Autonomous navigation in dynamic uncertain environment using probabilistic models of perception and collision risk prediction

Chiara Fulgenzi

INRIA Rhône-Alpes, Grenoble France

PhD thesis presentation June 8, 2009

Thesis Advisor Co-advisor Christian Laugier Anne Spalanzani

Introduction •0000 Reactive Navigation

Motion Planning based on target-tracking

MP with Typical Patterns

Conclusions

Problem Definition

Autonomous navigation in unknown dynamic environment

Move autonomously in an unknown environment among moving vehicles or people

Introduction •0000 Reactive Navigation

MP with Typical Patterns

Conclusions

Problem Definition

Autonomous navigation in unknown dynamic environment

Move autonomously in an unknown environment among moving vehicles or people

 Introduction
 Reactive Navigation
 Motion
 Planning based on target-tracking
 MP with Typical Patterns
 Conclusions

 0000
 00000000
 0000000
 0000000
 0000000

Problem Definition

Autonomous navigation in unknown dynamic environment

Static environment is explored:

- finite range
- sensor errors and accuracy
- hidden zones

Moving obstacles are detected and tracked:

- model uncertainty and errors
- model validity in time
- new obstacles entering the scene

 Introduction
 Reactive Navigation
 Motion Planning based on target-tracking
 MP with Typical Patterns
 Conclusions

 0●000
 00000000
 00000000
 0000000
 0000000

Problem Definition

Autonomous navigation in unknown dynamic environment

Static environment is explored:

- finite range
- sensor errors and accuracy
- hidden zones

Moving obstacles are detected and tracked:

- model uncertainty and errors
- model validity in time
- new obstacles entering the scene

Introduction	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
00000				

Problem Definition

Autonomous navigation in unknown dynamic environment

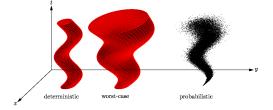
Information about the environment is incomplete and uncertain in both time and space:

- Configuration Sensing
- Configuration Prediction
- Environment Sensing
- Environment Prediction

Introduction	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
0000				

Problem Definition

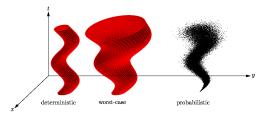
Autonomous navigation in unknown dynamic environment


Information about the environment is incomplete and uncertain in both time and space:

- Configuration Sensing
- Configuration Prediction
- Environment Sensing
- Environment Prediction

Problem Defin				
Introduction 000●0	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions

The navigation algorithm must take into account that:


- The environment changes dynamically
 - limited time to take decisions
 - models and decisions must be continuously updated
- The current state of the environment is uncertain
 - represent the limits of information
 - represent the quality of information
- The future state is of the environment is uncertain
 - predict
 - represent the quality of information

Problem Defin				
Introduction 000●0	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions

The navigation algorithm must take into account that:

- The environment changes dynamically
 - limited time to take decisions
 - models and decisions must be continuously updated
- The current state of the environment is uncertain
 - represent the limits of information
 - represent the quality of information
- The future state is of the environment is uncertain
 - predict
 - represent the quality of information

Introduction ○○○○●	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
Contribution				
Thesis C	Contribution			

Navigation algorithms based on the risk of collision

- Part I: Reactive method
 - dynamic occupancy grid (BOF, [Coué, 03])
 - probabilistic velocity obstacles (VO, [Shiller, 98])
- Part II: Motion Planning based on target-tracking
 - mapping and target tracking ([Vu, 06])
 - RRTs ([LaValle, 99])
 - Partial Motion Planning ([Fraichard, 05])
- Part III: Motion Planning based on typical patterns
 - Hidden Markov Models ([Vasquez, 07])
 - Gaussian Processes ([Tay, 07])

Introduction	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
00000	0000000	000000000000000000000000000000000000000	000000	

Outline

- Introduction
 - Problem Definition
 - Contribution
- 2 Part I: Reactive Navigation
 - State of The Art
 - Contribution
 - Results
- ③ Part II: Motion Planning based on target-tracking
 - State of the Art
 - Contribution
 - Results
- Part III: MP with Typical Patterns
 - Gaussian Processes representation
 - Hidden Markov Models representation
 - Results

Conclusions

Introduction	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
	0000000			
State of The Ar	t			

Reactive Navigation

Reactive Navigation Methods: only the next control is computed at each step.

