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féconder tout génie qui se trouve en état de 

l'accueillir et de la développer, semblable au 

pollen qui engendre un fruit partout où il 

rencontre un calice mûr. » 

 

 

Pierre Duhem, La Théorie Physique 
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Abstract 

 

The continuous scaling of the MOSFET devices carried out in the semiconductor industry 

during the past forty year is presently facing technical issues. In addition, the deca-nanometric 

size of these devices induces a transition of the transport mechanisms involved in their 

operations. The close to equilibrium transport occurring in long channel devices is expected to 

progressively evolve toward a far from equilibrium process for ultra-short channel. 

 

As this transition in transport regimes is expected to slow down the increase of 

performances induced by conventional device scaling, additional technological booster are 

currently investigated at the research level. In this context, the replacement of silicon as 

channel material by alternative (high mobility) channel has been identified as a possible 

source of major performance enhancement. 

 

Experimental realizations with alternative material have already demonstrated significant 

transport improvement for long channel devices. However, these advance devices will not be 

introduce before the 22 nm node of the ITRS, which specify gate length below 15nm for high 

performance technologies. The performance of such ultra-scaled technology is thus an issue, 

as the promising results of long channel device are not certain to be maintained at short scale. 

 

The aim of this work has therefore been to theoretically investigate the performance 

enhancement of alternative channel material devices featuring ultra scaled channel length. 

 

The detailed motivation of this work, illustrated by the state of the art studies in alternative 

channel material simulation, is given in chapter 1. The modelling of alternative channel 

material devices in the fully ballistic limit is then addressed in chapter 2 and 3. 

 

The on state current and the impact of the channel orientation on the performances of these 

devices are investigated in Chapter 2. A generalized Natori model of the fully ballistic current 

is derived for any channel material and any channel orientation and used in this chapter to 

study the ballistic drain current as a function of the channel surface and in-plane orientation. It 

has been demonstrated with this model that the ballistic current of devices on a (100) and 

(111) surface was isotropic. On the contrary to the (100) and (111) surfaces, devices on a 

(110) surfaces has been found to feature anisotropic ballistic drain current. The best current 

direction on this surface has then been found to be dependent of the valley relative population: 

if the ∆ valley is significantly filled like in the case of Si, GaP and AlAs, then the best current 

direction is the [100] direction, whereas the best direction is in the [110] direction of the Λ 

valleys are more occupied, as in the case of Ge, GaAs, InAs and InSb. Finally, it has been 

found in addition that the (110) is the best surface orientation of Ge, GaAs, InAs and InSb 

devices provided that their channel are aligned in the [110] direction. 

 

The following chapter has then been dedicated to the comparison of alternative channel 

material. This task has required the modelling of the most impacting leakage mechanisms on 

the performances of such devices. These mechanisms have been identified in the literature as 

the Short Channel Effects, the Source-to-Drain Tunnelling and the Band-to-Band Tunnelling. 

Semi-analytical models of these effects have therefore been derived, benchmarked and to 

determine the most promising channel material. The results obtained with these models have 

indicated that significant tunnelling leakage strongly reduces the performance of alternative 

channel material devices whose gate lengths is smaller than 15nm. In addition, it has been 
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shown that silicon and strained silicon are less sensitive to this tunnelling leakage current 

thanks to larger effective masses. 

 

This last point has been more deeply investigated in the end of chapter 3, using a 

simplified analytical model of the Ion-Ioff trade-off in the fully ballistic limit. Contrary to the 

previous approach which consists in comparing various semiconductors, this model has 

enabled to evaluate the performance of an ultra-scaled device by considering the channel 

effective mass and energy bandgap as variable and not only as simple material parameters. 

The results obtained using this original approach has shown that a maximum of on current as 

could be obtained for an optimum mass. This trade-off results from the competition of two 

opposed mechanisms enhanced by the effective mass reduction, i.e. the beneficial increase of 

injection velocity and the detrimental increase of source-to-drain tunnelling. Band-to-Band 

Tunnelling has however been found to only impact devices with indirect channel material 

whose energy bandgap and effective mass are small (bandgap below 1eV and effective mass 

below 0.1m0). These results have therefore suggested that the impact of Source-to-Drain 

Tunnelling is stronger than the impact of Band-to-Band Tunnelling for channel length below 

15nm. 

 

The role of carrier scattering in alternative channel material has finally been studied in 

chapter 4. The rigorous treatment of carrier scattering have implied to use more 

comprehensive modelling tool like Monte Carlo simulators. In this work, a Multi Subband 

Monte Carlo code, which account for the impact of quantum confinement and degeneracy on 

transport properties, has been at first extended and then used to investigate the performances 

of germanium channel devices. In an attempt to explain the poor performances observed 

experimentally in germanium nMOSFET, it has been shown in this chapter that the inversion 

layer electron mobility of germanium is significantly degraded by the filling of the penalizing 

∆ valleys. This effect has then been found to be amplified in Germanium On Insulator 

structure, due to the thin thickness of the semiconductor layer. Finally, the carrier mean free 

path in germanium has been demonstrated to be almost linearly dependent of the low field 

mobility in inversion layer. This important results, already obtained for silicon, links an high 

field and short scale transport figure of merit with a low field and long scale one and suggest 

that an high quasi-ballistic current can not been attained in germanium unless high mobility 

are obtained in long channel devices. 

 

This work has therefore given a more complex picture of the performance of alternative 

channel material devices, whose scalability toward the sub 20nm dimension is questionable. 
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Résumé 

 

Le processus de réduction des dimensions des transistors MOS qui a débuté il y a 40 ans 

fait face actuellement à de nombreuses difficultés technologiques. En parallèle, le transport 

des porteurs dans les canaux déca-nanométriques évolue progressivement d’un régime proche 

de l’équilibre à un régime hors équilibre. 

 

Cette transition de régime de transport s’accompagne d’une augmentation moins importante 

que prévue des performances des transistors MOS lors de la réduction de leur dimension. 

Dans ce contexte, il est donc nécessaire d’introduire de nouvelles options technologiques 

améliorant le transport. Le remplacement du silicium par des matériaux de canaux alternatifs 

est ainsi un des exemples des techniques envisagées pour continuer d’augmenter les 

performances de transistor MOS à effet de champs. 

 

Des transistors (à canal long) fabriqués à partir de germanium ou de GaAs ont déjà 

démontré des gains de performances encourageants. Cependant, de tels dispositifs innovants 

n’entreront pas en production avant le nœud 22nm de l’ITRS, qui spécifie des longueurs de 

canaux inférieur à 15nm. Les performances de ces transistors ultra-courts restent donc une 

question ouverte, car il n’est pas garanti que les gains en performance obtenus à grande 

échelle soient conservés pour ces dimensions. 

 

L’objectif de ce travail est donc d’évaluer théoriquement les gains en performance de 

transistors ultra-courts à matériaux de canal alternatif. 

 

Le premier chapitre de cette thèse introduit les objectifs de cette étude, ainsi que l’état de 

l’art de la modélisation des dispositifs à matériau de canal alternatif. La modélisation de ces 

transistors dans la limite totalement balistique est ensuite traitée dans les chapitres 2 et 3. 

 

Le chapitre 2 présente plus particulièrement l’étude de l’influence de l’orientation du canal 

de conduction (autant en ce qui concerne la surface cristalline du substrat que l’orientation du 

transistor dans le plan cristallin considéré). Un modèle de courant balistique de type Natori, 

valable pour tous les matériaux semi-conducteurs et pour une orientation de canal quelconque, 

est établi au début de ce chapitre. Ce modèle est ensuite utilisé pour démontrer 

analytiquement l’isotropie du courant de drain pour les transistors réalisés sur des substrats de 

types (100) et (111). Dans le cas de la surface (110), le courant balistique est au contraire 

anisotrope. Sur cette surface, la meilleure direction d’injection dépend de la population 

relative des vallées. Dans le cas où les vallées ∆ sont majoritairement peuplées (comme dans 

le cas du Si, GaP ou AlAs), la meilleure orientation du canal sur la surface (110) est dans la 

direction cristalline [100]. Dans le cas où les vallées Λ sont les plus peuplées, (comme dans le 

cas du germanium, GaAs, InAs ou InSb), la meilleure orientation du canal sur la surface (110) 

est dans la direction cristalline [110]. De plus, dans le cas du germanium, GaAs, InAs ou 

InSb, le courant maximum, toutes directions de canal confondues, est obtenu pour la surface 

[110] et pour une orientation cristalline [110]. 

 

Le chapitre suivant est dédié à la comparaison des performance des matériaux alternatifs. 

Pour cela, il est nécessaire de prendre en compte les mécanismes de fuites tunnel entre source 

et drain à l’état «off» qui détériorent fortement les performances de ces dispositifs. En accord 

avec la littérature, les mécanismes prépondérants sont les effets de canaux courts, le courant 

tunnel source drain direct et le courant tunnel bande à bande. Les modèles semi-analytiques 
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de ces courants de fuites sont établis au début du chapitre 3, puis comparés à des méthodes 

plus précises (simulation numérique ou résultats présentés dans la littérature) et enfin utilisés 

pour estimer les performances de différents dispositifs à matériaux de canal alternatifs. Les 

résultats obtenus montrent que les courants de fuites tunnel réduisent fortement les 

performances de transistors à canaux en germanium et en GaAs pour des longueurs de grilles 

inférieures à 15nm. Les canaux en silicium ou en silicium contraint semblent être par ailleurs 

moins affectés par ces courants de fuites. 

 

Un modèle analytique simplifié du courant à l’état « on » et à l’état « off » est proposé à la 

fin du chapitre 3 pour étudier cette dégradation plus en détail. Il permet d’aborder cette 

problématique d’une manière différente : contrairement à l’étude précédente qui comparait 

des matériaux semi-conducteurs entre eux, celle nouvelle approche évalue l’impact des 

paramètres clefs des matériaux sur les performances de dispositifs ultra-courts. Ainsi, les 

courants à l’état « on » ont été estimés pour un courant à l’état « off » constant en considérant 

les masses effectives et les bandes d’énergies interdites comme de simples variables. Les 

résultats obtenus montrent qu’il existe un maximum de courant à l’état « on » en fonction des 

masses effectives, et donc qu’il existe un compromis entre grandes et petites masses 

effectives. Ce compromis résulte de l’effet bénéfique des masses effectives faibles qui 

augmentent la vitesse d’injection des porteurs impliqués dans le courant balistique, et de 

l’effet pénalisant de ces mêmes masses sur l’augmentation du courant tunnel source-drain 

direct. En ce qui concerne le courant tunnel bande à bande, les résultats montrent qu’il serait 

négligeable par rapport au courant tunnel source-drain direct, sauf pour les matériaux à faible 

gap indirect et à faible masse effective (gap inférieur à 1.0 eV et masse effective inférieure à 

1.0 m0). Ceci suggère donc que le courant tunnel source-drain direct soit le principal facteur 

limitant les performances des transistors à matériaux de canaux alternatifs (pour des 

dispositifs dont les longueurs de grilles sont inférieures à 15 nm). 

 

Le quatrième et dernier chapitre de cette thèse présente l’étude de l’impact des collisions 

sur les performances des transistors à matériau de canal alternatifs. Le traitement rigoureux de 

ces mécanismes de collision implique l’utilisation d’outils plus complexe que les modèles 

analytiques exposés dans les chapitres précédents. Dans le cadre de cette étude, un code de 

simulation Monte Carlo Multi Sousbande est utilisé pour prendre en compte les effets du 

confinement et de la dégénérescence des porteurs sur le transport dans les canaux de 

germanium. Cette approche est d’abord détaillée au début de ce chapitre. Elle ensuite utilisé 

pour étudier les faibles mobilités observées expérimentalement dans le cas des transistors 

nMOS à canaux en germanium. Les résultats obtenus montrent qu’une forte dégradation de la 

mobilité est obtenue par simulation, mais insuffisante pour réellement expliquer les mesures. 

Cette dégradation théorique est expliquée par le remplissage des vallées ∆ du germanium, qui 

possèdent de très faibles mobilités en comparaison des vallées Λ. Cet effet est amplifié dans 

les structures « Germanium sur isolant », en raison de la faible épaisseur du film de semi-

conducteur qui augmente l’impact des effets quantiques. Enfin, ces simulations ont permis de 

mettre en évidence la relation de dépendance quasi-linéaire entre le libre parcours moyen des 

porteurs dans les canaux de germanium et la mobilité en champs faible. Ce résultat important 

relie deux quantités conceptuellement très différentes, puisque la première correspond à un 

transport à courte échelle et en champs forts et la deuxième à un transport sur longue distance 

en champs faibles. Ceci implique que de forts courants quasi-balistiques ne seront atteints 

dans les transistors nMOS à canaux en germanium que si de fortes mobilités sont obtenues 

pour les dispositifs à canaux longs. 
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En conclusion, ce travail a démontré que les bonnes performances obtenues pour des 

transistors à canaux longs étaient fortement dégradées pour des canaux ultra-courts (inférieurs 

à 15nm). Il serait donc peut-être intéressant de proposer une nouvelle feuille de route pour les 

dispositifs à matériaux canal alternatifs. En effet, sur des dimensions supérieures à 15nm, 

leurs performances pourraient dépasser celles des dispositifs à canaux en silicium. 

 



Quentin Rafhay – Modelling of nano nMOSFETs with alternative channel materials  

in the fully and quasi ballistic regimes 

Abstracts 19 

Riassunto 

 

Il continuo scaling dei dispositivi MOSFET intrapreso dall’industria dei semiconduttori 

negli ultimi quarant’anni sta attualmente affrontando difficoltà tecniche. Oltretutto, la 

dimensione decananometrica di questi dispositivi induce una progressiva transizione dei 

meccanismi di trasporto coinvolti nel modo di funzionamento. Si attende che il trasporto in 

condizioni vicine all’equilibro evolva progressivamente verso un processo lontano 

dall’equilibrio nel caso di canale ultra corto. 

 

Dato che si attende che tale transizione nei regimi di trasporto rallenti progressivamente 

l’aumento delle prestazioni indotto dallo scaling convenzionale, a livello di ricerca si sta 

investigando su soluzioni tecnologiche atte a migliorare le performance. In questo contesto, la 

sostituzione del silicio come materiale di canale con un canale alternativo (ad alta mobilità) é 

stata identificata come una possibile origine di miglioramento delle prestazioni. 

 

Realizzazioni sperimentali con materiali alternativi hanno già dimostrato un miglioramento 

significativo del trasporto per dispositivi a canale lungo. Tuttavia, tali dispositivi avanzati non 

saranno introdotti prima del nodo tecnologico di 22 nm dell’ITRS, che specifica una 

lunghezza di gate inferiore ai 15 nm per tecnologie ad alte prestazioni. Le performance di 

questa tecnologia a tale livello di miniaturizzazione rappresenta quindi ancora un dibattito 

aperto, in quanto non si é certi che i risultati promettenti dei dispositivi a canale lungo siano 

mantenuti a piccole dimensioni. 

 

L’obiettivo di questo lavoro é quindi stato di investigare teoricamente il miglioramento 

delle prestazioni di dispositivi ultra corti a canale prodotto con materiali alternativi. 

 

La motivazione dettagliata di questo lavoro, illustrata dallo state of the art degli studi di 

simulazione di canali con materiali alternativi, é presentato nel capitolo 1. La modellizazione 

di dispositivi a canale prodotto con materiali alternativi nel limite completamente ballistico é 

illustrato nei capitoli 2 e 3. 

 

La corrente nello stato “on” e l’impatto dell’orientamento del canale sulle prestazioni di 

questi dispositivi é investigato nel capitolo 2. Un modello generalizzato di Natori della 

corrente completamente ballistica é stato derivato per ogni materiale e per ogni orientamento 

di canale ed é stato utilizzato in questo capitolo per investigare la corrente ballistica di drain 

in funzione della superficie di canale e dell’orientamento nel piano. E’ stato dimostrato con 

tale modello che la corrente ballistica su dispositivi su una superficie con orientamento (100) 

e (111) é isotropica. Al contrario delle direzioni (100) e (111), dispositivi su una superficie 

con orientamento (110) presentano un’anisotropia della corrente ballistica di drain. Si é 

trovato che la migliore direzione della corrente su questa superficie é dipendente dalla 

popolazione relativa delle valli: se la valle ∆ é riempita significativamente come nel caso del 

Si, GaP e del InAs, allora la migliore direzione per la corrente é la (100), mentre la migliore 

direzione risulta essere la (110) se le valli Λ sono più occupate, come nel caso del Ge, GaAs, 

InAs e InSb. In aggiunta a ciò, si é trovato che la (110) é il migliore orientamento per il Ge, 

GaAs, InAs e InSb se il canale del dispositivo é allineato alla direzione (110). 

 

Il capitolo seguente é stato quindi dedicato alla comparazione tra differenti materiali 

alternativi per il canale. Questo compito ha richiesto la modellizazione dei meccanismi di 

perdita più importanti su tali dispositivi. Questi meccanismi sono stati identificati in 
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letteratura come gli effetti di canale corto (SCEs), il Source-to-Drain Tunneling ed il Band-to-

Band Tunneling. Modelli semi analitici di tali effetti sono stati quindi derivati e validati per 

poi determinare il materiale di canale più promettente. I risultati ottenuti con questi modelli 

hanno indicato che una significante perdita dovuta al tunneling riduce fortemente le 

prestazioni di dispositivi con canale composto da materiali alternativi nel caso in cui la 

lunghezza di gate sia inferiore ai 15 nm. In aggiunta a ciò, si é mostrato che il silicio ed il 

silicio strained sono meno sensibili a questa perdita dovuta al tunneling per il valore più 

elevato delle masse effettive. 

 

Questo ultimo punto é stato investigato più attentamente alla fine del capitolo 3, usando un 

modello analitico semplificato del compromesso Ion-Ioff nel limite completamente ballistico. 

Contrariamente all’approccio precedente in cui si confrontavano diversi semiconduttori, 

questo modello ha permesso di analizzare le prestazioni di un dispositivo ultra corto 

considerando le masse effettive di canale ed il bandgap di energia come delle variabili e non 

solo come dei semplici parametri del materiale. I risultati ottenuti usando questo metodo 

originale hanno mostrato che é possibile ottenere una corrente massima per una massa 

effettiva ottimale. Questo compromesso sorge dalla competizione di due meccanismi opposti 

aumentati dalla riduzione della massa effettiva, i.e. l’aumento positivo della velocità di 

iniezione e l’aumento dannoso del source-to-drain tunneling. Si é scoperto che il band-to-band 

tunneling ha un impatto significativo solo in dispositivi il cui materiale é a bandgap indiretto e 

piccolo e le cui masse effettive sono piccole (bandgap inferiore a 1 eV e masse effettive 

inferiori a 0.1m0). Tali risultati suggeriscono che l’impatto del source-to-drain tunneling é più 

forte di quello del band-to-band tunneling per lunghezze di canale inferiori a 15 nm. 

 

Il ruolo dello scattering dei portatori in canali a materiale alternativo é stato quindi studiato 

nel capitolo 4. Il trattamento rigoroso dello scattering dei portatori ha implicato l’uso di 

strumenti più rigorosi come i simulatori Monte Carlo. In questo lavoro, un codice Monte 

Carlo Multi Subband (MSMC) – che considera l’impatto del confinamento quantistico e della 

degenerazione sulle proprietà di trasporto – é stato inizialmente esteso e quindi utilizzato per 

investigare le prestazioni di dispositivi a canale di germanio. In un tentativo di spiegare le 

scarse prestazioni osservate sperimentalmente negli nMOSFET a germanio, é stato mostrato 

in questo capitolo come la mobilità degli elettroni nello strato di inversione del germanio sia 

significativamente degradata dal riempimento delle valli ∆ (penalizzanti per il trasporto). Si é 
poi trovato che tale effetto é amplificato in strutture Germanio su Isolante (GOI), a causa del 

ridotto spessore dello strato di semiconduttore. In aggiunta a ciò, si é dimostrato che il libero 

percorso medio nel germanio dipende in maniera quasi lineare dalla mobilità low field nello 

strato di inversione. Questo risultato importante, già ottenuto per il silicio, relaziona un indice 

di prestazione del trasporto ad alto campo ed a piccola scala con una a debole campo ed a 

larga scala e suggerisce che una forte corrente quasi ballistica non può essere raggiunta nel 

germanio a meno di ottenere elevate mobilità in dispositivi a canale lungo. 

 

Questo lavoro ha quindi offetro un’immagine più complessa delle prestazioni dei dispositivi 

con canali basati su materiali alternativi, la cui miniaturizzazione al di sotto dei 20 nm resta 

discutibile.
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1.1 Context : why alternative channel materials ? 

 

Alternative channel material in MOSFET devices has recently attracted much interest in 

the semiconductor device research community. This subsection aims to review the historical 

and scientific motivation of the replacement of silicon as a channel material. 

 

1.1.1 Birth, growth and challenges of the semiconductor industry 

 

1.1.1.1 Birth of the semiconductor industry 

 

A careful look at the history of the birth of the semiconductor industry (see Appendix 1) 

shows that nearly 10 years of intense research on solid-state physics at the Bell Telephone 

Laboratory have been necessary for John Bardeen, Walter Brattain and William Shockley to 

fabricate the first transistor in December 1947. This transistor, shown in  

Figure 1.1, was a point contact one. It was based on the current modulation of a 

germanium diode by the injection of holes from a third contact. Quickly following this 

invention, germanium point contact transistors have been industrially produced and 

commercialized. Soon after, the point contact architecture has been replaced by the bipolar 

one, still using germanium as semiconductor material. 

 

 
 

 

Figure 1.1 : a) Picture of the first point contact transistor fabricated at Bell Labs by Walter 

Brattain. b) Scheme of a point contact transistor 

 

Despite its high carrier mobilities, the use of germanium has however always been an 

issue, principally due to its small energy bandgap (0.66eV at room temperature), which makes 

these devices thermally instable: Ge becomes intrinsic at not so high temperature (because of 

the transistor self heating, but most generally because of the environment), which eliminates 

the distinction between the p and n-doped region thus causing failure of device operation. The 

germanium based transistors were therefore replaced within few years by bipolar silicon 

transistors, which presented higher thermal stability thanks to the larger silicon energy 

bandgap. The comparison between the intrinsic temperature as a function of the impurity 

concentration is given in Figure 1.2. 
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Figure 1.2 : Intrinsic temperature as a function of the impurity concentration (taken from 

[SzePhySC]) 

 

Later, in the beginning of the 60s, further developments at the Bell Labs in crystal growth, 

silicon oxidation and doping techniques lead to the fabrication of the first Metal Oxide 

Semiconductor Field Effect Transistor (MOSFET). At the same period, the first integrated 

circuit was invented and fabricated by Texas Instrument and Fairchild Semiconductor.  

 

The combination of these two winning strategies, i.e. the use of integrated circuit with 

silicon MOSFETs, gave birth to one of the most significant industrial revolutions of the XXth 

century.  

 

1.1.1.2 The silicon MOSFET, technical key of a success 

 

One of the main technical origins of the success of the semiconductor industry is 

undeniably the use of silicon Metal Oxide Semiconductor Field Effects Transistors as core 

device. 

 

For digital application, which is the main produced and commercialized technology, 

silicon MOSFET is clearly superior to other transistors thanks to: 

• Its cost effectiveness, resulting from the planar process involved in its fabrication 

and the abundance of silicon (roughly 25% of earth’s crust) ; 

• Its stable oxide layer, not obtainable from other semiconductors, enabling a low 

power shift from off to on state ; 

• The possibility to obtain nearly ideal complementary MOS switches thanks to n- 

and p-type devices with quite well balanced characteristics 

• Its increase of performance when properly scaled. 

 

The last point is particularly relevant since the performance enhancement and the increase 

of devices density enabled by MOSFET scaling has been – and is still – the key challenge for 

the semiconductor industry: increasing the device density allowed the design of more and 

more complex functions and reduced drastically the cost of a single transistor
1
. In parallel, the 

ICs global performances have been increased (higher frequency) and the total power 

                                                 
1
 See the Moore’s law and the ITRS report in Appendix 1 
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consumption can be reduced (same performance at lower voltage). This ability of the 

MOSFET to present higher performances while scaled down allowed a fast and steady growth 

of the semiconductor industry for almost 40 years. 

 

The MOSFET performance gain with scaling can be roughly estimated using simple 

qualitative expression of the intrinsic transistor switching time of a long channel MOSFET 

(time required to remove the charge from the channel of the transistor, neglecting the effect of 

parasitic capacitances): 

 

 eff

eff

2
g DD
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DDon DD
g
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VWI µV
C  µ

L 2

τ ≈ ≈ =  (1.1) 

 

With Cgeff the effective gate capacitance, VDD the supply voltage (assumed higher than the 

threshold voltage), µ the low field mobility, W the transistor width and L the gate length as 

schematized on Figure 1.3. 

 

 

Equation (1.1) therefore shows that when the gate length is reduced by a factor k  

( with k > 1) at a constant supply voltage VDD, the intrinsic switching time τ is decreased by a 

factor k² . In practice, a set of more complex scaling rules are use to define the MOSFETs 

dimensions and bias conditions for the future generation of devices [BaccTED82] 

[SkotTED08], as a function of their application (low power or high performance devices). For 

example, reliability issues force to also reduce the supply voltage with the device scaling. 

 

It has to be mentioned however that the intrinsic switching time defined as in (1.1) is 

mostly meaning full for high performance devices. Indeed, when the parasitic capacitances of 

the MOSFET and of the circuit interconnections dominate the overall capacitances, the on 

current Ion should also be optimized as well as τ. 

 

 
Figure 1.3 : Scheme of a long channel MOSFET 

 

The dielectric layer also makes the MOSFETs more attractive compared to other 

transistors. Compared to bipolar transistor in which the commutation is governed by a current, 

the MOS capacitor enable a low power switch from the off to the on state. 

 

The use of silicon in MOSFETs has thus been almost compulsory in this context, since no 

stable semiconductor oxide have been obtained from Ge, or other III-V compounds. In 

comparison, the very stable one obtained from dry oxidation of a Si substrate was an almost 

perfect and simple technological solution.  
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1.1.1.3 End of the "Happy scaling" era 

 

The scaling rules have been successfully applied during the 70s and the 80s, called the 

“Happy scaling” era, enabling a constant growth of the semiconductor industry. However, 

many physical limitations were foreseen to stop it. In the 80s, the submicronic scale was 

expected to lead to too high Short Channel Effect (electrostatic parasitic effects occurring 

when source and drain are too close - see 3.3.2.), and strong channel hot electron injection 

degrading the device stable operation in the long term. In the 90s, when the gate lengths were 

reaching half a micron, high access resistances were likely to lead to significant performance 

degradation. Finally, when the gate lengths reached 250nm, tunneling current through the 

oxide was foreseen as possible breakdown sources. 

 

However technological solutions have been found in each case to avoid these limitations. 

Short Channel Effects are reduced thanks to engineered source, drain and channel doping 

profiles (lightly doped drain [OgurTED80] and pocket implants [WannTED96]), salicide 

source drain [IwaiMicEng02] are used to reduce parasitic access resistances and gate 

tunneling leakage is avoided thanks to the recent industrial introduction of higk-κ dielectrics 

[GuseMicEng01]. 

 

Nevertheless, new limitations are arising since the transistor gate length is expected to be 

scaled down to 7nm in 2018 [ITRS2007], partly due to the intrinsic physical limitation of 

silicon as a channel material. In addition, the former parasitic effects are also strengthened as 

devices continue to scale down. Therefore, new solutions are required to face these new 

technological challenges. 

 

1.1.2 Forthcoming challenges for the semiconductor industry 

 

Aside from many new technological issues (red brick wall of the ITRS [ITRS2007]), one 

of the major forthcoming challenges for the semiconductor industry deals with carrier 

transport limitations in silicon channels. Indeed, as the channel length now reached the 

decananometer scale, the impact of carrier scattering is becoming weaker [PaleTED05], 

whereas they were predominant at larger scale. Carrier transport thus enters a transition from 

close-to-equilibrium transport to strong non-equilibrium transport regime. All former 

transport model assuming close-to-equilibrium conditions, like Drift Diffusion transport 

models, are therefore not valid anymore and in addition, the concepts of mobility and velocity 

saturation become also questionable. 

 

This far from equilibrium transport regime expected to occur in ultra short devices has 

been widely studied since the mid-90s. In particular, detailed studies of carrier transport in 

decananometer channels thanks to Monte Carlo simulation [PaleTED05] showed that, due to 

the weaker influence of scattering on carrier transport, a significant proportion of electrons 

can be emitted by the source to reach the drain without suffering any scattering. These 

electrons are thus ballistic. 

 

When transport combines scattered and non-scattered (ballistic) carriers in comparable 

fractions, the transport regime is called quasi-ballistic, which is in essence a complex 

transition from long channel to ultra-short channel transport. It is also expected that fully 
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ballistic transport, i.e. governed by non scattered electrons only, will occur in ultra-scaled 

devices (i.e. for channel length around 10nm for silicon). 

 

Another important difference between close to equilibrium and ballistic transport lies in the 

carrier velocity distribution along the channel. In the quasi or full ballistic regime, the 

feedback of a limited maximum velocity at the drain end of the channel on the current 

(through the self consistent potential) is no longer as strong as it used to be for longer devices. 

Theoretical studies [PaleTED05], [LundEDL97] showed on the contrary that ballistic 

transport is in fact rather limited by the carrier velocity on the source side, called the injection 

velocity. 

 

In this context, equation (1.1) is no longer valid as it assumes a drift diffusion transport in a 

long channel MOSFET and needs to be rewritten in the framework of quasi or full ballistic 

transport. According to the Lundström model of quasi-ballistic transport [LundEDL97], 

equation (1.1) becomes: 
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With Vinj the injection velocity of the carriers (see section XXX) and r the backscattering 

coefficient (see section XXX), i.e the ratio of re-emitted electron toward the source by few 

scattering events. In the case of full-ballistic transport, r tends to 0, and equation (1.2) simply 

becomes: 
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Since in a properly scaled device, Vinj is independent of L, equation (1.2) and (1.3) show 

that, when quasi or full-ballistic regimes govern carrier transport, the dependence of the 

intrinsic switching time with the gate length at constant VDD is not in L² anymore. Therefore, 

scaling will lead to a reduced performance improvement in the quasi or full ballistic transport 

regime than in the drift diffusion one. 

 

In addition, the solutions actually employed to keep short channel effects under control 

severely degrades the mobility and the injection velocity, which adds showstoppers to the 

transport issue. 

 

Consequently, and due to the loss of efficiency of conventional device scaling in 

nanometric dimensions, the injection velocity and the backscattering coefficient must be now 

optimized to continue the increase of performances. In the Natori (see section XXX and 

[NatoJAP94]) and the Lundström models, the injection velocity is described as strongly 

dependent of the subbands structure of the electron gas on the top of the source-drain barrier, 

called virtual source. Thus, an increase of the injection velocity is theoretically possible 

through subband engineering of the virtual source [TakaSSE05]. In addition, it has been 

shown that the backscattering coefficient is a function of the channel length, which then needs 

to be further reduced, and of the mobility [ClerTED06], [PaleIEDM06], which needs to be 

increased. This clearly expressed at low field by the flux theory which links the mobility, the 

mean free path in a ballistic transistor and the corresponding backscattering coefficient as : 
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Non conventional channel material with improved electronic properties (especially 

increased mobility and reduced backscattering coefficient) and larger injection velocity are 

currently investigated as possible technological solutions.  

