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General introduction   

 
Nanotechnology (form the Greek nano meaning dwarf) is the creation and utilisation of 
materials, devices and systems through the control of matter on the nanometre length scale 
(less than 100nm) i.e. at the level of atoms, molecules and supramolecular structures. The 
term nano refers only to a scale. For example, 1nm is equal to 4 silicon atoms, 6 carbon atoms 
or around 10 water molecules. However, at this scale new physical phenomena appear 
compared with their bulk counterpart, such as lower melting temperatures, higher resistivity, 
higher Young’s modulus or others. The experiments conducted in chapters 2 and 5 
corroborate the last two properties.  
    Nanotechnology is an interdisciplinary approach of applied science covering (not detailing 
the branches): physics, mathematics, chemistry, biology, medicine, neuroscience, 
microelectronic engineering, electromagnetism, electronics, microfluidic engineering, 
materials science, informatics, robotics, ethics, philosophy and others. Hence, nanotechnology 
is conceived of a new multidisciplinary paradigm where there is no distance between science 
and technology or between science and philosophy, (see the anexe: epistemological and 
ethical personal opinions in nanotechnology, at the final of the thesis). In this context, 
nanotechnology promises to offer many improvements in the quality of life to humanity. Fig. 
1 illustrates a Buckminsterfullerene C60 molecule (diameter size of ~.7nm) picturing sciences 
and technologies involved in nanotechnology. 
 

 
 

Fig.1. Buckminsterfullerene C60 
   showing some of the sciences and technologies involved in nanotechnology. 
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Nanotechnology has permitted revolutionary advances in technologies as diverse as 
electronics, information technology, material technology, adhesive, coating, or disease 
diagnostic and treatment.  Examples of some human creations and some objects found in 
nature are showed in Fig. 2. In this thesis all referred as nano has a length scale < 100nm 
(nanoscale).  Either the devices are at this scale or technological tools use at least one part at 
this scale. 
 

 
 

Fig.2. Scale of natural things and manmade things. 
 
Research on biosystems at the nanoscale has created one of the most dynamic and exciting 
science and technology domains at the confluence of physical science, chemistry, molecular 
engineering, biology, biotechnology, and medicine [2] which has been named 
nanobiotechnology. Following this hierarchical classification, nanomedicine is an application 
of nanobiotechnology. Indeed, modern medicine is constantly taking advantage of the newest 
technology and scientific advances.  
    European science foundation (ESF) [3] has defined nanomedicine as “the science and 
technology of diagnosing, treating and preventing disease and traumatic injury, of relieving 
pain and of preserving and improving human health, using molecular tools and molecular 
knowledge of the human body. It was perceived as embracing five main sub-disciplines that 
in many ways are overlapping and underpinned by the following common technical issue: 
Analytical Tools, Nanoimaging, Nanomaterials and Nanodevices, Novel Therapeutics and 
Drug Delivery Systems, Clinical, Regulatory and Toxicological Issues”. 
    Kewal K. Jain has proposed a scheme which shows the relation between nanotechnology, 
nanobiotechnology and nanomedicine [4], see Fig. 3. The scheme illustrates the manner how 
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these fields and technologies contribute to the development of nanomedicine under the novel 
concept of personalised medicine. 
 

 
 

Fig.3. Relationship of nanobiotechnology to nanomedicine (Kewal K. Jain 2007). 
 

Hence, with the research work presented in this thesis, we want to contribute to the increased 
development of nanomedicine by working in the domain of technology for diagnosing. Then, 
the purpose of the present research work is to investigate a new nanotechnological technique 
which enables to increase accuracy of early cancer diagnosis to reach the point of care cancer 
diagnostics (POC).  A. Rosooly et al. proposed a methodology to reach the POC [5] illustrated 
in Fig. 4.  

 
 

Fig.4. Illustrates the principal elements required to elaborate biosensors for point of care cancer diagnositics: 
POC (As appeared in: Rasooly A. et al. 2006[5]). 

 
The different parts illustrated in the organigram of Fig. 4 are developed and described in this 
research work. Our purpose is to elaborate a complete integrated-high sensitive electrical 
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nanodevice for label-free cancer biomarkers detection, at wafer scale. Because of the written 
above, this work projects itself into the larger field of nanomedicine and in particular point of 
care of cancer diagnosis driving towards the enabling concept of personalised nanomedicine. 
Fig. 5 schematises the principle of the novel electrical nanobiosensor.  

 
 

Fig. 5. Schema illustrating the principle and integration of our nanobiosensor device. 
 
The principle is based on the variation of electrical conductivity in nanoelectrodes array due 
to the proteins adsorbed onto Ni nanoislands. These Ni nanoilsands (~5nm diameter) are 
embedded into silice (SiO2) and placed between interdigitated nanoelectrodes devices (IND) 
of ~45nm width each electrode. Nanoislands are separated each other from ~2 nm. In these 
conditions, it is obtained a nanotransducer, based on the variation of electrical tunnelling 
conductivity through metal nanoislands due to the quantum phenomenon called coulomb 
blockade, at room temperature. Because of this phenomenon, these nanodevices are fast-
response and ultrasentive to any change that can affect the tunnelling conduction, for example 
adsorption of proteins. Hence, his-tagged antibodies, functioning as probe are linked by 
coordinative bonds to the Ni nanoislands, they recognise specifically the active RhoA 
conformation, which functions as target, and discriminate against its inactive RhoA 
conformation. Finnally, an innovative methodology to realise photoPDMS-based 
microchannels (20µm) was developed and integrated with IND on 4 inch wafer and 
encapsulation with an etched PDMS-nanocomposite finalised the integration of the device. 
  
The plan of the thesis is as follows: 
In chapter 1 considering the multidisciplinarity of nanotechnology, I detail some concepts 
and technological developments, with the objective of being read by physicists, physicians, 
biologists, chemists, engineer, philosophers, and so on. Hence some concepts of molecular 
biology, proteomic, oncology, clinical research, cancer biomarkers, bioMEMS and medical 
devices, Micro-Total-Analysis Systems (µtas), lab-on-a-chip (LOC) devices and bonds found 
in nanotechnology and nanomedicine are described. 
     I describe, in detail, thje protein Rho (biomarker) used in this work. Some nanodevices 
used for cancer diagnosis such as carbon nanotubes, nanowires and nanoparticles are also 

*Not to scale  
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compared. Finally, our nanobiotechnological principle and approach for cancer diagnostics is 
described in detail. 
 
In chapter 2 after remembering some micro/nano technological methodologies, elaboration 
of 96 cells involving 768 interdigitated nanoelectrodes devices (IND)  (some times called 
interdigitated nanoelectrodes arrays devices: IDA or nanointerdigitated electrodes arrays 
devices: nIDA) by a mix and match process using UV and eBeam lithography on wafer scale 
is presented. Then I describe, in detail, the methodology we used to realise 96 IND with high 
reproducibility by using electron beam lithography (EBL) combined with typical 
photolithography. The electrical characterisation of our devices is conducted in bare 
conditions and in short-circuit nanoelectrode to estimate its conductivity. 
 
In Chapter 3 Nickel nanoislands (~5nm) are deposited onto silicon dioxide (SiO2) surfaces 
and then electrical characterisations are conducted obtaining electrical tunnelling conduction. 
Nanoislands are deposited between interdigitated nanoelectrodes, in entire devices. Ni 
Nanoislands are characterised in AFM and STEM microscopies. Coulomb blockade 
phenomenon is found, at room temperatures, combining nanoislands with interdigitated 
nanoelectrodes. Some interest applications are found by using these kinds of multitunnel 
junction devices, however, they will be used to reach label-free biomarkers recognition for the 
first time.  
 
In chapter 4 using a quartz crystal microbalance (QCM) we validate the label-free detection 
of cancer biomarker binding assay interactions and recognition using the Ni nanoislands as 
deposited in chapter 3. We implement a surface chemistry involving an anti-biofouling 
coating of polyethylene glycol-silane referred as PEG-silane (< 2nm thick) to avoid non-
specific bimolecular interactions. Some interesting results are found such as the fact that 
glycerine, used as cryogenic protectant in molecular biology, produces non-specific 
biomolecular interactions, in our nanobiotechnological protocol. A new protocol without 
glycerine has thus been validated by ELISA technique. Finally, the specific label-free 
detection and recognition of the active antigen conformation of RhoA, avoiding the glycerine 
effect, is demonstrated by quartz crystal microbalance (QCM) technology at various 
concentrations. This method proves the viability of the concept by implementing one of the 
most critical steps in nanobiosensor or protein-chip realisation, in this case by using Ni 
nanoislands as an anchoring surface layer enabling the detection of a specific conformation of 
a protein, identified as a potential cancer biomarker. 
 
Chapter 5 is divided in three sections, the first one consists of an innovative methodology to 
realise photoPDMS-based microchannels which is developed and integrated with the IND on 
4 inch wafer. Hence, limit resolutions in novel negative polydimethylsiloxanes (N-
photoPDMS) and in positive photosensitive polydimethylsiloxanes (p-photoPDMS) for wafer 
scale are described for the first time. This technique permits to realise microchannels aligned 
onto each nanobiosensor. It is aligned, 20µm width channels onto each 7 mm X 7 mm cell, on 
the entire wafer.  
     In the second section, interconnection and bonding of 3-D polydimethylsiloxane (PDMS) 
microchannels on wafer scale are elaborated. PDMS is casted onto a 4 inch mould master 
which is elaborated on SU-8 (10 µm and 500 µm layers).  A dry etching is conducted into 
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PDMS to define proper circular interconnecting holes (vias). I mix silica nanoparticles (20 nm) 
into unmodified PDMS polymer matrix to reinforce it, obtaining a PDMS nanocomposite. 
The advantages of using this nanocomposite are better Young modulus, better tensile and tear 
strength. However a better dry etching homogeneity is found in PDMS nanocomposite. 
Finally, pressure tubing connections are achieved and leakage pressure tests are conducted 
using a pressure system tool called MFCSR instead of using syringe systems or peristaltic 
pumps that lead hysteretic and other effects. This second section is implemented as a 
methodology to be used for covering the PhotoPDMS based microfluidics channels of the 
first section.  
    Finally, in the third section a SU-8 mould master is used for casting a 4 inch PDMS covers. 
It is aligned on wafer level and an improvement on the SU-8 master mould by design offset is 
achieved because PDMS has an inevitable shrinkage after curing it.  
 
Chapter 6 presents a deposition of liquid solution on each IND for multiplexed biological 
analysis using a spotter (called Bioplume). The bioplume tool has been developed within the 
nanobiosystems group and patented [4].  It is a system based on microcantilivers that permits 
to deposit precisely liquid spots from picolitter to femtolitter range. Therefore, the 
nanobiosensors devices are designed to be coupled with the “bioplume” system. The purpose 
is to deposit the probes biomolecules locally onto the interdigitated nanoelectrodes devices 
(IND) avoiding cross contamination while using less analytes. The deposition is also realised 
to be performed between photoPDMS microchannels described in chapter 5.  
 
Chapter 7 presents the complete integrated high sensitive electrical nanodevices for label-
free cancer biomarkers detection. The integration is performed, doing several steps on wafer 
level.  An organigram pictured in Fig.6 resumes both the fabrication processes and the plan of 
the present thesis, furthermore it presents the manner we linked the developments realised in 
above chapters.  
    Firstly, marks are photopatterned to align each IND on 4 in. silicon wafer (covered with 
silicon dioxide layer of 1 µm). In a second step, the wafer is functionalised covalently with 
PEG-silane which is grafted into microchannels shape patterns made of momentary 
photoresist, aligning in each IND. Being the PEG-silane hydrophilic, it allows the biological 
compound flowing across the microchannels. It serves also as proteins repellent along the 
microchannels. Indeed, it avoids the non-specific biomolecular interaction in the active zone 
of each IND. The third step consists of depositing Ni nanoislands locally on the IND.  In a 
fourth step, the elaboration of 768 interdigitated nanoelectrodes arrays on the entire wafer by 
using electron beam lithography (EBL) was conducted. In the fifth step, all nanostructures are 
mixed and matched with micropatterns to connect them. In the sixth step, 200 photoPDMS 
based microchannels (20 µm wide) aligned with IND are patterned in one step onto the 4 in 
wafer. Then, in the seventh step local deposition of biomolecules on the active zone of IND is 
proposed, after investigating the damage of the bioplumes to the IND.  
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Fig.6. Organigram-planning for elaborating our integrated system and for presenting the research work in the 
different chapters.  

 
 

Another possibility avoiding the use of local deposition (bioplumes) is by covering the 
photoPDMS with the flat PDMS film presented in chapter 5. See the organigram. Then, in the 
eighth step, cells are cut and encapsulated into TO-8 cases. Next, microbonding is conducted. 
In last step, interconnecting tubes are sealed to realise electrical characterisation to validate 
high sensitive cancer biomarkers detection in continuous biological flow and in real time (at 
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the time we are writing this thesis, we have detected ~100pM of the active antigen 
conformation of RhoA while discriminating from the inactive antigen conformation of RhoA). 
This integration is intended to be part of a viable Lab-on-a-chip device. 
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Chapter I 
 

Clinical cancer laboratory and medical nanodevices for label-free cancer 
biomarkers detection  

 
1.1 Cancer and oncology concepts  
 
Historically, an ancient physician from Greece noticed a similarity of the swollen mass flood 
vessels surrounding a malignant tumour, to the form of a crab and he named the disease. 
Traditionally, cancer (Latin word for crab) has been thought as a genetic disease, but 
functionally, it is an alteration of the protein networks and signalling pathways that can 
produce cancer growth, tumour invasion and then metastasis [1]. 
    Otherwise, oncology can be defined as the branch of medicine that studies cancer tumours 
and seeks to understand their development, diagnostic, treatment and prevention. Application 
of nanotechnology in cancer has been termed “nano-oncology”.  
 

1.1.1 Cancer diagnosis  
 
If cancer is detected at its early stages, physicians can more effectively treat it and cure it. 
Unfortunately, only few cancers are detected by screening programs and most are still found 
after patients seek medical attention, because of the tumours effects. In this context the typical 
route followed in the diagnostic screening, starts with an unexplained pain, bleeding or the 
presence of a tumour in or outer the body [2]. The patient undergoes several medical tests, 
hence if having the presence of tumours the patient undergoes a biopsy or fine needle 
aspiration to be examined under microscope by a pathologist (physician who specialises in the 
diagnosis of disease). However, at this early stage of cancer, a precisely diagnostic is hugely 
challenging, hence nowadays intense research has been dedicated. One of the intrinsic 
problems is the difficulty encountered by pathologist to obtain a diagnostic 100% specific and 
sensitive using traditional tests because these parameters are inversely related. In this context 
nanotechnology has an enormous impact, due to the nanometre size compared to the 
biological elements; the sensitivity and specificity are increased. Hence, nanomedicine offers 
a novel paradigm to significantly obtain advances in cancer diagnosis but also in its treatment. 
 

1.1.2 Traditional clinical diagnosis research and cancer therapy  
 
Diagnostics assessment is to recognise a disease process, differentiating it from others and 
giving it a name [2]. The first step to accomplish this assessment is to differentiate a benign 
from malignant growths. After realising a tissue biopsy (either surgical or fine needle 
aspiration), the assessment is performed by a surgical pathologist which examines the tissue 
and is also charged to guide the management of the patient.  
    The first procedure of tissue examination consists of evaluating morphologically the 
tumour by staining with haematoxylin and eosin (H&E). It is a visual interpretation of the 
H&E slide. This method, universally available, is archaic but it can be efficient and it is low 
cost. Nevertheless, the method needs knowledge of clinical setting such as age and sex of the 
patient, the anatomical site, previous histological and/or radiological findings and past 
surgical chemotherapy or medical intervention. As it can be noticed, in modern clinical 
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research, it is necessary to have a clinical diagnosis method that is sensitive, specific, and low 
cost. This could be possible if using nanodevices like protein nanobiochips, nanowires or the 
nanoelectrodes/nanoislands-based devices we propose here. In this context nanotechnology 
on-a-chip is emerging.  

Regarding cancer therapy, nowadays most cancers are still treated with no gentle methods 
such as surgery to remove malignant cells, chemotherapy or radiation therapy. Chemotherapy 
refers to treatment of disease by chemicals that kill cells specifically those of micro-
organisms or cancer. The use of chemical compounds (as drugs) to destroy tumours is 
mandatory in current treatment of malignancie,  that is why numerals drugs are in use or are 
in early stages of development. However most of these drugs are not effective, as there are 
problems like delivery, penetration or also lowly degree of selectively. Furthermore, the most 
discouraging limit factor is drug resistance. For example, cancers such as prostate tumours are 
intrinsically resistant to most anti-tumour drugs. Ovarian carcinoma or small cell lung cancer 
respond to chemotherapy and often disappear “totally”, returning later as drug-resistant 
tumours. Hence, nanotechnology has here also an important role, because for example, by 
using ferromagnetic nanoparticles or nanovectors such as liposomes or carbon nanotubes, it 
will be possible to deliver anticancer drugs specifically to malignant cells, and determine if 
these drugs are killing malignant cells (nowadays, it is being achieved, for instance in Dai’s 
group, described later).  
    Nanotechnologists think that nanotechnologies serve as multifunctional tools that will not 
only be employed with any number of diagnostics and therapeutic systems, but they will 
change the foundations of cancer diagnostics and treatment. 
 
1.2 Proteomic application for early detection of cancer: Biomarkers 
 
One of the most crucial stages in cancer development is the so called metastasis (the spread of 
a disease from one organ to another distant organ) [4] as mentioned above the early cancer 
detection is important to prevent a devastating cancer development, in this context   
biomarkers are useful tools for cancer detection and monitoring. A biomarker is described as 
an entity which can reveal through its concentration measurement a normal biologic process, 
a pathogenic one, or pharmacologic responses to a therapeutic intervention. An alteration of a 
cell, metabolite or protein level can be referred as cancer biomarker. For example, prostate-
specific antigen (PSA) is a biomarker and its level of expression is changed in the tumour or 
in blood, urine, or other body fluid of cancer patients. 
   Beyond early detection, the information provided by biomarkers help in sensing the status 
of the disease hence improving control and prevention of cancer [5]. Otherwise, proteomics is 
valuable in the discovery of biomarkers because the proteome reflects both the intrinsic 
genetic program of the cell and the impact of its immediate environment.  
     Proteomics technologies can be used to identify biomarkers, to monitor disease 
progression, and to identify therapeutic targets. 
 

1.2.1 Proteomics analysis and proteomics technology  
 
Proteins are folded chains of amino acids strung together by peptide bonds. If 50 amino acids 
are linked together, it is formed the so called peptide and if there are more than 50 linked 
together, it is called a protein. As writing elsewhere [6]: “Proteins are the structural and 
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organisational elements of the living state” and they are essential part of living organisms 
because they are the main component of the physiological metabolic pathways of cells [7]. 
    Human sinthetises 20 different amino acids like histidine, cysteine, and glycine [8]. Amino 
acids have distinct side group with different degrees of polarity, thus water solubility. Amino 
acids which are non-polar and insoluble in water (hydrophobic) include pheylalanine, leucine, 
isoleucine, tryptophan, tyrosine, valine and histidine (in decreasing order of hydrophobicity). 
Histidine which has five sided ring with three carbons and two nitrogrens, is the amino acid 
used in this research project, because of its capacity of linking to nickel by coordinative bonds.  
       The vital functions of proteins are intrinsically linked to their structure and dynamic 
switching among different conformational states. Proteins such as: enzymes, receptor, 
cytoskeleton filaments, muscle myosin, and haemoglobin experience enormous 
conformational changes in relation to different causes. In this context, activities in living cells 
are performed by protein conformational dynamics, controlled by quantum mechanics ( e.g. 
van der Waal London forces) [6], otherwise quantum states are essential of biological systems, 
but also in inorganic systems as demonstrated in nanotechnology. Hence, that is precisely one 
of the novel paradigms in nanotechnology: the couple natural-artificial comportment. 
    Proteomics refers to the study of structures and function of proteins, their relative 
abundance, function and interaction with other macromolecules in a cell or organism. Most 
proteins function in collaboration and interactions with other proteins and precisely one of the 
purposes of proteomics is to identify protein interactions. 
 
A proteomics experiment can be split in three categories [9]: 
 
1. Protein preparation and analysis (electrophoresis and non-electrophoresis methods). 
2. Mass spectroscopy (MS) (electrospray or matrix-assisted laser desorption/ionisation). 
3. Bioinformatics (the use of programs to reach large database).  
 
Generally for the protein separation and analysis of protein mixture, there are two 
electrophoresis approaches. In one of them, the analysis starts purifying the proteins that 
could be conducted by affinity chromatography, ion exchange or subcellular fractions. Hence, 
two dimensional polyacrylamide gel electrophoresis (2D-PAGE) isolate single proteins to be 
processed by mass microscopy (MS). Other uses one dimensional gel (ID- PAGE) which 
allows incomplete electrophoresis separation thus it necessitates a separation technique such 
as high-performance liquid chromatophraphy (HPLC). Finally in non-electrophoresis methods, 
the complete mixture is processed to peptide; and the peptide mixture is separated by 
multidimensional chromatography.  
     Mass Spectrometry (MS) is a technique that uses a mass spectrometer to establish the 
molecular weight (MW) of a sample.  Hence, MS is used, for example, to the identification of 
proteins and the establishment of their molecular weight being this technique able to 
determine numeral proteins in brevity of time. 
 

1.2.2 Antibodies and antigens  
 
Antibodies, which are also known as immunoglobulin, are the gamma globulin proteins 
synthesised and secreted by B-cells in the body, in response to the presence of a foreign 
substance, named antigen. There are five different classes of immunoglobulin (G, A, M, D 
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and E). Immunoglobulin G (IgG), also known as γ-globulin, has a typical molecular mass of 
150kDa being the principal antibody in serum. The structure of an antibody, typically 
represented as the structure of an IgG molecule, consists in two heavy and two light chains 
each containing several domains held together by disulfide bonds. The antibody structure is 
illustrated in Fig. 1.1. 
 
                             

                                           (a)                                                                                     (b) 
 

Fig.1.1. (a) Antibody structure, (b) immunoglobulin molecule from Wikipedia.com. 
 
Parts: 
 
1. Fragment antigen binding (Fab fragment) domain 
2. Fragment crystallisable region (Fv region)  
3. Heavy chain with one variable (VH) domain followed by a constant domain (CH1), a hinge 
region, and two more constant (CH2 and CH3) domains 
4. Light chain with one variable (VL) and one constant (CL) domain 
5. Antigen binding site (paratope) 
6. Hinge regions.  (-S-S- means disulfide bonds) 
 
The interactions of antigens with antibodies form the basis of all immunochemical techniques. 
Then antibodies bind to antigens, most of which are proteins, polysaccharides, or 
nucleoproteins. The bonds between antibodies and antigens are not covalent, similar to the 
enzymes and substrate. The fraction of the antigen that binds to the antibody is known as 
antigenic determinant (or epitope) and paratope in the antibody (the antigen binding site). The 
only part recognised by the antibody is the epitope of the antigen. This can be mapped by 
using ELISA technique or proteins arrays, described later. 

 
1.2.3 Antibody fragments 

 
The fragment antigen binding (Fab fragment as paratope) is a region on an antibody which 
binds to antigens.  It consists in one constant and one variable domain of each of the heavy 



Chapter I  
 

   
 

15

and the light chain. These domains form the paratope at the amino terminal end of the 
monomer and the two variable domains bind the epitope on their specific antigen. The 
fragment crystallisable region (Fc region) is the tail region of an antibody that interacts with 
cell surface receptors called Fc receptors and some proteins of the complement system. This 
property allows antibodies to activate the immune system. In IgG, IgA and IgD antibodies 
isotopes, the Fc region consists in two identical protein fragments, derived from the second 
and third constant domains of the antibody's two heavy chains and  IgM and IgE regions 
contain three heavy chain constant domains (CH domains 2-4) in each polypeptide chain. 
     

1.2.4 Single Chain Variable Fragment (scFv) 
 
It is a combination of the variable regions of the heavy and light chains of immunoglobulins, 
linked together with a short (usually serine, glycine) linker [10][11]. This chimeric molecule 
maintains the specificity of the original immunoglobulin despite the removal of the constant 
regions and the introduction of a linker peptide. ScFv can be created directly from subcloned 
heavy and light chains derived from a hybridona. ScFvs are typically used in flow cytometry, 
immunohistochemistry and as antigen binding domains of artificial T cell receptors. 
     In this thesis, we use his-tagged scFv antibody fragment immobilised onto the Ni 
nanoislands (~5nm diamter). The fragment is linked to the biomarker GTPase RhoA (active 
form of RhoA, functioning as antigen). The reason is because RhoA is found overexpressed in 
various tumours and because our collaborators: J.C Faye, P. Chinestra and G. Favre have 
recently isolated and characterised a new conformational scFv which selectively recognises 
the active form of RhoA [12]. Fig. 1.2 illustrates the structure of an immunoglobulin showing 
the antibody fragments, it was modelled using RasMol computer program (from Wikipedia). 
 

 
 

Fig.1.2. Structure of an immunoglobulin showing the Fab (RasMol) (from Wikipedia). 
 

1.2.5 Identification of cancer biomarkers  
 

Rho GTPases have been identified as potential cancer biomarkers [15-17], this kind of 
biomarker is described in next sections because the purpose of this research work is to 
recognise the biomarkers RhoA at high sensitivity and specificity as mentioned above. 
     A mentioned in the proteomic section, the 2D-PAGE coupled with MS technique have 
been the conventional proteomics analysis for discovering several biomarkers, however there 
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are numeral inherent drawbacks such as the quantity of biological compound required as 
starting material. Furthermore the technique is not adequate to identify low abundance of 
proteins.  Novel techniques to improve this situation and to discover newest biomarkers are 
being created because a cheaper more sensitive technique with enhanced specificity is suitable 
and nanotechnology has the potential to improve this thereof. 
     

1.2.6 Diagnostic immunology assays  
 
It is an ensemble of diagnostic techniques taking advantage of the specific bonds between 
antibodies and antigens. This specificity has turned out to be an excellent tool in the detection 
of substances connected with diagnostic techniques. For example, specific antibodies for 
specific-wanted antigens can be performed with fluorescent label or colour-forming enzyme 
but also radiolabel because of this several biochemical techniques (immunoassay techniques) 
are used to detect the concentration of a biological substance as antigens or antibodies, 
typically in serum or urine. Some of these techniques, employed in biology and medicine, are 
Enzyme-Linked Immunosorbent Assay (ELISA) (enzyme immunoassay-EIA) or western blot 
(alternately, immunoblot). In this research project, we used ELISA technique thus only this 
biochemical technique is described here.   

 
1.2.7 Traditional immunological techniques for biomarkers validation (ELISA)  
 

Enzyme-Linked Immunosorbent Assay (ELISA), or Enzyme Immunoassay (EIA), is a 
biochemical technique used principally in immunology to detect the presence of an antibody 
or an antigen in a sample. Briefly, the sample that can be any body fluidic, containing a 
specific antibody of interest is placed in a well that has been conjugated with a ligand (binding 
protein) for that antibody. Antihuman anti-globulin antibody that has been conjugated with an 
enzyme is then added, it binds to the patient’s antibodies and it is bound to the ligand in the 
well. A substrate specific for the conjugated enzyme is added giving a colour. The amount of 
colour is measured proportionally to the quantity of antibodies presented in the original 
patient sample. A typical ELISA plate consist in 96 well on an 8 x12 matrix, each well 
measures around 1cm in height and 0.7 cm in diameter. There are different kinds of Elisa 
techniques, such as indirect ELISA, sandwich Elisa, competitive ELISA and the newest Elisa 
renverse method & device (ELISA-R m&d). Otherwise, ELISA is not a label-free technique, 
it is relatively high sensitive test (pM), but false positive results could happen thus analytes 
such as HIV require be tested by Western Blot also [9]. In this reach work; ELISA is used to 
validate the different proteins functionality, before implementing the biomolecules to our 
devices. The simplest ELISA principle is illustrated in Fig. 1.3 and 1.4, in other section the 
label-free and labelled probes techniques are explained. 
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Fig.1.3. Elisa technique methodology (picture from internet of Wisconsin university). 

 
 

Fig.1.4. The simplest test Elisa principle (picture from internet: Wisconsin university). 
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1.3 The Rho GTpases  
 
Rho stands for Ras-Homologous, the rho family of GTpases is a family of small (~21kDa) 
signalling G protein (more specific, a GTpase) and it is a subfamily of the Ras superfamily. 
Ras proteins are small monomeric GTPases (~21 kDa) that are essential in transducing growth 
signals from cell surface receptors to the nucleus. Briefly, Rho GTpases are molecular 
switches that control a wide variety of signal transduction pathways in all eukaryotic cells. 
The expression of some Rho family members has been found to be increased in some human 
cancers, and some cancer-associated mutations in Rho family regulators have been 
characterised too. Rho GTpases include twenty mammalian Rho GTpases: Rho (three 
isoforms: A, B, C); Rac (1, 2, 3); Cdc42; TC10; TCL; Chp (1, 2); RhoG; Rnd (1, 2, 3); 
RhoBTB (1, 2); RhoD; Rif; and TTF. How the Rho types have started to be studied? 
     When the first Rho gene was cloned in 1985, the only known members of the Ras GTpase 
family were the three very similar related H-Ras, Ki-Ras and N-Ras genes and they were 
identified as oncogenes mutated in human tumours. In 2001 Ras-related Ral, Rap and Rab 
genes were systematically cloned by Tavitian and colleagues, which were screening human 
cDNA libraries with Ras probes1. On the contrary, the first Rho gene was no deliberately 
cloned from the sea-slug Aplysia2. Madaule et al. identified three human homologs nowadays 
known as RhoA, RhoB and RhoC, thus several Ras experts stared studying the Rho genes, 
thinking that as Ras they would be oncogenes, in response to a variety of stimuli, control key 
signalling and structural characteristics of the cell. 

 
1.3.1 Rho GTpases in cells tumour and cell biology  

 
 It is known that animal’s cells acquire numeral diversities of forms, going from the relatively 
columnar epithelial cell to the complex branched structure of a neuron. Human tumours 
conceal multiple genetic alterations and changes in genes controlling cell growth, but also in 
differentiation and survival. These genetic changes include activation of oncogenes and 
inactivation of tumour suppressor genes; these are the reasons why cellular functions are 
strategic in tumourgenesis studies.  
    In this contextual study, the role of Rho GTpase in cells has been identified, being the 
regulation the actin cytoskeleton, microtubule dynamics, the ability to influence cell polarity, 
membrane transport pathways or transcription factor activity.  As actins cytoskeleton changes 
are required for migratory feature of cell, in response to growth of factor stimulation or matrix 
interactions, studies reveal the contribution of Rho molecules to the motility and invasion of 
tumour cells. Clearly Rho-Family GTpases are involved in the control of cell morphology and 
motility in untransformed cells. In the case of metastasis tumours, on the other hand, cells 
develop the ability to traverse tissue boundaries, but how Rho proteins function in cell 
biology?  Rho proteins function as a molecular switch similarly to Ras proteins and one of the 
most frequently activated oncogenes in human cancer is the Ras gene family. 
    In humans, three Ras genes have been identified: H-Ras, N-Ras and K-Ras. Rho GTpases 
are guanine nucleotide binding proteins which cycle between an inactive GDP-bound 
conformation and an active GTP-bound conformation, and they interact with their 
downstream targets when bound to GTP. Figure 1.5 illustrates the Rho protein cycle.  
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Fig.1.5. Model of Rho-protein cycle (regulation). 

 
Fig. 1.5 shows that Rho proteins can cycle between either active (GTP-bound) conformation 
or inactive (GDP-bound) conformation. In the active form, they interact with one of over 60 
target proteins (effectors). When bound to GDP; they can be maintained in the cytoplasm by 
Rho-GDP dissociation inhibitors (Rho-GDIs). The cycle is highly regulated by three classes 
of protein, in mammalian cells, around 60 guanine nucleotide exchange factors (GEFs) 
catalyse nucleotide exchange and mediate activation; more than 70 GTPase-activating 
proteins (GAPs) stimulate GTP hydrolysis, leading to inactivation; and four guanine 
nucleotide exchange inhibitors (GDIs) extract the inactive GTpase from membranes. Hence, 
the exchange of GDP for GTP is supported by Rho guanine nucleotide exchange factor (Rho-
GEFs), and is often associated with a translocation of Rho proteins to cell membranes.  
     GTP-bound Rho proteins interact with numerical effectors proteins and modulate their 
ability to regulate the mentioned above cell feature. Finally, most Rho proteins have an ability 
to hydrolyse GTP to GDP and inorganic phosphate (P), which can be supported by Rho-
GTpase-activating proteins (Rho-GAPs). Otherwise RND, RND2, RND/RhoE and RhoH are 
unable to hydrolyse GTP, and their regulation is related to the changes in proteins levels 
localisation, not through GDP/GTP binding.  
     In this thesis, the active form or conformation of RhoA (Rho GTP) is selectively detected, 
as this form has been identified in several tumours as described later. 
 

1.3.2 Rho GTpase expression in tumourigenesis  
 
As mentioned in last section, Rho are best characterised for their effects on the cytoskeleton 
and cell adhesion, hence these functions affect the cell migration and therefore presumably 
invasion and metastasis, then Rho is involved in several cancers types as detail later. Finally 
Rho family has been found in tumoural cells either overexpressed or downexpressed [15]. 
 

1.3.3 Rho A, B and C in cancer types implication 
 

In specialised literature, it is found that all eukaryotes contain at least one Rho GTpase family.  
Some of the reasons are: RhoA are vital in the regulation of actomyosin contractility. RhoB, 
localised mainly on endosomes, has been shown to regulate cytokine trafficking and cell 
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survival, while RhoC may be more important in cell locomotion [16]. Indeed, Rho A, B and C 
have different functions into the cell, an it is though that the most obvious sign that there are 
differences in Rho functions, is found in cancer cells.  
    Hence, overexpressed RhoA has been indentified in several cancer cells, either highly 
metastatic or in which cell have defects in growth control [17]. In some tumours, Rho A has 
been found overexpressed such as in colon [18], breast [18], lung [18], testicular germ cell 
[19], head or neck squamous-cell carcinoma [20]. Otherwise, recent studies show that RhoB 
expression levels are decreased as the cancer progresses [17] e.g. some of our collaborators 
have found a loss of RhoB in lung cancer [15], it seems that RhoB may act as a negative 
moderator of cell survival [21]. RhoC has been found overexpresed in tumours like 
inflammatory breast cancer [22] [23], or pancreatic ductal adenocarcinoma [24].   
    In this work, Rho A is used selectively detected so that in chapter 4, a methodology and the 
proof of the concept are described in detail. 
 
