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Autonomous navigation in unknown dynamic environment

Move autonomously in an unknown environment among moving
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Problem Definition

Constraints

The navigation algorithm must take into account that:
The environment changes dynamically

– limited time to take decisions
– models and decisions must be continuously updated

The current state of the environment is uncertain
– represent the limits of information
– represent the quality of information

The future state is of the environment is uncertain
– predict
– represent the quality of information
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Contribution

Thesis Contribution

Navigation algorithms based on the risk of collision

Part I: Reactive method

– dynamic occupancy grid (BOF, [Coué, 03])
– probabilistic velocity obstacles (VO, [Shiller, 98])

Part II: Motion Planning based on target-tracking

– mapping and target tracking ([Vu, 06])
– RRTs ([LaValle, 99])
– Partial Motion Planning ([Fraichard, 05])

Part III: Motion Planning based on typical patterns

– Hidden Markov Models ([Vasquez, 07])
– Gaussian Processes ([Tay, 07])
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Outline

1 Introduction
Problem Definition
Contribution

2 Part I: Reactive Navigation
State of The Art
Contribution
Results

3 Part II: Motion Planning based on target-tracking
State of the Art
Contribution
Results

4 Part III: MP with Typical Patterns
Gaussian Processes representation
Hidden Markov Models representation
Results

5 Conclusions
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State of The Art

Reactive Navigation

Reactive Navigation Methods: only the next control is computed
at each step.

Potential Fields [Khatib,85]

Vector Field Histogram [Borenstein, 91]

Curvature Velocity [Simmons, 96]

Lane Curvature Velocity [Simmons, 98]

Dynamic Window [Fox, 97]

Nearness Diagram [Montano,00]

Obstacle Restriction [Minguez,05]

Inevitable Collision States [Fraichard, 03]

Velocity Obstacles [Shiller, 98]

Dynamic Object Velocity [Montano, 05]

DYNAMIC ENVIRONMENT
PERCEPTION UNCERTAINTY
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Contribution

Related Work
O

vo

(xo, yo)

vr

(xr, yr)

O
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vr

(xr, yr)

−vo
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r

BOF VO

The Bayesian Occupancy Filter [Coué, 03]

The probability of occupancy in the space

A distribution function over a discrete set of velocities

Velocity Obstacles [Shiller, 98]

Geometric method

Tells if a linear velocity of the robot is in collision with moving
obstacles
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Contribution

Probabilistic Velocity Obstacles

Compute the risk of collision for linear velocities of the robot

with a cell-to-cell approach

using a clustered grid

P(tcoll ∈ (t0, t]|vr , vn) = max
o∈SOt

Po(Occ) · Po(vn)

P(tcoll ∈ (t0, t]|vr ) = 1−
N
∏

n=1

(1− Pcoll (vr , vn))

Navigation function dependent on the risk of collision

Tsafe(v) = ǫ+ Tbrake(v)

K ∗(v) = K (v , goal)·((1.0−P(tcoll (v) ∈ (t0, t0+kτ ]))·
kτ

maxv (Tsafe(v))
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Results

Results: simulation setup

Holonome Robot

Distance sensor with limited range
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Results

Results: cell-to-cell VS clustering

BOF P(tcoll ∈ (0, 3]) P(tcoll ∈ (0, t])
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Results

Results

scenario perfect vel uncertainty + limited range
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Results

Conclusions

Complexity

cell-to-cell: depends on the size of the grid, not on the
number of obstacles

computation is parallelizable for each (vr , vn)

Contributions

computation of the risk of collision for linear velocities from a
dynamic occupancy grid

uncertainty rising from occlusion, limited range, velocity
estimation uncertainty directly influences the choice of the
next control
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Results

Conclusions

Limitations

One-step ahead reasoning

efficiency issues

safety issues
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State of the Art

Motion planning in unknown dynamic environment

Path planning approaches: compute a complete path

Static or Dynamic, but deterministic environment

Combinatorial Sampling Based

RoadMaps [Canny,88] Probabilistic RM [Kavraki,95]

