
HAL Id: tel-00403504
https://theses.hal.science/tel-00403504v1
Submitted on 10 Jul 2009 (v1), last revised 8 Sep 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Étude des problèmes de spilling et coalescing liés à
l’allocation de registres en tant que deux phases

distinctes
Florent Bouchez

To cite this version:
Florent Bouchez. Étude des problèmes de spilling et coalescing liés à l’allocation de registres en tant
que deux phases distinctes. Autre [cs.OH]. Ecole normale supérieure de lyon - ENS LYON, 2009.
Français. �NNT : �. �tel-00403504v1�

https://theses.hal.science/tel-00403504v1
https://hal.archives-ouvertes.fr

A Study of Spilling and
Coalescing in Register Allocation

as Two Separate Phases

Florent Bouchez

Ph.D. Thesis

Date of Writing: December 22, 2008

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon

École Doctorale MathIf

Thesis conducted under the Direction of:
Alain Darte

Fabrice Rastello

Referees:

Keith D. Cooper

Christine Eisenbeis

Jens Palsberg

Contents

Contents i

Nomenclature iii

List of Figures v

1 Introduction 1

1.1 Program compilation . 1

1.2 Register allocation . 2

1.3 Spilling & Coalescing . 4

1.4 Techniques for register allocation . 5

1.5 About this thesis . 8

2 Grounds 11

2.1 Basis for register allocation . 11

2.1.1 Programs and control-flow graphs 11

2.1.2 Live-ranges, interference graph 13

2.1.3 Maxlive . 15

2.2 Coloring the interference graph . 16

2.2.1 Testing if R registers are sufficient 17

2.2.1.1 Conditions on Maxlive 17

2.2.1.2 Chaitin et al.’s simplification scheme 17

2.2.2 Interesting graph structures 18

2.2.2.1 k-colorable graphs 18

2.2.2.2 Cliques . 19

2.2.2.3 Interval graphs . 19

2.2.2.4 Chordal graphs . 19

2.2.2.5 Greedy-k-colorable graphs 20

2.2.2.6 Orderings of graphs structures 21

2.2.3 What to do if R registers are not sufficient? 21

2.2.4 Iterated Register Coalescing (IRC) 24

2.3 Static Single Assignment form . 25

2.3.1 Definition of SSA . 25

2.3.2 The dominance property . 26

2.3.3 Properties of SSA . 28

2.3.4 SSA interference graph is chordal 29

2.3.5 Why is coloring polynomial under SSA? 31

2.3.6 Static Single Assignment (SSA) form is not machine code . . . 31

2.3.7 Splitting and parallel copies 34

2.4 Conclusion . 34

3 Revisiting the proof of Chaitin et al. 37

3.1 NP-completeness proofs . 39

3.1.1 Direct consequences of Chaitin et al.’s proof 39

3.1.2 Splitting variables in Chaitin et al.’s proof 41

3.1.3 Split points on edges . 42

3.1.4 Split points anywhere . 45

3.1.5 Summary and discussion of complexity proofs 46

CONTENTS

3.2 Polynomial solutions . 48

3.2.1 Static Single Assignment . 48

3.2.2 Color propagation . 49

3.3 Explanation of complexity . 51

3.4 Register allocation in two phases . 53

3.5 Conclusion . 54

3.5.1 Summary of Results . 55

3.5.2 Organization of the thesis 55

4 Complexity of spill everywhere under SSA 57

4.1 Terminology and Notation . 59

4.2 Spill Everywhere without Holes . 60

4.2.1 Complexity results . 60

4.2.2 Extension to the spill non-everywhere problem 67

4.3 Spill Everywhere with Holes . 68

4.4 Conclusion . 76

5 Complexity of register coalescing 81

5.1 Definitions & properties for NP-completeness 83

5.2 Complexity of aggressive coalescing 86

5.3 Complexity of conservative coalescing 88

5.4 Complexity of optimistic coalescing 94

5.5 Summary and conclusion . 97

6 Advanced coalescing: improving the coloring 99

6.1 Recalling the coalescing problems 101

6.2 Conservative coalescing . 103

6.2.1 Brute-force conservative coalescing 104

6.2.2 Chordal-based incremental coalescing 108

6.2.2.1 Two lemmas for chordal-based coalescing 109

6.2.2.2 Explaining the chordal-based algorithm 110

6.2.2.3 Complexity and quality of chordal-based 116

6.3 De-coalescing after aggressive coalescing 117

6.3.1 The existing strategy . 117

6.3.2 Our approach . 118

6.4 Optimal rules for coalescing . 122

6.4.1 The optimal “clique” rule . 122

6.4.2 The “terminal” rules . 125

6.4.3 Using the optimal rules for aggressive coalescing 129

6.4.4 Disclaimer . 130

6.5 Experiments and evaluation . 131

6.5.1 Methodology . 131

6.5.2 Conservative heuristics . 133

6.5.3 Optimistic heuristics . 134

6.5.4 Ordering the affinities . 135

6.5.5 Using the optimal “clique” and “terminal” rules 138

6.5.5.1 Use of the “clique” rule 138

6.5.5.2 Use of optimal rules in aggressive coalescing 140

6.5.6 Quality conclusion of the experiments 140

6.5.7 Inside the Chordal scheme 141

ii

CONTENTS

6.6 Conclusion . 143

7 Parallel copy motion to get out of colored SSA 145

7.1 About going out of colored SSA . 146

7.1.1 Introducing the parallel copies 147

7.1.2 Duplications in parallel copies 150

7.1.3 Reversible parallel copies 151

7.2 Properties for moving a parallel copy away from an edge 151

7.2.1 The problem of critical edges 151

7.2.2 Compensation . 152

7.3 Moving parallel copies away from critical edges 155

7.3.1 Decomposition of a parallel copy containing duplications . . . 157

7.3.2 The problem of moving reversible parallel copies 160

7.3.3 Converting parallel copies to permutations 160

7.3.4 Sequentializing permutations 162

7.4 Put it all together . 165

7.4.1 Another break in the (permutation) wall 166

7.4.2 Chains, trees and butterflies of critical edges 169

7.4.3 Whenever permutation motion is stuck 171

7.5 Conclusion . 174

8 Conclusion 175

8.1 Reality is different from models . 175

8.1.1 Architectural constraints complicates register allocation . . . 175

8.1.1.1 The constraints . 175

8.1.1.2 Solutions for constraints on registers during allocation 176

8.1.1.3 Splitting even more 177

8.1.2 Architectural constraints that simplify register allocation . . . 178

8.1.2.1 Repairing color mismatches is easy 179

8.1.2.2 False critical edges can be split 179

8.2 Register allocation in practice . 181

8.2.1 Global versus local . 181

8.2.2 Proposed scheme(s) . 182

8.2.2.1 Aggressive scheme 182

8.2.2.2 Local spilling followed by coalescing 182

8.2.2.3 A few more words on permutation motion 184

8.2.2.4 Towards just-in-time (JIT) compilation 186

8.3 Conclusion . 186

Bibliography 191

Index 197

iii

Nomenclature

(u, v) edge between u and v, usually representing an interference, page 14

〈u, v〉 affinity between variables u and v, page 15

χ chromatic number of a graph, page 18

col(x) Color assigned to variable x, page 125

. . .← a variable a is used by some instruction, page 12

ω clique number, page 19

φ choice function in SSA programs, page 26

A set of affinities, page 83

Ω Maxlive, maximum number of simultaneously alive variables, page 59

def(a) set of instructions which define a, page 25

use(a) set of instructions which use a, page 25

w〈u, v〉 weight of the affinity 〈u, v〉, page 15

a← . . . variable a is defined by some instruction, page 12

h number of simultaneous holes, page 70

s � t s dominates t, page 26

w(v) weight of variable v, representing a cost, page 59

x[Ri] variable x is assigned to register Ri, page 149

R number of registers, page 16

R number of registers, page 59

List of Figures

1.1 Register allocation tries to map variables to physical registers. 2

1.2 Spilling allows to use less registers 3

1.3 Scheduling impacts register allocation and vice versa 4

2.1 Example of a program and the corresponding control-flow graph. . . . 12

2.2 Non-strict program. 13

2.3 Live-ranges of variables. 13

2.4 Program and its interference graph. 15

2.5 Number of variable in Live at each point and Maxlive, the maximum

over all of them. 16

2.6 Ω ≤R is not necessary but not sufficient. 17

2.7 Example of Chaitin et al.’s simplification scheme with 3 colors. 18

2.8 A 2-colorable graph not greedy-2-colorable 18

2.9 Example of chordal graph. 20

2.10 Splitting a variable to reduce χ(G). 22

2.11 Splitting b and c in parallel makes it possible to swap their colors. . . 23

2.12 Coalescing example. 23

2.13 Flow diagram of the Iterated Register Coalescing scheme. 24

2.14 A program converted to SSA . 26

2.15 Live-ranges under SSA . 29

2.16 Running examples under SSA . 32

2.17 Sequentializing copies creates new interferences. 32

3.1 Chaitin et al.’s reduction . 40

3.2 Splitting Chaitin’s program makes it 3-colorable. 43

3.3 Chaitin-like construction with critical edge and variable splitting. . . . 44

3.4 Three cases: register pressure drops to 2 (a), is constant to 3 (b), (c). . 46

3.5 Original program of Chaitin et al.’s proof under SSA. 48

4.1 Reduction to 3-exact cover. 66

4.2 Example of punched intervals. 70

4.3 Reduction to Set Cover. 73

4.4 Reduction to Independent Set for h = 2. 74

4.5 Reduction from Independent Set for h = 1. 75

4.6 Different configurations for the reduction with h = 1. 77

5.1 Chaitin-like reduction with affinities. 84

5.2 Chordal reduction with affinities. 85

5.3 Aggressive coalescing: reduction from Multiway Cut. 87

5.4 Reduction for Thm. 5.6 (first part). 89

5.5 Local tests are not enough for coalescing. 91

5.6 “Diamond” counter example for incremental coalescing. 91

5.7 Reduction of incremental coalescing to 4-SAT. 92

5.8 Incremental coalescing for chordal graphs. 94

5.9 Reduction for optimistic coalescing: vertex structure and ad-hoc widget. 95

5.10 Optimistic reduction: adding affinities to obtain a chordal graph. . . . 96

6.1 Comparison of the IRC scheme with our “brute force improved” scheme 105

LIST OF FIGURES

6.2 Position of relative intervals at iteration i. 113

6.3 A graph of affinities coalesced in a coalesced node. 119

6.4 Graph #001 of the Coalescing Challenge. 121

6.5 Optimal “clique” rule. 123

6.6 Simplify affinity 〈x, z〉 if z is terminal. 127

6.7 Graph #337 with apparent webs. 129

6.8 Graph #105 after applying the optimal “clique” rule. 131

6.9 Comparison of conservative heuristics. 133

6.10 Comparison of aggressive heuristics. 135

6.11 Motivation for biased affinity weights. 136

6.12 Quality results for different affinity orderings. 137

6.13 Graph size reduction after using “clique” rule. 139

6.14 Effort of basic coalescing rules. 142

6.15 How the 57 seconds of Chordal were spent. 142

7.1 Going out of SSA . 147

7.2 The swap problem . 148

7.3 Examples of parallel copies. 149

7.4 Examples of parallel copies with duplications. 150

7.5 Moving a parallel copy. 152

7.6 Lost copy problem. 153

7.7 Parallel copy compensation . 153

7.8 Compensation when moving a parallel copy from a critical edge . . . 154

7.9 Decomposing a parallel copy with duplications. 156

7.10 Four possibility when decomposing parallel copies with duplications . 159

7.11 Sequentializing reversible parallel copies. 164

7.12 Moving a permutation up in a basic block. 167

7.13 Region recoloring. 168

7.14 Chains, trees and Butterflies. 171

7.15 Register allocation on multiplexing regions 173

8.1 False critical edges . 180

viii

Acronyms

ABI application binary interface

CFG control-flow graph

CLI Common Language Infrastructure

ILP integer linear programming

IRC Iterated Register Coalescing

JIT just-in-time

LAO linear assembly optimizer (compiler at STMicroelectronics)

SSA Static Single Assignment

VLIW Very Long Instruction Word

X3C 3-exact cover (NP-complete problem)

And the Lord came down to see the city and the tower, which the

children builded. And the Lord said, Behold, the people is one, and

they have all one language; and this they begin to do; and now noth-

ing will be restrained from them, which they have imagined to do. Go

to, let us go down, and there confound their language, that they may

not understand one another’s speech.

Bible, Genesis 11:1-9 (KJV) 1
Introduction

1.1 Program compilation

The very first computers where programmed “by hand,” i.e., directly in the assembly

language corresponding to their instruction set. With the growing development of new

computer architectures in the 50’s, machine-independent programming languages were

proposed, along with the need for a program capable of converting programs written

in “high-level” languages to the “low-level” language of the target machine. The first

of program capable of performing this task, a compiler, was written by Grace Hop-

per in 1952. Then came many others, capable of targeting multiple architecture, or

accepting as input more evolved programming languages.

The most important property for a compiler is preserving the semantics of the orig-

inal program. This means that, whatever the compiler used, a program should produce

the same output.1 Usually, the output of a program is the result of some computations,

while other manifestations like the time required to compute the result, or the memory

used, are considered as side-effects. It is often tolerated that the behaviour of a program

differs on the side-effects. Once it is assured that a compiler preserves the semantics of

the input programs, there is still work to do on the compiler, on the “side-effects” of the

compiled program. In that case, we are talking of optimizing compilers, i.e., compilers

that also try to optimize the resulting low-level program so as to gain for instance more

efficiency in speed or memory consumption, or even speed of the compiler itself.

Although new languages continue to appear and research on how to compile them

are conducted, we will not study this problem in this thesis. Today, guaranteeing the

semantics is usually not an issue for widely used programming languages like C. For

them, there is a constant demand on optimizing compilation. The goals of an opti-

mization are multiple and strongly depends on the context. The most preferred one is

usually the speed of the compiled program, but there can also be strong needs in terms

of memory use, power consumption, heat generated, code size, etc. especially in the

growing context of embedded systems that have tight constraints of energy, computing

power and weight.

Compilation for embedded processors can be either aggressive or just-in-time (JIT).

Aggressive compilation is allowed to use a longer compile time to find better solu-

tions. The program is usually cross-compiled, then loaded in permanent memory (ROM,

flash, etc.), and shipped with the product. The compilation time is not the main issue

as compilation happens only once. Furthermore, especially for embedded systems,

1It should be noted that this is different from the property “a program should behave as expected by the

programmer” since it generally does not. . .

CHAPTER 1. INTRODUCTION

code size and energy consumption usually have a critical impact on the cost and the

quality of the final product. JIT compilation is the compilation of code on the fly on

the target processor. Currently the most prominent languages are Common Language

Infrastructure (CLI) (Microsoft) and Java (Sun). The code can be uploaded or sold sep-

arately on a flash memory, then compilation can be performed at load time or even

dynamically during execution. This allows for instance to ship only one code for dif-

ferent platforms, or even for a platform that has different embedded architectures; then

the code can be compiled for one particular processor when required, which saves a

lot of space. The heuristics used for JIT compilation, constrained by time and limited

memory, are far from being aggressive. In this context, trade-offs are made between

resource usage for compilation and quality of the resulting code.

1.2 Register allocation

One of the most important pass in a compiler, if not the most important one, is called

register allocation. The goal of register allocation is to map the variables of a program

to physical memory locations. The compiler must indeed decide, in advance, in which

locations will be held the values necessary for the computations of the program, and so

for each instruction of the program. Registers are a very fast memory, hence preferred

for holding these values, which are directly needed by the CPU. But there is a limited,

small number of registers available in a processor, for instance only 8 registers for the

X86 architecture, or 64 for the ST200, a Very Long Instruction Word (VLIW) processor

developed by STMicroelectronics. On the other hand, in the initial program represen-

tation, and until very late in the compiler back-end, values are stored in variables or

temporaries, which are in unbounded number (see figure 1.1).

Initial C-like code Assembly-like register allocated code

a← 18 R1 ← 18

b← 42 R2 ← 42

c← a + b R3 ← add R1, R2

d ← c ∗ b R1 ← mult R3, R2

e← −d R1 ← neg R1

Figure 1.1: On the initial hand-written code, the programmer considers as many vari-

ables as needed. On the final machine level code, the number of physical memory

resources is limited. Register allocation aims at mapping virtual variables on physical

registers.

In practice, there are usually several different types of registers capable of holding

different types of values: integers, floats, addresses, booleans, etc. All registers are

not equivalent nor equivalently considered. For instance it can be possible to store a

boolean value into an integer register but not the converse. There can be many register

constraints like register aliasing (for instance, some 32-bit registers can be accessed

by three aliases in X86, one for the whole register and two names emulating two 16-

bit registers), or register pairing (forcing two distinct variables to be allocated to two

consecutive registers).

In this thesis, we always consider only one kind of register and no

such constraints. However, we will discuss in conclusion, Chapter 8, how

2

1.2. REGISTER ALLOCATION

to solve these practical issues that cannot be left aside when compiling for

actual architectures.

Since the number of variables authorized in a program is unbounded, it often hap-

pens that, on some points of the program, there are more variables than the number of

registers. Some of the variables must be then be held temporarily in another memory.

Usually, there is a hierarchy of memories, from the fastest and smallest to the biggest

and slowest: registers, cache memory (L1, L2,. . .), RAM and finally hard disks. Classi-

cally, when a memory is to small to hold some information, it is virtually increased by

using the next memory. This is called a “swap” if using the hard disks when there is

no more space in the RAM. For the smallest memory of the hierarchy, the registers, this

is a spill. Spilling a value in memory for future uses reduces the register pressure since

stored values do not need to be kept in registers, as shown by the example Figure 1.2.

Initial C-like code Assembly-like register allocated code

a← 18 R1 ← 18

store @a← R1

b← 42 R1 ← 42

c← 75 R2 ← 75

d ← b + c R1 ← add R1,R2

R2 ← load @a

e← a + d R1 ← add R1,R2

Figure 1.2: The initial C-like code would need three registers to hold variables a, b

and c. Spilling variable a allows to use only two registers (the @ sign symbolizes the

memory address of a variable, usually a static place computed at compile time).

When a variable is “spilled” from the registers to memory, there are additional

costs. The cost of the store and load operations required for the transfers to and from

memory, or, if the architecture supports instructions operating with memory arguments,

the increased cost of such operations, which are usually slower than those working only

with registers. Hence it is usually considered that spills should be avoided as much as

possible, and many register allocation algorithms try to minimize the impact of spilling.

On the impact of scheduling on register allocation. Some phases in the compiler

can schedule the code, i.e., modify the order in which instructions are executed. This

is a problem since scheduling constrains the register allocation, and conversely register

allocation constrains the scheduling. An example of such a situation is depicted on

Figure 1.3.

3

CHAPTER 1. INTRODUCTION

a← exp1

store a

b← exp2

store b

(a) Initial code

a← exp1

b← exp2

store a

store b

(b) Scheduling

R1 ← exp1

store R1

R1 ← exp2

store R1

(c) Allocation

Figure 1.3: Scheduling impacts register allocation and vice versa: (a) this initial code

needs only one register; (b) if re-scheduled, the code then needs two registers; (c) if the

initial code is register allocated with one register, it is not possible to re-schedule it as

in (b).

Studying the impact of scheduling on register allocation is difficult and also is the

problem of tuning register allocation for scheduling. People have been aware of this

problem since they started to schedule code to improve software pipelining, and for in-

stance Goodman and Hsu [1988] or Bradlee et al. [1991] proposed schemes that mixes

scheduling and register allocation, or at least make the scheduling take decisions based

on how would register allocation perform afterwards. Many articles on this subject

have been written since then, notably the works of Ning and Gao [1993]; Eisenbeis

et al. [1995] or more recently Touati and Eisenbeis [2004] or Rong et al. [2005]. Kim

and Moon [2007] use rotating register files, and even integer linear programming (ILP)

formulation have been proposed, for instance by Nagarakatte and Govindarajan [2007].

Development in this area is mainly related to software pipelining, which we did not in-

vestigate. Hence, our work does not take scheduling into account, but focusses instead

purely on register allocation. Hopefully, the results of this thesis will help research in

this domain by explaining better how the register allocation works, which might gives

new ideas on how to improve conditions on software pipelining so that it works well

along with register allocation. To make it clear again:

In this thesis we suppose a fixed schedule of the instructions.

1.3 Spilling & Coalescing

For a fixed schedule, the complexity of register allocation comes from two main opti-

mizations, spilling and coalescing. Spilling decides which variables should be stored

in memory to make possible register assignment, i.e., allocating all the remaining vari-

ables to registers, while minimizing the overhead of stores and loads. Register coalesc-

ing aims at minimizing the overhead of moves of variables between registers.

The difficulty of the spilling problem is in choosing which variables will be stored

in memory, as well as when they will reside in memory, and where memory operation

to store and fetch those variables should be placed in the program. Such operations

are expensive, so it is usually advisable to minimize their number, which is a difficult

problem known as the load-store optimisation problem.

Coalescing is used to reduce the number of register-to-register moves (move in-

structions). This is done either by assigning the two variables involved in a move to

the same register—hence producing a instruction [Rx ← Rx] that has no effect and can

be removed—, or by renaming the two variables with a common name. Of course,

this is not always possible to coalesced two variables, for instance, if the two variables

carry different values at the same time during execution (for a dynamic point of view),

or at the same place of a program (for a static point of view). Even if there is not

4

1.4. TECHNIQUES FOR REGISTER ALLOCATION

that much move instructions in high-level programs, a lot of them are introduced dur-

ing the compilation, for example when going out of a Static Single Assignment (SSA)

form (a property that some intermediate program representations have, which we will

introduce later, in Chapter 2), or because of register constraints on particular instruc-

tions, like the procedure call. Some spilling techniques involve splitting variables,

i.e., inserting move instructions to allow different parts of variables to be assigned to

different registers. This helps to spill less, but also results in the introduction of move

instructions in the code.

1.4 Techniques for register allocation

Early register allocation. Over the years many register allocations schemes were ex-

plored. While first approaches were local, the tendency was set towards global register

allocations schemes. The former considers register allocation at basic block level, mak-

ing the problem much more simpler and Horwitz et al. [1966] gives optimal algorithms

for spilling and coloring for some cases (however, the general optimal local register

allocation problem is NP-complete, as show by Farach-Colton and Liberatore [2000]).

The latter, global register allocation, takes control-flow into account, is more complex,

and Sethi [1973] proves optimal register allocation NP-complete. But global register

allocation has a larger picture to work on, which allows for better results. People got

very rapidly interested in global register allocation, and suggestions for using graph

coloring appeared in the literature, for instance Yershov [1966] did and also Allen and

Cocke [1976].

Introducing graph coloring in register allocation. The first to introduce a frame-

work based on coloring of the interference graph of a program where Chaitin et al.

[1981], rediscovering a coloring scheme by Kempe [1879]. In their scheme, they spill

so that at most k variables are alive at the same time. Initially, k = R, the number of

registers, and then they try to color the interference graph with R colors. If it does not

work, they start again the first phase with k = R − 1, then k = R − 2, etc. until they

manage to color the graph with R colors. In the same article, they also give a method

to construct, for any graph, a program whose interference graph is as difficult to color,

proving that this modeling of register allocation is NP-complete. Then, Chaitin [1982]

refined this scheme by working directly on the interference graph also for the spilling.

These two articles marked the beginning of using graph coloring based register alloca-

tors, and nearly no article on register allocation goes without citing this work since then.

This elegant solution to a difficult problem is indeed appealing and led many people to

work on improving it, for instance Bernstein et al. [1989] and Briggs et al. [1989], who

improved the spilling and coloring. Briggs [1992] investigates the technique of live-

range splitting with mitigated results. Later, George and Appel [1996] introduced their

well-known Iterated Register Coalescing (IRC) scheme. Smith et al. [2004] extend the

standard graph coloring technique to cope with multiple register classes and register

aliasing.

Reintroducing program structure in register allocation. People also realized that,

although simple and elegant it was, register allocation based solely on graph coloring

lacks some insight on the structure of the program. To address this problem, Chow and

Hennessy [1990] proposed a global algorithm that gives priority to frequently executed

5

CHAPTER 1. INTRODUCTION

parts of the code. Other algorithms include program structure to guide graph color-

ing based allocators. This is for instance the choice of Callahan and Koblenz [1991]

and Norris and Pollock [1994] who use the program structure and apply graph color-

ing to highly executed parts first. Similarly, Knobe and Zadeck [1992] use a “control

tree” based on the program structure to split live-ranges between regions. Kannan and

Proebsting [1995] remarked that register allocation is easy on programs that have a par-

ticular “serie-parallel” structure and propose a scheme to transform programs so that

they have this property.

Even if not stated as is, the common underlying denominator of these approaches

is the use of live-range splitting, as a means to focus on particular regions on the code,

as Bergner et al. [1997] do. Then, “repairing” must be performed at the boundaries,

which amounts to split the variables at these points so that regions become indepen-

dent. Splitting a variable means adding copies at some program points to separate its

live-range into more than one connected component. This allows to spill variables only

on some parts of the program and not everywhere as in the original scheme of Chaitin

et al. Cooper and Simpson [1998] experiment a “passive” live-range splitting as the

aggressive splitting tentative by Briggs produced to many copies, which degraded the

final result. Their strategy splits variables on demand, favoring the addition of copy

instructions to the spill of a variable. Lueh et al. [2000] propose a technique of incre-

mental growth of the interference graph, starting from an inner basic block and adding

the interference graphs of other regions, splitting live-ranges whenever to many vari-

ables exist.

Optimal ILP formulations. More recently, various optimal techniques using ILP have

been explored. To our knowledge, the first to perform optimal register allocation where

Goodwin and Wilken [1996], improved later by Fu and Wilken [2002]. This approach

is also experimented by Appel and George [2001] and Barik et al. [2007]. Grund

and Hack [2007] give an ILP formulation for the coalescing subproblem of register

allocation, improved by Blazy and Robillard [2008]. In this context also, the work of

Naik and Palsberg [2004] is worth to mention, although their goal is different since

they optimize the code size of the resulting program.

Linear scan allocation. With the growing proportion of embedded processor, differ-

ent kinds of needs made their appearance. In particular, just-in-time (JIT) compilation

aims at compiling code on the fly, and is much more constrained in time and space than

aggressive, off-line compilation. Global heuristics based on local register evaluation

are considered, and Poletto et al. [1997]; Poletto and Sarkar [1999] introduce a new

type of register allocation algorithm, the “linear scan.” This one is not based on graph

coloring, but instead linearizes the entire program as a unique basic block, on which

local allocation is performed. This allows for a very fast algorithm, and do not need to

construct a memory consuming interference graph. Improvements are made to the lin-

ear scan algorithm. Wimmer and Mössenböck [2005] introduce in it a splitting method

to reduce the problem that linear scan “fills gap” of live-ranges when linearizing the

program, hence pessimistically increase register pressure. Approaches still based on

graph coloring are also explored for JIT compilation, for instance, Cooper and Das-

gupta [2006] tailor a Chaitin-like allocator to make it run faster. Recently, Sarkar and

Barik [2007] proposed an “extended” version of linear scan as a viable alternate solu-

tion to graph coloring.

6

1.4. TECHNIQUES FOR REGISTER ALLOCATION

Introduction of SSA in register allocation. The Static Single Assignment (SSA) form

is an intermediate program representation introduced by Alpern et al. [1988] and Rosen

et al. [1988]. A most important step in the introduction of SSA was made by Cytron

et al. [1991] who gave an efficient method to transform a program into SSA form. SSA is

appreciated in the compiler community for simplifying many compiler optimizations,

for instance, Wegman and Zadeck [1991] use is to have a faster and easier constant

propagation algorithm. Briggs et al. [1998] further improve the transformations into

and out of SSA. A code is in SSA form when every scalar variable has only one textual

definition in the program code. Most compilers use a particular SSA form, the SSA form

with dominance property, which in short states that a variable must be defined before

being used. Up to now, SSA is not much related to register allocation, but we remarked

that the interference graph of a program under SSA from is chordal [Bouchez et al.,

2005]. Since coloring a chordal graph is polynomial, this lead to the design of new

heuristics for register allocation, using the SSA form, a fact exploited by Brisk et al.

[2005]; Pereira and Palsberg [2005], and Hack et al. [2006], who, independently, made

the same observation about the SSA interference graphs being chordal. Following the

idea of using SSA for register allocation, Pereira and Palsberg [2008] introduce their

“puzzle-solving” technique, and Hack [2007] wrote his Ph.D. thesis.

A few words towards simplicity in register allocation. We presented here some

of what we believe to be the most important steps in register allocation, from its ear-

liest developments up to now. Many register allocation schemes were invented and

described in the literature during this time. However, it is quite hard, taking any two

schemes, to know precisely how well one performs compared to the other. Usually,

authors compare their algorithm to what they think as “classical” register allocation

algorithm that are known to work “quite well.” However, this is not always the case,

and among the many existing allocators or improvements of allocators, not so many are

implemented and used in practice. Cooper et al. [2005] remarked for instance that the

allocator proposed by Callahan and Koblenz [1991] was never actually implemented,

so they did a thorough work of implementation and comparison with the Chaitin et

al. algorithm with improvements by Briggs. More recently, Cooper et al. [2008] did

a similar work comparing the priority-based algorithm of Chow and Hennessy [1990]

with Chaitin-Briggs. We view this situation as a clear example that the simpler and

more elegant ideas are the ones that make their way through all the others. Very smart

but very complicated schemes are appreciated by the community, but make life harder

for others whenever they want to compare their algorithms. Hence it is often seen

that improvements on a particular scheme are compared to the original scheme, but

not against each other. In practice, someone who wants to implement a compiler will

then have trouble deciding whichever scheme is the best, and will obviously choose the

ones that are simpler, both from a conceptual and an implementation point of view. It is

our belief that any new scheme, idea, or improvement of an existing scheme should be

simple, or at least easy to understand. We think that this is one of the reasons that the

SSA form is getting more and more appreciated today, since it simplifies many compiler

optimization. This is also probably the same reason why “linear scan” allocators are

very popular nowadays. Some graph coloring improvements are today so complicated

that, by contrast, the simplicity of the linear scans algorithms makes people have more

faith in them. And it is not uncommon to hear people say sentences like the following:

“Essentially, although graph coloring in register allocation was very popu-

lar in the 90’s [. . .] the existing graph coloring algorithms neither produce

7

CHAPTER 1. INTRODUCTION

faster code, nor have faster compilation time than the [linear scan] algo-

rithms already in use.2”

This is not a point of view that we share, as, conceptually, a linear scan allocator

has less access to global information than a graph coloring based allocator. Of course,

this is not true with original graph coloring schemes, but splitting techniques can make

interference graphs much more precise. However, our point here is that we do think

that simpler schemes are more popular, and are easier to modify and improve. Fol-

lowing this idea, we already pointed out that the SSA form simplifies the shape of the

interference graph by making it chordal. We wanted to investigate this area, remarking

that, by using SSA (for instance, but not only), the problem of register allocation can be

cleanly separated into two phases, hopefully making it simpler to deal with.

1.5 About this thesis

In this thesis, we restrict our interests in register allocation to graph coloring schemes

in the line of the original algorithm by Chaitin et al. [1981]. Since the NP-completeness

proof of Chaitin et al., people take for granted that register allocation is a difficult prob-

lem. Most graph coloring schemes intermix all subproblems of register allocation in a

common phase: assign and allocate variables to registers while minimizing the spilling

overhead and coalescing unnecessary move instructions. Our discovery that SSA in-

terference graphs are chordal shows that, in fact, the complexity does not come from

the “coloring,” which is a misinterpretation of Chaitin et al.’s proof. In fact, it shows

that register assignment is easy: if there are enough registers, splitting live-ranges as

does SSA is sufficient and a greedy algorithm manages to color the interference graph.

This re-motivated the design of register allocation based on graph coloring as a scheme

in two parts: First, reduce the number of alive variables by spilling so that they fit in

the register available, this is register allocation. Second, map variables to individual

registers, potentially by splitting variables, this is register assignment.

This idea is not new, and was already explored by a few people in old articles,

for instance by Cytron and Ferrante [1987] and Knobe and Zadeck [1992], then more

recently by Appel and George [2001] or Hack [2007]. The original algorithm of Chaitin

[1982] is really simple and works well, so it is not surprising that the two phases were

performed in only one. But a lot of improvements to this original scheme did not make

their way to compilers. The algorithms get too intricate and complicated because the

two phases are not cleanly separated, and the same is true for other allocation schemes

as well. Still, traditionally, spilling and coalescing are done in a common phase. Why

is graph-based register allocation still nearly always performed in only one phase? We

think there are three main reasons for this:

• Spilling is strongly dependent on the coloring property of the interference graph.

And the coloring is a difficult problem, hence heuristics that give an actual col-

oring are used: spills are done until the coloration succeeds, i.e., one knows the

allocation is correct whenever one has a working assignment of variables.

• Coalescing changes the structure of the interference graph. Aggressive coalesc-

ing might induce more spilling, hence cannot be in a separate later phase. Con-

servative coalescing guarantees that no additional spilling will be necessary, but

2Excerpt from a review of our article on coalescing [Bouchez et al., 2008] when in was rejected at CC’08.

8

1.5. ABOUT THIS THESIS

it can help with the coloring, reducing the number of colors needed. This was re-

marked by George and Appel [1996] and used in a register allocation framework

by Vegdahl [1999]. Hence, coalescing can reduce the number of spills required.

• Conservative coalescing is usually difficult to perform effectively if there is a

high number of move instruction. So, algorithms were designed to make trade-

offs between spilling and splitting. This is easier to balance if there is only one

phase in which splitting can be done on demand.

These reasons are now obsolete because we now know that the interference graph

on an SSA program is chordal. A chordal graph needs as many colors as the size of

its biggest clique, i.e., its biggest complete sub-graph. For an SSA program, this cor-

responds to the maximum number of variables simultaneously alive. Moreover, no

coalescing can reduce this number since no two nodes of a complete graph can be coa-

lesced: they must reside in different registers. We now have an exact test of the number

of registers required for the allocation. In general, supposing any splitting technique

that gives the same chordal property as SSA to the interference graphs, and R registers,

register allocation can be decomposed into two different phases:

1. Spill variables so there are at most R simultaneously alive variables at each point

of the program.

2. Split, then color the interference graph while performing conservative coalescing

to preserve the R-colorability.

Finally, there remains the last reason why phases were not separated: known co-

alescing techniques do not cope well with too many move instructions. This prob-

lem was already known to Briggs [1992] when he tried aggressive live-range splitting.

Because of this, Cooper and Simpson [1998] prefer to perform splitting on demand

in order not to create too many copies. More recently, this problem bothered Appel

and George [2000] so much that they launched the “Optimal Coalescing Challenge.”

Hence, having good coalescing strategies was the last missing piece of the puzzle of

register allocation in two phases. For this reason, we spent a lot of time working on

different variants of this problem in this thesis, both on the complexity and heuristic

points of view. Finally, we found satisfying strategies that allow us to safely state that

the first phase of register allocation needs not to worry anymore about introducing too

many copies.

Outline of this thesis. In Chapter 2, we introduce the necessary definitions of the

concepts used in this thesis. We also give the proofs of two important results of this the-

sis: that the interference graph of a program under SSA form is chordal, and that chordal

graphs are greedy-colorable, i.e., colorable using a simple greedy scheme. This lead

us to ask the question why SSA programs were not covered by the NP-completeness re-

duction of Chaitin et al. [1981], which reduces register allocation to Graph k-Coloring.

In Chapter 3, we come back to this proof and extend it to cover more cases, in partic-

ular involving live-range splitting. In this chapter, we outline the importance of crit-

ical edges for the complexity register allocation. We study in Chapter 4 whether SSA

also simplifies the spill “everywhere” problem, a simplification of the more general

spill problem often used in register allocation schemes, and find most of the studied

problems NP-complete. In this chapter, we differentiate two situations depending on

whether spilled variables need to reside temporarily in registers when stored and loaded

9

CHAPTER 1. INTRODUCTION

from memory or not. We continue our study of the complexity of register allocation

in Chapter 5, which is devoted to the coalescing problem. This is the first thorough

complexity study of the different coalescing strategies used in the literature. Using

this work, we improve existing coalescing techniques in Chapter 6, finding surprising

results in which our advanced conservative strategy outperforms all strategies based

on aggressive schemes. Chapter 7 introduces a strategy different from coalescing to

remove the copies inconveniently placed on control-flow edges when going out of SSA

after register allocation has been performed. We introduce there our technique of “par-

allel copy motion,” a fast and efficient method designed for JIT compilation. Finally, we

conclude in Chapter 8 after discussing practical considerations of actual architectures

that need to be taken into account in a register allocation algorithm.

10

GROUND, n. Like mattresses, only harder.

2
Grounds

In this chapter, we define the notations, vocabulary and basis for the next chapters.

First, we define generalities about programs and their interference graphs. Then we

discuss the coloring of the interference graphs, along with some interesting structures

of interference graphs. We also see what is usually done in practice whenever there are

too few colors to perform register allocation. Finally, we introduce the Static Single

Assignment (SSA) form and its effects on interference graphs for register allocation; this

leads us to present two of our results: that interference graphs under SSA are chordal

and that chordal graphs are what we call “greedy-colorable.”

2.1 Basis for register allocation

Register allocation deals with programs, variables and registers. We designate by “pro-

gram” what is in fact usually called a “function” or “procedure” in the programmers’

minds. Indeed, we will not include inter-procedural analysis issues in our studies. The

variables are virtual values holders used in programs to perform computations, while

the registers are their equivalent physical counterparts. The goal of register allocation

is to allocate the virtual locations to either the physical ones or to the main memory, so

that the processor can actually perform the desired computations.

2.1.1 Programs and control-flow graphs

Definition 2.1. An instruction is an atomic operation which possibly uses some vari-

ables and possibly defines other variables.

Example.

Instruction defines uses effect

a← 0 {a} ∅ put the value 0 in variable a

a← b + c {a} {b, c} put the sum of b and c in a

print b ∅ {b} display the value inside b

a, b← load64 c {a, b} {c} load the 64-bits value at memory address c

into 32-bits variables a and b

test a , 0 ∅ {a} test if the value in a is null

Note that the test instruction defines in fact a boolean value, but which is not in

the same register class as a hence it is not considered here.

By convention, in the examples given in this thesis, the notation “←” means that:

if a variable is on the left-hand side, it is defined by the instruction; if a variable is on

the right-hand side, it is used by the instruction. The notation “. . .” inside instructions

CHAPTER 2. GROUNDS

a← 3425 ;

n← 0 ;

while a , 1 do

n← n + 1 ;

if a even then

a← a/2 ;

else

a← a × 3 + 1 ;

end

end

print n ;

a← 3425

n← 0

a , 1 ?

n← n + 1

a even ?

a← a/2 a← 3 × a + 1

print n

program point

basic block

Figure 2.1: Example of a program and the corresponding control-flow graph.

means “something”; as an example, [a ← . . .] means variable a is defined using some

value or calculation, and [. . . ← a] means a is used in some instruction (which does

not necessarily define some another variable).

Definition 2.2. A program is a set of instructions linked by flow edges. An edge from

s to d means that instruction d can be executed after s. s is called the source and d the

destination of the edge.

Definition 2.3. A basic block is a maximal sequence of instructions without branch:

there is no other leaving or entering path possible in the middle of a basic block. A

program can be represented by a control-flow graph (CFG), which is a graph where

the vertices are the basic blocks and the oriented edges the possible paths during the

execution of the program.

We will now define “program points,” i.e., points of the program where, hypothet-

ically, the program could be stopped and the state of the machine could be inspected.

Hence instructions are not considered as “program points” since the state of the ma-

chine is not well-defined—is the new variable already defined? are the arguments

already used?—, but points between two instructions are program points, entries and

exits of basic blocks also, and even points on control-flow edges.

Definition 2.4. A program point is any point of the CFG which is not an instruction,

i.e., any point on a possible execution path before or after an instruction.

The first program point of a program—the one before the first instruction—is called

the entry or root of the program. A program point with more than one successor in-

struction is called a branch; a program point with more that one predecessor instruction

is called a join.

12

2.1. BASIS FOR REGISTER ALLOCATION

if f lag

a← . . . b← . . .

if f lag

. . .← a . . .← b

. . .

a b

Figure 2.2: Non-strict program.

a

b
a← . . .

b← . . .

store a

a← . . .

store b

store a

(a) Linear code

a← . . .

b← . . .

. . .← b
. . .

c← . . .

. . .← a

. . .← c

b

a

(b) More general CFG

Figure 2.3: Live-ranges of variables—thick lines—on two different examples of code.

Figure 2.1 shows an example of a program with the corresponding CFG, basic

blocks, and program points. The point after [a , 1] is a branch and the one at the

beginning of the empty basic block is a join.

It is often assumed that, for each use of a variable, the variable has been defined

before the use. While this should be dynamically the case, i.e., during the execution of

the program, this property is hard to check statically, i.e., during compilation.

Definition 2.5. A program is strict if for each variable and each use of this variable,

there is a definition of this variable on any static control path—a path following the

control-flow edges—from the start of the program to this use.

See Figure 2.2 for an example of a correct non strict program: dynamically, the

execution flow only chooses the left paths or the right paths but cannot mix both. But

there exist static paths taking the left path then the right one or the converse.

Unless stated otherwise, we will always assume strict programs.

2.1.2 Live-ranges, interference graph

The goal of register allocation is to allocate variables to memory locations, in particular

registers. These are the fastest available on a processor and hence preferred over main

memory. However, they are in limited, small number, and each register can hold only

one value at a time. Some variables may be placed in the same register under certain

13

CHAPTER 2. GROUNDS

conditions, for instance if they do not live at the same time. In practice, the converse

“interference” property is used:

Definition 2.6. Two variables interfere if they cannot be stored in the same register.

From the definition of interference, we can deduce that two variables interfere if

and only if (iff) they “exist” at the same time and carry different values. However,

these notions are dynamic in essence while compilation is static. In practice, relaxed

definitions of the interference are being used instead of this “ultimate” one. We will

define for the first condition the notion of “live-range,” the domain where a variable

exists statically. As for the second condition, it is in general difficult to now whether

two variables carry the same value or not, so this condition is usually left aside, except

for very simple cases.

The life of a variable is the points where this variable has been defined previously

and will be used in the future. Whenever a variable is not alive, it is dead. Figure 2.3

represents live-ranges on two examples of code: a linear code—for instance inside a

basic block—and a more general code.

Definition 2.7. On a strict program, a variable is alive at a program point p iff there is

a static path from p to a use of a which does not go through a definition of a.

The live-range of a variable a, live(a), is the set of program points where a is alive.

These are the points between the instructions defining a, def(a) and the instructions

using a, use(a). It is a sub-graph of the CFG. A variable is live on any program point of

its live-range, and dead otherwise.

Using the live-ranges, it is possible to calculate easily a relaxed notion of interfer-

ence.

Definition 2.8 (Relaxed interference). Two variables interfere iff their live-ranges in-

tersect.

This definition finds more interferences than the “ultimate” interference definition,

as shown by the example Figure 2.2: on this non-strict program, the two live-ranges of

a and b intersect but they can nevertheless share the same register since they are never

dynamically alive at the same time; a and b do not interfere.

The relations of interference can be represented using a graph:

Definition 2.9. The interference graph G = (V, E) of a program is an undirected graph

where each vertex v ∈ V corresponds to a variable of the program. There is an interfer-

ence (u, v) ∈ E iff u and v interfere.

Chaitin et al. [1981] proved the following lemma so that the notion of interference

for strict programs gets very easily computable: one just needs to check it at definition

points.

Lemma 2.10. For a strict program, the live-ranges of two variables intersect iff the

live-range of one contains a definition of the other.

Chaitin et al. [1981] proposed to refine their use of the “relaxed” interference when

building the interference graph by saying that if u is defined by the copy [u← v], then

no edge is added between u and v in the graph, since they obviously have the same

value.1 Hence it is possible to have a different definition of interference:

1Note however that u and v might still interfere, for example if u is defined multiple times. In that case,

an edge between u and v will be added anyway sooner or later.

14

2.1. BASIS FOR REGISTER ALLOCATION

b← c

c← a

a← b + c

d ← 1

a← d

c← 0

· · · ← a

d

b

a
c

a

b

c

d

Figure 2.4: Program with the live-ranges and the corresponding interference graph.

Interferences are represented with plain edges and affinities with dashed ones.

Definition 2.11 (Chaitin’s interference). For a strict program, Two variables u and v

interfere iff the live-range of u contains a definition of v different than [v ← u], or the

live-range of v contains a definition of u different than [u← v].

The interference graph will depend on the definition of interference chosen; the

more refined it is, the less “false” interferences there will be in the graph.

Note: In this thesis, some theorems or properties rely on the structure of the interference

graph. Hence, the notion of interference chosen can be important for the correctness of

some algorithms, and a definition of interference cannot always be traded for another without

checking that does not invalidates proofs. For instance, with Definition 2.8, a variables alive

at one program point form a clique, while this is not true with Definition 2.11.

In addition to interferences, usually represented with solid lines, each copy instruc-

tion [u ← v] is represented by an affinity, usually shown using a dashed line in the

interference graph. If both variables are assigned to the same register, the correspond-

ing assembly instruction [move u, v] can be removed from the program.

Definition 2.12. An affinity 〈u, v〉 between variables u and v in the interference graph

expresses the preference for these variables to share the same color (register).

Affinities can also be weighted to represent a dynamic execution count of the copy

instructions. In that case, the weight of an affinity between u and v is usually denoted

w〈u, v〉.

Figure 2.4 give an example of interference graphs of programs, with affinities be-

tween variables linked by a copy instruction. Affinities between adjacent vertices are

represented but cannot be coalesced: they are called constrained affinities.

2.1.3 Maxlive

Definition 2.13. Given a point p of the CFG, Live is the number of variables simultane-

ously alive at p, represented by symbol Ω(p). Maxlive , denoted by Ω, is the maximum

of Ω(p) over all points p of the CFG.

Figure 2.5 illustrates the definition of Maxlive on the straight line code of Fig-

ure 2.3. Maxlive will be an important indicator to decide whether it is possible to

15

CHAPTER 2. GROUNDS

a← . . .

b← . . .

store a

a← . . .

store b

store a

a

b
0

1

2

1

2

1

0

Ω(p)

Ω = 2

Figure 2.5: Number of variable in Live at each point and Maxlive, the maximum over

all of them.

allocate all variables to registers or not. Here, we defined Maxlive with the relaxed

definition of interference in mind (Definition 2.8): two variables interfere if they are

alive at the same time. With this definition, and for a strict program, Maxlive is a

lower bound on the number of registers required to store all variables of the program.2

Indeed, there is at least one program point p where Ω(p) = Ω; On this point, every

variable is alive: they all interfere, meaning that one needs Ω registers for this point.

If considering Chaitin’s interference, in which copies of the same variable do not

count (Definition 2.11), Maxlive is not a lower bound on the number of registers re-

quired anymore. If one still wants this property, Ω(p) should be defined as “the number

of registers required to allocate all variables of p,” which is more complicated than just

counting the variables alive at p.

2.2 Coloring the interference graph

In the graph coloring problem, the goal is to assign different colors to adjacent vertices.

Given a valid coloring of an interference graph, it is possible to view the colors as

registers, meaning that two interfering variables are in different registers. This gives a

valid register allocation for the program provided that less that R colors are used, where

R is the number of registers available.

Definition 2.14. A coloring of the interference graph is a function col on the nodes

such that col(a) , col(b) whenever a and b interfere. col is a k-coloring if it uses at

most k different values. An R-coloring of the interference graph gives a valid register

allocation for a program.

Notice that, in the interference graph model, each variable is traditionally consid-

ered as an atomic object, i.e., it has a single color, meaning that it will be placed in

the same register on all its live-range. In this context, the first problem considered is

logically the following:

How to know if there is enough registers to allocate all variables?

We will now present the traditional way to answer this question, then what can be

tried if the answer to this question is negative.

2This is false for a non-strict program: see Figure 2.2 again, the same register can hold both a and b since

they are never dynamically alive at the same time.

16

2.2. COLORING THE INTERFERENCE GRAPH

a← . . .

b← . . .

c← . . .

d ← b

· · · ← c

e← . . .

d ← a

· · · ← e

· · · ← d

a

e

b

c

d

e

ab

c

d

Figure 2.6: A code withΩ = 2 but nevertheless not 2-colorable because the interference

graph is a cycle of odd length.

2.2.1 Testing if R registers are sufficient

2.2.1.1 Conditions on Maxlive

Since there is at least one point in the program where Live is equal to Maxlive, the

condition R < Ω is sufficient to know it is impossible to allocate the program without

modifying it, i.e., spilling some variables to memory is necessary as we will explain

later. What about the condition Ω ≤ R? Unfortunately, this condition is not sufficient

in the general case as shown by Figure 2.6. The program of Figure 2.4 needed also

three registers even if there were only two variables alive at the same time. Chaitin

et al. [1981] proved in fact that the interference graph of a program can be any graph,

hence the problem of allocating a unique register to each variable of a program reduces

to Graph k-Colorability, which is NP-complete. The proof is analyzed in details in

the next chapter, Section 3.1.1, and its validity is discussed whenever more freedom is

allowed, for instance whenever variables can reside in different registers during their

lifetime.

2.2.1.2 A coloring heuristic: Chaitin et al.’s simplification scheme

Since graph coloring is NP-complete, Chaitin et al. [1981] used a simple scheme in-

vented by Kempe [1879] to color the interference graph with k colors. The algorithm

rely on the following “simplify” rule to assign colors to variables: A node x with fewer

than k neighbors is always colorable no matter how G \ {x} is colored. It can thus

be removed (simplified) from the graph and pushed on a stack. If this simplify phase

removes all nodes, the graph is k-colorable. Indeed, in a second “select” phase, each

node can be popped from the stack and colored with one of the colors not used by its

neighbors previously popped, which are fewer that k. An example of execution of this

algorithm for k = 3 is given on Figure 2.7: initially, only the node f with degree 2 can

be simplified because all other nodes have degree 3, but eventually, all of them can be

simplified after the simplification of some of their neighbors. However if at one point

of the simplify phase, the degree of every node in the remaining graph is at least k, the

coloring fails. It does not mean that the graph is not k-colorable, only that we did not

find a k-coloration. This can be the case even for simple graphs such as a cycle of even

length, see Figure 2.8.

During this thesis, we remarked that this greedy heuristic defines without ambigu-

17

CHAPTER 2. GROUNDS

a

b

c

d

e

f g

h

i

m

stack degree

i 0

h 1

g 2

e 1

b 2

d 1

a 2

c 2

m 2

f 2

o
rd

er
o

f
si

m
p

li
fi

ca
ti

o
n

o
rd

er
o

f
co

lo
rin

g

Figure 2.7: Example of Chaitin et al.’s simplification scheme with 3 colors.

d°2

d°2d°2

d°2

d°2 d°2

Figure 2.8: A 2-colorable graph, but the simplification scheme of Chaitin et al. fails

since every node has degree equal to 2.

ity a class of graphs, to which we gave the name of greedy-k-colorable graphs, i.e.,

graphs colorable with k colors with this heuristic. We will define cleanly these graphs

in Section 2.2.2.5, along with Function Is kGreedy, a pseudo-code for the greedy

heuristic. Greedy-k-colorable graphs are not the only interesting class of graphs for

register allocation, and we will now introduce the graph structures which we found the

most interesting for interference graphs.

2.2.2 Interesting graph structures

In this section, we recall some particular graph structures that appear as interference

graphs under certain conditions. All these structures have some interesting properties

in our context of deciding whether R registers are sufficient or not.

2.2.2.1 k-colorable graphs

This is the most general class of graphs. A graph G is k-colorable if it is possible to

color it with at most k colors. In general, the minimum number of colors required to

color G is the chromatic number, denoted by χ(G). Hence, a graph G is k-colorable for

any k greater or equal to χ(G). For this class of graphs, it is NP-complete to decide, for

a given integer K, if χ(G) ≤ K [Garey and Johnson, 1979, Problem GT4].

18

2.2. COLORING THE INTERFERENCE GRAPH

2.2.2.2 Cliques

Definition 2.15. A clique is a complete graph, i.e., for each two nodes u and v there is

an edge (u, v).

Cliques are the most restrictive graphs in terms of coloring. Clearly, a clique of

size k needs exactly k colors. Hence, knowing that a graph G contains a k-clique is

an interesting fact since it shows that χ(G) ≥ k. A useful trait for the colorability of a

graph is its clique number, ω(G), the size of its largest clique. In the literature, perfect

graphs are defined as graphs for which the coloring number equals the clique number,

i.e., χ(G) = ω(G) Golumbic [1980].

2.2.2.3 Interval graphs

Definition 2.16. An interval graph is the intersection graph of a family of intervals.

Theorem 2.17. The interference graph of a basic block with one definition per variable

is an interval graph.

Proof. In a basic block, each live-range of a variables is a connected component if there

is only one definition for that variable. Moreover, these live-ranges are sub-intervals

of the basic block, starting at the definition—or at the beginning of the basic block if

they are live-in—and ending at the last use—or the end of the basic block if they are

live-out. �

Interval graphs are perfect graphs: as explained before, their coloring number

equals the size of their largest clique. For basic blocks, this means it is possible to

compute the number of registers required by performing a “scan” from the top to the

bottom of the basic block while keeping a set of the live variables: the clique number

is the maximum size of the set.

2.2.2.4 Chordal graphs

Definition 2.18. An undirected graph is chordal if every cycle of size at least four has

a chord (edge between two non adjacent vertices of the cycle).

Chordal graphs are sometimes called “triangulated graphs” because the chords in

cycles make a lot of small triangles, as shows the example on Figure 2.9. Like interval

graphs, chordal graphs are perfect. Another characterization of chordal graphs uses

“simplicial” vertex and “perfect elimination schemes.”

Definition 2.19. A simplicial vertex is a vertex whose neighbors form a clique. A

perfect elimination scheme is an ordering σ = {v1, v2, . . . , vn} of the nodes such that

each vi is a simplicial vertex of the induced subgraph G|{vi,...,vn}.

A graph is chordal iff it has a perfect elimination scheme, moreover, any simplicial

vertex can start a perfect scheme [Golumbic, 1980, Thm. 4.1]. This means that, if G

is chordal, one can remove successively simplicial vertices until the graph is empty. It

is then easy to color the nodes in the reverse order of their simplification [Fulkerson

and Gross, 1965], or, as we will see in Section 2.2.2.6, more simply with the greedy

simplification scheme of Chaitin et al.

Another equivalent definition [see Golumbic, 1980, Thm. 4.8] uses the tree repre-

sentation:

19

CHAPTER 2. GROUNDS

a

b

c

d
e

f

c

a

b

e

d

f

Figure 2.9: Example of chordal graph with its representation as subtrees of a tree.

Definition 2.20. A chordal graph is the intersection graph of a family of subtrees of a

tree.

An example of chordal graph with its subtree representation is given on Figure 2.9.

Using the tree representation, is is easy to color the graph also using a “scan” as for

interval graphs, but in our case the scanning starts at the root and stops at the leaves of

the tree. To make it short, we say that a k-colorable chordal graph is k-chordal .

2.2.2.5 Greedy-k-colorable graphs

Another fundamental class of graphs for Chaitin-like register allocation is what we call

greedy-k-colorable graphs. These are the graphs k-colorable using the greedy simpli-

fication scheme of Chaitin et al. [1981] introduced in Section 2.2.1.2. For instance, the

graph given as example on Figure 2.7 was a greedy-3-colorable graph.

Definition 2.21. A graph G is greedy-k-colorable iff Function Is kGreedy(G) suc-

ceeds.

Function Is kGreedy(G)

Data: Undirected graph G = (V, E); ∀v ∈ V , degree[v] = #neighbors of v in G, k number

of colors

stack = ∅ ; worklist = {v ∈ V | degree[v] < k} ;1

while worklist , ∅ do2

let v ∈ worklist ;3

foreach w neighbor of v do4

degree[w]← degree[w]-1 ;5

if degree[w] = k − 1 then worklist← worklist ∪ {w}6

push v on stack ; worklist← worklist \ {v} ; /* Remove v from G */7

if V = ∅ then return  else return 8

We recall again the idea of the algorithm. While this is possible, remove a vertex

of degree strictly less than k in the current graph. Indeed, whatever the coloring of the

current graph, there will always be at least one color available for this vertex. Hence

a graph is greedy-k-colorable iff this elimination scheme removes all vertices. This

20

2.2. COLORING THE INTERFERENCE GRAPH

definition seems non-deterministic but, for a greedy-k-colorable graph, the order in

which vertices are removed is not important: removing a vertex with degree < k is

never a bad decision for coloring. It is also clear that G is not greedy-k-colorable iff G

contains a subgraph G′ whose vertices all have a degree at least k in G′. A greedy-k-

colorable graph is k-colorable because it is possible to color its vertices in the opposite

order of their removal, assigning to each vertex a color not used by its already-colored

neighbors: this is possible because there are at most (k − 1) such neighbors. This

scheme is exactly the coloring heuristic used in Chaitin-like approaches.

2.2.2.6 Orderings of graphs structures

k-colorable interval graphs (k-chordal (greedy-k-colorable (k-colorable

The last inclusion is trivial, the first also since an interval is a particular subtree with no

branch. Example for the inequalities can be found in figures previously seen: the graph

on Figure 2.8 is 2-colorable but not greedy-2-colorable; the same graph is greedy-3-

colorable but not chordal (for any k) since it is a chordless cycle of size 6; Figure 2.9

shows a chordal graph which cannot be represented as an interval graph. Finally, the

middle inclusion is proved by the following property of k-chordal graphs.

Property 2.22. If G is a k-colorable chordal graph, it is greedy-k-colorable.

Proof. Any chordal graph G has at least one simplicial vertex3 [Golumbic, 1980], i.e.,

a vertex v whose neighbors form a clique: v and its neighbors also form a clique, and

if G is k-chordal, it has no clique of size k + 1. Thus, v has at most k − 1 neighbors and

can be removed (simplified) from the graph. The remaining graph is still k-chordal and

the same argument applies. Thus, G is greedy-k-colorable. �

This property is one of the first contributions of this thesis, and is of much interest

since it implies that Chaitin-like register allocators provide an solution whenever the

interference graph of the program is R-chordal. We will see in Section 2.3 a case where

this property is particularly interesting.

2.2.3 What to do if R registers are not sufficient?

Chaitin et al.’s greedy heuristic can tell that R registers are sufficient to color the in-

terference graph. If the heuristic fails, the goal is to modify the program so that the

interference graph becomes greedy-R-colorable. In most of the cases, some nodes

need to be removed from the graph. This is necessary if Ω > R, for instance, since that

means there is a Ω-clique in the graph, i.e., a complete sub-graph of Ω nodes.4

Variable spilling: In order to remove nodes from the graph, some variables are

transferred—spilled—to memory. That way, they do not need any register to hold them

at times where they are in memory. There are two problem with spilling: first, opera-

tions working with operands in memory are slower that those working with operands

in registers; second, instructions to transfers values to and from memory (store and

load) need to be inserted in the program, which degrades performance and uses new

variables which need to be allocated: this creates new nodes in the interference graph,

hopefully simpler to color that the ones spilled since their live-ranges are very short.

3Actually, it has at least two simplicial vertices.
4This is of course true only with the relaxed Definition 2.8 of interference.

21

CHAPTER 2. GROUNDS

a← . . .

b← . . .

c← . . .

d′ ← b

· · · ← c

d ← d′

e← . . .

d′′ ← a

· · · ← e

d ← d′′

· · · ← d

d′′

e

ab

c

d′

d

Figure 2.10: Splitting d makes 2 registers enough for the program of Figure 2.6.

Variable splitting: Another technique to make the graph colorable, less powerful

that spilling but also cheaper, is variable splitting. Let us give the intuition for a variable

a on a basic block. a can be split into two variables a and a′ by inserting a copy

instruction [a′ ← a] somewhere in its live-range, on a program point. Then, subsequent

uses of a are replaced by a′ in the code: on the basic block, all uses before [a′ ← a]

still reference a, but the ones below reference a′. Hence, a and a′ are not alive at the

same time and they might be placed in different registers.

Splitting live-ranges is more complicated on a general CFG since the consistency

must be kept at join points: suppose variable a is split in the “else” part of a conditional,

there is an ambiguity after the conditional: which of a or a′ should be used? None of

them. Either way would break the semantic of the original code: if coming from the

“then” part, the a should be used, and if coming from the “else” part, it is a′ which

should be used. A possibility would be to restore back a′ in a before leaving the “else”

part, by inserting [a ← a′]. More generally, to split a variable a into a′ on a subset of

its live-range, one has to insert [a′ ← a] at each program point where a path enters the

subset, and [a← a′] at each program point where a path leaves the subset.

Splitting variables allows them to be stored in different registers at different points

of their lives, which simplifies the coloring: smaller live-ranges have fewer interfer-

ences, hence are easier to simplify using Chaitin et al.’s scheme. For instance, we used

two examples of code where Maxlive equals two, but three colors are required anyways

in Section 2.2.1.1 (Figures 2.6 and 2.4). Figure 2.10 shows that splitting d at the end

of the conditional basic blocks makes the interference graph 2-colorable for the first

example. Figure 2.11 shows that splitting b and c in the middle of the loop also make

the interference graph 2-colorable for the second example, but one has to make sure

that the copies are done in parallel to perform a swap of their colors.5

The price of splitting variables is that, if the corresponding sub-variables are in-

deed allocated to different registers, the inserted copies will actually have to be per-

formed with move instructions, which degrades performance. But hopefully, this split-

ting helped to avoid a spill which are usually more expensive than moves.

The most famous example of live-range splitting in compilation is the SSA form,

which will be presented in Section 2.3. While splitting helps for coloring, one should

keep in mind that whatever the splitting, it will not lower Maxlive, hence it cannot

solve the problem if Ω > R.

5This is the same problem as sequentializing parallel copies when going out of SSA, see Section 2.3.6.