1.4 BioNEMS and Medical devices  
 
MEMS and NEMS stand for micro and (nano) electrochemical systems, respectively. They 
refer to the integration of mechanical elements, sensor, actuators, and electronic on a common 
silicon substrate through micro and nanofabrication technology. Some of them are described 
later. MEMS are occasionally referred to as micromachines (Japan) or microsystems 
technology (MST) in Europe, but more importantly is that they are found in machines used 
for nano(micro) fabrication technology [38]. 
    BioMEMS and BioNEMS stand for biomedical micro (nano) electrochemical systems and 
they are used in biomedical applications because they take advantage of the micro and 
nanotechnology developments and advances. BioMEMS employ a numeral of novelties, issue 
from areas like polymers materials, microfluidic physics, surfaces chemistries, soft fabrication 
technology and biocompatibility. Nowadays, based BioMEMS equipments are found in 
hospitals, for example, they provide improved feedback or monitoring during surgical 
procedures, hence they are found in the minimally invasive surgeries (MIS). Finally, 
BioMEMS can be implanted into the body for monitoring assignment such as cardiac rhythm 
or glucose in patients [9]. 
 

1.4.1 Sensor, biosensors, Micro-Total-Analysis Systems (µtas) and Lab-on-chip 
(LOC) 

 
A sensor is a device that responds to a stimulus named measurand (which can be physical, 
chemical, biological; e.g. force, molecular interaction, etc.), it transmits a resulting impulse 
into a signal that carries information. Hence, sensors detect an input signal or energy and 
convert them to an appropriate output signal or energy. The difference between sensor and 
transducer is very slight, sometimes they are synonymous. Nonetheless, sensor is a more 
particular term, being transducer a device that performs subsequent transduction operations in 
a measurement or control system.  
    Sensors have several specifications, such as the selectivity which is the ability of a sensor to 
measure one measurand (e.g one chemical component) in the presence of others.  Sensitivity is 
defined as the ratio of the change in sensor output to the change in the measurand input value. 
For a sensor in which the output y is related to the measurand x by equation y=f(x), the 
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sensitivity S(Xa) at point Xa,  is  S(Xa)=dy/dx x=xa. For a sensor having y =kx+b, where k and b 
are constants, the sensitivity is S=k for the entire measurand range. Finally, for a sensor 
having y =kx2+b, the sensitivity is S=2kx and changes from one point to another over the 
measurand range. In this context, it is desirable to have a high and if possible constant 
sensitivity. 
    An ideal sensor should operate continuously without affecting its measurand, it has a high 
sensitivity, it is fast with a predictable response (linear or nonlinear), it has full reversible 
behaviour, high reliability, selectivity, compactness, high signal-to-noise ratio, immunity to 
environmental conditions, and is easy to calibrate. However, all the sensors are not ideal and 
they can affect the measurand. Finally, sensors can be passive or active and some concepts as 
sensor arrays, multisensors or DNA microsensor chips are commonly mentioned in bioNEMS 
and medical devices. 
  A biosensor measures living things (or virus), it has a transducer that is made to be in contact 
with the biological element known probe, e.g. an antibody, this element selectively recognises 
a particular biological molecule known target, e.g. an antibody, through a reaction, specific 
adsorption, or other physical or chemical processes. An ideal biosensor should neither be 
harmful nor deteriorate in the presence of biological substances. A concept of shape-specific 
recognition (or specific recognition) is commonly used to explain the high sensitivity and 
selectivity of biological molecules (biomolecules), especially enzyme-substrate and antigen-
antibody systems. Other characteristics that have an influence in the sensor sensitivity are the 
size of the transducer. This is a very important characteristic in nanobiosensors, because the 
transducers are at the same size or even smaller than the biological elements. For example, the 
transducers used in this work, are nanoislands that measure ~5nm coupled with 
nanoelectrodes(40nm) ( most proteins measured between 4nm to 20 nm). 
    Micro total analysis systems (µtas) and their subset devices called lab-on-chips (LOC) are 
the applications of a hard and soft technology fabrication, their purpose in these devices is to 
miniaturise them making part of a biochemical analysis. Soft technology fabrications are 
processes including microcontact printing (µCP), nanoimprint lithography (NIL) (all types 
such as UV-NIL), microtrasfer moulding (µTM), moulding in capillaries (MIMIC) or decal 
transfer microlithography (DTM). The Polydimethylsiloxane (PDMS) silicon is a common 
soft material used in these technologies, this elastomeric is used as stamp, mould, or mask.  In 
chapter 5 of this thesis, the so called PDMS is extensively used, indeed we develop a 
photosensive PDMS to realise an innovative methodology to fabricate in one step several 
fluidic microchannels. 
 

1.4.2 Proteins immobilisation methods for nanobiosensors  
 
There are enormous methods to immobilise proteins onto surfaces functioning as follow: by 
physical adsorption (this is a non-covalent method), by interacting surfaces with hydrophobic 
(nitrocellulose, polystyrene) or positively charged (poly-lysine, aminosilane) surfaces, or by 
covalent modification onto a flat surface (chemically activated by aldehyde, epoxy, activate 
esters), or covalent modification into a gel coating and cross linking [26] [36]. In this work, 
we use the adsorption method. It is the simplest method in which the transducer is exposed to 
a solution of the biological active material for a periodic of time; the surface is rinsed to 
remove the loosely bound material. The biologically active material is then fixed on the 
surfaces by hydrophobic forces, of van der Waals forces, hydrogen bonds, ionic forces, or by 
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coordinative bonds as in our nanobiosensor’s immobilisation. Different bonds found in 
nanobiotechnology and specifically in the nanobiosensor described in next parts. 
 

1.4.3 Proteins biochips, labelled probes and free-label methods  
 
Proteins biochips are based on the immobilisation of a probe (by one method described 
above), then a target is selectively recognised and detected by this probe. Biochemical 
techniques described above utilise different detection strategies which are classified as: (1) 
label-free methods and (2) labelled probe methods [27].  
    Label-free methods (in traditional clinical laboratories) include mass spectroscopy (Liotta 
and Petricoin, 2000), surface plasmon resonance (SPR) (Johnsson et al., 1991), atomic force 
microscope (AFM) (Jones et al., 1998) or quartz crystal microbalance (QCM) (Höök et 
al,2005). 
    Mass spectrometry (microarrays) uses a protein-selective surface, such as hydrophobic, 
ionic, or biological surfaces for immobilisation of a complex protein solution. Ions liberated 
from the surface by laser desorption/ionisation, go to a detector and are classified based on 
their mass/charge ratio. Genetic algorithms and neural network data analysis are used for data 
disease/non-disease data clustering analyses.  
    Surface plasmon resonance (SPR) detectors, on the other hand, are optical biosensors for 
monitoring biomolecular interactions. This technique consists of immobilising a molecule on 
a thin metal film, typically gold or silver. Hence, incident light is directed, at a sharp angle, to 
the side of the metal film opposite of the molecule and the light is reflected from the film at a 
certain angle. Changes to the molecule on the film such as binds of an antigen causes a 
modification in the metal film´s electrons, causing the angle of the reflected light vary from 
the original angle. Measurement of the angle of reflectance indicates a binding event between 
the immobilised antibody and the capture molecule.  
    Atomic force microscopy (AFM) is used, for example, to characterise protein microarrays, 
hence to observe the change and form in height of an immobilised antibody upon binding of 
its complimentary antigen.  
    Quartz crystal microbalance (QCM) is a mass sensitive machine useful for detecting a 
variety of analytes. Mass changes on quartz placed in the QCM due to the deposited 
biomolecules on surfaces. Mass is interpreted in frequency change according to the Sauerbrey 
equation.  
    These label-free based methods machines, generally require expensive and sophisticated 
equipment, not available in all clinics, hospitals or laboratories. Hence, these methods are 
useful to implement novel detection methodologies intended to be miniaturised as in present 
work. In this context, in this work we used a QCM in this research work for proving the 
antibody antigen (biomarker) concept and that will be integrated into the nanobiosensor. We 
will give more details about this technique in chapter 4. Fig. 1.6 schematises the principle of 
the described label-free based machines. 
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Fig.1.6. Label-free based machines. 
 
The labelled probes methods include the use of a chromogen, fluorophor or radioactive 
isotope for detection of immobilised targets. The capture molecule itself could be detected 
directly, indirectly or by sandwich strategies.  Direct strategy uses a labelled antibody to 
directly bind to the target molecule immobilised on the surface and then amplification 
strategies based on avidin-biotin binding increase its sensitivity. Indirect strategies use an 
immobilised antibody for capturing labelled-specific molecules from the sample. Finally, 
Sandwich strategy assay require two distinct antibodies for detection of a capture molecule. 
The first antibody is immobilised on the substratum, and is used to capture the molecule of 
interest. Then a second labelled antibody binds to the first complex allowing detection. 
Fig.1.7 schematises the described labelled probe methods.  
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Fig.1.7. label probes techniques. 
 

 
1.5 Nanodevices for nanomedicine 
 
The purpose of nanomedicine approach is to assure a personalised medicine using 
nanodevices that must be more accurate and faster, more controllable, more reliable or most 
cost-effective to enhance the quality life of society. In this context “The most important 
applications of machine-phase nanotechnology are in medicine”, as Freitas pointed out [28]. 
   In this section, firstly we introduce the importance of nanotechnology in clinical 
laboratories, next we present some bonds used to sustain the different developments presented 
in this work. Next section will consist of presenting some devices to reach a more accurate 
and reliable diagnosis, as well as their drawbacks. Last, the approach of the novel nanodevice 
we developed is described. 

 
1.5.1 Nanotechnology in clinical laboratory diagnostics 
 

A study of cancer diagnostics or in tumours classification is more reliable in laboratories if 
using molecular techniques, in this context nanotechnologies can be used to improve PCR as 
well as non-PCR methods for rapid diagnostics. The advantages would be the use of small 
amount of sample, for example by using nanofludic arrays. Indeed the tests are faster, more 
sensitive and more selective.  On the other hand, ELISA is a no label-free method employed 
currently in clinical laboratories, it is high sensitive (pM) but is time and quantity sample 
consuming, furthermore expensive, so new paradigm concepts are emerging as 
nanotechnology-on-chip for full chemical diagnostics system in clinical laboratories [29][30].     
    Some alternative label-free methods have been integrated in newest clinical laboratories, 
such as SPR and quartz crystal microbalance (QCM). However, I think that these tools are 
used just the first step for the nanotechnology-on-chip conception integration. In this context, 
successful results obtained from these newest nanotechnological clinical laboratories, are on 
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condition that other equipment like atomic force microscopes (AFM) and scanning 
(transmission) electronic microscopes (STEM) are used [31].  In my project, we used a SEM, 
a QCM, an AFM and ELISA technique to characterise the surface chemistry and the biology 
binding methodology just as first step towards the proof of the concept validation and 
integration of the nanobiosensors realisation. 
 

1.5.2 Bonds in nanotechnology and nanomedicine 
 
The interactions amid atoms and molecules informs the specificity of the materials and 
therefore of devices. Otherwise, usually unique bonds or unique molecules determine the 
proprieties and functions of nanostructures. Hence knowledge of bonds involved in 
nanodevices or in nanosystems is decisive for their functioning [32]. In nanomedicine (e.g. 
diagnostics), proteins are often immobilised onto a surface, being this surface heterogeneous 
and normally  the surface contains positive and negatives charges, groups with hydrogen 
bonding abilities as well as non-polar regions. Hence complexity in the proteins surface exists 
and each and every type of protein can interact with other (bio) molecules or surfaces in a 
great variety of manners [33]. On the other hand, in nanotechnology, interfacial protein 
interacts with surfaces to assemble and construct sensors, activators and other functional 
components at the biological and electronic junction [34]. 
    Here, various bonds found in nanobiotechnology and in nanomedicine are described. These 
bonds will permit me to explain the surface chemistry, biomolecular interactions, metallic 
nanoisland formations and the interactions of nanoislands with proteins. Regarding this last 
subject, protein-nanoislands (or clusters) interaction concept has been referred to as new 
artificial proteins [35], producing new paradigm in nanobiotechnology. 
 

1.5.2.1 Van der Waals forces 
 
Usually medium or weak bonds are of particular importance in nanotechnology. One on these 
kinds of bonds are the so called van der Waals bonds, in nanosystems they become important 
because of their cooperative effect, since usually there are many atoms bound to each other. In 
physics and chemistry, van der Waals forces refer to the attractive or repulsive forces between 
molecules (or between parts of the same molecule) other than covalent bonds, or electrostatic 
interaction of ions with another or with neutral molecules.  
    Generally, include dipole-dipole interactions, hydrogen bonding and London forces, but it 
is computationally convenient combine electron shell repulsion, dispersion forces and 
electrostatic interaction and name this ensemble van der Waals potential [7]. Van der waals 
forces are then essential in different domains such as in resist technology so in micro and 
nanolithographic technologies and for living cells, especially in proteins conformations. 
Indeed, van der Waals bonds are essential in hydrophobic interactions. In cells, for example, 
hydrophobic interactions are primary for the composition of lipid bilayer membranes, and 
their inclusion. Finally, van der Waals forces are important in the field of supramolecular 
chemistry. Through chapter 2 of this thesis, micro and nanolithographic technologies are used 
and in chapter 4 different kinds of biomolecules are used. Hence van der Waals bonds play an 
important role. 
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1.5.2.2 Dipole-Dipole interactions 
 

In molecules, there are differences in electronegativity and the atoms reveal an 
inhomogeneous electron distribution and hence an electrical polarity of molecules is observed. 
Molecules with one or more dipole moments attract each other. It is a dipole-dipole 
interaction also called Keesom interaction (or force). These forces are not only observed in 
permanent dipoles since molecules with permanent dipole moment are capable of inducing a 
polarisation, creating a dipole moment; the energy is lower in this case. Then, dipole-dipole 
interactions are involved in unspecific biomolecular interactions.  In nanobiotechnology, these 
unspecific interactions are important and nanotechnologists seek to diminish them.  
    In this work, the unspecified biomolecular interactions are reduced by using a surface 
chemistry based on an antibiofouling polymer, presented in chapter 4. Finally, an example 
where these Keesom interactions are important is in hydrochloric acid or water molecules. In 
fact, we adapt in chapter 4, precisely our surface chemistry to reduce unspecified interaction 
using hydrochloric acid and other chemical compounds.  
 

1.5.2.3 Hydrogen bride bonds 
 
It is a localised and orientated polar covalent interaction based on hydrogen atoms creating 
strong electronegative element bonds. These interactions are of primary importance in the 
supermolecular synthesis of biomoelcules. 
    Atoms involved in these kinds of interactions are oxygen, nitrogen or to a lesser degree 
sulphur. An example of this bond occurs in water. The water absorbed onto quartz surfaces of 
the QCM machine (used for the proof of the concept before integrating in our nanobiosensor) 
takes part in the signal variation. Then, there are hydrogen bride bonds that modify the 
required signal.  
  

1.5.2.4 Ionic interactions 
 
Ionic bond are also called electrovalent bond is a chemical bond that can often be formed 
between metal and non-metal ions (or polyatomic ions such as ammonium) through 
electrostatic attraction. In short, it is a bond formed by attraction between two oppositely 
charged ions created by electron transfer and where there are large differences in the 
electronegativity of atoms. One example of this is the common table salt or sodium chloride 
(NaCl). Electrostatic interactions like ionics are not essential in approaches derived from 
nanotechnology like nanoelectronics. However, in nanobiotechnology, it is common to use 
buffers (often with NaCl)  for the amino acids or proteins manipulation, combined with 
detecting  biological elements, and thus this can influence the biomolecules charge, so affect 
the selective detection in the case of a nanobiosensor. Furthermore, these interactions play an 
important role in the manipulation of macromolecules (proteins), supramolecular aggregates, 
micelles and nanoparticles in the liquid phase. 
 

1.5.2.5 Metallic bonds  
 
Metallic bonds take place when interactions between delocalised electrons and the metallic 
nuclei of metals exist. This is a strong chemical bond, essential in micro and nanotechnology 
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because of the numeral metals used in the different nanotechnologic processes. For example 
clusters or nanoislands are formed with few atoms. Metallic bonds are the origin of their 
formation.  
    The nanobiosensor, we are presenting in this work is based on Ni nanoislands (~5nm) 
which are deposed between interdigitated nanoelectrodes (~40nm), obtaining tunnelling 
phenomena and coulomb blockade, in this case to sense biomolecules for the first time. 
Metallic bonds explain in part the successful nanoislands realisation. 
 

1.5.2.6 Covalent bonds  
 
Covalent bonds are strong bonds characterised by sharing of pairs of electrons between atoms 
or between atoms and other covalent bonds resulting in double occupied binding orbitals. 
Generally covalent bonds are formed when the electronegativities of the different atoms are 
close. Covalent bonding includes many types of interactions, including σ bonding, π bonding, 
and for some researchers also metal bonds, agostic interactions, and three-centre two-electron 
bonds. 
     In chapter 4, a surface chemistry is implemented, based on PEG-silane that is covalently 
linked onto surfaces for avoiding non-specific interactions (reducing dipole-dipole 
interactions or ionic interactions).   
 

1.5.2.7 Coordinative bonds  
 
A covalent bond is formed by two atoms sharing a pair of electrons. The atoms are held 
together because the electron pair is attracted by both of the nuclei. On the other hand, 
coordinative bonds are formed when only the share of an electron pair is conducted by one of 
the binding partner (the ligand). Then a coordinative bond (also called a dative covalent bond) 
can be though as a covalent bond (a shared pair of electrons) in which both electrons come 
from the same atom.  
    Originally, a complex used to imply a reversible association of molecules, atoms or ions 
through weak chemical bonds, however as applied to coordination chemistry this meaning has 
evolved and now a complex in chemistry is used to describe molecules or ensembles formed 
by the combination of ligands and metal ions.  

Hence, nowadays coordinative bonds are popularly used to describe coordinative 
complexes, especially involving metals ions. Then metal complexes (coordination 
compounds), include all metal compounds, aside from metal vapours, plasmas and alloys.  
    Coordinative bonding is usually found with metal atoms and ions because they generally 
present unoccupied orbitals. The metal central ion or atom (central particle) is surrounded by 
a sphere of several ligands and creates the so called complex (denoted also complex bonds).     
    Nature also uses this kind of complex bonds e.g. in the Co- or Fe-complexes of the haeme 
groups of enzymes [32]. Otherwise, bonds with carbon as organometallic compounds are also 
coordinative bonds. For example tetra-ethyl lead, once used a common anti-knock additive in 
gasoline (petrol).  

In my project, the central part of the nanobiosensor is the binding used for detecting 
biomolecule interactions between Ni-nanoislands and histidine amino acid (or a protein 
tagged histidine), by coordinative bonds. It is a binding protein domain that exists in nature. 
This methodology has been used, for some time, to purify proteins in immobilised metal ion 
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affinity chromatography (IMAC) using metal ions. We validate the proof of the concept by 
using nanoislands linked by coordinative bonds to tagged proteins.  Chapter 4 describes it, in 
detail.  
 
1.5.3 Nanotranducers-based nanodevices for cancer diagnostics (nanodiagnostics) 
 
Currently, sensing methods in (nano) biosensors are classified in mechanical, optical, 
electrochemical, electrical, or thermal [37]. Mechanical transducer detection is based on the 
change in surface stress, for example, the deflection of the free end of the microcantilever 
caused by the absorption of biomolecules. The two most used detection methods for optical 
biosensors are based on either a change in optical absorbance or a change in fluorescence 
caused by change in concentration of a particular analyte in the sensing zone of the optical 
sensor. The electrochemical detection can be potentiometric, amperometric or 
conductometric.  
    Potentiometric tranducer measures a change in potential at electrodes due to ions or 
chemical reaction at an electrode (such as an ion sensitive FET-ISFET or ChemFETs). Hence, 
it is able to measure a potential difference between the gate and the reference electrode in 
solution, or measure the change in potential converted to a change in current by a FET or a 
change in capacitance in low doped silicon. In this case, the gate material is sensitive to 
specific targets. Lieber’s group, for example, has detected proteins [39], PH variation [40][41], 
virus [42] or cancer biomarkers [43] by using nanowires as gate in FET biosensor.       
    Amperometric tranducer is based on the detection of electric current associated with the 
electrons involved in redox processes; it has been used to detect glucose, lactase, and urea. 
This technique has been performed using nanoelectrodes [44]. Conductometric transducer 
measures conductance changes associated with changes in the complete ionic medium 
between electrodes, thus the (nano) transducer measures the change in the electrical 
impedance between electrodes (e.g. between 2 electrodes). The changes could be at the 
interface or in the bulk region and can be used to indicate biomolecular reaction between 
DNA, proteins, antigen-antibody reaction, or excretion of cellular metabolic elements. 
Conductometric detection is the technique utilised in this research work, however by using a 
novel methodology.  Table 1.1 shows the common types of transducers and their measured 
properties. 
 

Types of transducers Measured Property 
Electrochemical Potentiometric , Amperometric, Voltametric 

Electrical Surface conductivity, Electrolyte 
conductivity 

Optical Fluorescence,  Adsorption, Reflection 
Mass sensitive Resonant frequency of piezocrystals 

Thermal Heat of reaction, heat of adsorption 
 

Table 1.1. Transducers and measured properties.  
 

Here some basic characteristics of a (nano) biosensor are defined as: linearity, sensitivity, 
selectivity and the response time. Linearity is the maximum linear value of the biosensor 
calibration curve. It is the variation of the output directly with the input. Biosensor linearity 
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has to be high to detect considerable substrate concentration. Sensitivity is the value of 
response due to the very low concentrations. Selectivity can be defined as the capacity to 
recognise specifically an analyte amid numerous others. Finally, time response can be defined 
as the minimum time for having ~90% of the response. 
    Some high sensitive nanodevices or methodologies have been proposed, such as bio-
barcode assay (BCA) developed by Chad Mirkin’s group [48]. The system are based on 
magnetic nanoparticles probes with antibodies that specially bind a target of interest and 
nanoparticle probes that are encoded with DNA which is unique to a protein target of interest 
and antibodies. As an alternative, PCR on the ologonucleotide barcodes can improve its 
sensitivity to 3aM by coupling the BCA with PCR [49]. One limitation of BCA would be that 
it is necessary to prepare the DNA barcode-modified probes and magnetic probes [45].  
    Some others nanodevices such as gold nanoparticles [50][51], dendrimers [52], micro 
(nano)cantilivers [53-56], nanotubes [57-58], solid state nanopores [80][81] or recently ion 
channels [82] have been proposed, most of them have demonstrated detection at nM 
sensitivities.  
    In this section, we detail just Lieber’s technique and Dai’s technique. They have used 
nanowires and carbon nanotubes respectively. Sensibility of femtomolar (fM) range using 
nanowires has been demonstrated. However nanotechnologists thought that to next years the 
possibility of detecting a single (bio) molecule will be a reality. Otherwise, the devices 
proposed until now have some drawbacks which will be described in this section. 
  

1.5.3.1 Nanowires for diagnosis (Lieber’s group) 
 
A nanowire is defined as a structure of nanometrical lateral size and unconstrained   
longitudinal size. Currently, there are different types of nanowires including metallic (Au, Ni, 
Pt), semiconducting (Si, InP, GaN) and insulating (SiO2, TiO2) and they can be either 
suspended, deposited or synthetised.  
    Electrical assays using nanowires (NW) have been employed to detect cancer marker 
proteins, DNA, and virus with high sensitivity and selectivity. Lieber’s group, for example, in 
2005, demonstrated nanowire-based field effect label-free sensors for sensing biomarkers, in 
aqueous solution, using functionalised antibodies, at femtomolar level [43]. They 
demonstrated that the use of Si nanowire gate material in the field effect transistor (FET) 
increase its sensitivity. The principle of detecting biomolecules, with these nanowires, is 
based on the change in conductivity by field effect because of liking the charge molecules on 
the Si nanowire surface. Conductance of the P-silicon nanowire increased (or decreased) 
when a protein with negative (positive) surface charge links to the antibody receptor. 
Opposite response was observed for an n-type (phosphorous-doped) silicon nanowire. The 
nanowire was capable of detecting femtomolar (mass concentration of pg/ml) of cancer 
biomarkers such as prostate specific antigen (PSA) (known as oncological marker in prostate 
cancer). Liber’s group used this kind of device to detect PSA-1-antichymotryspin (PSA-ACT), 
cancinoembryonic antigen (CEA), mucin-1 and PSA in undiluted donkey and human serum 
samples. Fig 1.8 schematises the principle of these nanowires.  



Chapter I  
 

   
 

30

 
Fig.1.8. Adapted from [43][45]. Detection of multiple protein analytes using nanowires array.(a) Three silicon 
nanowires (NWs) to detect multiple targets, each nanowire was modified with a different antibody specific for a 
target. (b) Conductance versus time data recorded to detect prostate-specific antigen (PSA), carcinoembryonic 
antigen (CEA), and mucin-1 on p-type nanowires modified with monoclonal antibodies for PSA (NW1), CEA 
(NW2), and mucin-1 (NW3). Solutions were delivered to the nanowire array sequentially as follows: (1) 0.9 ng/ 
ml PSA, (2) 1.4 pg/ml PSA, (3) 0.2 ng /ml CEA, (4) 2 pg/ml CEA, (5) 0.5 ng/ml mucin-1, and (6) 5 pg/ml 
mucin-1. Buffer solutions were injected at points indicated by the black arrows. 
 
However, since nanowires are not observed spontaneously in nature and they must be 
produced in laboratory, a limitation of nanowire biosensors is the relatively high cost of 
equipment and preparation. Furthermore, it is difficult to locally align nanowires and finally 
to connect them.  P.R. Nair et al. recently demonstrated that the nanobiosensor response is 
governed by the geometry of diffusion of the system based on analytic solutions [46]. They 
demonstrated a simple analytical model based on reaction-diffusion theory, to predict the 
trade-off between average response (settling) time and minimum detectable concentration for 
nanobiosensors, by solving Poisson-Boltzmann and reaction-diffusion equations [47]. They 
also demonstrated that nanobiosensors are capable of detecting bio-molecules at much lower 
concentrations (up to 4-5 orders of magnitude) than the classical planar sensors (ISFETs or 
CHEMFETs). Hence, it is well known by experience that nanowires are more sensitive to 
adsorbed charges e.g., DNA or proteins compared to ISFET or CHEMFET sensors [43]. 
However, the classical view of nanosensor response misses the kinetic part of the detection 
process, i.e. when a sensor is made to be in contact with the solution of target biomolecules, 
the time to capture a certain number of biomolecules also depends on the dimensions of the 
sensor affecting the nanobiosensor sensitivity.  

In this context, nanoislands-based sensors (nanosphere sensors) are expected to reach 
higher sensitivity than nanowires-based sensors. This expectation is sustained by the 
demonstration of P.R. Nair et al.  reported in [47] and plotted in graph of Fig. 1.9. 
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Fig.1.9. Performance limits of nanobiosensors given by (adapted from [47]). The detection limits 
for planar sensors is much lower than that of cylindrical sensors. Uniform arrays resemble nanowire sensors at 
high concentrations, while at low concentrations they resemble planar sensors; the better limit detection is by 
using nanosphere like nanoislands. 
 
Indeed, the number of molecules captured on the sensor surface is still unknown by using 
nanowires. I hope also that by using nanoislands coupled with nanoelectrodes, it will be 
possible to know the number of biomolecules or estimate it more precisely, because the 
nanoislands have the same size of the biomolecules absorbed. Hence, the linearity, sensitivity, 
selectivity and response time will be higher by using nanoislands (nanospheres sensors) than 
by using nanowires as predicted by graphs of the Fig. 1.9. 
 

1.5.3.2 Carbon nanotubes in cancer diagnostic and therapy (Dai’s group) 
 
Carbon nanotubes (CNTs) are made of a wide variety of carbon atoms synthesised into 
cylinders of single or multiple layers.  CNTs can have a length-to-diameter ratio greater than 
1000,000 and they are classified as a single double-walled nanotubes (SWNTs) and multi-
walled nanotubes (MWNTs). CNTs have been used for a great number of applications such as 
electrochemical sensor, memories devices, as novel composites, but also as a platform for 
ultrasensitive recognition of antibodies, as nucleic acid sequencer,  bioseparators,  biocatalysis 
and ion channel blockers, as Dai’s group and others researcher demonstrated [59][60]. In 
Nanomedicine, for exemple, CNTs have been utilised as scaffolds for neural and ligamentous 
tissue growth for regenerative interventions of central nervous system and orthopaedic sites. 
    SWNTs are more preferred than MWNTs to use in biomedicine because they resemble to 
nucleic acid in physical dimension, and are excellent platforms for biosensing and 
biocompatibility, furthermore  their large surface area are able to carry many biomolecules to 
the specific targets for sensing, sequencing and therapy [1]. Semiconductor carbon nanotubes 
have also been used as a FET device to detect proteins such as nanowires described above, 
but the detection limit has been around the nanomolar (nM) level. Fig. 1.10 shows some 
carbon nanotubes taken by transmission electron microscope (TEM). 
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Fig.1.10. Transmission electron microscopy images of carbon nanotube (CNT) (a) and carbon nanohorn (CNH) 

(b), (c). Inserted illustrations are CG images of CNT and CNH respectively [62]. 
 

Recently Zhou’s group [61] has integrated nanotubes into a biosensor for detection of PSA. 
They used n-type In2O3

 nanowires and p-type carbon nanotubes for the detection of prostate 
specific antigen (PSA). To detect PSA, they modified the outside surface of the NW or 
SWNTs with anti PSA monoclonal antibody (PSA-AB).  The surface of In2O3 was 
functionalised with 3-phosphonopropionic acid which has COOH group at one end used to 
immobilise PSA-AB by forming amide bonds. The SWNT surface was first functionalised 
with 1-purenbutanoic acid succinimidyl ester and then treated with the PSA-AB solution. 
They achieved to detect PSA however with a sensitivity of 5ng/ml [1]. Fig 1.11 shows the 
Dai’s group methodology for biosensing. 
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Fig.1.11. Adapted from [59]. Real-time QCM and electronic sensing of specific biological recognition on 
nanotubes. (A) Scheme for SA recognition with a nanotube coated with biotinylated Tween. (B) QCM frequency 
shift vs. time curve showing that a film of nanotubes coated with biotinylated Tween binds SA specifically but 
not other proteins. (C) Conductance vs. time curve of a device during exposure to various protein solutions. 
Specific binding of SA is detected electronically. (D) Scheme for IgG recognition with a nanotube coated with a 
SpA-Tween conjugate. (E) QCM frequency shift vs. time curve showing a film of nanotubes coated with SpA-
Tween binding human IgG specifically but not unrelated proteins. Note that 10 nM IgG concentration 
approaches the lower detection limit of the instrument, whereas 100 nM approaches surface saturation of the 
sample; thus, the response does not show a full proportionality to the concentration. (F) Conductance vs. time 
curve of a device during exposure to various protein solutions. Specific binding of IgG is detected electronically 
(some NSB is observed for 100 nM SA, but the signal is much smaller than that of IgG). 
 
    As written above, not just diagnostic applications are important in nanomedicine, but also 
in therapy. Hence, some important direct application of SWNTs for cancer therapy has been 
described by the work of Dai’s group [63], here cell were killed by laser irradiation of 
engulfed SWNTs raising temperatures to 70°C. Internalisation of the SWNTs was stimulated 
by starving the cells for folate and conjugation of the SWNTs with folic acid. These studies 
were conducted in artificial systems, in vitro, but modifications of this technique could make 
this approach an important contribution to the anti-tumour armantarium.  
    Several studies have demonstrated that moderate temperatures to heat, at 41°C, by laser 
irradiation of intracellular SWNTs increase tumour destruction. Another use of SWNTs for 
enhancing radiation therapy has been suggested by Yinghuai et al. [64], who have 
successfully attached C(2) B10 carborane cages to SWNTs  which are used to increase 
concentration of boron in tumour cells relative to blood and other organs, resulting in 
sensitisation of the tumours for neutron capture therapy. Finally binding a toxin to the 
nanotube or laser heating would then increase the effectiveness of killing. Recently Dai’s 
group also demonstrated a drug-delivery technique which was tested in mice [65]. Carbon 
nanotubes having three branches were coated with polyethylene glycol (PEG), and then they 
attached molecules of the anticancer drug paclitaxel to each branch. Each of the 100-
nanometer-long nanotubes carried about 150 drug molecules in total. 
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   In this research work CNTs (double-walled) were tested to be used as wires for connecting 
electrical circuits, thus electrical characterisations were conducted.  These CNTs were 
brushed and positioned between the nanoelectrodes by my college; Cyril Tinguely. 
Nanoelectrodes were realised by electron beam lithography (EBL) described in chapter 2. 

Table 1.2, summarises protein assays using nanodevices. It illustrates the analyte used, the 
detection limit and the references.  

 
Assay Analyte* Detection limit Ref. 