Potential Fields [Khatib,85]	
	Vector Field Histogram [Borenstein, 91]
Curvature Velocity [Simmons,	96]
	Lane Curvature Velocity [Simmons, 98]
Dynamic Window [Fox, 97]	
	Nearness Diagram [Montano,00]
Obstacle Restriction [Mingues	z,05]
	nevitable Collision States [Fraichard, 03]
Velocity Obstacles [Shiller, 98]
	Dynamic Object Velocity [Montano, 05]
DYNAMIC ENVIRONME	NT

PERCEPTION UNCERTAINTY

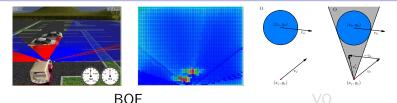
	Reactive	Navigation			
S	tate of The Art				
	ntroduction	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions

Reactive Navigation Methods: only the next control is computed at each step.

```
Inevitable Collision States [Fraichard, 03]
 Velocity Obstacles [Shiller, 98]
                            Dynamic Object Velocity [Montano, 05]
DYNAMIC ENVIRONMENT
```

Introduction	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
	0000000			
State of The A	\rt			

Reactive Navigation


Reactive Navigation Methods: only the next control is computed at each step.

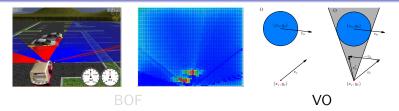
```
DYNAMIC ENVIRONMENT
```

PERCEPTION UNCERTAINTY

Introduction 00000	Reactive Navigation ○●0○○○○○	Motion Planning based on target-tracking	MP with Typical Patterns	Conclus
Contribution				

Related Work

The Bayesian Occupancy Filter [Coué, 03]


- The probability of occupancy in the space
- A distribution function over a discrete set of velocities

Velocity Obstacles [Shiller, 98]

- Geometric method
- Tells if a linear velocity of the robot is in collision with moving obstacles

Introduction 00000	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns
Contribution			

Related Work

The Bayesian Occupancy Filter [Coué, 03

- The probability of occupancy in the space
- A distribution function over a discrete set of velocities

Velocity Obstacles [Shiller, 98]

- Geometric method
- Tells if a linear velocity of the robot is in collision with moving obstacles

Introduction	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
	0000000			
6				

Probabilistic Velocity Obstacles

Compute the risk of collision for linear velocities of the robot

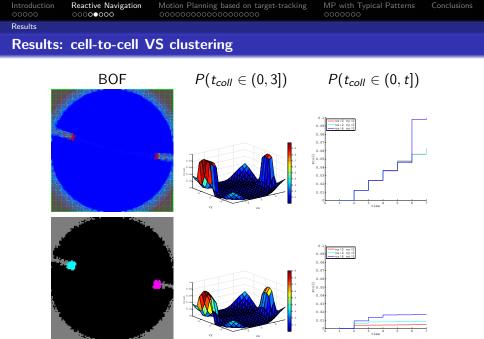
- with a cell-to-cell approach
- using a clustered grid

$$P(t_{coll} \in (t_0, t] | v_r, v_n) = \max_{o \in SO_t} P_o(Occ) \cdot P_o(v_n)$$

$$P(t_{coll} \in (t_0, t] | v_r) = 1 - \prod_{n=1}^{N} (1 - P_{coll}(v_r, v_n))$$

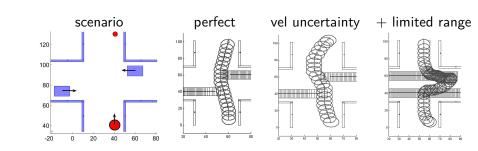
Navigation function dependent on the risk of collision

$$T_{safe}(v) = \epsilon + T_{brake}(v)$$


$$\mathsf{K}^*(v) = \mathsf{K}(v, \mathit{goal}) \cdot ((1.0 - \mathsf{P}(t_{\mathit{coll}}(v) \in (t_0, t_0 + k\tau])) \cdot \frac{k\tau}{\max_v(\mathcal{T}_{\mathit{safe}}(v))}$$

Introduction 00000	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
Results				
D				