22

2.2. COLORING THE INTERFERENCE GRAPH

b← c

c′ ← a

(b′, c)← (b, c′)

a← b′ + c

a← 1

c← 0

· · · ← a

a

bb′

c′

c

Figure 2.11: Splitting b and c in parallel makes it possible to swap their colors.

a← . . .

b← . . .

c← . . .

· · · ← c

a← b

e← . . .

· · · ← e

· · · ← a

e

a(d, d′′)b(d′)

c

Figure 2.12: Coalescing in the example of Figure 2.10: b with d′, a with d, and d′′.

Variable coalescing: Finally, the converse of the splitting technique might help: the

coalescing. This corresponds to grouping two different non-interfering variables into

one, by replacing every occurrence of the second by the first. The effect on the inter-

ference graph is that the corresponding nodes are merged, hence decreasing by one the

degree of the common neighbors and augmenting their chance to be simplified. This

was remarked by George and Appel [1996], and actually used by Vegdahl [1999] to

improve the simplification scheme of Chaitin et al.

Of course, the problem is that the node resulting from the merge will have more

neighbors. In general, it is hard to know if a particular coalescing will break the col-

orability of the graph; this will be discussed in Chapter 5. Global or local rules can

help deciding if a coalescing is “safe,” for instance Briggs’s and George’s rules use

neighborhood criteria to make sure the resulting node will still be simplifiable at some

point of Chaitin et al.’s algorithm. Such rules will be heavily discussed in Chapter 6.

In practice, coalescing is often performed only between nodes which have an affin-

ity (see Definition 2.12), so that the corresponding copies can be removed from the

program code. As an example, Figure 2.12 shows a possible coalescing of the program

in Figure 2.10: three of the four copies are removed by coalescing b with d′, a with d′′,

and d with d′′. The fact that common neighbors are more likely to be simplified is then

more a nice side effect than the primary goal of the coalescing.

23

CHAPTER 2. GROUNDS

build simplify coalesce freeze pot. spill select act. spill

Figure 2.13: Flow diagram of the Iterated Register Coalescing scheme.

2.2.4 Iterated Register Coalescing (IRC)

Classical approaches for graph-based register allocation integrate in the same frame-

work spilling, coalescing, and coloring, the last one being the final assignment of

variables to registers. This is the case in the Iterated Register Coalescing approach

proposed by George and Appel [1996], a modified version of the original allocation

scheme of Chaitin [1982] and of improvements due to Briggs et al. [1994]. The prob-

lem is also modeled with the interference graph of the program, on which the greedy

approach of Chaitin et al. is used to try to color the graph with R colors. This involves a

combination of the following mechanisms. The execution flow between them is shown

graphically on Figure 2.13:

a) build: the interference graph is built from the program;

b) simplify: a vertex/variable with at most (R − 1) neighbors can be simplified (re-

moved) from the graph since it will be easy to color afterwards (this is the same

mechanism as in Function Is kGreedy, page 20). Vertices involved in copy in-

structions are not simplified to get a chance to be coalesced;

c) coalescing: removing a copy instruction can be done by merging the two vertices

involved in the move; this is performed in a conservative way, i.e., with simple rules

that guarantee that the graph remains greedy-k-colorable;

d) freeze: copy instructions are tested several times to improve they chance of being

coalesced by the conservative tests. When no more copy has a chance to be coa-

lesced, the algorithm “freezes” one copy, i.e., gives up on this one and will never

test it again;

e) potential spill: when all vertices have at least R neighbors, some vertex is simplified

and marked as a “potential” spill;

f) select: when the graph is empty, the vertices are colored in the reverse order of

their simplification. Each vertex is given a color not used by its already-colored

neighbors;

g) actual spill: if no color is available for a vertex marked as a potential spill, an actual

spill is performed, i.e., loads and stores are inserted in the code;

h) rebuild: if there was a spill, the interference graph is rebuilt and the coloring proce-

dure is restarted.

Such an approach gives fairly good results. But the main reason for its success is

certainly its simplicity both from a conceptual and an implementation point of view.

Weights can be easily added to guide the spilling and the coalescing. This allows to take

into account different dynamic execution frequencies of basic blocks. Physical registers

can be added as specific “pre-colored” vertices. Register constraints are expressed by

adding copies in the code, so that the coalescing elegantly deals with them. “Smarter”

24

2.3. Static Single Assignment FORM

coloring strategies for the select phase, such as biased coloring, can be used to improve

the coalescing. However, this approach has also several weaknesses for both spilling

and coalescing:

• For spilling, once a vertex is actually spilled, there is no obvious method to

decide where to place loads and stores, except the simple but inefficient “spill-

everywhere” approach, where a store is inserted after each definition, and a

load before each use of the spilled variable.6 Even worse, it can happen that

some spilling is done even if this actually does not help to make the graph k-

colorable.

• For coalescing, although simple and appealing, conservative coalescing is some-

times not aggressive enough and too many moves may remain in the code. Fi-

nally, even if live-range splitting is sometimes considered in such a framework,

it is very hard to control the interplay between spilling and splitting/coalescing.

In the initial scheme of Chaitin et al., the coalescing was aggressive, i.e., copies

were eliminated regardless of their effect on the colorability of the graph. But when

Briggs et al. [1994] introduced live-range splitting in this scheme, they moved to a

conservative coalescing that would not cancel the effects of the splitting. With the

growing difference in speed between accessing memory and accessing registers, this is

often better to have more move instructions if this saves a spill. This settled conserva-

tive coalescing in the IRC scheme, delegating the coalescing of initial program moves

to an (optional) constant propagation phase, so that the less powerful coloring-aware

coalescing had only to deal with copies inserted by live-range splitting.

2.3 Static Single Assignment form

Static Single Assignment (SSA) form is a property for intermediate representations

widely used in modern compilers, usually because it enables or simplifies well-known

optimizations. We will first give definitions and properties of SSA form, then explain

why it is interesting for register allocation and the particularities of this form with re-

gard to program code.

2.3.1 Definition of SSA

Definition 2.23. SSA form: every variable is textually7 defined only once before being

used. Given a variable a, def(a) is the instruction that defines a and use(a) is the set of

the instructions that use a.

Then, under SSA, there is one unique static definition, but it is possible to get mul-

tiple dynamic definitions—for example, if the definition occurs in a loop. This form is

illustrated in Figure 2.14. Usually, SSA is considered with dominance property, which

will be defined in the next section.

A program can be converted to SSA form by renaming multiple definitions of the

same variable into subscripted versions of this variable. At join points of the CFG,

6Refinements can be done afterwards, for instance, Chaitin et al. [1981] states that unnecessary loads can

be removed using a pass of dead-code elimination.
7In the source code of the program.

25

CHAPTER 2. GROUNDS

a← . . .

b← . . .

c← . . .

· · · ← a

c← . . .

· · · ← c

· · · ← b

a← . . .

b← . . .

c1 ← . . .

· · · ← a

c2 ← . . .

c3 ← φ(c1, c2)

· · · ← c3

· · · ← b

Figure 2.14: A program converted to SSA

multiple SSA variables of the same original variable must be merged into one SSA vari-

able depending on where the execution path comes from. This is the purpose of the

so-called virtual φ-functions.

Definition 2.24. A φ-function is a virtual operation which can be placed only at the

beginning of a basic block (at the program point before the first instruction). It takes as

many arguments as the number of incoming flow edges, and return the value of its nth

argument when the execution path comes from the nth incoming flow edge.

An example of φ-function is given on Figure 2.14: c is defined twice, hence is

replaced by c1 and c2. At the end of the “if. . . then. . . else” construct, there is a use of

c, whose value depends on which branch of the condition was taken. The φ-function

inserted acts as a multiplexer by “choosing” c1 if the path comes from the left, and c2

if it comes from the right, defining a third variable c3 which is the one used afterwards.

Definition 2.25. A program is in conventional SSA form (cSSA) if, for all φ-functions,

all variables involved in the φ-function (the arguments and results) can be renamed

with a common name.

This means that under cSSA, the arguments and results of a φ-function must not

interfere. A program converted to SSA form using the method of Cytron et al. [1991] is

under cSSA. This property is useful, for instance, if the result of a φ-function is spilled,

then it ensures that arguments can be spilled to the same memory location. Some

optimization can break the conventional property, like copy folding and code motion,

but Sreedhar et al. [1999] gave a method to convert SSA back to cSSA.

2.3.2 The dominance property

Definition 2.26. An instruction s—or a block of instructions—dominates an other in-

struction t if every elementary path8 from the root of the program to t goes through s.

The notation is s � t.

Definition 2.27. SSA is said to be with dominance property if, for every variable a,

def(a) dominates every element of use(a).

Lemma 2.28. If SSA is with dominance property, for every variable a, def(a) dominates

every element of Live(a).

8Path which contains at most one time any instruction.

26

2.3. Static Single Assignment FORM

Proof. Suppose that a is live at program point p. Then, there exists a path from p to

an instruction u that uses a which does not go through def(a). If p was not dominated

by def(a), there would exist a path r p from the root of the program to p which

does not go through def(a), hence there would exist a path r p u with the same

property, which contradicts the dominance property. �

The following theorem is well-known and we will need it for some later proofs, so

we recall it here for completeness.

Theorem 2.29. Dominance is a partial order: it is antisymmetric, reflexive and tran-

sitive.

Proof. Proof of the three properties:

• antisymmetric: we suppose s � t and t � s. Let us consider an elementary path

r t from r to t. This path goes through s since s � t: it can be split into

r s t. Again, since t � s, the path from the root to s goes through t and

the initial path writes r t s t. But the first path was an elementary path

hence the only possibility is that t s t is of zero length, i.e., s = t;

• reflexive: s is the last element of any path from the root to itself, hence it domi-

nates itself;

• transitive: if s � t and t � u. Let r u be a path from the root to u. It contains

t and can be written r t u. But s � t so one can split r t in r s t

which means that r u contains s and s � u.

�

Definition 2.30. The dominance graph is the Hasse diagram9 of the graph where the

vertices are the instructions and the (directed) edges indicate dominance:

s→ t ⇐⇒ s � t

Property 2.31. If s and t dominate u, then either s dominates t, or t dominates s.

Proof. Consider an elementary path from the root r to u. This path contains s and t by

definition. Without loss of generality, one can suppose that s appears before t on this

path: r s t u. Suppose there exists a path r ∗ t from r to t which does not

go through s, then one could extend this path to u, and r ∗ t u would be a path

from the root to u not going through s which contradicts the fact that s � u. Hence

every path from r to t goes through s and s � t. �

Note on live-ranges under SSA. The dominance property seems to be contradictory

with the existence of φ-functions. Indeed, when looking at the example of Figure 2.14,

the use of c1 and c2 do not seem dominated by their definition. But in fact, the φ-

function is not a normal instruction and its semantics is that assignments are performed

“somewhere” on the incoming edges. This means that c1 and c2 are in fact not live in

of the basic block where the φ-function is. The converse is true for the definition: c3

is not live out of the preceding basic blocks. Hence, the live-range of a variable used

in a φ-function under SSA ends at the end of the basic block preceding the φ-function

9Graph whith the transitive edges removed.

27

CHAPTER 2. GROUNDS

(unless it is still used after the φ-function), and the live-range of a variable defined by

a φ-function starts at the beginning of the basic block where the φ-function is.

The live-ranges are important for the shape of the interference graph. Indeed, it

is important that c1 and c2 do not interfere (if the φ-function is their last use) because

that is the purpose of splitting under SSA. Interferences exists whenever live-ranges

intersect, and in the following we prefer to stick to this definition and not take value

into account. This is in fact not a limitation under SSA since variables are defined only

once, hence, if at its definition a variable is defined as [b ← a], b will always have the

same value as a and can be renamed at every of its uses. This can be easily done with

a copy folding algorithm, a very common optimization in compilers.10

2.3.3 Properties of SSA

Property 2.32. Under SSA, if a interferes with b, then either def(a) � def(b), or

def(b) � def(a).

Proof. Let p be a program point where a and b are simultaneously alive. Using

Lemma 2.28, we know that def(a) � p and def(b) � p. The property 2.31 con-

cludes. �

Corollary 2.33. Under SSA, if a interferes with b and def(a) � def(b), then def(b) ∈

live(a).

Proof. def(a) � def(b), and since a and b interfere, by Definition 2.8 of the interfer-

ence, a is alive at def(b), which means def(b) ∈ live(a). �

Theorem 2.34. The dominance graph under SSA is a tree.

Proof. A vertex u has only one direct predecessor: if s and t dominate u, then Prop-

erty 2.31 states that one of the two dominates the other. For instance, s � t, then s→ u

is a transitive edge and does not appear in the Hasse diagram. Moreover the graph is

connected since the root dominates every vertex. �

Corollary 2.35. Under SSA, the live-ranges are subtrees of the dominance graph.

Proof. Let us consider a variable a and a point p of its live-range. Let us consider the

shortest path Pdom from the definition of a to p on the dominance tree. Since a is alive

at p there is a path PCFG, on the CFG, from p to a use of a which does not go through

def(a).

For any point p′ , def(a) of path Pdom, def(a) � p′ � p because def(a) � p.

Hence, there is also a path P′
CFG

, on the CFG, from p′ to p. Moreover, one can choose

P′
CFG

so that it does not go through def(a), else this would mean p′ � def(a) which

is impossible because of the antisymmetric property of the dominance. Hence, the

concatenation of P′
CFG

with PCFG is a path, on the CFG, from p′ to a use of a which

does not go through the definition of a. This means a is alive at p′.

Hence, every shortest path Pdom, on the dominance tree, from def(a) to a point

where a is alive contains only points where a is alive. They are sub-paths of the domi-

nance tree, and since have a point in common—the definition of a—, the union of these

paths is connected: it is a subtree of the dominance graph. �

Figure 2.15 shows the live-ranges of the previous SSA example, Figure 2.14. The

conditional branches do not dominate the last basic block, so the dominance graph is a

tree and the SSA live-ranges are subtrees of this tree.

10However, this breaks the “conventional” property of cSSA codes.

28

2.3. Static Single Assignment FORM

b

c
c

a
b

c1

c3

c2

a

on the CFG

SSA

b

c1

c2

c3

a

on the dominance tree

Figure 2.15: Live-ranges of the program of Figure 2.14 and its version under SSA. c1

and c2 stop at the end of their definition blocks, while c3 starts at the beginning of the

block with the φ-function (see note page 27), hence they are subtrees of the dominance

tree.

2.3.4 SSA interference graph is chordal

In 2005, we discovered that, under SSA, the interference graph of a program is chordal.

Independently, Brisk et al. [2005]; Pereira and Palsberg [2005], and Hack et al. [2006]

made the same observation. Note that the interference graph depends on the interfer-

ence notion. We use Definition 2.8 for that purpose,11 and the shape of the live-ranges

under SSA are explained in the note page 27.

Theorem 2.36. The interference graph G of a program under SSA with dominance

property is chordal.

Short proof. Corollary 2.35 states that under SSA, live-ranges are subtrees of the dom-

inance graph. Hence the interference graph is the intersection graph of a family of

subtrees (the live-ranges) of a tree (the dominance tree), which is another characteriza-

tion of chordal graphs [Golumbic, 1980, Thm. 4.8]. �

It is possible to give a more direct proof, without using the characterization of

chordal graphs as the intersection graph of subtrees of a tree. This is by finding

this proof that we first realized that the interference graph of a program under SSA

is chordal, which is the very first contribution of this thesis. Then, we figured out that

the chordal representation as subtrees of a tree would perfectly match the live-ranges

under SSA.

Proof. Let G be an interference graph of a program under SSA. Let us define the fol-

lowing orientation of the edges: if def(u) � def(v), then u → v. Property 2.32 states

that every edge is directed. Consider a cycle C of length at least 4 in G, if there is one.

From Theorem 2.29, the dominance relation is a partial order: C cannot form a directed

cycle, thus there are two edges u→ v and v← w, directed from u to v and from w to v,

11Note that, under SSA, there is only one definition, hence if variable b is defined as [b← a], it is possible

to replace every occurrence of b by a since they will always be equal. Constant propagation can do this effi-

ciently in a first pass, then it is not worth considering the interference definition of Chaitin (Definition 2.11)

as there is no remaining copy in the program.

29

CHAPTER 2. GROUNDS

i.e., the definitions of u and of w dominate the definition of v. Since u and v interfere,

and u → v, u is alive at def(v) and the same is true for w. u and w are both alive at the

def(v), they interfere and there is an edge between u and w in the graph, i.e., a chord

in C.

�

As a chordal graph, the interference graph of a program under SSA is perfect, hence

χ(G) = ω(G): the coloring number is equal to the size of the largest clique. We will

now see how to correlate χ(G) with Maxlive, the maximum number of simultaneously

alive variables. Before seeing it, we need the following property which links together

the number of alive variables in the program and the cliques of the interference graph.

The size of these cliques fixes the number of colors required.

Property 2.37. In an interference graph G under SSA:

• for any program point, the set of live variables form a clique in G;

• reciprocally, to every clique of G of size ω corresponds a program point where

at least ω variables are alive.

Proof. The first point is obvious since variables simultaneously alive form a clique

(remember we still use the relaxed Definition 2.8 of interference). Now, consider a

clique in G with directed edges as in the proof of Theorem 2.36. Since there is no

directed cycle, there is a vertex u in the clique such that, for any other vertex v in

the clique, (u, v) is directed from v to u, i.e., the definition of u is dominated by the

definition of any other vertex. Thus all variables in the clique are live at the definition

of u, which proves the second point. �

Corollary 2.38. Under SSA, the coloring number of the interference graph is Maxlive,

i.e., χ(G) = Ω.

Proof. Chordal graphs are perfect graphs, hence their coloring number χ(G) equals

their clique number ω(G) [Golumbic, 1980]. From Property 2.37, the largest clique is

of size Maxlive, hence the interference graph of a program under SSA is Ω-colorable.

�

Back to register allocation. In Section 2.2.2.6, we proved Property 2.22, which

states that a k-chordal graph is also greedy-k-colorable. Now that we know that the

interference graph of a program under SSA is chordal, the consequence of this basic

property, to our knowledge not mentioned in the compiler literature before our work,

is particularly interesting for register allocation in the context of SSA. In Property 2.22,

we just used the well-known proof that a simplicial elimination scheme leads to an op-

timal coloring for a chordal graph, as recalled by Pereira and Palsberg [2005]. But our

definition of greedy-k-colorability implies more. In register allocation, the number of

registers R is fixed and there is, in general, no point in trying to use as few registers as

possible: just fewer than R is sufficient. In other words, it is possible to use an optimal

on-line coloring such as a simplicial scheme or a smallest last order, but, as the number

of registers R is known, it is also possible to simply use any Chaitin-like simplification

scheme, i.e., to remove vertices with degree less than R in any order.

Moreover, using Corollary 2.38, we know that, if Ω ≤ R, there is no need to spill

and the greedy coloring scheme of Chaitin et al. will manage to color the interference

30

2.3. Static Single Assignment FORM

graph with R colors. This implies that, under SSA we have an exact test to decide if

some spilling is required or not.

Finally, we mentioned in Section 2.2.2.4 that the representation of chordal graphs

as subtrees of a tree makes it possible to color them by scanning the tree from the

root to the leave. In the context of SSA form, this is directly applicable by scanning

the program from the root to the leaves of the dominance tree, assigning colors to the

live-ranges when encountered.

2.3.5 Why is coloring polynomial under SSA?

On the general case, it is NP-complete to decide if R registers are enough, while

under SSA, the interference graph is chordal hence the same problem is polynomial.

Why? Because SSA splits variables by using φ-functions. Indeed, we have seen in

Section 2.2.3 that splitting variables helps. This was observed by Fabri [1979] who

explained that splitting variables can lower the clique number of the interference graph

to Maxlive. Under SSA, variables are split at the only necessary points, at the domi-

nance frontier, i.e., at points where there are cycles in the live-ranges on the dominance

tree: φ-functions splits the live-ranges which spawn across branches without following

paths on the tree, so that they become disconnected subtrees.

Note that additional splitting points cannot lower the clique number below Maxlive;

however, additional splitting can still be interesting if one looks for split points where

placing move instructions is cheaper. For instance, an instruction inside a loop is usu-

ally dynamically more expensive than an instruction outside the loop. Hence, even if

more splitting is unnecessary in terms of coloring, it might still be interesting in terms

of coalescing, i.e., for minimizing the number of (weighted) copy instructions.

Finally, if SSA provides a tool for splitting variables efficiently, it is certainly not

the unique way to split variables so that the remaining interference graph gets chordal.

For instance, one of the first example of this chapter, Figure 2.4, was split by SSA

and presented in Figure 2.16a, but we first gave another example of splitting on Fig-

ure 2.11. Both splitting made the interference graph 2-colorable while the non-split

initial program needed 3 registers. Figure 2.16b also shows the SSA splitting of the

running example of the odd-length cycle (initial program on Figure 2.6).

We will see in the next chapter, Section 3.1.2, a more detailed explanation on the

effects of splitting on the complexity of register allocation.

2.3.6 SSA form is not machine code

SSA form is not machine code: φ-functions are virtual instructions which do not exist in

hardware. Even though, a φ-function represent a transfer of values between variables,

and whenever the source variables are different from the destination variables—they

can be equal, for instance after some coalescing—, φ-functions need to be material-

ized by adding move instructions “on” the incoming edges. This problem in known as

“going out of SSA” in the literature.

Two problems arise: First, an edge cannot contain any code. One possibility is to

place the copies at the end of the source basic block, but if this block has more than

one successor, the copies will still be executed even if another edge is chosen when the

program is run. Second, if multiple copies must be added to an edge, the order in which

they are sequentialized is important—for instance, if some variables are used both as

argument and as result of φ-functions.

31

CHAPTER 2. GROUNDS

a2 ← φ(a1, a3)

c2 ← φ(c1, c3)

b← c2

c3 ← a2

a3 ← b + c3

a1 ← 1

c1 ← 0

· · · ← a3

(a) Program of Fig. 2.4

a← . . .

b← . . .

c← . . .

d1 ← b

· · · ← c

e← . . .

d2 ← a

· · · ← e

d3 ← φ(d1, d2)

· · · ← d3

(b) Program of Fig. 2.6

Figure 2.16: Running examples under SSA

b← c2

c3 ← a2

a3 ← b + c3

a1 ← 1

c1 ← 0

a2 ← a1

c2 ← c1

· · · ← a3

a2 ← a3

c2 ← c3

a3

c2a2

b

c3

a1 c1

(a) Sequential copies

b← c2

c3 ← a2

a3 ← b + c3

a1 ← 1

c1 ← 0

(a2, c2)← (a1, c1)

· · · ← a3

(a2, c2)← (a3, c3)

a3

c2a2

b

c3

a1 c1

(b) Parallel copies

Figure 2.17: Sequentializing copies creates new interferences.

32

2.3. Static Single Assignment FORM

Critical edges: The first problem is related to the notion of critical edges.

Definition 2.39. A critical edge is an edge in the CFG which goes from a basic block

with more than one successor to a basic block with more that one predecessor.

For instance, the back edge of a loop is a critical edge. If some code must be

placed on a critical edge, it is dangerous to place it at the end of the preceding basic

block—the code will still be executed if one of the other leaving edges is chosen—or at

the beginning of the following basic block—the code will still be executed if the path

comes from one of the other incoming edges.

There are (at least) two solutions to this problem. One possibility is to still place

code at the borders of basic blocks, but to make sure it does not modify the semantic of

the program when other edges are chosen. For instance, this code should not re-define

a variable used later on another execution path. Sreedhar et al. [1999] chose to add

copies to new variables for the arguments on the preceding blocks, and also a copy

for each variable defined by a φ-function. This approach is explained in Chapter 7,

Section 7.1.

Another solution is to split the critical edge and add the code to the newly created

basic block.

Definition 2.40. Splitting an edge going from a source basic block Bs to a destination

basic block Bd is done by creating a new basic block Bn, deleting the edge and creating

two new edges from Bs to Bn and Bn to Bd.

Parallel φ-functions: The second problem is related to the fact that the semantics

of multiple φ-functions at the beginning of a basic block is that they are executed in

parallel. It is a mistake to consider them as sequential instructions, for two reasons:

First, if a variable is both used and defined in two φ-functions, one might erase the

value before having used it. Here is an example:

a← φ(. . .)

. . . ← φ(a, . . .)

Second, if sequentialized, interferences which did not exist beforehand are created:

interferences between arguments and results of the φ-functions. For instance, the two

codes of Figure 2.17 have been obtained from Figure 2.16a by replacing the φ-functions

with move instructions: on the first basic block, and on a new basic block on the back

edge of the loop. On Figure (a), these instructions copies are sequentialized which

creates interferences between c1 and a2, and between a2 and c3. The interference graph

is then 3-colorable. On Figure (b), parallel copies are used which keeps the graph

2-colorable as in the is the original SSA code.

Hence the parallel semantics of φ-functions is crucial and should be kept for as

long as possible. Of course, in the end, the final code will be sequential, but it is better

to use instructions with parallel semantics until the very last moment if one does not

to lose some information on the interference graph. In order not to forget the parallel

semantics of φ-functions, Hack [2007] proposes to replace multiple φ-functions by one

φ-function using a matrix notation:

x ← φ(x1, x2, . . . , xn)

y ← φ(y1, y2, . . . , yn)
...

z ← φ(z1, z2, . . . , zn)



































x

y
...

z



































← φ



































x1 x2 . . . xn

y1 y2 . . . yn

...
...
. . .

...

z1 z2 . . . zn



































33

CHAPTER 2. GROUNDS

This means that if arriving, for instance, from the second incoming edge, all copies

[x← x2], [y← y2], . . . , [z← z2] need to be performed at the same time. Note however

that multiple φ-functions at the beginning of the same basic block are not the only cause

of parallel copies creation. Two φ-functions in different basic blocks can also create

copies that should be parallel. This is the case for instance if a basic block B has two

successors that contains respectively a ← φ(b, . . .) and b ← (a, . . .). If, when going

out-of-SSA, the copies are added at the end of B, the two moves [a ← b] and [b ← a]

must obviously be made parallel. The use of the matrix notation should not make us

forgot that point.

In the end, it will usually be necessary to sequentialize the parallel copies. This

is possible without adding more code unless the copies represent a permutation of

the variables. In this case, swap instructions or temporary variables can be used for

example. We will not go deeper into details here since sequentializing copies will be

discussed Chapter 7, Section 7.3.4. We will nevertheless give here a classical example

of dead lock: the swap of two values.

(

a

b

)

← φ

(

a b

b a

)

In this case, the swap between values of a and b coming from the second edge

cannot be sequentialized as the first copy executed would overwrite the value needed

for the second. In the absence of swap instructions in the architecture,12 another free

register need to be used as a temporary value holder and the instructions [t ← a;a ←

b;b ← t;] are performed. This is problematic if the register pressure at this point is

already equal to R, in which case a spill is needed.

To prevent the creation of artificial interferences too early, it is best to represent

copies due to φ-functions using parallel copies—(a, b)← (b, a) in our example—which

we introduce in the next section.

2.3.7 Splitting and parallel copies

Definition 2.41. A parallel copy is a virtual instruction taking n arguments and defin-

ing n variables, simultaneously, from these arguments. The notation is

(v1, v2, . . . , vn)← (a1, a2, . . . , an)

This is a fundamental instruction when dealing with program splitting. To split all

variables at one program point, one needs to duplicate all variables alive at this point,

and insert a parallel copy between all the variables and their duplicates. Trying to split

by inserting normal, i.e., sequentialized copies, would create interferences between

some variables and the duplicates of others. Parallel copies can be seen as a way to

“reorganize” values in variables, and are sometimes referred to as “shuffle code.”

However, there is no such hardware instruction. At best, one can find instructions

to swap values in registers or perform up to a fixed number of copies in parallel, e.g.,

four copies on a 4-way VLIW architecture, or emulate a swap by using three consecutive

XOR. In the end, parallel copies will need to be instantiated with actual machine code.

As said previously, these matters are discussed in Chapter 7.

12Or the possibility to emulate them, for instance by using three XOR.

34

2.4. CONCLUSION

2.4 Conclusion

In this chapter, we defined notations and objects that we will manipulate in the next

chapters. We provided background information on register allocation, defining pro-

grams, live-ranges and interference graphs. We discussed the colorability of the inter-

ference graph with regards to Maxlive, the maximum number of variables simultane-

ously alive, and introduced interesting graphs structures for interference graphs. Then,

we discussed possibilities of modifying the program whenever R registers are not suf-

ficient to color the graph. Finally, we introduced the SSA form, which is concerned

by two results of ours: first, the interference graph of a program under SSA is chordal;

second, chordal graphs can be colored using the simple greedy algorithm of Chaitin

et al. [1981]: they are greedy-colorable, a property that we introduced in this chapter.

Please keep in mind that programs are always considered strict, and SSA programs

are considered with dominance property. Also, the notion of interference if very impor-

tant for the shape of the interference graph, in particular, for any program point there

is a clique in the graph only if variables alive at the same time interfere even if they

have the same value. Finally, we will always consider that we have only one type of

registers during this thesis. In practice, different classes exist, like integer and boolean

registers. For disjoint classes, they can be considered independently, but particularities

like register aliasing complicates the problem. These subtleties will be discussed in

conclusion, i.e., Chapter 8, along with more practical advices.

Using these grounds, we will build a new way of viewing register allocation in two

phases in the next chapters: first, spilling with some splitting, second, coloring with

some coalescing.

35

PROOF, n. Evidence having a shade more of plausibility than of unlikelihood.

The testimony of two credible witnesses as opposed to that of only one.

Ambrose Bierce (1842 – 1914), The Devil’s Dictionary

3
What does the NP-completeness proof of

Chaitin et al. really prove?

The goal of register allocation is to map the variables of a program into physical mem-

ory locations (main memory or machine registers). Accessing a register is usually faster

than accessing memory, thus one tries to use registers as much as possible. When this is

not possible, some variables must be transferred, “spilled,” to and from memory. This

has a cost, the cost of the load and store operations, which should be avoided as much

as possible. Solving this problem has been a necessity since the very first compilers.

And, although it is very simple to state, many efforts have been made to find the best

possible solutions, as the problem is in practice quite complicated. We will continue the

introduction of this chapter with a long but hopefully meaningful explanation of why

people usually view register allocation as a difficult problem, why this is not always

true, and why we propose to study, again, the complexity of this problem.

Classical approaches for register allocation are based on fast graph coloring algo-

rithms. A widely-used algorithm is the Iterated Register Coalescing (IRC) proposed

by George and Appel [1996], a modified version of previous developments by Chaitin

et al. [1981]; Chaitin [1982], and Briggs et al. [1994]. In these heuristics, spilling, co-

alescing (i.e., removing register-to-register moves), and coloring (i.e., assigning vari-

ables to registers) are done in the same framework. Priorities among these transfor-

mations are done implicitly with cost functions. Splitting (adding register-to-register

moves) can also be integrated in this framework. Such techniques are well-established

and used in optimizing compilers. However, there are several reasons to revisit these

approaches and register allocation in general. First, some algorithms not considered in

the past, because they were too time-consuming, can be good candidates today: proces-

sors used for compilation are now much faster and, for critical applications, industrial

compilers are also ready to accept longer compilation times. Second, the increasing

difference on most architectures between the cost of a memory access and the cost of a

register access suggests to focus on heuristics that give more importance to spilling cost

minimization, possibly at the price of additional register-to-register moves. Finally,

there are many pitfalls and folk theorems concerning the complexity of the register

allocation problem that are worth clarifying.

This last point is particularly interesting to note. Chaitin et al. [1981] modeled the

problem of allocating variables of a program to R registers as the problem of color-

ing, with R colors, the corresponding interference graph. By showing that any graph is

the interference graph of a program, and because Graph k-Colorability is NP-complete

[Garey and Johnson, 1979, Problem GT4], they proved that, in their model, deciding if

R registers are sufficient to perform register allocation without any spill is NP-complete.

CHAPTER 3. REVISITING THE PROOF OF CHAITIN ET AL.

And from this date up to now, heuristics have been used for spilling, coalescing, split-

ting, coloring, etc. As a consequence, the argument “register allocation is graph col-

oring, therefore it is NP-complete” is one of the first statements of many papers on

register allocation. The following quote comes from the introduction of an article by

Konstantinos Sagonas and Erik Stenman [2003], but many others can be found:

“In this case [global register allocation], control-flow enters the picture and

obtaining an optimal mapping becomes an NP-complete problem [. . .]”

This is not what Chaitin et al. proved. Actually, going from register allocation to

graph coloring is just a way of modeling the problem, not an equivalence. In particu-

lar, this model does not take into account the fact that a variable can be moved from a

register to another using live-range splitting. Our impression was that there is a mis-

understanding of the implications of Chaitin et al.’s proof in the community. While

it is true that most problems related to register allocation are NP-complete, identify-

ing register allocation to graph coloring can make us forget what Chaitin et al.’s proof

actually shows. In particular, it is commonly believed that, in absence of instruction

rescheduling, it is NP-complete to decide if the program variables can be allocated to

R registers with no spilling, even if live-range splitting is allowed.

Until very recently, only a few authors addressed the complexity of register alloca-

tion in more details. Maybe the most interesting complexity results are those of Liber-

atore et al. [1999]; Farach-Colton and Liberatore [2000], who analyze the reasons why

optimal spilling is hard for basic blocks. In this case, the coloring phase is of course

easy because, after some variable renaming, the interference graph is an interval graph,

but deciding which variables to spill and where to spill them is in general difficult. They

call this phase “allocation,” as it decides which variables are allocated in memory and

which are allocated in registers, and differentiate it from the second phase, called “reg-

ister assignment.” In this phase, variables are mapped to registers, possibly removing

move instructions by coalescing, or introducing move instructions by splitting. When

loads and stores are more expensive than moves, such an approach is worth exploring.

It was experimented by Appel and George [2001] and also advocated by Knobe and

Zadeck [1992]; Hack et al. [2006].

The last example clearly states that, for a basic block, the problem lies in the

spilling, not the coloring. More recently, we discovered that, under Static Single

Assignment (SSA) form, the interference graph of a program is chordal (see Theo-

rem 2.36). Brisk et al. [2005]; Pereira and Palsberg [2005], and Hack et al. [2006]

independently made the same observation. This theorems shows it is easy to decide

if R registers are sufficient for a program under SSA. How come the SSA case is not

covered by Chaitin et al.’s proof? Combined with the idea of spilling before color-

ing so that Maxlive ≤ R, this led Pereira and Palsberg [2006] to wonder where the

NP-completeness of Chaitin et al.’s proof (apparently) disappeared:

“Can we do polynomial-time register allocation by first transforming the

program to SSA form, then doing linear-time register allocation for the SSA

form, and finally doing SSA elimination while maintaining the mapping

from temporaries to registers?”

All this need to be done when Maxlive ≤ R of course, otherwise some spilling is

necessary. They show that, if register swaps are not available, the answer is “no” unless

P=NP. The NP-completeness proof of Pereira and Palsberg is interesting, but we feel it

does not completely explain why register allocation is difficult. Basically, it shows that

38

3.1. NP-COMPLETENESS PROOFS

if we decide a priori what the splitting points are, i.e., where register-to-register moves

can be placed (in their case, the splitting points are defined by the φ-functions), then it

is NP-complete to choose the right colors.1 However, there is no reason to restrict to

splitting only at points given by SSA. Actually, we will show that, when we can choose

the splitting points, when we are free to add program blocks to remove critical edges

(the standard edge splitting technique), then it is easy, except for a few particular cases,

to decide if and how we can assign variables to registers without spilling.

Hence, to answer the question: “Where did the complexity disappear?” a good

lead would be that splitting variables simplifies the problem. And SSA splits variables

with multiple definitions (see Section 2.3.1). Fabri [1979] already observed, working

on allocation of arrays into memory, that splitting could reduce the chromatic number

down to Maxlive. Of course, splitting has a cost, but only the cost of a move instruction,

which is often better than a spill. So the introduction of splitting raises some questions:

• When is Chaitin et al.’s proof applicable?

• What are the limits of Chaitin et al.’s proof?

• How far can Chaitin et al.’s proof be extended to cover other cases?

This chapter acts as a second introduction to this thesis. We will present here the

preliminary work that led us to revisit register allocation. In a first part, we will stress

Chaitin et al.’s proof on its weakest points, by successively patching the proof and

pointing to newly created weak spots. We tried to do it didactically, starting from the

original proof and acting as would act someone sceptical, constantly finding new points

to argue.2 Then we will illustrate the limits of this proof by showing two configurations

under which the problem of knowing whether R registers are sufficient or not becomes

easy—one of them being the SSA form. At this point, we will define what we think is

responsible for the complexity of this problem: the “multiplexing regions.” Whenever

there is no critical edge in these multiplexing region, we will promote the practical

way of doing register allocation in two phases in place of the classical graph-based

algorithm in one phase. First phase: spill variables so that Maxlive becomes less that

R, and split variables so that the graph becomes R-colorable. Second phase, color

while performing coalescing to reduce the effects of having split the program. Finally,

we will come back to the outline of this thesis and explain how the next chapters flow

from this one.

3.1 NP-completeness proofs

In this section, we will present variations of the NP-completeness proof of Chaitin

et al. [1981], to show how much modification of the problem it can endure. And what

it cannot.

3.1.1 Direct consequences of Chaitin et al.’s proof

Let us examine Chaitin et al.’s NP-completeness proof , a proof by reduction from

Graph k-Colorability [Garey and Johnson, 1979, Problem GT4].

1Note that their proof forbid the use of register swaps while for instance Hack et al. [2006], who actually

perform register allocation under SSA, consider they do have seem.
2For example: – Right,. . . but what if I am allowed to. . . ?

39

CHAPTER 3. REVISITING THE PROOF OF CHAITIN ET AL.

a

b

d

c

(a)

x

a

b

d

c

(b)

switch

Broot

return a + x

Ba

return b + x

Bb

return c + x

Bc

return d + x

Bd

a← 0

b← 1

x← a + b

Ba,b

a← 3

c← 4

x← a + c

Ba,c

b← 6

d ← 7

x← b + d

Bb,d

c← 9

d ← 10

x← c + d

Bc,d

(c)

Figure 3.1: Chaitin et al.’s reduction: program (c) built from a cycle of length 4 (a) and

its interference graph (b).

Problem: G k-C

Instance. An undirected graph G = (V, E) and an integer k.

Question. Is it possible to color the graph with k colors, i.e., is there a color c(v) in

{1, . . . , k}, for each vertex v ∈ V , such that c(v) , c(u) for each edge (u, v) ∈ E?

This problem is well-known to be NP-complete if G is arbitrary, even for a fixed

k ≥ 3.

For the reduction, Chaitin et al. [1981] build a program with |V | + 1 variables, one

for each vertex u ∈ V and an additional variable x, as shown on Figure 3.1. For each

(u, v) in E, a block Bu,v defines u, v, and x. For each u ∈ V , a block Bu reads u and

x, and returns a new value. Each block Bu,v is a direct predecessor in the control-flow

graph of Bu and Bv. An entry block switches to all blocks Bu,v. For G cycle of length

4, on Figure 3.1a, the program is given on 3.1c, and its interference graph is on 3.1b.

This is the same graph as G plus a vertex for the variable x, connected to any other

vertex; thus x must use an extra color. As such, G is R-colorable if and only if (iff)

each variable can be assigned to a unique register for a total of at most R + 1 registers.

This is what Chaitin et al. proved: for such programs, deciding if one can assign the

variables, this way, to R ≥ 4 registers is NP-complete.

What do we mean by “this way?” It means that assigning variables to registers as if

coloring the vertices of the interference graph is NP-complete. This is not the only way

of coloring variables, which are not atomic, localized objects as the vertices of a graph

are: a variable has a life that starts at its definition and can last for a long time. Why

should a variable be forced to reside in only one place all along its life? This introduces

40

3.1. NP-COMPLETENESS PROOFS

the problem of “splitting” variables, which we will explain in the next section.

3.1.2 Splitting variables in Chaitin et al.’s proof

We recalled in Chapter 2 the possibility of splitting the live-range of a variable. Basi-

cally, introducing a copy creates two new live-ranges in place of the first one, which

can be assigned to different places. Chaitin et al.’s proof, at least in its original in-

terpretation, does not address this possibility. Each vertex of the interference graph

represents the complete live-range as an atomic object that must always reside in the

same register. Furthermore, the fact that the register allocation problem is modeled

through the interference graph loses information on the program itself and the exact

location of interferences. This is a well-known fact, which led to the development of

many different register allocation heuristics as done by Callahan and Koblenz [1991];

Cooper and Simpson [1998], or Lueh et al. [2000], but with no corresponding complex-

ity study even though their situations are not covered by the NP-completeness proof of

Chaitin et al.

This raises the question: What if splitting live-ranges is allowed? We suppose that

it is possible to insert as many copies as we want, anywhere on any basic block. The

following theorem proves it does not make the problem any easier.

Theorem 3.1. It is still NP-complete to decide if R register are enough for a program

even if variable splitting is allowed (on basic blocks).

Proof. Let a be a node in the initial graph, i.e., a variable different than x in the pro-

gram. The key in Chaitin et al.’s proof was that a must reside in the same register in

blocks Ba and all blocks Ba,y for y neighbor of a in the graph.

Let us consider one neighbor y of a and suppose that the live-range of a has been

split. Whatever the splitting, the value of a reside in some variable on the edges going

to block Ba since this block needs the value of a. Let us call ay the variable holding the

value of a on the edge from Ba,y to Ba. This means that, somewhere inside Ba,y, there

is a copy [ay ← a] or [ay ← ai] where ai is a split variable of a (unless ay = a, i.e.,

a is not split on this block). Conversely, there should be a copy [a j ← ay] somewhere

on Ba, before the use of a. But suppose a has another neighbor y′,3 then there are two

copies [ai ← ay] and [a j ← ay′] acting concurrently on Ba: the one executed last will

finally sets the value of a. Hence the resulting code is false, unless both ay and ay′ share

the same register. This is possible, since they are never dynamically alive at the same

time: they do not interfere. But if two variables are restricted to be in the same register,

it is strictly equivalent to replace them with a common name: all ay for y neighbor of a

can be replaced by a common variable, say a′.

This reasoning, when applied to all variables of the program, shows that, for all

nodes v, and whatever the splitting, it the value of the corresponding variable must

reside on the same variable v′ on all edges going to basic block Bv. For the same

reason, variable x must also reside on the same variable x′ on all edges going to return

blocks.

Consider now all primed variables. Their interference graph is the same as the

original program without splitting, and is a subgraph of the interference graph of the

split program. Hence, finding a coloring of the split interference graph would give a

solution to the initial problem, and conversely, a coloring of the initial program can be

3If every node in the graph has only one neighbor, there is no coloring problem.

41

CHAPTER 3. REVISITING THE PROOF OF CHAITIN ET AL.

extended to a solution to the split program (give to all split variables of v the same color

as v).

Therefore, the problem remains NP-complete and Chaitin et al.’s proof holds even

if live-range splitting is allowed. �

Why splitting live-ranges did not help here? This is because the control-flow edges

from Bu,v to Bu are critical edges, i.e., they go from a block with more than one succes-

sor to a block with more than one predecessor. Hence, placing code at the source of the

edge—at the end of a Bu,v—conflicts with paths taking another edge, and placing code

at the destination of the edge—at the beginning of a Bu—conflicts with paths arriving

from another edge. When critical edges are “connected” by their source or destination

basic blocks, this creates an “atomic” region (the edges) where code cannot be inserted.

On this region, values cannot be moved between registers, i.e., variables must be as-

signed to a unique register. Hence, splitting cannot help for register allocation in these

regions. We will define later in Section 3.3 these regions as multiplexing regions that

create atomic objects hard to color. An example of such a multiplexing region is the

one containing all the critical edges of Chaitin et al.’s proof: the edges from blocks of

type Bu,v to blocks of type Bu.

To conclude, Chaitin et al.’s original proof can be interpreted as fol-

lows. It is NP-complete to decide if the program variables can be assigned

to R registers, even if live-range splitting is allowed, but only when the

program has critical edges that cannot be split, i.e., when one can neither

change the control-flow graph (CFG) structure nor add new basic blocks.

3.1.3 Split points on edges

Pereira and Palsberg [2006] pointed out that the construction of Chaitin et al.—as done

in Figure 3.1—is not enough to prove anything about register allocation through SSA;

we will explain why in Section 3.2.1. In fact, Chaitin et al.’s proof does not hold

whenever it is possible to add basic blocks on edges, and split variables using copies

on these blocks. For instance, Figure 3.2 shows how to allocate the code of Figure 3.1c

with 3 registers. The variable definitions of each block of type Bu,v are arbitrarily put

in 3 registers—independently of other blocks, e.g., r1 for u, r2 for v, and r3 for x. Then

it is decided that the variables u and x in each block of type Bu are always expected

in registers r1 and r3. The coloring can then be “repaired” at each join point, when

needed, thanks to an adequate re-mapping of registers—here a move from r2 to r1—in

a new block along the edge from Bu,v to Bv.

This implies that, whenever no coloration can be found for a graph, it may be possi-

ble to split some variables and some edges in order to be able to do register assignment.

This has a cost, the cost of the added copies and the jumps to the new basic blocks, but

which is possibly more interesting than spilling some variables to memory to make

some space in registers. This lead us to the following important question for practical

register allocation:

What if both live-range splitting and critical edge splitting is allowed?

A similar question is addressed by Pereira and Palsberg [2006], to which they an-

swer “no,” the problem is still NP-complete, using a reduction from the k-colorability

problem for circular-arc graphs, which is NP-complete if k is a problem input [see

Garey et al., 1980, Problem GT4]. Basically, their idea is to start from a circular-arc

42

3.1. NP-COMPLETENESS PROOFS

switch

Broot

return r1 + r3

Ba

return r1 + r3

Bb

return r1 + r3

Bc

return r1 + r3

Bd

r1 ← r2 r1 ← r2 r1 ← r2

r1 ← r2

r1 ← 0

r2 ← 1

r3 ← r1 + r2

Ba,b

r1 ← 3

r2 ← 4

r3 ← r1 + r2

Ba,c

r1 ← 6

r2 ← 7

r3 ← r1 + r2

Bb,d

r1 ← 9

r2 ← 10

r3 ← r1 + r2

Bc,d

Figure 3.2: Splitting Chaitin’s program makes it 3-colorable.

graph, to cut all arcs at some point to get an interval graph, to view this interval graph

as the interference graph of a basic block, to add a back edge to form a loop, and to

make sure that k variables are live on the back edge. This ensures that variables cannot

be permuted on the back edge, supposing one needs a free register to perform permu-

tations. Then, coloring the basic block so that no permutation is needed on the back

edge is equivalent to coloring the original circular-arc graph. This is the same tech-

nique used in Garey et al. [1980] to reduce the coloring of circular-arc graphs from a

permutation problem. The proof of Pereira and Palsberg shows that if we restrict to the

split points defined by SSA, it is difficult to choose the right coloring of the SSA repre-

sentation and thus decide if k registers are enough. It is NP-complete even for a simple

loop and a single split point. However, the drawback of this proof is that, if k is fixed,

this specific problem is polynomial as is the k-coloring problem of circular-arc graphs,

by propagating possible permutations. We now show that, with a simple variation of

Chaitin et al’s proof, we can get a similar NP-completeness result, even for a fixed k,

but for an arbitrary program.

Theorem 3.2. If permutations need a free register, it is still NP-complete to decide if

R register are enough, even when critical edge splitting and variable splitting at the

entry or exit points of basic blocks are allowed, and even for a fixed R ≥ 3.

Proof. Let us consider an arbitrary graph G = (V, E), and the corresponding program

built using Chaitin et al.’s construction. Let us split the critical edges and add instruc-

tions to the new basic blocks as shown on Figure 3.3c. The program has three variables

u, xu, yu for each vertex u ∈ V and a variable xu,v for each edge (u, v) ∈ E. For each

(u, v) ∈ E, a block Bu,v defines u, v, and xu,v. For each u ∈ V , a block Bu reads u, yu, and

xu, and returns a new value. For each block Bu,v, there is a path to the blocks Bu and Bv.

Along the path from Bu,v to Bu, a block reads v and xu,v to define yu, and then defines

xu. An entry block switches to all blocks Bu,v. The interference graph is now G plus

some triangles: for each node v, there is a triangle consisting of (v, xv, yv), and for each

43

CHAPTER 3. REVISITING THE PROOF OF CHAITIN ET AL.

a

c

d

b

(a)

c

xc

yc

a

xa

ya

b

xb

yb

d

xd

yd

xc,a

xa,b

xb,d

xd,c

(b)

switch

Broot

return xa + ya + a

Ba

return xb + yb + b

Bb

return xc + yc + c

Bc

return xd + yd + d

Bd

ya ← b + xa,b

xa ← 2

yb ← a + xa,b

xb ← 2

ya ← c + xa,c

xa ← 6

yc ← a + xa,c

xc ← 6

yb ← d + xb,d

xb ← 10

yd ← b + xb,d

xd ← 10

yc ← d + xc,d

xc ← 14

yd ← c + xc,d

xd ← 13

a← 0

b← 1

xa,b ← a + b

Ba,b

a← 4

c← 5

xa,c ← a + c

Ba,c

b← 8

d ← 9

xb,d ← b + d

Bb,d

c← 12

d ← 13

xc,d ← c + d

Bc,d

(c)

Figure 3.3: Chaitin-like construction with critical edge and variable splitting: from a

cycle of length 4 (a), program (c) is built, with interference graph is (b).

44

3.1. NP-COMPLETENESS PROOFS

edge (u, v), there is a triangle consisting of (u, v, xu,v). See an example on Figure 3.3.

Hence, the interference graph is 3-colorable iff G itself is 3-colorable.

This program does not have any critical edge, so placing permutations along the

edges is equivalent to placing them on entry or exit of the intermediate blocks, between

blocks of type Bu,v and blocks of type Bu. We claim that the program can be assigned

to 3 registers iff G is 3-colorable. The point is that one needs a free temporary register

to perform a permutation, indeed, swapping a and b for instance requires the following

instructions to be executed: [t ← a; a ← b; b ← t]. Since, for each u and v, exactly 3

variables are live on exit of Bu,v and on entry of Bu and Bv, no permutation—except the

identity—can be done if only 3 registers are available. Thus the live-range of any vari-

able u ∈ V cannot be split, i.e., each variable must be assigned to a unique color. Using

the same color for the corresponding vertex in G gives a 3-coloring of G. Conversely,

if G is 3-colorable, assign to each variable u the same color as the vertex u. It remains

to color xu,v, xu, and yu. This is easy: in block Bu,v, only two colors are used so far: the

colors for u and v, so xu,v can be assigned the remaining color. Finally, xu and yu are

assigned the two colors not used by u (see Figure 3.3b again to visualize the cliques of

size 3). This gives a valid register assignment. �

To conclude, this slight variation of Chaitin et al.’s proof shows that if the splitting

of live-ranges is allowed on edges—and only on edges4—, it is still NP-complete to

decide if R registers are enough. This is true even for a fixed R ≥ 3 and even for a

program without any critical edge. The proof is based on the fact that it is not possible

to split at points where Live equals R.

However, we made two important assumptions in our proof: First, we allowed

the splitting of variables to take place only on edges—or, equivalently, only at the

entries and exits of blocks while splitting critical edges—while we forbade it inside

basic blocks. This is what a traditional out-of-SSA translation does (see Section 3.2.1).

Second, we assumed that one needs a free register in order to perform a swap or per-

mutation. We argue in the next sections that these hypotheses may not be very realistic.

3.1.4 Split points anywhere

The study of Section 3.1.3 does not completely answer the question. Indeed, who

said that split points need to be on entry and exit of blocks exclusively? Why not

allowing registers to be shuffled at any program point, for example in the middle of

a basic block, if this helps performing a permutation? Consider Figure 3.3c again.

The register pressure is 3 on any control-flow edge; this was the key for the proof of

Section 3.1.3. But it is not 3 everywhere: it drops to 2 between the definitions of each yu

and each xu. At this point, some register-to-register moves can be inserted to permute

two colors and, thanks to this, 3 registers are always enough for such a program. One

can color independently the top (including the variables yu) and the bottom (including

the variables xv), then place adequate permutations between the definitions of yu and

xu. This opens the way to the following question:

Is it really NP-complete to decide if R registers are enough when splitting

can be done anywhere and swaps are not available?

None of the previous proofs answers this question, and certainly not the initial proof

of Chaitin et al. The problem with the previous construction is that there is no way, with

4Splitting at the borders of basic blocks is equivalent: it consists of splitting on every entering or leaving

edge.

45

CHAPTER 3. REVISITING THE PROOF OF CHAITIN ET AL.

u v xu,v

yu xu

(a)

u v xu,v

yu xu

(b)

u v xu,v

yu xu

(c)

Figure 3.4: Three cases: register pressure drops to 2 (a), is constant to 3 (b), (c).

simple statements, to avoid a program point with a low register pressure while keeping

the reduction with graph 3-coloring. This is illustrated in Figure 3.4: (a) illustrate the

previous situation where the register pressure drops to 2, and (b) a situation with a

constant register pressure equal to 3, but that does not keep the equivalence with graph

3-coloring—xu,v would interfere with yu and yv. The only way is depicted in (c): one

needs an instruction that can define more than one value. It is then easy to modify the

proof and the following theorem holds.

Theorem 3.3. If there exists instructions that can define more that one value at a time,

but swaps of variables are not allowed, it is NP-complete to decide if R registers are

enough, even when critical edge splitting is allowed and variable splitting is allowed

anywhere.

Proof. In the proof of Theorem 3.2, for each variable u, the variables of type xu and

yu can be defined by a statement (xu, yu) = f (v, xu,v) that consumes v and xu,v and

produces yu and xu, simultaneously, as depicted by Figure 3.4c. Now, the register

pressure is 3 everywhere in the program and thus G is 3-colorable iff the program can

be mapped to 3 registers. Thus, it is NP-complete to decide if R registers are enough

if two variables can be created simultaneously by a machine instruction and swaps are

not available. �

In this proof, we used an instruction f capable of producing at least two values.

Such a function should consume and produce the same number of values—at least 2—

, otherwise the register pressure would be lower just before or after it and a permutation

could be inserted there. Notice the similarity with circular-arc graphs: as mentioned by

Garey et al. [1980], coloring circular-arc graphs remains NP-complete even if at most

2 circular arcs start at any point, but not if only one can start.

However, it should be noticed that if such a machine instruction f exists, it is likely

that a register swap is also provided in the architecture. We will discuss such archi-

tectural subtleties in Chapter 8, Section 8.1.2.1. The case where a swap instruction

exists is easy since any permutation can be done. In that case, R registers are enough

iff Ω ≤ R.

We will see later the remaining case, where register swaps are not available but

at most one variable can be created at a given time—as it is in traditional sequential

assembly-level code representation. This case does not belong to this section since it is

not an NP-complete case.

46

3.1. NP-COMPLETENESS PROOFS

Proof
Edge splitt

ing

Varia
ble

splitt
ing

Swap instr
uctio

n

2 sim
ult.

def.

NP-complete

Chaitin et al. – –

Thm. 3.1 – –

Thm. 3.2 on edges only –

Sec. 3.2.1 (SSA) on edges only –

Thm. 3.3 anywhere

Thm. 3.4 (Col. prop.) anywhere

Forbidden Allowed/Yes – Unimportant Mandatory

Table 3.1: Summary of complexity proofs using Chaitin-like reductions from Sec-

tion 3.1, with also polynomial results of Section 3.2.

3.1.5 Summary and discussion of complexity proofs

In the previous sections, we tried to give a pedagogic introduction to the complexity of

register allocation. Starting with the original NP-completeness proof of Chaitin et al.

[1981], the first step was to argue that register allocation has more freedom that graph

coloring, in the sense that variables can be assigned to different registers at different

points of their lives—at the cost of additional register-to-register copies. And the orig-

inal proof, often cited wrongly, does not say anything regarding this view of register

allocation.

Theorem 3.1 proves that even with live-range splitting, the problem remains NP-

complete because code cannot be placed on critical edges. The next step was to state

that code can be placed on critical edges by splitting them and adding basic blocks,5

but Theorem 3.2 states this will not help in the absence of swap instruction since the

register pressure can be increased on all edges to prevent permutations to take place.

This proof did not hold if permutations could be placed anywhere and not restricted to

be only on edges. But this more realistic case is not easier if it possible to define two

variables at the same time, and one still does not have any swap instruction. Table 3.1

recall these results visually, along with the two polynomial results that will be described

in the next section.

At this point, it seems that whatever is ingeniously included in register allocation

to break the complexity piteously fails. But astute readers would have already guessed

that the more freedom there is in register allocation, the more constraints there are on

the architecture to keep the problem NP-complete. In particular, the last constraint is

probably not very realistic (a machine capable of defines multiple values at a time, but

which cannot perform a swap). We would not be offended if people started to say that,

in the last theorem, we where not only splitting variables and edges, but also hairs.

That is true.

But now, in the next section, we will see what can be done if we do have a swap

instruction, or if no instruction can define two variables simultaneously, or when the

register pressure provides a free register to perform a swap. In practice, this is nearly

5Discussions on whether this is possible or not will take place in Chapter 8.

47

CHAPTER 3. REVISITING THE PROOF OF CHAITIN ET AL.

switch

Broot

a3 ← φ(a1, a2)

return a3 + x

Ba

b3 ← φ(b1, b2)

return b3 + x

Bb

c3 ← φ(c1, c2)

return c3 + x

Bc

d3 ← φ(d1, d2)

return d3 + x

Bd

a1 ← 0

b1 ← 1

x← a1 + b1

Ba,b

a2 ← 3

c1 ← 4

x← a2 + c1

Ba,c

b2 ← 6

d1 ← 7

x← b2 + d1

Bb,d

c2 ← 9

d2 ← 10

x← c2 + d2

Bc,d

Figure 3.5: Original program of Chaitin et al.’s proof under SSA.

always the case, and under these “standard” conditions, we completely leave in fact the

NP-completeness.

3.2 Polynomial solutions

In this section, we give some polynomial instances for register allocation. We also try

to explain where these solutions manages to “escape” the NP-completeness of Chaitin

et al.

3.2.1 Static Single Assignment

SSA was the motivation of this study, because of the recent discovery that under SSA

form, the interference graph of a program is chordal, hence easy to color. We will now

explain why, under SSA, we do not fall into one of the four cases of NP-completeness

depicted in Table 3.1.

The easiest way to understand why is by trying to transform the program of Chaitin

et al.’s original proof into SSA. This would result in the program shown on Figure 3.5,

where φ-functions are inserted at join points of the program. The semantics of φ-

functions, as explained in Section 2.3.6, is that copies are placed on the incoming

edges. For instance, the φ-function [a3 ← φ(a1, a2)] corresponds to adding the copy

[a3 ← a1] on the edge from Ba,b to Ba and [a3 ← a2] on the edge from Ba,c to Ba.

Moreover, we explained in Section 2.3.6 that the semantics of multiple φ-functions is

that they are executed in parallel, meaning that permutation are available.

In other words, SSA implicitly considers that critical edges can be split and that

permutations can be performed on them. Under SSA, the variable splitting only occurs

on edges, but unlike the third line of Table 3.1 (Theorem 3.2), swap instructions are

considered to be available. In fact, if one adds actual (parallel) copies to the program

at the same place as a classical out-of-SSA conversion, the interference graph of the

program gets chordal, as is the interference graph under SSA. Because it is easy to

test if k colors are sufficient to color a chordal graph (see Section 2.2.2.4), it is then

easy to test if R registers are sufficient for a program under SSA. Moreover, as chordal

graphs are perfect graphs, the condition is simply that Maxlive must be lower than R,

i.e., Ω ≤ R.

48

3.2. POLYNOMIAL SOLUTIONS

3.2.2 Color propagation

Another interesting lead where to look for polynomiality comes from the fourth line of

Table 3.1, i.e., Theorem 3.3. It is stated there that if swap instructions are not available,

but some instructions can define multiple variables at the same time, the problem is

still NP-complete. We have seen that having swap instructions makes the problem

polynomial, which is what SSA assumes. We will now study the case where there is no

swap instruction, but all instructions define at most one variable at a time. We believe

this case is more realistic that the requirements of Theorem 3.3, but we prefer to delay

these discussions until Chapter 8 in order not to lose our focus, which is trying to be as

complete as possible when evaluating the possible conditions for Chaitin et al.’s proof.

The next theorem states this case is polynomial.6

Theorem 3.4. If blocks can be introduced to split critical edges, if live-range split-

ting can be done anywhere and if instructions can define at most one variable, it is

polynomial to decide if R registers are enough, in the case of a strict program.

The idea is that permutations can always be performed whenever there is a free

register; and if there is none, there is no choice for coloring as explained by Figure 3.4b.

More precisely, if Ω > R, it is not possible to assign the variables of a strict pro-

gram to R registers without spilling, as two simultaneously live variables interfere.7 If

Ω < R, it is always possible to assign variables to R registers by splitting live-ranges

and performing adequate permutations. When Ω ≤ R, the same occurs for a point

with register pressure strictly less that R: a color mismatch can always be repaired by

an adequate permutation, thanks to an available register. Thus, for a strict program,

the only problem may come from the sequences of program points where the register

pressure remains equal to R. But, unlike Section 3.1.4 where the degree of freedom

in choosing colors—at least 2—leads to NP-completeness, the fact that, here, at most

one variable can be defined at a time simplifies the problem—the newly created vari-

able has no choice but being assigned to the same color as the dying one the example

showed previously on Figure 3.4b). This does not mean that R registers are always

enough, but it is easy to decide if this is the case. To prove this fact precisely, we need

to define formally what we mean by color propagation. In the following proof, we will

exhibit an algorithm that answers in polynomial time the question whether R registers

are sufficient or not. In should be noted that this algorithm is not intended to be used

for practical register allocation: it would perform poorly as there is no mechanism to

minimize the number of permutations inserted. The way colors are chosen in different

connected components (randomly) would produce a lot of shuffle code between them,

without any coalescing effort to remove them.