 

Among these, the strain silicon technology is already industrially used to increase 

MOSFETs drive current. Although this solution has been developed mainly to improve 

mobility, it also provides better injection velocity compared to unstrained silicon in short 

channels [FerrierTNANO2007]. 

 

Another recently studied solution consists in the substitution of silicon for alterative 

channel material with larger mobilities (reduced backscattering) and larger injection 

velocities. This replacement has been enabled thanks to the recent progresses made in high-κ 

dielectric deposition making possible to realized devices without Si/SiO2 stack. Example of 

MOSFETs with Ge, GaAs and InGaAs channels have already been fabricated. Table 1.1 gives 

an extensive list of references describing the fabrication of nMOSFET featuring these channel 

material. 

 

Ge GaAs InGaAs 

[RansTED91]  

[HuanIEDM03] 

[ShanEDL04] 

[WhanIEDM04] 

[YuEDL04] 

[YuEDL04_2] 

[YuEDL05] 

[YeoEDL05] 

[BaiEDL06] 

[WuEDL06] 

[ZhanEDL06] 

[KartEDL06] 

[YeEDL03] 

[LeEDL04] 

[RajaEDL07] 

[OkIEDM06] 

[HillEDL07] 

[XuanEDL07] 

[XuanEDL08] 

[ShahEDL08] 

[SunEDL07] 

 

Table 1.1 : List of reference describing the fabrication and the performances of nMOSFET 

with Ge, GaAs and InGaAs channel material. 

 

The importance of alternative channel material has been underlined in the 2005 and 2007 

edition of the International Technology Roadmap for Semiconductor reports (ITRS – see 

Appendix 1), clearly stating that "to attain adequate drive current for the highly scaled 

MOSFETs [below the 22nm technological node], quasi-ballistic operation with enhanced 

thermal velocity and injection at the source end appears to be needed. Eventually, nanowires, 

carbon nanotubes, or other high transport channel materials (e.g., germanium or III-V thin 

channels on silicon) may be needed" [ITRSPID2007]. 

 

In conclusion, the technological effort must be supported by theoretical estimation of the 

possible performance gain brought by alternative channel material at nanometric small scales. 
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1.2 State of the art in the alternative channel material CMOS 

performance modeling 

 

The previous section concluded on the importance of the theoretical performances 

evaluation of alternative channel materials. Many contributions have been published on this 

subject during the past years. Using a detailed literature review (see Appendix 2), this section 

presents the key points to be addressed for an accurate evaluation of the performance of ultra-

scaled alternative channel material device. Finally, the approach chosen in this thesis is 

introduced. 

 

1.2.1 Literature review 

 

The chronological review of the literature regarding the performance evaluation of 

transistor with alternative channel material transistor performances detailed in Appendix 2 

also underlines of the progress made in the modeling and simulation of these advance devices. 

M.V. Fischetti and S.E. Laux gave the first analysis of alternative channel material MOSFETs 

in the early 90s [FiscTED91_1,FiscTED91_2] thanks to full band Monte Carlo simulation 

approach. S.Takagi then proposed the first study of the impact of these material in the full 

ballistic regime [TakaVLSI03], introducing also the problematic of channel orientation 

optimization when a new channel material is used. In the same year, T. Low [LowIEDM03] 

gave a very detailed study of Si and Ge devices, accounting for most of the significant effect 

occurring in these devices. Numerous contributions comes from the Purdue group which 

insisted on the importance of rigorous treatment of the banstructure and on the impact of 

direct source-to-drain tunneling [RahIEDM03,RahIEDM04, RahIEDM05 ,LiuTED08 

,PalTED08]. The Stanford group however investigated the influence of band-to-band 

tunneling on alternative channel material performances [PethSISPAD04 ,PethIEDM05]. More 

recently, M.V. Fischetti and S.E. Laux revisited their work [FiscTED07 ,LauxTED07], 

updating their simulations in perspective of the work carried out by different groups 

(accounting for tunneling leakage for example), to provide a very detailed study of quasi-

ballistic transport in alternative channel material. Finally the Udine's group [DeMiTED07] 

contributed in giving an analysis of the impact of the low density of states alternative channel 

materials. All these previous references have confirmed the interest for alternative channel 

material. However, in the 2007 edition of the IEDM, the Purdue group [CantIEDM07] 

showed that ultra-scaled alternative channel MOSFET suffer from severe performance 

degradation and that silicon channel device could outperform them because of increased 

source-to-drain tunneling induced by the small effective mass of high mobility channel 

materials. 

 

Table 1.2 sums up the approaches, the main assumptions, and the results obtained by all 

the contributions mentioned. 
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Architecture 

simulated 

Channel material and 

orientation 

Transport 

formalism 

Bandstructure 

(e- gas dimension) 
Leakages Metric 

Best channel material and best 

orientation (surface)/[transport] 

M.V Fischetti and 

S.E. Laux 

[FiscTED91_1, 

FiscTED91_2] 

Bulk 

MOSFETs 

Si(100) Ge(100) 

GaAs(100) 

InGaAs(100) InP(100) 

Monte Carlo  
Full band 

(3D) 
– 

Intrinsic 

switching 

time 

In based devices 

S. Takagi 

[TakaVLSI03] 

Bulk 

MOSFET 

UTB SOI FET 

Si(100) Ge(100) 

Ge(111) 

Single subband 

Natori model 

Effective mass 

approximation (2D) 
– 

Ion at 

constant Ioff 
Ge(111) 

A. Rahman et al 

[RahIEDM03] 
DGFET Si(100) Ge(100) 

NEGF – 

NanoMOS 

Effective mass 

approximation (2D) 
SCE + SDT 

Ion at 

constant Ioff 
Ge(100) 

T. Low et a. 

[LowIEDM03] 
DGFET 

Si(100) Ge(100) 

Ge(110) Ge(111) with 

all in-plane orientation 

NEGF – 

NanoMOS 

Effective mass 

approximation (2D) 

SCE + SDT 

+ BBT 

Ion at 

constant Ioff 
Ge(110) 

A.Pethe et al 

[PetheSISPAD04] 
DGFET 

Si(100) Ge(100) 

Ge(110) Ge(111) 
Natori model 

Effective mass 

approximation (2D) 
SCE 

Ion at 

constant Ioff 
Ge(110) 

S.E. Laux 

[LauxIEDM04] 
DGFET 

Ge, all possible 

orientations 

NEGF –  

QDAME 

Effective mass 

approximation (2D) 
SCE + SDT 

Intrinsic 

switching 

time 

G(-4 4 21)/[110] 

A. Rahman et al. 

[RahIEDM04] 
DGFET Ge(100) 

Full band 

generalization of 

the Natori model 

Full band (2D) SCE + SDT 
Ion at 

constant Ioff 
 –  

A. Rahman et al. 

[RahIEDM05] 
DGFET 

Si(100) Ge(100) 

GaAs(100) InAs(100) 

Full band 

generalization of 

the Natori model 

Full band (2D) SCE + SDT 
Ion at 

constant Ioff 

Ge(100) for thin EOT 

GaAs(100) for thick EOT 

A. Pethe et al. 

[PetheIEDM05] 
DGFET 

Si(100) Ge(100) 

GaAs(100) InAs(100) 

InSb(100) 

Natori model  
Effective mass 

approximation (2D) 
SCE + BBT 

Ion at 

constant Ioff 
GaAs(100) 

M. De Michiels et al 

[DeMiTED2007] 
DGFET 

Si(100) Si(110) 

Ge(110) GaAs(110) 
Natori model 

Effective mass 

approximation (2D) 
– 

Ion at 

constant Ioff 
Ge(110) 

S.E. Laux 

[LauxTED2007] 
UTB SOI FET 

Si(100) Ge(100) 

GaAs(100) 

InGaAs(100) InP(100) 

Monte Carlo 

approach + 

DESSIS 

Full band (2D) 
SCE + SDT 

+ BBT 

Intrinsic 

switching 

time 

InGaAs 

Cantley et al. 

[CanIEDM2007] 
DGFET 

Si(100) Ge(100) 

GaAs(100) InAs(100) 

NEGF - 

NanoMOS 

Eff. mass. extracted 

from tight binding 

calculation (2D) 

SCE + SDT 
Ion at 

constant Ioff 
Si(100) 

Table 1.2 Sum up of the studies of the impact of alternative channel material on nano MOSFETs performances. It can be seen that no consensus 

has been obtained on the best channel material and its bet orientation yet
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As a general remark, it is clear that no general consensus exists yet on the theoretical 

performance advantages of alternative channel materials for MOSFETs. More in details, this 

literature review has revealed the following key points in the issue of alternative channel 

material simulations and modeling: 

 

• Regarding the device architecture : 

 

o Even if bulk devices have been sometimes considered [TakaVLSI03,FiscTED91_2], 

most papers are focused the deployment of alternative channel material in novel 

MOSFETs architectures like UTB SOI MOSFETs or Double Gate MOSFETs, 

following device architecture ITRS recommandations. 

 

o The introduction of alternative channel material is not likely to occur before the 32nm 

node of the High Performance (HP) roadmap, which feature a nominal gate length 

below 12nm. Therefore, the study of alternative channel material must be carried out in 

ultra scaled architecture.  

 

• Regarding the On-state performance modelling : 

 

o As these devices will not be introduced before the 22 or the 16nm technological node of 

the ITRS, which feature gate length below 10nm, they will operate close to the ballistic 

limit, or more likely in the quasi-ballistic regime. Until now, however, full ballistic 

transport is usually assumed, as it gives a fairly good estimation of the upper limit of 

alternative channel material performances. 

 

o All satellite valleys (∆, L or Γ) of the semiconductor must be taken into account. 

Indeed, it has been shown in [PethIEDM05] and [RahIEDM04] that the strong 

quantization occurring in the channel material featuring low quantization masses (like 

III-V compounds) can fill high energy states. As these satellite valleys generally have 

larger DOS than the first valleys, injection velocity degradation is expected 

[PethIEDM05], which could result in on current degradation. 

 

o Changing the channel material also implies to reinvestigate the optimum wafer surface 

and channel orientation. This issue has been first addressed partially in [TakaVSLI03]. 

In [LowIEDM03,LauxIEDM04,DeMiTED07], the authors have studied extensively the 

channel orientation of Si and Ge channels, showing that optimized channel orientation 

can lead to possible on state performance gain. 

 

o Due to strong quantum confinement in ultra thin films, the bandstructure (gaps and 

effective masses) of semiconductor is modified with respect to the bulk crystal one. In 

[RahIEDM04], A. Rahman et al. used tight binding simulation and proved that the bulk 

effective masses overestimated the ballistic drain current of Ge channel DGFETs. To 

avoid this overestimation, modified effective masses and energy bandgap fitted on full 

band calculation should be used, as carried out in [CantIEDM07]. 
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o It has been proved that the backscattering coefficient depends on the low field mobility 

[PaleIEDM06]. Therefore, the critical gate length at which devices will go from quasi to 

full ballistic current will depend on the channel material through its mobility. Channel 

material with high mobility will therefore surely feature full ballistic current for larger 

channel length. Thus, the channel backscattering coefficient should be taken into 

account in the simulation of alternative channel material devices to fairly compare them. 

This aspect has only been studied in [LauxTED07] so far. 

 

• Regarding the off state 

 

o Short Channel Effects (SCEs) will differ between materials due to their various 

dielectric constants and energy bandgaps (impacting the intrinsic carrier concentration 

[LiuTED03]). These effect has been well studied in [PetheIEDM05]. However, SCEs 

are greatly reduced in thin films devices or DGFETs, provided that a high ratio between 

the gate length and the semiconductor film thickness is kept (ideally L/tsi=3 or higher). 

 

o Due to the small bandgap of some material, Band-to-Band Tunnelling (BBT) is 

expected to play a major role in the increase of subthreshold current. This leakage, 

intensively studied by the Standford group [PetheIEDM03, KrishTED2006, 

KimSISPAD7], is extremely complex to model accurately [LyuriSSE07]. Thus, the lack 

of consensus on the procedure to model BBT may be responsible of the contradictive 

conclusions of the literature on this topic. 

 

o Source-to-Drain Tunnelling (SDT) has been found to be also a major contribution of 

the total subthreshold leakage. In particular, small effective mass materials like Ge or 

III-V compounds are expected to lead to large SDT, thus reducing the performances of 

alternative channel material devices [CantIEDM07]. 

 

Most of the results in this topic have been obtained during the recent years. However, to 

our knowledge, no contribution gathers all critical points yet. To do so, the following issues 

must be taken into account: 

1. The device orientation must be optimized 

2. All relevant leakage mechanisms must be accounted for (Short Channel Effect 

enhancing the conventional thermionic current, SDT and BBT). 

3. The impact of scattering must be investigated. 

 

1.2.2 Aim of the thesis 

 

The key points that have been underlined along the literature review will be addressed in 

this work, to give an estimation as complete as possible of the expected performances of new 

channel materials. 

 

Chapter 2 will focus at first on the on state current model used in this work, giving the 

details of the generalization of the Natori model on which it is based. The results will then be 

presented. 

 

Chapter 3 will be dedicated to the modeling of paramount subthreshold leakage 

mechanisms and their detrimental impact on the performances of device featuring alternative 

channel. The modeling of Short Channel Effects, Source-to-Drain Tunneling and Band-to-
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Band Tunneling will be detailed, and benchmarked with other approaches used in the 

literature. The use of semi-analytical model will enable to account for all mechanisms at the 

same time, which is a harder task using other approaches like in the NEGF and the Monte 

Carlo formalisms. Indeed, NEGF includes SDT, but BBT is extremely complex to model in 

indirect gap materials. On the contrary, BBT can be partially taken into account in the Monte 

Carlo approach [FiscTED07], but not SDT (except in the case of the Wigner Transport 

Equation solver [QuerIEDM06]). The chosen approach will therefore allow the comparison of 

the respective off current contribution of the different leakage mechanisms.  

 

Finally, in chapter 4, the Monte Carlo Multi Subband approach will be used to investigate 

quasi-ballistic transport in germanium channel DGFETs. The issue of Ge nMOSFETs 

mobility will be addressed at first. Then, the correlation of the backscattering coefficient (a 

high field short channel figure of merit) with effective mobility (a low field long channel one) 

will be studied. 

 

In chapter 5, the conclusions of this thesis will be summerized, insisting on the original 

results obtained during the past three years. 

 



Quentin Rafhay – Impact of alternative channel material on the performances of nano nMOSFETs 

Chapter 2 : Ballistic on current of arbitrary oriented alternative channel material nano nMOSFETs 33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2 :  Ballistic On current of nano 

nMOSFETs featuring arbitrarily oriented 

alternative channel material 
 

 

Chapter 2 : Ballistic On current of arbitrary oriented alternative channel material nano 

nMOSFETs 33 

2.1 Introduction .................................................................................................................... 34 

2.2 Modelling of the ballistic on state current of arbitrary oriented alternative channel 

DGFETs ............................................................................................................................... 35 

2.2.1 Carrier transport in the full ballistic regime ..................................................... 35 

2.2.2 The Natori model of full ballistic transport...................................................... 36 

2.2.3 Generalized Natori model ................................................................................ 43 

2.3 Impact of channel material and channel orientation on the on state performance of ultra-

scaled DGFETs .................................................................................................................... 51 

2.3.1 Impact of channel direction in (100) and (111) substrates............................... 51 

2.3.2 Impact of channel direction in (110) substrates ............................................... 53 

2.3.3 Impact of the bandstructure modification in presence of strong quantization: a 

literature review................................................................................................................ 59 

2.4 Conclusion...................................................................................................................... 61 

 



Quentin Rafhay – Modelling of nano nMOSFETs with alternative channel materials  

in the fully and quasi ballistic regimes 

Chapter 2 : Ballistic On current of nano nMOSFETs featuring arbitrarily oriented alternative channel 

material 
34 

2.1 Introduction 

 

It has been shown in the introduction of this thesis that, due to the extreme scaling of 

MOSFETs devices, carrier transport was no longer a close to equilibrium process, but rather a 

far from equilibrium one, in which ballistic carriers (i.e. non-scattered electrons or holes in the 

channel) are predominant. This transition in transport regime is expected to cause a reduction 

of the pace of the MOSFETs performance improvement. However, this slowing down can be 

compensated by the introduction of alternative channel material, which feature higher 

injection velocity and higher mobility, thus boosting the device global performance. 

 

The purpose of the first section of this chapter is to briefly introduce the concept of 

ballistic transport in ultra-scaled MOSFETs and its key figures of merit. A more detailed 

description of ballistic transport, including a full comparison with close to the equilibrium 

one, is given in [FerrThesis]. Then, the original Natori model is presented and derived, 

summing up its strength and weaknesses in perspective of the work presented in this thesis 

and in the literature. Finally, the generalization of the Natori model to any channel material in 

any possible channel orientation is given at the end of the first section. 

 

Using this generalized model of ballistic current, a first investigation of the impact of 

channel orientation on the on state current of alternative channel material Double Gate 

MOSFET (DGFET) is presented in the second section of this chapter. This section not only 

will give a better understanding of results already obtained in [LowIEDM03] and 

[LauxIEDM04] and but also expose a generalization of these results. 
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2.2 Modelling of the ballistic on state current of arbitrary oriented 

alternative channel DGFETs 

 

2.2.1 Carrier transport in the full ballistic regime 

 

Carrier transport in nanostructure can be conceptually considered as the exchange of 

carrier between two reservoirs separated by a controlled energy barrier. 

 

Following this approach, Figure 2.1 schemes the fully ballistic transport in a n-type 

DGFET. The top figure represents the structure and the geometry of a DGFET and its 

associated coordinate system: the channel source-drain direction is aligned with the x axis; the 

width of the transistor is aligned with the y axis, and the gates stack is align with the z axis. 

This convention, usually referred as Device Coordinate System (DCS), will be used all along 

this thesis. 

 

 
 

Figure 2.1 : Scheme of the full ballistic transport in a DGFET. Top figure represents the 

DGFET structure and its coordinate system (DCS). The bottom figure represents the source to 

drain potential barrier and the corresponding carrier flux emitted from the virtual source and 

from the drain. 

 

The only devices studied in this thesis are N-type DGFETs, as they are known to have 

significantly lower Short Channel Effects at ultra-scaled dimension [FerrTNANO08], 

[ColiME07]. Source and drain act as electron reservoirs, which are separated by a source-

drain energy barrier in the channel preventing carrier exchange, as represented in the bottom 

part of the figure. Using the electrostatic control of the gates, the energy barrier between 

source and drain can be modulated consistently with the charge in the channel. An increase of 

the charge in the channel lowers the barrier, which therefore allows carrier exchange between 

the two reservoirs. 
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As already mentioned, in the assumption of fully ballistic transport, and contrary to the 

close-to-equilibrium one, carrier scattering is totally ignored in the channel. Therefore, apart 

from the zone in the junction where the field opposes the movement, electrons can freely fly 

from the virtual source to the drain, and vice versa. Anyhow, and contrary to past beliefs, the 

transistor operation is still conserved [NatoJAP94]. The different current regime do not 

originates from carriers’ drift and diffusion anymore, but from the differences of free carrier 

fluxes emitted by the source and the drain, as shown in Figure 2.1, which results in the 

following regime: 

� If the source and drain bias are equal, the barrier is symmetrical, and the fluxes emitted by 

the source and the drain are equal. The current is thus zero (F
+
 = F

-
 � F = 0, as 

schematized on Figure 2.1). 

� If the drain bias is higher than the source bias, the flux coming from the drain side is 

weaker than the flux coming from the source side, which creates a positive carrier flux 

toward the drain (F
+
 > F

-
� F > 0). Increasing the drain voltage (i.e. lowering the energy 

on the drain side) increases at first the drain current, because of the lower counter 

contribution from the drain side flux (F
-
 ↓ � F ↑). This regime is equivalent to the former 

linear (Ohmic
2
) regime in the sense that the current is a relatively strong function of Vd. 

However at a given drain voltage value, the contribution from the drain side becomes 

totally negligible compared to the one of the source side: the increasing further the drain 

voltage does not increase anymore the total drain current. The device enters in saturation 

regime (F
+
 >> F

-
� F constant = F

+
). 

� If the gate voltage is increased and the drain voltage is high, the barrier is lowered. More 

electrons are consequently injected in the channel toward the drain. The total drain current 

therefore increases (F
+
 ↑ � F ↑ ). The device is in inversion. 

 

Due to the small thickness of the DGFETs semiconductor film (tsc), the gates and body 

stack creates a quantum well which confines carriers along the z axis. Consequently, the wave 

function associated to an electron is quantized in the z direction, but still considered as plane 

wave in the x and y axis. The drain currents therefore result from the difference of 2 

dimensional electron gas fluxes. This quantization, present all along the channel and in the 

source and drain, is illustrated in Figure 2.1 by two potential wells in the z direction, one on 

the top of the source to drain barrier and one on the drain side. 

 

The top of the source-drain energy barrier plays an important role in fully ballistic regime. 

This position in the channel is called the virtual source, as it is considered in several models 

and in particular the Natori one, as a virtual electron point where carriers are at equilibrium 

with the positive flux from the source and the negative flux emitted from the drain. 

 

The next subsection will detail the Natori model and will explain the role of the virtual 

source, as well as the role of the injection velocity. 

 

2.2.2 The Natori model of full ballistic transport 

 

It has been shown in the previous subsection that ballistic transport still ensures the same 

current-voltage behaviour as in devices operating in close to equilibrium condition, and that 

2D electron fluxes govern the drain current. The following subsection will present the 

                                                 
2
 Due to the absence of scattering in the channel, it is not rigorously possible to qualify this regime as “Ohmic”. 
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formalization of the full-ballistic transport in the framework of the semi-classical Natori 

model [NatoJAP94]. 

 

At first, the Natori model considers source and drain as perfect electron reservoirs in 

equilibrium, which implies that the 2D degenerate electron gases follow a Fermi-Dirac 

distribution of the carrier with the energy. It assumes in addition an electron transport in a 

(100)/[100]
3
 silicon channel, whose device coordinate system is aligned with the Crystalline 

Coordinate System (CCS). 

 

In addition, the Natori model is derived in the framework of the Effective Mass 

Approximation (EMA), in which the bandstructure is treated as several parabolic valleys. In 

bulk silicon, the bansdtructure in the EMA is composed of 6 equivalent ∆ valleys, whose 

isoenergy values are represented as 6 ellipsoids, as illustrated in Figure 2.2. 

 
Figure 2.2 : Dispersion relation from 3D (bulk) to 2D (quantized) electron gases. In the 

particular case of the Natori model, the devices coordinate system (DCS) is aligned with the 

crystalline one (CCS) as the principal axes of the 2D ellipses are aligned with the x and y axis. 

 

In the case of a 2D electron gas, the electron wave function loses one degree of freedom (in 

the z direction) and the isoenergy curves can be represented as several ellipses in the (kx,ky) 

plane, each ellipse corresponding to a different subband, as shown in Figure 2.2. 

 

The Natori model can be obtained from the following Esaki integral [Ferry] of the current 

density from a single projected ellipse, neglecting at first the contribution from the drain for  

the sake of clarity : 
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In equation (2.1), q is the elementary charge, W the transistor width, ħ is the reduced Plank 

constant, kx and ky the wave vector component of the electron respectively in the x and y 

direction, T(Ex) the transparency of the source-drain barrier at an Ex energy (energy of the 

carrier in the x direction) and Ef the Fermi level at the source. The n and i index respectively 

correspond to the index of the subband and the index of the valley considered. Thus, En
i
 is the 

energy of the n
th
 subband (at the virtual source) of the i

th
 valley with mx

i
 and my

i
 its two in-

plane effective masses. In this particular case, mx
i
 and my

i
 are either equal to the transverse or 

longitudinal effective masses (resp. mt or ml), depending on the ellipse considered. 

 

In (2.1), 
i

//

x

E1

k

∂

∂�
 is the group velocity in the kx direction of an electron whose wave vector 

is (kx,ky) with a corresponding energy 

222
yi i i x

n // n i i

x y

kk
E E E E

2 m m

 
= + = + +  

 

�
. The Fermi-Dirac 

function represents the probability of this electron to occupy an energy state E, while T(Ex) 

corresponds to the probability for this electron to move from source to drain (in the possible 

presence of an energy barrier). The integrated factor in (2.1) therefore represents the electrons 

“density of velocity in phase space” at an energy E. The integral in phase space sums the 

contribution of all electrons with a positive velocity in the x direction (kx from 0 to +∞, ky 

from -∞ to +∞) and the discrete sum over n adds the contributions from all subbands of the 

ellipse considered. 

 

To obtain an analytical equation from (2.1), the following assumptions is made : Carriers 

are emitted by the 2D electron gas at the virtual source. Since the ground state lays above the 

bottom of the conduction band, T(Ex) = 1 for all carriers. The tunnelling contribution from the 

source is thus considered negligible. 

 

Considering these assumptions, equation (2.1) becomes : 

 

 

( )

x

x

1
i

n f // x yi

x x x y2 i
nx bk 0

1
2i 22
yn f x

x x y2 i i i
nx b b x yk 0

E E E k ,kqW
I 1 exp k dk dk

2 m k T

kE E kq W
1 exp exp k dk dk

2 m k T 2k T m m

−

>

−

>

  − +
  = +

  π
  

    −
 = + +       π      

∑ ∫∫

∑ ∫∫

�

� �

 (2.2) 

 

The following polar variable change is then required to simplify further (2.2): 

 



Quentin Rafhay – Modelling of nano nMOSFETs with alternative channel materials  

in the fully and quasi ballistic regimes 

Chapter 2 : Ballistic On current of nano nMOSFETs featuring arbitrarily oriented alternative channel 

material 
39 

 

( )

( )

( )

( )

ix
b x

i i ix
b x b x y

x y 2
i

y
b y

i y
b y

k
2k Tmr cos

k r cos2k Tm 2k T m m
dk dk r d dr

k 2k Tmr sin
k r sin

2k Tm

 θ =  = θ
 

⇒ ⇒ = θ 
 θ =

= θ 


�

�

� �

�

(2.3) 

 

Equation (2.2) then becomes: 

 

 
( )

( ) ( )
13/ 2 i i2

b yi 2 2n f
  x 2 2

n b0

2

qW k T 2 m E E
I cos d 1 exp exp r r dr

W k T

π
−

∞

π
−

  −
= θ θ +   π   

∑ ∫ ∫�
 (2.4) 

 

The θ integral, carried out between –π/2 and π/2 to account for only positive values of kx, 

is equal to 2, while the r integral is a tabulated complete Fermi-Dirac integral : 

 

 

( )
( )

( )
1

i
2 2n f

1/ 2

b0 0

i
2 f n

b

E E 1 v 1
1 exp exp r r dr dv F u

k T 2 1 exp v u 2

E E
with v r  and u

k T

−
∞ ∞  −

+ = =    + −  

−
= =

∫ ∫
 (2.5) 

Finally, equation (2.4) gives : 

 

 
( )

3/ 2 i i
b yi f n

 x 1/22 2
n b

qW k T 2 m E E
I F

k T

 −
=  

π  
∑

�
 (2.6) 

 

The total current is then obtained by summing the contribution from all silicon valleys. 

 

The valley dependent factors in (2.6) are indexed by i. The valley dependence of the 

current is then accounted by the my
i
 in-plane effective mass and the En

i
 subband energy level, 

itself function of the confinement effective mass. Consequently, valleys are degenerated if 

they have the same my
i 
in-plane effective mass and the same confinement mass. 

 

Due to confinement, the 6 ∆ ellipsoids in silicon are thus part in 2 groups of 2D quantized 

ellipses: 2 ellipses confined with a longitudinal effective mass ml (∆2) and 4 ellipses confined 

with a transversal effective mass mt (∆4), as shown in Figure 2.2. 
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Figure 2.3 : Projection of the first Brillouin zone on a (100) surface and the 2 degenerated 

family of ellipses in silicon. 

 

In addition, because of the perpendicular in-plane orientation of the ∆4 ellipses, the current 

contribution from this valley originates from 2 ellipses with a longitudinal effective mass in 

the y direction (∆4,1), and 2 with a transverse effective mass in the y direction (∆4,2), as shown 

in Figure 2.3. 

 

The total current is therefore: 

 

( )

2 4,1 4,2

3/ 2 l t t
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π       
 
 

∑ ∑ ∑
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 (2.7), 

 

with En
l
 and En

t
 the respective subband levels from an ellipse confined with a longitudinal 

effective mass (∆2) and from an ellipse confined with a transverse effective mass (∆4). 

 

The derivation of these equations is the same if the drain contribution has to be taken into 

account. The only change lies in the “Fermi-Dirac supply functions” and equation (2.7) 

becomes: 

 

 

( )

( )

( )

3/ 2 ll
b f n df n

x t 1/2 1/2 22 2
n b b

3/ 2 tt
b f n df n

l 1/2 1/2 4,12 2
n b b

3/ 2

b

t 1/22 2

qW k T 2 E E qVE E
I 2 m F F   

k T k T

qW k T 2 E E qVE E
2 m F F   

k T k T

qW k T 2 E
2 m F

     − −− 
= − ∆        π        

     − −− 
+ − ∆        π        

+
π

∑

∑

�

�

�

tt

f n df n
1/2 4,2

n b b

E E qVE
F   

k T k T

     − −− 
− ∆               

∑

, (2.8), 

 

x 

y 

z 

ml 

∆4,2 

∆4,1 

∆4,2 

∆4,1 

∆2 

mt 

mt 

mt 

mt 

ml 

ml 

ml mt 

 

(100) 

[100] 



Quentin Rafhay – Modelling of nano nMOSFETs with alternative channel materials  

in the fully and quasi ballistic regimes 

Chapter 2 : Ballistic On current of nano nMOSFETs featuring arbitrarily oriented alternative channel 

material 
41 

where 
t

f n d
1/2

b

E E qV
F

k T

 − −
 
 

 represents the contribution from the drain side. If Vd is 

sufficiently large, 
t

f n d
1/2

b

E E qV
F

k T

 − −
 
 

 becomes negligible compared to 
t

f n
1/2

b

E E
F

k T

 −
 
 

 and 

the device enters the saturation regime. 

 

As the Natori model assumes that the charge at the virtual source is fully controlled by the 

gate and not influenced by the drain, which is contradictory to short channel effects 

conditions. In addition, as this model is based on flux theory, the charge at the virtual source 

can be expressed as : 

  

 

( ) s s

4 4

s s

2 2

f n f n dVS

inv d t l 0 0 4,1 4,2

i b b

N N

f n f n d
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b b
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Q V 0V q m m F F  and 

² k T k T

E E E E qVkbT
q m F F
2 ² k T k T

+ −
∆ ∆

+ −
∆ ∆

→ →

→ →

 
 

− − −     = = − ∆ ∆    π        

− − −   
+ −   

π    

∑
�

������� ���������

�
������� ���������

( ) ( )( )

2

i

g g dq N V N V ,V+ −

 
 
  ∆ 
   

= +

∑ (2.9) 

 

where Qinv
VS
 is the inversion charge at the virtual source obtained by 1D Poisson-Schrödinger 

calculation, q the elementary charge, N
+
 and N

-
 are respectively the carrier density with a 

wave vector oriented in the positive and the negative direction, at the virtual source (i.e. 

respectively  kx > 0 or kx < 0). In (2.9), F0 is defined as :  

 

 u

0 u

0

du
F ( ) ln(1 e )

1 e

∞
−η

−η
η = = +

+∫
 (2.10) 

 

According to (2.9), if Vd is increased, the contribution of N
-
 is progressively decreased, 

which globally reduces Qinv
VS

 (less contribution to the charge from the drain side in (2.9)). To 

maintain Qinv
VS
 constant as in a properly scaled devices (no short channel effect), a shift on Vd 

is introduced following: 

 

 ( ) ( ) ( )( )VS

inv d g g dQ V 0V q N V N V ,V+ −= = + + ∆  (2.11) 

 

The shift ∆ is then numerically determined to verify (2.11). This procedure is described in 

detail in [FerrTNano07], [NatoJAP94], [AssaTED00]. 