Results: simulation setup


- Holonome Robot
- Distance sensor with limited range

Chiara Fulgenzi

Autonomous navigation in dynamic uncertain environment 12/48

Introduction 00000	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
Results				
Results				

Introduction 00000	Reactive Navigation ○○○○○○●○	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
Results				
Conclus	ions			

Complexity

- cell-to-cell: depends on the size of the grid, not on the number of obstacles
- computation is parallelizable for each (v_r, v_n)

Contributions

- computation of the risk of collision for linear velocities from a dynamic occupancy grid
- uncertainty rising from occlusion, limited range, velocity estimation uncertainty directly influences the choice of the next control

Introduction 00000	Reactive Navigation ○○○○○○○●	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
Results				
Conclus	ions			

Limitations

One-step ahead reasoning

- efficiency issues
- safety issues

Introduction 00000 Reactive Navigation

Motion Planning based on target-tracking

MP with Typical Patterns Conclusions

Outline

- Introduction
 - Problem Definition
 - Contribution
- Part I: Reactive Navigation
 - State of The Art
 - Contribution
 - Results
- 8 Part II: Motion Planning based on target-tracking
 - State of the Art
 - Contribution
 - Results
- 4 Part III: MP with Typical Patterns
 - Gaussian Processes representation
 - Hidden Markov Models representation
 - Results

Conclusions

Introd	

Reactive Navigation

Motion Planning based on target-tracking

MP with Typical Patterns C

Conclusions

State of the Art

Motion planning in unknown dynamic environment

Path planning approaches: compute a complete path

Static or Dynamic, but deterministic environment				
Combinatorial Sampling Based				
RoadMaps [Canny,88]	Probabilistic RM [Kavraki,95]			
Cell decomposition [Schwartz,83]	Discretized C_{free} [Brooks,85]			
Potential Fields [Khatib,80]	Randomized PF [Barraquand,90]			
Ariadne's clew [Bessière,93]				
RRTs [LaValle,99]				

Unknown but Static environment

MDP POMDP [Foka, 07] Anytime-RRTs [Ferguson,06] Particle-RRTs [Melchior,07]

Introduction	

Reactive Navigation

Motion Planning based on target-tracking

MP with Typical Patterns C

Conclusions

State of the Art

Motion planning in unknown dynamic environment

Path planning approaches: compute a complete path

Static or Dynamic, but deterministic environment				
Combinatorial Sampling Based				
RoadMaps [Canny, 88] Probabilistic RM [Kavraki, 95]				
Cell decomposition [Schwartz,83] Discretized C _{free} [Brooks,85]				
Potential Fields [Khatib,80] Randomized PF [Barraquand,90]				
Ariadne's clew [Bessière,93]				
	RRTs [LaValle,99]			

Unknown but Static environment				
MDP	Anytime-RRTs [Ferguson,06]			
POMDP [Foka, 07]	Particle-RRTs [Melchior,07]			

Introduction 00000 Reactive Navigation

MP with Typical Patterns Conclusions

State of the Art

Motion planning in unknown dynamic environment

D* [Stentz, 95]

- computes the best path with the current knowledge
- execution time depends on the dimensions of the space

Hybrid methods: plan-react-replan

- static environment is known
- time for planning and replanning is not limited

Partial Motion Planning [Fraichard, 03]

- gives a partial safe path at anytime
- satisfies real-time constraints
- deterministic environment

Introduction 00000	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
State of the A	rt			
Compar	ison			

		Enviro	onment	Configuration Time		Time
		Sensing	Prediction	Sensing	Prediction	Constraints
Complete	D*	+	+	-	-	-
	MDP	-	+	-	+	-
	POMDP	+	+	+	+	-
Sampling	Anytime-RRTs	-	+-	-	-	-
Based	Particle-RRTs	+	-	-	+	-
	PMP	-	+-	-	-	+

Introduction 00000	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
State of the Ar	t			
Motivat	ion			

		Enviro	onment	Config	guration	Time
		Sensing	Prediction	Sensing	Prediction	Constraints
Complete	D*	+	+	-	-	-
	MDP	-	+	-	+	-
	POMDP	+	+	+	+	-
Sampling	Anytime-RRTs	-	+-	-	-	-
Based	Particle-RRTs	+	-	-	+	-
	PMP	-	+-	-	-	+
Needed	Properties	+	+	-	-	+