Cell decomposition [Schwartz,83] Discretized Cfree [Brooks,85]

Potential Fields [Khatib,80] Randomized PF [Barraquand,90]

Ariadne’s clew [Bessière,93]

RRTs [LaValle,99]

Unknown but Static environment

MDP Anytime-RRTs [Ferguson,06]

POMDP [Foka, 07] Particle-RRTs [Melchior,07]
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State of the Art

Motion planning in unknown dynamic environment

D* [Stentz, 95]

computes the best path with the current knowledge

execution time depends on the dimensions of the space

Hybrid methods: plan-react-replan

static environment is known

time for planning and replanning is not limited

Partial Motion Planning [Fraichard, 03]

gives a partial safe path at anytime

satisfies real-time constraints

deterministic environment
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State of the Art

Comparison

Environment Configuration Time
Sensing Prediction Sensing Prediction Constraints

Complete D* + + - - -
MDP - + - + -
POMDP + + + + -

Sampling Anytime-RRTs - +- - - -
Based Particle-RRTs + - - + -

PMP - +- - - +
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State of the Art

Motivation

Environment Configuration Time
Sensing Prediction Sensing Prediction Constraints

Complete D* + + - - -
MDP - + - + -
POMDP + + + + -

Sampling Anytime-RRTs - +- - - -
Based Particle-RRTs + - - + -

PMP - +- - - +

Needed Properties + + - - +

PMP → real-time constraints

Complete methods
→ Sampling Based Method

are not suitable in dynamic environment

RRT → incremental
→ non-holonomic constraints

Integrate and update uncertain information in the decision process
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Contribution

Rapidly-exploring Random Trees

1 Each configuration q is deterministically known: q ∈ Cfree or q ∈ Cobs

2 A random point p ∈ Cfree is chosen

3 The nearest node of the current tree is expanded toward p

4 The search ends when the goal configuration is in the tree or it continues till
some other condition is satisfied

5 The path is retrieved from the goal to the root
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Contribution

Probabilistic RRTs

1 Each configuration q has a probability of collision Pcoll (q)

2 A random point p is chosen

3 The node with the most likely path is expanded toward p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 The search ends when the available time is out

5 The path is retrieved from the most likely node to the root
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Contribution

Probability of collision

Pcoll (q): risk of collision of q = (s, t), state s at time t

Pcoll(q) = Pcs(s) + (1− Pcs(s)) · Pcd(s, t) =

Pocc (s) + (1− Pcs(s)) ·

(

1−
O
∏

o=1

(1− Pcd(s, t, o))

)

Pcoll (π): risk of collision of path π from root q0 to node qN

Pcoll (π) = 1−
N
∏

i=0

(1− Pcoll(qi ))

Lπ(qN): probability of success of path π

Lπ(qN) = 1− Pcoll (π)
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Contribution

Most likely node, most likely path

0
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0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lπ(qN ) = 1− Pcoll (π) L̃π(qN ) = N
√

Lπ(qN ) wqN
=

L̃π(qN )
dist(q0,qN ,Goal)

A weight is computed for each partial path:

1 The likelihood is normalized

2 The estimated lenght of the path to Goal is considered

3 The path with the highest weight is chosen
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Contribution

Updating the tree

environment is explored
→

update the tree and the path
environment is dynamic with new information

Partial Motion Planning [Fraichard, 05]

real-time constraints
safety issues (no ICS) → deterministic prediction

up to infinite time

Chiara Fulgenzi Autonomous navigation in dynamic uncertain environment 25/48



Introduction Reactive Navigation Motion Planning based on target-tracking MP with Typical Patterns Conclusions

Contribution

Updating the tree

Given the path chosen at the previous step, π(qN) = {q0...qN}:

1 The robot moves to q1

2 The search tree is pruned: q1 is the new root

3 The tree is updated according to the new information

4 The tree is grown in the remaining time

5 A new path is chosen
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Contribution

Probabilistic RRTs: example
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Contribution

