formulation volumes finis

$$\mathbf{u}_{j-1/2}^{n+1} = \mathbf{u}_{j-1/2}^n - \frac{\Delta t}{\Delta x} ((\mathbf{g}_L)_j^n - (\mathbf{g}_L)_{j-1}^n), \quad \text{pour } j \le 0,$$

$$\mathbf{u}_{j+1/2}^{n+1} = \mathbf{u}_{j+1/2}^n - \frac{\Delta t}{\Delta x}((\mathbf{g}_R)_{j+1}^n - (\mathbf{g}_R)_j^n), \quad \text{pour } j \ge 0.$$

On cherche à calculer

$$(\mathbf{g}_L)_0^n := \mathbf{g}_L(\mathbf{u}_{-1/2}^n, \mathbf{u}_{1/2}^n) (\mathbf{g}_R)_0^n := \mathbf{g}_R(\mathbf{u}_{-1/2}^n, \mathbf{u}_{1/2}^n)$$

Conditions de couplage : approximation numérique

Couplage par flux : approche par relaxation

On résout le problème de Riemann à l'interface de couplage pour un sur-modèle hors-équilibre thermodynamique :

$$\partial_t \mathbf{U} + \partial_x \mathbf{F}(\mathbf{U}) = \lambda \mathscr{R}(\mathbf{U}, x), \quad x \in \mathbb{R}, \ t > 0.$$

Schéma de Godunov

$$(\mathbf{g}_L)_0^n := \mathbf{F}\left(\mathscr{W}\left(\mathbf{0}^-; \mathbf{U}_{-1/2}^n, \mathbf{U}_{+1/2}^n\right)\right) \ = \ (\mathbf{g}_R)_0^n := \mathbf{F}\left(\mathscr{W}\left(\mathbf{0}^+; \mathbf{U}_{-1/2}^n, \mathbf{U}_{+1/2}^n\right)\right)$$

Couplage par état : approche double-flux

Les flux numériques sont donnés par les formules suivantes :

$$\begin{aligned} & (\mathbf{g}_L)_0^n := \mathbf{g}_L(\mathbf{u}_{-1/2}^n, \overline{\mathbf{u}}_{+1/2}^n), \\ & (\mathbf{g}_R)_0^n := \mathbf{g}_R(\overline{\mathbf{u}}_{-1/2}^n, \mathbf{u}_{+1/2}^n), \end{aligned}$$

où $(\bar{\mathbf{u}})_{\pm 1/2}^n$ et $(\bar{\mathbf{u}})_{-1/2}^n$ sont deux états fictifs reconstruits selon le jeu de variables à transmettre à l'interface de couplage.

Profil uniforme en pression : couplage par flux

Profil uniforme en pression : couplage par état en pression

Profil uniforme en pression : couplage par état en enthalpie

- 2 Couplage interfacial de modèles en dynamique des gaz
- 3 Couplage interfacial avec terme source mesure
- Pelaxation et approximation numérique d'un modèle bifluide à deux pressions
- Couplage interfacial d'un modèle bifluide avec un modèle de drift-flux
- 6 Conclusion et perspectives

Couplage interfacial avec terme source mesure

• Couplage de modèles en dynamique des gaz pour un écoulement isentropique :

$$\begin{aligned} &\partial_t \mathbf{u} + \partial_x \mathbf{f}_L(\mathbf{u}) = \mathbf{0}, & \text{pour } x < 0, \ t > 0, \\ &\partial_t \mathbf{u} + \partial_x \mathbf{f}_R(\mathbf{u}) = \mathbf{0}, & \text{pour } x > 0, \ t > 0, \end{aligned}$$

avec

$$\mathbf{u} = \begin{pmatrix} \rho \\ \rho u \end{pmatrix}, \quad \mathbf{f}_{\alpha}(\mathbf{u}) = \begin{pmatrix} \rho u \\ \rho u^2 + p_{\alpha}(\tau) \end{pmatrix}, \quad \alpha = L, R \text{ et } \tau = 1/\rho.$$