Definition 3.5 (Color propagation). Liveness analysis defines, for each instruction s,

live in(s) and live out(s), the set of variables alive just before s and just after s. These

sets can be colored locally, propagating the colors from instruction to instruction, i.e.,

coloring variables in neighbor sets with the same color, following the control-flow for-

wards or backwards, i.e., considering the control-flow as undirected. More formally,

coloring a statement s means defining two injective maps col in(s) (resp. col out(s))

from live in(s) (resp. live out(s)) to [1..k]. When colors propagate from a statement s1

6Actually, it is also polynomial if instructions like [(a, b)← f (c)] exist. Indeed, only one variable is used

and two are defined, which means that before f , there was one free register. This is a case for instance with

a load64 that load a 64-bits value into two 32-bits registers.
7 Notice that it is only true for a strict program (we leave the non-strict case open), and with the relaxed

Definition 2.8 of interference where two variables having the same value interfere.

49

CHAPTER 3. REVISITING THE PROOF OF CHAITIN ET AL.

to a statement s2, forwards, col in(s2) is defined so that col in(s2)(x) = col out(s1)(x)

for all x ∈ live in(s2) ∩ live out(s1) and different colors are arbitrarily picked for the

other variables. The same is done to define col out(s2) from col in(s2). When prop-

agating backwards, the situation is symmetric; col out(s2) is defined from col in(s1),

then col in(s2) from col out(s2).

Below, when explaining the effect of propagation, we will assume a forward prop-

agation; for the backward one, exchange the suffixes “in” and “out.” Of course, both

forward and backward propagation can appear during the execution of the algorithm.

Proof of Theorem 3.4. Let us consider only the subgraph of the control flow graph de-

fined by the program points where the register pressure is equal to R, i.e., the propa-

gation takes place between two instructions s1 and s2 such that both live out(s1) and

live in(s2) have R elements. We claim that, if R registers are enough for each con-

nected component of this graph, there is a unique solution, up to permutations of the

colors, except possibly for the sets live out(s2) where the propagation stops (live in(s1)

for backwards propagation). Indeed, for each connected component, start from an ar-

bitrary program point and an arbitrary coloring of the R variables alive at this point.

Propagate this coloring, as defined above, backwards and forwards along the control

flow until all points of the component are reached. In this process, there is no ambigu-

ity to choose a color: First, there is no choice for defining col in(s2) from col out(s1)

since live out(s1) = live in(s2) (in general, live in(s2) ⊆ live out(s1) because s1 can

have more than one successor, but since both sets have R elements, they are equal);

Second, if live out(s2) has R elements, then either live out(s2) = live in(s2) or, as

s2 defines at most one variable, there is a unique variable in live out(s2) \ live in(s2)

and a unique variable in live in(s2) \ live out(s2): these two variables must have the

same color, and there is no choice when defining col out(s2) from col in(s2) either.

Therefore, for each connected component, going backwards and forwards defines, if it

exists, a unique solution up to the initial permutation of the colors. In other words, if

there exists a solution, it can be defined by propagation for each connected component.

Moreover, if propagation reaches a program point already assigned and if the colors do

not match, this proves that R registers are not enough.

Finally, if the color propagation on each connected component provided a solution,

then R registers are enough for the whole program. Indeed, the rest of the program—

where register pressure is less than R—can be colored in a greedy (but not unique)

fashion. Upon reaching a point already assigned, a possible color mismatch is easily

repaired: an adequate permutation of colors between s1 and s2 is inserted: in the same

basic block as s1, if s2 is the only successor of s1 (resp. predecessor for backward

propagation), or in the same basic block as s2, if s1 is the only predecessor of s2 (resp.

successor). This is always possible because there is no critical edge and there are at

most R − 1 alive variables at this point. �

Summary of the algorithm. How to decide if R registers suffice when Ω ≤ R, and

color when possible? First propagate colors, following the control flow along program

points where the register pressure is exactly R . If a program point is already colored

and the colors do not match, more spilling needs to be done. Otherwise, perform a

second propagation phase along all remaining program points: if a program point is

already colored and the colors do not match, a permutation of at most R − 1 registers

solves the problem, using an extra available register.

50

3.3. EXPLANATION OF COMPLEXITY

3.3 Explanation of complexity

The two previous sections gave us some good insights on the conditions under which it

is difficult or easy to decide if R registers are enough or not for register allocation. The

last NP-completeness result, Theorem 3.3, makes us think that this problem is difficult

only for very specific architectures. Such architecture should provide instructions that

define more than one variable at a time, but should not allow the swapping of variables.

We believe that this is not realistic at all, and discussions on this will take place in

Chapter 8. On the other hand, the two polynomial instances rely on the fact that critical

edges can be split so that shuffle code can be added to them. The questions are then:

“Why is it difficult when edges cannot be split?”

“Where does the complexity go when edges are split?”

A clue to answer the second question is that splitting inserts basic blocks and

copies, which has a cost: the additional instructions—jumps and moves that cannot

be scheduled with the rest of the code—impact the performance of the program. Try-

ing to minimize this cost is the goal of the coalescing, which aims at removing the

copies between variables in a program. Knowing if it is possible to remove all the

copies is difficult since, by doing so, one would get back to the original problem again.

So, the goal is to find the best trade-off, removing most of the copies while still having

the benefit of the splitting, i.e, easily answering the question whether R registers are

sufficient or not. By splitting, the complexity of answering this question is transferred

to the register coalescing problem. Its complexity will be discussed in Chapter 5.

As for the first question, we already pointed out this has to do with having multiple

critical edges “connected” either by their source or their destination. We will now

define more clearly what we call the “multiplexing regions.”

Definition 3.6. A multiplexing region is a maximal connected set of flow edges, where

two edges are said connected iff they come from the same basic block or they go to

the same basic block. Exits and entries of these basic blocks are respectively the entry

points and exit points of the multiplexing region, hence defining the borders of this

region.

Is it more interesting to restrict multiplexing regions to contain only edges that

cannot be split—or that one does not want to split. In that case, it can be viewed as a

solid part of the program, wherein no modification can be done, instead of a collection

of multiple independent program points being placed on different edges. Then, the

notion of “atomic” region can be defined, which is a maximal connected set of non-

splittable edges. From now on, we will always suppose that multiplexing regions are

atomic. Otherwise, it is always possible to add empty basic blocks to edges that can be

split in order to have only regions that cannot be split.

Variables of multiplexing regions must be colored, which means the interference

between variables must be known on these regions, which depends directly on the

notion of liveness. There are two kinds of variables alive on multiplexing regions:

• Variables that go through the region, i.e., which are live-in of any of the exit

blocks of the multiplexing region. These variables are of course live-out of all

the entry blocks that have edges going to these exits blocks since we consider

only strict programs. Inside the multiplexing region, these variables are said to

be alive on the edges going from the entry blocks where they are live-out to the

exit blocks where they are live-in. They are called live-through variables.

51

CHAPTER 3. REVISITING THE PROOF OF CHAITIN ET AL.

• Under SSA, additional variables are alive on multiplexing regions: the vari-

ables defined by φ-functions on exit points of the multiplexing region, called

φ-variables. Since the region is atomic, these variables cannot be defined on the

incoming edges since that would be “inside” the multiplexing region. Hence,

in the future, such a variable will have to be defined before entering the region

and should then be considered alive on the multiplexing region, i.e., live-in of

the exit block defining it, but, more importantly, also live-out of the entry blocks

predecessors of the φ-function.8

It is now easy to know which variables interfere in a multiplexing region, using a

definition of interference from Chapter 2. For instance, with the relaxed Definition 2.8,

a and b interfere on a multiplexing region if there is a point inside the region where

they are both alive, for instance on an edge, on an entry point or on an exit point. Re-

finements using the values of variables can be used, but this is not the point. The point

is that on an atomic multiplexing region, there exists an interference graph that must

be colored. A consequence of Theorem 3.1, which states that splitting variables does

not help if no edge splitting is allowed, is that any graph can be the interference graph

of a multiplexing region. Indeed, we will show it by re-writing more conceptually the

proof of this theorem.

Proof of Theorem 3.1 using multiplexing regions. In Chaitin et al.’s proof, the critical

edges going from blocks of type Bu,v to blocks of type Bu form a multiplexing region.9

These edges are considered non-splittable, hence the multiplexing region is atomic.

Let H be the interference graph of the program (i.e., G plus {x}). Consider a splitting

of the variables, and H′ the corresponding interference graph. Splitting a variable can

occur only outside the multiplexing region. Hence, for any variable a in H, there exists

a duplicate a′ of a—which can be a if it is not split in H′—such that the live-range

of a′ restricted to the multiplexing region is exactly the same as the live-range of a

in the non-split program (also restricted to the region). These “micro live-ranges,” the

live-ranges of the duplicates restricted to the multiplexing region, are non-splittable,

hence must be colored with a unique color.

In Chaitin et al.’s construction, for an edge (u, v) of G, there is a block Bu,v with

defines the two variables: they are both alive at the end of this block. This is an

entry point of the multiplexing region, hence u and v interfere inside the region. So,

the duplicates u′ and v′ of u and v alive in the multiplexing region also interfere, and

H ⊆ H′. Hence a coloring of H′ provides a coloring for H. Reciprocally, a coloring

of H can be easily extended to a coloring of H′ since all variables in H′ ⊂ H form

independent cliques of size two or three (their live-ranges are restricted to the basic

blocks). �

What are the consequences of this proof? Multiplexing regions define parts of the

program that are not modifiable and their interference graph can be any graph. In

atomic multiplexing regions, the variables cannot be split hence performing register

allocation on these regions is NP-complete. In general, a program can be viewed as

many atomic regions. Atomic regions cannot be split, and shuffle code can only be

placed between them. Multiplexing regions are atomic regions, and if swaps are al-

lowed, atomic regions inside a basic block are the instructions (no code can added “in

8This view is equivalent as going out of SSA like Sreedhar et al. [1999] do, by adding copies of arguments

and definition and renaming copies with a common name. The φ-variable would then be this common

variable.
9That is, if G is a connected graph, which can be considered without loss of generality.

52

3.4. REGISTER ALLOCATION IN TWO PHASES

the middle” of an instruction). Else, they are contiguous program points where Live

equals R. Each atomic region has its “chromatic number,” i.e., the minimum number of

colors required to perform register assignment on the region. For a basic atomic region

like an instruction, the chromatic number is simply the maximum of the size of the

live-in set and the size of the live-out set. But for arbitrarily complicated multiplexing

regions, it is NP-complete to compute this number.

3.4 Register allocation in two phases

This study showed two important facts. First, the difficulty comes from the presence

of non-splittable critical edges. Second, if critical edges can be split, deciding if R

registers are enough is easy unless under strong architectural constraints. This is not

what Pereira and Palsberg [2006] proved in their article “Register allocation after clas-

sical SSA elimination is NP-complete.” For their proof, they use a reduction from the

k-colorability problem for circular-arc graphs, by increasing the register pressure on

the back-edge of a loop so that no permutation resulting from a φ-function at the begin-

ning of the loop can be performed on the back-edge. Although similar to the result of

Theorem 3.1, there are two main differences with our results: First, circular-arc graph

k-coloring is polynomial if k is fixed [Garey et al., 1980], while our result holds even

for a fixed k ≥ 3; Second, and more importantly, they only considered splitting at the

points defined by SSA, but, as said before, we could split elsewhere.

On the contrary, our study shows that, in most cases, it is easy to decide if R reg-

isters are enough. We will see in Chapter 7 that what can be done if there are edges

that cannot be split. What does this imply for register allocation? In Chapter 2, Sec-

tion 2.2 was devoted to the coloring of the interference graph. We explained that, since

finding if R colors are sufficient to color a graph is NP-complete, a heuristic was used:

Chaitin’s simplification scheme (see Section 2.2.1.2). Our study shows that, by using

live-range and edge splitting, it is now possible to know in polynomial time if there is

sufficiently many registers. This motivates the need for revisiting register allocation us-

ing graph coloring. Traditionally, spilling and coloring were intertwined because “how

much you need to spill” was dependent on “how good you can color” the interference

graph. Having a polynomial test now allows us to use algorithms with two distinct

phases:

First phase. Spill variables until R registers are sufficient;

Second phase. Color variables while minimizing the number of remaining splits.

We think that separating register allocation into two independent parts gives a finer

control over the problems of spilling and coalescing. We can put more effort to solve

them separately, instead of having to deal with the both of them together.

A practical register allocation scheme using two phases. Critical edges can often

be split. Of course this has a cost, usually the cost of an indirection—one more jump

instruction compared to the original edge—and the cost that the code on the edge can-

not be scheduled with code on other basic blocks. In that case, we present here an

example of register allocation in two phases:

Pre-phase. Go through SSA—or any representation of live-ranges as subtrees of a tree.

That is, consider that different variable definitions belong to different live-ranges.

53

CHAPTER 3. REVISITING THE PROOF OF CHAITIN ET AL.

First phase. Spill some variable if necessary. At this stage, it is easy to decide if R

registers are enough: this is possible iff Maxlive10 is less than R (because of

Corollary 2.38). If R registers are not enough, additional splitting will not help

as this leaves Maxlive unchanged, so spilling some variables is necessary.

Second phase. Color the variables with some coalescing to remove as much copies

inserted by SSA as possible.

Post-phase. Insert the remaining copies either on new basic blocks—from split critical

edges—, or at the end of predecessor basic blocks for normal edges.

The first and fourth points, are called “pre-” and “post-” phases since they are

not algorithmically difficult: going to SSA is a well-known exercise and adding the

necessary copies is . . . , well, necessary (but still requires some attention, for instance

when sequentializing copies, see Section 2.3.6). A contrario, the phases labeled “First”

and “Second” are the important and difficult ones: spilling is generally considered as

a difficult problem, and the coalescing tries to minimize the number of copies that will

be inserted by the post-phase.

Remaining questions. This view of coloring through permutations insertion is the

base of any approach that optimizes spilling first. This approach is, for example, advo-

cated by Knobe and Zadeck [1992]; Appel and George [2001] and Hack et al. [2006]:

some spilling and splitting are done to reduce Maxlive to at most R beforehand. This

approach is performed in its most extreme form by Appel and George [2001]: live-

ranges are split at every program point in order to solve spilling optimally, hence there

is a potential permutation between any two program points. But schemes in two phases

like these ones—and the one we propose—leave open three questions. This thesis aims

to answer these questions, at least partially:

• What (and where) to spill if R registers are not sufficient?

• How to minimize the cost of the splitting of variables and edges? (coalescing

problem)

• What can be done if critical edges cannot be split?

3.5 Conclusion

In this chapter, we tried to clarify where the complexity of register allocation comes

from. Our goal was to recall what Chaitin et al.’s original proof really proves and to

extend this result. The main question addressed by Chaitin et al. is of the following

type:

Can we decide if R registers are enough for a given program or if some

spilling is necessary?

10Using Definition 2.8 of interference, where values are not taken into account. One can assume a copy

folding pass was done under SSA to rename equal variables with a common name.

54

3.5. CONCLUSION

3.5.1 Summary of Results

The original proof of Chaitin et al. [1981] proves that the register allocation problem

is NP-complete when live-range splitting is not allowed, i.e., if each variable can be

assigned to only one register. We showed that the same construction proves more: the

problem remains NP-complete when live-range splitting is allowed but not (critical)

edge splitting.

Recently, Pereira and Palsberg [2006] proved that, if the program is a simple loop,

the problem is NP-complete if live-range splitting is allowed but only on a block on

the back edge, and only if register swaps are not available. This is a particular form of

register allocation through SSA. The problem is NP-complete if R is a problem input.

We showed that Chaitin et al.’s proof can be extended to show a bit more. When register

swaps are not available, the problem is NP-complete for a fixed R ≥ 3 (but for a general

CFG), even if the program has no critical edge and if live-range splitting can be done on

any control-flow edge, i.e., on entry and exit of blocks, but not inside basic blocks.

These results do not address the general case where live-range splitting can be done

anywhere, including inside basic blocks. We showed that the problem remains NP-

complete only if some instructions can define two variables at the same time but register

swaps are not available. Such a situation might not be so common in practice. For a

strict program, we can answer the remaining cases in polynomial time. If Maxlive = R

and register swaps are available, or if Maxlive < R, then R registers are enough. If

register swaps are not available and at most one variable can be defined at a given

program point, then a simple greedy approach can be used to decide if R registers are

enough.

This study shows that the NP-completeness of register allocation is not due to the

coloring phase, as may suggest a misinterpretation of the reduction of Chaitin et al.

from Graph k-Coloring. If live-range splitting is taken into account, deciding if R

registers are enough or if some spilling is necessary is not as hard as one might think.

The NP-completeness of register allocation is due to three factors: the presence of

critical edges which create multiplexing regions where variables are hard to color if

they are non-splittable, the optimization of spill costs (if R registers are not enough) and

of coalescing costs, i.e., choosing which live-ranges should be merged while keeping

the graph R-colorable.

3.5.2 Organization of the thesis

In this thesis, we defend the idea of performing register allocation in two phases—first

spilling then coloring using coalescing—instead of the classical scheme that intermixes

everything in a unique phase. While the classical scheme has the advantage of being

very simple in its original form (by Chaitin [1982]), or in the improved Iterated Register

Coalescing (IRC) version by George and Appel [1996], it was designed this way mainly

because:

• Spilling depends on whether the coloring heuristic will work or not.

• Coalescing can help Chaitin et al.’s coloring heuristic.

But one disadvantage is that changes in the scheme are difficult to implement as the

whole allocator needs to be compliant: phases must be iterated (spilling introduces new

variables at stores and loads), coloring depends on spilling which depends on coloring,

etc.

55

CHAPTER 3. REVISITING THE PROOF OF CHAITIN ET AL.

The discovery that the interference graph of a program under SSA is chordal opened

new doors for the study of splitting techniques that simplify the coloring test: “Are R

registers sufficient for allocation?” With such techniques, spilling does not depend on

the result of a coloring heuristic anymore: we know exactly when it is required or not,

which breaks the first reason why register allocation is classically performed in only

one complex phase. Advantages for register allocation in two phases are multiple: bet-

ter control over each of the phases, no interplay between these phases—hence an easier

implementation since improvements on one phase are easier to try and to evaluate.

The rest of the thesis will be organized as follows. As the spill problem is difficult

for a general program, we will study its complexity for SSA programs in Chapter 4. We

have indeed seen that SSA is a useful splitting technique, and we figured it would be

pertinent to know better the complexity of the spill problem for programs under SSA

form. Then we will study the complexity of the coalescing problem in Chapter 5, which

is the important optimization of the second phase in register allocation in two phases.

In Chapter 6, we will present advanced techniques for coalescing. Finally, Chapter 7

discusses the problem of non-splittable edges and permutation motion—a technique to

move added copies away from critical edges. In Chapter 8, the conclusion, we will

discuss practical subtleties for “real-world” register allocation in two phases.

56

Fear to let fall a drop and you will spill a lot.

Malayan proverb

Des petits trous, des petits trous, toujours des petits trous. . .

Serge Gainsbourg 4
On the complexity of spill everywhere

under

SSA Form

Preliminary note: this chapter is very technical but we felt it was more logical to place it

there, before the coalescing chapters, so as to keep the same order as register allocation in

two phases: first, spilling, then, coalescing. This chapter is a purely theoretical study on the

complexity of the spilling problem. We will not propose any practical solution, while we do

so for the coalescing problem. As a consequence, it is possible to skip it at first reading.

The dominance property of Static Single Assignment (SSA) form suggests promis-

ing directions for the design of new register allocation heuristics, in particular, it is pos-

sible to cleanly separate register allocation in two phases. This was already mentioned

in Chapter 2, and the study of Chaitin et al.’s NP-completeness proof in Chapter 3 ex-

plained that the SSA form simplifies the problem of knowing whether R registers are

sufficient or not for the register allocation problem because it splits variables (explic-

itly) and edges (implicitly with φ-functions). However, the problem of what to do when

there is not enough registers is not answered. We do know that, in that case, spilling

some variables to memory is necessary, but not yet how to do it.

In this chapter, we will study the spill problem for programs under SSA form. The

motivation of this study is driven by the hope of designing both fast and efficient reg-

ister allocation in two phases—first spilling, then coloring—based on SSA form. As

explained in the previous chapters, under SSA form, the test that tells whether some

spilling is required or not is simply that Maxlive must be at most the number of regis-

ters: Ω ≤ R (see Corollary 2.38).1 Answering whether spilling is necessary or not is

easy while minimizing the amount of load and store instructions is the real issue. In

other words, if the search space is now cleanly delimited, the objective function that

corresponds to minimizing the spill cost has still some open issues. The question is:

“Is the spilling problem easier to solve under SSA?”

The spilling problem can be considered at different granularity levels: at the high-

est, the so-called spill everywhere considers the live-range of a variable as an atomic

object, i.e., a variable is either entirely spilled or entirely not spilled. This simplifica-

tion consists in answering the question “what to spill,” but not “where to spill.” This is

the same approximation made by Chaitin et al. [1981] in their NP-completeness proof

and coloring algorithm. With spill everywhere, a spilled variable will stay so on its

1Unless for very particular cases, for instance if there is no swap instruction. See Chapter 3 for details.

CHAPTER 4. COMPLEXITY OF SPILL EVERYWHERE UNDER SSA

entire life, but for the store after the definition and the load before each use.2 The

finer granularity, known as load-store optimization, optimizes each load and store

separately, and in particular the placement of these instructions. The latter problem

is also known as “paging with write back” and was proven NP-complete by Farach-

Colton and Liberatore [2000] for a basic block, even under SSA form, when the number

R of registers is an input of the problem. The former problem is much simpler, and a

well-known polynomial instance by Belady [1966] exists under SSA form on a basic

block. To develop new spilling heuristics, studying the complexity of spilling every-

where is very important for the design of either aggressive or just-in-time (JIT) register

allocators because of the two following reasons:

1. First, the complexity of the load-store optimization problem comes from the

asymmetry between loads and stores [Farach-Colton and Liberatore, 2000].

The main difference between the load-store optimization problem and the spill

everywhere problem comes from this asymmetry. We measured in practice that

most SSA variables have only one or two uses, so it is natural to wonder whether

this singularity makes the load-store optimization problem simpler or not: for in-

stance, in the most extreme case, with only one use per variable, this problem is

equivalent to the spill everywhere problem.3 More generally, even in the context

of a traditional compiler, the spill everywhere problem can be seen as an oracle

for the load-store optimization problem to answer whether a variable should be

stored or not. Then, one could imagine a pass that tries to optimize the placement

of loads and stores for variables chosen to be spilled. In the context of aggres-

sive compilation using integer linear programming (ILP), [David W. Goodwin

and Kent D. Wilken, 1996; Fu and Wilken, 2002; Barik et al., 2007], a way to

decrease the complexity is to restore the symmetry between loads and stores as

done by Appel and George [2001].4

2. Second, we think that the spill everywhere is a good candidate for designing

simple and fast heuristics for JIT compilation on embedded systems. Again, in

this context, the complexity and the footprint of the compiler is an issue. Spilling

only parts of the live-ranges, as opposed to spilling everywhere, leads to irregular

live-range splitting and the insertion of shuffle code to repair inconsistencies, in

addition to maintaining liveness information for coalescing purpose. All of this

is probably too costly for some embedded compilers.

To our knowledge, this is the first exhaustive study of the complexity of the spill every-

where problem in the context of SSA form in the literature.

The rest of the chapter is organized as follows. For our study, we consider different

variants of the spilling problem, Section 4.1 provides the terminology and notation that

describe the different cases we considered. Section 4.2 considers the simplified spill

model where a spilled variable frees a register for its whole live-range; we provide an

exhaustive study of its complexity under SSA form. Section 4.3 deals with the problem

where a spilled variable might still need to reside in a register at its points of definition

and uses; the study is there restricted to basic blocks as it is already NP-complete for

this simple case. Section 4.4 summaries our results and concludes the chapter.

2Although, in Chaitin et al.’s algorithm, they have a mechanism to avoid reloading variables a posteriori,

i.e., after the spill everywhere decision.
3Supposing the frequencies of execution of basic blocks are the same.
4In their formulation, a variable might be either in a memory location or in a register, but cannot reside

in both.

58

4.1. TERMINOLOGY AND NOTATION

4.1 Terminology and Notation

In our study, we (almost) only consider the “everywhere” approximation of the spill

problem. In this approach, the goal is to decrease the register pressure below the num-

ber of register at every program point, while minimizing the cost of the spilling, i.e., the

sum of the weights of the spilled variables. For the purpose of our study, we consider

three different varying parameters.

Global vs. local: Live-ranges can be local (i.e., only on basic blocks) or global. On a

basic block, the interference graph is an interval graph, while it is chordal for a

general control-flow graph (CFG) under SSA form with dominance property.

Memory instructions vs. store/reload: The use of an evicted (spilled) variable in an

instruction may requires a register (RISC-like architecture) or not (CISC-like archi-

tecture). If it does not, spilling a variable decreases by one the register pressure

on every point of the corresponding live-range. Otherwise, spilling a variable

decreases the register pressure only on program points that do not use or define

it. In the first case, spilling a variable has the effect of removing the entire live-

range; in the second case, it has the effect of removing a version of the live-range

with “holes” at the use and definition points (see Section 4.3). We denote these

two problems respectively as spilling without holes or spilling with holes.

Weighted vs. unweighted: Finally, w(v) denote the weight of variable v, i.e., the cost

of spilling v. We distinguish the cases where the cost of spilling is the same for

all variables or not. We denote these two problems respectively as unweighted,

denoted by w = 1 (meaning w(v) = 1 for all v), or weighted, denoted by w , 1.

In this study, we play with these parameters, trying to make the problem more

complex to see if a polynomial algorithm can still apply, or the converse, trying to

simplify an NP-complete problem to see if it stays so. We always tried to give the

proof that is the most constraining for the result. For instance, if a problem is NP-

complete in the two cases w = 1 and w , 1, the proof will consider the unweighted

case. Conversely, if a problem is polynomial in the two cases w = 1 and w , 1, the

algorithm will explain how to deal with the weighted case. Remember that stronger

results imply the weaker ones. This is the reason why, on tables summarizing the

complexity results (namely, Tables 4.1 and 4.2, which will be introduced later), many

cells are empty but nevertheless stated as “polynomial” or “NP-complete.” Their status

is subsumed by a stronger result, which is the one given in the colored area.

As mentioned earlier, the goal of the spilling problem is simply the problem of

lowering the register pressure so that register allocation gets feasible. Under SSA form,

it is necessary and sufficient to lower the register pressure so that, at every program

point, it becomes less that the number of registers R. The corresponding optimization

problem is to minimize the spilling cost. Maxlive, the maximum over all program

points, will be denoted by Ω. Hence formally, the goal is to decrease Ω by spilling

some variables. If we denote by Ω′ the register pressure after this spilling phase, we

distinguished four different problems.

Decreasing Maxlive: spill so that:

• Ω′ ≤ Ω − 1: “incremental spilling;”

• Ω′ ≤ Ω −C where C is a constant: spill with “many registers;”

59

CHAPTER 4. COMPLEXITY OF SPILL EVERYWHERE UNDER SSA

• Ω′ ≤ C where C is a constant: spill with “few registers;”

• and the general problem,Ω′ ≤ R where there is no constraint on the number

of registers R.

A graph problem: The spill everywhere problem without holes can be expressed as a

node deletion problem [Yannakakis, 1978]. The general node deletion problem can be

stated as follows: “Given a graph or digraph G, find a set of nodes of minimum cardinal

whose deletion results in a subgraph or subdigraph satisfying the property π.” Hence,

the results of the first section have a domain of application not only on register allo-

cation but also on graph theory. For this reason, we formalize the results using graphs

(i.e., properties of the interference graphs) instead of programs (i.e., register pressure

on the CFG) while the algorithmic behind is actually based on the CFG representation.

4.2 Spill Everywhere without Holes

On a basic block, the unweighted spill everywhere problem without holes is polyno-

mial: this is the greedy “furthest use” algorithm described by Belady [1966]. It is less

known that the weighted version, which cannot be solved using this last technique, is

also polynomial [Yannakakis and Gavril, 1987; Farach-Colton and Liberatore, 2000].

The interference graph is an intersection graph for which the incidence matrix is totally

unimodular and the ILP formulation can be solved in polynomial time, for example us-

ing flow algorithms. This property holds also for a path graph, which is a class of

intersection graphs between interval graphs and chordal graphs. We recall these results

here for completeness. We also recalled earlier that, under SSA form, once the regis-

ter pressure has been lowered to R at every program point, the coloring “everywhere”

problem (each variable is assigned to a unique register) is polynomial.

The natural question raised by these remarks is whether the spill everywhere prob-

lem without holes is polynomial or not under SSA form. In other words, does the SSA

form make this problem simpler? The answer is “no.” A graph theory result of Yan-

nakakis and Gavril [1987] shows it is NP-complete, even in its unweighted version: for

an arbitrarily large number of registers R, a program with Ω arbitrarily larger than R,

spilling everywhere a minimum number of variables such that Ω′ (i.e., Ω after spilling)

is at most R is NP-complete. The main result of this section shows more: this prob-

lem remains NP-complete even if one only requires Maxlive to be lowered by one,

i.e., Ω′ ≤ Ω − 1. The practical implication of this result is that for a heuristic that

would lower Ω one by one iteratively, even the optimization of each separate step is an

NP-complete problem.5

4.2.1 Complexity results

Table 4.1 summarizes the complexity results of spilling everywhere (without holes).

We will now recall classical results and prove new results, more accurate. Let us start

with the decision problem related to the most general case of spill everywhere without

holes.

5Note that providing an optimal solution for each intermediate step (going from Ω to Ω − 1, then from

Ω − 1 to Ω − 2, and so on, until Ω′ = R) does not always give an optimal solution for the problem of going

from Ω to R.

60

4.2. SPILL EVERYWHERE WITHOUT HOLES

Chordal graph
= general SSA case

Interval graph
= basic block

weighted

no

yes

no

yes

Ω′ ≤ C

dyn. prog. 4.4

Ω′ ≤ R

(4.3)

furthest use 4.1

ILP 4.2

Ω′ ≤ Ω − 1

X3C 4.6

dyn. prog. 4.5

polynomial NP-complete new result

Table 4.1: Spill everywhere without holes. References to theorems are given in gray.

All cases of a colored area are subsumed by the proof given in this area.

Problem: S    

Instance. A perfect graph G = (V, E) with clique number Ω = ω(G), a weight

function w(v) > 0 for each vertex v, an integer R, an integer K.

Question. Is there a set of vertices VS ⊆ V with overall weight
∑

v∈Vs
w(v) ≤ K such

that the clique number Ω′ of the induced subgraph G′ with vertices V \VS is at most

R?

Theorem 4.1 (Furthest First). The spill everywhere problem for an interval graph is

polynomially solvable with a greedy algorithm if w(v) = 1 for all v even if R is not fixed

(i.e., is an input of the problem).

The algorithm behind this theorem is the well-known “furthest use” strategy de-

scribed by Belady [1966], since interference graph of variables on a basic block is an

interval graph. This strategy is very interesting for designing spilling heuristics on the

dominance tree (see for example Hack et al. [2005]). We give here a constructive proof

for completeness.

Proof. An interval graph is the intersection graph of a family of intervals (on a straight

line). For convenience, we denote by B (for “basic block”) the union of all intervals.

The set of intervals is denoted by V (for “variables”). B is composed of m successive

“points.” p1, . . . , pm, so that intervals start and end between successive points. Once

variables are removed (spilled), the set of remaining variables is called V ′. The goal is

to remove the minimum number of intervals so that for each point p of B, the number

of intervals in V ′ intersecting p is at most R.

The greedy algorithm can be described as follows:

Step 0 (init) Let V ′
0
= V and i = 1;

Step 1 (find first) Let p(i) be the first point from the beginning of B such that more

than R variables of V ′
i−1

intersect p(i); Stop if there is no such p(i);

Step 2 (remove furthest) Select a variable vi that intersects p and ends the furthest

and remove it: V ′
i
= V ′

i−1
\ {vi};

Step 3 (iterate) Increment i by 1 and go to Step 1.

Let us prove that the solution obtained by the greedy algorithm is optimal. Consider

an optimal solution S (described by a set VS of spilled variables) such that VS contains

61

CHAPTER 4. COMPLEXITY OF SPILL EVERYWHERE UNDER SSA

the maximum number of variables vi selected by the greedy algorithm. Suppose that S

does not spill all of them and denote by vi0 the variable with smallest index such that

vi0 < VS . By definition of pi0 in the greedy algorithm, there are at least R + 1 variables

not in {v1, . . . , vi0−1} intersecting p(i0). As S is a solution, there is a variable v in VS

(thus v , vi0) that intersects p(i0). We claim that spilling W = (VS \ {v}) ∪ {vi0 }, i.e.,

spilling vi0 instead of v, is an optimal solution too. Indeed, for all points before p(i0)

(excluded), the number of variables in V ′
i0−1
= V \ {v1, . . . , vi0−1} is at most R. Since

{v1, . . . , vi0 } ⊆ W, this is true for V \ W too. Furthermore, each point p after p(i0)

(included) that is intersected by v is also intersected by vi0 by definition of vi0 . Since at

most R variables of V \VS intersect any such p, the same is true for V \W. Finally, this

optimal solution spills more variables vi selected by the greedy algorithm than S , which

is not possible by definition of S . Thus VS contains all variables vi and, by optimality,

only these. This proves that the greedy algorithm gives an optimal solution. �

Theorem 4.2 (poly. ILP). The spill everywhere problem for an interval graph is poly-

nomially solvable even if w , 1 and R is not fixed.

This result was pointed out by Yannakakis and Gavril [1987] and used in a slightly

different context by Farach-Colton and Liberatore [2000]. The idea is to formulate

the problem using ILP and to remark that the matrix defining the constraints is totally

unimodular. For the sake of completeness, we provide the formulation here.6

Proof. We use the same notations as for Theorem 4.1 except that, now, v1, . . . , vn

denote all variables and not only those selected by the greedy algorithm. Let wi be

the cost of removing (spilling) variable vi. We define the clique matrix as the matrix

M =
(

cp,v

)

where cp,v = 1 if v intersects the point p and cp,v = 0 otherwise. Such

a matrix is called the incidence matrix of the interval hyper-graph and is totally uni-

modular [Berge, 1973]. In our case,M is of polynomial size. This is not the case for

all graphs since the number of maximal cliques, hence the number of lines of M, can

be exponential, but this is not the case for interval and chordal graphs. The optimiza-

tion problem can be solved using the following integer linear program, where ~x is a

vector with components (xi)1≤i≤n, ~w is a vector with components (wi)1≤i≤n, ~R is a vec-

tor whose components are all equal to R, and vector inequalities are to be understood

component-wise:

max
{

~w.~x | M · ~x ≤ ~R, ~0 ≤ ~x ≤ ~1
}

Of course, xi = 0 means that vi should be removed while xi = 1 means it should be

kept. The matrix of the system is M with some additional identity matrices, which

keeps the total unimodularity. �

The next theorem is from Yannakakis and Gavril [1987]. While their formulation

of the problem is different—they search for k-colorable subgraphs in chordal graphs—,

they deal in fact with the same problem as us. We refer to their paper for the proof as

we will improve this result in Theorem 4.6.

Theorem 4.3 (Yannakakis). The spill everywhere problem for a chordal graph is NP-

complete even if w(v) = 1 for each v ∈ V.

Another important result of Yannakakis and Gavril [1987] is that the spill every-

where problem is polynomially solvable when R is fixed. Of course, there is a power

of R in the complexity of their algorithm, but it means that if R is small, the problem is

6 Note that Farach-Colton and Liberatore [2000] also have a flow formulation for this problem.

62

4.2. SPILL EVERYWHERE WITHOUT HOLES

simpler. Because of this, we call the problem when R is fixed “spill everywhere with

few registers”.

Problem: S     (C)

Instance. A perfect graph G = (V, E) with clique number Ω, a weight w(v) > 0

for each vertex, an integer K, R = C is fixed (i.e., a constant, not an input of the

problem).

Question. Is there a subset VS of vertices V with overall weight
∑

v∈Vs
w(v) ≤ K

such that the clique number of the subgraph G′ induced by V \ VS is Ω′ ≤ R?

Theorem 4.4 (Dynamic programming on non-spilled variables). The spill everywhere

problem with few registers (R = C) is polynomially solvable if G is chordal even if

w , 1.

When we proved our results, we were actually not aware of Gavril and Yannakakis

paper. Since Theorem 4.4 is very intuitive, we logically ended with the same kind of

construction. For completeness, we provide it here, with our own notations. This proof

is constructive and the algorithm (dynamic programming on program points) is based

on a tree traversal. The idea is that at each point, the number of variables not spilled is

at most C, hence there are at most ΩC possibilities at every program point. Of course,

this works only because the underlying structure is a tree: solutions of children are

independent and can be “glued” together during the dynamic programming. This could

not be done if there was cycles of program points. The algorithm performs O
(

mΩC
)

steps of dynamic programming, where m is the number of program points.

Proof. A chordal graph is the intersection graph of a family V of subtrees of a tree T

[Golumbic, 1980, Thm 4.8]. We call points the vertices of the tree T , and for each point

p, Tp the maximal subtree of T rooted at p (the root is r, and Tr = T). To distinguish

the subtrees Tp from the subtrees of the family V , we call the latter variables. Given

a point p and a subset W ⊆ V of variables, let W(p) be the set of variables v ∈ W

intersecting p, i.e., such that p belongs to the subtree v. If |W(p)| ≤ C, we say that W

fits p or that W(p) is a fitting set for p. We say that W fits a set of points if it fits each of

these points. A solution to the spill everywhere problem with C registers is thus a subset

W of V such that W fits T . It is an optimal solution if
∑

v∈W w(v) is maximal. With these

notations, W corresponds to V \ VS in the spill everywhere problem formulation, and

maximizing the cost of W is equivalent to minimizing the weight of VS .

Given a subset of variables W, we consider its restriction, denoted by Wp, to a sub-

tree Tp: it is defined as the set of variables v ∈ W that have a non-empty intersection

with Tp. Note that if W fits T , then its restriction Wp to a subtree Tp fits Tp. Fur-

thermore, if p1 and p2 are children of p in T then, because of the tree structure, all

variables that belong to both Wp1
and Wp2

intersect p. Also, for i ∈ {1, 2}, all variables

in Wpi
intersecting p intersect also pi, i.e., Wpi

(p) = Wp(pi). These remarks ensure

the following. Let W be a fitting set for Tp and let W ′ be a fitting set for Tpi
such that

W ′
pi

(p) = Wpi
(p) (i.e., they coincide between p and pi). Then, replacing Wpi

by W ′pi

in W leads to another fitting set of Tp. This is the key to get an optimal solution thanks

to dynamic programming.

The final proof is an induction on the points p of T—from the leaves to the root—

and on the fitting sets Fp ∈ Fp = {W ⊆ V(p); |W | ≤ C} of these points. Let us denote

by Wmax(p, Fp) a subset W of V that contains only variables intersecting Tp, such that

W(p) = Fp, and with maximal cost. The goal is to calculate, for all points p and all

fitting set Fp ∈ Fp, Wmax(p, Fp). Then, the cost of the best solution for the whole tree

63

CHAPTER 4. COMPLEXITY OF SPILL EVERYWHERE UNDER SSA

will be the maximum of Wmax(r, Fr), which defines a fitting set Frmax
. The best spill

solution is then easily found by a tree traversal starting at r with solution Frmax
, going

down to the leaves, using the previous dynamic programming computations.

The hard part is to compute, for a given point p and one of its fitting sets Fp ∈ Fp,

Wmax(p, Fp). If p is a leaf, it is easy since there is no much choice but counting the

number of variables in Fp. If p is not a leaf, it has at least one child. The solutions

for each child of p are independent but for the variables they have in common. Since

this is a tree, these variables intersect p, hence their status (spilled or non-spilled) is

governed by the fitting set Fp. Then, for each child pi of p, we only need to consider

the fitting sets Fpi
that match Fp, i.e., such that Fpi

∩ V(p) = Fp ∩ V(pi). From the

remark above (with W and W ′), any of such sets can be plugged on Fp, and this can

be done independently for each child. Now, we need to find, for all combinations of

fitting sets Fpi
for each children, which one gives the greatest cost. For a combination,

the cost is easy to compute: it is the cost of Fp plus, for each child, the cost of Wpi

minus the variables in common between Fp and Fpi
, i.e.:

cost of Wp =
∑

v∈Fp

w(v) +
∑

pi



















∑

v∈Wpi
\Fp

w(v)



















=
∑

v∈Fp

w(v) +
∑

pi



















cost of Wpi
−

∑

v∈Fpi
∩Fp

w(v)



















One should note that, in the cost of Wp, the cost of the solution brought by one child

in independent from the solutions brought by other children. Hence, we can optimize

independently the solution of each child. For a child pi, and for a set Fpi
that matches

Fp, the cost of the variables in common between Fp and Fpi
(the part after the minus

sign in the equation above) is a constant, hence it is best to maximize the part “cost

of Wpi
.” For that, we just need know Wmax(pi, Fpi

), which is ensured by the dynamic

programming. So, we pick the Fpi
such that Wmax(pi, Fpi

) is maximal. From these

selected subsets, one for each pi, we construct Wmax(p, Fp).

This construction is done for each Fp ∈ Fp. As there are at most V(p)C ≤ ΩC such

fitting sets for p, these successive locally optimal solutions can be built in polynomial

time. �

We have just seen that, whenever the number of register is fixed, the spill problem

can be solved polynomially. However, the complexity grows exponentially with R so it

works best with a very small number of registers. This might be a clue to explain why

aggressive techniques like ILP for spilling appeared to work during the last decade for

instance for X86. Appel and George [2001] were probably well aware of this fact when

they entitled their article “Optimal spilling for CISC machines with few registers.” We

now address the following problem, which is a particular case of the more general spill

everywhere problem.

Problem: I  

Instance. A perfect graph G = (V, E) with clique number Ω = ω(G), a weight

w(v) > 0 for each vertex, an integer K.

Question. Is it possible to remove vertices VS ⊆ V from G with overall weight
∑

v∈Vs
w(v) ≤ K such that the induced subgraph G′ has clique number Ω′ ≤ Ω − 1?

64

4.2. SPILL EVERYWHERE WITHOUT HOLES

The following theorem can be seen as a particular case of Theorem 4.2. The proof

is interesting since it provides an alternative solution to the ILP formulation for this

simpler case.

Theorem 4.5 (Dynamic programming on spilled variables). If G is an interval graph,

the incremental spill everywhere problem is polynomially solvable, even if w , 1.

Proof. Let B = {p1, . . . , pm} be a linear sequence of points, pi < p j if i < j, and

V = {v1, . . . , vn} be a set of weighted variables, where each variable vi corresponds to

an interval [s(vi), e(vi)]. We assume that the variables are sorted by increasing starts,

i.e., s(vi) ≤ s(v j) if i < j. Without loss of generality, the problem can be restricted to the

case where any point p belongs to exactly Ω variables (any other point can be deleted

from the instance). So for each point, one needs to spill at least one of the intersecting

variables. What we seek is thus a minimum weighted cover of B by the variables of V ,

which can be done thanks to dynamic programming as follows.

Let W(pi) be the minimum cost of a cover of p1, . . . , pi. Knowing all W(p j<i), it

is possible to compute W(pi). Indeed, at pi, one must choose a variable v ∈ V(pi), i.e.,

intersecting the point pi. As v already covers the interval between its start s(v) and pi,

we get:

W(pi) = min
v∈V(pi)

(w(v) +W(pred[s(v)])) where pred[pi] = pi−1

with the convention W(p) = 0 for p < p1. W(pm) is the minimum cost of an incremen-

tal spilling over the whole basic block B. The set V(pi) can be computed from V(pi−1)

in O(Ω) operations because the variables are sorted by increasing starts. The overall

complexity is thus O(Ωm). �

We will now show you a stronger theorem than the Theorem 4.3 of Yannakakis

and Gavril [1987]. We discovered it while following our first (false) intuition, which

was that choosing which variables to remove so as to go from Ω to Ω − C was exactly

the symmetric of choosing which variables to keep so as to get down to C (with C

being a constant). At first sight, it seemed that dynamic programming could be used,

as for Theorem 4.4, to solve the incremental spill everywhere problem. For interval

graphs, both problems can indeed be solved with dynamic programming as we previ-

ously showed. The incremental approach would have then provided a heuristic for the

main spill everywhere problem, as an alternative to an exact solution as in Appel and

George [2001], which is too expensive when R is large. Unfortunately, Theorem 4.6

contradicts this intuition.

Theorem 4.6 (From 3-exact cover (X3C)). The incremental spill everywhere problem

is NP-complete for a chordal graph even if w(v) = 1 for each v ∈ V.

Proof. As for Theorem 4.4 we use the characterization of a chordal graph as an inter-

section graph of a family of subtrees of a tree. We use the same notations. The proof

is a reduction from Exact Cover by 3-Sets (X3C) [Garey and Johnson, 1979, Problem

SP2]: let P be a set of 3n elements {p1, p2, . . . , p3n}, and V = {v1, v2, . . . , vm} a set of

subsets of P where each subset contains exactly three elements of P. DoesV contains

an exact cover of P, i.e., a sub-collection S ⊆ V such that every element of P occurs

in exactly one member of S?

Let us consider an instance of X3C and define the following family of subtrees of

a tree (see Figure 4.1): the main tree T is of height 2 with one root point labeled p0

and 3n leaves labeled p1, p2, . . . , p3n. For each vi = {pα, pβ, pγ} there is a subtree

65

CHAPTER 4. COMPLEXITY OF SPILL EVERYWHERE UNDER SSA

p6

p1

p2

p3

p4

p5

v1

v4

v2

v3

(a)

v1v1v1 v2v2v2 v3v3v3 v4v4v4

p1

x1
1 x1

2

p2

x2
1 x2

2

p3

x3
1 x3

2 x3
3

p4

x4
1 x4

2

p5

x5
1 x5

2

p6

x6
1

(b)

v1 ← . . .
v2 ← . . .
v3 ← . . .
v4 ← . . .

p0

x1
1
← . . .

x1
2
← . . .

· · · ← v1

· · · ← v3

· · · ← x1
1

· · · ← x1
2

p1

x2
1
← . . .

x2
2
← . . .

· · · ← v2

· · · ← v4

· · · ← x2
1

· · · ← x2
2

p2

x3
1
← . . .

x3
2
← . . .

x3
3
← . . .

· · · ← v4

· · · ← x3
1

· · · ← x3
2

· · · ← x3
3

p3

x4
1
← . . .

x4
2
← . . .

· · · ← v1

· · · ← v3

· · · ← x4
1

· · · ← x4
2

p4

x5
1
← . . .

x5
2
← . . .

· · · ← v1

· · · ← v2

· · · ← x5
1

· · · ← x5
2

p5

x6
1
← . . .

· · · ← v2

· · · ← v3

· · · ← v4

· · · ← x6
1

p6

(c)

Figure 4.1: Reduction to 3-exact cover: (a) an instance of X3C with n = 2 and m = 4;

(b) corresponding subtrees in the reduction; (c) corresponding SSA code.

66

4.2. SPILL EVERYWHERE WITHOUT HOLES

(variable) made of the root p0 and the three points pα, pβ, pγ. The number of variables

intersecting p0 is m, so Ω = m. Let us create as many additional variables as necessary

(we call them non-labeled variables) so that the number of intersecting variables is

exactly Ω for each point of T . In other words, for a leaf p j that belongs to k subtrees

vi, we create m − k variables, each containing only p j. Given this family of subtrees of

a tree, consider the corresponding intersection graph (which is chordal). We now show

that this instance of X3C has a solution if and only if it is possible to remove (spill) at

most n = K variables such that, for each point p, the number of remaining intersecting

variables is at most Ω − 1. Notice that the reduction is polynomial: the whole number

of variables is at most 3n × m.

Suppose there is a solution to the incremental spill everywhere problem and let VS

be the set of removed variables with |VS | ≤ n. There is no non-labeled variable in VS

because Ω must be decreased in the 3n leaves and only a labeled variable goes over

three leaves. Hence VS contains only labeled variables, |VS | = n, and the corresponding

set of subsets S is a covering of P. Conversely, suppose that the X3C instance has a

solution S and let VS be the set of corresponding subtrees. Since S is a covering

of P, |S| = n and there is exactly one intersecting set in VS for each leaf. So the

number of remaining intersecting variables is Ω−1 for each leaf. As for the root p0, all

variables intersect it, so there is at least one (labeled) variable removed and the number

of remaining intersecting variables is at most Ω − 1. In other words, VS is a solution,

with |VS | ≤ n, to the incremental spill everywhere problem.

This proves that the incremental spill everywhere problem is NP-complete (the fact

it belongs to NP is straightforward). �

Why is there a difference between this last theorem and Theorem 4.4? In fact, the

two problems are not perfectly symmetric: to make a graph k-colorable, the number

of kept variables alive at any point should be at most k, while to make a graph Ω − k

colorable, the number of removed variables alive at any point must be at least k, hence

can be arbitrarily large as for the point p0 in the proof of Theorem 4.6. This is where

the combinatorial complexity comes from.

4.2.2 Extension to the spill non-everywhere problem

The spill everywhere problem considers a fixed cost for a live-range. If one want to

optimize loads and stores, i.e., to spill variables only on parts of their live-ranges,

the cost is not fixed in advance. It is possible to extend the dynamic programming

algorithm of Theorem 4.4 to the spill non-everywhere problem. At each point, the cost

of spilling a variable now depends on whether it has already been chosen to be spilled

by the dynamic algorithm (starting from the leaves)—the cost of the store has already

been counted—or not, in which case a store will be inserted. We will explain our

ideas for a basic block, then the dynamic algorithm for a tree, i.e., under SSA, works as

in the proof of Theorem 4.4.

The idea for the dynamic programming to work is to separate at each point the

variables in three sets:

• the variables not spilled (previously noted W);

• the variables spilled and not in a register (previously noted VS);

• the variables spilled but still in a register (noted Vr
S

).

67

CHAPTER 4. COMPLEXITY OF SPILL EVERYWHERE UNDER SSA

Indeed, a spilled variable may still reside in a register between two uses, to save

up one load. This complicates the task of calculating the cost of a fitting set. Let us

consider a basic block where one tries to calculate the cost of a solution for point p,

depending on the solutions for the next point p′.

• If v ∈ W(p), the only possibility is v ∈ W(p′), with no cost.

• If v ∈ VS (p): three cases, v ∈ VS (p′) with no cost; or v ∈ Vr
S

(p′), which costs a

load (inserted between p and p′); or v ∈ W(p′), which costs a store (inserted

at the definition of v) and a load (inserted between p and p′).

• If v ∈ Vr
S

(p): three cases, v ∈ Vr
S

(p′) with no cost; or v ∈ VS (p′) with no cost (v

just ceases to reside in a register); or v ∈ W(p′), which costs a store (inserted

at the definition of v)7 but no load since v is already in a register.

So we just need to be sure that, at each step, there is a polynomial number of
(

W(p),VS (p),Vr
S

(p)
)

that fit p. Indeed, if C is the number of registers, one needs to

choose between Ω(p) variables those that are in a register (spilled or not): less that

Ω(p)C possibilities. Then, of all the variables in registers at this point, one needs to

choose how many also reside in memory: at most 2C possibilities. Hence for a fixed

C, the number of possibilities is polynomially bounded by (2Ω)C and it is easy to use

dynamic programming to solve this problem on a basic block.

Under SSA, the dynamic programming is tree-based instead of being linear-based.

It works as in the proof of Theorem 4.4. If p has more that one child, a solution for

p should match the solutions for all of them, and a special care should be taken when

calculating the cost of a solution—if v is spilled in p1 and p2, it costs one store less

since both children have already included a store for v in their solution cost. Again,

it only works because the solutions of children are independent but for some variables

that intersect p. When p fixes a “pattern,” the choice for children is then independent

from other children, and taking the maximum cost gives the best solution.

4.3 Spill Everywhere with Holes

The previous section dealt with the spill everywhere problem without holes. To sum-

marize, by looking again at Table 4.1, this problem is polynomial for a basic block even

in its weighted version, whereas it is NP-complete for a general CFG under SSA, unless

for a fixed (small) number of registers.

As mentioned earlier, the model without holes does not reflect the reality of most

architectures: it corresponds to the CISC-like models while many architectures are in

fact RISC-like. The goal of this section is to tackle the problem of spill everywhere “with

holes,” on a basic block. We restricted the study to the cases where it was polynomial

without holes. Indeed, the problem with holes is intuitively “harder” than the problem

without holes. Whenever the problem was already NP-complete, chances were that it

would stay so.8

7This is a restriction of the model, where the cost of the store is the same everywhere. In practice

however, it is better to place it on a place not often executed. It is not trivial to insert this cost in the dynamic

programming but it might work.
8Actually, this is not straightforward to prove. To patch the proof of Theorem 4.6, other variables must

be added to “counter-act” the effects of holes. This is the same technique which will be used to patch the

“δ-variables” in the proof of Theorem 4.11.

68

4.3. SPILL EVERYWHERE WITH HOLES

Where do the holes come from? For an architecture where operations are allowed

only between registers, whenever a variable is spilled, one needs to insert a store in-

struction after its definition and load instructions before the every use of this variable.9

Thus, new variables appear, with very short live-ranges, but which nonetheless need to

be assigned to registers. In other words, when a variable is spilled, the number of si-

multaneously alive variables decreases by one at every point of the live-range, except

where the variable is defined or used. Thus spilling everywhere a variable does not

remove the complete interval, but only parts of it, since there is still some tiny sub-

intervals left. This is why, for instance, in the algorithm of Chaitin et al. [1981], the

register allocation must re-build the interference graph and iterate if some variables are

spilled.10

Holes and chads: The notion of holes can be formalized as follows. An SSA program

on a basic block, or linear SSA code, is a pair (B,V) where B = {p1, . . . , pm} is a

sequence of m program points, and V the set of variables that appear in the code.

Between two consecutive program points, there is an instruction.

Each variable of V is defined at most once and, if it is not defined in the code, is

considered live-in of the sequence B, i.e., alive on point p1. Similarly, each variable

either has a “last use” (last instruction that uses it) or is live-out of the sequence B.

A variable is represented by a simple interval of the sequence B, starting during the

instruction that defines it (or at p1 for a live-in), and ending during the instruction

that last uses it (or at pm for a live-out). Spilling a variable v ∈ V decreases by one

the register pressure at each of its points but not at its definition and uses points, i.e.,

the program point just after the instruction that defines it, and the program points just

before the instructions that use it. Some tiny sub-intervals of the live-range remain at

these places. They represent temporary variables that must contain the value in register

before storing it or after having reloaded it. Hence, the set of points that is actually

“removed” is the interval v with “holes” on it. We call it a punched interval. The

remaining points c ∈ v that are not removed are called chads, as if, when spilling the

variable v, one first had punched the corresponding interval, leaving small intervals in

place.

It is important to place precisely where are the holes in live-ranges, since they

represent the locations where chads will remain, i.e., where problems will arise. We

will do so while referring to Figure 4.2 for a graphical explanation. Please note that

an instruction first uses simultaneously some variables and then possibly defines some

other new variables. Hence, the holes for the definitions come a bit later than the holes

for the arguments. This the expected behavior since for instance for [d ← a + b], if a

and d are spilled, the same register can be used to load a and to hold d before its store.

Similarly, at a program point, the holes for the definitions of the preceding instruction

should not overlap with the holes for the uses of the next instruction. For instance,

between the definition of c and the one of d, if c and a are spilled, the same register

can be used to store c, then to load a. So, holes for definitions start “in the middle” of

the defining instruction and end at the next program point, while holes for uses start at

the previous program point and end “in the middle” of the instruction which uses the

9We are still in the “spill everywhere” model. For the load/store optimization, not all loads might be

required.
10Actually, the reason why re-building the interference graph is necessary is more clear in the version of

Chaitin [1982]. In the previous version, they reduced the register pressure to k, then tried to color. If it did

not work, they would reduce Maxlive to k − 1, k − 2,. . . until it worked. The interference graph must then be

build each time before testing if they can color it.

69

CHAPTER 4. COMPLEXITY OF SPILL EVERYWHERE UNDER SSA

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

a← . . .

b← . . .

c← . . .

d ← . . .

...

. . .← a

. . .← b

. . .← c

. . .← d

Intervals
a

b

c

d

Punched int.
a

b

c

d

a spilled
a

b

c

d

c spilled
a

b

c

d

Sub-intervals
a

b

c

d

chads

Figure 4.2: Example of punched intervals. When spilled, they leave small intervals

(chads) at their definition and uses points. The chads count in the register pressure

hence spilling a is not equivalent as spilling c: Maxlive stays at 4 with the former, but

drops to 3 with the latter.

variables.

Simultaneous holes: Now that we know precisely where are the holes, we can dis-

tinguish different cases depending on the number of simultaneous holes, written h.

This number corresponds to the maximum number of registers that can be used—as

arguments—by the same instruction or defined—as results—by the same instruction.

For instance, h = 2 in the three operand addition add %reg1, %reg2 → %reg3: it

uses two variables at a time, then defines one variable.

Live variables: Once some variables VS have been spilled, the induced code can be

characterized as follows. The set of spilled variables alive at p is VS (p) = VS ∩Live(p);

the set of non-spilled alive variables is Live′(p) = Live(p)\VS (p). The register pressure

after spilling is denoted by Ω′(p). Notice that Live′(p) does not contain any chad,

whereas of course Ω′(p) needs to take remaining chads into account. Hence Ω′(p) is

not necessarily equal to |Live′(p)|; more generally, |Live′(p)| ≤ Ω′(p) ≤ |Live′(p)| + h.

All previous notions can be generalized to a general SSA program. The sequence

B (linear code) becomes a tree T (dominance tree) and punched intervals become

punched subtrees. Now, the (general) problem can be stated as follows.

Problem: S   

Instance. A program (T,V) with Maxlive Ω, a weight w(v) > 0 for each variable,

integers R and K.

Question. Is it possible to spill a set of variables VS ⊆ V with overall weight
∑

v∈Vs
w(v) ≤ K such that the induced code has Maxlive Ω′ ≤ R?

Other instances. The spill everywhere on a basic block denotes the case where T is

a sequence B (linear code). The spill everywhere with few registers (C) denotes the

case where R is fixed equal to C. The spill everywhere with many registers (Ω − C)

denotes the case where R is fixed equal to Ω −C. The incremental spill everywhere

denotes the case where R equals Ω − 1.

70

4.3. SPILL EVERYWHERE WITH HOLES

h = 1

h ≥ 2

h not
bounded

weight

no

yes

no

yes

no

yes

Ω′ ≤ C

dyn. prog. 4.7

Ω′ ≤ R

?

stable set 4.11

stable set 4.10

Ω′ ≤ Ω −C

dyn. prog. 4.8

Ω′ ≤ Ω − 1

set cover 4.9

polynomial NP-complete new result

Table 4.2: Spill on interval graphs (basic blocks) with holes. References to theorems

are given in gray. All cases of a colored area are subsumed by the proof given in this

area.

As explained by Farach-Colton and Liberatore [2000], the hardness of load-store

optimization for a basic block comes from asymmetry between the cost of the store,

which appears only once—when a variable is chosen to be evicted—and the cost of the

loads, which is not fixed since it depends on how many times the variable is evicted.

Neglecting the cost of the store would lead to a polynomial problem where each sub-

intervals of the punched interval could be considered independently for spilling. But we

feel that this approximation is not satisfactory in practice because the average number

of uses for each variable can be small. Indeed, we measured on our compiler tool-

chain, using small kernels representative of embedded applications, that most spilled

variables have at most two uses. Hence, minimizing the number of spilled variables is

nearly as important as minimizing the number of uses that need a load.

Consider for example a “furthest first”-like strategy on sub-intervals (see Figure 4.2

for an illustration of sub-intervals). To design such a heuristic, a spill everywhere

solution might be considered to drive decisions: between several candidates that end

the furthest, which one is the most suitable to be evicted in the future? Unfortunately,

as summarized by Table 4.2, most instances of spill everywhere with holes are NP-

complete for a basic block.

Let us start with a result similar to Theorem 4.4: even with holes, the spill every-

where problem with few registers is polynomial.

Theorem 4.7 (Dynamic programming on non-spilled variables). The spill everywhere

problem with holes and few registers (R = C) is polynomially solvable if G is chordal,

even in its unweighted version (w , 1).

Proof. The proof is similar to the proof of Theorem 4.4. The only point is to adapt

the notations to take chads into account. The word “removed” has to be replaced by

“spilled” since variables are not removed entirely. Furthermore, the definition of “fit-

ting set” needs to be modified. A set Fp of variables is a fitting set for p if, when all

variables not in Fp are spilled, the new register pressure Ω′(p) is at most C. In other

words, the set of fitting sets becomes Fp =
{

Live′(p); Ω′(p) ≤ C
}

. Hence, it is “harder”

71

CHAPTER 4. COMPLEXITY OF SPILL EVERYWHERE UNDER SSA

for a set to be a fitting set than for the problem without holes. Therefore, the number

of fitting sets is smaller and is still at most Live(p)C ≤ ΩC .

As in Theorem 4.4, the proof is an induction on points p of T (from the leaves

to the root) and on fitting live sets Fp ∈ Fp. Wmax(p, Fp) is built, for each Fp ∈ Fp,

thanks to dynamic programming, by “concatenating” some well chosen Wmax(f , F f).

Given a child f of p, we select a fitting set F f ∈ F f that matches Fp, i.e., such that

F f ∩Live(p) = Fp ∩Live(f), and that maximizes the cost of Wmax(p, Fp). This is done

for each child of p, and because by construction they match on p, they can be expanded

to a solution Wmax(p, Fp) that fits Tp. The arguments are the same as for Theorem 4.4

and are not repeated here. �

We have seen that, without holes, the spill everywhere problem on an SSA program,

with few registers, is polynomial whereas the instance with many registers (R = Ω−C)

is NP-complete (Theorem 4.6): the number of spilled variables alive at a given point

can be arbitrarily large (up to Ω). For a basic block, this was not the case and we have

seen a dynamic algorithm (Theorem 4.5). Now we will see that, if h is fixed, this is still

the case. The number of spilled variables is bounded by 2(h+C), leading to a dynamic

programming algorithm with O(|B|Ω2(h+C)) steps.