 

The importance of the injection velocity has been underlined in the introduction of this 

thesis. In the Natori model, the injection velocity is defined as: 
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 ( )
( )

( )
x s

inj s

s

I x
V x

q N x

+

+
=

⋅
 (2.12) 

 

In (2.12), N
+
 is the carrier density of a 2D electron gas with a velocity oriented in the 

positive x value, and xs is the position of the virtual source in the channel. The injection 

velocity can be expressed as : 

 

 
( )
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i nb b
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E E
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2 2 k T k T
V

E E
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 =

π  −
 
 

∑∑

∑∑
 (2.13) 

 

This equation can be extended to display the contribution of all valleys to the total 

injection velocity of silicon: 
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 (2.14); 

 

which can be written as : 

 

 4,1 4,22 4,1 4,22

inj inj inj inj

N NN
V V V V

N N N

+ ++
∆ ∆∆ ∆ ∆∆

+ + +
= + +  (2.15), 

 

where Vinj
∆2
, Vinj

∆4,1
 and Vinj

∆4,2
 are the respective injection velocity of the ∆2, ∆4,1 and ∆4,2 

valleys. 

 

Equation (2.15) therefore shows that the total injection velocity is the average of the 

injection velocity of each valley weighted by their relative occupancy. 

 

Equations (2.8) and (2.13) illustrate the simplicity of the Natori model of ballistic current. 

It however requires the calculation of the subband energy levels En
i
 and the Fermi-Dirac 

integral. The subband structure can easily be obtained by analytical models like the one 
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presented in [GeTED02] or [FerrJJAP06], or with more rigorous one dimensional Poisson-

Schrödinger simulations (as carried out in this work).  

 

The Poisson Schrödinger code simply consists in solving the coupled 1D differential 

equations of Schrödinger (eigenvalues problem to find the energy levels of each different 

valleys) and the Poisson equation (matrix inversion). This coupling constitutes the only 

difficulty to the numerical solution of this quantum problem. To overcome it, an over-

relaxation approach has been initially suggested by Stern [SterJCP70], but it is commonly 

accepted nowadays that the Newton-Raphson scheme (using the approximated classical 

Jacobian) is much more numerically efficient [Berkley]. 

 

The Fermi-Dirac integrals are also calculated numerically, but it can be also approximated 

with known approaches if the electron gas is degenerated or not (respectively the Thomas-

Fermi approximation if Ef << En and the Boltzmann approximation for Ef >> En,). 

 

However, several weaknesses of this model arise from this simplicity. In particular, the 

model is only valid for silicon channel under a (100) surface, in a [100] direction and short 

channel effects are neglected as well as additional subthreshold leakage currents. It thus needs 

to be generalized to be used in the scope of alternative-channel device performance 

estimation. 

 

The following subsection describes the generalisation of the Natori model to any channel 

orientation and any channel material. The issue of source-drain tunnelling leakage current will 

be addressed in chapter 3. 

 

2.2.3 Generalized Natori model 

 

Generalizing the Natori model requires to re-write the formalism presented in the previous 

subsection carefully accounting for the drain current parameter dependence with the channel 

material and orientation. In this framework, it appears that the channel material and 

orientation dependence is fully taken into account using more general and relevant transport 

and confinement effective masses. 

 

At first, to model alternative channel material, all valleys of the semiconductor must be 

taken into account, and not only the 6 fold ∆ ones like in the case of silicon. Any 

bandstructure treated in the EMA of a semiconductor of the zinc-blend or diamond lattice 

structure, including silicon, consists in fact of 11 valleys : 

� 6 ellipsoidal ∆ valleys aligned on the 6 equivalent [100] axis  of the first Brillouin zone in 

phase space (X direction); 

� 8 halves (or 4 full) ellipsoidal Λ valleys aligned on the 8 equivalent [111] axis of the first 

Brillouin zone in phase space (L direction); 

� 1 Γ spherical valley (mx = my = mz = mt), at the centre of the first Brillouin zone. 

 

Figure 2.4 shows the X, L and Γ points of the first Brillouin zone of a zinc-blend or 

diamond lattice structure (face-center cubic) material, like Si, Ge, GaAs InAs and most of the 

common semiconductors. 
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Figure 2.4 : Scheme of the first Brillouin zone, showing the 6 equivalent X direction (100), 

the 8 equivalent L direction (111) and the central Γ point. The ∆ and Λ valleys are 

respectively located on the X and L direction. 

 

Figure 2.5 shows a 2D projection of the silicon bandstructure on the X and L direction, 

showing the gaps bewteen ∆, Λ and Γ. 

 
Figure 2.5 : Bandstructure of silicon (left) and germanium (right), showing the ∆, Λ and Γ 

valleys of these materials. It can be seen that Si also features Λ and Γ valleys. However the 

impact of these valleys is negligible as their energy are very high. (Taken from [Ioffe.ru]) 

 

Table 2.1 presents the longitudinal (ml) and transverse (mt) effective masses and energy 

gaps of the ∆, Λ and Γ valleys for relevant semiconductors considered in this work. 

 

The ballistic current of an alternative channel material device is thus the sum over the 

current contributions from all these additional valleys.  

 

In the case of a silicon channel, it has been shown in (2.7) that the current contribution of 6 

∆ valleys of silicon could be reduced to the contribution of 3 ellipses degenerated twice, due 

to the confinement and the transport direction considered (respectively (100) and [100]). The 

degeneracy of the ∆ and Λ valleys in the case of an alternative channel material therefore, 

depends on the surface and transport orientation of the channel. 

 

 

 

 

Si Ge 

∆ 

Λ 

Γ 

Γ ∆ 
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∆ Valley Λ Valley Γ Valley 
 

mL (m0) mT (m0) ∆Eg (eV) mL (m0) mT (m0) Gap (eV) m (m0) ∆Eg (eV) 

Si 0.92 0.19 0 – – – – – 

Ge 0.95 0.2 0.19 1.64 0.08 0 – – 

GaAs 1.9 0.19 0.48 1.538 0.127 0.29 0.067 0 

InAs 1.126 0.175 1.02 1.565 0.124 0.72 0.023 0 

InSb 1.126 0.175 0.83 1.565 0.124 0.51 0.014 0 

AlAs 0.813 0.223 0 1.386 0.148 0.033 0.149 0.72 

InP 1.321 0.273 1.42 1.872 0.153 0.83 0.082 0 

GaP 1.993 0.250 0 1.493 0.142 0.415 0.126 0.50 

 

Table 2.1 : Effective masses and gaps of the X, L and Γ valleys for Si, Ge, GaAs, InAs, InSb, 

AlAs, InP et GaP. The data for Si and Ge are taken from [Ioffe.ru] as there is a large 

consensus on the parameters of these materials. However, for GaAs, AlAs, InP, and GaP, the 

data gathered in [FiscTED91_1] have been used. As InAs and InSb are not studied in the 

previous reference, their effective masses have been taken from [PethIEDM05] 

 

Figure 2.6 represents the projection of the first Brillouin zone on (100), (110) and (111) 

surface. This figure is equivalent to Figure 2.3, but Figure 2.6 illustrates the case for an 

arbitrary semiconductor of the zinc-blend or diamond lattice.  

 
Figure 2.6 : Projection of the first Brillouin zone on (100), (110) and (111) including the angle 

between the crystalline reference ([010] for (100), [001] for (110) and   for (111)) and the 

longitudinal principal axis of the recasted ellipsoid from the X, L and Γ valleys. This figure 

shows the 2D ellipses of the ∆, Λ and Γ valleys resulting from the quantization on these 

surfaces and their degeneracy due to confinement only. The degeneracy due to transport is 

hence ignored. 
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Due to the misalignment of the device coordinate system and the ellipse principal axis, or 

the misalignment of the device coordinate system and the crystalline one, the quantization and 

in-plane effective masses of the ellipses shown in Figure 2.6 are not equal to the transverse or 

longitudinal effective masses of the 3D ellipsoids. Figure 2.7 shows the projection of an 

arbitrary ellipsoid on a surface, showing how the difference between the projected in-plane 

effective mass m1 and m2 and the transverse and longitudinal effective mass of the 3D 

ellipsoid. In [SternPhysRev67], Stern and Howard derived the relations between the in-plane 

and quantization effective masses and the longitudinal and transversal effective masses. These 

results are summarized in Table 2.2. 

 
Figure 2.7 : Recasted effective masses in the device coordinate system. mT and mL are aligned 

with the principal axis of the ellipsoid while m1 and m2 are aligned with the principal axis of 

the projected ellipse on the surface. m3 is normal to the surface (confinement direction) 
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Table 2.2 : In-plane (m1,m2) and quantization (m3) effective masses as a function of the 

transverse and longitudinal effective masses of the ∆, Λ and Γ valleys on a (100), (110) and 

(111) surface. nv denotes the degeneracy of the ellipses regarding confinement only. 

 

Using these effective masses, the generalized formalization of the Natori model is obtained 

considering at first the current from an arbitrary oriented ellipse, as shown in Figure 2.8. 
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Conventionally, k1 is always aligned in the small principal axis of the ellipse. Therefore, 

m1 is always the smallest effective mass of the ellipse, and, as given in Table 2.2, always 

equal to mt (due to geometrical properties of a projected ellipsoid on a surface). 

 

 
Figure 2.8 : Arbitrary oriented ellipse with respect to the device coordinated system. The α 

angle represent the misalignment of the small principal axis of the ellipse (k1) with the source 

drain direction of the device. 

 

As in the silicon case, the starting equation is also an Esaki formula of the current from a 

single ellipse : 

 ( ) ( )
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i
x yi i i//

x n // x 2
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∂
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But in the case of a misaligned ellipse with respect to the device coordinate system, the 

dispersion relation becomes [SterPhysRev67],[RahmJAP05]: 

 

 

22 2 22 2
y x yi x 1 2

// i i i i i

x y xy 1 2

k 2k kk k k
E

2 m m m 2 m m

   
= + + = +       

� �
 (2.17) 

 

In (2.17), mx, my and mxy are the in-plane component of the effective mass tensor in the DCS, 

as explained in [SterPhysRev67],[RahmJAP05], and where m1 and m2 are the in-plane 

recasted effective masses given in [SterPhysRev67], in the CCS. 

 

Equation (2.17) shows that the E(k) relation is only parabolic in the (k1,k2) coordinate 

system, while cross term are present in the (kx,ky) one. As the integration of equation (2.16) is 

only possible in the absence of cross term like the kxky one, kx and ky must therefore be 

expressed as a function of k1 and k2 through this variable change:  
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 (2.18) 

 

where α is the angle between the channel direction and the small principal axis of the 

ellipse, as shown in Figure 2.8. 
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By replacing (2.17) and (2.18) in (2.16), and considering the same assumption as in the 

silicon case (top of the barrier model, absence of source-to-drain tunnelling – see 2.2.2) and 

after straightforward calculations, the following drain current equations are obtained : 

 

 i i i

x 1 2I I I+ + += +  (2.19) 
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As carried out in the silicon case, the integral can be simplified using a polar variable 

change:  
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which leads to :  

 
i 2

i b f n
1 1/22 2

n b

2

qW(2k T) E E
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4 k T

π
+α

+

π
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 −
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and 

 
i 2

i b f n
2 1/22 2

n b

2

qW(2k T) E E
I F sin( ) sin  d

4 k T

π
+α

+

π
− +α

 −
= α θ θ 

π  
∑ ∫�

 (2.24) 

 

Finally, after straight forward trigonometric calculations: 

 

 
x

i
i i f n
x j 1/2

n b

E E
I m ( ) F

k T

+  −
= χ ⋅ α ⋅  

 
∑  (2.25) 

with 
3/ 2

b(2k T)
qW

2π² ²
χ =

�
 (2.26) 

and ( )
x

i i 2 i 2

j 1 2m m sin ( ) m cos ( )α = α + α  (2.27) 

 

Equation (2.27) represents the ballistic current from a single arbitrary oriented ellipse. 

Knowing that m1 is always lower than m2, it can be deduce from equation (2.27) that the best 

transport direction for a single ellipse is in the perpendicular direction of the largest effective 

mass. In addition, equation (2.25) also shows that the in-plane orientation is only accounted 

for in m
i
jx (2.27). 
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The total current can then easily be obtained by summing the contribution of all the 

subbands of all the different minima, leading to :  

 

 ( )
x

i
i i f n

x j 0 1/2

i n b

E E
I m F

k T

+  −
= χ ⋅ α − α ⋅  

 
∑∑  (2.28) 

 

In (2.28), α0
i
 is the angle between a reference direction and the i

th
 ellipse. This shift is 

needed to introduce a common crystalline reference direction to all ellipses. Figure 2.6 shows 

some of the non-trivial angles with respect to the common crystalline reference, which are 

[010] for (100), [001] for (110) and [110] for (111). The α angle is thus the in-plane angle 

between the source-drain direction and these reference axis. 

 

En
i
 in equation (2.28) are the subband energy levels which are function of the m3 

quantization effective mass. These subbands are computed in this work using Poisson 

Schrödinger self consistent simulations, generalized to different orientation according the 

procedure described in [SterPhysRev67], and accounting for the wave function penetration 

through the gate dielectrics. 

 

 

The generalized equation of the injection velocity therefore becomes : 

 ( )
( )x

inj

I
V

q N

+

+

α
α =

⋅
 (2.29) 

 

Simple calculation shows that N
+
 is not dependent of the in-plane orientation of the device. 

However, as N
+
 is a function of the subband level (see equation (2.13)), it consequently 

depends on the surface orientation through the quantization effective mass m3. 

 

Equation (2.29) can also be expended to show the contribution of each ellipse to the total 

injection velocity, like in equation (2.15) :  

 ( ) ( )ii
inj inj

i

N
V V

q N

+

+
α = α

⋅
∑  (2.30) 

 

In equation (2.30), Vinj
i
 is the injection velocity of the i

th
 ellipse and ni

+
 its carrier density. 

 

It has to be noticed that such a model has also been derived in [DeMiTED07]. 

 

As discussed in detail in [FerrTNANO07] but only in the case of (100) Silicon, it is clear 

from equations (2.28) and (2.29) that ballistic current can be enhanced by :  

� Improving the mass terms in (2.27) ; 

� Increasing the En
i
 – Ef difference, by enhancing the occupancy of subbands with a light 

transport mass. 

 

For this purpose, the strength of quantum confinement, the value of the quantization 

effective mass and the subband density of states are particularly effective in changing the En
i
 

– Ef difference. Material, substrate orientation, channel direction, body thickness of the 

DGFET, and applied fields are thus the main parameters that can impact the ballistic current. 
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However, one of the main drawbacks of the Natori model and of this generalized model is 

their significant overestimation of the drain currents compared to what can be possibly 

expected from a well designed device. This discrepancy is partially due to the impact of 

parasitic series resistances, which degrades the drain currents obtained for ultra-scaled 

devices. The procedure described in Figure 2.9 is applied, to include the effect of series 

resistance (as carried out in chapter 3),  

 

 

 

 

 

 * *

ds ds sd d gs dsV V R I (V ,V )= + ⋅  (2.31) 

 *sd
gs d gs ds gs

R
V I (V ,V ) V

2
= +  (2.32) 

 

Figure 2.9 : Sketch of an intrinsic transistor and the parasitic resistances on the gate, source 

and drain terminals. Equation (2.31) and (2.32) are the voltage and current equation of this 

circuit. 

 

The applied voltages are functions of the intrinsic voltage applied to the intrinsic transistor, 

of the parasitic resistances, and of the drain current. Assuming that the devices is in saturation 

(Id independent of Vd) lead to neglect equation (2.31). Consequently, the evaluation of the 

effect of series resistances consists in finding the intrinsic source to gate voltage which 

verifies (2.32). The corresponding value of drain current obtained for this Vgs
*
 gives the value 

of the drain current including the effect of the parasitic resistances. 

 

The next sections therefore aims to discuss in more details the complex role of material, 

surface orientation and channel direction employing the model which has been described. 

Thanks to its relative simplicity, and contrary to more exact time consuming numerical 

simulations, the generalized semi-analytical Natori approach presented here allows a fast 

evaluation of performances of a broad variety of devices and options. 

Rsd/2 Rsd/2 

Rg (=Rsd) 

Vds 

Vds* 

Vgs 

Vgs* 
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2.3 Impact of channel material and channel orientation on the on state 

performance of ultra-scaled DGFETs 

 

In this section, the generalized Natori model previously presented will be used to 

investigate the impact of  channel material and orientation on the ballistic on state current of 

DGFETs. 

 

In [LowIEDM03] and [LauxIEDM04], it has been deduced, by time consuming numerical 

simulations, that the ballistic drain current, and injection velocity on Ge Double Gate 

nMOSFETs (DGFETs) was isotropic on (100) and (111) surfaces and anisotropic for (110) 

surfaces. In addition, it has been shown that the best drain current was obtained in this 

anisotropic case, i.e. for a (110) substrate surface, with a channel oriented in the [110] 

direction. 

 

However, these results have not been understood in its detail and the impact of channel 

orientations in other alternative materials has not been investigated so far. The use of semi-

analytical modelling instead of numerical simulation will not only help to have a better 

understanding of this issue, but also to generalize these results to other materials. 

 

Using the generalized model, the current on (100) and (111) surface will be shown to be 

isotropic in the first subsection, while the second subsection will study the drain current 

anisotropy on the (110) surface. Finally, a third subsection will present a literature review of 

the impact of the bandstructure modification in strongly quantized structures. Most of results 

presented in this section have been published in [RafhSSE08]. 

 

2.3.1 Impact of channel direction in (100) and (111) substrates 

 

In this subsection, the impact of the in-plane orientation of (100) and (111) DGFETs (100) 

on the ballistic drain current is investigated. Figure 2.10 schemes the orientation convention 

used in this work. The considered source-drain direction is included in the (100) or (111) 

surface, and form an angle α with the reference crystalline direction, which are respectively 

the [100] and the [110] axis. 

 
Figure 2.10 : In-plane device orientation on the (100) and (111) surfaces showing the angle 

between the crystalline reference (resp. [100] and [110]) and the source-drain transport 

direction of the device. 
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The dependence of currents (and corresponding injection velocity) on the in-plane 

orientation of the channel is explicitly contained in equation (2.28) through the mass factor 

(2.27). This explicit mass dependence enables an analytical evidence of the current isotropy of 

the (100) and (111), not only in the case of Ge devices, but in the case of any semiconductor 

featuring a zinc-blende crystallin lattice. 

 

At first, regarding the (100) surface, the drain current is the sum of the ∆2, ∆4, Λ4 and Γ 

valleys as shown in Figure 2.6. The ∆2 and Γ contributions are isotropic as these valleys have 

an isotropic shape (m1 = m2, as shown in Figure 2.6). The ∆4 and Λ4 valley are perpendicular 

or opposed valleys to each other. According to equations (2.25) and (2.27), it is obvious that 

opposite ellipsoids have the same orientation dependence of carrier injection. Then, according 

to (2.28), the contribution from opposed and perpendicular valleys is given by : 
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Or 

 

( )4 4 4

4 4

i
2 2 f n

x 1 2 1/2

n b

i
2 2 f n

1 2 1/2

n b

E E
I 2 m sin ( ) m cos ( ) F

k T

E E
2 m sin m cos F

2 2 k T

+Λ Λ Λ

Λ Λ

 −
= χ α + α  

 

   −π π   
+ χ α + + α +      

      

∑
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 (2.34) 

 

As the perpendicular ellipses have the same confinement mass m3, the subband level 

energies are the same and the two F1/2 factors are equal. Trivial trigonometric calculations 

show that adding these two perpendicular ellipses, as done in equation (2.33) and (2.34), 

cancel out the dependence with α, which implies that the injection from two perpendicular 

ellipses is isotropic. Therefore, the total current is isotropic on (100) surfaces, since the 

contributions of the X2, Γ, ∆4 and Λ4 valleys are all isotropic.  

 

Same calculations show that the sum of the contribution to the current from the three ∆3 

ellipses and from the three Λ3 ones, both separated by a π/3 angle on the (111) surface (see 

Figure 2.6) is also isotropic.  

 

In addition, as these conclusions are consequences of the symmetries of the band structure 

of semiconductor of the zinc-blend and diamond lattices, i.e. the symmetries of the ∆, Λ and Γ 

valleys, the isotropy of the (100) and (111) ballistic drain current is true for all 

semiconductors of these lattice groups. 

 

To illustrate this point, undoped symmetrical DGFETs on (100) and (111) surfaces with 

various channel materials (Si, Ge, GaAs, InAs, InSb, AlAs, InP and GaP) have been 

simulated. In these simulations, the body thickness tsc for these DGFETs is 5 nm and the gate 

dielectrics Equivalent Oxide Thickness (EOT) is 1 nm.  

 

Figure 2.11 shows the drain current at a constant inversion charge as a function of the α 

angle of these alternative channel material devices. The isotropy of the current versus channel 

direction is clearly shown on (100) and (111) substrates, which confirms the results obtained 
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in [LowIEDM03] and [LauxIEDM04] and the analytical demonstration carried out 

previously. 

 

However, the mathematical simplifications possible under (100) and (111) surfaces are not 

possible for the current on a (110) surface. The contribution of the ∆4, ∆2, Λ2 and Λ2’ 

projected ellipses on the (110) surface (see Figure 2.6) are intrinsically anisotropic and their 

sum does not cancel out the dependence with α. This anisotropy of the carrier injection, 

already reported for Ge DGFETs in [LowIEDM03] and [LauxIEDM04], is studied in more 

details in the next subsection, not only for Ge, but also for different III-V semiconductors of 

the Zinc Blend lattice structure. 
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Figure 2.11 : DGFETs drain current in the fully ballistic regime as a function of the channel 

orientation on (100) (a) and (111) (b) surface with Si, Ge, GaAs, InAs, InSb, AlAs, InP and 

GaP channel material. Current are taken at a constant carrier density of 10
13
cm

-2
/gate. Gate 

work function is chosen so that it gives a constant off current equal to 1 nA/µm. Body 

thickness tsc for these DGFETs is 5nm and the Equivalent Oxide Thickness tox is 1 nm. 

 

2.3.2 Impact of channel direction in (110) substrates 

2.3.2.1 Semiconductors optimum channel orientations on the (110) surface 

 

The same simulations have been carried out for the same alternative channel material 

DGFETs, but on the (110) surface, with an orientation convention illustrated in Figure 2.12. 

Figure 2.13 shows the ballistic drain current of 5 nm body DGFETs on (110) surfaces in 

strong inversion as a function of the α angle.  

[010] [110] 

[112] [001] 
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Figure 2.12 : In-plane device orientation on the (110) surface showing the angle between the 

crystalline reference (100) and the source-drain transport direction of the device 

 

Among the various materials simulated, some general trends are obtained. 

 

First of all, materials like Si, AlAs and GaP have their best ballistic current along the [001] 

axis (see Figure 2.13 (a)). In these materials, the first minima of the conduction band are 

located in ∆ valleys, which always carry most of the charge, even when taking into account 

the occupancy of other valleys, possibly modified by quantum confinement enhancement. 

Consequently, on the (110) surface, the carriers are located mainly in ∆4 valleys, thanks to a 

larger quantization effective mass compared to the ∆2 valleys (mt < 
t l

t l

2m m

m m+
, see Table 2.2). 

As shown in Figure 2.14 (a), the ∆4 have their largest in-plane effective mass in the [110] 

direction, which results in a larger current in the perpendicular direction, i.e. [100]. 
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Figure 2.13 : DGFETs drain current in the fully ballistic regime as a function of the channel 

orientation on (110) substrate with Si, AlAs and GaP (a) and Ge, GaAs, InAs, InSb, InP 

channel material (b). Current are taken at a constant carrier density of 10
13
cm

-
²/gate. Gate 

work function is chosen so that it gives an Ioff constant and equal to 1 nA/µm. Body thickness 

tsc for these DGFETs is 5nm and the Equivalent Oxide Thickness is EOT = 1 nm. 

 

 

Then, in Ge, GaAs, InAs and InSb DGFETs, the higher drain current on the (110) surface 

is obtained for a channel oriented in the [110] direction (see Figure 2.13(b)). This may seem 

surprising, as GaAs, InAs and InSb materials have their gap in Γ, an isotropic valley. 

However, as already shown in [PethIEDM05] for GaAs, InAs and InSb on (100) substrate, 
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carriers, when confined, move from the subbands of the Γ valley to the subbands of the Λ 

valleys because of the extremely small effective masses of the Γ valleys. A similar effect also 

occurs on (110) surfaces, as the charge in this case is also located in the Λ2’ valleys (higher 

confinement mass than Λ2). As it can be seen from equations (2.25) to (2.27), the current is 

higher in the direction perpendicular to the direction of the higher in-plane mass of this valley, 

i.e. [110] in this case, as shown in Figure 2.14 (b). 

 

 

 
(a)      (b) 

 

Figure 2.14 : Projection of the first Brillouin zone on a (110) surface, showing in dark the 

populated valleys in the case of Si, AlAs and Gap channel material (a) and Ge, GaAs, InAs, 

InSb channel material (b). The corresponding best current/injection directions are also shown 

(direction perpendicular of to the largest effective masses of most populated valleys) 

 

Finally, InP DGFETs may appear as a particular case in Figure 2.13 (b), as the current in 

this device does not seems to show any anisotropy on the (110) surface. Indeed, in InP 

inversion layers, carriers remain mainly in the (isotropic) Γ valley because of the large gap 

between the Γ and the Λ valleys and the larger effective mass of the Γ valley compared to 

GaAs, InAs and InSb. However, the Λ valley subbands of InP can occasionally be populated 

if tsc is further reduced and if the carrier density is increased. In these conditions, InP DGFETs 

will present the same anisotropic drain current as GaAs, InAs or InSb. 

 

 

It can be seen on Figure 2.13 that the magnitude of currents are also very different on the 

(110) surface for these two class of materials. However, it can not be concluded yet that Ge, 

GaAs, InAs, InSb or InP are more promising channel material, since the source drain 

tunnelling leakages have not been included yet. This will be done in chapter 3 of this thesis 

 

2.3.2.2 Impact of confinement on Anisotropy 

 

The previous subsection has showed that quantum confinement and the relative subband 

filling play a significant role in the ballistic current anisotropy of the (110) surface. It is found 
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that the most occupied valleys determine the best current direction: when the ∆ valleys are 

more occupied, the best current is in the [100] direction and when the Λ valleys are more 

occupied, the best current is found to be in the [100] direction. 
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Figure 2.15  : DGFETs drain current in the fully ballistic regime as a function of the channel 

orientation on (110) GaAs substrate at two different gate voltages (Fig. 5 A : Vg – VFB = 2V, 

Fig. 5 B : Vg – VFB = 3V). Body thickness tsc for these DGFETs is 5nm, the Equivalent Oxide 

Thickness (EOT) is tox=1 nm and Ioff is 1nA/µm. 

 

However, the other non-negligibly populated valleys will also contribute to the total 

current, and to the amount of anisotropy. As the occupancy of the different subbands depends 

both on effective mass and the confinement strength, the role of the different subbands is 

therefore a function of the bias conditions and body thicknesses (tsc). As shown in Figure 

2.16, the ground originates for Vg-VFB = 2 or 3V from the Γ valley. However, most of the 

higher subband originates form the Λ valley. As the Fermi level is higher in the case of  

Vg-VFB = 3V, these satellite valleys contribute more to the total current. 
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Figure 2.16 :  Subband structure of a GaAs DFGETs oriented on a (110) surface. tox is equal 

to 1nm, tsc to 5nm. The gates voltage is equal to 2V (a) and 3V (b). 
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To illustrate the role of the valley occupation on the drain current anisotropy versus applied 

bias, drain current versus in plane channel orientation have been plotted for 5 nm body GaAs 

DGFETs for each valleys in Figure 2.15 at different gate bias conditions (Vg – VFB = 2V and 

3V). In both cases, a current anisotropy is observed, but the amplitude of this anisotropy in the 

[110] direction is modulated by the applied gate voltage. At Vg – VFB = 2V, the Γ valleys still 

dominates, but the contribution from the Λ2’ induced an anisotropy with a best current in the 

[110] direction. However, at Vg – VFB = 3V, the contribution from the Γ valleys decreases, 

while the one of the Λ2’ increases as its occupancy increases, leading to an increased 

anisotropy in the [110] direction. 

 

This is confirmed on Figure 2.17 (a), which shows the relative occupancy of most 

populated valleys in GaAs, i.e. the Γ, Λ2 and Λ2’ valleys. At low voltage (subthreshold 

condition), carriers are located in the Γ valley. When the gate voltage is increased, the relative 

Λ valleys population increase, as the density of states of the Γ valleys is extremely small (m = 

0.067 m0) while the Λ2’ ones is much larger. At large voltage, the relative occupancy of the Γ 

valleys is even lower than the one of the Λ valleys. 

 

It can be also noticed on Figure 2.17 (b) that the best injection velocity is obtained in Γ 

valleys (due to its lower effective mass, the F1/2 factor in (2.25) is much larger than in the case 

of other ∆ or Λ valleys). However, the global injection velocity (which is an average of all the 

subband injection velocities weighted by subband occupancy [AssaTED00][FerrTNANO07], 

as shown in equation (2.30)) is lower in strong inversion than the Γ valley own injection 

velocity, because of the increasing role of Λ2’ valleys. This confirms the necessity of properly 

taking into account all the valley minima in this kind of study. 
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Figure 2.17 : Impact of gate voltage on relative subband occupancy (Fig. 6A) and injection 

velocity in   channel direction (Fig. 6B) in (110) GaAs DGFETs. Body thickness tsc for these 

DGFETs is 5nm and the Equivalent Oxide Thickness is EOT = 1 nm. 

 

In addition, these results, also obtained in [PethIEDM03] and [DeMiTED07], underlines 

that despite the good expected on state performance of alternative channel material thanks to 

their small effective masses, the filling of satellite valleys with lower injection velocity could 

severely degrade the on current of these devices. 
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2.3.2.3 Transport in (110) substrate compared to (100) and (111) 

 

GaAs, InAs and InSb (110) DGFETs have been shown in the previous subsection to have 

their optimum channel direction in [110], as previously reported for (110) Ge DGFET 

[LowIEDM03]. In this paper, it is also mentioned that ballistic current obtained in [110] 

/(110) on Ge device is higher than on the (100) and (111) substrate. 

 

This aspect is thus reinvestigated for GaAs, InAs and InSb DGFETs in Figure 2.18. This 

figure shows the ratio at a constant inversion charge and as a function of the semiconductor 

film thickness of the drain currents on (110) surface with a channel along [110] divided by the 

currents obtained on (100) surfaces. 
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Figure 2.18 : Ratio of the maximum current on (110) and the current on (100) substrate as a 

function of the semiconductor film thickness for Ge, GaAs, InAs and InSb DGFETs. The 

value of the current are taken at a constant carrier density of 10
13
 cm

-2
/gate. 

 

It can be seen from Figure 2.18 that the drain current of GaAs, InAs and InSb DGFETs on 

(110) surface with channels aligned in the [110] direction is always higher than the drain 

current on (100) surface for all semiconductor thicknesses. In addition, except for Ge, these 

ratios tend to increase with the reduction of the semiconductor film thickness tsc.  