• Condition de transmission par ajout d'un terme source mesure :

$$\partial_t \mathbf{u} + \partial_x \mathbf{f}(\mathbf{u}, x) = \mathscr{M}(t) \delta_{x=0}, \quad x \in \mathbb{R}, \ t > 0,$$

avec $\mathcal{M}(t) = (0, \mathcal{M}_{\rho u}(t))$

- Avantage : contrôle des pertes de conservation
- Difficulté : prise en compte du terme source mesure :

$$f_R(u(0^+,t)) - f_L(u(0^-,t)) = \mathcal{M}(t), \quad t > 0$$

Approche par relaxation - hors couplage -

Système d'Euler isentropique

Strictement hyperbolique de valeurs propres : $\lambda_1 = u - c$ (VNL) et $\lambda_2 = u + c$ (VNL) où $c = \tau \sqrt{-p'(\tau)}$ est la vitesse du son dans le fluide.

Approche par relaxation

Strictement hyperbolique de valeurs propres : $\lambda_1^r = u - a\tau$ (LD), $\lambda_2^r = u$ (LD) et $\lambda_3^r = u + a\tau$ (LD). La variable π est la **pression de relaxation**.

$$\begin{cases} \partial_t \rho + \partial_x \rho u = 0, \quad x \in \mathbb{R}, \ t > 0, \\ \partial_t (\rho u) + \partial_x (\rho u^2 + \pi) = 0, \\ \partial_t (\rho \pi) + \partial_x (\rho \pi u + a^2 \pi) = \lambda \rho(\rho(\tau) - \pi) \end{cases}$$

$$\lambda_{1}^{r}(\mathbf{U}_{g}) \qquad \mathbf{U}_{g}^{*} \qquad \begin{array}{c} \lambda_{2}^{r}(\mathbf{U}_{g}^{*}) \\ \mathbf{U}_{d}^{*} & \lambda_{3}^{r}(\mathbf{U}_{d}) \\ \mathbf{U}_{d} & \mathbf{U}_{d} \\ \mathbf{x} \end{array}$$

• $\lim_{\lambda \to +\infty} \pi = p(\tau) \operatorname{ssi} a^2 > \max_{\tau} [-p'(\tau)]$

Approche par relaxation - couplage -

Système d'Euler isentropique

La masse de Dirac conduit à l'ajout d'une onde stationnaire, en x = 0, qui s'apparente à une **onde LD** : $\lambda_0 = 0$. On utilise les relations de **Rankine-Hugoniot**.

Approche par relaxation

Valeurs propres : $\lambda_0^r = 0$ (LD), $\lambda_1^r = u - a\tau$ (LD), $\lambda_2^r = u$ (LD) et $\lambda_3^r = u + a\tau$ (LD). Le terme source $\mathcal{M}_{\rho\pi}$ est un degré de liberté supplémentaire.

Le terme source mesure est restaurer au niveau discret de manière exacte.

x

6. Conclusion

Résultats numériques

Couplage conservatif : 2-choc pur avec $(\mathcal{M}_{\rho u}, \mathcal{M}_{\rho \pi}) = (0, 0)$

Couplage conservatif : 2-choc pur avec $(\mathcal{M}_{\rho u}, \mathcal{M}_{\rho \pi}) = (0, \mathcal{M}_{\rho \pi}^{e})$

- 2 Couplage interfacial de modèles en dynamique des gaz
- 3 Couplage interfacial avec terme source mesure

Relaxation et approximation numérique d'un modèle bifluide à deux pressions

- 5 Couplage interfacial d'un modèle bifluide avec un modèle de drift-flux
- 6 Conclusion et perspectives

6. Conclusion

Relaxation et approximation numérique d'un modèle bifluide à deux pressions

• On considère, **hors couplage**, le modèle bifluide à deux vitesses et deux pressions *isentropique par phase* suivant :

$$\begin{aligned} \left(\partial_t \alpha_1 + u_2 \partial_x \alpha_1 = 0, \\ \partial_t (\alpha_1 \rho_1) + \partial_x (\alpha_1 \rho_1 u_1) = 0, \\ \partial_t (\alpha_1 \rho_1 u_1) + \partial_x (\alpha_1 \rho_1 u_1^2 + \alpha_1 \rho_1) - \rho_1 \partial_x \alpha_1 = 0, \end{aligned} \quad \text{pour } x \in \mathbb{R}, \ t > 0. \\ \partial_t (\alpha_2 \rho_2) + \partial_x (\alpha_2 \rho_2 u_2) = 0, \\ \partial_t (\alpha_2 \rho_2 u_2) + \partial_x (\alpha_2 \rho_2 u_2^2 + \alpha_2 \rho_2) + \rho_1 \partial_x \alpha_1 = 0, \end{aligned}$$

