
HAL Id: tel-00403607
https://theses.hal.science/tel-00403607

Submitted on 10 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Congestion Inference and Traffic Engineering in
Networks
Vijay Arya

To cite this version:
Vijay Arya. Congestion Inference and Traffic Engineering in Networks. Networking and Internet
Architecture [cs.NI]. Université de Nice Sophia Antipolis, 2005. English. �NNT : �. �tel-00403607�

https://theses.hal.science/tel-00403607
https://hal.archives-ouvertes.fr

Université de Nice - Sophia Antipolis – UFR Sciences
École Doctorale STIC

THÈSE

Présentée pour obtenir le titre de :

Docteur en Sciences de l’Université de Nice - Sophia Antipolis

Spécialité : INFORMATIQUE

par

Vijay ARYA

Équipe d’accueil : Planète – INRIA Sophia Antipolis

CONGESTION INFERENCE

AND

TRAFFIC ENGINEERING IN NETWORKS

Thèse dirigée par Thierry TURLETTI

Soutenue publiquement le 5 Juillet 2005, à 10h30 devant le jury composé de :

Président : Pierre BERNHARD UNSA/ESSI, France
Directeur : Thierry TURLETTI INRIA-Sophia, France

Rapporteurs : Guy LEDUC Université de Liège, Belgium
Torsten BRAUN Universität Bern, Switzerland
Bernard COUSIN Université de L’ IFSIC - IRISA, France

Examinateurs : Timur FRIEDMAN U. P. & M. Curie, LiP6 - CNRS, France
Philippe OWEZARSKI LAAS - CNRS, France

THÈSE

INFÉRENCE DE CONGESTION

ET

INGÉNIERIE DE TRAFIC DANS LES RÉSEAUX

CONGESTION INFERENCE

AND

TRAFFIC ENGINEERING IN NETWORKS

VIJAY ARYA
July 2005

CONGESTION INFERENCE AND TRAFFIC ENGINEERING IN NETWORKS
by

Vijay Arya
Directeur de thèse: Thierry Turletti

Planète Projet, Inria Sophia Antipolis, France

ABSTRACT

This thesis focusses on problems related to (i) Inference of Congestion in the Internet and (ii) Mul-
ticast Traffic Engineering in Overlay Networks.

In the first part of the thesis, we propose methods which help to improve the quality of the congestion
inference on both end-to-end paths and internal network links in the Internet.

Today, transport protocols which transfer data in the Internet classify all packet losses as congestion.
However, the development of various wireless access networks had led to the growth of wireless links
in the Internet. Therefore, the packet losses observed by a transport protocol may have resulted either
due to congestion or due to the presence of wireless links on the end-to-end path. In order to make best
use of available network bandwidth, a transport protocol must reduce its sending rate only in response
to congestion losses and not in response to wireless losses. In the second chapter of this dissertation, we
consider the problem of differentiating congestion and wireless losses for unreliable transport protocols
which transfer multimedia flows. Previously proposed end-to-end loss differentiation schemes signif-
icantly misclassify wireless and congestion losses. We propose an explicit loss differentiation scheme
which uses agents at the boundaries of wireless links and results in an accurate inference of congestion
on the end-to-end path. We show how the agents can intelligently record the cause of packet losses
within packets which are not lost, with low overhead.

Inferring the level of congestion on internal network links or paths is useful for the purposes of
monitoring and management of networks. The level of congestion on a link can be inferred by measuring
the loss rate on that link. Installing or upgrading network elements to monitor internal links is an
expensive process and hence the characteristics of internal links are often inferred from end-to-end
measurements.

The process of inferring characteristics of internal links from end-to-end measurements has come to
be known as Network Tomography. One of the earliest proposed methods of performing network tomog-
raphy is MINC (Multicast-based Inference of Network Characteristics), which infers loss rates (conges-
tion) on internal network links using end-to-end multicast measurements. In MINC, per-link loss rates
are inferred by analyzing binary feedbacks which are reported by multicast receivers in response to mea-
surement probes sent from the source. However, due to the presence of buggy or malicious multicast
receivers, feedbacks collected may be incorrect leading to a faulty inference of link loss rates. In the
third chapter of this dissertation, we present a statistical verification procedure which can identify if
the binary feedback data collected from receivers of a multicast tree contains incorrect feedbacks. The
procedure does not require the knowledge of multicast tree topology and is able to identify incorrect
data even in the presence of colluding receivers.

In order to infer link characteristics from end-to-end multicast measurements, dedicated infrastruc-
tures to perform these measurements need to be deployed. For large scale multicast measurements, the
task of deployment is complex and expensive. To avoid this, it was proposed to couple the process of re-
porting binary feedbacks for MINC loss inference with RTCP (Real-Time Control Protocol). In this passive
measurement architecture, existing multicast sessions which use RTP (Real-Time Transport Protocol) to
transfer their data can use their data packets as probes and report binary feedbacks needed for loss in-
ference by piggy-backing them on RTCP packets. For loss inference, MINC requires receivers to report per
probe binary feedbacks and this poses constraints since RTCP feedback bandwidth must not exceed 5%

iv

of data bandwidth. In the fourth chapter of this dissertation, we develop an extended MINC loss estima-
tor which can perform loss inference using aggregate receiver feedbacks. Aggregate feedbacks require
less feedback bandwidth and the estimator is able to perform loss inference using aggregate feedbacks
without significant loss of accuracy. We also compare this estimator to the approach where MINC loss
inference is performed using a reduced set of binary feedbacks.

In the second part of the thesis, we propose a method which helps to perform multicast traffic
engineering in overlay networks.

In overlay networks, the network nodes which are generally servers can perform intelligent and
adaptive networking functions which normally routers do not support. By studying the state of overlay
paths, nodes can route traffic dynamically and perform load balancing or routing based on certain con-
straints. One of the tasks which overlay networks support is multicast routing. To make best use of the
traffic conditions in the network, overlay nodes can route multicast traffic adaptively and achieve goals
of traffic engineering. To be able to do so, they need mechanisms to choose specific or explicit multicast
trees in the overlay. One way of routing traffic on explicit trees is to perform source routing, that is, to
specify the tree within multicast data packets. In the fifth chapter of this dissertation, we show efficient
ways of encoding multicast trees within data packets. These encodings are almost optimal in terms of
space and can be read and processed efficiently. They can be used to represent multicast trees within
data packets to route multicast traffic on explicit trees in a stateless manner. We show the correspon-
dence of multicast trees to theoretical tree data structures and obtain lower bounds on the number of
bits needed to represent multicast trees.

ACKNOWLEDGMENTS

The ideas as to how a doctoral dissertation should look like were formed in my mind by constantly
seeing the hard-bound thick volume placed in the topmost row of one of the bookshelves at home. That
was my father’s dissertation, composed around the time that I arrived into this world. As this dissertation
comes to its completion, I sometimes wonder if I should receive my doctoral degree for this slim booklet.

I would like to thank several people who helped me arrive at this stage. Many thanks to my master’s
thesis supervisor Naveen Garg for having provided a heavy but wonderful introduction to research. I first
tasted research in the ”k-median” group meetings with Naveen, Rohit Khandekar, and Vinayaka Pandit.

Sincere thanks to my supervisor Thierry Turletti for having always been there to listen to and com-
ment upon whatever I had thought out or wanted to discuss about and patiently reviewing all my work.
Thierry’s enthusiastic nature helped me perform better.

I am deeply indebted to all researchers of Planète team for their invaluable help and advice. Thanks
to our team head Walid Dabbous for providing the elder-brotherly advice on various matters. Thanks
to Chadi Barakat for numerous technical discussions and for reviewing pieces of my work. Chadi’s
command and ease in stochastic modeling are somethings I aspire to achieve one day. Thanks to Arnaud
Legout for rigourously reviewing some of my papers which now form a part of this dissertation. Many
thanks to both Thierry and Walid for having arranged the funding for this thesis, which comes from
French and European projects.

Some of the work in this thesis was done at Rensselaer Polytechnic Institute (RPI), NY, USA. I would
like to thank Prof. Shivkumar Kalyanaraman for having hosted my stay at RPI. Discussions with Shiv
helped to strengthen my knowledge of networks and traffic engineering. I hope to carry on my collabo-
rations with Shiv. My stay at RPI became really enjoyable because of Anand Muthukrishnan and Mayank
Jain. Thanks to them and thanks also to the former for having sportively witnessed a car crash from the
eyes of a passenger.

Some of the work in this thesis is due to collaboration with Timur Friedman at LIP6, Paris and Nick
Duffield at AT&T Research, USA. Many thanks to both of them for being the best mentors a student
can possible have. This thesis would not have been possible without their collaboration and I hope to
continue collaborations with them.

I would like to thank all Jury members of my thesis for patiently reviewing the dissertation, giving
helpful comments, and asking me some great questions during the defense. Thanks to Pierre Bernhard,
Guy Leduc, Torsten Braun, Bernard Cousin, Timur Friedman, and Philippe Owezarski. Thanks to Pierre
Bernhard, the president of the jury, for having orchestrated the defense in an enjoyable manner. Special
thanks to Tosten Braun with whom I worked on some interesting problems during his stay in Planète.
Discussions with Torsten also helped me in my own work and I hope to collaborate with Torsten in the
future. Thanks also to our team secretary Aurelie Richard for having arranged the defense with care and
for help on various matters in the past few years.

Thanks to the old and new generations of Planète doctoral students and engineers for lunch and café
discussions. The older generation included Fatma Louati (whose peugeot I drive today), Miguel A. Ruiz
Sanchez, Rares Serban, Laurentiu Barza, Ni Qiang (whose wife cooks delicious Chinese food), Hitoshi

v

vi

Asaeda, and Kim Hahnsang. The new generation includes my office mate Hossein Manshaei whose help
was invaluable on various issues including car driving, ”les tunisians” Abdel Basset Trad and Mohamed
Kaafar, and ”le libanais” Mohammad Malli (beware, whose religious philosophy can be enlightening).
Ceilidh Hoffman’s arrival to our team last year was like monsoon rains on parched lands. Thanks to Ceili
for being a person who spoke only english, for the delicious dinners, discussions, chats, and walks. This
dissertation is typeset using the tex format I borrowed from her.

Outside team, several people made stay at Sophia and Antibes easy and fun. Many thanks to the
members of 2VB team - Ana, Luis, Sylvain, Adeline, Kuntal, Olivier - for all the hikes, dinners, and drinks.
Thanks to Parijat, Bala, Arzad, Dinesh, and Ahmed from Maestro for help on various matters, chats, and
some pizza dinners. Special thanks to Florence from Maestro and Sylvain who are solely responsible for
the french sections of this dissertation.

This dissertation is dedicated to my family. I would like to thank my parents, my sisters, and my
brother for having been supportive and encouraging all throughout my studies. I am now glad they have
eventually stopped asking me the question ”How is your PhD coming up?” when I call them.

Vijay Arya
vijay.arya@sophia.inria.fr
Sophia Antipolis, France

À MA FAMILLE

TO

DADAA, MUMMY,

NEETU, SAROJ, AND PAPPU

CONTENTS

Abstract iii

Acknowledgements v

Figures xiv

Tables xv

1 Introduction 1

1.1 Congestion in the Internet . 1

1.1.1 Inference of Congestion . 2

1.1.2 Problems and Contributions . 2

1.2 Multicast Traffic Engineering . 5

1.2.1 Problem and Contribution . 5

1.3 Organization of dissertation . 6

2 Loss Differentiation 7

2.1 Summary . 7

2.2 Introduction . 8

2.3 Related work . 9

2.4 The AED Mechanism . 11

2.5 Implementation of AED . 14

2.5.1 AED Agent Implementation . 14

2.5.2 Receiver Implementation . 15

2.6 Window size . 15

2.7 Comparison of AED with End-to-end loss differentiation schemes 19

2.8 Limitations . 21

2.8.1 Header compression and IP security . 21

2.8.2 Increase of RTT . 21

2.8.3 Fragmentation . 22

ix

x CONTENTS

2.8.4 Huge packet gaps . 22

2.9 Conclusions . 22

3 Trustworthy Tomography 23

3.1 Summary . 23

3.2 Introduction . 24

3.2.1 Applications to Multicast Congestion Control 25

3.2.2 Contributions . 26

3.3 Related work . 27

3.3.1 Network Tomography . 27

3.3.2 Multicast Congestion Misbehavior . 28

3.4 MINC . 29

3.4.1 Simple Observations I . 30

3.5 Misbehavior and its impact on passage probabilities 31

3.5.1 Receiver A misbehaves from 0 Ã 1 . 32

3.5.2 Receiver A misbehaves from 1 Ã 0 . 34

3.6 Algorithm for feedback verification . 35

3.6.1 Simple Observations II . 35

3.6.2 ICheck . 38

3.7 Experiments . 40

3.7.1 Model Simulation . 40

3.7.2 NS Simulation . 43

3.7.3 MBone traces . 43

3.8 Discussion . 45

3.8.1 Collusion . 45

3.8.2 Impact of Temporal and Spatial Dependence 45

3.8.3 Comparison to Nonce-based Scheme . 47

3.9 Conclusions . 47

4 Low Feedback Loss Inference 49

4.1 Summary . 49

4.2 Introduction . 50

4.3 Related Work . 51

4.3.1 RTCP for reporting MINC measurements 51

4.3.2 MINC loss Estimator . 52

4.4 EMLE: Aggregate Feedbacks . 53

4.5 EMLE: Loss Distribution and Passage Probability 54

4.6 Basic EMLE . 55

CONTENTS xi

4.6.1 Principle . 55

4.6.2 Loss Inference for general Trees . 56

4.7 EMLE . 58

4.7.1 Similarities and differences with MINC delay estimator 58

4.7.2 Reduction of Computation . 59

4.7.3 Analysis . 59

4.7.4 Impact of Temporal Dependence . 64

4.8 Experiments . 64

4.8.1 Thinning with MINC loss estimator . 67

4.9 Discussion . 75

4.9.1 Loss of Feedbacks . 75

4.9.2 Reporting Aggregate feedbacks using RTCP 75

4.9.3 Loss Inference using standard RTCP RR reports 76

4.10 conclusions . 76

5 Encodings of Multicast Trees 79

5.1 Summary . 79

5.2 Multicast Traffic Engineering in Overlay Networks 80

5.3 Pitfalls of Per-flow Multicast State . 81

5.4 Other Motivations of encodings trees . 82

5.5 Requirements of Multicast Tree Encodings . 83

5.6 Related work . 84

5.7 Multicast Trees and Tree data structures . 86

5.8 Multicast Tree Representations using Link Indexes 87

5.8.1 Improvements to Linkcast Encoding . 87

5.8.2 Encoding based on Balanced Parentheses 90

5.8.3 Improvements to balanced parentheses representation 91

5.8.4 Representing trees using Node Identifiers 92

5.8.5 Representing trees using both Node Identifiers and Link Indexes 93

5.9 Simulations . 95

5.10 Conclusions . 98

6 Conclusions 99

A Présentation des Travaux de Thèse en Français 103

A.1 Congestion sur Internet . 103

A.1.1 Estimation de la congestion . 104

A.1.2 Problèmes et contributions . 105

xii CONTENTS

A.2 Ingénierie de trafic dans les réseaux multipoints 109

A.2.1 Problème et Contribution . 109

A.3 Conclusions . 110

Bibliography 114

Résumé 123

FIGURES

2.1 General topology of a hybrid network . 11

2.2 Packet sequence as seen by an agent . 11

2.3 History window concept . 12

2.4 Flipping the bits before and after the wireless link 13

2.5 Packet structure and Agent implementation . 15

2.6 Error Model, topology and distribution of loss burst lengths 17

2.7 Loss statistics . 17

2.8 Loses covered by windows of different sizes . 18

2.9 Misclassification if unknown losses are considered congestion losses 18

2.10 Throughput ratio r(n) as a function of window size n 19

2.11 Comparison of loss differentiation mechanisms using NS simulations 20

3.1 Multicast tree with two receivers . 29

3.2 Effects of misbehavior on passage probabilities. (a) Receiver A reports more 1’s,

(b) Receiver A reports more 0’s . 31

3.3 Multicast trees with three receivers . 35

3.4 ICheck Algorithm . 39

3.5 LabelTree Procedure : Minimum pair-wise common passage probabilities are

shown in bold . 39

3.6 Functioning of ICheck . 40

3.7 Performance of ICheck Algorithm . 41

3.8 MBone Experiments . 44

3.9 Collusion . 46

4.1 Two receiver tree . 56

4.2 Original subtree (left) and the partitioned subtree (right) 60

4.3 2-receiver (left) and 8-receiver (right) trees used for experiments 65

4.4 EMLE: Relative error of the shared path . 68

4.5 EMLE: Standard Error of estimate . 69

xiii

xiv FIGURES

4.6 EMLE: Relative Error of an internal link for 8-receiver binary tree. Results are

based on 100 simulations. Passage rates of links varied from 90 − 99% and 85 −

95% for model-based and NS simulations respectively 70

4.7 Autocorrelation (lag 1) in the loss trace of a receiver present in the 8-receiver

tree, for Model-based and NS simulations. 71

4.8 Relative error of the shared path (MINC loss estimator with thinning) 72

4.9 Standard Error of estimate (MINC loss estimator with thinning) 73

4.10 MINC loss estimator with thinning: Relative Error of an internal link for 8-

receiver binary tree. Results are based on 100 simulations. Passage rates of

links varied from 90 − 99% and 85 − 95% for model-based and NS simulations

respectively . 74

5.1 Link Index concept: A router/overlay node with its link indexes 83

5.2 (i) Multicast Tree in a Network (ii) Ordinal tree (iii) Cardinal Tree (iv) Arbitrarily

labeled tree (v) Balanced parentheses representation of ordinal tree 86

5.3 (i) Multicast Tree (ii) Link+ encoding . 88

5.4 Forwarding Algorithm for Link+ . 89

5.5 (i) Multicast Tree (ii) Link* encoding . 90

5.6 Forwarding Algorithm for Link* . 92

5.7 (i) Multicast Tree (ii) Link** encoding . 93

5.8 Forwarding Algorithm for Link** . 94

5.9 (i) Link* encoding using nodes (ii) LN* encoding (iii) LN** encoding 95

5.10 Properties of multicast trees and their encoding lengths in various topologies . . . 97

5.11 Average number of parentheses read per node for Link* and Link** encodings . . 98

TABLES

4.1 Quantities βk1
(x) and βk2

(x) calculated in each step are shown. The table shows

the values taken by x. Quantities which are calculated in the ith step are shown

in bold. 62

5.1 Topologies used for simulation . 96

xv

xvi TABLES

1

INTRODUCTION

This thesis focusses on problems related to (i) Inference of Congestion in the Internet and

(ii) Multicast Traffic Engineering in Overlay Networks. In the first part of the thesis, we propose

methods which help to improve the quality of congestion inference on both end-to-end paths

and individual links in the Internet. In the second part of the thesis, we propose a method

which helps to perform multicast traffic engineering in overlay networks.

1.1 Congestion in the Internet

Internet is a store and forward packet-switched network which offers a single class best-

effort service model. In this network, packets introduced by various hosts traverse communi-

cation links, briefly wait in router queues and reach their respective destinations. The routers

which forward packets do not provide any priority to packets and generally forward them in the

order that they are received. One of the key aspects of such best-effort networks is Congestion.

In general, congestion occurs whenever the demand for a network resource is greater than its

capacity [1]. If for instance during an interval of time the number of packets wanting to tra-

verse a network link exceeds its capacity, congestion occurs on that link. As a consequence of

congestion, packet queues at router buffers start to grow and eventually packets which arrive

at full buffers are dropped by routers. Other than dropping packets which they cannot accom-

modate, routers do nothing to inform anyone that there is congestion1. When congestion in

the network increases beyond a threshold, performance of the network degrades. In order to

cooperatively use the network to its capacity to transfer data, it is the duty of hosts or rather

1We note here that ECN (Explicit Congestion Notification) [2] which is an exception to this, is not widely de-
ployed

1

2 Introduction

the transport protocols which run on hosts to infer that there is congestion and to keep it well

under control.

1.1.1 Inference of Congestion

The simplest measurable symptom of congestion is a packet loss. If packets traversing a net-

work path are being dropped frequently, it is likely that the network path is facing congestion.

The other symptom of congestion on a network path is the increase of its latency (delay). If

packets traversing a network path are facing increased delay, it is likely that they are spending

more time in long router queues which have developed as a consequence of congestion. How-

ever, measuring delay and inferring congestion from it is a more complex process. In this thesis,

we shall be concerned with the inference of congestion in terms of packet loss rate.

Transport protocols such as TCP which transfer data in the Internet infer the level of conges-

tion on the end-to-end path and based on this inference, increase or decrease the rate at which

they send packets into the network. If these protocols do not infer the level of congestion cor-

rectly, they may either harm the flow that they carry or other flows in the network. A protocol

which falsely infers more congestion does not utilize the available bandwidth and a protocol

which falsely infers less congestion may steal bandwidth from other network flows. Therefore,

correct inference of congestion on the end-to-end path is crucial to the functioning of transport

protocols in the Internet.

On the other hand, knowledge of the level of congestion on specific network links or paths is

needed for the purposes of monitoring and management of networks. This information is useful

to network operators who manage individual internetworks within the Internet. Knowing the

level of congestion on specific paths of their network allows them to find out how well their

network is performing. They can use this information to make decisions concerning the routing

of traffic within their network and the upgrade of certain parts of their network. Similarly,

service providers who offer services to clients located in different networks are interested in

knowing whether the paths they utilize remain congested or not.

In the first part of the thesis, we propose solutions which help to improve the quality of

congestion inference on both end-to-end paths and individual links in the Internet.

1.1.2 Problems and Contributions

Differentiation of Wireless and Congestion losses

Starting with Jacobson’s implementation of TCP [3], today most transport protocols in the

Internet mimic TCP behavior and interpret every packet loss as a symptom of congestion on

the end-to-end path. With the growth of wireless technologies, Internet now has different types

of wireless access networks such as wireless LANs and 3G Mobile networks as well as some

1.1 Congestion in the Internet 3

internal wireless links. Wireless links are error prone and normally the wireless data-link layer

only provides partial reliability. In such a framework, end-to-end transport protocols observe

packet losses either when there is congestion or when the end-to-end path crosses a wireless

link. To use the available network bandwidth, a transport protocol must reduce its sending rate

only in response to congestion losses and not in response to wireless losses. This motivates

the problem of loss differentiation wherein the goal is to differentiate between congestion and

wireless losses, so that transport protocols can make an accurate inference of congestion on

end-to-end paths. The problem was first discussed with respect to TCP by authors of [4]. They

proposed the installation of a snoop agent at base stations which prevents a TCP sender from

falsely reducing its sending rate in response to wireless losses. In this thesis, we consider

the problem of loss differentiation with respect to unreliable transport protocols which carry

multimedia flows.

There are two approaches to loss differentiation - end-to-end and explicit. In end-to-end loss

differentiation, the receiver at the transport level guesses the cause of a packet loss without

any help from internal network elements. End-to-end loss differentiation schemes work by

utilizing facts such as inter-arrival time of packets. However, all these schemes fail to perform

correctly, and significantly misclassify wireless and congestion losses. We propose an Accurate

and Explicit loss Differentiation scheme (AED) which uses agents at the boundaries of wireless

links [5]. The agents intelligently record the cause of packet losses within packets which are

not lost, with low overhead. AED allows transport protocols to accurately differentiate between

wireless and congestion losses.

Trustworthy Loss Inference

The information about the level of congestion on specific links or paths of a network can be

obtained using two approaches: (i) By installing special monitoring software at network ele-

ments (ii) From end-to-end measurements. When networks which need to be monitored span

different administrative domains, it is virtually impossible to install special equipment inside

network elements to monitor individual links or paths. Even in one administrative domain,

this requires the upgrade of several network elements, a task which is expensive. For this rea-

son, the characteristics of internal links or paths in a network are often inferred by performing

end-to-end measurements.

The field of networking in which characteristics of internal network links or paths are in-

ferred from end-to-end measurements has come to be known as Network Tomography (due to

its similarity with medical tomography) [6]. One of the earliest proposed methods of perform-

ing network tomography is MINC (Multicast-based Inference of Network internal Characteris-

tics [7]). Based on end-to-end multicast measurements, MINC can infer loss rates (i.e., level

of congestion) on specific network links. To perform loss inference, the source injects probe

4 Introduction

packets into the multicast tree and each receiver reports whether it receives the probe packet

or not. The source and receivers are simple end-hosts in the Internet. Using the binary feed-

back traces collected from all receivers, MINC infers the loss rates of links in the multicast tree.

However, due to the presence of buggy or malicious multicast receivers, the feedbacks collected

from receivers may be incorrect and this can result in a faulty inference of link loss rates. A

faulty inference may point high loss rates on good links and low loss rates on lossy links. In this

thesis, we consider the problem of verifying binary multicast measurements in order to ensure

sound and trustworthy inference of link loss rates.

We propose a statistical verification procedure called ICheck which can verify the integrity

of binary feedback data collected from multicast receivers [8]. The procedure uses ideas from

MINC loss estimation itself and exploits the inherent correlation that exists in the feedback

traces collected from different receivers of a multicast tree. Broadly, it utilizes the principle that

feedbacks of different subsets of receivers can be used to infer the loss rate of the same link

in the multicast tree. Therefore, by comparing different estimates of link loss rates, inconsis-

tencies in feedbacks can be detected. The procedure has two key properties. It does not need

the knowledge of the multicast tree topology and is able to detect inconsistencies even in the

presence of colluding receivers.

Low Feedback Loss Inference

In order to infer link loss rates through active end-to-end measurements, dedicated infras-

tructures to perform these measurements must be deployed. For large scale multicast mea-

surements, this task is complex. It involves getting access to hosts located in different parts

of Internet and installing measurement software in in them. Generally hosts run on differ-

ent operating systems and this increases the difficulties of installation and configuration. To

facilitate the task of performing end-to-end multicast measurements, authors of [9] proposed

a passive impromptu architecture which couples the process of reporting measurements with

RTCP (Real-Time Control Protocol) [10]. In this architecture, multicast sessions which use RTP

(Real-Time Transport Protocol) [10] to transfer data can utilize their data packets as probes

and piggy-back the feedbacks needed for MINC loss inference on RTCP packets. However, one

of the constraints here is that receivers are unable to report per packet binary feedbacks needed

for loss inference since doing so can cause the RTCP feedback bandwidth to exceed 5% of data

bandwidth. In this thesis, we consider the problem of performing MINC loss inference with less

feedback data.

In the architecture proposed by authors of [9], receiver feedbacks are thinned to maintain

the RTCP feedback bandwidth low, i.e., receivers report feedbacks corresponding to a reduced

(sampled) set of probe packets and these feedbacks are used for loss inference.

We design an Extended MINC Loss Estimator (EMLE) which can perform loss inference

1.2 Multicast Traffic Engineering 5

using aggregate feedbacks [11]. Each aggregate feedback is reported for a group of w probe

packets and can be represented using less than w bits. Thus EMLE allows the estimation of link

loss rates using less feedback bits. We compare EMLE to the case where MINC loss estimator is

used along with a thinned set of feedbacks.

1.2 Multicast Traffic Engineering

The second part of this thesis deals with multicast traffic engineering in overlay networks.

The goal of traffic engineering is to ”enhance the performance of a network, at both traffic

and resource levels” [12]. In multicast traffic engineering, the main goal is to steer multicast

traffic on selected trees in the network in a manner such that certain performance parameters

associated with multicast traffic are met and network resources are utilized optimally.

Overlay networks are self-organizing virtual networks in which participating hosts form a

network at the application level. Examples of overlay networks include RON (Resilient Overlay

Networks) [13], OMNI (Overlay Multicast Network Infrastructure) [14], Akamai, and several

peer to peer networks. In these networks, nodes which are generally servers can perform

intelligent and adaptive networking functions which routers in the Internet normally do not

support. Although services provided by implementing networking functions at the application

level may be less efficient, the salient feature of overlay networks is that they are deployable.

1.2.1 Problem and Contribution

By studying the state of overlay paths, overlay nodes can route traffic dynamically to balance

the load on paths or route traffic according to certain constraints to achieve goals of traffic

engineering. One of the services which can be supported by overlay networks is multicast

routing. In order to make the best use of available traffic conditions in the overlay, nodes can

construct trees to route multicast traffic intelligently. For this, they need mechanisms to choose

specific or explicit trees in the overlay. Maintenance of several different trees in the overlay

by introducing per tree state at nodes is not a scalable option. Moreover, overlay nodes may

be constrained in terms of memory. The problem of stateless and explicit multicast routing in

overlays remains largely unaddressed in the literature.

One approach to performing stateless and explicit multicast routing is multicast source rout-

ing, i.e., to encode the multicast tree within multicast data packets. In this thesis, we consider

this approach and design efficient ways of encoding multicast trees within data packets [15].

We show the correspondence of multicast trees to theoretical tree data structures and based on

this correspondence show simple lower bounds on the number of bits needed to represent mul-

ticast trees. Our encodings are almost optimal in terms of space and can be read and processed

6 Introduction

efficiently. They can be used to represent multicast trees within data packets to route multicast

traffic on explicit trees in a stateless manner.

1.3 Organization of dissertation

The balance of this dissertation is organized as follows. Our contributions related to con-

gestion inference appear in chapters 2, 3, and 4 of the dissertation. Our contribution related to

multicast traffic engineering in overlay networks appears in chapter 5 of the dissertation.

In chapter 2, we discuss the problem of loss differentiation. We describe AED, an explicit

loss differentiation scheme which helps transport protocols to accurately differentiate between

wireless and congestion losses.

In chapter 3, we discuss the problem of verifying the integrity of binary feedbacks which

are collected from multicast receivers. We show how link loss rates inferred by MINC become

erroneous if multicast receivers report incorrect binary feedbacks. We develop a statistical

verification algorithm called ICheck which can verify the integrity of binary feedbacks collected

from multicast receivers.

In chapter 4, we discuss the problem of inferring loss rates of links using less feedback data.

We develop the Extended MINC Loss Estimator (EMLE), which can infer link loss rates using

aggregate feedbacks. We compare EMLE to the case where MINC loss estimator is used along

with a thinned set of feedbacks.

In chapter 5, we present efficient methods of encoding multicast trees within data packets

with the goal of perform stateless and explicit multicast routing in overlay networks.

The conclusions of the thesis appear in chapter 6 of the dissertation.

2

LOSS DIFFERENTIATION

2.1 Summary

In recent years mobile computing has experienced an explosive growth, mainly due to the

integration of wireless networks with the wired Internet. To deploy bandwidth-greedy multime-

dia applications on such heterogeneous environments, efficient congestion control algorithms

are required. In such environments, a packet can cross one or more wireless links before even-

tually reaching its destination. When congestion control protocols such as TFRC are used to

transmit multimedia flows, they need to differentiate between congestion losses and wireless

losses to behave correctly and efficiently. Currently proposed end-to-end loss differentiation

mechanisms can not predict the differences between congestion and wireless losses reliably. In

this work, we explore explicit loss differentiation. We have designed a simple window frame-

work to explicitly and accurately differentiate wireless and congestion losses. By deploying

agents at the boundaries of wireless links, we show that we can efficiently implement our

window-based scheme with low overhead. We also point out the current limitations of our

scheme.

7

8 Chapter 2: Loss Differentiation

2.2 Introduction

The Internet today is no longer completely wired, with Wireless LANs (WLANs), wireless

backbones, and mobile networks getting appended to it. Most business offices, university cam-

puses and hospitals now have WLANs. Both GSM(GPRS) and UMTS have standards for packet

access from mobile terminals. Simultaneously, there is a growing popularity of real-time multi-

media applications on the Internet such as audio/video streaming, IP telephony, video confer-

encing, network games, etc. The 3G wireless service providers are providing packet switched

real-time multimedia services to their users and soon a 3G terminal will be able to access and

play streaming audio or video available on a server in the Internet. To support such real-time

multimedia applications on a network with wired and wireless links, efficient congestion con-

trol mechanisms are required for real-time flows.