PMP

 \rightarrow real-time constraints

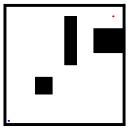
Complete methods

are not suitable in dynamic environment

RRT

 \rightarrow Sampling Based Method

 \rightarrow incremental

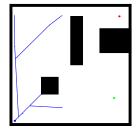

→ non-holonomic constraints

Integrate and update uncertain information in the decision process

Introduction Reactive Navigation Motion Planning based on target-tracking MP with Typical Patterns Conclus 00000 00000000 0000000000000000000000	Contribution			
		Reactive Navigation	MP with Typical Patterns	Conclusion

(1) Each configuration q is deterministically known: $q \in C_{free}$ or $q \in C_{obs}$

- A random point $p \in \mathcal{C}_{free}$ is chosen
- \Im The nearest node of the current tree is expanded toward ho

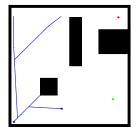

- The search ends when the goal configuration is in the tree or it continues till some other condition is satisfied
- The path is retrieved from the goal to the root

Introduction 00000	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
Contribution				

1 Each configuration q is deterministically known: $q \in C_{free}$ or $q \in C_{obs}$

2 A random point $p \in C_{free}$ is chosen

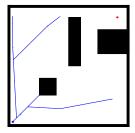
The nearest node of the current tree is expanded toward p



The search ends when the goal configuration is in the tree or it continues till some other condition is satisfied

The path is retrieved from the goal to the root

Introduction 00000	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
Contribution				


- **(1)** Each configuration q is deterministically known: $q \in C_{free}$ or $q \in C_{obs}$
- **2** A random point $p \in C_{free}$ is chosen
- The nearest node of the current tree is expanded toward p

- The search ends when the goal configuration is in the tree or it continues till some other condition is satisfied
- The path is retrieved from the goal to the root

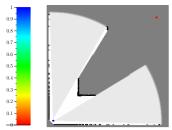
Introduction 00000	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
Contribution				

- **(1)** Each configuration q is deterministically known: $q \in C_{free}$ or $q \in C_{obs}$
- **2** A random point $p \in C_{free}$ is chosen
- The nearest node of the current tree is expanded toward p

- The search ends when the goal configuration is in the tree or it continues till some other condition is satisfied
- The path is retrieved from the goal to the root

Introduction 00000	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
Contribution				

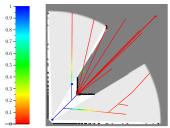
- **(1)** Each configuration q is deterministically known: $q \in C_{free}$ or $q \in C_{obs}$
- 2 A random point $p \in C_{free}$ is chosen
 - The nearest node of the current tree is expanded toward p



- The search ends when the goal configuration is in the tree or it continues till some other condition is satisfied
- The path is retrieved from the goal to the root

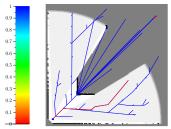
Introduction 00000	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
Contribution				
Probabi	listic RRTs			

(1) Each configuration q has a probability of collision $P_{coll}(q)$


- A *random* point *p* is chosen
- 3 The node with the most likely path is expanded toward p

- The search ends when the available time is out
- 5 The path is retrieved from the most likely node to the root

Introduction 00000	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
Contribution				
Probabil	istic RRTs			


- **(1)** Each configuration q has a probability of collision $P_{coll}(q)$
- A random point p is chosen
- The node with the most likely path is expanded toward p

- The search ends when the available time is out
- 5 The path is retrieved from the most likely node to the root

Introduction 00000	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
Contribution				
Probabil	istic RRTs			

- **(1)** Each configuration q has a probability of collision $P_{coll}(q)$
- A random point p is chosen
- The node with the most likely path is expanded toward p

- The search ends when the available time is out
- 5 The path is retrieved from the most likely node to the root

Introduction	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
		000000000000000000000000000000000000000		

Contribution

Probability of collision

$$P_{coll}(q)$$
: risk of collision of $q = (s, t)$, state s at time t

$$P_{coll}(q) = P_{cs}(s) + (1 - P_{cs}(s)) \quad \cdot \quad P_{cd}(s, t) = \\P_{occ}(s) + (1 - P_{cs}(s)) \quad \cdot \quad \left(1 - \prod_{o=1}^{O} (1 - P_{cd}(s, t, o))\right)$$