- $\alpha_k \in (0,1), \rho_k > 0, u_k \in \mathbb{R}$: fraction, densité et vitesse de la phase k
- $p_k \equiv p_k(\rho_k) > 0$: pression de la phase k
- Condition de saturation : $\alpha_1 + \alpha_2 = 1$
- Présence de termes non conservatif : couplage entre les phases
- Notation contractée

$$\partial_t \mathbf{u} + \partial_x \mathbf{f}(\mathbf{u}) + \mathbf{c}(\mathbf{u}) \partial_x \mathbf{u} = \mathbf{0}, \quad x \in \mathbb{R}, \ t > 0$$

Etude du problème de Riemann

Structure de la solution du problème de Riemann

- Valeurs propres : $\lambda_0 = u_2(LD), \lambda_1 = u_1 c_1(VNL), \lambda_2 = u_1 + c_1(VNL), \lambda_3 = u_2 c_2(VNL), \lambda_4 = u_2 + c_2(VNL)$ avec $c_k = \sqrt{p'(\rho_k)}$
- Le système est hyperbolique dès que $u_1 \pm c_1 \neq u_2$
- Soit u_g, u_d deux états constants. Le PR s'écrit, pour x ∈ ℝ, t > 0,

Difficultés

- Beaucoup de champs VNL (Ondes de chocs/détentes)
- Termes non conservatifs
- Possibilité de résonnance (hors du régime d'étude)

Approche par relaxation

• La loi de pression de la phase k = 1, 2, suit la loi d'évolution suivante :

$$\alpha_{k}\rho_{k}\partial_{t}p_{k}-\rho_{k}^{2}p_{k}^{\prime}u_{2}\partial_{x}\alpha_{k}+\alpha_{k}\rho_{k}u_{k}\partial_{x}p_{k}+\rho_{k}^{2}p_{k}^{\prime}\partial_{x}\alpha_{k}u_{k}=0$$

• On remplace le terme de pression par la pression de relaxation π_k , k = 1, 2:

$$\alpha_k \rho_k \partial_t \pi_k - a_k^2 u_2 \partial_x \alpha_k + \alpha_k \rho_k u_k \partial_x \pi_k + a_k^2 \partial_x \alpha_k u_k = \lambda \alpha_k \rho_k (p_k - \pi_k)$$

On propose le système de relaxation suivant, pour x ∈ ℝ, t > 0,

$$\begin{aligned} \partial_{t}\alpha_{1} + u_{2}\partial_{x}\alpha_{1} &= 0, \\ \partial_{t}(\alpha_{1}\rho_{1}) + \partial_{x}(\alpha_{1}\rho_{1}u_{1}) &= 0, \\ \partial_{t}(\alpha_{1}\rho_{1}u_{1}) + \partial_{x}(\alpha_{1}\rho_{1}u_{1}^{2} + \alpha_{1}\pi_{1}) - \pi_{1}\partial_{x}\alpha_{1} &= 0, \\ \partial_{t}(\alpha_{1}\rho_{1}\pi_{1}) + \partial_{x}(\alpha_{1}\rho_{1}\pi_{1}u_{1}) + a_{1}^{2}\alpha_{1}u_{1}) - a_{1}^{2}u_{2}\partial_{x}\alpha_{1} &= \lambda\alpha_{1}\rho_{1}(\rho_{1} - \pi_{1}), \\ \partial_{t}(\alpha_{2}\rho_{2}) + \partial_{x}(\alpha_{2}\rho_{2}u_{2}) &= 0, \\ \partial_{t}(\alpha_{2}\rho_{2}u_{2}) + \partial_{x}(\alpha_{2}\rho_{2}u_{2}^{2} + \alpha_{2}\pi_{2}) + \pi_{1}\partial_{x}\alpha_{1} &= 0, \\ \partial_{t}(\alpha_{2}\rho_{2}\pi_{2}) + \partial_{x}(\alpha_{2}\rho_{2}\pi_{2}u_{2} + a_{2}^{2}\alpha_{2}u_{2}) + a_{2}^{2}u_{2}\partial_{x}\alpha_{1} &= \lambda\alpha_{2}\rho_{2}(\rho_{2} - \pi_{2}), \end{aligned}$$