TCP, the most dominant protocol in the Internet, is not suited for transferring real-time

flows. TCP guarantees reliability and packet ordering at the expense of increase in end-to-end

delay. Reliability however, is not a stringent requirement for real-time data. Instead, real-time

data is timely and if it does not arrive after some deadline it may not even be useful. Besides,

TCP uses additive increase multiplicative decrease algorithm which shows high variation in

sending rate resulting in large jitters, degrading the user perceived quality. For these reasons,

real-time flows are carried either directly using UDP or using protocols such as RTP (over UDP)

[10]. RTP does not specify any explicit congestion control mechanism like TCP. In order to be

fair to protocols that use congestion control such as TCP, and to avoid any possible congestion

collapse, several TCP-friendly congestion control mechanisms were proposed for unreliable uni-

cast flows [16, 17, 18, 19]. But all these mechanisms, like TCP, rely on implicit feedback and

interpret any loss as a congestion loss. The implicit policy works accurately in wired networks

where losses occur only due to congestion. However, with the presence of wireless links, a large

percentage of packets are lost on these links. Wireless links are inherently error prone due to

effects such as fading and multi-path and the wireless data link layer provides only partial reli-

ability. Thus when TCP-friendly protocols are deployed on networks such as the Internet, they

reduce their sending rate not only in response to congestion, but also in response to wireless

losses. To avoid this erroneous behavior, several end-to-end loss differentiation schemes were

proposed [20, 21, 22]. These schemes however, misclassify wireless and congestion losses. If

congestion losses are misclassified as wireless, the scheme may not be TCP-friendly and may

cause more congestion in the network. If wireless losses are misclassified as congestion, the

scheme may not use the available bandwidth. Thus, there is a need to accurately differentiate

between wireless and congestion losses.

In this chapter, we design a mechanism to accurately differentiate between wireless and

congestion losses by deploying agents at the boundaries of wireless links. Our scheme is called

2.3 Related work 9

Accurate and Explicit Differentiation (AED) scheme. We consider a real-time flow which uses a

protocol such as RTP [10] or DCCP [23] in conjunction with TFRC [24]. AED aims to inform the

TFRC receiver about wireless and congestion losses so that it can send an accurate feedback to

the sender. The sender would use the congestion loss information in the feedback to adjust its

sending rate based on the exact level of congestion in the network. It can also use the wireless

loss information in the feedback to determine the amount of bits to be allocated for source

and channel coding, so that more losses can be recovered without retransmissions. Balance of

the chapter is organized as follows. Section 2.3 discusses the past work, Section 2.4 explains

our scheme, Sections 2.5 and 2.6 give the implementation details of our scheme. Sections 2.7

compares our scheme with end-to-end loss differentiation schemes and Section 2.8 points the

limitations of our scheme. We conclude with Section 2.9.

2.3 Related work

The aim of loss differentiation schemes is to differentiate between wireless and congestion

losses. These mechanisms are either End-to-end or Explicit. Explicit schemes are those that make

use of agents deployed on intermediate network nodes. End-to-end schemes try to differentiate

losses at the receiver without making use of any intermediate nodes.

Explicit Loss Differentiation was made use of in the context of TCP flows by the use of Snoop
Agents [4]. Snoop agents are suited for first hop/last hop wireless topology encountered in mo-

bile networks. Consider a TCP flow originating from a Fixed Host (FH) and terminating at a

Mobile Host (MH). The snoop agent at the base station, by monitoring the TCP packets for-

warded to MH and acknowledgments returned from the MH, maintains a cache of TCP packets

that have been forwarded but not acknowledged by the MH. It detects a loss of packet on the

wireless link by seeing duplicate acks or by a timeout based on locally maintained timers. When

it does, it retransmits the lost packet to the MH if it has been cached, since these are packets

lost on the wireless link. Additionally, it suppresses duplicate acks corresponding to the wire-

less losses, thus ensuring that the false congestion invocations at the sender are avoided. Note

firstly that snoop agent decouples wireless from congestion losses without making any changes

to the IP packets itself. Secondly, snoop works for reliable protocols since it also retransmits the

lost packets cached.

Snoop agents are not suited for real-time flows since these flows are carried by unreliable

protocols. For snoop agents to detect packet loss, the receiver needs to acknowledge every

packet received. Although rate based protocols are more suited for real-time flows, snoop

agents may be a possible candidate for congestion control mechanisms like Binomial conges-

tion control [18] (where the receiver acknowledges every packet like TCP). But suppressing the

duplicate acknowledgments for packets lost on the wireless link (to decouple wireless and con-

10 Chapter 2: Loss Differentiation

gestion losses) may increase the end-to-end delay which is harmful for real-time applications.

For real-time applications, local retransmissions also may not help as retransmission delay may

sometimes be unbearable. For real-time flows, agents which send information either to sender

or receiver about wireless and congestion losses, by either marking packets or generating new

packets, are required.

ECN (Explicit Congestion Notification) [2] is also a possible candidate for real-time flows.

ECN is used by the routers to signal congestion in the network by marking IP packets. When

TFRC is used in conjunction with ECN, the losses detected when marked IP packets are received

are considered congestion losses and those detected when unmarked IP packets are received,

are considered to be wireless losses and are not used for loss rate calculations. Using ECN can

be inaccurate. For example, for a continuous bunch of wireless and congestion losses, ECN

would classify all of them to be congestion losses. Although it may be the right time to invoke

congestion control by reducing the sending rate, the amount of reduction will be more than

necessary.

End-to-end schemes work at the transport level in the receiver. They make use of facts

such as the time taken by the packet to travel through the network and packet inter-arrival

time. Vidya and Biaz [20] proposed a scheme based on packet inter-arrival time suitable for

last hop wireless bottleneck link. They approximate the minimum packet inter-arrival time

seen during a connection (Tmin) to the time taken by a packet to traverse the last hop wireless

link. If a packet is lost and the subsequent packet arrives approximately after Tmin, the loss is

classified as wireless. This scheme has two main problems. Firstly, with more than one flow,

packets from different flows get interspersed and the packet after a wireless loss may not come

immediately after Tmin. Secondly, in practice, the wireless channel is generally varying and the

time taken by a packet to traverse the wireless link keeps changing, causing misclassification.

Tobe et al, [21] use Relative One-way Trip Time (ROTT) as a measure of the time taken by

a packet to travel from source to destination. Their scheme is based on the fact that when

ROTT is plotted against time at the receiver, one can observe spikes during congestion. Thus

losses during spikes are classified as congestion losses, and otherwise wireless. The problem

with this is scheme is that congestion can occur on one or more routers together, resulting

in spikes of varying sizes. The difficult part is to catch spikes of different sizes online. The

Zig-zag scheme [22] also makes use of ROTT. In this scheme, the receiver keeps an estimate

of running ROTTmean and ROTTvariance. Based on the number of losses and the difference

of the current ROTT and ROTTmean, they propose certain conditions for classification. All the

end-to-end schemes were compared in [22]. End-to-end schemes generally have topological

constraints and need to be tunned for specific topologies. Although some of these do improve

TFRC throughput, they all suffer from significant misclassification. Thus congestion losses in

the network may increase and TCP-friendliness of the flow may decrease. Also, the sender is

2.4 The AED Mechanism 11

Agents

Wireless link

Wired Network

Figure 2.1: General topology of a hybrid network

24 13 2 1

Edge packets

Direction of packet flow

9

Loss

Continuous packet sequence

Loss

Figure 2.2: Packet sequence as seen by an agent

unable to use receiver’s feedback for adjusting the bits allocated for source and channel coding

since the feedback may be inaccurate.

We consider an explicit loss differentiation mechanism which is both accurate and is not

limited by any topological constraints. We consider a general topology and show how by de-

ploying agents at the boundaries of wireless links, one can accurately differentiate the losses.

Using the AED scheme, TFRC is able to function like the optimal Omniscient-TFRC used for

comparison in [22]. Omniscient-TFRC knows precisely which losses are congestion and which

wireless and thus performs optimally on all topologies. In subsequent sections, we give the

details of our scheme.

2.4 The AED Mechanism

We consider the following general topology of a hybrid network (figure 2.1) with a series

of wired subnetworks interleaved by wireless links. Each subnetwork consists of at least one

node. For example, a mobile node is considered as a wired network with one node.

Packets in the network are lost either due to congestion on the wired subnetworks or on the

wireless links. To determine the right cause of a packet loss, we deploy agents before and after

each wireless link. The agents snoop through each packet and detect a loss by seeing a packet

with an out of order sequence number. For the packets flowing from left to right in Figure 2.1,

agents at the end of wired networks treat a packet loss as congestion loss and agents after a

wireless link treat a packet loss as wireless loss.

12 Chapter 2: Loss Differentiation

Figure 2.2 shows a general packet sequence with interleaved losses, as seen by an agent.

The agent would want to mark the packets which are not lost, with information about the lost

packets, that is, whether packets were lost due to congestion or a wireless link. However, the

information must be recorded using a scheme which is most immune to future packet losses so

that the information eventually reaches the receiver. For example, consider a scheme in which

the agent marks the edge packets (packets just after a loss). Suppose that in Figure 2.2, packets

10..12 were lost on a wireless link and edge packet 13 holds this information. If packet 13 itself

is lost by congestion in future, we would loose all the information as to how 10...12 were lost.

We consider a generalized scheme in which each packet holds information about a window

of previous n packets. We call such a window as the history window. For a packet with sequence

number j, its history window holds information about packets j− 1, ...j−n, as to whether these

packets were lost due to congestion, wireless link, or not lost at all. Figure 2.3 shows the

concept of keeping a history window of size four. In this example, packet 5 is considered to

be lost by congestion and 4 on a wireless link. The history windows maintained by packets 6

and 7 have been shown. 6’s window records the fact that 5 is a congestion loss, 4 a wireless

loss and that 3 and 2 are not lost. With this information, if packet 6 is lost in future due to

congestion or a wireless link, we still will not loose information as to how packets 5 and 4 were

lost since this information would also be available in packet 7. Only if all packets 6, 7, 8 were

lost by congestion, we would loose the information as to how 4 was lost.

3 2 15 4

3 2 15 49 8 7 6

9 8 7 6

N C W N

C W N N

Figure 2.3: History window concept

Our next step is to determine how to record the contents of the history window efficiently

in each packet. We propose a scheme which can represent a history window of size n, using

just n bits. Each history window may consist of wireless losses, congestion losses and no losses.

Now, suppose that we represent a wireless loss by 1 and congestion loss or no loss by 0, then

we would face the following problem. Consider the scenario shown in Figure 2.4(a). In this

example, 5 was lost on a wireless link somewhere before, 4 was lost due to congestion in the

previous wired subnetwork. Hence 6’s window is represented as 1000. Suppose that 3 gets lost

on the wireless link. Now when the agent sees the packet sequence, it finds 5,4,3 missing. Since

5 is represented by a 1 in 6’s window, it knows 5 was lost by a wireless loss. But it is unable to

differentiate packets 4 and 3 in spite of the fact that they were lost because of different reasons.

2.4 The AED Mechanism 13

1000
0100

6 3 2 1 6 2 13

0100
1010

1000

36 2 1

BA

Direction of packet flow

(b)

Direction of packet flow
(a)

Figure 2.4: Flipping the bits before and after the wireless link

This problem can be tackled without increasing the number of bits to represent the history

window, if each agent flips the bits appropriately. The point to observe is that the agent after

a wireless link tries to detect wireless losses by seeing missing sequence numbers. So we must

tell it explicitly if certain missing sequence numbers were due to congestion earlier. Hence this

agent expects to see congestion losses represented by a 1. The reverse is true for the agent

before the wireless links which aims to determine congestion losses by seeing missing sequence

numbers. We must tell it explicitly if certain missing sequence numbers were due to a wireless

link earlier.

Thus the agent before a wireless link interprets a wireless loss by 1 and congestion or

no loss by 0. But before sending the packets on the wireless link, it flips the bits such that

congestion loss is represented by 1 and wireless loss or no loss is represented by 0. The agent

after the wireless link interprets congestion losses by 1 and wireless loss or no loss by a 0.

But before sending the packets on the wired network, it flips the bits again such that wireless

loss is represented by 1 and congestion or no loss is represented by 0. For the example in

Figure 2.4(b), agent A doesn’t see packets 5,4. It knows that 5 was lost by wireless loss since it

is represented by 1 in 6’s window. It concludes that 4 was lost by congestion, hence it flips the

bits and represents 6’s window by 0100. Now 3 gets lost on the wireless link. Agent B doesn’t

see 5, 4 and 3. Seeing 4 represented by 1, it concludes that 4 was a congestion loss and treats 5

and 3 as wireless losses. Hence it flips the bits again to 1010. In this manner, the receiver will

obtain wireless losses represented by a 1 and congestion losses represented by a 0. Note that if

14 Chapter 2: Loss Differentiation

the receiver is a mobile node, it would have an agent inside it too.

Observe that packet reordering does not affect this scheme. Each packet will always hold

the information about packets with preceding n sequence numbers, which are seen (or seen

missing) ahead of it by the agent. The receiver will use the window information about a packet

only if it doesn’t receive that packet. For example, suppose that an agent sees packets 1..5 and

then sees 7 followed by 6. 7’s window will note 6 as lost and 6’s window will note informa-

tion starting from 5. To accommodate for packet reordering, the receiver can wait for certain

number of subsequent packets before concluding a loss (as 3 packets in TFRC and TCP). It is

important to observe two points here. Firstly, the agent simply inspects and labels a packet

based on previously seen packets. It does not hold any packets either before or after the cur-

rent packet. Secondly, the wireless and congestion losses will never be misclassified within the

window. Although, it is possible that a packet which is not actually lost is marked lost within

the window (due to reordering) or the information about a loss is not known (if the window is

not large enough).

2.5 Implementation of AED

2.5.1 AED Agent Implementation

The AED agent can be deployed in between the wireless data link layer and the IP layer as

shown in Figure 2.5. We show here, the implementation of the AED agent with DCCP [23].

Figure 2.5 also shows the packet structure which the agent sees. Each DCCP packet is shown

encapsulated in a single IP packet (TFRC details have not been shown here). The agent uses

the DCCP sequence number to detect packet loss. In the previous section, while explaining

the mechanism, we considered packets flowing in one direction. In practice, both the agents

will function in the same dual manner. When the IP packet is passed from the wireless data

link layer to the IP layer, wireless losses will be detected and the agent flips the bits such that

wireless loss is represented by a 1 and congestion or no loss by a 0 (agent after wireless link).

When the packet is passed from IP layer to the wireless data link layer, congestion losses will be

detected and the agent flips the bits such that congestion loss is represented by a 1 and wireless

or no loss by a 0 (agent before wireless link).

The agent distinguishes between flows by looking at the tuple (source IP, dest IP, source port,

dest port) in each IP packet. The TOS field in the IP packet can be used to detect if a flow is

a DCCP flow. Since DCCP supports connection setup and tear-down, the agent knows when to

allocate and free memory for a flow. An additional bit will be required to determine if a DCCP

flow supports the use of AED or some other loss differentiation mechanism. The agent uses

a space of w bits in the DCCP header to record the history window of size w. For each flow,

2.6 Window size 15

IP DCCP

PayloadHeader

(a)

(b)

Mac
wireless

wireless
Physical

Agent

Physical
wired

wired
Mac

IP

Figure 2.5: Packet structure and Agent implementation

each agent maintains a history of previous w + k sequence numbers seen, where k serves as

cushion for packet reordering. k could be set 3 as in TCP and TFRC. Thus per-flow memory

overhead for the agent is only O(w + k). Note here that, with this implementation, only the

losses occurring within the IP layer will be classified as congestion losses. Any losses occurring

below the wireless MAC layer will be classified as wireless (including possible losses at buffers

inside the wireless Physical or MAC layer).

2.5.2 Receiver Implementation

The transport level implementation at the receiver is minimal. When the receiver receives

an out of order DCCP packet, it will simply need to read the n window bits of this packet, to

conclude the reasons of loss for the missing packets. With the convention used in section 2.4, if

the window bit is set 1, it is a wireless loss and if it is set 0, it is a congestion loss. To deal with

packet reordering the receiver will have to wait for k additional packets to find out if a packet

is actually lost. In case of TFRC, the congestion losses will be used for calculation of loss rate.

2.6 Window size

To use the AED scheme, it is important to decide what window size to use. In this section,

we investigate by simulations how the window size affects the throughput of TFRC when it uses

AED for loss differentiation. Subsequently, we develop a closed form formula for the optimal

16 Chapter 2: Loss Differentiation

window size as a function of congestion and wireless loss rates. In AED, the window size

used for loss differentiation depends on the length of end-to-end loss bursts experienced by the

transport protocol, as a result of congestion and wireless links. With a window of certain size,

the losses which fall within the window are correctly classified as wireless or congestion. The

cause of losses which fall outside the window is not known and these losses are all classified

as congestion. As a result, wireless losses which fall outside the window get misclassified as

congestion. A window of size n consumes n bits within each data packet. As the window

size grows, the transport protocol can determine the cause of losses more accurately. But a

window of large size decreases the goodput since less data bits are transmitted per packet. We

compare the throughput of TFRC which uses AED, denoted by AED-TFRC, with the throughput

of Omniscient-TFRC(O-TFRC). O-TFRC is a hypothetical TFRC protocol which knows precisely

which packets are lost due to congestion and which due to wireless errors. O-TFRC reduces

its sending rate only in response to congestion. The throughput of a normal TFRC flow is

proportional to
S

R
√

P

where S is the packet size, R is the round trip time and P is the total loss rate experienced by

the flow due to wireless errors and congestion. The throughput of O-TFRC is proportional to

S

R
√

Pc

where Pc is the congestion loss rate. If AED-TFRC uses a window of size n, then its goodput

will be proportional to
S − n

R
√

Pf(n))

where Pf(n) denotes the false congestion loss rate concluded by the protocol when a window

of size n is used. Pf(n) includes the congestion losses and the wireless losses which are mis-

classified as congestion. As the window size n increases, Pf(n) → Pc causing the goodput of

AED-TFRC to increase. But as n increases, (S − n) decreases causing the goodput to decrease.

To determine the impact of window size of the throughput of AED-TFRC, we utilise the ratio

r(n) =
goodput(AED-TFRC)

throughput(O-TFRC)
=

S − n

S

√
Pc

Pf(n)
(2.1)

r(n) reaches maximum for the optimal value of window size n.

For simulation of wireless errors, we use the trace based error model by NGuyen, et al[25].

In [25], authors studied UDP packet traces on real wireless links to obtain an error model for

wireless channels. They conducted their experiments using WaveLAN links in BARWAN wireless

network. They used the UDP traces they collected to construct a simple two-state markov error

2.6 Window size 17

model (STMM) for wireless channels (Figure 2.6(a)). For this, they compute the mean error

(LE) and error-free (LG) packet burst lengths of a trace and use the inverse of these lengths to

compute transition probabilities of the STMM. PGE = 1/LG and PEG = 1/LE. Authors of [25]

collected several traces under different conditions. On average, LE = 2.618 and LG = 166.394,

giving a wireless loss rate of 3%. They also observed that for 90% of loss bursts, the burst

length was less than or equal to 4 packets. Thus a small window of size 4 in AED would be

significantly effective. However, burst lengths may get augemented if there are several wireless

links and due to congestion in the network.

LossNo Loss

PGE

E

PEG

G

Wireless links

Wired
Network

(a) STMM and Topology used for sim-
ulation

0

10

20

30

40

50

60

70

0 5 10 15 20 25

%
 o

f B
ur

st
 L

os
se

s

Burst loss length

(b) Distribution of burst loss lengths

Figure 2.6: Error Model, topology and distribution of loss burst lengths

Total packets 106

No.of loss bursts 20879

Maximum burst length 22 (1 burst)

Gross loss rate 3.96%

Congestion losses 25.14 % of losses

Wireless losses 74.86 % of losses

Figure 2.7: Loss statistics

We consider a simple topology with two wireless links separated by a wired subnetwork

shown in Figure 2.6(a). For each wireless link, we simulate losses using STMM. Congestion

18 Chapter 2: Loss Differentiation

Window Bursts ≤ n Losses Total

(n) covered by n Overhead(KB)

4 92.03 % 71.85 % 500

8 98.72 % 92.77 % 1000

16 99.98 % 99.75 % 2000

Figure 2.8: Loses covered by windows of different sizes

window Wireless losses Mw Mc False TFRC

(n) misclassified congestion throughput

(% of total losses) rate Pf(n) ratio(%)

4 11.24 % 15.02 % 0 1.4452 % 83.26 %

8 1.83 % 2.44 % 0 1.0725 % 96.64 %

16 0.045 % 0.06 % 0 1.0018 % 99.91 %

Figure 2.9: Misclassification if unknown losses are considered congestion losses

losses in the wired subnetwork are simulated using a uniform packet loss probability of 1%.

We do this for 106 packets and check the loss burst lengths seen by the receiver. Figure 2.6(b)

shows the histogram of these loss burst lengths and figure 2.7 shows the corresponding loss

statistics. A window of size n covers all loss bursts of length less than or equal to n and has

an overhead of n bits per packet. Table 2.8 shows the losses covered by windows of various

sizes versus the extra overhead for the connection. For bursts larger than the window size, the

cause of certain losses is not known. If these unknown losses as classified as congestion, certain

wireless losses will get misclassified as congestion. Figure 2.9 shows these misclassification

rates. Based on the notation in [22], wireless misclassification rate Mw = (No. of wireless

losses misclassified as congestion)/(total wireless losses) and congestion misclassification rate

Mc = (No. of congestion losses misclassified as wireless)/(total congestion losses). For the

simulation, packet size was 1000 bytes and the congestion loss rate Pc was 1%. Thus O-TFRC

would have throughput proportional to 1000/R
√

0.01 bytes per unit time. The fifth column

in figure 2.9 shows the congestion loss rate Pf(n) concluded by AED-TFRC for window size

n. The last column shows the throughput ratio. Figure 2.10 shows the throughput ratio r(n)

as a function of window size n as n varies between 10 and 30. The optimal throughput of

AED-TFRC (99.95%) was achieved for window size of 19.

We now give a closed form equation for the optimal window size as a function of the conges-

tion and wireless loss rates experienced by TFRC protocol. For modeling, we assume a uniform

loss model for both wired and wireless links. Assume a system in which a TFRC flow experi-

ences a congestion loss rate of Pc and a wireless loss rate of Pw. Let P denote the total loss rate

2.7 Comparison of AED with End-to-end loss differentiation schemes 19

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 10 15 20 25 30

th
ro

ug
hp

ut
 r

at
io

window size

Figure 2.10: Throughput ratio r(n) as a function of window size n

experienced by the flow. Then, P is given by

P = Pc + (1 − Pc)Pw

To obtain an expression for Pf(n), observe that when a window of size n is used, a wireless loss

following a group of n losses will be misclassified as congestion. Thus Pf(n) is given by

Pf(n) = Pc + (P)n(1 − Pc)Pw

Substituting Pf(n) in (2.1), we get

r(n) =
S − n

S

√
Pc

Pc + (1 − Pc)Pw(P)n

r(n) reaches maximum for the optimal value of n. This can be obtained as follows,

dr(n)

dn
= 0 ⇔ (S − n)(P)n =

−2

(1
Pc

− 1)Pw log(P)
(2.2)

⇔ (S − n)(P)n = c, c > 0, S > 0, 0 < P ≤ 1

⇒ n = S +
Lambertw(

−c log(P)

eS log(P))

log(P)
(2.3)

where c is a constant equal to the RHS of equation (2).

2.7 Comparison of AED with End-to-end loss differentiation schemes

Authors of [22] studied the performance of various end-to-end loss differentiation schemes

in conjunction with TFRC protocol using NS simulations. We compare the performance of

20 Chapter 2: Loss Differentiation

. . . .

. . . .

2.5 Mbps, 240ms

10 Mbps, 5ms

384 kbps, 5ms

RS

(a) Topology

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 0 50 100 150 200 250

th
ro

ug
hp

ut

time

tfrc
O-tfrc

(b) Normal tfrc, Mw = 100%

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 0 50 100 150 200 250

th
ro

ug
hp

ut

time

zigzag
O-tfrc

(c) Zigzag, Mw = 67.3%

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 0 50 100 150 200 250

th
ro

ug
hp

ut

time

AED2
O-tfrc

(d) AED (2 bits window), Mw = 36.18%

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 0 50 100 150 200 250

th
ro

ug
hp

ut

time

AED4
O-tfrc

(e) AED (4 bits window), Mw = 11.76%

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 0 50 100 150 200 250

th
ro

ug
hp

ut

time

AED16
O-tfrc

(f) AED (16 bits window), Mw = 0.0

Figure 2.11: Comparison of loss differentiation mechanisms using NS simulations

2.8 Limitations 21

AED with end-to-end loss differentiation mechanisms. We use the dumb-bell shaped topology

shown in figure 2.11(a) which represents the scenario for last-hop wireless networks. The

wireless link has a bandwidth of 384 kbps and represents a last-hop link in mobile networks

such as UMTS. Losses on this link are simulated using trace based STMM of NGuyen et al[25].

In [25], authors collected traces under different conditions and we observed that at low loss

rates, there is not significant difference between TFRC and O-TFRC. To study the effectiveness

of loss differentiation schemes, we use the parameters LE and LG from the trace with sufficient

wireless losses. For the wireless link in our simulation, the transition probabilities were PGE =

0.965 and PEG = 0.565, producing a wireless loss rate of 8%.

A single TFRC flow exists between sender S and the mobile receiver R. All other flows are

TCP, representing Internet traffic. For the entire simulation time of 250 seconds, 10 TCP flows

coexist with the TFRC flow. At simulation time 100 seconds, 20 more tcp flows arrive and leave

at 200 seconds, to produce some congestion. We repeated this simulation, each time using a

different loss differentiation scheme for the TFRC flow. Figure 2.11 shows the throughput (in

bytes) of normal TFRC, O-TFRC, Zigzag-TFRC and AED-TFRC. For our simulations, other end-

to-end loss differentiations schemes yielded lower throughput than Zigzag. AED with a window

size of 2 yields a higher throughput than Zigzag. With a window size of 16, the throughput of

AED-TFRC is exactly same as O-TFRC. The wireless misclassification rate Mw for each TFRC is

shown alongside each sub-figure.

2.8 Limitations

2.8.1 Header compression and IP security

In case of header compression at the IP layer, with IP and DCCP headers compressed, the

AED agent will not be able to inspect the DCCP sequence number to detect loss. In order to

do so, either it needs to be implemented within the IP layer or it remains outside and performs

another independent compression and decompression. When protocols like IPSec are used, in

case of authentication, the agent can only see but cannot change the DCCP header and when

the IP packet is encrypted, it is not possible to either see or change the DCCP header present in

the IP payload.

2.8.2 Increase of RTT

Although the procedure of inspecting and labeling the packets is extremely simple and can

be implemented efficiently, if a packet passes through several agents it may result in slight

increase of RTT.

22 Chapter 2: Loss Differentiation

2.8.3 Fragmentation

We assumed in the AED scheme that an entire DCCP packet is either lost or not lost. In case

there is fragmentation of IP packets in the network, the loss of a DCCP packet will be detected

and recorded only if IP packet containing the DCCP header(sequence number) would be lost.

There is also the question of how to classify the losses after fragmentation. Suppose that an IP

packet containing a DCCP packet is fragmented into two IP packets and subsequently one of

them is lost due to congestion and the other on a wireless link. At present, AED will only record

the case of the fragment which contains the DCCP sequence number. But fragmentation is not

such a serious problem. In [26], an empirical study of Internet traffic was made. In the set of 60

traffic traces from the Internet that they collected, majority of them had fragmentation levels

below 1%. Hence one would have very few or no packets per flow for which the precise cause

of loss is not known.

2.8.4 Huge packet gaps

We believe that the topology shown in Figure 2.1 is the general topology of hybrid networks,

but one cannot completely rule out cases in which a single flow splits and passes through two

different wireless links. This is one of the cases when the agents will see huge packet gaps. But

the packets in the gaps are not actually lost and can reach the receiver. It would be more useful

to store information about packets ahead of the gap since these can get lost. When packet gaps

exceed the window size, our scheme of defining and recording the window will not be able

to record information about packets ahead of the gap. However, other schemes of defining

and recording windows will add more overhead in terms of number of additional bits to be

transmitted.

2.9 Conclusions

Accurate differentiation of wireless and congestion losses is necessary for proper functioning

of several transport protocols on hybrid networks. In this chapter, we have explored the design

and implementation requirements of AED, an accurate and explicit loss differentiation mech-

anism. We saw that by deploying AED agents which are aware of higher level protocols, one

can accurately distinguish wireless from congestion losses. We investigated how the AED win-

dow size affects the TFRC throughput using simulations and analytical modeling. We showed

that AED performs better than end-to-end loss differentiation schemes and yields higher TFRC

throughput even with small window sizes. The success of several hybrid 3G networks depends

on the performance of real-time protocols on these networks. We believe that explicit loss

differentiation is a deployable solution in networks such as UMTS.

3

TRUSTWORTHY TOMOGRAPHY

3.1 Summary

Network tomography is a process by which internal characteristics of a network are inferred

from “external” end-to-end measurements. To ensure that the inferred internal characteristics

are sound and trustworthy, it is essential to verify the integrity of data collected from external

measurements.

This work focuses on a particular method of performing network tomography called MINC

(Multicast-based Inference of Network Characteristics), which infers characteristics of internal

network links from end-to-end multicast measurements. MINC infers loss rates of network links

by analyzing binary feedbacks which are reported by multicast receivers upon probe packets

sent from the source. However, buggy or malicious multicast receivers may report incorrect

feedbacks, leading to a faulty inference of link loss rates.

In this chapter, we show how the link loss rates inferred by MINC become erroneous if mul-

ticast receivers report incorrect binary feedbacks. Then, we develop a statistical verification

algorithm called ICheck which can verify the integrity of binary feedbacks collected from multi-

cast receivers. This algorithm performs statistical checks to determine if feedbacks of receivers

are consistent with respect to one another. The algorithm does not require the knowledge of

multicast tree topology and works even in the presence of colluding receivers. We present the

performance of the algorithm on Model-based traces, NS traces, and MBone loss traces.

23

24 Chapter 3: Trustworthy Tomography

3.2 Introduction

In Medical Tomography, a doctor obtains the pictures of internal organs of a patient by using

X-rays or ultrasound. This allows the doctor to analyze the patient’s internal organs and possibly

diagnose problems such as infections, blood clots and tumors without actually operating on the

patient. Typically, the system which performs tomography consists of a block which emits X-

rays or ultrasound and a recording block which captures the state of waves after they pass or

reflect the patients body. Using the information supplied by the recording block, a picture of

the patients body is constructed and used for diagnosis by the doctor.

Consider a situation which can occur in an old government hospital in any arbitrary coun-

try. Suppose that the recording block in the tomography system stops functioning correctly

and starts reporting false information. In this case, a false image of the patients body will be

obtained. A tumor present in the patient’s stomach may have been displaced and shown in

the kidney or a non-existent tumor could have been reported, leading to a false diagnosis and

subsequent ”treatment”. In order to avoid such a situation, the information reported by the

recording block needs to be verified for correctness. In this chapter, we consider an analogous

problem, although less harmful to lives of human beings, with respect to network tomography.

Network Tomography refers to the process of inferring the internal characteristics of a net-

work from end-to-end measurements. One of the goals of network tomography is to infer loss

rates of links or paths in the network (wired). The loss rate of a link indicates the level of

congestion on that link. Identification of lossy links or paths in the network is useful in the

monitoring and management of networks. This information can be used by network operators

and service providers to perform tasks of traffic engineering or to upgrade certain parts of their

network.

Multicast-based Inference of Network internal Characteristics (MINC) is one of the earliest

proposed methods of performing network tomography [7, 27, 28]. MINC can infer the internal

characteristics of a network which lies under a multicast tree. Based on end-to-end multicast-

based measurements, MINC can infer characteristics such as loss rates and delay distributions

of network links [27, 28]. To infer loss rates, the source sends a stream of multicast probe

packets into the multicast tree. Corresponding to each probe, each receiver reports whether

it received the probe (1) or not (0). Based on the binary feedback traces collected from all

receivers, per link loss rates in the multicast tree are inferred. The MINC loss inference is thus

useful to monitor the level of congestion on internal network links.