 ${\cal P}_{\it coll}(\pi)$: risk of collision of path π from root q_0 to node q_N

$$P_{coll}(\pi) = 1 - \prod_{i=0}^{N} (1 - P_{coll}(q_i))$$

 $L_{\pi}(q_N)$: probability of success of path π

 $L_{\pi}(q_N) = 1 - P_{coll}(\pi)$

Introduction	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
		000000000000000000000000000000000000000		

Contribution

Probability of collision

$$P_{coll}(q)$$
: risk of collision of $q = (s, t)$, state s at time t

$$P_{coll}(q) = P_{cs}(s) + (1 - P_{cs}(s)) \quad \cdot \quad P_{cd}(s, t) = P_{occ}(s) + (1 - P_{cs}(s)) \quad \cdot \quad \left(1 - \prod_{o=1}^{O} (1 - P_{cd}(s, t, o))\right)$$

 $P_{coll}(\pi)$: risk of collision of path π from root \underline{q}_0 to node \underline{q}_N

$$P_{coll}(\pi) = 1 - \prod_{i=0}^{N} \left(1 - P_{coll}(q_i)\right)$$

Introduction	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
		000000000000000000000000000000000000000		
<u> </u>				

Contribution

Probability of collision

$$P_{coll}(q)$$
: risk of collision of $q = (s, t)$, state s at time t

$$P_{coll}(q) = P_{cs}(s) + (1 - P_{cs}(s)) \quad \cdot \quad P_{cd}(s, t) = \\P_{occ}(s) + (1 - P_{cs}(s)) \quad \cdot \quad \left(1 - \prod_{o=1}^{O} (1 - P_{cd}(s, t, o))\right)$$

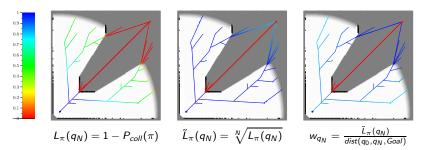
 $P_{coll}(\pi)$: risk of collision of path π from root q_0 to node q_N

$$P_{coll}(\pi) = 1 - \prod_{i=0}^{N} \left(1 - P_{coll}(q_i)\right)$$

$L_{\pi}(q_N)$: probability of success of path π

$$L_{\pi}(q_N) = 1 - P_{coll}(\pi)$$

Reactive Navigation


Motion Planning based on target-tracking

MP with Typical Patterns Co

Conclusions

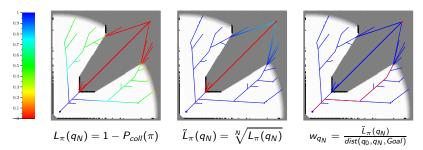
Contribution

Most likely node, most likely path

A weight is computed for each partial path:

- The likelihood is normalized
- The estimated lenght of the path to Goal is considered
- The path with the highest weight is chosen

Reactive Navigation


Motion Planning based on target-tracking

MP with Typical Patterns Co

Conclusions

Contribution

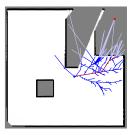
Most likely node, most likely path

A weight is computed for each partial path:

- The likelihood is normalized
- The estimated lenght of the path to Goal is considered
- The path with the highest weight is chosen

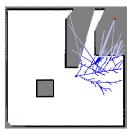
Introduction 00000	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
Contribution				
Updatin	g the tree			

environment	is explored	
environment	is dynamic	


update the tree and the path with new information

Partial Motion Planning [Fraichard, 05]

real-time constraints


safety issues (no ICS) \rightarrow deterministic prediction up to infinite time

Introduction 00000	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions	
Contribution					
Updating the tree					

- **(1)** The robot moves to q_1
- 2 The search tree is pruned: q_1 is the new root
- The tree is updated according to the new information
- The tree is grown in the remaining time
- 5 A new path is chosen

Introduction 00000 Contribution	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns 0000000	Conclusions
Updatin	g the tree			

- **(1)** The robot moves to q_1
- 2 The search tree is pruned: q_1 is the new root
- The tree is updated according to the new information
- The tree is grown in the remaining time
- 5 A new path is chosen

Introduction 00000	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
Contribution				
Updatin	g the tree			