 
 
Bio-barcode assay (BCA) PSA 

0.1 fg/mL(3 
aM,coupled with PCR) [48] 

  
1 fg /mL (30 aM, 

without PCR)  
BCA ADDLs 100 aM [66] 
Colorimetric BCA IL-2 0.5 fg/ mL (30 aM) [67] 
Fluorescent BCA PSA 10 fg /mL (300 aM) [68] 
BCA PSA 10 fg /mL (300 aM) [69] 
BCA on microfluidic chip PSA 17 fg/ mL (500 aM) [70] 
Electrochemical assay using nanogold IgG 0.5 ng /mL (3 pM) [71] 
Electrochemical assay using QDs and 
aptamers Thrombin 18 pg /mL (0.5 pM) [72] 
DNA-based electrochemical assay IgG 2 pg /mL(13 fM) [73] 
Electrochemical assay using CNTs IgG 500 fg /mL (3 fM) [74] 
Electrochemical assay using CNTs PSA 4 pg /mL (100 fM) [75] 
Electrochemical assay using nanocatalyst IgG 1 fg /mL (7 aM) [76] 
 PSA 1 fg /mL(30 aM)  
Si nanowire-based assay PSA 75 fg /mL (2 fM) [43] 
 PSA-ACT 0.32 pg /mL (3 fM)  
 CEA 100 fg /mL (550 aM)  
 Mucin-1 75 fg /mL (490 aM)  
SERS with nanoparticles PSA 1 pg /mL (30 fM) [77] 
Fluorescence assay using dye-doped 
nanoparticles IgG 1 pg /mL (7 fM) [78] 
Dual-color coincidence fluorescence assay 
using QDs TNF- α 

340–540 fg /mL (20-30 
fM) [79] 

 
*Table 1.2. (adapted from [45]) shows detection limits with actual nanodevices (authors converted the units of 
the concentration for ease of comparison when only mass concentration or molar concentration was available in 
the original paper, typical detection limit by ELISA for proteins was in the pM range). PSA: prostate-specific 
antigen; ADDLs: amyloid β-derived diffusible ligands; IL-2: interleukin-2; IgG: immunoglobulin G; QDs: 
quantumn dots; CNTs: carbon nanotubes; PSA-ACT: PSA-α-1-antichymotrypsin; CEA: carcinoembryonic 
antigen; SERS: surface-enhanced Raman scattering; TNF- α: tumour necrosis factor-α. 
 
1.5.3.3 Nanoelectrodes and its applications 
 
Nanoelectrodes are defined, here, as metal electrodes with nanometric size structures (less 
than 100nm) in lateral and unrestricted longitudinal size (usually some microns).  
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Nanoelectrodes have demonstrated novel characteristics in relation to usual (micro) electrodes, 
such as higher mass transfer efficiency, smaller RC cell time constant, lower iR drop, higher 
signal-to-noise ratio and higher current density [83]. In last 20th century, the fabrication was 
devoted to the realisation of microelectrodes, now with development issue from 
nanotechnology, nanoelectrodes are being fabricated easily by, for example, electron beam 
lithography (HREBL) [84][85], or nanoimprint lithography (NIL) [86-88]. Some applications 
include electrical contact single [89][90], impedimetric biosensing [91-93], or nanobiosensors 
[94].  
 

1.5.3.3.1 Nanoelectrodes for (bio) molecular connection and electrical study 
 
There has been much interest in connecting a single (bio) molecule to elaborate the molecular 
electronics both in nanoelectronics and biology, or to make direct measurement of the 
molecules for knowing their electrical properties. One of the first solutions was using a 
scanning tunnelling microscope (STM) proposed by C. Joachim et al. [95] in Toulouse France. 
This method proved the viability of the concept by measuring the first I(V) characteristic for 
individual molecules. However, until now, this method is limited in controlling the substrate-
molecule tip contact and there is lack of mechanical stability. One envisaged solution has 
been using nanoelectrodes. 
 
1.5.3.4 Interdigitated nanoelectrodes as ultrasensitive nanobiosensor 
  
One of the primary reasons to elaborate interdigitated electrodes structures has been to 
increase the length of the active zone, thus the capacitance amid these interdigitated 
electrodes. Hence, the first patented design, having an interdigitated structure was probably 
proposed in 1894 by N.Tesla [96] [97].  
    In 1999, W.Fritzsche et al. [98] patented an affinity sensor based on interdigitated 
electrodes to detect specifically molecular binding events, for the use in the field of molecular 
biology, especially for biosensor technology or DNA microarrays. Nowadays, nanoelectrodes 
are being proposed as ultrasensible sensors due to their size comparable to the biomolecules 
and due to the characteristics described above. Hence, interdigitated nanoelectrodes have been 
realised and demonstrated in our group, by L. Malaquin et al., to detect single adsorption 
events such as individual nanoparticles linked to biomolecules [94]. The principle [99] is 
illustrated in Fig.1.12. 
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Fig.1.12. (a) Colloids (nanoparticles) deposition, (b) the positive test (L. Malaquin’s PhD thesis). 
 

Figure 1.12 (a) schematises the principle, which was to associate one biomolecular interaction 
to an electrical response. The couple antibody-antigen was detected using nanoparticles as 
markers. Hence, it is a labelled probe methodology. The first step consisted of absorbing the 
antibodies (probes) thus grafting biotin-tagged antibodies, and finally antibodies-tagged anti-
biotin colloids are deposited (marker). Colloids had a diameter bigger than the distance 
between two nanoelectrodes as illustrated in Fig. 1.12 (a). In this condition, the recognition 
and detection were achieved by measuring a current increment. Fig. 1.12 (b) illustrates the 
positive test (when the recognition is accomplished).  
    However, in this work, only positives tests were possible and the time for one chip 
realisation was considerable. Indeed, only classical biomolecules were tested.  
 
 
 
 
 



Chapter I  
 

   
 

37

1.5.3.4.1 My project principle: ultrahigh sensitive device using nanoislands 
between interdigitated nanoelectrodes for label-free detection 

 
The research turned to detecting biomolecules at ultrahigh sensitivity levels and in label-free 
manners. Hence, to detect the adsorption of one molecule and that be interpreted by a 
conductivity variation through nanoelectrodes, it is necessary to immobilise the matter 
between the nanoelectrodes. Otherwise, granular film has been studied for a lot of time to 
make single electron devices or media for high density magnetic storage (bibliography in 
chapter 3). My advisor Christophe Vieu had worked on this before my arrival thus he had 
experience on coulomb blockage phenomena and wanted to realise this by using 
nanoelectrodes. Firstly, I wanted to know the parameters to obtain nanoislands made of gold, 
because the ligand chemistry to bond to thiol-tagged biomolecules is easy to implement. At 
the same time, we started collaboration with a physician (oncologist): Mr. J.C Faye from 
Institut Claudius Regaud, to find novel ligand methods to detect biomarkers. He told us about 
the possibility to link proteins to nickel, being so common in the purification of proteins onto 
immobilised metal ion affinity chromatography (IMAC).  
    Then my primary research objective consisted of obtaining nanoislands made of nickel. 
Finally, I obtained the parameters to realise nanoislands, hence tunnelling conduction was 
achieved and furthermore coulomb blockade at room temperatures was achieved while 
depositing Ni nanoislands between interdigitated nanoelectrodes arrays. The chemistry-
biology methodology for biomecular detection was implemented and validated to be 
integrated into our biosensors based Lab-on-chip devices. 
    Hence, the principle of the novel electrical nanobiosensor is based on the variation of 
electrical conductivity in the nanoelectrodes array, due to the proteins adsorbed onto Ni 
nanoislands. Ni nanoilsands (~5nm diameter) are embedded into SiO2 and placed between 
interdigitated nanoelectrodes devices (IND) of 45nm width each electrode. Nanoislands are 
separated each other from ~2 nm. In these conditions, it is obtained a nanotransducer based on 
the variation of electrical tunnelling conductivity through metal nanoislands due to the 
quantum phenomenon called Coulomb blockade at room temperature. Because of this 
phenomenon, these nanodevices are fast and ultrasentive to any change that can affect the 
tunnelling conduction, for example, adsorption of proteins. Hence his-tagged antibodies, 
functioning as probe are linked by coordinative bonds to the Ni nanoislands, they recognise 
specifically the active RhoA conformation which functions as target, and discriminate against 
its inactive RhoA conformation. Finally, an innovative methodology to realise photoPDMS-
based microchannels (20 µm), to inject the biomolecules, was developed and integrated with 
IND on 4 inch wafer, see Fig.1.13 illustrates the principle and a part of the integrated 
nanobiosensors envisaging a Lab-on-a-chip.  
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Fig.1.13. Schema illustrating the principle and integration in one nanobiosensor device. 
 

As written in the general introduction, each part of the integrated nanobiosensor will be 
described in separate chapters. The organisation will be similar to scientific papers.  The 
reason is because by this organisation planning the purpose, material, methods and results are 
clearly presented. Indeed, one or two papers corresponding to each chapter of my thesis are 
being submitted or will be submitted to an international journal.  
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Chapter II  
 

Wafer scale nanoelectrode fabrication as high sensitive nanotransducers for 
diagnostic applications: Mix and match process  

 
2.1 Introduction 
 
Thanks to development issue from nanotechnology, interdigitated nanoelectrodes have been 
elaborated using various techniques such as nanoimprint lithography (NIL) [1-3] electron 
beam lithography (EBL) [4][5] or focused ion beam (FIB) [6], and they have been used  in a 
large variety of applications, e.g. to electrical contact single molecule [7-9], in impedimetric 
biosensing [10-12] and recently in nano-electrochemistry [13][14] and for research in 
numerous fields including disease diagnostic, protein and cell engineering or to detect 
dopamine [15]. Laurent Malaquin previously demonstrated, in our group, that these devices 
are capable of sensing nanoparticles grafted with proteins at high sensitivity due to the 
nanometric gap between electrodes [16].  

Otherwise, modern biomolecular analyses require parallel detection of multiple analytes 
with high sensitivity and selectivity. Hence, it is essential that large quantities of these kinds 
of nanobiosensors are elaborated with high degree of reproducibility. Electron lithography is a 
slow serial technique to produce nanostructures. It does not fit for industrialisation, however it 
is a convenient research tool to reach nanometre scale realisation.  A potential technique that 
can replace electron lithography is nanoimprint lithography (NIL) used for production in 
parallel manner. 

In this context, we present a methodology to elaborate several nanodevices onto a single 
cell, reproducing 96 cells per 4 inch wafer. Interdigitated nanoelectrodes devices (IND) are 
elaborated using electron beam lithography (EBL) thus mixed and matched with classical 
photolithography process, using two layers of deposited metals. The purpose is to 
interconnect nanostructures to microstructures at wafer level. Optimum parameters (e.g. 
electronic dose) are determined to elaborate IND devices on wafer scale. Electrical 
characterisations are performed on bare nanoelectrodes. Finally, estimation of conductivity in 
a nanoelectrode is conducted. The mix and match process allows us to elaborate and 
interconnect 768 interdigitated nanoelectrodes devices (IND) on 4 in. wafer. Interdigitated 
nanoelectrodes devices (IND) are used as nanobiosensors, described in a later chapter on this 
thesis.  

Before presenting the nanoelectrode realisation, basic introduction to micro-
nanofabrication techniques is given. 
 
2.2 Basic micro-nanofabrication techniques  
 
In this section, some techniques used in typical micro and nanofabrication are explained. 
However only the techniques employed to accomplish this part of the project, such as 
photolithography and electron lithography are presented. 
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2.2.1 Spin coating 
 

In this process, a compound is dissolved in a volatile liquid solvent, poured on a wafer and the 
rotated at high speed.  The liquid spreads, the volatile solvent evaporates and it leaves a 
uniform solid thin layer of the material on the sample (or wafer).  Fig.2.1 (a) illustrates the 
spin-coating process. Fig.2.1 (b) illustrates one of the machines available in our laboratory 
and used in our process. 
 

 
                     

Fig.2.1. (a) Spin-coating process (picture from [17]), (b) spin-coater used at LAAS-CNRS. 
 

The deposited thicknesses of solid films depend on the degree of viscosity and on the spin 
speed, hence film thicknesses could range from 100nm to even several hundreds of 
micrometres. The spin-coating technique is used to deposit organic materials such as the 
photosensitive resist or electron sensitive resist. Photosensitive resist (photoresist) is used in 
typical microtechnological processes. For example in chapter 5, a deposited photoresist 
measuring 500µm is obtained by stacking three deposited-resists. In this chapter, however the 
deposited photoresist films measure 2.7µm (+-10% on the edge) of thickness. Thicknesses are 
characterised with a mechanical profilometer KLA tencor P10. 

 
2.2.2 Optical lithography (photolithography) 

 
A typical photolithopgraphic process consists of producing a photomask having the desired 
and subsequently transferring in parallel manner those patterns onto the wafer (substrate) 
using an UV-light sensitive resists (photoresist). Nowadays, there are two photolithographic 
approaches: (1) shadow photolithography, which can be divided into contact 
photolithography (or contact-mode photolithography) and proximity photolithography. (2) 
Projection printing (using steppers machines). In this thesis we used shadow 
photolithography to mix and match with electron lithography to reach across the micrometric 
scale down to the nanometric scale. 

Photolithographic methodology consists of spin coating a photoresist on a wafer, covering 
the entire wafer surface, and then the UV light passes through (exposes) a photomask directly 
onto the photoresist coated wafer. The photo mask or master mask (reticle) is a glass substrate 
with clear and opaque regions. Materials used to fabricate the masks are either soda-lime 
glass (transmittance from 360 nm to 2750 nm) or quartz (fused silica: transmittance from 200 
nm). The choice of the material mask depends on the photosensivite material used and the 
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wavelength sensitivity, as we will see in chapter 5 while discussing the photoPDMS material 
for microfluidic applications. Concerning our process, however, the photoresist we used is 
sensitive to wavelength of 405 nm, and then photomasks were made of soda-lime glass. 

In a photolithograhy process, typically photoresist has to react to the exposing radiation so 
that a replication of patterns of the mask is left in the resist [18] and have to protect the 
underlying material during subsequent processes, typically etching, ion implantation or lift-off. 
Photoresists have two basic forms: Negative and Positive. Negative photoresist reticulates 
during radiation exposure so that the exposed resist is not removed in the development 
process (a special solvent removes the unexposed areas, in this case) leaving an inverse image 
of the mask in the resist. Positive resist is broken down during radiation, so exposed areas can 
be easily removed in the development process step (a special solvent removes the exposed 
areas in this case). Then positive image of the mask is obtained in the photoresist. Fig.2.2 
illustrates the photolithographic process and the two resist types. 

 

 
 

Fig.2.2. Schematic representations of the photolithographic process (picture from [19]). 
 

The theoretical resolution capability (minimum size of the individual photopatterned elements 
of shadow photolithography) consists of equal lines and spaces of width b, is given by:  

                                                 ⎟
⎠
⎞

⎜
⎝
⎛ +==

22
3

min
dsbR λ                                          Eq.  [1] 

 
Where, bmin is the minimum feature size transferable, s is the gap between the mask and the 
photoresist surface, λ is the wavelength of the exposing radiation and d is the photoresist 
thickness.  If we used in our processes: λ= 405 nm, s= ~40µm, and d =2.7 µm, then R equals 
~ 6 µm.  
    From this equation we observe that to improve resolution, it is necessary to have shorter 
wavelength, smaller gaps and thinner resist layers. 
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2.2.3 Lift-off processing 
 

It is a technique where a negative image of the required metal pattern is formed in resist on 
the wafer before the metal deposition step. After depositing the metal (e.g. by evaporation), 
the resist is removed taking the unwanted metal with it. Lift-off process is used both to 
elaborate microstructures (photolithography) and nanostructures (electron lithography).  
    There are reversible photoresist, in which the transfer form (positive to negative) is realised 
at the final process by curing the original positive resist. Reversible photoresist are best 
adapted to use with lift-off. The reason is that the patterns obtained with this kind of resist are 
not enough vertical and allow the solvent to enter and remove the undesired metal. In this 
thesis, the AZ5214 reversible resist is used.  

 
2.2.4 Electron beam lithography (EBL) 
  

The first use of e-beam lithography (EBL) was to elaborate masks (or reticle) that would be 
used with optical lithographic method [18]. Now, EBL is used for [20]: (1) the elaboration of 
mask in the use of optical steppers or proximity x-ray lithography, (2) as tool for direct 
writing on wafers. The cost of an e-beam is high but a higher resolution is obtained than that 
obtained by photolithography. The reason is that e-beam uses electrons and electron 
wavelength is much shorter than that of the photons used in photolithography method as could 
be anticipated from equation [1].  

In e-beam lithography, an electron source produces an important quantity of electron that 
are accelerated either electrostatically or magnetically to form a beam into a vacuum column 
chamber. The beam can be a round spot or an adjustable rectangular spot, using special 
systems described elsewhere [18]. The beam is directed against a resist-covered wafer. 
However in this case the resist is sensitive to electrons. There are positive and negative 
electron-resists. In a positive resist, molecules are broken and in a negative resist molecules 
are polymerised, in a similar way than for photolithographic technique. Then chemicals 
compounds for developments are used to remove either the regions of the resist that were 
exposed to an electron beam in the case of a positive resist or those that were not exposed in 
the case of a negative resist. Fig. 2.3 illustrates the patterns writing by e-beam lithography and 
the two electron-resists types. 

 
 

Fig.2.3. Patterns wrote by e-beam, (a) resist exposure, (b) molecules go away (positive) or polymerised 
(negative); (c) chemical compounds used to remove molecules of the positive or negative resins. (Image from 

[20]). 
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Fig. 2.4 shows the e-beam writer used in this work (LAAS-CNRS clean room facility) which 
is a Raith 150 (Germany). It is a direct electron-beam writer for R&D applications to produce 
patterns down to 50 nm. Some principal features are (from Raith.com): Beam energy 
selectable between 200V to 30kV, selectable writing field sizes between 0.5 to 800 µm, 6 inch 
laser interferometer stage with electrostatic chuck and automated sample levelling using 3 
point contact piezo-electric devices, flexible dual PC with patterns generators (GDSII) and 
flexible graphical editor. Magnification from 20 to 900000 times and its software accepts 
several format editors.  
    Details of the electron resist and parameters used in our development process are given 
later. 

 
 

Fig.2.4. E-beam Raith 150 (picture from Raith.com). 
 
2.2.5 Film deposition method: Evaporation  
 

The evaporation method is used in this work to depose the different metals. In evaporation 
method, the metal is taken from a hot source (the crucible) to a substrate. A schematic of this 
system is shown in Fig. 2.5. 

 
 

Fig.2.5. Schematic of an evaporation system (picture from [17]). 
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Evaporation systems contain a vacuum chamber, a pump, a holding frame for the samples, a 
crucible and a shutter. A sample of the material is placed in the crucible and the chamber is 
evacuated at around 10-6 Torr. A tungsten filament is used to heat the crucible and to 
evaporate the material from the crucible onto the sample surface or wafer surface. The film 
thickness is determined by using a crystal quartz microbalance.  

Since the material is evaporated from the crucible, evaporated films have shadowing effects 
causing poor step coverage. On the other hand, poor step coverage is suitable to reach easily a 
lift-off so the chemical compound can go under the protected areas and remove the 
undesirable element. However, by using evaporation technique, non-uniform thickness are 
obtained, then only thin film metals can be evaporated because the evaporated metals have 
residual stress and are disordered [17]. Evaporation technique is well suited to our needs 
because in the case of nanostructures realisations, the thickness of the deposited metals is 
under 30 nm and in the case of contact pads showed later in this chapter, the thickening of the 
pads with 1 µm gold (for wire bonding purposes) is not affected by shadowing effects because 
the micropads measure 400µm x 400µm and are much wider that they are thick. Fig.2.6 
shows a Veeco 770 machine used in this research work.  

 

 
 

Fig.2.6. Evaporation system (Veeco 770) at LAAS-CNRS. 
 
2.3 Fabrication of devices by mix and match lithography process 
 
In this section, a methodology to realise 768 interdigitated nanoelectrodes devices (IND) on 4 
inch wafer scale is presented. The technique to accomplish this, is a combination of 
photolithography with electron lithography, called mix and match process.  
   The use of micromarks realised by photolithography was crucial to align and realise 96 cells, 
carrying each cell 8 IND which are, in a second step, elaborated by electron lithography.  
   Four-inch silicon wafers covered with 1µm of SiO2 realised by thermal oxidation were used. 
The photolithographical process to realise the mentioned marks was realised using a 
reversible photoresist (AZ5214,  Clariant), using the process presented in the next table 2.1. 
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Typical AZ5214 process 
*Spin-coating 

3ml of AZ5214 was spin-coated at 1000 tr/min, during 30 s 
*Soft cure 

105 °C for 55 s 
*Exposure 

Machine MA -150 Suss Microtec at 20 mW/cm, during 2.7 s 
* Post exposure bake 

105 °C during 55 s 
*Exposure to inverse the resist type (transparent mask) 

Machine MA -150 Suss Microtec, at 20 mW/cm, during 12 s 
* Development 

AZ developer/water (1:1 in volume) during 30 s   
*Hard bake 

105 °C during 10 s 
 

Table 2.1.  Protocol for photoresist AZ5214 realisation. 
 

To depose Ti/Au-10nm/20nm in thickness, onto the mask patterns the above mentioned 
Veeco 770 evaporator was employed. Titanium is necessary to assure the adherence of the 
subsequent gold deposition because gold is not enough rough to assure a homogenous 
adherence if depositing it, directly onto the silice. The metals were deposited at a deposition 
rate of 20 Å/S. The lift-off step was realised into a baker containing acetone for 5 min. To 
accelerate the lift-off realisation, ultrasonic agitation at 135 kHz was applied on the baker 
during 5 min.  
    Fig. 2.7 pictures a 4 in. wafer process carrying 96 cells which measures each one 7 mm x 7 
mm, there is also a close-up of one cell and two marks on the right. These marks are inverted-
L shape, measuring 5µm in width and 22 µm in length. The reason for using this kind of 
shape is because vertical and horizontal lines are needed by the eBeam writer to calculate the 
centre of each mark which serves to align each IND.  To do this, a vertical line is realised by 
the Raith 50 (before realising each IND) in the middle of the horizontal part of each L mark 
and a horizontal line is realised in the middle of the vertical part of the same L mark. See Fig. 
2.7 (a).  

 
 

Fig.2.7. Mix and match in 4 in. wafer (left) showing enlargement of one cell (middle) and two alignment marks 
(right). 
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    Each cell has 16 marks which allow aligning and elaborating 8 IND in each cell. In Fig. 2.7 
an arrow, on the bottom of the images, indicates that the process starts by elaborating the 
marks, to subsequently make a mix and match until reaching the required 4 in. wafer 
integration. 
    In chapter 6, we will propose the use of a cantilever-based spotter device, combined with 
our nanotechnological development that permits to deposit precisely liquid spots from 
picolitter to femtolitter range. The interest in using this system is to deposit in parallel and 
locally the probes onto the active zone of the interdigitated nanoelectrodes devices (IND). 
Therefore, we designed each cell’s interdigitated nanoelectrodes devices (IND) to fit with the 
space distance between each cantilever (360 µm). We had then, to adapt each writing field 
size of our eBeam writer to fit with the distance of each IND (360 µm) so the writing field 
size is 160 µm x 160 µm. In each cell (7 mm x 7 mm) there are 14 writing fields (2240 µm) 
horizontally and 8 writing fields (1280 µm) vertically. It is an important point, because eBeam 
is a serial technique and there is an interest in minimising the work time by reducing the total 
number of writefields, Figure 2.7 illustrates also the size of a cell (160 µm). 
    The design of interdigitated nanoelectrodes devices for electronic lithography was realised 
using the CLEWIN software. The same software was used for the photolithography layers, 
described in next part.  
    In eBeam lithography, electrons are accelerated at high voltage against the material 
sensitive to electrons thus electrons tend to scatter to the neighbourhood, these effects are 
known as proximity effects and they are important in electronic-beam lithography. These 
proximity effects cause variation in the width of the exposed nanopatterns because of the 
density of other close patterns [21][22]. Finally proximity effects are responsible of poor 
yields reproduction. To compensate for these effects, the IND devices were lengthened (20 
µm) as illustrated in Fig. 2.8 (b). When the IND were not lengthened, the proximity effect 
caused non homogenous size reproduction of IND.  
    Fig. 2.8 illustrates the design of the IND with a zoom on the nanoelectrode in Fig. 2.8 (c). 
These devices resemble a comb. Each nanoelectrode was designed to be 40 nm in width and 5 
µm in length. Each device has a total of 36 nanoelectrodes with 18 nanolectrodes in each side 
of 140 nm pitch.  
 

 
Fig.2.8. Nanoelectrode array design and compensation for proximity effects. 

(a) 

(b)

(c) 
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When simple lines represented the nanoelectrodes in Clewin software, all nanoelectrodes 
were not successfully obtained (after lift-off step, some nanoelectrodes appeared cut) and the 
proximity effects were visible, then nanoelectrodes are less wide in the border than in the 
middle. See Fig. 2.9 (a), in this case the dose is designated as single pixel line (cm). After 
deposition of Ti/Au-10nm/20nm we obtained nanoelectrodes having 30 nm in width. 
However, when the nanoelectodes were drawn having a 40nm width, a better yield was 
obtained. Furthermore, the devices were lengthened to compensate for the proximity effects, 
see Fig. 2.9 (b).  In this case the electronic exposure dose is designated by area (cm2) thus 
nanoelectrodes are wider (~46 nm width). The width depends on the electronic dose value, as 
discussed later. 
    In both cases of the Fig.2.9, the nanoelectrodes were elaborated by the e-beam writer, as 
follows: PMMA (996 k molecular weight, 30g/l) was spin coated at 3000rpm for 30s, on 4 
inch silicon wafer with previously discussed marks. The PMMA film thickness measures 140 
nm (films were characterised with a mechanical profilometer, model KLA Tencor p10). 
Finally, the wafer carrying the PMMA film was baked at 170°C for 1min. PMMA functions 
as positive type resist. 
 

 
Fig.2.9. Lengthened IND (b) compared to no lengthened IND (a) observing in this case proximity effects.  

 
A dose study was conducted to know the optimum dose and to be able to reproduce 
nanoelectrodes over the entire 4 in. wafer.  To do this, 350µC/cm2 dose was used as the base 
dose, and then a column of IND was constructed, multiplying the base dose by a factor which 
varied from 0.5 to 1.20 (by steps of 0.05) as illustrated in Fig.2.10.  

Proximity effects 

1 

2 

(a) (b) 

Cut nanoelectrodes 

400nm 

Not visible proximity effect 

 
Lengthened 
IND 
 

 
Not  
lengthened 
IND 
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Fig.2.10. Column arrangement for determination of the optimum dose. 
 
The development of the nanostructures was realised in a baker during 45s, containing methyl 
isobutyl ketone (MIBK)/Isopropanol(IPA), at 1:3 in volume. The IND were observed directly 
by the Raith 150. We observed that the smallest electronic doses produced non homogenous 
thickness nanopatterns in the PMMA film (dark spots lines) depicted in Fig. 2.11 (a). In this 
case variation can be of 50 % between one nanoelectrode and other. Contrary, the highest 
electronic doses produced wide nanopatterns in PMMA film thus in this case the 
nanoelectrodes, after metal deposition and lift-off process, would be wider. See Fig.2.11 (b).  
    

 
 
Fig.2.11. PMMA-IND development (a) thin, non homogenous nanopatterns  (b) Largely wide nanopatterns. 

 
It is important to note that observing the results of the developments in a scanning microscope 
alter slightly the width of the developed nanolectrodes for any ulterior metal deposition and 

.

.

.

    Dose: 
0.5X350µC/cm2 

(175 µC/cm2) 

   Dose: 
1.2X350µC/cm2 

 (420 µC/cm2) 

 (a) Electronic dose: 0 .5x 350µm/cm2 (175 µm/cm2)                       (b) Electronic dose: 1.2 x350µm/cm2 (420µm/cm2)  

nanoelectodes ~209 nm width ( in the middle)  nanoelectrodes ~52 nm width( in the middle)  
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lift-off.  This study can not therefore give information of the final width of the nanoelectrodes 
but allows comparing the influence of the smallest doses with that of the highest doses.  
    For comparison of the arranged nanoelectrodes in the above column of Fig. 2.10, zooms of 
the 15 nanoelectrodes are illustrated in Fig. 2.12 with the smallest doses on the bottom and the 
highest doses at the top of the column. The electronic doses, from 385 µm/cm2 to 262 µm/cm2 

appear to be more homogenous in shape. Furthermore, nanoelectrodes’ width to pitch ratio for 
these doses are compatible with the subsequent metal deposition and for a successful lift-off 
process. At smaller doses, the nanoelectrodes become inhomogeneous while at higher doses, 
the width to pitch ratio becomes incompatible with the lift-off process producing short circuits 
between electrodes.  
   Ulterior lift-off tests revealed that the optimum dose for our IND is around 280 µm/cm2 
yielding the desired nano-electrode width of 40 nm. 

 



Chapter II 

 
 

60 

    Dose: 0.5X350µC/cm2 (175 µC/cm2)

    Dose: 0.55X350µC/cm2 (192.5 µC/cm2)

    Dose: 0.60X350µC/cm2 (210 µC/cm2)

    Dose: 0.65X350µC/cm2 (227.5 µC/cm2)

    Dose: 0.70X350µC/cm2 (245 µC/cm2)

    Dose: 0.75X350µC/cm2 (262.5 µC/cm2)
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Fig. 2.12. Part of whole column of PMMA-IND development as a function of the dose. 
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After the previous study, we were able to realise the IND in wafer scale. We spin-coated the 
PMMA using the same parameter described above. Table 2.2 presents the main exposure 
parameters used in our process: base dose, write field, working area, voltage, beam current 
and working distance. Note that as nano-electrodes were designed to be 40 nm in width and as 
they were designed as surface area, the exposure parameters for single pixel lines are zero.  
 

 
 

Table 2.2. Parameters used to elaborate IND in wafer scale by Raith 150. 
 

The alignment of the IND was realised using the above marks placed in each cell and using 
four marks designed at the border or the wafer, see Fig. 2.13. The electronic exposure in our 
eBeam writer took ~4 hours. In these conditions an automatic alignment and exposure for 
each cell on the entire wafer were possible.  

 

                                  
   

Fig. 2.13. (a) 4 in. wafer illustrating 4 marks to align the IND, (b) one IND to be connected with subsequent 
photolithographic processes, (c) Mix and match allows connecting the micropads to IND. 

 

(a) 
(c) 

4 marks on the 
wafer 

(b) 



Chapter II 

 
 

62

The development was realised in a baker during 45 s, containing methyl isobutyl ketone 
(MIBK)/Isopropanol(IPA), at 1:3 in volume.  Deposition of Ti/Au-10nm/20nm followed this 
development.  
    Next technological step was the connection of the IND using two subsequent 
photolithographic processes known as “mix and match”. Mix and match allowed us to 
connect micropads to the IND (nanostructures) and obtain 96 cells. Fig. 2.13 (b) illustrates, in 
detail, this first photolithographic process which is similar of that illustrated in Fig. 2.7. Each 
cell contains the 8 IND distributed in two columns, each IND is connected to one pad which 
serve as ground (common) and to other micropad which is used for the positive bias 
polarisation (there are 10 pads totally). 
    To realise the first photolithographic process, the AZ5214 photoresist process of table 2.1 
was conducted. Then, a deposition of Ti/Au-10nm/20nm was conducted, finally the lift-off 
process was realised in a bake containing acetone. A schema illustrating the mix and match 
process in one IND is pictured in Fig. 2.14. It illustrates a cross section view of the process 
after metal deposition. Finally, a second photolithographic step was conducted to elaborate a 
thickening of gold (1µm thickness) and to obtain a good contact between gold of 
nanostructures and gold of microstructures. Note that the thickening metal deposition exceeds 
the second deposition emplacement to assure Au-Au contact between nanostructures and 
microstructures. The thickening is necessary to elaborate microbondings in each cell. 
 

 
 

                        
 

Fig. 2.14. Cross section of the connecting area between the nanostructures and the microstructures of the mix 
and match process. 

 
Fig. 2.15 depicts optical and SEM images of a cell (7 mm x 7 mm). SEM image was taken by 
an ultra-high resolution scanning electron microscope FE-SEM Hitachi S-4800, a close-up of 

T/Au- metal deposition in electronic lithography  

SiO2

Si

Au (1µm thick) 
Ti 

Au Metal deposition in Photolithography 
                 (Thickening)  

T/Au- metal deposition in fist photolithography  
Au-Au contact 

One interdigitated nanoelectrode device 
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one interdigitated nanoelectrode device and a unique nanoelectrode measuring 46 nm  
(electronic dose: 262.5 µC/cm2) are shown. 

 
 

Fig.2.15. Mix and match process on one cell. Zoom of one nano-electrode. 
 

2.4 Characterisation of the devices  
 
Mix and matches in a complete 4-in. wafer level are pictured in Fig.2.16 in where 768 IND 
were elaborated.  

 
 

Fig.2.16. View of the full 4-inch wafer containing 796 IDA devices in 96 cells. 
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Two types of characterisation were performed on the resulting devices over the whole wafer. 
First, a SEM characterisation to visualise and measure the resulting device structures at 
different zones of the wafer. Second, electrical characterisation at different zones of the bared 
devices was evaluated.  
 
2.4.1 SEM characterisation  
 
Fig. 2.17 pictures SEM images and zooms on the interdigitated nanoelectrode devices (IND) 
at four edges and in the centre of the wafer. The electronic dose used, in whole wafer, was 
297µC/cm2, what explains this range of the nanoelectrode widths. 
    As explained in the introduction, the Veeco 770 evaporator produces shadowing effects 
yielding poor step coverage. Despite this deposition problem, it was possible to increase the 
yield on the nanoelectrode realisation by decreasing the rate metal deposition form 20 Å/S 
down 2 Å/S. A possible reason is that coalescence in the metal is not enough rapid, thus the 
metal is deposited (enters) easier into the apertures.  
 

 
Fig. 2.17. IND variation in 4 in. wafer level. Some defects found at the top of the wafer. 

 
These pictures revealed that some nanoelectrodes had defects at the wafer top side (from flat 
wafer side in the bottom. 
    Variations in nanoelectode widths were also found. For example nanoelectrodes obtained 
on the left and on the bottom of the wafer are ~51nm in width. At the top, in the middle and 

Metal deposition defects 

4 in. Wafer  

Nanoelectrodes ~51nm width  

Nanoelectrodes ~60nm width

Nanoelectrodes ~62nm width 

Nanoelectrodes ~51nm width  

Nanoelectrodes ~61nm width  
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on the right, nanoelectrodes are ~ 61 nm in width. However, 97% of them bear a resemblance, 
all of them are proper. 
     There are 768 IND in 4 in. wafer, and 97% proper IND were obtained at the final mix and 
match process thus considering the deposition method; this yield is acceptable. 
Fig. 2.18 depicts a proper IND with nanoelectrodes width of 61 nm +-10% due to the above 
mentioned effects. 

 
 

Fig.2.18. Proper interdigitated nanoelectode device ~61nm width each electrode (dose: 297µC/cm2), obtained in 
the centre of the wafer. 