 

This slight decrease of the current ratio for Ge DGFETs at body thickness lower than 3 nm 

is explained by a strong increase of the injection velocity under the (100) due to the filling of 

the ∆2 valleys [LowIEDM03], [LauxIEDM04] (better injection velocity of the ∆2 valleys due 

to smaller in-plane masses). 

 

This effect is analyzed on Figure 2.19, showing subband occupancy and injection velocity 

in the case of GaAs for both (100) and (110) substrates. While the injection velocity tends to 

remain constant in the case of (100) substrate, it increases in [110]/(110) devices when 

reducing the body thickness at same inversion charge, thanks to the role of Λ2’ valleys. 

 

Finally, the (111) surfaces have not been considered here, as it is already clear from Figure 

2.11 that the current on (111) is lower than on (100) for the 4 materials considered here. 
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Figure 2.19 : Impact of body thickness on relative subband occupancy (a) and injection 

velocity in channel direction (b) in (110) and (100) GaAs DGFETs. The values of current are 

taken at a constant carrier density of 10
13
 cm

-2
/gate. 

 

 

2.3.3 Impact of the bandstructure modification in presence of strong 

quantization: a literature review 

 

It is important to note that the results presented in the previous subsection have been 

obtained in the framework of the effective mass approximation and that the effective masses 

used in this work were the bulk ones. However, the DGFETs simulated often featured ultra-

thin semiconductor film and the bandstructure is known to be strongly modified in these 

quantum structures.  

 

It has been proved at first in [RahmIEDM04] that using the bulk effective mass leads to 

significant overestimation of the ballistic drain current of germanium DGFETs. The authors 

therefore suggest that full bandstructure should be used to properly model alternative channel 

performance. 

 

However, this analysis did not demonstrate that the effective mass approximation, i.e. the 

assumption of parabolic bands, was not valid anymore for ultra-thin film devices. In 

[SteeTED07], [ZhuIEDM], [CantIEDM07], [LiuTED08] and [PalTED08], the authors have 

shown that the effective mass of Si, Ge, InSb GaAs and InAs could be fitted on the modified 

bandstructure of ultra-thin film. In [SteeTED07], the authors have used the Local 

Combination of Bulk Band approach, while in the other reference (all from the Purdue group), 

a Tight Binding calculation has been used. 

 

Figure 2.20 presents the in-plane effective mass as a function of the film thickness of Si, 

Ge, GaAs, InAs and InSb obtained in these references. It can be seen at first that above 5nm, 

the bulk effective mass value still fairly reproduce the bandstructure. When the semiconductor 

film thickness is reduced below 5nm, the effective mass required to fit the bandstructure 

increases significantly. According to [ZhuIEDM06], only the in-plane effective mass of the ∆2 

valley of silicon is decreased in one direction, which seems however to be in contradiction 

with the results obtained in [SteeTED07] where this valley remains isotropic. 
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Figure 2.20 : In-plane effective as a function of the semiconductor film thickness of Si (a), 

Ge, GaAs, InAs and InSb (b). The name of the valleys corresponds to Figure 2.6, while m1 

and m2 correspond to the in-plane effective mass in the principal axis of the ellipse. 

 

Even if the work presented in this chapter should rigorously need a full re-investigation, it 

is possible to evaluate qualitatively the impact of these increasing effective mass with a 

reduction of the semiconductor film thickness.  

 

Assuming that the isotropy of the Γ and ∆2 are not modified, as shown in [SteeTED07], the 

drain current on a (100) and (111) surface would still be isotropic on ultra-thin film. Due to 

the increase of the effective mass of the Γ valleys in III-V material, the satellite valleys 

causing the anisotropy of the (110) surface will be depopulated. This anisotropy is thus 

expected to be weaker in ultra-thin film. 

 

In this framework, the impact of the effective mass increase on the overall device 

performance is less obvious, as two antagonist mechanisms are being involved. The 

depopulation of the satellite valleys would indeed reduce the injection velocity degradation 

(shown in Figure 2.17), inducing a drain current increase. But the increase of the effective 

mass is also expected to decrease the injection velocity, resulting in a lower drain current. It is 

therefore compulsory to carry out the full calculation in this case. This has already been 

carried out for Ge and InSb, where it has been respectively shown in [RahmIEDM04] and 

[ZhuIEDM06] that the drain current is globally lower with fitted effective mass than with 

bulk effective masses. This procedure, not included in this present chapter, will be 

investigated in the future. 
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2.4 Conclusion 

 

A semi-analytical model of the ballistic drain current valid for any channel material and 

any channel orientation has been presented in this chapter. This model has been obtained from 

the generalization of the Natori model only valid in its original version for conventionally 

oriented silicon channel devices. This generalized model allows a fast estimation of many 

technological options. 

 

However unrealistic in Silicon channel longer than 10 nm, the full ballistic transport 

approximation used in this work is expected to be more appropriate in high mobility channel 

material such as Ge or GaAs (even if transport simulation accounting for scattering are 

required to investigate this point). Nevertheless, factor of merits in the full ballistic regime 

such as the injection velocity for instance has been shown to also play an important role in the 

quasi ballistic regime (where devices are more likely to operate), justifying the use of this 

transport regime in the analysis of the on state current in alternative channel material 

[LundTED02]. 

 

This analytical treatment of the full ballistic current enabled deeper investigation of the 

impact of substrate orientation and channel direction on the on state current of alternative 

channel material DGFETs and in particular its isotropy on the (100) an (111) surface and its 

anisotropy on the (110) one. The in-plane isotropy of the ballistic drain current on (100) and 

(111) surfaces, previously obtained only as a result of time consuming numerical simulations 

on Ge DGFETs [LowIEDM03], can be easily explained by the symmetry properties of the 

minima of the Zinc Blend semiconductor. A detailed study of the anisotropy of the ballistic 

drain current on (110) surface showed some common trends between various semiconductors 

of the zinc-blend and diamond lattice structure. The bandstructure (here treated through the 

simple Effective Mass Approximation) and hence the occupancy of the different valleys 

determine the best current direction on the (110) surface. Finally, this work showed that the 

optimum channel orientation of GaAs, InAs and InSb DGFETs is on (110) surfaces with a 

channel aligned in the [110] direction, as already obtained for arbitrarily oriented Ge DGFETs 

in [LowIEDM03] and [LauxIEDM04].  

 

It has to be noted that the results obtained in this chapter considered constant effective 

mass equal to the bulk values. No effect of the quantization on the bandstructure has been 

taken into account. However, and as underlined in the last subsection, this work should be re-

investigated using fitted effective mass, as carried out in [ZhuIEDM06], [CantIEDM07], 

[LiuTED08] or [PalTED08]. 

 

The results shown in this chapter cannot be seen a comparison, even though data for 

different channel material are shown on same graphs. The comparison at that stage is indeed 

too biased if done at constant charge. It is thus more rigorous to compare alternative channel 

material at the same device off current. In this scope, the impact of subthreshold leakage 

mechanisms on the ballistic Ion-Ioff trade-off will be consequently investigated in chapter 3. 
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3.1 Introduction 

 

The previous chapter has described the modelling of the full ballistic on current of 

alternative channel material nMOSFETs. The impact of channel orientation has been at first 

identified as a possible mean of device performance enhancement. However, the accurate 

performance comparison versus material parameter requires to consider not only the on state 

current, but also the off state current. Thus, this comparison indeed requires to account for the 

determinant source-drain leakage mechanisms, which have been found in the literature to 

particularly impact the performance of these devices. 

 

In previous works where tunneling leakage mechanisms have been ignored [TakaVLSI03] 

[DeMiTED07], alternative channel materials have been found to largely overcome silicon, 

despite their reduced Density of states (DOS), which leads to enhanced parasitic quantum 

capacitance [DeMiTED07] (or “DOS bottleneck” effect [FiscTED07]). In other works, Band-

to-Band Tunneling (BBT) has been identified as a critical mechanism of leakage degradation, 

especially in small bandgap materials [SaraVLSI07] [PethIEDM05] [FiscTED07] 

[LauxTED07] [LowIEDM03]. More recently, the detrimental impact of Source-to-Drain 

Tunneling (SDT) on the leakages in alternative channel material devices has been also 

demonstrated [LowIEDM03] [CantIEDM07]. In this latter work, when gate lengths below 10 

nm were considered, alternative channel materials were found to be even less attractive than 

conventional silicon.  

 

The literature review presented in the introduction of this work underlined that the absence 

of consensus on the “best” existing alternative channel material. This is partially due to the 

fact that, most of the previous works do not consider all the relevant physical mechanisms. To 

our knowledge, such a complete analysis has only been carried out in reference 

[LauxTED07], combining results obtained by Monte Carlo and Non Equilibrium Green 

Function simulations. However, only relatively long channel devices were investigated in this 

work, tending to underestimate the impact of BBT and SDT leakage mechanisms (L = 22 and 

17 nm in [LauxTED07], compared to the ITRS requirement for High Performance 22 and 16 

nm nodes: L = 9 and 6 nm respectively). 

 

This chapter aims to compare alternative channel materials in the framework of the full 

ballistic transport, accounting for all the relevant mechanisms impacting the performance of 

sub-15nm devices.  

 

To this purpose, the first section of this chapter will describe the modelling of the source 

drain subthreshold leakage, which have been found to degrade the performance of alternative 

channel material devices: the short channel effects, the source-to-drain tunnelling and the 

band-to-band tunnelling. 

 

Then, the second section will present the results obtained with this model in two different 

ways : a comparison between different alternative channel material DGFETs as carried out in 

the literature and a deeper study of the leakage mechanisms degrading the devices 

performances. 
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3.2 Modelling of subthreshold source-drain leakage mechanisms 

 

The literature has underlined the necessity to take into account leakage mechanisms to 

compare rigorously alternative channel materials. The origins of the different subthreshold 

mechanisms considered in this work will be introduced in a first subsection, which will be 

followed by three subsections, successively describing the modelling of Short Channel Effects 

(SCEs), Souce-to-Drain Tunneling (SDT) and Band-to-band Tunnelling (BBT). 

 

3.2.1 Impact of source-drain leakage mechanisms on the device 

performance 

 

The main contributions to the subthreshold leakage current are illustrated in Figure 3.1. 

The first mechanism of leakages is the conventional thermionic current, which consists in 

electron moving from source to drain with an energy higher than the potential barrier at the 

virtual source. In long channel device and in absence of defect in the dielectric (trapped 

charge, interface states…), the subthreshold swhing may have its ideal value of 60mV/dec at 

room temperature. However, in scaled devices, the short channel effect increases this 

subthreshold slope, thus degrading the overall transistor performances. Source-to-drain 

tunnelling occurs in shorter channel (generally below 15nm) and consists in electron in the 

conduction band of the source which tunnel toward the drain though the energy barrier. As in 

the case of thermionic current enhanced by SCEs, SDT increases the subthreshold slope  of 

the transistor. Finally, the last leakage mechanism considered in this work is band-to-band 

tunnelling, which arise from the tunnelling through the gap of electron from the valence band 

to the conduction band. This mechanism, known to limit the off current to a minimum value 

independent of any threshold voltage shift or metal gate work function adjustment, is 

enhanced by high field occurring close to the drain contact. 

 

 
Figure 3.1: Scheme of the three different origins of source to drain leakage considered in this 

work. 

 

The impact of these three leakage components on the current characteristics of the devices 

are summarized in Figure 3.2. This sketch highlights the detrimental effect of too large 

subthreshold current. Indeed, in practice, the threshold voltage (or metal gate work function in 

case of undoped devices) is adjusted to set the off current value. Therefore, if the subthreshold 

condition are degraded, a larger threshold voltage (or metal gate work function) will be 

required, which will also degrades the on state regime. 
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Figure 3.2 : Schematic representation of the impact of SCEs, SDT and BBT on the current-

voltage characteristic of a MOS Transistor. 

 

3.2.2 Short Channel Effect and Drain Induced Barrier Lowering (SCE 

and DIBL) 

 

The short channel effects are electrostatic phenomena which perturb the normal operation 

of scaled transistors [Taur][Skot]. Due to the proximity of the source and drain, the inversion 

charge dependence with the external biases is modified with respect to the long channel case. 

The consecutive impact of the SCEs is illustrated in Figure 3.3 which shows the long and 

short channel source-drain potential barrier for different bias conditions. 

 

For a long channel MOSFET, when the gate voltage is equal to the flat band one (VFB) and 

when the drain voltage (VD) is zero, the conduction band along the source drain direction 

forms a flat energy barrier whose height is equal to the built in potential of a non-biased pn 

diode. When the gate voltage is increased, the charge in the channel is also increased, and the 

energy barrier is self-consistently decreased. If a positive drain voltage is applied, a lateral 

field accelerates the carriers in the channel, inducing a positive current. In the long channel 

case, the inversion change at the top of the source drain barrier is fully controlled by the gate 

voltage, which implies that, for large drain voltage, the current is only a function of the gate 

voltage (saturation regime). 

 

In the case of a short channel device, the drain is so close to the source that the potential 

barrier is no longer flat when the gate voltage is equal to the flat band one and when the drain 

voltage is zero. Therefore, assuming same bias conditions, same built-in and same flat-band 

voltage, a short channel device will feature a lower source-drain barrier than a long channel 

one. This lowering results in a smaller threshold voltage for the short devices. This first effect 

is rigorously called the short channel effect, as it is only caused by the small scale of the 

device. 

 

In addition, when a driving voltage is applied, the drain potential now influences the 

potential, even at the source side, which used to be only controlled by the gate voltage in long 

channel devices. Consequently, an increase of the drain voltage induces a decrease of the 

source-drain barrier, which lowers the threshold voltage and increases the drain current. This 

effect is called the Drain Induced Barrier Lowering (DIBL). 
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For the sake of clarity, both effects will be referred to in this work as the short channel 

effects (SCEs). 

 

 
Figure 3.3 : Scheme of the source-drain potential barrier for a long and short channel, in 

different bias condition (courtesy of R. Clerc). 

 

 
Figure 3.4 : Scheme of the impact of SCEs on a) the drain current versus gate voltage and b) 

the drain current versus drain voltage characteristics. 

 

The impact of the SCEs on the ideal MOSFET characteristics is illustrated in Figure 3.4. In 

the case of a long channel MOSFET, the drain voltage increase does not modify the charge on 

the source side of the channel and the drain current saturates for large drain voltage value. 

However, for a short channel MOSFET, the threshold voltage is lowered with respect to the 

long channel device, and is decreased by drain voltage increase (the subthreshold slope is also 

increased when VD is increased). In addition, the short channel MOSFET does not feature a 

clear saturation regime for high drain voltage value. 
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The modelling of the SCEs mainly consists in the description of the impact of the external 

bias on the source-channel energy barrier in weak inversion. In this work, the Liu 

[LiuTED93] analytical model has been chosen for its good first order accuracy and for its 

excellent computational efficiency. Efficiency is required by the additional and longer 

calculation involved in the case of SDT and BBT modelling, presented in the next 

subsections. 

 

The Liu model is obtained by the solution of the Poisson equation in subthreshold 

condition, i.e. assuming that the charge in the channel and the surface potential are only 

governed by the depletion layer in the total absence of inversion charge. In this framework, 

the surface electric potential in the channel is given by : 

 

 ( ) ( )
( )
( )

( )
( )( )

( )s sL bi DS sL bi sL

sinh L x / lsinh x / l
V x V V V V V V

sinh L / l sinh L / l

−
= + + − + −  (3.1) 

 

With 

 
SUB dep ox

sL GS FB

ox

qN X t
V V V= − +

ε
 (3.2), 

the long channel surface potential and 

 
si ox dep

ox

t X
l

ε
=

ηε
 (3.3). 

 

In (3.1), (3.2) and (3.3), VDS, VGS, Vbi and VFB are respectively the drain, gate, built-in and 

flat band voltage. x is the position along the channel, whose length is L. NSUB is the substrate 

doping, Xdep the depth of the depletion layer, tox the oxide thickness and η a fitting parameter 

set to 1. εox and εsi are respectively the oxide and the silicon dielectric constant. 
 

To obtain the subband profile along the channel, the electric potential is converted into 

potential energy (Ep(x) = –(Vs(x) – Vs(x=0)) and the subband splitting, calculated at the 

virtual source by PS1D simulation, is assumed to be identical along the channel. 

 

Figure 3.5 presents the comparison between the source-drain energetic barrier obtained 

with NanoMOS [NanoHub] (Non Equilibrium Green Function DGFET 2D simulator) and 

with the Liu analytical model. Even if depletion in the source/channel and channel/drain 

region and quantum reflection on the energy barrier at are not taken into account in the model, 

the overall agreement appears to be acceptable. In particular, the top of the source-drain 

barrier, i.e. energy range where SDT is particularly significant, is quite well reproduced by the 

model. 

 

The Liu model can however be further improved to reproduce the effects accounted for  

NanoMOS. In this scope, an effective built-in potential has been considered to include the 

depletion in source and drain, which consist in increasing the built-in potential and adding a 

parabolic tail in the source and drain. In addition a Gaussian convolution with the energy 

barrier is carried out to mimic the effect of quantum reflection on the barrier [Ferry] 

[HurkALP], following : 
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∫  (3.4) 

 

where σ is set to 1 nm. 

 

This procedure has also been used in the framework of the Monte Carlo approach in 

[Lucci]. Figure 3.6 presents the energy barriers of the same DGFETs (same geometries and 

bias condition) shown in Figure 3.5 but using the improved Liu model. It can be seen that the 

potential energy in the source and drain extension are now very well captured by the proposed 

procedure. 
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Figure 3.5 : Comparisons between the subthreshold potential energy profile in (100) Si 

DGFETs along the channel obtained using the Liu analytical model [LiuTED93] (line) and 

NanoMos simulation [NanoHub] (symbol), for different devices dimensions and drain bias 

conditions  

(EOT 0.7 nm, Vg from -0.6 V to 0 V) 
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Figure 3.6 : Comparisons between the potential energies in (100) Si DGFETs along the 

channel in subthreshold regime obtained with the in-house model (line) and NanoMos 

[NanoHub] (symbol). (EOT 0.7 nm, Vg-VFB from 0 V to 0.4 V) 

 

It has to be noticed that this model is only valid in the subthreshold regime and that it only 

describes the surface potential. However, in subthreshold condition, the potential in a thin 

film device like a DGFET is almost constant along its depth, and the model is thus considered 

to be valid for any position in the film. 

 

 

3.2.3 Source to Drain Tunnelling (SDT) 

3.2.3.1 Starting equations 

 

Direct source-to-drain tunnelling leakages occur in ultra-scaled devices which features 

gates length generally below 15 nm. This leakage has been identified as a possible source of 

MOSFETs scaling limitation both theoretically [WangIEDM02] and experimentally 

[LoliSOIC05]. 

 

To model the source-to-drain tunnelling, the same 2D Esaki formula as in the full ballistic 

current is used as a basis : 
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n and v the subband and valley index used also in the previous chapter, T(Ex) the 

transparency of the energy barrier, 
( )
x

E k1

k

∂

∂

�

�
 the x component of the group velocity (along the 

channel). 

 

Equation (3.5) is in principle valid for all operating regimes (subthreshold, weak and 

strong inversion), and takes into account the source-to-drain tunnelling and thermionic current 

(enhanced by short channel effect barrier lowering) contribution to the off state current. 

Indeed, the contribution from SDT is obtained by integrating (3.5) from the bottom to the top 

of the potential barrier while the contribution from thermionic current is obtained by 

integrating from the top of the barrier to the infinity (in practice, few kbT are sufficient). It can 

be directly solved though time consuming self consistent two dimensional Poisson-

Schrödinger calculations [CuraSSE04] or by Non Equilibrium Green Function (NEGF) 

simulations, which enable to solve T(Ex). 

 

As in the case of the full-ballistic on state current, simplification of equation (3.5) may be 

used to reduce the computational time. However, to account for source-to-drain tunnelling, 

the transparency can not be considered as equal to zero below the top of the enery barrier and 

equal to one above the barrier, as in the full ballistic case. Equation (3.5) must then be solved 

numerically and T(Ex) must be calculated. Nevertheless, the Natori model of the full ballistic 

current can be deduced from (3.5), if T(Ex) is assumed to be equal to unity. This therefore 

ensures a good continuity between the formalism used off and on state current calculation, 

which are both derived from Esaki formulas, and thus avoids using too different modelling 

approach for these two regimes (like in the case of [LauxTED07], where the subthreshold 

regime is simulated using the NEGF formalism, and the on regime using the Monte Carlo 

approach). 

 

3.2.3.2 Transparency calculation 

 

The first step in carrying out this solution is to calculate the transparency T(Ex) of the 

barrier. Considering an energy profile obtained with the Liu or improved Liu model, the 

barrier transparency, which is a function of the kinetic energy of the tunnelling wave function, 

can be calculated using the scattering matrix formalism [Ferry] or the WKB approximation: 

 

 

b

x t p x

a

2
T(E ) exp 2 m (E (x) E )  dx

 
= − − 

 
∫�

 (3.7) 

 

Where Ex is the energy of an electron in the source-drain direction, mt the effective mass and 

Ep(x) the source-drain potential energy barrier, with a and b the turning points values along 

the channel verifying Ep(a,b) = Ex. 

 

The scattering matrix is known to be a more accurate approach than the WKB 

approximation [ClerJAP02], especially for thin shallow barriers where the turning point are 

close to each other. However, it is in the meantime a more computationally demanding 

method. Therefore, the WKB method will be used when computational efficiency is required 

and the scattering matrix approach when accuracy is needed. 
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Figure 3.7 compares the transparencies as a function of the kinetic energy of the electron in 

the source-drain direction, obtained with the scattering matrix approach and NanoMOS, for 

two geometries of silicon channel DGFET. As the scattering matrix transparency is used to 

maximize the accuracy of the model, the transparencies have therefore been calculated using 

an energy profile accounting for the depletion in source and drain and for the quantum 

reflection on the barrier (i.e. using the more comprehensive barrier model used to obtained 

results in Figure 3.6). It can be seen in Figure 3.7 that the model reproduce fairly well the 

results obtained using a more comprehensive tool like NanoMOS. 

 

0.0

0.2

0.4

0.6

0.8

1.0

 

 Model

 NanoMOS

L
g
=12nm

t
si
=3nm 

 

T
ra

n
s

p
a
re

n
c

y

L
g
=12nm

t
si
=3nm

V
g
 from

 -0.3 V to 0 V

10
-15

10
-11

10
-7

10
-3

 

 

 

0.0 0.4 0.8 1.2
0.0

0.2

0.4

0.6

0.8

1.0

L
g
=8nm

t
si
=2nm

L
g
=8nm

t
si
=2nm

  

 

Energy (eV)

V
g
 from

 -0.3 V to 0 V

0.0 0.2 0.4 0.6 0.8 1.0
10

-16

10
-12

10
-8

10
-4

10
0

 Model

 NanoMOS

  

 

 

 
Figure 3.7: Comparison between the transparencies in (100) Si DGFETs vs energy in 

subthreshold regime obtained with this model using the scattering matrix formalism (line) and 

NanoMos (symbol) [NanoHub]. (EOT 0.7 nm, Vg-VFB from 0 V to 0.3 V) 

 

When time consuming efficiency is required, the transparency calculation is carried out 

using the (simple) Liu model converted in energy and the WKB approach. This faster 

calculation procedure is less accurate, but gives results acceptable enough to be used. Figure 

3.8 compares the transparency obtained with the WKB approach and the Liu model and the 

NanoMOS simulation. It can be seen that a relatively good agreement between the two 

methods is achieved. 
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Figure 3.8 : Transparency versus energy, calculated by the WKB approximation on the barrier 

obtained with the Liu model, compared with NanoMOS results. 
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Once the transparency has been calculated, equation (3.5) can be integrated numerically. 

However, here also, two possible options have been considered: a complex model including 

the contribution from the whole subbands and generalized to any channel orientation (like in 

the complete model of the on state full ballistic current presented in chapter 2) or a more 

simple model, independent of the channel orientation, and accounting for only one subband. 

The two approaches will be presented in the following paragraphs. 

 

3.2.3.3 Multi-subband channel orientation dependent source-to-drain tunnelling 

current model 

 

A comprehensive model of SDT must include the contribution of several subband and 

must be derived to account for the source-drain orientation.  

 

At first, the contribution from all subbands of all valleys is simply modeled by the sums 

over the index n and v in equation (3.5) (respectively the index of the subband and the index 

of the valley). 

 

To account for the impact of channel orientation on SDT, it is more convenient to integrate 

equation (3.5) in the polar coordinate system. The source-drain direction is then included in 

the boundaries of the polar integrations. This change in the coordinate system has already 

been required to generalize the Natori model of the full ballistic current to any channel 

orientation. This therefore implies to rewrite all variables in (3.5) as a function of this 

coordinate system and especially Ex, the energy component in the x direction of an arbitrary 

oriented electron, of which the transparency is function.  

 

Figure 3.9 sketches the relation between the devices coordinate system formed by (kx,ky) 

and the crystalline one formed by (k1,k2) (rotation of an angle α, as in chapter 2) aligned with 
the principal axis of a single ellipses. It shows in addition the integral boundaries for the polar 

coordinate θ as a function of the misalignment between the transport direction and the ellipse 

principal axis. 
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Figure 3.9 : Sketch of the polar integration and the integral boundaries as a function of the 

misalignment between the devices coordinate system and the crystalline coordinate system. 

Note that amplitude of θ depends upon angle between the device channel orientation and the 
crystalline axis. 
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The first dummy variable change is made to recast the coordinate system used in (3.5) 

from (kx,ky) to (k1,k2): 

 

 
( ) ( )
( ) ( )

1 x y

2 x y

k k cos k sin

k k sin k cos

 = α − α


= α + α
 (3.8) 

 

This transformation is needed because the E(k) relation is only parabolic in the 

ellipsoid/device coordinate system: 

 

 ( )
2 22

1 2
n

1 2

k k
E k E

2 m m

 
= + + 

 

� �
 (3.9) 

 

While in the device coordinate system: 

 

 ( )
222
y x yx

n

x y xy

k k kk
E k E 2

2 m m m

 
= + + +  

 

� �
 (3.10) 

 

where mxy is the non diagonal term of the mass tensor (see [SterPhyRev67], [RahmJAP05]). 

Using (3.8), (3.9) and (3.10), the effective masses mx, my and mxy, defined in the device 

coordinate system, can be expressed as a function of m1 and m2, defined in the ellipsoid 

coordinate system : 

 

 

( ) ( )

( ) ( )

( ) ( )

2 2

x 1 2

2 2

y 1 2

xy 2 1

cos sin1

m m m

sin cos1

m m m

1 1 1
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m m m

 α α
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α α
= +


   = + α α   

 (3.11) 

 

In the particular case of the L valleys, the ellipsoids are not aligned with the crystalline 

axis, but can be recasted in this coordinate system following the procedure detailed in 

[SterPhysRev67] [RahmJAP05], as explained in chapter 2.  

 

A second variable change is then carried out, in which k1 and k2 are expressed as a function 

of the polar coordinates: 

 

 

( )

( )

1

1

2

2

2m
k cos

2m
k sin


= ρ θ





= ρ θ

�

�

 (3.12) 

 

In this coordinate system, (3.9) becomes : 

 



Quentin Rafhay – Modelling of nano nMOSFETs with alternative channel materials  

in the fully and quasi ballistic regimes 

Chapter 3 : Source-drain leakages in alternative channel material 75 

 ( ) 2

nE k E= + ρ
�

 (3.13) 

 

In addition, 
( )
x

E k1

k

∂

∂

�

�
 and Ex must also be rewritten as a function of θ and ρ to complete the 

variable change. Using successively (3.10), (3.11), (3.8) and (3.12) : 
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Ex is then simply expressed as a function of the polar coordinate by : 

 

 ( ) ( ) ( )
2

x x x

1
E , , m V , ,

2
α ρ θ = α α ρ θ  (3.15) 

 

Using (14) and (15), equation (1) becomes: 
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where : 

 

 ( ) s / d

1
v

n fv 2 2

n

E E
f E , 1 exp

kbT

−
  −

ρ = − − ρ      
 (3.17) 

 

In (3.16), the α0
v
 angle is introduced to shift all ellipses with respect to a common 

crystalline reference direction, as in the case of the full ballistic current model presented in 

chapter 2. The values of these specific angles are therefore the same as in the ballistic case 

and are given in the previous chapter (see subsection 2.2.3.). 

 

Figure 3.10 compares the subthreshold drain current obtained with the NEFG simulator 

NanoMOS and equation (3.16) (using a transparency calculated using the scattering matrix 

formalism and the improved Liu model), for two geometries of silicon (100)/[100] DGFETs. 

It can be seen on this figure that the semi-analytical model and the simulation data are in very 

good agreement. 
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Figure 3.10: Subthreshold drain Current in (100) Si DG, using this model (line) and NanoMos 

(symbol) (EOT 0.7 nm). The increase of SDT current in 4 nm gate long device is correctly 

reproduced by the model. 

 

3.2.3.4 Single subband, channel orientation independent source-to-drain 

tunnelling current model 

 

A less rigorous but however very computationally efficient model of subthreshold drain 

current including SDT and thermionic current (enhanced by SCEs) can be obtained from 

equation (3.5). The aim of this model is to give a better understanding of the SDT current 

variation with the channel material parameter like the effective mass. 

 

It assumes at first that only the first single subband contributes to the leakge current. 

Therefore, the two sums in (3.5) are dropped. Then, to simplify it at the maximum, it is also 

supposed that the valley of this single subband is isotropic (m1 = m2 = mt), like in the case of 

the ∆2 valleys of Si on a (100) surface or like the Γ valleys. In this framework, the integral 

over ky in (3.5) can be solved, and the subthreshold drain current reduced to the calculation of 

a single integral on Ex, the kinetic energy of the wave-particle in the transport direction : 

 

 ( )t b f 0 x
off x 1/ 2 x2
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4 2m k T q E E E
I q  T E F dE
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⋅  − −
=  
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with :  

 
( )1/ 2 2

0

2dy
F (u)  

1 exp y u

∞

− =
+ −∫  (3.19) 

 

In equation (3.18)-(3.19), kb is the Boltzmann constant; T is the temperature; Ef is the Fermi 

level on the source side; E0 is the energy of the single subband. 

 

As this model aims to be as computational efficient as possible, the energy barrier 

transparency calculation required by equation (3.18) is carried out using the WKB 

approximation on a barrier obtained with the simple Liu model (no depletion in source and 

drain and not Gaussian convolution). In Figure 3.11, the subthreshold drain current computed 

with equation (3.18) has been found in good agreement with more accurate numerical 
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calculation performed with NanoMOS for two geometries of silicon DGFETs with thin films 

and conventional orientation. 
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Figure 3.11 : Subthreshold drain current versus gate voltage obtained by the semi-analytical 

model and NanoMOS results, for different geometries. 

 

3.2.4 Band to Band Tunnelling (BBT) 

 

The Band-to-Band Tunnelling is known to be difficult to model [LyurSSE07], especially 

for indirect gap materials, where the tunnelling process from the valence band to the 

conduction band is phonon assisted. To illustrate this point, Figure 3.12 presents a comparison 

of different results found in the literature regarding the Band-to-Band generation rate in 

silicon, showing the absence of real consensus on this issue.  

 

The commonly used models of Band-to-Band generation rates rely on the approaches of 

Kane [KaneJAP61] for direct bandgap semiconductor and of Keldysh [KeldJEPT58] for 

indirect one. The Kane model is based on a WKB approximation of the current tunnelling 

through a triangular barrier (the triangle height being the gap) assuming a 2 band dispersion 

relation in the gap. The Keldysh model rely on the same assumptions but includes the 

perturbation of the phonon assisted tunnelling process which modifies the wave vector from 

the centre of the Brioullin zone to the bordel (i.e. the Λ or ∆ valleys). 
 