• $\lim_{\lambda \to +\infty} \pi_k = \rho_k \operatorname{ssi} a_k > \max_{\rho_k} [\rho_k c_k(\rho_k)], \quad k = 1, 2$

Notation contractée

$$\partial_t \mathbf{U} + \partial_x \mathbf{F}(\mathbf{U}) + \mathbf{C}(\mathbf{U}) \partial_x \mathbf{U} = \mathbf{0}, \quad x \in \mathbb{R}, \ t > \mathbf{0}$$

Approche par relaxation - Problème de Riemann

Structure de la solution du problème de Riemann

- Valeurs propres : $\lambda_0 = u_2(LD), \lambda_1^r = u_1 a_1 \tau_1(LD), \lambda_2^r = u_1 + a_1 \tau_1(LD), \lambda_3^r = u_2 a_2 \tau_2(LD), \lambda_4^r = u_2 + a_2 \tau_2(LD)$ et $\lambda_5^r = u_1$ (LD)
- Le système est hyperbolique dès que $u_1 \pm a_1 \tau_1
 eq u_2$
- Soit $\mathbf{U}_g, \mathbf{U}_d$ deux états constants. Le PR pour $x \in \mathbb{R}, \ t > 0$, s'écrit

Résolution

- Résolution itérative : coûteuse et compliquée
- Estimation des termes non conservatifs : deux méthodes proposées

Fraction α_1

Tube à choc

Robinet de Ransom

Robinet de Ransom

- 2 Couplage interfacial de modèles en dynamique des gaz
- Couplage interfacial avec terme source mesure
- Relaxation et approximation numérique d'un modèle bifluide à deux pressions
- Couplage interfacial d'un modèle bifluide avec un modèle de drift-flux
 - Conclusion et perspectives

Couplage interfacial d'un modèle bifluide avec un modèle de drift-flux

Modèle bifluide à deux pressions avec termes sources : x < 0, t > 0,

$$\begin{cases} \partial_{t}\alpha_{1} + u_{2}\partial_{x}\alpha_{1} = \frac{\theta(\mathbf{u})}{\varepsilon^{2}}(p_{1} - p_{2}), \\ \partial_{t}(\alpha_{1}\rho_{1}) + \partial_{x}(\alpha_{1}\rho_{1}u_{1}) = 0, \\ \partial_{t}(\alpha_{1}\rho_{1}u_{1}) + \partial_{x}(\alpha_{1}\rho_{1}u_{1}^{2} + \alpha_{1}p_{1}) - p_{1}\partial_{x}\alpha_{1} = \alpha_{1}\rho_{1}f_{1}(\mathbf{u}) + \frac{\lambda(\mathbf{u})}{\varepsilon^{2}}|u_{2} - u_{1}|(u_{2} - u_{1}), \\ \partial_{t}(\alpha_{2}\rho_{2}) + \partial_{x}(\alpha_{2}\rho_{2}u_{2}) = 0, \\ \partial_{t}(\alpha_{2}\rho_{2}u_{2}) + \partial_{x}(\alpha_{2}\rho_{2}u_{2}^{2} + \alpha_{2}p_{2}) + p_{1}\partial_{x}\alpha_{1} = \alpha_{2}\rho_{2}f_{2}(\mathbf{u}) - \frac{\lambda(\mathbf{u})}{\varepsilon^{2}}|u_{2} - u_{1}|(u_{2} - u_{1}). \end{cases}$$