- **(1)** The robot moves to q_1
- 2 The search tree is pruned: q_1 is the new root
- The tree is updated according to the new information
- The tree is grown in the remaining time
- 5 A new path is chosen

Introduction 00000	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
Contribution				
Updatin	g the tree			

- **(1)** The robot moves to q_1
- 2 The search tree is pruned: q_1 is the new root
- The tree is updated according to the new information
- The tree is grown in the remaining time
- S A new path is chosen

Reactive Navigation

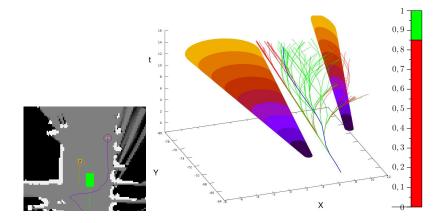
Motion Planning based on target-tracking

MP with Typical Patterns Conc

Contribution

Probabilistic RRTs: example

Reactive Navigation


Motion Planning based on target-tracking

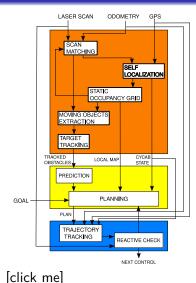
MP with Typical Patterns Co

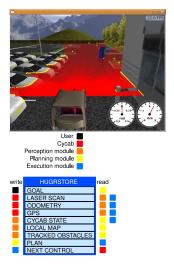
Conclusions

Contribution

PRRTs with short term prediction

[Vu,07]

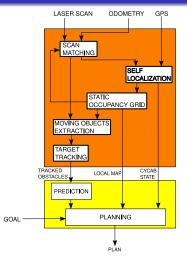

Reactive Navigation


Motion Planning based on target-tracking

MP with Typical Patterns Conclusions

Results

PP-RRTs with target tracking


Reactive Navigation

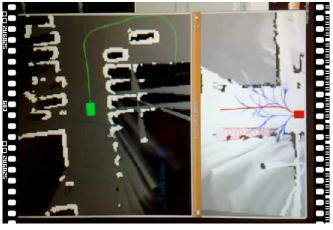

Motion Planning based on target-tracking

MP with Typical Patterns Conclusions

Results

Probabilistic RRTs with target tracking

Reactive Navigation


Motion Planning based on target-tracking

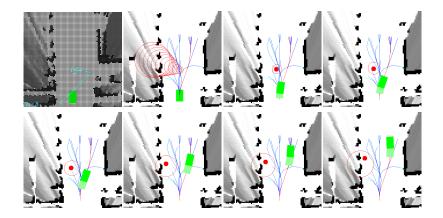
MP with Typical Patterns

Conclusions

Results

Probabilistic RRTs with target tracking: results

Target Tracking: $\sim 10Hz$ PRRT: 2Hz

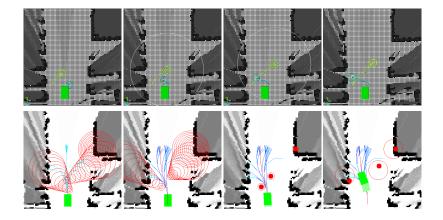

Reactive Navigation

Motion Planning based on target-tracking

MP with Typical Patterns (0000000

Results

Probabilistic RRTs with target tracking


Reactive Navigation

Motion Planning based on target-tracking

MP with Typical Patterns C

Results

Probabilistic RRTs with target tracking

Introduction 00000	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns Conclusions
Results			

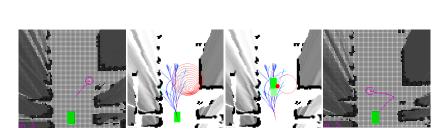
Conclusions

Contributions

- Probabilistic RRTs:
 - Static environment uncertainty \rightarrow occupancy grid
 - $\bullet~$ Velocity estimation uncertainty \rightarrow target-tracking based
- On-line information and decision updating

PROs	CONs
low a priori information	short-term
reactive to behavior changes	linear

Introduction 00000	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
Results				


Conclusions

Contributions

- Probabilistic RRTs:
 - Static environment uncertainty \rightarrow occupancy grid
 - $\bullet~$ Velocity estimation uncertainty \rightarrow target-tracking based
- On-line information and decision updating