 
2.4.2 Electrical characterisation of bare devices 
 
In proper IND, elaborated on SiO2 (dielectric constant of 3.7), the current passing between the 
interdigitated nanoelectrodes, is of the order of few femto amperes (fA) obtaining resistances 
of TOhm range.  
    Otherwise, as written in general introduction, at the nanometre scale some material 
properties change. Hence a metallic nanostructure below 1µm presents higher resistivity (in 
some nanostructures for exemple nanowires, the resistivity could decrease due to the surface 
scattering [19]). In any case there is a difference from its counterpart bulk metal. The 
resistivity of a gold bulk metal is ~2.5 µOhm.cm at 23°C, this resistivity could increase a 
hundred of times in a metallic nanostructure [23]. 

To know the resistivity in one nanoelectrode, intentionally a short circuited nanoelectrode 
was fabricated, thus an electric characterisation was conducted using a Cascade Microtech 
connected to a Keithley 4200-SCS. Classical four-point collinear probe method was used to 
determine the nanoelectrode resistivity. See fig. 2.19. 

 

 
 

Fig.2.19. Four-point collinear probe method and SEM picture of the short circuited nanoelectrode. 
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A current was swept from 0A to 50µA with steps of 1µA, in the short-circuited nanoelectrode, 
finding for each step a potential difference, and calculating for each value a resistance of 6.7 
kOhm.  See Fig.2.20.  
 

 
Fig.2.20. Electical response of a bare short-circuited nanoelectrode. 

 
Considering that the length of the nanoelectrode as 4µm and the cross sectional area 

defined as width x thickness as 46 nm and 20 nm (Ti/Au-10nm/20nm) respectively, the 
obtained resistivity is around ~230µOhm.cm at 23°C. This is orders of magnitude higher than 
the resistivity of a bulk gold metal. As expected, since resistivity increases in metallic 
nanostructures due to the increased surface scattering which plays an enormous role in 
nanostructures. At this scale the polycrystalline metal is modified thus there are defects which 
can modify the mean free path of electrons and then if the nanostructures are smaller than the 
mean free path of electrons (a few nanometres in metals), the motion of electrons is modified 
or interrupted due to collision with the surface [19]. 
 
2.5 Conclusions  
 
In this chapter we demonstrated the elaboration of interdigitated nanoelectrode devices (IND) 
on entire 4 in. wafer by using a mix and match process with high reproducibility. 97% 
successful IND were elaborated at wafer level (4 in wafer). The technique consisting in 
mixing and matching patterns realised in photolithography and in electronic lithography.  The 
strategy was to use write field alignment marks placed in each cell and the 4 wafer alignment 
marks placed at the edge of the wafer to align and realise the IND.  

We were able to compensate for the proximity effects that are inevitable when using EBL. 
This compensation was achieved by lengthening the devices connections. Then a dose study 
was conducted by constructing an IND column. Thanks to this study we were able to find the 
optimum electronic dose for the entire wafer level. However, due to our deposition technique, 
some defects and width variations of nanoelectrodes were found. In spite of this drawback, we 
increased the yield by lowering the metal deposition rate. Each cell was successfully 
encapsulated into TO-8 case as Fig.2.21 illustrates 
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Fig.2.21. One cell with IDA devices encapsulated, into a TO-8 case. 
 
Finally, in properly formed devices (bare IND, what means without nanoislands or 

biomolecules deposited between their gaps some electrical characterisation were realised). 
Electrical characterisations in proper IND gave TOhm values, demonstrating good insulating 
properties of the SiO2 between nanoelectrodes. The estimation of the resistivity in one short 
circuited nanoelectrode was also conducted. This permitted us to corroborate that resistivity in 
metallic nanostructures is a hundred time higher that in bulk gold. This value will be use 
when comparing the devices after depositing nano-islands between the gaps of interdigitated 
nanoelectrodes. In fact, we will see in chapter 3, that at certain conditions, nanoislands could 
produce short-circuits and this will be avoided. 
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 Chapter III  
 

Wafer scale Ni nanoislands deposition and coulomb blockade mutitunnel 
junction devices at room temperature 

 
3.1 Introduction  
 
Over the last 40 years, ultrathin metal films, also called granular metal films, based on 
nanoislands (grains) have been studied [1]. They consist in metallic grains, embedded in an 
insulating surface like silicon dioxide (SiO2). Electrical conductivity of granular films has 
been understood and explained [2-6]. Hence, nanoislands have been used for the elaboration 
of single electron transistor (SET) explained by Likharev Konstantin K. using orthodox 
theory [7]. Otherwise there are numerous  deposition methods to elaborate nanoislands and  to 
obtain discontinuous metal films, such as thermal evaporation [8-12], liquid metal ion source 
emission [13-14], sputtering [15], or low energy cluster beam deposition [16][17]. Electrical 
conduction by tunnelling effect, described in this chapter, has been observed in granular metal 
films. However the tunnelling conduction and coulomb blockade (CB) phenomena have been 
generally characterised and observed at temperatures lower than the room temperature (<300 
K) [18-21], being a drawback  for some applications.  Recently, CB has been observed at 
room temperature but these devices have been characterised with a scanning tunnelling 
microscope (STM) [22], so the applications are limited to the use on vacuum environment, 
and obviously not for biomedical applications as we propose. 

Otherwise, research of ferromagnetic granular films based on Ni, Co or Fe (nanoislands) 
has been performed [23-27] and some theories have been proposed [28-33] since the early 
tunnel junction measurements of Jullière [34]. Recently, the research of ferromagnetic 
granular films has been intensified, mainly after the discovery of the giant magnetoresitance 
(GMR) in thin films [35][36] ( in fact, since 1972 the concept of giant magnetoresitance has 
been used and proved in granular Ni films, before the discovery of GMR in thin films [28]). 
Since then, an interest in studying ferromagnetic nanoislands has been grown in scientific 
community [37] and it has been found a spin-dependent tunnelling transport in these 
nanoislands [38], presenting  superparamagnetism [39]. Novel phenomena have been found in 
granular films, such as tunnel magnetoresistance (TMR) [40], giant Hall effect (GHE) [41], 
giant electroresistance (GER) [42].  Indeed, some applications are envisaged, mainly for the 
future molecular electronics, for ultrahigh-density magnetic recording media to reach the 
range of 1 Tb/in2 [43], for spin-based devices (spintronics) or magnetroelectonics [44] or for 
novel single electron transistors (SET) [45] [46] derived from coulomb blockade.  

In this chapter, Ni nanoislands (~5nm) are deposited by thermal evaporation. Then, 
tunnelling electric conduction through Ni nanoislands is obtained. Ni nanoislands are 
deposited between interdigitated nanoelectrodes, obtaining Coulomb blockade at room 
temperature.  

However, in this chapter, first some concepts are briefly introduced, such as nucleation, 
vacuum, tunnelling electric conduction, tunnel junction, double junction tunnel,  nanoislands, 
multiple tunnel junction and coulomb blockade. 
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3.1.1 Nucleation modes  
 

To deposit ultrathin films at nanometre scale; i.e. to form nanosislands, the initial nucleation 
is very important. Three basic nucleation modes have been observed [47]: 
 

(1) Island or Volmer-Weber growth  
(2) Layer or Frank-van der Merwe growth    
(3) Islands-layer or Stranski-Krastonov growth.  

 
Fig. 3.1 illustrates the three modes of nucleation in the film growth. An island (Volmer-Weber) 
growth occurs when the atoms or molecules are more strongly attracted and bonded to each 
other than to the surface (involving metal bonds described in chapter 1). If subsequent growth 
is formed, then islands are coalesced to form a continuous film. It is precisely the regime used 
in this chapter to elaborate Ni nanoislands to find tunnel conduction and coulomb blockade 
phenomena.  

 
 

Fig.3.1. Schematic illustrating the three basic modes of nucleation in the film growth (picture from [48]). 
 

Contrary to island growth is the layer (Franck-van der Merwe) growth, where the atoms or 
molecules are more strongly attracted and bonded to the surface that to each other. In this case 
a continuous film is formed just before the second deposited layer appears. The last 
nucleation mode illustrated in the Fig. 3.1, is the islands-layer (Stranski-layer) growth which 
is an intermediate mode between the layer growth and island growth. In this mode, the stress 
is involved during the film formation or nuclei formation. 
 

3.1.2 Fundamental of heterogeneous nucleation (island or Volmer-Weber growth) 
 

Here, islands growth is described in detail because it is the closest regime that fits with our Ni 
nanoslands realisation. 
    A heterogeneous nucleation process is formed when one material is formed on another 
material. If an island growth on a planar solid substrate is considered, and if it is assumed that 
growth species in the vapour phase strike the surface, then growth species diffuse and 
aggregate, forming a nucleus which has a shape like illustrated in Fig. 3.2.  
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Fig.3.2. Heterogeneous nucleation process, picture from [48]). 

 
In heterogeneous nucleation, Gibbs free energy decreases and the interface energy increases. 
In these conditions, chemical energy, ∆G, is completely changed, and is associated with the 
formation of heterogeneous nucleus, thus ∆G is given by (from [2]):  
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r is the nucleus mean dimension, ∆µv is the change of Gibbs free energy per unit volume, γvf 

is the surface or interface energy of vapour-nucleus, γfs is the nucleus-substrate and γsv 
substrate-vapour interface.  The geometric constants are written:  
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Contact angle (θ) is defined by Young-dupré equation: 
 

                                      θγγγ cosvffssv +=                           eq. [3]     
 

This concept is important and useful in nanotechnology, mainly to characterise the contact 
angle (angle at which a liquid/vapour interface meets the solid surface). Contact angle permits 
to know the degree of hydrophobicity or hydrophilicity of a surface. The principle is found in 
some commercial machines to characterise directly the contact angle of the surfaces. A 
machine using this principle is presented in chapter 4 to verify the proposed surface chemistry. 
    If the nucleus is larger than a critical size (r*), it is stable. The critical energy ∆G* and the r* 
are given by (after substituting all geometric constants of eq. 2), from [48]: 
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The first term refers to the value of the critical energy barrier for homogenous nucleation, and 
the second refers to a wetting factor.  For nanoislands growth, synthesis of nanoparticles or 
quantum dot deposited onto a substrate, the contact angle must be larger than zero, i.e. θ >0 
and less than 180°. Heterogeneous nucleation is referred to as islands growth or Volmer-
Weber growth,   and then, the Young-dupré equation becomes [48]: 
 

                             vffssv γγγ +<                      eq. [6]    
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If the deposition does not wet the substrate at all (θ= 180°), the nucleation is a homogenous 
nucleation. Finally, for layer growth, the deposit wets the substrate completely and then the 
angles value equals zero (the same conceptual phenomenon functions for a simple drop of 
water formed on a surface), in this case the corresponding young dupré equation becomes:  
 

                        vffssv γγγ +=                      eq. [7] 
 

These concepts are commonly used in the thin film scientific community. 
 

3.1.3 Basic vacuum introduction  
 

The evaporation method described in chapter 2, is the technique employed here to deposit the 
Ni nanoislands. Generally, in the evaporation technique, some concepts are utilised, as 
vacuum or mean free path.  Indeed, most films deposition and processing are performed in a 
vacuum.  A vacuum is a volume space that is essentially “empty” of matter, ideally there are 
not molecules, thus any matter but normally there are (a philosophical paradigm studied since 
Blaise Pascal). The vacuum is necessary to permit, ideally, to the deposited atoms and 
molecules to impinge only the surface. Then, in a vacuum chamber a low pressure exists 
comparing to that of the atmosphere. Pressure has Pascal as unit of measure (international 
system) but historically it is used the Torr or mbar.  Finally, mean free path is the average 
distance than a molecule travels before striking another molecule.  
 

3.1.4 Tunnelling effect and Coulomb blockade phenomenon   
 

Tunnelling effect is a phenomenon predicted by quantum physics, that “violates” the principle 
of the classical physics, because a particle passes through a potential barrier or impedance that 
is higher than its kinetic energy. Fig. 3.3 schematises the tunnelling effect (quantum physics) 
in comparison with the classical physics.   

 
 

Fig.3.3. Comparing tunnel effect (quantum physics) with classical physics.  
 

A tunnel junction is formed when two conductors are separated by a potential barrier, 
generally an insulator but thanks to its physical and geometrical arrangement, a charge is able 
to penetrate this barrier by tunnelling effect, hence there are charge effects. These effects are 
the base of all the charge electronics thus the molecular electronics. Phenomenological 
speaking, the tunnel junction is a duality: capacitor/resistance which means that a junction 
tunnel is neither a capacitor nor a resistance but both of them, without being both at the same 
time. Similar to wave/particle duality of wave-corpuscular theory. Fig. 3.4 illustrates a tunnel 
junction, and its phenomenological electrical model.  
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Fig.3.4. A junction tunnel (capacitor/ resistance duality). 

 
    On the other hand, in electrical tunnelling conduction exists a probability for an electron on 
one side of a barrier to reach the other side, this probably is characterised by the state function 
obeying the Schrödinger wave equation given by: 
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Where Ψ (r,t) is the wave function of the electron. The modulus square of the state function 
|Ψ|2 determines the probability density to observe a particle in space. The potential barrier is 
characterised by its transmission coefficient T. It is an important parameter given by: 
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T depends on the height potential barrier (Vo) (Uo in Fig. 3.4) and its width 2a (L in Fig.3.4). 

Tunnelling electric conduction involves a charge transport through an insulation medium 
separating two conductors which are closely separated (nanometre separation, that is why it is 
know as nanoscopic phenomenon). In this case the tunnel resistance is inversely proportional 
to the barrier transmission coefficient thus T decreases exponentially with the thickness of the 
insulation medium [45]. 

Scanning tunnelling microscope (STM) employed to image single molecules or to 
manipulate atoms or molecules is based on the concept of this tunnelling quantum 
phenomenon. See Fig.3.5. 
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Fig.3.5. Tunnel effect, an application in scanning tunnelling microscope (STM)(adapted from Wikipedia.com). 

 
3.1.5 Double junction tunnel and multiple tunnel junctions  

 
From the written above, a double tunnel junction is created when two tunnel junctions are 
closely positioned in series. It this case, island concept emmerges and for obtaining a 
tunnelling electrical conduction, a nanoisland is necessary. Then a nanoisland is an integral 
nanoconductor zone, coupled electrostatically but insulated galvanically. Fig. 3.6 illustrates 
the double junction. It illustrates the nanoislad concept and its electrical scheme where n1 is 
the number of electrons penetrating the first junction, by tunnel effect, and entering the island. 
n2 is the number of electrons, penetrating the second junction, by tunnel effect, and exiting the 
island. Then, total number of electrons is n=n1-n2. If C1, Rt1, V1 and C2, Rt2, V2 are the 
capacitance, resistance and potential of the junction one and two respectively, q0 is initial 
charge in the island (it is a non-integer value due to parasitic capacitances or impurities close 
to island) thus the charge in junction one is q1=C1V1=n1e, and the charge in junction two is 
q2= C2V2=n2e, finally the total charge becomes q=q2-q1+q0=-ne+q0. The total potential is 
Vb=V1+V2, if V1=C2Vb+ne/C1+C2 and V2=C1Vb-ne/C1+C2. The electrostatic energy stored in 
the double junction is Ec= q1

2/2C1+ q2
2/2C2 or Ec= C1C2Vb + (ne)/2C1+C2. 

 

 
Fig.3.6. One double junction schema and its electrical circuit.  

 
These systems have been investigated both theoretically by M. Likharev [7] and 
experimentally, for example, by M. Devoret [45]. It is now well established that the Coulomb 
repulsion in such nanometric islands plays a crucial role and can inhibit tunnelling across the 
different junctions. The charging energy (Ec) of the island can be expressed as e2/2C where e 
is the electron charge and C is the capacitance of the island. Thermal agitation (thermal 
energy) is expressed as kBT where kB is Boltzmann constant, T is absolute temperature.    
    If thermal energy is below this electrostatic (charging) energy (kBT << e2/2C), tunnelling 
effect is reduced and then no current can flow through the device, this phenomenon is 
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described as Coulomb blockade effect. A schema of an ideal symmetrical double junction 
(when C1Rt1=C2Rt2) is illustrated in Fig. 3.7(a), in where at low bias, there is zero 
conductance regime. The voltage range where the current is blocked is called the Coulomb 
gap; it goes from -e2/2C to e2/2C. For strongly not symmetrical double tunnel junction (e.g. 
C1Rt1>>C2Rt2) the I(V) characteristic exhibits staircases at lower temperatures as illustrated 
in Fig. 3.7(b).  When the temperature of the devices increases, the staircase and the coulomb 
gap features are smoothed because the KBT>> Ec, nevertheless to observe tunnelling effects, it 
is necessary that Ec >>KBT (otherwise thermal fluctuations avoid single-electron effects). 
Then, to observe tunnelling effects, at room temperature, it is necessary that the nanoislands 
are of nanometric size. 

 
 

Fig.3.7. Characteristics of (a) ideal symmetrical double junction (C1Rt1=C2Rt2), (b) ideal asymmetrical double 
junction (C1Rt1>>C2Rt2). 

 
Likharev [7] has calculated the Ec and island’s self capacitance (C) as a function of the 

island diameter (barrier thickness of 2nm). Curves are presented in Fig.3.8.  
 

 
 

Fig.3.8. Charging energy (Ec), Single-electron energy addition (Ea), Electron kinetic energy (Ek) and islands self 
capacitance (C) as a function of the island diameter (with island round, barrier thickness of 2nm and dielectric 

constant εr=4,). Adapted from [7]. 
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If we consider that Ec > 5kBT to observe tunnelling effects, at room temperature, and if we 
would have an island with 100nm in diameter, the charge energy would be of the order of ~1 
meV (see Fig.3.8.). Then to observe tunnelling effects, the experimental temperature would 
be at 10K. On the contrary, if the nanoisland is of the order of 5 nm, its charge energy is more 
than 100 meV (see Fig.3.8) and tunnelling effects are observable at room temperature. We can 
conclude that to observe tunnelling effects, it is necessary that the (metallic) islands be below 
6 nm, and have a tunnel junction thickness of ~2 nm. Finally, from the Fig.3.8, the 5nm island 
has a self capacitance of ~10-18 F (1aF) and a 100nm island has a self capacitance of ~10-16 F 
(100aF). 
    To observe single-electron effects at room temperature, a practical double tunnel junction 
using an STM was employed by Graf H. et al. [22]. A schema is pictured in Fig. 3.9(a). In this 
experimental work, a double tunnel junction is formed. One tunnel junction corresponding to 
a UHV-STM (omicron micro-STM) was placed above Co nanoclusters (nanoislands) and the 
other tunnel junction corresponding to a thin film of Al3O3 (1nm-2nm thick). Fig. 3.9(b) 
shows the I-V plots taken at room temperature. It demonstrates the dependence of the 
coulomb blockade gap width on the Co nanoclusters size. Plots characterise the I-V of three 
Co nanoclusters sizes (4.1nm, 3.0nm, and 3.5nm). They concluded about the fact that if the 
nanoclusters size decreases the coulomb gap widens, what it means that the nanoislands’ 
(nanoclusters’) self-capacitance decreases and the charging energy increases. We observe that 
Coulomb blockade behaviour is characterised by low capacitance tunnel junction and an 
important resistance in the low-voltage region of the non-linear I (V) curve. 
 

 
Fig.3.9. (a) Experimental work of a double junction with a STM, (b) I-V plots for 3 nanoislands sizes [22].   

 
Concerning our experimental devices, the electrical conduction through the nanoelectrodes 
will involve many multi tunnel junctions (MTJ), having numerous disordered Ni nanoislands 
with size variations. It has been found that in this case, the staircase features vanish and MTJ 
feature resembles to double tunnel junctions [51].  
    A Multi-Tunnel-Junction (MTJ) consists in numerous tunnel junctions arranged in series 
and parallel way. In these devices coulomb blockade effect have been found mainly at 
temperatures lower that the ambient temperature. However, because of its complexity, the 
application of the orthodox theory for describing its electrical conduction requires also 
computational techniques such as SIMON code. Then, Coulomb blockade (Coulomb 
charging) occurs when the contact resistance is larger than the resistance of nanostructures 
used to make the contact and when the total capacitance of the nanoislands (nano-objects) is 
so small (capacitances down 1 aF) that adding single electrons requires significant charging 
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energy. Fig. 3.10 illustrates a multiple tunnel junction schema used in a Monte Carlo 
simulation [52], its electric schema representation [53] and an experimental MTJ [51].  
 

 
Fig.3.10. Simulation by Monte Carlo method [52], electric schema representation [53], a practical MTJ [51]. 

 
    The practical MTJ pictured in Fig. 3.10 (c) was used to characterise spin dependant 
electron transport in 10-nm cobalt islands, its I-V characteristic is illustrated in Fig 3.11(a). 
Coulomb blockade is found, at a temperature of 2K, however for higher temperatures the 
curves become non-linear, near zero bias. At 70K the phenomenon disappears and at 300K 
the I-V is linear, with a resistance of 100kOhm.  
    My advisor Christophe Vieu et al. demonstrated in 1998 coulomb blockade phenomena up 
to 200 K [14] and a non-linear current voltage characteristic up to room temperature (~297K). 
See Fig. 3.11 (b). Finally, MTJ structure are more preferable electrically than a simple 
double-junction because MTJ reduce co-tunnelling (co-tunnelling generally leads to 
undesirable leakage current) and  MTJ are also robust against offset charge effects [58].   
 

 
Fig.3.11. (a) is the I-V of the MJT, adapted from [51], (b) I-V in a SET, adapted from [14]. 

 
3.1.5.1 Ferromagnetic nanoislands 

 
In the case the nanoislands are made of ferromagnetic metals like Fe, Co or Ni, other 
phenomena take place in tunnel junctions, such as tunnel magnetoresistance (TMR) [40] due 
to the spin dependant tunnelling conduction. As written in the introduction, the potential 
applications are in spintronics, spin-FET or magnoelectronics [44]. A non-ferromagnetic 
metal such as copper (“normal metal”) has the same number of electron with up and down 
spins, thus it has non net magnetisation and its Fermi level is unpolarised [54]. In the case of 
ferromagnetic metals such as Co, Fe, Ni (3d), there is a splitting between the up and down 
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spin states called “exchange splitting”, thus it exists a spin imbalance [54]. Similar to 
semiconductors, in which there are majority carriers and minority carriers (electrons and holes) 
a ferromagnetic metal has up-majority spins and down-minority spins. See Fig. 3.12. 

 

 
Fig.3.12. (a) Density of states N(E) in copper and cobalt,  from [54], (b)  Spin- dependant tunnelling in 

ferromagnetic metals (from Hitachi global storage, Inc). 
 

 An interesting application of the double junction tunnel or MTJ is in single electron devices 
(SET) explained by K. Likharev [7] with orthodox theory in which single electron tunnel 
effects are involved. These effects were demonstrated for the first time in granular metal films 
[61][62]. In the case of a SET using a not ferromagnetic island, two electrodes are closely 
positioned in series, functioning as drain and source respectively, thus another electrode is 
placed between the drain and source (called gate). It controls the potential thus the charges 
and the quantity of electrons passing through the nanoisland(s).  Some practical works have 
been reported [18, 45]. Figure 3.13 illustrates a SET with a not ferromagnetic nanoisland and 
its electrical circuit.  

 
 

3.13. Schematic and electrical schemas of a typical SET. 
 
In these devices, coulomb oscillations appear. Coulomb oscillations, explained by the 
statistical thermodynamics, are current oscillations due to the discreetness of the current flow. 
This current is modulated by the gate tension and then to observe coulomb oscillations, a 
graph is constructed by setting the drain current in the ordinate and the gate voltage in the 
abscissa.  
    When using a ferromagnetic nanoisland between the drain and source, the manipulation of 
single electrons is possible without using a gate but by using an external magnetic field [63]. 
In these Spin-SET devices, giant magnetoresistance has been observed, known as 
magnetoresistance of granular magnetic metal film (GMMF) [29], demonstrated by 
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Berkowitz et al. and Xiao et al [64][65]. Then the resistance decreases when an external 
magnetic field is applied since the field aligns the magnetic moment of the nanoisland(s). 
Works are reported mainly in Valet, Fert et al. [4][38]. 
   In my work, however, I have used Ni nanoislands with the purpose of using Ni-histidine 
(amino acid) bonding, for attaching biomolecules to these metallic islands as a novel based 
methodology nanobiosensor realisation. We have not specially investigated the magnetic field 
effects expected in these kinds of tunnel junction devices made of ferromagnetic nanoislands 
such as spin dependent transport. However, I think that the devices I elaborated could lead to 
interesting experimental observations in the field of spinelectronics or spintronics. 
 

3.2 Methods, material and experimental section 
 
I wrote in chapter 1, that the first experience was to investigate parameters to obtain 
nanoislands made of gold, because Au nanoislands are easier to observe by scanning 
transmission electronic microscopy (SEM) and because from this study I would infer the 
parameters to obtain Ni nanoislands. We deposited Au on SiO2 surfaces, using a Precision 
Etching Coating System (Model 682 PECS®) for Scanning Electron Microscope (SEM), 
Transmission Electron Microscope (TEM) and Light Microscope (LM) applications. The 
deposition observation was realised using a scanning transmission electron microscope 
(STEM) CM20-Philips. A typical image of nanoislands realisation, just before coalescence, 
(Volmer-Weber growth) is showed in different images of Fig 3.14. Fig. 3.14(c) shows a 
typical nucleation mode when a layer starts being formed (Islands-layer or Stranski-
Krastonov growth). The Au nanoislands appear as small circular bright dots (3nm-5nm) in Fig. 
3.14(a), or bigger bright dots (30nm-50nm) in Fig. 3.14(c). There is a part of SiO2, in Fig. 
3.14(b), where there are no Au nanoislands. 
 

 
 

Fig.3.14. (a) Au depositions, (b) 0.7nm thick, (c) 1.6nm thick deposition. 
 
In Fig. 3.14(a), a layer of nominal 0.7nm thickness was deposited at 4KeV ion beam energy 
and a 101µA ion current. In Fig. 3.14(b) we used the same parameters but one part of the 
surface (SiO2) was covered with a piece of SiO2 to verify the deposition properness. Fig. 3.14 
(c) has a nominal 1.6 nm thickness at 4KeV ion beam energy and a 101µA. From these 
pictures we observe that, it is difficult to control the nucleation growth since the coalescence 
is made rapidly if few nominal nanometre depositions are subsequently deposited. However, 
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the study permitted us to infer that the optimum parameters to obtain nanoislands, separated 
each other from few nanometres, could be between 0.7nm and 1.6nm thickness deposition.  
    We wanted to realise nanodevices at wafer scale, and one of a disadvantage of the PECS is 
that just samples with 2.5 cm x 2.5 cm size can be entered, and only samples of 4 mm X 4 
mm size could enter to (STEM) CM20-Philips. At this time our laboratory acquired an ultra-
high resolution scanning transmission electronic microscope in which was possible to enter 4 
in. wafers, so we decided to investigate the nucleation realisation using thermal evaporation. 
This technique available at LAAS, allowed us to enter 4 in. wafer to have at the same time 
100 devices.  
     Hence, thermal evaporation method was employed to elaborate the Ni nanoislands. It is the 
same machine used in chapter 2:  Veeco 770 thermal evaporator.  On a silicon sample covered 
with 1µm (SiO2) realised by thermal oxidation, was deposited ~1nm nickel at a pressure of 
~10-6 mbars (~10-6 Torr) and a rate deposition of 0.2nm/s (optimum parameters determined 
after numerous tests). Nanoislands were observed by ultra-high resolution scanning electronic 
microscopy FE-SEM (Hitachi S-4800). Figure 3.15 pictures a typical image of a thin layer of 
Ni (nominal thickness of 1nm). The Ni nanoislands appear as small circular bright dots, 
exhibiting in average diameter of ~5 nm with a separation below ~ 2nm. 
 

        
                                  (a)                                                                             (b) 

 
Fig.3.15. (a) high resolution SEM image showing a typical Ni granular film deposited on SiO2 (Ni nanoislands 

~5nm), (a) treated SEM image for better contrast. 
 

Atomic force microscopy (AFM, JPK nanowizard II, intermittent mode) was also employed 
for inferring from the morphology of these Ni films. The picture allowed us to characterise 
the Ni nanoislands height and to observe a homogenous deposition.  A typical AFM image is 
shown in Fig.3.16.  From the images, the Ni islands density deposition is very high and the 
height of the islands is below 5nm. 
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(a) (b) 

 
 

Fig.3.16. (a) AFM image showing Ni of ~5 nm in height, (b) image with inverted colours (for better 
appreciation). 

 
Both SEM and AFM characterisations indicate that for this kind of nominal thickness (~1nm), 
the Ni film exhibits a 3D growth (Volmer-Weber growth) with a high density of islands just 
before coalescence. These films are excellent candidates for Coulomb blockade devices 
because of their size and their separation, being possible to observe tunnel effect at room 
temperature as demonstrated in the introduction section (see curves of Fig. 3.8). 
 
3.3 Results and discussion 
 
After Ni islands deposition between interdigitated nanoelectrodes, it was possible to measure 
the current flowing through the device at room temperature (RT). To do this, we used metallic 
probes of a Cascade Microtech station connected to a Keithley model 4200SCS. This machine 
measures current with a noise smaller than 10 fA. This kind of machine is necessary because 
our Multitunnel Junction devices (MTJ) present high resistances (~1010 Ohm), thus low 
current levels need to be detected. 
    Having fabricated full 4 in. wafers carrying 768 interdigitated nanoelectrodes devices (IND) 
on each wafer, some measurements were conducted but only a few are presented here and are 
the most representative. However, before characterising IND, we were interested in observing 
directly the electrical conduction through the Ni nanoislands, thus two electrical probes of the 
cascade station were positioned on the surface of a granular Ni deposition film.  Note that, the 
distance between the 2 probes is larger than the typical size of the nanoislands. A plot is 
showed in fig.3.17. The voltage was swept between -2V and 2 V with increments steps of 
5mV. 
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Fig.3.17. I (V) characteristic of a tunnelling electrical conduction thought Ni nanoislands. Conductance in 

siemens on the left (steps of 5mV:801 points). 
 

The I(V) characteristic of the Ni granular film is linear and its electrical conductance is in the 
order of 10pS. This value is consistent with tunnel conduction through the different islands. 
However, because of its configuration, where there are not electrodes on the surface, there is 
not defined conduction path and then it is not possible to observe coulomb blockade effects. 
  Otherwise, we observed in this experience, an illumination sensitivity of the Ni deposition to 
the light. These effects are pictured in Fig. 3.18. The applied voltage bias was kept initially at 
2V to reach the time stabilisation of the current flow I(t). We observed high reproducible 
current variations when the light of the optical microscope was turned off and turned on. See 
Fig. 3.18. When turning off the lamp, flowing current decrements rapidly (curve lowers) thus 
the current recovers its initial value in some seconds. When turning on the lamp, the opposite 
effect is similar, thus the current rapidly increases (curve rises), it is also stabilised in some 
seconds. Note that the microscope lamp is a halogen type that takes 2 seconds to be turned off 
and on. Another experience consisted of turning off and on subsequently the lamp (see the 
close-up on the right). The transient current are very reproducible for this condition (white 
illumination) with ∆I =~1 pA. 

 
Fig.3.18. I(t) to know the current time stabilisation on Ni nanoislands tunnelling current. It shows also the 

influence of the light.  
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Other experience consisted of using a commercial laser pointer (<1mW, 630nm-680nm) to 
illuminate the granular film while flowing current though it (the laser was turned on and off 
manually). The excitation was performed at ~15 cm distance. Rapid and highly reproducible 
transient current responses are found. Two close-ups are pictured in Fig. 3.19. In the first 
transient current of Fig. 3.19 (a), the laser was turned on and off. The second wide transient 
current of the same figure is due to the fact that the laser was maintained in on condition for 
~8 seconds. Another close-up is showed in the bottom, see Fig. 3.19 (b), in this case the 
pointer laser was turned on and off sequently and manually.  

 
   Fig.3.19. Ni nanoislands tunnelling current, with laser pointer excitation.  

 
Lasr experience using the laser to excite the granular film while flowing current though it, 
consisted of turning on and turning off the laser in periodically manner. (Intervals periods in 
on and off conditions of around 8 s, performed manually). It is a reproducible response as Fig. 
3.20 shows.    

 

 
Fig.3.20. Ni nanoislands tunnelling current, with periodic laser pointer excitation.  

(b) 

(a) 
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The origin of this interesting phenomenon is unexpected and it is not understood. We think 
that charges induced by light are involved in the SiO2 around the Ni nanoislands. The first 
graph (Fig. 3.18) (white illumination with halogen lamp, so various wavelengths) has a 
transient current behaviour, perhaps due to charges. The current reponses reproduce the 
response of the lamp (2 seconds). However when the device is excited with a unique 
wavelength (between 630nm-680nm), the transient gaps have different behaviour since its 
response is fast in both directions (modulating the current). This characteristic has a 
resemblance to photodetector response (photodiodes or phototransistor) which is rapid and 
high sensitive (not quantised yet) and apparently without leakage current (or extremely low).    
    Certainly other phenomena due to photon-electron are involved in these ferromagnetic 
nanoislands. More investigation is necessary, for exemple experiments to investigate the spin-
charge dependant transport [64][65]. This is beyond the scope of this thesis, so we focused 
just on the observation of Coulomb blockade phenomenon, at room temperature. 
    To investigate the coulomb blockade phenomenon, we fabricated the IND as demonstrated 
in chapter 2. However, Ni nanoislands were deposited before the elaboration of 
nanoelectrodes. The reason is because when doing the contrary, that is first the elaboration of 
nanoelectrodes and after the Ni nanoisland deposition, the Ni nanoislands nucleation and 
growth are affected by the nanoelectrodes, resulting in short-circuit devices (the devices were 
characterised electrically before and after deposition). Fig.3.21 illustrates the typical Ni 
nanoisland deposition after nanoelectrodes fabrication.  
 
 
                     
 
 
 
 

 
 
 
 
 
 
 
 

                                      (a)                                                                                      (b)          
                                                      
Fig.3.21. (a) SEM image of Ni nanoisland deposition on IND (1 nm thick), (b) Ni nanoislands deposition on IND 

(2.5nm thick and ~17nm diameter). 
  