Relying solely on ”external” measurements to infer internal network characteristics is the

essence of tomography. However, if one must use the inferred information in a trustworthy

and reliable manner to make important decisions concerning the network, one must ensure

the correctness of measured data. Due to configuration errors, software patches, and several

3.2 Introduction 25

multi-platform implementations, networking software is often buggy and does not function as

intended [29, 30]. For instance, in [31], bugs found during experimentation with NIMI were

reported. Designers of NetLogger [32] point that 45% of problems in distributed applications

arise due to the presence of bugs in networking software. Using incorrect feedbacks from

buggy receivers will result in a faulty inference of link loss rates. A faulty inference may report

high loss rates on good links and low loss rates on lossy links. Thus, to ensure a sound and

trustworthy loss inference it is necessary to verify the integrity of binary feedbacks collected

from multicast receivers.

This work presents an algorithm which can verify the integrity of binary feedbacks collected

from multicast receivers in order to ensure a sound and trustworthy loss inference. Due to in-

herent correlations present in feedback traces of different multicast receivers, loss rates of paths

in the multicast tree can be inferred in different ways. Our work exploits this idea to design a

statistical verification procedure which detects loss rate inconsistencies that arise in erroneous

feedback data. Furthermore, in conformance with the end-to-end nature of tomography, our

procedure does not require any knowledge of the multicast tree topology.

3.2.1 Applications to Multicast Congestion Control

The problem of verifying feedbacks of multicast receivers is also of importance to multi-

cast congestion control. In [33], authors showed that multicast receivers can report wrong

feedbacks and mislead the multicast congestion control protocol to increase its sending rate,

thereby harming other well behaved flows in the network. Therefore, for proper congestion

control, feedbacks collected from multicast receivers must be checked for correctness. In prac-

tise, multicast receivers do not report per packet binary feedback but instead use RTCP (Real-

Time Control Protocol) [10] to report summary loss information (fraction of packets lost within

group of packets). But the problem of verifying binary feedbacks is still of interest to multicast

congestion control for the following reasons.

First, studying the basic case of the problem (binary) allows us to understand the obstacles

involved in tackling the general problem (summary loss information) better. Furthermore, our

verification procedure is based on comparing loss rates of same links, inferred using feedback

data collected from different sets of receivers. Authors of [34] have recently shown that loss

rates of links can also be inferred using summary loss information present in RTCP packets.

Therefore, we consider the problem of verifying the integrity of RTCP feedbacks of multicast

receivers as future work.

Second, authors of [9] have implemented the RLE extension within RTCP XR packet

type [35]. This allows multicast receivers to piggy-back per packet binary feedbacks which

are needed to infer loss rates of links, on RTCP packets. If misbehaving receivers piggy-back

correct binary feedbacks, these binary feedbacks would be inconsistent with the false RTCP

26 Chapter 3: Trustworthy Tomography

reports. The link loss rates inferred using binary feedbacks can be used to unearth congestion

misbehavior. In order to hide this, a misbehaving receiver would need to report wrong binary

feedbacks. Our verification procedure can be used in this context to check if receivers have

misbehaved.

3.2.2 Contributions

This work presents two related contributions. Our first contribution is an analysis which

explains how the loss rates inferred by MINC change when receivers report incorrect feedbacks.

Our analysis proves that when receivers falsely report that they received the probe packet, the

loss rates inferred by MINC on several links in the multicast tree can get altered.

For MINC loss inference, the binary feedbacks to N probes, reported by R receivers, are

available in the form of a N × R binary feedback matrix. Given such a matrix that potentially

contains incorrect feedbacks, the following questions can be posed:

(a) Is the given data erroneous, or equivalently, are the feedbacks of one or more receivers incorrect?
(b) Which are the receivers whose feedbacks are incorrect?
(c) In spite of errors, can we make the right MINC loss inference using the given feedback data?

Our second contribution is an algorithm called ICheck which answers (a). ICheck is a statis-

tical procedure which searches for link loss rate inconsistencies that arise in erroneous feedback

data. Broadly speaking, ICheck conducts statistical tests to determine the likelihood of obtain-

ing the given feedback data from receivers of a multicast tree. ICheck uses the core principle

of MINC loss inference itself. Like MINC, it is based on the premise that probe losses are in-

dependent across different links and independent between different probes (This is true in the

presence of sufficient background Internet traffic [7]). ICheck takes as input only the N × R

binary matrix and does not require the knowledge of the multicast tree topology.

From the discussion in this chapter, it will also become clear that questions (b) and (c)

cannot be easily answered using an approach which relies solely on binary receiver feedbacks.

The rest of the chapter is organized as follows. Section 3.3 touches upon related work

on network tomography and multicast congestion misbehavior. Section 3.4 explains the main

principle used by MINC to infer loss rates of links in the multicast tree. Section 3.5 examines

how the loss rates inferred by MINC change due to incorrect feedbacks. Section 3.6 presents

the ICheck algorithm for feedback verification. Section 3.7 presents experimental results. Sec-

tions 3.8 and 3.9 present discussions and conclusions respectively.

3.3 Related work 27

3.3 Related work

In this section we describe aspects of network tomography and multicast congestion misbe-

havior relevant to this work.

3.3.1 Network Tomography

Network tomography involves estimating performance characteristics of networks (wired)

based on a limited set of traffic measurements. The term ”network tomography” was coined

by Y. Vardi due to similarities between medical tomography and network tomography. The lit-

erature concerning network tomography has come to comprise of two inverse problems: (i)

Estimation of link level network characteristics based on measurements made on end-to-end

paths. (ii) Estimation of path level network characteristics from measurements made on indi-

vidual links.

Tomography of the first nature mainly comprises of MINC [7, 27, 28, 36, 37, 38] which in-

fers link level characteristics from end-to-end multicast measurements. MINC can infer several

link level characteristics such as loss rates, delay distributions, and delay variance. MINC infers

the characteristics of links in the logical multicast tree. Each link in the logical multicast tree

is a series of one or more physical links in the underlying network between two branch points.

”Losses on links” refer to the losses which occur due to buffer overflows at routers along the

path in the underlying network. The delays of links comprise of the delays on physical links

and router queues.

In order to infer the link level characteristics, MINC needs the topology of the logical mul-

ticast tree. This requirement goes against the end-to-end nature of tomography (of type (i)

above). To overcome this constraint, algorithms which infer the logical multicast tree topology

from probe measurements themselves, have been developed [39, 38]. These algorithms infer

loss rates of shared paths between receiver pairs (using MINC) and use this information to con-

struct the entire logical multicast tree topology (there is only one possible logical tree topology

between a pair of receivers).

Origin-destination (OD) tomography falls under the second category [6, 40, 41]. In pri-

vately owned networks, it is possible to measure byte counts of traffic flowing in and out of

link interfaces at routers. Given a set of such byte counts collected from various routers in

the network, OD tomography involves the estimation of byte counts of traffic flowing between

all origin-destination pairs in the network (known as the traffic matrix). Traffic matrices are

important inputs required in the design and engineering of networks.

In this dissertation, we will be concerned with tomography of the first category and in

particular with the estimation of link loss rates using MINC. The principle used by MINC to

infer loss rates of links will be explained in section 3.4. The complete inference algorithm of

28 Chapter 3: Trustworthy Tomography

MINC loss estimator will be described in chapter 4 in conjunction with our work there.

3.3.2 Multicast Congestion Misbehavior

The problem of multicast congestion misbehavior was reported by Sergey, et al in [33].

In general, in congestion related misbehavior, flows that do not respond to congestion steal

network bandwidth from those that do respond to congestion. By either not responding to con-

gestion or by intentionally causing congestion, misbehaving flows can force the well behaved

flows to back-off and claim the bandwidth that is left over. The problem is more serious in

multicast congestion control since a multicast flow can affect a large number of flows in the

network.

There are two paradigms to performing multicast congestion control1. In sender or Source-

based Congestion Control (SCC), the sender calculates the rate at which packets must be in-

jected into the network as a function of feedback reports received from all receivers in the

group. In Receiver-based Congestion Control (RCC), the sender either splits or replicates the

data into several different groups, each with a different sending rate. Each receiver subscribes

to one or more groups based on its available network capacity and responds to congestion by

un-subscribing to groups. Authors of [33] showed that both these approaches are vulnerable

to receiver misbehavior. A misbehaving SCC receiver can send a wrong feedback and cause

the sender to increase its sending rate, resulting in congestion. A misbehaving RCC receiver

can inflate its group subscription level and cause congestion. Congestion forces well behaved

flows in the network to reduce their sending rate, leaving more bandwidth for multicast flows

of misbehaving receivers.

SCC protocols, which use a single rate approach are suitable for small sets of receivers

and when the network is less heterogeneous in terms of link bandwidths. Protocols such as

TFMCC [42], RMTP [43], PGMCC [44] and SAMM [45] use this approach. RCC protocols

which use multi-rate approach are more suitable to heterogeneous networks. Protocols such

as RLM [46], RLC [47], FLID-DL [48] use this approach. Several hybrid protocols such as

MLDA [49], SARC [50] and DSG [51] also exist which use a combination of the two approaches.

Sergey, et al [52] have proposed a misbehavior prevention mechanism for RCC protocols, which

particularly suits the FLID-DL algorithm. Their prevention mechanism is based on in-band dis-

tribution of keys which guard access to multicast groups. These keys, which are split among

multicast data packets, are lost when a receiver inflates its subscriptions to cause congestion.

Thus, a receiver is automatically prevented from increasing its subscription level when conges-

tion occurs.

Our verification algorithm which verifies binary feedbacks of multicast receivers can be

1This is with regard to multicast congestion control for unreliable flows which generally carry multimedia data

3.4 MINC 29

applied to detect multicast congestion misbehavior in case of SCC protocols. In the Internet,

multicast flows which generally carry audio and video, use RTP/RTCP [10]. In this context, the

per packet binary feedbacks reported via RTP XR packets can be verified using the algorithm

presented in this chapter.

3.4 MINC

In this section, the principle used by MINC to infer the loss rates or the passage rates of

links is described; passage rate = 1 − loss rate (The terms loss rate and loss probability are

equivalent and so are passage rate and passage probability. If out of n packets sent on a link,

m are lost, then the loss rate of the link is m/n and its passage rate is (n − m)/n).

S

D

Pb

Pab

Pa

A B

Figure 3.1: Multicast tree with two receivers

MINC infers the characteristics of a network underlying a multicast tree by exploiting the

inherent correlation in multicast traffic. MINC infers loss rates in the logical multicast tree.

Consider the logical multicast tree shown in figure 3.1 with source S, two receivers A, B and

the branch node D. Suppose that the source sends a stream of probe packets and each receiver

observes whether it receives the probe (1) or not (0). Consider the task of estimating the

passage probability of the path DB. For this, consider those packets which were received by

A. Since A received them, these multicast packets must have crossed the branch node D and

also sent out on path DB. Among them, some may have crossed the path DB and some lost on

this path. Thus, the ratio of the number of packets which both A and B received to the total

number of packets which A received estimates the passage probability of path DB. The passage

probability of path DA can be calculated similarly.

Formally, suppose that the sender injects N probe packets into the multicast tree. Let (i, j),

i, j ∈ {0, 1} denote the probe corresponding to which A reported i and B reported j. Equivalently,

(i, j) also denotes the feedback where A reported i and B reported j. Let nij denote the total

number of probes of type (i, j). For example, n10 denotes the total number of probes for which

A reported 1 and B reported 0. We extend this notation slightly by allowing i, j ∈ {0, 1, ∗}, where

“∗” means a dont care (either a 0 or 1). For example, n1∗ denotes the total number of probes

for which A reported 1 and B reported either a 0 or 1; n1∗ = n10 + n11. Now, the passage

30 Chapter 3: Trustworthy Tomography

probability of the path DB, denoted by Pb and the passage probability of path DA, denoted by

Pa are given by

Pb =
n11

n1∗
, Pa =

n11

n∗1
(3.1)

Similarly, the loss probabilities of path DB and DA are

P̄b =
n10

n1∗
, P̄a =

n01

n∗1
(3.2)

Having done this, the passage probability of path SD denoted by Pab can be estimated as

follows:

Pab =
n11/n

Pa · Pb
=

n∗1n1∗
N · n11

(3.3)

Since SD is the common path between A and B, Pab is also called the common passage
probability. The above principle is extended in MINC to calculate the passage probabilities of

all the paths in the multicast tree. As mentioned before, although the topology of the multicast

tree is needed to perform loss inference, the common passage probabilities calculated between

different receiver pairs can be utilized to infer the topology of the multicast tree [39, 38]. Thus,

loss inference can be performed entirely in an end-to-end manner using MINC. The principle

used to infer the topology of a multicast tree from the common passage probabilities between

different receiver pairs will be described in conjunction with our work in section 3.6.2.

3.4.1 Simple Observations I

An observation which aids the subsequent analysis is now made. Consider the (00) probe.

This probe was either (i) lost on the path SD (denoted common loss) or (ii) it crossed SD

and was lost simultaneously on paths DA and DB (denoted independent loss). We classify the

(00) probes into these two respective categories. Let nc
00 denote the total number of probes

lost on path SD. Let ni
00 denote the total number of probes which crossed SD and were lost

simultaneously on DA and DB. Now, it is noted that ni
00 + n01 are the total number of probes

which crossed the path SD and lost on DA. Among them, n01 crossed DB and ni
00 were lost on

DB. Thus, the passage probability Pb can also be written as

Pb =
n01

ni
00 + n01

(3.4)

Thus, from (3.1) and (3.4) we have

Pb =
n01

ni
00 + n01

=
n11

n1∗
(3.5)

3.5 Misbehavior and its impact on passage probabilities 31

3.5 Misbehavior and its impact on passage probabilities

We use the term ”misbehaving receiver” to denote the buggy or malicious receivers which

can report incorrect feedbacks. A misbehaving receiver can misbehave either by altering a

feedback from 0 to 1 (denoted by 0 Ã 1) or by altering a feedback from 1 to 0 (denoted by

1 Ã 0). When it misbehaves from 0 Ã 1, it reports that it received the probe when it actually

did not. When it misbehaves from 1 Ã 0, it reports that it did not receive the probe when it

actually did. If a receiver reports a wrong feedback, the passage probabilities inferred by MINC

in the multicast tree change. Figure 3.2(a) shows the impact of misbehavior on the passage

probabilities inferred by MINC when receiver A alters some of its feedbacks from 0 Ã 1. The

passage probability of the path from A to the source increases (⇑) and the passage probabilities

of all links connected to this path decrease (⇓). Thus passage probabilities in a large region of

the multicast tree are altered. Figure 3.2(b) shows the impact of misbehavior on the passage

probabilities inferred by MINC when receiver A alters some of its feedbacks from 1 Ã 0. In this

case only the passage probability of the path from A to its parent decreases(⇓) to be congruous

with data reported by A. The passage probabilities in the rest of the multicast tree remain

unchanged.

subtree

⇓

A

S

(b)

⇑

⇓

⇑

⇑⇓

A

S

(a)

⇑

⇓

Figure 3.2: Effects of misbehavior on passage probabilities. (a) Receiver A reports more 1’s, (b) Re-
ceiver A reports more 0’s

To explain the above changes in probabilities, the misbehavior mechanism of a user is mod-

eled as follows. It is assumed that a receiver j misbehaves with probability αj (0 ≤ αj ≤ 1). If

receiver j misbehaves from 0 Ã 1, it changes its 0 feedback to 1 with probability αj and vice

versa.

Consider the two-receiver system shown in figure 3.1 with receivers A, B and sender S. Now,

we calculate the expected passage or loss probabilities after misbehavior. Firstly, the misbehavior

from 0 Ã 1 is considered.

32 Chapter 3: Trustworthy Tomography

3.5.1 Receiver A misbehaves from 0 Ã 1

After A misbehaves, let Pa, Pb and Pab denote the respective altered passage probabilities.

Lemma 3.1 If A misbehaves from 0 Ã 1 with probability αa, (i) E[Pb] ≤ Pb (ii) E[Pa] ≥ Pa

(iii) E[Pab] ≥ Pab

Proof When A misbehaves from 0 Ã 1, it causes two types of probe or feedback transforma-

tions:

x : (00) ⇒ (10) y : (01) ⇒ (11)

The following table shows the expected feedback system after these transformations.

Original After Misbehavior

n00 n00(1 − αa)

n01 ⇒ n01(1 − αa)

n10 n10 + αa · n00

n11 n11 + αa · n01

The altered passage probability of path DB denoted by Pb will be,

E[Pb] =
n11 + αa · n01

n1∗ + αa · n00 + αa · n01

=
n11 + αa · n01

n1∗ + αa(ni
00 + n01) + αa · nc

00

(3.6)

We know that a/b = c/d ⇒ (a + c)/(b + d) = a/b = c/d. Applying this to equation (3.5), we

get

Pb =
n11 + αa · n01

n1∗ + αa(ni
00 + n01)

(3.7)

Subtracting (3.6) from (3.7) gives,

E[Pb] = Pb

{
1 −

nc
00 · αa

n1∗ + n0∗ · αa

}
⇓ (3.8)

Now,

E[P̄a] =
n01(1 − αa)

n∗1
= P̄a(1 − αa) ⇓ (3.9)

Proof for (iii) is similar to that of (i).

Intuitively, when A’s feedbacks are altered from 0 Ã 1, those feedbacks for which both A

and B had reported 0, i.e. of the form (00), change to (10). Some of these (00) feedbacks

correspond to probes which were lost on the path SD. These probes are now counted as having

3.5 Misbehavior and its impact on passage probabilities 33

crossed SD and lost on DB, causing the passage probability of SD to increase and the passage

probability of DB to decrease.

In general, suppose that A misbehaves by causing nx transformations of type x and ny trans-

formations of type y. The following corollary gives the conditions for observing the expected

changes in probabilities after misbehavior.

Corollary 3.1 If receiver A misbehaves from 0 Ã 1 resulting in nx and ny transformations, then
Pb < Pb and Pab > Pab if nx/ny > n10/n11.

Proof After misbehavior we have,

Pb =
n11 + ny

n1∗ + nx + ny

Pb < Pb iff
n11 + ny

n1∗ + nx + ny
<

n11

n1∗

i.e., iff (n1∗ − n11)ny < n11nx

i.e., iff
nx

ny
>

n10

n11
=

P̄a

Pa

Proof for Pab is similar.

Corollary 3.2 If both receivers A and B misbehave from 0 Ã 1 with the same probability, the
receiver which suffers more losses before misbehavior causes a greater decrease in the passage
probability of the other receiver.

Proof After A and B misbehave from 0 Ã 1 with probabilities αa and αb, the expected probe

system is shown below.

Original After Misbehavior

n00 n00(1 − αa)(1 − αb)

n01 ⇒ n01(1 − αa) + αb(1 − αa)n00

n10 (n10 + αa · n00)(1 − αb)

n11 n11 + αa · n01 + αb(n10 + αa · n00)

Working out E[P̄a] and E[P̄b] as before, we have

E[P̄a] = (1 − αa)

{
n01 + αb · n00

n∗1 + αb · n∗0

}
(3.10)

E[P̄b] = (1 − αb)

{
n10 + αa · n00

n1∗ + αa · n0∗

}
(3.11)

34 Chapter 3: Trustworthy Tomography

If αa = αb, the increase in each of the above depends on the ratios n00/n∗0 and n00/n0∗
respectively.

3.5.2 Receiver A misbehaves from 1 Ã 0

After A misbehaves, let Pa, Pb, and Pab denote the respective altered passage probabilities.

Lemma 3.2 If A misbehaves from 1 Ã 0 with probability αa, (i) E[Pb] = Pb (ii) E[Pa] ≤ Pa

(iii) E[Pab] = Pab

Proof If a receiver misbehaves from 1 Ã 0, it causes two types of probe transformations: x̄ :

(10) ⇒ (00) and ȳ : (11) ⇒ (01). Writing down the expected probe system after transformations

as before, we will have

Original After Misbehavior

n00 n00 + αa · n10

n01 n01 + αa · n11

n10 ⇒ n10(1 − αa)

n11 n11(1 − αa)

E[Pb] =
n11(1 − αa)

n1∗(1 − αa)
= Pb

E[Pa] =
n11(1 − αa)

n∗1
= Pa(1 − αa) ⇓

Proof for (iii) is same as that for (i)

In general, suppose that A misbehaves by causing nx̄ and nȳ transformations. The following

corollary gives the general conditions for observing the expected changes in probabilities after

misbehavior.

Corollary 3.3 If A misbehaves from 1 Ã 0 resulting in nx̄ and nȳ transformations, then Pb =

Pb , Pab = Pab if nx̄/nȳ = n10/n11.

Proof After misbehavior we have,

3.6 Algorithm for feedback verification 35

Pb =
n11 − nȳ

n1∗ − nx̄ − nȳ

Pb = Pb iff
n11 − nȳ

n1∗ − nx̄ − nȳ
=

n11

n1∗

ie., iff (n1∗ − n11)nȳ = n11nx̄

ie., iff
nx̄

nȳ
=

n10

n11
=

P̄a

Pa

Similarly for Pab.

The rest of the chapter concentrates on 0 Ã 1 misbehavior, since 1 Ã 0 misbehavior has

almost no impact.

3.6 Algorithm for feedback verification

Broadly, given the N × R binary feedback matrix, the ICheck algorithm considers three re-

ceivers at a time and verifies the feedbacks of two particular receivers using the feedbacks of

the third receiver. This verification is done by performing a test on the feedbacks of the three

receivers. In this section, we describe this test in Lemma 3.3. Subsequently, we describe the

ICheck algorithm.

S

D

CA B

Pa
Pc

Pabc

Pb

D

CA

S

B

E

Pa Pb

Pc

Pabc

(a) (b)

Figure 3.3: Multicast trees with three receivers

3.6.1 Simple Observations II

Figure 3.3 shows the two possible topologies which connect an arbitrary set of three re-

ceivers within a multicast tree. Consider the topology of Fig 3.3(a) with receivers A, B, C,

and sender S. With usual notation, nijk denotes the number of probes for which A reports i, B

reports j, and C reports k. Let Pc, Pa, Pb, and Pabc denote the passage probabilities of paths

DC, EA, EB, and SD respectively. Consider the problem of estimating the passage probability

36 Chapter 3: Trustworthy Tomography

of path DC. Observe that, if either A or B received a probe, this probe must have reached the

point D and must have been sent out on the path DC. Now, n10∗ is a sample of probes received

by A. Thus these probes crossed SD and were sent out on DC. Among them, n100 were lost on

DC and n101 crossed DC. Thus Pc can be estimated as

Pc =
n101

n10∗
(3.12)

Using the same reasoning for the sample of probes n01∗ which were received by B, Pc can also

be estimated as

Pc =
n011

n01∗
(3.13)

From (3.12) and (3.13), we have

n100

n101
=

n010

n011
=

P̄c

Pc
(3.14)

Lemma 3.3 will show that the two ratios in (3.14) differ when feedbacks of either or both A

and B are altered. An observation similar to the one in section 3.4.1 is now made. The n000

probes are split into two groups - nc
000 and ni

000. Now, nc
000 are the number of probes lost on

the path SD. ni
000 are those which crossed SD and were lost simultaneously in the left subtree

rooted at D and on the path DC. Now it is observed that (ni
000 + n001) crossed SD and were

lost in the left subtree. Among them, ni
000 were lost on DC and n001 crossed DC. Thus we

have,
ni

000

n001
=

P̄c

Pc
(3.15)

Lemma 3.3 After A and B misbehave from 0 Ã 1 with probabilities αa and αb, in the expected
new system

n100

n101
6= n010

n011

except when either of these conditions hold

(i) Pabc = 1

(ii) αa/αb = n101/n011

Proof After A and B misbehave, the relevant part of the expected new system is shown below.

nijk denotes nijk in the expected system.

n010 = (n010 + αb · n000)(1 − αa)

n011 = (n011 + αb · n001)(1 − αa)

n100 = (n100 + αa · n000)(1 − αb)

n101 = (n101 + αa · n001)(1 − αb)

3.6 Algorithm for feedback verification 37

Thus,

n100

n101
=

n100 + αa · n000

n101 + αa · n001

=
n100 + αa · ni

000

n101 + αa · n001
+

αa · nc
000

n101 + αa · n001
(3.16)

n010

n011
=

n010 + αb · n000

n011 + αb · n001

=
n010 + αb · ni

000

n011 + αb · n001
+

αb · nc
000

n011 + αb · n001
(3.17)

From equations (3.15) and (3.14) we have,

n100 + αa · ni
000

n101 + αa · n001
=

n010 + αb · ni
000

n011 + αb · n001

Thus, n100/n101 = n010/n011 if

αa · nc
000

n101 + αa · n001
=

αb · nc
000

n011 + αb · n001
(3.18)

i.e., iff

(i) nc
000 = 0 ⇒ Pabc = 1 or

(ii) αa/αb = n101/n011

Condition (ii) above essentially implies that

αa

αb
=

Pa(1 − Pb)

Pb(1 − Pa)
(3.19)

If A and B misbehave with the same probability then condition (3.19) does not hold unless Pa

is also equal to Pb. Thus, even if A and B misbehave with the same probability the two ratios

n100/n101 and n010/n011 would differ in most scenarios. Also, Pabc determines the amount of

nc
000 probes available to distort the two ratios, making them different after misbehavior. If Pabc

is low, there is a higher chance that the two ratios would differ more after misbehavior.

Lemma 3.4 If C misbehaves from 0 Ã 1, in the expected new system, both estimates of Pc (3.12)
and (3.13) remain equal.

Proof Assuming that C misbehaves with probability αc, after misbehavior we have,

E[P̄c] =
n010(1 − αc)

n01∗
=

n100(1 − αc)

n10∗

38 Chapter 3: Trustworthy Tomography

As a result of lemma 3.4, we have that lemma 3.3 holds irrespective of whether C misbe-

haves or not. (It is now noted that the above results of lemma 3.3 and 3.4 hold for the other

3-receiver topology of Fig 3.3(b) as well).

3.6.2 ICheck

Figure 3.4 presents the algorithm for feedback verification. ICheck examines the entire feed-

back data by considering feedbacks of three random receivers each time and applying the test of

lemma 3.3 to detect inconsistencies. The test of Lemma 3.3 is applied in HTest. Lemma 3.3 tests

the feedbacks of receivers A and B using the feedbacks of C. To apply this test on an arbitrary

set of 3 receivers, ICheck needs to identify which of these receivers can function as C. For this, it

uses the LabelTree procedure (Fig 3.4). This procedure uses the principle proposed in [39, 38]

and labels the pair of receivers with minimum common passage probability as (A,B) and the

other as C (Fig 3.5). Thus probes received by A or B would have also been sent out on the link

DC. However, due to excessive feedback alterations, LabelTree may swap C with A or B. If A

is swapped with C then the pair (n010/n110, n001/n101) is compared and if B is swapped with

C then the pair (n100/n110, n001/n011) is compared. These unrelated ratios continue to remain

different after A and B misbehave.

To perform the check of lemma 3.3, HTest is used. HTest is a standard statistical hypothesis

test which is used to test the difference between two proportions. Given the feedbacks of three

receivers A, B, and C, the following contingency table is constructed.

Lost Crossed Total

Sample A n100 n101 n10∗
Sample B n010 n011 n01∗
Total n100 + n010 n101 + n011 n10∗ + n01∗

A two-tailed test is performed with null hypothesis H0 and alternative hypothesis H1 defined as,

H0 :
n100

n101
=

n010

n011
H1 :

n100

n101
6= n010

n011

HTest tests whether the difference between the two ratios n100/n101 and n010/n011 is statisti-

cally acceptable with respect to the given sample sizes of sample A(n10∗) and sample B(n01∗).

In this work, we use Fisher’s Exact Test [53] as the representative statistical test. Fisher’s exact

test is a permutation test and outputs a p-value between 0 and 1. If the p-value is less than 0.05,

null hypothesis H0 can be rejected with 95% confidence, i.e., with 95% confidence one can say

that feedbacks of either or both A and B are incorrect.

ICheck exploits the diversity of the multicast tree and the feedback data to overcome the

weaknesses of lemma 3.3. Firstly, in each three receiver test, lemma 3.3 cannot check 0 Ã 1

3.6 Algorithm for feedback verification 39

Procedure ICheck(F, k, δ)

F[N× R] : Binary feedback matrix

k ≤ (
R
3

)
: Times to repeat

δ : confidence level

1: inconsistent ← 0

2: while k > 0 do

3: (x, y, z) = Random(N) //same set not repeated

4: (A,B, C) = LabelTree(F, x, y, z)

5: failed ← HTest(F[A], F[B], F[C], δ)

6: if failed then

7: inconsistent ← inconsistent + 1

8: end if

9: k ← k − 1

10: end while

11: print inconsistent

Procedure LabelTree(F, x, y, z)

1: Compute Pxy, Pyz, Pzx

2: temp ← min(Pxy, Pyz, Pzx)

3: if temp = Pxy then

4: return(x, y, z)

5: else if temp = Pyz then

6: return(y, z, x)

7: else

8: return(z, x, y)

9: end if

Figure 3.4: ICheck Algorithm

A CB A CB A CB

x y z x y

E E E

S S S

PyzPxzPxy

yz xz

min = Pxy min = Pxz min = Pyz

D D D

Figure 3.5: LabelTree Procedure : Minimum pair-wise common passage probabilities are shown in bold

40 Chapter 3: Trustworthy Tomography

S

D

BAC
x

S

D

A BC
x

Figure 3.6: Functioning of ICheck

errors in C’s feedbacks. However, since the algorithm tests several different three receivers sets,

when a receiver x appears as C in one set, its feedbacks are not checked; but when it appears as

A or B in another set, its feedbacks get checked (Figure 3.6). Secondly, the test of lemma 3.3 is

weaker when passage probability of path SD, i.e. Pabc is very high. When a receiver x appears

in one set of three receivers, the least common parent (node D) may be close to the source S

resulting in Pabc ≈ 1. But when it appears in another set of three receivers, node D may be far

from the source, resulting in Pabc < 1 (Figure 3.6).

The complexity of ICheck varies with the number of three receiver sets checked. If k three

receiver sets are tested, the complexity of ICheck is O(Nk). As k increases, the integrity check

becomes stronger. For the strongest check, when all
(
R
3

)
three receiver sets are tested, k is

O(R3).

3.7 Experiments

ICheck is a C program which we have implemented using the ideas discussed in the pre-

vious section. For Fisher’s exact test, we use Algorithm 643 [54, 55] written in Fortran. To

test the performance of ICheck, we have conducted experiments using model-based traces, NS

traces and MBone traces. For Model-based traces, losses on each link are created using a

time-invariant Bernoulli loss process. For NS simulations, losses on links occur due to buffer

overflows at network nodes as the multicast probe competes with background TCP and UDP

traffic. For MBone traces, we use the traces of a multicast audio session over the MBone.

3.7.1 Model Simulation

Model based simulations are used to study the performance of ICheck on a wide variety of

inputs. The effectiveness of ICheck rests on the statistical test performed on three receiver sets.

The factors from input data which influence these tests are (i) Number of probes (ii) Actual

link loss rates in the multicast tree. These two factors work together to determine the sizes of

two samples n10∗ and n01∗ which are compared. If these two samples are of small sizes and

3.7 Experiments 41

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

%
 in

pu
ts

 d
et

ec
te

d
in

co
ns

is
te

nt

Probes (1000s)

A 10%
A 30%

A 10%, B 30%
A,B 10%

(a) Performance of the statistical test on differ-
ent types of 3-receiver inputs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

%
 in

pu
ts

 d
et

ec
te

d
in

co
ns

is
te

nt

Probability Pabc

A: 10%

1000
2000
5000

10000

(b) Influence of Pabc in different types of 3-
receiver inputs

1 2 3 4 5 6 7 8

S

(c) 8-receiver tree

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 In

co
ns

is
te

nc
ie

s

Number of Probes (in 1000s)

0-1 rand
0-1 const

comp rand
half-comp rand
No Misbehavior

(d) Performance of ICheck on Model Based
Traces

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

fr
eq

ue
nc

y

Link Passage rates

(e) CDF of link passage rates (NS simulation)

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 In

co
ns

is
te

nc
ie

s

Number of Probes (in 1000s)

half-comp rand

comp rand

0-1 rand

0-1 const

No Misbehavior

(f) Performance of ICheck on NS loss traces

Figure 3.7: Performance of ICheck Algorithm

42 Chapter 3: Trustworthy Tomography

their size difference is significant, only large alterations of feedbacks can be detected by the

statistical test. As the sizes of these samples grow, their size difference matters less and even

small alterations of feedbacks are detected. Whenever the samples are of comparable sizes, the

detection is stronger. As the number of probes grow, sample sizes become large and eventually

all alterations of feedbacks are detected.