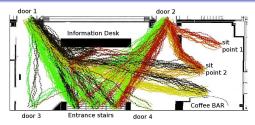
Target-tracking based prediction				
	PROs	CONs		
low a priori information		short-term		
	reactive to behavior changes	linear		

Introduction 00000	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
Results				
Conclus	ions			

Introduction	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions

Outline

- Introduction
 - Problem Definition
 - Contribution
- 2 Part I: Reactive Navigation
 - State of The Art
 - Contribution
 - Results
- ③ Part II: Motion Planning based on target-tracking
 - State of the Art
 - Contribution
 - Results
- 4 Part III: MP with Typical Patterns
 - Gaussian Processes representation
 - Hidden Markov Models representation
 - Results


Conclusions

Reactive Navigation

MP with Typical Patterns Conclusions

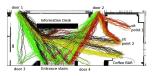
Typical Patterns

Given an observed environment

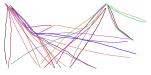
- Moving objects follow typical patterns
- Patterns are learned off-line and modeled with HMMs or GPs
- Based on observations, probabilistic prediction is performed

Prediction

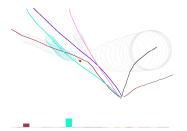
- Takes into account the structure of the environment
- Uncertainty is limited around typical patterns


 Introduction
 Reactive Navigation
 Motion Planning based on target-tracking
 MP with Typical Patterns
 Conclusion

 00000
 00000000
 00000000
 0000000
 0000000

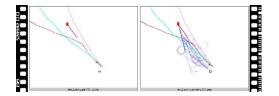

Gaussian Processes representation

Gaussian Processes for Pattern Modelling [Tay, 2007]


- A Typical Path \rightarrow D dimensional Gaussian
 - $\mathsf{D} \ = \ \# \text{ of points observed along a path}$

Dataset

Learned GP means

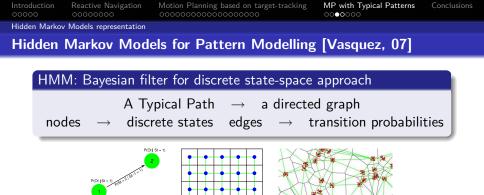


$$P(O_m) = \sum_{k=1}^{K} I_{k,O_m} P(O_m | k)$$

Gaussian mixture

Gaussian Processes representation

PPRRT with Gaussian Processes



 $P_{cd}(q, O_m, k)$ collision with obstacle O_m in pattern k

$$P_{cd}(q, O_m) = \sum_{k=1}^{K} I_{k, O_m} \cdot P_{\pi}(q, O_m, k)$$

Tree update

The weight of each Gaussian component I_{k,O_m} is updated.

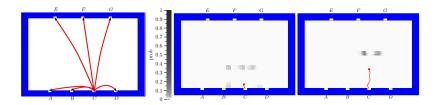
A HMM-graph represents all typical motions toward 1 goal

- States are given by position, velocity and intended goal
- Discretization is uniform or learned on the dataset
- Transition probabilities are learned

P(Ot | St = 1)

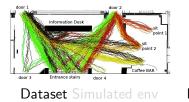
 Introduction
 Reactive Navigation
 Motion Planning based on target-tracking
 MP with Typical Patterns
 Conclusions

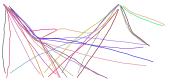
 00000
 00000000
 00000000
 00000000
 00000000


Hidden Markov Models representation

Hidden Markov Models based prediction

Discrete prediction

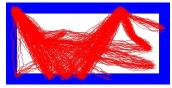

obtained letting the graph evolve under the transition probabilities


$$P(S_{t+k}|O_t) = \sum_{S_{t+k-1}} P(S_{t+k}|S_{t+k-1}) P(S_{t+k-1}|O_t)$$

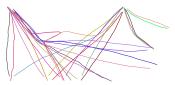
Introduction	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
			0000000	
Desults				

Simulation Results based on GPs

Learned GP means [Tay, 07]


Results for 100 goals reached; average obtained on 10 iterations.