From the Fig. 3.21(a), we observe that if depositing on the nanoelectrodes, previously 
prepared, coalescence starts being formed close to nanoelectrodes (nominal nanoislands 
thickness deposition of 1nm). Fig. 3.21 (b) is a typical image in which a more important 
deposition is conducted. In this case 2.5nm thus the nanoislands measure ~17nm.  
    These kinds of depositions are not useful for our purposes because in the first case we 
obtained a short-circuit and in the second case the islands are big to observe tunnelling effect. 
The solution was to deposit Ni at 1nm nominal thickness, before elaborating the 
nanoelectrodes.  

~17nm (diameter) Starting a coalescence 
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To elaborate nanoelectrodes at wafer level, we employed the same procedure described in 
chapter 2. The alignment marks, pictured in Fig. 3.22(a), are used to align and realise the 768 
IND devices on an existing Ni nanoislands film. Fig. 3.22(b) depicts SEM images of a 
classical IND device. It illustrates one interdigitated nanoelectrode device and a magnification 
of one nanoelectrode, with 40nm in width and a 60 nm of gap between the nanoelectrodes. 
Finally, optical image and its corresponding electronic microscopy magnification illustrate a 
rectangular spot, revealing emplacement of the Ni nanoislands deposition after the lift-off 
process. 

 

 
 

Fig.3.22. (a)(b) Optical and SEM images of an interdigitated nanoelectrode device elaborated on a previous 
deposited granular Ni film. 

 
Magnification of one nanoelectrode is pictured in Fig. 3.23, in which there are Ni nanoislands 
measuring mostly ~5nm (there are some nanoislands measuring 3nm or 4nm). It is possible to 
produce the nanoislands having a high homogeneity, all of them are deposited in the 
interdigitated nanoelectrodes emplacement (the picture has a slight white square spot 
illustrating the Ni granular film deposition emplacement on the right).  
 

 
 
Fig.3.23. Magnified view of a single nanoelectrode by SEM (40nm width) showing the Ni nanoislands, picture 

illustrates one 4nm Ni island.   
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Fig. 3.24 shows a 4 in wafer carrying 96 cells, each cell has 8 IND, and then each 4 in wafer 
has exactly 768 IND. The final connections, realised photolithography, were to connect the 
IND devices using mix and match process as demonstrated in chapter 2. This figure depicts 
also the magnification of one cell measuring 7 mm X 7 mm. It illustrates the pads to connect 
directly the probes of the cascade equipment coupled to Keithley analyser. The electrical 
characterisations were conducted at room temperature.  
 

 
 

Fig.3.24. Wafer scale realisation of IND presenting Coulomb blockade phenomena at room temperature and the 
cascade microtech coupled to a keithley 4200-SCS used to characterise the devices. 

 
An example of one electrical characterisation at room temperature is illustrated in Fig. 3.25. 
Voltage was swept between -3V and 3V with increment steps of 25mV (240 steps). A clear 
Coulomb gap between -400mV and 400mV can be observed in the conductance plot 
(derivative dI/dV). The conductance (dI/dV) is plotted in relation to the voltage swept.  
 

 
Fig.3.25. I-V showing Coulomb blockade at room temperature through Ni nanoislands (4nm-5nm) deposited 

between interdigitated nanoelectrodes devices (IND). 
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This characteristic is exactly what it is expected for multitunnel junction devices (MTJ) with 
islands having a charging energy larger than the thermal energy at room temperatures 
(25meV). From a schematic evaluation, a coulomb gap of 800 mV (-400 mV to 400 mV) 
gives a typical capacitance of 0.2 aF and a charging energy of ~400 meV which is large 
compared to the thermal agitation (~16 times the KBT). For comparison, we assimilate this 
capacitance to the self capacitance of one isolated spherical Ni island as Cs=2πεoεrd where εr 

is the average static relative permittivity between SiO2 (εr= 3.7), which is the insulator 
surrounding each island and air (εr= 1), d is the islands diameter (5nm), εo is the vacuum 
permittivity (8.8541878176× 10−12 F/m (C2/N×m2). Then, for a Ni island (5nm diameter) with 
εr=2.35, we found C=0.65 aF. It is in good agreement with the value extracted from our 
experience. If we calculate the mutual capacitance between islands, the expression becomes 
Cm=2πεoεrd2/s where s is the separation between neighbouring islands. For s=2 nm thus Cm 
=.16 aF which is also in quite good agreement.  
    We thus conclude, from these experiments, that our interdigitated nanoelectrodes devices 
having Ni nanoislands deposited between them behave as classical multitunnel junction 
devices. Since the charging energy of these 5 nm islands is quite high, the coulomb blockade 
effects can be observed at room temperature. The charging, as calculated from the coulomb 
gap gives a value of several hundred of meV, corresponding to coupling interdots 
capacitances on the order of 0.2 aF. These values of capacitances agree with the size of the Ni 
islands (5nm). However, these values as well as the current levels were observed vary from  
device to device, for example, for some devices their current can reach 10 nA at 2V, see Fig. 
3.25 or it can be smaller for devices having a larger coulomb gap as Fig. 3.26 illustrates. In 
this device, the current reaches 600 pA at 2V (it is obtained with a huge amount of acquisition 
points). This variability is attributed to sensibility of the devices to exact positions the 
conduction islands between the nanoelectrodes. The variability can be observed while 
comparing Fig. 3.25 and Fig.3.26, which correspond to normally identical devices. Hence, RT 
coulomb blockade effect is observed in two cases but the current levels as well as the 
coulomb gaps are not the same. These variations can be as large as 100 %.  
 

 
 Fig.3.26. I-V showing Coulomb blocakade at room temperature through Ni nanoislands (~5 nm) 

deposited between interdigitated nanoelectrodes devices (IND). 
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In fig. 3.27 we present a magnified view of the conductance near zero voltage, corresponding 
to graph of Fig.3.26. The graph definitely demonstrates a Coulomb blockade of the tunnel 
current at room temperature. Its conductance near zero voltage is less than 5 picoSiemens 
(5pS). 

 
Fig. 3.27.  Conductance of the Coulomb blockade effect illustrated in Fig.3.26 (obtained with a huge amount of 

acquisitions points).  Close-up between -1V and 1V. 
 
3.4 Conclusions 
 
In this chapter we have characterised the electrical conduction through interdigitated 
nanoelectrodes with nanometric size Ni islands deposited between their gap. Most of the 
fabricated devices (a systematic statistical analysis has not been performed) exhibited a 
Coulomb blockade effect at room temperature. The conduction is therefore interpreted as 
single electron charge transport from island to island. The configuration of the islands is 
highly disordered with dispersion in their diameter and separation. This disorder changes the 
tunnel resistance and the capacitance associated to each tunnel junction. Moreover, the 
interdigitated configuration of the nanoelectrodes is such that multiple conduction paths are 
probably achieved and conduct the current in parallel. However, it is anticipated that due to 
the resistivity of the induction mechanism changes in the local environment of the island 
(charges, variation ε of conduction and lowering the tunnel barrier due to molecular 
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adsorption) these devices can be exploited to molecular detection purposes. The bimolecular 
adsorption on Ni nanoislands will be described in chapter 4 and the integrated devices will be 
described in chapter 7.  

Otherwise, in these experiments two observations have been made. Firstly, these devices 
are sensitive to light, probably due to the charge injection in the dielectric surrounding each 
nanoisland moderating the single electric transfer rate (a deep study is suitable). This 
observation indicates us that special care on the illumination at the final device must be taken 
to avoid that the detection signal be disturbed by detrimental fluctuations of the flux of 
photons in the environment. Secondly we have observed large fluctuations (Coulomb gap and 
conduction at large voltages from device to device). This means that the electrical signal can 
not be absolute (for example, defining a current threshold and discriminate subsequent 
biomolecule adsorption events), then it needs to rely on the comparison of the I(V) curve 
before and after biomolecules adsorption and interactions, at a fixed voltage beyond the 
coulomb blockade region (e.g. 2 V). In these conditions, the current needs to be measured 
before the incubation of the analyte and then compare its value at the same voltage after the 
biological reaction.   
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 Chapter IV 
 

Label-free cancer biomarker recognition by nickel nanoislands using 
quartz crystal microbalance   

4.1 Introduction  
 
In this chapter, we present a methodology for label-free detection of cancer biomarker 
binding assay interactions and recognition using a similar deposition of Ni nanoislands as in 
chapter 3. His-tagged (scFv)-F7N1N2 is the antibody fragment which is directly immobilised 
by coordinative bonds, onto evaporated ~5 nm nickel islands (Ni nanoislands) deposited on 
the surface of quartz crystal microbalance. Biomarker GTPase RhoA is investigated because 
it is found overexpressed in various tumours (bibliography in chapter 1) and because our 
collaborator: Patrick Chinestra, Jean-Charles Faye and Gilles Favre (from Claudius Regaud 
Institute) recently isolated and characterised a new conformational scFv capable of 
selectively recognising the active form of Rho [1].  

The elaboration of ultrasensitive nanobiotransducers while avoiding the non-specific 
adsorption and conserving the proteins conformation is crucial. We implement the 
corresponding surface chemistry involving an anti-biofouling (protein repellent) coating of 
polyethylene glycol-silane referred as PEG-silane (<2nm thick) to avoid non-specific 
bimolecular interactions. Glycerine, used as cryogenic protectant in molecular biology, 
produces non-specific biomolecular interactions, in our nanobiotechnological protocol. A 
new protocol without glycerine has thus been validated by ELISA technique. Finally, the 
specific label-free detection and recognition of the active antigen conformation of RhoA, 
avoiding the glycerine effect, at various concentrations is demonstrated by quartz crystal 
microbalance (QCM) technology. This method proves the viability of the concept by 
implementing one of the most critical steps in nanobiosensor or protein-chip realisation, in 
this case by using Ni nanoislands as an anchoring surface layer, enabling the detection of a 
specific conformation of a protein identified as a potential cancer biomarker.  
 

4.1.1 Quartz crystal microbalance (QCM) 
 
For validating the biomolecular interaction and the specific recognition, we used a quartz 
crystal microbalance (QCM-D). This technology permits the determination of an additional 
mass per unit area by measuring the frequency shift of the mechanical resonance of a quartz 
crystal. Hence, this technique developed in the 90’s by Rodahl and coworkers, enables the 
quantification of deposited masses at the surface of the quartz crystal and the characterisation 
of the viscoelastic properties of thin adsorbed films. Thanks to the simultaneous measurement 
of the dissipation D, the QCM-D provides additional information about the structural state of 
the adsorbed films. QCM technology is particularly well adapted for the development and 
validation of biofunctionalised surfaces or protein chips applications [2]. Currently, the 
resolution in frequency is in the range of 0.2 Hz (in liquid) corresponding to a mass resolution 
of around 3.5 ng/cm2 [3]. 
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4.1.2 PEG-silane based surface chemistry  
 

PEG stands for polyethylene glycol, it is a biocompatible polymer used as “biological” 
passivating surface film. PEG has a structure characterised by hydroxyl groups at either end 
of the molecule, its formula is HO-(CH2CH2O)nCH2CH2-HO. PEG is a linear and neutral 
molecule available in numerous weights and soluble in numerous organic solvents. 
Furthermore, PEG has been used in a lot of biochemical and biomedical applications 
including tissue engineering, mainly because of its antibiofouling characteristic (property to 
reject proteins) [4][5].  Finally, as this polymer is not toxic, it is one of the few synthetic 
polymers in food, cosmetics or pharmaceuticals [6].  

Regarding the property of the PEG known as protein repellent, there have been some 
approaches to explain the PEG inertness. For example Andrade and de Gennes considered 
theoretically the proteins resistance, by taking ideas from the colloid stabilisation [7]. Their 
postulation was that the water molecules in hydrated PEG chains have a tendency to move as 
the protein approaches. Then, PEG inertness is explained by a thermodynamic approach, in 
which there is increment in steric repulsion due to the removal of water. However, their 
approach does not provide a complet explanation of the high repellent property involved in 
PEG. Contrary, Sheth and Lecknand (1997) [8] published that PEG is not inert, and it can 
bind proteins on certain conditions. They grafted monolayers of Mr 2000 methoxy terminated 
thus streptavidin was deposited on the surfaces and they measure the molecular forces 
between the streptavidin and PEG by a surface force apparatus.  It seems that these bounds 
are concerned with the arrangement in the polymer configuration or a change in PEG. At low 
compressive loads, the molecular forces were repulsive. However when higher compressive 
loads were applied to press the proteins into the polymer, the molecular forces turned out to 
be attractive. 
    In this chapter we demonstrate that silane terminated PEG (PEG-Silane) can absorb organic 
compounds such as glycerine, this effect named “glycerine effect” produces non-specific 
bimolecular interactions, so it is imperative to avoid glycerine in our experiments.  
     PEG is not a universal repellent to avoid non-specific interactions but if taking care of 
some situations, it is a good protein repellent, then it is necessary to consider various 
phenomena taking place in the couple polymer-protein such as the competitive interactions or 
the PEG configurational entropy. The protein repellent property has not been yet completely 
explained, but what is a fact, is the ability of PEG to control biofouling (the strong tendency 
of organisms or proteins to physically be adsorbed to synthetic surfaces). 
  Otherwise, silicon and silicon-based (e.g., silica, glass) materials most commonly used in 
bioMEMs and bioNEMs have to be passivated to obviate the non-specific interactions for 
maintaining the regulation of biofouling and its biocompatibility.  One of the most efficient 
materials to do this is precisely the PEG. Several techniques have been proposed to 
electrostatically link PEG onto surfaces, using for instance, Poy(L-lisine) g-poly(ethylene 
glycol) referred as PLL-g-PEG [9]. Nevertheless, the bonding is weak and the immobilised 
polymers do not permanently remain on surface due to physical or chemical changes. On the 
contrary, covalent grafting of PEG is a most effective way of creating a more stable film on 
surfaces.  
   Sharma et al. developed nanostructured PEG films using covalently attached PEG-silane 
onto silicon or silica surfaces, using different methods [10]: one on them consists of coupling 
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PEG-silane in solution and the other consists of vapour deposition of ethylene oxide to grow 
PEG on the surface.  
In this work, we have adapted the PEG-silane process in solution phase. The film is a 
monolayer of ~1.6 nm covalently grafted onto the surface as Fig. 4.1 (a) illustrates. Fig 4.1 (b) 
gives the variation of the PEG thickness depending on the graft concentration. 

 

 
 

Fig.4.1. Schematic representation of the PEG-silane covalently grafted onto silicon, (b) Reponses of X-ray 
reflectivity (full line) and XPS (dashed line) giving a comparison of calculated thickness, depending on the graft 

concentration (images from [10]). 
 

4.1.3 Proteins purification by Ni-NTA 
 
A purification method developed by Porath and coworkers [11] has been used for some time.  
It consists of binding proteins onto immobilised metal ion affinity chromatography (IMAC). 
The purification is possible because of the affinity the proteins with exposed amino acid 
cysteine or histidine side chains have for metals, such as Ni2+, Co2+, Zn2+, Cu2+ and Mn2+[12] 
through coordinative bonds. The nitrogen in the imidazole core histidine of 6His-tagged 
proteins binds to Ni2+ cations. The dissociation constant is ~10-13 M in the case of His Ni-
NTA at pH 8 [13]. The typical dissociation constant in most antibody binds are from 10-6 M 
to 10-9 M (weak to high affinity), however weaker that the avidin-biotin (KD of 10-15 M [14]).     
    In this work, we take benefit of this principle by using the very thin layer of Ni exhibiting 
nanoislands (chapter 3) as a surface chemistry for attaching His-tagged antibody fragments 
for the ligand-binding assays. Fig. 4.2 schematises the commonly used Ni-NTA, bonded to 
His-tagged proteins. 

 
 

Fig. 4.2.  Ni-NTA bonding to His-tagged proteins. (Adapted from [12]). 
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4.2 Methods, material and experimental section 
 
The different measurements were made using a QCM-D (Q-sense E4, Sweden), shown in Fig. 
4.3. Quartz with SiO2 50nm thick film (Q-sense, Sweden) were covered with 1µm silicon 
oxide (SiO2) using plasma-enhanced chemical vapour deposition (PECVD), in our clean room 
facility. We used a fluorescence microscope (Olympus IX70).  
 

 
(a) (b) 

 
Fig. 4.3. (a) Q-sense E4, (b) some quartz and the metal piece where they are positioned (from: q-sense.com). 

 
4.2.1 Anti-biofouling coating  

 
For many application purposes related to micro and nanobiosensors, silicon oxide surfaces are 
used due to their compatibility with silicon technology. We have thus optimised a chemical 
protocol on this type of surfaces and then we employed quartz crystals covered with a silicon 
oxide thin layer. During the experiments, we rapidly noticed that the biomolecules of interest 
for our work (antibody fragments and proteins) exhibited some unwanted interactions with 
those SiO2 surfaces. We therefore tested several passivation methods to avoid these non-
specific adsorptions. We came to a decision on using 2[methoxy (polyethyleneoxy) propyl] 
trimethoxy silane (Gelest), a silane conjugated polyethylene-glycol chain (henceforth referred 
as PEG-silane) (Mw 460–590), because of its biocompatibility and its covalent binding onto 
SiO2 as written above. This kind of PEG has already been used in nanostructured PEG-films 
preparation for silicon-based BioMEMS [15]. 
  To prepare the surfaces, PEG-silane molecules and concentrated HCl were mixed in toluene 
in a clean glass beaker with 100µl PEG-silane, 40µl HCl and 50ml of toluene (~3mM of PEG 
silane). The beaker was then placed in a sonicator for 1 min and its content was transferred to 
another clean glass beaker. A 1.5cm-diameter quartz covered with a 1µm thick SiO2 PECVD- 
deposited layer was immersed during 2 h and washed sequentially with toluene, ethanol and 
finally de-ionised water (each step during 2 min). This protocol generates an ultrathin PEG-
silane layer on the surface with a thickness comprised between 1nm and 1.8 nm [10] see Fig 
4.1(b).       
The final quartz surface, after this film fictionalisation process, is schematised in Fig. 4.4. 
 
 

 
Fig. 4.4. Schematic representation of a quartz functionalised with an anti-fouling PEG-silane coating. 

 

SiO2
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PEG-silane
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In chapter 3, we introduced the concept of contact angle to characterise the degree of 
hydrophobicity or hydrophilicity of a surface. We used this technique to corroborate the 
presence of the covalent PEG-silane on our surfaces. We used a contact angle meter, called 
Digidrop(R) (GBX, France). A water drop was deposited on the silicon dioxide to compare its 
angle before and after PEG grafting. To attach the PEG covalently on the surfaces, it is 
necessary that the surfaces are proper and have hydroxyl layer on the silicon as Fig. 4.1 (a) 
illustrates. What it means that the surfaces need to be cleaned, to do that we used a mixture of 
ethanol and water (1:1 in volume) which was poured on a glass beaker containing the 4 in. 
wafer. Then, ultrasonic agitation during 2 min (35 kHz) was applied. To create a hydroxyl 
layer, we used piranha solution (H2O2:H2SO4, 2:5 (v/v)) for 5 min., followed by rinsing with 
de-ionised (DI) water and applying ultrasonic agitation during 2 min (35 kHz). After the 
formation of the hydroxyl layer, the water angle contact measure ~10°, but after grafting the 
PEG-silane the water contact angle measure ~37°. This value is consistent with the values of 
the contact angle depending of PEG concentration demonstrated by Papra et al. [10]. We can 
conclude that the PEG is grafted onto our surfaces and from the contact angle and Papra et al. 
paper, we have a PEG-silane measuring ~1.6nm (A characterisation using ellipsometer or X-
ray reflectivity [10] can corroborate it).  A typical water contact angle on PEG-silane is 
pictured in Fig. 4.5 which illustrates the way of the angle is estimated by the Digidrop 
software. 
 
 

 
 
Fig.4.5. Water drop formed on a silica surface treated with PEG-silane exhibiting a typical contact angle 

of 37°. 
 

Some characterisations using Raman spectroscopy technique were conducted. This technique 
permits to know the organic molecules present on a surface, because the frequency of light 
scattered is modified based on the structure of the molecular bonds of the chemical 
compounds. Raman scattering spectra were used in the range of 800 cm-1 to 3500 cm-1.  A 
resonance was observed at 1154 cm-1, corresponding to COH and at 2328 cm-1 corresponding 
certainly to OH [16]. These kinds of characterisations including the X-ray reflectivity to know 
the film thickness have been reported [10]. 
    Finally, the experiences reported until now to covalently graft the PEG-silane had been 
done under nitrogen, during 18h and using toluene anhydrous. Concerning our experiences, 
we demonstrated that the protocol can work by doing the experiences during 2h and without 
the use of nitrogen. Furthermore we did not use toluene anhydrous but normal toluene. 
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However, the bakers are covered avoiding the contact with air. In chapter 7 we will present 
the integration of our devices, and we will graft PEG-silane in certain parts of the wafer, the 
other parts of the same wafer are protected with a photoresist. Furthermore we will 
characterise the water angle of PEG-silane of surfaces after photolithographic or electronic 
steps, with the objective of demonstrating the effectiveness of this covalently grafted PEG-
silane.  

 
4.2.2 Nickel nanoislands deposition  

 
As presented in chapter 3, different techniques exist for depositing nanoislands such as 
sputtering or vacuum evaporation. The sputtering method was disregarded because we wanted 
the deposition process not to damage the PEG coating, which would not have been the case 
due to the ionic bombardment of the surface in sputtering method. 

We used then the Veeco 770 thermal evaporator machine as in last chapter. It was 
evaporated onto the PEG-silane surfaces 1 nm thick film of nickel at a pressure of ~10-6 mbars 
at room temperature (RT) (we had observed that the PEG is not modified when leaving it 
under vacuum). The Ni films morphology was confirmed by high resolution scanning electron 
microscopy SEM (Hitachi S-4800). A typical image of the deposited film is shown in Fig. 4.6. 
The Ni nano-islands appear as tiny bright spots, a statistical analysis of the observed 
nanoislands indicated an average diameter of 5 nm. 

 

 
 

Fig.4.6. High resolution SEM image of a granular Ni film (1nm nominal thickness) deposited by thermal 
evaporation on a SiO2 surface. 

 
As in the last chapter, this characterisation of the thin Ni film was confirmed by Atomic Force 
Microscopy (AFM) using in air, the intermittent contact mode of a JPK system 
(NanoWizard® II, Germany). A typical image is shown in Fig. 4.7. The height analysis also 
indicates an average dimension of ~5 nm. Both images (SEM and AFM) indicate that there 
are some spaces between the Ni nano-islands. In our process, those Ni islands will attach the 
antibody fragments through Ni-Histidine interaction. We think that this kind of morphology is 
profitable for minimising the possible denaturation of adsorbed proteins on the surface 
because the nanoislands are separated from ~2nm thus the biomolecules are ideally separated 
also to each other from ~2nm. It was reported that when small nanoislands or nanoclusters are 
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used, the chances for protein denaturation can be minimised [14]. The reason is because the 
nanoislands size is comparable to biomolecules and the tertiary structure can be less modified. 
 

 
 
 
                                             (a)                                                                                       (b) 

 
 

Fig.4.7. (a) AFM image of a granular Ni film (1nm nominal thickness) deposited by thermal evaporation on 
SiO2 surface. (b) inverted picture (for better appreciation). 

 
The final surface of the Quartz crystal used for the QCM experiments is depicted in Fig. 4.8. 
 

 
 

Fig.4.8. Schematic representation of a quartz functionalised with an anti-fouling PEG-silane coating and 5nm 
size Ni nanoislands. 

 
4.2.3 Biomolecules purification 
 

The production and purification of soluble single-chain  antibodies was performed at the 
Claudius Regaud Institut (ICR) in Toulouse France as follows: TG1 E coli strain harboring 
the pHEN F7N1N2 plasmid was grown in 100 mL of LB medium containing ampicillin (100 
µg/mL) and 2% of glucose at 37°C. At a proper concentration (OD600 =0.6-0.8), the culture 
was centrifuged at 3,3 x g for 10 minutes. Bacteria were once more suspended in LB medium 
containing ampicillin (100µg/ml) and incubated in a 0.1 mM IPTG overnight at 30°C. 
Bacteria were harvested, re-suspended in 50 mM NaH2PO4, pH 7.5, 300 mM NaCl, 10 mM 
imidazole (1/10 of the culture volume). Then bacteria were sonicated during 30 minutes. The 
cell lysate was centrifuged at 17,500 x g during 15 minutes. The supernatant containing the 

Quartz
SiO2

Nanoislands (~5nm)

PEG-silane (<2nm) 
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scFvs were concentrated on 1ml of 50% slurry Ni-NTA agarose (Qiagen) at 4°C by shaking 
for at least two hours. After washing with 50 mM NaH2PO4, pH 7.5, 300 mM NaCl, 10 mM 
imidazole, bound scFvs were eluted by 50 mM NAH2PO4 pH 7.5, 300mM NaCl, 250mM 
imidazole. 
    Recombinant GST fusion RhoA protein was expressed and purified from protease deficient 
strain (E.coli BL21). Bacteria were grown at 37°C in 1 liter of LB medium containing 
ampicillin (100 µg/ml) until an OD600 = 0.6-0.8 was reached. Protein expression was induced 
for overnight incubation in 0.1mM isopropyl-β-D-glactopyranoside (IPTG) at 20°C and cells 
were harvested. Bacteria pellets were frozen at -20°C for 15-20 minutes, and subsequently re-
suspended at 4°C in 50 mM Tris-HCl, pH7.5, 150 mM NaCl, 5 mM MgCl2 and triton X100 
0,1% at 1:10 of the original culture volume. Cells were incubated by using ice for 30 minutes, 
sonicated five rounds for 15 sec each one. Lysate was centrifuged at 12,500 x g for 30 
minutes at 4°C. The GST-RhoA containing supernatant was purified by using Magnet 
GSTTM protein purification system (Promega) according to the manufacturer instructions. 
    All purified recombinant proteins were applied to PD-10 desalting columns (GE Healthcare) 
equilibrated with HEPES 10 mM pH 7.5, 150 mM NaCl, 5 mM MgCl2 to remove glutathione 
and imidazole. 
    Samples were analysed by SDS-PAGE and Coomassie blue staining, and then stored at 4°C 
for short term storage or - 70°C with 15% glycerin for long term storage. 
    Finally, for Rho GTP loading, recombinant GST-RhoA purified by using glutathione beads, 
was loaded with 0.1mM of GDP or GTPgS in Hepes 10 mM, 150 mM NaCl, 5 mM MgCl2 at 
37°C for 1 hour.  
 

4.2.3.1 ELISA tests 
 
HisGrabTM Nickel Coated 96-Well Plates (PIERCE) were incubated during 1 h at RT with 
100µl of purified scFv F7N1N2 (6µg/ml) in PBS. The wells were washed 3 times with PBS 
Tween 0.05% and 100µl of purified GST-RhoA loaded with GDP or GTPgS, were added at 
appropriate concentrations in PBS, 5mM MgCl2. After 1 h of incubation at RT, the wells 
were washed 3 times and incubated by using anti-GST-HRP conjugate (GE Healthcare, 
RPN1236). The immuno-reaction was developed using 3, 3’, 5,5’-tetramethylbenzidine 
(PIERCE, 34022), stopped by adding 1M sulfuric acid and we measured the results using an 
ELISA reader (Multiskan Labsystems) at OD= 450nm. 

 
4.3 Results and discussion 
 
To validate the surface chemistry for preventing non specific adsorption, we used 0.5µM of 
6His-tagged green fluorescent proteins (GFP) (biomolecules from Claudius Regaud institute), 
onto the different quartz surfaces (quartz-SiO2, quartz-SiO2-PEG-silane) before and after 
nanoislands deposition. Firstly, QCM was used to corroborate the PEG-silane effectiveness as 
anti-biofouling. We prepared 2 quartz, one having on surface 1µm silicon nitride (Si3N4) and 
the other having 1µm Silicon dioxide (SiO2), both insulators films deposed by PECVD. 

Fig 4.9 demonstrates the effectiveness of the PEG-silane grafted on Si3N4 and SiO2. 
Biological compounds were injected onto four quartz at the same time. First, hepes buffer was 
injected to stabilise the signal, at 15min the 6His-tagged GFP was injected onto four quartz, 
once more at 22min. Hepes buffer was injected into four quartz to remove the not absorbed 
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biomolecules.  Clearly, quartz 1 (Si3N4 PEG-silane treated) and quartz 3 (SiO2 PEG-silane 
treated) display not frequency shift, however both in not treated Si3N4 and not treated SiO2 the 
frequency shifts are ~25 Hz (variation at 15 min).  
 

 
 

Fig 4.9.   Graphs illustrating the PEG-silane effectiveness. 
 

After incubation of the GFP, the surfaces were analysed by fluorescence microscopy. Fig. 
4.10(a) corroborates that the PEG coating acts as an efficient anti-biofouling layer preventing 
the adsorption of proteins. Conversely, on the virgin SiO2 film the adsorption is considerable, 
see Fig.4.10 (b) which is a classical homogenous adsorption onto SiO2. Last fluorescence 
figure (c) illustrates an adsorption onto quartz treated PEG-silane. It is clear that the presence 
of Ni nanoislands change the repartition of the proteins on the surface compared to SiO2 
surfaces. It is of course not possible to obtain any molecular scale information by using 
simple fluorescence characterisations but the role of the different layers is clearly identified. 
The PEG-silane coating is an efficient anti-biofouling layer between the Ni nanoislands while 
these latter induce a robust linkage to the surface on specific sites.  
 

     
 
Fig.4.10. Fluorescence microscopy characterizations of the adsorption of 6His-tagged green fluorescent proteins  

(GFP), onto the different quartz surfaces. (A) PEG-silane, (B) SiO2, (C) PEGsilane+ Ni nanoislands. 
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The first attempts to detect the specific interaction of RhoA proteins with probe molecules 
selective to their active form by QCM using quartz crystals treated with PEG and Ni 
nanoislands failed. During these experiments, we identified an unexpected adsorption of 
glycerin on both SiO2 surfaces and PEG coated surfaces. We thus conclude that minimizing 
the quantity of glycerin (glycerol) as a cryogenic protectant for proteins storage was 
mandatory for our experiments. This called glycerine effect, not noticed in traditional ELISA 
tests, turned out to mask completely the specific proteic interaction we wanted to investigate 
by QCM. We have thus determined the maximum glycerin percentage compatible with a 
convenient storage of the proteins and reliable QCM signals. As can be seen in Fig. 4.11, the 
incubation of a solution containing a ratio of 0.2 % (in volume) of glycerin in HEPES buffer 
does not induce any significant frequency shift on quartz-SiO2 coated with PEG and generates 
only a small variation of 1 Hz on virgin SiO2 quartz. Conversely, higher glycerin contents 
(1% or 10%) were found to induce significant unspecific adsorption events on both types of 
surfaces (see figure 4.11). 
 

 
Fig.4.11. QCM signals obtained after the incubation of a solution of glycerin diluted in HEPES buffer at various 

concentrations (percentage in volume). (a) quartz-SiO2 coated with PEG (b) virgin quartz-SiO2. 
 

When there was a percentage of glycerin higher than 0.2 % mixed with the biomolecules of 
interest, the QCM signals exhibited a response comparable to those of figure 4.11. To avoid 
this bias, the glycerin content in our solutions was kept below this level.  
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In the biomarker detection, experiments we used as a probe molecule His-tagged antibody 
fragments single chain variable fragments (scFv-F7N1N2) that bind selectively to the active 
antigen conformation RhoA, referred to RhoAGTPgS with respect to the inactive antigen 
conformation of RhoA referred to RhoAGDP [1]. To verify the ability of this purified scFv to 
bind nickel atoms while keeping its specificity for the active form of RhoA, an ELISA test 
was conducted as follows: Ni-NTA microplates were coated with scFv-F7N1N2. Specific 
interactions were measured by adding serial dilutions of GST-RhoA loaded with GDP or with 
GTPgS. The amount of GST-RhoA linked to the scFv was measured after adding an anti-
GST-HRP conjugate. Fig.4.12 presents the results of these ELISA experiments demonstrating 
the selectivity of our probe molecule to the active form of RhoA proteins and the good 
discrimination with respect to the inactive conformation of the same protein.  
 

                      
 

Fig.4.12. ELISA tests showing the selectivity of the selected probe molecule (His tagged scFv-F7N1N2) to the 
active conformation of RhoA proteins (RhoA GTPgS) compared to the inactive conformation (RhoA GDP ) of 

the same protein. 
 

QCM experiments were finally performed at a flow rate of 60 mL/min on quartz-SiO2 coated 
with PEG and equipped with Ni nanoislands. Firstly, Hepes buffer 10mM, NaCL 150mM plus 
5mM of MgCl2 was injected onto two similar independent quartz. Quartz 1 was used to detect 
the active form of RhoA (RhoA GTPgS) and quartz 2 to detect the inactive form of RhoA 
(RhoA GDP).  
    The results are depicted in Fig. 4.13. At step 1, a 40µg/ml (Mw 55kD) solution of (scFv-
F7N1N2) was injected into both fluidic channels. A frequency variation of around 70 Hz was 
observed in both quartz, revealing the adsorption of the probe molecules on the surface 
covered with Ni islands. HEPES buffer was then injected for removing loosely bound 
molecules and for stabilising the QCM signal. At step 2, a solution of RhoA GTPgS at 4µg/ml 
(Mw 45kD) was injected onto quartz 1 and a solution of RhoA GDP at 4µg/ml (Mw 45kD) 
onto quartz 2. In both quartz, it was difficult to observe any specific adsorption. We thus 
decided to increase the surface density of probe molecules grafted on the Ni nanoislands and 
incubated at step 3 a 200µg/ml (Mw 55kD) solution of scFv-F7N1N2 that was injected into 
both fluidic channels. 
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Fig.4.13. QCM Frequency variations of two identical quartz (SiO2/PEG/Ni nanoislands) subjected to different 

incubation steps. 
 

An additional low frequency shift of ~25 Hz was observed in both reaction chambers which 
confirms that the surface was not initially saturated with probe molecules. At step 4, we 
injected the same concentration of RhoA proteins as at step 2 (4µg/ml) of active and inactive 
antigens respectively into quartz 1 and quartz 2. A slight frequency shift is observed but 
cannot be distinctly attributed to a significant stable adsorption on the surface. We then 
increased the concentration of antigens up to 20µg/ml (step 5) and 40 µg/ml (step 6) of active 
and inactive antigens, respectively, for quartz 1 and quartz 2. In these cases a clear adsorption 
signal was recorded in quartz 1 (7Hz at step 5 and 10 Hz at step 6) while no trace of a clear 
adsorption could be noticed on quartz 2 (see Fig. 4.14 for a better appreciation of the 
frequency shifts). 