Figure 3.7(a) shows the effectiveness of the statistical test performed by ICheck on different

types of three receiver inputs. In this experiment, the three receiver topology of figure 3.3(a)

was considered and the passage probabilities of all links were varied from 0.80 to 0.99 to yield

an almost complete range of possible three receiver inputs which could be tested by ICheck.

For each input the number of probes were varied from 1000 to 10, 000 probes. The y-axis
in Fig 3.7(a) plots the percentage of inputs where the statistical test successfully detects the

inconsistency with 95% confidence for different misbehavior mechanisms :(i)10% of receiver

A’s feedbacks are altered from 0 to 1 (ii)30% of receiver A’s feedbacks are altered from 0 to

1 (iii)10% of receiver A’s feedbacks and 30% of receiver B’s feedbacks are altered from 0 to 1

(iv)10% of both A and B’s feedbacks are altered from 0 to 1. As the number of probes increase,

the detection is stronger. When receivers misbehave with the same probability, the detection is

slightly weaker since the ratios n100/n101 and n010/n011 are less far-apart as compared to when

receivers misbehave with different probabilities. Fig 3.7(b) plots the same results as a function

of the passage probability Pabc for the case where 10% of receiver A’s feedbacks are altered

from 0 to 1. Pabc is crucial compared to other link probabilities since it determines the amount

by which the two ratios can get distorted, when feedbacks are altered. As Pabc grows larger,

the two ratios change less and more probes are needed for detection.

Next, the performance of ICheck was tested on general trees. Figure 3.7(d) shows the

performance of ICheck on the 8-receiver complete binary tree shown in Fig 3.7(c). In this ex-

periment, 1000 trees of the type in Fig 3.7(c) were generated with link passage probabilities

varying uniformly from 0.80 to 0.99. For each tree, probes were simulated and loss traces ob-

tained. In each trace, the following misbehavior mechanisms were introduced (i) Each receiver

misbehaves from 0 to 1 with either 0%, 5%, 10% or 15% probability uniformly (0-1 rand). (ii)

All receivers misbehave from 0 to 1 with with 10% probability (0-1 const) (iii) Each receiver

complements 0%, 5%, 10%, or 15% of its feedbacks (comp rand) (iv) A random set of half of

the receivers complement all their feedbacks (half-comp rand). In each trace, ICheck tested

all the
(
8
3

)
= 56 three receiver sets. Figure 3.7(d) plots the average number of inconsistencies

detected by ICheck for each misbehavior mechanism. When receivers complement their probes,

the feedback matrix becomes quite inconsistent and several inconsistencies get detected. As the

number of probes increase, the detection becomes stronger. The detection is weakest when all

receivers misbehave with the same probability.

3.7 Experiments 43

3.7.2 NS Simulation

For NS loss traces, the simulation parameters were setup as in the original work of MINC

[27]. The 8-receiver complete binary tree shown in Fig 3.7(c) was considered. The bandwidth

and propagation delay of each link were set 1.5Mbps and 10ms respectively. Each link was mod-

eled as a FIFO queue with four-packet capacity. Node 0 sent 200 byte multicast probe packets

with interpacket times chosen uniformly at random from 2.5 to 7.5 ms. We conducted 100 sim-

ulations and during each simulation, a variable amount of background traffic was introduced

on each link in the tree using a random number of TCP and exponential on-off UDP flows. The

probe losses observed by each receiver were used to generate the loss traces. Link passage rates

in these simulations varied from 85% to 95%. Figure 3.7(e) shows the combined cummulative

distribution function (CDF) of link passage rates for all links in the 100 simulations. For each

trace four types of misbehavior mechanisms were considered as before. For each trace, ICheck
tested all the

(
8
3

)
three-receiver sets. Figure 3.7(f) plots the average number of inconsistencies

detected by ICheck for each type of misbehavior mechanism. As observed before, when the

number of probes increase, the detection becomes stronger.

3.7.3 MBone traces

For MBone traces, we analyzed the WRN traces collected by [56] and publicly available at

the web site [57]. These traces correspond to multicast audio sessions of World Radio Net-

work(WRN). Each dataset is about an hour of trace in which receivers in the multicast group

recorded the sequence number of audio packets they received at 80ms intervals. The following

traces were analyzed: WRNSep19, WRNNov1, WRNNov13, WRNNov14, WRNNov28, WRN-

Dec1 and WRNDec11 (topologies for all these traces are shown at [57]). From each dataset, 3

receivers which experienced sufficient losses were chosen. Their traces were made binary based

on whether an audio packet was received or not and divided into batches of size 10, 000 each.

This resulted in a total of 27 3-receiver loss traces of size 10, 000 each. Figure 3.8(a),(b) and (c)

show the properties of these samples. Figure 3.8(a) shows the difference between the ratios

n100/n101 and n010/n011, figure 3.8(b) shows the common passage probability Pabc for each

sample, and figure 3.8(c) shows the p-value obtained when the two ratios were given to HTest.

Since there is no misbehavior, the p-values for samples lie above 0.05. Figures 3.8(d),(e) and

(f) show the p-values calculated after three types of misbehavior mechanisms : 3.8(d) 10% of

receiver A’s feedbacks were altered from 0 to 1 3.8(e) 10% of receiver A’s feedbacks and 30%

of receiver B’s feedbacks were altered from 0 to 1 and 3.8(f) 15% of both receiver A and B’s

feedbacks were altered from 0 to 1. The p-values for most samples now lie below 0.05 indicat-

ing that one can conclude with 95% confidence that there is something wrong with the receiver

feedbacks.

44 Chapter 3: Trustworthy Tomography

-0.1
-0.05

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3

 0 5 10 15 20 25

di
ffe

re
nc

e

samples

(a) difference between ratios

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

 0 5 10 15 20 25

P
ab

c

samples

(b) Pabc

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

p-
va

lu
e

samples

(c) p-values before misbehavior

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

p-
va

lu
e

samples

(d) p-values: A 10%

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

p-
va

lu
e

samples

(e) p-values: A 10%, B 30%

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

p-
va

lu
e

samples

(f) p-values: A, B 15%

Figure 3.8: MBone Experiments

3.8 Discussion 45

3.8 Discussion

3.8.1 Collusion

ICheck is a consistency check. It checks if the feedbacks of all receivers are consistent with

respect to one another. Due to this reason, it exhibits some resistance to collusion. Malicious

receivers in a multicast tree can collude in small groups by reporting a 1 only when at least

one member in the group received the probe packet. If two receivers have colluded together,

their feedbacks may be consistent with respect to each other but inconsistent with respect to

feedbacks reported by other receivers. Since ICheck tests different three-receiver groups, these

inconsistencies could be detected.

Collusion introduces inconsistencies in two ways. First, collusion introduces spatial depen-

dence between links. Spatial dependence (section 3.8.2) between non sibling links is detected

as inconsistency by lemma 3.3. If two receivers which have colluded together appear as A and

B in a set of three receivers, no inconsistencies would be detected (figure 3.3(a)). However, if

two receivers which which have colluded appear as B (A) and C in a group of three receivers,

probes flowing on link EB (EA) and DC would be dependent and this may result in an incon-

sistency. Second, when a receiver which has colluded appears as A or B in a group of three

receivers, inconsistency may arise if losses on the common path to the three receivers have

changed from 0 to 1. To illustrate the impact of collusion, we conducted the following exper-

iment. The 8-receiver tree of Fig 3.7(c) was considered and passage probabilities of all links

were varied from 0.80 to 0.99 to generate 100 random trees as before. In each tree, receivers

4 and 5 colluded with probability 50%, i.e., for 50% of the probes where at least one of the

receivers received the probe, both of them reported 1. Fig 3.9(a) plots the average number of

inconsistencies detected by ICheck after collusion. When 4 and 5 appear as B and C in (3, 4,

5), inconsistency could be detected due to the first reason above. When 4 appears as B in (3, 4,

2), inconsistency could be detected due to the second reason above. Fig 3.9(a) also shows that

when 1 and 2 collude, no inconsistencies are detected. Fig 3.9(b) plots the average number of

inconsistencies detected by ICheck when a random set of receivers collude in each tree, i.e., for

50% of the probes where at least one receiver in the set received the probe, all of them reported

1. In general, when receivers with least common parent high in the multicast tree collude, they

result in more inconsistencies. If all receivers in the multicast tree collude, no inconsistencies

would be detected.

3.8.2 Impact of Temporal and Spatial Dependence

In the MINC model, it is assumed that probe losses are independent across different links

and independent between different probes. In reality, probes flowing on links in the Internet

46 Chapter 3: Trustworthy Tomography

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 in

co
ns

is
te

nc
ie

s

Probes (1000s)

1 and 2 collude
4 and 5 collude

(a) Two fixed receivers collude (in tree Fig
3.7(c))

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 in

co
ns

is
te

nc
ie

s

Probes (1000s)

2 receivers collude
3 receivers collude
4 receivers collude

no collusion

(b) A random group of receivers collude (in
tree Fig 3.7(c))

Figure 3.9: Collusion

may exhibit low levels of temporal or spatial dependence. Temporal dependence refers to the

dependence between successive probes. For example, there may be back-to-back losses on

a link. Spatial dependence refers to the dependence of probe behavior on different links. For

example, in multicast overlay networks such as MBone, losses on sibling links may be dependent

if these sibling links cross the same underlying physical path.

Studies based on real Internet traffic traces have concluded very low levels of temporal

correlation beyond back-to-back packet losses [58, 56]. The test of lemma 3.3 remains valid in

the presence of temporal correlations. To see why, consider the figure 3.3(a) (or (b)). Suppose

that on all links SD, DC, DE, EA, and EB, the losses on each link occur in the form of a single

loss or a back-to-back loss pair. Note that even in this case ratios compared by lemma 3.3 must

be theoretically equal. However, in practise, we will need to compare larger probe samples

corresponding to the two ratios as the ratios may not have converged to their average values as

fast as in the case of single losses.

Spatial dependence between arbitrary links can render the test of lemma 3.3 invalid. Con-

sider 3.3(a) again. Consider the case where losses on links DE and DC are dependant. Say

for example, for about 10% of probes, a loss on DC implies a loss on DE. In this case, the

ratios tested in lemma 3.3 must still be equal. However, consider the case where losses on DC

and EB depend on each other but losses on DC and EA do not. Say for example, for about

10% of probes, a loss on DC implies a loss on EB. In this case, the ratios tested by lemma 3.3

will be unequal and the ratio on the left hand side will be larger than ratio on the right hand

side. Authors of [56] studied spatial correlations in MBone. They checked the number of times

that the same packet is not received by several receivers connected to MBone. They found this

quantity to be low. Authors of [27] believe that large and long-lasting spatial loss dependence

3.9 Conclusions 47

is unlikely in real networks like the Internet due to traffic and link diversity.

3.8.3 Comparison to Nonce-based Scheme

To avoid receiver misbehavior, a nonce bit can be sent in every probe packet which receivers

need to return in case they report that they received the probe packet. The nonce based scheme

has some disadvantages. Firstly, since the probe packet is a multicast packet, all receivers

receive the same nonce bit. Thus collusion becomes very easy and a receiver can collude with

any arbitrary receiver to report more 1’s. Secondly, it results in receivers reporting more bits.

This can pose a constraint when MINC is used with RTCP and receiver feedbacks must occupy

only 5% of data bandwidth [9]. Thirdly, it requires the change of existing protocols used for

measurement.

On the other hand, ICheck checks the integrity of receiver feedback data. Whenever re-

ceivers misbehave in a manner which destroys the consistency of feedback data, ICheck suc-

ceeds. However, due to the nature of statistical tests conducted, ICheck is not a sufficient test,

i.e, if ICheck detects inconsistency, it means that there is something wrong with receiver feed-

backs; but if it does not detect inconsistencies, it means that most likely receivers feedbacks

are correct. Depending on the loss rates in the multicast tree and the amount of misbehavior,

it is feasible, although less likely, that the resultant feedback matrix after misbehavior remains

entirely consistent.

3.9 Conclusions

In order to use end-to-end network inference in a trustworthy manner, it is essential to verify

the integrity of receiver feedbacks. In this work, we showed how the MINC loss inference is af-

fected by incorrect receiver feedbacks. We showed how the loss rates inferred by MINC change

when incorrect feedbacks are received. Subsequently, we presented the ICheck algorithm which

searches for loss rate inconsistencies that arise in erroneous feedback data. We presented the

performance of ICheck on Model Based traces, NS traces and MBONE traces. Our experiments

showed that ICheck successfully detects inconsistencies in the presence of different types of

misbehavior mechanisms and even in the presence of collusion. ICheck does not require the

multicast tree topology and thus does the affect the end-to-end nature of MINC tomography.

The ICheck algorithm can be used in the phase before the MINC loss Inference to determine

whether the inference based on the given feedbacks would most likely be trustworthy or not.

48 Chapter 3: Trustworthy Tomography

4

LOW FEEDBACK LOSS INFERENCE

4.1 Summary

To infer link loss rates, the MINC loss estimator requires each multicast receiver to report

one bit of feedback per probe. This poses constraints when receivers report feedbacks using

RTCP and the feedback bandwidth must not exceed 5% of data bandwidth.

One approach to reducing feedback bandwidth is to report less feedbacks, i.e., receivers

can report feedbacks corresponding to a sampled set of probe packets, a process known as

thinning [9]. The thinned set of feedbacks can then be used by the MINC loss estimator to infer

loss rates of links.

In this chapter, we consider an alternate approach. We develop an extended MINC loss

estimator (EMLE) which can infer link loss rates using aggregate feedbacks. Aggregate feed-

backs consume less than 1 bit per probe and are reported upon groups of w consecutive probes.

Aggregate feedbacks require between 1 and dlog2(w + 1)e bits per w probes and thus help in

the reduction of feedback bandwidth. EMLE extends the analysis of MINC loss estimator and

performs loss inference from aggregate feedbacks without substantial loss of accuracy. We eval-

uate the performance of EMLE using model-based and NS simulations. We compare EMLE to

the case where MINC loss estimator is used along with a thinned set of feedbacks.

49

50 Chapter 4: Low Feedback Loss Inference

4.2 Introduction

Multicast-based Inference of Network internal Characteristics (MINC) [7] is a method of per-

forming network tomography in which characteristics of internal network links are inferred

from end-to-end multicast measurements. MINC can infer internal characteristics of a network

that lies under a multicast tree. MINC can infer characteristics such as loss rates and delay

distributions of internal network links [28, 27]. To infer loss rates, the source injects a stream

of probe packets into the multicast tree. Corresponding to each probe, each receiver reports

whether it received the probe packet (1) or not (0). Using the binary feedbacks collected from

all receivers, per link loss rates in the multicast tree are inferred. In this manner, the MINC

estimator requires one bit of feedback per probe to perform loss inference.

In order to infer loss rates of links using active end-to-end multicast measurements, dedi-

cated infrastructures to perform these measurements must be deployed. For large scale multi-

cast measurements, the task of deployment is generally complex. To facilitate the measurement

process, authors of [9] proposed a passive impromptu measurement architecture which cou-

ples the process of performing end-to-end multicast measurements with RTP/RTCP (Real-Time

Transport and its Control Protocol) [10]. In this architecture, receivers within an existing multi-

cast session which uses RTP to transfer data, can utilize their data packets as probes and report

binary feedbacks upon the receipt or loss of RTP data packets by piggy-backing them on RTCP

packets. These binary feedback traces can then be used to infer loss rates of links in the multi-

cast tree. RTCP packets are multicast back to the group. Thus, any host which listens to these

packets is able to perform loss inference. In this manner, the data being transferred by existing

multicast sessions through the network can be utilized to infer link characteristics.

Including a binary feedback corresponding to the receipt or loss of every probe packet1

within RTCP packets poses constraints in large multicast groups. This can cause the RTCP

feedback bandwidth to exceed 5% of data bandwidth, a limit set aside by RTP for reporting

purposes. In the architecture proposed by authors of [9], receivers report binary feedbacks upon

a reduced set of probe packets to keep the feedback bandwidth low. The process of reporting

less feedbacks is also called as thinning of feedbacks or equivalently thinning of probes. An

example of thinning is say, for all receivers to report feedback upon the receipt or loss of every

5th probe packet. The thinned set of feedbacks is then used by the MINC loss estimator to

perform loss inference. Eventually, whether the feedbacks are reported upon original or thinned

set of probes, 1 bit of feedback is spent per probe.

In this work, we consider an alternate approach wherein receivers report less than N bits of

feedback corresponding to all N probes. We develop an Extended MINC Loss Estimator (EMLE)

which is able to perform loss inference using aggregate feedbacks. An aggregate feedback con-

1In this context, a probe packet is an RTP data packet

4.3 Related Work 51

tains information about the number of losses observed within groups of w consecutive probes.

Depending on its type, an aggregate feedback consumes between 1 and dlog2(w + 1)e bits per

w probes. Reporting aggregate feedbacks instead of per packet binary feedbacks results in the

reduction of feedback bandwidth. EMLE can perform loss inference using aggregate feedbacks

without significant loss of accuracy. We evaluate the accuracy and convergence rate of EMLE

using model-based and NS simulations. We also perform simulations to compare EMLE to the

case where MINC loss estimator is used along with a thinned set of binary feedbacks.

The rest of this chapter is organized as follows. In section 4.3, we describe how MINC mea-

surements are piggy-backed in RTCP packets and explain certain aspects of MINC inference.

In sections 4.4 and 4.5, we introduce the principles used by EMLE for loss inference. In sec-

tion 4.6, we present a basic version of EMLE. The basic EMLE performs loss inference using

aggregate feedbacks that require 1 bit per w probes. The analysis of basic EMLE is similar to

the analysis of MINC loss estimator. In section 4.7, we present the generalized version of EMLE

which can perform loss inference using all types of aggregate feedbacks that require between 1

and dlog2(w + 1)e bits per w probes. In Section 4.8, we present experimental results. Sections

4.9 and 4.10 present discussions and conclusions respectively.

4.3 Related Work

4.3.1 RTCP for reporting MINC measurements

The proposals to utilize RTCP to report measurements for purposes of loss inference and

network tomography appear in [59, 7, 9].

The specifications of Real-Time Transport Protocol (RTP) and its Control Protocol (RTCP)

are described in RFC 3550 [10]. RTP is used to carry multicast audio and video data in the

Internet and RTCP is used to provide feedback on the quality of the data distribution. RTCP

packets are periodically multicast by each participant of a multicast session. RTP specification

recommends that the collective RTCP feedback bandwidth must not exceed 5% of data band-

width. Of this, 25% is allocated to the data senders and the remaining 75% (i.e., 3.75% of data

bandwidth) is allocated to the receivers.

There are different types of RTCP packets such as SR (Sender Report), RR (Receiver Report),

SDES (Source Description), etc. Each RTCP packet type contains a fixed size header followed

by structural elements which may be of variable length. Different RTCP packet types can be

stacked together to form a compound RTCP packet.

Each receiver in a multicast session periodically reports one compound RTCP packet, nor-

mally within a UDP packet. This compound RTCP packet typically contains one RR packet

and one SDES packet, followed by zero or more RTCP packets. In order to report binary feed-

52 Chapter 4: Low Feedback Loss Inference

backs for MINC measurements, authors of [9] designed the RLE extension to RTCP XR packet

type(eXtended Report), which is published in RFC 3611 [35]. By stacking an RTCP XR packet

in a compound RTCP packet, receivers of a multicast session can report feedbacks needed for

MINC loss inference.

RTCP has a built-in scaling mechanism to control the reporting bandwidth. Receivers of

a multicast session collectively constrain the RTCP feedback bandwidth below 3.75% of data

bandwidth. For this, each receiver independently sets its reporting timer and reports one com-

pound RTCP packet at the end of each timer interval. The timer setting is a function of the

recently observed RTCP traffic from other participants. By tracking the frequency and size of

compound RTCP packets received, the participants collectively constrain the RTCP feedback

bandwidth within specified limits.

Since the RTCP feedback bandwidth must be maintained below 3.75% of data bandwidth,

receivers of a multicast session cannot report binary feedbacks corresponding to every probe

packet. Thus, the feedbacks must be thinned. Since the space available to stack an RTCP XR

packet is different at each receiver, each receiver must thin its feedbacks by a different thinning

factor. However, for MINC loss inference, all receivers must report feedbacks corresponding to

a common set of probe packets. To satisfy these constraints, authors of [9] designed a thinning

mechanism in which each receiver thins its feedbacks by a factor of 1/2T , i.e., each receiver

reports feedbacks upon every 2T th probe. The thinning exponent T is set independently by

each receiver based on its perceived share of RTCP feedback bandwidth. In this manner, the

probes for which different receivers report feedbacks, will overlap. Feedbacks reported upon

probes corresponding to the largest thinning exponent will be available from all receivers.

An RTCP XR packet, like a regular RTCP packet, contains a fixed size header and this is

followed by report blocks of variable length. The report blocks of type RLE are used to report

binary feedbacks for MINC loss inference. Each RLE block contains three main parts (i) The

start and end sequence numbers of probes being reported upon, (ii) the thinning exponent T

used, and (iii) the binary feedback trace. For example, if the start and end sequence numbers of

a trace are 13,821 and 13,865, and T = 2 (i.e., the thinning factor is 1/22), the binary feedback

trace corresponds to probe sequence numbers : 13,824, 13,828 ...13,864 [35].

4.3.2 MINC loss Estimator

A good starting point for literature on MINC is [7]. The MINC loss estimator [27] estimates

loss rates of links in the logical multicast tree. Each link in the logical tree corresponds to a

series of one or more physical links between two branch points in the underlying real multicast

tree. The losses on links in the logical tree essentially refer to the losses which occur due to

buffer overflows at routers in the underlying path of the real multicast tree. Henceforth in this

chapter, when we refer to multicast trees, we will be referring to the logical multicast trees.

4.4 EMLE: Aggregate Feedbacks 53

MINC Loss estimator is a maximum likelihood estimator of loss rates of links in the multicast

tree. For loss inference, the source sends a stream of probe packets and corresponding to each

probe each receiver reports if it receives the probe or not. Based on binary feedback traces of

all receivers, the MINC loss estimator infers the loss rates of links in the multicast tree. The

loss rate of a link is defined as follows. If out of n packets sent on a link m are lost, the loss

rate of the link is m/n. The passage rate of a link is 1 − loss rate. The MINC loss estimator is

developed with the assumption that probe packet losses are independent across different links,

and independent between different probes. This assumption has been shown to hold well in

the Internet in the presence of large amounts of background traffic [7].

As mentioned in the last chapter, for loss inference, the MINC loss estimator requires the

topology of the logical multicast tree. However, ideas of loss estimation from MINC can be used

to compute the loss rates of shared paths between receiver pairs and this can be used to infer

the topology of the logical multicast tree [39, 38]. The ideas of loss estimation in MINC have

also been extended to estimate delay distributions and delay variance of network links [28, 36].

When binary feedbacks for MINC measurements are reported using RTCP, feedbacks may be

lost since RTCP packets are sent using UDP . We shall comment on how the MINC loss inference

is performed in presence of feedback losses in section 4.9.1. While developing the Extended

MINC Loss Estimator, we will assume that feedbacks are not lost.

4.4 EMLE: Aggregate Feedbacks

For loss inference, as in MINC we assume that the source injects N probe packets into the

multicast tree. But instead of reporting binary feedbacks corresponding to each probe packet,

receivers report aggregate feedbacks corresponding to windows of w consecutive probes. The

window size w is constant and common to all receivers. Thus, each receiver reports a total

of N/w aggregate feedbacks. Aggregate feedbacks contain information about the number of

probes lost within windows of w consecutive probes. However, they can be reported with a

varying degree of precision level w ′, where 0 ≤ w ′ ≤ w − 1. When the precision level is set

to w ′, each receiver reports the actual number of probes lost if the number of losses is at most

w ′. If the number of losses is greater than than w ′, receivers simply report the value w ′ + 1.

For example, when the precision level is set to 0, all receivers report feedbacks in the following

manner:

feedback =





0 if 0 losses among w probes

1 if 1 or more losses among w probes
(4.1)

At the lowest precision level 0, receivers report only two values and thus each aggregate feed-

back requires only 1 bit per w probes. This results in a total per receiver feedback bandwidth

54 Chapter 4: Low Feedback Loss Inference

of N/w bits for N probes. At the highest precision level w − 1, receivers report feedback val-

ues from the set {0, ...w} and thus each aggregate feedback requires dlog2(w + 1)e bits per w

probes. This results in a total per receiver feedback bandwidth of (N/w)dlog2(w + 1)e bits for

N probes. We note here that both the window size and the precision level remain constant for

all aggregate feedbacks and are common to all receivers.

4.5 EMLE: Loss Distribution and Passage Probability

For a particular window size, as the precision level increases the feedback bandwidth in-

creases. EMLE relates the feedback precision level to the accuracy with which it estimates the

passage rates of links. As the feedback precision level increases, EMLE tries to make a more

accurate inference of link passage rates.

The MINC loss estimator estimates the passage probability of all links in the multicast tree.

For this, it first estimates the passage probability of paths from the source to each node in the

multicast tree. The essential difference between the MINC loss estimator and EMLE lies in the

method of estimation of passage probabilities of such paths.

Consider a path from source S to an arbitrary node k in the multicast tree, denoted by Sk.

Now, the passage probability of the path Sk can also be viewed as ”the probability of observing

0 losses on the path Sk given that 1 packet was sent from S”. Let Ak(i|w) denote the probability

of observing i losses on the path Sk given that w packets were sent from S, where 0 ≤ i ≤ w−1.

Hence, the MINC loss estimator essentially estimates the passage probability of the path Sk as

Ak(0|1). We refer to the set of all elements Ak(0|w), ...Ak(w−1|w) as the loss distribution of the

path Sk. EMLE estimates some elements from the loss distribution of path Sk and subsequently

computes its passage probability from the estimated elements.

When receivers report aggregate feedbacks for windows of w probes using a precision level

of w ′, EMLE estimates the loss distribution elements Ak(0|w), ...Ak(w ′|w) corresponding to the

path Sk. In other words, as the feedback precision level increases, EMLE estimates more loss

distribution elements.

Let pk denote the passage probability of path Sk. At the highest precision level w − 1, when

all elements of loss distribution are available, EMLE computes the passage probability of path

Sk as

pk =

j=w−1∑

j=0

(w − j)Ak(j|w)

w
(4.2)

At an intermediate precision level 0 ≤ w ′ < w − 1, when a partial list of loss distribution

elements is available, EMLE computes the passage probability of the path Sk by finding the root

4.6 Basic EMLE 55

of the following polynomial

j=w ′∑

j=0

(
w

j

)
p

w−j
k (1 − pk)j =

j=w ′∑

j=0

Ak(j|w) (4.3)

For example, at precision level 0, EMLE estimates only the first element of loss distribution

of the path Sk i.e. Ak(0|w). Subsequently, it computes the passage probability of path Sk as

{Ak(0|w)}1/w. When the window size w = 1, EMLE reduces to MINC loss estimator and both

Eq. (4.2) and Eq. (4.3) estimate the passage probability of a path Sk as Ak(0|1).

4.6 Basic EMLE

We begin by showing how EMLE estimates the passage rates of links in the logical multicast

tree by using aggregate feedbacks which are reported at precision level 0. In this case, cor-

responding to each path from source to a node in the multicast tree, EMLE estimates only its

first loss distribution element. We refer to this version of EMLE as the basic EMLE. The basic

EMLE directly extends the inference algorithm of MINC loss estimator. Thus, when window

size w = 1, the inference algorithms of basic EMLE and MINC are equivalent.

As usual, we assume that the source injects N probe packets into the multicast tree and re-

ceivers report n = N/w aggregate feedbacks. Receivers report aggregate feedbacks at precision

level 0, i.e., they report whether they observed 0 losses or greater than 0 losses within windows

of w consecutive probes (as shown in Eq. (4.1)).

4.6.1 Principle

Before showing how loss rates of links are inferred in arbitrary multicast trees, we illustrate

the core principle followed by basic EMLE using a 2-receiver tree. Consider the 2-receiver tree

shown in figure 4.1 with receivers A and B, branch node D, and source S. PA, PB, and PAB

are the passage probabilities of paths DA, DB, and SD respectively. Our goal is to use the n

1-bit aggregate feedbacks reported by A and B and estimate the passage probabilities PA, PB,

and PAB. Consider the task of estimating the passage probability PB of path DB. For this, we

estimate the quantity PDB(0|w) that is the probability of 0 losses occurring on DB given that w

packets are sent on DB. Then, PB can be computed as

PDB(0|w) = (PB)w ⇒ PB = {PDB(0|w)}1/w (4.4)

To estimate PDB(0|w), consider those aggregate feedbacks where A reported 0. Each of these

feedbacks corresponds to A having received w probe packets (i.e., 0 losses). Hence, each time

that A received w probe packets, these w multicast packets were also sent out on path DB.

56 Chapter 4: Low Feedback Loss Inference

1
1
1

1
0
0

D

S

Window size = 3

Aggregate Feedback10

A B

Figure 4.1: Two receiver tree

Thus, the ratio of the total number of feedbacks where both A and B reported 0 to the total

number of feedbacks where A reported 0 gives PDB(0|w).

Formally, with usual notation, let nij denote the number of feedbacks where A and B re-

ported i and j respectively, i, j ∈ {0, 1, ∗}. Thus, PDB(0|w), PDA(0|w), and PSD(0|w) can be

estimated as follows.

PDB(0|w) =
n00

n0∗
PDA(0|w) =

n00

n∗0
n00

n
= PSD(0|w) PDB(0|w) PDA(0|w)

Subsequently, PA, PB, and PAB are computed as in Eq. (4.4).

4.6.2 Loss Inference for general Trees

For general trees, our goal is to utilize the feedbacks reported by all receivers to infer passage

rates of links in the logical multicast tree. For analysis, we use the following notation similar

to the MINC loss estimator. Let V denote the set of all nodes in the logical multicast tree. The

set V consists of the source node S, the set of all receivers R, and the set of all branch nodes

i.e., V − R − S. Let f(k) denote the father of node k and let d(k) denote the set of children of

node k. Let R(k) ⊆ R denote the set of receivers in the subtree rooted at node k. Instead of

modeling the passage of each probe packet as in MINC, we model the passage of w consecutive

probe packets through the multicast tree. We define the following quantities corresponding to

each node k ∈ V .

4.6 Basic EMLE 57

pk denotes the passage probability of the path from S to k

αk denotes the passage probability of a link terminating at node k (quantity to be

eventually estimated).

Ak(0|w) denotes the probability of observing 0 losses on the path from source S to k given

that w packets are sent from S.

γk(0|w) denotes the probability that at least one receiver in R(k) observes 0 losses given

that w packets are sent from S.

βk(0|w) denotes the probability that at least one receiver in R(k) observes 0 losses given

that w packets are sent from f(k).

mk(0) denotes the number of times that at least one receiver in R(k) reported the feed-

back 0.

N, n N denotes the number of probes sent. n denotes the number of feedbacks re-

ported. n = N/w.

The goal is to estimate the first element of loss distribution of paths from source S to each

node k in the multicast tree. Subsequently, the passage probabilities of paths (pk) and links

(αk) in the multicast tree are computed.