• Modèle de drift-flux : x > 0, t > 0,

$$\begin{cases} \partial_t \tilde{\rho} + \partial_x (\tilde{\rho} \tilde{u}) = 0, \\ \partial_t (\tilde{\rho} \tilde{Y}) + \partial_x (\tilde{\rho} \tilde{u} \tilde{Y} + \tilde{\rho} \tilde{Y} (1 - \tilde{Y}) \tilde{u}_r) = 0, \\ \partial_t (\tilde{\rho} \tilde{u}) + \partial_x (\tilde{\rho} \tilde{u}^2 + \tilde{\rho} + \tilde{\rho} \tilde{Y} (1 - \tilde{Y}) \tilde{u}_r^2) = \tilde{\rho} (1 - \tilde{Y}) \tilde{f}_1(\tilde{\mathbf{u}}) + \tilde{\rho} \tilde{Y} \tilde{f}_2(\tilde{\mathbf{u}}). \end{cases}$$

La loi de pression $\tilde{\rho} \equiv \tilde{\rho}(\tilde{\rho})$ est donnée par la résolution du sous-système :

$$\begin{cases} \tilde{\rho} = \tilde{\rho}_1(\tilde{\rho}(1-\tilde{Y})/(1-\tilde{\alpha})), \\ \tilde{\rho}_1(\tilde{\rho}(1-\tilde{Y})/(1-\tilde{\alpha})) = \tilde{\rho}_2(\tilde{\rho}\,\tilde{Y}/\tilde{\alpha}), \quad (\tilde{\rho},\tilde{\alpha}) \in (0,+\infty) \times (0,1) \end{cases}$$

Le système est fermé par la loi de drift $\tilde{u}_r = \tilde{u}_2 - \tilde{u}_1 = \tilde{\Phi}(\tilde{\mathbf{u}})$.

Dérivation du modèle de drift-flux

Théorème

Supposons que nous soyons dans le régime $\epsilon \to 0^+$. Alors les solutions du modèle bifluide à deux pressions vérifient, à $\mathscr{O}(\epsilon^2)$ près, le système d'équations suivant

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0, \\ \partial_t (\rho Y) + \partial_x (\rho u Y + \rho Y (1 - Y) u_r) = 0, \\ \partial_t (\rho u) + \partial_x (\rho u^2 + \rho + \rho Y (1 - Y) u_r^2) = \rho (1 - Y) f_1(\mathbf{v}) + \rho Y f_2(\mathbf{v}), \end{cases}$$

avec $|u_r| u_r = \varepsilon^2 \frac{\rho Y (1 - Y)}{\lambda(\mathbf{v})} \left(f_2(\mathbf{v}) - f_1(\mathbf{v}) + \left(\frac{1}{\rho_1} - \frac{1}{\rho_2} \right) \left(\rho (1 - Y) f_1(\mathbf{v}) + \rho Y f_2(\mathbf{v}) \right) \right)$ et

$$\begin{cases} \rho = \rho_1 (\rho (1 - Y) / (1 - \alpha_2)), \\ \rho_1 (\rho (1 - Y) / (1 - \alpha_2)) = \rho_2 (\rho Y / \alpha_2). \end{cases}$$

Principe

Ecriture du modèle bifluide en variables de mélange

$$\begin{array}{ll} \rho = \alpha_1 \rho_1 + \alpha_2 \rho_2, & \rho \, u = \alpha_1 \rho_1 \, u_1 + \alpha_2 \rho_2 \, u_2, & \rho \, Y = \alpha_2 \rho_2, \\ u_r = u_2 - u_1, & \rho = \alpha_1 \rho_1 + \alpha_2 \rho_2, & \rho_r = \rho_2 - \rho_1, \end{array}$$

• Chapman-Enskog sur *u_r* et *p_r* et passage en coordonnées Lagrangiennes 25/30

Colonne à bulles avec $\varepsilon^2 = 10^{-1}$

Colonne à bulles avec $\varepsilon^2 = 10^{-1}$

Colonne à bulles avec $\varepsilon^2 = 10^{-3}$

Colonne à bulles avec $\varepsilon^2 = 10^{-3}$

Bibliographie

Couplage interfacial de modèles

- A. Ambroso, C. Chalons, F. Coquel, E. Godlewski, F. Lagoutière, P.-A. Raviart, N. Seguin, *The Coupling of Homogeneous Models for Two-Phase Flows*, Int. J. Finite Volumes, 4 (1), 1–39, 2007.
- J.-M. Hérard, O. Hurisse, *Couplage interfacial d'un modèle homogène et d'un modèle bifluide*, H-I81-2006-04691-FR, EDF-DRD, 2006.