These two models, although computationally efficient, show a great sensitivity on material 

parameters, and require calibrations on experimental data, which are not always available for 

alternative channel materials. For this reason, the Kane and Keldysh models for BBT 

generation rates in this work have been compared and benchmarked with more simulations by 

Fischetti et al. [FiscTED07]. In this work, the band-to-band regeneration rates is calculated 

following a simplification of Feymann integrals over all possible tunnelling path in the gap, 

assuming a parabolic dispersion of the valence and conduction band. 

 

The results obtained in [FiscTED07] and the one obtained with equation (3.20) and (3.21), 

using the material parameters listed in  

Table 3.1, are compared in Figure 3.13.  

 

Equations (3.20) and (3.21), respectively based on the Kane and Keldysh approaches, have 

been found to fairly reproduce Monte Carlo simulations for wide range of field and materials, 
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providing the introduction of only one fitting exponential prefactor (independent of effective 

masses and bandgap) for each model, (A
d
 for the Kane model and A

i 
for the Keldysh model). 
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Figure 3.12 : Band-to-band generation rates in Si versus electric field from various literature 

references. It can be seen that without adjustment, the Keldysh model [KeldJEPT58] 

underestimates the band-to-band generation rate. 
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In equation (3.20) to (3.22), F is the electric field, mx, my and mz are the effective masse 

of a given valley of the conduction band in the x, y and z direction. mc is taken as the minim 

effective mass of the conduction band (largest tunnelling probability). mv is the equivalent 

valence band effective mass ( mv = (mlh
3/2
 + mhh

3/2
)
2/3
 ). 

 

Material 
Gap 

(eV) 

mc 

(m0) 

mhh 

(m0) 

mlh 

(m0) 

AlAs 2.14 0.2 0.76 0.15 

InP 1.35 0.08 0.6 0.089 

GaAs 1.42 0.067 0.51 0.082 

Si 1.12 0.191 0.49 0.16 

InGa0.53As0.47 0.74 0.047 0.45 0.052 

InAs 0.36 0.023 0.41 0.026 

Ge 0.66 0.08 0.33 0.043 

 

Table 3.1 : Material parameters [Ioffe.ru] used to obtain the results presented in Figure 3.13 
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Figure 3.13: Band-to-band generation rates versus electric field taken from [FiscTED08] 

(straight line) and obtained with the adjusted Kane [KaneJAP61] for direct materials, and the 

adjusted Keldysh model [ KeldJETP58] for of indirect ones (symbols).  

 

Finally, the BBT contribution to the off current leakage is calculated by integrating the BBT 

generation rates over the electric field resulting from the source-drain subthreshold barrier 

calculated either with the simple or more comprehensive model. 
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3.3 Impact of source-drain leakages on the performances of alternative 

channel material nano-MOSFETs 

 

In this section, the models previously presented, are used to compare different channel 

material, aiming to determine the most promising one for end of the roadmap devices. It 

details the results presented in [RafhSSE08_2] 

 

This section is organised in two subsections. At first, the alternative channel material 

comparison as in other works found in the literature, i.e. by simulating/modelling DGFETs 

featuring germanium or III-V channels. In this subsection, the accurate but time consuming 

models are used. The results obtained in this first subsection are then more deeply 

investigated, focusing on the impact of the most influencing channel material parameters on 

the device performances. This detailed study requires using the computationally efficient 

model, as the numerous combinations of channel material parameters explored leads to 

significant time consuming calculations. 

 

3.3.1 Comparing channel material 

 

This subsection investigates the possible performance enhancement and more importantly 

the scalability of Ge and GaAs Double Gate MOSFETs (DGFETs) compared to Si and s-Si 

references. In this framework, the on state current has been assumed as fully ballistic, and 

estimated according to the generalized Natori model presented in chapter 2. The off state 

current has been modelled using the more accurate procedure presented in the first subsection 

of this chapter. 

 

As a sanity check, the channel orientation optimisation in presence of non negligible SDT 

is at first re-investigated. Finally, the channel materials comparison along the 32nm, 22nm 

and 16nm nodes of the 2006 updated edition HP 2006 ITRS is then given. 

 

3.3.1.1 Device orientation optimisation 

 

Investigating the possible use of alternative channel material must be associated with the 

determination of the optimum channel orientation of these devices, as already shown in 

[LowIEDM03], [LauxIEDM04], [PethSISPAS05] [DeMiTED07] in the case of germanium, 

and in chapter 2 for various III-V compound materials. 

 

This device orientation optimisation can provide non-negligible ballistic current increase 

with respect to the standard (100)/[100] device orientation. In the case of Ge, GaAs, InAs and 

InSb DGFETs, it has been shown in the previous chapter that a larger ballistic current (up to 

30% for ultra thin body devices) was obtained for devices on the (110) surface, with a source-

drain direction in the [110] crystalline orientation. However, in this study, even if the 

orientation optimisation has been carried out at constant Ioff, the effect of source-to-drain 

leakage has not been included. 

 

Figure 3.14 presents the re-investigation of channel orientation optimisation in presence of 

non negligible orientation dependent source-to-drain tunnelling when computing Ioff, in Si, Ge 



Quentin Rafhay – Modelling of nano nMOSFETs with alternative channel materials  

in the fully and quasi ballistic regimes 

Chapter 3 : Source-drain leakages in alternative channel material 81 

and GaAs double gate MOSFETs. It can be seen that the source to drain tunnelling does not 

impact significantly the on-state current dependence with the in-plane device orientation on 

(100), (110) and (111) substrates and that the previous results obtained in chapter 2 still holds 

: (100) is the best surface orientation for Si double gate MOSFETs and (110) surface with a 

channel aligned in the [110] direction is the best orientation for the Ge and GaAs ones. 

 

In the following, Si, Ge and GaAs double gate MOSFETs will only be considered in their 

optimum orientation, while s-Si double gate MOSFETs will be considered under a (100) 

surface, like Si. 
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Figure 3.14 : On state drive current Ion versus in plane channel direction for Si (a), Ge (b) and 

GaAs (c) DGFETs  on (100), (110) and (111) substrate (L = 9 nm, tbody = 3 nm, EOT = 1 

nm, Vg-VFB = 1.5 V, Ioff = 0.01 µA/µm). Polar angle α = 0° corresponds to [100], [100], 
[110] on (100), (110), (111) surface respectively for Si, Ge and GaAs channel. 

 

3.3.1.2 Alternative channel material MOSFET performance comparison 

 

In this section, using the previously presented model, the on-state current of double gate 

MOSFETs optimally oriented with Si, s-Si, Ge and GaAs channels are compared along the 

32nm, 22nm and 16nm node of the HP 2006 updated ITRS.  

Table 3.1 sums up the various parameters used to design these devices as a function of the 

technological node while Table 3.3 sums up the bandstructure parameters of the considered 

materials. In all cases, for a fair comparison between each channel material, the gate work 

function of each device has been systematically adjusted to meet the ITRS Ioff requirement 

specified, as illustrated in Figure 3.15. 

 

 
X Valley L Valley Γ Valley 

 
mL (m0) mT (m0) Gap (eV) mL (m0) mT (m0) Gap (eV) m (m0) Gap (eV) 

Si 0.92 0.19 0 – – – – – 

Ge 0.95 0.2 0.19 1.64 0.08 0 – – 

GaAs 1.9 0.19 0.48 1.02 1.538 0.29 0.067 0 

s-Si 0.92 0.19 
2 fold 

0 

4 fold 

0.203 
– – – – – 

 

Table 3.2 : Materials parameters used in this work 
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Technological Node 32 nm 22nm 16nm 

Physical gate length (L) 13nm 9nm 6nm 

Body thickness (tsi = L/3)  4.3nm 3nm 2nm 

Equivalent Oxide thickness (tox) 0.7nm 0.6nm 0.5nm 

Power supply voltage (VDD) 0.9 V 0.8 V 0.7 V 

Off state leakage current (Ioff) 0.11µA/µm 0.11µA/µm 0.11µA/µm 

Effective series resistance 90 Ω.µm 75 Ω.µm 60 Ω.µm 

 

Table 3.3 : Device parameters used in this work to design DG nMOSFET according to the 

2006 High Performance ITRS roadmap 
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 Long channel
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Figure 3.15 : Gate work function adjustment procedure to fix Ioff at the value specified by the 

ITRS. It can be seen that, after adjustment, all Id-Vg curves meet the Ioff requirement. It can 

be seen a degraded subthreshold slope leads to a weak gate work function shift than in the 

case of an ideal subthreshold slope. Consequently, the on state current taken at the supply 

voltage will be higher for small subthreshold slope than for large one. 

 

At first, the band-to-band tunnelling current including the contribution of all subbands has 

been estimated in these devices and plotted versus the physical gate length in Figure 3.16. It 

has been found that, although significant [LowIEDM03], [LauxTED07], [PethIEDM05] and 

[KimSISPAD06], BBT leakage currents were always lower than the ITRS specifications. 

Therefore, due to the gate work function adjustment procedure, the fixed common Ioff value 

mostly consists, for gate length below 13nm, in source-to-drain tunnelling and increased 

thermionic current resulting from larger SCEs. These results have be found to be in 

qualitatively good agreements with [PethIEDM05] and [LauxTED07] (except for the shortest 

gate length of Ge devices, whose minimum off current have been found in [LauxTED07] to 

exceed the ITRS specifications). 

 

The on-current of Si, biaxially strained Si, Ge and GaAs double gate MOSFETs, including 

the effect of source-to-drain tunnelling, quantum capacitance (through PS1D calculations), 

short channel effect and series resistances (as described in chapter 2) has been simulated 

following the more comprehensive approach presented in the previous section. Strained Si has 

been simulated by lifting the degeneracy between the ∆2 and ∆4 valleys via the introduction of 

a gap of 0.192 eV between them. This corresponds to a biaxally strained SOI substrate whose 

silicon film is grown on a buffer of Si0.7Ge0.3 layer. 

The on current of these devices has been plotted versus the physical gate length on Figure 

3.17, alongside the ITRS expectations. It can be seen that the performances of Ge and GaAs 
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devices are significantly degraded when the physical gate length is reduced, while their Si and 

s-Si counterparts maintain relatively constant performances along the technological nodes. In 

addition, only strained silicon double gate MOSFETs meets the on-current requirements of 

the ITRS thanks to its moderate SDT equal to the unstrained silicon and its enhanced injection 

velocity compared to unstrained Si (larger ∆2 relative population compared to Si) 

[FerrTNANO07]. 
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Figure 3.16 : Band to band leakage current at Vg = 0 V (after adjustement) versus physical 

gate length of double gate MOSFETs devices with Si, Ge and GaAs channel optimally 

oriented. The Ioff HP 2006 ITRS expectation are also reported (stars). 

 

5 6 7 8 9 10 11 12 13 14

1800

2000

2200

2400

2600

2800

3000

s-Si

ITRS

Ge

Si

 
 

D
ri

v
e

 c
u

rr
e

n
t 

(µ
A

/µ
m

)

Physical gate length (nm)

GaAs

Full Model

 
Figure 3.17 : On state drive current versus physical gate length, computed at same Ioff = 0.11 

µA/µm (including SDT, BBT, SCEs and access resistances), for Si, s-Si, Ge and GaAs 

DGFETs. For each length, devices have been scaled according to the 2006 HP ITRS roadmap. 

The Ion expectation of the ITRS have also been reported (stars) 

 

On Figure 3.18 and Figure 3.19 are respectively reported the threshold voltages, gate work 

functions and subthreshold slopes corresponding to the on-currents plotted in Figure 3.17. It 

can be seen that the gate work functions of all materials remain relatively constant along the 

technology nodes beside significant increase of threshold voltages, resulting from the body 

thickness thinning (increased quantization). In the meantime, due to large SDT increase, the 

subthreshold slope of Ge and GaAs are significantly degraded while the ones of the Si and s-

Si stay constant thanks to more moderate SDT increase. 
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Figure 3.18 : Threshold voltage (a) and gate work function (b) versus physical gate length of 

Si, s-Si, Ge and GaAs DGFETs, computed to meet the ITRS Ioff requirements (including the 

effect of SDT, BBT, SCEs and access parasitic resistances). For each length, devices have 

been scaled according to the 2006 HP ITRS roadmap 
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Figure 3.19 : Subthreshold slope vs physical gate length of Si, s-Si, Ge and GaAs DGFETs, 

computed to meet the ITRS Ioff requirements (including the effect of SDT, BBT, SCEs and 

access parasitic resistances). For each length, devices have been scaled according 2006 HP 

ITRS roadmap 

 

This increase of source-to-drain tunnelling in the specific case of Ge and GaAs devices is 

explained by their smaller effective masses (0.08 m0 for Ge and 0.067m0 for GaAs) compared 

to Si and s-Si (0.19 m0). Even though these results has been computed using the scattering 

matrix formalism, the dependence of SDT can be more simply understood from the WKB 

approximation formula in which the mass term is explicit: a reduction of the effective mass 

increases the transparency and hence increases the tunnelling current. 

 

 

b

x p

a

2
T(E) exp 2 m (E (x) E) dx  

 
= − − 

 
∫�

 (3.23) 

 

In (3.24), Ep is the potential energy barrier, and a and b the “turning points” along the channel 

at which Ep(a)=E and Ep(b)=E. 
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Even though the reduction of the effective mass is beneficial to the on-state current thanks 

to lower DOS, the increase of the subthreshold current in the Ge and GaAs devices is large 

enough to significantly degrade their Ion-Ioff trade off. Si and especially s-Si therefore exhibit 

better scalability properties thanks to a good compromise between injection velocity 

enhancement with the body thickesses reduction and relative SDT immunity, even at 

extremely short channel length (around 9nm). 
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Figure 3.20 : On state drive current versus physical gate length, computed at same Ioff = 0.11 

µA/µm (including BBT, SCEs and access resistances but neglecting SDT), for Si, s-Si, Ge 

and GaAs DGFETs. For each length, devices have been scaled according 2006 HP ITRS 

roadmap.  
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Figure 3.21 : Threshold voltage (a) and subthreshold slope (b) versus physical gate length of 

Si, s-Si, Ge and GaAs DGFETs, computed to meet the ITRS Ioff requirements (including the 

effect of BBT, SCEs and access parasitic resistances, but neglecting SDT). For each length, 

devices have been scaled according 2006 HP ITRS roadmap 

 

 

Figure 3.20 plots the same Ion current as in Figure 3.14, but neglecting the effects of 

source-to-drain tunnelling. In this framework, Ge and GaAs now outperform Si and s-Si, as 

obtained in [LowIEDM03] [LauxIEDM04] [RahmIEDM03] [PethIEDM05], [DeMiTED07] 
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and [LauxTED07]. They indeed take fully advantage of their low density of states, which 

enhances their injection velocities [FerrTNANO07], despite the quantum capacitance 

degradation and the progressive filling of low density of states subbands [FerrTNANO07]. As 

seen in Figure 3.21, the threshold voltages increases fewer when neglecting SDT, and 

subthreshold slopes remain constant, showing that the short channel effects are well 

controlled for these geometries. 

 

3.3.1.3 Conclusions 

 

The performance and scalability of Si, s-Si, Ge and GaAs double gate MOSFETs have 

been investigated in this work with a semi-analytical model accounting for quantum 

capacitance degradation, short channel effects and source-to-drain tunnelling in any channel 

orientation. It has been shown that the scalability of the alternative channel material devices, 

such as Ge or GaAs double gate MOSFETs was very poor due to significant source-to-drain 

tunnelling increase resulting from their small effective masses. On the contrary, the relatively 

large effective masses of Si and s-Si temperate the source-to-drain tunnelling increase in these 

devices. According to the results obtained in this work, only biaxially strained silicon double 

gate MOSFETs meets therefore the HP 2006 ITRS performance expectations for the 32nm, 

22nm and 16nm node. These results confirms the one obtained in [CantIEDM07] with the 

NEGF simulator NanoMOS and emphasize that SDT may change significantly the prediction 

in [PetheIEDM05], [TakaVLSI03] and [LauxIEDM04]. 

 

In the following subsection, the origin of the performance degradation of alternative 

channel material devices will be more deeply studied by using a different approach were 

masses and bandgaps have been considered as continuous variables. 
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3.3.2 Role of effective masses and band gaps on the performances of nano 

nMOSFETs 

 

The results obtained in the previous subsection confirmed the conclusions obtained by 

Cantley et. al. in [CantIEDM07]. For channel length below 15 nm, results suggest that, unless 

a technological solution is found to reduce SDT in the off state, alternative channel materials 

would probably not offer significantly enhanced Ion-Ioff performances compared to 

conventional silicon channel. 

 

The following subsection is an attempt to determine qualitatively the effect of the most 

impacting channel material parameter on ultra-scaled devices performances. The effective 

masses and bandgaps have indeed been identified in the previous subsection and in the 

literature as the most relevant physical parameters responsible for Ion and Ioff degradation in 

undoped Double Gate nMOSFETs (DGFET). In the spirit of [DeMiTED07], a simplified 

approach will enable a better understanding of the advantages and drawbacks of alternative 

channel materials. The approach proposed here considers quantum capacitance degradation 

Short Channel Effects (SCE), Band-to-Band Tunneling (BBT) and Source-to-Drain Tunneling 

(SDT).  

 

In this subsection, the original methodology applied in this study is at first described. The 

results and the conclusion are then presented. This subsection gather the results published in 

[RafhESoi08] and [RafhSSDM08]. 

 

3.3.2.1 Models and methodology 

 

The philosophy of this approach is not to simulate an individual existing channel material, 

whose effective masses and bandgaps are not continuous enough to give a good understanding 

of the effect of the material parameters on the device performance
4
. On the contrary, in this 

work, a generic channel material is considered and its effective mass and energy bandgap are 

considered as variables. This study therefore focuses on the impact of these channel material 

parameters on the Ion-Ioff trade off of a template DGFETs. 

 

In this framework, any combination of effective mass and bandgap constitute a single 

device. Solving the dependence of the Ion-Ioff trade off with the effective mass and bandgap 

is thus a very time consuming task. Consequently, the computationally efficient models are 

required. For the subthreshold current, the simple approach described in 3.2.3.4 has been 

used. For the on current, a specific single subband, orientation independent full ballistic 

current model is derived as follow : 

 

In this scope, and as carried out in [DeMiTED07], the body thickness tsc has been assumed 

sufficiently scaled, in order to guarantee a device operation in the quantum limit regime (only 

one degenerated subband). These two assumptions are not only helpful to develop simple and 

efficient analytical models, but also to ensure an estimation of the maximum current 

achievable in ultra scaled DGFETs. 

 

                                                 
4
 In addition, due to the quantum confinement, the value of the semiconductors effective mass and bandgap are 

strongly modified and no consensus has yet been obtained on their values in ultra-thin film devices (see 2.3.3.) 
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The on state current has then been modelled using the Natori approach as in chapter 2 (still 

accounting for the quantum capacitance degradation, significant in low DOS alternative 

channel material). This model, in the quantum limit, leads to the completely following 

analytical formula (3.25): 
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In equation (3.25)-(3.27), mt is the transport effective mass, Cox the oxide capacitance, Vg 

the gate voltage and Vt the threshold voltage (function of the single subband energy and thus 

of the semiconductor film thickness tsc). 

 

The validity of the quantum limit approximation is investigated in Figure 3.22, showing 

the total capacitance, the inversion charge and the drain current as a function of the gate 

voltage (corrected from the flat band voltage). A good agreement with numerical Poisson 

Schrödinger simulation is obtained in extremely thin body (1 nm) device. But, as expected, 

the quantum limit approximation no longer applies when thicker body device (5nm) are 

considered. As shown in Figure 3.22 (b), the semiconductor film thickness only impact the 

threshold voltage : the current voltage curve is simply shifted toward smaller voltage value 

when going from tsi = 1 to 5 nm. In more complex calculation, the current characteristic of a 5 

nm thick silicon DGFET operating in the ballistic limit is degraded by lower injection 

velocity due to the filling of large density of states subbands [DeMiTED07], [PetheIEDM05], 

[RafhSSE08]. 

 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

t
si
 = 1nm

t
si
 = 5nm

 

In
v

e
rs

io
n

 c
h

a
rg

e
 (

C
/m

²)

Gate voltage (V
g
-V

fb
) (V)

Single 

subband model

 T
o

ta
l c

a
p

a
c

ita
n

c
e

 (F
/m

²)t
ox

 = 0.6nm

Quantum capacitance

 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-5.0x10

3

0.0

5.0x10
3

1.0x10
4

1.5x10
4

2.0x10
4

2.5x10
4

3.0x10
4

3.5x10
4

4.0x10
4

4.5x10
4

t
si
 = 5 nm

t
si
 = 1 nm  

D
ra

in
 c

u
rr

e
n

t 
(µ

A
/µ

m
)

Gate voltage (V
g
-V

fb
) (V)

 t
si
= 1nm

 t
si
= 5nm

Single subband model

 
(a)        (b) 

Figure 3.22 : (a) Inversion charge and total capacitance as a function of the gate voltage in 

silicon, obtained by Poisson-Schrödinger 1D (PS1D) simulation (open and filled symbols) 

and single subband model (solid line). The quantum limit approximation only applies in 

extremely thin body thicknesses. (b) Ballistic drain current as a function of the gate voltage 

obtained by PS1D calculation in silicon channel, compared with the analytical quantum limit 

model. On both figures, Vd = 1 V, EOT = 1nm. 
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Even though this model is less accurate than the on current model used in the previous 

subsection, the single subband assumption ensures to consider systematically the largest 

possible on state current achievable by the device. 

 

To study the impact of the alternative channel material on the DGFETs performances, the 

following standard procedure has been applied:  

1. The DGFETs geometries and bias conditions have been selected according to the 2007 

ITRS [ITRS2007]. High Performance specifications for the 22 and 16 nm technological 

nodes; 

2. Considering a constant quantization mass mq equal to 1 m0, the off and on state currents 

of the DGFETs have been calculated for varying transverse transport effective mass mt 

and varying gap Eg; 

3. For each device and each combination of effective mass and bandgap, the metal work 

function has been tuned in order to meet the HP ITRS 2007 off leakage requirements. 

 

3.3.2.2 Results and discussions 

 

An illustration of the impact of effective masses and energy bandgaps on the subthreshold 

characteristics on DGFETs is shown on Figure 3.23 and Figure 3.24, considering a DGFET 

designed according to the 16 nm node, with an indirect channel material. 

 

It can be seen on Figure 3.23 that, when only SDT and thermionic current (enhanced by 

SCEs) are taken into account, the subthreshold slopes of the device are significantly increased 

when the effective mass is decreased. When BBT is included, the subthreshold characteristic 

features in addition a minimum current value Ioff_min, which tends to increase, when reducing 

the effective mass. On the contrary to SDT and SCEs leakages, that can be reduced at Vg = 0V 

by increasing the threshold voltage, this Ioff_min is not affected by a simple change of gate 

work function. In the worst case, for very low bandgap and effective mass, Ioff_min can 

eventually exceed the ITRS Ioff requirements. 
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Figure 3.23 : Subthreshold drain current versus gate voltage including SDT, SCEs and BBT, 

or SDT and SCEs only, for various effective masses in indirect materials. Decreasing 

effective mass degrades subthreshold slope (because o SDT) and increases the BBT 

contribution. The effective mass goes from 0.01 to 1.00mo logarithmically. (no metal gate 

work function adjustment) 
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The subthreshold Id–Vg characteristics of the same DGFET (at same work function) with 

different bandgaps and a constant effective mass is shown on Figure 3.24. When only SDT 

and thermionic current are accounted for, the characteristics are simply shifted due to 

threshold voltage increase. Nevertheless, when BBT is included, the reduction of the bandgap 

value induces an increase of this leakage, and consequently an increase of the minimum off 

current achievable Ioff min. 
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Figure 3.24 : Subthreshold drain current versus gate voltage including SDT, SCEs and BBT, 

or SDT and SCEs only, for various Eg in indirect materials. The metal gate work function is 

kept constant in this figure. Decreasing the energy gap leads to an increased minimum current 

value when BBT is included, while the SDT and SCEs contributions are only shifted when the 

gap increase, due to the increase of threshold voltage Vt. The bandgap value goes from 0.6 to 

1.4 eV (steps of 0.2eV). (no metal gate work function adjustment) 

 

These variations of subthreshold characteristics with the effective mass or bandgap have 

been found to strongly impact the corresponding on current if a constant Ioff is assumed. 

 

Considering moderate indirect or direct gaps (1.0 eV) material, the on state current of 

DGFETs designed according to the 22 and 16 nm nodes of the ITRS have been plotted as a 

function of the effective mass in Figure 3.25. For both direct and indirect material, if Eg is 

sufficiently large, a maximum of on state current is obtained for an effective mass of 0.15 m0 

in case of the 16nm node, and 0.25 m0 in the case of the 22 nm one. 

 

This maximum of on state currents results from the competition between two mechanisms 

enhanced by the effective mas reduction. First, the decrease of the effective mass induces a 

beneficial increase of injection velocity in the on state [FerrTNANO07], and hence of the 

drain current. Second, when the effective mass becomes too small, the Source-to-Drain 

Tunneling significantly degrades the off state current characteristics. To keep a constant 

leakage current, the threshold voltage has to be increased by metal gate work function tuning, 

penalizing the on current. 
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Figure 3.25 : On current versus effective mass for different bandgaps for the 22nm and 16nm 

nodes of the HP-ITRS 2007 for indirect and direct material, at constant Ioff., for a large 

bandgap of 1.0eV. 
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Figure 3.26 : On state drain current versus effective mass for two double gate FETs designed 

according to the 22 (a) and 16nm (b) node of the ITRS with and without quantum capacitance. 

Including quantum capacitance increases the optimum effective mass value. 

 

In addition to the detrimental impact of SDT, the decrease of quantum capacitances in low 

DOS material (see equ. (3.26)) also plays a role in the on current degradation of small 

effective mass material. Figure 3.26 compares the on current versus the transport effective 

masses of the two different DGFETs designed according to the 22 and 16 nm node of the 

ITRS, including or not the quantum capacitance. It can be seen that, even though the on 

currents feature a maximum values in both cases, the optimum on current is found to be much 

larger when the quantum capacitance is neglected, and the corresponding ideal effective mass 

is found lower. This demonstrates that, even if SDT is the main cause of on current 

degradation for excessively light effective masses, the quantum capacitance (or DOS 

bottleneck effect) also amplifies this degradation. 

 

At large bandgap, there is thus no difference between the on current of a direct and an 

indirect material as shown in Figure 3.25 and Figure 3.26, since BBT has been found 
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negligible compared to SDT in these conditions. This is obviously no longer true in 

alternative channel material with lower bandgap. 

 
Figure 3.27 : Scheme of the drain current for different energy bandgap at same transport 

effective mass. The critical bandgap is defined as the bandgap value where the minimum 

leakage current Ioff_min (defined by both SDT and BBT currents) becomes higher than the 

ITRS specification.  

 

0.1 1
0

1

2

16 nm node

Effective mass (m
0
)

GaP

Achievable

 I
off

 specificationSi
 

 C
ri

ti
c
a

l 
e

n
e
rg

y
 b

a
n

d
g

a
p

 (
e

V
)

Ge
Unachievable 

I
off

 specification

No BBT
AlAs

L=6nm t
si
=2nm

t
ox

=0.5nm 

V
d
=0.7V

I
off

=0.47µA/µm

Indirect material

 
Figure 3.28 : Critical energy bandgap as a function of the effective mass, showing the range 

of effective mass and bandgap for which the off current ITRS specification for the 16nm node 

cannot be achieved. The plot has been done for semiconductor with indirect bandgap. 

 

As explained in Figure 3.27, for a given effective mass, there is a critical energy bandgap 

value below which the minimum off current achievable Ioff_min exceed the ITRS specification 

due to too large BBT contributions. This critical energy bandgap is plotted versus transport 

effective mass for indirect gap material in Figure 3.28. Devices have been designed according 

to the 16 nm technological node requirements. Three different zones can be identified in this 

plot : 

� The patterned one, below the curve, is the area where the effective masses and bandgaps are 

too small to meet the off state specification (due to too large BBT). 

� In the second one, above the curve and below the dashed line, is the area where BBT is 
weak enough to ensure a minimum achievable off current smaller than the ITRS 

specification.  

� In the third one, above the dashed line, i.e for gap higher than 1.6eV and for the considered 
drain bias of 0.7V, is the area where BBT is totally suppressed due to the absence of 
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equivalent energy states in the valence and the conduction band to allow the tunneling 

process (the energy bandgap is too high compared to the supply voltage, BBT can not 

occur). 

 

The coordinate (mt, Eg) in this plot corresponding to germanium, silicon, AlAs and GaP 

has been indicated. These results suggest for instance that BBT is likely to be a severe issue in 

Ge device, preventing to achieve the ITRS roadmap specifications, as already reported in 

[CantIEDM07]. (Note however that the beneficial impact of quantum confinement in 

reducing BBT [SaraVLSI07], [PethIEDM05],[KimSISPAD07]) has not be includied in this 

simple approach). 

 

In the case of direct material, the impact of BBT appears to be significantly weaker. Figure 

3.29 shows the relative contribution of BBT with respect to the total off current as a function 

of the effective mass in direct and indirect materials. Following [FiscTED07], it shows that, at 

same effective mass and bandgap, BBT generation rates are higher in indirect materials than 

in direct one. This result has been attributed in [FiscTED07] to the larger density of states 

typically available in the conduction band of indirect materials, compared to direct material. 
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Figure 3.29 : Ratio of the BBT current in direct and indirect material on total Ioff  versus 

effective mass and different Eg, after Φms adjustment. In the case of direct material, the BBT 

is found negligible whatever the value of mt or Eg. 

 

Finally, the relative contribution of thermionic current (enhanced by SCEs), SDT and BBT 

with respect to the total off current are compared on Figure 3.30 for an indirect channel with 

constant and moderate effective mass and bandgap. It shows that, for gate length from 20nm 

down to 4 nm, SDT dominates subthreshold leakages, while the contribution of SCEs over the 

total off current is reduced with reduced channel length (Note that in this plot, the body 

thickness tsc is scaled down for each gate length, to keep SCEs under control, according to the 

tsc = L/3 ratio). BBT, although becoming more and more significant as the gate length is 

scaled down, remains negligible compared to SDT in this particular case. 
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Figure 3.30 : Ratio of thermionic (+SCEs), SDT and BBT current on the total Ioff versus gate 

length. SDT overcomes other leakage mechanisms in the end of the roadmap. 

 

3.3.2.3 Conclusions 

 

Simple models have been proposed in this work in an attempt to clarify the advantages and 

drawbacks of alternative channel materials for end of the roadmap CMOS application. This 

simplified approach has made possible to examine the qualitative impact of effective masses 

and bandgaps on ballistic transport, quantum capacitance, Source-to-Drain Tunneling (SDT) 

and Band-to-Band Tunneling (BBT) mechanisms. 

 

Extremely small effective masses (below 0.1 m0) have been found to severely enhance 

SDT in devices with channel length lower than 15 nm, which is the case, according to the 

ITRS roadmap, of the last High Performance nodes (22 nm and 16 nm nodes and beyond). 

BBT has also been found enhanced in small effective mass materials, and appears to be 

particularly detrimental in indirect bandgap materials with both small effective masses and 

small bandgaps, such as Germanium. 