For a path from S to a node k ∈ V , its loss distribution element Ak(0|w) is estimated by

using the following basic principle: If at least one receiver in the subtree of node k observes 0

losses when w packets are sent from S, then there must have been 0 losses on the path from S

to k. The quantities Ak(0|w), ∀k ∈ V are estimated in two steps as follows:

1. For each node k ∈ V, the quantity γk(0|w) is estimated by using feedbacks reported by

receivers in R(k), i.e.,

γk(0|w) =
mk(0)

n

2. Since the probes are sent from S, we have

AS(0|w) = 1

For receiver nodes, i.e., k ∈ R, we have

Ak(0|w) = γk(0|w)

For branch nodes, i.e., k ∈ V − R − S, we have

γk(0|w) = Af(k)(0|w) βk(0|w) (4.5)

γk(0|w) = Ak(0|w)

{
1 −

∏

d∈d(k)

(1 − βd(0|w))

}
(4.6)

58 Chapter 4: Low Feedback Loss Inference

From Eq. (4.5) and Eq. (4.6), we have

γk(0|w) = Ak(0|w)

{
1 −

∏

d∈d(k)

(1 −
γd(0|w)

Ak(0|w)
)

}
(4.7)

Eq. (4.7) is a polynomial of degree |d(k)|− 1 with unknown variable Ak(0|w). Thus, Ak(0|w) is

estimated by finding its root. In [27], authors have shown that the solution of (4.7) exists and

is unique in (0, 1) provided that 0 < γk(0|w) <
∑

d∈d(k) γd(0|w), which holds.

Subsequently, the passage probabilities of all links in the multicast tree are computed in two

steps as follows:

1. For each node k ∈ V , pk is calculated as

pk = (Ak(0|w))1/w (4.8)

2. For each node k ∈ V − {S}, αk is calculated as

αk = pk/pf(k)

For the source node, we have αS = 1.

When window size w = 1, the estimation algorithm of basic EMLE reduces to the estima-

tion algorithm of MINC loss estimator and the passage probability of the path from S to k is

estimated as pk = Ak(0|1). The basic version of EMLE does not require any explicit implemen-

tation. The quantities defined above are analogous to those used in MINC loss estimator, but

have extended meanings. Giving the ”new” aggregate feedbacks to an implementation of MINC

loss estimator will result in the estimation of quantity (αk)w for each link terminating at node

k. Quantities αk are then obtained in a straight forward manner.

4.7 EMLE

The basic version of EMLE is able to process feedbacks of precision level 0. It computes

the passage probability of the path from source S to a node k by estimating the first element

of the path’s loss distribution, i.e., Ak(0|w). The general version of EMLE is able to process

feedbacks of all precision levels. If the feedbacks are reported with a precision level of w ′,
EMLE computes the passage probability of the path Sk by estimating the path’s loss distribution

elements Ak(0|w), ...Ak(w ′|w). Before presenting the inference algorithm of the general version

of EMLE, we make two observations.

4.7.1 Similarities and differences with MINC delay estimator

The concept of loss distribution of a link is similar to the concept of its delay distribution.

The number losses accumulated by a group of w probe packets on an end-to-end path is the

4.7 EMLE 59

sum of losses accumulated on each individual link in the path. Similarly, the amount of delay

accumulated by one probe packet on an end-to-end path is the sum of delays accumulated on

each individual link in the path. Therefore, the analysis of EMLE resembles the analysis of MINC

delay estimator. In fact, the way EMLE estimates the first element of loss distribution is exactly

how the MINC delay estimator estimates the first element of delay distribution. However, the

analysis of delay estimator cannot be used to estimate higher elements of loss distribution due

the following difference between the two problems. Consider a path SA with two logical links

SD and DA. For delay estimation, suppose that S sends a packet to A. The amount by which

the packet is delayed on link SD is independent of the amount by which it is delayed on link

DA. On the other hand, for loss estimation, suppose that S sends w packets to A. The number

of losses accumulated by the group of w packets on link SD is not independent from the number

of losses accumulated by the group on DA. For instance, if SD introduced one loss, DA cannot

introduce w losses since only w−1 packets reach D. This difference prevents us from using the

analysis of MINC delay estimator to estimate loss distribution elements.

4.7.2 Reduction of Computation

During the estimation of the first element of lost distribution Ak(0|w) for a path Sk, we were

required to find the root of a polynomial of degree |d(k)| − 1 (Eq. (4.7)). We will see in the

next section (4.7.3) that the root finding step is required in general to estimate each element

of loss distribution. Finding the roots of polynomials of degree larger than two require the

use of numerical methods which consume time and yield approximate solutions. To avoid this,

we introduce a subtree partitioning procedure which partitions each subtree into exactly two

subtrees. This allows us to estimate loss distribution elements using simple linear equations. In

the next section (4.7.3), we will show how the partitioning is incorporated into the analysis by

changing the definition of certain quantities (βk’s) and by defining additional quantities (γk’s).

For each branch node k, we partition its subtree Tk, into two subtrees - Tk1
and Tk2

. For

this, we simply pick each child subtree of k and assign it uniformly at random to either subtree

Tk1
or subtree Tk2

(see figure 4.7.2). Note that both Tk1
and Tk2

are also rooted at k itself. Let

R(k1) and R(k2) denote the set of receivers in Tk1
and Tk2

respectively.

4.7.3 Analysis

We assume that aggregate feedbacks are reported with a precision level of w ′, where

0 ≤ w ′ ≤ w − 1. The goal as before is to estimate loss distribution elements of paths from

source S to each node k in the multicast tree and then to compute the passage probabilities of

links.

For a path from S to a node k ∈ V , its loss distribution elements Ak(0|w), ...Ak(w ′|w) are

60 Chapter 4: Low Feedback Loss Inference

...
... ...

S

k

S

ksubtree Tk
subtree Tk2subtree Tk1

child subtree

Figure 4.2: Original subtree (left) and the partitioned subtree (right)

estimated by using the following basic principle: If w packets are sent from S and the minimum

number of losses observed by receivers in the subtree rooted at k is j, then there must have

been at most j losses on the path Sk. Here, 0 ≤ j ≤ w.

We define the following quantities corresponding to each node k ∈ V.

mk(i)

mk1
(i)

mk2
(i)

mk1,2
(i, j)

mk(i) is the number of times that at least one receiver in R(k) reports at most i

losses. mk1
(i) is the number of times that at least one receiver in R(k1) reports

at most i losses. Similarly mk2
(i) is defined in terms of R(k2). mk1,2

(i, j) is the

number of times that at least one receiver each in R(k1) and R(k2) report at most

i and j losses respectively.

Ak(i|w) Probability that i packets are lost on the path from S to k given that w packets

are sent from S.

γk(i|w)

γk1
(i|w)

γk2
(i|w)

γk1,2
(i, j|w)

γk(i|w) is the probability that the minimum number of losses received by a re-

ceiver in R(k) is at most i given that w packets are sent from S. γk1
(i|w) is the

probability that the minimum number of losses received by a receiver in R(k1)

is at most i given that w packets are sent from S. Similarly γk2
(i|w) is defined

in terms of R(k2). γk1,2
(i, j|w) is the probability that the minimum number of

losses received by a receiver in R(k1) is at most i and a receiver in R(k2) is at

most j given that w packets are sent from S.

βk(i|w)

βk1
(i|w)

βk2
(i|w)

βk(i|w) is the probability that the minimum number of losses received by a re-

ceiver in R(k) is at most i given that w packets are sent from k. βk1
(i|w) is the

probability that the minimum number of losses received by a receiver in R(k1) is

at most i given that w packets are sent from k. Similarly βk2
(i|w) is defined in

terms of R(k2).

4.7 EMLE 61

With the above definitions, for a branch node k ∈ V − R − S, we have

βk(i|w) = 1 − (1 − βk1
(i|w))(1 − βk2

(i|w)) (4.9)

We start by estimating the quantities γk, ∀k ∈ V. For each node k ∈ V , we have,

γk(i|w) =
mk(i)

n
, 0 ≤ i ≤ w − 1

γk1
(i|w) =

mk1
(i)

n
, 0 ≤ i ≤ w − 1

γk2
(i|w) =

mk2
(i)

n
, 0 ≤ i ≤ w − 1

γk1,2
(i, j|w) =

mk1,2
(i, j)

n
, 0 ≤ i ≤ w − 1, 0 ≤ j ≤ i

γk1,2
(j, i|w) =

mk1,2
(j, i)

n
, 0 ≤ i ≤ w − 1, 0 ≤ j ≤ i

For source S, we have

AS(0|w) = 1

For receiver nodes k ∈ R, we have

Ak(0|w) = γk(0|w)

Ak(i|w) = γk(i|w) − γk(i − 1|w), 1 ≤ i ≤ w ′

For each branch node, i.e. k ∈ V − R − S, the following procedure is used to estimate the loss

distribution elements Ak(0|w), ...Ak(w ′|w) corresponding to the path Sk. The loss distribution

elements are estimated recursively starting from Ak(0|w).

Step 0: (Base case)

Quantities calculated before: Nil

Quantities to be calculated in this step:

(i) Ak(0|w)

(ii) βk1
(0|w), βk2

(0|w)

The above quantities can be calculated as follows.

γk1
(0|w) = Ak(0|w) βk1

(0|w) (4.10)

γk2
(0|w) = Ak(0|w) βk2

(0|w) (4.11)

γk(0|w) = Ak(0|w) βk(0|w)

= Ak(0|w)
{
1 − (1 − βk1

(0|w)) (1 − βk2
(0|w))

}
(4.12)

62 Chapter 4: Low Feedback Loss Inference

i|w

i − 1|w i − 1|w − 1

i − 2|w − 1 i − 2|w − 2
...

...

2|w ... 2|w − i + 3 2|w − i + 2

1|w 1|w − 1 ... 1|w − i + 2 1|w − i + 1

0|w 0|w − 1 0|w − 2 ... 0|w − i + 1 0|w − i

step 0 step 1 step 2 ... step i − 1 step i ?

Table 4.1: Quantities βk1
(x) and βk2

(x) calculated in each step are shown. The table shows the values
taken by x. Quantities which are calculated in the ith step are shown in bold.

From Eq. (4.10),(4.11), and (4.12), quantities Ak(0|w), βk1
(0|w), and βk2

(0|w) are

obtained in a straight forward manner by solving only linear equations. Note the

difference in the estimation of Ak(0|w) using the above equations and the equations

(4.5),(4.6), and (4.7) used earlier. With its old definition, βk for a node k was ex-

pressed in terms of the node’s child subtrees which could result in a large number of

product terms if the degree of node was large. With its new definition, βk for a node

k is expressed only in terms of the node’s two partitioned subtrees.

...

Step i: Quantities calculated in previous steps 0, ...i − 1 are :

(i) Ak(`|w), ∀` ∈ 0, ...i − 1

(ii) The sets {βk1
(`|w), ...βk1

(0|w− `)} and {βk2
(`|w), ...βk2

(0|w− `)}, ∀` ∈ 0, ...i−1

(see table 4.1).

Quantities to be calculated in this step are:

(i) Ak(i|w)

(ii) The sets {βk1
(i|w), ...βk1

(0|w − i)} and {βk2
(i|w), ...βk2

(0|w − i)}.
We estimate the above quantities in substeps 0, ...i. In substep j, 0 ≤ j ≤ i − 1, we

estimate the elements βk1
(i − j|w − j) and βk2

(i − j|w − j). In substep i, we estimate

quantities Ak(i|w), βk1
(0|w − i), and βk2

(0|w − i).

Substep 0: Quantities βk1
(i|w) and βk2

(i|w) are estimated as follows.

γk1,2
(i, 0|w) = Ak(0|w) βk1

(i|w) βk2
(0|w)

γk1,2
(0, i|w) = Ak(0|w) βk1

(0|w) βk2
(i|w)

4.7 EMLE 63

...

Substep i − 1: Quantities βk1
(1|w − i + 1) and βk2

(1|w − i + 1) are estimated as

follows.

γk1,2
(i, i − 1|w) =

`=i−2∑

`=0

Ak(`|w) βk1
(i − `|w − `) βk2

(i − 1 − `|w − `)

+ Ak(i − 1|w) βk1
(1|w − i + 1) βk2

(0|w − i + 1)

γk1,2
(i − 1, i|w) =

`=i−2∑

`=0

Ak(`|w) βk1
(i − 1 − `|w − `) βk2

(i − `|w − `)

+ Ak(i − 1|w) βk1
(0|w − i + 1) βk2

(1|w − i + 1)

Substep i: Quantities Ak(i|w), βk1
(0|w− i), and βk2

(0|w− i) are estimated using the

following equations.

γk1
(i|w) =

`=i−1∑

`=0

Ak(`|w) βk1
(i − `|w − `)

+ Ak(i|w) βk1
(0|w − i)

γk2
(i|w) =

`=i−1∑

`=0

Ak(`|w) βk2
(i − `|w − `)

+ Ak(i|w) βk2
(0|w − i)

γk(i|w) =

`=i−1∑

`=0

Ak(`|w)
{
1 − (1 − βk1

(i − `|w − `)) (1 − βk2
(i − `|w − `))

}

+ Ak(i|w)
{
1 − (1 − βk1

(0|w − i)) (1 − βk2
(0|w − i))

}

...

Step w ′:

Substep 0

...

Substep w ′

When feedbacks are reported at the precision level w ′ = w − 1, in the final step w − 1,

Ak(w − 1|w) is estimated. Depending on whether all loss distribution elements are estimated

or the partial list of loss distribution elements is estimated, either Eq. (4.2) or Eq. (4.3) is used

to compute passage probability pk of path Sk.

64 Chapter 4: Low Feedback Loss Inference

After estimating pk ∀k ∈ V , αk ∀k ∈ V − {S} is computed as before, as αk = pk/pf(k).

αS = 1. In total, EMLE takes O(|V |w ′2) steps to estimate passage rates of all links in the tree

when feedbacks are reported at precision level of w ′.

We note here that the subtree partitioning concept (section 4.7.2) which is used in the in-

ference algorithm of EMLE is general and can be incorporated in the analysis of both MINC loss

and delay estimators. This allows both these estimators to avoid finding roots of polynomials

with large degree, thus minimizing their computation time. When window size w = 1, EMLE

reduces to the MINC loss estimator in which the subtree partitioning concept is incorporated.

4.7.4 Impact of Temporal Dependence

Estimation of passage probability in EMLE consists of two steps: (i) Estimation of loss distri-

bution elements and (ii) Computation of passage probability using loss distribution elements.

While modeling, we assumed independence between probes. In practise, there may exist some

amount of dependence between consecutive probes, i.e., temporal correlation. The process of

estimating loss distribution elements is not affected by dependence of probes within a win-

dow. However, the computation of passage probability from loss distribution elements may be

affected by temporal correlations.

When receivers report feedbacks with precision level w ′ < w − 1, EMLE estimates a partial

list of loss distribution elements and computes the passage probability of paths using Eq. (4.3).

Eq. (4.3) assumes that all probes which fall within one window are independent. Thus, in the

presence of temporal correlations, estimating the passage probability using Eq. (4.3) introduces

errors in estimation.

When receivers report feedbacks with precision level w ′ = w − 1, EMLE estimates all loss

distribution elements and computes the passage probability of paths using Eq. (4.2). The ad-

vantage of using Eq. (4.2) is that it does not assume independence between probes which fall

within one window.

4.8 Experiments

We study the behavior of EMLE through model-based and NS simulations. In model-based

simulations, losses on links in the logical multicast tree are created using a time-invariant

Bernoulli loss process. In NS simulations, losses on links occur due to buffer overflows as

the probe packets compete with background TCP and UDP traffic. We simulate the passage

of probes through the multicast tree and use the loss traces observed by receivers to construct

their aggregate feedbacks. These aggregate feedbacks are then given to EMLE for loss infer-

ence. To construct aggregate feedbacks we use window sizes 1 to 7. For each window size w,

4.8 Experiments 65

1 2 3 4 5 6 7 8

S

1 2

S

shared path

Figure 4.3: 2-receiver (left) and 8-receiver (right) trees used for experiments

we construct aggregate feedbacks with precision level 0 and w − 1. With feedbacks of precision

level 0, EMLE estimates the first element of loss distribution and uses Eq. (4.3) to compute

passage probabilities. With feedbacks of precision level w − 1, EMLE estimates all elements of

loss distribution and uses Eq. (4.2) to compute passage probabilities.

To assess the accuracy of estimation, we compute the relative error of a link. The relative

error of a link which terminates at node k is defined as

REk = |(αk − α̂k)/αk|

where αk is the true passage rate of the link and α̂k is the passage rate estimated by EMLE.

We first perform experiments with model-based simulations. We start by performing ex-

periments using a 2-receiver multicast tree and use EMLE to estimate the passage probability

of the shared path (figure 4.3). We perform two sets of experiments wherein passage rates

of links vary uniformly from 90 − 95% and 95 − 99% respectively. We repeat experiments 100

times and plot the measures of location corresponding to the relative error. Figure 4.4 shows

the relative error for the shared path for window sizes 1 to 7 with probes varying from 1K to

10K. Each sub-figure shows (i) the average relative error and (ii) median of relative error along

with its 5th and 95th percentiles for 10K probes. The sub-figures in the left column show the

relative error when passage probability of the shared path is calculated using the first element

of loss distribution. The sub-figures in the right column show the relative error when passage

probability of the shared path is calculated using all elements of loss distribution. When win-

dow size w = 1, EMLE reduces to the MINC loss estimator. We observe that, for passage rates

95 − 99%, there is very little difference between EMLE and MINC loss estimator. In general, for

passage rates 90−99%, the passage probability estimated using all elements of loss distribution

is slightly more accurate than the passage probability estimated using only the first element of

loss distribution.

Figure 4.5 displays the standard error for estimating the passage rate of the shared path. The

standard error is calculated over 100 experiments using a fixed link passage rate (90% first row,

95% on the second row). The standard error reflects the variance of the estimator. The standard

error is high when passage rates are low and window sizes are large. The error is generally

lower when all elements of loss distribution are used to estimate the passage probability.

66 Chapter 4: Low Feedback Loss Inference

The accuracy of EMLE depends on the accurate estimation of loss distribution elements.

From the above experiments, we observe that the error and variance in estimation increase

when window sizes or loss rates of links increase. When there in an increase in either of these

two parameters, the number of feedback samples used to estimate lower lost distribution ele-

ments decreases, resulting in a less accurate estimate of the passage probability. For instance,

estimation of the first loss distribution element A(0|w) requires feedback samples which corre-

spond to all probes in a window being received (i.e., 0 losses among w probes). The number

of such samples decreases with the increase in window size or loss rates of links and thus the

passage probability calculated from the first loss distribution element becomes less accurate.

The loss distribution elements are estimated recursively starting from the first element. Thus,

when window sizes or loss rates of links increase, errors in the estimation of lower elements

affect the estimates of higher elements and even the passage probability calculated from all

elements of loss distribution becomes less accurate.

Figures 4.6(a) and (b) show the performance of EMLE for the 8-receiver binary tree of

figure 4.3, for model-based simulations in which passage rates of links vary from 90-99%. The

figure displays the relative error in the estimation of passage probability of one of the internal

links in the tree. As the height of the tree increases, the end-to-end loss rates increase. This

affects the accuracy of estimation.

Next, we evaluate the performance of EMLE using NS simulations. We use the 8-receiver

binary tree of figure 4.3 and setup simulation parameters similar to the original work on

MINC [27]. The bandwidth and propagation delay of all links in the multicast tree are set

1.5Mbps and 10ms respectively. Each link is modeled as a FIFO queue with four-packet capac-

ity. The source sends 200-byte multicast probe packets with inter-packet times chosen uniformly

at random from 2.5 to 7.5 ms. This simulation setup is a scaled down version of a realistic set-

ting in the Internet. Real router buffers in the internet usually have a capacity which is much

larger than 4 packets. The scaled down setup is used to minimize the simulation time. We con-

ducted 100 simulations and during each simulation, a variable amount of background traffic

was introduced on each link using a random number of TCP and exponential on-off UDP flows.

The resulting link passage rates in these simulations varied from 85% to 95%. The probe losses

observed by each receiver were used to construct the aggregate feedbacks as in model-based

simulations and were given to EMLE for loss inference.

Figures 4.6(c) and (d) show the performance of EMLE for the 8-receiver binary tree, for NS

simulations. The figure displays the relative error in the estimation of passage probability of one

of the internal links in the tree. In NS simulations, when the passage probability is estimated

using the first element of loss distribution, the relative error is high. This is due to the presence

of temporal correlations in NS simulations. The losses on the end-to-end paths from source

to receivers are not perfectly Bernoulli. Due to this reason, using Eq.(4.3) to estimate passage

4.8 Experiments 67

probability yields errors. Figure 4.7 displays the autocorrelation(lag 1) in the loss trace of a

receiver present in the 8-receiver tree for model-based and NS simulations. In case of model-

based simulations, the loss trace is perfectly bernoulli and thus the autocorrelation stays around

0. In case of NS simulations, due to presence of temporal correlations, the autocorrelation varies

between 0.10 and 0.15.

4.8.1 Thinning with MINC loss estimator

By performing loss inference on aggregate feedbacks, EMLE helps in the reduction of feed-

back bandwidth. The alternate method to reduce feedback bandwidth is to simply report less

binary feedbacks. That is, receivers can report binary feedbacks corresponding to a thinned

(i.e., sampled) set of probe packets and these binary feedbacks can be given to the MINC loss

estimator for loss inference.

Feedbacks can be thinned to various levels to reduce feedback bandwidth. To thin feedbacks

by a factor of t, 0 ≤ t ≤ 1, we pick each binary feedback from the original set of feedbacks with

a uniform probability of t. In this manner, if the original feedbacks set is of size S, the expected

size of the thinned set is t times S.

We compare the passage rates estimated by EMLE using aggregate feedbacks, to the passage

rates estimated by MINC loss estimator using thinned binary feedbacks. For this, we thin binary

feedbacks in such a manner that the thinned set of feedbacks requires the same bandwidth as

the set of aggregate feedbacks. Subsequently, we use the MINC loss estimator for loss inference

and repeat experiments performed in the previous section.

In the previous section, we evaluated the accuracy of passage rates estimated using aggre-

gate feedbacks constructed with window size w and precision level 0 and w − 1. Aggregate

feedbacks of precision level 0 require 1 bit per w probes. Aggregate feedbacks of precision level

w−1 require dlog2(w+1)e bits per w probes. Corresponding to these two cases, we thin binary

feedbacks by factors of 1/w and dlog2(w + 1)e/w respectively. As before, we experiment with

window sizes 1 to 7.

We start with model-based simulations for a 2-receiver tree. As before, we perform two

sets of experiments where passage rates of links vary uniformly from 90-95% and 95-99%

respectively. Figure 4.8 shows the relative error in the estimation of passage rate of the shared

path when feedbacks are thinned by factors 1/w (left column) and dlog2(w + 1)e/w (right

column). The average and median of relative error are calculated over 100 simulations.

Figure 4.9 shows the standard error in the estimation of passage rate of the shared path

using thinned feedbacks. The standard error is calculated over 100 experiments using a fixed

link passage rate (90% first row, 95% on the second row). Figure 4.10 shows the relative error

in the estimation of passage rate of one of the internal links using thinned feedbacks for an

8-receiver binary tree in case of model-based and NS simulations.

68 Chapter 4: Low Feedback Loss Inference

 0

 0.005

 0.01

 0.015

 0.02

 1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
E

rr
or

Probes (1000s)

1 (MINC)
3
5
7

 0

 0.005

 0.01

 0.015

 0.02

 1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
E

rr
or

Probes (1000s)

1 (MINC)
3
5
7

 0
 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014
 0.016

 0 1 2 3 4 5 6 7 8

R
el

at
iv

e
E

rr
or

Window Sizes

median (10k probes)

(a) Passage rate 90-95%, using A(0|w)

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012
 0.014
 0.016

 0 1 2 3 4 5 6 7 8

R
el

at
iv

e
E

rr
or

Window Sizes

median (10k probes)

(b) Passage rate 90-95%, using
A(0|w), ...A(w − 1|w)

 0

 0.005

 0.01

 0.015

 0.02

 1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
E

rr
or

Probes (1000s)

1 (MINC)
3
5
7

 0

 0.005

 0.01

 0.015

 0.02

 1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
E

rr
or

Probes (1000s)

1 (MINC)
3
5
7

 0
 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014
 0.016

 0 1 2 3 4 5 6 7 8

R
el

at
iv

e
E

rr
or

Window Sizes

median (10k probes)

(c) Passage rate 95-99%, using A(0|w)

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012
 0.014
 0.016

 0 1 2 3 4 5 6 7 8

R
el

at
iv

e
E

rr
or

Window Sizes

median (10k probes)

(d) Passage rate 95-99%, using
A(0|w), ...A(w − 1|w)

Figure 4.4: EMLE: Relative error of the shared path

4.8 Experiments 69

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 1 2 3 4 5 6 7 8 9 10

S
ta

nd
ar

d
D

ev
ia

tio
n

Probes (1000s)

1 (MINC)
3
5
7

(a) Passage rate 90%: using A(0|w)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 1 2 3 4 5 6 7 8 9 10

S
ta

nd
ar

d
D

ev
ia

tio
n

Probes (1000s)

1 (MINC)
3
5
7

(b) Passage rate 90%: using
A(0|w), ...A(w − 1|w)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 1 2 3 4 5 6 7 8 9 10

S
ta

nd
ar

d
D

ev
ia

tio
n

Probes (1000s)

1 (MINC)
3
5
7

(c) Passage rate 95%: using A(0|w)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 1 2 3 4 5 6 7 8 9 10

S
ta

nd
ar

d
D

ev
ia

tio
n

Probes (1000s)

1 (MINC)
3
5
7

(d) Passage rate 95%: using
A(0|w), ...A(w − 1|w)

Figure 4.5: EMLE: Standard Error of estimate

70 Chapter 4: Low Feedback Loss Inference

 0

 0.005

 0.01

 0.015

 0.02

 1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
E

rr
or

Probes (1000s)

1 (MINC)
3
5
7

 0

 0.005

 0.01

 0.015

 0.02

 1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
E

rr
or

Probes (1000s)

1 (MINC)
3
5
7

 0
 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014

 0 1 2 3 4 5 6 7 8

R
el

at
iv

e
E

rr
or

Window Sizes

median (10k probes)

(a) Model: Using A(0|w)

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012
 0.014

 0 1 2 3 4 5 6 7 8

R
el

at
iv

e
E

rr
or

Window Sizes

median (10k probes)

(b) Model: Using A(0|w), ...A(w − 1|w)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
E

rr
or

Probes (1000s)

1 (MINC)
3
5
7

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
E

rr
or

Probes (1000s)

1 (MINC)
3
5
7

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06

 0 1 2 3 4 5 6 7 8

R
el

at
iv

e
E

rr
or

Window Sizes

median (10k probes)

(c) NS: Using A(0|w)

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06

 0 1 2 3 4 5 6 7 8

R
el

at
iv

e
E

rr
or

Window Sizes

median (10k probes)

(d) NS: Using A(0|w), ...A(w − 1|w)

Figure 4.6: EMLE: Relative Error of an internal link for 8-receiver binary tree. Results are based on
100 simulations. Passage rates of links varied from 90 − 99% and 85 − 95% for model-based and NS
simulations respectively

4.8 Experiments 71

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 10 20 30 40 50 60 70 80 90 100

A
ut

oc
or

re
la

tio
n

(L
ag

 1
)

Simulations

Model
NS
0.0

Figure 4.7: Autocorrelation (lag 1) in the loss trace of a receiver present in the 8-receiver tree, for
Model-based and NS simulations.

We observe that, as expected thinning by a factor of dlog2(w + 1)e/w which uses more

feedbacks yields less errors than thinning by a factor of 1/w.

We summarize the results of experiments with thinning and EMLE as follows. In model-

based simulations, for passage rates between 90% − 99% and window sizes 1 to 7, we have:

(i) Passage rates estimated by EMLE using aggregate feedbacks of precision level 0 show both

lower error and lower variance than passage rates estimated by MINC loss estimator using

feedbacks thinned by 1/w.

(ii) Passage rates estimated using aggregate feedbacks of precision level w − 1 and feedbacks

thinned by dlog2(w+1)e/w show approximately the same error. As window sizes and loss rates

of links increase, passage rates estimated using aggregate feedbacks of precision level w − 1

show higher variance.

In NS simulations, the thinned binary feedbacks yield better estimates of passage rates than

aggregate feedbacks. This is due two reasons: (i) loss rates are higher in NS simulations and

(ii) NS simulations exhibit temporal correlations.

We observe that, although aggregate feedbacks of precision level 0 yield better estimates

than binary feedbacks thinned by 1/w in model-based simulations, in the presence of temporal

correlations they yield high errors. On the other hand, when EMLE uses aggregate feedbacks

of precision level w − 1, as loss rates and window sizes increase, EMLE is unable to fully reap

the benefits of more feedback data. This is because loss distribution elements are estimated

recursively. As loss rates and window sizes increase, errors in lower loss distribution elements

effect the estimates of higher loss distribution elements. Thus, in spite of having more feedback

data, the passage rates are not estimated accurately.

72 Chapter 4: Low Feedback Loss Inference

 0

 0.005

 0.01

 0.015

 0.02

 1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
E

rr
or

Probes (1000s)

1 (MINC)
3
5
7

 0

 0.005

 0.01

 0.015

 0.02

 1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
E

rr
or

Probes (1000s)

1 (MINC)
3
5
7

 0
 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014
 0.016

 0 1 2 3 4 5 6 7 8

R
el

at
iv

e
E

rr
or

Window Sizes

median (10k probes)

(a) Passage rate 90-95%, Thinning by 1/w

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012
 0.014
 0.016

 0 1 2 3 4 5 6 7 8

R
el

at
iv

e
E

rr
or

Window Sizes

median (10k probes)

(b) Passage rate 90-95%, Thinning by
dlog2(w+1)e

w

 0

 0.005

 0.01

 0.015

 0.02

 1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
E

rr
or

Probes (1000s)

1 (MINC)
3
5
7

 0

 0.005

 0.01

 0.015

 0.02

 1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
E

rr
or

Probes (1000s)

1 (MINC)
3
5
7

 0
 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014
 0.016

 0 1 2 3 4 5 6 7 8

R
el

at
iv

e
E

rr
or

Window Sizes

median (10k probes)

(c) Passage rate 95-99%, Thinning by 1/w

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012
 0.014
 0.016

 0 1 2 3 4 5 6 7 8

R
el

at
iv

e
E

rr
or

Window Sizes

median (10k probes)

(d) Passage rate 95-99%, Thinning by
dlog2(w+1)e

w

Figure 4.8: Relative error of the shared path (MINC loss estimator with thinning)

4.8 Experiments 73

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 1 2 3 4 5 6 7 8 9 10

S
ta

nd
ar

d
D

ev
ia

tio
n

Probes (1000s)

1 (MINC)
3
5
7

(a) Passage rate 90%: Thinning by 1/w

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 1 2 3 4 5 6 7 8 9 10

S
ta

nd
ar

d
D

ev
ia

tio
n

Probes (1000s)

1 (MINC)
3
5
7

(b) Passage rate 90%: Thinning by dlog2(w+1)e
w

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 1 2 3 4 5 6 7 8 9 10

S
ta

nd
ar

d
D

ev
ia

tio
n

Probes (1000s)

1 (MINC)
3
5
7

(c) Passage rate 95%: Thinning by 1/w

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 1 2 3 4 5 6 7 8 9 10

S
ta

nd
ar

d
D

ev
ia

tio
n

Probes (1000s)

1 (MINC)
3
5
7

(d) Passage rate 95%: Thinning by dlog2(w+1)e
w

Figure 4.9: Standard Error of estimate (MINC loss estimator with thinning)

74 Chapter 4: Low Feedback Loss Inference

 0

 0.005

 0.01

 0.015

 0.02

 1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
E

rr
or

Probes (1000s)

1 (MINC)
3
5
7

 0

 0.005

 0.01

 0.015

 0.02

 1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
E

rr
or

Probes (1000s)

1 (MINC)
3
5
7

 0
 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014

 0 1 2 3 4 5 6 7 8

R
el

at
iv

e
E

rr
or

Window Sizes

median (10k probes)

(a) Model: Thinning by 1/w

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012
 0.014

 0 1 2 3 4 5 6 7 8

R
el

at
iv

e
E

rr
or

Window Sizes

median (10k probes)

(b) Model: Thinning by dlog2(w+1)e
w

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
E

rr
or

Probes (1000s)

1 (MINC)
3
5
7

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
E

rr
or

Probes (1000s)

1 (MINC)
3
5
7

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06

 0 1 2 3 4 5 6 7 8

R
el

at
iv

e
E

rr
or

Window Sizes

median (10k probes)

(c) NS: Thinning by 1/w

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06

 0 1 2 3 4 5 6 7 8

R
el

at
iv

e
E

rr
or

Window Sizes

median (10k probes)

(d) NS: Thinning by dlog2(w+1)e
w

Figure 4.10: MINC loss estimator with thinning: Relative Error of an internal link for 8-receiver binary
tree. Results are based on 100 simulations. Passage rates of links varied from 90 − 99% and 85 − 95% for
model-based and NS simulations respectively

4.9 Discussion 75

4.9 Discussion

4.9.1 Loss of Feedbacks

While developing EMLE, we did not explicitly model the loss of feedbacks. In other words,

we have assumed that the feedback loss process is MCAR (Missing Completely At Random). In

MCAR, the probability of a feedback being lost does not depend on the value of any feedback

which is either received or lost. In such a scenario, loss inference can be performed by using

feedbacks corresponding to the subset of probes where reports from all receivers are available.