Approche par relaxation

- A. Ambroso, C. Chalons, F. Coquel, E. Godlewski, F. Lagoutière, P.-A. Raviart, N. Seguin, *A Relaxation Method for the Coupling of Systems of Conservation Laws*, Hyperbolic Problems : Theory, Numerics, Applications, Springer Berlin Heidelber, 947–954, 2008.
- C. Chalons, F. Coquel, Navier-Stokes Equations with Several Independent Pressure Laws and Explicit Predictor-Corrector Schemes, Numer. Math., 101 (3), 451–478, 2005.

Modèle bifluide à deux pressions

- T. Gallouët, J.-M. Hérard, N. Seguin, *Numerical Modeling of Two-Phase Using the Two-Fluid Two-Pressure Approach*, M3AS, 14 (5), 663–700, 2004.
- D.W. Schwendeman, C. W. Wahle, A. K. Kapila, *The Riemann Problem and a High-Resolution Godunov Method for a Model of Compressible Two-Phase Flow*, J. Comput. Phys., 212, 490–526, 2006.

Introduction générale

- 2 Couplage interfacial de modèles en dynamique des gaz
- Couplage interfacial avec terme source mesure
- Relaxation et approximation numérique d'un modèle bifluide à deux pressions
- Couplage interfacial d'un modèle bifluide avec un modèle de drift-flux

Conclusion et perspectives

Travaux et avancées

- Mise en évidence des avantages et inconvénients de la condition de *couplage* par flux et des différentes conditions de *couplage par état*
- Contrôle des pertes de conservation par l'ajout d'un terme source mesure restauré numériquement de manière exacte par l'approche par relaxation
- Développement d'un schéma par relaxation pour le modèle bifluide
- Dérivation formelle du modèle de drift-flux à partir du modèle bifluide et réalisation du couplage bifluide/drift

Perspectives et applications

- Terme source mesure : couplage milieu libre/milieu poreux
- Extension de l'approche par relaxation au modèle avec énergie
- Développement dans un cadre industriel d'un coupleur *Exemple :* couplage interfacial CATHARE-FLICA

Couplage de modèles d'écoulements diphasiques

Problème de couplage

$$\begin{array}{l} \text{HRM, } x < 0, t > 0 \\ \begin{array}{l} \partial_t \rho + \partial_x (\rho u) = 0, \\ \partial_t (\rho u) + \partial_x (\rho u^2 + p_E) = 0, \\ \partial_t (\rho E) + \partial_x (\rho E u + p_E u) = 0, \end{array} \end{array} \qquad \begin{array}{l} \text{HRM, } x > 0, t > 0 \\ \begin{array}{l} \partial_t m, x > 0, t > 0 \\ \partial_t m, x = 0 \end{array} \\ \begin{array}{l} \begin{array}{l} \partial_t m, x > 0, t > 0 \\ \partial_t m, x > 0, t > 0 \\ \partial_t m, x = 0 \end{array} \\ \begin{array}{l} \begin{array}{l} \partial_t m, x > 0, t > 0 \\ \partial_t m, x > 0, t > 0 \\ \partial_t m, x > 0, t > 0 \\ \partial_t p + \partial_x (m u) = \lambda (m_1^*(\rho) - m_1), \\ \partial_t \rho + \partial_x (\rho u) = 0, \\ \partial_t (\rho E) + \partial_x (\rho E u + p_R u) = 0, \end{array} \\ \begin{array}{l} \begin{array}{l} \partial_t p, x > 0, t > 0 \\ \partial_t p + \partial_x (\rho u) = 0, \\ \partial_t (\rho E) + \partial_x (\rho E u + p_R u) = 0. \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} x = 0 \end{array} \end{array} \\ \end{array}$$