 

The particular dependence of BBT and SDT with gate voltage and metal work function 

adjustments explains that SDT typically dominates leakage currents, except in the previously 

mentioned case where BBT is so strong that ITRS leakage requirements can no longer be 

fulfilled. 

 

For channel length below 15 nm, these results suggest that, in agreement with 

[CantIEDM07], unless a technological solution is found to reduce SDT in the off state, 

alternative channel materials would probably not offer significantly enhanced Ion-Ioff 

performances compared to conventional silicon channel. 
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3.4 Conclusion 

 

This chapter aimed to evaluate the impact of source-to-drain leakage on the performances 

of alternative channel material devices and to compare them on a fair basis (Ion at same Ioff).  

 

In this scope, two approaches have been developed to account for the most relevant source 

of subthreshold leakages, i.e. thermionic current enhanced by short channel effects, direct 

source-to-drain tunnelling and band-to-band tunnelling:  

1. A time consuming but comprehensive  approach (including the effect of source and drain 

depletion and channel orientation) which reproduces fairly more rigorous results obtained 

with the NEGF simulator NanoMOS 

2. A more simple but computationally efficient model, assuming single subband transport in 

conventional channel orientation, which also compares well with NanoMOS when devices 

are ultra-scaled. 

 

These two approaches have been used in two different scopes.  

 

The first one has been involved in the investigation of possible performance enhancement 

when replacing silicon as a channel material for alternative one, like Ge or GaAs. The results 

obtained showed that alternative channel material scalability was particularly poor due to 

significant source-to-drain tunnelling increase : the on state performance of such devices have 

even been found to be lower than conventional Si or strained-Si channel, confirming the 

results obtained in [CantIEDM]. 

 

The origin of this on state degradation has then been more deeply investigated using the 

second approach. Thanks to an improved computational efficiency, this model enabled the 

fast treatment of numerous configurations, and hence to consider a generic channel material, 

whose effective mass and bandgap was varying, instead of discrete channel material whose 

physical parameter were too spread to quantify and discriminate the impact of the different 

source of performance degradation (quantum capacitance, SCEs, SDT or BBT). It has been 

shown in this study that the mechanism limiting the Ion-Ioff trade off was SDT, more than 

BBT, except in the case of low effective mass and small bandgap indirect semiconductors 

where BBT has been found to be dominant. In addition, this study showed a trade-off in the 

effective mass reduction for moderate gap semiconductors. Also beneficial at one stage thanks 

to injection velocity increase, the effective mass decrease becomes detrimental for the Ion-Ioff 

trade off due to significant SDT increase. BBT have been found to be critical only in the case 

of low gap, low effective mass and indirect bandgap material. 

 

In this framework, large gap and moderate effective mass channel material are required for 

device featuring gate length below 10nm. Silicon and strained-Silicon thus seems to offer in 

this condition a good trade off as channel material. 

 

However, two important issues remains  

1. The results presented in this chapter have been obtained considering the high performances 

specifications of the ITRS. In the case of LSTP devices, it could be foreseen that the 

degraded off condition would be even more detrimental to alternative channel. But this 

would require rigorous re-calculations and this problematic remains an open question. 
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2. The possibility that the gate length scaling could be stopped at 15nm has to be investigated, 

as alternative channel material could in this case outperform conventional material. 

Therefore, a roadmap dedicated to alternative channel material should be investigated. For 

these gate lengths (above 10nm), the impact of carrier scattering would be significant. This 

point will be studied in the following chapter. 
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4.1 Introduction 

 

In the previous chapters, the on-state current of alternative channel material devices has 

been computed in the fully-ballistic approach. Even though unrealistic for silicon channel 

length above 10nm, this assumption could be adequate for channel material featuring higher 

mobility and thus higher carrier mean free path. In addition, the full ballistic transport regime 

provides an upper bound for device performance [LundEDL97], which therefore gives a good 

metric for alternative channel materials comparison. However, although these high mobility 

channel materials are likely to be closer to the ballistic limit than silicon channel, the impact 

of scattering needs to be estimated. 

 

Indeed, the advantages of the high bulk mobilities of these materials are not granted a 

priori at the device scale. For instance, in the silicon case, carrier confinement and 

channel/dielectric interface roughness are known to greatly reduce the electron mobility from 

1300cm²/V/s in bulk down to 650cm²/V/s in inversion layer at low effective field, and to even 

lower values at high fields.  

 

Due to the small dimensions at which devices based on alternative channel material may be 

competitive with respect to the actual silicon technology, quasi-ballistic (QB) transport is 

more likely to be the prevailing operating regime. The carrier mean free path and the 

backscattering coefficient in silicon devices have been proven in [PalesIEDM06] to be 

correlated with the device effective mobility. Therefore, a high mobility implies a small mean 

free path and hence a high quasi ballistic current. This important result links two essentially 

different figures of merit for transport: the mobility which is a low field and long scale 

transport property, and the mean free path and the backscattering coefficient that are high 

field and short scale ones. 

 

The investigation of theses points for alternative channel material involves necessarily the 

solution of the Boltzmann Transport Equation (BTE) to rigorously account for the impact of 

carrier scattering, determinant in QB transport. In this framework, the Monte Carlo method is 

versatile enough to be easily adapted to various device architectures, including devices with 

alternative channel material. 

 

In the first section of this chapter, the Boltzmann Transport Equation, on which the Monte 

Carlo approach is based, will be briefly reviewed. Then, the general structure of a Monte 

Carlo simulator will be detailed, insisting on the main inputs of such tool, which are the 

bandstructure and the scattering rates, and the specific ingredients needed to handle 

alternative channel material. 

 

The following second section will detail the particular examples of the Multi-Subband 

Monte Carlo simulator, which has been exploited in this work to account for quantum effect 

and non-equilibrium transport in alternative channel material. 

 

The three last sections of this chapter will then be dedicated to the applications of the 

Monte Carlo method. At first, the simulation of bulk crystal mobility of germanium and 

gallium-arsenide will be presented. Then, the particular issue of germanium nMOS inversion 

layer mobility will be addressed. Finally, the quasi-ballistic transport in germanium will be 

presented, studying the correlation between germanium mean free path and germanium 

inversion layer mobility. 
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4.2 The Boltzmann Transport Equation and the Monte Carlo approach 

 

This section aims to briefly present the theoretical foundation of semi-classical transport in 

the framework of the Boltzmann Transport Equation and its solution through the Monte Carlo 

method. More detailed descriptions can be found in [LundNano] regarding carrier transport, 

while [TomiNum] gives an extensive explanation of the Monte Carlo methods and of the 

implementation of the various part of a MC simulator. 

 

4.2.1 The Boltzmann Transport Equation (BTE) 

 

 
Figure 4.1 : Scheme of carrier fluxes contributing to f(r,k,t) in a two dimensional element of 

size δrδk in phase space.  

 

The most significant information about carriers in a semiconductor device can be obtained 

from the distribution function in phase space (both real space and momentum space) f(r,k,t). 

This function corresponds to the carrier density at a position r, with a momentum p, at a time 

t. Many relevant quantities can be deduced from the distribution function, as for example : 

� the electron density, following : 

 rn( , t) f ( , , t)=∑
k

r k  (1.1), 

where the sum over k adds the contribution of all possible states
5
. 

� Or the current density, following : 

 nJ ( , t) q ( )f ( , , t)= ∑
k

r v k r k
�

 (1.2), 

where v(k) is the group velocity of the electron. 

 

The distribution function is determined by solving the Boltzmann Transport Equation. This 

equation is based upon the carrier conservation in phase space, including the impact of carrier 

                                                 
5
 The sum over k is evaluated using the corresponding transformation : 

( )f

3
f ( ) f ( )d

2
f f

k

k k k
Ω

Ω
⇒

π
∑ ∫  

r+δr 

( )f ( , ', t) 1 f ( , , t) S( ', ) t− δ δ δr k r k k k r k  

( )f ( , , t) 1 f ( , ', t) S( , ') t− δ δ δr k r k k k r k  

( )f , , t F t+ δ ⋅ ⋅δ δr k k r  

( )f , , t F t+ δ ⋅ ⋅δ δr k k r  

( )f , , t v t⋅ ⋅δ δr k k  ( )f , , t v t+ δ ⋅ ⋅δ δr r k k  

Position r 

k 

k+δk 

M
o

m
e

n
tu

m
 



Quentin Rafhay – Modelling of nano nMOSFETs with alternative channel materials  

in the fully and quasi ballistic regimes 

Chaper 4 : Scattering and Quasi-Ballistic (QB) transport in alternative  

channel material nano-nMOSFETs 
100 

scattering. To establish the BTE, all mechanisms influencing f(r,k,t) must be balanced. Figure 

4.1 schemes theses different mechanisms. 

 

By definition, the variation of the number of carriers in a a two dimensional element of the 

phase space during a δt time is δf(r,k,t)δrδk. According to Figure 4.1, this term results from 

the difference of fluxes entering and leaving a δrδk element of phase space : 

� Due to the carriers velocity, ( )f , , t tr k v k⋅ ⋅δ δ  particles are entering the δrδk element while 

( )f , , t tr r k v k+ δ ⋅ ⋅δ δ  are leaving. v is the group velocity of the electron defined by : 

 
1

E( )kv k= ∇
�

 (1.3) 

Where E(k) is the bandstructure (crystal bandstructure and applied potential). 

� Due to the electric force eF, where F is the electric field applied to the carrier and since  

d q

dt
= −

k F

�
 particles ( )

q
f , , t t+ δ ⋅ ⋅δ δ

F
r k k r

�
are entering the δrδk element, while 

( )
q

f , , t t+ δ ⋅ ⋅δ δ
F

r k k r
�

 are leaving.  

� Due to scattering, ( )f ( , ', t) 1 f ( , , t) S( ', ) t− δ δ δr k r k k k r k particles are entering the δrδk 

element after scattering from a k’ state, while ( )f ( , ', t) 1 f ( , , t) S( ', ) t− δ δ δr k r k k k r k  are 

leaving the element after a scattering with a k’ state. 

 

Balancing these different terms gives: 

 

 

( ) ( )( )

( ) ( )( )

( ) ( )( )
'

f f , , t f d , , t t

q
f , , t f , d , t t

f ( , ', t) 1 f ( , , t) TR( ', ) f ( , , t) 1 f ( , ', t) TR( , ')

δ δ δ = − + ⋅ ⋅δ δ

+ − + ⋅ ⋅δ δ

+ ⋅ − − −∑
k

r k r k r r k v k

F
r k r k k r

r k r k k k r k r k k k

�
 (1.4) 

 

where the sum over k’ accounts for the contribution of all possible in and out scatterings and 

where the (1 – f(r,k,t)) factor represents the occupation of the final state after scattering, 

(generally dropped by assuming available final state). In (1.4), F is the electric field, and v is 

the group velocity of the electron defined by : 

 

 
1

E( )= ∇kv k
�

 (1.5) 

 

where E(k) is the bandstructure, as introduced in chapter 2. 

 

The Boltzmann Transport Equation is obtained from (1.4) by performing the limit to zero 

of phase space element and the time variation, leading to: 

 

 

( ) ( )( )
'

f q
f f

t

f ( , ', t) 1 f ( , , t) TR( ', ) f ( , , t) 1 f ( , ', t) TR( , ')

∂
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∂

− − −∑

r k

k

v F

r k r k k k r k r k k k

�  (1.6) 
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The BTE is intrinsically a semi-classical equation. Electrons are indeed treated as classical 

particles whose non-scattered motion follows Newton’s law, but the scatterings probabilities 

of these electrons are calculated in the framework of quantum mechanical laws (using the 

Fermi golden rule described in 4.2.2.2.2). Consequently, quantum tunnelling processes are 

impossible in the framework of the BTE, since it requires treating carriers as waves and not as 

particles with defined position and momentum. 

 

The direct solving of this equation for the operation of semiconductor device is rigorously 

possible [JungSSE93], but the formalism involved to carry it out is extremely complex. 

Approximated analytical solutions of the BTE are also possible (drift-diffusion or 

hydrodynamic models), but the assumptions made to obtain these models are too restrictive to 

account for far-from-equilibrium phenomenon like quasi-ballistic transport [LundEDL97], 

[AssaTED2002]. 

 

However, an indirect but efficient solving of the BTE is possible thanks to the Monte Carlo 

approach. The following subsection will describe this method. 

 

4.2.2 Monte Carlo (MC) solution of the BTE 

 

The Monte Carlo approach is a general method developed in the 50s to indirectly solve by 

statistical means complex integro-differential equation like the BTE
6
. In the case of transport 

in semiconductor crystal and devices, the aim of the Monte Carlo method is to determine the 

distribution function f(r,k,t) by simulating a large number of carrier, whose trajectories follow 

Newton’s law of motion, and whose random scattering events follow quantum mechanical 

laws. 

 

The first Monte Carlo study of transport in semiconductor has been carried out in 1966 by 

Kurosawa [KuroICPS66]. Unipolar device have been simulated using this technique in 1980 

[ZimmSSE80]. An important review of the understanding of carrier transport in silicon and 

germanium during the 70s has been published in 1983 by Jacoboni and Reggiani 

[JacoRMP83], but so far, no semiconductor devices were simulated. The Bologna group has 

presented the Monte Carlo studies of MOSFET between 1986 and 1988 [SanTCADICS88]. In 

1988, Fischetti  and Laux developed the first full band Monte Carlo code, and in 1993 the first 

Multi Subband Monte Carlo. Then, many groups around the world have developed MC 

simulator [BuflTED00],[DollJAP97][FerrIEDM00][RavaTED86][JungSSE93] 

 

Some improvements in the Monte Carlo techniques are still studied. In an attempt to 

correctly reproduce the subthreshold characteristic of MOSFET in presence of tunnelling, a 

Monte Carlo code solving the Wigner Transport Equation has been developed in the 

University of Paris Sud [QuerIEDM2006]. Recently, the first Multi Subband Monte Carlo for 

hole transport has been developed by the Udine’s group [DeMiULIS08].  

 

This subsection describes the common structure of Monte Carlo simulators, as well as its 

main inputs. 

 

                                                 
6
 The formal equivalence between the Monte Carlo method and the BTE can be established mathematically 

(see [LundFund]). 
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4.2.2.1 Principle of Monte Carlo simulations 

 

In Monte Carlo simulators, the main macroscopic quantities are obtained from the carrier 

distribution function. To do so, carrier transport is simulated by the sequence of carrier 

ballistic free flight interrupted by scattering events. The carrier free flights obey Newton’s law 

of motion and are therefore deterministic: 

 
d q d 1

 and E( )
dt dt

= = = ∇
k F r

v k
� �

 (1.7) 

 

On the contrary, scattering randomly modifies the carrier momentum, in an instantaneous 

process and does not change the particles positions. 

 

Figure 4.2 illustrates a sequence of free flights and scatterings of a single carrier. This 

process is looped until enough statistics are gathered or until a defined time step is reached. At 

the end of a simulation or a time step, the statistical information on the carrier sample are 

collected and the macroscopic quantities are calculated from the distribution function. 

 

Generally, Monte Carlo codes contain many more features to guarantee its physical 

accuracy and stability. For instance, in device simulation, self-consistency between the 

distribution function and the electric potential obtained from the Poisson equation is often 

compulsory, which add more steps in the calculation process [JungSSE93][PaleTED06]. 

 

 
Figure 4.2 : Sketch of a single electron trajectory in a 2D real space and corresponding 

projection of its momentum in the y direction as function of time. 

 

4.2.2.2 Main inputs of a MC simulator  

 

Monte Carlo thus appeared to be a conceptually simple but robust method to solve the 

BTE. However, as underlined previously, this procedure requires the definition of the 

bandstructure and calculation of the scattering rates, which govern the free flight sequences 

and the frequency of the scattering event These two inputs are of primary importance to 

understand material properties, to reproduce experimental data and to give physically based 

prediction. In addition, the simulation of alternative channel material involves a careful 

determination of these quantities. 
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The following subsection will explain the role and the calculation of the bandstructure and 

of the scattering rates, as well as their specificities in the case of alternative channel material 

simulations. 

 

4.2.2.2.1 Material bandstructure 

 

The role of the bandstructure on the on-state full ballistic current has already been 

presented in Chapter 2. In Monte Carlo simulations, the bandstructure is essential as it links 

the carrier momentum with its energy, and hence to its scattering probability (see 4.2.2.2.2). 

In addition, the group velocity of the particles are deduced from the bandstructure, following 

equation (1.3).  

 

In the Monte Carlo approach, the dispersion relation can be treated in the framework of the 

Effective Mass Approximation (EMA), like previously presented in this work in the case of 

the full ballistic transport, or more rigorously in full band approach [Fisc,Bandit]. This full 

bandstucture can be obtained thought k.p non local pseudo-potential or tight-binding 

calculations. 

 

However the EMA has been used in this work for sake the of simplicity, including the 

impact of band non-parabolicity on transport. 

 

It is worth noticing that the values of the effective masses used in the Monte Carlo 

simulation of alternative channel material (such as Ge or GaAs) slightly differ from the values 

commonly used in full ballistic transport modelling. Table 4.1 sums up the masses used in the 

literature for full ballistic transport and the one used in the literature and in this work for 

Monte Carlo simulations of silicon, germanium and GaAs. 

 

Si Ge GaAs 
 

FB MC FB MC FB MC 

mt (m0) 0.19 0.19 0.2 0.288 0.19 

ml (m0) 0.92 0.92 0.95 1.353 1.9 
0.43 

∆ 

α (eV-1
) – – – 0.3 – 0.3 

mt(m0) –  – 0.08 0.0815 0.127 

ml (m0) – – 1.64 1.588 1.538 
0.17 

Λ 

α (eV-1
) – – – – – 0.5 

m (m0) – – – – 0.067 0.063 
Γ 

α (eV-1
) – – – – – 0.62 

 

Table 4.1 : Table of effective masses of silicon, germanium and gallium-arsenide used in the 

framework of full ballistic transport modeling and in the Monte Carlo simulation of this work. 

In the case of full ballistic transport, the silicon and germanium data are taken from [Ioffe.ru] 

and the GaAs one from [FiscTED91_1]. The data used in Monte Carlo for silicon and 

germanium are taken from [JacoRPM83] and the one for GaAs from [PozeSSE80]. It can be 

seen from this table that the effective mass slightly differ depending on the use. In addition, in 

the particular case of GaAs, the valleys are assumed spherical in the Monte Carlo approach, 

following [PozeSSE80][BrenSSE84][LundFund] 
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4.2.2.2.2 Scattering Rates 

 

The scattering rates calculation is one of the essential steps of the Monte Carlo process, as 

it gives the frequency of the carrier scattering event and thus the strength of the momentum 

randomization. The origin, the calculation and the use of scattering rates are detailed in the 

following. 

 

From a theoretical point of view, a scattering event is an interaction between a charge and 

a quickly varying potential which modifies the carrier momentum and in some case its energy. 

Each source of perturbing potential can be the origin of a scattering event. Therefore, many 

different types of scattering events are possible in a crystal or in a device. The most common 

ones are: 

� Ionized impurities: they arise from a perturbing potential caused by localized charge like 

dopant in the crystal lattice. 

� Phonons: the atoms vibrations in the crystal results in small range electric potential 

variation from the bandstructure deformation which can interact with carrier. The different 

of phonon scatterings are : 

o Elastic phonons scattering, which modifies the carrier momentum without changing its 

energy. 

o Inelastic phonons scattering, which modifies both carrier energy and momentum. They 

can in addition modify the carrier valleys. There are 3 types of inelastic phonon (see 

Figure 4.3) : 

� g-type intervalley, which change the carrier valley to the opposite one of the same 

group of valley. 

� f-type intervalley which change the carrier valley to the non-opposite one of the same 

group of valleys. 

� The intergroup which move the carrier to another group of valley (e.g. from ∆ to Λ). 

In general, the phonon scattering rate is proportional to the density of states, so that valleys 

with large effective masses feature large phonon scattering rates and vice versa. 

Other type of phonons are possible if the crystal lattice is not composed by only one 

element like in the Si or Ge crystals, but of two, like in the III-V compounds case. Due to 

the different polarization between the two atoms, the dipole induced by the lattice vibration 

consequently results in additional perturbing potential inducing scatterings. These modes 

are called Polar Optical Phonon. 

� The surface roughness: In MOS devices, at the semiconductor/insulator interface, the 

imperfections of planarity induce local potential variation also causing scattering. 

 

Many other carrier scattering mechanisms are possible, remote Soft Optical phonons due to 

the use of strongly dipolar high-κ dielectrics, neutral defects in channel etc. 
 

The calculation of the scattering rate is derived from the application of the Fermi Golden 

Rule. To calculate the scattering rates, i.e. the number of scattering per second at a given 

energy, the carrier are treated as waves. Before scattering, the carriers wave vector is ki. After 

scattering, i.e. after the interaction with the perturbation potential, the carrier wave vector is 

kf. In quantum mechanics, the transition rates (or probability) between an initial state i (carrier 

with a ki wave vector) and a finial state f (carrier with a kf wave vector) caused by the 

perturbation dsescribed by the operator V is given by: 
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 ( ) ( ) ( )
2

2

f i f i f i

2 2
TR , f V i E E E  V dr E E E

Ω

π π
= δ − ± ∆ = Ψ Ψ δ − ± ∆∫i fk k
� �

 (1.8) 

where < i | and < f | are respectively the initial and final state, with an energy Ei and Ef, 

described by the Ψi and Ψf wave function. The term ( )f iE E Eδ − ± ∆  ensures the energy 

conservation between the initial and final state in case of a ∆E energy exchange process (the 

upper symbol denotes the phonon emission and the lower one the phonon absorption). 

 

 
Figure 4.3 : Scheme of the intervalley optical phonons. 

 

The total scattering rate from an initial state ki is then obtained by summing the transition 

rate over all possible final state : 

 

 ( ) ( )
fk

SR TR ,=∑i i fk k k  (1.9) 

 

Following this approach, the calculation of the scattering rates can possibly lead to simple 

analytical formulas. However, this is not possible in many cases and the different integrals 

and sums have to be carried out numerically. In the following, the Polar Optical Phonon will 

be used as an example of analytical scattering rate calculation. 

 

In the 3D electron gas case, the POP perturbation potential resulting from the vibration of 

two different atoms link by ionic bounds is given by [LundFund]: 

 

 
0 i

POP 0

0

q 1 1 1 1
V N e

2 2i

± ⋅

∞

ω
= − +

ε εΩ

β r

β

�
�

∓  (1.10) 

 

where ħω0 is the phonon energy, ħβ the scattering wave vector, i.e. the difference between the 

final and initial wave vector (kf – ki = β), ε0 the low frequency dielectric constant of the 

material, and ε ∞ the one at optical frequency. N0 the number of phonons given by the Bose-

Einstein relation:  
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 0

0

b

1
N

exp 1
k T

=
 ω

− 
 

�
 (1.11) 

 

Thanks to the periodical properties of VPOP [LundFund] and assuming wave function as 3D 

plane waves when using equation (1.8), the POP transition rates between an initial and final 

state is given by: 

 

 

( ) ( )

( ) ( )

( ) ( )

i

2

i i* *

i f f POP i f i f i

2
2

i0
0 f i2

0

2

0
0 f i 02

0

2
TR k ,k  V  dr E E E  with e  and e

q 1 1 1 1
N e dr E E E

2 2
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2 2
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Ω

− ± ⋅

∞ Ω

∞

π
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 π ω  
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Ω ε ε   

 π ω  
= − + δ − δ − ω  

Ω ε ε   

∫

∫

f

i f

k r k r

k k β r

f i

β

k k β
β

�

∓

∓ ∓ ∓ �

(1.12) 

 

where Ω is the volume. 

 

In equation (1.12), the ( )δ −f ik k β∓ �  term refers to the momentum conservation between 

initial and final state, including the momentum exchange of the scattering. 

 

The POP scattering rate is then obtained using equation (1.9): 

 

 ( ) ( ) ( )
f

2

0 0 f i 02
k0

1 1 1 1 1
SR q N  E E

2 2∞

 
= π ω − + δ − δ − ω 

ε ε β 
∑i f ik k k β∓ ∓ ∓ �  (1.13) 

 

The two δ functions can be combined in a single one expressing both energy and momentum 

conservation as follow: 

 

 ( ) ( )
22 2

f i 0 0* *

cos
E E

2m m

 β θβ
δ − δ − ω = δ ± ω 

 

i
f i

k
k k β

��
∓ ∓ � ∓ �  (1.14) 

 

where m* is the effective mass. β and θ are define as in Figure 4.4. 

 

 
Figure 4.4 : Scheme of the initial and finial wave vector with the corresponding wave vector 

of scattering. θ is the angle between the initial and scattering wave vector. 
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The discrete sum in (1.13) is then transformed into an integral over kf according to: 

 

 
( )f

f f3
f (k ) f (k )dk

2k Ω

Ω
⇒

π
∑ ∫  (1.15) 

 

From (1.14) and (1.15) [LundFund],[TomiNum], the POP scattering rate can be written 

analytically as : 

 

 

( )
( )

( ) ( )

2

0 max
0

*
0 min

0 0
max max

q 1 1 1 1
SR N ln

2 24 2E /m

with

1 1  and 1 1
E E

∞

 ω β 
= − +   

ε ε β π  

   ω ω
β = + ± β = ± ±   

   
   

i

i

i i

i i

k
k

k k

k k

∓
�

� �
∓
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 (1.16) 

 

The next section will gives more details about the Multi Subband Monte Carlo code, which 

is an improvement of the common MC simulator, developed to account for quantum effect on 

carrier transport. 
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4.3 Specificities of the Multi Subbands Monte Carlo 

 

The Multi Subbands Monte Carlo (MSMC) is the main code used in this work. It has been 

designed to rigorously account for quantum confinement effect on carrier transport instead of 

using possible correction to the 3D electron gas, as in [FerrIEDM00], [TsucIEDM00] 

[WinsTED03]. This section briefly details the specificities of the code. 

 

At first, the Monte Carlo sequence is modified in the case of a MSMC code 

[SangESSDERC07]. The mode space approach is assumed in the transport direction, which 

consists in slicing the device in N sections, as shown in Figure 4.5 a). The Schrödinger 

equation is then solved in each of these sections, thus giving the subband leved as a function 

of the position along the channel. The gradient of the subbands provides the field applied 

(equ. (1.18)). In addition, the corresponding wave functions obtained from the Schrödinger 

equation solution are used to compute all scattering in each of the N sections. The electron 

concentration in the channel is deduced from MC sequences and wave functions, and used to 

calculate the potential profile using the non-linear Poisson equation. The self-consistency is 

obtained by looping this procedure until convergence is reached, as shown in Figure 4.5 b). 

 
Figure 4.5 : a) Illustration of the mode space approach in the case of a DGFETs and b) 

flowchart of the MSMC simulator. 

 

In the presence of quantization, the carrier momentum looses one degree of freedom and is 

thus described by a 2D vector in the in-plane direction (transport direction x and width 

direction y). The carrier vector in real space also looses one degree of freedom in the z 

direction, as the position is given by the presence probability of the particle related to the 

carrier wave function in the confinement direction. In addition, for symmetry reasons, the 

information on the carrier position in the width direction (y) is not relevant. Therefore, the 

phase space dimensions reduce to : 1 quantized dimension (z), 1 real space dimension, 2 

momentum space dimensions ((kx,ky), plus a subband index). 

 

The BTE is consequently modified in presence of quantization, and becomes a set of 

couple BTEs describing transport in the subbands [FiscTED93],[SangESSDERC07] : 
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where fi(r,k,t) is the distribution function of the (r,k) state in the i
th
 subband. Rigorously, the 

index i should be also described as a function of the valley considered, as each valley 

degeneracy induces different set of subbands. It is however kept as a single index in this 

chapter for the sake of simplicity. In (1.17), the driving field also Fi differs from the 3D case 

and is now dependent of the gradient of the subband in the transport direction: 

 

 i
i

dE1
F

q dx
=  (1.18) 

 

The scattering rates calculations are also modified, as the carrier wave function cannot be 

considered as plane in all directions because of the quantization, but only in the two in-plane 

ones. In the following, the Polar Optical Phonons are used to illustrate an example of 

scattering rate calculation in the 2D electron gas. 

 

The expression of the POP perturbing potential (1.10) is still valid in the 2D electron gas. 

The Fermi Golden rule in 2D is however used as followed. 
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i f

k rk r
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 (1.19) 

 

where ψi and ψf are the initial and final wave function components in the quantization 

direction. 

 

Using equations (1.10) and (1.19), and noticing that in the case of a 2D electron gas,  

(β² = β//² + βz²), with β// the in-plane scattering wave vector and βz the one in the quantized 

direction, the transition rate becomes [PricPRB84] (note that in this case, the phonons are not 

quantized) : 
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The squared integral is then parted in two integrals, following : 
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The integral over βz is then moved inside of the double integral over space : 
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The integral over βz is a noticeable Fourrier transform given by : 
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Consequently : 
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The ψi and ψf wave functions are obtained from 1D Schrödinger solution and cannot be 

expressed generally by analytical equations. To obtain the scattering rates, it consequently 

implies numerical calculations of the double integral in equation (1.20) (called form factor) 

and of the integral over all final states. 

 

In the following sections, the MSMC code will be used to investigate the inversion layer 

mobility and the backscattering in germanium channel. 



Quentin Rafhay – Modelling of nano nMOSFETs with alternative channel materials  

in the fully and quasi ballistic regimes 

Chaper 4 : Scattering and Quasi-Ballistic (QB) transport in alternative  

channel material nano-nMOSFETs 
111 

4.4 Germanium and gallium-arsenide bulk mobility 

 

The preliminary step before simulating inversion layer mobility and backscattering 

coefficient is the calibration of the bandstructure and of the scattering rates parameters of the 

MSMC model. This calibration is carried out in order to reproduce experimental data of 

carrier average velocity as a function of the electric field in bulk material. In general, the 

parameters for the bandstructure are chosen to be close to the experimental value. But the 

scattering rates parameter must be adjusted one by one. This heavy work had already been 

done for many semiconductors in the 70s and 80s, so that most of the scattering parameters 

for these materials can be found in the literature. However, slight re-adjustments with respect 

to the literature are sometimes required, as the published scattering parameters apply to 

simulators slightly different from the one used here. 

 

4.4.1.1 Bulk crystal mobility solver 

 

To reproduce experimental data, a bulk crystal mobility solver is used ahead of the MSMC 

code. This much simpler code solves the BTE considering 0 dimensions in real space, and 3 

in momentum space, as in the case of bulk crystal mobility calculation, the information on the 

carrier position is not relevant (infinite crystal with uniform electric field). The only useful 

information for the average velocity calculation is indeed carried by the momentums vectors. 

 

Figure 4.6 and Figure 4.7 present the average carrier velocity versus electric field in 

germanium and gallium-arsenide, respectively, comparing the experimental and simulated 

data. Table 4.2 summarize the germanium and gallium-arsenide scattering rates used in this 

work. 
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Figure 4.6 : Measured and simulated average carrier velocity as a function of the lateral 

electric field in Ge. The measurements are taken from [JacoRPM83]. Simulation results from 

the bulk mobility solver and the MSMC code where obtained using the parameters from 

[JacoRPM83], summed up in Table 4.1 

 

It can be seen from Figure 4.6 that the simulation results obtained with the bulk mobility 

solver using the parameter in [JacoRPM83] fairly reproduce the experimental data of 

germanium. It also shows that Ge features a saturation velocity around 10kV/cm, lower than 
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in the case of silicon (7.10
6
 cm/s for Ge vs. 1.10

7
 cm/s for Si). The dataset of the “mode space 

approach” will be discussed later. 