If the feedback loss process is MAR (Missing at Random), the probability of feedbacks being

lost does not depend on the values of feedbacks which are lost. In this case, the above approach

of using a subset of feedbacks does not guarantee a consistent loss estimator. Authors of [37]

have suggested that in certain situations, if the feedback reports and the probes follow the

same path, correlations could arise between the feedback loss process and the feedback values,

resulting in the violation of MCAR assumption. To this end, they model the feedback loss

process as MAR and develop a MINC loss estimator using Expectation Maximization Algorithm.

We consider incorporating the MAR loss process in EMLE as future work.

4.9.2 Reporting Aggregate feedbacks using RTCP

When receivers of a multicast session use RTCP to report feedbacks, they collectively con-

strain the RTCP feedback bandwidth below a certain level of data bandwidth. This is done in a

distributed manner. Hence each receiver’s share of feedback bandwidth is different.

In EMLE, all receivers must use the same window size to report aggregate feedbacks. This

reduces the bandwidth needed to report feedbacks for all receivers. The resulting bandwidth

may still not be sufficient for some receivers since EMLE cannot support very large window

sizes. Therefore, in order to report aggregate feedbacks via RTCP, receivers will need to per-

form thinning in conjunction with reporting aggregate feedbacks. The coordinated thinning

mechanism proposed by authors of [9] can be extended to report aggregate feedbacks. When

receivers use window size w, each receiver can report its aggregate feedbacks once every 2T

probes by constructing its aggregate feedback using the previous w probes, i.e., 2T −w+1, ...2T ,

where 2T ≥ w. The thinning exponent T can be chosen independently by each receiver. In this

manner, aggregate feedbacks are thinned proportionally by each receiver. Also, the windows

of probes for which different receivers report aggregate feedbacks, will overlap. (Other combi-

nations of thinning and constructing aggregate feedbacks are also possible. Our goal here is to

point that aggregate feedbacks can also be thinned proportionally by different receivers).

76 Chapter 4: Low Feedback Loss Inference

4.9.3 Loss Inference using standard RTCP RR reports

Using EMLE or the MINC loss estimator with thinned feedbacks requires piggy-backing of

extra information in compound RTCP packets which are reported periodically by each receiver.

Each compound RTCP packet contains an RTCP RR (Receiver Report) packet. An RTCP RR

packet already contains aggregate loss information. Each RTCP RR packet reports two quanti-

ties - the highest packet sequence number received so far and the cumulative number of packets

lost until that sequence number. Therefore, information from two successive RTCP RR packets

gives us the number of probes lost within a window of probes. However, in contrast to aggre-

gate feedbacks used by EMLE, windows of probes for which different receivers report feedbacks

may not be aligned perfectly. Since RTCP RR loss reports are cumulative, loss of feedbacks only

results in the increase of window size of some reports. In [34], authors have shown that it

is possible to construct a moment-based estimator to perform loss inference using RTCP RR

reports.

4.10 conclusions

The task of performing large scale multicast measurements to infer link loss rates requires

the deployment of dedicated infrastructures and is complex. This task can be facilitated if

multicast measurements can be reported on RTCP packets. However RTCP imposes constraints

on the bandwidth which can be used to report measurements.

In this chapter, we developed the Extended MINC Loss Estimator (EMLE) which is able to

perform loss inference using aggregate feedbacks requiring less than 1 bit per probe. An ag-

gregate feedback constructed using window size 7 requires between 15% and 43% of probe

bandwidth. EMLE uses aggregate feedbacks to estimate the loss distribution of links and com-

putes their passage rates from their loss distribution. We evaluated the behavior of EMLE

through Model-based and NS simulations. In model-based simulations, we observed that for

link passage rates between 90− 99%, the error in estimation remains below 1% for 10K probes.

In NS simulations, we observed that due to the presence of temporal correlations, when EMLE

estimates passage rates using first element of loss distribution, it yields higher errors. When

EMLE estimates passage rates using all elements of loss distribution, the error in estimation

remains below 1% for 10K probes even in NS simulations.

During the analysis of EMLE we made observations which can be used to eliminate numer-

ical computations involved in MINC loss and delay estimators.

We compared EMLE to the case where MINC loss estimator is used with thinned feedbacks.

We observed that, at high passage rates EMLE yields errors which are lower than or same as

the errors yielded by MINC loss estimator with thinned feedbacks. As passage rates decrease,

4.10 conclusions 77

EMLE yields higher estimation errors. In presence of temporal correlations, when EMLE uses

aggregate feedbacks of lower precision levels, it yields higher errors in comparison to the case

where MINC loss estimator is used with thinned feedbacks.

Our conclusions are that thinning of feedbacks is a good approach to reducing feedback

bandwidth. In model-based simulations, although EMLE estimates more accurately at high pas-

sage rates, the results are not significantly better than the case where MINC loss estimator is

used with thinned feedbacks. EMLE has two weaknesses: (i) In presence of temporal corre-

lations, aggregate feedbacks of lower precision level which require less feedback bandwidth

yield higher estimation errors. (ii) Since loss distribution elements are estimated recursively in

EMLE, as link loss rates increase, errors in the estimation of lower loss distribution elements

affect the estimates of higher loss distribution elements, leading to less accurate estimates of

passage rates.

78 Chapter 4: Low Feedback Loss Inference

5

ENCODINGS OF MULTICAST TREES

5.1 Summary

In this work, we present efficient ways of encoding multicast trees. Multicast tree encodings

provide a convenient way of performing stateless and explicit multicast routing in networks and

overlays. Due to this reason, they help to meet goals of multicast traffic engineering.

We show the correspondence of multicast trees to theoretical tree data structures and give

simple lower bounds on the number of bits needed to represent multicast trees. The tree en-

codings presented in this work can be utilized to represent multicast trees using both node

identifiers and link indexes and are based on the well known balanced parentheses representa-

tion of tree data structures. These encodings are almost optimal in terms of space and they can

be read and processed efficiently. We evaluate the length and forwarding performance of these

encodings on multicast trees in generated and real topologies.

79

80 Chapter 5: Encodings of Multicast Trees

5.2 Multicast Traffic Engineering in Overlay Networks

Overlay networks are self-organizing virtual networks built ”on top” of physical networks

such as Internet. Examples of overlay networks include RON (Resilient Overlay Networks) [13],

OMNI (Overlay Multicast Network Infrastructure) [60, 14], Akamai, and several peer to peer

networks such as Chord [61], CAN [62], Pastry [63], and Tapestry [64]. Overlay networks

have two primary advantages. Firstly, overlay networks are easily deployable. Due to this

reason, services such as multicast which are facing deployment problems in IP networks can be

offered, possibly in a less efficient manner, in overlays. For example, in OMNI, Multicast Service

Nodes(MSNs) organize themselves into an overlay to form a multicast delivery backbone. End

hosts or clients avail themselves of multicast service by subscribing to MSNs. Secondly, overlay

networks can also provide certain services which are not available in IP networks. For example,

a pair of nodes in the Internet have access to a single default IP path. In RONs, nodes form an

overlay to route packets among themselves. RON nodes monitor the quality of Internet paths

among themselves and use this information to decide whether to route packets directly over the

Internet or by way of other RON nodes. In this manner, RONs are able to make use of alternate

paths which are not provided by IP level routing.

The goal of traffic engineering is to ”enhance the performance of a network, at both the

traffic and resource levels” [12]. At the traffic level, the objective is to enhance the Qos of

traffic streams which pass through the network. This includes aspects such as minimization

of packet loss, minimization of delay, maximization of throughput, and routing based on cer-

tain constraints. At the resource level, the objective is to optimally utilize network resources.

Here, the main objective is to avoid situations where some network resources become over uti-

lized and congested while other feasible resources remain under utilized. Traffic engineering is

mainly accomplished by controlling and optimizing the routing function in the network so that

traffic can be steered through the network in the most effective manner.

The traffic engineering process broadly consists of two steps which are performed iteratively

: (i) Measurement of the operational state of the Network and (ii) Use of measured state to

adaptively steer the traffic on the best paths available in the network. The key capability needed

to achieve the second goal is the support of routing traffic along specific or explicit paths.

In the context of multicast traffic engineering, the capability to support the routing of traffic

along specific or explicit multicast trees is needed. Routing all traffic along a fixed shortest

path or fixed tree congests that particular path or tree. This adversely affects the performance

parameters associated with the traffic when other feasible paths or trees in the network may

remain under utilized.

In overlay networks, the task of traffic engineering can be performed at the application level.

In commercially owned and operated overlay infrastructures, the algorithms used by overlay

5.3 Pitfalls of Per-flow Multicast State 81

nodes to perform traffic engineering can also be controlled by the overlay service providers.

For example, in OMNI, based on existing traffic conditions in the overlay, the MSNs can route

multicast traffic on alternate trees to balance load in the overlay. The MSNs can also construct

trees which satisfy certain constraints such as trees with minimum average latency for real-

time traffic [65]. In peer to peer overlays, the task of traffic engineering can be performed

cooperatively by the overlay nodes which are also the end-hosts in the Internet. For instance in

RONs, nodes have the potential to perform tasks such as routing based on certain constraints.

In peer to peer networks, nodes can utilize the available bandwidth to perform tasks such as

routing different layers of multicast video traffic on different trees.

In certain unicast traffic engineering approaches (e.g. Bananas [66]), nodes within a cluster,

in addition to computing the default shortest paths among themselves, also compute additional

shortest paths. These alternate paths can be explicitly chosen using fixed size packet headers.

Thus traffic can be routed on additional paths to achieve goals of traffic engineering. Such

an approach does not extend well to multicast. This is because the number of destinations

corresponding to different multicast flows is not fixed and is typically much larger than one.

Extending the above approach to multicast requires nodes to compute and store a large number

of trees corresponding to all possible subsets of destination nodes.

In contrast to unicast routing, multicast routing also needs a per flow multicast state to be

maintained at the routers (as discussed in the next section). Construction and maintenance of

additional trees for purposes of multicast traffic engineering introduces more state overhead

inside the network.

The simplest way to route traffic along explicit paths in a stateless manner is to perform

source routing. By embedding multicast trees within data packets, multicast traffic can be

routed on specific trees to achieve goals of traffic engineering. To apply this approach to route

multicast traffic on trees of reasonably large size, efficient encodings of multicast trees are

needed.

5.3 Pitfalls of Per-flow Multicast State

Current IP multicast routing protocols such as DVMRP [67] and PIM [68, 69] install a per

group state in the routers. To support these protocols, a router needs to maintain a multicast

forwarding table entry corresponding to every multicast group whose distribution tree passes

through the router. Since the entries corresponding to different multicast groups cannot be ag-

gregated, the forwarding table size grows with the number of active multicast groups, violating

the stateless principle followed by routers. As the number of multicast groups increase, the cost

and performance of routers are adversely affected. The state maintenance problem is further

aggravated by the fact that even small multicast groups can introduce significant amount of

82 Chapter 5: Encodings of Multicast Trees

state into the network. The amount of state introduced by a multicast group in the network

depends on the size of its tree. The size of the multicast tree in turn is a function of both the

relative locations of the source and various receivers, and the number of receivers itself. A

small multicast group consisting of receivers which are spread uniformly in the Internet may

introduce more state than a large multicast group concentrated in one region of the Internet.

Thus, even a large number of small multicast groups may cause a state explosion. In order

to reduce the state overhead at routers, one of the approaches followed is to move the state

from the network to the packet [70], i.e., to use a representation of the multicast tree within

every data packet. Each router can then function in a stateless manner and perform multicast

forwarding by reading and processing packet headers. To use this approach even in small to

medium sized multicast groups, a compact encoding of multicast tree is required.

Due to deployment problems in Inter-domain Multicast, several Application Level Multicast

protocols have been proposed [71, 72]. However, the problem of per group state maintenance

remains even in application level multicast. Scribe [71] and Bayeux [72] are application level

multicast protocols for Pastry [63] and Tapestry [64] overlays respectively. Pastry and tapestry

are large scale DHT overlays which allow the interconnection and routing between millions of

nodes in a scalable manner. To implement multicast in these overlays, both Scribe and Bayeux

introduce a per group multicast state within the overlay nodes which are part of the multicast

distribution tree. Due to constraints of per group state maintenance, these overlays cannot

support a large number of multicast groups (small or big). State maintenance can be a serious

issue in overlay nodes since they are constrained by memory and processing power (normally

PCs/servers).

5.4 Other Motivations of encodings trees

In Distributed Interactive Applications such as large scale virtual environments (multiplayer

games) and distributed interactive simulations, participants act as senders and receivers in sev-

eral multicast groups. Minimizing the control overhead due to group dynamics is a major design

consideration here [73, 74]. In these applications, nodes are clustered according to commu-

nication needs and multicast distribution trees are constructed within the clusters. As nodes

join and leave, nodes send control messages to each other to repair the multicast distribution

trees. On average, the number of messages is linear to the number of nodes in the tree. Since

there are a large number of multicast groups with frequent joins and leaves, significant control

messages flow in the network. If the multicast trees are encoded within data packets, control

overhead is reduced and on-the-fly tree repair is made possible at forwarding nodes [75].

In secure group communication, group keys must be updated when nodes join or leave [76].

When nodes leave, the updated keys cannot be communicated via the old multicast tree since

5.5 Requirements of Multicast Tree Encodings 83

1

3
2

4

10.1.2.3

10.1.2.5

10.1.2.8

10.1.2.42

1

3

4

Interfacelink index

Figure 5.1: Link Index concept: A router/overlay node with its link indexes

the leaving nodes would receive the new key. Multicast tree encoding can be used to commu-

nicate the new key via an explicit multicast tree containing only those nodes which need to

receive the new key [77].

The above motivations notwithstanding, very little is known about optimal ways of encod-

ing multicast trees. Indeed, there are two proposals which encode multicast trees non optimally

[75, 78]. In this work, we show efficient ways of encoding multicast trees within data packets

in order to perform stateless and explicit multicast routing. We consider multicast trees which

could occur at network or overlay level and show the correspondence of these trees to theoret-

ical tree data structures. Using this correspondence, we give lower bounds on the number of

bits needed to encode multicast trees and then present efficient ways of encoding them.

5.5 Requirements of Multicast Tree Encodings

Multicast tree encoding must satisfy two requirements. Firstly, the encoding must be of

minimal length since it is passed in every multicast data packet and processed by each forward-

ing node (router or overlay node). Secondly, the forwarding operation must consume minimal

time. Each forwarding node processes the encoding to determine the list of downstream nodes

to whom the multicast packet must be forwarded. To minimize both the end-to-end packet

delay and the per packet processing load on a forwarding node, the encoding must support the

execution of this task efficiently.

The networks in which we consider multicast trees can be divided into two categories: (i)
Networks which can potentially support forwarding based on link Indexes. The link index of a

node with value i refers to its ith link. For example, the link index of a router refers to one

of its interfaces. A router can potentially order its link interfaces and refer to each interface

by its index in this ordering (figure 5.1). The link index of an overlay node refers to one

of its neighbors. Using a link index, a node can be instructed to forward a packet to one

of its neighbors. This operation can potentially be supported in IP networks, static overlays

such as OMNI, RON, Akamai, and partially upgraded IP networks such as Bananas, where

neighbors of a node do not change frequently. (ii) In dynamic peer to peer networks (e.g.

DHTs, unstructured p2ps) both the degree and the neighbors of nodes change frequently as

84 Chapter 5: Encodings of Multicast Trees

nodes join and leave and hence forwarding based on link indexes cannot be supported. In

these networks, node identifiers (e.g. IP addresses) of nodes need to be used to encode the

multicast tree.

We show encoding of multicast trees using both Link indexes and Node identifiers. The tree

encodings we propose are independent of underlying tree construction protocols and are based

on balanced parentheses representation of ordinal trees. The rest of the chapter is organized as

follows. Section 5.6 places related work in context, section 5.7 shows correspondence of mul-

ticast trees to tree data structures and section 5.8 presents various tree encodings. Section 5.9

evaluates the length these encodings on real and generated multicast trees and section 5.10

concludes.

5.6 Related work

The encoding of a multicast tree depends on whether it represents the default multicast tree

supplied by unicast routing framework of the underlying network or whether it represents a

specific or explicit tree. To represent a specific tree, the multicast tree must be encoded using

either the node identifiers or link indexes of the entire tree. To choose the default tree, identities

of receivers are sufficient. Default trees can be chosen in any network which supports unicast

routing and their main application is reduction of multicast state. On the other hand, explicitly

representing trees provides the option of routing multicast traffic as desired, which may be

useful to create a multicast routing framework at application level, perform traffic engineering,

or multicast state reduction.

In xcast [79], a multicast tree is encoded by listing the IP addresses of receivers in the mul-

ticast tree. In IP networks, a packet can be routed to a destination node given its IP address.

Due to this reason, explicitly listing the IP addresses of receivers of a multicast group suffices

to represent the default multicast tree that exists between the source and the receivers. For-

warding routers perform a routing table lookup for each IP address in the packet and group

them based on the common outgoing interface. The multicast packet is then forwarded on the

interfaces, each packet containing the corresponding subset of IP addresses. Alternatively, if the

last hop routers are allowed to store multicast state, the tree can be represented by listing the IP

addresses of last hop routers instead of receivers(xcast+). Xcast has two limitations. Since each

IP address consumes 32 bits, xcast encoding is suitable for multicast groups containing a small

number of last hop routers (6-10 last hop routers need 24-40 Bytes in IPv4). Secondly, each

forwarding router needs to perform k IP lookups, where k is the number of last hop routers in

its subtree. Large encodings require more IP lookups which are expensive.

The xcast model is also suited to peer to peer DHTs such as Pastry and Tapestry, where

packets are routed in the overlay using node identifiers. In Pastry, a node is represented using a

5.6 Related work 85

128 bit identifier. By representing multicast trees using receiver identifiers, the state overhead

imposed by small multicast groups can be avoided in Scribe and Bayeux. The xcast model

is advantageous in DHTs since they guarantee routing in the presence of joins and leaves by

intermediate peers.

In Linkcast [78], a multicast tree is encoded using the link indexes of links in the multicast

tree. Each forwarding node reads its corresponding link indexes and forwards the multicast

packet. The multicast tree which is encoded is a reverse path multicast tree constructed using

join messages sent from last hop routers towards the source. Each router receiving the join

message is expected to forward its identity along with the link index of the interface which

received the join message. Thus the source can encode the multicast tree using link indexes.

For forwarding, a pointer in the encoding points to the location of the current router in the

encoding. Each router uses the pointer to read its outgoing link indexes and updates the pointer

for the next hop routers. Although the number of links in the multicast tree is larger than the

number of receivers, link indexes can be represented using fewer bits as compared to 32 bits

for the IP address of a node. Also, expensive routing table lookups are avoided in Linkcast.

We propose a new encoding for Linkcast which requires less space and two new encodings of

multicast trees using link indexes.

In [75], authors propose two tree encodings to represent application level multicast trees

occurring within clusters of Distributed Interactive Applications. The multicast trees are en-

coded using IP addresses of participating nodes. Authors propose two encodings - Per level

header encoding and Preorder header encodings. In addition to IP addresses of nodes, these

encodings spend significant number of additional bits. In a multicast tree of maximum degree d

and n nodes, the per-level header encoding spends log d bits per node and preorder header en-

coding spends approximately log n bits per node. We show an encoding using only 2 additional

bits per node.

Related work on application level multicast protocols is vast. These protocols include

Narada [80], Yoid [81], HMTP [82], HostCast [83], Bayeux [72], Scribe [71], and Nice [84].

All these protocols, like IP multicast protocols, provide default trees to route multicast traffic

among participating peers. OMNI [14, 60] and Scattercast [85] are proposals which advocate

the construction of overlay multicast network infrastructures using MSNs and SCXs (scatter-cast

proxies) respectively. In [65, 60], authors propose algorithms for the construction of multicast

trees which satisfy certain constraints, among the MSNs. In [77], authors propose an algorithm

to construct alternate backup multicast trees among overlay nodes to route multicast traffic in

case of link failures. In contrast to all of the above work, the work in this chapter focusses

on the construction of tree encodings to route multicast traffic on any given explicit tree in a

stateless manner.

Related work on the reduction of multicast state includes REUNITE [86] and Hop-by-

86 Chapter 5: Encodings of Multicast Trees

R

a

c

d e f

R

1
2

3 4

5

R

R

b

link index

3 4

3 4 5

(iii)

((()) (() ()))

b

a

c

(v)

(iv)(ii)(i)

R = receiver
S = source

S

Lan

Figure 5.2: (i) Multicast Tree in a Network (ii) Ordinal tree (iii) Cardinal Tree (iv) Arbitrarily labeled
tree (v) Balanced parentheses representation of ordinal tree

Hop [87] multicast routing protocols. These protocols reduce multicast state in the network

by restricting the state to the branch points of the multicast tree. These protocols then route

the multicast traffic via the default unicast paths that exist between branch points of the tree in

the underlying network. In our work, since the multicast tree is encoded within data packets,

multicast state is eliminated from the network.

The discussion of traffic engineering with MPLS (Multiprotocol Label Switching) [88] is

beyond the scope of this thesis.

5.7 Multicast Trees and Tree data structures

Figure 5.2(i) shows a multicast tree occurring in an arbitrary network or overlay. The

portion of the multicast tree which needs to be encoded is shown highlighted. The last hop

routers, which serve one or more receivers are shown grayed. The link indexes corresponding

to one of the nodes are shown. Figure 5.2(ii), (iii) and (iv) show the Ordinal tree, Cardinal tree
and Arbitrarily labeled tree data structures corresponding to the multicast tree.

An Ordinal tree is a rooted (a unique node is distinguished as the root), unlabeled tree

in which each node has an arbitrary degree. A binary tree is an ordinal tree in which the

maximum degree of a node is two. The number of ordinal trees on n nodes can be bounded

by On =
(
2n+1

n

)
/(2n + 1). Thus, lg(On) ≈ 2n is an information theoretic lower bound on the

number of bits needed to represent ordinal trees (lg is log2). Every ordinal tree of n nodes can

be represented using 2n balanced parentheses. Figure 5.2(v) shows the balanced parentheses

representation of the ordinal tree in figure 5.2(ii). This representation is obtained by a preorder

(depth first) traversal of the tree, outputting a “(“ while visiting a node for the first time and

a matching “)” while visiting the node after visiting its subtree (The correspondence of some

parentheses to nodes is shown). By representing a ”(” by 1 and a ”)” by 0, balanced parentheses

5.8 Multicast Tree Representations using Link Indexes 87

can be represented using 2n bits.

Figure 5.2(iii) shows the cardinal tree which results when a multicast tree is represented

using link indexes. A Cardinal tree of degree d is an unlabeled tree in which each node has

d positions for an edge to a child (if a child is at the ith position, the corresponding link

gets the label i). There are Cd
n =

(
dn+1

n

)
/(dn + 1) cardinal trees of degree d on n nodes.

lg(Cd
n) ≈ (lg d + lg e)n is an information theoretic lower bound on the number of bits needed

to encode these trees. A multicast tree in which the maximum link index is d is a cardinal tree

of degree d. Figure 5.2(iii) is a cardinal tree of degree 5. Thus, (lg d + lg e)n is a lower bound

on the number of bits needed to represent a multicast tree using link indexes.

Figure 5.2(iv) shows the Arbitrarily labeled tree which results when a multicast tree is

represented using node identifiers. Node Identifiers a,b, etc are essentially IP addresses. A

labeled tree of n nodes is an ordinal tree in which each node is labeled from 1 to n. An arbitrarily
labeled tree is an ordinal tree in which each node has a unique arbitrary label. If each node is

represented using a k bit label, then there are Ak
n =

(
2k

n

)
n! On such trees on n nodes. Thus,

lg(Ak
n) ≈ kn + 2n is a lower bound on the number of bits needed to represent a multicast tree

using node identifiers.

5.8 Multicast Tree Representations using Link Indexes

For ease of explanation, we use the following notation. All nodes in the multicast tree have

one incoming link (except the root) and zero or more outgoing links. A terminal or leaf node

has zero outgoing links, a relay node has one outgoing link and a branch node has more than

one outgoing links. In figure 5.3(i), a, e, h, and d are branch nodes, j, k, m, c, f, and g are leaf

nodes and b, i, and l are relay nodes. The links of a multicast tree can be divided into branch

and relay links. All outgoing links of a branch node are branch links and all outgoing links of a

relay node are relay links. For example, ac is a branch link and lm is a relay link. Let l denote

the number of links and n denote the number of nodes, n = l + 1. Let b̄ denote the number

of branch links and r̄ the number of relay links, l = b̄ + r̄. Let b denote the number of branch

nodes, r the number of relay nodes, and t the number of leaf nodes, n = b + r + t. For tree in

figure 5.3(i), the preorder node traversal gives a, b, e, h, j, k, i, l, m, c, d, f, g and the preorder

link traversal gives ab, be, eh, hj, hk, ei, il, lm, ac, ad, df, dg.

5.8.1 Improvements to Linkcast Encoding

Linkcast consists of two encodings - SBM and DBM. These encodings consist of a series of

elements. In SBM, each element is either a link index or a pointer. A pointer is used to point

to the representation of the child node in the encoding. In DBM, each element is either a link

88 Chapter 5: Encodings of Multicast Trees

3 4

f

c

i

lj

d

51

4

3 4

4 1

5

2

m

b

e

k

h

g

a

2

3

3

1 111 0 1 0 0 1 0 0 0

(ii)

(i)

1 3 5 2 1 5

b e h i l

2 4 3 4

a d

Pointer
Null

1 111 1 1 1 1 1 1 10 0 0 00 1

Pointer

1st bit

2nd bit

1 = link index
0 = Pointer

0 = incoming link of leaf node
1 = otherwise

Figure 5.3: (i) Multicast Tree (ii) Link+ encoding

index, pointer or a node demarker. SBM requires b̄ pointers. DBM reduces this to b̄−b pointers,

but at the expense of introducing l + 1 node demarkers. Each node demarker requires at least

two bits to be differentiated from both link indexes and pointers, consuming 2(l + 1) bits of

space. Utilizing the concept of pointers, we now present a simplified encoding which is shorter

than both SBM and DBM and refer to this encoding as Link+. Instead of using node demarkers,

our approach is to distinguish between links that terminate at routers which perform forwarding

and routers which do not, using one bit per link. One bit is used to distinguish between pointers

and link indexes.

To construct Link+ encoding, nodes are visited in preorder. When a node is visited, a string

of pointers and outgoing link indexes is outputted. If a node has d outgoing links, then d − 1

pointers followed by d link indexes are outputted. The d − 1 pointers point to the output

strings of 2nd to dth child nodes. The output string of 1st child node occurs immediately after

the output string of current node. Figure 5.3(ii) shows the Link+ encoding for the tree in

figure 5.3(i). For example, root node a has three outgoing links, thus 2 pointers followed by

three link indexes are outputted. The output string of the first child node b occurs after the

output string of a. The 1st pointer points to the output string of 2nd child node c (null). The

2nd pointer points to the output string of 3rd child node d. The first bit in each element is used

to distinguish a pointer (0) from a link index (1). The second bit in each link index is used to

5.8 Multicast Tree Representations using Link Indexes 89

Forward(Enc, ptr)

if ptr == 0 exit;

if (Enc[ptr].firstbit() == 0) // pointer => branch node

i = ptr;

child = 0;

while (Enc[i++] is pointer) child++; // count pointers

for (j=1; j <= child; j++) // read outgoing links

OLink[j] = Enc[i + j - 1];

OPtr[j] = Enc[ptr + j - 1]; // pointer passed to child

child++;

OLink[child] = Enc[i+child-1]; // last child

OPtr[child] = i + child;

else // relay or terminal

if (Enc[ptr] is terminal)

child = 0;

else

child = 1;

OLink[child] = Enc[i];

OPtr[child] = i+1;

Figure 5.4: Forwarding Algorithm for Link+

distinguish links which terminate on leaf nodes (0) from those which do not (1).

Routing In Link+, each node receives the pointer to its position in the encoding (as linkcast).

The root node receives a pointer to the first element in the encoding. Each forwarding node

determines the (i) outgoing links to forward the packet (ii) positions of child nodes in the en-

coding in turn to be forwarded to the children. If the position of the current node starts with

a pointer, then it is a branch node, else it is a relay node. If a branch node finds d pointers, it

reads the subsequent d + 1 elements to determine its outgoing links. A relay node receives the

position of its outgoing link and its child is the next element. If the second bit of an outgoing

link is 0, a null pointer is forwarded and thus a leaf node receives a null pointer. The forwarding

operation at a node takes time proportional to its out degree. The detailed algorithm is shown

in figure 5.4.

In total, the encoding length of Link+ is (Sl + 2)l + (Sp + 1)(b̄ − b) bits. Sl is the number of

bits needed to represent the maximum link index in the tree. Sp is the number of bits needed

to represent a pointer, Sp = dlg(l + b̄ − b)e.

90 Chapter 5: Encodings of Multicast Trees

f

c

i

lj

() () 3 4

f g

(i)

d

51

4

3 4

4 1

5

2

m

b

e

k

h

g

a

2

3

3

(ii)

1 2 3 2 4 4 1 5 3 5 3 4(((() ()) ((())))) () (() ())

b c d

((() ()) ((()))) 2 3 2 4 4 1 5

e
NULL

At node a :

At node b :

At node c :

At node d :

Figure 5.5: (i) Multicast Tree (ii) Link* encoding

5.8.2 Encoding based on Balanced Parentheses

We now present a link index encoding based on balanced parentheses representation. We

refer to this encoding as Link*. Link* encoding consists of two parts (i) balanced parentheses

representation of the tree (ii) preorder list of link indexes. The first encoding in figure 5.5(ii)

shows the encoding for the tree in figure 5.5(i). The balanced parentheses representation is

similar to the balanced parentheses representation of ordinal trees, except that each parenthesis

now corresponds to the incoming link of a node, instead of the node itself. The encoding is

constructed by a preorder traversal of the tree. When a link is visited for the first time, its link

index and a ”(” are outputted. When a link is visited after visiting all links in its subtree, a ”)”

is outputted. This results in 2l parentheses and l link indexes. In total, Link* requires (Sl + 2)l

bits. Sl as before denotes the number of bits needed to represent the maximum link index.

Routing In Link*, instead of passing a pointer to the position of a node in the encoding,

the encoding itself is changed after each forwarding operation. Each node receives only the

encoding of its subtree. Figure 5.5(ii) shows the encoding received by the root node a and

the encodings it passes to child nodes b, c, and d. A forwarding node reads the balanced

5.8 Multicast Tree Representations using Link Indexes 91

parentheses once to determine the outgoing links and the encodings of subtrees to be passed to

the child nodes. The ith open parenthesis ”(” corresponds to the link index at the ith position

in the list of link indexes within the encoding. For example, in figure 5.5(ii), root node a

reads its balanced parenthesis and determines that it has 3 children. The 1st ”(” corresponds

to child node b, the 9th ”(” corresponds to c and the 10th ”(” corresponds to d. Thus a’s

output links are at positions 1, 9, and 10 in the list of link indexes, i.e., link indexes 1, 3,

and 5 respectively. The detailed forwarding algorithm is shown in figure 5.6. The forwarding

operation of a node takes time proportional to reading the balanced parenthesis representation

of its subtree. (This encoding is similar to encoding of Munro, et al [89]. However, they

consider efficient bit representations of balanced parentheses for very large trees, finding the

parent of a node, size of subtrees, etc which are not needed for multicast trees. We use only the

bare minimal representation of cardinal trees).