Theorem 4.8 (Dynamic programming on spilled variables). The problem of spill ev-

erywhere with holes and many registers (R = Ω−C) can be solved in polynomial time,

for a basic block, if h is fixed and even if w , 1.

Proof. The key point is first to prove that, for an optimal solution, for each point p,

|VS (p)| ≤ 2(h + C). Let us consider a point p such that |VS (p)| ≥ h + C + 1, and

extend this point to a maximal interval I such that on any point p of this interval,

|VS (p)| ≥ h + C + 1. We claim that there is no spilled variable v ∈ VS completely

included in I. Indeed, otherwise, if v were restored (un-spilled) in the final solution,

then, at each point p of v, at least (h+C+1)−1 = h+C variables would still be spilled,

so the register pressure Ω′(p) ≤ |Live′(p)| + h ≤ (Ω − (h +C)) + h = Ω −C would still

be small enough. This would contradict the optimality of the initial solution. Hence,

no variable of VS is completely included in I: either it starts before the beginning of I,

or it ends after the end of I. But I is of maximal size, hence on both extremities, there

are at most h + C live spilled variables. Since there is no variable completely included

in I, for any point p of I, all variables alive at p goes beyond I either at its start or at its

end. This means that there is at most 2(h +C) spilled variables alive in any point of I.

The rest of the proof is similar to the proofs of Theorems 4.4 and 4.7. The only

difference is that spilled variables are considered instead of kept variables. For a point

p, an extra live set Ep is a set of variables of cardinal at most 2(h +C) and such that, if

Ep is spilled, the new register pressure Ω′(p) becomes lower than R. Let Ep be the set

of extra sets for p. It has at most Live(p)2(h+C) ≤ Ω2(h+C) elements.

The proof is an induction on points p of B = {p1, . . . , pm} and on extra live sets

Ep ∈ Ep. Let Bpi
= {p1, . . . , pi}. A set of variables is said to fit Bp if, for all points in

Bp, the register pressure obtained if all other variables are spilled is at most R = Ω−C.

The induction hypothesis is that a solution Wmax(p, Ep) of maximum cost, that fits Bp,

and with VS (p) = Ep, can be built in polynomial time. Let p be a point of B and q its

predecessor. Consider Ep ∈ Ep, and an extra live set Eq that matches Ep, i.e., such that

Eq ∩ Live(p) = Ep ∩ Live(q), and that maximizes the cost of Wmax(q, Eq). As noticed

earlier,
∣

∣

∣Eq

∣

∣

∣ ≤ Ω2(h+C) and it can be built, by induction hypothesis, in polynomial time.

Because Ep and Eq match, Wmax(q, Eq) can be expanded to a solution Wmax(p, Ep) that

fits Bp. The arguments are the same as those used for Theorems 4.4 and 4.7.

72

4.3. SPILL EVERYWHERE WITH HOLES

p3

p2p1

p4
p5

ν1

ν4

ν2
ν3

(a)

p1

p2

p3

p4

p5

v1 v2 v3 v4

(b)

Figure 4.3: Reduction to Set Cover: (a) instance of Set Cover and (b) corresponding

punched intervals.

The proof is constructive and provides an algorithm based on dynamic program-

ming with O(|B|Ω2(h+C)) steps. �

At this point, one might wonder why the dynamic programming of the previous

proof might not work for a tree, for instance if the number of children at each branch

is bounded. The problem is that the number of leaves of the tree would still not be

bounded, and the reduction to 3-exact cover of Theorem 4.6 would still work. The next

two theorems show that, as one would expect from the number of steps in the dynamic

programming, the complexity does depend on h and C. If C = 1, i.e., R = Ω − 1, but

h is not fixed, the incremental problem is NP-complete (Theorem 4.9). If h is fixed but

there is no constraint on R, most instances are NP-complete (Theorems 4.10 and 4.11).

Theorem 4.9 (From Set Cover). The incremental spill everywhere with holes is NP-

complete if h can be arbitrary, even if w(v) = 1 for each v ∈ V and even on a basic

block.

Proof. The proof is a straightforward reduction from Set Cover [Garey and Johnson,

1979, Minimum Cover, Problem SP5]. LetV be subsets of a finite set B and K ≤ |V|

be a positive integer. Does V contain a cover for B of size K or less, i.e., a subset

V′ ⊆ V such that every element of B belongs to at least one member ofV′? Punched

intervals can be seen as subsets of B, they contain all the interval points, except chads.

Consider an instance of Minimum Cover. To each element ofB corresponds a point

of B. To each element ν of V corresponds a punched interval v that traverses entirely

B and that only contains points corresponding to elements of ν (see Figure 4.3). In

other words, there is a chad for each point not in v. Note that to obtain a code with

instructions, it is possible to group two consecutive points into one instruction (which

uses every variable that has a chad on the first point, and defines every variable that has

a chad on the second point), or to utilize instructions that only use variables without

defining any or the converse.

At each point p of B, the number of punched intervals and chads that contain p

(live variables) is exactly Ω = |V |. A spilling that lowers by at least one the register

73

CHAPTER 4. COMPLEXITY OF SPILL EVERYWHERE UNDER SSA

ν3

ν1

ν2

ν4 ν5

ν6

p 1,
2

p2,3

p
3,1 p 3,

4

p5,4

p
6,4

(a)

v1 v2 v3 v4 v5 v6

p1,2

p2,3

p1,3

p3,4

p4,5

p4,6

(b)

Figure 4.4: Reduction to Independent Set for h = 2: (a) instance of Independent Set;

(b) corresponding punched intervals.

pressure Ω provides a cover of B and conversely. So, setting K = K and R = Ω − 1

proves the theorem. �

Notice that the previous proof is very similar to the proof given by Farach-Colton

and Liberatore [2000, Lemma 3.1]. Their lemma proves the NP-completeness of the

load-store optimization problem, which is harder than our spill everywhere problem.

Still, their reduction is similar to ours since they used a trick to force the overall load

cost to be the same for all spilled variables, independently from the number of times a

variable is evicted. Hence, the optimal solution to their load-store optimization problem

just behaves like a spill everywhere solution.

The main limitation of the reduction used for Theorem 4.9 is that the proof needs

the number of simultaneous chads h to be arbitrary large, as large as |V |. This is of

course not realistic for real architectures. Usually, h = 2 in practice, and even h = 1

for paging problems. Similarly to ours, the reduction of Farach-Colton and Liberatore

[2000] use a large amount of simultaneous uses (in their article, a read corresponds to

a use here and their α corresponds to our h). Their Theorem 3.2 extends their lemma

to the case α = 1 but, again, it deals with load-store optimization problem, which is

harder than spill everywhere. Unfortunately, their trick cannot be applied to prove the

NP-completeness of our “simpler” problem and we need to use a different reduction as

shown below.

Theorem 4.10 (At most 2 simultaneous chads). The problem of spill everywhere with

holes is NP-complete even if w(v) = 1 for all v ∈ V, even with at most 2 simultaneous

chads, and even on a basic block.

Proof. The proof is a straightforward reduction from Independent Set (also called

Stable Set) [Garey and Johnson, 1979, Problem GT20]. Let G = (V, E) be a graph

and K ≤ |V| be a positive integer. Does G contain an independent set (stable) VS of

size K or more, i.e., a subset VS ⊆ V such that |VS | ≥ K and no two vertices in VS

are joined by an edge (adjacent) in E?

74

4.3. SPILL EVERYWHERE WITH HOLES

#Live

|V |

|V | + 1

|V | + 2

|V | + 1

|V |

V \ {u, v}

w = α

u v

α

δu

δv

1

(a)

#Live

|V | + 1

|V | + 2

|V | + 3

|V | + 2

|V | + 1

V \ {u, v}

w = α

u v

α

δu δv

1

fi

f1

f2

f3

f4

f5

w(fi)

(b)

Figure 4.5: Reduction from Independent Set for h = 1: (a) region for an edge (u, v);

(b) actual code must have holes at extremities of δ variables.

Consider an instance of Independent Set. To each vertex ν ∈ V of G corresponds a

variable v ∈ V that is alive from the entry of B to its exit. To each edge (υ, ν) ∈ E of G

corresponds a point pu,v of B that contains a use of the corresponding variables u and

v (see Figure 4.4). In other words, there are two chads for each point of B. The key

point is to notice that spilling K variables in VS lowers Ω to |V | − K + 1 if and only if

the corresponding set of verticesVS is an independent set. Indeed, ifVS contains two

adjacent vertices u and v, then at point pu,v, the register pressure would be |V | − K + 2.

Hence, by setting K = K and R = |V | − K + 1, we get the desired reduction. Indeed,

if there exist k ≤ K variables that, when spilled, lead to a register pressure at most

R = |V | − K + 1 then: first, k must be equal to K, second, the corresponding vertices

form an independent set of size K. Conversely, if there is an independent set of size

at least K, then spilling the corresponding variables leads to a register pressure at most

|V | − K + 1. �

Now that we have seen the case when h = 2, the reader should be mature enough to

enter the case h = 1. The reduction is similar to the one in the above proof, from Inde-

pendent Set. But in this proof we strongly used that two chads might be simultaneous.

In the proof of the following theorem, we will use the same structure, but slightly “dis-

place” the chads so that they are not simultaneous anymore. The trick is then to add

many other small variables, and we will see that it “all fit together.” However, we now

need to use weights to distinguish the small variables from the main ones.

Theorem 4.11 (No simultaneous chads). The spill everywhere problem with holes is

NP-complete even if h = 1 and for a basic block, in its weighted version (w , 1).

75

CHAPTER 4. COMPLEXITY OF SPILL EVERYWHERE UNDER SSA

Proof. As for Theorem 4.10, the proof is a reduction from Independent Set. Consider

an instance of Independent Set. To each vertex ν ∈ V of G corresponds a variable v ∈ V

(called vertex variables), which is alive from the entry of B to its exit. To each edge

(υ, ν) ∈ E of G corresponds a region in B where u and v are consecutively used. For our

needs, as depicted in Figure 4.5a, we add two overlapping local variables, δu and δv,

called δ variables. In real codes, every live-range must contain a chad at the beginning

and a chad at the end. For our proof, we need to be able to remove the complete live-

range of a δ variable, which is of course not possible because of the presence of chads

for such variables. To avoid this problem, we will introduce later new “ fi” variables to

increase the register pressure by one everywhere except where δ variables have chads.

But now, for the sake of clarity, we will still consider that δ live-ranges contain no

chads and delay the appropriate corrections to the end of the proof.

Let us choose K = K and R = |V| − K + 1. The cost for spilling a vertex variable

will be α while the cost for spilling a δ variable will be 1. As for α, the trick is

to make sure that an optimal solution of our spilling problem spills exactly K vertex

variables and |E| of the δ variables (i.e., at least one per region, and exactly one is

sufficient), for a cost equal to αK + |E|. This is ensured by setting α = 2|E| + 1.11

Indeed: first, spilling K − 1 vertex variables even with all the δ variables is not enough:

on a chad of any of the spilled variables,12 the register pressure would be lowered to

|V| − (K − 1) + 1 = |V| − K + 2 > R. Second, spilling K vertex variables requires

to spill at least one δ variable per region and spilling all δ variables is enough. Hence,

the minimum cost of a spilling with exactly K vertex variables is between Kα + E and

Kα+ 2E. Finally, spilling K + 1 vertex variables—and no δ variable—has a cost equal

to (K + 1)α = Kα + 2|E| + 1.

Now, it remains to show that the cost of an optimal spilling is Kα + E if and only

if (iff) the spilled variables define an independent set for G. All situations for an edge

(u, v) are depicted in Figure 4.6. If both u and v are spilled—in which case V is not

a stable set—then both δu and δv must be spilled and the cost cannot be Kα + E.

Otherwise, spilling either δu (if u is spilled) or δv (if v is spilled) is enough.

To finish this proof, we need to get back to the problem that, in fact, the δ variables

have two chads: one for their definition at the beginning of their live-range, and one

at the end for their last use. We patch the proof by adding five new variables (fi)1≤i≤5

for every edge (u, v) in G as depicted on Figure 4.5b. In fact, the f5 for an edge can be

the f1 of the next edge in the reduction. The goal is that the union of the live-ranges

of fi variables covers exactly all points of B, except the points that correspond to the

chad of a δ variable. This makes a total of 4|E| + 1 new fi variables. The cost w(fi)

of spilling a variable fi is then chosen large enough so that no fi variable will ever be

spilled in an optimal solution, and one more register is provided for these variables in

the reduction. �

Finally, only one problem remains. What about the spill everywhere problem with

holes when h = 1 in its unweighted version? We did not came up with arguments to-

ward the polynomial or NP-completeness direction, so this is still an open problem.

This problem is nevertheless even farther from architectural realities than previous

problems—one should have an architecture that can read or write only one register

at a time and a mechanism such that no matter how many times you reload a value,

it still costs the same (to get w = 1). We thought that there is already plenty of clues

11α = |E| + 1 would be enough but would complicate the proof.
12We can safely suppose there is no isolated node in G, otherwise, such nodes can always be in a stable

set, hence they can be removed from G and K decreased by their number.

76

4.3. SPILL EVERYWHERE WITH HOLES

#Live

|V | − K

|V | − K + 1

|V | − K

|V | − K + 1

|V | − K

V \ {u, v}

V \ (VS ∪ {v}) VS

u v

v

δu

δv

δ

(a)

#Live

|V | − K

|V | − K + 1

|V | − K

|V | − K + 1

|V | − K

V \ {u, v}

V \ VS VS

u v

δu

δv

δ

(b)

#Live

|V | − K

|V | − K + 1

|V | − K

V \ {u, v}

V \ VS VS

u v

δu

δv

δ

(c)

Figure 4.6: Different configurations for the reduction with h = 1: (a) only u is spilled,

(b) both u and v are spilled, (c) none of them are spilled. Non-spilled variables are in

bold and R = |V| − K + 1 registers.

77

CHAPTER 4. COMPLEXITY OF SPILL EVERYWHERE UNDER SSA

that the spilling problem is a difficult one, even under SSA or for basic blocks, in its

simpliest “spill everywhere” version. So, answering this last problem would probably

not help in the design of spilling heuristics.

4.4 Conclusion

The recent result than, under the SSA form, the interference graph of a program is

chordal opened promising directions for the design of register allocation heuristics, by

having an exact test to decide whenever spilling is necessary, and a polynomial algo-

rithm to assign registers to variables when no spilling is necessary anymore. Studying

the complexity of the spill “everywhere” problem—where variables are spilled on their

entire live-range—was important in this context. Even if it is a restriction of the more

general load-store optimization problem, the “everywhere” simplification is used by

many register allocators (e.g. Iterated Register Coalescing (IRC)), and might either give

clues for the load-store optimization problem, or work as an oracle where the spill

everywhere approximation is sufficient, in JIT compilation for instance.

Our results can provide insights for the design of aggressive register allocators that

trade compile time for provably “optimal” results. But, unfortunately, the main impli-

cation of our work is that SSA does not simplify the spill problem like it does for the

assignment (coloring) problem. Our study considers different singular variants of the

spill everywhere problem:

1. We distinguish the problem without or with holes depending on whether use

operands of instructions can reside in memory slots or not. Live-ranges are then

contiguous or with holes, which leaves chads when spilled.

2. For the variant with chads, we study the influence of the number of simultane-

ous chads—maximum number of use operands of an instruction and maximum

number of definition operands of an instruction.

3. We distinguish the case of a basic block (linear sequence) and of a general SSA

program (tree).

4. Our model uses a cost function for spilling a variable. We distinguish whether

this cost function is uniform (unweighted) or arbitrary (weighted).

5. Finally, in addition to the general case, we consider the singular case of spilling

with few registers and the case of an incremental spilling that would lower the

register pressure one by one.

The classical furthest-first greedy algorithm is optimal only for the unweighted version

without holes on a basic block. The weighted version can be solved in polynomial

time, but unfortunately only for a basic block and not for a general SSA program. The

positive result of our study for architectures with few registers is that the spill every-

where problem with a bounded number of registers is polynomial even with holes. Of

course, the complexity is exponential in the number of registers, but for architectures

like X86, it points that algorithms based on dynamic programming might be considered

in an aggressive compilation context. In particular, it may be a possible alternative to

commercial solvers required by ILP formulations of the same problem, even for mod-

els more general than spill everywhere as the one used by Appel and George [2001].

However, ILP is often faster than dynamic programming.

78

4.4. CONCLUSION

For architectures with a large number of registers, we studied the a priori symmet-

ric problem where one needs to decrease the register pressure by a constant number;

our hope was to design a heuristic that would incrementally lower one by one the reg-

ister pressure to meet the number of registers. Unfortunately, it is NP-complete to

decrement the register pressure even by one.

Our study also shows that the complexity also comes from the presence of chads.

The problem of spill everywhere with chads is NP-complete even on a basic block. On

the other hand, the incremental spilling problem is still polynomial on a basic block

provided that the number of simultaneous chads is bounded. Fortunately, this number

is very low on most architectures.

To conclude, our results for the spill problem do not match our expectations. While

we hoped to find that SSA simplifies the problem, we were in fact confronted mainly

to NP-complete problems. What good might we take out of this theoretical study?

Although we did not dig up any useful or stunning concept, we hope that our proofs

correctly point to where the complexity really is. For instance, we created trees with an

enormous amount of leaves in Theorem 4.6, or used many times the same variables in

instructions in Theorem 4.10. Maybe these clues can be exploited to improve the most

promising spilling heuristics, for instance a Belady-like algorithm as do Hack [2007].

More importantly, the discovery that the interference graph of a program under SSA

form is chordal led to the writing of many articles with sometimes misleading titles.

For instance, Hack and Goos [2006] published “Optimal register allocation for SSA-

form programs in polynomial time,” and Brisk et al. [2005] “Polynomial time graph

coloring register allocation.” Our study does not invalidates these articles. It is true

that SSA simplifies the problem of coloring the interference graph to the point where

an optimal coloring is found in polynomial time. We will also see in Chapter 5 that

some coalescing problems are simpler on chordal graphs. But our study shows that

we must not forget where the complexity of register allocation really comes from: the

spilling problem. In this context, it was mandatory to do a thorough study of the spilling

problem under SSA form to see if that would simplify the problem. Unfortunately, it

does not.

79

Do not mistake coalescing for koalescing (main activity of koalas).

5
On the complexity of register coalescing

The complexity of register allocation for a fixed schedule comes from two main op-

timizations, spilling and coalescing, as we explained in Chapter 3. Spilling decides

which variables should be stored in memory so as to make register assignment possible

while minimizing the cost of stores and loads. Its complexity for programs under Static

Single Assignment (SSA) form was studied in Chapter 4. Register coalescing reduces

register-to-register moves by allocating preferably two variables involved in a move in-

struction to the same register. This chapter and the next one are devoted to the study of

coalescing problems. In this chapter, we study the complexity of coalescing problems,

while, in Chapter 6, we will propose practical coalescing schemes and compare them

to existing strategies.

We presented in Chapter 2, Section 2.2.4, the Iterated Register Coalescing (IRC)

scheme introduced by George and Appel [1996]. This graph-based register alloca-

tion scheme is now very popular due to its clean and reproducible design. But, with

the increasing need for optimizing memory transfers, either for performance or power

consumption, it is important today to find heuristics that spill less, possibly at the price

of additional register-to-register moves. Several variants have been proposed to avoid,

as much as possible, these additional moves. Aggressive coalescing, or “reckless co-

alescing,” was in fact already present in the first algorithm of Chaitin et al. [1981]. It

effectively removed many copies but was abandoned in later improvements because it

produced too many spills. It then reappeared later as the first phase of the optimistic

coalescing of Park and Moon [1998, 2004]. Their idea is to perform first an aggressive

coalescing, optimistically, i.e., hoping not to generate too many nodes hard to color.

Then, during the “select” (coloring) phase, instead of spilling right away nodes that

cannot be colored, they split them back into their initial components, i.e., de-coalesce

them.

New coalescing problems have also appeared due to recent developments on SSA

form. Today, most compilers go through this intermediate code representation that

makes many code optimizations simpler. Under SSA, each variable is defined textu-

ally only once, but the φ-functions used to emulate the transfer of values at join points

of the control-flow graph (CFG) are not machine code. When going back to ordinary

code, an out-of-SSA phase is necessary, which typically introduces many register-to-

register moves. Several techniques are available to go out of SSA [Cytron et al., 1991;

Briggs et al., 1998; Leung and George, 1999a; Sreedhar et al., 1999; Budimlić et al.,

2002; Rastello et al., 2004], some with the objective of reducing the number of moves.

This problem is a form of aggressive coalescing as no register constraint is taken into

account in this phase, which is done before register allocation. With an adequate inter-

CHAPTER 5. COMPLEXITY OF REGISTER COALESCING

pretation of φ-functions, this is an aggressive coalescing problem performed on special

graphs as interference graphs of SSA programs are chordal.

Our experiments with classical out-of-SSA approaches revealed many bad situations

where a too aggressive coalescing can increase the number of spills in the subsequent

register allocation phase. Some splitting is then needed to undo the coalescing, but this

is difficult to control. Also, a standard conservative coalescing approach is sometimes

not enough to coalesce most copies that arise in the out-of-SSA phase, in particular

copies corresponding to permutations. Thus, the interplay between register allocation,

out-of-SSA approaches, and register coalescing needs to be clarified.

Finally, the fact that the interference graph of a program under SSA is chordal, and

therefore easy to color, has also led to the developments of new heuristics for register

allocation, based on two separate phases, one for spilling and one for coalescing, which

is what we advocate in this thesis. The first phase of spilling decides which values are

spilled and where, so as to get a code with Maxlive ≤ R, the number of registers.

The second phase of coloring, the register assignment, maps variables to registers with

no additional spill, although we have seen in Chapter 3 that this is more subtle than

this quick explanation. When possible, it also removes copy instructions—also called

“shuffle code” by Lueh et al. [2000]—thanks to coalescing. Other people advocate this

approach, for instance Appel and George [2001] and, more recently, Brisk et al. [2005]

and Hack et al. [2006]. The coalescing phase of such an approach seems a priori

simpler than for Chaitin-like register allocators because we already know how to color

the initial graph with R colors. One just wants to coalesce as many moves as possible

so that the graph remains R-colorable or, more precisely, easy to color with R colors.

However, the fact that the first phase of spilling can be much more aggressive makes

the coalescing more difficult. After spilling just the necessary variables, the code may

have a very high register pressure, possibly equal to Maxlive at many program points,

and many moves corresponding to permutations of R colors. To coalesce such moves,

standard conservative coalescing approaches are not effective enough. This led Appel

and George [2000] to define a “coalescing challenge.”

We believe that these new developments and variants of the coalescing problem

motivate the need for a better study of its complexity, which has not been addressed

in details so far. Indeed, since the NP-completeness proof of Chaitin et al. [1981], the

impression was that all the register allocation process was NP-complete, hence nobody

was actually interested in studying the NP-completeness of its subproblems. In this

chapter, we distinguish the following different coalescing optimizations:

a) aggressive coalescing removes as many copies as possible, regardless of the col-

orability of the resulting interference graph;

b) conservative coalescing removes as many copies as possible while keeping the col-

orability of the graph;

c) incremental conservative coalescing removes one particular copy while keeping the

colorability of the graph;

d) optimistic coalescing coalesces all copies aggressively, then gives up on as few

copies as possible so that the graph becomes colorable again.

We (almost) completely classify the complexity of these problems, considering

also the structure of the interference graph: arbitrary, chordal, or greedy-k-colorable

(see definitions in Chapter 2, Section 2.2.2). We view this study as a necessary step

82

5.1. DEFINITIONS & PROPERTIES FOR NP-COMPLETENESS

for designing new coalescing strategies, which would better exploit the structure of the

graphs.

5.1 Definitions & properties for NP-completeness

We introduced the notion of coalescing in Chapter 2, Section 2.2.3, as a way to help

the coloring scheme of Chaitin et al. In practice the main advantage of coalescing is to

remove unnecessary copies in the program, by merging the corresponding nodes. This

defines a notion of “preference” between edges, in which two variables are linked by an

affinity if assigning the same color to both of them would save some copy instructions

during the execution of the program (see Definition 2.12). Affinities can be weighted,

in which case the weight represent the gain obtained by coalescing the two variables.

For our purpose, we need to define properly the term “coalescing.”

Definition 5.1. A coalescing of G = (V, E) with affinities A is a function f such that

f (u) , f (v) whenever (u, v) ∈ E; an affinity 〈u, v〉 ∈ A is coalesced if f (u) = f (v).

The function f in this definition looks very much like the col function of Defini-

tion 2.14, i.e., a coloring of the interference graph. Indeed, both share the property that

they must assign a different value to adjacent nodes in the graph. The differences are

that the “goal” of col is to take at most k different values to be a k-coloring, while the

“goal” of f is to give the same value to affinity neighbors as much as possible. In partic-

ular, any k-coloring defines a coalescing—all nodes with the same color are coalesced

together—but the converse is false since a coalescing does not have any constraint on

the number of colors.

Definition 5.2. The coalesced graph G f = (V f , E f) is the graph obtained from G by

merging all vertices with the same image under f . More formally, if f takes n values,

f defines a partition of V into n subsets (S i)1≤i≤n where u and v are in the same subset

if and only if (iff) f (u) = f (v). The vertices in V f are the subsets (S i)1≤i≤n and there is

an edge (S i, S j) ∈ E f iff (u, v) ∈ E for some u ∈ S i and v ∈ S j. Since f is a coloring, it

is guaranteed that G f has no self-edge (S i, S i).

In the next sections, we prove the NP-completeness of different coalescing prob-

lems for particular interference graphs and affinities. To prove that the corresponding

coalescing problems for programs are also NP-complete, we need a way to build, for

each graph and set of affinities we consider, a program with interferences and move in-

structions that is as hard to coalesce. The following property gives such a construction;

this will allow us to forget about programs in the next sections and deal with graphs

and affinities only.

Property 5.3. Let G be a graph and A a set of affinities. There is a program whose

interference graph G′ and set of movesA′ is as hard to coalesce. Furthermore, if G is

chordal, the program can be chosen in SSA form with dominance property.

Proof. We will construct two programs, one whenever G is arbitrary and whenever G is

chordal. For the arbitrary graph G, the construction of Chaitin et al. [1981] can be used

to build a program whose interference graph is as difficult to color as G (see details in

Chapter 3). Then, for each affinity 〈u, v〉 ∈ A, a block B〈u,v〉 is created, with a move

instruction [v← u] and a control-flow edge from a block where u is live to a block that

uses v as shown on Figure 5.1.

83

CHAPTER 5. COMPLEXITY OF REGISTER COALESCING

a

b

d

c

(a)

switch

Broot

return a + x

Ba

return b + x

Bb

return c + x

Bc

return d + x

Bd

a← 0

b← 1

x← a + b

Ba,b

a← 3

c← 4

x← a + c

Ba,c

b← 6

d ← 7

x← b + d

Bb,d

c← 9

d ← 10

x← c + d

Bc,d

c← b

B〈b,c〉

(b)

Figure 5.1: Chaitin-like reduction with affinities: for any graph and set of affinities (a),

there exists a program (b).

84

5.1. DEFINITIONS & PROPERTIES FOR NP-COMPLETENESS

b
d

a

c

e

(a)

b
d

a

c

e
ad,eaa,e

(b)

b

a

c

e

d

(c)

a← . . .

b← . . .

c← . . .

· · · ← a

d ← . . .

· · · ← b

· · · ← d

e← . . .

· · · ← c

· · · ← b

· · · ← e

ad,e ← φ(d, e)

· · · ← ad,e

B〈d,e〉

aa,e ← φ(a, e)

· · · ← aa,e

B〈a,e〉

(d)

Figure 5.2: Chordal reduction with affinities: for any chordal graph and set of affinities

there exists an SSA program.

85

CHAPTER 5. COMPLEXITY OF REGISTER COALESCING

For the case when G = (V, E) is chordal (see Figure 5.2a), there is a set of subtrees

(tv)v∈V of a tree T whose intersection graph is G [Golumbic, 1980, Thm. 4.8]. One can

also assume that only one subtree starts at a time. Define an orientation on T to get

a directed tree and let r be its root (see Figure 5.2c). By a depth-first traversal of T

from r, a strict SSA program is deduced (see Figure 5.2d). T is viewed as the CFG of the

program1 and the start (resp. the end) of a subtree Tv is viewed as a definition (resp. a

use) of a variable v. The live-ranges of the variables are exactly the subtrees and their

intersection graph is G.

It remains to define some move or φ instructions corresponding to the affinities. For

each affinity 〈u, v〉, define a new basic block B〈u,v〉 and two control-flow edges lead-

ing to B〈u,v〉, one from the basic block where u is defined, one from the basic block

where v is defined. Since these new edges should not extend the live-ranges of u and

v inside their definition basic block, it is safer to split the basic blocks just after the

definition of u and v so that the new control-flow edges are not added at the end of

the blocks. Finally, B〈u,v〉 contains the φ-function au,v = φ(u, v) where au,v is a new

variable. Figure 5.2d show an example of such an SSA code. The complexity of coa-

lescing these φ-functions is the same as coalescing the affinities A with the graph G

(see Figure 5.2b). Indeed, for any affinity 〈u, v〉, one can always coalesce one of the two

affinities 〈u, au,v〉 or 〈v, au,v〉 defined by the φ-function. Then, coalescing the remaining

affinities is exactly coalescing the affinitiesA in the graph G. �

In the next sections, we show several NP-completeness results, for a fixed k, which

is stronger than assuming that k is an input of the problem. However, one could wonder

if the problem remains NP-complete for another fixed k′ ≥ k. The following property

(with p = k′ − k) will extend our NP-completeness results from k to k′.

Property 5.4. Let G be a graph. Define G′ by adding to G a clique of p new vertices

and edges between each vertex of the clique and each vertex of G. Then G is k-colorable

iff G′ is (k + p)-colorable, G is chordal iff G′ is chordal, and G is greedy-k-colorable

iff G′ is greedy-(k + p)-colorable.

Proof. The first property is obvious: by construction, the additional clique must use p

other colors. For the second property, if G′ is chordal, G is also chordal as a subgraph

of G′. Conversely, if G is chordal, consider a cycle of G′ of length at least 4. If it is

a cycle of G, it has a chord. Otherwise, it has a vertex v in the clique and two edges

(v, u) and (u,w) with w , v. Since v is connected to any other vertex in G′, (v,w) is

a chord. For the third property, suppose that G is greedy-k-colorable, i.e., vertices can

be removed in some order, with degree < k in the remaining graph. In G′, one can

first remove the vertices of G in the same order, as their degree is at most (k − 1 + p).

Then one can remove the vertices of the clique, whose degree is < p, and thus G′ is

greedy-(p + k)-colorable. Finally, if G is not greedy-k-colorable, it has a subgraph H

such that all vertices have degree (in H) at least k. Adding the clique C of size p to H

shows that G′ is not greedy-(p + k)-colorable, because, in H, all vertices have degree

≥ k + p and in C, they have degree ≥ p − 1 + |H| ≥ p − 1 + k + 1. �

1In our construction, the dominance tree follow the CFG but this is not the case for an arbitrary SSA

program.

86

5.2. COMPLEXITY OF AGGRESSIVE COALESCING

s1

s2

s3

u
w

v

edge removed

H = (V, E)

instance of Multiway Cut

s1

s2

s3

u
w

v

affinity not

coalesced

G = (V, S × S) and A = E

instance of aggressive coalescing

Figure 5.3: Aggressive coalescing: reduction from Multiway Cut.

5.2 Complexity of aggressive coalescing

The goal of the aggressive coalescing is to remove as many move instructions as pos-

sible, with no constraint on the number of registers. Only interferences can prevent

coalescing. In Chaitin et al.’s original algorithm, coalescing was done aggressively be-

fore coloring. Also, the first phase of “optimistic” algorithms, like the one of Park and

Moon [2004], is an aggressive phase. The problem can be formulated as follows:

Problem: A 

Instance. Graph G = (V, E), affinitiesA ⊆ V2, integer K.

Question. Is there a coalescing of G, i.e., a function f with f (u) , f (v) whenever

(u, v) ∈ E, such that at most K affinities 〈u, v〉 ∈ A are not coalesced, i.e., satisfy

f (u) , f (v)?

Our reduction is from Multiway Cut [Dahlhaus et al., 1992]: given a graph G =

(V, E), a subset S = {s1, . . . , sk} of V with k specified vertices or terminals, an integer

K, the problem is to decide if one can remove at most K edges from E so that each

terminal is in a different connected component. In the general Multiway Cut problem,

edges are weighted but it is NP-complete even for the previous version where all edges

have equal weight, and even with only three terminals (k = 3).2

Theorem 5.5. The aggressive coalescing problem is NP-complete even if there are

only 3 interferences.

Proof. Our reduction is as follows. Let H = (V, E), S , K, be an instance of Multiway

Cut. Let us construct the interference graph G = (V, S × S), i.e., the k terminals

(nodes in S) form a clique, and all other nodes have degree zero, i.e., all v ∈ V \ S are

isolated vertices. For each original edge (u, v) ∈ E, let us create an affinity 〈u, v〉 in our

interference graph, i.e., A = E. Then, any maximal coalescing defines an k-partition

of the nodes. Indeed, any node not in S can be coalesced with one of the terminals,

but no two terminals can be coalesced since they are neighbors. Moreover, for each

affinity 〈u, v〉, if u and v are coalesced to different terminals, the affinity is constrained

and cannot be coalesced. So the set of affinities not coalesced defines a k-partition of G,

and the corresponding set of edges in E defines a k-cut of H. The converse is also true.

Figure 5.3 gives an example of this reduction. To conclude, there is a coalescing of G

in which at most K affinities are not coalesced iff at most K edges must be removed

from E to disconnect the terminals in H. �

2Unless G is planar, but this is not of our concern here.

87

CHAPTER 5. COMPLEXITY OF REGISTER COALESCING

Going out of SSA while minimizing the number of moves is a form of aggressive

coalescing. Other proofs related to aggressive coalescing and out-of-SSA translation are

available in Rastello et al. [2005]; Hack et al. [2005]. From a complexity point of view,

Theorem 5.5 shows that aggressive coalescing is difficult even if the interference graph

is very simple, in particular even if it is chordal or greedy-k-colorable. These properties

do not make the problem simpler, as, as shown by our reduction, the complexity comes

from the structure of the affinities and not the one of the interferences. From a practical

point of view, aggressive coalescing can degrade register allocation. Indeed, coalescing

means fusing live-ranges and merging, in the interference graph G, the corresponding

vertices. After these merges, the coalesced graph G f may not be k-colorable. In this

case, three alternatives are available:

• One can remove some vertices from the graph and spill the corresponding vari-

ables; this is the strategy proposed by Chaitin [1982] in its register allocator;

• One can give up on some coalesced moves and de-coalesce them so that the

graph gets greedy-k-colorable again; this is the strategy of optimistic coalescing

[Park and Moon, 1998, 2004] that we analyze in Section 5.4;

• One can prefer to not use aggressive coalescing but to coalesce moves only if the

graph is proved to remain greedy-k-colorable; this is conservative coalescing,

introduced by Briggs [1992], a technique we analyze in Section 5.3.

5.3 Complexity of conservative coalescing

The conservative coalescing problem, for a k-colorable graph, is to coalesce as many

moves as possible so that the interference graph remains k-colorable after the coalesc-

ing. Another possible formulation by Appel and George [2001] is to ask directly for

a coalescing f that is a k-coloring of G. We prefer the first formulation: it is closer in

spirit to what heuristics do and it allows us to discuss more precisely the complexity of

the problem in terms of the structure of G and G f . Indeed, with no constraints on G and

G f , the problem is obviously NP-complete: for A = ∅ and K = 0, this is nothing but

Graph k-Colorability [Garey and Johnson, 1979, Problem GT4]. However, the prob-

lem may seem simpler in practice, when working on some graph G with a particular

structure or colorability, or if one is allowed to merge only vertices connected by an

affinity, or if one requires the graph G f to be not only k-colorable, but also greedy-k-

colorable. We will study in details these different cases, as they might give some leads

to polynomial algorithms or heuristics likely to work.

Problem: C 

Instance. Graph G = (V, E), affinitiesA, integers K and k.

Question. Is there a coalescing f of G such that the coalesced graph G f is k-

colorable and at most K affinities are not coalesced?

The next theorem addresses the complexity of conservative coalescing. Appel and

George [2001] already proposed a reduction from Graph k-Colorability, although they

did not give the proof of their reduction. Here, we will give this reduction to show

how to extend their remark. As such, the proof is long just because we wanted a better

result in terms of G and G f . A quicker way to show Theorem 5.6 is to use the proof of

Theorem 5.5, since the graph used in this proof is a triangle plus some isolated vertices.

It keeps such a structure after any coalescing, thus it is chordal and greedy-3-colorable.

88

5.3. COMPLEXITY OF CONSERVATIVE COALESCING

a

b

d

c

e

(a)

a

b

d

c

e

x〈a,c〉

y〈a,c〉x〈b,a〉

y〈b,a〉

x〈d,b〉

y〈d,b〉 x〈c,d〉

y〈c,d〉

x〈c,e〉

y〈c,e〉

(b)

Figure 5.4: Reduction for Thm. 5.6 (first part).

Theorem 5.6. Conservative coalescing is NP-complete, even for k = 3, even if G f is

required to be also chordal or greedy-3-colorable, even if G f needs to be obtained by

merging only vertices connected by affinities, and even if G is greedy-2-colorable.

Proof. As noticed by Appel and George [2001], a reduction from Graph k-Colorability

[Garey and Johnson, 1979, Problem GT4] shows that, even for K = 0, the conservative

coalescing problem is NP-complete. Indeed, let H = (V, E) be an instance of Graph

k-Colorability. Define an instance (G, A,K) of conservative coalescing as follows. The

vertices of the interference graph G are the vertices of H plus some new vertices, two

vertices xe and ye for each edge (u, v) ∈ E. The interferences in G are the pairs (xe, ye)

and the affinities in A the pairs 〈u, xe〉 and 〈v, ye〉 (see Figure 5.4). All moves can be

aggressively coalesced and the coalesced graph G f is thus H. In other words, we just

defined a positive instance of conservative coalescing for K = 0 iff H is k-colorable.

Furthermore, the initial graph G is greedy-2-colorable.

Notice that, if there is a coalescing f with at most K affinities not coalesced and

such that G f is k-colorable, there exists also a coalescing f ′ for which G f ′ is a k′-

clique, with k′ ≤ k, thus a graph chordal and greedy-k-colorable. Indeed, to get f ′

from f , merge the vertices of G f with the same color to get k vertices, then keep

merging vertices not connected by an edge to get a k′-clique with k′ ≤ k. This proves

that the problem is still NP-complete if we ask G f to be not just k-colorable, but also

greedy-k-colorable or k-chordal, two properties that a k-clique has. However, it is not

NP-complete for a fixed K (number of non coalesced affinities) because, then, there is

a polynomial number of solutions and the problem consist in repeatedly checking if the

graph of a solution k-chordal or greedy-k-colorable, which is polynomial.

Previously, to obtain the k′-clique, we may have merged vertices not connected by

affinities. To ensure that G f can be obtained by merging only vertices connected by

affinities, the proof must be modified as follows. A k-clique is added to G along with

many affinities: one between each vertex of the clique and each vertex in V (but not with

the xe and ye nodes). The instance of conservative coalescing built from H = (V, E)

is now an interference graph with |V | + 2|E| + k vertices, |E| + k(k − 1)/2 edges, and

2|E|+k|V | affinities. k ≤ |V |—otherwise H would always be trivially k-colorable—thus

the reduction is polynomial. For each of the vertices in V , at most one affinity among

the k towards the clique can be merged. So, H is k-colorable iff there is a coalescing f

89

CHAPTER 5. COMPLEXITY OF REGISTER COALESCING

with at most (actually, exactly) (k − 1)|V | affinities not coalesced. Furthermore, in

this case, G f is a k-clique and can be obtained by merging only vertices connected

by affinities. Therefore, the problem remains NP-complete even if one asks G f to be

greedy-k-colorable or chordal and one asks G f to be obtained by merging only vertices

connected by affinities.

The only remaining detail is that the interference graph G we used in the last re-

duction is not greedy-2-colorable anymore because it contains a k-clique. To complete

the proof with all restrictions, each edge (u, v) of the clique is replaced by p edges

(ui, v) and p affinities 〈ui, u〉, where (ui)1≤i≤p are new vertices and p > |V |. As before,

if H is k-colorable, there is a coalescing with at most (k − 1)|V | affinities not coalesced.

Conversely, consider such a coalescing f . Suppose that two vertices u and v from the

previous clique are merged by f , i.e., have the same color, then none of the correspond-

ing 〈ui, u〉 can be coalesced by f . Now, de-coalesce u from v, coalesce all p affinities

〈ui, u〉, and give up coalescing the other affinities associated with u: these are the ones

with nodes of V , thus at most |V | < p. By doing this for all pairs (u, v) that are merged

in f , one gets a strictly better coalescing for which all vertices of the previous clique

have a different color. Thus it has a cost greater or equal to (k − 1)|V |, which is not

possible because this the cost of f . Thus, in f , all affinities 〈ui, u〉 are merged as well

as all affinities 〈xe, ye〉 and H is k-colorable. �

In practice, conservative coalescing heuristics do not consider all affinities at the

same time, instead, they consider them one by one, according to some priority—for

instance, a higher priority is given to affinities corresponding to copies in nested loops.

We call this strategy incremental conservative coalescing. Two incremental conserva-

tive tests exist, by Briggs et al. [1994] and George and Appel [1996], called respectively

Briggs’s and George’s rules by Appel [1998].

Briggs Merging u and v is conservative if the resulting vertex has at most (k − 1)

neighbors of degree at least k.

George Merging u and v is conservative if all neighbors of u with degree at least k are

also neighbors of v.

These tests guarantee that the greedy-k-colorability of the graph does not change.

Indeed, consider the elimination process that defines the greedy-k-colorability, i.e.,

the simplification scheme of Chaitin et al. [1981], described in Chapter 2 by Func-

tion Is kGreedy, page 20. We recall that the principle is to remove nodes with < k

neighbors from the graph.

A vertex merged by Briggs’s test can always be removed from the graph once its

neighbors of degree < k are removed, thus such a coalescing is always safe. The

situation is slightly different for George’s test: once the neighbors of degree < k are

removed, one ends up with a subgraph of the original graph, thus not harder to color.

But if v cannot be removed from the original graph, the same is true for the merged

vertex and the cost of spilling the two merged live-ranges is possibly larger. Thus, if

George’s test is used in a Chaitin-like allocator where spilling and coalescing are done

in the same framework, the interaction with spilling is unclear. This is the reason why

George’s rule is used by George and Appel [1996] to merge a vertex u with v only if v

is a precolored vertex (machine register), since these are never spilled.3

3To ensure this, in the original simplification scheme, they are not allowed to be simplified from the

graph, and the algorithm stop whenever there remains only this k-clique.

90

5.3. COMPLEXITY OF CONSERVATIVE COALESCING

u1 u2 u3 u4

v1 v2 v3 v4

(a)

u2 u3 u4

v2 v3 v4

u1v1

(b)

Figure 5.5: Local tests are not enough for coalescing: (a) permutation of size 4; (b)

coalescing 〈u1, v1〉 increases the degree to 6.

they form a k-clique, hence We point out however that, if spilling is done first, as

done by Appel and George [2001] or Hack et al. [2006] for instance, to get a greedy-

k-colorable interference graph, no spill will be done, hence George’s rule can be used

for any two vertices, resulting in more coalesced moves. The same applies for the last

phase of Chaitin-like approaches, i.e., when no spill is introduced anymore.4 We will

see in Chapter 6 experiments that show this is indeed useful in practice.

When the register pressure is high, such local tests are not powerful enough, in

particular if trying to coalesce parallel copies when Maxlive is close to the number of

registers, as the experiments by Appel and George [2001] show. The problem is that the

test is local and, even worse, it is done before the removal of “move-related” vertices

of small degree from the graph. Figure 5.5a shows a permutation of 4 values. Assume

k = 6. If affinities are coalesced one at a time and a local rule is used, the first merged

vertex would become of degree 6 (Figure 5.5b); if its neighbors also have degree 6—

due to other vertices not shown and not removed yet—a local rule will decide to not

coalesce it.

Another deeper reason is due to the incremental nature of this form of coalescing.

If G is a greedy-k-colorable graph and if S is a set of affinities that can be coalesced

simultaneously to get a greedy-k-colorable graph, it may happen that coalescing any

affinity in S leads to a graph that is not greedy-k-colorable. This is illustrated in Fig-

ure 5.6. The graph remains greedy-k-colorable if the two affinities 〈a, b〉 and 〈a, c〉 are

coalesced, but not if only one is coalesced. To get a sequence of coalescing that is con-

servative at each step, one would need to consider affinities “obtained by transitivity”

such as the pair 〈b, c〉 in Figure 5.6. This example shows that, by essence, a coalescing

strategy that coalesces only one affinity at a time, conservatively, cannot always reach

the optimal conservative coalescing.

One can try to improve these local conservative tests. As mentioned by George and

Appel [1996], George’s rule can be extended by considering that only the neighbors

of u with at most (k − 1) neighbors of degree ≥ k need to be neighbors of v, but they

state that “it would be more expensive to implement” hence did not use it. More gen-

erally, one can simply coalesce the move aggressively—i.e., merge the corresponding

vertices if interferences allow it—and check, in linear time, whether the resulting graph

is greedy-k-colorable or not. This is useful to get a much more efficient coalescing, as

shown in Chapter 6. The same is true for a given set of moves. One can try to merge

4Although one does not know it is the last phase until the end of the phase. To exploit this, the last phase

could be done twice.

91

CHAPTER 5. COMPLEXITY OF REGISTER COALESCING

ab c

(a)

abc

(b)

ab c

(c)

Figure 5.6: “Diamond” counter example for incremental coalescing: (a) remains

greedy-3-colorable if both 〈a, b〉 and 〈a, c〉 are coalesced (b), but not just one (c).

all corresponding vertices and check if the graph is greedy-k-colorable. This lead to

the idea of “incremental” coalescing, where one would like to know, for a given subset

of affinities (possibly only one), if it is possible to coalesce all of them while staying

k-colorable.

For instance, if G is k-colorable with a k-coloring f such that f (x) = f (y), then there

is of course a set of pairs of vertices, including the pair (x, y), that, once merged, lead

to a greedy-k-colorable coalesced graph: simply merge all vertices with same color to

get a k-clique. But, in general, one does not want to merge any two vertices, but to

give more priority to vertices linked by affinities. In that case, which vertices should

be merged? The dumb heuristic that coalesces all nodes colored equally does not an-

swer this problem, neither do Briggs’s and George’s rules. This raises the question

of the complexity of incremental conservative coalescing, which is the conservative

coalescing problem for a single affinity.

Problem: I  

Instance. Graph G = (V, E), one given affinity a = 〈x, y〉, an integer k.

Question. Can a be coalesced to get a k-colorable graph, i.e., is there a k-coloring

f of G such that f (x) = f (y)?

Theorem 5.7 shows that this problem is NP-complete if G can be any k-colorable

graph, i.e., knowing that G is k-colorable does not help to decide if it remains k-

colorable after a single coalescing! However, as Theorem 5.8 states, the problem

is polynomial if G is k-chordal. The complexity of the practical intermediate case,

when G is greedy-k-colorable, would be of most interest, but is however still open.

Theorem 5.7. Incremental conservative coalescing is NP-complete if G is an arbitrary

k-colorable graph, even for k = 3.

Proof. We use a reduction similar to the proof of Graph 3-colorability, i.e., with a

reduction from 3SAT [Garey and Johnson, 1979, Problem LO1]. However, here, we

will make a small detour through 4SAT. First, we show how to build, from an instance

of 4SAT, a graph G that is 3-colorable iff there is an truth assignment for the 4SAT

formula. Consider an instance of 4SAT, i.e., a set U of n variables x1, . . . , xn, and a

set C of m clauses c1, . . . , cm, each with 4 literals yi,1, . . . , yi,4. Each yi, j is a xk or

its negation. A graph G = (V, E) is built as follows. It has three vertices T for true,

F for false, and a third one, R, to form a triangle. For each variable xi ∈ U, there

are two vertices, denoted xi and xi, which form a triangle with R. With 3 colors, this

will force xi and xi to have the colors of T and F, or the converse. For each clause

92

5.3. COMPLEXITY OF CONSERVATIVE COALESCING

T

F

R

ci,1
bi,1

ai,1yi,1

ai,2yi,2

ci,2bi,2

ai,3yi,3

ai,4yi,4

Figure 5.7: Reduction of incremental coalescing to 4-SAT.

ci ∈ C, there are four vertices ai, j, two vertices bi, j, and two vertices ci, j, connected as

depicted in Figure 5.7. As for the original proof of graph k-coloring [Cormen et al.,

1989, Page 962], it is easy to see that G is 3-colorable iff there is a truth assignment for

the clauses. Indeed, if G is 3-colorable, then the four literals yi, j cannot be all colored

as F, otherwise the two bi, j must be colored as F, and one of the two ci, j cannot be

colored. Thus interpreting the colors of each xi gives a truth assignment. Conversely,

if there is a truth assignment, color each xi as T iff it is true in the 4SAT formula. Then,

color bi,1 as T (resp. F) if yi,1 or yi,2 is true (resp. both are false), the same for bi,2. The

rest of the 3-coloring follows.

Now consider an instance (U,C) of 3SAT. Add a new variable x0 and define an

instance (U′,C′) of 4SAT, where U′ = U∪{x0} and each clause c′
i
∈ C′ is defined from

ci ∈ C, by c′
i
= yi,1 ∨ yi,2 ∨ yi,3 ∨ x0 if ci = yi,1 ∨ yi,2 ∨ yi,3. Notice that there is a truth

assignment for C′ by simply setting x0 to true. Moreover, there is a truth assignment

for C iff there is one for C′ for which x0 is false. Finally, define a graph G from C′

as before and consider the affinity 〈x0, F〉. From the previous study, G is 3-colorable,

by coloring x0 as T . Furthermore, there is a 3-coloring of G such that the vertices x0

and F have the same color—i.e., are coalesced—iff there is truth assignment for C′ for

which x0 is false. �

This theorem is not encouraging, as it proves we cannot guarantee the optimality of

a single step of an incremental heuristic which coalesces affinities one by one. Hope-

fully, there follows a less depressing result whenever the initial graph G is chordal.

Theorem 5.8. Incremental conservative coalescing can be solved in polynomial time

if G is chordal.

Proof. Let G = (V, E) be a chordal graph and 〈x, y〉 be the affinity to coalesce. A

fundamental property [Golumbic, 1980, Thm. 4.8] is that G can be represented as the

intersection graph of a family of subtrees (Tv)v∈V of a tree T . We use the word nodes

for the vertices of T to distinguish them from the vertices of G. The nodes of T are the

maximal cliques of G (for inclusion), each vertex v ∈ V corresponds to a subtree Tv,

and (u, v) ∈ E iff Tu and Tv intersect. A chordal graph with the tree representation can

be easily colored with any k ≥ ω(G) colors, starting from any node n of T . Orient the

tree T to get a directed tree with root n and color the subtrees that contain n. Then, go

93

CHAPTER 5. COMPLEXITY OF REGISTER COALESCING

Iy

Ix

(a)

Iy

Ix

(b)

Figure 5.8: Incremental coalescing for chordal graphs, using covering by intervals: (a)

Ix and Iy cannot have the same color; (b) they can.

down the branches of the tree and, at each new node, color the subtrees that start at this

node with the available colors. This coloring is always possible because, at each node,

at most ω(G) subtrees intersect. Furthermore, there is no cycle in T so no coloring

decision can lead to a conflict.

Now the question is: Is it possible to color G with k colors so that x and y have

the same color? This question can be answered in polynomial time as follows. We

assume that Tx and Ty do not intersect and k ≥ ω(G), otherwise the answer is trivially

“no.” Let P be the shortest path on T between Tx and Ty. It starts at a node nx of Tx,

and ends at a node ny of Ty, and none of the intermediate nodes of P are in Tx or Ty.

The intersection of the subtrees (Tv)v∈V with P are intervals (Iv)v∈V . We add new short

“dummy” intervals, containing a single node, so that all nodes of P are contained in

exactly ω(G) intervals. We claim that Tx and Ty can have the same color iff there is

a set of disjoint intervals, including Ix and Iy, that covers all nodes in P. Indeed, if

G has a k-coloring such that x and y have the same color, then the intervals with the

same color than x and y, in addition to some dummy intervals, provide such a covering.

Conversely, if such intervals exist, one can merge all the subtrees with the same color

as x and y, including the dummy intervals, to get the representation of a new chordal

graph G′ with ω(G′) = ω(G) ≤ k; it can thus be colored with k colors and this coloring

corresponds in G to a k-coloring where x and y have the same color.

It remains to show how to find such a set of intervals in polynomial time. This can

be done as follows: represent the intervals horizontally on ω(G) lines, all full because

of the dummy intervals added. There is a cover of P with disjoint intervals, including

Ix and Iy, iff there is a path from the line of Ix to the line of Iy, following intervals and

possibly changing line only from the end of an interval to the beginning of another (i.e.,

contiguous intervals). This can be checked in O(Vω(G)) = O(V2) by a simple marking

process from left to right. See Figure 5.8 for an illustration where dotted lines represent

the possible changes of line. �

Theorem 5.8 shows that one could design an incremental conservative coalescing

strategy for chordal graphs. If G is chordal and 〈x, y〉 is an affinity that one absolutely

wants to coalesce because the corresponding move is expensive, it can be decided if this

is possible. But then, if the affinity is coalesced, the graph may not be chordal anymore.

However, it is still possible to make it chordal by an appropriate merge of vertices as

done in the proof of the theorem. But, these merges will artificially create long live-

ranges (subtrees) and increase locally the register pressure if merging with dummy

intervals. This may forbid the coalescing of more important affinities afterwards. A

94

5.4. COMPLEXITY OF OPTIMISTIC COALESCING

better strategy would be to stay in the class of greedy-k-colorable graphs that is larger

than the class of chordal graphs. Unfortunately, we do not know the complexity of this

problem yet. However we will see in Chapter 6 a heuristic for this problem that uses

the algorithm we just described.

5.4 Complexity of optimistic coalescing

If G is greedy-k-colorable, coalescing as many moves as possible so that the coalesced

graph is k-colorable, or even greedy-k-colorable, is NP-complete as stated by Theo-

rem 5.6. To approximate this problem, incremental conservative coalescing coalesces

moves one by one, so that the graph remains greedy-k-colorable but, of course, with

no guarantee that the chosen moves are the right ones. Even worse, as shown in Sec-

tion 5.3, it may happen that no such conservative sequence exists. Park and Moon

[1998, 2004] proposed a “dual” approach, optimistic coalescing. A first phase of ag-

gressive coalescing coalesces moves regardless of the k-colorability of the graph. Then,

a second phase gives up on some moves, i.e., “de-coalesces” them so that the graph be-

comes greedy-k-colorable again.

If most moves can be coalesced, this approach can be more efficient than using a

too-conservative local test such as the tests of Briggs or George. However, in practice, it

is not clear which moves should be coalesced aggressively in the first phase: remember

that, by Theorem 5.5, aggressive coalescing is NP-complete too. Moreover, even if

all moves can be aggressively coalesced, it is not clear which moves should be de-

coalesced in the second phase. The goal of this section is to address the complexity of

this second problem. If one requires the de-coalesced graph to be just k-colorable, it

is of course NP-complete as the first part of the proof of Theorem 5.6 shows: after all

affinities are coalesced, it is hard to decide if the resulting graph is k-colorable or not,

i.e., if some de-coalescing needs to be done. In practice however, the graph should be

more than just k-colorable, it should be easy to color, for example greedy-k-colorable.

So, the interesting instance of optimistic coalescing can be formulated as follows.

Problem: O 

Instance. Graph G = (V, E) greedy-k-colorable, affinities A that can all be co-

alesced aggressively (i.e., there is a coalescing f of G such that ∀〈u, v〉 ∈ A,

f (u) = f (v)), integers k and K.

Question. Is there a de-coalescing of G f (i.e., a coalescing g of G such that

g(u) = g(v) implies f (u) = f (v)), such that at most K affinities 〈u, v〉 are not co-

alesced (i.e., satisfy g(u) , g(v)) and such that Gg is greedy-k-colorable?

Theorem 5.9. The optimistic coalescing problem is NP-complete, even for k = 4, and

even if G is chordal.

Proof. The proof is by reduction from Vertex Cover [Garey and Johnson, 1979, Prob-

lem GT1], which is NP-complete even if all vertices have degree at most three [Garey

et al., 1976]. Let H = (V, E) be a graph such that all vertices have degree at most 3.

The instance of optimistic coalescing is built as follows. For each node v ∈ V , there

is a structure as shown on Figure 5.9. Each of the three “hexagons” in this structure is

a widget as shown on the right part of the figure. The central vertex cv is in fact two

vertices cv and c′v linked by an affinity. cv belongs to the inner 4-clique, while c′v has

neighbours v1, v2 and v3, hence they are both of degree 3. On this structure, each of the

95

CHAPTER 5. COMPLEXITY OF REGISTER COALESCING

cv

v1

v2

v3cv

c′v

Figure 5.9: Reduction for optimistic coalescing: vertex structure and ad-hoc widget. c′v
is connected to v1, v2 and v3 but cv is not.

three vertices (vi)1≤i≤3, can be used to connect v to one of its neighbors. Since v has at

most three neighbors, the whole graph H can be transformed into this format, creating

a new graph G. G is not chordal, but we will show later how to make it chordal. It can

be completely coalesced, forming G f . Our first goal is to de-coalesce some of the pairs

〈cv, c
′
v〉 so as to get a graph Gg that is greedy-4-colorable.

The important point is to understand how the greedy-4-coloring algorithm can “eat”

a structure. It can only works if there is at least one node of degree < 4. All the vertices

of the hexagonal widgets have degree ≥ 4 so the structure cannot be eaten from these.

If the structure for v ∈ V has no neighbor, either because v has no neighbor in H or

because the neighbor structures have already been eaten, then each vi has degree 3:

they can be eaten, then the hexagonal widgets and the inner structure can be eliminated

too. Finally, notice that the structure cannot be completely eaten from just two of its

branches: even if only one of the vi remains, the inner 4-clique—represented in bold—

cannot be removed. Hence the only remaining possibility is to attack the structure from

cv and c′v, which is possible only if they are not coalesced. This shows that there are

only two ways for the greedy algorithm to eat the structure corresponding to a vertex v

of H: either after having eaten all the structures corresponding to the neighbors of v, or

by de-coalescing cv and c′v and attacking the structure from the heart.

The previous study shows that G f after de-coalescing is greedy-4-colorable iff, for

each (u, v) ∈ E, a de-coalescing occurred in at least one of the structures correspond-

ing to u and v, i.e., iff the set of vertices u such that a de-coalescing occurred in the

corresponding structure in G is a vertex cover for H. Hence, we have proved that

de-coalescing to obtain a greedy-k-colorable graph is NP-complete.

Finally, for what we want to prove, G is not enough. We need to build a greedy-4-

colorable graph G′ (even chordal if possible) and affinities such that all affinities can be

aggressively coalesced into G f and such that these new affinities will not be chosen to

de-coalesce optimally G f into a greedy-4-colorable graph. In G, there are three kinds

of chordless cycles: in the hexagonal widgets, inside each structure because there is a

chordless cycle including (c′v, vi, v j), and between structures if H itself is not chordal.

96

5.5. SUMMARY AND CONCLUSION

Figure 5.10: Optimistic reduction: adding affinities to obtain a chordal graph.

These cycles are broken by introducing some affinities as shown on Figure 5.10. The

reduction is still correct because it is always better to choose to de-coalesce an affin-

ity 〈cv, c
′
v〉 instead of any other affinity in the structure: this allows to eat the whole

structure with a single de-coalescing.

To conclude, G′ is chordal, greedy-4-colorable, and all affinities can be aggressively

coalesced. Furthermore, one can de-coalesce at most K affinities to get a greedy-4-

colorable graph iff H has a vertex cover of size at most K. Using Property 5.4, this

proves that optimistic coalescing is NP-complete for any fixed k ≥ 4.

�

5.5 Summary and conclusion

Our complexity study addresses all variants of register coalescing introduced in the lit-

erature: aggressive coalescing, conservative coalescing, incremental conservative co-

alescing, and de-coalescing. Due to the spilling phase and coloring mechanism, the

coalescing phase may have to deal with particular graphs only, for example k-colorable

after enough spill, greedy-k-colorable for Chaitin-like coloring, or k-chordal for SSA-

like splitting. The goal was to check whether, when restricted to such graphs, coalesc-

ing remains hard or if some polynomial instances exist. Such a complexity study has

never been done before. We now summarize our results, discussing the link between

the different coalescing variants.

The aggressive coalescing problem is to remove as many moves as possible re-

gardless of the colorability of the resulting graph. This optimization, used by Sreedhar

et al. [1999]; Budimlić et al. [2002], and Rastello et al. [2004], arises for instance when

translating out of SSA, independently of register allocation, in an earlier phase. It is

also the first phase of optimistic coalescing, which first coalesces in a non-conservative

way. Rastello et al. [2005] proved that, in the context of SSA, this problem is NP-

complete when the size of the largest φ-function is unbounded. For completeness, we

97

CHAPTER 5. COMPLEXITY OF REGISTER COALESCING

refined this result: Theorem 5.5 shows that it is NP-complete even if φ-functions have a

fixed size—at least two arguments—and the program contains only three interferences.

It thus shows that coalescing is hard, even without any constraints on the number of

registers.

The conservative coalescing problem is to remove as many moves as possible while

keeping the graph k-colorable. While the motivation of aggressive coalescing is to let

the register allocator find adequate split points later, by some de-coalescing, the idea

of conservative coalescing is to consider initial split points as good points for coloring.

To prove the NP-completeness of conservative coalescing, we could have used our

reduction for aggressive coalescing (Theorem 5.5): in this particular case, requiring

that the coalesced graph is k-colorable is actually not a constraint since it is a 3-clique.