 
Fig.4.14.   Enlarged view of figure 8. Note that at step 5 and 6, the active form of RhoA protein was injected into 

Quartz 1 and the inactive form of this protein was injected in Quartz 2 (step5 20 µg/mL, step6 40 µg/mL). 
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The clear difference between the response of Quartz 1 and Quartz 2 indicates that the label-
free detection of RhoA proteins in their active conformation can be achieved in our Ni 
nanoislands deposition in conjunction with the implemented surface chemistry, this  by QCM 
analysis. Hence, this result turned out to be possible only on quartz crystals equipped with 
nanometric nanoislands of nickel. 
 
4.4 Conclusions  
 
    In this chapter, we have implemented a surface chemistry involving an anti-biofouling 
coating of polyethylene glycol-silane (PEG-silane) (< 2nm thick) onto a SiO2 thin film 
combined with the deposition of 5nm size Ni islands. This specific surface chemistry on SiO2 
surfaces turned out to be suitable for attaching probe molecules (antibody fragments) to the Ni 
islands through Histidine tags. The nanoscale roughness developed by the nanoislands turned 
out to improve the selectivity of the detection of the conformation of RhoA proteins on these 
surfaces. Indeed, through QCM analysis we have shown the possibility of a label-free 
detection of RhoA biomarkers which can discriminate the active and inactive conformations 
of this protein. We found that glycerin, often used as a cryogenic protectant in molecular 
biology protocols, produces non-specific biomolecular interactions. A new protocol without 
glycerin has thus been developed and validated by ELISA technique. This work proves the 
viability of the concept by using Ni nano-islands as an anchoring surface layer enabling the 
detection of a specific conformation of a protein identified as a potential cancer biomarker.  
    This biomolecule detection conjugated with a surface chemistry is the basis to be integrated 
into the nanobiosensors presented in this thesis. As demonstrated in chapter 3 the Ni 
nanoislands will be deposited between interdigitated nanoelectrodes. These integrated devices 
will be used to detect the proteins of interest through conductance variations. Finally, these 
Multiple Tunnel Junction (MTJ) devices are expected to exhibit high sensitivity or ultralow 
limits of detection, comparable to nanowire based FET sensors [17]. The advantages will be 
label-free detection and less analytic product used (close to nanolitter), as it will also have an 
integrated microfluidic system (demonstrated in chapter 5). 
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    Chapter V  
 

Innovative microfluidic system methodology for Lab-on-chips applications 
at wafer scale 

 
5.1 General introduction  
 
Microfluidic systems are applied in modern medical analysis, environmental monitoring and 
several fields of research and applications e.g. for detection and separation of proteins  [1], for 
single cell analysis [2], in biochemical and clinical analysis [3], as portable microfluidic 
platforms for diagnosis of cancer [4], or in drug discovery [5]. Hence the importance in 
making microfluidic systems has increased in the last two decades, mainly for the realisation 
of viable lab-on-a-chip (LOC) [6] and hybrid integrated nanodevices [7]. 
    The most common materials used to fabricate microchannels are silicones like 
polydimethylsiloxane (PDMS). These elastomeric materials are easy to cast with properties 
like impermeability to water, non toxicity to cells or permeability to gases [8]. Furthermore, 
PDMS-based elastomers have an UV optical transparency from 240nm to 1100nm 
wavelength and an elastomeric property with a tunable Young’s modulus: typical value can 
range from 750 kPa to 4MPa [9]. However, because of its chemistry, PDMS elastomers 
cannot be photopatterned directly to elaborate complex microfluidic systems. In this context, 
new processes to obtain photoPDMS are indispensable. 

On the other hand, one of the most delicate steps in the micro/nano fluidic system design 
and development is the realisation of tubes interconnection and device packaging [10]. Finally, 
there is an inevitable shrinkage problem encountered in PDMS when curing it [11]. In this 
chapter, I overcome these three bottlenecks as follows: 

 
 Firstly, a negative photodefinable polydimethylsiloxane (N-photoPDMS) covalently 

bonded on wafer surfaces; reaching a resolution of 20 µm at wafer level is presented. Next, an 
optimisation process for positive photodefineable polydimethylsiloxane (P-photoPDMS) 
reaching a resolution of 60 µm, is conducted.  To show that both photoPDMS processes can 
be applied to the fabrication of lab-on-chips devices, 192 microchannels (20µm width) have 
been aligned on the interdigitated nanoelectrode devices (IND) at wafer level. Mechanical 
properties after cross-linking in N-photoPDMS are presented. These two processes are low-
cost and are conceived for rapid prototyping. Indeed, these two complementary 
methodologies can be adapted to a large number of applications.  

 
Secondly, interconnection of 3-D microfluidic system on 4 in. wafer scale is presented. An 

etching is performed in both unmodified PDMS and in a PDMS nanocomposite material 
specifically elaborated. We obtain faster and more homogenous rate etching in this kind of 
PDMS nanocomposite. Finally some pressure tests are conducted in this microfluidic device. 

 
Thirdly and finally, modification in the master mould is conducted to compensate for the 

inevitable shrinkage when curing a PDMS. A study is presented, and some perspectives are 
proposed to formulate a more exact shrinkage ratio equation. 

 
Because of this planning, this chapter is divided into three sections, as if they were three 
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small chapters, but described in interdependent manner, so these sections will have their own 
reference section. The three sections are part of an innovative microfluidic methodology to be 
integrated in our nanobiosensor device.  

Microfluidic engineering and technology are not described here, but there are several 
references proposed throughout this chapter and some general references are [22] [23]. 
 
5.2 PHOTOPDMS FOR MICROCHANNELS FABRICATION  
 
    In the literature, a negative photodefinable polydimethylsiloxane (N-photoPDMS) was 
developed by Lötters et al. [12], based on a commercial polysiloxane bearing methacrylate 
groups and 2,2-dimethoxy-2-phenyl acetophenone as photoinitiator. It is the closest method 
compared to our N-photoPDMS we present here, however the photoinitiator is not easy to 
dissolve at ambient temperature and the crosslinking had to be performed in absence of 
oxygen. Dow Corning commercialises a PDMS that can be photopatterned but only after 
several steps and for thicknesses between 6µm and 50µm [13]. The basic chemistry consists 
in hydrosilylation reactions which are facilitated in the presence of a photoreagent under UV 
irradiation. Nonetheless, this methodology still necessitates a soft baking before UV treatment 
followed by post-exposure baking to finish the synthesis of the material. Others authors have 
presented non commercial polysiloxanes that are UV-sensitive, but these imply specific 
syntheses [14]. 
     On the other hand, a positive photodefineable polydimethylsiloxane (P-photoPDMS) was 
described last year by Papautsky et al. [15], using the popular Sylgard 184 in a clever process. 
Mixing the polymer with benzophenone which functions as photoinhibitor, they showed that 
this led to the inhibition of the crosslinking process under the irradiated zones. The exposure 
was performed at <360nm wavelength implying the use of expensive high resolution chrome 
masks (transmittance from 200 nm). The limit resolution for these two photoPDMS types was 
not presented. 
     Collaboration with chemists from LCC-CNRS and IMRCP-CNRS at Toulouse France was 
established, because they had been developing the N-photoPDMS and by that time, we were 
adapting the P-PhotoPDMS. Then, we started working together with Mrs. Anne-Françoise 
Mingotaud and Mr. Samuel Suhard to reach the resolution limit in these two types of 
photoPDMS, and mainly to apply them to functional devices, like those we are presenting in 
this thesis. 
    In this context, firstly we present here, the N-photoPDMS methodology. A negative 
photopatternable polydimethylsiloxane (N-photoPDMS) covalently bonded on surfaces by 
grafting acrylates moieties is presented. Next, a commercial PDMS containing methacryloyl 
groups is mixed with Irgacure 2100 as photoinitiator, leading to 20µm resolution on wafer 
level. The mechanical properties of N-photoPDMS are assessed by piezorheometry too. 
    We also present an improvement of the P-photoPDMS process to reach 60µm on wafer 
scale. We use benzophenone acting as photoinhibitor as described by Papautsky et al. [15] but 
with UV peak absorption at ~360nm (4-Dimethylaminobenophenone). At this wavelength, we 
can use low cost masks (soda lime glass with transmittance from ~360nm).  
    To validate an application in functional LOCs devices, we aligned 192 microchannels 
(20µm) on previously demonstrated wafer scale realisation of 768 interdigitated 
nanoelectrodes devices (IND) [16] serving as nanobiosensors which were described in detail 
in chapter 2. 
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5.2.1 Methods, material and experimental section 
 
RMS 083 and acryloxypropyltrimethoxysilane were purchased from ABCR, Sylgard 184 was 
purchased from Dow Corning. Irgacure 2100 was given by Ciba. Toluene was purchased 
from Sigma-Aldrich and methylisobutylketone (MIBK) from Honeywell. Crystalline 
benzophenone was purchased from Sigma-Aldrich and 4 inch silicon wafers were oxidised 
with SiO2 (1µm) in our clean room facility. 
 

5.2.1.1 Negative photoPDMS fabrication 
 

To enhance polymer adhesion on SiO2 surfaces, a wafer was first treated by O2 plasma (140 
Watts) for 30 min., and was immersed immediately in water to generate Si-OH moieties and 
finally dried under vacuum and placed under argon. For the chemistry functionalisation, 50 
ml of toluene were added followed by addition of 2.5 ml acryloxypropyltrimethoxysilane, this 
allows sticking covalently the polymer.  

In a second step, a degassed mixture containing RMS-083 and Irgacure 2100 as the 
photoinitiator (2% w/w) was used. RMS-083 is a copolymer of dimethyl and 
methacryloxypropylmethyl siloxane. The percentage of methacrylate monomer units lies 
between 7 % and 9 % and its kinematic viscosity is in the 2000-3000 cSt range corresponding 
to a molecular weight in the 40000 g. mol-1 range. Schema 5.1 illustrates the chemical 
pathways, showing the binding of acrylate functions to the wafer, followed by the 
photocrosslinking of the siloxane polymer which at the same time links it to the surface of the 
wafer. 
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Schema5.1. Chemical steps in the synthesis of N-photoPDMS grafted onto Si/SiO2 wafers. 
 

Next, the compound was spin-coated on 4 in. silicon wafer (oxidised with SiO2 layer, 1µm 
thick) at 2000 rpm to obtain a layer of PDMS with a thickness of 26 µm (measured with a 
mechanical profilometer P15 model). We used a low cost chrome mask made of soda lime 
glass carrying some periodical patterns to determine the resolution in photoPDMS and two 
microchannels, see Fig.5.2.1. Mask was positioned, using an EVG 620 machine, above the 
spin-coated PDMS wafer, maintaining a gap of 50 µm between the mask and the wafer to 
avoid touching the uncured photoPDMS. The exposure step was conducted in an EVG 620 
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machine (350-450nm, 75mW/cm²), during 1 minute. No adjustment of the machine was 
necessary and no purge of the system was used before irradiation. Development was 
performed in methylisobutylketone (MIBK): isopropanol (IPA), 1:1 in volume, during 3 
minutes. 
 

 
 

Fig.5.2.1 Design of one cell (7mm x 7mm) for N-photoPDMS tests. Close-up of periodical lines to determine the 
limit resolution (on the right). 

 
Fig. 5.2.1 illustrates one cell of the 96 designed on 4 in. wafer. As in this case N-photoPDMS 
is used, the patterns are protected (black patterns) as pictured in the figure. On the centre, 
there are lines and space periodical patterns of various dimensions for the resolution 
determination and two microchannels with 50µm and 20µm width, with circular (500µm 
diameter) as inlets-outlets.  Each cell has also four patterns on the side, once opened they are 
used to make microbondings, after encapsulating each cell on TO-8 cases as illustrated in next 
part. 
 
 5.2.1.2 Positive photoPDMS fabrication 
 
To enhance adhesion on wafer surfaces, simple treatment by O2 plasma (300W) for 3 min was 
applied by a Tepla model 300 plasma machine. We used 4-dimethylaminobenzophenone as 
photoinititiator, with a UV peak at 360 nm. Sylgard 184 was mixed in a 10:1 w/w ratio with 
its curing agent and degassed for 10 min to remove the formed bubbles. A 3% w/w solution of 
the benzophenone in toluene was added. As in this case a P-photoPDMS is used, the chrome 
low cost mask carries no protected patterns as Fig. 5.2.2 pictures. 
    The p-photoPDMS was spin-coated at 2000 rpm to obtain ~26 µm of PDMS thickness on 
the 4 in. wafer (measured with a mechanical profilometer P15 model), the exposure step was 
conducted in an EVG 620 machine (350nm-450nm, 75mW/cm²) during 10 minutes, 
maintaining a gap of 70 µm between the mask and the wafer, to avoid touching the uncured 
photoPDMS. After that, a post-exposure baking was performed in an oven at 80°C during 5 
min. Finnally, development was performed in methylisobutylketone (MIBK): isopropanol 
(IPA), 1:1 in volume, during 5 minutes. 
 
 

10µm 

20 µm 

100 µm 

8 µm 

5 µm 
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Fig.5.2.2. Design of one cell (7mm X 7 mm) for P-photoPDMS tests. Close-up of periodical lines to determine 
limit the resolution (on the right). 

 
5.2.1.3 Mechanical measurements 

 
The complex shear modulus G = G’ + iG’’ of the sample was measured as a function of 
frequency with the piezo-rheometer developed these last years for studying the rheological 
properties of polymers [17], liquid crystal elastomers [18] and uniaxial magnetic gels [19]. 
The principle of this apparatus consists of applying a small strain ε to the sample by means of 
a piezoelectric ceramic vibrating in the shear mode, and measuring the amplitude and the 
phase φ of the shear stress σ transmitted through the sample using a second piezoelectric 
ceramic. The complex shear modulus of the sample is given by the stress over strain 
ratio εσ=G . The sample has an elastic response when the strain and the stress are in-phase (φ 
= 0), and a viscous response when the strain and the stress have a phase difference φ of 90°. 
For a viscoelastic sample, the phase difference φ is in between 0° and 90°.  
    In practice, the compound is placed between two glass slides, each of which is stuck to one 
of the ceramics. G was determined for frequencies ranging from a few 10-1 Hz to a few 103 Hz. 
The applied strain ε  was very small ~10-4, and the validity of the linear response checked 
experimentally. 
 
5.2.2 Results and discussion for N-photoPDMS 
 
Using the procedure described above, it was possible to assess the limit of resolution attained 
with N-photoPDMS. Fig. 5.2.3 shows the patterns designed after development the N-
photoPDMS. The line-shape patterns were opened and allowed us to determine a resolution 
because they are periodically arranged. As shown in figure 5.2.3 (b), 20µm resolution is 
reached at wafer level and the thickness of the N-photoPDMS used in these experiments is 27 
µm. Reproducible and proper microchannels were obtained.  
 

 20µm 

40 µm 

100 µm 

60 µm 

150 µm 
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Fig.5.2.3. (a) N- PhotoPDMS showing limit resolution, (b) Enlarged channel illustrating excellent and proper 
20µm, 50µm channels, exposure time of 1 min. 

 
Periodical patterns measuring 5µm, 8µm and 10µm were not successfully developed as Fig. 
5.2.3 (a) illustrates. From 20µm width, patterns were properly developed on wafer level, thus 
alignments on wafer scale for lab-on-chips application can be accomplished.  

The same process was also used by our collaborators, in the elaboration of a system 
incorporated in a microactuator, obtaining cavities of 500 µm in width for 125 µm in height. 
Hence, it is possible to use this N-photoPDMS for several thicknesses requirements. Fig. 5.2.4 
demonstrates that this method can be used to elaborate either large patterns or small 
micrometric ones. In some cases, isolated patterns as small as a few micrometers, were clearly 
obtained, pictured in figure 5.2.4 (d).  

 

a)      
 

c)      d)  
 
Fig.5.2.4. (a) Square-shape cavities (1mm x 1mm x 125µm). (b) Notched wheels (internal diameter: 85µm, with 

13µm width, and 27µm thick). (c) Lines of 3µm and 4 µm width. 
 

5.2.2.1 Process optimisation in N-photoPDMS 
 
The N-photoPDMS process was optimised by examining the effect of the UV exposure time. 
One minute was determined as the optimum time. To do this, different parts of the wafer were 
irradiated using the same EVG 620 aligner machine, increasing from 30 s to 300 s by steps of 
30s. 
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The minimum gap between the wafer and the mask we were able to use was 50µm, to avoid a 
contact between the mask and the uncrosslinked polymer. After finishing the process, a study 
of the mechanical properties was conducted by piezorheometry, this study was performed by 
our collaborator at Institut Charles Sandron in Strasbourg France. This method has the 
advantage of being a technique specifically designed for thin films characterisation. The 
results obtained on a 100 µm thickness sample are shown in Fig. 5.2.5. The curves obtained 
are typical of a solid such as chemical gel or elastomer with a constant storage modulus and a 
loss modulus that can be seen at high frequencies. Thus, the material is gel-like with a 
Young’s modulus of 0.45 MPa (assuming E = 3G’), which is slightly lower than Sylgard’s 
which is usually described between 750kPa up to 4MPa.  
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Fig.5.2.5. Determination of mechanical properties of N-photoPDMS RMS083 by piezorheometry. The straight 
line represents the terminal behaviour of G’’ (G’’ ~ F). 

 
5.2.3 Results and discussion for P-photoPDMS 
 
The limit of resolution for P-photoPDMS was also determined. Fig. 5.2.6 shows the patterns 
after development. As in the complementary N-photoPDMS technique, the line-shape patterns 
were opened and allowed us also to determine a resolution. Proper microchannels were 
obtained at wafer level.  
    Periodical patterns measuring 20 µm and 40 µm were not successfully developed as Fig. 
5.2.6 (a) illustrates. Patterns of 60 µm width were developed on wafer level. In this case, the 
limit resolution is not as high as in N-photoPDMS. However by using this kind of 
photoPDMS, it is not necessary to perform a surface chemistry to enhance adhesion of the P-
photoPDMS. Furthermore, the P-PhotoPDMS keeps its Young’s modulus (Sylgard 184 
Young modulus) as shown in the literature.  
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Fig.5.2.6. (a) Optical dark field image of the P-PhotoPDMS showing its limit resolution, (b) enlarged channel, (c) 

proper 80µm channel, exposure time of 10 min. 
 
 5.2.3.1 Process optimisation in P-photoPDMS  
  
The P-photoPDMS process was also optimised by examining the effect of the UV exposure 
time. To do this, different parts of the wafer were irradiated using the same EVG 620 aligner 
machine, increasing from 120 s to 1200 s, by steps of 120 s. Ten minutes were determined as 
the optimum time. If less time of exposition is used, some patterns are not properly developed 
and if it is exposed for more time, the patterns appear bigger after development and it is not 
possible to determine the limit resolution. 

The minimum gap between the wafer and the mask we were able to use was 70 µm, to 
avoid a contact between the mask and the uncrosslinked polymer. Mechanical properties were 
not conducted in this case since they are already described in the literature. 

I tested several similar PDMS, for example, the RTV615 from GE Bayer silicones 
purchased from AB Chimie Sarl France or DMS-V35 purchased from GELEST. In these 
kinds of silicones, the irradiated parts remain uncured because they contain vinyl group which 
react with benzophenone radicals [15]. However these two types of PDMS did not work as 
the Syligard 184 did. Probably the quantity of the vinyl termination in the Sylgard can be the 
reason but perhaps because of other parameters found in each silicone. A table comparing the 
RTV 615 and the Sylgard 184 is presented in this chapter (section three).  

 
5.2.4 Wafer scale microfluidic realisation for viable LOCs 
 
Figure 5.2.7 shows two complete cells of the 96 elaborated in the wafer. They are made of N-
photoPDMS and P-photoPDMS, respectively.  
    Images demonstrate that these two complementary techniques can be used to a large variety 
of applications, for example if an acrylate-based surface chemistry is not possible to used on 
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the wafer surface, P-photoPDMS is more convenient. Otherwise, if a higher resolution is 
required, the use of N-photoPDMS is more convenient. We decided to use N-photoPDMS to 
demonstrate a viable application.  
 

 
 

Fig.5.2.7. (a) Optical image of one cell realised by using N-photoPDMS, (b) Optical image of one cell realised 
by using P-photoPDMS. 

 
To demonstrate and application, microchannels were then aligned on 768 interdigitated 
nanoelectrodes devices (IND), previously demonstrated in chapter 2. 
    Then, subsequently two N-photoPDMS microchannels (20µm) were aligned on each of the 
96 cells (7 mm X 7 mm).  We remember that each cell has two columns containing four IND 
(and 4 micropads measuring 400 µm x 400 µm on each side to be used for electrical 
characterisations of the device), see Fig.5.2.8. Well defined N-photoPDMS microfluidic 
channels (20 µm) fabricated and aligned in one step at wafer level can be seen on this figure. 
Apertures on each cell side can be used for microbondings step. 
 

                                   
Fig.5.2.8. N-PhotoPDMS alignment on wafer scale for functional LOCs applications, (a) close-up showing 

excellent alignment in each 7mmx7mm cell, (b)(c) Close-up of microchannels successfully aligned and a SEM 
image of one IND (45nm width each electrode). 
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The 96 cells of the 4 inch wafer containing N-photoPDMS-aligned microchannels (20 µm 
width) were cut and some of them encapsulated in TO-8 cases. See Fig.5.2.9, these functional 
nanobiosensors devices (encapsulated and integrated with microfluidic channels) have been 
successfully characterised electrically, presenting electrical tunnel conduction and coulomb 
blockade, at room temperature as demonstrated in chapter 3. Then our devices based on 
multitunnel junction conductivities are almost already to be used to detect, at high sensitivity, 
cancer biomarkers.  
 
                                      

 
 

Fig.5.2.9. (a) one cell (7 mm X 7 mm) encapsulated in TO-8 case showing microbonding into the apertures 
realised by using N-photoPDMS. 

 
Microfluidic channels developed by N-photoPDMS are useful to guide the biological flow to 
be analysed. A full encapsulated cell is pictured in Fig. 5.2.10. It shows also both 
microchannels on the right picture and microbondings. 
 
 

                              
 

Fig.5.2.10. One cell encapsulated in TO-8, on the right a cell showing microbondings and both microchannels 
properly aligned on IND. 

 
5.2.5 Conclusions 
 
In the present section, we have presented two kinds of photoPDMS to realise complex 
microfludic devices. 
    One of these kinds of photoPDMS is negative type which was named N-PhotoPDMS. It 
was bonded covalently on surfaces, reaching a resolution of 20 µm to make microchannels on 
4 in. wafer. In a second step, mechanical characterisations of N-photoPDMS were performed 
by piezorheometry technique. 
    We have also improved the development in the other positive type photoPDMS, named P-

200µm 
2cm 

200µm 
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photoPDMS. It allowed us to use chrome low cost patterned mask and principally we were 
able to reach a resolution of 60µm on wafer scale.   
    We have demonstrated possible applications by aligning 192 microchannels (20 µm) on a 
previously demonstrated wafer scale realisation of 768 interdigitated nanoelectrodes devices 
(IND) serving as nanobiosensors, that are part of the project we are presenting in this thesis. 
These cells were firstly cut and encapsulated into TO-8 cases.  Secondly microbondings were 
successfully performed on the apertures elaborated by N-photoPDMS.  
    Finally, these multitunnel junction devices will be used to detect, at high sensitivity, cancer 
biomarkers by a biology and chemistry presented in chapter 4 (submitted [20]). However 
before presenting the complete integration and biological validation, we present, in this 
chapter, the methodology we will follow to encapsulate and interconnect the photoPDMS-
based microchannels. 
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5.3 INTERCONNECTION AND BONDING MICROFLUIDICS 
 
One of the most delicate steps in the micro/nano fluidic systems design and development is 
the realisation of tube interconnections but also device packaging [1]. One of the reasons is 
the dimensional incompatibility in connecting micro or nano-scale devices to macro-scale 
devices. Indeed, mechanical problems and leakage fluidic are important bottlenecks in the 
system. Several approaches proposed for packaging and interconnect fluidic devices using 
PDMS have been proposed [2-7] and recently some robust systems too [8][9]. However, the 
holes for connecting tubes are not proper to avoid leakage problems, and the systems are not 
intended for a parallel alignment and realisation of inlets and outlets on wafer scale. 

In this second section of this chapter, we present the realisation and interconnection of 3-D 
microfluidic systems on 4 in. wafer scale. To do that, SU-8 master mould is elaborated by 
stacking two layers of 10µm and 500µm. Next, PDMS is poured onto the 4 in. master mould 
which allows obtaining PDMS with ~480 µm thick and residual thin PDMS films (~20 µm) 
on the inlets-outlets emplacement. Physical etching method is used then to remove these 
residual films. Finally, we obtain proper circular inlets-outlets interconnecting holes.  

On the other hand, as written in the introduction section the polydimethylsiloxane (PDMS) 
is the silicone material most often used in microfluidic systems, however this unmodified 
PDMS (called also pristine PDMS) has some disadvantages e.g. absorption of organic 
solvents, poor electroosmotic flow (EOF) or poor mechanical strength [10]. The 
reinforcement of elastomers like PDMS is especially important for some applications because 
some physical properties like modulus, tensile strength or tear strength increase 
(characteristics recently summarised by H.Zou et al. [11]). To reinforce elastomers, chemists 
often use nanoparticle fillers as fumed silica. One method is called blending; this method 
consists of directly mixing nanoparticles with elatomers. We used this simple method to 
reinforce our PDMS and to obtain a PDMS nanocomposite by mixing silica nanoparticles into 
PDMS to improve its mechanical properties. 

Otherwise, a few works have been reported to etch pristine PDMS [12-14] and there have 
not been works dedicated to the etching of PDMS nanocomposite to elaborate apertures (vias) 
for tube interconnections and packaging realisation on 4 in. wafer. Here, we show also that 
homogeneity and rate etching involved in PDMS nanocomposite increases, compared to 
unmodified PDMS.  

Finally, we use typical plasma method to bond a PDMS film on glass wafer, this permits us 
realise pressure characterisations. We propose also another chemical compound we elaborated, 
to bond the PDMS onto the glass wafer if it is not possible to use the common plasma method. 
Hence, this section will enable us to encapsulate the microchannels made of photoPDMS, and 
to bond the interconnecting tubes to inject the biological flow to be analysed.   
 
5.3.1 Methods, material and experimental section 

 
5.3.1.1 SU-8 photoresist process 
 

First, we present here the elaboration of the 4 in. mould. All designs were realised in CleWin 
and printed onto transparent glass masks (low cost) using a direct-laser based generator 
machine for masks fabrication (Heidelberg DWL 200L, Germany). 
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    To fabricate the mould, two layers were used which allow obtaining a homogenous PDMS 
film of ~480 µm thick and thin PDMS films of ~20µm thick placed in interconnecting tubes 
emplacement. In these conditions, this methodology prevents us from using a glass capillary 
to punch the PDMS after casting it, as reported elsewhere [3], because by punching it is not 
possible to obtain proper holes apertures that avoid leakage. Furthermore, it is not a parallel 
method for 4 in. wafer realisation.  
    The methodology followed here consisted in doing first the 10µm thickness process. Then, 
SU-8 3005 (Microchem Corp) was spin coated at 900 rpm, soft cure was conducted at 65°C 
during 60s. The exposure was performed in a Suss Microtec MA-150 (100mJ).The post bake 
was accomplished at 95°C during 3 min. and the wafer was developed  in 
PropyleneGlycolmono MethylEther Acetate (PGMEA), followed by rinsing in isopronanol 
(IPA). Finally a hard bake was conducted at 125°C during 1min.  

SU-8 (10µm thick) defines microchannels in each cell. Microchannels are 10µm height, 
10µm width in the middle and 50µm width on the border. Fig. 5.3.1 schematises in 3D the 
two SU-8 processes. The design has four circle-shape patterns to define inlet and outlet 
interconnection holes. The design has also four rectangular-shape patterns which serve to 
realise microbondings after being opened as in the case of photoPDMS.  In the middle, the 
design has several lines, in this case, employed as moiré method (interference patterns) to 
realise alignments in each cell.  

 
Fig. 5.3.1. Schematic 3D illustration of one cell to define microfluidic patterns in SU-8 on two layers of different 

thicknesses for wafer scale. 
 
     A second SU-8 (500 µm) layer on SU8-3050 was then deposited. To improve adherence 
between the two layers, oxygen plasma was applied for 2 min at 1000 W with a Tepla model 
300 plasma machine. The process consists of depositing three layers of SU-8 3050 photoresist 
(Microchem Corp). They were spin coated at 800 rpm during 30 s and cured at 95°C for 3h 
each deposition. To depose the three layers, a fully automated photoresist coater-developer 
machine (EVG-120) was employed. This machine ensures a homogenous SU-8-master mould 
thickness. The alignment and exposure were performed in the same Suss Microtec MA-150 
used for 10µm process. The post exposure bake was done at 95°C during 5 min. Next, the 
SU-8 was developed in PGMEA and rinsed with isopronanol (IPA). Finally the hard bake was 
preformed at 125°C. See Fig. 5.3.1. 
    Part of the final 4 in. wafer mould is presented in Fig. 5.3.2 (a), (b). Fig. 5.3.2(b) was taken 
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by an ultra-high resolution scanning transmission electronic microscope FE-SEM (Hitachi S-
4800).  
 

                     
                          (a)                                                                                     (b) 

 
Fig. 5.3.2. (a) View of the full 4 in. SU-8 mould showing an alignment mark at the top (right), (b) SEM 

photograph of one cell showing both SU-8 (10µm) and SU-8 (500 µm) processes. 
 

5.3.1.2 Casting process  
 
Unmodified PDMS (sylgard 184), from Dow Corning Corp, was obtained by mixing 10:1 in 
volume ratio with its curing agent. To obtain the PDMS nanocomposite, silicon dioxide 
amorphous nanoparticles were mixed directly (fumed silica of 20nm purchased from 
GELEST(R)) at 8% in weight (wt) with unmodified PDMS. We degassed both silicones for 10 
min to remove the bubbles.   
    For the casting process, the 4 in. master mould was positioned in a flat aluminium piece we 
realised which ensures its stability. After pouring the PDMS, it was covered with a glass 
wafer. A press was fabricated; it allowed us to obtain a homogenous thickness PDMS layer. 
The press has two metal plates that provide uniform force onto the stack (optimum force has 
not yet been determined). Both types of PDMS were cured during 4h at 100°C. Fig.5.3.3 
illustrates the mentioned press, the SU-8 master mould and the glass wafer to cover the stack. 
 

 
 

Fig.5.3.3. Press for curing the silicon for obtaining a homogenous film thickness. 
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5.3.1.3 PDMS Etching 
 
After curing the PDMS, an etching was realised. To do this an Aviza technology Omega 201 
machine as Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE) was used with a 
SF6/O2 (3:1) gas mixture at 80W RF platen 500W RF Coil and 20 mTorr. In these conditions 
an etching was performed in the 20 µm thick residual PDMS films formed at the top of inlets-
outlets emplacement on the SU-8 master. The etching rate was around 330 nm/min. This 
allowed us to obtain 96 cells with proper circular opened holes at the same time, with the 
intention of been aligned and integrated into the nanobiosensor developed in this thesis.  
     Excellent opened patterns and good uniformity was successfully obtained on all the 4 inch 
wafer .See Fig. 5.3.4. 

 
 

Fig.5.3.4. etched PDMS at wafer level (96 cells of 7 mm x7 mm each one). 
 
Fig. 5.3.4 illustrates an etching performed in both thickness-homogenous unmodified PDMS 
and PDMS nanocomposite. Otherwise, PDMS nanocomposite (opaque PDMS) contains silica 
nanoparticles at 8% wt. The so-called opaque PDMS film can nevertheless be aligned because 
visible light passes through it.  
   Both kinds of PDMS had the same thickness and the same etching parameters were used. 
Nevertheless, we observed faster and homogenous etching rate for PDMS nanocomposite thus 
successfully etching in entire PDMS nanocomposite was obtained. On the contrary, we were 
not able to obtain an etching in the entire 4 in. unmodified PDMS. Images of Fig. 5.3.4 
corresponding to unmodified PDMS illustrate just a part of etched PDMS which was obtained 
at the border of the 4 in. wafer (in the centre of the unmodified PDMS, was not properly 
etched). 
    Thermal stability enhancement in PDMS nanocomposites [11] due to inorganic 
nanoparticles into polymer matrix probably explains the etching improvement. Indeed, 
nanoparticles have a huge surface to volume ratio, thus they experience more important 
contact area with the fluorine-based plasma gas used to etch this polymer. Finally, gas 
transport properties change in PDMS nanocomposites as solubility, diffusivity, permeability 
[11] and definitely they participate in the improvement etching rate. We think that other 
parameters can be involved in this improvement. Hence, a deep study would be suitable. 
    A single cell is pictured in Fig. 5.3.5 (a) and (b), optical images show proper 
interconnecting holes in PDMS nanocomposite. Fig. 5.3.5 (b) (PDMS placed on a blue wafer 
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that explains the blue colour) was taken by a Hirox digital video-microscope. Note that 
etching in micro channels realisation (10µm height and 50µm width) is even observable 
(small picture on the right). 
 

 
 

Fig.5.3.5. (a) PDMS etched for circulars holes, (b) One 3D 7mm X 7 mm cell showing µchannels and etched 
apertures. 

 
5.3.2 Results and discussion 
 
To interconnect microfluidic systems I used FEP® Teflon tubes (O.D. 1.02mm and I.D. 
0.5mm) Flangeless TM FEP Fittings for 1/16 OD (Upchurch Scientific, purchased from 
Cluzeau info lab. France). The microfluidic system is conceived to be connected to a flow 
control system, a syringe system, a peristaltic pump or a dedicated pressure tool (FluigentR). 
To do this connection, tubes (I.D. 500µm, O.D. 1mm), finger, tight fittings, and ¼-28 Coned 
Finger tight were purchased (Upchurch Scientific). 
    I tested several adherent resists to seal the tubes into the PDMS emplacement, for example 
the E505 from Epotecny® France, and the N-008 from Cluzeau info lab. France and they did 
not work because they were either too viscous or not enough viscous to maintain the tubes 
into the holes. Finally, the E501 resist model from Cluzeau info lab. France was used since it 
had the optimum parameters to reach our purpose. Fig. 5.3.6 (a) pictures four sealed tubes in a 
7 mm x 7 mm cell. Tubes were sealed at the same time by using a polymer piece we 
fabricated. These tubes can serve as inlet and outlets connexions. 
 