5.8.3 Improvements to balanced parentheses representation

Several studies [90, 91, 92] have investigated the type of multicast trees which occur in

the Internet. Trees occurring in the Internet are constrained by the underlying structure of the

Internet. These trees have a large number of relay nodes compared to branch nodes. In Link*,

other than the mandatory space of lSl bits spent to represent the link indexes, 2 bits are spent

for each link (for balanced parentheses). We now present a new encoding Link** which reduces

the number of bits on those links which terminate on relay nodes and increases the number of

bits on those links which terminate on branch nodes. In Link**, 3 bits are spent per incoming

link of a branch node or leaf node, and only 1 bit is spent per incoming link of a relay node. In

total, Link** requires (Sl + 2)l + b + t − r bits. If r > b + t, the encoding spends less than 2

bits per link. In section 5, we shall see that for several trees in the Internet, the number of relay

nodes is larger than the sum of branch and leaf nodes.

Link** encoding consists of three parts (i) relay bit (ii) balanced parentheses (iii) preorder

list of link indexes. The encoding is similar to Link*. But it is obtained by encoding a virtual

tree in which a path of consecutive relay nodes is treated as a single virtual link whose label is

the concatenated list of its individual link indexes. Thus, the balanced parentheses represent

only branch and leaf nodes. The first encoding in figure 5.7(ii) shows the encoding for tree in

figure 5.7(i). For example, the path em is treated as a virtual link with label ”415”, and the

path ae is treated as a virtual link with label ”12”. To determine the start and end of a virtual

link, the first bit in each link index is used to distinguish links which terminate on intermediate

relay nodes (1) from those which terminate on branch or leaf nodes (0). The relay bit is used

for routing.

Routing The forwarding operation is similar to Link*. Figure 5.7(ii) shows the encoding

received by root node a and the encodings it passes to child nodes b, c, and d. The ith open

92 Chapter 5: Encodings of Multicast Trees

Forward (BPStr, LIStr, n)

if BPStr == NULL exit;

bal = 0;

for i=1 to 2n do // scan the balanced parenthesis

if (BPStr[i] == "(")

open++;

if bal == 0

child++;

OLink[child] = LIStr.link(open);

else

LI[child].append(LIStr.link(open)); //encoding passed to children

BP[child].append("(");

bal++;

else

bal--;

if bal != 0

BP[child].append(")");

Figure 5.6: Forwarding Algorithm for Link*

parenthesis ”(” corresponds to the ith virtual link in the encoding. For example, in the encoding

received by a, the 1st ”(” corresponds to the 1st virtual link ae and the 5th ”(” corresponds to the

5th virtual link em. During forwarding, a node reads the relay bit to check whether it is a relay

node or not. The relay bit is 1 when the encoding is received by a relay node and 0 otherwise.

The relay bit received by a node is simply the first bit taken from the link index of its incoming

link. For example, when a performs forwarding, it sets the relay bit of child node b equal to

first bit of link index of link ab. In Link**, only branch nodes read the balanced parentheses

and change it. The relay nodes read only the first link index to perform forwarding. The time

complexity of forwarding is constant at relay nodes. The time complexity of forwarding at a

branch node is proportional to reading the balanced parenthesis of its virtual subtree. The

detailed forwarding algorithm is shown in figure 5.8.

5.8.4 Representing trees using Node Identifiers

Both encodings Link* and Link** can be used as is by replacing link indexes of links by node

identifiers of nodes which terminate on those links. Figure 5.9(i) shows the encoding Link* us-

ing node identifiers for tree figure 5.7(i), as received by root node a. The forwarding algorithm

remains the same, except that each forwarding node routes the packet to the corresponding

5.8 Multicast Tree Representations using Link Indexes 93

f

c

i

lj

1st bit

() () 3 4

f g 0 0

2 3 2 4 4 1 5

0 0 0 0 1 1 0

(i)

d

51

4

3 4

4 1

5

2

m

b

e

k

h

g

a

2

3

3

(ii)

e

At node a : 0

At node b : 1

At node c : 0

At node d : 0

relay bit

1 = incoming link of

0 = otherwise
relay node

(() ()) ()

NULL

1st bit

1 2 3 2 4 4 1 5 3 5 3 4

1 0 0 0 0 1 1 0 0 0 0 0

((() ()) ()) () (() ())

c d
m

m

Figure 5.7: (i) Multicast Tree (ii) Link** encoding

next hop nodes instead of sending it on specific outgoing links. Representing trees with node

identifiers using Link* or Link** encodings is suited to application level multicast.

5.8.5 Representing trees using both Node Identifiers and Link Indexes

In networks which support unicast routing based on node identifiers, when the default

multicast tree is represented using link indexes, it may be advantageous to replace certain long

paths of consecutive relay links in the tree with the IP address of the last branch or leaf node

in the path. For this reason, we need a representation of tree using both node identifiers and

link indexes. For example, if each link index is represented using 6 bits, a path of 10 relay links

consumes 60 bits. In Link*, since 2 bits are spent per link, 80 bits are spent in total for this

path. Since the default tree is being represented, the path of relay links can be replaced by the

32 bit IP address of the next branch or leaf node.

Both Link* and Link** can be modified to represent certain paths using IP addresses of the

terminating node in the path. In Link*, one extra bit is needed per element to distinguish be-

94 Chapter 5: Encodings of Multicast Trees

Forward (BPStr, LIStr, n, relay)

if BPStr == NULL exit;

if (relay == 1)

child = 1;

OLink[child] = LIStr.link(1);

Relay[child] = OLink[child].first_bit();

BP[child] = BPStr;

LI[child] = LIStr.without_firstlink();

return;

bal = 0;

for i=1 to 2n do /* scan the balanced parenthesis*/

if (BPStr[i] == "(")

open++;

if bal == 0

child++;

OLink[child] = LIStr.Vlink(open).link(1);

LI[child].append(LIStr.Vlink(open).without_firstlink());

Relay[child] = OLink[child].firstbit();

else

LI[child].append(LIStr.Vlink(open));

BP[child].append("(");

bal++;

else

bal--;

if bal != 0

BP[child].append(")");

Figure 5.8: Forwarding Algorithm for Link**

5.9 Simulations 95

1 2 3 2 4 m 3 5 3 4
1st bit0 0 0 0 0 1 0 0 0 0

1 = node

0 = link

(iii)

1 2 3 2 4 m 3 5 3 4

1 0 0 0 0 0 0 0 0 0

((() ()) ()) () (() ())

c de

At node a : 0

relay bit

1st bit

1 = incoming link of

0 = otherwise
relay node

(i)

At node a : b e h j k i l m c d f g

b d

(((() ()) ((())))) () (() ())

(ii)

b

At node a :

2nd bit

1 = node

0 = link

d

(((() ()) ())) () (() ())

0 0 0 0 1 0 0 0 0

c

c

m

Figure 5.9: (i) Link* encoding using nodes (ii) LN* encoding (iii) LN** encoding

tween a node identifier and link Index. In Link**, one extra bit is needed per branch or leaf

node to do the same. We call the corresponding new encodings as LN* and LN** respectively.

Figure 5.9(ii) and (iii) show the encodings of the tree figure 5.7(i) using LN* and LN** encod-

ing. The path ae is encoded the usual way using link indexes and the path em is replaced by

the node identifier m. In LN* and LN**, it is assumed that intermediate nodes can perform

forwarding using both node identifiers and link indexes. If intermediate nodes are IP routers,

they need to perform tunneling to route the IP packet to the next branch or leaf node.

5.9 Simulations

In this section, we evaluate the link based encodings when they are used to represent short-

est path multicast trees. We conducted tests using various generated and real topologies of the

Internet. Here, we present the results for three representative topologies (Table 5.1). ts1000

is the transit-stub topology generated by GT-ITM [93], scan topology is a partial map of the

Internet collected by SCAN project [94], and att is the router level ISP topology of AT&T col-

lected by Rocketfuel [95]. For each of these topologies, we chose random routers as source and

last hop routers and constructed shortest path multicast trees from source to last hop routers.

To compute shortest paths, for scan and att, hop count metric was used and for ts1000, the

generated weights were used. Figure 5.10 (a),(c), and (e) show the properties of multicast

trees for the three topologies (each point is the average of 1000 simulations).

As observed, in all topologies the number of relay nodes is significantly larger than the

96 Chapter 5: Encodings of Multicast Trees

topology Routers type

ts1000 1040 Generated(GT-ITM)

scan 284,805 Real (Internet)

att 731 Real (AT&T ISP)

Table 5.1: Topologies used for simulation

number of branch nodes. However, the total number of branch links is significant and grows

linearly with the number of last hop routers. Figure 5.10(b), (d), and (f) show the encoding

lengths of Link+, Link*, Link**, and xcast+. The xcast+ encoding length is essentially 32

times the number of last hop routers. For Link encodings, the link index was represented using

5 bits (routers in the Internet rarely have degree larger than 32). The pointer in Link+ was

represented using 8 bits. As seen, the Link+ encoding takes more space than both Link* and

Link** to represent pointers corresponding to the branch links (linkcast encodings take at least

l + 2 more bits than Link+, for l links). For inter-domain topologies ts1000 and scan, Link**

encoding takes less space than Link* due to the presence of a large number of relay routers.

For intra-domain att topology, as the number of last hop routers increase (> 25), Link* takes

less space than Link** since the proportion of relay routers reduces compared to branch and

last hop routers.

The forwarding performance of link based encodings is better than xcast+ since expen-

sive routing table lookups are avoided. The forwarding performance of encodings depends on

two factors: (a) Length of encodings read and processed by each node (b) Time taken by the

forwarding algorithm to determine the outgoing links to forward the multicast packets. The

performance of Link+ forwarding algorithm is better than Link* and Link** since the positions

of outgoing links during forwarding operation are obtained directly by reading the pointers. In

Link* and Link** the positions of outgoing links are obtained by reading the balanced paren-

theses. Thus the forwarding algorithm of Link* and Link** takes some extra time compared

to Link+. At each forwarding node, this extra time is proportional to the time to read the bal-

anced parentheses representation of the node’s subtree. In figure 5.11, the average number of

parentheses read per node as the multicast packet is forwarded from the source to a leaf node

is shown in case of Link* and Link** encodings. When the tree is encoded using Link**, less

parentheses are read since balanced parentheses are used only for branch and leaf nodes. It

must be noted here that since each balanced parenthesis is represented using a single bit, the

balanced parentheses representation read by each forwarding node is small in length and can

be loaded into processor registers and processed at high speeds.

The space and forwarding performance corresponding to node based encodings is analogous

to link based encodings, but of larger scale since more bits are spent for a node as compared to

5.9 Simulations 97

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 5 10 15 20 25 30 35 40 45 50

N
od

es
 o

r
Li

nk
s

Number of last hop routers

branch nodes
relay nodes

links
branch links

(a) ts1000

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 5 10 15 20 25 30 35 40 45 50

E
nc

od
in

g
le

ng
th

 (
bi

ts
)

Number of last hop routers

link+
link*

link**
xcast+

(b) ts1000

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 10 20 30 40 50 60 70 80 90 100

N
od

es
 o

r
Li

nk
s

Number of last hop routers

branch nodes
relay nodes

links
branch links

(c) scan

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35 40 45 50

E
nc

od
in

g
le

ng
th

 (
bi

ts
)

Number of last hop routers

link+
link*

link**
xcast+

(d) scan

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30 35 40 45 50

N
od

es
 o

r
Li

nk
s

Number of last hop routers

branch nodes
relay nodes

links
branch links

(e) att

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 5 10 15 20 25 30 35 40 45 50

E
nc

od
in

g
le

ng
th

 (
bi

ts
)

Number of last hop routers

link+
link*

link**
xcast+

(f) att

Figure 5.10: Properties of multicast trees and their encoding lengths in various topologies

98 Chapter 5: Encodings of Multicast Trees

that for a link.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 p

ar
en

th
es

es

Number of last hop routers

link*
link**

(a) scan

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 p

ar
en

th
es

es

Number of last hop routers

link*
link**

(b) att

Figure 5.11: Average number of parentheses read per node for Link* and Link** encodings

5.10 Conclusions

In this work, we presented efficient ways of encoding specific or explicit multicast trees us-

ing link indexes and node identifiers. We presented an improved encoding Link+ and two new

encodings Link* and Link** which consume space close to the minimum number of bits needed

to represent multicast trees. These encodings can be used to represent multicast trees using

either link indexes or node identifiers. We evaluated the space and forwarding performance of

these encodings using shortest path multicast trees in real and generated topologies. These en-

codings can be used for various applications such as multicast state reduction, multicast traffic

engineering and application level multicast, and provide a feasible way of representing trees of

small and medium sized multicast groups within data packets.

6

CONCLUSIONS

In this thesis, we have addressed problems related to two topics: (i) Inference of Congestion

in the Internet and (ii) Multicast Traffic Engineering in Overlay Networks.

Correct inference of congestion is crucial to the functioning of transport protocols in the

Internet. With the growth of wireless links in the Internet, transport protocols must differen-

tiate between wireless and congestion losses in order to infer the right level of congestion on

end-to-end paths. In chapter 2, we presented AED, an explicit loss differentiation scheme which

allows unreliable transport protocols to accurately differentiate between congestion and wire-

less losses. In AED, agents are deployed at the boundaries of wireless links. These agents mark

the cause of losses corresponding to a window of packets, within packets which are not lost,

with low overhead. AED can be used in conjunction with protocols such as TFRC. We showed

by simulations and modeling how the window size utilized by agents affects the throughput of

the TFRC protocol. We showed that even if agents maintain small window sizes, AED performs

significantly better than previously proposed end-to-end loss differentiation schemes.

Inferring the level of congestion on individual network links is important in order to monitor

and manage networks. This information is useful to network operators and service providers

in order to make decisions concerning routing of traffic within their network or the upgrade of

certain parts of their network. In chapters 3 and 4, we addressed two problems related to a

method of performing network tomography called MINC. MINC infers loss rates, i.e. the level

of congestion, on individual network links from end-to-end multicast measurements.

In order to reliably use any information that is inferred from external end-to-end measure-

ments, it is essential to verify the integrity of the measured data. Due to the presence of buggy

or malicious multicast receivers, the binary feedbacks which are used by MINC to infer loss

rates of network links may be incorrect. Incorrect feedbacks lead to a faulty inference of loss

99

100 Chapter 6: Conclusions

rates wherein good network links may get classified as having high loss rates and bad network

links may get classified as having low loss rates. In chapter 3, we presented a statistical verifi-

cation algorithm called ICheck which can verify the integrity of binary feedbacks collected from

multicast receivers. In conformance with the end-to-end nature of network tomography, ICheck
does not need the knowledge of the multicast tree topology and works even in the presence of

colluding receivers. ICheck helps to determine if a given set of binary feedbacks collected from

multicast receivers would result in a trustworthy inference of link loss rates or not.

ICheck checks the feedbacks of groups of three receivers and reports the number of incon-

sistencies. Future work in this direction will involve answering the following questions: (i) Can

we estimate a global quantity which represents the likelihood that the given feedback data is

incorrect (ii) Given the knowledge of multicast tree topology, can the information from differ-

ent three-receiver tests be aggregated to identify misbehaving receivers (iii) Can a similar test

be designed to verify standard RTCP RR feedbacks collected from multicast receivers.

The task of performing large scale multicast measurements to infer link loss rates requires

the deployment of dedicated infrastructures and is complex. This can be simplified if receivers

of multicast sessions can perform measurements based on their data packets and report these

measurements via RTCP. However, since RTCP feedback bandwidth must not exceed 5% of data

bandwidth, we need ways of performing MINC loss inference using less feedback bandwidth.

In chapter 4, we designed an extended MINC loss estimator(EMLE) which can infer loss rates

of links using aggregate feedbacks. Aggregate feedbacks require less feedback bandwidth and

we showed that EMLE performs loss inference using these feedbacks without significant loss of

accuracy. Another approach to reducing feedback bandwidth is thinning, i.e. to report a sam-

pled set of feedbacks. The thinned feedbacks can then be given to the MINC loss estimator for

loss inference. We compared the above two approaches using model-based and NS simulations

and concluded that thinning is a better approach to reducing feedback bandwidth. Our work

on EMLE also revealed that the MINC loss and delay estimators can be modified to eliminate

numerical computations.

Future work on the above problem will involve performing experiments to compare EMLE

and the approach of using thinning along with MINC loss estimator, to the recently proposed

moment-based estimator [34]. This will involve performing experiments similar to those per-

formed by authors of [9] using an RTP/RTCP emulator to capture realistic network settings.

Also, it remains to be determined if EMLE can be extended in a manner similar to MINC loss

estimator to incorporate MAR feedbacks loss process.

The goal of multicast traffic engineering is to steer multicast traffic on specific or explicit

trees to balance the load in the network and meet certain traffic constraints. Maintaining a

single multicast tree to route all the multicast traffic congests paths within the tree while other

network paths may remain under-utilized. The task of multicast traffic engineering is feasible in

101

overlay networks since overlay nodes are generally servers and PCs which can be programmed

to perform intelligent and adaptive functions. Performing the same tasks within routers re-

quires their upgrade. In order to perform multicast traffic engineering, we need methods to

steer multicast traffic on specific or explicit trees. In chapter 5, we presented efficient ways of

encoding multicast trees within data packets. These encodings can be used in overlay networks

to route multicast traffic on explicit trees in a stateless manner. These encodings are almost

optimal in terms of space and can be read and processed efficiently. Using experiments with

multicast trees in real and generated network topologies, we showed that these encodings can

be used to feasibly represent trees of small and medium sized multicast groups within data

packets. We also showed the correspondence of multicast trees to theoretical tree data struc-

tures and obtained simple lower bounds on the number of bits needed to represent multicast

trees.

102 Chapter 6: Conclusions

A

PRÉSENTATION DES TRAVAUX DE THÈSE

EN FRANÇAIS

Cette thèse s’intéresse à des problèmes liés à (i) l’estimation de la congestion sur Internet

et (ii) le trafic multipoint dans les réseaux superposés (overlays). Dans la première partie de la

thèse nous proposons des méthodes permettant d’améliorer l’estimation de la congestion sur les

chemins de bout-en-bout ainsi que sur les liens individuels dans l’Internet. Dans la deuxième

partie de la thèse nous proposons un mécanisme pour l’ingénierie de trafic multipoint dans les

réseaux superposés.

A.1 Congestion sur Internet

Internet est un réseau à commutation de paquets qui offre un modèle de service de classe

unique de type best effort. Dans ce réseau, les paquets introduits par différentes machines tra-

versent des liens de communication, attendent brièvement dans les files d’attente des routeurs,

et atteignent leurs destinations respectives. Les routeurs qui transmettent les paquets ne four-

nissent aucune priorité aux paquets et les transmettent généralement dans leur ordre d’arrivée.

L’une des caractéristiques majeurs de ces réseaux est le phénomèene de congestion. En général

103

104 Annex

la congestion apparâıt lorsque la demande pour une ressource du réseau est plus grande que

sa capacité [1]. Si par exemple, dans un intervalle de temps donné, le nombre de paquets

devant traverser un lien dépasse la capacité de ce dernier, la congestion apparâıt sur ce lien. La

conséquence de ce phénomène est que les files d’attente dans les mémoires tampon (buffers)

des routeurs s’allongent, jusqu’à ce que des paquets arrivent à des tampons pleins et soient

simplement perdus par les routeurs. Mis à part la suppression des paquets qu’ils ne peuvent

pas prendre en charge, les routeurs ne font rien de particulier pour informer qui que ce soit

de la congestion (Notons ici que le mécanisme ECN (Explicit Congestion Notification) [2], qui

est une exception à ce principe, reste faiblement déployé). Lorsque la congestion augmente

dans le réseau au-delà d’un certain seuil, la performance du réseau se dégrade. Afin d’utiliser

le réseau de manière coopérative au meilleur de sa capacité à transférer des données, il est du

devoir des machines, ou plus exactement des protocoles de transport utilisés par les terminaux,

de détecter la congestion et de la maintenir sous contrôle.

A.1.1 Estimation de la congestion

Le symptôme de congestion le plus simple à mesurer est la perte de paquet. Si les paquets

traversant un chemin dans le réseau sont perdus fréquemment, il est probable que le chemin en

question soit congestionné. L’autre symptôme de congestion sur un chemin est l’augmentation

de la latence (délai). Si les paquets qui traversent un chemin dans le réseau subissent un délai

croissant, il est probable qu’ils passent plus de temps dans les files d’attente en raison de la

congestion. Cependant, mesurer le délai et en déduire une estimation de la congestion est une

tâche complexe. Dans cette thèse, nous nous intéressons à l’estimation de la congestion à partir

du taux de perte de paquets.

Les protocoles de transport comme TCP qui transmettent des paquets sur Internet estiment

le niveau de congestion de bout-en-bout, et, à partir de cette estimation, adaptent le débit

d’émission des paquets dans le réseau. Si ces protocoles n’estiment pas correctement le niveau

de congestion, ils risquent de nuire au flux qu’ils transportent ainsi qu’aux autres flux dans le

réseau. Un protocole qui estime par erreur trop de congestion n’utilise pas la bande passante

A.1 Congestion sur Internet 105

disponible, tandis qu’un protocole qui sous-estime la congestion risque de voler de la bande

passante aux autres flux. C’est pourquoi l’estimation correcte de la congestion sur un chemin

de bout-en-bout est cruciale pour le fonctionnement des protocoles de transport dans l’Internet.

D’un autre côté, la connaissance du niveau de congestion sur des liens ou chemins spécifiques

du réseau est nécessaire pour la surveillance et la gestion des réseaux. Cette information est

utile aux opérateurs réseau qui gèrent des réseaux autonomes dans l’Internet. Connâıtre le

niveau de congestion sur des chemins spécifiques dans leur réseau leur permet de juger des

performances de leur réseau. Ils peuvent utiliser cette information pour prendre des décisions

concernant le routage du trafic dans leur réseau, et pour en améliorer certaines parties. De

même, des fournisseurs de service qui offrent des services à des clients situés sur différents

réseaux ont besoin de savoir si les chemins qu’ils utilisent sont congestionnés ou non.

Dans la première partie de la thèse nous proposons des solutions qui permettent d’améliorer

la qualité de l’estimation de la congestion à la fois sur les chemins de bout-en-bout et sur les

liens individuels de l’Internet.

A.1.2 Problèmes et contributions

Pertes de congestion et erreurs de transmission

S’appuyant sur l’implémentation de TCP de Jacobson [3], la plupart des protocoles de trans-

port d’Internet imitent aujourd’hui le comportement de TCP et interprètent chaque perte de pa-

quet comme un symptôme de congestion sur un chemin de bout-en-bout. Avec l’expansion des

technologies sans fil, Internet comporte aujourd’hui différents mécanismes de réseaux d’accès

sans fil comme les wireless LANs et les réseaux Mobiles 3G, ainsi que quelques liaisons internes

sans fil. Les liens sans fil sont sujets aux erreurs de transmission et très souvent, la couche

de liaison de données sans fil ne fournit qu’une fiabilité partielle. Dans un tel réseau hybride,

les pertes de paquets ne sont plus seulement dues à la conegstion mais aussi aux erreurs de

transmission dans les liaisons sans fil. Afin d’utiliser au mieux la bande passante disponible, un

protocole de transport doit réduire son débit d’émission uniquement en réponse à des pertes de

congestion, et non en réponse à des pertes de transmission sans fil. Cela motive le problème

106 Annex

de la différenciation entre les pertes de congestion et les pertes dues aux erreurs de transmis-

sions, afin que les protocoles de transport puissent estimer la congestion de bout-en-bout avec

précision. Le problème a été en premier étudié par rapport à TCP par les auteurs de [4]. Ils

ont proposé l’installation d’un agent de surveillance dans les stations de base pour empêcher

un émetteur TCP de réduire inutilement son débit en réponse aux erreurs de transmission.

Dans cette thèse nous considérons le problème de la différenciation de pertes par rapport aux

protocoles de transport non fiables qui transportent des flux multimédia.

Il existe deux approches de la différenciation de pertes : de bout-en-bout et explicite. Dans

la différentiation de pertes de bout-en-bout, le récepteur au niveau transport estime la cause

d’une perte de paquet sans aucune aide des éléments internes du réseau. Les mécanismes de

différenciation de pertes de bout-en-bout s’appuient sur des éléments comme les délais séparant

chaque arrivée de paquets. Cependant, aucun de ces mécanisme ne parvient à différencier assez

efficacement les pertes, et se trompent souvent dans la classification des pertes de congestion

et de transmission sans fil. Nous proposons un mécanisme précis et explicite de différenciation

de pertes appelé AED qui utilise des agents aux extrémités des liens sans fil [5]. Les agents

enregistrent dans les paquets non perdus la cause de la perte de paquets de manière intelligente

et à faible coût. AED permet aux protocoles de transport de différencier avec précision les pertes

de congestion des pertes de transmission sans fil.

Estimation fiable des pertes de paquets

Le niveau de congestion d’une liaison ou d’un chemin précis dans le réseau peut être obtenu

par deux approches : (i) en installant des agents de surveillance sur les éléments du réseau, et

(ii) par des mesures de bout-en-bout. Lorsque les réseaux à surveiller s’étendent sur plusieurs

domaines, il devient quasiment impossible d’installer des équipements spécifiques dans les

éléments du réseau pour surveiller chaque lien ou chemin. Même dans le cas d’un unique

réseau à administrer, cela exige la mise à jour coûteuse de plusieurs éléments du réseau. De ce

fait, les caractéristiques des liens et chemins internes d’un réseau sont souvent estimés à partir

de mesures effectuées de bout-en-bout.

A.1 Congestion sur Internet 107

Le domaine d’étude de réseaux dans lesquels les caractéristiques internes sont déduites par

des mesures bout-en-bout est apparu sous la dénomination de tomographie des réseaux (du fait

de sa similitude avec la tomographie médicale) [6]. Une des premières méthodes proposées

pour réaliser la tomographie d’un réseau a été l’estimation de pertes MINC (Mutlicast-based In-

ference of Network internal Characteristics) [7]. Basée sur des mesures effectuées en multipoint

de bout-en-bout, l’estimation MINC permet d’estimer les taux de pertes (c’est-à-dire les niveaux

de congestion) sur des liaisons précises du réseau. Pour obtenir cette estimation, la source

envoie des paquets sondes dans l’arbre de transmission multipoint et chaque destinataire doit

répondre avoir reçu ou non le paquet. La source et les destinataires sont de simples terminaux

sur Internet. À partir des rapports de réception (sous forme binaire) des traces collectées auprès

de chaque destinataire, l’estimation MINC estime les taux de pertes de chaque liaison de l’arbre

de transmission multipoint. Cependant, en raison de la présence de destinataires multipoints

défectueux ou malhonnêtes, ces rapports de réception peuvent être incorrects, et ainsi fausser

l’estimation des taux de pertes. Une estimation incorrecte peut indiquer de forts taux de pertes

sur de bonnes liaisons ou de faibles taux sur des liaisons mauvaises. Dans cette thèse, nous

traitons le problème de la vérification des mesures binaires de transmissions multipoint afin

d’assurer une estimation cohérente et fiable des taux de pertes sur les liens du réseau.

Nous proposons un algorithme de vérification statistique appelé ICheck qui permet de vérifier

que les données des rapports de réception récupérés auprès des destinataires multipoints sont

cohérents [8]. Cet algorithme reprend les idées de l’estimation de pertes par MINC en exploitant

les corrélations inhérentes entre rapports binaires de traces récupérées auprès des différents

destinataires d’un arbre de transmission multipoint. Schématiquement, l’algorithme se base sur

le principe que les rapports de différents sous-ensembles de destinataires peuvent être utilisés

pour estimer le taux de pertes d’une seule liaison de l’arbre de transmission multipoint. De ce

fait, en comparant les différentes estimations du taux de pertes d’une liaison, les incohérences

entre les rapports de réception peuvent être détectées. Cet algorithme a deux propriétés remar-

quables : il n’a pas besoin de connâıtre la topologie de l’arbre de transmission multipoint, et

il est capable de détecter des incohérences même en présence de destinataires conspirant pour

108 Annex

fausser les résultats.

Tomographie à faible coût

Afin d’estimer les taux de pertes par des mesures actives de bout-en-bout, des infrastruc-

tures dédiées doivent être déployées. Pour des mesures effectuées sur des arbres de transmis-

sion multipoint de grande taille, cette tâche est complexe. Elle nécessite l’accès à des sites

situés en différents endroits d’Internet et la possibilité d’y installer des logiciels de mesure.

Généralement les sites utilisent différents systèmes d’exploitation, ce qui augmente encore la

difficulté d’installation et de configuration. Pour faciliter la prise de mesures multipoints de

bout-en-bout, les auteurs de [9] ont proposé une architecture passive qui associe l’envoi des

rapports de réception avec RTCP (Real-Time Control Protocol) [10]. Dans cette architecture, les

sessions multipoint utilisant RTP (Real-time Transport Protocol) [10] pour transférer les données

peuvent utiliser leur paquets de données pour explorer le réseau et retourner les rapports utiles

à l’estimation de pertes MINC sur les paquets RTCP. Cependant, une des contraintes dans ce

cas est que les destinataires ne sont pas en mesure d’envoyer les rapports pour chaque paquet,

sans quoi la bande passante de retour en RTCP pourrait dépasser 5% de la bande passante des

données de la session RTP. Dans cette thèse, nous nous intéressons au problème de l’estimation

de pertes MINC à partir de moins de rapports de réception.

Dans l’architecture proposée par les auteurs de [9], les rapports de réception sont limités

pour maintenir une faible bande passante des retours RTCP, c’est-à-dire que les destinataires

envoient des rapports correspondant à un ensemble réduit (échantillonné) des paquets sondes,

et ces rapports sont utilisés pour l’estimation des taux de pertes.

Nous avons conçu un estimateur de pertes MINC étendu (EMLE–Extended MINC Loss Esti-

mator) qui permet d’estimer les pertes en utilisant des rapports cumulés [11]. Chaque rapport

cumulé est retourné par un groupe de w paquets d’exploration et peut être représenté par moins

de w bits. Ainsi, l’estimateur EMLE permet l’estimation de taux de pertes en utilisant moins de

bits en retour. Nous comparons l’estimateur EMLE avec un estimateur MINC qui utilise un

sous-ensemble des rapports.

A.2 Ingénierie de trafic dans les réseaux multipoints 109

A.2 Ingénierie de trafic dans les réseaux multipoints

Cette seconde partie de la thèse est consacrée à l’ingénierie de trafic multipoint dans les

réseaux superposés. Le but de l’ingénierie de trafic est ”d’améliorer la performance d’un réseau,

tant au niveau du trafic qu’à celui des ressources” [12]. L’objectif principal est de diriger le

trafic multipoint vers des arbres sélectionnés de telle sorte que les performances attendues

soient atteintes et que les ressources réseau soient utilisées de manière optimale.

Les réseaux superposés sont des réseaux virtuels auto-organisés dans lesquels les sites par-

ticipants forment un réseau au niveau applicatif. On peut citer comme exemples de réseaux

superposés RON (Resilient Overlay Networks) [13], OMNI (Overlay Multicast Network Infrastruc-

ture) [14], Akamai, et plusieurs réseaux pair-à-pair. Dans ces réseaux, les nœuds, généralement

des serveurs, peuvent implanter des fonctions réseau intelligentes et configurables au niveau

applicatif, que les routeurs sur Internet ne peuvent normalement pas. Bien que les services

implantés au niveau applicatif soient moins efficaces, la propriété remarquable des réseaux

superposés est qu’ils sont aisément déployables.