Another reduction is given by Hack et al. [2005]. We preferred to refine the reduction

mentioned by Appel and George [2001], maybe more natural because directly related

to graph coloring. We showed it is NP-complete even if the initial graph is greedy-2-

colorable and one requires the coalesced graph to be chordal or greedy-3-colorable.

The incremental conservative coalescing problem corresponds to a pragmatic ap-

proach to address the conservative coalescing problem. The idea is to incrementally

coalesce variables, one by one, for example choosing the more expensive first, while

keeping the graph k-colorable. This approach corresponds to Chaitin-like register al-

location heuristics for which the conservative tests used by Briggs [1992] and George

and Appel [1996] are not exact. Testing if a given coalescing maintains the greedy-k-

colorable (resp. k-chordal) property of the resulting graph is of course polynomial. If

the answer is in the affirmative, then the process can continue; if not, the natural ques-

tions behind this study are: “is the resulting graph still k-colorable?” and “would more

coalescing make it greedy-k-colorable (resp. k-chordal) again?” The pessimistic result

given by Theorem 5.7 is that this problem is still NP-complete if the initial graph is

k-colorable. Even coalescing a single move is hard for an arbitrary graph. On the con-

trary, Theorem 5.8 provides a polynomial solution if the initial graph is chordal. The

similar problem for a greedy-k-colorable graph is still open. But the result on chordal

graphs provides openings to the design of new heuristic solutions: from a k-colorable

graph obtained after a single coalescing, we are able to slightly modify the program to

obtain a k-chordal graph again, or a greedy-k-colorable graph. We did derive a heuristic

from this result which we will explain in Chapter 6.

The last problem addressed in this paper, the optimistic coalescing problem, is

about coalescing aggressively, then giving up as few moves as possible so that the re-

sulting graph becomes k-colorable again. This dual approach proposed by Park and

Moon [2004] provides a more efficient heuristic in practice than the classical conserva-

tive approach, as shown by Appel and George [2001]. However we will see in Chap-

ter 6 that the effectiveness of optimistic coalescing over conservative coalescing is not

to be taken for sure, and that more involved conservative strategies can outperform op-

timistic ones. The conservative approach coalesces from a non-coalesced graph as long

as the colorability test is satisfied whereas the optimistic approach de-coalesces from an

aggressively coalesced graph as long as the colorability test is unsatisfied. Our initial

intuition was that, if for a given graph, greedy-k-colorable or k-chordal, there exists a

set of coalescings such that the resulting graph has the same property, then there exists

a sequence of single coalescings such that each intermediate graph has the same prop-

erty. Unfortunately, this intuition is false as illustrated by Figure 5.6 and this could give

good reasons to think that, in practice, an optimistic approach will behave better than a

conservative approach. But our experiments in Chapter 6 show that a good conservative

coalescing provides better results, apparently because the aggressive part of optimistic

98

5.5. SUMMARY AND CONCLUSION

coalescing can make some “bad choices”—good for the aggressive, but bad for the

conservative because hard to undo. Since aggressive coalescing is NP-complete, the

interesting statement for the optimistic coalescing problem is then: given an aggres-

sively coalesced graph, how to de-coalesce a minimum number of moves such that

the resulting graph becomes greedy-k-colorable (resp. k-chordal) again? Theorem 5.9

shows that this problem is NP-complete even for k = 4.

To conclude, our study shows that most variants of the coalescing problem are

NP-complete—which is certainly not a surprise but was never really proven before

formally and in such details—and confirms the practical importance of chordal and

greedy-colorable graphs. We believe that their properties were maybe not yet com-

pletely exploited for the design of good conservative coalescing heuristics and good

de-coalescing heuristics, so we developed new heuristics based on these properties.

There was indeed space for improvements, which we will present in the next chapter.

99

Maier’s Law:

If the facts do not conform to the theory, they must be disposed of.

Corollaries:

1. The bigger the theory, the better.

2. The experiment may be considered a success if no more than 50% of the

observed measurements must be discarded to obtain a correspondence with

the theory. 6
Advanced coalescing: improving

the coloring

This chapter is the experimental counterpart of the previous chapter. While Chapter 5

studied the complexity of the coalescing problems, this chapter is devoted to the study of

practical coalescing solutions. As such, we will not re-introduce the whole coalescing

problem again, but will instead focus on the important points from an experimental

point of view.

Coalescing plays an important role during register allocation, since it allows to

diminish the number of register-to-register moves executed by a program. Since the

first graph-based register allocator by Chaitin et al. [1981], coalescing has been part

of the register allocation optimizations. Where do the register copies come from in a

program? High-level source codes contain few copy (move) instructions, and a pass

of copy folding under Static Single Assignment (SSA) can easily remove the unneces-

sary ones. But after the many optimization phases that occur in a compiler, a lot of

copies can be added. For example, the SSA form introduces virtual “φ-functions” at

join points of the control-flow graph (CFG), which semantically correspond to parallel

copy instructions placed in blocks on the incoming control-flow edges. When going out

of SSA, these copies must be either carefully removed [Sreedhar et al., 1999; Rastello

et al., 2004], or eliminated by a later register allocation phase. Copies between registers

can also be added to handle, in a simple way, register constraints or calling conventions.

A later phase is supposed to remove these additional copies. Our final example is live-

range splitting, which is used to improve spilling (see Chapter 2, Section 2.2.3 and

the discussions in Chapter 3). In particular, in the context of register allocation in two

phases—which we advocate since Chapter 3—, the first “spilling” phase should be free

to use as many splits as required to get the best solution in terms of costs of the load

and store instructions added. This is only effective if the second “coalescing” phase

is powerful enough to remove most of the unnecessary copies. The extreme situation

is when live-ranges are split at each program point so as to formulate the spilling prob-

lem as an integer linear programming (ILP) problem, as proposed by Appel and George

[2001]. Loads and stores are then nicely optimized but many copies are created that

need to be removed. This shows there are many reasons to try to get rid of copy in-

structions at assembly-code level. This is the goal of register coalescing, which does

this during register allocation and thus is tightly connected to spill optimization and

register assignment. However, we have seen in Chapter 5 that most problem related to

coalescing are NP-complete, except for one particular case (incremental coalescing on

a chordal graph), hence heuristics are used.

CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

As explained in the previous chapter, the initial proposal of Chaitin et al. [1981] was

to coalesce moves, before the simplify phase, in an aggressive fashion, i.e., regardless

of the colorability of the resulting graph. The effect is that many moves are indeed

deleted but the number of potential and actual spills almost always increases. Briggs

[1992] explored what he called “aggressive live-range splitting” in his thesis, which he

uses before attempting to color the interference graph, so that the allocator does not

spill entire live-ranges. Obviously, he could not use the same aggressive coalescing

as Chaitin et al. since it would cancel the splitting. So, he introduced conservative

coalescing, which consists in coalescing a move only when one can ensure that, if

the initial graph was R-colorable, the resulting graph is still R-colorable. In Briggs’s

test, a move is coalesced only if the resulting node has at most (R − 1) neighbors with

of high degree, i.e., ≥ R. George and Appel [1996] then proposed Iterated Regis-

ter Coalescing (IRC), a fully-conservative approach where conservative coalescing is

intermixed with the simplify phase and no aggressive coalescing is performed.1 We

described the general mechanism of IRC in Chapter 2, Section 2.2.4. As the coalescing

test in IRC is fast but not exact (the test can fail even if the move can be conservatively

coalesced), better results are obtained if moves are tested several times while simplify-

ing nodes. For that, worklists of potentially coalescable moves are created and updated

during the simplify phase. This increases the running time of the complete register

allocator, even if the smart implementation strategies defined by Leung and George

[1999b] can reduce this overhead.

IRC is a very popular graph-based register allocator, mainly because it manages to

stay simple in its design while still giving a correct quality of resulting code. However,

in terms of moves optimization, its authors where not satisfied when they investigate

their ILP based “optimal spill” [Appel and George, 2001]. Indeed, we already told

they needed to perform an “extreme” aggressive splitting, which split variables at ev-

ery program point. Faced to this intense need for coalescing, the IRC performed poorly

and Appel and George [2000] launched in August 2000 the “Optimal Coalescing Chal-

lenge,” a database of 474 graphs obtained after a phase of extreme splitting followed

by optimal spilling. The goal was to find the best coalescing solutions for all graphs,

or, at least, to come up with better solutions than the ones obtained with their IRC.

By December 2000, they already obtained satisfying results. They found a heuristic

based on work by Park and Moon [1998, 2004], who had proposed an allocator in

which the coalescing was “optimistic.” Optimistic coalescing relies on the fact that,

although coalescing can increase the degree of the merged nodes, it can also decrease

the degree of common neighbors, which is a positive effect. Thus, it seems better to

perform aggressive coalescing first and then to decide, during the select phase, to undo

some coalescings to avoid spilling. In Park and Moon algorithm, when a coalesced

node is to be spilled, it is split back (de-coalesced) into separate nodes. Some of them

are colored with a common color if possible, the others are either colored at the very

end of the select phase or spilled if no colors are available for them. Appel and George

adapted the optimistic heuristic of Park and Moon because, in their case, spilling was

already decided. Despite its naı̈ve de-coalescing phase, the optimistic coalescing takes

benefit from the aggressive phase and outperforms IRC.

In this thesis, we advocate that register allocation should be performed in two

phases, following recent work from Appel and George [2001]; Brisk et al. [2005] and

Hack and Goos [2006]: a first spilling phase, with live-range splitting, that inserts

1But for an optional constant propagation phase under SSA, performed beforehand and not included in

the scheme.

102

loads, stores, and moves so that the resulting interference graph is greedy-R-colorable;

and a second phase that coalesces moves and assigns colors to variables. In this context,

register coalescing is crucial to reduce the cost of moves added blindly by live-range

splitting. Unlike classical graph-based approaches, it is a pure coalescing problem,

with no additional spill: how to coalesce moves in a greedy-R-colorable graph so that

it remains R-colorable? The same problem arises in the last iteration of Chaitin-like

register allocators, i.e., when no potential spill is needed. This pure coalescing phase

looks the same as in the context of the Coalescing Challenge, for which Appel and

George [2000] adapted the optimistic coalescing of Park and Moon [2004]. But there

are reasons to revisit this problem: First, we believe the results can be improved; Sec-

ond, the live-range splitting of Appel and George is extreme, and the graphs obtained

are very particular: all nodes in the interference graph have degree at most (R − 1), but

for at most R nodes that represent the machine registers and form an R-clique. Hence,

their approach does not work for general greedy-R-colorable graphs. In this chapter,

our goal is to address the following questions:

• Can we take advantage of the fact that the initial graph is greedy-R-colorable,

i.e., that no spill more spill is needed, to improve coalescing?

• Can we derive more involved conservative tests?

• Can we avoid testing each copy several times as in IRC?

• Can we adapt Park and Moon optimistic coalescing to greedy-R-colorable graphs

and improve the de-coalescing phase?

• Is incremental conservative coalescing really worse than optimistic coalescing?

(i.e., is it really worse to coalesce moves one by one, while keeping the graph

R-colorable, than to coalesce moves aggressively, then possibly de-coalesce to

get an R-colorable graph?)

We developed advanced conservative and optimistic coalescing algorithms that allow

us to give affirmative answers to the first four questions. Then, the evaluation of these

new strategies let us think that the answer to the last question might well be no, for

greedy-R-colorable graphs. Section 6.1 recalls some necessary definitions and elemen-

tary properties linked to register coalescing. Section 6.2 presents our more involved

conservative tests to decide if the graph remains R-colorable after a given move is co-

alesced. These tests are used in an incremental approach whose results outperform, by

roughly 15%, state-of-the-art optimistic algorithms, even though it is conservative! In

Section 6.3, we improve optimistic coalescing by developing advanced de-coalescing

mechanisms. Section 6.4 presents optimal coalescing rules that can be used to reduce

by about 75% the size of the graphs, and improve the results as well. Section 6.5 is an

analysis of our results on the collection of interference graphs provided by Appel and

George [2000], the “Coalescing Challenge,” which is now considered as the benchmark

suite for evaluating coalescing algorithms. We evaluate variants and trade-offs between

running times and quality of results, comparing also with optimal solutions provided by

Grund and Hack [2007] (found using ILP). Section 6.6 concludes, discussing possible

improvements and open problems.

103

CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

6.1 Recalling the coalescing problems

We will first recall the background informations that will be extensively used in this

chapter. These definitions can also be found in Chapter 2 but we prefer to remind them

here for the sake of clarity.

The interference graph G = (V, E) is an undirected graph where each node v ∈ V

corresponds to a live-range of the program. There is an interference e = (u, v) ∈ E if

and only if (iff) u and v cannot share the same register. In addition to interferences, each

copy instruction, also called move, is represented by an affinity a = 〈u, v〉. In general,

an affinity has a weight w(a) that gives an evaluation of how often the corresponding

copy instruction would be executed. A coloring of G is a function f : V → N such

that f (u) , f (v) whenever (u, v) ∈ E. When f (V) contains k different values, it is a

k-coloring. Given a set of affinities A, a coalescing is defined by a coloring f with

no constraint on the number of colors. An affinity a = 〈u, v〉 ∈ A is coalesced if

f (u) = f (v). The coalesced graph G f is obtained from G by merging any two nodes

linked by a coalesced affinity.

Section 2.2.2.5 defines as greedy-k-colorable a graph such that removing succes-

sively all nodes of degree < k leads to the empty graph, i.e., if Function Is kGreedy(G)

returns . The pseudo-code of this function was given in Chapter 2, page 20, but

we prefer to include it also here for completeness.

Function Is kGreedy(G)

Data: Undirected graph G = (V, E); ∀v ∈ V , degree[v] = #neighbors of v in G, k number

of colors

stack = ∅ ; worklist = {v ∈ V | degree[v] < k} ;1

while worklist , ∅ do2

let v ∈ worklist ;3

foreach w neighbor of v do4

degree[w]← degree[w]-1 ;5

if degree[w] = k − 1 then worklist← worklist ∪ {w}6

push v on stack ; worklist← worklist \ {v} ; /* Remove v from G */7

if V = ∅ then return  else return 8

After the graph is emptied, nodes can be popped from the stack and colored if

needed, picking for each node a color not used by its < k already-colored neighbors.

Because under SSA the interference graph of a program is chordal, chordal graphs will

have their importance there. Remember that Property 2.22 states that a k-colorable

chordal graph is greedy-k-colorable. In other words, the simplify/select phases of

graph coloring register allocators always succeed to color a chordal graph with k colors

if it is k-colorable.

In the next sections we will consider several coalescing problems that arise in the

heuristics used in register coalescing or register allocation. The complexity of these

problems has been studied previously in Chapter 5; we recall here their formulation

in a more informal way, with links to their corresponding formal definitions from the

previous chapter. We recall that coalescing problems can be unweighted—optimization

of the number of static moves—or weighted—optimization biased by an approximate

dynamic execution count.

104

6.2. CONSERVATIVE COALESCING

Aggressive coalescing (page 87) consists in finding a coloring f (with no restriction

on the number of colors) such that the cost of affinities not coalesced is minimized, i.e.,

minimize
∑

a∈U

w(a) with U = {〈u, v〉 ∈ A | f (u) , f (v)}

A simple heuristic for this NP-complete problem is to sort affinities by decreasing

weights and to coalesce each affinity, one after the other, if no interference prevents it.

Some heuristics for out-of-SSA conversion [Sreedhar et al., 1999; Rastello et al., 2004]

try to exploit the structure of φ-functions and consider simultaneously several affinities

corresponding to the moves of one φ-function, but they have never been integrated into

a unified “coloring-coalescing” scheme.

Conservative coalescing (page 88) consists in finding a k-coloring f such that the

cost of affinities not coalesced is minimized. It is NP-complete even if one asks the

graph G f to be greedy-k-colorable. A traditional heuristic is to consider affinities, one

after the other, so that, after each coalescing, the graph remains k-colorable. (We are

not aware of any heuristic that can consider several affinities simultaneously.) Such

approaches are called incremental.

Incremental conservative coalescing (page 92) considers affinities one after the

other. In such an approach, one has to answer, for each considered affinity a = 〈u, v〉,

the following question: is there a k-coloring f such that f (u) = f (v)? This problem is

NP-complete for a general graph and polynomially solvable for a chordal graph. We

indeed gave a conceptual algorithm for this result in the proof of Theorem 5.8. Here,

in Section 6.2, we give a linear-time algorithm, which can be used as a heuristic for

greedy-k-colorable graphs—as for these graphs, the problem complexity remains open.

Note however that asking G f to be not only k-colorable but also greedy-k-colorable is

easy since this property can be checked in polynomial time using Function Is kGreedy

after coalescing a. We study this brute-force coalescing in Section 6.2.1.

De-coalescing is linked to optimistic coalescing (page 95): how to undo an aggres-

sive coalescing f to go back to a k-colorable graph. In other words, de-coalescing

consists in finding a k-coloring g, where g(u) = g(v) implies f (u) = f (v), that min-

imizes the cost of affinities not coalesced. It is NP-complete even if the aggressive

phase succeeded to coalesce all affinities; the difference with the optimistic problem

of Chapter 5 is that we do not consider here that the aggressive phase can coalesce all

affinities as in practice this is often not true. Also, one usually seeks a de-coalescing g

such that Gg is not only k-colorable but also greedy-k-colorable.

In the next sections, we will explain existing coalescing heuristics, develop ad-

vanced heuristics and compare them to the first ones.

6.2 Conservative coalescing

We are aware of two existing conservative tests: the Briggs’s rule by Briggs et al.

[1994] and George’s rule by George and Appel [1996]. Let us examine why they are

conservative when applied on a greedy-k-colorable graph.

105

CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

Briggs merges u and v if the resulting node has less than k neighbors of high degree,

i.e., ≥ k. This node can always be simplified after its neighbors of degree < k are

simplified, thus the graph remains greedy-k-colorable.

George merges u and v if all neighbors of u with high degree are also neighbors of v.

After coalescing and once all neighbors of degree less that k are simplified, one

gets a subgraph of the original graph, thus greedy-k-colorable too.

Originally, these rules were used for any graph, not necessarily greedy-k-colorable,

and with an additional clique of pre-colored nodes—the physical machine registers. In

this context, the rules have two restrictions. Since pre-colored nodes should never be

spilled, they are never simplified, hence Briggs’s rule does not apply to pre-colored

nodes. And George’s rule applies only if v is pre-colored, otherwise, if the graph is

not greedy-k-colorable, there is a risk of spilling u and v instead of only u; this cannot

happen with pre-colored nodes since they are never spilled. We first make a simple but

important remark: for greedy-k-colorable graphs, both rules can be used for any two

nodes. For George’s rule, this is obvious as there is no spill for a greedy-k-colorable

graph. For Briggs’s rule, we can also decide to simplify pre-colored nodes, when

possible, as any other node. Indeed, they form a clique and will thus be given different

colors in any coloring. To get back to the original colors of these pre-colored nodes,

a simple permutation of colors does the trick. Hence Briggs’s rule also applies to pre-

colored nodes.

Surprisingly, extending Briggs’s and George’s rules to any two nodes already leads

to significant improvements (see Section 6.5). However, they still give insufficient

results to coalesce the many moves introduced, for example, by a basic out-of-SSA

conversion. The reasons are twofold. First, both rules are local decisions: they depend

on the degree of neighbors only. But these neighbors may have a high degree just

because their neighbors are not simplified yet, i.e., the test may be applied too early

in the simplify phase. This is the reason why George and Appel [1996] proposed the

Iterated Register Coalescing (IRC): instead of giving up coalescing when the test fails,

the affinity is placed in a sleeping list and “awaken” when the degree of one of the

nodes implied in the rule changes. Thus, affinities are in general tested several times,

and move-related nodes—nodes linked by affinities with other nodes—should not be

simplified too early to ensure the affinities get tested. The second reason is that these

two tests are used to coalesce affinities in a sequential way, requiring that the graph

stays greedy-k-colorable at each step. This is a limitation, as we explained in Chapter 5,

Figure 5.6. In the following sections, we will try to overcome these two limitations.

6.2.1 Brute-force conservative coalescing

To address the limitation that current coalescing rules are too “local,” we developed

a more expensive test based on the fact that greedy-k-colorability is easy to check.

The goal was to have a starting “brute-force” algorithm that could give an idea of how

far the existing rules are from the “best” conservative rule. As in any incremental

approach, we consider affinities one by one in decreasing order of weights. To test

an affinity, instead of using an overly-conservative local rule, the two corresponding

nodes are merged aggressively, then, ignoring the other affinities, a complete simplify

phase is done—using Function Is kGreedy, page 102—to test if the resulting graph is

greedy-k-colorable. If this brute-force test fails, the coalescing is not conservative and

the two nodes are de-coalesced, i.e., kept separate as they were. The pseudo-code for

this test is Function Brute Test.

106

6.2. CONSERVATIVE COALESCING

Function Brute Test(G, u, v)

Data: Graph G = (V, E), nodes u and v

Output:  if u and v can be conservatively coalesced,  otherwise.

Result: u and v are merged in G if it stays greedy-k-colorable.

merge u and v into uv in G ;1

if Is kGreedy(G) =  then2

un-merge u and v in G ;3

return 4

else return 5

We modified IRC so that, instead of using Briggs’s and George’s rules for conser-

vative coalescing, it used Function Brute Test. And it was clear that this test is much

more powerful than these local rules. This means that, if the classic rules of Briggs

and George are certainly not good enough, it is not because conservative rules are in-

trinsically bad, but because these ones are too local. Hence it seems possible to devise

better conservative rules. Of course, the Brute Test comes to mind, but it is more

costly than a local rule such as Briggs’s and George’s tests, as its complexity is linear

in the graph size. Thus the overall complexity for testing each affinity once would be

O
(

|A| (|E| + |V |)
)

.

IRC may seem to be a linear algorithm. However, as mentioned earlier, there is an

overhead due to the fact that affinities are evaluated several times. The algorithm gives

up coalescing only when the worklist of affinities is empty: a node is chosen and its

affinities are removed. It can then be simplified and the process continues with the

remaining nodes and affinities. Leung and George [1999b] propose a counting mech-

anism to reduce the number of useless evaluations but, still, the overall complexity is

not linear. Here, when Brute Test returns , we have two choices, either keep the

affinity in some sleeping list for a possible re-evaluation, as in IRC, or immediately give

up coalescing this affinity. We observed that, because Brute Test is more powerful,

testing each affinity only once degrades only marginally the quality of the result. On

the contrary, keeping affinities and reconsidering them each time the graph changes is

far too costly. In other words, we get an acceptable trade-off between execution time

and performance by spending more time in the test but avoiding the re-evaluation of

affinities.

With little effort, we improved the idea of the Brute Test into a full coalescing al-

gorithm, whose pseudo-code is given in Function Brute Force Improved, page 106.

Its functioning resembles the one of IRC, but without the need for a spilling process, nor

for a “freeze” process since affinities are only tested once now. To make it competitive

in terms of speed, we used quite a number of tricks that we will mention during the

following explanation of the algorithm:

1. Lines up to 13 initialize the data structures. We can consider for now that the

“simplified” argument is the empty set.

2. The simplification of the graph is done from Line 15 to Line 21. This is the same

as the “simplify” box of IRC.

3. Whenever no more node is simplifiable (usually because low-degree nodes are

move-related), we enter the “coalesce” box, Line 22. We use local rules first: if

Briggs’s or George’s rule applies at Line 28, there is no need to check an affinity

with a brute-force test.

107

CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

Function Brute Force Improved(G,A, simplified, degree)

Data: Graph G = (V, E), affinitiesA with weight function w : A → N, subset of nodes

already simplified, array containing the degree of each node, k number of colors.

Output:  if G is greedy-k-colorable,  otherwise.

Result: Graph G is conservatively coalesced.

stack← simplified ;1

move related worklist← ∅ ;2

simplify worklist← ∅ ;3

hi degree worklist← ∅ ;4

Affs←A ;5

Function update worklist(x) ; /* Function to move x to the right worklist. */6

begin7

remove x from the worklist it belongs to;8

if ∃〈u, v〉 ∈ Affs, u = x or v = x then move related worklist←9

move related worklist ∪ {x} ;

else if degree[x] < k then simplify worklist← simplify worklist ∪ {x} ;10

else hi degree worklist← hi degree worklist ∪ {x} ;11

end12

foreach x ∈ V\ simplified do update worklist(x)13

while  do14

if simplify worklist , ∅ /* Now, simplify the graph */ then15

let x ∈ simplify worklist;16

simplify worklist← simplify worklist \ {x} ;17

foreach w neighbor of x do18

degree[w]← degree[w]-1 ;19

if degree[w] = k-1 then update worklist(w)20

push x on stack ;21

else if Affs , ∅ /* All nodes are move-related or not simplifiable, try to coalesce */22

then

let 〈x, y〉 ∈ Affs ;23

Affs← Affs \ {〈x, y〉};24

if x and y are neighbors /* cannot be coalesced */ then25

update worklist(x) ;26

update worklist(y) ;27

else if Briggs George Coalescing (x,y) then28

merge x and y into xy in G ;29

else30

merge x and y into xy in G ;31

degree’← copy of degree ;32

if Brute Force Improved(G, ∅, stack, degree’) =  then33

un-merge x and y in G ;34

update worklist(x) ;35

update worklist(y) ;36

if node xy exists /* i.e., x and y have been merged */ then37

remove x and y from any worklist ;38

update worklist(xy) ;39

else if hi degree worklist , ∅ then return  else return 40

108

6.2. CONSERVATIVE COALESCING

build simplify coalesce freeze pot. spill select act. spill

(a)

build simplify

coalesce

Briggs George

Brute

simplify select

(b)

Figure 6.1: Comparison of: (a) the IRC scheme with (b) our “brute force improved”

scheme.

4. If Briggs’s and George’s rules fail, we could call the Brute Test at Line 30,

but this function is just a wrapper around Function Is kGreedy, which in turn is

just made of the “simplify” box of IRC. Since we already coded the simplification

algorithm in Brute Force Improved, we preferred to do a recursive call, which

appropriate parameters:

• A, the set of affinities passed, is empty. Hence, the recursively called

function will never enter the “coalesce” box at Line 22: it is restricted

to the “simplify” part and will then only check that the graph is greedy-k-

colorable;

• the stack of already simplified nodes is used as pre-simplified nodes to

speed up the greedy test;

• a copy of the array of degrees is passed to avoid recomputing them;

• worklists of nodes are local to each function, hence they do not need to be

updated after the recursive call returns (however, they need to be updated

at the beginning of the recursive call, Line 13, because in that case no node

is move-related anymore).

5. Finally, Line 40 tests whether the graph is completely simplified or not. If it is

not, it means that either coalescing x and y leads to a non greedy-k-colorable

graph (case of the recursive call), or that the initial graph G is not greedy-k-

colorable (which should not happen).

Even if this algorithm seems a bit long and complicated, it is in fact simpler than

IRC. We put the two algorithms one next to the other on Figure 6.1. Notice that in the

IRC scheme, the “coalesce” box also contains Briggs’s and George’s rules. In our case,

we do not need to spill anymore, so the spill related boxes disappeared, and also do the

last back edge, which is needed to rebuild the interference graph and start again if there

was any spill. Also, the last coalescing test, the “brute” box, is only a duplication of

the second leftmost box, i.e., the same simple simplify scheme.

We would like to stress out a few more points that are not directly apparent in the

pseudo-code, but important in terms of speed of the resulting code, or easiness in the

implementation.

109

CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

• We always work with the original graph G, and not duplicates. It saves a precious

time at every recursive call. Function Brute Force Improvedmakes it possible

by being not destructive: it is implemented in an IRC-like fashion using worklists,

hence not requiring an actual removal of nodes in the graph.2

• When testing an affinity 〈u, v〉 using the recursive call, instead of actually merg-

ing u and v Line 31 before checking if the graph is still greedy-k-colorable, we

use a trick on the degree of u, v and their neighbors to simulate the merge. In-

deed, we found it was painful to perform an “un-merge” in the graph, and thought

easier to decrease by one the degree of the common neighbors of u and v, and to

increase the degree of u and v to be the degree that node uv would have.

• Finally, in the recursive call, it is possible to stop whenever uv (or, actually, u

or v since they are not really merged) becomes a low-degree node. Indeed, if

the graph was greedy-k-colorable, merging u and v only increases the degree

of resulting node uv: the degree of all other nodes either decreases or stays the

same. Hence, if uv becomes simplifiable, the whole graph is simplifiable.

These optimizations lead to a improved version of the Brute Test, tuned for speed

but with the same quality results. Brute Force Improved outperforms all previous

conservative approaches with acceptable running times. It uses the same framework

as the IRC, but with recursive calls, and is thus easy to plug in IRC, and not more

complicated to implement standalone. It is approximately 2× slower than the basic IRC

presented by Appel and George [2001] (without the speed improvements of Leung and

George [1999b]) but reduces by a factor of 2 the cost of remaining affinities for the suite

of graphs from the Coalescing Challenge [Appel and George, 2000]. Surprisingly, at

the price of a 3× slow down (roughly), it is even a lot better by 15% than state-of-the-

art optimistic coalescing, which contradicts the common belief. The details of these

experiments will be explained is Section 6.5.

Brute-force coalescing is still an incremental strategy, meaning that the graph re-

mains greedy-k-colorable after the coalescing of each particular affinity. We try to go

even further in Section 6.2.2 with our “chordal-based” coalescing.

6.2.2 Chordal-based incremental coalescing

As previously mentioned, it is a limitation to require the graph to be greedy-k-colorable

after each coalescing. Indeed, to get a greedy-k-colorable graph after coalescing an

affinity, it may be needed to coalesce other affinities or even merge nodes not linked

by any affinity. This fact was already known to George and Appel [1996] and used by

Vegdahl [1999] in an actual framework. It is also used in the “optimistic+” algorithm

(extended optimistic coalescing) of Park and Moon [2004]. However, these additional

merges are done blindly, without any guarantee that a coalescing is indeed enabled.

Actually, for a given affinity, the real conservative coalescing problem is as formulated

in Section 6.1: deciding if, after one particular coalescing, the graph is still k-colorable.

This amounts to know if the resulting graph can become greedy-k-colorable thanks to

some additional node merges.3 Such a test can coalesce affinities beyond traditional

conservative coalescing, and even nodes not linked by affinities. But this is best not to

2Note that, in the book by Appel [1998], the “move related worklist” is called “freeze worklist.” We find

this appellation misleading and preferred using the first one.
3If G is k-colorable, this is always possible since merging all nodes with the same color leads to a k-clique,

which is greedy-k-colorable.

110

6.2. CONSERVATIVE COALESCING

coalesce too many nodes so as to keep the maximum liberty for coalescing the rest of

the affinities.

Such a conservative test can be checked in polynomial-time for a chordal graph,

i.e., given a k-chordal graph and an affinity 〈u, v〉, we know in polynomial time if u and

v can be merged while G stays k-colorable. If they can, we also know in polynomial

time a k-coloring of G. We proved this fact in Chapter 5, but the proof was only

conceptual. A limitation is that we do not know a good way to keep the graph chordal

as we will explain later. In this section, we develop a linear-time algorithm based on the

following ideas. In the proof of Theorem 5.8, the key is to consider the representation

of a chordal graph as a family of subtrees of a tree. Then, checking if an affinity

〈u, v〉 can be coalesced works by searching for a “path” of subtrees between u and v

on the tree. If it exists, such a path follow the smallest path on the tree linking u and

v, denoted Pu,v. On Pu,v, the subtrees of the tree are intervals, hence we search for a

“path” of intervals between u and v. There follows the three main ideas to find the set

of intervals between u and v, and then search for a path in them:

First: it is easy to find the subtrees that are sub-intervals of Pu,v by applying Chaitin et

al.’s simplification scheme but forbidding u and v to be simplified. This has the

effect of “pruning” the subtrees that are useless in finding a path between u and

v.

Second: once only the “interesting” subtrees remain, a perfect elimination scheme

gives an interval representation. It is then easy to search for a path between u

and v in this interval graph.

Third: simplifying the nodes with minimum degree first, in this interval, defines a

perfect elimination scheme.

Of course, the last point is not true in the general case, but in our particular case

while working on an interval, it is true, as we will prove it in the next section.

6.2.2.1 Two lemmas for chordal-based coalescing

Before explaining the complete algorithm based on the exposed ideas, we will first give

two lemmas that will prove their correctness. They are based on a characterization of

chordal graphs as graphs having a perfect elimination scheme (see Definition 2.19).

Lemma 6.1. A chordal graph with only two simplicial nodes is an interval graph.

Furthermore, any perfect elimination scheme gives an interval representation.

Lemma 6.2. Let G, with nodes v1, . . . , vn, be a k-colorable chordal graph. If for all i,

1 < i < n, the degree of vi in G is at least k and is minimum in G \ {v1, . . . , vi−1}, then

v1, . . . , vn define a perfect elimination scheme for G.

Lemma 6.1 will be used to validate the first two ideas, since only u and v can be

simplicial vertices after the phase of prunning. Lemma 6.2 validates the third idea. We

now prove these lemmas.

Proof of Lemma 6.1. Let G = (V, E) be a chordal graph with only two simplicial nodes

u and v. (We recall that a node is simplicial if its neighbors form a clique, see Defini-

tion 2.19.) A graph is chordal iff it has a perfect elimination scheme [Golumbic, 1980,

Theorem 4.1], i.e., a particular order of nodes v1, . . . , vn, such that the neighbors of vi

in G \ {v1, . . . , vi−1} form a clique. Furthermore, there is such a scheme with v1 = u

111

CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

and vn = v. Indeed, a chordal graph has always at least two simplicial nodes and a

subgraph of a chordal graph is chordal, therefore, we can first pick v1 = u and then

always select a simplicial node vi , v to define a perfect elimination scheme starting

with u and ending with v.

In this elimination scheme, for all i > 1, there exists j < i such that (vi, v j) ∈ E.

Indeed, if this is not the case, the neighbors of vi in G \ {v1, . . . , vi−1} are the neighbors

of vi in G. Thus, vi is simplicial in G, which is not possible unless i = n, as G has only

two simplicial nodes, v1 and vn. For i = n, all neighbors v j of vn are of course such that

j < n, unless v(n) has no neighbor. But, in this case, G \ {vn}, which is chordal, has two

other simplicial nodes, thus G has at least 3 simplicial nodes.

Each node is thus neighbor in G of a node eliminated (simplified) before. We can

prove more: if vi and v j, with j < i, are neighbors in G then vi is also neighbor of vk for

all j ≤ k < i. Indeed, suppose this is not the case. Let i be the smallest for which this

property does not hold and let j be the largest such that j + 1 < i, with v j neighbor of

vi but v j+1 is not. Also, v j+1 is a neighbor of v j, otherwise i is not the smallest. But the

neighbors of v j in G \ {v1, . . . , v j−1}, which include v j+1 and vi, form a clique. Thus vi

is neighbor of v j+1. Impossible.

With the last property, we can view the nodes vi as points on a line, drawn from left

to right by increasing i, and G can be interpreted as the interference graph of n intervals.

Each vi corresponds to an interval that ends at vi and starts at v j, for the smallest j such

that v j is neighbor of vi. Indeed, for all j ≤ k < i, the interval corresponding to vk

intersects the interval corresponding to vi.

We can prove more formally that G is an interval graph. A chordal graph is an

interval graph if its complement is a comparability graph [Golumbic, 1980], i.e., if

there is an order ≺ on the nodes with the following property: for any three nodes x, y,

z such that x ≺ y ≺ z, if (x, y) < E and (y, z) < E, (i.e., they are both in the complement

of G), then (x, z) < E (it is also in the complement). This is true if ≺ is the perfect

elimination scheme order, because if x ≺ y ≺ z and (x, z) ∈ E, then (y, z) ∈ E, i.e., y is

neighbor of z (as previously shown in the third paragraph of the proof). �

Proof of Lemma 6.2. As G is k-colorable, the size of any clique is at most k. Thus,

only v1 and vn can be simplicial since all other nodes have degree ≥ k, which would

form a clique of size at least k+1. Furthermore, as G is chordal, Lemma 6.1 shows that

it is actually an interval graph and any perfect elimination scheme that starts from v1

and ends at vn gives a representation of intervals. We now show that v1, . . . , vn define a

perfect elimination scheme, i.e., selecting vertices with minimum degree provides such

a scheme. If not, let i be the smallest such that vi is not simplicial in G \ {v1, . . . , vi−1}.

Thus, for all k < i, vk is simplicial in G \ {v1, . . . , vk−1}. As G \ {v1, . . . , vi−1} is chordal,

one can complete v1, . . . , vn into a perfect elimination scheme w1, . . . ,wn, such that

wn = vn and, for all k < i, wk = vk. Following Lemma 6.1, this elimination scheme

gives an interval representation, where the wk are points on a line, drawn from left to

right by increasing k, and where each wk is the right end of an interval.

Consider the subgraph H = G \ {w1, . . . ,wi−1} = G \ {v1, . . . , vi−1}. There are two

cases, depending if vi intersects wi or not. If vi is not a neighbor of wi, it cannot be

a neighbor of any node already simplified because w1, . . . ,wn gives an interval repre-

sentation. Therefore the degree of vi in H is the degree of vi in G, it is thus at least k,

which is not minimum in H as the degree of wi is at most k − 1. Impossible. If vi is a

neighbor of wi, any neighbor of wi in H is a neighbor of vi in H because wi is simplicial

in H hence its neighbors form a clique. Therefore, the degree of vi in H is at least the

degree of wi in H and it cannot be minimum unless the degrees are equal. But, then, vi

112

6.2. CONSERVATIVE COALESCING

has exactly the same neighbors as wi in H hence is also simplicial. Impossible.

This proves that v1, . . . , vn is a perfect elimination scheme. �

6.2.2.2 Explaining the chordal-based algorithm

Using the two previous lemmas, we now explain the main idea on how our chordal-

based coalescing works. Suppose one wants to coalesce u and v, two non-interfering

nodes of a chordal graph G. First, G is simplified maximally (i.e., nodes with degree

< k are removed) without simplifying u and v. If no other node remains, u and v can be

given the same color and coalescing them keeps the graph greedy-k-colorable (but not

necessarily k-chordal). Otherwise, the two lemmas show that the remaining graph is an

interval graph, for which one can easily compute a representation by removing nodes

of smallest degree first. The rest of the algorithm looks for a “path” of non-interfering

nodes between u and v in the interval graph, so that all these nodes can have the same

color, as suggested in the proof of Theorem 5.8 in the previous chapter. The existence

of such a path proves that u and v can be coalesced, along with all the nodes of the

path, and G remains greedy-k-colorable. The non-existence of such a path proves that

no matter how G is colored, u and v will always have a different color, hence the graph

would not be k-colorable anymore if they are merged.

A pseudo-code for the “path searching” part of the chordal coalescing is given in

Function Chordal Coalescing, page 112. The whole algorithm is quite sophisti-

cated, so we explain it in different steps. First we explain the general ideas that make

it works. Then, we prove that Chordal Coalescing returns  iff u and v can be

coalesced while G stays k-colorable. We then prove that in that case, the function finds

a set of nodes to coalesce with u and v so that the interval graph on which it works

stays a k-colorable interval graph. Finally, we will see how it can be integrated in

Function Brute Force Improved.

General functioning of Chordal Coalescing. Despite its name, this function ex-

pect in fact a more constrained graph than a chordal graph: an interval graph. We

will use Lemma 6.1 later to prove that, from a chordal graph, one can get an interval

representation by simplifying nodes of low degree first. Before explaining Function

Chordal Coalescing in details, we first give the general scheme of how it works

when trying to coalesce two nodes x and y in an interval graph G:

1. Get an interval representation of G by simplifying nodes with smallest degree

first.

2. Using this representation, propagate from x the information “this interval can/-

cannot have the same color as x.”

3. Upon reaching y, there are two possibilities:

• If “y cannot have the same color as x,” it is impossible to coalesce x and y

while staying k-colorable.

• If “y can have the same color as x,” then there is a path of intervals that can

have the same color as x between x and y. One can be found by starting

from y and choosing intervals in reverse order of simplification. Then, all

nodes of this path can be merged with x and y and the final graph is greedy-

k-colorable.

113

CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

Function Chordal Coalescing(G, 〈x, y〉)

Data: k-colorable interval graph G = (V, E), affinity 〈x, y〉, all nodes other than x and y

have degree > k.

Output:  if coalescing 〈x, y〉 is conservative.

Result: If returning , x and y are merged, possibly with other nodes, so that G stays

an interval graph.

if degree[x] > degree[y] then x, y← y, x ; /* start with the smallest degree */1

/* Traverse the set of intervals from x to y. */

like x[x]← ; alive← {x} ; dummy like x← ;2

just removed← ∅ ; like x[just removed]← ; ; /* just for initialization */3

nodes← nodes \ {x} ;4

repeat5

let v ∈ nodes \ {y} with smallest degree ;6

dummy like x← dummy like x ∨ like x[just removed];7

foreach w ∈ nodes neighbor of v do8

degree[w]← degree[w]-1 ;9

if w < alive then10

alive← alive ∪ {w} ;11

like x[w]← dummy like x ; /* w can have the same color as dummy */12

if #alive = k then dummy like x←  ; /* no dummy interval */13

if #alive > k then return  ; /* cannot happen for interval graphs */14

push v on stack ;15

nodes← nodes \ {v} ; alive← alive \ {v} ; just removed← v ;16

until nodes = {y} ;17

if like x[y] =  then return ;18

/* Else, construct the path linking x and y. */

path← {y} ;19

current← y ;20

while v← pop stack, v , x do21

if v not a neighbor of current then22

if like x[v] then23

path← path ∪ {v} ;24

current← v ;25

merge all v ∈ path into a single node in G ; /* G stays an interval graph */26

return 27

114

6.2. CONSERVATIVE COALESCING

vi−1

vi

already in alive

dummy

w

Figure 6.2: Position of relative intervals at iteration i.

In Chordal Coalescing, the first two steps are actually performed in only one

pass, and “dummy” intervals are considered where there are less than k intervals at

one point. The next two theorems are devoted to proving that the function works as

expected by proving formally the steps described above.

Theorem 6.3. Let G be a k-colorable graph and 〈x, y〉 an affinity. If G is an interval

graph, then Function Chordal Coalescing returns  iff merging x and y leads to

a k-colorable graph (not necessarily an interval graph).

Note: Line 14 is not needed for the correctness of the algorithm if G is a k-colorable interval

graph. It is just needed for the extension to greedy-k-colorable graphs.

Proof. Let us concentrate on the decision part, from the first line up to Line 18.

Every node other than x and y has a degree ≥ k. G is k-chordal hence x and y are

simplicial vertices and their degree is at most k − 1. Line 1 redefines x to be the one

of smallest degree, hence, according to Lemma 6.2, an interval representation for G is

obtained by simplifying x first, then each node , y with minimum degree.

In the repeat loop, at the i-th iteration, v is the node vi in Lemma 6.2, just removed is

vi−1 before being updated at Line 16 for the next iteration, and alive (updated at Line 11)

contains all intervals alive at point vi. Indeed, alive is completed by all neighbors w of

vi not already in alive. The corresponding intervals thus start just after vi−1 ends. Also,

if at most (k − 1) intervals are alive at point vi, one considers that a dummy interval

is alive at this point. This situation is depicted in Figure 6.2, and in the algorithm, the

presence of a dummy interval is emulated by using the variable dummy like x, which

is set to  or  depending on whether the dummy interval could have the same

color as x or not. If k intervals are alive at this point, there is no dummy interval and it

is equivalent to say that the dummy cannot have the same color as x: dummy like x is

set to  (Line 13).

It is easy to see that G has a coloring such that x and y have the same color iff

there is sequence of intervals, possibly including dummies, such that each interval

ends just before the next one starts, and the first interval is x, the last is y. Therefore,

it is sufficient to propagate a flag, starting from x, from ends of intervals to starts of

intervals and see if y can be reached. This is what the propagation of the variables

like x[w] and dummy like x does. If there is a coloring in which x and y have the same

color, then the propagation from like x[x] =  reaches y. We now see the converse

more formally.

Let us prove that, if like x[w] is set to  at iteration i (Line 12), the following

holds: if there is a k-coloring of w and of all nodes simplified later (thus colored before

in the select phase) and such that w and y have the same color, then one can build a

115

CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

coloring of G such that y and x have the same color. A similar property holds for the

dummy interval at vi as like x[w] and dummy like x have the same value. Let us prove

this property by induction on i, the implicit loop counter of the repeat loop. This is

true for x = v1 due to the initialization (before the repeat loop). Assume the property

is true for all j < i. Let w be a node added in alive at iteration i and such that like x[w]

=  (the same argument can be used for the dummy interval at vi). Consider a

coloring of all nodes simplified after w such that w and y have the same color. As G is

greedy-k-colorable, this coloring can be extended, popping nodes from the stack, to all

nodes from w down to vi, without using the color of w because all these nodes interfere

with w. If like x[w] is  because like x[vi−1] (resp. dummy like x) is , one can

color vi−1 (resp. the dummy interval at vi−1) with the color of w. Finally, by induction

hypothesis at iteration i− 1, we can extend the coloring to G such that x and y have the

same color. �

We have proved that Function Chordal Coalescing, up to Line 18, correctly an-

swers whether G stays k-colorable if x and y are merged. The proof shows even more:

it shows that we know, in the interval representation, all the nodes that can be colored

with the same color as x and y.

It remains to prove that, with additional node merges, we can obtain a interval graph

again. This is done by following a path from y to x when popping nodes from the stack

in the while loop, Line 21, and we prove it now.

Theorem 6.4. If x and y can be merged while G stays k-colorable, then Function

Chordal Coalescing correctly choses a set of nodes to merge with x and y so that

the graph stays an interval graph.

Proof. Since we already know which intervals can be colored with the same color as x

and y. We need to prove that the while loop at Line 21 finds a path between x and y in

these intervals. Indeed, at each step, the variable current defines the last interval of the

path under construction, starting at y. Initially, it is true since it is set to y. When a node

v is popped, if it is a neighbor of current, it cannot have the same color as y (current

has the same color as y) hence cannot be part of the path. The first node not a neighbor

of current, and that can have the same color as y is indeed set to the same color as y: it

is added to the path. Finally, when x is popped, it cannot be a neighbor of current since

the first part of the algorithm stated it can be colored with the same color as y, hence

the same color as current.

But, where are the dummy intervals? In fact they are not needed in the path. If there

is a gap between two consecutive nodes v and w in the path, there was at most k − 1

intervals alive at each point of the gap, hence it was “filled” with dummies during the

propagation phase. Since w can be colored like y, it means that all these dummies can

also be colored like y, hence it is also true for v. So, dummy intervals are not required

in the path between x and y.

Now, we say that merging all the nodes of the path amounts to form a complete

interval from x to y, thus transforming the graph into another interval graph, with at

most k live intervals, hence k-colorable. There is a subtlety since, to get an actual

interval, one should have included dummies in the path and merged with them. But

since the merge is immediate, this just means that the merged node would interfere

also with all the neighbors of the dummy intervals, i.e., the other intervals alive at these

points. But, these interferences already exist after the merging of the path without

dummies, otherwise, one of these other intervals, say w, would be fully included in a

116

6.2. CONSERVATIVE COALESCING

portion covered by dummy intervals, which would all be colorable with the same color

as x and y. Thus w would have been added to the path at Line 24. �

Up to now, we have proven that Function Chordal Coalescing, when given as

input an interval graph where only x and y can be simplified, can decide in linear time

whether x and y can be coalesced while staying k-colorable, and, if they can, merges a

set of nodes so that G stays an interval graph. There are two interesting questiors.

First, how do we apply the algorithm to k-chordal graphs?

Second, does this algorithm also work with greedy-k-colorable graphs?

To answer the first question, it is tempting to use Lemma 6.1 to say that, after G

as been maximally simplified into G′ without simplifying x and y, G′ can be fed to

Chordal Coalescing. Then, if x and y can be merged, the function merges nodes in

G′ along with x and y so that it stays an interval graph. Up to now, this reasoning is

correct, but it would be false to say that adding back the simplified nodes to G′ gives a

chordal graph. Indeed, during the simplification, it can happen than nodes with a low

degree “branch out” of G′, i.e., are neighbors of nodes in G′ but can nevertheless be

simplified. If such a node has in G′ only neighbors that are not in the path from x to y, it

will not become a neighbor of the merged node xy, which can break the representation

of G as subtrees of a tree, hence its chordality. We do not have a satisfying answer to

the problem of staying in the k-chordal class with additional merges. So, the answer to

the first question is:

By simplifying maximally a k-chordal graph, without simplifying x and

y, and feeding the result to Chordal Coalescing, we know whether x and

y can be coalesced while G stays k-colorable but there is no guarantee that

G stays k-chordal.

Extension to greedy-k-colorable graphs. We now answer the second question, i.e.,

does Chordal Coalescing work with greedy-k-colorable graphs? In fact, it does not

provide an exact test as for chordal or interval graphs, but we can certify that, if the

function does not return  at Line 18, it is possible to color x and y with the same

color. However, the converse is not true, i.e., even if there exists a coloring of G in

which x and y have the same color, the function can return .

Proof. Suppose that G was first maximally simplified, before being given to Function

Chordal Coalescing. If G is only greedy-k-colorable, but not necessarily chordal,

nodes are simplified in some order v1, . . . , vn, and the repeat loop behaves as if G was an

interval graph G′ where each interval goes from v j (supposing it is added in the set alive

at iteration j) to vi (supposing it is simplified at iteration i). This amounts to assume that

all nodes in the set alive form a clique, even if some of them do not interfere. However,

there is no need to add these edges explicitly. The result of Chordal Coalescing

is then given with respect to this interval graph G′, for which G is a subgraph. It is

possible that G′ is not k-colorable (Line 14) but if Chordal Coalescing returns ,

it is safe to merge x and y. The additional merging of the nodes on the path then

transforms G′ into another interval graph and G into a subgraph of it, it is therefore

greedy-k-colorable. Taking into account all nodes previously simplified before entering

the function, the graph is still greedy-k-colorable. �

117

CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

In this case, even if the test is less powerful than for k-chordal graphs, we at least

have a guarantee that the final graph will stay greedy-k-colorable. This makes the

chordal coalescing approach interesting in an incremental-like coalescing algorithm,

where the graph needs to stay greedy-k-colorable at each step.

However, this is just a heuristic for greedy-k-colorable graphs that amounts to add

interferences on the fly so that the graph “looks” chordal. Variants are certainly pos-

sible, with strategies to add interferences, merge nodes, or maybe both, but we did

not try to go further in this direction. However, what can easily be done is to select

a path that, if possible, coalesces additional affinities and avoids merging nodes not

related by affinities so as not to constrain too much the resulting graph. For the same

reason, “dummy” intervals should be chosen when the path between x and y is built

to avoid putting the constraints on actual intervals. It was not possible when working

with interval graphs, as some interferences are required to stay in the interval graph

class. However, greedy-k-colorable graphs stays greedy-k-colorable even if they have

less interferences. In order to put the preference on dummy intervals, one should check,

before adding v to the path at Line 24, if there was < k variables in the alive set at this

point (i.e., there was a dummy). This means the size of alive set at each step must be

kept in memory, for instance in an array (of size at most n).

Using Chordal Coalescing in Brute Force Improved. We have seen that the

chordal-based coalescing can be used as a heuristic for greedy-k-colorable graphs. We

now explain how to insert it in our existing “brute-force” scheme. Before giving the

graph to Chordal Coalescing, it is still possible to check if the coalescing can be

done using Briggs’s and George’s rules, or the brute rule. Moreover, the graph must

first be maximally simplified before the chordal coalescing can be applied. We will use

the fact that, when the brute test returns  and we would like to perform a “chordal

test,” the brute algorithm almost did a maximal simplification on the graph: the only

difference is that x and y where already merged in the graph during the simplification.

In fact, this is not a problem. Maybe more nodes are simplified (since common

neighbors of x and y have a smaller degree), but when the simplification is blocked in

the brute test, all remaining nodes have degree ≥ k. If we de-coalesce x and y, the de-

gree of every node but x and y increases by one or stays the same; but the graph is then

still subgraph G′ of the original G. If G was chordal, G′ also is, and it has at least two

simplicial vertices. These can only by x and y, and their degree is then < k. Lemma 6.1

states this graph is an interval graph, and since every node but x and y have degree

≥ k, the graph is maximally simplified which is what Function Chordal Coalescing

expects. If G was only greedy-k-colorable. It is of course still not a problem since the

condition was that it must be maximally simplified. The same argument on the degree

of nodes when de-coalescing x and y applies.

We just showed that the chordal-based coalescing can be easily integrated in our

brute framework as follows: at Line 40 of Function Brute Force Improved instead

of returning , call instead Function Chordal Coalescing.

6.2.2.3 Complexity and quality of chordal-based

In terms of complexity, chordal-based coalescing is similar to a complete simplification

(with a return phase such as the classical “select” coloring phase). Thus, its complexity

is similar, in order of magnitude, to brute-force coalescing. Also, used in complement

to brute-force coalescing, its use does not increase the running time too much as most

118

6.3. DE-COALESCING AFTER AGGRESSIVE COALESCING

simplifications are already done. This algorithm can even be applied if the graph ob-

tained after the first phase of simplification is not chordal, but only greedy-k-colorable.

In terms of quality of results, our experiments show that chordal-based coalescing

does improve brute-force coalescing, but only slightly for the graphs of the Coalescing

Challenge [Appel and George, 2000]. Section 6.5 discusses how far it is from optimal-

ity, thanks to an optimal ILP approach. In practice, because it is more complicated to

implement, with only a marginal improvement, we believe it is maybe not worthwhile.

However, this is the most advanced conservative algorithm proposed so far, and is also

interesting from a graph theory point of view. There remain two questions. First, how

to keep a chordal graph k-chordal? We explained previously that the problems comes

from simplified nodes that “branch out” of the interval representation. Merging the

path from x to y with these nodes would keep the representation as subtrees of a tree,

but this seems difficult to modify the algorithm as it is now. Second, the remaining

challenge would be to have an exact test on greedy-k-colorable graphs, as we left this

problem open in the complexity study of Chapter 5.

The next section aims at developing more advanced optimistic coalescing strategies.

6.3 De-coalescing after aggressive coalescing

Merging two nodes can transform a graph that is not greedy-k-colorable into a greedy-

k-colorable graph, as was explained on Figure 5.6 in the previous chapter. This observa-

tion is the main motivation for aggressive coalescing: it may be more beneficial to first

coalesce aggressively as many affinities as possible, then to try to undo, “de-coalesce”

some coalescings if the graph is not greedy-k-colorable. But how to de-coalesce, i.e.,

split back affinities?

6.3.1 The existing strategy

We explained in the introduction of this chapter that, after an aggressive coalescing

phase, Park and Moon [2004] proceed with the standard simplify and select phases. In

the select phase, if the result of a merge cannot be colored—i.e., it was a “potential

spill” and no color remains—it is split back into its original nodes. It is not safe to

color all of them right away, even when it is possible, because this could prevent the

coloring of nodes that are still on the stack, hence not colored yet. This is the case

for common neighbors of the de-coalesced nodes, for which the degree is now bigger

than when they were coalesced and simplified. However, if some de-coalesced nodes

are colored with a unique color and the others discarded for now, the rest of the select

phase can continue safely: hence Park and Moon choose heuristically: which nodes to

color (by testing every possible configuration, assuming pessimistically that the other

nodes will be spilled), which are spilled right away (those that, even completely de-

coalesced, still have no color available), and the others, which are put at the bottom of

the simplify stack, hence will be colored last during the rest of the select phase.

Appel and George [2001] pointed out that, if all nodes (except pre-colored nodes)

have degree < k initially, they can always be colored whatever the other colors. Based

on this observation, they modified Park and Moon’s de-coalescing algorithm,4 but it is

not clear from their explanations whether: (a) they some nodes with the same color,

and the other nodes at the very end, as Park and Moon do, but with the guarantee

that no spill occurs; or (b) they color all of them immediately, even if this can create

4The first non-journal version of Park and Moon [1998] was published six years before the journal one.

119

CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

subsequent de-coalescing, even of nodes that were not marked as potential spills. We

tried to retrieve their results, which were provided for a large collection of graphs in

the Coalescing Challenge web page [Appel and George, 2000]; hence we developed

several split strategies during the select phase. The common initial step is that when no

color is found for a node, we split it back into its primitive nodes and compute some

information as follows: let P be the set of such primitive nodes, we first compute the

colors available for each of them and consider the set AP of affinities 〈x, y〉 such that

either both x and y belong to P, or one is in P and the other is already colored. Then

we tried the three following strategies:5

1. Appel-George type: Consider all affinities 〈x, y〉 in AP in decreasing order of

weights and merge x and y if there exists a color suitable for both x and y.

2. Park-Moon type: Select a color c that maximizes the sum of the weights of

the affinities 〈x, y〉 ∈ AP such that x and y can be colored with c. Merge the

corresponding nodes, color the resulting node with c, and put all other nodes

aside and color them at the end of the select phase, using a biased coloring.

3. Iterated Park-Moon: Select a color c and merge nodes as in the second strategy.

Repeat the color selection for the remaining affinities in AP until AP = ∅.

Surprisingly, none of these approaches give results close to the optimistic version

of Appel and George. Also, even it seemed to us that Strategy 1 approaches the most

their strategy, it is the worst of all three versions, certainly because it does not have a

global view on the affinities within the split node. Nevertheless, we point out that the

three of them are guaranteed to be spill-free only if all initial nodes have degree < k,

and it is not clear how to adapt these heuristics to general greedy-k-colorable graphs.

Furthermore, even if the initial degrees are < k, except pre-colored nodes, a problem

may occur with Strategies 1 and 3 if pre-colored nodes can be simplified as normal

nodes can (as we do). As several colors are given right away to the different primitive

nodes, a simplified node might become not colorable. The node can then be split into

its primitive nodes, all of degree < k, unless one of them is pre-colored in which case

the algorithm would fail! Luckily, this potential problem never occurred in any of the

474 graphs of the Coalescing Challenge. In addition to these applicability limitations,

a weakness of these three approaches in terms of quality of results is that, instead of de-

coalescing affinities, possibly one by one, many affinities are de-coalesced, even if not

needed, when one node is split back. As this process is done in the coloring phase, only

a form of biased coloring can help re-coalescing these useless de-coalesced affinities

and it is not clear how to use classical conservative coalescing techniques.

For these reasons, we prefer to de-coalesce based on the graph structure itself, not

on the particular order of nodes in the stack. An interesting side-effect of this approach

is that the final graph is then greedy-k-colorable and that we can use conservative tech-

niques afterwards to improve our de-coalescing phase.

6.3.2 Our approach

As in Park and Moon optimistic coalescing, we start with a naı̈ve aggressive phase.

This phase consists only in considering affinities one by one and coalescing them if

the two extremities do not interfere. After this phase, we use the de-coalescing phase

5Note that both Strategy 1 and 3 can lead to de-coalescing nodes which were not marked as “potential

spill,” possibly provoking a cascade effect.

120

6.3. DE-COALESCING AFTER AGGRESSIVE COALESCING

Figure 6.3: A graph of affinities coalesced in a coalesced node.

121

CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

described in Function De-coalescing, page 120. It applies to any greedy-k-colorable

graph and produces a greedy-k-colorable graph. After aggressive coalescing, some

affinities are de-coalesced as long as the graph is not greedy-k-colorable. These affini-

ties are selected as follows. During the check for greedy-k-colorability (using Func-

tion Is kGreedy, see page 20), if all nodes of the current subgraph have degree ≥ k, the

cheapest node to de-coalesce is chosen and split into two nodes. It may be necessary

to de-coalesce several affinities to get two separated nodes. And, if considering a coa-

lesced node and the graph of the affinities coalesced inside this node, there is a priori no

restriction on the shape of the graph. Such a graph is presented on Figure 6.3. To find

the cheapest set of affinities to de-coalesce, we need to find the cheapest set of affini-

ties that disconnect the coalesced node. We use a min-cut algorithm on the affinities

coalesced in the node, but simpler approaches are possible. To choose quickly which

node to de-coalesce, each node is given a lower bound of the cost of its de-coalescing,

i.e., the min-cut cost. Currently, this bound is set to the smallest affinity weight coa-

lesced in the node. After de-coalescing, the simplify phase continues until the graph

becomes empty or another de-coalescing is necessary. This way, first we avoid de-

coalescing an affinity in the area where it does not help, i.e., among the nodes already

simplified; second, we give up coalescing the cheapest affinities first. However, as in

Park and Moon approach, de-coalescing an affinity can increase the degree of nodes

already simplified, thus, in general, we need to perform several passes—at most 3 in

practice for Appel and George’s graphs—until no de-coalescing is done, which ensures

the graph is greedy-k-colorable.

Function De-coalescing(G,A)

Data: Graph G = (V, E), set of affinitiesA with weight function w : A → N

repeat1

nodes← V ; stack = ∅ ;2

some de-coalescing← ;3

while nodes , ∅ do4

if ∃v ∈ nodes | degree[v] < k then5

nodes← nodes \ {v} ; push v on stack ; /* Simplify v */6

foreach w neighbor of v do degree[w]← degree[w]-1 ;7

else8

v← get min cost(nodes) ; /* coalesced non-simplified node, with smallest9

cost to de-coalesce */

〈x, y〉 ← affinity in v with smallest weight ;10

G← de-coalesce min cut(G, 〈x, y〉) ; /* de-coalesce x and y using a min cut11

on the affinities of v */

nodes← (nodes \ {v}) ∪ {x, y} ;12

foreach w ∈ {x, y, neighbors of x and y} do update degree[w];13

some de-coalescing← ;14

until some de-coalescing =  ;15

As we will show in Section 6.5, our de-coalescing scheme alone is as good as the

state-of-the-art optimistic coalescing algorithm. This is of course only true in terms of

coalesced affinities as we compare algorithms that do not spill at all, while the original

Park and Moon’s algorithm also include a spilling strategy. However, it has two strong

advantages. First, it can be applied to any greedy-k-colorable graph, without requiring

any spill. Second, as it is not intermixed with coloring (the select phase), it can be

122

6.4. OPTIMAL RULES FOR COALESCING

followed by some conservative coalescing to clean up possible useless de-coalescings:

then, even a simple conservative coalescing such as Briggs’s and George’s rules im-

proves the results by 8%. To our surprise, however, it does not equal the quality of our

“chordal-based” coalescing, not even the quality of the “brute-force” coalescing. The

problem may come from our way to choose nodes to de-coalesce. But it is hard to de-

fine a good indicator of the benefit and cost of a de-coalescing, so as to guide the node

selection. Also, it is very likely that some bad decisions are made even earlier, i.e.,

by the aggressive phase—for example, coalescing an expensive affinity that prevents

the coalescing of many cheap ones—which are then difficult to repair by a greedy de-

coalescing. Such considerations will be discussed heavily in the experimental section.