    
 

Fig.5.3.6 (a) Four FEP tubes sealed. (b) Close-up of 4 tubes sealed. (c) Interconnection of two tubes in a TO-8 
case. 
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Each PDMS cell can be aligned and encapsulated in TO-8 cases as part of the integrated 
nanobiosensor we present in this thesis as illustrated in 5.3.6 (c). Originally, each PDMS cell 
had been conceived to integrate microchannels and interconnecting holes (at that time, 
photoPDMS had not been developed) then the cells had been intended to be aligned directly 
on the interdigitated nanoelectrodes devices (IND). Nevertheless in our final integration, each 
PDMS cell will serve us just to maintain the tubes and to encapsulate the photoPDMS-based 
microchannels. Thereof, we use in this design and technological process to conduct pressure 
tests. 
    To realise these tests, some PDMS cells were cut and bonded on a 4-in transparent glass 
wafer by using three adherent methods. First, we used the typical plasma method to create 
hydroxyl functional groups, employing a Tepla model 300 plasma machine. The second 
technique consisted of using a UV-curable resist purchased for EpotecnyR France. The resist 
is the OAD393 sensitive from 250 nm to 400 nm with a peak absorption at 365nm. To bond 
one cell, irradiation at 70 mW/cm2 for 2 min (standard NUV) was used. Finally I elaborated 
an acrylic-based (HEMA) adherent compound mixed with a photoinitiator that has an UV 
peak at 360 nm (the same photoinitiator used in P-photoPDMS). The HEMA based adherent 
compound is biocompatible for our biological applications; this is the reason why we 
employed this adherent resist too.  
 

5.3.2.1 Pressure system tools  
 

To determine the leakage pressure in PDMS microfluidic system, that is the maximum 
working pressure it can stand, some tests were conducted with a pressure tool system called 
MFCS which stands for MicroFluidic Control System (Fluigent®). The system was conceived 
and fabricated at Institute Curie in France [15]. MFCS regulates pressure with feed-back 
control and allows a precise pressure control (steps: 16 µbar) maintaining a stable flow in 
microfluidic and nanofluidic systems. This system avoids plug effects or unwanted 
hydrostatic flows obtained with peristaltic or syringe systems as Fütterer et al. reported [16]. 
Furthermore, in this microfluidic system, tubes are not in direct contact with the push pressure 
(driven pressure) tubes. Fig. 5.3.7 illustrates the differences between the MCFS and a typical 
syringe pump.  
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Fig.5.3.7. Images from Fluigent® comparing the pressure tool system (MCFS) and a simple syringe. 

 
5.3.2.2 Interconnection pressure tests 

 
One sealed tube was connected to the MCFS as Fig. 5.3.8 pictures. Pressure was imposed, 
starting from 10 mbar and then raised gently to the maximum pressure the system can supply 
(1.2 bars). After 3 minutes operating at this pressure, a leakage was observed at side of the 
microchannels but not around the proper holes. From these experiments we concluded that 
our PDMS interconnects can stand a pressure up to 1.2 bars if using the acrylic-based (HEMA) 
adhesive resist, we elaborated, as well as if using the other adherent methodologies presented 
here.  
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Fig.5.3.8. One cell PDMS connected by tubes to MFCS for pressure tests realisation. 
 
    It is formulated the fluidic resistance (hydrodynamic resistance) for a rectangular channel 
with low aspect ratio [17] as: 
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    We have channels of one part with 2 mm length (L), 50µm width (w) and 10 µm height (h), 
and another part of the same channel measuring L = 1mm, w=10µm, h=10µm. The water 
dynamic viscosity µ is 1x10-3Pa.s. If calculating, we obtain an important resistance of ~1016 

Pa.s/m3 for these values. Otherwise a single channel contains ~1nL. The volume flow Q is a 
function of the external applied pressure difference P, and the resistance R, so we have Q=P/R 
[15][17]. A maximum pressure driven P=1.2 bars (120kPa) has been applied, thus we obtain 
Q=1µl/min, and a mean velocity of 370000µm/s. We infer from these results that leakage 
occurs after some minutes of flow, because of the size of the channels (10µm width).  
    This demonstrates that for 10µm-width channels, our technology enables to induce a 
significant flow without leakage. To perform successful typical biomedical applications, we 
think that our system is adequate because we do not need a pressure as high as 1.2 bars. 
Epoxy resist was not used for reinforcing the PDMS bonding with the wafer glass. However 
this system could be encapsulated in a TO-8 case using the mentioned epoxy resist to 
reinforce the device and obtain a more robust device.  
 
5.3.3 Conclusions 

 
We have shown in the present section (interconnecting development) of this chapter, the use 
of two different levels processes of SU8 fabrication. These processes have been combined 
with a PDMS dry etching to obtain proper apertures to connect tubes.  
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Wafer scale etching on PDMS was improved by using silica nanoparticles embedded into 
unmodified PDMS (pristine PDMS) obtaining a PDMS nanocomposite in which a few 
pressure tests were performed by using pressure tool system (MFCS). This kind of pressure 
system avoids typical effects obtained with other systems. 

Finally, this technological development will be not intended to integrate microfluidic 
channels but to encapsulate the previous photoPDMS-based microfluidic channels, thus each 
cell of the 96 cells of the 4 in. wafer will contain open interconnecting holes. This technique 
can be adapted also to realise more complex 3-D microfluidic systems based lab-on-chip. 
 
5.3.4 References 
 
[1] Naga S. Korivi, Li Jiang, “A generic chip to word Fluidic interconnect system for 
microfluidic devices”,39th Southearn Sympsium on System Theory IEEE, Macon GA, 2007. 
 
[2] Hofmann O., Niedermann P., Manz A., “Modular approach to fabrication of three-
dimensional microchannel systems in PDMS-application to sheath flow microchip”, Lab on a 
Chip, 1,2001, p.108-114. 
 
[3] Li Shifeng, Chen Shaochen, “Polydimethylsioxane Fluidic Interconnects for microfluidic       
systems”, IEEE Transations on Advanced Packaging, 2003, 26, p.242-247. 
 
           Shifeng Li et al. “Disposable polydimethylsiloxane/silicon hybrid chips for protein 
detection”, Biosensors and Bioelectronics, 21, 2005, p. 574-580.  
 
[4] A. V. Pattekar and M. V. Kothare, “Novel microfluidic interconnectors for high 
temperature and pressure application”, J. Micromech. Microeng. 2003, 13, p.337-345. 
 
[5] Christensen A. M., Chang-Yen D. A., Gale B., “Characterization of interconnects used in 
PDMS microfluidic systems”, J. Micromech. Microeng. 2005, 15, p.928-932. 
 
[6] Han Ki-Ho, Frazier A. Bruno, “Reliability aspects of packaging and integration 
technology for microfluidic systems”IEEE Trans. Device Materials Reliab., 2005, 5, p.452-
457. 
 
[7] Plecis Adrien, Chen Yong, “Fabrication of microfluidic devices based on glass-PDMS 
technology”, Microelectronic Engeneering ,84, 2007, p.1265-1269. 
 
[8]. Murphy E. R, Inoue T., Sahoo H. R., Zaborenko N., Jensen K. F., “Solder-based chip-to-
tube and chip-to-chip packaging for microfluidic devices” , Lab on a Chip, 2007, 7, p.1309-
1314. 
 
[9] Mair D. A., Geiger E., Pisano A P., Fréchet JM. J., Svec F, “Injection molded microfluidic 
chips featuring integrated interconnects” Lab on a Chip, 2006, 6, p.1346-1354. 
 
[10] Sia S. K, Whitesides G. M., “Microfluidic devices fabricated in Poly(dimethylsiloxane) 
for biological studies ”,  Electrophoresis, 2003, 24, p.3563-3676. 



Chapter V 

 
 

136

 
[11] H. Zou, S. Wu, J. Shen, “Polymer/silica nanocomposites: Preparation, characterization, 
properties, and applications, Chem. Rev., 2008, 108 (9), p. 3893-3957 
         S. S. Ray, M Okamoto, Prog. Polym. Sci., 2003, 28, 1539. 
 
[12] M. E. Vlachopoulou, A. Tserepi, N. Vourdas, E. Gogolides, K. Misiakos, “Patterning of 
thick polymeric substrates for the fabrication of microfluidic devices”, Journal of Physics: 
Conference Series, 2005, 10, 293-296. 
 
[13] J. Garra, T. Long, J. Currie, T. Schneider, R. White, M. Paranjape, “Dry etching of 
polydimethylsiloxane for microfluidic systems”, J. Vac. Sci. Techno Al., 2002, 20 (3), p.975-
982. 
 
[14] D. Szmigiel, K. Domanski, P. Prokaryn, P. Grabiec, "Deep etching of biocompatible 
silicone rubber”, Microelectronic Eng., 2006, 83, p.1178-1181. 
 
[15] Fütterer C., MicroFludics Control System: User manual, Fluigent MFCS software, 2006. 
 
[16]  Fütterer C., Minc N., Bormuth V., Codarbox JH., Laval P., Rossier J., Viovy J. L., 
'Injection and flow Control in Microchannels, Lab on a Chip, 2004, 4, p.351-356. 
 
[17] Beebe D. J., G. A. Mensing, G. M. Walker,“Physics and applications of microfluidics in 
biology”, Annu.Rev. Biomed.Eng, 2002, 4, p.261-286. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter V 

 
 

137

5.4 COMPENSATION OF MISALIGNMENT IN POLYDIMETHYLSILOXANE (PDMS)  
 
As written in the introduction section, shrinkage is an inevitable phenomenon due to a thermal 
expansion occurred when curing classical PDMS. This shrinkage produces deleterious 
misalignment when patterned-PDMS films are aligned at wafer level. Few works have 
reported this problem. However in a recent published paper, Seok Woo and Seung S. Lee [1] 
studied the shrinkage ratio concerning curing PDMS conditions like temp/time or thickness of 
the PDMS. They proposed a solution for diminishing the PDMS shrinkage, consisting in 
elaborating the master mould with an offset. By doing this offset, patterns appeared bigger 
than the patterns where the PDMS is supposed to be aligned, so it is necessary to take in 
consideration the shrinkage ratio of the PDMS. They concluded in their paper, that shrinkage 
ratio increases linearly with the PDMS curing temperature and the mixing ratio of diluents, 
however the ratio implication relating the curing agent used in PDMS is complicate to be 
determined.   
    In present final section of this chapter, we adapt the solution proposed above, thus the 
design of the photomask carrying the patterns had been drawn with offsets. To do this a 
previous study of the shrinkage ratio at a fixed temperature is conducted. 
    As written in the interconnection part of this chapter (second section), we will use the 
PDMS film (480µm) to encapsulate, guide and bond the interconnecting tubes. Hence, in this 
section we use the PDMS film just for carrying open circle-shapes used to interconnect the 
tubes and for injecting the biological flow to be tested, because the microchannels will be 
generated by a UV exposure of a positive photoPDMS layer and thus directly aligned on 4 in. 
wafers.   
 
5.4.1 Measurement of the misalignment due to PDMS shrinkage   
 
First, we used the mould decribed in the second section of this chapter. This mould was 
designed with patterns that fit in the mix and match process at 4 in. wafer level, developed in 
chapter 2. PDMS was obtained by mixing 10:1 in volume ratio with its curing agent. The 
curing temperature was 100° C for one hour. After peeling off the PDMS, it was aligned 
manually onto the 4 in. wafer which had previous mix and match processes. To know the 
required shrinkage ratio, it is not necessary to align precisely the PDMS patterns onto the 
wafer, because once positioned the PDMS film, we can compare the measurements taken for 
each cell with a reference (part of a mix and match made of gold). Measures were taken from 
left to right. Fig.5.4.1 pictures just three circles-shape patterns, each one corresponding to a 
different cell, clearly “moving” to left due to the shrinkage (distance between two circles is 7 
mm which is the distance between two cells).   
 
 
 



Chapter V 

 
 

138

     
 
Fig. 5.4.1. Alignment of PDMS using unmodified and first SU-8 master mould to determine the shrinkage ratio.    

 
From the pictures, we observe that the variation between one cell and other (separated by 7 
mm) is ~100 µm. Measures from left to right between the circle-shape patterns and the gold 
pattern, is 99 µm the first, 185 µm the second and 278 µm the third. Measures values were 
taken in the 10 horizontal cells of the 4 in. wafer level. This variation is constant and it is the 
same in vertical direction (for 10 cells too).  
 

5.4.1.2 Improvement on the SU-8 mould master by design offsets 
 
Seok Woo and Seung S. Lee [1] formulated the shrinkage ratio as:  
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Where d is the average value of di and L is the distance from the centre of the wafer. See Fig. 
5.4.2. 

 
 

Fig.5.4.2. Image from [1], schematising the method to determine the shrinkage ratio. 
 

Taking our parameters we find a shrinkage ratio percentage of: 
%1100500

50
1 =×× µm
mm . 

We modified then, the design by augmenting 100µm vertically and horizontally the distance 
between two patterns of two cells. 
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5.4.1.3 Results and discussions  
 

We used the modified master mould (design offsets) to prepare another PDMS film but now 
just having circle-shape patterns as illustrated in Fig.5.4.3. 
 

 
 

Fig.5.4.3. Optical image of one cell in the 4 in. SU-8 master mould.  
 
PDMS was obtained by mixing 10:1 in volume ratio with its curing agent as described above. 
The curing temperature was 100° C during one hour. After peeling off the PDMS, the second 
step consisted of aligning manually the PDMS film to the same 4 in. wafer which had a mix 
and match process. Fig. 5.4.4 pictures just the first three optical images of the alignment. 

 
       

     
 

Fig.5.4.4. Alignment of PDMS using modified mould taking into account the shrinkage ratio. 
 
Images of the figure 5.4.4 illustrate that by increasing the size of the master mould, we can 
compensate the shrinkage ratio for more that 92%. The first distance between the circle-shape 
patterns and the gold pattern, from the left, is 377 µm, the second is 381µm and the third is 
388 µm. As in the case there was not size compensation in the mould, measures were taken in 
the 10 horizontal cells of the 4 in. wafer level. This variation is constant and it is the same in 
vertical way (10 cells too). This correction will enable to align precisely the inlet and outlet 
circle holes on the previous photoPDMS realisation on wafer level.  

Seok Woo and Seung S. Lee have investigated certain parameters which modify the 
shrinkage of PDMS. They used one of the most common PDMS (Sylgard 184, Dow Conring 
Co.) and they found a shrinkage ratio in 4 in. wafer of 1.94% for a curing temperature of 100° 
C [1]. The PDMS film thickness they used was 1.2mm. On the contrary, in my experiences, I 
found 1% of shrinkage ratio for the same curing temperature and for 500 µm PDMS thickness. 
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However I used another PDMS, called RTV615 from GE Bayer silicones purchased from AB 
Chimie France. These two PDMS present slightly different electrical and physical properties. 
Table 5.4.1 summarises the principal characteristics of the two types of PDMS.  From these 
experiments, I think that it is necessary to consider other parameters such as the coefficient of 
thermal conductivity of a specific PDMS to construct a more exact formula to calculate the 
shrinkage ratio. Note in the table, for example, that the tear strength value is different between 
the two PDMS.  I think it is necessary to consider the differential equation of the law of heat 
conduction (Fourier’s law) as well as other material parameters as the width of the PDMS 
film. Then, a deep mathematical model and simulation study are necessary.  

 
Table 5.4.1. comparison characteristics between sylgard 184 and RTV 615 from fabricant [2][3]. 

 
5.4.2 Conclusions and perspectives 
  
In this part of this chapter we have compensated for the shrinkage involved in classical PDMS 
by increasing the size of the master mould used to fabricate the PDMS film (500µm thick). 
This film serves to encapsulate the photoPDMS-based microchannels like presented in this 
section of the chapter. Finally, this encapsulation has been engineered as follows: I have 
modified the size of the circle-shape hole diameter made of photoPDMS (first section of this 
chapter), this permit to fit with the interior diameter (I.D.=500µm) of the interconnecting 
tubes we use. Next modification consisted of making circle-shaped holes in the PDMS film 
(480 µm thick) to encapsulate the microfluidic system, thus circle-shaped holes have a 
diameter of 1mm corresponding to the outside diameter (OD) of each interconnecting tube. 
     



Chapter V 

 
 

141

 
Fig. 5.4.4 illustrates a final sealed encapsulation in one cell. In a device like this, 
interconnecting tubes (as presented in section 2) can be sealed. Complete integration of the 
nanodevices showing sealed tubes is presented in chapter 7.  
 

  
 
Fig.5.4.5. Final alignment and encapsulation using PDMS (480µm thick) onto PhotoPDMS-based  microfluidic 

channels (26 µm thick). 
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Chapter VI  
 

Nanodevices integration with MEMS-based spotter (bioplumes) for 
multiplexed biological deposition  

 
6.1 Introduction  
 
Microarrays are microscope probe spots, or elements that recognise another element named 
target, using the methods described in the general introduction of this thesis, to immobilise the 
elements. Microarrays are suitable to analyse proteins (called proteins microarrays) or 
biomolecules such as DNA (called DNA microarrays). To elaborate these mentioned 
microarrays, several techniques have been proposed involving either direct-contact methods 
like dip-pen nanotechnology (DPN) [1], mechanical microspotting [2], or not direct-contact 
methods like ink-jet [3]. Otherwise; there is an important demand for microarrays based on 
micro and nanotechnologies. In this context, direct-contact methods seem to be the most 
adequate to deliver spots with submicrometer sizes or to elaborate picolitres droplets [4]. In 
this chapter we present a direct-contact device called bioplume.  It is a patented cantilever-
based spotter device that permits to deposit precisely liquid spots from picolitre to femtolitre 
range [5-6]. It was developed by our research staff (nanobiosystems) [7].  
    The objective of this short chapter is to present the so called bioplume device coupled with 
the nanobiosensor-based device we are presenting in this thesis. The purpose is to deposit the 
biomolecules as probes (single chain variable fragments (scFv)-F7N1N2 that recognise the 
active antigen form of RhoA presented in chapter 4) locally on the interdigitated 
nanoelectrodes devices (IND) avoiding cross contamination and using less analytes thereof. 
Indeed, depositions are intended to be conducted into the photoPDMS-based microchannels 
with the object of reaching locally the active zone of the IND. Moreover, before doing this, a 
study of the modification in the IND due to the bioplumes while depositing, is performed. 
 
6.1.1 Bioplumes device fabrication and implementation 
 
Fig.6.1 illustrates the typical technological methodology to realise the bioplumes. To know 
more exactly about their realisation, some publications can be consulted [8]. 

 



Chapter VI 
 

 
 

146

 
 

Fig.6.1. Fabrication process of the cantilever-based spotter device with metallic electrodes called bioplumes, 
picture from [10]. 

                                           
The devices consist in arrays of silicon cantilever that are integrated with channels in their 
tips for liquid loading and deposition. Furthermore each cantilever has a reservoir. The 
loading is made by simple capillarity, however if applying an electrostatic field, loading 
efficiency can increase, either by electrowetting because of the reduction of the contact angle 
or by dielectrophoresis because of the created electrostatic forces [4].  
    The cantilevers are 2 mm long, 120 µm wide and 5 µm thick, so each tip has a square 
section of 25 µm2. Each cantilever is spaced of 360 µm to fit with our interdigitated 
nanoelectrodes devices (IND). Fig. 6.2 illustrates 4 cantilevers and one enlarged tip of one 
“bioplume”. 
         

     
 

Fig.6.2. Optical images of an array of 4 cantilevers and one enlarged image of the tip. 
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One advantage of this kind of cantilever-based spotter device is that it can be easily cleaned 
and loaded with different analytes. Bioplumes have been used to deposit, for example, packed 
polystyrene (PS) nanobeads [9]. Fig. 6.3 (a) illustrates the full spotter system including the 
cantilever arrays, which has four alignment degrees in X, Y, Z and θ. One practical example 
of deposition is water-glycerol ratio droplets deposition as depicted in fig. 6.3 (b) [10]. 
 

 
 

Fig. 6.3. (a) Complete spotter system with four alignment degrees, including the cantilevers arrays, (b) left: 
enlarged optical image of cantilevers and right: picture of spotted droplets (~10µm diameter). Pictures from [10]. 

 
6.1.2 Bioplumes coupled with nanodevices sensors 
 
Originally, we designed each cell’s interdigitated nanoelectrodes devices (IND) to fit with the 
space distance between each cantilever (320 µm). These devices were the first we elaborated, 
that is why the nano-electrodes we used in these experiments are not compensated for 
proximity effects (demonstrated in chapter 1). 
 

 
 

Fig. 6.4. Optical image of bioplumes showing their distance that fits with each IND of the two cell’s columns.  
 
Figure 6.4 illustrates the bioplumes approaching to four IND of one cell. It illustrates that the 
space between bioplumes fits with the space between each column of IND, permitting to 
depose locally the analyte (the probes). Reflected images of bioplumes, on the bottom, on the 
SiO2 surfaces were useful to align precisely the microcantilevers.  
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6.2 Deposition on interdigitated nanoelectrodes devices (IND)  
 
As mentioned, the objective of having these cantilevers compatible with our devices is to 
deposit in parallel fashion different biological compounds named probes. 
    We started the study by investigating the damage of the bioplumes to the IND. Firstly, we 
observed the IND before depositing on them (using an ultra-high resolution scanning 
transmission electronic microscopy FE-SEM Hitachi S-4800). Secondly, we used a compound 
mixture to observe the droplets thus we used water-glycerol ratio (40% v/v), the glycerol 
diminish the evaporation rate of the water and 20% of lysine. We also used a colorant that 
permitted us to observe the droplets shape in more detail. Fig. 6.5 illustrates a local deposition 
of this mentioned liquid mixture.  
 

 
Fig. 6.5.  Local deposition on the 4 IND of one cell’s column, on the left: a ~10µm-diameter droplet. 

 
Figure 6.6 compares two IND, before and after depositing the liquid mixture. The figure 
illustrates that some auto-organised nano-emulsions were formed (~60 nm diameter, certainly 
because of the mixture of glycerine and water) mainly between the nano-electrodes. The 
circles, on the pictures, illustrate that IND is the same, just before deposition (picture on the 
left) and after depositing (picture on the right).   
 

 
 

Fig.6.6. On the left an IND before liquid mixture deposition, on the right the same IND after depositing the 
liquid mixture showing some nano-emulsions. 
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Pictures of fig. 6.6 illustrate the case where there was no damage after bioplumes deposition. 
However the microcantilevers can damage the IND. Figure 6.7 depicts this case, on the right 
the nanoelectrodes are deformed due to the tip of one microcantilever.  
 

 
 

Fig.6.7. On the right an IND before liquid mixture deposition, on the left the same IND after depositing the 
liquid mixture clearly showing damages. 

 
A good alignment is crucial as well as the force applied while depositing, to avoid damage in 
the IND. We obtained the best results by approaching the bioplumes until they almost touch 
the IND, thus depositing rapidly the biological compound (bioplumes have the advantage of 
permitting an easy adjustment since they have a graphical interface to do this task).  
    Otherwise, another parameter that is important to take into consideration is the degree of 
hydrophobicity or hydrophilicity of the surface. For example, if the surface is too hydrophilic, 
the shape and the size of the droplet change considerably.  
    A typical process to render the SiO2 surfaces hydrophilic, a simple treatment by O2 plasma 
(300W) for 30 s was applied by a Tepla model 300 plasma machine (without Faraday cage). 
See Fig. 6.8. 
 

 
 

Fig. 6.8. Droplets deposition on hydrophilic surface (~40 µm diameter). 
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6.3 Deposition into photoPDMS-based microchannels and discussion  
 
Previous study permitted us to know about deposition, using the bioplumes on the IND 
without microchannels, however microchannels are useful to transport the target biomulecules 
to be detected. Our objective was then, to deposit the probes in parallel and reproducible 
manner at wafer level, after elaborating the photoPDMS-based microchannels. By doing this 
methodology, even if the cantilevers were not right-directed onto the active zone, the flow 
could move into the microchannels to reach the active zone (this approach also allows us to 
avoid damaging the IND when performing the deposition). Last step was to encapsulate these 
microchannels with a PDMS film (480 µm thick), as demonstrated in section two of chapter 5. 
Fig. 6.9 demonstrates the compatibleness of the bioplumes with our nanobiosensors based 
devices, after elaborating the photoPDMS based microchannels, hence the bioplumes can 
enter into the microchannels. 

 
 

Fig.6.9. Deposition using bioplumes on part of the 4 in. wafer integration (on the left). Enlarged images of 
photoPDMS microchannels and bioplumes showing compatibility with our technological development (on the 

right). 
6.4 Conclusions   
 
In this short chapter we proposed the use of a microchannels-based system named “bioplume” 
combined with our nanotechnological development. The interest in using this system is to 
depose in parallel and locally the probes into the photoPDMS-based microchannels with the 
objective of reaching locally the active zone of the interdigitated nanoelectrodes devices (IND) 
without damaging the INDs. Depositions were expected to be conducted after different 
technological steps realised in the context of this research thesis. The sequence steps after 
depositing by bioplumes are: mix and match realisation (chapter 2), Ni nanoislands deposition 
and validation (chapter 3), surface chemistry and biology validation (chapter 4), and finally 
after photoPDMS-based microfluidic realisation (section one of chapter 5).  
    In the next and final chapter, we illustrate the full integration, which is expected to follow 
after probes deposition demonstrated in this chapter and if the probes are not possible to be 
injected into the interconnecting tubes as demonstrated in chapter 5. We will also demonstrate 
in next chapter the biomedical application we introduced in the general introduction of this 
research work. 
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Chapter VII  
   

Wafer scale integration of high sensitive electrical nanodevice for label-free 
cancer biomarkers detection  

 
7.1 Introduction  
 
The purpose of our research work has been the realisation of an innovative integrated 
nanobiosensor for detecting in label-free manner and high sensitivity biomolecules involved 
in tumorogenesis. Hence, in this chapter we demonstrate the complete integration of our 
nanobiosensor based devices, followed by characterising electrically the device in real time 
and continuous biological flow. 
    We had schematised the principle of our nanobiosensor in the general introduction of this 
thesis.  This schema is presented once more in Fig.7.1. 
 
 

 
 
 

Fig.7.1. Schema illustrating the principle and integration of one nanobiosensor device. 
 
We remember that the principle of the novel electrical nanobiosensor is based on the variation 
of electrical conductivity in the nanoelectrodes array due to the proteins adsorbed onto Ni 
nanoislands. Ni nanoilsands (~5nm diameter) are embedded into SiO2 and placed between 
interdigitated nanoelectrodes devices (IND) of < 50nm width each electrode. Nanoislands are 
separated each other from ~2 nm. In these conditions, we obtain a nanotransducer, based on 
the variation of electrical tunnelling conductivity through metal nanoislands due to the 
quantum phenomenon called coulomb blockade at room temperature. Because of this 
phenomenon, these nanodevices are ultrasentive to any change that can affect the tunnelling 
conduction, for example, adsorption of proteins. Hence, his-tagged antibodies functioning as 
probe are linked, by coordinative bonds, to the Ni nanoislands, they recognise specifically the 
active RhoA form conformation which functions as target and discriminate against its inactive 
RhoA conformation. An innovative methodology to realise photoPDMS-based microchannels 
(20 µm diameter) was developed and integrated with IND on 4 inch wafer, see Fig. 7.1. 
Encapsulation with an etched PDMS-nanocomposite finalised the integration of the device. 
    Otherwise, to elaborate the different steps of the nanobiosensor integrations on wafer scale, 
we had proposed an organisation chart (organigram) in the general introduction. See Fig. 7.2. 

*Not to scale 



Chapter VII 
 

 
 

156

We proposed two possible technological routes after PhotoPDMS based microchannels 
(chapter 5) to attain our purpose: once on the left containing the chapter 6 (bioplumes) and 
other route on the right of the organigram. Fig. 7.2 (next page) illustrates the selected route 
we used, by a continuous black row, to conduct the electrical and biological tests. We used 
this route since we have not tested yet the photoPDMS based microchannels encapsulation 
with the PDMS film (480µm thick, section 2 of chapter 5) after depositing biomolecules with 
bioplumes as demonstrated in chapter 6. However, it is possible to follow the not selected 
route for reaching full wafer scale integration and multiplexed biological deposition.  
    Finally, we did not use the bioplumes to depose the probes to conduct our final tests, but 
after encapsulating the microchannels we injected the biological flow (probes and targets) 
through the interconnecting tubes like in conventional QCM technology (see the continuous 
black row of the organigram). 
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Fig.7.2. Orgranigram for elaborating the integrated devices and for presenting the research work in the different 
chapters.  The row illustrates the selected route to conduct the biological tests, presented in this chapter. 

 
All steps of the organigram, to achieve the integration, were demonstrated in previous 
chapters and all the parameters were given. Because of this reason, here I present all steps 
linked together, just mentioning the technological developments or the technological 
processes but without repeating the details but showing optical and electronic images of the 
different developments. In this context, the main purpose of this chapter is to present 
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electrical tests to detect selectively biomolecules which have been found as potential 
biomarkers in several cancers.  
 
 
7.2 Nanobiosensors integration at wafer scale  
 
To follow, exactly, the steps illustrated in the mentioned organigram, first 4 in. silicon wafers 
were thermally oxidised to obtain 1 µm of SiO2. The choice of this was because the thickness 
is larger that the characteristic length of the active sensors (nanolectrodes) thus this 
diminishes the parasitic capacitance from the interdigitated nanoelectrode devices (IND) to 
the silicon [1] and  also for keeping compatibleness with previous tests realised in quartz-SiO2 

(1 µm thick) for biological interactions and validation (chapter 4). 
Several photomasks were produced to conduct the different steps of the organigram and 

some of them were used twice. The first technological step consisted of realising the marks 
patterns in wafer scale to align the nanostructures (to more details refer to chapter 2). To do 
this, we used the called here mask 1. Fig. 7.3 illustrates two marks after lift-off process 
(Ti/Au-10nm/20nm). A 4 in. wafer contains 1563 marks like these. 

 

 
 

Fig.7.3. Two gold marks used to align nanoelectrodes at a wafer scale (there are 1532 marks in 4 inch wafer).  
 
 The second step was the realisation of the surface chemistry based on PEG-silane (refer to 

chapter 4, to more details). To do this, we used the photomask used in positive PhotoPDMS 
realisation. The reason is that, this mask (called here mask 5) permitted to realise channels-
shape patterns in a positive resist (AZ1529), in such a way that the PEG-silane would pass 
into the patterns and be covalently bound on the SiO2. Chemical compounds involved in 
preparing the PEG-silane did not remove the photoresist. Indeed a similar methodology was 
reported to realise PEG-passivated proteins microarrays in where some patterns were 
protected with photoresist [2]. The PEG-silane based surface chemistry serve, in our work, as 
anti-biofouling (as described in chapter 4). Indeed, as it is a hydrophilic surface (~37°) as 
demonstrated in chapter 4, it is useful to help in the transport of biological flow. 
   The subsequent step consisted of depositing the Ni nanoislands. To do this, 768 apertures in  
a reversible photoresist (AZ5214) were realised using the mask 2 which carried squares 
patterns of 10 µm X 10 µm. These patterns are aligned right in future interdigitated 
nanoelectrode devices (IND). See fig. 7.4. 
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Fig.7.4. One opened-square shape pattern (10 µm X 10 µm) to depose Ni nanoislands. In a 4 in. wafer, there 
are 768 like this. 

 
After spin-coating the electron-sensitive resist (PMMA) on the wafer, the interdigitated 
nanoelectrodes devices (IND) were realised by e-beam lithography, using the same 
parameters demonstrated in chapter 2.  Fig. 7.5 (a) illustrates a typical optical image of IND 
after developing the PMMA (it is a useful optical image that permits us to infer from the 
successfulness of the IND, hence to observe if an electronic overdose or electronic underdose 
had been applied). Figure 7.5 (a) illustrates also a vertical and a horizontal line made by Raith 
150 (see the rows on the marks) to find the centre of the gold marks and to align each IND as 
mentioned in chapter 2. Fig. 7.5 (b) illustrates a typical optical image after deposing Ti/Au-
10nm/20nm, thus after lift-off process. This image illustrates a square spot (see the row) 
which corresponds to the nanometric Ni film deposition realised before the IND realisation. 
Finally the figure 7.6 illustrates a SEM image of the Ni depositions and IND. 
         

                   
 

Fig.7.5. (a) Optical image of one IND after developing the PMMA, it illustrates the e-beam marks to align 
each IND, (b) typical image of IND after lift-off, illustrating the Ni nanoislands deposition with a row. 

 

 
 

Fig.7.6. SEM image of the Ni nanoislands deposition in one (IND). 
 

     Ni nanoislands 

(a) (b) 
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Next step consisted of using the mask 3 to realise the micropatterns which serve to connect 
the nanostructures. See Fig.7.7. 
 

 
 

Fig.7. One cell illustrating the mix and match to connect the IND and to realise some micropads. 
 
Finally the gold thickening, mentioned in chapter 2, was realised using mask 4. Fig 7.8 
illustrates an Au thickening (1 µm thick) in one IND. 
 

 
 

Fig.7.8. Gold thickening to realise microbondings. 
 
    Until here, the 4 in. wafer contains the nanodevices connected to several plots. Fig. 7.9 (a) 
illustrates an entire 4 in. wafer after mix and mach realisation as realised in chapter 2 ( see the 
organigram of this thesis). 
 

  
 

Fig.7.9. (a) Mix and match on 4 in. wafer level containing the nanoelectrodes and nanoislands, (b) 
photoPDMS based microchannels aligned on the 4 inch wafer of the Fig. 7.9(a). 