- z : taux de présence de la phase 1 et $m_1 = z\rho_1$ masse partielle de la phase 1
- *ρ_k*, *u_k*, *ε_k* : densité, vitesse et énergie interne de la phase *k* = 1,2, avec *u*₁ = *u*₂
 Variables de mélance

$$\begin{cases} \rho = z\rho_1 + (1-z)\rho_2, \\ \rho\varepsilon = z\rho_1\varepsilon_1 + (1-z)\rho_2\varepsilon_2, \\ \rho = z\rho_1(\rho_1,\varepsilon_1) + (1-z)\rho_2(\rho_2,\varepsilon_2). \end{cases}$$

- **HEM** : Homogeneous Equilibrium Model, $p_E \equiv p_E(\rho, \varepsilon)$
- **HRM** : Homogeneous Relaxation Model, $p_R \equiv p_R(\rho, \varepsilon, m_1)$ avec $p_R(\rho, \varepsilon, m_1^*) \equiv p_E(\rho, \varepsilon)$ où m_1^* est la masse partielle de la phase 1 à saturation

Couplage de modèles d'écoulements diphasiques Conditions de couplage

Approche globalement conservative : couplage par flux

Modèle père pour $x \in \mathbb{R}, t > 0$:

$$\begin{cases} \partial_t m_1 + \partial_x (m_1 u) = \mu(x)(m_1^*(\rho) - m_1), \\ \partial_t \rho + \partial_x (\rho u) = 0, \\ \partial_t (\rho u) + \partial_x (\rho u^2 + \rho) = 0, \\ \partial_t (\rho E) + \partial_x (\rho E + \rho) u = 0, \end{cases} \quad \text{où} \quad \rho = \rho^R(\rho, \varepsilon, m_1).$$

avec

$$\mu(x) = egin{cases} +\infty & ext{si} & x < 0, \ \lambda & ext{si} & x > 0. \end{cases}$$

Approche non conservative : couplage par état

- en x = 0, le modèle HEM est complété par une condition de bord de type Dirichlet donnée par les trois dernières composantes de u^R(0⁺, t);
- en x = 0, le modèle HRM est complété par une condition de bord de type Dirichlet donnée par le vecteur (m₁^{*}(ρ(0⁻, t)), u^E(0⁻, t)).

Couplage de modèles d'écoulements diphasiques

Profile uniforme en pression : densité

Couplage de modèles d'écoulements diphasiques

Profile uniforme en pression : fraction de vapeur

Couplage interfacial avec terme source mesure

Calcul d'un terme source optimal

Soit la fonctionnelle convexe

$$\mathscr{J}: \mathscr{M}_{\rho u} \in \mathscr{D}_{adm} \mapsto \mathscr{J}(\mathscr{M}_{\rho u}) \in \mathbb{R}.$$

 On résout à chaque itération en temps le Problème d'Optimisation sous Contraintes suivant :

Trouver un terme source optimal $\mathscr{M}_{\rho u}^{o} \in \mathscr{D}_{adm}$ tel que $\mathscr{J}(\mathscr{M}_{\rho u}^{o}) \leq \mathscr{J}(\mathscr{M}_{\rho u}), \ \forall \ \mathscr{M}_{\rho u} \in \mathscr{D}_{adm}$

Exemple : contrainte de perte de conservation maximale via M^{tol}_{ou}

$$\mathscr{J}(\mathscr{M}_{\rho u}) = \kappa \left(\left| \mathscr{M}_{\rho u} \right| - \mathscr{M}_{\rho u}^{\text{tol}} \right)_{+}^{2} + \left(\mathscr{M}_{\rho u} - \mathscr{M}_{\rho u}^{\mathsf{T}} \right)^{2}, \quad \mathscr{M}_{\rho u} \in \mathscr{D}_{\text{adm}},$$

où on a noté

$$a_+=egin{cases} a, & ext{si} \; a>0,\ 0, & ext{sinon}. \end{cases}$$

- Paramètre κ ≫ 1 donné et fixé
- $\mathcal{M}_{\rho u}^{T}$: poids correspondant à condition de couplage par état en (ρ, u)

Couplage interfacial avec terme source mesure

Cas du 2-choc pur avec $\mathcal{M}_{\rho u}^{tol} = 0.275$

Couplage interfacial d'un modèle bifluide avec un modèle de drift

Technique du modèle père (\equiv modèle bifluide à deux pressions)