6.4 Optimal rules for aggressive and conservative

coalescing

The graphs from the Coalescing Challenge of Appel and George [2000] are very par-

ticular. In order to perform their optimal spill, the authors needed to insert a lot of

splitting points, i.e., everywhere they could: between every two instructions. An ex-

ample of such a graph is given on Figure 6.4: because of the splitting, it is composed

of only cliques of size six or less, but for the pre-colored nodes (machine registers),

which have more neighbors. These cliques correspond to instructions of the program.6

Affinities link the nodes that correspond to the same variable split into hundreds of tiny

live-ranges. Hence there is a lot of nodes with exactly two affinities: one towards the

“next” clique, and one towards the “previous” one. The structure of the initial program

can be visually guessed from the shape of the graph, with “chains” of cliques cor-

responding to instructions in a basic block, or branches corresponding to conditional

statements, as in the zoomed part of the figure.

A set of affinities between two cliques corresponds to a program point, i.e., a place

where shuffle code can be inserted if the colors do not match. Among these points,

some are obviously not useful in the context of coalescing. A point is said to be “un-

necessary” if there exists an optimal coalescing solution in which all the affinities of

this point are coalesced. We wanted a way to find, in Appel and George’s graphs,

the maximum number of unnecessary split points so that we could coalesce the corre-

sponding affinities right away. This would decrease the size of the graph and guide the

coalescing heuristics.

There is an easy condition under which it is safe—from an optimal point of view—

to coalesce an affinity: the idea is that, given an affinity 〈u, v〉, if its cost is greater than

the sum of all other affinities involving u, and if every neighbor of u is also neighbor of

v, it is always safe to choose to coalesce 〈u, v〉 in terms of cost of the coalescing. This

idea is close to George’s rule, but the condition on the weights guarantees optimality.

We will explain more formally this idea and extend it so that, in particular, it can cope

with affinities of unnecessary split points in the graphs from the Coalescing Challenge

.

6We are still a bit puzzled by this fact. We were expecting the instructions to be represented by two

intersecting cliques: the variables live in of the instruction and the ones live out. In their article, Appel and

George [2001] do sometimes have structures like these, because of register constraints imposing an argument

and result to reside in the same register. However, they still claim that, in the general case, there are only

cliques, maybe because they consider it is always possible to repair the coloring around instructions without

register constraints.

123

CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

Figure 6.4: Graph #001 of the Coalescing Challenge.

124

6.4. OPTIMAL RULES FOR COALESCING

x1

x2

x3

x4

y1

y2

y3

y4

z1

z2

z3

z4

n1

n2

w
5

w
1

w
2

w3

w
4

w

Figure 6.5: Optimal “clique” rule.

6.4.1 The optimal “clique” rule

George’s rule says that if all neighbors of x of significant degree—i.e., ≥ k—are also

neighbors of y, one can coalesce safely x and y—i.e., the graph will remain greedy-

k-colorable. It is easy to modify the rule as follows: if all neighbors of x are also

neighbors of y (not just the high-degree ones), and the weight of 〈x, y〉 is greater that

the sum of the weights of all the other affinities involving x, it is safe to coalesce 〈x, y〉,

i.e., there exists an optimal solution in which x and y are coalesced. Indeed, suppose

that x and y have a different color in col, an optimal solution: col(x) , col(y). It is

possible to change col(x) so that it is the same as y, and the overall cost of affinities not

coalesced decreases. We will not prove this more formally here as we will provide a

similar demonstration for the more general “clique” rule.

This “optimal” version of George’s rule does not allow the coalescing of unneces-

sary split points. Indeed, for such points, there are two cliques corresponding to the

instructions before and after the point: X containing variables x1, . . . , xn and Y contain-

ing y1, . . . , yn, and an affinity 〈xi, yi〉 for 1 ≤ i ≤ n. The rule cannot coalesce any of

these affinities because every xi has neighbors that are not neighbors of yi: all the x j

with j , i! So, unless n = 1, this optimal rule is useless.

However, we point out that coalescing all 〈xi, yi〉 at the same time is possible. The

conditions would then be the following. Consider two cliques X and Y such that all

neighbors of X are also neighbors of Y . If, for each affinity 〈xi, yi〉, the weight of this

affinity is greater that the sum of the weights of all the other affinities involving xi, it

is safe to coalesce at the same time all the affinities 〈xi, yi〉, i.e., there is an optimal

solution in which all 〈xi, yi〉 are coalesced.

In fact, the conditions can be relaxed, so that X and Y do not need to be cliques: X

being structurally a subgraph of Y is sufficient (see the second point in the definition).

Definition: Let us define two sets of nodes X and Y as follows. Let X = {x1, x2 . . . xn}

and Y = {y1, y2, . . . yn} such that:

• There is an affinity between each xi and yi: ∀i, ∃〈xi, yi〉 ∈ A (and (xi, yi) < E)

125

CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

• X is structurally a sub-graph of Y: ∀i, j, (xi, x j) ∈ E =⇒ (yi, y j) ∈ E

• Every neighbor of X is neighbor of Y: ∀i, (xi, z) ∈ E with z < X =⇒ (yi, z) ∈ E

Theorem 6.5 (“Clique” rule). Given two sets X and Y as defined above, there exists

a conservative coalescing in which every affinity of type 〈xi, yi〉 is coalesced, i.e., there

exists a coloring col in which ∀1 ≤ i ≤ n, col(xi) = col(yi).

Moreover, there exists one such coalescing that is optimal if:

∀xi ∈ X, w〈xi, yi〉 ≥
∑

〈xi,z〉, z,yi

w〈xi, z〉

We will first prove that it is feasible to coalesce all 〈xi, yi〉, then we will prove

that with the constraint on the weights of the affinities are sufficient to make it safe to

coalesce them.

Proof of feasibility. Let us define Gcoal, the graph obtained from G by merging every

node xi with the node yi. Since the greedy-k-colorable property depends only on the

interference structure of the graph, let us prove that Gcoal is a subgraph of G.7 It is

sufficient to prove that any merge does not create any new interference between nodes

of G \ X. Any such new interference would be created by merging an affinity 〈xi, yi〉

with (xi, z) ∈ E. Let us examine the different cases:

• if z ∈ X, then z = x j and by definition (yi, y j) already exists;

• if z ∈ Y , z = y j, and j , i, hence (yi, y j) already exists;

• else, (yi, z) already exists by definition of X and Y .

Hence the coalesced graph is a subgraph of the initial graph, which proves it is greedy-

k-colorable if G was greedy-k-colorable �

Now we will prove that the constraint given on the weights of the 〈xi, yi〉 guarantee

that there exists an optimal solution in which these affinities are coalesced.

Proof of optimality. The cost function of a coloring col is defined as :

ĉ(col) =
∑

〈x,y〉∈A















0 if col(x) = col(y)

w〈x, y〉 otherwise

Hence, we will be looking for a coalescing of minimum cost. Let col be an optimal

coloring—a coalescing of smallest cost—of G and X ⊆ X such that: ∀xi ∈ X, col(xi) ,

col(yi) and ∀xi ∈ X \ X, col(xi) = col(yi). Let col′ be the coloring such that ∀xi ∈

X, col′(xi) = col(yi) and ∀z < X, col′(z) = col(z).8 col′ is a valid coloring: if xi ∈ X

and z is a neighbor of xi, either z < X hence z is neighbor of yi, or z ∈ X hence z = x j

and col′(x j) = col(y j) , col(yi) = col′(xi). The cost of col′ is the following:

ĉ(col′) = ĉ(col) + affinities de-coalesced − affinities coalesced

= ĉ(col) + D −C

7In fact, Gcoal = G \ X
8The colors of the xi that do not match those of the yi are changed so that they do.

126

6.4. OPTIMAL RULES FOR COALESCING

We want a condition that ensures ĉ(col′) ≤ ĉ(col), hence a condition under which

D ≤ C. Since {〈xi, yi〉 | xi ∈ X is a subset of the newly coalesced affinities,

∑

xi∈X

w〈xi, yi〉 ≤ weight of newly coalesced affinities

which gives us a lower bound: lb(C) ≤ C.

As for D, we will consider the worst case. Let friends(z) be the set of affinity-

neighbors of z, i.e., ∀z′ ∈ friends(z), 〈z, z′〉 ∈ A. For a given xi, the worst case hap-

pens when xi was optimally coalesced with the biggest subset (in terms of weight) of

friends(xi) \ {yi}, and is now de-coalesced from all of them. The best coalescing of xi is

the biggest weighted interference-independent set of friends(xi) \ {yi}, denoted IS (xi),

where the weight of z in this set is w〈xi, z〉.

D ≤ worst-case de-coalescing of all xi ∈ X ≤
∑

xi∈X

IS (xi)

which gives us ub(D), an upper bound on D. Hence lb(C) ≥ ub(D) is a sufficient

condition since:

C ≥ lb(C) ≥ ub(D) ≥ D

So the condition writes:

∑

xi∈X

w〈xi, yi〉 ≥
∑

xi∈X

IS (xi)

This is ensured by the following condition:

∀xi ∈ X, w〈xi, yi〉 ≥ IS (xi)

Since X is defined only for a given optimal coloring solution, and can be any subset of

X, this condition must be ensured for all xi ∈ X. An easier condition is found by using

an upper bound of IS (xi) such as:

∀xi ∈ X, w〈xi, yi〉 ≥
∑

z ∈ friends(xi)\{yi}

w(xi, z)

Since an independent set contains at most all the elements of the initial set, and X

contains all elements of X, this last condition clearly implies the previous one. �

It is easy to improve this naı̈ve condition with a simple condition such as, if z, z′ ∈

friends(xi) and (z, z′) ∈ E, then add only max
(

w〈xi, z〉,w〈xi, z
′〉
)

to the sum instead of

the two weights.

We now give a pseudo-code for the clique rule, Function Clique rule, page 126.

The idea is to build incrementally the X and Y sets, while checking if affinities fulfill

the conditions. We start from an affinity 〈x, y〉, while we still do not know the sets X and

Y . We know from the clique rule that X must contain every neighbor of x not neighbor

of y. These must have an affinity with neighbors of y (that are not already “chosen”

by another node of X), else the clique rule cannot apply (Line 15). These neighbors

must also fulfill the clique rule, so they are added to the “to test” set. Finally, the check

on the weight of 〈x, y〉 is performed and, if satisfied, the x node is declared “OK” and

127

CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

the process can be iterated with the remaining affinities of the test list. If every affinity

fulfill the weight condition, the “X OK” list after the loop contains exactly the X set of

the clique rule (and the “Y set” list contains Y), and affinities of the “to coalesce” list

can be safely coalesced.

Function Clique rule(G, 〈u, v〉)

Data: Interference graph G = (V, E), affinity 〈u, v〉.

Output:  if coalescing 〈u, v〉 can be done by the clique rule.

Result: If returning , all affinities of the clique rule are merged in G.

/* Initialize data. */

X OK← ∅ ;1

Y set← ∅ ;2

to coalesce← ∅;3

to test← {〈u, v〉} ;4

while to test , ∅ do5

let 〈x, y〉 ← pop to test;6

check← neighbors of x \ neighbors of y;7

check← check \ X OK;8

while check , ∅ do9

let v← pop check;10

if ∃w ∈ {neighbors of y} \ Y set such that 〈v,w〉 exists then11

/* Affinities between neighbors of x and neighbors of y must be tested. */

to test← to test ∪ {〈v,w〉};12

Y set← Y set ∪ {w} ;13

else14

/* One neighbor of x has no affinity with a neighbor of y. */

return ;15

/* Check the affinity has a larger cost than the sum of all other affinities of x. */

sum← 0;16

foreach 〈x, y′〉 | y′ , y do17

sum← sum + abs(weight〈x, y′〉);18

if sum > weight〈x, y〉 then19

return 20

else21

X OK← X OK ∪ {x};22

to coalesce← to coalesce ∪ 〈x, y〉;23

foreach 〈x, y〉 ∈ to coalesce do24

merge x and y in G ;25

return 26

6.4.2 The “terminal” rules

We will now present another case of optimality. The idea is that whenever there are

two affinities 〈x, y〉 and 〈x, z〉 and an interference (y, z) ∈ E, it will never be possible

to coalesce both affinities. Then, if either y or z is what we call a “terminal” node,

i.e., it has only one interference and only one affinity, then it will always be possible to

coalesce one of the two affinities, hence it is possible to “simplify” the affinity. Indeed,

the idea is that, for instance if z is terminal, as in Figure 6.6, the choice whether 〈x, z〉

will be coalesced or not can be postponed until we know if 〈x, y〉 is. To do that, the

128

6.4. OPTIMAL RULES FOR COALESCING

weight of 〈x, y〉 can be changed to reflect the fact that coalescing it will prevent the

coalescing of 〈x, z〉. As such, affinities can become of negative weight, meaning it is

better not to coalesce these affinities.

x

x′

y

z

y’

w
′

w simplification of 〈x, z〉
x

x′

y

z

y’

w−w′

Figure 6.6: Simplify affinity 〈x, z〉 if z is terminal.

Definition 6.6. We call a node z terminal iff it has exactly one affinity 〈x, z〉 and one

interference (y, z) ∈ E, with x , y.

It should be noted that nodes with only one affinity (and no interference) can be

coalesced right away, and nodes with only one interference (and no affinity) are not of

much interest in terms of coalescing.

Theorem 6.7 (“Terminal” rule). Let x, y and z be such that y and z interfere, x has two

affinities with y and z: 〈x, y〉 and 〈x, z〉 of weights w and w′ in G. If z is terminal, let

G′ be the graph obtained by removing 〈x, z〉 in G and changing the weight of 〈x, y〉 to

w − w′. If w′ > 0 and col′ is an optimal conservative coalescing solution for G′ then:

• if col′(x) = col′(y), then the coloring col = col′ is an optimal coalescing solution

for G.

• if col′(x) , col′(y), then the coloring col such that col(z) = col′(x) and col(u) =

col′(u) for u , z is an optimal coalescing solution for G.

Note that we impose the constraint that w′ must be strictly greater than zero. Indeed,

if w′ ≤ 0, it is best not to coalesce x and z. Since z has only one coloring constraint,

it is always possible not to coalesce 〈x, z〉 if there is at least three colors. In this case,

〈x, z〉 can be replaced by an interference in the graph. This protects us from a perverse

effect where both w and w′ would be negative and w−w′ becomes positive: this would

trick the coalescing algorithm into thinking it is good to coalesce 〈x, y〉 while it is of

course better not to do it (if possible).

Proof. Since z is terminal, the only coloring constraint of z is having a color different

that the one of y. In the first case col′(z) , col′(y) since col′ is a valid coloring of G′,

hence it is also a valid coloring of G. In the second case, col(z) = col′(x) , col′(y)

hence col is a valid coloring of G.

Now, for the optimality. Let us compute the cost of the solution col on G, ĉ(col)(G),

depending on ĉ(col′)(G′). In the first case, where col′(x) = col′(y), ĉ(col)(G) =

ĉ(col′)(G) = ĉ(col′)(G′)+w′ since every affinity in G is in the same state as in G′ except

〈x, z〉, which is not coalesced. In the second case, ĉ(col)(G) = ĉ(col′)(G′)−(w−w′)+w =

ĉ(col′)(G′)+w′ since the affinity 〈x, z〉 is coalesced hence does not modify the cost, but

the affinity 〈x, y〉 which is not coalesced has a different cost in G′ than in G. Hence, in

both cases,

ĉ(col)(G) = ĉ(col′)(G′) + w′

129

CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

Consider colopt an optimal solution. There are two cases depending on whether

colopt chooses to coalesce 〈x, y〉 or 〈x, z〉. In both cases, colopt is obviously valid for G′.

Let us compute its cost for G′ depending on its cost on G:

• if colopt(x) = colopt(y), then 〈x, z〉 is not coalesced, but does not exist in G′:

ĉ(colopt)(G
′) = ĉ(colopt)(G) − w′

• if colopt(x) , colopt(y), then 〈x, y〉 is not coalesced:

ĉ(colopt)(G
′) = ĉ(colopt)(G) − w + (w − w′)

= ĉ(colopt)(G) − w′

Suppose now that col is not optimal for G, then

ĉ(col)(G) > ĉ(colopt)(G)

ĉ(col′)(G′) + w′ > ĉ(colopt)(G
′) + w′

ĉ(col′)(G′) > ĉ(colopt)(G
′)

This contradicts the optimality of col′ in G′. Hence col is an optimal coalescing for

G. �

When looking as particular graphs, we observed another case involving terminal

nodes. This is the case where both y and z are terminal nodes:

Corollary 6.8 (“Double terminal” rule). If y and z are adjacent and both terminal

edges, with affinities 〈y, x〉 and 〈z, x′〉, it is optimal to coalesce the affinity of greatest

cost if it is greater than zero.

Note: of course, if the two affinities have negative weights, none of them will be coalesced in

an optimal solution (if there is at least three colors).

Proof. Since y and z are terminal, they are disconnected from the rest of the graph in

terms of interferences. Hence, whatever the coloring of the rest of the graph, the only

restriction on these nodes is that they must have a different color, hence at least one of

the two nodes can have the same color as its affinity-neighbor (in fact, both of them

can unless col(x) = col(x′)). Hence, in any coalescing solution, at least one of the two

affinities can be coalesced. Moreover, if only one can be in the optimal solution, it is

best to choose the biggest one. �

In a sense, the “terminal” rule is not actually an optimal rule since it does not

optimally coalesce an affinity, but it still provides a way to simplify the problem without

giving up the optimality of the final solution. Using Theorem 6.7, one can devise a

strategy where affinities involved with a terminal node are simplified from the graph,

i.e., removed but placed on a stack. If the remaining graph can be optimally coalesced,

possibly using the “clique” or the “terminal” and “double terminal” rules again, the

simplified affinities are then popped from the stack (i.e., in the reverse order of their

simplification) and coalesced if possible. Then the final solution is also optimal. It

that case one should take care that the terminal rule can create affinities with negative

weights. Hence the condition on the weights for the clique rule should sum the absolute

130

6.4. OPTIMAL RULES FOR COALESCING

Figure 6.7: Graph #337 with apparent affinity webs. For more visibility, affinity edges

are drawn in solid black lines and interferences in grayed lines.

weights of the other affinities.9 If, during this strategy, the remaining graph cannot

be optimally coalesced, it can still be interesting to use then a heuristic, and pop the

affinities simplified by the terminal rule at the end.

However, as shown by the experiments in Section 6.5, while the “clique” rule is

really helpful, the conditions for the the “terminal” and “double terminal” rules to ap-

ply were never met in any of the 474 graphs of the Coalescing Challenge during our

conservative coalescing tests. Indeed, the condition that a node should have only one

interfering neighbor is very strong, and maybe the terminal rules should be tested after

some simplifications of nodes. Still, they are of some use in a purely aggressive strat-

egy, as explained in the next section and shown by our experiments, Section 6.5.5.2.

6.4.3 Using the optimal rules for aggressive coalescing

The optimal “clique” and “terminal” rules explained in the previous sections can be

applied for conservative coalescing as well as for aggressive coalescing. But for ag-

gressive coalescing, they can be relaxed as in this case there is no constraint on the

number of colors to be used. This means that the graph can be partitioned in different

“webs,” i.e., components connected by affinities. We use the term “web” as, in SSA

9The best possible coalescing for a node is then to be coalesced with all its affinity-neighbors of positive

weight, and with none of its affinity-neighbors of negative weight. The worst case is the contrary.

131

CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

Figure 6.8: Graph #105 after applying the optimal “clique” rule. There remains cliques

that “miss” one affinity to be coalesced by this rule.

terminology, a web is a set of variables linked by φ-functions.10 Figure 6.7 shows a dif-

ferent way of representing Appel and George’s graphs which emphasizes affinity webs

instead of cliques.

Indeed, in aggressive coalescing, there is no reason to coalesce x and y if they be-

long to different webs: there will be no gain in terms of affinities, and it could constraint

further coalescings. Hence, before applying optimal rules, a graph can be partitioned

into maximal connected component (affinity-wise), and independent work can be done

on each different connected component. Hence only interferences between two nodes

of the same web constrain the aggressive coalescing.

Moreover, the “terminal” rule has now the ability to disconnect connected compo-

nents. This can indeed happen if the cost of the simplified affinity is larger than the cost

of the affinity that remains. In that case, the new affinity has either cost zero (i.e., use-

less to coalesce) or a negative cost (better not to coalesce it). If this affinity is a isthmus

(or “cut-edge,” i.e., an edge that disconnects a component if it is removed), it will never

be beneficial to coalesce such an affinity so it can be removed from the graph. Beware

that if the affinity is not an isthmus, it is wrong to remove it from the graph even if it

has a negative cost. Indeed, there could be a path of affinities that would still “want”

to coalesce x and y, its two extremities. In this case, the information that by coalescing

them one will “loose” something must be present: indeed, this means that it will not be

possible to coalesce the simplified affinity too.

To conclude, the terminal rules did not work for conservative coalescing because

the conditions were too strong. In the context of aggressive coalescing where clique and

terminal rules are alternated, the separation of connected components in webs makes

the conditions for terminal rules much more probable.

6.4.4 Disclaimer

We recently found a technical report by Blazy and Robillard [2008] presenting a rule

very similar to our “clique” rule. They also use their rule in the context of the Coalesc-

10For instance, under conventional SSA (cSSA), all variables of a web can be renamed with the same name,

i.e, coalesced. But we are not under cSSA in our case.

132

6.5. EXPERIMENTS AND EVALUATION

ing Challenge, to optimize the ILP formulation of Grund and Hack [2007]. It is not very

surprising that by looking at the shape of the graphs, they developed a similar rule, as

it is visually clear that many affinities between cliques are unnecessary. They managed

to treat one more case by remarking that, on some graphs, not all nodes of two consec-

utive cliques are linked by affinities in a one-to-one manner: sometimes, there is one

node on each consecutive clique that does not have any affinity, as shown on Figure 6.8.

With our current rule, we will not allow to merge to such consecutive cliques, while it

is still optimal. In fact, this can be done in our formulation: it is possible to consider

that these nodes are linked by affinities of null weight, and then our clique rule would

find them. This would require modifying Function Clique rule at Line 15.

Another difference is that, in their algorithm, they restrict themselves to cliques

while we included in our rule the possibility that the components we want to coalesce

together are not cliques. In our formulation, the restriction is just that one component

should be structurally a subgraph of the other, plus, they are allowed to have neigh-

bors, provided they are common to the two components. This could be useful if the

components of the split graphs were each constituted of a union of two cliques, as we

would have expected the graphs to be, or to coalesce two cliques that have common

pre-colored neighbors.

6.5 Experiments and evaluation

6.5.1 Methodology

Coalescing is challenging for graphs with many affinities and high register pressure. In

particular, a graph-based spill-everywhere algorithm leads to a too simple coalescing

problem. It this thus difficult to find a good set of benchmarks, hard enough to solve,

large enough, to experiment and evaluate various strategies in detail. The Coalesc-

ing Challenge of Appel and George [2000] provides such an interesting collection of

graphs on which state-of-the-art coalescing algorithms were tested. Also, Grund and

Hack [2007] managed to give optimal solutions for all but three graphs using ILP, prob-

ably thanks to the low number of registers (six). We use them to compare the different

heuristics, either optimistic or conservative. We point out that, to measure the quality

of coalescing algorithms, it is more fair to work on such a collection of graphs than to

measure execution time of codes for some platform: the latter gives results that are bi-

ased by many factors and are not reproducible, and anything can be claimed. Here, we

measure the number (or weight) of coalesced affinities, i.e., of copies that are removed,

which is always, in general, a benefit for the generated code. However, we will also see

in Chapter 8, Section 8.2.2.2, preliminary experiments of how our algorithms perform

under real conditions.

Benchmarks suite. In their spill algorithm, Appel and George performed live-range

splitting at every program point. Hence the corresponding control flow graphs can be

easily rebuilt. There are 474 graphs that correspond to regions (maybe procedures?)

of the Standard ML of New Jersey benchmark suite, compiled for a Pentium with 6

general-purpose registers. On average, there are ≈ 26.7 basic blocks per region, with a

maximum of ≈ 1090, and ≈ 231 instructions, with a maximum of ≈ 8300. Notice also

that the architecture has many instructions with register constraints, which constrains

the graph coloring—without necessarily simplifying it. This collection of graphs is

thus interesting and representative.

133

CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

Implementation. For our experimentations, we used a standalone program specially

developed to coalesce Appel and George’s graphs. It is implemented in Objective

Caml,11 compiled with version 3.10.2. It consist of more that five thousand lines of

code (and two thousand of comments). Experiments were done on an Intel Xeon run-

ning at 2.40GHz. Time measurements would probably be better if our algorithms were

written in C, so the important time measure is the relative speed of execution between

different algorithms.

Performance criterion. As the graphs correspond to live-ranges that are split at each

program point, there are a large number of affinities in the graphs (compared to stan-

dard graphs where affinities usually correspond to original affinities, application binary

interface (ABI) constraints, or possibly splits by SSA). Most of those are straightforward

to coalesce, in particular, all those coalesced by the optimal “clique” rule. Therefore,

it does not make sense to evaluate the quality of heuristics using a ratio with the total

weight of initial affinities; it is more significant to focus on the affinities that are hard

to coalesce, i.e., to use a ratio with the affinities that are not coalesced.

For that, to evaluate the quality of an heuristic h, we compute, for each graph, the

cost ĉ(h) of the coalescing given by h, i.e., the sum of the weights of the affinities not

coalesced (remaining affinities):

ĉ(h) =
∑

a∈Nc

w(a) where Nc = {a = 〈x, y〉 ∈ A | a is not coalesced by h}

This cost in compared to the cost ĉ(opt) of the optimal solution opt (provided by Grund

and Hack).

q(h) =
ĉ(opt)

ĉ(h)
ĉ(opt) = cost of optimal coalescing

This gives us a performance ratio q(h) ≤ 1 that measures the quality of a heuristic,

i.e., the percentage (in weight) of the remaining affinities with h that could still be

coalesced.

For example, if a heuristic h reaches 0.8, it means that, in the optimal solution

opt, there are 20% (in weight) less affinities than for the heuristic h. The traditional

performance ratio when evaluating algorithms is ĉ(h)/ĉ(opt). The inverse, q, gives us

a quick way to compare two heuristics h1 and h2 using q(h1) − q(h2). For instance, if

q(h1) − q(h2) = 0.1, we say that h1 improves h2 by 10%.

Note: actually, to get an exact percentage when q(h1) ≥ q(h2), we should compute 1 −

ĉ(h1)/ĉ(h2), but 1 − ĉ(h1)/ĉ(h2) = 1 − q(h2)/q(h1) = (q(h1) − q(h2))/q(h1) ≥ q(h1) − q(h2)

and 1 − ĉ(h1)/ĉ(h2) ≈ q(h1) − q(h2) when q(h1) ≈ 1. Thus, q(h1) − q(h2) is a conservative

estimation, h1 actually improves h2 by a bit more than 10% in our example.

Figures 6.9 and 6.10 give the average value of q(h) for each heuristic. We also give

a “weighted” ratio where graphs are weighted by their number of instructions so that

bigger graphs (such as #139), usually more difficult to coalesce, get more importance

than very small ones (such as #098). As we will see, both average ratios lead to the

same conclusion, i.e., if h1 improves h2 with one ratio, it also improves it with the other

ratio. For this reason, and because we believe the weighted ratio is a better indicator of

the quality of a heuristic, we refer to the weighted version when giving any numbers

(percentages) in the discussions.

11http://caml.inria.fr/ocaml

134

http://caml.inria.fr/ocaml

6.5. EXPERIMENTS AND EVALUATION

Appel&
George

IR
C

our IR
C

BG

(ex
tended IR

C) Brute

Chordal

0.4

0.5

0.6

0.7

0.8

0.9

optimal

R
at

io
O

p
ti

m
al
/H

eu
ri

st
ic

Cost

Weighted cost

0

50

100

150

200

250

S
ec

o
n

d
s

Time

Figure 6.9: Comparison of conservative heuristics.

Note on affinity ordering. The order in which affinities are considered for coalescing

is crucial, and it is a good idea, though not optimal, to consider them in decreasing order

of their weight, so that bigger affinities get coalesced first. However, many affinities

have the same weight, and some total ordering must be chosen. This is never mentioned

in the literature but, as we will see, this ordering choice has a strong impact on the

quality of the results. It seems reasonable to guide the ordering using, for example, the

knowledge of the program structure or some graph properties (e.g., node degrees). We

will discuss several orderings in Section 6.5.4. Before, to provide reproducible results,

we chose a deterministic ordering: in case of equal weight, we use the order in which

affinities appear in the graph description file (“first seen, first taken”). This ordering

is not arbitrary since it exactly follows the CFG of the original program. Notice that

using another ordering does not change the overall relative comparisons of the different

schemes, except for the external results—given by Appel and George [2000] on the

Coalescing Challenge web page—for which we do not know the ordering that was

used. Nevertheless, we also give the results for our implementation of these schemes.

6.5.2 Conservative heuristics

Figure 6.9 shows the quality of the conservative heuristics for the criterion q(h). The

optimal has value 1, hence the higher a heuristic, the better. Each heuristic is evaluated

by the average on all graphs—left column, blue and labeled “Cost”—, the weighted

average on all graphs—right column, red and labeled “Weighted cost”—, and, when

available, i.e., for our implementations, the overall time (middle bar, yellow and labeled

“Time”) spent by the heuristic on all 474 graphs.

135

CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

The first results are the performance of Iterated Register Coalescing as given on

the Coalescing Challenge web page [Appel and George, 2000]. The second heuristic

is our implementation of IRC, which gives 10% better results, although it is the same

algorithm. Note that it may be due to the use of a different affinities ordering, an

information that was not provided by the authors. The third heuristic, BG, uses the

rules of Briggs and of George, extended to any type of nodes (pre-colored or not) as

explained in Section 6.2. This simple change improves by 15% the quality of our

IRC implementation, but at the price of a (roughly) 3× slowdown. Finally, the last

heuristics, Brute and Chordal, implement both Function Brute Force Improved

(page 106), with an additional call to Function Chordal Coalescing (page 112) for

the second, as described in Section 6.2. The Brute heuristic improves BG by 5%, hence

it is 20% better that standard IRC—30% if compared to the results provided by Appel

and George [2000]—while being only 1.7× slower.

For our developments, we started with an implementation of IRC and experienced

that the effort to extend it into an implementation of Brute was small, making this

improvement worthwhile. Also, we measured that, without the improvements proposed

in Section 6.2.1, i.e., with a naı̈ve use of Function Is kGreedy (page 102) for each

tested affinity, the heuristic Brute processes all graphs in more than one hour instead

of 135 seconds: it is actually 10× slower on average and more than 30× slower on

the biggest graphs, which are responsible for about three quarters of the time spent.

Finally, the chordal rule added in Chordal only improves Brute by around 1%, while

being more complicated to implement. However, the execution time overhead is not

significant, so it is a “free” percent for whoever needs it and is ready to implement it.

6.5.3 Optimistic heuristics

Figure 6.10 shows the quality of the aggressive heuristics. The first heuristic is the

variant of Park&Moon optimistic coalescing developed by Appel and George [2001]

and whose results are, again, provided on the Coalescing Challenge web page. The

next three heuristics are our (unsuccessful) attempts to reproduce these results: these

are the heuristics 1, 2 and 3 of Section 6.3, i.e., Appel&George type, Park&Moon

type, and our “iterated” version of Park&Moon. Strangely, they give results worse by

10% to 25%. The fifth heuristic, De-coalescing, uses our de-coalescing scheme,

after an aggressive part, as explained in Section 6.3. It alone gives results of the same

quality as the optimistic provided by Appel and George, but requires more time than

our implementation of optimistic coalescing. However, our scheme produces a greedy-

k-colorable graph and was designed to enable a conservative coalescing post-pass. So,

we tried, after De-coalescing, two conservative techniques, the cheapest and less

aggressive one, i.e., Briggs’s and George’s rules (BG), and the most aggressive one, our

chordal rule (Chordal). These rules use a little more time and improve the results by

2.5%. This is not much compared to Appel&George version of optimistic coalescing

(first column), but it is 13% better than our implementations of optimistic coalescing,

with a 2× slowdown. According to these results, it appears that, after our de-coalescing,

Briggs’s and George’s rules are enough to eliminate many useless de-coalescings.

Compared to the conservative heuristics, the best optimistic coalescing scheme

equals the best conservative one (the unweighted average is 2% better with optimistic

coalescing) and it is about 30% faster. Also, the results are just slightly better than

Appel&George version of optimistic coalescing. However, the next section shows that

far better results can be obtained, especially with conservative coalescing, thanks to

different (so, better) affinities orderings.

136

6.5. EXPERIMENTS AND EVALUATION

Appel&
George

optim
ist

ic
our A&G

opt.

our Park&Moon

our ite
rated P&M

de-coalescing

de-coalescing +
BG

de-coalescing

+
Chordal

0.4

0.5

0.6

0.7

0.8

0.9

optimal

R
at

io
O

p
ti

m
al
/H

eu
ri

st
ic

Cost

Weighted cost

0

50

100

150

200

250

S
ec

o
n

d
s

Time

Figure 6.10: Comparison of aggressive heuristics.

6.5.4 Ordering the affinities

In Section 6.5.1, we mentioned that the ordering of affinities of equal weight has a

strong impact on the quality of the results. The results of Sections 6.5.2 and 6.5.3

correspond to a particular canonical ordering (order of the program, basically). We

now show that, with an adequate ordering of the affinities, our algorithms can perform

better. All the orderings we tried consider affinities by decreasing order of weights,

since it is usually better, though of course not optimal, to first coalesce affinities that

cost more. The tie-breakers we tried in case of equal weights are the following:

1. Program: the affinity appearing first in the program, i.e., in the graph description

file, gets the priority.

2. Reverse: the affinity appearing last in the program, i.e., in the graph description

file, gets the priority.

3. Lexico: first, let us define an ordering on the nodes. For initial nodes, x < y iff

x appears before y in the graph description file—i.e., the identifier of x in this

file (an integer) is smaller than the identifier of y. For a coalesced node x, its

identifier is set to be the one of the smallest node coalesced with x. In that case,

let xs and ys be the smallest of the nodes coalesced respectively with x and y,

then x < y iff xs < ys.

Note: this defines a total ordering since every node has initially different identifier in

the graph description file, which is an integer hence < defines a total ordering. Then,

any coalesced node has a unique identifier since a node cannot be coalesced with two

different nodes.

137

CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

x

u

z

y

100

101

100

〈x, z〉 chosen first

bias affinities

α = 1
10

x

u

z

y

90

81

90

〈x, y〉 and 〈x, u〉 chosen first

Figure 6.11: Motivation for biased affinity weights.

The affinity 〈x, y〉 then gets priority over 〈x′, y′〉 iff (x, y) < (x′, y′) using the

lexicographic ordering based on the node ordering, i.e., iff x < x′ or x = x′ and

y < y′.

While using custom ordering, it is important to update carefully the affinities when

the graph changes to keep the benefit of using a good ordering. If 〈x, z〉 and 〈y, z〉 are

two affinities, and x is merged with y to form the node xy, the two affinities are replaced

by 〈xy, z〉 with weight w〈x, z〉 + w〈y, z〉. In that case, the ordering must be updated: for

Program (resp. Reverse), the order of 〈xy, z〉 is the minimum (resp. maximum) order

of 〈x, z〉 and 〈y, z〉; and Lexico already defines the behaviour for coalesced nodes.

Biased affinity weights. We also modified the global ordering of affinities because

of the following remark. Suppose 〈x, y〉 and 〈x, z〉 are two affinities such that y and z

interfere (see Figure 6.11). Coalescing both affinities is not possible as coalescing one

constrains the other. When coalescing 〈x, y〉, w〈x, y〉 is saved and w〈x, z〉 is lost. This

becomes a problem if there is another affinity 〈x, u〉 where z and u interfere. If 〈x, z〉

has a weight even slightly greater (say 101 versus 100), it will be chosen first, and this

will prevent coalescing the two others. Here, the final cost will be 200 while choosing

to coalesce 〈x, y〉 and 〈x, u〉 leaves a cost of 101. To avoid this situation, we devised

a strategy called “bias.” When applied, our algorithm works with modified weights,

computed from the initial weights. Of course, the final cost of the remaining affinities

is still computed using the initial weights. For each affinity a, we initialize wbias(a) to

w(a). Then, whenever there is a triangle x, y, z such as in Figure 6.11—i.e., where y

and z interfere and the two affinities 〈x, y〉 and 〈x, z〉 exist—we subtract α · w(x, z) to

wbias〈x, y〉 and α · w〈x, y〉 to wbias〈x, z〉. We fixed α = 1
10

, arbitrarily, which gives the

desired behavior.

Results. Figure 6.12 shows the results of our best optimistic and conservative al-

gorithms with different affinities orderings. The first two columns are two optimistic

versions based on the algorithm of Park and Moon [2004]: the one provided by Appel

and George, and the best we managed to reproduce (a “Park&Moon type” (see Sec-

tion 6.3), using the Lexico ordering and bias), which is still not as good. The next

three columns show the conservative results. We displayed only results for Chordal,

which performs best, but the effects of ordering are similar on the other conservative

techniques (in particular Brute, which has equivalent results). Here, using the Re-

verse order instead of the normal program order greatly improves (by 10%) the quality.

When using bias, both Lexico and Reverse orderings give the best overall results. This

means that the optimal solution can improve the result only by 12%, and this is more

138

6.5. EXPERIMENTS AND EVALUATION

Biased affinity weights

A&G
optim

ist
ic

our best
P&M

program

rev
erse

program
lex

ico

program

rev
erse

program
lex

ico

0.4

0.5

0.6

0.7

0.8

0.9

optimal

R
at

io
O

p
ti

m
al
/H

eu
ri

st
ic

based on Park&Moon’s optimistic

conservative chordal

de-coalescing+BG

Figure 6.12: Quality results for different affinity orderings.

139

CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

than 15% better that Appel and George’s version of optimistic coalescing, but for a 3×

slow-down. Finally, the last three columns show the effects of ordering on our best op-

timistic technique, De-coalescing followed by BG. So far, we point out that it is not

clear which ordering works best (in particular Reverse) and why. This is an important

open question.

To conclude, for the optimistic strategies based on Park and Moon’s algorithm and

for the optimistic strategies based on our de-coalescing technique, the affinity ordering

plays a role, but definitively not as important as for our conservative techniques. The

same holds for bias. Our interpretation is that the aggressive part of optimistic-like

schemes may coalesce the wrong affinities, and since it is aggressive, it will coalesce

them whatever the ordering is. The current de-coalescing phase is then unable to decide

to de-coalesce the “bad” nodes created. To confirm these doubts, we ran the following

simple experiments: on the one side, Brute only, and on the other side, Brute followed

by aggressive coalescing, then de-coalescing, then Brute again. The second strategy

is more that 5% worse than the first one. This means that, among the affinities not

coalesced by Brute, the aggressive part chooses to coalesce some that are not de-

coalesced later: instead, some nodes created by merges in the first phase of Brute are

de-coalesced. This shows it is quite difficult in an optimistic strategy to undo properly

the bad effects of aggressive coalescing, i.e., the fact that it does not take colorability

into account.

6.5.5 Using the optimal “clique” and “terminal” rules

6.5.5.1 Use of the “clique” rule

As explained in Section 6.4.1, the “clique” rule is able to coalesce affinities of trivially

unnecessary split points in the program. By applying this rule (in its conservative

version) repeatedly on a graph from the Coalescing Challenge, one gets an idea of how

many split points where interesting for coalescing in the program. We did it on all the

474 graphs, and compared the number of nodes and affinities in the resulting graphs to

these numbers in the original graphs. Figure 6.13 shows the distribution of the ratios

for affinities and nodes using a box plot. For most of the graphs, there is about three

to four times less nodes and between three to five times less affinities after applying

the “clique” rule. This means that no more than about one third of every possible split

point in a program is potentially interesting for inserting shuffle code. This is still a lot,

and makes us think that SSA split points, which are in a far fewer number, are probably

not enough for a coloring heuristic that needs to insert permutations of colors at split

points to avoid spilling. Better split points might be found inside basic blocks, and not

just on the incoming edges of basic blocks.

What are the effect of using the clique rule during coalescing? There are two kinds

of improvements, both for the incremental conservative coalescing approaches. First,

the clique rule improves the speed of coalescing. For the Chordal scheme, we man-

aged to lower the time for coalescing all graphs from 135 seconds down to only 57

seconds, making it more competitive in time to optimistic-like strategies. Indeed, the

aggressive pre-pass of such strategies greatly speed up the process, while incremental-

like strategies suffer from a really high number of affinities. The clique rule manages

to find rapidly sets of affinities to coalesce, more quickly than the local rules of Briggs

and George since, at about the same price, it can coalesce more than one affinity at a

time.12 Moreover, if the clique rule is used to create a smaller graph description file

12For an affinity 〈x, y〉 between two 6-cliques, Briggs and George check the degree of 12 nodes. The clique

140

6.5. EXPERIMENTS AND EVALUATION

Affinities Nodes

#
F

in
al

#
In

it
ia

l

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Figure 6.13: Graph size reduction after using “clique” rule: the y-axis is the ratio

between the final and the initial number of affinities or nodes.

beforehand, the memory print of the interference graph is much smaller when doing

coalescing, which reduces significantly the processing time for very big graphs. For

instance, it takes 14 seconds to coalesce #139 using the clique rule followed by the

Chordal scheme, and only 10 seconds if using the clique rule, writing to a new file,

then applying Chordal to the new (smaller) graph (1.4× faster).

Second, the clique rule improves the quality of the resulting coalescing: the best

Chordal scheme on the orderings tried is now 2% better than the previous one. This

is a good news and means that our brute algorithm will not find necessarily find the

“unnecessary” splitting points. On worse orderings, the clique rule can improve by up

to 7% the results of the Chordal scheme. Thus, it seems that coalescing first affinities

that are safe from a cost point of view reduces later errors when our heuristic tries

affinities in a not-so-good order.

As for the optimistic approaches, the clique rule does not improve them as it did for

the conservative ones. All affinities coalesced by the clique rules can also be coalesced

by the aggressive phase, only faster since it does not have to perform the check on

the weights of affinities. Hence using the clique rule makes our optimistic algorithm

run more than 2× slower. We did not observe such a slowdown when creating new

graph description files: in this latter case, the whole coalescing is faster than before,

taking also about 55 seconds instead of the initial hundred of seconds. This makes

us think that the de-coalescing phase of the former experiment probably takes a lot of

time de-coalescing affinities coalesced by the clique rule (these can be cheaper than the

others which are coalesced in decreasing order of weights), which is obviously useless.

Concerning the quality of the coalescing, it does not help whenever the ordering was

already the best. However, as in the conservative case, it also helps whenever the

affinity ordering is not very good. This confirms our thought that the clique rule helps

reducing the disadvantages of having a bad ordering of affinities with equal weight.

rule also traverse 12 nodes but in the end, manages to coalesced 6 affinities at a time, making it about 6 times

more effective.

141

CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

6.5.5.2 Use of optimal rules in aggressive coalescing

In the context of conservative coalescing, the “terminal” and “double terminal” rules

were never used. This is not a big surprise since it would require one variable (the

terminal node) to be simultaneously alive with at most only one other variable. But

originally, we thought of this rule while working on aggressive coalescing, in which

case it is possible to separate the graph in “webs,” as explained in Section 6.4.3, and

then candidates to be terminal nodes must have at most one neighbor to which there

exists a path of affinities (because they are in the same connected component in terms

of affinities). In this aggressive context, the terminal rules are used and the following

table shows the statistics:

263 coalesced by “double terminal”

1,230 simplified by “terminal”

954 simplified and coalesced by “terminal”

91 coalesced by “clique” thanks to “terminal” rules

3.57 · 105 coalesced by “clique”

As expected—because the requirements are stronger—the “double terminal” rule

is less used that the “terminal” rule. Since 1,230 affinities were simplified by the “ter-

minal” rule, 2,460 affinities were in fact concerned (counting the affinities that remains

in the graph), and in about 3/4 of the cases, the simplified affinity is the one that is

coalesced in the end. But keep in mind that the bias was set towards such results since,

with affinities of equal weight, the remaining affinity has cost zero and hence has few

chances of being coalesced (the only possibility being that another path of affinities

is completely coalesced). The last line serves as a comparison and shows that the

“clique” rule is much more used than the terminal rules. Another experiment shows on

the previous line that using the terminal rules “activates” some more possibilities for

the clique rule, however, they are in very few number.

In terms of quality, we do not have the optimal solutions available for comparison.

We present the total cost of the affinities not coalesced summed over all 474 graphs

on the table below. One can see that separating affinities in webs is important for

aggressive coalescing, but, as expected, the terminal rules are not very useful. The

naı̈ve strategy is the one used in our optimistic strategies. It coalesces affinities one by

one as long as the two extremities do not interfere.

Cost Aggressive strategy

100.0% 30717277 Naı̈ve

97.0% 29793964 Clique + naı̈ve

90.4% 27769320 Clique with webs + naı̈ve

90.35% 27754404 Clique and terminals with webs + naı̈ve

6.5.6 Quality conclusion of the experiments

In conclusion, without a better ordering for aggressive coalescing, or a better de-

coalescing part, our optimistic techniques do not reach the quality of our conservative

heuristics, Brute or Chordal. They indeed work better than the other techniques, in

other words, the non-conservative decisions taken by aggressive coalescing are hard

to repair in the de-coalescing phase, compared to an advanced conservative approach.

In past studies, optimistic coalescing appeared better than conservative coalescing be-

cause Briggs’s and George’s tests are far too conservative, even in an iterated frame-

142

6.5. EXPERIMENTS AND EVALUATION

work. These are not the results we were expecting. We used to believe that an aggres-

sive strategy had better chances, as examples like the “diamond” graph of Figure 5.6

in the previous chapter let us think. But now, after working on both conservative and

optimistic strategies, we think that it is much easier to guarantee that coalescing an

affinity does not make a graph non greedy-k-colorable, than to find good indicators

that a particular de-coalescing will help a graph to become greedy-k-colorable again.

Indeed, in the latter case, it is hard to know where and why the colorability property

was lost, while in the former case, one starts with a graph that already has the property

we are interested in.

6.5.7 Inside the Chordal scheme

We end our experimental study with a deeper analysis of our most advanced conser-

vative technique, Chordal, with a pre-phase using the “clique” rule, analyzing which

rule decided to coalesce the affinities and the time it needed to take the decision.

In this scheme, affinities are first coalesced optimally (with regards to the final cost)

by the clique rule, then, affinities are coalesced either by the BG rule, by the Brute rule

if BG fails, or by the final Chordal rule if Brute fails. To evaluate the quality of these

different rules, we implemented an “exact” conservative test using ILP: if the “path

search” of Chordal fails on the remaining graph simplified by Brute, the low number

of nodes (usually between 10 and 40) allowed us to check, exactly, if there exists a

coloring of this remaining graph such that the affinity being tested can be coalesced. If

such a coloring exists, the two extremities of the affinity and every other node with the

same color are merged in the graph, provided that the resulting graph is still greedy-k-

colorable.13

Compared to a pure Chordal, this strategy changes the affinities that are finally

coalesced, but can still give an interesting view of the relative performance of each

coalescing rule. The double pie chart in Figure 6.14 analyzes which rule was activated.

The inner pie shows what happened to the 376,496 affinities of all 474 graphs. The

clique rule first coalesced 71.5% of them, then the BG rules managed to coalesce 26%,

and 0.5% were coalesced by Brute or Chordal, while the remaining 2% were not

coalesced. This is the reason why Chordal and Brute remain fast. The outer pie clas-

sifies the 9406 (2.5%) affinities not coalesced by the clique or BG rules. Our heuristics

achieve 19%: Brute coalesced 1524 affinities (16%) and Chordal 305 more (3%).

Our ILP test found that 309 affinities (3%) could have been coalesced but only two

third of them (197) led to a greedy-k-colorable graph. For 1127 affinities (12%), there

was no coloring, and the remaining 6141 (66%) were constrained by other affinities

and never tested. In comparison, the optimal solution (although optimized for weight

and not number of affinities) leaves 5632 uncoalesced affinities (60%), which means

there are 40% of “hard-to-coalesce” affinities. Of these, Brute + Chordal coalesce

nearly half (19% to 40% is 48%), and (6141 + 1127 − 5632)/(9406 − 5632) = 43%

of them cannot be satisfied even with an optimal incremental conservative technique,

unless affinities are chosen in a different order. To conclude, this proves that Brute and

Chordal perform quite well since they coalesce 19% of all the affinities not coalesced

by clique or BG, and an optimal incremental technique could coalesce at best 22%.

Surprisingly, for every affinity coalesced by Chordal, the remaining graph after

simplification was an interval graph. Thus, Chordal applied positively only to the

13If the graph is only k-colorable, merging all the nodes with the same color, for all colors, produces a

k-clique, hence a greedy-k-colorable graph. But this would constrain too much the remaining graph and may

prevent further coalescings.

143

CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

5
6
3
2

Not in optimal

50
9

Constrained

1
1
2
7

ILP failed
1
1
2

ILP not k-greedy

1
9
7

ILP ok

305

Chordal

1524
Brute

269098

Clique coalescing

97880
BG coalescings

7577 Not coalesced

1829
Other coalescings

Figure 6.14: Effort of basic coalescing rules.

10.9%
Read graph + Bias affinities

17.2%

Clique rule
1.5%

Briggs’s & George’s rules

45.9%
Brute rule

1%
Chordal rule

23.4%

Graph + worklists maintenance

Figure 6.15: How the 57 seconds of Chordal were spent.

cases where it is optimal. Thus, using Chordal as a heuristic for greedy-k-colorable

graphs does not seem to be efficient enough, at least for the graphs encountered here,

to catch some of the remaining 3% available.

Figure 6.15 shows the time spent (a total of 57 seconds), for the whole set of graphs,

in the different parts of the Chordal heuristic with a pre-pass of the “clique” rule. The

BG rules and the overhead due to the chordal rule represent, respectively, only 1.6%

and 1% of the time, much less than the 10.9% spent in initialization. The 23.4% used

for maintenance concern graph and worklists updates (merging nodes, computing de-

gree, sorting affinities, etc.), but does not take into account maintenance of worklists

inside Brute. The latter is included in the biggest part of the pie-chart, the Brute

rule, which takes 45.9% of the time. Finally, the clique rule, responsible for most of

the coalescing, takes 17.2% of the time. This may seem a lot compared to BG rules,

but this measure of the clique pre-phase includes graph maintenance which was tech-

nically difficult to separate. We also measured that, for small graphs, most of the time

is spent in initialization, or in updating the graph and the worklists. As graphs grow

bigger, the Brute part takes proportionally more and more time, as each test needs

to simplify nearly the whole graph. Actually, 27 of the 57 seconds were spent on the

three biggest graphs, #99, #139 and #259, which contain respectively 20011, 28640

and 18445 nodes. We also point out that beyond the 214 = 16, 384 nodes limit, our

graph library cannot use an adjacency bit matrix anymore because of memory limita-

144

6.6. CONCLUSION

tions. We need to rely on searches in adjacency lists instead. However, we measured

that this is not the limiting factor.

6.6 Conclusion

It is a common belief that optimistic coalescing outperforms conservative coalescing.

While trying to measure the quality of the conservative rules of Briggs and George,

and based on our previous theoretical work from Chapter 5, we developed an advanced

incremental conservative strategy that can coalesce more than half (in weight) of the

affinities left by the well-known Iterated Register Coalescing (IRC) by George and Ap-

pel [1996]. It also outperforms the traditional optimistic coalescing of Park and Moon

[2004] (adapted by George and Appel) by about 15%. Our conservative tests (brute-

force or chordal-based) are more costly than the simple tests of Briggs and of George;

however, by using them only when the quick tests fail and with additional implemen-

tation strategies, our final algorithm is less than 2× slower than the IRC of Appel and

George, for the graphs of the Coalescing Challenge.14 This is also because IRC may

test some affinities several times while our heuristic tests each affinity only once and

decides to coalesce or discard it. We found that using an optimal “clique” rule for

conservative coalescing first (based on the particular shape of the graphs from the Co-

alescing Challenge) reduces the graph sizes and the overall time spent to coalesce in

conservative strategies. We also developed a more aggressive optimistic approach that

works for any greedy-R-colorable graph (as opposed to Appel and George’s version

of the optimistic algorithm) and ensures it is still greedy-R-colorable after coalescing.

This enables the use of an additional (quick) phase of Briggs/George conservative co-

alescing, which leads to results better than traditional optimistic coalescing but still

worse than our conservative strategy. We think this is because it is more difficult to

devise a good de-coalescing indicator.

Very recently, Hack and Goos [2008] published a coalescing algorithm based on

recoloring. We tried to include it in our tests, however, we did not find a mean to

compare fairly our algorithms since their is included in their compiler and cannot be

easily applied to graphs from the Coalescing Challenge. Conversely, the graphs they

can generate from their compiler need to be modified so that they comply with the

representation chosen by Appel and George. This constrains them more and makes the

task harder for our external coalescing program.

During our experiments, we measured noticeable differences for the quality of the

final results, depending on the ordering in which affinities with equal weights are con-

sidered. We verified that guiding this ordering by biasing the weights provides better

results in average. However, we have difficulties explaining why some orderings are

better than others. Hopefully, it seems that a pre-pass using the optimal clique rule

lessen the final differences in quality. Our choice of using orderings based on lexico-

graphic order or order in the graph description files was motivated by the fact that, in

the literature, people do not usually have explicit orderings, making the comparisons

with their schemes difficult. Hence, we wanted to choose a total deterministic ordering

on the affinities, so that our results could reproducible. We believe this point is worth

exploring for both the aggressive/optimistic and conservative coalescing problems.

14 With the clique rule as a pre-phase, the original IRC does not work because some pre-colored nodes

need to be simplified for the graphs to be greedy-k-colorable. But compared to our “extended” IRC, we are

still about 1.5× faster.

145

CHAPTER 6. ADVANCED COALESCING: IMPROVING THE COLORING

Finally, our linear-time incremental chordal-based conservative test for general

greedy-R-colorable graphs provides only slight improvements over our “brute force”

test. It is maybe a too direct adaptation of the optimal test for chordal graphs. However,

we measured, thanks to an ILP formulation of the optimal solution, that our test misses

very few of the remaining coalescable affinities. So, the real issue is now to find better

orderings of the affinities.

146

Going uup!

Going doown.

(Laaby.)

Hyatt hotel elevator in Atlanta. 7
Parallel copy motion to get

out of colored SSA

In the context of register allocation in two phases, the first phase handles the spilling,

potentially with some splitting, so that Maxlive becomes less than R, the number of

registers. Some more splitting is then done so that the interference graph gets easily

colorable with R colors. The second phase then handles the coloring while trying to

reduce the negative effects of the splitting of the first phase by performing coalesc-

ing. Different approaches of splitting exist for the first phase; for instance, aggres-

sive splitting as done by Appel and George [2001], or splitting using Static Single

Assignment (SSA). The first approach creates an enormous amount of new variables,

which in turn makes the interference graph very big. This solution is not viable for just-

in-time (JIT) compilation, where memory constraints are so tight that the cost building

and storing the interference graph of the program—even in its non-split version—is of-

ten considered prohibitive. In this context, linear scan allocators introduced by Poletto

and Sarkar [1999] are often preferred over graph-based register allocators because they

do not need an interference graph.

SSA form is also becoming more popular in the context of JIT compilation since it

still allows the compiler to perform important optimizations like common subexpres-

sion elimination or constant propagation without the drawbacks of keeping huge data

structures in memory, or requiring a lot of computing power For instance [Wegman and

Zadeck, 1991] use it for fast constant propagation, and Boissinot et al. [2008] use the

dominance property of SSA to calculate faster liveness.

The problem with SSA is translating out of SSA. Indeed, φ-functions are not actual

instructions (see Definition 2.24), and must be disposed of, as explained in Chapter 2,

Section 2.3.6. Several alternatives exist, for instance Cytron et al. [1991] and Briggs

et al. [1998] insert copies copies at the end of the preceding basic blocks. Sreedhar et al.

[1999] do similarly, but they also add copies at the beginning of the block containing the

φ-function. Leung and George [1999a]; Budimlić et al. [2002]; Rastello et al. [2004]

and Hack et al. [2006] prefer to split critical edges to insert shuffle code.

Recently, solutions have been proposed to perform register assignment—assign

variables to registers—while still under SSA, and then try to go out of colored SSA.

This is the case of Hack et al. [2006] or Hack and Goos [2008] for instance. There are

some advantages to this practice:

• copies are implicit: there is no need to add new copies and variables correspond-

ing to a naı̈ve out-of-SSA conversion;

• the dominance property can be exploited to perform a greedy coloring algorithm

CHAPTER 7. PARALLEL COPY MOTION TO GET OUT OF COLORED SSA

(using a “tree-scan” on the dominance tree for instance);

• one might use the SSA to perform other optimizations after coloring, like code

motion or scheduling;

• SSA has nice properties to avoid using an interference graph for coloring (liveness

information is cheap, see Boissinot et al. [2008]).

When going out of colored-SSA, it is easier to place the copies corresponding to

φ-functions on the incoming edges. Indeed, we will see that it is not possible, at least

in the general case, to create new variables and insert copies at the end of the preceding

basic blocks or beginning of blocks. The problem with inserting copies on edges is that

there is no basic block there. So, in order to actually add code, such an edge must be

split and a new basic block must be created to hold the instructions. However, there is

a folk assumption that splitting edges is a bad idea. The main reasons for this are that:

• it adds one more instruction (a jump) (problem on highly executed edges); when

splitting the back-edge of a loop, this prevents the use of a hardware loop accel-

erator;

• some compilers have abnormal edges that cannot be split (gcc or open64 for

instance, but it also depends on the target architecture);

• scheduling of instructions is not spawned across basic block boundaries. In par-

ticular, copies on a small basic block cannot be used to fill empty issues of bun-

dles outside this basic block in Very Long Instruction Word (VLIW) architectures.

The goal of this chapter is to present a way to prevent the splitting of edges when

going out of colored SSA, by moving the code that should be on edges to a more con-

venient place.

7.1 About going out of colored SSA

Performing the coloring of the variables under SSA, i.e., doing register allocation before

translating out of SSA, fits our scheme of register allocation in two separate steps, first

spilling then splitting, then coloring with coalescing. But then, going out of SSA is

not classical anymore: one has to deal with actual registers already chosen to hold the

values, instead of dealing with variables in potentially infinite number. This means

that it is not possible to create new variables at convenience, as would do for instance

Cytron and Gershbein [1993], Sreedhar et al. [1999] or Boissinot et al. [2009]. In

the Sreedhar et al.’s algorithm, getting rid of φ-functions is done by adding copies of

arguments in the preceding basic blocks. The trick is to insert another copy at the

entry of the basic block of the φ-function, for the result of the φ-function. Then, all

copies (of arguments and result) are renamed with a common name and the φ-function

is not needed anymore. This scheme is presented with an example on Figure 7.1, where

arguments a and b are put in copies a′ and b′, and the φ-function stores its result in c′

instead of c. Then, all a′, b′ and c′ are renamed with a common name, X.

Note: putting the result of the φ-function in a copy is important as is ensures that after renam-

ing the copies, the variable will have a very small live-range. Cytron and Gershbein [1993]

did not use it because they were still in conventional SSA, but Briggs et al. [1998] showed

evidence that this method was incorrect after optimizations that break the conventional prop-

erty, like value numbering. For instance, the result variable of a φ-function can interfere with

148

7.1. ABOUT GOING OUT OF COLORED SSA

a← . . .

c← φ(a, b)

b← . . .

(a) SSA code

a← . . . b← . . .

c← a c← b

(b) Edges are split

a← . . .

a′ ← a

c′ ← φ(a′, b′)

c← c′

b← . . .

b′ ← b

a← . . .

X ← a

c← X

b← . . .

X ← b

(c) Sreedhar et al.’s out of SSA

Figure 7.1: Going out of SSA: (a) original SSA code. (b) going out of SSA with the

semantics of the φ-functions. (c) going out of SSA à la Shreedar.

one of its arguments, which can happen in a loop. Briggs et al. gave algorithms to solve

this problem but they consider particular cases and need data-flow analysis. The solution of

Sreedhar et al. [1999] is more generic and comes with a way to remove unnecessary copies,

which makes it appealing to compiler writers.

Sreedhar et al.’s way of going out of SSA means that some extra registers might be

required to hold copies of the variables. Indeed, it does not split on the edges as other

translation out-of-SSA would do, meaning that the common variable X can interfere

with other variables alive at the end of the predecessor blocks. In our colored case,

it might be possible that all registers are already assigned to variables at this point.

Whereas in Sreedhar et al.’s case, register allocation is performed later and they can

still choose to spill some variables, we do not want to spill anymore, this is not an

option for us, hence the right way of going out of colored SSA is to match closely the

semantics of the φ-functions, i.e., to add copies on the incoming edges, as depicted on

Figure 7.1b.

In this chapter, we deal with colored variables, and use the notation x[Ri] to state

that variable x is assigned to register Ri. In our case, the φ-functions represent a flow

of values between registers instead of a flow of values between variables. For instance,

a[R1] ← φ(b[R2], c[R3]) means that on the edge coming from the left, the value of

R2 must be transferred into R1, while on the edge coming from the right, the value

of R3 must be transferred into R1. Moreover, we have no way of creating “temporary

variables” as we only have registers. Still, some registers might be free if the register

pressure is lower than R. They can be temporarily used to keep some values.