# obsts	# colls	with $v_r \neq 0$	% time
0	0	0	1
4	1.5	0	1.14
6	2.3	0	1.43
8	3.8	0	1.65
10	6.3	0	1.79
12	7.4	0	1.87

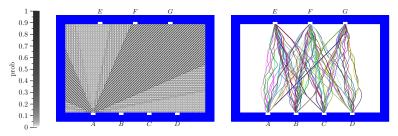

[click me]

Introduction	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
			0000000	
Desults				

Simulation Results based on GPs

Dataset Simulated env

Learned GP means [Tay, 07]

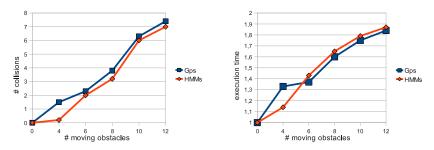

Results for 100 goals reached; average obtained on 10 iterations.

# obsts	# colls	with $v_r \neq 0$	% time
0	0	0	1
4	1.5	0	1.14
6	2.3	0	1.43
8	3.8	0	1.65
10	6.3	0	1.79
12	7.4	0	1.87

[click me]

Introduction	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
			0000000	
Results				

Simulation results based on HMMs



Results for 100 goals reached; average obtained on 10 iterations.

# obst	# colls	with $v_r \neq 0$	% time
0	0	0	1
4	0.2	0	1.33
6	2	0	1.37
8	3.2	0	1.60
10	6	0	1.75
12	7	0	1.84

Introduction 00000	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns ○○○○○○●	Conclusions
Results				
_				

Comparison

	HMM	GP
Performance	+	+
Velocity representation	discrete	continuous
Prediction	discrete	continuous
Prediction Update	complex	simple

Introduction	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusion

Conclusions

Contributions:

- Reactive Method
- Partial Probabilistic RRTs:
 - Target tracking based algorithm
 - Typical patterns based prediction

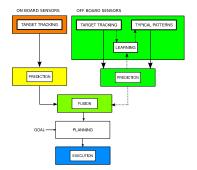
Properties:

- Probabilistic uncertainty of environment perception and prediction is meaningfully integrated into the navigation strategy
- Risk of collision is updated on-line with incoming estimation
- Known typical patterns
 - allow more reliable and non-linear predictions
 - more complex robot behaviors

Introduction	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
00000	0000000	000000000000000000000000000000000000000	000000	

Future work:

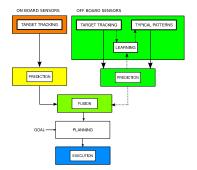
- From simulator to tests on the real robot
- Short and medium-term prediction used together in one framework (off-board platform)


ON BOARD SENSORS

Introduction	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
00000	0000000	000000000000000000000000000000000000000	000000	

Future work:

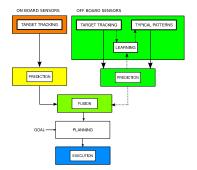
- From simulator to tests on the real robot
- Short and medium-term prediction used together in one framework (off-board platform)



Introduction	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
00000	0000000	000000000000000000000000000000000000000	000000	

Future work:

- From simulator to tests on the real robot
- Short and medium-term prediction used together in one framework (off-board platform)



Chiara Fulgenzi

Introduction	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
00000	0000000	000000000000000000000000000000000000000	000000	

Future work:

- From simulator to tests on the real robot
- Short and medium-term prediction used together in one framework (off-board platform)

Chiara Fulgenzi

Introduction 00000	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions

Perspectives:

- Use the probabilistic framework to perform reflexive prediction
- Multiple robot coordination

Introduction 00000	Reactive Navigation	Motion Planning based on target-tracking	MP with Typical Patterns	Conclusions
Publicat	ions			

- . Fulgenzi, C., Spalanzani, A., Laugier, C. "*Dynamic Obstacle Avoidance in uncertain environment combining PVOs and Occupancy Grid.*", IEEE ICRA 2007
- . Fulgenzi, C., Spalanzani, A., Laugier, C. "*Combining Probabilistic Velocity Obstacles and Occupancy Grid for safe Navigation in dynamic environments.*", Workshop on safe navigation in IEEE ICRA 2007
- . Fulgenzi, C., Tay, C., Spalanzani, A., Laugier, C. "*Probabilistic* navigation in dynamic environment using Rapidly-exploring Random Trees and Gaussian Processes.", IEEE/RSJ IROS 2008
- . Fulgenzi, C., Spalanzani, A., Laugier, C. "*Probabilistic Rapidly-exploring Random Trees for autonomous navigation among moving obstacles.*", Workshop on safe navigation in IEEE ICRA 2009