PRRTs with short term prediction

0

0, 1

0, 2

0, 3

0, 4

0, 5

0, 6

0, 7

0, 8

0, 9

1

[Vu,07]
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Results

PP-RRTs with target tracking

[click me]
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Results

Probabilistic RRTs with target tracking
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Results

Probabilistic RRTs with target tracking: results

Target Tracking: ∼ 10Hz PRRT: 2Hz
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Results

Probabilistic RRTs with target tracking
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Results

Probabilistic RRTs with target tracking
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Results

Conclusions

Contributions

Probabilistic RRTs:

Static environment uncertainty → occupancy grid
Velocity estimation uncertainty → target-tracking based

On-line information and decision updating

Target-tracking based prediction

PROs CONs

low a priori information short-term
reactive to behavior changes linear
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Typical Patterns

Given an observed environment

Moving objects follow typical patterns

Patterns are learned off-line and modeled with HMMs or GPs

Based on observations, probabilistic prediction is performed

Prediction

Takes into account the structure of the environment

Uncertainty is limited around typical patterns
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Gaussian Processes representation

Gaussian Processes for Pattern Modelling [Tay, 2007]

A Typical Path → D dimensional Gaussian
D = # of points observed along a path

Dataset Learned GP means

P(Om) =
K
∑

k=1

lk,Om
P(Om|k)

Gaussian mixture
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Gaussian Processes representation

PPRRT with Gaussian Processes

Pcd(q,Om, k) collision with obstacle Om in pattern k

Pcd(q,Om) =
K
∑

k=1

lk,Om
· Pπ(q,Om, k)

Tree update

The weight of each Gaussian component lk,Om
is updated.
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Hidden Markov Models representation

Hidden Markov Models for Pattern Modelling [Vasquez, 07]

HMM: Bayesian filter for discrete state-space approach

A Typical Path → a directed graph
nodes → discrete states edges → transition probabilities

A HMM-graph represents all typical motions toward 1 goal

States are given by position, velocity and intended goal

Discretization is uniform or learned on the dataset

Transition probabilities are learned
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Hidden Markov Models representation

Hidden Markov Models based prediction

Discrete prediction

obtained letting the graph evolve under the transition probabilities

P(St+k |Ot) =
∑

St+k−1

P(St+k |St+k−1)P(St+k−1|Ot)
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Results

Simulation Results based on GPs

Dataset Simulated env Learned GP means [Tay, 07]

Results for 100 goals reached; average obtained on 10 iterations.

# obsts # colls with vr 6= 0 % time
0 0 0 1
4 1.5 0 1.14
6 2.3 0 1.43
8 3.8 0 1.65
10 6.3 0 1.79
12 7.4 0 1.87

[click me]
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Results

Simulation results based on HMMs
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Results for 100 goals reached; average obtained on 10 iterations.

# obst # colls with vr 6= 0 % time
0 0 0 1
4 0.2 0 1.33
6 2 0 1.37
8 3.2 0 1.60
10 6 0 1.75
12 7 0 1.84
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Results

Comparison

HMM GP
Performance + +
Velocity representation discrete continuous

Prediction discrete continuous
Prediction Update complex simple

Chiara Fulgenzi Autonomous navigation in dynamic uncertain environment 44/48



Introduction Reactive Navigation Motion Planning based on target-tracking MP with Typical Patterns Conclusions

Conclusions

Contributions:

Reactive Method

Partial Probabilistic RRTs:

Target tracking based algorithm
Typical patterns based prediction

Properties:

Probabilistic uncertainty of environment perception and
prediction is meaningfully integrated into the navigation
strategy

Risk of collision is updated on-line with incoming estimation

Known typical patterns

allow more reliable and non-linear predictions
more complex robot behaviors
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Perspectives

Future work:

From simulator to tests on the real robot

Short and medium-term prediction used together in one
framework (off-board platform)
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Perspectives

Perspectives:

Use the probabilistic framework to perform reflexive prediction

Multiple robot coordination
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