7.1.1 Introducing the parallel copies

As explained, special care should be taken when going out of colored SSA. A correct

way to do it is to replace the φ-functions by parallel copies on the incoming edges. Par-

allel copies are virtual instructions that perform as many move instructions as required,

all at the same time (see Definition 2.41).

149

CHAPTER 7. PARALLEL COPY MOTION TO GET OUT OF COLORED SSA

a← φ(a, b)

b← φ(b, a)

(a) SSA code

a← b

b← a

(b) Wrong

//c = (a, b)← (b, a)

(c) Correct

Figure 7.2: The swap problem: moves cannot be sequential or one of the variables is

erased. Solutions can be to either use a temporary variable, or to represent the flow of

values using a parallel copy.

The moves represent the flow of values that must be performed on these edges,

and the parallel semantics is fundamental: when performing moves in a sequential way

without any precaution, it is likely that a value will be erased before having a chance

to be copied to its proper destination register. A classical example of this problem is

known as the “swap problem,” and described in Figure 7.2.

When dealing with colored variables, it is handy to implement parallel copies as

arrays. Let //c be a parallel copy, then for each register Ri, 1≤i≤R, the i-th element of

the array (indexed from 1 to R) indicates from which register the new value of Ri

will be copied, i.e., if //c[i] = j, the value of register R j is copied into Ri during the

parallel copy. A register that simply holds its value is represented as //c[i] = i and

one that does not receive any live value is set to bottom: //c[i] = ⊥. Note that it

is important to differentiate, in the parallel copy representation, registers that are not

modified (//c[i] = i) from register that do not receive any value (//c[i] = ⊥), since the

latter are “free” registers and the former hold the value of live variables. When working

with parallel copies, this allows to quickly check which registers are free, hence usable

as temporary value holders, and which are not. In this chapter we will also use a

graphical representation of parallel copies, using a graph in which registers are nodes

and directed edges represent the flow of the values. These are called “register transfer

graphs” by Hack [2007] in his thesis. Figure 7.3 shows three examples of parallel

copies.

150

7.1. ABOUT GOING OUT OF COLORED SSA

R1

R2

R3

(a) //c = [R3,R1,R2]

R1 R2

(b) //c = [⊥,R1]

R1 R2

(c) //c = [R1,R1]

Figure 7.3: Examples of parallel copies, with their array and graph representations.

For the same reason as before, self edges are important in the graph representation

since parallel copies include liveness in their representation. In general, Ri holds the

value of a live variable before the parallel copy if and only if (iff) there exists 1 ≤ j ≤ R

such that //c[j] = i, i.e., an edge leaving the node i in the graph representation. Register

Ri holds the value of a live variable after the parallel copy iff //c[i] , ⊥, i.e., there exists

an edge entering the node i in the graph representation. If j = i the value stays in the

same register, which is represented by a self edge. In this chapter, we will sometimes

abusively refer to “live registers” when the actual rigorous meaning would in fact be

“registers containing the value of a live variable.”

Moreover, we consider that two registers containing the values of live variables at

one point interfere at this point, even if the values are the same. Hence we forbid that a

parallel copy defines a register more than once: two different registers cannot put their

values into only one, i.e., there should not be two entering edges on any register on the

graph representation of the parallel copy. This case can however happen, for instance

if there was initially two φ-functions a ← φ(b, . . .) and c ← φ(d, . . .), but analysis

determined that a and c do not interfere, and the register allocation allocated both a

and c to the same register, say R1. If b and d are in different registers, the parallel copy

on the left incoming edge will try to put two values in R1. But in that case, the program

is correct only if b and d contain the same value. Hence only one of the two copies need

to be performed, either a[R1] ← b[Rx] or a[R1] ← d[Ry]. In that case, we arbitrarily

choose one of them and we get back to our representation where parallel copies define

at most one register. Hence for any register Ri, //c[i] is well defined.

7.1.2 Duplications in parallel copies

Parallel copies can contain duplications. That is, the value in one register is copied

into two registers (or more), as in the example Figure 7.3c. More formally, there is a

duplication if for a register Ri every time there is two registers R j and Rk (j , k) such

that //c[j] = i and //c[k] = i. Or, equivalently:

Ri
R j Rk

The value contained in register Ri is duplicated. As we will see later, duplications

complicate the problem. They cannot be ignored as they are mandatory in many actual

cases. For instance, if some variable a is used twice as argument in a φ-function to

define two different variables. Since the two defined variables interfere,1 a must be

1Of course, this depends on the notion of interference, but we can safely suppose that some value num-

bering was performed to rename variables with the same value. Hence we can choose the “relaxed” Defini-

tion 2.8 of interference, in which the two results of the φ-function interfere since they are alive at the same

151

CHAPTER 7. PARALLEL COPY MOTION TO GET OUT OF COLORED SSA

a[R1]← . . .

d[R2]← φ(a, b)

e[R3]← φ(a, c)

b[R2]← . . .

c[R3]← . . .

R1

R2

R3

R1

R2

R3

(a)

{a[R1]}live

c[R2]← φ(a, b)

· · · ← a

{a[R1], b[R2]}live

R1 R2 R1 R2

(b)

Figure 7.4: Examples of parallel copies where a must be duplicated: (a) because d and

e interfere; (b) because a and c interfere.

duplicated in another register before entering the basic block (see Figure 7.4a). Another

example is given on Figure 7.4b: whenever a variable a is used in a φ-function, but is

still live after it because it is used later.

One particularity of duplications is that the register pressure is higher after a paral-

lel copy that contains duplications than it was before. This is one of the reasons why

special care must be taken when dealing with them. We will see in the next section

that another reason is that, in a parallel copy with duplication, the flow edges of val-

ues between register cannot be “reversed” to obtain a parallel copy that has an effect

opposite to that of the first one (else, there would be two edges pointing to the same

register). For these reasons, we will try to get rid of duplications, which we will do in

Section 7.3.1.

7.1.3 Reversible parallel copies

Parallel copies can be view as mathematical applications:

//c : {R1, . . . ,RR} → {R1, . . . ,RR,⊥}

If a parallel copy is injective, i.e., there is no two i , j such that //c[i] = //c[j], it

is reversible in the mathematical sense. However, the ⊥ value makes it difficult for

parallel copies to be reversible. Indeed, it means that //c is not injective whenever more

than one register does not receive the value of another register. Moreover, it makes the

set of values different from the set of arguments, and we would instead prefer that //c−1

is also a parallel copy.

In fact, what the reverse of a parallel copy would mean? A natural way of thinking

would be that //c′ is the reverse of //c if the composition of the two is the identity, i.e.,

iff //c′ ◦ //c = //c ◦ //c′ = Id. But in fact we do not need the identity on the whole set of

time.

152

7.2. PROPERTIES FOR MOVING A PARALLEL COPY AWAY FROM AN EDGE

registers. What actually matters is that the registers that hold live variables beforehand

stays the same after applying //c and its reverse, i.e.,

∀Ri ∈ Live, //c′[//c[i]] = i

This means we can define //c−1, the reverse of //c, as follows:

Definition 7.1. A parallel copy //c without duplication is called reversible. It reverse is

the parallel copy //c−1 defined as follows:

∀Ri, //c
−1[i] =















j if ∃ j | //c[j] = i

⊥ otherwise

Note that, since parallel copies contain liveness information, it is not possible to

replace //c−1 ◦ //c by //c ◦ //c−1 in the general case. Indeed, live out of //c is the same as

live in of //c−1 but is in general different than the live in of //c (which in turn is the same

as live out of //c−1). However, in a context where Live = live in(//c−1), it is possible to

insert //c ◦ //c−1 without breaking the code since it will perform the identity on the set

of registers alive.

7.2 Properties for moving a parallel copy away from

an edge

We have seen that, when going out of colored SSA, it is a good idea to place parallel

copies on edges. But the goal of this chapter is to try to move these copies out of our

way. In this part, we see that critical edges in the control-flow graph (CFG) make this

task harder, and require the copies to be compensated on other edges. We consider a

parallel copy //c on a edge E that cannot be split, or that we do not want to split. We

see in this part what properties //c should have for us to be allowed to move it.

7.2.1 The problem of critical edges

When trying to move a parallel copy away from an edge E from source basic block

Bs to destination basic block Bd, there are two possibilities: either move it up, i.e., to

the bottom of Bs, or move it down, i.e., to the top of Bd, as explained by Figure 7.5a.

Indeed, the code of the parallel copy needs to be performed whenever the execution

path goes through the edge E. This works fine whenever E is the only edge leaving Bs

or the only one entering Bd. However, if E is a critical edge, i.e., its source block has

more that one successor blocks and its destination block has more than one predecessor

blocks (see Figure 7.5b), it is in general false to move the parallel copy either on Bs

or on Bd. Indeed, the code of the parallel copy should not be executed if an edge

other than E is chosen (see Definition 2.39). A well-known example of the problem of

critical edges is the “lost copy problem”, depicted on Figure 7.6. In fact, in the case of a

colored SSA code, simpler examples exist: it is sufficient that a parallel copy overwrite

a register containing another live variable on the predecessor block.

7.2.2 Compensation

The idea to be able to move parallel copies away a critical edge E from Bs to Bd is still

to move it to the bottom of Bs (resp. to the top of Bd), but to compensate its effects on

153

CHAPTER 7. PARALLEL COPY MOTION TO GET OUT OF COLORED SSA

Bs

Bd

//c
move

up

down

//cBs

Bd

Bs

//cBd

(a)

Bs

Bd

//c

(b)

Figure 7.5: Moving a parallel copy. (a) if on a simple edge, it can be moved up or

down. (b) if on a critical edge, this is not directly possible.

the other edges leaving Bs (resp. entering Bd) by placing some code on them. Figure 7.7

illustrates the notion of compensation, and Figure 7.8 gives three examples. These

examples show three important facts: First, the notion of compensation seems strongly

linked to a notion of “reversing” the effects of a parallel copy, Second, problems are

different when moving up (post-compensation) or down (pre-compensation. Third,

when moving up, the parallel copy changes to take the liveness of Bs into account.

Let us see in details the different problems:

Move down. When moving a parallel copy down, one needs to pre-compensate the

copy on other incoming edges. The idea is to “prepare” the registers so that, when

arriving on Bd, //c will move the values into their right registers. Problems arise if

//c contains duplications. Indeed, suppose that //c = [R1,R1] but R1 and R2 carry two

different variables on another incoming edge. Then, whatever code is placed on this

other edge, R1 and R2 will always have the save value after //c is executed at the be-

ginning of Bd. There is no way to move a duplication down, since the semantics of

the φ-function that produced this copy is: “if coming from the left edge, make the two

registers equal, otherwise, make them different.” This semantics is intrinsically linked

with an information on the flow of the program, information that is lost when entering

Bd.

But then, what can be done if //c contains duplications? We will see that duplica-

tions can in fact be moved up, and we will give in the next section a way to decompose

a parallel copy so that the duplications are moved up and the remaining parallel copy

is moved down.

154

7.2. PROPERTIES FOR MOVING A PARALLEL COPY AWAY FROM AN EDGE

a← 1

c← φ(a, b)

b← c + 1

· · · ← c

Ra

Rb

Rc

Ra

Rb

Rc

(a) Colored SSA code

Ra ← 1

//c Rc ← Ra

Rb ← Rc + 1

//c Rc ← Rb

· · · ← Rc

(b) Wrong

Ra ← 1

//c Rc ← Ra

Rb ← Rc + 1

· · · ← Rc

//c Rc ← Rb

(c) Correct

Figure 7.6: Lost copy problem: (a) a,b and c reside in different registers; the back-edge

of the loop is critical. (b) parallel copies are moved up (at the source of the edges),

leading to incorrect value in c at the exit of the loop (one “+1” too much). (c) a correct

way to go out of SSA is to move up the parallel copy at entry point, and to split the

critical edge to place the other one.

//cBs

Bd

rev

(a) Move up

Bs

//c Bd

rev′

(b) Move down

Figure 7.7: Compensation: when moving a parallel copy out of a critical edge, com-

pensation code rev must be added on other edges.

155

CHAPTER 7. PARALLEL COPY MOTION TO GET OUT OF COLORED SSA

{R2}liveBs

{R1}live Bd

{R1}live

R1 R2

move down

{R2}liveBs

{R2}live

{R1}live

Bd

{R1}live

R1 R2

R1 R2

(a)

{R2}liveBs

{R1}live

Bd

{R2}live

R1 R2

move up

{R2}live

{R1,R2}live

Bs

{R1}live

Bd

{R2}live

R1 R2

(b)

{R1,R2}liveBs

{R1}live

Bd

{R1}live

R1 R2

move up

{R1,R2}live

{R1,R2}live

Bs

{R1}live

Bd

{R1}live

R1 R2

R1 R2

(c)

Figure 7.8: Examples of compensation when moving a parallel copy from a critical

edge. (a) the compensation “prepares” R2 with the value that must be placed in R1 at

the beginning of Bd. (b) R1 is not live on Bs and can be overwritten; a self edge is

added to R2 to reflect it contains a live variable. (c) both R1 and R2 contain a live value

on Bs. R1 must be saved so registers are swapped. Then, R1 must be restored with its

original value on the left edge.

156

7.3. MOVING PARALLEL COPIES AWAY FROM CRITICAL EDGES

Move up. When moving a parallel copy up, liveness problems arise. This was not a

problem when moving down since live in of destination basic blocks equals the live-

ness of their incoming edges. For source basic blocks, live out equals the union of the

liveness of their leaving edges. So, if //c was created on the edge E from Bs to Bd, it car-

ries the liveness information of E, which is a subset of live out(Bs). That is why, in the

examples of Figure 7.8, the parallel copy was modified when moved up and not when

moved down. On (b), it needed to reflect that both R1 and R2 are live out (since they

are live-in of successor basic blocks); on (c), the two registers contain live variables,

hence R1 should not be overwritten. Its value is saved in R2 using a swap instruction.

What about duplications? Duplications just make copies of registers. So, as long as

there are enough free registers, it is possible to move duplications up. It is indeed not

a problem to change the value of a register that will not be used on the other successor

blocks. The only restriction is that duplications should not erase any live value. We

will talk later of what to do if there are not enough registers.

We have seen with some examples that the compensation is some kind of reverse.

Based on this idea, we will see in the next section how parallel copies can be de-

composed into a part that contains duplications, and another part that is a reversible

application, in the mathematical sense. This will allow us to develop a framework to

move parallel copies away from edges.

7.3 Moving parallel copies away from critical edges

We have seen in the previous sections that parallel copies containing duplications are

not reversible. But we have also seen that critical edges need compensation, and that

compensation uses some kind of “reverse” of parallel copies. In this section, we will

see how to move a parallel copy away from a critical edge. Figure 7.9 shows an ex-

ample where a parallel copy that contains duplications is first de-composed so that the

duplications are placed on the predecessor block, then it is moved down and compen-

sated on the other incoming edge. There are two questions linked to the idea exposed

on our example:

• How to decompose a parallel copy so that it gets reversible?

• How to move a reversible parallel copy?

We present in this section an algorithm to answer the first question, and then explain

how to use permutations to solve the second question.

7.3.1 Decomposition of a parallel copy containing duplications

There are many possibilities of decomposing a parallel copy that contains duplications.

Our interest here is to show that it is easy to find a working solution, and we propose

an algorithm to compute it.

Whenever some duplications are found in a parallel copy //c, it must be decomposed

into //cf .rev ◦ //cdup where //cf .rev is reversible and //cdup contains the duplications. //cdup

will be placed at the bottom of the predecessor block, Bs, hence it should be constructed

using informations on the liveness at the bottom of Bs. We propose the algorithm given

in Function De compose, page 158. If fact, in can be called directly on any parallel

copy, even if the copy does not contain any duplication. It also expect as input Bs, the

157

CHAPTER 7. PARALLEL COPY MOTION TO GET OUT OF COLORED SSA

{R1,R2}liveBs

{R1,R2,R3,R4}live Bd

{R1,R2,R3,R4}live

{R1,R2}live

R1 R2

R3

R4

de-compose

+

move duplication up

{R1,R2}live

{R1,R2,R3,R4}live

Bs

{R1,R2,R3,R4}live Bd

{R1,R2,R3,R4}live

{R1,R2}live

R1 R2

R3

R4

R1 R2

R3

R4

move down remaining

reversible //c

{R1,R2}live

{R1,R2,R3,R4}live

Bs

{R1,R2,R3,R4}live

{R1,R2,R3,R4}live

Bd

{R1,R2,R3,R4}live

{R1,R2}live

R1 R2

R3

R4

R1 R2

R3

R4

R1 R2

R3

R4

Figure 7.9: To move down a parallel copy with duplications: First, //c in decomposed

into duplications followed by a reversible parallel copy, taking live out(Bs) into account

(free registers R3 and R4 are represented with empty bullets). The duplications are

moved up in Bs. The remaining copy can then be moved down and pre-compensated

on the other entering edge. Note that a swap of R2 and R3 also works for the remaining

copy, instead of a cycle with R2, R3 and R4 (but that would have been less didactic).

158

7.3. MOVING PARALLEL COPIES AWAY FROM CRITICAL EDGES

source basic block at the end of which duplications should be performed. This function

adds instruction at the bottom of Bs (the duplications) and modifies //c so that it does

not contain any duplication after the call.

Function De compose(//c, Bs)

Data: Parallel copy //c, basic block Bs where to put duplications.

Result: Duplications are added to the end of Bs and //c does not contain duplications

anymore.

/* Initialize data structures */

foreach i ∈ {1, . . . ,R} do1

used[i]← 0;2

targets[i]← ∅ ;3

foreach i ∈ {1, . . . ,R} do4

let j← //c[i];5

if j , ⊥ then6

used[j]++ ;7

targets[j]← targets[j] ∪ {i};8

live← live out(Bs);9

/* Auxiliary functions */

Function is Leaf(i): return ¬live[i] ∧ //c[i] , ⊥;10

Function is Free(i): return ¬live[i] ∧ //c[i] = ⊥;11

/* De-compose //c */

foreach source← 1to R do12

while used[source] > 1 do13

let target ← pop targets[source] ;14

if target , source. then /* Look for a place to duplicate source */15

if is Leaf(target) then16

dest ← target ;17

else18

/* Try not to create cycles with target */

if ∃i, is Leaf(i) ∧ ¬is Reachable(//c, target, i) then19

dest ← i ;20

else if ∃i, is Free(i) then /* a free register avoids cycles */21

dest ← i ;22

else if ∃i, is Leaf(i) then /* choose in last resort a reachable leaf */23

dest ← i ;24

else25

Failure “Too many live variables!” ; /* #live + #duplication > R */26

generate instruction [Rdest ← Rsource] at bottom of Bs ;27

live[dest]← ;28

//c[target]← dest ;29

used[source]−− ;30

We now explain our algorithm. Up to Line 9, the function just initializes some data

structures. The array “used” contains how many times a register is used to define an-

other one in //c, i.e., Ri is duplicated if used[i] ≥ 2. And the “targets” array remembers

for each register the registers it defines in //c. We defined two particular types of reg-

isters, with functions to check quickly if registers are of one of these types on lines 10

and 11:

159

CHAPTER 7. PARALLEL COPY MOTION TO GET OUT OF COLORED SSA

Function is Reachable(//c, start, end)

Data: Parallel copy //c, starting point start, end point end.

Output:  if end can be reached from start in //c.

foreach i ∈ {1, . . . ,R} do marked[i]← ;1

current ← end;2

marked[current]←  ;3

while  do4

next ← //c[current] ;5

if next = start then return ;6

else if next = ⊥ ∨marked[next] then return ;7

else8

current ← next;9

marked[current]←  ;10

• the “free” registers: they do not contain the value of any live variable at the end

of Bs (so they also do not on the edge of //c), and do not receive any value in //c;

• the “leaves:” registers that are leaves of the register flow graph, i.e., that receive

a value but whose value is not used.

The decomposition algorithm checks for every register—variable source in the

function—if it is duplicated (Line 13). In that case, copies must be added to Bs un-

til only one register is defined using source in //c. If a duplication consists of a self

edge, it does not need to be copied (but then, every other duplication involving source

does). For a register target in which the value of source must be duplicated, the algo-

rithm will first copy source into an available register dest at the end of Bs (i.e., dest

does not hold a live variable). Then the copy from dest to target is added to //c. Four

strategies are available to choose dest. They are illustrated in Figure 7.10.

1. take an immediate leaf (Line 16): the best possibility, then target = source,

meaning the value is already put in its right register and will not need an addi-

tional copy later;

2. take a leaf that is not reachable by the target of the copy (Line 19): no cycle will

be created in //c, and no additional color is required;

3. take a free register (Line 21): this means one color less but is better that creating

cycles;

4. take a reachable leaf (Line 23): this will create a cycle in //c. Since there is no

remaining free register, swaps (or a spill) must be used later if the parallel copy

is then sequentialized at the bottom of Bs or the beginning of Bd.

If none of these strategies work, this means that there are too many duplications.

Indeed, there must be at least as many registers not alive at the bottom of Bs than the

number of duplications in //c. Otherwise, more spill needs to be done, or the edge on

which //c is must be split (we will come back later to this problem in Section 7.4.3).

When dest is found, a copy to put the value of source into dest is added at the end of

Bs (Line 27). Note that if there are more than one duplication, the order of the copies

added to Bs does not matter (only registers not alive are defined). Then, //c is modified

so that it reflects that, now, the register dest contains the value that should be put in

target by the parallel copy (Line 29).

160

7.3. MOVING PARALLEL COPIES AWAY FROM CRITICAL EDGES

Case 1. R1 R2

dup
R1 R2

Case 2.

R1
R2

R3
R4

R5
dup

R1
R2

R3
R4

R5

Case 3.

R1

R2

R3

R4du
p

R1

R2

R3

R4

Case 4.

R1
R2

R3
R4

R5

dup

R1
R2

R3
R4

R5

Figure 7.10: The four cases of function De compose. The dashed arrow labeled “dup”

shows the choice of dest when duplicating source register R2 on the left parallel copies.

The graphs on the right show the state of the parallel copy after adding copy “dup” to

the predecessor basic block Bs. Empty bullets shows registers not holding live variables

at the end of Bs.

161

CHAPTER 7. PARALLEL COPY MOTION TO GET OUT OF COLORED SSA

Function De compose uses Function is Reachable, page 159. This function con-

sists only in doing a traversal from the “end” register, following the edges from the

register flow graph in the reverse order, to see if the “start” register can reach end (in

the normal order). Since each register has only one entering edge, there is no choice at

each step but to traverse the predecessor. The “marked” array is used to avoid infinite

loops if reaching a cycle of edges that do not contain the start register (in which case

start obviously cannot reach end).

Better algorithms could be devised for the decomposition, using for instance infor-

mations on the place where //c will be sequentialized. This is not our purpose here.

Our purpose is just to show that it is possible to decompose parallel copies that contain

duplications and put the latter in the predecessor block, not to provide the best way to

do it, if there is one.

7.3.2 The problem of moving reversible parallel copies

Now that we got rid of the duplications in our parallel copy, our goal is to move this

reversible parallel copy //c out of the edge E from Bs to Bd. We recall that its reverse is

denoted //c−1. Moving the parallel copy //c down is relatively easy. It can be placed at

the top of Bd and //c−1 is added to every edge arriving in Bd other than E. This is correct

because the sets of variables alive are the same at the beginning of Bd and on every edge

arriving in Bd. The fact that live out(//c) = live in(//c−1) and live in(//c) = live out(//c−1)

shows that, in the end, the effect is that: if the flow comes from another edge than E,

//c−1 is followed by //c, i.e., the identity is done on the registers alive; and if the flow

comes from E, only //c is performed, which is what was expected.

On the contrary, moving //c up is more difficult. We have seen in Figure 7.8 that //c

needs to be modified to take the liveness at the end of Bs into account. Indeed, //c was

created with the liveness of E in mind, which is a subset of live out(Bs). The differences

from moving down or up come from the asymmetry of liveness between the source and

the destination of edges. As explained, this forces to be careful in order not to erase

any value of a live variable, and not to add useless copies during compensation. While

it is possible to augment or project parallel copies when required, we prefer a more

elegant solution in which parallel copies are converted to permutations: //c is made a

bijection by replacing the every ⊥ by a well-chosen register in the array representation.

This simplifies the process of moving parallel copies and we see how to do it in the

next section.

7.3.3 Converting parallel copies to permutations

The previous section leaves us with the problem of how to take liveness into account

(when moving up). We propose a solution based on permutations. Permutations con-

sider all registers, i.e., each register is the source and the destination of another; when

viewing the permutation as a parallel copy, this means that every register is considered

to hold the value of a live variable. Hence, there is no need to worry about erasing live

values when moving permutations.

For our implementations, we propose an extended data structure for permutations

compared to parallel copies. Permutation will be represented by two R-arrays “to” and

“from.” They represent where the value of a register does come from, and where the

value of a register will go to. This was not consistent for parallel copies because of

duplications, as in this case, the to field cannot contains more than one destination.

162

7.3. MOVING PARALLEL COPIES AWAY FROM CRITICAL EDGES

However, for reversible parallel copies, the same structure could be used in an imple-

mentation, in which case the from array represent the array //c we directly use in this

chapter. In that case:

//c.to[i] = j ∈ {1, . . . ,R} ∪ ⊥

//c.from[i] = j ∈ {1, . . . ,R} ∪ ⊥

//c.from[i] = j ⇐⇒ //c.to[j] = i

Definition 7.2. A parallel copy is a permutation π if it is reversible and verifies:

∀i ∈ {1, . . . ,R}, π.to[i] , ⊥ and π.from[i] , ⊥

We call de-materialization the process of creating a permutation from a parallel

copy. Since a permutation contains only cycles, chains must be closed to be loops in

the permutation. This is possible because we are dealing with reversible parallel copies:

every node in the graph representation has at most one leaving and one entering edge.

Of course there is not a unique solution in the general case. We propose a pseudo-code

on Function De-materialize, page 161. The loop Line 8 finds the register that is at

the end of the chain, so that cycles are the smallest. Free registers considered to be in

chains of length one, hence self-edges are added for them (which is what is expected).

Here, π is created so that there is the maximum number of registers for which π is the

identity.

Function De-materialize(//c)

Data: Parallel copy //c.

Output: Permutation π, a de-materialization of //c.

/* Make π a copy of //c. */

foreach i ∈ {1, . . . ,R} do π.to[i]← ⊥;1

foreach i ∈ {1, . . . ,R} do2

π.from[i]← //c[i];3

if π.from[i] , ⊥ then π.to[π.from[i]]← i;4

/* Close the chains by forming the smallest cycles. */

foreach i ∈ {1, . . . ,R} do5

if π.from[i] = ⊥ then6

current ← i ;7

while π.to[current] , ⊥ do current ← π.to[current];8

π.from[i]← current;9

π.to[current]← i;10

return π;11

Whenever a parallel copy //c is de-materialized into a permutation π, it is easy to

move it up or down. π is simply placed at the bottom of Bs (resp. top of Bd) and

π−1 is placed on every other leaving edge of Bs (resp. entering edge of Bd). With our

representation, π−1 is easily obtained from π since:

∀i ∈ {1, . . . ,R}, π−1.to[i] = π.from[i]

π−1.from[i] = π.to[i]

The remaining problem will be: how to convert back the permutation π−1 into a

parallel copy representation? More generally, we will move permutations around and

163

CHAPTER 7. PARALLEL COPY MOTION TO GET OUT OF COLORED SSA

need to be able, for any permutation, to generate the code corresponding to it. There are

two problems: First, permutations represent parallel copy instructions while machine

instruction are in general sequential (see discussion Section 2.3.6); Second, not all

copies are required: registers that are not alive at the point where π is sequentialized

should not copy their value into others (although not wrong, it is useless to do it). We

solve these problems in the next section.

7.3.4 Sequentializing permutations

Parallel copies are not hardware instructions, and neither are permutations. In the pre-

vious section, we managed to find a way to move them out of edges. Now, it remains

to sequentialize them using actual instructions of the target architecture. This is classi-

cally know as the Parallel Assignment Problem in the literature, which is NP-complete

if assignments depends on multiple values [see Garey and Johnson, 1979, Problem

PO6]. It reduces from Feedback Vertex Set, which amounts to finding the minimum

number of edges to remove to break every cycle. In our case, each assignment depends

on only one value, hence the graph is very particular (maximum in-degree equals one)

and cycles cannot intersect, which makes the problem polynomial [May, 1989]. Se-

quentializing is of course classical in the out of SSA literature; for instance, Briggs et al.

[1998] carefully choose an ordering of move instructions to avoid the “swap problem.”

In some cases, swaps instructions are available or can be emulated,2 but they are usu-

ally more costly than moves so they should be used only if there is no free register.3

While the algorithm we propose is definitely not new in the literature and quite simple,

we include it here for completeness.

The pseudo-code is given by Function Sequentialize, page 163, and works as

follows. First, “re-materialize” the permutation π into a parallel copy //c, by deleting

unnecessary edges (Line 4). At the same time is build the set of leaves, i.e., registers

that receive a value but whose value is not used (in fact, registers that are neither de-

fined nor used are also considered “leaves”). Then, chains that can be sequentialized

(Line 11) by performing the last copies of chains first, i.e., starting from the leaves. A

register not alive and not receiving any value is viewed as a chain of size one. The loop

Line 10 stops right away for them. Then, only cycles remain. If there was any chain,

the variable free was defined as the root of a chain. Since the copies of all chains are

already generated, the value contained in free is indeed not needed anymore and is used

to break the cycles at Line 16 into chains, as illustrated in Figure 7.11a.

If there are only cycles (even cycles of size one, i.e., self-edges), there is no free

register to break the cycles. We choose to perform swaps to resolve the cycles, using

n− 1 swaps per cycle where n is the size of the cycle (see an example on Figure 7.11b,

and the general case on Figure 7.11c). In absence of a swap instruction, and if it cannot

be emulated, it is possible to spill a register to free it. Then the rest of the cycle can be

sequentialized like a chain, and finally the spilled value is reloaded in the right register.

However, we will see in the next section that, in practice, parallel copies can be moved

deeper inside basic blocks, usually finding program points where there is a free register.

2By using three XOR for instance, see details in Chapter 8, Section 8.1.2.1.
3Unless on some particular cases, for instance for a cycle of size 2, a swap that costs 2 is better than three

moves that cost 1 each.

164

7.3. MOVING PARALLEL COPIES AWAY FROM CRITICAL EDGES

Function Sequentialize(π,Live)

Data: Permutation π, array Live of registers alive before the point of sequentialization.

Result: Copies are added to the code.

/* Re-materialize parallel copy from permutation. */

leaves← ∅ ;1

foreach i ∈ {1, . . . ,R} do2

if , Live[i] then3

//c[π.to[i]]← ⊥;4

leaves← leaves ∪ {i};5

else6

//c[π.to[i]]← i;7

/* Sequentialize remaining parallel copy. */

free← ⊥;8

foreach current ∈ leaves do9

while //c[current] , ⊥ do10

generate copy instruction [Rcurrent ← R//c[current]] ;11

free← current;12

/* Now, there remains only cycles (if any). */

foreach current ∈ {1, . . . ,R} do13

if free , ⊥ then /* use freeas a temporary register */14

pred ← //c[current];15

generate copy instruction [Rfree ← Rpred] ;16

//c[current]← free;17

current ← pred;18

while //c[current] , ⊥ do19

generate copy instruction [Rcurrent ← R//c[current]] ;20

else /* need to perform swaps */21

pred ← //c[current];22

pred of pred ← //c[pred];23

while pred , current do24

generate swap instruction [(Rpred,Rpred of pred)← (Rpred of pred,Rpred)];25

pred ← pred of pred;26

pred of pred ← //c[pred];27

165

CHAPTER 7. PARALLEL COPY MOTION TO GET OUT OF COLORED SSA

R1

R2

R3

R4

R5

R6 =

◦ ◦

(a)

R1

R2

R3

R4

R5

R6 = ◦

(b)

R1

R2R3

R4

R5

R6 Rn−2

Rn−1

Rn

. . .

= ◦

= ◦ ◦

...

=
Rn

Rn−1

◦

Rn−1

Rn−2

◦ . . . ◦
R4

R3

◦

R3

R2

◦

R2

R1

(c)

Figure 7.11: Sequentializing reversible parallel copies: (a) after sequentializing the

chain R5 → R6 → R4, R5 is free and used to break the 3-cycle; (b) there are only cycles

and no free register: swaps must be used; (c) general case for a n-cycle when there is

no free register.

166

7.4. PUT IT ALL TOGETHER

7.4 Put it all together

In the end, the goal of parallel copy motion is to get rid of annoying parallel copies

on some edges that one does not want to split. Candidates are critical edges since, for

a non-critical edge, it is trivial to move code placed on it—one just moves the code

either to the bottom of the source basic block or the top of the destination basic block,

depending on which of these has only one entering or leaving edge.

We will not discuss here the problem of choosing which critical edges should not be

split. This depends on personal tastes and on the compiler. For instance, profiling can

tell that some particular edge is highly executed and should not be split, or some edges

have destinations computed on the fly, hence not splittable at compile time. Moreover,

in practice, there are edges that we would prefer not to split, but that we would rather

split than to pay an insanely large overhead in terms of added moves, or spills. Al-

gorithms should be nicely integrated in one’s framework by using cost functions and

appropriately deciding whether it is worth to pay extra costs to avoid splitting an edge.

We shall not continue this digression here, since our point is the following question:

Given a colored SSA code, a set of edges that cannot be split, and some

φ-functions, is it possible to remove all φ-functions without putting any

code on a non-splittable edge and without spilling?

Without loss of generality, we consider that every splittable critical edge has been

split, i.e., an empty basic block has been inserted on it. Hence, every remaining critical

edge is non-splittable. We have seen in the previous section that knowing if a parallel

copy can be moved away from an edge is an easy task. It just depends on the number

of duplications in it, which should be less than the number of free registers at the end

of the source basic block. The parallel copy can then be decomposed, the duplications

being placed on the predecessor block, and the remaining reversible parallel copy is

de-materialized into a permutation. The problem is that moving a permutation π up

or down requires inserting it reverse π−1 on other edges to cancel its effects. Since

we now consider several critical edges at a time, sequentializing permutations into

compensation code on other critical edges is not a possibility. This means that π−1

must also be disposed of.

More generally, the problems that arise when dealing with multiple critical edges

and parallel copies at the same time are the following:

• More than one critical edge leaving Bs. Then, there must be at least as many free

registers at the bottom of Bs as the total number of duplications summed over all

the parallel copies on these critical edges.

• No more free register when sequentializing a parallel copy (obtained from a per-

mutation π) with cycles (at the bottom of Bs or top of Bd). Then swaps can

be used, but they are expensive and not always available. We will see that it is

possible to move π inside the basic block and hopefully find a better place to

sequentialize it.

• “Cycles” of critical edges, or long chains of critical edges. Chains of critical

edges propagate the compensations, which may be very expensive in the end.

Cycles make it impossible to propagate as the compensations would bite their

own tails; this is a difficult problem and will be discussed in Section 7.4.2.

167

CHAPTER 7. PARALLEL COPY MOTION TO GET OUT OF COLORED SSA

The first point falls into the same problem as with only one parallel copy: there

must be enough registers, else it is mandatory to split one edge or to spill. The second

point was already addressed in the previous section, but we will now see a better way

to handle it. Finally, the last point requires full attention and will be discussed last.

7.4.1 Another break in the (permutation) wall

When sequentializing a parallel copy, cycles can exist, like //c = [R2,R3,R1] (see Fig-

ure 7.11b). When have seen previously that, usually, when dealing with non-colored

variables, a temporary variable is used to store one of the values of the cycle, then all

moves can be resolved sequentially. In our case, when variables are already colored,

we need a free register for this purpose. If there is none, swaps must be used if one

does not want to spill. The choice for this solution depends on how much will cost a

load and store compared to the overhead of using swaps instead of just move instruc-

tions. For instance, a swap costs two moves on a VLIW architecture, hence, if n is the

size of the cycle, it costs 2(n − 1) moves (see previous section, or Figure 7.11c), while

the solution with the spill would cost one store, one load, and n − 1 moves. With a

realistic cost model for a VLIW architecture, where a store costs as much as one move,

and a load costs 4× more than a move, the solution with the spill is more interesting

for cycles of size bigger than six. If swaps are emulated with XOR, swaps costs three

instructions and even the smallest cycles are very expensive. Moreover, whenever there

are more than one cycle, other cycles benefit from the spilling of one value: this frees

a register that can be used as a temporary to break all the cycles.

However, it would be better if there were a free register. So we will not continue the

digression, and instead propose another method: the idea is to not only move parallel

copies out of edges, but also inside basic blocks. Indeed, when using permutations,

moving a permutation π up (for instance) from the bottom of the basic block to a deeper

place p corresponds to putting π at p and recoloring the variables from p to the end of

the basic block according to π. Figure 7.12 shows an example where it is better to place

re-materialize the permutation higher than the bottom of the basic block. Hopefully,

we will find a better place to sequentialize π, a place where there is at least one free

register.

In fact, this idea can be formalized more cleanly by remarking that, for any region

of the program, i.e., any set of instructions, it is possible to add a permutation π at

every entry point of the region, to add its inverse π−1 at every exit point of the region,

and to recolor every variable in the region according to π: if a is assigned to Ri, then

assign it to π(Ri) on every point of the region. However, there are limitations to this:

some instructions have register constraints—e.g., arguments of a call—that cannot be

recolored. So, unless π(Ri) = Ri for all constraints, these instructions cannot be part of

such a region.

Using this formalism, it is easy to understand how to move a permutation in a

basic block, and more generally how the whole permutation motion works. To move a

reversible parallel copy //c out of the edge E from Bs to Bd, let π be a de-materialization

of //c. If one wants to move //c up (for instance), let us choose any convenient region

with an entry point somewhere inside Bs, and exit points on every edge leaving Bs. π is

added at the entry, and π−1 at every exit. On E, π−1 and //c cancel each other and no code

remains. On every other edge, π−1 is re-materialized, and π is re-materialized at the

convenient point inside Bs. If every other edge is not critical, π−1 can be materialized

at the top of the corresponding destination basic blocks, or even deeper in the blocks if

one finds that some places require less copies. We will discuss the problem that some

168

7.4. PUT IT ALL TOGETHER

a[R1]← d[R2]

b[R2]← 1+ d[R2]

c[R3]← . . .

x[R2]← φ(a, . . .)

y[R3]← φ(b, . . .)

z[R1]← φ(c, . . .)

R1

R2

R3

a[R1]← d[R2]

b[R2]← 1+ d[R2]

c[R3]← . . .

//c swap(R1,R2)

//c swap(R2,R3)

R1

R2

R3

a[R1]← d[R2]

b[R2]← 1+ d[R2]

//c R3 ← R2

//c R2 ← R1

c[R1]← . . .

R1

R2

R3

a[R1]← d[R2]

//c R3 ← R2

//c R2 ← R1

b[R3]← 1 + d[R3]

c[R1]← . . .

R1

R2

R3
//c R3 ← R2

a[R2]← d[R3]

b[R3]← 1+ d[R3]

c[R1]← . . .

R1

R2

R3

Figure 7.12: Moving a permutation up in a basic block: when sequentialized at the

bottom of the basic block, no register is free to break the cycle and it costs two swaps,

i.e., 4 moves on a VLIW or 6 XOR if emulated. The permutation can be moved up

higher in the basic block, where at least one free register exists. On such point is above

the definition of c, where only 2 moves are required for the permutation. Before the

definition of a is even better since only 1 move is necessary. The code added by when

sequentializing the permutation is preceded by a //c for more visibility.

169

CHAPTER 7. PARALLEL COPY MOTION TO GET OUT OF COLORED SSA

π−1

π−1

π

(code)Bs

Bd

//c

(code)Bs

Bd

//c

Rα ← Rz

...

Ry ← Rx

(code)

Bs

BdRx ← Ry

...

Rz ← Rα

Figure 7.13: Region recoloring: to move up //c, a region (grayed) is chosen, π is added

at the entry, and π−1 at the exits. On the critical edge, π−1 and //c cancel each other. The

other entry and exit points can be chosen at convenience inside basic blocks.

other edges might be critical in Section 7.4.2.

We call this alternative view of permutation motion region recoloring, because it

corresponds to recoloring the variables of a region. Shuffle code must be added at the

borders to ensure correctness. We think the region recoloring point of view more handy

to visualize code transformation. Figure 7.13 shows an example of how to view region

recoloring when moving a parallel copy away from a critical edge.

For the choice of the convenient program point inside Bs (resp. Bd), one looks for

a point p such that there is no register constraint between p and the end of Bs (resp.

beginning of Bd)—or such that π is the identity for these constraints—and where it is

cheapest to sequentialize π. This usually means that there should be one free register

at p if there are cycles in π, and the number of moves in π that are useless when re-

materializing should be maximized—maximize the number of moves in π involving

non-live registers.

Good program points to sequentialize the permutation are for instance before or

after functions calls: the register pressure is very low just before and after these in-

structions because of crash registers.4 Hence it is usually not necessary to try to move

the permutation beyond calls—along with the fact that very few registers (the callee-

saves) are not constrained. If one still wants to go beyond calls, it is always possible to

decompose the permutation π into π′◦πid such that πid is the identity for all constrained

4The pressure is a bit higher before a call than after if arguments are put in crash registers, but is still

usually less than R.

170

7.4. PUT IT ALL TOGETHER

registers. Then, π′ is sequentialized while πid can be moved higher in the basic block.

We will discuss in Chapter 8, Section 8.2.2.3, situation when this is beneficial.

One useful side-effect of trying to move the permutation upwards (or downwards)

is that some remaining moves in the code can be “eaten” along the way, if they are

not duplications. So, in order to find the best place, one should start at the bottom of

the basic block (if moving upwards) and go up one instruction after the other, with-

out applying any transformation but remembering at each step the cost of placing the

permutation there. Whenever a move between registers is found, is it added to the per-

mutation. The process stops whenever a instruction with unmet registers constraints in

encountered, or when reaching the other side of the basic block. Then, one knows the

best place, and the process can be started again, but now without faking it, to move the

permutation to the chosen spot.

Note: it is possible to view permutation motion as a way to find better split points that the

ones SSA provides. Indeed, by comparison, the split everywhere approach of Appel and

George [2001] would give low costs to affinities inside basic blocks, and much bigger ones

on edges that should not be split. The effect of this would be that the affinities on a particular

edge would be coalesced, while those inside basic blocks would remain, i.e., permutations of

colors will be placed inside the basic block and on other leaving edges, which is exactly the

same effect as permutation motion.

Hence, permutation motion is a way to achieve better results in terms of splitting, close to an

aggressive splitting approach but without its drawbacks: there is no enormous interference

graph and work can be done directly on the code, linearly.

7.4.2 Chains, trees and butterflies of critical edges

Whenever two critical edges are connected to the entry (or exit) of the same basic block,

this poses a problem as, obviously, they cannot move their parallel copy on this basic

block since compensation would have to take place on the other edge. Hopefully, it may

be possible to move the parallel copies on the other basic blocks attached at the other

extremities of these edges. Hence, one should not move parallel copies blindly, locally,

without taking other edges into account. One should have a look at other “connected”

critical edges, which we define as siblings:

Definition 7.3. A sibling of an edge E from basic block Bs to basic block Bd is an edge

E′ so that the source of E′ is Bs or the destination of E′ is Bd. In the first case, E and

E′ are called siblings at top, in the second case, they are called siblings at bottom.

For instance, the two edges leaving Bs on Figure 7.13 are siblings at top. We need

a way to decide, for each parallel copy on a critical edge, whether it should be moved

up or down. This depends on whether it has siblings or not, which made us define the

weakness property for critical edges.

Definition 7.4. A weak critical edge is a critical edge that do not have any critical

sibling at its source or at its destination:

• it is weak at top if it does not have any critical sibling at top—i.e., if every other

leaving edge of its source basic block is not critical;

• it is weak at bottom if it does not have any critical sibling at bottom—i.e., if every

other entering edge of its destination basic block is not critical.

See again Figure 7.13; the edge from Bs to Bd is critical, but not the other edge

leaving Bs. Hence the critical edge is weak at top. It is now easy to know where to

171

CHAPTER 7. PARALLEL COPY MOTION TO GET OUT OF COLORED SSA

move parallel copies that are on weak edges: if the edge is weak at top, it should be

moved up to the source basic block, and if the edge is weak at bottom, it should be

moved down to the destination basic block. In both cases, compensation can be added

on the siblings edges since they are not critical—the code is in fact added to the basic

block at the other end of the edge, which is not a problem since this block has only one

entering edge.

Weakness is transitive and can be propagated: if E is a non-weak critical edge, but

has a sibling at top E′ that is weak (at bottom), then E is weak at top since it is possible

to move its parallel copy on Bs, then to add compensation code on E′, i.e., compose the

compensation code with the existing parallel copy on E′, then move down the resulting

parallel copy from E′ since it is weak at bottom. Since we are moving permutations, it

is an easy task. If π = π2 ◦ π1, then:

∀i ∈ {1, . . . ,R}, π.to[i] = π2.to[π1.to[i]]

π.from[i] = π1.from[π2.from[i]]

This means that, in absence of cycles between critical edges—i.e., by starting from

a critical edge E and following critical edge siblings either at top or bottom, one does

not come back to E again—, it is possible to orient all critical edges, for instance

by starting from any edge E and then performing a tree traversal from root E. Each

critical edge encountered along the way is weak at top if the traversal finds it from a

sibling at bottom, and weak at bottom if the traversal finds it from a sibling at top. We

suppose that first, all parallel copies where (successfully) decomposed and the duplica-

tion placed at the bottom of their predecessor basic block. Then all remaining parallel

copies have been de-materialized into permutations. It is not easy to to move all per-

mutations out of the critical edges, by starting from E and “pushing” the permutations

along the branches of the tree, re-materializing permutations at every beginning or end

of basic block encountered, until the leaves of the tree are reached. Figure 7.14a, shows

an example of a tree on which a solution could be to move down all permutations on

edges marked as “down,” and move up the permutations on the other edges—marked

as “up.” This motion should of course not be done in any order since compensations

might arrive later on edges, but starting from the root of the tree and composing permu-

tations as others are encountered. In our example, we started from the second leftmost

source basic block, propagating the constraints from its leaving edges.

Note: for big trees, one should ask if this is really better that splitting. Indeed, a lot of code

is added, at every basic block of the paths of the trees but at the root. In particular, supposing

there is only one edge E with a parallel copy (all other copies are the identity), the cost of the

whole motion should be compared against the cost of a split (or some spills).

Of course, there is a problem whenever the graph obtained by following critical

edge siblings does not form a tree. If the graph has cycles, like the “butterfly” graph

of Figure 7.14b, no edge is weak, neither directly nor by transitivity. These edges are

called strong critical edges, and form bothersome atomic multiplexing regions (see

Chapter 3, Section 3.3). If there is a parallel copy (except the identity) on any of

the edges of the butterfly of Figure 7.14b, there is no solution involving only motions

of parallel copies. We see in the next section that, whenever the permutation motion

process is stuck, it is always possible to find a solution using standard register allocation

techniques.

172

7.4. PUT IT ALL TOGETHER

do
w

n dow
n

down

up

up up up

dow
n

(a) Tree

(b) Butterfly

Figure 7.14: Weakness can be propagated along chains of critical edges, and more

generally along paths of a tree. (a) all critical edges are weak since there is no cycle;

the up/down labels indicate one possibility of motion for parallel copies on edges. (b)

critical edges form a cycle, hence none is weak: they are all strong critical edges.

7.4.3 Whenever permutation motion is stuck

So far, we found two reasons why the permutation motion could fail: whenever there

are more duplications than the number of registers not alive at the end of the prede-

cessor block, and whenever control-flow edges form cycles, in which case they are all

strong critical edges. The problem is that such situations arise often in real-life pro-

grams. Duplications exist whenever two results of φ-functions use the same value, and

the register pressure can be too high on the predecessor block when this happens. The

butterfly of Figure 7.14b is found whenever a loop has a skip edge—for instance, the

bottom left and upper right blocks represent respectively the top and bottom part of the

same basic block inside the loop, while the top left is the entry and the bottom right is

the exit of the loop.

Let us see these problems from the recoloring point of view we introduced in Sec-

tion 7.4.1. The problem of cycles is the easiest to visualize. See again Figure 7.14b, if

there is any permutation on a critical edge of the butterfly, the goal of permutation mo-

tion is to recolor the entire region defined by the critical edges, i.e., since these edges

cannot be split, one tries to insert permutations at the entry and exit points of the region

(the bottom of the predecessor blocks and the top of the successor blocks). The region

recoloring works if, in the end, the remaining permutations on the critical edges are all

equal to the identity. In fact this is exactly the same problem as in the proof of Chaitin

et al. [1981]. Indeed, we proved in Chapter 3, Section 3.1.2 that, even with live-range

splitting, the proof still holds if critical edges cannot be split. We explained in Sec-

tion 3.3 that this was linked to multiplexing regions, i.e., regions of critical edges that

cannot be split, such as our butterfly. The problem with these regions is that they can

define arbitrarily complicated interference graphs. This also creates the problem with

the duplications: the two definitions responsible for the duplication interfere, at the

bottom of the predecessor block (an entry point of the region), with all other variables

alive. If there was R variables alive at the end of the block, this creates an (R+1)-clique

173

CHAPTER 7. PARALLEL COPY MOTION TO GET OUT OF COLORED SSA

in the interference graph of the multiplexing region (the argument of the φ-functions is

not alive in the region but the definitions are, hence there is R − 1 + 2 variables at this

point).

To solve this problem, we still have one possibility: we can do what people do

since Chaitin et al. came up with exactly the same problem, only for much more bigger

graphs. The problem is NP-complete, but we can use the same heuristic to perform

register allocation on the multiplexing region. Of course, spills might be required, but

we do not have much choice. Whenever one gets a solution, stores and loads must be

inserted respectively at the entry and exit points of the region if there are spills, and also

permutations of colors must be added to repair coloring mismatches. We propose to

use the standard Iterated Register Coalescing (IRC) scheme on the interference graph of

the region or any Chaitin-like algorithm. The interference graph of the region is easily

obtained provided we know which variables are alive and where on a multiplexing

region. This was explained in Section 3.3, and we recall in particular that the definitions

of φ-functions are alive in these regions, but not their arguments (unless they are used

later, after the φ-functions). As for the definition of interference, this time we need to

insert the notion of value as in Definition 2.11. Indeed, if a block B has two successors

containing the φ-functions [a ← φ(c, . . .)] and [b ← φ(c, . . .)], we do not want a and b

to interfere at the bottom of B even if they are both alive at this point.

Register allocation of a multiplexing region on an example. An example of regis-

ter allocation on a butterfly multiplexing region is given on Figure 7.15. Initially, the

code is under colored SSA and the φ-functions require a swap of R1 and R2 on the edge

from Bs2
to Bd2

. We present our example using a different view that is strictly equivalent

but might be easier to understand to those familiar with SSA: First, go out of (colored)

SSA using the algorithm of Sreedhar et al. [1999], i.e., add copies at the entry and exit

points, then rename the copies of variables. In the example, the copies are renamed

using primed variables. These variables are not colored and form an interference graph

on the butterfly region. Note that in our example, there is no “live-through” variable—

variables alive in the region but not involved in a φ-function—but these variables must

also be split at the region boundaries since they must appear in the interference graph.

Hence the interference graph of the region is completely disconnected from the rest

of the program (from an interference point of view). At the end of Bs1
, the couples

(A′, B′), (A′,D′), (B′,C′) and (C′,D′) have different values hence interfere, but not the

couples (A′,C′) and (B′,D′). However, these last two have different values at the end of

Bs2
hence interfere nevertheless, and the four variables form a clique. In general, the in-

terference graph can be any graph, as shown by Theorem 3.1. In the interference graph,

the register nodes are added as a separate clique so that affinities can guide the register

allocation process. These affinities are weighted by the number of moves it would save

if the two extremities are assigned to the same color. In our case, none of Briggs’s

and George’s rules for coalescing could coalesce an affinity because of their restriction

with registers that are pre-colored nodes (see details in Chapter 6, Section 6.2).5 In our

example, the coloring chooses to spill D′ since there is only three registers. Then, it

remains to repair the coloring at the region boundaries, i.e., sequentialize the remain-

ing parallel copies (on the figure, we removed unnecessary copies involving the same

register in destination and argument). Note that the copies introduced were parallel, so

the order in which they are sequentialized is important; in particular, on Bs2
, the copy

to A′ and store for D′ must be executed before erasing the value in R1 for C′.

5However, these rules could apply after D′ is simplified as a potential spill.

174

7.4. PUT IT ALL TOGETHER

a[R1]← . . .

b[R2]← . . .

Bs1

c[R1]← . . .

d[R2]← . . .

Bs2

A[R1]← φ(a, c)

B[R2]← φ(b, d)

Bd1

C[R1]← φ(a, d)

D[R2]← φ(b, c)

Bd2

R1 R2

a[R1]← . . .

b[R2]← . . .

Bs1

//c (A′, B′,C′,D′) ←
(R1,R2,R1,R2)

c[R1]← . . .

d[R2]← . . .

Bs2

//c (A′, B′,C′,D′) ←
(R1,R2,R2,R1)

//c (R1,R2)← (A′, B′)

Bd1

//c (R1,R2)← (C′,D′)

Bd2

A′

C′

B′

D′

R3

R2R1

3 3

12

21

a[R1]← . . .

b[R2]← . . .

Bs1

A′[R3]← a[R1]

@D′ ←

store b[R2]

c[R1]← . . .

d[R2]← . . .

Bs2

A′[R3]← c[R1]

@D′ ←

store c[R1]

C′[R1]← d[R2]

A[R1]← A′[R3]

Bd1

D[R2]← load @D′

Bd2

A′[R3]

B′[R2]

C′[R1]

D′ spilled

Going out of SSA

à la Sreedhar

Chaitin-like

register allocation

Figure 7.15: Register allocation on multiplexing regions: initially, variables were allo-

cated using only two registers, even if there are three. First, go out-of-SSA à la Sreedhar,

putting parallel copies at the region boundaries; Second, perform register allocation on

the interference graph of the region, trying to coalesce the most affinities. Note that in

this example, it would have been better to assign A′ to R1.

175

CHAPTER 7. PARALLEL COPY MOTION TO GET OUT OF COLORED SSA

7.5 Conclusion

In this chapter, the goal was to investigate how to go out of a colored SSA code. We have

seen that classical techniques to go out-of-SSA that insert copies at the beginning or end

of basic blocks, as do Sreedhar et al. [1999], are too constrained in our case by the fact

that variables cannot be created on demand. It then depends on whether some registers

are free or not. The alternative solution is to place parallel copies corresponding to

φ-functions on the incoming edges. We wanted to avoid the drawbacks of splitting an

edge, and to propose a solution whenever edges cannot be split because of technical

problem. Our solution is based on an idea that, to our knowledge, is knew in the

literature: parallel copies can be moved away from edges, provided that compensation

code is inserted on other edges. Duplications in parallel copies pose some problems

when moving them, so we gave an algorithm to decompose parallel copies so that

duplications can be handled separately, and the remaining parallel copies do not contain

duplications. Our solution is then to convert parallel copies into permutations that are

easier to move. In fact, we have seen that permutation motion can be viewed, more

generally, as region recoloring, a technique we introduced that allows permutation to be

moved also inside basic blocks and not only from control-flow edges. We remarked that

this allows to split at a finer granularity level than the SSA split points, hopefully finding

points where it is cheaper to repair coloring than on edges. Finally, we have seen that,

in the presence of non-splittable critical edges, the permutation motion can sometimes

fail: if the number of duplications exceeds the register pressure and in the presence of

multiplexing regions as defined in Chapter 3. Since this problem in NP-complete, as

show by Theorem 3.1, we propose to use classical graph coloring techniques of register

allocation based on the algorithm of Chaitin [1982] to recolor the multiplexing regions,

however possibly with additional spills.

We believe that discovering that parallel copies can be moved is a major break-

through for out-of-SSA translations. Up to now, it was in general considered that plac-

ing copies on edges would require to split them, which is a bad thing to do. For this

reason, people tried to introduce copies directly at the basic blocks borders since the

discovery of SSA, starting with the algorithm by Cytron et al. [1991]. Recently, the idea

of doing register allocation while still under SSA was developed. This allows to use

its nice properties for a longer time, and amongst them the fact that the interference

graph is chordal hence easy to color. However, the drawback is that going out-of-SSA

introduces parallel copies on edges. Hack and Goos [2008] proposed very recently a

recoloring technique used to coalesce the copies on these edges, but still need to split

edges whenever the coalescing fails.

To conclude, the work presented in this chapter shows that it is not a problem to

place parallel copies on edges as these can be moved away from edges that cannot be

split, or that one does not want to split. Moreover, in a context where processors can

execute multiple instructions at a time, for instance a VLIW machines, schedulers often

have trouble filling completely the issues. This makes a lot of space where to hide

additional copies, now that we know how to move them using permutations. This is

not possible if copies are added on edges since instruction scheduling cannot spawn

across basic block boundaries. We presented in this chapter a generic method and, in

practice, trade-offs must be made between splitting edges or not. Experiments need to

be done to confirm the usefulness of the permutation motion method. We will see in

the next chapter, conditions which could greatly benefit from this method.

176

Beware of bugs in the above code; I have only proved it correct,

not tried it.

Donald Knuth, Letter to Peter van Emde Boas

8
Conclusion

In this thesis, we presented many theoretical aspects of register allocation. However,

the ultimate goal of compilation optimizations is to be used in practical situations. Re-

ality is different from models: on the one hand, architectures have particular constraints

that differs between each other and hence not included in general register allocations

schemes; on the other hand, worst-cases situations are seldom found in actual pro-

grams, which simplifies some problems in practice. In this conclusion chapter, we

revisit the most important points developed in the previous chapters of this thesis and

place them in a broader context, to provide insights or advices for register allocation in

practice.

8.1 Reality is different from models

During the few years that this thesis lasted, we worked in collaboration with the com-

pilation team of STMicroelectronics from Grenoble. They provided us with many fruit-

ful discussions, in particular, they brought a valuable expertise of the problems re-

lated to the implementation of an industrial strength compiler. Among the architecture

they target, the most important one is the ST200, a family of Very Long Instruction

Word (VLIW) processors capable of executing up to four instructions at a time (four is-

sues). The compiler they use and develop to compile for this family is called “LAO,” for

linear assembly optimizer. We will now talk about particular architectural constraints

that need to be taken into account, referring to, but not limited to, our experience with

the ST200.

8.1.1 Architectural constraints complicates register allocation

8.1.1.1 The constraints

There are usually many architectural constraints in a processor, which must all be taken

into account. For register allocation, we are interested in two flavours of constraints

concerning registers: the register constraints and the naming constraints. The former

imposes constraints on the uses of registers, i.e., in which context they can or must be

used. The latter imposes constraints when assigning variables to registers. We give

now extensive examples based on the ST200, which has 64 integer registers (general

register file) and 8 boolean registers (branch register file). It does not however have

any floating point register file.

CHAPTER 8. CONCLUSION

Register constraints. Of the 64 integer registers of the ST200, many are completely

equivalent but some are very special. R0 is a bit bucket, i.e., it represents a constant

(zero) and writing in it is possible but has no effect. The thread pointer (TP) is in

R13 and is not modifiable. The stack pointer (SP) is in R12, can be modified, but must

always be valid. Finally, the link register (or return pointer, RP) is in R63. It contains the

instruction where execution must continue after a function call returns. It is excluded

from some register classes (e.g. cannot hold a memory address to perform a load).

Other registers have more freedom, but many more conventions exist: the frame pointer

(FP) is in R7, the static link (SL) in R8, the global pointer (GP) in R14. The application

binary interface (ABI) defines constraints so that functions in libraries behave nicely

when called: the caller-save registers are: all the branch registers, i.e., B0 to B7, and the

integer registers R8 to R11 and R15 to R63. The callee-save are the others: R1 to R7 and

R14 (since R0, R12 and R13 already have a special treatment). Arguments to function

calls are passed using registers R16 to R23. These serve also when functions returns

small structure with less that eight values. Otherwise, R15 is used for the return value.

Naming constraints. Here, we talk about general naming constraints found in ar-

chitectures, not necessarily in the ST200. Such constraints can be: two operands

must reside in the same register: case of auto increment or RISC assembly instruc-

tions (Rx ← Rx + Ry). Two operands must not reside in the same register (e.g., some

architecture forbid to multiply a register by itself). Also, more complicated constraints

like: register pairing: a 64-bit load defines registers R2p and R2p+1; or register alias-

ing: e.g., two 16-bit register names point to the “lo” and “hi” part of a 32-bit register.

Finally, we also cite constraints on register classes, when the arguments or results of an

instruction must reside in a subset of the registers: for instance the integer division on

X86 expects the dividend to be on 64 bits on the 32-bit registers %edx and %eax, and

defines these two registers respectively as the remainder and quotient of the operation

(the divisor can be any register).

8.1.1.2 Solutions for constraints on registers during allocation

We voluntarily gave a long list of constraints, not because it is important to know

precisely all of them, but to illustrate the fact that they exist and are not petty details.

Still, register allocation algorithms often seem to elude these constraints, which results

in elegant strategies where variables of a program can be assigned to any of the R

registers available. If register allocation where really performed this way, there would

not be many running programs. And yet they run. How are these constraints satisfied

in practice? Let us start by the register constraints.