(a) (b) 
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The next step consisted of aligning and realising negative photoPDMS based microchannels 
in 4 in. wafer. The final process, at wafer level, is depicted in Fig. 7.9 (b).   
     Fig.7.10 (a) illustrates part of the 4 in. Wafer, demonstrating the alignment and realisation 
of negative photoPDMS based microchannles and Fig. 7.10 (b) depicts a close-up of a single 
cell.  

           
 

Fig.7.10. (a) Optical image of photoPDMS-based microchannels realisation on wafer scale (it is a part of the 
wafer), (b) Close-up of a single cell. 

 
Our original objective was to encapsulate the photoPDMS based microchannels in wafer scale 
by using an etched PDMS nanocomposite (480 µm thick). Therefore we started testing the 
wafer scale encapsulation by using the nano-imprint lithography (NIL) tools of an EVG-620 
machine. However, despite some results, we did not finish the final encapsulation of 
photoPDMS based microchannels. Then we decided to cut all the 98 cells of the previous 
wafer (after realising the photoPDMS based microchannels) and we encapsulated some cells 
into TO-8 cases, after realising the microbonding step. Fig.7.11 illustrates one encapsulated 
cell and an enlarged part of it, demonstrating successful microbondings. Note into the 
microchannels that there are IND. 
 

       
 

Fig.7.11. Left: one encapsulated cell in TO-8 case. Right: enlarged part of the TO-8 case, demonstrating 
successful microbonding into the photoPDMS patterns, this encapsulation contains 4 IND, into the two channels. 
 

400 µm (a) 

(b) 
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We encapsulated manually each cell (7 mm x 7 mm) containing two photoPDMS-based 
microchannels, with the objective of reaching the purpose of this thesis. We used the etched 
PDMS nanocomposite to encapsulate. Fig. 7.12 (a) pictures one cell encapsulated in a TO-8 
case and Fig. 7.12 (b) and Fig. 7.13(c) picture, in different perspectives, the same cell in 
close-up. 
 

 
 

     
 

Fig.7.12. (a) An integrated device, encapsulated in TO-8 with the etch PDMS film (480 µm thick), (a)(b) 
Close-up, in different perspectives, of this successful encapsulation.  

 
To seal the photoPDMS based microchannels with the etched PDMS film (480 µm thick), we 
used an epoxy resin: E501(R) model, purchased from Epotecny France. The choice was 
adopted after testing several models like E505 from Epotecny® France and the N-008 from 
Cluzeau info lab, however they did not work. It is a bicompound epoxy resin that polymerises 
at 65 C during 1 hour or at 25 C during 12h.  The resin was applied manually thus a slight 
film was applied in all the 480 µm PDMS film to avoid filling the photoPDMS channels. In 
these devices the interconnecting tubes can be sealed into the circle shape patterns.  
   To seal four interconnecting tubes, we used the same piece presented in chapter 5 to seal, at 
same time, four tubes. See fig 7.13. 
 

(a)

(b) (c)
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Fig.7.13. (a) Seal of four interconnecting tubes in one TO-8 case, using a polymeric piece. On the left, close-
up of the same TO-8 illustrating the four tubes sealed into the circle-shape patterns of the PDMS film (480 µm). 

 
   To avoid leakage in the sealed tubes, it is critical to seal the tubes once they have well 
entered into the circle-shape opened patterns, furthermore it is important to use also a good 
adherent resist.  Fig. 7.14 (a) depicts a good interconnecting tube sealed. Fig. 7.14 (b) depicts 
the PDMS film (480 µm), the Si/SiO2, a microbonding and the adherent resist.  
 

   
 

 
Fig.7.14. (a) An appropriate sealed tube into the circle-shape patterns, on the left, the tube showing the 

adherent resin used. 
 

To do the electrical tests, we place placed one device in a faraday cup, made of metal to 
avoid electromagnetic noise and optical noise described in chapter 4. The piece, made of 
polymer, was used to guide and mainly to maintain the interconnecting tubes. The tubes were 
placed passing thought the metal case as we could to cover the faraday case. Finally the 
integrated device (TO-8 case) was soldered in a printed circuit to connect the electrical wires.  
We used a peristaltic pump to inject the flow. It is the peristaltic pump of the quartz crystal 
microbalance (QCM-D) used in chapter 4 to validate the bimolecular interaction.  See Fig. 
7.15 (a). 
 

  500 µm 

500 µm 
500 µm 

Si/SiO2 PDMS (480 µm)    Microbonding 

Adherent 
epoxy resin 

Proper sealed tube into  
A circle shape pattern 

(a) (b) 

7mm
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Fig.7.15. (a) Optical images of our soldered device in a printed circuit, placed into faraday cup to avoid 
electromagnetic and optical noise. The four interconnecting tubes go through the metal case. Images showing the 

connexion of electrical wires, and the Keithley 4200 to apply voltages and register the I(V) data and graphs. 
 

7.3 Biological tests  
  
Here, we present preliminary tests of biomolecule detection. We had never tested these kinds 
of Multitunnel Junction Devices (MTJ) coupled with biomolecules. Furthermore there are not 
works or papers in the specialised literature. Then, we decided in conjunction with physicists 
and biologists, to start our experiences by measuring the electrical response of our 
nanobiosensor based integrated devices (NID) after drying the antibodies and antigens. The 
principal reason, we thought, was that if doing the electrical tests in wet conditions (in 
aqueous solution thus in biological continuous flow) short circuit responses could be obtained. 
Clearly by doing this methodology, we can not be sure that the biomolecules keep their 
tertiary and quaternary structure (conformations) since they are in “dry” condition, otherwise 
perhaps some water molecules remained. This uncertain methodology is not realised in 
typical molecular biology tests such as enzyme-linked immunosorbent assay (ELISA). 
However, it was necessary to investigate our devices in these “dry” conditions, although in a 
second step a few electrical tests were realised in wet conditions (in aqueous solution so 
without drying the biomolecules).  
    Next graphs have been plotted, from the data files generated in Keithley 4200 machine, 
with origin-8 software. 
 
 
 
 
 
 

Electrical connections  

Interconecting 
tubes 

Electrical wires 
(Triax cables) 

keithley 4200 to 
 I(V) curves 

Peristatic pump of 
the QCM-D 
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7.3.1 Dry conditions  
 
The methodology to realise the biological tests, in dry conditions, is as follows:  
 
Note: We used for all tests, hepes buffer PH 7.5 with 5mM of MgCl2 (to conserve the active 
or inactive conformation of RhoA when adsorbing the biomolecules) henceforth called hepes 
buffer solutions (HBS). 
    First, an injection of antibodies (scFv F7N1N2) at 40µg/ml in HBS was conducted (mass 
concentration similar to our QCM experiments of chapter four). Then, an “incubation” period 
for more than 40min was performed. Next step consisted of rinsing with HBS, finally rinse 
with de-ionised water. To dry the biomolecules, we used dry air during few seconds. After 
this methodology an I(V)  measure was realised. 
 

A) Results  
 
Fig. 7.16 depicts the I(V) plot of the antibodies (scFv F7N1N2) response .  
 
 

 
Fig.7.16. I(V) graph after antibodies (scFv F7N1N2) incubation and drying. 

 
This graph (A) is a typical response of electrical tunnel conduction through the Ni nanoislands 
such as presented in chapter 3. However, here the curve is not symmetrical but not 
substantially noisy altogether. This asymmetrical shape can be due to the influence of 
biolomecules. Rather, despite this response shape, this graph can allow us to infer from the 
future adsorption of the subsequent biomolecules. 
    The mentioned adsorption is expected to change the shape of the curve, mainly change the 
coulomb gap. However we desired the inactive form of RhoA do not change significantly the 
curve of Fig. 7.16 but when the active form of RhoA were adsorbed, the same graph changed 
substantially. Next steps will consist of testing the inactive Rho A response and subsequently 
the active form of Rho A. 
 

A
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The antibodies GST-RhoA GDP (inactive form of RhoA) were prepared with HBS at 
500ng/ml and they were injected. Next step was to rinse with HBS and finally rinse with 
deionised water. To dry the biomolecules we used dry air during few seconds. After this 
methodology an I(V) graph was plotted, by sweeping a voltage from  -4 V to 4V. See Fig. 
7.17. 

 
Fig.7.17. I(V) graph after antibodies  incubation(scFv F7N1N2) and GST-RhoA GDP (inactive 

conformation) incubation and drying. 
 

Slight variation can be observed in previous curve referring to the antibody´s curve of figure 
7.16.  Moreover what is observable is that more current pass through the device at a given 
voltage.   
    The antibodies GST-RhoA GTP (active form of RhoA) were prepared with HBS at 
500ng/ml and they were injected. Next step was to rinse with HSB and finally rinse with 
deionised water. To dry the biomolecules we used dry air during few seconds. After this 
methodology an I(V) graph was plotted  by sweeping a voltage from -4 V to 4V. See Fig. 7.18. 
 

 
Fig.7.18. I(V) graph after antibodies (scFv F7N1N2) incubation and GST-RhoA GTP (active 

conformation) incubation and drying. 
 

B 

C 
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It is observable on Fig. 7.18 that less current passes through the device, however the curve 
shape has a behaviour resembling to such as of figure 7.17 (inactive form). Hence, no 
important noticeable coulomb gap variation is perceived thereof.  
    The different graphs can be superposed to observe clearly the expected variations. See Fig 
7.19. 
 

 
Fig.7.19. I(V) graphs of the antibodies GST-RhoA GDP and  GST-RhoA GTP in dry conditions. 

 
    To observe if there is a variation of the coulomb gap in the I(V)  graphs, due to the 
adsorption of the active form of RhoA, the conductance was traced (derivative  dI/dV) similar 
to chapter 3. See Fig. 7.20. 

 
Fig. 7.20.  Conductance of the I(V) graphs of Fig, 7.19, demonstrating coulomb blockade effects and the effect 

of the curve behaviour when absorbing the different biomolecules. 
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B) Discussions  
 

The graphs of figure 7.19 have a typical comportment of electrical tunnel conductions, 
presenting coulomb blockade at room temperature. Hence, these multi tunnel junction devices 
(MTJ) have demonstrated electrical tunnel conductions also with biomolecules adsorption. 
However, these (MTJ) functioning with biomolecules at “dry conditions” did not clearly 
discriminate from the inactive form of RhoA (red curve: C), furthermore we did not see an 
important difference in the coulomb gap variation on the conductance graphs of figure 7.20.  
Otherwise, we noticed a higher passage of current when adsorbing the inactive form of RhoA, 
and a slight variation in its coulomb gap (blue curve), perhaps because of a change of 
conformation either in the first antibodies absorbed or the dried antigens we injected.  
    It is important to note that the inactive form of the RhoA can bind to the antibodies due to 
hydrophobic, hydrogen or other bonds but we must differentiate the electrical response from 
the inactive to active form, as in the case of typical detections method such as ELISA 
immunoassay. From these first experiments, we think that the biomolecules have lost their 
conformations while drying them, as hypothesised in the introduction section of the dry 
conditions tests. We decided to electrically experience the MTJ in wet conditions. 
 

7.3.2 Wet conditions (in aqueous solution) 
 
Here, we present some tests in wet conditions by omitting the dry part of the above protocols. 
These tests will permit us to demonstrate a better capability of our devices by discriminating 
between active and inactive form of RhoA biomolecules. The experiments have been realised 
in continuous biological (in aqueous solution) and in real time. 
    At the time we are writing this research work, we have detected 5 ng/ml thus 111pM if 
considering 45kD the molecular mass of GST-RhoA.  Fig. 7.21 depicts a close up of the 
interconnecting tubes when the biological flow is passing through the interconnecting tubes.  
Some white spots are observable (in colour format). 
 

 
 

Fig.7.21. Close-up of our nanobiosensor based device (soldered in a printed circuit), the image demonstrates 
that some electrical tests were achieve in continuous biological flow (see the rows), consequently in real time. 

 
 

Biological  
    flow  
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A) Results   
 
To conduct the electrical tests in wet conditions, an injection of antibodies (scFv F7N1N2) at 
40µg/ml in HBS was conducted, then a voltage sweep was applied to plot an I(V) graph. Next 
5ng/ml of GST-RhoA GDP (inactive) in HBS were injected and a subsequent voltage sweep 
was applied to plot an I(V) graph. Then, HBS was injected for few minutes to remove the no 
adsorbed biomolecules. Secondly, 5ng/ml of GST-RhoA GTP (active form) in HBS was 
injected, followed by applying a voltage sweep to plot a I(V) graph. See Fig 7.22.    
   

 
Fig.7.22. I(V) graphs of the GST-RhoA GDP and  GST-RhoA GTP  at wet conditions, responses of a  

continuous flow and real time. 
 
The coulomb gaps of the previous graphs is clearly different, mainly in the positive values of 
voltage, being corroborated and plotted in the conductance graph (derivative dI/dV) of the Fig. 
7.23.  

 
Fig.7.23. Conductance of the I(V) graphs of Fig, 7.22, demonstrating  selectively a detection in wet conditions of 

the active form of RhoA, while discriminating from its inactive form of RhoA. 
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B) Discussions  
 

In this case (wet conditions), our multi tunnel junction devices (MTJ) have demonstrated 
electrical tunnel conductions with biomolecules’ adsorption in continuous biological flow, 
furthermore the MTJ have been characterised in real time. From the graphs of Fig. 7.22 and 
Fig. 7.23 we can infer from their behaviour, despite they are not symmetrical, that a detection 
of the active form of RhoA is well conducted (GST-RhoA GTP: red curve, referred as c) and 
that the MTJ device discriminates from the inactive form of RhoA (GST-RhoA GDP: blue 
curve, referred as b). Indeed, these graphs present some noisy responses and less current 
passes through the device while adsorbing RhoA active form. 
    Another important result is that, these kinds of multitunnel junction devices (MTJ) have 
rapid responses since the electrical responses have been generated in real time. As comparison, 
M. Lieber´s group reported, in the 2005 year, electrical detections of cancer biomarker 
through nanowires [3]. Although nanowires demonstrated high sensitivities (femtomolar level) 
one drawback (not mentioning the fact that nanowires are difficult to be positioned) is their 
high detection time because of the inefficient mass transport [4]. In the article of Lieber´s 
group, the detection time between different biomolecules was at least 25 min [3]. Otherwise 
our devices demonstrated higher detection time (few seconds to obtain I(V) graphs). 
    We observe that we have not obtained classical Coulomb blocakade reigimes, even though 
there is not conduction, near zero voltage. However, the asymmetrical behaviour is not well 
understood yet, perhaps the charges charges involved in biomolecules (mainly in the protein 
Rho,) are the origin of this depending of its ionised state. It is suitable to test the devices 
varying the pH ultil find its isolectric point and compare the different graphs. 
    Indeed, I hypothesise that the biomolecules linked with metal (histidine) could behave as 
electron transfer proteins thus when other biomolecules (targets) are specifically linked, the 
electrical tunnelling conduction is modified. 
    Finally, the device did not present significant hysteresis in both dry and wet conditions. 
Direct-plotted graph of Keithley 4200 corroborated this situation. Figure 7.24 (a) corresponds 
to the antibodies´ hysteresis in aqueous solution and (b) corresponds to the GST-RhoA GTP 
hysteric graph, in dry condition. 
 

 
Fig.7.24. (a) no significant hysteric in I(V) graphs of the scFv F7N1N2 antibodies in aqueous solution, (b) no 

significant  hysteric in I(V) graphs of the GST-RhoA GTP antigens in dry condition. 
 

 
 
 
 

(a) 
(b)
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7.4 Conclusions  
 
In this final chapter we have demonstrated the complete integration of our nanobiosensors 
which were based on intedigitated nanoelectrodes and Ni nanoislands serving as transducers. 
These mixed and matched devices, realised at wafer level, have been coupled with 
PhotoPDMS-based microchannels as an innovative microfluidic methodology realisation. The 
integration finalised by covering the microfluidic channels with etched PDMS nanocomposite. 
To inject biomolecules, interconnecting tubes has been sealed in a single cell, after 
encapsulating the cell in TO-8 cases.  
      An integrated device has been electrically tested after injecting some different 
concentration of biomolecules.  
     Our integrated device presented typical electrical tunnelling conduction when 
biomolecules were injected in dry condition and continuous biological flow. In dry condition 
we were not able to discriminate the RhoA in active conformation from the RhoA in inactive 
conformation. However, from our preliminary tests, this kind of device turned out to be 
sensitive with high time responses, to detect the active form of RhoA (potential biomarker) 
and discriminating from the inactive form of RhoA (as negative test) in aqueous solution.  
Finally, our devices did present significant hysteresis neither in dry nor in wet conditions. 
    These integrated devices are the basis of functional lab-on-chips devices with applications 
in biomedicine, since integration with a display and a measure system such as microcontroller 
is expected. Devices had been conceived aiming a contribution to the multidisciplinary 
approach named nanobiotechnology and specifically to its exciting application named 
nanomedicine. Hence, these kinds of devices are one the nanotechnological routes, from 
which the point of care cancer diagnostics and personalised medicine can be reached.  
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General conclusion and prospective outlook 
 

In this research project (thesis) we aimed at realising a novel nanodevice capable of detecting, 
at high sensitivity and reliability, cancer biomarkers. It was originally conceived to be part of 
an integrated device as the basis of a functional lab-on-chip. We were able to reach, in great 
part, our purpose. However, the devices lack of integrability and reliability to be used, with 
the same efficiency as for example a typical glucometer. Rather, through the development of 
different processes, we found several technological drawbacks which are not generally 
described in detail in a thesis manuscript. Nevertheless, I consider that one on the principal 
drawbacks (outside technological problems) was to find time to discuss and to realise all 
technological processes with all the different partners of the project due to the high 
interdisciplinary character of this work. In this context, in nanotechnology developments, it is 
essential to be flexible yet able to stick to the plan that has been drawn by the all participants 
of the project (physicists, physicians, biologists, chemists, mechanical and electrical engineers, 
technicians and so on). On the other hand, as in nanotechnology, it is necessary to use a large 
variety of chemical, electronic, biological materials and other compounds; it was also decisive 
to plan in advance the time it takes for supplier companies to deliver compounds or 
equipments. Last but not least, one must consider the available functional equipment (and 
obviously to preview the out of functioning) in the clean room or technological central 
devoted to nanotechnological processes. Hence, it is important to take in consideration that it 
does not take the same time, for example to repair a machine, in a research laboratory or a 
factory. 
    Concerning purely technological situations, we encountered an important bottleneck mainly 
in the realisation of interdigitated nanoelectrodes devices at wafer level. Hence we devoted 
important time to find the optimum parameters to realise our devices at the level of a 4 inch 
wafer and the critical parameter was to find the optimum dose. We dedicated also a large 
amount of time to obtain devices functioning as multi tunnel junction devices. Here, it was 
necessary to experience with several thicknesses of Ni depositions layers to obtain electrical 
tunnel conduction, but mainly to conjugate the same thickness deposition with the 
intedigitated nanoelectrodes. Seeking the way of integrating our devices with realisable 
microfuidic devices, we were able to develop novel technologies based on photoPDMS thus 
novel methodological processes to implement microchannels. However, in the case of the 
positive photoPDMS, the crucial step was to find the best photoinhibitor, easily dissolved and 
mixed with typical PDMS but also the photoinhibitor which permitted us to reach a good 
resolution. I can say that the method of dissolving the chemical compound was essential. 
Concerning the negative photoPDMS which underwent a longer implementation, the key 
issue was to find a good resolution at the wafer level. The essential step was the properness of 
the surface chemistry to stick to the subsequent PDMS. Thanks to the good adherent resist, 
we found, we were able to properly seal the interconnecting tubes and inject the biological 
molecules. Finally, we were able to realise some preliminary biological tests with 
encouraging results. However, it is suitable to realise more tests in aqueous solution to 
improve the functionality of our devices. The last point, described in this perspective outlook, 
is a possible path to decreasing the cost of fabrications. 
    One of the possible technologies to be considered is nanoimprint lithography (NIL), all 
types such as thermoplastic nanoimprint lithography (T-NIL), or photo nanoimprint 
lithography (P-NIL) which can replace, in an industrial environment, the electron beam 
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lithography employed to fabricate our intedigitated nanoelectrodes devices (IND). The 
technique will permit to realise the same kinds of devices at a lower cost.  
    Through the development of our work, we have found a way to transfer metal patterns onto 
PDMS and it was named reverse soft lithography. It is suitable to test this technique first at 
submicrometer scale (~500nm) to subsequently experience at nanometer scale (a disadvantage 
would be the use of ebeam lithography to realise the patterns, to be transferred).  
    Once the technological process is lower, it is important to integrate the device with an 
electronic device to measure the current variations. The objective will be to reduce the size of 
the electronic measurement device, maintaining a measurable reliability.  
    Otherwise, I consider a priority to start mathematical simulations of the interaction 
biomolecules with metal molecules of the nanotransducer: Some parameters have to be 
considered, such as biological flow diffusivity, limit detection time.  
    It is important to note that nanoelectrodes based devices, we realised, can be applied to 
other technological domains such as in nano-electrochemistry, biomolecular electronics, 
spintronics or to detect several kinds of compounds such as gases. 
 
 
 
 
 
 
 
 
 
 

Adrián Martínez Rivas  
 nanobiomex@hotmail.com
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ANNEXE: Epistemological and ethical personal opinions in nanotechnology 
 
I write here my philosophical and ethical attitudes towards nanotechnology. I would like 
philosophers who stated the basis of epistemology to excuse me because I am not a 
philosopher and I dared to think about this intellectual plane. The reason is that through the 
development of my research work, I was able to work in the scientific approach named 
nanotechnology and/or nanoscience (especially nanobiotechnology and nanomedicine) in 
which there are constant technological advances but also philosophical paradigms and ethical 
issues are constantly emerging. 
   Firstly, I analyse from a conceptual point of view the similitude and difference between 
science and philosophy, next a philosophical reflexion of the nanobiotechnology approach is 
performed. Finally, after introducing some thoughts, I describe concisely the ethical subject 
before giving my personal opinion. 
    In science we need to create concepts and hypothesis, to define what our senses perceive as 
results of what our current technological machines interpret and one of the purposes of 
philosophy is precisely to define concepts. Here the first correlation is found. Otherwise, 
following the existential phenomenological definition of German philosopher Martin 
Heidegger, philosophy can be conceived as an inexorable thought or source of thought which 
can not be undertaken immediately, similar to science I would say. In science, we need a 
reference, state a basis so we can follow a method either to create a theory, a device or a 
machine. French philosopher Gilles Deleuze stated that one of the differences between 
philosophy and science is that philosophy is performed with a plane of immanence or 
consistency and science with a plane of reference. In my opinion, it is like if science had a 
though stopped to an image or reference and philosophy had an image stopped to a though. 
Hence, the primary difference is the way science and philosophy face the constant chaos of 
our conscious external world and a similitude is that chaos is faced both by the science and 
philosophy; even more this chaos is well faced by art.  
    Nowadays, we have to admit the importance of philosophy in science and remember that in 
the 17th and the 18th centuries all scientists were also philosophers who performed important 
scientific advances really to society. It turns out that scientific researchers need following a 
kind of “philo-scientific method”. In the philosophic part of the method, it is necessary to 
acquire a reflexion with questions such as why and how, what is the purpose. In the scientific 
part of the same method, a comparison, a basis or evaluations are needed. However, the 
constraints are not the same in philosophy and science.  
    To create concepts, it is suitable to define what a thing is.  Martin Heidegger analysed this 
ancient question in his book: Die frage nach dem Ding (also analysed by Emmanuel Kant). 
Heidegger postulated that space and time are essential to define a thing and there is space in 
the interior of the thing. He imagined a piece of chalk that is split in smaller pieces, he arrived 
to imagine a piece of chalk measuring till 4 microns because of mechanical difficulties, he 
wrote. He concluded that the differences between these pieces are the quantity but the essence 
of the thing does not change (the what). Nowadays with the developments issue from 
nanotechnology, it is possible to split the matter to a smaller “pieces”, to observe and 
manipulate this matter. Here, we find precisely a novel philosophical paradigm because we 
have observed, by experience, that matter ranging from nanometrical size (<100nm) to 
smaller size, experience other properties as if its essence had changed. Indeed, according to 
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Heidegger, to learn about a thing (as a condition to define a thing) it is necessary to 
appropriate this thing, to learn to know the thing, to learn the usage of this thing. For example, 
when we perceive a chair, we know about this thing because of its usage: to permit to people 
to sit on. If this chair does not have one or more legs, we continue knowing that it is a chair; 
furthermore a chair with arms is an armchair thus its essence does not change. On the other 
hand, in the nanoworld, if it is changed a part of the nanometric thing, its usage changes. 
What it is more, if it is changed the distance of two nanometric things, the ensemble of the 
thing does not have the same usage (it is valid for the atoms and bonds forming a molecule), 
for example if we modify the nanoislands distance of our devices (around 2 nm); the device is 
not more a multitunnel junction device (MTJ) but is what we know as resistance or insulator 
(we have demonstrated it, in this thesis). Hence, in nanometric size a thing become other thing 
without being other thing, because of this in nanotechnology the object and subject are 
intimately connected.      
    At the present time, human society is involved in the approach named nanotechnology but 
also in nanoscience (because of the above examples and other demonstrations not presented 
here), in which an inevitable confluence, at the molecular level, has occurred. As written, here 
the concepts of object and subject have close meaning. If comparing with the tunnel junction 
duality or wave particular duality explained in this thesis, it is like if the essence of 
nanoscience were based on the concept/subject duality, not exiting neither a subject nor a 
concept but both of them, without being both at the same time. Conceptions as the degree of 
electrical conduction in carbone nanotubes which depends on the arrangement of carbons 
atoms are examples of this. In this context, bifurcations to the plane of philosophy are created 
to conceive the electrical tunnel conduction (quantum phenomena) and specially the electron 
penetration into a higher potential barrier. 
    Throught scientific history, philosophical currents have appeared, one of them, thought as 
such that permits a progress through science, was coined firstly by Auguste Comte. He 
claimed, in 1829, the necessity to follow a more general science to reorganise society and 
avoid crisis in which the most civilised nations are involved (sociology basis). However at 
that time, the problem, he said, was the difference of science development rate. He thought 
that the natural philosophy or specifically positive philosophy, opposed to metaphysic, was 
the route that permitted to reach his purpose. Nowadays, human society is involved in 
nanoscience and nanotechnology in which most of the involved sciences are at the same 
development level. Concerning positivism, Max Planck, one of the founders of quantum 
physics which governs the phenomena encountered in nanometric scale, was in accordance 
with positivism to the fact that science progresses in relation with the improvement of 
measurement methods (specially what for Planck was the more exact science: physics). 
However Planck disagrees with Auguste´s positivism on the sensible impression measures, 
which are supposed to form the point of depart of all science. According to Planck, the 
measures have to be considered as final more of less complex results having an influence 
between the exterior world and the phenomena involved in our measurement instruments and 
in our sensorial organs. I think that with a kind of transdiciplinarity of several philosophical 
currents such as positivism (Comte), Cartesian current (Descartes), existentialism (Husserl, 
Heidegger), psychoanalysis of science, philosophy of science (Popper, Poincaré, Bachelard), 
philosophy of biology (Piaget) and so on, we can face the inevitable chaos in a coordinative 
philo-scientific ordinate and abscise being the bifurcations not so distant in the nanoscience 
and nanotechnology plane. 
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Concerning the nanobiotechnology relating to “natural” biology, the main difference is that 
the molecular biology face the chaos to maintain the human body functionality, while 
nanobiotechnology wants to face the chaos at the same degree of coordinates but having other 
objectives: In the best case, to enhance the human quality of life. Rather, society scares the 
unknown creating macro chaos. Even if in the most of the cases, the uncertainty is created 
because of lack of clear information the society receives, in other cases the fright is sustained. 
In this context, the personal ethic plays an essential role, because of the free will some 
researchers think to have in their laboratories and their countries. Unfortunately, I think that 
what slow the progress of (nano) science is the human vanity and its foolish behaviour, but 
mainly the stupidity of some governments to focus on nanotechnology and nanoscience as the 
opportunity to enhance the army and soldier capacities, for instance, to see farther, to create 
other kinds of biological bombs, under the pretext of defending “freedom”, covering purely 
influenceable economic interests.  In the same via, some movements such as transhumanism 
is currently appearing under the pretext of nanotechnology as point of departing to enhance 
the human qualities and permit the human being to live longer (“immortality”). Other 
“scientists” find in their thoughts incapacity to think, wanting to create a humanoid to satisfy 
the sexual desire in human or to implant a microsystem directly in a living insect to observe 
its comportment (this was presented in a prestigious international conference at Paris in 2007). 
Finally, extreme initiatives such as the so called NBIC which means nanotechnology, 
biotechnology, information and cognition having the objective of enhancing human 
performance have appeared. The term “convergence” was adopted from mathematics, to 
justify this transdisciplinarity. “Convergence” has been immeasurably popularised and 
adopted such as the term nano to attract investment (in some of the cases nanotechnogy is not 
even performed). However, it is not the essential problem, but the ethical problems, it gives 
rise.  An international committee of UNESCO elaborated a report, in 2006, called: “The ethics 
and politics of nanotechnology”. According to this report, even nanotechnology definition is 
not agreed and dozens definitions are found depending on the political or ethical context. 
Hence, definition depends on what politicians want the people worry about or believe but also 
the interests of nations, I would add that also that depends on what some demagogic television 
programs want, taking in consideration our consumer society. For UNESCO, even if some 
nations do not participate yet, directly, in nanotechnology, they have to elaborate the purpose 
of nanotechnology under ethics, justice, equity and fairness. In this context, UNESCO can be 
a mediator. 
     I do not know if nanotechnology will permit us to see outside the frontier of the “chaos”, 
the society has created too, because what takes 5-10 years or more to be developed in research 
laboratories, some international companies modify genetically some ancient-edible 
mesoamerican products such as bean, maize, sunflower producing illnesses in few years. The 
same companies immeasurably pollute the rivers, the air and the natural world in which, 
finally, all people live. Foolishly, human produces most of its illnesses to in a second step 
search for a technology (currently using nanotechnology) to diagnose and treat the same 
illnesses. Lamentably I have entered in this inevitable vicious cycle.  
    I am convinced that nanoscience and nanotechnology can help in the techno-scientific 
progresses, almost all media tells us that, but what I do not know, and media does not tell, is if 
nanotechnology and nanoscience will create a progress in the mind society to be more rational 
and human. 

Adrián Martínez Rivas   (nanobiomex@hotmail.com)
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Wafer scale integration of coulomb blockade-based nanobiosensors with microfluidic channels for label-free 

detection of cancer biomarkers 

 

In this thesis we propose and implement the fabrication on 4 inch wafer of a novel type of nanobiosensor 

capable of high sensitivity detection. The principle of the nanobiosensor is based on the variation of electrical 

tunnelling conductivity through metal nanoislands due to the quantum phenomenon called “Coulomb 

blockade”. Nickel nanoislands (~5nm diameter), are placed between interdigitated nanoelectrodes devices (IND) 

(width~45nm). Hence, the conductivity of these Multiple-Tunnel-Junction (MTJ) devices is modified by the 

adsorption of biomarkers involved in tumourigenesis. Oncologists have recently isolated and characterised a 

new conformational single chain variable fragment (scFv) which selectively recognises the active form of RhoA. 

This potential biomarker has been found overexpressed in various tumours. Antibodies fragments (scFv) are 

adsorbed through coordinative bonds onto nickel nanoislands. Hence the scFv are capable of recognising 

specifically the active RhoA conformation. We have investigated this biomarker and validated the nickel 

nanoilands based chemical construction for label-free biodetection using a quartz crystal microbalance (QCM) 

before implementing the methodology to our devices. An innovative methodology to realise photoPDMS-based 

microchannels was also developed. Encapsulation with an etched PDMS-nanocomposite finalised the 

integration of the devices. The final electrical characterisation of the integrated device was tested in real time 

and continuous biological flow. The active form of RhoA was discriminated against its inactive conformation. In 

annexe, I present my epistemological and ethical opinions in nanotechnology. 

 

Keywords: Electric nanodetection, cancer biomarker, protein Rho, interdigitated nano-electrodes, nanoislands, 

coulomb blockade, photosensitive PDMS, microfluidic, packaging, quartz crystal microbalance. 

 

 

Intégration à grande échelle de nanobiocapteurs basés sur le blocage de coulomb et de canaux 

microfluidiques, pour la détection directe de biomarqueurs cancéreux 

 

Dans cette thèse, nous proposons et démontrons un nouveau type de nanobiocapteur pour la détection de 

biomolécules à haute sensibilité et leur intégration à grande échelle (plaquette de 4 pouces). Le principe du 

nouveau nanobiocapteur électrique est basé sur la variation de conductivité électrique à travers des nano-îlots 

grâce au phénomène quantique appelé « blocage de Coulomb ». Les nano-îlots de nickel (~5nm de diamètre) 

sont placés entre les nano-électrodes interdigitées (IND) (~45nm de largeur). La conductivité de ces dispositifs à 

Jonctions Tunnel Multiples (MTJ) est modifiée par l’adsorption de biomarqueurs impliqués dans la 

tumorogènese. Les oncologues ont récemment isolé et caractérisé un nouveau fragment d’anticorps à chaîne 

simple (scFv) qui reconnaît sélectivement la forme active de RhoA. Ce biomarqueur potentiel a été trouvé 

surexprimé dans diverses tumeurs. Les fragments d’anticorps ont été adsorbés, par des liaisons de 

coordination, sur les nano-îlots de nickel. Ces fragments sont capables de reconnaître spécifiquement la forme 

active de RhoA. Nous avons étudié ce biomarqueur et validé la chimie de surface à base de nano-’îlots de nickel 

pour la détection sans marquage, en utilisant une microbalance à quartz (QCM). Puis, nous avons mis au point 

et adapté à notre dispositif une méthodologie innovatrice pour réaliser, à l’échelle d’une plaquette, des 

microcanaux basés sur du photoPDMS.  La caractérisation électrique finale des dispositifs intégrés a été testée 

en temps réel et à flux biologique continu. La forme active de RhoA a été détectée en discriminant la forme 

inactive. En annexe, je présente mon opinion épistémologique et éthique sur la nanotechnologie. 

 
MOTS CLÉS: Nano-détection électrique, bio-marqueur cancéreux, protéine Rho, nano-électrodes interdigités, 

nano-îlots, blocage de coulomb, PDMS photosensible, micro-fluidique, encapsulation, microbalance à quartz. 
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