Première étape

La solution discrète du modèle père $\mathbf{u}_{j+1/2}^n$ coïncide avec la solution du modèle bifluide pour *j* < 0 et avec le relèvement de la solution de drift :

$$\mathbf{u}_{j+1/2}^n = \mathscr{R}\tilde{\mathbf{u}}_{j+1/2}^n, \quad j > 0.$$

Deuxième étape

 $\mathbf{u}_{j+1/2}^n, j \in \mathbb{Z} \to M$ éthode avec décentrement des termes sources $\to R$ elaxation partielle des pressions $\to P$ rise en compte de la gravité $\to \mathbf{u}_{i+1/2}^{n+1-}, j \in \mathbb{Z}$

Troisième étape

Solutions discrètes des deux modèles au temps tⁿ⁺¹ données par

$$\begin{split} & \boldsymbol{u}_{j+1/2}^{n+1} = \boldsymbol{u}_{j+1/2}^{n+1-}, & j < 0, \\ & \begin{pmatrix} (\tilde{\alpha}_1)_{j+1/2}^{n+1-} = (\alpha_1)_{j+1/2}^{n+1-}, \\ (\tilde{\alpha}_1\tilde{\rho}_1)_{j+1/2}^{n+1-} = (\alpha_1\rho_1)_{j+1/2}^{n+1-}, \\ (\tilde{\alpha}_2\tilde{\rho}_2)_{j+1/2}^{n+1-} = (\alpha_2\rho_2)_{j+1/2}^{n+1-}, \\ (\tilde{\alpha}_1\tilde{\rho}_1\tilde{u}_1)_{j+1/2}^{n+1-} + (\tilde{\alpha}_2\tilde{\rho}_2\tilde{u}_2)_{j+1/2}^{n+1-} = (\alpha_1\rho_1u_1)_{j+1/2}^{n+1-} + (\alpha_2\rho_2u_2)_{j+1/2}^{n+1-}, \\ (\tilde{u}_r)_{j+1/2}^n = \Phi(\tilde{\boldsymbol{u}}_{j+1/2}^{n+1-}), \end{split}$$

Couplage interfacial d'un modèle bifluide avec un modèle de drift

Méthode avec décentrement des termes sources

• Soit la variable χ définie de la manière suivante :

$$\partial_{x} \chi = \frac{\lambda(\mathbf{u}) |u_{2} - u_{1}| (u_{1} - u_{2})}{\alpha_{1} \rho_{1} (u_{1} - u_{2})} = \frac{\lambda(\mathbf{u}) |u_{2} - u_{1}|}{\alpha_{1} \rho_{1}}$$

et assujétie à l'équation de transport : $\partial_t \chi + u_2 \partial_x \chi = 0$

• On cherche à résoudre le système suivant :

$$\begin{cases} \partial_t \alpha_1 + u_2 \partial_x \alpha_1 = 0, \quad x \in \mathbb{R}, \ t > 0, \\ \partial_t (\alpha_1 \rho_1) + \partial_x (\alpha_1 \rho_1 u_1) = 0, \\ \partial_t (\alpha_1 \rho_1 u_1) + \partial_x (\alpha_1 \rho_1 u_1^2 + \alpha_1 \rho_1) - \rho_1 \partial_x \alpha_1 + \frac{m}{\varepsilon^2} \partial_x \chi = 0, \\ \partial_t (\alpha_2 \rho_2) + \partial_x (\alpha_2 \rho_2 u_2) = 0, \\ \partial_t (\alpha_2 \rho_2 u_2) + \partial_x (\alpha_2 \rho_2 u_2^2 + \alpha_2 \rho_2) + \rho_1 \partial_x \alpha_1 - \frac{m}{\varepsilon^2} \partial_x \chi = 0, \\ \partial_t (\alpha_2 \rho_2 \chi) + \partial_x (\alpha_2 \rho_2 \chi u_2) = 0. \end{cases}$$

- m = α₁ρ₁(u₁ u₂) : débit de masse relatif et invariant de Riemann pour l'onde de couplage de vitesse u₂ (champ LD)
- Résolution du système via l'approche par relaxation