 

Figure 4.7 presents a different picture for GaAs. Indeed, the carrier velocity is maximum 

between 4 and 5kV/cm, with a large decrease for higher fields, which is responsible in some 

devices for negative differential resistance. This phenomenon is explained by the progressive 

filling of the low mobility ∆ valleys (large effective mass and large DOS) in GaAs due to the 

increase of the electric field [BlackJAP82]. Figure 4.7 also shows that it is difficult to fit the 

experimental data of GaAs the bulk mobility solver than in the Ge case. Indeed, the 

simulations using the bandstructure and scattering parameters from [LundFund], [PozeSSE80] 

or [BrenSSE84] do not reproduce well enough the velocity decrease in the high field regime. 

Therefore, these parameters have been slightly adjusted to improve the agreement between the 

simulation and the measurements. The fact that slight parameters adjustments are required in 

the case of GaAs and not in the case of Ge can be explained by the greater complexity of 

intergroup phonon scatterings which govern the valleys repopulation in the high field region.  

Table 4.3 compares the bandstructure and scattering parameters of GaAs found in the 

literature and the adjusted ones used in this work. The resulting parameter set is actually quite 

similar to that of [PozeSSE80] 
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Figure 4.7 : Measured and simulated average carrier velocity as a function of the lateral 

electric field in GaAs. The lines correspond to measurement reviewed in [BlackJAP82], and 

the symbols one to simulations. It can be seen that the experimental results can not be 

reproduced using directly the parameters from either [LundFund] or [PozeSSE80] or 

[BrenSSE84]. The scattering parameters therefore need to be slightly re-adjusted to obtain a 

good fit on the experimental results. 
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Table 4.2 : Table of the phonon parameters, germanium and gallium-arsenide 

 

 
Authors :  Lundstrom Pozela et al. Brennan et al. This work 

Bandstructure 

Γ 0.067 0.063 0.063 0.063 

Λ 0.22 0.17 0.23 0.17 Effective mass (m0) 

∆ 0.58 0.58 0.43 0.58 

Γ 0.61 0.62 0.69 0.65 

Λ 0.46 0.5 0.65 0.46 
Non  

parabolicity [eV
-1
] 

∆ 0.204 0.3 0.35 0.35 

Γ + 0 + 0 + 0 + 0 

Λ + 0.29 + 0.33 + 0.33 + 0.33 
Gap 

1.424 eV 
∆ – +0.52 +0.52 +0.52 

Scattering 

Γ 7.01 7 8 7 

Λ 9.2 7 8 7 
Accoustic phonon 

Dacc (eV) 
∆ 9 7 8 7 

Γ – – – – 

Λ 
3.10

10
 - 0.0343 

1.10
11 
- 0.0290 

5.10
10
 - 0.0299 1.10

11
 - 0.026 5.10

10
 - 0.0299 

∆ 7.10
10
 - 0.0299 1.10

10
 - 0.0299 9.10

10
 - 0.026 5.10

10
 - 0.0299 

Γ-Λ 1.10
10
 - 0.0278 1.8.10

10
 – 0.0299 1.10

11
 – 0.026 3.10

10
 – 0.0299 

Γ-∆ 1.10
10
 - 0.0293 1.10

11
 – 0.0299 1.10

11
 – 0.026 1.10

11
 – 0.0299 

Optical phonon 

Dop (eV/m) - ħω0 (eV) 

Λ-∆ 5.10
10
 - 0.0299 1.10

11
 – 0.0299 9.10

10
 – 0.026 1.10

10
 – 0.0299 

Γ 0.0362 

Λ 0.0343 
Polar Optical Phonon 

- ħω0 (eV) 
∆ 

0.03536 0.0362 

0.0343 

0.0362 

 

Table 4.3 : Comparison of the bandstructure and scattering rates parameters of bulk GaAs 

from [LundFund], [PozeSSE80], [BrenSSE84] and this work. 

 

4.4.1.2 Mobility calculation using a Multi Subbands Monte Carlo code 

 

Since the bandstructure and scattering rate parameters are at first defined to reproduce 

crystal properties with the bulk mobility solver, and then used a different model for inversion 

layer (MSMC code), this latter solver reproduces the experimental data in the limit of a large 

quantum well with essentially negligible quantization. To do so, the velocity versus electric 

field is simulated in a large quantum well (thicker than 50nm). In this case, the numerous 
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subband levels are extremely close, so that the 2D electron gas tends to behave like a 3D 

electron gas. 

 

Figure 4.6 and Figure 4.8 show the average velocity versus electric field obtained using the 

MSMC in the case of germanium and gallium-arsenide, respectively, using the parameters of 

Table 4.3. In each case, it can be seen that the MSMC simulation for a quantum well of 50 nm 

are in good agreement with the experimental data and the results obtained from the bulk 

mobility solver. However, some slight differences between the two models are noticeable. 

These differences can be explained by an intrinsic limitation of the mode space formalism 

used in the MSMC : at high electric field, and in materials whose valleys are misaligned with 

the transport direction (e.g. the Λ valleys of Ge and GaAs), the mode space approach impedes 

some transitions between the subbands which are made possible by the field. Therefore, the 

MSMC results (2D) fail to reproduce exactly results of the bulk mobility solver (2D). In the 

case of GaAs, this disagreement could be also partially due to the significant role of non-

parabolicity, which is not implemented for in the subband level calculation in the MSMC 

model , but is accounted only in transport) [LucciTED07]. 
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Figure 4.8 : Average carrier velocity versus electric field from experiments and simulations. 

The straight lines are experimental results and the scattered curves are Monte Carlo 

simulation. The open symbols refers to the bulk mobility MC solver, and the full symbols to 

the MSMC simulations obtained with COSMOS.  

 

The effect of carrier confinement on transport is also shown in Figure 4.8 as the average 

carrier velocity increases significantly at high field when the width of the quantum well is 

reduced from 50 to 20 nm. Due to the larger splitting of the subbands in the case of a 20 nm 

well, the occupancy of the Γ and Λ valleys is higher than in the 50 nm one. As these valleys 

have higher mobility (because of small effective masses, small DOS and thus weaker phonon 

scattering), the overall average carrier velocity is higher. On the contrary, in the 50 nm case 

the subbands are close enough for the low mobility ∆ valley (large DOS) to be significantly 

filled at the high electric field (above 5kV/cm). The carrier velocity is thus lower. 

 

Once the scattering parameters employed by the MSMC code are checked to fairly 

reproduce the experimental data, the inversion layer mobility can be studied a as function of 

the perpendicular electric field. The next section presents the results obtained from 

germanium inversion layer. 
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4.5 Germanium inversion layer mobility 

 

The fabrication of alternative channel material MOSFETshas always been problematic 

since the native oxide grown out of most semiconductor are unstable and not suitable in 

technology processes : for example, GeO2 is soluble in water, and chemical degradation 

transform it into GeO, which is a volatile element. Therefore, the introduction of high quality 

dielectric deposition in CMOS steps to employ high-K material as an alternative to SiO2, also 

made possible to use other channel material. The first material used to replace silicon in the 

channel was germanium, principally because of its high bulk electron and hole mobilities. 

 

Even if the first germanium MOSFETs has been demonstrated in the late 80s 

[RansTED91], the real increase of interest for this promising technology occurred in 2001 

[SaraECS01] and many references then described the fabrication of such devices. Good 

results have already been obtained with long channel pMOS, with hole mobility generally 

twice that of silicon. The fabrication of nMOS devices however seem to be an issue as the 

literature has not presented major performance increase with respect to silicon yet. 

 

This fact reveals a complex question: is the Ge nMOS transport degradation due to 

technological reasons or to intrinsic physical limitation? 

 

In this section, which present the results published in [RafhaySSDM07], the inversion 

layer mobility in n-type Ge is studied. The nMOS inversion layer mobility issue is presented 

in the first subsection. MSMC simulation results are then presented in the second subsection 

to investigate the Ge nMOSFET mobility degradation. The impact of quantization in Ge On 

Insulator (GeOI) on the mobility is finally described in the last subsection. 

 

 

4.5.1 The nMOS mobility issue 

 

Even though the germanium bulk crystal mobility is around 2.7 times higher than the one 

in silicon for electrons (3900cm²/m/s for Ge versus 1400cm²/m/s for Si), no germanium 

channel nMOSFET has an effective mobility (i.e. an inversion layer mobility) higher than 

conventional silicon devices.  

 

 

Figure 4.9 gather the effective mobility curves from many experimental contributions on 

Ge nMOSFET. To our knowledge, no recent publication presented any higher mobilities. It 

can be seen that all the mobility data obtained on germanium nMOSFET are below the 

universal Si(100) mobility curve [TakaTED94], which illustrates the transport properties 

degradation in these devices. This degradation has been at first attributed to higher interface 

state supposedly resulting from non optimized high-κ deposition on germanium. However, 

this assumption has been questioned, as more adequate extractions of interface state density in 

germanium showed more reasonable results, thus infirming the previous hypothesis 

[BatuINFOS06]. 

 

Consequently, there is actually no rigorous explanation of the poor effective mobility 

results in the case of Ge nMOSFETs. The following subsection studies the possibility of an 



Quentin Rafhay – Modelling of nano nMOSFETs with alternative channel materials  

in the fully and quasi ballistic regimes 

Chaper 4 : Scattering and Quasi-Ballistic (QB) transport in alternative  

channel material nano-nMOSFETs 
116 

intrinsic physical limitation of the germanium mobility in inversion layer by mean of MSMC 

simulations. 
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Figure 4.9 : Effective mobility as a function of the effective field (perpendicular field) of Ge 

n-MOSFETs. As a comparison, the universal Si(100) mobility curve is shown. 

 

4.5.2 Monte Carlo simulation study 

 

The inversion layer mobility can be simulated with the MSMC code using the germanium 

bandstructure and scattering mechanisms obtained from the calibration on experimental data 

(Table 4.3). Additional or modified scattering mechanisms inherent to the MOS structure are 

also required.  

 

A bulk MOSFET structure is at first considered, consisting of a simple stack of a metal 

gate, a dielectric layer of 0.7nm equivalent SiO2 thickness and a bulk germanium substrate. 

The voltage applied on the gate induces a potential well that confines the electrons at the 

semiconductor/insulator interface, as shown in Figure 4.10a). The effective field is defined as 

the average field applied to the carriers in the direction perpendicular to transport as :  

 

z

0
eff dep inv

si

0

n(z)F (z)dz
q 1

E N N
2

n(z)dz

∞

∞

 
= ≅ + 

ε  

∫

∫
 (1.25) 

 

The transport in the lateral direction results from a constant field of 1kV/cm, which 

prevents carriers to enter the velocity saturation regime of germanium (see Figure 4.6). The 

structure is sliced in 4 sections in the channel direction, whose boundaries are looped to 

reproduce an infinitely long device (Figure 4.10 b)). 
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Figure 4.10 :  a) Scheme of the band diagram and subbands structure in a bulk MOSFETs. b) 

Scheme of the looping and field condition in the “infinite” carrier transport along the 

semiconductor. 

 

 

Figure 4.11 presents effective mobilities as function of the effective field simulated in this 

structure for different limiting scattering mechanisms.  

 

The first group of results are phonon limited mobilities, accounting for all valleys or for ∆ 

or Λ valleys only (Γ valleys plays only a negligible role in Ge). It can be seen on Figure 4.11 

that the phonon limited effective mobility is significantly reduced in each case compared to 

the bulk mobility: from 3900cm²/V/s in bulk crystal toward 2200-2400cm²/V/s in inversion 

layer, and progressively decrease when the effective field is increased. If only Λ valleys are 

simulated, the low field inversion layer mobility is also equal to 2200-2400cm²/V/s, but the 

decease with the effective field is weaker. This confirms the high mobility of these valleys 

resulting from to their small effective mass and hence small density of states. In comparison, 

the decrease with the effective field when all valleys are accounted for, originates from the 

extremely low mobility of the ∆ valleys, which are progressively filled when the effective 

field is increased, as shown in Figure 4.12. This low mobility is explained by the larger 

effective masses and DOS of these valleys (see Table 4.1). 
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Figure 4.11 : Effective mobility as a function of the effective field for a lateral field of 

1kV/cm and for different limiting scattering mechanisms.  
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The fact that the low field phonon limited mobilities are in each case lower than the bulk 

mobility, while accounting for the same phonon mechanisms, necessarily implies that this 

degradation is induced by carrier confinement at the semiconductor/dielectric interface. This 

fact therefore demonstrates the importance of a rigorous treatment of electron quantization as 

carried out in the MSMC in order to evaluate device transport properties. 

 

Physical effects inherent to the MOS structure are then progressively added to the bulk 

germanium phonon scattering.  

 

As a first step, we consider the issue of deformation potential for phonon scattering in 

inversion layer. In the case of silicon, to reproduce experimental data of effective mobility in 

bulk MOSFET with Monte Carlo simulation, such as the universal mobility curve 

[TakaTED94], it has been proved and commonly admitted by the community that the acoustic 

phonon deformation potentials have to be increased with respect to the value used for bulk 

material (around 13eV in inversion layer against 9eV in bulk) [JungSSE93]. The origin of this 

increase is still not fully understood. However, the same procedure has been arbitrary applied 

to the case of germanium inversion layer with the same factor 13/9, that is Dacc = 15.88 

instead of 11 eV for the Λ valleys and Dacc = 13 instead of 9 eV for the ∆. The determination 

of the actual deformation potential to be used in the simulations would require an universal 

mobility curve in germanium nMOSFET, which is not presently available.  

 

The new phonon limited mobility obtained is also plotted in Figure 4.11 and shows an 

additional degradation over the whole effective field range. 

 
Figure 4.12 :  Relative occupancy of the Λ and ∆ valleys as a function of the effective field. 

At low field, the Λ valleys carry most of the charge, while at high field almost 30% of the 

charge is located in the ∆ valley. This repopulation effect, already seen in chapter 2, is a 

consequence of the subband structure of germanium. 

 

An important scattering mechanism inherent to the MOSFET structure is due to the surface 

roughness at the channel/dielectric interface. In this work, the surface roughness scattering is 

modelled according to [EsseTED04] in which the interface irregularities are dispersed 

statistically according to a Gaussian function. The parameters of this model are essentially the 

roots mean square value ∆m and the correlation length Lc of the Gaussian curve, respectively 

set in silicon to 6.2 nm and 1.0 nm, respectively. The same parameters are kept in the case of 

germanium, which therefore assumes a very good interface with the dielectric layer, unlikely 
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in the case of high-κ deposition. The corresponding results are shown in Figure 4.11, showing 
a further mobility reduction with respect to the bulk value. 

 

Although obtained with very optimistic assumptions (same increase of phonon deformation 

potential as in Si and very good interface as in the Si/SiO2 case), the phonon and surface 

roughness limited mobility shown in Figure 4.11 corresponds to an upper physical limit of the 

germanium electron effective mobility. In a germanium device, it seems at first order 

reasonable to x 2.7 increase of the mobility with respect to silicon, because of the 2.7 ratio of 

the germanium and silicon bulk mobilities (µbulkGe/µbulkSi = 2.7). Figure 4.13 compares the 

simulated phonon and surface roughness limited germanium mobility with the universal one 

in Si (100) [TakaTED94] and the “expected” germanium mobility. It can be seen that the 

simulation including surface roughness and quantization effects gives a mobility way below 

the expectation, but still higher than the silicon universal one. This mobility degradation 

compared to the expectation clearly results from the filling of the ∆ valleys and to surface 

roughness. 

 

It has to be noticed that in these simulations, ionized impurities scattering has been 

neglected, which therefore prevent us from observing the effective mobility decrease at low 

effective field. 
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Figure 4.13 : Phonon and surface roughness germanium mobility in inversion layer as a 

function of the effective field, compared to the universal mobility curve in Si (100) and to the 

effective mobility expectation in Ge nMOS devices (universal mobility curve multiplied by 

µbulkGe/µbulkSi = 2.7 ) 
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Figure 4.14 : Effective mobility as a function of the effective field for and increased surface 

roughness. Simulation results are close to the experimental ones, but the increase in surface 

roughness seems to large to be physically realistic. 

 

In a last attempt to reproduce experimental data of effective mobility in Ge nMOSFET, the 

surface roughness scattering impact has been artificially increased to lower the simulation 

results. Figure 4.14 presents the results obtained with the increased surface roughness 

scattering, whose parameters have been set to ∆m=1.1 nm and Lc=1.2nm. The results show a 

decreased mobility close to the measurements values, which suggest that a poor quality of the 

Ge/dielectric layer could be an explanation of the transport degradation in these devices. But 

the increase of ∆m is significant enough to question the validity of the approach, since a 1.1nm 

value appears to be unphysical. 

 

In conclusion, intrinsic physical limitations seem to play a partial role in the Ge nMOSFET 

mobility degradation, mainly because of the ∆ valleys filling induced by quantization. 

However, this degradation is not significant enough to fully explain the low mobility observed 

experimentally, which is always lower than the silicon universal mobility curve. Therefore, it 

seems that technological considerations are required to explain the poor mobilities of Ge 

nMOSFETs. The possibility of an increased surface roughness due to a poor interface quality 

has been investigated, but it required unphysical parameter modification, thus questioning the 

validly of the approach. 

 

A source of possible mobility degradation, not investigated in this work, could arise from 

the presence of a thin silicon capping layer (less than 2nm), used to improve the quality of the 

semiconductor/dielectric interface. Indeed, if part of the carrier are located in this layer, the 

resulting mobility should be lowered toward the silicon value. 

 

Interface states and scattering modes related to charge in high-K could also be possible 

origins of this degradation could also degrade the mobility severely enough to explain the 

degradation observed experimentally. 

 

Finally, the mobility degradation in germanium nMOSFET therefore appears to be still an 

open issue. 
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4.5.3 Inversion layer mobility in Germanium On Insulator (GeOI) 

nMOSFET 

 

As mentioned in the previous chapters, the thin film architecture is a promising solutions to 

reduce the short channel effect in ultra-scaled devices. This architecture has also been 

investigated for germanium pMOSFET for example in [LeRoEDL08], showing hole mobility 

two times larger than in the silicon case. In this brief subsection, the mobility in thin film Ge 

nMOSFET is studied. 
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Figure 4.15 : Effective mobility as a function of the germanium film thickness for three 

effective fields. The lateral field used it 1kV/cm. 

 

Figure 4.15 presents the effective mobility as a function of the thickness of the germanium 

layer, for three effective fields, of a GeOI structure operating in the double gate mode, whose 

equivalent oxide thickness is 0.7nm. The scattering mechanisms included in this simulation 

are the same as in the bulk case, i.e. phonon scattering (with the increased value of acoustic 

deformation potential) and surface roughness (on both interfaces, using the parameters of 

Si/SiO2) It can be seen that the film thickness decrease induces a severe mobility degradation 

below 8nm. For the 0.56 MV/cm and 1.15 MV/cm effective field, the mobility features in 

addition a maximum around 8nm. 

 

The mobility degradation shown in this figure has two origins : 

� The phonon scattering rates are significantly increased when the film thickness reaches 

5nm. This is a complex consequence of the form factor increase in the scattering rate 

calculation [EsseSSE04].. 

� Due to confinement, the carriers progressively populate the ∆ valleys as the germanium 

film is thinned, which has already been obtained in chapter 2 regarding germanium full 

ballistic DGFET. As the mobility of these valleys is low, the overall mobility is decreased 

with the thinning of the semiconductor film. 

 

The maximum of mobility observed at high effective field (tGe = 8nm) is, on the contrary, a 

beneficial effect of the film thinning. The larger subband splitting in thinner Ge layer tends to 

reduce the density of states, which therefore decreases the phonon scattering rates. 

 

These phenomena have already been measured in Silicon On Insulator devices 

[EsseTED04]. But in that case the mobility degradation occurs for film thickness below 5nm. 
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According to the present simulations, this degradation should start at around 8 nm in Ge, due 

to the non negligible filling of the ∆ valleys. In addition, since the minimum channel length 

for UTB SOI or GOI is expected to be in the order of 2 or 3 time the semiconductor film 

thickness, this results may imply a reduced scalability of Ge UTB MOSFETs compared to Si 

ones. 

 

In conclusion, even though the thin film architecture may be required to control the short 

channel effects, mobility degradation more severe than in the silicon case could significantly 

reduce the germanium device performances. 
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4.6 Quasi Ballistic transport in Ge DGFETs 

 

The previous subsection has pointed out physical limitations of the germanium inversion 

layer mobility in both bulk and GeOI MOSFETs. It can be nevertheless objected that the 

mobility is not the right metric to evaluate carrier transport in germanium devices, since these 

formers are likely to feature sub-10nm channels length. Quasi-ballistic regime, namely a 

transport regime in which only few scattering events occur, is indeed more likely to occur in 

these ultra-scaled channels. 

 

However, as already mentioned, a correlation between the low field mobility and the 

carrier mean free path has been demonstrated in silicon channels [PaleIEDM06], which 

implies that a low mobility leads to a low quasi-ballistic current (higher backscattering 

coefficient) and vice versa. Consequently, this relation has to be re-investigated in the case of 

germanium channels to evaluate its QB transport properties. 

 

To this purpose, a first subsection will describe the quasi-ballistic transport in the 

framework of the Lundstrom model. Then, a second subsection will detail the approach used 

to simulate quasi-ballistic transport with the MSMC code, and in particular the backscattering 

coefficient and carrier mean free path calculations. The simulation results will be finally 

presented in the third subsection. 

 

4.6.1 The Lundstrom model of quasi-ballistic transport 

 

In chapter 2, the full ballistic transport regime has been treated following the Natori model 

as the difference of carrier fluxes in a 2D electron gas. Quasi-ballistic transport can be also 

described as flux differences, except that the few scatterings events contribute to the positive 

and negative currents in adding backscattered fluxes [LundEDL97] [LundTED02] 

[ClerTED06], as shown in Figure 4.16. 

 
Figure 4.16 : Scheme of the electron fluxes in a MOS transistor in the quasi-ballistic regime. 

Contrary to the full-ballistic regime, backscattering near the source and near the drain 

contribute respectively to the negative and positive current. rs and rd are the backscattering 

coefficients at the source and drain respectively. 

 

On the source side, a positive carrier flux Fs
+
 is injected in the channel. Part of that flux is 

transmitted toward the drain ( (1-rs)
.
Fs

+
 ), while the other part is scattered back to the source 

(rs
.
Fs

+
). The same flux repartition is found on the drain side, where a fraction of the initial 
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negative drain flux Fd
-
 is transmitted to the source ( (1-rd)

.
Fd

-
 ) and the other one backscattered 

to the drain (rd
.
Fd

-
) – in this case, Fd is the drain flux consisting of electrons whose energy is 

higher than the barrier at the virtual source. In the end, the total positive flux reaching the 

drain and the total negative flux reaching the source are functions of the initial source and 

drain fluxes injected in the channel and of the backscattering coefficients 

(Fd
+
 = rd

.
Fd

-
 + (1-rs)Fs

+
 and Fs

- 
= rs

.
Fs

+
 + (1-rd)Fd

-
). 

 

To obtain a simple analytical model of the drain current in the quasi-ballistic regime from 

the complex interdependence of these fluxes, some simple assumptions are made. The 

backscattering coefficient rs and rd are considered as equal. In addition, we assumes that the 

gate perfectly controls the charge at the top of the virtual source, i.e. s s
ox g t

th

F F
C (V V )

v

+ −+
= − , 

where vth is the thermal non-degenerate velocity of an electron gas : 

 

 b
th *

2k T
v

m
=

π
 (1.26) 

 

Assuming 

d

b

qV

k T

d sF F e− +=  for Vd << kT/q, The following drain current equation is obtained 

[RenSupMicr00] [FerrThesis] : 

 

 eff d
d th ox g t

b

qV
I =W(1 r)v C (V V )

k T
− −  (1.27) 

 

In high lateral field conditions, the contribution from the drain is neglected and the drain 

current in the quasi-ballistic regime can be written as [LundEDL97]: 

 

 effs
d th ox g t

s

1 r
I =W v C (V V )

1 r

−
−

+
 (1.28) 

 

Notice that the backscattering coefficients at high and low field are essentially different 

and they are in general a function of the applied bias. In addition, equations (1.27) and (1.28) 

assume that the backscattered flux toward the source does not modify significantly the shape 

of the source-drain barrier through the self-consistent potential, which should be theoretically 

the case. Finally, these equations also assume non-degenerate electron gas (Boltzmann 

distribution). If the electron gas is degenerated (Fermi-Dirac distribution), the thermal 

velocity vth has to be replaced by the injection velocity, presented in chapter 2. 

 

The main unknown of (1.27) and (1.28) is therefore the backscattering coefficient. In, 

[LundEDL97], Lundstrom gave simple expressions of the backscattering coefficient. In low 

field, it can be demonstrated [DattEleTran] that : 

 

 0 b
LF LF

LF th

2µ k TL
r  with 

L v q
= λ =

+ λ
 (1.29) 

 

where λLF is the carrier mean free path in low field, µ0 the low field mobility, and L the 

channel length. 
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In the case of high field, Lundstrom intuited the following equation from Monte Carlo data 

and from results obtained in the framework of thermionic emission theory (Bethe Condition) : 

 

 0 bkT
HF LF

kT HF th

2µ k Tl
r  with 

l v q
= λ =

+ λ
 (1.30) 

 

In this equation, lkT is a critical length defined as the distance over which the channel potential 

drops by kT/q with respect to the potential at the virtual source, as shown in Figure 4.16. 

After this length, the scatterings in the channel do not contribute to the backscattered flux. 

This argument, originally applied from thermionic current, has been validated for MOSFET 

devices with Monte Carlo simulation, which have shown that scattering impacting the on state 

current indeed occur close to the virtual source [PaleTED05]. 

 

However, there is an apparent contradiction in (1.30), since µ0 is a long distance/low field 

figure of merit, while λHF is a short range/high field one. In [ClercTED06], the authors 

attempted to give a stronger theoretical basis to the high field equations of the Lunstrom 

model. A more general formulation of the backscattering coefficient has been obtained in this 

work, unifying (1.29) and (1.30). But this unification has been carried out considering strong 

assumptions on the carrier distribution, and some additional work is required to fully 

demonstrate the correlation between λHF and µ0. 

 

Although not rigorously demonstrated, this correlation has been validated in silicon 

channels using Monte Carlo simulation in [PaleIEDM06]. The next subsection describes the 

procedure required to calculate the backscattering coefficient and the mean free path in low 

and high field with the MSMC code, in the case of germanium DGFETs. 

 

4.6.2 Monte Carlo simulations of backscattering in Ge DGFETs 

 

The backscattering coefficient simulations use the same bandstructure and scattering 

parameters as in the simulation of the inversion layer mobility (phonon and surface roughness 

limited mobility). As transport from source to drain needs to be accounted for in this case, the 

BTE solution is 1D in real space (x direction) and 2D in momentum space (kx, ky directions). 

The quantization direction (z direction) is modelled by the Schrödinger equation. 

 

The structure simulated in this study is a symmetric germanium DGFETs, sliced by 6 

sections in the transport direction, on which a constant lateral field is applied. The boundary 

conditions of the structure obey the rules schematized on Figure 4.17: 

a) The source must behave as an electron reservoir at equilibrium. Each carrier emitted 

toward the channel at the source/channel contact is replaced by a carrier with the same 

momentum at the other side of the source. 

b) If a carrier tries to enter the source from the channel, it is suppressed. 

c) If a carrier reaches the left side of the source, it is re-injected on the right side with the 
same momentum.  

d) If a carrier reaches the drain, it is suppressed (absorbing boundary). 
 

These boundary conditions are chosen so that the drain does not emit current toward the 

source, neither in low nor in high field. In absence of the drain contribution, the 

backscattering coefficient calculation simply reduces to the ratio of the backscattered current 

on the total current transmitted in the channel from the source, as shown in Figure 4.17. 
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Figure 4.17 : Scheme of the boundary condition used in the simulation of the backscattering 

coefficient using the MSMC code. The arrows represent the carrier in-plane momentum in 2D 

space, and not the trajectories as transport is only 1D in this case. The plain arrows represent 

the current flux coming from the source. I
+
 is the total current emitted from the source 

transmitted to the channel. I
-
 is the current emitted from the source and backscattered. The 

backscattering coefficient is then simply given by r = I
-
/I
+
. 

 

To calculate the mean free path, the backscattering coefficient is simulated for varying gate 

length in the low field case or varying lkT in high field. Equation (1.29) and (1.30) are then 

used to fit the results and to extract the mean free path in, respectively, low and high field 

condition. 

 

The results obtained for Ge DGFETs following this procedure are presented in the next 

subsection. 

 

4.6.3 Results and discussion 

 

The low field backscattering coefficient has been at first simulated in Ge DGFETs, 

considering a null field in the lateral direction. Figure 4.18 shows the results of these 

simulations as a function of the device channel length, for different germanium film thickness 

and different effective field.  

 

The non monotonic dependence of the backscattering coefficient with the semiconductor 

film thickness observed on Figure 4.18 is fully explained by the fact that the low field 

mobility is not monotonic with the tsc, as shown in Figure 4.15. This result is a first sign of the 

correlation between the backscattering coefficient since the higher is the mobility for a given 

tsc, the higher is the backscattering coefficient.  

 

Consequently, each curve in Figure 4.18 is fitted with equation (1.29) to extract the low 

field carrier mean free path. The inversion layer mobilities of the DGFETs are as well 

simulated for the same effective field and same germanium film thickness, considering an 

infinite transport in the lateral direction, as carried out for the bulk and GeOI device in section 

4.4. The correlation between the short channel mean free path and the long channel 

(considered infinite due to the looping boundaries) is shown in Figure 4.19. 

 

Source Drain Channel 

(a) (a) 

(b) 

(c) 

(d) 

I+ 
I- 

r = I-/I+ = I(b+c)/I(a) 

(c) 
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Figure 4.18 : Low field backscattering coefficient as a function of the DGFET gate length for 

three effective fields and five germanium film thicknesses. 
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Figure 4.19 : Low field mean free path in function the effective mobility for three effective 

fields. For a given effective field, each point corresponds to one of the five simulated 

germanium film thicknesses, and hence to different effective mobility and mean free path. 

 

It can be seen that the mean free path appears to be linearly related to the effective field. 

These results are also compared to the theoretical value of the mean free path given by 

equation (1.29). A good agreement is obtained between the MSMC simulation and the 

Lundstrom model. The slight difference between the simulation and the theory can be 

explained by the dependence of the mean free path with the level of degeneracy of the 

electron gas, which is not accounted for in equation (1.29). 
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Figure 4.20 : High field backscattering coefficient as a function of kT layer length in Ge 

nDGFETs, for three effective fields and five germanium film thicknesses.  

 

The same simulations have been carried out in high field conditions. In this case, the 

backscattering coefficient is not plotted as a function of the gate length, but as a function of 

the kT layer length. However, the ratio between the gate length and lkT is kept constant and 

equal to 5 by increasing proportionally the lateral field. As in the low field case, the DGFETs 

are simulated at three effective fields, for five germanium film thicknesses. The results are 

summed up in Figure 4.20. 

 

The mean free paths are extracted from the results presented in Figure 4.20, and correlated 

with the low field inversion layer mobility in Figure 4.21. 
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Figure 4.21 : High field mean free path in function the effective mobility for three effective 

fields.  

 

Figure 4.21 demonstrates that the high field mean free path is an almost linear function of 

the low field effective mobility also in germanium, as in Si [PaleIEDEM06], which implies 

that high quasi-ballistic current could be attained only if high mobility value are obtained in n-

type germanium devices. 
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4.7 Conclusions 

 

This chapter has presented a study of transport in long and short channel germanium n-type 

(bulk, GeOI or double gate) MOSFETs. In this framework, the powerful Monte Carlo method 

has been used, and in particular a multi subband code which rigorously account for the effect 

of quantum confinement on carrier transport. 