A.2.1 Problème et Contribution

En étudiant les caractéristiques des chemins de routage superposés, les nœuds de la sur-

couche peuvent diriger le trafic dynamiquement pour équilibrer la charge sur les chemins ou

routes selon certaines contraintes, et ainsi faire de l’ingénierie du trafic. Un des services qui

peut être offert par les réseaux superposés est le routage multipoint. Afin d’utiliser au mieux

les conditions du trafic sur le réseau superposé, les nœuds peuvent construire des arbres pour

diriger le trafic intelligemment. Pour cela, ils ont besoin de décrire des arbres de transmission

multipoints de manière précise dans le réseau superposé. Cependant, les mécanismes de main-

tenance des différents arbres du réseau superposé qui introduisent un état par arbre sur les

nœuds ne passe à l’échelle. De plus, les nœuds du réseau superposé peuvent être limités en

termes de capacité mémoire. Le problème du routage multipoint explicite sans états est encore

rarement attaqué dans la littérature.

110 Annex

Une approche pour réaliser un routage explicite sans état est le routage multipoint à la

source, c’est-à-dire l’encodage de l’arbre de transmission multipoint au sein des paquets de

données. Dans cette thèse, nous considérons cette approche et nous avons mis au point

des techniques d’encodages efficaces d’arbres de transmission multipoint dans les paquets de

données [15]. Nous montrons la similitude entre les arbres de transmission multipoint et les

structures d’arbres théoriques, et à partir de cette similitude nous montrons l’existence de

bornes inférieures simples sur le nombre de bits nécessaires pour représenter des arbres de

transmission multipoint. Nos encodages sont quasi optimaux en termes d’espace mémoire et

peuvent être lus et traités efficacement. Ils peuvent être utilisés pour représenter des arbres de

transmission multipoint dans des paquets de données afin de router le trafic multipoint sur des

arbres de transmission explicites sans utiliser d’états.

A.3 Conclusions

Dans cette thèse, nous avons abordé des problèmes liés à deux sujets: l’estimation de la

congestion sur Internet et l’ingénierie du trafic multipoint dans les réseaux superposés.

Estimer avec précision la congestion est un besoin crucial pour le fonctionnement des pro-

tocoles de transport sur Internet. Avec le développement des liens sans fil sur Internet, les

protocoles de transport doivent distinguer les pertes dues aux erreurs de transmission sur les

liens sans fil, des pertes liées à la congestion afin de pouvoir évaluer le réel niveau de congestion

de bout-en-bout. Au chapitre 2, nous avons présenté AED, un mécanisme de différenciation

des pertes qui permet à des protocoles de transport non fiables de faire la distinction entre les

pertes de congestion et les pertes qui se produisent sur les liens sans fils. Dans AED, les agents

sont déployés aux extrémités des liens sans fils. Ces agents notifient la cause des pertes cor-

respondant à une fenêtre de paquets, dans des paquets non perdus, avec un faible surcoût en

taille mémoire des paquets. AED peut être utilisé en complément à d’autres protocoles tel que

TFRC. Nous avons montré que même si la taille des fenêtres était petite, AED se comportait

beaucoup mieux que les méthodes de différenciation de pertes existant à l’heure actuelle.

A.3 Conclusions 111

Estimer le niveau de congestion des liens est essentiel pour le contrôle et la gestion des

réseaux. Cette information est utile pour les opérateurs réseaux et les fournisseurs d’accès

car elle leur permet de prendre des décisions concernant le routage du trafic au sein de leur

propre réseau ou bien la mise à jour de certains composants de leur réseau. Aux chapitres 3

et 4, nous avons évoqué deux problèmes liés à un outil de tomographie de réseaux appelée

MINC. MINC utilise des mesures multipoints pour évaluer le taux de perte des différents liens

et consécutivement, le niveau de congestion.

Afin d’utiliser de manière fiable les informations fournies par les mesures de bout-en-bout, il

est essentiel de vérifier l’intégrité des données mesurées. Les données binaires communiquées

à MINC en retour lui permettent d’estimer les taux de pertes des liens; mais elles peuvent être

erronées du fait de la présence de récepteurs défaillants ou mal intentionnés. Les données in-

correctes conduisent à de mauvaises estimations des taux de pertes. De bons liens peuvent alors

être répertoriés comme ayant un fort taux de pertes et réciproquement. Au chapitre 3, nous

avons présenté un algorithme statistique de vérification appelé ICheck. ICheck vérifie l’intégrité

des données binaires transmises par les récepteurs multipoints. En conformité avec la nature

de bout-en-bout de la tomographie réseau, ICheck n’a pas besoin de connâıtre l’arbre multipoint

de la topologie et fonctionne même en présence de récepteurs défectueux ou mal intentionnés.

ICheck aide à évaluer si un certain ensemble de données transmis par les récepteurs multipoints

conduira à des estimations de pertes dignes de confiance ou non.

ICheck vérifie les informations fournies par des groupes de trois récepteurs et renvoie le

nombre d’incompatibilités. Des recherches futures dans ce domaine tenteront de répondre aux

questions suivantes : (i) peut-on définir une quantité représentant la probabilité qu’une donnée

reçue soit incorrecte (ii) Connaissant la topologie de l’arbre de transmission multipoint, est-ce

que les informations provenant de différents groupes peuvent être regroupées pour identifier

les récepteurs fallacieux. (iii) Est-ce que des tests similaires peuvent être réalisés pour vérifier

l’intégrité des données RTCP RR (Receiver Reports) transmises par les récepteurs multipoints.

Réaliser des mesures multipoints à grande échelle pour estimer des taux de pertes nécessite

la mise en place d’infrastructures adaptées et constitue donc une tâche complexe. Celle-ci

112 Annex

peut être simplifiée si les récepteurs des sessions multipoints peuvent effectuer des mesures

à partir de leurs propres paquets de données et renvoyer ces mesures via RTCP. Cependant,

étant donné que la bande passante utilisée par RTCP ne doit pas excéder 5% de la bande

passante des données, nous devons trouver un moyen pour réaliser les estimations de pertes

en utilisant moins de bande passante pour récupérer les mesures. Au chapitre 4, nous avons

conçu une extension de l’estimateur de perte MINC (EMLE) qui évalue le taux de perte des liens

en utilisant des données agrégées. Les données agrégées utilisent moins de bande passante. De

plus, nous avons montré que EMLE, en utilisant ces données, réalise les estimations de pertes

sans détérioration significative de la précision. Une autre approche pour réduire la bande

passante en retour consiste à diminuer la taille des données en ne prenant en compte qu’un

échantillon des mesures reçues. Les données ainsi réduites sont transmises à l’estimateur de

pertes MINC. Nous avons comparé les deux méthodes ci-dessus en utilisant des modèles et des

simulations sur NS et nous avons conclu que la méthode de réduction des données est la plus

efficace pour diminuer les besoins en bande passante. Notre travail sur EMLE a aussi révélé que

les estimateurs de pertes et de délais MINC peuvent être modifiés pour supprimer les calculs

numériques.

Des travaux futurs consisteront à effectuer des expériences pour comparer EMLE et sa

méthode de réduction des données, au nouvel estimateur [34] basé sur le moment. Ceci exigera

des expériences similaires à celles réalisées par [9] utilisant un émulateur RTP/RTCP pour cap-

turer des données réseaux réalistes. Il reste également à déterminer si EMLE peut être étendu

de manière similaire à l’estimateur de pertes MINC pour incorporer le processus de perte des

données reçues MAR(missing at random).

Le but de l’ingénierie du trafic multipoint est d’orienter le trafic sur des arbres spécifiques

ou explicites pour équilibrer la charge dans le réseau et vérifier certaines contraintes liées au

trafic. Maintenir un seul arbre pour router tout le trafic multipoint risque d’encombrer certains

chemins alors que d’autres liens peuvent être sous-utilisés. La tâche de l’ingénierie du trafic mul-

tipoint est réalisable dans les réseaux superposés car les noeuds sont généralement des serveurs

ou des PC programmables pour réaliser des tâches intelligentes et configurables. Effectuer les

A.3 Conclusions 113

mêmes tâches avec des routeurs nécessite leur mise à jour. En présence de trafic multipoint,

nous avons besoin de méthodes pour guider le trafic sur des arbres spécifiques ou explicites. Au

chapitre 5, nous avons présenté des manières efficaces pour encoder des arbres multipoints au

sein des paquets de données. Ces techniques d’encodage peuvent être utilisées dans les réseaux

superposés pour router le trafic multipoint sur des arbres explicites sans utiliser d’états. Cet

encodage est quasi optimal en terme d’espace mémoire occupé et peut être calculé et décodé

efficacement. En utilisant des expériences avec des arbres multipoints dans des topologies

réseaux réelles et simulées, nous avons montré que ces techniques peuvent être utilisés de

manière efficace pour encoder dans des paquets de données des arbres correspondant à des

groupes multipoints de petites ou de moyennes tailles. Nous avons également démontré la

correspondance entre les arbres multipoints et la notion théorique d’arbre en tant que struc-

ture de données et nous avons obtenu une borne inférieure au nombre de bits nécessaires pour

représenter un arbre multipoint.

114

BIBLIOGRAPHY

[1] Raj Jain, “Congestion control in computer networks: issues and trends,” IEEE Network,

pp. 24–30, 1990. 1, 104

[2] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit Congestion Notification

(ECN) to IP,” RFC 3168 (Proposed Standard), September 2001. 1, 10, 104

[3] V. Jacobson, “Congestion avoidance and control,” in SIGCOMM ’88: Proceedings of the
conference on Applications, Technologies, Architectures, and Protocols for Computer Commu-
nication, 1988, pp. 314–329. 2, 105

[4] Hari Balakrishnan, Srinivasan Seshan, and Randy H. Katz, “Improving reliable transport

and handoff performance in cellular wireless networks,” ACM Wireless Networks, vol. 1,

no. 4, pp. 469–481, 1995. 3, 9, 106

[5] Vijay Arya and Thierry Turletti, “Accurate and Explicit Differentiation of Wireless and

Congestion Losses,” in ICDCS Workshop on Mobile and Wireless Networks, May 2003, pp.

877–882. 3, 106

[6] Y. Vardi, “Network tomography: Estimating source-destination traffic intensities from link

data,” Journal of the American Statistical Association, pp. 365–377, 1996. 3, 27, 107

[7] A. Adams, T. Bu, T. Caceres, N.G. Duffield, T. Friedman, J.Horowitz, F. Lo Presti, S.B.

Moon, V. Paxson, and D. Towsley, “The use of End-to-end Multicast Measurements for

Characterising Internal Network Behavior,” IEEE Communications Magazine, vol. 38, no.

5, pp. 152–158, May 2000. 3, 24, 26, 27, 50, 51, 52, 53, 107

[8] Vijay Arya, Thierry Turletti, and Ceilidh Hoffmann, “Feedback Verification for Trustworthy

Tomography,” in Workshop on Internet Performance, Simulation, Monitoring and Measure-
ment (IPS-MOME), March 2005. 4, 107

[9] R. Caceres, N.G. Duffield, and T. Friedman, “Impromptu measurement infrastructures

using RTP,” in IEEE INFOCOM, June 2002, pp. 1490–1499. 4, 25, 47, 49, 50, 51, 52, 75,

100, 108, 112

115

116

[10] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport Protocol for

Real-Time Applications,” RFC 3550 (Standard), July 2003. 4, 8, 9, 25, 29, 50, 51, 108

[11] Vijay Arya, Thierry Turletti, Timur Friedman, Remy Bellino, and N. G. Duffield, “Low

Feedback MINC Loss Tomography,” in IEEE INFOCOM Student Workshop, March 2005. 5,

108

[12] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao, “Overview and Principles of

Internet Traffic Engineering,” RFC 3272 (Informational), May 2002. 5, 80, 109

[13] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert Morris, “The Case

for Resilient Overlay Networks,” in Proceedings of 8th Annual Workshop on Hot Topics in
Operating Systems, May 2001. 5, 80, 109

[14] S.Y.Shi and J.S.Turner, “Routing in overlay multicast networks,” in IEEE INFOCOM, June

2002. 5, 80, 85, 109

[15] Vijay Arya, Thierry Turletti, and Shivkumar Kalyanaraman, “Encodings of Multicast trees,”

in IFIP Networking Conference, May 2005, pp. 992–1004. 5, 110

[16] Sally Floyd, Mark Handley, Jitendra Padhye, and Jorg Widmer, “Equation-based conges-

tion control for unicast applications,” in SIGCOMM ’00: Proceedings of the conference on
Applications, Technologies, Architectures, and Protocols for Computer Communication, 2000,

pp. 43–56. 8

[17] I. Rhee, V. Ozdemir, and Y. Li, “TEAR: TCP emulation at recievers-flow control for mul-

timedia streaming,” Tech. Rep., Department of Computer Science, NCSU, April 2000.

8

[18] Deepak Bansal and Hari Balakrishnan, “Binomial congestion control algorithms,” in IEEE
INFOCOM, April 2001, pp. 631–640. 8, 9

[19] Y. R. Yang and S. S. Lam, “General AIMD congestion control,” in Proceedings of 8th ICNP,

November 2000. 8

[20] S. Biaz and N.H. Vaidya, “Discriminating congestion losses from wireless losses using

inter-arrival times at the reciever,” in IEEE Symposium ASSET’99, March 1999. 8, 10

[21] Y. Tobe, Y. Tamura, A. Molano, S. Ghosh, and H. Tokuda, “Acheiving moderate fairness for

UDP flows by pathstatus classification,” in 25th Annual IEEE Conference on Local Computer
Networks, November 2000, pp. 252–61. 8, 10

BIBLIOGRAPHY 117

[22] S. Cen, P.C. Cosman, and G.M. Voelker, “End-to-end differentiation of congestion and

wireless losses,” in Multimedia Computing and Networking (MMCN), January 2002, pp.

1–15. 8, 10, 11, 18, 19

[23] E. Kohler, M. Handley, J. Padhye, and S. Floyd, “Datagram congestion control proto-

col(DCCP),” May 2002, http://www.icir.org/kohler/dcp/. 9, 14

[24] M. Handley, J. Padhye, and S. Floyd, “TCP Friendly Rate Control(TFRC): Protocol speci-

fication,” April 2002, http://www.icir.org/tfrc/. 9

[25] Giao Thanh Nguyen, Randy H. Katz, Brian Noble, and M. Satyanarayanan, “A trace-based

approach for modeling wireless channel behavior,” in Winter Simulation Conference, 1996,

pp. 597–604. 16, 17, 21

[26] F. Li, N. Seddigh, B. Nandy, and D. Malute, “An empirical study of today’s internet traffic

for differentiated services IP QoS,” in Proceedings of ISCC, 2000. 22

[27] R. Caceres, N. G. Duffield, J. Horowitz, and D. Towsley, “Multicast-based inference of

network-internal loss characteristics,” IEEE Transactions on Information Theory, vol. 45,

pp. 2462–2480, 1999. 24, 27, 43, 46, 50, 52, 58, 66

[28] Francesco Lo Presti, N. G. Duffield, J. Horowitz, and Don Towsley, “Multicast-based infer-

ence of network-internal delay distributions,” IEEE/ACM Transactions on Networking, vol.

10, no. 6, pp. 761–775, 2002. 24, 27, 50, 53

[29] Andrew Whitaker and Richard S. Cox and Steven D. Gribble, “Configuration Debugging

as Search: Finding the Needle in the Haystack,” in 6th Symposium on Operating System
Design and Implementation (OSDI), 2004. 25

[30] Dawson Engler and Madanlal Musuvathi, “Model-checking large network protocol imple-

mentations,” in Network System Design and Implementation (NSDI), 2004. 25

[31] V. Paxson, A. K. Adams, and Matt Mathis, “Experiences with NIMI,” in Passive and Active
Measurement workshop, April 2000. 25

[32] B. Tierney and D. Gunter, “Netlogger: A toolkit for distributed system performance tuning

and debugging,” Tech. Rep., LBNL, 2002. 25

[33] Sergey Gorinsky, Sugat Jain, and Harrick M. Vin, “Multicast Congestion Control with

Distrusted Receivers,” in Networked Group Communication, 2002, pp. 19–26. 25, 28

[34] N. G. Duffield, V. Arya, R. Bellino, T. Friedman, J. Horowitz, D. Towsley, and T. Turletti,

“Network Tomography from Aggregate Loss Reports,” in Submitted to IFIP Performance,

2005. 25, 76, 100, 112

118

[35] T. Friedman, R. Caceres, and A. Clark, “RTP Control Protocol Extended Reports (RTCP

XR),” RFC 3611 (Proposed Standard), November 2003. 25, 52

[36] N.G. Duffield and F. Lo Presti, “Multicast Inference of Packet Delay Variance at Interior

Network Links,” in IEEE INFOCOM, March 2000, pp. 1351–1360. 27, 53

[37] N. G. Duffield, J. Horowitz, D. Towsley, W. Wei, and T. Friedman, “Multicast-based loss

inference with missing data,” IEEE Journal on Selected Areas of Communications, vol. 20,

no. 4, pp. 700–713, 2002. 27, 75

[38] R. Caceres, N.G. Duffield, J. Horowitz, F. Lo Presti, and D. Towsley, “Loss-Based Inference

of Multicast Network Topology,” in IEEE Conference on Decision and Control, December

1999. 27, 30, 38, 53

[39] Sylvia Ratnasamy and Steven McCanne, “Inference of Multicast Routing Trees and Bot-

tleneck Bandwidths Using End-to-end Measurements,” in IEEE INFOCOM, 1999, pp. 353–

360. 27, 30, 38, 53

[40] Claudia Tebaldi and Mike West, “Bayesian inference on network traffic using link count

data,” Journal of the American Statistical Association, pp. 557–596, 1998. 27

[41] Jin Cao, Drew Davis, Scott Vander Wiel, and Bin Yu, “Time-varying network tomography:

router link data,” Journal of the American Statistical Association, vol. 95, pp. 1063–1075,

2000. 27

[42] Jorg Widmer and Mark Handley, “Extending equation-based congestion control to mul-

ticast applications,” in SIGCOMM ’01: Proceedings of the conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication, 2001, pp. 275–285.

28

[43] S. Paul, K.Sabnani, J.C Lin, and S. Bhattacharya, “Reliable Multicast transport Protocol

(RMTP),” IEEE Journal on selected areas in Communication, vol. 15, no. 3, pp. 407 – 421,

April 1997. 28

[44] Luigi Rizzo, “pgmcc: a TCP-friendly single-rate multicast congestion control scheme,” in

SIGCOMM ’00: Proceedings of the conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, 2000, pp. 17–28. 28

[45] Brett J. Vickers, Célio Albuquerque, and Tatsuya Suda, “Source-adaptive multilayered

multicast algorithms for real-time video distribution,” IEEE/ACM transactions on Net-
working, vol. 8, no. 6, pp. 720–733, 2000. 28

BIBLIOGRAPHY 119

[46] Steven McCanne, Van Jacobson, and Martin Vetterli, “Receiver-driven layered multicast,”

in SIGCOMM ’96: Proceedings of the conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, 1996, pp. 117–130. 28

[47] Lorenzo Vicisano, Luigi Rizzo, and Jon Crowcroft, “TCP-Like congestion control for lay-

ered multicast data transfer,” in IEEE INFOCOM, 1998, pp. 996–1003. 28

[48] John W. Byers, Michael Frumin, Gavin B. Horn, Michael Luby, Michael Mitzenmacher,

Alex Roetter, and William Shaver, “FLID-DL: Congestion control for layered multicast,” in

Networked Group Communication, 2000, pp. 71–81. 28

[49] D Sisalem and A wolisz, “MLDA: A TCP-friendly congestion control framework for hetero-

geneous multicast environments,” in Eighth International Workshop on Quality of Service
(IWQoS), June 2000. 28

[50] J. Vieron, T. Turletti, K. Salamatian, and C. Guillemot, “Source and channel adaptive

rate control for multicast layered video transmission based on a clustering algorithm,”

EURASIP, Special Issue on Multimedia over IP and Wireless Networks, 2004. 28

[51] S.Y. Cheung, M.H. Ammar, and X. Li, “On the use of destination set grouping to improve

fairness in multicast video distribution,” in IEEE INFOCOM, March 1996, pp. 553–560.

28

[52] Sergey Gorinsky, Sugat Jain, Harrick Vin, and Yongguang Zhang, “Robustness to inflated

subscription in multicast congestion control,” in SIGCOMM ’03: Proceedings of the confer-
ence on Applications, Technologies, Architectures, and Protocols for Computer Communica-
tion, 2003, pp. 87–98. 28

[53] A. Agresti, “A Survey of Exact Inference for Contingency Tables,” Statistical Science, vol.

7, no. 1, pp. 131–177, 1992. 38

[54] Cyrus R. Mehta and Nitin R. Patel, “ALGORITHM 643: FEXACT: a fortran subroutine for

fisher’s exact test on unordered r x c contingency tables,” ACM Transactions on Mathemat-
ical Software, vol. 12, no. 2, pp. 154–161, 1986. 40

[55] Mehta C. R. and Patel N.R, “A network algorithm for performing fisher’s exact test in rxc

contingency tables,” Journal of the American Statistical Association, vol. 78, no. 382, pp.

427–434, 1983. 40

[56] M. Yajnik, J. Kurose, and D. Towsley, “Packet Loss Correlation in the MBone Multicast

Network,” in Global Internet Conference, November 1996. 43, 46

[57] “MBone Traces,” ftp://gaia.cs.umass.edu/pub/yajnik/. 43

120

[58] Jean-Chrysotome Bolot, “End-to-end packet delay and loss behavior in the internet,” in

SIGCOMM’93 : Proceedings of the conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, 1993, pp. 289–298. 46

[59] R. Caceres, N.G. Duffield, S. B. Moon, and D. Towsley, “Inference of internal loss rates in

the MBone,” in IEEE/ISOC Global Internet, December 1999. 51

[60] Sherlia Shi, Design of Overlay Networks for Internet Multicast, Ph.D. thesis, Washington

University at St. Louis, August 2002. 80, 85

[61] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan,

“Chord: A scalable peer-to-peer lookup service for internet applications,” in SIGCOMM
’01: Proceedings of the conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, 2001, pp. 149–160. 80

[62] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker, “A

scalable content-addressable network,” in SIGCOMM ’01: Proceedings of the conference
on Applications, Technologies, Architectures, and Protocols for Computer Communication,

2001, pp. 161–172. 80

[63] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and routing for

large-scale peer-to-peer systems,” in Proceedings of IFIP/ACM International Conference on
Distributed Systems Platforms, 2001. 80, 82

[64] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph, “Tapestry: An Infrastructure

for Fault-tolerant Wide-area Location and Routing,” Tech. Rep. UCB/CSD-01-1141, UC

Berkeley, 2001. 80, 82

[65] Suman Banerjee, Christopher Kommareddy, Koushik Kar, Samrat Bhattacharjee, and

Samir Khuller, “Construction of an efficient overlay multicast infrastructure for real-time

applications,” in IEEE INFOCOM, March 2003. 81, 85

[66] Hema Tahilramani Kaur, Shivkumar Kalyanaraman, A. Weiss, S. Kanwar, and A. Gandhi,

“BANANAS: an evolutionary framework for explicit and multipath routing in the internet,”

Computer Communication Review, vol. 33, no. 4, pp. 277–288, 2003. 81

[67] D. Waitzman, C. Partridge, and S.E. Deering, “Distance Vector Multicast Routing Protocol,”

RFC 1075 (Experimental), November 1988. 81

[68] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Jacobson, C. Liu,

P. Sharma, and L. Wei, “Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol

Specification,” RFC 2117 (Experimental), June 1997. 81

BIBLIOGRAPHY 121

[69] Stephen Deering, Deborah L. Estrin, Dino Farinacci, Van Jacobson, Ching-Gung Liu, and

Liming Wei, “The pim architecture for wide-area multicast routing,” IEEE/ACM Transac-
tions on Networking, vol. 4, no. 2, pp. 153–162, 1996. 81

[70] Ion Stoica, Stateless Core: A Scalable Approach for Quality of Service in the Internet, Ph.D.

thesis, Department of Electrical and Computer Engineering, Carnegie Mellon University,

December 2000. 82

[71] A. Rowstron, A-M. Kermarrec, M. Castro, and P. Druschel, “SCRIBE: The design of a large-

scale event notification infrastructure,” in Networked Group Communication, 2001. 82,

85

[72] Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, and John Kubiatow-

icz, “Bayeux: An Architecture for Scalable and Fault-tolerant Wide-Area Data Dissemina-

tion,” in Proceedings of NOSSDAV, June 2001, pp. 11–20. 82, 85

[73] Michael R. Macedonia, Michael J. Zyda, David R. Pratt, Paul T. Barham, and Steven

Zeswitz, “Npsnet: A Network Software Architecture For Large Scale Virtual Environ-

ments,” in Presence: Teleoperators and virtual Environments, 1994. 82

[74] J. Mark Pullen and David Wood, “Network technology for DIS,” in Proceedings of IEEE,

August 1995, pp. 1156–1167. 82

[75] George Popescu and Zhen Liu, “Stateless application-level multicast for dynamic group

communication,” in IEEE International Symposium on Distributed Simulation and Real-
Time Applications (DS-RT’04), 2004, pp. 20–28. 82, 83, 85

[76] C. W Kong, M. Gouda, and S. LamK, “Secure group communications using key graphs,”

IEEE/ACM Transactions on Networking, vol. 8, no. 1, pp. 16–30, February 2000. 82

[77] Torsten Braun, Vijay Arya, and Thierry Turletti, “A Backup Tree Algorithm for Multicast

Overlay Networks,” in IFIP NETWORKING Conference, May 2005, pp. 1430–1434. 83, 85

[78] Mozafar Bag-Mohammadi1, Siavash Samadian-Barzoki1, and Nasser Yazdani, “Linkcast:

Fast and scalable multicast routing protocol,” in NETWORKING, May 2004, pp. 1282–

1287. 83, 85

[79] Rick Boivie et al, “Explicit Multicast (Xcast) Basic Specification, INTERNET DRAFT draft-

ooms-xcast-basic-spec-06.txt,” 2004. 84

[80] Y. H. Chu, S. G. Rao, , and H. Zhang, “A case for end system multicast,” in Proceedings of
ACM SIGMETRICS, 2000, pp. 1–12. 85

122

[81] P. Francis, “white paper http://www.aciri.org/yoid/,” . 85

[82] B. Zhang, S. Jamin, and L. Zhang, “Host Multicast: A framework for delivering multicast

to end users,” in IEEE INFOCOM, June 2002. 85

[83] Zhi Li and Prasant Mohapatra, “Hostcast: A new overlay multicasting protocol,” in IEEE
International Communications Conference (ICC), 2003. 85

[84] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable application layer multicast,”

in SIGCOMM ’02: Proceedings of the conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, 2002, pp. 205–217. 85

[85] Y. Chawathe, Scattercast: An Architecture for Internet Broadcast Distribution as an Infras-
tructure Service, Ph.D. thesis, University of California, Berkeley, August 2000. 85

[86] Ion Stoica, T. S. Eugene Ng, and Hui Zhang, “Reunite: A recursive unicast approach to

multicast.,” in IEEE INFOCOM, March 2000, pp. 1644–1653. 85

[87] Lúıs Henrique Maciel Kosmalski Costa, Serge Fdida, and Otto Carlos Muniz Bandeira

Duarte, “Hop by hop multicast routing protocol,” in SIGCOMM ’01: Proceedings of the
conference on Applications, technologies, architectures, and protocols for computer commu-
nications, August 2001, pp. 249–259. 86

[88] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switching Architecture,”

RFC 3031 (Proposed Standard), January 2001. 86

[89] David Benoit, Erik D. Demaine, J. Ian Munro, and Venkatesh Raman, “Represent-

ing trees of higher degree,” in International Workshop on Algorithms and Data Struc-
tures(WADS’99), August 1999, pp. 169–180. 91

[90] Robert C. Chalmers and Kevin C. Almeroth, “On the topology of multicast trees,”

IEEE/ACM Transactions on Networking, vol. 11, no. 1, pp. 153–165, 2003. 91

[91] Graham Phillips, Scott Shenker, and Hongsuda Tangmunarunkit, “Scaling of multicast

trees: comments on the chuang-sirbu scaling law,” in SIGCOMM’99: Proceedings of Confer-
ence on Applications, technologies, architectures, and protocols for computer communication,

1999, pp. 41–51. 91

[92] Danny Dolev, Osnat Mokryn, and Yuval Shavitt, “On multicast trees: Structure and size

estimation,” in IEEE INFOCOM, March 2003. 91

[93] Ken Calvert, Matt Doar, and Ellen W. Zegura, “Modelling internet topology,” IEEE Com-
munications Magazine, vol. 35, no. 6, pp. 160–163, June 1997. 95

BIBLIOGRAPHY 123

[94] “SCAN project,” http://www.isi.edu/scan/mercator/maps.html. 95

[95] Neil Spring, Ratul Mahajan, David Wetherall, and Thomas Anderson, “Measuring isp

topologies with rocketfuel,” IEEE/ACM Transactions on Networking, vol. 12, no. 1, pp.

2–16, February 2004. 95

RÉSUMÉ

Cette thèse présente des mécanismes pour obtenir de meilleures estimations de la congestion sur In-
ternet. Elle présente également un mécanisme ayant des applications sur le trafic multipoint dans des
réseaux overlay. Tout d’abord, nous présentons une méthode de différenciation des pertes qui permet
aux protocoles de transport non fiables d’estimer avec précision la congestion de bout-en-bout, en dis-
tinguant les pertes liées à la congestion des pertes liées aux erreurs de transmission sur les liaisons sans
fil. Ensuite, nous présentons deux contributions relatives à un outil de tomographie de réseau appelé
MINC. MINC utilise des mesures multipoints de bout-en-bout pour estimer les pertes et donc la conges-
tion des liaisons internes du réseau. Nous proposons d’une part un algorithme statistique qui vérifie les
mesures binaires effectuées en multipoint par MINC pour estimer les pertes. Cet algorithme permet de
garantir une estimation fiable des taux de pertes sur les différents liens. D’autre part, nous proposons
une nouvelle version de l’estimateur de perte MINC. Notre estimateur utilise les informations multi-
points cummulées fournies en retour pour évaluer les taux de pertes sur tous les liens. Il peut être utilisé
dans des situations où la bande passante pour transmettre les rapports de reception est faible. Enfin,
nous présentons des techniques efficaces pour encoder les arbres de transmission multipoint au sein
des paquets de données. Ces techniques d’encodage peuvent être utilisées pour implanter un routage
multipoint explicite et sans état dans des réseaux overlay et ont donc des applications dans le domaine
d’ingénierie de trafic multipoint.

Mots-clés: mécanisme de différenciation de pertes de paquets, inference de congestion, tomographie de
réseau, MINC, ingénierie de trafic multipoint, encodage des arbes multipoint, multipoint explicite

ABSTRACT

This thesis presents methods which help to improve the quality of congestion inference on both end-
to-end paths and internal network links in the Internet and a method which helps to perform multicast
traffic engineering in Overlay Networks. First, we propose an explicit loss differentiation scheme which
allows unreliable transport protocols to accurately infer congestion on end-to-end paths by correctly
differentiating congestion losses from wireless losses. Second, we present two contributions related to
Multicast-based Inference of Network Characteristics (MINC). MINC is a method of performing network
tomography which infers loss rates, i.e. congestion, on internal network links from end-to-end multicast
measurements. We propose a statistical verification algorithm which can verify the integrity of binary
multicast measurements used by MINC to perform loss inference. This algorithm helps to ensure a
trustworthy inference of link loss rates. Next, we propose an extended MINC loss estimator which can
infer loss rates of network links using aggregate multicast feedbacks. This estimator can be used to
perform loss inference in situations where the bandwidth to report multicast feedbacks is low. Third, we
present efficient ways of encoding multicast trees within data packets. These encodings can be used to
perform stateless and explicit multicast routing in overlay networks and thus achieve goals of multicast
traffic engineering.

Keywords: loss differentiation, congestion inference, network tomography, MINC, multicast traffic en-
gineering, multicast tree encodings, explicit multicast