Register constraints. Registers that are reserved for a particular purpose are easy

to handle. For instance, there cannot be two stack pointers at the same time, so it is

possible to rename directly the variable SP by R12 in the code. From the interference

graph point of view, this corresponds to merging the two nodes. In the case of SP, it

is even possible to directly remove R12 from the set of assignable registers since it is

always alive and it will never be possible to assign another variable to R12 (unless it is

a copy of SP on all its live-range). For R0, this is a bit different. It can have two uses:

putting the value zero in a register, or throwing away the result of an instruction. In

the first case, it can be directly used in the code. The second case is useful for instance

if an instruction defines two variables but only one needs to be kept. If there is only

one register left, using R0 for the useless definition saves a spill. A solution is to detect

178

8.1. REALITY IS DIFFERENT FROM MODELS

definitions that become immediately dead using liveness analysis and to replace the

corresponding variables by R0 in the code. Of course, R0 should not be in the set of

allocatable registers. Finally, the case of R63 is particular since it cannot be used to load

from memory. This means for instance that in [. . .← load(a)], a cannot be assigned to

R63. This can be easily assured by adding an edge between a and R63 in the interference

graph.

It is tempting to solve ABI constraints like the SP case above. Such a solution

would “hard-code” constraints in the program. For instance, supposing variable a is

constrained to reside in Rx by the instruction that defines it, then a is replaced by Rx

everywhere in the program. Of course this poses a problem if the same instruction is

used to define another variable b where a is still alive. In that case different possibilities

involving the spilling of a or moving it to another register arise. Obviously, a move is

better than inserting loads and stores. This is in general the preferred solution, and to

save the burden of finding points of conflicts, a safe solution is to insert a copy [a ←

Rx] directly after the defining instruction. Hopefully, the coalescing during register

allocation will manage to assign a to Rx and the copy can be removed in the end. If

not, this probably means that it was more preferable to save Rx for other variables.

In general, this is the way register constraints are handled: by splitting variables,

i.e., adding copies between actual registers and variables, either before or after the

instruction. For instance, arguments of functions calls are “put” in their right registers

before the call, and the register holding the return value copies its content into the

right variable after the call.

Naming constraints. The above method obviously works also for naming constraints

where the architecture imposes the use of one particular register in an instruction, as

in the example of the division for X86. However, this method does not work with

constraints like register aliasing or pairing. To handle register aliasing, Smith et al.

[2004] propose to extend the classical graph coloring technique by generalizing the

constraints between nodes in the interference graph, hence giving to each node a set

of registers available to it instead of a number of colors. However, effectively using

register aliasing is still considered difficult in the literature. An easy work-around is

to consider only disjoint register classes by forcing registers being referenced in more

than one class to be part of only one. Note however that this cancels out the benefit of

having aliasing in the architecture.

Constraints like pairing cannot be as conveniently left aside. However, they can be

easily handled with some splitting. The difference with the previous solutions based

on splitting is that splitting only the variables on which the constraint applies is not

enough. Indeed, suppose that every odd-numbered register contains a variable, then

there is no solution for the load64. But if for instance R2 and R4 are free, a solution is

to save the content of R3 to R4, then perform the load into R2R3, then swap R4 and R3

so that this last register holds the same variable as before. Hence, a solution is to split

all variables before and after the instruction that needs pairing. This creates a set of

variables completely disconnected from the rest of the interference graph, on which it

is easy to satisfy the pairing constraint.

8.1.1.3 Splitting even more

Splitting is a very convenient way to deal with architectural constraints on registers. In

order to avoid a serious drop of quality of the final code, we need a good coalescing

algorithm capable of removing the most number of inserted copies. We studied many

179

CHAPTER 8. CONCLUSION

variants of this problem in Chapter 5: aggressive, conservative, incremental and de-

coalescing, and found most of them NP-complete but for the incremental coalescing

on chordal graphs. However, we came up in Chapter 6 with practical heuristics that,

for the suite of graphs from the Coalescing Challenge provided by Appel and George

[2000], perform very well. In particular, we proposed a conservative heuristic based on

an improved brute-force test and of existing test of Briggs and George. This heuristic

outperforms the state of the art heuristics that we are aware of, i.e., the conservative

Iterated Register Coalescing (IRC) of George and Appel [1996], and the optimistic co-

alescing of Park and Moon [2004]. However, we do not know how it compares to the

very recent recoloring algorithm proposed by Hack and Goos [2008], as explained in

the conclusion of Chapter 6. Our results for the graphs of the Coalescing Challenge are

important for splitting algorithms, since the graphs have been obtained by aggressive

splitting, where live-ranges are split at every program point. This gives an idea of the

maximum splitting one could find in a program, and shows that even with that much

splitting, our coalescing techniques are good enough to remove most of the copies,

leaving only about 10% more than the optimal solution (compared to the ∼100% more

left by the IRC).

In this thesis, we proved in Chapter 2 that the interference graph of a program un-

der Static Single Assignment (SSA) is chordal (Theorem 2.36). This led to new ideas of

performing register allocation while still under SSA to use the fact that chordal graphs

are easy to color with the greedy scheme of Chaitin et al. [1981], i.e., are greedy-

k-colorable (see Property 2.22). However, architectural constraints, if treated as ex-

plained above, break the chordal property of the interference graph. Indeed, this inserts

a clique of nodes corresponding to machine registers, which periodically interfere with

some variables at every instruction that constrains its operands. This creates cycles in

the interference graph that are likely to be of size at least four, and without any chord.

This can even make the interference graph not greedy-k-colorable anymore. The so-

lution we advocate is to split the same way as for the pairing problem, i.e., insert a

parallel copy for all variables alive before the instruction, and also after. Indeed, this

creates new variables that are just live-in or live-out of the instruction or both. These

are two intersecting cliques that also intersect with the clique of register nodes. If this is

done for every instruction that constrains variables, then the interference graph is made

of at least two connected components. One of them contains the register nodes and all

the variables with tiny live-ranges created, i.e., a union of clique. The remaining part

of the graph stays chordal. The component containing the register nodes can however

be non-chordal. This is the case for instance if two arguments of an instruction are

restricted to different subsets of the same register class. For instance, if a and b are

respectively forbidden to reside in R1 and R2, then (a,R1,R2, b) is a chordless cycle of

size four. However, this is not a problem as this component is still easily colorable.

To conclude, most constraints on registers can be solved with the aid of splitting.

This allows to keep a simple general register allocation scheme, provided that one is

confident about one’s coalescing algorithm. This is our case.

8.1.2 Architectural constraints that simplify register allocation

In Chapter 3, we revisited the NP-completeness proof of Chaitin et al. [1981], after the

discovery that SSA interference graphs are chordal. The conclusion was that, in fact, the

problem of knowing whether R registers was sufficient for register allocation is easy,

unless critical edges cannot be split or the architecture can define two variables at a

180

8.1. REALITY IS DIFFERENT FROM MODELS

time but do not allow swaps. We come back to these problems, taking into account

practical considerations.

8.1.2.1 Repairing color mismatches is easy

When the splitting of variables is allowed anywhere, in particular also on critical edges,

the intuitive result is that, if there is at most R variables alive at each point of the pro-

gram, it is possible to color each instruction independently and repair the coloring

where there are mismatches. This is of course an inefficient way to do register alloca-

tion but the point here is to give the idea of why coloring is not a problem. Problems

arise whenever it is hard to repair mismatches. Let us see the different cases. A mis-

match occurs whenever a parallel copy is not the identity. As explained in Chapter 7,

sequentializing parallel copies is easy if there is no cycles, or if there are cycles but

at least one free register. Otherwise, permutations must be used.1 In the ST200, there

is no swap instruction, but the four issues give parallelism that allows to perform per-

mutation cycles of size up to four, hence the swapping is not a problem. Even if the

parallelism did not allow to swap, a possibility that works for integer or boolean reg-

isters is to use three consecutive XOR instructions. Swapping Rx and Ry is then easily

performed by executing:

Instructions Rx Ry

a b

Rx ← Rx ⊕ Ry a ⊕ b b

Ry ← Rx ⊕ Ry a ⊕ b b ⊕ a ⊕ b = a

Rx ← Rx ⊕ Ry a ⊕ b ⊕ a = b a

However, note that this technique does not work for any register class, like registers

holding floating point numbers for instance.2 We explained in Chapter 3 that, if swaps

cannot be performed, problems can arise if, still, some instruction can define more than

one variable at a time. We do not think this is realistic for an architecture, but let us

consider that swaps cannot be performed on the ST200. What are the instructions that

can define at least two variables? For instance, a load64. However, even if it defines

two registers, it only takes one as argument, meaning that at least one register was free

before the instruction, which allows a swap. The same is true for the function call,

for which all the caller-save registers are free before and after, but for the argument and

result registers (a strict subset, hence at least one free register exists). Hence the only

instructions that could potentially pose problem in fact break the difficulty by providing

program points where it is easy to repair coloring mismatches.

In conclusion, swapping is not a problem in practice and repairing color mis-

matches is always possible. There remains however the problem of non-splittable crit-

ical edges.

8.1.2.2 False critical edges can be split

Both Chapters 3 and 7 state that non-splittable critical edges define atomic multiplex-

ing regions that are hard to color. In Chapter 7, Section 7.4.3, we proposed to use the

same heuristic as Chaitin [1982] to perform register allocation on these regions, since

1It would also be possible to spill the value of a register to free it, but would mean we did not manage to

use only R registers. It would also not prove that this was not possible.
2A word of caution in presence of register aliasing: Rx and Ry should be physically different or the value

is erased by the first XOR and cannot be recovered. Indeed, Rx ⊕ Rx is always equal to zero.

181

CHAPTER 8. CONCLUSION

(a)

no
ju

m
p

no
ju

m
p

(b)

Figure 8.1: In a loop with a skip edge (a), all edges are critical. Since the final code is

linearized in memory (b), the edge entering the loop and the one exiting it can be split

without adding a jump.

the problem is NP-complete. However, we measured that, in practice, many multi-

plexing regions are “butterflies,” as in the example given on Figure 7.14b. However,

note that basic blocks do not exist independently of their machine representation. In

this representation, the final code, it is well-know that the control-flow graph (CFG) is

linearized. In this linear representation, basic blocks lie one after the other in memory,

and we remarked that some critical edges are what we call “false” critical edges.

Definition 8.1. A critical edge from basic block Bs to basic block Bd is false if Bs and

Bd are consecutive in the linear representation of the CFG.

We remarked that it is easy to add code on these edges. Indeed, there is no jump

instruction to go from Bs to Bd: the edge is critical because at the end of Bs a (con-

ditional) jump goes to somewhere else, and the next instruction, the start of Bd, is the

destination of a jump. The actual choice of going to Bd from Bs is actually performed

by not choosing to jump. Hence, if some instructions are added between Bs and Bd in

the linear representation, they will automatically be executed whenever the execution

path follows the edge. Let us see an example. We already explained that butterflies

of critical edges appear whenever a loop has a skip edge. Such a loop is depicted on

Figure 8.1a: the four control-flow edges are critical and form a cycle. In the compiler,

linearization is likely to place the three basic blocks in memory in the same order as

they are represented. In this case, the edge that enters the loop and the edge that exits

it are false edges. A basic block can be added to them with no additional jump, as

depicted in Figure 8.1b. This breaks the butterfly cycle, and any permutation on the

skip edge or the back edge of the loop can be moved up or down, with appropriate

compensation code placed on the false critical edges as explained in Chapter 7.

Limitation of false edges. There are however limitations to the usefulness of false

edges. First, they usually correspond to highly executed edges in the code: this was

indeed a good reason to put the basic blocks next to each other in the first place: to save

one jump! So it might not be very sensitive to come later and add compensation code

on such an edge and a permutation on one of the two basic blocks, just to save a jump

on another less executed edge. . . Second, if some code is added to false edges, it cannot

182

8.2. REGISTER ALLOCATION IN PRACTICE

be scheduled with code on other basic blocks as scheduling does not spawn across basic

block boundaries. Hence this code cannot be hidden in empty issues of bundles of VLIW

architectures. Still, false edges provide a nice trick to get rid of annoying strong critical

edges, when one absolutely wants neither to spill nor to split an edge.

We have just seen that practical issues are not always a problem. In the first case,

we comprehensively explained why it is not realistic to consider that repairing color

mismatches is a problem. The second case remind us that, although it is more elegant

to abstract practical problems, one must not forgot the reality to which they are attached

to. In this case, it is easy to forgot that control-flow edges are in fact only either a jump

instruction, or the absence of a jump instruction.

8.2 Register allocation in practice

The previous section reminded us that register allocation is for real architectures, with

the assortment of constraints that comes shipped with them, which can be bothersome

but also sometimes beneficial. We will now give our view of how register allocation

should be done.

8.2.1 Global versus local

In this thesis, we advocate that the spilling phase should be separated from the coalesc-

ing and coloring phase. We based this thought on the fact that the interference graphs

of SSA programs were chordal, hence there is an easy test to know whether spilling is

necessary or not. This test is that Maxlive, the maximum number of simultaneously

alive variables, should be at most R, the number of registers available. The goal of

our complexity study of the spill everywhere under SSA, in Chapter 4, was to discover

whether SSA also simplifies this problem, as it does for the coloring problem. However,

we came up with nearly only NP-completeness proofs, and no satisfying algorithm to

use in practice.

So, to the question whether SSA is good for the spilling, our answer is “no.” For

years, evidence was shown that SSA simplifies engineering, but we state here that it

does not necessarily give the right splitting points for the spilling. SSA does not provide

a simple polynomial algorithm, nor does it bring quality to the spill problem.

There is however a morale to this story. Splitting as SSA does simplifies the col-

oring, but not the spilling. We believe this shows that spilling is not a problem that

is easily handled globally, while the coloring and coalescing are. And that is really

a point in favor of doing register allocation in two separate phases. The first phase

can optimize loads and stores locally, until the Maxlive ≤ R test becomes true. Then,

live-ranges are split, using SSA split points for instance, and the chordal interference

graph can be built so that coalescing and coloring perform the remaining task of reg-

ister allocation. Spilling is performed as a global approach in the algorithm of Chaitin

et al. [1981], or the IRC of George and Appel [1996]. We think the fact it is global is

responsible of two weaknesses. First, spilling a node in the interference graph forces

the corresponding variable to be spilled “everywhere,” while maybe spilling only parts

of it would be sufficient. Second, there is no guarantee that spilling a node will help

to color the graph. In the LAO compiler, we ran the following experiment: after the

last spilling phase, each spilled variable was submitted to a test. If, on all points of its

live-range, the register pressure was at most Maxlive− 1, it was declared as a “useless”

183

CHAPTER 8. CONCLUSION

spill and inserted back into the code. We found that, even if there was not so many

useless spills, there existed some, i.e., too many. Of course, these spills were some-

times useful for the coloring part because there was no SSA-based splitting, but in the

proposed context where splitting is done after the spilling phase, this shows that this

global approach for spilling is probably not the right one.

8.2.2 Proposed scheme(s)

8.2.2.1 Aggressive scheme

Our experiments from Chapter 6 with the coalescing in presence of aggressive splitting

show that the approach of Appel and George [2001] is worth trying. While they stayed

with an enormous amount of copies after their optimal spilling formulation, we showed

that these can be dealt with using a conservative approach not more complicated than

the IRC from an implementation point of view. However, our experiments with the op-

timal “clique” rule (see Section 6.4) also show that not all split point of a program are

needed to find the best locations where colors must be repaired. If the spilling phase

does not need a preliminary aggressive splitting phase, it is worth trying to find less

points of split, in order to minimize the impact of having to manipulate an very large

interference graph. In this direction, it would probably be interesting to compare the

split points chosen by our “chordal” conservative coalescing technique (i.e., the affini-

ties not coalesced), to the split points chosen by a technique based on our permutation

motion (i.e., the points where permutations are sequentialized).

8.2.2.2 Local spilling followed by coalescing

In this section, we propose two more schemes for register allocations, based on what we

have seen so far. The common idea is to use local decisions for spilling. As proposed

by Hack et al. [2006], the spilling can be performed using an algorithm similar to

the one proposed by Belady [1966], which was initially designed for virtual-storage

management. Guo et al. [2004] studied it in the context of local register allocation,

i.e., on basic blocks, and showed that it is a good heuristic. Hack et al. describe

how to extend it to work in the more general context of CFG, to decrease the register

pressure until Maxlive is at most R, the number of registers. They use this algorithm

in the context of register allocation under SSA. After the spilling, it is possible to split

using SSA split points as they do, or to perform a more aggressive splitting. In our

experiments with the ST200, we remarked that, due to the large amount of registers

available (64), there is not a lot of move instructions added. Hence, the coalescing

does not have a strong impact. In that case, we believe that it is sufficient to split using

SSA and use our permutation motion technique described in Chapter 7 to get rid of the

remaining copies. In particular, the low register pressure around function calls gives

us good hopes that permutations at places where there is no free register can be easily

moved in order to avoid performing expensive swaps. As a future work, it would be

great to have a good mean of knowing where empty issues are likely to be in the final

code so that permutations can be sequentialized at these points. For these reasons, we

believe that the overhead of the copies added during the out of colored SSA translation

can be nearly completely nullified.

Quentin Colombet worked in our team to incorporate Hack’s algorithm in LAO. In

order to increase the number of moves to study the effects of our coalescing heuristics,

the number of integer registers was artificially decreased to 18 instead of the original

184

8.2. REGISTER ALLOCATION IN PRACTICE

64. To keep the graph chordal, he used the splitting technique we described above,

splitting every live variable before and after constraining instructions (mainly function

calls). The first experiments showed improvements both in the spilling and the coa-

lescing part, which were compared to an implementation of the IRC. For coalescing

experiments, to be fair between the different heuristics, the IRC was applied after us-

ing the spill algorithm of Hack. We give here some preliminary results for coalescing,

based on the “HP Benchsuite.” This benchmark suite is provided by Hewlett-Packard

and consists of complex but typical C programs. For example, there are programs treat-

ing MP2 and MPEG4 streams, DivX conversion, RSA and DES cryptography and the

gcc source code. We did not run these programs on the ST200, as the experimental

branch we are working on is not ready yet. Instead, Quentin Colombet provided us

708 interference graphs of procedures from the HP Benchsuite. These graphs have

on average about 250 nodes, and up to 4000 for the biggest graph. Remember that,

compared to the graphs from the Coalescing Challenge (which have about 850 nodes

on average), these graphs are obtained after splitting at SSA split points and not at any

program points. So, the graphs from the HP Benchsuite are of a decent size.

The table below shows how different coalescing schemes perform compared to the

IRC. To obtain these numbers, we divided the cost of the heuristic solution by the cost

of the IRC solution. The result was then averaged over all graphs, weighted by the size

of the graphs so that bigger graphs gets more importance. As many graphs are quite

small and easy to coalesce, we also gave the ratio on the set of “interesting graphs,”

i.e., for each heuristic, the graphs for which the solution of IRC and the heuristic differ.

Note that we could not include results for the heuristic of Appel and George based on

Park and Moon [2004] since our graphs are greedy-k-colorable, while their heuristic

works only for graphs such that every node has degree at most k − 1. It still works for

some graphs, but fails on too many of them to give a fair comparison (however, the few

results we have for it are not encouraging, compared to our heuristics).

Chordal
Clique rule+

chordal

Aggressive+

de-coalescing+chordal

on all graphs 0.8080 0.8066 1.0247

on interesting graphs 0.4748 0.4724 1.0601

#interesting graphs 141 142 188

We see that our chordal rule manages to remove one fifth of the weights of the

affinities not coalesced by IRC. And on graphs where improvement was possible, it

removed more that half of those left by IRC. As expected, the optimal “clique” rule is

not of much help here, since the graphs are not aggressively split. A more surprising

result is that the aggressive scheme followed by de-coalescing and chordal performed,

in average, worse than IRC. A quick investigation showed that some graphs are up to

18× worse that IRC, i.e., the aggressive part made really unfavorable choices that the

de-coalescing part could not recover.

To conclude this section, preliminary results seem to indicate that decomposing

register allocation in two phases improves the resulting code. Moreover, we already

experienced that it really simplifies the development of improvements as each phase

is cleanly separated from the other. This allows us to fairly compare different algo-

rithm, for instance by choosing either Hack’s algorithm or IRC for the spilling, and

then choosing either IRC, any of our coalescing algorithms from Chapter 6, or our per-

185

CHAPTER 8. CONCLUSION

mutation motion from Chapter 7. It would have been much more difficult to plug our

different coalescing algorithms directly inside the IRC.

8.2.2.3 A few more words on permutation motion

During this thesis, we started to implement permutation motion in LAO. Quentin

Colombet continued this work and, although it is not finished yet, we already no-

ticed some interesting facts. We devised permutation motion in order to have a lo-

cal approach that would move parallel copies inconveniently placed on critical edges.

Compared to a global approach involving aggressive splitting and coalescing, it has

the advantages of being able to work directly on the code, without the need for big

data structures like an interference graph. Practical application include in particular

just-in-time (JIT) compilation, where linear algorithms are preferred over more time-

consuming approaches. Following this idea, the goal is to apply permutation motion

after a fast coloring algorithm, hence local, that has the drawback of missing many

coalescings.

To emulate this “bad” coloring, we used the simplification scheme of Chaitin et

al., but followed only by a biased coloring. Since our graphs are chordal (we are still

under SSA), the simplification in fact corresponds to an on-line coloring that would

follow the dominance tree, i.e., a “tree-scan” algorithm, similar to a linear scan algo-

rithm, but working on a tree instead of a linearized program. We remarked that such a

coloring was very poor around instructions where we needed to split before and after,

like functions calls for instance. Let us see an example adapted from a real situation.

We suppose four registers, and that register R4 holds an argument for a function call.

This register is “crashed” by the function, i.e., is caller-save, and we suppose we still

need its value later. Hence it should be saved into a callee-save register. We suppose

that the three other registers are callee-save, and that R1 and R2 contains variables but

not R3. The right choice to do would be to save R4 into R3 and restore it after the

call, hence performing the parallel copy [R1,R2,R4,⊥] before the call, and its reverse,

[R1,R2,⊥,R3], after the call, as shown below on the code on the left. But, instead, the

biased coloring forces the parallel copy to be //c = [R4,R1,R2,⊥], i.e., the code on the

right.

R4 ← . . .
...

R3 ← R4

call

R4 ← R3

...

R4 ← . . .
...

R3 ← R2

R2 ← R1

R1 ← R4

call

R4 ← R1

R1 ← R2

R2 ← R3

...

This is obviously a problem, as there is three times too much move instructions

added. Currently, as explained in Chapter 7, the motion of a permutation π stops at

instructions where there are constraints for which π is not the identity. This example

motivates the need for permutations to be decomposed so that they can traverse function

calls and repair such obvious mistakes. Let us see how it would work on this example.

Suppose a permutation, initially the identity, is being moved up. It “eats” the moves

186

8.2. REGISTER ALLOCATION IN PRACTICE

along its way up (provided they are not duplications, as most copies in our example) as

follows:

R4 ← . . .
...

R3 ← R2

R2 ← R1

R1 ← R4

call

R4 ← R1

R1 ← R2

R2 ← R3

π = [R1,R2,R3,R4]

...

R4 ← . . .
...

R3 ← R2

R2 ← R1

R1 ← R4

call

R4 ← R1

R1 ← R2

π = [R1,R3,R2,R4]

...

R4 ← . . .
...

R3 ← R2

R2 ← R1

R1 ← R4

call

R4 ← R1

π = [R2,R3,R1,R4]

...

R4 ← . . .
...

R3 ← R2

R2 ← R1

R1 ← R4

call

π = [R2,R3,R4,R1]

...

Then, π is stuck because R4, on which the register constraint is, is not the identity.

Indeed, it would to be possible to “recolor” the arguments of the call, since the ABI

forces the argument of the call to be in R4, and not in R1 as the recoloring proposes.

The solution is to decompose π into π′ ◦ πid as in the code below, then πid can traverse

the call, and the copies above can be incorporated in it. Note that, since R4 is saved

but is also used as argument of the call, the instruction [R1 ← R4] before the call is a

duplication and the value in R4 should not be erased. Hence, πid must not incorporate

this instruction but instead recolor it.

R4 ← . . .
...

R3 ← R2

R2 ← R1

R1 ← R4

πid = [R2,R3,R1,R4]

call

π′ = [R1,R2,R4,R3]

...

R4 ← . . .
...

R3 ← R2

R2 ← R1

πid = [R2,R3,R1,R4]

R3 ← R4

call

π′ = [R1,R2,R4,R3]

...

R4 ← . . .
...

R3 ← R2

πid = [R1,R3,R2,R4]

R3 ← R4

call

π′ = [R1,R2,R4,R3]

...

R4 ← . . .
...

πid = [R1,R2,R3,R4]

R3 ← R4

call

π′ = [R1,R2,R4,R3]

...

In the end, the permutation at the top is not the identity, while the one stuck below

the call is a swap of R3 and R4. Since, only R3 is alive after the call, sequentializing

these permutations gives:

R4 ← . . .
...

R3 ← R4

call

R4 ← R3

...

This example shows that permutation motion should not be restricted to parallel

copies on control-flow edges, but also for any parallel copy created for instance to

help solving register constraints. Converted to permutations, it is easy to implement

187

CHAPTER 8. CONCLUSION

the composition of permutations as explained in Chapter 7, which allows to remove

unnecessary copies as the ones in the above example.

8.2.2.4 Towards JIT compilation

Permutation motion is one contribution of this thesis that can be really helpful in a

JIT context. It allows to do coalescing, and can work locally in linear time while the

coalescing solutions we proposed in Chapter 6 run in quadratic time. We think that,

in general, separating register allocation in two phases is an important step for JIT.

This allows to have an independent spill that does not have to take care of later col-

oring or coalescing. Approaches where part of the compilation is made off-line are

currently being explored in the JIT world. This allows for instance to use aggressive,

time-consuming strategies off-line. Then, their results for spilling can be encoded in

the generic code to serve as an oracle for the on-line register allocation algorithm. In

this context, an off-line spill that relies on a good coloring technique is problematic,

as the on-line coloring will not manage to be as good, hence will require more spill.

It is costly to add annotations to the code, and having also an oracle for the on-line

coloring is not the best way to solve this problem. But if we know the interference

graph is chordal at the time the off-line compilation is performed, we know that any

greedy algorithm à la Chaitin will manage to color it. We indeed proved, in Chapter 2,

the Property 2.22, which states k-chordal graphs are a sub-class of greedy-k-colorable

graphs. Hence, even the on-line coloring algorithm will be capable of coloring it, which

makes the spill oracle much more useful.

Finally, for JIT context where there might potentially be really many moves, we do

not know yet if the permutation motion will be efficient enough. In such a situation,

an aggressive coalescing approach allows to remove copies very quickly in a first time.

Then, it might be possible to reuse our de-coalescing algorithm, which can be applied

to greedy-k-colorable graphs. In the end, if there is not enough time to perform a good

de-coalescing, it would probably still be interesting to save many copies, possibly at

the price of a few more spilling. All this is hypothetical at the time of this writing, but

we believe there is interesting work to do in this direction.

8.3 Conclusion

Since their publication, the graph coloring algorithm of Chaitin et al. [1981], and then

the register allocation scheme of Chaitin [1982] (that includes spilling) have been very

popular. They are not however the only existing graph coloring algorithms, and serious

propositions of other algorithms have been made, for instance by Chow and Hennessy

[1990], Callahan and Koblenz [1991] or Lueh et al. [2000]. However, our impression

is that the schemes that are actually used are mainly those that flow directly from the

algorithm of Chaitin, for instance the Chaitin-Briggs allocator of Briggs et al. [1994],

or the Iterated Register Coalescing of George and Appel [1996]. We believe that this

is because these allocators manage to keep things simple, which is probably at least as

important as producing good register allocated code. Other allocators are conceptually

pleasant, but apparently scare too much the developers since very few actual imple-

mentation are reported in the literature, and one had to wait for instance more than ten

or twenty years before Cooper et al. [2005] and Cooper et al. [2008] compared two of

the previously cited algorithm to a Chaitin-Briggs one.

188

8.3. CONCLUSION

While Chaitin-like algorithms are simple from a theoretical point of view, the clas-

sic way of performing spilling, splitting, coalescing and coloring in only one phase is

a drawback when it comes to improving one or more of these components. Because

the spilling depends on the coloring and vice versa, improvements on register alloca-

tion tend to be very intricate. While is it usually possible to add one’s improvement

or another to an existing Chaitin-like framework, trying to mix two or more of them

rapidly becomes a nightmare. Then, it seems that “interesting but complicated” im-

provements are likely to share the same fate as alternative graph coloring algorithms:

they get appreciated by the community but are actually seldom used in compilers. A

“good” reason for that is also that, while in theory register allocation can be pretty

clean and nice, real architectures makes the actual implementation less simpler, as ex-

plained at the beginning of this chapter. A fortiori, a register algorithm that is already

complicated in theory has good chances to be nightmarish to implement.

We believe that this is one of the reasons we see people turning to linear scan

algorithms. This extreme way of modeling the register allocation problem suppresses

many problems, and allows people to find “optimal” allocations. These are of course

optimal only in this modeling, but improving the linear scan framework, which is still

quite new, is easy both from a theoretical and an implementation point of view. The

morale is to keep things simple, as even if an algorithm performs better than another,

the latter is likely to be preferred if it is simple to understand and to implement and if,

on the contrary, the former requires years of careful engineering. In these conditions,

important improvements like live-range splitting as proposed by Cooper and Simpson

[1998] have a hard time to make their way into compilers.

Hence, we believe that one of the challenges for register allocation is to transform

the base scheme laid by Chaitin [1982] into an scheme as simple but that also allows

improvements to be simple. This is the main reason that we advocate register allocation

to move to schemes separated in two phases. In these schemes, the easy test of whether

Maxlive is greater than the number of registers R or not controls the spilling. When

this is assured, one knows that some splitting will always be enough to color the inter-

ference graph later. To illustrate the benefit of using a scheme in two phases, we will

take the live-range splitting example. Fabri [1979] already remarked what splitting

allows to spill less. Briggs [1992] included a form of aggressive live-range splitting

in his compiler, but this created too many copies in the programs. Finally, Cooper

and Simpson [1998] decided to split live-ranges on demand, whenever the decision to

make a spill is going to be made. This produced really better results, but complicated

the Chaitin-Briggs scheme a little more, as the technique must be inserted with spilling

on the one side and coalescing on the other side. These two problems have opposite

interests when in comes to live-range splitting.

What about live-range splitting in the context of register allocation in two phases?

It is true that splitting variables can avoid some spilling, however, it is not of much

help whenever there are more variables alive than the number of available registers:

in that case, spilling is mandatory.3 Since the goal of the first phase is to make sure

that Maxlive gets lower than R, any splitting might be used if it helps finding a better

load-store optimization. For the second phase, we know that splitting as SSA does is

enough for the coloring to get feasible. So, if the first phase did its job, there should

not be any problem at the second. Now, what happens if the first phase added blindly a

lot of copies as did Briggs in this thesis? We have already seen that the most aggressive

way of splitting is as Appel and George [2001] do, and that our chordal conservative

3Note that re-materialization can also help in fact.

189

CHAPTER 8. CONCLUSION

coalescing technique introduced in Chapter 6 can cope satisfactorily with the copies

introduced. This shows that, if spilling is always considered worse than adding copies,

it is safe to optimize first the spilling without fear of introducing too many copies, then

to optimize the coalescing using good conservative techniques. By separating register

allocation in two phases, the problem of making a trade-off between splitting too much

and splitting too less is not relevant anymore, so the whole scheme gets simpler.

The believe the work done during this thesis to be an important step in favor of the

decomposition of register allocation into two separated phases: first spilling, then split-

ting and coloring using coalescing. Chapter 2 presented important foundations for this

thesis: the proof that interference graphs of programs under SSA are chordal, and the

proof that chordal graph are greedy-colorable, i.e., colorable using the greedy scheme

of Chaitin et al. [1981]. In Chapter 3, we felt that the NP-completeness proof of Chaitin

et al. needed to be revisited to clarify where the complexity of register allocation does

come from. We proved that knowing whether R register are sufficient to allocate a

program or not is not difficult because of the coloring, but because of the presence of

non-splittable critical edges. This explained why SSA simplifies the coloring problem:

it implicitly supposes all edges to be splittable. This study established solid grounds

that showed register allocation in two phases was possible.

Then, we wondered whether SSA also simplifies the spilling problem, and studied

the complexity of the simpler spill “everywhere” problem under SSA in Chapter 4.

However, we found most versions of this problem to be NP-complete, which makes us

think that spilling is not a problem that should be handled globally, but rather locally,

to better optimize loads and stores. In register allocation in two phases, the coalescing

problem is now a fully independent problem. Its complexity was never studied in

details before and we think that the thorough study of the variants of this problem

in Chapter 5 was a necessary step. Unfortunately, most of these problems were also

proven NP-complete, but for the particular case of incremental coalescing on a chordal

graph. However, keeping a graph k-chordal after an incremental coalescing constrains

the graph too much, and we preferred to use this result as a heuristic. We used it for the

incremental problem on greedy-k-colorable graphs in Chapter 6, since this problem is

still open. However, even if the algorithmic behind this heuristic is nice, it appeared to

be of little improvement compared to our coalescing heuristic based on “brute-force.”

We indeed showed in this same chapter that, instead of testing affinities several times

as in the IRC, it was more beneficial to perform a more exact test, but only once. The

quality of the final coalescing is greatly improved, however at the price of a slowdown

of the algorithm. We also improved optimistic coalescing techniques so that they can

be applied to any greedy-k-colorable graph, but the results are still not as good as our

best conservative technique. This showed that, contrary to common thought, optimistic

coalescing is not always the best solution compared to conservative coalescing. We

also gave evidence using integer linear programming (ILP) that this last strategy, based

on incremental, will be hard to improve and that the limiting factor is the order in

which affinities are considered. More work should be done in this area to investigate

which ordering works best and why. We believe our work on coalescing heuristics

to be of major importance as it canceled the last reason to perform register allocation

in only one phase, which was that coalescing techniques were not good enough to

cope with many copies. Our results were obtained using the graph database from the

Coalescing Challenge [Appel and George, 2000], but we gave previously in this chapter

preliminary results based on programs from the HP Benchsuite that confirms the first

results.

190

8.3. CONCLUSION

Finally, we investigated the problem of parallel copies being placed on control-flow

edges during the translation out of colored SSA. This situation arises during the second

phase of register allocation, when the coloring is performed under SSA, for instance to

use the chordal property of the interference graph. We developed in Chapter 7 a method

based on permutation motion to move parallel copies out of the edges that cannot be

split. We also remarked that this method can be viewed as region recoloring. We think

this method has good chances of being very useful as a post-pass in a JIT compiler, to

repair coloring mistakes in a linear and local fashion. For VLIW architectures, permuta-

tion motion is also likely to be appreciated if studies manages to predict where empty

issues can be found, so the permutation can be moved at these places and copies will

not use more machine cycles.

191

Bibliography

F. E. Allen and J. Cocke. A program data flow analysis procedure. Commun. ACM, 19

(3):137, 1976. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/360018.360025.

B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in pro-

grams. In POPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, pages 1–11, New York, NY, USA, 1988.

ACM Press. ISBN 0-89791-252-7.

A. Appel. Modern compiler implementation in ML. Cambridge University Press, 1998.

ISBN 0-521-58274-1.

A. Appel and L. George. Optimal Coalescing Challenge. http://www.cs.

princeton.edu/˜appel/coalesce, 2000.

A. W. Appel and L. George. Optimal spilling for CISC machines with few registers.

In Proceedings of the acm sigplan conference on programming language design and

implementation, pages 243–253. ACM Press, 2001. ISBN 1-58113-414-2.

R. Barik, C. Grothoff, R. Gupta, V. Pandit, and R. Udupa. Optimal bitwise reg-

ister allocation using integer linear programming. In Languages and Compilers

for Parallel Computing, volume 4382/2007 of Lecture Notes in Computer Science,

pages 267–282. Springer Berlin / Heidelberg, 2007. ISBN 978-3-540-72520-6. doi:

10.1007/978-3-540-72521-3 20.

L. Belady. A study of replacement algorithms for a virtual storage computer. IBM

Systems Journal, 5(2):78–101, 1966.

C. Berge. Graphs and Hypergraphs. North Holland, 1973.

P. Bergner, P. Dahl, D. Engebretsen, and M. T. O’Keefe. Spill code minimization via

interference region spilling. In SIGPLAN Conference on Programming Language

Design and Implementation, pages 287–295, 1997.

D. Bernstein, M. Golumbic, Y. Mansour, R. Pinter, D. Goldin, H. Krawczyk, and

I. Nahshon. Spill code minimization techniques for optimizing compliers. In Pro-

ceedings of the SIGPLAN ’89 Conference on Programming language design and

implementation, pages 258–263. ACM Press, 1989. ISBN 0-89791-306-X.

S. Blazy and B. Robillard. Live-Range Unsplitting for Faster Optimal Coalesc-

ing. Technical report, Centre d’Étude et de Recherche en Informatique du Cnam

(CEDRIC), 2008.

B. Boissinot, S. Hack, D. Grund, B. D. de Dinechin, and F. Rastello. Fast liveness

checking for SSA-form programs. In CGO’08: proceedings of the sixth annual

ieee/acm international symposium on code generation and optimization, pages 35–

44, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-978-4. doi: http://doi.

acm.org/10.1145/1356058.1356064.

B. Boissinot, A. Darte, B. Dupont de Dinechin, C. Guillon, and F. Rastello. Revisiting

out-of-ssa translation for correctness, efficiency, and speed. In International Sym-

posium on Code Generation and Optimization (CGO’09). IEEE Computer Society

Press, March 2009.

http://www.cs.princeton.edu/~appel/coalesce
http://www.cs.princeton.edu/~appel/coalesce

BIBLIOGRAPHY

F. Bouchez, A. Darte, C. Guillon, and F. Rastello. Register allocation and spill com-

plexity under SSA. Technical Report RR2005-33, LIP, ENS-Lyon, France, Aug.

2005.

F. Bouchez, A. Darte, and F. Rastello. Advanced conservative and optimistic register

coalescing. In CASES’08: Proceedings of the 2008 international conference on

Compilers, +Architectures and Synthesis for Embedded Systems, pages 147–156,

New York, NY, USA, 2008. ACM. ISBN 978-1-60558-469-0. doi: http://doi.acm.

org/10.1145/1450095.1450119.

D. G. Bradlee, S. J. Eggers, and R. R. Henry. Integrating register allocation and instruc-

tion scheduling for riscs. In ASPLOS-IV: Proceedings of the fourth international

conference on Architectural support for programming languages and operating sys-

tems, pages 122–131, New York, NY, USA, 1991. ACM. ISBN 0-89791-380-9. doi:

http://doi.acm.org/10.1145/106972.106986.

P. Briggs. Register allocation via graph coloring. Phd thesis, Rice university, Apr.

1992.

P. Briggs, K. Cooper, K. Kennedy, and L. Torczon. Coloring heuristics for register

allocation. In Proceedings of the conference on Programming language design and

implementation, pages 275–284. ACM Press, 1989.

P. Briggs, K. D. Cooper, and L. Torczon. Improvements to graph coloring register

allocation. ACM Transactions on Programming Languages and Systems, 16(3):428–

455, May 1994.

P. Briggs, K. D. Cooper, T. J. Harvey, and L. T. Simpson. Practical improvements to

the construction and destruction of static single assignment form. Software: Practice

and Experience, 28(8):859–881, 1998.

P. Brisk, F. Dabiri, J. Macbeth, and M. Sarrafzadeh. Polynomial time graph coloring

register allocation. In 14th International Workshop on Logic and Synthesis, June

2005.

Z. Budimlić, K. Cooper, T. Harvey, K. Kennedy, T. Oberg, and S. Reeves. Fast copy

coalescing and live range identification. In Proceedings of the ACM Sigplan Con-

ference on Programming Language Design and Implementation (PLDI’02), pages

25–32, Berlin, Germany, June 2002. ACM Press.

D. Callahan and B. Koblenz. Register allocation via hierarchical graph coloring. In

PLDI ’91: Proceedings of the ACM SIGPLAN 1991 conference on Programming

language design and implementation, pages 192–203, New York, NY, USA, 1991.

ACM. ISBN 0-89791-428-7. doi: http://doi.acm.org/10.1145/113445.113462.

G. J. Chaitin. Register allocation & spilling via graph coloring. In Proceedings of

the ACM SIGPLAN Symposium on Compiler Construction (CC’82), volume 17(6)

of SIGPLAN Notices, pages 98–105, 1982.

G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. W.

Markstein. Register allocation via coloring. Computer Languages, 6:47–57, Jan.

1981.

194

BIBLIOGRAPHY

F. Chow and J. Hennessy. The priority-based coloring approach to register allocation.

ACM Transactions on Programming Languages and Systems (TOPLAS), 12(4):501–

536, Oct. 1990.

K. Cooper, A. Dasgupta, and J. Eckhardt. Revisiting graph coloring register allocation:

A study of the Chaitin-Briggs and Callahan-Koblenz algorithms. In Workshop on

Languages and Compilers for Parallel Computing (LCPC’05), Oct. 2005.

K. D. Cooper and A. Dasgupta. Tailoring graph-coloring register allocation for runtime

compilation. In International Symposium on Code Generation and Optimization

(CGO’06), pages 39–49. IEEE Computer Society, 2006.

K. D. Cooper and L. T. Simpson. Live range splitting in a graph coloring register

allocator. In Compiler Construction, volume 1383 of Lecture Notes in Computer

Science, pages 174–187. Springer Verlag, 1998.

K. D. Cooper, T. J. Harvey, and D. M. Peixotto. Chow and Hennessy vs. Chaitin-Briggs

Register Allocation: Using Adaptive Compilation to Fairly Compare Algorithms. In

SMART, 2008.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT

Press and McGraw-Hill Book Company, 1989.

R. Cytron and J. Ferrante. What’s in a name? Or the value of renaming for parallelism

detection and storage allocation. In Proceedings of the 1987 International Con-

ference on Parallel Processing, pages 19–27. IEEE Computer Society Press, Aug.

1987.

R. Cytron and R. Gershbein. Efficient accommodation of may-alias information in

SSA form. In PLDI’93: Proceedings of the ACM SIGPLAN 1993 conference on

Programming language design and implementation, pages 36–45, New York, NY,

USA, 1993. ACM Press. ISBN 0-89791-598-4.

R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently computing

static single assignment form and the control dependence graph. ACM Transactions

on Programming Languages and Systems, 13(4):451–490, 1991.

E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis.

The complexity of multiway cuts. In 24th Annual ACM STOC, pages 241–251,

Victoria, Canada, 1992. ACM Press.

David W. Goodwin and Kent D. Wilken. Optimal and Near-optimal Global Register

Allocation Using 0-1 Integer Programming. Software: Practice and Experience, 26

(8):929–965, 1996.

C. Eisenbeis, F. Gasperoni, and U. Schwiegelshohn. Allocating registers in multiple-

instruction issuing processors. Rapport de Recherche 2628, INRIA, 1995.

J. Fabri. Automatic storage optimization. In Proceedings of the SIGPLAN symposium

on Compiler construction, pages 83–91, 1979. ISBN 0-89791-002-8.

M. Farach-Colton and V. Liberatore. On local register allocation. Journal of Algo-

rithms, 37(1):37–65, 2000.

195

BIBLIOGRAPHY

C. Fu and K. Wilken. A faster optimal register allocator. Microarchitecture,

IEEE/ACM International Symposium on, 0:245, 2002. ISSN 1072-4451. doi:

http://doi.ieeecomputersociety.org/10.1109/MICRO.2002.1176254.

D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific J.

Math, 15(3):835–855, 1965.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman and Company, 1979.

M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph

problems. Theoretical Computer Science, 1:237–267, 1976.

M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou. The complexity of

coloring circular arcs and chords. SIAM Journal of Algebraic Discrete Methods, 1

(2):216–227, 1980.

L. George and A. W. Appel. Iterated register coalescing. ACM Transactions on Pro-

gramming Languages and Systems, 18(3):300–324, May 1996.

M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,

New York, 1980.

J. R. Goodman and W.-C. Hsu. Code scheduling and register allocation in large basic

blocks. In ICS ’88: Proceedings of the 2nd international conference on Supercom-

puting, pages 442–452, New York, NY, USA, 1988. ACM. ISBN 0-89791-272-1.

doi: http://doi.acm.org/10.1145/55364.55407.

D. W. Goodwin and K. D. Wilken. Optimal and near-optimal global register allocations

using 0–1 integer programming. Softw. Pract. Exper., 26(8):929–965, 1996. ISSN

0038-0644. doi: http://dx.doi.org/10.1002/(SICI)1097-024X(199608)26:8〈929::

AID-SPE40〉3.3.CO;2-K.

D. Grund and S. Hack. A Fast Cutting-Plane Algorithm for Optimal Coalesc-

ing. In Compiler Construction, pages 111–125, July 2007. doi: 10.1007/

978-3-540-71229-9 8.

J. Guo, M. J. Garzarán, and D. Padua. The power of belady’s algorithm in register al-

location for long basic blocks. In Languages and Compilers for Parallel Computing,

volume 2958/2004 of Lecture Notes in Computer Science, pages 374–390. Springer

Berlin / Heidelberg, 2004. ISBN 978-3-540-21199-0. doi: 10.1007/b95707.

S. Hack. Register Allocation for Programs in SSA Form. PhD thesis, Universität

Karlsruhe, Oct. 2007.

S. Hack and G. Goos. Optimal register allocation for SSA-form programs in polyno-

mial time. Information Processing Letters, 98(4):150–155, May 2006.

S. Hack and G. Goos. Copy coalescing by graph recoloring. In PLDI ’08: Proceed-

ings of the 2008 ACM SIGPLAN conference on Programming language design and

implementation, pages 227–237, New York, NY, USA, 2008. ACM. ISBN 978-1-

59593-860-2. doi: http://doi.acm.org/10.1145/1375581.1375610.

S. Hack, D. Grund, and G. Goos. Towards register allocation for programs in SSA-

form. Technical Report RR2005-27, Universität Karlsruhe, Sept. 2005.

196

BIBLIOGRAPHY

S. Hack, D. Grund, and G. Goos. Register allocation for programs in SSA-form. In In-

ternational Conference on Compiler Construction (CC’06), volume 3923 of LNCS.

Springer Verlag, 2006.

L. P. Horwitz, R. M. Karp, R. E. Miller, and S. Winograd. Index register allocation.

J. ACM, 13(1):43–61, 1966. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/

321312.321317.

S. Kannan and T. Proebsting. Register allocation in structured programs. In SODA

’95: Proceedings of the sixth annual ACM-SIAM symposium on Discrete algorithms,

pages 360–368, Philadelphia, PA, USA, 1995. Society for Industrial and Applied

Mathematics. ISBN 0-89871-349-8.

A. B. Kempe. On the Geographical Problem of the Four Colours. American Journal

of Mathematics, 2(3):193–200, Sept. 1879.

S. Kim and S.-M. Moon. Rotating register allocation for enhanced pipeline schedul-

ing. In PACT ’07: Proceedings of the 16th International Conference on Paral-

lel Architecture and Compilation Techniques, pages 60–72, Washington, DC, USA,

2007. IEEE Computer Society. ISBN 0-7695-2944-5. doi: http://dx.doi.org/10.

1109/PACT.2007.61.

K. Knobe and K. Zadeck. Register allocation using control trees. Technical Report No.

CS-92-13, Brown University, 1992.

Konstantinos Sagonas and Erik Stenman. Experimental evaluation and improvements

to linear scan register allocation. Software: Practice and Experience, 33(11):1003–

1034, 2003.

A. Leung and L. George. Static single assignment form for machine code. In Pro-

ceedings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI’99), pages 204–214. ACM Press, 1999a.

A. Leung and L. George. A new MLRISC register allocator. Technical report, New

York University, 1999b.

V. Liberatore, M. Farach-Colton, and U. Kremer. Evaluation of algorithms for lo-

cal register allocation. In 8th International Conference on Compiler Construction

(CC’99), held as part of ETAPS’99, volume 1575 of Lecture Notes in Computer

Science, pages 137–152, Amsterdam, The Netherlands, Mar. 1999. Springer Verlag.

G.-Y. Lueh, T. Gross, and A.-R. Adl-Tabatabai. Fusion-based register allocation. ACM

Transactions on Programming Languages and Systems, 22(3):431–470, 2000.

C. May. The parallel assignment problem redefined. IEEE Transactions on Soft-

ware Engineering, 15(6):821–824, 1989. ISSN 0098-5589. doi: http://doi.

ieeecomputersociety.org/10.1109/32.24735.

S. G. Nagarakatte and R. Govindarajan. Register allocation and optimal spill code

scheduling in software pipelined loops using 0-1 integer linear programming for-

mulation. In Compiler Construction, volume 4420/2007 of Lecture Notes in Com-

puter Science, pages 126–140. Springer Berlin / Heidelberg, 2007. ISBN 978-3-

540-71228-2. doi: 10.1007/978-3-540-71229-9 9.

197

BIBLIOGRAPHY

M. Naik and J. Palsberg. Compiling with code-size constraints. Trans. on Embedded

Computing Sys., 3(1):163–181, 2004. ISSN 1539-9087. doi: http://doi.acm.org/10.

1145/972627.972635.

Q. Ning and G. R. Gao. A novel framework of register allocation for software pipelin-

ing. In POPL ’93: Proceedings of the 20th ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, pages 29–42, New York, NY, USA, 1993.

ACM. ISBN 0-89791-560-7. doi: http://doi.acm.org/10.1145/158511.158519.

C. Norris and L. L. Pollock. Register allocation over the program dependence graph.

SIGPLAN Not., 29(6):266–277, 1994. ISSN 0362-1340. doi: http://doi.acm.org/10.

1145/773473.178427.

J. Park and S.-M. Moon. Optimistic register coalescing. ACM Transactions on Pro-

gramming Languages and Systems (ACM TOPLAS), 26(4), 2004.

J. Park and S.-M. Moon. Optimistic register coalescing. In Proceedings of the Interna-

tional Conference on Parallel Architecture and Compilation Techniques (PACT’98),

pages 196–204. IEEE Press, 1998.

F. M. Q. Pereira and J. Palsberg. Register allocation after classical SSA elimination is

NP-complete. In Proceedings of Foundations of Software Science and Computation

Structures (FOSSACS’06), Vienna, Austria, Mar. 2006.

F. M. Q. Pereira and J. Palsberg. Register allocation via coloring of chordal graphs.

In Proceedings of the Asian Symposium on Programming Languages and Systems

(APLAS’05), pages 315–329, Tsukuba, Japan, Nov. 2005.

F. M. Q. Pereira and J. Palsberg. Register allocation by puzzle solving. In PLDI ’08:

Proceedings of the 2008 ACM SIGPLAN conference on Programming language de-

sign and implementation, pages 216–226, New York, NY, USA, 2008. ACM. ISBN

978-1-59593-860-2. doi: http://doi.acm.org/10.1145/1375581.1375609.

M. Poletto and V. Sarkar. Linear scan register allocation. ACM Transactions on Pro-

gramming Languages and Systems, 21(5):895–913, 1999.

M. Poletto, D. R. Engler, and M. F. Kaashoek. tcc: a system for fast, flexible, and

high-level dynamic code generation. SIGPLAN Not., 32(5):109–121, 1997. ISSN

0362-1340. doi: http://doi.acm.org/10.1145/258916.258926.

F. Rastello, F. de Ferrière, and C. Guillon. Optimizing translation out of SSA using

renaming constraints. In Proceedings of the International Symposium on Code Gen-

eration and Optimization (CGO’04), pages 265–278. IEEE Computer Society, 2004.

F. Rastello, F. de Ferrière, and C. Guillon. Optimizing the translation out-of-SSA with

renaming constraints. Technical Report RR2005-34, LIP, ENS Lyon, France, august

2005.

H. Rong, A. Douillet, and G. R. Gao. Register allocation for software pipelined multi-

dimensional loops. SIGPLAN Not., 40(6):154–167, 2005. ISSN 0362-1340. doi:

http://doi.acm.org/10.1145/1064978.1065030.

198

BIBLIOGRAPHY

B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redun-

dant computations. In POPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 12–27, New York, NY,

USA, 1988. ACM. ISBN 0-89791-252-7. doi: http://doi.acm.org/10.1145/73560.

73562.

V. Sarkar and R. Barik. Extended linear scan: An alternate foundation for global

register allocation. In Compiler Construction, volume 4420/2007 of Lecture Notes

in Computer Science, pages 141–155. Springer Berlin / Heidelberg, 2007. ISBN

978-3-540-71228-2. doi: 10.1007/978-3-540-71229-9 10.

R. Sethi. Complete register allocation problems. In STOC ’73: Proceedings of the fifth

annual ACM symposium on Theory of computing, pages 182–195, New York, NY,

USA, 1973. ACM. doi: http://doi.acm.org/10.1145/800125.804049.

M. D. Smith, N. Ramsey, and G. Holloway. A generalized algorithm for graph-coloring

register allocation. In PLDI ’04: Proceedings of the ACM SIGPLAN 2004 confer-

ence on Programming language design and implementation, pages 277–288, New

York, NY, USA, 2004. ACM. ISBN 1-58113-807-5. doi: http://doi.acm.org/10.

1145/996841.996875.

V. C. Sreedhar, R. D. Ju, D. M. Gillies, and V. Santhanam. Translating out of Static

Single Assignment form. In A. Cortesi and G. Filé, editors, Proceedings of the

6th international Symposium on Static Analysis, volume 1694 of Lecture Notes in

Computer Science, pages 194–210. Springer Verlag, 1999.

S. Touati and C. Eisenbeis. Early Periodic Register Allocation on ILP Processors.

Parallel Processing Letters, 14(2), June 2004. World Scientific.

S. R. Vegdahl. Using node merging to enhance graph coloring. In Proceedings of the

ACM SIGPLAN conference on Programming language design and implementation

(PLDI’99), pages 150–154, New York, NY, USA, 1999. ACM Press. ISBN 1-58113-

094-5.

M. N. Wegman and F. K. Zadeck. Constant propagation with conditional branches.

ACM Trans. Program. Lang. Syst., 13(2):181–210, 1991. ISSN 0164-0925.

C. Wimmer and H. Mössenböck. Optimized interval splitting in a linear scan register

allocator. In Proceedings of the first International Conference on Virtual Execution

Environments (VEE), 2005.

M. Yannakakis. Node-and edge-deletion NP-complete problems. In Proceedings of

the tenth annual ACM symposium on Theory of computing (STOC), pages 253–264,

1978.

M. Yannakakis and F. Gavril. The maximum k-colorable subgraph problem for chordal

graphs. Information Processing Letters, 24(2):133–137, 1987. ISSN 0020-0190.

A. P. Yershov. Alpha—an automatic programming system of high efficiency. J. ACM,

13(1):17–24, 1966. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/321312.

321314.

199

Index

φ-variable, 52

control-flow graph (CFG), 12

LAO, 179

SSA, 48

Coalescing Challenge, 123

multiplexing region, 42, 51

φ-function, 26

RISC, 59

cisc, 59

XOR swap, 183

affinity, 15

constrained, 15

aggressive, see coalescing

aliasing, see register, see register

alive, 14

And yet they run, see Galileo

basic block, 12

branch, 12

Briggs’s rule, 106

cSSA, see conventional SSA

Caml, 134

chad, 69

Chaitin

proof, 39

chordal, see graph

chordal-based coalescing, 113

chromatic number, 18

clique, 19, 21

coalescing, 23, 51, 83

aggressive, 87

chordal-based, 113

conservative, 88

optimistic, 95

coloring, 16

compensation, 153

conservative, see coalescing

constrained, see affinity

conventional SSA, 26

critical edge, 33, 42, 153

false, 184

de-coalesce, 119

de-coalescing, 95, 105

de-materialization, 163

dead, 14

destination

of an edge, 12

dominance, 26

dummy interval, 94

duplication, 151

false critical edge, 184

Galileo, 180

George’s rule, 106, 123

graph

k-chordal, 20

chordal, 19, 20

clique, 19

interval, 19

Graph k-Colorability, 39

greedy-k-colorable, 18, 20

hole, 59, 69

HP Benchsuite, 187

independent set, 74

interference, 14

interval graph, 19

join, 12

join point, 42

live, 14

Live, 15

live-range, 14

live-through variables, 51

lost copy problem, 153

Maxlive, 15

move down, 153

move up, 153

multiplexing region, 173

negative weight, 129

Objective Caml, 134

optimistic, see coalescing

optimistic coalescing, 102

pairing, see register, see register

parallel copy, 34, 149

perfect elimination scheme, 19

permutation, 163

permutation motion, 167, 188

program, 12

program point, 12

punched interval, 69

INDEX

region recoloring, 170

register

aliasing, 2, 181

pairing, 2

register aliasing, 180

register allocation, 2

register pairing, 180, 181

reversible, 153

scheduling, 3

sequentialize, 164

sibling, 171

simplicial, 19, 21

source

of an edge, 12

spill, 21

spill everywhere, 57

spilling, 17

split, 119

splitting

edge, 33

variable, 22

Static Single Assignment, 25

stable set, see independent set

strict, 13

strong critical edge, 172

swap, 46

temporary, see variable

terminal, 129

variable, 2

weak critical edge, 171

201

	Contents
	Nomenclature
	List of Figures
	1 Introduction
	1.1 Program compilation
	1.2 Register allocation
	1.3 Spilling & Coalescing
	1.4 Techniques for register allocation
	1.5 About this thesis

	2 Grounds
	2.1 Basis for register allocation
	2.1.1 Programs and CFG!s
	2.1.2 Live-ranges, interference graph
	2.1.3 Maxlive

	2.2 Coloring the interference graph
	2.2.1 Testing if R registers are sufficient
	2.2.1.1 Conditions on Maxlive
	2.2.1.2 Chaitin et al.'s simplification scheme

	2.2.2 Interesting graph structures
	2.2.2.1 k graphs
	2.2.2.2 Cliques
	2.2.2.3 Interval graphs
	2.2.2.4 Chordal graphs
	2.2.2.5 Greedy-k-colorable graphs
	2.2.2.6 Orderings of graphs structures

	2.2.3 What to do if R registers are not sufficient?
	2.2.4 IRC! (IRC!)

	2.3 SSA! form
	2.3.1 Definition of SSA!
	2.3.2 The dominance property
	2.3.3 Properties of SSA!
	2.3.4 SSA! interference graph is chordal
	2.3.5 Why is coloring polynomial under SSA!?
	2.3.6 SSA! form is not machine code
	2.3.7 Splitting and parallel copies

	2.4 Conclusion

	3 Revisiting the proof of Chaitin et al.
	3.1 NP-completeness proofs
	3.1.1 Direct consequences of Chaitin et al.'s proof
	3.1.2 Splitting variables in Chaitin et al.'s proof
	3.1.3 Split points on edges
	3.1.4 Split points anywhere
	3.1.5 Summary and discussion of complexity proofs

	3.2 Polynomial solutions
	3.2.1 SSA!
	3.2.2 Color propagation

	3.3 Explanation of complexity
	3.4 Register allocation in two phases
	3.5 Conclusion
	3.5.1 Summary of Results
	3.5.2 Organization of the thesis

	4 Complexity of spill everywhere under SSA!
	4.1 Terminology and Notation
	4.2 Spill Everywhere without Holes
	4.2.1 Complexity results
	4.2.2 Extension to the spill non-everywhere problem

	4.3 Spill Everywhere with Holes
	4.4 Conclusion

	5 Complexity of register coalescing
	5.1 Definitions & properties for NP-completeness
	5.2 Complexity of aggressive coalescing
	5.3 Complexity of conservative coalescing
	5.4 Complexity of optimistic coalescing
	5.5 Summary and conclusion

	6 Advanced coalescing: improving the coloring
	6.1 Recalling the coalescing problems
	6.2 Conservative coalescing
	6.2.1 Brute-force conservative coalescing
	6.2.2 Chordal-based incremental coalescing
	6.2.2.1 Two lemmas for chordal-based coalescing
	6.2.2.2 Explaining the chordal-based algorithm
	6.2.2.3 Complexity and quality of chordal-based

	6.3 De-coalescing after aggressive coalescing
	6.3.1 The existing strategy
	6.3.2 Our approach

	6.4 Optimal rules for coalescing
	6.4.1 The optimal ``clique'' rule
	6.4.2 The ``terminal'' rules
	6.4.3 Using the optimal rules for aggressive coalescing
	6.4.4 Disclaimer

	6.5 Experiments and evaluation
	6.5.1 Methodology
	6.5.2 Conservative heuristics
	6.5.3 Optimistic heuristics
	6.5.4 Ordering the affinities
	6.5.5 Using the optimal ``clique'' and ``terminal'' rules
	6.5.5.1 Use of the ``clique'' rule
	6.5.5.2 Use of optimal rules in aggressive coalescing

	6.5.6 Quality conclusion of the experiments
	6.5.7 Inside the Chordal scheme

	6.6 Conclusion

	7 Parallel copy motion to get out of colored SSA!
	7.1 About going out of colored SSA!
	7.1.1 Introducing the parallel copies
	7.1.2 Duplications in parallel copies
	7.1.3 Reversible parallel copies

	7.2 Properties for moving a parallel copy away from an edge
	7.2.1 The problem of critical edges
	7.2.2 Compensation

	7.3 Moving parallel copies away from critical edges
	7.3.1 Decomposition of a parallel copy containing duplications
	7.3.2 The problem of moving reversible parallel copies
	7.3.3 Converting parallel copies to permutations
	7.3.4 Sequentializing permutations

	7.4 Put it all together
	7.4.1 Another break in the (permutation) wall
	7.4.2 Chains, trees and butterflies of critical edges
	7.4.3 Whenever permutation motion is stuck

	7.5 Conclusion

	8 Conclusion
	8.1 Reality is different from models
	8.1.1 Architectural constraints complicates register allocation
	8.1.1.1 The constraints
	8.1.1.2 Solutions for constraints on registers during allocation
	8.1.1.3 Splitting even more

	8.1.2 Architectural constraints that simplify register allocation
	8.1.2.1 Repairing color mismatches is easy
	8.1.2.2 False critical edges can be split

	8.2 Register allocation in practice
	8.2.1 Global versus local
	8.2.2 Proposed scheme(s)
	8.2.2.1 Aggressive scheme
	8.2.2.2 Local spilling followed by coalescing
	8.2.2.3 A few more words on permutation motion
	8.2.2.4 Towards JIT! compilation

	8.3 Conclusion

	Bibliography
	Index