 

At first, the germanium nMOSFET effective mobility issue has been investigated. The 

results obtained with the MSMC code showed that the experimental mobility degradation in 

these devices cannot be explained totally by theoretical limitations. However, the filling of the 

low mobility ∆ valleys of Ge due to the carrier quantization has been found to contribute to 

the mobility reduction. The ideal phonon and surface roughness limited mobilities thus 

obtained are lower than what could have been expected from the properties of bulk 

germanium. 

 

The quasi-ballistic transport in germanium channel has also been studied, as this regime is 

likely to occur in ultra scaled devices. The high field carrier mean free path linearly depends 

with the effective mobility. This implies that high quasi-ballistic transport will only be 

attainable if high long channel mobilities are reached. 
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5.1 Conclusions  

 

Alternative channel material MOSFETs have raised  a large interest in the semiconductor 

device research community in the last five years. The replacement of silicon for high mobility 

material like germanium or III-V compounds, enabled by the better control of high-K 

dielectric deposition, have indeed been foreseen as a source of major device performance 

enhancement. 

 

In the meantime, several technological realizations have been presented. Promising 

performances have been obtained in the case of germanium pMOSFET, GaAs nMOSFET and 

InGaAs nMOSFET. But up to now, these devices still feature relatively long channel length 

compared to the state of the art silicon technology. 

 

However, these devices will not feature long channel dimension, as this technology will 

not be introduce before the 22 or even the 16nm node of the ITRS, which are likely to feature 

gate length below 15nm. The aim of the work presented in this thesis has thus been focused 

on the theoretical estimation of the performance expected by the introduction of alternative 

material for ultra-scaled channel. 

 

Although this topic has been intensively explored during the last 5 years, no consensus has 

been reached yet, and the most promising alternative channel material has not yet been 

identified. This lack of consensus is partially due to the great formal difference between the 

approaches which have been employed to predict the device performance. As an example, the 

NEGF formalism is well designed to account for source-to-drain tunnelling, but it does not 

completely model the impact of scattering or the influence of the band-to-band tunnelling. On 

the contrary, the Monte Carlo approach models rigorously the scatterings in the semi-classical 

approximation, and can simulate band-to-band tunnelling [FiscTED07], but the inclusion of 

source-to-drain tunnelling is a priori a rather difficult task. In this work, the use of semi-

analytical models enabled to account for most of the significant mechanisms impacting the 

alternative channel material devices: tunnelling leakage mechanisms (SDT, BBT), Short 

Channel Effect, Quantum capacitance degradation, injection velocity degradation, carrier 

degeneracy, arbitrary transport orientation. 

 

Using these models, the full ballistic on current enhancement resulting from the 

replacement of silicon for Ge or other III-V materials have been investigated in chapter 2. 

Using a generalized semi-analytical Natori model of the full ballistic current, valid for any 

channel material in any orientation, it has been demonstrated that the ballistic drain current is 

isotropic on the (100) and (111) surface, and that it is anisotropic on the (110) surface. In 

addition, it has been shown that the on state current could be enhanced if the substrate and 

transport orientation were optimized. In this framework, the [110]/(110) have been found to 

be the best orientation for Ge, GaAs, InAs and InSb, whose second gap was located in the Λ 

valleys (the first gap being generally the Γ one). This result has been obtained previously for 
Ge in [LowIEDM03] and has been generalized for the first time in this work to the III-V 

compounds. 

 

Moreover, , it has been shown in chapter 2, in [DeMiTED07] and in [PethIEDM05], that 

the increase of performances is weaker than expected at first in these devices even if the on 

state current has been calculated in the full ballistic limit, i.e. the upper limit of MOSFETs 

performances [LundEDL97]. Indeed, the injection velocity, which is the main metric of 
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carrier transport in the full ballistic transport regime, is degraded when subbands and valleys 

with high density of states are progressively filled due to the lateral field or the quantization. 

It appears that the higher DOS satellite valleys of Ge or III-V compounds could induce this 

kind of injection velocity lowering. In addition, the low DOS of the first subband could 

induce an increase of the quantum capacitance, which may also weaken the potentiality of 

such devices. 

 

It has to be noticed that these conclusions have been obtained using the effective mass 

approximation and the bulk value of the effective mass of the semiconductor considered. 

However, due to quantization, it has been proved in the literature that the bandstructure may 

be strongly modified for ultra-thin semiconductor film, like the one considered in this study. 

Even if the conclusion on the isotropy of current on the (100) and the (111) surface are not 

expected to be invalidated, the anisotropy of the (110) surface could is expected to be reduced 

in very thin film as well as its best ballistic current value. 

 

As underlined by the literature ([LowIEDM03], [PethIEDM05], [CantIEDM07], 

[FiscTED07] etc.), leakage tunnelling current constitutes an issue for the performances of 

alternative channel material devices. In particular, source-to-drain tunnelling and band-to-

band tunnelling have been identified as the two major mechanisms contributing to the off 

state current. The impact of degraded subthreshold current on the overall device Ion-Ioff trade 

off has been investigated in chapter 3, using also semi-analytical models of the short channel 

effects, source-to-drain and band-to-band tunnelling current, benchmarked on more accurate 

simulations. Two approaches have then been proposed in this scope to 1/ compare rigorously 

alternative channel materials and 2/ give a deeper understanding of the results obtained. 

 

The first approach involved the simulation of DGFETs with different semiconductors as 

channel material, as carried out in the literature. From this approach, it appears that the 

significant increase of source-to-drain tunnelling in the case of alternative channel material 

could induce a strong performance degradation (at constant Ioff, taken equal to the ITRS 

specifications), if channel shorter than 10nm were considered. On the contrary, the Si and 

strained-Si channel devices have been found to be rather immune to this scalability issue. This 

results confirmed that obtained in [CantIEDM07], by mean of NEFG simulations 

(NanoMOS). 

 

The second approach has then been dedicated to better understand the performance 

degradation of alternative channel material devices. For this purpose, a less rigorous but still 

accurate model of the off and on state current in the full ballistic regime has been developed 

and used to investigate the impact of the transport effective masses and bandgaps on the 

device performance. The performances of a DGFET have been studied as a function of the 

effective mass and the energy bandgap of a generic channel material, since these two material 

parameters have been found to impact respectively the source-to-drain and the band-to-band 

tunnelling leakage. 

 

This study has shown that, if large bandgaps were considered, a trade off in the channel 

material effective mass was required to reach an optimized on state current (still considering a 

constant off current). This conclusion results from the competition of two antagonist 

mechanisms which are both sensitive functions of the effective mass in the transport direction. 

When the effective mass of the channel material is reduced, the injection velocity increases. 

However, a too low effective mass induces a severe increase of the source-to-drain tunnelling 

which degrades the off state performances, thus the overall device performance. This explains 
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the performance degradation observed in the case of alternative channel material with very 

short length, as these semiconductors generally feature small effective mass (0.08m0 for Ge, 

0.067 for GaAs, 0.023 for InAs etc.). 

 

When lower energy bandgaps have been considered, the band-to-band tunnelling leakage 

has been found to limit the off current to a maximum value, which could possibly exceed the 

ITRS requirements (no threshold voltage tuning is possible in this last case to adjust 

leakages). 

 

In addition the originality of this second approach has enabled to compare the impact of 

source-to-drain and band-to-band tunnelling. This study has shown that in ultra-scaled devices 

with gate length shorter than 10nm, source-to-drain tunnelling appeared to be the dominating 

leakage source, overcoming band-to-band tunnelling in all case, except for small effective 

mass and small bandgap indirect semiconductors. 

 

Although most of the contributions appearing in the literature have been carried out in the 

framework of the full ballistic transport regime, the impact of scattering in ultra-short channel 

is still expected to be significant, even for high mobility material. Previous studies have 

shown that in the case of Si that a large effective mobility should induce a short mean free 

path, and hence a larger quasi-ballistic current [PaleIEDM06]. This point has been re-

investigated for alternative channel materials in chapter 4. 

 

To this purpose, carrier transport in germanium inversion layer, for long and short channel 

devices, has been studied by means of multi subband Monte Carlo simulations. As a 

preliminary work, an existing Multi-Subband Monte Carlo code, required to account 

rigorously for carrier scattering and for the impact of quantization on transport, has been 

generalized to germanium and GaAs. The elastic and inelastic phonons scattering of such 

material have been added, and more importantly, the Polar Optical Phonon of GaAs has been 

re-derived (base on the work of [PricPRB84]) for the 2D electron gas. 

 

The results obtained from these simulations in the case of germanium demonstrated at first 

that phonon limited mobility in inversion layer is notably degraded compared to the bulk 

crystal properties, mainly because of the filling of low mobility ∆ valleys. Moreover, further 

mobility degradation has then been obtained in the case of Germanium On Insulator structure, 

a particular architecture expected to reduce short channel effect. In addition, it has been 

proven that, as in the silicon case, the carrier mean free path in ultra-scaled germanium 

devices is almost a linear function of the low field mobility. Consequently, high quasi-ballistic 

transport performances are attainable only if high mobility value are achieve in germanium, 

which appears demanding with respect to the state of the art technology for nMOSFET. 

 

In conclusion, the different results presented in this thesis draw a more complex picture of 

the performance enhancement expected from the replacement of silicon for a high mobility 

semiconductor. The off state leakages are extremely penalizing in alternative channel device, 

which degrades significantly their Ion-Ioff performance. In addition, the good transport 

properties (such as mobility) of alternative channel material in bulk crystal have not been 

found necessarily correlated with transport properties in inversion layer. In both full and 

quasi-ballistic transport regimes, this degradation is partially due to the filling of valleys 

featuring poor transport properties. 
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Based on these theoretical results, we may therefore think that the remarkable performance 

enhancement obtained experimentally for long channel nMOSFETs is unlikely to be 

maintained at ultra-short dimensions.  

 

5.2 Outlook 

 

This work has tried to be as comprehensive as possible with respect to the different 

mechanisms impacting the alternative channel material devices performances. However, two 

relevant points have still to be accounted for: 

 

1. The impact of the band modification in presence of strong quantum confinement should 

be included in the simulation. This effect has been shown in Ge and InSb to reduce the 

ballistic drain current compared to the results obtained with the bulk effective mass value. 

 

2. The impact of the backscattering should also be included to the simulation, as it has been 

proved in this work that high mobility material might provide larger quasi-ballistic 

current. 

 

However, these improvement are not expected to change the overall conclusion, which is 

that source-to-drain tunnelling, more than band-to-band tunnelling, strongly penalize the Ion-

Ioff trade of in alternative channel material device featuring gate length smaller than 15 nm. 

For this reason, it may be relevant to propose an alternative roadmap for these devices, 

assuming gate length larger than 15 nm. En if this solution will of course not further improve 

the integrated circuit density, alternative channel material devices may in this case offer 

improved Ion-Ioff performances compared to the silicon technology. 
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Brief history of the microelectronic industry 

Birth of the microelectronic industry
7
 

 

It is considered that the beginning of the semiconductor era coincide with the invention of 

the transistor by John Bardeen, Walter Brattain and William Shockley in December 1947. 

This revolutionary invention, which gave them the Nobel price in 1956, has been obtained, on 

purpose, after nearly 10 years of intense and successful research on solid-state physics at the 

Bell Telephone Laboratory. 

 

The idea of a solid-state amplifier, opposed to the bulky and unreliable vacuum tube, first 

appears in 1930 when Julius E. Lilienfeld, a polish physicist emigrated in US, patented the 

concept of later-called field effect transistor. However, no realization followed this patent. In 

the beginning of the 30s, Marvin Kelly, then head of the vacuum tube department in the Bell 

Labs, became convinced that vacuum tubes could be replaced by solid-state electronic devices 

thanks to the progress made in the understanding of solid state physics. He understood that 

handling properly quantum mechanical theory was the key point to enable the invention of 

such devices. As most of the engineers and researchers in Bell Labs were having trouble with 

the details of this new theory, he decided to hire PhDs with strong background in solid-state 

physic and quantum mechanics. In 1936, after the Great Depression and the end of the hiring 

freeze in Bell Labs, Kelly became research director at Bell and hired William Shockley to 

lead study on vacuum tubes. 

 

In 1938, after a reorganization of the Bell's physical research department, Marvin Kelly 

created a very independent three-man group, including William Shockley, dedicated to 

"fundamental research work on solid-state" and aiming for the development of useful method 

and material for the telephone business. The men of this group had a great freedom to choose 

their research field, provided that it corresponds to the company interests. Shockley, 

influenced by the ideas of Kelly about solid-state amplifier, quickly began to collaborate with 

Walter Brattain, an experimentalist, who had worked for the past two years on copper-oxide 

rectifiers. During 1938 and 1939, Shockley and Brattain multiplied the attempts to build a 

semiconductor amplifier. Despite many failures, Shockley became also convinced that the 

conception of a semiconductor solid-state amplifier was possible. 

 

After a four year break due to the war, in 1943, the project restarted when Shockley 

enlarge the team and hired John Bardeen to bring a new theoretical expertise in the area of 

quantum mechanic. The following years, Bardeen worked with Brattain to understand the 

influence of surface state. In the meantime, large progresses were obtained in the Bell Labs on 

the purification, the crystalline formation and the doping of semiconductors like Ge or Si. 

 

In December 1947, following several successful experiments on the study of the surface 

state using gold contact on germanium to form diodes, Bardeen had the idea to add a third 

gold contact to check if it could modulate a signal. Brattain conceived this experiment, but it 

was not conclusive. The current from the third contact was simply flowing through the 

germanium slab without affecting the current of the other contact. After calculations, Bardeen 

figured out that the two contacts on top of the slab had to be extremely close, i.e below few 

tenths of micrometers (a distance exceeding the width of most gold wire). 

                                                 
7
 Information given in this subsection are taken from [CristalFire] 
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On the December 15, Brattain by passed this problem by slicing a gold film on a triangular 

polystyrene piece with a razor edge to separate two gold contacts within the conditions 

Bardeen found. He used a small spring to contact this triangular piece on a slab of germanium 

and obtained the well-known device shown on  

Figure 1.1 a). 

 

 
 

 

Figure 0.1 : a) Picture of the first point contact transistor fabricated at Bell Labs by Walter 

Brattain. b) Scheme of a point contact transistor 

 

Brattain checked at first that the two gold contacts were both rectifying and then biased 

positively the first contact, later-called emitter, and negatively the second, later called 

collector. When he modulated the voltage on the emitter side, he observed the first solid-state 

amplification of a signal on the collector side. Indeed, when the collector is biased as shown 

in  

Figure 1.1 b), it forms a diode, whose current can be significantly modulated by holes 

injected from the emitter. 

 

On December 23, Bardeen and Brattain presented their results to the group, and few days 

afterward, to the Bell Labs executive. This breakthrough, expected by Marvin Kelly for many 

years was quickly patented and later presented to the public. 

 

Shockley, who was not mentioned on the patent, used the results obtained from of the first 

point contact transistor to invent the bipolar transistor, clearly willing to have his own 

transistor patent (he preliminary tried to patent the field effect transistor, but the Lilienfeld 

one in 1930 avoid him to do so). The atmosphere in the group became tense. Bardeen and 

Brattain were put aside, mostly involved in the writing and protection of their own patent, 

while Shockley was strongly driving his group to work on his ideas. In summer 1951, 

Bardeen, who already started studying superconductivity, accepted a professorship position in 

the University of Illinois (he received a second Nobel price in 1972 for his theory of 

superconductivity). 

 

Many further developments were made the following years. In particular, point contact 

transistors were replaced by the bipolar one, due to their better reliability, and silicon replaced 

germanium, due to better thermal properties. The activities concerning the transistor 

intensified in the Bell Labs and the industrial success soon became a reality when several 

companies started producing large amount of this devices. 
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Despite this success, Shockley also felt blocked in Bell Labs. The executive kept him in an 

expert position, while he was looking for a more important management role inside the lab. 

He finally managed to create his own company in 1956, with the help of Californian 

investors: the Shockley Semiconductor Laboratory. He formed his team recruiting among the 

best PhD in solid-state physic in North America and in Europe, including Gordon Moore, a 27 

year old chemist from Cal Tech. However, Shockley did not succeed in producing any 

working transistors in two years. Instead, he insisted in developing his idea about N-P-N-P 

junctions. Finally, in September 1957, due to increasing management problems, the core of 

the team accepted a proposition from Fairchild Camera and Instrument, to create Fairchild 

Semiconductor. 

 

Fairchild rapidly produced transistors and managed to win a hard battle against Texas 

Instrument for patenting the first integrated circuit in 1961. In the meantime, Bell Labs 

fabricated the first Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET). These 

two winning strategies would enable the success of the semiconductor industry. In 1968, 

Gordon Moore and Robert Noyce left Fairchild to form Intel, which had overcome all other 

semiconductor companies in less than one decade. 

 

The semiconductor industry was thus born thanks to the convergence of the clear vision of 

Marvin Kelly about technological challenges, the theoretical skills of Shockley and Bardeen 

and the experimental talent of Brattain. These multidisciplinary researches and the following 

technological progress enable a significant and fast growth of this industry. 

 

Growth of the microelectronic industry 

Increasing the ICs complexity 

 

In 1965, Gordon Moore, then head of Fairchild Semiconductor, wrote a prophetic article 

[Moore65] about the future of integrated circuit in the fifth-anniversary edition of Electronics 

magazine. In this paper entitled "Cramming more components onto integrated circuits", he 

noted that the total number of component per integrated circuit had been doubling every year 

since 1962. Seeing no major limitation for this exponential increase in the forthcoming 

decade, he extrapolated his results and foreseen that in 1975, integrated circuits could 

contained 65000 transistors, as shown in Figure 0.2. 

 

Thanks to this extrapolation, Moore predicted massive technological revolution, including 

the feasibility of personal computer, or "at least terminals connected to a central computer" 

[Moore65]. In a paper of the Scientific American about the electronic revolution which was a 

reality in 1977, Robert Noyce revisited Moore's article and showed that no significant 

deviation from the "Moore's law" had occurred. 

 

This exponential increase of the integrated circuit complexity enabled a fast growth of the 

semiconductor industry. Most of the companies had exceptional growth rate around 15% per 

year during several decades. 

 

As the growth of these company was, and is still, driven by the increased complexity of 

ICs, the increase of transistor density on a chip, i.e. their scaling, has quickly been identified 

as the key innovative point by the semiconductor industry. A consortium of American 
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semiconductor company, the Semiconductor Industry Association (SIA), regularly starts to 

meet to plan future trends of scaling.  

 

 
 

Figure 0.2 Original graph from [Moore65] of the log based 2 of the number of components 

per integrated circuit as a function of the year. The dots represents the data Moore had in 1965 

and the dash line his extrapolation until 1975 (2
16 
= 65536). 

 

Today, these meetings also include the European, the Japanese, the Korean and the 

Taiwanese equivalent of the SIA (respectively the European Semiconductor Industry 

Association (ESIA), the Japan Electronics and Information Technology Industries Association 

(JEITA), the Korean Semiconductor Industry Association (KSIA), the Taiwan Semiconductor 

Industry Association (TSIA)). Every two years, this enlarged consortium sponsors the 

publication of complete report of The International Technology Roadmap for Semiconductors 

(ITRS). Figure 0.3 presents a sum up of the ITRS specification between 1999 and 2005 

regarding the on and off current specification of high performances CMOS technology 

[SkotTED2008]. The last edition of the ITRS report in 2007 [ITRS2007] published the 

description of the CMOS technology until 2022, i.e. the 11nm
8
 technological node. 

 

 
 

Figure 0.3 Off current vs On current specification of high performance MOSFETs according 

to the 1999, 2001, 2003 and 2005 ITRS reports. The red dots represent a roadmap for Low 

Power Mobile Multimedia Technology presented by Skonicki et al. in [SkotTED2008]. 

                                                 
8
 Pitch between the source and drain metal contact. 
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Literature review of the modelling of expected performance of alternative 

channel material 

 

To our knowledge, the first theoretical investigation of the impact of alternative channel 

material in MOSFET has been proposed in 1991 by Fischetti  and Laux 

[FiscTED91_1,FiscTED91_2], before the introduction of high-κ material has made possible 

to deposit reliable gate dielectric on alternative channel material. In a preliminary work 

[FiscTED91_1], using full band structure calculation for numerous semiconductors (Si, Ge, 

GaAs, InGaAs, InP), the author calibrated Monte Carlo simulations on measurements of the 

average carrier velocity vs. electric field in the crystalline state of these materials. From this 

procedure, they obtained a set of relevant parameters used to simulate with the Monte Carlo 

approach MOSFETs with gate length between 250 and 50nm [FiscTED91_2]. The results 

showed that, apart from In based material, the devices present performances. In addition, the 

authors emphasized the significant impact of the low density of states of these materials on 

the increase of quantum capacitance, which degrades the drivability of alternative channel 

material MOSFETs. Although this contribution is among the more detailed ones, the channel 

length considered are however too large to correspond to the present requirement of the ITRS 

and do not include tunneling leakage current. 

 

In 2003, S. Takagi [TakaVLSI03] presented a paper comparing the performance of silicon 

and germanium devices in full ballistic transport regime. In this work, the author also 

introduce the problematic of best crystalline surface orientation for alternative channel 

material, as changing the channel material also requires to re-optimize the MOSFET channel 

orientation. Using the Natori full ballistic transport model in the quantum limit (one single 

fully degenerated subband), he showed that UTB Germanium On Insulator (GOI) MOSFETs 

on (111) surface has higher on current than bulk MOSFETs with channel in Si on (100) 

surface, or channel in Ge on (111) surface. Nevertheless, the authors only considered a single 

subband of parabolic L valleys of germanium, and did not treat systematically all possible 

channel orientation. In addition, no leakage mechanisms were considered.  

 

Finally two contributions have been presented in the 2003 edition of the IEDM comparing 

silicon and germanium channel n-type Double Gate MOSFETs ballistic performances 

([RahIEDM03] ,[LowIEDM03]). Both studies used the Non Equilibrium Green Function 

(NEGF – an efficient numeric technique to model ballistic transport accounting for all 

quantum effect) formalism and a generalized version of the NanoMOS software [NanoMOS] 

developed by Purdue University. It includes direct Source-to-Drain Tunneling (SDT) leakage 

mechanisms but neglect band-to-band tunneling and scattering. In both papers, band 

structures are treated in the effective mass approximation.  

 

In [RahIEDM03], the results showed that Ge nDGFETs on (100) surface have better output 

performances than Ge devices on (111), due to lower density of states and larger Source-to-

Drain Tunneling in Ge (111). Ge (100) devices were also found to outperform the Si (100). A 

study on the off condition demonstrated that SDT is highly sensitive to the gate length and the 

semiconductor film thickness. However, in this work, germanium have been simulated only 

considering the L valleys, neglecting the ∆ ones (see subsection XXX) and the Ge (110) 

surface have not been studied.  

 

Ge devices is more systematic in [LowIEDM03]. In addition to SDT and SCE naturally 

included in the NEGF formalism, Band-to-Band Tunneling (BBT) have been also added to 
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the source-drain leakages. Any possible channel orientation on the (100), (110) and (111) Ge 

surfaces has been also considered. Taking into account the ∆ valleys as well as the L ones, the 

results obtained differ from [RahIEDM03]. This work has shown that, thanks to better relative 

occupancy of the L valleys over the ∆ ones, the Ge device on a (110) surface have better 

performances than the Ge (111), Ge (100) and Si(100) one. The (111) poor performances 

have been attributed to high BBT leakage current and low quantum capacitance resulting from 

the low density of sate (DOS) which reduce the output current. For the (100) Ge device, the 

decreased current resulted to the larger filling of ∆ the valleys which features larger effective 

mass (lower injection velocity). In addition, the current on the (110) substrate, although 

giving the best current, was found to be anisotropic, with a best channel orientation aligned in 

the [110] crystalline direction. This work has shown the significant role of higher satellite 

valleys in the alternative channel material simulation, and the importance of the introduction 

of source-drain leakage mechanisms as SDT and BBT. Still, only germanium has been 

considered in this work and not other III-V material, in relatively long channel (above 20nm), 

where the tunneling leakage current are not predominant (especially SDT). In addition, the 

used effective masses are questionable, the BBT models have been not detailed, and no clear 

explanation of the current anisotropy on (110) surface has been given. 

 

Using the Natori model and considering all satellite valleys of Ge in the effective mass 

approximation, A. Pethe et al. [PetheSISPAD04] has re-obtained most of the results presented 

in [LowIEDM03], in particular the superiority of the germanium (110) surface over the other 

surfaces. It has also demonstrated that results obtained using the semi-analytic Natori model 

were in qualitative good agreement with numerical NEFG results. 

 

S.E. Laux re-investigated the work done in [LowIEDM03], in the 2004 edition of the 

IEDM [LauxIEDM04] focusing on the crystalline orientation optimization. Using QDAME 

software (a full quantum ballistic tool), which account for quantum effects and SDT, and 

using the intrinsic switching time as a metric, all possible channel orientation were simulated 

for Si and Ge channel, with no restriction to the conventional (100), (110) or (111) crystalline 

wafer surface. Ge DGFETs with channel oriented in the [110] direction under a (-4 4 21) 

surface gave the best performances. This work gives in addition a better explanation of the 

current anisotropy on the (110) surface obtained in [LowIEDM03], which involve the 

selective feeling of L valleys whose best injection are in the [110] direction. Nevertheless, no 

comparison with other III-V material was made in this paper and the BBT contribution to the 

off current was not accounted. 

 

In 2004, A. Rahman et al. [RahIEDM04] focused on the impact of the bandstructure 

modification due to quantum confinement in germanium DGFETs. Comparing the effective 

mass approximation with bulk masses and a full band approach using tight-binding 

calculation of the bandstructure, the authors demonstrated that the bulk effective mass can 

lead to major overestimation of the ballistic current for extremely thin film (below 4nm). 

 

The following year, at the 2005 edition of IEDM [RahIEDM05], the same team used the 

same full band approach to compare Si(100), Ge(100), GaAs(100) and InAs(100) DGFETs. 

Depending on the equivalent oxide thickness (EOT), Ge or III-V devices have been found to 

outperform Si one. It also confirmed what has been obtained in [FiscTED91_2], i.e. the strong 

current degradation for low DOS material like III-V. This work also has highlighted the 

injection velocity degradation in alternative channel material due to the progressive filling of 

valleys with larger DOS, which could cause severe current degradation. Even thought short 

devices have been studied in this work (corresponding to the 32nm node of the ITRS), no 
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tunneling leakages current have been considered and no device orientation optimization has 

been carried out. 

 

The Stanford group also published a contribution at this IEDM [PetheIEDM05], using the 

same approach as in [PetheSISPAD04], but considering GaAs(100), InAs(100) and InSb(100) 

devices in addition to Si(100) and Ge(110) devices and including Short Channel Effects 

(SCE) and  BBT leakages. The authors showed that InAs and InSb devices exhibit strong 

BBT current and significant SCE, thus decreasing their performances. In addition, this paper 

showed that, in the effective mass approximation, due to quantum confinement and to the 

very small effective mass of the Γ valleys (first gap), a significant part of the inversion charge 

of InAs and InSb devices was also present in the L valleys (second gap), which lower the 

injection velocity (low DOS). Si and Ge based devices featured also quite large off current 

and poor on current due from the feeling of low injection velocity valleys (low DOS valleys). 

Finally, GaAs device showed better off and on state characteristics. Despite the numerous 

channel material and effects taken into account, this work only considered 15nm gate lengths, 

neglecting the impact of SDT leakages and the possible channel orientation optimization of 

III-V base devices. 

 

In 2007, M. De Michielis et al [DeMiTED2007] investigated the performances of Si(100) 

and (110), Ge(110) and GaAs(100) DGFETs, using a single subband derivation of the Natori 

model. Using this model, the authors explained the current anisotropy of the drain current 

found on Ge and Si devices on (110) surface [LowIEDM03,LauxEDL05], and justified the 

respective best channel direction. In this work, Ge(110) devices showed larger ballistic 

current than its Si and GaAs counterparts. The detrimental impact of the small valleys masses 

(low DOS and hence high quantum capacitance) on the drain current has also been 

underlined. However, no leakages currents have been considered in this study. 

 

16 year after the publication of [FiscTED91_1,FiscTED91_2], in 2007, M.V. Fischetti and 

S.E. Laux re-visited their work, accounting this time for SDT and BBT that have been found 

to be predominant in ultra short channel. In [FiscTED2007], the authors present several 

transport issue, including the simulation of Band-to-Band Tunneling. These aspects have then 

been exploited in [LauxTED2007] to simulate 22 and 17nm gate length UTB devices with Si, 

Ge, GaAs, InGaAs and InP. This work also included the impact of scattering in quasi-ballistic 

transport in these alternative channel materials. Using the intrinsic and extrinsic switching 

time as a metric, the author shows that InGaAs devices has shown the best performance, and 

also the weaker backscattering coefficient. This very detailed paper considered all significant 

leakage mechanisms, and more importantly, the effect of scatterings was rigorously treated 

thanks to the Monte Carlo approach. However, the device gate lengths studied were to long 

compared to the supposed length of future alternative channel material devices (22 an 17nm 

compared to the 4.5nm proposed as last technological node in the 2007 ITRS). 

 

In the 2007 edition of the IEDM, Cantley et al [CanIEDM2007] studied the performances 

of Si, Ge and GaAs devices, using the NEGF formalism and NanoMOS. The bandstructure is 

treated in the effective mass approximation, but the effective mass have been extracted for 

ultra thin film thanks to tight binding simulations, which reproduce quite well the full band 

approach. The devices are scaled according to the last node specified in the ITRS, featuring 

gate length of 4.5nm. At this scale, SDT contribution, included in the NEGF formalism, are 

extremely strong, particularly in small effective mass material like Ge or GaAs. This work 

showed that for ultra scaled devices, Si channel could give better performances than Ge or 
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GaAs ones. However, BBT was not included, which could be of course also detrimental for 

these devices. 
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RESUME 
 
La réduction des dimensions des transistors MOS, brique de base des circuits 
intégrés, ne permet plus d’augmenter efficacement leurs performances. Une des 
solutions envisagées actuellement consiste à remplacer le silicium par d’autres semi-
conducteurs à haute mobilité (Ge, III-V) comme matériau de canal. 
A partir de modèles analytiques originaux, calibrés sur des simulations avancées 
(quantique, Monte Carlo), cette thèse démontre que, à des dimensions 
nanométriques, les performances attendues de ces nouvelles technologies sont en 
fait inférieures à celles des composants silicium conventionnels. En effet, les 
phénomènes quantiques (confinement, fuites tunnel) pénaliseraient davantage les 
dispositifs à matériaux de canal alternatifs. 
 
 

 

ABSTRACT 
 
MOSFET scaling, building block of integrated circuits, do not allow to improve 
significantly the device performance anymore. One presently studied solution 
consists in substituting silicon for high mobility semiconductors (Ge or III-Vs) as 
channel material. 
Based on original analytical models, calibrated on advanced simulations (quantum, 
Monte Carlo), this thesis demonstrate that at nanometric scale, the performances 
expected from this new technologies are in fact lower than the one of conventional 
silicon devices. Quantum effects (confinement, tunnelling leakage) have been indeed 
found to be more penalizing in the case of alternative channel material transistors. 
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Monte Carlo, transport balistique, courant tunnel de la source au drain, courant 
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